pax_global_header00006660000000000000000000000064135542007270014517gustar00rootroot0000000000000052 comment=1896a183afdff3f5845742ce3027553a88e13c3a libspatialindex-1.9.3/000077500000000000000000000000001355420072700147055ustar00rootroot00000000000000libspatialindex-1.9.3/.gitignore000066400000000000000000000020731355420072700166770ustar00rootroot00000000000000*.suo *.obj *.bak *.dll *.ilk *.exp *.lib *.pdb *.o *.lo Makefile Makefile.in *.la .deps/ .libs/ aclocal.m4 autom4te.cache/ config.guess config.log config.status config.sub configure libtool ltmain.sh test/geometry/Intersection test/mvrtree/Exhaustive test/mvrtree/Generator regressiontest/mvrtree/MVRTreeLoad test/mvrtree/MVRTreeQuery test/rtree/Exhaustive test/rtree/Generator test/rtree/RTreeBulkLoad test/rtree/RTreeLoad test/rtree/RTreeQuery test/tprtree/Exhaustive test/tprtree/Generator test/tprtree/TPRTreeLoad test/tprtree/TPRTreeQuery test/mvrtree/MVRTreeLoad test/mvrtree/test1/data test/mvrtree/test1/queries test/mvrtree/test2/mix test/rtree/test1/data test/rtree/test1/queries test/rtree/test2/mix test/rtree/test3/data test/rtree/test3/queries test/rtree/test4/data test/rtree/test4/queries test/tprtree/test1/data test/tprtree/test1/queries test/tprtree/test2/mix docs/build CMakeFiles/ CTestTestfile.cmake src/CMakeFiles/ bin/ CMakeCache.txt cmake_install.cmake src/cmake_install.cmake install_manifest.txt docs/doxygen/html/ docs/doxygen/xml src/libspatialindex.pc libspatialindex-1.9.3/AUTHORS000066400000000000000000000006171355420072700157610ustar00rootroot00000000000000Marios Hadjieleftheriou -- Main author mhadji@gmail.com Howard Butler -- minor packaging, C API, and some Windows work hobu.inc@gmail.com Leonard Norrgård - CountVisitor in C API leonard.norrgard@refactor.fi Matthias (nitro) - CustomStorage in C API nitro@dr-code.org Norman Barker - flush(), index paging, C API improvements norman.barker@gmail.com Morteza NourelahiAlamdari me@mortezana.com libspatialindex-1.9.3/CMakeLists.txt000066400000000000000000000170421355420072700174510ustar00rootroot00000000000000# # top-level CMake configuration file for PDAL # # (based originally on the libLAS files copyright Mateusz Loskot) SET(MSVC_INCREMENTAL_DEFAULT OFF) cmake_minimum_required(VERSION 3.5.0) project(spatialindex) #------------------------------------------------------------------------------ # internal cmake settings #------------------------------------------------------------------------------ set(CMAKE_COLOR_MAKEFILE ON) # C++11 required set (CMAKE_CXX_STANDARD 11) # Allow advanced users to generate Makefiles printing detailed commands mark_as_advanced(CMAKE_VERBOSE_MAKEFILE) # Path to additional CMake modules set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake/modules" ${CMAKE_MODULE_PATH}) cmake_policy(SET CMP0054 NEW) # Make string comparison behave like you'd expect if (WIN32) if(${CMAKE_VERSION} VERSION_GREATER "3.14.5") cmake_policy(SET CMP0092 NEW) # don't put /w3 in flags endif() endif() if (APPLE) set(CMAKE_MACOSX_RPATH ON) endif (APPLE) #------------------------------------------------------------------------------ # libspatialindex general settings #------------------------------------------------------------------------------ SET(SIDX_VERSION_MAJOR "1") SET(SIDX_VERSION_MINOR "9") SET(SIDX_VERSION_PATCH "3") SET(SIDX_LIB_VERSION "6.1.1") SET(SIDX_LIB_SOVERSION "6") SET(BUILD_SHARED_LIBS ON) set(SIDX_VERSION_STRING "${SIDX_VERSION_MAJOR}.${SIDX_VERSION_MINOR}.${SIDX_VERSION_PATCH}") #------------------------------------------------------------------------------ # libspatialindex general cmake options #------------------------------------------------------------------------------ option(SIDX_BUILD_TESTS "Enables integrated test suites" OFF) # Name of C++ library set(SIDX_LIB_NAME spatialindex) set(SIDX_C_LIB_NAME spatialindex_c) if(WIN32) if (MSVC) if( CMAKE_SIZEOF_VOID_P EQUAL 8 ) set( SIDX_LIB_NAME "spatialindex-64" ) set( SIDX_C_LIB_NAME "spatialindex_c-64" ) else( CMAKE_SIZEOF_VOID_P EQUAL 8 ) set( SIDX_LIB_NAME "spatialindex-32" ) set( SIDX_C_LIB_NAME "spatialindex_c-32" ) endif( CMAKE_SIZEOF_VOID_P EQUAL 8 ) endif() endif() set(CMAKE_INCLUDE_DIRECTORIES_PROJECT_BEFORE ON) include (CheckFunctionExists) check_function_exists(srand48 HAVE_SRAND48) check_function_exists(gettimeofday HAVE_GETTIMEOFDAY) check_function_exists(memset HAVE_MEMSET) check_function_exists(memcpy HAVE_MEMCPY) check_function_exists(bcopy HAVE_BCOPY) INCLUDE (CheckIncludeFiles) #------------------------------------------------------------------------------ # General build settings #------------------------------------------------------------------------------ # note we default to RelWithDebInfo mode if(NOT MSVC_IDE) set(CMAKE_BUILD_TYPE RelWithDebInfo CACHE STRING "Choose the type of build, options are: None Debug Release RelWithDebInfo MinSizeRel" FORCE) message(STATUS "Setting libspatialindex build type - ${CMAKE_BUILD_TYPE}") endif() set(SIDX_BUILD_TYPE ${CMAKE_BUILD_TYPE}) # TODO: Still testing the output paths --mloskot set(SIDX_BUILD_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/bin") # Output directory in which to build RUNTIME target files. set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${SIDX_BUILD_OUTPUT_DIRECTORY}) # Output directory in which to build LIBRARY target files set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${SIDX_BUILD_OUTPUT_DIRECTORY}) # Output directory in which to build ARCHIVE target files. set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${SIDX_BUILD_OUTPUT_DIRECTORY}) #------------------------------------------------------------------------------ # Platform and compiler specific settings #------------------------------------------------------------------------------ if(NOT WIN32) # Recommended C++ compilation flags set(SIDX_COMMON_CXX_FLAGS "-pedantic -Wall -Wpointer-arith -Wcast-align -Wcast-qual -Wredundant-decls -Wno-long-long") endif(NOT WIN32) if (APPLE) set(SO_EXT dylib) set(CMAKE_FIND_FRAMEWORK "LAST") elseif(WIN32) set(SO_EXT dll) else() set(SO_EXT so) endif(APPLE) enable_testing() #------------------------------------------------------------------------------ # installation path settings #------------------------------------------------------------------------------ if(WIN32) set(DEFAULT_LIB_SUBDIR lib) set(DEFAULT_DATA_SUBDIR .) set(DEFAULT_INCLUDE_SUBDIR include) if (MSVC) set(DEFAULT_BIN_SUBDIR bin) else() set(DEFAULT_BIN_SUBDIR .) endif() else() # Common locations for Unix and Mac OS X set(DEFAULT_BIN_SUBDIR bin) set(DEFAULT_LIB_SUBDIR lib${LIB_SUFFIX}) set(DEFAULT_DATA_SUBDIR share/spatialindex) set(DEFAULT_INCLUDE_SUBDIR include) endif() # Locations are changeable by user to customize layout of SIDX installation # (default values are platform-specific) set(SIDX_BIN_SUBDIR ${DEFAULT_BIN_SUBDIR} CACHE STRING "Subdirectory where executables will be installed") set(SIDX_LIB_SUBDIR ${DEFAULT_LIB_SUBDIR} CACHE STRING "Subdirectory where libraries will be installed") set(SIDX_INCLUDE_SUBDIR ${DEFAULT_INCLUDE_SUBDIR} CACHE STRING "Subdirectory where header files will be installed") set(SIDX_DATA_SUBDIR ${DEFAULT_DATA_SUBDIR} CACHE STRING "Subdirectory where data will be installed") # Mark *_SUBDIR variables as advanced and dedicated to use by power-users only. mark_as_advanced(SIDX_BIN_SUBDIR SIDX_LIB_SUBDIR SIDX_INCLUDE_SUBDIR SIDX_DATA_SUBDIR) # Full paths for the installation set(SIDX_BIN_DIR ${SIDX_BIN_SUBDIR}) set(SIDX_LIB_DIR ${SIDX_LIB_SUBDIR}) set(SIDX_INCLUDE_DIR ${SIDX_INCLUDE_SUBDIR}) set(SIDX_DATA_DIR ${SIDX_DATA_SUBDIR}) #------------------------------------------------------------------------------ # subdirectory controls #------------------------------------------------------------------------------ add_subdirectory(src) if(SIDX_BUILD_TESTS) add_subdirectory(test) endif() #------------------------------------------------------------------------------ # CPACK controls #------------------------------------------------------------------------------ SET(CPACK_PACKAGE_VERSION_MAJOR ${SIDX_VERSION_MAJOR}) SET(CPACK_PACKAGE_VERSION_MINOR ${SIDX_VERSION_MINOR}) SET(CPACK_PACKAGE_VERSION_PATCH ${SIDX_VERSION_MINOR}) SET(CPACK_PACKAGE_NAME "libspatialindex") SET(CPACK_SOURCE_GENERATOR "TBZ2;TGZ") SET(CPACK_PACKAGE_VENDOR "libspatialindex Development Team") SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/COPYING") set(CPACK_SOURCE_PACKAGE_FILE_NAME "${CMAKE_PROJECT_NAME}-src-${SIDX_VERSION_STRING}") set(CPACK_SOURCE_IGNORE_FILES "/\\\\.gitattributes;/\\\\.vagrant;/\\\\.DS_Store;/CVS/;/\\\\.git/;\\\\.swp$;~$;\\\\.\\\\#;/\\\\#") list(APPEND CPACK_SOURCE_IGNORE_FILES "CMakeScripts/") list(APPEND CPACK_SOURCE_IGNORE_FILES "_CPack_Packages") list(APPEND CPACK_SOURCE_IGNORE_FILES "cmake_install.cmake") list(APPEND CPACK_SOURCE_IGNORE_FILES "/bin/") list(APPEND CPACK_SOURCE_IGNORE_FILES "/scripts/") list(APPEND CPACK_SOURCE_IGNORE_FILES "/azure-pipelines.yml") list(APPEND CPACK_SOURCE_IGNORE_FILES ".gitignore") list(APPEND CPACK_SOURCE_IGNORE_FILES ".ninja*") list(APPEND CPACK_SOURCE_IGNORE_FILES "HOWTORELEASE.txt") list(APPEND CPACK_SOURCE_IGNORE_FILES "README") list(APPEND CPACK_SOURCE_IGNORE_FILES "build/") list(APPEND CPACK_SOURCE_IGNORE_FILES "CMakeFiles") list(APPEND CPACK_SOURCE_IGNORE_FILES "CTestTestfile.cmake") list(APPEND CPACK_SOURCE_IGNORE_FILES "/docs/build/") list(APPEND CPACK_SOURCE_IGNORE_FILES "/doc/presentations/") list(APPEND CPACK_SOURCE_IGNORE_FILES "package-release.sh") list(APPEND CPACK_SOURCE_IGNORE_FILES "docker-package.sh") list(APPEND CPACK_SOURCE_IGNORE_FILES ".gz2") list(APPEND CPACK_SOURCE_IGNORE_FILES ".bz2") include(CPack) add_custom_target(dist COMMAND ${CMAKE_MAKE_PROGRAM} package_source) libspatialindex-1.9.3/COPYING000066400000000000000000000046641355420072700157520ustar00rootroot00000000000000Licensing History ------------------------------------------------------------------------------ .. note:: libspatialindex changed from a `LGPL`_ to a `MIT`_ license as of the 1.8.0 release. For most situations, this should have no impact on the library's use, but it should open it up for usage in situations that otherwise might have been problematic. Versions of libspatialindex prior to 1.8.0 were licensed LGPL 2.0, with the license description on this file. The codebase has been been updated, with licensing information replaced in headers and source files, to use the MIT license as of the 1.8.0+ release. This change was made to support the inclusion of software depending on libspatialindex in static linking-only environments such as embedded systems and Apple's iOS. libspatialindex versions prior to 1.8.0 will continue to live on as LGPL software, and developers can continue to contribute to them under terms of that license, but the main development effort, and ongoing maintenance, releases, and bug applications, will move forward using the new MIT license at http://github.com/libspatialindex/libspatialindex .. _`LGPL`: http://opensource.org/licenses/lgpl-2.1.php .. _`MIT`: http://opensource.org/licenses/MIT License (MIT) ------------------------------------------------------------------------------ :: Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. libspatialindex-1.9.3/ChangeLog000066400000000000000000001372001355420072700164620ustar00rootroot000000000000002019-02-05 * Howard Butler get gtest happy with autoconf (20:32:12) * Howard Butler more 'dist' target for cmake and autotools (20:22:57) * Howard Butler add 'dist' target to cmake (20:04:59) 2019-02-04 * Howard Butler don't ls (13:01:54) * Howard Butler another doxygen cycle (12:39:24) * Howard Butler doxygen dir stuff (11:37:44) * Howard Butler make doxygen dir (11:09:01) * Howard Butler copy doxygen output (10:47:34) * Howard Butler doc updates and reorganization (09:05:14) * Howard Butler Automated doc build and update (#134) (08:22:23) 2019-02-03 * Howard Butler ignore unknown pragmas on msvc (#133) (22:38:35) * Howard Butler Merge and catch up of #116 (#132) (13:12:47) * Howard Butler silence a bunch of cast-qual (#130) (10:21:54) * Howard Butler autotools based Travis build (10:21:27) 2019-02-02 * Howard Butler remove unnecessary personal config (22:40:57) * Howard Butler README is an autotools-required file (22:40:33) * Howard Butler remove a bunch of dead stuff and add some docker/conda scripts (#129) (22:07:01) * Howard Butler appveyor configuration based on conda (#128) (21:20:23) * Howard Butler upstream Tools.h patch from conda libspatialindex feedstock (#127) (17:33:29) * Howard Butler add Appveyor status badge (16:07:20) * Howard Butler link to Travis instead of dummy link (15:34:24) 2019-01-29 * Julien Cabieces Correct findLeastEnlargement method to always return a correct value (11:37:38) 2018-11-19 * Elliot Saba libstdc++/libc++ fixes for macOS and FreeBSD (#124) (09:12:07) 2018-09-29 * Howard Butler Merge pull request #122 from willp552/master (19:57:45) * William Price Use tabs as opposed to spaces for consistency. (09:35:09) 2018-08-08 * Howard Butler Merge pull request #121 from nyalldawson/fix_120 (16:00:03) 2018-07-31 * Nyall Dawson Revert changes to c API (16:06:17) 2018-07-30 * Howard Butler Merge pull request #119 from nyalldawson/modernize (14:05:47) 2018-07-26 * Nyall Dawson More unique_ptr use (17:01:19) * Nyall Dawson Convert some raw to unique ptr (16:51:54) * Howard Butler Merge pull request #117 from nyalldawson/modernize (08:59:06) 2018-07-21 * Nyall Dawson Fix a warning (04:15:38) * Nyall Dawson Fix warning (04:05:19) * Nyall Dawson Fix build (04:04:17) * Nyall Dawson Use noexcept (04:02:50) * Nyall Dawson Use = delete (04:02:07) * Nyall Dawson Use = default (04:01:19) * Nyall Dawson Use emplace_back instead of push_back (04:00:37) * Nyall Dawson Use default member init (03:59:51) * Nyall Dawson Replace raw string literal (03:54:27) * Nyall Dawson Replace deprecated headers (03:53:09) * Nyall Dawson 0 -> nullptr (03:52:08) * Nyall Dawson Add overrides (03:51:26) * Nyall Dawson Fix build (03:47:46) 2015-02-21 * Howard Butler remove broken pthread support #60 (11:10:05) 2015-02-12 * Norman Barker Fixed potential memory leaks (10:27:08) * Norman Barker Travis status (10:34:36) * Norman Barker Merge pull request #50 from cloudant/simple_c_test (08:33:40) * Norman Barker Merge pull request #51 from cloudant/sidx_test (08:33:30) 2014-11-29 * Howard Butler auto-up some iterators (20:04:40) 2014-11-27 * Howard Butler remove Tools::SmartPointer in exchange for C++11 std::shared_ptr (14:25:27) 2018-05-29 * Howard Butler Merge remote-tracking branch 'origin/master' into capi-fixes (10:21:34) * Howard Butler bump version numbers (10:21:28) 2018-04-26 * Howard Butler Merge pull request #114 from michael-herwig/master (10:58:17) * Michael Herwig added summary to changelog (05:34:40) * Michael Herwig Added silent tr1 depecreation flag vor msvc compiler >= 1900 (05:30:27) * Michael Herwig Added include for proper compilation using msvc15 (05:23:48) * Michael Herwig Added cmake option for conditional test integration (05:19:21) 2017-12-05 * Howard Butler Merge pull request #111 from QuLogic/scanbuild (09:41:26) * Elliott Sales de Andrade Fix leaks in tests. (01:27:11) * Elliott Sales de Andrade Fix possible memory leaks with unexpected returns. (01:05:35) * Elliott Sales de Andrade Re-arrange loop to avoid double-free warning. (00:55:54) * Elliott Sales de Andrade Fix possible NULL-dereference. (00:48:28) 2017-11-29 * Howard Butler Merge pull request #108 from QuLogic/fix-oob (10:28:43) 2017-11-28 * Elliott Sales de Andrade Fix array allocation in Index_GetLeaves. (04:03:40) 2017-10-17 * Howard Butler Merge pull request #106 from r-barnes/patch-2 (13:43:04) 2017-10-16 * Richard Barnes Update introduction.txt (11:29:24) 2017-08-22 * Howard Butler Merge pull request #101 from tpetazzoni/configure-optim-fix (09:44:32) 2017-08-14 * Thomas Petazzoni configure.ac: do not force -O2 (16:36:36) 2017-04-20 * Howard Butler Merge pull request #94 from libspatialindex/capi-fixes (11:35:39) 2017-03-03 * Howard Butler modify C API internals to match C API definition in headers (fixes #92) (10:52:35) 2016-12-19 * Howard Butler reset path to fix #91 when generating autoconf stuff (11:38:49) 2016-08-23 * Howard Butler tmpstamp function (13:42:21) * Howard Butler add travis config for libspatialindex (13:38:37) 2016-08-22 * Howard Butler don't install gtest (16:24:15) * Howard Butler whitespace cleanup (16:24:06) * Howard Butler build libsidxtest for both autotools and cmake (13:19:33) * Howard Butler embed gtest in the source tree for use in testing (12:05:36) * Howard Butler Merge pull request #74 from sasavilic/master (10:52:58) * Howard Butler Merge pull request #84 from naihil/msvs2010_stdint (10:52:23) 2016-03-17 * Anatoliy Golubev Use stdint.h for MSVS 2010 too (04:22:01) 2016-02-29 * Howard Butler Merge pull request #82 from miklos1/master (13:59:36) * Miklos Homolya fix C API (09:01:24) 2016-02-02 * Howard Butler Merge pull request #81 from Hemofektik/master (08:52:57) * Richard Schubert fixed stat use for MSVC to use _stat64 instead to support files larger than 2GB (02:38:35) 2016-01-29 * Howard Butler Merge pull request #80 from Hemofektik/master (06:42:30) * Richard Schubert fixed CMakeLists.txt to support MSVC14 (Visual Studio 2015) (04:18:39) 2015-12-07 * Howard Butler Merge pull request #79 from cloudant/fix-rtree-multi-entry-deletes (11:05:16) 2015-12-04 * Paul J. Davis Fix RTree deletions (16:19:19) 2015-11-23 * Howard Butler another tweak for #78 (09:41:35) * Howard Butler shut up MSVC about dll linkage warnings #78 (08:51:14) 2015-11-20 * Howard Butler attempt to fix #78 -- MSVC stdint.h for MSVC versions > 1700 (12:57:14) 2015-07-16 * Sasa Vilic Making error passing over C interface reentrant for GCC implementation (05:17:51) 2015-04-25 * Howard Butler Merge pull request #68 from cloudant/fix-adjust-tree (16:34:58) * Howard Butler Merge pull request #72 from zippy1981/patch-1 (16:34:37) 2015-04-23 * Justin Dearing Update .gitignore (17:55:34) 2015-04-09 * Howard Butler Merge pull request #70 from TheSkorm/patch-1 (08:55:27) * Michael Wheeler Small typo in DiskStorageManager.cc (06:38:54) 2015-03-17 * Paul J. Davis Fix RTree::Index::adjustTree (12:00:33) 2015-03-03 * Howard Butler Merge pull request #67 from sciencectn/master (09:42:23) 2015-03-02 * Chris Taylor Made a few changes so it would compile on Cygwin. (23:30:24) 2015-02-23 * Howard Butler Merge pull request #56 from cloudant/fix-root-mbr-on-condense (16:25:19) * Howard Butler Merge pull request #61 from cloudant/55-fix-region-touches-region (16:25:07) * Howard Butler Merge pull request #62 from cloudant/57-fix-index-adjust-tree (16:25:02) * Howard Butler Merge pull request #63 from cloudant/58-fix-rstar-reinsert (16:24:52) * Norman Barker Merge pull request #53 from cloudant/fix-rstar-reinsert (15:07:44) 2015-02-20 * Paul J. Davis Fix adjustTree during R*-tree reinserts (16:04:19) * Paul J. Davis Fix Index::adjustTree/4 (16:01:13) * Paul J. Davis Fix Region::touchesRegion (15:59:23) * Paul J. Davis Update the root MBR during condenseTree (01:45:46) 2015-02-18 * Paul J. Davis Fix Node::reinsertData selection criteria (12:48:18) 2015-02-11 * Norman Barker Initial gtest tests (12:24:21) * Norman Barker Initial Travis build file (09:35:02) * Norman Barker Simple RTree CAPI example (08:34:10) 2015-02-05 * Howard Butler Merge pull request #49 from cloudant/fix-mvrtree-locks (08:09:28) 2015-02-04 * Paul J. Davis Fix the locking calls in MVRTree.cc (19:59:55) 2015-01-14 * Howard Butler Merge pull request #47 from cloudant/flush-index-headers (15:56:05) 2014-12-17 * Paul J. Davis Add a flush function to each index type (22:17:17) 2014-11-02 * Howard Butler Set IndexIdentifier on getIndexProperties for MVRTree and TPRTree (21:05:53) 2014-11-01 * Howard Butler modify fix for #40 to keep IndexIdentifier around when getting Index properties (11:49:48) * Howard Butler point download to 1.8.5 release (11:22:42) * Howard Butler more automake tweak (11:11:38) * Howard Butler automake tweaks (11:08:19) * Howard Butler add my windows config example (10:40:38) * Howard Butler update HOWTORELEASE notes (09:21:25) * Howard Butler Increment versioning to 1.8.5 in preparation for release (09:19:25) 2014-10-31 * Howard Butler CAPI: revert #40, which could cause inconsistent object lifetime behavior (23:53:04) * Howard Butler missed a variable substitution on SIDX_LIB_VERSION (21:38:14) 2014-09-29 * Howard Butler Merge pull request #45 from sebastic/soversion (16:26:19) * Bas Couwenberg Fix separate library VERSION and SOVERSION variables. (16:14:43) * Howard Butler doc tweak (08:49:07) * Howard Butler fix up library SOVERSION'ing and issue new release 1.8.4 #44 (08:45:00) 2014-09-20 * Howard Butler point to 1.8.3 release (16:41:15) * Howard Butler increment and prepare for 1.8.3 release (16:27:48) 2014-09-13 * Howard Butler update ChangeLog (18:46:21) 2014-09-11 * Howard Butler Changelog update (10:57:08) * Howard Butler clean up integer warning (10:56:53) * Howard Butler Merge pull request #42 from libspatialindex/issues/42-automake-exports (10:54:58) * Howard Butler Add sidx_export to Makefile.am #42 (10:54:07) 2014-08-27 * Howard Butler Merge pull request #41 from cloudant/capi_mvrtree (10:20:03) 2014-08-26 * Norman Barker fixed typo in MVRIntersects_Count (17:18:32) * Norman Barker added MVR index type to the C API (17:16:03) 2014-08-03 * Howard Butler fix up Release name (14:14:35) 2014-07-28 * Howard Butler unused parameters (10:04:59) * Howard Butler clean up C API for numResults being a uint64_t when it is only possible to specify uint32_t of nResults (09:53:36) * Howard Butler more C API warning cleanups (09:50:55) * Howard Butler leaf node counts are uint32_t, not size_t (09:34:41) * Howard Butler silence condition expression warning 4127 on msvc (09:20:58) * Howard Butler unreferenced parameter cleanup (09:13:36) * Howard Butler nuke assignment and empty constructor of C API Index class (09:13:01) * Howard Butler children count is uint32_t (09:11:04) * Howard Butler clean up LeafQuery visitor id management (09:09:20) * Howard Butler clean up more unused parameters (08:37:24) * Howard Butler fix mismatched type warning (using uint32_t as an id instead of SpatialIndex::id_type (08:37:15) * Howard Butler remove unused and potentially problematic throw specification for DataStream (08:28:49) * Howard Butler export all C API stuff to the DLL (08:23:49) 2014-07-27 * Howard Butler more unreferenced parameter cleanups (23:37:25) * Howard Butler screw 20ad010a1b55a4437b73c805270837c294b57251 and MSVC's dumb C4127 warning (23:36:15) * Howard Butler more unreferenced parameter warnings (23:34:20) * Howard Butler use ;; to denote looping forever to silence C4127 warning on MSVC (23:34:11) * Howard Butler support MSVC 2012 and 2013 (23:30:59) * Howard Butler big unreferenced variable cleanup (23:30:35) * Howard Butler clean up some unreferenced parameters warnings (23:17:14) * Howard Butler Merge branch 'master' of github.com:libspatialindex/libspatialindex (23:03:10) * Howard Butler Merge pull request #40 from libspatialindex/issues/40-capi-property-copying (23:03:04) * Howard Butler clean up file open mode (23:02:48) * Howard Butler bump versions to 1.8.2 in preparation for release (22:59:49) * Howard Butler Update ChangeLog in preparation for release (22:59:21) * Howard Butler add Norman to AUTHORS (22:57:12) * Howard Butler Implement a fix for #40 to maintain pointers to IndexProperty references rather than copying (18:15:38) 2014-07-22 * Howard Butler only do policy check for CMAKE > 2.x (11:25:02) * Howard Butler turn off osx rpath cmake complaint (11:05:29) 2014-07-14 * Howard Butler more cmake quoting #27 (16:07:21) * Howard Butler fix up unfixed LGPL file from test suite (16:07:04) 2014-07-12 * Howard Butler add BUILD_WITH_INSTALL_RPATH target property for OSX (23:59:03) * Howard Butler CMake config quoting #27 (23:50:05) * Howard Butler FSF postal adress update #5 (23:38:24) * Howard Butler support wide character as possible tools::Variant type -- doesn't work yet though (23:32:19) * Howard Butler add VT_PWCHAR to support wide character pointer for the Variant type (23:31:15) * Howard Butler add MSVC 2013 and 2014 defns (23:27:45) * Howard Butler fix redundant checks in destructor #28 (23:25:39) * Howard Butler Remove LDFLAGS from Libs for pkg-config #23 (23:24:32) 2014-05-12 * Howard Butler Merge pull request #38 from cloudant/c_tpr (10:22:16) 2014-05-10 * Norman Barker added temporal function to capi (16:49:28) 2014-05-08 * Howard Butler Merge pull request #37 from cloudant/paging (13:48:51) 2014-05-07 * Norman Barker added paging to all indexes (19:11:58) 2014-03-13 * Howard Butler turn off the unused m_rwLock for now (21:15:39) * Howard Butler switch to int64_t instead of uint64_t when checking result counts (21:15:14) * Howard Butler add newline to end of file (21:07:45) 2014-02-13 * Howard Butler Merge pull request #32 from cloudant/empty_index (19:00:32) * Howard Butler Merge pull request #33 from mlt/nominmax (19:00:07) 2014-02-12 * Mikhail Titov Prevent min/max from windef.h interference (15:09:53) 2014-02-11 * Norman Barker Added support for empty index files (17:46:14) 2013-09-09 * Howard Butler update download location for new release (12:07:03) 2013-08-21 * Howard Butler Merge pull request #26 from cloudant/skip_results (15:32:33) 2013-08-19 * Norman Barker made files protected variables (21:37:25) * Norman Barker added paging and flushing (21:35:32) 2013-07-29 * Norman Barker Added error handling to the C API (20:52:47) 2013-07-25 * Norman Barker Added Result Set Limit so that the number of items can be controlled. (17:58:54) 2013-06-26 * Howard Butler fixups for MSVC2008 compilation (14:17:28) * Howard Butler updates for v1.8.1 release (13:51:45) * Howard Butler Merge branch 'master' of github.com:libspatialindex/libspatialindex (13:44:32) * Howard Butler increment versions in preparation for 1.8.1 release (13:43:28) * Howard Butler Merge pull request #22 from libspatialindex/issues/22-lgpl-fixups (13:40:35) * Howard Butler update licenses for #22 (13:39:34) * Howard Butler Merge branch 'libspatialindex-issues/19-mingw64' (13:26:44) 2013-06-04 * Mateusz Loskot Fix redefinition of integer types for Visual C++ (09:46:51) 2013-05-31 * Mateusz Loskot Add Visual C++ 11.0 support to CMake build (09:23:22) 2013-03-04 * Howard Butler apply Theun's patch for Makefile.am #19 (11:09:25) 2013-02-28 * Howard Butler first pass at fixing issue for Theuns #19 (10:54:56) 2012-12-28 * Howard Butler fix up link to missing file (09:05:56) 2012-12-20 * chrisnatali refactored as suggested by maintainer (11:01:44) 2012-12-10 * chrisnatali Forgot the contains case when checking region-segment intersection (14:38:13) 2012-12-07 * chrisnatali exposed SegmentIntersects functions in capi, fixed test (17:22:08) 2012-12-06 * chrisnatali Updated LineSegment to LineSegment and LineSegment to Region intersection methods and tests. Need to fix LineSegment to Region (17:03:03) * chrisnatali Added GeomUtil and simple tests for segment intersection (14:40:22) 2012-12-12 * Howard Butler update download links (22:20:57) * Howard Butler makefile.vc no longer used -- use cmake build instead (21:48:48) * Howard Butler more release process notes (21:42:30) * Howard Butler bring ChangeLog up to date for 1.8.0 release (21:42:20) * Howard Butler increment release date (21:42:07) * Howard Butler doc updates for 1.8.0 (21:40:50) * Howard Butler doc updates for 1.8.0 (21:40:35) * Howard Butler increment version in preparation for 1.8.0 release (19:54:32) * Howard Butler increment SO_VERSION to 3:0:0 due to adding flush() to C and C++ APIs (19:54:12) 2012-11-16 * Howard Butler define pthread when we have it (11:34:50) * Howard Butler SharedLock was renamed to LockGuard - fix up patch for #15 (11:15:13) 2012-11-15 * Howard Butler Merge branch 'containsWhatQuery' (15:17:18) 2012-11-12 * Howard Butler link to libspatialindex.org (11:02:13) 2012-11-04 * Howard Butler point to http://libspatialindex.org as our new URL (14:10:54) * Howard Butler update to point to http://libspatialindex.github.com (14:06:00) * Howard Butler try again (13:54:58) * Howard Butler adapt a patch for #15 to be able to incorporate a more efficient containsWhatQuery method (12:43:28) * Howard Butler update versions to 1.8.0 in prep for upcoming release (12:31:13) * Howard Butler update versions to 1.8.0 in prep for upcoming release (12:31:03) * Howard Butler update main page to try to get github includes working (11:03:21) * Howard Butler use CMake if you want windows makefiles builds (11:02:30) * Howard Butler update AUTHORS with links to Mattias and Leonard (11:00:53) 2012-10-25 * Howard Butler update licensing of base library to MIT, update docs accordingly (14:06:08) * Howard Butler update licensing of C API (12:18:19) * Howard Butler use local imports for public within-tree public includes #14 (10:49:20) * Howard Butler adapt a patch to fix #12 -- allow cross-compilation on ANDROID (10:22:46) * Howard Butler Merge pull request #8 from booo/master (10:03:27) 2012-07-14 * Marios Hadjieleftheriou Reverted to using pthread mutex and exlusively lock all queries, since fine grain locking using spinlocks was too slow. (09:57:39) * Marios Hadjieleftheriou Reverted to using pthread mutex for all queries, since fine grain locking using spinlocks was too slow. (09:52:34) 2012-07-10 * Howard Butler attempt to use sched_yield for instances where pthread_yield doesn't exist (osx) -- please check this marios (15:54:01) * Howard Butler put #ifdef guards around LockGuard which is only implemented for pthread for now (15:52:32) * Howard Butler add check for pthread (15:52:09) * Howard Butler be explicit about which overloads should be used to silence the warning about implementation hiding (15:51:32) 2012-07-09 * Marios Hadjieleftheriou Added SpinLock to fix multi-threaded support bug. Removed silly non atomic m_rwLock when pthreads is not found. (10:00:41) 2012-04-17 * Howard Butler make sure _c library gets soversion and that we install in include/spatialindex instead of install/libspatialindex (15:36:27) 2012-04-09 * booo src/CMakeLists.txt: fix issue #6 (16:28:50) * booo Merge branch 'master' of https://github.com/libspatialindex/libspatialindex (16:26:48) 2012-04-03 * Marios Hadjieleftheriou Added flush() in IStorageManger interface. (13:10:45) 2012-03-03 * booo autogen.sh: check if libtoolize exists (08:03:59) 2012-02-16 * Marios Hadjieleftheriou replace bzero with memset (09:18:13) 2012-02-07 * Howard Butler add bit depth prefix to library name output (18:19:48) 2011-12-29 * Howard Butler add explicit links to download (08:20:41) 2011-12-09 * Howard Butler add back (copy) of README to placate automake (20:16:38) * Howard Butler increment versions to 1.7.1 in preparation for release (20:11:06) * Howard Butler rename so github renders it (20:08:51) 2011-12-06 * Howard Butler increment soversion for both cmake and autoconf builds (12:32:52) 2011-10-19 * Howard Butler update permissions for #3 (12:41:36) * Howard Butler apply variation of patch in #4 (12:36:34) * Howard Butler update packaging script for #7 (12:33:25) 2011-10-14 * Howard Butler update ChangeLog (12:44:43) * Howard Butler oops, need line separators (12:44:38) * Howard Butler update ChangeLog (12:43:43) * Howard Butler distribut test running scripts too (12:43:33) * Howard Butler update ChangeLog (12:34:57) * Howard Butler newline (12:34:48) * Howard Butler update ChangeLog (12:31:54) * Howard Butler update release date (12:31:43) * Howard Butler update ChangeLog again (12:15:57) * Howard Butler fixes to be able to make things work on msvc 10 (12:12:54) * Howard Butler only redefine c++0x types if we're <= msvc_ver 1500 (12:12:36) * Howard Butler add definition to make sure we export symbols in windows land (12:11:51) * Howard Butler namespace usings and such to satisfy msvc 10 (11:49:40) * Howard Butler more ignores (11:49:24) * Howard Butler check for msvc 10 (11:40:45) * Howard Butler update ChangeLog (11:26:39) * Howard Butler missing reference to file (11:20:14) * Howard Butler missing reference to file (11:19:02) * Howard Butler this file is now gone (11:17:10) * Howard Butler add pkg-config script for libspatialindex -- autoconf build only for now (11:01:17) * Howard Butler typo (10:28:04) * Howard Butler move Makefile.am up (10:23:23) * Howard Butler start fixing up automake include structure (10:20:16) * Howard Butler include was still busted (10:06:05) * Howard Butler fix include path (10:04:08) * Howard Butler add function detection to cmake config (09:25:08) * Howard Butler point to doxygen output (09:14:18) * Howard Butler more doc rearranging (08:53:17) * Howard Butler add doxygen configuration -- run doxygen docs/doxygen/doxygen.conf from the top level directory to get output (08:38:07) * Howard Butler more ignore (08:37:39) * Howard Butler more ignores (08:36:45) 2011-10-13 * Howard Butler a little proposed whitespace normalization -- my terminal isn't 250 characters long :) (21:18:10) * Howard Butler remove SpatialIndexImpl.h, which didn't seem to be used to hide the implementation and was contributing to relative include spaghetti (21:14:01) * Howard Butler #include file deck chair rearrangement (20:54:22) * Howard Butler #include file deck chair rearrangement (20:49:45) * Howard Butler don't add -ansi to clang compiles (16:31:05) * Howard Butler unsigned values can never be <0, no need to test for this (16:30:50) * Howard Butler clean up some warnings that clang found (16:25:05) * Howard Butler unsigned values can never be <0, no need to test for this (16:24:46) 2011-10-11 * Howard Butler regressiontest directory changed names (11:33:56) * Howard Butler rename regressiontest directory to test/ directory for added clarity. maybe next release we can have these test be auto-run with 'make test' (11:20:47) * Howard Butler check for an existing srand48, and if we have it, don't use our local one (11:03:21) * Howard Butler CMake for regressiontests (11:02:45) 2011-10-10 * Howard Butler start organizing docs (23:01:48) * Howard Butler update CMakeLists.txt when releasing too (23:01:37) * Howard Butler c/p fix (23:01:23) * Howard Butler add dummy file (22:38:19) * Howard Butler makefile for sphinx (22:37:20) * Howard Butler more cmake config (22:31:04) * Howard Butler ignore more (22:31:00) * Howard Butler clean up warning (22:30:22) 2011-10-09 * Howard Butler add cmake config (22:59:20) * Howard Butler ignore cmake stuff (22:58:56) 2011-10-06 * Howard Butler attempt 2 on #1 to fix rand in stdlib on newer gcc's (14:32:42) * Howard Butler a fix for #1 because gcc 4.5.2 appears to have these defined in stdlib.h (13:41:09) 2011-09-26 * Howard Butler add documentation for http://libspatialindex.github.com (16:10:17) 2011-09-25 * Howard Butler increment versions in preparation for release (20:44:57) 2011-07-15 * Howard Butler use int64_t for IDs instead of uint64_t's (12:12:48) * Howard Butler clean up warnings (10:55:15) * Howard Butler initialize variables to 0's before we use them (10:51:50) * Howard Butler fix up initialization order (10:48:07) * Howard Butler use -pedantic for compilation (10:42:11) * Howard Butler add .gitignore (10:40:44) 2011-05-18 * Marios Hadjieleftheriou (10:20:08) 2011-03-01 * Marios Hadjieleftheriou (08:50:59) 2011-01-10 * Marios Hadjieleftheriou (09:53:08) 2010-12-04 * Howard Butler bump version in prep for 1.6.1 release (15:22:32) 2010-11-22 * Sean Gillies Fix test of length value (13:53:16) * Howard Butler whitespace normalization (13:23:02) * Sean Gillies Add up deltas for multidimensional input (13:00:24) * Sean Gillies Add up deltas for multidimensional input (12:49:10) * Howard Butler revert r193 (12:46:06) * Howard Butler we should set isPoint to true if we pass our epsilon test -- this didn't work before (10:02:47) 2010-10-14 * Marios Hadjieleftheriou Removed nextUnifromLongDouble. It was incorrect (08:18:23) 2010-10-13 * Marios Hadjieleftheriou Added nextUniformLongDouble (10:10:35) 2010-09-16 * Howard Butler fix #25 and include visual studio files in the release (08:56:14) * Howard Butler bump versions in preparation for release (08:53:22) * Howard Butler bump versions in preparation for release (08:52:38) 2010-06-19 * Howard Butler add Matthias' CustomStorage backend for C API (15:34:19) 2010-04-21 * Howard Butler Add Marios' pagesize diatribe to the docs (13:50:02) 2010-04-12 * Howard Butler update ChangeLog (14:56:52) * Marios Hadjieleftheriou (12:17:47) * Marios Hadjieleftheriou Fixed rtree/BulkLoader infinit loop bug (12:07:13) 2010-03-31 * Howard Butler format and layout normalization (10:33:43) 2010-03-30 * Howard Butler ensure that we instantiate the ivOut with at least the ivIn so we have a properly constructed Tools::Interval #16 (15:18:40) 2010-03-05 * Howard Butler add doc describing how to release (08:19:51) 2010-03-04 * Howard Butler propsets to ignore test output: (20:56:08) * Howard Butler use subdir-objects for automake and rename the make dist output to spatialindex-src (20:53:18) * Howard Butler increment version info in preparation for release (20:52:47) * Howard Butler update for release (19:59:41) * Howard Butler add CountVisitor to the CAPI to provide a cumulation of the number of hits that land within a query (10:33:28) 2010-03-03 * Howard Butler use uint64_t for result counts instead of uint32_t in C API (15:55:09) 2009-12-28 * Howard Butler fix up for gcc 4.4 (20:35:01) 2009-12-04 * Marios Hadjieleftheriou (15:57:15) * Marios Hadjieleftheriou Fixed Region::touchesRegion member function bug. (12:46:19) 2009-11-05 * Howard Butler don't thrown an error when -DDEBUG is on and we initialize an infinite Region (10:26:45) 2009-11-02 * Howard Butler pass in a reference for the query bounds (21:10:46) * Howard Butler try to do no harm when calling Index_Free on something that's null (21:04:49) * Howard Butler pass in a reference for the query bounds (21:00:54) * Howard Butler copy the array using memcpy because we can't free() something created with new (20:15:41) * Howard Butler put the data in a newly malloc'd array to match our std::free call of Index_Delete (19:48:00) * Howard Butler make sure to delete our shape when we're done (15:32:57) * Howard Butler get dimension from the Region, no need to fetch from index properties (15:32:26) * Howard Butler make sure we clean up the bounds and region (14:53:30) * Howard Butler only #include where needed, and not in the global Tools.h file (14:08:16) 2009-10-30 * Howard Butler remove and from Tools.h and include them seperately in each file that needs them (12:09:14) * Howard Butler define to denote we're C API (11:37:11) * Howard Butler add a newline (10:03:47) 2009-10-21 * Howard Butler make sure we use new/delete instead of new/free (21:42:21) * Howard Butler remove namespace pollution of Tools:: into the globally include'd header SpatialIndex.h (12:35:24) 2009-10-20 * Howard Butler bump versions in preparation for release (10:24:18) 2009-10-19 * Howard Butler add SIDX_Version prototype (15:31:14) * Howard Butler ltmain.sh doesn't belong in svn (15:23:59) * Howard Butler Makefile.in's don't belong in svn (15:23:48) * Howard Butler C API compilation fix (13:50:42) * Howard Butler tmpname fixes so we compile on msvc2003 (13:50:31) * Howard Butler don't define a variable to "" or cl will complain (13:29:17) 2009-10-08 * Howard Butler bleaf and bindex switched around in createLevel call (14:32:03) 2009-09-17 * Howard Butler more leaf querying code (15:40:25) 2009-09-16 * Howard Butler add beginnings of leaf querying to C API (13:45:57) 2009-09-15 * Howard Butler remove the duplicate and unnecessary Item construct that was masking the already existing IData interface (22:34:14) 2009-08-31 * Howard Butler support building the c api (10:32:06) 2009-08-24 * Howard Butler fix issue with uint32_t by copying macros from Tools.h (08:25:53) 2009-08-19 * Howard Butler try to ensure -lstdc++ is linked (15:47:58) * Howard Butler ignores (14:56:31) * Howard Butler add C API (not currently built on windows) (11:37:50) * Howard Butler ignore propset (10:25:06) * Howard Butler propsets to ignore test results (10:24:15) 2009-08-18 * Howard Butler locking for Tools::PropertySet (commented out though because it doesn't work (13:07:34) 2009-08-14 * Howard Butler comment out PropertySet locking for now (12:41:31) * Howard Butler use HAVE_PTHREAD_H for #ifdef, make Tools::PropertySet threadsafe for read/write (10:19:40) 2009-08-13 * Marios Hadjieleftheriou (14:10:02) * Marios Hadjieleftheriou (10:42:43) * Marios Hadjieleftheriou 1. Replace size_t with uint32_t to fix 64/32 bit compatibility issues 2. Fixed memory bug related to data array and bulk loading for RTree. (10:24:35) 2009-08-10 * Howard Butler remove #define interface, use class (08:35:22) 2009-08-05 * Howard Butler osgeo4w packaging (20:11:54) * Howard Butler don't redefine interface if it is already defined (/me scowls at windows (15:21:47) * Howard Butler comment out record deletion entirely (14:27:33) * Howard Butler guard against invalid delete (12:58:43) 2009-07-30 * Howard Butler bump version to 1.4.0 in prep for release, add a windows docs to the dist (13:48:52) * Howard Butler Add a CheckFilesExists(Tools::PropertySet&) method instead of the cheap way we were checking for existence before. This takes into account the file extensions and only returns true if both files exist (11:57:21) * Howard Butler move the warning about 4251 down into _MSC_VER (11:56:37) 2009-07-29 * Howard Butler new changelog (22:10:27) * Howard Butler update for new layout. make sure to build dll appropriately (21:32:41) * Howard Butler turn off warning 4251 (16:24:23) * Howard Butler fix #15 and provide a way to determine the library version at compile time (15:57:26) * Howard Butler add back makefile.vc (15:50:19) 2009-07-22 * Howard Butler a note about the debugging lint that is incorrect when the bounds are infinity (14:29:35) * Howard Butler make sure to #include to satisfy gcc 4.3+ (14:24:28) * Marios Hadjieleftheriou (10:23:22) * Marios Hadjieleftheriou (10:18:42) 2009-07-21 * Marios Hadjieleftheriou (08:11:09) 2009-07-20 * Howard Butler attempt to fix #8 and allow users to specify extensions for the dat and idx files of the diskstorage manager (15:32:50) * Howard Butler make sure to update existing values in setProperties instead of assuming it doesn't exist in the map (12:35:36) * Marios Hadjieleftheriou (10:01:52) 2009-07-19 * Marios Hadjieleftheriou (09:51:46) 2009-07-18 * Marios Hadjieleftheriou (20:26:54) * Marios Hadjieleftheriou (20:15:51) * Marios Hadjieleftheriou (20:13:28) * Marios Hadjieleftheriou (20:09:59) * Marios Hadjieleftheriou (20:02:29) * Marios Hadjieleftheriou (17:52:03) * Marios Hadjieleftheriou (17:19:51) * Marios Hadjieleftheriou (17:19:07) 2009-07-15 * Howard Butler apply Willem's patch for #14 (09:39:07) 2009-07-06 * Howard Butler more descriptive and separate exception descriptions for FillFactor inconsistencies (17:23:39) * Howard Butler silence warnings about windows compiler complaints on non-windows systems (09:38:20) 2009-05-28 * Howard Butler rename dlls to not have lib* in front of them (12:52:06) * Howard Butler A much improved windows makefile based in libLAS' (11:31:33) * Howard Butler On MSVC, just about every class complains about 4250, inheritance by dominance. We'll just shut that up for now. (11:31:04) 2009-05-14 * Howard Butler apply Patrick Mézard's patch for the inverted use of mktemp on windows #13 (13:26:54) * Howard Butler Fix #12, add time.h so msvc9 works (13:21:20) 2009-05-04 * Howard Butler apply the patch for #11 - cstring and limits includes so gcc 4.3+ works (12:10:20) 2008-05-30 * Marios Hadjieleftheriou (14:42:57) 2008-05-23 * Marios Hadjieleftheriou (13:27:25) * Marios Hadjieleftheriou (12:55:19) * Marios Hadjieleftheriou (12:28:17) 2008-05-18 * Marios Hadjieleftheriou (07:35:58) 2008-04-30 * Howard Butler propset to ignore aclocal.m4 (00:39:52) * Howard Butler aclocal.m4 is autogenerated. removing (00:39:18) * Howard Butler set svn:ignore properties for autogenerated files and automake cruft (00:35:53) * Howard Butler delete Makefile.in's from source tree. Use autogen.sh to remake them if building from svn source yourself (00:27:52) * Howard Butler add rand48.h to dist target (00:26:18) 2008-04-29 * Marios Hadjieleftheriou (14:47:25) * Marios Hadjieleftheriou (13:17:22) * Marios Hadjieleftheriou (13:06:31) * Marios Hadjieleftheriou (13:03:50) * Marios Hadjieleftheriou (11:36:51) * Marios Hadjieleftheriou (11:36:38) * Marios Hadjieleftheriou (11:36:22) * Marios Hadjieleftheriou Fixex malloc memory leak. (10:40:31) * Marios Hadjieleftheriou Fixed malloc memory leak (10:40:11) 2008-02-26 * Howard Butler oops. Add missing file (10:15:43) * Howard Butler oops. Add missing file (10:14:56) 2008-01-25 * Howard Butler Initial push of windows patches (13:43:36) 2008-01-23 * Marios Hadjieleftheriou (10:25:52) 2008-01-21 * Marios Hadjieleftheriou (08:19:44) 2008-01-19 * Howard Butler bump version to 1.3 (14:51:44) * Howard Butler Add an auto-generated ChangeLog (12:42:27) * Howard Butler add myself and some notes (12:37:39) * Howard Butler update to ReST (12:36:26) * Howard Butler update ReST (12:09:45) * Howard Butler update ReST (12:09:16) * Howard Butler update ReST (12:03:40) * Howard Butler update ReST (12:02:48) * Howard Butler update ReST (12:02:10) * Howard Butler update ReST (12:01:58) * Howard Butler update ReST (11:59:42) * Howard Butler update ReST (11:59:10) * Howard Butler update ReST (11:58:53) * Howard Butler update ReST (11:58:13) * Howard Butler update ReST (11:56:33) * Howard Butler update ReST (11:55:11) * Howard Butler update ReST (11:29:26) * Howard Butler update to ReST (11:26:06) * Howard Butler set mimetype to reStructured text so Trac will render it for us in the browser (11:02:56) 2008-01-17 * Howard Butler add internal headers to the _SOURCES targets so they get included in make dist (17:34:01) * Howard Butler add autogen.sh to simplify auto stuff (11:06:18) * Howard Butler move debian packaging stuff out of trunk (11:04:16) 2008-01-15 * Howard Butler add nmake makefile (13:33:39) 2007-12-07 * Kenneth Christiansen Wrong names (14:44:52) * Kenneth Christiansen Fixed rules file (13:58:13) * Kenneth Christiansen Updates to the control file (packaging) Removal of files that shouldn't be in SVN (12:10:46) 2007-11-30 * Marios Hadjieleftheriou (12:04:00) * Sean Gillies Version info to 1:0:0 (10:50:02) 2007-11-29 * Marios Hadjieleftheriou (16:26:44) * Marios Hadjieleftheriou (15:54:08) * Marios Hadjieleftheriou (15:48:42) * Sean Gillies Add debian directory created by dh_make (12:00:13) 2007-11-28 * Howard Butler use -version-info instead of -release (22:05:27) * Howard Butler include Makefile.in's (18:59:56) * Howard Butler use .'s to separate version info and don't do -no-undefined (18:55:06) * Howard Butler tweak formatting (18:19:42) * Sean Gillies Add version-info to Makefile.am (18:11:46) * Howard Butler finish incorporating -ltools (17:54:30) * Howard Butler more progress on automake for includes directories... close, but not quite (16:48:19) * Howard Butler Add automake files for includes (16:38:55) * Howard Butler start incorporating -ltools into the tree (15:03:45) 2007-08-30 * Marios Hadjieleftheriou README should be INSTALL, and INSTALL should be README (10:16:33) * Marios Hadjieleftheriou README should be INSTALL, and INSTALL should be README (10:15:49) * Marios Hadjieleftheriou README file should be INSTALL, and INSTALL should be README (10:13:34) 2007-08-01 * Howard Butler revert r9 (23:37:29) * Howard Butler revert r10 (23:37:03) * Howard Butler revert r11 (23:36:42) * Howard Butler revert r12 (23:36:19) * Howard Butler revert r13 (23:35:52) * Howard Butler add strings.h (23:34:57) * Howard Butler add strings.h (23:27:45) * Howard Butler add strings.h (23:26:36) * Howard Butler add strings.h (23:25:26) * Howard Butler include (21:23:28) * Howard Butler include in DiskStorageManager (this is not available on Solaris by default) (21:21:34) * Howard Butler add data and queries for tests (15:49:33) * Howard Butler add Marios' latest updates (15:48:13) * Howard Butler oops, don't include zip files (15:40:50) * Howard Butler add 1.1.1 version of library (15:37:49) * Howard Butler basic layout (15:32:49) libspatialindex-1.9.3/HOWTORELEASE.txt000066400000000000000000000023111355420072700173440ustar00rootroot00000000000000 Steps for Making a libspatialindex Release ============================================================================== :Author: Howard Butler :Contact: howard@hobu.co This document describes the process for releasing a new version of libspatialindex. General Notes ------------------------------------------------------------------------------ Release Process 1) Increment Version Numbers - include/spatialindex/Version.h * SIDX_VERSION_MAJOR * SIDX_VERSION_MINOR * SIDX_VERSION_REV * SIDX_RELEASE_NAME - CMakeLists.txt * SET(SIDX_VERSION_MAJOR "1") * SET(SIDX_VERSION_MINOR "7") * SET(SIDX_VERSION_PATCH "0") * SET(SIDX_LIB_VERSION "4.0.0") * SET(SIDX_LIB_SOVERSION "4") - Update SO versions * https://github.com/libspatialindex/libspatialindex/pull/44#issuecomment-57088783 2) Update README to include any relevant info about the release that might have changed. 3) Update ChangeLog with git2cl * git2cl . > ChangeLog 4) Verify tests are passing on Travis and AppVeyor 5) Tag the release 6) Invoke `docker-package-release.sh` :: cd libspatialindex ./docker-package-release.sh 8) Update https://github.com/libspatialindex/libspatialindex/releases libspatialindex-1.9.3/INSTALL000066400000000000000000000220711355420072700157400ustar00rootroot00000000000000Installation Instructions ************************* Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc. This file is free documentation; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. Basic Installation ================== These are generic installation instructions. The `configure' shell script attempts to guess correct values for various system-dependent variables used during compilation. It uses those values to create a `Makefile' in each directory of the package. It may also create one or more `.h' files containing system-dependent definitions. Finally, it creates a shell script `config.status' that you can run in the future to recreate the current configuration, and a file `config.log' containing compiler output (useful mainly for debugging `configure'). It can also use an optional file (typically called `config.cache' and enabled with `--cache-file=config.cache' or simply `-C') that saves the results of its tests to speed up reconfiguring. (Caching is disabled by default to prevent problems with accidental use of stale cache files.) If you need to do unusual things to compile the package, please try to figure out how `configure' could check whether to do them, and mail diffs or instructions to the address given in the `README' so they can be considered for the next release. If you are using the cache, and at some point `config.cache' contains results you don't want to keep, you may remove or edit it. The file `configure.ac' (or `configure.in') is used to create `configure' by a program called `autoconf'. You only need `configure.ac' if you want to change it or regenerate `configure' using a newer version of `autoconf'. The simplest way to compile this package is: 1. `cd' to the directory containing the package's source code and type `./configure' to configure the package for your system. If you're using `csh' on an old version of System V, you might need to type `sh ./configure' instead to prevent `csh' from trying to execute `configure' itself. Running `configure' takes awhile. While running, it prints some messages telling which features it is checking for. 2. Type `make' to compile the package. 3. Optionally, type `make check' to run any self-tests that come with the package. 4. Type `make install' to install the programs and any data files and documentation. 5. You can remove the program binaries and object files from the source code directory by typing `make clean'. To also remove the files that `configure' created (so you can compile the package for a different kind of computer), type `make distclean'. There is also a `make maintainer-clean' target, but that is intended mainly for the package's developers. If you use it, you may have to get all sorts of other programs in order to regenerate files that came with the distribution. Compilers and Options ===================== Some systems require unusual options for compilation or linking that the `configure' script does not know about. Run `./configure --help' for details on some of the pertinent environment variables. You can give `configure' initial values for configuration parameters by setting variables in the command line or in the environment. Here is an example: ./configure CC=c89 CFLAGS=-O2 LIBS=-lposix *Note Defining Variables::, for more details. Compiling For Multiple Architectures ==================================== You can compile the package for more than one kind of computer at the same time, by placing the object files for each architecture in their own directory. To do this, you must use a version of `make' that supports the `VPATH' variable, such as GNU `make'. `cd' to the directory where you want the object files and executables to go and run the `configure' script. `configure' automatically checks for the source code in the directory that `configure' is in and in `..'. If you have to use a `make' that does not support the `VPATH' variable, you have to compile the package for one architecture at a time in the source code directory. After you have installed the package for one architecture, use `make distclean' before reconfiguring for another architecture. Installation Names ================== By default, `make install' will install the package's files in `/usr/local/bin', `/usr/local/man', etc. You can specify an installation prefix other than `/usr/local' by giving `configure' the option `--prefix=PREFIX'. You can specify separate installation prefixes for architecture-specific files and architecture-independent files. If you give `configure' the option `--exec-prefix=PREFIX', the package will use PREFIX as the prefix for installing programs and libraries. Documentation and other data files will still use the regular prefix. In addition, if you use an unusual directory layout you can give options like `--bindir=DIR' to specify different values for particular kinds of files. Run `configure --help' for a list of the directories you can set and what kinds of files go in them. If the package supports it, you can cause programs to be installed with an extra prefix or suffix on their names by giving `configure' the option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'. Optional Features ================= Some packages pay attention to `--enable-FEATURE' options to `configure', where FEATURE indicates an optional part of the package. They may also pay attention to `--with-PACKAGE' options, where PACKAGE is something like `gnu-as' or `x' (for the X Window System). The `README' should mention any `--enable-' and `--with-' options that the package recognizes. For packages that use the X Window System, `configure' can usually find the X include and library files automatically, but if it doesn't, you can use the `configure' options `--x-includes=DIR' and `--x-libraries=DIR' to specify their locations. Specifying the System Type ========================== There may be some features `configure' cannot figure out automatically, but needs to determine by the type of machine the package will run on. Usually, assuming the package is built to be run on the _same_ architectures, `configure' can figure that out, but if it prints a message saying it cannot guess the machine type, give it the `--build=TYPE' option. TYPE can either be a short name for the system type, such as `sun4', or a canonical name which has the form: CPU-COMPANY-SYSTEM where SYSTEM can have one of these forms: OS KERNEL-OS See the file `config.sub' for the possible values of each field. If `config.sub' isn't included in this package, then this package doesn't need to know the machine type. If you are _building_ compiler tools for cross-compiling, you should use the `--target=TYPE' option to select the type of system they will produce code for. If you want to _use_ a cross compiler, that generates code for a platform different from the build platform, you should specify the "host" platform (i.e., that on which the generated programs will eventually be run) with `--host=TYPE'. Sharing Defaults ================ If you want to set default values for `configure' scripts to share, you can create a site shell script called `config.site' that gives default values for variables like `CC', `cache_file', and `prefix'. `configure' looks for `PREFIX/share/config.site' if it exists, then `PREFIX/etc/config.site' if it exists. Or, you can set the `CONFIG_SITE' environment variable to the location of the site script. A warning: not all `configure' scripts look for a site script. Defining Variables ================== Variables not defined in a site shell script can be set in the environment passed to `configure'. However, some packages may run configure again during the build, and the customized values of these variables may be lost. In order to avoid this problem, you should set them in the `configure' command line, using `VAR=value'. For example: ./configure CC=/usr/local2/bin/gcc will cause the specified gcc to be used as the C compiler (unless it is overridden in the site shell script). `configure' Invocation ====================== `configure' recognizes the following options to control how it operates. `--help' `-h' Print a summary of the options to `configure', and exit. `--version' `-V' Print the version of Autoconf used to generate the `configure' script, and exit. `--cache-file=FILE' Enable the cache: use and save the results of the tests in FILE, traditionally `config.cache'. FILE defaults to `/dev/null' to disable caching. `--config-cache' `-C' Alias for `--cache-file=config.cache'. `--quiet' `--silent' `-q' Do not print messages saying which checks are being made. To suppress all normal output, redirect it to `/dev/null' (any error messages will still be shown). `--srcdir=DIR' Look for the package's source code in directory DIR. Usually `configure' can determine that directory automatically. `configure' also accepts some other, not widely useful, options. Run `configure --help' for more details. libspatialindex-1.9.3/NEWS000066400000000000000000000000001355420072700153720ustar00rootroot00000000000000libspatialindex-1.9.3/README000066400000000000000000000000001355420072700155530ustar00rootroot00000000000000libspatialindex-1.9.3/README.rst000066400000000000000000000007051355420072700163760ustar00rootroot00000000000000.. image:: https://dev.azure.com/hobuinc/libspatialindex/_apis/build/status/libspatialindex.libspatialindex?branchName=master ***************************************************************************** libspatialindex ***************************************************************************** :Author: Marios Hadjieleftheriou :Contact: mhadji@gmail.com :Revision: 1.9.1 :Date: 10/19/2019 See http://libspatialindex.org for full documentation. libspatialindex-1.9.3/azure-pipelines.yml000066400000000000000000000003701355420072700205440ustar00rootroot00000000000000pr: branches: include: - master variables: - name: BUILD_TYPE value: Release jobs: - template: ./scripts/azp/linux.yml - template: ./scripts/azp/win.yml - template: ./scripts/azp/osx.yml - template: ./scripts/azp/docs.yml libspatialindex-1.9.3/docs/000077500000000000000000000000001355420072700156355ustar00rootroot00000000000000libspatialindex-1.9.3/docs/Makefile000066400000000000000000000131361355420072700173010ustar00rootroot00000000000000# Makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = sphinx-build PAPER = BUILDDIR = build # Internal variables. PAPEROPT_a4 = -D latex_paper_size=a4 PAPEROPT_letter = -D latex_paper_size=letter ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source # the i18n builder cannot share the environment and doctrees with the others I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source .PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext doxygen help: @echo "Please use \`make ' where is one of" @echo " html to make standalone HTML files" @echo " dirhtml to make HTML files named index.html in directories" @echo " singlehtml to make a single large HTML file" @echo " pickle to make pickle files" @echo " json to make JSON files" @echo " htmlhelp to make HTML files and a HTML help project" @echo " qthelp to make HTML files and a qthelp project" @echo " devhelp to make HTML files and a Devhelp project" @echo " epub to make an epub" @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" @echo " latexpdf to make LaTeX files and run them through pdflatex" @echo " text to make text files" @echo " man to make manual pages" @echo " texinfo to make Texinfo files" @echo " info to make Texinfo files and run them through makeinfo" @echo " gettext to make PO message catalogs" @echo " changes to make an overview of all changed/added/deprecated items" @echo " linkcheck to check all external links for integrity" @echo " doctest to run all doctests embedded in the documentation (if enabled)" clean: -rm -rf $(BUILDDIR)/* -rm -rf doxygen/xml*; -rm -rf doxygen/html*; html: $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." dirhtml: $(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml." singlehtml: $(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml @echo @echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml." pickle: $(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle @echo @echo "Build finished; now you can process the pickle files." json: $(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json @echo @echo "Build finished; now you can process the JSON files." htmlhelp: $(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp @echo @echo "Build finished; now you can run HTML Help Workshop with the" \ ".hhp project file in $(BUILDDIR)/htmlhelp." qthelp: $(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp @echo @echo "Build finished; now you can run "qcollectiongenerator" with the" \ ".qhcp project file in $(BUILDDIR)/qthelp, like this:" @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/libspatialindex.qhcp" @echo "To view the help file:" @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/libspatialindex.qhc" devhelp: $(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp @echo @echo "Build finished." @echo "To view the help file:" @echo "# mkdir -p $$HOME/.local/share/devhelp/libspatialindex" @echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/libspatialindex" @echo "# devhelp" epub: $(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub @echo @echo "Build finished. The epub file is in $(BUILDDIR)/epub." latex: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo @echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex." @echo "Run \`make' in that directory to run these through (pdf)latex" \ "(use \`make latexpdf' here to do that automatically)." latexpdf: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo "Running LaTeX files through pdflatex..." make -C $(BUILDDIR)/latex all-pdf @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." text: $(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text @echo @echo "Build finished. The text files are in $(BUILDDIR)/text." man: $(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man @echo @echo "Build finished. The manual pages are in $(BUILDDIR)/man." texinfo: $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo @echo @echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo." @echo "Run \`make' in that directory to run these through makeinfo" \ "(use \`make info' here to do that automatically)." info: $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo @echo "Running Texinfo files through makeinfo..." make -C $(BUILDDIR)/texinfo info @echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo." gettext: $(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale @echo @echo "Build finished. The message catalogs are in $(BUILDDIR)/locale." changes: $(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes @echo @echo "The overview file is in $(BUILDDIR)/changes." linkcheck: $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck @echo @echo "Link check complete; look for any errors in the above output " \ "or in $(BUILDDIR)/linkcheck/output.txt." doctest: $(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest @echo "Testing of doctests in the sources finished, look at the " \ "results in $(BUILDDIR)/doctest/output.txt." doxygen: cd ../ ; doxygen docs/doxygen/doxygen.conf; cd docs libspatialindex-1.9.3/docs/doxygen/000077500000000000000000000000001355420072700173125ustar00rootroot00000000000000libspatialindex-1.9.3/docs/doxygen/doxygen.conf000066400000000000000000002216651355420072700216520ustar00rootroot00000000000000## execute from top level dir: ## $ doxygen doc/doxygen/doxygen.conf # Doxyfile 1.7.5.1 # This file describes the settings to be used by the documentation system # doxygen (www.doxygen.org) for a project. # # All text after a hash (#) is considered a comment and will be ignored. # The format is: # TAG = value [value, ...] # For lists items can also be appended using: # TAG += value [value, ...] # Values that contain spaces should be placed between quotes (" "). #--------------------------------------------------------------------------- # Project related configuration options #--------------------------------------------------------------------------- # This tag specifies the encoding used for all characters in the config file # that follow. The default is UTF-8 which is also the encoding used for all # text before the first occurrence of this tag. Doxygen uses libiconv (or the # iconv built into libc) for the transcoding. See # http://www.gnu.org/software/libiconv for the list of possible encodings. DOXYFILE_ENCODING = UTF-8 # The PROJECT_NAME tag is a single word (or sequence of words) that should # identify the project. Note that if you do not use Doxywizard you need # to put quotes around the project name if it contains spaces. PROJECT_NAME = "libspatialindex API Reference" # The PROJECT_NUMBER tag can be used to enter a project or revision number. # This could be handy for archiving the generated documentation or # if some version control system is used. PROJECT_NUMBER = (git-trunk) # Using the PROJECT_BRIEF tag one can provide an optional one line description # for a project that appears at the top of each page and should give viewer # a quick idea about the purpose of the project. Keep the description short. PROJECT_BRIEF = # With the PROJECT_LOGO tag one can specify an logo or icon that is # included in the documentation. The maximum height of the logo should not # exceed 55 pixels and the maximum width should not exceed 200 pixels. # Doxygen will copy the logo to the output directory. PROJECT_LOGO = # The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) # base path where the generated documentation will be put. # If a relative path is entered, it will be relative to the location # where doxygen was started. If left blank the current directory will be used. OUTPUT_DIRECTORY = . # If the CREATE_SUBDIRS tag is set to YES, then doxygen will create # 4096 sub-directories (in 2 levels) under the output directory of each output # format and will distribute the generated files over these directories. # Enabling this option can be useful when feeding doxygen a huge amount of # source files, where putting all generated files in the same directory would # otherwise cause performance problems for the file system. CREATE_SUBDIRS = NO # The OUTPUT_LANGUAGE tag is used to specify the language in which all # documentation generated by doxygen is written. Doxygen will use this # information to generate all constant output in the proper language. # The default language is English, other supported languages are: # Afrikaans, Arabic, Brazilian, Catalan, Chinese, Chinese-Traditional, # Croatian, Czech, Danish, Dutch, Esperanto, Farsi, Finnish, French, German, # Greek, Hungarian, Italian, Japanese, Japanese-en (Japanese with English # messages), Korean, Korean-en, Lithuanian, Norwegian, Macedonian, Persian, # Polish, Portuguese, Romanian, Russian, Serbian, Serbian-Cyrillic, Slovak, # Slovene, Spanish, Swedish, Ukrainian, and Vietnamese. OUTPUT_LANGUAGE = English # If the BRIEF_MEMBER_DESC tag is set to YES (the default) Doxygen will # include brief member descriptions after the members that are listed in # the file and class documentation (similar to JavaDoc). # Set to NO to disable this. BRIEF_MEMBER_DESC = YES # If the REPEAT_BRIEF tag is set to YES (the default) Doxygen will prepend # the brief description of a member or function before the detailed description. # Note: if both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the # brief descriptions will be completely suppressed. REPEAT_BRIEF = YES # This tag implements a quasi-intelligent brief description abbreviator # that is used to form the text in various listings. Each string # in this list, if found as the leading text of the brief description, will be # stripped from the text and the result after processing the whole list, is # used as the annotated text. Otherwise, the brief description is used as-is. # If left blank, the following values are used ("$name" is automatically # replaced with the name of the entity): "The $name class" "The $name widget" # "The $name file" "is" "provides" "specifies" "contains" # "represents" "a" "an" "the" ABBREVIATE_BRIEF = # If the ALWAYS_DETAILED_SEC and REPEAT_BRIEF tags are both set to YES then # Doxygen will generate a detailed section even if there is only a brief # description. ALWAYS_DETAILED_SEC = NO # If the INLINE_INHERITED_MEMB tag is set to YES, doxygen will show all # inherited members of a class in the documentation of that class as if those # members were ordinary class members. Constructors, destructors and assignment # operators of the base classes will not be shown. INLINE_INHERITED_MEMB = NO # If the FULL_PATH_NAMES tag is set to YES then Doxygen will prepend the full # path before files name in the file list and in the header files. If set # to NO the shortest path that makes the file name unique will be used. FULL_PATH_NAMES = NO # If the FULL_PATH_NAMES tag is set to YES then the STRIP_FROM_PATH tag # can be used to strip a user-defined part of the path. Stripping is # only done if one of the specified strings matches the left-hand part of # the path. The tag can be used to show relative paths in the file list. # If left blank the directory from which doxygen is run is used as the # path to strip. STRIP_FROM_PATH = # The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of # the path mentioned in the documentation of a class, which tells # the reader which header file to include in order to use a class. # If left blank only the name of the header file containing the class # definition is used. Otherwise one should specify the include paths that # are normally passed to the compiler using the -I flag. STRIP_FROM_INC_PATH = # If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter # (but less readable) file names. This can be useful if your file system # doesn't support long names like on DOS, Mac, or CD-ROM. SHORT_NAMES = NO # If the JAVADOC_AUTOBRIEF tag is set to YES then Doxygen # will interpret the first line (until the first dot) of a JavaDoc-style # comment as the brief description. If set to NO, the JavaDoc # comments will behave just like regular Qt-style comments # (thus requiring an explicit @brief command for a brief description.) JAVADOC_AUTOBRIEF = YES # If the QT_AUTOBRIEF tag is set to YES then Doxygen will # interpret the first line (until the first dot) of a Qt-style # comment as the brief description. If set to NO, the comments # will behave just like regular Qt-style comments (thus requiring # an explicit \brief command for a brief description.) QT_AUTOBRIEF = NO # The MULTILINE_CPP_IS_BRIEF tag can be set to YES to make Doxygen # treat a multi-line C++ special comment block (i.e. a block of //! or /// # comments) as a brief description. This used to be the default behaviour. # The new default is to treat a multi-line C++ comment block as a detailed # description. Set this tag to YES if you prefer the old behaviour instead. MULTILINE_CPP_IS_BRIEF = NO # If the INHERIT_DOCS tag is set to YES (the default) then an undocumented # member inherits the documentation from any documented member that it # re-implements. INHERIT_DOCS = YES # If the SEPARATE_MEMBER_PAGES tag is set to YES, then doxygen will produce # a new page for each member. If set to NO, the documentation of a member will # be part of the file/class/namespace that contains it. SEPARATE_MEMBER_PAGES = NO # The TAB_SIZE tag can be used to set the number of spaces in a tab. # Doxygen uses this value to replace tabs by spaces in code fragments. TAB_SIZE = 4 # This tag can be used to specify a number of aliases that acts # as commands in the documentation. An alias has the form "name=value". # For example adding "sideeffect=\par Side Effects:\n" will allow you to # put the command \sideeffect (or @sideeffect) in the documentation, which # will result in a user-defined paragraph with heading "Side Effects:". # You can put \n's in the value part of an alias to insert newlines. ALIASES = "rst=\verbatim embed:rst" ALIASES+= "endrst=\endverbatim" # Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C # sources only. Doxygen will then generate output that is more tailored for C. # For instance, some of the names that are used will be different. The list # of all members will be omitted, etc. OPTIMIZE_OUTPUT_FOR_C = NO # Set the OPTIMIZE_OUTPUT_JAVA tag to YES if your project consists of Java # sources only. Doxygen will then generate output that is more tailored for # Java. For instance, namespaces will be presented as packages, qualified # scopes will look different, etc. OPTIMIZE_OUTPUT_JAVA = NO # Set the OPTIMIZE_FOR_FORTRAN tag to YES if your project consists of Fortran # sources only. Doxygen will then generate output that is more tailored for # Fortran. OPTIMIZE_FOR_FORTRAN = NO # Set the OPTIMIZE_OUTPUT_VHDL tag to YES if your project consists of VHDL # sources. Doxygen will then generate output that is tailored for # VHDL. OPTIMIZE_OUTPUT_VHDL = NO # Doxygen selects the parser to use depending on the extension of the files it # parses. With this tag you can assign which parser to use for a given extension. # Doxygen has a built-in mapping, but you can override or extend it using this # tag. The format is ext=language, where ext is a file extension, and language # is one of the parsers supported by doxygen: IDL, Java, Javascript, CSharp, C, # C++, D, PHP, Objective-C, Python, Fortran, VHDL, C, C++. For instance to make # doxygen treat .inc files as Fortran files (default is PHP), and .f files as C # (default is Fortran), use: inc=Fortran f=C. Note that for custom extensions # you also need to set FILE_PATTERNS otherwise the files are not read by doxygen. EXTENSION_MAPPING = # If you use STL classes (i.e. std::string, std::vector, etc.) but do not want # to include (a tag file for) the STL sources as input, then you should # set this tag to YES in order to let doxygen match functions declarations and # definitions whose arguments contain STL classes (e.g. func(std::string); v.s. # func(std::string) {}). This also makes the inheritance and collaboration # diagrams that involve STL classes more complete and accurate. BUILTIN_STL_SUPPORT = NO # If you use Microsoft's C++/CLI language, you should set this option to YES to # enable parsing support. CPP_CLI_SUPPORT = NO # Set the SIP_SUPPORT tag to YES if your project consists of sip sources only. # Doxygen will parse them like normal C++ but will assume all classes use public # instead of private inheritance when no explicit protection keyword is present. SIP_SUPPORT = NO # For Microsoft's IDL there are propget and propput attributes to indicate getter # and setter methods for a property. Setting this option to YES (the default) # will make doxygen replace the get and set methods by a property in the # documentation. This will only work if the methods are indeed getting or # setting a simple type. If this is not the case, or you want to show the # methods anyway, you should set this option to NO. IDL_PROPERTY_SUPPORT = YES # If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC # tag is set to YES, then doxygen will reuse the documentation of the first # member in the group (if any) for the other members of the group. By default # all members of a group must be documented explicitly. DISTRIBUTE_GROUP_DOC = NO # Set the SUBGROUPING tag to YES (the default) to allow class member groups of # the same type (for instance a group of public functions) to be put as a # subgroup of that type (e.g. under the Public Functions section). Set it to # NO to prevent subgrouping. Alternatively, this can be done per class using # the \nosubgrouping command. SUBGROUPING = YES # When the INLINE_GROUPED_CLASSES tag is set to YES, classes, structs and # unions are shown inside the group in which they are included (e.g. using # @ingroup) instead of on a separate page (for HTML and Man pages) or # section (for LaTeX and RTF). INLINE_GROUPED_CLASSES = NO # When the INLINE_SIMPLE_STRUCTS tag is set to YES, structs, classes, and # unions with only public data fields will be shown inline in the documentation # of the scope in which they are defined (i.e. file, namespace, or group # documentation), provided this scope is documented. If set to NO (the default), # structs, classes, and unions are shown on a separate page (for HTML and Man # pages) or section (for LaTeX and RTF). INLINE_SIMPLE_STRUCTS = NO # When TYPEDEF_HIDES_STRUCT is enabled, a typedef of a struct, union, or enum # is documented as struct, union, or enum with the name of the typedef. So # typedef struct TypeS {} TypeT, will appear in the documentation as a struct # with name TypeT. When disabled the typedef will appear as a member of a file, # namespace, or class. And the struct will be named TypeS. This can typically # be useful for C code in case the coding convention dictates that all compound # types are typedef'ed and only the typedef is referenced, never the tag name. TYPEDEF_HIDES_STRUCT = NO # The SYMBOL_CACHE_SIZE determines the size of the internal cache use to # determine which symbols to keep in memory and which to flush to disk. # When the cache is full, less often used symbols will be written to disk. # For small to medium size projects (<1000 input files) the default value is # probably good enough. For larger projects a too small cache size can cause # doxygen to be busy swapping symbols to and from disk most of the time # causing a significant performance penalty. # If the system has enough physical memory increasing the cache will improve the # performance by keeping more symbols in memory. Note that the value works on # a logarithmic scale so increasing the size by one will roughly double the # memory usage. The cache size is given by this formula: # 2^(16+SYMBOL_CACHE_SIZE). The valid range is 0..9, the default is 0, # corresponding to a cache size of 2^16 = 65536 symbols SYMBOL_CACHE_SIZE = 0 #--------------------------------------------------------------------------- # Build related configuration options #--------------------------------------------------------------------------- # If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in # documentation are documented, even if no documentation was available. # Private class members and static file members will be hidden unless # the EXTRACT_PRIVATE and EXTRACT_STATIC tags are set to YES EXTRACT_ALL = YES # If the EXTRACT_PRIVATE tag is set to YES all private members of a class # will be included in the documentation. EXTRACT_PRIVATE = NO # If the EXTRACT_STATIC tag is set to YES all static members of a file # will be included in the documentation. EXTRACT_STATIC = YES # If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs) # defined locally in source files will be included in the documentation. # If set to NO only classes defined in header files are included. EXTRACT_LOCAL_CLASSES = NO # This flag is only useful for Objective-C code. When set to YES local # methods, which are defined in the implementation section but not in # the interface are included in the documentation. # If set to NO (the default) only methods in the interface are included. EXTRACT_LOCAL_METHODS = YES # If this flag is set to YES, the members of anonymous namespaces will be # extracted and appear in the documentation as a namespace called # 'anonymous_namespace{file}', where file will be replaced with the base # name of the file that contains the anonymous namespace. By default # anonymous namespaces are hidden. EXTRACT_ANON_NSPACES = NO # If the HIDE_UNDOC_MEMBERS tag is set to YES, Doxygen will hide all # undocumented members of documented classes, files or namespaces. # If set to NO (the default) these members will be included in the # various overviews, but no documentation section is generated. # This option has no effect if EXTRACT_ALL is enabled. HIDE_UNDOC_MEMBERS = NO # If the HIDE_UNDOC_CLASSES tag is set to YES, Doxygen will hide all # undocumented classes that are normally visible in the class hierarchy. # If set to NO (the default) these classes will be included in the various # overviews. This option has no effect if EXTRACT_ALL is enabled. HIDE_UNDOC_CLASSES = NO # If the HIDE_FRIEND_COMPOUNDS tag is set to YES, Doxygen will hide all # friend (class|struct|union) declarations. # If set to NO (the default) these declarations will be included in the # documentation. HIDE_FRIEND_COMPOUNDS = NO # If the HIDE_IN_BODY_DOCS tag is set to YES, Doxygen will hide any # documentation blocks found inside the body of a function. # If set to NO (the default) these blocks will be appended to the # function's detailed documentation block. HIDE_IN_BODY_DOCS = NO # The INTERNAL_DOCS tag determines if documentation # that is typed after a \internal command is included. If the tag is set # to NO (the default) then the documentation will be excluded. # Set it to YES to include the internal documentation. INTERNAL_DOCS = NO # If the CASE_SENSE_NAMES tag is set to NO then Doxygen will only generate # file names in lower-case letters. If set to YES upper-case letters are also # allowed. This is useful if you have classes or files whose names only differ # in case and if your file system supports case sensitive file names. Windows # and Mac users are advised to set this option to NO. CASE_SENSE_NAMES = YES # If the HIDE_SCOPE_NAMES tag is set to NO (the default) then Doxygen # will show members with their full class and namespace scopes in the # documentation. If set to YES the scope will be hidden. HIDE_SCOPE_NAMES = NO # If the SHOW_INCLUDE_FILES tag is set to YES (the default) then Doxygen # will put a list of the files that are included by a file in the documentation # of that file. SHOW_INCLUDE_FILES = YES # If the FORCE_LOCAL_INCLUDES tag is set to YES then Doxygen # will list include files with double quotes in the documentation # rather than with sharp brackets. FORCE_LOCAL_INCLUDES = NO # If the INLINE_INFO tag is set to YES (the default) then a tag [inline] # is inserted in the documentation for inline members. INLINE_INFO = YES # If the SORT_MEMBER_DOCS tag is set to YES (the default) then doxygen # will sort the (detailed) documentation of file and class members # alphabetically by member name. If set to NO the members will appear in # declaration order. SORT_MEMBER_DOCS = YES # If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the # brief documentation of file, namespace and class members alphabetically # by member name. If set to NO (the default) the members will appear in # declaration order. SORT_BRIEF_DOCS = NO # If the SORT_MEMBERS_CTORS_1ST tag is set to YES then doxygen # will sort the (brief and detailed) documentation of class members so that # constructors and destructors are listed first. If set to NO (the default) # the constructors will appear in the respective orders defined by # SORT_MEMBER_DOCS and SORT_BRIEF_DOCS. # This tag will be ignored for brief docs if SORT_BRIEF_DOCS is set to NO # and ignored for detailed docs if SORT_MEMBER_DOCS is set to NO. SORT_MEMBERS_CTORS_1ST = NO # If the SORT_GROUP_NAMES tag is set to YES then doxygen will sort the # hierarchy of group names into alphabetical order. If set to NO (the default) # the group names will appear in their defined order. SORT_GROUP_NAMES = NO # If the SORT_BY_SCOPE_NAME tag is set to YES, the class list will be # sorted by fully-qualified names, including namespaces. If set to # NO (the default), the class list will be sorted only by class name, # not including the namespace part. # Note: This option is not very useful if HIDE_SCOPE_NAMES is set to YES. # Note: This option applies only to the class list, not to the # alphabetical list. SORT_BY_SCOPE_NAME = NO # If the STRICT_PROTO_MATCHING option is enabled and doxygen fails to # do proper type resolution of all parameters of a function it will reject a # match between the prototype and the implementation of a member function even # if there is only one candidate or it is obvious which candidate to choose # by doing a simple string match. By disabling STRICT_PROTO_MATCHING doxygen # will still accept a match between prototype and implementation in such cases. STRICT_PROTO_MATCHING = NO # The GENERATE_TODOLIST tag can be used to enable (YES) or # disable (NO) the todo list. This list is created by putting \todo # commands in the documentation. GENERATE_TODOLIST = YES # The GENERATE_TESTLIST tag can be used to enable (YES) or # disable (NO) the test list. This list is created by putting \test # commands in the documentation. GENERATE_TESTLIST = YES # The GENERATE_BUGLIST tag can be used to enable (YES) or # disable (NO) the bug list. This list is created by putting \bug # commands in the documentation. GENERATE_BUGLIST = YES # The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or # disable (NO) the deprecated list. This list is created by putting # \deprecated commands in the documentation. GENERATE_DEPRECATEDLIST= YES # The ENABLED_SECTIONS tag can be used to enable conditional # documentation sections, marked by \if sectionname ... \endif. ENABLED_SECTIONS = # The MAX_INITIALIZER_LINES tag determines the maximum number of lines # the initial value of a variable or macro consists of for it to appear in # the documentation. If the initializer consists of more lines than specified # here it will be hidden. Use a value of 0 to hide initializers completely. # The appearance of the initializer of individual variables and macros in the # documentation can be controlled using \showinitializer or \hideinitializer # command in the documentation regardless of this setting. MAX_INITIALIZER_LINES = 30 # Set the SHOW_USED_FILES tag to NO to disable the list of files generated # at the bottom of the documentation of classes and structs. If set to YES the # list will mention the files that were used to generate the documentation. SHOW_USED_FILES = YES # If the sources in your project are distributed over multiple directories # then setting the SHOW_DIRECTORIES tag to YES will show the directory hierarchy # in the documentation. The default is NO. SHOW_DIRECTORIES = YES # Set the SHOW_FILES tag to NO to disable the generation of the Files page. # This will remove the Files entry from the Quick Index and from the # Folder Tree View (if specified). The default is YES. SHOW_FILES = YES # Set the SHOW_NAMESPACES tag to NO to disable the generation of the # Namespaces page. # This will remove the Namespaces entry from the Quick Index # and from the Folder Tree View (if specified). The default is YES. SHOW_NAMESPACES = YES # The FILE_VERSION_FILTER tag can be used to specify a program or script that # doxygen should invoke to get the current version for each file (typically from # the version control system). Doxygen will invoke the program by executing (via # popen()) the command , where is the value of # the FILE_VERSION_FILTER tag, and is the name of an input file # provided by doxygen. Whatever the program writes to standard output # is used as the file version. See the manual for examples. FILE_VERSION_FILTER = # The LAYOUT_FILE tag can be used to specify a layout file which will be parsed # by doxygen. The layout file controls the global structure of the generated # output files in an output format independent way. The create the layout file # that represents doxygen's defaults, run doxygen with the -l option. # You can optionally specify a file name after the option, if omitted # DoxygenLayout.xml will be used as the name of the layout file. LAYOUT_FILE = # The CITE_BIB_FILES tag can be used to specify one or more bib files # containing the references data. This must be a list of .bib files. The # .bib extension is automatically appended if omitted. Using this command # requires the bibtex tool to be installed. See also # http://en.wikipedia.org/wiki/BibTeX for more info. For LaTeX the style # of the bibliography can be controlled using LATEX_BIB_STYLE. CITE_BIB_FILES = #--------------------------------------------------------------------------- # configuration options related to warning and progress messages #--------------------------------------------------------------------------- # The QUIET tag can be used to turn on/off the messages that are generated # by doxygen. Possible values are YES and NO. If left blank NO is used. QUIET = NO # The WARNINGS tag can be used to turn on/off the warning messages that are # generated by doxygen. Possible values are YES and NO. If left blank # NO is used. WARNINGS = YES # If WARN_IF_UNDOCUMENTED is set to YES, then doxygen will generate warnings # for undocumented members. If EXTRACT_ALL is set to YES then this flag will # automatically be disabled. WARN_IF_UNDOCUMENTED = YES # If WARN_IF_DOC_ERROR is set to YES, doxygen will generate warnings for # potential errors in the documentation, such as not documenting some # parameters in a documented function, or documenting parameters that # don't exist or using markup commands wrongly. WARN_IF_DOC_ERROR = YES # The WARN_NO_PARAMDOC option can be enabled to get warnings for # functions that are documented, but have no documentation for their parameters # or return value. If set to NO (the default) doxygen will only warn about # wrong or incomplete parameter documentation, but not about the absence of # documentation. WARN_NO_PARAMDOC = NO # The WARN_FORMAT tag determines the format of the warning messages that # doxygen can produce. The string should contain the $file, $line, and $text # tags, which will be replaced by the file and line number from which the # warning originated and the warning text. Optionally the format may contain # $version, which will be replaced by the version of the file (if it could # be obtained via FILE_VERSION_FILTER) WARN_FORMAT = "$file:$line: $text" # The WARN_LOGFILE tag can be used to specify a file to which warning # and error messages should be written. If left blank the output is written # to stderr. WARN_LOGFILE = #--------------------------------------------------------------------------- # configuration options related to the input files #--------------------------------------------------------------------------- # The INPUT tag can be used to specify the files and/or directories that contain # documented source files. You may enter file names like "myfile.cpp" or # directories like "/usr/src/myproject". Separate the files or directories # with spaces. INPUT = include/spatialindex src/ # This tag can be used to specify the character encoding of the source files # that doxygen parses. Internally doxygen uses the UTF-8 encoding, which is # also the default input encoding. Doxygen uses libiconv (or the iconv built # into libc) for the transcoding. See http://www.gnu.org/software/libiconv for # the list of possible encodings. INPUT_ENCODING = UTF-8 # If the value of the INPUT tag contains directories, you can use the # FILE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp # and *.h) to filter out the source-files in the directories. If left # blank the following patterns are tested: # *.c *.cc *.cxx *.cpp *.c++ *.d *.java *.ii *.ixx *.ipp *.i++ *.inl *.h *.hh # *.hxx *.hpp *.h++ *.idl *.odl *.cs *.php *.php3 *.inc *.m *.mm *.dox *.py # *.f90 *.f *.for *.vhd *.vhdl FILE_PATTERNS = *.hpp \ *.cpp \ *.h \ *.c \ *.cc # The RECURSIVE tag can be used to turn specify whether or not subdirectories # should be searched for input files as well. Possible values are YES and NO. # If left blank NO is used. RECURSIVE = YES # The EXCLUDE tag can be used to specify files and/or directories that should # excluded from the INPUT source files. This way you can easily exclude a # subdirectory from a directory tree whose root is specified with the INPUT tag. # Note that relative paths are relative to directory from which doxygen is run. EXCLUDE = # The EXCLUDE_SYMLINKS tag can be used select whether or not files or # directories that are symbolic links (a Unix file system feature) are excluded # from the input. EXCLUDE_SYMLINKS = NO # If the value of the INPUT tag contains directories, you can use the # EXCLUDE_PATTERNS tag to specify one or more wildcard patterns to exclude # certain files from those directories. Note that the wildcards are matched # against the file with absolute path, so to exclude all test directories # for example use the pattern */test/* EXCLUDE_PATTERNS = # The EXCLUDE_SYMBOLS tag can be used to specify one or more symbol names # (namespaces, classes, functions, etc.) that should be excluded from the # output. The symbol name can be a fully qualified name, a word, or if the # wildcard * is used, a substring. Examples: ANamespace, AClass, # AClass::ANamespace, ANamespace::*Test EXCLUDE_SYMBOLS = # The EXAMPLE_PATH tag can be used to specify one or more files or # directories that contain example code fragments that are included (see # the \include command). EXAMPLE_PATH = # If the value of the EXAMPLE_PATH tag contains directories, you can use the # EXAMPLE_PATTERNS tag to specify one or more wildcard pattern (like *.cpp # and *.h) to filter out the source-files in the directories. If left # blank all files are included. EXAMPLE_PATTERNS = # If the EXAMPLE_RECURSIVE tag is set to YES then subdirectories will be # searched for input files to be used with the \include or \dontinclude # commands irrespective of the value of the RECURSIVE tag. # Possible values are YES and NO. If left blank NO is used. EXAMPLE_RECURSIVE = NO # The IMAGE_PATH tag can be used to specify one or more files or # directories that contain image that are included in the documentation (see # the \image command). IMAGE_PATH = # The INPUT_FILTER tag can be used to specify a program that doxygen should # invoke to filter for each input file. Doxygen will invoke the filter program # by executing (via popen()) the command , where # is the value of the INPUT_FILTER tag, and is the name of an # input file. Doxygen will then use the output that the filter program writes # to standard output. # If FILTER_PATTERNS is specified, this tag will be # ignored. INPUT_FILTER = # The FILTER_PATTERNS tag can be used to specify filters on a per file pattern # basis. # Doxygen will compare the file name with each pattern and apply the # filter if there is a match. # The filters are a list of the form: # pattern=filter (like *.cpp=my_cpp_filter). See INPUT_FILTER for further # info on how filters are used. If FILTER_PATTERNS is empty or if # non of the patterns match the file name, INPUT_FILTER is applied. FILTER_PATTERNS = # If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using # INPUT_FILTER) will be used to filter the input files when producing source # files to browse (i.e. when SOURCE_BROWSER is set to YES). FILTER_SOURCE_FILES = NO # The FILTER_SOURCE_PATTERNS tag can be used to specify source filters per file # pattern. A pattern will override the setting for FILTER_PATTERN (if any) # and it is also possible to disable source filtering for a specific pattern # using *.ext= (so without naming a filter). This option only has effect when # FILTER_SOURCE_FILES is enabled. FILTER_SOURCE_PATTERNS = #--------------------------------------------------------------------------- # configuration options related to source browsing #--------------------------------------------------------------------------- # If the SOURCE_BROWSER tag is set to YES then a list of source files will # be generated. Documented entities will be cross-referenced with these sources. # Note: To get rid of all source code in the generated output, make sure also # VERBATIM_HEADERS is set to NO. SOURCE_BROWSER = YES # Setting the INLINE_SOURCES tag to YES will include the body # of functions and classes directly in the documentation. INLINE_SOURCES = NO # Setting the STRIP_CODE_COMMENTS tag to YES (the default) will instruct # doxygen to hide any special comment blocks from generated source code # fragments. Normal C and C++ comments will always remain visible. STRIP_CODE_COMMENTS = YES # If the REFERENCED_BY_RELATION tag is set to YES # then for each documented function all documented # functions referencing it will be listed. REFERENCED_BY_RELATION = YES # If the REFERENCES_RELATION tag is set to YES # then for each documented function all documented entities # called/used by that function will be listed. REFERENCES_RELATION = YES # If the REFERENCES_LINK_SOURCE tag is set to YES (the default) # and SOURCE_BROWSER tag is set to YES, then the hyperlinks from # functions in REFERENCES_RELATION and REFERENCED_BY_RELATION lists will # link to the source code. # Otherwise they will link to the documentation. REFERENCES_LINK_SOURCE = YES # If the USE_HTAGS tag is set to YES then the references to source code # will point to the HTML generated by the htags(1) tool instead of doxygen # built-in source browser. The htags tool is part of GNU's global source # tagging system (see http://www.gnu.org/software/global/global.html). You # will need version 4.8.6 or higher. USE_HTAGS = NO # If the VERBATIM_HEADERS tag is set to YES (the default) then Doxygen # will generate a verbatim copy of the header file for each class for # which an include is specified. Set to NO to disable this. VERBATIM_HEADERS = YES #--------------------------------------------------------------------------- # configuration options related to the alphabetical class index #--------------------------------------------------------------------------- # If the ALPHABETICAL_INDEX tag is set to YES, an alphabetical index # of all compounds will be generated. Enable this if the project # contains a lot of classes, structs, unions or interfaces. ALPHABETICAL_INDEX = YES # If the alphabetical index is enabled (see ALPHABETICAL_INDEX) then # the COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns # in which this list will be split (can be a number in the range [1..20]) COLS_IN_ALPHA_INDEX = 3 # In case all classes in a project start with a common prefix, all # classes will be put under the same header in the alphabetical index. # The IGNORE_PREFIX tag can be used to specify one or more prefixes that # should be ignored while generating the index headers. IGNORE_PREFIX = #--------------------------------------------------------------------------- # configuration options related to the HTML output #--------------------------------------------------------------------------- # If the GENERATE_HTML tag is set to YES (the default) Doxygen will # generate HTML output. GENERATE_HTML = YES # The HTML_OUTPUT tag is used to specify where the HTML docs will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `html' will be used as the default path. HTML_OUTPUT = docs/doxygen/html # The HTML_FILE_EXTENSION tag can be used to specify the file extension for # each generated HTML page (for example: .htm,.php,.asp). If it is left blank # doxygen will generate files with .html extension. HTML_FILE_EXTENSION = .html # The HTML_HEADER tag can be used to specify a personal HTML header for # each generated HTML page. If it is left blank doxygen will generate a # standard header. Note that when using a custom header you are responsible # for the proper inclusion of any scripts and style sheets that doxygen # needs, which is dependent on the configuration options used. # It is adviced to generate a default header using "doxygen -w html # header.html footer.html stylesheet.css YourConfigFile" and then modify # that header. Note that the header is subject to change so you typically # have to redo this when upgrading to a newer version of doxygen or when # changing the value of configuration settings such as GENERATE_TREEVIEW! HTML_HEADER = # The HTML_FOOTER tag can be used to specify a personal HTML footer for # each generated HTML page. If it is left blank doxygen will generate a # standard footer. HTML_FOOTER = # The HTML_STYLESHEET tag can be used to specify a user-defined cascading # style sheet that is used by each HTML page. It can be used to # fine-tune the look of the HTML output. If the tag is left blank doxygen # will generate a default style sheet. Note that doxygen will try to copy # the style sheet file to the HTML output directory, so don't put your own # stylesheet in the HTML output directory as well, or it will be erased! HTML_STYLESHEET = docs/doxygen/doxygen.css # The HTML_EXTRA_FILES tag can be used to specify one or more extra images or # other source files which should be copied to the HTML output directory. Note # that these files will be copied to the base HTML output directory. Use the # $relpath$ marker in the HTML_HEADER and/or HTML_FOOTER files to load these # files. In the HTML_STYLESHEET file, use the file name only. Also note that # the files will be copied as-is; there are no commands or markers available. HTML_EXTRA_FILES = # The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. # Doxygen will adjust the colors in the stylesheet and background images # according to this color. Hue is specified as an angle on a colorwheel, # see http://en.wikipedia.org/wiki/Hue for more information. # For instance the value 0 represents red, 60 is yellow, 120 is green, # 180 is cyan, 240 is blue, 300 purple, and 360 is red again. # The allowed range is 0 to 359. HTML_COLORSTYLE_HUE = 220 # The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of # the colors in the HTML output. For a value of 0 the output will use # grayscales only. A value of 255 will produce the most vivid colors. HTML_COLORSTYLE_SAT = 100 # The HTML_COLORSTYLE_GAMMA tag controls the gamma correction applied to # the luminance component of the colors in the HTML output. Values below # 100 gradually make the output lighter, whereas values above 100 make # the output darker. The value divided by 100 is the actual gamma applied, # so 80 represents a gamma of 0.8, The value 220 represents a gamma of 2.2, # and 100 does not change the gamma. HTML_COLORSTYLE_GAMMA = 80 # If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML # page will contain the date and time when the page was generated. Setting # this to NO can help when comparing the output of multiple runs. HTML_TIMESTAMP = YES # If the HTML_ALIGN_MEMBERS tag is set to YES, the members of classes, # files or namespaces will be aligned in HTML using tables. If set to # NO a bullet list will be used. HTML_ALIGN_MEMBERS = YES # If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML # documentation will contain sections that can be hidden and shown after the # page has loaded. For this to work a browser that supports # JavaScript and DHTML is required (for instance Mozilla 1.0+, Firefox # Netscape 6.0+, Internet explorer 5.0+, Konqueror, or Safari). HTML_DYNAMIC_SECTIONS = NO # If the GENERATE_DOCSET tag is set to YES, additional index files # will be generated that can be used as input for Apple's Xcode 3 # integrated development environment, introduced with OSX 10.5 (Leopard). # To create a documentation set, doxygen will generate a Makefile in the # HTML output directory. Running make will produce the docset in that # directory and running "make install" will install the docset in # ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find # it at startup. # See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html # for more information. GENERATE_DOCSET = NO # When GENERATE_DOCSET tag is set to YES, this tag determines the name of the # feed. A documentation feed provides an umbrella under which multiple # documentation sets from a single provider (such as a company or product suite) # can be grouped. DOCSET_FEEDNAME = "Doxygen generated docs" # When GENERATE_DOCSET tag is set to YES, this tag specifies a string that # should uniquely identify the documentation set bundle. This should be a # reverse domain-name style string, e.g. com.mycompany.MyDocSet. Doxygen # will append .docset to the name. DOCSET_BUNDLE_ID = org.doxygen.Project # When GENERATE_PUBLISHER_ID tag specifies a string that should uniquely identify # the documentation publisher. This should be a reverse domain-name style # string, e.g. com.mycompany.MyDocSet.documentation. DOCSET_PUBLISHER_ID = org.doxygen.Publisher # The GENERATE_PUBLISHER_NAME tag identifies the documentation publisher. DOCSET_PUBLISHER_NAME = Publisher # If the GENERATE_HTMLHELP tag is set to YES, additional index files # will be generated that can be used as input for tools like the # Microsoft HTML help workshop to generate a compiled HTML help file (.chm) # of the generated HTML documentation. GENERATE_HTMLHELP = NO # If the GENERATE_HTMLHELP tag is set to YES, the CHM_FILE tag can # be used to specify the file name of the resulting .chm file. You # can add a path in front of the file if the result should not be # written to the html output directory. CHM_FILE = # If the GENERATE_HTMLHELP tag is set to YES, the HHC_LOCATION tag can # be used to specify the location (absolute path including file name) of # the HTML help compiler (hhc.exe). If non-empty doxygen will try to run # the HTML help compiler on the generated index.hhp. HHC_LOCATION = # If the GENERATE_HTMLHELP tag is set to YES, the GENERATE_CHI flag # controls if a separate .chi index file is generated (YES) or that # it should be included in the master .chm file (NO). GENERATE_CHI = NO # If the GENERATE_HTMLHELP tag is set to YES, the CHM_INDEX_ENCODING # is used to encode HtmlHelp index (hhk), content (hhc) and project file # content. CHM_INDEX_ENCODING = # If the GENERATE_HTMLHELP tag is set to YES, the BINARY_TOC flag # controls whether a binary table of contents is generated (YES) or a # normal table of contents (NO) in the .chm file. BINARY_TOC = NO # The TOC_EXPAND flag can be set to YES to add extra items for group members # to the contents of the HTML help documentation and to the tree view. TOC_EXPAND = NO # If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and # QHP_VIRTUAL_FOLDER are set, an additional index file will be generated # that can be used as input for Qt's qhelpgenerator to generate a # Qt Compressed Help (.qch) of the generated HTML documentation. GENERATE_QHP = NO # If the QHG_LOCATION tag is specified, the QCH_FILE tag can # be used to specify the file name of the resulting .qch file. # The path specified is relative to the HTML output folder. QCH_FILE = # The QHP_NAMESPACE tag specifies the namespace to use when generating # Qt Help Project output. For more information please see # http://doc.trolltech.com/qthelpproject.html#namespace QHP_NAMESPACE = org.doxygen.Project # The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating # Qt Help Project output. For more information please see # http://doc.trolltech.com/qthelpproject.html#virtual-folders QHP_VIRTUAL_FOLDER = doc # If QHP_CUST_FILTER_NAME is set, it specifies the name of a custom filter to # add. For more information please see # http://doc.trolltech.com/qthelpproject.html#custom-filters QHP_CUST_FILTER_NAME = # The QHP_CUST_FILT_ATTRS tag specifies the list of the attributes of the # custom filter to add. For more information please see # # Qt Help Project / Custom Filters. QHP_CUST_FILTER_ATTRS = # The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this # project's # filter section matches. # # Qt Help Project / Filter Attributes. QHP_SECT_FILTER_ATTRS = # If the GENERATE_QHP tag is set to YES, the QHG_LOCATION tag can # be used to specify the location of Qt's qhelpgenerator. # If non-empty doxygen will try to run qhelpgenerator on the generated # .qhp file. QHG_LOCATION = # If the GENERATE_ECLIPSEHELP tag is set to YES, additional index files # will be generated, which together with the HTML files, form an Eclipse help # plugin. To install this plugin and make it available under the help contents # menu in Eclipse, the contents of the directory containing the HTML and XML # files needs to be copied into the plugins directory of eclipse. The name of # the directory within the plugins directory should be the same as # the ECLIPSE_DOC_ID value. After copying Eclipse needs to be restarted before # the help appears. GENERATE_ECLIPSEHELP = NO # A unique identifier for the eclipse help plugin. When installing the plugin # the directory name containing the HTML and XML files should also have # this name. ECLIPSE_DOC_ID = org.doxygen.Project # The DISABLE_INDEX tag can be used to turn on/off the condensed index at # top of each HTML page. The value NO (the default) enables the index and # the value YES disables it. DISABLE_INDEX = NO # The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values # (range [0,1..20]) that doxygen will group on one line in the generated HTML # documentation. Note that a value of 0 will completely suppress the enum # values from appearing in the overview section. ENUM_VALUES_PER_LINE = 4 # The GENERATE_TREEVIEW tag is used to specify whether a tree-like index # structure should be generated to display hierarchical information. # If the tag value is set to YES, a side panel will be generated # containing a tree-like index structure (just like the one that # is generated for HTML Help). For this to work a browser that supports # JavaScript, DHTML, CSS and frames is required (i.e. any modern browser). # Windows users are probably better off using the HTML help feature. GENERATE_TREEVIEW = YES # By enabling USE_INLINE_TREES, doxygen will generate the Groups, Directories, # and Class Hierarchy pages using a tree view instead of an ordered list. USE_INLINE_TREES = NO # If the treeview is enabled (see GENERATE_TREEVIEW) then this tag can be # used to set the initial width (in pixels) of the frame in which the tree # is shown. TREEVIEW_WIDTH = 250 # When the EXT_LINKS_IN_WINDOW option is set to YES doxygen will open # links to external symbols imported via tag files in a separate window. EXT_LINKS_IN_WINDOW = NO # Use this tag to change the font size of Latex formulas included # as images in the HTML documentation. The default is 10. Note that # when you change the font size after a successful doxygen run you need # to manually remove any form_*.png images from the HTML output directory # to force them to be regenerated. FORMULA_FONTSIZE = 10 # Use the FORMULA_TRANPARENT tag to determine whether or not the images # generated for formulas are transparent PNGs. Transparent PNGs are # not supported properly for IE 6.0, but are supported on all modern browsers. # Note that when changing this option you need to delete any form_*.png files # in the HTML output before the changes have effect. FORMULA_TRANSPARENT = YES # Enable the USE_MATHJAX option to render LaTeX formulas using MathJax # (see http://www.mathjax.org) which uses client side Javascript for the # rendering instead of using prerendered bitmaps. Use this if you do not # have LaTeX installed or if you want to formulas look prettier in the HTML # output. When enabled you also need to install MathJax separately and # configure the path to it using the MATHJAX_RELPATH option. USE_MATHJAX = NO # When MathJax is enabled you need to specify the location relative to the # HTML output directory using the MATHJAX_RELPATH option. The destination # directory should contain the MathJax.js script. For instance, if the mathjax # directory is located at the same level as the HTML output directory, then # MATHJAX_RELPATH should be ../mathjax. The default value points to the # mathjax.org site, so you can quickly see the result without installing # MathJax, but it is strongly recommended to install a local copy of MathJax # before deployment. MATHJAX_RELPATH = http://www.mathjax.org/mathjax # The MATHJAX_EXTENSIONS tag can be used to specify one or MathJax extension # names that should be enabled during MathJax rendering. MATHJAX_EXTENSIONS = # When the SEARCHENGINE tag is enabled doxygen will generate a search box # for the HTML output. The underlying search engine uses javascript # and DHTML and should work on any modern browser. Note that when using # HTML help (GENERATE_HTMLHELP), Qt help (GENERATE_QHP), or docsets # (GENERATE_DOCSET) there is already a search function so this one should # typically be disabled. For large projects the javascript based search engine # can be slow, then enabling SERVER_BASED_SEARCH may provide a better solution. SEARCHENGINE = NO # When the SERVER_BASED_SEARCH tag is enabled the search engine will be # implemented using a PHP enabled web server instead of at the web client # using Javascript. Doxygen will generate the search PHP script and index # file to put on the web server. The advantage of the server # based approach is that it scales better to large projects and allows # full text search. The disadvantages are that it is more difficult to setup # and does not have live searching capabilities. SERVER_BASED_SEARCH = NO #--------------------------------------------------------------------------- # configuration options related to the LaTeX output #--------------------------------------------------------------------------- # If the GENERATE_LATEX tag is set to YES (the default) Doxygen will # generate Latex output. GENERATE_LATEX = NO # The LATEX_OUTPUT tag is used to specify where the LaTeX docs will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `latex' will be used as the default path. LATEX_OUTPUT = latex # The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be # invoked. If left blank `latex' will be used as the default command name. # Note that when enabling USE_PDFLATEX this option is only used for # generating bitmaps for formulas in the HTML output, but not in the # Makefile that is written to the output directory. LATEX_CMD_NAME = latex # The MAKEINDEX_CMD_NAME tag can be used to specify the command name to # generate index for LaTeX. If left blank `makeindex' will be used as the # default command name. MAKEINDEX_CMD_NAME = makeindex # If the COMPACT_LATEX tag is set to YES Doxygen generates more compact # LaTeX documents. This may be useful for small projects and may help to # save some trees in general. COMPACT_LATEX = NO # The PAPER_TYPE tag can be used to set the paper type that is used # by the printer. Possible values are: a4, letter, legal and # executive. If left blank a4wide will be used. PAPER_TYPE = a4wide # The EXTRA_PACKAGES tag can be to specify one or more names of LaTeX # packages that should be included in the LaTeX output. EXTRA_PACKAGES = # The LATEX_HEADER tag can be used to specify a personal LaTeX header for # the generated latex document. The header should contain everything until # the first chapter. If it is left blank doxygen will generate a # standard header. Notice: only use this tag if you know what you are doing! LATEX_HEADER = # The LATEX_FOOTER tag can be used to specify a personal LaTeX footer for # the generated latex document. The footer should contain everything after # the last chapter. If it is left blank doxygen will generate a # standard footer. Notice: only use this tag if you know what you are doing! LATEX_FOOTER = # If the PDF_HYPERLINKS tag is set to YES, the LaTeX that is generated # is prepared for conversion to pdf (using ps2pdf). The pdf file will # contain links (just like the HTML output) instead of page references # This makes the output suitable for online browsing using a pdf viewer. PDF_HYPERLINKS = NO # If the USE_PDFLATEX tag is set to YES, pdflatex will be used instead of # plain latex in the generated Makefile. Set this option to YES to get a # higher quality PDF documentation. USE_PDFLATEX = NO # If the LATEX_BATCHMODE tag is set to YES, doxygen will add the \\batchmode. # command to the generated LaTeX files. This will instruct LaTeX to keep # running if errors occur, instead of asking the user for help. # This option is also used when generating formulas in HTML. LATEX_BATCHMODE = NO # If LATEX_HIDE_INDICES is set to YES then doxygen will not # include the index chapters (such as File Index, Compound Index, etc.) # in the output. LATEX_HIDE_INDICES = NO # If LATEX_SOURCE_CODE is set to YES then doxygen will include # source code with syntax highlighting in the LaTeX output. # Note that which sources are shown also depends on other settings # such as SOURCE_BROWSER. LATEX_SOURCE_CODE = NO # The LATEX_BIB_STYLE tag can be used to specify the style to use for the # bibliography, e.g. plainnat, or ieeetr. The default style is "plain". See # http://en.wikipedia.org/wiki/BibTeX for more info. LATEX_BIB_STYLE = plain #--------------------------------------------------------------------------- # configuration options related to the RTF output #--------------------------------------------------------------------------- # If the GENERATE_RTF tag is set to YES Doxygen will generate RTF output # The RTF output is optimized for Word 97 and may not look very pretty with # other RTF readers or editors. GENERATE_RTF = NO # The RTF_OUTPUT tag is used to specify where the RTF docs will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `rtf' will be used as the default path. RTF_OUTPUT = rtf # If the COMPACT_RTF tag is set to YES Doxygen generates more compact # RTF documents. This may be useful for small projects and may help to # save some trees in general. COMPACT_RTF = NO # If the RTF_HYPERLINKS tag is set to YES, the RTF that is generated # will contain hyperlink fields. The RTF file will # contain links (just like the HTML output) instead of page references. # This makes the output suitable for online browsing using WORD or other # programs which support those fields. # Note: wordpad (write) and others do not support links. RTF_HYPERLINKS = NO # Load stylesheet definitions from file. Syntax is similar to doxygen's # config file, i.e. a series of assignments. You only have to provide # replacements, missing definitions are set to their default value. RTF_STYLESHEET_FILE = # Set optional variables used in the generation of an rtf document. # Syntax is similar to doxygen's config file. RTF_EXTENSIONS_FILE = #--------------------------------------------------------------------------- # configuration options related to the man page output #--------------------------------------------------------------------------- # If the GENERATE_MAN tag is set to YES (the default) Doxygen will # generate man pages GENERATE_MAN = NO # The MAN_OUTPUT tag is used to specify where the man pages will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `man' will be used as the default path. MAN_OUTPUT = man # The MAN_EXTENSION tag determines the extension that is added to # the generated man pages (default is the subroutine's section .3) MAN_EXTENSION = .3 # If the MAN_LINKS tag is set to YES and Doxygen generates man output, # then it will generate one additional man file for each entity # documented in the real man page(s). These additional files # only source the real man page, but without them the man command # would be unable to find the correct page. The default is NO. MAN_LINKS = NO #--------------------------------------------------------------------------- # configuration options related to the XML output #--------------------------------------------------------------------------- # If the GENERATE_XML tag is set to YES Doxygen will # generate an XML file that captures the structure of # the code including all documentation. GENERATE_XML = YES # The XML_OUTPUT tag is used to specify where the XML pages will be put. # If a relative path is entered the value of OUTPUT_DIRECTORY will be # put in front of it. If left blank `xml' will be used as the default path. XML_OUTPUT = docs/doxygen/xml # The XML_SCHEMA tag can be used to specify an XML schema, # which can be used by a validating XML parser to check the # syntax of the XML files. XML_SCHEMA = # The XML_DTD tag can be used to specify an XML DTD, # which can be used by a validating XML parser to check the # syntax of the XML files. XML_DTD = # If the XML_PROGRAMLISTING tag is set to YES Doxygen will # dump the program listings (including syntax highlighting # and cross-referencing information) to the XML output. Note that # enabling this will significantly increase the size of the XML output. XML_PROGRAMLISTING = YES #--------------------------------------------------------------------------- # configuration options for the AutoGen Definitions output #--------------------------------------------------------------------------- # If the GENERATE_AUTOGEN_DEF tag is set to YES Doxygen will # generate an AutoGen Definitions (see autogen.sf.net) file # that captures the structure of the code including all # documentation. Note that this feature is still experimental # and incomplete at the moment. GENERATE_AUTOGEN_DEF = NO #--------------------------------------------------------------------------- # configuration options related to the Perl module output #--------------------------------------------------------------------------- # If the GENERATE_PERLMOD tag is set to YES Doxygen will # generate a Perl module file that captures the structure of # the code including all documentation. Note that this # feature is still experimental and incomplete at the # moment. GENERATE_PERLMOD = NO # If the PERLMOD_LATEX tag is set to YES Doxygen will generate # the necessary Makefile rules, Perl scripts and LaTeX code to be able # to generate PDF and DVI output from the Perl module output. PERLMOD_LATEX = NO # If the PERLMOD_PRETTY tag is set to YES the Perl module output will be # nicely formatted so it can be parsed by a human reader. # This is useful # if you want to understand what is going on. # On the other hand, if this # tag is set to NO the size of the Perl module output will be much smaller # and Perl will parse it just the same. PERLMOD_PRETTY = YES # The names of the make variables in the generated doxyrules.make file # are prefixed with the string contained in PERLMOD_MAKEVAR_PREFIX. # This is useful so different doxyrules.make files included by the same # Makefile don't overwrite each other's variables. PERLMOD_MAKEVAR_PREFIX = #--------------------------------------------------------------------------- # Configuration options related to the preprocessor #--------------------------------------------------------------------------- # If the ENABLE_PREPROCESSING tag is set to YES (the default) Doxygen will # evaluate all C-preprocessor directives found in the sources and include # files. ENABLE_PREPROCESSING = YES # If the MACRO_EXPANSION tag is set to YES Doxygen will expand all macro # names in the source code. If set to NO (the default) only conditional # compilation will be performed. Macro expansion can be done in a controlled # way by setting EXPAND_ONLY_PREDEF to YES. MACRO_EXPANSION = NO # If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES # then the macro expansion is limited to the macros specified with the # PREDEFINED and EXPAND_AS_DEFINED tags. EXPAND_ONLY_PREDEF = NO # If the SEARCH_INCLUDES tag is set to YES (the default) the includes files # pointed to by INCLUDE_PATH will be searched when a #include is found. SEARCH_INCLUDES = YES # The INCLUDE_PATH tag can be used to specify one or more directories that # contain include files that are not input files but should be processed by # the preprocessor. INCLUDE_PATH = # You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard # patterns (like *.h and *.hpp) to filter out the header-files in the # directories. If left blank, the patterns specified with FILE_PATTERNS will # be used. INCLUDE_FILE_PATTERNS = # The PREDEFINED tag can be used to specify one or more macro names that # are defined before the preprocessor is started (similar to the -D option of # gcc). The argument of the tag is a list of macros of the form: name # or name=definition (no spaces). If the definition and the = are # omitted =1 is assumed. To prevent a macro definition from being # undefined via #undef or recursively expanded use the := operator # instead of the = operator. PREDEFINED = # If the MACRO_EXPANSION and EXPAND_ONLY_PREDEF tags are set to YES then # this tag can be used to specify a list of macro names that should be expanded. # The macro definition that is found in the sources will be used. # Use the PREDEFINED tag if you want to use a different macro definition that # overrules the definition found in the source code. EXPAND_AS_DEFINED = # If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then # doxygen's preprocessor will remove all references to function-like macros # that are alone on a line, have an all uppercase name, and do not end with a # semicolon, because these will confuse the parser if not removed. SKIP_FUNCTION_MACROS = YES #--------------------------------------------------------------------------- # Configuration::additions related to external references #--------------------------------------------------------------------------- # The TAGFILES option can be used to specify one or more tagfiles. # Optionally an initial location of the external documentation # can be added for each tagfile. The format of a tag file without # this location is as follows: # # TAGFILES = file1 file2 ... # Adding location for the tag files is done as follows: # # TAGFILES = file1=loc1 "file2 = loc2" ... # where "loc1" and "loc2" can be relative or absolute paths or # URLs. If a location is present for each tag, the installdox tool # does not have to be run to correct the links. # Note that each tag file must have a unique name # (where the name does NOT include the path) # If a tag file is not located in the directory in which doxygen # is run, you must also specify the path to the tagfile here. TAGFILES = # When a file name is specified after GENERATE_TAGFILE, doxygen will create # a tag file that is based on the input files it reads. GENERATE_TAGFILE = # If the ALLEXTERNALS tag is set to YES all external classes will be listed # in the class index. If set to NO only the inherited external classes # will be listed. ALLEXTERNALS = NO # If the EXTERNAL_GROUPS tag is set to YES all external groups will be listed # in the modules index. If set to NO, only the current project's groups will # be listed. EXTERNAL_GROUPS = YES # The PERL_PATH should be the absolute path and name of the perl script # interpreter (i.e. the result of `which perl'). PERL_PATH = /usr/bin/perl #--------------------------------------------------------------------------- # Configuration options related to the dot tool #--------------------------------------------------------------------------- # If the CLASS_DIAGRAMS tag is set to YES (the default) Doxygen will # generate a inheritance diagram (in HTML, RTF and LaTeX) for classes with base # or super classes. Setting the tag to NO turns the diagrams off. Note that # this option also works with HAVE_DOT disabled, but it is recommended to # install and use dot, since it yields more powerful graphs. CLASS_DIAGRAMS = YES # You can define message sequence charts within doxygen comments using the \msc # command. Doxygen will then run the mscgen tool (see # http://www.mcternan.me.uk/mscgen/) to produce the chart and insert it in the # documentation. The MSCGEN_PATH tag allows you to specify the directory where # the mscgen tool resides. If left empty the tool is assumed to be found in the # default search path. MSCGEN_PATH = # If set to YES, the inheritance and collaboration graphs will hide # inheritance and usage relations if the target is undocumented # or is not a class. HIDE_UNDOC_RELATIONS = YES # If you set the HAVE_DOT tag to YES then doxygen will assume the dot tool is # available from the path. This tool is part of Graphviz, a graph visualization # toolkit from AT&T and Lucent Bell Labs. The other options in this section # have no effect if this option is set to NO (the default) HAVE_DOT = YES # The DOT_NUM_THREADS specifies the number of dot invocations doxygen is # allowed to run in parallel. When set to 0 (the default) doxygen will # base this on the number of processors available in the system. You can set it # explicitly to a value larger than 0 to get control over the balance # between CPU load and processing speed. DOT_NUM_THREADS = 0 # By default doxygen will use the Helvetica font for all dot files that # doxygen generates. When you want a differently looking font you can specify # the font name using DOT_FONTNAME. You need to make sure dot is able to find # the font, which can be done by putting it in a standard location or by setting # the DOTFONTPATH environment variable or by setting DOT_FONTPATH to the # directory containing the font. DOT_FONTNAME = Helvetica # The DOT_FONTSIZE tag can be used to set the size of the font of dot graphs. # The default size is 10pt. DOT_FONTSIZE = 10 # By default doxygen will tell dot to use the Helvetica font. # If you specify a different font using DOT_FONTNAME you can use DOT_FONTPATH to # set the path where dot can find it. DOT_FONTPATH = # If the CLASS_GRAPH and HAVE_DOT tags are set to YES then doxygen # will generate a graph for each documented class showing the direct and # indirect inheritance relations. Setting this tag to YES will force the # the CLASS_DIAGRAMS tag to NO. CLASS_GRAPH = YES # If the COLLABORATION_GRAPH and HAVE_DOT tags are set to YES then doxygen # will generate a graph for each documented class showing the direct and # indirect implementation dependencies (inheritance, containment, and # class references variables) of the class with other documented classes. COLLABORATION_GRAPH = YES # If the GROUP_GRAPHS and HAVE_DOT tags are set to YES then doxygen # will generate a graph for groups, showing the direct groups dependencies GROUP_GRAPHS = YES # If the UML_LOOK tag is set to YES doxygen will generate inheritance and # collaboration diagrams in a style similar to the OMG's Unified Modeling # Language. UML_LOOK = YES # If set to YES, the inheritance and collaboration graphs will show the # relations between templates and their instances. TEMPLATE_RELATIONS = YES # If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDE_GRAPH, and HAVE_DOT # tags are set to YES then doxygen will generate a graph for each documented # file showing the direct and indirect include dependencies of the file with # other documented files. INCLUDE_GRAPH = YES # If the ENABLE_PREPROCESSING, SEARCH_INCLUDES, INCLUDED_BY_GRAPH, and # HAVE_DOT tags are set to YES then doxygen will generate a graph for each # documented header file showing the documented files that directly or # indirectly include this file. INCLUDED_BY_GRAPH = YES # If the CALL_GRAPH and HAVE_DOT options are set to YES then # doxygen will generate a call dependency graph for every global function # or class method. Note that enabling this option will significantly increase # the time of a run. So in most cases it will be better to enable call graphs # for selected functions only using the \callgraph command. CALL_GRAPH = YES # If the CALLER_GRAPH and HAVE_DOT tags are set to YES then # doxygen will generate a caller dependency graph for every global function # or class method. Note that enabling this option will significantly increase # the time of a run. So in most cases it will be better to enable caller # graphs for selected functions only using the \callergraph command. CALLER_GRAPH = YES # If the GRAPHICAL_HIERARCHY and HAVE_DOT tags are set to YES then doxygen # will generate a graphical hierarchy of all classes instead of a textual one. GRAPHICAL_HIERARCHY = YES # If the DIRECTORY_GRAPH, SHOW_DIRECTORIES and HAVE_DOT tags are set to YES # then doxygen will show the dependencies a directory has on other directories # in a graphical way. The dependency relations are determined by the #include # relations between the files in the directories. DIRECTORY_GRAPH = YES # The DOT_IMAGE_FORMAT tag can be used to set the image format of the images # generated by dot. Possible values are svg, png, jpg, or gif. # If left blank png will be used. If you choose svg you need to set # HTML_FILE_EXTENSION to xhtml in order to make the SVG files # visible in IE 9+ (other browsers do not have this requirement). DOT_IMAGE_FORMAT = png # If DOT_IMAGE_FORMAT is set to svg, then this option can be set to YES to # enable generation of interactive SVG images that allow zooming and panning. # Note that this requires a modern browser other than Internet Explorer. # Tested and working are Firefox, Chrome, Safari, and Opera. For IE 9+ you # need to set HTML_FILE_EXTENSION to xhtml in order to make the SVG files # visible. Older versions of IE do not have SVG support. INTERACTIVE_SVG = NO # The tag DOT_PATH can be used to specify the path where the dot tool can be # found. If left blank, it is assumed the dot tool can be found in the path. ### "c:\Program Files\Graphviz2.16\bin" DOT_PATH = # The DOTFILE_DIRS tag can be used to specify one or more directories that # contain dot files that are included in the documentation (see the # \dotfile command). DOTFILE_DIRS = # The MSCFILE_DIRS tag can be used to specify one or more directories that # contain msc files that are included in the documentation (see the # \mscfile command). MSCFILE_DIRS = # The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of # nodes that will be shown in the graph. If the number of nodes in a graph # becomes larger than this value, doxygen will truncate the graph, which is # visualized by representing a node as a red box. Note that doxygen if the # number of direct children of the root node in a graph is already larger than # DOT_GRAPH_MAX_NODES then the graph will not be shown at all. Also note # that the size of a graph can be further restricted by MAX_DOT_GRAPH_DEPTH. DOT_GRAPH_MAX_NODES = 50 # The MAX_DOT_GRAPH_DEPTH tag can be used to set the maximum depth of the # graphs generated by dot. A depth value of 3 means that only nodes reachable # from the root by following a path via at most 3 edges will be shown. Nodes # that lay further from the root node will be omitted. Note that setting this # option to 1 or 2 may greatly reduce the computation time needed for large # code bases. Also note that the size of a graph can be further restricted by # DOT_GRAPH_MAX_NODES. Using a depth of 0 means no depth restriction. MAX_DOT_GRAPH_DEPTH = 0 # Set the DOT_TRANSPARENT tag to YES to generate images with a transparent # background. This is disabled by default, because dot on Windows does not # seem to support this out of the box. Warning: Depending on the platform used, # enabling this option may lead to badly anti-aliased labels on the edges of # a graph (i.e. they become hard to read). DOT_TRANSPARENT = NO # Set the DOT_MULTI_TARGETS tag to YES allow dot to generate multiple output # files in one run (i.e. multiple -o and -T options on the command line). This # makes dot run faster, but since only newer versions of dot (>1.8.10) # support this, this feature is disabled by default. DOT_MULTI_TARGETS = NO # If the GENERATE_LEGEND tag is set to YES (the default) Doxygen will # generate a legend page explaining the meaning of the various boxes and # arrows in the dot generated graphs. GENERATE_LEGEND = YES # If the DOT_CLEANUP tag is set to YES (the default) Doxygen will # remove the intermediate dot files that are used to generate # the various graphs. DOT_CLEANUP = YES libspatialindex-1.9.3/docs/doxygen/doxygen.css000066400000000000000000000202301355420072700214760ustar00rootroot00000000000000/* override a few trac styles */ :link, :visited, :link:hover, :visited:hover { border-bottom-style: none; } /* tabs */ div.tabs * { display: inline; } div.tabs ul { display: block; margin: 0em; padding: 0.5em 0em; font-size: 10px; list-style: none; text-align: left; } div.tabs li { border-right: 1px solid #d7d7d7; padding: 0em 0.75em; white-space: nowrap; margin: 3px; } div.tabs form { padding: 0em 0.75em; white-space: nowrap; margin: 3px; } div.tabs #current a, div.tabs a:hover { background-color: #fdc; /* blue: #eef3f5 */ padding: 3px; border-width: 1px; border-style: solid; border-color: #d00; /* blue: #dedeee */ -moz-border-radius: 8px 8px 8px 8px; } div.tabs a { padding: 3px; border-width: 1px; border-style: dotted; border-color: #ffffff; -moz-border-radius: 8px 8px 8px 8px; } /* div.tabs a:visited { color: #2A3798; } */ h1 { text-align: center; font-size: 160%; } h2 { font-size: 120%; } h3 { font-size: 100%; } caption { font-weight: bold } div.qindex { width: 100%; background-color: #e8eef2; border: 1px solid #84b0c7; text-align: center; margin: 2px; padding: 2px; line-height: 140%; } a.qindex { text-decoration: none; font-weight: bold; color: #1A419D; } a.qindex:visited { text-decoration: none; font-weight: bold; color: #1A419D } a.qindex:hover { text-decoration: none; background-color: #ddddff; } a.qindexHL { text-decoration: none; font-weight: bold; background-color: #6666cc; color: #ffffff; border: 1px double #9295C2; } a.qindexHL:hover { text-decoration: none; background-color: #6666cc; color: #ffffff; } a.qindexHL:visited { text-decoration: none; background-color: #6666cc; color: #ffffff } a.el { text-decoration: none; font-weight: bold } a.elRef { font-weight: bold } a.code:link { text-decoration: none; font-weight: normal; color: #0000FF} a.code:visited { text-decoration: none; font-weight: normal; color: #0000FF} a.codeRef:link { font-weight: normal; color: #0000FF} a.codeRef:visited { font-weight: normal; color: #0000FF} a:hover { text-decoration: none; background-color: #f2f2ff } dl.el { margin-left: -1cm } .fragment { font-family: monospace, fixed; font-size: 95%; } pre.fragment { border: 1px solid #CCCCCC; background-color: #f5f5f5; margin-top: 4px; margin-bottom: 4px; margin-left: 2px; margin-right: 8px; padding-left: 6px; padding-right: 6px; padding-top: 4px; padding-bottom: 4px; } div.ah { background-color: black; font-weight: bold; color: #ffffff; margin-bottom: 3px; margin-top: 3px } div.groupHeader { margin-left: 16px; margin-top: 12px; margin-bottom: 6px; font-weight: bold; } div.groupText { margin-left: 16px; font-style: italic; font-size: 90% } td.indexkey { background-color: #e8eef2; font-weight: bold; padding-right : 10px; padding-top : 2px; padding-left : 10px; padding-bottom : 2px; margin-left : 0px; margin-right : 0px; margin-top : 2px; margin-bottom : 2px; border: 1px solid #CCCCCC; } td.indexvalue { background-color: #e8eef2; font-style: italic; padding-right : 10px; padding-top : 2px; padding-left : 10px; padding-bottom : 2px; margin-left : 0px; margin-right : 0px; margin-top : 2px; margin-bottom : 2px; border: 1px solid #CCCCCC; } tr.memlist { background-color: #f0f0f0; } p.formulaDsp { text-align: center; } img.formulaDsp { } img.formulaInl { vertical-align: middle; } span.keyword { color: #008000 } span.keywordtype { color: #604020 } span.keywordflow { color: #e08000 } span.comment { color: #800000 } span.preprocessor { color: #806020 } span.stringliteral { color: #002080 } span.charliteral { color: #008080 } .mdescLeft { padding: 0px 8px 4px 8px; font-size: 80%; font-style: italic; background-color: #FAFAFA; border-top: 1px none #E0E0E0; border-right: 1px none #E0E0E0; border-bottom: 1px none #E0E0E0; border-left: 1px none #E0E0E0; margin: 0px; } .mdescRight { padding: 0px 8px 4px 8px; font-size: 80%; font-style: italic; background-color: #FAFAFA; border-top: 1px none #E0E0E0; border-right: 1px none #E0E0E0; border-bottom: 1px none #E0E0E0; border-left: 1px none #E0E0E0; margin: 0px; } .memItemLeft { padding: 1px 0px 0px 8px; margin: 4px; border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-color: #E0E0E0; border-right-color: #E0E0E0; border-bottom-color: #E0E0E0; border-left-color: #E0E0E0; border-top-style: solid; border-right-style: none; border-bottom-style: none; border-left-style: none; background-color: #FAFAFA; font-size: 80%; } .memItemRight { padding: 1px 8px 0px 8px; margin: 4px; border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-color: #E0E0E0; border-right-color: #E0E0E0; border-bottom-color: #E0E0E0; border-left-color: #E0E0E0; border-top-style: solid; border-right-style: none; border-bottom-style: none; border-left-style: none; background-color: #FAFAFA; font-size: 80%; } .memTemplItemLeft { padding: 1px 0px 0px 8px; margin: 4px; border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-color: #E0E0E0; border-right-color: #E0E0E0; border-bottom-color: #E0E0E0; border-left-color: #E0E0E0; border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; background-color: #FAFAFA; font-size: 80%; } .memTemplItemRight { padding: 1px 8px 0px 8px; margin: 4px; border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-color: #E0E0E0; border-right-color: #E0E0E0; border-bottom-color: #E0E0E0; border-left-color: #E0E0E0; border-top-style: none; border-right-style: none; border-bottom-style: none; border-left-style: none; background-color: #FAFAFA; font-size: 80%; } .memTemplParams { padding: 1px 0px 0px 8px; margin: 4px; border-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; border-left-width: 1px; border-top-color: #E0E0E0; border-right-color: #E0E0E0; border-bottom-color: #E0E0E0; border-left-color: #E0E0E0; border-top-style: solid; border-right-style: none; border-bottom-style: none; border-left-style: none; color: #606060; background-color: #FAFAFA; font-size: 80%; } .search { color: #003399; font-weight: bold; } form.search { font-size: 90%; margin-bottom: 0px; margin-top: 0px; } input.search { /* font-size: 75%; */ color: #000080; font-weight: normal; background-color: #e8eef2; } td.tiny { font-size: 75%; } .dirtab { padding: 4px; border-collapse: collapse; border: 1px solid #84b0c7; } th.dirtab { background: #e8eef2; font-weight: bold; } hr { height: 1px; border: none; border-top: 1px solid black; } /* Style for detailed member documentation */ .memtemplate { font-size: 80%; color: #606060; font-weight: normal; } .memnav { background-color: #e8eef2; border: 1px solid #84b0c7; text-align: center; margin: 2px; margin-right: 15px; padding: 2px; } .memitem { padding: 4px; background-color: #eef3f5; border-width: 1px; border-style: solid; border-color: #dedeee; -moz-border-radius: 8px 8px 8px 8px; } .memname { white-space: nowrap; font-weight: bold; } .memdoc{ padding-left: 10px; } .memproto { background-color: #d5e1e8; width: 100%; border-width: 1px; border-style: solid; border-color: #84b0c7; font-weight: bold; -moz-border-radius: 8px 8px 8px 8px; } .paramkey { text-align: right; } .paramtype { white-space: nowrap; } .paramname { color: #602020; font-style: italic; } /* End Styling for detailed member documentation */ /* for the tree view */ .ftvtree { font-family: sans-serif; margin:0.5em; } .directory { font-size: 9pt; font-weight: bold; } .directory h3 { margin: 0px; margin-top: 1em; font-size: 11pt; } .directory > h3 { margin-top: 0; } .directory p { margin: 0px; white-space: nowrap; } .directory div { display: none; margin: 0px; } .directory img { vertical-align: -30%; } libspatialindex-1.9.3/docs/source/000077500000000000000000000000001355420072700171355ustar00rootroot00000000000000libspatialindex-1.9.3/docs/source/_static/000077500000000000000000000000001355420072700205635ustar00rootroot00000000000000libspatialindex-1.9.3/docs/source/_static/dummy000066400000000000000000000000001355420072700216270ustar00rootroot00000000000000libspatialindex-1.9.3/docs/source/community.rst000066400000000000000000000046301355420072700217160ustar00rootroot00000000000000.. _community: ------------------------------------------------------------------------------ Mailing List ------------------------------------------------------------------------------ The libspatialindex mailing list is available to ask development questions. Please join and participate on `groups.io `__. .. raw:: html
libspatialindex-1.9.3/docs/source/conf.py000066400000000000000000000172361355420072700204450ustar00rootroot00000000000000# -*- coding: utf-8 -*- # # libspatialindex documentation build configuration file, created by # sphinx-quickstart on Mon Sep 26 16:01:39 2011. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'libspatialindex' copyright = u'2019, Marios Hadjieleftheriou' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.9.3' # The full version, including alpha/beta/rc tags. release = '1.9.3' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'nature' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # " v documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'libspatialindexdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'libspatialindex.tex', u'libspatialindex Documentation', u'Marios Hadjieleftheriou', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'libspatialindex', u'libspatialindex Documentation', [u'Marios Hadjieleftheriou'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'libspatialindex', u'libspatialindex Documentation', u'Marios Hadjieleftheriou', 'libspatialindex', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' libspatialindex-1.9.3/docs/source/download.rst000066400000000000000000000115761355420072700215100ustar00rootroot00000000000000------------------------------------------------------------------------------ Download ------------------------------------------------------------------------------ Current Release (MIT) ------------------------------------------------------------------------------ * **2018-10-23** - `spatialindex-src-1.9.3.tar.gz `__ `(md5) `__ - `spatialindex-src-1.9.3.tar.bz2 `__ `(md5) `__ Binaries .............................................................................. Binary builds are available on via `Conda Forge `__ for OSX, Linux, and Windows. After installing Conda or Miniconda, install the library by issuing the following command: :: conda install -c conda-forge libspatialindex=1.9.3 Additionally, packaging systems such as Debian, RedHat, Homebrew, MacPorts, and many others contain binaries for libspatialindex. Past Release (MIT) ------------------------------------------------------------------------------ * **2018-10-22** - `spatialindex-src-1.9.2.tar.gz `__ `(md5) `__ - `spatialindex-src-1.9.2.tar.bz2 `__ `(md5) `__ * **2018-10-19** - spatialindex-src-1.9.1.tar.gz -- broken. See GitHub tag if needed. * **2018-02-08** - `spatialindex-src-1.9.0.tar.gz `__ `(md5) `__ - `spatialindex-src-1.9.0.tar.bz2 `__ `(md5) `__ * **2014-09-29** - `spatialindex-src-1.8.5-src.tar.gz `__ `(md5) `__ - `spatialindex-src-1.8.5-src.tar.bz2 `__ `(md5) `__ * **2012-12-13** - `spatialindex-src-1.8.0-src.tar.gz `__ `(md5) `__ - `spatialindex-src-1.8.0-src.tar.bz2 `__ `(md5) `__ Windows Builds .............................................................................. Windows builds are provided for convenience. The full matrix might not be complete, and you will have to compile yourself using your favorite compiler configuration and cmake if something is missing. - `libspatialindex-1.8.0-win-msvc-2008-x64-x32.zip `__ `(md5) `__ - `libspatialindex-1.8.0-win-msvc-2010-x64-x32.zip `__ `(md5) `__ Past Release(s) (LGPL) ------------------------------------------------------------------------------ * **2011-12-12** - `spatialindex-src-1.7.1-src.tar.gz `__ `(md5) `__ - `spatialindex-src-1.7.1-src.tar.bz2 `__ `(md5) `__ - `Release Notes `__ libspatialindex-1.9.3/docs/source/index.rst000066400000000000000000000007041355420072700207770ustar00rootroot00000000000000***************************************************************************** libspatialindex ***************************************************************************** .. toctree:: :maxdepth: 1 install Github community overview Class Documentation .. include:: introduction.rst .. include:: ../../COPYING .. include:: download.rst libspatialindex-1.9.3/docs/source/install.rst000066400000000000000000000010671355420072700213410ustar00rootroot00000000000000.. _install: ------------------------------------------------------------------------------ Installation ------------------------------------------------------------------------------ libspatialindex supports building an installation through a `CMake`_-derived build system. The CMake scenario for building libspatialindex is also quite simple. :: [hobu@fire libspatialindex]$ cmake -DCMAKE_INSTALL_PREFIX=/home/marioh/usr . :: [hobu@fire libspatialindex]$ make :: [hobu@fire libspatialindex]$ make install .. _CMake: http://www.cmake.org libspatialindex-1.9.3/docs/source/introduction.rst000066400000000000000000000037551355420072700224220ustar00rootroot00000000000000.. _introduction: :Author: Marios Hadjieleftheriou :Contact: mhadji@gmail.com :Revision: 1.9.3 :Date: 10/23/2019 The entire website is available as a single PDF at https://libspatialindex.org/libspatialindex.pdf ------------------------------------------------------------------------------ Introduction ------------------------------------------------------------------------------ Library Goals ------------------------------------------------------------------------------ The purpose of this library is to provide: 1. An extensible framework that will support robust spatial indexing methods. 2. Support for sophisticated spatial queries. Range, point location, nearest neighbor and k-nearest neighbor as well as parametric queries (defined by spatial constraints) should be easy to deploy and run. 3. Easy to use interfaces for inserting, deleting and updating information. 4. Wide variety of customization capabilities. Basic index and storage characteristics like the page size, node capacity, minimum fan-out, splitting algorithm, etc. should be easy to customize. 5. Index persistence. Internal memory and external memory structures should be supported. Clustered and non-clustered indices should be easy to be persisted. Features ------------------------------------------------------------------------------ * Generic main memory and disk based storage managers. * R\*-tree index (also supports linear and quadratic splitting). * MVR-tree index (a.k.a. PPR-tree). * TPR-tree index. * Advanced query capabilities, using Strategy and Visitor patterns. * Arbitrary shaped range queries, by defining generic geometry interfaces. * Large parameterization capabilities, including dimensionality, fill factor, node capacity, etc. * STR packing / bulk loading. Warnings ------------------------------------------------------------------------------ * The library is not thread-safe, even for seemingly read-only operations. Queries and updates must be run from within mutexes. libspatialindex-1.9.3/docs/source/overview.rst000066400000000000000000000442221355420072700215410ustar00rootroot00000000000000.. _overview: ------------------------------------------------------------------------------ Library Overview ------------------------------------------------------------------------------ The library currently consists of six packages: 1. The core spatialindex utilities. 2. The storagemanager files. 3. The spatialindex interfaces. 4. The rtree index. 5. The mvrtree index. 6. The tprtree index. I will briefly present the basic features supported by each package. For more details you will have to refer to the code, for now. Spatial Index Utilities ------------------------------------------------------------------------------ To provide common constructors and uniform initialization for all objects provided by the library a PropertySet class is provided. A PropertySet associates strings with Variants. Each property corresponds to one string. A basic implementation of a Variant is also provided that supports a number of data types. The supported data types can be found in SpatialIndex.h PropertySet supports three functions: 1. getProperty returns the Variant associated with the given string. 2. setProperty associates the given Variant with the given string. 3. removeProperty removes the specified property from the PropertySet. A number of exceptions are also defined here. All exceptions extend Exception and thus provide the what() method that returns a string representation of the exception with useful comments. It is advisable to use enclosing try/catch blocks when using any library objects. Many constructors throw exceptions when invalid initialization properties are specified. A general IShape interface is defined. All shape classes should extend IShape. Basic Region and Point classes are already provided. Please check Region.h and Point.h for further details. Storage Manager ------------------------------------------------------------------------------ The library provides a common interface for storage management of all indices. It consists of the IStorageManager interface, which provides functions for storing and retrieving entities. An entity is viewed as a simple uint8_t array; hence it can be an index entry, a data entry or anything else that the user wants to store. The storage manager interface is generic and does not apply only to spatial indices. Classes that implement the IStorageManager interface decide on how to store entities. simple main memory implementation is provided, for example, that stores the entities using a vector, associating every entity with a unique ID (the entry's index in the vector). A disk based storage manager could choose to store the entities in a simple random access file, or a database storage manager could store them in a relational table, etc. as long as unique IDs are associated with every entity. Also, storage managers should implement their own paging, compaction and deletion policies transparently from the callers (be it an index or a user). The storeByteArray method gets a uint8_t array and its length and an entity ID. If the caller specifies NewPage as the input ID, the storage manager allocates a new ID, stores the entity and returns the ID associated with the entity. If, instead, the user specifies an already existing ID the storage manager overwrites the old data. An exception is thrown if the caller requests an invalid ID to be overwritten. The loadByteArray method gets an entity ID and returns the associated uint8_t array along with its length. If an invalid ID is requested, an exception is thrown. The deleteByteArray method removes the requested entity from storage. The storage managers should have no information about the types of entities that are stored. There are three main reasons for this decision: 1. Any number of spatial indices can be stored in a single storage manager (i.e. the same relational table, or binary file, or hash table, etc., can be used to store many indices) using an arbitrary number of pages and a unique index ID per index (this will be discussed shortly). 2. Both clustered and non-clustered indices can be supported. A clustered index stores the data associated with the entries that it contains along with the spatial information that it indexes. A non-clustered index stores only the spatial information of its entries. Any associated data are stored separately and are associated with the index entries by a unique ID. To support both types of indices, the storage manager interface should be quite generic, allowing the index to decide how to store its data. Otherwise clustered and non-clustered indices would have to be implemented separately. 3. Decision flexibility. For example, the users can choose a clustered index that will take care of storing everything. They can choose a main memory non-clustered index and store the actual data in MySQL. They can choose a disk based non-clustered index and store the data manually in a separate binary file or even in the same storage manager but doing a low level customized data processing. Two storage managers are provided in the current implementation: 1) MemoryStorageManager 2) DiskStorageManager MemoryStorageManager ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As it is implied be the name, this is a main memory implementation. Everything is stored in main memory using a simple vector. No properties are needed to initialize a MemoryStorageManager object. When a MemoryStorageManager instance goes out of scope, all data that it contains are lost. DiskStorageManager ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The disk storage manager uses two random access files for storing information. One with extension .idx and the other with extension .dat. A list of all the supported properties that can be provided during initialization, follows: ========= ======== =========================================================== Property Type Description ========= ======== =========================================================== FileName VT_PCHAR The base name of the file to open (no extension) Overwrite VT_BOOL If Overwrite is true and a storage manager with the specified filename already exists, it will be truncated and overwritten. All data will be lost. PageSize VT_ULONG The page size to use. If the specified filename already exists and Overwrite is false, PageSize is ignored. ========= ======== =========================================================== For entities that are larger than the page size, multiple pages are used. Although, the empty space on the last page is lost. Also, there is no effort whatsoever to use as many sequential pages as possible. A future version might support sequential I/O. Thus, real clustered indices cannot be supported yet. The purpose of the .idx file is to store vital information like the page size, the next available page, a list of empty pages and the sequence of pages associated with every entity ID. This class also provides a flush method that practically overwrites the .idx file and syncs both file pointers. The .idx file is loaded into main memory during initialization and is written to disk only after flushing the storage manager or during object destruction. In case of an unexpected failure changes to the storage manager will be lost due to a stale .idx file. Avoiding such disasters is future work. SpatialIndex Interfaces ------------------------------------------------------------------------------ A spatial index is any index structure that accesses spatial information efficiently. It could range from a simple grid file to a complicated tree structure. A spatial index indexes entries of type IEntry, which can be index nodes, leaf nodes, data etc. depending on the structure characteristics. The appropriate interfaces with useful accessor methods should be provided for all types of entries. A spatial index should implement the ISpatialIndex interface. The containmentQuery method requires a query shape and a reference to a valid IVisitor instance (described shortly). The intersectionQuery method is the same. Both accept an IShape as the query. If the query shape is a simple Region, than a classic range query is performed. The user though has the ability to create her own shapes, thus defining her own intersection and containment methods making possible to run any kind of range query without having to modify the index. An example of a trapezoidal query is given in the regressiontest directory. Have in mind that it is the users responsibility to implement the correct intersection and containment methods between their shape and the type of shapes that are stored by the specific index that they are planning to use. For example, if an rtree index will be used, a trapezoid should define intersection and containment between itself and Regions, since all rtree nodes are of type Region. Hence, the user should have some knowledge about the index internal representation, to run more sophisticated queries. A point location query is performed using the pointLocationQuery method. It takes the query point and a visitor as arguments. Nearest neighbor queries can be performed with the nearestNeighborQuery method. Its first argument is the number k of nearest neighbors requested. This method also requires the query shape and a visitor object. The default implementation uses the getMinimumDistance function of IShape for calculating the distance of the query from the rectangular node and data entries stored in the tree. A more sophisticated distance measure can be used by implementing the INearestNeighborComparator interface and passing it as the last argument of nearestNeighborQuery. For example, a comparator is necessary when the query needs to be checked against the actual data stored in the tree, instead of the rectangular data entry approximations stored in the leaves. For customizing queries the IVisitor interface (based on the Visitor pattern [gamma94]) provides callback functions for visiting index and leaf nodes, as well as data entries. Node and data information can be obtained using the INode and IData interfaces (both extend IEntry). Examples of using this interface include visualizing a query, counting the number of leaf or index nodes visited for a specific query, throwing alerts when a specific spatial region is accessed, etc. The queryStrategy method provides the ability to design more sophisticated queries. It uses the IQueryStrategy interface as a callback that is called continuously until no more entries are requested. It can be used to implement custom query algorithms (based on the strategy pattern [gamma94]). A data entry can be inserted using the insertData method. The insertion function will convert any shape into an internal representation depending on the index. Every inserted object should be assigned an ID (called object identifier) that will allow updating, deleting and reporting the object. It is the responsibility of the caller to provide the index with IDs (unique or not). Also, a uint8_t array can be associated with an entry. The uint8_t arrays are stored along with the spatial information inside the leaf nodes. Clustered indices can be supported in that way. The uint8_t array can also by null (in which case the length field should be zero), and no extra space should be used per node. A data entry can be deleted using the deleteData method. The object shape and ID should be provided. Spatial indices cluster objects according to spatial characteristics and not IDs. Hence, the shape is essential for locating and deleting an entry. Useful statistics are provided through the IStatistics interface and the getStatistics method. Method getIndexProperties returns a PropertySet with all useful index properties like dimensionality etc. A NodeCommand interface is provided for customizing Node operations. Using the addWriteNodeCommand, addReadNodeCommand and addDeleteNodeCommand methods, custom command objects are added in listener lists and get executed after the corresponding operations. The isIndexValid method performs internal checks for testing the integrity of a structure. It is used for debugging purposes. When a new index is created a unique index ID should be assigned to it, that will be used when reloading the index from persistent storage. This index ID should be returned as an IndexIdentifier property in the instance of the PropsertySet that was used for constructing the index instance. Using index IDs, multiple indices can be stored in the same storage manager. It is the users responsibility to manager the index IDs. Associating the wrong index ID with the wrong storage manager or index type has undefined results. The RTree Package ------------------------------------------------------------------------------ The RTree index [guttman84] is a balanced tree structure that consists of index nodes, leaf nodes and data. Every node (leaf and index) has a fixed capacity of entries, (the node capacity) chosen at index creation An RTree abstracts the data with their Minimum Bounding Region (MBR) and clusters these MBRs according to various heuristics in the leaf nodes. Queries are evaluated from the root of the tree down the leaves. Since the index is balanced nodes can be under full. They cannot be empty though. A fill factor specifies the minimum number of entries allowed in any node. The fill factor is usually close to 70%. RTree creation involves: 1. Deciding if the index will be internal or external memory and selecting the appropriate storage manager. 2. Choosing the index and leaf capacity (also known as fan-out). 3. Choosing the fill factor (from 1% to 99% of the node capacity). 4. Choosing the dimensionality of the data. 5. Choosing the insert/update policy (the RTree variant). If an already stored RTree is being reloaded for reuse, only the index ID needs to be supplied during construction. In that case, some options cannot be modified. These include: the index and leaf capacity, the fill factor and the dimensionality. Note here, that the RTree variant can actually be modified. The variant affects only when and how splitting occurs, and thus can be changed at any time. An initialization PropertySet is used for setting the above options, complying with the following property strings: ========================== =========== ============================================================ Property Type Description ========================== =========== ============================================================ IndexIndentifier VT_LONG If specified an existing index will be opened from the supplied storage manager with the given index id. Behavior is unspecified if the index id or the storage manager are incorrect. Dimension VT_ULONG Dimensionality of the data that will be inserted. IndexCapacity VT_ULONG The index node capacity. Default is 100. LeafCapactiy VT_ULONG The leaf node capacity. Default is 100. FillFactor VT_DOUBLE The fill factor. Default is 70% TreeVariant VT_LONG Can be one of Linear, Quadratic or Rstar. Default is Rstar NearMinimumOverlapFactor VT_ULONG Default is 32. SplitDistributionFactor VT_DOUBLE Default is 0.4 ReinsertFactor VT_DOUBLE Default is 0.3 EnsureTightMBRs VT_BOOL Default is true IndexPoolCapacity VT_LONG Default is 100 LeafPoolCapacity VT_LONG Default is 100 RegionPoolCapacity VT_LONG Default is 1000 PointPoolCapacity VT_LONG Default is 500 ========================== =========== ============================================================ Performance ------------------------------------------------------------------------------ Dataset size, data density, etc. have nothing to do with capacity and page size. What you are trying to achieve is fast reads from the disk and take advantage of disk buffering and prefetching. Normally, you select the page size to be equal to the disk page size (depends on how you format the drive). Then you choose the node capacity to be enough to fill the whole page (including data entries if you have any). There is a tradeoff though in making node capacity too large. The larger the capacity, the longer the "for loops" for inserting, deleting, locating node entries take (CPU time). On the other hand, the larger the capacity the shorter the tree becomes, reducing the number of random IOs to reach the leaves. Hence, you might want to fit multiple nodes (of smaller capacity) inside a single page to balance I/O and CPU cost, in case your disk page size is too large. Finally, if you have enough buffer space to fit most of the index nodes in main memory, then large capacities do not make too much sense, because the height of the tree does not matter any more. Of course, the smaller the capacity, the larger the number of leaf nodes you will have to retrieve from disk for range queries (point queries and nearest neighbor queries will not suffer that much). So very small capacities hurt as well. There is another issue when trying to fit multiple nodes per page: Leftover space. You might have leftover space due to data entries that do not have a fixed size. Unfortunately, in that case, leftover space per page is lost, negatively impacting space usage. Selecting the right page size is easy; make it equal to the disk page size. Selecting the right node capacity is an art... ------------------------------------------------------------------------------ References ------------------------------------------------------------------------------ [guttman84] "R-Trees: A Dynamic Index Structure for Spatial Searching" Antonin Guttman, Proc. 1984 ACM-SIGMOD Conference on Management of Data (1985), 47-57. [gamma94] "Design Patterns: Elements of Reusable Object-Oriented Software" Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Addison Wesley. October 1994. libspatialindex-1.9.3/include/000077500000000000000000000000001355420072700163305ustar00rootroot00000000000000libspatialindex-1.9.3/include/spatialindex/000077500000000000000000000000001355420072700210155ustar00rootroot00000000000000libspatialindex-1.9.3/include/spatialindex/LineSegment.h000066400000000000000000000101421355420072700233760ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { class SIDX_DLL LineSegment : public Tools::IObject, public virtual IShape { public: LineSegment(); LineSegment(const double* startPoint, const double* endPoint, uint32_t dimension); LineSegment(const Point& startPoint, const Point& endPoint); LineSegment(const LineSegment& l); ~LineSegment() override; virtual LineSegment& operator=(const LineSegment& p); virtual bool operator==(const LineSegment& p) const; // // IObject interface // LineSegment* clone() override; // // ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& length) override; // // IShape interface // bool intersectsShape(const IShape& in) const override; bool containsShape(const IShape& in) const override; bool touchesShape(const IShape& in) const override; void getCenter(Point& out) const override; uint32_t getDimension() const override; void getMBR(Region& out) const override; double getArea() const override; double getMinimumDistance(const IShape& in) const override; virtual bool intersectsLineSegment(const LineSegment& l) const; virtual bool intersectsRegion(const Region& p) const; virtual double getMinimumDistance(const Point& p) const; //virtual double getMinimumDistance(const Region& r) const; virtual double getRelativeMinimumDistance(const Point& p) const; virtual double getRelativeMaximumDistance(const Region& r) const; virtual double getAngleOfPerpendicularRay(); virtual void makeInfinite(uint32_t dimension); virtual void makeDimension(uint32_t dimension); public: uint32_t m_dimension{0}; double* m_pStartPoint{nullptr}; double* m_pEndPoint{nullptr}; friend class Region; friend class Point; friend SIDX_DLL std::ostream& operator<<(std::ostream& os, const LineSegment& pt); protected: //some helpers for intersects methods static double doubleAreaTriangle(const Point& a, const Point& b, const Point& c); static bool leftOf(const Point& a, const Point& b, const Point& c); static bool collinear(const Point& a, const Point& b, const Point& c); static bool between(const Point& a, const Point& b, const Point& c); static bool between(double a, double b, double c); static bool intersectsProper(const Point& a, const Point& b, const Point& c, const Point& d); static bool intersects(const Point& a, const Point& b, const Point& c, const Point& d); }; // LineSegment SIDX_DLL std::ostream& operator<<(std::ostream& os, const LineSegment& pt); } libspatialindex-1.9.3/include/spatialindex/MVRTree.h000066400000000000000000000054531355420072700224610ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace MVRTree { enum MVRTreeVariant { RV_LINEAR = 0x0, RV_QUADRATIC, RV_RSTAR }; enum PersistenObjectIdentifier { PersistentIndex = 0x1, PersistentLeaf = 0x2 }; enum RangeQueryType { ContainmentQuery = 0x1, IntersectionQuery = 0x2 }; class SIDX_DLL Data : public IData, public Tools::ISerializable { public: Data(uint32_t len, uint8_t* pData, TimeRegion& r, id_type id); ~Data() override; Data* clone() override; id_type getIdentifier() const override; void getShape(IShape** out) const override; void getData(uint32_t& len, uint8_t** data) const override; uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; id_type m_id; TimeRegion m_region; uint8_t* m_pData; uint32_t m_dataLength; }; // Data SIDX_DLL ISpatialIndex* returnMVRTree(IStorageManager& ind, Tools::PropertySet& in); SIDX_DLL ISpatialIndex* createNewMVRTree( IStorageManager& in, double fillFactor, uint32_t indexCapacity, uint32_t leafCapacity, uint32_t dimension, MVRTreeVariant rv, id_type& out_indexIdentifier ); SIDX_DLL ISpatialIndex* loadMVRTree( IStorageManager& in, id_type indexIdentifier ); } } libspatialindex-1.9.3/include/spatialindex/MovingPoint.h000066400000000000000000000063431355420072700234450ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { class SIDX_DLL MovingPoint : public TimePoint, public IEvolvingShape { public: MovingPoint(); MovingPoint(const double* pCoords, const double* pVCoords, const Tools::IInterval& ti, uint32_t dimension); MovingPoint(const double* pCoords, const double* pVCoords, double tStart, double tEnd, uint32_t dimension); MovingPoint(const Point& p, const Point& vp, const Tools::IInterval& ti); MovingPoint(const Point& p, const Point& vp, double tStart, double tEnd); MovingPoint(const MovingPoint& p); ~MovingPoint() override; virtual MovingPoint& operator=(const MovingPoint& p); virtual bool operator==(const MovingPoint& p) const; virtual double getCoord(uint32_t index, double t) const; virtual double getProjectedCoord(uint32_t index, double t) const; virtual double getVCoord(uint32_t index) const; virtual void getPointAtTime(double t, Point& out) const; // // IObject interface // MovingPoint* clone() override; // // ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; // // IEvolvingShape interface // void getVMBR(Region& out) const override; void getMBRAtTime(double t, Region& out) const override; void makeInfinite(uint32_t dimension) override; void makeDimension(uint32_t dimension) override; private: void initialize( const double* pCoords, const double* pVCoords, double tStart, double tEnd, uint32_t dimension); public: double* m_pVCoords; friend SIDX_DLL std::ostream& operator<<(std::ostream& os, const MovingPoint& pt); }; // MovingPoint SIDX_DLL std::ostream& operator<<(std::ostream& os, const MovingPoint& pt); } libspatialindex-1.9.3/include/spatialindex/MovingRegion.h000066400000000000000000000153441355420072700236000ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { class SIDX_DLL MovingRegion : public TimeRegion, public IEvolvingShape { using Region::getLow; using Region::getHigh; using TimeRegion::intersectsRegionInTime; using TimeRegion::containsRegionInTime; using TimeRegion::combineRegionInTime; using TimeRegion::getCombinedRegionInTime; using TimeRegion::containsPointInTime; public: MovingRegion(); MovingRegion( const double* pLow, const double* pHigh, const double* pVLow, const double* pVHigh, const Tools::IInterval& ti, uint32_t dimension); MovingRegion( const double* pLow, const double* pHigh, const double* pVLow, const double* pVHigh, double tStart, double tEnd, uint32_t dimension); MovingRegion( const Point& low, const Point& high, const Point& vlow, const Point& vhigh, const Tools::IInterval& ti); MovingRegion( const Point& low, const Point& high, const Point& vlow, const Point& vhigh, double tStart, double tEnd); MovingRegion(const Region& mbr, const Region& vbr, const Tools::IInterval& ivI); MovingRegion(const Region& mbr, const Region& vbr, double tStart, double tEnd); MovingRegion(const MovingPoint& low, const MovingPoint& high); MovingRegion(const MovingRegion& in); ~MovingRegion() override; virtual MovingRegion& operator=(const MovingRegion& r); virtual bool operator==(const MovingRegion&) const; bool isShrinking() const; virtual double getLow(uint32_t index, double t) const; virtual double getHigh(uint32_t index, double t) const; virtual double getExtrapolatedLow(uint32_t index, double t) const; virtual double getExtrapolatedHigh(uint32_t index, double t) const; virtual double getVLow(uint32_t index) const; virtual double getVHigh(uint32_t index) const; virtual bool intersectsRegionInTime(const MovingRegion& r) const; virtual bool intersectsRegionInTime(const MovingRegion& r, Tools::IInterval& out) const; virtual bool intersectsRegionInTime(const Tools::IInterval& ivI, const MovingRegion& r, Tools::IInterval& ret) const; virtual bool containsRegionInTime(const MovingRegion& r) const; virtual bool containsRegionInTime(const Tools::IInterval& ivI, const MovingRegion& r) const; virtual bool containsRegionAfterTime(double t, const MovingRegion& r) const; virtual double getProjectedSurfaceAreaInTime() const; virtual double getProjectedSurfaceAreaInTime(const Tools::IInterval& ivI) const; virtual double getCenterDistanceInTime(const MovingRegion& r) const; virtual double getCenterDistanceInTime(const Tools::IInterval& ivI, const MovingRegion& r) const; virtual bool intersectsRegionAtTime(double t, const MovingRegion& r) const; virtual bool containsRegionAtTime(double t, const MovingRegion& r) const; virtual bool intersectsPointInTime(const MovingPoint& p) const; virtual bool intersectsPointInTime(const MovingPoint& p, Tools::IInterval& out) const; virtual bool intersectsPointInTime(const Tools::IInterval& ivI, const MovingPoint& p, Tools::IInterval& out) const; virtual bool containsPointInTime(const MovingPoint& p) const; virtual bool containsPointInTime(const Tools::IInterval& ivI, const MovingPoint& p) const; //virtual bool intersectsPointAtTime(double t, const MovingRegion& in) const; //virtual bool containsPointAtTime(double t, const MovingRegion& in) const; virtual void combineRegionInTime(const MovingRegion& r); virtual void combineRegionAfterTime(double t, const MovingRegion& r); virtual void getCombinedRegionInTime(MovingRegion& out, const MovingRegion& in) const; virtual void getCombinedRegionAfterTime(double t, MovingRegion& out, const MovingRegion& in) const; virtual double getIntersectingAreaInTime(const MovingRegion& r) const; virtual double getIntersectingAreaInTime(const Tools::IInterval& ivI, const MovingRegion& r) const; // // IObject interface // MovingRegion* clone() override; // // ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; // // IEvolvingShape interface // void getVMBR(Region& out) const override; void getMBRAtTime(double t, Region& out) const override; // // ITimeShape interface // double getAreaInTime() const override; double getAreaInTime(const Tools::IInterval& ivI) const override; double getIntersectingAreaInTime(const ITimeShape& r) const override; double getIntersectingAreaInTime(const Tools::IInterval& ivI, const ITimeShape& r) const override; void makeInfinite(uint32_t dimension) override; void makeDimension(uint32_t dimension) override; private: void initialize( const double* pLow, const double* pHigh, const double* pVLow, const double* pVHigh, double tStart, double tEnd, uint32_t dimension); public: class CrossPoint { public: double m_t; uint32_t m_dimension; uint32_t m_boundary; const MovingRegion* m_to; }; // CrossPoint public: double* m_pVLow{nullptr}; double* m_pVHigh{nullptr}; friend SIDX_DLL std::ostream& operator<<(std::ostream& os, const MovingRegion& r); }; // MovingRegion typedef Tools::PoolPointer MovingRegionPtr; SIDX_DLL std::ostream& operator<<(std::ostream& os, const MovingRegion& r); } libspatialindex-1.9.3/include/spatialindex/Point.h000066400000000000000000000057771355420072700222770ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "tools/Tools.h" namespace SpatialIndex { class SIDX_DLL Point : public Tools::IObject, public virtual IShape { public: Point(); Point(const double* pCoords, uint32_t dimension); Point(const Point& p); ~Point() override; virtual Point& operator=(const Point& p); virtual bool operator==(const Point& p) const; // // IObject interface // Point* clone() override; // // ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& length) override; // // IShape interface // bool intersectsShape(const IShape& in) const override; bool containsShape(const IShape& in) const override; bool touchesShape(const IShape& in) const override; void getCenter(Point& out) const override; uint32_t getDimension() const override; void getMBR(Region& out) const override; double getArea() const override; double getMinimumDistance(const IShape& in) const override; virtual double getMinimumDistance(const Point& p) const; virtual double getCoordinate(uint32_t index) const; virtual void makeInfinite(uint32_t dimension); virtual void makeDimension(uint32_t dimension); public: uint32_t m_dimension{0}; double* m_pCoords{nullptr}; friend class Region; friend SIDX_DLL std::ostream& operator<<(std::ostream& os, const Point& pt); }; // Point typedef Tools::PoolPointer PointPtr; SIDX_DLL std::ostream& operator<<(std::ostream& os, const Point& pt); } libspatialindex-1.9.3/include/spatialindex/RTree.h000066400000000000000000000064021355420072700222110ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace RTree { enum RTreeVariant { RV_LINEAR = 0x0, RV_QUADRATIC, RV_RSTAR }; enum BulkLoadMethod { BLM_STR = 0x0 }; enum PersistenObjectIdentifier { PersistentIndex = 0x1, PersistentLeaf = 0x2 }; enum RangeQueryType { ContainmentQuery = 0x1, IntersectionQuery = 0x2 }; class SIDX_DLL Data : public IData, public Tools::ISerializable { public: Data(uint32_t len, uint8_t* pData, Region& r, id_type id); ~Data() override; Data* clone() override; id_type getIdentifier() const override; void getShape(IShape** out) const override; void getData(uint32_t& len, uint8_t** data) const override; uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; id_type m_id; Region m_region; uint8_t* m_pData; uint32_t m_dataLength; }; // Data SIDX_DLL ISpatialIndex* returnRTree(IStorageManager& ind, Tools::PropertySet& in); SIDX_DLL ISpatialIndex* createNewRTree( IStorageManager& sm, double fillFactor, uint32_t indexCapacity, uint32_t leafCapacity, uint32_t dimension, RTreeVariant rv, id_type& indexIdentifier ); SIDX_DLL ISpatialIndex* createAndBulkLoadNewRTree( BulkLoadMethod m, IDataStream& stream, IStorageManager& sm, double fillFactor, uint32_t indexCapacity, uint32_t leafCapacity, uint32_t dimension, RTreeVariant rv, id_type& indexIdentifier ); SIDX_DLL ISpatialIndex* createAndBulkLoadNewRTree( BulkLoadMethod m, IDataStream& stream, IStorageManager& sm, Tools::PropertySet& ps, id_type& indexIdentifier ); SIDX_DLL ISpatialIndex* loadRTree(IStorageManager& in, id_type indexIdentifier); } } libspatialindex-1.9.3/include/spatialindex/Region.h000066400000000000000000000076211355420072700224170ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { class SIDX_DLL Region : public Tools::IObject, public virtual IShape { public: Region(); Region(const double* pLow, const double* pHigh, uint32_t dimension); Region(const Point& low, const Point& high); Region(const Region& in); ~Region() override; virtual Region& operator=(const Region& r); virtual bool operator==(const Region&) const; // // IObject interface // Region* clone() override; // // ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& length) override; // // IShape interface // bool intersectsShape(const IShape& in) const override; bool containsShape(const IShape& in) const override; bool touchesShape(const IShape& in) const override; void getCenter(Point& out) const override; uint32_t getDimension() const override; void getMBR(Region& out) const override; double getArea() const override; double getMinimumDistance(const IShape& in) const override; virtual bool intersectsRegion(const Region& in) const; virtual bool containsRegion(const Region& in) const; virtual bool touchesRegion(const Region& in) const; virtual double getMinimumDistance(const Region& in) const; virtual bool intersectsLineSegment(const LineSegment& in) const; virtual bool containsPoint(const Point& in) const; virtual bool touchesPoint(const Point& in) const; virtual double getMinimumDistance(const Point& in) const; virtual Region getIntersectingRegion(const Region& r) const; virtual double getIntersectingArea(const Region& in) const; virtual double getMargin() const; virtual void combineRegion(const Region& in); virtual void combinePoint(const Point& in); virtual void getCombinedRegion(Region& out, const Region& in) const; virtual double getLow(uint32_t index) const; virtual double getHigh(uint32_t index) const; virtual void makeInfinite(uint32_t dimension); virtual void makeDimension(uint32_t dimension); private: void initialize(const double* pLow, const double* pHigh, uint32_t dimension); public: uint32_t m_dimension{0}; double* m_pLow{nullptr}; double* m_pHigh{nullptr}; friend SIDX_DLL std::ostream& operator<<(std::ostream& os, const Region& r); }; // Region typedef Tools::PoolPointer RegionPtr; SIDX_DLL std::ostream& operator<<(std::ostream& os, const Region& r); } libspatialindex-1.9.3/include/spatialindex/SpatialIndex.h000066400000000000000000000215321355420072700235560ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "tools/Tools.h" #ifndef M_PI_2 #define M_PI_2 1.57079632679489661922 #endif namespace SpatialIndex { class Point; class LineSegment; class Region; typedef int64_t id_type; enum CommandType { CT_NODEREAD = 0x0, CT_NODEDELETE, CT_NODEWRITE }; class SIDX_DLL InvalidPageException : public Tools::Exception { public: InvalidPageException(id_type id); ~InvalidPageException() override = default; std::string what() override; private: std::string m_error; }; // InvalidPageException // // Interfaces // class SIDX_DLL IShape : public Tools::ISerializable { public: virtual bool intersectsShape(const IShape& in) const = 0; virtual bool containsShape(const IShape& in) const = 0; virtual bool touchesShape(const IShape& in) const = 0; virtual void getCenter(Point& out) const = 0; virtual uint32_t getDimension() const = 0; virtual void getMBR(Region& out) const = 0; virtual double getArea() const = 0; virtual double getMinimumDistance(const IShape& in) const = 0; ~IShape() override = default; }; // IShape class SIDX_DLL ITimeShape : public Tools::IInterval { public: virtual bool intersectsShapeInTime(const ITimeShape& in) const = 0; virtual bool intersectsShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const = 0; virtual bool containsShapeInTime(const ITimeShape& in) const = 0; virtual bool containsShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const = 0; virtual bool touchesShapeInTime(const ITimeShape& in) const = 0; virtual bool touchesShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const = 0; virtual double getAreaInTime() const = 0; virtual double getAreaInTime(const Tools::IInterval& ivI) const = 0; virtual double getIntersectingAreaInTime(const ITimeShape& r) const = 0; virtual double getIntersectingAreaInTime(const Tools::IInterval& ivI, const ITimeShape& r) const = 0; ~ITimeShape() override = default; }; // ITimeShape class SIDX_DLL IEvolvingShape { public: virtual void getVMBR(Region& out) const = 0; virtual void getMBRAtTime(double t, Region& out) const = 0; virtual ~IEvolvingShape() = default; }; // IEvolvingShape class SIDX_DLL IEntry : public Tools::IObject { public: virtual id_type getIdentifier() const = 0; virtual void getShape(IShape** out) const = 0; ~IEntry() override = default; }; // IEntry class SIDX_DLL INode : public IEntry, public Tools::ISerializable { public: virtual uint32_t getChildrenCount() const = 0; virtual id_type getChildIdentifier(uint32_t index) const = 0; virtual void getChildData(uint32_t index, uint32_t& len, uint8_t** data) const = 0; virtual void getChildShape(uint32_t index, IShape** out) const = 0; virtual uint32_t getLevel() const = 0; virtual bool isIndex() const = 0; virtual bool isLeaf() const = 0; ~INode() override = default; }; // INode class SIDX_DLL IData : public IEntry { public: virtual void getData(uint32_t& len, uint8_t** data) const = 0; ~IData() override = default; }; // IData class SIDX_DLL IDataStream : public Tools::IObjectStream { public: IData* getNext() override = 0; ~IDataStream() override = default; }; // IDataStream class SIDX_DLL ICommand { public: virtual void execute(const INode& in) = 0; virtual ~ICommand() = default; }; // ICommand class SIDX_DLL INearestNeighborComparator { public: virtual double getMinimumDistance(const IShape& query, const IShape& entry) = 0; virtual double getMinimumDistance(const IShape& query, const IData& data) = 0; virtual ~INearestNeighborComparator() = default; }; // INearestNeighborComparator class SIDX_DLL IStorageManager { public: virtual void loadByteArray(const id_type id, uint32_t& len, uint8_t** data) = 0; virtual void storeByteArray(id_type& id, const uint32_t len, const uint8_t* const data) = 0; virtual void deleteByteArray(const id_type id) = 0; virtual void flush() = 0; virtual ~IStorageManager() = default; }; // IStorageManager class SIDX_DLL IVisitor { public: virtual void visitNode(const INode& in) = 0; virtual void visitData(const IData& in) = 0; virtual void visitData(std::vector& v) = 0; virtual ~IVisitor() = default; }; // IVisitor class SIDX_DLL IQueryStrategy { public: virtual void getNextEntry(const IEntry& previouslyFetched, id_type& nextEntryToFetch, bool& bFetchNextEntry) = 0; virtual ~IQueryStrategy() = default; }; // IQueryStrategy class SIDX_DLL IStatistics { public: virtual uint64_t getReads() const = 0; virtual uint64_t getWrites() const = 0; virtual uint32_t getNumberOfNodes() const = 0; virtual uint64_t getNumberOfData() const = 0; virtual ~IStatistics() = default; }; // IStatistics class SIDX_DLL ISpatialIndex { public: virtual void insertData(uint32_t len, const uint8_t* pData, const IShape& shape, id_type shapeIdentifier) = 0; virtual bool deleteData(const IShape& shape, id_type shapeIdentifier) = 0; virtual void internalNodesQuery(const IShape& query, IVisitor& v) = 0; virtual void containsWhatQuery(const IShape& query, IVisitor& v) = 0; virtual void intersectsWithQuery(const IShape& query, IVisitor& v) = 0; virtual void pointLocationQuery(const Point& query, IVisitor& v) = 0; virtual void nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v, INearestNeighborComparator& nnc) = 0; virtual void nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v) = 0; virtual void selfJoinQuery(const IShape& s, IVisitor& v) = 0; virtual void queryStrategy(IQueryStrategy& qs) = 0; virtual void getIndexProperties(Tools::PropertySet& out) const = 0; virtual void addCommand(ICommand* in, CommandType ct) = 0; virtual bool isIndexValid() = 0; virtual void getStatistics(IStatistics** out) const = 0; virtual void flush() = 0; virtual ~ISpatialIndex() = default; }; // ISpatialIndex namespace StorageManager { enum StorageManagerConstants { EmptyPage = -0x1, NewPage = -0x1 }; class SIDX_DLL IBuffer : public IStorageManager { public: virtual uint64_t getHits() = 0; virtual void clear() = 0; ~IBuffer() override = default; }; // IBuffer SIDX_DLL IStorageManager* returnMemoryStorageManager(Tools::PropertySet& in); SIDX_DLL IStorageManager* createNewMemoryStorageManager(); SIDX_DLL IStorageManager* returnDiskStorageManager(Tools::PropertySet& in); SIDX_DLL IStorageManager* createNewDiskStorageManager(std::string& baseName, uint32_t pageSize); SIDX_DLL IStorageManager* loadDiskStorageManager(std::string& baseName); SIDX_DLL IBuffer* returnRandomEvictionsBuffer(IStorageManager& ind, Tools::PropertySet& in); SIDX_DLL IBuffer* createNewRandomEvictionsBuffer(IStorageManager& in, uint32_t capacity, bool bWriteThrough); } // // Global functions // SIDX_DLL std::ostream& operator<<(std::ostream&, const ISpatialIndex&); SIDX_DLL std::ostream& operator<<(std::ostream&, const IStatistics&); } #include "Point.h" #include "Region.h" #include "LineSegment.h" #include "TimePoint.h" #include "TimeRegion.h" #include "MovingPoint.h" #include "MovingRegion.h" #include "RTree.h" #include "MVRTree.h" #include "TPRTree.h" #include "Version.h" // typedef SpatialIndex::Tools::PoolPointer RegionPtr; // typedef SpatialIndex::Tools::PoolPointer PointPtr; // typedef SpatialIndex::Tools::PoolPointer TimeRegionPtr; // typedef SpatialIndex::Tools::PoolPointer MovingRegionPtr; libspatialindex-1.9.3/include/spatialindex/TPRTree.h000066400000000000000000000054301355420072700224550ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace TPRTree { enum TPRTreeVariant { TPRV_RSTAR = 0x2 }; enum PersistenObjectIdentifier { PersistentIndex = 0x1, PersistentLeaf = 0x2 }; enum RangeQueryType { ContainmentQuery = 0x1, IntersectionQuery = 0x2 }; class SIDX_DLL Data : public IData, public Tools::ISerializable { public: Data(uint32_t len, uint8_t* pData, MovingRegion& r, id_type id); ~Data() override; Data* clone() override; id_type getIdentifier() const override; void getShape(IShape** out) const override; void getData(uint32_t& len, uint8_t** data) const override; uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; id_type m_id; MovingRegion m_region; uint8_t* m_pData; uint32_t m_dataLength; }; // Data SIDX_DLL ISpatialIndex* returnTPRTree(IStorageManager& ind, Tools::PropertySet& in); SIDX_DLL ISpatialIndex* createNewTPRTree( IStorageManager& sm, double fillFactor, uint32_t indexCapacity, uint32_t leafCapacity, uint32_t dimension, TPRTreeVariant rv, double horizon, id_type& indexIdentifier ); SIDX_DLL ISpatialIndex* loadTPRTree(IStorageManager& in, id_type indexIdentifier); } } libspatialindex-1.9.3/include/spatialindex/TimePoint.h000066400000000000000000000076431355420072700231100ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { class SIDX_DLL TimePoint : public Point, public ITimeShape { public: TimePoint(); TimePoint(const double* pCoords, const Tools::IInterval& ti, uint32_t dimension); TimePoint(const double* pCoords, double tStart, double tEnd, uint32_t dimension); TimePoint(const Point& p, const Tools::IInterval& ti); TimePoint(const Point& p, double tStart, double tEnd); TimePoint(const TimePoint& p); ~TimePoint() override; virtual TimePoint& operator=(const TimePoint& p); virtual bool operator==(const TimePoint& p) const; // // IObject interface // TimePoint* clone() override; // // ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; // // ITimeShape interface // bool intersectsShapeInTime(const ITimeShape& in) const override; bool intersectsShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const override; bool containsShapeInTime(const ITimeShape& in) const override; bool containsShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const override; bool touchesShapeInTime(const ITimeShape& in) const override; bool touchesShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const override; double getAreaInTime() const override; double getAreaInTime(const Tools::IInterval& ivI) const override; double getIntersectingAreaInTime(const ITimeShape& r) const override; double getIntersectingAreaInTime(const Tools::IInterval& ivI, const ITimeShape& r) const override; // // IInterval interface // virtual Tools::IInterval& operator=(const Tools::IInterval&); double getLowerBound() const override; double getUpperBound() const override; void setBounds(double, double) override; bool intersectsInterval(const Tools::IInterval& ti) const override; bool intersectsInterval(Tools::IntervalType t, const double start, const double end) const override; bool containsInterval(const Tools::IInterval& ti) const override; Tools::IntervalType getIntervalType() const override; void makeInfinite(uint32_t dimension) override; void makeDimension(uint32_t dimension) override; public: double m_startTime; double m_endTime; friend SIDX_DLL std::ostream& operator<<(std::ostream& os, const TimePoint& pt); }; // TimePoint SIDX_DLL std::ostream& operator<<(std::ostream& os, const TimePoint& pt); } libspatialindex-1.9.3/include/spatialindex/TimeRegion.h000066400000000000000000000112741355420072700232350ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { class SIDX_DLL TimeRegion : public Region, public ITimeShape { public: TimeRegion(); TimeRegion(const double* pLow, const double* pHigh, const Tools::IInterval& ti, uint32_t dimension); TimeRegion(const double* pLow, const double* pHigh, double tStart, double tEnd, uint32_t dimension); TimeRegion(const Point& low, const Point& high, const Tools::IInterval& ti); TimeRegion(const Point& low, const Point& high, double tStart, double tEnd); TimeRegion(const Region& in, const Tools::IInterval& ti); TimeRegion(const Region& in, double tStart, double tEnd); TimeRegion(const TimePoint& low, const TimePoint& high); TimeRegion(const TimeRegion& in); ~TimeRegion() override; virtual TimeRegion& operator=(const TimeRegion& r); virtual bool operator==(const TimeRegion&) const; virtual bool intersectsRegionInTime(const TimeRegion& in) const; virtual bool containsRegionInTime(const TimeRegion& in) const; virtual bool touchesRegionInTime(const TimeRegion& in) const; virtual bool containsPointInTime(const TimePoint& in) const; virtual bool touchesPointInTime(const TimePoint& in) const; virtual void combineRegionInTime(const TimeRegion& in); virtual void getCombinedRegionInTime(TimeRegion& out, const TimeRegion& in) const; // // IObject interface // TimeRegion* clone() override; // // ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; // // ITimeShape interface // bool intersectsShapeInTime(const ITimeShape& in) const override; bool intersectsShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const override; bool containsShapeInTime(const ITimeShape& in) const override; bool containsShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const override; bool touchesShapeInTime(const ITimeShape& in) const override; bool touchesShapeInTime(const Tools::IInterval& ivI, const ITimeShape& in) const override; double getAreaInTime() const override; double getAreaInTime(const Tools::IInterval& ivI) const override; double getIntersectingAreaInTime(const ITimeShape& r) const override; double getIntersectingAreaInTime(const Tools::IInterval& ivI, const ITimeShape& r) const override; // // IInterval interface // virtual Tools::IInterval& operator=(const Tools::IInterval&); double getLowerBound() const override; double getUpperBound() const override; void setBounds(double, double) override; bool intersectsInterval(const Tools::IInterval& ti) const override; bool intersectsInterval(Tools::IntervalType t, const double start, const double end) const override; bool containsInterval(const Tools::IInterval& ti) const override; Tools::IntervalType getIntervalType() const override; void makeInfinite(uint32_t dimension) override; void makeDimension(uint32_t dimension) override; public: double m_startTime; double m_endTime; friend SIDX_DLL std::ostream& operator<<(std::ostream& os, const TimeRegion& r); }; // TimeRegion typedef Tools::PoolPointer TimeRegionPtr; SIDX_DLL std::ostream& operator<<(std::ostream& os, const TimeRegion& r); } libspatialindex-1.9.3/include/spatialindex/Version.h000066400000000000000000000037001355420072700226130ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #ifndef SIDX_VERSION_MAJOR #define SIDX_VERSION_MAJOR 1 #define SIDX_VERSION_MINOR 9 #define SIDX_VERSION_REV 3 #define SIDX_VERSION_BUILD 0 #endif #ifndef SIDX_VERSION_NUM #define SIDX_VERSION_NUM (SIDX_VERSION_MAJOR*1000+SIDX_VERSION_MINOR*100+SIDX_VERSION_REV*10+SIDX_VERSION_BUILD) #endif #ifndef SIDX_RELEASE_DATE #define SIDX_RELEASE_DATE 20191023 #endif #ifndef SIDX_RELEASE_NAME #define SIDX_RELEASE_NAME "1.9.3" #endif libspatialindex-1.9.3/include/spatialindex/capi/000077500000000000000000000000001355420072700217315ustar00rootroot00000000000000libspatialindex-1.9.3/include/spatialindex/capi/BoundsQuery.h000066400000000000000000000037631355420072700243730ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement the bounds query. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" class SIDX_DLL BoundsQuery : public SpatialIndex::IQueryStrategy { private: SpatialIndex::Region* m_bounds; public: BoundsQuery(); ~BoundsQuery() { if (m_bounds != 0) delete m_bounds; } void getNextEntry( const SpatialIndex::IEntry& entry, SpatialIndex::id_type& nextEntry, bool& hasNext); SpatialIndex::Region* GetBounds() const { return m_bounds; } }; libspatialindex-1.9.3/include/spatialindex/capi/CountVisitor.h000066400000000000000000000036611355420072700245600ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement the count visitor. * Author: Leonard Norrgård, leonard.norrgard@refactor.fi ****************************************************************************** * Copyright (c) 2010, Leonard Norrgård * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" class SIDX_DLL CountVisitor : public SpatialIndex::IVisitor { private: uint64_t nResults; public: CountVisitor(); ~CountVisitor(); uint64_t GetResultCount() const { return nResults; } void visitNode(const SpatialIndex::INode& n); void visitData(const SpatialIndex::IData& d); void visitData(std::vector& v); }; libspatialindex-1.9.3/include/spatialindex/capi/CustomStorage.h000066400000000000000000000071061355420072700247050ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement the custom storage manager. * Author: Matthias (nitro), nitro@dr-code.org ****************************************************************************** * Copyright (c) 2010, Matthias (nitro) * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" namespace SpatialIndex { namespace StorageManager { struct SIDX_DLL CustomStorageManagerCallbacks { CustomStorageManagerCallbacks() : context(0) , createCallback(0) , destroyCallback(0) , loadByteArrayCallback(0) , storeByteArrayCallback(0) , deleteByteArrayCallback(0) {} void* context; void (*createCallback)( const void* context, int* errorCode ); void (*destroyCallback)( const void* context, int* errorCode ); void (*flushCallback)( const void* context, int* errorCode ); void (*loadByteArrayCallback)( const void* context, const id_type page, uint32_t* len, uint8_t** data, int* errorCode ); void (*storeByteArrayCallback)( const void* context, id_type* page, const uint32_t len, const uint8_t* const data, int* errorCode ); void (*deleteByteArrayCallback)( const void* context, const id_type page, int* errorCode ); }; class SIDX_DLL CustomStorageManager : public SpatialIndex::IStorageManager { public: // I'd like this to be an enum, but casting between enums and ints is not nice static const int NoError = 0; static const int InvalidPageError = 1; static const int IllegalStateError = 2; CustomStorageManager(Tools::PropertySet&); virtual ~CustomStorageManager(); virtual void flush(); virtual void loadByteArray(const id_type page, uint32_t& len, uint8_t** data); virtual void storeByteArray(id_type& page, const uint32_t len, const uint8_t* const data); virtual void deleteByteArray(const id_type page); private: CustomStorageManagerCallbacks callbacks; inline void processErrorCode(int errorCode, const id_type page); }; // CustomStorageManager // factory function IStorageManager* returnCustomStorageManager(Tools::PropertySet& in); } } libspatialindex-1.9.3/include/spatialindex/capi/DataStream.h000066400000000000000000000042621355420072700241330ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: Declarations to support stream loading via C API * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" class SIDX_DLL DataStream : public SpatialIndex::IDataStream { public: DataStream(int (*readNext)(SpatialIndex::id_type* id, double **pMin, double **pMax, uint32_t *nDimension, const uint8_t **pData, size_t *nDataLength)); ~DataStream(); SpatialIndex::IData* getNext(); bool hasNext(); uint32_t size(); void rewind(); protected: SpatialIndex::RTree::Data* m_pNext; SpatialIndex::id_type m_id; private: int (*iterfunct)(SpatialIndex::id_type *id, double **pMin, double **pMax, uint32_t *nDimension, const uint8_t **pData, size_t *nDataLength); bool readData(); bool m_bDoneReading; }; libspatialindex-1.9.3/include/spatialindex/capi/Error.h000066400000000000000000000040511355420072700231730ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement the error object. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" class SIDX_DLL Error { public: Error(int code, std::string const& message, std::string const& method); /// Copy constructor. Error(Error const& other); /// Assignment operator. Error& operator=(Error const& rhs); int GetCode() const { return m_code; } const char* GetMessage() const { return m_message.c_str(); } const char* GetMethod() const { return m_method.c_str(); } private: int m_code; std::string m_message; std::string m_method; }; libspatialindex-1.9.3/include/spatialindex/capi/IdVisitor.h000066400000000000000000000040161355420072700240170ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement a query ids only. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" class SIDX_DLL IdVisitor : public SpatialIndex::IVisitor { private: std::vector m_vector; uint64_t nResults; public: IdVisitor(); ~IdVisitor(); uint64_t GetResultCount() const { return nResults; } std::vector& GetResults() { return m_vector; } void visitNode(const SpatialIndex::INode& n); void visitData(const SpatialIndex::IData& d); void visitData(std::vector& v); }; libspatialindex-1.9.3/include/spatialindex/capi/Index.h000066400000000000000000000060061355420072700231530ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement the wrapper. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" class SIDX_DLL Index { public: Index(const Tools::PropertySet& poProperties); Index(const Tools::PropertySet& poProperties, int (*readNext)(SpatialIndex::id_type *id, double **pMin, double **pMax, uint32_t *nDimension, const uint8_t **pData, size_t* nDataLength)); ~Index(); const Tools::PropertySet GetProperties() { index().getIndexProperties(m_properties); return m_properties;} bool insertFeature(uint64_t id, double *min, double *max); RTIndexType GetIndexType(); void SetIndexType(RTIndexType v); RTStorageType GetIndexStorage(); void SetIndexStorage(RTStorageType v); RTIndexVariant GetIndexVariant(); void SetIndexVariant(RTStorageType v); int64_t GetResultSetOffset(); void SetResultSetOffset(int64_t v); int64_t GetResultSetLimit(); void SetResultSetLimit(int64_t v); void flush(); SpatialIndex::ISpatialIndex& index() {return *m_rtree;} SpatialIndex::StorageManager::IBuffer& buffer() {return *m_buffer;} private: Index& operator=(const Index&); Index(); void Initialize(); SpatialIndex::IStorageManager* m_storage; SpatialIndex::StorageManager::IBuffer* m_buffer; SpatialIndex::ISpatialIndex* m_rtree; Tools::PropertySet m_properties; void Setup(); SpatialIndex::IStorageManager* CreateStorage(); SpatialIndex::StorageManager::IBuffer* CreateIndexBuffer(SpatialIndex::IStorageManager& storage); SpatialIndex::ISpatialIndex* CreateIndex(); }; libspatialindex-1.9.3/include/spatialindex/capi/LeafQuery.h000066400000000000000000000054441355420072700240060ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement a query of the index's leaves. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" class LeafQueryResult; class SIDX_DLL LeafQuery : public SpatialIndex::IQueryStrategy { private: std::queue m_ids; std::vector m_results; public: LeafQuery(); ~LeafQuery() { } void getNextEntry( const SpatialIndex::IEntry& entry, SpatialIndex::id_type& nextEntry, bool& hasNext); std::vector const& GetResults() const {return m_results;} }; class SIDX_DLL LeafQueryResult { private: std::vector ids; SpatialIndex::Region* bounds; SpatialIndex::id_type m_id; LeafQueryResult(); public: LeafQueryResult(SpatialIndex::id_type id) : bounds(0), m_id(id){} ~LeafQueryResult() {if (bounds!=0) delete bounds;} /// Copy constructor. LeafQueryResult(LeafQueryResult const& other); /// Assignment operator. LeafQueryResult& operator=(LeafQueryResult const& rhs); std::vector const& GetIDs() const; void SetIDs(std::vector& v); const SpatialIndex::Region* GetBounds() const; void SetBounds(const SpatialIndex::Region* b); SpatialIndex::id_type getIdentifier() const {return m_id;} void setIdentifier(uint32_t v) {m_id = v;} }; libspatialindex-1.9.3/include/spatialindex/capi/ObjVisitor.h000066400000000000000000000040541355420072700241770ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement the object visitor. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "sidx_export.h" class SIDX_DLL ObjVisitor : public SpatialIndex::IVisitor { private: std::vector m_vector; uint64_t nResults; public: ObjVisitor(); ~ObjVisitor(); uint64_t GetResultCount() const { return nResults; } std::vector& GetResults() { return m_vector; } void visitNode(const SpatialIndex::INode& n); void visitData(const SpatialIndex::IData& d); void visitData(std::vector& v); }; libspatialindex-1.9.3/include/spatialindex/capi/Utility.h000066400000000000000000000036261355420072700235540ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement utilities. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include "ObjVisitor.h" #include "IdVisitor.h" #include "sidx_export.h" #pragma once SIDX_DLL Tools::PropertySet* GetDefaults(); SIDX_DLL void Page_ResultSet_Ids(IdVisitor& visitor, int64_t** ids, int64_t nStart, int64_t nResultLimit, uint64_t* nResults); SIDX_DLL void Page_ResultSet_Obj(ObjVisitor& visitor, IndexItemH** items, int64_t nStart, int64_t nResultLimit, uint64_t* nResults); libspatialindex-1.9.3/include/spatialindex/capi/sidx_api.h000066400000000000000000000344701355420072700237120ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C API. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #ifndef SIDX_API_H_INCLUDED #define SIDX_API_H_INCLUDED #define SIDX_C_API 1 #include "sidx_config.h" IDX_C_START SIDX_DLL IndexH Index_Create(IndexPropertyH properties); SIDX_DLL IndexH Index_CreateWithStream( IndexPropertyH properties, int (*readNext)(int64_t *id, double **pMin, double **pMax, uint32_t *nDimension, const uint8_t **pData, size_t *nDataLength) ); SIDX_DLL void Index_Destroy(IndexH index); SIDX_DLL IndexPropertyH Index_GetProperties(IndexH index); SIDX_DLL RTError Index_DeleteData( IndexH index, int64_t id, double* pdMin, double* pdMax, uint32_t nDimension); SIDX_C_DLL RTError Index_DeleteTPData( IndexH index, int64_t id, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension ); SIDX_C_DLL RTError Index_DeleteMVRData( IndexH index, int64_t id, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension ); SIDX_DLL RTError Index_InsertData( IndexH index, int64_t id, double* pdMin, double* pdMax, uint32_t nDimension, const uint8_t* pData, size_t nDataLength); SIDX_C_DLL RTError Index_InsertTPData( IndexH index, int64_t id, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, const uint8_t* pData, size_t nDataLength); SIDX_C_DLL RTError Index_InsertMVRData( IndexH index, int64_t id, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, const uint8_t* pData, size_t nDataLength); SIDX_DLL uint32_t Index_IsValid(IndexH index); SIDX_C_DLL RTError Index_TPIntersects_obj( IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, IndexItemH** items, uint64_t* nResults); SIDX_C_DLL RTError Index_MVRIntersects_obj( IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, IndexItemH** items, uint64_t* nResults); SIDX_DLL RTError Index_Intersects_obj( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, IndexItemH** items, uint64_t* nResults); SIDX_C_DLL RTError Index_Contains_obj( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, IndexItemH** items, uint64_t* nResults); SIDX_C_DLL RTError Index_TPIntersects_id( IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, int64_t** ids, uint64_t* nResults); SIDX_C_DLL RTError Index_MVRIntersects_id( IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, int64_t** ids, uint64_t* nResults); SIDX_DLL RTError Index_Intersects_id( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, int64_t** items, uint64_t* nResults); SIDX_C_DLL RTError Index_Contains_id(IndexH index, double *pdMin, double *pdMax, uint32_t nDimension, int64_t **ids, uint64_t *nResults); SIDX_C_DLL RTError Index_TPIntersects_count( IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, uint64_t* nResults); SIDX_C_DLL RTError Index_MVRIntersects_count( IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, uint64_t* nResults); SIDX_DLL RTError Index_Intersects_count( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, uint64_t* nResults); SIDX_C_DLL RTError Index_Contains_count( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, uint64_t* nResults); SIDX_C_DLL RTError Index_TPNearestNeighbors_obj(IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, IndexItemH** items, uint64_t* nResults); SIDX_C_DLL RTError Index_MVRNearestNeighbors_obj(IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, IndexItemH** items, uint64_t* nResults); SIDX_DLL RTError Index_NearestNeighbors_obj(IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, IndexItemH** items, uint64_t* nResults); SIDX_C_DLL RTError Index_TPNearestNeighbors_id(IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, int64_t** ids, uint64_t* nResults); SIDX_C_DLL RTError Index_MVRNearestNeighbors_id(IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, int64_t** ids, uint64_t* nResults); SIDX_DLL RTError Index_NearestNeighbors_id( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, int64_t** items, uint64_t* nResults); SIDX_DLL RTError Index_Intersects_internal( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, IndexItemH** items, uint64_t* nResults); SIDX_DLL RTError Index_GetBounds( IndexH index, double** ppdMin, double** ppdMax, uint32_t* nDimension); SIDX_C_DLL RTError Index_GetLeaves( IndexH index, uint32_t* nLeafNodes, uint32_t** nLeafSizes, int64_t** nLeafIDs, int64_t*** nLeafChildIDs, double*** pppdMin, double*** pppdMax, uint32_t* nDimension); SIDX_DLL RTError Index_SetResultSetOffset(IndexH index, int64_t value); SIDX_DLL int64_t Index_GetResultSetOffset(IndexH index); SIDX_DLL RTError Index_SetResultSetLimit(IndexH index, int64_t value); SIDX_DLL int64_t Index_GetResultSetLimit(IndexH index); SIDX_DLL void Index_DestroyObjResults(IndexItemH* results, uint32_t nResults); SIDX_DLL void Index_ClearBuffer(IndexH index); SIDX_DLL void Index_Free(void* object); SIDX_DLL void Index_Flush(IndexH index); SIDX_DLL void IndexItem_Destroy(IndexItemH item); SIDX_DLL int64_t IndexItem_GetID(IndexItemH item); SIDX_DLL RTError IndexItem_GetData(IndexItemH item, uint8_t** data, uint64_t* length); SIDX_DLL RTError IndexItem_GetBounds( IndexItemH item, double** ppdMin, double** ppdMax, uint32_t* nDimension); SIDX_DLL IndexPropertyH IndexProperty_Create(void); SIDX_DLL void IndexProperty_Destroy(IndexPropertyH hProp); SIDX_DLL RTError IndexProperty_SetIndexType(IndexPropertyH iprop, RTIndexType value); SIDX_DLL RTIndexType IndexProperty_GetIndexType(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetDimension(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetDimension(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetIndexVariant(IndexPropertyH iprop, RTIndexVariant value); SIDX_DLL RTIndexVariant IndexProperty_GetIndexVariant(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetIndexStorage(IndexPropertyH iprop, RTStorageType value); SIDX_DLL RTStorageType IndexProperty_GetIndexStorage(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetPagesize(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetPagesize(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetIndexCapacity(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetIndexCapacity(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetLeafCapacity(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetLeafCapacity(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetLeafPoolCapacity(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetLeafPoolCapacity(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetIndexPoolCapacity(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetIndexPoolCapacity(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetRegionPoolCapacity(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetRegionPoolCapacity(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetPointPoolCapacity(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetPointPoolCapacity(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetBufferingCapacity(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetBufferingCapacity(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetEnsureTightMBRs(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetEnsureTightMBRs(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetOverwrite(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetOverwrite(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetNearMinimumOverlapFactor(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetNearMinimumOverlapFactor(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetWriteThrough(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetWriteThrough(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetFillFactor(IndexPropertyH iprop, double value); SIDX_DLL double IndexProperty_GetFillFactor(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetSplitDistributionFactor(IndexPropertyH iprop, double value); SIDX_DLL double IndexProperty_GetSplitDistributionFactor(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetTPRHorizon(IndexPropertyH iprop, double value); SIDX_DLL double IndexProperty_GetTPRHorizon(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetReinsertFactor(IndexPropertyH iprop, double value); SIDX_DLL double IndexProperty_GetReinsertFactor(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetFileName(IndexPropertyH iprop, const char* value); SIDX_DLL char* IndexProperty_GetFileName(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetFileNameExtensionDat(IndexPropertyH iprop, const char* value); SIDX_DLL char* IndexProperty_GetFileNameExtensionDat(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetFileNameExtensionIdx(IndexPropertyH iprop, const char* value); SIDX_DLL char* IndexProperty_GetFileNameExtensionIdx(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetCustomStorageCallbacksSize(IndexPropertyH iprop, uint32_t value); SIDX_DLL uint32_t IndexProperty_GetCustomStorageCallbacksSize(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetCustomStorageCallbacks(IndexPropertyH iprop, const void* value); SIDX_DLL void* IndexProperty_GetCustomStorageCallbacks(IndexPropertyH iprop); SIDX_DLL RTError IndexProperty_SetIndexID(IndexPropertyH iprop, int64_t value); SIDX_DLL int64_t IndexProperty_GetIndexID(IndexPropertyH iprop); SIDX_C_DLL void* SIDX_NewBuffer(size_t bytes); SIDX_C_DLL void SIDX_DeleteBuffer(void* buffer); SIDX_DLL RTError IndexProperty_SetResultSetLimit(IndexPropertyH iprop, uint64_t value); SIDX_DLL uint64_t IndexProperty_GetResultSetLimit(IndexPropertyH iprop); SIDX_C_DLL char* SIDX_Version(void); SIDX_C_DLL char* Error_GetLastErrorMsg(void); IDX_C_END #endif libspatialindex-1.9.3/include/spatialindex/capi/sidx_config.h000066400000000000000000000055451355420072700244070ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C API configuration * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #ifndef SIDX_CONFIG_H_INCLUDED #define SIDX_CONFIG_H_INCLUDED #ifdef _MSC_VER #if _MSC_VER <= 1500 typedef __int8 int8_t; typedef __int16 int16_t; typedef __int32 int32_t; typedef __int64 int64_t; typedef unsigned __int8 uint8_t; typedef unsigned __int16 uint16_t; typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; #endif #if _MSC_VER >= 1900 #include #endif #include #define STRDUP _strdup #include #else #include #define SIDX_THREAD __thread #define STRDUP strdup #endif #include #include "sidx_export.h" typedef enum { RT_None = 0, RT_Debug = 1, RT_Warning = 2, RT_Failure = 3, RT_Fatal = 4 } RTError; typedef enum { RT_RTree = 0, RT_MVRTree = 1, RT_TPRTree = 2, RT_InvalidIndexType = -99 } RTIndexType; typedef enum { RT_Memory = 0, RT_Disk = 1, RT_Custom = 2, RT_InvalidStorageType = -99 } RTStorageType; typedef enum { RT_Linear = 0, RT_Quadratic = 1, RT_Star = 2, RT_InvalidIndexVariant = -99 } RTIndexVariant; #ifdef __cplusplus # define IDX_C_START extern "C" { # define IDX_C_END } #else # define IDX_C_START # define IDX_C_END #endif typedef struct IndexS *IndexH; typedef struct SpatialIndex_IData *IndexItemH; typedef struct Tools_PropertySet *IndexPropertyH; #endif libspatialindex-1.9.3/include/spatialindex/capi/sidx_export.h000066400000000000000000000036361355420072700244620ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement utilities. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2014, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #ifndef SIDX_C_DLL #if defined(_MSC_VER) # define SIDX_C_DLL __declspec(dllexport) # define SIDX_DLL __declspec(dllexport) #else # if defined(USE_GCC_VISIBILITY_FLAG) # define SIDX_C_DLL __attribute__ ((visibility("default"))) # define SIDX_DLL __attribute__ ((visibility("default"))) # else # define SIDX_C_DLL # define SIDX_DLL # endif #endif #endif libspatialindex-1.9.3/include/spatialindex/capi/sidx_impl.h000066400000000000000000000036351355420072700241010ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement utilities. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #include #include #include "../SpatialIndex.h" #include "sidx_config.h" #include "Utility.h" #include "ObjVisitor.h" #include "IdVisitor.h" #include "CountVisitor.h" #include "BoundsQuery.h" #include "LeafQuery.h" #include "Error.h" #include "DataStream.h" #include "Index.h" #include "CustomStorage.h" libspatialindex-1.9.3/include/spatialindex/tools/000077500000000000000000000000001355420072700221555ustar00rootroot00000000000000libspatialindex-1.9.3/include/spatialindex/tools/PointerPool.h000066400000000000000000000055371355420072700246120ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "PoolPointer.h" namespace Tools { template class PointerPool { public: explicit PointerPool(uint32_t capacity) : m_capacity(capacity) { #ifndef NDEBUG m_hits = 0; m_misses = 0; m_pointerCount = 0; #endif } ~PointerPool() { assert(m_pool.size() <= m_capacity); while (! m_pool.empty()) { X* x = m_pool.top(); m_pool.pop(); #ifndef NDEBUG --m_pointerCount; #endif delete x; } #ifndef NDEBUG std::cerr << "Lost pointers: " << m_pointerCount << std::endl; #endif } PoolPointer acquire() { X* p = nullptr; if (! m_pool.empty()) { p = m_pool.top(); m_pool.pop(); #ifndef NDEBUG m_hits++; #endif } else { p = new X(); #ifndef NDEBUG m_pointerCount++; m_misses++; #endif } return PoolPointer(p, this); } void release(X* p) { if (m_pool.size() < m_capacity) { m_pool.push(p); } else { #ifndef NDEBUG --m_pointerCount; #endif delete p; } assert(m_pool.size() <= m_capacity); } uint32_t getCapacity() const { return m_capacity; } void setCapacity(uint32_t c) { assert (c >= 0); m_capacity = c; } private: uint32_t m_capacity; std::stack m_pool; #ifndef NDEBUG public: uint64_t m_hits; uint64_t m_misses; uint64_t m_pointerCount; #endif }; } libspatialindex-1.9.3/include/spatialindex/tools/PoolPointer.h000066400000000000000000000061051355420072700246020ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "PointerPool.h" namespace Tools { template class PointerPool; template class PoolPointer { public: explicit PoolPointer(X* p = nullptr) : m_pointer(p), m_pPool(nullptr) { m_prev = m_next = this; } explicit PoolPointer(X* p, PointerPool* pPool) noexcept : m_pointer(p), m_pPool(pPool) { m_prev = m_next = this; } ~PoolPointer() { release(); } PoolPointer(const PoolPointer& p) noexcept { acquire(p); } PoolPointer& operator=(const PoolPointer& p) { if (this != &p) { release(); acquire(p); } return *this; } X& operator*() const noexcept { return *m_pointer; } X* operator->() const noexcept { return m_pointer; } X* get() const noexcept { return m_pointer; } bool unique() const noexcept { return m_prev ? m_prev == this : true; } void relinquish() noexcept { m_pPool = nullptr; m_pointer = nullptr; release(); } private: X* m_pointer; mutable const PoolPointer* m_prev; mutable const PoolPointer* m_next; PointerPool* m_pPool; void acquire(const PoolPointer& p) noexcept { m_pPool = p.m_pPool; m_pointer = p.m_pointer; m_next = p.m_next; m_next->m_prev = this; m_prev = &p; #ifndef mutable p.m_next = this; #else (const_cast*>(&p))->m_next = this; #endif } void release() { if (unique()) { if (m_pPool != nullptr) m_pPool->release(m_pointer); else delete m_pointer; } else { m_prev->m_next = m_next; m_next->m_prev = m_prev; m_prev = m_next = nullptr; } m_pointer = nullptr; m_pPool = nullptr; } }; } libspatialindex-1.9.3/include/spatialindex/tools/Tools.h000066400000000000000000000324141355420072700234320ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #if (defined _WIN32 || defined _WIN64 || defined WIN32 || defined WIN64) && (defined _MSC_VER) && (_MSC_VER < 1900) && !defined __GNUC__ typedef __int8 int8_t; typedef __int16 int16_t; typedef __int32 int32_t; typedef __int64 int64_t; typedef unsigned __int8 uint8_t; typedef unsigned __int16 uint16_t; typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; #else #include #endif #if (defined _WIN32 || defined _WIN64 || defined WIN32 || defined WIN64) && !defined __GNUC__ #ifdef SIDX_DLL_EXPORT #define SIDX_DLL __declspec(dllexport) #else #define SIDX_DLL __declspec(dllimport) #endif // Nuke this annoying warning. See http://www.unknownroad.com/rtfm/VisualStudio/warningC4251.html #pragma warning( disable: 4251 ) #else #define SIDX_DLL #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "PointerPool.h" #include "PoolPointer.h" namespace Tools { enum IntervalType { IT_RIGHTOPEN = 0x0, IT_LEFTOPEN, IT_OPEN, IT_CLOSED }; enum VariantType { VT_LONG = 0x0, VT_BYTE, VT_SHORT, VT_FLOAT, VT_DOUBLE, VT_CHAR, VT_USHORT, VT_ULONG, VT_INT, VT_UINT, VT_BOOL, VT_PCHAR, VT_PVOID, VT_EMPTY, VT_LONGLONG, VT_ULONGLONG, VT_PWCHAR }; enum FileMode { APPEND = 0x0, CREATE }; // // Exceptions // class SIDX_DLL Exception { public: virtual std::string what() = 0; virtual ~Exception() = default; }; class SIDX_DLL IndexOutOfBoundsException : public Exception { public: IndexOutOfBoundsException(size_t i); ~IndexOutOfBoundsException() override = default; std::string what() override; private: std::string m_error; }; // IndexOutOfBoundsException class SIDX_DLL IllegalArgumentException : public Exception { public: IllegalArgumentException(std::string s); ~IllegalArgumentException() override = default; std::string what() override; private: std::string m_error; }; // IllegalArgumentException class SIDX_DLL IllegalStateException : public Exception { public: IllegalStateException(std::string s); ~IllegalStateException() override = default; std::string what() override; private: std::string m_error; }; // IllegalStateException class SIDX_DLL EndOfStreamException : public Exception { public: EndOfStreamException(std::string s); ~EndOfStreamException() override = default; std::string what() override; private: std::string m_error; }; // EndOfStreamException class SIDX_DLL ResourceLockedException : public Exception { public: ResourceLockedException(std::string s); ~ResourceLockedException() override = default; std::string what() override; private: std::string m_error; }; // ResourceLockedException class SIDX_DLL NotSupportedException : public Exception { public: NotSupportedException(std::string s); ~NotSupportedException() override = default; std::string what() override; private: std::string m_error; }; // NotSupportedException // // Interfaces // class SIDX_DLL IInterval { public: virtual ~IInterval() = default; virtual double getLowerBound() const = 0; virtual double getUpperBound() const = 0; virtual void setBounds(double, double) = 0; virtual bool intersectsInterval(const IInterval&) const = 0; virtual bool intersectsInterval(IntervalType type, const double start, const double end) const = 0; virtual bool containsInterval(const IInterval&) const = 0; virtual IntervalType getIntervalType() const = 0; }; // IInterval class SIDX_DLL IObject { public: virtual ~IObject() = default; virtual IObject* clone() = 0; // return a new object that is an exact copy of this one. // IMPORTANT: do not return the this pointer! }; // IObject class SIDX_DLL ISerializable { public: virtual ~ISerializable() = default; virtual uint32_t getByteArraySize() = 0; // returns the size of the required uint8_t array. virtual void loadFromByteArray(const uint8_t* data) = 0; // load this object using the uint8_t array. virtual void storeToByteArray(uint8_t** data, uint32_t& length) = 0; // store this object in the uint8_t array. }; class SIDX_DLL IComparable { public: virtual ~IComparable() = default; virtual bool operator<(const IComparable& o) const = 0; virtual bool operator>(const IComparable& o) const = 0; virtual bool operator==(const IComparable& o) const = 0; }; //IComparable class SIDX_DLL IObjectComparator { public: virtual ~IObjectComparator() = default; virtual int compare(IObject* o1, IObject* o2) = 0; }; // IObjectComparator class SIDX_DLL IObjectStream { public: virtual ~IObjectStream() = default; virtual IObject* getNext() = 0; // returns a pointer to the next entry in the // stream or 0 at the end of the stream. virtual bool hasNext() = 0; // returns true if there are more items in the stream. virtual uint32_t size() = 0; // returns the total number of entries available in the stream. virtual void rewind() = 0; // sets the stream pointer to the first entry, if possible. }; // IObjectStream // // Classes & Functions // class SIDX_DLL Variant { public: Variant(); VariantType m_varType{VT_EMPTY}; union { int16_t iVal; // VT_SHORT int32_t lVal; // VT_LONG int64_t llVal; // VT_LONGLONG uint8_t bVal; // VT_BYTE float fltVal; // VT_FLOAT double dblVal; // VT_DOUBLE char cVal; // VT_CHAR uint16_t uiVal; // VT_USHORT uint32_t ulVal; // VT_ULONG uint64_t ullVal; // VT_ULONGLONG bool blVal; // VT_BOOL char* pcVal; // VT_PCHAR void* pvVal; // VT_PVOID wchar_t* pwcVal; } m_val; }; // Variant class SIDX_DLL PropertySet; SIDX_DLL std::ostream& operator<<(std::ostream& os, const Tools::PropertySet& p); class SIDX_DLL PropertySet : public ISerializable { public: PropertySet(); PropertySet(const uint8_t* data); ~PropertySet() override; Variant getProperty(std::string property) const; void setProperty(std::string property, Variant const& v); void removeProperty(std::string property); uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& length) override; private: std::map m_propertySet; // #ifdef HAVE_PTHREAD_H // pthread_rwlock_t m_rwLock; // #else // bool m_rwLock; // #endif friend SIDX_DLL std::ostream& Tools::operator<<(std::ostream& os, const Tools::PropertySet& p); }; // PropertySet // does not support degenerate intervals. class SIDX_DLL Interval : public IInterval { public: Interval(); Interval(IntervalType, double, double); Interval(double, double); Interval(const Interval&); ~Interval() override = default; virtual IInterval& operator=(const IInterval&); virtual bool operator==(const Interval&) const; virtual bool operator!=(const Interval&) const; double getLowerBound() const override; double getUpperBound() const override; void setBounds(double, double) override; bool intersectsInterval(const IInterval&) const override; bool intersectsInterval(IntervalType type, const double start, const double end) const override; bool containsInterval(const IInterval&) const override; IntervalType getIntervalType() const override; IntervalType m_type{IT_RIGHTOPEN}; double m_low{0.0}; double m_high{0.0}; }; // Interval SIDX_DLL std::ostream& operator<<(std::ostream& os, const Tools::Interval& iv); class SIDX_DLL Random { public: Random(); Random(uint32_t seed, uint16_t xsubi0); virtual ~Random(); int32_t nextUniformLong(); // returns a uniformly distributed long. uint32_t nextUniformUnsignedLong(); // returns a uniformly distributed unsigned long. int32_t nextUniformLong(int32_t low, int32_t high); // returns a uniformly distributed long in the range [low, high). uint32_t nextUniformUnsignedLong(uint32_t low, uint32_t high); // returns a uniformly distributed unsigned long in the range [low, high). int64_t nextUniformLongLong(); // returns a uniformly distributed long long. uint64_t nextUniformUnsignedLongLong(); // returns a uniformly distributed unsigned long long. int64_t nextUniformLongLong(int64_t low, int64_t high); // returns a uniformly distributed unsigned long long in the range [low, high). uint64_t nextUniformUnsignedLongLong(uint64_t low, uint64_t high); // returns a uniformly distributed unsigned long long in the range [low, high). int16_t nextUniformShort(); // returns a uniformly distributed short. uint16_t nextUniformUnsignedShort(); // returns a uniformly distributed unsigned short. double nextUniformDouble(); // returns a uniformly distributed double in the range [0, 1). double nextUniformDouble(double low, double high); // returns a uniformly distributed double in the range [low, high). bool flipCoin(); private: void initDrand(uint32_t seed, uint16_t xsubi0); uint16_t* m_pBuffer; }; // Random #if HAVE_PTHREAD_H class SIDX_DLL LockGuard { public: LockGuard(pthread_mutex_t* pLock); ~LockGuard(); private: pthread_mutex_t* m_pLock; }; // LockGuard #endif class SIDX_DLL BufferedFile { public: BufferedFile(uint32_t u32BufferSize = 16384); virtual ~BufferedFile(); virtual void close(); virtual bool eof(); virtual void rewind() = 0; virtual void seek(std::fstream::off_type offset) = 0; protected: std::fstream m_file; char* m_buffer; uint32_t m_u32BufferSize; bool m_bEOF{true}; }; class SIDX_DLL BufferedFileReader : public BufferedFile { public: BufferedFileReader(); BufferedFileReader(const std::string& sFileName, uint32_t u32BufferSize = 32768); ~BufferedFileReader() override; virtual void open(const std::string& sFileName); void rewind() override; void seek(std::fstream::off_type offset) override; virtual uint8_t readUInt8(); virtual uint16_t readUInt16(); virtual uint32_t readUInt32(); virtual uint64_t readUInt64(); virtual float readFloat(); virtual double readDouble(); virtual bool readBoolean(); virtual std::string readString(); virtual void readBytes(uint32_t u32Len, uint8_t** pData); }; class SIDX_DLL BufferedFileWriter : public BufferedFile { public: BufferedFileWriter(); BufferedFileWriter(const std::string& sFileName, FileMode mode = CREATE, uint32_t u32BufferSize = 32768); ~BufferedFileWriter() override; virtual void open(const std::string& sFileName, FileMode mode = CREATE); void rewind() override; void seek(std::fstream::off_type offset) override; virtual void write(uint8_t i); virtual void write(uint16_t i); virtual void write(uint32_t i); virtual void write(uint64_t i); virtual void write(float i); virtual void write(double i); virtual void write(bool b); virtual void write(const std::string& s); virtual void write(uint32_t u32Len, uint8_t* pData); }; class SIDX_DLL TemporaryFile { public: TemporaryFile(); virtual ~TemporaryFile(); void rewindForReading(); void rewindForWriting(); bool eof(); std::string getFileName() const; uint8_t readUInt8(); uint16_t readUInt16(); uint32_t readUInt32(); uint64_t readUInt64(); float readFloat(); double readDouble(); std::string readString(); void readBytes(uint32_t u32Len, uint8_t** pData); void write(uint8_t i); void write(uint16_t i); void write(uint32_t i); void write(uint64_t i); void write(float i); void write(double i); void write(const std::string& s); void write(uint32_t u32Len, uint8_t* pData); private: std::string m_sFile; BufferedFile* m_pFile; }; } libspatialindex-1.9.3/include/spatialindex/tools/rand48.h000066400000000000000000000056311355420072700234330ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2011, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once /* Only define this stuff if we're not ANDROID */ #ifndef ANDROID #ifndef HAVE_SRAND48 #if HAVE_FEATURES_H #include #ifndef __THROW /* copy-pasted from sys/cdefs.h */ /* GCC can always grok prototypes. For C++ programs we add throw() to help it optimize the function calls. But this works only with gcc 2.8.x and egcs. For gcc 3.2 and up we even mark C functions as non-throwing using a function attribute since programs can use the -fexceptions options for C code as well. */ # if !defined __cplusplus && __GNUC_PREREQ (3, 3) # define __THROW __attribute__ ((__nothrow__)) # define __NTH(fct) __attribute__ ((__nothrow__)) fct # else # if defined __cplusplus && __GNUC_PREREQ (2,8) # define __THROW throw () # define __NTH(fct) fct throw () # else # define __THROW # define __NTH(fct) fct # endif # endif #endif #endif #ifndef __THROW # define __THROW #endif #ifndef __NTH # define __NTH(fct) fct #endif extern void srand48(long int seed) __THROW; extern unsigned short *seed48(unsigned short xseed[3]) __THROW; extern long nrand48(unsigned short xseed[3]) __THROW; extern long mrand48(void) __THROW; extern long lrand48(void) __THROW; extern void lcong48(unsigned short p[7]) __THROW; extern long jrand48(unsigned short xseed[3]) __THROW; extern double erand48(unsigned short xseed[3]) __THROW; extern double drand48(void) __THROW; #endif /* Only define this stuff if we're not ANDROID */ #endif libspatialindex-1.9.3/package-release.sh000077500000000000000000000030151355420072700202540ustar00rootroot00000000000000#!/bin/bash # Build PDAL package # ./package.sh GITSHA="$(git rev-parse HEAD)" VERSIONTAG="$(git describe --exact-match --tags $(git log -n1 --pretty='%h'))" echo "Cutting release for SHA $GITSHA at tag $VERSIONTAG" HERE=`pwd` CONTAINER="osgeo/proj-docs" DOCKER="docker" CONTAINERRUN="$DOCKER run -it -d --entrypoint /bin/sh -v $HERE:/data $CONTAINER" echo $CONTAINERRUN CONTAINERID=`$CONTAINERRUN` echo "Starting container: " $CONTAINERID cat > docker-package.sh << "EOF" #!/bin/sh git clone https://github.com/libspatialindex/libspatialindex.git; cd /libspatialindex; EOF echo "git checkout $GITSHA" >> docker-package.sh cat >> docker-package.sh << "EOF" apt-get install cmake -y mkdir build; cd build cmake .. make dist EOF echo "OUTPUTDIR=\"/data/release-$VERSIONTAG\"" >> docker-package.sh cat >> docker-package.sh << "EOF" mkdir $OUTPUTDIR extensions=".tar.gz .tar.bz2" for ext in $extensions do for filename in $(ls *$ext) do `md5sum $filename > $filename.md5` `sha256sum $filename > $filename.sha256sum` `sha512sum $filename > $filename.sha512sum` cp $filename $OUTPUTDIR cp $filename.md5 $OUTPUTDIR cp $filename.sha256sum $OUTPUTDIR cp $filename.sha512sum $OUTPUTDIR done done EOF chmod +x docker-package.sh docker cp docker-package.sh $CONTAINERID:/docker-package.sh docker exec -it $CONTAINERID /docker-package.sh # run this to halt into the container #docker exec -it $CONTAINERID bash command="$DOCKER stop $CONTAINERID" echo $command $command libspatialindex-1.9.3/scripts/000077500000000000000000000000001355420072700163745ustar00rootroot00000000000000libspatialindex-1.9.3/scripts/azp/000077500000000000000000000000001355420072700171665ustar00rootroot00000000000000libspatialindex-1.9.3/scripts/azp/docs.yml000077500000000000000000000035041355420072700206460ustar00rootroot00000000000000 jobs: - job: 'Documentation' pool: vmImage: 'ubuntu-16.04' container: image: osgeo/proj-docs options: --privileged steps: - script: | python3 --version sphinx-build --version displayName: 'Sphinx version' - script: | cd docs if find . -name '*.rst' | xargs grep -P '\t'; then echo 'Tabs are bad, please use four spaces in .rst files.'; false; fi displayName: 'Lint .rst files' - script: | cd docs make doxygen make html make latexpdf displayName: 'Build Doxygen, HTML, and PDF' - task: DownloadSecureFile@1 inputs: secureFile: 'pdal-docs-ssh-key' displayName: 'Get the deploy key' - script: | mkdir ~/.ssh && mv $DOWNLOADSECUREFILE_SECUREFILEPATH ~/.ssh/id_rsa chmod 700 ~/.ssh && chmod 600 ~/.ssh/id_rsa ssh-keyscan -t rsa github.com >> ~/.ssh/known_hosts displayName: 'Deploy the key' - script: | git config --global user.email "proj4bot@proj4.bot" git config --global user.name "PDAL Doc Bot" git clone git@github.com:libspatialindex/libspatialindex.github.com.git ../libspatialindex-docs cp -r docs/build/html/* ../libspatialindex-docs cp -r docs/build/latex/libspatialindex.pdf ../libspatialindex-docs/ cp -r docs/doxygen/html/* ../libspatialindex-docs/doxygen/ cd ../libspatialindex-docs git add -A git commit -m "Update with https://github.com/libspatialindex/libspatialindex/commit/$BUILD_SOURCEVERSION" git push origin master displayName: 'Deploy the docs' dependsOn: - win - osx - linux condition: and(notin(variables['Build.Reason'], 'PullRequest'), succeeded()) libspatialindex-1.9.3/scripts/azp/linux-test.sh000077500000000000000000000005121355420072700216370ustar00rootroot00000000000000#!/bin/bash pushd test/geometry/test1 ./run popd pushd test/rtree/test1 ./run popd pushd test/rtree/test2 ./run popd pushd test/rtree/test3 ./run popd pushd test/rtree/test4 ./run popd pushd test/tprtree/test1 ./run popd pushd test/tprtree/test2 ./run popd pushd test/mvrtree/test1 ./run popd pushd test/mvrtree/test2 ./run popd libspatialindex-1.9.3/scripts/azp/linux.yml000066400000000000000000000071531355420072700210560ustar00rootroot00000000000000# -*- mode: yaml -*- jobs: - job: 'Linux' pool: vmImage: 'ubuntu-16.04' strategy: matrix: GCC 8: CXXSTD: 11, 14, 17, 20 CXX: g++-8 PACKAGES: g++-8 GCC 7: CXXSTD: 11, 14, 17 CXX: g++-7 PACKAGES: g++-7 GCC 6: CXXSTD: 11, 14 CXX: g++-6 PACKAGES: g++-6 GCC 5: CXXSTD: 11 CXX: g++-5 PACKAGES: g++-5 GCC 4.9: CXXSTD: 11 CXX: g++-4.9 PACKAGES: g++-4.9 GCC 4.8: CXXSTD: 11 CXX: g++-4.8 PACKAGES: g++-4.8 Clang 8: CXXSTD: 11, 14, 17, 20 CXX: clang++-8 PACKAGES: clang-8 LLVM_REPO: llvm-toolchain-xenial-8 Clang 7: CXXSTD: 14, 17, 20 CXX: clang++-7 PACKAGES: clang-7 LLVM_REPO: llvm-toolchain-xenial-7 Clang 6: CXXSTD: 14, 17, 20 CXX: clang++-6.0 PACKAGES: clang-6.0 LLVM_REPO: llvm-toolchain-xenial-6.0 Clang 5: CXXSTD: 11, 14, 17 PACKAGES: clang-5.0 CXX: clang++-5.0 LLVM_REPO: llvm-toolchain-xenial-5.0 Clang 4: CXXSTD: 11, 14 CXX: clang++-4.0 PACKAGES: clang-4.0 LLVM_REPO: llvm-toolchain-xenial-4.0 Clang 3.9: CXXSTD: 11, 14 CXX: clang++-3.9 PACKAGES: clang-3.9 Clang 3.8: CXX: clang++-3.8 CXXSTD: 11, 14 PACKAGES: clang-3.8 steps: - script: | set -e uname -a sudo -E apt-add-repository -y "ppa:ubuntu-toolchain-r/test" if test -n "${LLVM_REPO}" ; then wget -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add - sudo -E apt-add-repository "deb http://apt.llvm.org/xenial/ ${LLVM_REPO} main" fi sudo -E apt-get update sudo -E apt-get -yq --no-install-suggests --no-install-recommends install cmake ${PACKAGES} displayName: 'Install' - script: | set -e mkdir build.cxx11 cd build.cxx11 cmake --version cmake -DCMAKE_CXX_STANDARD=11 -DSIDX_BUILD_TESTS=ON -DCMAKE_BUILD_TYPE=$BUILD_TYPE .. cmake --build . --config $BUILD_TYPE pushd .. export PATH=$PATH:`pwd`/build.cxx11/bin ./scripts/azp/linux-test.sh popd displayName: 'Build C++11' condition: contains(variables['CXXSTD'], '11') - script: | set -e mkdir build.cxx14 cd build.cxx14 cmake --version cmake -DCMAKE_CXX_STANDARD=14 -DSIDX_BUILD_TESTS=ON -DCMAKE_BUILD_TYPE=$BUILD_TYPE .. cmake --build . --config $BUILD_TYPE ctest -V --output-on-failure -C $BUILD_TYPE displayName: 'Build C++14' condition: contains(variables['CXXSTD'], '14') - script: | set -e mkdir build.cxx17 cd build.cxx17 cmake --version cmake -DCMAKE_CXX_STANDARD=17 -DSIDX_BUILD_TESTS=ON -DCMAKE_BUILD_TYPE=$BUILD_TYPE .. cmake --build . --config $BUILD_TYPE ctest -V --output-on-failure -C $BUILD_TYPE displayName: 'Build C++17' condition: contains(variables['CXXSTD'], '17') - script: | set -e mkdir build.cxx20 cd build.cxx20 cmake --version cmake -DCMAKE_CXX_STANDARD=20 -DSIDX_BUILD_TESTS=ON -DCMAKE_BUILD_TYPE=$BUILD_TYPE .. cmake --build . --config $BUILD_TYPE ctest -V --output-on-failure -C $BUILD_TYPE displayName: 'Build C++20' condition: contains(variables['CXXSTD'], '20') libspatialindex-1.9.3/scripts/azp/osx.yml000066400000000000000000000005231355420072700205220ustar00rootroot00000000000000# -*- mode: yaml -*- jobs: - job: osx pool: vmImage: macOS-10.13 timeoutInMinutes: 360 steps: - script: | cmake . -DSIDX_BUILD_TESTS=ON displayName: 'CMake' - script: | make displayName: 'Build' - script: | make test displayName: 'Test' - script: | make dist displayName: 'Dist'libspatialindex-1.9.3/scripts/azp/win.yml000066400000000000000000000043241355420072700205110ustar00rootroot00000000000000 jobs: - job: win pool: vmImage: vs2017-win2016 timeoutInMinutes: 360 steps: - powershell: Write-Host "##vso[task.prependpath]$env:CONDA\Scripts" displayName: Add conda to PATH - script: | ECHO ON call conda create --yes --quiet --name libspatialindex displayName: Create conda environment - script: | ECHO ON call activate libspatialindex call conda config --set always_yes True --set show_channel_urls True call conda install --yes --quiet --name libspatialindex -c conda-forge ninja cmake -y displayName: Install CMake and Ninja - script: | ECHO ON call activate libspatialindex call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x86_amd64 echo %PATH% set CC=cl.exe set CXX=cl.exe mkdir build pushd build cmake -G "Ninja" ^ -DCMAKE_BUILD_TYPE=RelWithDebInfo ^ -DCMAKE_LIBRARY_PATH:FILEPATH="%CONDA_PREFIX%/Library/lib" ^ -DCMAKE_INCLUDE_PATH:FILEPATH="%CONDA_PREFIX%/Library/include" ^ -DBUILD_SHARED_LIBS=ON ^ -DSIDX_BUILD_TESTS=ON ^ -Dgtest_force_shared_crt=ON ^ .. displayName: 'CMake' - script: | call activate libspatialindex pushd build call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x86_amd64 echo %PATH% set CC=cl.exe set CXX=cl.exe ninja displayName: 'Build' - script: | ECHO ON call activate libspatialindex pushd build call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x86_amd64 set PYTHONHOME="C:/Miniconda/" set PYTHONLIB="C:/Miniconda/Lib" echo %PYTHONHOME% echo %PYTHONLIB% ctest -VV --output-on-failure displayName: 'Test' - script: | ECHO ON call activate libspatialindex pushd build call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x86_amd64 ninja dist displayName: 'dist' libspatialindex-1.9.3/scripts/conda/000077500000000000000000000000001355420072700174605ustar00rootroot00000000000000libspatialindex-1.9.3/scripts/conda/osx.sh000077500000000000000000000014031355420072700206260ustar00rootroot00000000000000export CONDA_EXE=/Users/hobu/miniconda3/bin/conda source /Users/hobu/miniconda3/bin/activate base $CONDA_EXE remove libspatialindex $CONDA_EXE activate libspatialindex source /Users/hobu/miniconda3/bin/activate libspatialindex $CONDA_EXE create --name libspatialindex -y -c conda-forge \ cmake \ ninja BUILDDIR=conda-build #CONFIG="Unix Makefiles" CONFIG="Ninja" if ! [ -z "$1" ]; then CONFIG="$1" fi rm -rf $BUILDDIR mkdir -p $BUILDDIR cd $BUILDDIR CC=$CC CXX=$CXX cmake -G "$CONFIG" \ -DCMAKE_LIBRARY_PATH:FILEPATH="$CONDA_PREFIX/lib" \ -DCMAKE_INCLUDE_PATH:FILEPATH="$CONDA_PREFIX/include" \ -DCMAKE_BUILD_TYPE=Debug \ -DCMAKE_INSTALL_PREFIX=${CONDA_PREFIX} \ .. if ! [ -z "Ninja" ]; then ninja fi libspatialindex-1.9.3/scripts/conda/win64.bat000066400000000000000000000003121355420072700211130ustar00rootroot00000000000000del /s /q build mkdir build cd build cmake -G "Ninja" ^ -DCMAKE_VERBOSE_MAKEFILE:BOOL=OFF ^ -DBUILD_SHARED_LIBS=ON ^ -DSIDX_BUILD_TESTS=ON ^ -DCMAKE_INSTALL_PREFIX=%CONDA_PREFIX\Library ^ ..libspatialindex-1.9.3/scripts/docker/000077500000000000000000000000001355420072700176435ustar00rootroot00000000000000libspatialindex-1.9.3/scripts/docker/Dockerfile000066400000000000000000000010151355420072700216320ustar00rootroot00000000000000FROM ubuntu:18.04 MAINTAINER Howard Butler RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --fix-missing --no-install-recommends \ build-essential \ ca-certificates \ cmake \ curl \ git libtool m4 automake RUN git clone https://github.com/libspatialindex/libspatialindex.git #RUN cd libspatialindex && \ # cmake . -DCMAKE_INSTALL_PREFIX=/usr \ # -DCMAKE_SYSTEM_NAME=Linux \ # -DCMAKE_BUILD_TYPE=Release \ # && make && make install libspatialindex-1.9.3/src/000077500000000000000000000000001355420072700154745ustar00rootroot00000000000000libspatialindex-1.9.3/src/CMakeLists.txt000066400000000000000000000177441355420072700202510ustar00rootroot00000000000000############################################################################### # # src/CMakeLists.txt controls building of SIDX library # # Copyright (c) 2009 Mateusz Loskot # ############################################################################### ############################################################################### # Source files specification # # Naming format: # SIDX_CPP - all the .cpp files # SIDX_HPP - all the .hpp files # SIDX__CPP - all the .cpp files for the given subdir/namespace # ... set(SIDX_HEADERS_DIR "${PROJECT_SOURCE_DIR}/include/spatialindex/") set(SIDX_HEADERS_CAPI_DIR "${PROJECT_SOURCE_DIR}/include/spatialindex/capi") set(SIDX_HPP "") set(SIDX_CPP "") set(SIDX_SRC_DIR "${PROJECT_SOURCE_DIR}/src") set(SIDX_CAPI_DIR "${PROJECT_SOURCE_DIR}/src/capi") # # base # set(SIDX_BASE_HPP "${SIDX_HEADERS_DIR}/LineSegment.h" "${SIDX_HEADERS_DIR}/MovingPoint.h" "${SIDX_HEADERS_DIR}/MVRTree.h" "${SIDX_HEADERS_DIR}/Point.h" "${SIDX_HEADERS_DIR}/Region.h" "${SIDX_HEADERS_DIR}/RTree.h" "${SIDX_HEADERS_DIR}/SpatialIndex.h" "${SIDX_HEADERS_DIR}/TimePoint.h" "${SIDX_HEADERS_DIR}/TimeRegion.h" "${SIDX_HEADERS_DIR}/TPRTree.h" "${SIDX_HEADERS_DIR}/Version.h" ) list (APPEND SIDX_HPP ${SIDX_BASE_HPP} ) set(SIDX_CAPI_HPP "${SIDX_HEADERS_CAPI_DIR}/BoundsQuery.h" "${SIDX_HEADERS_CAPI_DIR}/CountVisitor.h" "${SIDX_HEADERS_CAPI_DIR}/CustomStorage.h" "${SIDX_HEADERS_CAPI_DIR}/DataStream.h" "${SIDX_HEADERS_CAPI_DIR}/Error.h" "${SIDX_HEADERS_CAPI_DIR}/IdVisitor.h" "${SIDX_HEADERS_CAPI_DIR}/Index.h" "${SIDX_HEADERS_CAPI_DIR}/LeafQuery.h" "${SIDX_HEADERS_CAPI_DIR}/ObjVisitor.h" "${SIDX_HEADERS_CAPI_DIR}/sidx_api.h" "${SIDX_HEADERS_CAPI_DIR}/sidx_config.h" "${SIDX_HEADERS_CAPI_DIR}/sidx_impl.h" "${SIDX_HEADERS_CAPI_DIR}/Utility.h" ) list (APPEND SIDX_HPP ${SIDX_CAPI_HPP} ) set(SIDX_CAPI_CPP "${SIDX_CAPI_DIR}/BoundsQuery.cc" "${SIDX_CAPI_DIR}/CountVisitor.cc" "${SIDX_CAPI_DIR}/CustomStorage.cc" "${SIDX_CAPI_DIR}/DataStream.cc" "${SIDX_CAPI_DIR}/Error.cc" "${SIDX_CAPI_DIR}/IdVisitor.cc" "${SIDX_CAPI_DIR}/Index.cc" "${SIDX_CAPI_DIR}/LeafQuery.cc" "${SIDX_CAPI_DIR}/ObjVisitor.cc" "${SIDX_CAPI_DIR}/sidx_api.cc" "${SIDX_CAPI_DIR}/Utility.cc" ) list (APPEND SIDX_CPP ${SIDX_CAPI_CPP} ) set(SIDX_SPATIALINDEX_CPP "${SIDX_SRC_DIR}/spatialindex/LineSegment.cc" "${SIDX_SRC_DIR}/spatialindex/MovingPoint.cc" "${SIDX_SRC_DIR}/spatialindex/MovingRegion.cc" "${SIDX_SRC_DIR}/spatialindex/Point.cc" "${SIDX_SRC_DIR}/spatialindex/Region.cc" "${SIDX_SRC_DIR}/spatialindex/SpatialIndexImpl.cc" "${SIDX_SRC_DIR}/spatialindex/TimePoint.cc" "${SIDX_SRC_DIR}/spatialindex/TimeRegion.cc" ) list (APPEND SIDX_CPP ${SIDX_SPATIALINDEX_CPP} ) set(SIDX_MVRTREE_CPP "${SIDX_SRC_DIR}/mvrtree/Index.cc" "${SIDX_SRC_DIR}/mvrtree/Index.h" "${SIDX_SRC_DIR}/mvrtree/Leaf.cc" "${SIDX_SRC_DIR}/mvrtree/Leaf.h" "${SIDX_SRC_DIR}/mvrtree/MVRTree.cc" "${SIDX_SRC_DIR}/mvrtree/MVRTree.h" "${SIDX_SRC_DIR}/mvrtree/Node.cc" "${SIDX_SRC_DIR}/mvrtree/Node.h" "${SIDX_SRC_DIR}/mvrtree/PointerPoolNode.h" "${SIDX_SRC_DIR}/mvrtree/Statistics.cc" "${SIDX_SRC_DIR}/mvrtree/Statistics.h" ) list (APPEND SIDX_CPP ${SIDX_MVRTREE_CPP}) set(SIDX_RTREE_CPP "${SIDX_SRC_DIR}/rtree/BulkLoader.cc" "${SIDX_SRC_DIR}/rtree/BulkLoader.h" "${SIDX_SRC_DIR}/rtree/Index.cc" "${SIDX_SRC_DIR}/rtree/Index.h" "${SIDX_SRC_DIR}/rtree/Leaf.cc" "${SIDX_SRC_DIR}/rtree/Leaf.h" "${SIDX_SRC_DIR}/rtree/Node.cc" "${SIDX_SRC_DIR}/rtree/Node.h" "${SIDX_SRC_DIR}/rtree/PointerPoolNode.h" "${SIDX_SRC_DIR}/rtree/RTree.cc" "${SIDX_SRC_DIR}/rtree/RTree.h" "${SIDX_SRC_DIR}/rtree/Statistics.cc" "${SIDX_SRC_DIR}/rtree/Statistics.h" ) list (APPEND SIDX_CPP ${SIDX_RTREE_CPP}) set(SIDX_STORAGEMANAGER_CPP "${SIDX_SRC_DIR}/storagemanager/Buffer.cc" "${SIDX_SRC_DIR}/storagemanager/DiskStorageManager.cc" "${SIDX_SRC_DIR}/storagemanager/DiskStorageManager.h" "${SIDX_SRC_DIR}/storagemanager/MemoryStorageManager.cc" "${SIDX_SRC_DIR}/storagemanager/MemoryStorageManager.h" "${SIDX_SRC_DIR}/storagemanager/RandomEvictionsBuffer.cc" "${SIDX_SRC_DIR}/storagemanager/RandomEvictionsBuffer.h" ) list (APPEND SIDX_CPP ${SIDX_STORAGEMANAGER_CPP}) set(SIDX_RAND48 ) if (NOT HAVE_SRAND48) set(SIDX_RAND48 "${SIDX_SRC_DIR}/tools/rand48.cc") endif() set(SIDX_TOOLS_CPP ${SIDX_RAND48} "${SIDX_SRC_DIR}/tools/Tools.cc" ) list (APPEND SIDX_CPP ${SIDX_TOOLS_CPP}) set(SIDX_TOOLS_CPP "${SIDX_SRC_DIR}/tprtree/Index.cc" "${SIDX_SRC_DIR}/tprtree/Index.h" "${SIDX_SRC_DIR}/tprtree/Leaf.cc" "${SIDX_SRC_DIR}/tprtree/Leaf.h" "${SIDX_SRC_DIR}/tprtree/Node.cc" "${SIDX_SRC_DIR}/tprtree/Node.h" "${SIDX_SRC_DIR}/tprtree/PointerPoolNode.h" "${SIDX_SRC_DIR}/tprtree/Statistics.cc" "${SIDX_SRC_DIR}/tprtree/Statistics.h" "${SIDX_SRC_DIR}/tprtree/TPRTree.cc" "${SIDX_SRC_DIR}/tprtree/TPRTree.h" ) list (APPEND SIDX_CPP ${SIDX_TOOLS_CPP} ) # # Group source files for IDE source explorers (e.g. Visual Studio) # source_group("CMake Files" FILES CMakeLists.txt) source_group("Header Files" FILES ${SIDX_BASE_HPP}) source_group("C API Header Files" FILES ${SIDX_CAPI_HPP}) source_group("Source Files" FILES ${SIDX_BASE_CPP}) source_group("C API Source Files" FILES ${SIDX_CAPI_CPP}) # Standard include directory of SIDX library include_directories(../include) set (APPS_CPP_DEPENDENCIES "${SIDX_LIB_NAME}" CACHE INTERNAL "libraries to link") ############################################################################### # Targets settings set(SIDX_SOURCES ${SIDX_HPP} ${SIDX_CPP}) # NOTE: # This hack is required to correctly link static into shared library. # Such practice is not recommended as not portable, instead each library, # static and shared should be built from sources separately. #if(UNIX) # add_definitions("-fPIC") #endif() add_library(${SIDX_LIB_NAME} ${SIDX_SOURCES}) add_library(${SIDX_C_LIB_NAME} ${SIDX_CAPI_CPP}) target_link_libraries(${SIDX_C_LIB_NAME} ${SIDX_LIB_NAME} ) set_target_properties(${SIDX_LIB_NAME} PROPERTIES VERSION "${SIDX_LIB_VERSION}" SOVERSION "${SIDX_LIB_SOVERSION}" ) set_target_properties(${SIDX_C_LIB_NAME} PROPERTIES VERSION "${SIDX_LIB_VERSION}" SOVERSION "${SIDX_LIB_SOVERSION}" ) if(WIN32) target_compile_options(${SIDX_LIB_NAME} PRIVATE "/wd4068") target_compile_options(${SIDX_C_LIB_NAME} PRIVATE "/wd4068") target_compile_definitions(${SIDX_C_LIB_NAME} PRIVATE "-DSIDX_DLL_EXPORT=1") target_compile_definitions(${SIDX_LIB_NAME} PRIVATE "-DSIDX_DLL_EXPORT=1") if (NOT WITH_STATIC_SIDX) target_compile_definitions(${SIDX_LIB_NAME} PRIVATE "-DSIDX_DLL_IMPORT=1") target_compile_definitions(${SIDX_C_LIB_NAME} PRIVATE "-DSIDX_DLL_IMPORT=1") endif() endif() if (HAVE_SRAND48) target_compile_definitions(${SIDX_LIB_NAME} PRIVATE -DHAVE_SRAND48=1) endif() if (HAVE_GETTIMEOFDAY) target_compile_definitions(${SIDX_LIB_NAME} PRIVATE -DHAVE_GETTIMEOFDAY=1) endif() if (HAVE_BZERO) target_compile_definitions(${SIDX_LIB_NAME} PRIVATE -DHAVE_BZERO=1) endif() if (HAVE_MEMSET) target_compile_definitions(${SIDX_LIB_NAME} PRIVATE -DHAVE_MEMSET=1) endif() if (HAVE_MEMCPY) target_compile_definitions(${SIDX_LIB_NAME} PRIVATE -DHAVE_MEMCPY=1) endif() if (HAVE_BCOPY) target_compile_definitions(${SIDX_LIB_NAME} PRIVATE -DHAVE_BCOPY=1) endif() if (APPLE) set_target_properties( ${SIDX_LIB_NAME} PROPERTIES INSTALL_NAME_DIR "${CMAKE_INSTALL_PREFIX}/lib" BUILD_WITH_INSTALL_RPATH OFF) set_target_properties( ${SIDX_C_LIB_NAME} PROPERTIES INSTALL_NAME_DIR "${CMAKE_INSTALL_PREFIX}/lib" BUILD_WITH_INSTALL_RPATH OFF) endif() ############################################################################### # Targets installation install(TARGETS ${SIDX_LIB_NAME} ${SIDX_C_LIB_NAME} RUNTIME DESTINATION ${SIDX_BIN_DIR} LIBRARY DESTINATION ${SIDX_LIB_DIR} ARCHIVE DESTINATION ${SIDX_LIB_DIR}) install(DIRECTORY ${SIDX_HEADERS_DIR} DESTINATION include/spatialindex FILES_MATCHING PATTERN "*.h" PATTERN "*.hpp") libspatialindex-1.9.3/src/capi/000077500000000000000000000000001355420072700164105ustar00rootroot00000000000000libspatialindex-1.9.3/src/capi/BoundsQuery.cc000066400000000000000000000035461355420072700212070ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement the bounds query. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include BoundsQuery::BoundsQuery() { m_bounds = new SpatialIndex::Region; } void BoundsQuery::getNextEntry( const SpatialIndex::IEntry& entry, SpatialIndex::id_type&, bool& hasNext) { SpatialIndex::IShape* ps; entry.getShape(&ps); ps->getMBR(*m_bounds); delete ps; hasNext = false; } libspatialindex-1.9.3/src/capi/CountVisitor.cc000066400000000000000000000035671355420072700214020ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement the count visitor. * Author: Leonard Norrgård, leonard.norrgard@refactor.fi ****************************************************************************** * Copyright (c) 2010, Leonard Norrgård * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include CountVisitor::CountVisitor(): nResults(0) { } CountVisitor::~CountVisitor() { } void CountVisitor::visitNode(const SpatialIndex::INode& ) { } void CountVisitor::visitData(const SpatialIndex::IData& ) { nResults += 1; } void CountVisitor::visitData(std::vector& ) { } libspatialindex-1.9.3/src/capi/CustomStorage.cc000066400000000000000000000106451355420072700215240ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object to implement the custom storage manager. * Author: Matthias (nitro), nitro@dr-code.org ****************************************************************************** * Copyright (c) 2010, Matthias (nitro) * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include using namespace SpatialIndex; using namespace SpatialIndex::StorageManager; IStorageManager* SpatialIndex::StorageManager::returnCustomStorageManager(Tools::PropertySet& ps) { IStorageManager* sm = new CustomStorageManager(ps); return sm; } CustomStorageManager::CustomStorageManager(Tools::PropertySet& ps) { Tools::Variant var; var = ps.getProperty("CustomStorageCallbacks"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_PVOID) throw Tools::IllegalArgumentException("CustomStorageManager: Property CustomStorageCallbacks must be Tools::VT_PVOID"); if (!var.m_val.pvVal) throw Tools::IllegalArgumentException("CustomStorageManager: Property CustomStorageCallbacks must not be 0."); // we already checked for validity in IndexProperty_SetCustomStorageCallbacks CustomStorageManagerCallbacks* callbackArray = static_cast(var.m_val.pvVal); callbacks = *callbackArray; } int errorCode( NoError ); if ( callbacks.createCallback ) callbacks.createCallback( callbacks.context, &errorCode ); processErrorCode( errorCode, NewPage ); } CustomStorageManager::~CustomStorageManager() { int errorCode( NoError ); if ( callbacks.destroyCallback ) callbacks.destroyCallback( callbacks.context, &errorCode ); processErrorCode( errorCode, NewPage ); } void CustomStorageManager::flush() { int errorCode( NoError ); if ( callbacks.flushCallback ) callbacks.flushCallback( callbacks.context, &errorCode ); processErrorCode( errorCode, NewPage ); } void CustomStorageManager::loadByteArray(const id_type page, uint32_t& len, uint8_t** data) { int errorCode( NoError ); if ( callbacks.loadByteArrayCallback ) callbacks.loadByteArrayCallback( callbacks.context, page, &len, data, &errorCode ); processErrorCode( errorCode, page ); } void CustomStorageManager::storeByteArray(id_type& page, const uint32_t len, const uint8_t* const data) { int errorCode( NoError ); if ( callbacks.storeByteArrayCallback ) callbacks.storeByteArrayCallback( callbacks.context, &page, len, data, &errorCode ); processErrorCode( errorCode, page ); } void CustomStorageManager::deleteByteArray(const id_type page) { int errorCode( NoError ); if ( callbacks.deleteByteArrayCallback ) callbacks.deleteByteArrayCallback( callbacks.context, page, &errorCode ); processErrorCode( errorCode, page ); } inline void CustomStorageManager::processErrorCode(int errorCode, const id_type page) { switch (errorCode) { case NoError: break; case InvalidPageError: throw InvalidPageException( page ); break; case IllegalStateError: throw Tools::IllegalStateException( "CustomStorageManager: Error in user implementation." ); break; default: throw Tools::IllegalStateException( "CustomStorageManager: Unknown error." ); } } libspatialindex-1.9.3/src/capi/DataStream.cc000066400000000000000000000061361355420072700207520ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement the datastream. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include DataStream::DataStream(int (*readNext)(SpatialIndex::id_type * id, double **pMin, double **pMax, uint32_t *nDimension, const uint8_t** pData, size_t *nDataLength) ) : m_pNext(0), m_bDoneReading(false) { iterfunct = readNext; // Read the first one. readData(); } DataStream::~DataStream() { if (m_pNext != 0) delete m_pNext; } bool DataStream::readData() { SpatialIndex::id_type id; double *pMin=0; double *pMax=0; uint32_t nDimension=0; uint8_t *p_data=0; size_t nDataLength=0; if (m_bDoneReading == true) { return false; } int ret = iterfunct(&id, &pMin, &pMax, &nDimension, const_cast(&p_data), &nDataLength); // The callback should return anything other than 0 // when it is done. if (ret != 0) { m_bDoneReading = true; return false; } SpatialIndex::Region r = SpatialIndex::Region(pMin, pMax, nDimension); // Data gets copied here anyway. We should fix this part of SpatialIndex::RTree::Data's constructor m_pNext = new SpatialIndex::RTree::Data((uint32_t)nDataLength, p_data, r, id); return true; } SpatialIndex::IData* DataStream::getNext() { if (m_pNext == 0) return 0; SpatialIndex::RTree::Data* ret = m_pNext; m_pNext = 0; readData(); return ret; } bool DataStream::hasNext() { return (m_pNext != 0); } uint32_t DataStream::size() { throw Tools::NotSupportedException("Operation not supported."); } void DataStream::rewind() { throw Tools::NotSupportedException("Operation not supported."); /* if (m_pNext != 0) { delete m_pNext; m_pNext = 0; } */ } libspatialindex-1.9.3/src/capi/Error.cc000066400000000000000000000040131355420072700200060ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement the error object. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include Error::Error(int code, std::string const& message, std::string const& method) : m_code(code), m_message(message), m_method(method) { } Error::Error(Error const& other) : m_code(other.m_code), m_message(other.m_message), m_method(other.m_method) { } Error& Error::operator=(Error const& rhs) { if (&rhs != this) { m_code = rhs.m_code; m_message = rhs.m_message; m_method = rhs.m_method; } return *this; } libspatialindex-1.9.3/src/capi/IdVisitor.cc000066400000000000000000000035661355420072700206450ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement the id visitor. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include IdVisitor::IdVisitor(): nResults(0) { } IdVisitor::~IdVisitor() { } void IdVisitor::visitNode(const SpatialIndex::INode& ) { } void IdVisitor::visitData(const SpatialIndex::IData& d) { nResults += 1; m_vector.push_back(d.getIdentifier()); } void IdVisitor::visitData(std::vector& ) { } libspatialindex-1.9.3/src/capi/Index.cc000066400000000000000000000264431355420072700177770ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement the index. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include SpatialIndex::ISpatialIndex* Index::CreateIndex() { using namespace SpatialIndex; ISpatialIndex* index = 0; Tools::Variant var; if (GetIndexType() == RT_RTree) { try { index = RTree::returnRTree( *m_buffer, m_properties); } catch (Tools::Exception& e) { std::ostringstream os; os << "Spatial Index Error: " << e.what(); throw std::runtime_error(os.str()); } } else if (GetIndexType() == RT_MVRTree) { try { index = MVRTree::returnMVRTree( *m_buffer, m_properties); } catch (Tools::Exception& e) { std::ostringstream os; os << "Spatial Index Error: " << e.what(); throw std::runtime_error(os.str()); } } else if (GetIndexType() == RT_TPRTree) { try { index = TPRTree::returnTPRTree( *m_buffer,m_properties); } catch (Tools::Exception& e) { std::ostringstream os; os << "Spatial Index Error: " << e.what(); throw std::runtime_error(os.str()); } } return index; } Index::Index(const Tools::PropertySet& poProperties): m_properties(poProperties) { Setup(); Initialize(); } Index::~Index() { delete m_rtree; delete m_buffer; delete m_storage; } Index::Index( const Tools::PropertySet& poProperties, int (*readNext)(SpatialIndex::id_type *id, double **pMin, double **pMax, uint32_t *nDimension, const uint8_t **pData, size_t *nDataLength)) : m_properties(poProperties) { using namespace SpatialIndex; Setup(); m_storage = CreateStorage(); m_buffer = CreateIndexBuffer(*m_storage); DataStream ds(readNext); double dFillFactor = 0.7; uint32_t nIdxCapacity = 100; uint32_t nIdxLeafCap = 100; uint32_t nIdxDimension = 2; SpatialIndex::RTree::RTreeVariant eVariant = SpatialIndex::RTree::RV_RSTAR; SpatialIndex::id_type m_IdxIdentifier; // Fetch a bunch of properties. We can't bulk load an rtree using merely // properties, we have to use the helper method(s). Tools::Variant var; var = m_properties.getProperty("FillFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE) throw std::runtime_error("Index::Index (streaming):" " Property FillFactor must be Tools::VT_DOUBLE"); dFillFactor = var.m_val.dblVal; } var = m_properties.getProperty("IndexCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw std::runtime_error("Index::Index (streaming): " "Property IndexCapacity must be Tools::VT_ULONG"); nIdxCapacity = var.m_val.ulVal; } var = m_properties.getProperty("LeafCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw std::runtime_error("Index::Index (streaming): " "Property LeafCapacity must be Tools::VT_ULONG"); nIdxLeafCap = var.m_val.ulVal; } var = m_properties.getProperty("Dimension"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw std::runtime_error("Index::Index (streaming): " "Property Dimension must be Tools::VT_ULONG"); nIdxDimension = var.m_val.ulVal; } var = m_properties.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONG) throw std::runtime_error("Index::Index (streaming): " "Property TreeVariant must be Tools::VT_LONG"); eVariant = static_cast(var.m_val.lVal); } var = m_properties.getProperty("IndexIdentifier"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONGLONG) throw std::runtime_error("Index::Index (streaming): " "Property IndexIdentifier must be Tools::VT_LONGLONG"); m_IdxIdentifier = var.m_val.llVal; } m_rtree = RTree::createAndBulkLoadNewRTree( SpatialIndex::RTree::BLM_STR, ds, *m_buffer, dFillFactor, nIdxCapacity, nIdxLeafCap, nIdxDimension, eVariant, m_IdxIdentifier); } SpatialIndex::StorageManager::IBuffer* Index::CreateIndexBuffer(SpatialIndex::IStorageManager& storage) { using namespace SpatialIndex::StorageManager; IBuffer* buffer = 0; try { if ( m_storage == 0 ) throw std::runtime_error("Storage was invalid to create index buffer"); buffer = returnRandomEvictionsBuffer(storage, m_properties); } catch (Tools::Exception& e) { std::ostringstream os; os << "Spatial Index Error: " << e.what(); throw std::runtime_error(os.str()); } return buffer; } SpatialIndex::IStorageManager* Index::CreateStorage() { using namespace SpatialIndex::StorageManager; SpatialIndex::IStorageManager* storage = 0; std::string filename(""); Tools::Variant var; var = m_properties.getProperty("FileName"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_PCHAR) throw std::runtime_error("Index::CreateStorage: " "Property FileName must be Tools::VT_PCHAR"); filename = std::string(var.m_val.pcVal); } if (GetIndexStorage() == RT_Disk) { if (filename.empty()) { std::ostringstream os; os << "Spatial Index Error: filename was empty." " Set IndexStorageType to RT_Memory"; throw std::runtime_error(os.str()); } try { storage = returnDiskStorageManager(m_properties); return storage; } catch (Tools::Exception& e) { std::ostringstream os; os << "Spatial Index Error: " << e.what(); throw std::runtime_error(os.str()); } } else if (GetIndexStorage() == RT_Memory) { try { storage = returnMemoryStorageManager(m_properties); return storage; } catch (Tools::Exception& e) { std::ostringstream os; os << "Spatial Index Error: " << e.what(); throw std::runtime_error(os.str()); } } else if (GetIndexStorage() == RT_Custom) { try { storage = returnCustomStorageManager(m_properties); return storage; } catch (Tools::Exception& e) { std::ostringstream os; os << "Spatial Index Error: " << e.what(); throw std::runtime_error(os.str()); } } return storage; } void Index::Initialize() { m_storage = CreateStorage(); m_buffer = CreateIndexBuffer(*m_storage); m_rtree = CreateIndex(); } void Index::Setup() { m_buffer = 0; m_storage = 0; m_rtree = 0; } RTIndexType Index::GetIndexType() { Tools::Variant var; var = m_properties.getProperty("IndexType"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw std::runtime_error("Index::GetIndexType: " "Property IndexType must be Tools::VT_ULONG"); return static_cast(var.m_val.ulVal); } // if we didn't get anything, we're returning an error condition return RT_InvalidIndexType; } void Index::SetIndexType(RTIndexType v) { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = v; m_properties.setProperty("IndexType", var); } RTStorageType Index::GetIndexStorage() { Tools::Variant var; var = m_properties.getProperty("IndexStorageType"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw std::runtime_error("Index::GetIndexStorage: " "Property IndexStorageType must be Tools::VT_ULONG"); return static_cast(var.m_val.ulVal); } // if we didn't get anything, we're returning an error condition return RT_InvalidStorageType; } void Index::SetIndexStorage(RTStorageType v) { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = v; m_properties.setProperty("IndexStorageType", var); } RTIndexVariant Index::GetIndexVariant() { Tools::Variant var; var = m_properties.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw std::runtime_error("Index::GetIndexVariant: " "Property TreeVariant must be Tools::VT_ULONG"); return static_cast(var.m_val.ulVal); } // if we didn't get anything, we're returning an error condition return RT_InvalidIndexVariant; } void Index::SetIndexVariant(RTStorageType v) { using namespace SpatialIndex; Tools::Variant var; if (GetIndexType() == RT_RTree) { var.m_val.ulVal = static_cast(v); m_properties.setProperty("TreeVariant", var); } else if (GetIndexType() == RT_MVRTree) { var.m_val.ulVal = static_cast(v); m_properties.setProperty("TreeVariant", var); } else if (GetIndexType() == RT_TPRTree) { var.m_val.ulVal = static_cast(v); m_properties.setProperty("TreeVariant", var); } } int64_t Index::GetResultSetOffset() { Tools::Variant var; var = m_properties.getProperty("ResultSetOffset"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONGLONG) throw std::runtime_error("Index::ResultSetOffset: " "Property ResultSetOffset must be Tools::VT_LONGLONG"); return var.m_val.llVal; } // if we didn't get anything, we're returning 0 as there is no limit return 0; } void Index::SetResultSetOffset(int64_t v) { Tools::Variant var; var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = v; m_properties.setProperty("ResultSetOffset", var); } int64_t Index::GetResultSetLimit() { Tools::Variant var; var = m_properties.getProperty("ResultSetLimit"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONGLONG) throw std::runtime_error("Index::ResultSetLimit: " "Property ResultSetLimit must be Tools::VT_LONGLONG"); return var.m_val.llVal; } // if we didn't get anything, we're returning 0 as there is no limit return 0; } void Index::SetResultSetLimit(int64_t v) { Tools::Variant var; var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = v; m_properties.setProperty("ResultSetLimit", var); } void Index::flush() { m_rtree->flush(); m_storage->flush(); } libspatialindex-1.9.3/src/capi/LeafQuery.cc000066400000000000000000000072011355420072700206140ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement a query of the index's leaves. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include LeafQuery::LeafQuery() { } LeafQueryResult get_results(const SpatialIndex::INode* n) { LeafQueryResult result (n->getIdentifier()); SpatialIndex::IShape* ps; n->getShape(&ps); SpatialIndex::Region* pr = dynamic_cast(ps); std::vector ids; for (uint32_t cChild = 0; cChild < n->getChildrenCount(); cChild++) { ids.push_back(n->getChildIdentifier(cChild)); } result.SetIDs(ids); result.SetBounds(pr); delete ps; return result; } void LeafQuery::getNextEntry( const SpatialIndex::IEntry& entry, SpatialIndex::id_type& nextEntry, bool& hasNext) { const SpatialIndex::INode* n = dynamic_cast(&entry); if (n != 0) { // traverse only index nodes at levels 2 and higher. if (n->getLevel() > 0) { for (uint32_t cChild = 0; cChild < n->getChildrenCount(); cChild++) { m_ids.push(n->getChildIdentifier(cChild)); } } if (n->isLeaf()) { m_results.push_back(get_results(n)); } } if (! m_ids.empty()) { nextEntry = m_ids.front(); m_ids.pop(); hasNext = true; } else { hasNext = false; } } std::vector const& LeafQueryResult::GetIDs() const { return ids; } void LeafQueryResult::SetIDs(std::vector& v) { ids.resize(v.size()); std::copy(v.begin(), v.end(), ids.begin()); } const SpatialIndex::Region* LeafQueryResult::GetBounds() const { return bounds; } void LeafQueryResult::SetBounds(const SpatialIndex::Region* b) { bounds = new SpatialIndex::Region(*b); } LeafQueryResult::LeafQueryResult(LeafQueryResult const& other) { ids.resize(other.ids.size()); std::copy(other.ids.begin(), other.ids.end(), ids.begin()); m_id = other.m_id; bounds = other.bounds->clone(); } LeafQueryResult& LeafQueryResult::operator=(LeafQueryResult const& rhs) { if (&rhs != this) { ids.resize(rhs.ids.size()); std::copy(rhs.ids.begin(), rhs.ids.end(), ids.begin()); m_id = rhs.m_id; bounds = rhs.bounds->clone(); } return *this; } libspatialindex-1.9.3/src/capi/ObjVisitor.cc000066400000000000000000000041441355420072700210140ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ objects to implement the object visitor. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include ObjVisitor::ObjVisitor(): nResults(0) { } ObjVisitor::~ObjVisitor() { std::vector::iterator it; for (it = m_vector.begin(); it != m_vector.end(); it++) { delete *it; } } void ObjVisitor::visitNode(const SpatialIndex::INode& ) { } void ObjVisitor::visitData(const SpatialIndex::IData& d) { SpatialIndex::IData* item = dynamic_cast(const_cast(d).clone()) ; nResults += 1; m_vector.push_back(item); } void ObjVisitor::visitData(std::vector& ) { } libspatialindex-1.9.3/src/capi/Utility.cc000066400000000000000000000152661355420072700203740ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C++ object declarations to implement utilities. * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include Tools::PropertySet* GetDefaults() { Tools::PropertySet* ps = new Tools::PropertySet; Tools::Variant var; // Rtree defaults var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = 0.7; ps->setProperty("FillFactor", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 100; ps->setProperty("IndexCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 100; ps->setProperty("LeafCapacity", var); var.m_varType = Tools::VT_LONG; var.m_val.lVal = SpatialIndex::RTree::RV_RSTAR; ps->setProperty("TreeVariant", var); // var.m_varType = Tools::VT_LONGLONG; // var.m_val.llVal = 0; // ps->setProperty("IndexIdentifier", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 32; ps->setProperty("NearMinimumOverlapFactor", var); var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = 0.4; ps->setProperty("SplitDistributionFactor", var); var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = 0.3; ps->setProperty("ReinsertFactor", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 2; ps->setProperty("Dimension", var); var.m_varType = Tools::VT_BOOL; var.m_val.bVal = true; ps->setProperty("EnsureTightMBRs", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 100; ps->setProperty("IndexPoolCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 100; ps->setProperty("LeafPoolCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 1000; ps->setProperty("RegionPoolCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 500; ps->setProperty("PointPoolCapacity", var); // horizon for TPRTree var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = 20.0; ps->setProperty("Horizon", var); // Buffering defaults var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 10; ps->setProperty("Capacity", var); var.m_varType = Tools::VT_BOOL; var.m_val.bVal = false; ps->setProperty("WriteThrough", var); // Disk Storage Manager defaults var.m_varType = Tools::VT_BOOL; var.m_val.bVal = true; ps->setProperty("Overwrite", var); var.m_varType = Tools::VT_PCHAR; var.m_val.pcVal = const_cast(""); ps->setProperty("FileName", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = 4096; ps->setProperty("PageSize", var); var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = 0; ps->setProperty("ResultSetLimit", var); // Our custom properties related to whether // or not we are using a disk or memory storage manager var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = RT_Disk; ps->setProperty("IndexStorageType", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = RT_RTree; ps->setProperty("IndexType", var); var.m_varType = Tools::VT_PCHAR; var.m_val.pcVal = const_cast("dat"); ps->setProperty("FileNameDat", var); var.m_varType = Tools::VT_PCHAR; var.m_val.pcVal = const_cast("idx"); ps->setProperty("FileNameIdx", var); // Custom storage manager properties var.m_varType = Tools::VT_ULONG; var.m_val.pcVal = 0; ps->setProperty("CustomStorageCallbacksSize", var); var.m_varType = Tools::VT_PVOID; var.m_val.pcVal = 0; ps->setProperty("CustomStorageCallbacks", var); return ps; } void Page_ResultSet_Ids(IdVisitor& visitor, int64_t** ids, int64_t nStart, int64_t nResultLimit, uint64_t* nResults) { int64_t nResultCount; nResultCount = visitor.GetResultCount(); if (nResultLimit == 0) { // no offset paging nResultLimit = nResultCount; nStart = 0; } else { if ((nResultCount - (nStart + nResultLimit)) < 0) { // not enough results to fill nResultCount nStart = (std::min)(nStart, nResultCount); nResultCount = nStart + (std::min)(nResultLimit, nResultCount - nStart); } else { nResultCount = (std::min)(nResultCount, nStart + nResultLimit); } } *ids = (int64_t*) malloc (nResultLimit * sizeof(int64_t)); std::vector& results = visitor.GetResults(); for (int64_t i = nStart; i < nResultCount; ++i) { (*ids)[i - nStart] = results[i]; } *nResults = nResultCount - nStart; } void Page_ResultSet_Obj(ObjVisitor& visitor, IndexItemH** items, int64_t nStart, int64_t nResultLimit, uint64_t* nResults) { int64_t nResultCount; nResultCount = visitor.GetResultCount(); if (nResultLimit == 0) { // no offset paging nResultLimit = nResultCount; nStart = 0; } else { if ((nResultCount - (nStart + nResultLimit)) < 0) { // not enough results to fill nResultCount nStart = (std::min)(nStart, nResultCount); nResultCount = nStart + (std::min)(nResultLimit, nResultCount - nStart); } else { nResultCount = (std::min)(nResultCount, nStart + nResultLimit); } } *items = (IndexItemH*) malloc (nResultLimit * sizeof(SpatialIndex::IData*)); std::vector& results = visitor.GetResults(); // copy the Items into the newly allocated item array // we need to make sure to copy the actual Item instead // of just the pointers, as the visitor will nuke them // upon ~ for (int64_t i = nStart; i < nResultCount; ++i) { SpatialIndex::IData* result =results[i]; (*items)[i - nStart] = (IndexItemH)dynamic_cast(result->clone()); } *nResults = nResultCount - nStart; } libspatialindex-1.9.3/src/capi/sidx_api.cc000066400000000000000000003026531355420072700205300ustar00rootroot00000000000000/****************************************************************************** * Project: libsidx - A C API wrapper around libspatialindex * Purpose: C API wrapper implementation * Author: Howard Butler, hobu.inc@gmail.com ****************************************************************************** * Copyright (c) 2009, Howard Butler * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #include #include #ifdef __GNUC__ # define LAST_ERROR_BUFFER_SIZE 1024 /* * __thread is gcc specific extension for thread-local storage, that does not allow complex * constructor. We can't use any of std containers for storing mutliple error messages, but we * could at least get latest error message safely. The error count will be at most 1. The finer * solution would be to use thread-local storage from C++11, but since this library is compiled * with C++98 flag, this option is not available yet. */ static __thread struct { int code; char message[LAST_ERROR_BUFFER_SIZE]; char method[LAST_ERROR_BUFFER_SIZE]; } last_error = {0}; #else static std::stack errors; #endif #ifdef _WIN32 # pragma warning(push) # pragma warning(disable: 4127) // assignment operator could not be generated #endif #define VALIDATE_POINTER0(ptr, func) \ do { if( NULL == ptr ) { \ RTError const ret = RT_Failure; \ std::ostringstream msg; \ msg << "Pointer \'" << #ptr << "\' is NULL in \'" << (func) <<"\'."; \ std::string message(msg.str()); \ Error_PushError( ret, message.c_str(), (func)); \ return; \ }} while(0) #define VALIDATE_POINTER1(ptr, func, rc) \ do { if( NULL == ptr ) { \ RTError const ret = RT_Failure; \ std::ostringstream msg; \ msg << "Pointer \'" << #ptr << "\' is NULL in \'" << (func) <<"\'."; \ std::string message(msg.str()); \ Error_PushError( ret, message.c_str(), (func)); \ return (rc); \ }} while(0) IDX_C_START SIDX_C_DLL void Error_Reset(void) { #ifdef __GNUC__ last_error.code = 0; #else if (errors.empty()) return; for (std::size_t i=0;i(errors.size()); #endif } SIDX_C_DLL IndexH Index_Create(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "Index_Create", NULL); Tools::PropertySet* prop = reinterpret_cast(hProp); try { return (IndexH) new Index(*prop); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Create"); return NULL; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Create"); return NULL; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Create"); return NULL; } } SIDX_C_DLL IndexH Index_CreateWithStream( IndexPropertyH hProp, int (*readNext)(SpatialIndex::id_type *id, double **pMin, double **pMax, uint32_t *nDimension, const uint8_t **pData, size_t *nDataLength) ) { VALIDATE_POINTER1(hProp, "Index_CreateWithStream", NULL); Tools::PropertySet* prop = reinterpret_cast(hProp); try { return (IndexH) new Index(*prop, readNext); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_CreateWithStream"); } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_CreateWithStream"); return NULL; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_CreateWithStream"); return NULL; } return NULL; } SIDX_C_DLL void Index_Destroy(IndexH index) { VALIDATE_POINTER0(index, "Index_Destroy"); Index* idx = (Index*) index; if (idx) delete idx; } SIDX_C_DLL void Index_Flush(IndexH index) { VALIDATE_POINTER0(index, "Index_Flush"); Index* idx = (Index*) index; if (idx) { idx->flush(); } } SIDX_C_DLL RTError Index_DeleteTPData( IndexH index, int64_t id, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension ) { VALIDATE_POINTER1(index, "Index_DeleteTPData", RT_Failure); Index* idx = reinterpret_cast(index); try { idx->index().deleteData(SpatialIndex::MovingRegion(pdMin, pdMax, pdVMin, pdVMax, tStart, tEnd, nDimension), id); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_DeleteTPData"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_DeleteTPData"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_DeleteTPData"); return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_DeleteMVRData( IndexH index, int64_t id, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension ) { VALIDATE_POINTER1(index, "Index_DeleteMVRData", RT_Failure); Index* idx = reinterpret_cast(index); try { idx->index().deleteData(SpatialIndex::TimeRegion(pdMin, pdMax, tStart, tEnd, nDimension), id); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_DeleteMVRData"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_DeleteMVRData"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_DeleteMVRData"); return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_DeleteData( IndexH index, int64_t id, double* pdMin, double* pdMax, uint32_t nDimension) { VALIDATE_POINTER1(index, "Index_DeleteData", RT_Failure); Index* idx = reinterpret_cast(index); try { idx->index().deleteData(SpatialIndex::Region(pdMin, pdMax, nDimension), id); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_DeleteData"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_DeleteData"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_DeleteData"); return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_InsertTPData( IndexH index, int64_t id, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, const uint8_t* pData, size_t nDataLength ) { VALIDATE_POINTER1(index, "Index_InsertTPData", RT_Failure); Index* idx = reinterpret_cast(index); // Test the data and check for the case when mins equal maxs (x,y,z,v) // In that case, we will insert a SpatialIndex::MovingPoint // instead of a SpatialIndex::MovingRegion bool isPoint = false; SpatialIndex::IShape* shape = 0; double const epsilon = std::numeric_limits::epsilon(); double length(0), vlength(0); for (uint32_t i = 0; i < nDimension; ++i) { double delta = pdMin[i] - pdMax[i]; length += std::fabs(delta); double vDelta = pdVMin[i] - pdVMax[i]; vlength += std::fabs(vDelta); } if ((length <= epsilon) && (vlength <= epsilon)){ isPoint = true; } if (isPoint == true) { shape = new SpatialIndex::MovingPoint(pdMin, pdVMin, tStart, tEnd, nDimension); } else { shape = new SpatialIndex::MovingRegion(pdMin, pdMax, pdVMin, pdVMax, tStart, tEnd, nDimension); } try { // FIXME silently casting the nDataLength to uint32_t sucks, but // no one should be putting huge byte counts into rtree data anyway. idx->index().insertData((uint32_t)nDataLength, pData, *shape, id); delete shape; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_InsertTPData"); delete shape; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_InsertTPData"); delete shape; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_InsertTPData"); delete shape; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_InsertMVRData( IndexH index, int64_t id, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, const uint8_t* pData, size_t nDataLength ) { VALIDATE_POINTER1(index, "Index_InsertMVRData", RT_Failure); Index* idx = reinterpret_cast(index); // Test the data and check for the case when mins equal maxs // In that case, we will insert a SpatialIndex::TimePoint // instead of a SpatialIndex::timeRegion bool isPoint = false; SpatialIndex::IShape* shape = 0; double const epsilon = std::numeric_limits::epsilon(); double length(0); for (uint32_t i = 0; i < nDimension; ++i) { double delta = pdMin[i] - pdMax[i]; length += std::fabs(delta); } if (length <= epsilon){ isPoint = true; } if (isPoint == true) { shape = new SpatialIndex::TimePoint(pdMin, tStart, tEnd, nDimension); } else { shape = new SpatialIndex::TimeRegion(pdMin, pdMax, tStart, tEnd, nDimension); } try { // FIXME silently casting the nDataLength to uint32_t sucks, but // no one should be putting huge byte counts into rtree data anyway. idx->index().insertData((uint32_t)nDataLength, pData, *shape, id); delete shape; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_InsertMVRData"); delete shape; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_InsertMVRData"); delete shape; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_InsertMVRData"); delete shape; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_InsertData( IndexH index, int64_t id, double* pdMin, double* pdMax, uint32_t nDimension, const uint8_t* pData, size_t nDataLength) { VALIDATE_POINTER1(index, "Index_InsertData", RT_Failure); Index* idx = reinterpret_cast(index); // Test the data and check for the case when minx == maxx, miny == maxy // and minz == maxz. In that case, we will insert a SpatialIndex::Point // instead of a SpatialIndex::Region bool isPoint = false; SpatialIndex::IShape* shape = 0; double const epsilon = std::numeric_limits::epsilon(); double length(0); for (uint32_t i = 0; i < nDimension; ++i) { double delta = pdMin[i] - pdMax[i]; length += std::fabs(delta); } if (length <= epsilon) { isPoint = true; } if (isPoint == true) { shape = new SpatialIndex::Point(pdMin, nDimension); } else { shape = new SpatialIndex::Region(pdMin, pdMax, nDimension); } try { // FIXME silently casting the nDataLength to uint32_t sucks, but // no one should be putting huge byte counts into rtree data anyway. idx->index().insertData((uint32_t)nDataLength, pData, *shape, id); delete shape; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_InsertData"); delete shape; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_InsertData"); delete shape; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_InsertData"); delete shape; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_TPIntersects_obj( IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, IndexItemH** items, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_TPIntersects_obj", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::MovingRegion* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; try { r = new SpatialIndex::MovingRegion(pdMin, pdMax, pdVMin, pdVMax, tStart, tEnd, nDimension); idx->index().intersectsWithQuery( *r, *visitor); Page_ResultSet_Obj(*visitor, items, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_TPIntersects_obj"); delete visitor; delete r; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_TPIntersects_obj"); delete visitor; delete r; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_TPIntersects_obj"); delete visitor; delete r; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_MVRIntersects_obj( IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, IndexItemH** items, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_MVRIntersects_obj", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::TimeRegion* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; try { r = new SpatialIndex::TimeRegion(pdMin, pdMax, tStart, tEnd, nDimension); idx->index().intersectsWithQuery( *r, *visitor); Page_ResultSet_Obj(*visitor, items, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_MVRIntersects_obj"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_TPIntersects_obj"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_TPIntersects_obj"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_Intersects_obj( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, IndexItemH** items, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Intersects_obj", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; SpatialIndex::Region* r = 0; try { r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().intersectsWithQuery( *r, *visitor); Page_ResultSet_Obj(*visitor, items, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { delete r; delete visitor; Error_PushError(RT_Failure, e.what().c_str(), "Index_Intersects_obj"); } catch (std::exception const& e) { delete r; delete visitor; Error_PushError(RT_Failure, e.what(), "Index_Intersects_obj"); delete visitor; } catch (...) { delete r; delete visitor; Error_PushError(RT_Failure, "Unknown Error", "Index_Intersects_obj"); } return RT_None; } SIDX_C_DLL RTError Index_Contains_obj( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, IndexItemH** items, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Contains_obj", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; SpatialIndex::Region* r = 0; try { r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().containsWhatQuery(*r, *visitor); Page_ResultSet_Obj(*visitor, items, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { delete r; delete visitor; Error_PushError(RT_Failure, e.what().c_str(), "Index_Contains_obj"); } catch (std::exception const& e) { delete r; delete visitor; Error_PushError(RT_Failure, e.what(), "Index_Contains_obj"); delete visitor; } catch (...) { delete r; delete visitor; Error_PushError(RT_Failure, "Unknown Error", "Index_Contains_obj"); } return RT_None; } SIDX_C_DLL RTError Index_TPIntersects_id( IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, int64_t** ids, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_TPIntersects_id", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::MovingRegion* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); IdVisitor* visitor = new IdVisitor; try { r = new SpatialIndex::MovingRegion(pdMin, pdMax, pdVMin, pdVMax, tStart, tEnd, nDimension); idx->index().intersectsWithQuery( *r, *visitor); Page_ResultSet_Ids(*visitor, ids, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_TPIntersects_id"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_TPIntersects_id"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_TPIntersects_id"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_MVRIntersects_id( IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, int64_t** ids, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_MVRIntersects_id", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::TimeRegion* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); IdVisitor* visitor = new IdVisitor; try { r = new SpatialIndex::TimeRegion(pdMin, pdMax, tStart, tEnd, nDimension); idx->index().intersectsWithQuery( *r, *visitor); Page_ResultSet_Ids(*visitor, ids, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_MVRIntersects_id"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_MVRIntersects_id"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_MVRIntersects_id"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_Contains_id(IndexH index, double *pdMin, double *pdMax, uint32_t nDimension, int64_t **ids, uint64_t *nResults) { VALIDATE_POINTER1(index, "Index_Contains_id", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::Region* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); IdVisitor* visitor = new IdVisitor; try { r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().containsWhatQuery(*r, *visitor); Page_ResultSet_Ids(*visitor, ids, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Contains_id"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Contains_id"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Contains_id"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_Intersects_id( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, int64_t** ids, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Intersects_id", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::Region* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); IdVisitor* visitor = new IdVisitor; try { r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().intersectsWithQuery( *r, *visitor); Page_ResultSet_Ids(*visitor, ids, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Intersects_id"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Intersects_id"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Intersects_id"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_TPIntersects_count( IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_TPIntersects_count", RT_Failure); Index* idx = reinterpret_cast(index); SpatialIndex::MovingRegion* r = 0; CountVisitor* visitor = new CountVisitor; try { r = new SpatialIndex::MovingRegion(pdMin, pdMax, pdVMin, pdVMax, tStart, tEnd, nDimension); idx->index().intersectsWithQuery( *r, *visitor); *nResults = visitor->GetResultCount(); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_TPIntersects_count"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_TPIntersects_count"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_TPIntersects_count"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_MVRIntersects_count( IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_MVRIntersects_count", RT_Failure); Index* idx = reinterpret_cast(index); SpatialIndex::TimeRegion* r = 0; CountVisitor* visitor = new CountVisitor; try { r = new SpatialIndex::TimeRegion(pdMin, pdMax, tStart, tEnd, nDimension); idx->index().intersectsWithQuery( *r, *visitor); *nResults = visitor->GetResultCount(); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_MVRIntersects_count"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_MVRIntersects_count"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_MVRIntersects_count"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_Intersects_count( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Intersects_count", RT_Failure); Index* idx = reinterpret_cast(index); SpatialIndex::Region* r = 0; CountVisitor* visitor = new CountVisitor; try { r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().intersectsWithQuery( *r, *visitor); *nResults = visitor->GetResultCount(); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Intersects_count"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Intersects_count"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Intersects_count"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_Contains_count( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Contains_count", RT_Failure); Index* idx = reinterpret_cast(index); SpatialIndex::Region* r = 0; CountVisitor* visitor = new CountVisitor; try { r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().containsWhatQuery(*r, *visitor); *nResults = visitor->GetResultCount(); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Contains_count"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Contains_count"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Contains_count"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_SegmentIntersects_obj( IndexH index, double* pdStartPoint, double* pdEndPoint, uint32_t nDimension, IndexItemH** items, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Intersects_obj", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::LineSegment* l = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; try { l = new SpatialIndex::LineSegment(pdStartPoint, pdEndPoint, nDimension); idx->index().intersectsWithQuery( *l, *visitor); Page_ResultSet_Obj(*visitor, items, nStart, nResultLimit, nResults); delete l; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Intersects_obj"); delete l; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Intersects_obj"); delete l; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Intersects_obj"); delete l; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_SegmentIntersects_id( IndexH index, double* pdStartPoint, double* pdEndPoint, uint32_t nDimension, int64_t** ids, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Intersects_id", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::LineSegment* l = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); IdVisitor* visitor = new IdVisitor; try { l = new SpatialIndex::LineSegment(pdStartPoint, pdEndPoint, nDimension); idx->index().intersectsWithQuery( *l, *visitor); Page_ResultSet_Ids(*visitor, ids, nStart, nResultLimit, nResults); delete l; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Intersects_id"); delete l; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Intersects_id"); delete l; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Intersects_id"); delete l; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_SegmentIntersects_count( IndexH index, double* pdStartPoint, double* pdEndPoint, uint32_t nDimension, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Intersects_count", RT_Failure); Index* idx = reinterpret_cast(index); SpatialIndex::LineSegment* l = 0; CountVisitor* visitor = new CountVisitor; try { l = new SpatialIndex::LineSegment(pdStartPoint, pdEndPoint, nDimension); idx->index().intersectsWithQuery( *l, *visitor); *nResults = visitor->GetResultCount(); delete l; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Intersects_count"); delete l; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Intersects_count"); delete l; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Intersects_count"); delete l; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_TPNearestNeighbors_id(IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, int64_t** ids, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_TPNearestNeighbors_id", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::MovingRegion* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); IdVisitor* visitor = new IdVisitor; try { r = new SpatialIndex::MovingRegion(pdMin, pdMax, pdVMin, pdVMax, tStart, tEnd, nDimension); idx->index().nearestNeighborQuery( static_cast(*nResults), *r, *visitor); Page_ResultSet_Ids(*visitor, ids, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_TPNearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_TPNearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_TPNearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_MVRNearestNeighbors_id(IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, int64_t** ids, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_MVRNearestNeighbors_id", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::TimeRegion* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); IdVisitor* visitor = new IdVisitor; try { r = new SpatialIndex::TimeRegion(pdMin, pdMax, tStart, tEnd, nDimension); idx->index().nearestNeighborQuery((uint32_t) *nResults, *r, *visitor); Page_ResultSet_Ids(*visitor, ids, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_MVRNearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_MVRNearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_MVRNearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_NearestNeighbors_id(IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, int64_t** ids, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_NearestNeighbors_id", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::Region* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); IdVisitor* visitor = new IdVisitor; try { r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().nearestNeighborQuery( static_cast(*nResults), *r, *visitor); Page_ResultSet_Ids(*visitor, ids, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_NearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_NearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_NearestNeighbors_id"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_TPNearestNeighbors_obj(IndexH index, double* pdMin, double* pdMax, double* pdVMin, double* pdVMax, double tStart, double tEnd, uint32_t nDimension, IndexItemH** items, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_TPNearestNeighbors_obj", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::MovingRegion* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; try { r = new SpatialIndex::MovingRegion(pdMin, pdMax, pdVMin, pdVMax, tStart, tEnd, nDimension); idx->index().nearestNeighborQuery( static_cast(*nResults), *r, *visitor); Page_ResultSet_Obj(*visitor, items, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_TPNearestNeighbors_obj"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_TPNearestNeighbors_obj"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_NearestNeighbors_obj"); delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_MVRNearestNeighbors_obj(IndexH index, double* pdMin, double* pdMax, double tStart, double tEnd, uint32_t nDimension, IndexItemH** items, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_MVRNearestNeighbors_obj", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::TimeRegion* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; try { r = new SpatialIndex::TimeRegion(pdMin, pdMax, tStart, tEnd, nDimension); idx->index().nearestNeighborQuery( (uint32_t)*nResults, *r, *visitor); Page_ResultSet_Obj(*visitor, items, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_MVRNearestNeighbors_obj"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_MVRNearestNeighbors_obj"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_NearestNeighbors_obj"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_NearestNeighbors_obj(IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, IndexItemH** items, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_NearestNeighbors_obj", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; SpatialIndex::Region* r = 0; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; try { r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().nearestNeighborQuery( static_cast(*nResults), *r, *visitor); Page_ResultSet_Obj(*visitor, items, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_NearestNeighbors_obj"); delete r; delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_NearestNeighbors_obj"); delete r; delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_NearestNeighbors_obj"); delete r; delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_Intersects_internal( IndexH index, double* pdMin, double* pdMax, uint32_t nDimension, IndexItemH** ids, uint64_t* nResults) { VALIDATE_POINTER1(index, "Index_Intersects_internal", RT_Failure); Index* idx = reinterpret_cast(index); int64_t nResultLimit, nStart; nResultLimit = idx->GetResultSetLimit(); nStart = idx->GetResultSetOffset(); ObjVisitor* visitor = new ObjVisitor; try { SpatialIndex::Region* r = new SpatialIndex::Region(pdMin, pdMax, nDimension); idx->index().internalNodesQuery( *r, *visitor); Page_ResultSet_Obj(*visitor, ids, nStart, nResultLimit, nResults); delete r; delete visitor; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_Intersects_internal"); delete visitor; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_Intersects_internal"); delete visitor; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_Intersects_internal"); delete visitor; return RT_Failure; } return RT_None; } SIDX_C_DLL RTError Index_GetBounds( IndexH index, double** ppdMin, double** ppdMax, uint32_t* nDimension) { VALIDATE_POINTER1(index, "Index_GetBounds", RT_Failure); Index* idx = reinterpret_cast(index); BoundsQuery* query = new BoundsQuery; try { idx->index().queryStrategy( *query); const SpatialIndex::Region* bounds = query->GetBounds(); if (bounds == 0) { *nDimension = 0; delete query; return RT_None; } *nDimension =bounds->getDimension(); *ppdMin = (double*) malloc (*nDimension * sizeof(double)); *ppdMax = (double*) malloc (*nDimension * sizeof(double)); for (uint32_t i=0; i< *nDimension; ++i) { (*ppdMin)[i] = bounds->getLow(i); (*ppdMax)[i] = bounds->getHigh(i); } delete query; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_GetBounds"); delete query; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_GetBounds"); delete query; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_GetBounds"); delete query; return RT_Failure; } return RT_None; } SIDX_DLL RTError Index_SetResultSetOffset(IndexH index, int64_t value) { try { VALIDATE_POINTER1(index, "Index_SetResultSetOffset", RT_Failure); Index* idx = reinterpret_cast(index); idx->SetResultSetOffset(value); } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_SetResultSetOffset"); return RT_Failure; } return RT_None; } SIDX_DLL int64_t Index_GetResultSetOffset(IndexH index) { VALIDATE_POINTER1(index, "Index_GetResultSetOffset", 0); Index* idx = reinterpret_cast(index); return idx->GetResultSetOffset(); } SIDX_DLL RTError Index_SetResultSetLimit(IndexH index, int64_t value) { try { VALIDATE_POINTER1(index, "Index_SetResultSetLimit", RT_Failure); Index* idx = reinterpret_cast(index); idx->SetResultSetLimit(value); } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_SetResultSetLimit"); return RT_Failure; } return RT_None; } SIDX_DLL int64_t Index_GetResultSetLimit(IndexH index) { VALIDATE_POINTER1(index, "Index_GetResultSetLimit", 0); Index* idx = reinterpret_cast(index); return idx->GetResultSetLimit(); } SIDX_C_DLL uint32_t Index_IsValid(IndexH index) { VALIDATE_POINTER1(index, "Index_IsValid", 0); Index* idx = reinterpret_cast(index); return static_cast(idx->index().isIndexValid()); } SIDX_C_DLL IndexPropertyH Index_GetProperties(IndexH index) { VALIDATE_POINTER1(index, "Index_GetProperties", 0); Index* idx = reinterpret_cast(index); Tools::PropertySet* ps = new Tools::PropertySet; *ps = idx->GetProperties(); Tools::PropertySet base_props; idx->index().getIndexProperties(base_props); ps->setProperty("IndexIdentifier", base_props.getProperty("IndexIdentifier")); return (IndexPropertyH)ps; } SIDX_C_DLL void Index_ClearBuffer(IndexH index) { VALIDATE_POINTER0(index, "Index_ClearBuffer"); Index* idx = reinterpret_cast(index); idx->buffer().clear(); } SIDX_C_DLL void Index_DestroyObjResults(IndexItemH* results, uint32_t nResults) { VALIDATE_POINTER0(results, "Index_DestroyObjResults"); SpatialIndex::IData* it; for (uint32_t i=0; i< nResults; ++i) { if (results[i] != NULL) { it = reinterpret_cast(results[i]); if (it != 0) delete it; } } std::free(results); } SIDX_C_DLL void Index_Free(void* results) { VALIDATE_POINTER0(results, "Index_Free"); if (results != 0) std::free(results); } SIDX_C_DLL RTError Index_GetLeaves( IndexH index, uint32_t* nNumLeafNodes, uint32_t** nLeafSizes, int64_t** nLeafIDs, int64_t*** nLeafChildIDs, double*** pppdMin, double*** pppdMax, uint32_t* nDimension) { VALIDATE_POINTER1(index, "Index_GetLeaves", RT_Failure); Index* idx = reinterpret_cast(index); std::vector::const_iterator i; LeafQuery* query = 0; // Fetch the dimensionality of the index Tools::PropertySet ps; idx->index().getIndexProperties(ps); Tools::Variant var; var = ps.getProperty("Dimension"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property Dimension must be Tools::VT_ULONG", "Index_GetLeaves"); return RT_Failure; } } *nDimension = var.m_val.ulVal; try { query = new LeafQuery; idx->index().queryStrategy( *query); const std::vector& results = query->GetResults(); *nNumLeafNodes = (uint32_t)results.size(); *nLeafSizes = (uint32_t*) malloc (*nNumLeafNodes * sizeof(uint32_t)); *nLeafIDs = (int64_t*) malloc (*nNumLeafNodes * sizeof(int64_t)); *nLeafChildIDs = (int64_t**) malloc(*nNumLeafNodes * sizeof(int64_t*)); *pppdMin = (double**) malloc (*nNumLeafNodes * sizeof(double*)); *pppdMax = (double**) malloc (*nNumLeafNodes * sizeof(double*)); uint32_t k=0; for (i = results.begin(); i != results.end(); ++i) { std::vector const& ids = (*i).GetIDs(); const SpatialIndex::Region* b = (*i).GetBounds(); (*nLeafIDs)[k] = (*i).getIdentifier(); (*nLeafSizes)[k] = (uint32_t)ids.size(); (*nLeafChildIDs)[k] = (int64_t*) malloc( (*nLeafSizes)[k] * sizeof(int64_t)); (*pppdMin)[k] = (double*) malloc (*nDimension * sizeof(double)); (*pppdMax)[k] = (double*) malloc (*nDimension * sizeof(double)); for (uint32_t c=0; c< *nDimension; ++c) { (*pppdMin)[k][c] = b->getLow(c); (*pppdMax)[k][c] = b->getHigh(c); } for (uint32_t cChild = 0; cChild < ids.size(); cChild++) { (*nLeafChildIDs)[k][cChild] = ids[cChild]; } ++k; } delete query; } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "Index_GetLeaves"); delete query; return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "Index_GetLeaves"); delete query; return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "Index_GetLeaves"); delete query; return RT_Failure; } return RT_None; } SIDX_C_DLL void IndexItem_Destroy(IndexItemH item) { VALIDATE_POINTER0(item, "IndexItem_Destroy"); SpatialIndex::IData* it = reinterpret_cast(item); if (it != 0) delete it; } SIDX_C_DLL RTError IndexItem_GetData( IndexItemH item, uint8_t** data, uint64_t* length) { VALIDATE_POINTER1(item, "IndexItem_GetData", RT_Failure); SpatialIndex::IData* it = reinterpret_cast(item); uint8_t* p_data; uint32_t* l= new uint32_t; it->getData(*l,&p_data); *length = (uint64_t)*l; *data = (uint8_t*) malloc (*length * sizeof(uint8_t)); memcpy(*data, p_data, *length); delete[] p_data; delete l; return RT_None; } SIDX_C_DLL int64_t IndexItem_GetID(IndexItemH item) { VALIDATE_POINTER1(item, "IndexItem_GetID",0); SpatialIndex::IData* it = reinterpret_cast(item); int64_t value = it->getIdentifier(); return value; } SIDX_C_DLL RTError IndexItem_GetBounds( IndexItemH item, double** ppdMin, double** ppdMax, uint32_t* nDimension) { VALIDATE_POINTER1(item, "IndexItem_GetBounds", RT_Failure); SpatialIndex::IData* it = reinterpret_cast(item); SpatialIndex::IShape* s; it->getShape(&s); SpatialIndex::Region *bounds = new SpatialIndex::Region(); s->getMBR(*bounds); if (bounds == 0) { *nDimension = 0; delete bounds; delete s; return RT_None; } *nDimension = bounds->getDimension(); *ppdMin = (double*) malloc (*nDimension * sizeof(double)); *ppdMax = (double*) malloc (*nDimension * sizeof(double)); if (ppdMin == NULL || ppdMax == NULL) { Error_PushError(RT_Failure, "Unable to allocation bounds array(s)", "IndexItem_GetBounds"); delete bounds; delete s; return RT_Failure; } for (uint32_t i=0; i< *nDimension; ++i) { (*ppdMin)[i] = bounds->getLow(i); (*ppdMax)[i] = bounds->getHigh(i); } delete bounds; delete s; return RT_None; } SIDX_C_DLL IndexPropertyH IndexProperty_Create() { Tools::PropertySet* ps = GetDefaults(); Tools::Variant var; return (IndexPropertyH)ps; } SIDX_C_DLL void IndexProperty_Destroy(IndexPropertyH hProp) { VALIDATE_POINTER0(hProp, "IndexProperty_Destroy"); Tools::PropertySet* prop = reinterpret_cast(hProp); if (prop != 0) delete prop; } SIDX_C_DLL RTError IndexProperty_SetIndexType(IndexPropertyH hProp, RTIndexType value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetIndexType", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { if (!(value == RT_RTree || value == RT_MVRTree || value == RT_TPRTree)) { throw std::runtime_error("Inputted value is not a valid index type"); } Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("IndexType", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetIndexType"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetIndexType"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetIndexType"); return RT_Failure; } return RT_None; } SIDX_C_DLL RTIndexType IndexProperty_GetIndexType(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetIndexType", RT_InvalidIndexType); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("IndexType"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property IndexType must be Tools::VT_ULONG", "IndexProperty_GetIndexType"); return RT_InvalidIndexType; } return (RTIndexType) var.m_val.ulVal; } Error_PushError(RT_Failure, "Property IndexType was empty", "IndexProperty_GetIndexType"); return RT_InvalidIndexType; } SIDX_C_DLL RTError IndexProperty_SetDimension(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetDimension", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("Dimension", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetDimension"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetDimension"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetDimension"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetDimension(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetDimension", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("Dimension"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property IndexType must be Tools::VT_ULONG", "IndexProperty_GetDimension"); return 0; } return var.m_val.ulVal; } // A zero dimension index is invalid. Error_PushError(RT_Failure, "Property Dimension was empty", "IndexProperty_GetDimension"); return 0; } SIDX_C_DLL RTError IndexProperty_SetIndexVariant( IndexPropertyH hProp, RTIndexVariant value) { using namespace SpatialIndex; VALIDATE_POINTER1(hProp, "IndexProperty_SetIndexVariant", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; try { if (!(value == RT_Linear || value == RT_Quadratic || value == RT_Star)) { throw std::runtime_error("Inputted value is not a valid index variant"); } var.m_varType = Tools::VT_LONG; RTIndexType type = IndexProperty_GetIndexType(hProp); if (type == RT_InvalidIndexType ) { Error_PushError(RT_Failure, "Index type is not properly set", "IndexProperty_SetIndexVariant"); return RT_Failure; } if (type == RT_RTree) { var.m_val.lVal = static_cast(value); prop->setProperty("TreeVariant", var); } else if (type == RT_MVRTree) { var.m_val.lVal = static_cast(value); prop->setProperty("TreeVariant", var); } else if (type == RT_TPRTree) { var.m_val.lVal = static_cast(value); prop->setProperty("TreeVariant", var); } } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetIndexVariant"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetIndexCapacity"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetIndexCapacity"); return RT_Failure; } return RT_None; } SIDX_C_DLL RTIndexVariant IndexProperty_GetIndexVariant(IndexPropertyH hProp) { VALIDATE_POINTER1( hProp, "IndexProperty_GetIndexVariant", RT_InvalidIndexVariant); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONG) { Error_PushError(RT_Failure, "Property IndexVariant must be Tools::VT_LONG", "IndexProperty_GetIndexVariant"); return RT_InvalidIndexVariant; } return static_cast(var.m_val.lVal); } // if we didn't get anything, we're returning an error condition Error_PushError(RT_Failure, "Property IndexVariant was empty", "IndexProperty_GetIndexVariant"); return RT_InvalidIndexVariant; } SIDX_C_DLL RTError IndexProperty_SetIndexStorage( IndexPropertyH hProp, RTStorageType value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetIndexStorage", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { if (!(value == RT_Disk || value == RT_Memory || value == RT_Custom)) { throw std::runtime_error("Inputted value is not a valid index storage type"); } Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("IndexStorageType", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetIndexStorage"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetIndexStorage"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetIndexStorage"); return RT_Failure; } return RT_None; } SIDX_C_DLL RTStorageType IndexProperty_GetIndexStorage(IndexPropertyH hProp) { VALIDATE_POINTER1( hProp, "IndexProperty_GetIndexStorage", RT_InvalidStorageType); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("IndexStorageType"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property IndexStorage must be Tools::VT_ULONG", "IndexProperty_GetIndexStorage"); return RT_InvalidStorageType; } return static_cast(var.m_val.ulVal); } // if we didn't get anything, we're returning an error condition Error_PushError(RT_Failure, "Property IndexStorage was empty", "IndexProperty_GetIndexStorage"); return RT_InvalidStorageType; } SIDX_C_DLL RTError IndexProperty_SetIndexCapacity(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetIndexCapacity", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("IndexCapacity", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetIndexCapacity"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetIndexCapacity"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetIndexCapacity"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetIndexCapacity(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetIndexCapacity", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("IndexCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property IndexCapacity must be Tools::VT_ULONG", "IndexProperty_GetIndexCapacity"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property IndexCapacity was empty", "IndexProperty_GetIndexCapacity"); return 0; } SIDX_C_DLL RTError IndexProperty_SetLeafCapacity( IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetLeafCapacity", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("LeafCapacity", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetLeafCapacity"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetLeafCapacity"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetLeafCapacity"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetLeafCapacity(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetLeafCapacity", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("LeafCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property LeafCapacity must be Tools::VT_ULONG", "IndexProperty_GetLeafCapacity"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property LeafCapacity was empty", "IndexProperty_GetLeafCapacity"); return 0; } SIDX_C_DLL RTError IndexProperty_SetPagesize( IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetPagesize", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("PageSize", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetPagesize"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetPagesize"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetPagesize"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetPagesize(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetPagesize", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("PageSize"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property PageSize must be Tools::VT_ULONG", "IndexProperty_GetPagesize"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property PageSize was empty", "IndexProperty_GetPagesize"); return 0; } SIDX_C_DLL RTError IndexProperty_SetLeafPoolCapacity( IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetLeafPoolCapacity", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("LeafPoolCapacity", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetLeafPoolCapacity"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetLeafPoolCapacity"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetLeafPoolCapacity"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetLeafPoolCapacity(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetLeafPoolCapacity", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("LeafPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property LeafPoolCapacity must be Tools::VT_ULONG", "IndexProperty_GetLeafPoolCapacity"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property LeafPoolCapacity was empty", "IndexProperty_GetLeafPoolCapacity"); return 0; } SIDX_C_DLL RTError IndexProperty_SetIndexPoolCapacity(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetIndexPoolCapacity", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("IndexPoolCapacity", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetIndexPoolCapacity"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetIndexPoolCapacity"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetIndexPoolCapacity"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetIndexPoolCapacity(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetIndexPoolCapacity", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("IndexPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property IndexPoolCapacity must be Tools::VT_ULONG", "IndexProperty_GetIndexPoolCapacity"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property IndexPoolCapacity was empty", "IndexProperty_GetIndexPoolCapacity"); return 0; } SIDX_C_DLL RTError IndexProperty_SetRegionPoolCapacity(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetRegionPoolCapacity", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("RegionPoolCapacity", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetRegionPoolCapacity"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetRegionPoolCapacity"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetRegionPoolCapacity"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetRegionPoolCapacity(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetRegionPoolCapacity", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("RegionPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property RegionPoolCapacity must be Tools::VT_ULONG", "IndexProperty_GetRegionPoolCapacity"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property RegionPoolCapacity was empty", "IndexProperty_GetRegionPoolCapacity"); return 0; } SIDX_C_DLL RTError IndexProperty_SetPointPoolCapacity(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetPointPoolCapacity", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("PointPoolCapacity", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetPointPoolCapacity"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetPointPoolCapacity"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetPointPoolCapacity"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetPointPoolCapacity(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetPointPoolCapacity", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("PointPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property PointPoolCapacity must be Tools::VT_ULONG", "IndexProperty_GetPointPoolCapacity"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property PointPoolCapacity was empty", "IndexProperty_GetPointPoolCapacity"); return 0; } SIDX_C_DLL RTError IndexProperty_SetNearMinimumOverlapFactor( IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1( hProp, "IndexProperty_SetNearMinimumOverlapFactor", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("NearMinimumOverlapFactor", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetNearMinimumOverlapFactor"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetNearMinimumOverlapFactor"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetNearMinimumOverlapFactor"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetNearMinimumOverlapFactor(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetNearMinimumOverlapFactor", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("NearMinimumOverlapFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property NearMinimumOverlapFactor must be Tools::VT_ULONG", "IndexProperty_GetNearMinimumOverlapFactor"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property NearMinimumOverlapFactor was empty", "IndexProperty_GetNearMinimumOverlapFactor"); return 0; } SIDX_C_DLL RTError IndexProperty_SetBufferingCapacity(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetBufferingCapacity", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("Capacity", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetBufferingCapacity"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetBufferingCapacity"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetBufferingCapacity"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetBufferingCapacity(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetBufferingCapacity", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("Capacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property Capacity must be Tools::VT_ULONG", "IndexProperty_GetBufferingCapacity"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property Capacity was empty", "IndexProperty_GetBufferingCapacity"); return 0; } SIDX_C_DLL RTError IndexProperty_SetEnsureTightMBRs( IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetEnsureTightMBRs", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { if (value > 1 ) { Error_PushError(RT_Failure, "EnsureTightMBRs is a boolean value and must be 1 or 0", "IndexProperty_SetEnsureTightMBRs"); return RT_Failure; } Tools::Variant var; var.m_varType = Tools::VT_BOOL; var.m_val.blVal = value != 0; prop->setProperty("EnsureTightMBRs", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetEnsureTightMBRs"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetEnsureTightMBRs"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetEnsureTightMBRs"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetEnsureTightMBRs(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetEnsureTightMBRs", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("EnsureTightMBRs"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) { Error_PushError(RT_Failure, "Property EnsureTightMBRs must be Tools::VT_BOOL", "IndexProperty_GetEnsureTightMBRs"); return 0; } return var.m_val.blVal; } // return nothing for an error Error_PushError(RT_Failure, "Property EnsureTightMBRs was empty", "IndexProperty_GetEnsureTightMBRs"); return 0; } SIDX_C_DLL RTError IndexProperty_SetWriteThrough(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetWriteThrough", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { if (value > 1 ) { Error_PushError(RT_Failure, "WriteThrough is a boolean value and must be 1 or 0", "IndexProperty_SetWriteThrough"); return RT_Failure; } Tools::Variant var; var.m_varType = Tools::VT_BOOL; var.m_val.blVal = value != 0; prop->setProperty("WriteThrough", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetWriteThrough"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetWriteThrough"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetWriteThrough"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetWriteThrough(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetWriteThrough", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("WriteThrough"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) { Error_PushError(RT_Failure, "Property WriteThrough must be Tools::VT_BOOL", "IndexProperty_GetWriteThrough"); return 0; } return var.m_val.blVal; } // return nothing for an error Error_PushError(RT_Failure, "Property WriteThrough was empty", "IndexProperty_GetWriteThrough"); return 0; } SIDX_C_DLL RTError IndexProperty_SetOverwrite(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetOverwrite", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { if (value > 1 ) { Error_PushError(RT_Failure, "Overwrite is a boolean value and must be 1 or 0", "IndexProperty_SetOverwrite"); return RT_Failure; } Tools::Variant var; var.m_varType = Tools::VT_BOOL; var.m_val.blVal = value != 0; prop->setProperty("Overwrite", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetOverwrite"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetOverwrite"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetOverwrite"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetOverwrite(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetOverwrite", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("Overwrite"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) { Error_PushError(RT_Failure, "Property Overwrite must be Tools::VT_BOOL", "IndexProperty_GetOverwrite"); return 0; } return var.m_val.blVal; } // return nothing for an error Error_PushError(RT_Failure, "Property Overwrite was empty", "IndexProperty_GetOverwrite"); return 0; } SIDX_C_DLL RTError IndexProperty_SetFillFactor( IndexPropertyH hProp, double value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetFillFactor", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = value; prop->setProperty("FillFactor", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetFillFactor"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetFillFactor"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetFillFactor"); return RT_Failure; } return RT_None; } SIDX_C_DLL double IndexProperty_GetFillFactor(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetFillFactor", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("FillFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE) { Error_PushError(RT_Failure, "Property FillFactor must be Tools::VT_DOUBLE", "IndexProperty_GetFillFactor"); return 0; } return var.m_val.dblVal; } // return nothing for an error Error_PushError(RT_Failure, "Property FillFactor was empty", "IndexProperty_GetFillFactor"); return 0; } SIDX_C_DLL RTError IndexProperty_SetSplitDistributionFactor( IndexPropertyH hProp, double value) { VALIDATE_POINTER1( hProp, "IndexProperty_SetSplitDistributionFactor", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = value; prop->setProperty("SplitDistributionFactor", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetSplitDistributionFactor"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetSplitDistributionFactor"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetSplitDistributionFactor"); return RT_Failure; } return RT_None; } SIDX_C_DLL double IndexProperty_GetSplitDistributionFactor(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetSplitDistributionFactor", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("SplitDistributionFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE) { Error_PushError(RT_Failure, "Property SplitDistributionFactor must be Tools::VT_DOUBLE", "IndexProperty_GetSplitDistributionFactor"); return 0; } return var.m_val.dblVal; } // return nothing for an error Error_PushError(RT_Failure, "Property SplitDistributionFactor was empty", "IndexProperty_GetSplitDistributionFactor"); return 0; } SIDX_C_DLL RTError IndexProperty_SetTPRHorizon(IndexPropertyH hProp, double value) { VALIDATE_POINTER1( hProp, "IndexProperty_SetTPRHorizon", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = value; prop->setProperty("Horizon", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetTPRHorizon"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetTPRHorizon"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetTPRHorizon"); return RT_Failure; } return RT_None; } SIDX_C_DLL double IndexProperty_GetTPRHorizon(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetTPRHorizon", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("Horizon"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE) { Error_PushError(RT_Failure, "Property Horizon must be Tools::VT_DOUBLE", "IndexProperty_GetTPRHorizon"); return 0; } return var.m_val.dblVal; } // return nothing for an error Error_PushError(RT_Failure, "Property Horizon was empty", "IndexProperty_GetTPRHorizon"); return 0; } SIDX_C_DLL RTError IndexProperty_SetReinsertFactor( IndexPropertyH hProp, double value) { VALIDATE_POINTER1( hProp, "IndexProperty_SetReinsertFactor", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = value; prop->setProperty("ReinsertFactor", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetReinsertFactor"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetReinsertFactor"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetReinsertFactor"); return RT_Failure; } return RT_None; } SIDX_C_DLL double IndexProperty_GetReinsertFactor(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetReinsertFactor", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("ReinsertFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE) { Error_PushError(RT_Failure, "Property ReinsertFactor must be Tools::VT_DOUBLE", "IndexProperty_GetReinsertFactor"); return 0; } return var.m_val.dblVal; } // return nothing for an error Error_PushError(RT_Failure, "Property ReinsertFactor was empty", "IndexProperty_GetReinsertFactor"); return 0; } SIDX_C_DLL RTError IndexProperty_SetFileName( IndexPropertyH hProp, const char* value) { VALIDATE_POINTER1( hProp, "IndexProperty_SetFileName", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_PCHAR; var.m_val.pcVal = STRDUP(value); // not sure if we should copy here prop->setProperty("FileName", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetFileName"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetFileName"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetFileName"); return RT_Failure; } return RT_None; } SIDX_C_DLL char* IndexProperty_GetFileName(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetFileName", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("FileName"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_PCHAR) { Error_PushError(RT_Failure, "Property FileName must be Tools::VT_PCHAR", "IndexProperty_GetFileName"); return NULL; } return STRDUP(var.m_val.pcVal); } // return nothing for an error Error_PushError(RT_Failure, "Property FileName was empty", "IndexProperty_GetFileName"); return NULL; } SIDX_C_DLL RTError IndexProperty_SetFileNameExtensionDat( IndexPropertyH hProp, const char* value) { VALIDATE_POINTER1( hProp, "IndexProperty_SetFileNameExtensionDat", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_PCHAR; var.m_val.pcVal = STRDUP(value); // not sure if we should copy here prop->setProperty("FileNameDat", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetFileNameExtensionDat"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetFileNameExtensionDat"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetFileNameExtensionDat"); return RT_Failure; } return RT_None; } SIDX_C_DLL char* IndexProperty_GetFileNameExtensionDat(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetFileNameExtensionDat", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("FileNameDat"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_PCHAR) { Error_PushError(RT_Failure, "Property FileNameDat must be Tools::VT_PCHAR", "IndexProperty_GetFileNameExtensionDat"); return NULL; } return STRDUP(var.m_val.pcVal); } // return nothing for an error Error_PushError(RT_Failure, "Property FileNameDat was empty", "IndexProperty_GetFileNameExtensionDat"); return NULL; } SIDX_C_DLL RTError IndexProperty_SetFileNameExtensionIdx( IndexPropertyH hProp, const char* value) { VALIDATE_POINTER1( hProp, "IndexProperty_SetFileNameExtensionIdx", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_PCHAR; var.m_val.pcVal = STRDUP(value); // not sure if we should copy here prop->setProperty("FileNameIdx", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetFileNameExtensionIdx"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetFileNameExtensionIdx"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetFileNameExtensionIdx"); return RT_Failure; } return RT_None; } SIDX_C_DLL char* IndexProperty_GetFileNameExtensionIdx(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetFileNameExtensionIdx", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("FileNameIdx"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_PCHAR) { Error_PushError(RT_Failure, "Property FileNameIdx must be Tools::VT_PCHAR", "IndexProperty_GetFileNameExtensionIdx"); return NULL; } return STRDUP(var.m_val.pcVal); } // return nothing for an error Error_PushError(RT_Failure, "Property FileNameIdx was empty", "IndexProperty_GetFileNameExtensionIdx"); return NULL; } SIDX_C_DLL RTError IndexProperty_SetCustomStorageCallbacksSize(IndexPropertyH hProp, uint32_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetCustomStorageCallbacksSize", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = value; prop->setProperty("CustomStorageCallbacksSize", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetCustomStorageCallbacksSize"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetCustomStorageCallbacksSize"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetCustomStorageCallbacksSize"); return RT_Failure; } return RT_None; } SIDX_C_DLL uint32_t IndexProperty_GetCustomStorageCallbacksSize(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetCustomStorageCallbacksSize", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("CustomStorageCallbacksSize"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) { Error_PushError(RT_Failure, "Property CustomStorageCallbacksSize must be Tools::VT_ULONG", "IndexProperty_GetCustomStorageCallbacksSize"); return 0; } return var.m_val.ulVal; } // return nothing for an error Error_PushError(RT_Failure, "Property CustomStorageCallbacksSize was empty", "IndexProperty_GetCustomStorageCallbacksSize"); return 0; } SIDX_C_DLL RTError IndexProperty_SetCustomStorageCallbacks( IndexPropertyH hProp, const void* value) { VALIDATE_POINTER1( hProp, "IndexProperty_SetCustomStorageCallbacks", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); // check if the CustomStorageCallbacksSize is alright, so we can make a copy of the passed in structure Tools::Variant varSize; varSize = prop->getProperty("CustomStorageCallbacksSize"); if ( varSize.m_val.ulVal != sizeof(SpatialIndex::StorageManager::CustomStorageManagerCallbacks) ) { std::ostringstream ss; ss << "The supplied storage callbacks size is wrong, expected " << sizeof(SpatialIndex::StorageManager::CustomStorageManagerCallbacks) << ", got " << varSize.m_val.ulVal; Error_PushError(RT_Failure, ss.str().c_str(), "IndexProperty_SetCustomStorageCallbacks"); return RT_Failure; } try { Tools::Variant var; var.m_varType = Tools::VT_PVOID; var.m_val.pvVal = value ? new SpatialIndex::StorageManager::CustomStorageManagerCallbacks( *static_cast(value) ) : 0; prop->setProperty("CustomStorageCallbacks", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetCustomStorageCallbacks"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetCustomStorageCallbacks"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetCustomStorageCallbacks"); return RT_Failure; } return RT_None; } SIDX_C_DLL void* IndexProperty_GetCustomStorageCallbacks(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetCustomStorageCallbacks", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("CustomStorageCallbacks"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_PVOID) { Error_PushError(RT_Failure, "Property CustomStorageCallbacks must be Tools::VT_PVOID", "IndexProperty_GetCustomStorageCallbacks"); return NULL; } return var.m_val.pvVal; } // return nothing for an error Error_PushError(RT_Failure, "Property CustomStorageCallbacks was empty", "IndexProperty_GetCustomStorageCallbacks"); return NULL; } SIDX_C_DLL RTError IndexProperty_SetIndexID(IndexPropertyH hProp, int64_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetIndexID", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = value; prop->setProperty("IndexIdentifier", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetIndexID"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetIndexID"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetIndexID"); return RT_Failure; } return RT_None; } SIDX_C_DLL int64_t IndexProperty_GetIndexID(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetIndexID", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("IndexIdentifier"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONGLONG) { Error_PushError(RT_Failure, "Property IndexIdentifier must be Tools::VT_LONGLONG", "IndexProperty_GetIndexID"); return 0; } return var.m_val.llVal; } // return nothing for an error Error_PushError(RT_Failure, "Property IndexIdentifier was empty", "IndexProperty_GetIndexID"); return 0; } SIDX_C_DLL void* SIDX_NewBuffer(size_t length) { return new char[length]; } SIDX_DLL RTError IndexProperty_SetResultSetLimit(IndexPropertyH hProp, uint64_t value) { VALIDATE_POINTER1(hProp, "IndexProperty_SetResultSetLimit", RT_Failure); Tools::PropertySet* prop = reinterpret_cast(hProp); try { Tools::Variant var; var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = value; prop->setProperty("ResultSetLimit", var); } catch (Tools::Exception& e) { Error_PushError(RT_Failure, e.what().c_str(), "IndexProperty_SetResultSetLimit"); return RT_Failure; } catch (std::exception const& e) { Error_PushError(RT_Failure, e.what(), "IndexProperty_SetResultSetLimit"); return RT_Failure; } catch (...) { Error_PushError(RT_Failure, "Unknown Error", "IndexProperty_SetResultSetLimit"); return RT_Failure; } return RT_None; } SIDX_DLL uint64_t IndexProperty_GetResultSetLimit(IndexPropertyH hProp) { VALIDATE_POINTER1(hProp, "IndexProperty_GetResultSetLimit", 0); Tools::PropertySet* prop = reinterpret_cast(hProp); Tools::Variant var; var = prop->getProperty("ResultSetLimit"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONGLONG) { Error_PushError(RT_Failure, "Property ResultSetLimit must be Tools::VT_LONGLONG", "IndexProperty_GetResultSetLimit"); return 0; } return var.m_val.llVal; } // return nothing for an error Error_PushError(RT_Failure, "Property ResultSetLimit was empty", "IndexProperty_GetResultSetLimit"); return 0; } SIDX_C_DLL void SIDX_DeleteBuffer(void* buffer) { delete [] static_cast(buffer); } SIDX_C_DLL char* SIDX_Version() { std::ostringstream ot; #ifdef SIDX_RELEASE_NAME ot << SIDX_RELEASE_NAME; #else ot << "1.3.2"; #endif std::string out(ot.str()); return STRDUP(out.c_str()); } IDX_C_END #ifdef _WIN32 # pragma warning(pop) #endif libspatialindex-1.9.3/src/libspatialindex.pc.in000066400000000000000000000004161355420072700216020ustar00rootroot00000000000000prefix=@prefix@ exec_prefix=@exec_prefix@ libdir=@libdir@ includedir=@includedir@ Name: libspatialindex Description: Generic C/C++ library for spatial indexing Requires: Version: @PACKAGE_VERSION@ Libs: -L@libdir@ -lspatialindex Cflags: -I${includedir}/spatialindex libspatialindex-1.9.3/src/mvrtree/000077500000000000000000000000001355420072700171605ustar00rootroot00000000000000libspatialindex-1.9.3/src/mvrtree/Index.cc000066400000000000000000000313031355420072700205360ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include "MVRTree.h" #include "Node.h" #include "Leaf.h" #include "Index.h" using namespace SpatialIndex; using namespace SpatialIndex::MVRTree; Index::~Index() = default; Index::Index(SpatialIndex::MVRTree::MVRTree* pTree, id_type id, uint32_t level) : Node(pTree, id, level, pTree->m_indexCapacity) { } NodePtr Index::chooseSubtree(const TimeRegion& mbr, uint32_t insertionLevel, std::stack& pathBuffer) { if (m_level == insertionLevel) return NodePtr(this, &(m_pTree->m_indexPool)); pathBuffer.push(m_identifier); uint32_t child = 0; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_QUADRATIC: child = findLeastEnlargement(mbr); break; case RV_RSTAR: if (m_level == 1) { // if this node points to leaves... child = findLeastOverlap(mbr); } else { child = findLeastEnlargement(mbr); } break; default: throw Tools::NotSupportedException("Index::chooseSubtree: Tree variant not supported."); } assert (child != std::numeric_limits::max()); NodePtr n = m_pTree->readNode(m_pIdentifier[child]); NodePtr ret = n->chooseSubtree(mbr, insertionLevel, pathBuffer); assert(n.unique()); if (ret.get() == n.get()) n.relinquish(); return ret; } NodePtr Index::findLeaf(const TimeRegion& mbr, id_type id, std::stack& pathBuffer) { pathBuffer.push(m_identifier); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { // check live nodes only. if (m_ptrMBR[cChild]->m_endTime < std::numeric_limits::max()) continue; //if (m_ptrMBR[cChild]->m_endTime < std::numeric_limits::max() || // m_ptrMBR[cChild]->m_startTime > mbr.m_startTime) continue; if (m_ptrMBR[cChild]->containsRegion(mbr)) { NodePtr n = m_pTree->readNode(m_pIdentifier[cChild]); NodePtr l = n->findLeaf(mbr, id, pathBuffer); if (n.get() == l.get()) n.relinquish(); if (l.get() != nullptr) return l; } } pathBuffer.pop(); return NodePtr(); } void Index::split( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, NodePtr& pLeft, NodePtr& pRight, TimeRegion& mbr2, id_type id2, bool bInsertMbr2) { ++(m_pTree->m_stats.m_u64Splits); std::vector g1, g2; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_QUADRATIC: rtreeSplit(dataLength, pData, mbr, id, g1, g2, mbr2, id2, bInsertMbr2); break; case RV_RSTAR: rstarSplit(dataLength, pData, mbr, id, g1, g2, mbr2, id2, bInsertMbr2); break; default: throw Tools::NotSupportedException("Index::split: Tree variant not supported."); } pLeft = m_pTree->m_indexPool.acquire(); pRight = m_pTree->m_indexPool.acquire(); if (pLeft.get() == nullptr) pLeft = NodePtr(new Index(m_pTree, m_identifier, m_level), &(m_pTree->m_indexPool)); if (pRight.get() == nullptr) pRight = NodePtr(new Index(m_pTree, -1, m_level), &(m_pTree->m_indexPool)); pLeft->m_nodeMBR = m_pTree->m_infiniteRegion; pRight->m_nodeMBR = m_pTree->m_infiniteRegion; uint32_t cIndex; for (cIndex = 0; cIndex < g1.size(); ++cIndex) { pLeft->insertEntry(0, nullptr, *(m_ptrMBR[g1[cIndex]]), m_pIdentifier[g1[cIndex]]); } for (cIndex = 0; cIndex < g2.size(); ++cIndex) { pRight->insertEntry(0, nullptr, *(m_ptrMBR[g2[cIndex]]), m_pIdentifier[g2[cIndex]]); } } uint32_t Index::findLeastEnlargement(const TimeRegion& r) const { double area = std::numeric_limits::max(); uint32_t best = std::numeric_limits::max(); TimeRegionPtr t = m_pTree->m_regionPool.acquire(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { // if this child is already dead do not consider it. if (m_ptrMBR[cChild]->m_endTime <= r.m_startTime) continue; m_ptrMBR[cChild]->getCombinedRegion(*t, r); double a = m_ptrMBR[cChild]->getArea(); double enl = t->getArea() - a; if (enl < area) { area = enl; best = cChild; } else if ( enl > area - std::numeric_limits::epsilon() && enl < area + std::numeric_limits::epsilon()) { if (a < m_ptrMBR[best]->getArea()) best = cChild; } } #ifndef NDEBUG if (best == std::numeric_limits::max()) { std::ostringstream s; s << "findLeastEnlargement: All entries of node " << m_identifier << " are dead."; throw Tools::IllegalStateException(s.str()); } #endif return best; } uint32_t Index::findLeastOverlap(const TimeRegion& r) const { OverlapEntry** entries = new OverlapEntry*[m_children]; double leastOverlap = std::numeric_limits::max(); double me = std::numeric_limits::max(); OverlapEntry* best = nullptr; uint32_t cLiveEntries = 0; // find combined region and enlargement of every entry and store it. for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (m_ptrMBR[cChild]->m_endTime <= r.m_startTime) continue; try { entries[cLiveEntries] = new OverlapEntry(); } catch (...) { for (uint32_t i = 0; i < cLiveEntries; ++i) delete entries[i]; delete[] entries; throw; } entries[cLiveEntries]->m_index = cChild; entries[cLiveEntries]->m_original = m_ptrMBR[cChild]; entries[cLiveEntries]->m_combined = m_pTree->m_regionPool.acquire(); m_ptrMBR[cChild]->getCombinedRegion(*(entries[cLiveEntries]->m_combined), r); entries[cLiveEntries]->m_oa = entries[cLiveEntries]->m_original->getArea(); entries[cLiveEntries]->m_ca = entries[cLiveEntries]->m_combined->getArea(); entries[cLiveEntries]->m_enlargement = entries[cLiveEntries]->m_ca - entries[cLiveEntries]->m_oa; if (entries[cLiveEntries]->m_enlargement < me) { me = entries[cLiveEntries]->m_enlargement; best = entries[cLiveEntries]; } else if (entries[cLiveEntries]->m_enlargement == me && entries[cLiveEntries]->m_oa < best->m_oa) { best = entries[cLiveEntries]; } ++cLiveEntries; } #ifndef NDEBUG if (cLiveEntries == 0) { std::ostringstream s; s << "findLeastOverlap: All entries of node " << m_identifier << " are dead."; throw Tools::IllegalStateException(s.str()); } #endif if (me < -std::numeric_limits::epsilon() || me > std::numeric_limits::epsilon()) { uint32_t cIterations; if (cLiveEntries > m_pTree->m_nearMinimumOverlapFactor) { // sort entries in increasing order of enlargement. ::qsort(entries, cLiveEntries, sizeof(OverlapEntry*), OverlapEntry::compareEntries); assert(entries[0]->m_enlargement <= entries[m_children - 1]->m_enlargement); cIterations = m_pTree->m_nearMinimumOverlapFactor; } else { cIterations = cLiveEntries; } // calculate overlap of most important original entries (near minimum overlap cost). for (uint32_t cIndex = 0; cIndex < cIterations; ++cIndex) { double dif = 0.0; OverlapEntry* e = entries[cIndex]; for (uint32_t cChild = 0; cChild < cLiveEntries; ++cChild) { if (cIndex != cChild) { double f = e->m_combined->getIntersectingArea(*(entries[cChild]->m_original)); if (f != 0.0) dif += f - e->m_original->getIntersectingArea(*(entries[cChild]->m_original)); } } // for (cChild) if (dif < leastOverlap) { leastOverlap = dif; best = e; } else if (dif == leastOverlap) { if (e->m_enlargement == best->m_enlargement) { // keep the one with least area. if (e->m_original->getArea() < best->m_original->getArea()) best = e; } else { // keep the one with least enlargement. if (e->m_enlargement < best->m_enlargement) best = e; } } } // for (cIndex) } uint32_t ret = best->m_index; for (uint32_t cChild = 0; cChild < cLiveEntries; ++cChild) { delete entries[cChild]; } delete[] entries; return ret; } void Index::adjustTree(Node* n, std::stack& pathBuffer) { ++(m_pTree->m_stats.m_u64Adjustments); // find entry pointing to old node; uint32_t child; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == n->m_identifier) break; } // MBR needs recalculation if either: // 1. the NEW child MBR is not contained. // 2. the OLD child MBR is touching. bool bContained = m_nodeMBR.containsRegion(n->m_nodeMBR); bool bTouches = m_nodeMBR.touchesRegion(*(m_ptrMBR[child])); bool bRecompute = (! bContained || (bTouches && m_pTree->m_bTightMBRs)); // we should not adjust time here double st = m_ptrMBR[child]->m_startTime; double en = m_ptrMBR[child]->m_endTime; *(m_ptrMBR[child]) = n->m_nodeMBR; m_ptrMBR[child]->m_startTime = st; m_ptrMBR[child]->m_endTime = en; if (bRecompute) { // no need to update times here. The inserted MBR is younger than all nodes. for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->m_pHigh[cDim]); } } } m_pTree->writeNode(this); if (bRecompute && (! pathBuffer.empty())) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); } } void Index::adjustTree(Node* n, Node* nn, std::stack& pathBuffer) { ++(m_pTree->m_stats.m_u64Adjustments); // find entry pointing to old node; uint32_t child, child2 = m_capacity; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == nn->m_identifier) child2 = child; if (m_pIdentifier[child] == n->m_identifier) break; } if (child2 == m_capacity) { for (child2 = child + 1; child2 < m_children; ++child2) { if (m_pIdentifier[child2] == nn->m_identifier) break; } } // MBR needs recalculation if either: // 1. the NEW child MBR is not contained. // 2. the OLD child MBR is touching. // 3. the SIBLING MBR is touching. bool b1 = m_nodeMBR.containsRegion(n->m_nodeMBR); bool b2 = m_nodeMBR.touchesRegion(*(m_ptrMBR[child])); bool b3 = m_nodeMBR.touchesRegion(*(m_ptrMBR[child2])); bool bRecompute = (! b1) || ((b2 || b3) && m_pTree->m_bTightMBRs); // we should not adjust time here double st = m_ptrMBR[child]->m_startTime; double en = m_ptrMBR[child]->m_endTime; *(m_ptrMBR[child]) = n->m_nodeMBR; m_ptrMBR[child]->m_startTime = st; m_ptrMBR[child]->m_endTime = en; st = m_ptrMBR[child2]->m_startTime; en = m_ptrMBR[child2]->m_endTime; *(m_ptrMBR[child2]) = nn->m_nodeMBR; m_ptrMBR[child2]->m_startTime = st; m_ptrMBR[child2]->m_endTime = en; if (bRecompute) { // no need to update times here. The inserted MBR is younger than all nodes. for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->m_pHigh[cDim]); } } } m_pTree->writeNode(this); if (bRecompute && (! pathBuffer.empty())) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); } } libspatialindex-1.9.3/src/mvrtree/Index.h000066400000000000000000000057101355420072700204030ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" namespace SpatialIndex { namespace MVRTree { class Index : public Node { public: ~Index() override; private: Index(MVRTree* pTree, id_type id, uint32_t level); NodePtr chooseSubtree(const TimeRegion& mbr, uint32_t level, std::stack& pathBuffer) override; NodePtr findLeaf(const TimeRegion& mbr, id_type id, std::stack& pathBuffer) override; void split( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, NodePtr& left, NodePtr& right, TimeRegion& mbr2, id_type id2, bool bInsertMbr2 = false) override; uint32_t findLeastEnlargement(const TimeRegion&) const; uint32_t findLeastOverlap(const TimeRegion&) const; void adjustTree(Node*, std::stack&); void adjustTree(Node* n, Node* nn, std::stack& pathBuffer); class OverlapEntry { public: uint32_t m_index; double m_enlargement; TimeRegionPtr m_original; TimeRegionPtr m_combined; double m_oa; double m_ca; static int compareEntries(const void* pv1, const void* pv2) { OverlapEntry* pe1 = * (OverlapEntry**) pv1; OverlapEntry* pe2 = * (OverlapEntry**) pv2; if (pe1->m_enlargement < pe2->m_enlargement) return -1; if (pe1->m_enlargement > pe2->m_enlargement) return 1; return 0; } }; // OverlapEntry friend class MVRTree; friend class Node; }; // Index } } #pragma GCC diagnostic pop libspatialindex-1.9.3/src/mvrtree/Leaf.cc000066400000000000000000000077241355420072700203500ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include "MVRTree.h" #include "Node.h" #include "Index.h" #include "Leaf.h" using namespace SpatialIndex; using namespace SpatialIndex::MVRTree; Leaf::~Leaf() = default; Leaf::Leaf(SpatialIndex::MVRTree::MVRTree* pTree, id_type id): Node(pTree, id, 0, pTree->m_leafCapacity) { } NodePtr Leaf::chooseSubtree(const TimeRegion&, uint32_t, std::stack&) { // should make sure to relinquish other PoolPointer lists that might be pointing to the // same leaf. return NodePtr(this, &(m_pTree->m_leafPool)); } NodePtr Leaf::findLeaf(const TimeRegion& mbr, id_type id, std::stack&) { for (uint32_t cChild = 0; cChild < m_children; ++cChild) { // should make sure to relinquish other PoolPointer lists that might be pointing to the // same leaf. if (m_pIdentifier[cChild] == id && static_cast(mbr) == static_cast(*(m_ptrMBR[cChild]))) return NodePtr(this, &(m_pTree->m_leafPool)); } return NodePtr(); } void Leaf::split( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, NodePtr& pLeft, NodePtr& pRight, TimeRegion& mbr2, id_type id2, bool bInsertMbr2) { ++(m_pTree->m_stats.m_u64Splits); std::vector g1, g2; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_QUADRATIC: rtreeSplit(dataLength, pData, mbr, id, g1, g2, mbr2, id2, bInsertMbr2); break; case RV_RSTAR: rstarSplit(dataLength, pData, mbr, id, g1, g2, mbr2, id2, bInsertMbr2); break; default: throw Tools::NotSupportedException("Leaf::split: Tree variant not supported."); } pLeft = m_pTree->m_leafPool.acquire(); pRight = m_pTree->m_leafPool.acquire(); if (pLeft.get() == nullptr) pLeft = NodePtr(new Leaf(m_pTree, -1), &(m_pTree->m_leafPool)); if (pRight.get() == nullptr) pRight = NodePtr(new Leaf(m_pTree, -1), &(m_pTree->m_leafPool)); pLeft->m_nodeMBR = m_pTree->m_infiniteRegion; pRight->m_nodeMBR = m_pTree->m_infiniteRegion; uint32_t cIndex; for (cIndex = 0; cIndex < g1.size(); ++cIndex) { pLeft->insertEntry(m_pDataLength[g1[cIndex]], m_pData[g1[cIndex]], *(m_ptrMBR[g1[cIndex]]), m_pIdentifier[g1[cIndex]]); // we don't want to delete the data array from this node's destructor! m_pData[g1[cIndex]] = nullptr; } for (cIndex = 0; cIndex < g2.size(); ++cIndex) { pRight->insertEntry(m_pDataLength[g2[cIndex]], m_pData[g2[cIndex]], *(m_ptrMBR[g2[cIndex]]), m_pIdentifier[g2[cIndex]]); // we don't want to delete the data array from this node's destructor! m_pData[g2[cIndex]] = nullptr; } } libspatialindex-1.9.3/src/mvrtree/Leaf.h000066400000000000000000000041411355420072700202000ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace MVRTree { class Leaf : public Node { public: ~Leaf() override; private: Leaf(MVRTree* pTree, id_type id); NodePtr chooseSubtree(const TimeRegion& mbr, uint32_t level, std::stack& pathBuffer) override; NodePtr findLeaf(const TimeRegion& mbr, id_type id, std::stack& pathBuffer) override; void split( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, NodePtr& left, NodePtr& right, TimeRegion& mbr2, id_type id2, bool bInsertMbr2 = false) override; friend class MVRTree; friend class Node; }; // Leaf } } libspatialindex-1.9.3/src/mvrtree/MVRTree.cc000066400000000000000000001220251355420072700207550ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include "Node.h" #include "Leaf.h" #include "Index.h" #include "MVRTree.h" #include using namespace SpatialIndex::MVRTree; SpatialIndex::MVRTree::Data::Data(uint32_t len, uint8_t* pData, TimeRegion& r, id_type id) : m_id(id), m_region(r), m_pData(nullptr), m_dataLength(len) { if (m_dataLength > 0) { m_pData = new uint8_t[m_dataLength]; memcpy(m_pData, pData, m_dataLength); } } SpatialIndex::MVRTree::Data::~Data() { delete[] m_pData; } SpatialIndex::MVRTree::Data* SpatialIndex::MVRTree::Data::clone() { return new Data(m_dataLength, m_pData, m_region, m_id); } SpatialIndex::id_type SpatialIndex::MVRTree::Data::getIdentifier() const { return m_id; } void SpatialIndex::MVRTree::Data::getShape(IShape** out) const { *out = new TimeRegion(m_region); } void SpatialIndex::MVRTree::Data::getData(uint32_t& len, uint8_t** data) const { len = m_dataLength; *data = nullptr; if (m_dataLength > 0) { *data = new uint8_t[m_dataLength]; memcpy(*data, m_pData, m_dataLength); } } uint32_t SpatialIndex::MVRTree::Data::getByteArraySize() { return sizeof(id_type) + sizeof(uint32_t) + m_dataLength + m_region.getByteArraySize(); } void SpatialIndex::MVRTree::Data::loadFromByteArray(const uint8_t* ptr) { memcpy(&m_id, ptr, sizeof(id_type)); ptr += sizeof(id_type); delete[] m_pData; m_pData = nullptr; memcpy(&m_dataLength, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_dataLength > 0) { m_pData = new uint8_t[m_dataLength]; memcpy(m_pData, ptr, m_dataLength); ptr += m_dataLength; } m_region.loadFromByteArray(ptr); } void SpatialIndex::MVRTree::Data::storeToByteArray(uint8_t** data, uint32_t& len) { // it is thread safe this way. uint32_t regionsize; uint8_t* regiondata = nullptr; m_region.storeToByteArray(®iondata, regionsize); len = sizeof(id_type) + sizeof(uint32_t) + m_dataLength + regionsize; *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_id, sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &m_dataLength, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_dataLength > 0) { memcpy(ptr, m_pData, m_dataLength); ptr += m_dataLength; } memcpy(ptr, regiondata, regionsize); delete[] regiondata; // ptr += regionsize; } SpatialIndex::ISpatialIndex* SpatialIndex::MVRTree::returnMVRTree(SpatialIndex::IStorageManager& sm, Tools::PropertySet& ps) { SpatialIndex::ISpatialIndex* si = new SpatialIndex::MVRTree::MVRTree(sm, ps); return si; } SpatialIndex::ISpatialIndex* SpatialIndex::MVRTree::createNewMVRTree( SpatialIndex::IStorageManager& sm, double fillFactor, uint32_t indexCapacity, uint32_t leafCapacity, uint32_t dimension, MVRTreeVariant rv, id_type& indexIdentifier) { Tools::Variant var; Tools::PropertySet ps; var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = fillFactor; ps.setProperty("FillFactor", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = indexCapacity; ps.setProperty("IndexCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = leafCapacity; ps.setProperty("LeafCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = dimension; ps.setProperty("Dimension", var); var.m_varType = Tools::VT_LONG; var.m_val.lVal = rv; ps.setProperty("TreeVariant", var); ISpatialIndex* ret = returnMVRTree(sm, ps); var.m_varType = Tools::VT_LONGLONG; var = ps.getProperty("IndexIdentifier"); indexIdentifier = var.m_val.llVal; return ret; } SpatialIndex::ISpatialIndex* SpatialIndex::MVRTree::loadMVRTree(IStorageManager& sm, id_type indexIdentifier) { Tools::Variant var; Tools::PropertySet ps; var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = indexIdentifier; ps.setProperty("IndexIdentifier", var); return returnMVRTree(sm, ps); } SpatialIndex::MVRTree::MVRTree::MVRTree(IStorageManager& sm, Tools::PropertySet& ps) : m_pStorageManager(&sm), m_headerID(StorageManager::NewPage), m_treeVariant(RV_RSTAR), m_fillFactor(0.7), m_indexCapacity(100), m_leafCapacity(100), m_nearMinimumOverlapFactor(32), m_splitDistributionFactor(0.4), m_reinsertFactor(0.3), m_strongVersionOverflow(0.8), //m_strongVersionUnderflow(0.2), m_versionUnderflow(0.3), m_dimension(2), m_bTightMBRs(true), m_bHasVersionCopied(false), m_currentTime(0.0), m_pointPool(500), m_regionPool(1000), m_indexPool(100), m_leafPool(100) { Tools::Variant var = ps.getProperty("IndexIdentifier"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType == Tools::VT_LONGLONG) m_headerID = var.m_val.llVal; else if (var.m_varType == Tools::VT_LONG) m_headerID = var.m_val.lVal; // for backward compatibility only. else throw Tools::IllegalArgumentException("MVRTree: Property IndexIdentifier must be Tools::VT_LONGLONG"); initOld(ps); } else { initNew(ps); var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = m_headerID; ps.setProperty("IndexIdentifier", var); } } SpatialIndex::MVRTree::MVRTree::~MVRTree() { storeHeader(); } // // ISpatialIndex interface // void SpatialIndex::MVRTree::MVRTree::insertData(uint32_t len, const uint8_t* pData, const IShape& shape, id_type id) { if (shape.getDimension() != m_dimension) throw Tools::IllegalArgumentException("insertData: Shape has the wrong number of dimensions."); const Tools::IInterval* ti = dynamic_cast(&shape); if (ti == nullptr) throw Tools::IllegalArgumentException("insertData: Shape does not support the Tools::IInterval interface."); if (ti->getLowerBound() < m_currentTime) throw Tools::IllegalArgumentException("insertData: Shape start time is older than tree current time."); // convert the shape into a TimeRegion (R-Trees index regions only; i.e., approximations of the shapes). Region mbrold; shape.getMBR(mbrold); TimeRegionPtr mbr = m_regionPool.acquire(); mbr->makeDimension(mbrold.m_dimension); memcpy(mbr->m_pLow, mbrold.m_pLow, mbrold.m_dimension * sizeof(double)); memcpy(mbr->m_pHigh, mbrold.m_pHigh, mbrold.m_dimension * sizeof(double)); mbr->m_startTime = ti->getLowerBound(); mbr->m_endTime = std::numeric_limits::max(); uint8_t* buffer = nullptr; if (len > 0) { buffer = new uint8_t[len]; memcpy(buffer, pData, len); } insertData_impl(len, buffer, *mbr, id); // the buffer is stored in the tree. Do not delete here. } bool SpatialIndex::MVRTree::MVRTree::deleteData(const IShape& shape, id_type id) { if (shape.getDimension() != m_dimension) throw Tools::IllegalArgumentException("deleteData: Shape has the wrong number of dimensions."); const Tools::IInterval* ti = dynamic_cast(&shape); if (ti == nullptr) throw Tools::IllegalArgumentException("deleteData: Shape does not support the Tools::IInterval interface."); Region mbrold; shape.getMBR(mbrold); TimeRegionPtr mbr = m_regionPool.acquire(); mbr->makeDimension(mbrold.m_dimension); memcpy(mbr->m_pLow, mbrold.m_pLow, mbrold.m_dimension * sizeof(double)); memcpy(mbr->m_pHigh, mbrold.m_pHigh, mbrold.m_dimension * sizeof(double)); mbr->m_startTime = ti->getLowerBound(); mbr->m_endTime = ti->getUpperBound(); bool ret = deleteData_impl(*mbr, id); return ret; } void SpatialIndex::MVRTree::MVRTree::internalNodesQuery(const IShape& /* query */, IVisitor& /* v */) { throw Tools::IllegalStateException("internalNodesQuery: not impelmented yet."); } void SpatialIndex::MVRTree::MVRTree::containsWhatQuery(const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("containsWhatQuery: Shape has the wrong number of dimensions."); rangeQuery(ContainmentQuery, query, v); } void SpatialIndex::MVRTree::MVRTree::intersectsWithQuery(const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("intersectsWithQuery: Shape has the wrong number of dimensions."); rangeQuery(IntersectionQuery, query, v); } void SpatialIndex::MVRTree::MVRTree::pointLocationQuery(const Point& query, IVisitor& v) { if (query.m_dimension != m_dimension) throw Tools::IllegalArgumentException("pointLocationQuery: Shape has the wrong number of dimensions."); const Tools::IInterval* ti = dynamic_cast(&query); if (ti == nullptr) throw Tools::IllegalArgumentException("pointLocationQuery: Shape does not support the Tools::IInterval interface."); TimeRegion r(query, query, *ti); rangeQuery(IntersectionQuery, r, v); } void SpatialIndex::MVRTree::MVRTree::nearestNeighborQuery(uint32_t, const IShape&, IVisitor&, INearestNeighborComparator&) { throw Tools::IllegalStateException("nearestNeighborQuery: not impelmented yet."); } void SpatialIndex::MVRTree::MVRTree::nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("nearestNeighborQuery: Shape has the wrong number of dimensions."); NNComparator nnc; nearestNeighborQuery(k, query, v, nnc); } void SpatialIndex::MVRTree::MVRTree::selfJoinQuery(const IShape&, IVisitor&) { throw Tools::IllegalStateException("selfJoinQuery: not impelmented yet."); } void SpatialIndex::MVRTree::MVRTree::queryStrategy(IQueryStrategy& qs) { id_type next = m_roots[m_roots.size() - 1].m_id; bool hasNext = true; while (hasNext) { NodePtr n = readNode(next); qs.getNextEntry(*n, next, hasNext); } } void SpatialIndex::MVRTree::MVRTree::getIndexProperties(Tools::PropertySet& out) const { Tools::Variant var; // dimension var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_dimension; out.setProperty("Dimension", var); // index capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_indexCapacity; out.setProperty("IndexCapacity", var); // leaf capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_leafCapacity; out.setProperty("LeafCapacity", var); // Tree variant var.m_varType = Tools::VT_LONG; var.m_val.lVal = m_treeVariant; out.setProperty("TreeVariant", var); // fill factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_fillFactor; out.setProperty("FillFactor", var); // near minimum overlap factor var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_nearMinimumOverlapFactor; out.setProperty("NearMinimumOverlapFactor", var); // split distribution factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_splitDistributionFactor; out.setProperty("SplitDistributionFactor", var); // reinsert factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_reinsertFactor; out.setProperty("ReinsertFactor", var); // tight MBRs var.m_varType = Tools::VT_BOOL; var.m_val.blVal = m_bTightMBRs; out.setProperty("EnsureTightMBRs", var); // index pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_indexPool.getCapacity(); out.setProperty("IndexPoolCapacity", var); // leaf pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_leafPool.getCapacity(); out.setProperty("LeafPoolCapacity", var); // region pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_regionPool.getCapacity(); out.setProperty("RegionPoolCapacity", var); // point pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_pointPool.getCapacity(); out.setProperty("PointPoolCapacity", var); // strong version overflow var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_strongVersionOverflow; out.setProperty("StrongVersionOverflow", var); // strong version underflow //var.m_varType = Tools::VT_DOUBLE; //var.m_val.dblVal = m_strongVersionUnderflow; //out.setProperty("StrongVersionUnderflow", var); // weak version underflow var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_versionUnderflow; out.setProperty("VersionUnderflow", var); var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = m_headerID; out.setProperty("IndexIdentifier", var); } void SpatialIndex::MVRTree::MVRTree::addCommand(ICommand* pCommand, CommandType ct) { switch (ct) { case CT_NODEREAD: m_readNodeCommands.push_back(std::shared_ptr(pCommand)); break; case CT_NODEWRITE: m_writeNodeCommands.push_back(std::shared_ptr(pCommand)); break; case CT_NODEDELETE: m_deleteNodeCommands.push_back(std::shared_ptr(pCommand)); break; } } bool SpatialIndex::MVRTree::MVRTree::isIndexValid() { bool ret = true; std::stack st; std::set visitedEntries; uint32_t degenerateEntries = 0; for (uint32_t cRoot = 0; cRoot < m_roots.size(); ++cRoot) { NodePtr root = readNode(m_roots[cRoot].m_id); if (root->m_level != m_stats.m_treeHeight[cRoot] - 1) { std::cerr << "Invalid tree height." << std::endl; return false; } ValidateEntry e(0, root->m_nodeMBR, root); e.m_bIsDead = (root->m_nodeMBR.m_endTime < std::numeric_limits::max()) ? true : false; st.push(e); } while (! st.empty()) { ValidateEntry e = st.top(); st.pop(); std::set::iterator itSet = visitedEntries.find(e.m_pNode->m_identifier); if (itSet == visitedEntries.end()) { visitedEntries.insert(e.m_pNode->m_identifier); if (e.m_pNode->m_nodeMBR.m_startTime == e.m_pNode->m_nodeMBR.m_endTime) ++degenerateEntries; } TimeRegion tmpRegion; tmpRegion = m_infiniteRegion; for (uint32_t cDim = 0; cDim < tmpRegion.m_dimension; ++cDim) { for (uint32_t cChild = 0; cChild < e.m_pNode->m_children; ++cChild) { tmpRegion.m_pLow[cDim] = std::min(tmpRegion.m_pLow[cDim], e.m_pNode->m_ptrMBR[cChild]->m_pLow[cDim]); tmpRegion.m_pHigh[cDim] = std::max(tmpRegion.m_pHigh[cDim], e.m_pNode->m_ptrMBR[cChild]->m_pHigh[cDim]); } } tmpRegion.m_startTime = e.m_pNode->m_nodeMBR.m_startTime; tmpRegion.m_endTime = e.m_pNode->m_nodeMBR.m_endTime; if (! (tmpRegion == e.m_pNode->m_nodeMBR)) { std::cerr << "Invalid parent information." << std::endl; ret = false; } if (! e.m_bIsDead) { tmpRegion.m_startTime = e.m_parentMBR.m_startTime; tmpRegion.m_endTime = e.m_parentMBR.m_endTime; if (! (tmpRegion == e.m_parentMBR)) { std::cerr << "Error in parent (Node id: " << e.m_pNode->m_identifier << ", Parent id: " << e.m_parentID << ")." << std::endl; ret = false; } } if (e.m_pNode->m_level != 0) { for (uint32_t cChild = 0; cChild < e.m_pNode->m_children; ++cChild) { NodePtr ptrN = readNode(e.m_pNode->m_pIdentifier[cChild]); bool bIsDead = (e.m_pNode->m_ptrMBR[cChild]->m_endTime < std::numeric_limits::max() || e.m_bIsDead) ? true : false; // if the parent says that this child is dead, force it dead since // this information is not propagated for efficiency and is inconsistent. if (bIsDead) ptrN->m_nodeMBR.m_endTime = e.m_pNode->m_ptrMBR[cChild]->m_endTime; ValidateEntry tmpEntry(e.m_pNode->m_identifier, *(e.m_pNode->m_ptrMBR[cChild]), ptrN); tmpEntry.m_bIsDead = bIsDead; st.push(tmpEntry); } } } //std::cerr << "Total accessible nodes: " << visitedEntries.size() << std::endl; //std::cerr << "Degenerate nodes: " << degenerateEntries << std::endl; return ret; } void SpatialIndex::MVRTree::MVRTree::getStatistics(IStatistics** out) const { *out = new Statistics(m_stats); } void SpatialIndex::MVRTree::MVRTree::flush() { storeHeader(); } void SpatialIndex::MVRTree::MVRTree::initNew(Tools::PropertySet& ps) { Tools::Variant var; // tree variant var = ps.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONG || (var.m_val.lVal != RV_LINEAR && var.m_val.lVal != RV_QUADRATIC && var.m_val.lVal != RV_RSTAR)) throw Tools::IllegalArgumentException("initNew: Property TreeVariant must be Tools::VT_LONG and of MVRTreeVariant type"); m_treeVariant = static_cast(var.m_val.lVal); } // fill factor // it cannot be larger than 50%, since linear and quadratic split algorithms // require assigning to both nodes the same number of entries. var = ps.getProperty("FillFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || //((m_treeVariant == RV_LINEAR || m_treeVariant == RV_QUADRATIC) && var.m_val.dblVal > 0.5) || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property FillFactor must be Tools::VT_DOUBLE and in (0.0, 1.0) for RSTAR, (0.0, 0.5) for LINEAR and QUADRATIC"); m_fillFactor = var.m_val.dblVal; } // index capacity var = ps.getProperty("IndexCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 10) throw Tools::IllegalArgumentException("initNew: Property IndexCapacity must be Tools::VT_ULONG and >= 10"); m_indexCapacity = var.m_val.ulVal; } // leaf capacity var = ps.getProperty("LeafCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 10) throw Tools::IllegalArgumentException("initNew: Property LeafCapacity must be Tools::VT_ULONG and >= 10"); m_leafCapacity = var.m_val.ulVal; } // near minimum overlap factor var = ps.getProperty("NearMinimumOverlapFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 1 || var.m_val.ulVal > m_indexCapacity || var.m_val.ulVal > m_leafCapacity) throw Tools::IllegalArgumentException("initNew: Property NearMinimumOverlapFactor must be Tools::VT_ULONG and less than both index and leaf capacities"); m_nearMinimumOverlapFactor = var.m_val.ulVal; } // split distribution factor var = ps.getProperty("SplitDistributionFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property SplitDistributionFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_splitDistributionFactor = var.m_val.dblVal; } // reinsert factor var = ps.getProperty("ReinsertFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property ReinsertFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_reinsertFactor = var.m_val.dblVal; } // dimension var = ps.getProperty("Dimension"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property Dimension must be Tools::VT_ULONG"); if (var.m_val.ulVal <= 1) throw Tools::IllegalArgumentException("initNew: Property Dimension must be greater than 1"); m_dimension = var.m_val.ulVal; } // tight MBRs var = ps.getProperty("EnsureTightMBRs"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) throw Tools::IllegalArgumentException("initNew: Property EnsureTightMBRs must be Tools::VT_BOOL"); m_bTightMBRs = var.m_val.blVal; } // index pool capacity var = ps.getProperty("IndexPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property IndexPoolCapacity must be Tools::VT_ULONG"); m_indexPool.setCapacity(var.m_val.ulVal); } // leaf pool capacity var = ps.getProperty("LeafPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property LeafPoolCapacity must be Tools::VT_ULONG"); m_leafPool.setCapacity(var.m_val.ulVal); } // region pool capacity var = ps.getProperty("RegionPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property RegionPoolCapacity must be Tools::VT_ULONG"); m_regionPool.setCapacity(var.m_val.ulVal); } // point pool capacity var = ps.getProperty("PointPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property PointPoolCapacity must be Tools::VT_ULONG"); m_pointPool.setCapacity(var.m_val.ulVal); } // strong version overflow var = ps.getProperty("StrongVersionOverflow"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property StrongVersionOverflow must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_strongVersionOverflow = var.m_val.dblVal; } // strong version underflow //var = ps.getProperty("StrongVersionUnderflow"); //if (var.m_varType != Tools::VT_EMPTY) //{ // if (var.m_varType != Tools::VT_DOUBLE || // var.m_val.dblVal <= 0.0 || // var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("Property StrongVersionUnderflow must be Tools::VT_DOUBLE and in (0.0, 1.0)"); // m_strongVersionUnderflow = var.m_val.dblVal; //} // weak version underflow var = ps.getProperty("VersionUnderflow"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property VersionUnderflow must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_versionUnderflow = var.m_val.dblVal; } m_infiniteRegion.makeInfinite(m_dimension); m_stats.m_treeHeight.push_back(1); m_stats.m_nodesInLevel.push_back(1); Leaf root(this, -1); root.m_nodeMBR.m_startTime = 0.0; root.m_nodeMBR.m_endTime = std::numeric_limits::max(); writeNode(&root); m_roots.emplace_back(root.m_identifier, root.m_nodeMBR.m_startTime, root.m_nodeMBR.m_endTime); storeHeader(); } void SpatialIndex::MVRTree::MVRTree::initOld(Tools::PropertySet& ps) { loadHeader(); // only some of the properties may be changed. // the rest are just ignored. Tools::Variant var; // tree variant var = ps.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_LONG || (var.m_val.lVal != RV_LINEAR && var.m_val.lVal != RV_QUADRATIC && var.m_val.lVal != RV_RSTAR)) throw Tools::IllegalArgumentException("initOld: Property TreeVariant must be Tools::VT_LONG and of MVRTreeVariant type"); m_treeVariant = static_cast(var.m_val.lVal); } // near minimum overlap factor var = ps.getProperty("NearMinimumOverlapFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 1 || var.m_val.ulVal > m_indexCapacity || var.m_val.ulVal > m_leafCapacity) throw Tools::IllegalArgumentException("initOld: Property NearMinimumOverlapFactor must be Tools::VT_ULONG and less than both index and leaf capacities"); m_nearMinimumOverlapFactor = var.m_val.ulVal; } // split distribution factor var = ps.getProperty("SplitDistributionFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initOld: Property SplitDistributionFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_splitDistributionFactor = var.m_val.dblVal; } // reinsert factor var = ps.getProperty("ReinsertFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE ||var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initOld: Property ReinsertFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_reinsertFactor = var.m_val.dblVal; } // tight MBRs var = ps.getProperty("EnsureTightMBRs"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) throw Tools::IllegalArgumentException("initOld: Property EnsureTightMBRs must be Tools::VT_BOOL"); m_bTightMBRs = var.m_val.blVal; } // index pool capacity var = ps.getProperty("IndexPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property IndexPoolCapacity must be Tools::VT_ULONG"); m_indexPool.setCapacity(var.m_val.ulVal); } // leaf pool capacity var = ps.getProperty("LeafPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property LeafPoolCapacity must be Tools::VT_ULONG"); m_leafPool.setCapacity(var.m_val.ulVal); } // region pool capacity var = ps.getProperty("RegionPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property RegionPoolCapacity must be Tools::VT_ULONG"); m_regionPool.setCapacity(var.m_val.ulVal); } // point pool capacity var = ps.getProperty("PointPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property PointPoolCapacity must be Tools::VT_ULONG"); m_pointPool.setCapacity(var.m_val.ulVal); } m_infiniteRegion.makeInfinite(m_dimension); } void SpatialIndex::MVRTree::MVRTree::storeHeader() { const uint32_t headerSize = sizeof(uint32_t) + // size of m_roots static_cast(m_roots.size()) * (sizeof(id_type) + 2 * sizeof(double)) + // m_roots sizeof(MVRTreeVariant) + // m_treeVariant sizeof(double)+ // m_fillFactor sizeof(uint32_t) + // m_indexCapacity sizeof(uint32_t) + // m_leafCapacity sizeof(uint32_t) + // m_nearMinimumOverlapFactor sizeof(double) + // m_splitDistributionFactor sizeof(double) + // m_reinsertFactor sizeof(uint32_t) + // m_dimension sizeof(uint8_t) + // m_bTightMBRs sizeof(uint32_t) + // m_stats.m_nodes sizeof(uint64_t) + // m_stats.m_totalData sizeof(uint32_t) + // m_stats.m_deadIndexNodes sizeof(uint32_t) + // m_stats.m_deadLeafNodes sizeof(uint64_t) + // m_stats.m_data sizeof(uint32_t) + // size of m_stats.m_treeHeight static_cast(m_stats.m_treeHeight.size()) * sizeof(uint32_t) + // m_stats.m_treeHeight sizeof(double) + // m_strongVersionOverflow //sizeof(double) + // m_strongVersionUnderflow sizeof(double) + // m_versionUnderflow sizeof(double) + // m_currentTime sizeof(uint32_t) + // m_nodesInLevel size static_cast(m_stats.m_nodesInLevel.size()) * sizeof(uint32_t); // m_nodesInLevel values uint8_t* header = new uint8_t[headerSize]; uint8_t* ptr = header; uint32_t u32I = static_cast(m_roots.size()); memcpy(ptr, &u32I, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (size_t cIndex = 0; cIndex < m_roots.size(); ++cIndex) { RootEntry& e = m_roots[cIndex]; memcpy(ptr, &(e.m_id), sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &(e.m_startTime), sizeof(double)); ptr += sizeof(double); memcpy(ptr, &(e.m_endTime), sizeof(double)); ptr += sizeof(double); } memcpy(ptr, &m_treeVariant, sizeof(MVRTreeVariant)); ptr += sizeof(MVRTreeVariant); memcpy(ptr, &m_fillFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_indexCapacity, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_leafCapacity, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_nearMinimumOverlapFactor, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_splitDistributionFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_reinsertFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); uint8_t c = (uint8_t) m_bTightMBRs; memcpy(ptr, &c, sizeof(uint8_t)); ptr += sizeof(uint8_t); memcpy(ptr, &(m_stats.m_u32Nodes), sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &(m_stats.m_u64TotalData), sizeof(uint64_t)); ptr += sizeof(uint64_t); memcpy(ptr, &(m_stats.m_u32DeadIndexNodes), sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &(m_stats.m_u32DeadLeafNodes), sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &(m_stats.m_u64Data), sizeof(uint64_t)); ptr += sizeof(uint64_t); u32I = static_cast(m_stats.m_treeHeight.size()); memcpy(ptr, &u32I, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (size_t cIndex = 0; cIndex < m_stats.m_treeHeight.size(); ++cIndex) { u32I = m_stats.m_treeHeight[cIndex]; memcpy(ptr, &u32I, sizeof(uint32_t)); ptr += sizeof(uint32_t); } memcpy(ptr, &m_strongVersionOverflow, sizeof(double)); ptr += sizeof(double); //memcpy(ptr, &m_strongVersionUnderflow, sizeof(double)); //ptr += sizeof(double); memcpy(ptr, &m_versionUnderflow, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_currentTime, sizeof(double)); ptr += sizeof(double); u32I = static_cast(m_stats.m_nodesInLevel.size()); memcpy(ptr, &u32I, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (size_t cLevel = 0; cLevel < m_stats.m_nodesInLevel.size(); ++cLevel) { u32I = m_stats.m_nodesInLevel[cLevel]; memcpy(ptr, &u32I, sizeof(uint32_t)); ptr += sizeof(uint32_t); } m_pStorageManager->storeByteArray(m_headerID, headerSize, header); delete[] header; } void SpatialIndex::MVRTree::MVRTree::loadHeader() { uint32_t headerSize; uint8_t* header = nullptr; m_pStorageManager->loadByteArray(m_headerID, headerSize, &header); uint8_t* ptr = header; uint32_t rootsSize; memcpy(&rootsSize, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t cIndex = 0; cIndex < rootsSize; ++cIndex) { RootEntry e; memcpy(&(e.m_id), ptr, sizeof(id_type)); ptr += sizeof(id_type); memcpy(&(e.m_startTime), ptr, sizeof(double)); ptr += sizeof(double); memcpy(&(e.m_endTime), ptr, sizeof(double)); ptr += sizeof(double); m_roots.push_back(e); } memcpy(&m_treeVariant, ptr, sizeof(MVRTreeVariant)); ptr += sizeof(MVRTreeVariant); memcpy(&m_fillFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_indexCapacity, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_leafCapacity, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_nearMinimumOverlapFactor, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_splitDistributionFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_reinsertFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); uint8_t c; memcpy(&c, ptr, sizeof(uint8_t)); m_bTightMBRs = (c != 0); ptr += sizeof(uint8_t); memcpy(&(m_stats.m_u32Nodes), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&(m_stats.m_u64TotalData), ptr, sizeof(uint64_t)); ptr += sizeof(uint64_t); memcpy(&(m_stats.m_u32DeadIndexNodes), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&(m_stats.m_u32DeadLeafNodes), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&(m_stats.m_u64Data), ptr, sizeof(uint64_t)); ptr += sizeof(uint64_t); uint32_t treeHeightSize; memcpy(&treeHeightSize, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t cIndex = 0; cIndex < treeHeightSize; ++cIndex) { uint32_t u32I; memcpy(&u32I, ptr, sizeof(uint32_t)); m_stats.m_treeHeight.push_back(u32I); ptr += sizeof(uint32_t); } memcpy(&m_strongVersionOverflow, ptr, sizeof(double)); ptr += sizeof(double); //memcpy(&m_strongVersionUnderflow, ptr, sizeof(double)); //ptr += sizeof(double); memcpy(&m_versionUnderflow, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_currentTime, ptr, sizeof(double)); ptr += sizeof(double); uint32_t nodesInLevelSize; memcpy(&nodesInLevelSize, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t cLevel = 0; cLevel < nodesInLevelSize; ++cLevel) { uint32_t u32I; memcpy(&u32I, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); m_stats.m_nodesInLevel.push_back(u32I); } delete[] header; } void SpatialIndex::MVRTree::MVRTree::insertData_impl(uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id) { assert(mbr.getDimension() == m_dimension); assert(m_currentTime <= mbr.m_startTime); std::stack pathBuffer; m_currentTime = mbr.m_startTime; NodePtr root = readNode(m_roots[m_roots.size() - 1].m_id); NodePtr l = root->chooseSubtree(mbr, 0, pathBuffer); if (l.get() == root.get()) { assert(root.unique()); root.relinquish(); } l->insertData(dataLength, pData, mbr, id, pathBuffer, m_infiniteRegion, -1, false); ++(m_stats.m_u64Data); ++(m_stats.m_u64TotalData); } void SpatialIndex::MVRTree::MVRTree::insertData_impl(uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, uint32_t level) { assert(mbr.getDimension() == m_dimension); std::stack pathBuffer; NodePtr root = readNode(m_roots[m_roots.size() - 1].m_id); NodePtr l = root->chooseSubtree(mbr, level, pathBuffer); assert(l->m_level == level); if (l.get() == root.get()) { assert(root.unique()); root.relinquish(); } l->insertData(dataLength, pData, mbr, id, pathBuffer, m_infiniteRegion, -1, false); } bool SpatialIndex::MVRTree::MVRTree::deleteData_impl(const TimeRegion& mbr, id_type id) { assert(mbr.m_dimension == m_dimension); m_currentTime = mbr.m_endTime; std::stack pathBuffer; NodePtr root = readNode(m_roots[m_roots.size() - 1].m_id); NodePtr l = root->findLeaf(mbr, id, pathBuffer); if (l.get() == root.get()) { assert(root.unique()); root.relinquish(); } if (l.get() != nullptr) { l->deleteData(id, mbr.m_endTime, pathBuffer); --(m_stats.m_u64Data); return true; } return false; } SpatialIndex::id_type SpatialIndex::MVRTree::MVRTree::writeNode(Node* n) { uint8_t* buffer; uint32_t dataLength; n->storeToByteArray(&buffer, dataLength); id_type page; if (n->m_identifier < 0) page = StorageManager::NewPage; else page = n->m_identifier; try { m_pStorageManager->storeByteArray(page, dataLength, buffer); delete[] buffer; } catch (InvalidPageException& e) { delete[] buffer; std::cerr << e.what() << std::endl; //std::cerr << *this << std::endl; throw Tools::IllegalStateException("writeNode: failed with Tools::InvalidPageException"); } if (n->m_identifier < 0) { n->m_identifier = page; ++(m_stats.m_u32Nodes); } ++(m_stats.m_u64Writes); for (size_t cIndex = 0; cIndex < m_writeNodeCommands.size(); ++cIndex) { m_writeNodeCommands[cIndex]->execute(*n); } return page; } SpatialIndex::MVRTree::NodePtr SpatialIndex::MVRTree::MVRTree::readNode(id_type id) { uint32_t dataLength; uint8_t* buffer; try { m_pStorageManager->loadByteArray(id, dataLength, &buffer); } catch (InvalidPageException& e) { std::cerr << e.what() << std::endl; //std::cerr << *this << std::endl; throw Tools::IllegalStateException("readNode: failed with Tools::InvalidPageException"); } try { uint32_t nodeType; memcpy(&nodeType, buffer, sizeof(uint32_t)); NodePtr n; if (nodeType == PersistentIndex) n = m_indexPool.acquire(); else if (nodeType == PersistentLeaf) n = m_leafPool.acquire(); else throw Tools::IllegalStateException("readNode: failed reading the correct node type information"); if (n.get() == nullptr) { if (nodeType == PersistentIndex) n = NodePtr(new Index(this, -1, 0), &m_indexPool); else if (nodeType == PersistentLeaf) n = NodePtr(new Leaf(this, -1), &m_leafPool); } //n->m_pTree = this; n->m_identifier = id; n->loadFromByteArray(buffer); ++(m_stats.m_u64Reads); for (size_t cIndex = 0; cIndex < m_readNodeCommands.size(); ++cIndex) { m_readNodeCommands[cIndex]->execute(*n); } delete[] buffer; return n; } catch (...) { delete[] buffer; throw; } } void SpatialIndex::MVRTree::MVRTree::deleteNode(Node* n) { try { m_pStorageManager->deleteByteArray(n->m_identifier); } catch (InvalidPageException& e) { std::cerr << e.what() << std::endl; //std::cerr << *this << std::endl; throw Tools::IllegalStateException("deleteNode: failed with Tools::InvalidPageException"); } --(m_stats.m_u32Nodes); for (size_t cIndex = 0; cIndex < m_deleteNodeCommands.size(); ++cIndex) { m_deleteNodeCommands[cIndex]->execute(*n); } } void SpatialIndex::MVRTree::MVRTree::rangeQuery(RangeQueryType type, const IShape& query, IVisitor& v) { // any shape that implements IInterval and IShape, can be used here. // FIXME: I am not using ITimeShape yet, even though I should. const Tools::IInterval* ti = dynamic_cast(&query); if (ti == nullptr) throw Tools::IllegalArgumentException("rangeQuery: Shape does not support the Tools::IInterval interface."); std::set visitedNodes; std::set visitedData; std::stack st; std::vector ids; findRootIdentifiers(*ti, ids); for (size_t cRoot = 0; cRoot < ids.size(); ++cRoot) { NodePtr root = readNode(ids[cRoot]); if (root->m_children > 0 && query.intersectsShape(root->m_nodeMBR)) st.push(root); } while (! st.empty()) { NodePtr n = st.top(); st.pop(); visitedNodes.insert(n->m_identifier); if (n->m_level == 0) { v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { if (visitedData.find(n->m_pIdentifier[cChild]) != visitedData.end()) continue; bool b; if (type == ContainmentQuery) b = (n->m_ptrMBR[cChild])->intersectsInterval(*ti) && query.containsShape(*(n->m_ptrMBR[cChild])); else b = (n->m_ptrMBR[cChild])->intersectsInterval(*ti) && query.intersectsShape(*(n->m_ptrMBR[cChild])); if (b) { visitedData.insert(n->m_pIdentifier[cChild]); Data data = Data(n->m_pDataLength[cChild], n->m_pData[cChild], *(n->m_ptrMBR[cChild]), n->m_pIdentifier[cChild]); v.visitData(data); ++(m_stats.m_u64QueryResults); } } } else { v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { if ( visitedNodes.find(n->m_pIdentifier[cChild]) == visitedNodes.end() && n->m_ptrMBR[cChild]->intersectsInterval(*ti) && query.intersectsShape(*(n->m_ptrMBR[cChild]))) st.push(readNode(n->m_pIdentifier[cChild])); } } } } void SpatialIndex::MVRTree::MVRTree::findRootIdentifiers(const Tools::IInterval& ti, std::vector& ids) { ids.clear(); for (size_t cRoot = 0; cRoot < m_roots.size(); ++cRoot) { RootEntry& e = m_roots[cRoot]; if (ti.intersectsInterval(Tools::IT_RIGHTOPEN, e.m_startTime, e.m_endTime)) ids.push_back(e.m_id); } } std::string SpatialIndex::MVRTree::MVRTree::printRootInfo() const { std::ostringstream s; for (size_t cRoot = 0; cRoot < m_roots.size(); ++cRoot) { const RootEntry& e = m_roots[cRoot]; s << "Root " << cRoot << ": Start " << e.m_startTime << ", End " << e.m_endTime << std::endl; } return s.str(); } std::ostream& SpatialIndex::MVRTree::operator<<(std::ostream& os, const MVRTree& t) { os << "Dimension: " << t.m_dimension << std::endl << "Fill factor: " << t.m_fillFactor << std::endl << "Index capacity: " << t.m_indexCapacity << std::endl << "Leaf capacity: " << t.m_leafCapacity << std::endl << "Tight MBRs: " << ((t.m_bTightMBRs) ? "enabled" : "disabled") << std::endl; if (t.m_treeVariant == RV_RSTAR) { os << "Near minimum overlap factor: " << t.m_nearMinimumOverlapFactor << std::endl << "Reinsert factor: " << t.m_reinsertFactor << std::endl << "Split distribution factor: " << t.m_splitDistributionFactor << std::endl << "Strong version overflow: " << t.m_strongVersionOverflow << std::endl //<< "Strong version underflow: " << t.m_strongVersionUnderflow << std::endl << "Weak version underflow: " << t.m_versionUnderflow << std::endl; } // it is difficult to count utilization //os << "Utilization: " << 100 * t.m_stats.m_totalData / (t.m_stats.getNumberOfNodesInLevel(0) * t.m_leafCapacity) << "%" << std::endl os << t.m_stats; os << t.printRootInfo(); #ifndef NDEBUG os << "Leaf pool hits: " << t.m_leafPool.m_hits << std::endl << "Leaf pool misses: " << t.m_leafPool.m_misses << std::endl << "Index pool hits: " << t.m_indexPool.m_hits << std::endl << "Index pool misses: " << t.m_indexPool.m_misses << std::endl << "Region pool hits: " << t.m_regionPool.m_hits << std::endl << "Region pool misses: " << t.m_regionPool.m_misses << std::endl << "Point pool hits: " << t.m_pointPool.m_hits << std::endl << "Point pool misses: " << t.m_pointPool.m_misses << std::endl; #endif return os; } libspatialindex-1.9.3/src/mvrtree/MVRTree.h000066400000000000000000000176771355420072700206370ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "Statistics.h" #include "Node.h" #include "PointerPoolNode.h" #include #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" namespace SpatialIndex { namespace MVRTree { class MVRTree : public ISpatialIndex { class NNEntry; class RootEntry; public: MVRTree(IStorageManager&, Tools::PropertySet&); // String Value Description // ---------------------------------------------- // IndexIndentifier VT_LONG If specified an existing index will be openened from the supplied // storage manager with the given index id. Behaviour is unspecified // if the index id or the storage manager are incorrect. // Dimension VT_ULONG Dimensionality of the data that will be inserted. // IndexCapacity VT_ULONG The index node capacity. Default is 100. // LeafCapactiy VT_ULONG The leaf node capacity. Default is 100. // FillFactor VT_DOUBLE The fill factor. Default is 70% // TreeVariant VT_LONG Can be one of Linear, Quadratic or Rstar. Default is Rstar // NearMinimumOverlapFactor VT_ULONG Default is 32. // SplitDistributionFactor VT_DOUBLE Default is 0.4 // ReinsertFactor VT_DOUBLE Default is 0.3 // EnsureTightMBRs VT_BOOL Default is true // IndexPoolCapacity VT_LONG Default is 100 // LeafPoolCapacity VT_LONG Default is 100 // RegionPoolCapacity VT_LONG Default is 1000 // PointPoolCapacity VT_LONG Default is 500 // StrongVersionOverflow VT_DOUBLE Default is 0.8 // VersionUnderflow VT_DOUBLE Default is 0.3 ~MVRTree() ; // // ISpatialIndex interface // virtual void insertData(uint32_t len, const uint8_t* pData, const IShape& shape, id_type id) ; virtual bool deleteData(const IShape& shape, id_type id) ; virtual void internalNodesQuery(const IShape& query, IVisitor& v) ; virtual void containsWhatQuery(const IShape& query, IVisitor& v) ; virtual void intersectsWithQuery(const IShape& query, IVisitor& v) ; virtual void pointLocationQuery(const Point& query, IVisitor& v) ; virtual void nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v, INearestNeighborComparator&) ; virtual void nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v) ; virtual void selfJoinQuery(const IShape& s, IVisitor& v) ; virtual void queryStrategy(IQueryStrategy& qs) ; virtual void getIndexProperties(Tools::PropertySet& out) const ; virtual void addCommand(ICommand* pCommand, CommandType ct) ; virtual bool isIndexValid() ; virtual void getStatistics(IStatistics** out) const ; virtual void flush() ; private: void initNew(Tools::PropertySet&); void initOld(Tools::PropertySet& ps); void storeHeader(); void loadHeader(); void insertData_impl(uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id); void insertData_impl(uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, uint32_t level); bool deleteData_impl(const TimeRegion& mbr, id_type id); id_type writeNode(Node*); NodePtr readNode(id_type id); void deleteNode(Node* n); void rangeQuery(RangeQueryType type, const IShape& query, IVisitor& v); void findRootIdentifiers(const Tools::IInterval& ti, std::vector& ids); std::string printRootInfo() const; IStorageManager* m_pStorageManager; std::vector m_roots; id_type m_headerID; MVRTreeVariant m_treeVariant; double m_fillFactor; uint32_t m_indexCapacity; uint32_t m_leafCapacity; uint32_t m_nearMinimumOverlapFactor; // The R*-Tree 'p' constant, for calculating nearly minimum overlap cost. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles, Section 4.1] double m_splitDistributionFactor; // The R*-Tree 'm' constant, for calculating spliting distributions. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles, Section 4.2] double m_reinsertFactor; // The R*-Tree 'p' constant, for removing entries at reinserts. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles, Section 4.3] double m_strongVersionOverflow; //double m_strongVersionUnderflow; double m_versionUnderflow; uint32_t m_dimension; TimeRegion m_infiniteRegion; SpatialIndex::MVRTree::Statistics m_stats; bool m_bTightMBRs; bool m_bHasVersionCopied; double m_currentTime; Tools::PointerPool m_pointPool; Tools::PointerPool m_regionPool; Tools::PointerPool m_indexPool; Tools::PointerPool m_leafPool; std::vector > m_writeNodeCommands; std::vector > m_readNodeCommands; std::vector > m_deleteNodeCommands; class RootEntry { public: RootEntry() = default; RootEntry(id_type id, double s, double e) : m_id(id), m_startTime(s), m_endTime(e) {} id_type m_id; double m_startTime; double m_endTime; }; // RootEntry class NNEntry { public: id_type m_id; IEntry* m_pEntry; double m_minDist; NNEntry(id_type id, IEntry* e, double f) : m_id(id), m_pEntry(e), m_minDist(f) {} ~NNEntry() = default; }; // NNEntry class NNComparator : public INearestNeighborComparator { public: double getMinimumDistance(const IShape& query, const IShape& entry) { return query.getMinimumDistance(entry); } double getMinimumDistance(const IShape& query, const IData& data) { IShape* pR; data.getShape(&pR); double ret = query.getMinimumDistance(*pR); delete pR; return ret; } }; // NNComparator class ValidateEntry { public: ValidateEntry(id_type pid, TimeRegion& r, NodePtr& pNode) : m_parentID(pid), m_parentMBR(r), m_pNode(pNode), m_bIsDead(false) {} id_type m_parentID; TimeRegion m_parentMBR; NodePtr m_pNode; bool m_bIsDead; }; // ValidateEntry friend class Node; friend class Leaf; friend class Index; friend std::ostream& operator<<(std::ostream& os, const MVRTree& t); }; // MVRTree std::ostream& operator<<(std::ostream& os, const MVRTree& t); } } #pragma GCC diagnostic pop libspatialindex-1.9.3/src/mvrtree/Node.cc000066400000000000000000001322311355420072700203560ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #include "MVRTree.h" #include "Node.h" #include "Index.h" #include "Leaf.h" using namespace SpatialIndex; using namespace SpatialIndex::MVRTree; // // Tools::IObject interface // Tools::IObject* Node::clone() { throw Tools::NotSupportedException("IObject::clone should never be called."); } // // Tools::ISerializable interface // uint32_t Node::getByteArraySize() { return (sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(double) + sizeof(double) + (m_children * (m_pTree->m_dimension * sizeof(double) * 2 + sizeof(id_type) + 2 * sizeof(double) + sizeof(uint32_t))) + m_totalDataLength + (2 * m_pTree->m_dimension * sizeof(double))); } void Node::loadFromByteArray(const uint8_t* ptr) { m_nodeMBR = m_pTree->m_infiniteRegion; // skip the node type information, it is not needed. ptr += sizeof(uint32_t); memcpy(&m_level, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_children, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&(m_nodeMBR.m_startTime), ptr, sizeof(double)); ptr += sizeof(double); memcpy(&(m_nodeMBR.m_endTime), ptr, sizeof(double)); ptr += sizeof(double); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_ptrMBR[cChild] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[cChild]) = m_pTree->m_infiniteRegion; memcpy(m_ptrMBR[cChild]->m_pLow, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_ptrMBR[cChild]->m_pHigh, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(&(m_pIdentifier[cChild]), ptr, sizeof(id_type)); ptr += sizeof(id_type); memcpy(&(m_ptrMBR[cChild]->m_startTime), ptr, sizeof(double)); ptr += sizeof(double); memcpy(&(m_ptrMBR[cChild]->m_endTime), ptr, sizeof(double)); ptr += sizeof(double); memcpy(&(m_pDataLength[cChild]), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_pDataLength[cChild] > 0) { m_totalDataLength += m_pDataLength[cChild]; m_pData[cChild] = new uint8_t[m_pDataLength[cChild]]; memcpy(m_pData[cChild], ptr, m_pDataLength[cChild]); ptr += m_pDataLength[cChild]; } else { m_pData[cChild] = nullptr; } //m_nodeMBR.combineRegion(*(m_ptrMBR[cChild])); } memcpy(m_nodeMBR.m_pLow, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_nodeMBR.m_pHigh, ptr, m_pTree->m_dimension * sizeof(double)); //ptr += m_pTree->m_dimension * sizeof(double); } void Node::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; uint32_t nodeType; if (m_level == 0) nodeType = PersistentLeaf; else nodeType = PersistentIndex; memcpy(ptr, &nodeType, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_level, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_children, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &(m_nodeMBR.m_startTime), sizeof(double)); ptr += sizeof(double); memcpy(ptr, &(m_nodeMBR.m_endTime), sizeof(double)); ptr += sizeof(double); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { memcpy(ptr, m_ptrMBR[cChild]->m_pLow, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_ptrMBR[cChild]->m_pHigh, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, &(m_pIdentifier[cChild]), sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &(m_ptrMBR[cChild]->m_startTime), sizeof(double)); ptr += sizeof(double); memcpy(ptr, &(m_ptrMBR[cChild]->m_endTime), sizeof(double)); ptr += sizeof(double); memcpy(ptr, &(m_pDataLength[cChild]), sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_pDataLength[cChild] > 0) { memcpy(ptr, m_pData[cChild], m_pDataLength[cChild]); ptr += m_pDataLength[cChild]; } } // store the node MBR for efficiency. This increases the node size a little bit. memcpy(ptr, m_nodeMBR.m_pLow, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_nodeMBR.m_pHigh, m_pTree->m_dimension * sizeof(double)); //ptr += m_pTree->m_dimension * sizeof(double); } // // SpatialIndex::IEntry interface // SpatialIndex::id_type Node::getIdentifier() const { return m_identifier; } void Node::getShape(IShape** out) const { *out = new TimeRegion(m_nodeMBR); } // // SpatialIndex::INode interface // uint32_t Node::getChildrenCount() const { return m_children; } SpatialIndex::id_type Node::getChildIdentifier(uint32_t index) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); return m_pIdentifier[index]; } void Node::getChildShape(uint32_t index, IShape** out) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); *out = new TimeRegion(*(m_ptrMBR[index])); } void Node::getChildData(uint32_t index, uint32_t& length, uint8_t** data) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); if (m_pData[index] == nullptr) { length = 0; data = nullptr; } else { length = m_pDataLength[index]; *data = m_pData[index]; } } uint32_t Node::getLevel() const { return m_level; } bool Node::isLeaf() const { return (m_level == 0); } bool Node::isIndex() const { return (m_level != 0); } // // Internal // Node::Node() = default; Node::Node(SpatialIndex::MVRTree::MVRTree* pTree, id_type id, uint32_t level, uint32_t capacity) : m_pTree(pTree), m_level(level), m_identifier(id), m_children(0), m_capacity(capacity), m_pData(nullptr), m_ptrMBR(nullptr), m_pIdentifier(nullptr), m_pDataLength(nullptr), m_totalDataLength(0) { m_nodeMBR.makeInfinite(m_pTree->m_dimension); try { m_pDataLength = new uint32_t[m_capacity + 2]; m_pData = new uint8_t*[m_capacity + 2]; m_ptrMBR = new TimeRegionPtr[m_capacity + 2]; m_pIdentifier = new id_type[m_capacity + 2]; } catch (...) { delete[] m_pDataLength; delete[] m_pData; delete[] m_ptrMBR; delete[] m_pIdentifier; throw; } } Node::~Node() { if (m_pData != nullptr) { for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (m_pData[cChild] != nullptr) delete[] m_pData[cChild]; } delete[] m_pData; delete[] m_pDataLength; } if (m_ptrMBR != nullptr) delete[] m_ptrMBR; if (m_pIdentifier != nullptr) delete[] m_pIdentifier; } Node& Node::operator=(const Node&) { throw Tools::IllegalStateException("operator =: This should never be called."); } void Node::insertEntry(uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id) { assert(m_children < m_capacity); m_pDataLength[m_children] = dataLength; m_pData[m_children] = pData; m_ptrMBR[m_children] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children]) = mbr; m_pIdentifier[m_children] = id; m_totalDataLength += dataLength; ++m_children; m_nodeMBR.combineRegionInTime(mbr); } bool Node::deleteEntry(uint32_t index) { assert(index >= 0 && index < m_children); // cache it, since I might need it for "touches" later. TimeRegionPtr ptrR = m_ptrMBR[index]; m_totalDataLength -= m_pDataLength[index]; if (m_pData[index] != nullptr) delete[] m_pData[index]; if (m_children > 1 && index != m_children - 1) { m_pDataLength[index] = m_pDataLength[m_children - 1]; m_pData[index] = m_pData[m_children - 1]; m_ptrMBR[index] = m_ptrMBR[m_children - 1]; m_pIdentifier[index] = m_pIdentifier[m_children - 1]; } --m_children; // WARNING: index has now changed. Do not use it below here. if (m_children == 0) { m_nodeMBR = m_pTree->m_infiniteRegion; return true; } else if (m_pTree->m_bTightMBRs && m_nodeMBR.touchesShape(*ptrR)) { for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->m_pHigh[cDim]); } } return true; } return false; } bool Node::insertData( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, std::stack& pathBuffer, TimeRegion& mbr2, id_type id2, bool bInsertMbr2, bool bForceAdjust) { // we should be certain that when bInsertMbr2 is true the node needs to be version split // this function returns true only if the node under modification has been stored (writeNode(this)) // it is needed since some times after a version copy we do not need to actually store the node. Only // the parent has to be notified to modify the entry pointing // to this node with the appropriate deletion time (thus we save one disk access) if ((! bInsertMbr2) && m_children < m_capacity) { // the node has empty space. Insert the entry here // this has to happen before insertEntry modifies m_nodeMBR. bool b = m_nodeMBR.containsShape(mbr); insertEntry(dataLength, pData, mbr, id); m_pTree->writeNode(this); // a forced adjust might be needed when a child has modified it MBR due to an entry deletion // (when the entry start time becomes equal to the entry end time after a version copy) if ((! b || bForceAdjust) && (! pathBuffer.empty())) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); } return true; } else { // do a version copy bool bIsRoot = pathBuffer.empty(); NodePtr ptrCopy; // copy live entries of this node into a new node. Create an index or a leaf respectively if (m_level == 0) { ptrCopy = m_pTree->m_leafPool.acquire(); if (ptrCopy.get() == nullptr) ptrCopy = NodePtr(new Leaf(m_pTree, - 1), &(m_pTree->m_leafPool)); else ptrCopy->m_nodeMBR = m_pTree->m_infiniteRegion; } else { ptrCopy = m_pTree->m_indexPool.acquire(); if (ptrCopy.get() == nullptr) ptrCopy = NodePtr(new Index(m_pTree, -1, m_level), &(m_pTree->m_indexPool)); else { ptrCopy->m_level = m_level; ptrCopy->m_nodeMBR = m_pTree->m_infiniteRegion; } } for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (! (m_ptrMBR[cChild]->m_endTime < std::numeric_limits::max())) { uint8_t* data = nullptr; if (m_pDataLength[cChild] > 0) { data = new uint8_t[m_pDataLength[cChild]]; memcpy(data, m_pData[cChild], m_pDataLength[cChild] * sizeof(uint8_t)); } ptrCopy->insertEntry(m_pDataLength[cChild], data, *(m_ptrMBR[cChild]), m_pIdentifier[cChild]); ptrCopy->m_ptrMBR[ptrCopy->m_children - 1]->m_startTime = mbr.m_startTime; } } ptrCopy->m_nodeMBR.m_startTime = mbr.m_startTime; m_nodeMBR.m_endTime = mbr.m_startTime; uint32_t children = (bInsertMbr2) ? ptrCopy->m_children + 2 : ptrCopy->m_children + 1; assert(children > 0); if (children >= m_pTree->m_strongVersionOverflow * m_capacity) { // strong version overflow. Split! NodePtr n; NodePtr nn; ptrCopy->split(dataLength, pData, mbr, id, n, nn, mbr2, id2, bInsertMbr2); assert(n->m_children > 1 && nn->m_children > 1); if (bIsRoot) { // it is a root node. Special handling required. n->m_level = ptrCopy->m_level; nn->m_level = ptrCopy->m_level; n->m_identifier = -1; nn->m_identifier = -1; m_pTree->writeNode(n.get()); m_pTree->writeNode(nn.get()); NodePtr ptrR = m_pTree->m_indexPool.acquire(); if (ptrR.get() == nullptr) ptrR = NodePtr(new Index(m_pTree, -1, ptrCopy->m_level + 1), &(m_pTree->m_indexPool)); else { //ptrR->m_pTree = m_pTree; //ptrR->m_identifier = -1; ptrR->m_level = ptrCopy->m_level + 1; ptrR->m_nodeMBR = m_pTree->m_infiniteRegion; } ptrR->insertEntry(0, nullptr, n->m_nodeMBR, n->m_identifier); ptrR->insertEntry(0, nullptr, nn->m_nodeMBR, nn->m_identifier); if (m_nodeMBR.m_startTime == m_nodeMBR.m_endTime) { ptrR->m_identifier = m_identifier; m_pTree->writeNode(ptrR.get()); m_pTree->m_stats.m_treeHeight[m_pTree->m_stats.m_treeHeight.size() - 1] = ptrR->m_level + 1; m_pTree->m_stats.m_nodesInLevel.at(n->m_level) = m_pTree->m_stats.m_nodesInLevel[n->m_level] + 1; assert(m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_startTime == ptrCopy->m_nodeMBR.m_startTime && m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_endTime == ptrCopy->m_nodeMBR.m_endTime); } else { m_pTree->writeNode(this); m_pTree->writeNode(ptrR.get()); assert(m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_id == m_identifier); m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_startTime = m_nodeMBR.m_startTime; m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_endTime = m_nodeMBR.m_endTime; m_pTree->m_roots.emplace_back(ptrR->m_identifier, ptrR->m_nodeMBR.m_startTime, ptrR->m_nodeMBR.m_endTime); m_pTree->m_stats.m_treeHeight.push_back(ptrR->m_level + 1); m_pTree->m_stats.m_nodesInLevel.at(n->m_level) = m_pTree->m_stats.m_nodesInLevel[n->m_level] + 2; if (m_level > 0) ++(m_pTree->m_stats.m_u32DeadIndexNodes); else ++(m_pTree->m_stats.m_u32DeadLeafNodes); } if (ptrR->m_level >= m_pTree->m_stats.m_nodesInLevel.size()) m_pTree->m_stats.m_nodesInLevel.push_back(1); else m_pTree->m_stats.m_nodesInLevel.at(ptrR->m_level) = m_pTree->m_stats.m_nodesInLevel[ptrR->m_level] + 1; return true; } else { bool b = false; n->m_level = ptrCopy->m_level; nn->m_level = ptrCopy->m_level; /* if (m_nodeMBR.m_startTime == m_nodeMBR.m_endTime) { n->m_identifier = m_identifier; m_pTree->m_stats.m_nodesInLevel[n->m_level] = m_pTree->m_stats.m_nodesInLevel[n->m_level] + 1; b = true; } else { n->m_identifier = -1; m_pTree->m_stats.m_nodesInLevel[n->m_level] = m_pTree->m_stats.m_nodesInLevel[n->m_level] + 2; } */ n->m_identifier = -1; nn->m_identifier = -1; m_pTree->m_stats.m_nodesInLevel.at(n->m_level) = m_pTree->m_stats.m_nodesInLevel[n->m_level] + 2; if (m_level > 0) ++(m_pTree->m_stats.m_u32DeadIndexNodes); else ++(m_pTree->m_stats.m_u32DeadLeafNodes); m_pTree->writeNode(n.get()); m_pTree->writeNode(nn.get()); id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); ++(m_pTree->m_stats.m_u64Adjustments); // this is the special insertion function for two new nodes, defined below p->insertData(n->m_nodeMBR, n->m_identifier, nn->m_nodeMBR, nn->m_identifier, this, pathBuffer); return b; } } //else if (children < m_pTree->m_strongVersionUnderflow * m_capacity) //{ // do not do this for now //} else { // the entry contains the appropriate number of live entries ptrCopy->insertEntry(dataLength, pData, mbr, id); if (bInsertMbr2) ptrCopy->insertEntry(0, nullptr, mbr2, id2); if (bIsRoot) { if (m_nodeMBR.m_startTime == m_nodeMBR.m_endTime) { ptrCopy->m_identifier = m_identifier; m_pTree->writeNode(ptrCopy.get()); assert(m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_startTime == ptrCopy->m_nodeMBR.m_startTime && m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_endTime == ptrCopy->m_nodeMBR.m_endTime); } else { m_pTree->writeNode(ptrCopy.get()); m_pTree->writeNode(this); assert(m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_id == m_identifier); m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_startTime = m_nodeMBR.m_startTime; m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_endTime = m_nodeMBR.m_endTime; m_pTree->m_roots.emplace_back(ptrCopy->m_identifier, ptrCopy->m_nodeMBR.m_startTime, ptrCopy->m_nodeMBR.m_endTime); m_pTree->m_stats.m_treeHeight.push_back(ptrCopy->m_level + 1); m_pTree->m_stats.m_nodesInLevel.at(ptrCopy->m_level) = m_pTree->m_stats.m_nodesInLevel[ptrCopy->m_level] + 1; if (m_level > 0) ++(m_pTree->m_stats.m_u32DeadIndexNodes); else ++(m_pTree->m_stats.m_u32DeadLeafNodes); } return true; } else { m_pTree->writeNode(ptrCopy.get()); m_pTree->m_stats.m_nodesInLevel.at(ptrCopy->m_level) = m_pTree->m_stats.m_nodesInLevel[ptrCopy->m_level] + 1; if (m_level > 0) ++(m_pTree->m_stats.m_u32DeadIndexNodes); else ++(m_pTree->m_stats.m_u32DeadLeafNodes); id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); ++(m_pTree->m_stats.m_u64Adjustments); uint32_t child; for (child = 0; child < p->m_children; ++child) { if (p->m_pIdentifier[child] == m_identifier) break; } // it might be needed to update the MBR since the child MBR might have changed // from an entry deletion (from insertData, below, when m_startTime == m_endTime) double st = p->m_ptrMBR[child]->m_startTime; *(p->m_ptrMBR[child]) = m_nodeMBR; p->m_ptrMBR[child]->m_startTime = st; //p->m_ptrMBR[child]->m_endTime = mbr.m_startTime; // insert this new version copy into the parent p->insertData(0, nullptr, ptrCopy->m_nodeMBR, ptrCopy->m_identifier, pathBuffer, m_pTree->m_infiniteRegion, -1, false); return false; } } } } void Node::insertData(TimeRegion& mbr1, id_type id1, TimeRegion& mbr2, id_type id2, Node* oldVersion, std::stack& pathBuffer) { // this should be called only from insertData above // it tries to fit two new entries into the node uint32_t child; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == oldVersion->m_identifier) break; } // save the original node MBR bool bAdjust = false; TimeRegionPtr ptrR = m_pTree->m_regionPool.acquire(); *ptrR = m_nodeMBR; // it might be needed to update the MBR since the child MBR might have changed // from an entry deletion (when m_startTime == m_endTime) double st = m_ptrMBR[child]->m_startTime; *(m_ptrMBR[child]) = oldVersion->m_nodeMBR; m_ptrMBR[child]->m_startTime = st; //m_ptrMBR[child]->m_endTime = oldVersion->m_nodeMBR.m_endTime; if (m_children < m_capacity - 1) { // there is enough space for both new entries insertEntry(0, nullptr, mbr1, id1); insertEntry(0, nullptr, mbr2, id2); m_pTree->writeNode(this); if ((! pathBuffer.empty()) && (bAdjust || ! (ptrR->containsShape(mbr1) && ptrR->containsShape(mbr2)))) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); } } else { // call a normal insertData which will trigger a version copy // insertData will adjust the parent since this node will certainly do a version copy bool bStored = insertData(0, nullptr, mbr1, id1, pathBuffer, mbr2, id2, true); if (! bStored) m_pTree->writeNode(this); } } bool Node::deleteData(id_type id, double delTime, std::stack& pathBuffer, bool bForceAdjust) { // it returns true if a new root has been created because all the entries of the old root have died. // This is needed in case the root dies while there are pending reinsertions from multiple levels uint32_t child = m_capacity; uint32_t alive = 0; bool bAdjustParent = false; TimeRegionPtr oldNodeMBR = m_pTree->m_regionPool.acquire(); *oldNodeMBR = m_nodeMBR; NodePtr parent; // make sure that there are no "snapshot" entries // find how many children are alive and locate the entry to be deleted for (uint32_t cChild = 0; cChild < m_children; ++cChild) { assert(m_level != 0 || (m_ptrMBR[cChild]->m_startTime != m_ptrMBR[cChild]->m_endTime)); if (! (m_ptrMBR[cChild]->m_endTime < std::numeric_limits::max())) ++alive; if (m_pIdentifier[cChild] == id) child = cChild; } assert(child < m_capacity); // either make the entry dead or, if its start time is equal to the deletion time, // delete it from the node completely (in which case the parent MBR might need adjustment) bool bAdjusted = false; if (m_level == 0 && m_ptrMBR[child]->m_startTime == delTime) { bAdjusted = deleteEntry(child); bAdjustParent = bAdjusted; } else { m_ptrMBR[child]->m_endTime = delTime; } // if it has not been adjusted yet (by deleteEntry) and it should be adjusted, do it. // a forced adjustment is needed when a child node has adjusted its own MBR and signals // the parent to adjust it, also. if ((! bAdjusted) && bForceAdjust) { for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->m_pHigh[cDim]); } } // signal our parent to adjust its MBR also bAdjustParent = true; } // one less live entry from now on --alive; if (alive < m_pTree->m_versionUnderflow * m_capacity && (! pathBuffer.empty())) { // if the weak version condition is broken, try to resolve it // if this is a leaf and it can still hold some entries (since all entries might be dead now and // the node full) try to borrow a live entry from a sibling // [Yufei Tao, Dimitris Papadias, 'MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and // Interval Queries', Section 3.3] if (m_level == 0 && m_children < m_capacity) { parent = m_pTree->readNode(pathBuffer.top()); pathBuffer.pop(); // find us in our parent for (child = 0; child < parent->m_children; ++child) { if (parent->m_pIdentifier[child] == m_identifier) break; } // remember that the parent might be younger than us, pointing to us through a pointer // created with a version copy. So the actual start time of this node through the path // from the root might actually be different than the stored start time. double actualNodeStartTime = parent->m_ptrMBR[child]->m_startTime; // find an appropriate sibling for (uint32_t cSibling = 0; cSibling < parent->m_children; ++cSibling) { // it has to be different than us, it has to be alive and its MBR should intersect ours if ( parent->m_pIdentifier[cSibling] != m_identifier && ! (parent->m_ptrMBR[cSibling]->m_endTime < std::numeric_limits::max()) && parent->m_ptrMBR[cSibling]->intersectsShape(m_nodeMBR)) { NodePtr sibling = m_pTree->readNode(parent->m_pIdentifier[cSibling]); std::vector toCheck; alive = 0; // if this child does not have a single parent, we cannot borrow an entry. bool bSingleParent = true; for (uint32_t cSiblingChild = 0; cSiblingChild < sibling->m_children; ++cSiblingChild) { // if the insertion time of any child is smaller than the starting time stored in the // parent of this node than the node has more than one parent if (sibling->m_ptrMBR[cSiblingChild]->m_startTime < parent->m_ptrMBR[cSibling]->m_startTime) { bSingleParent = false; break; } // find the live sibling entries, and also the ones that can be moved to this node // sort them by area enlargement if (! (sibling->m_ptrMBR[cSiblingChild]->m_endTime < std::numeric_limits::max())) { ++alive; if (sibling->m_ptrMBR[cSiblingChild]->m_startTime >= actualNodeStartTime) { TimeRegionPtr tmpR = m_pTree->m_regionPool.acquire(); *tmpR = m_nodeMBR; tmpR->combineRegion(*(sibling->m_ptrMBR[cSiblingChild])); double a = tmpR->getArea(); if (a <= m_nodeMBR.getArea() * 1.1) toCheck.emplace_back(cSiblingChild, a); } } } // if the sibling has more than one parent or if we cannot remove an entry because we will // cause a weak version overflow, this sibling is not appropriate if ((! bSingleParent) || toCheck.empty() || alive == m_pTree->m_versionUnderflow * sibling->m_capacity + 1) continue; // create interval counters for checking weak version condition // [Yufei Tao, Dimitris Papadias, 'MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and // Interval Queries', Section 3.2] std::set Si; for (uint32_t cSiblingChild = 0; cSiblingChild < sibling->m_children; ++cSiblingChild) { Si.insert(sibling->m_ptrMBR[cSiblingChild]->m_startTime); Si.insert(sibling->m_ptrMBR[cSiblingChild]->m_endTime); } // duplicate entries have been removed and the set is sorted uint32_t* SiCounts = new uint32_t[Si.size() - 1]; memset(SiCounts, 0, (Si.size() - 1) * sizeof(uint32_t)); for (uint32_t cSiblingChild = 0; cSiblingChild < sibling->m_children; ++cSiblingChild) { std::set::iterator it1 = Si.begin(); std::set::iterator it2 = Si.begin(); for (size_t cIndex = 0; cIndex < Si.size() - 1; ++cIndex) { ++it2; if ( sibling->m_ptrMBR[cSiblingChild]->m_startTime <= *it1 && sibling->m_ptrMBR[cSiblingChild]->m_endTime >= *it2 ) ++(SiCounts[cIndex]); ++it1; } } std::vector Sdel; for (size_t cCheck = 0; cCheck < toCheck.size(); ++cCheck) { bool good = true; // check if it can be removed without a weak version underflow std::set::iterator it1 = Si.begin(); std::set::iterator it2 = Si.begin(); for (size_t cIndex = 0; cIndex < Si.size() - 1; ++cIndex) { ++it2; if ( sibling->m_ptrMBR[toCheck[cCheck].m_index]->m_startTime <= *it1 && sibling->m_ptrMBR[toCheck[cCheck].m_index]->m_endTime >= *it2 && SiCounts[cIndex] <= m_pTree->m_versionUnderflow * sibling->m_capacity) { good = false; break; } ++it1; } if (good) Sdel.push_back(toCheck[cCheck]); } delete[] SiCounts; if (Sdel.empty()) continue; // we found some entries. Sort them according to least enlargement, insert the best entry into // this node, remove it from the sibling and update the MBRs of the parent sort(Sdel.begin(), Sdel.end(), DeleteDataEntry::compare); uint32_t entry = Sdel[0].m_index; bool b1 = m_nodeMBR.containsShape(*(sibling->m_ptrMBR[entry])); bool b2 = sibling->m_nodeMBR.touchesShape(*(sibling->m_ptrMBR[entry])); insertEntry(sibling->m_pDataLength[entry], sibling->m_pData[entry], *(sibling->m_ptrMBR[entry]), sibling->m_pIdentifier[entry]); sibling->m_pData[entry] = nullptr; // the weak version condition check above, guarantees that. assert(sibling->m_children > 1); sibling->deleteEntry(entry); m_pTree->writeNode(this); m_pTree->writeNode(sibling.get()); Index* p = static_cast(parent.get()); if (((! b1) || bAdjustParent) && b2) p->adjustTree(this, sibling.get(), pathBuffer); else if ((! b1) || bAdjustParent) p->adjustTree(this, pathBuffer); else if (b2) p->adjustTree(sibling.get(), pathBuffer); return false; } } } // either this is not a leaf, or an appropriate sibling was not found, so make this node dead // and reinsert all live entries from the root m_nodeMBR.m_endTime = delTime; m_pTree->writeNode(this); if (m_level > 0) ++(m_pTree->m_stats.m_u32DeadIndexNodes); else ++(m_pTree->m_stats.m_u32DeadLeafNodes); if (parent.get() == nullptr) { parent = m_pTree->readNode(pathBuffer.top()); pathBuffer.pop(); } if (bAdjustParent) { // the correct child pointer might have been calculated already from earlier if (child < parent->m_children && m_identifier != parent->m_pIdentifier[child]) { for (child = 0; child < parent->m_children; ++child) { if (parent->m_pIdentifier[child] == m_identifier) break; } } // both start time and end time should be preserved since deleteData below needs // to know how many entries where alive, including this one double st = parent->m_ptrMBR[child]->m_startTime; double en = parent->m_ptrMBR[child]->m_endTime; *(parent->m_ptrMBR[child]) = m_nodeMBR; parent->m_ptrMBR[child]->m_startTime = st; parent->m_ptrMBR[child]->m_endTime = en; } // delete this node from the parent node. // if this node had been adjusted and its old MBR was touching the parent MBR, the // parent MBR needs to be adjusted also. // the deletion has to happen first, since the reinsertions might modify the path to this node bool bNewRoot = parent->deleteData(m_identifier, delTime, pathBuffer, (bAdjustParent && parent->m_nodeMBR.touchesShape(*oldNodeMBR))); // reinsert all the live entries from the root // normally I should not modify any node instances, since writeNode might be caching nodes // in main memory, even though I have persisted them, so I have to make copies // this code will try and reinsert whole paths if possible. It might be the case, though, // that a root died, which means that all the live data entries have to be scanned and reinserted themselves for (child = 0; child < m_children; ++child) { if (! (m_ptrMBR[child]->m_endTime < std::numeric_limits::max())) { if (! bNewRoot || m_level == 0) { m_ptrMBR[child]->m_startTime = delTime; m_pTree->insertData_impl(m_pDataLength[child], m_pData[child], *(m_ptrMBR[child]), m_pIdentifier[child], m_level); // make sure we do not delete the data array from this node's destructor m_pData[child] = nullptr; } else { std::stack Sins; Sins.push(m_pTree->readNode(m_pIdentifier[child])); while (! Sins.empty()) { NodePtr p = Sins.top(); Sins.pop(); if (p->m_level == 0) { for (uint32_t cIndex= 0; cIndex < p->m_children; ++cIndex) { if (! (p->m_ptrMBR[cIndex]->m_endTime < std::numeric_limits::max())) { p->m_ptrMBR[cIndex]->m_startTime = delTime; m_pTree->insertData_impl(p->m_pDataLength[cIndex], p->m_pData[cIndex], *(p->m_ptrMBR[cIndex]), p->m_pIdentifier[cIndex], p->m_level); // make sure we do not delete the data array from this node's destructor p->m_pData[cIndex] = nullptr; } } } else { for (uint32_t cIndex= 0; cIndex < p->m_children; ++cIndex) { if (! (p->m_ptrMBR[cIndex]->m_endTime < std::numeric_limits::max())) { Sins.push(m_pTree->readNode(p->m_pIdentifier[cIndex])); } } } } } } } } else { // either this is a root node or there is no weak version condition if (alive == 0 && pathBuffer.empty()) { if (m_children > 0) { // all root children are dead. Create a new root m_nodeMBR.m_endTime = delTime; m_pTree->m_bHasVersionCopied = false; if (m_nodeMBR.m_startTime == m_nodeMBR.m_endTime) { Leaf root(m_pTree, m_identifier); root.m_nodeMBR.m_startTime = m_nodeMBR.m_endTime; root.m_nodeMBR.m_endTime = std::numeric_limits::max(); m_pTree->writeNode(&root); m_pTree->m_stats.m_treeHeight[m_pTree->m_stats.m_treeHeight.size() - 1] = 1; if (m_pTree->m_stats.m_nodesInLevel.at(m_level) == 1) m_pTree->m_stats.m_nodesInLevel.pop_back(); else m_pTree->m_stats.m_nodesInLevel.at(m_level) = m_pTree->m_stats.m_nodesInLevel[m_level] - 1; m_pTree->m_stats.m_nodesInLevel.at(0) = m_pTree->m_stats.m_nodesInLevel[0] + 1; } else { m_pTree->writeNode(this); if (m_level > 0) ++(m_pTree->m_stats.m_u32DeadIndexNodes); else ++(m_pTree->m_stats.m_u32DeadLeafNodes); Leaf root(m_pTree, -1); root.m_nodeMBR.m_startTime = m_nodeMBR.m_endTime; root.m_nodeMBR.m_endTime = std::numeric_limits::max(); m_pTree->writeNode(&root); assert(m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_id == m_identifier); m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_startTime = m_nodeMBR.m_startTime; m_pTree->m_roots[m_pTree->m_roots.size() - 1].m_endTime = m_nodeMBR.m_endTime; m_pTree->m_roots.emplace_back(root.m_identifier, root.m_nodeMBR.m_startTime, root.m_nodeMBR.m_endTime); m_pTree->m_stats.m_treeHeight.push_back(1); m_pTree->m_stats.m_nodesInLevel.at(root.m_level) = m_pTree->m_stats.m_nodesInLevel[root.m_level] + 1; } return true; } else { assert(m_level == 0); m_pTree->writeNode(this); m_pTree->m_bHasVersionCopied = false; return false; } } else if (bAdjustParent && (! pathBuffer.empty())) { // the parent needs to be adjusted m_pTree->writeNode(this); parent = m_pTree->readNode(pathBuffer.top()); pathBuffer.pop(); Index* p = static_cast(parent.get()); p->adjustTree(this, pathBuffer); } else { m_pTree->writeNode(this); } } return false; } void Node::rtreeSplit( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, std::vector& group1, std::vector& group2, TimeRegion& mbr2, id_type id2, bool bInsertMbr2) { uint32_t cChild; uint32_t minimumLoad = static_cast(std::floor(m_capacity * m_pTree->m_fillFactor)); uint32_t cTotal = (bInsertMbr2) ? m_children + 2 : m_children + 1; // use this mask array for marking visited entries. uint8_t* mask = new uint8_t[cTotal]; memset(mask, 0, cTotal); // insert new data in the node for easier manipulation. Data arrays are always // by two larger than node capacity. m_pDataLength[m_children] = dataLength; m_pData[m_children] = pData; m_ptrMBR[m_children] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children]) = mbr; m_pIdentifier[m_children] = id; if (bInsertMbr2) { m_pDataLength[m_children + 1] = 0; m_pData[m_children + 1] = nullptr; m_ptrMBR[m_children + 1] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children + 1]) = mbr2; m_pIdentifier[m_children + 1] = id2; } // initialize each group with the seed entries. uint32_t seed1, seed2; pickSeeds(seed1, seed2, cTotal); group1.push_back(seed1); group2.push_back(seed2); mask[seed1] = 1; mask[seed2] = 1; // find MBR of each group. TimeRegionPtr mbrA = m_pTree->m_regionPool.acquire(); *mbrA = *(m_ptrMBR[seed1]); TimeRegionPtr mbrB = m_pTree->m_regionPool.acquire(); *mbrB = *(m_ptrMBR[seed2]); // count how many entries are left unchecked (exclude the seeds here.) uint32_t cRemaining = cTotal - 2; while (cRemaining > 0) { if (minimumLoad - group1.size() == cRemaining) { // all remaining entries must be assigned to group1 to comply with minimun load requirement. for (cChild = 0; cChild < cTotal; ++cChild) { if (mask[cChild] == 0) { group1.push_back(cChild); mask[cChild] = 1; --cRemaining; } } } else if (minimumLoad - group2.size() == cRemaining) { // all remaining entries must be assigned to group2 to comply with minimun load requirement. for (cChild = 0; cChild < cTotal; ++cChild) { if (mask[cChild] == 0) { group2.push_back(cChild); mask[cChild] = 1; --cRemaining; } } } else { // For all remaining entries compute the difference of the cost of grouping an // entry in either group. When done, choose the entry that yielded the maximum // difference. In case of linear split, select any entry (e.g. the first one.) uint32_t sel; double md1 = 0.0, md2 = 0.0; double m = -std::numeric_limits::max(); double d1, d2, d; double a1 = mbrA->getArea(); double a2 = mbrB->getArea(); TimeRegionPtr a = m_pTree->m_regionPool.acquire(); TimeRegionPtr b = m_pTree->m_regionPool.acquire(); for (cChild = 0; cChild < cTotal; ++cChild) { if (mask[cChild] == 0) { mbrA->getCombinedRegion(*a, *(m_ptrMBR[cChild])); d1 = a->getArea() - a1; mbrB->getCombinedRegion(*b, *(m_ptrMBR[cChild])); d2 = b->getArea() - a2; d = std::abs(d1 - d2); if (d > m) { m = d; md1 = d1; md2 = d2; sel = cChild; if (m_pTree->m_treeVariant== RV_LINEAR || m_pTree->m_treeVariant == RV_RSTAR) break; } } } // determine the group where we should add the new entry. int32_t group = 1; if (md1 < md2) { group1.push_back(sel); group = 1; } else if (md2 < md1) { group2.push_back(sel); group = 2; } else if (a1 < a2) { group1.push_back(sel); group = 1; } else if (a2 < a1) { group2.push_back(sel); group = 2; } else if (group1.size() < group2.size()) { group1.push_back(sel); group = 1; } else if (group2.size() < group1.size()) { group2.push_back(sel); group = 2; } else { group1.push_back(sel); group = 1; } mask[sel] = 1; --cRemaining; if (group == 1) { mbrA->combineRegion(*(m_ptrMBR[sel])); } else { mbrB->combineRegion(*(m_ptrMBR[sel])); } } } delete[] mask; } void Node::rstarSplit( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, std::vector& group1, std::vector& group2, TimeRegion& mbr2, id_type id2, bool bInsertMbr2) { RstarSplitEntry** dataLow = nullptr; RstarSplitEntry** dataHigh = nullptr; uint32_t cTotal = (bInsertMbr2) ? m_children + 2 : m_children + 1; try { dataLow = new RstarSplitEntry*[cTotal]; dataHigh = new RstarSplitEntry*[cTotal]; } catch (...) { delete[] dataLow; throw; } m_pDataLength[m_children] = dataLength; m_pData[m_children] = pData; m_ptrMBR[m_children] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children]) = mbr; m_pIdentifier[m_children] = id; if (bInsertMbr2) { m_pDataLength[m_children + 1] = 0; m_pData[m_children + 1] = nullptr; m_ptrMBR[m_children + 1] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children + 1]) = mbr2; m_pIdentifier[m_children + 1] = id2; } uint32_t nodeSPF = static_cast(std::floor(cTotal * m_pTree->m_splitDistributionFactor)); uint32_t splitDistribution = cTotal - (2 * nodeSPF) + 2; uint32_t cChild = 0, cDim, cIndex; for (cChild = 0; cChild < cTotal; ++cChild) { try { dataLow[cChild] = new RstarSplitEntry(m_ptrMBR[cChild].get(), cChild, 0); } catch (...) { for (uint32_t i = 0; i < cChild; ++i) delete dataLow[i]; delete[] dataLow; delete[] dataHigh; throw; } dataHigh[cChild] = dataLow[cChild]; } double minimumMargin = std::numeric_limits::max(); uint32_t splitAxis = std::numeric_limits::max(); uint32_t sortOrder = std::numeric_limits::max(); // chooseSplitAxis. for (cDim = 0; cDim < m_pTree->m_dimension; ++cDim) { ::qsort(dataLow, cTotal, sizeof(RstarSplitEntry*), RstarSplitEntry::compareLow); ::qsort(dataHigh, cTotal, sizeof(RstarSplitEntry*), RstarSplitEntry::compareHigh); // calculate sum of margins and overlap for all distributions. double marginl = 0.0; double marginh = 0.0; TimeRegion bbl1, bbl2, bbh1, bbh2; for (cChild = 1; cChild <= splitDistribution; ++cChild) { uint32_t l = nodeSPF - 1 + cChild; bbl1 = *(dataLow[0]->m_pRegion); bbh1 = *(dataHigh[0]->m_pRegion); for (cIndex = 1; cIndex < l; ++cIndex) { bbl1.combineRegion(*(dataLow[cIndex]->m_pRegion)); bbh1.combineRegion(*(dataHigh[cIndex]->m_pRegion)); } bbl2 = *(dataLow[l]->m_pRegion); bbh2 = *(dataHigh[l]->m_pRegion); for (cIndex = l + 1; cIndex < cTotal; ++cIndex) { bbl2.combineRegion(*(dataLow[cIndex]->m_pRegion)); bbh2.combineRegion(*(dataHigh[cIndex]->m_pRegion)); } marginl += bbl1.getMargin() + bbl2.getMargin(); marginh += bbh1.getMargin() + bbh2.getMargin(); } // for (cChild) double margin = std::min(marginl, marginh); // keep minimum margin as split axis. if (margin < minimumMargin) { minimumMargin = margin; splitAxis = cDim; sortOrder = (marginl < marginh) ? 0 : 1; } // increase the dimension according to which the data entries should be sorted. for (cChild = 0; cChild < cTotal; ++cChild) { dataLow[cChild]->m_sortDim = cDim + 1; } } // for (cDim) for (cChild = 0; cChild < cTotal; ++cChild) { dataLow[cChild]->m_sortDim = splitAxis; } ::qsort( dataLow, cTotal, sizeof(RstarSplitEntry*), (sortOrder == 0) ? RstarSplitEntry::compareLow : RstarSplitEntry::compareHigh); double ma = std::numeric_limits::max(); double mo = std::numeric_limits::max(); uint32_t splitPoint = std::numeric_limits::max(); TimeRegion bb1, bb2; for (cChild = 1; cChild <= splitDistribution; ++cChild) { uint32_t l = nodeSPF - 1 + cChild; bb1 = *(dataLow[0]->m_pRegion); for (cIndex = 1; cIndex < l; ++cIndex) { bb1.combineRegion(*(dataLow[cIndex]->m_pRegion)); } bb2 = *(dataLow[l]->m_pRegion); for (cIndex = l + 1; cIndex < cTotal; ++cIndex) { bb2.combineRegion(*(dataLow[cIndex]->m_pRegion)); } double o = bb1.getIntersectingArea(bb2); if (o < mo) { splitPoint = cChild; mo = o; ma = bb1.getArea() + bb2.getArea(); } else if (o == mo) { double a = bb1.getArea() + bb2.getArea(); if (a < ma) { splitPoint = cChild; ma = a; } } } // for (cChild) uint32_t l1 = nodeSPF - 1 + splitPoint; for (cIndex = 0; cIndex < l1; ++cIndex) { group1.push_back(dataLow[cIndex]->m_index); delete dataLow[cIndex]; } for (cIndex = l1; cIndex < cTotal; ++cIndex) { group2.push_back(dataLow[cIndex]->m_index); delete dataLow[cIndex]; } delete[] dataLow; delete[] dataHigh; } void Node::pickSeeds(uint32_t& index1, uint32_t& index2, uint32_t total) { double separation = -std::numeric_limits::max(); double inefficiency = -std::numeric_limits::max(); uint32_t cDim, cChild, cIndex; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_RSTAR: for (cDim = 0; cDim < m_pTree->m_dimension; ++cDim) { double leastLower = m_ptrMBR[0]->m_pLow[cDim]; double greatestUpper = m_ptrMBR[0]->m_pHigh[cDim]; uint32_t greatestLower = 0; uint32_t leastUpper = 0; double width; for (cChild = 1; cChild < total; ++cChild) { if (m_ptrMBR[cChild]->m_pLow[cDim] > m_ptrMBR[greatestLower]->m_pLow[cDim]) greatestLower = cChild; if (m_ptrMBR[cChild]->m_pHigh[cDim] < m_ptrMBR[leastUpper]->m_pHigh[cDim]) leastUpper = cChild; leastLower = std::min(m_ptrMBR[cChild]->m_pLow[cDim], leastLower); greatestUpper = std::max(m_ptrMBR[cChild]->m_pHigh[cDim], greatestUpper); } width = greatestUpper - leastLower; if (width <= 0) width = 1; double f = (m_ptrMBR[greatestLower]->m_pLow[cDim] - m_ptrMBR[leastUpper]->m_pHigh[cDim]) / width; if (f > separation) { index1 = leastUpper; index2 = greatestLower; separation = f; } } // for (cDim) if (index1 == index2) { if (index2 == 0) ++index2; else --index2; } break; case RV_QUADRATIC: // for each pair of Regions (account for overflow Region too!) for (cChild = 0; cChild < total - 1; ++cChild) { double a = m_ptrMBR[cChild]->getArea(); for (cIndex = cChild + 1; cIndex < total; ++cIndex) { // get the combined MBR of those two entries. TimeRegion r; m_ptrMBR[cChild]->getCombinedRegion(r, *(m_ptrMBR[cIndex])); // find the inefficiency of grouping these entries together. double d = r.getArea() - a - m_ptrMBR[cIndex]->getArea(); if (d > inefficiency) { inefficiency = d; index1 = cChild; index2 = cIndex; } } // for (cIndex) } // for (cChild) break; default: throw Tools::NotSupportedException("Node::pickSeeds: Tree variant not supported."); } } NodePtr Node::findNode(const TimeRegion& mbr, id_type id, std::stack& pathBuffer) { pathBuffer.push(m_identifier); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (m_pIdentifier[cChild] == id) return m_pTree->readNode(m_pIdentifier[cChild]); if (m_ptrMBR[cChild]->containsShape(mbr)) { NodePtr n = m_pTree->readNode(m_pIdentifier[cChild]); NodePtr l = n->findNode(mbr, id, pathBuffer); assert(n.get() != l.get()); if (l.get() != nullptr) return l; } } pathBuffer.pop(); return NodePtr(); } libspatialindex-1.9.3/src/mvrtree/Node.h000066400000000000000000000154401355420072700202220ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" namespace SpatialIndex { namespace MVRTree { class MVRTree; class Leaf; class Index; class Node; typedef Tools::PoolPointer NodePtr; class Node : public SpatialIndex::INode { public: ~Node() override; // // Tools::IObject interface // IObject* clone() override; // // Tools::ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; // // SpatialIndex::IEntry interface // id_type getIdentifier() const override; void getShape(IShape** out) const override; // // SpatialIndex::INode interface // uint32_t getChildrenCount() const override; id_type getChildIdentifier(uint32_t index) const override; void getChildShape(uint32_t index, IShape** out) const override; void getChildData(uint32_t index, uint32_t& length, uint8_t** data) const override; uint32_t getLevel() const override; bool isIndex() const override; bool isLeaf() const override; private: Node(); Node(MVRTree* pTree, id_type id, uint32_t level, uint32_t capacity); virtual Node& operator=(const Node&); virtual void insertEntry(uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id); virtual bool deleteEntry(uint32_t index); virtual bool insertData( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, std::stack& pathBuffer, TimeRegion& mbr2, id_type id2, bool bInsertMbr2 = false, bool forceAdjust = false); virtual void insertData(TimeRegion& mbr1, id_type id1, TimeRegion& mbr2, id_type id2, Node* oldVersion, std::stack& pathBuffer); virtual bool deleteData(id_type id, double delTime, std::stack& pathBuffer, bool adjustMBR = false); virtual void rtreeSplit( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, std::vector& group1, std::vector& group2, TimeRegion& mbr2, id_type id2, bool bInsertMbr2 = false); virtual void rstarSplit( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, std::vector& group1, std::vector& group2, TimeRegion& mbr2, id_type id2, bool bInsertMbr2 = false); virtual void pickSeeds(uint32_t& index1, uint32_t& index2, uint32_t total); virtual NodePtr chooseSubtree(const TimeRegion& mbr, uint32_t level, std::stack& pathBuffer) = 0; virtual NodePtr findLeaf(const TimeRegion& mbr, id_type id, std::stack& pathBuffer) = 0; virtual NodePtr findNode(const TimeRegion& mbr, id_type id, std::stack& pathBuffer); virtual void split( uint32_t dataLength, uint8_t* pData, TimeRegion& mbr, id_type id, NodePtr& left, NodePtr& right, TimeRegion& mbr2, id_type id2, bool bInsertMbr2 = false) = 0; MVRTree* m_pTree{nullptr}; // Parent of all nodes. uint32_t m_level{0}; // The level of the node in the tree. // Leaves are always at level 0. id_type m_identifier{-1}; // The unique ID of this node. uint32_t m_children{0}; // The number of children pointed by this node. uint32_t m_capacity{0}; // Specifies the node capacity. TimeRegion m_nodeMBR; // The minimum bounding region enclosing all data contained in the node. uint8_t** m_pData{nullptr}; // The data stored in the node. TimeRegionPtr* m_ptrMBR{nullptr}; // The corresponding data MBRs. id_type* m_pIdentifier{nullptr}; // The corresponding data identifiers. uint32_t* m_pDataLength{nullptr}; uint32_t m_totalDataLength{0}; class RstarSplitEntry { public: RstarSplitEntry(TimeRegion* pr, uint32_t index, uint32_t dimension) : m_pRegion(pr), m_index(index), m_sortDim(dimension) {} static int compareLow(const void* pv1, const void* pv2) { RstarSplitEntry* pe1 = * (RstarSplitEntry**) pv1; RstarSplitEntry* pe2 = * (RstarSplitEntry**) pv2; if (pe1->m_pRegion->m_pLow[pe1->m_sortDim] < pe2->m_pRegion->m_pLow[pe2->m_sortDim]) return -1; if (pe1->m_pRegion->m_pLow[pe1->m_sortDim] > pe2->m_pRegion->m_pLow[pe2->m_sortDim]) return 1; return 0; } static int compareHigh(const void* pv1, const void* pv2) { RstarSplitEntry* pe1 = * (RstarSplitEntry**) pv1; RstarSplitEntry* pe2 = * (RstarSplitEntry**) pv2; if (pe1->m_pRegion->m_pHigh[pe1->m_sortDim] < pe2->m_pRegion->m_pHigh[pe2->m_sortDim]) return -1; if (pe1->m_pRegion->m_pHigh[pe1->m_sortDim] > pe2->m_pRegion->m_pHigh[pe2->m_sortDim]) return 1; return 0; } TimeRegion* m_pRegion; uint32_t m_index; uint32_t m_sortDim; }; // RstarSplitEntry class DeleteDataEntry { public: DeleteDataEntry(uint32_t index, double d) : m_index(index), m_increase(d) {} static bool compare(DeleteDataEntry e1, DeleteDataEntry e2) { return e1.m_increase < e2.m_increase; } uint32_t m_index; double m_increase; }; // DeleteDataEntry // Needed to access protected members without having to cast from Node. // It is more efficient than using member functions to access protected members. friend class MVRTree; friend class Leaf; friend class Index; friend class Tools::PointerPool; }; // Node } } #pragma GCC diagnostic pop libspatialindex-1.9.3/src/mvrtree/PointerPoolNode.h000066400000000000000000000066301355420072700224160ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "Node.h" namespace Tools { template<> class PointerPool { public: explicit PointerPool(uint32_t capacity) : m_capacity(capacity) { #ifndef NDEBUG m_hits = 0; m_misses = 0; m_pointerCount = 0; #endif } ~PointerPool() { assert(m_pool.size() <= m_capacity); while (! m_pool.empty()) { SpatialIndex::MVRTree::Node* x = m_pool.top(); m_pool.pop(); #ifndef NDEBUG --m_pointerCount; #endif delete x; } #ifndef NDEBUG std::cerr << "Lost pointers: " << m_pointerCount << std::endl; #endif } PoolPointer acquire() { if (! m_pool.empty()) { SpatialIndex::MVRTree::Node* p = m_pool.top(); m_pool.pop(); #ifndef NDEBUG ++m_hits; #endif return PoolPointer(p, this); } #ifndef NDEBUG else { // fixme: well sort of... ++m_pointerCount; ++m_misses; } #endif return PoolPointer(); } void release(SpatialIndex::MVRTree::Node* p) { if (p != nullptr) { if (m_pool.size() < m_capacity) { if (p->m_pData != nullptr) { for (uint32_t cChild = 0; cChild < p->m_children; ++cChild) { if (p->m_pData[cChild] != nullptr) delete[] p->m_pData[cChild]; } } p->m_level = 0; p->m_identifier = -1; p->m_children = 0; p->m_totalDataLength = 0; m_pool.push(p); } else { #ifndef NDEBUG --m_pointerCount; #endif delete p; } assert(m_pool.size() <= m_capacity); } } uint32_t getCapacity() const { return m_capacity; } void setCapacity(uint32_t c) { assert (c >= 0); m_capacity = c; } protected: uint32_t m_capacity; std::stack m_pool; #ifndef NDEBUG public: uint64_t m_hits; uint64_t m_misses; uint64_t m_pointerCount; #endif }; } libspatialindex-1.9.3/src/mvrtree/Statistics.cc000066400000000000000000000121061355420072700216210ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include "Statistics.h" using namespace SpatialIndex::MVRTree; Statistics::Statistics() { reset(); } Statistics::Statistics(const Statistics& s) { m_u64Reads = s.m_u64Reads; m_u64Writes = s.m_u64Writes; m_u64Splits = s.m_u64Splits; m_u64Hits = s.m_u64Hits; m_u64Misses = s.m_u64Misses; m_u32Nodes = s.m_u32Nodes; m_u32DeadIndexNodes = s.m_u32DeadIndexNodes; m_u32DeadLeafNodes = s.m_u32DeadLeafNodes; m_u64Adjustments = s.m_u64Adjustments; m_u64QueryResults = s.m_u64QueryResults; m_u64Data = s.m_u64Data; m_u64TotalData = s.m_u64TotalData; m_treeHeight = s.m_treeHeight; m_nodesInLevel = s.m_nodesInLevel; } Statistics::~Statistics() = default; Statistics& Statistics::operator=(const Statistics& s) { if (this != &s) { m_u64Reads = s.m_u64Reads; m_u64Writes = s.m_u64Writes; m_u64Splits = s.m_u64Splits; m_u64Hits = s.m_u64Hits; m_u64Misses = s.m_u64Misses; m_u32Nodes = s.m_u32Nodes; m_u32DeadIndexNodes = s.m_u32DeadIndexNodes; m_u32DeadLeafNodes = s.m_u32DeadLeafNodes; m_u64Adjustments = s.m_u64Adjustments; m_u64QueryResults = s.m_u64QueryResults; m_u64Data = s.m_u64Data; m_u64TotalData = s.m_u64TotalData; m_treeHeight = s.m_treeHeight; m_nodesInLevel = s.m_nodesInLevel; } return *this; } uint64_t Statistics::getReads() const { return m_u64Reads; } uint64_t Statistics::getWrites() const { return m_u64Writes; } uint32_t Statistics::getNumberOfNodes() const { return m_u32Nodes; } uint64_t Statistics::getNumberOfData() const { return m_u64Data; } uint64_t Statistics::getSplits() const { return m_u64Splits; } uint64_t Statistics::getHits() const { return m_u64Hits; } uint64_t Statistics::getMisses() const { return m_u64Misses; } uint64_t Statistics::getAdjustments() const { return m_u64Adjustments; } uint64_t Statistics::getQueryResults() const { return m_u64QueryResults; } uint32_t Statistics::getTreeHeight() const { uint32_t ret = 0; for (size_t cIndex = 0; cIndex < m_treeHeight.size(); ++cIndex) { ret = std::max(ret, m_treeHeight[cIndex]); } return ret; } uint32_t Statistics::getNumberOfNodesInLevel(uint32_t l) const { try { return m_nodesInLevel.at(l); } catch (...) { throw Tools::IndexOutOfBoundsException(l); } } void Statistics::reset() { m_u64Reads = 0; m_u64Writes = 0; m_u64Splits = 0; m_u64Hits = 0; m_u64Misses = 0; m_u32Nodes = 0; m_u32DeadIndexNodes = 0; m_u32DeadLeafNodes = 0; m_u64Adjustments = 0; m_u64QueryResults = 0; m_u64Data = 0; m_u64TotalData = 0; m_treeHeight.clear(); m_nodesInLevel.clear(); } std::ostream& SpatialIndex::MVRTree::operator<<(std::ostream& os, const Statistics& s) { os << "Reads: " << s.m_u64Reads << std::endl << "Writes: " << s.m_u64Writes << std::endl << "Hits: " << s.m_u64Hits << std::endl << "Misses: " << s.m_u64Misses << std::endl << "Number of live data: " << s.m_u64Data << std::endl << "Total number of data: " << s.m_u64TotalData << std::endl << "Number of nodes: " << s.m_u32Nodes << std::endl << "Numer of dead index nodes: " << s.m_u32DeadIndexNodes << std::endl << "Numer of dead leaf nodes: " << s.m_u32DeadLeafNodes << std::endl; for (size_t cTree = 0; cTree < s.m_treeHeight.size(); ++cTree) { os << "Tree " << cTree << ", Height " << s.m_treeHeight[cTree] << std::endl; } for (size_t cLevel = 0; cLevel < s.m_nodesInLevel.size(); ++cLevel) { os << "Level " << cLevel << " pages: " << s.m_nodesInLevel[cLevel] << std::endl; } os << "Splits: " << s.m_u64Splits << std::endl << "Adjustments: " << s.m_u64Adjustments << std::endl << "Query results: " << s.m_u64QueryResults << std::endl; return os; } libspatialindex-1.9.3/src/mvrtree/Statistics.h000066400000000000000000000057611355420072700214740ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace MVRTree { class MVRTree; class Node; class Leaf; class Index; class Statistics : public SpatialIndex::IStatistics { public: Statistics(); Statistics(const Statistics&); ~Statistics() override; Statistics& operator=(const Statistics&); // // IStatistics interface // uint64_t getReads() const override; uint64_t getWrites() const override; uint32_t getNumberOfNodes() const override; uint64_t getNumberOfData() const override; virtual uint64_t getSplits() const; virtual uint64_t getHits() const; virtual uint64_t getMisses() const; virtual uint64_t getAdjustments() const; virtual uint64_t getQueryResults() const; virtual uint32_t getTreeHeight() const; virtual uint32_t getNumberOfNodesInLevel(uint32_t l) const; private: void reset(); uint64_t m_u64Reads; uint64_t m_u64Writes; uint64_t m_u64Splits; uint64_t m_u64Hits; uint64_t m_u64Misses; uint32_t m_u32Nodes; uint32_t m_u32DeadIndexNodes; uint32_t m_u32DeadLeafNodes; uint64_t m_u64Adjustments; uint64_t m_u64QueryResults; uint64_t m_u64Data; uint64_t m_u64TotalData; std::vector m_treeHeight; std::vector m_nodesInLevel; friend class MVRTree; friend class Node; friend class Index; friend class Leaf; friend std::ostream& operator<<(std::ostream& os, const Statistics& s); }; // Statistics std::ostream& operator<<(std::ostream& os, const Statistics& s); } } libspatialindex-1.9.3/src/rtree/000077500000000000000000000000001355420072700166155ustar00rootroot00000000000000libspatialindex-1.9.3/src/rtree/BulkLoader.cc000066400000000000000000000273601355420072700211600ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #ifndef _MSC_VER #include #endif #include #include "RTree.h" #include "Leaf.h" #include "Index.h" #include "BulkLoader.h" using namespace SpatialIndex; using namespace SpatialIndex::RTree; // // ExternalSorter::Record // ExternalSorter::Record::Record() = default; ExternalSorter::Record::Record(const Region& r, id_type id, uint32_t len, uint8_t* pData, uint32_t s) : m_r(r), m_id(id), m_len(len), m_pData(pData), m_s(s) { } ExternalSorter::Record::~Record() { delete[] m_pData; } bool ExternalSorter::Record::operator<(const Record& r) const { if (m_s != r.m_s) throw Tools::IllegalStateException("ExternalSorter::Record::operator<: Incompatible sorting dimensions."); if (m_r.m_pHigh[m_s] + m_r.m_pLow[m_s] < r.m_r.m_pHigh[m_s] + r.m_r.m_pLow[m_s]) return true; else return false; } void ExternalSorter::Record::storeToFile(Tools::TemporaryFile& f) { f.write(static_cast(m_id)); f.write(m_r.m_dimension); f.write(m_s); for (uint32_t i = 0; i < m_r.m_dimension; ++i) { f.write(m_r.m_pLow[i]); f.write(m_r.m_pHigh[i]); } f.write(m_len); if (m_len > 0) f.write(m_len, m_pData); } void ExternalSorter::Record::loadFromFile(Tools::TemporaryFile& f) { m_id = static_cast(f.readUInt64()); uint32_t dim = f.readUInt32(); m_s = f.readUInt32(); if (dim != m_r.m_dimension) { delete[] m_r.m_pLow; delete[] m_r.m_pHigh; m_r.m_dimension = dim; m_r.m_pLow = new double[dim]; m_r.m_pHigh = new double[dim]; } for (uint32_t i = 0; i < m_r.m_dimension; ++i) { m_r.m_pLow[i] = f.readDouble(); m_r.m_pHigh[i] = f.readDouble(); } m_len = f.readUInt32(); delete[] m_pData; m_pData = nullptr; if (m_len > 0) f.readBytes(m_len, &m_pData); } // // ExternalSorter // ExternalSorter::ExternalSorter(uint32_t u32PageSize, uint32_t u32BufferPages) : m_bInsertionPhase(true), m_u32PageSize(u32PageSize), m_u32BufferPages(u32BufferPages), m_u64TotalEntries(0), m_stI(0) { } ExternalSorter::~ExternalSorter() { for (m_stI = 0; m_stI < m_buffer.size(); ++m_stI) delete m_buffer[m_stI]; } void ExternalSorter::insert(Record* r) { if (m_bInsertionPhase == false) throw Tools::IllegalStateException("ExternalSorter::insert: Input has already been sorted."); m_buffer.push_back(r); ++m_u64TotalEntries; // this will create the initial, sorted buckets before the // external merge sort. if (m_buffer.size() >= m_u32PageSize * m_u32BufferPages) { std::sort(m_buffer.begin(), m_buffer.end(), Record::SortAscending()); Tools::TemporaryFile* tf = new Tools::TemporaryFile(); for (size_t j = 0; j < m_buffer.size(); ++j) { m_buffer[j]->storeToFile(*tf); delete m_buffer[j]; } m_buffer.clear(); tf->rewindForReading(); m_runs.push_back(std::shared_ptr(tf)); } } void ExternalSorter::sort() { if (m_bInsertionPhase == false) throw Tools::IllegalStateException("ExternalSorter::sort: Input has already been sorted."); if (m_runs.empty()) { // The data fits in main memory. No need to store to disk. std::sort(m_buffer.begin(), m_buffer.end(), Record::SortAscending()); m_bInsertionPhase = false; return; } if (m_buffer.size() > 0) { // Whatever remained in the buffer (if not filled) needs to be stored // as the final bucket. std::sort(m_buffer.begin(), m_buffer.end(), Record::SortAscending()); Tools::TemporaryFile* tf = new Tools::TemporaryFile(); for (size_t j = 0; j < m_buffer.size(); ++j) { m_buffer[j]->storeToFile(*tf); delete m_buffer[j]; } m_buffer.clear(); tf->rewindForReading(); m_runs.push_back(std::shared_ptr(tf)); } if (m_runs.size() == 1) { m_sortedFile = m_runs.front(); } else { Record* r = nullptr; while (m_runs.size() > 1) { std::shared_ptr tf(new Tools::TemporaryFile()); std::vector > buckets; std::vector > buffers; std::priority_queue, PQEntry::SortAscending> pq; // initialize buffers and priority queue. std::list >::iterator it = m_runs.begin(); for (uint32_t i = 0; i < (std::min)(static_cast(m_runs.size()), m_u32BufferPages); ++i) { buckets.push_back(*it); buffers.emplace_back(); r = new Record(); r->loadFromFile(**it); // a run cannot be empty initially, so this should never fail. pq.push(PQEntry(r, i)); for (uint32_t j = 0; j < m_u32PageSize - 1; ++j) { // fill the buffer with the rest of the page of records. try { r = new Record(); r->loadFromFile(**it); buffers.back().push(r); } catch (Tools::EndOfStreamException&) { delete r; break; } } ++it; } // exhaust buckets, buffers, and priority queue. while (! pq.empty()) { PQEntry e = pq.top(); pq.pop(); e.m_r->storeToFile(*tf); delete e.m_r; if (! buckets[e.m_u32Index]->eof() && buffers[e.m_u32Index].empty()) { for (uint32_t j = 0; j < m_u32PageSize; ++j) { try { r = new Record(); r->loadFromFile(*buckets[e.m_u32Index]); buffers[e.m_u32Index].push(r); } catch (Tools::EndOfStreamException&) { delete r; break; } } } if (! buffers[e.m_u32Index].empty()) { e.m_r = buffers[e.m_u32Index].front(); buffers[e.m_u32Index].pop(); pq.push(e); } } tf->rewindForReading(); // check if another pass is needed. uint32_t u32Count = std::min(static_cast(m_runs.size()), m_u32BufferPages); for (uint32_t i = 0; i < u32Count; ++i) { m_runs.pop_front(); } if (m_runs.size() == 0) { m_sortedFile = tf; break; } else { m_runs.push_back(tf); } } } m_bInsertionPhase = false; } ExternalSorter::Record* ExternalSorter::getNextRecord() { if (m_bInsertionPhase == true) throw Tools::IllegalStateException("ExternalSorter::getNextRecord: Input has not been sorted yet."); Record* ret; if (m_sortedFile.get() == nullptr) { if (m_stI < m_buffer.size()) { ret = m_buffer[m_stI]; m_buffer[m_stI] = nullptr; ++m_stI; } else throw Tools::EndOfStreamException(""); } else { ret = new Record(); ret->loadFromFile(*m_sortedFile); } return ret; } inline uint64_t ExternalSorter::getTotalEntries() const { return m_u64TotalEntries; } // // BulkLoader // void BulkLoader::bulkLoadUsingSTR( SpatialIndex::RTree::RTree* pTree, IDataStream& stream, uint32_t bindex, uint32_t bleaf, uint32_t pageSize, uint32_t numberOfPages ) { if (! stream.hasNext()) throw Tools::IllegalArgumentException( "RTree::BulkLoader::bulkLoadUsingSTR: Empty data stream given." ); NodePtr n = pTree->readNode(pTree->m_rootID); pTree->deleteNode(n.get()); #ifndef NDEBUG std::cerr << "RTree::BulkLoader: Sorting data." << std::endl; #endif std::shared_ptr es = std::shared_ptr(new ExternalSorter(pageSize, numberOfPages)); while (stream.hasNext()) { Data* d = reinterpret_cast(stream.getNext()); if (d == nullptr) throw Tools::IllegalArgumentException( "bulkLoadUsingSTR: RTree bulk load expects SpatialIndex::RTree::Data entries." ); es->insert(new ExternalSorter::Record(d->m_region, d->m_id, d->m_dataLength, d->m_pData, 0)); d->m_pData = nullptr; delete d; } es->sort(); pTree->m_stats.m_u64Data = es->getTotalEntries(); // create index levels. uint32_t level = 0; while (true) { #ifndef NDEBUG std::cerr << "RTree::BulkLoader: Building level " << level << std::endl; #endif pTree->m_stats.m_nodesInLevel.push_back(0); std::shared_ptr es2 = std::shared_ptr(new ExternalSorter(pageSize, numberOfPages)); createLevel(pTree, es, 0, bleaf, bindex, level++, es2, pageSize, numberOfPages); es = es2; if (es->getTotalEntries() == 1) break; es->sort(); } pTree->m_stats.m_u32TreeHeight = level; pTree->storeHeader(); } void BulkLoader::createLevel( SpatialIndex::RTree::RTree* pTree, std::shared_ptr es, uint32_t dimension, uint32_t bleaf, uint32_t bindex, uint32_t level, std::shared_ptr es2, uint32_t pageSize, uint32_t numberOfPages ) { uint64_t b = (level == 0) ? bleaf : bindex; uint64_t P = static_cast(std::ceil(static_cast(es->getTotalEntries()) / static_cast(b))); uint64_t S = static_cast(std::ceil(std::sqrt(static_cast(P)))); if (S == 1 || dimension == pTree->m_dimension - 1 || S * b == es->getTotalEntries()) { std::vector node; ExternalSorter::Record* r; while (true) { try { r = es->getNextRecord(); } catch (Tools::EndOfStreamException&) { break; } node.push_back(r); if (node.size() == b) { Node* n = createNode(pTree, node, level); node.clear(); pTree->writeNode(n); es2->insert(new ExternalSorter::Record(n->m_nodeMBR, n->m_identifier, 0, nullptr, 0)); pTree->m_rootID = n->m_identifier; // special case when the root has exactly bindex entries. delete n; } } if (! node.empty()) { Node* n = createNode(pTree, node, level); pTree->writeNode(n); es2->insert(new ExternalSorter::Record(n->m_nodeMBR, n->m_identifier, 0, nullptr, 0)); pTree->m_rootID = n->m_identifier; delete n; } } else { bool bMore = true; while (bMore) { ExternalSorter::Record* pR; std::shared_ptr es3 = std::shared_ptr(new ExternalSorter(pageSize, numberOfPages)); for (uint64_t i = 0; i < S * b; ++i) { try { pR = es->getNextRecord(); } catch (Tools::EndOfStreamException&) { bMore = false; break; } pR->m_s = dimension + 1; es3->insert(pR); } es3->sort(); createLevel(pTree, es3, dimension + 1, bleaf, bindex, level, es2, pageSize, numberOfPages); } } } Node* BulkLoader::createNode(SpatialIndex::RTree::RTree* pTree, std::vector& e, uint32_t level) { Node* n; if (level == 0) n = new Leaf(pTree, -1); else n = new Index(pTree, -1, level); for (size_t cChild = 0; cChild < e.size(); ++cChild) { n->insertEntry(e[cChild]->m_len, e[cChild]->m_pData, e[cChild]->m_r, e[cChild]->m_id); e[cChild]->m_pData = nullptr; delete e[cChild]; } return n; } libspatialindex-1.9.3/src/rtree/BulkLoader.h000066400000000000000000000072551355420072700210230ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include namespace SpatialIndex { namespace RTree { class ExternalSorter { public: class Record { public: Record(); Record(const Region& r, id_type id, uint32_t len, uint8_t* pData, uint32_t s); ~Record(); bool operator<(const Record& r) const; void storeToFile(Tools::TemporaryFile& f); void loadFromFile(Tools::TemporaryFile& f); struct SortAscending { bool operator()(Record* const r1, Record* const r2) { if (*r1 < *r2) return true; else return false; } }; public: Region m_r; id_type m_id; uint32_t m_len; uint8_t* m_pData{nullptr}; uint32_t m_s; }; public: ExternalSorter(uint32_t u32PageSize, uint32_t u32BufferPages); virtual ~ExternalSorter(); void insert(Record* r); void sort(); Record* getNextRecord(); uint64_t getTotalEntries() const; private: class PQEntry { public: PQEntry(Record* r, uint32_t u32Index) : m_r(r), m_u32Index(u32Index) {} struct SortAscending { bool operator()(const PQEntry& e1, const PQEntry& e2) { if (*(e1.m_r) < *(e2.m_r)) return true; else return false; } }; Record* m_r; uint32_t m_u32Index; }; private: bool m_bInsertionPhase; uint32_t m_u32PageSize; uint32_t m_u32BufferPages; std::shared_ptr m_sortedFile; std::list > m_runs; std::vector m_buffer; uint64_t m_u64TotalEntries; uint32_t m_stI; }; class BulkLoader { public: void bulkLoadUsingSTR( RTree* pTree, IDataStream& stream, uint32_t bindex, uint32_t bleaf, uint32_t pageSize, // The number of node entries per page. uint32_t numberOfPages // The total number of pages to use. ); protected: void createLevel( RTree* pTree, std::shared_ptr es, uint32_t dimension, uint32_t indexSize, uint32_t leafSize, uint32_t level, std::shared_ptr es2, uint32_t pageSize, uint32_t numberOfPages ); Node* createNode( RTree* pTree, std::vector& e, uint32_t level ); }; } } libspatialindex-1.9.3/src/rtree/Index.cc000066400000000000000000000262531355420072700202030ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include "RTree.h" #include "Node.h" #include "Leaf.h" #include "Index.h" using namespace SpatialIndex; using namespace SpatialIndex::RTree; Index::~Index() = default; Index::Index(SpatialIndex::RTree::RTree* pTree, id_type id, uint32_t level) : Node(pTree, id, level, pTree->m_indexCapacity) { } NodePtr Index::chooseSubtree(const Region& mbr, uint32_t insertionLevel, std::stack& pathBuffer) { if (m_level == insertionLevel) return NodePtr(this, &(m_pTree->m_indexPool)); pathBuffer.push(m_identifier); uint32_t child = 0; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_QUADRATIC: child = findLeastEnlargement(mbr); break; case RV_RSTAR: if (m_level == 1) { // if this node points to leaves... child = findLeastOverlap(mbr); } else { child = findLeastEnlargement(mbr); } break; default: throw Tools::NotSupportedException("Index::chooseSubtree: Tree variant not supported."); } assert(child != std::numeric_limits::max()); NodePtr n = m_pTree->readNode(m_pIdentifier[child]); NodePtr ret = n->chooseSubtree(mbr, insertionLevel, pathBuffer); assert(n.unique()); if (ret.get() == n.get()) n.relinquish(); return ret; } NodePtr Index::findLeaf(const Region& mbr, id_type id, std::stack& pathBuffer) { pathBuffer.push(m_identifier); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (m_ptrMBR[cChild]->containsRegion(mbr)) { NodePtr n = m_pTree->readNode(m_pIdentifier[cChild]); NodePtr l = n->findLeaf(mbr, id, pathBuffer); if (n.get() == l.get()) n.relinquish(); if (l.get() != nullptr) return l; } } pathBuffer.pop(); return NodePtr(); } void Index::split(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, NodePtr& ptrLeft, NodePtr& ptrRight) { ++(m_pTree->m_stats.m_u64Splits); std::vector g1, g2; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_QUADRATIC: rtreeSplit(dataLength, pData, mbr, id, g1, g2); break; case RV_RSTAR: rstarSplit(dataLength, pData, mbr, id, g1, g2); break; default: throw Tools::NotSupportedException("Index::split: Tree variant not supported."); } ptrLeft = m_pTree->m_indexPool.acquire(); ptrRight = m_pTree->m_indexPool.acquire(); if (ptrLeft.get() == nullptr) ptrLeft = NodePtr(new Index(m_pTree, m_identifier, m_level), &(m_pTree->m_indexPool)); if (ptrRight.get() == nullptr) ptrRight = NodePtr(new Index(m_pTree, -1, m_level), &(m_pTree->m_indexPool)); ptrLeft->m_nodeMBR = m_pTree->m_infiniteRegion; ptrRight->m_nodeMBR = m_pTree->m_infiniteRegion; uint32_t cIndex; for (cIndex = 0; cIndex < g1.size(); ++cIndex) { ptrLeft->insertEntry(0, nullptr, *(m_ptrMBR[g1[cIndex]]), m_pIdentifier[g1[cIndex]]); } for (cIndex = 0; cIndex < g2.size(); ++cIndex) { ptrRight->insertEntry(0, nullptr, *(m_ptrMBR[g2[cIndex]]), m_pIdentifier[g2[cIndex]]); } } uint32_t Index::findLeastEnlargement(const Region& r) const { double area = std::numeric_limits::infinity(); uint32_t best = std::numeric_limits::max(); RegionPtr t = m_pTree->m_regionPool.acquire(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_ptrMBR[cChild]->getCombinedRegion(*t, r); double a = m_ptrMBR[cChild]->getArea(); double enl = t->getArea() - a; if (enl < area) { area = enl; best = cChild; } else if (enl == area) { // this will rarely happen, so compute best area on the fly only // when necessary. if (enl == std::numeric_limits::infinity() || a < m_ptrMBR[best]->getArea()) best = cChild; } } return best; } uint32_t Index::findLeastOverlap(const Region& r) const { OverlapEntry** entries = new OverlapEntry*[m_children]; double leastOverlap = std::numeric_limits::max(); double me = std::numeric_limits::max(); OverlapEntry* best = nullptr; // find combined region and enlargement of every entry and store it. for (uint32_t cChild = 0; cChild < m_children; ++cChild) { try { entries[cChild] = new OverlapEntry(); } catch (...) { for (uint32_t i = 0; i < cChild; ++i) delete entries[i]; delete[] entries; throw; } entries[cChild]->m_index = cChild; entries[cChild]->m_original = m_ptrMBR[cChild]; entries[cChild]->m_combined = m_pTree->m_regionPool.acquire(); m_ptrMBR[cChild]->getCombinedRegion(*(entries[cChild]->m_combined), r); entries[cChild]->m_oa = entries[cChild]->m_original->getArea(); entries[cChild]->m_ca = entries[cChild]->m_combined->getArea(); entries[cChild]->m_enlargement = entries[cChild]->m_ca - entries[cChild]->m_oa; if (entries[cChild]->m_enlargement < me) { me = entries[cChild]->m_enlargement; best = entries[cChild]; } else if (entries[cChild]->m_enlargement == me && entries[cChild]->m_oa < best->m_oa) { best = entries[cChild]; } } if (me < -std::numeric_limits::epsilon() || me > std::numeric_limits::epsilon()) { uint32_t cIterations; if (m_children > m_pTree->m_nearMinimumOverlapFactor) { // sort entries in increasing order of enlargement. ::qsort(entries, m_children, sizeof(OverlapEntry*), OverlapEntry::compareEntries); assert(entries[0]->m_enlargement <= entries[m_children - 1]->m_enlargement); cIterations = m_pTree->m_nearMinimumOverlapFactor; } else { cIterations = m_children; } // calculate overlap of most important original entries (near minimum overlap cost). for (uint32_t cIndex = 0; cIndex < cIterations; ++cIndex) { double dif = 0.0; OverlapEntry* e = entries[cIndex]; for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (e->m_index != cChild) { double f = e->m_combined->getIntersectingArea(*(m_ptrMBR[cChild])); if (f != 0.0) dif += f - e->m_original->getIntersectingArea(*(m_ptrMBR[cChild])); } } // for (cChild) if (dif < leastOverlap) { leastOverlap = dif; best = entries[cIndex]; } else if (dif == leastOverlap) { if (e->m_enlargement == best->m_enlargement) { // keep the one with least area. if (e->m_original->getArea() < best->m_original->getArea()) best = entries[cIndex]; } else { // keep the one with least enlargement. if (e->m_enlargement < best->m_enlargement) best = entries[cIndex]; } } } // for (cIndex) } uint32_t ret = best->m_index; for (uint32_t cChild = 0; cChild < m_children; ++cChild) { delete entries[cChild]; } delete[] entries; return ret; } void Index::adjustTree(Node* n, std::stack& pathBuffer, bool force) { ++(m_pTree->m_stats.m_u64Adjustments); // find entry pointing to old node; uint32_t child; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == n->m_identifier) break; } // MBR needs recalculation if either: // 1. the NEW child MBR is not contained. // 2. the OLD child MBR is touching. bool bContained = m_nodeMBR.containsRegion(n->m_nodeMBR); bool bTouches = m_nodeMBR.touchesRegion(*(m_ptrMBR[child])); bool bRecompute = (! bContained || (bTouches && m_pTree->m_bTightMBRs)); *(m_ptrMBR[child]) = n->m_nodeMBR; if (bRecompute || force) { for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->m_pHigh[cDim]); } } } m_pTree->writeNode(this); if ((bRecompute || force) && (! pathBuffer.empty())) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer, force); } } void Index::adjustTree(Node* n1, Node* n2, std::stack& pathBuffer, uint8_t* overflowTable) { ++(m_pTree->m_stats.m_u64Adjustments); // find entry pointing to old node; uint32_t child; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == n1->m_identifier) break; } // MBR needs recalculation if either: // 1. either child MBR is not contained. // 2. the OLD child MBR is touching. bool bContained1 = m_nodeMBR.containsRegion(n1->m_nodeMBR); bool bContained2 = m_nodeMBR.containsRegion(n2->m_nodeMBR); bool bContained = bContained1 && bContained2; bool bTouches = m_nodeMBR.touchesRegion(*(m_ptrMBR[child])); bool bRecompute = (! bContained || (bTouches && m_pTree->m_bTightMBRs)); *(m_ptrMBR[child]) = n1->m_nodeMBR; if (bRecompute) { for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->m_pHigh[cDim]); } } } // No write necessary here. insertData will write the node if needed. //m_pTree->writeNode(this); bool bAdjusted = insertData(0, nullptr, n2->m_nodeMBR, n2->m_identifier, pathBuffer, overflowTable); // if n2 is contained in the node and there was no split or reinsert, // we need to adjust only if recalculation took place. // In all other cases insertData above took care of adjustment. if ((! bAdjusted) && bRecompute && (! pathBuffer.empty())) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); } } libspatialindex-1.9.3/src/rtree/Index.h000066400000000000000000000056361355420072700200470ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" namespace SpatialIndex { namespace RTree { class Index : public Node { public: ~Index() override; protected: Index(RTree* pTree, id_type id, uint32_t level); NodePtr chooseSubtree(const Region& mbr, uint32_t level, std::stack& pathBuffer) override; NodePtr findLeaf(const Region& mbr, id_type id, std::stack& pathBuffer) override; void split(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, NodePtr& left, NodePtr& right) override; uint32_t findLeastEnlargement(const Region&) const; uint32_t findLeastOverlap(const Region&) const; void adjustTree(Node*, std::stack&, bool force = false); void adjustTree(Node*, Node*, std::stack&, uint8_t* overflowTable); class OverlapEntry { public: uint32_t m_index; double m_enlargement; RegionPtr m_original; RegionPtr m_combined; double m_oa; double m_ca; static int compareEntries(const void* pv1, const void* pv2) { OverlapEntry* pe1 = * (OverlapEntry**) pv1; OverlapEntry* pe2 = * (OverlapEntry**) pv2; if (pe1->m_enlargement < pe2->m_enlargement) return -1; if (pe1->m_enlargement > pe2->m_enlargement) return 1; return 0; } }; // OverlapEntry friend class RTree; friend class Node; friend class BulkLoader; }; // Index } } #pragma GCC diagnostic pop libspatialindex-1.9.3/src/rtree/Leaf.cc000066400000000000000000000116501355420072700177760ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include "RTree.h" #include "Node.h" #include "Index.h" #include "Leaf.h" using namespace SpatialIndex; using namespace SpatialIndex::RTree; Leaf::~Leaf() = default; Leaf::Leaf(SpatialIndex::RTree::RTree* pTree, id_type id): Node(pTree, id, 0, pTree->m_leafCapacity) { } NodePtr Leaf::chooseSubtree(const Region&, uint32_t, std::stack&) { // should make sure to relinquish other PoolPointer lists that might be pointing to the // same leaf. return NodePtr(this, &(m_pTree->m_leafPool)); } NodePtr Leaf::findLeaf(const Region& mbr, id_type id, std::stack&) { for (uint32_t cChild = 0; cChild < m_children; ++cChild) { // should make sure to relinquish other PoolPointer lists that might be pointing to the // same leaf. if (m_pIdentifier[cChild] == id && mbr == *(m_ptrMBR[cChild])) return NodePtr(this, &(m_pTree->m_leafPool)); } return NodePtr(); } void Leaf::split(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, NodePtr& pLeft, NodePtr& pRight) { ++(m_pTree->m_stats.m_u64Splits); std::vector g1, g2; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_QUADRATIC: rtreeSplit(dataLength, pData, mbr, id, g1, g2); break; case RV_RSTAR: rstarSplit(dataLength, pData, mbr, id, g1, g2); break; default: throw Tools::NotSupportedException("Leaf::split: Tree variant not supported."); } pLeft = m_pTree->m_leafPool.acquire(); pRight = m_pTree->m_leafPool.acquire(); if (pLeft.get() == nullptr) pLeft = NodePtr(new Leaf(m_pTree, -1), &(m_pTree->m_leafPool)); if (pRight.get() == nullptr) pRight = NodePtr(new Leaf(m_pTree, -1), &(m_pTree->m_leafPool)); pLeft->m_nodeMBR = m_pTree->m_infiniteRegion; pRight->m_nodeMBR = m_pTree->m_infiniteRegion; uint32_t cIndex; for (cIndex = 0; cIndex < g1.size(); ++cIndex) { pLeft->insertEntry(m_pDataLength[g1[cIndex]], m_pData[g1[cIndex]], *(m_ptrMBR[g1[cIndex]]), m_pIdentifier[g1[cIndex]]); // we don't want to delete the data array from this node's destructor! m_pData[g1[cIndex]] = nullptr; } for (cIndex = 0; cIndex < g2.size(); ++cIndex) { pRight->insertEntry(m_pDataLength[g2[cIndex]], m_pData[g2[cIndex]], *(m_ptrMBR[g2[cIndex]]), m_pIdentifier[g2[cIndex]]); // we don't want to delete the data array from this node's destructor! m_pData[g2[cIndex]] = nullptr; } } void Leaf::deleteData(const Region& mbr, id_type id, std::stack& pathBuffer) { uint32_t child; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == id && mbr == *(m_ptrMBR[child])) break; } deleteEntry(child); m_pTree->writeNode(this); std::stack toReinsert; NodePtr ptrThis(this, &(m_pTree->m_leafPool)); condenseTree(toReinsert, pathBuffer, ptrThis); ptrThis.relinquish(); // re-insert eliminated nodes. while (! toReinsert.empty()) { NodePtr n = toReinsert.top(); toReinsert.pop(); m_pTree->deleteNode(n.get()); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { // keep this in the for loop. The tree height might change after insertions. uint8_t* overflowTable = new uint8_t[m_pTree->m_stats.m_u32TreeHeight]; memset(overflowTable, 0, m_pTree->m_stats.m_u32TreeHeight); m_pTree->insertData_impl(n->m_pDataLength[cChild], n->m_pData[cChild], *(n->m_ptrMBR[cChild]), n->m_pIdentifier[cChild], n->m_level, overflowTable); n->m_pData[cChild] = nullptr; delete[] overflowTable; } if (n.get() == this) n.relinquish(); } } libspatialindex-1.9.3/src/rtree/Leaf.h000066400000000000000000000041611355420072700176370ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace RTree { class Leaf : public Node { public: ~Leaf() override; protected: Leaf(RTree* pTree, id_type id); NodePtr chooseSubtree(const Region& mbr, uint32_t level, std::stack& pathBuffer) override; NodePtr findLeaf(const Region& mbr, id_type id, std::stack& pathBuffer) override; void split(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, NodePtr& left, NodePtr& right) override; virtual void deleteData(const Region& mbr, id_type id, std::stack& pathBuffer); friend class RTree; friend class BulkLoader; }; // Leaf } } libspatialindex-1.9.3/src/rtree/Node.cc000066400000000000000000000717101355420072700200170ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #include "RTree.h" #include "Node.h" #include "Index.h" using namespace SpatialIndex; using namespace SpatialIndex::RTree; // // Tools::IObject interface // Tools::IObject* Node::clone() { throw Tools::NotSupportedException("IObject::clone should never be called."); } // // Tools::ISerializable interface // uint32_t Node::getByteArraySize() { return (sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint32_t) + (m_children * (m_pTree->m_dimension * sizeof(double) * 2 + sizeof(id_type) + sizeof(uint32_t))) + m_totalDataLength + (2 * m_pTree->m_dimension * sizeof(double))); } void Node::loadFromByteArray(const uint8_t* ptr) { m_nodeMBR = m_pTree->m_infiniteRegion; // skip the node type information, it is not needed. ptr += sizeof(uint32_t); memcpy(&m_level, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_children, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t u32Child = 0; u32Child < m_children; ++u32Child) { m_ptrMBR[u32Child] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[u32Child]) = m_pTree->m_infiniteRegion; memcpy(m_ptrMBR[u32Child]->m_pLow, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_ptrMBR[u32Child]->m_pHigh, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(&(m_pIdentifier[u32Child]), ptr, sizeof(id_type)); ptr += sizeof(id_type); memcpy(&(m_pDataLength[u32Child]), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_pDataLength[u32Child] > 0) { m_totalDataLength += m_pDataLength[u32Child]; m_pData[u32Child] = new uint8_t[m_pDataLength[u32Child]]; memcpy(m_pData[u32Child], ptr, m_pDataLength[u32Child]); ptr += m_pDataLength[u32Child]; } else { m_pData[u32Child] = nullptr; } //m_nodeMBR.combineRegion(*(m_ptrMBR[u32Child])); } memcpy(m_nodeMBR.m_pLow, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_nodeMBR.m_pHigh, ptr, m_pTree->m_dimension * sizeof(double)); //ptr += m_pTree->m_dimension * sizeof(double); } void Node::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; uint32_t nodeType; if (m_level == 0) nodeType = PersistentLeaf; else nodeType = PersistentIndex; memcpy(ptr, &nodeType, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_level, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_children, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t u32Child = 0; u32Child < m_children; ++u32Child) { memcpy(ptr, m_ptrMBR[u32Child]->m_pLow, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_ptrMBR[u32Child]->m_pHigh, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, &(m_pIdentifier[u32Child]), sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &(m_pDataLength[u32Child]), sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_pDataLength[u32Child] > 0) { memcpy(ptr, m_pData[u32Child], m_pDataLength[u32Child]); ptr += m_pDataLength[u32Child]; } } // store the node MBR for efficiency. This increases the node size a little bit. memcpy(ptr, m_nodeMBR.m_pLow, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_nodeMBR.m_pHigh, m_pTree->m_dimension * sizeof(double)); //ptr += m_pTree->m_dimension * sizeof(double); assert(len == (ptr - *data) + m_pTree->m_dimension * sizeof(double)); } // // SpatialIndex::IEntry interface // SpatialIndex::id_type Node::getIdentifier() const { return m_identifier; } void Node::getShape(IShape** out) const { *out = new Region(m_nodeMBR); } // // SpatialIndex::INode interface // uint32_t Node::getChildrenCount() const { return m_children; } SpatialIndex::id_type Node::getChildIdentifier(uint32_t index) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); return m_pIdentifier[index]; } void Node::getChildShape(uint32_t index, IShape** out) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); *out = new Region(*(m_ptrMBR[index])); } void Node::getChildData(uint32_t index, uint32_t& length, uint8_t** data) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); if (m_pData[index] == nullptr) { length = 0; data = nullptr; } else { length = m_pDataLength[index]; *data = m_pData[index]; } } uint32_t Node::getLevel() const { return m_level; } bool Node::isLeaf() const { return (m_level == 0); } bool Node::isIndex() const { return (m_level != 0); } // // Internal // Node::Node() = default; Node::Node(SpatialIndex::RTree::RTree* pTree, id_type id, uint32_t level, uint32_t capacity) : m_pTree(pTree), m_level(level), m_identifier(id), m_children(0), m_capacity(capacity), m_pData(nullptr), m_ptrMBR(nullptr), m_pIdentifier(nullptr), m_pDataLength(nullptr), m_totalDataLength(0) { m_nodeMBR.makeInfinite(m_pTree->m_dimension); try { m_pDataLength = new uint32_t[m_capacity + 1]; m_pData = new uint8_t*[m_capacity + 1]; m_ptrMBR = new RegionPtr[m_capacity + 1]; m_pIdentifier = new id_type[m_capacity + 1]; } catch (...) { delete[] m_pDataLength; delete[] m_pData; delete[] m_ptrMBR; delete[] m_pIdentifier; throw; } } Node::~Node() { if (m_pData != nullptr) { for (uint32_t u32Child = 0; u32Child < m_children; ++u32Child) { if (m_pData[u32Child] != nullptr) delete[] m_pData[u32Child]; } delete[] m_pData; } delete[] m_pDataLength; delete[] m_ptrMBR; delete[] m_pIdentifier; } Node& Node::operator=(const Node&) { throw Tools::IllegalStateException("operator =: This should never be called."); } void Node::insertEntry(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id) { assert(m_children < m_capacity); m_pDataLength[m_children] = dataLength; m_pData[m_children] = pData; m_ptrMBR[m_children] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children]) = mbr; m_pIdentifier[m_children] = id; m_totalDataLength += dataLength; ++m_children; m_nodeMBR.combineRegion(mbr); } void Node::deleteEntry(uint32_t index) { assert(index >= 0 && index < m_children); // cache it, since I might need it for "touches" later. RegionPtr ptrR = m_ptrMBR[index]; m_totalDataLength -= m_pDataLength[index]; if (m_pData[index] != nullptr) delete[] m_pData[index]; if (m_children > 1 && index != m_children - 1) { m_pDataLength[index] = m_pDataLength[m_children - 1]; m_pData[index] = m_pData[m_children - 1]; m_ptrMBR[index] = m_ptrMBR[m_children - 1]; m_pIdentifier[index] = m_pIdentifier[m_children - 1]; } --m_children; // WARNING: index has now changed. Do not use it below here. if (m_children == 0) { m_nodeMBR = m_pTree->m_infiniteRegion; } else if (m_pTree->m_bTightMBRs && m_nodeMBR.touchesRegion(*ptrR)) { for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t u32Child = 0; u32Child < m_children; ++u32Child) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[u32Child]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[u32Child]->m_pHigh[cDim]); } } } } bool Node::insertData(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::stack& pathBuffer, uint8_t* overflowTable) { if (m_children < m_capacity) { bool adjusted = false; // this has to happen before insertEntry modifies m_nodeMBR. bool b = m_nodeMBR.containsRegion(mbr); insertEntry(dataLength, pData, mbr, id); m_pTree->writeNode(this); if ((! b) && (! pathBuffer.empty())) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); adjusted = true; } return adjusted; } else if (m_pTree->m_treeVariant == RV_RSTAR && (! pathBuffer.empty()) && overflowTable[m_level] == 0) { overflowTable[m_level] = 1; std::vector vReinsert, vKeep; reinsertData(dataLength, pData, mbr, id, vReinsert, vKeep); uint32_t lReinsert = static_cast(vReinsert.size()); uint32_t lKeep = static_cast(vKeep.size()); uint8_t** reinsertdata = nullptr; RegionPtr* reinsertmbr = nullptr; id_type* reinsertid = nullptr; uint32_t* reinsertlen = nullptr; uint8_t** keepdata = nullptr; RegionPtr* keepmbr = nullptr; id_type* keepid = nullptr; uint32_t* keeplen = nullptr; try { reinsertdata = new uint8_t*[lReinsert]; reinsertmbr = new RegionPtr[lReinsert]; reinsertid = new id_type[lReinsert]; reinsertlen = new uint32_t[lReinsert]; keepdata = new uint8_t*[m_capacity + 1]; keepmbr = new RegionPtr[m_capacity + 1]; keepid = new id_type[m_capacity + 1]; keeplen = new uint32_t[m_capacity + 1]; } catch (...) { delete[] reinsertdata; delete[] reinsertmbr; delete[] reinsertid; delete[] reinsertlen; delete[] keepdata; delete[] keepmbr; delete[] keepid; delete[] keeplen; throw; } uint32_t cIndex; for (cIndex = 0; cIndex < lReinsert; ++cIndex) { reinsertlen[cIndex] = m_pDataLength[vReinsert[cIndex]]; reinsertdata[cIndex] = m_pData[vReinsert[cIndex]]; reinsertmbr[cIndex] = m_ptrMBR[vReinsert[cIndex]]; reinsertid[cIndex] = m_pIdentifier[vReinsert[cIndex]]; } for (cIndex = 0; cIndex < lKeep; ++cIndex) { keeplen[cIndex] = m_pDataLength[vKeep[cIndex]]; keepdata[cIndex] = m_pData[vKeep[cIndex]]; keepmbr[cIndex] = m_ptrMBR[vKeep[cIndex]]; keepid[cIndex] = m_pIdentifier[vKeep[cIndex]]; } delete[] m_pDataLength; delete[] m_pData; delete[] m_ptrMBR; delete[] m_pIdentifier; m_pDataLength = keeplen; m_pData = keepdata; m_ptrMBR = keepmbr; m_pIdentifier = keepid; m_children = lKeep; m_totalDataLength = 0; for (uint32_t u32Child = 0; u32Child < m_children; ++u32Child) m_totalDataLength += m_pDataLength[u32Child]; for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t u32Child = 0; u32Child < m_children; ++u32Child) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[u32Child]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[u32Child]->m_pHigh[cDim]); } } m_pTree->writeNode(this); // Divertion from R*-Tree algorithm here. First adjust // the path to the root, then start reinserts, to avoid complicated handling // of changes to the same node from multiple insertions. id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer, true); for (cIndex = 0; cIndex < lReinsert; ++cIndex) { m_pTree->insertData_impl( reinsertlen[cIndex], reinsertdata[cIndex], *(reinsertmbr[cIndex]), reinsertid[cIndex], m_level, overflowTable); } delete[] reinsertdata; delete[] reinsertmbr; delete[] reinsertid; delete[] reinsertlen; return true; } else { NodePtr n; NodePtr nn; split(dataLength, pData, mbr, id, n, nn); if (pathBuffer.empty()) { n->m_level = m_level; nn->m_level = m_level; n->m_identifier = -1; nn->m_identifier = -1; m_pTree->writeNode(n.get()); m_pTree->writeNode(nn.get()); NodePtr ptrR = m_pTree->m_indexPool.acquire(); if (ptrR.get() == nullptr) { ptrR = NodePtr(new Index(m_pTree, m_pTree->m_rootID, m_level + 1), &(m_pTree->m_indexPool)); } else { //ptrR->m_pTree = m_pTree; ptrR->m_identifier = m_pTree->m_rootID; ptrR->m_level = m_level + 1; ptrR->m_nodeMBR = m_pTree->m_infiniteRegion; } ptrR->insertEntry(0, nullptr, n->m_nodeMBR, n->m_identifier); ptrR->insertEntry(0, nullptr, nn->m_nodeMBR, nn->m_identifier); m_pTree->writeNode(ptrR.get()); m_pTree->m_stats.m_nodesInLevel[m_level] = 2; m_pTree->m_stats.m_nodesInLevel.push_back(1); m_pTree->m_stats.m_u32TreeHeight = m_level + 2; } else { n->m_level = m_level; nn->m_level = m_level; n->m_identifier = m_identifier; nn->m_identifier = -1; m_pTree->writeNode(n.get()); m_pTree->writeNode(nn.get()); id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(n.get(), nn.get(), pathBuffer, overflowTable); } return true; } } void Node::reinsertData(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::vector& reinsert, std::vector& keep) { ReinsertEntry** v = new ReinsertEntry*[m_capacity + 1]; m_pDataLength[m_children] = dataLength; m_pData[m_children] = pData; m_ptrMBR[m_children] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children]) = mbr; m_pIdentifier[m_children] = id; PointPtr nc = m_pTree->m_pointPool.acquire(); m_nodeMBR.getCenter(*nc); PointPtr c = m_pTree->m_pointPool.acquire(); for (uint32_t u32Child = 0; u32Child < m_capacity + 1; ++u32Child) { try { v[u32Child] = new ReinsertEntry(u32Child, 0.0); } catch (...) { for (uint32_t i = 0; i < u32Child; ++i) delete v[i]; delete[] v; throw; } m_ptrMBR[u32Child]->getCenter(*c); // calculate relative distance of every entry from the node MBR (ignore square root.) for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { double d = nc->m_pCoords[cDim] - c->m_pCoords[cDim]; v[u32Child]->m_dist += d * d; } } // sort by increasing order of distances. ::qsort(v, m_capacity + 1, sizeof(ReinsertEntry*), ReinsertEntry::compareReinsertEntry); uint32_t cReinsert = static_cast(std::floor((m_capacity + 1) * m_pTree->m_reinsertFactor)); uint32_t cCount; for (cCount = 0; cCount < m_capacity + 1; ++cCount) { if (cCount < m_capacity + 1 - cReinsert) { // Keep all but cReinsert nodes keep.push_back(v[cCount]->m_index); } else { // Remove cReinsert nodes which will be // reinserted into the tree. Since our array // is already sorted in ascending order this // matches the order suggested in the paper. reinsert.push_back(v[cCount]->m_index); } delete v[cCount]; } delete[] v; } void Node::rtreeSplit(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::vector& group1, std::vector& group2) { uint32_t u32Child; uint32_t minimumLoad = static_cast(std::floor(m_capacity * m_pTree->m_fillFactor)); // use this mask array for marking visited entries. uint8_t* mask = new uint8_t[m_capacity + 1]; memset(mask, 0, m_capacity + 1); // insert new data in the node for easier manipulation. Data arrays are always // by one larger than node capacity. m_pDataLength[m_capacity] = dataLength; m_pData[m_capacity] = pData; m_ptrMBR[m_capacity] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_capacity]) = mbr; m_pIdentifier[m_capacity] = id; // m_totalDataLength does not need to be increased here. // initialize each group with the seed entries. uint32_t seed1, seed2; pickSeeds(seed1, seed2); group1.push_back(seed1); group2.push_back(seed2); mask[seed1] = 1; mask[seed2] = 1; // find MBR of each group. RegionPtr mbr1 = m_pTree->m_regionPool.acquire(); *mbr1 = *(m_ptrMBR[seed1]); RegionPtr mbr2 = m_pTree->m_regionPool.acquire(); *mbr2 = *(m_ptrMBR[seed2]); // count how many entries are left unchecked (exclude the seeds here.) uint32_t cRemaining = m_capacity + 1 - 2; while (cRemaining > 0) { if (minimumLoad - group1.size() == cRemaining) { // all remaining entries must be assigned to group1 to comply with minimun load requirement. for (u32Child = 0; u32Child < m_capacity + 1; ++u32Child) { if (mask[u32Child] == 0) { group1.push_back(u32Child); mask[u32Child] = 1; --cRemaining; } } } else if (minimumLoad - group2.size() == cRemaining) { // all remaining entries must be assigned to group2 to comply with minimun load requirement. for (u32Child = 0; u32Child < m_capacity + 1; ++u32Child) { if (mask[u32Child] == 0) { group2.push_back(u32Child); mask[u32Child] = 1; --cRemaining; } } } else { // For all remaining entries compute the difference of the cost of grouping an // entry in either group. When done, choose the entry that yielded the maximum // difference. In case of linear split, select any entry (e.g. the first one.) uint32_t sel; double md1 = 0.0, md2 = 0.0; double m = -std::numeric_limits::max(); double d1, d2, d; double a1 = mbr1->getArea(); double a2 = mbr2->getArea(); RegionPtr a = m_pTree->m_regionPool.acquire(); RegionPtr b = m_pTree->m_regionPool.acquire(); for (u32Child = 0; u32Child < m_capacity + 1; ++u32Child) { if (mask[u32Child] == 0) { mbr1->getCombinedRegion(*a, *(m_ptrMBR[u32Child])); d1 = a->getArea() - a1; mbr2->getCombinedRegion(*b, *(m_ptrMBR[u32Child])); d2 = b->getArea() - a2; d = std::abs(d1 - d2); if (d > m) { m = d; md1 = d1; md2 = d2; sel = u32Child; if (m_pTree->m_treeVariant== RV_LINEAR || m_pTree->m_treeVariant == RV_RSTAR) break; } } } // determine the group where we should add the new entry. int32_t group = -1; if (md1 < md2) { group1.push_back(sel); group = 1; } else if (md2 < md1) { group2.push_back(sel); group = 2; } else if (a1 < a2) { group1.push_back(sel); group = 1; } else if (a2 < a1) { group2.push_back(sel); group = 2; } else if (group1.size() < group2.size()) { group1.push_back(sel); group = 1; } else if (group2.size() < group1.size()) { group2.push_back(sel); group = 2; } else { group1.push_back(sel); group = 1; } mask[sel] = 1; --cRemaining; if (group == 1) { mbr1->combineRegion(*(m_ptrMBR[sel])); } else { mbr2->combineRegion(*(m_ptrMBR[sel])); } } } delete[] mask; } void Node::rstarSplit(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::vector& group1, std::vector& group2) { RstarSplitEntry** dataLow = nullptr; RstarSplitEntry** dataHigh = nullptr; try { dataLow = new RstarSplitEntry*[m_capacity + 1]; dataHigh = new RstarSplitEntry*[m_capacity + 1]; } catch (...) { delete[] dataLow; throw; } m_pDataLength[m_capacity] = dataLength; m_pData[m_capacity] = pData; m_ptrMBR[m_capacity] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_capacity]) = mbr; m_pIdentifier[m_capacity] = id; // m_totalDataLength does not need to be increased here. uint32_t nodeSPF = static_cast( std::floor((m_capacity + 1) * m_pTree->m_splitDistributionFactor)); uint32_t splitDistribution = (m_capacity + 1) - (2 * nodeSPF) + 2; uint32_t u32Child = 0, cDim, cIndex; for (u32Child = 0; u32Child <= m_capacity; ++u32Child) { try { dataLow[u32Child] = new RstarSplitEntry(m_ptrMBR[u32Child].get(), u32Child, 0); } catch (...) { for (uint32_t i = 0; i < u32Child; ++i) delete dataLow[i]; delete[] dataLow; delete[] dataHigh; throw; } dataHigh[u32Child] = dataLow[u32Child]; } double minimumMargin = std::numeric_limits::max(); uint32_t splitAxis = std::numeric_limits::max(); uint32_t sortOrder = std::numeric_limits::max(); // chooseSplitAxis. for (cDim = 0; cDim < m_pTree->m_dimension; ++cDim) { ::qsort(dataLow, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareLow); ::qsort(dataHigh, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareHigh); // calculate sum of margins and overlap for all distributions. double marginl = 0.0; double marginh = 0.0; Region bbl1, bbl2, bbh1, bbh2; for (u32Child = 1; u32Child <= splitDistribution; ++u32Child) { uint32_t l = nodeSPF - 1 + u32Child; bbl1 = *(dataLow[0]->m_pRegion); bbh1 = *(dataHigh[0]->m_pRegion); for (cIndex = 1; cIndex < l; ++cIndex) { bbl1.combineRegion(*(dataLow[cIndex]->m_pRegion)); bbh1.combineRegion(*(dataHigh[cIndex]->m_pRegion)); } bbl2 = *(dataLow[l]->m_pRegion); bbh2 = *(dataHigh[l]->m_pRegion); for (cIndex = l + 1; cIndex <= m_capacity; ++cIndex) { bbl2.combineRegion(*(dataLow[cIndex]->m_pRegion)); bbh2.combineRegion(*(dataHigh[cIndex]->m_pRegion)); } marginl += bbl1.getMargin() + bbl2.getMargin(); marginh += bbh1.getMargin() + bbh2.getMargin(); } // for (u32Child) double margin = std::min(marginl, marginh); // keep minimum margin as split axis. if (margin < minimumMargin) { minimumMargin = margin; splitAxis = cDim; sortOrder = (marginl < marginh) ? 0 : 1; } // increase the dimension according to which the data entries should be sorted. for (u32Child = 0; u32Child <= m_capacity; ++u32Child) { dataLow[u32Child]->m_sortDim = cDim + 1; } } // for (cDim) for (u32Child = 0; u32Child <= m_capacity; ++u32Child) { dataLow[u32Child]->m_sortDim = splitAxis; } ::qsort(dataLow, m_capacity + 1, sizeof(RstarSplitEntry*), (sortOrder == 0) ? RstarSplitEntry::compareLow : RstarSplitEntry::compareHigh); double ma = std::numeric_limits::max(); double mo = std::numeric_limits::max(); uint32_t splitPoint = std::numeric_limits::max(); Region bb1, bb2; for (u32Child = 1; u32Child <= splitDistribution; ++u32Child) { uint32_t l = nodeSPF - 1 + u32Child; bb1 = *(dataLow[0]->m_pRegion); for (cIndex = 1; cIndex < l; ++cIndex) { bb1.combineRegion(*(dataLow[cIndex]->m_pRegion)); } bb2 = *(dataLow[l]->m_pRegion); for (cIndex = l + 1; cIndex <= m_capacity; ++cIndex) { bb2.combineRegion(*(dataLow[cIndex]->m_pRegion)); } double o = bb1.getIntersectingArea(bb2); if (o < mo) { splitPoint = u32Child; mo = o; ma = bb1.getArea() + bb2.getArea(); } else if (o == mo) { double a = bb1.getArea() + bb2.getArea(); if (a < ma) { splitPoint = u32Child; ma = a; } } } // for (u32Child) uint32_t l1 = nodeSPF - 1 + splitPoint; for (cIndex = 0; cIndex < l1; ++cIndex) { group1.push_back(dataLow[cIndex]->m_index); delete dataLow[cIndex]; } for (cIndex = l1; cIndex <= m_capacity; ++cIndex) { group2.push_back(dataLow[cIndex]->m_index); delete dataLow[cIndex]; } delete[] dataLow; delete[] dataHigh; } void Node::pickSeeds(uint32_t& index1, uint32_t& index2) { double separation = -std::numeric_limits::max(); double inefficiency = -std::numeric_limits::max(); uint32_t cDim, u32Child, cIndex; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_RSTAR: for (cDim = 0; cDim < m_pTree->m_dimension; ++cDim) { double leastLower = m_ptrMBR[0]->m_pLow[cDim]; double greatestUpper = m_ptrMBR[0]->m_pHigh[cDim]; uint32_t greatestLower = 0; uint32_t leastUpper = 0; double width; for (u32Child = 1; u32Child <= m_capacity; ++u32Child) { if (m_ptrMBR[u32Child]->m_pLow[cDim] > m_ptrMBR[greatestLower]->m_pLow[cDim]) greatestLower = u32Child; if (m_ptrMBR[u32Child]->m_pHigh[cDim] < m_ptrMBR[leastUpper]->m_pHigh[cDim]) leastUpper = u32Child; leastLower = std::min(m_ptrMBR[u32Child]->m_pLow[cDim], leastLower); greatestUpper = std::max(m_ptrMBR[u32Child]->m_pHigh[cDim], greatestUpper); } width = greatestUpper - leastLower; if (width <= 0) width = 1; double f = (m_ptrMBR[greatestLower]->m_pLow[cDim] - m_ptrMBR[leastUpper]->m_pHigh[cDim]) / width; if (f > separation) { index1 = leastUpper; index2 = greatestLower; separation = f; } } // for (cDim) if (index1 == index2) { if (index2 == 0) ++index2; else --index2; } break; case RV_QUADRATIC: // for each pair of Regions (account for overflow Region too!) for (u32Child = 0; u32Child < m_capacity; ++u32Child) { double a = m_ptrMBR[u32Child]->getArea(); for (cIndex = u32Child + 1; cIndex <= m_capacity; ++cIndex) { // get the combined MBR of those two entries. Region r; m_ptrMBR[u32Child]->getCombinedRegion(r, *(m_ptrMBR[cIndex])); // find the inefficiency of grouping these entries together. double d = r.getArea() - a - m_ptrMBR[cIndex]->getArea(); if (d > inefficiency) { inefficiency = d; index1 = u32Child; index2 = cIndex; } } // for (cIndex) } // for (u32Child) break; default: throw Tools::NotSupportedException("Node::pickSeeds: Tree variant not supported."); } } void Node::condenseTree(std::stack& toReinsert, std::stack& pathBuffer, NodePtr& ptrThis) { uint32_t minimumLoad = static_cast(std::floor(m_capacity * m_pTree->m_fillFactor)); if (pathBuffer.empty()) { // eliminate root if it has only one child. if (m_level != 0 && m_children == 1) { NodePtr ptrN = m_pTree->readNode(m_pIdentifier[0]); m_pTree->deleteNode(ptrN.get()); ptrN->m_identifier = m_pTree->m_rootID; m_pTree->writeNode(ptrN.get()); m_pTree->m_stats.m_nodesInLevel.pop_back(); m_pTree->m_stats.m_u32TreeHeight -= 1; // HACK: pending deleteNode for deleted child will decrease nodesInLevel, later on. m_pTree->m_stats.m_nodesInLevel[m_pTree->m_stats.m_u32TreeHeight - 1] = 2; } else { // due to data removal. if (m_pTree->m_bTightMBRs) { for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t u32Child = 0; u32Child < m_children; ++u32Child) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[u32Child]->m_pLow[cDim]); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[u32Child]->m_pHigh[cDim]); } } } // write parent node back to storage. m_pTree->writeNode(this); } } else { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrParent = m_pTree->readNode(cParent); Index* p = static_cast(ptrParent.get()); // find the entry in the parent, that points to this node. uint32_t child; for (child = 0; child != p->m_children; ++child) { if (p->m_pIdentifier[child] == m_identifier) break; } if (m_children < minimumLoad) { // used space less than the minimum // 1. eliminate node entry from the parent. deleteEntry will fix the parent's MBR. p->deleteEntry(child); // 2. add this node to the stack in order to reinsert its entries. toReinsert.push(ptrThis); } else { // adjust the entry in 'p' to contain the new bounding region of this node. *(p->m_ptrMBR[child]) = m_nodeMBR; // global recalculation necessary since the MBR can only shrink in size, // due to data removal. if (m_pTree->m_bTightMBRs) { for (uint32_t cDim = 0; cDim < p->m_nodeMBR.m_dimension; ++cDim) { p->m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); p->m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t u32Child = 0; u32Child < p->m_children; ++u32Child) { p->m_nodeMBR.m_pLow[cDim] = std::min(p->m_nodeMBR.m_pLow[cDim], p->m_ptrMBR[u32Child]->m_pLow[cDim]); p->m_nodeMBR.m_pHigh[cDim] = std::max(p->m_nodeMBR.m_pHigh[cDim], p->m_ptrMBR[u32Child]->m_pHigh[cDim]); } } } } // write parent node back to storage. m_pTree->writeNode(p); p->condenseTree(toReinsert, pathBuffer, ptrParent); } } libspatialindex-1.9.3/src/rtree/Node.h000066400000000000000000000153031355420072700176550ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" namespace SpatialIndex { namespace RTree { class RTree; class Leaf; class Index; class Node; typedef Tools::PoolPointer NodePtr; class Node : public SpatialIndex::INode { public: ~Node() override; // // Tools::IObject interface // Tools::IObject* clone() override; // // Tools::ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; // // SpatialIndex::IEntry interface // id_type getIdentifier() const override; void getShape(IShape** out) const override; // // SpatialIndex::INode interface // uint32_t getChildrenCount() const override; id_type getChildIdentifier(uint32_t index) const override; void getChildShape(uint32_t index, IShape** out) const override; void getChildData(uint32_t index, uint32_t& length, uint8_t** data) const override; uint32_t getLevel() const override; bool isIndex() const override; bool isLeaf() const override; private: Node(); Node(RTree* pTree, id_type id, uint32_t level, uint32_t capacity); virtual Node& operator=(const Node&); virtual void insertEntry(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id); virtual void deleteEntry(uint32_t index); virtual bool insertData(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::stack& pathBuffer, uint8_t* overflowTable); virtual void reinsertData(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::vector& reinsert, std::vector& keep); virtual void rtreeSplit(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::vector& group1, std::vector& group2); virtual void rstarSplit(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::vector& group1, std::vector& group2); virtual void pickSeeds(uint32_t& index1, uint32_t& index2); virtual void condenseTree(std::stack& toReinsert, std::stack& pathBuffer, NodePtr& ptrThis); virtual NodePtr chooseSubtree(const Region& mbr, uint32_t level, std::stack& pathBuffer) = 0; virtual NodePtr findLeaf(const Region& mbr, id_type id, std::stack& pathBuffer) = 0; virtual void split(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, NodePtr& left, NodePtr& right) = 0; RTree* m_pTree{nullptr}; // Parent of all nodes. uint32_t m_level{0}; // The level of the node in the tree. // Leaves are always at level 0. id_type m_identifier{-1}; // The unique ID of this node. uint32_t m_children{0}; // The number of children pointed by this node. uint32_t m_capacity{0}; // Specifies the node capacity. Region m_nodeMBR; // The minimum bounding region enclosing all data contained in the node. uint8_t** m_pData{nullptr}; // The data stored in the node. RegionPtr* m_ptrMBR{nullptr}; // The corresponding data MBRs. id_type* m_pIdentifier{nullptr}; // The corresponding data identifiers. uint32_t* m_pDataLength{nullptr}; uint32_t m_totalDataLength{0}; class RstarSplitEntry { public: Region* m_pRegion; uint32_t m_index; uint32_t m_sortDim; RstarSplitEntry(Region* pr, uint32_t index, uint32_t dimension) : m_pRegion(pr), m_index(index), m_sortDim(dimension) {} static int compareLow(const void* pv1, const void* pv2) { RstarSplitEntry* pe1 = * (RstarSplitEntry**) pv1; RstarSplitEntry* pe2 = * (RstarSplitEntry**) pv2; assert(pe1->m_sortDim == pe2->m_sortDim); if (pe1->m_pRegion->m_pLow[pe1->m_sortDim] < pe2->m_pRegion->m_pLow[pe2->m_sortDim]) return -1; if (pe1->m_pRegion->m_pLow[pe1->m_sortDim] > pe2->m_pRegion->m_pLow[pe2->m_sortDim]) return 1; return 0; } static int compareHigh(const void* pv1, const void* pv2) { RstarSplitEntry* pe1 = * (RstarSplitEntry**) pv1; RstarSplitEntry* pe2 = * (RstarSplitEntry**) pv2; assert(pe1->m_sortDim == pe2->m_sortDim); if (pe1->m_pRegion->m_pHigh[pe1->m_sortDim] < pe2->m_pRegion->m_pHigh[pe2->m_sortDim]) return -1; if (pe1->m_pRegion->m_pHigh[pe1->m_sortDim] > pe2->m_pRegion->m_pHigh[pe2->m_sortDim]) return 1; return 0; } }; // RstarSplitEntry class ReinsertEntry { public: uint32_t m_index; double m_dist; ReinsertEntry(uint32_t index, double dist) : m_index(index), m_dist(dist) {} static int compareReinsertEntry(const void* pv1, const void* pv2) { ReinsertEntry* pe1 = * (ReinsertEntry**) pv1; ReinsertEntry* pe2 = * (ReinsertEntry**) pv2; if (pe1->m_dist < pe2->m_dist) return -1; if (pe1->m_dist > pe2->m_dist) return 1; return 0; } }; // ReinsertEntry // Needed to access protected members without having to cast from Node. // It is more efficient than using member functions to access protected members. friend class RTree; friend class Leaf; friend class Index; friend class Tools::PointerPool; friend class BulkLoader; }; // Node } } #pragma GCC diagnostic pop libspatialindex-1.9.3/src/rtree/PointerPoolNode.h000066400000000000000000000072321355420072700220520ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #ifndef __spatialindex_rtree_pointer_pool_node_h #define __spatialindex_rtree_pointer_pool_node_h #include "Node.h" namespace Tools { using namespace SpatialIndex; template<> class PointerPool { public: explicit PointerPool(uint32_t capacity) : m_capacity(capacity) { #ifndef NDEBUG m_hits = 0; m_misses = 0; m_pointerCount = 0; #endif } ~PointerPool() { assert(m_pool.size() <= m_capacity); while (! m_pool.empty()) { RTree::Node* x = m_pool.top(); m_pool.pop(); #ifndef NDEBUG --m_pointerCount; #endif delete x; } #ifndef NDEBUG std::cerr << "Lost pointers: " << m_pointerCount << std::endl; #endif } PoolPointer acquire() { if (! m_pool.empty()) { RTree::Node* p = m_pool.top(); m_pool.pop(); #ifndef NDEBUG ++m_hits; #endif return PoolPointer(p, this); } #ifndef NDEBUG else { // fixme: well sort of... ++m_pointerCount; ++m_misses; } #endif return PoolPointer(); } void release(RTree::Node* p) { if (p != nullptr) { if (m_pool.size() < m_capacity) { if (p->m_pData != nullptr) { for (uint32_t cChild = 0; cChild < p->m_children; ++cChild) { // there is no need to set the pointer to zero, after deleting it, // since it will be redeleted only if it is actually initialized again, // a fact that will be depicted by variable m_children. if (p->m_pData[cChild] != nullptr) delete[] p->m_pData[cChild]; } } p->m_level = 0; p->m_identifier = -1; p->m_children = 0; p->m_totalDataLength = 0; m_pool.push(p); } else { #ifndef NDEBUG --m_pointerCount; #endif delete p; } assert(m_pool.size() <= m_capacity); } } uint32_t getCapacity() const { return m_capacity; } void setCapacity(uint32_t c) { assert (c >= 0); m_capacity = c; } protected: uint32_t m_capacity; std::stack m_pool; #ifndef NDEBUG public: uint64_t m_hits; uint64_t m_misses; uint64_t m_pointerCount; #endif }; } #endif /* __spatialindex_rtree_pointer_pool_node_h */ libspatialindex-1.9.3/src/rtree/RTree.cc000066400000000000000000001302321355420072700201460ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #include #include "Node.h" #include "Leaf.h" #include "Index.h" #include "BulkLoader.h" #include "RTree.h" using namespace SpatialIndex::RTree; using namespace SpatialIndex; SpatialIndex::RTree::Data::Data(uint32_t len, uint8_t* pData, Region& r, id_type id) : m_id(id), m_region(r), m_pData(nullptr), m_dataLength(len) { if (m_dataLength > 0) { m_pData = new uint8_t[m_dataLength]; memcpy(m_pData, pData, m_dataLength); } } SpatialIndex::RTree::Data::~Data() { delete[] m_pData; } SpatialIndex::RTree::Data* SpatialIndex::RTree::Data::clone() { return new Data(m_dataLength, m_pData, m_region, m_id); } id_type SpatialIndex::RTree::Data::getIdentifier() const { return m_id; } void SpatialIndex::RTree::Data::getShape(IShape** out) const { *out = new Region(m_region); } void SpatialIndex::RTree::Data::getData(uint32_t& len, uint8_t** data) const { len = m_dataLength; *data = nullptr; if (m_dataLength > 0) { *data = new uint8_t[m_dataLength]; memcpy(*data, m_pData, m_dataLength); } } uint32_t SpatialIndex::RTree::Data::getByteArraySize() { return sizeof(id_type) + sizeof(uint32_t) + m_dataLength + m_region.getByteArraySize(); } void SpatialIndex::RTree::Data::loadFromByteArray(const uint8_t* ptr) { memcpy(&m_id, ptr, sizeof(id_type)); ptr += sizeof(id_type); delete[] m_pData; m_pData = nullptr; memcpy(&m_dataLength, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_dataLength > 0) { m_pData = new uint8_t[m_dataLength]; memcpy(m_pData, ptr, m_dataLength); ptr += m_dataLength; } m_region.loadFromByteArray(ptr); } void SpatialIndex::RTree::Data::storeToByteArray(uint8_t** data, uint32_t& len) { // it is thread safe this way. uint32_t regionsize; uint8_t* regiondata = nullptr; m_region.storeToByteArray(®iondata, regionsize); len = sizeof(id_type) + sizeof(uint32_t) + m_dataLength + regionsize; *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_id, sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &m_dataLength, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_dataLength > 0) { memcpy(ptr, m_pData, m_dataLength); ptr += m_dataLength; } memcpy(ptr, regiondata, regionsize); delete[] regiondata; // ptr += regionsize; } SpatialIndex::ISpatialIndex* SpatialIndex::RTree::returnRTree(SpatialIndex::IStorageManager& sm, Tools::PropertySet& ps) { SpatialIndex::ISpatialIndex* si = new SpatialIndex::RTree::RTree(sm, ps); return si; } SpatialIndex::ISpatialIndex* SpatialIndex::RTree::createNewRTree( SpatialIndex::IStorageManager& sm, double fillFactor, uint32_t indexCapacity, uint32_t leafCapacity, uint32_t dimension, RTreeVariant rv, id_type& indexIdentifier) { Tools::Variant var; Tools::PropertySet ps; var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = fillFactor; ps.setProperty("FillFactor", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = indexCapacity; ps.setProperty("IndexCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = leafCapacity; ps.setProperty("LeafCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = dimension; ps.setProperty("Dimension", var); var.m_varType = Tools::VT_LONG; var.m_val.lVal = rv; ps.setProperty("TreeVariant", var); ISpatialIndex* ret = returnRTree(sm, ps); var.m_varType = Tools::VT_LONGLONG; var = ps.getProperty("IndexIdentifier"); indexIdentifier = var.m_val.llVal; return ret; } SpatialIndex::ISpatialIndex* SpatialIndex::RTree::createAndBulkLoadNewRTree( BulkLoadMethod m, IDataStream& stream, SpatialIndex::IStorageManager& sm, double fillFactor, uint32_t indexCapacity, uint32_t leafCapacity, uint32_t dimension, SpatialIndex::RTree::RTreeVariant rv, id_type& indexIdentifier) { SpatialIndex::ISpatialIndex* tree = createNewRTree(sm, fillFactor, indexCapacity, leafCapacity, dimension, rv, indexIdentifier); uint32_t bindex = static_cast(std::floor(static_cast(indexCapacity * fillFactor))); uint32_t bleaf = static_cast(std::floor(static_cast(leafCapacity * fillFactor))); SpatialIndex::RTree::BulkLoader bl; switch (m) { case BLM_STR: bl.bulkLoadUsingSTR(static_cast(tree), stream, bindex, bleaf, 10000, 100); break; default: throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Unknown bulk load method."); break; } return tree; } SpatialIndex::ISpatialIndex* SpatialIndex::RTree::createAndBulkLoadNewRTree( BulkLoadMethod m, IDataStream& stream, SpatialIndex::IStorageManager& sm, Tools::PropertySet& ps, id_type& indexIdentifier) { Tools::Variant var; RTreeVariant rv(RV_LINEAR); double fillFactor(0.0); uint32_t indexCapacity(0); uint32_t leafCapacity(0); uint32_t dimension(0); uint32_t pageSize(0); uint32_t numberOfPages(0); // tree variant var = ps.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_LONG || (var.m_val.lVal != RV_LINEAR && var.m_val.lVal != RV_QUADRATIC && var.m_val.lVal != RV_RSTAR)) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property TreeVariant must be Tools::VT_LONG and of RTreeVariant type"); rv = static_cast(var.m_val.lVal); } // fill factor // it cannot be larger than 50%, since linear and quadratic split algorithms // require assigning to both nodes the same number of entries. var = ps.getProperty("FillFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property FillFactor was not of type Tools::VT_DOUBLE"); if (var.m_val.dblVal <= 0.0) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property FillFactor was less than 0.0"); if (((rv == RV_LINEAR || rv == RV_QUADRATIC) && var.m_val.dblVal > 0.5)) throw Tools::IllegalArgumentException( "createAndBulkLoadNewRTree: Property FillFactor must be in range (0.0, 0.5) for LINEAR or QUADRATIC index types"); if ( var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property FillFactor must be in range (0.0, 1.0) for RSTAR index type"); fillFactor = var.m_val.dblVal; } // index capacity var = ps.getProperty("IndexCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 4) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property IndexCapacity must be Tools::VT_ULONG and >= 4"); indexCapacity = var.m_val.ulVal; } // leaf capacity var = ps.getProperty("LeafCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 4) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property LeafCapacity must be Tools::VT_ULONG and >= 4"); leafCapacity = var.m_val.ulVal; } // dimension var = ps.getProperty("Dimension"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property Dimension must be Tools::VT_ULONG"); if (var.m_val.ulVal <= 1) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property Dimension must be greater than 1"); dimension = var.m_val.ulVal; } // page size var = ps.getProperty("ExternalSortBufferPageSize"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property ExternalSortBufferPageSize must be Tools::VT_ULONG"); if (var.m_val.ulVal <= 1) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property ExternalSortBufferPageSize must be greater than 1"); pageSize = var.m_val.ulVal; } // number of pages var = ps.getProperty("ExternalSortBufferTotalPages"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property ExternalSortBufferTotalPages must be Tools::VT_ULONG"); if (var.m_val.ulVal <= 1) throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Property ExternalSortBufferTotalPages must be greater than 1"); numberOfPages = var.m_val.ulVal; } SpatialIndex::ISpatialIndex* tree = createNewRTree(sm, fillFactor, indexCapacity, leafCapacity, dimension, rv, indexIdentifier); uint32_t bindex = static_cast(std::floor(static_cast(indexCapacity * fillFactor))); uint32_t bleaf = static_cast(std::floor(static_cast(leafCapacity * fillFactor))); SpatialIndex::RTree::BulkLoader bl; switch (m) { case BLM_STR: bl.bulkLoadUsingSTR(static_cast(tree), stream, bindex, bleaf, pageSize, numberOfPages); break; default: throw Tools::IllegalArgumentException("createAndBulkLoadNewRTree: Unknown bulk load method."); break; } return tree; } SpatialIndex::ISpatialIndex* SpatialIndex::RTree::loadRTree(IStorageManager& sm, id_type indexIdentifier) { Tools::Variant var; Tools::PropertySet ps; var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = indexIdentifier; ps.setProperty("IndexIdentifier", var); return returnRTree(sm, ps); } SpatialIndex::RTree::RTree::RTree(IStorageManager& sm, Tools::PropertySet& ps) : m_pStorageManager(&sm), m_rootID(StorageManager::NewPage), m_headerID(StorageManager::NewPage), m_treeVariant(RV_RSTAR), m_fillFactor(0.7), m_indexCapacity(100), m_leafCapacity(100), m_nearMinimumOverlapFactor(32), m_splitDistributionFactor(0.4), m_reinsertFactor(0.3), m_dimension(2), m_bTightMBRs(true), m_pointPool(500), m_regionPool(1000), m_indexPool(100), m_leafPool(100) { Tools::Variant var = ps.getProperty("IndexIdentifier"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType == Tools::VT_LONGLONG) m_headerID = var.m_val.llVal; else if (var.m_varType == Tools::VT_LONG) m_headerID = var.m_val.lVal; // for backward compatibility only. else throw Tools::IllegalArgumentException("RTree: Property IndexIdentifier must be Tools::VT_LONGLONG"); initOld(ps); } else { initNew(ps); var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = m_headerID; ps.setProperty("IndexIdentifier", var); } } SpatialIndex::RTree::RTree::~RTree() { storeHeader(); } // // ISpatialIndex interface // void SpatialIndex::RTree::RTree::insertData(uint32_t len, const uint8_t* pData, const IShape& shape, id_type id) { if (shape.getDimension() != m_dimension) throw Tools::IllegalArgumentException("insertData: Shape has the wrong number of dimensions."); // convert the shape into a Region (R-Trees index regions only; i.e., approximations of the shapes). RegionPtr mbr = m_regionPool.acquire(); shape.getMBR(*mbr); uint8_t* buffer = nullptr; if (len > 0) { buffer = new uint8_t[len]; memcpy(buffer, pData, len); } insertData_impl(len, buffer, *mbr, id); // the buffer is stored in the tree. Do not delete here. } bool SpatialIndex::RTree::RTree::deleteData(const IShape& shape, id_type id) { if (shape.getDimension() != m_dimension) throw Tools::IllegalArgumentException("deleteData: Shape has the wrong number of dimensions."); RegionPtr mbr = m_regionPool.acquire(); shape.getMBR(*mbr); bool ret = deleteData_impl(*mbr, id); return ret; } void SpatialIndex::RTree::RTree::internalNodesQuery(const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("containsWhatQuery: Shape has the wrong number of dimensions."); #ifdef HAVE_PTHREAD_H Tools::LockGuard lock(&m_lock); #endif try { std::stack st; NodePtr root = readNode(m_rootID); st.push(root); while (! st.empty()) { NodePtr n = st.top(); st.pop(); if(query.containsShape(n->m_nodeMBR)) { IdVisitor vId = IdVisitor(); visitSubTree(n, vId); const uint64_t nObj = vId.GetResultCount(); uint64_t *obj = new uint64_t[nObj]; std::copy(vId.GetResults().begin(), vId.GetResults().end(), obj); Data data = Data((uint32_t)(sizeof(uint64_t) * nObj), (uint8_t *) obj, n->m_nodeMBR, n->getIdentifier()); v.visitData(data); ++(m_stats.m_u64QueryResults); } else { if(n->m_level == 0) { for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { if(query.containsShape(*(n->m_ptrMBR[cChild]))) { Data data = Data(sizeof(id_type), (uint8_t *) &n->m_pIdentifier[cChild], *(n->m_ptrMBR[cChild]), n->getIdentifier()); v.visitData(data); ++(m_stats.m_u64QueryResults); } } } else //not a leaf { if(query.intersectsShape(n->m_nodeMBR)) { for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { st.push(readNode(n->m_pIdentifier[cChild])); } } } } } } catch (...) { throw; } } void SpatialIndex::RTree::RTree::containsWhatQuery(const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("containsWhatQuery: Shape has the wrong number of dimensions."); try { std::stack st; NodePtr root = readNode(m_rootID); st.push(root); while (! st.empty()) { NodePtr n = st.top(); st.pop(); if(n->m_level == 0) { v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { if(query.containsShape(*(n->m_ptrMBR[cChild]))) { Data data = Data(n->m_pDataLength[cChild], n->m_pData[cChild], *(n->m_ptrMBR[cChild]), n->m_pIdentifier[cChild]); v.visitData(data); ++(m_stats.m_u64QueryResults); } } } else //not a leaf { if(query.containsShape(n->m_nodeMBR)) { visitSubTree(n, v); } else if(query.intersectsShape(n->m_nodeMBR)) { v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { st.push(readNode(n->m_pIdentifier[cChild])); } } } } } catch (...) { throw; } } void SpatialIndex::RTree::RTree::intersectsWithQuery(const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("intersectsWithQuery: Shape has the wrong number of dimensions."); rangeQuery(IntersectionQuery, query, v); } void SpatialIndex::RTree::RTree::pointLocationQuery(const Point& query, IVisitor& v) { if (query.m_dimension != m_dimension) throw Tools::IllegalArgumentException("pointLocationQuery: Shape has the wrong number of dimensions."); Region r(query, query); rangeQuery(IntersectionQuery, r, v); } void SpatialIndex::RTree::RTree::nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v, INearestNeighborComparator& nnc) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("nearestNeighborQuery: Shape has the wrong number of dimensions."); auto ascending = [](const NNEntry* lhs, const NNEntry* rhs) { return lhs->m_minDist > rhs->m_minDist; }; std::priority_queue, decltype(ascending)> queue(ascending); queue.push(new NNEntry(m_rootID, nullptr, 0.0)); uint32_t count = 0; double knearest = 0.0; while (! queue.empty()) { NNEntry* pFirst = queue.top(); // report all nearest neighbors with equal greatest distances. // (neighbors can be more than k, if many happen to have the same greatest distance). if (count >= k && pFirst->m_minDist > knearest) break; queue.pop(); if (pFirst->m_pEntry == nullptr) { // n is a leaf or an index. NodePtr n = readNode(pFirst->m_id); v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { if (n->m_level == 0) { Data* e = new Data(n->m_pDataLength[cChild], n->m_pData[cChild], *(n->m_ptrMBR[cChild]), n->m_pIdentifier[cChild]); // we need to compare the query with the actual data entry here, so we call the // appropriate getMinimumDistance method of NearestNeighborComparator. queue.push(new NNEntry(n->m_pIdentifier[cChild], e, nnc.getMinimumDistance(query, *e))); } else { queue.push(new NNEntry(n->m_pIdentifier[cChild], nullptr, nnc.getMinimumDistance(query, *(n->m_ptrMBR[cChild])))); } } } else { v.visitData(*(static_cast(pFirst->m_pEntry))); ++(m_stats.m_u64QueryResults); ++count; knearest = pFirst->m_minDist; delete pFirst->m_pEntry; } delete pFirst; } while (! queue.empty()) { NNEntry* e = queue.top(); queue.pop(); if (e->m_pEntry != nullptr) delete e->m_pEntry; delete e; } } void SpatialIndex::RTree::RTree::nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("nearestNeighborQuery: Shape has the wrong number of dimensions."); NNComparator nnc; nearestNeighborQuery(k, query, v, nnc); } void SpatialIndex::RTree::RTree::selfJoinQuery(const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("selfJoinQuery: Shape has the wrong number of dimensions."); RegionPtr mbr = m_regionPool.acquire(); query.getMBR(*mbr); selfJoinQuery(m_rootID, m_rootID, *mbr, v); } void SpatialIndex::RTree::RTree::queryStrategy(IQueryStrategy& qs) { id_type next = m_rootID; bool hasNext = true; while (hasNext) { NodePtr n = readNode(next); qs.getNextEntry(*n, next, hasNext); } } void SpatialIndex::RTree::RTree::getIndexProperties(Tools::PropertySet& out) const { Tools::Variant var; // dimension var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_dimension; out.setProperty("Dimension", var); // index capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_indexCapacity; out.setProperty("IndexCapacity", var); // leaf capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_leafCapacity; out.setProperty("LeafCapacity", var); // R-tree variant var.m_varType = Tools::VT_LONG; var.m_val.lVal = m_treeVariant; out.setProperty("TreeVariant", var); // fill factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_fillFactor; out.setProperty("FillFactor", var); // near minimum overlap factor var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_nearMinimumOverlapFactor; out.setProperty("NearMinimumOverlapFactor", var); // split distribution factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_splitDistributionFactor; out.setProperty("SplitDistributionFactor", var); // reinsert factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_reinsertFactor; out.setProperty("ReinsertFactor", var); // tight MBRs var.m_varType = Tools::VT_BOOL; var.m_val.blVal = m_bTightMBRs; out.setProperty("EnsureTightMBRs", var); // index pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_indexPool.getCapacity(); out.setProperty("IndexPoolCapacity", var); // leaf pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_leafPool.getCapacity(); out.setProperty("LeafPoolCapacity", var); // region pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_regionPool.getCapacity(); out.setProperty("RegionPoolCapacity", var); // point pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_pointPool.getCapacity(); out.setProperty("PointPoolCapacity", var); var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = m_headerID; out.setProperty("IndexIdentifier", var); } void SpatialIndex::RTree::RTree::addCommand(ICommand* pCommand, CommandType ct) { switch (ct) { case CT_NODEREAD: m_readNodeCommands.push_back(std::shared_ptr(pCommand)); break; case CT_NODEWRITE: m_writeNodeCommands.push_back(std::shared_ptr(pCommand)); break; case CT_NODEDELETE: m_deleteNodeCommands.push_back(std::shared_ptr(pCommand)); break; } } bool SpatialIndex::RTree::RTree::isIndexValid() { bool ret = true; std::stack st; NodePtr root = readNode(m_rootID); if (root->m_level != m_stats.m_u32TreeHeight - 1) { std::cerr << "Invalid tree height." << std::endl; return false; } std::map nodesInLevel; nodesInLevel.insert(std::pair(root->m_level, 1)); ValidateEntry e(root->m_nodeMBR, root); st.push(e); while (! st.empty()) { e = st.top(); st.pop(); Region tmpRegion; tmpRegion = m_infiniteRegion; for (uint32_t cDim = 0; cDim < tmpRegion.m_dimension; ++cDim) { tmpRegion.m_pLow[cDim] = std::numeric_limits::max(); tmpRegion.m_pHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < e.m_pNode->m_children; ++cChild) { tmpRegion.m_pLow[cDim] = std::min(tmpRegion.m_pLow[cDim], e.m_pNode->m_ptrMBR[cChild]->m_pLow[cDim]); tmpRegion.m_pHigh[cDim] = std::max(tmpRegion.m_pHigh[cDim], e.m_pNode->m_ptrMBR[cChild]->m_pHigh[cDim]); } } if (! (tmpRegion == e.m_pNode->m_nodeMBR)) { std::cerr << "Invalid parent information." << std::endl; ret = false; } else if (! (tmpRegion == e.m_parentMBR)) { std::cerr << "Error in parent." << std::endl; ret = false; } if (e.m_pNode->m_level != 0) { for (uint32_t cChild = 0; cChild < e.m_pNode->m_children; ++cChild) { NodePtr ptrN = readNode(e.m_pNode->m_pIdentifier[cChild]); ValidateEntry tmpEntry(*(e.m_pNode->m_ptrMBR[cChild]), ptrN); std::map::iterator itNodes = nodesInLevel.find(tmpEntry.m_pNode->m_level); if (itNodes == nodesInLevel.end()) { nodesInLevel.insert(std::pair(tmpEntry.m_pNode->m_level, 1l)); } else { nodesInLevel[tmpEntry.m_pNode->m_level] = nodesInLevel[tmpEntry.m_pNode->m_level] + 1; } st.push(tmpEntry); } } } uint32_t nodes = 0; for (uint32_t cLevel = 0; cLevel < m_stats.m_u32TreeHeight; ++cLevel) { if (nodesInLevel[cLevel] != m_stats.m_nodesInLevel[cLevel]) { std::cerr << "Invalid nodesInLevel information." << std::endl; ret = false; } nodes += m_stats.m_nodesInLevel[cLevel]; } if (nodes != m_stats.m_u32Nodes) { std::cerr << "Invalid number of nodes information." << std::endl; ret = false; } return ret; } void SpatialIndex::RTree::RTree::getStatistics(IStatistics** out) const { *out = new Statistics(m_stats); } void SpatialIndex::RTree::RTree::flush() { storeHeader(); } void SpatialIndex::RTree::RTree::initNew(Tools::PropertySet& ps) { Tools::Variant var; // tree variant var = ps.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_LONG || (var.m_val.lVal != RV_LINEAR && var.m_val.lVal != RV_QUADRATIC && var.m_val.lVal != RV_RSTAR)) throw Tools::IllegalArgumentException("initNew: Property TreeVariant must be Tools::VT_LONG and of RTreeVariant type"); m_treeVariant = static_cast(var.m_val.lVal); } // fill factor // it cannot be larger than 50%, since linear and quadratic split algorithms // require assigning to both nodes the same number of entries. var = ps.getProperty("FillFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE) throw Tools::IllegalArgumentException("initNew: Property FillFactor was not of type Tools::VT_DOUBLE"); if (var.m_val.dblVal <= 0.0) throw Tools::IllegalArgumentException("initNew: Property FillFactor was less than 0.0"); if (((m_treeVariant == RV_LINEAR || m_treeVariant == RV_QUADRATIC) && var.m_val.dblVal > 0.5)) throw Tools::IllegalArgumentException( "initNew: Property FillFactor must be in range " "(0.0, 0.5) for LINEAR or QUADRATIC index types"); if ( var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException( "initNew: Property FillFactor must be in range " "(0.0, 1.0) for RSTAR index type"); m_fillFactor = var.m_val.dblVal; } // index capacity var = ps.getProperty("IndexCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 4) throw Tools::IllegalArgumentException("initNew: Property IndexCapacity must be Tools::VT_ULONG and >= 4"); m_indexCapacity = var.m_val.ulVal; } // leaf capacity var = ps.getProperty("LeafCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 4) throw Tools::IllegalArgumentException("initNew: Property LeafCapacity must be Tools::VT_ULONG and >= 4"); m_leafCapacity = var.m_val.ulVal; } // near minimum overlap factor var = ps.getProperty("NearMinimumOverlapFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 1 || var.m_val.ulVal > m_indexCapacity || var.m_val.ulVal > m_leafCapacity) throw Tools::IllegalArgumentException("initNew: Property NearMinimumOverlapFactor must be Tools::VT_ULONG and less than both index and leaf capacities"); m_nearMinimumOverlapFactor = var.m_val.ulVal; } // split distribution factor var = ps.getProperty("SplitDistributionFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property SplitDistributionFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_splitDistributionFactor = var.m_val.dblVal; } // reinsert factor var = ps.getProperty("ReinsertFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property ReinsertFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_reinsertFactor = var.m_val.dblVal; } // dimension var = ps.getProperty("Dimension"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property Dimension must be Tools::VT_ULONG"); if (var.m_val.ulVal <= 1) throw Tools::IllegalArgumentException("initNew: Property Dimension must be greater than 1"); m_dimension = var.m_val.ulVal; } // tight MBRs var = ps.getProperty("EnsureTightMBRs"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) throw Tools::IllegalArgumentException("initNew: Property EnsureTightMBRs must be Tools::VT_BOOL"); m_bTightMBRs = var.m_val.blVal; } // index pool capacity var = ps.getProperty("IndexPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property IndexPoolCapacity must be Tools::VT_ULONG"); m_indexPool.setCapacity(var.m_val.ulVal); } // leaf pool capacity var = ps.getProperty("LeafPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property LeafPoolCapacity must be Tools::VT_ULONG"); m_leafPool.setCapacity(var.m_val.ulVal); } // region pool capacity var = ps.getProperty("RegionPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property RegionPoolCapacity must be Tools::VT_ULONG"); m_regionPool.setCapacity(var.m_val.ulVal); } // point pool capacity var = ps.getProperty("PointPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property PointPoolCapacity must be Tools::VT_ULONG"); m_pointPool.setCapacity(var.m_val.ulVal); } m_infiniteRegion.makeInfinite(m_dimension); m_stats.m_u32TreeHeight = 1; m_stats.m_nodesInLevel.push_back(0); Leaf root(this, -1); m_rootID = writeNode(&root); storeHeader(); } void SpatialIndex::RTree::RTree::initOld(Tools::PropertySet& ps) { loadHeader(); // only some of the properties may be changed. // the rest are just ignored. Tools::Variant var; // tree variant var = ps.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_LONG || (var.m_val.lVal != RV_LINEAR && var.m_val.lVal != RV_QUADRATIC && var.m_val.lVal != RV_RSTAR)) throw Tools::IllegalArgumentException("initOld: Property TreeVariant must be Tools::VT_LONG and of RTreeVariant type"); m_treeVariant = static_cast(var.m_val.lVal); } // near minimum overlap factor var = ps.getProperty("NearMinimumOverlapFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 1 || var.m_val.ulVal > m_indexCapacity || var.m_val.ulVal > m_leafCapacity) throw Tools::IllegalArgumentException("initOld: Property NearMinimumOverlapFactor must be Tools::VT_ULONG and less than both index and leaf capacities"); m_nearMinimumOverlapFactor = var.m_val.ulVal; } // split distribution factor var = ps.getProperty("SplitDistributionFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initOld: Property SplitDistributionFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_splitDistributionFactor = var.m_val.dblVal; } // reinsert factor var = ps.getProperty("ReinsertFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initOld: Property ReinsertFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_reinsertFactor = var.m_val.dblVal; } // tight MBRs var = ps.getProperty("EnsureTightMBRs"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) throw Tools::IllegalArgumentException("initOld: Property EnsureTightMBRs must be Tools::VT_BOOL"); m_bTightMBRs = var.m_val.blVal; } // index pool capacity var = ps.getProperty("IndexPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property IndexPoolCapacity must be Tools::VT_ULONG"); m_indexPool.setCapacity(var.m_val.ulVal); } // leaf pool capacity var = ps.getProperty("LeafPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property LeafPoolCapacity must be Tools::VT_ULONG"); m_leafPool.setCapacity(var.m_val.ulVal); } // region pool capacity var = ps.getProperty("RegionPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property RegionPoolCapacity must be Tools::VT_ULONG"); m_regionPool.setCapacity(var.m_val.ulVal); } // point pool capacity var = ps.getProperty("PointPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property PointPoolCapacity must be Tools::VT_ULONG"); m_pointPool.setCapacity(var.m_val.ulVal); } m_infiniteRegion.makeInfinite(m_dimension); } void SpatialIndex::RTree::RTree::storeHeader() { const uint32_t headerSize = sizeof(id_type) + // m_rootID sizeof(RTreeVariant) + // m_treeVariant sizeof(double) + // m_fillFactor sizeof(uint32_t) + // m_indexCapacity sizeof(uint32_t) + // m_leafCapacity sizeof(uint32_t) + // m_nearMinimumOverlapFactor sizeof(double) + // m_splitDistributionFactor sizeof(double) + // m_reinsertFactor sizeof(uint32_t) + // m_dimension sizeof(char) + // m_bTightMBRs sizeof(uint32_t) + // m_stats.m_nodes sizeof(uint64_t) + // m_stats.m_data sizeof(uint32_t) + // m_stats.m_treeHeight m_stats.m_u32TreeHeight * sizeof(uint32_t); // m_stats.m_nodesInLevel uint8_t* header = new uint8_t[headerSize]; uint8_t* ptr = header; memcpy(ptr, &m_rootID, sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &m_treeVariant, sizeof(RTreeVariant)); ptr += sizeof(RTreeVariant); memcpy(ptr, &m_fillFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_indexCapacity, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_leafCapacity, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_nearMinimumOverlapFactor, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_splitDistributionFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_reinsertFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); char c = (char) m_bTightMBRs; memcpy(ptr, &c, sizeof(char)); ptr += sizeof(char); memcpy(ptr, &(m_stats.m_u32Nodes), sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &(m_stats.m_u64Data), sizeof(uint64_t)); ptr += sizeof(uint64_t); memcpy(ptr, &(m_stats.m_u32TreeHeight), sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t cLevel = 0; cLevel < m_stats.m_u32TreeHeight; ++cLevel) { memcpy(ptr, &(m_stats.m_nodesInLevel[cLevel]), sizeof(uint32_t)); ptr += sizeof(uint32_t); } m_pStorageManager->storeByteArray(m_headerID, headerSize, header); delete[] header; } void SpatialIndex::RTree::RTree::loadHeader() { uint32_t headerSize; uint8_t* header = nullptr; m_pStorageManager->loadByteArray(m_headerID, headerSize, &header); uint8_t* ptr = header; memcpy(&m_rootID, ptr, sizeof(id_type)); ptr += sizeof(id_type); memcpy(&m_treeVariant, ptr, sizeof(RTreeVariant)); ptr += sizeof(RTreeVariant); memcpy(&m_fillFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_indexCapacity, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_leafCapacity, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_nearMinimumOverlapFactor, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_splitDistributionFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_reinsertFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); char c; memcpy(&c, ptr, sizeof(char)); m_bTightMBRs = (c != 0); ptr += sizeof(char); memcpy(&(m_stats.m_u32Nodes), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&(m_stats.m_u64Data), ptr, sizeof(uint64_t)); ptr += sizeof(uint64_t); memcpy(&(m_stats.m_u32TreeHeight), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t cLevel = 0; cLevel < m_stats.m_u32TreeHeight; ++cLevel) { uint32_t cNodes; memcpy(&cNodes, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); m_stats.m_nodesInLevel.push_back(cNodes); } delete[] header; } void SpatialIndex::RTree::RTree::insertData_impl(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id) { assert(mbr.getDimension() == m_dimension); std::stack pathBuffer; uint8_t* overflowTable = nullptr; try { NodePtr root = readNode(m_rootID); overflowTable = new uint8_t[root->m_level]; memset(overflowTable, 0, root->m_level); NodePtr l = root->chooseSubtree(mbr, 0, pathBuffer); if (l.get() == root.get()) { assert(root.unique()); root.relinquish(); } l->insertData(dataLength, pData, mbr, id, pathBuffer, overflowTable); delete[] overflowTable; ++(m_stats.m_u64Data); } catch (...) { delete[] overflowTable; throw; } } void SpatialIndex::RTree::RTree::insertData_impl(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, uint32_t level, uint8_t* overflowTable) { assert(mbr.getDimension() == m_dimension); std::stack pathBuffer; NodePtr root = readNode(m_rootID); NodePtr n = root->chooseSubtree(mbr, level, pathBuffer); assert(n->m_level == level); if (n.get() == root.get()) { assert(root.unique()); root.relinquish(); } n->insertData(dataLength, pData, mbr, id, pathBuffer, overflowTable); } bool SpatialIndex::RTree::RTree::deleteData_impl(const Region& mbr, id_type id) { assert(mbr.m_dimension == m_dimension); std::stack pathBuffer; NodePtr root = readNode(m_rootID); NodePtr l = root->findLeaf(mbr, id, pathBuffer); if (l.get() == root.get()) { assert(root.unique()); root.relinquish(); } if (l.get() != nullptr) { Leaf* pL = static_cast(l.get()); pL->deleteData(mbr, id, pathBuffer); --(m_stats.m_u64Data); return true; } return false; } SpatialIndex::id_type SpatialIndex::RTree::RTree::writeNode(Node* n) { uint8_t* buffer; uint32_t dataLength; n->storeToByteArray(&buffer, dataLength); id_type page; if (n->m_identifier < 0) page = StorageManager::NewPage; else page = n->m_identifier; try { m_pStorageManager->storeByteArray(page, dataLength, buffer); delete[] buffer; } catch (InvalidPageException& e) { delete[] buffer; std::cerr << e.what() << std::endl; throw; } if (n->m_identifier < 0) { n->m_identifier = page; ++(m_stats.m_u32Nodes); #ifndef NDEBUG try { m_stats.m_nodesInLevel[n->m_level] = m_stats.m_nodesInLevel.at(n->m_level) + 1; } catch(...) { throw Tools::IllegalStateException("writeNode: writing past the end of m_nodesInLevel."); } #else m_stats.m_nodesInLevel[n->m_level] = m_stats.m_nodesInLevel[n->m_level] + 1; #endif } ++(m_stats.m_u64Writes); for (size_t cIndex = 0; cIndex < m_writeNodeCommands.size(); ++cIndex) { m_writeNodeCommands[cIndex]->execute(*n); } return page; } SpatialIndex::RTree::NodePtr SpatialIndex::RTree::RTree::readNode(id_type page) { uint32_t dataLength; uint8_t* buffer; try { m_pStorageManager->loadByteArray(page, dataLength, &buffer); } catch (InvalidPageException& e) { std::cerr << e.what() << std::endl; throw; } try { uint32_t nodeType; memcpy(&nodeType, buffer, sizeof(uint32_t)); NodePtr n; if (nodeType == PersistentIndex) n = m_indexPool.acquire(); else if (nodeType == PersistentLeaf) n = m_leafPool.acquire(); else throw Tools::IllegalStateException("readNode: failed reading the correct node type information"); if (n.get() == nullptr) { if (nodeType == PersistentIndex) n = NodePtr(new Index(this, -1, 0), &m_indexPool); else if (nodeType == PersistentLeaf) n = NodePtr(new Leaf(this, -1), &m_leafPool); } //n->m_pTree = this; n->m_identifier = page; n->loadFromByteArray(buffer); ++(m_stats.m_u64Reads); for (size_t cIndex = 0; cIndex < m_readNodeCommands.size(); ++cIndex) { m_readNodeCommands[cIndex]->execute(*n); } delete[] buffer; return n; } catch (...) { delete[] buffer; throw; } } void SpatialIndex::RTree::RTree::deleteNode(Node* n) { try { m_pStorageManager->deleteByteArray(n->m_identifier); } catch (InvalidPageException& e) { std::cerr << e.what() << std::endl; throw; } --(m_stats.m_u32Nodes); m_stats.m_nodesInLevel[n->m_level] = m_stats.m_nodesInLevel[n->m_level] - 1; for (size_t cIndex = 0; cIndex < m_deleteNodeCommands.size(); ++cIndex) { m_deleteNodeCommands[cIndex]->execute(*n); } } void SpatialIndex::RTree::RTree::rangeQuery(RangeQueryType type, const IShape& query, IVisitor& v) { std::stack st; NodePtr root = readNode(m_rootID); if (root->m_children > 0 && query.intersectsShape(root->m_nodeMBR)) st.push(root); while (! st.empty()) { NodePtr n = st.top(); st.pop(); if (n->m_level == 0) { v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { bool b; if (type == ContainmentQuery) b = query.containsShape(*(n->m_ptrMBR[cChild])); else b = query.intersectsShape(*(n->m_ptrMBR[cChild])); if (b) { Data data = Data(n->m_pDataLength[cChild], n->m_pData[cChild], *(n->m_ptrMBR[cChild]), n->m_pIdentifier[cChild]); v.visitData(data); ++(m_stats.m_u64QueryResults); } } } else { v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { if (query.intersectsShape(*(n->m_ptrMBR[cChild]))) st.push(readNode(n->m_pIdentifier[cChild])); } } } } void SpatialIndex::RTree::RTree::selfJoinQuery(id_type id1, id_type id2, const Region& r, IVisitor& vis) { NodePtr n1 = readNode(id1); NodePtr n2 = readNode(id2); vis.visitNode(*n1); vis.visitNode(*n2); for (uint32_t cChild1 = 0; cChild1 < n1->m_children; ++cChild1) { if (r.intersectsRegion(*(n1->m_ptrMBR[cChild1]))) { for (uint32_t cChild2 = 0; cChild2 < n2->m_children; ++cChild2) { if ( r.intersectsRegion(*(n2->m_ptrMBR[cChild2])) && n1->m_ptrMBR[cChild1]->intersectsRegion(*(n2->m_ptrMBR[cChild2]))) { if (n1->m_level == 0) { if (n1->m_pIdentifier[cChild1] != n2->m_pIdentifier[cChild2]) { assert(n2->m_level == 0); std::vector v; Data e1(n1->m_pDataLength[cChild1], n1->m_pData[cChild1], *(n1->m_ptrMBR[cChild1]), n1->m_pIdentifier[cChild1]); Data e2(n2->m_pDataLength[cChild2], n2->m_pData[cChild2], *(n2->m_ptrMBR[cChild2]), n2->m_pIdentifier[cChild2]); v.push_back(&e1); v.push_back(&e2); vis.visitData(v); } } else { Region rr = r.getIntersectingRegion(n1->m_ptrMBR[cChild1]->getIntersectingRegion(*(n2->m_ptrMBR[cChild2]))); selfJoinQuery(n1->m_pIdentifier[cChild1], n2->m_pIdentifier[cChild2], rr, vis); } } } } } } void SpatialIndex::RTree::RTree::visitSubTree(NodePtr subTree, IVisitor& v) { std::stack st; st.push(subTree); while (! st.empty()) { NodePtr n = st.top(); st.pop(); v.visitNode(*n); if(n->m_level == 0) { for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { Data data = Data(n->m_pDataLength[cChild], n->m_pData[cChild], *(n->m_ptrMBR[cChild]), n->m_pIdentifier[cChild]); v.visitData(data); ++(m_stats.m_u64QueryResults); } } else { for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { st.push(readNode(n->m_pIdentifier[cChild])); } } } } std::ostream& SpatialIndex::RTree::operator<<(std::ostream& os, const RTree& t) { os << "Dimension: " << t.m_dimension << std::endl << "Fill factor: " << t.m_fillFactor << std::endl << "Index capacity: " << t.m_indexCapacity << std::endl << "Leaf capacity: " << t.m_leafCapacity << std::endl << "Tight MBRs: " << ((t.m_bTightMBRs) ? "enabled" : "disabled") << std::endl; if (t.m_treeVariant == RV_RSTAR) { os << "Near minimum overlap factor: " << t.m_nearMinimumOverlapFactor << std::endl << "Reinsert factor: " << t.m_reinsertFactor << std::endl << "Split distribution factor: " << t.m_splitDistributionFactor << std::endl; } if (t.m_stats.getNumberOfNodesInLevel(0) > 0) os << "Utilization: " << 100 * t.m_stats.getNumberOfData() / (t.m_stats.getNumberOfNodesInLevel(0) * t.m_leafCapacity) << "%" << std::endl << t.m_stats; #ifndef NDEBUG os << "Leaf pool hits: " << t.m_leafPool.m_hits << std::endl << "Leaf pool misses: " << t.m_leafPool.m_misses << std::endl << "Index pool hits: " << t.m_indexPool.m_hits << std::endl << "Index pool misses: " << t.m_indexPool.m_misses << std::endl << "Region pool hits: " << t.m_regionPool.m_hits << std::endl << "Region pool misses: " << t.m_regionPool.m_misses << std::endl << "Point pool hits: " << t.m_pointPool.m_hits << std::endl << "Point pool misses: " << t.m_pointPool.m_misses << std::endl; #endif return os; } libspatialindex-1.9.3/src/rtree/RTree.h000066400000000000000000000163331355420072700200150ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "Statistics.h" #include "Node.h" #include "PointerPoolNode.h" #include namespace SpatialIndex { namespace RTree { class RTree : public ISpatialIndex { //class NNEntry; public: RTree(IStorageManager&, Tools::PropertySet&); // String Value Description // ---------------------------------------------- // IndexIndentifier VT_LONG If specified an existing index will be openened from the supplied // storage manager with the given index id. Behaviour is unspecified // if the index id or the storage manager are incorrect. // Dimension VT_ULONG Dimensionality of the data that will be inserted. // IndexCapacity VT_ULONG The index node capacity. Default is 100. // LeafCapactiy VT_ULONG The leaf node capacity. Default is 100. // FillFactor VT_DOUBLE The fill factor. Default is 70% // TreeVariant VT_LONG Can be one of Linear, Quadratic or Rstar. Default is Rstar // NearMinimumOverlapFactor VT_ULONG Default is 32. // SplitDistributionFactor VT_DOUBLE Default is 0.4 // ReinsertFactor VT_DOUBLE Default is 0.3 // EnsureTightMBRs VT_BOOL Default is true // IndexPoolCapacity VT_LONG Default is 100 // LeafPoolCapacity VT_LONG Default is 100 // RegionPoolCapacity VT_LONG Default is 1000 // PointPoolCapacity VT_LONG Default is 500 ~RTree() ; // // ISpatialIndex interface // virtual void insertData(uint32_t len, const uint8_t* pData, const IShape& shape, id_type shapeIdentifier) ; virtual bool deleteData(const IShape& shape, id_type id) ; virtual void internalNodesQuery(const IShape& query, IVisitor& v) ; virtual void containsWhatQuery(const IShape& query, IVisitor& v) ; virtual void intersectsWithQuery(const IShape& query, IVisitor& v) ; virtual void pointLocationQuery(const Point& query, IVisitor& v) ; virtual void nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v, INearestNeighborComparator&); virtual void nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v); virtual void selfJoinQuery(const IShape& s, IVisitor& v) ; virtual void queryStrategy(IQueryStrategy& qs) ; virtual void getIndexProperties(Tools::PropertySet& out) const ; virtual void addCommand(ICommand* pCommand, CommandType ct) ; virtual bool isIndexValid() ; virtual void getStatistics(IStatistics** out) const ; virtual void flush() ; private: void initNew(Tools::PropertySet&); void initOld(Tools::PropertySet& ps); void storeHeader(); void loadHeader(); void insertData_impl(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id); void insertData_impl(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, uint32_t level, uint8_t* overflowTable); bool deleteData_impl(const Region& mbr, id_type id); id_type writeNode(Node*); NodePtr readNode(id_type page); void deleteNode(Node*); void rangeQuery(RangeQueryType type, const IShape& query, IVisitor& v); void selfJoinQuery(id_type id1, id_type id2, const Region& r, IVisitor& vis); void visitSubTree(NodePtr subTree, IVisitor& v); IStorageManager* m_pStorageManager; id_type m_rootID, m_headerID; RTreeVariant m_treeVariant; double m_fillFactor; uint32_t m_indexCapacity; uint32_t m_leafCapacity; uint32_t m_nearMinimumOverlapFactor; // The R*-Tree 'p' constant, for calculating nearly minimum overlap cost. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles', Section 4.1] double m_splitDistributionFactor; // The R*-Tree 'm' constant, for calculating spliting distributions. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles', Section 4.2] double m_reinsertFactor; // The R*-Tree 'p' constant, for removing entries at reinserts. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles', Section 4.3] uint32_t m_dimension; Region m_infiniteRegion; Statistics m_stats; bool m_bTightMBRs; Tools::PointerPool m_pointPool; Tools::PointerPool m_regionPool; Tools::PointerPool m_indexPool; Tools::PointerPool m_leafPool; std::vector > m_writeNodeCommands; std::vector > m_readNodeCommands; std::vector > m_deleteNodeCommands; class NNEntry { public: id_type m_id; IEntry* m_pEntry; double m_minDist; NNEntry(id_type id, IEntry* e, double f) : m_id(id), m_pEntry(e), m_minDist(f) {} ~NNEntry() = default; }; // NNEntry class NNComparator : public INearestNeighborComparator { public: double getMinimumDistance(const IShape& query, const IShape& entry) { return query.getMinimumDistance(entry); } double getMinimumDistance(const IShape& query, const IData& data) { IShape* pS; data.getShape(&pS); double ret = query.getMinimumDistance(*pS); delete pS; return ret; } }; // NNComparator class ValidateEntry { public: ValidateEntry(Region& r, NodePtr& pNode) : m_parentMBR(r), m_pNode(pNode) {} Region m_parentMBR; NodePtr m_pNode; }; // ValidateEntry friend class Node; friend class Leaf; friend class Index; friend class BulkLoader; friend std::ostream& operator<<(std::ostream& os, const RTree& t); }; // RTree std::ostream& operator<<(std::ostream& os, const RTree& t); } } libspatialindex-1.9.3/src/rtree/Statistics.cc000066400000000000000000000106131355420072700212570ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include "Statistics.h" using namespace SpatialIndex::RTree; Statistics::Statistics() { reset(); } Statistics::Statistics(const Statistics& s) { m_u64Reads = s.m_u64Reads; m_u64Writes = s.m_u64Writes; m_u64Splits = s.m_u64Splits; m_u64Hits = s.m_u64Hits; m_u64Misses = s.m_u64Misses; m_u32Nodes = s.m_u32Nodes; m_u64Adjustments = s.m_u64Adjustments; m_u64QueryResults = s.m_u64QueryResults; m_u64Data = s.m_u64Data; m_u32TreeHeight = s.m_u32TreeHeight; m_nodesInLevel = s.m_nodesInLevel; } Statistics::~Statistics() = default; Statistics& Statistics::operator=(const Statistics& s) { if (this != &s) { m_u64Reads = s.m_u64Reads; m_u64Writes = s.m_u64Writes; m_u64Splits = s.m_u64Splits; m_u64Hits = s.m_u64Hits; m_u64Misses = s.m_u64Misses; m_u32Nodes = s.m_u32Nodes; m_u64Adjustments = s.m_u64Adjustments; m_u64QueryResults = s.m_u64QueryResults; m_u64Data = s.m_u64Data; m_u32TreeHeight = s.m_u32TreeHeight; m_nodesInLevel = s.m_nodesInLevel; } return *this; } uint64_t Statistics::getReads() const { return m_u64Reads; } uint64_t Statistics::getWrites() const { return m_u64Writes; } uint32_t Statistics::getNumberOfNodes() const { return m_u32Nodes; } uint64_t Statistics::getNumberOfData() const { return m_u64Data; } uint64_t Statistics::getSplits() const { return m_u64Splits; } uint64_t Statistics::getHits() const { return m_u64Hits; } uint64_t Statistics::getMisses() const { return m_u64Misses; } uint64_t Statistics::getAdjustments() const { return m_u64Adjustments; } uint64_t Statistics::getQueryResults() const { return m_u64QueryResults; } uint32_t Statistics::getTreeHeight() const { return m_u32TreeHeight; } uint32_t Statistics::getNumberOfNodesInLevel(uint32_t l) const { uint32_t u32Nodes; try { u32Nodes = m_nodesInLevel.at(l); } catch (...) { throw Tools::IndexOutOfBoundsException(l); } return u32Nodes; } void Statistics::reset() { m_u64Reads = 0; m_u64Writes = 0; m_u64Splits = 0; m_u64Hits = 0; m_u64Misses = 0; m_u32Nodes = 0; m_u64Adjustments = 0; m_u64QueryResults = 0; m_u64Data = 0; m_u32TreeHeight = 0; m_nodesInLevel.clear(); } std::ostream& SpatialIndex::RTree::operator<<(std::ostream& os, const Statistics& s) { os << "Reads: " << s.m_u64Reads << std::endl << "Writes: " << s.m_u64Writes << std::endl << "Hits: " << s.m_u64Hits << std::endl << "Misses: " << s.m_u64Misses << std::endl << "Tree height: " << s.m_u32TreeHeight << std::endl << "Number of data: " << s.m_u64Data << std::endl << "Number of nodes: " << s.m_u32Nodes << std::endl; for (uint32_t u32Level = 0; u32Level < s.m_u32TreeHeight; ++u32Level) { os << "Level " << u32Level << " pages: " << s.m_nodesInLevel[u32Level] << std::endl; } os << "Splits: " << s.m_u64Splits << std::endl << "Adjustments: " << s.m_u64Adjustments << std::endl << "Query results: " << s.m_u64QueryResults << std::endl; return os; } libspatialindex-1.9.3/src/rtree/Statistics.h000066400000000000000000000056341355420072700211300ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace RTree { class RTree; class Node; class Leaf; class Index; class Statistics : public SpatialIndex::IStatistics { public: Statistics(); Statistics(const Statistics&); ~Statistics() override; Statistics& operator=(const Statistics&); // // IStatistics interface // uint64_t getReads() const override; uint64_t getWrites() const override; uint32_t getNumberOfNodes() const override; uint64_t getNumberOfData() const override; virtual uint64_t getSplits() const; virtual uint64_t getHits() const; virtual uint64_t getMisses() const; virtual uint64_t getAdjustments() const; virtual uint64_t getQueryResults() const; virtual uint32_t getTreeHeight() const; virtual uint32_t getNumberOfNodesInLevel(uint32_t l) const; private: void reset(); uint64_t m_u64Reads; uint64_t m_u64Writes; uint64_t m_u64Splits; uint64_t m_u64Hits; uint64_t m_u64Misses; uint32_t m_u32Nodes; uint64_t m_u64Adjustments; uint64_t m_u64QueryResults; uint64_t m_u64Data; uint32_t m_u32TreeHeight; std::vector m_nodesInLevel; friend class RTree; friend class Node; friend class Index; friend class Leaf; friend class BulkLoader; friend std::ostream& operator<<(std::ostream& os, const Statistics& s); }; // Statistics std::ostream& operator<<(std::ostream& os, const Statistics& s); } } libspatialindex-1.9.3/src/spatialindex/000077500000000000000000000000001355420072700201615ustar00rootroot00000000000000libspatialindex-1.9.3/src/spatialindex/LineSegment.cc000066400000000000000000000367301355420072700227130ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include using namespace SpatialIndex; LineSegment::LineSegment() = default; LineSegment::LineSegment(const double* pStartPoint, const double* pEndPoint, uint32_t dimension) : m_dimension(dimension) { // no need to initialize arrays to 0 since if a bad_alloc is raised the destructor will not be called. m_pStartPoint = new double[m_dimension]; m_pEndPoint = new double[m_dimension]; memcpy(m_pStartPoint, pStartPoint, m_dimension * sizeof(double)); memcpy(m_pEndPoint, pEndPoint, m_dimension * sizeof(double)); } LineSegment::LineSegment(const Point& startPoint, const Point& endPoint) : m_dimension(startPoint.m_dimension) { if (startPoint.m_dimension != endPoint.m_dimension) throw Tools::IllegalArgumentException( "LineSegment::LineSegment: Points have different dimensionalities." ); // no need to initialize arrays to 0 since if a bad_alloc is raised the destructor will not be called. m_pStartPoint = new double[m_dimension]; m_pEndPoint = new double[m_dimension]; memcpy(m_pStartPoint, startPoint.m_pCoords, m_dimension * sizeof(double)); memcpy(m_pEndPoint, endPoint.m_pCoords, m_dimension * sizeof(double)); } LineSegment::LineSegment(const LineSegment& l) : m_dimension(l.m_dimension) { // no need to initialize arrays to 0 since if a bad_alloc is raised the destructor will not be called. m_pStartPoint = new double[m_dimension]; m_pEndPoint = new double[m_dimension]; memcpy(m_pStartPoint, l.m_pStartPoint, m_dimension * sizeof(double)); memcpy(m_pEndPoint, l.m_pEndPoint, m_dimension * sizeof(double)); } LineSegment::~LineSegment() { delete[] m_pStartPoint; delete[] m_pEndPoint; } LineSegment& LineSegment::operator=(const LineSegment& l) { if (this != &l) { makeDimension(l.m_dimension); memcpy(m_pStartPoint, l.m_pStartPoint, m_dimension * sizeof(double)); memcpy(m_pEndPoint, l.m_pEndPoint, m_dimension * sizeof(double)); } return *this; } bool LineSegment::operator==(const LineSegment& l) const { if (m_dimension != l.m_dimension) throw Tools::IllegalArgumentException( "LineSegment::operator==: LineSegments have different number of dimensions." ); for (uint32_t i = 0; i < m_dimension; ++i) { if ( m_pStartPoint[i] < l.m_pStartPoint[i] - std::numeric_limits::epsilon() || m_pStartPoint[i] > l.m_pStartPoint[i] + std::numeric_limits::epsilon()) return false; if ( m_pEndPoint[i] < l.m_pEndPoint[i] - std::numeric_limits::epsilon() || m_pEndPoint[i] > l.m_pEndPoint[i] + std::numeric_limits::epsilon()) return false; } return true; } // // IObject interface // LineSegment* LineSegment::clone() { return new LineSegment(*this); } // // ISerializable interface // uint32_t LineSegment::getByteArraySize() { return (sizeof(uint32_t) + m_dimension * sizeof(double) * 2); } void LineSegment::loadFromByteArray(const uint8_t* ptr) { uint32_t dimension; memcpy(&dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); makeDimension(dimension); memcpy(m_pStartPoint, ptr, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(m_pEndPoint, ptr, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } void LineSegment::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, m_pStartPoint, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(ptr, m_pEndPoint, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } // // IShape interface // bool LineSegment::intersectsShape(const IShape& s) const { const LineSegment* ps = dynamic_cast(&s); if (ps != nullptr) return intersectsLineSegment(*ps); const Region* pr = dynamic_cast(&s); if (pr != nullptr) return intersectsRegion(*pr); throw Tools::IllegalStateException( "LineSegment::intersectsShape: Not implemented yet!" ); } bool LineSegment::containsShape(const IShape&) const { return false; } bool LineSegment::touchesShape(const IShape&) const { throw Tools::IllegalStateException( "LineSegment::touchesShape: Not implemented yet!" ); } void LineSegment::getCenter(Point& out) const { double* coords = new double[m_dimension]; for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { coords[cDim] = (std::abs(m_pStartPoint[cDim] - m_pEndPoint[cDim]) / 2.0) + std::min(m_pStartPoint[cDim], m_pEndPoint[cDim]); } out = Point(coords, m_dimension); delete[] coords; } uint32_t LineSegment::getDimension() const { return m_dimension; } void LineSegment::getMBR(Region& out) const { double* low = new double[m_dimension]; double* high = new double[m_dimension]; for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { low[cDim] = std::min(m_pStartPoint[cDim], m_pEndPoint[cDim]); high[cDim] = std::max(m_pStartPoint[cDim], m_pEndPoint[cDim]); } out = Region(low, high, m_dimension); delete[] low; delete[] high; } double LineSegment::getArea() const { return 0.0; } double LineSegment::getMinimumDistance(const IShape& s) const { const Point* ppt = dynamic_cast(&s); if (ppt != nullptr) { return getMinimumDistance(*ppt); } /* const Region* pr = dynamic_cast(&s); if (pr != 0) { return pr->getMinimumDistance(*this); } */ throw Tools::IllegalStateException( "LineSegment::getMinimumDistance: Not implemented yet!" ); } double LineSegment::getMinimumDistance(const Point& p) const { if (m_dimension == 1) throw Tools::NotSupportedException( "LineSegment::getMinimumDistance: Use an Interval instead." ); if (m_dimension != 2) throw Tools::NotSupportedException( "LineSegment::getMinimumDistance: Distance for high dimensional spaces not supported!" ); if (m_pEndPoint[0] >= m_pStartPoint[0] - std::numeric_limits::epsilon() && m_pEndPoint[0] <= m_pStartPoint[0] + std::numeric_limits::epsilon()) return std::abs(p.m_pCoords[0] - m_pStartPoint[0]); if (m_pEndPoint[1] >= m_pStartPoint[1] - std::numeric_limits::epsilon() && m_pEndPoint[1] <= m_pStartPoint[1] + std::numeric_limits::epsilon()) return std::abs(p.m_pCoords[1] - m_pStartPoint[1]); double x1 = m_pStartPoint[0]; double x2 = m_pEndPoint[0]; double x0 = p.m_pCoords[0]; double y1 = m_pStartPoint[1]; double y2 = m_pEndPoint[1]; double y0 = p.m_pCoords[1]; return std::abs((x2 - x1) * (y1 - y0) - (x1 - x0) * (y2 - y1)) / (std::sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))); } bool LineSegment::intersectsRegion(const Region& r) const { if (m_dimension != 2) throw Tools::NotSupportedException( "LineSegment::intersectsRegion: only supported for 2 dimensions" ); if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "LineSegment::intersectsRegion: LineSegment and Region have different number of dimensions." ); return r.intersectsLineSegment((*this)); } bool LineSegment::intersectsLineSegment(const LineSegment& l) const { if (m_dimension != 2) throw Tools::NotSupportedException( "LineSegment::intersectsLineSegment: only supported for 2 dimensions" ); if (m_dimension != l.m_dimension) throw Tools::IllegalArgumentException( "LineSegment::intersectsLineSegment: LineSegments have different number of dimensions." ); // use Geometry::intersects Point p1, p2, p3, p4; p1 = Point(m_pStartPoint, 2); p2 = Point(m_pEndPoint, 2); p3 = Point(l.m_pStartPoint, 2); p4 = Point(l.m_pEndPoint, 2); return intersects(p1, p2, p3, p4); } // assuming moving from start to end, positive distance is from right hand side. double LineSegment::getRelativeMinimumDistance(const Point& p) const { if (m_dimension == 1) throw Tools::NotSupportedException( "LineSegment::getRelativeMinimumDistance: Use an Interval instead." ); if (m_dimension != 2) throw Tools::NotSupportedException( "LineSegment::getRelativeMinimumDistance: Distance for high dimensional spaces not supported!" ); if (m_pEndPoint[0] >= m_pStartPoint[0] - std::numeric_limits::epsilon() && m_pEndPoint[0] <= m_pStartPoint[0] + std::numeric_limits::epsilon()) { if (m_pStartPoint[1] < m_pEndPoint[1]) return m_pStartPoint[0] - p.m_pCoords[0]; if (m_pStartPoint[1] >= m_pEndPoint[1]) return p.m_pCoords[0] - m_pStartPoint[0]; } if (m_pEndPoint[1] >= m_pStartPoint[1] - std::numeric_limits::epsilon() && m_pEndPoint[1] <= m_pStartPoint[1] + std::numeric_limits::epsilon()) { if (m_pStartPoint[0] < m_pEndPoint[0]) return p.m_pCoords[1] - m_pStartPoint[1]; if (m_pStartPoint[0] >= m_pEndPoint[0]) return m_pStartPoint[1] - p.m_pCoords[1]; } double x1 = m_pStartPoint[0]; double x2 = m_pEndPoint[0]; double x0 = p.m_pCoords[0]; double y1 = m_pStartPoint[1]; double y2 = m_pEndPoint[1]; double y0 = p.m_pCoords[1]; return ((x1 - x0) * (y2 - y1) - (x2 - x1) * (y1 - y0)) / (std::sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))); } double LineSegment::getRelativeMaximumDistance(const Region& r) const { if (m_dimension == 1) throw Tools::NotSupportedException( "LineSegment::getRelativeMaximumDistance: Use an Interval instead." ); if (m_dimension != 2) throw Tools::NotSupportedException( "LineSegment::getRelativeMaximumDistance: Distance for high dimensional spaces not supported!" ); // clockwise. double d1 = getRelativeMinimumDistance(Point(r.m_pLow, 2)); double coords[2]; coords[0] = r.m_pLow[0]; coords[1] = r.m_pHigh[1]; double d2 = getRelativeMinimumDistance(Point(coords, 2)); double d3 = getRelativeMinimumDistance(Point(r.m_pHigh, 2)); coords[0] = r.m_pHigh[0]; coords[1] = r.m_pLow[1]; double d4 = getRelativeMinimumDistance(Point(coords, 2)); return std::max(d1, std::max(d2, std::max(d3, d4))); } double LineSegment::getAngleOfPerpendicularRay() { if (m_dimension == 1) throw Tools::NotSupportedException( "LineSegment::getAngleOfPerpendicularRay: Use an Interval instead." ); if (m_dimension != 2) throw Tools::NotSupportedException( "LineSegment::getAngleOfPerpendicularRay: Distance for high dimensional spaces not supported!" ); if (m_pStartPoint[0] >= m_pEndPoint[0] - std::numeric_limits::epsilon() && m_pStartPoint[0] <= m_pEndPoint[0] + std::numeric_limits::epsilon()) return 0.0; if (m_pStartPoint[1] >= m_pEndPoint[1] - std::numeric_limits::epsilon() && m_pStartPoint[1] <= m_pEndPoint[1] + std::numeric_limits::epsilon()) return M_PI_2; return std::atan(-(m_pStartPoint[0] - m_pEndPoint[0]) / (m_pStartPoint[1] - m_pEndPoint[1])); } void LineSegment::makeInfinite(uint32_t dimension) { makeDimension(dimension); for (uint32_t cIndex = 0; cIndex < m_dimension; ++cIndex) { m_pStartPoint[cIndex] = std::numeric_limits::max(); m_pEndPoint[cIndex] = std::numeric_limits::max(); } } void LineSegment::makeDimension(uint32_t dimension) { if (m_dimension != dimension) { delete[] m_pStartPoint; delete[] m_pEndPoint; // remember that this is not a constructor. The object will be destructed normally if // something goes wrong (bad_alloc), so we must take care not to leave the object at an intermediate state. m_pStartPoint = nullptr; m_pEndPoint = nullptr; m_dimension = dimension; m_pStartPoint = new double[m_dimension]; m_pEndPoint = new double[m_dimension]; } } // compute double the area of the triangle created by points a, b and c (only for 2 dimensional points) double LineSegment::doubleAreaTriangle(const SpatialIndex::Point &a, const SpatialIndex::Point &b, const SpatialIndex::Point &c) { double *pA, *pB, *pC; pA = a.m_pCoords; pB = b.m_pCoords; pC = c.m_pCoords; return (((pB[0] - pA[0]) * (pC[1] - pA[1])) - ((pC[0] - pA[0]) * (pB[1] - pA[1]))); } // determine whether point c is to the left of the segment comprised of points a & b (2-d only) bool LineSegment::leftOf(const SpatialIndex::Point &a, const SpatialIndex::Point &b, const SpatialIndex::Point &c) { return (doubleAreaTriangle(a, b, c) > 0); } // determine whether all 3 points are on the same line bool LineSegment::collinear(const SpatialIndex::Point &a, const SpatialIndex::Point &b, const SpatialIndex::Point &c) { return (doubleAreaTriangle(a, b, c) == 0); } // determine whether the segment comprised of a, b and segment of c, d intersect (exclusive of their endpoints..hence the "Proper") bool LineSegment::intersectsProper(const SpatialIndex::Point &a, const SpatialIndex::Point &b, const SpatialIndex::Point &c, const SpatialIndex::Point &d) { if ( collinear(a, b, c) || collinear(a, b, d) || collinear(c, d, a) || collinear(c, d, b)) { return false; } return ((leftOf(a, b, c) ^ leftOf(a, b, d)) && (leftOf(c, d, a) ^ leftOf(c, d, b))); } // if the points are collinear, is c between a & b bool LineSegment::between(const SpatialIndex::Point &a, const SpatialIndex::Point &b, const SpatialIndex::Point &c) { if ( !collinear(a, b, c) ) { return false; } double *pA, *pB, *pC; pA = a.m_pCoords; pB = b.m_pCoords; pC = c.m_pCoords; if ( pA[0] != pB[0] ) { // a & b are not on the same vertical, compare on x axis return between(pA[0], pB[0], pC[0]); } else { // a & b are a vertical segment, we need to compare on y axis return between(pA[1], pB[1], pC[1]); } } bool LineSegment::between(double a, double b, double c) { return ( ((a <= c) && (c <= b)) || ((a >= c) && (c >= b)) ); } // intersection test, including endpoints bool LineSegment::intersects(const SpatialIndex::Point &a, const SpatialIndex::Point &b, const SpatialIndex::Point &c, const SpatialIndex::Point &d) { if (intersectsProper(a, b, c, d)) { return true; } else if ( between(a, b, c) || between(a, b, d) || between(c, d, a) || between(c, d, b) ) { return true; } else { return false; } } std::ostream& SpatialIndex::operator<<(std::ostream& os, const LineSegment& l) { for (uint32_t cDim = 0; cDim < l.m_dimension; ++cDim) { os << l.m_pStartPoint[cDim] << ", " << l.m_pEndPoint[cDim] << " "; } return os; } libspatialindex-1.9.3/src/spatialindex/MovingPoint.cc000066400000000000000000000212041355420072700227400ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include using namespace SpatialIndex; MovingPoint::MovingPoint() = default; MovingPoint::MovingPoint( const double* pCoords, const double* pVCoords, const IInterval& ti, uint32_t dimension) { initialize( pCoords, pVCoords, ti.getLowerBound(), ti.getUpperBound(), dimension); } MovingPoint::MovingPoint( const double* pCoords, const double* pVCoords, double tStart, double tEnd, uint32_t dimension) { initialize(pCoords, pVCoords, tStart, tEnd, dimension); } MovingPoint::MovingPoint( const Point& p, const Point& vp, const IInterval& ti) { if (p.m_dimension != vp.m_dimension) throw Tools::IllegalArgumentException("MovingPoint: Points have different number of dimensions."); initialize( p.m_pCoords, vp.m_pCoords, ti.getLowerBound(), ti.getUpperBound(), p.m_dimension); } MovingPoint::MovingPoint(const Point& p, const Point& vp, double tStart, double tEnd) { if (p.m_dimension != vp.m_dimension) throw Tools::IllegalArgumentException("MovingPoint: Points have different number of dimensions."); initialize( p.m_pCoords, vp.m_pCoords, tStart, tEnd, p.m_dimension); } MovingPoint::MovingPoint(const MovingPoint& p) { m_startTime = p.m_startTime; m_endTime = p.m_endTime; m_pCoords = nullptr; m_dimension = p.m_dimension; try { m_pCoords = new double[m_dimension]; m_pVCoords = new double[m_dimension]; } catch (...) { delete[] m_pCoords; throw; } memcpy(m_pCoords, p.m_pCoords, m_dimension * sizeof(double)); memcpy(m_pVCoords, p.m_pVCoords, m_dimension * sizeof(double)); } MovingPoint::~MovingPoint() { delete[] m_pVCoords; } void MovingPoint::initialize( const double* pCoords, const double* pVCoords, double tStart, double tEnd, uint32_t dimension) { m_dimension = dimension; m_startTime = tStart; m_endTime = tEnd; m_pCoords = nullptr; if (m_endTime <= m_startTime) throw Tools::IllegalArgumentException("MovingPoint: Cannot support degenerate time intervals."); try { m_pCoords = new double[m_dimension]; m_pVCoords = new double[m_dimension]; } catch (...) { delete[] m_pCoords; throw; } // first store the point coordinates, than the point velocities. memcpy(m_pCoords, pCoords, m_dimension * sizeof(double)); memcpy(m_pVCoords, pVCoords, m_dimension * sizeof(double)); } MovingPoint& MovingPoint::operator=(const MovingPoint& p) { if (this != &p) { makeDimension(p.m_dimension); memcpy(m_pCoords, p.m_pCoords, m_dimension * sizeof(double)); memcpy(m_pVCoords, p.m_pVCoords, m_dimension * sizeof(double)); m_startTime = p.m_startTime; m_endTime = p.m_endTime; } return *this; } bool MovingPoint::operator==(const MovingPoint& p) const { if ( m_startTime < p.m_startTime - std::numeric_limits::epsilon() || m_startTime > p.m_startTime + std::numeric_limits::epsilon() || m_endTime < p.m_endTime - std::numeric_limits::epsilon() || m_endTime > p.m_endTime + std::numeric_limits::epsilon()) return false; for (uint32_t cDim = 0; cDim < 2 * m_dimension; ++cDim) { if ( m_pCoords[cDim] < p.m_pCoords[cDim] - std::numeric_limits::epsilon() || m_pCoords[cDim] > p.m_pCoords[cDim] + std::numeric_limits::epsilon() || m_pVCoords[cDim] < p.m_pVCoords[cDim] - std::numeric_limits::epsilon() || m_pVCoords[cDim] > p.m_pVCoords[cDim] + std::numeric_limits::epsilon()) return false; } return true; } double MovingPoint::getCoord(uint32_t d, double t) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); if (t >= m_endTime) return m_pCoords[d] + m_pVCoords[d] * (m_endTime - m_startTime); else if (t <= m_startTime) return m_pCoords[d] + m_pVCoords[d] * m_startTime; else return m_pCoords[d] + m_pVCoords[d] * (t - m_startTime); } double MovingPoint::getProjectedCoord(uint32_t d, double t) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); return m_pCoords[d] + m_pVCoords[d] * (t - m_startTime); } double MovingPoint::getVCoord(uint32_t d) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); return m_pVCoords[d]; } void MovingPoint::getPointAtTime(double t, Point& out) const { out.makeDimension(m_dimension); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { out.m_pCoords[cDim] = getCoord(cDim, t); } } // // IObject interface // MovingPoint* MovingPoint::clone() { return new MovingPoint(*this); } // // ISerializable interface // uint32_t MovingPoint::getByteArraySize() { return (sizeof(uint32_t) + 2 * sizeof(double) + 2 * m_dimension * sizeof(double)); } void MovingPoint::loadFromByteArray(const uint8_t* ptr) { uint32_t dimension; memcpy(&dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_startTime, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_endTime, ptr, sizeof(double)); ptr += sizeof(double); makeDimension(dimension); memcpy(m_pCoords, ptr, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(m_pVCoords, ptr, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } void MovingPoint::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_startTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_endTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, m_pCoords, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(ptr, m_pVCoords, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } // // IEvolvingShape interface // void MovingPoint::getVMBR(Region& out) const { out.makeDimension(m_dimension); memcpy(out.m_pLow, m_pVCoords, m_dimension * sizeof(double)); memcpy(out.m_pHigh, m_pVCoords, m_dimension * sizeof(double)); } void MovingPoint::getMBRAtTime(double t, Region& out) const { out.makeDimension(m_dimension); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { out.m_pLow[cDim] = getCoord(cDim, t); out.m_pHigh[cDim] = getCoord(cDim, t); } } void MovingPoint::makeInfinite(uint32_t dimension) { makeDimension(dimension); for (uint32_t cIndex = 0; cIndex < m_dimension; ++cIndex) { m_pCoords[cIndex] = std::numeric_limits::max(); m_pVCoords[cIndex] = -std::numeric_limits::max(); } m_startTime = std::numeric_limits::max(); m_endTime = -std::numeric_limits::max(); } void MovingPoint::makeDimension(uint32_t dimension) { if (m_dimension != dimension) { delete[] m_pCoords; delete[] m_pVCoords; m_pCoords = nullptr; m_pVCoords = nullptr; m_dimension = dimension; m_pCoords = new double[m_dimension]; m_pVCoords = new double[m_dimension]; } } std::ostream& SpatialIndex::operator<<(std::ostream& os, const MovingPoint& pt) { uint32_t i; os << "Coords: "; for (i = 0; i < pt.m_dimension; ++i) { os << pt.m_pCoords[i] << " "; } os << "VCoords: "; for (i = 0; i < pt.m_dimension; ++i) { os << pt.m_pVCoords[i] << " "; } os << ", Start: " << pt.m_startTime << ", End: " << pt.m_endTime; return os; } libspatialindex-1.9.3/src/spatialindex/MovingRegion.cc000066400000000000000000001202441355420072700230760ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ /* * Does not support degenerate time intervals or shrinking regions. */ #include #include #include #include using namespace SpatialIndex; MovingRegion::MovingRegion() : TimeRegion() { } MovingRegion::MovingRegion( const double* pLow, const double* pHigh, const double* pVLow, const double* pVHigh, const IInterval& ivT, uint32_t dimension) { initialize(pLow, pHigh, pVLow, pVHigh, ivT.getLowerBound(), ivT.getUpperBound(), dimension); } MovingRegion::MovingRegion( const double* pLow, const double* pHigh, const double* pVLow, const double* pVHigh, double tStart, double tEnd, uint32_t dimension) { initialize(pLow, pHigh, pVLow, pVHigh, tStart, tEnd, dimension); } MovingRegion::MovingRegion( const Point& low, const Point& high, const Point& vlow, const Point& vhigh, const IInterval& ivT) { if (low.m_dimension != high.m_dimension || low.m_dimension != vlow.m_dimension || vlow.m_dimension != vhigh.m_dimension) throw Tools::IllegalArgumentException("MovingRegion: arguments have different number of dimensions."); initialize( low.m_pCoords, high.m_pCoords, vlow.m_pCoords, vhigh.m_pCoords, ivT.getLowerBound(), ivT.getUpperBound(), low.m_dimension); } MovingRegion::MovingRegion( const Point& low, const Point& high, const Point& vlow, const Point& vhigh, double tStart, double tEnd) { if (low.m_dimension != high.m_dimension || low.m_dimension != vlow.m_dimension || vlow.m_dimension != vhigh.m_dimension) throw Tools::IllegalArgumentException("MovingRegion: arguments have different number of dimensions."); initialize( low.m_pCoords, high.m_pCoords, vlow.m_pCoords, vhigh.m_pCoords, tStart, tEnd, low.m_dimension); } MovingRegion::MovingRegion( const Region& mbr, const Region& vbr, const IInterval& ivT) { if (mbr.m_dimension != vbr.m_dimension) throw Tools::IllegalArgumentException("MovingRegion: arguments have different number of dimensions."); initialize(mbr.m_pLow, mbr.m_pHigh, vbr.m_pLow, vbr.m_pHigh, ivT.getLowerBound(), ivT.getUpperBound(), mbr.m_dimension); } MovingRegion::MovingRegion( const Region& mbr, const Region& vbr, double tStart, double tEnd) { if (mbr.m_dimension != vbr.m_dimension) throw Tools::IllegalArgumentException("MovingRegion: arguments have different number of dimensions."); initialize(mbr.m_pLow, mbr.m_pHigh, vbr.m_pLow, vbr.m_pHigh, tStart, tEnd, mbr.m_dimension); } MovingRegion::MovingRegion(const MovingPoint& low, const MovingPoint& high) { m_startTime = low.m_startTime; m_endTime = high.m_endTime;; m_dimension = low.m_dimension; m_pLow = nullptr; m_pHigh = nullptr; m_pVLow = nullptr; m_pVHigh = nullptr; if (m_endTime <= m_startTime) throw Tools::IllegalArgumentException("MovingRegion: Cannot support degenerate time intervals."); if (low.m_dimension != high.m_dimension) throw Tools::IllegalArgumentException("MovingRegion: arguments have different number of dimensions."); try { m_pLow = new double[m_dimension]; m_pHigh = new double[m_dimension]; m_pVLow = new double[m_dimension]; m_pVHigh = new double[m_dimension]; } catch (...) { delete[] m_pLow; delete[] m_pHigh; delete[] m_pVLow; delete[] m_pVHigh; throw; } memcpy(m_pLow, low.m_pCoords, m_dimension * sizeof(double)); memcpy(m_pHigh, high.m_pCoords, m_dimension * sizeof(double)); memcpy(m_pVLow, low.m_pVCoords, m_dimension * sizeof(double)); memcpy(m_pVHigh, high.m_pVCoords, m_dimension * sizeof(double)); } MovingRegion::MovingRegion(const MovingRegion& r) { m_startTime = r.m_startTime; m_endTime = r.m_endTime; m_pLow = nullptr; m_pHigh = nullptr; m_pVLow = nullptr; m_pVHigh = nullptr; m_dimension = r.m_dimension; try { m_pLow = new double[m_dimension]; m_pHigh = new double[m_dimension]; m_pVLow = new double[m_dimension]; m_pVHigh = new double[m_dimension]; } catch (...) { delete[] m_pLow; delete[] m_pHigh; delete[] m_pVLow; delete[] m_pVHigh; throw; } memcpy(m_pLow, r.m_pLow, m_dimension * sizeof(double)); memcpy(m_pHigh, r.m_pHigh, m_dimension * sizeof(double)); memcpy(m_pVLow, r.m_pVLow, m_dimension * sizeof(double)); memcpy(m_pVHigh, r.m_pVHigh, m_dimension * sizeof(double)); } void MovingRegion::initialize( const double* pLow, const double* pHigh, const double* pVLow, const double* pVHigh, double tStart, double tEnd, uint32_t dimension) { m_startTime = tStart; m_endTime = tEnd; m_dimension = dimension; m_pLow = nullptr; m_pHigh = nullptr; m_pVLow = nullptr; m_pVHigh = nullptr; if (m_endTime <= m_startTime) throw Tools::IllegalArgumentException("MovingRegion: Cannot support degenerate time intervals."); #ifndef NDEBUG for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { if (pLow[cDim] > pHigh[cDim]) throw Tools::IllegalArgumentException("MovingRegion: Low point has larger coordinates than High point."); } #endif try { m_pLow = new double[m_dimension]; m_pHigh = new double[m_dimension]; m_pVLow = new double[m_dimension]; m_pVHigh = new double[m_dimension]; } catch (...) { delete[] m_pLow; delete[] m_pHigh; delete[] m_pVLow; delete[] m_pVHigh; throw; } // first store the point coordinates, than the point velocities. memcpy(m_pLow, pLow, m_dimension * sizeof(double)); memcpy(m_pHigh, pHigh, m_dimension * sizeof(double)); memcpy(m_pVLow, pVLow, m_dimension * sizeof(double)); memcpy(m_pVHigh, pVHigh, m_dimension * sizeof(double)); } MovingRegion::~MovingRegion() { delete[] m_pVLow; delete[] m_pVHigh; } MovingRegion& MovingRegion::operator=(const MovingRegion& r) { if(this != &r) { makeDimension(r.m_dimension); memcpy(m_pLow, r.m_pLow, m_dimension * sizeof(double)); memcpy(m_pHigh, r.m_pHigh, m_dimension * sizeof(double)); memcpy(m_pVLow, r.m_pVLow, m_dimension * sizeof(double)); memcpy(m_pVHigh, r.m_pVHigh, m_dimension * sizeof(double)); m_startTime = r.m_startTime; m_endTime = r.m_endTime; assert(m_startTime < m_endTime); } return *this; } bool MovingRegion::operator==(const MovingRegion& r) const { if (m_startTime < r.m_startTime - std::numeric_limits::epsilon() || m_startTime > r.m_startTime + std::numeric_limits::epsilon() || m_endTime < r.m_endTime - std::numeric_limits::epsilon() || m_endTime > r.m_endTime + std::numeric_limits::epsilon()) return false; for (uint32_t i = 0; i < m_dimension; ++i) { if ( m_pLow[i] < r.m_pLow[i] - std::numeric_limits::epsilon() || m_pLow[i] > r.m_pLow[i] + std::numeric_limits::epsilon() || m_pHigh[i] < r.m_pHigh[i] - std::numeric_limits::epsilon() || m_pHigh[i] > r.m_pHigh[i] + std::numeric_limits::epsilon() || m_pVLow[i] < r.m_pVLow[i] - std::numeric_limits::epsilon() || m_pVLow[i] > r.m_pVLow[i] + std::numeric_limits::epsilon() || m_pVHigh[i] < r.m_pVHigh[i] - std::numeric_limits::epsilon() || m_pVHigh[i] > r.m_pVHigh[i] + std::numeric_limits::epsilon()) return false; } return true; } bool MovingRegion::isShrinking() const { for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { if (m_pVHigh[cDim] < m_pVLow[cDim]) return true; } return false; } // assumes that the region is not moving before and after start and end time. double MovingRegion::getLow(uint32_t d, double t) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); if (t > m_endTime) return m_pLow[d] + m_pVLow[d] * (m_endTime - m_startTime); else if (t < m_startTime) return m_pLow[d]; else return m_pLow[d] + m_pVLow[d] * (t - m_startTime); } // assumes that the region is not moving before and after start and end time. double MovingRegion::getHigh(uint32_t d, double t) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); if (t > m_endTime) return m_pHigh[d] + m_pVHigh[d] * (m_endTime - m_startTime); else if (t < m_startTime) return m_pHigh[d]; else return m_pHigh[d] + m_pVHigh[d] * (t - m_startTime); } // assuming that the region kept moving. double MovingRegion::getExtrapolatedLow(uint32_t d, double t) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); return m_pLow[d] + m_pVLow[d] * (t - m_startTime); } // assuming that the region kept moving. double MovingRegion::getExtrapolatedHigh(uint32_t d, double t) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); return m_pHigh[d] + m_pVHigh[d] * (t - m_startTime); } double MovingRegion::getVLow(uint32_t d) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); return m_pVLow[d]; } double MovingRegion::getVHigh(uint32_t d) const { if (d >= m_dimension) throw Tools::IndexOutOfBoundsException(d); return m_pVHigh[d]; } bool MovingRegion::intersectsRegionInTime(const MovingRegion& r) const { Tools::Interval ivOut; return intersectsRegionInTime(r, ivOut); } bool MovingRegion::intersectsRegionInTime(const MovingRegion& r, IInterval& ivOut) const { return intersectsRegionInTime(r, r, ivOut); } // if tmin, tmax are infinity then this will not work correctly (everything will always intersect). // does not work for shrinking regions. // does not work with degenerate time-intervals. // // WARNING: this will return true even if one region completely contains the other, since // their areas do intersect in that case! // // there are various cases here: // 1. one region contains the other. // 2. one boundary of one region is always contained indide the other region, while the other // boundary is not (so no boundaries will ever intersect). // 3. either the upper or lower boundary of one region intersects a boundary of the other. bool MovingRegion::intersectsRegionInTime(const IInterval& ivPeriod, const MovingRegion& r, IInterval& ivOut) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException("intersectsRegionInTime: MovingRegions have different number of dimensions."); assert(m_startTime < m_endTime); assert(r.m_startTime < r.m_endTime); assert(ivPeriod.getLowerBound() < ivPeriod.getUpperBound()); assert(isShrinking() == false && r.isShrinking() == false); // this is needed, since we are assuming below that the two regions have some point of intersection // inside itPeriod. if (containsRegionInTime(ivPeriod, r) || r.containsRegionInTime(ivPeriod, *this)) { ivOut = ivPeriod; return true; } double tmin = std::max(m_startTime, r.m_startTime); double tmax = std::min(m_endTime, r.m_endTime); // the regions do not intersect in time. if (tmax <= tmin) return false; tmin = std::max(tmin, ivPeriod.getLowerBound()); tmax = std::min(tmax, ivPeriod.getUpperBound()); // the regions intersecting interval does not intersect with the given time period. if (tmax <= tmin) return false; assert(tmax < std::numeric_limits::max()); assert(tmin > -std::numeric_limits::max()); // I use projected low and high because they are faster and it does not matter. // The are also necessary for calculating the intersection point with reference time instant 0.0. for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { assert( tmin >= ivPeriod.getLowerBound() && tmax <= ivPeriod.getUpperBound() && tmin >= m_startTime && tmax <= m_endTime && tmin >= r.m_startTime && tmax <= r.m_endTime); // completely above or bellow in i-th dimension if ( (r.getExtrapolatedLow(cDim, tmin) > getExtrapolatedHigh(cDim, tmin) && r.getExtrapolatedLow(cDim, tmax) >= getExtrapolatedHigh(cDim, tmax)) || (r.getExtrapolatedHigh(cDim, tmin) < getExtrapolatedLow(cDim, tmin) && r.getExtrapolatedHigh(cDim, tmax) <= getExtrapolatedLow(cDim, tmax))) return false; // otherwise they intersect inside this interval for sure. Care needs to be taken since // intersection does not necessarily mean that two line segments intersect. It could be // that one line segment is completely above/below another, in which case there is no intersection // point inside tmin, tmax, even though the two region areas do intersect. if (r.getExtrapolatedLow(cDim, tmin) > getExtrapolatedHigh(cDim, tmin)) // r above *this at tmin { tmin = (getExtrapolatedHigh(cDim, 0.0) - r.getExtrapolatedLow(cDim, 0.0)) / (r.getVLow(cDim) - getVHigh(cDim)); } else if (r.getExtrapolatedHigh(cDim, tmin) < getExtrapolatedLow(cDim, tmin)) // r below *this at tmin { tmin = (getExtrapolatedLow(cDim, 0.0) - r.getExtrapolatedHigh(cDim, 0.0)) / (r.getVHigh(cDim) - getVLow(cDim)); } // else they do not intersect and the boundary might be completely contained in this region. if (r.getExtrapolatedLow(cDim, tmax) > getExtrapolatedHigh(cDim, tmax)) // r above *this at tmax { tmax = (getExtrapolatedHigh(cDim, 0.0) - r.getExtrapolatedLow(cDim, 0.0)) / (r.getVLow(cDim) - getVHigh(cDim)); } else if (r.getExtrapolatedHigh(cDim, tmax) < getExtrapolatedLow(cDim, tmax)) // r below *this at tmax { tmax = (getExtrapolatedLow(cDim, 0.0) - r.getExtrapolatedHigh(cDim, 0.0)) / (r.getVHigh(cDim) - getVLow(cDim)); } // else they do not intersect and the boundary might be completely contained in this region. assert(tmin <= tmax); } assert( tmin >= ivPeriod.getLowerBound() && tmax <= ivPeriod.getUpperBound() && tmin >= m_startTime && tmax <= m_endTime && tmin >= r.m_startTime && tmax <= r.m_endTime); ivOut.setBounds(tmin, tmax); return true; } bool MovingRegion::containsRegionInTime(const MovingRegion& r) const { return containsRegionInTime(r, r); } // does not work for shrinking regions. // works fine for infinite bounds (both tmin and tmax). // does not work with degenerate time-intervals. // // finds if during the intersecting time-interval of r and ivPeriod, r is completely contained in *this. bool MovingRegion::containsRegionInTime(const IInterval& ivPeriod, const MovingRegion& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException("containsRegionInTime: MovingRegions have different number of dimensions."); assert(isShrinking() == false && r.isShrinking() == false); double tmin = std::max(ivPeriod.getLowerBound(), r.m_startTime); double tmax = std::min(ivPeriod.getUpperBound(), r.m_endTime); // it should be contained in time. // it does not make sense if this region is not defined for any part ot [tmin, tmax]. if (tmax <= tmin || tmin < m_startTime || tmax > m_endTime) return false; double intersectionTime; // no need to take projected coordinates here, since tmin and tmax are always contained in // the regions intersecting time-intervals. assert( tmin >= ivPeriod.getLowerBound() && tmax <= ivPeriod.getUpperBound() && tmin >= m_startTime && tmax <= m_endTime && tmin >= r.m_startTime && tmax <= r.m_endTime); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { // it should be contained at start time. if (r.getExtrapolatedHigh(cDim, tmin) > getExtrapolatedHigh(cDim, tmin) || r.getExtrapolatedLow(cDim, tmin) < getExtrapolatedLow(cDim, tmin)) return false; // this will take care of infinite bounds. if (r.m_pVHigh[cDim] != m_pVHigh[cDim]) { intersectionTime = (getExtrapolatedHigh(cDim, 0.0) - r.getExtrapolatedHigh(cDim, 0.0)) / (r.m_pVHigh[cDim] - m_pVHigh[cDim]); // if they intersect during this time-interval, then it is not contained. if (tmin < intersectionTime && intersectionTime < tmax) return false; if (tmin == intersectionTime && r.m_pVHigh[cDim] > m_pVHigh[cDim]) return false; } if (r.m_pVLow[cDim] != m_pVLow[cDim]) { intersectionTime = (getExtrapolatedLow(cDim, 0.0) - r.getExtrapolatedLow(cDim, 0.0)) / (r.m_pVLow[cDim] - m_pVLow[cDim]); // if they intersect during this time-interval, then it is not contained. if (tmin < intersectionTime && intersectionTime < tmax) return false; if (tmin == intersectionTime && r.m_pVLow[cDim] < m_pVLow[cDim]) return false; } } return true; } bool MovingRegion::containsRegionAfterTime(double t, const MovingRegion& r) const { Tools::Interval ivT(t, r.m_endTime); return containsRegionInTime(ivT, r); } // Returns the area swept by the rectangle in time, in d-dimensional space (without // including the temporal dimension, that is). // This is what Saltenis calls Margin (which is different than what Beckmann proposes, // where he computes only the wireframe -- instead of the surface/volume/etc. -- of the MBR in any dimension). double MovingRegion::getProjectedSurfaceAreaInTime() const { return getProjectedSurfaceAreaInTime(*this); } double MovingRegion::getProjectedSurfaceAreaInTime(const IInterval& ivI) const { double tmin = std::max(ivI.getLowerBound(), m_startTime); double tmax = std::min(ivI.getUpperBound(), m_endTime); assert(tmin > -std::numeric_limits::max()); assert(tmax < std::numeric_limits::max()); assert(tmin <= tmax); if (tmin >= tmax - std::numeric_limits::epsilon() && tmin <= tmax + std::numeric_limits::epsilon()) return 0.0; double dx1, dx2, dx3; double dv1, dv2, dv3; double H = tmax - tmin; if (m_dimension == 3) { dx3 = getExtrapolatedHigh(2, tmin) - getExtrapolatedLow(2, tmin); dv3 = getVHigh(2) - getVLow(2); dx2 = getExtrapolatedHigh(1, tmin) - getExtrapolatedLow(1, tmin); dv2 = getVHigh(1) - getVLow(1); dx1 = getExtrapolatedHigh(0, tmin) - getExtrapolatedLow(0, tmin); dv1 = getVHigh(0) - getVLow(0); return H * (dx1 + dx2 + dx3 + dx1*dx2 + dx1*dx3 + dx2*dx3) + H*H * (dv1 + dv2 + dv3 + dx1*dv2 + dv1*dx2 + dx1*dv3 + dv1*dx3 + dx2*dv3 + dv2*dx3) / 2.0 + H*H*H * (dv1*dv2 + dv1*dv3 + dv2*dv3) / 3.0; } else if (m_dimension == 2) { dx2 = getExtrapolatedHigh(1, tmin) - getExtrapolatedLow(1, tmin); dv2 = getVHigh(1) - getVLow(1); dx1 = getExtrapolatedHigh(0, tmin) - getExtrapolatedLow(0, tmin); dv1 = getVHigh(0) - getVLow(0); return H * (dx1 + dx2) + H * H * (dv1 + dv2) / 2.0; } else if (m_dimension == 1) { // marioh: why not use the increase of the length of the interval here? return 0.0; } else { throw Tools::IllegalStateException("getProjectedSurfaceAreaInTime: unsupported dimensionality."); } } double MovingRegion::getCenterDistanceInTime(const MovingRegion& r) const { return getCenterDistanceInTime(r, r); } double MovingRegion::getCenterDistanceInTime(const IInterval& ivI, const MovingRegion& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException("getCenterDistanceInTime: MovingRegions have different number of dimensions."); assert(m_startTime < m_endTime); assert(r.m_startTime < r.m_endTime); assert(ivI.getLowerBound() < ivI.getUpperBound()); double tmin = std::max(m_startTime, r.m_startTime); double tmax = std::min(m_endTime, r.m_endTime); // the regions do not intersect in time. if (tmax <= tmin) return 0.0; tmin = std::max(tmin, ivI.getLowerBound()); tmax = std::min(tmax, ivI.getUpperBound()); // the regions intersecting interval does not intersect with the given time period. if (tmax <= tmin) return 0.0; assert(tmax < std::numeric_limits::max()); assert(tmin > -std::numeric_limits::max()); if (tmin >= tmax - std::numeric_limits::epsilon() && tmin <= tmax + std::numeric_limits::epsilon()) return 0.0; double H = tmax - tmin; double* dx = new double[m_dimension]; double* dv = new double[m_dimension]; double a = 0.0, b = 0.0, c = 0.0, f = 0.0, l = 0.0, m = 0.0, n = 0.0; for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { dx[cDim] = (r.getExtrapolatedLow(cDim, tmin) + r.getExtrapolatedHigh(cDim, tmin)) / 2.0 - (getExtrapolatedLow(cDim, tmin) + getExtrapolatedHigh(cDim, tmin)) / 2.0; dv[cDim] = (r.getVLow(cDim) + r.getVHigh(cDim)) / 2.0 - (getVLow(cDim) + getVHigh(cDim)) / 2.0; } for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { a += dv[cDim] * dv[cDim]; b += 2.0 * dx[cDim] * dv[cDim]; c += dx[cDim] * dx[cDim]; } delete[] dx; delete[] dv; if (a == 0.0 && c == 0.0) return 0.0; if (a == 0.0) return H * std::sqrt(c); if (c == 0.0) return H * H * std::sqrt(a) / 2.0; f = std::sqrt(a * H * H + b * H + c); l = 2.0 * a * H + b; m = 4.0 * a * c - b * b; n = 2.0 * std::sqrt(a); return (l * f + log(l / n + f) * m / n - b * std::sqrt(c) - std::log(b / n + std::sqrt(c)) * m / n) / (4.0 * a); } // does not work with degenerate time-intervals. bool MovingRegion::intersectsRegionAtTime(double t, const MovingRegion& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException("intersectsRegionAtTime: MovingRegions have different number of dimensions."); // do they contain the time instant? if (! (m_startTime <= t && t < m_endTime && r.m_startTime <= t && t < r.m_endTime)) return false; // do they intersect at that time instant? for (uint32_t i = 0; i < m_dimension; ++i) { if (getExtrapolatedLow(i, t) > r.getExtrapolatedHigh(i, t) || getExtrapolatedHigh(i, t) < r.getExtrapolatedLow(i, t)) return false; } return true; } // does not work with degenerate time-intervals. bool MovingRegion::containsRegionAtTime(double t, const MovingRegion& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException("containsRegionAtTime: MovingRegions have different number of dimensions."); // do they contain the time instant? if (! (m_startTime <= t && t < m_endTime && r.m_startTime <= t && t < r.m_endTime)) return false; for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { if (getExtrapolatedLow(cDim, t) > r.getExtrapolatedLow(cDim, t) || getExtrapolatedHigh(cDim, t) < getExtrapolatedHigh(cDim, t)) return false; } return true; } bool MovingRegion::intersectsPointInTime(const MovingPoint& p) const { Tools::Interval ivOut; return intersectsPointInTime(p, ivOut); } bool MovingRegion::intersectsPointInTime(const MovingPoint& p, IInterval& ivOut) const { return intersectsPointInTime(p, p, ivOut); } // if tmin, tmax are infinity then this will not work correctly (everything will always intersect). // does not work for shrinking regions. // does not work with degenerate time-intervals. // FIXME: don't know what happens if tmin is negative infinity. // // WARNING: This will return true even if the region completely contains the point, since // in that case the point trajectory intersects the region area! bool MovingRegion::intersectsPointInTime(const IInterval& ivPeriod, const MovingPoint& p, IInterval& ivOut) const { if (m_dimension != p.m_dimension) throw Tools::IllegalArgumentException("intersectsPointInTime: MovingPoint has different number of dimensions."); assert(m_startTime < m_endTime); assert(p.m_startTime < p.m_endTime); assert(ivPeriod.getLowerBound() < ivPeriod.getUpperBound()); assert(isShrinking() == false); if (containsPointInTime(ivPeriod, p)) { ivOut = ivPeriod; return true; } double tmin = std::max(m_startTime, p.m_startTime); double tmax = std::min(m_endTime, p.m_endTime); // the shapes do not intersect in time. if (tmax <= tmin) return false; tmin = std::max(tmin, ivPeriod.getLowerBound()); tmax = std::min(tmax, ivPeriod.getUpperBound()); // the shapes intersecting interval does not intersect with the given time period. if (tmax <= tmin) return false; assert(tmax < std::numeric_limits::max()); assert(tmin > -std::numeric_limits::max()); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { assert( tmin >= ivPeriod.getLowerBound() && tmax <= ivPeriod.getUpperBound() && tmin >= m_startTime && tmax <= m_endTime && tmin >= p.m_startTime && tmax <= p.m_endTime); // completely above or bellow in i-th dimension if ((p.getProjectedCoord(cDim, tmin) > getExtrapolatedHigh(cDim, tmin) && p.getProjectedCoord(cDim, tmax) >= getExtrapolatedHigh(cDim, tmax)) || (p.getProjectedCoord(cDim, tmin) < getExtrapolatedLow(cDim, tmin) && p.getProjectedCoord(cDim, tmax) <= getExtrapolatedLow(cDim, tmax))) return false; // otherwise they intersect inside this interval for sure, since we know that the point is not contained, // so there is no need to check for 0 divisors, negative values, etc... // adjust tmin if (p.getProjectedCoord(cDim, tmin) > getExtrapolatedHigh(cDim, tmin)) // p above *this at tmin { tmin = (getExtrapolatedHigh(cDim, 0.0) - p.getProjectedCoord(cDim, 0.0)) / (p.getVCoord(cDim) - getVHigh(cDim)); } else if (p.getProjectedCoord(cDim, tmin) < getExtrapolatedLow(cDim, tmin)) // p below *this at tmin { tmin = (getExtrapolatedLow(cDim, 0.0) - p.getProjectedCoord(cDim, 0.0)) / (p.getVCoord(cDim) - getVLow(cDim)); } // adjust tmax if (p.getProjectedCoord(cDim, tmax) > getExtrapolatedHigh(cDim, tmax)) // p above *this at tmax { tmax = (getExtrapolatedHigh(cDim, 0.0) - p.getProjectedCoord(cDim, 0.0)) / (p.getVCoord(cDim) - getVHigh(cDim)); } else if (p.getProjectedCoord(cDim, tmax) < getExtrapolatedLow(cDim, tmax)) // p below *this at tmax { tmax = (getExtrapolatedLow(cDim, 0.0) - p.getProjectedCoord(cDim, 0.0)) / (p.getVCoord(cDim) - getVLow(cDim)); } if (tmin > tmax) return false; } ivOut.setBounds(tmin, tmax); return true; } bool MovingRegion::containsPointInTime(const MovingPoint& p) const { return containsPointInTime(p, p); } // does not work for shrinking regions. // works fine for infinite bounds (both tmin and tmax). // does not work with degenerate time-intervals. // // finds if during the intersecting time-interval of p and ivPeriod, p is completely contained in *this. bool MovingRegion::containsPointInTime(const IInterval& ivPeriod, const MovingPoint& p) const { if (m_dimension != p.m_dimension) throw Tools::IllegalArgumentException("containsPointInTime: MovingPoint has different number of dimensions."); assert(isShrinking() == false); double tmin = std::max(ivPeriod.getLowerBound(), p.m_startTime); double tmax = std::min(ivPeriod.getUpperBound(), p.m_endTime); // it should be contained in time. if (tmax <= tmin || tmin < m_startTime || tmax > m_endTime) return false; double intersectionTime; assert( tmin >= ivPeriod.getLowerBound() && tmax <= ivPeriod.getUpperBound() && tmin >= m_startTime && tmax <= m_endTime && tmin >= p.m_startTime && tmax <= p.m_endTime); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { // it should be contained at start time. if (p.getProjectedCoord(cDim, tmin) > getExtrapolatedHigh(cDim, tmin) || p.getProjectedCoord(cDim, tmin) < getExtrapolatedLow(cDim, tmin)) return false; if (p.m_pVCoords[cDim] != m_pVHigh[cDim]) { intersectionTime = (getExtrapolatedHigh(cDim, 0.0) - p.getProjectedCoord(cDim, 0.0)) / (p.m_pVCoords[cDim] - m_pVHigh[cDim]); // if they intersect during this time-interval, then it is not contained. if (tmin < intersectionTime && intersectionTime < tmax) return false; if (tmin == intersectionTime && p.m_pVCoords[cDim] > m_pVHigh[cDim]) return false; } if (p.m_pVCoords[cDim] != m_pVLow[cDim]) { intersectionTime = (getExtrapolatedLow(cDim, 0.0) - p.getProjectedCoord(cDim, 0.0)) / (p.m_pVCoords[cDim] - m_pVLow[cDim]); // if they intersect during this time-interval, then it is not contained. if (tmin < intersectionTime && intersectionTime < tmax) return false; if (tmin == intersectionTime && p.m_pVCoords[cDim] < m_pVLow[cDim]) return false; } } return true; } void MovingRegion::combineRegionInTime(const MovingRegion& r) { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException("combineRegionInTime: MovingRegions have different number of dimensions."); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { m_pLow[cDim] = std::min(getExtrapolatedLow(cDim, m_startTime), r.getExtrapolatedLow(cDim, m_startTime)); m_pHigh[cDim] = std::max(getExtrapolatedHigh(cDim, m_startTime), r.getExtrapolatedHigh(cDim, m_startTime)); m_pVLow[cDim] = std::min(m_pVLow[cDim], r.m_pVLow[cDim]); m_pVHigh[cDim] = std::max(m_pVHigh[cDim], r.m_pVHigh[cDim]); } // m_startTime should be modified at the end, since it affects the // calculation of extrapolated coordinates. m_startTime = std::min(m_startTime, r.m_startTime); m_endTime = std::max(m_endTime, r.m_endTime); } void MovingRegion::getCombinedRegionInTime(MovingRegion& out, const MovingRegion& in) const { if (m_dimension != in.m_dimension) throw Tools::IllegalArgumentException("getCombinedProjectedRegionInTime: MovingRegions have different number of dimensions."); out = *this; out.combineRegionInTime(in); } void MovingRegion::combineRegionAfterTime(double t, const MovingRegion& r) { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException("combineRegionInTime: MovingRegions have different number of dimensions."); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { m_pLow[cDim] = std::min(getExtrapolatedLow(cDim, t), r.getExtrapolatedLow(cDim, t)); m_pHigh[cDim] = std::max(getExtrapolatedHigh(cDim, t), r.getExtrapolatedHigh(cDim, t)); m_pVLow[cDim] = std::min(m_pVLow[cDim], r.m_pVLow[cDim]); m_pVHigh[cDim] = std::max(m_pVHigh[cDim], r.m_pVHigh[cDim]); } // m_startTime should be modified at the end, since it affects the // calculation of extrapolated coordinates. m_startTime = t; m_endTime = std::max(m_endTime, r.m_endTime); if (t >= m_endTime) m_endTime = std::numeric_limits::max(); } void MovingRegion::getCombinedRegionAfterTime(double t, MovingRegion& out, const MovingRegion& in) const { if (m_dimension != in.m_dimension) throw Tools::IllegalArgumentException("getCombinedProjectedRegionInTime: MovingRegions have different number of dimensions."); out = *this; out.combineRegionAfterTime(t, in); } double MovingRegion::getIntersectingAreaInTime(const MovingRegion& r) const { return getIntersectingAreaInTime(r, r); } double MovingRegion::getIntersectingAreaInTime(const IInterval& ivI, const MovingRegion& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException("getIntersectingAreaInTime: MovingRegions have different number of dimensions."); assert(m_startTime < m_endTime); assert(r.m_startTime < r.m_endTime); assert(ivI.getLowerBound() < ivI.getUpperBound()); assert(isShrinking() == false && r.isShrinking() == false); double tmin = std::max(m_startTime, r.m_startTime); double tmax = std::min(m_endTime, r.m_endTime); // the regions do not intersect in time. if (tmax <= tmin) return 0.0; tmin = std::max(tmin, ivI.getLowerBound()); tmax = std::min(tmax, ivI.getUpperBound()); // the regions intersecting interval does not intersect with the given time period. if (tmax <= tmin) return 0.0; assert(tmax < std::numeric_limits::max()); assert(tmin > -std::numeric_limits::max()); Tools::Interval ivIn(tmin, tmax); Tools::Interval ivOut(ivIn); if (! intersectsRegionInTime(ivIn, r, ivOut)) return 0.0; ivIn = ivOut; tmin = ivIn.getLowerBound(); tmax = ivIn.getUpperBound(); assert(tmin <= tmax); assert(tmin >= ivI.getLowerBound() && tmax <= ivI.getUpperBound()); if (containsRegionInTime(ivIn, r)) { return r.getAreaInTime(ivIn); } else if (r.containsRegionInTime(ivIn, *this)) { return getAreaInTime(ivIn); } MovingRegion x = *this; CrossPoint c; auto ascending = [](CrossPoint& lhs, CrossPoint& rhs) { return lhs.m_t > rhs.m_t; }; std::priority_queue < CrossPoint, std::vector, decltype(ascending)> pq(ascending); // find points of intersection in all dimensions. for (uint32_t i = 0; i < m_dimension; ++i) { if (getLow(i, tmin) > r.getLow(i, tmin)) { x.m_pLow[i] = m_pLow[i]; x.m_pVLow[i] = m_pVLow[i]; if (getLow(i, tmax) < r.getLow(i, tmax)) { c.m_dimension = i; c.m_boundary = 0; c.m_t = (getExtrapolatedLow(i, 0.0) - r.getExtrapolatedLow(i, 0.0)) / (r.getVLow(i) - getVLow(i)); assert(c.m_t >= tmin && c.m_t <= tmax); c.m_to = &r; pq.push(c); } } else { x.m_pLow[i] = r.m_pLow[i]; x.m_pVLow[i] = r.m_pVLow[i]; if (r.getLow(i, tmax) < getLow(i, tmax)) { c.m_dimension = i; c.m_boundary = 0; c.m_t = (getExtrapolatedLow(i, 0.0) - r.getExtrapolatedLow(i, 0.0)) / (r.getVLow(i) - getVLow(i)); assert(c.m_t >= tmin && c.m_t <= tmax); c.m_to = this; pq.push(c); } } if (getHigh(i, tmin) < r.getHigh(i, tmin)) { x.m_pHigh[i] = m_pHigh[i]; x.m_pVHigh[i] = m_pVHigh[i]; if (getHigh(i, tmax) > r.getHigh(i, tmax)) { c.m_dimension = i; c.m_boundary = 1; c.m_t = (getExtrapolatedHigh(i, 0.0) - r.getExtrapolatedHigh(i, 0.0)) / (r.getVHigh(i) - getVHigh(i)); assert(c.m_t >= tmin && c.m_t <= tmax); c.m_to = &r; pq.push(c); } } else { x.m_pHigh[i] = r.m_pHigh[i]; x.m_pVHigh[i] = r.m_pVHigh[i]; if (r.getHigh(i, tmax) > getHigh(i, tmax)) { c.m_dimension = i; c.m_boundary = 1; c.m_t = (getExtrapolatedHigh(i, 0.0) - r.getExtrapolatedHigh(i, 0.0)) / (r.getVHigh(i) - getVHigh(i)); assert(c.m_t >= tmin && c.m_t <= tmax); c.m_to = this; pq.push(c); } } } // add up the total area of the intersecting pieces. double area = 0.0; #ifndef NDEBUG double _t = -std::numeric_limits::max(); #endif while (! pq.empty()) { c = pq.top(); pq.pop(); #ifndef NDEBUG assert(_t <= c.m_t); _t = c.m_t; #endif // needed in case two consecutive points have the same intersection time. if (c.m_t > tmin) area += x.getAreaInTime(Tools::Interval(tmin, c.m_t)); if (c.m_boundary == 0) { x.m_pLow[c.m_dimension] = c.m_to->m_pLow[c.m_dimension]; x.m_pVLow[c.m_dimension] = c.m_to->m_pVLow[c.m_dimension]; } else { x.m_pHigh[c.m_dimension] = c.m_to->m_pHigh[c.m_dimension]; x.m_pVHigh[c.m_dimension] = c.m_to->m_pVHigh[c.m_dimension]; } tmin = c.m_t; } // ... and the last piece if (tmax > tmin) area += x.getAreaInTime(Tools::Interval(tmin, tmax)); return area; } // // IObject interface // MovingRegion* MovingRegion::clone() { return new MovingRegion(*this); } // // ISerializable interface // uint32_t MovingRegion::getByteArraySize() { return (sizeof(uint32_t) + 2 * sizeof(double) + 4 * m_dimension * sizeof(double)); } void MovingRegion::loadFromByteArray(const uint8_t* ptr) { uint32_t dimension; memcpy(&dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_startTime, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_endTime, ptr, sizeof(double)); ptr += sizeof(double); makeDimension(dimension); memcpy(m_pLow, ptr, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(m_pHigh, ptr, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(m_pVLow, ptr, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(m_pVHigh, ptr, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } void MovingRegion::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_startTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_endTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, m_pLow, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(ptr, m_pHigh, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(ptr, m_pVLow, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(ptr, m_pVHigh, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } // // IEvolvingShape interface // void MovingRegion::getVMBR(Region& out) const { out.makeDimension(m_dimension); memcpy(out.m_pLow, m_pVLow, m_dimension * sizeof(double)); memcpy(out.m_pHigh, m_pVHigh, m_dimension * sizeof(double)); } void MovingRegion::getMBRAtTime(double t, Region& out) const { out.makeDimension(m_dimension); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { out.m_pLow[cDim] = getLow(cDim, t); out.m_pHigh[cDim] = getHigh(cDim, t); } } // // ITimeShape interface // double MovingRegion::getAreaInTime() const { return getAreaInTime(*this); } // this computes the area/volume/etc. swept by the Region in time. double MovingRegion::getAreaInTime(const IInterval& ivI) const { double tmin = std::max(ivI.getLowerBound(), m_startTime); double tmax = std::min(ivI.getUpperBound(), m_endTime); assert(tmin > -std::numeric_limits::max()); assert(tmax < std::numeric_limits::max()); assert(tmin <= tmax); if (tmin >= tmax - std::numeric_limits::epsilon() && tmin <= tmax + std::numeric_limits::epsilon()) return 0.0; double dx1, dx2, dx3; double dv1, dv2, dv3; double H = tmax - tmin; if (m_dimension == 3) { dx3 = getExtrapolatedHigh(2, tmin) - getExtrapolatedLow(2, tmin); dv3 = getVHigh(2) - getVLow(2); dx2 = getExtrapolatedHigh(1, tmin) - getExtrapolatedLow(1, tmin); dv2 = getVHigh(1) - getVLow(1); dx1 = getExtrapolatedHigh(0, tmin) - getExtrapolatedLow(0, tmin); dv1 = getVHigh(0) - getVLow(0); return H * dx1 * dx2 * dx3 + H * H * (dx1 * dx2 * dv3 + (dx1 * dv2 + dv1 * dx2) * dx3) / 2.0 + H * H * H * ((dx1 * dv2 + dv1 * dx2) * dv3 + dv1 * dv2 * dx3) / 3.0 + H * H * H * H * dv1 * dv2 * dv3 / 4.0; } else if (m_dimension == 2) { dx2 = getExtrapolatedHigh(1, tmin) - getExtrapolatedLow(1, tmin); dv2 = getVHigh(1) - getVLow(1); dx1 = getExtrapolatedHigh(0, tmin) - getExtrapolatedLow(0, tmin); dv1 = getVHigh(0) - getVLow(0); return H * dx1 * dx2 + H * H * (dx1 * dv2 + dv1 * dx2) / 2.0 + H * H * H * dv1 * dv2 / 3.0; } else if (m_dimension == 1) { dx1 = getExtrapolatedHigh(0, tmin) - getExtrapolatedLow(0, tmin); dv1 = getVHigh(0) - getVLow(0); return H * dx1 + H * H * dv1 / 2.0; } else { throw Tools::NotSupportedException("getAreaInTime: unsupported dimensionality."); } } double MovingRegion::getIntersectingAreaInTime(const ITimeShape& r) const { return getIntersectingAreaInTime(r, r); } double MovingRegion::getIntersectingAreaInTime(const IInterval&, const ITimeShape& in) const { const MovingRegion* pr = dynamic_cast(&in); if (pr != nullptr) return getIntersectingAreaInTime(*pr); throw Tools::IllegalStateException("getIntersectingAreaInTime: Not implemented yet!"); } void MovingRegion::makeInfinite(uint32_t dimension) { makeDimension(dimension); for (uint32_t cIndex = 0; cIndex < m_dimension; ++cIndex) { m_pLow[cIndex] = std::numeric_limits::max(); m_pHigh[cIndex] = -std::numeric_limits::max(); m_pVLow[cIndex] = std::numeric_limits::max(); m_pVHigh[cIndex] = -std::numeric_limits::max(); } m_startTime = -std::numeric_limits::max(); m_endTime = std::numeric_limits::max(); } void MovingRegion::makeDimension(uint32_t dimension) { if (m_dimension != dimension) { delete[] m_pLow; delete[] m_pHigh; delete[] m_pVLow; delete[] m_pVHigh; m_pLow = nullptr; m_pHigh = nullptr; m_pVLow = nullptr; m_pVHigh = nullptr; m_dimension = dimension; m_pLow = new double[m_dimension]; m_pHigh = new double[m_dimension]; m_pVLow = new double[m_dimension]; m_pVHigh = new double[m_dimension]; } } std::ostream& SpatialIndex::operator<<(std::ostream& os, const MovingRegion& r) { uint32_t i; os << "Low: "; for (i = 0; i < r.m_dimension; ++i) { os << r.m_pLow[i] << " "; } os << ", High: "; for (i = 0; i < r.m_dimension; ++i) { os << r.m_pHigh[i] << " "; } os << "VLow: "; for (i = 0; i < r.m_dimension; ++i) { os << r.m_pVLow[i] << " "; } os << ", VHigh: "; for (i = 0; i < r.m_dimension; ++i) { os << r.m_pVHigh[i] << " "; } os << ", Start: " << r.m_startTime << ", End: " << r.m_endTime; return os; } libspatialindex-1.9.3/src/spatialindex/Point.cc000066400000000000000000000144001355420072700215600ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include using namespace SpatialIndex; Point::Point() = default; Point::Point(const double* pCoords, uint32_t dimension) : m_dimension(dimension) { // no need to initialize m_pCoords to 0 since if a bad_alloc is raised the destructor will not be called. m_pCoords = new double[m_dimension]; memcpy(m_pCoords, pCoords, m_dimension * sizeof(double)); } Point::Point(const Point& p) : m_dimension(p.m_dimension) { // no need to initialize m_pCoords to 0 since if a bad_alloc is raised the destructor will not be called. m_pCoords = new double[m_dimension]; memcpy(m_pCoords, p.m_pCoords, m_dimension * sizeof(double)); } Point::~Point() { delete[] m_pCoords; } Point& Point::operator=(const Point& p) { if (this != &p) { makeDimension(p.m_dimension); memcpy(m_pCoords, p.m_pCoords, m_dimension * sizeof(double)); } return *this; } bool Point::operator==(const Point& p) const { if (m_dimension != p.m_dimension) throw Tools::IllegalArgumentException( "Point::operator==: Points have different number of dimensions." ); for (uint32_t i = 0; i < m_dimension; ++i) { if ( m_pCoords[i] < p.m_pCoords[i] - std::numeric_limits::epsilon() || m_pCoords[i] > p.m_pCoords[i] + std::numeric_limits::epsilon()) return false; } return true; } // // IObject interface // Point* Point::clone() { return new Point(*this); } // // ISerializable interface // uint32_t Point::getByteArraySize() { return (sizeof(uint32_t) + m_dimension * sizeof(double)); } void Point::loadFromByteArray(const uint8_t* ptr) { uint32_t dimension; memcpy(&dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); makeDimension(dimension); memcpy(m_pCoords, ptr, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } void Point::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, m_pCoords, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } // // IShape interface // bool Point::intersectsShape(const IShape& s) const { const Region* pr = dynamic_cast(&s); if (pr != nullptr) { return pr->containsPoint(*this); } throw Tools::IllegalStateException( "Point::intersectsShape: Not implemented yet!" ); } bool Point::containsShape(const IShape&) const { return false; } bool Point::touchesShape(const IShape& s) const { const Point* ppt = dynamic_cast(&s); if (ppt != nullptr) { if (*this == *ppt) return true; return false; } const Region* pr = dynamic_cast(&s); if (pr != nullptr) { return pr->touchesPoint(*this); } throw Tools::IllegalStateException( "Point::touchesShape: Not implemented yet!" ); } void Point::getCenter(Point& out) const { out = *this; } uint32_t Point::getDimension() const { return m_dimension; } void Point::getMBR(Region& out) const { out = Region(m_pCoords, m_pCoords, m_dimension); } double Point::getArea() const { return 0.0; } double Point::getMinimumDistance(const IShape& s) const { const Point* ppt = dynamic_cast(&s); if (ppt != nullptr) { return getMinimumDistance(*ppt); } const Region* pr = dynamic_cast(&s); if (pr != nullptr) { return pr->getMinimumDistance(*this); } throw Tools::IllegalStateException( "Point::getMinimumDistance: Not implemented yet!" ); } double Point::getMinimumDistance(const Point& p) const { if (m_dimension != p.m_dimension) throw Tools::IllegalArgumentException( "Point::getMinimumDistance: Shapes have different number of dimensions." ); double ret = 0.0; for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { ret += std::pow(m_pCoords[cDim] - p.m_pCoords[cDim], 2.0); } return std::sqrt(ret); } double Point::getCoordinate(uint32_t index) const { if (index >= m_dimension) throw Tools::IndexOutOfBoundsException(index); return m_pCoords[index]; } void Point::makeInfinite(uint32_t dimension) { makeDimension(dimension); for (uint32_t cIndex = 0; cIndex < m_dimension; ++cIndex) { m_pCoords[cIndex] = std::numeric_limits::max(); } } void Point::makeDimension(uint32_t dimension) { if (m_dimension != dimension) { delete[] m_pCoords; // remember that this is not a constructor. The object will be destructed normally if // something goes wrong (bad_alloc), so we must take care not to leave the object at an intermediate state. m_pCoords = nullptr; m_dimension = dimension; m_pCoords = new double[m_dimension]; } } std::ostream& SpatialIndex::operator<<(std::ostream& os, const Point& pt) { for (uint32_t cDim = 0; cDim < pt.m_dimension; ++cDim) { os << pt.m_pCoords[cDim] << " "; } return os; } libspatialindex-1.9.3/src/spatialindex/Region.cc000066400000000000000000000362261355420072700217240ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include using namespace SpatialIndex; Region::Region() = default; Region::Region(const double* pLow, const double* pHigh, uint32_t dimension) { initialize(pLow, pHigh, dimension); } Region::Region(const Point& low, const Point& high) { if (low.m_dimension != high.m_dimension) throw Tools::IllegalArgumentException( "Region::Region: arguments have different number of dimensions." ); initialize(low.m_pCoords, high.m_pCoords, low.m_dimension); } Region::Region(const Region& r) { initialize(r.m_pLow, r.m_pHigh, r.m_dimension); } void Region::initialize(const double* pLow, const double* pHigh, uint32_t dimension) { m_pLow = nullptr; m_dimension = dimension; #ifndef NDEBUG for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { if ((pLow[cDim] > pHigh[cDim])) { // check for infinitive region if (!(pLow[cDim] == std::numeric_limits::max() || pHigh[cDim] == -std::numeric_limits::max() )) throw Tools::IllegalArgumentException( "Region::initialize: Low point has larger coordinates than High point." " Neither point is infinity." ); } } #endif try { m_pLow = new double[m_dimension]; m_pHigh = new double[m_dimension]; } catch (...) { delete[] m_pLow; throw; } memcpy(m_pLow, pLow, m_dimension * sizeof(double)); memcpy(m_pHigh, pHigh, m_dimension * sizeof(double)); } Region::~Region() { delete[] m_pLow; delete[] m_pHigh; } Region& Region::operator=(const Region& r) { if(this != &r) { makeDimension(r.m_dimension); memcpy(m_pLow, r.m_pLow, m_dimension * sizeof(double)); memcpy(m_pHigh, r.m_pHigh, m_dimension * sizeof(double)); } return *this; } bool Region::operator==(const Region& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "Region::operator==: Regions have different number of dimensions." ); for (uint32_t i = 0; i < m_dimension; ++i) { if ( m_pLow[i] < r.m_pLow[i] - std::numeric_limits::epsilon() || m_pLow[i] > r.m_pLow[i] + std::numeric_limits::epsilon() || m_pHigh[i] < r.m_pHigh[i] - std::numeric_limits::epsilon() || m_pHigh[i] > r.m_pHigh[i] + std::numeric_limits::epsilon()) return false; } return true; } // // IObject interface // Region* Region::clone() { return new Region(*this); } // // ISerializable interface // uint32_t Region::getByteArraySize() { return (sizeof(uint32_t) + 2 * m_dimension * sizeof(double)); } void Region::loadFromByteArray(const uint8_t* ptr) { uint32_t dimension; memcpy(&dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); makeDimension(dimension); memcpy(m_pLow, ptr, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(m_pHigh, ptr, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } void Region::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, m_pLow, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(ptr, m_pHigh, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } // // IShape interface // bool Region::intersectsShape(const IShape& s) const { const Region* pr = dynamic_cast(&s); if (pr != nullptr) return intersectsRegion(*pr); const LineSegment* pls = dynamic_cast(&s); if (pls != nullptr) return intersectsLineSegment(*pls); const Point* ppt = dynamic_cast(&s); if (ppt != nullptr) return containsPoint(*ppt); throw Tools::IllegalStateException( "Region::intersectsShape: Not implemented yet!" ); } bool Region::containsShape(const IShape& s) const { const Region* pr = dynamic_cast(&s); if (pr != nullptr) return containsRegion(*pr); const Point* ppt = dynamic_cast(&s); if (ppt != nullptr) return containsPoint(*ppt); throw Tools::IllegalStateException( "Region::containsShape: Not implemented yet!" ); } bool Region::touchesShape(const IShape& s) const { const Region* pr = dynamic_cast(&s); if (pr != nullptr) return touchesRegion(*pr); const Point* ppt = dynamic_cast(&s); if (ppt != nullptr) return touchesPoint(*ppt); throw Tools::IllegalStateException( "Region::touchesShape: Not implemented yet!" ); } void Region::getCenter(Point& out) const { out.makeDimension(m_dimension); for (uint32_t i = 0; i < m_dimension; ++i) { out.m_pCoords[i] = (m_pLow[i] + m_pHigh[i]) / 2.0; } } uint32_t Region::getDimension() const { return m_dimension; } void Region::getMBR(Region& out) const { out = *this; } double Region::getArea() const { double area = 1.0; for (uint32_t i = 0; i < m_dimension; ++i) { area *= m_pHigh[i] - m_pLow[i]; } return area; } double Region::getMinimumDistance(const IShape& s) const { const Region* pr = dynamic_cast(&s); if (pr != nullptr) return getMinimumDistance(*pr); const Point* ppt = dynamic_cast(&s); if (ppt != nullptr) return getMinimumDistance(*ppt); throw Tools::IllegalStateException( "Region::getMinimumDistance: Not implemented yet!" ); } bool Region::intersectsRegion(const Region& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "Region::intersectsRegion: Regions have different number of dimensions." ); for (uint32_t i = 0; i < m_dimension; ++i) { if (m_pLow[i] > r.m_pHigh[i] || m_pHigh[i] < r.m_pLow[i]) return false; } return true; } bool Region::containsRegion(const Region& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "Region::containsRegion: Regions have different number of dimensions." ); for (uint32_t i = 0; i < m_dimension; ++i) { if (m_pLow[i] > r.m_pLow[i] || m_pHigh[i] < r.m_pHigh[i]) return false; } return true; } bool Region::touchesRegion(const Region& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "Region::touchesRegion: Regions have different number of dimensions." ); for (uint32_t i = 0; i < m_dimension; ++i) { if ( (m_pLow[i] >= r.m_pLow[i] - std::numeric_limits::epsilon() && m_pLow[i] <= r.m_pLow[i] + std::numeric_limits::epsilon()) || (m_pHigh[i] >= r.m_pHigh[i] - std::numeric_limits::epsilon() && m_pHigh[i] <= r.m_pHigh[i] + std::numeric_limits::epsilon())) return true; } return false; } double Region::getMinimumDistance(const Region& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "Region::getMinimumDistance: Regions have different number of dimensions." ); double ret = 0.0; for (uint32_t i = 0; i < m_dimension; ++i) { double x = 0.0; if (r.m_pHigh[i] < m_pLow[i]) { x = std::abs(r.m_pHigh[i] - m_pLow[i]); } else if (m_pHigh[i] < r.m_pLow[i]) { x = std::abs(r.m_pLow[i] - m_pHigh[i]); } ret += x * x; } return std::sqrt(ret); } bool Region::intersectsLineSegment(const LineSegment& in) const { if (m_dimension != 2) throw Tools::NotSupportedException( "Region::intersectsLineSegment: only supported for 2 dimensions" ); if (m_dimension != in.m_dimension) throw Tools::IllegalArgumentException( "Region::intersectsRegion: Region and LineSegment have different number of dimensions." ); // there may be a more efficient method, but this suffices for now Point ll = Point(m_pLow, 2); Point ur = Point(m_pHigh, 2); // fabricate ul and lr coordinates and points double c_ul[2] = {m_pLow[0], m_pHigh[1]}; double c_lr[2] = {m_pHigh[0], m_pLow[1]}; Point ul = Point(&c_ul[0], 2); Point lr = Point(&c_lr[0], 2); // Points/LineSegment for the segment Point p1 = Point(in.m_pStartPoint, 2); Point p2 = Point(in.m_pEndPoint, 2); //Check whether either or both the endpoints are within the region OR //whether any of the bounding segments of the Region intersect the segment return (containsPoint(p1) || containsPoint(p2) || in.intersectsShape(LineSegment(ll, ul)) || in.intersectsShape(LineSegment(ul, ur)) || in.intersectsShape(LineSegment(ur, lr)) || in.intersectsShape(LineSegment(lr, ll))); } bool Region::containsPoint(const Point& p) const { if (m_dimension != p.m_dimension) throw Tools::IllegalArgumentException( "Region::containsPoint: Point has different number of dimensions." ); for (uint32_t i = 0; i < m_dimension; ++i) { if (m_pLow[i] > p.getCoordinate(i) || m_pHigh[i] < p.getCoordinate(i)) return false; } return true; } bool Region::touchesPoint(const Point& p) const { if (m_dimension != p.m_dimension) throw Tools::IllegalArgumentException( "Region::touchesPoint: Point has different number of dimensions." ); for (uint32_t i = 0; i < m_dimension; ++i) { if ( (m_pLow[i] >= p.getCoordinate(i) - std::numeric_limits::epsilon() && m_pLow[i] <= p.getCoordinate(i) + std::numeric_limits::epsilon()) || (m_pHigh[i] >= p.getCoordinate(i) - std::numeric_limits::epsilon() && m_pHigh[i] <= p.getCoordinate(i) + std::numeric_limits::epsilon())) return true; } return false; } double Region::getMinimumDistance(const Point& p) const { if (m_dimension != p.m_dimension) throw Tools::IllegalArgumentException( "Region::getMinimumDistance: Point has different number of dimensions." ); double ret = 0.0; for (uint32_t i = 0; i < m_dimension; ++i) { if (p.getCoordinate(i) < m_pLow[i]) { ret += std::pow(m_pLow[i] - p.getCoordinate(i), 2.0); } else if (p.getCoordinate(i) > m_pHigh[i]) { ret += std::pow(p.getCoordinate(i) - m_pHigh[i], 2.0); } } return std::sqrt(ret); } Region Region::getIntersectingRegion(const Region& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "Region::getIntersectingRegion: Regions have different number of dimensions." ); Region ret; ret.makeInfinite(m_dimension); // check for intersection. // marioh: avoid function call since this is called billions of times. for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { if (m_pLow[cDim] > r.m_pHigh[cDim] || m_pHigh[cDim] < r.m_pLow[cDim]) return ret; } for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { ret.m_pLow[cDim] = std::max(m_pLow[cDim], r.m_pLow[cDim]); ret.m_pHigh[cDim] = std::min(m_pHigh[cDim], r.m_pHigh[cDim]); } return ret; } double Region::getIntersectingArea(const Region& r) const { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "Region::getIntersectingArea: Regions have different number of dimensions." ); double ret = 1.0; double f1, f2; for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { if (m_pLow[cDim] > r.m_pHigh[cDim] || m_pHigh[cDim] < r.m_pLow[cDim]) return 0.0; f1 = std::max(m_pLow[cDim], r.m_pLow[cDim]); f2 = std::min(m_pHigh[cDim], r.m_pHigh[cDim]); ret *= f2 - f1; } return ret; } /* * Returns the margin of a region. It is calcuated as the sum of 2^(d-1) * width, in each dimension. * It is actually the sum of all edges, no matter what the dimensionality is. */ double Region::getMargin() const { double mul = std::pow(2.0, static_cast(m_dimension) - 1.0); double margin = 0.0; for (uint32_t i = 0; i < m_dimension; ++i) { margin += (m_pHigh[i] - m_pLow[i]) * mul; } return margin; } void Region::combineRegion(const Region& r) { if (m_dimension != r.m_dimension) throw Tools::IllegalArgumentException( "Region::combineRegion: Region has different number of dimensions." ); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { m_pLow[cDim] = std::min(m_pLow[cDim], r.m_pLow[cDim]); m_pHigh[cDim] = std::max(m_pHigh[cDim], r.m_pHigh[cDim]); } } void Region::combinePoint(const Point& p) { if (m_dimension != p.m_dimension) throw Tools::IllegalArgumentException( "Region::combinePoint: Point has different number of dimensions." ); for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { m_pLow[cDim] = std::min(m_pLow[cDim], p.m_pCoords[cDim]); m_pHigh[cDim] = std::max(m_pHigh[cDim], p.m_pCoords[cDim]); } } void Region::getCombinedRegion(Region& out, const Region& in) const { if (m_dimension != in.m_dimension) throw Tools::IllegalArgumentException( "Region::getCombinedRegion: Regions have different number of dimensions." ); out = *this; out.combineRegion(in); } double Region::getLow(uint32_t index) const { if (index >= m_dimension) throw Tools::IndexOutOfBoundsException(index); return m_pLow[index]; } double Region::getHigh(uint32_t index) const { if (index >= m_dimension) throw Tools::IndexOutOfBoundsException(index); return m_pHigh[index]; } void Region::makeInfinite(uint32_t dimension) { makeDimension(dimension); for (uint32_t cIndex = 0; cIndex < m_dimension; ++cIndex) { m_pLow[cIndex] = std::numeric_limits::max(); m_pHigh[cIndex] = -std::numeric_limits::max(); } } void Region::makeDimension(uint32_t dimension) { if (m_dimension != dimension) { delete[] m_pLow; delete[] m_pHigh; // remember that this is not a constructor. The object will be destructed normally if // something goes wrong (bad_alloc), so we must take care not to leave the object at an intermediate state. m_pLow = nullptr; m_pHigh = nullptr; m_dimension = dimension; m_pLow = new double[m_dimension]; m_pHigh = new double[m_dimension]; } } std::ostream& SpatialIndex::operator<<(std::ostream& os, const Region& r) { uint32_t i; os << "Low: "; for (i = 0; i < r.m_dimension; ++i) { os << r.m_pLow[i] << " "; } os << ", High: "; for (i = 0; i < r.m_dimension; ++i) { os << r.m_pHigh[i] << " "; } return os; } libspatialindex-1.9.3/src/spatialindex/SpatialIndexImpl.cc000066400000000000000000000064341355420072700237060ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include "../rtree/RTree.h" #include "../mvrtree/MVRTree.h" #include "../tprtree/TPRTree.h" SpatialIndex::InvalidPageException::InvalidPageException(id_type id) { std::ostringstream s; s << "Unknown page id " << id; m_error = s.str(); } std::string SpatialIndex::InvalidPageException::what() { return "InvalidPageException: " + m_error; } std::ostream& SpatialIndex::operator<<(std::ostream& os, const ISpatialIndex& i) { const SpatialIndex::RTree::RTree* pRTree = dynamic_cast(&i); if (pRTree != nullptr) { os << *pRTree; return os; } const SpatialIndex::MVRTree::MVRTree* pMVRTree = dynamic_cast(&i); if (pMVRTree != nullptr) { os << *pMVRTree; return os; } const SpatialIndex::TPRTree::TPRTree* pTPRTree = dynamic_cast(&i); if (pTPRTree != nullptr) { os << *pTPRTree; return os; } std::cerr << "ISpatialIndex operator<<: Not implemented yet for this index type." << std::endl; return os; } std::ostream& SpatialIndex::operator<<(std::ostream& os, const IStatistics& s) { const SpatialIndex::RTree::Statistics* pRTreeStats = dynamic_cast(&s); if (pRTreeStats != nullptr) { os << *pRTreeStats; return os; } const SpatialIndex::MVRTree::Statistics* pMVRTreeStats = dynamic_cast(&s); if (pMVRTreeStats != nullptr) { os << * pMVRTreeStats; return os; } const SpatialIndex::TPRTree::Statistics* pTPRTreeStats = dynamic_cast(&s); if (pTPRTreeStats != nullptr) { os << * pTPRTreeStats; return os; } std::cerr << "IStatistics operator<<: Not implemented yet for this index type." << std::endl; return os; } libspatialindex-1.9.3/src/spatialindex/TimePoint.cc000066400000000000000000000171671355420072700224140ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include using namespace SpatialIndex; TimePoint::TimePoint() : Point(), m_startTime(-std::numeric_limits::max()), m_endTime(std::numeric_limits::max()) { } TimePoint::TimePoint(const double* pCoords, const IInterval& ti, uint32_t dimension) : Point(pCoords, dimension), m_startTime(ti.getLowerBound()), m_endTime(ti.getUpperBound()) { } TimePoint::TimePoint(const double* pCoords, double tStart, double tEnd, uint32_t dimension) : Point(pCoords, dimension), m_startTime(tStart), m_endTime(tEnd) { } TimePoint::TimePoint(const Point& p, const IInterval& ti) : Point(p), m_startTime(ti.getLowerBound()), m_endTime(ti.getUpperBound()) { } TimePoint::TimePoint(const Point& p, double tStart, double tEnd) : Point(p), m_startTime(tStart), m_endTime(tEnd) { } TimePoint::TimePoint(const TimePoint& p) : m_startTime(p.m_startTime), m_endTime(p.m_endTime) { m_dimension = p.m_dimension; m_pCoords = new double[m_dimension]; memcpy(m_pCoords, p.m_pCoords, m_dimension * sizeof(double)); } TimePoint::~TimePoint() = default; TimePoint& TimePoint::operator=(const TimePoint& p) { if (this != &p) { makeDimension(p.m_dimension); memcpy(m_pCoords, p.m_pCoords, m_dimension * sizeof(double)); m_startTime = p.m_startTime; m_endTime = p.m_endTime; } return *this; } bool TimePoint::operator==(const TimePoint& p) const { if ( m_startTime < p.m_startTime - std::numeric_limits::epsilon() || m_startTime > p.m_startTime + std::numeric_limits::epsilon() || m_endTime < p.m_endTime - std::numeric_limits::epsilon() || m_endTime > p.m_endTime + std::numeric_limits::epsilon()) return false; for (uint32_t cDim = 0; cDim < m_dimension; ++cDim) { if ( m_pCoords[cDim] < p.m_pCoords[cDim] - std::numeric_limits::epsilon() || m_pCoords[cDim] > p.m_pCoords[cDim] + std::numeric_limits::epsilon()) return false; } return true; } // // IObject interface // TimePoint* TimePoint::clone() { return new TimePoint(*this); } // // ISerializable interface // uint32_t TimePoint::getByteArraySize() { return (sizeof(uint32_t) + 2 * sizeof(double) + m_dimension * sizeof(double)); } void TimePoint::loadFromByteArray(const uint8_t* ptr) { uint32_t dimension; memcpy(&dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_startTime, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_endTime, ptr, sizeof(double)); ptr += sizeof(double); makeDimension(dimension); memcpy(m_pCoords, ptr, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } void TimePoint::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_startTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_endTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, m_pCoords, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } // // ITimeShape interface // bool TimePoint::intersectsShapeInTime(const ITimeShape& in) const { const TimeRegion* pr = dynamic_cast(&in); if (pr != nullptr) return pr->containsPointInTime(*this); throw Tools::IllegalStateException("intersectsShapeInTime: Not implemented yet!"); } bool TimePoint::intersectsShapeInTime(const IInterval&, const ITimeShape&) const { throw Tools::IllegalStateException("intersectsShapeInTime: Not implemented yet!"); } bool TimePoint::containsShapeInTime(const ITimeShape&) const { return false; } bool TimePoint::containsShapeInTime(const IInterval&, const ITimeShape&) const { return false; } bool TimePoint::touchesShapeInTime(const ITimeShape&) const { throw Tools::IllegalStateException("touchesShapeInTime: Not implemented yet!"); } bool TimePoint::touchesShapeInTime(const IInterval&, const ITimeShape&) const { throw Tools::IllegalStateException("touchesShapeInTime: Not implemented yet!"); } double TimePoint::getAreaInTime() const { return 0.0; } double TimePoint::getAreaInTime(const IInterval&) const { return 0.0; } double TimePoint::getIntersectingAreaInTime(const ITimeShape&) const { return 0.0; } double TimePoint::getIntersectingAreaInTime(const IInterval&, const ITimeShape&) const { return 0.0; } // // IInterval interface // Tools::IInterval& TimePoint::operator=(const Tools::IInterval& i) { if (this != &i) { m_startTime = i.getLowerBound(); m_endTime = i.getUpperBound(); } return *this; } double TimePoint::getLowerBound() const { return m_startTime; } double TimePoint::getUpperBound() const { return m_endTime; } void TimePoint::setBounds(double l, double h) { assert(l <= h); m_startTime = l; m_endTime = h; } bool TimePoint::intersectsInterval(const IInterval& ti) const { return intersectsInterval(ti.getIntervalType(), ti.getLowerBound(), ti.getUpperBound()); } bool TimePoint::intersectsInterval(Tools::IntervalType, const double start, const double end) const { //if (m_startTime != start && // (m_startTime >= end || m_endTime <= start)) return false; if (m_startTime >= end || m_endTime <= start) return false; return true; } bool TimePoint::containsInterval(const IInterval& ti) const { if (m_startTime <= ti.getLowerBound() && m_endTime >= ti.getUpperBound()) return true; return false; } Tools::IntervalType TimePoint::getIntervalType() const { return Tools::IT_RIGHTOPEN; } void TimePoint::makeInfinite(uint32_t dimension) { makeDimension(dimension); for (uint32_t cIndex = 0; cIndex < m_dimension; ++cIndex) { m_pCoords[cIndex] = std::numeric_limits::max(); } m_startTime = std::numeric_limits::max(); m_endTime = -std::numeric_limits::max(); } void TimePoint::makeDimension(uint32_t dimension) { if (m_dimension != dimension) { m_dimension = dimension; delete[] m_pCoords; m_pCoords = nullptr; m_pCoords = new double[m_dimension]; } } std::ostream& SpatialIndex::operator<<(std::ostream& os, const TimePoint& pt) { uint32_t i; for (i = 0; i < pt.m_dimension; ++i) { os << pt.m_pCoords[i] << " "; } os << ", Start: " << pt.m_startTime << ", End: " << pt.m_endTime; return os; } libspatialindex-1.9.3/src/spatialindex/TimeRegion.cc000066400000000000000000000274231355420072700225420ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include using namespace SpatialIndex; TimeRegion::TimeRegion() : Region(), m_startTime(-std::numeric_limits::max()), m_endTime(std::numeric_limits::max()) { } TimeRegion::TimeRegion(const double* pLow, const double* pHigh, const IInterval& ti, uint32_t dimension) : Region(pLow, pHigh, dimension), m_startTime(ti.getLowerBound()), m_endTime(ti.getUpperBound()) { } TimeRegion::TimeRegion(const double* pLow, const double* pHigh, double tStart, double tEnd, uint32_t dimension) : Region(pLow, pHigh, dimension), m_startTime(tStart), m_endTime(tEnd) { } TimeRegion::TimeRegion(const Point& low, const Point& high, const IInterval& ti) : Region(low, high), m_startTime(ti.getLowerBound()), m_endTime(ti.getUpperBound()) { } TimeRegion::TimeRegion(const Point& low, const Point& high, double tStart, double tEnd) : Region(low, high), m_startTime(tStart), m_endTime(tEnd) { } TimeRegion::TimeRegion(const Region& r, const IInterval& ti) : Region(r), m_startTime(ti.getLowerBound()), m_endTime(ti.getUpperBound()) { } TimeRegion::TimeRegion(const Region& r, double tStart, double tEnd) : Region(r), m_startTime(tStart), m_endTime(tEnd) { } TimeRegion::TimeRegion(const TimePoint& low, const TimePoint& high) : Region( low, high), m_startTime(low.m_startTime), m_endTime(high.m_endTime) { } TimeRegion::TimeRegion(const TimeRegion& r) : m_startTime(r.m_startTime), m_endTime(r.m_endTime) { m_dimension = r.m_dimension; m_pLow = nullptr; try { m_pLow = new double[m_dimension]; m_pHigh = new double[m_dimension]; } catch (...) { delete[] m_pLow; throw; } memcpy(m_pLow, r.m_pLow, m_dimension * sizeof(double)); memcpy(m_pHigh, r.m_pHigh, m_dimension * sizeof(double)); } TimeRegion::~TimeRegion() = default; TimeRegion& TimeRegion::operator=(const TimeRegion& r) { if(this != &r) { makeDimension(r.m_dimension); memcpy(m_pLow, r.m_pLow, m_dimension * sizeof(double)); memcpy(m_pHigh, r.m_pHigh, m_dimension * sizeof(double)); m_startTime = r.m_startTime; m_endTime = r.m_endTime; } return *this; } bool TimeRegion::operator==(const TimeRegion& r) const { if (m_startTime < r.m_startTime - std::numeric_limits::epsilon() || m_startTime > r.m_startTime + std::numeric_limits::epsilon() || m_endTime < r.m_endTime - std::numeric_limits::epsilon() || m_endTime > r.m_endTime + std::numeric_limits::epsilon()) return false; for (uint32_t i = 0; i < m_dimension; ++i) { if ( m_pLow[i] < r.m_pLow[i] - std::numeric_limits::epsilon() || m_pLow[i] > r.m_pLow[i] + std::numeric_limits::epsilon() || m_pHigh[i] < r.m_pHigh[i] - std::numeric_limits::epsilon() || m_pHigh[i] > r.m_pHigh[i] + std::numeric_limits::epsilon()) return false; } return true; } bool TimeRegion::intersectsRegionInTime(const TimeRegion& r) const { // they should just intersect in time. // check if they intersect in time first. // the first check is needed for the following case: // m_endTime == m_startTime == r.m_startTime. // For open ended intervals this should be considered as an intersection // (takes care of degenarate intervals) //if (m_startTime != r.m_startTime && // (m_startTime >= r.m_endTime || m_endTime <= r.m_startTime)) if (! intersectsInterval(r)) return false; return Region::intersectsRegion(r); } bool TimeRegion::containsRegionInTime(const TimeRegion& r) const { // it should be contained in time. if (! containsInterval(r)) return false; return Region::containsRegion(r); } bool TimeRegion::touchesRegionInTime(const TimeRegion& r) const { // they should just intersect in time. //if (m_startTime != r.m_startTime && // (m_startTime >= r.m_endTime || m_endTime <= r.m_startTime)) if (!intersectsInterval(r)) return false; return Region::touchesRegion(r); } bool TimeRegion::containsPointInTime(const TimePoint& p) const { // it should be contained in time. //if (p.m_startTime < m_startTime || p.m_endTime > m_endTime) return false; if (containsInterval(p)) return false; return Region::containsPoint(p); } bool TimeRegion::touchesPointInTime(const TimePoint& p) const { // they should just intersect in time. //if (m_startTime != p.m_startTime && // (m_startTime >= p.m_endTime || m_endTime <= p.m_startTime)) if (intersectsInterval(p)) return false; return Region::touchesPoint(p); } void TimeRegion::combineRegionInTime(const TimeRegion& r) { Region::combineRegion(r); m_startTime = std::min(m_startTime, r.m_startTime); m_endTime = std::max(m_endTime, r.m_endTime); } void TimeRegion::getCombinedRegionInTime(TimeRegion& out, const TimeRegion& in) const { Region::getCombinedRegion(out, in); out.m_startTime = std::min(m_startTime, in.m_startTime); out.m_endTime = std::max(m_endTime, in.m_endTime); } // // IObject interface // TimeRegion* TimeRegion::clone() { return new TimeRegion(*this); } // // ISerializable interface // uint32_t TimeRegion::getByteArraySize() { return (sizeof(uint32_t) + 2 * sizeof(double) + 2 * m_dimension * sizeof(double)); } void TimeRegion::loadFromByteArray(const uint8_t* ptr) { uint32_t dimension; memcpy(&dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_startTime, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_endTime, ptr, sizeof(double)); ptr += sizeof(double); makeDimension(dimension); memcpy(m_pLow, ptr, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(m_pHigh, ptr, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } void TimeRegion::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_startTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_endTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, m_pLow, m_dimension * sizeof(double)); ptr += m_dimension * sizeof(double); memcpy(ptr, m_pHigh, m_dimension * sizeof(double)); //ptr += m_dimension * sizeof(double); } // // ITimeShape interface // bool TimeRegion::intersectsShapeInTime(const ITimeShape& in) const { const TimeRegion* pr = dynamic_cast(&in); if (pr != nullptr) return intersectsRegionInTime(*pr); const TimePoint* ppt = dynamic_cast(&in); if (ppt != nullptr) return containsPointInTime(*ppt); throw Tools::IllegalStateException("intersectsShapeInTime: Not implemented yet!"); } bool TimeRegion::intersectsShapeInTime(const IInterval&, const ITimeShape&) const { throw Tools::IllegalStateException("intersectsShapeInTime: Not implemented yet!"); } bool TimeRegion::containsShapeInTime(const ITimeShape& in) const { const TimeRegion* pr = dynamic_cast(&in); if (pr != nullptr) return containsRegionInTime(*pr); const TimePoint* ppt = dynamic_cast(&in); if (ppt != nullptr) return containsPointInTime(*ppt); throw Tools::IllegalStateException("containsShapeInTime: Not implemented yet!"); } bool TimeRegion::containsShapeInTime(const IInterval&, const ITimeShape&) const { throw Tools::IllegalStateException("containsShapeInTime: Not implemented yet!"); } bool TimeRegion::touchesShapeInTime(const ITimeShape& in) const { const TimeRegion* pr = dynamic_cast(&in); if (pr != nullptr) return touchesRegionInTime(*pr); throw Tools::IllegalStateException("touchesShapeInTime: Not implemented yet!"); } bool TimeRegion::touchesShapeInTime(const IInterval&, const ITimeShape&) const { throw Tools::IllegalStateException("touchesShapeInTime: Not implemented yet!"); } double TimeRegion::getAreaInTime() const { throw Tools::IllegalStateException("getAreaInTime: Not implemented yet!"); } double TimeRegion::getAreaInTime(const IInterval&) const { throw Tools::IllegalStateException("getAreaInTime: Not implemented yet!"); } double TimeRegion::getIntersectingAreaInTime(const ITimeShape&) const { throw Tools::IllegalStateException("getIntersectingAreaInTime: Not implemented yet!"); } double TimeRegion::getIntersectingAreaInTime(const IInterval&, const ITimeShape&) const { throw Tools::IllegalStateException("getIntersectingAreaInTime: Not implemented yet!"); } // // IInterval interface // Tools::IInterval& TimeRegion::operator=(const Tools::IInterval& i) { if (this != &i) { m_startTime = i.getLowerBound(); m_endTime = i.getUpperBound(); } return *this; } double TimeRegion::getLowerBound() const { return m_startTime; } double TimeRegion::getUpperBound() const { return m_endTime; } void TimeRegion::setBounds(double l, double h) { assert(m_startTime <= m_endTime); m_startTime = l; m_endTime = h; } bool TimeRegion::intersectsInterval(const IInterval& ti) const { return intersectsInterval(ti.getIntervalType(), ti.getLowerBound(), ti.getUpperBound()); } bool TimeRegion::intersectsInterval(Tools::IntervalType, const double start, const double end) const { //if (m_startTime != start && // (m_startTime >= end || m_endTime <= start)) return false; // this will not work for degenarate intervals. if (m_startTime >= end || m_endTime <= start) return false; return true; } bool TimeRegion::containsInterval(const IInterval& ti) const { if (m_startTime <= ti.getLowerBound() && m_endTime >= ti.getUpperBound()) return true; return false; } Tools::IntervalType TimeRegion::getIntervalType() const { return Tools::IT_RIGHTOPEN; } void TimeRegion::makeInfinite(uint32_t dimension) { makeDimension(dimension); for (uint32_t cIndex = 0; cIndex < m_dimension; ++cIndex) { m_pLow[cIndex] = std::numeric_limits::max(); m_pHigh[cIndex] = -std::numeric_limits::max(); } m_startTime = std::numeric_limits::max(); m_endTime = -std::numeric_limits::max(); } void TimeRegion::makeDimension(uint32_t dimension) { if (m_dimension != dimension) { m_dimension = dimension; delete[] m_pLow; delete[] m_pHigh; m_pLow = nullptr; m_pHigh = nullptr; m_pLow = new double[m_dimension]; m_pHigh = new double[m_dimension]; } } std::ostream& SpatialIndex::operator<<(std::ostream& os, const TimeRegion& r) { uint32_t i; os << "Low: "; for (i = 0; i < r.m_dimension; ++i) { os << r.m_pLow[i] << " "; } os << ", High: "; for (i = 0; i < r.m_dimension; ++i) { os << r.m_pHigh[i] << " "; } os << ", Start: " << r.m_startTime << ", End: " << r.m_endTime; return os; } libspatialindex-1.9.3/src/storagemanager/000077500000000000000000000000001355420072700204735ustar00rootroot00000000000000libspatialindex-1.9.3/src/storagemanager/Buffer.cc000066400000000000000000000101571355420072700222170ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include "Buffer.h" Buffer::Buffer(IStorageManager& sm, Tools::PropertySet& ps) : m_capacity(10), m_bWriteThrough(false), m_pStorageManager(&sm), m_u64Hits(0) { Tools::Variant var = ps.getProperty("Capacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("Property Capacity must be Tools::VT_ULONG"); m_capacity = var.m_val.ulVal; } var = ps.getProperty("WriteThrough"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) throw Tools::IllegalArgumentException("Property WriteThrough must be Tools::VT_BOOL"); m_bWriteThrough = var.m_val.blVal; } } Buffer::~Buffer() { flush(); } void Buffer::flush() { for (auto it = m_buffer.begin(); it != m_buffer.end(); ++it) { if ((*it).second->m_bDirty) { id_type page = (*it).first; m_pStorageManager->storeByteArray(page, (*it).second->m_length, (*it).second->m_pData); } delete (*it).second; } } void Buffer::loadByteArray(const id_type page, uint32_t& len, uint8_t** data) { auto it = m_buffer.find(page); if (it != m_buffer.end()) { ++m_u64Hits; len = (*it).second->m_length; *data = new uint8_t[len]; memcpy(*data, (*it).second->m_pData, len); } else { m_pStorageManager->loadByteArray(page, len, data); addEntry(page, new Entry(len, static_cast(*data))); } } void Buffer::storeByteArray(id_type& page, const uint32_t len, const uint8_t* const data) { if (page == NewPage) { m_pStorageManager->storeByteArray(page, len, data); assert(m_buffer.find(page) == m_buffer.end()); addEntry(page, new Entry(len, data)); } else { if (m_bWriteThrough) { m_pStorageManager->storeByteArray(page, len, data); } Entry* e = new Entry(len, data); if (m_bWriteThrough == false) e->m_bDirty = true; auto it = m_buffer.find(page); if (it != m_buffer.end()) { delete (*it).second; (*it).second = e; if (m_bWriteThrough == false) ++m_u64Hits; } else { addEntry(page, e); } } } void Buffer::deleteByteArray(const id_type page) { auto it = m_buffer.find(page); if (it != m_buffer.end()) { delete (*it).second; m_buffer.erase(it); } m_pStorageManager->deleteByteArray(page); } void Buffer::clear() { for (auto it = m_buffer.begin(); it != m_buffer.end(); ++it) { if ((*it).second->m_bDirty) { id_type page = (*it).first; m_pStorageManager->storeByteArray(page, ((*it).second)->m_length, static_cast(((*it).second)->m_pData)); } delete (*it).second; } m_buffer.clear(); m_u64Hits = 0; } uint64_t Buffer::getHits() { return m_u64Hits; } libspatialindex-1.9.3/src/storagemanager/Buffer.h000066400000000000000000000056131355420072700220620ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include using namespace SpatialIndex; using namespace SpatialIndex::StorageManager; namespace SpatialIndex { namespace StorageManager { class Buffer : public IBuffer { public: Buffer(IStorageManager& sm, Tools::PropertySet& ps); // String Value Description // ---------------------------------------------- // Capacity VT_ULONG Buffer maximum capacity. // WriteThrough VT_BOOL Enable or disable write through policy. ~Buffer() override; void flush() override; void loadByteArray(const id_type page, uint32_t& len, uint8_t** data) override; void storeByteArray(id_type& page, const uint32_t len, const uint8_t* const data) override; void deleteByteArray(const id_type page) override; void clear() override; uint64_t getHits() override; protected: class Entry { public: Entry(uint32_t l, const uint8_t* const d) : m_pData(nullptr), m_length(l), m_bDirty(false) { m_pData = new uint8_t[m_length]; memcpy(m_pData, d, m_length); } ~Entry() { delete[] m_pData; } uint8_t* m_pData; uint32_t m_length; bool m_bDirty; }; // Entry virtual void addEntry(id_type page, Entry* pEntry) = 0; virtual void removeEntry() = 0; uint32_t m_capacity; bool m_bWriteThrough; IStorageManager* m_pStorageManager; std::map m_buffer; uint64_t m_u64Hits; }; // Buffer } } libspatialindex-1.9.3/src/storagemanager/DiskStorageManager.cc000066400000000000000000000405141355420072700245200ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include // For checking if a file exists - hobu #include #ifdef WIN32 #define stat _stat64 #endif #include #include "DiskStorageManager.h" #include using namespace SpatialIndex; using namespace SpatialIndex::StorageManager; bool CheckFilesExists(Tools::PropertySet& ps) { bool bExists = false; std::string filename(""); std::string idx("idx"); std::string dat("dat"); Tools::Variant idx_name; Tools::Variant dat_name; Tools::Variant fn; idx_name = ps.getProperty("FileNameIdx"); dat_name = ps.getProperty("FileNameDat"); fn = ps.getProperty("FileName"); if (idx_name.m_varType != Tools::VT_EMPTY) dat = std::string(idx_name.m_val.pcVal); if (dat_name.m_varType != Tools::VT_EMPTY) idx = std::string(dat_name.m_val.pcVal); if (fn.m_varType != Tools::VT_EMPTY) filename = std::string(fn.m_val.pcVal); struct stat stats; std::ostringstream os; int ret; os << filename <<"."<(baseName.c_str()); ps.setProperty("FileName", var); // .idx and .dat extensions will be added. var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = pageSize; ps.setProperty("PageSize", var); // specify the page size. Since the index may also contain user defined data // there is no way to know how big a single node may become. The storage manager // will use multiple pages per node if needed. Off course this will slow down performance. return returnDiskStorageManager(ps); } SpatialIndex::IStorageManager* SpatialIndex::StorageManager::loadDiskStorageManager(std::string& baseName) { Tools::Variant var; Tools::PropertySet ps; var.m_varType = Tools::VT_PCHAR; var.m_val.pcVal = const_cast(baseName.c_str()); ps.setProperty("FileName", var); // .idx and .dat extensions will be added. return returnDiskStorageManager(ps); } DiskStorageManager::DiskStorageManager(Tools::PropertySet& ps) : m_pageSize(0), m_nextPage(-1), m_buffer(nullptr) { Tools::Variant var; // Open/Create flag. bool bOverwrite = false; bool bFileExists = false; std::streamoff length = 0; var = ps.getProperty("Overwrite"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) throw Tools::IllegalArgumentException("SpatialIndex::DiskStorageManager: Property Overwrite must be Tools::VT_BOOL"); bOverwrite = var.m_val.blVal; } // storage filename. var = ps.getProperty("FileName"); if (var.m_varType != Tools::VT_EMPTY) { if (!(var.m_varType == Tools::VT_PCHAR || var.m_varType == Tools::VT_PWCHAR)) throw Tools::IllegalArgumentException("SpatialIndex::DiskStorageManager: Property FileName must be Tools::VT_PCHAR or Tools::VT_PWCHAR"); std::string idx("idx"); std::string dat("dat"); Tools::Variant idx_name = ps.getProperty("FileNameIdx"); if (idx_name.m_varType != Tools::VT_EMPTY) idx = std::string(idx_name.m_val.pcVal); Tools::Variant dat_name = ps.getProperty("FileNameDat"); if (dat_name.m_varType != Tools::VT_EMPTY) dat = std::string(dat_name.m_val.pcVal); std::string sIndexFile = std::string(var.m_val.pcVal) + "." + idx; std::string sDataFile = std::string(var.m_val.pcVal) + "." + dat; // check if file exists. bFileExists = CheckFilesExists(ps); // check if file can be read/written. if (bFileExists == true && bOverwrite == false) { std::ios_base::openmode mode = std::ios::in | std::ios::out | std::ios::binary; m_indexFile.open(sIndexFile.c_str(), mode); m_dataFile.open(sDataFile.c_str(), mode); if (m_indexFile.fail() || m_dataFile.fail()) throw Tools::IllegalArgumentException("SpatialIndex::DiskStorageManager: Index/Data file cannot be read/written."); } else { std::ios_base::openmode mode = std::ios::in | std::ios::out | std::ios::binary | std::ios::trunc; m_indexFile.open(sIndexFile.c_str(), mode); m_dataFile.open(sDataFile.c_str(), mode); if (m_indexFile.fail() || m_dataFile.fail()) throw Tools::IllegalArgumentException("SpatialIndex::DiskStorageManager: Index/Data file cannot be created."); } } else { throw Tools::IllegalArgumentException("SpatialIndex::DiskStorageManager: Property FileName was not specified."); } // get current length of file m_indexFile.seekg (0, m_indexFile.end); length = m_indexFile.tellg(); m_indexFile.seekg (0, m_indexFile.beg); // find page size. if ((bOverwrite == true) || (length == 0) || (bFileExists == false)) { var = ps.getProperty("PageSize"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("SpatialIndex::DiskStorageManager: Property PageSize must be Tools::VT_ULONG"); m_pageSize = var.m_val.ulVal; m_nextPage = 0; } else { throw Tools::IllegalArgumentException("SpatialIndex::DiskStorageManager: A new storage manager is created and property PageSize was not specified."); } } else { m_indexFile.read(reinterpret_cast(&m_pageSize), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Failed reading pageSize."); m_indexFile.read(reinterpret_cast(&m_nextPage), sizeof(id_type)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Failed reading nextPage."); } // create buffer. m_buffer = new uint8_t[m_pageSize]; memset(m_buffer, 0, m_pageSize); if ((bOverwrite == false) && (length > 0)) { uint32_t count; id_type page, id; // load empty pages in memory. m_indexFile.read(reinterpret_cast(&count), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); for (uint32_t cCount = 0; cCount < count; ++cCount) { m_indexFile.read(reinterpret_cast(&page), sizeof(id_type)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); m_emptyPages.insert(page); } // load index table in memory. m_indexFile.read(reinterpret_cast(&count), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); for (uint32_t cCount = 0; cCount < count; ++cCount) { Entry* e = new Entry(); m_indexFile.read(reinterpret_cast(&id), sizeof(id_type)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); m_indexFile.read(reinterpret_cast(&(e->m_length)), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); uint32_t count2; m_indexFile.read(reinterpret_cast(&count2), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); for (uint32_t cCount2 = 0; cCount2 < count2; ++cCount2) { m_indexFile.read(reinterpret_cast(&page), sizeof(id_type)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); e->m_pages.push_back(page); } m_pageIndex.insert(std::pair(id, e)); } } } DiskStorageManager::~DiskStorageManager() { flush(); m_indexFile.close(); m_dataFile.close(); if (m_buffer != nullptr) delete[] m_buffer; for (auto& v: m_pageIndex) delete v.second; } void DiskStorageManager::flush() { m_indexFile.seekp(0, std::ios_base::beg); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); m_indexFile.write(reinterpret_cast(&m_pageSize), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); m_indexFile.write(reinterpret_cast(&m_nextPage), sizeof(id_type)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); uint32_t count = static_cast(m_emptyPages.size()); m_indexFile.write(reinterpret_cast(&count), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); for (std::set::const_iterator it = m_emptyPages.begin(); it != m_emptyPages.end(); ++it) { m_indexFile.write(reinterpret_cast(&(*it)), sizeof(id_type)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); } count = static_cast(m_pageIndex.size()); m_indexFile.write(reinterpret_cast(&count), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); for (std::map::iterator it = m_pageIndex.begin(); it != m_pageIndex.end(); ++it) { m_indexFile.write(reinterpret_cast(&((*it).first)), sizeof(id_type)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); m_indexFile.write(reinterpret_cast(&((*it).second->m_length)), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); count = static_cast((*it).second->m_pages.size()); m_indexFile.write(reinterpret_cast(&count), sizeof(uint32_t)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); for (uint32_t cIndex = 0; cIndex < count; ++cIndex) { m_indexFile.write(reinterpret_cast(&((*it).second->m_pages[cIndex])), sizeof(id_type)); if (m_indexFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted storage manager index file."); } } m_indexFile.flush(); m_dataFile.flush(); } void DiskStorageManager::loadByteArray(const id_type page, uint32_t& len, uint8_t** data) { std::map::iterator it = m_pageIndex.find(page); if (it == m_pageIndex.end()) throw InvalidPageException(page); std::vector& pages = (*it).second->m_pages; uint32_t cNext = 0; uint32_t cTotal = static_cast(pages.size()); len = (*it).second->m_length; *data = new uint8_t[len]; uint8_t* ptr = *data; uint32_t cLen; uint32_t cRem = len; do { m_dataFile.seekg(pages[cNext] * m_pageSize, std::ios_base::beg); if (m_dataFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted data file."); m_dataFile.read(reinterpret_cast(m_buffer), m_pageSize); if (m_dataFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted data file."); cLen = (cRem > m_pageSize) ? m_pageSize : cRem; memcpy(ptr, m_buffer, cLen); ptr += cLen; cRem -= cLen; ++cNext; } while (cNext < cTotal); } void DiskStorageManager::storeByteArray(id_type& page, const uint32_t len, const uint8_t* const data) { if (page == NewPage) { Entry* e = new Entry(); e->m_length = len; const uint8_t* ptr = data; id_type cPage; uint32_t cRem = len; uint32_t cLen; while (cRem > 0) { if (! m_emptyPages.empty()) { cPage = *m_emptyPages.begin(); m_emptyPages.erase(m_emptyPages.begin()); } else { cPage = m_nextPage; ++m_nextPage; } cLen = (cRem > m_pageSize) ? m_pageSize : cRem; memcpy(m_buffer, ptr, cLen); m_dataFile.seekp(cPage * m_pageSize, std::ios_base::beg); if (m_dataFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted data file."); m_dataFile.write(reinterpret_cast(m_buffer), m_pageSize); if (m_dataFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted data file."); ptr += cLen; cRem -= cLen; e->m_pages.push_back(cPage); } page = e->m_pages[0]; m_pageIndex.insert(std::pair(page, e)); } else { // find the entry. std::map::iterator it = m_pageIndex.find(page); // check if it exists. if (it == m_pageIndex.end()) throw InvalidPageException(page); Entry* oldEntry = (*it).second; m_pageIndex.erase(it); Entry* e = new Entry(); e->m_length = len; const uint8_t* ptr = data; id_type cPage; uint32_t cRem = len; uint32_t cLen, cNext = 0; while (cRem > 0) { if (cNext < oldEntry->m_pages.size()) { cPage = oldEntry->m_pages[cNext]; ++cNext; } else if (! m_emptyPages.empty()) { cPage = *m_emptyPages.begin(); m_emptyPages.erase(m_emptyPages.begin()); } else { cPage = m_nextPage; ++m_nextPage; } cLen = (cRem > m_pageSize) ? m_pageSize : cRem; memcpy(m_buffer, ptr, cLen); m_dataFile.seekp(cPage * m_pageSize, std::ios_base::beg); if (m_dataFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted data file."); m_dataFile.write(reinterpret_cast(m_buffer), m_pageSize); if (m_dataFile.fail()) throw Tools::IllegalStateException("SpatialIndex::DiskStorageManager: Corrupted data file."); ptr += cLen; cRem -= cLen; e->m_pages.push_back(cPage); } while (cNext < oldEntry->m_pages.size()) { m_emptyPages.insert(oldEntry->m_pages[cNext]); ++cNext; } m_pageIndex.insert(std::pair(page, e)); delete oldEntry; } } void DiskStorageManager::deleteByteArray(const id_type page) { std::map::iterator it = m_pageIndex.find(page); if (it == m_pageIndex.end()) throw InvalidPageException(page); for (uint32_t cIndex = 0; cIndex < (*it).second->m_pages.size(); ++cIndex) { m_emptyPages.insert((*it).second->m_pages[cIndex]); } delete (*it).second; m_pageIndex.erase(it); } libspatialindex-1.9.3/src/storagemanager/DiskStorageManager.h000066400000000000000000000044621355420072700243640ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace StorageManager { class DiskStorageManager : public SpatialIndex::IStorageManager { public: DiskStorageManager(Tools::PropertySet&); ~DiskStorageManager() override; void flush() override; void loadByteArray(const id_type page, uint32_t& len, uint8_t** data) override; void storeByteArray(id_type& page, const uint32_t len, const uint8_t* const data) override; void deleteByteArray(const id_type page) override; private: class Entry { public: uint32_t m_length; std::vector m_pages; }; protected: std::fstream m_dataFile; std::fstream m_indexFile; uint32_t m_pageSize; id_type m_nextPage; std::set m_emptyPages; std::map m_pageIndex; uint8_t* m_buffer; }; // DiskStorageManager } } libspatialindex-1.9.3/src/storagemanager/MemoryStorageManager.cc000066400000000000000000000070121355420072700250720ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include "MemoryStorageManager.h" using namespace SpatialIndex; using namespace SpatialIndex::StorageManager; SpatialIndex::IStorageManager* SpatialIndex::StorageManager::returnMemoryStorageManager(Tools::PropertySet& ps) { IStorageManager* sm = new MemoryStorageManager(ps); return sm; } SpatialIndex::IStorageManager* SpatialIndex::StorageManager::createNewMemoryStorageManager() { Tools::PropertySet ps; return returnMemoryStorageManager(ps); } MemoryStorageManager::MemoryStorageManager(Tools::PropertySet&) { } MemoryStorageManager::~MemoryStorageManager() { for (std::vector::iterator it = m_buffer.begin(); it != m_buffer.end(); ++it) delete *it; } void MemoryStorageManager::flush() { } void MemoryStorageManager::loadByteArray(const id_type page, uint32_t& len, uint8_t** data) { Entry* e; try { e = m_buffer.at(page); if (e == nullptr) throw InvalidPageException(page); } catch (std::out_of_range&) { throw InvalidPageException(page); } len = e->m_length; *data = new uint8_t[len]; memcpy(*data, e->m_pData, len); } void MemoryStorageManager::storeByteArray(id_type& page, const uint32_t len, const uint8_t* const data) { if (page == NewPage) { Entry* e = new Entry(len, data); if (m_emptyPages.empty()) { m_buffer.push_back(e); page = m_buffer.size() - 1; } else { page = m_emptyPages.top(); m_emptyPages.pop(); m_buffer[page] = e; } } else { Entry* e_old; try { e_old = m_buffer.at(page); if (e_old == nullptr) throw InvalidPageException(page); } catch (std::out_of_range&) { throw InvalidPageException(page); } Entry* e = new Entry(len, data); delete e_old; m_buffer[page] = e; } } void MemoryStorageManager::deleteByteArray(const id_type page) { Entry* e; try { e = m_buffer.at(page); if (e == nullptr) throw InvalidPageException(page); } catch (std::out_of_range&) { throw InvalidPageException(page); } m_buffer[page] = nullptr; m_emptyPages.push(page); delete e; } libspatialindex-1.9.3/src/storagemanager/MemoryStorageManager.h000066400000000000000000000046011355420072700247350ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include namespace SpatialIndex { namespace StorageManager { class MemoryStorageManager : public SpatialIndex::IStorageManager { public: MemoryStorageManager(Tools::PropertySet&); ~MemoryStorageManager() override; void flush() override; void loadByteArray(const id_type page, uint32_t& len, uint8_t** data) override; void storeByteArray(id_type& page, const uint32_t len, const uint8_t* const data) override; void deleteByteArray(const id_type page) override; private: class Entry { public: uint8_t* m_pData; uint32_t m_length; Entry(uint32_t l, const uint8_t* const d) : m_pData(nullptr), m_length(l) { m_pData = new uint8_t[m_length]; memcpy(m_pData, d, m_length); } ~Entry() { delete[] m_pData; } }; // Entry std::vector m_buffer; std::stack m_emptyPages; }; // MemoryStorageManager } } libspatialindex-1.9.3/src/storagemanager/RandomEvictionsBuffer.cc000066400000000000000000000065431355420072700252500ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #ifndef HAVE_SRAND48 #include #endif #include #include "RandomEvictionsBuffer.h" using namespace SpatialIndex; using namespace SpatialIndex::StorageManager; IBuffer* SpatialIndex::StorageManager::returnRandomEvictionsBuffer(IStorageManager& sm, Tools::PropertySet& ps) { IBuffer* b = new RandomEvictionsBuffer(sm, ps); return b; } IBuffer* SpatialIndex::StorageManager::createNewRandomEvictionsBuffer(IStorageManager& sm, uint32_t capacity, bool bWriteThrough) { Tools::Variant var; Tools::PropertySet ps; var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = capacity; ps.setProperty("Capacity", var); var.m_varType = Tools::VT_BOOL; var.m_val.blVal = bWriteThrough; ps.setProperty("WriteThrough", var); return returnRandomEvictionsBuffer(sm, ps); } RandomEvictionsBuffer::RandomEvictionsBuffer(IStorageManager& sm, Tools::PropertySet& ps) : Buffer(sm, ps) { srand48(static_cast(time(nullptr))); } RandomEvictionsBuffer::~RandomEvictionsBuffer() = default; void RandomEvictionsBuffer::addEntry(id_type page, Entry* e) { assert(m_buffer.size() <= m_capacity); if (m_buffer.size() == m_capacity) removeEntry(); assert(m_buffer.find(page) == m_buffer.end()); m_buffer.insert(std::pair(page, e)); } void RandomEvictionsBuffer::removeEntry() { if (m_buffer.size() == 0) return; double random; random = drand48(); uint32_t entry = static_cast(floor(((double) m_buffer.size()) * random)); std::map::iterator it = m_buffer.begin(); for (uint32_t cIndex = 0; cIndex < entry; cIndex++) ++it; if ((*it).second->m_bDirty) { id_type page = (*it).first; m_pStorageManager->storeByteArray(page, ((*it).second)->m_length, (const uint8_t *) ((*it).second)->m_pData); } delete (*it).second; m_buffer.erase(it); } libspatialindex-1.9.3/src/storagemanager/RandomEvictionsBuffer.h000066400000000000000000000036321355420072700251060ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "Buffer.h" namespace SpatialIndex { namespace StorageManager { class RandomEvictionsBuffer : public Buffer { public: RandomEvictionsBuffer(IStorageManager&, Tools::PropertySet& ps); // see Buffer.h for available properties. ~RandomEvictionsBuffer() override; void addEntry(id_type page, Buffer::Entry* pEntry) override; void removeEntry() override; }; // RandomEvictionsBuffer } } libspatialindex-1.9.3/src/tools/000077500000000000000000000000001355420072700166345ustar00rootroot00000000000000libspatialindex-1.9.3/src/tools/Tools.cc000066400000000000000000000755151355420072700202600ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2004, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #ifndef HAVE_SRAND48 #include #endif #include #if (defined _WIN32 || defined _WIN64 || defined WIN32 || defined WIN64) #include #define mkdir _mkdir #endif #if HAVE_PTHREAD_H #if !defined(_POSIX_THREADS) #include // for sched_yield() #endif #endif Tools::IndexOutOfBoundsException::IndexOutOfBoundsException(size_t i) { std::ostringstream s; s << "Invalid index " << i; m_error = s.str(); } std::string Tools::IndexOutOfBoundsException::what() { return "IndexOutOfBoundsException: " + m_error; } Tools::IllegalArgumentException::IllegalArgumentException(std::string s) : m_error(s) { } std::string Tools::IllegalArgumentException::what() { return "IllegalArgumentException: " + m_error; } Tools::IllegalStateException::IllegalStateException(std::string s) : m_error(s) { } std::string Tools::IllegalStateException::what() { return "IllegalStateException: " + m_error; } Tools::EndOfStreamException::EndOfStreamException(std::string s) : m_error(s) { } std::string Tools::EndOfStreamException::what() { return "EndOfStreamException: " + m_error; } Tools::ResourceLockedException::ResourceLockedException(std::string s) : m_error(s) { } std::string Tools::ResourceLockedException::what() { return "ResourceLockedException: " + m_error; } Tools::NotSupportedException::NotSupportedException(std::string s) : m_error(s) { } std::string Tools::NotSupportedException::what() { return "NotSupportedException: " + m_error; } Tools::Variant::Variant() = default; Tools::PropertySet::PropertySet(const uint8_t* data) { loadFromByteArray(data); } Tools::PropertySet::~PropertySet() = default; Tools::PropertySet::PropertySet() = default; void Tools::PropertySet::loadFromByteArray(const uint8_t* ptr) { m_propertySet.clear(); uint32_t numberOfProperties; memcpy(&numberOfProperties, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); Variant v; for (uint32_t cIndex = 0; cIndex < numberOfProperties; ++cIndex) { std::string s(reinterpret_cast(ptr)); ptr += s.size() + 1; memcpy(&(v.m_varType), ptr, sizeof(VariantType)); ptr += sizeof(VariantType); switch (v.m_varType) { case VT_SHORT: int16_t st; memcpy(&st, ptr, sizeof(int16_t)); ptr += sizeof(int16_t); v.m_val.iVal = st; break; case VT_LONG: int32_t l; memcpy(&l, ptr, sizeof(int32_t)); ptr += sizeof(int32_t); v.m_val.lVal = l; break; case VT_LONGLONG: int64_t ll; memcpy(&ll, ptr, sizeof(int64_t)); ptr += sizeof(int64_t); v.m_val.llVal = ll; break; case VT_BYTE: uint8_t b; memcpy(&b, ptr, sizeof(uint8_t)); ptr += sizeof(uint8_t); v.m_val.bVal = b; break; case VT_FLOAT: float f; memcpy(&f, ptr, sizeof(float)); ptr += sizeof(float); v.m_val.fltVal = f; break; case VT_DOUBLE: double d; memcpy(&d, ptr, sizeof(double)); ptr += sizeof(double); v.m_val.dblVal = d; break; case VT_CHAR: char c; memcpy(&c, ptr, sizeof(char)); ptr += sizeof(char); v.m_val.cVal = c; break; case VT_USHORT: uint16_t us; memcpy(&us, ptr, sizeof(uint16_t)); ptr += sizeof(uint16_t); v.m_val.uiVal = us; break; case VT_ULONG: uint32_t ul; memcpy(&ul, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); v.m_val.ulVal = ul; break; case VT_ULONGLONG: uint64_t ull; memcpy(&ull, ptr, sizeof(uint64_t)); ptr += sizeof(uint64_t); v.m_val.ullVal = ull; break; case VT_BOOL: uint8_t bl; memcpy(&bl, ptr, sizeof(uint8_t)); ptr += sizeof(uint8_t); v.m_val.blVal = (bl != 0); break; default: throw IllegalStateException( "Tools::PropertySet::PropertySet: Deserialization problem." ); } m_propertySet.insert(std::pair(s, v)); } } uint32_t Tools::PropertySet::getByteArraySize() { uint32_t size = sizeof(uint32_t); for (auto it = m_propertySet.begin(); it != m_propertySet.end(); ++it) { switch ((*it).second.m_varType) { case VT_SHORT: size += sizeof(int16_t); break; case VT_LONG: size += sizeof(int32_t); break; case VT_LONGLONG: size += sizeof(int64_t); break; case VT_BYTE: size += sizeof(uint8_t); break; case VT_FLOAT: size += sizeof(float); break; case VT_DOUBLE: size += sizeof(double); break; case VT_CHAR: size += sizeof(char); break; case VT_USHORT: size += sizeof(uint16_t); break; case VT_ULONG: size += sizeof(uint32_t); break; case VT_ULONGLONG: size += sizeof(uint64_t); break; case VT_BOOL: size += sizeof(uint8_t); break; default: throw NotSupportedException( "Tools::PropertySet::getSize: Unknown type." ); } size += static_cast((*it).first.size()) + 1 + sizeof(VariantType); } return size; } void Tools::PropertySet::storeToByteArray(uint8_t** data, uint32_t& length) { length = getByteArraySize(); *data = new uint8_t[length]; uint8_t* ptr = *data; uint32_t numberOfProperties = static_cast(m_propertySet.size()); memcpy(ptr, &numberOfProperties, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (auto it = m_propertySet.begin(); it != m_propertySet.end(); ++it) { size_t strSize = (*it).first.size(); memcpy(ptr, (*it).first.c_str(), strSize); ptr += strSize; *ptr = 0; ++ptr; memcpy(ptr, &((*it).second.m_varType), sizeof(VariantType)); ptr += sizeof(VariantType); switch ((*it).second.m_varType) { case VT_SHORT: memcpy(ptr, &((*it).second.m_val.iVal), sizeof(int16_t)); ptr += sizeof(int16_t); break; case VT_LONG: memcpy(ptr, &((*it).second.m_val.lVal), sizeof(int32_t)); ptr += sizeof(int32_t); break; case VT_LONGLONG: memcpy(ptr, &((*it).second.m_val.llVal), sizeof(int64_t)); ptr += sizeof(int64_t); break; case VT_BYTE: memcpy(ptr, &((*it).second.m_val.bVal), sizeof(uint8_t)); ptr += sizeof(uint8_t); break; case VT_FLOAT: memcpy(ptr, &((*it).second.m_val.fltVal), sizeof(float)); ptr += sizeof(float); break; case VT_DOUBLE: memcpy(ptr, &((*it).second.m_val.dblVal), sizeof(double)); ptr += sizeof(double); break; case VT_CHAR: memcpy(ptr, &((*it).second.m_val.cVal), sizeof(char)); ptr += sizeof(char); break; case VT_USHORT: memcpy(ptr, &((*it).second.m_val.uiVal), sizeof(uint16_t)); ptr += sizeof(uint16_t); break; case VT_ULONG: memcpy(ptr, &((*it).second.m_val.ulVal), sizeof(uint32_t)); ptr += sizeof(uint32_t); break; case VT_ULONGLONG: memcpy(ptr, &((*it).second.m_val.ullVal), sizeof(uint64_t)); ptr += sizeof(uint64_t); break; case VT_BOOL: uint8_t bl; bl = (*it).second.m_val.blVal; memcpy(ptr, &bl, sizeof(uint8_t)); ptr += sizeof(uint8_t); break; default: throw NotSupportedException( "Tools::PropertySet::getData: Cannot serialize a variant of this type." ); } } assert(ptr == (*data) + length); } Tools::Variant Tools::PropertySet::getProperty(std::string property) const { const auto& it = m_propertySet.find(property); if (it != m_propertySet.end()) return (*it).second; else return Variant(); } void Tools::PropertySet::setProperty(std::string property, Variant const& v) { std::pair::iterator, bool> ret; std::map::iterator it; ret = m_propertySet.insert(std::pair(property, v)); // If we weren't able to insert because it is already in the map // update our existing value if (ret.second == false) ret.first->second = v; } void Tools::PropertySet::removeProperty(std::string property) { auto it = m_propertySet.find(property); if (it != m_propertySet.end()) m_propertySet.erase(it); } Tools::Interval::Interval() = default; Tools::Interval::Interval(IntervalType t, double l, double h) : m_type(t), m_low(l), m_high(h) { assert(l < h); } Tools::Interval::Interval(double l, double h) : m_type(IT_RIGHTOPEN), m_low(l), m_high(h) { assert(l < h); } Tools::Interval::Interval(const Interval& iv) { m_low = iv.m_low; m_high = iv.m_high; m_type = iv.m_type; } Tools::IInterval& Tools::Interval::operator=(const Tools::IInterval& iv) { if (this != &iv) { m_low = iv.getLowerBound(); m_high = iv.getUpperBound(); m_type = iv.getIntervalType(); } return *this; } bool Tools::Interval::operator==(const Interval& iv) const { if ( m_type == iv.m_type && m_low >= iv.m_low - std::numeric_limits::epsilon() && m_low <= iv.m_low + std::numeric_limits::epsilon() && m_high >= iv.m_high - std::numeric_limits::epsilon() && m_high <= iv.m_high + std::numeric_limits::epsilon()) return true; return false; } bool Tools::Interval::operator!=(const Interval& iv) const { return ! (*this == iv); } double Tools::Interval::getLowerBound() const { return m_low; } double Tools::Interval::getUpperBound() const { return m_high; } void Tools::Interval::setBounds(double l, double h) { assert(l <= h); m_low = l; m_high = h; } bool Tools::Interval::intersectsInterval(const IInterval& i) const { return intersectsInterval(i.getIntervalType(), i.getLowerBound(), i.getUpperBound()); } bool Tools::Interval::intersectsInterval(IntervalType type, const double low, const double high) const { if (m_high < m_low) throw IllegalStateException( "Tools::Interval::intersectsInterval: high boundary is smaller than low boundary." ); if (m_low > high || m_high < low) return false; if ((m_low > low && m_low < high) || (m_high > low && m_high < high)) return true; switch (m_type) { case IT_CLOSED: if (m_low == high) { if (type == IT_CLOSED || type == IT_LEFTOPEN) return true; else return false; } else if (m_high == low) { if (type == IT_CLOSED || type == IT_RIGHTOPEN) return true; else return false; } break; case IT_OPEN: if (m_low == high || m_high == low) return false; break; case IT_RIGHTOPEN: if (m_low == high) { if (type == IT_CLOSED || type == IT_LEFTOPEN) return true; else return false; } else if (m_high == low) { return false; } break; case IT_LEFTOPEN: if (m_low == high) { return false; } else if (m_high == low) { if (type == IT_CLOSED || type == IT_RIGHTOPEN) return true; else return false; } break; } return true; } bool Tools::Interval::containsInterval(const IInterval& i) const { if (m_high < m_low) throw IllegalStateException( "Tools::Interval::containsInterval: high boundary is smaller than low boundary." ); double low = i.getLowerBound(); double high = i.getUpperBound(); IntervalType type = i.getIntervalType(); if (m_low < low && m_high > high) return true; if (m_low > low || m_high < high) return false; switch (m_type) { case IT_CLOSED: break; case IT_OPEN: if ((m_low == low && m_high == high && type != IT_OPEN) || (m_low == low && (type == IT_CLOSED || type == IT_RIGHTOPEN)) || (m_high == high && ( type == IT_CLOSED || type == IT_LEFTOPEN))) return false; break; case IT_RIGHTOPEN: if (m_high == high && (type == IT_CLOSED || type == IT_LEFTOPEN)) return false; break; case IT_LEFTOPEN: if (m_low == low && (type == IT_CLOSED || type == IT_RIGHTOPEN)) return false; break; } return true; } Tools::IntervalType Tools::Interval::getIntervalType() const { return m_type; } Tools::Random::Random() { m_pBuffer = nullptr; initDrand(static_cast(time(nullptr)), 0xD31A); } Tools::Random::Random(uint32_t seed, uint16_t xsubi0) { m_pBuffer = nullptr; initDrand(seed, xsubi0); } Tools::Random::~Random() { delete[] m_pBuffer; } void Tools::Random::initDrand(uint32_t seed, uint16_t xsubi0) { m_pBuffer = new uint16_t[3]; m_pBuffer[0] = static_cast(xsubi0); uint32_t mask = 0xFFFF; m_pBuffer[1] = static_cast(seed & mask); mask = mask << 16; m_pBuffer[2] = static_cast((seed & mask) >> 16); #ifdef BUILD_OS_CYGWIN srand48(*(reinterpret_cast(m_pBuffer))); // BUG: There is a bug in cygwin gcc 3.4.4. srand48 needs to be called // even if we are using the functions that take the seed as a parameter. // This does not affect random number generation, which still happens // using the seed provided as a parameter and not the one provided to srand48 :-S #endif } int32_t Tools::Random::nextUniformLong() { return jrand48(m_pBuffer); } uint32_t Tools::Random::nextUniformUnsignedLong() { return static_cast(nextUniformLong()); } int32_t Tools::Random::nextUniformLong(int32_t low, int32_t high) { return low + static_cast((high - low) * nextUniformDouble()); } uint32_t Tools::Random::nextUniformUnsignedLong(uint32_t low, uint32_t high) { return low + static_cast((high - low) * nextUniformDouble()); } int64_t Tools::Random::nextUniformLongLong() { return static_cast(nextUniformUnsignedLongLong()); } uint64_t Tools::Random::nextUniformUnsignedLongLong() { uint64_t lh = static_cast(nextUniformLong()); uint64_t ll = static_cast(nextUniformLong()); uint64_t ret = (lh << 32) | ll; return ret; } int64_t Tools::Random::nextUniformLongLong(int64_t low, int64_t high) { return low + static_cast((high - low) * nextUniformDouble()); } uint64_t Tools::Random::nextUniformUnsignedLongLong(uint64_t low, uint64_t high) { return low + static_cast((high - low) * nextUniformDouble()); } int16_t Tools::Random::nextUniformShort() { return static_cast(nextUniformUnsignedShort()); } uint16_t Tools::Random::nextUniformUnsignedShort() { return nextUniformUnsignedLong() >> 16; // retain the high order bits. } double Tools::Random::nextUniformDouble() { uint16_t* xsubi = reinterpret_cast(m_pBuffer); return erand48(xsubi); } double Tools::Random::nextUniformDouble(double low, double high) { return (high - low) * nextUniformDouble() + low; } bool Tools::Random::flipCoin() { if (nextUniformDouble() < 0.5) return true; return false; } std::ostream& Tools::operator<<(std::ostream& os, const Tools::PropertySet& p) { for (auto it = p.m_propertySet.begin(); it != p.m_propertySet.end(); ++it) { if (it != p.m_propertySet.begin()) os << ", "; switch ((*it).second.m_varType) { case VT_LONG: os << (*it).first << ": " << (*it).second.m_val.lVal; break; case VT_LONGLONG: os << (*it).first << ": " << (*it).second.m_val.llVal; break; case VT_BYTE: os << (*it).first << ": " << (*it).second.m_val.bVal; break; case VT_SHORT: os << (*it).first << ": " << (*it).second.m_val.iVal; break; case VT_FLOAT: os << (*it).first << ": " << (*it).second.m_val.fltVal; break; case VT_DOUBLE: os << (*it).first << ": " << (*it).second.m_val.dblVal; break; case VT_CHAR: os << (*it).first << ": " << (*it).second.m_val.cVal; break; case VT_USHORT: os << (*it).first << ": " << (*it).second.m_val.uiVal; break; case VT_ULONG: os << (*it).first << ": " << (*it).second.m_val.ulVal; break; case VT_ULONGLONG: os << (*it).first << ": " << (*it).second.m_val.ullVal; break; case VT_BOOL: os << (*it).first << ": " << (*it).second.m_val.blVal; break; case VT_PCHAR: os << (*it).first << ": " << (*it).second.m_val.pcVal; break; case VT_PVOID: os << (*it).first << ": ?"; break; case VT_EMPTY: os << (*it).first << ": empty"; break; default: os << (*it).first << ": unknown"; } } return os; } std::ostream& Tools::operator<<(std::ostream& os, const Tools::Interval& iv) { os << iv.m_type << " " << iv.m_low << " " << iv.m_high; return os; } // // BufferedFile // Tools::BufferedFile::BufferedFile(uint32_t u32BufferSize) : m_buffer(new char[u32BufferSize]), m_u32BufferSize(u32BufferSize) { } Tools::BufferedFile::~BufferedFile() { m_file.close(); delete[] m_buffer; } void Tools::BufferedFile::close() { m_file.close(); } bool Tools::BufferedFile::eof() { return m_bEOF; } // // BufferedFileReader // Tools::BufferedFileReader::BufferedFileReader() = default; Tools::BufferedFileReader::BufferedFileReader(const std::string& sFileName, uint32_t u32BufferSize) : BufferedFile(u32BufferSize) { open(sFileName); } void Tools::BufferedFileReader::open(const std::string& sFileName) { m_bEOF = false; m_file.close(); m_file.clear(); m_file.open(sFileName.c_str(), std::ios_base::in | std::ios_base::binary); if (! m_file.good()) throw std::ios_base::failure("Tools::BufferedFileReader::BufferedFileReader: Cannot open file."); m_file.rdbuf()->pubsetbuf(m_buffer, m_u32BufferSize); } Tools::BufferedFileReader::~BufferedFileReader() = default; void Tools::BufferedFileReader::rewind() { m_file.clear(); m_file.seekg(0, std::ios_base::beg); if (! m_file.good()) throw std::ios_base::failure("Tools::BufferedFileReader::rewind: seek failed."); m_bEOF = false; } void Tools::BufferedFileReader::seek(std::fstream::off_type offset) { m_bEOF = false; m_file.clear(); m_file.seekg(offset, std::ios_base::beg); if (! m_file.good()) throw std::ios_base::failure("Tools::BufferedFileReader::seek: seek failed."); } uint8_t Tools::BufferedFileReader::readUInt8() { if (m_bEOF) throw Tools::EndOfStreamException(""); uint8_t ret; m_file.read(reinterpret_cast(&ret), sizeof(uint8_t)); if (! m_file.good()) { m_bEOF = true; throw Tools::EndOfStreamException(""); } return ret; } uint16_t Tools::BufferedFileReader::readUInt16() { if (m_bEOF) throw Tools::EndOfStreamException(""); uint16_t ret; m_file.read(reinterpret_cast(&ret), sizeof(uint16_t)); if (! m_file.good()) { m_bEOF = true; throw Tools::EndOfStreamException(""); } return ret; } uint32_t Tools::BufferedFileReader::readUInt32() { if (m_bEOF) throw Tools::EndOfStreamException(""); uint32_t ret; m_file.read(reinterpret_cast(&ret), sizeof(uint32_t)); if (! m_file.good()) { m_bEOF = true; throw Tools::EndOfStreamException(""); } return ret; } uint64_t Tools::BufferedFileReader::readUInt64() { if (m_bEOF) throw Tools::EndOfStreamException(""); uint64_t ret; m_file.read(reinterpret_cast(&ret), sizeof(uint64_t)); if (! m_file.good()) { m_bEOF = true; throw Tools::EndOfStreamException(""); } return ret; } float Tools::BufferedFileReader::readFloat() { if (m_bEOF) throw Tools::EndOfStreamException(""); float ret; m_file.read(reinterpret_cast(&ret), sizeof(float)); if (! m_file.good()) { m_bEOF = true; throw Tools::EndOfStreamException(""); } return ret; } double Tools::BufferedFileReader::readDouble() { if (m_bEOF) throw Tools::EndOfStreamException(""); double ret; m_file.read(reinterpret_cast(&ret), sizeof(double)); if (! m_file.good()) { m_bEOF = true; throw Tools::EndOfStreamException(""); } return ret; } bool Tools::BufferedFileReader::readBoolean() { if (m_bEOF) throw Tools::EndOfStreamException(""); bool ret; m_file.read(reinterpret_cast(&ret), sizeof(bool)); if (! m_file.good()) { m_bEOF = true; throw Tools::EndOfStreamException(""); } return ret; } std::string Tools::BufferedFileReader::readString() { if (m_bEOF) throw Tools::EndOfStreamException(""); uint32_t len; m_file.read(reinterpret_cast(&len), sizeof(uint32_t)); if (! m_file.good()) { m_bEOF = true; throw Tools::EndOfStreamException(""); } std::string::value_type* buf = new std::string::value_type[len]; m_file.read(reinterpret_cast(buf), len * sizeof(std::string::value_type)); if (! m_file.good()) { delete[] buf; m_bEOF = true; throw Tools::EndOfStreamException(""); } std::string ret(buf, len); delete[] buf; return ret; } void Tools::BufferedFileReader::readBytes(uint32_t u32Len, uint8_t** pData) { if (m_bEOF) throw Tools::EndOfStreamException(""); *pData = new uint8_t[u32Len]; m_file.read(reinterpret_cast(*pData), u32Len); if (! m_file.good()) { delete[] *pData; m_bEOF = true; throw Tools::EndOfStreamException(""); } } // // BufferedFileWriter // Tools::BufferedFileWriter::BufferedFileWriter() { open(""); } Tools::BufferedFileWriter::BufferedFileWriter(const std::string& sFileName, FileMode mode, uint32_t u32BufferSize) : BufferedFile(u32BufferSize) { open(sFileName, mode); } Tools::BufferedFileWriter::~BufferedFileWriter() { m_file.flush(); } void Tools::BufferedFileWriter::open(const std::string& sFileName, FileMode mode) { m_bEOF = false; m_file.close(); m_file.clear(); if (mode == CREATE) { m_file.open(sFileName.c_str(), std::ios_base::out | std::ios_base::binary | std::ios_base::trunc); if (! m_file.good()) throw std::ios_base::failure("Tools::BufferedFileWriter::open: Cannot open file."); } else if (mode == APPEND) { // Idiotic fstream::open truncates an existing file anyway, if it is only opened // for output (no ios_base::in flag)!! On the other hand, if a file does not exist // and the ios_base::in flag is specified, then the open fails!! m_file.open(sFileName.c_str(), std::ios_base::in | std::ios_base::out | std::ios_base::binary); if (! m_file.good()) { m_file.clear(); m_file.open(sFileName.c_str(), std::ios_base::out | std::ios_base::binary); if (! m_file.good()) throw std::ios_base::failure("Tools::BufferedFileWriter::open: Cannot open file."); } else { m_file.seekp(0, std::ios_base::end); if (! m_file.good()) throw std::ios_base::failure("Tools::BufferedFileWriter::open: Cannot open file."); } } else throw Tools::IllegalArgumentException("Tools::BufferedFileWriter::open: Unknown mode."); } void Tools::BufferedFileWriter::rewind() { m_bEOF = false; m_file.clear(); m_file.seekp(0, std::ios_base::beg); if (! m_file.good()) throw std::ios_base::failure("Tools::BufferedFileWriter::rewind: seek failed."); } void Tools::BufferedFileWriter::seek(std::fstream::off_type offset) { m_bEOF = false; m_file.clear(); m_file.seekp(offset, std::ios_base::beg); if (! m_file.good()) throw std::ios_base::failure("Tools::BufferedFileWriter::seek: seek failed."); } void Tools::BufferedFileWriter::write(uint8_t i) { m_file.write(reinterpret_cast(&i), sizeof(uint8_t)); if (! m_file.good()) throw std::ios_base::failure(""); } void Tools::BufferedFileWriter::write(uint16_t i) { m_file.write(reinterpret_cast(&i), sizeof(uint16_t)); if (! m_file.good()) throw std::ios_base::failure(""); } void Tools::BufferedFileWriter::write(uint32_t i) { m_file.write(reinterpret_cast(&i), sizeof(uint32_t)); if (! m_file.good()) throw std::ios_base::failure(""); } void Tools::BufferedFileWriter::write(uint64_t i) { m_file.write(reinterpret_cast(&i), sizeof(uint64_t)); if (! m_file.good()) throw std::ios_base::failure(""); } void Tools::BufferedFileWriter::write(float i) { m_file.write(reinterpret_cast(&i), sizeof(float)); if (! m_file.good()) throw std::ios_base::failure(""); } void Tools::BufferedFileWriter::write(double i) { m_file.write(reinterpret_cast(&i), sizeof(double)); if (! m_file.good()) throw std::ios_base::failure(""); } void Tools::BufferedFileWriter::write(bool b) { m_file.write(reinterpret_cast(&b), sizeof(bool)); if (! m_file.good()) throw std::ios_base::failure(""); } void Tools::BufferedFileWriter::write(const std::string& s) { uint32_t len = static_cast(s.size()); m_file.write(reinterpret_cast(&len), sizeof(uint32_t)); if (! m_file.good()) throw std::ios_base::failure(""); m_file.write(reinterpret_cast(s.c_str()), len * sizeof(std::string::value_type)); if (! m_file.good()) throw std::ios_base::failure(""); } void Tools::BufferedFileWriter::write(uint32_t u32Len, uint8_t* pData) { m_file.write(reinterpret_cast(pData), u32Len); if (! m_file.good()) throw std::ios_base::failure(""); } // // TemporaryFile // Tools::TemporaryFile::TemporaryFile() { #ifdef _MSC_VER #ifndef L_tmpnam_s // MSVC 2003 doesn't have tmpnam_s, so we'll have to use the old functions char* tmpName = NULL; tmpName = tmpnam( NULL ); if (tmpName == NULL) throw std::ios_base::failure("Tools::TemporaryFile: Cannot create temporary file name."); #else char tmpName[L_tmpnam_s]; errno_t err = tmpnam_s(tmpName, L_tmpnam_s); if (err) throw std::ios_base::failure("Tools::TemporaryFile: Cannot create temporary file name."); #endif if (tmpName[0] == '\\') m_sFile = std::string(tmpName + 1); else m_sFile = std::string(tmpName); #else char tmpName[7] = "XXXXXX"; if (mkstemp(tmpName) == -1) throw std::ios_base::failure("Tools::TemporaryFile: Cannot create temporary file name."); m_sFile = tmpName; #endif m_pFile = new Tools::BufferedFileWriter(m_sFile, Tools::CREATE); } Tools::TemporaryFile::~TemporaryFile() { delete m_pFile; #ifdef _MSC_VER _unlink(m_sFile.c_str()); #else std::remove(m_sFile.c_str()); #endif } void Tools::TemporaryFile::rewindForReading() { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br != nullptr) m_pFile->rewind(); else { delete m_pFile; m_pFile = new Tools::BufferedFileReader(m_sFile); } } void Tools::TemporaryFile::rewindForWriting() { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw != nullptr) m_pFile->rewind(); else { delete m_pFile; m_pFile = new Tools::BufferedFileWriter(m_sFile); } } bool Tools::TemporaryFile::eof() { return m_pFile->eof(); } std::string Tools::TemporaryFile::getFileName() const { return m_sFile; } uint8_t Tools::TemporaryFile::readUInt8() { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::readUInt8: file not open for reading."); return br->readUInt8(); } uint16_t Tools::TemporaryFile::readUInt16() { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::readUInt16: file not open for reading."); return br->readUInt16(); } uint32_t Tools::TemporaryFile::readUInt32() { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::readUInt32: file not open for reading."); return br->readUInt32(); } uint64_t Tools::TemporaryFile::readUInt64() { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::readUInt64: file not open for reading."); return br->readUInt64(); } float Tools::TemporaryFile::readFloat() { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::readFloat: file not open for reading."); return br->readFloat(); } double Tools::TemporaryFile::readDouble() { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::readDouble: file not open for reading."); return br->readDouble(); } std::string Tools::TemporaryFile::readString() { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::readString: file not open for reading."); return br->readString(); } void Tools::TemporaryFile::readBytes(uint32_t u32Len, uint8_t** pData) { Tools::BufferedFileReader* br = dynamic_cast(m_pFile); if (br == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::readString: file not open for reading."); return br->readBytes(u32Len, pData); } void Tools::TemporaryFile::write(uint8_t i) { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::write: file not open for writing."); return bw->write(i); } void Tools::TemporaryFile::write(uint16_t i) { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::write: file not open for writing."); return bw->write(i); } void Tools::TemporaryFile::write(uint32_t i) { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::write: file not open for writing."); return bw->write(i); } void Tools::TemporaryFile::write(uint64_t i) { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::write: file not open for writing."); return bw->write(i); } void Tools::TemporaryFile::write(float i) { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::write: file not open for writing."); return bw->write(i); } void Tools::TemporaryFile::write(double i) { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::write: file not open for writing."); return bw->write(i); } void Tools::TemporaryFile::write(const std::string& s) { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::write: file not open for writing."); return bw->write(s); } void Tools::TemporaryFile::write(uint32_t u32Len, uint8_t* pData) { Tools::BufferedFileWriter* bw = dynamic_cast(m_pFile); if (bw == nullptr) throw std::ios_base::failure("Tools::TemporaryFile::write: file not open for writing."); return bw->write(u32Len, pData); } libspatialindex-1.9.3/src/tools/rand48.cc000066400000000000000000000071651355420072700202540ustar00rootroot00000000000000/* * Copyright (c) 1993 Martin Birgmeier * All rights reserved. * * You may redistribute unmodified or modified versions of this source * code provided that the above copyright notice and this and the * following conditions are retained. * * This software is provided ``as is'', and comes with no warranties * of any kind. I shall in no event be liable for anything that happens * to anyone/anything when using this software. */ #ifndef HAVE_SRAND48 #include #include #include #define RAND48_SEED_0 (0x330e) #define RAND48_SEED_1 (0xabcd) #define RAND48_SEED_2 (0x1234) #define RAND48_MULT_0 (0xe66d) #define RAND48_MULT_1 (0xdeec) #define RAND48_MULT_2 (0x0005) #define RAND48_ADD (0x000b) /* Internal function to compute next state of the generator. */ static void _dorand48(unsigned short[3]); /* Unfortunately, 3 __globals, which the exported functions must access */ unsigned short __rand48_Seed[3] = { RAND48_SEED_0, RAND48_SEED_1, RAND48_SEED_2 }; unsigned short __rand48_Mult[3] = { RAND48_MULT_0, RAND48_MULT_1, RAND48_MULT_2 }; unsigned short __rand48_Add = RAND48_ADD; /* Internal function to compute next state of the generator. */ static void _dorand48(unsigned short xseed[3]) { unsigned long accu; unsigned short temp[2]; accu = (unsigned long) __rand48_Mult[0] * (unsigned long) xseed[0] + (unsigned long) __rand48_Add; temp[0] = (unsigned short) accu; /* lower 16 bits */ accu >>= sizeof(unsigned short) * 8; accu += (unsigned long) __rand48_Mult[0] * (unsigned long) xseed[1] + (unsigned long) __rand48_Mult[1] * (unsigned long) xseed[0]; temp[1] = (unsigned short) accu; /* middle 16 bits */ accu >>= sizeof(unsigned short) * 8; accu += __rand48_Mult[0] * xseed[2] + __rand48_Mult[1] * xseed[1] + __rand48_Mult[2] * xseed[0]; xseed[0] = temp[0]; xseed[1] = temp[1]; xseed[2] = (unsigned short) accu; } extern void srand48(long seed) __THROW { __rand48_Seed[0] = RAND48_SEED_0; __rand48_Seed[1] = (unsigned short) seed; __rand48_Seed[2] = (unsigned short) (seed >> 16); __rand48_Mult[0] = RAND48_MULT_0; __rand48_Mult[1] = RAND48_MULT_1; __rand48_Mult[2] = RAND48_MULT_2; __rand48_Add = RAND48_ADD; } extern unsigned short * seed48(unsigned short xseed[3]) __THROW { static unsigned short sseed[3]; sseed[0] = __rand48_Seed[0]; sseed[1] = __rand48_Seed[1]; sseed[2] = __rand48_Seed[2]; __rand48_Seed[0] = xseed[0]; __rand48_Seed[1] = xseed[1]; __rand48_Seed[2] = xseed[2]; __rand48_Mult[0] = RAND48_MULT_0; __rand48_Mult[1] = RAND48_MULT_1; __rand48_Mult[2] = RAND48_MULT_2; __rand48_Add = RAND48_ADD; return sseed; } extern long nrand48(unsigned short xseed[3]) __THROW { _dorand48(xseed); return ((long) xseed[2] << 15) + ((long) xseed[1] >> 1); } extern long mrand48(void) __THROW { _dorand48(__rand48_Seed); return ((long) __rand48_Seed[2] << 16) + (long) __rand48_Seed[1]; } extern long lrand48(void) __THROW { _dorand48(__rand48_Seed); return ((long) __rand48_Seed[2] << 15) + ((long) __rand48_Seed[1] >> 1); } extern void lcong48(unsigned short p[7]) __THROW { __rand48_Seed[0] = p[0]; __rand48_Seed[1] = p[1]; __rand48_Seed[2] = p[2]; __rand48_Mult[0] = p[3]; __rand48_Mult[1] = p[4]; __rand48_Mult[2] = p[5]; __rand48_Add = p[6]; } extern long jrand48(unsigned short xseed[3]) __THROW { _dorand48(xseed); return ((long) xseed[2] << 16) + (long) xseed[1]; } extern double erand48(unsigned short xseed[3]) __THROW { _dorand48(xseed); return ldexp((double) xseed[0], -48) + ldexp((double) xseed[1], -32) + ldexp((double) xseed[2], -16); } extern double drand48(void) __THROW { return erand48(__rand48_Seed); } #endif libspatialindex-1.9.3/src/tprtree/000077500000000000000000000000001355420072700171615ustar00rootroot00000000000000libspatialindex-1.9.3/src/tprtree/Index.cc000066400000000000000000000315331355420072700205440ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include "TPRTree.h" #include "Node.h" #include "Leaf.h" #include "Index.h" using namespace SpatialIndex; using namespace SpatialIndex::TPRTree; Index::~Index() = default; Index::Index(SpatialIndex::TPRTree::TPRTree* pTree, id_type id, uint32_t level) : Node(pTree, id, level, pTree->m_indexCapacity) { } NodePtr Index::chooseSubtree(const MovingRegion& mbr, uint32_t insertionLevel, std::stack& pathBuffer) { if (m_level == insertionLevel) return NodePtr(this, &(m_pTree->m_indexPool)); pathBuffer.push(m_identifier); uint32_t child = 0; switch (m_pTree->m_treeVariant) { case TPRV_RSTAR: if (m_level == 1) { // if this node points to leaves... child = findLeastOverlap(mbr); } else { child = findLeastEnlargement(mbr); } break; default: throw Tools::NotSupportedException("Index::chooseSubtree: Tree variant not supported."); } assert(child != std::numeric_limits::max()); NodePtr n = m_pTree->readNode(m_pIdentifier[child]); NodePtr ret = n->chooseSubtree(mbr, insertionLevel, pathBuffer); assert(n.unique()); if (ret.get() == n.get()) n.relinquish(); return ret; } NodePtr Index::findLeaf(const MovingRegion& mbr, id_type id, std::stack& pathBuffer) { pathBuffer.push(m_identifier); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (m_ptrMBR[cChild]->containsRegionAfterTime(m_pTree->m_currentTime, mbr)) { NodePtr n = m_pTree->readNode(m_pIdentifier[cChild]); NodePtr l = n->findLeaf(mbr, id, pathBuffer); if (n.get() == l.get()) n.relinquish(); if (l.get() != nullptr) return l; } } pathBuffer.pop(); return NodePtr(); } void Index::split(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, NodePtr& pLeft, NodePtr& pRight) { ++(m_pTree->m_stats.m_splits); std::vector g1, g2; switch (m_pTree->m_treeVariant) { case TPRV_RSTAR: rstarSplit(dataLength, pData, mbr, id, g1, g2); break; default: throw Tools::NotSupportedException("Index::split: Tree variant not supported."); } pLeft = m_pTree->m_indexPool.acquire(); pRight = m_pTree->m_indexPool.acquire(); if (pLeft.get() == nullptr) pLeft = NodePtr(new Index(m_pTree, m_identifier, m_level), &(m_pTree->m_indexPool)); if (pRight.get() == nullptr) pRight = NodePtr(new Index(m_pTree, -1, m_level), &(m_pTree->m_indexPool)); pLeft->m_nodeMBR = m_pTree->m_infiniteRegion; pRight->m_nodeMBR = m_pTree->m_infiniteRegion; uint32_t cIndex; for (cIndex = 0; cIndex < g1.size(); ++cIndex) { pLeft->insertEntry(0, nullptr, *(m_ptrMBR[g1[cIndex]]), m_pIdentifier[g1[cIndex]]); } for (cIndex = 0; cIndex < g2.size(); ++cIndex) { pRight->insertEntry(0, nullptr, *(m_ptrMBR[g2[cIndex]]), m_pIdentifier[g2[cIndex]]); } } uint32_t Index::findLeastEnlargement(const MovingRegion& r) const { double area = std::numeric_limits::max(); uint32_t best = std::numeric_limits::max(); MovingRegionPtr t = m_pTree->m_regionPool.acquire(); Tools::Interval ivT(m_pTree->m_currentTime, m_pTree->m_currentTime + m_pTree->m_horizon); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { // I need the combined region from current time up to infinity here. m_ptrMBR[cChild]->getCombinedRegionAfterTime(ivT.getLowerBound(), *t, r); double a = m_ptrMBR[cChild]->getAreaInTime(ivT); double b = t->getAreaInTime(ivT); double enl = b - a; if (enl < area) { area = enl; best = cChild; } else if (enl == area) { // this will rarely happen, so compute best area on the fly only // when necessary. if (a < m_ptrMBR[best]->getAreaInTime(ivT)) best = cChild; } } return best; } uint32_t Index::findLeastOverlap(const MovingRegion& r) const { OverlapEntry** entries = new OverlapEntry*[m_children]; double leastOverlap = std::numeric_limits::max(); double me = std::numeric_limits::max(); OverlapEntry* best = nullptr; Tools::Interval ivT(m_pTree->m_currentTime, m_pTree->m_currentTime + m_pTree->m_horizon); // find combined region and enlargement of every entry and store it. for (uint32_t cChild = 0; cChild < m_children; ++cChild) { try { entries[cChild] = new OverlapEntry(); } catch (...) { for (uint32_t i = 0; i < cChild; ++i) delete entries[i]; delete[] entries; throw; } entries[cChild]->m_index = cChild; entries[cChild]->m_original = m_ptrMBR[cChild]; entries[cChild]->m_combined = m_pTree->m_regionPool.acquire(); m_ptrMBR[cChild]->getCombinedRegionAfterTime(m_pTree->m_currentTime, *(entries[cChild]->m_combined), r); entries[cChild]->m_oa = entries[cChild]->m_original->getAreaInTime(ivT); entries[cChild]->m_ca = entries[cChild]->m_combined->getAreaInTime(ivT); entries[cChild]->m_enlargement = entries[cChild]->m_ca - entries[cChild]->m_oa; if (entries[cChild]->m_enlargement < me) { me = entries[cChild]->m_enlargement; best = entries[cChild]; } else if (entries[cChild]->m_enlargement == me && entries[cChild]->m_oa < best->m_oa) { best = entries[cChild]; } } if (me < -std::numeric_limits::epsilon() || me > std::numeric_limits::epsilon()) { uint32_t cIterations; if (m_children > m_pTree->m_nearMinimumOverlapFactor) { // sort entries in increasing order of enlargement. ::qsort(entries, m_children, sizeof(OverlapEntry*), OverlapEntry::compareEntries); assert(entries[0]->m_enlargement <= entries[m_children - 1]->m_enlargement); cIterations = m_pTree->m_nearMinimumOverlapFactor; } else { cIterations = m_children; } // calculate overlap of most important original entries (near minimum overlap cost). for (uint32_t cIndex = 0; cIndex < cIterations; ++cIndex) { double dif = 0.0; OverlapEntry* e = entries[cIndex]; for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (e->m_index != cChild) { double f = e->m_combined->getIntersectingAreaInTime(ivT, *(m_ptrMBR[cChild])); if (f != 0.0) dif += f - e->m_original->getIntersectingAreaInTime(ivT, *(m_ptrMBR[cChild])); } } // for (cChild) if (dif < leastOverlap) { leastOverlap = dif; best = entries[cIndex]; } else if (dif == leastOverlap) { if (e->m_enlargement == best->m_enlargement) { // keep the one with least area. if (e->m_original->getAreaInTime(ivT) < best->m_original->getAreaInTime(ivT)) best = entries[cIndex]; } else { // keep the one with least enlargement. if (e->m_enlargement < best->m_enlargement) best = entries[cIndex]; } } } // for (cIndex) } uint32_t ret = best->m_index; for (uint32_t cChild = 0; cChild < m_children; ++cChild) { delete entries[cChild]; } delete[] entries; return ret; } void Index::adjustTree(Node* n, std::stack& pathBuffer) { ++(m_pTree->m_stats.m_adjustments); // find entry pointing to old node; uint32_t child; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == n->m_identifier) break; } assert(child < m_children); // MBR needs recalculation if either: // 1. the NEW child MBR is not contained. // 2. the OLD child MBR is touching. //Tools::Interval ivT(m_pTree->m_currentTime, m_pTree->m_currentTime + m_pTree->m_horizon); //bool bContained = m_nodeMBR.containsRegionInTime(ivT, n->m_nodeMBR); *(m_ptrMBR[child]) = n->m_nodeMBR; //if (! bContained) //{ // update the MBR at the current time anyway, to make tighter. m_nodeMBR.m_startTime = m_pTree->m_currentTime; for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); m_nodeMBR.m_pVLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pVHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->getExtrapolatedLow(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->getExtrapolatedHigh(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pVLow[cDim] = std::min(m_nodeMBR.m_pVLow[cDim], m_ptrMBR[cChild]->m_pVLow[cDim]); m_nodeMBR.m_pVHigh[cDim] = std::max(m_nodeMBR.m_pVHigh[cDim], m_ptrMBR[cChild]->m_pVHigh[cDim]); } m_nodeMBR.m_pLow[cDim] -= 2.0 * std::numeric_limits::epsilon(); m_nodeMBR.m_pHigh[cDim] += 2.0 * std::numeric_limits::epsilon(); } //} #ifndef NDEBUG for (uint32_t cChild = 0; cChild < m_children; ++cChild) { assert(m_nodeMBR.containsRegionAfterTime(m_pTree->m_currentTime, *(m_ptrMBR[cChild])) == true); } #endif m_pTree->writeNode(this); if (/*! bContained && */ ! pathBuffer.empty()) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); } } void Index::adjustTree(Node* n1, Node* n2, std::stack& pathBuffer, uint8_t* overflowTable) { ++(m_pTree->m_stats.m_adjustments); // find entry pointing to old node; uint32_t child; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == n1->m_identifier) break; } assert(child < m_children); // MBR needs recalculation if either: // 1. the NEW child MBR is not contained. // 2. the OLD child MBR is touching. //Tools::Interval ivT(m_pTree->m_currentTime, m_pTree->m_currentTime + m_pTree->m_horizon); //bool bContained = m_nodeMBR.containsRegionInTime(ivT, n1->m_nodeMBR); *(m_ptrMBR[child]) = n1->m_nodeMBR; //if (! bContaied) //{ m_nodeMBR.m_startTime = m_pTree->m_currentTime; for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); m_nodeMBR.m_pVLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pVHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->getExtrapolatedLow(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->getExtrapolatedHigh(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pVLow[cDim] = std::min(m_nodeMBR.m_pVLow[cDim], m_ptrMBR[cChild]->m_pVLow[cDim]); m_nodeMBR.m_pVHigh[cDim] = std::max(m_nodeMBR.m_pVHigh[cDim], m_ptrMBR[cChild]->m_pVHigh[cDim]); } m_nodeMBR.m_pLow[cDim] -= 2.0 * std::numeric_limits::epsilon(); m_nodeMBR.m_pHigh[cDim] += 2.0 * std::numeric_limits::epsilon(); } //} #ifndef NDEBUG for (uint32_t cChild = 0; cChild < m_children; ++cChild) { assert(m_nodeMBR.containsRegionAfterTime(m_pTree->m_currentTime, *(m_ptrMBR[cChild])) == true); } #endif // No write necessary here. insertData will write the node if needed. //m_pTree->writeNode(this); bool bAdjusted = insertData(0, nullptr, n2->m_nodeMBR, n2->m_identifier, pathBuffer, overflowTable); // if n2 is contained in the node and there was no split or reinsert, // we need to adjust only if recalculation took place. // In all other cases insertData above took care of adjustment. if (! bAdjusted && ! pathBuffer.empty()) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); } } libspatialindex-1.9.3/src/tprtree/Index.h000066400000000000000000000056661355420072700204160ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace TPRTree { class Index : public Node { public: ~Index() override; private: Index(TPRTree* pTree, id_type id, uint32_t level); NodePtr chooseSubtree(const MovingRegion& mbr, uint32_t level, std::stack& pathBuffer) override; NodePtr findLeaf(const MovingRegion& mbr, id_type id, std::stack& pathBuffer) override; void split(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, NodePtr& left, NodePtr& right) override; uint32_t findLeastEnlargement(const MovingRegion&) const; uint32_t findLeastOverlap(const MovingRegion&) const; void adjustTree(Node*, std::stack&); void adjustTree(Node*, Node*, std::stack&, uint8_t* overflowTable); class OverlapEntry { public: uint32_t m_index; double m_enlargement; MovingRegionPtr m_original; MovingRegionPtr m_combined; double m_oa; double m_ca; static int compareEntries(const void* pv1, const void* pv2) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" OverlapEntry* pe1 = * (OverlapEntry**) pv1; OverlapEntry* pe2 = * (OverlapEntry**) pv2; #pragma GCC diagnostic pop if (pe1->m_enlargement < pe2->m_enlargement) return -1; if (pe1->m_enlargement > pe2->m_enlargement) return 1; return 0; } }; // OverlapEntry friend class TPRTree; friend class Node; friend class BulkLoader; }; // Index } } libspatialindex-1.9.3/src/tprtree/Leaf.cc000066400000000000000000000114511355420072700203410ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include "TPRTree.h" #include "Node.h" #include "Index.h" #include "Leaf.h" using namespace SpatialIndex; using namespace SpatialIndex::TPRTree; Leaf::~Leaf() = default; Leaf::Leaf(SpatialIndex::TPRTree::TPRTree* pTree, id_type id) : Node(pTree, id, 0, pTree->m_leafCapacity) { } NodePtr Leaf::chooseSubtree(const MovingRegion&, uint32_t, std::stack&) { // should make sure to relinquish other PoolPointer lists that might be pointing to the // same leaf. return NodePtr(this, &(m_pTree->m_leafPool)); } NodePtr Leaf::findLeaf(const MovingRegion&, id_type id, std::stack&) { for (uint32_t cChild = 0; cChild < m_children; ++cChild) { // should make sure to relinquish other PoolPointer lists that might be pointing to the // same leaf. if (m_pIdentifier[cChild] == id /*&& mbr == *(m_ptrMBR[cChild])*/) return NodePtr(this, &(m_pTree->m_leafPool)); } return NodePtr(); } void Leaf::split(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, NodePtr& pLeft, NodePtr& pRight) { ++(m_pTree->m_stats.m_splits); std::vector g1, g2; switch (m_pTree->m_treeVariant) { case TPRV_RSTAR: rstarSplit(dataLength, pData, mbr, id, g1, g2); break; default: throw Tools::NotSupportedException("Leaf::split: Tree variant not supported."); } pLeft = m_pTree->m_leafPool.acquire(); pRight = m_pTree->m_leafPool.acquire(); if (pLeft.get() == nullptr) pLeft = NodePtr(new Leaf(m_pTree, -1), &(m_pTree->m_leafPool)); if (pRight.get() == nullptr) pRight = NodePtr(new Leaf(m_pTree, -1), &(m_pTree->m_leafPool)); pLeft->m_nodeMBR = m_pTree->m_infiniteRegion; pRight->m_nodeMBR = m_pTree->m_infiniteRegion; uint32_t cIndex; for (cIndex = 0; cIndex < g1.size(); ++cIndex) { pLeft->insertEntry(m_pDataLength[g1[cIndex]], m_pData[g1[cIndex]], *(m_ptrMBR[g1[cIndex]]), m_pIdentifier[g1[cIndex]]); // we don't want to delete the data array from this node's destructor! m_pData[g1[cIndex]] = nullptr; } for (cIndex = 0; cIndex < g2.size(); ++cIndex) { pRight->insertEntry(m_pDataLength[g2[cIndex]], m_pData[g2[cIndex]], *(m_ptrMBR[g2[cIndex]]), m_pIdentifier[g2[cIndex]]); // we don't want to delete the data array from this node's destructor! m_pData[g2[cIndex]] = nullptr; } } void Leaf::deleteData(id_type id, std::stack& pathBuffer) { uint32_t child; for (child = 0; child < m_children; ++child) { if (m_pIdentifier[child] == id) break; } deleteEntry(child); m_pTree->writeNode(this); std::stack toReinsert; NodePtr ptrThis(this, &(m_pTree->m_leafPool)); condenseTree(toReinsert, pathBuffer, ptrThis); ptrThis.relinquish(); // re-insert eliminated nodes. while (! toReinsert.empty()) { NodePtr n = toReinsert.top(); toReinsert.pop(); m_pTree->deleteNode(n.get()); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { // keep this in the for loop. The tree height might change after insertions. uint8_t* overflowTable = new uint8_t[m_pTree->m_stats.m_treeHeight]; memset(overflowTable, 0, m_pTree->m_stats.m_treeHeight); m_pTree->insertData_impl(n->m_pDataLength[cChild], n->m_pData[cChild], *(n->m_ptrMBR[cChild]), n->m_pIdentifier[cChild], n->m_level, overflowTable); n->m_pData[cChild] = nullptr; delete[] overflowTable; } if (n.get() == this) n.relinquish(); } } libspatialindex-1.9.3/src/tprtree/Leaf.h000066400000000000000000000041641355420072700202060ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace TPRTree { class Leaf : public Node { public: ~Leaf() override; private: Leaf(TPRTree* pTree, id_type id); NodePtr chooseSubtree(const MovingRegion& mbr, uint32_t level, std::stack& pathBuffer) override; NodePtr findLeaf(const MovingRegion& mbr, id_type id, std::stack& pathBuffer) override; void split(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, NodePtr& left, NodePtr& right) override; virtual void deleteData(id_type id, std::stack& pathBuffer); friend class TPRTree; friend class BulkLoader; }; // Leaf } } libspatialindex-1.9.3/src/tprtree/Node.cc000066400000000000000000001110711355420072700203560ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #include "TPRTree.h" #include "Node.h" #include "Index.h" using namespace SpatialIndex; using namespace SpatialIndex::TPRTree; // // Tools::IObject interface // Tools::IObject* Node::clone() { throw Tools::NotSupportedException("IObject::clone should never be called."); } // // Tools::ISerializable interface // uint32_t Node::getByteArraySize() { return (sizeof(uint32_t) + sizeof(uint32_t) + sizeof(uint32_t) + sizeof(double) + (m_children * (4 * m_pTree->m_dimension * sizeof(double) + sizeof(double) + sizeof(id_type) + sizeof(uint32_t))) + m_totalDataLength + (4 * m_pTree->m_dimension * sizeof(double))); } void Node::loadFromByteArray(const uint8_t* ptr) { m_nodeMBR = m_pTree->m_infiniteRegion; // skip the node type information, it is not needed. ptr += sizeof(uint32_t); memcpy(&m_level, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_children, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&(m_nodeMBR.m_startTime), ptr, sizeof(double)); ptr += sizeof(double); m_nodeMBR.m_endTime = std::numeric_limits::max(); //memcpy(&(m_nodeMBR.m_endTime), ptr, sizeof(double)); //ptr += sizeof(double); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_ptrMBR[cChild] = m_pTree->m_regionPool.acquire(); m_ptrMBR[cChild]->makeDimension(m_pTree->m_dimension); memcpy(m_ptrMBR[cChild]->m_pLow, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_ptrMBR[cChild]->m_pHigh, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_ptrMBR[cChild]->m_pVLow, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_ptrMBR[cChild]->m_pVHigh, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(&(m_ptrMBR[cChild]->m_startTime), ptr, sizeof(double)); ptr += sizeof(double); m_ptrMBR[cChild]->m_endTime = std::numeric_limits::max(); memcpy(&(m_pIdentifier[cChild]), ptr, sizeof(id_type)); ptr += sizeof(id_type); memcpy(&(m_pDataLength[cChild]), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_pDataLength[cChild] > 0) { m_totalDataLength += m_pDataLength[cChild]; m_pData[cChild] = new uint8_t[m_pDataLength[cChild]]; memcpy(m_pData[cChild], ptr, m_pDataLength[cChild]); ptr += m_pDataLength[cChild]; } else { m_pData[cChild] = nullptr; } //m_nodeMBR.combineRegion(*(m_ptrMBR[cChild])); } memcpy(m_nodeMBR.m_pLow, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_nodeMBR.m_pHigh, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_nodeMBR.m_pVLow, ptr, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(m_nodeMBR.m_pVHigh, ptr, m_pTree->m_dimension * sizeof(double)); //ptr += m_pTree->m_dimension * sizeof(double); } void Node::storeToByteArray(uint8_t** data, uint32_t& len) { len = getByteArraySize(); *data = new uint8_t[len]; uint8_t* ptr = *data; uint32_t nodeType; if (m_level == 0) nodeType = PersistentLeaf; else nodeType = PersistentIndex; memcpy(ptr, &nodeType, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_level, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_children, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &(m_nodeMBR.m_startTime), sizeof(double)); ptr += sizeof(double); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { memcpy(ptr, m_ptrMBR[cChild]->m_pLow, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_ptrMBR[cChild]->m_pHigh, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_ptrMBR[cChild]->m_pVLow, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_ptrMBR[cChild]->m_pVHigh, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, &(m_ptrMBR[cChild]->m_startTime), sizeof(double)); ptr += sizeof(double); memcpy(ptr, &(m_pIdentifier[cChild]), sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &(m_pDataLength[cChild]), sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_pDataLength[cChild] > 0) { memcpy(ptr, m_pData[cChild], m_pDataLength[cChild]); ptr += m_pDataLength[cChild]; } } // store the node MBR for efficiency. This increases the node size a little bit. memcpy(ptr, m_nodeMBR.m_pLow, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_nodeMBR.m_pHigh, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_nodeMBR.m_pVLow, m_pTree->m_dimension * sizeof(double)); ptr += m_pTree->m_dimension * sizeof(double); memcpy(ptr, m_nodeMBR.m_pVHigh, m_pTree->m_dimension * sizeof(double)); //ptr += m_pTree->m_dimension * sizeof(double); assert(len == (ptr - *data) + m_pTree->m_dimension * sizeof(double)); } // // SpatialIndex::IEntry interface // SpatialIndex::id_type Node::getIdentifier() const { return m_identifier; } void Node::getShape(IShape** out) const { *out = new MovingRegion(m_nodeMBR); } // // SpatialIndex::INode interface // uint32_t Node::getChildrenCount() const { return m_children; } SpatialIndex::id_type Node::getChildIdentifier(uint32_t index) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); return m_pIdentifier[index]; } void Node::getChildShape(uint32_t index, IShape** out) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); *out = new MovingRegion(*(m_ptrMBR[index])); } void Node::getChildData(uint32_t index, uint32_t& length, uint8_t** data) const { if (index >= m_children) throw Tools::IndexOutOfBoundsException(index); if (m_pData[index] == nullptr) { length = 0; data = nullptr; } else { length = m_pDataLength[index]; *data = m_pData[index]; } } uint32_t Node::getLevel() const { return m_level; } bool Node::isLeaf() const { return (m_level == 0); } bool Node::isIndex() const { return (m_level != 0); } // // Internal // Node::Node() = default; Node::Node(SpatialIndex::TPRTree::TPRTree* pTree, id_type id, uint32_t level, uint32_t capacity) : m_pTree(pTree), m_level(level), m_identifier(id), m_children(0), m_capacity(capacity), m_pData(nullptr), m_ptrMBR(nullptr), m_pIdentifier(nullptr), m_pDataLength(nullptr), m_totalDataLength(0) { m_nodeMBR.makeInfinite(m_pTree->m_dimension); try { m_pDataLength = new uint32_t[m_capacity + 1]; m_pData = new uint8_t*[m_capacity + 1]; m_ptrMBR = new MovingRegionPtr[m_capacity + 1]; m_pIdentifier = new id_type[m_capacity + 1]; } catch (...) { delete[] m_pDataLength; delete[] m_pData; delete[] m_ptrMBR; delete[] m_pIdentifier; throw; } } Node::~Node() { if (m_pData != nullptr) { for (uint32_t cChild = 0; cChild < m_children; ++cChild) { if (m_pData[cChild] != nullptr) delete[] m_pData[cChild]; } delete[] m_pData; } delete[] m_pDataLength; delete[] m_ptrMBR; delete[] m_pIdentifier; } Node& Node::operator=(const Node&) { throw Tools::IllegalStateException("Node::operator =: This should never be called."); } bool Node::insertEntry(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id) { assert(m_children < m_capacity); m_pDataLength[m_children] = dataLength; m_pData[m_children] = pData; m_ptrMBR[m_children] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children]) = mbr; m_pIdentifier[m_children] = id; m_totalDataLength += dataLength; ++m_children; if (m_nodeMBR.m_startTime != m_pTree->m_currentTime) { m_nodeMBR.m_startTime = m_pTree->m_currentTime; for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); m_nodeMBR.m_pVLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pVHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->getExtrapolatedLow(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->getExtrapolatedHigh(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pVLow[cDim] = std::min(m_nodeMBR.m_pVLow[cDim], m_ptrMBR[cChild]->m_pVLow[cDim]); m_nodeMBR.m_pVHigh[cDim] = std::max(m_nodeMBR.m_pVHigh[cDim], m_ptrMBR[cChild]->m_pVHigh[cDim]); } m_nodeMBR.m_pLow[cDim] -= 2.0 * std::numeric_limits::epsilon(); m_nodeMBR.m_pHigh[cDim] += 2.0 * std::numeric_limits::epsilon(); } } else if ( //m_nodeMBR.m_pLow[0] != std::numeric_limits::max() && ! m_nodeMBR.containsRegionAfterTime(m_pTree->m_currentTime, mbr)) { for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { double l = m_nodeMBR.getExtrapolatedLow(cDim, m_pTree->m_currentTime); double rl = mbr.getExtrapolatedLow(cDim, m_pTree->m_currentTime); if (rl <= l) { m_nodeMBR.m_pLow[cDim] = rl - 2.0 * std::numeric_limits::epsilon(); } double h = m_nodeMBR.getExtrapolatedHigh(cDim, m_pTree->m_currentTime); double rh = mbr.getExtrapolatedHigh(cDim, m_pTree->m_currentTime); if (rh >= h) { m_nodeMBR.m_pHigh[cDim] = rh + 2.0 * std::numeric_limits::epsilon(); } m_nodeMBR.m_pVLow[cDim] = std::min(m_nodeMBR.m_pVLow[cDim], mbr.m_pVLow[cDim]); m_nodeMBR.m_pVHigh[cDim] = std::max(m_nodeMBR.m_pVHigh[cDim], mbr.m_pVHigh[cDim]); } } #ifndef NDEBUG for (uint32_t cChild = 0; cChild < m_children; ++cChild) { assert(m_nodeMBR.containsRegionAfterTime(m_nodeMBR.m_startTime, *(m_ptrMBR[cChild]))); } #endif return true; } void Node::deleteEntry(uint32_t index) { assert(index >= 0 && index < m_children); // cache it, since I might need it for "touches" later. MovingRegionPtr ptrR = m_ptrMBR[index]; m_totalDataLength -= m_pDataLength[index]; if (m_pData[index] != nullptr) delete[] m_pData[index]; if (m_children > 1 && index != m_children - 1) { m_pDataLength[index] = m_pDataLength[m_children - 1]; m_pData[index] = m_pData[m_children - 1]; m_ptrMBR[index] = m_ptrMBR[m_children - 1]; m_pIdentifier[index] = m_pIdentifier[m_children - 1]; } --m_children; // WARNING: index has now changed. Do not use it below here. if (m_children == 0) { m_nodeMBR = m_pTree->m_infiniteRegion; } else //if (m_pTree->m_bTightMBRs && m_nodeMBR.touchesRegion(*ptrR)) { m_nodeMBR.m_startTime = m_pTree->m_currentTime; for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); m_nodeMBR.m_pVLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pVHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->getExtrapolatedLow(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->getExtrapolatedHigh(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pVLow[cDim] = std::min(m_nodeMBR.m_pVLow[cDim], m_ptrMBR[cChild]->m_pVLow[cDim]); m_nodeMBR.m_pVHigh[cDim] = std::max(m_nodeMBR.m_pVHigh[cDim], m_ptrMBR[cChild]->m_pVHigh[cDim]); } m_nodeMBR.m_pLow[cDim] -= 2.0 * std::numeric_limits::epsilon(); m_nodeMBR.m_pHigh[cDim] += 2.0 * std::numeric_limits::epsilon(); } #ifndef NDEBUG for (uint32_t cChild = 0; cChild < m_children; ++cChild) { assert(m_nodeMBR.containsRegionAfterTime(m_pTree->m_currentTime, *(m_ptrMBR[cChild])) == true); } #endif } } bool Node::insertData(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, std::stack& pathBuffer, uint8_t* overflowTable) { if (m_children < m_capacity) { bool bNeedToAdjust = insertEntry(dataLength, pData, mbr, id); m_pTree->writeNode(this); if (bNeedToAdjust && ! pathBuffer.empty()) { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); } return bNeedToAdjust; } else if (false && m_pTree->m_treeVariant == TPRV_RSTAR && !pathBuffer.empty() && overflowTable[m_level] == 0) { overflowTable[m_level] = 1; std::vector vReinsert, vKeep; reinsertData(dataLength, pData, mbr, id, vReinsert, vKeep); uint32_t lReinsert = static_cast(vReinsert.size()); uint32_t lKeep = static_cast(vKeep.size()); uint8_t** reinsertdata = nullptr; MovingRegionPtr* reinsertmbr = nullptr; id_type* reinsertid = nullptr; uint32_t* reinsertlen = nullptr; uint8_t** keepdata = nullptr; MovingRegionPtr* keepmbr = nullptr; id_type* keepid = nullptr; uint32_t* keeplen = nullptr; try { reinsertdata = new uint8_t*[lReinsert]; reinsertmbr = new MovingRegionPtr[lReinsert]; reinsertid = new id_type[lReinsert]; reinsertlen = new uint32_t[lReinsert]; keepdata = new uint8_t*[m_capacity + 1]; keepmbr = new MovingRegionPtr[m_capacity + 1]; keepid = new id_type[m_capacity + 1]; keeplen = new uint32_t[m_capacity + 1]; } catch (...) { delete[] reinsertdata; delete[] reinsertmbr; delete[] reinsertid; delete[] reinsertlen; delete[] keepdata; delete[] keepmbr; delete[] keepid; delete[] keeplen; throw; } uint32_t cIndex; for (cIndex = 0; cIndex < lReinsert; ++cIndex) { reinsertlen[cIndex] = m_pDataLength[vReinsert[cIndex]]; reinsertdata[cIndex] = m_pData[vReinsert[cIndex]]; reinsertmbr[cIndex] = m_ptrMBR[vReinsert[cIndex]]; reinsertid[cIndex] = m_pIdentifier[vReinsert[cIndex]]; } for (cIndex = 0; cIndex < lKeep; ++cIndex) { keeplen[cIndex] = m_pDataLength[vKeep[cIndex]]; keepdata[cIndex] = m_pData[vKeep[cIndex]]; keepmbr[cIndex] = m_ptrMBR[vKeep[cIndex]]; keepid[cIndex] = m_pIdentifier[vKeep[cIndex]]; } delete[] m_pDataLength; delete[] m_pData; delete[] m_ptrMBR; delete[] m_pIdentifier; m_pDataLength = keeplen; m_pData = keepdata; m_ptrMBR = keepmbr; m_pIdentifier = keepid; m_children = lKeep; m_totalDataLength = 0; for (uint32_t cChild = 0; cChild < m_children; ++cChild) m_totalDataLength += m_pDataLength[cChild]; m_nodeMBR.m_startTime = m_pTree->m_currentTime; for (uint32_t cDim = 0; cDim < m_nodeMBR.m_dimension; ++cDim) { m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); m_nodeMBR.m_pVLow[cDim] = std::numeric_limits::max(); m_nodeMBR.m_pVHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < m_children; ++cChild) { m_nodeMBR.m_pLow[cDim] = std::min(m_nodeMBR.m_pLow[cDim], m_ptrMBR[cChild]->getExtrapolatedLow(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pHigh[cDim] = std::max(m_nodeMBR.m_pHigh[cDim], m_ptrMBR[cChild]->getExtrapolatedHigh(cDim, m_nodeMBR.m_startTime)); m_nodeMBR.m_pVLow[cDim] = std::min(m_nodeMBR.m_pVLow[cDim], m_ptrMBR[cChild]->m_pVLow[cDim]); m_nodeMBR.m_pVHigh[cDim] = std::max(m_nodeMBR.m_pVHigh[cDim], m_ptrMBR[cChild]->m_pVHigh[cDim]); } m_nodeMBR.m_pLow[cDim] -= 2.0 * std::numeric_limits::epsilon(); m_nodeMBR.m_pHigh[cDim] += 2.0 * std::numeric_limits::epsilon(); } #ifndef NDEBUG for (uint32_t cChild = 0; cChild < m_children; ++cChild) { assert(m_nodeMBR.containsRegionAfterTime(m_nodeMBR.m_startTime, *(m_ptrMBR[cChild]))); } #endif m_pTree->writeNode(this); // Divertion from R*-Tree algorithm here. First adjust // the path to the root, then start reinserts, to avoid complicated handling // of changes to the same node from multiple insertions. id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(this, pathBuffer); for (cIndex = 0; cIndex < lReinsert; ++cIndex) { m_pTree->insertData_impl( reinsertlen[cIndex], reinsertdata[cIndex], *(reinsertmbr[cIndex]), reinsertid[cIndex], m_level, overflowTable); } delete[] reinsertdata; delete[] reinsertmbr; delete[] reinsertid; delete[] reinsertlen; return true; } else { NodePtr n; NodePtr nn; split(dataLength, pData, mbr, id, n, nn); if (pathBuffer.empty()) { n->m_level = m_level; nn->m_level = m_level; n->m_identifier = -1; nn->m_identifier = -1; #ifndef NDEBUG for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { assert(n->m_nodeMBR.containsRegionAfterTime(n->m_nodeMBR.m_startTime, *(n->m_ptrMBR[cChild])) == true); } for (uint32_t cChild = 0; cChild < nn->m_children; ++cChild) { assert(nn->m_nodeMBR.containsRegionAfterTime(nn->m_nodeMBR.m_startTime, *(nn->m_ptrMBR[cChild])) == true); } #endif m_pTree->writeNode(n.get()); m_pTree->writeNode(nn.get()); NodePtr ptrR = m_pTree->m_indexPool.acquire(); if (ptrR.get() == nullptr) { ptrR = NodePtr(new Index(m_pTree, m_pTree->m_rootID, m_level + 1), &(m_pTree->m_indexPool)); } else { //ptrR->m_pTree = m_pTree; ptrR->m_identifier = m_pTree->m_rootID; ptrR->m_level = m_level + 1; ptrR->m_nodeMBR = m_pTree->m_infiniteRegion; } ptrR->insertEntry(0, nullptr, n->m_nodeMBR, n->m_identifier); ptrR->insertEntry(0, nullptr, nn->m_nodeMBR, nn->m_identifier); m_pTree->writeNode(ptrR.get()); m_pTree->m_stats.m_nodesInLevel[m_level] = 2; m_pTree->m_stats.m_nodesInLevel.push_back(1); m_pTree->m_stats.m_treeHeight = m_level + 2; } else { n->m_level = m_level; nn->m_level = m_level; n->m_identifier = m_identifier; nn->m_identifier = -1; #ifndef NDEBUG for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { assert(n->m_nodeMBR.containsRegionAfterTime(n->m_nodeMBR.m_startTime, *(n->m_ptrMBR[cChild])) == true); } for (uint32_t cChild = 0; cChild < nn->m_children; ++cChild) { assert(nn->m_nodeMBR.containsRegionAfterTime(nn->m_nodeMBR.m_startTime, *(nn->m_ptrMBR[cChild])) == true); } #endif m_pTree->writeNode(n.get()); m_pTree->writeNode(nn.get()); id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrN = m_pTree->readNode(cParent); Index* p = static_cast(ptrN.get()); p->adjustTree(n.get(), nn.get(), pathBuffer, overflowTable); } return true; } } void Node::reinsertData(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, std::vector& reinsert, std::vector& keep) { ReinsertEntry** v = new ReinsertEntry*[m_capacity + 1]; m_pDataLength[m_children] = dataLength; m_pData[m_children] = pData; m_ptrMBR[m_children] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_children]) = mbr; m_pIdentifier[m_children] = id; Tools::Interval ivT(m_pTree->m_currentTime, m_pTree->m_currentTime + m_pTree->m_horizon); for (uint32_t cChild = 0; cChild < m_capacity + 1; ++cChild) { try { v[cChild] = new ReinsertEntry(cChild, 0.0); } catch (...) { for (uint32_t i = 0; i < cChild; ++i) delete v[i]; delete[] v; throw; } v[cChild]->m_dist = m_nodeMBR.getCenterDistanceInTime(ivT, *(m_ptrMBR[cChild])); } // sort by increasing order of distances. ::qsort(v, m_capacity + 1, sizeof(ReinsertEntry*), ReinsertEntry::compareReinsertEntry); uint32_t cReinsert = static_cast(std::floor((m_capacity + 1) * m_pTree->m_reinsertFactor)); uint32_t cCount; for (cCount = 0; cCount < cReinsert; ++cCount) { reinsert.push_back(v[cCount]->m_index); delete v[cCount]; } for (cCount = cReinsert; cCount < m_capacity + 1; ++cCount) { keep.push_back(v[cCount]->m_index); delete v[cCount]; } delete[] v; } /* void Node::rtreeSplit(uint32_t dataLength, uint8_t* pData, Region& mbr, id_type id, std::vector& group1, std::vector& group2) { uint32_t cChild; uint32_t minimumLoad = static_cast(std::floor(m_capacity * m_pTree->m_fillFactor)); // use this mask array for marking visited entries. uint8_t* mask = new uint8_t[m_capacity + 1]; memset(mask, 0, m_capacity + 1); // insert new data in the node for easier manipulation. Data arrays are always // by one larger than node capacity. m_pDataLength[m_capacity] = dataLength; m_pData[m_capacity] = pData; m_ptrMBR[m_capacity] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_capacity]) = mbr; m_pIdentifier[m_capacity] = id; // initialize each group with the seed entries. uint32_t seed1, seed2; pickSeeds(seed1, seed2); group1.push_back(seed1); group2.push_back(seed2); mask[seed1] = 1; mask[seed2] = 1; // find MBR of each group. RegionPtr mbr1 = m_pTree->m_regionPool.acquire(); *mbr1 = *(m_ptrMBR[seed1]); RegionPtr mbr2 = m_pTree->m_regionPool.acquire(); *mbr2 = *(m_ptrMBR[seed2]); // count how many entries are left unchecked (exclude the seeds here.) uint32_t cRemaining = m_capacity + 1 - 2; while (cRemaining > 0) { if (minimumLoad - group1.size() == cRemaining) { // all remaining entries must be assigned to group1 to comply with minimun load requirement. for (cChild = 0; cChild < m_capacity + 1; ++cChild) { if (mask[cChild] == 0) { group1.push_back(cChild); mask[cChild] = 1; --cRemaining; } } } else if (minimumLoad - group2.size() == cRemaining) { // all remaining entries must be assigned to group2 to comply with minimun load requirement. for (cChild = 0; cChild < m_capacity + 1; ++cChild) { if (mask[cChild] == 0) { group2.push_back(cChild); mask[cChild] = 1; --cRemaining; } } } else { // For all remaining entries compute the difference of the cost of grouping an // entry in either group. When done, choose the entry that yielded the maximum // difference. In case of linear split, select any entry (e.g. the first one.) uint32_t sel; double md1 = 0.0, md2 = 0.0; double m = -std::numeric_limits::max(); double d1, d2, d; double a1 = mbr1->getArea(); double a2 = mbr2->getArea(); RegionPtr a = m_pTree->m_regionPool.acquire(); RegionPtr b = m_pTree->m_regionPool.acquire(); for (cChild = 0; cChild < m_capacity + 1; ++cChild) { if (mask[cChild] == 0) { mbr1->getCombinedRegion(*a, *(m_ptrMBR[cChild])); d1 = a->getArea() - a1; mbr2->getCombinedRegion(*b, *(m_ptrMBR[cChild])); d2 = b->getArea() - a2; d = std::abs(d1 - d2); if (d > m) { m = d; md1 = d1; md2 = d2; sel = cChild; if (m_pTree->m_treeVariant== RV_LINEAR || m_pTree->m_treeVariant == RV_RSTAR) break; } } } // determine the group where we should add the new entry. int32_t group = -1; if (md1 < md2) { group1.push_back(sel); group = 1; } else if (md2 < md1) { group2.push_back(sel); group = 2; } else if (a1 < a2) { group1.push_back(sel); group = 1; } else if (a2 < a1) { group2.push_back(sel); group = 2; } else if (group1.size() < group2.size()) { group1.push_back(sel); group = 1; } else if (group2.size() < group1.size()) { group2.push_back(sel); group = 2; } else { group1.push_back(sel); group = 1; } mask[sel] = 1; --cRemaining; if (group == 1) { mbr1->combineRegion(*(m_ptrMBR[sel])); } else { mbr2->combineRegion(*(m_ptrMBR[sel])); } } } delete[] mask; } */ void Node::rstarSplit(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, std::vector& group1, std::vector& group2) { RstarSplitEntry** dataLow = nullptr; RstarSplitEntry** dataHigh = nullptr; RstarSplitEntry** dataVLow = nullptr; RstarSplitEntry** dataVHigh = nullptr; try { dataLow = new RstarSplitEntry*[m_capacity + 1]; dataHigh = new RstarSplitEntry*[m_capacity + 1]; dataVLow = new RstarSplitEntry*[m_capacity + 1]; dataVHigh = new RstarSplitEntry*[m_capacity + 1]; } catch (...) { delete[] dataLow; delete[] dataHigh; delete[] dataVLow; delete[] dataVHigh; throw; } m_pDataLength[m_capacity] = dataLength; m_pData[m_capacity] = pData; m_ptrMBR[m_capacity] = m_pTree->m_regionPool.acquire(); *(m_ptrMBR[m_capacity]) = mbr; m_pIdentifier[m_capacity] = id; uint32_t nodeSPF = static_cast(std::floor((m_capacity + 1) * m_pTree->m_splitDistributionFactor)); uint32_t splitDistribution = (m_capacity + 1) - (2 * nodeSPF) + 2; Tools::Interval ivT(m_pTree->m_currentTime, m_pTree->m_currentTime + m_pTree->m_horizon); uint32_t cChild = 0, cDim, cIndex; for (cChild = 0; cChild <= m_capacity; ++cChild) { try { dataLow[cChild] = new RstarSplitEntry(m_ptrMBR[cChild].get(), cChild, 0); } catch (...) { for (uint32_t i = 0; i < cChild; ++i) delete dataLow[i]; delete[] dataLow; delete[] dataHigh; throw; } dataHigh[cChild] = dataLow[cChild]; dataVLow[cChild] = dataLow[cChild]; dataVHigh[cChild] = dataLow[cChild]; } double minimumMargin = std::numeric_limits::max(); uint32_t splitAxis = std::numeric_limits::max(); uint32_t sortOrder = std::numeric_limits::max(); // chooseSplitAxis. for (cDim = 0; cDim < m_pTree->m_dimension; ++cDim) { ::qsort(dataLow, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareLow); ::qsort(dataHigh, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareHigh); ::qsort(dataVLow, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareVLow); ::qsort(dataVHigh, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareVHigh); // calculate sum of margins and overlap for all distributions. double marginl = 0.0; double marginh = 0.0; double marginvl = 0.0; double marginvh = 0.0; MovingRegion bbl1, bbl2, bbh1, bbh2; MovingRegion bbvl1, bbvl2, bbvh1, bbvh2; for (cChild = 1; cChild <= splitDistribution; ++cChild) { uint32_t l = nodeSPF - 1 + cChild; bbl1 = *(dataLow[0]->m_pRegion); bbh1 = *(dataHigh[0]->m_pRegion); bbvl1 = *(dataVLow[0]->m_pRegion); bbvh1 = *(dataVHigh[0]->m_pRegion); for (cIndex = 1; cIndex < l; ++cIndex) { bbl1.combineRegionAfterTime(m_pTree->m_currentTime, *(dataLow[cIndex]->m_pRegion)); bbh1.combineRegionAfterTime(m_pTree->m_currentTime, *(dataHigh[cIndex]->m_pRegion)); bbvl1.combineRegionAfterTime(m_pTree->m_currentTime, *(dataVLow[cIndex]->m_pRegion)); bbvh1.combineRegionAfterTime(m_pTree->m_currentTime, *(dataVHigh[cIndex]->m_pRegion)); } bbl2 = *(dataLow[l]->m_pRegion); bbh2 = *(dataHigh[l]->m_pRegion); bbvl2 = *(dataVLow[l]->m_pRegion); bbvh2 = *(dataVHigh[l]->m_pRegion); for (cIndex = l + 1; cIndex <= m_capacity; ++cIndex) { bbl2.combineRegionAfterTime(m_pTree->m_currentTime, *(dataLow[cIndex]->m_pRegion)); bbh2.combineRegionAfterTime(m_pTree->m_currentTime, *(dataHigh[cIndex]->m_pRegion)); bbvl2.combineRegionAfterTime(m_pTree->m_currentTime, *(dataVLow[cIndex]->m_pRegion)); bbvh2.combineRegionAfterTime(m_pTree->m_currentTime, *(dataVHigh[cIndex]->m_pRegion)); } marginl += bbl1.getProjectedSurfaceAreaInTime(ivT) + bbl2.getProjectedSurfaceAreaInTime(ivT); marginh += bbh1.getProjectedSurfaceAreaInTime(ivT) + bbh2.getProjectedSurfaceAreaInTime(ivT); marginvl += bbvl1.getProjectedSurfaceAreaInTime(ivT) + bbvl2.getProjectedSurfaceAreaInTime(ivT); marginvh += bbvh1.getProjectedSurfaceAreaInTime(ivT) + bbvh2.getProjectedSurfaceAreaInTime(ivT); } // for (cChild) double margin = std::min(std::min(marginl, marginh), std::min(marginvl, marginvh)); // keep minimum margin as split axis. if (margin < minimumMargin) { minimumMargin = margin; splitAxis = cDim; if (marginl < marginh && marginl < marginvl && marginl < marginvh) sortOrder = 0; else if (marginh < marginl && marginh < marginvl && marginh < marginvh) sortOrder = 1; else if (marginvl < marginl && marginvl < marginh && marginvl < marginvh) sortOrder = 2; else if (marginvh < marginl && marginvh < marginh && marginvh < marginvl) sortOrder = 3; } // increase the dimension according to which the data entries should be sorted. for (cChild = 0; cChild <= m_capacity; ++cChild) { dataLow[cChild]->m_sortDim = cDim + 1; } } // for (cDim) for (cChild = 0; cChild <= m_capacity; ++cChild) { dataLow[cChild]->m_sortDim = splitAxis; } if (sortOrder == 0) ::qsort(dataLow, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareLow); else if (sortOrder == 1) ::qsort(dataLow, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareHigh); else if (sortOrder == 2) ::qsort(dataLow, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareVLow); else if (sortOrder == 3) ::qsort(dataLow, m_capacity + 1, sizeof(RstarSplitEntry*), RstarSplitEntry::compareVHigh); double ma = std::numeric_limits::max(); double mo = std::numeric_limits::max(); uint32_t splitPoint = std::numeric_limits::max(); MovingRegion bb1, bb2; for (cChild = 1; cChild <= splitDistribution; ++cChild) { uint32_t l = nodeSPF - 1 + cChild; bb1 = *(dataLow[0]->m_pRegion); for (cIndex = 1; cIndex < l; ++cIndex) { bb1.combineRegionAfterTime(m_pTree->m_currentTime, *(dataLow[cIndex]->m_pRegion)); } bb2 = *(dataLow[l]->m_pRegion); for (cIndex = l + 1; cIndex <= m_capacity; ++cIndex) { bb2.combineRegionAfterTime(m_pTree->m_currentTime, *(dataLow[cIndex]->m_pRegion)); } double o = bb1.getIntersectingAreaInTime(ivT, bb2); if (o < mo) { splitPoint = cChild; mo = o; ma = bb1.getAreaInTime(ivT) + bb2.getAreaInTime(ivT); } else if (o == mo) { double a = bb1.getAreaInTime(ivT) + bb2.getAreaInTime(ivT); if (a < ma) { splitPoint = cChild; ma = a; } } } // for (cChild) uint32_t l1 = nodeSPF - 1 + splitPoint; for (cIndex = 0; cIndex < l1; ++cIndex) { group1.push_back(dataLow[cIndex]->m_index); delete dataLow[cIndex]; } for (cIndex = l1; cIndex <= m_capacity; ++cIndex) { group2.push_back(dataLow[cIndex]->m_index); delete dataLow[cIndex]; } delete[] dataLow; delete[] dataHigh; delete[] dataVLow; delete[] dataVHigh; } /* void Node::pickSeeds(uint32_t& index1, uint32_t& index2) { double separation = -std::numeric_limits::max(); double inefficiency = -std::numeric_limits::max(); uint32_t cDim, cChild, cIndex; switch (m_pTree->m_treeVariant) { case RV_LINEAR: case RV_RSTAR: for (cDim = 0; cDim < m_pTree->m_dimension; ++cDim) { double leastLower = m_ptrMBR[0]->m_pLow[cDim]; double greatestUpper = m_ptrMBR[0]->m_pHigh[cDim]; uint32_t greatestLower = 0; uint32_t leastUpper = 0; double width; for (cChild = 1; cChild <= m_capacity; ++cChild) { if (m_ptrMBR[cChild]->m_pLow[cDim] > m_ptrMBR[greatestLower]->m_pLow[cDim]) greatestLower = cChild; if (m_ptrMBR[cChild]->m_pHigh[cDim] < m_ptrMBR[leastUpper]->m_pHigh[cDim]) leastUpper = cChild; leastLower = std::min(m_ptrMBR[cChild]->m_pLow[cDim], leastLower); greatestUpper = std::max(m_ptrMBR[cChild]->m_pHigh[cDim], greatestUpper); } width = greatestUpper - leastLower; if (width <= 0) width = 1; double f = (m_ptrMBR[greatestLower]->m_pLow[cDim] - m_ptrMBR[leastUpper]->m_pHigh[cDim]) / width; if (f > separation) { index1 = leastUpper; index2 = greatestLower; separation = f; } } // for (cDim) if (index1 == index2) { if (index2 == 0) ++index2; else --index2; } break; case RV_QUADRATIC: // for each pair of Regions (account for overflow Region too!) for (cChild = 0; cChild < m_capacity; ++cChild) { double a = m_ptrMBR[cChild]->getArea(); for (cIndex = cChild + 1; cIndex <= m_capacity; ++cIndex) { // get the combined MBR of those two entries. Region r; m_ptrMBR[cChild]->getCombinedRegion(r, *(m_ptrMBR[cIndex])); // find the inefficiency of grouping these entries together. double d = r.getArea() - a - m_ptrMBR[cIndex]->getArea(); if (d > inefficiency) { inefficiency = d; index1 = cChild; index2 = cIndex; } } // for (cIndex) } // for (cChild) break; default: throw Tools::NotSupportedException("Node::pickSeeds: Tree variant not supported."); } } */ void Node::condenseTree(std::stack& toReinsert, std::stack& pathBuffer, NodePtr& ptrThis) { uint32_t minimumLoad = static_cast(std::floor(m_capacity * m_pTree->m_fillFactor)); if (pathBuffer.empty()) { // eliminate root if it has only one child. if (m_level != 0 && m_children == 1) { NodePtr ptrN = m_pTree->readNode(m_pIdentifier[0]); m_pTree->deleteNode(ptrN.get()); ptrN->m_identifier = m_pTree->m_rootID; m_pTree->writeNode(ptrN.get()); m_pTree->m_stats.m_nodesInLevel.pop_back(); m_pTree->m_stats.m_treeHeight -= 1; // HACK: pending deleteNode for deleted child will decrease nodesInLevel, later on. m_pTree->m_stats.m_nodesInLevel[m_pTree->m_stats.m_treeHeight - 1] = 2; } } else { id_type cParent = pathBuffer.top(); pathBuffer.pop(); NodePtr ptrParent = m_pTree->readNode(cParent); Index* p = static_cast(ptrParent.get()); // find the entry in the parent, that points to this node. uint32_t child; for (child = 0; child != p->m_children; ++child) { if (p->m_pIdentifier[child] == m_identifier) break; } if (m_children < minimumLoad) { // used space less than the minimum // 1. eliminate node entry from the parent. deleteEntry will fix the parent's MBR. p->deleteEntry(child); // 2. add this node to the stack in order to reinsert its entries. toReinsert.push(ptrThis); } else { // adjust the entry in 'p' to contain the new bounding region of this node. *(p->m_ptrMBR[child]) = m_nodeMBR; // global recalculation necessary since the MBR can only shrink in size, // due to data removal. //if (m_pTree->m_bTightMBRs) //{ p->m_nodeMBR.m_startTime = m_pTree->m_currentTime; for (uint32_t cDim = 0; cDim < p->m_nodeMBR.m_dimension; ++cDim) { p->m_nodeMBR.m_pLow[cDim] = std::numeric_limits::max(); p->m_nodeMBR.m_pHigh[cDim] = -std::numeric_limits::max(); p->m_nodeMBR.m_pVLow[cDim] = std::numeric_limits::max(); p->m_nodeMBR.m_pVHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < p->m_children; ++cChild) { p->m_nodeMBR.m_pLow[cDim] = std::min(p->m_nodeMBR.m_pLow[cDim], p->m_ptrMBR[cChild]->getExtrapolatedLow(cDim, m_pTree->m_currentTime)); p->m_nodeMBR.m_pHigh[cDim] = std::max(p->m_nodeMBR.m_pHigh[cDim], p->m_ptrMBR[cChild]->getExtrapolatedHigh(cDim, m_pTree->m_currentTime)); p->m_nodeMBR.m_pVLow[cDim] = std::min(p->m_nodeMBR.m_pVLow[cDim], p->m_ptrMBR[cChild]->m_pVLow[cDim]); p->m_nodeMBR.m_pVHigh[cDim] = std::max(p->m_nodeMBR.m_pVHigh[cDim], p->m_ptrMBR[cChild]->m_pVHigh[cDim]); } p->m_nodeMBR.m_pLow[cDim] -= 2.0 * std::numeric_limits::epsilon(); p->m_nodeMBR.m_pHigh[cDim] += 2.0 * std::numeric_limits::epsilon(); } //} } // write parent node back to storage. m_pTree->writeNode(p); p->condenseTree(toReinsert, pathBuffer, ptrParent); } } libspatialindex-1.9.3/src/tprtree/Node.h000066400000000000000000000163051355420072700202240ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" namespace SpatialIndex { namespace TPRTree { class TPRTree; class Leaf; class Index; class Node; typedef Tools::PoolPointer NodePtr; class Node : public SpatialIndex::INode { public: ~Node() override; // // Tools::IObject interface // Tools::IObject* clone() override; // // Tools::ISerializable interface // uint32_t getByteArraySize() override; void loadFromByteArray(const uint8_t* data) override; void storeToByteArray(uint8_t** data, uint32_t& len) override; // // SpatialIndex::IEntry interface // id_type getIdentifier() const override; void getShape(IShape** out) const override; // // SpatialIndex::INode interface // uint32_t getChildrenCount() const override; id_type getChildIdentifier(uint32_t index) const override; void getChildShape(uint32_t index, IShape** out) const override; void getChildData(uint32_t index, uint32_t& length, uint8_t** data) const override; uint32_t getLevel() const override; bool isIndex() const override; bool isLeaf() const override; private: Node(); Node(TPRTree* pTree, id_type id, uint32_t level, uint32_t capacity); virtual Node& operator=(const Node&); virtual bool insertEntry(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id); virtual void deleteEntry(uint32_t index); virtual bool insertData(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, std::stack& pathBuffer, uint8_t* overflowTable); virtual void reinsertData(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, std::vector& reinsert, std::vector& keep); virtual void rstarSplit(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, std::vector& group1, std::vector& group2); virtual void condenseTree(std::stack& toReinsert, std::stack& pathBuffer, NodePtr& ptrThis); virtual NodePtr chooseSubtree(const MovingRegion& mbr, uint32_t level, std::stack& pathBuffer) = 0; virtual NodePtr findLeaf(const MovingRegion& mbr, id_type id, std::stack& pathBuffer) = 0; virtual void split(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, NodePtr& left, NodePtr& right) = 0; TPRTree* m_pTree{nullptr}; // Parent of all nodes. uint32_t m_level{0}; // The level of the node in the tree. // Leaves are always at level 0. id_type m_identifier{-1}; // The unique ID of this node. uint32_t m_children{0}; // The number of children pointed by this node. uint32_t m_capacity{0}; // Specifies the node capacity. MovingRegion m_nodeMBR; // The minimum bounding region enclosing all data contained in the node. uint8_t** m_pData{nullptr}; // The data stored in the node. MovingRegionPtr* m_ptrMBR{nullptr}; // The corresponding data MBRs. id_type* m_pIdentifier{nullptr}; // The corresponding data identifiers. uint32_t* m_pDataLength{nullptr}; uint32_t m_totalDataLength{0}; class RstarSplitEntry { public: MovingRegion* m_pRegion; uint32_t m_index; uint32_t m_sortDim; RstarSplitEntry(MovingRegion* pr, uint32_t index, uint32_t dimension) : m_pRegion(pr), m_index(index), m_sortDim(dimension) {} static int compareLow(const void* pv1, const void* pv2) { RstarSplitEntry* pe1 = * (RstarSplitEntry**) pv1; RstarSplitEntry* pe2 = * (RstarSplitEntry**) pv2; if (pe1->m_pRegion->m_pLow[pe1->m_sortDim] < pe2->m_pRegion->m_pLow[pe1->m_sortDim]) return -1; if (pe1->m_pRegion->m_pLow[pe1->m_sortDim] > pe2->m_pRegion->m_pLow[pe1->m_sortDim]) return 1; return 0; } static int compareHigh(const void* pv1, const void* pv2) { RstarSplitEntry* pe1 = * (RstarSplitEntry**) pv1; RstarSplitEntry* pe2 = * (RstarSplitEntry**) pv2; if (pe1->m_pRegion->m_pHigh[pe1->m_sortDim] < pe2->m_pRegion->m_pHigh[pe1->m_sortDim]) return -1; if (pe1->m_pRegion->m_pHigh[pe1->m_sortDim] > pe2->m_pRegion->m_pHigh[pe1->m_sortDim]) return 1; return 0; } static int compareVLow(const void* pv1, const void* pv2) { RstarSplitEntry* pe1 = * (RstarSplitEntry**) pv1; RstarSplitEntry* pe2 = * (RstarSplitEntry**) pv2; if (pe1->m_pRegion->m_pVLow[pe1->m_sortDim] < pe2->m_pRegion->m_pVLow[pe1->m_sortDim]) return -1; if (pe1->m_pRegion->m_pVLow[pe1->m_sortDim] > pe2->m_pRegion->m_pVLow[pe1->m_sortDim]) return 1; return 0; } static int compareVHigh(const void* pv1, const void* pv2) { RstarSplitEntry* pe1 = * (RstarSplitEntry**) pv1; RstarSplitEntry* pe2 = * (RstarSplitEntry**) pv2; if (pe1->m_pRegion->m_pVHigh[pe1->m_sortDim] < pe2->m_pRegion->m_pVHigh[pe1->m_sortDim]) return -1; if (pe1->m_pRegion->m_pVHigh[pe1->m_sortDim] > pe2->m_pRegion->m_pVHigh[pe1->m_sortDim]) return 1; return 0; } }; // RstarSplitEntry class ReinsertEntry { public: uint32_t m_index; double m_dist; ReinsertEntry(uint32_t index, double dist) : m_index(index), m_dist(dist) {} static int compareReinsertEntry(const void* pv1, const void* pv2) { ReinsertEntry* pe1 = * (ReinsertEntry**) pv1; ReinsertEntry* pe2 = * (ReinsertEntry**) pv2; if (pe1->m_dist < pe2->m_dist) return -1; if (pe1->m_dist > pe2->m_dist) return 1; return 0; } }; // ReinsertEntry // Needed to access protected members without having to cast from Node. // It is more efficient than using member functions to access protected members. friend class TPRTree; friend class Leaf; friend class Index; friend class Tools::PointerPool; }; // Node } } #pragma GCC diagnostic pop libspatialindex-1.9.3/src/tprtree/PointerPoolNode.h000066400000000000000000000065251355420072700224220ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "Node.h" namespace Tools { using namespace SpatialIndex; template<> class PointerPool { public: explicit PointerPool(uint32_t capacity) : m_capacity(capacity) { #ifndef NDEBUG m_hits = 0; m_misses = 0; m_pointerCount = 0; #endif } ~PointerPool() { assert(m_pool.size() <= m_capacity); while (! m_pool.empty()) { TPRTree::Node* x = m_pool.top(); m_pool.pop(); #ifndef NDEBUG --m_pointerCount; #endif delete x; } #ifndef NDEBUG std::cerr << "Lost pointers: " << m_pointerCount << std::endl; #endif } PoolPointer acquire() { if (! m_pool.empty()) { TPRTree::Node* p = m_pool.top(); m_pool.pop(); #ifndef NDEBUG ++m_hits; #endif return PoolPointer(p, this); } #ifndef NDEBUG else { // fixme: well sort of... ++m_pointerCount; ++m_misses; } #endif return PoolPointer(); } void release(TPRTree::Node* p) { if (p != nullptr) { if (m_pool.size() < m_capacity) { if (p->m_pData != nullptr) { for (uint32_t cChild = 0; cChild < p->m_children; ++cChild) { if (p->m_pData[cChild] != nullptr) delete[] p->m_pData[cChild]; } } p->m_level = 0; p->m_identifier = -1; p->m_children = 0; p->m_totalDataLength = 0; m_pool.push(p); } else { #ifndef NDEBUG --m_pointerCount; #endif delete p; } assert(m_pool.size() <= m_capacity); } } uint32_t getCapacity() const { return m_capacity; } void setCapacity(uint32_t c) { assert (c >= 0); m_capacity = c; } protected: uint32_t m_capacity; std::stack m_pool; #ifndef NDEBUG public: uint64_t m_hits; uint64_t m_misses; uint64_t m_pointerCount; #endif }; } libspatialindex-1.9.3/src/tprtree/Statistics.cc000066400000000000000000000102521355420072700216220ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include "Statistics.h" using namespace SpatialIndex::TPRTree; Statistics::Statistics() { reset(); } Statistics::Statistics(const Statistics& s) { m_reads = s.m_reads; m_writes = s.m_writes; m_splits = s.m_splits; m_hits = s.m_hits; m_misses = s.m_misses; m_nodes = s.m_nodes; m_adjustments = s.m_adjustments; m_queryResults = s.m_queryResults; m_data = s.m_data; m_treeHeight = s.m_treeHeight; m_nodesInLevel = s.m_nodesInLevel; } Statistics::~Statistics() = default; Statistics& Statistics::operator=(const Statistics& s) { if (this != &s) { m_reads = s.m_reads; m_writes = s.m_writes; m_splits = s.m_splits; m_hits = s.m_hits; m_misses = s.m_misses; m_nodes = s.m_nodes; m_adjustments = s.m_adjustments; m_queryResults = s.m_queryResults; m_data = s.m_data; m_treeHeight = s.m_treeHeight; m_nodesInLevel = s.m_nodesInLevel; } return *this; } uint64_t Statistics::getReads() const { return m_reads; } uint64_t Statistics::getWrites() const { return m_writes; } uint32_t Statistics::getNumberOfNodes() const { return m_nodes; } uint64_t Statistics::getNumberOfData() const { return m_data; } uint64_t Statistics::getSplits() const { return m_splits; } uint64_t Statistics::getHits() const { return m_hits; } uint64_t Statistics::getMisses() const { return m_misses; } uint64_t Statistics::getAdjustments() const { return m_adjustments; } uint64_t Statistics::getQueryResults() const { return m_queryResults; } uint32_t Statistics::getTreeHeight() const { return m_treeHeight; } uint32_t Statistics::getNumberOfNodesInLevel(uint32_t l) const { uint32_t cNodes; try { cNodes = m_nodesInLevel.at(l); } catch (...) { throw Tools::IndexOutOfBoundsException(l); } return cNodes; } void Statistics::reset() { m_reads = 0; m_writes = 0; m_splits = 0; m_hits = 0; m_misses = 0; m_nodes = 0; m_adjustments = 0; m_queryResults = 0; m_data = 0; m_treeHeight = 0; m_nodesInLevel.clear(); } std::ostream& SpatialIndex::TPRTree::operator<<(std::ostream& os, const Statistics& s) { os << "Reads: " << s.m_reads << std::endl << "Writes: " << s.m_writes << std::endl << "Hits: " << s.m_hits << std::endl << "Misses: " << s.m_misses << std::endl << "Tree height: " << s.m_treeHeight << std::endl << "Number of data: " << s.m_data << std::endl << "Number of nodes: " << s.m_nodes << std::endl; for (uint32_t cLevel = 0; cLevel < s.m_treeHeight; ++cLevel) { os << "Level " << cLevel << " pages: " << s.m_nodesInLevel[cLevel] << std::endl; } os << "Splits: " << s.m_splits << std::endl << "Adjustments: " << s.m_adjustments << std::endl << "Query results: " << s.m_queryResults << std::endl; return os; } libspatialindex-1.9.3/src/tprtree/Statistics.h000066400000000000000000000056041355420072700214710ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once namespace SpatialIndex { namespace TPRTree { class TPRTree; class Node; class Leaf; class Index; class Statistics : public SpatialIndex::IStatistics { public: Statistics(); Statistics(const Statistics&); ~Statistics() override; Statistics& operator=(const Statistics&); // // IStatistics interface // uint64_t getReads() const override; uint64_t getWrites() const override; uint32_t getNumberOfNodes() const override; uint64_t getNumberOfData() const override; virtual uint64_t getSplits() const; virtual uint64_t getHits() const; virtual uint64_t getMisses() const; virtual uint64_t getAdjustments() const; virtual uint64_t getQueryResults() const; virtual uint32_t getTreeHeight() const; virtual uint32_t getNumberOfNodesInLevel(uint32_t l) const; private: void reset(); uint64_t m_reads; uint64_t m_writes; uint64_t m_splits; uint64_t m_hits; uint64_t m_misses; uint32_t m_nodes; uint64_t m_adjustments; uint64_t m_queryResults; uint64_t m_data; uint32_t m_treeHeight; std::vector m_nodesInLevel; friend class TPRTree; friend class Node; friend class Index; friend class Leaf; friend class BulkLoader; friend std::ostream& operator<<(std::ostream& os, const Statistics& s); }; // Statistics std::ostream& operator<<(std::ostream& os, const Statistics& s); } } libspatialindex-1.9.3/src/tprtree/TPRTree.cc000066400000000000000000001121241355420072700207560ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include "Node.h" #include "Leaf.h" #include "Index.h" #include "TPRTree.h" #include using namespace SpatialIndex::TPRTree; SpatialIndex::TPRTree::Data::Data(uint32_t len, uint8_t* pData, MovingRegion& r, id_type id) : m_id(id), m_region(r), m_pData(nullptr), m_dataLength(len) { if (m_dataLength > 0) { m_pData = new uint8_t[m_dataLength]; memcpy(m_pData, pData, m_dataLength); } } SpatialIndex::TPRTree::Data::~Data() { delete[] m_pData; } SpatialIndex::TPRTree::Data* SpatialIndex::TPRTree::Data::clone() { return new Data(m_dataLength, m_pData, m_region, m_id); } SpatialIndex::id_type SpatialIndex::TPRTree::Data::getIdentifier() const { return m_id; } void SpatialIndex::TPRTree::Data::getShape(IShape** out) const { *out = new MovingRegion(m_region); } void SpatialIndex::TPRTree::Data::getData(uint32_t& len, uint8_t** data) const { len = m_dataLength; *data = nullptr; if (m_dataLength > 0) { *data = new uint8_t[m_dataLength]; memcpy(*data, m_pData, m_dataLength); } } uint32_t SpatialIndex::TPRTree::Data::getByteArraySize() { return sizeof(id_type) + sizeof(uint32_t) + m_dataLength + m_region.getByteArraySize(); } void SpatialIndex::TPRTree::Data::loadFromByteArray(const uint8_t* ptr) { memcpy(&m_id, ptr, sizeof(id_type)); ptr += sizeof(id_type); delete[] m_pData; m_pData = nullptr; memcpy(&m_dataLength, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_dataLength > 0) { m_pData = new uint8_t[m_dataLength]; memcpy(m_pData, ptr, m_dataLength); ptr += m_dataLength; } m_region.loadFromByteArray(ptr); } void SpatialIndex::TPRTree::Data::storeToByteArray(uint8_t** data, uint32_t& len) { // it is thread safe this way. uint32_t regionsize; uint8_t* regiondata = nullptr; m_region.storeToByteArray(®iondata, regionsize); len = sizeof(id_type) + sizeof(uint32_t) + m_dataLength + regionsize; *data = new uint8_t[len]; uint8_t* ptr = *data; memcpy(ptr, &m_id, sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &m_dataLength, sizeof(uint32_t)); ptr += sizeof(uint32_t); if (m_dataLength > 0) { memcpy(ptr, m_pData, m_dataLength); ptr += m_dataLength; } memcpy(ptr, regiondata, regionsize); delete[] regiondata; // ptr += regionsize; } SpatialIndex::ISpatialIndex* SpatialIndex::TPRTree::returnTPRTree(SpatialIndex::IStorageManager& sm, Tools::PropertySet& ps) { SpatialIndex::ISpatialIndex* si = new SpatialIndex::TPRTree::TPRTree(sm, ps); return si; } SpatialIndex::ISpatialIndex* SpatialIndex::TPRTree::createNewTPRTree( SpatialIndex::IStorageManager& sm, double fillFactor, uint32_t indexCapacity, uint32_t leafCapacity, uint32_t dimension, TPRTreeVariant rv, double horizon, id_type& indexIdentifier) { Tools::Variant var; Tools::PropertySet ps; var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = fillFactor; ps.setProperty("FillFactor", var); var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = horizon; ps.setProperty("Horizon", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = indexCapacity; ps.setProperty("IndexCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = leafCapacity; ps.setProperty("LeafCapacity", var); var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = dimension; ps.setProperty("Dimension", var); var.m_varType = Tools::VT_LONG; var.m_val.lVal = rv; ps.setProperty("TreeVariant", var); ISpatialIndex* ret = returnTPRTree(sm, ps); var.m_varType = Tools::VT_LONGLONG; var = ps.getProperty("IndexIdentifier"); indexIdentifier = var.m_val.llVal; return ret; } SpatialIndex::ISpatialIndex* SpatialIndex::TPRTree::loadTPRTree(IStorageManager& sm, id_type indexIdentifier) { Tools::Variant var; Tools::PropertySet ps; var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = indexIdentifier; ps.setProperty("IndexIdentifier", var); return returnTPRTree(sm, ps); } SpatialIndex::TPRTree::TPRTree::TPRTree(IStorageManager& sm, Tools::PropertySet& ps) : m_pStorageManager(&sm), m_rootID(StorageManager::NewPage), m_headerID(StorageManager::NewPage), m_treeVariant(TPRV_RSTAR), m_fillFactor(0.7), m_indexCapacity(100), m_leafCapacity(100), m_nearMinimumOverlapFactor(32), m_splitDistributionFactor(0.4), m_reinsertFactor(0.3), m_dimension(2), m_bTightMBRs(true), m_currentTime(0.0), m_horizon(20.0), m_pointPool(500), m_regionPool(1000), m_indexPool(100), m_leafPool(100) { Tools::Variant var = ps.getProperty("IndexIdentifier"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType == Tools::VT_LONGLONG) m_headerID = var.m_val.llVal; else if (var.m_varType == Tools::VT_LONG) m_headerID = var.m_val.lVal; // for backward compatibility only. else throw Tools::IllegalArgumentException("TPRTree: Property IndexIdentifier must be Tools::VT_LONGLONG"); initOld(ps); } else { initNew(ps); var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = m_headerID; ps.setProperty("IndexIdentifier", var); } } SpatialIndex::TPRTree::TPRTree::~TPRTree() { storeHeader(); } // // ISpatialIndex interface // void SpatialIndex::TPRTree::TPRTree::insertData(uint32_t len, const uint8_t* pData, const IShape& shape, id_type id) { if (shape.getDimension() != m_dimension) throw Tools::IllegalArgumentException("insertData: Shape has the wrong number of dimensions."); const IEvolvingShape* es = dynamic_cast(&shape); if (es == nullptr) throw Tools::IllegalArgumentException("insertData: Shape does not support the Tools::IEvolvingShape interface."); const Tools::IInterval *pivI = dynamic_cast(&shape); if (pivI == nullptr) throw Tools::IllegalArgumentException("insertData: Shape does not support the Tools::IInterval interface."); if (pivI->getLowerBound() < m_currentTime) throw Tools::IllegalArgumentException("insertData: Shape start time is older than tree current time."); Region mbr; shape.getMBR(mbr); Region vbr; es->getVMBR(vbr); assert(mbr.m_dimension == vbr.m_dimension); MovingRegionPtr mr = m_regionPool.acquire(); mr->makeDimension(mbr.m_dimension); memcpy(mr->m_pLow, mbr.m_pLow, mbr.m_dimension * sizeof(double)); memcpy(mr->m_pHigh, mbr.m_pHigh, mbr.m_dimension * sizeof(double)); memcpy(mr->m_pVLow, vbr.m_pLow, vbr.m_dimension * sizeof(double)); memcpy(mr->m_pVHigh, vbr.m_pHigh, vbr.m_dimension * sizeof(double)); mr->m_startTime = pivI->getLowerBound(); mr->m_endTime = std::numeric_limits::max(); uint8_t* buffer = nullptr; if (len > 0) { buffer = new uint8_t[len]; memcpy(buffer, pData, len); } m_currentTime = mr->m_startTime; insertData_impl(len, buffer, *mr, id); // the buffer is stored in the tree. Do not delete here. } // shape.m_startTime should be the time when the object was inserted initially. // shape.m_endTime should be the time of the deletion (current time). bool SpatialIndex::TPRTree::TPRTree::deleteData(const IShape& shape, id_type id) { if (shape.getDimension() != m_dimension) throw Tools::IllegalArgumentException("insertData: Shape has the wrong number of dimensions."); const IEvolvingShape* es = dynamic_cast(&shape); if (es == nullptr) throw Tools::IllegalArgumentException("insertData: Shape does not support the Tools::IEvolvingShape interface."); const Tools::IInterval *pivI = dynamic_cast(&shape); if (pivI == nullptr) throw Tools::IllegalArgumentException("insertData: Shape does not support the Tools::IInterval interface."); Region mbr; shape.getMBR(mbr); Region vbr; es->getVMBR(vbr); assert(mbr.m_dimension == vbr.m_dimension); MovingRegionPtr mr = m_regionPool.acquire(); mr->makeDimension(mbr.m_dimension); memcpy(mr->m_pLow, mbr.m_pLow, mbr.m_dimension * sizeof(double)); memcpy(mr->m_pHigh, mbr.m_pHigh, mbr.m_dimension * sizeof(double)); memcpy(mr->m_pVLow, vbr.m_pLow, vbr.m_dimension * sizeof(double)); memcpy(mr->m_pVHigh, vbr.m_pHigh, vbr.m_dimension * sizeof(double)); mr->m_startTime = pivI->getLowerBound(); mr->m_endTime = std::numeric_limits::max(); m_currentTime = pivI->getUpperBound(); bool ret = deleteData_impl(*mr, id); return ret; } void SpatialIndex::TPRTree::TPRTree::internalNodesQuery(const IShape& /* query */, IVisitor& /* v */) { throw Tools::IllegalStateException("internalNodesQuery: not impelmented yet."); } void SpatialIndex::TPRTree::TPRTree::containsWhatQuery(const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("containsWhatQuery: Shape has the wrong number of dimensions."); rangeQuery(ContainmentQuery, query, v); } void SpatialIndex::TPRTree::TPRTree::intersectsWithQuery(const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("intersectsWithQuery: Shape has the wrong number of dimensions."); rangeQuery(IntersectionQuery, query, v); } void SpatialIndex::TPRTree::TPRTree::pointLocationQuery(const Point& query, IVisitor& v) { if (query.m_dimension != m_dimension) throw Tools::IllegalArgumentException("pointLocationQuery: Shape has the wrong number of dimensions."); Region r(query, query); rangeQuery(IntersectionQuery, r, v); } void SpatialIndex::TPRTree::TPRTree::nearestNeighborQuery(uint32_t, const IShape&, IVisitor&, INearestNeighborComparator&) { throw Tools::IllegalStateException("nearestNeighborQuery: not impelmented yet."); } void SpatialIndex::TPRTree::TPRTree::nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v) { if (query.getDimension() != m_dimension) throw Tools::IllegalArgumentException("nearestNeighborQuery: Shape has the wrong number of dimensions."); NNComparator nnc; nearestNeighborQuery(k, query, v, nnc); } void SpatialIndex::TPRTree::TPRTree::selfJoinQuery(const IShape&, IVisitor&) { throw Tools::IllegalStateException("selfJoinQuery: not impelmented yet."); } void SpatialIndex::TPRTree::TPRTree::queryStrategy(IQueryStrategy& qs) { id_type next = m_rootID; bool hasNext = true; while (hasNext) { NodePtr n = readNode(next); qs.getNextEntry(*n, next, hasNext); } } void SpatialIndex::TPRTree::TPRTree::getIndexProperties(Tools::PropertySet& out) const { Tools::Variant var; // dimension var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_dimension; out.setProperty("Dimension", var); // index capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_indexCapacity; out.setProperty("IndexCapacity", var); // leaf capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_leafCapacity; out.setProperty("LeafCapacity", var); // Tree variant var.m_varType = Tools::VT_LONG; var.m_val.lVal = m_treeVariant; out.setProperty("TreeVariant", var); // fill factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_fillFactor; out.setProperty("FillFactor", var); // horizon var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_horizon; out.setProperty("Horizon", var); // near minimum overlap factor var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_nearMinimumOverlapFactor; out.setProperty("NearMinimumOverlapFactor", var); // split distribution factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_splitDistributionFactor; out.setProperty("SplitDistributionFactor", var); // reinsert factor var.m_varType = Tools::VT_DOUBLE; var.m_val.dblVal = m_reinsertFactor; out.setProperty("ReinsertFactor", var); // tight MBRs var.m_varType = Tools::VT_BOOL; var.m_val.blVal = m_bTightMBRs; out.setProperty("EnsureTightMBRs", var); // index pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_indexPool.getCapacity(); out.setProperty("IndexPoolCapacity", var); // leaf pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_leafPool.getCapacity(); out.setProperty("LeafPoolCapacity", var); // region pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_regionPool.getCapacity(); out.setProperty("RegionPoolCapacity", var); // point pool capacity var.m_varType = Tools::VT_ULONG; var.m_val.ulVal = m_pointPool.getCapacity(); out.setProperty("PointPoolCapacity", var); var.m_varType = Tools::VT_LONGLONG; var.m_val.llVal = m_headerID; out.setProperty("IndexIdentifier", var); } void SpatialIndex::TPRTree::TPRTree::addCommand(ICommand* pCommand, CommandType ct) { switch (ct) { case CT_NODEREAD: m_readNodeCommands.push_back(std::shared_ptr(pCommand)); break; case CT_NODEWRITE: m_writeNodeCommands.push_back(std::shared_ptr(pCommand)); break; case CT_NODEDELETE: m_deleteNodeCommands.push_back(std::shared_ptr(pCommand)); break; } } bool SpatialIndex::TPRTree::TPRTree::isIndexValid() { bool ret = true; std::stack st; NodePtr root = readNode(m_rootID); if (root->m_level != m_stats.m_treeHeight - 1) { std::cerr << "Invalid tree height." << std::endl; return false; } std::map nodesInLevel; nodesInLevel.insert(std::pair(root->m_level, 1)); ValidateEntry e(root->m_nodeMBR, root); st.push(e); while (! st.empty()) { e = st.top(); st.pop(); MovingRegion tmpRegion; tmpRegion = m_infiniteRegion; // I have to rely on the parent information here, since none of the node's // children might have a reference time equal to their parents (e.g., after // a split). tmpRegion.m_startTime = e.m_parentMBR.m_startTime; for (uint32_t cDim = 0; cDim < tmpRegion.m_dimension; ++cDim) { tmpRegion.m_pLow[cDim] = std::numeric_limits::max(); tmpRegion.m_pHigh[cDim] = -std::numeric_limits::max(); tmpRegion.m_pVLow[cDim] = std::numeric_limits::max(); tmpRegion.m_pVHigh[cDim] = -std::numeric_limits::max(); for (uint32_t cChild = 0; cChild < e.m_pNode->m_children; ++cChild) { tmpRegion.m_pLow[cDim] = std::min(tmpRegion.m_pLow[cDim], e.m_pNode->m_ptrMBR[cChild]->getExtrapolatedLow(cDim, tmpRegion.m_startTime)); tmpRegion.m_pHigh[cDim] = std::max(tmpRegion.m_pHigh[cDim], e.m_pNode->m_ptrMBR[cChild]->getExtrapolatedHigh(cDim, tmpRegion.m_startTime)); tmpRegion.m_pVLow[cDim] = std::min(tmpRegion.m_pVLow[cDim], e.m_pNode->m_ptrMBR[cChild]->m_pVLow[cDim]); tmpRegion.m_pVHigh[cDim] = std::max(tmpRegion.m_pVHigh[cDim], e.m_pNode->m_ptrMBR[cChild]->m_pVHigh[cDim]); } tmpRegion.m_pLow[cDim] -= 2.0 * std::numeric_limits::epsilon(); tmpRegion.m_pHigh[cDim] += 2.0 * std::numeric_limits::epsilon(); } if (! (tmpRegion == e.m_pNode->m_nodeMBR)) { std::cerr << "Invalid parent information." << std::endl; ret = false; } if (! (tmpRegion == e.m_parentMBR)) { std::cerr << "Error in parent." << std::endl; ret = false; } if (e.m_pNode->m_level != 0) { for (uint32_t cChild = 0; cChild < e.m_pNode->m_children; ++cChild) { NodePtr ptrN = readNode(e.m_pNode->m_pIdentifier[cChild]); ValidateEntry tmpEntry(*(e.m_pNode->m_ptrMBR[cChild]), ptrN); auto itNodes = nodesInLevel.find(tmpEntry.m_pNode->m_level); if (itNodes == nodesInLevel.end()) { nodesInLevel.insert(std::pair(tmpEntry.m_pNode->m_level, 1l)); } else { nodesInLevel[tmpEntry.m_pNode->m_level] = nodesInLevel[tmpEntry.m_pNode->m_level] + 1; } st.push(tmpEntry); } } } uint32_t nodes = 0; for (uint32_t cLevel = 0; cLevel < m_stats.m_treeHeight; ++cLevel) { if (nodesInLevel[cLevel] != m_stats.m_nodesInLevel[cLevel]) { std::cerr << "Invalid nodesInLevel information." << std::endl; ret = false; } nodes += m_stats.m_nodesInLevel[cLevel]; } if (nodes != m_stats.m_nodes) { std::cerr << "Invalid number of nodes information." << std::endl; ret = false; } return ret; } void SpatialIndex::TPRTree::TPRTree::getStatistics(IStatistics** out) const { *out = new Statistics(m_stats); } void SpatialIndex::TPRTree::TPRTree::flush() { storeHeader(); } void SpatialIndex::TPRTree::TPRTree::initNew(Tools::PropertySet& ps) { Tools::Variant var; // tree variant var = ps.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_LONG || (var.m_val.lVal != TPRV_RSTAR)) throw Tools::IllegalArgumentException("initNew: Property TreeVariant must be Tools::VT_LONG and of TPRTreeVariant type"); m_treeVariant = static_cast(var.m_val.lVal); } // fill factor // it cannot be larger than 50%, since linear and quadratic split algorithms // require assigning to both nodes the same number of entries. var = ps.getProperty("FillFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property FillFactor must be Tools::VT_DOUBLE and in (0.0, 1.0) for RSTAR"); m_fillFactor = var.m_val.dblVal; } // horizon var = ps.getProperty("Horizon"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal == std::numeric_limits::max()) throw Tools::IllegalArgumentException("initNew: Property Horizon must be Tools::VT_DOUBLE and a positive constant"); m_horizon = var.m_val.dblVal; } // index capacity var = ps.getProperty("IndexCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 4) throw Tools::IllegalArgumentException("initNew: Property IndexCapacity must be Tools::VT_ULONG and >= 4"); m_indexCapacity = var.m_val.ulVal; } // leaf capacity var = ps.getProperty("LeafCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 4) throw Tools::IllegalArgumentException("initNew: Property LeafCapacity must be Tools::VT_ULONG and >= 4"); m_leafCapacity = var.m_val.ulVal; } // near minimum overlap factor var = ps.getProperty("NearMinimumOverlapFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 1 || var.m_val.ulVal > m_indexCapacity || var.m_val.ulVal > m_leafCapacity) throw Tools::IllegalArgumentException("initNew: Property NearMinimumOverlapFactor must be Tools::VT_ULONG and less than both index and leaf capacities"); m_nearMinimumOverlapFactor = var.m_val.ulVal; } // split distribution factor var = ps.getProperty("SplitDistributionFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property SplitDistributionFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_splitDistributionFactor = var.m_val.dblVal; } // reinsert factor var = ps.getProperty("ReinsertFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initNew: Property ReinsertFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_reinsertFactor = var.m_val.dblVal; } // dimension var = ps.getProperty("Dimension"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property Dimension must be Tools::VT_ULONG"); if (var.m_val.ulVal <= 1) throw Tools::IllegalArgumentException("initNew: Property Dimension must be greater than 1"); m_dimension = var.m_val.ulVal; } // tight MBRs var = ps.getProperty("EnsureTightMBRs"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) throw Tools::IllegalArgumentException("initNew: Property EnsureTightMBRs must be Tools::VT_BOOL"); m_bTightMBRs = var.m_val.blVal; } // index pool capacity var = ps.getProperty("IndexPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property IndexPoolCapacity must be Tools::VT_ULONG"); m_indexPool.setCapacity(var.m_val.ulVal); } // leaf pool capacity var = ps.getProperty("LeafPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property LeafPoolCapacity must be Tools::VT_ULONG"); m_leafPool.setCapacity(var.m_val.ulVal); } // region pool capacity var = ps.getProperty("RegionPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property RegionPoolCapacity must be Tools::VT_ULONG"); m_regionPool.setCapacity(var.m_val.ulVal); } // point pool capacity var = ps.getProperty("PointPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initNew: Property PointPoolCapacity must be Tools::VT_ULONG"); m_pointPool.setCapacity(var.m_val.ulVal); } m_infiniteRegion.makeInfinite(m_dimension); m_stats.m_treeHeight = 1; m_stats.m_nodesInLevel.push_back(0); Leaf root(this, -1); m_rootID = writeNode(&root); storeHeader(); } void SpatialIndex::TPRTree::TPRTree::initOld(Tools::PropertySet& ps) { loadHeader(); // only some of the properties may be changed. // the rest are just ignored. Tools::Variant var; // tree variant var = ps.getProperty("TreeVariant"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_LONG || (var.m_val.lVal != TPRV_RSTAR)) throw Tools::IllegalArgumentException("initOld: Property TreeVariant must be Tools::VT_LONG and of TPRTreeVariant type"); m_treeVariant = static_cast(var.m_val.lVal); } // horizon var = ps.getProperty("Horizon"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal == std::numeric_limits::max()) throw Tools::IllegalArgumentException("initOld: Property Horizon must be Tools::VT_DOUBLE and a positive constant"); m_horizon = var.m_val.dblVal; } // near minimum overlap factor var = ps.getProperty("NearMinimumOverlapFactor"); if (var.m_varType != Tools::VT_EMPTY) { if ( var.m_varType != Tools::VT_ULONG || var.m_val.ulVal < 1 || var.m_val.ulVal > m_indexCapacity || var.m_val.ulVal > m_leafCapacity) throw Tools::IllegalArgumentException("initOld: Property NearMinimumOverlapFactor must be Tools::VT_ULONG and less than both index and leaf capacities"); m_nearMinimumOverlapFactor = var.m_val.ulVal; } // split distribution factor var = ps.getProperty("SplitDistributionFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initOld: Property SplitDistributionFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_splitDistributionFactor = var.m_val.dblVal; } // reinsert factor var = ps.getProperty("ReinsertFactor"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_DOUBLE || var.m_val.dblVal <= 0.0 || var.m_val.dblVal >= 1.0) throw Tools::IllegalArgumentException("initOld: Property ReinsertFactor must be Tools::VT_DOUBLE and in (0.0, 1.0)"); m_reinsertFactor = var.m_val.dblVal; } // tight MBRs var = ps.getProperty("EnsureTightMBRs"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_BOOL) throw Tools::IllegalArgumentException("initOld: Property EnsureTightMBRs must be Tools::VT_BOOL"); m_bTightMBRs = var.m_val.blVal; } // index pool capacity var = ps.getProperty("IndexPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property IndexPoolCapacity must be Tools::VT_ULONG"); m_indexPool.setCapacity(var.m_val.ulVal); } // leaf pool capacity var = ps.getProperty("LeafPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property LeafPoolCapacity must be Tools::VT_ULONG"); m_leafPool.setCapacity(var.m_val.ulVal); } // region pool capacity var = ps.getProperty("RegionPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property RegionPoolCapacity must be Tools::VT_ULONG"); m_regionPool.setCapacity(var.m_val.ulVal); } // point pool capacity var = ps.getProperty("PointPoolCapacity"); if (var.m_varType != Tools::VT_EMPTY) { if (var.m_varType != Tools::VT_ULONG) throw Tools::IllegalArgumentException("initOld: Property PointPoolCapacity must be Tools::VT_ULONG"); m_pointPool.setCapacity(var.m_val.ulVal); } m_infiniteRegion.makeInfinite(m_dimension); } void SpatialIndex::TPRTree::TPRTree::storeHeader() { const uint32_t headerSize = sizeof(id_type) + // m_rootID sizeof(TPRTreeVariant) + // m_treeVariant sizeof(double) + // m_fillFactor sizeof(uint32_t) + // m_indexCapacity sizeof(uint32_t) + // m_leafCapacity sizeof(uint32_t) + // m_nearMinimumOverlapFactor sizeof(double) + // m_splitDistributionFactor sizeof(double) + // m_reinsertFactor sizeof(uint32_t) + // m_dimension sizeof(char) + // m_bTightMBRs sizeof(uint32_t) + // m_stats.m_nodes sizeof(uint64_t) + // m_stats.m_data sizeof(double) + // m_currentTime sizeof(double) + // m_horizon sizeof(uint32_t) + // m_stats.m_treeHeight m_stats.m_treeHeight * sizeof(uint32_t);// m_stats.m_nodesInLevel uint8_t* header = new uint8_t[headerSize]; uint8_t* ptr = header; memcpy(ptr, &m_rootID, sizeof(id_type)); ptr += sizeof(id_type); memcpy(ptr, &m_treeVariant, sizeof(TPRTreeVariant)); ptr += sizeof(TPRTreeVariant); memcpy(ptr, &m_fillFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_indexCapacity, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_leafCapacity, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_nearMinimumOverlapFactor, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &m_splitDistributionFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_reinsertFactor, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_dimension, sizeof(uint32_t)); ptr += sizeof(uint32_t); char c = (char) m_bTightMBRs; memcpy(ptr, &c, sizeof(char)); ptr += sizeof(char); memcpy(ptr, &(m_stats.m_nodes), sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(ptr, &(m_stats.m_data), sizeof(uint64_t)); ptr += sizeof(uint64_t); memcpy(ptr, &m_currentTime, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &m_horizon, sizeof(double)); ptr += sizeof(double); memcpy(ptr, &(m_stats.m_treeHeight), sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t cLevel = 0; cLevel < m_stats.m_treeHeight; ++cLevel) { memcpy(ptr, &(m_stats.m_nodesInLevel[cLevel]), sizeof(uint32_t)); ptr += sizeof(uint32_t); } m_pStorageManager->storeByteArray(m_headerID, headerSize, header); delete[] header; } void SpatialIndex::TPRTree::TPRTree::loadHeader() { uint32_t headerSize; uint8_t* header = nullptr; m_pStorageManager->loadByteArray(m_headerID, headerSize, &header); uint8_t* ptr = header; memcpy(&m_rootID, ptr, sizeof(id_type)); ptr += sizeof(id_type); memcpy(&m_treeVariant, ptr, sizeof(TPRTreeVariant)); ptr += sizeof(TPRTreeVariant); memcpy(&m_fillFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_indexCapacity, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_leafCapacity, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_nearMinimumOverlapFactor, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&m_splitDistributionFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_reinsertFactor, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_dimension, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); char c; memcpy(&c, ptr, sizeof(char)); m_bTightMBRs = (c != 0); ptr += sizeof(char); memcpy(&(m_stats.m_nodes), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); memcpy(&(m_stats.m_data), ptr, sizeof(uint64_t)); ptr += sizeof(uint64_t); memcpy(&m_currentTime, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&m_horizon, ptr, sizeof(double)); ptr += sizeof(double); memcpy(&(m_stats.m_treeHeight), ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); for (uint32_t cLevel = 0; cLevel < m_stats.m_treeHeight; ++cLevel) { uint32_t cNodes; memcpy(&cNodes, ptr, sizeof(uint32_t)); ptr += sizeof(uint32_t); m_stats.m_nodesInLevel.push_back(cNodes); } delete[] header; } void SpatialIndex::TPRTree::TPRTree::insertData_impl(uint32_t dataLength, uint8_t* pData, MovingRegion& mr, id_type id) { assert(mr.getDimension() == m_dimension); assert(m_currentTime <= mr.m_startTime); std::stack pathBuffer; uint8_t* overflowTable = nullptr; try { NodePtr root = readNode(m_rootID); overflowTable = new uint8_t[root->m_level]; memset(overflowTable, 0, root->m_level); NodePtr l = root->chooseSubtree(mr, 0, pathBuffer); if (l.get() == root.get()) { assert(root.unique()); root.relinquish(); } l->insertData(dataLength, pData, mr, id, pathBuffer, overflowTable); delete[] overflowTable; ++(m_stats.m_data); } catch (...) { delete[] overflowTable; throw; } } void SpatialIndex::TPRTree::TPRTree::insertData_impl(uint32_t dataLength, uint8_t* pData, MovingRegion& mr, id_type id, uint32_t level, uint8_t* overflowTable) { assert(mr.getDimension() == m_dimension); std::stack pathBuffer; NodePtr root = readNode(m_rootID); NodePtr n = root->chooseSubtree(mr, level, pathBuffer); assert(n->m_level == level); if (n.get() == root.get()) { assert(root.unique()); root.relinquish(); } n->insertData(dataLength, pData, mr, id, pathBuffer, overflowTable); } bool SpatialIndex::TPRTree::TPRTree::deleteData_impl(const MovingRegion& mr, id_type id) { assert(mr.m_dimension == m_dimension); std::stack pathBuffer; NodePtr root = readNode(m_rootID); NodePtr l = root->findLeaf(mr, id, pathBuffer); if (l.get() == root.get()) { assert(root.unique()); root.relinquish(); } if (l.get() != nullptr) { Leaf* pL = static_cast(l.get()); pL->deleteData(id, pathBuffer); --(m_stats.m_data); return true; } return false; } SpatialIndex::id_type SpatialIndex::TPRTree::TPRTree::writeNode(Node* n) { uint8_t* buffer; uint32_t dataLength; n->storeToByteArray(&buffer, dataLength); id_type page; if (n->m_identifier < 0) page = StorageManager::NewPage; else page = n->m_identifier; try { m_pStorageManager->storeByteArray(page, dataLength, buffer); delete[] buffer; } catch (InvalidPageException& e) { delete[] buffer; std::cerr << e.what() << std::endl; //std::cerr << *this << std::endl; throw Tools::IllegalStateException("writeNode: failed with Tools::InvalidPageException"); } if (n->m_identifier < 0) { n->m_identifier = page; ++(m_stats.m_nodes); #ifndef NDEBUG try { m_stats.m_nodesInLevel[n->m_level] = m_stats.m_nodesInLevel.at(n->m_level) + 1; } catch(...) { throw Tools::IllegalStateException("writeNode: writing past the end of m_nodesInLevel."); } #else m_stats.m_nodesInLevel[n->m_level] = m_stats.m_nodesInLevel[n->m_level] + 1; #endif } ++(m_stats.m_writes); for (size_t cIndex = 0; cIndex < m_writeNodeCommands.size(); ++cIndex) { m_writeNodeCommands[cIndex]->execute(*n); } return page; } SpatialIndex::TPRTree::NodePtr SpatialIndex::TPRTree::TPRTree::readNode(id_type id) { uint32_t dataLength; uint8_t* buffer; try { m_pStorageManager->loadByteArray(id, dataLength, &buffer); } catch (InvalidPageException& e) { std::cerr << e.what() << std::endl; //std::cerr << *this << std::endl; throw Tools::IllegalStateException("readNode: failed with Tools::InvalidPageException"); } try { uint32_t nodeType; memcpy(&nodeType, buffer, sizeof(uint32_t)); NodePtr n; if (nodeType == PersistentIndex) n = m_indexPool.acquire(); else if (nodeType == PersistentLeaf) n = m_leafPool.acquire(); else throw Tools::IllegalStateException("readNode: failed reading the correct node type information"); if (n.get() == nullptr) { if (nodeType == PersistentIndex) n = NodePtr(new Index(this, -1, 0), &m_indexPool); else if (nodeType == PersistentLeaf) n = NodePtr(new Leaf(this, -1), &m_leafPool); } //n->m_pTree = this; n->m_identifier = id; n->loadFromByteArray(buffer); ++(m_stats.m_reads); for (size_t cIndex = 0; cIndex < m_readNodeCommands.size(); ++cIndex) { m_readNodeCommands[cIndex]->execute(*n); } delete[] buffer; return n; } catch (...) { delete[] buffer; throw; } } void SpatialIndex::TPRTree::TPRTree::deleteNode(Node* n) { try { m_pStorageManager->deleteByteArray(n->m_identifier); } catch (InvalidPageException& e) { std::cerr << e.what() << std::endl; //std::cerr << *this << std::endl; throw Tools::IllegalStateException("deleteNode: failed with Tools::InvalidPageException"); } --(m_stats.m_nodes); m_stats.m_nodesInLevel[n->m_level] = m_stats.m_nodesInLevel[n->m_level] - 1; for (size_t cIndex = 0; cIndex < m_deleteNodeCommands.size(); ++cIndex) { m_deleteNodeCommands[cIndex]->execute(*n); } } void SpatialIndex::TPRTree::TPRTree::rangeQuery(RangeQueryType type, const IShape& query, IVisitor& v) { const MovingRegion* mr = dynamic_cast(&query); if (mr == nullptr) throw Tools::IllegalArgumentException("rangeQuery: Shape has to be a moving region."); if (mr->m_startTime < m_currentTime || mr->m_endTime >= m_currentTime + m_horizon) throw Tools::IllegalArgumentException("rangeQuery: Query time interval does not intersect current horizon."); std::stack st; NodePtr root = readNode(m_rootID); if (root->m_children > 0 && mr->intersectsRegionInTime(root->m_nodeMBR)) st.push(root); while (! st.empty()) { NodePtr n = st.top(); st.pop(); if (n->m_level == 0) { v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { bool b; if (type == ContainmentQuery) b = mr->containsRegionInTime(*(n->m_ptrMBR[cChild])); else b = mr->intersectsRegionInTime(*(n->m_ptrMBR[cChild])); if (b) { Data data = Data(n->m_pDataLength[cChild], n->m_pData[cChild], *(n->m_ptrMBR[cChild]), n->m_pIdentifier[cChild]); v.visitData(data); ++(m_stats.m_queryResults); } } } else { v.visitNode(*n); for (uint32_t cChild = 0; cChild < n->m_children; ++cChild) { if (mr->intersectsRegionInTime(*(n->m_ptrMBR[cChild]))) st.push(readNode(n->m_pIdentifier[cChild])); } } } } std::ostream& SpatialIndex::TPRTree::operator<<(std::ostream& os, const TPRTree& t) { os << "Dimension: " << t.m_dimension << std::endl << "Fill factor: " << t.m_fillFactor << std::endl << "Horizon: " << t.m_horizon << std::endl << "Index capacity: " << t.m_indexCapacity << std::endl << "Leaf capacity: " << t.m_leafCapacity << std::endl << "Tight MBRs: " << ((t.m_bTightMBRs) ? "enabled" : "disabled") << std::endl; if (t.m_treeVariant == TPRV_RSTAR) { os << "Near minimum overlap factor: " << t.m_nearMinimumOverlapFactor << std::endl << "Reinsert factor: " << t.m_reinsertFactor << std::endl << "Split distribution factor: " << t.m_splitDistributionFactor << std::endl; } if (t.m_stats.getNumberOfNodesInLevel(0) > 0) os << "Utilization: " << 100 * t.m_stats.getNumberOfData() / (t.m_stats.getNumberOfNodesInLevel(0) * t.m_leafCapacity) << "%" << std::endl << t.m_stats; #ifndef NDEBUG os << "Leaf pool hits: " << t.m_leafPool.m_hits << std::endl << "Leaf pool misses: " << t.m_leafPool.m_misses << std::endl << "Index pool hits: " << t.m_indexPool.m_hits << std::endl << "Index pool misses: " << t.m_indexPool.m_misses << std::endl << "Region pool hits: " << t.m_regionPool.m_hits << std::endl << "Region pool misses: " << t.m_regionPool.m_misses << std::endl << "Point pool hits: " << t.m_pointPool.m_hits << std::endl << "Point pool misses: " << t.m_pointPool.m_misses << std::endl; #endif return os; } libspatialindex-1.9.3/src/tprtree/TPRTree.h000066400000000000000000000163251355420072700206260ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #pragma once #include "Statistics.h" #include "Node.h" #include "PointerPoolNode.h" #include namespace SpatialIndex { namespace TPRTree { class TPRTree : public ISpatialIndex { class NNEntry; public: TPRTree(IStorageManager&, Tools::PropertySet&); // String Value Description // ---------------------------------------------- // IndexIndentifier VT_LONG If specified an existing index will be openened from the supplied // storage manager with the given index id. Behaviour is unspecified // if the index id or the storage manager are incorrect. // Dimension VT_ULONG Dimensionality of the data that will be inserted. // IndexCapacity VT_ULONG The index node capacity. Default is 100. // LeafCapactiy VT_ULONG The leaf node capacity. Default is 100. // FillFactor VT_DOUBLE The fill factor. Default is 70% // Horizon VT_DOUBLE Horizon. Default is 20.0. // TreeVariant VT_LONG Can be one of Linear, Quadratic or Rstar. Default is Rstar // NearMinimumOverlapFactor VT_ULONG Default is 32. // SplitDistributionFactor VT_DOUBLE Default is 0.4 // ReinsertFactor VT_DOUBLE Default is 0.3 // EnsureTightMBRs VT_BOOL Default is true // IndexPoolCapacity VT_LONG Default is 100 // LeafPoolCapacity VT_LONG Default is 100 // RegionPoolCapacity VT_LONG Default is 1000 // PointPoolCapacity VT_LONG Default is 500 ~TPRTree() ; // // ISpatialIndex interface // virtual void insertData(uint32_t len, const uint8_t* pData, const IShape& shape, id_type shapeIdentifier) ; virtual bool deleteData(const IShape& shape, id_type id) ; virtual void internalNodesQuery(const IShape& query, IVisitor& v) ; virtual void containsWhatQuery(const IShape& query, IVisitor& v) ; virtual void intersectsWithQuery(const IShape& query, IVisitor& v) ; virtual void pointLocationQuery(const Point& query, IVisitor& v) ; virtual void nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v, INearestNeighborComparator&) ; virtual void nearestNeighborQuery(uint32_t k, const IShape& query, IVisitor& v) ; virtual void selfJoinQuery(const IShape& s, IVisitor& v) ; virtual void queryStrategy(IQueryStrategy& qs) ; virtual void getIndexProperties(Tools::PropertySet& out) const ; virtual void addCommand(ICommand* pCommand, CommandType ct) ; virtual bool isIndexValid() ; virtual void getStatistics(IStatistics** out) const ; virtual void flush() ; private: void initNew(Tools::PropertySet&); void initOld(Tools::PropertySet& ps); void storeHeader(); void loadHeader(); void insertData_impl(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id); void insertData_impl(uint32_t dataLength, uint8_t* pData, MovingRegion& mbr, id_type id, uint32_t level, uint8_t* overflowTable); bool deleteData_impl(const MovingRegion& mbr, id_type id); id_type writeNode(Node*); NodePtr readNode(id_type id); void deleteNode(Node*); void rangeQuery(RangeQueryType type, const IShape& query, IVisitor& v); IStorageManager* m_pStorageManager; id_type m_rootID, m_headerID; TPRTreeVariant m_treeVariant; double m_fillFactor; uint32_t m_indexCapacity; uint32_t m_leafCapacity; uint32_t m_nearMinimumOverlapFactor; // The R*-Tree 'p' constant, for calculating nearly minimum overlap cost. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles', Section 4.1] double m_splitDistributionFactor; // The R*-Tree 'm' constant, for calculating spliting distributions. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles', Section 4.2] double m_reinsertFactor; // The R*-Tree 'p' constant, for removing entries at reinserts. // [Beckmann, Kriegel, Schneider, Seeger 'The R*-tree: An efficient and Robust Access Method // for Points and Rectangles', Section 4.3] uint32_t m_dimension; MovingRegion m_infiniteRegion; Statistics m_stats; bool m_bTightMBRs; double m_currentTime; double m_horizon; Tools::PointerPool m_pointPool; Tools::PointerPool m_regionPool; Tools::PointerPool m_indexPool; Tools::PointerPool m_leafPool; std::vector > m_writeNodeCommands; std::vector > m_readNodeCommands; std::vector > m_deleteNodeCommands; class NNEntry { public: id_type m_id; IEntry* m_pEntry; double m_minDist; NNEntry(id_type id, IEntry* e, double f) : m_id(id), m_pEntry(e), m_minDist(f) {} ~NNEntry() = default; }; // NNEntry class NNComparator : public INearestNeighborComparator { public: double getMinimumDistance(const IShape& query, const IShape& entry) { return query.getMinimumDistance(entry); } double getMinimumDistance(const IShape& query, const IData& data) { IShape* pS; data.getShape(&pS); double ret = query.getMinimumDistance(*pS); delete pS; return ret; } }; // NNComparator class ValidateEntry { public: ValidateEntry(MovingRegion& r, NodePtr& pNode) : m_parentMBR(r), m_pNode(pNode) {} MovingRegion m_parentMBR; NodePtr m_pNode; }; // ValidateEntry friend class Node; friend class Leaf; friend class Index; friend std::ostream& operator<<(std::ostream& os, const TPRTree& t); }; // TPRTree std::ostream& operator<<(std::ostream& os, const TPRTree& t); } } libspatialindex-1.9.3/test/000077500000000000000000000000001355420072700156645ustar00rootroot00000000000000libspatialindex-1.9.3/test/CMakeLists.txt000066400000000000000000000022151355420072700204240ustar00rootroot00000000000000include_directories(../include) set (DIR geometry) set (SOURCES Intersection ) foreach (test ${SOURCES}) add_executable(test-${DIR}-${test} ${DIR}/${test}.cc) target_link_libraries(test-${DIR}-${test} ${SIDX_LIB_NAME}) endforeach() set (DIR rtree) set (SOURCES Exhaustive Generator RTreeBulkLoad RTreeLoad RTreeQuery) foreach (test ${SOURCES}) add_executable(test-${DIR}-${test} ${DIR}/${test}.cc) target_link_libraries(test-${DIR}-${test} ${SIDX_LIB_NAME}) endforeach() set (DIR mvrtree) set (SOURCES Exhaustive Generator MVRTreeLoad MVRTreeQuery ) foreach (test ${SOURCES}) add_executable(test-${DIR}-${test} ${DIR}/${test}.cc) target_link_libraries(test-${DIR}-${test} ${SIDX_LIB_NAME}) endforeach() set (DIR tprtree) set (SOURCES Exhaustive Generator TPRTreeLoad TPRTreeQuery ) foreach (test ${SOURCES}) add_executable(test-${DIR}-${test} ${DIR}/${test}.cc ${DIR}/RandomGenerator.cc) target_link_libraries(test-${DIR}-${test} ${SIDX_LIB_NAME}) endforeach() add_subdirectory(gtest) libspatialindex-1.9.3/test/geometry/000077500000000000000000000000001355420072700175175ustar00rootroot00000000000000libspatialindex-1.9.3/test/geometry/Intersection.cc000066400000000000000000000044321355420072700224770ustar00rootroot00000000000000#include using namespace SpatialIndex; using namespace std; /* * Test the Geometry * Nowhere near complete, but it's something */ int main(int /*argc*/, char** /*argv*/) { //define points double c1[2] = {1.0, 0.0}; double c2[2] = {3.0, 2.0}; double c3[2] = {2.0, 0.0}; double c4[2] = {2.0, 4.0}; double c5[2] = {1.0, 1.0}; double c6[2] = {2.5, 3.0}; double c7[2] = {1.0, 2.0}; double c8[2] = {0.0, -1.0}; double c9[2] = {4.0, 3.0}; Point p1 = Point(&c1[0], 2); Point p2 = Point(&c2[0], 2); Point p3 = Point(&c3[0], 2); Point p4 = Point(&c4[0], 2); Point p5 = Point(&c5[0], 2); Point p6 = Point(&c6[0], 2); Point p7 = Point(&c7[0], 2); Point p8 = Point(&c8[0], 2); Point p9 = Point(&c9[0], 2); double c3a[2] = {2.0, 3.0}; Point p3a = Point(&c3a[0], 2); //Now Test LineSegment intersection LineSegment ls1 = LineSegment(p1, p2); LineSegment ls2 = LineSegment(p3, p4); LineSegment ls3 = LineSegment(p3a, p4); if (!ls1.intersectsShape(ls2)) { cerr << "Test failed: intersectsShape returned false, but should be true." << endl; cerr << ls1 << ", " << ls2 << endl; return -1; } if (ls1.intersectsShape(ls3)) { cerr << "Test failed: intersectsShape returned true, but should be false." << endl; cerr << ls1 << ", " << ls3 << endl; return -1; } //Now LineSegment Region intersection Region r1 = Region(p5, p6); Region r2 = Region(p7, p6); Region r3 = Region(p8, p9); if (!r1.intersectsShape(ls1) || !ls1.intersectsShape(r1)) { cerr << "Test failed: intersectsShape returned false, but should be true." << endl; cerr << r1 << ", " << ls1 << endl; return -1; } if (r2.intersectsShape(ls1) || ls1.intersectsShape(r2)) { cerr << "Test failed: intersectsShape returned true, but should be false." << endl; cerr << r2 << ", " << ls1 << endl; return -1; } // This is the contains test if (!r3.intersectsShape(ls1) || !ls1.intersectsShape(r3)) { cerr << "Test failed: intersectsShape returned false, but should be true." << endl; cerr << r3 << ", " << ls1 << endl; return -1; } return 0; } libspatialindex-1.9.3/test/geometry/test1/000077500000000000000000000000001355420072700205575ustar00rootroot00000000000000libspatialindex-1.9.3/test/geometry/test1/run000077500000000000000000000002351355420072700213110ustar00rootroot00000000000000#! /bin/bash echo Testing Intersection if test-geometry-Intersection ; then echo "Intersection Test Passed" else echo "Intersection Test Failed" fi libspatialindex-1.9.3/test/gtest/000077500000000000000000000000001355420072700170125ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/.travis_build.sh000077500000000000000000000001411355420072700221120ustar00rootroot00000000000000echo "Running unit tests..." ./test result=$? echo "Unit tests completed : $result" exit $result libspatialindex-1.9.3/test/gtest/CMakeLists.txt000066400000000000000000000006171355420072700215560ustar00rootroot00000000000000set (GOOGLETEST_VERSION "1.10.0") add_subdirectory(gtest-1.10.0) include_directories(./gtest-1.10.0/include) set (SOURCES test.h sidx_api_test.h main.cc ) set (TESTNAME libsidxtest) add_executable(${TESTNAME} ${SOURCES}) target_link_libraries(${TESTNAME} ${SIDX_C_LIB_NAME} gtest) add_test(${TESTNAME} "${PROJECT_BINARY_DIR}/bin/${TESTNAME}" "${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/..") libspatialindex-1.9.3/test/gtest/gtest-1.10.0/000077500000000000000000000000001355420072700206535ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/CMakeLists.txt000066400000000000000000000274011355420072700234170ustar00rootroot00000000000000######################################################################## # Note: CMake support is community-based. The maintainers do not use CMake # internally. # # CMake build script for Google Test. # # To run the tests for Google Test itself on Linux, use 'make test' or # ctest. You can select which tests to run using 'ctest -R regex'. # For more options, run 'ctest --help'. # When other libraries are using a shared version of runtime libraries, # Google Test also has to use one. option( gtest_force_shared_crt "Use shared (DLL) run-time lib even when Google Test is built as static lib." OFF) option(gtest_build_tests "Build all of gtest's own tests." OFF) option(gtest_build_samples "Build gtest's sample programs." OFF) option(gtest_disable_pthreads "Disable uses of pthreads in gtest." OFF) option( gtest_hide_internal_symbols "Build gtest with internal symbols hidden in shared libraries." OFF) # Defines pre_project_set_up_hermetic_build() and set_up_hermetic_build(). include(cmake/hermetic_build.cmake OPTIONAL) if (COMMAND pre_project_set_up_hermetic_build) pre_project_set_up_hermetic_build() endif() ######################################################################## # # Project-wide settings # Name of the project. # # CMake files in this project can refer to the root source directory # as ${gtest_SOURCE_DIR} and to the root binary directory as # ${gtest_BINARY_DIR}. # Language "C" is required for find_package(Threads). # Project version: if (CMAKE_VERSION VERSION_LESS 3.0) project(gtest CXX C) set(PROJECT_VERSION ${GOOGLETEST_VERSION}) else() cmake_policy(SET CMP0048 NEW) project(gtest VERSION ${GOOGLETEST_VERSION} LANGUAGES CXX C) endif() cmake_minimum_required(VERSION 2.6.4) if (POLICY CMP0063) # Visibility cmake_policy(SET CMP0063 NEW) endif (POLICY CMP0063) if (COMMAND set_up_hermetic_build) set_up_hermetic_build() endif() # These commands only run if this is the main project if(CMAKE_PROJECT_NAME STREQUAL "gtest" OR CMAKE_PROJECT_NAME STREQUAL "googletest-distribution") # BUILD_SHARED_LIBS is a standard CMake variable, but we declare it here to # make it prominent in the GUI. option(BUILD_SHARED_LIBS "Build shared libraries (DLLs)." OFF) else() mark_as_advanced( gtest_force_shared_crt gtest_build_tests gtest_build_samples gtest_disable_pthreads gtest_hide_internal_symbols) endif() if (gtest_hide_internal_symbols) set(CMAKE_CXX_VISIBILITY_PRESET hidden) set(CMAKE_VISIBILITY_INLINES_HIDDEN 1) endif() # Define helper functions and macros used by Google Test. include(cmake/internal_utils.cmake) config_compiler_and_linker() # Defined in internal_utils.cmake. # Create the CMake package file descriptors. if (INSTALL_GTEST) include(CMakePackageConfigHelpers) set(cmake_package_name GTest) set(targets_export_name ${cmake_package_name}Targets CACHE INTERNAL "") set(generated_dir "${CMAKE_CURRENT_BINARY_DIR}/generated" CACHE INTERNAL "") set(cmake_files_install_dir "${CMAKE_INSTALL_LIBDIR}/cmake/${cmake_package_name}") set(version_file "${generated_dir}/${cmake_package_name}ConfigVersion.cmake") write_basic_package_version_file(${version_file} VERSION ${GOOGLETEST_VERSION} COMPATIBILITY AnyNewerVersion) install(EXPORT ${targets_export_name} NAMESPACE ${cmake_package_name}:: DESTINATION ${cmake_files_install_dir}) set(config_file "${generated_dir}/${cmake_package_name}Config.cmake") configure_package_config_file("${gtest_SOURCE_DIR}/cmake/Config.cmake.in" "${config_file}" INSTALL_DESTINATION ${cmake_files_install_dir}) install(FILES ${version_file} ${config_file} DESTINATION ${cmake_files_install_dir}) endif() # Where Google Test's .h files can be found. set(gtest_build_include_dirs "${gtest_SOURCE_DIR}/include" "${gtest_SOURCE_DIR}") include_directories(${gtest_build_include_dirs}) ######################################################################## # # Defines the gtest & gtest_main libraries. User tests should link # with one of them. # Google Test libraries. We build them using more strict warnings than what # are used for other targets, to ensure that gtest can be compiled by a user # aggressive about warnings. cxx_library(gtest "${cxx_strict}" src/gtest-all.cc) cxx_library(gtest_main "${cxx_strict}" src/gtest_main.cc) # If the CMake version supports it, attach header directory information # to the targets for when we are part of a parent build (ie being pulled # in via add_subdirectory() rather than being a standalone build). if (DEFINED CMAKE_VERSION AND NOT "${CMAKE_VERSION}" VERSION_LESS "2.8.11") target_include_directories(gtest SYSTEM INTERFACE "$" "$/${CMAKE_INSTALL_INCLUDEDIR}>") target_include_directories(gtest_main SYSTEM INTERFACE "$" "$/${CMAKE_INSTALL_INCLUDEDIR}>") endif() target_link_libraries(gtest_main PUBLIC gtest) ######################################################################## # # Install rules install_project(gtest gtest_main) ######################################################################## # # Samples on how to link user tests with gtest or gtest_main. # # They are not built by default. To build them, set the # gtest_build_samples option to ON. You can do it by running ccmake # or specifying the -Dgtest_build_samples=ON flag when running cmake. if (gtest_build_samples) cxx_executable(sample1_unittest samples gtest_main samples/sample1.cc) cxx_executable(sample2_unittest samples gtest_main samples/sample2.cc) cxx_executable(sample3_unittest samples gtest_main) cxx_executable(sample4_unittest samples gtest_main samples/sample4.cc) cxx_executable(sample5_unittest samples gtest_main samples/sample1.cc) cxx_executable(sample6_unittest samples gtest_main) cxx_executable(sample7_unittest samples gtest_main) cxx_executable(sample8_unittest samples gtest_main) cxx_executable(sample9_unittest samples gtest) cxx_executable(sample10_unittest samples gtest) endif() ######################################################################## # # Google Test's own tests. # # You can skip this section if you aren't interested in testing # Google Test itself. # # The tests are not built by default. To build them, set the # gtest_build_tests option to ON. You can do it by running ccmake # or specifying the -Dgtest_build_tests=ON flag when running cmake. if (gtest_build_tests) # This must be set in the root directory for the tests to be run by # 'make test' or ctest. enable_testing() if (WIN32) file(GENERATE OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/$/RunTest.ps1" CONTENT "$project_bin = \"${CMAKE_BINARY_DIR}/bin/$\" $env:Path = \"$project_bin;$env:Path\" & $args") elseif (MINGW OR CYGWIN) file(GENERATE OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/RunTest.ps1" CONTENT "$project_bin = (cygpath --windows ${CMAKE_BINARY_DIR}/bin) $env:Path = \"$project_bin;$env:Path\" & $args") endif() ############################################################ # C++ tests built with standard compiler flags. cxx_test(googletest-death-test-test gtest_main) cxx_test(gtest_environment_test gtest) cxx_test(googletest-filepath-test gtest_main) cxx_test(googletest-listener-test gtest_main) cxx_test(gtest_main_unittest gtest_main) cxx_test(googletest-message-test gtest_main) cxx_test(gtest_no_test_unittest gtest) cxx_test(googletest-options-test gtest_main) cxx_test(googletest-param-test-test gtest test/googletest-param-test2-test.cc) cxx_test(googletest-port-test gtest_main) cxx_test(gtest_pred_impl_unittest gtest_main) cxx_test(gtest_premature_exit_test gtest test/gtest_premature_exit_test.cc) cxx_test(googletest-printers-test gtest_main) cxx_test(gtest_prod_test gtest_main test/production.cc) cxx_test(gtest_repeat_test gtest) cxx_test(gtest_sole_header_test gtest_main) cxx_test(gtest_stress_test gtest) cxx_test(googletest-test-part-test gtest_main) cxx_test(gtest_throw_on_failure_ex_test gtest) cxx_test(gtest-typed-test_test gtest_main test/gtest-typed-test2_test.cc) cxx_test(gtest_unittest gtest_main) cxx_test(gtest-unittest-api_test gtest) cxx_test(gtest_skip_in_environment_setup_test gtest_main) cxx_test(gtest_skip_test gtest_main) ############################################################ # C++ tests built with non-standard compiler flags. # MSVC 7.1 does not support STL with exceptions disabled. if (NOT MSVC OR MSVC_VERSION GREATER 1310) cxx_library(gtest_no_exception "${cxx_no_exception}" src/gtest-all.cc) cxx_library(gtest_main_no_exception "${cxx_no_exception}" src/gtest-all.cc src/gtest_main.cc) endif() cxx_library(gtest_main_no_rtti "${cxx_no_rtti}" src/gtest-all.cc src/gtest_main.cc) cxx_test_with_flags(gtest-death-test_ex_nocatch_test "${cxx_exception} -DGTEST_ENABLE_CATCH_EXCEPTIONS_=0" gtest test/googletest-death-test_ex_test.cc) cxx_test_with_flags(gtest-death-test_ex_catch_test "${cxx_exception} -DGTEST_ENABLE_CATCH_EXCEPTIONS_=1" gtest test/googletest-death-test_ex_test.cc) cxx_test_with_flags(gtest_no_rtti_unittest "${cxx_no_rtti}" gtest_main_no_rtti test/gtest_unittest.cc) cxx_shared_library(gtest_dll "${cxx_default}" src/gtest-all.cc src/gtest_main.cc) cxx_executable_with_flags(gtest_dll_test_ "${cxx_default}" gtest_dll test/gtest_all_test.cc) set_target_properties(gtest_dll_test_ PROPERTIES COMPILE_DEFINITIONS "GTEST_LINKED_AS_SHARED_LIBRARY=1") ############################################################ # Python tests. cxx_executable(googletest-break-on-failure-unittest_ test gtest) py_test(googletest-break-on-failure-unittest) py_test(gtest_skip_environment_check_output_test) # Visual Studio .NET 2003 does not support STL with exceptions disabled. if (NOT MSVC OR MSVC_VERSION GREATER 1310) # 1310 is Visual Studio .NET 2003 cxx_executable_with_flags( googletest-catch-exceptions-no-ex-test_ "${cxx_no_exception}" gtest_main_no_exception test/googletest-catch-exceptions-test_.cc) endif() cxx_executable_with_flags( googletest-catch-exceptions-ex-test_ "${cxx_exception}" gtest_main test/googletest-catch-exceptions-test_.cc) py_test(googletest-catch-exceptions-test) cxx_executable(googletest-color-test_ test gtest) py_test(googletest-color-test) cxx_executable(googletest-env-var-test_ test gtest) py_test(googletest-env-var-test) cxx_executable(googletest-filter-unittest_ test gtest) py_test(googletest-filter-unittest) cxx_executable(gtest_help_test_ test gtest_main) py_test(gtest_help_test) cxx_executable(googletest-list-tests-unittest_ test gtest) py_test(googletest-list-tests-unittest) cxx_executable(googletest-output-test_ test gtest) py_test(googletest-output-test --no_stacktrace_support) cxx_executable(googletest-shuffle-test_ test gtest) py_test(googletest-shuffle-test) # MSVC 7.1 does not support STL with exceptions disabled. if (NOT MSVC OR MSVC_VERSION GREATER 1310) cxx_executable(googletest-throw-on-failure-test_ test gtest_no_exception) set_target_properties(googletest-throw-on-failure-test_ PROPERTIES COMPILE_FLAGS "${cxx_no_exception}") py_test(googletest-throw-on-failure-test) endif() cxx_executable(googletest-uninitialized-test_ test gtest) py_test(googletest-uninitialized-test) cxx_executable(gtest_xml_outfile1_test_ test gtest_main) cxx_executable(gtest_xml_outfile2_test_ test gtest_main) py_test(gtest_xml_outfiles_test) py_test(googletest-json-outfiles-test) cxx_executable(gtest_xml_output_unittest_ test gtest) py_test(gtest_xml_output_unittest --no_stacktrace_support) py_test(googletest-json-output-unittest --no_stacktrace_support) endif() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/CONTRIBUTORS000066400000000000000000000025161355420072700225370ustar00rootroot00000000000000# This file contains a list of people who've made non-trivial # contribution to the Google C++ Testing Framework project. People # who commit code to the project are encouraged to add their names # here. Please keep the list sorted by first names. Ajay Joshi Balázs Dán Bharat Mediratta Chandler Carruth Chris Prince Chris Taylor Dan Egnor Eric Roman Hady Zalek Jeffrey Yasskin Jói Sigurðsson Keir Mierle Keith Ray Kenton Varda Manuel Klimek Markus Heule Mika Raento Miklós Fazekas Pasi Valminen Patrick Hanna Patrick Riley Peter Kaminski Preston Jackson Rainer Klaffenboeck Russ Cox Russ Rufer Sean Mcafee Sigurður Ásgeirsson Tracy Bialik Vadim Berman Vlad Losev Zhanyong Wan libspatialindex-1.9.3/test/gtest/gtest-1.10.0/LICENSE000066400000000000000000000027031355420072700216620ustar00rootroot00000000000000Copyright 2008, Google Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/README.md000066400000000000000000000233021355420072700221320ustar00rootroot00000000000000### Generic Build Instructions #### Setup To build Google Test and your tests that use it, you need to tell your build system where to find its headers and source files. The exact way to do it depends on which build system you use, and is usually straightforward. ### Build with CMake Google Test comes with a CMake build script ( [CMakeLists.txt](https://github.com/google/googletest/blob/master/CMakeLists.txt)) that can be used on a wide range of platforms ("C" stands for cross-platform.). If you don't have CMake installed already, you can download it for free from . CMake works by generating native makefiles or build projects that can be used in the compiler environment of your choice. You can either build Google Test as a standalone project or it can be incorporated into an existing CMake build for another project. #### Standalone CMake Project When building Google Test as a standalone project, the typical workflow starts with: mkdir mybuild # Create a directory to hold the build output. cd mybuild cmake ${GTEST_DIR} # Generate native build scripts. If you want to build Google Test's samples, you should replace the last command with cmake -Dgtest_build_samples=ON ${GTEST_DIR} If you are on a \*nix system, you should now see a Makefile in the current directory. Just type 'make' to build gtest. If you use Windows and have Visual Studio installed, a `gtest.sln` file and several `.vcproj` files will be created. You can then build them using Visual Studio. On Mac OS X with Xcode installed, a `.xcodeproj` file will be generated. #### Incorporating Into An Existing CMake Project If you want to use gtest in a project which already uses CMake, then a more robust and flexible approach is to build gtest as part of that project directly. This is done by making the GoogleTest source code available to the main build and adding it using CMake's `add_subdirectory()` command. This has the significant advantage that the same compiler and linker settings are used between gtest and the rest of your project, so issues associated with using incompatible libraries (eg debug/release), etc. are avoided. This is particularly useful on Windows. Making GoogleTest's source code available to the main build can be done a few different ways: * Download the GoogleTest source code manually and place it at a known location. This is the least flexible approach and can make it more difficult to use with continuous integration systems, etc. * Embed the GoogleTest source code as a direct copy in the main project's source tree. This is often the simplest approach, but is also the hardest to keep up to date. Some organizations may not permit this method. * Add GoogleTest as a git submodule or equivalent. This may not always be possible or appropriate. Git submodules, for example, have their own set of advantages and drawbacks. * Use CMake to download GoogleTest as part of the build's configure step. This is just a little more complex, but doesn't have the limitations of the other methods. The last of the above methods is implemented with a small piece of CMake code in a separate file (e.g. `CMakeLists.txt.in`) which is copied to the build area and then invoked as a sub-build _during the CMake stage_. That directory is then pulled into the main build with `add_subdirectory()`. For example: New file `CMakeLists.txt.in`: ```cmake cmake_minimum_required(VERSION 2.8.2) project(googletest-download NONE) include(ExternalProject) ExternalProject_Add(googletest GIT_REPOSITORY https://github.com/google/googletest.git GIT_TAG master SOURCE_DIR "${CMAKE_CURRENT_BINARY_DIR}/googletest-src" BINARY_DIR "${CMAKE_CURRENT_BINARY_DIR}/googletest-build" CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND "" TEST_COMMAND "" ) ``` Existing build's `CMakeLists.txt`: ```cmake # Download and unpack googletest at configure time configure_file(CMakeLists.txt.in googletest-download/CMakeLists.txt) execute_process(COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}" . RESULT_VARIABLE result WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/googletest-download ) if(result) message(FATAL_ERROR "CMake step for googletest failed: ${result}") endif() execute_process(COMMAND ${CMAKE_COMMAND} --build . RESULT_VARIABLE result WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/googletest-download ) if(result) message(FATAL_ERROR "Build step for googletest failed: ${result}") endif() # Prevent overriding the parent project's compiler/linker # settings on Windows set(gtest_force_shared_crt ON CACHE BOOL "" FORCE) # Add googletest directly to our build. This defines # the gtest and gtest_main targets. add_subdirectory(${CMAKE_CURRENT_BINARY_DIR}/googletest-src ${CMAKE_CURRENT_BINARY_DIR}/googletest-build EXCLUDE_FROM_ALL) # The gtest/gtest_main targets carry header search path # dependencies automatically when using CMake 2.8.11 or # later. Otherwise we have to add them here ourselves. if (CMAKE_VERSION VERSION_LESS 2.8.11) include_directories("${gtest_SOURCE_DIR}/include") endif() # Now simply link against gtest or gtest_main as needed. Eg add_executable(example example.cpp) target_link_libraries(example gtest_main) add_test(NAME example_test COMMAND example) ``` Note that this approach requires CMake 2.8.2 or later due to its use of the `ExternalProject_Add()` command. The above technique is discussed in more detail in [this separate article](http://crascit.com/2015/07/25/cmake-gtest/) which also contains a link to a fully generalized implementation of the technique. ##### Visual Studio Dynamic vs Static Runtimes By default, new Visual Studio projects link the C runtimes dynamically but Google Test links them statically. This will generate an error that looks something like the following: gtest.lib(gtest-all.obj) : error LNK2038: mismatch detected for 'RuntimeLibrary': value 'MTd_StaticDebug' doesn't match value 'MDd_DynamicDebug' in main.obj Google Test already has a CMake option for this: `gtest_force_shared_crt` Enabling this option will make gtest link the runtimes dynamically too, and match the project in which it is included. #### C++ Standard Version An environment that supports C++11 is required in order to successfully build Google Test. One way to ensure this is to specify the standard in the top-level project, for example by using the `set(CMAKE_CXX_STANDARD 11)` command. If this is not feasible, for example in a C project using Google Test for validation, then it can be specified by adding it to the options for cmake via the `DCMAKE_CXX_FLAGS` option. ### Tweaking Google Test Google Test can be used in diverse environments. The default configuration may not work (or may not work well) out of the box in some environments. However, you can easily tweak Google Test by defining control macros on the compiler command line. Generally, these macros are named like `GTEST_XYZ` and you define them to either 1 or 0 to enable or disable a certain feature. We list the most frequently used macros below. For a complete list, see file [include/gtest/internal/gtest-port.h](https://github.com/google/googletest/blob/master/googletest/include/gtest/internal/gtest-port.h). ### Multi-threaded Tests Google Test is thread-safe where the pthread library is available. After `#include "gtest/gtest.h"`, you can check the `GTEST_IS_THREADSAFE` macro to see whether this is the case (yes if the macro is `#defined` to 1, no if it's undefined.). If Google Test doesn't correctly detect whether pthread is available in your environment, you can force it with -DGTEST_HAS_PTHREAD=1 or -DGTEST_HAS_PTHREAD=0 When Google Test uses pthread, you may need to add flags to your compiler and/or linker to select the pthread library, or you'll get link errors. If you use the CMake script or the deprecated Autotools script, this is taken care of for you. If you use your own build script, you'll need to read your compiler and linker's manual to figure out what flags to add. ### As a Shared Library (DLL) Google Test is compact, so most users can build and link it as a static library for the simplicity. You can choose to use Google Test as a shared library (known as a DLL on Windows) if you prefer. To compile *gtest* as a shared library, add -DGTEST_CREATE_SHARED_LIBRARY=1 to the compiler flags. You'll also need to tell the linker to produce a shared library instead - consult your linker's manual for how to do it. To compile your *tests* that use the gtest shared library, add -DGTEST_LINKED_AS_SHARED_LIBRARY=1 to the compiler flags. Note: while the above steps aren't technically necessary today when using some compilers (e.g. GCC), they may become necessary in the future, if we decide to improve the speed of loading the library (see for details). Therefore you are recommended to always add the above flags when using Google Test as a shared library. Otherwise a future release of Google Test may break your build script. ### Avoiding Macro Name Clashes In C++, macros don't obey namespaces. Therefore two libraries that both define a macro of the same name will clash if you `#include` both definitions. In case a Google Test macro clashes with another library, you can force Google Test to rename its macro to avoid the conflict. Specifically, if both Google Test and some other code define macro FOO, you can add -DGTEST_DONT_DEFINE_FOO=1 to the compiler flags to tell Google Test to change the macro's name from `FOO` to `GTEST_FOO`. Currently `FOO` can be `FAIL`, `SUCCEED`, or `TEST`. For example, with `-DGTEST_DONT_DEFINE_TEST=1`, you'll need to write GTEST_TEST(SomeTest, DoesThis) { ... } instead of TEST(SomeTest, DoesThis) { ... } in order to define a test. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/cmake/000077500000000000000000000000001355420072700217335ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/cmake/Config.cmake.in000066400000000000000000000004341355420072700245500ustar00rootroot00000000000000@PACKAGE_INIT@ include(CMakeFindDependencyMacro) if (@GTEST_HAS_PTHREAD@) set(THREADS_PREFER_PTHREAD_FLAG @THREADS_PREFER_PTHREAD_FLAG@) find_dependency(Threads) endif() include("${CMAKE_CURRENT_LIST_DIR}/@targets_export_name@.cmake") check_required_components("@project_name@") libspatialindex-1.9.3/test/gtest/gtest-1.10.0/cmake/gtest.pc.in000066400000000000000000000005641355420072700240170ustar00rootroot00000000000000prefix=${pcfiledir}/../.. libdir=${prefix}/@CMAKE_INSTALL_LIBDIR@ includedir=${prefix}/@CMAKE_INSTALL_INCLUDEDIR@ Name: gtest Description: GoogleTest (without main() function) Version: @PROJECT_VERSION@ URL: https://github.com/google/googletest Libs: -L${libdir} -lgtest @CMAKE_THREAD_LIBS_INIT@ Cflags: -I${includedir} @GTEST_HAS_PTHREAD_MACRO@ @CMAKE_THREAD_LIBS_INIT@ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/cmake/gtest_main.pc.in000066400000000000000000000006131355420072700250160ustar00rootroot00000000000000prefix=${pcfiledir}/../.. libdir=${prefix}/@CMAKE_INSTALL_LIBDIR@ includedir=${prefix}/@CMAKE_INSTALL_INCLUDEDIR@ Name: gtest_main Description: GoogleTest (with main() function) Version: @PROJECT_VERSION@ URL: https://github.com/google/googletest Requires: gtest Libs: -L${libdir} -lgtest_main @CMAKE_THREAD_LIBS_INIT@ Cflags: -I${includedir} @GTEST_HAS_PTHREAD_MACRO@ @CMAKE_THREAD_LIBS_INIT@ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/cmake/internal_utils.cmake000066400000000000000000000354251355420072700260020ustar00rootroot00000000000000# Defines functions and macros useful for building Google Test and # Google Mock. # # Note: # # - This file will be run twice when building Google Mock (once via # Google Test's CMakeLists.txt, and once via Google Mock's). # Therefore it shouldn't have any side effects other than defining # the functions and macros. # # - The functions/macros defined in this file may depend on Google # Test and Google Mock's option() definitions, and thus must be # called *after* the options have been defined. if (POLICY CMP0054) cmake_policy(SET CMP0054 NEW) endif (POLICY CMP0054) # Tweaks CMake's default compiler/linker settings to suit Google Test's needs. # # This must be a macro(), as inside a function string() can only # update variables in the function scope. macro(fix_default_compiler_settings_) if (MSVC) # For MSVC, CMake sets certain flags to defaults we want to override. # This replacement code is taken from sample in the CMake Wiki at # https://gitlab.kitware.com/cmake/community/wikis/FAQ#dynamic-replace. foreach (flag_var CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO) if (NOT BUILD_SHARED_LIBS AND NOT gtest_force_shared_crt) # When Google Test is built as a shared library, it should also use # shared runtime libraries. Otherwise, it may end up with multiple # copies of runtime library data in different modules, resulting in # hard-to-find crashes. When it is built as a static library, it is # preferable to use CRT as static libraries, as we don't have to rely # on CRT DLLs being available. CMake always defaults to using shared # CRT libraries, so we override that default here. string(REPLACE "/MD" "-MT" ${flag_var} "${${flag_var}}") endif() # We prefer more strict warning checking for building Google Test. # Replaces /W3 with /W4 in defaults. string(REPLACE "/W3" "/W4" ${flag_var} "${${flag_var}}") # Prevent D9025 warning for targets that have exception handling # turned off (/EHs-c- flag). Where required, exceptions are explicitly # re-enabled using the cxx_exception_flags variable. string(REPLACE "/EHsc" "" ${flag_var} "${${flag_var}}") endforeach() endif() endmacro() # Defines the compiler/linker flags used to build Google Test and # Google Mock. You can tweak these definitions to suit your need. A # variable's value is empty before it's explicitly assigned to. macro(config_compiler_and_linker) # Note: pthreads on MinGW is not supported, even if available # instead, we use windows threading primitives unset(GTEST_HAS_PTHREAD) if (NOT gtest_disable_pthreads AND NOT MINGW) # Defines CMAKE_USE_PTHREADS_INIT and CMAKE_THREAD_LIBS_INIT. find_package(Threads) if (CMAKE_USE_PTHREADS_INIT) set(GTEST_HAS_PTHREAD ON) endif() endif() fix_default_compiler_settings_() if (MSVC) # Newlines inside flags variables break CMake's NMake generator. # TODO(vladl@google.com): Add -RTCs and -RTCu to debug builds. set(cxx_base_flags "-GS -W4 -WX -wd4251 -wd4275 -nologo -J -Zi") set(cxx_base_flags "${cxx_base_flags} -D_UNICODE -DUNICODE -DWIN32 -D_WIN32") set(cxx_base_flags "${cxx_base_flags} -DSTRICT -DWIN32_LEAN_AND_MEAN") set(cxx_exception_flags "-EHsc -D_HAS_EXCEPTIONS=1") set(cxx_no_exception_flags "-EHs-c- -D_HAS_EXCEPTIONS=0") set(cxx_no_rtti_flags "-GR-") # Suppress "unreachable code" warning # http://stackoverflow.com/questions/3232669 explains the issue. set(cxx_base_flags "${cxx_base_flags} -wd4702") elseif (CMAKE_CXX_COMPILER_ID STREQUAL "Clang") set(cxx_base_flags "-Wall -Wshadow -Werror -Wconversion") set(cxx_exception_flags "-fexceptions") set(cxx_no_exception_flags "-fno-exceptions") set(cxx_strict_flags "-W -Wpointer-arith -Wreturn-type -Wcast-qual -Wwrite-strings -Wswitch -Wunused-parameter -Wcast-align -Wchar-subscripts -Winline -Wredundant-decls") set(cxx_no_rtti_flags "-fno-rtti") elseif (CMAKE_COMPILER_IS_GNUCXX) set(cxx_base_flags "-Wall -Wshadow -Werror") if(NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0.0) set(cxx_base_flags "${cxx_base_flags} -Wno-error=dangling-else") endif() set(cxx_exception_flags "-fexceptions") set(cxx_no_exception_flags "-fno-exceptions") # Until version 4.3.2, GCC doesn't define a macro to indicate # whether RTTI is enabled. Therefore we define GTEST_HAS_RTTI # explicitly. set(cxx_no_rtti_flags "-fno-rtti -DGTEST_HAS_RTTI=0") set(cxx_strict_flags "-Wextra -Wno-unused-parameter -Wno-missing-field-initializers") elseif (CMAKE_CXX_COMPILER_ID STREQUAL "SunPro") set(cxx_exception_flags "-features=except") # Sun Pro doesn't provide macros to indicate whether exceptions and # RTTI are enabled, so we define GTEST_HAS_* explicitly. set(cxx_no_exception_flags "-features=no%except -DGTEST_HAS_EXCEPTIONS=0") set(cxx_no_rtti_flags "-features=no%rtti -DGTEST_HAS_RTTI=0") elseif (CMAKE_CXX_COMPILER_ID STREQUAL "VisualAge" OR CMAKE_CXX_COMPILER_ID STREQUAL "XL") # CMake 2.8 changes Visual Age's compiler ID to "XL". set(cxx_exception_flags "-qeh") set(cxx_no_exception_flags "-qnoeh") # Until version 9.0, Visual Age doesn't define a macro to indicate # whether RTTI is enabled. Therefore we define GTEST_HAS_RTTI # explicitly. set(cxx_no_rtti_flags "-qnortti -DGTEST_HAS_RTTI=0") elseif (CMAKE_CXX_COMPILER_ID STREQUAL "HP") set(cxx_base_flags "-AA -mt") set(cxx_exception_flags "-DGTEST_HAS_EXCEPTIONS=1") set(cxx_no_exception_flags "+noeh -DGTEST_HAS_EXCEPTIONS=0") # RTTI can not be disabled in HP aCC compiler. set(cxx_no_rtti_flags "") endif() # The pthreads library is available and allowed? if (DEFINED GTEST_HAS_PTHREAD) set(GTEST_HAS_PTHREAD_MACRO "-DGTEST_HAS_PTHREAD=1") else() set(GTEST_HAS_PTHREAD_MACRO "-DGTEST_HAS_PTHREAD=0") endif() set(cxx_base_flags "${cxx_base_flags} ${GTEST_HAS_PTHREAD_MACRO}") # For building gtest's own tests and samples. set(cxx_exception "${cxx_base_flags} ${cxx_exception_flags}") set(cxx_no_exception "${CMAKE_CXX_FLAGS} ${cxx_base_flags} ${cxx_no_exception_flags}") set(cxx_default "${cxx_exception}") set(cxx_no_rtti "${cxx_default} ${cxx_no_rtti_flags}") # For building the gtest libraries. set(cxx_strict "${cxx_default} ${cxx_strict_flags}") endmacro() # Defines the gtest & gtest_main libraries. User tests should link # with one of them. function(cxx_library_with_type name type cxx_flags) # type can be either STATIC or SHARED to denote a static or shared library. # ARGN refers to additional arguments after 'cxx_flags'. add_library(${name} ${type} ${ARGN}) set_target_properties(${name} PROPERTIES COMPILE_FLAGS "${cxx_flags}") # Generate debug library name with a postfix. set_target_properties(${name} PROPERTIES DEBUG_POSTFIX "d") # Set the output directory for build artifacts set_target_properties(${name} PROPERTIES RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin" LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib" ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib" PDB_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin") # make PDBs match library name get_target_property(pdb_debug_postfix ${name} DEBUG_POSTFIX) set_target_properties(${name} PROPERTIES PDB_NAME "${name}" PDB_NAME_DEBUG "${name}${pdb_debug_postfix}" COMPILE_PDB_NAME "${name}" COMPILE_PDB_NAME_DEBUG "${name}${pdb_debug_postfix}") if (BUILD_SHARED_LIBS OR type STREQUAL "SHARED") set_target_properties(${name} PROPERTIES COMPILE_DEFINITIONS "GTEST_CREATE_SHARED_LIBRARY=1") if (NOT "${CMAKE_VERSION}" VERSION_LESS "2.8.11") target_compile_definitions(${name} INTERFACE $) endif() endif() if (DEFINED GTEST_HAS_PTHREAD) if ("${CMAKE_VERSION}" VERSION_LESS "3.1.0") set(threads_spec ${CMAKE_THREAD_LIBS_INIT}) else() set(threads_spec Threads::Threads) endif() target_link_libraries(${name} PUBLIC ${threads_spec}) endif() endfunction() ######################################################################## # # Helper functions for creating build targets. function(cxx_shared_library name cxx_flags) cxx_library_with_type(${name} SHARED "${cxx_flags}" ${ARGN}) endfunction() function(cxx_library name cxx_flags) cxx_library_with_type(${name} "" "${cxx_flags}" ${ARGN}) endfunction() # cxx_executable_with_flags(name cxx_flags libs srcs...) # # creates a named C++ executable that depends on the given libraries and # is built from the given source files with the given compiler flags. function(cxx_executable_with_flags name cxx_flags libs) add_executable(${name} ${ARGN}) if (MSVC) # BigObj required for tests. set(cxx_flags "${cxx_flags} -bigobj") endif() if (cxx_flags) set_target_properties(${name} PROPERTIES COMPILE_FLAGS "${cxx_flags}") endif() if (BUILD_SHARED_LIBS) set_target_properties(${name} PROPERTIES COMPILE_DEFINITIONS "GTEST_LINKED_AS_SHARED_LIBRARY=1") endif() # To support mixing linking in static and dynamic libraries, link each # library in with an extra call to target_link_libraries. foreach (lib "${libs}") target_link_libraries(${name} ${lib}) endforeach() endfunction() # cxx_executable(name dir lib srcs...) # # creates a named target that depends on the given libs and is built # from the given source files. dir/name.cc is implicitly included in # the source file list. function(cxx_executable name dir libs) cxx_executable_with_flags( ${name} "${cxx_default}" "${libs}" "${dir}/${name}.cc" ${ARGN}) endfunction() # Sets PYTHONINTERP_FOUND and PYTHON_EXECUTABLE. find_package(PythonInterp) # cxx_test_with_flags(name cxx_flags libs srcs...) # # creates a named C++ test that depends on the given libs and is built # from the given source files with the given compiler flags. function(cxx_test_with_flags name cxx_flags libs) cxx_executable_with_flags(${name} "${cxx_flags}" "${libs}" ${ARGN}) if (WIN32 OR MINGW) add_test(NAME ${name} COMMAND "powershell" "-Command" "${CMAKE_CURRENT_BINARY_DIR}/$/RunTest.ps1" "$") else() add_test(NAME ${name} COMMAND "$") endif() endfunction() # cxx_test(name libs srcs...) # # creates a named test target that depends on the given libs and is # built from the given source files. Unlike cxx_test_with_flags, # test/name.cc is already implicitly included in the source file list. function(cxx_test name libs) cxx_test_with_flags("${name}" "${cxx_default}" "${libs}" "test/${name}.cc" ${ARGN}) endfunction() # py_test(name) # # creates a Python test with the given name whose main module is in # test/name.py. It does nothing if Python is not installed. function(py_test name) if (PYTHONINTERP_FOUND) if ("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" VERSION_GREATER 3.1) if (CMAKE_CONFIGURATION_TYPES) # Multi-configuration build generators as for Visual Studio save # output in a subdirectory of CMAKE_CURRENT_BINARY_DIR (Debug, # Release etc.), so we have to provide it here. if (WIN32 OR MINGW) add_test(NAME ${name} COMMAND powershell -Command ${CMAKE_CURRENT_BINARY_DIR}/$/RunTest.ps1 ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py --build_dir=${CMAKE_CURRENT_BINARY_DIR}/$ ${ARGN}) else() add_test(NAME ${name} COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py --build_dir=${CMAKE_CURRENT_BINARY_DIR}/$ ${ARGN}) endif() else (CMAKE_CONFIGURATION_TYPES) # Single-configuration build generators like Makefile generators # don't have subdirs below CMAKE_CURRENT_BINARY_DIR. if (WIN32 OR MINGW) add_test(NAME ${name} COMMAND powershell -Command ${CMAKE_CURRENT_BINARY_DIR}/RunTest.ps1 ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py --build_dir=${CMAKE_CURRENT_BINARY_DIR} ${ARGN}) else() add_test(NAME ${name} COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py --build_dir=${CMAKE_CURRENT_BINARY_DIR} ${ARGN}) endif() endif (CMAKE_CONFIGURATION_TYPES) else() # ${CMAKE_CURRENT_BINARY_DIR} is known at configuration time, so we can # directly bind it from cmake. ${CTEST_CONFIGURATION_TYPE} is known # only at ctest runtime (by calling ctest -c ), so # we have to escape $ to delay variable substitution here. if (WIN32 OR MINGW) add_test(NAME ${name} COMMAND powershell -Command ${CMAKE_CURRENT_BINARY_DIR}/RunTest.ps1 ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py --build_dir=${CMAKE_CURRENT_BINARY_DIR}/\${CTEST_CONFIGURATION_TYPE} ${ARGN}) else() add_test(NAME ${name} COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/test/${name}.py --build_dir=${CMAKE_CURRENT_BINARY_DIR}/\${CTEST_CONFIGURATION_TYPE} ${ARGN}) endif() endif() endif(PYTHONINTERP_FOUND) endfunction() # install_project(targets...) # # Installs the specified targets and configures the associated pkgconfig files. function(install_project) if(INSTALL_GTEST) install(DIRECTORY "${PROJECT_SOURCE_DIR}/include/" DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}") # Install the project targets. install(TARGETS ${ARGN} EXPORT ${targets_export_name} RUNTIME DESTINATION "${CMAKE_INSTALL_BINDIR}" ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}" LIBRARY DESTINATION "${CMAKE_INSTALL_LIBDIR}") if(CMAKE_CXX_COMPILER_ID MATCHES "MSVC") # Install PDBs foreach(t ${ARGN}) get_target_property(t_pdb_name ${t} COMPILE_PDB_NAME) get_target_property(t_pdb_name_debug ${t} COMPILE_PDB_NAME_DEBUG) get_target_property(t_pdb_output_directory ${t} PDB_OUTPUT_DIRECTORY) install(FILES "${t_pdb_output_directory}/\${CMAKE_INSTALL_CONFIG_NAME}/$<$:${t_pdb_name_debug}>$<$>:${t_pdb_name}>.pdb" DESTINATION ${CMAKE_INSTALL_LIBDIR} OPTIONAL) endforeach() endif() # Configure and install pkgconfig files. foreach(t ${ARGN}) set(configured_pc "${generated_dir}/${t}.pc") configure_file("${PROJECT_SOURCE_DIR}/cmake/${t}.pc.in" "${configured_pc}" @ONLY) install(FILES "${configured_pc}" DESTINATION "${CMAKE_INSTALL_LIBDIR}/pkgconfig") endforeach() endif() endfunction() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/cmake/libgtest.la.in000066400000000000000000000007631355420072700245010ustar00rootroot00000000000000# libgtest.la - a libtool library file # Generated by libtool (GNU libtool) 2.4.6 # Please DO NOT delete this file! # It is necessary for linking the library. # Names of this library. library_names='libgtest.so' # Is this an already installed library? installed=yes # Should we warn about portability when linking against -modules? shouldnotlink=no # Files to dlopen/dlpreopen dlopen='' dlpreopen='' # Directory that this library needs to be installed in: libdir='@CMAKE_INSTALL_FULL_LIBDIR@' libspatialindex-1.9.3/test/gtest/gtest-1.10.0/docs/000077500000000000000000000000001355420072700216035ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/docs/advanced.md000066400000000000000000002737261355420072700237130ustar00rootroot00000000000000# Advanced googletest Topics ## Introduction Now that you have read the [googletest Primer](primer.md) and learned how to write tests using googletest, it's time to learn some new tricks. This document will show you more assertions as well as how to construct complex failure messages, propagate fatal failures, reuse and speed up your test fixtures, and use various flags with your tests. ## More Assertions This section covers some less frequently used, but still significant, assertions. ### Explicit Success and Failure These three assertions do not actually test a value or expression. Instead, they generate a success or failure directly. Like the macros that actually perform a test, you may stream a custom failure message into them. ```c++ SUCCEED(); ``` Generates a success. This does **NOT** make the overall test succeed. A test is considered successful only if none of its assertions fail during its execution. NOTE: `SUCCEED()` is purely documentary and currently doesn't generate any user-visible output. However, we may add `SUCCEED()` messages to googletest's output in the future. ```c++ FAIL(); ADD_FAILURE(); ADD_FAILURE_AT("file_path", line_number); ``` `FAIL()` generates a fatal failure, while `ADD_FAILURE()` and `ADD_FAILURE_AT()` generate a nonfatal failure. These are useful when control flow, rather than a Boolean expression, determines the test's success or failure. For example, you might want to write something like: ```c++ switch(expression) { case 1: ... some checks ... case 2: ... some other checks ... default: FAIL() << "We shouldn't get here."; } ``` NOTE: you can only use `FAIL()` in functions that return `void`. See the [Assertion Placement section](#assertion-placement) for more information. ### Exception Assertions These are for verifying that a piece of code throws (or does not throw) an exception of the given type: Fatal assertion | Nonfatal assertion | Verifies ------------------------------------------ | ------------------------------------------ | -------- `ASSERT_THROW(statement, exception_type);` | `EXPECT_THROW(statement, exception_type);` | `statement` throws an exception of the given type `ASSERT_ANY_THROW(statement);` | `EXPECT_ANY_THROW(statement);` | `statement` throws an exception of any type `ASSERT_NO_THROW(statement);` | `EXPECT_NO_THROW(statement);` | `statement` doesn't throw any exception Examples: ```c++ ASSERT_THROW(Foo(5), bar_exception); EXPECT_NO_THROW({ int n = 5; Bar(&n); }); ``` **Availability**: requires exceptions to be enabled in the build environment ### Predicate Assertions for Better Error Messages Even though googletest has a rich set of assertions, they can never be complete, as it's impossible (nor a good idea) to anticipate all scenarios a user might run into. Therefore, sometimes a user has to use `EXPECT_TRUE()` to check a complex expression, for lack of a better macro. This has the problem of not showing you the values of the parts of the expression, making it hard to understand what went wrong. As a workaround, some users choose to construct the failure message by themselves, streaming it into `EXPECT_TRUE()`. However, this is awkward especially when the expression has side-effects or is expensive to evaluate. googletest gives you three different options to solve this problem: #### Using an Existing Boolean Function If you already have a function or functor that returns `bool` (or a type that can be implicitly converted to `bool`), you can use it in a *predicate assertion* to get the function arguments printed for free: | Fatal assertion | Nonfatal assertion | Verifies | | --------------------------------- | --------------------------------- | --------------------------- | | `ASSERT_PRED1(pred1, val1)` | `EXPECT_PRED1(pred1, val1)` | `pred1(val1)` is true | | `ASSERT_PRED2(pred2, val1, val2)` | `EXPECT_PRED2(pred2, val1, val2)` | `pred1(val1, val2)` is true | | `...` | `...` | `...` | In the above, `predn` is an `n`-ary predicate function or functor, where `val1`, `val2`, ..., and `valn` are its arguments. The assertion succeeds if the predicate returns `true` when applied to the given arguments, and fails otherwise. When the assertion fails, it prints the value of each argument. In either case, the arguments are evaluated exactly once. Here's an example. Given ```c++ // Returns true if m and n have no common divisors except 1. bool MutuallyPrime(int m, int n) { ... } const int a = 3; const int b = 4; const int c = 10; ``` the assertion ```c++ EXPECT_PRED2(MutuallyPrime, a, b); ``` will succeed, while the assertion ```c++ EXPECT_PRED2(MutuallyPrime, b, c); ``` will fail with the message ```none MutuallyPrime(b, c) is false, where b is 4 c is 10 ``` > NOTE: > > 1. If you see a compiler error "no matching function to call" when using > `ASSERT_PRED*` or `EXPECT_PRED*`, please see > [this](faq.md#the-compiler-complains-no-matching-function-to-call-when-i-use-assert-pred-how-do-i-fix-it) > for how to resolve it. #### Using a Function That Returns an AssertionResult While `EXPECT_PRED*()` and friends are handy for a quick job, the syntax is not satisfactory: you have to use different macros for different arities, and it feels more like Lisp than C++. The `::testing::AssertionResult` class solves this problem. An `AssertionResult` object represents the result of an assertion (whether it's a success or a failure, and an associated message). You can create an `AssertionResult` using one of these factory functions: ```c++ namespace testing { // Returns an AssertionResult object to indicate that an assertion has // succeeded. AssertionResult AssertionSuccess(); // Returns an AssertionResult object to indicate that an assertion has // failed. AssertionResult AssertionFailure(); } ``` You can then use the `<<` operator to stream messages to the `AssertionResult` object. To provide more readable messages in Boolean assertions (e.g. `EXPECT_TRUE()`), write a predicate function that returns `AssertionResult` instead of `bool`. For example, if you define `IsEven()` as: ```c++ ::testing::AssertionResult IsEven(int n) { if ((n % 2) == 0) return ::testing::AssertionSuccess(); else return ::testing::AssertionFailure() << n << " is odd"; } ``` instead of: ```c++ bool IsEven(int n) { return (n % 2) == 0; } ``` the failed assertion `EXPECT_TRUE(IsEven(Fib(4)))` will print: ```none Value of: IsEven(Fib(4)) Actual: false (3 is odd) Expected: true ``` instead of a more opaque ```none Value of: IsEven(Fib(4)) Actual: false Expected: true ``` If you want informative messages in `EXPECT_FALSE` and `ASSERT_FALSE` as well (one third of Boolean assertions in the Google code base are negative ones), and are fine with making the predicate slower in the success case, you can supply a success message: ```c++ ::testing::AssertionResult IsEven(int n) { if ((n % 2) == 0) return ::testing::AssertionSuccess() << n << " is even"; else return ::testing::AssertionFailure() << n << " is odd"; } ``` Then the statement `EXPECT_FALSE(IsEven(Fib(6)))` will print ```none Value of: IsEven(Fib(6)) Actual: true (8 is even) Expected: false ``` #### Using a Predicate-Formatter If you find the default message generated by `(ASSERT|EXPECT)_PRED*` and `(ASSERT|EXPECT)_(TRUE|FALSE)` unsatisfactory, or some arguments to your predicate do not support streaming to `ostream`, you can instead use the following *predicate-formatter assertions* to *fully* customize how the message is formatted: Fatal assertion | Nonfatal assertion | Verifies ------------------------------------------------ | ------------------------------------------------ | -------- `ASSERT_PRED_FORMAT1(pred_format1, val1);` | `EXPECT_PRED_FORMAT1(pred_format1, val1);` | `pred_format1(val1)` is successful `ASSERT_PRED_FORMAT2(pred_format2, val1, val2);` | `EXPECT_PRED_FORMAT2(pred_format2, val1, val2);` | `pred_format2(val1, val2)` is successful `...` | `...` | ... The difference between this and the previous group of macros is that instead of a predicate, `(ASSERT|EXPECT)_PRED_FORMAT*` take a *predicate-formatter* (`pred_formatn`), which is a function or functor with the signature: ```c++ ::testing::AssertionResult PredicateFormattern(const char* expr1, const char* expr2, ... const char* exprn, T1 val1, T2 val2, ... Tn valn); ``` where `val1`, `val2`, ..., and `valn` are the values of the predicate arguments, and `expr1`, `expr2`, ..., and `exprn` are the corresponding expressions as they appear in the source code. The types `T1`, `T2`, ..., and `Tn` can be either value types or reference types. For example, if an argument has type `Foo`, you can declare it as either `Foo` or `const Foo&`, whichever is appropriate. As an example, let's improve the failure message in `MutuallyPrime()`, which was used with `EXPECT_PRED2()`: ```c++ // Returns the smallest prime common divisor of m and n, // or 1 when m and n are mutually prime. int SmallestPrimeCommonDivisor(int m, int n) { ... } // A predicate-formatter for asserting that two integers are mutually prime. ::testing::AssertionResult AssertMutuallyPrime(const char* m_expr, const char* n_expr, int m, int n) { if (MutuallyPrime(m, n)) return ::testing::AssertionSuccess(); return ::testing::AssertionFailure() << m_expr << " and " << n_expr << " (" << m << " and " << n << ") are not mutually prime, " << "as they have a common divisor " << SmallestPrimeCommonDivisor(m, n); } ``` With this predicate-formatter, we can use ```c++ EXPECT_PRED_FORMAT2(AssertMutuallyPrime, b, c); ``` to generate the message ```none b and c (4 and 10) are not mutually prime, as they have a common divisor 2. ``` As you may have realized, many of the built-in assertions we introduced earlier are special cases of `(EXPECT|ASSERT)_PRED_FORMAT*`. In fact, most of them are indeed defined using `(EXPECT|ASSERT)_PRED_FORMAT*`. ### Floating-Point Comparison Comparing floating-point numbers is tricky. Due to round-off errors, it is very unlikely that two floating-points will match exactly. Therefore, `ASSERT_EQ` 's naive comparison usually doesn't work. And since floating-points can have a wide value range, no single fixed error bound works. It's better to compare by a fixed relative error bound, except for values close to 0 due to the loss of precision there. In general, for floating-point comparison to make sense, the user needs to carefully choose the error bound. If they don't want or care to, comparing in terms of Units in the Last Place (ULPs) is a good default, and googletest provides assertions to do this. Full details about ULPs are quite long; if you want to learn more, see [here](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #### Floating-Point Macros | Fatal assertion | Nonfatal assertion | Verifies | | ------------------------------- | ------------------------------- | ---------------------------------------- | | `ASSERT_FLOAT_EQ(val1, val2);` | `EXPECT_FLOAT_EQ(val1, val2);` | the two `float` values are almost equal | | `ASSERT_DOUBLE_EQ(val1, val2);` | `EXPECT_DOUBLE_EQ(val1, val2);` | the two `double` values are almost equal | By "almost equal" we mean the values are within 4 ULP's from each other. The following assertions allow you to choose the acceptable error bound: | Fatal assertion | Nonfatal assertion | Verifies | | ------------------------------------- | ------------------------------------- | -------------------------------------------------------------------------------- | | `ASSERT_NEAR(val1, val2, abs_error);` | `EXPECT_NEAR(val1, val2, abs_error);` | the difference between `val1` and `val2` doesn't exceed the given absolute error | #### Floating-Point Predicate-Format Functions Some floating-point operations are useful, but not that often used. In order to avoid an explosion of new macros, we provide them as predicate-format functions that can be used in predicate assertion macros (e.g. `EXPECT_PRED_FORMAT2`, etc). ```c++ EXPECT_PRED_FORMAT2(::testing::FloatLE, val1, val2); EXPECT_PRED_FORMAT2(::testing::DoubleLE, val1, val2); ``` Verifies that `val1` is less than, or almost equal to, `val2`. You can replace `EXPECT_PRED_FORMAT2` in the above table with `ASSERT_PRED_FORMAT2`. ### Asserting Using gMock Matchers [gMock](../../googlemock) comes with a library of matchers for validating arguments passed to mock objects. A gMock *matcher* is basically a predicate that knows how to describe itself. It can be used in these assertion macros: | Fatal assertion | Nonfatal assertion | Verifies | | ------------------------------ | ------------------------------ | --------------------- | | `ASSERT_THAT(value, matcher);` | `EXPECT_THAT(value, matcher);` | value matches matcher | For example, `StartsWith(prefix)` is a matcher that matches a string starting with `prefix`, and you can write: ```c++ using ::testing::StartsWith; ... // Verifies that Foo() returns a string starting with "Hello". EXPECT_THAT(Foo(), StartsWith("Hello")); ``` Read this [recipe](../../googlemock/docs/cook_book.md#using-matchers-in-googletest-assertions) in the gMock Cookbook for more details. gMock has a rich set of matchers. You can do many things googletest cannot do alone with them. For a list of matchers gMock provides, read [this](../../googlemock/docs/cook_book.md##using-matchers). It's easy to write your [own matchers](../../googlemock/docs/cook_book.md#NewMatchers) too. gMock is bundled with googletest, so you don't need to add any build dependency in order to take advantage of this. Just include `"testing/base/public/gmock.h"` and you're ready to go. ### More String Assertions (Please read the [previous](#asserting-using-gmock-matchers) section first if you haven't.) You can use the gMock [string matchers](../../googlemock/docs/cheat_sheet.md#string-matchers) with `EXPECT_THAT()` or `ASSERT_THAT()` to do more string comparison tricks (sub-string, prefix, suffix, regular expression, and etc). For example, ```c++ using ::testing::HasSubstr; using ::testing::MatchesRegex; ... ASSERT_THAT(foo_string, HasSubstr("needle")); EXPECT_THAT(bar_string, MatchesRegex("\\w*\\d+")); ``` If the string contains a well-formed HTML or XML document, you can check whether its DOM tree matches an [XPath expression](http://www.w3.org/TR/xpath/#contents): ```c++ // Currently still in //template/prototemplate/testing:xpath_matcher #include "template/prototemplate/testing/xpath_matcher.h" using prototemplate::testing::MatchesXPath; EXPECT_THAT(html_string, MatchesXPath("//a[text()='click here']")); ``` ### Windows HRESULT assertions These assertions test for `HRESULT` success or failure. Fatal assertion | Nonfatal assertion | Verifies -------------------------------------- | -------------------------------------- | -------- `ASSERT_HRESULT_SUCCEEDED(expression)` | `EXPECT_HRESULT_SUCCEEDED(expression)` | `expression` is a success `HRESULT` `ASSERT_HRESULT_FAILED(expression)` | `EXPECT_HRESULT_FAILED(expression)` | `expression` is a failure `HRESULT` The generated output contains the human-readable error message associated with the `HRESULT` code returned by `expression`. You might use them like this: ```c++ CComPtr shell; ASSERT_HRESULT_SUCCEEDED(shell.CoCreateInstance(L"Shell.Application")); CComVariant empty; ASSERT_HRESULT_SUCCEEDED(shell->ShellExecute(CComBSTR(url), empty, empty, empty, empty)); ``` ### Type Assertions You can call the function ```c++ ::testing::StaticAssertTypeEq(); ``` to assert that types `T1` and `T2` are the same. The function does nothing if the assertion is satisfied. If the types are different, the function call will fail to compile, the compiler error message will say that `type1 and type2 are not the same type` and most likely (depending on the compiler) show you the actual values of `T1` and `T2`. This is mainly useful inside template code. **Caveat**: When used inside a member function of a class template or a function template, `StaticAssertTypeEq()` is effective only if the function is instantiated. For example, given: ```c++ template class Foo { public: void Bar() { ::testing::StaticAssertTypeEq(); } }; ``` the code: ```c++ void Test1() { Foo foo; } ``` will not generate a compiler error, as `Foo::Bar()` is never actually instantiated. Instead, you need: ```c++ void Test2() { Foo foo; foo.Bar(); } ``` to cause a compiler error. ### Assertion Placement You can use assertions in any C++ function. In particular, it doesn't have to be a method of the test fixture class. The one constraint is that assertions that generate a fatal failure (`FAIL*` and `ASSERT_*`) can only be used in void-returning functions. This is a consequence of Google's not using exceptions. By placing it in a non-void function you'll get a confusing compile error like `"error: void value not ignored as it ought to be"` or `"cannot initialize return object of type 'bool' with an rvalue of type 'void'"` or `"error: no viable conversion from 'void' to 'string'"`. If you need to use fatal assertions in a function that returns non-void, one option is to make the function return the value in an out parameter instead. For example, you can rewrite `T2 Foo(T1 x)` to `void Foo(T1 x, T2* result)`. You need to make sure that `*result` contains some sensible value even when the function returns prematurely. As the function now returns `void`, you can use any assertion inside of it. If changing the function's type is not an option, you should just use assertions that generate non-fatal failures, such as `ADD_FAILURE*` and `EXPECT_*`. NOTE: Constructors and destructors are not considered void-returning functions, according to the C++ language specification, and so you may not use fatal assertions in them; you'll get a compilation error if you try. Instead, either call `abort` and crash the entire test executable, or put the fatal assertion in a `SetUp`/`TearDown` function; see [constructor/destructor vs. `SetUp`/`TearDown`](faq.md#CtorVsSetUp) WARNING: A fatal assertion in a helper function (private void-returning method) called from a constructor or destructor does not does not terminate the current test, as your intuition might suggest: it merely returns from the constructor or destructor early, possibly leaving your object in a partially-constructed or partially-destructed state! You almost certainly want to `abort` or use `SetUp`/`TearDown` instead. ## Teaching googletest How to Print Your Values When a test assertion such as `EXPECT_EQ` fails, googletest prints the argument values to help you debug. It does this using a user-extensible value printer. This printer knows how to print built-in C++ types, native arrays, STL containers, and any type that supports the `<<` operator. For other types, it prints the raw bytes in the value and hopes that you the user can figure it out. As mentioned earlier, the printer is *extensible*. That means you can teach it to do a better job at printing your particular type than to dump the bytes. To do that, define `<<` for your type: ```c++ #include namespace foo { class Bar { // We want googletest to be able to print instances of this. ... // Create a free inline friend function. friend std::ostream& operator<<(std::ostream& os, const Bar& bar) { return os << bar.DebugString(); // whatever needed to print bar to os } }; // If you can't declare the function in the class it's important that the // << operator is defined in the SAME namespace that defines Bar. C++'s look-up // rules rely on that. std::ostream& operator<<(std::ostream& os, const Bar& bar) { return os << bar.DebugString(); // whatever needed to print bar to os } } // namespace foo ``` Sometimes, this might not be an option: your team may consider it bad style to have a `<<` operator for `Bar`, or `Bar` may already have a `<<` operator that doesn't do what you want (and you cannot change it). If so, you can instead define a `PrintTo()` function like this: ```c++ #include namespace foo { class Bar { ... friend void PrintTo(const Bar& bar, std::ostream* os) { *os << bar.DebugString(); // whatever needed to print bar to os } }; // If you can't declare the function in the class it's important that PrintTo() // is defined in the SAME namespace that defines Bar. C++'s look-up rules rely // on that. void PrintTo(const Bar& bar, std::ostream* os) { *os << bar.DebugString(); // whatever needed to print bar to os } } // namespace foo ``` If you have defined both `<<` and `PrintTo()`, the latter will be used when googletest is concerned. This allows you to customize how the value appears in googletest's output without affecting code that relies on the behavior of its `<<` operator. If you want to print a value `x` using googletest's value printer yourself, just call `::testing::PrintToString(x)`, which returns an `std::string`: ```c++ vector > bar_ints = GetBarIntVector(); EXPECT_TRUE(IsCorrectBarIntVector(bar_ints)) << "bar_ints = " << ::testing::PrintToString(bar_ints); ``` ## Death Tests In many applications, there are assertions that can cause application failure if a condition is not met. These sanity checks, which ensure that the program is in a known good state, are there to fail at the earliest possible time after some program state is corrupted. If the assertion checks the wrong condition, then the program may proceed in an erroneous state, which could lead to memory corruption, security holes, or worse. Hence it is vitally important to test that such assertion statements work as expected. Since these precondition checks cause the processes to die, we call such tests _death tests_. More generally, any test that checks that a program terminates (except by throwing an exception) in an expected fashion is also a death test. Note that if a piece of code throws an exception, we don't consider it "death" for the purpose of death tests, as the caller of the code could catch the exception and avoid the crash. If you want to verify exceptions thrown by your code, see [Exception Assertions](#ExceptionAssertions). If you want to test `EXPECT_*()/ASSERT_*()` failures in your test code, see Catching Failures ### How to Write a Death Test googletest has the following macros to support death tests: Fatal assertion | Nonfatal assertion | Verifies ------------------------------------------------ | ------------------------------------------------ | -------- `ASSERT_DEATH(statement, matcher);` | `EXPECT_DEATH(statement, matcher);` | `statement` crashes with the given error `ASSERT_DEATH_IF_SUPPORTED(statement, matcher);` | `EXPECT_DEATH_IF_SUPPORTED(statement, matcher);` | if death tests are supported, verifies that `statement` crashes with the given error; otherwise verifies nothing `ASSERT_EXIT(statement, predicate, matcher);` | `EXPECT_EXIT(statement, predicate, matcher);` | `statement` exits with the given error, and its exit code matches `predicate` where `statement` is a statement that is expected to cause the process to die, `predicate` is a function or function object that evaluates an integer exit status, and `matcher` is either a GMock matcher matching a `const std::string&` or a (Perl) regular expression - either of which is matched against the stderr output of `statement`. For legacy reasons, a bare string (i.e. with no matcher) is interpreted as `ContainsRegex(str)`, **not** `Eq(str)`. Note that `statement` can be *any valid statement* (including *compound statement*) and doesn't have to be an expression. As usual, the `ASSERT` variants abort the current test function, while the `EXPECT` variants do not. > NOTE: We use the word "crash" here to mean that the process terminates with a > *non-zero* exit status code. There are two possibilities: either the process > has called `exit()` or `_exit()` with a non-zero value, or it may be killed by > a signal. > > This means that if `*statement*` terminates the process with a 0 exit code, it > is *not* considered a crash by `EXPECT_DEATH`. Use `EXPECT_EXIT` instead if > this is the case, or if you want to restrict the exit code more precisely. A predicate here must accept an `int` and return a `bool`. The death test succeeds only if the predicate returns `true`. googletest defines a few predicates that handle the most common cases: ```c++ ::testing::ExitedWithCode(exit_code) ``` This expression is `true` if the program exited normally with the given exit code. ```c++ ::testing::KilledBySignal(signal_number) // Not available on Windows. ``` This expression is `true` if the program was killed by the given signal. The `*_DEATH` macros are convenient wrappers for `*_EXIT` that use a predicate that verifies the process' exit code is non-zero. Note that a death test only cares about three things: 1. does `statement` abort or exit the process? 2. (in the case of `ASSERT_EXIT` and `EXPECT_EXIT`) does the exit status satisfy `predicate`? Or (in the case of `ASSERT_DEATH` and `EXPECT_DEATH`) is the exit status non-zero? And 3. does the stderr output match `regex`? In particular, if `statement` generates an `ASSERT_*` or `EXPECT_*` failure, it will **not** cause the death test to fail, as googletest assertions don't abort the process. To write a death test, simply use one of the above macros inside your test function. For example, ```c++ TEST(MyDeathTest, Foo) { // This death test uses a compound statement. ASSERT_DEATH({ int n = 5; Foo(&n); }, "Error on line .* of Foo()"); } TEST(MyDeathTest, NormalExit) { EXPECT_EXIT(NormalExit(), ::testing::ExitedWithCode(0), "Success"); } TEST(MyDeathTest, KillMyself) { EXPECT_EXIT(KillMyself(), ::testing::KilledBySignal(SIGKILL), "Sending myself unblockable signal"); } ``` verifies that: * calling `Foo(5)` causes the process to die with the given error message, * calling `NormalExit()` causes the process to print `"Success"` to stderr and exit with exit code 0, and * calling `KillMyself()` kills the process with signal `SIGKILL`. The test function body may contain other assertions and statements as well, if necessary. ### Death Test Naming IMPORTANT: We strongly recommend you to follow the convention of naming your **test suite** (not test) `*DeathTest` when it contains a death test, as demonstrated in the above example. The [Death Tests And Threads](#death-tests-and-threads) section below explains why. If a test fixture class is shared by normal tests and death tests, you can use `using` or `typedef` to introduce an alias for the fixture class and avoid duplicating its code: ```c++ class FooTest : public ::testing::Test { ... }; using FooDeathTest = FooTest; TEST_F(FooTest, DoesThis) { // normal test } TEST_F(FooDeathTest, DoesThat) { // death test } ``` ### Regular Expression Syntax On POSIX systems (e.g. Linux, Cygwin, and Mac), googletest uses the [POSIX extended regular expression](http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_04) syntax. To learn about this syntax, you may want to read this [Wikipedia entry](http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions). On Windows, googletest uses its own simple regular expression implementation. It lacks many features. For example, we don't support union (`"x|y"`), grouping (`"(xy)"`), brackets (`"[xy]"`), and repetition count (`"x{5,7}"`), among others. Below is what we do support (`A` denotes a literal character, period (`.`), or a single `\\ ` escape sequence; `x` and `y` denote regular expressions.): Expression | Meaning ---------- | -------------------------------------------------------------- `c` | matches any literal character `c` `\\d` | matches any decimal digit `\\D` | matches any character that's not a decimal digit `\\f` | matches `\f` `\\n` | matches `\n` `\\r` | matches `\r` `\\s` | matches any ASCII whitespace, including `\n` `\\S` | matches any character that's not a whitespace `\\t` | matches `\t` `\\v` | matches `\v` `\\w` | matches any letter, `_`, or decimal digit `\\W` | matches any character that `\\w` doesn't match `\\c` | matches any literal character `c`, which must be a punctuation `.` | matches any single character except `\n` `A?` | matches 0 or 1 occurrences of `A` `A*` | matches 0 or many occurrences of `A` `A+` | matches 1 or many occurrences of `A` `^` | matches the beginning of a string (not that of each line) `$` | matches the end of a string (not that of each line) `xy` | matches `x` followed by `y` To help you determine which capability is available on your system, googletest defines macros to govern which regular expression it is using. The macros are: `GTEST_USES_SIMPLE_RE=1` or `GTEST_USES_POSIX_RE=1`. If you want your death tests to work in all cases, you can either `#if` on these macros or use the more limited syntax only. ### How It Works Under the hood, `ASSERT_EXIT()` spawns a new process and executes the death test statement in that process. The details of how precisely that happens depend on the platform and the variable ::testing::GTEST_FLAG(death_test_style) (which is initialized from the command-line flag `--gtest_death_test_style`). * On POSIX systems, `fork()` (or `clone()` on Linux) is used to spawn the child, after which: * If the variable's value is `"fast"`, the death test statement is immediately executed. * If the variable's value is `"threadsafe"`, the child process re-executes the unit test binary just as it was originally invoked, but with some extra flags to cause just the single death test under consideration to be run. * On Windows, the child is spawned using the `CreateProcess()` API, and re-executes the binary to cause just the single death test under consideration to be run - much like the `threadsafe` mode on POSIX. Other values for the variable are illegal and will cause the death test to fail. Currently, the flag's default value is **"fast"** 1. the child's exit status satisfies the predicate, and 2. the child's stderr matches the regular expression. If the death test statement runs to completion without dying, the child process will nonetheless terminate, and the assertion fails. ### Death Tests And Threads The reason for the two death test styles has to do with thread safety. Due to well-known problems with forking in the presence of threads, death tests should be run in a single-threaded context. Sometimes, however, it isn't feasible to arrange that kind of environment. For example, statically-initialized modules may start threads before main is ever reached. Once threads have been created, it may be difficult or impossible to clean them up. googletest has three features intended to raise awareness of threading issues. 1. A warning is emitted if multiple threads are running when a death test is encountered. 2. Test suites with a name ending in "DeathTest" are run before all other tests. 3. It uses `clone()` instead of `fork()` to spawn the child process on Linux (`clone()` is not available on Cygwin and Mac), as `fork()` is more likely to cause the child to hang when the parent process has multiple threads. It's perfectly fine to create threads inside a death test statement; they are executed in a separate process and cannot affect the parent. ### Death Test Styles The "threadsafe" death test style was introduced in order to help mitigate the risks of testing in a possibly multithreaded environment. It trades increased test execution time (potentially dramatically so) for improved thread safety. The automated testing framework does not set the style flag. You can choose a particular style of death tests by setting the flag programmatically: ```c++ testing::FLAGS_gtest_death_test_style="threadsafe" ``` You can do this in `main()` to set the style for all death tests in the binary, or in individual tests. Recall that flags are saved before running each test and restored afterwards, so you need not do that yourself. For example: ```c++ int main(int argc, char** argv) { InitGoogle(argv[0], &argc, &argv, true); ::testing::FLAGS_gtest_death_test_style = "fast"; return RUN_ALL_TESTS(); } TEST(MyDeathTest, TestOne) { ::testing::FLAGS_gtest_death_test_style = "threadsafe"; // This test is run in the "threadsafe" style: ASSERT_DEATH(ThisShouldDie(), ""); } TEST(MyDeathTest, TestTwo) { // This test is run in the "fast" style: ASSERT_DEATH(ThisShouldDie(), ""); } ``` ### Caveats The `statement` argument of `ASSERT_EXIT()` can be any valid C++ statement. If it leaves the current function via a `return` statement or by throwing an exception, the death test is considered to have failed. Some googletest macros may return from the current function (e.g. `ASSERT_TRUE()`), so be sure to avoid them in `statement`. Since `statement` runs in the child process, any in-memory side effect (e.g. modifying a variable, releasing memory, etc) it causes will *not* be observable in the parent process. In particular, if you release memory in a death test, your program will fail the heap check as the parent process will never see the memory reclaimed. To solve this problem, you can 1. try not to free memory in a death test; 2. free the memory again in the parent process; or 3. do not use the heap checker in your program. Due to an implementation detail, you cannot place multiple death test assertions on the same line; otherwise, compilation will fail with an unobvious error message. Despite the improved thread safety afforded by the "threadsafe" style of death test, thread problems such as deadlock are still possible in the presence of handlers registered with `pthread_atfork(3)`. ## Using Assertions in Sub-routines ### Adding Traces to Assertions If a test sub-routine is called from several places, when an assertion inside it fails, it can be hard to tell which invocation of the sub-routine the failure is from. You can alleviate this problem using extra logging or custom failure messages, but that usually clutters up your tests. A better solution is to use the `SCOPED_TRACE` macro or the `ScopedTrace` utility: ```c++ SCOPED_TRACE(message); ScopedTrace trace("file_path", line_number, message); ``` where `message` can be anything streamable to `std::ostream`. `SCOPED_TRACE` macro will cause the current file name, line number, and the given message to be added in every failure message. `ScopedTrace` accepts explicit file name and line number in arguments, which is useful for writing test helpers. The effect will be undone when the control leaves the current lexical scope. For example, ```c++ 10: void Sub1(int n) { 11: EXPECT_EQ(Bar(n), 1); 12: EXPECT_EQ(Bar(n + 1), 2); 13: } 14: 15: TEST(FooTest, Bar) { 16: { 17: SCOPED_TRACE("A"); // This trace point will be included in 18: // every failure in this scope. 19: Sub1(1); 20: } 21: // Now it won't. 22: Sub1(9); 23: } ``` could result in messages like these: ```none path/to/foo_test.cc:11: Failure Value of: Bar(n) Expected: 1 Actual: 2 Trace: path/to/foo_test.cc:17: A path/to/foo_test.cc:12: Failure Value of: Bar(n + 1) Expected: 2 Actual: 3 ``` Without the trace, it would've been difficult to know which invocation of `Sub1()` the two failures come from respectively. (You could add an extra message to each assertion in `Sub1()` to indicate the value of `n`, but that's tedious.) Some tips on using `SCOPED_TRACE`: 1. With a suitable message, it's often enough to use `SCOPED_TRACE` at the beginning of a sub-routine, instead of at each call site. 2. When calling sub-routines inside a loop, make the loop iterator part of the message in `SCOPED_TRACE` such that you can know which iteration the failure is from. 3. Sometimes the line number of the trace point is enough for identifying the particular invocation of a sub-routine. In this case, you don't have to choose a unique message for `SCOPED_TRACE`. You can simply use `""`. 4. You can use `SCOPED_TRACE` in an inner scope when there is one in the outer scope. In this case, all active trace points will be included in the failure messages, in reverse order they are encountered. 5. The trace dump is clickable in Emacs - hit `return` on a line number and you'll be taken to that line in the source file! ### Propagating Fatal Failures A common pitfall when using `ASSERT_*` and `FAIL*` is not understanding that when they fail they only abort the _current function_, not the entire test. For example, the following test will segfault: ```c++ void Subroutine() { // Generates a fatal failure and aborts the current function. ASSERT_EQ(1, 2); // The following won't be executed. ... } TEST(FooTest, Bar) { Subroutine(); // The intended behavior is for the fatal failure // in Subroutine() to abort the entire test. // The actual behavior: the function goes on after Subroutine() returns. int* p = NULL; *p = 3; // Segfault! } ``` To alleviate this, googletest provides three different solutions. You could use either exceptions, the `(ASSERT|EXPECT)_NO_FATAL_FAILURE` assertions or the `HasFatalFailure()` function. They are described in the following two subsections. #### Asserting on Subroutines with an exception The following code can turn ASSERT-failure into an exception: ```c++ class ThrowListener : public testing::EmptyTestEventListener { void OnTestPartResult(const testing::TestPartResult& result) override { if (result.type() == testing::TestPartResult::kFatalFailure) { throw testing::AssertionException(result); } } }; int main(int argc, char** argv) { ... testing::UnitTest::GetInstance()->listeners().Append(new ThrowListener); return RUN_ALL_TESTS(); } ``` This listener should be added after other listeners if you have any, otherwise they won't see failed `OnTestPartResult`. #### Asserting on Subroutines As shown above, if your test calls a subroutine that has an `ASSERT_*` failure in it, the test will continue after the subroutine returns. This may not be what you want. Often people want fatal failures to propagate like exceptions. For that googletest offers the following macros: Fatal assertion | Nonfatal assertion | Verifies ------------------------------------- | ------------------------------------- | -------- `ASSERT_NO_FATAL_FAILURE(statement);` | `EXPECT_NO_FATAL_FAILURE(statement);` | `statement` doesn't generate any new fatal failures in the current thread. Only failures in the thread that executes the assertion are checked to determine the result of this type of assertions. If `statement` creates new threads, failures in these threads are ignored. Examples: ```c++ ASSERT_NO_FATAL_FAILURE(Foo()); int i; EXPECT_NO_FATAL_FAILURE({ i = Bar(); }); ``` Assertions from multiple threads are currently not supported on Windows. #### Checking for Failures in the Current Test `HasFatalFailure()` in the `::testing::Test` class returns `true` if an assertion in the current test has suffered a fatal failure. This allows functions to catch fatal failures in a sub-routine and return early. ```c++ class Test { public: ... static bool HasFatalFailure(); }; ``` The typical usage, which basically simulates the behavior of a thrown exception, is: ```c++ TEST(FooTest, Bar) { Subroutine(); // Aborts if Subroutine() had a fatal failure. if (HasFatalFailure()) return; // The following won't be executed. ... } ``` If `HasFatalFailure()` is used outside of `TEST()` , `TEST_F()` , or a test fixture, you must add the `::testing::Test::` prefix, as in: ```c++ if (::testing::Test::HasFatalFailure()) return; ``` Similarly, `HasNonfatalFailure()` returns `true` if the current test has at least one non-fatal failure, and `HasFailure()` returns `true` if the current test has at least one failure of either kind. ## Logging Additional Information In your test code, you can call `RecordProperty("key", value)` to log additional information, where `value` can be either a string or an `int`. The *last* value recorded for a key will be emitted to the [XML output](#generating-an-xml-report) if you specify one. For example, the test ```c++ TEST_F(WidgetUsageTest, MinAndMaxWidgets) { RecordProperty("MaximumWidgets", ComputeMaxUsage()); RecordProperty("MinimumWidgets", ComputeMinUsage()); } ``` will output XML like this: ```xml ... ... ``` > NOTE: > > * `RecordProperty()` is a static member of the `Test` class. Therefore it > needs to be prefixed with `::testing::Test::` if used outside of the > `TEST` body and the test fixture class. > * `*key*` must be a valid XML attribute name, and cannot conflict with the > ones already used by googletest (`name`, `status`, `time`, `classname`, > `type_param`, and `value_param`). > * Calling `RecordProperty()` outside of the lifespan of a test is allowed. > If it's called outside of a test but between a test suite's > `SetUpTestSuite()` and `TearDownTestSuite()` methods, it will be > attributed to the XML element for the test suite. If it's called outside > of all test suites (e.g. in a test environment), it will be attributed to > the top-level XML element. ## Sharing Resources Between Tests in the Same Test Suite googletest creates a new test fixture object for each test in order to make tests independent and easier to debug. However, sometimes tests use resources that are expensive to set up, making the one-copy-per-test model prohibitively expensive. If the tests don't change the resource, there's no harm in their sharing a single resource copy. So, in addition to per-test set-up/tear-down, googletest also supports per-test-suite set-up/tear-down. To use it: 1. In your test fixture class (say `FooTest` ), declare as `static` some member variables to hold the shared resources. 2. Outside your test fixture class (typically just below it), define those member variables, optionally giving them initial values. 3. In the same test fixture class, define a `static void SetUpTestSuite()` function (remember not to spell it as **`SetupTestSuite`** with a small `u`!) to set up the shared resources and a `static void TearDownTestSuite()` function to tear them down. That's it! googletest automatically calls `SetUpTestSuite()` before running the *first test* in the `FooTest` test suite (i.e. before creating the first `FooTest` object), and calls `TearDownTestSuite()` after running the *last test* in it (i.e. after deleting the last `FooTest` object). In between, the tests can use the shared resources. Remember that the test order is undefined, so your code can't depend on a test preceding or following another. Also, the tests must either not modify the state of any shared resource, or, if they do modify the state, they must restore the state to its original value before passing control to the next test. Here's an example of per-test-suite set-up and tear-down: ```c++ class FooTest : public ::testing::Test { protected: // Per-test-suite set-up. // Called before the first test in this test suite. // Can be omitted if not needed. static void SetUpTestSuite() { shared_resource_ = new ...; } // Per-test-suite tear-down. // Called after the last test in this test suite. // Can be omitted if not needed. static void TearDownTestSuite() { delete shared_resource_; shared_resource_ = NULL; } // You can define per-test set-up logic as usual. virtual void SetUp() { ... } // You can define per-test tear-down logic as usual. virtual void TearDown() { ... } // Some expensive resource shared by all tests. static T* shared_resource_; }; T* FooTest::shared_resource_ = NULL; TEST_F(FooTest, Test1) { ... you can refer to shared_resource_ here ... } TEST_F(FooTest, Test2) { ... you can refer to shared_resource_ here ... } ``` NOTE: Though the above code declares `SetUpTestSuite()` protected, it may sometimes be necessary to declare it public, such as when using it with `TEST_P`. ## Global Set-Up and Tear-Down Just as you can do set-up and tear-down at the test level and the test suite level, you can also do it at the test program level. Here's how. First, you subclass the `::testing::Environment` class to define a test environment, which knows how to set-up and tear-down: ```c++ class Environment : public ::testing::Environment { public: virtual ~Environment() {} // Override this to define how to set up the environment. void SetUp() override {} // Override this to define how to tear down the environment. void TearDown() override {} }; ``` Then, you register an instance of your environment class with googletest by calling the `::testing::AddGlobalTestEnvironment()` function: ```c++ Environment* AddGlobalTestEnvironment(Environment* env); ``` Now, when `RUN_ALL_TESTS()` is called, it first calls the `SetUp()` method of each environment object, then runs the tests if none of the environments reported fatal failures and `GTEST_SKIP()` was not called. `RUN_ALL_TESTS()` always calls `TearDown()` with each environment object, regardless of whether or not the tests were run. It's OK to register multiple environment objects. In this suite, their `SetUp()` will be called in the order they are registered, and their `TearDown()` will be called in the reverse order. Note that googletest takes ownership of the registered environment objects. Therefore **do not delete them** by yourself. You should call `AddGlobalTestEnvironment()` before `RUN_ALL_TESTS()` is called, probably in `main()`. If you use `gtest_main`, you need to call this before `main()` starts for it to take effect. One way to do this is to define a global variable like this: ```c++ ::testing::Environment* const foo_env = ::testing::AddGlobalTestEnvironment(new FooEnvironment); ``` However, we strongly recommend you to write your own `main()` and call `AddGlobalTestEnvironment()` there, as relying on initialization of global variables makes the code harder to read and may cause problems when you register multiple environments from different translation units and the environments have dependencies among them (remember that the compiler doesn't guarantee the order in which global variables from different translation units are initialized). ## Value-Parameterized Tests *Value-parameterized tests* allow you to test your code with different parameters without writing multiple copies of the same test. This is useful in a number of situations, for example: * You have a piece of code whose behavior is affected by one or more command-line flags. You want to make sure your code performs correctly for various values of those flags. * You want to test different implementations of an OO interface. * You want to test your code over various inputs (a.k.a. data-driven testing). This feature is easy to abuse, so please exercise your good sense when doing it! ### How to Write Value-Parameterized Tests To write value-parameterized tests, first you should define a fixture class. It must be derived from both `testing::Test` and `testing::WithParamInterface` (the latter is a pure interface), where `T` is the type of your parameter values. For convenience, you can just derive the fixture class from `testing::TestWithParam`, which itself is derived from both `testing::Test` and `testing::WithParamInterface`. `T` can be any copyable type. If it's a raw pointer, you are responsible for managing the lifespan of the pointed values. NOTE: If your test fixture defines `SetUpTestSuite()` or `TearDownTestSuite()` they must be declared **public** rather than **protected** in order to use `TEST_P`. ```c++ class FooTest : public testing::TestWithParam { // You can implement all the usual fixture class members here. // To access the test parameter, call GetParam() from class // TestWithParam. }; // Or, when you want to add parameters to a pre-existing fixture class: class BaseTest : public testing::Test { ... }; class BarTest : public BaseTest, public testing::WithParamInterface { ... }; ``` Then, use the `TEST_P` macro to define as many test patterns using this fixture as you want. The `_P` suffix is for "parameterized" or "pattern", whichever you prefer to think. ```c++ TEST_P(FooTest, DoesBlah) { // Inside a test, access the test parameter with the GetParam() method // of the TestWithParam class: EXPECT_TRUE(foo.Blah(GetParam())); ... } TEST_P(FooTest, HasBlahBlah) { ... } ``` Finally, you can use `INSTANTIATE_TEST_SUITE_P` to instantiate the test suite with any set of parameters you want. googletest defines a number of functions for generating test parameters. They return what we call (surprise!) *parameter generators*. Here is a summary of them, which are all in the `testing` namespace: | Parameter Generator | Behavior | | ----------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- | | `Range(begin, end [, step])` | Yields values `{begin, begin+step, begin+step+step, ...}`. The values do not include `end`. `step` defaults to 1. | | `Values(v1, v2, ..., vN)` | Yields values `{v1, v2, ..., vN}`. | | `ValuesIn(container)` and `ValuesIn(begin,end)` | Yields values from a C-style array, an STL-style container, or an iterator range `[begin, end)` | | `Bool()` | Yields sequence `{false, true}`. | | `Combine(g1, g2, ..., gN)` | Yields all combinations (Cartesian product) as std\:\:tuples of the values generated by the `N` generators. | For more details, see the comments at the definitions of these functions. The following statement will instantiate tests from the `FooTest` test suite each with parameter values `"meeny"`, `"miny"`, and `"moe"`. ```c++ INSTANTIATE_TEST_SUITE_P(InstantiationName, FooTest, testing::Values("meeny", "miny", "moe")); ``` NOTE: The code above must be placed at global or namespace scope, not at function scope. NOTE: Don't forget this step! If you do your test will silently pass, but none of its suites will ever run! To distinguish different instances of the pattern (yes, you can instantiate it more than once), the first argument to `INSTANTIATE_TEST_SUITE_P` is a prefix that will be added to the actual test suite name. Remember to pick unique prefixes for different instantiations. The tests from the instantiation above will have these names: * `InstantiationName/FooTest.DoesBlah/0` for `"meeny"` * `InstantiationName/FooTest.DoesBlah/1` for `"miny"` * `InstantiationName/FooTest.DoesBlah/2` for `"moe"` * `InstantiationName/FooTest.HasBlahBlah/0` for `"meeny"` * `InstantiationName/FooTest.HasBlahBlah/1` for `"miny"` * `InstantiationName/FooTest.HasBlahBlah/2` for `"moe"` You can use these names in [`--gtest_filter`](#running-a-subset-of-the-tests). This statement will instantiate all tests from `FooTest` again, each with parameter values `"cat"` and `"dog"`: ```c++ const char* pets[] = {"cat", "dog"}; INSTANTIATE_TEST_SUITE_P(AnotherInstantiationName, FooTest, testing::ValuesIn(pets)); ``` The tests from the instantiation above will have these names: * `AnotherInstantiationName/FooTest.DoesBlah/0` for `"cat"` * `AnotherInstantiationName/FooTest.DoesBlah/1` for `"dog"` * `AnotherInstantiationName/FooTest.HasBlahBlah/0` for `"cat"` * `AnotherInstantiationName/FooTest.HasBlahBlah/1` for `"dog"` Please note that `INSTANTIATE_TEST_SUITE_P` will instantiate *all* tests in the given test suite, whether their definitions come before or *after* the `INSTANTIATE_TEST_SUITE_P` statement. You can see [sample7_unittest.cc] and [sample8_unittest.cc] for more examples. [sample7_unittest.cc]: ../samples/sample7_unittest.cc "Parameterized Test example" [sample8_unittest.cc]: ../samples/sample8_unittest.cc "Parameterized Test example with multiple parameters" ### Creating Value-Parameterized Abstract Tests In the above, we define and instantiate `FooTest` in the *same* source file. Sometimes you may want to define value-parameterized tests in a library and let other people instantiate them later. This pattern is known as *abstract tests*. As an example of its application, when you are designing an interface you can write a standard suite of abstract tests (perhaps using a factory function as the test parameter) that all implementations of the interface are expected to pass. When someone implements the interface, they can instantiate your suite to get all the interface-conformance tests for free. To define abstract tests, you should organize your code like this: 1. Put the definition of the parameterized test fixture class (e.g. `FooTest`) in a header file, say `foo_param_test.h`. Think of this as *declaring* your abstract tests. 2. Put the `TEST_P` definitions in `foo_param_test.cc`, which includes `foo_param_test.h`. Think of this as *implementing* your abstract tests. Once they are defined, you can instantiate them by including `foo_param_test.h`, invoking `INSTANTIATE_TEST_SUITE_P()`, and depending on the library target that contains `foo_param_test.cc`. You can instantiate the same abstract test suite multiple times, possibly in different source files. ### Specifying Names for Value-Parameterized Test Parameters The optional last argument to `INSTANTIATE_TEST_SUITE_P()` allows the user to specify a function or functor that generates custom test name suffixes based on the test parameters. The function should accept one argument of type `testing::TestParamInfo`, and return `std::string`. `testing::PrintToStringParamName` is a builtin test suffix generator that returns the value of `testing::PrintToString(GetParam())`. It does not work for `std::string` or C strings. NOTE: test names must be non-empty, unique, and may only contain ASCII alphanumeric characters. In particular, they [should not contain underscores](faq.md#why-should-test-suite-names-and-test-names-not-contain-underscore) ```c++ class MyTestSuite : public testing::TestWithParam {}; TEST_P(MyTestSuite, MyTest) { std::cout << "Example Test Param: " << GetParam() << std::endl; } INSTANTIATE_TEST_SUITE_P(MyGroup, MyTestSuite, testing::Range(0, 10), testing::PrintToStringParamName()); ``` Providing a custom functor allows for more control over test parameter name generation, especially for types where the automatic conversion does not generate helpful parameter names (e.g. strings as demonstrated above). The following example illustrates this for multiple parameters, an enumeration type and a string, and also demonstrates how to combine generators. It uses a lambda for conciseness: ```c++ enum class MyType { MY_FOO = 0, MY_BAR = 1 }; class MyTestSuite : public testing::TestWithParam> { }; INSTANTIATE_TEST_SUITE_P( MyGroup, MyTestSuite, testing::Combine( testing::Values(MyType::VALUE_0, MyType::VALUE_1), testing::ValuesIn("", "")), [](const testing::TestParamInfo& info) { string name = absl::StrCat( std::get<0>(info.param) == MY_FOO ? "Foo" : "Bar", "_", std::get<1>(info.param)); absl::c_replace_if(name, [](char c) { return !std::isalnum(c); }, '_'); return name; }); ``` ## Typed Tests Suppose you have multiple implementations of the same interface and want to make sure that all of them satisfy some common requirements. Or, you may have defined several types that are supposed to conform to the same "concept" and you want to verify it. In both cases, you want the same test logic repeated for different types. While you can write one `TEST` or `TEST_F` for each type you want to test (and you may even factor the test logic into a function template that you invoke from the `TEST`), it's tedious and doesn't scale: if you want `m` tests over `n` types, you'll end up writing `m*n` `TEST`s. *Typed tests* allow you to repeat the same test logic over a list of types. You only need to write the test logic once, although you must know the type list when writing typed tests. Here's how you do it: First, define a fixture class template. It should be parameterized by a type. Remember to derive it from `::testing::Test`: ```c++ template class FooTest : public ::testing::Test { public: ... typedef std::list List; static T shared_; T value_; }; ``` Next, associate a list of types with the test suite, which will be repeated for each type in the list: ```c++ using MyTypes = ::testing::Types; TYPED_TEST_SUITE(FooTest, MyTypes); ``` The type alias (`using` or `typedef`) is necessary for the `TYPED_TEST_SUITE` macro to parse correctly. Otherwise the compiler will think that each comma in the type list introduces a new macro argument. Then, use `TYPED_TEST()` instead of `TEST_F()` to define a typed test for this test suite. You can repeat this as many times as you want: ```c++ TYPED_TEST(FooTest, DoesBlah) { // Inside a test, refer to the special name TypeParam to get the type // parameter. Since we are inside a derived class template, C++ requires // us to visit the members of FooTest via 'this'. TypeParam n = this->value_; // To visit static members of the fixture, add the 'TestFixture::' // prefix. n += TestFixture::shared_; // To refer to typedefs in the fixture, add the 'typename TestFixture::' // prefix. The 'typename' is required to satisfy the compiler. typename TestFixture::List values; values.push_back(n); ... } TYPED_TEST(FooTest, HasPropertyA) { ... } ``` You can see [sample6_unittest.cc] for a complete example. [sample6_unittest.cc]: ../samples/sample6_unittest.cc "Typed Test example" ## Type-Parameterized Tests *Type-parameterized tests* are like typed tests, except that they don't require you to know the list of types ahead of time. Instead, you can define the test logic first and instantiate it with different type lists later. You can even instantiate it more than once in the same program. If you are designing an interface or concept, you can define a suite of type-parameterized tests to verify properties that any valid implementation of the interface/concept should have. Then, the author of each implementation can just instantiate the test suite with their type to verify that it conforms to the requirements, without having to write similar tests repeatedly. Here's an example: First, define a fixture class template, as we did with typed tests: ```c++ template class FooTest : public ::testing::Test { ... }; ``` Next, declare that you will define a type-parameterized test suite: ```c++ TYPED_TEST_SUITE_P(FooTest); ``` Then, use `TYPED_TEST_P()` to define a type-parameterized test. You can repeat this as many times as you want: ```c++ TYPED_TEST_P(FooTest, DoesBlah) { // Inside a test, refer to TypeParam to get the type parameter. TypeParam n = 0; ... } TYPED_TEST_P(FooTest, HasPropertyA) { ... } ``` Now the tricky part: you need to register all test patterns using the `REGISTER_TYPED_TEST_SUITE_P` macro before you can instantiate them. The first argument of the macro is the test suite name; the rest are the names of the tests in this test suite: ```c++ REGISTER_TYPED_TEST_SUITE_P(FooTest, DoesBlah, HasPropertyA); ``` Finally, you are free to instantiate the pattern with the types you want. If you put the above code in a header file, you can `#include` it in multiple C++ source files and instantiate it multiple times. ```c++ typedef ::testing::Types MyTypes; INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, MyTypes); ``` To distinguish different instances of the pattern, the first argument to the `INSTANTIATE_TYPED_TEST_SUITE_P` macro is a prefix that will be added to the actual test suite name. Remember to pick unique prefixes for different instances. In the special case where the type list contains only one type, you can write that type directly without `::testing::Types<...>`, like this: ```c++ INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, int); ``` You can see [sample6_unittest.cc] for a complete example. ## Testing Private Code If you change your software's internal implementation, your tests should not break as long as the change is not observable by users. Therefore, **per the black-box testing principle, most of the time you should test your code through its public interfaces.** **If you still find yourself needing to test internal implementation code, consider if there's a better design.** The desire to test internal implementation is often a sign that the class is doing too much. Consider extracting an implementation class, and testing it. Then use that implementation class in the original class. If you absolutely have to test non-public interface code though, you can. There are two cases to consider: * Static functions ( *not* the same as static member functions!) or unnamed namespaces, and * Private or protected class members To test them, we use the following special techniques: * Both static functions and definitions/declarations in an unnamed namespace are only visible within the same translation unit. To test them, you can `#include` the entire `.cc` file being tested in your `*_test.cc` file. (#including `.cc` files is not a good way to reuse code - you should not do this in production code!) However, a better approach is to move the private code into the `foo::internal` namespace, where `foo` is the namespace your project normally uses, and put the private declarations in a `*-internal.h` file. Your production `.cc` files and your tests are allowed to include this internal header, but your clients are not. This way, you can fully test your internal implementation without leaking it to your clients. * Private class members are only accessible from within the class or by friends. To access a class' private members, you can declare your test fixture as a friend to the class and define accessors in your fixture. Tests using the fixture can then access the private members of your production class via the accessors in the fixture. Note that even though your fixture is a friend to your production class, your tests are not automatically friends to it, as they are technically defined in sub-classes of the fixture. Another way to test private members is to refactor them into an implementation class, which is then declared in a `*-internal.h` file. Your clients aren't allowed to include this header but your tests can. Such is called the [Pimpl](https://www.gamedev.net/articles/programming/general-and-gameplay-programming/the-c-pimpl-r1794/) (Private Implementation) idiom. Or, you can declare an individual test as a friend of your class by adding this line in the class body: ```c++ FRIEND_TEST(TestSuiteName, TestName); ``` For example, ```c++ // foo.h class Foo { ... private: FRIEND_TEST(FooTest, BarReturnsZeroOnNull); int Bar(void* x); }; // foo_test.cc ... TEST(FooTest, BarReturnsZeroOnNull) { Foo foo; EXPECT_EQ(foo.Bar(NULL), 0); // Uses Foo's private member Bar(). } ``` Pay special attention when your class is defined in a namespace, as you should define your test fixtures and tests in the same namespace if you want them to be friends of your class. For example, if the code to be tested looks like: ```c++ namespace my_namespace { class Foo { friend class FooTest; FRIEND_TEST(FooTest, Bar); FRIEND_TEST(FooTest, Baz); ... definition of the class Foo ... }; } // namespace my_namespace ``` Your test code should be something like: ```c++ namespace my_namespace { class FooTest : public ::testing::Test { protected: ... }; TEST_F(FooTest, Bar) { ... } TEST_F(FooTest, Baz) { ... } } // namespace my_namespace ``` ## "Catching" Failures If you are building a testing utility on top of googletest, you'll want to test your utility. What framework would you use to test it? googletest, of course. The challenge is to verify that your testing utility reports failures correctly. In frameworks that report a failure by throwing an exception, you could catch the exception and assert on it. But googletest doesn't use exceptions, so how do we test that a piece of code generates an expected failure? gunit-spi.h contains some constructs to do this. After #including this header, you can use ```c++ EXPECT_FATAL_FAILURE(statement, substring); ``` to assert that `statement` generates a fatal (e.g. `ASSERT_*`) failure in the current thread whose message contains the given `substring`, or use ```c++ EXPECT_NONFATAL_FAILURE(statement, substring); ``` if you are expecting a non-fatal (e.g. `EXPECT_*`) failure. Only failures in the current thread are checked to determine the result of this type of expectations. If `statement` creates new threads, failures in these threads are also ignored. If you want to catch failures in other threads as well, use one of the following macros instead: ```c++ EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substring); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substring); ``` NOTE: Assertions from multiple threads are currently not supported on Windows. For technical reasons, there are some caveats: 1. You cannot stream a failure message to either macro. 2. `statement` in `EXPECT_FATAL_FAILURE{_ON_ALL_THREADS}()` cannot reference local non-static variables or non-static members of `this` object. 3. `statement` in `EXPECT_FATAL_FAILURE{_ON_ALL_THREADS}()` cannot return a value. ## Registering tests programmatically The `TEST` macros handle the vast majority of all use cases, but there are few were runtime registration logic is required. For those cases, the framework provides the `::testing::RegisterTest` that allows callers to register arbitrary tests dynamically. This is an advanced API only to be used when the `TEST` macros are insufficient. The macros should be preferred when possible, as they avoid most of the complexity of calling this function. It provides the following signature: ```c++ template TestInfo* RegisterTest(const char* test_suite_name, const char* test_name, const char* type_param, const char* value_param, const char* file, int line, Factory factory); ``` The `factory` argument is a factory callable (move-constructible) object or function pointer that creates a new instance of the Test object. It handles ownership to the caller. The signature of the callable is `Fixture*()`, where `Fixture` is the test fixture class for the test. All tests registered with the same `test_suite_name` must return the same fixture type. This is checked at runtime. The framework will infer the fixture class from the factory and will call the `SetUpTestSuite` and `TearDownTestSuite` for it. Must be called before `RUN_ALL_TESTS()` is invoked, otherwise behavior is undefined. Use case example: ```c++ class MyFixture : public ::testing::Test { public: // All of these optional, just like in regular macro usage. static void SetUpTestSuite() { ... } static void TearDownTestSuite() { ... } void SetUp() override { ... } void TearDown() override { ... } }; class MyTest : public MyFixture { public: explicit MyTest(int data) : data_(data) {} void TestBody() override { ... } private: int data_; }; void RegisterMyTests(const std::vector& values) { for (int v : values) { ::testing::RegisterTest( "MyFixture", ("Test" + std::to_string(v)).c_str(), nullptr, std::to_string(v).c_str(), __FILE__, __LINE__, // Important to use the fixture type as the return type here. [=]() -> MyFixture* { return new MyTest(v); }); } } ... int main(int argc, char** argv) { std::vector values_to_test = LoadValuesFromConfig(); RegisterMyTests(values_to_test); ... return RUN_ALL_TESTS(); } ``` ## Getting the Current Test's Name Sometimes a function may need to know the name of the currently running test. For example, you may be using the `SetUp()` method of your test fixture to set the golden file name based on which test is running. The `::testing::TestInfo` class has this information: ```c++ namespace testing { class TestInfo { public: // Returns the test suite name and the test name, respectively. // // Do NOT delete or free the return value - it's managed by the // TestInfo class. const char* test_suite_name() const; const char* name() const; }; } ``` To obtain a `TestInfo` object for the currently running test, call `current_test_info()` on the `UnitTest` singleton object: ```c++ // Gets information about the currently running test. // Do NOT delete the returned object - it's managed by the UnitTest class. const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); printf("We are in test %s of test suite %s.\n", test_info->name(), test_info->test_suite_name()); ``` `current_test_info()` returns a null pointer if no test is running. In particular, you cannot find the test suite name in `TestSuiteSetUp()`, `TestSuiteTearDown()` (where you know the test suite name implicitly), or functions called from them. ## Extending googletest by Handling Test Events googletest provides an **event listener API** to let you receive notifications about the progress of a test program and test failures. The events you can listen to include the start and end of the test program, a test suite, or a test method, among others. You may use this API to augment or replace the standard console output, replace the XML output, or provide a completely different form of output, such as a GUI or a database. You can also use test events as checkpoints to implement a resource leak checker, for example. ### Defining Event Listeners To define a event listener, you subclass either testing::TestEventListener or testing::EmptyTestEventListener The former is an (abstract) interface, where *each pure virtual method can be overridden to handle a test event* (For example, when a test starts, the `OnTestStart()` method will be called.). The latter provides an empty implementation of all methods in the interface, such that a subclass only needs to override the methods it cares about. When an event is fired, its context is passed to the handler function as an argument. The following argument types are used: * UnitTest reflects the state of the entire test program, * TestSuite has information about a test suite, which can contain one or more tests, * TestInfo contains the state of a test, and * TestPartResult represents the result of a test assertion. An event handler function can examine the argument it receives to find out interesting information about the event and the test program's state. Here's an example: ```c++ class MinimalistPrinter : public ::testing::EmptyTestEventListener { // Called before a test starts. virtual void OnTestStart(const ::testing::TestInfo& test_info) { printf("*** Test %s.%s starting.\n", test_info.test_suite_name(), test_info.name()); } // Called after a failed assertion or a SUCCESS(). virtual void OnTestPartResult(const ::testing::TestPartResult& test_part_result) { printf("%s in %s:%d\n%s\n", test_part_result.failed() ? "*** Failure" : "Success", test_part_result.file_name(), test_part_result.line_number(), test_part_result.summary()); } // Called after a test ends. virtual void OnTestEnd(const ::testing::TestInfo& test_info) { printf("*** Test %s.%s ending.\n", test_info.test_suite_name(), test_info.name()); } }; ``` ### Using Event Listeners To use the event listener you have defined, add an instance of it to the googletest event listener list (represented by class TestEventListeners - note the "s" at the end of the name) in your `main()` function, before calling `RUN_ALL_TESTS()`: ```c++ int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); // Gets hold of the event listener list. ::testing::TestEventListeners& listeners = ::testing::UnitTest::GetInstance()->listeners(); // Adds a listener to the end. googletest takes the ownership. listeners.Append(new MinimalistPrinter); return RUN_ALL_TESTS(); } ``` There's only one problem: the default test result printer is still in effect, so its output will mingle with the output from your minimalist printer. To suppress the default printer, just release it from the event listener list and delete it. You can do so by adding one line: ```c++ ... delete listeners.Release(listeners.default_result_printer()); listeners.Append(new MinimalistPrinter); return RUN_ALL_TESTS(); ``` Now, sit back and enjoy a completely different output from your tests. For more details, see [sample9_unittest.cc]. [sample9_unittest.cc]: ../samples/sample9_unittest.cc "Event listener example" You may append more than one listener to the list. When an `On*Start()` or `OnTestPartResult()` event is fired, the listeners will receive it in the order they appear in the list (since new listeners are added to the end of the list, the default text printer and the default XML generator will receive the event first). An `On*End()` event will be received by the listeners in the *reverse* order. This allows output by listeners added later to be framed by output from listeners added earlier. ### Generating Failures in Listeners You may use failure-raising macros (`EXPECT_*()`, `ASSERT_*()`, `FAIL()`, etc) when processing an event. There are some restrictions: 1. You cannot generate any failure in `OnTestPartResult()` (otherwise it will cause `OnTestPartResult()` to be called recursively). 2. A listener that handles `OnTestPartResult()` is not allowed to generate any failure. When you add listeners to the listener list, you should put listeners that handle `OnTestPartResult()` *before* listeners that can generate failures. This ensures that failures generated by the latter are attributed to the right test by the former. See [sample10_unittest.cc] for an example of a failure-raising listener. [sample10_unittest.cc]: ../samples/sample10_unittest.cc "Failure-raising listener example" ## Running Test Programs: Advanced Options googletest test programs are ordinary executables. Once built, you can run them directly and affect their behavior via the following environment variables and/or command line flags. For the flags to work, your programs must call `::testing::InitGoogleTest()` before calling `RUN_ALL_TESTS()`. To see a list of supported flags and their usage, please run your test program with the `--help` flag. You can also use `-h`, `-?`, or `/?` for short. If an option is specified both by an environment variable and by a flag, the latter takes precedence. ### Selecting Tests #### Listing Test Names Sometimes it is necessary to list the available tests in a program before running them so that a filter may be applied if needed. Including the flag `--gtest_list_tests` overrides all other flags and lists tests in the following format: ```none TestSuite1. TestName1 TestName2 TestSuite2. TestName ``` None of the tests listed are actually run if the flag is provided. There is no corresponding environment variable for this flag. #### Running a Subset of the Tests By default, a googletest program runs all tests the user has defined. Sometimes, you want to run only a subset of the tests (e.g. for debugging or quickly verifying a change). If you set the `GTEST_FILTER` environment variable or the `--gtest_filter` flag to a filter string, googletest will only run the tests whose full names (in the form of `TestSuiteName.TestName`) match the filter. The format of a filter is a '`:`'-separated list of wildcard patterns (called the *positive patterns*) optionally followed by a '`-`' and another '`:`'-separated pattern list (called the *negative patterns*). A test matches the filter if and only if it matches any of the positive patterns but does not match any of the negative patterns. A pattern may contain `'*'` (matches any string) or `'?'` (matches any single character). For convenience, the filter `'*-NegativePatterns'` can be also written as `'-NegativePatterns'`. For example: * `./foo_test` Has no flag, and thus runs all its tests. * `./foo_test --gtest_filter=*` Also runs everything, due to the single match-everything `*` value. * `./foo_test --gtest_filter=FooTest.*` Runs everything in test suite `FooTest` . * `./foo_test --gtest_filter=*Null*:*Constructor*` Runs any test whose full name contains either `"Null"` or `"Constructor"` . * `./foo_test --gtest_filter=-*DeathTest.*` Runs all non-death tests. * `./foo_test --gtest_filter=FooTest.*-FooTest.Bar` Runs everything in test suite `FooTest` except `FooTest.Bar`. * `./foo_test --gtest_filter=FooTest.*:BarTest.*-FooTest.Bar:BarTest.Foo` Runs everything in test suite `FooTest` except `FooTest.Bar` and everything in test suite `BarTest` except `BarTest.Foo`. #### Temporarily Disabling Tests If you have a broken test that you cannot fix right away, you can add the `DISABLED_` prefix to its name. This will exclude it from execution. This is better than commenting out the code or using `#if 0`, as disabled tests are still compiled (and thus won't rot). If you need to disable all tests in a test suite, you can either add `DISABLED_` to the front of the name of each test, or alternatively add it to the front of the test suite name. For example, the following tests won't be run by googletest, even though they will still be compiled: ```c++ // Tests that Foo does Abc. TEST(FooTest, DISABLED_DoesAbc) { ... } class DISABLED_BarTest : public ::testing::Test { ... }; // Tests that Bar does Xyz. TEST_F(DISABLED_BarTest, DoesXyz) { ... } ``` NOTE: This feature should only be used for temporary pain-relief. You still have to fix the disabled tests at a later date. As a reminder, googletest will print a banner warning you if a test program contains any disabled tests. TIP: You can easily count the number of disabled tests you have using `gsearch` and/or `grep`. This number can be used as a metric for improving your test quality. #### Temporarily Enabling Disabled Tests To include disabled tests in test execution, just invoke the test program with the `--gtest_also_run_disabled_tests` flag or set the `GTEST_ALSO_RUN_DISABLED_TESTS` environment variable to a value other than `0`. You can combine this with the `--gtest_filter` flag to further select which disabled tests to run. ### Repeating the Tests Once in a while you'll run into a test whose result is hit-or-miss. Perhaps it will fail only 1% of the time, making it rather hard to reproduce the bug under a debugger. This can be a major source of frustration. The `--gtest_repeat` flag allows you to repeat all (or selected) test methods in a program many times. Hopefully, a flaky test will eventually fail and give you a chance to debug. Here's how to use it: ```none $ foo_test --gtest_repeat=1000 Repeat foo_test 1000 times and don't stop at failures. $ foo_test --gtest_repeat=-1 A negative count means repeating forever. $ foo_test --gtest_repeat=1000 --gtest_break_on_failure Repeat foo_test 1000 times, stopping at the first failure. This is especially useful when running under a debugger: when the test fails, it will drop into the debugger and you can then inspect variables and stacks. $ foo_test --gtest_repeat=1000 --gtest_filter=FooBar.* Repeat the tests whose name matches the filter 1000 times. ``` If your test program contains [global set-up/tear-down](#global-set-up-and-tear-down) code, it will be repeated in each iteration as well, as the flakiness may be in it. You can also specify the repeat count by setting the `GTEST_REPEAT` environment variable. ### Shuffling the Tests You can specify the `--gtest_shuffle` flag (or set the `GTEST_SHUFFLE` environment variable to `1`) to run the tests in a program in a random order. This helps to reveal bad dependencies between tests. By default, googletest uses a random seed calculated from the current time. Therefore you'll get a different order every time. The console output includes the random seed value, such that you can reproduce an order-related test failure later. To specify the random seed explicitly, use the `--gtest_random_seed=SEED` flag (or set the `GTEST_RANDOM_SEED` environment variable), where `SEED` is an integer in the range [0, 99999]. The seed value 0 is special: it tells googletest to do the default behavior of calculating the seed from the current time. If you combine this with `--gtest_repeat=N`, googletest will pick a different random seed and re-shuffle the tests in each iteration. ### Controlling Test Output #### Colored Terminal Output googletest can use colors in its terminal output to make it easier to spot the important information: ...
[----------] 1 test from FooTest
[ RUN      ] FooTest.DoesAbc
[       OK ] FooTest.DoesAbc
[----------] 2 tests from BarTest
[ RUN      ] BarTest.HasXyzProperty
[       OK ] BarTest.HasXyzProperty
[ RUN      ] BarTest.ReturnsTrueOnSuccess ... some error messages ...
[   FAILED ] BarTest.ReturnsTrueOnSuccess ...
[==========] 30 tests from 14 test suites ran.
[   PASSED ] 28 tests.
[   FAILED ] 2 tests, listed below:
[   FAILED ] BarTest.ReturnsTrueOnSuccess
[   FAILED ] AnotherTest.DoesXyz

2 FAILED TESTS
You can set the `GTEST_COLOR` environment variable or the `--gtest_color` command line flag to `yes`, `no`, or `auto` (the default) to enable colors, disable colors, or let googletest decide. When the value is `auto`, googletest will use colors if and only if the output goes to a terminal and (on non-Windows platforms) the `TERM` environment variable is set to `xterm` or `xterm-color`. #### Suppressing the Elapsed Time By default, googletest prints the time it takes to run each test. To disable that, run the test program with the `--gtest_print_time=0` command line flag, or set the GTEST_PRINT_TIME environment variable to `0`. #### Suppressing UTF-8 Text Output In case of assertion failures, googletest prints expected and actual values of type `string` both as hex-encoded strings as well as in readable UTF-8 text if they contain valid non-ASCII UTF-8 characters. If you want to suppress the UTF-8 text because, for example, you don't have an UTF-8 compatible output medium, run the test program with `--gtest_print_utf8=0` or set the `GTEST_PRINT_UTF8` environment variable to `0`. #### Generating an XML Report googletest can emit a detailed XML report to a file in addition to its normal textual output. The report contains the duration of each test, and thus can help you identify slow tests. The report is also used by the http://unittest dashboard to show per-test-method error messages. To generate the XML report, set the `GTEST_OUTPUT` environment variable or the `--gtest_output` flag to the string `"xml:path_to_output_file"`, which will create the file at the given location. You can also just use the string `"xml"`, in which case the output can be found in the `test_detail.xml` file in the current directory. If you specify a directory (for example, `"xml:output/directory/"` on Linux or `"xml:output\directory\"` on Windows), googletest will create the XML file in that directory, named after the test executable (e.g. `foo_test.xml` for test program `foo_test` or `foo_test.exe`). If the file already exists (perhaps left over from a previous run), googletest will pick a different name (e.g. `foo_test_1.xml`) to avoid overwriting it. The report is based on the `junitreport` Ant task. Since that format was originally intended for Java, a little interpretation is required to make it apply to googletest tests, as shown here: ```xml ``` * The root `` element corresponds to the entire test program. * `` elements correspond to googletest test suites. * `` elements correspond to googletest test functions. For instance, the following program ```c++ TEST(MathTest, Addition) { ... } TEST(MathTest, Subtraction) { ... } TEST(LogicTest, NonContradiction) { ... } ``` could generate this report: ```xml ... ... ``` Things to note: * The `tests` attribute of a `` or `` element tells how many test functions the googletest program or test suite contains, while the `failures` attribute tells how many of them failed. * The `time` attribute expresses the duration of the test, test suite, or entire test program in seconds. * The `timestamp` attribute records the local date and time of the test execution. * Each `` element corresponds to a single failed googletest assertion. #### Generating a JSON Report googletest can also emit a JSON report as an alternative format to XML. To generate the JSON report, set the `GTEST_OUTPUT` environment variable or the `--gtest_output` flag to the string `"json:path_to_output_file"`, which will create the file at the given location. You can also just use the string `"json"`, in which case the output can be found in the `test_detail.json` file in the current directory. The report format conforms to the following JSON Schema: ```json { "$schema": "http://json-schema.org/schema#", "type": "object", "definitions": { "TestCase": { "type": "object", "properties": { "name": { "type": "string" }, "tests": { "type": "integer" }, "failures": { "type": "integer" }, "disabled": { "type": "integer" }, "time": { "type": "string" }, "testsuite": { "type": "array", "items": { "$ref": "#/definitions/TestInfo" } } } }, "TestInfo": { "type": "object", "properties": { "name": { "type": "string" }, "status": { "type": "string", "enum": ["RUN", "NOTRUN"] }, "time": { "type": "string" }, "classname": { "type": "string" }, "failures": { "type": "array", "items": { "$ref": "#/definitions/Failure" } } } }, "Failure": { "type": "object", "properties": { "failures": { "type": "string" }, "type": { "type": "string" } } } }, "properties": { "tests": { "type": "integer" }, "failures": { "type": "integer" }, "disabled": { "type": "integer" }, "errors": { "type": "integer" }, "timestamp": { "type": "string", "format": "date-time" }, "time": { "type": "string" }, "name": { "type": "string" }, "testsuites": { "type": "array", "items": { "$ref": "#/definitions/TestCase" } } } } ``` The report uses the format that conforms to the following Proto3 using the [JSON encoding](https://developers.google.com/protocol-buffers/docs/proto3#json): ```proto syntax = "proto3"; package googletest; import "google/protobuf/timestamp.proto"; import "google/protobuf/duration.proto"; message UnitTest { int32 tests = 1; int32 failures = 2; int32 disabled = 3; int32 errors = 4; google.protobuf.Timestamp timestamp = 5; google.protobuf.Duration time = 6; string name = 7; repeated TestCase testsuites = 8; } message TestCase { string name = 1; int32 tests = 2; int32 failures = 3; int32 disabled = 4; int32 errors = 5; google.protobuf.Duration time = 6; repeated TestInfo testsuite = 7; } message TestInfo { string name = 1; enum Status { RUN = 0; NOTRUN = 1; } Status status = 2; google.protobuf.Duration time = 3; string classname = 4; message Failure { string failures = 1; string type = 2; } repeated Failure failures = 5; } ``` For instance, the following program ```c++ TEST(MathTest, Addition) { ... } TEST(MathTest, Subtraction) { ... } TEST(LogicTest, NonContradiction) { ... } ``` could generate this report: ```json { "tests": 3, "failures": 1, "errors": 0, "time": "0.035s", "timestamp": "2011-10-31T18:52:42Z", "name": "AllTests", "testsuites": [ { "name": "MathTest", "tests": 2, "failures": 1, "errors": 0, "time": "0.015s", "testsuite": [ { "name": "Addition", "status": "RUN", "time": "0.007s", "classname": "", "failures": [ { "message": "Value of: add(1, 1)\n Actual: 3\nExpected: 2", "type": "" }, { "message": "Value of: add(1, -1)\n Actual: 1\nExpected: 0", "type": "" } ] }, { "name": "Subtraction", "status": "RUN", "time": "0.005s", "classname": "" } ] }, { "name": "LogicTest", "tests": 1, "failures": 0, "errors": 0, "time": "0.005s", "testsuite": [ { "name": "NonContradiction", "status": "RUN", "time": "0.005s", "classname": "" } ] } ] } ``` IMPORTANT: The exact format of the JSON document is subject to change. ### Controlling How Failures Are Reported #### Turning Assertion Failures into Break-Points When running test programs under a debugger, it's very convenient if the debugger can catch an assertion failure and automatically drop into interactive mode. googletest's *break-on-failure* mode supports this behavior. To enable it, set the `GTEST_BREAK_ON_FAILURE` environment variable to a value other than `0`. Alternatively, you can use the `--gtest_break_on_failure` command line flag. #### Disabling Catching Test-Thrown Exceptions googletest can be used either with or without exceptions enabled. If a test throws a C++ exception or (on Windows) a structured exception (SEH), by default googletest catches it, reports it as a test failure, and continues with the next test method. This maximizes the coverage of a test run. Also, on Windows an uncaught exception will cause a pop-up window, so catching the exceptions allows you to run the tests automatically. When debugging the test failures, however, you may instead want the exceptions to be handled by the debugger, such that you can examine the call stack when an exception is thrown. To achieve that, set the `GTEST_CATCH_EXCEPTIONS` environment variable to `0`, or use the `--gtest_catch_exceptions=0` flag when running the tests. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/docs/faq.md000066400000000000000000000753761355420072700227160ustar00rootroot00000000000000# Googletest FAQ ## Why should test suite names and test names not contain underscore? Underscore (`_`) is special, as C++ reserves the following to be used by the compiler and the standard library: 1. any identifier that starts with an `_` followed by an upper-case letter, and 2. any identifier that contains two consecutive underscores (i.e. `__`) *anywhere* in its name. User code is *prohibited* from using such identifiers. Now let's look at what this means for `TEST` and `TEST_F`. Currently `TEST(TestSuiteName, TestName)` generates a class named `TestSuiteName_TestName_Test`. What happens if `TestSuiteName` or `TestName` contains `_`? 1. If `TestSuiteName` starts with an `_` followed by an upper-case letter (say, `_Foo`), we end up with `_Foo_TestName_Test`, which is reserved and thus invalid. 2. If `TestSuiteName` ends with an `_` (say, `Foo_`), we get `Foo__TestName_Test`, which is invalid. 3. If `TestName` starts with an `_` (say, `_Bar`), we get `TestSuiteName__Bar_Test`, which is invalid. 4. If `TestName` ends with an `_` (say, `Bar_`), we get `TestSuiteName_Bar__Test`, which is invalid. So clearly `TestSuiteName` and `TestName` cannot start or end with `_` (Actually, `TestSuiteName` can start with `_` -- as long as the `_` isn't followed by an upper-case letter. But that's getting complicated. So for simplicity we just say that it cannot start with `_`.). It may seem fine for `TestSuiteName` and `TestName` to contain `_` in the middle. However, consider this: ```c++ TEST(Time, Flies_Like_An_Arrow) { ... } TEST(Time_Flies, Like_An_Arrow) { ... } ``` Now, the two `TEST`s will both generate the same class (`Time_Flies_Like_An_Arrow_Test`). That's not good. So for simplicity, we just ask the users to avoid `_` in `TestSuiteName` and `TestName`. The rule is more constraining than necessary, but it's simple and easy to remember. It also gives googletest some wiggle room in case its implementation needs to change in the future. If you violate the rule, there may not be immediate consequences, but your test may (just may) break with a new compiler (or a new version of the compiler you are using) or with a new version of googletest. Therefore it's best to follow the rule. ## Why does googletest support `EXPECT_EQ(NULL, ptr)` and `ASSERT_EQ(NULL, ptr)` but not `EXPECT_NE(NULL, ptr)` and `ASSERT_NE(NULL, ptr)`? First of all you can use `EXPECT_NE(nullptr, ptr)` and `ASSERT_NE(nullptr, ptr)`. This is the preferred syntax in the style guide because nullptr does not have the type problems that NULL does. Which is why NULL does not work. Due to some peculiarity of C++, it requires some non-trivial template meta programming tricks to support using `NULL` as an argument of the `EXPECT_XX()` and `ASSERT_XX()` macros. Therefore we only do it where it's most needed (otherwise we make the implementation of googletest harder to maintain and more error-prone than necessary). The `EXPECT_EQ()` macro takes the *expected* value as its first argument and the *actual* value as the second. It's reasonable that someone wants to write `EXPECT_EQ(NULL, some_expression)`, and this indeed was requested several times. Therefore we implemented it. The need for `EXPECT_NE(NULL, ptr)` isn't nearly as strong. When the assertion fails, you already know that `ptr` must be `NULL`, so it doesn't add any information to print `ptr` in this case. That means `EXPECT_TRUE(ptr != NULL)` works just as well. If we were to support `EXPECT_NE(NULL, ptr)`, for consistency we'll have to support `EXPECT_NE(ptr, NULL)` as well, as unlike `EXPECT_EQ`, we don't have a convention on the order of the two arguments for `EXPECT_NE`. This means using the template meta programming tricks twice in the implementation, making it even harder to understand and maintain. We believe the benefit doesn't justify the cost. Finally, with the growth of the gMock matcher library, we are encouraging people to use the unified `EXPECT_THAT(value, matcher)` syntax more often in tests. One significant advantage of the matcher approach is that matchers can be easily combined to form new matchers, while the `EXPECT_NE`, etc, macros cannot be easily combined. Therefore we want to invest more in the matchers than in the `EXPECT_XX()` macros. ## I need to test that different implementations of an interface satisfy some common requirements. Should I use typed tests or value-parameterized tests? For testing various implementations of the same interface, either typed tests or value-parameterized tests can get it done. It's really up to you the user to decide which is more convenient for you, depending on your particular case. Some rough guidelines: * Typed tests can be easier to write if instances of the different implementations can be created the same way, modulo the type. For example, if all these implementations have a public default constructor (such that you can write `new TypeParam`), or if their factory functions have the same form (e.g. `CreateInstance()`). * Value-parameterized tests can be easier to write if you need different code patterns to create different implementations' instances, e.g. `new Foo` vs `new Bar(5)`. To accommodate for the differences, you can write factory function wrappers and pass these function pointers to the tests as their parameters. * When a typed test fails, the default output includes the name of the type, which can help you quickly identify which implementation is wrong. Value-parameterized tests only show the number of the failed iteration by default. You will need to define a function that returns the iteration name and pass it as the third parameter to INSTANTIATE_TEST_SUITE_P to have more useful output. * When using typed tests, you need to make sure you are testing against the interface type, not the concrete types (in other words, you want to make sure `implicit_cast(my_concrete_impl)` works, not just that `my_concrete_impl` works). It's less likely to make mistakes in this area when using value-parameterized tests. I hope I didn't confuse you more. :-) If you don't mind, I'd suggest you to give both approaches a try. Practice is a much better way to grasp the subtle differences between the two tools. Once you have some concrete experience, you can much more easily decide which one to use the next time. ## I got some run-time errors about invalid proto descriptors when using `ProtocolMessageEquals`. Help! **Note:** `ProtocolMessageEquals` and `ProtocolMessageEquiv` are *deprecated* now. Please use `EqualsProto`, etc instead. `ProtocolMessageEquals` and `ProtocolMessageEquiv` were redefined recently and are now less tolerant of invalid protocol buffer definitions. In particular, if you have a `foo.proto` that doesn't fully qualify the type of a protocol message it references (e.g. `message` where it should be `message`), you will now get run-time errors like: ``` ... descriptor.cc:...] Invalid proto descriptor for file "path/to/foo.proto": ... descriptor.cc:...] blah.MyMessage.my_field: ".Bar" is not defined. ``` If you see this, your `.proto` file is broken and needs to be fixed by making the types fully qualified. The new definition of `ProtocolMessageEquals` and `ProtocolMessageEquiv` just happen to reveal your bug. ## My death test modifies some state, but the change seems lost after the death test finishes. Why? Death tests (`EXPECT_DEATH`, etc) are executed in a sub-process s.t. the expected crash won't kill the test program (i.e. the parent process). As a result, any in-memory side effects they incur are observable in their respective sub-processes, but not in the parent process. You can think of them as running in a parallel universe, more or less. In particular, if you use mocking and the death test statement invokes some mock methods, the parent process will think the calls have never occurred. Therefore, you may want to move your `EXPECT_CALL` statements inside the `EXPECT_DEATH` macro. ## EXPECT_EQ(htonl(blah), blah_blah) generates weird compiler errors in opt mode. Is this a googletest bug? Actually, the bug is in `htonl()`. According to `'man htonl'`, `htonl()` is a *function*, which means it's valid to use `htonl` as a function pointer. However, in opt mode `htonl()` is defined as a *macro*, which breaks this usage. Worse, the macro definition of `htonl()` uses a `gcc` extension and is *not* standard C++. That hacky implementation has some ad hoc limitations. In particular, it prevents you from writing `Foo()`, where `Foo` is a template that has an integral argument. The implementation of `EXPECT_EQ(a, b)` uses `sizeof(... a ...)` inside a template argument, and thus doesn't compile in opt mode when `a` contains a call to `htonl()`. It is difficult to make `EXPECT_EQ` bypass the `htonl()` bug, as the solution must work with different compilers on various platforms. `htonl()` has some other problems as described in `//util/endian/endian.h`, which defines `ghtonl()` to replace it. `ghtonl()` does the same thing `htonl()` does, only without its problems. We suggest you to use `ghtonl()` instead of `htonl()`, both in your tests and production code. `//util/endian/endian.h` also defines `ghtons()`, which solves similar problems in `htons()`. Don't forget to add `//util/endian` to the list of dependencies in the `BUILD` file wherever `ghtonl()` and `ghtons()` are used. The library consists of a single header file and will not bloat your binary. ## The compiler complains about "undefined references" to some static const member variables, but I did define them in the class body. What's wrong? If your class has a static data member: ```c++ // foo.h class Foo { ... static const int kBar = 100; }; ``` You also need to define it *outside* of the class body in `foo.cc`: ```c++ const int Foo::kBar; // No initializer here. ``` Otherwise your code is **invalid C++**, and may break in unexpected ways. In particular, using it in googletest comparison assertions (`EXPECT_EQ`, etc) will generate an "undefined reference" linker error. The fact that "it used to work" doesn't mean it's valid. It just means that you were lucky. :-) ## Can I derive a test fixture from another? Yes. Each test fixture has a corresponding and same named test suite. This means only one test suite can use a particular fixture. Sometimes, however, multiple test cases may want to use the same or slightly different fixtures. For example, you may want to make sure that all of a GUI library's test suites don't leak important system resources like fonts and brushes. In googletest, you share a fixture among test suites by putting the shared logic in a base test fixture, then deriving from that base a separate fixture for each test suite that wants to use this common logic. You then use `TEST_F()` to write tests using each derived fixture. Typically, your code looks like this: ```c++ // Defines a base test fixture. class BaseTest : public ::testing::Test { protected: ... }; // Derives a fixture FooTest from BaseTest. class FooTest : public BaseTest { protected: void SetUp() override { BaseTest::SetUp(); // Sets up the base fixture first. ... additional set-up work ... } void TearDown() override { ... clean-up work for FooTest ... BaseTest::TearDown(); // Remember to tear down the base fixture // after cleaning up FooTest! } ... functions and variables for FooTest ... }; // Tests that use the fixture FooTest. TEST_F(FooTest, Bar) { ... } TEST_F(FooTest, Baz) { ... } ... additional fixtures derived from BaseTest ... ``` If necessary, you can continue to derive test fixtures from a derived fixture. googletest has no limit on how deep the hierarchy can be. For a complete example using derived test fixtures, see [sample5_unittest.cc](../samples/sample5_unittest.cc). ## My compiler complains "void value not ignored as it ought to be." What does this mean? You're probably using an `ASSERT_*()` in a function that doesn't return `void`. `ASSERT_*()` can only be used in `void` functions, due to exceptions being disabled by our build system. Please see more details [here](advanced.md#assertion-placement). ## My death test hangs (or seg-faults). How do I fix it? In googletest, death tests are run in a child process and the way they work is delicate. To write death tests you really need to understand how they work. Please make sure you have read [this](advanced.md#how-it-works). In particular, death tests don't like having multiple threads in the parent process. So the first thing you can try is to eliminate creating threads outside of `EXPECT_DEATH()`. For example, you may want to use mocks or fake objects instead of real ones in your tests. Sometimes this is impossible as some library you must use may be creating threads before `main()` is even reached. In this case, you can try to minimize the chance of conflicts by either moving as many activities as possible inside `EXPECT_DEATH()` (in the extreme case, you want to move everything inside), or leaving as few things as possible in it. Also, you can try to set the death test style to `"threadsafe"`, which is safer but slower, and see if it helps. If you go with thread-safe death tests, remember that they rerun the test program from the beginning in the child process. Therefore make sure your program can run side-by-side with itself and is deterministic. In the end, this boils down to good concurrent programming. You have to make sure that there is no race conditions or dead locks in your program. No silver bullet - sorry! ## Should I use the constructor/destructor of the test fixture or SetUp()/TearDown()? {#CtorVsSetUp} The first thing to remember is that googletest does **not** reuse the same test fixture object across multiple tests. For each `TEST_F`, googletest will create a **fresh** test fixture object, immediately call `SetUp()`, run the test body, call `TearDown()`, and then delete the test fixture object. When you need to write per-test set-up and tear-down logic, you have the choice between using the test fixture constructor/destructor or `SetUp()/TearDown()`. The former is usually preferred, as it has the following benefits: * By initializing a member variable in the constructor, we have the option to make it `const`, which helps prevent accidental changes to its value and makes the tests more obviously correct. * In case we need to subclass the test fixture class, the subclass' constructor is guaranteed to call the base class' constructor *first*, and the subclass' destructor is guaranteed to call the base class' destructor *afterward*. With `SetUp()/TearDown()`, a subclass may make the mistake of forgetting to call the base class' `SetUp()/TearDown()` or call them at the wrong time. You may still want to use `SetUp()/TearDown()` in the following cases: * C++ does not allow virtual function calls in constructors and destructors. You can call a method declared as virtual, but it will not use dynamic dispatch, it will use the definition from the class the constructor of which is currently executing. This is because calling a virtual method before the derived class constructor has a chance to run is very dangerous - the virtual method might operate on uninitialized data. Therefore, if you need to call a method that will be overridden in a derived class, you have to use `SetUp()/TearDown()`. * In the body of a constructor (or destructor), it's not possible to use the `ASSERT_xx` macros. Therefore, if the set-up operation could cause a fatal test failure that should prevent the test from running, it's necessary to use `abort` and abort the whole test executable, or to use `SetUp()` instead of a constructor. * If the tear-down operation could throw an exception, you must use `TearDown()` as opposed to the destructor, as throwing in a destructor leads to undefined behavior and usually will kill your program right away. Note that many standard libraries (like STL) may throw when exceptions are enabled in the compiler. Therefore you should prefer `TearDown()` if you want to write portable tests that work with or without exceptions. * The googletest team is considering making the assertion macros throw on platforms where exceptions are enabled (e.g. Windows, Mac OS, and Linux client-side), which will eliminate the need for the user to propagate failures from a subroutine to its caller. Therefore, you shouldn't use googletest assertions in a destructor if your code could run on such a platform. ## The compiler complains "no matching function to call" when I use ASSERT_PRED*. How do I fix it? If the predicate function you use in `ASSERT_PRED*` or `EXPECT_PRED*` is overloaded or a template, the compiler will have trouble figuring out which overloaded version it should use. `ASSERT_PRED_FORMAT*` and `EXPECT_PRED_FORMAT*` don't have this problem. If you see this error, you might want to switch to `(ASSERT|EXPECT)_PRED_FORMAT*`, which will also give you a better failure message. If, however, that is not an option, you can resolve the problem by explicitly telling the compiler which version to pick. For example, suppose you have ```c++ bool IsPositive(int n) { return n > 0; } bool IsPositive(double x) { return x > 0; } ``` you will get a compiler error if you write ```c++ EXPECT_PRED1(IsPositive, 5); ``` However, this will work: ```c++ EXPECT_PRED1(static_cast(IsPositive), 5); ``` (The stuff inside the angled brackets for the `static_cast` operator is the type of the function pointer for the `int`-version of `IsPositive()`.) As another example, when you have a template function ```c++ template bool IsNegative(T x) { return x < 0; } ``` you can use it in a predicate assertion like this: ```c++ ASSERT_PRED1(IsNegative, -5); ``` Things are more interesting if your template has more than one parameters. The following won't compile: ```c++ ASSERT_PRED2(GreaterThan, 5, 0); ``` as the C++ pre-processor thinks you are giving `ASSERT_PRED2` 4 arguments, which is one more than expected. The workaround is to wrap the predicate function in parentheses: ```c++ ASSERT_PRED2((GreaterThan), 5, 0); ``` ## My compiler complains about "ignoring return value" when I call RUN_ALL_TESTS(). Why? Some people had been ignoring the return value of `RUN_ALL_TESTS()`. That is, instead of ```c++ return RUN_ALL_TESTS(); ``` they write ```c++ RUN_ALL_TESTS(); ``` This is **wrong and dangerous**. The testing services needs to see the return value of `RUN_ALL_TESTS()` in order to determine if a test has passed. If your `main()` function ignores it, your test will be considered successful even if it has a googletest assertion failure. Very bad. We have decided to fix this (thanks to Michael Chastain for the idea). Now, your code will no longer be able to ignore `RUN_ALL_TESTS()` when compiled with `gcc`. If you do so, you'll get a compiler error. If you see the compiler complaining about you ignoring the return value of `RUN_ALL_TESTS()`, the fix is simple: just make sure its value is used as the return value of `main()`. But how could we introduce a change that breaks existing tests? Well, in this case, the code was already broken in the first place, so we didn't break it. :-) ## My compiler complains that a constructor (or destructor) cannot return a value. What's going on? Due to a peculiarity of C++, in order to support the syntax for streaming messages to an `ASSERT_*`, e.g. ```c++ ASSERT_EQ(1, Foo()) << "blah blah" << foo; ``` we had to give up using `ASSERT*` and `FAIL*` (but not `EXPECT*` and `ADD_FAILURE*`) in constructors and destructors. The workaround is to move the content of your constructor/destructor to a private void member function, or switch to `EXPECT_*()` if that works. This [section](advanced.md#assertion-placement) in the user's guide explains it. ## My SetUp() function is not called. Why? C++ is case-sensitive. Did you spell it as `Setup()`? Similarly, sometimes people spell `SetUpTestSuite()` as `SetupTestSuite()` and wonder why it's never called. ## I have several test suites which share the same test fixture logic, do I have to define a new test fixture class for each of them? This seems pretty tedious. You don't have to. Instead of ```c++ class FooTest : public BaseTest {}; TEST_F(FooTest, Abc) { ... } TEST_F(FooTest, Def) { ... } class BarTest : public BaseTest {}; TEST_F(BarTest, Abc) { ... } TEST_F(BarTest, Def) { ... } ``` you can simply `typedef` the test fixtures: ```c++ typedef BaseTest FooTest; TEST_F(FooTest, Abc) { ... } TEST_F(FooTest, Def) { ... } typedef BaseTest BarTest; TEST_F(BarTest, Abc) { ... } TEST_F(BarTest, Def) { ... } ``` ## googletest output is buried in a whole bunch of LOG messages. What do I do? The googletest output is meant to be a concise and human-friendly report. If your test generates textual output itself, it will mix with the googletest output, making it hard to read. However, there is an easy solution to this problem. Since `LOG` messages go to stderr, we decided to let googletest output go to stdout. This way, you can easily separate the two using redirection. For example: ```shell $ ./my_test > gtest_output.txt ``` ## Why should I prefer test fixtures over global variables? There are several good reasons: 1. It's likely your test needs to change the states of its global variables. This makes it difficult to keep side effects from escaping one test and contaminating others, making debugging difficult. By using fixtures, each test has a fresh set of variables that's different (but with the same names). Thus, tests are kept independent of each other. 2. Global variables pollute the global namespace. 3. Test fixtures can be reused via subclassing, which cannot be done easily with global variables. This is useful if many test suites have something in common. ## What can the statement argument in ASSERT_DEATH() be? `ASSERT_DEATH(*statement*, *regex*)` (or any death assertion macro) can be used wherever `*statement*` is valid. So basically `*statement*` can be any C++ statement that makes sense in the current context. In particular, it can reference global and/or local variables, and can be: * a simple function call (often the case), * a complex expression, or * a compound statement. Some examples are shown here: ```c++ // A death test can be a simple function call. TEST(MyDeathTest, FunctionCall) { ASSERT_DEATH(Xyz(5), "Xyz failed"); } // Or a complex expression that references variables and functions. TEST(MyDeathTest, ComplexExpression) { const bool c = Condition(); ASSERT_DEATH((c ? Func1(0) : object2.Method("test")), "(Func1|Method) failed"); } // Death assertions can be used any where in a function. In // particular, they can be inside a loop. TEST(MyDeathTest, InsideLoop) { // Verifies that Foo(0), Foo(1), ..., and Foo(4) all die. for (int i = 0; i < 5; i++) { EXPECT_DEATH_M(Foo(i), "Foo has \\d+ errors", ::testing::Message() << "where i is " << i); } } // A death assertion can contain a compound statement. TEST(MyDeathTest, CompoundStatement) { // Verifies that at lease one of Bar(0), Bar(1), ..., and // Bar(4) dies. ASSERT_DEATH({ for (int i = 0; i < 5; i++) { Bar(i); } }, "Bar has \\d+ errors"); } ``` gtest-death-test_test.cc contains more examples if you are interested. ## I have a fixture class `FooTest`, but `TEST_F(FooTest, Bar)` gives me error ``"no matching function for call to `FooTest::FooTest()'"``. Why? Googletest needs to be able to create objects of your test fixture class, so it must have a default constructor. Normally the compiler will define one for you. However, there are cases where you have to define your own: * If you explicitly declare a non-default constructor for class `FooTest` (`DISALLOW_EVIL_CONSTRUCTORS()` does this), then you need to define a default constructor, even if it would be empty. * If `FooTest` has a const non-static data member, then you have to define the default constructor *and* initialize the const member in the initializer list of the constructor. (Early versions of `gcc` doesn't force you to initialize the const member. It's a bug that has been fixed in `gcc 4`.) ## Why does ASSERT_DEATH complain about previous threads that were already joined? With the Linux pthread library, there is no turning back once you cross the line from single thread to multiple threads. The first time you create a thread, a manager thread is created in addition, so you get 3, not 2, threads. Later when the thread you create joins the main thread, the thread count decrements by 1, but the manager thread will never be killed, so you still have 2 threads, which means you cannot safely run a death test. The new NPTL thread library doesn't suffer from this problem, as it doesn't create a manager thread. However, if you don't control which machine your test runs on, you shouldn't depend on this. ## Why does googletest require the entire test suite, instead of individual tests, to be named *DeathTest when it uses ASSERT_DEATH? googletest does not interleave tests from different test suites. That is, it runs all tests in one test suite first, and then runs all tests in the next test suite, and so on. googletest does this because it needs to set up a test suite before the first test in it is run, and tear it down afterwords. Splitting up the test case would require multiple set-up and tear-down processes, which is inefficient and makes the semantics unclean. If we were to determine the order of tests based on test name instead of test case name, then we would have a problem with the following situation: ```c++ TEST_F(FooTest, AbcDeathTest) { ... } TEST_F(FooTest, Uvw) { ... } TEST_F(BarTest, DefDeathTest) { ... } TEST_F(BarTest, Xyz) { ... } ``` Since `FooTest.AbcDeathTest` needs to run before `BarTest.Xyz`, and we don't interleave tests from different test suites, we need to run all tests in the `FooTest` case before running any test in the `BarTest` case. This contradicts with the requirement to run `BarTest.DefDeathTest` before `FooTest.Uvw`. ## But I don't like calling my entire test suite \*DeathTest when it contains both death tests and non-death tests. What do I do? You don't have to, but if you like, you may split up the test suite into `FooTest` and `FooDeathTest`, where the names make it clear that they are related: ```c++ class FooTest : public ::testing::Test { ... }; TEST_F(FooTest, Abc) { ... } TEST_F(FooTest, Def) { ... } using FooDeathTest = FooTest; TEST_F(FooDeathTest, Uvw) { ... EXPECT_DEATH(...) ... } TEST_F(FooDeathTest, Xyz) { ... ASSERT_DEATH(...) ... } ``` ## googletest prints the LOG messages in a death test's child process only when the test fails. How can I see the LOG messages when the death test succeeds? Printing the LOG messages generated by the statement inside `EXPECT_DEATH()` makes it harder to search for real problems in the parent's log. Therefore, googletest only prints them when the death test has failed. If you really need to see such LOG messages, a workaround is to temporarily break the death test (e.g. by changing the regex pattern it is expected to match). Admittedly, this is a hack. We'll consider a more permanent solution after the fork-and-exec-style death tests are implemented. ## The compiler complains about "no match for 'operator<<'" when I use an assertion. What gives? If you use a user-defined type `FooType` in an assertion, you must make sure there is an `std::ostream& operator<<(std::ostream&, const FooType&)` function defined such that we can print a value of `FooType`. In addition, if `FooType` is declared in a name space, the `<<` operator also needs to be defined in the *same* name space. See https://abseil.io/tips/49 for details. ## How do I suppress the memory leak messages on Windows? Since the statically initialized googletest singleton requires allocations on the heap, the Visual C++ memory leak detector will report memory leaks at the end of the program run. The easiest way to avoid this is to use the `_CrtMemCheckpoint` and `_CrtMemDumpAllObjectsSince` calls to not report any statically initialized heap objects. See MSDN for more details and additional heap check/debug routines. ## How can my code detect if it is running in a test? If you write code that sniffs whether it's running in a test and does different things accordingly, you are leaking test-only logic into production code and there is no easy way to ensure that the test-only code paths aren't run by mistake in production. Such cleverness also leads to [Heisenbugs](https://en.wikipedia.org/wiki/Heisenbug). Therefore we strongly advise against the practice, and googletest doesn't provide a way to do it. In general, the recommended way to cause the code to behave differently under test is [Dependency Injection](https://en.wikipedia.org/wiki/Dependency_injection). You can inject different functionality from the test and from the production code. Since your production code doesn't link in the for-test logic at all (the [`testonly`](https://docs.bazel.build/versions/master/be/common-definitions.html#common.testonly) attribute for BUILD targets helps to ensure that), there is no danger in accidentally running it. However, if you *really*, *really*, *really* have no choice, and if you follow the rule of ending your test program names with `_test`, you can use the *horrible* hack of sniffing your executable name (`argv[0]` in `main()`) to know whether the code is under test. ## How do I temporarily disable a test? If you have a broken test that you cannot fix right away, you can add the DISABLED_ prefix to its name. This will exclude it from execution. This is better than commenting out the code or using #if 0, as disabled tests are still compiled (and thus won't rot). To include disabled tests in test execution, just invoke the test program with the --gtest_also_run_disabled_tests flag. ## Is it OK if I have two separate `TEST(Foo, Bar)` test methods defined in different namespaces? Yes. The rule is **all test methods in the same test suite must use the same fixture class.** This means that the following is **allowed** because both tests use the same fixture class (`::testing::Test`). ```c++ namespace foo { TEST(CoolTest, DoSomething) { SUCCEED(); } } // namespace foo namespace bar { TEST(CoolTest, DoSomething) { SUCCEED(); } } // namespace bar ``` However, the following code is **not allowed** and will produce a runtime error from googletest because the test methods are using different test fixture classes with the same test suite name. ```c++ namespace foo { class CoolTest : public ::testing::Test {}; // Fixture foo::CoolTest TEST_F(CoolTest, DoSomething) { SUCCEED(); } } // namespace foo namespace bar { class CoolTest : public ::testing::Test {}; // Fixture: bar::CoolTest TEST_F(CoolTest, DoSomething) { SUCCEED(); } } // namespace bar ``` libspatialindex-1.9.3/test/gtest/gtest-1.10.0/docs/pkgconfig.md000066400000000000000000000076201355420072700241010ustar00rootroot00000000000000## Using GoogleTest from various build systems GoogleTest comes with pkg-config files that can be used to determine all necessary flags for compiling and linking to GoogleTest (and GoogleMock). Pkg-config is a standardised plain-text format containing * the includedir (-I) path * necessary macro (-D) definitions * further required flags (-pthread) * the library (-L) path * the library (-l) to link to All current build systems support pkg-config in one way or another. For all examples here we assume you want to compile the sample `samples/sample3_unittest.cc`. ### CMake Using `pkg-config` in CMake is fairly easy: ```cmake cmake_minimum_required(VERSION 3.0) cmake_policy(SET CMP0048 NEW) project(my_gtest_pkgconfig VERSION 0.0.1 LANGUAGES CXX) find_package(PkgConfig) pkg_search_module(GTEST REQUIRED gtest_main) add_executable(testapp samples/sample3_unittest.cc) target_link_libraries(testapp ${GTEST_LDFLAGS}) target_compile_options(testapp PUBLIC ${GTEST_CFLAGS}) include(CTest) add_test(first_and_only_test testapp) ``` It is generally recommended that you use `target_compile_options` + `_CFLAGS` over `target_include_directories` + `_INCLUDE_DIRS` as the former includes not just -I flags (GoogleTest might require a macro indicating to internal headers that all libraries have been compiled with threading enabled. In addition, GoogleTest might also require `-pthread` in the compiling step, and as such splitting the pkg-config `Cflags` variable into include dirs and macros for `target_compile_definitions()` might still miss this). The same recommendation goes for using `_LDFLAGS` over the more commonplace `_LIBRARIES`, which happens to discard `-L` flags and `-pthread`. ### Autotools Finding GoogleTest in Autoconf and using it from Automake is also fairly easy: In your `configure.ac`: ``` AC_PREREQ([2.69]) AC_INIT([my_gtest_pkgconfig], [0.0.1]) AC_CONFIG_SRCDIR([samples/sample3_unittest.cc]) AC_PROG_CXX PKG_CHECK_MODULES([GTEST], [gtest_main]) AM_INIT_AUTOMAKE([foreign subdir-objects]) AC_CONFIG_FILES([Makefile]) AC_OUTPUT ``` and in your `Makefile.am`: ``` check_PROGRAMS = testapp TESTS = $(check_PROGRAMS) testapp_SOURCES = samples/sample3_unittest.cc testapp_CXXFLAGS = $(GTEST_CFLAGS) testapp_LDADD = $(GTEST_LIBS) ``` ### Meson Meson natively uses pkgconfig to query dependencies: ``` project('my_gtest_pkgconfig', 'cpp', version : '0.0.1') gtest_dep = dependency('gtest_main') testapp = executable( 'testapp', files(['samples/sample3_unittest.cc']), dependencies : gtest_dep, install : false) test('first_and_only_test', testapp) ``` ### Plain Makefiles Since `pkg-config` is a small Unix command-line utility, it can be used in handwritten `Makefile`s too: ```makefile GTEST_CFLAGS = `pkg-config --cflags gtest_main` GTEST_LIBS = `pkg-config --libs gtest_main` .PHONY: tests all tests: all ./testapp all: testapp testapp: testapp.o $(CXX) $(CXXFLAGS) $(LDFLAGS) $< -o $@ $(GTEST_LIBS) testapp.o: samples/sample3_unittest.cc $(CXX) $(CPPFLAGS) $(CXXFLAGS) $< -c -o $@ $(GTEST_CFLAGS) ``` ### Help! pkg-config can't find GoogleTest! Let's say you have a `CMakeLists.txt` along the lines of the one in this tutorial and you try to run `cmake`. It is very possible that you get a failure along the lines of: ``` -- Checking for one of the modules 'gtest_main' CMake Error at /usr/share/cmake/Modules/FindPkgConfig.cmake:640 (message): None of the required 'gtest_main' found ``` These failures are common if you installed GoogleTest yourself and have not sourced it from a distro or other package manager. If so, you need to tell pkg-config where it can find the `.pc` files containing the information. Say you installed GoogleTest to `/usr/local`, then it might be that the `.pc` files are installed under `/usr/local/lib64/pkgconfig`. If you set ``` export PKG_CONFIG_PATH=/usr/local/lib64/pkgconfig ``` pkg-config will also try to look in `PKG_CONFIG_PATH` to find `gtest_main.pc`. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/docs/primer.md000066400000000000000000000561671355420072700234420ustar00rootroot00000000000000# Googletest Primer ## Introduction: Why googletest? *googletest* helps you write better C++ tests. googletest is a testing framework developed by the Testing Technology team with Google's specific requirements and constraints in mind. Whether you work on Linux, Windows, or a Mac, if you write C++ code, googletest can help you. And it supports *any* kind of tests, not just unit tests. So what makes a good test, and how does googletest fit in? We believe: 1. Tests should be *independent* and *repeatable*. It's a pain to debug a test that succeeds or fails as a result of other tests. googletest isolates the tests by running each of them on a different object. When a test fails, googletest allows you to run it in isolation for quick debugging. 2. Tests should be well *organized* and reflect the structure of the tested code. googletest groups related tests into test suites that can share data and subroutines. This common pattern is easy to recognize and makes tests easy to maintain. Such consistency is especially helpful when people switch projects and start to work on a new code base. 3. Tests should be *portable* and *reusable*. Google has a lot of code that is platform-neutral; its tests should also be platform-neutral. googletest works on different OSes, with different compilers, with or without exceptions, so googletest tests can work with a variety of configurations. 4. When tests fail, they should provide as much *information* about the problem as possible. googletest doesn't stop at the first test failure. Instead, it only stops the current test and continues with the next. You can also set up tests that report non-fatal failures after which the current test continues. Thus, you can detect and fix multiple bugs in a single run-edit-compile cycle. 5. The testing framework should liberate test writers from housekeeping chores and let them focus on the test *content*. googletest automatically keeps track of all tests defined, and doesn't require the user to enumerate them in order to run them. 6. Tests should be *fast*. With googletest, you can reuse shared resources across tests and pay for the set-up/tear-down only once, without making tests depend on each other. Since googletest is based on the popular xUnit architecture, you'll feel right at home if you've used JUnit or PyUnit before. If not, it will take you about 10 minutes to learn the basics and get started. So let's go! ## Beware of the nomenclature _Note:_ There might be some confusion arising from different definitions of the terms _Test_, _Test Case_ and _Test Suite_, so beware of misunderstanding these. Historically, googletest started to use the term _Test Case_ for grouping related tests, whereas current publications, including International Software Testing Qualifications Board ([ISTQB](http://www.istqb.org/)) materials and various textbooks on software quality, use the term _[Test Suite][istqb test suite]_ for this. The related term _Test_, as it is used in googletest, corresponds to the term _[Test Case][istqb test case]_ of ISTQB and others. The term _Test_ is commonly of broad enough sense, including ISTQB's definition of _Test Case_, so it's not much of a problem here. But the term _Test Case_ as was used in Google Test is of contradictory sense and thus confusing. googletest recently started replacing the term _Test Case_ with _Test Suite_. The preferred API is *TestSuite*. The older TestCase API is being slowly deprecated and refactored away. So please be aware of the different definitions of the terms: Meaning | googletest Term | [ISTQB](http://www.istqb.org/) Term :----------------------------------------------------------------------------------- | :---------------------- | :---------------------------------- Exercise a particular program path with specific input values and verify the results | [TEST()](#simple-tests) | [Test Case][istqb test case] [istqb test case]: http://glossary.istqb.org/en/search/test%20case [istqb test suite]: http://glossary.istqb.org/en/search/test%20suite ## Basic Concepts When using googletest, you start by writing *assertions*, which are statements that check whether a condition is true. An assertion's result can be *success*, *nonfatal failure*, or *fatal failure*. If a fatal failure occurs, it aborts the current function; otherwise the program continues normally. *Tests* use assertions to verify the tested code's behavior. If a test crashes or has a failed assertion, then it *fails*; otherwise it *succeeds*. A *test suite* contains one or many tests. You should group your tests into test suites that reflect the structure of the tested code. When multiple tests in a test suite need to share common objects and subroutines, you can put them into a *test fixture* class. A *test program* can contain multiple test suites. We'll now explain how to write a test program, starting at the individual assertion level and building up to tests and test suites. ## Assertions googletest assertions are macros that resemble function calls. You test a class or function by making assertions about its behavior. When an assertion fails, googletest prints the assertion's source file and line number location, along with a failure message. You may also supply a custom failure message which will be appended to googletest's message. The assertions come in pairs that test the same thing but have different effects on the current function. `ASSERT_*` versions generate fatal failures when they fail, and **abort the current function**. `EXPECT_*` versions generate nonfatal failures, which don't abort the current function. Usually `EXPECT_*` are preferred, as they allow more than one failure to be reported in a test. However, you should use `ASSERT_*` if it doesn't make sense to continue when the assertion in question fails. Since a failed `ASSERT_*` returns from the current function immediately, possibly skipping clean-up code that comes after it, it may cause a space leak. Depending on the nature of the leak, it may or may not be worth fixing - so keep this in mind if you get a heap checker error in addition to assertion errors. To provide a custom failure message, simply stream it into the macro using the `<<` operator or a sequence of such operators. An example: ```c++ ASSERT_EQ(x.size(), y.size()) << "Vectors x and y are of unequal length"; for (int i = 0; i < x.size(); ++i) { EXPECT_EQ(x[i], y[i]) << "Vectors x and y differ at index " << i; } ``` Anything that can be streamed to an `ostream` can be streamed to an assertion macro--in particular, C strings and `string` objects. If a wide string (`wchar_t*`, `TCHAR*` in `UNICODE` mode on Windows, or `std::wstring`) is streamed to an assertion, it will be translated to UTF-8 when printed. ### Basic Assertions These assertions do basic true/false condition testing. Fatal assertion | Nonfatal assertion | Verifies -------------------------- | -------------------------- | -------------------- `ASSERT_TRUE(condition);` | `EXPECT_TRUE(condition);` | `condition` is true `ASSERT_FALSE(condition);` | `EXPECT_FALSE(condition);` | `condition` is false Remember, when they fail, `ASSERT_*` yields a fatal failure and returns from the current function, while `EXPECT_*` yields a nonfatal failure, allowing the function to continue running. In either case, an assertion failure means its containing test fails. **Availability**: Linux, Windows, Mac. ### Binary Comparison This section describes assertions that compare two values. Fatal assertion | Nonfatal assertion | Verifies ------------------------ | ------------------------ | -------------- `ASSERT_EQ(val1, val2);` | `EXPECT_EQ(val1, val2);` | `val1 == val2` `ASSERT_NE(val1, val2);` | `EXPECT_NE(val1, val2);` | `val1 != val2` `ASSERT_LT(val1, val2);` | `EXPECT_LT(val1, val2);` | `val1 < val2` `ASSERT_LE(val1, val2);` | `EXPECT_LE(val1, val2);` | `val1 <= val2` `ASSERT_GT(val1, val2);` | `EXPECT_GT(val1, val2);` | `val1 > val2` `ASSERT_GE(val1, val2);` | `EXPECT_GE(val1, val2);` | `val1 >= val2` Value arguments must be comparable by the assertion's comparison operator or you'll get a compiler error. We used to require the arguments to support the `<<` operator for streaming to an `ostream`, but this is no longer necessary. If `<<` is supported, it will be called to print the arguments when the assertion fails; otherwise googletest will attempt to print them in the best way it can. For more details and how to customize the printing of the arguments, see the [documentation](../../googlemock/docs/cook_book.md#teaching-gmock-how-to-print-your-values). These assertions can work with a user-defined type, but only if you define the corresponding comparison operator (e.g., `==` or `<`). Since this is discouraged by the Google [C++ Style Guide](https://google.github.io/styleguide/cppguide.html#Operator_Overloading), you may need to use `ASSERT_TRUE()` or `EXPECT_TRUE()` to assert the equality of two objects of a user-defined type. However, when possible, `ASSERT_EQ(actual, expected)` is preferred to `ASSERT_TRUE(actual == expected)`, since it tells you `actual` and `expected`'s values on failure. Arguments are always evaluated exactly once. Therefore, it's OK for the arguments to have side effects. However, as with any ordinary C/C++ function, the arguments' evaluation order is undefined (i.e., the compiler is free to choose any order), and your code should not depend on any particular argument evaluation order. `ASSERT_EQ()` does pointer equality on pointers. If used on two C strings, it tests if they are in the same memory location, not if they have the same value. Therefore, if you want to compare C strings (e.g. `const char*`) by value, use `ASSERT_STREQ()`, which will be described later on. In particular, to assert that a C string is `NULL`, use `ASSERT_STREQ(c_string, NULL)`. Consider using `ASSERT_EQ(c_string, nullptr)` if c++11 is supported. To compare two `string` objects, you should use `ASSERT_EQ`. When doing pointer comparisons use `*_EQ(ptr, nullptr)` and `*_NE(ptr, nullptr)` instead of `*_EQ(ptr, NULL)` and `*_NE(ptr, NULL)`. This is because `nullptr` is typed, while `NULL` is not. See the [FAQ](faq.md) for more details. If you're working with floating point numbers, you may want to use the floating point variations of some of these macros in order to avoid problems caused by rounding. See [Advanced googletest Topics](advanced.md) for details. Macros in this section work with both narrow and wide string objects (`string` and `wstring`). **Availability**: Linux, Windows, Mac. **Historical note**: Before February 2016 `*_EQ` had a convention of calling it as `ASSERT_EQ(expected, actual)`, so lots of existing code uses this order. Now `*_EQ` treats both parameters in the same way. ### String Comparison The assertions in this group compare two **C strings**. If you want to compare two `string` objects, use `EXPECT_EQ`, `EXPECT_NE`, and etc instead. | Fatal assertion | Nonfatal assertion | Verifies | | -------------------------- | ------------------------------ | -------------------------------------------------------- | | `ASSERT_STREQ(str1,str2);` | `EXPECT_STREQ(str1,str2);` | the two C strings have the same content | | `ASSERT_STRNE(str1,str2);` | `EXPECT_STRNE(str1,str2);` | the two C strings have different contents | | `ASSERT_STRCASEEQ(str1,str2);` | `EXPECT_STRCASEEQ(str1,str2);` | the two C strings have the same content, ignoring case | | `ASSERT_STRCASENE(str1,str2);` | `EXPECT_STRCASENE(str1,str2);` | the two C strings have different contents, ignoring case | Note that "CASE" in an assertion name means that case is ignored. A `NULL` pointer and an empty string are considered *different*. `*STREQ*` and `*STRNE*` also accept wide C strings (`wchar_t*`). If a comparison of two wide strings fails, their values will be printed as UTF-8 narrow strings. **Availability**: Linux, Windows, Mac. **See also**: For more string comparison tricks (substring, prefix, suffix, and regular expression matching, for example), see [this](advanced.md) in the Advanced googletest Guide. ## Simple Tests To create a test: 1. Use the `TEST()` macro to define and name a test function. These are ordinary C++ functions that don't return a value. 2. In this function, along with any valid C++ statements you want to include, use the various googletest assertions to check values. 3. The test's result is determined by the assertions; if any assertion in the test fails (either fatally or non-fatally), or if the test crashes, the entire test fails. Otherwise, it succeeds. ```c++ TEST(TestSuiteName, TestName) { ... test body ... } ``` `TEST()` arguments go from general to specific. The *first* argument is the name of the test suite, and the *second* argument is the test's name within the test case. Both names must be valid C++ identifiers, and they should not contain any underscores (`_`). A test's *full name* consists of its containing test suite and its individual name. Tests from different test suites can have the same individual name. For example, let's take a simple integer function: ```c++ int Factorial(int n); // Returns the factorial of n ``` A test suite for this function might look like: ```c++ // Tests factorial of 0. TEST(FactorialTest, HandlesZeroInput) { EXPECT_EQ(Factorial(0), 1); } // Tests factorial of positive numbers. TEST(FactorialTest, HandlesPositiveInput) { EXPECT_EQ(Factorial(1), 1); EXPECT_EQ(Factorial(2), 2); EXPECT_EQ(Factorial(3), 6); EXPECT_EQ(Factorial(8), 40320); } ``` googletest groups the test results by test suites, so logically related tests should be in the same test suite; in other words, the first argument to their `TEST()` should be the same. In the above example, we have two tests, `HandlesZeroInput` and `HandlesPositiveInput`, that belong to the same test suite `FactorialTest`. When naming your test suites and tests, you should follow the same convention as for [naming functions and classes](https://google.github.io/styleguide/cppguide.html#Function_Names). **Availability**: Linux, Windows, Mac. ## Test Fixtures: Using the Same Data Configuration for Multiple Tests {#same-data-multiple-tests} If you find yourself writing two or more tests that operate on similar data, you can use a *test fixture*. This allows you to reuse the same configuration of objects for several different tests. To create a fixture: 1. Derive a class from `::testing::Test` . Start its body with `protected:`, as we'll want to access fixture members from sub-classes. 2. Inside the class, declare any objects you plan to use. 3. If necessary, write a default constructor or `SetUp()` function to prepare the objects for each test. A common mistake is to spell `SetUp()` as **`Setup()`** with a small `u` - Use `override` in C++11 to make sure you spelled it correctly. 4. If necessary, write a destructor or `TearDown()` function to release any resources you allocated in `SetUp()` . To learn when you should use the constructor/destructor and when you should use `SetUp()/TearDown()`, read the [FAQ](faq.md#CtorVsSetUp). 5. If needed, define subroutines for your tests to share. When using a fixture, use `TEST_F()` instead of `TEST()` as it allows you to access objects and subroutines in the test fixture: ```c++ TEST_F(TestFixtureName, TestName) { ... test body ... } ``` Like `TEST()`, the first argument is the test suite name, but for `TEST_F()` this must be the name of the test fixture class. You've probably guessed: `_F` is for fixture. Unfortunately, the C++ macro system does not allow us to create a single macro that can handle both types of tests. Using the wrong macro causes a compiler error. Also, you must first define a test fixture class before using it in a `TEST_F()`, or you'll get the compiler error "`virtual outside class declaration`". For each test defined with `TEST_F()`, googletest will create a *fresh* test fixture at runtime, immediately initialize it via `SetUp()`, run the test, clean up by calling `TearDown()`, and then delete the test fixture. Note that different tests in the same test suite have different test fixture objects, and googletest always deletes a test fixture before it creates the next one. googletest does **not** reuse the same test fixture for multiple tests. Any changes one test makes to the fixture do not affect other tests. As an example, let's write tests for a FIFO queue class named `Queue`, which has the following interface: ```c++ template // E is the element type. class Queue { public: Queue(); void Enqueue(const E& element); E* Dequeue(); // Returns NULL if the queue is empty. size_t size() const; ... }; ``` First, define a fixture class. By convention, you should give it the name `FooTest` where `Foo` is the class being tested. ```c++ class QueueTest : public ::testing::Test { protected: void SetUp() override { q1_.Enqueue(1); q2_.Enqueue(2); q2_.Enqueue(3); } // void TearDown() override {} Queue q0_; Queue q1_; Queue q2_; }; ``` In this case, `TearDown()` is not needed since we don't have to clean up after each test, other than what's already done by the destructor. Now we'll write tests using `TEST_F()` and this fixture. ```c++ TEST_F(QueueTest, IsEmptyInitially) { EXPECT_EQ(q0_.size(), 0); } TEST_F(QueueTest, DequeueWorks) { int* n = q0_.Dequeue(); EXPECT_EQ(n, nullptr); n = q1_.Dequeue(); ASSERT_NE(n, nullptr); EXPECT_EQ(*n, 1); EXPECT_EQ(q1_.size(), 0); delete n; n = q2_.Dequeue(); ASSERT_NE(n, nullptr); EXPECT_EQ(*n, 2); EXPECT_EQ(q2_.size(), 1); delete n; } ``` The above uses both `ASSERT_*` and `EXPECT_*` assertions. The rule of thumb is to use `EXPECT_*` when you want the test to continue to reveal more errors after the assertion failure, and use `ASSERT_*` when continuing after failure doesn't make sense. For example, the second assertion in the `Dequeue` test is `ASSERT_NE(nullptr, n)`, as we need to dereference the pointer `n` later, which would lead to a segfault when `n` is `NULL`. When these tests run, the following happens: 1. googletest constructs a `QueueTest` object (let's call it `t1`). 2. `t1.SetUp()` initializes `t1`. 3. The first test (`IsEmptyInitially`) runs on `t1`. 4. `t1.TearDown()` cleans up after the test finishes. 5. `t1` is destructed. 6. The above steps are repeated on another `QueueTest` object, this time running the `DequeueWorks` test. **Availability**: Linux, Windows, Mac. ## Invoking the Tests `TEST()` and `TEST_F()` implicitly register their tests with googletest. So, unlike with many other C++ testing frameworks, you don't have to re-list all your defined tests in order to run them. After defining your tests, you can run them with `RUN_ALL_TESTS()`, which returns `0` if all the tests are successful, or `1` otherwise. Note that `RUN_ALL_TESTS()` runs *all tests* in your link unit--they can be from different test suites, or even different source files. When invoked, the `RUN_ALL_TESTS()` macro: * Saves the state of all googletest flags. * Creates a test fixture object for the first test. * Initializes it via `SetUp()`. * Runs the test on the fixture object. * Cleans up the fixture via `TearDown()`. * Deletes the fixture. * Restores the state of all googletest flags. * Repeats the above steps for the next test, until all tests have run. If a fatal failure happens the subsequent steps will be skipped. > IMPORTANT: You must **not** ignore the return value of `RUN_ALL_TESTS()`, or > you will get a compiler error. The rationale for this design is that the > automated testing service determines whether a test has passed based on its > exit code, not on its stdout/stderr output; thus your `main()` function must > return the value of `RUN_ALL_TESTS()`. > > Also, you should call `RUN_ALL_TESTS()` only **once**. Calling it more than > once conflicts with some advanced googletest features (e.g., thread-safe > [death tests](advanced.md#death-tests)) and thus is not supported. **Availability**: Linux, Windows, Mac. ## Writing the main() Function Write your own main() function, which should return the value of `RUN_ALL_TESTS()`. You can start from this boilerplate: ```c++ #include "this/package/foo.h" #include "gtest/gtest.h" namespace { // The fixture for testing class Foo. class FooTest : public ::testing::Test { protected: // You can remove any or all of the following functions if its body // is empty. FooTest() { // You can do set-up work for each test here. } ~FooTest() override { // You can do clean-up work that doesn't throw exceptions here. } // If the constructor and destructor are not enough for setting up // and cleaning up each test, you can define the following methods: void SetUp() override { // Code here will be called immediately after the constructor (right // before each test). } void TearDown() override { // Code here will be called immediately after each test (right // before the destructor). } // Objects declared here can be used by all tests in the test suite for Foo. }; // Tests that the Foo::Bar() method does Abc. TEST_F(FooTest, MethodBarDoesAbc) { const std::string input_filepath = "this/package/testdata/myinputfile.dat"; const std::string output_filepath = "this/package/testdata/myoutputfile.dat"; Foo f; EXPECT_EQ(f.Bar(input_filepath, output_filepath), 0); } // Tests that Foo does Xyz. TEST_F(FooTest, DoesXyz) { // Exercises the Xyz feature of Foo. } } // namespace int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } ``` The `::testing::InitGoogleTest()` function parses the command line for googletest flags, and removes all recognized flags. This allows the user to control a test program's behavior via various flags, which we'll cover in the [AdvancedGuide](advanced.md). You **must** call this function before calling `RUN_ALL_TESTS()`, or the flags won't be properly initialized. On Windows, `InitGoogleTest()` also works with wide strings, so it can be used in programs compiled in `UNICODE` mode as well. But maybe you think that writing all those main() functions is too much work? We agree with you completely, and that's why Google Test provides a basic implementation of main(). If it fits your needs, then just link your test with gtest\_main library and you are good to go. NOTE: `ParseGUnitFlags()` is deprecated in favor of `InitGoogleTest()`. ## Known Limitations * Google Test is designed to be thread-safe. The implementation is thread-safe on systems where the `pthreads` library is available. It is currently _unsafe_ to use Google Test assertions from two threads concurrently on other systems (e.g. Windows). In most tests this is not an issue as usually the assertions are done in the main thread. If you want to help, you can volunteer to implement the necessary synchronization primitives in `gtest-port.h` for your platform. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/docs/pump_manual.md000066400000000000000000000156711355420072700244550ustar00rootroot00000000000000Pump is Useful for Meta Programming. # The Problem Template and macro libraries often need to define many classes, functions, or macros that vary only (or almost only) in the number of arguments they take. It's a lot of repetitive, mechanical, and error-prone work. Variadic templates and variadic macros can alleviate the problem. However, while both are being considered by the C++ committee, neither is in the standard yet or widely supported by compilers. Thus they are often not a good choice, especially when your code needs to be portable. And their capabilities are still limited. As a result, authors of such libraries often have to write scripts to generate their implementation. However, our experience is that it's tedious to write such scripts, which tend to reflect the structure of the generated code poorly and are often hard to read and edit. For example, a small change needed in the generated code may require some non-intuitive, non-trivial changes in the script. This is especially painful when experimenting with the code. # Our Solution Pump (for Pump is Useful for Meta Programming, Pretty Useful for Meta Programming, or Practical Utility for Meta Programming, whichever you prefer) is a simple meta-programming tool for C++. The idea is that a programmer writes a `foo.pump` file which contains C++ code plus meta code that manipulates the C++ code. The meta code can handle iterations over a range, nested iterations, local meta variable definitions, simple arithmetic, and conditional expressions. You can view it as a small Domain-Specific Language. The meta language is designed to be non-intrusive (s.t. it won't confuse Emacs' C++ mode, for example) and concise, making Pump code intuitive and easy to maintain. ## Highlights * The implementation is in a single Python script and thus ultra portable: no build or installation is needed and it works cross platforms. * Pump tries to be smart with respect to [Google's style guide](https://github.com/google/styleguide): it breaks long lines (easy to have when they are generated) at acceptable places to fit within 80 columns and indent the continuation lines correctly. * The format is human-readable and more concise than XML. * The format works relatively well with Emacs' C++ mode. ## Examples The following Pump code (where meta keywords start with `$`, `[[` and `]]` are meta brackets, and `$$` starts a meta comment that ends with the line): ``` $var n = 3 $$ Defines a meta variable n. $range i 0..n $$ Declares the range of meta iterator i (inclusive). $for i [[ $$ Meta loop. // Foo$i does blah for $i-ary predicates. $range j 1..i template class Foo$i { $if i == 0 [[ blah a; ]] $elif i <= 2 [[ blah b; ]] $else [[ blah c; ]] }; ]] ``` will be translated by the Pump compiler to: ```cpp // Foo0 does blah for 0-ary predicates. template class Foo0 { blah a; }; // Foo1 does blah for 1-ary predicates. template class Foo1 { blah b; }; // Foo2 does blah for 2-ary predicates. template class Foo2 { blah b; }; // Foo3 does blah for 3-ary predicates. template class Foo3 { blah c; }; ``` In another example, ``` $range i 1..n Func($for i + [[a$i]]); $$ The text between i and [[ is the separator between iterations. ``` will generate one of the following lines (without the comments), depending on the value of `n`: ```cpp Func(); // If n is 0. Func(a1); // If n is 1. Func(a1 + a2); // If n is 2. Func(a1 + a2 + a3); // If n is 3. // And so on... ``` ## Constructs We support the following meta programming constructs: | `$var id = exp` | Defines a named constant value. `$id` is | : : valid util the end of the current meta : : : lexical block. : | :------------------------------- | :--------------------------------------- | | `$range id exp..exp` | Sets the range of an iteration variable, | : : which can be reused in multiple loops : : : later. : | `$for id sep [[ code ]]` | Iteration. The range of `id` must have | : : been defined earlier. `$id` is valid in : : : `code`. : | `$($)` | Generates a single `$` character. | | `$id` | Value of the named constant or iteration | : : variable. : | `$(exp)` | Value of the expression. | | `$if exp [[ code ]] else_branch` | Conditional. | | `[[ code ]]` | Meta lexical block. | | `cpp_code` | Raw C++ code. | | `$$ comment` | Meta comment. | **Note:** To give the user some freedom in formatting the Pump source code, Pump ignores a new-line character if it's right after `$for foo` or next to `[[` or `]]`. Without this rule you'll often be forced to write very long lines to get the desired output. Therefore sometimes you may need to insert an extra new-line in such places for a new-line to show up in your output. ## Grammar ```ebnf code ::= atomic_code* atomic_code ::= $var id = exp | $var id = [[ code ]] | $range id exp..exp | $for id sep [[ code ]] | $($) | $id | $(exp) | $if exp [[ code ]] else_branch | [[ code ]] | cpp_code sep ::= cpp_code | empty_string else_branch ::= $else [[ code ]] | $elif exp [[ code ]] else_branch | empty_string exp ::= simple_expression_in_Python_syntax ``` ## Code You can find the source code of Pump in [scripts/pump.py](../scripts/pump.py). It is still very unpolished and lacks automated tests, although it has been successfully used many times. If you find a chance to use it in your project, please let us know what you think! We also welcome help on improving Pump. ## Real Examples You can find real-world applications of Pump in [Google Test](https://github.com/google/googletest/tree/master/googletest) and [Google Mock](https://github.com/google/googletest/tree/master/googlemock). The source file `foo.h.pump` generates `foo.h`. ## Tips * If a meta variable is followed by a letter or digit, you can separate them using `[[]]`, which inserts an empty string. For example `Foo$j[[]]Helper` generate `Foo1Helper` when `j` is 1. * To avoid extra-long Pump source lines, you can break a line anywhere you want by inserting `[[]]` followed by a new line. Since any new-line character next to `[[` or `]]` is ignored, the generated code won't contain this new line. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/docs/samples.md000066400000000000000000000021511355420072700235700ustar00rootroot00000000000000# Googletest Samples {#samples} If you're like us, you'd like to look at [googletest samples.](https://github.com/google/googletest/tree/master/googletest/samples) The sample directory has a number of well-commented samples showing how to use a variety of googletest features. * Sample #1 shows the basic steps of using googletest to test C++ functions. * Sample #2 shows a more complex unit test for a class with multiple member functions. * Sample #3 uses a test fixture. * Sample #4 teaches you how to use googletest and `googletest.h` together to get the best of both libraries. * Sample #5 puts shared testing logic in a base test fixture, and reuses it in derived fixtures. * Sample #6 demonstrates type-parameterized tests. * Sample #7 teaches the basics of value-parameterized tests. * Sample #8 shows using `Combine()` in value-parameterized tests. * Sample #9 shows use of the listener API to modify Google Test's console output and the use of its reflection API to inspect test results. * Sample #10 shows use of the listener API to implement a primitive memory leak checker. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/000077500000000000000000000000001355420072700222765ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/000077500000000000000000000000001355420072700234245ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest-death-test.h000066400000000000000000000340371355420072700267720ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This header file defines the public API for death tests. It is // #included by gtest.h so a user doesn't need to include this // directly. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_DEATH_TEST_H_ #define GTEST_INCLUDE_GTEST_GTEST_DEATH_TEST_H_ #include "gtest/internal/gtest-death-test-internal.h" namespace testing { // This flag controls the style of death tests. Valid values are "threadsafe", // meaning that the death test child process will re-execute the test binary // from the start, running only a single death test, or "fast", // meaning that the child process will execute the test logic immediately // after forking. GTEST_DECLARE_string_(death_test_style); #if GTEST_HAS_DEATH_TEST namespace internal { // Returns a Boolean value indicating whether the caller is currently // executing in the context of the death test child process. Tools such as // Valgrind heap checkers may need this to modify their behavior in death // tests. IMPORTANT: This is an internal utility. Using it may break the // implementation of death tests. User code MUST NOT use it. GTEST_API_ bool InDeathTestChild(); } // namespace internal // The following macros are useful for writing death tests. // Here's what happens when an ASSERT_DEATH* or EXPECT_DEATH* is // executed: // // 1. It generates a warning if there is more than one active // thread. This is because it's safe to fork() or clone() only // when there is a single thread. // // 2. The parent process clone()s a sub-process and runs the death // test in it; the sub-process exits with code 0 at the end of the // death test, if it hasn't exited already. // // 3. The parent process waits for the sub-process to terminate. // // 4. The parent process checks the exit code and error message of // the sub-process. // // Examples: // // ASSERT_DEATH(server.SendMessage(56, "Hello"), "Invalid port number"); // for (int i = 0; i < 5; i++) { // EXPECT_DEATH(server.ProcessRequest(i), // "Invalid request .* in ProcessRequest()") // << "Failed to die on request " << i; // } // // ASSERT_EXIT(server.ExitNow(), ::testing::ExitedWithCode(0), "Exiting"); // // bool KilledBySIGHUP(int exit_code) { // return WIFSIGNALED(exit_code) && WTERMSIG(exit_code) == SIGHUP; // } // // ASSERT_EXIT(client.HangUpServer(), KilledBySIGHUP, "Hanging up!"); // // On the regular expressions used in death tests: // // GOOGLETEST_CM0005 DO NOT DELETE // On POSIX-compliant systems (*nix), we use the library, // which uses the POSIX extended regex syntax. // // On other platforms (e.g. Windows or Mac), we only support a simple regex // syntax implemented as part of Google Test. This limited // implementation should be enough most of the time when writing // death tests; though it lacks many features you can find in PCRE // or POSIX extended regex syntax. For example, we don't support // union ("x|y"), grouping ("(xy)"), brackets ("[xy]"), and // repetition count ("x{5,7}"), among others. // // Below is the syntax that we do support. We chose it to be a // subset of both PCRE and POSIX extended regex, so it's easy to // learn wherever you come from. In the following: 'A' denotes a // literal character, period (.), or a single \\ escape sequence; // 'x' and 'y' denote regular expressions; 'm' and 'n' are for // natural numbers. // // c matches any literal character c // \\d matches any decimal digit // \\D matches any character that's not a decimal digit // \\f matches \f // \\n matches \n // \\r matches \r // \\s matches any ASCII whitespace, including \n // \\S matches any character that's not a whitespace // \\t matches \t // \\v matches \v // \\w matches any letter, _, or decimal digit // \\W matches any character that \\w doesn't match // \\c matches any literal character c, which must be a punctuation // . matches any single character except \n // A? matches 0 or 1 occurrences of A // A* matches 0 or many occurrences of A // A+ matches 1 or many occurrences of A // ^ matches the beginning of a string (not that of each line) // $ matches the end of a string (not that of each line) // xy matches x followed by y // // If you accidentally use PCRE or POSIX extended regex features // not implemented by us, you will get a run-time failure. In that // case, please try to rewrite your regular expression within the // above syntax. // // This implementation is *not* meant to be as highly tuned or robust // as a compiled regex library, but should perform well enough for a // death test, which already incurs significant overhead by launching // a child process. // // Known caveats: // // A "threadsafe" style death test obtains the path to the test // program from argv[0] and re-executes it in the sub-process. For // simplicity, the current implementation doesn't search the PATH // when launching the sub-process. This means that the user must // invoke the test program via a path that contains at least one // path separator (e.g. path/to/foo_test and // /absolute/path/to/bar_test are fine, but foo_test is not). This // is rarely a problem as people usually don't put the test binary // directory in PATH. // // Asserts that a given statement causes the program to exit, with an // integer exit status that satisfies predicate, and emitting error output // that matches regex. # define ASSERT_EXIT(statement, predicate, regex) \ GTEST_DEATH_TEST_(statement, predicate, regex, GTEST_FATAL_FAILURE_) // Like ASSERT_EXIT, but continues on to successive tests in the // test suite, if any: # define EXPECT_EXIT(statement, predicate, regex) \ GTEST_DEATH_TEST_(statement, predicate, regex, GTEST_NONFATAL_FAILURE_) // Asserts that a given statement causes the program to exit, either by // explicitly exiting with a nonzero exit code or being killed by a // signal, and emitting error output that matches regex. # define ASSERT_DEATH(statement, regex) \ ASSERT_EXIT(statement, ::testing::internal::ExitedUnsuccessfully, regex) // Like ASSERT_DEATH, but continues on to successive tests in the // test suite, if any: # define EXPECT_DEATH(statement, regex) \ EXPECT_EXIT(statement, ::testing::internal::ExitedUnsuccessfully, regex) // Two predicate classes that can be used in {ASSERT,EXPECT}_EXIT*: // Tests that an exit code describes a normal exit with a given exit code. class GTEST_API_ ExitedWithCode { public: explicit ExitedWithCode(int exit_code); bool operator()(int exit_status) const; private: // No implementation - assignment is unsupported. void operator=(const ExitedWithCode& other); const int exit_code_; }; # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA // Tests that an exit code describes an exit due to termination by a // given signal. // GOOGLETEST_CM0006 DO NOT DELETE class GTEST_API_ KilledBySignal { public: explicit KilledBySignal(int signum); bool operator()(int exit_status) const; private: const int signum_; }; # endif // !GTEST_OS_WINDOWS // EXPECT_DEBUG_DEATH asserts that the given statements die in debug mode. // The death testing framework causes this to have interesting semantics, // since the sideeffects of the call are only visible in opt mode, and not // in debug mode. // // In practice, this can be used to test functions that utilize the // LOG(DFATAL) macro using the following style: // // int DieInDebugOr12(int* sideeffect) { // if (sideeffect) { // *sideeffect = 12; // } // LOG(DFATAL) << "death"; // return 12; // } // // TEST(TestSuite, TestDieOr12WorksInDgbAndOpt) { // int sideeffect = 0; // // Only asserts in dbg. // EXPECT_DEBUG_DEATH(DieInDebugOr12(&sideeffect), "death"); // // #ifdef NDEBUG // // opt-mode has sideeffect visible. // EXPECT_EQ(12, sideeffect); // #else // // dbg-mode no visible sideeffect. // EXPECT_EQ(0, sideeffect); // #endif // } // // This will assert that DieInDebugReturn12InOpt() crashes in debug // mode, usually due to a DCHECK or LOG(DFATAL), but returns the // appropriate fallback value (12 in this case) in opt mode. If you // need to test that a function has appropriate side-effects in opt // mode, include assertions against the side-effects. A general // pattern for this is: // // EXPECT_DEBUG_DEATH({ // // Side-effects here will have an effect after this statement in // // opt mode, but none in debug mode. // EXPECT_EQ(12, DieInDebugOr12(&sideeffect)); // }, "death"); // # ifdef NDEBUG # define EXPECT_DEBUG_DEATH(statement, regex) \ GTEST_EXECUTE_STATEMENT_(statement, regex) # define ASSERT_DEBUG_DEATH(statement, regex) \ GTEST_EXECUTE_STATEMENT_(statement, regex) # else # define EXPECT_DEBUG_DEATH(statement, regex) \ EXPECT_DEATH(statement, regex) # define ASSERT_DEBUG_DEATH(statement, regex) \ ASSERT_DEATH(statement, regex) # endif // NDEBUG for EXPECT_DEBUG_DEATH #endif // GTEST_HAS_DEATH_TEST // This macro is used for implementing macros such as // EXPECT_DEATH_IF_SUPPORTED and ASSERT_DEATH_IF_SUPPORTED on systems where // death tests are not supported. Those macros must compile on such systems // if and only if EXPECT_DEATH and ASSERT_DEATH compile with the same parameters // on systems that support death tests. This allows one to write such a macro on // a system that does not support death tests and be sure that it will compile // on a death-test supporting system. It is exposed publicly so that systems // that have death-tests with stricter requirements than GTEST_HAS_DEATH_TEST // can write their own equivalent of EXPECT_DEATH_IF_SUPPORTED and // ASSERT_DEATH_IF_SUPPORTED. // // Parameters: // statement - A statement that a macro such as EXPECT_DEATH would test // for program termination. This macro has to make sure this // statement is compiled but not executed, to ensure that // EXPECT_DEATH_IF_SUPPORTED compiles with a certain // parameter if and only if EXPECT_DEATH compiles with it. // regex - A regex that a macro such as EXPECT_DEATH would use to test // the output of statement. This parameter has to be // compiled but not evaluated by this macro, to ensure that // this macro only accepts expressions that a macro such as // EXPECT_DEATH would accept. // terminator - Must be an empty statement for EXPECT_DEATH_IF_SUPPORTED // and a return statement for ASSERT_DEATH_IF_SUPPORTED. // This ensures that ASSERT_DEATH_IF_SUPPORTED will not // compile inside functions where ASSERT_DEATH doesn't // compile. // // The branch that has an always false condition is used to ensure that // statement and regex are compiled (and thus syntactically correct) but // never executed. The unreachable code macro protects the terminator // statement from generating an 'unreachable code' warning in case // statement unconditionally returns or throws. The Message constructor at // the end allows the syntax of streaming additional messages into the // macro, for compilational compatibility with EXPECT_DEATH/ASSERT_DEATH. # define GTEST_UNSUPPORTED_DEATH_TEST(statement, regex, terminator) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ GTEST_LOG_(WARNING) \ << "Death tests are not supported on this platform.\n" \ << "Statement '" #statement "' cannot be verified."; \ } else if (::testing::internal::AlwaysFalse()) { \ ::testing::internal::RE::PartialMatch(".*", (regex)); \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ terminator; \ } else \ ::testing::Message() // EXPECT_DEATH_IF_SUPPORTED(statement, regex) and // ASSERT_DEATH_IF_SUPPORTED(statement, regex) expand to real death tests if // death tests are supported; otherwise they just issue a warning. This is // useful when you are combining death test assertions with normal test // assertions in one test. #if GTEST_HAS_DEATH_TEST # define EXPECT_DEATH_IF_SUPPORTED(statement, regex) \ EXPECT_DEATH(statement, regex) # define ASSERT_DEATH_IF_SUPPORTED(statement, regex) \ ASSERT_DEATH(statement, regex) #else # define EXPECT_DEATH_IF_SUPPORTED(statement, regex) \ GTEST_UNSUPPORTED_DEATH_TEST(statement, regex, ) # define ASSERT_DEATH_IF_SUPPORTED(statement, regex) \ GTEST_UNSUPPORTED_DEATH_TEST(statement, regex, return) #endif } // namespace testing #endif // GTEST_INCLUDE_GTEST_GTEST_DEATH_TEST_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest-matchers.h000066400000000000000000000646371355420072700265470ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The Google C++ Testing and Mocking Framework (Google Test) // // This file implements just enough of the matcher interface to allow // EXPECT_DEATH and friends to accept a matcher argument. // IWYU pragma: private, include "testing/base/public/gunit.h" // IWYU pragma: friend third_party/googletest/googlemock/.* // IWYU pragma: friend third_party/googletest/googletest/.* #ifndef GTEST_INCLUDE_GTEST_GTEST_MATCHERS_H_ #define GTEST_INCLUDE_GTEST_GTEST_MATCHERS_H_ #include #include #include #include #include "gtest/gtest-printers.h" #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-port.h" // MSVC warning C5046 is new as of VS2017 version 15.8. #if defined(_MSC_VER) && _MSC_VER >= 1915 #define GTEST_MAYBE_5046_ 5046 #else #define GTEST_MAYBE_5046_ #endif GTEST_DISABLE_MSC_WARNINGS_PUSH_( 4251 GTEST_MAYBE_5046_ /* class A needs to have dll-interface to be used by clients of class B */ /* Symbol involving type with internal linkage not defined */) namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface interface, and // 2. a factory function that creates a Matcher object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // MatchResultListener is an abstract class. Its << operator can be // used by a matcher to explain why a value matches or doesn't match. // class MatchResultListener { public: // Creates a listener object with the given underlying ostream. The // listener does not own the ostream, and does not dereference it // in the constructor or destructor. explicit MatchResultListener(::std::ostream* os) : stream_(os) {} virtual ~MatchResultListener() = 0; // Makes this class abstract. // Streams x to the underlying ostream; does nothing if the ostream // is NULL. template MatchResultListener& operator<<(const T& x) { if (stream_ != nullptr) *stream_ << x; return *this; } // Returns the underlying ostream. ::std::ostream* stream() { return stream_; } // Returns true if and only if the listener is interested in an explanation // of the match result. A matcher's MatchAndExplain() method can use // this information to avoid generating the explanation when no one // intends to hear it. bool IsInterested() const { return stream_ != nullptr; } private: ::std::ostream* const stream_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); }; inline MatchResultListener::~MatchResultListener() { } // An instance of a subclass of this knows how to describe itself as a // matcher. class MatcherDescriberInterface { public: virtual ~MatcherDescriberInterface() {} // Describes this matcher to an ostream. The function should print // a verb phrase that describes the property a value matching this // matcher should have. The subject of the verb phrase is the value // being matched. For example, the DescribeTo() method of the Gt(7) // matcher prints "is greater than 7". virtual void DescribeTo(::std::ostream* os) const = 0; // Describes the negation of this matcher to an ostream. For // example, if the description of this matcher is "is greater than // 7", the negated description could be "is not greater than 7". // You are not required to override this when implementing // MatcherInterface, but it is highly advised so that your matcher // can produce good error messages. virtual void DescribeNegationTo(::std::ostream* os) const { *os << "not ("; DescribeTo(os); *os << ")"; } }; // The implementation of a matcher. template class MatcherInterface : public MatcherDescriberInterface { public: // Returns true if and only if the matcher matches x; also explains the // match result to 'listener' if necessary (see the next paragraph), in // the form of a non-restrictive relative clause ("which ...", // "whose ...", etc) that describes x. For example, the // MatchAndExplain() method of the Pointee(...) matcher should // generate an explanation like "which points to ...". // // Implementations of MatchAndExplain() should add an explanation of // the match result *if and only if* they can provide additional // information that's not already present (or not obvious) in the // print-out of x and the matcher's description. Whether the match // succeeds is not a factor in deciding whether an explanation is // needed, as sometimes the caller needs to print a failure message // when the match succeeds (e.g. when the matcher is used inside // Not()). // // For example, a "has at least 10 elements" matcher should explain // what the actual element count is, regardless of the match result, // as it is useful information to the reader; on the other hand, an // "is empty" matcher probably only needs to explain what the actual // size is when the match fails, as it's redundant to say that the // size is 0 when the value is already known to be empty. // // You should override this method when defining a new matcher. // // It's the responsibility of the caller (Google Test) to guarantee // that 'listener' is not NULL. This helps to simplify a matcher's // implementation when it doesn't care about the performance, as it // can talk to 'listener' without checking its validity first. // However, in order to implement dummy listeners efficiently, // listener->stream() may be NULL. virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; // Inherits these methods from MatcherDescriberInterface: // virtual void DescribeTo(::std::ostream* os) const = 0; // virtual void DescribeNegationTo(::std::ostream* os) const; }; namespace internal { // Converts a MatcherInterface to a MatcherInterface. template class MatcherInterfaceAdapter : public MatcherInterface { public: explicit MatcherInterfaceAdapter(const MatcherInterface* impl) : impl_(impl) {} ~MatcherInterfaceAdapter() override { delete impl_; } void DescribeTo(::std::ostream* os) const override { impl_->DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { impl_->DescribeNegationTo(os); } bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { return impl_->MatchAndExplain(x, listener); } private: const MatcherInterface* const impl_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MatcherInterfaceAdapter); }; struct AnyEq { template bool operator()(const A& a, const B& b) const { return a == b; } }; struct AnyNe { template bool operator()(const A& a, const B& b) const { return a != b; } }; struct AnyLt { template bool operator()(const A& a, const B& b) const { return a < b; } }; struct AnyGt { template bool operator()(const A& a, const B& b) const { return a > b; } }; struct AnyLe { template bool operator()(const A& a, const B& b) const { return a <= b; } }; struct AnyGe { template bool operator()(const A& a, const B& b) const { return a >= b; } }; // A match result listener that ignores the explanation. class DummyMatchResultListener : public MatchResultListener { public: DummyMatchResultListener() : MatchResultListener(nullptr) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); }; // A match result listener that forwards the explanation to a given // ostream. The difference between this and MatchResultListener is // that the former is concrete. class StreamMatchResultListener : public MatchResultListener { public: explicit StreamMatchResultListener(::std::ostream* os) : MatchResultListener(os) {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); }; // An internal class for implementing Matcher, which will derive // from it. We put functionalities common to all Matcher // specializations here to avoid code duplication. template class MatcherBase { public: // Returns true if and only if the matcher matches x; also explains the // match result to 'listener'. bool MatchAndExplain(const T& x, MatchResultListener* listener) const { return impl_->MatchAndExplain(x, listener); } // Returns true if and only if this matcher matches x. bool Matches(const T& x) const { DummyMatchResultListener dummy; return MatchAndExplain(x, &dummy); } // Describes this matcher to an ostream. void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the negation of this matcher to an ostream. void DescribeNegationTo(::std::ostream* os) const { impl_->DescribeNegationTo(os); } // Explains why x matches, or doesn't match, the matcher. void ExplainMatchResultTo(const T& x, ::std::ostream* os) const { StreamMatchResultListener listener(os); MatchAndExplain(x, &listener); } // Returns the describer for this matcher object; retains ownership // of the describer, which is only guaranteed to be alive when // this matcher object is alive. const MatcherDescriberInterface* GetDescriber() const { return impl_.get(); } protected: MatcherBase() {} // Constructs a matcher from its implementation. explicit MatcherBase(const MatcherInterface* impl) : impl_(impl) {} template explicit MatcherBase( const MatcherInterface* impl, typename std::enable_if::value>::type* = nullptr) : impl_(new internal::MatcherInterfaceAdapter(impl)) {} MatcherBase(const MatcherBase&) = default; MatcherBase& operator=(const MatcherBase&) = default; MatcherBase(MatcherBase&&) = default; MatcherBase& operator=(MatcherBase&&) = default; virtual ~MatcherBase() {} private: std::shared_ptr> impl_; }; } // namespace internal // A Matcher is a copyable and IMMUTABLE (except by assignment) // object that can check whether a value of type T matches. The // implementation of Matcher is just a std::shared_ptr to const // MatcherInterface. Don't inherit from Matcher! template class Matcher : public internal::MatcherBase { public: // Constructs a null matcher. Needed for storing Matcher objects in STL // containers. A default-constructed matcher is not yet initialized. You // cannot use it until a valid value has been assigned to it. explicit Matcher() {} // NOLINT // Constructs a matcher from its implementation. explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} template explicit Matcher( const MatcherInterface* impl, typename std::enable_if::value>::type* = nullptr) : internal::MatcherBase(impl) {} // Implicit constructor here allows people to write // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes Matcher(T value); // NOLINT }; // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a std::string // matcher is expected. template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a std::string object. Matcher(const std::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a string object. Matcher(const std::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT }; #if GTEST_HAS_ABSL // The following two specializations allow the user to write str // instead of Eq(str) and "foo" instead of Eq("foo") when a absl::string_view // matcher is expected. template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a std::string object. Matcher(const std::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass absl::string_views directly. Matcher(absl::string_view s); // NOLINT }; template <> class GTEST_API_ Matcher : public internal::MatcherBase { public: Matcher() {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} explicit Matcher(const MatcherInterface* impl) : internal::MatcherBase(impl) {} // Allows the user to write str instead of Eq(str) sometimes, where // str is a std::string object. Matcher(const std::string& s); // NOLINT // Allows the user to write "foo" instead of Eq("foo") sometimes. Matcher(const char* s); // NOLINT // Allows the user to pass absl::string_views directly. Matcher(absl::string_view s); // NOLINT }; #endif // GTEST_HAS_ABSL // Prints a matcher in a human-readable format. template std::ostream& operator<<(std::ostream& os, const Matcher& matcher) { matcher.DescribeTo(&os); return os; } // The PolymorphicMatcher class template makes it easy to implement a // polymorphic matcher (i.e. a matcher that can match values of more // than one type, e.g. Eq(n) and NotNull()). // // To define a polymorphic matcher, a user should provide an Impl // class that has a DescribeTo() method and a DescribeNegationTo() // method, and define a member function (or member function template) // // bool MatchAndExplain(const Value& value, // MatchResultListener* listener) const; // // See the definition of NotNull() for a complete example. template class PolymorphicMatcher { public: explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} // Returns a mutable reference to the underlying matcher // implementation object. Impl& mutable_impl() { return impl_; } // Returns an immutable reference to the underlying matcher // implementation object. const Impl& impl() const { return impl_; } template operator Matcher() const { return Matcher(new MonomorphicImpl(impl_)); } private: template class MonomorphicImpl : public MatcherInterface { public: explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} virtual void DescribeTo(::std::ostream* os) const { impl_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { impl_.DescribeNegationTo(os); } virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { return impl_.MatchAndExplain(x, listener); } private: const Impl impl_; }; Impl impl_; }; // Creates a matcher from its implementation. // DEPRECATED: Especially in the generic code, prefer: // Matcher(new MyMatcherImpl(...)); // // MakeMatcher may create a Matcher that accepts its argument by value, which // leads to unnecessary copies & lack of support for non-copyable types. template inline Matcher MakeMatcher(const MatcherInterface* impl) { return Matcher(impl); } // Creates a polymorphic matcher from its implementation. This is // easier to use than the PolymorphicMatcher constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicMatcher(foo); // vs // PolymorphicMatcher(foo); template inline PolymorphicMatcher MakePolymorphicMatcher(const Impl& impl) { return PolymorphicMatcher(impl); } namespace internal { // Implements a matcher that compares a given value with a // pre-supplied value using one of the ==, <=, <, etc, operators. The // two values being compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq(5) can be // used to match an int, a short, a double, etc). Therefore we use // a template type conversion operator in the implementation. // // The following template definition assumes that the Rhs parameter is // a "bare" type (i.e. neither 'const T' nor 'T&'). template class ComparisonBase { public: explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {} template operator Matcher() const { return Matcher(new Impl(rhs_)); } private: template static const T& Unwrap(const T& v) { return v; } template static const T& Unwrap(std::reference_wrapper v) { return v; } template class Impl : public MatcherInterface { public: explicit Impl(const Rhs& rhs) : rhs_(rhs) {} bool MatchAndExplain(Lhs lhs, MatchResultListener* /* listener */) const override { return Op()(lhs, Unwrap(rhs_)); } void DescribeTo(::std::ostream* os) const override { *os << D::Desc() << " "; UniversalPrint(Unwrap(rhs_), os); } void DescribeNegationTo(::std::ostream* os) const override { *os << D::NegatedDesc() << " "; UniversalPrint(Unwrap(rhs_), os); } private: Rhs rhs_; }; Rhs rhs_; }; template class EqMatcher : public ComparisonBase, Rhs, AnyEq> { public: explicit EqMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyEq>(rhs) { } static const char* Desc() { return "is equal to"; } static const char* NegatedDesc() { return "isn't equal to"; } }; template class NeMatcher : public ComparisonBase, Rhs, AnyNe> { public: explicit NeMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyNe>(rhs) { } static const char* Desc() { return "isn't equal to"; } static const char* NegatedDesc() { return "is equal to"; } }; template class LtMatcher : public ComparisonBase, Rhs, AnyLt> { public: explicit LtMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyLt>(rhs) { } static const char* Desc() { return "is <"; } static const char* NegatedDesc() { return "isn't <"; } }; template class GtMatcher : public ComparisonBase, Rhs, AnyGt> { public: explicit GtMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyGt>(rhs) { } static const char* Desc() { return "is >"; } static const char* NegatedDesc() { return "isn't >"; } }; template class LeMatcher : public ComparisonBase, Rhs, AnyLe> { public: explicit LeMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyLe>(rhs) { } static const char* Desc() { return "is <="; } static const char* NegatedDesc() { return "isn't <="; } }; template class GeMatcher : public ComparisonBase, Rhs, AnyGe> { public: explicit GeMatcher(const Rhs& rhs) : ComparisonBase, Rhs, AnyGe>(rhs) { } static const char* Desc() { return "is >="; } static const char* NegatedDesc() { return "isn't >="; } }; // Implements polymorphic matchers MatchesRegex(regex) and // ContainsRegex(regex), which can be used as a Matcher as long as // T can be converted to a string. class MatchesRegexMatcher { public: MatchesRegexMatcher(const RE* regex, bool full_match) : regex_(regex), full_match_(full_match) {} #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { return MatchAndExplain(std::string(s), listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(std::string(s), listener); } // Matches anything that can convert to std::string. // // This is a template, not just a plain function with const std::string&, // because absl::string_view has some interfering non-explicit constructors. template bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const std::string& s2(s); return full_match_ ? RE::FullMatch(s2, *regex_) : RE::PartialMatch(s2, *regex_); } void DescribeTo(::std::ostream* os) const { *os << (full_match_ ? "matches" : "contains") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't " << (full_match_ ? "match" : "contain") << " regular expression "; UniversalPrinter::Print(regex_->pattern(), os); } private: const std::shared_ptr regex_; const bool full_match_; }; } // namespace internal // Matches a string that fully matches regular expression 'regex'. // The matcher takes ownership of 'regex'. inline PolymorphicMatcher MatchesRegex( const internal::RE* regex) { return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); } inline PolymorphicMatcher MatchesRegex( const std::string& regex) { return MatchesRegex(new internal::RE(regex)); } // Matches a string that contains regular expression 'regex'. // The matcher takes ownership of 'regex'. inline PolymorphicMatcher ContainsRegex( const internal::RE* regex) { return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); } inline PolymorphicMatcher ContainsRegex( const std::string& regex) { return ContainsRegex(new internal::RE(regex)); } // Creates a polymorphic matcher that matches anything equal to x. // Note: if the parameter of Eq() were declared as const T&, Eq("foo") // wouldn't compile. template inline internal::EqMatcher Eq(T x) { return internal::EqMatcher(x); } // Constructs a Matcher from a 'value' of type T. The constructed // matcher matches any value that's equal to 'value'. template Matcher::Matcher(T value) { *this = Eq(value); } // Creates a monomorphic matcher that matches anything with type Lhs // and equal to rhs. A user may need to use this instead of Eq(...) // in order to resolve an overloading ambiguity. // // TypedEq(x) is just a convenient short-hand for Matcher(Eq(x)) // or Matcher(x), but more readable than the latter. // // We could define similar monomorphic matchers for other comparison // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do // it yet as those are used much less than Eq() in practice. A user // can always write Matcher(Lt(5)) to be explicit about the type, // for example. template inline Matcher TypedEq(const Rhs& rhs) { return Eq(rhs); } // Creates a polymorphic matcher that matches anything >= x. template inline internal::GeMatcher Ge(Rhs x) { return internal::GeMatcher(x); } // Creates a polymorphic matcher that matches anything > x. template inline internal::GtMatcher Gt(Rhs x) { return internal::GtMatcher(x); } // Creates a polymorphic matcher that matches anything <= x. template inline internal::LeMatcher Le(Rhs x) { return internal::LeMatcher(x); } // Creates a polymorphic matcher that matches anything < x. template inline internal::LtMatcher Lt(Rhs x) { return internal::LtMatcher(x); } // Creates a polymorphic matcher that matches anything != x. template inline internal::NeMatcher Ne(Rhs x) { return internal::NeMatcher(x); } } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 #endif // GTEST_INCLUDE_GTEST_GTEST_MATCHERS_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest-message.h000066400000000000000000000175131355420072700263540ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This header file defines the Message class. // // IMPORTANT NOTE: Due to limitation of the C++ language, we have to // leave some internal implementation details in this header file. // They are clearly marked by comments like this: // // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. // // Such code is NOT meant to be used by a user directly, and is subject // to CHANGE WITHOUT NOTICE. Therefore DO NOT DEPEND ON IT in a user // program! // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_MESSAGE_H_ #define GTEST_INCLUDE_GTEST_GTEST_MESSAGE_H_ #include #include #include "gtest/internal/gtest-port.h" GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) // Ensures that there is at least one operator<< in the global namespace. // See Message& operator<<(...) below for why. void operator<<(const testing::internal::Secret&, int); namespace testing { // The Message class works like an ostream repeater. // // Typical usage: // // 1. You stream a bunch of values to a Message object. // It will remember the text in a stringstream. // 2. Then you stream the Message object to an ostream. // This causes the text in the Message to be streamed // to the ostream. // // For example; // // testing::Message foo; // foo << 1 << " != " << 2; // std::cout << foo; // // will print "1 != 2". // // Message is not intended to be inherited from. In particular, its // destructor is not virtual. // // Note that stringstream behaves differently in gcc and in MSVC. You // can stream a NULL char pointer to it in the former, but not in the // latter (it causes an access violation if you do). The Message // class hides this difference by treating a NULL char pointer as // "(null)". class GTEST_API_ Message { private: // The type of basic IO manipulators (endl, ends, and flush) for // narrow streams. typedef std::ostream& (*BasicNarrowIoManip)(std::ostream&); public: // Constructs an empty Message. Message(); // Copy constructor. Message(const Message& msg) : ss_(new ::std::stringstream) { // NOLINT *ss_ << msg.GetString(); } // Constructs a Message from a C-string. explicit Message(const char* str) : ss_(new ::std::stringstream) { *ss_ << str; } // Streams a non-pointer value to this object. template inline Message& operator <<(const T& val) { // Some libraries overload << for STL containers. These // overloads are defined in the global namespace instead of ::std. // // C++'s symbol lookup rule (i.e. Koenig lookup) says that these // overloads are visible in either the std namespace or the global // namespace, but not other namespaces, including the testing // namespace which Google Test's Message class is in. // // To allow STL containers (and other types that has a << operator // defined in the global namespace) to be used in Google Test // assertions, testing::Message must access the custom << operator // from the global namespace. With this using declaration, // overloads of << defined in the global namespace and those // visible via Koenig lookup are both exposed in this function. using ::operator <<; *ss_ << val; return *this; } // Streams a pointer value to this object. // // This function is an overload of the previous one. When you // stream a pointer to a Message, this definition will be used as it // is more specialized. (The C++ Standard, section // [temp.func.order].) If you stream a non-pointer, then the // previous definition will be used. // // The reason for this overload is that streaming a NULL pointer to // ostream is undefined behavior. Depending on the compiler, you // may get "0", "(nil)", "(null)", or an access violation. To // ensure consistent result across compilers, we always treat NULL // as "(null)". template inline Message& operator <<(T* const& pointer) { // NOLINT if (pointer == nullptr) { *ss_ << "(null)"; } else { *ss_ << pointer; } return *this; } // Since the basic IO manipulators are overloaded for both narrow // and wide streams, we have to provide this specialized definition // of operator <<, even though its body is the same as the // templatized version above. Without this definition, streaming // endl or other basic IO manipulators to Message will confuse the // compiler. Message& operator <<(BasicNarrowIoManip val) { *ss_ << val; return *this; } // Instead of 1/0, we want to see true/false for bool values. Message& operator <<(bool b) { return *this << (b ? "true" : "false"); } // These two overloads allow streaming a wide C string to a Message // using the UTF-8 encoding. Message& operator <<(const wchar_t* wide_c_str); Message& operator <<(wchar_t* wide_c_str); #if GTEST_HAS_STD_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& operator <<(const ::std::wstring& wstr); #endif // GTEST_HAS_STD_WSTRING // Gets the text streamed to this object so far as an std::string. // Each '\0' character in the buffer is replaced with "\\0". // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. std::string GetString() const; private: // We'll hold the text streamed to this object here. const std::unique_ptr< ::std::stringstream> ss_; // We declare (but don't implement) this to prevent the compiler // from implementing the assignment operator. void operator=(const Message&); }; // Streams a Message to an ostream. inline std::ostream& operator <<(std::ostream& os, const Message& sb) { return os << sb.GetString(); } namespace internal { // Converts a streamable value to an std::string. A NULL pointer is // converted to "(null)". When the input value is a ::string, // ::std::string, ::wstring, or ::std::wstring object, each NUL // character in it is replaced with "\\0". template std::string StreamableToString(const T& streamable) { return (Message() << streamable).GetString(); } } // namespace internal } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 #endif // GTEST_INCLUDE_GTEST_GTEST_MESSAGE_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest-param-test.h000066400000000000000000000532471355420072700270110ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Macros and functions for implementing parameterized tests // in Google C++ Testing and Mocking Framework (Google Test) // // This file is generated by a SCRIPT. DO NOT EDIT BY HAND! // // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ #define GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ // Value-parameterized tests allow you to test your code with different // parameters without writing multiple copies of the same test. // // Here is how you use value-parameterized tests: #if 0 // To write value-parameterized tests, first you should define a fixture // class. It is usually derived from testing::TestWithParam (see below for // another inheritance scheme that's sometimes useful in more complicated // class hierarchies), where the type of your parameter values. // TestWithParam is itself derived from testing::Test. T can be any // copyable type. If it's a raw pointer, you are responsible for managing the // lifespan of the pointed values. class FooTest : public ::testing::TestWithParam { // You can implement all the usual class fixture members here. }; // Then, use the TEST_P macro to define as many parameterized tests // for this fixture as you want. The _P suffix is for "parameterized" // or "pattern", whichever you prefer to think. TEST_P(FooTest, DoesBlah) { // Inside a test, access the test parameter with the GetParam() method // of the TestWithParam class: EXPECT_TRUE(foo.Blah(GetParam())); ... } TEST_P(FooTest, HasBlahBlah) { ... } // Finally, you can use INSTANTIATE_TEST_SUITE_P to instantiate the test // case with any set of parameters you want. Google Test defines a number // of functions for generating test parameters. They return what we call // (surprise!) parameter generators. Here is a summary of them, which // are all in the testing namespace: // // // Range(begin, end [, step]) - Yields values {begin, begin+step, // begin+step+step, ...}. The values do not // include end. step defaults to 1. // Values(v1, v2, ..., vN) - Yields values {v1, v2, ..., vN}. // ValuesIn(container) - Yields values from a C-style array, an STL // ValuesIn(begin,end) container, or an iterator range [begin, end). // Bool() - Yields sequence {false, true}. // Combine(g1, g2, ..., gN) - Yields all combinations (the Cartesian product // for the math savvy) of the values generated // by the N generators. // // For more details, see comments at the definitions of these functions below // in this file. // // The following statement will instantiate tests from the FooTest test suite // each with parameter values "meeny", "miny", and "moe". INSTANTIATE_TEST_SUITE_P(InstantiationName, FooTest, Values("meeny", "miny", "moe")); // To distinguish different instances of the pattern, (yes, you // can instantiate it more than once) the first argument to the // INSTANTIATE_TEST_SUITE_P macro is a prefix that will be added to the // actual test suite name. Remember to pick unique prefixes for different // instantiations. The tests from the instantiation above will have // these names: // // * InstantiationName/FooTest.DoesBlah/0 for "meeny" // * InstantiationName/FooTest.DoesBlah/1 for "miny" // * InstantiationName/FooTest.DoesBlah/2 for "moe" // * InstantiationName/FooTest.HasBlahBlah/0 for "meeny" // * InstantiationName/FooTest.HasBlahBlah/1 for "miny" // * InstantiationName/FooTest.HasBlahBlah/2 for "moe" // // You can use these names in --gtest_filter. // // This statement will instantiate all tests from FooTest again, each // with parameter values "cat" and "dog": const char* pets[] = {"cat", "dog"}; INSTANTIATE_TEST_SUITE_P(AnotherInstantiationName, FooTest, ValuesIn(pets)); // The tests from the instantiation above will have these names: // // * AnotherInstantiationName/FooTest.DoesBlah/0 for "cat" // * AnotherInstantiationName/FooTest.DoesBlah/1 for "dog" // * AnotherInstantiationName/FooTest.HasBlahBlah/0 for "cat" // * AnotherInstantiationName/FooTest.HasBlahBlah/1 for "dog" // // Please note that INSTANTIATE_TEST_SUITE_P will instantiate all tests // in the given test suite, whether their definitions come before or // AFTER the INSTANTIATE_TEST_SUITE_P statement. // // Please also note that generator expressions (including parameters to the // generators) are evaluated in InitGoogleTest(), after main() has started. // This allows the user on one hand, to adjust generator parameters in order // to dynamically determine a set of tests to run and on the other hand, // give the user a chance to inspect the generated tests with Google Test // reflection API before RUN_ALL_TESTS() is executed. // // You can see samples/sample7_unittest.cc and samples/sample8_unittest.cc // for more examples. // // In the future, we plan to publish the API for defining new parameter // generators. But for now this interface remains part of the internal // implementation and is subject to change. // // // A parameterized test fixture must be derived from testing::Test and from // testing::WithParamInterface, where T is the type of the parameter // values. Inheriting from TestWithParam satisfies that requirement because // TestWithParam inherits from both Test and WithParamInterface. In more // complicated hierarchies, however, it is occasionally useful to inherit // separately from Test and WithParamInterface. For example: class BaseTest : public ::testing::Test { // You can inherit all the usual members for a non-parameterized test // fixture here. }; class DerivedTest : public BaseTest, public ::testing::WithParamInterface { // The usual test fixture members go here too. }; TEST_F(BaseTest, HasFoo) { // This is an ordinary non-parameterized test. } TEST_P(DerivedTest, DoesBlah) { // GetParam works just the same here as if you inherit from TestWithParam. EXPECT_TRUE(foo.Blah(GetParam())); } #endif // 0 #include #include #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-param-util.h" #include "gtest/internal/gtest-port.h" namespace testing { // Functions producing parameter generators. // // Google Test uses these generators to produce parameters for value- // parameterized tests. When a parameterized test suite is instantiated // with a particular generator, Google Test creates and runs tests // for each element in the sequence produced by the generator. // // In the following sample, tests from test suite FooTest are instantiated // each three times with parameter values 3, 5, and 8: // // class FooTest : public TestWithParam { ... }; // // TEST_P(FooTest, TestThis) { // } // TEST_P(FooTest, TestThat) { // } // INSTANTIATE_TEST_SUITE_P(TestSequence, FooTest, Values(3, 5, 8)); // // Range() returns generators providing sequences of values in a range. // // Synopsis: // Range(start, end) // - returns a generator producing a sequence of values {start, start+1, // start+2, ..., }. // Range(start, end, step) // - returns a generator producing a sequence of values {start, start+step, // start+step+step, ..., }. // Notes: // * The generated sequences never include end. For example, Range(1, 5) // returns a generator producing a sequence {1, 2, 3, 4}. Range(1, 9, 2) // returns a generator producing {1, 3, 5, 7}. // * start and end must have the same type. That type may be any integral or // floating-point type or a user defined type satisfying these conditions: // * It must be assignable (have operator=() defined). // * It must have operator+() (operator+(int-compatible type) for // two-operand version). // * It must have operator<() defined. // Elements in the resulting sequences will also have that type. // * Condition start < end must be satisfied in order for resulting sequences // to contain any elements. // template internal::ParamGenerator Range(T start, T end, IncrementT step) { return internal::ParamGenerator( new internal::RangeGenerator(start, end, step)); } template internal::ParamGenerator Range(T start, T end) { return Range(start, end, 1); } // ValuesIn() function allows generation of tests with parameters coming from // a container. // // Synopsis: // ValuesIn(const T (&array)[N]) // - returns a generator producing sequences with elements from // a C-style array. // ValuesIn(const Container& container) // - returns a generator producing sequences with elements from // an STL-style container. // ValuesIn(Iterator begin, Iterator end) // - returns a generator producing sequences with elements from // a range [begin, end) defined by a pair of STL-style iterators. These // iterators can also be plain C pointers. // // Please note that ValuesIn copies the values from the containers // passed in and keeps them to generate tests in RUN_ALL_TESTS(). // // Examples: // // This instantiates tests from test suite StringTest // each with C-string values of "foo", "bar", and "baz": // // const char* strings[] = {"foo", "bar", "baz"}; // INSTANTIATE_TEST_SUITE_P(StringSequence, StringTest, ValuesIn(strings)); // // This instantiates tests from test suite StlStringTest // each with STL strings with values "a" and "b": // // ::std::vector< ::std::string> GetParameterStrings() { // ::std::vector< ::std::string> v; // v.push_back("a"); // v.push_back("b"); // return v; // } // // INSTANTIATE_TEST_SUITE_P(CharSequence, // StlStringTest, // ValuesIn(GetParameterStrings())); // // // This will also instantiate tests from CharTest // each with parameter values 'a' and 'b': // // ::std::list GetParameterChars() { // ::std::list list; // list.push_back('a'); // list.push_back('b'); // return list; // } // ::std::list l = GetParameterChars(); // INSTANTIATE_TEST_SUITE_P(CharSequence2, // CharTest, // ValuesIn(l.begin(), l.end())); // template internal::ParamGenerator< typename std::iterator_traits::value_type> ValuesIn(ForwardIterator begin, ForwardIterator end) { typedef typename std::iterator_traits::value_type ParamType; return internal::ParamGenerator( new internal::ValuesInIteratorRangeGenerator(begin, end)); } template internal::ParamGenerator ValuesIn(const T (&array)[N]) { return ValuesIn(array, array + N); } template internal::ParamGenerator ValuesIn( const Container& container) { return ValuesIn(container.begin(), container.end()); } // Values() allows generating tests from explicitly specified list of // parameters. // // Synopsis: // Values(T v1, T v2, ..., T vN) // - returns a generator producing sequences with elements v1, v2, ..., vN. // // For example, this instantiates tests from test suite BarTest each // with values "one", "two", and "three": // // INSTANTIATE_TEST_SUITE_P(NumSequence, // BarTest, // Values("one", "two", "three")); // // This instantiates tests from test suite BazTest each with values 1, 2, 3.5. // The exact type of values will depend on the type of parameter in BazTest. // // INSTANTIATE_TEST_SUITE_P(FloatingNumbers, BazTest, Values(1, 2, 3.5)); // // template internal::ValueArray Values(T... v) { return internal::ValueArray(std::move(v)...); } // Bool() allows generating tests with parameters in a set of (false, true). // // Synopsis: // Bool() // - returns a generator producing sequences with elements {false, true}. // // It is useful when testing code that depends on Boolean flags. Combinations // of multiple flags can be tested when several Bool()'s are combined using // Combine() function. // // In the following example all tests in the test suite FlagDependentTest // will be instantiated twice with parameters false and true. // // class FlagDependentTest : public testing::TestWithParam { // virtual void SetUp() { // external_flag = GetParam(); // } // } // INSTANTIATE_TEST_SUITE_P(BoolSequence, FlagDependentTest, Bool()); // inline internal::ParamGenerator Bool() { return Values(false, true); } // Combine() allows the user to combine two or more sequences to produce // values of a Cartesian product of those sequences' elements. // // Synopsis: // Combine(gen1, gen2, ..., genN) // - returns a generator producing sequences with elements coming from // the Cartesian product of elements from the sequences generated by // gen1, gen2, ..., genN. The sequence elements will have a type of // std::tuple where T1, T2, ..., TN are the types // of elements from sequences produces by gen1, gen2, ..., genN. // // Combine can have up to 10 arguments. // // Example: // // This will instantiate tests in test suite AnimalTest each one with // the parameter values tuple("cat", BLACK), tuple("cat", WHITE), // tuple("dog", BLACK), and tuple("dog", WHITE): // // enum Color { BLACK, GRAY, WHITE }; // class AnimalTest // : public testing::TestWithParam > {...}; // // TEST_P(AnimalTest, AnimalLooksNice) {...} // // INSTANTIATE_TEST_SUITE_P(AnimalVariations, AnimalTest, // Combine(Values("cat", "dog"), // Values(BLACK, WHITE))); // // This will instantiate tests in FlagDependentTest with all variations of two // Boolean flags: // // class FlagDependentTest // : public testing::TestWithParam > { // virtual void SetUp() { // // Assigns external_flag_1 and external_flag_2 values from the tuple. // std::tie(external_flag_1, external_flag_2) = GetParam(); // } // }; // // TEST_P(FlagDependentTest, TestFeature1) { // // Test your code using external_flag_1 and external_flag_2 here. // } // INSTANTIATE_TEST_SUITE_P(TwoBoolSequence, FlagDependentTest, // Combine(Bool(), Bool())); // template internal::CartesianProductHolder Combine(const Generator&... g) { return internal::CartesianProductHolder(g...); } #define TEST_P(test_suite_name, test_name) \ class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ : public test_suite_name { \ public: \ GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {} \ virtual void TestBody(); \ \ private: \ static int AddToRegistry() { \ ::testing::UnitTest::GetInstance() \ ->parameterized_test_registry() \ .GetTestSuitePatternHolder( \ #test_suite_name, \ ::testing::internal::CodeLocation(__FILE__, __LINE__)) \ ->AddTestPattern( \ GTEST_STRINGIFY_(test_suite_name), GTEST_STRINGIFY_(test_name), \ new ::testing::internal::TestMetaFactory()); \ return 0; \ } \ static int gtest_registering_dummy_ GTEST_ATTRIBUTE_UNUSED_; \ GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \ test_name)); \ }; \ int GTEST_TEST_CLASS_NAME_(test_suite_name, \ test_name)::gtest_registering_dummy_ = \ GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::AddToRegistry(); \ void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() // The last argument to INSTANTIATE_TEST_SUITE_P allows the user to specify // generator and an optional function or functor that generates custom test name // suffixes based on the test parameters. Such a function or functor should // accept one argument of type testing::TestParamInfo, and // return std::string. // // testing::PrintToStringParamName is a builtin test suffix generator that // returns the value of testing::PrintToString(GetParam()). // // Note: test names must be non-empty, unique, and may only contain ASCII // alphanumeric characters or underscore. Because PrintToString adds quotes // to std::string and C strings, it won't work for these types. #define GTEST_EXPAND_(arg) arg #define GTEST_GET_FIRST_(first, ...) first #define GTEST_GET_SECOND_(first, second, ...) second #define INSTANTIATE_TEST_SUITE_P(prefix, test_suite_name, ...) \ static ::testing::internal::ParamGenerator \ gtest_##prefix##test_suite_name##_EvalGenerator_() { \ return GTEST_EXPAND_(GTEST_GET_FIRST_(__VA_ARGS__, DUMMY_PARAM_)); \ } \ static ::std::string gtest_##prefix##test_suite_name##_EvalGenerateName_( \ const ::testing::TestParamInfo& info) { \ if (::testing::internal::AlwaysFalse()) { \ ::testing::internal::TestNotEmpty(GTEST_EXPAND_(GTEST_GET_SECOND_( \ __VA_ARGS__, \ ::testing::internal::DefaultParamName, \ DUMMY_PARAM_))); \ auto t = std::make_tuple(__VA_ARGS__); \ static_assert(std::tuple_size::value <= 2, \ "Too Many Args!"); \ } \ return ((GTEST_EXPAND_(GTEST_GET_SECOND_( \ __VA_ARGS__, \ ::testing::internal::DefaultParamName, \ DUMMY_PARAM_))))(info); \ } \ static int gtest_##prefix##test_suite_name##_dummy_ \ GTEST_ATTRIBUTE_UNUSED_ = \ ::testing::UnitTest::GetInstance() \ ->parameterized_test_registry() \ .GetTestSuitePatternHolder( \ #test_suite_name, \ ::testing::internal::CodeLocation(__FILE__, __LINE__)) \ ->AddTestSuiteInstantiation( \ #prefix, >est_##prefix##test_suite_name##_EvalGenerator_, \ >est_##prefix##test_suite_name##_EvalGenerateName_, \ __FILE__, __LINE__) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #define INSTANTIATE_TEST_CASE_P \ static_assert(::testing::internal::InstantiateTestCase_P_IsDeprecated(), \ ""); \ INSTANTIATE_TEST_SUITE_P #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ } // namespace testing #endif // GTEST_INCLUDE_GTEST_GTEST_PARAM_TEST_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest-printers.h000066400000000000000000001023551355420072700265750ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Test - The Google C++ Testing and Mocking Framework // // This file implements a universal value printer that can print a // value of any type T: // // void ::testing::internal::UniversalPrinter::Print(value, ostream_ptr); // // A user can teach this function how to print a class type T by // defining either operator<<() or PrintTo() in the namespace that // defines T. More specifically, the FIRST defined function in the // following list will be used (assuming T is defined in namespace // foo): // // 1. foo::PrintTo(const T&, ostream*) // 2. operator<<(ostream&, const T&) defined in either foo or the // global namespace. // // However if T is an STL-style container then it is printed element-wise // unless foo::PrintTo(const T&, ostream*) is defined. Note that // operator<<() is ignored for container types. // // If none of the above is defined, it will print the debug string of // the value if it is a protocol buffer, or print the raw bytes in the // value otherwise. // // To aid debugging: when T is a reference type, the address of the // value is also printed; when T is a (const) char pointer, both the // pointer value and the NUL-terminated string it points to are // printed. // // We also provide some convenient wrappers: // // // Prints a value to a string. For a (const or not) char // // pointer, the NUL-terminated string (but not the pointer) is // // printed. // std::string ::testing::PrintToString(const T& value); // // // Prints a value tersely: for a reference type, the referenced // // value (but not the address) is printed; for a (const or not) char // // pointer, the NUL-terminated string (but not the pointer) is // // printed. // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); // // // Prints value using the type inferred by the compiler. The difference // // from UniversalTersePrint() is that this function prints both the // // pointer and the NUL-terminated string for a (const or not) char pointer. // void ::testing::internal::UniversalPrint(const T& value, ostream*); // // // Prints the fields of a tuple tersely to a string vector, one // // element for each field. Tuple support must be enabled in // // gtest-port.h. // std::vector UniversalTersePrintTupleFieldsToStrings( // const Tuple& value); // // Known limitation: // // The print primitives print the elements of an STL-style container // using the compiler-inferred type of *iter where iter is a // const_iterator of the container. When const_iterator is an input // iterator but not a forward iterator, this inferred type may not // match value_type, and the print output may be incorrect. In // practice, this is rarely a problem as for most containers // const_iterator is a forward iterator. We'll fix this if there's an // actual need for it. Note that this fix cannot rely on value_type // being defined as many user-defined container types don't have // value_type. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ #include #include // NOLINT #include #include #include #include #include #include #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-port.h" #if GTEST_HAS_ABSL #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #endif // GTEST_HAS_ABSL namespace testing { // Definitions in the 'internal' and 'internal2' name spaces are // subject to change without notice. DO NOT USE THEM IN USER CODE! namespace internal2 { // Prints the given number of bytes in the given object to the given // ostream. GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count, ::std::ostream* os); // For selecting which printer to use when a given type has neither << // nor PrintTo(). enum TypeKind { kProtobuf, // a protobuf type kConvertibleToInteger, // a type implicitly convertible to BiggestInt // (e.g. a named or unnamed enum type) #if GTEST_HAS_ABSL kConvertibleToStringView, // a type implicitly convertible to // absl::string_view #endif kOtherType // anything else }; // TypeWithoutFormatter::PrintValue(value, os) is called // by the universal printer to print a value of type T when neither // operator<< nor PrintTo() is defined for T, where kTypeKind is the // "kind" of T as defined by enum TypeKind. template class TypeWithoutFormatter { public: // This default version is called when kTypeKind is kOtherType. static void PrintValue(const T& value, ::std::ostream* os) { PrintBytesInObjectTo( static_cast( reinterpret_cast(std::addressof(value))), sizeof(value), os); } }; // We print a protobuf using its ShortDebugString() when the string // doesn't exceed this many characters; otherwise we print it using // DebugString() for better readability. const size_t kProtobufOneLinerMaxLength = 50; template class TypeWithoutFormatter { public: static void PrintValue(const T& value, ::std::ostream* os) { std::string pretty_str = value.ShortDebugString(); if (pretty_str.length() > kProtobufOneLinerMaxLength) { pretty_str = "\n" + value.DebugString(); } *os << ("<" + pretty_str + ">"); } }; template class TypeWithoutFormatter { public: // Since T has no << operator or PrintTo() but can be implicitly // converted to BiggestInt, we print it as a BiggestInt. // // Most likely T is an enum type (either named or unnamed), in which // case printing it as an integer is the desired behavior. In case // T is not an enum, printing it as an integer is the best we can do // given that it has no user-defined printer. static void PrintValue(const T& value, ::std::ostream* os) { const internal::BiggestInt kBigInt = value; *os << kBigInt; } }; #if GTEST_HAS_ABSL template class TypeWithoutFormatter { public: // Since T has neither operator<< nor PrintTo() but can be implicitly // converted to absl::string_view, we print it as a absl::string_view. // // Note: the implementation is further below, as it depends on // internal::PrintTo symbol which is defined later in the file. static void PrintValue(const T& value, ::std::ostream* os); }; #endif // Prints the given value to the given ostream. If the value is a // protocol message, its debug string is printed; if it's an enum or // of a type implicitly convertible to BiggestInt, it's printed as an // integer; otherwise the bytes in the value are printed. This is // what UniversalPrinter::Print() does when it knows nothing about // type T and T has neither << operator nor PrintTo(). // // A user can override this behavior for a class type Foo by defining // a << operator in the namespace where Foo is defined. // // We put this operator in namespace 'internal2' instead of 'internal' // to simplify the implementation, as much code in 'internal' needs to // use << in STL, which would conflict with our own << were it defined // in 'internal'. // // Note that this operator<< takes a generic std::basic_ostream type instead of the more restricted std::ostream. If // we define it to take an std::ostream instead, we'll get an // "ambiguous overloads" compiler error when trying to print a type // Foo that supports streaming to std::basic_ostream, as the compiler cannot tell whether // operator<<(std::ostream&, const T&) or // operator<<(std::basic_stream, const Foo&) is more // specific. template ::std::basic_ostream& operator<<( ::std::basic_ostream& os, const T& x) { TypeWithoutFormatter::value ? kProtobuf : std::is_convertible< const T&, internal::BiggestInt>::value ? kConvertibleToInteger : #if GTEST_HAS_ABSL std::is_convertible< const T&, absl::string_view>::value ? kConvertibleToStringView : #endif kOtherType)>::PrintValue(x, &os); return os; } } // namespace internal2 } // namespace testing // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up // magic needed for implementing UniversalPrinter won't work. namespace testing_internal { // Used to print a value that is not an STL-style container when the // user doesn't define PrintTo() for it. template void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { // With the following statement, during unqualified name lookup, // testing::internal2::operator<< appears as if it was declared in // the nearest enclosing namespace that contains both // ::testing_internal and ::testing::internal2, i.e. the global // namespace. For more details, refer to the C++ Standard section // 7.3.4-1 [namespace.udir]. This allows us to fall back onto // testing::internal2::operator<< in case T doesn't come with a << // operator. // // We cannot write 'using ::testing::internal2::operator<<;', which // gcc 3.3 fails to compile due to a compiler bug. using namespace ::testing::internal2; // NOLINT // Assuming T is defined in namespace foo, in the next statement, // the compiler will consider all of: // // 1. foo::operator<< (thanks to Koenig look-up), // 2. ::operator<< (as the current namespace is enclosed in ::), // 3. testing::internal2::operator<< (thanks to the using statement above). // // The operator<< whose type matches T best will be picked. // // We deliberately allow #2 to be a candidate, as sometimes it's // impossible to define #1 (e.g. when foo is ::std, defining // anything in it is undefined behavior unless you are a compiler // vendor.). *os << value; } } // namespace testing_internal namespace testing { namespace internal { // FormatForComparison::Format(value) formats a // value of type ToPrint that is an operand of a comparison assertion // (e.g. ASSERT_EQ). OtherOperand is the type of the other operand in // the comparison, and is used to help determine the best way to // format the value. In particular, when the value is a C string // (char pointer) and the other operand is an STL string object, we // want to format the C string as a string, since we know it is // compared by value with the string object. If the value is a char // pointer but the other operand is not an STL string object, we don't // know whether the pointer is supposed to point to a NUL-terminated // string, and thus want to print it as a pointer to be safe. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. // The default case. template class FormatForComparison { public: static ::std::string Format(const ToPrint& value) { return ::testing::PrintToString(value); } }; // Array. template class FormatForComparison { public: static ::std::string Format(const ToPrint* value) { return FormatForComparison::Format(value); } }; // By default, print C string as pointers to be safe, as we don't know // whether they actually point to a NUL-terminated string. #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType) \ template \ class FormatForComparison { \ public: \ static ::std::string Format(CharType* value) { \ return ::testing::PrintToString(static_cast(value)); \ } \ } GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t); GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t); #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_ // If a C string is compared with an STL string object, we know it's meant // to point to a NUL-terminated string, and thus can print it as a string. #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \ template <> \ class FormatForComparison { \ public: \ static ::std::string Format(CharType* value) { \ return ::testing::PrintToString(value); \ } \ } GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string); #if GTEST_HAS_STD_WSTRING GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring); GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring); #endif #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_ // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc) // operand to be used in a failure message. The type (but not value) // of the other operand may affect the format. This allows us to // print a char* as a raw pointer when it is compared against another // char* or void*, and print it as a C string when it is compared // against an std::string object, for example. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. template std::string FormatForComparisonFailureMessage( const T1& value, const T2& /* other_operand */) { return FormatForComparison::Format(value); } // UniversalPrinter::Print(value, ostream_ptr) prints the given // value to the given ostream. The caller must ensure that // 'ostream_ptr' is not NULL, or the behavior is undefined. // // We define UniversalPrinter as a class template (as opposed to a // function template), as we need to partially specialize it for // reference types, which cannot be done with function templates. template class UniversalPrinter; template void UniversalPrint(const T& value, ::std::ostream* os); enum DefaultPrinterType { kPrintContainer, kPrintPointer, kPrintFunctionPointer, kPrintOther, }; template struct WrapPrinterType {}; // Used to print an STL-style container when the user doesn't define // a PrintTo() for it. template void DefaultPrintTo(WrapPrinterType /* dummy */, const C& container, ::std::ostream* os) { const size_t kMaxCount = 32; // The maximum number of elements to print. *os << '{'; size_t count = 0; for (typename C::const_iterator it = container.begin(); it != container.end(); ++it, ++count) { if (count > 0) { *os << ','; if (count == kMaxCount) { // Enough has been printed. *os << " ..."; break; } } *os << ' '; // We cannot call PrintTo(*it, os) here as PrintTo() doesn't // handle *it being a native array. internal::UniversalPrint(*it, os); } if (count > 0) { *os << ' '; } *os << '}'; } // Used to print a pointer that is neither a char pointer nor a member // pointer, when the user doesn't define PrintTo() for it. (A member // variable pointer or member function pointer doesn't really point to // a location in the address space. Their representation is // implementation-defined. Therefore they will be printed as raw // bytes.) template void DefaultPrintTo(WrapPrinterType /* dummy */, T* p, ::std::ostream* os) { if (p == nullptr) { *os << "NULL"; } else { // T is not a function type. We just call << to print p, // relying on ADL to pick up user-defined << for their pointer // types, if any. *os << p; } } template void DefaultPrintTo(WrapPrinterType /* dummy */, T* p, ::std::ostream* os) { if (p == nullptr) { *os << "NULL"; } else { // T is a function type, so '*os << p' doesn't do what we want // (it just prints p as bool). We want to print p as a const // void*. *os << reinterpret_cast(p); } } // Used to print a non-container, non-pointer value when the user // doesn't define PrintTo() for it. template void DefaultPrintTo(WrapPrinterType /* dummy */, const T& value, ::std::ostream* os) { ::testing_internal::DefaultPrintNonContainerTo(value, os); } // Prints the given value using the << operator if it has one; // otherwise prints the bytes in it. This is what // UniversalPrinter::Print() does when PrintTo() is not specialized // or overloaded for type T. // // A user can override this behavior for a class type Foo by defining // an overload of PrintTo() in the namespace where Foo is defined. We // give the user this option as sometimes defining a << operator for // Foo is not desirable (e.g. the coding style may prevent doing it, // or there is already a << operator but it doesn't do what the user // wants). template void PrintTo(const T& value, ::std::ostream* os) { // DefaultPrintTo() is overloaded. The type of its first argument // determines which version will be picked. // // Note that we check for container types here, prior to we check // for protocol message types in our operator<<. The rationale is: // // For protocol messages, we want to give people a chance to // override Google Mock's format by defining a PrintTo() or // operator<<. For STL containers, other formats can be // incompatible with Google Mock's format for the container // elements; therefore we check for container types here to ensure // that our format is used. // // Note that MSVC and clang-cl do allow an implicit conversion from // pointer-to-function to pointer-to-object, but clang-cl warns on it. // So don't use ImplicitlyConvertible if it can be helped since it will // cause this warning, and use a separate overload of DefaultPrintTo for // function pointers so that the `*os << p` in the object pointer overload // doesn't cause that warning either. DefaultPrintTo( WrapPrinterType < (sizeof(IsContainerTest(0)) == sizeof(IsContainer)) && !IsRecursiveContainer::value ? kPrintContainer : !std::is_pointer::value ? kPrintOther : std::is_function::type>::value ? kPrintFunctionPointer : kPrintPointer > (), value, os); } // The following list of PrintTo() overloads tells // UniversalPrinter::Print() how to print standard types (built-in // types, strings, plain arrays, and pointers). // Overloads for various char types. GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); inline void PrintTo(char c, ::std::ostream* os) { // When printing a plain char, we always treat it as unsigned. This // way, the output won't be affected by whether the compiler thinks // char is signed or not. PrintTo(static_cast(c), os); } // Overloads for other simple built-in types. inline void PrintTo(bool x, ::std::ostream* os) { *os << (x ? "true" : "false"); } // Overload for wchar_t type. // Prints a wchar_t as a symbol if it is printable or as its internal // code otherwise and also as its decimal code (except for L'\0'). // The L'\0' char is printed as "L'\\0'". The decimal code is printed // as signed integer when wchar_t is implemented by the compiler // as a signed type and is printed as an unsigned integer when wchar_t // is implemented as an unsigned type. GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); // Overloads for C strings. GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); inline void PrintTo(char* s, ::std::ostream* os) { PrintTo(ImplicitCast_(s), os); } // signed/unsigned char is often used for representing binary data, so // we print pointers to it as void* to be safe. inline void PrintTo(const signed char* s, ::std::ostream* os) { PrintTo(ImplicitCast_(s), os); } inline void PrintTo(signed char* s, ::std::ostream* os) { PrintTo(ImplicitCast_(s), os); } inline void PrintTo(const unsigned char* s, ::std::ostream* os) { PrintTo(ImplicitCast_(s), os); } inline void PrintTo(unsigned char* s, ::std::ostream* os) { PrintTo(ImplicitCast_(s), os); } // MSVC can be configured to define wchar_t as a typedef of unsigned // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native // type. When wchar_t is a typedef, defining an overload for const // wchar_t* would cause unsigned short* be printed as a wide string, // possibly causing invalid memory accesses. #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) // Overloads for wide C strings GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); inline void PrintTo(wchar_t* s, ::std::ostream* os) { PrintTo(ImplicitCast_(s), os); } #endif // Overload for C arrays. Multi-dimensional arrays are printed // properly. // Prints the given number of elements in an array, without printing // the curly braces. template void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { UniversalPrint(a[0], os); for (size_t i = 1; i != count; i++) { *os << ", "; UniversalPrint(a[i], os); } } // Overloads for ::std::string. GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); inline void PrintTo(const ::std::string& s, ::std::ostream* os) { PrintStringTo(s, os); } // Overloads for ::std::wstring. #if GTEST_HAS_STD_WSTRING GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { PrintWideStringTo(s, os); } #endif // GTEST_HAS_STD_WSTRING #if GTEST_HAS_ABSL // Overload for absl::string_view. inline void PrintTo(absl::string_view sp, ::std::ostream* os) { PrintTo(::std::string(sp), os); } #endif // GTEST_HAS_ABSL inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)"; } template void PrintTo(std::reference_wrapper ref, ::std::ostream* os) { UniversalPrinter::Print(ref.get(), os); } // Helper function for printing a tuple. T must be instantiated with // a tuple type. template void PrintTupleTo(const T&, std::integral_constant, ::std::ostream*) {} template void PrintTupleTo(const T& t, std::integral_constant, ::std::ostream* os) { PrintTupleTo(t, std::integral_constant(), os); GTEST_INTENTIONAL_CONST_COND_PUSH_() if (I > 1) { GTEST_INTENTIONAL_CONST_COND_POP_() *os << ", "; } UniversalPrinter::type>::Print( std::get(t), os); } template void PrintTo(const ::std::tuple& t, ::std::ostream* os) { *os << "("; PrintTupleTo(t, std::integral_constant(), os); *os << ")"; } // Overload for std::pair. template void PrintTo(const ::std::pair& value, ::std::ostream* os) { *os << '('; // We cannot use UniversalPrint(value.first, os) here, as T1 may be // a reference type. The same for printing value.second. UniversalPrinter::Print(value.first, os); *os << ", "; UniversalPrinter::Print(value.second, os); *os << ')'; } // Implements printing a non-reference type T by letting the compiler // pick the right overload of PrintTo() for T. template class UniversalPrinter { public: // MSVC warns about adding const to a function type, so we want to // disable the warning. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) // Note: we deliberately don't call this PrintTo(), as that name // conflicts with ::testing::internal::PrintTo in the body of the // function. static void Print(const T& value, ::std::ostream* os) { // By default, ::testing::internal::PrintTo() is used for printing // the value. // // Thanks to Koenig look-up, if T is a class and has its own // PrintTo() function defined in its namespace, that function will // be visible here. Since it is more specific than the generic ones // in ::testing::internal, it will be picked by the compiler in the // following statement - exactly what we want. PrintTo(value, os); } GTEST_DISABLE_MSC_WARNINGS_POP_() }; #if GTEST_HAS_ABSL // Printer for absl::optional template class UniversalPrinter<::absl::optional> { public: static void Print(const ::absl::optional& value, ::std::ostream* os) { *os << '('; if (!value) { *os << "nullopt"; } else { UniversalPrint(*value, os); } *os << ')'; } }; // Printer for absl::variant template class UniversalPrinter<::absl::variant> { public: static void Print(const ::absl::variant& value, ::std::ostream* os) { *os << '('; absl::visit(Visitor{os}, value); *os << ')'; } private: struct Visitor { template void operator()(const U& u) const { *os << "'" << GetTypeName() << "' with value "; UniversalPrint(u, os); } ::std::ostream* os; }; }; #endif // GTEST_HAS_ABSL // UniversalPrintArray(begin, len, os) prints an array of 'len' // elements, starting at address 'begin'. template void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { if (len == 0) { *os << "{}"; } else { *os << "{ "; const size_t kThreshold = 18; const size_t kChunkSize = 8; // If the array has more than kThreshold elements, we'll have to // omit some details by printing only the first and the last // kChunkSize elements. if (len <= kThreshold) { PrintRawArrayTo(begin, len, os); } else { PrintRawArrayTo(begin, kChunkSize, os); *os << ", ..., "; PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); } *os << " }"; } } // This overload prints a (const) char array compactly. GTEST_API_ void UniversalPrintArray( const char* begin, size_t len, ::std::ostream* os); // This overload prints a (const) wchar_t array compactly. GTEST_API_ void UniversalPrintArray( const wchar_t* begin, size_t len, ::std::ostream* os); // Implements printing an array type T[N]. template class UniversalPrinter { public: // Prints the given array, omitting some elements when there are too // many. static void Print(const T (&a)[N], ::std::ostream* os) { UniversalPrintArray(a, N, os); } }; // Implements printing a reference type T&. template class UniversalPrinter { public: // MSVC warns about adding const to a function type, so we want to // disable the warning. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180) static void Print(const T& value, ::std::ostream* os) { // Prints the address of the value. We use reinterpret_cast here // as static_cast doesn't compile when T is a function type. *os << "@" << reinterpret_cast(&value) << " "; // Then prints the value itself. UniversalPrint(value, os); } GTEST_DISABLE_MSC_WARNINGS_POP_() }; // Prints a value tersely: for a reference type, the referenced value // (but not the address) is printed; for a (const) char pointer, the // NUL-terminated string (but not the pointer) is printed. template class UniversalTersePrinter { public: static void Print(const T& value, ::std::ostream* os) { UniversalPrint(value, os); } }; template class UniversalTersePrinter { public: static void Print(const T& value, ::std::ostream* os) { UniversalPrint(value, os); } }; template class UniversalTersePrinter { public: static void Print(const T (&value)[N], ::std::ostream* os) { UniversalPrinter::Print(value, os); } }; template <> class UniversalTersePrinter { public: static void Print(const char* str, ::std::ostream* os) { if (str == nullptr) { *os << "NULL"; } else { UniversalPrint(std::string(str), os); } } }; template <> class UniversalTersePrinter { public: static void Print(char* str, ::std::ostream* os) { UniversalTersePrinter::Print(str, os); } }; #if GTEST_HAS_STD_WSTRING template <> class UniversalTersePrinter { public: static void Print(const wchar_t* str, ::std::ostream* os) { if (str == nullptr) { *os << "NULL"; } else { UniversalPrint(::std::wstring(str), os); } } }; #endif template <> class UniversalTersePrinter { public: static void Print(wchar_t* str, ::std::ostream* os) { UniversalTersePrinter::Print(str, os); } }; template void UniversalTersePrint(const T& value, ::std::ostream* os) { UniversalTersePrinter::Print(value, os); } // Prints a value using the type inferred by the compiler. The // difference between this and UniversalTersePrint() is that for a // (const) char pointer, this prints both the pointer and the // NUL-terminated string. template void UniversalPrint(const T& value, ::std::ostream* os) { // A workarond for the bug in VC++ 7.1 that prevents us from instantiating // UniversalPrinter with T directly. typedef T T1; UniversalPrinter::Print(value, os); } typedef ::std::vector< ::std::string> Strings; // Tersely prints the first N fields of a tuple to a string vector, // one element for each field. template void TersePrintPrefixToStrings(const Tuple&, std::integral_constant, Strings*) {} template void TersePrintPrefixToStrings(const Tuple& t, std::integral_constant, Strings* strings) { TersePrintPrefixToStrings(t, std::integral_constant(), strings); ::std::stringstream ss; UniversalTersePrint(std::get(t), &ss); strings->push_back(ss.str()); } // Prints the fields of a tuple tersely to a string vector, one // element for each field. See the comment before // UniversalTersePrint() for how we define "tersely". template Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { Strings result; TersePrintPrefixToStrings( value, std::integral_constant::value>(), &result); return result; } } // namespace internal #if GTEST_HAS_ABSL namespace internal2 { template void TypeWithoutFormatter::PrintValue( const T& value, ::std::ostream* os) { internal::PrintTo(absl::string_view(value), os); } } // namespace internal2 #endif template ::std::string PrintToString(const T& value) { ::std::stringstream ss; internal::UniversalTersePrinter::Print(value, &ss); return ss.str(); } } // namespace testing // Include any custom printer added by the local installation. // We must include this header at the end to make sure it can use the // declarations from this file. #include "gtest/internal/custom/gtest-printers.h" #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest-spi.h000066400000000000000000000235611355420072700255230ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Utilities for testing Google Test itself and code that uses Google Test // (e.g. frameworks built on top of Google Test). // GOOGLETEST_CM0004 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_SPI_H_ #define GTEST_INCLUDE_GTEST_GTEST_SPI_H_ #include "gtest/gtest.h" GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // This helper class can be used to mock out Google Test failure reporting // so that we can test Google Test or code that builds on Google Test. // // An object of this class appends a TestPartResult object to the // TestPartResultArray object given in the constructor whenever a Google Test // failure is reported. It can either intercept only failures that are // generated in the same thread that created this object or it can intercept // all generated failures. The scope of this mock object can be controlled with // the second argument to the two arguments constructor. class GTEST_API_ ScopedFakeTestPartResultReporter : public TestPartResultReporterInterface { public: // The two possible mocking modes of this object. enum InterceptMode { INTERCEPT_ONLY_CURRENT_THREAD, // Intercepts only thread local failures. INTERCEPT_ALL_THREADS // Intercepts all failures. }; // The c'tor sets this object as the test part result reporter used // by Google Test. The 'result' parameter specifies where to report the // results. This reporter will only catch failures generated in the current // thread. DEPRECATED explicit ScopedFakeTestPartResultReporter(TestPartResultArray* result); // Same as above, but you can choose the interception scope of this object. ScopedFakeTestPartResultReporter(InterceptMode intercept_mode, TestPartResultArray* result); // The d'tor restores the previous test part result reporter. ~ScopedFakeTestPartResultReporter() override; // Appends the TestPartResult object to the TestPartResultArray // received in the constructor. // // This method is from the TestPartResultReporterInterface // interface. void ReportTestPartResult(const TestPartResult& result) override; private: void Init(); const InterceptMode intercept_mode_; TestPartResultReporterInterface* old_reporter_; TestPartResultArray* const result_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedFakeTestPartResultReporter); }; namespace internal { // A helper class for implementing EXPECT_FATAL_FAILURE() and // EXPECT_NONFATAL_FAILURE(). Its destructor verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. class GTEST_API_ SingleFailureChecker { public: // The constructor remembers the arguments. SingleFailureChecker(const TestPartResultArray* results, TestPartResult::Type type, const std::string& substr); ~SingleFailureChecker(); private: const TestPartResultArray* const results_; const TestPartResult::Type type_; const std::string substr_; GTEST_DISALLOW_COPY_AND_ASSIGN_(SingleFailureChecker); }; } // namespace internal } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 // A set of macros for testing Google Test assertions or code that's expected // to generate Google Test fatal failures. It verifies that the given // statement will cause exactly one fatal Google Test failure with 'substr' // being part of the failure message. // // There are two different versions of this macro. EXPECT_FATAL_FAILURE only // affects and considers failures generated in the current thread and // EXPECT_FATAL_FAILURE_ON_ALL_THREADS does the same but for all threads. // // The verification of the assertion is done correctly even when the statement // throws an exception or aborts the current function. // // Known restrictions: // - 'statement' cannot reference local non-static variables or // non-static members of the current object. // - 'statement' cannot return a value. // - You cannot stream a failure message to this macro. // // Note that even though the implementations of the following two // macros are much alike, we cannot refactor them to use a common // helper macro, due to some peculiarity in how the preprocessor // works. The AcceptsMacroThatExpandsToUnprotectedComma test in // gtest_unittest.cc will fail to compile if we do that. #define EXPECT_FATAL_FAILURE(statement, substr) \ do { \ class GTestExpectFatalFailureHelper {\ public:\ static void Execute() { statement; }\ };\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kFatalFailure, (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ONLY_CURRENT_THREAD, >est_failures);\ GTestExpectFatalFailureHelper::Execute();\ }\ } while (::testing::internal::AlwaysFalse()) #define EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substr) \ do { \ class GTestExpectFatalFailureHelper {\ public:\ static void Execute() { statement; }\ };\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kFatalFailure, (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ALL_THREADS, >est_failures);\ GTestExpectFatalFailureHelper::Execute();\ }\ } while (::testing::internal::AlwaysFalse()) // A macro for testing Google Test assertions or code that's expected to // generate Google Test non-fatal failures. It asserts that the given // statement will cause exactly one non-fatal Google Test failure with 'substr' // being part of the failure message. // // There are two different versions of this macro. EXPECT_NONFATAL_FAILURE only // affects and considers failures generated in the current thread and // EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS does the same but for all threads. // // 'statement' is allowed to reference local variables and members of // the current object. // // The verification of the assertion is done correctly even when the statement // throws an exception or aborts the current function. // // Known restrictions: // - You cannot stream a failure message to this macro. // // Note that even though the implementations of the following two // macros are much alike, we cannot refactor them to use a common // helper macro, due to some peculiarity in how the preprocessor // works. If we do that, the code won't compile when the user gives // EXPECT_NONFATAL_FAILURE() a statement that contains a macro that // expands to code containing an unprotected comma. The // AcceptsMacroThatExpandsToUnprotectedComma test in gtest_unittest.cc // catches that. // // For the same reason, we have to write // if (::testing::internal::AlwaysTrue()) { statement; } // instead of // GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) // to avoid an MSVC warning on unreachable code. #define EXPECT_NONFATAL_FAILURE(statement, substr) \ do {\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kNonFatalFailure, \ (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ONLY_CURRENT_THREAD, >est_failures);\ if (::testing::internal::AlwaysTrue()) { statement; }\ }\ } while (::testing::internal::AlwaysFalse()) #define EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substr) \ do {\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kNonFatalFailure, \ (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, \ >est_failures);\ if (::testing::internal::AlwaysTrue()) { statement; }\ }\ } while (::testing::internal::AlwaysFalse()) #endif // GTEST_INCLUDE_GTEST_GTEST_SPI_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest-test-part.h000066400000000000000000000153051355420072700266500ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_TEST_PART_H_ #define GTEST_INCLUDE_GTEST_GTEST_TEST_PART_H_ #include #include #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-string.h" GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // A copyable object representing the result of a test part (i.e. an // assertion or an explicit FAIL(), ADD_FAILURE(), or SUCCESS()). // // Don't inherit from TestPartResult as its destructor is not virtual. class GTEST_API_ TestPartResult { public: // The possible outcomes of a test part (i.e. an assertion or an // explicit SUCCEED(), FAIL(), or ADD_FAILURE()). enum Type { kSuccess, // Succeeded. kNonFatalFailure, // Failed but the test can continue. kFatalFailure, // Failed and the test should be terminated. kSkip // Skipped. }; // C'tor. TestPartResult does NOT have a default constructor. // Always use this constructor (with parameters) to create a // TestPartResult object. TestPartResult(Type a_type, const char* a_file_name, int a_line_number, const char* a_message) : type_(a_type), file_name_(a_file_name == nullptr ? "" : a_file_name), line_number_(a_line_number), summary_(ExtractSummary(a_message)), message_(a_message) {} // Gets the outcome of the test part. Type type() const { return type_; } // Gets the name of the source file where the test part took place, or // NULL if it's unknown. const char* file_name() const { return file_name_.empty() ? nullptr : file_name_.c_str(); } // Gets the line in the source file where the test part took place, // or -1 if it's unknown. int line_number() const { return line_number_; } // Gets the summary of the failure message. const char* summary() const { return summary_.c_str(); } // Gets the message associated with the test part. const char* message() const { return message_.c_str(); } // Returns true if and only if the test part was skipped. bool skipped() const { return type_ == kSkip; } // Returns true if and only if the test part passed. bool passed() const { return type_ == kSuccess; } // Returns true if and only if the test part non-fatally failed. bool nonfatally_failed() const { return type_ == kNonFatalFailure; } // Returns true if and only if the test part fatally failed. bool fatally_failed() const { return type_ == kFatalFailure; } // Returns true if and only if the test part failed. bool failed() const { return fatally_failed() || nonfatally_failed(); } private: Type type_; // Gets the summary of the failure message by omitting the stack // trace in it. static std::string ExtractSummary(const char* message); // The name of the source file where the test part took place, or // "" if the source file is unknown. std::string file_name_; // The line in the source file where the test part took place, or -1 // if the line number is unknown. int line_number_; std::string summary_; // The test failure summary. std::string message_; // The test failure message. }; // Prints a TestPartResult object. std::ostream& operator<<(std::ostream& os, const TestPartResult& result); // An array of TestPartResult objects. // // Don't inherit from TestPartResultArray as its destructor is not // virtual. class GTEST_API_ TestPartResultArray { public: TestPartResultArray() {} // Appends the given TestPartResult to the array. void Append(const TestPartResult& result); // Returns the TestPartResult at the given index (0-based). const TestPartResult& GetTestPartResult(int index) const; // Returns the number of TestPartResult objects in the array. int size() const; private: std::vector array_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TestPartResultArray); }; // This interface knows how to report a test part result. class GTEST_API_ TestPartResultReporterInterface { public: virtual ~TestPartResultReporterInterface() {} virtual void ReportTestPartResult(const TestPartResult& result) = 0; }; namespace internal { // This helper class is used by {ASSERT|EXPECT}_NO_FATAL_FAILURE to check if a // statement generates new fatal failures. To do so it registers itself as the // current test part result reporter. Besides checking if fatal failures were // reported, it only delegates the reporting to the former result reporter. // The original result reporter is restored in the destructor. // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. class GTEST_API_ HasNewFatalFailureHelper : public TestPartResultReporterInterface { public: HasNewFatalFailureHelper(); ~HasNewFatalFailureHelper() override; void ReportTestPartResult(const TestPartResult& result) override; bool has_new_fatal_failure() const { return has_new_fatal_failure_; } private: bool has_new_fatal_failure_; TestPartResultReporterInterface* original_reporter_; GTEST_DISALLOW_COPY_AND_ASSIGN_(HasNewFatalFailureHelper); }; } // namespace internal } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 #endif // GTEST_INCLUDE_GTEST_GTEST_TEST_PART_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest-typed-test.h000066400000000000000000000360431355420072700270310ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_TYPED_TEST_H_ #define GTEST_INCLUDE_GTEST_GTEST_TYPED_TEST_H_ // This header implements typed tests and type-parameterized tests. // Typed (aka type-driven) tests repeat the same test for types in a // list. You must know which types you want to test with when writing // typed tests. Here's how you do it: #if 0 // First, define a fixture class template. It should be parameterized // by a type. Remember to derive it from testing::Test. template class FooTest : public testing::Test { public: ... typedef std::list List; static T shared_; T value_; }; // Next, associate a list of types with the test suite, which will be // repeated for each type in the list. The typedef is necessary for // the macro to parse correctly. typedef testing::Types MyTypes; TYPED_TEST_SUITE(FooTest, MyTypes); // If the type list contains only one type, you can write that type // directly without Types<...>: // TYPED_TEST_SUITE(FooTest, int); // Then, use TYPED_TEST() instead of TEST_F() to define as many typed // tests for this test suite as you want. TYPED_TEST(FooTest, DoesBlah) { // Inside a test, refer to the special name TypeParam to get the type // parameter. Since we are inside a derived class template, C++ requires // us to visit the members of FooTest via 'this'. TypeParam n = this->value_; // To visit static members of the fixture, add the TestFixture:: // prefix. n += TestFixture::shared_; // To refer to typedefs in the fixture, add the "typename // TestFixture::" prefix. typename TestFixture::List values; values.push_back(n); ... } TYPED_TEST(FooTest, HasPropertyA) { ... } // TYPED_TEST_SUITE takes an optional third argument which allows to specify a // class that generates custom test name suffixes based on the type. This should // be a class which has a static template function GetName(int index) returning // a string for each type. The provided integer index equals the index of the // type in the provided type list. In many cases the index can be ignored. // // For example: // class MyTypeNames { // public: // template // static std::string GetName(int) { // if (std::is_same()) return "char"; // if (std::is_same()) return "int"; // if (std::is_same()) return "unsignedInt"; // } // }; // TYPED_TEST_SUITE(FooTest, MyTypes, MyTypeNames); #endif // 0 // Type-parameterized tests are abstract test patterns parameterized // by a type. Compared with typed tests, type-parameterized tests // allow you to define the test pattern without knowing what the type // parameters are. The defined pattern can be instantiated with // different types any number of times, in any number of translation // units. // // If you are designing an interface or concept, you can define a // suite of type-parameterized tests to verify properties that any // valid implementation of the interface/concept should have. Then, // each implementation can easily instantiate the test suite to verify // that it conforms to the requirements, without having to write // similar tests repeatedly. Here's an example: #if 0 // First, define a fixture class template. It should be parameterized // by a type. Remember to derive it from testing::Test. template class FooTest : public testing::Test { ... }; // Next, declare that you will define a type-parameterized test suite // (the _P suffix is for "parameterized" or "pattern", whichever you // prefer): TYPED_TEST_SUITE_P(FooTest); // Then, use TYPED_TEST_P() to define as many type-parameterized tests // for this type-parameterized test suite as you want. TYPED_TEST_P(FooTest, DoesBlah) { // Inside a test, refer to TypeParam to get the type parameter. TypeParam n = 0; ... } TYPED_TEST_P(FooTest, HasPropertyA) { ... } // Now the tricky part: you need to register all test patterns before // you can instantiate them. The first argument of the macro is the // test suite name; the rest are the names of the tests in this test // case. REGISTER_TYPED_TEST_SUITE_P(FooTest, DoesBlah, HasPropertyA); // Finally, you are free to instantiate the pattern with the types you // want. If you put the above code in a header file, you can #include // it in multiple C++ source files and instantiate it multiple times. // // To distinguish different instances of the pattern, the first // argument to the INSTANTIATE_* macro is a prefix that will be added // to the actual test suite name. Remember to pick unique prefixes for // different instances. typedef testing::Types MyTypes; INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, MyTypes); // If the type list contains only one type, you can write that type // directly without Types<...>: // INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, int); // // Similar to the optional argument of TYPED_TEST_SUITE above, // INSTANTIATE_TEST_SUITE_P takes an optional fourth argument which allows to // generate custom names. // INSTANTIATE_TYPED_TEST_SUITE_P(My, FooTest, MyTypes, MyTypeNames); #endif // 0 #include "gtest/internal/gtest-port.h" #include "gtest/internal/gtest-type-util.h" // Implements typed tests. #if GTEST_HAS_TYPED_TEST // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // Expands to the name of the typedef for the type parameters of the // given test suite. #define GTEST_TYPE_PARAMS_(TestSuiteName) gtest_type_params_##TestSuiteName##_ // Expands to the name of the typedef for the NameGenerator, responsible for // creating the suffixes of the name. #define GTEST_NAME_GENERATOR_(TestSuiteName) \ gtest_type_params_##TestSuiteName##_NameGenerator #define TYPED_TEST_SUITE(CaseName, Types, ...) \ typedef ::testing::internal::TypeList::type GTEST_TYPE_PARAMS_( \ CaseName); \ typedef ::testing::internal::NameGeneratorSelector<__VA_ARGS__>::type \ GTEST_NAME_GENERATOR_(CaseName) # define TYPED_TEST(CaseName, TestName) \ template \ class GTEST_TEST_CLASS_NAME_(CaseName, TestName) \ : public CaseName { \ private: \ typedef CaseName TestFixture; \ typedef gtest_TypeParam_ TypeParam; \ virtual void TestBody(); \ }; \ static bool gtest_##CaseName##_##TestName##_registered_ \ GTEST_ATTRIBUTE_UNUSED_ = \ ::testing::internal::TypeParameterizedTest< \ CaseName, \ ::testing::internal::TemplateSel, \ GTEST_TYPE_PARAMS_( \ CaseName)>::Register("", \ ::testing::internal::CodeLocation( \ __FILE__, __LINE__), \ #CaseName, #TestName, 0, \ ::testing::internal::GenerateNames< \ GTEST_NAME_GENERATOR_(CaseName), \ GTEST_TYPE_PARAMS_(CaseName)>()); \ template \ void GTEST_TEST_CLASS_NAME_(CaseName, \ TestName)::TestBody() // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #define TYPED_TEST_CASE \ static_assert(::testing::internal::TypedTestCaseIsDeprecated(), ""); \ TYPED_TEST_SUITE #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #endif // GTEST_HAS_TYPED_TEST // Implements type-parameterized tests. #if GTEST_HAS_TYPED_TEST_P // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // Expands to the namespace name that the type-parameterized tests for // the given type-parameterized test suite are defined in. The exact // name of the namespace is subject to change without notice. #define GTEST_SUITE_NAMESPACE_(TestSuiteName) gtest_suite_##TestSuiteName##_ // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // Expands to the name of the variable used to remember the names of // the defined tests in the given test suite. #define GTEST_TYPED_TEST_SUITE_P_STATE_(TestSuiteName) \ gtest_typed_test_suite_p_state_##TestSuiteName##_ // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE DIRECTLY. // // Expands to the name of the variable used to remember the names of // the registered tests in the given test suite. #define GTEST_REGISTERED_TEST_NAMES_(TestSuiteName) \ gtest_registered_test_names_##TestSuiteName##_ // The variables defined in the type-parameterized test macros are // static as typically these macros are used in a .h file that can be // #included in multiple translation units linked together. #define TYPED_TEST_SUITE_P(SuiteName) \ static ::testing::internal::TypedTestSuitePState \ GTEST_TYPED_TEST_SUITE_P_STATE_(SuiteName) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #define TYPED_TEST_CASE_P \ static_assert(::testing::internal::TypedTestCase_P_IsDeprecated(), ""); \ TYPED_TEST_SUITE_P #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #define TYPED_TEST_P(SuiteName, TestName) \ namespace GTEST_SUITE_NAMESPACE_(SuiteName) { \ template \ class TestName : public SuiteName { \ private: \ typedef SuiteName TestFixture; \ typedef gtest_TypeParam_ TypeParam; \ virtual void TestBody(); \ }; \ static bool gtest_##TestName##_defined_ GTEST_ATTRIBUTE_UNUSED_ = \ GTEST_TYPED_TEST_SUITE_P_STATE_(SuiteName).AddTestName( \ __FILE__, __LINE__, #SuiteName, #TestName); \ } \ template \ void GTEST_SUITE_NAMESPACE_( \ SuiteName)::TestName::TestBody() #define REGISTER_TYPED_TEST_SUITE_P(SuiteName, ...) \ namespace GTEST_SUITE_NAMESPACE_(SuiteName) { \ typedef ::testing::internal::Templates<__VA_ARGS__>::type gtest_AllTests_; \ } \ static const char* const GTEST_REGISTERED_TEST_NAMES_( \ SuiteName) GTEST_ATTRIBUTE_UNUSED_ = \ GTEST_TYPED_TEST_SUITE_P_STATE_(SuiteName).VerifyRegisteredTestNames( \ __FILE__, __LINE__, #__VA_ARGS__) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #define REGISTER_TYPED_TEST_CASE_P \ static_assert(::testing::internal::RegisterTypedTestCase_P_IsDeprecated(), \ ""); \ REGISTER_TYPED_TEST_SUITE_P #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #define INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, SuiteName, Types, ...) \ static bool gtest_##Prefix##_##SuiteName GTEST_ATTRIBUTE_UNUSED_ = \ ::testing::internal::TypeParameterizedTestSuite< \ SuiteName, GTEST_SUITE_NAMESPACE_(SuiteName)::gtest_AllTests_, \ ::testing::internal::TypeList::type>:: \ Register(#Prefix, \ ::testing::internal::CodeLocation(__FILE__, __LINE__), \ >EST_TYPED_TEST_SUITE_P_STATE_(SuiteName), #SuiteName, \ GTEST_REGISTERED_TEST_NAMES_(SuiteName), \ ::testing::internal::GenerateNames< \ ::testing::internal::NameGeneratorSelector< \ __VA_ARGS__>::type, \ ::testing::internal::TypeList::type>()) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #define INSTANTIATE_TYPED_TEST_CASE_P \ static_assert( \ ::testing::internal::InstantiateTypedTestCase_P_IsDeprecated(), ""); \ INSTANTIATE_TYPED_TEST_SUITE_P #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ #endif // GTEST_HAS_TYPED_TEST_P #endif // GTEST_INCLUDE_GTEST_GTEST_TYPED_TEST_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest.h000066400000000000000000002673441355420072700247430ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This header file defines the public API for Google Test. It should be // included by any test program that uses Google Test. // // IMPORTANT NOTE: Due to limitation of the C++ language, we have to // leave some internal implementation details in this header file. // They are clearly marked by comments like this: // // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. // // Such code is NOT meant to be used by a user directly, and is subject // to CHANGE WITHOUT NOTICE. Therefore DO NOT DEPEND ON IT in a user // program! // // Acknowledgment: Google Test borrowed the idea of automatic test // registration from Barthelemy Dagenais' (barthelemy@prologique.com) // easyUnit framework. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_H_ #define GTEST_INCLUDE_GTEST_GTEST_H_ #include #include #include #include #include #include #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-string.h" #include "gtest/gtest-death-test.h" #include "gtest/gtest-matchers.h" #include "gtest/gtest-message.h" #include "gtest/gtest-param-test.h" #include "gtest/gtest-printers.h" #include "gtest/gtest_prod.h" #include "gtest/gtest-test-part.h" #include "gtest/gtest-typed-test.h" GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // Silence C4100 (unreferenced formal parameter) and 4805 // unsafe mix of type 'const int' and type 'const bool' #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4805) # pragma warning(disable:4100) #endif // Declares the flags. // This flag temporary enables the disabled tests. GTEST_DECLARE_bool_(also_run_disabled_tests); // This flag brings the debugger on an assertion failure. GTEST_DECLARE_bool_(break_on_failure); // This flag controls whether Google Test catches all test-thrown exceptions // and logs them as failures. GTEST_DECLARE_bool_(catch_exceptions); // This flag enables using colors in terminal output. Available values are // "yes" to enable colors, "no" (disable colors), or "auto" (the default) // to let Google Test decide. GTEST_DECLARE_string_(color); // This flag sets up the filter to select by name using a glob pattern // the tests to run. If the filter is not given all tests are executed. GTEST_DECLARE_string_(filter); // This flag controls whether Google Test installs a signal handler that dumps // debugging information when fatal signals are raised. GTEST_DECLARE_bool_(install_failure_signal_handler); // This flag causes the Google Test to list tests. None of the tests listed // are actually run if the flag is provided. GTEST_DECLARE_bool_(list_tests); // This flag controls whether Google Test emits a detailed XML report to a file // in addition to its normal textual output. GTEST_DECLARE_string_(output); // This flags control whether Google Test prints the elapsed time for each // test. GTEST_DECLARE_bool_(print_time); // This flags control whether Google Test prints UTF8 characters as text. GTEST_DECLARE_bool_(print_utf8); // This flag specifies the random number seed. GTEST_DECLARE_int32_(random_seed); // This flag sets how many times the tests are repeated. The default value // is 1. If the value is -1 the tests are repeating forever. GTEST_DECLARE_int32_(repeat); // This flag controls whether Google Test includes Google Test internal // stack frames in failure stack traces. GTEST_DECLARE_bool_(show_internal_stack_frames); // When this flag is specified, tests' order is randomized on every iteration. GTEST_DECLARE_bool_(shuffle); // This flag specifies the maximum number of stack frames to be // printed in a failure message. GTEST_DECLARE_int32_(stack_trace_depth); // When this flag is specified, a failed assertion will throw an // exception if exceptions are enabled, or exit the program with a // non-zero code otherwise. For use with an external test framework. GTEST_DECLARE_bool_(throw_on_failure); // When this flag is set with a "host:port" string, on supported // platforms test results are streamed to the specified port on // the specified host machine. GTEST_DECLARE_string_(stream_result_to); #if GTEST_USE_OWN_FLAGFILE_FLAG_ GTEST_DECLARE_string_(flagfile); #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ // The upper limit for valid stack trace depths. const int kMaxStackTraceDepth = 100; namespace internal { class AssertHelper; class DefaultGlobalTestPartResultReporter; class ExecDeathTest; class NoExecDeathTest; class FinalSuccessChecker; class GTestFlagSaver; class StreamingListenerTest; class TestResultAccessor; class TestEventListenersAccessor; class TestEventRepeater; class UnitTestRecordPropertyTestHelper; class WindowsDeathTest; class FuchsiaDeathTest; class UnitTestImpl* GetUnitTestImpl(); void ReportFailureInUnknownLocation(TestPartResult::Type result_type, const std::string& message); } // namespace internal // The friend relationship of some of these classes is cyclic. // If we don't forward declare them the compiler might confuse the classes // in friendship clauses with same named classes on the scope. class Test; class TestSuite; // Old API is still available but deprecated #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ using TestCase = TestSuite; #endif class TestInfo; class UnitTest; // A class for indicating whether an assertion was successful. When // the assertion wasn't successful, the AssertionResult object // remembers a non-empty message that describes how it failed. // // To create an instance of this class, use one of the factory functions // (AssertionSuccess() and AssertionFailure()). // // This class is useful for two purposes: // 1. Defining predicate functions to be used with Boolean test assertions // EXPECT_TRUE/EXPECT_FALSE and their ASSERT_ counterparts // 2. Defining predicate-format functions to be // used with predicate assertions (ASSERT_PRED_FORMAT*, etc). // // For example, if you define IsEven predicate: // // testing::AssertionResult IsEven(int n) { // if ((n % 2) == 0) // return testing::AssertionSuccess(); // else // return testing::AssertionFailure() << n << " is odd"; // } // // Then the failed expectation EXPECT_TRUE(IsEven(Fib(5))) // will print the message // // Value of: IsEven(Fib(5)) // Actual: false (5 is odd) // Expected: true // // instead of a more opaque // // Value of: IsEven(Fib(5)) // Actual: false // Expected: true // // in case IsEven is a simple Boolean predicate. // // If you expect your predicate to be reused and want to support informative // messages in EXPECT_FALSE and ASSERT_FALSE (negative assertions show up // about half as often as positive ones in our tests), supply messages for // both success and failure cases: // // testing::AssertionResult IsEven(int n) { // if ((n % 2) == 0) // return testing::AssertionSuccess() << n << " is even"; // else // return testing::AssertionFailure() << n << " is odd"; // } // // Then a statement EXPECT_FALSE(IsEven(Fib(6))) will print // // Value of: IsEven(Fib(6)) // Actual: true (8 is even) // Expected: false // // NB: Predicates that support negative Boolean assertions have reduced // performance in positive ones so be careful not to use them in tests // that have lots (tens of thousands) of positive Boolean assertions. // // To use this class with EXPECT_PRED_FORMAT assertions such as: // // // Verifies that Foo() returns an even number. // EXPECT_PRED_FORMAT1(IsEven, Foo()); // // you need to define: // // testing::AssertionResult IsEven(const char* expr, int n) { // if ((n % 2) == 0) // return testing::AssertionSuccess(); // else // return testing::AssertionFailure() // << "Expected: " << expr << " is even\n Actual: it's " << n; // } // // If Foo() returns 5, you will see the following message: // // Expected: Foo() is even // Actual: it's 5 // class GTEST_API_ AssertionResult { public: // Copy constructor. // Used in EXPECT_TRUE/FALSE(assertion_result). AssertionResult(const AssertionResult& other); #if defined(_MSC_VER) && _MSC_VER < 1910 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800 /* forcing value to bool */) #endif // Used in the EXPECT_TRUE/FALSE(bool_expression). // // T must be contextually convertible to bool. // // The second parameter prevents this overload from being considered if // the argument is implicitly convertible to AssertionResult. In that case // we want AssertionResult's copy constructor to be used. template explicit AssertionResult( const T& success, typename std::enable_if< !std::is_convertible::value>::type* /*enabler*/ = nullptr) : success_(success) {} #if defined(_MSC_VER) && _MSC_VER < 1910 GTEST_DISABLE_MSC_WARNINGS_POP_() #endif // Assignment operator. AssertionResult& operator=(AssertionResult other) { swap(other); return *this; } // Returns true if and only if the assertion succeeded. operator bool() const { return success_; } // NOLINT // Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE. AssertionResult operator!() const; // Returns the text streamed into this AssertionResult. Test assertions // use it when they fail (i.e., the predicate's outcome doesn't match the // assertion's expectation). When nothing has been streamed into the // object, returns an empty string. const char* message() const { return message_.get() != nullptr ? message_->c_str() : ""; } // Deprecated; please use message() instead. const char* failure_message() const { return message(); } // Streams a custom failure message into this object. template AssertionResult& operator<<(const T& value) { AppendMessage(Message() << value); return *this; } // Allows streaming basic output manipulators such as endl or flush into // this object. AssertionResult& operator<<( ::std::ostream& (*basic_manipulator)(::std::ostream& stream)) { AppendMessage(Message() << basic_manipulator); return *this; } private: // Appends the contents of message to message_. void AppendMessage(const Message& a_message) { if (message_.get() == nullptr) message_.reset(new ::std::string); message_->append(a_message.GetString().c_str()); } // Swap the contents of this AssertionResult with other. void swap(AssertionResult& other); // Stores result of the assertion predicate. bool success_; // Stores the message describing the condition in case the expectation // construct is not satisfied with the predicate's outcome. // Referenced via a pointer to avoid taking too much stack frame space // with test assertions. std::unique_ptr< ::std::string> message_; }; // Makes a successful assertion result. GTEST_API_ AssertionResult AssertionSuccess(); // Makes a failed assertion result. GTEST_API_ AssertionResult AssertionFailure(); // Makes a failed assertion result with the given failure message. // Deprecated; use AssertionFailure() << msg. GTEST_API_ AssertionResult AssertionFailure(const Message& msg); } // namespace testing // Includes the auto-generated header that implements a family of generic // predicate assertion macros. This include comes late because it relies on // APIs declared above. #include "gtest/gtest_pred_impl.h" namespace testing { // The abstract class that all tests inherit from. // // In Google Test, a unit test program contains one or many TestSuites, and // each TestSuite contains one or many Tests. // // When you define a test using the TEST macro, you don't need to // explicitly derive from Test - the TEST macro automatically does // this for you. // // The only time you derive from Test is when defining a test fixture // to be used in a TEST_F. For example: // // class FooTest : public testing::Test { // protected: // void SetUp() override { ... } // void TearDown() override { ... } // ... // }; // // TEST_F(FooTest, Bar) { ... } // TEST_F(FooTest, Baz) { ... } // // Test is not copyable. class GTEST_API_ Test { public: friend class TestInfo; // The d'tor is virtual as we intend to inherit from Test. virtual ~Test(); // Sets up the stuff shared by all tests in this test case. // // Google Test will call Foo::SetUpTestSuite() before running the first // test in test case Foo. Hence a sub-class can define its own // SetUpTestSuite() method to shadow the one defined in the super // class. // Failures that happen during SetUpTestSuite are logged but otherwise // ignored. static void SetUpTestSuite() {} // Tears down the stuff shared by all tests in this test suite. // // Google Test will call Foo::TearDownTestSuite() after running the last // test in test case Foo. Hence a sub-class can define its own // TearDownTestSuite() method to shadow the one defined in the super // class. // Failures that happen during TearDownTestSuite are logged but otherwise // ignored. static void TearDownTestSuite() {} // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ static void TearDownTestCase() {} static void SetUpTestCase() {} #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Returns true if and only if the current test has a fatal failure. static bool HasFatalFailure(); // Returns true if and only if the current test has a non-fatal failure. static bool HasNonfatalFailure(); // Returns true if and only if the current test was skipped. static bool IsSkipped(); // Returns true if and only if the current test has a (either fatal or // non-fatal) failure. static bool HasFailure() { return HasFatalFailure() || HasNonfatalFailure(); } // Logs a property for the current test, test suite, or for the entire // invocation of the test program when used outside of the context of a // test suite. Only the last value for a given key is remembered. These // are public static so they can be called from utility functions that are // not members of the test fixture. Calls to RecordProperty made during // lifespan of the test (from the moment its constructor starts to the // moment its destructor finishes) will be output in XML as attributes of // the element. Properties recorded from fixture's // SetUpTestSuite or TearDownTestSuite are logged as attributes of the // corresponding element. Calls to RecordProperty made in the // global context (before or after invocation of RUN_ALL_TESTS and from // SetUp/TearDown method of Environment objects registered with Google // Test) will be output as attributes of the element. static void RecordProperty(const std::string& key, const std::string& value); static void RecordProperty(const std::string& key, int value); protected: // Creates a Test object. Test(); // Sets up the test fixture. virtual void SetUp(); // Tears down the test fixture. virtual void TearDown(); private: // Returns true if and only if the current test has the same fixture class // as the first test in the current test suite. static bool HasSameFixtureClass(); // Runs the test after the test fixture has been set up. // // A sub-class must implement this to define the test logic. // // DO NOT OVERRIDE THIS FUNCTION DIRECTLY IN A USER PROGRAM. // Instead, use the TEST or TEST_F macro. virtual void TestBody() = 0; // Sets up, executes, and tears down the test. void Run(); // Deletes self. We deliberately pick an unusual name for this // internal method to avoid clashing with names used in user TESTs. void DeleteSelf_() { delete this; } const std::unique_ptr gtest_flag_saver_; // Often a user misspells SetUp() as Setup() and spends a long time // wondering why it is never called by Google Test. The declaration of // the following method is solely for catching such an error at // compile time: // // - The return type is deliberately chosen to be not void, so it // will be a conflict if void Setup() is declared in the user's // test fixture. // // - This method is private, so it will be another compiler error // if the method is called from the user's test fixture. // // DO NOT OVERRIDE THIS FUNCTION. // // If you see an error about overriding the following function or // about it being private, you have mis-spelled SetUp() as Setup(). struct Setup_should_be_spelled_SetUp {}; virtual Setup_should_be_spelled_SetUp* Setup() { return nullptr; } // We disallow copying Tests. GTEST_DISALLOW_COPY_AND_ASSIGN_(Test); }; typedef internal::TimeInMillis TimeInMillis; // A copyable object representing a user specified test property which can be // output as a key/value string pair. // // Don't inherit from TestProperty as its destructor is not virtual. class TestProperty { public: // C'tor. TestProperty does NOT have a default constructor. // Always use this constructor (with parameters) to create a // TestProperty object. TestProperty(const std::string& a_key, const std::string& a_value) : key_(a_key), value_(a_value) { } // Gets the user supplied key. const char* key() const { return key_.c_str(); } // Gets the user supplied value. const char* value() const { return value_.c_str(); } // Sets a new value, overriding the one supplied in the constructor. void SetValue(const std::string& new_value) { value_ = new_value; } private: // The key supplied by the user. std::string key_; // The value supplied by the user. std::string value_; }; // The result of a single Test. This includes a list of // TestPartResults, a list of TestProperties, a count of how many // death tests there are in the Test, and how much time it took to run // the Test. // // TestResult is not copyable. class GTEST_API_ TestResult { public: // Creates an empty TestResult. TestResult(); // D'tor. Do not inherit from TestResult. ~TestResult(); // Gets the number of all test parts. This is the sum of the number // of successful test parts and the number of failed test parts. int total_part_count() const; // Returns the number of the test properties. int test_property_count() const; // Returns true if and only if the test passed (i.e. no test part failed). bool Passed() const { return !Skipped() && !Failed(); } // Returns true if and only if the test was skipped. bool Skipped() const; // Returns true if and only if the test failed. bool Failed() const; // Returns true if and only if the test fatally failed. bool HasFatalFailure() const; // Returns true if and only if the test has a non-fatal failure. bool HasNonfatalFailure() const; // Returns the elapsed time, in milliseconds. TimeInMillis elapsed_time() const { return elapsed_time_; } // Gets the time of the test case start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp() const { return start_timestamp_; } // Returns the i-th test part result among all the results. i can range from 0 // to total_part_count() - 1. If i is not in that range, aborts the program. const TestPartResult& GetTestPartResult(int i) const; // Returns the i-th test property. i can range from 0 to // test_property_count() - 1. If i is not in that range, aborts the // program. const TestProperty& GetTestProperty(int i) const; private: friend class TestInfo; friend class TestSuite; friend class UnitTest; friend class internal::DefaultGlobalTestPartResultReporter; friend class internal::ExecDeathTest; friend class internal::TestResultAccessor; friend class internal::UnitTestImpl; friend class internal::WindowsDeathTest; friend class internal::FuchsiaDeathTest; // Gets the vector of TestPartResults. const std::vector& test_part_results() const { return test_part_results_; } // Gets the vector of TestProperties. const std::vector& test_properties() const { return test_properties_; } // Sets the start time. void set_start_timestamp(TimeInMillis start) { start_timestamp_ = start; } // Sets the elapsed time. void set_elapsed_time(TimeInMillis elapsed) { elapsed_time_ = elapsed; } // Adds a test property to the list. The property is validated and may add // a non-fatal failure if invalid (e.g., if it conflicts with reserved // key names). If a property is already recorded for the same key, the // value will be updated, rather than storing multiple values for the same // key. xml_element specifies the element for which the property is being // recorded and is used for validation. void RecordProperty(const std::string& xml_element, const TestProperty& test_property); // Adds a failure if the key is a reserved attribute of Google Test // testsuite tags. Returns true if the property is valid. // FIXME: Validate attribute names are legal and human readable. static bool ValidateTestProperty(const std::string& xml_element, const TestProperty& test_property); // Adds a test part result to the list. void AddTestPartResult(const TestPartResult& test_part_result); // Returns the death test count. int death_test_count() const { return death_test_count_; } // Increments the death test count, returning the new count. int increment_death_test_count() { return ++death_test_count_; } // Clears the test part results. void ClearTestPartResults(); // Clears the object. void Clear(); // Protects mutable state of the property vector and of owned // properties, whose values may be updated. internal::Mutex test_properites_mutex_; // The vector of TestPartResults std::vector test_part_results_; // The vector of TestProperties std::vector test_properties_; // Running count of death tests. int death_test_count_; // The start time, in milliseconds since UNIX Epoch. TimeInMillis start_timestamp_; // The elapsed time, in milliseconds. TimeInMillis elapsed_time_; // We disallow copying TestResult. GTEST_DISALLOW_COPY_AND_ASSIGN_(TestResult); }; // class TestResult // A TestInfo object stores the following information about a test: // // Test suite name // Test name // Whether the test should be run // A function pointer that creates the test object when invoked // Test result // // The constructor of TestInfo registers itself with the UnitTest // singleton such that the RUN_ALL_TESTS() macro knows which tests to // run. class GTEST_API_ TestInfo { public: // Destructs a TestInfo object. This function is not virtual, so // don't inherit from TestInfo. ~TestInfo(); // Returns the test suite name. const char* test_suite_name() const { return test_suite_name_.c_str(); } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const char* test_case_name() const { return test_suite_name(); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Returns the test name. const char* name() const { return name_.c_str(); } // Returns the name of the parameter type, or NULL if this is not a typed // or a type-parameterized test. const char* type_param() const { if (type_param_.get() != nullptr) return type_param_->c_str(); return nullptr; } // Returns the text representation of the value parameter, or NULL if this // is not a value-parameterized test. const char* value_param() const { if (value_param_.get() != nullptr) return value_param_->c_str(); return nullptr; } // Returns the file name where this test is defined. const char* file() const { return location_.file.c_str(); } // Returns the line where this test is defined. int line() const { return location_.line; } // Return true if this test should not be run because it's in another shard. bool is_in_another_shard() const { return is_in_another_shard_; } // Returns true if this test should run, that is if the test is not // disabled (or it is disabled but the also_run_disabled_tests flag has // been specified) and its full name matches the user-specified filter. // // Google Test allows the user to filter the tests by their full names. // The full name of a test Bar in test suite Foo is defined as // "Foo.Bar". Only the tests that match the filter will run. // // A filter is a colon-separated list of glob (not regex) patterns, // optionally followed by a '-' and a colon-separated list of // negative patterns (tests to exclude). A test is run if it // matches one of the positive patterns and does not match any of // the negative patterns. // // For example, *A*:Foo.* is a filter that matches any string that // contains the character 'A' or starts with "Foo.". bool should_run() const { return should_run_; } // Returns true if and only if this test will appear in the XML report. bool is_reportable() const { // The XML report includes tests matching the filter, excluding those // run in other shards. return matches_filter_ && !is_in_another_shard_; } // Returns the result of the test. const TestResult* result() const { return &result_; } private: #if GTEST_HAS_DEATH_TEST friend class internal::DefaultDeathTestFactory; #endif // GTEST_HAS_DEATH_TEST friend class Test; friend class TestSuite; friend class internal::UnitTestImpl; friend class internal::StreamingListenerTest; friend TestInfo* internal::MakeAndRegisterTestInfo( const char* test_suite_name, const char* name, const char* type_param, const char* value_param, internal::CodeLocation code_location, internal::TypeId fixture_class_id, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc, internal::TestFactoryBase* factory); // Constructs a TestInfo object. The newly constructed instance assumes // ownership of the factory object. TestInfo(const std::string& test_suite_name, const std::string& name, const char* a_type_param, // NULL if not a type-parameterized test const char* a_value_param, // NULL if not a value-parameterized test internal::CodeLocation a_code_location, internal::TypeId fixture_class_id, internal::TestFactoryBase* factory); // Increments the number of death tests encountered in this test so // far. int increment_death_test_count() { return result_.increment_death_test_count(); } // Creates the test object, runs it, records its result, and then // deletes it. void Run(); static void ClearTestResult(TestInfo* test_info) { test_info->result_.Clear(); } // These fields are immutable properties of the test. const std::string test_suite_name_; // test suite name const std::string name_; // Test name // Name of the parameter type, or NULL if this is not a typed or a // type-parameterized test. const std::unique_ptr type_param_; // Text representation of the value parameter, or NULL if this is not a // value-parameterized test. const std::unique_ptr value_param_; internal::CodeLocation location_; const internal::TypeId fixture_class_id_; // ID of the test fixture class bool should_run_; // True if and only if this test should run bool is_disabled_; // True if and only if this test is disabled bool matches_filter_; // True if this test matches the // user-specified filter. bool is_in_another_shard_; // Will be run in another shard. internal::TestFactoryBase* const factory_; // The factory that creates // the test object // This field is mutable and needs to be reset before running the // test for the second time. TestResult result_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TestInfo); }; // A test suite, which consists of a vector of TestInfos. // // TestSuite is not copyable. class GTEST_API_ TestSuite { public: // Creates a TestSuite with the given name. // // TestSuite does NOT have a default constructor. Always use this // constructor to create a TestSuite object. // // Arguments: // // name: name of the test suite // a_type_param: the name of the test's type parameter, or NULL if // this is not a type-parameterized test. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite(const char* name, const char* a_type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc); // Destructor of TestSuite. virtual ~TestSuite(); // Gets the name of the TestSuite. const char* name() const { return name_.c_str(); } // Returns the name of the parameter type, or NULL if this is not a // type-parameterized test suite. const char* type_param() const { if (type_param_.get() != nullptr) return type_param_->c_str(); return nullptr; } // Returns true if any test in this test suite should run. bool should_run() const { return should_run_; } // Gets the number of successful tests in this test suite. int successful_test_count() const; // Gets the number of skipped tests in this test suite. int skipped_test_count() const; // Gets the number of failed tests in this test suite. int failed_test_count() const; // Gets the number of disabled tests that will be reported in the XML report. int reportable_disabled_test_count() const; // Gets the number of disabled tests in this test suite. int disabled_test_count() const; // Gets the number of tests to be printed in the XML report. int reportable_test_count() const; // Get the number of tests in this test suite that should run. int test_to_run_count() const; // Gets the number of all tests in this test suite. int total_test_count() const; // Returns true if and only if the test suite passed. bool Passed() const { return !Failed(); } // Returns true if and only if the test suite failed. bool Failed() const { return failed_test_count() > 0; } // Returns the elapsed time, in milliseconds. TimeInMillis elapsed_time() const { return elapsed_time_; } // Gets the time of the test suite start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp() const { return start_timestamp_; } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. const TestInfo* GetTestInfo(int i) const; // Returns the TestResult that holds test properties recorded during // execution of SetUpTestSuite and TearDownTestSuite. const TestResult& ad_hoc_test_result() const { return ad_hoc_test_result_; } private: friend class Test; friend class internal::UnitTestImpl; // Gets the (mutable) vector of TestInfos in this TestSuite. std::vector& test_info_list() { return test_info_list_; } // Gets the (immutable) vector of TestInfos in this TestSuite. const std::vector& test_info_list() const { return test_info_list_; } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. TestInfo* GetMutableTestInfo(int i); // Sets the should_run member. void set_should_run(bool should) { should_run_ = should; } // Adds a TestInfo to this test suite. Will delete the TestInfo upon // destruction of the TestSuite object. void AddTestInfo(TestInfo * test_info); // Clears the results of all tests in this test suite. void ClearResult(); // Clears the results of all tests in the given test suite. static void ClearTestSuiteResult(TestSuite* test_suite) { test_suite->ClearResult(); } // Runs every test in this TestSuite. void Run(); // Runs SetUpTestSuite() for this TestSuite. This wrapper is needed // for catching exceptions thrown from SetUpTestSuite(). void RunSetUpTestSuite() { if (set_up_tc_ != nullptr) { (*set_up_tc_)(); } } // Runs TearDownTestSuite() for this TestSuite. This wrapper is // needed for catching exceptions thrown from TearDownTestSuite(). void RunTearDownTestSuite() { if (tear_down_tc_ != nullptr) { (*tear_down_tc_)(); } } // Returns true if and only if test passed. static bool TestPassed(const TestInfo* test_info) { return test_info->should_run() && test_info->result()->Passed(); } // Returns true if and only if test skipped. static bool TestSkipped(const TestInfo* test_info) { return test_info->should_run() && test_info->result()->Skipped(); } // Returns true if and only if test failed. static bool TestFailed(const TestInfo* test_info) { return test_info->should_run() && test_info->result()->Failed(); } // Returns true if and only if the test is disabled and will be reported in // the XML report. static bool TestReportableDisabled(const TestInfo* test_info) { return test_info->is_reportable() && test_info->is_disabled_; } // Returns true if and only if test is disabled. static bool TestDisabled(const TestInfo* test_info) { return test_info->is_disabled_; } // Returns true if and only if this test will appear in the XML report. static bool TestReportable(const TestInfo* test_info) { return test_info->is_reportable(); } // Returns true if the given test should run. static bool ShouldRunTest(const TestInfo* test_info) { return test_info->should_run(); } // Shuffles the tests in this test suite. void ShuffleTests(internal::Random* random); // Restores the test order to before the first shuffle. void UnshuffleTests(); // Name of the test suite. std::string name_; // Name of the parameter type, or NULL if this is not a typed or a // type-parameterized test. const std::unique_ptr type_param_; // The vector of TestInfos in their original order. It owns the // elements in the vector. std::vector test_info_list_; // Provides a level of indirection for the test list to allow easy // shuffling and restoring the test order. The i-th element in this // vector is the index of the i-th test in the shuffled test list. std::vector test_indices_; // Pointer to the function that sets up the test suite. internal::SetUpTestSuiteFunc set_up_tc_; // Pointer to the function that tears down the test suite. internal::TearDownTestSuiteFunc tear_down_tc_; // True if and only if any test in this test suite should run. bool should_run_; // The start time, in milliseconds since UNIX Epoch. TimeInMillis start_timestamp_; // Elapsed time, in milliseconds. TimeInMillis elapsed_time_; // Holds test properties recorded during execution of SetUpTestSuite and // TearDownTestSuite. TestResult ad_hoc_test_result_; // We disallow copying TestSuites. GTEST_DISALLOW_COPY_AND_ASSIGN_(TestSuite); }; // An Environment object is capable of setting up and tearing down an // environment. You should subclass this to define your own // environment(s). // // An Environment object does the set-up and tear-down in virtual // methods SetUp() and TearDown() instead of the constructor and the // destructor, as: // // 1. You cannot safely throw from a destructor. This is a problem // as in some cases Google Test is used where exceptions are enabled, and // we may want to implement ASSERT_* using exceptions where they are // available. // 2. You cannot use ASSERT_* directly in a constructor or // destructor. class Environment { public: // The d'tor is virtual as we need to subclass Environment. virtual ~Environment() {} // Override this to define how to set up the environment. virtual void SetUp() {} // Override this to define how to tear down the environment. virtual void TearDown() {} private: // If you see an error about overriding the following function or // about it being private, you have mis-spelled SetUp() as Setup(). struct Setup_should_be_spelled_SetUp {}; virtual Setup_should_be_spelled_SetUp* Setup() { return nullptr; } }; #if GTEST_HAS_EXCEPTIONS // Exception which can be thrown from TestEventListener::OnTestPartResult. class GTEST_API_ AssertionException : public internal::GoogleTestFailureException { public: explicit AssertionException(const TestPartResult& result) : GoogleTestFailureException(result) {} }; #endif // GTEST_HAS_EXCEPTIONS // The interface for tracing execution of tests. The methods are organized in // the order the corresponding events are fired. class TestEventListener { public: virtual ~TestEventListener() {} // Fired before any test activity starts. virtual void OnTestProgramStart(const UnitTest& unit_test) = 0; // Fired before each iteration of tests starts. There may be more than // one iteration if GTEST_FLAG(repeat) is set. iteration is the iteration // index, starting from 0. virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration) = 0; // Fired before environment set-up for each iteration of tests starts. virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test) = 0; // Fired after environment set-up for each iteration of tests ends. virtual void OnEnvironmentsSetUpEnd(const UnitTest& unit_test) = 0; // Fired before the test suite starts. virtual void OnTestSuiteStart(const TestSuite& /*test_suite*/) {} // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ virtual void OnTestCaseStart(const TestCase& /*test_case*/) {} #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Fired before the test starts. virtual void OnTestStart(const TestInfo& test_info) = 0; // Fired after a failed assertion or a SUCCEED() invocation. // If you want to throw an exception from this function to skip to the next // TEST, it must be AssertionException defined above, or inherited from it. virtual void OnTestPartResult(const TestPartResult& test_part_result) = 0; // Fired after the test ends. virtual void OnTestEnd(const TestInfo& test_info) = 0; // Fired after the test suite ends. virtual void OnTestSuiteEnd(const TestSuite& /*test_suite*/) {} // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ virtual void OnTestCaseEnd(const TestCase& /*test_case*/) {} #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Fired before environment tear-down for each iteration of tests starts. virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test) = 0; // Fired after environment tear-down for each iteration of tests ends. virtual void OnEnvironmentsTearDownEnd(const UnitTest& unit_test) = 0; // Fired after each iteration of tests finishes. virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration) = 0; // Fired after all test activities have ended. virtual void OnTestProgramEnd(const UnitTest& unit_test) = 0; }; // The convenience class for users who need to override just one or two // methods and are not concerned that a possible change to a signature of // the methods they override will not be caught during the build. For // comments about each method please see the definition of TestEventListener // above. class EmptyTestEventListener : public TestEventListener { public: void OnTestProgramStart(const UnitTest& /*unit_test*/) override {} void OnTestIterationStart(const UnitTest& /*unit_test*/, int /*iteration*/) override {} void OnEnvironmentsSetUpStart(const UnitTest& /*unit_test*/) override {} void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {} void OnTestSuiteStart(const TestSuite& /*test_suite*/) override {} // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestCase& /*test_case*/) override {} #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestStart(const TestInfo& /*test_info*/) override {} void OnTestPartResult(const TestPartResult& /*test_part_result*/) override {} void OnTestEnd(const TestInfo& /*test_info*/) override {} void OnTestSuiteEnd(const TestSuite& /*test_suite*/) override {} #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& /*test_case*/) override {} #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnEnvironmentsTearDownStart(const UnitTest& /*unit_test*/) override {} void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {} void OnTestIterationEnd(const UnitTest& /*unit_test*/, int /*iteration*/) override {} void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {} }; // TestEventListeners lets users add listeners to track events in Google Test. class GTEST_API_ TestEventListeners { public: TestEventListeners(); ~TestEventListeners(); // Appends an event listener to the end of the list. Google Test assumes // the ownership of the listener (i.e. it will delete the listener when // the test program finishes). void Append(TestEventListener* listener); // Removes the given event listener from the list and returns it. It then // becomes the caller's responsibility to delete the listener. Returns // NULL if the listener is not found in the list. TestEventListener* Release(TestEventListener* listener); // Returns the standard listener responsible for the default console // output. Can be removed from the listeners list to shut down default // console output. Note that removing this object from the listener list // with Release transfers its ownership to the caller and makes this // function return NULL the next time. TestEventListener* default_result_printer() const { return default_result_printer_; } // Returns the standard listener responsible for the default XML output // controlled by the --gtest_output=xml flag. Can be removed from the // listeners list by users who want to shut down the default XML output // controlled by this flag and substitute it with custom one. Note that // removing this object from the listener list with Release transfers its // ownership to the caller and makes this function return NULL the next // time. TestEventListener* default_xml_generator() const { return default_xml_generator_; } private: friend class TestSuite; friend class TestInfo; friend class internal::DefaultGlobalTestPartResultReporter; friend class internal::NoExecDeathTest; friend class internal::TestEventListenersAccessor; friend class internal::UnitTestImpl; // Returns repeater that broadcasts the TestEventListener events to all // subscribers. TestEventListener* repeater(); // Sets the default_result_printer attribute to the provided listener. // The listener is also added to the listener list and previous // default_result_printer is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void SetDefaultResultPrinter(TestEventListener* listener); // Sets the default_xml_generator attribute to the provided listener. The // listener is also added to the listener list and previous // default_xml_generator is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void SetDefaultXmlGenerator(TestEventListener* listener); // Controls whether events will be forwarded by the repeater to the // listeners in the list. bool EventForwardingEnabled() const; void SuppressEventForwarding(); // The actual list of listeners. internal::TestEventRepeater* repeater_; // Listener responsible for the standard result output. TestEventListener* default_result_printer_; // Listener responsible for the creation of the XML output file. TestEventListener* default_xml_generator_; // We disallow copying TestEventListeners. GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventListeners); }; // A UnitTest consists of a vector of TestSuites. // // This is a singleton class. The only instance of UnitTest is // created when UnitTest::GetInstance() is first called. This // instance is never deleted. // // UnitTest is not copyable. // // This class is thread-safe as long as the methods are called // according to their specification. class GTEST_API_ UnitTest { public: // Gets the singleton UnitTest object. The first time this method // is called, a UnitTest object is constructed and returned. // Consecutive calls will return the same object. static UnitTest* GetInstance(); // Runs all tests in this UnitTest object and prints the result. // Returns 0 if successful, or 1 otherwise. // // This method can only be called from the main thread. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. int Run() GTEST_MUST_USE_RESULT_; // Returns the working directory when the first TEST() or TEST_F() // was executed. The UnitTest object owns the string. const char* original_working_dir() const; // Returns the TestSuite object for the test that's currently running, // or NULL if no test is running. const TestSuite* current_test_suite() const GTEST_LOCK_EXCLUDED_(mutex_); // Legacy API is still available but deprecated #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* current_test_case() const GTEST_LOCK_EXCLUDED_(mutex_); #endif // Returns the TestInfo object for the test that's currently running, // or NULL if no test is running. const TestInfo* current_test_info() const GTEST_LOCK_EXCLUDED_(mutex_); // Returns the random seed used at the start of the current test run. int random_seed() const; // Returns the ParameterizedTestSuiteRegistry object used to keep track of // value-parameterized tests and instantiate and register them. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. internal::ParameterizedTestSuiteRegistry& parameterized_test_registry() GTEST_LOCK_EXCLUDED_(mutex_); // Gets the number of successful test suites. int successful_test_suite_count() const; // Gets the number of failed test suites. int failed_test_suite_count() const; // Gets the number of all test suites. int total_test_suite_count() const; // Gets the number of all test suites that contain at least one test // that should run. int test_suite_to_run_count() const; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ int successful_test_case_count() const; int failed_test_case_count() const; int total_test_case_count() const; int test_case_to_run_count() const; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Gets the number of successful tests. int successful_test_count() const; // Gets the number of skipped tests. int skipped_test_count() const; // Gets the number of failed tests. int failed_test_count() const; // Gets the number of disabled tests that will be reported in the XML report. int reportable_disabled_test_count() const; // Gets the number of disabled tests. int disabled_test_count() const; // Gets the number of tests to be printed in the XML report. int reportable_test_count() const; // Gets the number of all tests. int total_test_count() const; // Gets the number of tests that should run. int test_to_run_count() const; // Gets the time of the test program start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp() const; // Gets the elapsed time, in milliseconds. TimeInMillis elapsed_time() const; // Returns true if and only if the unit test passed (i.e. all test suites // passed). bool Passed() const; // Returns true if and only if the unit test failed (i.e. some test suite // failed or something outside of all tests failed). bool Failed() const; // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. const TestSuite* GetTestSuite(int i) const; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* GetTestCase(int i) const; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Returns the TestResult containing information on test failures and // properties logged outside of individual test suites. const TestResult& ad_hoc_test_result() const; // Returns the list of event listeners that can be used to track events // inside Google Test. TestEventListeners& listeners(); private: // Registers and returns a global test environment. When a test // program is run, all global test environments will be set-up in // the order they were registered. After all tests in the program // have finished, all global test environments will be torn-down in // the *reverse* order they were registered. // // The UnitTest object takes ownership of the given environment. // // This method can only be called from the main thread. Environment* AddEnvironment(Environment* env); // Adds a TestPartResult to the current TestResult object. All // Google Test assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) // eventually call this to report their results. The user code // should use the assertion macros instead of calling this directly. void AddTestPartResult(TestPartResult::Type result_type, const char* file_name, int line_number, const std::string& message, const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_); // Adds a TestProperty to the current TestResult object when invoked from // inside a test, to current TestSuite's ad_hoc_test_result_ when invoked // from SetUpTestSuite or TearDownTestSuite, or to the global property set // when invoked elsewhere. If the result already contains a property with // the same key, the value will be updated. void RecordProperty(const std::string& key, const std::string& value); // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. TestSuite* GetMutableTestSuite(int i); // Accessors for the implementation object. internal::UnitTestImpl* impl() { return impl_; } const internal::UnitTestImpl* impl() const { return impl_; } // These classes and functions are friends as they need to access private // members of UnitTest. friend class ScopedTrace; friend class Test; friend class internal::AssertHelper; friend class internal::StreamingListenerTest; friend class internal::UnitTestRecordPropertyTestHelper; friend Environment* AddGlobalTestEnvironment(Environment* env); friend internal::UnitTestImpl* internal::GetUnitTestImpl(); friend void internal::ReportFailureInUnknownLocation( TestPartResult::Type result_type, const std::string& message); // Creates an empty UnitTest. UnitTest(); // D'tor virtual ~UnitTest(); // Pushes a trace defined by SCOPED_TRACE() on to the per-thread // Google Test trace stack. void PushGTestTrace(const internal::TraceInfo& trace) GTEST_LOCK_EXCLUDED_(mutex_); // Pops a trace from the per-thread Google Test trace stack. void PopGTestTrace() GTEST_LOCK_EXCLUDED_(mutex_); // Protects mutable state in *impl_. This is mutable as some const // methods need to lock it too. mutable internal::Mutex mutex_; // Opaque implementation object. This field is never changed once // the object is constructed. We don't mark it as const here, as // doing so will cause a warning in the constructor of UnitTest. // Mutable state in *impl_ is protected by mutex_. internal::UnitTestImpl* impl_; // We disallow copying UnitTest. GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTest); }; // A convenient wrapper for adding an environment for the test // program. // // You should call this before RUN_ALL_TESTS() is called, probably in // main(). If you use gtest_main, you need to call this before main() // starts for it to take effect. For example, you can define a global // variable like this: // // testing::Environment* const foo_env = // testing::AddGlobalTestEnvironment(new FooEnvironment); // // However, we strongly recommend you to write your own main() and // call AddGlobalTestEnvironment() there, as relying on initialization // of global variables makes the code harder to read and may cause // problems when you register multiple environments from different // translation units and the environments have dependencies among them // (remember that the compiler doesn't guarantee the order in which // global variables from different translation units are initialized). inline Environment* AddGlobalTestEnvironment(Environment* env) { return UnitTest::GetInstance()->AddEnvironment(env); } // Initializes Google Test. This must be called before calling // RUN_ALL_TESTS(). In particular, it parses a command line for the // flags that Google Test recognizes. Whenever a Google Test flag is // seen, it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Test flag variables are // updated. // // Calling the function for the second time has no user-visible effect. GTEST_API_ void InitGoogleTest(int* argc, char** argv); // This overloaded version can be used in Windows programs compiled in // UNICODE mode. GTEST_API_ void InitGoogleTest(int* argc, wchar_t** argv); // This overloaded version can be used on Arduino/embedded platforms where // there is no argc/argv. GTEST_API_ void InitGoogleTest(); namespace internal { // Separate the error generating code from the code path to reduce the stack // frame size of CmpHelperEQ. This helps reduce the overhead of some sanitizers // when calling EXPECT_* in a tight loop. template AssertionResult CmpHelperEQFailure(const char* lhs_expression, const char* rhs_expression, const T1& lhs, const T2& rhs) { return EqFailure(lhs_expression, rhs_expression, FormatForComparisonFailureMessage(lhs, rhs), FormatForComparisonFailureMessage(rhs, lhs), false); } // This block of code defines operator==/!= // to block lexical scope lookup. // It prevents using invalid operator==/!= defined at namespace scope. struct faketype {}; inline bool operator==(faketype, faketype) { return true; } inline bool operator!=(faketype, faketype) { return false; } // The helper function for {ASSERT|EXPECT}_EQ. template AssertionResult CmpHelperEQ(const char* lhs_expression, const char* rhs_expression, const T1& lhs, const T2& rhs) { if (lhs == rhs) { return AssertionSuccess(); } return CmpHelperEQFailure(lhs_expression, rhs_expression, lhs, rhs); } // With this overloaded version, we allow anonymous enums to be used // in {ASSERT|EXPECT}_EQ when compiled with gcc 4, as anonymous enums // can be implicitly cast to BiggestInt. GTEST_API_ AssertionResult CmpHelperEQ(const char* lhs_expression, const char* rhs_expression, BiggestInt lhs, BiggestInt rhs); class EqHelper { public: // This templatized version is for the general case. template < typename T1, typename T2, // Disable this overload for cases where one argument is a pointer // and the other is the null pointer constant. typename std::enable_if::value || !std::is_pointer::value>::type* = nullptr> static AssertionResult Compare(const char* lhs_expression, const char* rhs_expression, const T1& lhs, const T2& rhs) { return CmpHelperEQ(lhs_expression, rhs_expression, lhs, rhs); } // With this overloaded version, we allow anonymous enums to be used // in {ASSERT|EXPECT}_EQ when compiled with gcc 4, as anonymous // enums can be implicitly cast to BiggestInt. // // Even though its body looks the same as the above version, we // cannot merge the two, as it will make anonymous enums unhappy. static AssertionResult Compare(const char* lhs_expression, const char* rhs_expression, BiggestInt lhs, BiggestInt rhs) { return CmpHelperEQ(lhs_expression, rhs_expression, lhs, rhs); } template static AssertionResult Compare( const char* lhs_expression, const char* rhs_expression, // Handle cases where '0' is used as a null pointer literal. std::nullptr_t /* lhs */, T* rhs) { // We already know that 'lhs' is a null pointer. return CmpHelperEQ(lhs_expression, rhs_expression, static_cast(nullptr), rhs); } }; // Separate the error generating code from the code path to reduce the stack // frame size of CmpHelperOP. This helps reduce the overhead of some sanitizers // when calling EXPECT_OP in a tight loop. template AssertionResult CmpHelperOpFailure(const char* expr1, const char* expr2, const T1& val1, const T2& val2, const char* op) { return AssertionFailure() << "Expected: (" << expr1 << ") " << op << " (" << expr2 << "), actual: " << FormatForComparisonFailureMessage(val1, val2) << " vs " << FormatForComparisonFailureMessage(val2, val1); } // A macro for implementing the helper functions needed to implement // ASSERT_?? and EXPECT_??. It is here just to avoid copy-and-paste // of similar code. // // For each templatized helper function, we also define an overloaded // version for BiggestInt in order to reduce code bloat and allow // anonymous enums to be used with {ASSERT|EXPECT}_?? when compiled // with gcc 4. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. #define GTEST_IMPL_CMP_HELPER_(op_name, op)\ template \ AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \ const T1& val1, const T2& val2) {\ if (val1 op val2) {\ return AssertionSuccess();\ } else {\ return CmpHelperOpFailure(expr1, expr2, val1, val2, #op);\ }\ }\ GTEST_API_ AssertionResult CmpHelper##op_name(\ const char* expr1, const char* expr2, BiggestInt val1, BiggestInt val2) // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. // Implements the helper function for {ASSERT|EXPECT}_NE GTEST_IMPL_CMP_HELPER_(NE, !=); // Implements the helper function for {ASSERT|EXPECT}_LE GTEST_IMPL_CMP_HELPER_(LE, <=); // Implements the helper function for {ASSERT|EXPECT}_LT GTEST_IMPL_CMP_HELPER_(LT, <); // Implements the helper function for {ASSERT|EXPECT}_GE GTEST_IMPL_CMP_HELPER_(GE, >=); // Implements the helper function for {ASSERT|EXPECT}_GT GTEST_IMPL_CMP_HELPER_(GT, >); #undef GTEST_IMPL_CMP_HELPER_ // The helper function for {ASSERT|EXPECT}_STREQ. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. GTEST_API_ AssertionResult CmpHelperSTREQ(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2); // The helper function for {ASSERT|EXPECT}_STRCASEEQ. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. GTEST_API_ AssertionResult CmpHelperSTRCASEEQ(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2); // The helper function for {ASSERT|EXPECT}_STRNE. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. GTEST_API_ AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2); // The helper function for {ASSERT|EXPECT}_STRCASENE. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. GTEST_API_ AssertionResult CmpHelperSTRCASENE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2); // Helper function for *_STREQ on wide strings. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. GTEST_API_ AssertionResult CmpHelperSTREQ(const char* s1_expression, const char* s2_expression, const wchar_t* s1, const wchar_t* s2); // Helper function for *_STRNE on wide strings. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. GTEST_API_ AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const wchar_t* s1, const wchar_t* s2); } // namespace internal // IsSubstring() and IsNotSubstring() are intended to be used as the // first argument to {EXPECT,ASSERT}_PRED_FORMAT2(), not by // themselves. They check whether needle is a substring of haystack // (NULL is considered a substring of itself only), and return an // appropriate error message when they fail. // // The {needle,haystack}_expr arguments are the stringified // expressions that generated the two real arguments. GTEST_API_ AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack); GTEST_API_ AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack); GTEST_API_ AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack); GTEST_API_ AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack); GTEST_API_ AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack); GTEST_API_ AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack); #if GTEST_HAS_STD_WSTRING GTEST_API_ AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack); GTEST_API_ AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack); #endif // GTEST_HAS_STD_WSTRING namespace internal { // Helper template function for comparing floating-points. // // Template parameter: // // RawType: the raw floating-point type (either float or double) // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. template AssertionResult CmpHelperFloatingPointEQ(const char* lhs_expression, const char* rhs_expression, RawType lhs_value, RawType rhs_value) { const FloatingPoint lhs(lhs_value), rhs(rhs_value); if (lhs.AlmostEquals(rhs)) { return AssertionSuccess(); } ::std::stringstream lhs_ss; lhs_ss << std::setprecision(std::numeric_limits::digits10 + 2) << lhs_value; ::std::stringstream rhs_ss; rhs_ss << std::setprecision(std::numeric_limits::digits10 + 2) << rhs_value; return EqFailure(lhs_expression, rhs_expression, StringStreamToString(&lhs_ss), StringStreamToString(&rhs_ss), false); } // Helper function for implementing ASSERT_NEAR. // // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM. GTEST_API_ AssertionResult DoubleNearPredFormat(const char* expr1, const char* expr2, const char* abs_error_expr, double val1, double val2, double abs_error); // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // A class that enables one to stream messages to assertion macros class GTEST_API_ AssertHelper { public: // Constructor. AssertHelper(TestPartResult::Type type, const char* file, int line, const char* message); ~AssertHelper(); // Message assignment is a semantic trick to enable assertion // streaming; see the GTEST_MESSAGE_ macro below. void operator=(const Message& message) const; private: // We put our data in a struct so that the size of the AssertHelper class can // be as small as possible. This is important because gcc is incapable of // re-using stack space even for temporary variables, so every EXPECT_EQ // reserves stack space for another AssertHelper. struct AssertHelperData { AssertHelperData(TestPartResult::Type t, const char* srcfile, int line_num, const char* msg) : type(t), file(srcfile), line(line_num), message(msg) { } TestPartResult::Type const type; const char* const file; int const line; std::string const message; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(AssertHelperData); }; AssertHelperData* const data_; GTEST_DISALLOW_COPY_AND_ASSIGN_(AssertHelper); }; enum GTestColor { COLOR_DEFAULT, COLOR_RED, COLOR_GREEN, COLOR_YELLOW }; GTEST_API_ GTEST_ATTRIBUTE_PRINTF_(2, 3) void ColoredPrintf(GTestColor color, const char* fmt, ...); } // namespace internal // The pure interface class that all value-parameterized tests inherit from. // A value-parameterized class must inherit from both ::testing::Test and // ::testing::WithParamInterface. In most cases that just means inheriting // from ::testing::TestWithParam, but more complicated test hierarchies // may need to inherit from Test and WithParamInterface at different levels. // // This interface has support for accessing the test parameter value via // the GetParam() method. // // Use it with one of the parameter generator defining functions, like Range(), // Values(), ValuesIn(), Bool(), and Combine(). // // class FooTest : public ::testing::TestWithParam { // protected: // FooTest() { // // Can use GetParam() here. // } // ~FooTest() override { // // Can use GetParam() here. // } // void SetUp() override { // // Can use GetParam() here. // } // void TearDown override { // // Can use GetParam() here. // } // }; // TEST_P(FooTest, DoesBar) { // // Can use GetParam() method here. // Foo foo; // ASSERT_TRUE(foo.DoesBar(GetParam())); // } // INSTANTIATE_TEST_SUITE_P(OneToTenRange, FooTest, ::testing::Range(1, 10)); template class WithParamInterface { public: typedef T ParamType; virtual ~WithParamInterface() {} // The current parameter value. Is also available in the test fixture's // constructor. static const ParamType& GetParam() { GTEST_CHECK_(parameter_ != nullptr) << "GetParam() can only be called inside a value-parameterized test " << "-- did you intend to write TEST_P instead of TEST_F?"; return *parameter_; } private: // Sets parameter value. The caller is responsible for making sure the value // remains alive and unchanged throughout the current test. static void SetParam(const ParamType* parameter) { parameter_ = parameter; } // Static value used for accessing parameter during a test lifetime. static const ParamType* parameter_; // TestClass must be a subclass of WithParamInterface and Test. template friend class internal::ParameterizedTestFactory; }; template const T* WithParamInterface::parameter_ = nullptr; // Most value-parameterized classes can ignore the existence of // WithParamInterface, and can just inherit from ::testing::TestWithParam. template class TestWithParam : public Test, public WithParamInterface { }; // Macros for indicating success/failure in test code. // Skips test in runtime. // Skipping test aborts current function. // Skipped tests are neither successful nor failed. #define GTEST_SKIP() GTEST_SKIP_("Skipped") // ADD_FAILURE unconditionally adds a failure to the current test. // SUCCEED generates a success - it doesn't automatically make the // current test successful, as a test is only successful when it has // no failure. // // EXPECT_* verifies that a certain condition is satisfied. If not, // it behaves like ADD_FAILURE. In particular: // // EXPECT_TRUE verifies that a Boolean condition is true. // EXPECT_FALSE verifies that a Boolean condition is false. // // FAIL and ASSERT_* are similar to ADD_FAILURE and EXPECT_*, except // that they will also abort the current function on failure. People // usually want the fail-fast behavior of FAIL and ASSERT_*, but those // writing data-driven tests often find themselves using ADD_FAILURE // and EXPECT_* more. // Generates a nonfatal failure with a generic message. #define ADD_FAILURE() GTEST_NONFATAL_FAILURE_("Failed") // Generates a nonfatal failure at the given source file location with // a generic message. #define ADD_FAILURE_AT(file, line) \ GTEST_MESSAGE_AT_(file, line, "Failed", \ ::testing::TestPartResult::kNonFatalFailure) // Generates a fatal failure with a generic message. #define GTEST_FAIL() GTEST_FATAL_FAILURE_("Failed") // Like GTEST_FAIL(), but at the given source file location. #define GTEST_FAIL_AT(file, line) \ GTEST_MESSAGE_AT_(file, line, "Failed", \ ::testing::TestPartResult::kFatalFailure) // Define this macro to 1 to omit the definition of FAIL(), which is a // generic name and clashes with some other libraries. #if !GTEST_DONT_DEFINE_FAIL # define FAIL() GTEST_FAIL() #endif // Generates a success with a generic message. #define GTEST_SUCCEED() GTEST_SUCCESS_("Succeeded") // Define this macro to 1 to omit the definition of SUCCEED(), which // is a generic name and clashes with some other libraries. #if !GTEST_DONT_DEFINE_SUCCEED # define SUCCEED() GTEST_SUCCEED() #endif // Macros for testing exceptions. // // * {ASSERT|EXPECT}_THROW(statement, expected_exception): // Tests that the statement throws the expected exception. // * {ASSERT|EXPECT}_NO_THROW(statement): // Tests that the statement doesn't throw any exception. // * {ASSERT|EXPECT}_ANY_THROW(statement): // Tests that the statement throws an exception. #define EXPECT_THROW(statement, expected_exception) \ GTEST_TEST_THROW_(statement, expected_exception, GTEST_NONFATAL_FAILURE_) #define EXPECT_NO_THROW(statement) \ GTEST_TEST_NO_THROW_(statement, GTEST_NONFATAL_FAILURE_) #define EXPECT_ANY_THROW(statement) \ GTEST_TEST_ANY_THROW_(statement, GTEST_NONFATAL_FAILURE_) #define ASSERT_THROW(statement, expected_exception) \ GTEST_TEST_THROW_(statement, expected_exception, GTEST_FATAL_FAILURE_) #define ASSERT_NO_THROW(statement) \ GTEST_TEST_NO_THROW_(statement, GTEST_FATAL_FAILURE_) #define ASSERT_ANY_THROW(statement) \ GTEST_TEST_ANY_THROW_(statement, GTEST_FATAL_FAILURE_) // Boolean assertions. Condition can be either a Boolean expression or an // AssertionResult. For more information on how to use AssertionResult with // these macros see comments on that class. #define EXPECT_TRUE(condition) \ GTEST_TEST_BOOLEAN_(condition, #condition, false, true, \ GTEST_NONFATAL_FAILURE_) #define EXPECT_FALSE(condition) \ GTEST_TEST_BOOLEAN_(!(condition), #condition, true, false, \ GTEST_NONFATAL_FAILURE_) #define ASSERT_TRUE(condition) \ GTEST_TEST_BOOLEAN_(condition, #condition, false, true, \ GTEST_FATAL_FAILURE_) #define ASSERT_FALSE(condition) \ GTEST_TEST_BOOLEAN_(!(condition), #condition, true, false, \ GTEST_FATAL_FAILURE_) // Macros for testing equalities and inequalities. // // * {ASSERT|EXPECT}_EQ(v1, v2): Tests that v1 == v2 // * {ASSERT|EXPECT}_NE(v1, v2): Tests that v1 != v2 // * {ASSERT|EXPECT}_LT(v1, v2): Tests that v1 < v2 // * {ASSERT|EXPECT}_LE(v1, v2): Tests that v1 <= v2 // * {ASSERT|EXPECT}_GT(v1, v2): Tests that v1 > v2 // * {ASSERT|EXPECT}_GE(v1, v2): Tests that v1 >= v2 // // When they are not, Google Test prints both the tested expressions and // their actual values. The values must be compatible built-in types, // or you will get a compiler error. By "compatible" we mean that the // values can be compared by the respective operator. // // Note: // // 1. It is possible to make a user-defined type work with // {ASSERT|EXPECT}_??(), but that requires overloading the // comparison operators and is thus discouraged by the Google C++ // Usage Guide. Therefore, you are advised to use the // {ASSERT|EXPECT}_TRUE() macro to assert that two objects are // equal. // // 2. The {ASSERT|EXPECT}_??() macros do pointer comparisons on // pointers (in particular, C strings). Therefore, if you use it // with two C strings, you are testing how their locations in memory // are related, not how their content is related. To compare two C // strings by content, use {ASSERT|EXPECT}_STR*(). // // 3. {ASSERT|EXPECT}_EQ(v1, v2) is preferred to // {ASSERT|EXPECT}_TRUE(v1 == v2), as the former tells you // what the actual value is when it fails, and similarly for the // other comparisons. // // 4. Do not depend on the order in which {ASSERT|EXPECT}_??() // evaluate their arguments, which is undefined. // // 5. These macros evaluate their arguments exactly once. // // Examples: // // EXPECT_NE(Foo(), 5); // EXPECT_EQ(a_pointer, NULL); // ASSERT_LT(i, array_size); // ASSERT_GT(records.size(), 0) << "There is no record left."; #define EXPECT_EQ(val1, val2) \ EXPECT_PRED_FORMAT2(::testing::internal::EqHelper::Compare, val1, val2) #define EXPECT_NE(val1, val2) \ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperNE, val1, val2) #define EXPECT_LE(val1, val2) \ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperLE, val1, val2) #define EXPECT_LT(val1, val2) \ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperLT, val1, val2) #define EXPECT_GE(val1, val2) \ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperGE, val1, val2) #define EXPECT_GT(val1, val2) \ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperGT, val1, val2) #define GTEST_ASSERT_EQ(val1, val2) \ ASSERT_PRED_FORMAT2(::testing::internal::EqHelper::Compare, val1, val2) #define GTEST_ASSERT_NE(val1, val2) \ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperNE, val1, val2) #define GTEST_ASSERT_LE(val1, val2) \ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperLE, val1, val2) #define GTEST_ASSERT_LT(val1, val2) \ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperLT, val1, val2) #define GTEST_ASSERT_GE(val1, val2) \ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperGE, val1, val2) #define GTEST_ASSERT_GT(val1, val2) \ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperGT, val1, val2) // Define macro GTEST_DONT_DEFINE_ASSERT_XY to 1 to omit the definition of // ASSERT_XY(), which clashes with some users' own code. #if !GTEST_DONT_DEFINE_ASSERT_EQ # define ASSERT_EQ(val1, val2) GTEST_ASSERT_EQ(val1, val2) #endif #if !GTEST_DONT_DEFINE_ASSERT_NE # define ASSERT_NE(val1, val2) GTEST_ASSERT_NE(val1, val2) #endif #if !GTEST_DONT_DEFINE_ASSERT_LE # define ASSERT_LE(val1, val2) GTEST_ASSERT_LE(val1, val2) #endif #if !GTEST_DONT_DEFINE_ASSERT_LT # define ASSERT_LT(val1, val2) GTEST_ASSERT_LT(val1, val2) #endif #if !GTEST_DONT_DEFINE_ASSERT_GE # define ASSERT_GE(val1, val2) GTEST_ASSERT_GE(val1, val2) #endif #if !GTEST_DONT_DEFINE_ASSERT_GT # define ASSERT_GT(val1, val2) GTEST_ASSERT_GT(val1, val2) #endif // C-string Comparisons. All tests treat NULL and any non-NULL string // as different. Two NULLs are equal. // // * {ASSERT|EXPECT}_STREQ(s1, s2): Tests that s1 == s2 // * {ASSERT|EXPECT}_STRNE(s1, s2): Tests that s1 != s2 // * {ASSERT|EXPECT}_STRCASEEQ(s1, s2): Tests that s1 == s2, ignoring case // * {ASSERT|EXPECT}_STRCASENE(s1, s2): Tests that s1 != s2, ignoring case // // For wide or narrow string objects, you can use the // {ASSERT|EXPECT}_??() macros. // // Don't depend on the order in which the arguments are evaluated, // which is undefined. // // These macros evaluate their arguments exactly once. #define EXPECT_STREQ(s1, s2) \ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperSTREQ, s1, s2) #define EXPECT_STRNE(s1, s2) \ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperSTRNE, s1, s2) #define EXPECT_STRCASEEQ(s1, s2) \ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperSTRCASEEQ, s1, s2) #define EXPECT_STRCASENE(s1, s2)\ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperSTRCASENE, s1, s2) #define ASSERT_STREQ(s1, s2) \ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperSTREQ, s1, s2) #define ASSERT_STRNE(s1, s2) \ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperSTRNE, s1, s2) #define ASSERT_STRCASEEQ(s1, s2) \ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperSTRCASEEQ, s1, s2) #define ASSERT_STRCASENE(s1, s2)\ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperSTRCASENE, s1, s2) // Macros for comparing floating-point numbers. // // * {ASSERT|EXPECT}_FLOAT_EQ(val1, val2): // Tests that two float values are almost equal. // * {ASSERT|EXPECT}_DOUBLE_EQ(val1, val2): // Tests that two double values are almost equal. // * {ASSERT|EXPECT}_NEAR(v1, v2, abs_error): // Tests that v1 and v2 are within the given distance to each other. // // Google Test uses ULP-based comparison to automatically pick a default // error bound that is appropriate for the operands. See the // FloatingPoint template class in gtest-internal.h if you are // interested in the implementation details. #define EXPECT_FLOAT_EQ(val1, val2)\ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperFloatingPointEQ, \ val1, val2) #define EXPECT_DOUBLE_EQ(val1, val2)\ EXPECT_PRED_FORMAT2(::testing::internal::CmpHelperFloatingPointEQ, \ val1, val2) #define ASSERT_FLOAT_EQ(val1, val2)\ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperFloatingPointEQ, \ val1, val2) #define ASSERT_DOUBLE_EQ(val1, val2)\ ASSERT_PRED_FORMAT2(::testing::internal::CmpHelperFloatingPointEQ, \ val1, val2) #define EXPECT_NEAR(val1, val2, abs_error)\ EXPECT_PRED_FORMAT3(::testing::internal::DoubleNearPredFormat, \ val1, val2, abs_error) #define ASSERT_NEAR(val1, val2, abs_error)\ ASSERT_PRED_FORMAT3(::testing::internal::DoubleNearPredFormat, \ val1, val2, abs_error) // These predicate format functions work on floating-point values, and // can be used in {ASSERT|EXPECT}_PRED_FORMAT2*(), e.g. // // EXPECT_PRED_FORMAT2(testing::DoubleLE, Foo(), 5.0); // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. GTEST_API_ AssertionResult FloatLE(const char* expr1, const char* expr2, float val1, float val2); GTEST_API_ AssertionResult DoubleLE(const char* expr1, const char* expr2, double val1, double val2); #if GTEST_OS_WINDOWS // Macros that test for HRESULT failure and success, these are only useful // on Windows, and rely on Windows SDK macros and APIs to compile. // // * {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}(expr) // // When expr unexpectedly fails or succeeds, Google Test prints the // expected result and the actual result with both a human-readable // string representation of the error, if available, as well as the // hex result code. # define EXPECT_HRESULT_SUCCEEDED(expr) \ EXPECT_PRED_FORMAT1(::testing::internal::IsHRESULTSuccess, (expr)) # define ASSERT_HRESULT_SUCCEEDED(expr) \ ASSERT_PRED_FORMAT1(::testing::internal::IsHRESULTSuccess, (expr)) # define EXPECT_HRESULT_FAILED(expr) \ EXPECT_PRED_FORMAT1(::testing::internal::IsHRESULTFailure, (expr)) # define ASSERT_HRESULT_FAILED(expr) \ ASSERT_PRED_FORMAT1(::testing::internal::IsHRESULTFailure, (expr)) #endif // GTEST_OS_WINDOWS // Macros that execute statement and check that it doesn't generate new fatal // failures in the current thread. // // * {ASSERT|EXPECT}_NO_FATAL_FAILURE(statement); // // Examples: // // EXPECT_NO_FATAL_FAILURE(Process()); // ASSERT_NO_FATAL_FAILURE(Process()) << "Process() failed"; // #define ASSERT_NO_FATAL_FAILURE(statement) \ GTEST_TEST_NO_FATAL_FAILURE_(statement, GTEST_FATAL_FAILURE_) #define EXPECT_NO_FATAL_FAILURE(statement) \ GTEST_TEST_NO_FATAL_FAILURE_(statement, GTEST_NONFATAL_FAILURE_) // Causes a trace (including the given source file path and line number, // and the given message) to be included in every test failure message generated // by code in the scope of the lifetime of an instance of this class. The effect // is undone with the destruction of the instance. // // The message argument can be anything streamable to std::ostream. // // Example: // testing::ScopedTrace trace("file.cc", 123, "message"); // class GTEST_API_ ScopedTrace { public: // The c'tor pushes the given source file location and message onto // a trace stack maintained by Google Test. // Template version. Uses Message() to convert the values into strings. // Slow, but flexible. template ScopedTrace(const char* file, int line, const T& message) { PushTrace(file, line, (Message() << message).GetString()); } // Optimize for some known types. ScopedTrace(const char* file, int line, const char* message) { PushTrace(file, line, message ? message : "(null)"); } ScopedTrace(const char* file, int line, const std::string& message) { PushTrace(file, line, message); } // The d'tor pops the info pushed by the c'tor. // // Note that the d'tor is not virtual in order to be efficient. // Don't inherit from ScopedTrace! ~ScopedTrace(); private: void PushTrace(const char* file, int line, std::string message); GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace); } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its // c'tor and d'tor. Therefore it doesn't // need to be used otherwise. // Causes a trace (including the source file path, the current line // number, and the given message) to be included in every test failure // message generated by code in the current scope. The effect is // undone when the control leaves the current scope. // // The message argument can be anything streamable to std::ostream. // // In the implementation, we include the current line number as part // of the dummy variable name, thus allowing multiple SCOPED_TRACE()s // to appear in the same block - as long as they are on different // lines. // // Assuming that each thread maintains its own stack of traces. // Therefore, a SCOPED_TRACE() would (correctly) only affect the // assertions in its own thread. #define SCOPED_TRACE(message) \ ::testing::ScopedTrace GTEST_CONCAT_TOKEN_(gtest_trace_, __LINE__)(\ __FILE__, __LINE__, (message)) // Compile-time assertion for type equality. // StaticAssertTypeEq() compiles if and only if type1 and type2 // are the same type. The value it returns is not interesting. // // Instead of making StaticAssertTypeEq a class template, we make it a // function template that invokes a helper class template. This // prevents a user from misusing StaticAssertTypeEq by // defining objects of that type. // // CAVEAT: // // When used inside a method of a class template, // StaticAssertTypeEq() is effective ONLY IF the method is // instantiated. For example, given: // // template class Foo { // public: // void Bar() { testing::StaticAssertTypeEq(); } // }; // // the code: // // void Test1() { Foo foo; } // // will NOT generate a compiler error, as Foo::Bar() is never // actually instantiated. Instead, you need: // // void Test2() { Foo foo; foo.Bar(); } // // to cause a compiler error. template constexpr bool StaticAssertTypeEq() noexcept { static_assert(std::is_same::value, "type1 and type2 are not the same type"); return true; } // Defines a test. // // The first parameter is the name of the test suite, and the second // parameter is the name of the test within the test suite. // // The convention is to end the test suite name with "Test". For // example, a test suite for the Foo class can be named FooTest. // // Test code should appear between braces after an invocation of // this macro. Example: // // TEST(FooTest, InitializesCorrectly) { // Foo foo; // EXPECT_TRUE(foo.StatusIsOK()); // } // Note that we call GetTestTypeId() instead of GetTypeId< // ::testing::Test>() here to get the type ID of testing::Test. This // is to work around a suspected linker bug when using Google Test as // a framework on Mac OS X. The bug causes GetTypeId< // ::testing::Test>() to return different values depending on whether // the call is from the Google Test framework itself or from user test // code. GetTestTypeId() is guaranteed to always return the same // value, as it always calls GetTypeId<>() from the Google Test // framework. #define GTEST_TEST(test_suite_name, test_name) \ GTEST_TEST_(test_suite_name, test_name, ::testing::Test, \ ::testing::internal::GetTestTypeId()) // Define this macro to 1 to omit the definition of TEST(), which // is a generic name and clashes with some other libraries. #if !GTEST_DONT_DEFINE_TEST #define TEST(test_suite_name, test_name) GTEST_TEST(test_suite_name, test_name) #endif // Defines a test that uses a test fixture. // // The first parameter is the name of the test fixture class, which // also doubles as the test suite name. The second parameter is the // name of the test within the test suite. // // A test fixture class must be declared earlier. The user should put // the test code between braces after using this macro. Example: // // class FooTest : public testing::Test { // protected: // void SetUp() override { b_.AddElement(3); } // // Foo a_; // Foo b_; // }; // // TEST_F(FooTest, InitializesCorrectly) { // EXPECT_TRUE(a_.StatusIsOK()); // } // // TEST_F(FooTest, ReturnsElementCountCorrectly) { // EXPECT_EQ(a_.size(), 0); // EXPECT_EQ(b_.size(), 1); // } // // GOOGLETEST_CM0011 DO NOT DELETE #define TEST_F(test_fixture, test_name)\ GTEST_TEST_(test_fixture, test_name, test_fixture, \ ::testing::internal::GetTypeId()) // Returns a path to temporary directory. // Tries to determine an appropriate directory for the platform. GTEST_API_ std::string TempDir(); #ifdef _MSC_VER # pragma warning(pop) #endif // Dynamically registers a test with the framework. // // This is an advanced API only to be used when the `TEST` macros are // insufficient. The macros should be preferred when possible, as they avoid // most of the complexity of calling this function. // // The `factory` argument is a factory callable (move-constructible) object or // function pointer that creates a new instance of the Test object. It // handles ownership to the caller. The signature of the callable is // `Fixture*()`, where `Fixture` is the test fixture class for the test. All // tests registered with the same `test_suite_name` must return the same // fixture type. This is checked at runtime. // // The framework will infer the fixture class from the factory and will call // the `SetUpTestSuite` and `TearDownTestSuite` for it. // // Must be called before `RUN_ALL_TESTS()` is invoked, otherwise behavior is // undefined. // // Use case example: // // class MyFixture : public ::testing::Test { // public: // // All of these optional, just like in regular macro usage. // static void SetUpTestSuite() { ... } // static void TearDownTestSuite() { ... } // void SetUp() override { ... } // void TearDown() override { ... } // }; // // class MyTest : public MyFixture { // public: // explicit MyTest(int data) : data_(data) {} // void TestBody() override { ... } // // private: // int data_; // }; // // void RegisterMyTests(const std::vector& values) { // for (int v : values) { // ::testing::RegisterTest( // "MyFixture", ("Test" + std::to_string(v)).c_str(), nullptr, // std::to_string(v).c_str(), // __FILE__, __LINE__, // // Important to use the fixture type as the return type here. // [=]() -> MyFixture* { return new MyTest(v); }); // } // } // ... // int main(int argc, char** argv) { // std::vector values_to_test = LoadValuesFromConfig(); // RegisterMyTests(values_to_test); // ... // return RUN_ALL_TESTS(); // } // template TestInfo* RegisterTest(const char* test_suite_name, const char* test_name, const char* type_param, const char* value_param, const char* file, int line, Factory factory) { using TestT = typename std::remove_pointer::type; class FactoryImpl : public internal::TestFactoryBase { public: explicit FactoryImpl(Factory f) : factory_(std::move(f)) {} Test* CreateTest() override { return factory_(); } private: Factory factory_; }; return internal::MakeAndRegisterTestInfo( test_suite_name, test_name, type_param, value_param, internal::CodeLocation(file, line), internal::GetTypeId(), internal::SuiteApiResolver::GetSetUpCaseOrSuite(file, line), internal::SuiteApiResolver::GetTearDownCaseOrSuite(file, line), new FactoryImpl{std::move(factory)}); } } // namespace testing // Use this function in main() to run all tests. It returns 0 if all // tests are successful, or 1 otherwise. // // RUN_ALL_TESTS() should be invoked after the command line has been // parsed by InitGoogleTest(). // // This function was formerly a macro; thus, it is in the global // namespace and has an all-caps name. int RUN_ALL_TESTS() GTEST_MUST_USE_RESULT_; inline int RUN_ALL_TESTS() { return ::testing::UnitTest::GetInstance()->Run(); } GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 #endif // GTEST_INCLUDE_GTEST_GTEST_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest_pred_impl.h000066400000000000000000000350021355420072700267560ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file is AUTOMATICALLY GENERATED on 01/02/2019 by command // 'gen_gtest_pred_impl.py 5'. DO NOT EDIT BY HAND! // // Implements a family of generic predicate assertion macros. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ #define GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ #include "gtest/gtest.h" namespace testing { // This header implements a family of generic predicate assertion // macros: // // ASSERT_PRED_FORMAT1(pred_format, v1) // ASSERT_PRED_FORMAT2(pred_format, v1, v2) // ... // // where pred_format is a function or functor that takes n (in the // case of ASSERT_PRED_FORMATn) values and their source expression // text, and returns a testing::AssertionResult. See the definition // of ASSERT_EQ in gtest.h for an example. // // If you don't care about formatting, you can use the more // restrictive version: // // ASSERT_PRED1(pred, v1) // ASSERT_PRED2(pred, v1, v2) // ... // // where pred is an n-ary function or functor that returns bool, // and the values v1, v2, ..., must support the << operator for // streaming to std::ostream. // // We also define the EXPECT_* variations. // // For now we only support predicates whose arity is at most 5. // Please email googletestframework@googlegroups.com if you need // support for higher arities. // GTEST_ASSERT_ is the basic statement to which all of the assertions // in this file reduce. Don't use this in your code. #define GTEST_ASSERT_(expression, on_failure) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar = (expression)) \ ; \ else \ on_failure(gtest_ar.failure_message()) // Helper function for implementing {EXPECT|ASSERT}_PRED1. Don't use // this in your code. template AssertionResult AssertPred1Helper(const char* pred_text, const char* e1, Pred pred, const T1& v1) { if (pred(v1)) return AssertionSuccess(); return AssertionFailure() << pred_text << "(" << e1 << ") evaluates to false, where" << "\n" << e1 << " evaluates to " << ::testing::PrintToString(v1); } // Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT1. // Don't use this in your code. #define GTEST_PRED_FORMAT1_(pred_format, v1, on_failure)\ GTEST_ASSERT_(pred_format(#v1, v1), \ on_failure) // Internal macro for implementing {EXPECT|ASSERT}_PRED1. Don't use // this in your code. #define GTEST_PRED1_(pred, v1, on_failure)\ GTEST_ASSERT_(::testing::AssertPred1Helper(#pred, \ #v1, \ pred, \ v1), on_failure) // Unary predicate assertion macros. #define EXPECT_PRED_FORMAT1(pred_format, v1) \ GTEST_PRED_FORMAT1_(pred_format, v1, GTEST_NONFATAL_FAILURE_) #define EXPECT_PRED1(pred, v1) \ GTEST_PRED1_(pred, v1, GTEST_NONFATAL_FAILURE_) #define ASSERT_PRED_FORMAT1(pred_format, v1) \ GTEST_PRED_FORMAT1_(pred_format, v1, GTEST_FATAL_FAILURE_) #define ASSERT_PRED1(pred, v1) \ GTEST_PRED1_(pred, v1, GTEST_FATAL_FAILURE_) // Helper function for implementing {EXPECT|ASSERT}_PRED2. Don't use // this in your code. template AssertionResult AssertPred2Helper(const char* pred_text, const char* e1, const char* e2, Pred pred, const T1& v1, const T2& v2) { if (pred(v1, v2)) return AssertionSuccess(); return AssertionFailure() << pred_text << "(" << e1 << ", " << e2 << ") evaluates to false, where" << "\n" << e1 << " evaluates to " << ::testing::PrintToString(v1) << "\n" << e2 << " evaluates to " << ::testing::PrintToString(v2); } // Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT2. // Don't use this in your code. #define GTEST_PRED_FORMAT2_(pred_format, v1, v2, on_failure)\ GTEST_ASSERT_(pred_format(#v1, #v2, v1, v2), \ on_failure) // Internal macro for implementing {EXPECT|ASSERT}_PRED2. Don't use // this in your code. #define GTEST_PRED2_(pred, v1, v2, on_failure)\ GTEST_ASSERT_(::testing::AssertPred2Helper(#pred, \ #v1, \ #v2, \ pred, \ v1, \ v2), on_failure) // Binary predicate assertion macros. #define EXPECT_PRED_FORMAT2(pred_format, v1, v2) \ GTEST_PRED_FORMAT2_(pred_format, v1, v2, GTEST_NONFATAL_FAILURE_) #define EXPECT_PRED2(pred, v1, v2) \ GTEST_PRED2_(pred, v1, v2, GTEST_NONFATAL_FAILURE_) #define ASSERT_PRED_FORMAT2(pred_format, v1, v2) \ GTEST_PRED_FORMAT2_(pred_format, v1, v2, GTEST_FATAL_FAILURE_) #define ASSERT_PRED2(pred, v1, v2) \ GTEST_PRED2_(pred, v1, v2, GTEST_FATAL_FAILURE_) // Helper function for implementing {EXPECT|ASSERT}_PRED3. Don't use // this in your code. template AssertionResult AssertPred3Helper(const char* pred_text, const char* e1, const char* e2, const char* e3, Pred pred, const T1& v1, const T2& v2, const T3& v3) { if (pred(v1, v2, v3)) return AssertionSuccess(); return AssertionFailure() << pred_text << "(" << e1 << ", " << e2 << ", " << e3 << ") evaluates to false, where" << "\n" << e1 << " evaluates to " << ::testing::PrintToString(v1) << "\n" << e2 << " evaluates to " << ::testing::PrintToString(v2) << "\n" << e3 << " evaluates to " << ::testing::PrintToString(v3); } // Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT3. // Don't use this in your code. #define GTEST_PRED_FORMAT3_(pred_format, v1, v2, v3, on_failure)\ GTEST_ASSERT_(pred_format(#v1, #v2, #v3, v1, v2, v3), \ on_failure) // Internal macro for implementing {EXPECT|ASSERT}_PRED3. Don't use // this in your code. #define GTEST_PRED3_(pred, v1, v2, v3, on_failure)\ GTEST_ASSERT_(::testing::AssertPred3Helper(#pred, \ #v1, \ #v2, \ #v3, \ pred, \ v1, \ v2, \ v3), on_failure) // Ternary predicate assertion macros. #define EXPECT_PRED_FORMAT3(pred_format, v1, v2, v3) \ GTEST_PRED_FORMAT3_(pred_format, v1, v2, v3, GTEST_NONFATAL_FAILURE_) #define EXPECT_PRED3(pred, v1, v2, v3) \ GTEST_PRED3_(pred, v1, v2, v3, GTEST_NONFATAL_FAILURE_) #define ASSERT_PRED_FORMAT3(pred_format, v1, v2, v3) \ GTEST_PRED_FORMAT3_(pred_format, v1, v2, v3, GTEST_FATAL_FAILURE_) #define ASSERT_PRED3(pred, v1, v2, v3) \ GTEST_PRED3_(pred, v1, v2, v3, GTEST_FATAL_FAILURE_) // Helper function for implementing {EXPECT|ASSERT}_PRED4. Don't use // this in your code. template AssertionResult AssertPred4Helper(const char* pred_text, const char* e1, const char* e2, const char* e3, const char* e4, Pred pred, const T1& v1, const T2& v2, const T3& v3, const T4& v4) { if (pred(v1, v2, v3, v4)) return AssertionSuccess(); return AssertionFailure() << pred_text << "(" << e1 << ", " << e2 << ", " << e3 << ", " << e4 << ") evaluates to false, where" << "\n" << e1 << " evaluates to " << ::testing::PrintToString(v1) << "\n" << e2 << " evaluates to " << ::testing::PrintToString(v2) << "\n" << e3 << " evaluates to " << ::testing::PrintToString(v3) << "\n" << e4 << " evaluates to " << ::testing::PrintToString(v4); } // Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT4. // Don't use this in your code. #define GTEST_PRED_FORMAT4_(pred_format, v1, v2, v3, v4, on_failure)\ GTEST_ASSERT_(pred_format(#v1, #v2, #v3, #v4, v1, v2, v3, v4), \ on_failure) // Internal macro for implementing {EXPECT|ASSERT}_PRED4. Don't use // this in your code. #define GTEST_PRED4_(pred, v1, v2, v3, v4, on_failure)\ GTEST_ASSERT_(::testing::AssertPred4Helper(#pred, \ #v1, \ #v2, \ #v3, \ #v4, \ pred, \ v1, \ v2, \ v3, \ v4), on_failure) // 4-ary predicate assertion macros. #define EXPECT_PRED_FORMAT4(pred_format, v1, v2, v3, v4) \ GTEST_PRED_FORMAT4_(pred_format, v1, v2, v3, v4, GTEST_NONFATAL_FAILURE_) #define EXPECT_PRED4(pred, v1, v2, v3, v4) \ GTEST_PRED4_(pred, v1, v2, v3, v4, GTEST_NONFATAL_FAILURE_) #define ASSERT_PRED_FORMAT4(pred_format, v1, v2, v3, v4) \ GTEST_PRED_FORMAT4_(pred_format, v1, v2, v3, v4, GTEST_FATAL_FAILURE_) #define ASSERT_PRED4(pred, v1, v2, v3, v4) \ GTEST_PRED4_(pred, v1, v2, v3, v4, GTEST_FATAL_FAILURE_) // Helper function for implementing {EXPECT|ASSERT}_PRED5. Don't use // this in your code. template AssertionResult AssertPred5Helper(const char* pred_text, const char* e1, const char* e2, const char* e3, const char* e4, const char* e5, Pred pred, const T1& v1, const T2& v2, const T3& v3, const T4& v4, const T5& v5) { if (pred(v1, v2, v3, v4, v5)) return AssertionSuccess(); return AssertionFailure() << pred_text << "(" << e1 << ", " << e2 << ", " << e3 << ", " << e4 << ", " << e5 << ") evaluates to false, where" << "\n" << e1 << " evaluates to " << ::testing::PrintToString(v1) << "\n" << e2 << " evaluates to " << ::testing::PrintToString(v2) << "\n" << e3 << " evaluates to " << ::testing::PrintToString(v3) << "\n" << e4 << " evaluates to " << ::testing::PrintToString(v4) << "\n" << e5 << " evaluates to " << ::testing::PrintToString(v5); } // Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT5. // Don't use this in your code. #define GTEST_PRED_FORMAT5_(pred_format, v1, v2, v3, v4, v5, on_failure)\ GTEST_ASSERT_(pred_format(#v1, #v2, #v3, #v4, #v5, v1, v2, v3, v4, v5), \ on_failure) // Internal macro for implementing {EXPECT|ASSERT}_PRED5. Don't use // this in your code. #define GTEST_PRED5_(pred, v1, v2, v3, v4, v5, on_failure)\ GTEST_ASSERT_(::testing::AssertPred5Helper(#pred, \ #v1, \ #v2, \ #v3, \ #v4, \ #v5, \ pred, \ v1, \ v2, \ v3, \ v4, \ v5), on_failure) // 5-ary predicate assertion macros. #define EXPECT_PRED_FORMAT5(pred_format, v1, v2, v3, v4, v5) \ GTEST_PRED_FORMAT5_(pred_format, v1, v2, v3, v4, v5, GTEST_NONFATAL_FAILURE_) #define EXPECT_PRED5(pred, v1, v2, v3, v4, v5) \ GTEST_PRED5_(pred, v1, v2, v3, v4, v5, GTEST_NONFATAL_FAILURE_) #define ASSERT_PRED_FORMAT5(pred_format, v1, v2, v3, v4, v5) \ GTEST_PRED_FORMAT5_(pred_format, v1, v2, v3, v4, v5, GTEST_FATAL_FAILURE_) #define ASSERT_PRED5(pred, v1, v2, v3, v4, v5) \ GTEST_PRED5_(pred, v1, v2, v3, v4, v5, GTEST_FATAL_FAILURE_) } // namespace testing #endif // GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/gtest_prod.h000066400000000000000000000047271355420072700257610ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Google C++ Testing and Mocking Framework definitions useful in production code. // GOOGLETEST_CM0003 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_GTEST_PROD_H_ #define GTEST_INCLUDE_GTEST_GTEST_PROD_H_ // When you need to test the private or protected members of a class, // use the FRIEND_TEST macro to declare your tests as friends of the // class. For example: // // class MyClass { // private: // void PrivateMethod(); // FRIEND_TEST(MyClassTest, PrivateMethodWorks); // }; // // class MyClassTest : public testing::Test { // // ... // }; // // TEST_F(MyClassTest, PrivateMethodWorks) { // // Can call MyClass::PrivateMethod() here. // } // // Note: The test class must be in the same namespace as the class being tested. // For example, putting MyClassTest in an anonymous namespace will not work. #define FRIEND_TEST(test_case_name, test_name)\ friend class test_case_name##_##test_name##_Test #endif // GTEST_INCLUDE_GTEST_GTEST_PROD_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/000077500000000000000000000000001355420072700252405ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/custom/000077500000000000000000000000001355420072700265525ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/custom/README.md000066400000000000000000000032221355420072700300300ustar00rootroot00000000000000# Customization Points The custom directory is an injection point for custom user configurations. ## Header `gtest.h` ### The following macros can be defined: * `GTEST_OS_STACK_TRACE_GETTER_` - The name of an implementation of `OsStackTraceGetterInterface`. * `GTEST_CUSTOM_TEMPDIR_FUNCTION_` - An override for `testing::TempDir()`. See `testing::TempDir` for semantics and signature. ## Header `gtest-port.h` The following macros can be defined: ### Flag related macros: * `GTEST_FLAG(flag_name)` * `GTEST_USE_OWN_FLAGFILE_FLAG_` - Define to 0 when the system provides its own flagfile flag parsing. * `GTEST_DECLARE_bool_(name)` * `GTEST_DECLARE_int32_(name)` * `GTEST_DECLARE_string_(name)` * `GTEST_DEFINE_bool_(name, default_val, doc)` * `GTEST_DEFINE_int32_(name, default_val, doc)` * `GTEST_DEFINE_string_(name, default_val, doc)` ### Logging: * `GTEST_LOG_(severity)` * `GTEST_CHECK_(condition)` * Functions `LogToStderr()` and `FlushInfoLog()` have to be provided too. ### Threading: * `GTEST_HAS_NOTIFICATION_` - Enabled if Notification is already provided. * `GTEST_HAS_MUTEX_AND_THREAD_LOCAL_` - Enabled if `Mutex` and `ThreadLocal` are already provided. Must also provide `GTEST_DECLARE_STATIC_MUTEX_(mutex)` and `GTEST_DEFINE_STATIC_MUTEX_(mutex)` * `GTEST_EXCLUSIVE_LOCK_REQUIRED_(locks)` * `GTEST_LOCK_EXCLUDED_(locks)` ### Underlying library support features * `GTEST_HAS_CXXABI_H_` ### Exporting API symbols: * `GTEST_API_` - Specifier for exported symbols. ## Header `gtest-printers.h` * See documentation at `gtest/gtest-printers.h` for details on how to define a custom printer. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/custom/gtest-port.h000066400000000000000000000035021355420072700310330ustar00rootroot00000000000000// Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Injection point for custom user configurations. See README for details // // ** Custom implementation starts here ** #ifndef GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PORT_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PORT_H_ #endif // GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PORT_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/custom/gtest-printers.h000066400000000000000000000040371355420072700317210ustar00rootroot00000000000000// Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This file provides an injection point for custom printers in a local // installation of gTest. // It will be included from gtest-printers.h and the overrides in this file // will be visible to everyone. // // Injection point for custom user configurations. See README for details // // ** Custom implementation starts here ** #ifndef GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PRINTERS_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PRINTERS_H_ #endif // GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_PRINTERS_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/custom/gtest.h000066400000000000000000000034631355420072700300570ustar00rootroot00000000000000// Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Injection point for custom user configurations. See README for details // // ** Custom implementation starts here ** #ifndef GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_H_ #endif // GTEST_INCLUDE_GTEST_INTERNAL_CUSTOM_GTEST_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-death-test-internal.h000066400000000000000000000321741355420072700324200ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This header file defines internal utilities needed for implementing // death tests. They are subject to change without notice. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_DEATH_TEST_INTERNAL_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_DEATH_TEST_INTERNAL_H_ #include "gtest/gtest-matchers.h" #include "gtest/internal/gtest-internal.h" #include #include namespace testing { namespace internal { GTEST_DECLARE_string_(internal_run_death_test); // Names of the flags (needed for parsing Google Test flags). const char kDeathTestStyleFlag[] = "death_test_style"; const char kDeathTestUseFork[] = "death_test_use_fork"; const char kInternalRunDeathTestFlag[] = "internal_run_death_test"; #if GTEST_HAS_DEATH_TEST GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) // DeathTest is a class that hides much of the complexity of the // GTEST_DEATH_TEST_ macro. It is abstract; its static Create method // returns a concrete class that depends on the prevailing death test // style, as defined by the --gtest_death_test_style and/or // --gtest_internal_run_death_test flags. // In describing the results of death tests, these terms are used with // the corresponding definitions: // // exit status: The integer exit information in the format specified // by wait(2) // exit code: The integer code passed to exit(3), _exit(2), or // returned from main() class GTEST_API_ DeathTest { public: // Create returns false if there was an error determining the // appropriate action to take for the current death test; for example, // if the gtest_death_test_style flag is set to an invalid value. // The LastMessage method will return a more detailed message in that // case. Otherwise, the DeathTest pointer pointed to by the "test" // argument is set. If the death test should be skipped, the pointer // is set to NULL; otherwise, it is set to the address of a new concrete // DeathTest object that controls the execution of the current test. static bool Create(const char* statement, Matcher matcher, const char* file, int line, DeathTest** test); DeathTest(); virtual ~DeathTest() { } // A helper class that aborts a death test when it's deleted. class ReturnSentinel { public: explicit ReturnSentinel(DeathTest* test) : test_(test) { } ~ReturnSentinel() { test_->Abort(TEST_ENCOUNTERED_RETURN_STATEMENT); } private: DeathTest* const test_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ReturnSentinel); } GTEST_ATTRIBUTE_UNUSED_; // An enumeration of possible roles that may be taken when a death // test is encountered. EXECUTE means that the death test logic should // be executed immediately. OVERSEE means that the program should prepare // the appropriate environment for a child process to execute the death // test, then wait for it to complete. enum TestRole { OVERSEE_TEST, EXECUTE_TEST }; // An enumeration of the three reasons that a test might be aborted. enum AbortReason { TEST_ENCOUNTERED_RETURN_STATEMENT, TEST_THREW_EXCEPTION, TEST_DID_NOT_DIE }; // Assumes one of the above roles. virtual TestRole AssumeRole() = 0; // Waits for the death test to finish and returns its status. virtual int Wait() = 0; // Returns true if the death test passed; that is, the test process // exited during the test, its exit status matches a user-supplied // predicate, and its stderr output matches a user-supplied regular // expression. // The user-supplied predicate may be a macro expression rather // than a function pointer or functor, or else Wait and Passed could // be combined. virtual bool Passed(bool exit_status_ok) = 0; // Signals that the death test did not die as expected. virtual void Abort(AbortReason reason) = 0; // Returns a human-readable outcome message regarding the outcome of // the last death test. static const char* LastMessage(); static void set_last_death_test_message(const std::string& message); private: // A string containing a description of the outcome of the last death test. static std::string last_death_test_message_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DeathTest); }; GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 // Factory interface for death tests. May be mocked out for testing. class DeathTestFactory { public: virtual ~DeathTestFactory() { } virtual bool Create(const char* statement, Matcher matcher, const char* file, int line, DeathTest** test) = 0; }; // A concrete DeathTestFactory implementation for normal use. class DefaultDeathTestFactory : public DeathTestFactory { public: bool Create(const char* statement, Matcher matcher, const char* file, int line, DeathTest** test) override; }; // Returns true if exit_status describes a process that was terminated // by a signal, or exited normally with a nonzero exit code. GTEST_API_ bool ExitedUnsuccessfully(int exit_status); // A string passed to EXPECT_DEATH (etc.) is caught by one of these overloads // and interpreted as a regex (rather than an Eq matcher) for legacy // compatibility. inline Matcher MakeDeathTestMatcher( ::testing::internal::RE regex) { return ContainsRegex(regex.pattern()); } inline Matcher MakeDeathTestMatcher(const char* regex) { return ContainsRegex(regex); } inline Matcher MakeDeathTestMatcher( const ::std::string& regex) { return ContainsRegex(regex); } // If a Matcher is passed to EXPECT_DEATH (etc.), it's // used directly. inline Matcher MakeDeathTestMatcher( Matcher matcher) { return matcher; } // Traps C++ exceptions escaping statement and reports them as test // failures. Note that trapping SEH exceptions is not implemented here. # if GTEST_HAS_EXCEPTIONS # define GTEST_EXECUTE_DEATH_TEST_STATEMENT_(statement, death_test) \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } catch (const ::std::exception& gtest_exception) { \ fprintf(\ stderr, \ "\n%s: Caught std::exception-derived exception escaping the " \ "death test statement. Exception message: %s\n", \ ::testing::internal::FormatFileLocation(__FILE__, __LINE__).c_str(), \ gtest_exception.what()); \ fflush(stderr); \ death_test->Abort(::testing::internal::DeathTest::TEST_THREW_EXCEPTION); \ } catch (...) { \ death_test->Abort(::testing::internal::DeathTest::TEST_THREW_EXCEPTION); \ } # else # define GTEST_EXECUTE_DEATH_TEST_STATEMENT_(statement, death_test) \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) # endif // This macro is for implementing ASSERT_DEATH*, EXPECT_DEATH*, // ASSERT_EXIT*, and EXPECT_EXIT*. #define GTEST_DEATH_TEST_(statement, predicate, regex_or_matcher, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ ::testing::internal::DeathTest* gtest_dt; \ if (!::testing::internal::DeathTest::Create( \ #statement, \ ::testing::internal::MakeDeathTestMatcher(regex_or_matcher), \ __FILE__, __LINE__, >est_dt)) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_, __LINE__); \ } \ if (gtest_dt != nullptr) { \ std::unique_ptr< ::testing::internal::DeathTest> gtest_dt_ptr(gtest_dt); \ switch (gtest_dt->AssumeRole()) { \ case ::testing::internal::DeathTest::OVERSEE_TEST: \ if (!gtest_dt->Passed(predicate(gtest_dt->Wait()))) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_, __LINE__); \ } \ break; \ case ::testing::internal::DeathTest::EXECUTE_TEST: { \ ::testing::internal::DeathTest::ReturnSentinel gtest_sentinel( \ gtest_dt); \ GTEST_EXECUTE_DEATH_TEST_STATEMENT_(statement, gtest_dt); \ gtest_dt->Abort(::testing::internal::DeathTest::TEST_DID_NOT_DIE); \ break; \ } \ default: \ break; \ } \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_, __LINE__) \ : fail(::testing::internal::DeathTest::LastMessage()) // The symbol "fail" here expands to something into which a message // can be streamed. // This macro is for implementing ASSERT/EXPECT_DEBUG_DEATH when compiled in // NDEBUG mode. In this case we need the statements to be executed and the macro // must accept a streamed message even though the message is never printed. // The regex object is not evaluated, but it is used to prevent "unused" // warnings and to avoid an expression that doesn't compile in debug mode. #define GTEST_EXECUTE_STATEMENT_(statement, regex_or_matcher) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } else if (!::testing::internal::AlwaysTrue()) { \ ::testing::internal::MakeDeathTestMatcher(regex_or_matcher); \ } else \ ::testing::Message() // A class representing the parsed contents of the // --gtest_internal_run_death_test flag, as it existed when // RUN_ALL_TESTS was called. class InternalRunDeathTestFlag { public: InternalRunDeathTestFlag(const std::string& a_file, int a_line, int an_index, int a_write_fd) : file_(a_file), line_(a_line), index_(an_index), write_fd_(a_write_fd) {} ~InternalRunDeathTestFlag() { if (write_fd_ >= 0) posix::Close(write_fd_); } const std::string& file() const { return file_; } int line() const { return line_; } int index() const { return index_; } int write_fd() const { return write_fd_; } private: std::string file_; int line_; int index_; int write_fd_; GTEST_DISALLOW_COPY_AND_ASSIGN_(InternalRunDeathTestFlag); }; // Returns a newly created InternalRunDeathTestFlag object with fields // initialized from the GTEST_FLAG(internal_run_death_test) flag if // the flag is specified; otherwise returns NULL. InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag(); #endif // GTEST_HAS_DEATH_TEST } // namespace internal } // namespace testing #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_DEATH_TEST_INTERNAL_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-filepath.h000066400000000000000000000230441355420072700303340ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Google Test filepath utilities // // This header file declares classes and functions used internally by // Google Test. They are subject to change without notice. // // This file is #included in gtest/internal/gtest-internal.h. // Do not include this header file separately! // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_FILEPATH_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_FILEPATH_H_ #include "gtest/internal/gtest-string.h" GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { namespace internal { // FilePath - a class for file and directory pathname manipulation which // handles platform-specific conventions (like the pathname separator). // Used for helper functions for naming files in a directory for xml output. // Except for Set methods, all methods are const or static, which provides an // "immutable value object" -- useful for peace of mind. // A FilePath with a value ending in a path separator ("like/this/") represents // a directory, otherwise it is assumed to represent a file. In either case, // it may or may not represent an actual file or directory in the file system. // Names are NOT checked for syntax correctness -- no checking for illegal // characters, malformed paths, etc. class GTEST_API_ FilePath { public: FilePath() : pathname_("") { } FilePath(const FilePath& rhs) : pathname_(rhs.pathname_) { } explicit FilePath(const std::string& pathname) : pathname_(pathname) { Normalize(); } FilePath& operator=(const FilePath& rhs) { Set(rhs); return *this; } void Set(const FilePath& rhs) { pathname_ = rhs.pathname_; } const std::string& string() const { return pathname_; } const char* c_str() const { return pathname_.c_str(); } // Returns the current working directory, or "" if unsuccessful. static FilePath GetCurrentDir(); // Given directory = "dir", base_name = "test", number = 0, // extension = "xml", returns "dir/test.xml". If number is greater // than zero (e.g., 12), returns "dir/test_12.xml". // On Windows platform, uses \ as the separator rather than /. static FilePath MakeFileName(const FilePath& directory, const FilePath& base_name, int number, const char* extension); // Given directory = "dir", relative_path = "test.xml", // returns "dir/test.xml". // On Windows, uses \ as the separator rather than /. static FilePath ConcatPaths(const FilePath& directory, const FilePath& relative_path); // Returns a pathname for a file that does not currently exist. The pathname // will be directory/base_name.extension or // directory/base_name_.extension if directory/base_name.extension // already exists. The number will be incremented until a pathname is found // that does not already exist. // Examples: 'dir/foo_test.xml' or 'dir/foo_test_1.xml'. // There could be a race condition if two or more processes are calling this // function at the same time -- they could both pick the same filename. static FilePath GenerateUniqueFileName(const FilePath& directory, const FilePath& base_name, const char* extension); // Returns true if and only if the path is "". bool IsEmpty() const { return pathname_.empty(); } // If input name has a trailing separator character, removes it and returns // the name, otherwise return the name string unmodified. // On Windows platform, uses \ as the separator, other platforms use /. FilePath RemoveTrailingPathSeparator() const; // Returns a copy of the FilePath with the directory part removed. // Example: FilePath("path/to/file").RemoveDirectoryName() returns // FilePath("file"). If there is no directory part ("just_a_file"), it returns // the FilePath unmodified. If there is no file part ("just_a_dir/") it // returns an empty FilePath (""). // On Windows platform, '\' is the path separator, otherwise it is '/'. FilePath RemoveDirectoryName() const; // RemoveFileName returns the directory path with the filename removed. // Example: FilePath("path/to/file").RemoveFileName() returns "path/to/". // If the FilePath is "a_file" or "/a_file", RemoveFileName returns // FilePath("./") or, on Windows, FilePath(".\\"). If the filepath does // not have a file, like "just/a/dir/", it returns the FilePath unmodified. // On Windows platform, '\' is the path separator, otherwise it is '/'. FilePath RemoveFileName() const; // Returns a copy of the FilePath with the case-insensitive extension removed. // Example: FilePath("dir/file.exe").RemoveExtension("EXE") returns // FilePath("dir/file"). If a case-insensitive extension is not // found, returns a copy of the original FilePath. FilePath RemoveExtension(const char* extension) const; // Creates directories so that path exists. Returns true if successful or if // the directories already exist; returns false if unable to create // directories for any reason. Will also return false if the FilePath does // not represent a directory (that is, it doesn't end with a path separator). bool CreateDirectoriesRecursively() const; // Create the directory so that path exists. Returns true if successful or // if the directory already exists; returns false if unable to create the // directory for any reason, including if the parent directory does not // exist. Not named "CreateDirectory" because that's a macro on Windows. bool CreateFolder() const; // Returns true if FilePath describes something in the file-system, // either a file, directory, or whatever, and that something exists. bool FileOrDirectoryExists() const; // Returns true if pathname describes a directory in the file-system // that exists. bool DirectoryExists() const; // Returns true if FilePath ends with a path separator, which indicates that // it is intended to represent a directory. Returns false otherwise. // This does NOT check that a directory (or file) actually exists. bool IsDirectory() const; // Returns true if pathname describes a root directory. (Windows has one // root directory per disk drive.) bool IsRootDirectory() const; // Returns true if pathname describes an absolute path. bool IsAbsolutePath() const; private: // Replaces multiple consecutive separators with a single separator. // For example, "bar///foo" becomes "bar/foo". Does not eliminate other // redundancies that might be in a pathname involving "." or "..". // // A pathname with multiple consecutive separators may occur either through // user error or as a result of some scripts or APIs that generate a pathname // with a trailing separator. On other platforms the same API or script // may NOT generate a pathname with a trailing "/". Then elsewhere that // pathname may have another "/" and pathname components added to it, // without checking for the separator already being there. // The script language and operating system may allow paths like "foo//bar" // but some of the functions in FilePath will not handle that correctly. In // particular, RemoveTrailingPathSeparator() only removes one separator, and // it is called in CreateDirectoriesRecursively() assuming that it will change // a pathname from directory syntax (trailing separator) to filename syntax. // // On Windows this method also replaces the alternate path separator '/' with // the primary path separator '\\', so that for example "bar\\/\\foo" becomes // "bar\\foo". void Normalize(); // Returns a pointer to the last occurence of a valid path separator in // the FilePath. On Windows, for example, both '/' and '\' are valid path // separators. Returns NULL if no path separator was found. const char* FindLastPathSeparator() const; std::string pathname_; }; // class FilePath } // namespace internal } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_FILEPATH_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-internal.h000066400000000000000000001512741355420072700303630ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This header file declares functions and macros used internally by // Google Test. They are subject to change without notice. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ #include "gtest/internal/gtest-port.h" #if GTEST_OS_LINUX # include # include # include # include #endif // GTEST_OS_LINUX #if GTEST_HAS_EXCEPTIONS # include #endif #include #include #include #include #include #include #include #include #include #include #include "gtest/gtest-message.h" #include "gtest/internal/gtest-filepath.h" #include "gtest/internal/gtest-string.h" #include "gtest/internal/gtest-type-util.h" // Due to C++ preprocessor weirdness, we need double indirection to // concatenate two tokens when one of them is __LINE__. Writing // // foo ## __LINE__ // // will result in the token foo__LINE__, instead of foo followed by // the current line number. For more details, see // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar // Stringifies its argument. #define GTEST_STRINGIFY_(name) #name namespace proto2 { class Message; } namespace testing { // Forward declarations. class AssertionResult; // Result of an assertion. class Message; // Represents a failure message. class Test; // Represents a test. class TestInfo; // Information about a test. class TestPartResult; // Result of a test part. class UnitTest; // A collection of test suites. template ::std::string PrintToString(const T& value); namespace internal { struct TraceInfo; // Information about a trace point. class TestInfoImpl; // Opaque implementation of TestInfo class UnitTestImpl; // Opaque implementation of UnitTest // The text used in failure messages to indicate the start of the // stack trace. GTEST_API_ extern const char kStackTraceMarker[]; // An IgnoredValue object can be implicitly constructed from ANY value. class IgnoredValue { struct Sink {}; public: // This constructor template allows any value to be implicitly // converted to IgnoredValue. The object has no data member and // doesn't try to remember anything about the argument. We // deliberately omit the 'explicit' keyword in order to allow the // conversion to be implicit. // Disable the conversion if T already has a magical conversion operator. // Otherwise we get ambiguity. template ::value, int>::type = 0> IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) }; // Appends the user-supplied message to the Google-Test-generated message. GTEST_API_ std::string AppendUserMessage( const std::string& gtest_msg, const Message& user_msg); #if GTEST_HAS_EXCEPTIONS GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \ /* an exported class was derived from a class that was not exported */) // This exception is thrown by (and only by) a failed Google Test // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions // are enabled). We derive it from std::runtime_error, which is for // errors presumably detectable only at run time. Since // std::runtime_error inherits from std::exception, many testing // frameworks know how to extract and print the message inside it. class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { public: explicit GoogleTestFailureException(const TestPartResult& failure); }; GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275 #endif // GTEST_HAS_EXCEPTIONS namespace edit_distance { // Returns the optimal edits to go from 'left' to 'right'. // All edits cost the same, with replace having lower priority than // add/remove. // Simple implementation of the Wagner-Fischer algorithm. // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm enum EditType { kMatch, kAdd, kRemove, kReplace }; GTEST_API_ std::vector CalculateOptimalEdits( const std::vector& left, const std::vector& right); // Same as above, but the input is represented as strings. GTEST_API_ std::vector CalculateOptimalEdits( const std::vector& left, const std::vector& right); // Create a diff of the input strings in Unified diff format. GTEST_API_ std::string CreateUnifiedDiff(const std::vector& left, const std::vector& right, size_t context = 2); } // namespace edit_distance // Calculate the diff between 'left' and 'right' and return it in unified diff // format. // If not null, stores in 'total_line_count' the total number of lines found // in left + right. GTEST_API_ std::string DiffStrings(const std::string& left, const std::string& right, size_t* total_line_count); // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // expected_expression: "foo" // actual_expression: "bar" // expected_value: "5" // actual_value: "6" // // The ignoring_case parameter is true if and only if the assertion is a // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will // be inserted into the message. GTEST_API_ AssertionResult EqFailure(const char* expected_expression, const char* actual_expression, const std::string& expected_value, const std::string& actual_value, bool ignoring_case); // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. GTEST_API_ std::string GetBoolAssertionFailureMessage( const AssertionResult& assertion_result, const char* expression_text, const char* actual_predicate_value, const char* expected_predicate_value); // This template class represents an IEEE floating-point number // (either single-precision or double-precision, depending on the // template parameters). // // The purpose of this class is to do more sophisticated number // comparison. (Due to round-off error, etc, it's very unlikely that // two floating-points will be equal exactly. Hence a naive // comparison by the == operation often doesn't work.) // // Format of IEEE floating-point: // // The most-significant bit being the leftmost, an IEEE // floating-point looks like // // sign_bit exponent_bits fraction_bits // // Here, sign_bit is a single bit that designates the sign of the // number. // // For float, there are 8 exponent bits and 23 fraction bits. // // For double, there are 11 exponent bits and 52 fraction bits. // // More details can be found at // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. // // Template parameter: // // RawType: the raw floating-point type (either float or double) template class FloatingPoint { public: // Defines the unsigned integer type that has the same size as the // floating point number. typedef typename TypeWithSize::UInt Bits; // Constants. // # of bits in a number. static const size_t kBitCount = 8*sizeof(RawType); // # of fraction bits in a number. static const size_t kFractionBitCount = std::numeric_limits::digits - 1; // # of exponent bits in a number. static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; // The mask for the sign bit. static const Bits kSignBitMask = static_cast(1) << (kBitCount - 1); // The mask for the fraction bits. static const Bits kFractionBitMask = ~static_cast(0) >> (kExponentBitCount + 1); // The mask for the exponent bits. static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); // How many ULP's (Units in the Last Place) we want to tolerate when // comparing two numbers. The larger the value, the more error we // allow. A 0 value means that two numbers must be exactly the same // to be considered equal. // // The maximum error of a single floating-point operation is 0.5 // units in the last place. On Intel CPU's, all floating-point // calculations are done with 80-bit precision, while double has 64 // bits. Therefore, 4 should be enough for ordinary use. // // See the following article for more details on ULP: // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ static const size_t kMaxUlps = 4; // Constructs a FloatingPoint from a raw floating-point number. // // On an Intel CPU, passing a non-normalized NAN (Not a Number) // around may change its bits, although the new value is guaranteed // to be also a NAN. Therefore, don't expect this constructor to // preserve the bits in x when x is a NAN. explicit FloatingPoint(const RawType& x) { u_.value_ = x; } // Static methods // Reinterprets a bit pattern as a floating-point number. // // This function is needed to test the AlmostEquals() method. static RawType ReinterpretBits(const Bits bits) { FloatingPoint fp(0); fp.u_.bits_ = bits; return fp.u_.value_; } // Returns the floating-point number that represent positive infinity. static RawType Infinity() { return ReinterpretBits(kExponentBitMask); } // Returns the maximum representable finite floating-point number. static RawType Max(); // Non-static methods // Returns the bits that represents this number. const Bits &bits() const { return u_.bits_; } // Returns the exponent bits of this number. Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } // Returns the fraction bits of this number. Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } // Returns the sign bit of this number. Bits sign_bit() const { return kSignBitMask & u_.bits_; } // Returns true if and only if this is NAN (not a number). bool is_nan() const { // It's a NAN if the exponent bits are all ones and the fraction // bits are not entirely zeros. return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); } // Returns true if and only if this number is at most kMaxUlps ULP's away // from rhs. In particular, this function: // // - returns false if either number is (or both are) NAN. // - treats really large numbers as almost equal to infinity. // - thinks +0.0 and -0.0 are 0 DLP's apart. bool AlmostEquals(const FloatingPoint& rhs) const { // The IEEE standard says that any comparison operation involving // a NAN must return false. if (is_nan() || rhs.is_nan()) return false; return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <= kMaxUlps; } private: // The data type used to store the actual floating-point number. union FloatingPointUnion { RawType value_; // The raw floating-point number. Bits bits_; // The bits that represent the number. }; // Converts an integer from the sign-and-magnitude representation to // the biased representation. More precisely, let N be 2 to the // power of (kBitCount - 1), an integer x is represented by the // unsigned number x + N. // // For instance, // // -N + 1 (the most negative number representable using // sign-and-magnitude) is represented by 1; // 0 is represented by N; and // N - 1 (the biggest number representable using // sign-and-magnitude) is represented by 2N - 1. // // Read http://en.wikipedia.org/wiki/Signed_number_representations // for more details on signed number representations. static Bits SignAndMagnitudeToBiased(const Bits &sam) { if (kSignBitMask & sam) { // sam represents a negative number. return ~sam + 1; } else { // sam represents a positive number. return kSignBitMask | sam; } } // Given two numbers in the sign-and-magnitude representation, // returns the distance between them as an unsigned number. static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, const Bits &sam2) { const Bits biased1 = SignAndMagnitudeToBiased(sam1); const Bits biased2 = SignAndMagnitudeToBiased(sam2); return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); } FloatingPointUnion u_; }; // We cannot use std::numeric_limits::max() as it clashes with the max() // macro defined by . template <> inline float FloatingPoint::Max() { return FLT_MAX; } template <> inline double FloatingPoint::Max() { return DBL_MAX; } // Typedefs the instances of the FloatingPoint template class that we // care to use. typedef FloatingPoint Float; typedef FloatingPoint Double; // In order to catch the mistake of putting tests that use different // test fixture classes in the same test suite, we need to assign // unique IDs to fixture classes and compare them. The TypeId type is // used to hold such IDs. The user should treat TypeId as an opaque // type: the only operation allowed on TypeId values is to compare // them for equality using the == operator. typedef const void* TypeId; template class TypeIdHelper { public: // dummy_ must not have a const type. Otherwise an overly eager // compiler (e.g. MSVC 7.1 & 8.0) may try to merge // TypeIdHelper::dummy_ for different Ts as an "optimization". static bool dummy_; }; template bool TypeIdHelper::dummy_ = false; // GetTypeId() returns the ID of type T. Different values will be // returned for different types. Calling the function twice with the // same type argument is guaranteed to return the same ID. template TypeId GetTypeId() { // The compiler is required to allocate a different // TypeIdHelper::dummy_ variable for each T used to instantiate // the template. Therefore, the address of dummy_ is guaranteed to // be unique. return &(TypeIdHelper::dummy_); } // Returns the type ID of ::testing::Test. Always call this instead // of GetTypeId< ::testing::Test>() to get the type ID of // ::testing::Test, as the latter may give the wrong result due to a // suspected linker bug when compiling Google Test as a Mac OS X // framework. GTEST_API_ TypeId GetTestTypeId(); // Defines the abstract factory interface that creates instances // of a Test object. class TestFactoryBase { public: virtual ~TestFactoryBase() {} // Creates a test instance to run. The instance is both created and destroyed // within TestInfoImpl::Run() virtual Test* CreateTest() = 0; protected: TestFactoryBase() {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); }; // This class provides implementation of TeastFactoryBase interface. // It is used in TEST and TEST_F macros. template class TestFactoryImpl : public TestFactoryBase { public: Test* CreateTest() override { return new TestClass; } }; #if GTEST_OS_WINDOWS // Predicate-formatters for implementing the HRESULT checking macros // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} // We pass a long instead of HRESULT to avoid causing an // include dependency for the HRESULT type. GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, long hr); // NOLINT GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, long hr); // NOLINT #endif // GTEST_OS_WINDOWS // Types of SetUpTestSuite() and TearDownTestSuite() functions. using SetUpTestSuiteFunc = void (*)(); using TearDownTestSuiteFunc = void (*)(); struct CodeLocation { CodeLocation(const std::string& a_file, int a_line) : file(a_file), line(a_line) {} std::string file; int line; }; // Helper to identify which setup function for TestCase / TestSuite to call. // Only one function is allowed, either TestCase or TestSute but not both. // Utility functions to help SuiteApiResolver using SetUpTearDownSuiteFuncType = void (*)(); inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull( SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) { return a == def ? nullptr : a; } template // Note that SuiteApiResolver inherits from T because // SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way // SuiteApiResolver can access them. struct SuiteApiResolver : T { // testing::Test is only forward declared at this point. So we make it a // dependend class for the compiler to be OK with it. using Test = typename std::conditional::type; static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename, int line_num) { SetUpTearDownSuiteFuncType test_case_fp = GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase); SetUpTearDownSuiteFuncType test_suite_fp = GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite); GTEST_CHECK_(!test_case_fp || !test_suite_fp) << "Test can not provide both SetUpTestSuite and SetUpTestCase, please " "make sure there is only one present at " << filename << ":" << line_num; return test_case_fp != nullptr ? test_case_fp : test_suite_fp; } static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename, int line_num) { SetUpTearDownSuiteFuncType test_case_fp = GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase); SetUpTearDownSuiteFuncType test_suite_fp = GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite); GTEST_CHECK_(!test_case_fp || !test_suite_fp) << "Test can not provide both TearDownTestSuite and TearDownTestCase," " please make sure there is only one present at" << filename << ":" << line_num; return test_case_fp != nullptr ? test_case_fp : test_suite_fp; } }; // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_suite_name: name of the test suite // name: name of the test // type_param the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // value_param text representation of the test's value parameter, // or NULL if this is not a type-parameterized test. // code_location: code location where the test is defined // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. GTEST_API_ TestInfo* MakeAndRegisterTestInfo( const char* test_suite_name, const char* name, const char* type_param, const char* value_param, CodeLocation code_location, TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory); // If *pstr starts with the given prefix, modifies *pstr to be right // past the prefix and returns true; otherwise leaves *pstr unchanged // and returns false. None of pstr, *pstr, and prefix can be NULL. GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) // State of the definition of a type-parameterized test suite. class GTEST_API_ TypedTestSuitePState { public: TypedTestSuitePState() : registered_(false) {} // Adds the given test name to defined_test_names_ and return true // if the test suite hasn't been registered; otherwise aborts the // program. bool AddTestName(const char* file, int line, const char* case_name, const char* test_name) { if (registered_) { fprintf(stderr, "%s Test %s must be defined before " "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n", FormatFileLocation(file, line).c_str(), test_name, case_name); fflush(stderr); posix::Abort(); } registered_tests_.insert( ::std::make_pair(test_name, CodeLocation(file, line))); return true; } bool TestExists(const std::string& test_name) const { return registered_tests_.count(test_name) > 0; } const CodeLocation& GetCodeLocation(const std::string& test_name) const { RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); GTEST_CHECK_(it != registered_tests_.end()); return it->second; } // Verifies that registered_tests match the test names in // defined_test_names_; returns registered_tests if successful, or // aborts the program otherwise. const char* VerifyRegisteredTestNames( const char* file, int line, const char* registered_tests); private: typedef ::std::map RegisteredTestsMap; bool registered_; RegisteredTestsMap registered_tests_; }; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ using TypedTestCasePState = TypedTestSuitePState; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 // Skips to the first non-space char after the first comma in 'str'; // returns NULL if no comma is found in 'str'. inline const char* SkipComma(const char* str) { const char* comma = strchr(str, ','); if (comma == nullptr) { return nullptr; } while (IsSpace(*(++comma))) {} return comma; } // Returns the prefix of 'str' before the first comma in it; returns // the entire string if it contains no comma. inline std::string GetPrefixUntilComma(const char* str) { const char* comma = strchr(str, ','); return comma == nullptr ? str : std::string(str, comma); } // Splits a given string on a given delimiter, populating a given // vector with the fields. void SplitString(const ::std::string& str, char delimiter, ::std::vector< ::std::string>* dest); // The default argument to the template below for the case when the user does // not provide a name generator. struct DefaultNameGenerator { template static std::string GetName(int i) { return StreamableToString(i); } }; template struct NameGeneratorSelector { typedef Provided type; }; template void GenerateNamesRecursively(Types0, std::vector*, int) {} template void GenerateNamesRecursively(Types, std::vector* result, int i) { result->push_back(NameGenerator::template GetName(i)); GenerateNamesRecursively(typename Types::Tail(), result, i + 1); } template std::vector GenerateNames() { std::vector result; GenerateNamesRecursively(Types(), &result, 0); return result; } // TypeParameterizedTest::Register() // registers a list of type-parameterized tests with Google Test. The // return value is insignificant - we just need to return something // such that we can call this function in a namespace scope. // // Implementation note: The GTEST_TEMPLATE_ macro declares a template // template parameter. It's defined in gtest-type-util.h. template class TypeParameterizedTest { public: // 'index' is the index of the test in the type list 'Types' // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite, // Types). Valid values for 'index' are [0, N - 1] where N is the // length of Types. static bool Register(const char* prefix, const CodeLocation& code_location, const char* case_name, const char* test_names, int index, const std::vector& type_names = GenerateNames()) { typedef typename Types::Head Type; typedef Fixture FixtureClass; typedef typename GTEST_BIND_(TestSel, Type) TestClass; // First, registers the first type-parameterized test in the type // list. MakeAndRegisterTestInfo( (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/" + type_names[static_cast(index)]) .c_str(), StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), GetTypeName().c_str(), nullptr, // No value parameter. code_location, GetTypeId(), SuiteApiResolver::GetSetUpCaseOrSuite( code_location.file.c_str(), code_location.line), SuiteApiResolver::GetTearDownCaseOrSuite( code_location.file.c_str(), code_location.line), new TestFactoryImpl); // Next, recurses (at compile time) with the tail of the type list. return TypeParameterizedTest::Register(prefix, code_location, case_name, test_names, index + 1, type_names); } }; // The base case for the compile time recursion. template class TypeParameterizedTest { public: static bool Register(const char* /*prefix*/, const CodeLocation&, const char* /*case_name*/, const char* /*test_names*/, int /*index*/, const std::vector& = std::vector() /*type_names*/) { return true; } }; // TypeParameterizedTestSuite::Register() // registers *all combinations* of 'Tests' and 'Types' with Google // Test. The return value is insignificant - we just need to return // something such that we can call this function in a namespace scope. template class TypeParameterizedTestSuite { public: static bool Register(const char* prefix, CodeLocation code_location, const TypedTestSuitePState* state, const char* case_name, const char* test_names, const std::vector& type_names = GenerateNames()) { std::string test_name = StripTrailingSpaces( GetPrefixUntilComma(test_names)); if (!state->TestExists(test_name)) { fprintf(stderr, "Failed to get code location for test %s.%s at %s.", case_name, test_name.c_str(), FormatFileLocation(code_location.file.c_str(), code_location.line).c_str()); fflush(stderr); posix::Abort(); } const CodeLocation& test_location = state->GetCodeLocation(test_name); typedef typename Tests::Head Head; // First, register the first test in 'Test' for each type in 'Types'. TypeParameterizedTest::Register( prefix, test_location, case_name, test_names, 0, type_names); // Next, recurses (at compile time) with the tail of the test list. return TypeParameterizedTestSuite::Register(prefix, code_location, state, case_name, SkipComma(test_names), type_names); } }; // The base case for the compile time recursion. template class TypeParameterizedTestSuite { public: static bool Register(const char* /*prefix*/, const CodeLocation&, const TypedTestSuitePState* /*state*/, const char* /*case_name*/, const char* /*test_names*/, const std::vector& = std::vector() /*type_names*/) { return true; } }; #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( UnitTest* unit_test, int skip_count); // Helpers for suppressing warnings on unreachable code or constant // condition. // Always returns true. GTEST_API_ bool AlwaysTrue(); // Always returns false. inline bool AlwaysFalse() { return !AlwaysTrue(); } // Helper for suppressing false warning from Clang on a const char* // variable declared in a conditional expression always being NULL in // the else branch. struct GTEST_API_ ConstCharPtr { ConstCharPtr(const char* str) : value(str) {} operator bool() const { return true; } const char* value; }; // A simple Linear Congruential Generator for generating random // numbers with a uniform distribution. Unlike rand() and srand(), it // doesn't use global state (and therefore can't interfere with user // code). Unlike rand_r(), it's portable. An LCG isn't very random, // but it's good enough for our purposes. class GTEST_API_ Random { public: static const UInt32 kMaxRange = 1u << 31; explicit Random(UInt32 seed) : state_(seed) {} void Reseed(UInt32 seed) { state_ = seed; } // Generates a random number from [0, range). Crashes if 'range' is // 0 or greater than kMaxRange. UInt32 Generate(UInt32 range); private: UInt32 state_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); }; // Turns const U&, U&, const U, and U all into U. #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ typename std::remove_const::type>::type // IsAProtocolMessage::value is a compile-time bool constant that's // true if and only if T is type proto2::Message or a subclass of it. template struct IsAProtocolMessage : public bool_constant< std::is_convertible::value> {}; // When the compiler sees expression IsContainerTest(0), if C is an // STL-style container class, the first overload of IsContainerTest // will be viable (since both C::iterator* and C::const_iterator* are // valid types and NULL can be implicitly converted to them). It will // be picked over the second overload as 'int' is a perfect match for // the type of argument 0. If C::iterator or C::const_iterator is not // a valid type, the first overload is not viable, and the second // overload will be picked. Therefore, we can determine whether C is // a container class by checking the type of IsContainerTest(0). // The value of the expression is insignificant. // // In C++11 mode we check the existence of a const_iterator and that an // iterator is properly implemented for the container. // // For pre-C++11 that we look for both C::iterator and C::const_iterator. // The reason is that C++ injects the name of a class as a member of the // class itself (e.g. you can refer to class iterator as either // 'iterator' or 'iterator::iterator'). If we look for C::iterator // only, for example, we would mistakenly think that a class named // iterator is an STL container. // // Also note that the simpler approach of overloading // IsContainerTest(typename C::const_iterator*) and // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. typedef int IsContainer; template ().begin()), class = decltype(::std::declval().end()), class = decltype(++::std::declval()), class = decltype(*::std::declval()), class = typename C::const_iterator> IsContainer IsContainerTest(int /* dummy */) { return 0; } typedef char IsNotContainer; template IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } // Trait to detect whether a type T is a hash table. // The heuristic used is that the type contains an inner type `hasher` and does // not contain an inner type `reverse_iterator`. // If the container is iterable in reverse, then order might actually matter. template struct IsHashTable { private: template static char test(typename U::hasher*, typename U::reverse_iterator*); template static int test(typename U::hasher*, ...); template static char test(...); public: static const bool value = sizeof(test(nullptr, nullptr)) == sizeof(int); }; template const bool IsHashTable::value; template (0)) == sizeof(IsContainer)> struct IsRecursiveContainerImpl; template struct IsRecursiveContainerImpl : public std::false_type {}; // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to // obey the same inconsistencies as the IsContainerTest, namely check if // something is a container is relying on only const_iterator in C++11 and // is relying on both const_iterator and iterator otherwise template struct IsRecursiveContainerImpl { using value_type = decltype(*std::declval()); using type = std::is_same::type>::type, C>; }; // IsRecursiveContainer is a unary compile-time predicate that // evaluates whether C is a recursive container type. A recursive container // type is a container type whose value_type is equal to the container type // itself. An example for a recursive container type is // boost::filesystem::path, whose iterator has a value_type that is equal to // boost::filesystem::path. template struct IsRecursiveContainer : public IsRecursiveContainerImpl::type {}; // Utilities for native arrays. // ArrayEq() compares two k-dimensional native arrays using the // elements' operator==, where k can be any integer >= 0. When k is // 0, ArrayEq() degenerates into comparing a single pair of values. template bool ArrayEq(const T* lhs, size_t size, const U* rhs); // This generic version is used when k is 0. template inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } // This overload is used when k >= 1. template inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { return internal::ArrayEq(lhs, N, rhs); } // This helper reduces code bloat. If we instead put its logic inside // the previous ArrayEq() function, arrays with different sizes would // lead to different copies of the template code. template bool ArrayEq(const T* lhs, size_t size, const U* rhs) { for (size_t i = 0; i != size; i++) { if (!internal::ArrayEq(lhs[i], rhs[i])) return false; } return true; } // Finds the first element in the iterator range [begin, end) that // equals elem. Element may be a native array type itself. template Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { for (Iter it = begin; it != end; ++it) { if (internal::ArrayEq(*it, elem)) return it; } return end; } // CopyArray() copies a k-dimensional native array using the elements' // operator=, where k can be any integer >= 0. When k is 0, // CopyArray() degenerates into copying a single value. template void CopyArray(const T* from, size_t size, U* to); // This generic version is used when k is 0. template inline void CopyArray(const T& from, U* to) { *to = from; } // This overload is used when k >= 1. template inline void CopyArray(const T(&from)[N], U(*to)[N]) { internal::CopyArray(from, N, *to); } // This helper reduces code bloat. If we instead put its logic inside // the previous CopyArray() function, arrays with different sizes // would lead to different copies of the template code. template void CopyArray(const T* from, size_t size, U* to) { for (size_t i = 0; i != size; i++) { internal::CopyArray(from[i], to + i); } } // The relation between an NativeArray object (see below) and the // native array it represents. // We use 2 different structs to allow non-copyable types to be used, as long // as RelationToSourceReference() is passed. struct RelationToSourceReference {}; struct RelationToSourceCopy {}; // Adapts a native array to a read-only STL-style container. Instead // of the complete STL container concept, this adaptor only implements // members useful for Google Mock's container matchers. New members // should be added as needed. To simplify the implementation, we only // support Element being a raw type (i.e. having no top-level const or // reference modifier). It's the client's responsibility to satisfy // this requirement. Element can be an array type itself (hence // multi-dimensional arrays are supported). template class NativeArray { public: // STL-style container typedefs. typedef Element value_type; typedef Element* iterator; typedef const Element* const_iterator; // Constructs from a native array. References the source. NativeArray(const Element* array, size_t count, RelationToSourceReference) { InitRef(array, count); } // Constructs from a native array. Copies the source. NativeArray(const Element* array, size_t count, RelationToSourceCopy) { InitCopy(array, count); } // Copy constructor. NativeArray(const NativeArray& rhs) { (this->*rhs.clone_)(rhs.array_, rhs.size_); } ~NativeArray() { if (clone_ != &NativeArray::InitRef) delete[] array_; } // STL-style container methods. size_t size() const { return size_; } const_iterator begin() const { return array_; } const_iterator end() const { return array_ + size_; } bool operator==(const NativeArray& rhs) const { return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin()); } private: static_assert(!std::is_const::value, "Type must not be const"); static_assert(!std::is_reference::value, "Type must not be a reference"); // Initializes this object with a copy of the input. void InitCopy(const Element* array, size_t a_size) { Element* const copy = new Element[a_size]; CopyArray(array, a_size, copy); array_ = copy; size_ = a_size; clone_ = &NativeArray::InitCopy; } // Initializes this object with a reference of the input. void InitRef(const Element* array, size_t a_size) { array_ = array; size_ = a_size; clone_ = &NativeArray::InitRef; } const Element* array_; size_t size_; void (NativeArray::*clone_)(const Element*, size_t); GTEST_DISALLOW_ASSIGN_(NativeArray); }; // Backport of std::index_sequence. template struct IndexSequence { using type = IndexSequence; }; // Double the IndexSequence, and one if plus_one is true. template struct DoubleSequence; template struct DoubleSequence, sizeofT> { using type = IndexSequence; }; template struct DoubleSequence, sizeofT> { using type = IndexSequence; }; // Backport of std::make_index_sequence. // It uses O(ln(N)) instantiation depth. template struct MakeIndexSequence : DoubleSequence::type, N / 2>::type {}; template <> struct MakeIndexSequence<0> : IndexSequence<> {}; // FIXME: This implementation of ElemFromList is O(1) in instantiation depth, // but it is O(N^2) in total instantiations. Not sure if this is the best // tradeoff, as it will make it somewhat slow to compile. template struct ElemFromListImpl {}; template struct ElemFromListImpl { using type = T; }; // Get the Nth element from T... // It uses O(1) instantiation depth. template struct ElemFromList; template struct ElemFromList, T...> : ElemFromListImpl... {}; template class FlatTuple; template struct FlatTupleElemBase; template struct FlatTupleElemBase, I> { using value_type = typename ElemFromList::type, T...>::type; FlatTupleElemBase() = default; explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {} value_type value; }; template struct FlatTupleBase; template struct FlatTupleBase, IndexSequence> : FlatTupleElemBase, Idx>... { using Indices = IndexSequence; FlatTupleBase() = default; explicit FlatTupleBase(T... t) : FlatTupleElemBase, Idx>(std::move(t))... {} }; // Analog to std::tuple but with different tradeoffs. // This class minimizes the template instantiation depth, thus allowing more // elements that std::tuple would. std::tuple has been seen to require an // instantiation depth of more than 10x the number of elements in some // implementations. // FlatTuple and ElemFromList are not recursive and have a fixed depth // regardless of T... // MakeIndexSequence, on the other hand, it is recursive but with an // instantiation depth of O(ln(N)). template class FlatTuple : private FlatTupleBase, typename MakeIndexSequence::type> { using Indices = typename FlatTuple::FlatTupleBase::Indices; public: FlatTuple() = default; explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {} template const typename ElemFromList::type& Get() const { return static_cast*>(this)->value; } template typename ElemFromList::type& Get() { return static_cast*>(this)->value; } }; // Utility functions to be called with static_assert to induce deprecation // warnings. GTEST_INTERNAL_DEPRECATED( "INSTANTIATE_TEST_CASE_P is deprecated, please use " "INSTANTIATE_TEST_SUITE_P") constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; } GTEST_INTERNAL_DEPRECATED( "TYPED_TEST_CASE_P is deprecated, please use " "TYPED_TEST_SUITE_P") constexpr bool TypedTestCase_P_IsDeprecated() { return true; } GTEST_INTERNAL_DEPRECATED( "TYPED_TEST_CASE is deprecated, please use " "TYPED_TEST_SUITE") constexpr bool TypedTestCaseIsDeprecated() { return true; } GTEST_INTERNAL_DEPRECATED( "REGISTER_TYPED_TEST_CASE_P is deprecated, please use " "REGISTER_TYPED_TEST_SUITE_P") constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; } GTEST_INTERNAL_DEPRECATED( "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use " "INSTANTIATE_TYPED_TEST_SUITE_P") constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; } } // namespace internal } // namespace testing #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ ::testing::internal::AssertHelper(result_type, file, line, message) \ = ::testing::Message() #define GTEST_MESSAGE_(message, result_type) \ GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) #define GTEST_FATAL_FAILURE_(message) \ return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) #define GTEST_NONFATAL_FAILURE_(message) \ GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) #define GTEST_SUCCESS_(message) \ GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) #define GTEST_SKIP_(message) \ return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip) // Suppress MSVC warning 4072 (unreachable code) for the code following // statement if it returns or throws (or doesn't return or throw in some // situations). #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ if (::testing::internal::AlwaysTrue()) { statement; } #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::ConstCharPtr gtest_msg = "") { \ bool gtest_caught_expected = false; \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (expected_exception const&) { \ gtest_caught_expected = true; \ } \ catch (...) { \ gtest_msg.value = \ "Expected: " #statement " throws an exception of type " \ #expected_exception ".\n Actual: it throws a different type."; \ goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ } \ if (!gtest_caught_expected) { \ gtest_msg.value = \ "Expected: " #statement " throws an exception of type " \ #expected_exception ".\n Actual: it throws nothing."; \ goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ fail(gtest_msg.value) #define GTEST_TEST_NO_THROW_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (...) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ fail("Expected: " #statement " doesn't throw an exception.\n" \ " Actual: it throws.") #define GTEST_TEST_ANY_THROW_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ bool gtest_caught_any = false; \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (...) { \ gtest_caught_any = true; \ } \ if (!gtest_caught_any) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ fail("Expected: " #statement " throws an exception.\n" \ " Actual: it doesn't.") // Implements Boolean test assertions such as EXPECT_TRUE. expression can be // either a boolean expression or an AssertionResult. text is a textual // represenation of expression as it was passed into the EXPECT_TRUE. #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar_ = \ ::testing::AssertionResult(expression)) \ ; \ else \ fail(::testing::internal::GetBoolAssertionFailureMessage(\ gtest_ar_, text, #actual, #expected).c_str()) #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ fail("Expected: " #statement " doesn't generate new fatal " \ "failures in the current thread.\n" \ " Actual: it does.") // Expands to the name of the class that implements the given test. #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ test_suite_name##_##test_name##_Test // Helper macro for defining tests. #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \ static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \ "test_suite_name must not be empty"); \ static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \ "test_name must not be empty"); \ class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ : public parent_class { \ public: \ GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {} \ \ private: \ virtual void TestBody(); \ static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \ GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \ test_name)); \ }; \ \ ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \ test_name)::test_info_ = \ ::testing::internal::MakeAndRegisterTestInfo( \ #test_suite_name, #test_name, nullptr, nullptr, \ ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \ ::testing::internal::SuiteApiResolver< \ parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \ ::testing::internal::SuiteApiResolver< \ parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \ new ::testing::internal::TestFactoryImpl); \ void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-param-util.h000066400000000000000000001004521355420072700306120ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Type and function utilities for implementing parameterized tests. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_ #include #include #include #include #include #include #include #include #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-port.h" #include "gtest/gtest-printers.h" namespace testing { // Input to a parameterized test name generator, describing a test parameter. // Consists of the parameter value and the integer parameter index. template struct TestParamInfo { TestParamInfo(const ParamType& a_param, size_t an_index) : param(a_param), index(an_index) {} ParamType param; size_t index; }; // A builtin parameterized test name generator which returns the result of // testing::PrintToString. struct PrintToStringParamName { template std::string operator()(const TestParamInfo& info) const { return PrintToString(info.param); } }; namespace internal { // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // Utility Functions // Outputs a message explaining invalid registration of different // fixture class for the same test suite. This may happen when // TEST_P macro is used to define two tests with the same name // but in different namespaces. GTEST_API_ void ReportInvalidTestSuiteType(const char* test_suite_name, CodeLocation code_location); template class ParamGeneratorInterface; template class ParamGenerator; // Interface for iterating over elements provided by an implementation // of ParamGeneratorInterface. template class ParamIteratorInterface { public: virtual ~ParamIteratorInterface() {} // A pointer to the base generator instance. // Used only for the purposes of iterator comparison // to make sure that two iterators belong to the same generator. virtual const ParamGeneratorInterface* BaseGenerator() const = 0; // Advances iterator to point to the next element // provided by the generator. The caller is responsible // for not calling Advance() on an iterator equal to // BaseGenerator()->End(). virtual void Advance() = 0; // Clones the iterator object. Used for implementing copy semantics // of ParamIterator. virtual ParamIteratorInterface* Clone() const = 0; // Dereferences the current iterator and provides (read-only) access // to the pointed value. It is the caller's responsibility not to call // Current() on an iterator equal to BaseGenerator()->End(). // Used for implementing ParamGenerator::operator*(). virtual const T* Current() const = 0; // Determines whether the given iterator and other point to the same // element in the sequence generated by the generator. // Used for implementing ParamGenerator::operator==(). virtual bool Equals(const ParamIteratorInterface& other) const = 0; }; // Class iterating over elements provided by an implementation of // ParamGeneratorInterface. It wraps ParamIteratorInterface // and implements the const forward iterator concept. template class ParamIterator { public: typedef T value_type; typedef const T& reference; typedef ptrdiff_t difference_type; // ParamIterator assumes ownership of the impl_ pointer. ParamIterator(const ParamIterator& other) : impl_(other.impl_->Clone()) {} ParamIterator& operator=(const ParamIterator& other) { if (this != &other) impl_.reset(other.impl_->Clone()); return *this; } const T& operator*() const { return *impl_->Current(); } const T* operator->() const { return impl_->Current(); } // Prefix version of operator++. ParamIterator& operator++() { impl_->Advance(); return *this; } // Postfix version of operator++. ParamIterator operator++(int /*unused*/) { ParamIteratorInterface* clone = impl_->Clone(); impl_->Advance(); return ParamIterator(clone); } bool operator==(const ParamIterator& other) const { return impl_.get() == other.impl_.get() || impl_->Equals(*other.impl_); } bool operator!=(const ParamIterator& other) const { return !(*this == other); } private: friend class ParamGenerator; explicit ParamIterator(ParamIteratorInterface* impl) : impl_(impl) {} std::unique_ptr > impl_; }; // ParamGeneratorInterface is the binary interface to access generators // defined in other translation units. template class ParamGeneratorInterface { public: typedef T ParamType; virtual ~ParamGeneratorInterface() {} // Generator interface definition virtual ParamIteratorInterface* Begin() const = 0; virtual ParamIteratorInterface* End() const = 0; }; // Wraps ParamGeneratorInterface and provides general generator syntax // compatible with the STL Container concept. // This class implements copy initialization semantics and the contained // ParamGeneratorInterface instance is shared among all copies // of the original object. This is possible because that instance is immutable. template class ParamGenerator { public: typedef ParamIterator iterator; explicit ParamGenerator(ParamGeneratorInterface* impl) : impl_(impl) {} ParamGenerator(const ParamGenerator& other) : impl_(other.impl_) {} ParamGenerator& operator=(const ParamGenerator& other) { impl_ = other.impl_; return *this; } iterator begin() const { return iterator(impl_->Begin()); } iterator end() const { return iterator(impl_->End()); } private: std::shared_ptr > impl_; }; // Generates values from a range of two comparable values. Can be used to // generate sequences of user-defined types that implement operator+() and // operator<(). // This class is used in the Range() function. template class RangeGenerator : public ParamGeneratorInterface { public: RangeGenerator(T begin, T end, IncrementT step) : begin_(begin), end_(end), step_(step), end_index_(CalculateEndIndex(begin, end, step)) {} ~RangeGenerator() override {} ParamIteratorInterface* Begin() const override { return new Iterator(this, begin_, 0, step_); } ParamIteratorInterface* End() const override { return new Iterator(this, end_, end_index_, step_); } private: class Iterator : public ParamIteratorInterface { public: Iterator(const ParamGeneratorInterface* base, T value, int index, IncrementT step) : base_(base), value_(value), index_(index), step_(step) {} ~Iterator() override {} const ParamGeneratorInterface* BaseGenerator() const override { return base_; } void Advance() override { value_ = static_cast(value_ + step_); index_++; } ParamIteratorInterface* Clone() const override { return new Iterator(*this); } const T* Current() const override { return &value_; } bool Equals(const ParamIteratorInterface& other) const override { // Having the same base generator guarantees that the other // iterator is of the same type and we can downcast. GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) << "The program attempted to compare iterators " << "from different generators." << std::endl; const int other_index = CheckedDowncastToActualType(&other)->index_; return index_ == other_index; } private: Iterator(const Iterator& other) : ParamIteratorInterface(), base_(other.base_), value_(other.value_), index_(other.index_), step_(other.step_) {} // No implementation - assignment is unsupported. void operator=(const Iterator& other); const ParamGeneratorInterface* const base_; T value_; int index_; const IncrementT step_; }; // class RangeGenerator::Iterator static int CalculateEndIndex(const T& begin, const T& end, const IncrementT& step) { int end_index = 0; for (T i = begin; i < end; i = static_cast(i + step)) end_index++; return end_index; } // No implementation - assignment is unsupported. void operator=(const RangeGenerator& other); const T begin_; const T end_; const IncrementT step_; // The index for the end() iterator. All the elements in the generated // sequence are indexed (0-based) to aid iterator comparison. const int end_index_; }; // class RangeGenerator // Generates values from a pair of STL-style iterators. Used in the // ValuesIn() function. The elements are copied from the source range // since the source can be located on the stack, and the generator // is likely to persist beyond that stack frame. template class ValuesInIteratorRangeGenerator : public ParamGeneratorInterface { public: template ValuesInIteratorRangeGenerator(ForwardIterator begin, ForwardIterator end) : container_(begin, end) {} ~ValuesInIteratorRangeGenerator() override {} ParamIteratorInterface* Begin() const override { return new Iterator(this, container_.begin()); } ParamIteratorInterface* End() const override { return new Iterator(this, container_.end()); } private: typedef typename ::std::vector ContainerType; class Iterator : public ParamIteratorInterface { public: Iterator(const ParamGeneratorInterface* base, typename ContainerType::const_iterator iterator) : base_(base), iterator_(iterator) {} ~Iterator() override {} const ParamGeneratorInterface* BaseGenerator() const override { return base_; } void Advance() override { ++iterator_; value_.reset(); } ParamIteratorInterface* Clone() const override { return new Iterator(*this); } // We need to use cached value referenced by iterator_ because *iterator_ // can return a temporary object (and of type other then T), so just // having "return &*iterator_;" doesn't work. // value_ is updated here and not in Advance() because Advance() // can advance iterator_ beyond the end of the range, and we cannot // detect that fact. The client code, on the other hand, is // responsible for not calling Current() on an out-of-range iterator. const T* Current() const override { if (value_.get() == nullptr) value_.reset(new T(*iterator_)); return value_.get(); } bool Equals(const ParamIteratorInterface& other) const override { // Having the same base generator guarantees that the other // iterator is of the same type and we can downcast. GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) << "The program attempted to compare iterators " << "from different generators." << std::endl; return iterator_ == CheckedDowncastToActualType(&other)->iterator_; } private: Iterator(const Iterator& other) // The explicit constructor call suppresses a false warning // emitted by gcc when supplied with the -Wextra option. : ParamIteratorInterface(), base_(other.base_), iterator_(other.iterator_) {} const ParamGeneratorInterface* const base_; typename ContainerType::const_iterator iterator_; // A cached value of *iterator_. We keep it here to allow access by // pointer in the wrapping iterator's operator->(). // value_ needs to be mutable to be accessed in Current(). // Use of std::unique_ptr helps manage cached value's lifetime, // which is bound by the lifespan of the iterator itself. mutable std::unique_ptr value_; }; // class ValuesInIteratorRangeGenerator::Iterator // No implementation - assignment is unsupported. void operator=(const ValuesInIteratorRangeGenerator& other); const ContainerType container_; }; // class ValuesInIteratorRangeGenerator // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // Default parameterized test name generator, returns a string containing the // integer test parameter index. template std::string DefaultParamName(const TestParamInfo& info) { Message name_stream; name_stream << info.index; return name_stream.GetString(); } template void TestNotEmpty() { static_assert(sizeof(T) == 0, "Empty arguments are not allowed."); } template void TestNotEmpty(const T&) {} // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // Stores a parameter value and later creates tests parameterized with that // value. template class ParameterizedTestFactory : public TestFactoryBase { public: typedef typename TestClass::ParamType ParamType; explicit ParameterizedTestFactory(ParamType parameter) : parameter_(parameter) {} Test* CreateTest() override { TestClass::SetParam(¶meter_); return new TestClass(); } private: const ParamType parameter_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestFactory); }; // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // TestMetaFactoryBase is a base class for meta-factories that create // test factories for passing into MakeAndRegisterTestInfo function. template class TestMetaFactoryBase { public: virtual ~TestMetaFactoryBase() {} virtual TestFactoryBase* CreateTestFactory(ParamType parameter) = 0; }; // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // TestMetaFactory creates test factories for passing into // MakeAndRegisterTestInfo function. Since MakeAndRegisterTestInfo receives // ownership of test factory pointer, same factory object cannot be passed // into that method twice. But ParameterizedTestSuiteInfo is going to call // it for each Test/Parameter value combination. Thus it needs meta factory // creator class. template class TestMetaFactory : public TestMetaFactoryBase { public: using ParamType = typename TestSuite::ParamType; TestMetaFactory() {} TestFactoryBase* CreateTestFactory(ParamType parameter) override { return new ParameterizedTestFactory(parameter); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(TestMetaFactory); }; // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // ParameterizedTestSuiteInfoBase is a generic interface // to ParameterizedTestSuiteInfo classes. ParameterizedTestSuiteInfoBase // accumulates test information provided by TEST_P macro invocations // and generators provided by INSTANTIATE_TEST_SUITE_P macro invocations // and uses that information to register all resulting test instances // in RegisterTests method. The ParameterizeTestSuiteRegistry class holds // a collection of pointers to the ParameterizedTestSuiteInfo objects // and calls RegisterTests() on each of them when asked. class ParameterizedTestSuiteInfoBase { public: virtual ~ParameterizedTestSuiteInfoBase() {} // Base part of test suite name for display purposes. virtual const std::string& GetTestSuiteName() const = 0; // Test case id to verify identity. virtual TypeId GetTestSuiteTypeId() const = 0; // UnitTest class invokes this method to register tests in this // test suite right before running them in RUN_ALL_TESTS macro. // This method should not be called more than once on any single // instance of a ParameterizedTestSuiteInfoBase derived class. virtual void RegisterTests() = 0; protected: ParameterizedTestSuiteInfoBase() {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestSuiteInfoBase); }; // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // ParameterizedTestSuiteInfo accumulates tests obtained from TEST_P // macro invocations for a particular test suite and generators // obtained from INSTANTIATE_TEST_SUITE_P macro invocations for that // test suite. It registers tests with all values generated by all // generators when asked. template class ParameterizedTestSuiteInfo : public ParameterizedTestSuiteInfoBase { public: // ParamType and GeneratorCreationFunc are private types but are required // for declarations of public methods AddTestPattern() and // AddTestSuiteInstantiation(). using ParamType = typename TestSuite::ParamType; // A function that returns an instance of appropriate generator type. typedef ParamGenerator(GeneratorCreationFunc)(); using ParamNameGeneratorFunc = std::string(const TestParamInfo&); explicit ParameterizedTestSuiteInfo(const char* name, CodeLocation code_location) : test_suite_name_(name), code_location_(code_location) {} // Test case base name for display purposes. const std::string& GetTestSuiteName() const override { return test_suite_name_; } // Test case id to verify identity. TypeId GetTestSuiteTypeId() const override { return GetTypeId(); } // TEST_P macro uses AddTestPattern() to record information // about a single test in a LocalTestInfo structure. // test_suite_name is the base name of the test suite (without invocation // prefix). test_base_name is the name of an individual test without // parameter index. For the test SequenceA/FooTest.DoBar/1 FooTest is // test suite base name and DoBar is test base name. void AddTestPattern(const char* test_suite_name, const char* test_base_name, TestMetaFactoryBase* meta_factory) { tests_.push_back(std::shared_ptr( new TestInfo(test_suite_name, test_base_name, meta_factory))); } // INSTANTIATE_TEST_SUITE_P macro uses AddGenerator() to record information // about a generator. int AddTestSuiteInstantiation(const std::string& instantiation_name, GeneratorCreationFunc* func, ParamNameGeneratorFunc* name_func, const char* file, int line) { instantiations_.push_back( InstantiationInfo(instantiation_name, func, name_func, file, line)); return 0; // Return value used only to run this method in namespace scope. } // UnitTest class invokes this method to register tests in this test suite // test suites right before running tests in RUN_ALL_TESTS macro. // This method should not be called more than once on any single // instance of a ParameterizedTestSuiteInfoBase derived class. // UnitTest has a guard to prevent from calling this method more than once. void RegisterTests() override { for (typename TestInfoContainer::iterator test_it = tests_.begin(); test_it != tests_.end(); ++test_it) { std::shared_ptr test_info = *test_it; for (typename InstantiationContainer::iterator gen_it = instantiations_.begin(); gen_it != instantiations_.end(); ++gen_it) { const std::string& instantiation_name = gen_it->name; ParamGenerator generator((*gen_it->generator)()); ParamNameGeneratorFunc* name_func = gen_it->name_func; const char* file = gen_it->file; int line = gen_it->line; std::string test_suite_name; if ( !instantiation_name.empty() ) test_suite_name = instantiation_name + "/"; test_suite_name += test_info->test_suite_base_name; size_t i = 0; std::set test_param_names; for (typename ParamGenerator::iterator param_it = generator.begin(); param_it != generator.end(); ++param_it, ++i) { Message test_name_stream; std::string param_name = name_func( TestParamInfo(*param_it, i)); GTEST_CHECK_(IsValidParamName(param_name)) << "Parameterized test name '" << param_name << "' is invalid, in " << file << " line " << line << std::endl; GTEST_CHECK_(test_param_names.count(param_name) == 0) << "Duplicate parameterized test name '" << param_name << "', in " << file << " line " << line << std::endl; test_param_names.insert(param_name); if (!test_info->test_base_name.empty()) { test_name_stream << test_info->test_base_name << "/"; } test_name_stream << param_name; MakeAndRegisterTestInfo( test_suite_name.c_str(), test_name_stream.GetString().c_str(), nullptr, // No type parameter. PrintToString(*param_it).c_str(), code_location_, GetTestSuiteTypeId(), SuiteApiResolver::GetSetUpCaseOrSuite(file, line), SuiteApiResolver::GetTearDownCaseOrSuite(file, line), test_info->test_meta_factory->CreateTestFactory(*param_it)); } // for param_it } // for gen_it } // for test_it } // RegisterTests private: // LocalTestInfo structure keeps information about a single test registered // with TEST_P macro. struct TestInfo { TestInfo(const char* a_test_suite_base_name, const char* a_test_base_name, TestMetaFactoryBase* a_test_meta_factory) : test_suite_base_name(a_test_suite_base_name), test_base_name(a_test_base_name), test_meta_factory(a_test_meta_factory) {} const std::string test_suite_base_name; const std::string test_base_name; const std::unique_ptr > test_meta_factory; }; using TestInfoContainer = ::std::vector >; // Records data received from INSTANTIATE_TEST_SUITE_P macros: // struct InstantiationInfo { InstantiationInfo(const std::string &name_in, GeneratorCreationFunc* generator_in, ParamNameGeneratorFunc* name_func_in, const char* file_in, int line_in) : name(name_in), generator(generator_in), name_func(name_func_in), file(file_in), line(line_in) {} std::string name; GeneratorCreationFunc* generator; ParamNameGeneratorFunc* name_func; const char* file; int line; }; typedef ::std::vector InstantiationContainer; static bool IsValidParamName(const std::string& name) { // Check for empty string if (name.empty()) return false; // Check for invalid characters for (std::string::size_type index = 0; index < name.size(); ++index) { if (!isalnum(name[index]) && name[index] != '_') return false; } return true; } const std::string test_suite_name_; CodeLocation code_location_; TestInfoContainer tests_; InstantiationContainer instantiations_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestSuiteInfo); }; // class ParameterizedTestSuiteInfo // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ template using ParameterizedTestCaseInfo = ParameterizedTestSuiteInfo; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // ParameterizedTestSuiteRegistry contains a map of // ParameterizedTestSuiteInfoBase classes accessed by test suite names. TEST_P // and INSTANTIATE_TEST_SUITE_P macros use it to locate their corresponding // ParameterizedTestSuiteInfo descriptors. class ParameterizedTestSuiteRegistry { public: ParameterizedTestSuiteRegistry() {} ~ParameterizedTestSuiteRegistry() { for (auto& test_suite_info : test_suite_infos_) { delete test_suite_info; } } // Looks up or creates and returns a structure containing information about // tests and instantiations of a particular test suite. template ParameterizedTestSuiteInfo* GetTestSuitePatternHolder( const char* test_suite_name, CodeLocation code_location) { ParameterizedTestSuiteInfo* typed_test_info = nullptr; for (auto& test_suite_info : test_suite_infos_) { if (test_suite_info->GetTestSuiteName() == test_suite_name) { if (test_suite_info->GetTestSuiteTypeId() != GetTypeId()) { // Complain about incorrect usage of Google Test facilities // and terminate the program since we cannot guaranty correct // test suite setup and tear-down in this case. ReportInvalidTestSuiteType(test_suite_name, code_location); posix::Abort(); } else { // At this point we are sure that the object we found is of the same // type we are looking for, so we downcast it to that type // without further checks. typed_test_info = CheckedDowncastToActualType< ParameterizedTestSuiteInfo >(test_suite_info); } break; } } if (typed_test_info == nullptr) { typed_test_info = new ParameterizedTestSuiteInfo( test_suite_name, code_location); test_suite_infos_.push_back(typed_test_info); } return typed_test_info; } void RegisterTests() { for (auto& test_suite_info : test_suite_infos_) { test_suite_info->RegisterTests(); } } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ template ParameterizedTestCaseInfo* GetTestCasePatternHolder( const char* test_case_name, CodeLocation code_location) { return GetTestSuitePatternHolder(test_case_name, code_location); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ private: using TestSuiteInfoContainer = ::std::vector; TestSuiteInfoContainer test_suite_infos_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ParameterizedTestSuiteRegistry); }; } // namespace internal // Forward declarations of ValuesIn(), which is implemented in // include/gtest/gtest-param-test.h. template internal::ParamGenerator ValuesIn( const Container& container); namespace internal { // Used in the Values() function to provide polymorphic capabilities. template class ValueArray { public: ValueArray(Ts... v) : v_{std::move(v)...} {} template operator ParamGenerator() const { // NOLINT return ValuesIn(MakeVector(MakeIndexSequence())); } private: template std::vector MakeVector(IndexSequence) const { return std::vector{static_cast(v_.template Get())...}; } FlatTuple v_; }; template class CartesianProductGenerator : public ParamGeneratorInterface<::std::tuple> { public: typedef ::std::tuple ParamType; CartesianProductGenerator(const std::tuple...>& g) : generators_(g) {} ~CartesianProductGenerator() override {} ParamIteratorInterface* Begin() const override { return new Iterator(this, generators_, false); } ParamIteratorInterface* End() const override { return new Iterator(this, generators_, true); } private: template class IteratorImpl; template class IteratorImpl> : public ParamIteratorInterface { public: IteratorImpl(const ParamGeneratorInterface* base, const std::tuple...>& generators, bool is_end) : base_(base), begin_(std::get(generators).begin()...), end_(std::get(generators).end()...), current_(is_end ? end_ : begin_) { ComputeCurrentValue(); } ~IteratorImpl() override {} const ParamGeneratorInterface* BaseGenerator() const override { return base_; } // Advance should not be called on beyond-of-range iterators // so no component iterators must be beyond end of range, either. void Advance() override { assert(!AtEnd()); // Advance the last iterator. ++std::get(current_); // if that reaches end, propagate that up. AdvanceIfEnd(); ComputeCurrentValue(); } ParamIteratorInterface* Clone() const override { return new IteratorImpl(*this); } const ParamType* Current() const override { return current_value_.get(); } bool Equals(const ParamIteratorInterface& other) const override { // Having the same base generator guarantees that the other // iterator is of the same type and we can downcast. GTEST_CHECK_(BaseGenerator() == other.BaseGenerator()) << "The program attempted to compare iterators " << "from different generators." << std::endl; const IteratorImpl* typed_other = CheckedDowncastToActualType(&other); // We must report iterators equal if they both point beyond their // respective ranges. That can happen in a variety of fashions, // so we have to consult AtEnd(). if (AtEnd() && typed_other->AtEnd()) return true; bool same = true; bool dummy[] = { (same = same && std::get(current_) == std::get(typed_other->current_))...}; (void)dummy; return same; } private: template void AdvanceIfEnd() { if (std::get(current_) != std::get(end_)) return; bool last = ThisI == 0; if (last) { // We are done. Nothing else to propagate. return; } constexpr size_t NextI = ThisI - (ThisI != 0); std::get(current_) = std::get(begin_); ++std::get(current_); AdvanceIfEnd(); } void ComputeCurrentValue() { if (!AtEnd()) current_value_ = std::make_shared(*std::get(current_)...); } bool AtEnd() const { bool at_end = false; bool dummy[] = { (at_end = at_end || std::get(current_) == std::get(end_))...}; (void)dummy; return at_end; } const ParamGeneratorInterface* const base_; std::tuple::iterator...> begin_; std::tuple::iterator...> end_; std::tuple::iterator...> current_; std::shared_ptr current_value_; }; using Iterator = IteratorImpl::type>; std::tuple...> generators_; }; template class CartesianProductHolder { public: CartesianProductHolder(const Gen&... g) : generators_(g...) {} template operator ParamGenerator<::std::tuple>() const { return ParamGenerator<::std::tuple>( new CartesianProductGenerator(generators_)); } private: std::tuple generators_; }; } // namespace internal } // namespace testing #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PARAM_UTIL_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-port-arch.h000066400000000000000000000075731355420072700304500ustar00rootroot00000000000000// Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This header file defines the GTEST_OS_* macro. // It is separate from gtest-port.h so that custom/gtest-port.h can include it. #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_ARCH_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_ARCH_H_ // Determines the platform on which Google Test is compiled. #ifdef __CYGWIN__ # define GTEST_OS_CYGWIN 1 # elif defined(__MINGW__) || defined(__MINGW32__) || defined(__MINGW64__) # define GTEST_OS_WINDOWS_MINGW 1 # define GTEST_OS_WINDOWS 1 #elif defined _WIN32 # define GTEST_OS_WINDOWS 1 # ifdef _WIN32_WCE # define GTEST_OS_WINDOWS_MOBILE 1 # elif defined(WINAPI_FAMILY) # include # if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) # define GTEST_OS_WINDOWS_DESKTOP 1 # elif WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_PHONE_APP) # define GTEST_OS_WINDOWS_PHONE 1 # elif WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) # define GTEST_OS_WINDOWS_RT 1 # elif WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_TV_TITLE) # define GTEST_OS_WINDOWS_PHONE 1 # define GTEST_OS_WINDOWS_TV_TITLE 1 # else // WINAPI_FAMILY defined but no known partition matched. // Default to desktop. # define GTEST_OS_WINDOWS_DESKTOP 1 # endif # else # define GTEST_OS_WINDOWS_DESKTOP 1 # endif // _WIN32_WCE #elif defined __OS2__ # define GTEST_OS_OS2 1 #elif defined __APPLE__ # define GTEST_OS_MAC 1 # if TARGET_OS_IPHONE # define GTEST_OS_IOS 1 # endif #elif defined __DragonFly__ # define GTEST_OS_DRAGONFLY 1 #elif defined __FreeBSD__ # define GTEST_OS_FREEBSD 1 #elif defined __Fuchsia__ # define GTEST_OS_FUCHSIA 1 #elif defined(__GLIBC__) && defined(__FreeBSD_kernel__) # define GTEST_OS_GNU_KFREEBSD 1 #elif defined __linux__ # define GTEST_OS_LINUX 1 # if defined __ANDROID__ # define GTEST_OS_LINUX_ANDROID 1 # endif #elif defined __MVS__ # define GTEST_OS_ZOS 1 #elif defined(__sun) && defined(__SVR4) # define GTEST_OS_SOLARIS 1 #elif defined(_AIX) # define GTEST_OS_AIX 1 #elif defined(__hpux) # define GTEST_OS_HPUX 1 #elif defined __native_client__ # define GTEST_OS_NACL 1 #elif defined __NetBSD__ # define GTEST_OS_NETBSD 1 #elif defined __OpenBSD__ # define GTEST_OS_OPENBSD 1 #elif defined __QNX__ # define GTEST_OS_QNX 1 #elif defined(__HAIKU__) #define GTEST_OS_HAIKU 1 #endif // __CYGWIN__ #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_ARCH_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-port.h000066400000000000000000002332151355420072700275270ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Low-level types and utilities for porting Google Test to various // platforms. All macros ending with _ and symbols defined in an // internal namespace are subject to change without notice. Code // outside Google Test MUST NOT USE THEM DIRECTLY. Macros that don't // end with _ are part of Google Test's public API and can be used by // code outside Google Test. // // This file is fundamental to Google Test. All other Google Test source // files are expected to #include this. Therefore, it cannot #include // any other Google Test header. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_H_ // Environment-describing macros // ----------------------------- // // Google Test can be used in many different environments. Macros in // this section tell Google Test what kind of environment it is being // used in, such that Google Test can provide environment-specific // features and implementations. // // Google Test tries to automatically detect the properties of its // environment, so users usually don't need to worry about these // macros. However, the automatic detection is not perfect. // Sometimes it's necessary for a user to define some of the following // macros in the build script to override Google Test's decisions. // // If the user doesn't define a macro in the list, Google Test will // provide a default definition. After this header is #included, all // macros in this list will be defined to either 1 or 0. // // Notes to maintainers: // - Each macro here is a user-tweakable knob; do not grow the list // lightly. // - Use #if to key off these macros. Don't use #ifdef or "#if // defined(...)", which will not work as these macros are ALWAYS // defined. // // GTEST_HAS_CLONE - Define it to 1/0 to indicate that clone(2) // is/isn't available. // GTEST_HAS_EXCEPTIONS - Define it to 1/0 to indicate that exceptions // are enabled. // GTEST_HAS_POSIX_RE - Define it to 1/0 to indicate that POSIX regular // expressions are/aren't available. // GTEST_HAS_PTHREAD - Define it to 1/0 to indicate that // is/isn't available. // GTEST_HAS_RTTI - Define it to 1/0 to indicate that RTTI is/isn't // enabled. // GTEST_HAS_STD_WSTRING - Define it to 1/0 to indicate that // std::wstring does/doesn't work (Google Test can // be used where std::wstring is unavailable). // GTEST_HAS_SEH - Define it to 1/0 to indicate whether the // compiler supports Microsoft's "Structured // Exception Handling". // GTEST_HAS_STREAM_REDIRECTION // - Define it to 1/0 to indicate whether the // platform supports I/O stream redirection using // dup() and dup2(). // GTEST_LINKED_AS_SHARED_LIBRARY // - Define to 1 when compiling tests that use // Google Test as a shared library (known as // DLL on Windows). // GTEST_CREATE_SHARED_LIBRARY // - Define to 1 when compiling Google Test itself // as a shared library. // GTEST_DEFAULT_DEATH_TEST_STYLE // - The default value of --gtest_death_test_style. // The legacy default has been "fast" in the open // source version since 2008. The recommended value // is "threadsafe", and can be set in // custom/gtest-port.h. // Platform-indicating macros // -------------------------- // // Macros indicating the platform on which Google Test is being used // (a macro is defined to 1 if compiled on the given platform; // otherwise UNDEFINED -- it's never defined to 0.). Google Test // defines these macros automatically. Code outside Google Test MUST // NOT define them. // // GTEST_OS_AIX - IBM AIX // GTEST_OS_CYGWIN - Cygwin // GTEST_OS_DRAGONFLY - DragonFlyBSD // GTEST_OS_FREEBSD - FreeBSD // GTEST_OS_FUCHSIA - Fuchsia // GTEST_OS_GNU_KFREEBSD - GNU/kFreeBSD // GTEST_OS_HAIKU - Haiku // GTEST_OS_HPUX - HP-UX // GTEST_OS_LINUX - Linux // GTEST_OS_LINUX_ANDROID - Google Android // GTEST_OS_MAC - Mac OS X // GTEST_OS_IOS - iOS // GTEST_OS_NACL - Google Native Client (NaCl) // GTEST_OS_NETBSD - NetBSD // GTEST_OS_OPENBSD - OpenBSD // GTEST_OS_OS2 - OS/2 // GTEST_OS_QNX - QNX // GTEST_OS_SOLARIS - Sun Solaris // GTEST_OS_WINDOWS - Windows (Desktop, MinGW, or Mobile) // GTEST_OS_WINDOWS_DESKTOP - Windows Desktop // GTEST_OS_WINDOWS_MINGW - MinGW // GTEST_OS_WINDOWS_MOBILE - Windows Mobile // GTEST_OS_WINDOWS_PHONE - Windows Phone // GTEST_OS_WINDOWS_RT - Windows Store App/WinRT // GTEST_OS_ZOS - z/OS // // Among the platforms, Cygwin, Linux, Mac OS X, and Windows have the // most stable support. Since core members of the Google Test project // don't have access to other platforms, support for them may be less // stable. If you notice any problems on your platform, please notify // googletestframework@googlegroups.com (patches for fixing them are // even more welcome!). // // It is possible that none of the GTEST_OS_* macros are defined. // Feature-indicating macros // ------------------------- // // Macros indicating which Google Test features are available (a macro // is defined to 1 if the corresponding feature is supported; // otherwise UNDEFINED -- it's never defined to 0.). Google Test // defines these macros automatically. Code outside Google Test MUST // NOT define them. // // These macros are public so that portable tests can be written. // Such tests typically surround code using a feature with an #if // which controls that code. For example: // // #if GTEST_HAS_DEATH_TEST // EXPECT_DEATH(DoSomethingDeadly()); // #endif // // GTEST_HAS_DEATH_TEST - death tests // GTEST_HAS_TYPED_TEST - typed tests // GTEST_HAS_TYPED_TEST_P - type-parameterized tests // GTEST_IS_THREADSAFE - Google Test is thread-safe. // GOOGLETEST_CM0007 DO NOT DELETE // GTEST_USES_POSIX_RE - enhanced POSIX regex is used. Do not confuse with // GTEST_HAS_POSIX_RE (see above) which users can // define themselves. // GTEST_USES_SIMPLE_RE - our own simple regex is used; // the above RE\b(s) are mutually exclusive. // Misc public macros // ------------------ // // GTEST_FLAG(flag_name) - references the variable corresponding to // the given Google Test flag. // Internal utilities // ------------------ // // The following macros and utilities are for Google Test's INTERNAL // use only. Code outside Google Test MUST NOT USE THEM DIRECTLY. // // Macros for basic C++ coding: // GTEST_AMBIGUOUS_ELSE_BLOCKER_ - for disabling a gcc warning. // GTEST_ATTRIBUTE_UNUSED_ - declares that a class' instances or a // variable don't have to be used. // GTEST_DISALLOW_ASSIGN_ - disables operator=. // GTEST_DISALLOW_COPY_AND_ASSIGN_ - disables copy ctor and operator=. // GTEST_MUST_USE_RESULT_ - declares that a function's result must be used. // GTEST_INTENTIONAL_CONST_COND_PUSH_ - start code section where MSVC C4127 is // suppressed (constant conditional). // GTEST_INTENTIONAL_CONST_COND_POP_ - finish code section where MSVC C4127 // is suppressed. // // Synchronization: // Mutex, MutexLock, ThreadLocal, GetThreadCount() // - synchronization primitives. // // Regular expressions: // RE - a simple regular expression class using the POSIX // Extended Regular Expression syntax on UNIX-like platforms // GOOGLETEST_CM0008 DO NOT DELETE // or a reduced regular exception syntax on other // platforms, including Windows. // Logging: // GTEST_LOG_() - logs messages at the specified severity level. // LogToStderr() - directs all log messages to stderr. // FlushInfoLog() - flushes informational log messages. // // Stdout and stderr capturing: // CaptureStdout() - starts capturing stdout. // GetCapturedStdout() - stops capturing stdout and returns the captured // string. // CaptureStderr() - starts capturing stderr. // GetCapturedStderr() - stops capturing stderr and returns the captured // string. // // Integer types: // TypeWithSize - maps an integer to a int type. // Int32, UInt32, Int64, UInt64, TimeInMillis // - integers of known sizes. // BiggestInt - the biggest signed integer type. // // Command-line utilities: // GTEST_DECLARE_*() - declares a flag. // GTEST_DEFINE_*() - defines a flag. // GetInjectableArgvs() - returns the command line as a vector of strings. // // Environment variable utilities: // GetEnv() - gets the value of an environment variable. // BoolFromGTestEnv() - parses a bool environment variable. // Int32FromGTestEnv() - parses an Int32 environment variable. // StringFromGTestEnv() - parses a string environment variable. // // Deprecation warnings: // GTEST_INTERNAL_DEPRECATED(message) - attribute marking a function as // deprecated; calling a marked function // should generate a compiler warning #include // for isspace, etc #include // for ptrdiff_t #include #include #include #include #include #ifndef _WIN32_WCE # include # include #endif // !_WIN32_WCE #if defined __APPLE__ # include # include #endif #include // NOLINT #include // NOLINT #include // NOLINT #include // NOLINT #include #include #include // NOLINT #include "gtest/internal/gtest-port-arch.h" #include "gtest/internal/custom/gtest-port.h" #if !defined(GTEST_DEV_EMAIL_) # define GTEST_DEV_EMAIL_ "googletestframework@@googlegroups.com" # define GTEST_FLAG_PREFIX_ "gtest_" # define GTEST_FLAG_PREFIX_DASH_ "gtest-" # define GTEST_FLAG_PREFIX_UPPER_ "GTEST_" # define GTEST_NAME_ "Google Test" # define GTEST_PROJECT_URL_ "https://github.com/google/googletest/" #endif // !defined(GTEST_DEV_EMAIL_) #if !defined(GTEST_INIT_GOOGLE_TEST_NAME_) # define GTEST_INIT_GOOGLE_TEST_NAME_ "testing::InitGoogleTest" #endif // !defined(GTEST_INIT_GOOGLE_TEST_NAME_) // Determines the version of gcc that is used to compile this. #ifdef __GNUC__ // 40302 means version 4.3.2. # define GTEST_GCC_VER_ \ (__GNUC__*10000 + __GNUC_MINOR__*100 + __GNUC_PATCHLEVEL__) #endif // __GNUC__ // Macros for disabling Microsoft Visual C++ warnings. // // GTEST_DISABLE_MSC_WARNINGS_PUSH_(4800 4385) // /* code that triggers warnings C4800 and C4385 */ // GTEST_DISABLE_MSC_WARNINGS_POP_() #if defined(_MSC_VER) # define GTEST_DISABLE_MSC_WARNINGS_PUSH_(warnings) \ __pragma(warning(push)) \ __pragma(warning(disable: warnings)) # define GTEST_DISABLE_MSC_WARNINGS_POP_() \ __pragma(warning(pop)) #else // Not all compilers are MSVC # define GTEST_DISABLE_MSC_WARNINGS_PUSH_(warnings) # define GTEST_DISABLE_MSC_WARNINGS_POP_() #endif // Clang on Windows does not understand MSVC's pragma warning. // We need clang-specific way to disable function deprecation warning. #ifdef __clang__ # define GTEST_DISABLE_MSC_DEPRECATED_PUSH_() \ _Pragma("clang diagnostic push") \ _Pragma("clang diagnostic ignored \"-Wdeprecated-declarations\"") \ _Pragma("clang diagnostic ignored \"-Wdeprecated-implementations\"") #define GTEST_DISABLE_MSC_DEPRECATED_POP_() \ _Pragma("clang diagnostic pop") #else # define GTEST_DISABLE_MSC_DEPRECATED_PUSH_() \ GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996) # define GTEST_DISABLE_MSC_DEPRECATED_POP_() \ GTEST_DISABLE_MSC_WARNINGS_POP_() #endif // Brings in definitions for functions used in the testing::internal::posix // namespace (read, write, close, chdir, isatty, stat). We do not currently // use them on Windows Mobile. #if GTEST_OS_WINDOWS # if !GTEST_OS_WINDOWS_MOBILE # include # include # endif // In order to avoid having to include , use forward declaration #if GTEST_OS_WINDOWS_MINGW && !defined(__MINGW64_VERSION_MAJOR) // MinGW defined _CRITICAL_SECTION and _RTL_CRITICAL_SECTION as two // separate (equivalent) structs, instead of using typedef typedef struct _CRITICAL_SECTION GTEST_CRITICAL_SECTION; #else // Assume CRITICAL_SECTION is a typedef of _RTL_CRITICAL_SECTION. // This assumption is verified by // WindowsTypesTest.CRITICAL_SECTIONIs_RTL_CRITICAL_SECTION. typedef struct _RTL_CRITICAL_SECTION GTEST_CRITICAL_SECTION; #endif #else // This assumes that non-Windows OSes provide unistd.h. For OSes where this // is not the case, we need to include headers that provide the functions // mentioned above. # include # include #endif // GTEST_OS_WINDOWS #if GTEST_OS_LINUX_ANDROID // Used to define __ANDROID_API__ matching the target NDK API level. # include // NOLINT #endif // Defines this to true if and only if Google Test can use POSIX regular // expressions. #ifndef GTEST_HAS_POSIX_RE # if GTEST_OS_LINUX_ANDROID // On Android, is only available starting with Gingerbread. # define GTEST_HAS_POSIX_RE (__ANDROID_API__ >= 9) # else # define GTEST_HAS_POSIX_RE (!GTEST_OS_WINDOWS) # endif #endif #if GTEST_USES_PCRE // The appropriate headers have already been included. #elif GTEST_HAS_POSIX_RE // On some platforms, needs someone to define size_t, and // won't compile otherwise. We can #include it here as we already // included , which is guaranteed to define size_t through // . # include // NOLINT # define GTEST_USES_POSIX_RE 1 #elif GTEST_OS_WINDOWS // is not available on Windows. Use our own simple regex // implementation instead. # define GTEST_USES_SIMPLE_RE 1 #else // may not be available on this platform. Use our own // simple regex implementation instead. # define GTEST_USES_SIMPLE_RE 1 #endif // GTEST_USES_PCRE #ifndef GTEST_HAS_EXCEPTIONS // The user didn't tell us whether exceptions are enabled, so we need // to figure it out. # if defined(_MSC_VER) && defined(_CPPUNWIND) // MSVC defines _CPPUNWIND to 1 if and only if exceptions are enabled. # define GTEST_HAS_EXCEPTIONS 1 # elif defined(__BORLANDC__) // C++Builder's implementation of the STL uses the _HAS_EXCEPTIONS // macro to enable exceptions, so we'll do the same. // Assumes that exceptions are enabled by default. # ifndef _HAS_EXCEPTIONS # define _HAS_EXCEPTIONS 1 # endif // _HAS_EXCEPTIONS # define GTEST_HAS_EXCEPTIONS _HAS_EXCEPTIONS # elif defined(__clang__) // clang defines __EXCEPTIONS if and only if exceptions are enabled before clang // 220714, but if and only if cleanups are enabled after that. In Obj-C++ files, // there can be cleanups for ObjC exceptions which also need cleanups, even if // C++ exceptions are disabled. clang has __has_feature(cxx_exceptions) which // checks for C++ exceptions starting at clang r206352, but which checked for // cleanups prior to that. To reliably check for C++ exception availability with // clang, check for // __EXCEPTIONS && __has_feature(cxx_exceptions). # define GTEST_HAS_EXCEPTIONS (__EXCEPTIONS && __has_feature(cxx_exceptions)) # elif defined(__GNUC__) && __EXCEPTIONS // gcc defines __EXCEPTIONS to 1 if and only if exceptions are enabled. # define GTEST_HAS_EXCEPTIONS 1 # elif defined(__SUNPRO_CC) // Sun Pro CC supports exceptions. However, there is no compile-time way of // detecting whether they are enabled or not. Therefore, we assume that // they are enabled unless the user tells us otherwise. # define GTEST_HAS_EXCEPTIONS 1 # elif defined(__IBMCPP__) && __EXCEPTIONS // xlC defines __EXCEPTIONS to 1 if and only if exceptions are enabled. # define GTEST_HAS_EXCEPTIONS 1 # elif defined(__HP_aCC) // Exception handling is in effect by default in HP aCC compiler. It has to // be turned of by +noeh compiler option if desired. # define GTEST_HAS_EXCEPTIONS 1 # else // For other compilers, we assume exceptions are disabled to be // conservative. # define GTEST_HAS_EXCEPTIONS 0 # endif // defined(_MSC_VER) || defined(__BORLANDC__) #endif // GTEST_HAS_EXCEPTIONS #if !defined(GTEST_HAS_STD_STRING) // Even though we don't use this macro any longer, we keep it in case // some clients still depend on it. # define GTEST_HAS_STD_STRING 1 #elif !GTEST_HAS_STD_STRING // The user told us that ::std::string isn't available. # error "::std::string isn't available." #endif // !defined(GTEST_HAS_STD_STRING) #ifndef GTEST_HAS_STD_WSTRING // The user didn't tell us whether ::std::wstring is available, so we need // to figure it out. // Cygwin 1.7 and below doesn't support ::std::wstring. // Solaris' libc++ doesn't support it either. Android has // no support for it at least as recent as Froyo (2.2). #define GTEST_HAS_STD_WSTRING \ (!(GTEST_OS_LINUX_ANDROID || GTEST_OS_CYGWIN || GTEST_OS_SOLARIS || \ GTEST_OS_HAIKU)) #endif // GTEST_HAS_STD_WSTRING // Determines whether RTTI is available. #ifndef GTEST_HAS_RTTI // The user didn't tell us whether RTTI is enabled, so we need to // figure it out. # ifdef _MSC_VER #ifdef _CPPRTTI // MSVC defines this macro if and only if RTTI is enabled. # define GTEST_HAS_RTTI 1 # else # define GTEST_HAS_RTTI 0 # endif // Starting with version 4.3.2, gcc defines __GXX_RTTI if and only if RTTI is // enabled. # elif defined(__GNUC__) # ifdef __GXX_RTTI // When building against STLport with the Android NDK and with // -frtti -fno-exceptions, the build fails at link time with undefined // references to __cxa_bad_typeid. Note sure if STL or toolchain bug, // so disable RTTI when detected. # if GTEST_OS_LINUX_ANDROID && defined(_STLPORT_MAJOR) && \ !defined(__EXCEPTIONS) # define GTEST_HAS_RTTI 0 # else # define GTEST_HAS_RTTI 1 # endif // GTEST_OS_LINUX_ANDROID && __STLPORT_MAJOR && !__EXCEPTIONS # else # define GTEST_HAS_RTTI 0 # endif // __GXX_RTTI // Clang defines __GXX_RTTI starting with version 3.0, but its manual recommends // using has_feature instead. has_feature(cxx_rtti) is supported since 2.7, the // first version with C++ support. # elif defined(__clang__) # define GTEST_HAS_RTTI __has_feature(cxx_rtti) // Starting with version 9.0 IBM Visual Age defines __RTTI_ALL__ to 1 if // both the typeid and dynamic_cast features are present. # elif defined(__IBMCPP__) && (__IBMCPP__ >= 900) # ifdef __RTTI_ALL__ # define GTEST_HAS_RTTI 1 # else # define GTEST_HAS_RTTI 0 # endif # else // For all other compilers, we assume RTTI is enabled. # define GTEST_HAS_RTTI 1 # endif // _MSC_VER #endif // GTEST_HAS_RTTI // It's this header's responsibility to #include when RTTI // is enabled. #if GTEST_HAS_RTTI # include #endif // Determines whether Google Test can use the pthreads library. #ifndef GTEST_HAS_PTHREAD // The user didn't tell us explicitly, so we make reasonable assumptions about // which platforms have pthreads support. // // To disable threading support in Google Test, add -DGTEST_HAS_PTHREAD=0 // to your compiler flags. #define GTEST_HAS_PTHREAD \ (GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_HPUX || GTEST_OS_QNX || \ GTEST_OS_FREEBSD || GTEST_OS_NACL || GTEST_OS_NETBSD || GTEST_OS_FUCHSIA || \ GTEST_OS_DRAGONFLY || GTEST_OS_GNU_KFREEBSD || GTEST_OS_OPENBSD || \ GTEST_OS_HAIKU) #endif // GTEST_HAS_PTHREAD #if GTEST_HAS_PTHREAD // gtest-port.h guarantees to #include when GTEST_HAS_PTHREAD is // true. # include // NOLINT // For timespec and nanosleep, used below. # include // NOLINT #endif // Determines whether clone(2) is supported. // Usually it will only be available on Linux, excluding // Linux on the Itanium architecture. // Also see http://linux.die.net/man/2/clone. #ifndef GTEST_HAS_CLONE // The user didn't tell us, so we need to figure it out. # if GTEST_OS_LINUX && !defined(__ia64__) # if GTEST_OS_LINUX_ANDROID // On Android, clone() became available at different API levels for each 32-bit // architecture. # if defined(__LP64__) || \ (defined(__arm__) && __ANDROID_API__ >= 9) || \ (defined(__mips__) && __ANDROID_API__ >= 12) || \ (defined(__i386__) && __ANDROID_API__ >= 17) # define GTEST_HAS_CLONE 1 # else # define GTEST_HAS_CLONE 0 # endif # else # define GTEST_HAS_CLONE 1 # endif # else # define GTEST_HAS_CLONE 0 # endif // GTEST_OS_LINUX && !defined(__ia64__) #endif // GTEST_HAS_CLONE // Determines whether to support stream redirection. This is used to test // output correctness and to implement death tests. #ifndef GTEST_HAS_STREAM_REDIRECTION // By default, we assume that stream redirection is supported on all // platforms except known mobile ones. # if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT # define GTEST_HAS_STREAM_REDIRECTION 0 # else # define GTEST_HAS_STREAM_REDIRECTION 1 # endif // !GTEST_OS_WINDOWS_MOBILE #endif // GTEST_HAS_STREAM_REDIRECTION // Determines whether to support death tests. // pops up a dialog window that cannot be suppressed programmatically. #if (GTEST_OS_LINUX || GTEST_OS_CYGWIN || GTEST_OS_SOLARIS || \ (GTEST_OS_MAC && !GTEST_OS_IOS) || \ (GTEST_OS_WINDOWS_DESKTOP && _MSC_VER) || GTEST_OS_WINDOWS_MINGW || \ GTEST_OS_AIX || GTEST_OS_HPUX || GTEST_OS_OPENBSD || GTEST_OS_QNX || \ GTEST_OS_FREEBSD || GTEST_OS_NETBSD || GTEST_OS_FUCHSIA || \ GTEST_OS_DRAGONFLY || GTEST_OS_GNU_KFREEBSD || GTEST_OS_HAIKU) # define GTEST_HAS_DEATH_TEST 1 #endif // Determines whether to support type-driven tests. // Typed tests need and variadic macros, which GCC, VC++ 8.0, // Sun Pro CC, IBM Visual Age, and HP aCC support. #if defined(__GNUC__) || defined(_MSC_VER) || defined(__SUNPRO_CC) || \ defined(__IBMCPP__) || defined(__HP_aCC) # define GTEST_HAS_TYPED_TEST 1 # define GTEST_HAS_TYPED_TEST_P 1 #endif // Determines whether the system compiler uses UTF-16 for encoding wide strings. #define GTEST_WIDE_STRING_USES_UTF16_ \ (GTEST_OS_WINDOWS || GTEST_OS_CYGWIN || GTEST_OS_AIX || GTEST_OS_OS2) // Determines whether test results can be streamed to a socket. #if GTEST_OS_LINUX || GTEST_OS_GNU_KFREEBSD || GTEST_OS_DRAGONFLY || \ GTEST_OS_FREEBSD || GTEST_OS_NETBSD || GTEST_OS_OPENBSD # define GTEST_CAN_STREAM_RESULTS_ 1 #endif // Defines some utility macros. // The GNU compiler emits a warning if nested "if" statements are followed by // an "else" statement and braces are not used to explicitly disambiguate the // "else" binding. This leads to problems with code like: // // if (gate) // ASSERT_*(condition) << "Some message"; // // The "switch (0) case 0:" idiom is used to suppress this. #ifdef __INTEL_COMPILER # define GTEST_AMBIGUOUS_ELSE_BLOCKER_ #else # define GTEST_AMBIGUOUS_ELSE_BLOCKER_ switch (0) case 0: default: // NOLINT #endif // Use this annotation at the end of a struct/class definition to // prevent the compiler from optimizing away instances that are never // used. This is useful when all interesting logic happens inside the // c'tor and / or d'tor. Example: // // struct Foo { // Foo() { ... } // } GTEST_ATTRIBUTE_UNUSED_; // // Also use it after a variable or parameter declaration to tell the // compiler the variable/parameter does not have to be used. #if defined(__GNUC__) && !defined(COMPILER_ICC) # define GTEST_ATTRIBUTE_UNUSED_ __attribute__ ((unused)) #elif defined(__clang__) # if __has_attribute(unused) # define GTEST_ATTRIBUTE_UNUSED_ __attribute__ ((unused)) # endif #endif #ifndef GTEST_ATTRIBUTE_UNUSED_ # define GTEST_ATTRIBUTE_UNUSED_ #endif // Use this annotation before a function that takes a printf format string. #if (defined(__GNUC__) || defined(__clang__)) && !defined(COMPILER_ICC) # if defined(__MINGW_PRINTF_FORMAT) // MinGW has two different printf implementations. Ensure the format macro // matches the selected implementation. See // https://sourceforge.net/p/mingw-w64/wiki2/gnu%20printf/. # define GTEST_ATTRIBUTE_PRINTF_(string_index, first_to_check) \ __attribute__((__format__(__MINGW_PRINTF_FORMAT, string_index, \ first_to_check))) # else # define GTEST_ATTRIBUTE_PRINTF_(string_index, first_to_check) \ __attribute__((__format__(__printf__, string_index, first_to_check))) # endif #else # define GTEST_ATTRIBUTE_PRINTF_(string_index, first_to_check) #endif // A macro to disallow operator= // This should be used in the private: declarations for a class. #define GTEST_DISALLOW_ASSIGN_(type) \ void operator=(type const &) = delete // A macro to disallow copy constructor and operator= // This should be used in the private: declarations for a class. #define GTEST_DISALLOW_COPY_AND_ASSIGN_(type) \ type(type const &) = delete; \ GTEST_DISALLOW_ASSIGN_(type) // Tell the compiler to warn about unused return values for functions declared // with this macro. The macro should be used on function declarations // following the argument list: // // Sprocket* AllocateSprocket() GTEST_MUST_USE_RESULT_; #if defined(__GNUC__) && !defined(COMPILER_ICC) # define GTEST_MUST_USE_RESULT_ __attribute__ ((warn_unused_result)) #else # define GTEST_MUST_USE_RESULT_ #endif // __GNUC__ && !COMPILER_ICC // MS C++ compiler emits warning when a conditional expression is compile time // constant. In some contexts this warning is false positive and needs to be // suppressed. Use the following two macros in such cases: // // GTEST_INTENTIONAL_CONST_COND_PUSH_() // while (true) { // GTEST_INTENTIONAL_CONST_COND_POP_() // } # define GTEST_INTENTIONAL_CONST_COND_PUSH_() \ GTEST_DISABLE_MSC_WARNINGS_PUSH_(4127) # define GTEST_INTENTIONAL_CONST_COND_POP_() \ GTEST_DISABLE_MSC_WARNINGS_POP_() // Determine whether the compiler supports Microsoft's Structured Exception // Handling. This is supported by several Windows compilers but generally // does not exist on any other system. #ifndef GTEST_HAS_SEH // The user didn't tell us, so we need to figure it out. # if defined(_MSC_VER) || defined(__BORLANDC__) // These two compilers are known to support SEH. # define GTEST_HAS_SEH 1 # else // Assume no SEH. # define GTEST_HAS_SEH 0 # endif #endif // GTEST_HAS_SEH #ifndef GTEST_IS_THREADSAFE #define GTEST_IS_THREADSAFE \ (GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ || \ (GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT) || \ GTEST_HAS_PTHREAD) #endif // GTEST_IS_THREADSAFE // GTEST_API_ qualifies all symbols that must be exported. The definitions below // are guarded by #ifndef to give embedders a chance to define GTEST_API_ in // gtest/internal/custom/gtest-port.h #ifndef GTEST_API_ #ifdef _MSC_VER # if GTEST_LINKED_AS_SHARED_LIBRARY # define GTEST_API_ __declspec(dllimport) # elif GTEST_CREATE_SHARED_LIBRARY # define GTEST_API_ __declspec(dllexport) # endif #elif __GNUC__ >= 4 || defined(__clang__) # define GTEST_API_ __attribute__((visibility ("default"))) #endif // _MSC_VER #endif // GTEST_API_ #ifndef GTEST_API_ # define GTEST_API_ #endif // GTEST_API_ #ifndef GTEST_DEFAULT_DEATH_TEST_STYLE # define GTEST_DEFAULT_DEATH_TEST_STYLE "fast" #endif // GTEST_DEFAULT_DEATH_TEST_STYLE #ifdef __GNUC__ // Ask the compiler to never inline a given function. # define GTEST_NO_INLINE_ __attribute__((noinline)) #else # define GTEST_NO_INLINE_ #endif // _LIBCPP_VERSION is defined by the libc++ library from the LLVM project. #if !defined(GTEST_HAS_CXXABI_H_) # if defined(__GLIBCXX__) || (defined(_LIBCPP_VERSION) && !defined(_MSC_VER)) # define GTEST_HAS_CXXABI_H_ 1 # else # define GTEST_HAS_CXXABI_H_ 0 # endif #endif // A function level attribute to disable checking for use of uninitialized // memory when built with MemorySanitizer. #if defined(__clang__) # if __has_feature(memory_sanitizer) # define GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ \ __attribute__((no_sanitize_memory)) # else # define GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ # endif // __has_feature(memory_sanitizer) #else # define GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ #endif // __clang__ // A function level attribute to disable AddressSanitizer instrumentation. #if defined(__clang__) # if __has_feature(address_sanitizer) # define GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ \ __attribute__((no_sanitize_address)) # else # define GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ # endif // __has_feature(address_sanitizer) #else # define GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ #endif // __clang__ // A function level attribute to disable HWAddressSanitizer instrumentation. #if defined(__clang__) # if __has_feature(hwaddress_sanitizer) # define GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ \ __attribute__((no_sanitize("hwaddress"))) # else # define GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ # endif // __has_feature(hwaddress_sanitizer) #else # define GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ #endif // __clang__ // A function level attribute to disable ThreadSanitizer instrumentation. #if defined(__clang__) # if __has_feature(thread_sanitizer) # define GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ \ __attribute__((no_sanitize_thread)) # else # define GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ # endif // __has_feature(thread_sanitizer) #else # define GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ #endif // __clang__ namespace testing { class Message; // Legacy imports for backwards compatibility. // New code should use std:: names directly. using std::get; using std::make_tuple; using std::tuple; using std::tuple_element; using std::tuple_size; namespace internal { // A secret type that Google Test users don't know about. It has no // definition on purpose. Therefore it's impossible to create a // Secret object, which is what we want. class Secret; // The GTEST_COMPILE_ASSERT_ is a legacy macro used to verify that a compile // time expression is true (in new code, use static_assert instead). For // example, you could use it to verify the size of a static array: // // GTEST_COMPILE_ASSERT_(GTEST_ARRAY_SIZE_(names) == NUM_NAMES, // names_incorrect_size); // // The second argument to the macro must be a valid C++ identifier. If the // expression is false, compiler will issue an error containing this identifier. #define GTEST_COMPILE_ASSERT_(expr, msg) static_assert(expr, #msg) // Evaluates to the number of elements in 'array'. #define GTEST_ARRAY_SIZE_(array) (sizeof(array) / sizeof(array[0])) // A helper for suppressing warnings on constant condition. It just // returns 'condition'. GTEST_API_ bool IsTrue(bool condition); // Defines RE. #if GTEST_USES_PCRE // if used, PCRE is injected by custom/gtest-port.h #elif GTEST_USES_POSIX_RE || GTEST_USES_SIMPLE_RE // A simple C++ wrapper for . It uses the POSIX Extended // Regular Expression syntax. class GTEST_API_ RE { public: // A copy constructor is required by the Standard to initialize object // references from r-values. RE(const RE& other) { Init(other.pattern()); } // Constructs an RE from a string. RE(const ::std::string& regex) { Init(regex.c_str()); } // NOLINT RE(const char* regex) { Init(regex); } // NOLINT ~RE(); // Returns the string representation of the regex. const char* pattern() const { return pattern_; } // FullMatch(str, re) returns true if and only if regular expression re // matches the entire str. // PartialMatch(str, re) returns true if and only if regular expression re // matches a substring of str (including str itself). static bool FullMatch(const ::std::string& str, const RE& re) { return FullMatch(str.c_str(), re); } static bool PartialMatch(const ::std::string& str, const RE& re) { return PartialMatch(str.c_str(), re); } static bool FullMatch(const char* str, const RE& re); static bool PartialMatch(const char* str, const RE& re); private: void Init(const char* regex); const char* pattern_; bool is_valid_; # if GTEST_USES_POSIX_RE regex_t full_regex_; // For FullMatch(). regex_t partial_regex_; // For PartialMatch(). # else // GTEST_USES_SIMPLE_RE const char* full_pattern_; // For FullMatch(); # endif GTEST_DISALLOW_ASSIGN_(RE); }; #endif // GTEST_USES_PCRE // Formats a source file path and a line number as they would appear // in an error message from the compiler used to compile this code. GTEST_API_ ::std::string FormatFileLocation(const char* file, int line); // Formats a file location for compiler-independent XML output. // Although this function is not platform dependent, we put it next to // FormatFileLocation in order to contrast the two functions. GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(const char* file, int line); // Defines logging utilities: // GTEST_LOG_(severity) - logs messages at the specified severity level. The // message itself is streamed into the macro. // LogToStderr() - directs all log messages to stderr. // FlushInfoLog() - flushes informational log messages. enum GTestLogSeverity { GTEST_INFO, GTEST_WARNING, GTEST_ERROR, GTEST_FATAL }; // Formats log entry severity, provides a stream object for streaming the // log message, and terminates the message with a newline when going out of // scope. class GTEST_API_ GTestLog { public: GTestLog(GTestLogSeverity severity, const char* file, int line); // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. ~GTestLog(); ::std::ostream& GetStream() { return ::std::cerr; } private: const GTestLogSeverity severity_; GTEST_DISALLOW_COPY_AND_ASSIGN_(GTestLog); }; #if !defined(GTEST_LOG_) # define GTEST_LOG_(severity) \ ::testing::internal::GTestLog(::testing::internal::GTEST_##severity, \ __FILE__, __LINE__).GetStream() inline void LogToStderr() {} inline void FlushInfoLog() { fflush(nullptr); } #endif // !defined(GTEST_LOG_) #if !defined(GTEST_CHECK_) // INTERNAL IMPLEMENTATION - DO NOT USE. // // GTEST_CHECK_ is an all-mode assert. It aborts the program if the condition // is not satisfied. // Synopsys: // GTEST_CHECK_(boolean_condition); // or // GTEST_CHECK_(boolean_condition) << "Additional message"; // // This checks the condition and if the condition is not satisfied // it prints message about the condition violation, including the // condition itself, plus additional message streamed into it, if any, // and then it aborts the program. It aborts the program irrespective of // whether it is built in the debug mode or not. # define GTEST_CHECK_(condition) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::IsTrue(condition)) \ ; \ else \ GTEST_LOG_(FATAL) << "Condition " #condition " failed. " #endif // !defined(GTEST_CHECK_) // An all-mode assert to verify that the given POSIX-style function // call returns 0 (indicating success). Known limitation: this // doesn't expand to a balanced 'if' statement, so enclose the macro // in {} if you need to use it as the only statement in an 'if' // branch. #define GTEST_CHECK_POSIX_SUCCESS_(posix_call) \ if (const int gtest_error = (posix_call)) \ GTEST_LOG_(FATAL) << #posix_call << "failed with error " \ << gtest_error // Transforms "T" into "const T&" according to standard reference collapsing // rules (this is only needed as a backport for C++98 compilers that do not // support reference collapsing). Specifically, it transforms: // // char ==> const char& // const char ==> const char& // char& ==> char& // const char& ==> const char& // // Note that the non-const reference will not have "const" added. This is // standard, and necessary so that "T" can always bind to "const T&". template struct ConstRef { typedef const T& type; }; template struct ConstRef { typedef T& type; }; // The argument T must depend on some template parameters. #define GTEST_REFERENCE_TO_CONST_(T) \ typename ::testing::internal::ConstRef::type // INTERNAL IMPLEMENTATION - DO NOT USE IN USER CODE. // // Use ImplicitCast_ as a safe version of static_cast for upcasting in // the type hierarchy (e.g. casting a Foo* to a SuperclassOfFoo* or a // const Foo*). When you use ImplicitCast_, the compiler checks that // the cast is safe. Such explicit ImplicitCast_s are necessary in // surprisingly many situations where C++ demands an exact type match // instead of an argument type convertable to a target type. // // The syntax for using ImplicitCast_ is the same as for static_cast: // // ImplicitCast_(expr) // // ImplicitCast_ would have been part of the C++ standard library, // but the proposal was submitted too late. It will probably make // its way into the language in the future. // // This relatively ugly name is intentional. It prevents clashes with // similar functions users may have (e.g., implicit_cast). The internal // namespace alone is not enough because the function can be found by ADL. template inline To ImplicitCast_(To x) { return x; } // When you upcast (that is, cast a pointer from type Foo to type // SuperclassOfFoo), it's fine to use ImplicitCast_<>, since upcasts // always succeed. When you downcast (that is, cast a pointer from // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because // how do you know the pointer is really of type SubclassOfFoo? It // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, // when you downcast, you should use this macro. In debug mode, we // use dynamic_cast<> to double-check the downcast is legal (we die // if it's not). In normal mode, we do the efficient static_cast<> // instead. Thus, it's important to test in debug mode to make sure // the cast is legal! // This is the only place in the code we should use dynamic_cast<>. // In particular, you SHOULDN'T be using dynamic_cast<> in order to // do RTTI (eg code like this: // if (dynamic_cast(foo)) HandleASubclass1Object(foo); // if (dynamic_cast(foo)) HandleASubclass2Object(foo); // You should design the code some other way not to need this. // // This relatively ugly name is intentional. It prevents clashes with // similar functions users may have (e.g., down_cast). The internal // namespace alone is not enough because the function can be found by ADL. template // use like this: DownCast_(foo); inline To DownCast_(From* f) { // so we only accept pointers // Ensures that To is a sub-type of From *. This test is here only // for compile-time type checking, and has no overhead in an // optimized build at run-time, as it will be optimized away // completely. GTEST_INTENTIONAL_CONST_COND_PUSH_() if (false) { GTEST_INTENTIONAL_CONST_COND_POP_() const To to = nullptr; ::testing::internal::ImplicitCast_(to); } #if GTEST_HAS_RTTI // RTTI: debug mode only! GTEST_CHECK_(f == nullptr || dynamic_cast(f) != nullptr); #endif return static_cast(f); } // Downcasts the pointer of type Base to Derived. // Derived must be a subclass of Base. The parameter MUST // point to a class of type Derived, not any subclass of it. // When RTTI is available, the function performs a runtime // check to enforce this. template Derived* CheckedDowncastToActualType(Base* base) { #if GTEST_HAS_RTTI GTEST_CHECK_(typeid(*base) == typeid(Derived)); #endif #if GTEST_HAS_DOWNCAST_ return ::down_cast(base); #elif GTEST_HAS_RTTI return dynamic_cast(base); // NOLINT #else return static_cast(base); // Poor man's downcast. #endif } #if GTEST_HAS_STREAM_REDIRECTION // Defines the stderr capturer: // CaptureStdout - starts capturing stdout. // GetCapturedStdout - stops capturing stdout and returns the captured string. // CaptureStderr - starts capturing stderr. // GetCapturedStderr - stops capturing stderr and returns the captured string. // GTEST_API_ void CaptureStdout(); GTEST_API_ std::string GetCapturedStdout(); GTEST_API_ void CaptureStderr(); GTEST_API_ std::string GetCapturedStderr(); #endif // GTEST_HAS_STREAM_REDIRECTION // Returns the size (in bytes) of a file. GTEST_API_ size_t GetFileSize(FILE* file); // Reads the entire content of a file as a string. GTEST_API_ std::string ReadEntireFile(FILE* file); // All command line arguments. GTEST_API_ std::vector GetArgvs(); #if GTEST_HAS_DEATH_TEST std::vector GetInjectableArgvs(); // Deprecated: pass the args vector by value instead. void SetInjectableArgvs(const std::vector* new_argvs); void SetInjectableArgvs(const std::vector& new_argvs); void ClearInjectableArgvs(); #endif // GTEST_HAS_DEATH_TEST // Defines synchronization primitives. #if GTEST_IS_THREADSAFE # if GTEST_HAS_PTHREAD // Sleeps for (roughly) n milliseconds. This function is only for testing // Google Test's own constructs. Don't use it in user tests, either // directly or indirectly. inline void SleepMilliseconds(int n) { const timespec time = { 0, // 0 seconds. n * 1000L * 1000L, // And n ms. }; nanosleep(&time, nullptr); } # endif // GTEST_HAS_PTHREAD # if GTEST_HAS_NOTIFICATION_ // Notification has already been imported into the namespace. // Nothing to do here. # elif GTEST_HAS_PTHREAD // Allows a controller thread to pause execution of newly created // threads until notified. Instances of this class must be created // and destroyed in the controller thread. // // This class is only for testing Google Test's own constructs. Do not // use it in user tests, either directly or indirectly. class Notification { public: Notification() : notified_(false) { GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_init(&mutex_, nullptr)); } ~Notification() { pthread_mutex_destroy(&mutex_); } // Notifies all threads created with this notification to start. Must // be called from the controller thread. void Notify() { pthread_mutex_lock(&mutex_); notified_ = true; pthread_mutex_unlock(&mutex_); } // Blocks until the controller thread notifies. Must be called from a test // thread. void WaitForNotification() { for (;;) { pthread_mutex_lock(&mutex_); const bool notified = notified_; pthread_mutex_unlock(&mutex_); if (notified) break; SleepMilliseconds(10); } } private: pthread_mutex_t mutex_; bool notified_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Notification); }; # elif GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT GTEST_API_ void SleepMilliseconds(int n); // Provides leak-safe Windows kernel handle ownership. // Used in death tests and in threading support. class GTEST_API_ AutoHandle { public: // Assume that Win32 HANDLE type is equivalent to void*. Doing so allows us to // avoid including in this header file. Including is // undesirable because it defines a lot of symbols and macros that tend to // conflict with client code. This assumption is verified by // WindowsTypesTest.HANDLEIsVoidStar. typedef void* Handle; AutoHandle(); explicit AutoHandle(Handle handle); ~AutoHandle(); Handle Get() const; void Reset(); void Reset(Handle handle); private: // Returns true if and only if the handle is a valid handle object that can be // closed. bool IsCloseable() const; Handle handle_; GTEST_DISALLOW_COPY_AND_ASSIGN_(AutoHandle); }; // Allows a controller thread to pause execution of newly created // threads until notified. Instances of this class must be created // and destroyed in the controller thread. // // This class is only for testing Google Test's own constructs. Do not // use it in user tests, either directly or indirectly. class GTEST_API_ Notification { public: Notification(); void Notify(); void WaitForNotification(); private: AutoHandle event_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Notification); }; # endif // GTEST_HAS_NOTIFICATION_ // On MinGW, we can have both GTEST_OS_WINDOWS and GTEST_HAS_PTHREAD // defined, but we don't want to use MinGW's pthreads implementation, which // has conformance problems with some versions of the POSIX standard. # if GTEST_HAS_PTHREAD && !GTEST_OS_WINDOWS_MINGW // As a C-function, ThreadFuncWithCLinkage cannot be templated itself. // Consequently, it cannot select a correct instantiation of ThreadWithParam // in order to call its Run(). Introducing ThreadWithParamBase as a // non-templated base class for ThreadWithParam allows us to bypass this // problem. class ThreadWithParamBase { public: virtual ~ThreadWithParamBase() {} virtual void Run() = 0; }; // pthread_create() accepts a pointer to a function type with the C linkage. // According to the Standard (7.5/1), function types with different linkages // are different even if they are otherwise identical. Some compilers (for // example, SunStudio) treat them as different types. Since class methods // cannot be defined with C-linkage we need to define a free C-function to // pass into pthread_create(). extern "C" inline void* ThreadFuncWithCLinkage(void* thread) { static_cast(thread)->Run(); return nullptr; } // Helper class for testing Google Test's multi-threading constructs. // To use it, write: // // void ThreadFunc(int param) { /* Do things with param */ } // Notification thread_can_start; // ... // // The thread_can_start parameter is optional; you can supply NULL. // ThreadWithParam thread(&ThreadFunc, 5, &thread_can_start); // thread_can_start.Notify(); // // These classes are only for testing Google Test's own constructs. Do // not use them in user tests, either directly or indirectly. template class ThreadWithParam : public ThreadWithParamBase { public: typedef void UserThreadFunc(T); ThreadWithParam(UserThreadFunc* func, T param, Notification* thread_can_start) : func_(func), param_(param), thread_can_start_(thread_can_start), finished_(false) { ThreadWithParamBase* const base = this; // The thread can be created only after all fields except thread_ // have been initialized. GTEST_CHECK_POSIX_SUCCESS_( pthread_create(&thread_, nullptr, &ThreadFuncWithCLinkage, base)); } ~ThreadWithParam() override { Join(); } void Join() { if (!finished_) { GTEST_CHECK_POSIX_SUCCESS_(pthread_join(thread_, nullptr)); finished_ = true; } } void Run() override { if (thread_can_start_ != nullptr) thread_can_start_->WaitForNotification(); func_(param_); } private: UserThreadFunc* const func_; // User-supplied thread function. const T param_; // User-supplied parameter to the thread function. // When non-NULL, used to block execution until the controller thread // notifies. Notification* const thread_can_start_; bool finished_; // true if and only if we know that the thread function has // finished. pthread_t thread_; // The native thread object. GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParam); }; # endif // !GTEST_OS_WINDOWS && GTEST_HAS_PTHREAD || // GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ # if GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ // Mutex and ThreadLocal have already been imported into the namespace. // Nothing to do here. # elif GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT // Mutex implements mutex on Windows platforms. It is used in conjunction // with class MutexLock: // // Mutex mutex; // ... // MutexLock lock(&mutex); // Acquires the mutex and releases it at the // // end of the current scope. // // A static Mutex *must* be defined or declared using one of the following // macros: // GTEST_DEFINE_STATIC_MUTEX_(g_some_mutex); // GTEST_DECLARE_STATIC_MUTEX_(g_some_mutex); // // (A non-static Mutex is defined/declared in the usual way). class GTEST_API_ Mutex { public: enum MutexType { kStatic = 0, kDynamic = 1 }; // We rely on kStaticMutex being 0 as it is to what the linker initializes // type_ in static mutexes. critical_section_ will be initialized lazily // in ThreadSafeLazyInit(). enum StaticConstructorSelector { kStaticMutex = 0 }; // This constructor intentionally does nothing. It relies on type_ being // statically initialized to 0 (effectively setting it to kStatic) and on // ThreadSafeLazyInit() to lazily initialize the rest of the members. explicit Mutex(StaticConstructorSelector /*dummy*/) {} Mutex(); ~Mutex(); void Lock(); void Unlock(); // Does nothing if the current thread holds the mutex. Otherwise, crashes // with high probability. void AssertHeld(); private: // Initializes owner_thread_id_ and critical_section_ in static mutexes. void ThreadSafeLazyInit(); // Per https://blogs.msdn.microsoft.com/oldnewthing/20040223-00/?p=40503, // we assume that 0 is an invalid value for thread IDs. unsigned int owner_thread_id_; // For static mutexes, we rely on these members being initialized to zeros // by the linker. MutexType type_; long critical_section_init_phase_; // NOLINT GTEST_CRITICAL_SECTION* critical_section_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Mutex); }; # define GTEST_DECLARE_STATIC_MUTEX_(mutex) \ extern ::testing::internal::Mutex mutex # define GTEST_DEFINE_STATIC_MUTEX_(mutex) \ ::testing::internal::Mutex mutex(::testing::internal::Mutex::kStaticMutex) // We cannot name this class MutexLock because the ctor declaration would // conflict with a macro named MutexLock, which is defined on some // platforms. That macro is used as a defensive measure to prevent against // inadvertent misuses of MutexLock like "MutexLock(&mu)" rather than // "MutexLock l(&mu)". Hence the typedef trick below. class GTestMutexLock { public: explicit GTestMutexLock(Mutex* mutex) : mutex_(mutex) { mutex_->Lock(); } ~GTestMutexLock() { mutex_->Unlock(); } private: Mutex* const mutex_; GTEST_DISALLOW_COPY_AND_ASSIGN_(GTestMutexLock); }; typedef GTestMutexLock MutexLock; // Base class for ValueHolder. Allows a caller to hold and delete a value // without knowing its type. class ThreadLocalValueHolderBase { public: virtual ~ThreadLocalValueHolderBase() {} }; // Provides a way for a thread to send notifications to a ThreadLocal // regardless of its parameter type. class ThreadLocalBase { public: // Creates a new ValueHolder object holding a default value passed to // this ThreadLocal's constructor and returns it. It is the caller's // responsibility not to call this when the ThreadLocal instance already // has a value on the current thread. virtual ThreadLocalValueHolderBase* NewValueForCurrentThread() const = 0; protected: ThreadLocalBase() {} virtual ~ThreadLocalBase() {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadLocalBase); }; // Maps a thread to a set of ThreadLocals that have values instantiated on that // thread and notifies them when the thread exits. A ThreadLocal instance is // expected to persist until all threads it has values on have terminated. class GTEST_API_ ThreadLocalRegistry { public: // Registers thread_local_instance as having value on the current thread. // Returns a value that can be used to identify the thread from other threads. static ThreadLocalValueHolderBase* GetValueOnCurrentThread( const ThreadLocalBase* thread_local_instance); // Invoked when a ThreadLocal instance is destroyed. static void OnThreadLocalDestroyed( const ThreadLocalBase* thread_local_instance); }; class GTEST_API_ ThreadWithParamBase { public: void Join(); protected: class Runnable { public: virtual ~Runnable() {} virtual void Run() = 0; }; ThreadWithParamBase(Runnable *runnable, Notification* thread_can_start); virtual ~ThreadWithParamBase(); private: AutoHandle thread_; }; // Helper class for testing Google Test's multi-threading constructs. template class ThreadWithParam : public ThreadWithParamBase { public: typedef void UserThreadFunc(T); ThreadWithParam(UserThreadFunc* func, T param, Notification* thread_can_start) : ThreadWithParamBase(new RunnableImpl(func, param), thread_can_start) { } virtual ~ThreadWithParam() {} private: class RunnableImpl : public Runnable { public: RunnableImpl(UserThreadFunc* func, T param) : func_(func), param_(param) { } virtual ~RunnableImpl() {} virtual void Run() { func_(param_); } private: UserThreadFunc* const func_; const T param_; GTEST_DISALLOW_COPY_AND_ASSIGN_(RunnableImpl); }; GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParam); }; // Implements thread-local storage on Windows systems. // // // Thread 1 // ThreadLocal tl(100); // 100 is the default value for each thread. // // // Thread 2 // tl.set(150); // Changes the value for thread 2 only. // EXPECT_EQ(150, tl.get()); // // // Thread 1 // EXPECT_EQ(100, tl.get()); // In thread 1, tl has the original value. // tl.set(200); // EXPECT_EQ(200, tl.get()); // // The template type argument T must have a public copy constructor. // In addition, the default ThreadLocal constructor requires T to have // a public default constructor. // // The users of a TheadLocal instance have to make sure that all but one // threads (including the main one) using that instance have exited before // destroying it. Otherwise, the per-thread objects managed for them by the // ThreadLocal instance are not guaranteed to be destroyed on all platforms. // // Google Test only uses global ThreadLocal objects. That means they // will die after main() has returned. Therefore, no per-thread // object managed by Google Test will be leaked as long as all threads // using Google Test have exited when main() returns. template class ThreadLocal : public ThreadLocalBase { public: ThreadLocal() : default_factory_(new DefaultValueHolderFactory()) {} explicit ThreadLocal(const T& value) : default_factory_(new InstanceValueHolderFactory(value)) {} ~ThreadLocal() { ThreadLocalRegistry::OnThreadLocalDestroyed(this); } T* pointer() { return GetOrCreateValue(); } const T* pointer() const { return GetOrCreateValue(); } const T& get() const { return *pointer(); } void set(const T& value) { *pointer() = value; } private: // Holds a value of T. Can be deleted via its base class without the caller // knowing the type of T. class ValueHolder : public ThreadLocalValueHolderBase { public: ValueHolder() : value_() {} explicit ValueHolder(const T& value) : value_(value) {} T* pointer() { return &value_; } private: T value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ValueHolder); }; T* GetOrCreateValue() const { return static_cast( ThreadLocalRegistry::GetValueOnCurrentThread(this))->pointer(); } virtual ThreadLocalValueHolderBase* NewValueForCurrentThread() const { return default_factory_->MakeNewHolder(); } class ValueHolderFactory { public: ValueHolderFactory() {} virtual ~ValueHolderFactory() {} virtual ValueHolder* MakeNewHolder() const = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ValueHolderFactory); }; class DefaultValueHolderFactory : public ValueHolderFactory { public: DefaultValueHolderFactory() {} virtual ValueHolder* MakeNewHolder() const { return new ValueHolder(); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultValueHolderFactory); }; class InstanceValueHolderFactory : public ValueHolderFactory { public: explicit InstanceValueHolderFactory(const T& value) : value_(value) {} virtual ValueHolder* MakeNewHolder() const { return new ValueHolder(value_); } private: const T value_; // The value for each thread. GTEST_DISALLOW_COPY_AND_ASSIGN_(InstanceValueHolderFactory); }; std::unique_ptr default_factory_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadLocal); }; # elif GTEST_HAS_PTHREAD // MutexBase and Mutex implement mutex on pthreads-based platforms. class MutexBase { public: // Acquires this mutex. void Lock() { GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_lock(&mutex_)); owner_ = pthread_self(); has_owner_ = true; } // Releases this mutex. void Unlock() { // Since the lock is being released the owner_ field should no longer be // considered valid. We don't protect writing to has_owner_ here, as it's // the caller's responsibility to ensure that the current thread holds the // mutex when this is called. has_owner_ = false; GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_unlock(&mutex_)); } // Does nothing if the current thread holds the mutex. Otherwise, crashes // with high probability. void AssertHeld() const { GTEST_CHECK_(has_owner_ && pthread_equal(owner_, pthread_self())) << "The current thread is not holding the mutex @" << this; } // A static mutex may be used before main() is entered. It may even // be used before the dynamic initialization stage. Therefore we // must be able to initialize a static mutex object at link time. // This means MutexBase has to be a POD and its member variables // have to be public. public: pthread_mutex_t mutex_; // The underlying pthread mutex. // has_owner_ indicates whether the owner_ field below contains a valid thread // ID and is therefore safe to inspect (e.g., to use in pthread_equal()). All // accesses to the owner_ field should be protected by a check of this field. // An alternative might be to memset() owner_ to all zeros, but there's no // guarantee that a zero'd pthread_t is necessarily invalid or even different // from pthread_self(). bool has_owner_; pthread_t owner_; // The thread holding the mutex. }; // Forward-declares a static mutex. # define GTEST_DECLARE_STATIC_MUTEX_(mutex) \ extern ::testing::internal::MutexBase mutex // Defines and statically (i.e. at link time) initializes a static mutex. // The initialization list here does not explicitly initialize each field, // instead relying on default initialization for the unspecified fields. In // particular, the owner_ field (a pthread_t) is not explicitly initialized. // This allows initialization to work whether pthread_t is a scalar or struct. // The flag -Wmissing-field-initializers must not be specified for this to work. #define GTEST_DEFINE_STATIC_MUTEX_(mutex) \ ::testing::internal::MutexBase mutex = {PTHREAD_MUTEX_INITIALIZER, false, 0} // The Mutex class can only be used for mutexes created at runtime. It // shares its API with MutexBase otherwise. class Mutex : public MutexBase { public: Mutex() { GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_init(&mutex_, nullptr)); has_owner_ = false; } ~Mutex() { GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_destroy(&mutex_)); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(Mutex); }; // We cannot name this class MutexLock because the ctor declaration would // conflict with a macro named MutexLock, which is defined on some // platforms. That macro is used as a defensive measure to prevent against // inadvertent misuses of MutexLock like "MutexLock(&mu)" rather than // "MutexLock l(&mu)". Hence the typedef trick below. class GTestMutexLock { public: explicit GTestMutexLock(MutexBase* mutex) : mutex_(mutex) { mutex_->Lock(); } ~GTestMutexLock() { mutex_->Unlock(); } private: MutexBase* const mutex_; GTEST_DISALLOW_COPY_AND_ASSIGN_(GTestMutexLock); }; typedef GTestMutexLock MutexLock; // Helpers for ThreadLocal. // pthread_key_create() requires DeleteThreadLocalValue() to have // C-linkage. Therefore it cannot be templatized to access // ThreadLocal. Hence the need for class // ThreadLocalValueHolderBase. class ThreadLocalValueHolderBase { public: virtual ~ThreadLocalValueHolderBase() {} }; // Called by pthread to delete thread-local data stored by // pthread_setspecific(). extern "C" inline void DeleteThreadLocalValue(void* value_holder) { delete static_cast(value_holder); } // Implements thread-local storage on pthreads-based systems. template class GTEST_API_ ThreadLocal { public: ThreadLocal() : key_(CreateKey()), default_factory_(new DefaultValueHolderFactory()) {} explicit ThreadLocal(const T& value) : key_(CreateKey()), default_factory_(new InstanceValueHolderFactory(value)) {} ~ThreadLocal() { // Destroys the managed object for the current thread, if any. DeleteThreadLocalValue(pthread_getspecific(key_)); // Releases resources associated with the key. This will *not* // delete managed objects for other threads. GTEST_CHECK_POSIX_SUCCESS_(pthread_key_delete(key_)); } T* pointer() { return GetOrCreateValue(); } const T* pointer() const { return GetOrCreateValue(); } const T& get() const { return *pointer(); } void set(const T& value) { *pointer() = value; } private: // Holds a value of type T. class ValueHolder : public ThreadLocalValueHolderBase { public: ValueHolder() : value_() {} explicit ValueHolder(const T& value) : value_(value) {} T* pointer() { return &value_; } private: T value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ValueHolder); }; static pthread_key_t CreateKey() { pthread_key_t key; // When a thread exits, DeleteThreadLocalValue() will be called on // the object managed for that thread. GTEST_CHECK_POSIX_SUCCESS_( pthread_key_create(&key, &DeleteThreadLocalValue)); return key; } T* GetOrCreateValue() const { ThreadLocalValueHolderBase* const holder = static_cast(pthread_getspecific(key_)); if (holder != nullptr) { return CheckedDowncastToActualType(holder)->pointer(); } ValueHolder* const new_holder = default_factory_->MakeNewHolder(); ThreadLocalValueHolderBase* const holder_base = new_holder; GTEST_CHECK_POSIX_SUCCESS_(pthread_setspecific(key_, holder_base)); return new_holder->pointer(); } class ValueHolderFactory { public: ValueHolderFactory() {} virtual ~ValueHolderFactory() {} virtual ValueHolder* MakeNewHolder() const = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ValueHolderFactory); }; class DefaultValueHolderFactory : public ValueHolderFactory { public: DefaultValueHolderFactory() {} virtual ValueHolder* MakeNewHolder() const { return new ValueHolder(); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultValueHolderFactory); }; class InstanceValueHolderFactory : public ValueHolderFactory { public: explicit InstanceValueHolderFactory(const T& value) : value_(value) {} virtual ValueHolder* MakeNewHolder() const { return new ValueHolder(value_); } private: const T value_; // The value for each thread. GTEST_DISALLOW_COPY_AND_ASSIGN_(InstanceValueHolderFactory); }; // A key pthreads uses for looking up per-thread values. const pthread_key_t key_; std::unique_ptr default_factory_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadLocal); }; # endif // GTEST_HAS_MUTEX_AND_THREAD_LOCAL_ #else // GTEST_IS_THREADSAFE // A dummy implementation of synchronization primitives (mutex, lock, // and thread-local variable). Necessary for compiling Google Test where // mutex is not supported - using Google Test in multiple threads is not // supported on such platforms. class Mutex { public: Mutex() {} void Lock() {} void Unlock() {} void AssertHeld() const {} }; # define GTEST_DECLARE_STATIC_MUTEX_(mutex) \ extern ::testing::internal::Mutex mutex # define GTEST_DEFINE_STATIC_MUTEX_(mutex) ::testing::internal::Mutex mutex // We cannot name this class MutexLock because the ctor declaration would // conflict with a macro named MutexLock, which is defined on some // platforms. That macro is used as a defensive measure to prevent against // inadvertent misuses of MutexLock like "MutexLock(&mu)" rather than // "MutexLock l(&mu)". Hence the typedef trick below. class GTestMutexLock { public: explicit GTestMutexLock(Mutex*) {} // NOLINT }; typedef GTestMutexLock MutexLock; template class GTEST_API_ ThreadLocal { public: ThreadLocal() : value_() {} explicit ThreadLocal(const T& value) : value_(value) {} T* pointer() { return &value_; } const T* pointer() const { return &value_; } const T& get() const { return value_; } void set(const T& value) { value_ = value; } private: T value_; }; #endif // GTEST_IS_THREADSAFE // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. GTEST_API_ size_t GetThreadCount(); template using bool_constant = std::integral_constant; #if GTEST_OS_WINDOWS # define GTEST_PATH_SEP_ "\\" # define GTEST_HAS_ALT_PATH_SEP_ 1 // The biggest signed integer type the compiler supports. typedef __int64 BiggestInt; #else # define GTEST_PATH_SEP_ "/" # define GTEST_HAS_ALT_PATH_SEP_ 0 typedef long long BiggestInt; // NOLINT #endif // GTEST_OS_WINDOWS // Utilities for char. // isspace(int ch) and friends accept an unsigned char or EOF. char // may be signed, depending on the compiler (or compiler flags). // Therefore we need to cast a char to unsigned char before calling // isspace(), etc. inline bool IsAlpha(char ch) { return isalpha(static_cast(ch)) != 0; } inline bool IsAlNum(char ch) { return isalnum(static_cast(ch)) != 0; } inline bool IsDigit(char ch) { return isdigit(static_cast(ch)) != 0; } inline bool IsLower(char ch) { return islower(static_cast(ch)) != 0; } inline bool IsSpace(char ch) { return isspace(static_cast(ch)) != 0; } inline bool IsUpper(char ch) { return isupper(static_cast(ch)) != 0; } inline bool IsXDigit(char ch) { return isxdigit(static_cast(ch)) != 0; } inline bool IsXDigit(wchar_t ch) { const unsigned char low_byte = static_cast(ch); return ch == low_byte && isxdigit(low_byte) != 0; } inline char ToLower(char ch) { return static_cast(tolower(static_cast(ch))); } inline char ToUpper(char ch) { return static_cast(toupper(static_cast(ch))); } inline std::string StripTrailingSpaces(std::string str) { std::string::iterator it = str.end(); while (it != str.begin() && IsSpace(*--it)) it = str.erase(it); return str; } // The testing::internal::posix namespace holds wrappers for common // POSIX functions. These wrappers hide the differences between // Windows/MSVC and POSIX systems. Since some compilers define these // standard functions as macros, the wrapper cannot have the same name // as the wrapped function. namespace posix { // Functions with a different name on Windows. #if GTEST_OS_WINDOWS typedef struct _stat StatStruct; # ifdef __BORLANDC__ inline int IsATTY(int fd) { return isatty(fd); } inline int StrCaseCmp(const char* s1, const char* s2) { return stricmp(s1, s2); } inline char* StrDup(const char* src) { return strdup(src); } # else // !__BORLANDC__ # if GTEST_OS_WINDOWS_MOBILE inline int IsATTY(int /* fd */) { return 0; } # else inline int IsATTY(int fd) { return _isatty(fd); } # endif // GTEST_OS_WINDOWS_MOBILE inline int StrCaseCmp(const char* s1, const char* s2) { return _stricmp(s1, s2); } inline char* StrDup(const char* src) { return _strdup(src); } # endif // __BORLANDC__ # if GTEST_OS_WINDOWS_MOBILE inline int FileNo(FILE* file) { return reinterpret_cast(_fileno(file)); } // Stat(), RmDir(), and IsDir() are not needed on Windows CE at this // time and thus not defined there. # else inline int FileNo(FILE* file) { return _fileno(file); } inline int Stat(const char* path, StatStruct* buf) { return _stat(path, buf); } inline int RmDir(const char* dir) { return _rmdir(dir); } inline bool IsDir(const StatStruct& st) { return (_S_IFDIR & st.st_mode) != 0; } # endif // GTEST_OS_WINDOWS_MOBILE #else typedef struct stat StatStruct; inline int FileNo(FILE* file) { return fileno(file); } inline int IsATTY(int fd) { return isatty(fd); } inline int Stat(const char* path, StatStruct* buf) { return stat(path, buf); } inline int StrCaseCmp(const char* s1, const char* s2) { return strcasecmp(s1, s2); } inline char* StrDup(const char* src) { return strdup(src); } inline int RmDir(const char* dir) { return rmdir(dir); } inline bool IsDir(const StatStruct& st) { return S_ISDIR(st.st_mode); } #endif // GTEST_OS_WINDOWS // Functions deprecated by MSVC 8.0. GTEST_DISABLE_MSC_DEPRECATED_PUSH_() inline const char* StrNCpy(char* dest, const char* src, size_t n) { return strncpy(dest, src, n); } // ChDir(), FReopen(), FDOpen(), Read(), Write(), Close(), and // StrError() aren't needed on Windows CE at this time and thus not // defined there. #if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT inline int ChDir(const char* dir) { return chdir(dir); } #endif inline FILE* FOpen(const char* path, const char* mode) { return fopen(path, mode); } #if !GTEST_OS_WINDOWS_MOBILE inline FILE *FReopen(const char* path, const char* mode, FILE* stream) { return freopen(path, mode, stream); } inline FILE* FDOpen(int fd, const char* mode) { return fdopen(fd, mode); } #endif inline int FClose(FILE* fp) { return fclose(fp); } #if !GTEST_OS_WINDOWS_MOBILE inline int Read(int fd, void* buf, unsigned int count) { return static_cast(read(fd, buf, count)); } inline int Write(int fd, const void* buf, unsigned int count) { return static_cast(write(fd, buf, count)); } inline int Close(int fd) { return close(fd); } inline const char* StrError(int errnum) { return strerror(errnum); } #endif inline const char* GetEnv(const char* name) { #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT // We are on Windows CE, which has no environment variables. static_cast(name); // To prevent 'unused argument' warning. return nullptr; #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9) // Environment variables which we programmatically clear will be set to the // empty string rather than unset (NULL). Handle that case. const char* const env = getenv(name); return (env != nullptr && env[0] != '\0') ? env : nullptr; #else return getenv(name); #endif } GTEST_DISABLE_MSC_DEPRECATED_POP_() #if GTEST_OS_WINDOWS_MOBILE // Windows CE has no C library. The abort() function is used in // several places in Google Test. This implementation provides a reasonable // imitation of standard behaviour. [[noreturn]] void Abort(); #else [[noreturn]] inline void Abort() { abort(); } #endif // GTEST_OS_WINDOWS_MOBILE } // namespace posix // MSVC "deprecates" snprintf and issues warnings wherever it is used. In // order to avoid these warnings, we need to use _snprintf or _snprintf_s on // MSVC-based platforms. We map the GTEST_SNPRINTF_ macro to the appropriate // function in order to achieve that. We use macro definition here because // snprintf is a variadic function. #if _MSC_VER && !GTEST_OS_WINDOWS_MOBILE // MSVC 2005 and above support variadic macros. # define GTEST_SNPRINTF_(buffer, size, format, ...) \ _snprintf_s(buffer, size, size, format, __VA_ARGS__) #elif defined(_MSC_VER) // Windows CE does not define _snprintf_s # define GTEST_SNPRINTF_ _snprintf #else # define GTEST_SNPRINTF_ snprintf #endif // The maximum number a BiggestInt can represent. This definition // works no matter BiggestInt is represented in one's complement or // two's complement. // // We cannot rely on numeric_limits in STL, as __int64 and long long // are not part of standard C++ and numeric_limits doesn't need to be // defined for them. const BiggestInt kMaxBiggestInt = ~(static_cast(1) << (8*sizeof(BiggestInt) - 1)); // This template class serves as a compile-time function from size to // type. It maps a size in bytes to a primitive type with that // size. e.g. // // TypeWithSize<4>::UInt // // is typedef-ed to be unsigned int (unsigned integer made up of 4 // bytes). // // Such functionality should belong to STL, but I cannot find it // there. // // Google Test uses this class in the implementation of floating-point // comparison. // // For now it only handles UInt (unsigned int) as that's all Google Test // needs. Other types can be easily added in the future if need // arises. template class TypeWithSize { public: // This prevents the user from using TypeWithSize with incorrect // values of N. typedef void UInt; }; // The specialization for size 4. template <> class TypeWithSize<4> { public: // unsigned int has size 4 in both gcc and MSVC. // // As base/basictypes.h doesn't compile on Windows, we cannot use // uint32, uint64, and etc here. typedef int Int; typedef unsigned int UInt; }; // The specialization for size 8. template <> class TypeWithSize<8> { public: #if GTEST_OS_WINDOWS typedef __int64 Int; typedef unsigned __int64 UInt; #else typedef long long Int; // NOLINT typedef unsigned long long UInt; // NOLINT #endif // GTEST_OS_WINDOWS }; // Integer types of known sizes. typedef TypeWithSize<4>::Int Int32; typedef TypeWithSize<4>::UInt UInt32; typedef TypeWithSize<8>::Int Int64; typedef TypeWithSize<8>::UInt UInt64; typedef TypeWithSize<8>::Int TimeInMillis; // Represents time in milliseconds. // Utilities for command line flags and environment variables. // Macro for referencing flags. #if !defined(GTEST_FLAG) # define GTEST_FLAG(name) FLAGS_gtest_##name #endif // !defined(GTEST_FLAG) #if !defined(GTEST_USE_OWN_FLAGFILE_FLAG_) # define GTEST_USE_OWN_FLAGFILE_FLAG_ 1 #endif // !defined(GTEST_USE_OWN_FLAGFILE_FLAG_) #if !defined(GTEST_DECLARE_bool_) # define GTEST_FLAG_SAVER_ ::testing::internal::GTestFlagSaver // Macros for declaring flags. # define GTEST_DECLARE_bool_(name) GTEST_API_ extern bool GTEST_FLAG(name) # define GTEST_DECLARE_int32_(name) \ GTEST_API_ extern ::testing::internal::Int32 GTEST_FLAG(name) # define GTEST_DECLARE_string_(name) \ GTEST_API_ extern ::std::string GTEST_FLAG(name) // Macros for defining flags. # define GTEST_DEFINE_bool_(name, default_val, doc) \ GTEST_API_ bool GTEST_FLAG(name) = (default_val) # define GTEST_DEFINE_int32_(name, default_val, doc) \ GTEST_API_ ::testing::internal::Int32 GTEST_FLAG(name) = (default_val) # define GTEST_DEFINE_string_(name, default_val, doc) \ GTEST_API_ ::std::string GTEST_FLAG(name) = (default_val) #endif // !defined(GTEST_DECLARE_bool_) // Thread annotations #if !defined(GTEST_EXCLUSIVE_LOCK_REQUIRED_) # define GTEST_EXCLUSIVE_LOCK_REQUIRED_(locks) # define GTEST_LOCK_EXCLUDED_(locks) #endif // !defined(GTEST_EXCLUSIVE_LOCK_REQUIRED_) // Parses 'str' for a 32-bit signed integer. If successful, writes the result // to *value and returns true; otherwise leaves *value unchanged and returns // false. bool ParseInt32(const Message& src_text, const char* str, Int32* value); // Parses a bool/Int32/string from the environment variable // corresponding to the given Google Test flag. bool BoolFromGTestEnv(const char* flag, bool default_val); GTEST_API_ Int32 Int32FromGTestEnv(const char* flag, Int32 default_val); std::string OutputFlagAlsoCheckEnvVar(); const char* StringFromGTestEnv(const char* flag, const char* default_val); } // namespace internal } // namespace testing #if !defined(GTEST_INTERNAL_DEPRECATED) // Internal Macro to mark an API deprecated, for googletest usage only // Usage: class GTEST_INTERNAL_DEPRECATED(message) MyClass or // GTEST_INTERNAL_DEPRECATED(message) myFunction(); Every usage of // a deprecated entity will trigger a warning when compiled with // `-Wdeprecated-declarations` option (clang, gcc, any __GNUC__ compiler). // For msvc /W3 option will need to be used // Note that for 'other' compilers this macro evaluates to nothing to prevent // compilations errors. #if defined(_MSC_VER) #define GTEST_INTERNAL_DEPRECATED(message) __declspec(deprecated(message)) #elif defined(__GNUC__) #define GTEST_INTERNAL_DEPRECATED(message) __attribute__((deprecated(message))) #else #define GTEST_INTERNAL_DEPRECATED(message) #endif #endif // !defined(GTEST_INTERNAL_DEPRECATED) #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_PORT_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-string.h000066400000000000000000000156361355420072700300560ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This header file declares the String class and functions used internally by // Google Test. They are subject to change without notice. They should not used // by code external to Google Test. // // This header file is #included by gtest-internal.h. // It should not be #included by other files. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_STRING_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_STRING_H_ #ifdef __BORLANDC__ // string.h is not guaranteed to provide strcpy on C++ Builder. # include #endif #include #include #include "gtest/internal/gtest-port.h" namespace testing { namespace internal { // String - an abstract class holding static string utilities. class GTEST_API_ String { public: // Static utility methods // Clones a 0-terminated C string, allocating memory using new. The // caller is responsible for deleting the return value using // delete[]. Returns the cloned string, or NULL if the input is // NULL. // // This is different from strdup() in string.h, which allocates // memory using malloc(). static const char* CloneCString(const char* c_str); #if GTEST_OS_WINDOWS_MOBILE // Windows CE does not have the 'ANSI' versions of Win32 APIs. To be // able to pass strings to Win32 APIs on CE we need to convert them // to 'Unicode', UTF-16. // Creates a UTF-16 wide string from the given ANSI string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the wide string, or NULL if the // input is NULL. // // The wide string is created using the ANSI codepage (CP_ACP) to // match the behaviour of the ANSI versions of Win32 calls and the // C runtime. static LPCWSTR AnsiToUtf16(const char* c_str); // Creates an ANSI string from the given wide string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the ANSI string, or NULL if the // input is NULL. // // The returned string is created using the ANSI codepage (CP_ACP) to // match the behaviour of the ANSI versions of Win32 calls and the // C runtime. static const char* Utf16ToAnsi(LPCWSTR utf16_str); #endif // Compares two C strings. Returns true if and only if they have the same // content. // // Unlike strcmp(), this function can handle NULL argument(s). A // NULL C string is considered different to any non-NULL C string, // including the empty string. static bool CStringEquals(const char* lhs, const char* rhs); // Converts a wide C string to a String using the UTF-8 encoding. // NULL will be converted to "(null)". If an error occurred during // the conversion, "(failed to convert from wide string)" is // returned. static std::string ShowWideCString(const wchar_t* wide_c_str); // Compares two wide C strings. Returns true if and only if they have the // same content. // // Unlike wcscmp(), this function can handle NULL argument(s). A // NULL C string is considered different to any non-NULL C string, // including the empty string. static bool WideCStringEquals(const wchar_t* lhs, const wchar_t* rhs); // Compares two C strings, ignoring case. Returns true if and only if // they have the same content. // // Unlike strcasecmp(), this function can handle NULL argument(s). // A NULL C string is considered different to any non-NULL C string, // including the empty string. static bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs); // Compares two wide C strings, ignoring case. Returns true if and only if // they have the same content. // // Unlike wcscasecmp(), this function can handle NULL argument(s). // A NULL C string is considered different to any non-NULL wide C string, // including the empty string. // NB: The implementations on different platforms slightly differ. // On windows, this method uses _wcsicmp which compares according to LC_CTYPE // environment variable. On GNU platform this method uses wcscasecmp // which compares according to LC_CTYPE category of the current locale. // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the // current locale. static bool CaseInsensitiveWideCStringEquals(const wchar_t* lhs, const wchar_t* rhs); // Returns true if and only if the given string ends with the given suffix, // ignoring case. Any string is considered to end with an empty suffix. static bool EndsWithCaseInsensitive( const std::string& str, const std::string& suffix); // Formats an int value as "%02d". static std::string FormatIntWidth2(int value); // "%02d" for width == 2 // Formats an int value as "%X". static std::string FormatHexInt(int value); // Formats an int value as "%X". static std::string FormatHexUInt32(UInt32 value); // Formats a byte as "%02X". static std::string FormatByte(unsigned char value); private: String(); // Not meant to be instantiated. }; // class String // Gets the content of the stringstream's buffer as an std::string. Each '\0' // character in the buffer is replaced with "\\0". GTEST_API_ std::string StringStreamToString(::std::stringstream* stream); } // namespace internal } // namespace testing #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_STRING_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-type-util.h000066400000000000000000005533201355420072700305010ustar00rootroot00000000000000// This file was GENERATED by command: // pump.py gtest-type-util.h.pump // DO NOT EDIT BY HAND!!! // Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Type utilities needed for implementing typed and type-parameterized // tests. This file is generated by a SCRIPT. DO NOT EDIT BY HAND! // // Currently we support at most 50 types in a list, and at most 50 // type-parameterized tests in one type-parameterized test suite. // Please contact googletestframework@googlegroups.com if you need // more. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ #include "gtest/internal/gtest-port.h" // #ifdef __GNUC__ is too general here. It is possible to use gcc without using // libstdc++ (which is where cxxabi.h comes from). # if GTEST_HAS_CXXABI_H_ # include # elif defined(__HP_aCC) # include # endif // GTEST_HASH_CXXABI_H_ namespace testing { namespace internal { // Canonicalizes a given name with respect to the Standard C++ Library. // This handles removing the inline namespace within `std` that is // used by various standard libraries (e.g., `std::__1`). Names outside // of namespace std are returned unmodified. inline std::string CanonicalizeForStdLibVersioning(std::string s) { static const char prefix[] = "std::__"; if (s.compare(0, strlen(prefix), prefix) == 0) { std::string::size_type end = s.find("::", strlen(prefix)); if (end != s.npos) { // Erase everything between the initial `std` and the second `::`. s.erase(strlen("std"), end - strlen("std")); } } return s; } // GetTypeName() returns a human-readable name of type T. // NB: This function is also used in Google Mock, so don't move it inside of // the typed-test-only section below. template std::string GetTypeName() { # if GTEST_HAS_RTTI const char* const name = typeid(T).name(); # if GTEST_HAS_CXXABI_H_ || defined(__HP_aCC) int status = 0; // gcc's implementation of typeid(T).name() mangles the type name, // so we have to demangle it. # if GTEST_HAS_CXXABI_H_ using abi::__cxa_demangle; # endif // GTEST_HAS_CXXABI_H_ char* const readable_name = __cxa_demangle(name, nullptr, nullptr, &status); const std::string name_str(status == 0 ? readable_name : name); free(readable_name); return CanonicalizeForStdLibVersioning(name_str); # else return name; # endif // GTEST_HAS_CXXABI_H_ || __HP_aCC # else return ""; # endif // GTEST_HAS_RTTI } #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P // A unique type used as the default value for the arguments of class // template Types. This allows us to simulate variadic templates // (e.g. Types, Type, and etc), which C++ doesn't // support directly. struct None {}; // The following family of struct and struct templates are used to // represent type lists. In particular, TypesN // represents a type list with N types (T1, T2, ..., and TN) in it. // Except for Types0, every struct in the family has two member types: // Head for the first type in the list, and Tail for the rest of the // list. // The empty type list. struct Types0 {}; // Type lists of length 1, 2, 3, and so on. template struct Types1 { typedef T1 Head; typedef Types0 Tail; }; template struct Types2 { typedef T1 Head; typedef Types1 Tail; }; template struct Types3 { typedef T1 Head; typedef Types2 Tail; }; template struct Types4 { typedef T1 Head; typedef Types3 Tail; }; template struct Types5 { typedef T1 Head; typedef Types4 Tail; }; template struct Types6 { typedef T1 Head; typedef Types5 Tail; }; template struct Types7 { typedef T1 Head; typedef Types6 Tail; }; template struct Types8 { typedef T1 Head; typedef Types7 Tail; }; template struct Types9 { typedef T1 Head; typedef Types8 Tail; }; template struct Types10 { typedef T1 Head; typedef Types9 Tail; }; template struct Types11 { typedef T1 Head; typedef Types10 Tail; }; template struct Types12 { typedef T1 Head; typedef Types11 Tail; }; template struct Types13 { typedef T1 Head; typedef Types12 Tail; }; template struct Types14 { typedef T1 Head; typedef Types13 Tail; }; template struct Types15 { typedef T1 Head; typedef Types14 Tail; }; template struct Types16 { typedef T1 Head; typedef Types15 Tail; }; template struct Types17 { typedef T1 Head; typedef Types16 Tail; }; template struct Types18 { typedef T1 Head; typedef Types17 Tail; }; template struct Types19 { typedef T1 Head; typedef Types18 Tail; }; template struct Types20 { typedef T1 Head; typedef Types19 Tail; }; template struct Types21 { typedef T1 Head; typedef Types20 Tail; }; template struct Types22 { typedef T1 Head; typedef Types21 Tail; }; template struct Types23 { typedef T1 Head; typedef Types22 Tail; }; template struct Types24 { typedef T1 Head; typedef Types23 Tail; }; template struct Types25 { typedef T1 Head; typedef Types24 Tail; }; template struct Types26 { typedef T1 Head; typedef Types25 Tail; }; template struct Types27 { typedef T1 Head; typedef Types26 Tail; }; template struct Types28 { typedef T1 Head; typedef Types27 Tail; }; template struct Types29 { typedef T1 Head; typedef Types28 Tail; }; template struct Types30 { typedef T1 Head; typedef Types29 Tail; }; template struct Types31 { typedef T1 Head; typedef Types30 Tail; }; template struct Types32 { typedef T1 Head; typedef Types31 Tail; }; template struct Types33 { typedef T1 Head; typedef Types32 Tail; }; template struct Types34 { typedef T1 Head; typedef Types33 Tail; }; template struct Types35 { typedef T1 Head; typedef Types34 Tail; }; template struct Types36 { typedef T1 Head; typedef Types35 Tail; }; template struct Types37 { typedef T1 Head; typedef Types36 Tail; }; template struct Types38 { typedef T1 Head; typedef Types37 Tail; }; template struct Types39 { typedef T1 Head; typedef Types38 Tail; }; template struct Types40 { typedef T1 Head; typedef Types39 Tail; }; template struct Types41 { typedef T1 Head; typedef Types40 Tail; }; template struct Types42 { typedef T1 Head; typedef Types41 Tail; }; template struct Types43 { typedef T1 Head; typedef Types42 Tail; }; template struct Types44 { typedef T1 Head; typedef Types43 Tail; }; template struct Types45 { typedef T1 Head; typedef Types44 Tail; }; template struct Types46 { typedef T1 Head; typedef Types45 Tail; }; template struct Types47 { typedef T1 Head; typedef Types46 Tail; }; template struct Types48 { typedef T1 Head; typedef Types47 Tail; }; template struct Types49 { typedef T1 Head; typedef Types48 Tail; }; template struct Types50 { typedef T1 Head; typedef Types49 Tail; }; } // namespace internal // We don't want to require the users to write TypesN<...> directly, // as that would require them to count the length. Types<...> is much // easier to write, but generates horrible messages when there is a // compiler error, as gcc insists on printing out each template // argument, even if it has the default value (this means Types // will appear as Types in the compiler // errors). // // Our solution is to combine the best part of the two approaches: a // user would write Types, and Google Test will translate // that to TypesN internally to make error messages // readable. The translation is done by the 'type' member of the // Types template. template struct Types { typedef internal::Types50 type; }; template <> struct Types { typedef internal::Types0 type; }; template struct Types { typedef internal::Types1 type; }; template struct Types { typedef internal::Types2 type; }; template struct Types { typedef internal::Types3 type; }; template struct Types { typedef internal::Types4 type; }; template struct Types { typedef internal::Types5 type; }; template struct Types { typedef internal::Types6 type; }; template struct Types { typedef internal::Types7 type; }; template struct Types { typedef internal::Types8 type; }; template struct Types { typedef internal::Types9 type; }; template struct Types { typedef internal::Types10 type; }; template struct Types { typedef internal::Types11 type; }; template struct Types { typedef internal::Types12 type; }; template struct Types { typedef internal::Types13 type; }; template struct Types { typedef internal::Types14 type; }; template struct Types { typedef internal::Types15 type; }; template struct Types { typedef internal::Types16 type; }; template struct Types { typedef internal::Types17 type; }; template struct Types { typedef internal::Types18 type; }; template struct Types { typedef internal::Types19 type; }; template struct Types { typedef internal::Types20 type; }; template struct Types { typedef internal::Types21 type; }; template struct Types { typedef internal::Types22 type; }; template struct Types { typedef internal::Types23 type; }; template struct Types { typedef internal::Types24 type; }; template struct Types { typedef internal::Types25 type; }; template struct Types { typedef internal::Types26 type; }; template struct Types { typedef internal::Types27 type; }; template struct Types { typedef internal::Types28 type; }; template struct Types { typedef internal::Types29 type; }; template struct Types { typedef internal::Types30 type; }; template struct Types { typedef internal::Types31 type; }; template struct Types { typedef internal::Types32 type; }; template struct Types { typedef internal::Types33 type; }; template struct Types { typedef internal::Types34 type; }; template struct Types { typedef internal::Types35 type; }; template struct Types { typedef internal::Types36 type; }; template struct Types { typedef internal::Types37 type; }; template struct Types { typedef internal::Types38 type; }; template struct Types { typedef internal::Types39 type; }; template struct Types { typedef internal::Types40 type; }; template struct Types { typedef internal::Types41 type; }; template struct Types { typedef internal::Types42 type; }; template struct Types { typedef internal::Types43 type; }; template struct Types { typedef internal::Types44 type; }; template struct Types { typedef internal::Types45 type; }; template struct Types { typedef internal::Types46 type; }; template struct Types { typedef internal::Types47 type; }; template struct Types { typedef internal::Types48 type; }; template struct Types { typedef internal::Types49 type; }; namespace internal { # define GTEST_TEMPLATE_ template class // The template "selector" struct TemplateSel is used to // represent Tmpl, which must be a class template with one type // parameter, as a type. TemplateSel::Bind::type is defined // as the type Tmpl. This allows us to actually instantiate the // template "selected" by TemplateSel. // // This trick is necessary for simulating typedef for class templates, // which C++ doesn't support directly. template struct TemplateSel { template struct Bind { typedef Tmpl type; }; }; # define GTEST_BIND_(TmplSel, T) \ TmplSel::template Bind::type // A unique struct template used as the default value for the // arguments of class template Templates. This allows us to simulate // variadic templates (e.g. Templates, Templates, // and etc), which C++ doesn't support directly. template struct NoneT {}; // The following family of struct and struct templates are used to // represent template lists. In particular, TemplatesN represents a list of N templates (T1, T2, ..., and TN). Except // for Templates0, every struct in the family has two member types: // Head for the selector of the first template in the list, and Tail // for the rest of the list. // The empty template list. struct Templates0 {}; // Template lists of length 1, 2, 3, and so on. template struct Templates1 { typedef TemplateSel Head; typedef Templates0 Tail; }; template struct Templates2 { typedef TemplateSel Head; typedef Templates1 Tail; }; template struct Templates3 { typedef TemplateSel Head; typedef Templates2 Tail; }; template struct Templates4 { typedef TemplateSel Head; typedef Templates3 Tail; }; template struct Templates5 { typedef TemplateSel Head; typedef Templates4 Tail; }; template struct Templates6 { typedef TemplateSel Head; typedef Templates5 Tail; }; template struct Templates7 { typedef TemplateSel Head; typedef Templates6 Tail; }; template struct Templates8 { typedef TemplateSel Head; typedef Templates7 Tail; }; template struct Templates9 { typedef TemplateSel Head; typedef Templates8 Tail; }; template struct Templates10 { typedef TemplateSel Head; typedef Templates9 Tail; }; template struct Templates11 { typedef TemplateSel Head; typedef Templates10 Tail; }; template struct Templates12 { typedef TemplateSel Head; typedef Templates11 Tail; }; template struct Templates13 { typedef TemplateSel Head; typedef Templates12 Tail; }; template struct Templates14 { typedef TemplateSel Head; typedef Templates13 Tail; }; template struct Templates15 { typedef TemplateSel Head; typedef Templates14 Tail; }; template struct Templates16 { typedef TemplateSel Head; typedef Templates15 Tail; }; template struct Templates17 { typedef TemplateSel Head; typedef Templates16 Tail; }; template struct Templates18 { typedef TemplateSel Head; typedef Templates17 Tail; }; template struct Templates19 { typedef TemplateSel Head; typedef Templates18 Tail; }; template struct Templates20 { typedef TemplateSel Head; typedef Templates19 Tail; }; template struct Templates21 { typedef TemplateSel Head; typedef Templates20 Tail; }; template struct Templates22 { typedef TemplateSel Head; typedef Templates21 Tail; }; template struct Templates23 { typedef TemplateSel Head; typedef Templates22 Tail; }; template struct Templates24 { typedef TemplateSel Head; typedef Templates23 Tail; }; template struct Templates25 { typedef TemplateSel Head; typedef Templates24 Tail; }; template struct Templates26 { typedef TemplateSel Head; typedef Templates25 Tail; }; template struct Templates27 { typedef TemplateSel Head; typedef Templates26 Tail; }; template struct Templates28 { typedef TemplateSel Head; typedef Templates27 Tail; }; template struct Templates29 { typedef TemplateSel Head; typedef Templates28 Tail; }; template struct Templates30 { typedef TemplateSel Head; typedef Templates29 Tail; }; template struct Templates31 { typedef TemplateSel Head; typedef Templates30 Tail; }; template struct Templates32 { typedef TemplateSel Head; typedef Templates31 Tail; }; template struct Templates33 { typedef TemplateSel Head; typedef Templates32 Tail; }; template struct Templates34 { typedef TemplateSel Head; typedef Templates33 Tail; }; template struct Templates35 { typedef TemplateSel Head; typedef Templates34 Tail; }; template struct Templates36 { typedef TemplateSel Head; typedef Templates35 Tail; }; template struct Templates37 { typedef TemplateSel Head; typedef Templates36 Tail; }; template struct Templates38 { typedef TemplateSel Head; typedef Templates37 Tail; }; template struct Templates39 { typedef TemplateSel Head; typedef Templates38 Tail; }; template struct Templates40 { typedef TemplateSel Head; typedef Templates39 Tail; }; template struct Templates41 { typedef TemplateSel Head; typedef Templates40 Tail; }; template struct Templates42 { typedef TemplateSel Head; typedef Templates41 Tail; }; template struct Templates43 { typedef TemplateSel Head; typedef Templates42 Tail; }; template struct Templates44 { typedef TemplateSel Head; typedef Templates43 Tail; }; template struct Templates45 { typedef TemplateSel Head; typedef Templates44 Tail; }; template struct Templates46 { typedef TemplateSel Head; typedef Templates45 Tail; }; template struct Templates47 { typedef TemplateSel Head; typedef Templates46 Tail; }; template struct Templates48 { typedef TemplateSel Head; typedef Templates47 Tail; }; template struct Templates49 { typedef TemplateSel Head; typedef Templates48 Tail; }; template struct Templates50 { typedef TemplateSel Head; typedef Templates49 Tail; }; // We don't want to require the users to write TemplatesN<...> directly, // as that would require them to count the length. Templates<...> is much // easier to write, but generates horrible messages when there is a // compiler error, as gcc insists on printing out each template // argument, even if it has the default value (this means Templates // will appear as Templates in the compiler // errors). // // Our solution is to combine the best part of the two approaches: a // user would write Templates, and Google Test will translate // that to TemplatesN internally to make error messages // readable. The translation is done by the 'type' member of the // Templates template. template struct Templates { typedef Templates50 type; }; template <> struct Templates { typedef Templates0 type; }; template struct Templates { typedef Templates1 type; }; template struct Templates { typedef Templates2 type; }; template struct Templates { typedef Templates3 type; }; template struct Templates { typedef Templates4 type; }; template struct Templates { typedef Templates5 type; }; template struct Templates { typedef Templates6 type; }; template struct Templates { typedef Templates7 type; }; template struct Templates { typedef Templates8 type; }; template struct Templates { typedef Templates9 type; }; template struct Templates { typedef Templates10 type; }; template struct Templates { typedef Templates11 type; }; template struct Templates { typedef Templates12 type; }; template struct Templates { typedef Templates13 type; }; template struct Templates { typedef Templates14 type; }; template struct Templates { typedef Templates15 type; }; template struct Templates { typedef Templates16 type; }; template struct Templates { typedef Templates17 type; }; template struct Templates { typedef Templates18 type; }; template struct Templates { typedef Templates19 type; }; template struct Templates { typedef Templates20 type; }; template struct Templates { typedef Templates21 type; }; template struct Templates { typedef Templates22 type; }; template struct Templates { typedef Templates23 type; }; template struct Templates { typedef Templates24 type; }; template struct Templates { typedef Templates25 type; }; template struct Templates { typedef Templates26 type; }; template struct Templates { typedef Templates27 type; }; template struct Templates { typedef Templates28 type; }; template struct Templates { typedef Templates29 type; }; template struct Templates { typedef Templates30 type; }; template struct Templates { typedef Templates31 type; }; template struct Templates { typedef Templates32 type; }; template struct Templates { typedef Templates33 type; }; template struct Templates { typedef Templates34 type; }; template struct Templates { typedef Templates35 type; }; template struct Templates { typedef Templates36 type; }; template struct Templates { typedef Templates37 type; }; template struct Templates { typedef Templates38 type; }; template struct Templates { typedef Templates39 type; }; template struct Templates { typedef Templates40 type; }; template struct Templates { typedef Templates41 type; }; template struct Templates { typedef Templates42 type; }; template struct Templates { typedef Templates43 type; }; template struct Templates { typedef Templates44 type; }; template struct Templates { typedef Templates45 type; }; template struct Templates { typedef Templates46 type; }; template struct Templates { typedef Templates47 type; }; template struct Templates { typedef Templates48 type; }; template struct Templates { typedef Templates49 type; }; // The TypeList template makes it possible to use either a single type // or a Types<...> list in TYPED_TEST_SUITE() and // INSTANTIATE_TYPED_TEST_SUITE_P(). template struct TypeList { typedef Types1 type; }; template struct TypeList > { typedef typename Types::type type; }; #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P } // namespace internal } // namespace testing #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/include/gtest/internal/gtest-type-util.h.pump000066400000000000000000000227641355420072700314640ustar00rootroot00000000000000$$ -*- mode: c++; -*- $var n = 50 $$ Maximum length of type lists we want to support. // Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Type utilities needed for implementing typed and type-parameterized // tests. This file is generated by a SCRIPT. DO NOT EDIT BY HAND! // // Currently we support at most $n types in a list, and at most $n // type-parameterized tests in one type-parameterized test suite. // Please contact googletestframework@googlegroups.com if you need // more. // GOOGLETEST_CM0001 DO NOT DELETE #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ #include "gtest/internal/gtest-port.h" // #ifdef __GNUC__ is too general here. It is possible to use gcc without using // libstdc++ (which is where cxxabi.h comes from). # if GTEST_HAS_CXXABI_H_ # include # elif defined(__HP_aCC) # include # endif // GTEST_HASH_CXXABI_H_ namespace testing { namespace internal { // Canonicalizes a given name with respect to the Standard C++ Library. // This handles removing the inline namespace within `std` that is // used by various standard libraries (e.g., `std::__1`). Names outside // of namespace std are returned unmodified. inline std::string CanonicalizeForStdLibVersioning(std::string s) { static const char prefix[] = "std::__"; if (s.compare(0, strlen(prefix), prefix) == 0) { std::string::size_type end = s.find("::", strlen(prefix)); if (end != s.npos) { // Erase everything between the initial `std` and the second `::`. s.erase(strlen("std"), end - strlen("std")); } } return s; } // GetTypeName() returns a human-readable name of type T. // NB: This function is also used in Google Mock, so don't move it inside of // the typed-test-only section below. template std::string GetTypeName() { # if GTEST_HAS_RTTI const char* const name = typeid(T).name(); # if GTEST_HAS_CXXABI_H_ || defined(__HP_aCC) int status = 0; // gcc's implementation of typeid(T).name() mangles the type name, // so we have to demangle it. # if GTEST_HAS_CXXABI_H_ using abi::__cxa_demangle; # endif // GTEST_HAS_CXXABI_H_ char* const readable_name = __cxa_demangle(name, nullptr, nullptr, &status); const std::string name_str(status == 0 ? readable_name : name); free(readable_name); return CanonicalizeForStdLibVersioning(name_str); # else return name; # endif // GTEST_HAS_CXXABI_H_ || __HP_aCC # else return ""; # endif // GTEST_HAS_RTTI } #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P // A unique type used as the default value for the arguments of class // template Types. This allows us to simulate variadic templates // (e.g. Types, Type, and etc), which C++ doesn't // support directly. struct None {}; // The following family of struct and struct templates are used to // represent type lists. In particular, TypesN // represents a type list with N types (T1, T2, ..., and TN) in it. // Except for Types0, every struct in the family has two member types: // Head for the first type in the list, and Tail for the rest of the // list. // The empty type list. struct Types0 {}; // Type lists of length 1, 2, 3, and so on. template struct Types1 { typedef T1 Head; typedef Types0 Tail; }; $range i 2..n $for i [[ $range j 1..i $range k 2..i template <$for j, [[typename T$j]]> struct Types$i { typedef T1 Head; typedef Types$(i-1)<$for k, [[T$k]]> Tail; }; ]] } // namespace internal // We don't want to require the users to write TypesN<...> directly, // as that would require them to count the length. Types<...> is much // easier to write, but generates horrible messages when there is a // compiler error, as gcc insists on printing out each template // argument, even if it has the default value (this means Types // will appear as Types in the compiler // errors). // // Our solution is to combine the best part of the two approaches: a // user would write Types, and Google Test will translate // that to TypesN internally to make error messages // readable. The translation is done by the 'type' member of the // Types template. $range i 1..n template <$for i, [[typename T$i = internal::None]]> struct Types { typedef internal::Types$n<$for i, [[T$i]]> type; }; template <> struct Types<$for i, [[internal::None]]> { typedef internal::Types0 type; }; $range i 1..n-1 $for i [[ $range j 1..i $range k i+1..n template <$for j, [[typename T$j]]> struct Types<$for j, [[T$j]]$for k[[, internal::None]]> { typedef internal::Types$i<$for j, [[T$j]]> type; }; ]] namespace internal { # define GTEST_TEMPLATE_ template class // The template "selector" struct TemplateSel is used to // represent Tmpl, which must be a class template with one type // parameter, as a type. TemplateSel::Bind::type is defined // as the type Tmpl. This allows us to actually instantiate the // template "selected" by TemplateSel. // // This trick is necessary for simulating typedef for class templates, // which C++ doesn't support directly. template struct TemplateSel { template struct Bind { typedef Tmpl type; }; }; # define GTEST_BIND_(TmplSel, T) \ TmplSel::template Bind::type // A unique struct template used as the default value for the // arguments of class template Templates. This allows us to simulate // variadic templates (e.g. Templates, Templates, // and etc), which C++ doesn't support directly. template struct NoneT {}; // The following family of struct and struct templates are used to // represent template lists. In particular, TemplatesN represents a list of N templates (T1, T2, ..., and TN). Except // for Templates0, every struct in the family has two member types: // Head for the selector of the first template in the list, and Tail // for the rest of the list. // The empty template list. struct Templates0 {}; // Template lists of length 1, 2, 3, and so on. template struct Templates1 { typedef TemplateSel Head; typedef Templates0 Tail; }; $range i 2..n $for i [[ $range j 1..i $range k 2..i template <$for j, [[GTEST_TEMPLATE_ T$j]]> struct Templates$i { typedef TemplateSel Head; typedef Templates$(i-1)<$for k, [[T$k]]> Tail; }; ]] // We don't want to require the users to write TemplatesN<...> directly, // as that would require them to count the length. Templates<...> is much // easier to write, but generates horrible messages when there is a // compiler error, as gcc insists on printing out each template // argument, even if it has the default value (this means Templates // will appear as Templates in the compiler // errors). // // Our solution is to combine the best part of the two approaches: a // user would write Templates, and Google Test will translate // that to TemplatesN internally to make error messages // readable. The translation is done by the 'type' member of the // Templates template. $range i 1..n template <$for i, [[GTEST_TEMPLATE_ T$i = NoneT]]> struct Templates { typedef Templates$n<$for i, [[T$i]]> type; }; template <> struct Templates<$for i, [[NoneT]]> { typedef Templates0 type; }; $range i 1..n-1 $for i [[ $range j 1..i $range k i+1..n template <$for j, [[GTEST_TEMPLATE_ T$j]]> struct Templates<$for j, [[T$j]]$for k[[, NoneT]]> { typedef Templates$i<$for j, [[T$j]]> type; }; ]] // The TypeList template makes it possible to use either a single type // or a Types<...> list in TYPED_TEST_SUITE() and // INSTANTIATE_TYPED_TEST_SUITE_P(). template struct TypeList { typedef Types1 type; }; $range i 1..n template <$for i, [[typename T$i]]> struct TypeList > { typedef typename Types<$for i, [[T$i]]>::type type; }; #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P } // namespace internal } // namespace testing #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_TYPE_UTIL_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/000077500000000000000000000000001355420072700223175ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/prime_tables.h000066400000000000000000000102031355420072700251320ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This provides interface PrimeTable that determines whether a number is a // prime and determines a next prime number. This interface is used // in Google Test samples demonstrating use of parameterized tests. #ifndef GTEST_SAMPLES_PRIME_TABLES_H_ #define GTEST_SAMPLES_PRIME_TABLES_H_ #include // The prime table interface. class PrimeTable { public: virtual ~PrimeTable() {} // Returns true if and only if n is a prime number. virtual bool IsPrime(int n) const = 0; // Returns the smallest prime number greater than p; or returns -1 // if the next prime is beyond the capacity of the table. virtual int GetNextPrime(int p) const = 0; }; // Implementation #1 calculates the primes on-the-fly. class OnTheFlyPrimeTable : public PrimeTable { public: bool IsPrime(int n) const override { if (n <= 1) return false; for (int i = 2; i*i <= n; i++) { // n is divisible by an integer other than 1 and itself. if ((n % i) == 0) return false; } return true; } int GetNextPrime(int p) const override { for (int n = p + 1; n > 0; n++) { if (IsPrime(n)) return n; } return -1; } }; // Implementation #2 pre-calculates the primes and stores the result // in an array. class PreCalculatedPrimeTable : public PrimeTable { public: // 'max' specifies the maximum number the prime table holds. explicit PreCalculatedPrimeTable(int max) : is_prime_size_(max + 1), is_prime_(new bool[max + 1]) { CalculatePrimesUpTo(max); } ~PreCalculatedPrimeTable() override { delete[] is_prime_; } bool IsPrime(int n) const override { return 0 <= n && n < is_prime_size_ && is_prime_[n]; } int GetNextPrime(int p) const override { for (int n = p + 1; n < is_prime_size_; n++) { if (is_prime_[n]) return n; } return -1; } private: void CalculatePrimesUpTo(int max) { ::std::fill(is_prime_, is_prime_ + is_prime_size_, true); is_prime_[0] = is_prime_[1] = false; // Checks every candidate for prime number (we know that 2 is the only even // prime). for (int i = 2; i*i <= max; i += i%2+1) { if (!is_prime_[i]) continue; // Marks all multiples of i (except i itself) as non-prime. // We are starting here from i-th multiplier, because all smaller // complex numbers were already marked. for (int j = i*i; j <= max; j += i) { is_prime_[j] = false; } } } const int is_prime_size_; bool* const is_prime_; // Disables compiler warning "assignment operator could not be generated." void operator=(const PreCalculatedPrimeTable& rhs); }; #endif // GTEST_SAMPLES_PRIME_TABLES_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample1.cc000066400000000000000000000046461355420072700242020ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. #include "sample1.h" // Returns n! (the factorial of n). For negative n, n! is defined to be 1. int Factorial(int n) { int result = 1; for (int i = 1; i <= n; i++) { result *= i; } return result; } // Returns true if and only if n is a prime number. bool IsPrime(int n) { // Trivial case 1: small numbers if (n <= 1) return false; // Trivial case 2: even numbers if (n % 2 == 0) return n == 2; // Now, we have that n is odd and n >= 3. // Try to divide n by every odd number i, starting from 3 for (int i = 3; ; i += 2) { // We only have to try i up to the square root of n if (i > n/i) break; // Now, we have i <= n/i < n. // If n is divisible by i, n is not prime. if (n % i == 0) return false; } // n has no integer factor in the range (1, n), and thus is prime. return true; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample1.h000066400000000000000000000035601355420072700240360ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. #ifndef GTEST_SAMPLES_SAMPLE1_H_ #define GTEST_SAMPLES_SAMPLE1_H_ // Returns n! (the factorial of n). For negative n, n! is defined to be 1. int Factorial(int n); // Returns true if and only if n is a prime number. bool IsPrime(int n); #endif // GTEST_SAMPLES_SAMPLE1_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample10_unittest.cc000066400000000000000000000115711355420072700262140ustar00rootroot00000000000000// Copyright 2009 Google Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This sample shows how to use Google Test listener API to implement // a primitive leak checker. #include #include #include "gtest/gtest.h" using ::testing::EmptyTestEventListener; using ::testing::InitGoogleTest; using ::testing::Test; using ::testing::TestEventListeners; using ::testing::TestInfo; using ::testing::TestPartResult; using ::testing::UnitTest; namespace { // We will track memory used by this class. class Water { public: // Normal Water declarations go here. // operator new and operator delete help us control water allocation. void* operator new(size_t allocation_size) { allocated_++; return malloc(allocation_size); } void operator delete(void* block, size_t /* allocation_size */) { allocated_--; free(block); } static int allocated() { return allocated_; } private: static int allocated_; }; int Water::allocated_ = 0; // This event listener monitors how many Water objects are created and // destroyed by each test, and reports a failure if a test leaks some Water // objects. It does this by comparing the number of live Water objects at // the beginning of a test and at the end of a test. class LeakChecker : public EmptyTestEventListener { private: // Called before a test starts. void OnTestStart(const TestInfo& /* test_info */) override { initially_allocated_ = Water::allocated(); } // Called after a test ends. void OnTestEnd(const TestInfo& /* test_info */) override { int difference = Water::allocated() - initially_allocated_; // You can generate a failure in any event handler except // OnTestPartResult. Just use an appropriate Google Test assertion to do // it. EXPECT_LE(difference, 0) << "Leaked " << difference << " unit(s) of Water!"; } int initially_allocated_; }; TEST(ListenersTest, DoesNotLeak) { Water* water = new Water; delete water; } // This should fail when the --check_for_leaks command line flag is // specified. TEST(ListenersTest, LeaksWater) { Water* water = new Water; EXPECT_TRUE(water != nullptr); } } // namespace int main(int argc, char **argv) { InitGoogleTest(&argc, argv); bool check_for_leaks = false; if (argc > 1 && strcmp(argv[1], "--check_for_leaks") == 0 ) check_for_leaks = true; else printf("%s\n", "Run this program with --check_for_leaks to enable " "custom leak checking in the tests."); // If we are given the --check_for_leaks command line flag, installs the // leak checker. if (check_for_leaks) { TestEventListeners& listeners = UnitTest::GetInstance()->listeners(); // Adds the leak checker to the end of the test event listener list, // after the default text output printer and the default XML report // generator. // // The order is important - it ensures that failures generated in the // leak checker's OnTestEnd() method are processed by the text and XML // printers *before* their OnTestEnd() methods are called, such that // they are attributed to the right test. Remember that a listener // receives an OnXyzStart event *after* listeners preceding it in the // list received that event, and receives an OnXyzEnd event *before* // listeners preceding it. // // We don't need to worry about deleting the new listener later, as // Google Test will do it. listeners.Append(new LeakChecker); } return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample1_unittest.cc000066400000000000000000000117671355420072700261430ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. // This sample shows how to write a simple unit test for a function, // using Google C++ testing framework. // // Writing a unit test using Google C++ testing framework is easy as 1-2-3: // Step 1. Include necessary header files such that the stuff your // test logic needs is declared. // // Don't forget gtest.h, which declares the testing framework. #include #include "sample1.h" #include "gtest/gtest.h" namespace { // Step 2. Use the TEST macro to define your tests. // // TEST has two parameters: the test case name and the test name. // After using the macro, you should define your test logic between a // pair of braces. You can use a bunch of macros to indicate the // success or failure of a test. EXPECT_TRUE and EXPECT_EQ are // examples of such macros. For a complete list, see gtest.h. // // // // In Google Test, tests are grouped into test cases. This is how we // keep test code organized. You should put logically related tests // into the same test case. // // The test case name and the test name should both be valid C++ // identifiers. And you should not use underscore (_) in the names. // // Google Test guarantees that each test you define is run exactly // once, but it makes no guarantee on the order the tests are // executed. Therefore, you should write your tests in such a way // that their results don't depend on their order. // // // Tests Factorial(). // Tests factorial of negative numbers. TEST(FactorialTest, Negative) { // This test is named "Negative", and belongs to the "FactorialTest" // test case. EXPECT_EQ(1, Factorial(-5)); EXPECT_EQ(1, Factorial(-1)); EXPECT_GT(Factorial(-10), 0); // // // EXPECT_EQ(expected, actual) is the same as // // EXPECT_TRUE((expected) == (actual)) // // except that it will print both the expected value and the actual // value when the assertion fails. This is very helpful for // debugging. Therefore in this case EXPECT_EQ is preferred. // // On the other hand, EXPECT_TRUE accepts any Boolean expression, // and is thus more general. // // } // Tests factorial of 0. TEST(FactorialTest, Zero) { EXPECT_EQ(1, Factorial(0)); } // Tests factorial of positive numbers. TEST(FactorialTest, Positive) { EXPECT_EQ(1, Factorial(1)); EXPECT_EQ(2, Factorial(2)); EXPECT_EQ(6, Factorial(3)); EXPECT_EQ(40320, Factorial(8)); } // Tests IsPrime() // Tests negative input. TEST(IsPrimeTest, Negative) { // This test belongs to the IsPrimeTest test case. EXPECT_FALSE(IsPrime(-1)); EXPECT_FALSE(IsPrime(-2)); EXPECT_FALSE(IsPrime(INT_MIN)); } // Tests some trivial cases. TEST(IsPrimeTest, Trivial) { EXPECT_FALSE(IsPrime(0)); EXPECT_FALSE(IsPrime(1)); EXPECT_TRUE(IsPrime(2)); EXPECT_TRUE(IsPrime(3)); } // Tests positive input. TEST(IsPrimeTest, Positive) { EXPECT_FALSE(IsPrime(4)); EXPECT_TRUE(IsPrime(5)); EXPECT_FALSE(IsPrime(6)); EXPECT_TRUE(IsPrime(23)); } } // namespace // Step 3. Call RUN_ALL_TESTS() in main(). // // We do this by linking in src/gtest_main.cc file, which consists of // a main() function which calls RUN_ALL_TESTS() for us. // // This runs all the tests you've defined, prints the result, and // returns 0 if successful, or 1 otherwise. // // Did you notice that we didn't register the tests? The // RUN_ALL_TESTS() macro magically knows about all the tests we // defined. Isn't this convenient? libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample2.cc000066400000000000000000000043241355420072700241740ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. #include "sample2.h" #include // Clones a 0-terminated C string, allocating memory using new. const char* MyString::CloneCString(const char* a_c_string) { if (a_c_string == nullptr) return nullptr; const size_t len = strlen(a_c_string); char* const clone = new char[ len + 1 ]; memcpy(clone, a_c_string, len + 1); return clone; } // Sets the 0-terminated C string this MyString object // represents. void MyString::Set(const char* a_c_string) { // Makes sure this works when c_string == c_string_ const char* const temp = MyString::CloneCString(a_c_string); delete[] c_string_; c_string_ = temp; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample2.h000066400000000000000000000056301355420072700240370ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. #ifndef GTEST_SAMPLES_SAMPLE2_H_ #define GTEST_SAMPLES_SAMPLE2_H_ #include // A simple string class. class MyString { private: const char* c_string_; const MyString& operator=(const MyString& rhs); public: // Clones a 0-terminated C string, allocating memory using new. static const char* CloneCString(const char* a_c_string); //////////////////////////////////////////////////////////// // // C'tors // The default c'tor constructs a NULL string. MyString() : c_string_(nullptr) {} // Constructs a MyString by cloning a 0-terminated C string. explicit MyString(const char* a_c_string) : c_string_(nullptr) { Set(a_c_string); } // Copy c'tor MyString(const MyString& string) : c_string_(nullptr) { Set(string.c_string_); } //////////////////////////////////////////////////////////// // // D'tor. MyString is intended to be a final class, so the d'tor // doesn't need to be virtual. ~MyString() { delete[] c_string_; } // Gets the 0-terminated C string this MyString object represents. const char* c_string() const { return c_string_; } size_t Length() const { return c_string_ == nullptr ? 0 : strlen(c_string_); } // Sets the 0-terminated C string this MyString object represents. void Set(const char* c_string); }; #endif // GTEST_SAMPLES_SAMPLE2_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample2_unittest.cc000066400000000000000000000075151355420072700261400ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. // This sample shows how to write a more complex unit test for a class // that has multiple member functions. // // Usually, it's a good idea to have one test for each method in your // class. You don't have to do that exactly, but it helps to keep // your tests organized. You may also throw in additional tests as // needed. #include "sample2.h" #include "gtest/gtest.h" namespace { // In this example, we test the MyString class (a simple string). // Tests the default c'tor. TEST(MyString, DefaultConstructor) { const MyString s; // Asserts that s.c_string() returns NULL. // // // // If we write NULL instead of // // static_cast(NULL) // // in this assertion, it will generate a warning on gcc 3.4. The // reason is that EXPECT_EQ needs to know the types of its // arguments in order to print them when it fails. Since NULL is // #defined as 0, the compiler will use the formatter function for // int to print it. However, gcc thinks that NULL should be used as // a pointer, not an int, and therefore complains. // // The root of the problem is C++'s lack of distinction between the // integer number 0 and the null pointer constant. Unfortunately, // we have to live with this fact. // // EXPECT_STREQ(nullptr, s.c_string()); EXPECT_EQ(0u, s.Length()); } const char kHelloString[] = "Hello, world!"; // Tests the c'tor that accepts a C string. TEST(MyString, ConstructorFromCString) { const MyString s(kHelloString); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); EXPECT_EQ(sizeof(kHelloString)/sizeof(kHelloString[0]) - 1, s.Length()); } // Tests the copy c'tor. TEST(MyString, CopyConstructor) { const MyString s1(kHelloString); const MyString s2 = s1; EXPECT_EQ(0, strcmp(s2.c_string(), kHelloString)); } // Tests the Set method. TEST(MyString, Set) { MyString s; s.Set(kHelloString); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); // Set should work when the input pointer is the same as the one // already in the MyString object. s.Set(s.c_string()); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); // Can we set the MyString to NULL? s.Set(nullptr); EXPECT_STREQ(nullptr, s.c_string()); } } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample3-inl.h000066400000000000000000000123601355420072700246160ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. #ifndef GTEST_SAMPLES_SAMPLE3_INL_H_ #define GTEST_SAMPLES_SAMPLE3_INL_H_ #include // Queue is a simple queue implemented as a singled-linked list. // // The element type must support copy constructor. template // E is the element type class Queue; // QueueNode is a node in a Queue, which consists of an element of // type E and a pointer to the next node. template // E is the element type class QueueNode { friend class Queue; public: // Gets the element in this node. const E& element() const { return element_; } // Gets the next node in the queue. QueueNode* next() { return next_; } const QueueNode* next() const { return next_; } private: // Creates a node with a given element value. The next pointer is // set to NULL. explicit QueueNode(const E& an_element) : element_(an_element), next_(nullptr) {} // We disable the default assignment operator and copy c'tor. const QueueNode& operator = (const QueueNode&); QueueNode(const QueueNode&); E element_; QueueNode* next_; }; template // E is the element type. class Queue { public: // Creates an empty queue. Queue() : head_(nullptr), last_(nullptr), size_(0) {} // D'tor. Clears the queue. ~Queue() { Clear(); } // Clears the queue. void Clear() { if (size_ > 0) { // 1. Deletes every node. QueueNode* node = head_; QueueNode* next = node->next(); for (; ;) { delete node; node = next; if (node == nullptr) break; next = node->next(); } // 2. Resets the member variables. head_ = last_ = nullptr; size_ = 0; } } // Gets the number of elements. size_t Size() const { return size_; } // Gets the first element of the queue, or NULL if the queue is empty. QueueNode* Head() { return head_; } const QueueNode* Head() const { return head_; } // Gets the last element of the queue, or NULL if the queue is empty. QueueNode* Last() { return last_; } const QueueNode* Last() const { return last_; } // Adds an element to the end of the queue. A copy of the element is // created using the copy constructor, and then stored in the queue. // Changes made to the element in the queue doesn't affect the source // object, and vice versa. void Enqueue(const E& element) { QueueNode* new_node = new QueueNode(element); if (size_ == 0) { head_ = last_ = new_node; size_ = 1; } else { last_->next_ = new_node; last_ = new_node; size_++; } } // Removes the head of the queue and returns it. Returns NULL if // the queue is empty. E* Dequeue() { if (size_ == 0) { return nullptr; } const QueueNode* const old_head = head_; head_ = head_->next_; size_--; if (size_ == 0) { last_ = nullptr; } E* element = new E(old_head->element()); delete old_head; return element; } // Applies a function/functor on each element of the queue, and // returns the result in a new queue. The original queue is not // affected. template Queue* Map(F function) const { Queue* new_queue = new Queue(); for (const QueueNode* node = head_; node != nullptr; node = node->next_) { new_queue->Enqueue(function(node->element())); } return new_queue; } private: QueueNode* head_; // The first node of the queue. QueueNode* last_; // The last node of the queue. size_t size_; // The number of elements in the queue. // We disallow copying a queue. Queue(const Queue&); const Queue& operator = (const Queue&); }; #endif // GTEST_SAMPLES_SAMPLE3_INL_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample3_unittest.cc000066400000000000000000000123601355420072700261330ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. // In this example, we use a more advanced feature of Google Test called // test fixture. // // A test fixture is a place to hold objects and functions shared by // all tests in a test case. Using a test fixture avoids duplicating // the test code necessary to initialize and cleanup those common // objects for each test. It is also useful for defining sub-routines // that your tests need to invoke a lot. // // // // The tests share the test fixture in the sense of code sharing, not // data sharing. Each test is given its own fresh copy of the // fixture. You cannot expect the data modified by one test to be // passed on to another test, which is a bad idea. // // The reason for this design is that tests should be independent and // repeatable. In particular, a test should not fail as the result of // another test's failure. If one test depends on info produced by // another test, then the two tests should really be one big test. // // The macros for indicating the success/failure of a test // (EXPECT_TRUE, FAIL, etc) need to know what the current test is // (when Google Test prints the test result, it tells you which test // each failure belongs to). Technically, these macros invoke a // member function of the Test class. Therefore, you cannot use them // in a global function. That's why you should put test sub-routines // in a test fixture. // // #include "sample3-inl.h" #include "gtest/gtest.h" namespace { // To use a test fixture, derive a class from testing::Test. class QueueTestSmpl3 : public testing::Test { protected: // You should make the members protected s.t. they can be // accessed from sub-classes. // virtual void SetUp() will be called before each test is run. You // should define it if you need to initialize the variables. // Otherwise, this can be skipped. void SetUp() override { q1_.Enqueue(1); q2_.Enqueue(2); q2_.Enqueue(3); } // virtual void TearDown() will be called after each test is run. // You should define it if there is cleanup work to do. Otherwise, // you don't have to provide it. // // virtual void TearDown() { // } // A helper function that some test uses. static int Double(int n) { return 2*n; } // A helper function for testing Queue::Map(). void MapTester(const Queue * q) { // Creates a new queue, where each element is twice as big as the // corresponding one in q. const Queue * const new_q = q->Map(Double); // Verifies that the new queue has the same size as q. ASSERT_EQ(q->Size(), new_q->Size()); // Verifies the relationship between the elements of the two queues. for (const QueueNode*n1 = q->Head(), *n2 = new_q->Head(); n1 != nullptr; n1 = n1->next(), n2 = n2->next()) { EXPECT_EQ(2 * n1->element(), n2->element()); } delete new_q; } // Declares the variables your tests want to use. Queue q0_; Queue q1_; Queue q2_; }; // When you have a test fixture, you define a test using TEST_F // instead of TEST. // Tests the default c'tor. TEST_F(QueueTestSmpl3, DefaultConstructor) { // You can access data in the test fixture here. EXPECT_EQ(0u, q0_.Size()); } // Tests Dequeue(). TEST_F(QueueTestSmpl3, Dequeue) { int * n = q0_.Dequeue(); EXPECT_TRUE(n == nullptr); n = q1_.Dequeue(); ASSERT_TRUE(n != nullptr); EXPECT_EQ(1, *n); EXPECT_EQ(0u, q1_.Size()); delete n; n = q2_.Dequeue(); ASSERT_TRUE(n != nullptr); EXPECT_EQ(2, *n); EXPECT_EQ(1u, q2_.Size()); delete n; } // Tests the Queue::Map() function. TEST_F(QueueTestSmpl3, Map) { MapTester(&q0_); MapTester(&q1_); MapTester(&q2_); } } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample4.cc000066400000000000000000000040761355420072700242020ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. #include #include "sample4.h" // Returns the current counter value, and increments it. int Counter::Increment() { return counter_++; } // Returns the current counter value, and decrements it. // counter can not be less than 0, return 0 in this case int Counter::Decrement() { if (counter_ == 0) { return counter_; } else { return counter_--; } } // Prints the current counter value to STDOUT. void Counter::Print() const { printf("%d", counter_); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample4.h000066400000000000000000000041051355420072700240350ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A sample program demonstrating using Google C++ testing framework. #ifndef GTEST_SAMPLES_SAMPLE4_H_ #define GTEST_SAMPLES_SAMPLE4_H_ // A simple monotonic counter. class Counter { private: int counter_; public: // Creates a counter that starts at 0. Counter() : counter_(0) {} // Returns the current counter value, and increments it. int Increment(); // Returns the current counter value, and decrements it. int Decrement(); // Prints the current counter value to STDOUT. void Print() const; }; #endif // GTEST_SAMPLES_SAMPLE4_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample4_unittest.cc000066400000000000000000000037131355420072700261360ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "sample4.h" #include "gtest/gtest.h" namespace { // Tests the Increment() method. TEST(Counter, Increment) { Counter c; // Test that counter 0 returns 0 EXPECT_EQ(0, c.Decrement()); // EXPECT_EQ() evaluates its arguments exactly once, so they // can have side effects. EXPECT_EQ(0, c.Increment()); EXPECT_EQ(1, c.Increment()); EXPECT_EQ(2, c.Increment()); EXPECT_EQ(3, c.Decrement()); } } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample5_unittest.cc000066400000000000000000000146711355420072700261440ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This sample teaches how to reuse a test fixture in multiple test // cases by deriving sub-fixtures from it. // // When you define a test fixture, you specify the name of the test // case that will use this fixture. Therefore, a test fixture can // be used by only one test case. // // Sometimes, more than one test cases may want to use the same or // slightly different test fixtures. For example, you may want to // make sure that all tests for a GUI library don't leak important // system resources like fonts and brushes. In Google Test, you do // this by putting the shared logic in a super (as in "super class") // test fixture, and then have each test case use a fixture derived // from this super fixture. #include #include #include "gtest/gtest.h" #include "sample1.h" #include "sample3-inl.h" namespace { // In this sample, we want to ensure that every test finishes within // ~5 seconds. If a test takes longer to run, we consider it a // failure. // // We put the code for timing a test in a test fixture called // "QuickTest". QuickTest is intended to be the super fixture that // other fixtures derive from, therefore there is no test case with // the name "QuickTest". This is OK. // // Later, we will derive multiple test fixtures from QuickTest. class QuickTest : public testing::Test { protected: // Remember that SetUp() is run immediately before a test starts. // This is a good place to record the start time. void SetUp() override { start_time_ = time(nullptr); } // TearDown() is invoked immediately after a test finishes. Here we // check if the test was too slow. void TearDown() override { // Gets the time when the test finishes const time_t end_time = time(nullptr); // Asserts that the test took no more than ~5 seconds. Did you // know that you can use assertions in SetUp() and TearDown() as // well? EXPECT_TRUE(end_time - start_time_ <= 5) << "The test took too long."; } // The UTC time (in seconds) when the test starts time_t start_time_; }; // We derive a fixture named IntegerFunctionTest from the QuickTest // fixture. All tests using this fixture will be automatically // required to be quick. class IntegerFunctionTest : public QuickTest { // We don't need any more logic than already in the QuickTest fixture. // Therefore the body is empty. }; // Now we can write tests in the IntegerFunctionTest test case. // Tests Factorial() TEST_F(IntegerFunctionTest, Factorial) { // Tests factorial of negative numbers. EXPECT_EQ(1, Factorial(-5)); EXPECT_EQ(1, Factorial(-1)); EXPECT_GT(Factorial(-10), 0); // Tests factorial of 0. EXPECT_EQ(1, Factorial(0)); // Tests factorial of positive numbers. EXPECT_EQ(1, Factorial(1)); EXPECT_EQ(2, Factorial(2)); EXPECT_EQ(6, Factorial(3)); EXPECT_EQ(40320, Factorial(8)); } // Tests IsPrime() TEST_F(IntegerFunctionTest, IsPrime) { // Tests negative input. EXPECT_FALSE(IsPrime(-1)); EXPECT_FALSE(IsPrime(-2)); EXPECT_FALSE(IsPrime(INT_MIN)); // Tests some trivial cases. EXPECT_FALSE(IsPrime(0)); EXPECT_FALSE(IsPrime(1)); EXPECT_TRUE(IsPrime(2)); EXPECT_TRUE(IsPrime(3)); // Tests positive input. EXPECT_FALSE(IsPrime(4)); EXPECT_TRUE(IsPrime(5)); EXPECT_FALSE(IsPrime(6)); EXPECT_TRUE(IsPrime(23)); } // The next test case (named "QueueTest") also needs to be quick, so // we derive another fixture from QuickTest. // // The QueueTest test fixture has some logic and shared objects in // addition to what's in QuickTest already. We define the additional // stuff inside the body of the test fixture, as usual. class QueueTest : public QuickTest { protected: void SetUp() override { // First, we need to set up the super fixture (QuickTest). QuickTest::SetUp(); // Second, some additional setup for this fixture. q1_.Enqueue(1); q2_.Enqueue(2); q2_.Enqueue(3); } // By default, TearDown() inherits the behavior of // QuickTest::TearDown(). As we have no additional cleaning work // for QueueTest, we omit it here. // // virtual void TearDown() { // QuickTest::TearDown(); // } Queue q0_; Queue q1_; Queue q2_; }; // Now, let's write tests using the QueueTest fixture. // Tests the default constructor. TEST_F(QueueTest, DefaultConstructor) { EXPECT_EQ(0u, q0_.Size()); } // Tests Dequeue(). TEST_F(QueueTest, Dequeue) { int* n = q0_.Dequeue(); EXPECT_TRUE(n == nullptr); n = q1_.Dequeue(); EXPECT_TRUE(n != nullptr); EXPECT_EQ(1, *n); EXPECT_EQ(0u, q1_.Size()); delete n; n = q2_.Dequeue(); EXPECT_TRUE(n != nullptr); EXPECT_EQ(2, *n); EXPECT_EQ(1u, q2_.Size()); delete n; } } // namespace // If necessary, you can derive further test fixtures from a derived // fixture itself. For example, you can derive another fixture from // QueueTest. Google Test imposes no limit on how deep the hierarchy // can be. In practice, however, you probably don't want it to be too // deep as to be confusing. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample6_unittest.cc000066400000000000000000000214261355420072700261410ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This sample shows how to test common properties of multiple // implementations of the same interface (aka interface tests). // The interface and its implementations are in this header. #include "prime_tables.h" #include "gtest/gtest.h" namespace { // First, we define some factory functions for creating instances of // the implementations. You may be able to skip this step if all your // implementations can be constructed the same way. template PrimeTable* CreatePrimeTable(); template <> PrimeTable* CreatePrimeTable() { return new OnTheFlyPrimeTable; } template <> PrimeTable* CreatePrimeTable() { return new PreCalculatedPrimeTable(10000); } // Then we define a test fixture class template. template class PrimeTableTest : public testing::Test { protected: // The ctor calls the factory function to create a prime table // implemented by T. PrimeTableTest() : table_(CreatePrimeTable()) {} ~PrimeTableTest() override { delete table_; } // Note that we test an implementation via the base interface // instead of the actual implementation class. This is important // for keeping the tests close to the real world scenario, where the // implementation is invoked via the base interface. It avoids // got-yas where the implementation class has a method that shadows // a method with the same name (but slightly different argument // types) in the base interface, for example. PrimeTable* const table_; }; #if GTEST_HAS_TYPED_TEST using testing::Types; // Google Test offers two ways for reusing tests for different types. // The first is called "typed tests". You should use it if you // already know *all* the types you are gonna exercise when you write // the tests. // To write a typed test case, first use // // TYPED_TEST_SUITE(TestCaseName, TypeList); // // to declare it and specify the type parameters. As with TEST_F, // TestCaseName must match the test fixture name. // The list of types we want to test. typedef Types Implementations; TYPED_TEST_SUITE(PrimeTableTest, Implementations); // Then use TYPED_TEST(TestCaseName, TestName) to define a typed test, // similar to TEST_F. TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) { // Inside the test body, you can refer to the type parameter by // TypeParam, and refer to the fixture class by TestFixture. We // don't need them in this example. // Since we are in the template world, C++ requires explicitly // writing 'this->' when referring to members of the fixture class. // This is something you have to learn to live with. EXPECT_FALSE(this->table_->IsPrime(-5)); EXPECT_FALSE(this->table_->IsPrime(0)); EXPECT_FALSE(this->table_->IsPrime(1)); EXPECT_FALSE(this->table_->IsPrime(4)); EXPECT_FALSE(this->table_->IsPrime(6)); EXPECT_FALSE(this->table_->IsPrime(100)); } TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) { EXPECT_TRUE(this->table_->IsPrime(2)); EXPECT_TRUE(this->table_->IsPrime(3)); EXPECT_TRUE(this->table_->IsPrime(5)); EXPECT_TRUE(this->table_->IsPrime(7)); EXPECT_TRUE(this->table_->IsPrime(11)); EXPECT_TRUE(this->table_->IsPrime(131)); } TYPED_TEST(PrimeTableTest, CanGetNextPrime) { EXPECT_EQ(2, this->table_->GetNextPrime(0)); EXPECT_EQ(3, this->table_->GetNextPrime(2)); EXPECT_EQ(5, this->table_->GetNextPrime(3)); EXPECT_EQ(7, this->table_->GetNextPrime(5)); EXPECT_EQ(11, this->table_->GetNextPrime(7)); EXPECT_EQ(131, this->table_->GetNextPrime(128)); } // That's it! Google Test will repeat each TYPED_TEST for each type // in the type list specified in TYPED_TEST_SUITE. Sit back and be // happy that you don't have to define them multiple times. #endif // GTEST_HAS_TYPED_TEST #if GTEST_HAS_TYPED_TEST_P using testing::Types; // Sometimes, however, you don't yet know all the types that you want // to test when you write the tests. For example, if you are the // author of an interface and expect other people to implement it, you // might want to write a set of tests to make sure each implementation // conforms to some basic requirements, but you don't know what // implementations will be written in the future. // // How can you write the tests without committing to the type // parameters? That's what "type-parameterized tests" can do for you. // It is a bit more involved than typed tests, but in return you get a // test pattern that can be reused in many contexts, which is a big // win. Here's how you do it: // First, define a test fixture class template. Here we just reuse // the PrimeTableTest fixture defined earlier: template class PrimeTableTest2 : public PrimeTableTest { }; // Then, declare the test case. The argument is the name of the test // fixture, and also the name of the test case (as usual). The _P // suffix is for "parameterized" or "pattern". TYPED_TEST_SUITE_P(PrimeTableTest2); // Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test, // similar to what you do with TEST_F. TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) { EXPECT_FALSE(this->table_->IsPrime(-5)); EXPECT_FALSE(this->table_->IsPrime(0)); EXPECT_FALSE(this->table_->IsPrime(1)); EXPECT_FALSE(this->table_->IsPrime(4)); EXPECT_FALSE(this->table_->IsPrime(6)); EXPECT_FALSE(this->table_->IsPrime(100)); } TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) { EXPECT_TRUE(this->table_->IsPrime(2)); EXPECT_TRUE(this->table_->IsPrime(3)); EXPECT_TRUE(this->table_->IsPrime(5)); EXPECT_TRUE(this->table_->IsPrime(7)); EXPECT_TRUE(this->table_->IsPrime(11)); EXPECT_TRUE(this->table_->IsPrime(131)); } TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) { EXPECT_EQ(2, this->table_->GetNextPrime(0)); EXPECT_EQ(3, this->table_->GetNextPrime(2)); EXPECT_EQ(5, this->table_->GetNextPrime(3)); EXPECT_EQ(7, this->table_->GetNextPrime(5)); EXPECT_EQ(11, this->table_->GetNextPrime(7)); EXPECT_EQ(131, this->table_->GetNextPrime(128)); } // Type-parameterized tests involve one extra step: you have to // enumerate the tests you defined: REGISTER_TYPED_TEST_SUITE_P( PrimeTableTest2, // The first argument is the test case name. // The rest of the arguments are the test names. ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime); // At this point the test pattern is done. However, you don't have // any real test yet as you haven't said which types you want to run // the tests with. // To turn the abstract test pattern into real tests, you instantiate // it with a list of types. Usually the test pattern will be defined // in a .h file, and anyone can #include and instantiate it. You can // even instantiate it more than once in the same program. To tell // different instances apart, you give each of them a name, which will // become part of the test case name and can be used in test filters. // The list of types we want to test. Note that it doesn't have to be // defined at the time we write the TYPED_TEST_P()s. typedef Types PrimeTableImplementations; INSTANTIATE_TYPED_TEST_SUITE_P(OnTheFlyAndPreCalculated, // Instance name PrimeTableTest2, // Test case name PrimeTableImplementations); // Type list #endif // GTEST_HAS_TYPED_TEST_P } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample7_unittest.cc000066400000000000000000000110141355420072700261320ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This sample shows how to test common properties of multiple // implementations of an interface (aka interface tests) using // value-parameterized tests. Each test in the test case has // a parameter that is an interface pointer to an implementation // tested. // The interface and its implementations are in this header. #include "prime_tables.h" #include "gtest/gtest.h" namespace { using ::testing::TestWithParam; using ::testing::Values; // As a general rule, to prevent a test from affecting the tests that come // after it, you should create and destroy the tested objects for each test // instead of reusing them. In this sample we will define a simple factory // function for PrimeTable objects. We will instantiate objects in test's // SetUp() method and delete them in TearDown() method. typedef PrimeTable* CreatePrimeTableFunc(); PrimeTable* CreateOnTheFlyPrimeTable() { return new OnTheFlyPrimeTable(); } template PrimeTable* CreatePreCalculatedPrimeTable() { return new PreCalculatedPrimeTable(max_precalculated); } // Inside the test body, fixture constructor, SetUp(), and TearDown() you // can refer to the test parameter by GetParam(). In this case, the test // parameter is a factory function which we call in fixture's SetUp() to // create and store an instance of PrimeTable. class PrimeTableTestSmpl7 : public TestWithParam { public: ~PrimeTableTestSmpl7() override { delete table_; } void SetUp() override { table_ = (*GetParam())(); } void TearDown() override { delete table_; table_ = nullptr; } protected: PrimeTable* table_; }; TEST_P(PrimeTableTestSmpl7, ReturnsFalseForNonPrimes) { EXPECT_FALSE(table_->IsPrime(-5)); EXPECT_FALSE(table_->IsPrime(0)); EXPECT_FALSE(table_->IsPrime(1)); EXPECT_FALSE(table_->IsPrime(4)); EXPECT_FALSE(table_->IsPrime(6)); EXPECT_FALSE(table_->IsPrime(100)); } TEST_P(PrimeTableTestSmpl7, ReturnsTrueForPrimes) { EXPECT_TRUE(table_->IsPrime(2)); EXPECT_TRUE(table_->IsPrime(3)); EXPECT_TRUE(table_->IsPrime(5)); EXPECT_TRUE(table_->IsPrime(7)); EXPECT_TRUE(table_->IsPrime(11)); EXPECT_TRUE(table_->IsPrime(131)); } TEST_P(PrimeTableTestSmpl7, CanGetNextPrime) { EXPECT_EQ(2, table_->GetNextPrime(0)); EXPECT_EQ(3, table_->GetNextPrime(2)); EXPECT_EQ(5, table_->GetNextPrime(3)); EXPECT_EQ(7, table_->GetNextPrime(5)); EXPECT_EQ(11, table_->GetNextPrime(7)); EXPECT_EQ(131, table_->GetNextPrime(128)); } // In order to run value-parameterized tests, you need to instantiate them, // or bind them to a list of values which will be used as test parameters. // You can instantiate them in a different translation module, or even // instantiate them several times. // // Here, we instantiate our tests with a list of two PrimeTable object // factory functions: INSTANTIATE_TEST_SUITE_P(OnTheFlyAndPreCalculated, PrimeTableTestSmpl7, Values(&CreateOnTheFlyPrimeTable, &CreatePreCalculatedPrimeTable<1000>)); } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample8_unittest.cc000066400000000000000000000140621355420072700261410ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This sample shows how to test code relying on some global flag variables. // Combine() helps with generating all possible combinations of such flags, // and each test is given one combination as a parameter. // Use class definitions to test from this header. #include "prime_tables.h" #include "gtest/gtest.h" namespace { // Suppose we want to introduce a new, improved implementation of PrimeTable // which combines speed of PrecalcPrimeTable and versatility of // OnTheFlyPrimeTable (see prime_tables.h). Inside it instantiates both // PrecalcPrimeTable and OnTheFlyPrimeTable and uses the one that is more // appropriate under the circumstances. But in low memory conditions, it can be // told to instantiate without PrecalcPrimeTable instance at all and use only // OnTheFlyPrimeTable. class HybridPrimeTable : public PrimeTable { public: HybridPrimeTable(bool force_on_the_fly, int max_precalculated) : on_the_fly_impl_(new OnTheFlyPrimeTable), precalc_impl_(force_on_the_fly ? nullptr : new PreCalculatedPrimeTable(max_precalculated)), max_precalculated_(max_precalculated) {} ~HybridPrimeTable() override { delete on_the_fly_impl_; delete precalc_impl_; } bool IsPrime(int n) const override { if (precalc_impl_ != nullptr && n < max_precalculated_) return precalc_impl_->IsPrime(n); else return on_the_fly_impl_->IsPrime(n); } int GetNextPrime(int p) const override { int next_prime = -1; if (precalc_impl_ != nullptr && p < max_precalculated_) next_prime = precalc_impl_->GetNextPrime(p); return next_prime != -1 ? next_prime : on_the_fly_impl_->GetNextPrime(p); } private: OnTheFlyPrimeTable* on_the_fly_impl_; PreCalculatedPrimeTable* precalc_impl_; int max_precalculated_; }; using ::testing::TestWithParam; using ::testing::Bool; using ::testing::Values; using ::testing::Combine; // To test all code paths for HybridPrimeTable we must test it with numbers // both within and outside PreCalculatedPrimeTable's capacity and also with // PreCalculatedPrimeTable disabled. We do this by defining fixture which will // accept different combinations of parameters for instantiating a // HybridPrimeTable instance. class PrimeTableTest : public TestWithParam< ::std::tuple > { protected: void SetUp() override { bool force_on_the_fly; int max_precalculated; std::tie(force_on_the_fly, max_precalculated) = GetParam(); table_ = new HybridPrimeTable(force_on_the_fly, max_precalculated); } void TearDown() override { delete table_; table_ = nullptr; } HybridPrimeTable* table_; }; TEST_P(PrimeTableTest, ReturnsFalseForNonPrimes) { // Inside the test body, you can refer to the test parameter by GetParam(). // In this case, the test parameter is a PrimeTable interface pointer which // we can use directly. // Please note that you can also save it in the fixture's SetUp() method // or constructor and use saved copy in the tests. EXPECT_FALSE(table_->IsPrime(-5)); EXPECT_FALSE(table_->IsPrime(0)); EXPECT_FALSE(table_->IsPrime(1)); EXPECT_FALSE(table_->IsPrime(4)); EXPECT_FALSE(table_->IsPrime(6)); EXPECT_FALSE(table_->IsPrime(100)); } TEST_P(PrimeTableTest, ReturnsTrueForPrimes) { EXPECT_TRUE(table_->IsPrime(2)); EXPECT_TRUE(table_->IsPrime(3)); EXPECT_TRUE(table_->IsPrime(5)); EXPECT_TRUE(table_->IsPrime(7)); EXPECT_TRUE(table_->IsPrime(11)); EXPECT_TRUE(table_->IsPrime(131)); } TEST_P(PrimeTableTest, CanGetNextPrime) { EXPECT_EQ(2, table_->GetNextPrime(0)); EXPECT_EQ(3, table_->GetNextPrime(2)); EXPECT_EQ(5, table_->GetNextPrime(3)); EXPECT_EQ(7, table_->GetNextPrime(5)); EXPECT_EQ(11, table_->GetNextPrime(7)); EXPECT_EQ(131, table_->GetNextPrime(128)); } // In order to run value-parameterized tests, you need to instantiate them, // or bind them to a list of values which will be used as test parameters. // You can instantiate them in a different translation module, or even // instantiate them several times. // // Here, we instantiate our tests with a list of parameters. We must combine // all variations of the boolean flag suppressing PrecalcPrimeTable and some // meaningful values for tests. We choose a small value (1), and a value that // will put some of the tested numbers beyond the capability of the // PrecalcPrimeTable instance and some inside it (10). Combine will produce all // possible combinations. INSTANTIATE_TEST_SUITE_P(MeaningfulTestParameters, PrimeTableTest, Combine(Bool(), Values(1, 10))); } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/samples/sample9_unittest.cc000066400000000000000000000134451355420072700261460ustar00rootroot00000000000000// Copyright 2009 Google Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This sample shows how to use Google Test listener API to implement // an alternative console output and how to use the UnitTest reflection API // to enumerate test cases and tests and to inspect their results. #include #include "gtest/gtest.h" using ::testing::EmptyTestEventListener; using ::testing::InitGoogleTest; using ::testing::Test; using ::testing::TestCase; using ::testing::TestEventListeners; using ::testing::TestInfo; using ::testing::TestPartResult; using ::testing::UnitTest; namespace { // Provides alternative output mode which produces minimal amount of // information about tests. class TersePrinter : public EmptyTestEventListener { private: // Called before any test activity starts. void OnTestProgramStart(const UnitTest& /* unit_test */) override {} // Called after all test activities have ended. void OnTestProgramEnd(const UnitTest& unit_test) override { fprintf(stdout, "TEST %s\n", unit_test.Passed() ? "PASSED" : "FAILED"); fflush(stdout); } // Called before a test starts. void OnTestStart(const TestInfo& test_info) override { fprintf(stdout, "*** Test %s.%s starting.\n", test_info.test_case_name(), test_info.name()); fflush(stdout); } // Called after a failed assertion or a SUCCEED() invocation. void OnTestPartResult(const TestPartResult& test_part_result) override { fprintf(stdout, "%s in %s:%d\n%s\n", test_part_result.failed() ? "*** Failure" : "Success", test_part_result.file_name(), test_part_result.line_number(), test_part_result.summary()); fflush(stdout); } // Called after a test ends. void OnTestEnd(const TestInfo& test_info) override { fprintf(stdout, "*** Test %s.%s ending.\n", test_info.test_case_name(), test_info.name()); fflush(stdout); } }; // class TersePrinter TEST(CustomOutputTest, PrintsMessage) { printf("Printing something from the test body...\n"); } TEST(CustomOutputTest, Succeeds) { SUCCEED() << "SUCCEED() has been invoked from here"; } TEST(CustomOutputTest, Fails) { EXPECT_EQ(1, 2) << "This test fails in order to demonstrate alternative failure messages"; } } // namespace int main(int argc, char **argv) { InitGoogleTest(&argc, argv); bool terse_output = false; if (argc > 1 && strcmp(argv[1], "--terse_output") == 0 ) terse_output = true; else printf("%s\n", "Run this program with --terse_output to change the way " "it prints its output."); UnitTest& unit_test = *UnitTest::GetInstance(); // If we are given the --terse_output command line flag, suppresses the // standard output and attaches own result printer. if (terse_output) { TestEventListeners& listeners = unit_test.listeners(); // Removes the default console output listener from the list so it will // not receive events from Google Test and won't print any output. Since // this operation transfers ownership of the listener to the caller we // have to delete it as well. delete listeners.Release(listeners.default_result_printer()); // Adds the custom output listener to the list. It will now receive // events from Google Test and print the alternative output. We don't // have to worry about deleting it since Google Test assumes ownership // over it after adding it to the list. listeners.Append(new TersePrinter); } int ret_val = RUN_ALL_TESTS(); // This is an example of using the UnitTest reflection API to inspect test // results. Here we discount failures from the tests we expected to fail. int unexpectedly_failed_tests = 0; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const testing::TestSuite& test_suite = *unit_test.GetTestSuite(i); for (int j = 0; j < test_suite.total_test_count(); ++j) { const TestInfo& test_info = *test_suite.GetTestInfo(j); // Counts failed tests that were not meant to fail (those without // 'Fails' in the name). if (test_info.result()->Failed() && strcmp(test_info.name(), "Fails") != 0) { unexpectedly_failed_tests++; } } } // Test that were meant to fail should not affect the test program outcome. if (unexpectedly_failed_tests == 0) ret_val = 0; return ret_val; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/000077500000000000000000000000001355420072700223425ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/common.py000066400000000000000000000055471355420072700242170ustar00rootroot00000000000000# Copyright 2013 Google Inc. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Shared utilities for writing scripts for Google Test/Mock.""" __author__ = 'wan@google.com (Zhanyong Wan)' import os import re # Matches the line from 'svn info .' output that describes what SVN # path the current local directory corresponds to. For example, in # a googletest SVN workspace's trunk/test directory, the output will be: # # URL: https://googletest.googlecode.com/svn/trunk/test _SVN_INFO_URL_RE = re.compile(r'^URL: https://(\w+)\.googlecode\.com/svn(.*)') def GetCommandOutput(command): """Runs the shell command and returns its stdout as a list of lines.""" f = os.popen(command, 'r') lines = [line.strip() for line in f.readlines()] f.close() return lines def GetSvnInfo(): """Returns the project name and the current SVN workspace's root path.""" for line in GetCommandOutput('svn info .'): m = _SVN_INFO_URL_RE.match(line) if m: project = m.group(1) # googletest or googlemock rel_path = m.group(2) root = os.path.realpath(rel_path.count('/') * '../') return project, root return None, None def GetSvnTrunk(): """Returns the current SVN workspace's trunk root path.""" _, root = GetSvnInfo() return root + '/trunk' if root else None def IsInGTestSvn(): project, _ = GetSvnInfo() return project == 'googletest' def IsInGMockSvn(): project, _ = GetSvnInfo() return project == 'googlemock' libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/fuse_gtest_files.py000066400000000000000000000213001355420072700262420ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2009, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """fuse_gtest_files.py v0.2.0 Fuses Google Test source code into a .h file and a .cc file. SYNOPSIS fuse_gtest_files.py [GTEST_ROOT_DIR] OUTPUT_DIR Scans GTEST_ROOT_DIR for Google Test source code, and generates two files: OUTPUT_DIR/gtest/gtest.h and OUTPUT_DIR/gtest/gtest-all.cc. Then you can build your tests by adding OUTPUT_DIR to the include search path and linking with OUTPUT_DIR/gtest/gtest-all.cc. These two files contain everything you need to use Google Test. Hence you can "install" Google Test by copying them to wherever you want. GTEST_ROOT_DIR can be omitted and defaults to the parent directory of the directory holding this script. EXAMPLES ./fuse_gtest_files.py fused_gtest ./fuse_gtest_files.py path/to/unpacked/gtest fused_gtest This tool is experimental. In particular, it assumes that there is no conditional inclusion of Google Test headers. Please report any problems to googletestframework@googlegroups.com. You can read https://github.com/google/googletest/blob/master/googletest/docs/advanced.md for more information. """ __author__ = 'wan@google.com (Zhanyong Wan)' import os import re try: from sets import Set as set # For Python 2.3 compatibility except ImportError: pass import sys # We assume that this file is in the scripts/ directory in the Google # Test root directory. DEFAULT_GTEST_ROOT_DIR = os.path.join(os.path.dirname(__file__), '..') # Regex for matching '#include "gtest/..."'. INCLUDE_GTEST_FILE_REGEX = re.compile(r'^\s*#\s*include\s*"(gtest/.+)"') # Regex for matching '#include "src/..."'. INCLUDE_SRC_FILE_REGEX = re.compile(r'^\s*#\s*include\s*"(src/.+)"') # Where to find the source seed files. GTEST_H_SEED = 'include/gtest/gtest.h' GTEST_SPI_H_SEED = 'include/gtest/gtest-spi.h' GTEST_ALL_CC_SEED = 'src/gtest-all.cc' # Where to put the generated files. GTEST_H_OUTPUT = 'gtest/gtest.h' GTEST_ALL_CC_OUTPUT = 'gtest/gtest-all.cc' def VerifyFileExists(directory, relative_path): """Verifies that the given file exists; aborts on failure. relative_path is the file path relative to the given directory. """ if not os.path.isfile(os.path.join(directory, relative_path)): print('ERROR: Cannot find %s in directory %s.' % (relative_path, directory)) print('Please either specify a valid project root directory ' 'or omit it on the command line.') sys.exit(1) def ValidateGTestRootDir(gtest_root): """Makes sure gtest_root points to a valid gtest root directory. The function aborts the program on failure. """ VerifyFileExists(gtest_root, GTEST_H_SEED) VerifyFileExists(gtest_root, GTEST_ALL_CC_SEED) def VerifyOutputFile(output_dir, relative_path): """Verifies that the given output file path is valid. relative_path is relative to the output_dir directory. """ # Makes sure the output file either doesn't exist or can be overwritten. output_file = os.path.join(output_dir, relative_path) if os.path.exists(output_file): # TODO(wan@google.com): The following user-interaction doesn't # work with automated processes. We should provide a way for the # Makefile to force overwriting the files. print('%s already exists in directory %s - overwrite it? (y/N) ' % (relative_path, output_dir)) answer = sys.stdin.readline().strip() if answer not in ['y', 'Y']: print('ABORTED.') sys.exit(1) # Makes sure the directory holding the output file exists; creates # it and all its ancestors if necessary. parent_directory = os.path.dirname(output_file) if not os.path.isdir(parent_directory): os.makedirs(parent_directory) def ValidateOutputDir(output_dir): """Makes sure output_dir points to a valid output directory. The function aborts the program on failure. """ VerifyOutputFile(output_dir, GTEST_H_OUTPUT) VerifyOutputFile(output_dir, GTEST_ALL_CC_OUTPUT) def FuseGTestH(gtest_root, output_dir): """Scans folder gtest_root to generate gtest/gtest.h in output_dir.""" output_file = open(os.path.join(output_dir, GTEST_H_OUTPUT), 'w') processed_files = set() # Holds all gtest headers we've processed. def ProcessFile(gtest_header_path): """Processes the given gtest header file.""" # We don't process the same header twice. if gtest_header_path in processed_files: return processed_files.add(gtest_header_path) # Reads each line in the given gtest header. for line in open(os.path.join(gtest_root, gtest_header_path), 'r'): m = INCLUDE_GTEST_FILE_REGEX.match(line) if m: # It's '#include "gtest/..."' - let's process it recursively. ProcessFile('include/' + m.group(1)) else: # Otherwise we copy the line unchanged to the output file. output_file.write(line) ProcessFile(GTEST_H_SEED) output_file.close() def FuseGTestAllCcToFile(gtest_root, output_file): """Scans folder gtest_root to generate gtest/gtest-all.cc in output_file.""" processed_files = set() def ProcessFile(gtest_source_file): """Processes the given gtest source file.""" # We don't process the same #included file twice. if gtest_source_file in processed_files: return processed_files.add(gtest_source_file) # Reads each line in the given gtest source file. for line in open(os.path.join(gtest_root, gtest_source_file), 'r'): m = INCLUDE_GTEST_FILE_REGEX.match(line) if m: if 'include/' + m.group(1) == GTEST_SPI_H_SEED: # It's '#include "gtest/gtest-spi.h"'. This file is not # #included by "gtest/gtest.h", so we need to process it. ProcessFile(GTEST_SPI_H_SEED) else: # It's '#include "gtest/foo.h"' where foo is not gtest-spi. # We treat it as '#include "gtest/gtest.h"', as all other # gtest headers are being fused into gtest.h and cannot be # #included directly. # There is no need to #include "gtest/gtest.h" more than once. if not GTEST_H_SEED in processed_files: processed_files.add(GTEST_H_SEED) output_file.write('#include "%s"\n' % (GTEST_H_OUTPUT,)) else: m = INCLUDE_SRC_FILE_REGEX.match(line) if m: # It's '#include "src/foo"' - let's process it recursively. ProcessFile(m.group(1)) else: output_file.write(line) ProcessFile(GTEST_ALL_CC_SEED) def FuseGTestAllCc(gtest_root, output_dir): """Scans folder gtest_root to generate gtest/gtest-all.cc in output_dir.""" output_file = open(os.path.join(output_dir, GTEST_ALL_CC_OUTPUT), 'w') FuseGTestAllCcToFile(gtest_root, output_file) output_file.close() def FuseGTest(gtest_root, output_dir): """Fuses gtest.h and gtest-all.cc.""" ValidateGTestRootDir(gtest_root) ValidateOutputDir(output_dir) FuseGTestH(gtest_root, output_dir) FuseGTestAllCc(gtest_root, output_dir) def main(): argc = len(sys.argv) if argc == 2: # fuse_gtest_files.py OUTPUT_DIR FuseGTest(DEFAULT_GTEST_ROOT_DIR, sys.argv[1]) elif argc == 3: # fuse_gtest_files.py GTEST_ROOT_DIR OUTPUT_DIR FuseGTest(sys.argv[1], sys.argv[2]) else: print(__doc__) sys.exit(1) if __name__ == '__main__': main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/gen_gtest_pred_impl.py000066400000000000000000000525321355420072700267350ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """gen_gtest_pred_impl.py v0.1 Generates the implementation of Google Test predicate assertions and accompanying tests. Usage: gen_gtest_pred_impl.py MAX_ARITY where MAX_ARITY is a positive integer. The command generates the implementation of up-to MAX_ARITY-ary predicate assertions, and writes it to file gtest_pred_impl.h in the directory where the script is. It also generates the accompanying unit test in file gtest_pred_impl_unittest.cc. """ __author__ = 'wan@google.com (Zhanyong Wan)' import os import sys import time # Where this script is. SCRIPT_DIR = os.path.dirname(sys.argv[0]) # Where to store the generated header. HEADER = os.path.join(SCRIPT_DIR, '../include/gtest/gtest_pred_impl.h') # Where to store the generated unit test. UNIT_TEST = os.path.join(SCRIPT_DIR, '../test/gtest_pred_impl_unittest.cc') def HeaderPreamble(n): """Returns the preamble for the header file. Args: n: the maximum arity of the predicate macros to be generated. """ # A map that defines the values used in the preamble template. DEFS = { 'today' : time.strftime('%m/%d/%Y'), 'year' : time.strftime('%Y'), 'command' : '%s %s' % (os.path.basename(sys.argv[0]), n), 'n' : n } return ( """// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file is AUTOMATICALLY GENERATED on %(today)s by command // '%(command)s'. DO NOT EDIT BY HAND! // // Implements a family of generic predicate assertion macros. #ifndef GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ #define GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ #include "gtest/gtest.h" namespace testing { // This header implements a family of generic predicate assertion // macros: // // ASSERT_PRED_FORMAT1(pred_format, v1) // ASSERT_PRED_FORMAT2(pred_format, v1, v2) // ... // // where pred_format is a function or functor that takes n (in the // case of ASSERT_PRED_FORMATn) values and their source expression // text, and returns a testing::AssertionResult. See the definition // of ASSERT_EQ in gtest.h for an example. // // If you don't care about formatting, you can use the more // restrictive version: // // ASSERT_PRED1(pred, v1) // ASSERT_PRED2(pred, v1, v2) // ... // // where pred is an n-ary function or functor that returns bool, // and the values v1, v2, ..., must support the << operator for // streaming to std::ostream. // // We also define the EXPECT_* variations. // // For now we only support predicates whose arity is at most %(n)s. // Please email googletestframework@googlegroups.com if you need // support for higher arities. // GTEST_ASSERT_ is the basic statement to which all of the assertions // in this file reduce. Don't use this in your code. #define GTEST_ASSERT_(expression, on_failure) \\ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \\ if (const ::testing::AssertionResult gtest_ar = (expression)) \\ ; \\ else \\ on_failure(gtest_ar.failure_message()) """ % DEFS) def Arity(n): """Returns the English name of the given arity.""" if n < 0: return None elif n <= 3: return ['nullary', 'unary', 'binary', 'ternary'][n] else: return '%s-ary' % n def Title(word): """Returns the given word in title case. The difference between this and string's title() method is that Title('4-ary') is '4-ary' while '4-ary'.title() is '4-Ary'.""" return word[0].upper() + word[1:] def OneTo(n): """Returns the list [1, 2, 3, ..., n].""" return range(1, n + 1) def Iter(n, format, sep=''): """Given a positive integer n, a format string that contains 0 or more '%s' format specs, and optionally a separator string, returns the join of n strings, each formatted with the format string on an iterator ranged from 1 to n. Example: Iter(3, 'v%s', sep=', ') returns 'v1, v2, v3'. """ # How many '%s' specs are in format? spec_count = len(format.split('%s')) - 1 return sep.join([format % (spec_count * (i,)) for i in OneTo(n)]) def ImplementationForArity(n): """Returns the implementation of n-ary predicate assertions.""" # A map the defines the values used in the implementation template. DEFS = { 'n' : str(n), 'vs' : Iter(n, 'v%s', sep=', '), 'vts' : Iter(n, '#v%s', sep=', '), 'arity' : Arity(n), 'Arity' : Title(Arity(n)) } impl = """ // Helper function for implementing {EXPECT|ASSERT}_PRED%(n)s. Don't use // this in your code. template AssertionResult AssertPred%(n)sHelper(const char* pred_text""" % DEFS impl += Iter(n, """, const char* e%s""") impl += """, Pred pred""" impl += Iter(n, """, const T%s& v%s""") impl += """) { if (pred(%(vs)s)) return AssertionSuccess(); """ % DEFS impl += ' return AssertionFailure() << pred_text << "("' impl += Iter(n, """ << e%s""", sep=' << ", "') impl += ' << ") evaluates to false, where"' impl += Iter(n, """ << "\\n" << e%s << " evaluates to " << v%s""") impl += """; } // Internal macro for implementing {EXPECT|ASSERT}_PRED_FORMAT%(n)s. // Don't use this in your code. #define GTEST_PRED_FORMAT%(n)s_(pred_format, %(vs)s, on_failure)\\ GTEST_ASSERT_(pred_format(%(vts)s, %(vs)s), \\ on_failure) // Internal macro for implementing {EXPECT|ASSERT}_PRED%(n)s. Don't use // this in your code. #define GTEST_PRED%(n)s_(pred, %(vs)s, on_failure)\\ GTEST_ASSERT_(::testing::AssertPred%(n)sHelper(#pred""" % DEFS impl += Iter(n, """, \\ #v%s""") impl += """, \\ pred""" impl += Iter(n, """, \\ v%s""") impl += """), on_failure) // %(Arity)s predicate assertion macros. #define EXPECT_PRED_FORMAT%(n)s(pred_format, %(vs)s) \\ GTEST_PRED_FORMAT%(n)s_(pred_format, %(vs)s, GTEST_NONFATAL_FAILURE_) #define EXPECT_PRED%(n)s(pred, %(vs)s) \\ GTEST_PRED%(n)s_(pred, %(vs)s, GTEST_NONFATAL_FAILURE_) #define ASSERT_PRED_FORMAT%(n)s(pred_format, %(vs)s) \\ GTEST_PRED_FORMAT%(n)s_(pred_format, %(vs)s, GTEST_FATAL_FAILURE_) #define ASSERT_PRED%(n)s(pred, %(vs)s) \\ GTEST_PRED%(n)s_(pred, %(vs)s, GTEST_FATAL_FAILURE_) """ % DEFS return impl def HeaderPostamble(): """Returns the postamble for the header file.""" return """ } // namespace testing #endif // GTEST_INCLUDE_GTEST_GTEST_PRED_IMPL_H_ """ def GenerateFile(path, content): """Given a file path and a content string overwrites it with the given content. """ print 'Updating file %s . . .' % path f = file(path, 'w+') print >>f, content, f.close() print 'File %s has been updated.' % path def GenerateHeader(n): """Given the maximum arity n, updates the header file that implements the predicate assertions. """ GenerateFile(HEADER, HeaderPreamble(n) + ''.join([ImplementationForArity(i) for i in OneTo(n)]) + HeaderPostamble()) def UnitTestPreamble(): """Returns the preamble for the unit test file.""" # A map that defines the values used in the preamble template. DEFS = { 'today' : time.strftime('%m/%d/%Y'), 'year' : time.strftime('%Y'), 'command' : '%s %s' % (os.path.basename(sys.argv[0]), sys.argv[1]), } return ( """// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file is AUTOMATICALLY GENERATED on %(today)s by command // '%(command)s'. DO NOT EDIT BY HAND! // Regression test for gtest_pred_impl.h // // This file is generated by a script and quite long. If you intend to // learn how Google Test works by reading its unit tests, read // gtest_unittest.cc instead. // // This is intended as a regression test for the Google Test predicate // assertions. We compile it as part of the gtest_unittest target // only to keep the implementation tidy and compact, as it is quite // involved to set up the stage for testing Google Test using Google // Test itself. // // Currently, gtest_unittest takes ~11 seconds to run in the testing // daemon. In the future, if it grows too large and needs much more // time to finish, we should consider separating this file into a // stand-alone regression test. #include #include "gtest/gtest.h" #include "gtest/gtest-spi.h" // A user-defined data type. struct Bool { explicit Bool(int val) : value(val != 0) {} bool operator>(int n) const { return value > Bool(n).value; } Bool operator+(const Bool& rhs) const { return Bool(value + rhs.value); } bool operator==(const Bool& rhs) const { return value == rhs.value; } bool value; }; // Enables Bool to be used in assertions. std::ostream& operator<<(std::ostream& os, const Bool& x) { return os << (x.value ? "true" : "false"); } """ % DEFS) def TestsForArity(n): """Returns the tests for n-ary predicate assertions.""" # A map that defines the values used in the template for the tests. DEFS = { 'n' : n, 'es' : Iter(n, 'e%s', sep=', '), 'vs' : Iter(n, 'v%s', sep=', '), 'vts' : Iter(n, '#v%s', sep=', '), 'tvs' : Iter(n, 'T%s v%s', sep=', '), 'int_vs' : Iter(n, 'int v%s', sep=', '), 'Bool_vs' : Iter(n, 'Bool v%s', sep=', '), 'types' : Iter(n, 'typename T%s', sep=', '), 'v_sum' : Iter(n, 'v%s', sep=' + '), 'arity' : Arity(n), 'Arity' : Title(Arity(n)), } tests = ( """// Sample functions/functors for testing %(arity)s predicate assertions. // A %(arity)s predicate function. template <%(types)s> bool PredFunction%(n)s(%(tvs)s) { return %(v_sum)s > 0; } // The following two functions are needed to circumvent a bug in // gcc 2.95.3, which sometimes has problem with the above template // function. bool PredFunction%(n)sInt(%(int_vs)s) { return %(v_sum)s > 0; } bool PredFunction%(n)sBool(%(Bool_vs)s) { return %(v_sum)s > 0; } """ % DEFS) tests += """ // A %(arity)s predicate functor. struct PredFunctor%(n)s { template <%(types)s> bool operator()(""" % DEFS tests += Iter(n, 'const T%s& v%s', sep=""", """) tests += """) { return %(v_sum)s > 0; } }; """ % DEFS tests += """ // A %(arity)s predicate-formatter function. template <%(types)s> testing::AssertionResult PredFormatFunction%(n)s(""" % DEFS tests += Iter(n, 'const char* e%s', sep=""", """) tests += Iter(n, """, const T%s& v%s""") tests += """) { if (PredFunction%(n)s(%(vs)s)) return testing::AssertionSuccess(); return testing::AssertionFailure() << """ % DEFS tests += Iter(n, 'e%s', sep=' << " + " << ') tests += """ << " is expected to be positive, but evaluates to " << %(v_sum)s << "."; } """ % DEFS tests += """ // A %(arity)s predicate-formatter functor. struct PredFormatFunctor%(n)s { template <%(types)s> testing::AssertionResult operator()(""" % DEFS tests += Iter(n, 'const char* e%s', sep=""", """) tests += Iter(n, """, const T%s& v%s""") tests += """) const { return PredFormatFunction%(n)s(%(es)s, %(vs)s); } }; """ % DEFS tests += """ // Tests for {EXPECT|ASSERT}_PRED_FORMAT%(n)s. class Predicate%(n)sTest : public testing::Test { protected: virtual void SetUp() { expected_to_finish_ = true; finished_ = false;""" % DEFS tests += """ """ + Iter(n, 'n%s_ = ') + """0; } """ tests += """ virtual void TearDown() { // Verifies that each of the predicate's arguments was evaluated // exactly once.""" tests += ''.join([""" EXPECT_EQ(1, n%s_) << "The predicate assertion didn't evaluate argument %s " "exactly once.";""" % (i, i + 1) for i in OneTo(n)]) tests += """ // Verifies that the control flow in the test function is expected. if (expected_to_finish_ && !finished_) { FAIL() << "The predicate assertion unexpactedly aborted the test."; } else if (!expected_to_finish_ && finished_) { FAIL() << "The failed predicate assertion didn't abort the test " "as expected."; } } // true iff the test function is expected to run to finish. static bool expected_to_finish_; // true iff the test function did run to finish. static bool finished_; """ % DEFS tests += Iter(n, """ static int n%s_;""") tests += """ }; bool Predicate%(n)sTest::expected_to_finish_; bool Predicate%(n)sTest::finished_; """ % DEFS tests += Iter(n, """int Predicate%%(n)sTest::n%s_; """) % DEFS tests += """ typedef Predicate%(n)sTest EXPECT_PRED_FORMAT%(n)sTest; typedef Predicate%(n)sTest ASSERT_PRED_FORMAT%(n)sTest; typedef Predicate%(n)sTest EXPECT_PRED%(n)sTest; typedef Predicate%(n)sTest ASSERT_PRED%(n)sTest; """ % DEFS def GenTest(use_format, use_assert, expect_failure, use_functor, use_user_type): """Returns the test for a predicate assertion macro. Args: use_format: true iff the assertion is a *_PRED_FORMAT*. use_assert: true iff the assertion is a ASSERT_*. expect_failure: true iff the assertion is expected to fail. use_functor: true iff the first argument of the assertion is a functor (as opposed to a function) use_user_type: true iff the predicate functor/function takes argument(s) of a user-defined type. Example: GenTest(1, 0, 0, 1, 0) returns a test that tests the behavior of a successful EXPECT_PRED_FORMATn() that takes a functor whose arguments have built-in types.""" if use_assert: assrt = 'ASSERT' # 'assert' is reserved, so we cannot use # that identifier here. else: assrt = 'EXPECT' assertion = assrt + '_PRED' if use_format: pred_format = 'PredFormat' assertion += '_FORMAT' else: pred_format = 'Pred' assertion += '%(n)s' % DEFS if use_functor: pred_format_type = 'functor' pred_format += 'Functor%(n)s()' else: pred_format_type = 'function' pred_format += 'Function%(n)s' if not use_format: if use_user_type: pred_format += 'Bool' else: pred_format += 'Int' test_name = pred_format_type.title() if use_user_type: arg_type = 'user-defined type (Bool)' test_name += 'OnUserType' if expect_failure: arg = 'Bool(n%s_++)' else: arg = 'Bool(++n%s_)' else: arg_type = 'built-in type (int)' test_name += 'OnBuiltInType' if expect_failure: arg = 'n%s_++' else: arg = '++n%s_' if expect_failure: successful_or_failed = 'failed' expected_or_not = 'expected.' test_name += 'Failure' else: successful_or_failed = 'successful' expected_or_not = 'UNEXPECTED!' test_name += 'Success' # A map that defines the values used in the test template. defs = DEFS.copy() defs.update({ 'assert' : assrt, 'assertion' : assertion, 'test_name' : test_name, 'pf_type' : pred_format_type, 'pf' : pred_format, 'arg_type' : arg_type, 'arg' : arg, 'successful' : successful_or_failed, 'expected' : expected_or_not, }) test = """ // Tests a %(successful)s %(assertion)s where the // predicate-formatter is a %(pf_type)s on a %(arg_type)s. TEST_F(%(assertion)sTest, %(test_name)s) {""" % defs indent = (len(assertion) + 3)*' ' extra_indent = '' if expect_failure: extra_indent = ' ' if use_assert: test += """ expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT""" else: test += """ EXPECT_NONFATAL_FAILURE({ // NOLINT""" test += '\n' + extra_indent + """ %(assertion)s(%(pf)s""" % defs test = test % defs test += Iter(n, ',\n' + indent + extra_indent + '%(arg)s' % defs) test += ');\n' + extra_indent + ' finished_ = true;\n' if expect_failure: test += ' }, "");\n' test += '}\n' return test # Generates tests for all 2**6 = 64 combinations. tests += ''.join([GenTest(use_format, use_assert, expect_failure, use_functor, use_user_type) for use_format in [0, 1] for use_assert in [0, 1] for expect_failure in [0, 1] for use_functor in [0, 1] for use_user_type in [0, 1] ]) return tests def UnitTestPostamble(): """Returns the postamble for the tests.""" return '' def GenerateUnitTest(n): """Returns the tests for up-to n-ary predicate assertions.""" GenerateFile(UNIT_TEST, UnitTestPreamble() + ''.join([TestsForArity(i) for i in OneTo(n)]) + UnitTestPostamble()) def _Main(): """The entry point of the script. Generates the header file and its unit test.""" if len(sys.argv) != 2: print __doc__ print 'Author: ' + __author__ sys.exit(1) n = int(sys.argv[1]) GenerateHeader(n) GenerateUnitTest(n) if __name__ == '__main__': _Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/gtest-config.in000066400000000000000000000235471355420072700252760ustar00rootroot00000000000000#!/bin/sh # These variables are automatically filled in by the configure script. name="@PACKAGE_TARNAME@" version="@PACKAGE_VERSION@" show_usage() { echo "Usage: gtest-config [OPTIONS...]" } show_help() { show_usage cat <<\EOF The `gtest-config' script provides access to the necessary compile and linking flags to connect with Google C++ Testing Framework, both in a build prior to installation, and on the system proper after installation. The installation overrides may be issued in combination with any other queries, but will only affect installation queries if called on a built but not installed gtest. The installation queries may not be issued with any other types of queries, and only one installation query may be made at a time. The version queries and compiler flag queries may be combined as desired but not mixed. Different version queries are always combined with logical "and" semantics, and only the last of any particular query is used while all previous ones ignored. All versions must be specified as a sequence of numbers separated by periods. Compiler flag queries output the union of the sets of flags when combined. Examples: gtest-config --min-version=1.0 || echo "Insufficient Google Test version." g++ $(gtest-config --cppflags --cxxflags) -o foo.o -c foo.cpp g++ $(gtest-config --ldflags --libs) -o foo foo.o # When using a built but not installed Google Test: g++ $(../../my_gtest_build/scripts/gtest-config ...) ... # When using an installed Google Test, but with installation overrides: export GTEST_PREFIX="/opt" g++ $(gtest-config --libdir="/opt/lib64" ...) ... Help: --usage brief usage information --help display this help message Installation Overrides: --prefix= overrides the installation prefix --exec-prefix= overrides the executable installation prefix --libdir= overrides the library installation prefix --includedir= overrides the header file installation prefix Installation Queries: --prefix installation prefix --exec-prefix executable installation prefix --libdir library installation directory --includedir header file installation directory --version the version of the Google Test installation Version Queries: --min-version=VERSION return 0 if the version is at least VERSION --exact-version=VERSION return 0 if the version is exactly VERSION --max-version=VERSION return 0 if the version is at most VERSION Compilation Flag Queries: --cppflags compile flags specific to the C-like preprocessors --cxxflags compile flags appropriate for C++ programs --ldflags linker flags --libs libraries for linking EOF } # This function bounds our version with a min and a max. It uses some clever # POSIX-compliant variable expansion to portably do all the work in the shell # and avoid any dependency on a particular "sed" or "awk" implementation. # Notable is that it will only ever compare the first 3 components of versions. # Further components will be cleanly stripped off. All versions must be # unadorned, so "v1.0" will *not* work. The minimum version must be in $1, and # the max in $2. TODO(chandlerc@google.com): If this ever breaks, we should # investigate expanding this via autom4te from AS_VERSION_COMPARE rather than # continuing to maintain our own shell version. check_versions() { major_version=${version%%.*} minor_version="0" point_version="0" if test "${version#*.}" != "${version}"; then minor_version=${version#*.} minor_version=${minor_version%%.*} fi if test "${version#*.*.}" != "${version}"; then point_version=${version#*.*.} point_version=${point_version%%.*} fi min_version="$1" min_major_version=${min_version%%.*} min_minor_version="0" min_point_version="0" if test "${min_version#*.}" != "${min_version}"; then min_minor_version=${min_version#*.} min_minor_version=${min_minor_version%%.*} fi if test "${min_version#*.*.}" != "${min_version}"; then min_point_version=${min_version#*.*.} min_point_version=${min_point_version%%.*} fi max_version="$2" max_major_version=${max_version%%.*} max_minor_version="0" max_point_version="0" if test "${max_version#*.}" != "${max_version}"; then max_minor_version=${max_version#*.} max_minor_version=${max_minor_version%%.*} fi if test "${max_version#*.*.}" != "${max_version}"; then max_point_version=${max_version#*.*.} max_point_version=${max_point_version%%.*} fi test $(($major_version)) -lt $(($min_major_version)) && exit 1 if test $(($major_version)) -eq $(($min_major_version)); then test $(($minor_version)) -lt $(($min_minor_version)) && exit 1 if test $(($minor_version)) -eq $(($min_minor_version)); then test $(($point_version)) -lt $(($min_point_version)) && exit 1 fi fi test $(($major_version)) -gt $(($max_major_version)) && exit 1 if test $(($major_version)) -eq $(($max_major_version)); then test $(($minor_version)) -gt $(($max_minor_version)) && exit 1 if test $(($minor_version)) -eq $(($max_minor_version)); then test $(($point_version)) -gt $(($max_point_version)) && exit 1 fi fi exit 0 } # Show the usage line when no arguments are specified. if test $# -eq 0; then show_usage exit 1 fi while test $# -gt 0; do case $1 in --usage) show_usage; exit 0;; --help) show_help; exit 0;; # Installation overrides --prefix=*) GTEST_PREFIX=${1#--prefix=};; --exec-prefix=*) GTEST_EXEC_PREFIX=${1#--exec-prefix=};; --libdir=*) GTEST_LIBDIR=${1#--libdir=};; --includedir=*) GTEST_INCLUDEDIR=${1#--includedir=};; # Installation queries --prefix|--exec-prefix|--libdir|--includedir|--version) if test -n "${do_query}"; then show_usage exit 1 fi do_query=${1#--} ;; # Version checking --min-version=*) do_check_versions=yes min_version=${1#--min-version=} ;; --max-version=*) do_check_versions=yes max_version=${1#--max-version=} ;; --exact-version=*) do_check_versions=yes exact_version=${1#--exact-version=} ;; # Compiler flag output --cppflags) echo_cppflags=yes;; --cxxflags) echo_cxxflags=yes;; --ldflags) echo_ldflags=yes;; --libs) echo_libs=yes;; # Everything else is an error *) show_usage; exit 1;; esac shift done # These have defaults filled in by the configure script but can also be # overridden by environment variables or command line parameters. prefix="${GTEST_PREFIX:-@prefix@}" exec_prefix="${GTEST_EXEC_PREFIX:-@exec_prefix@}" libdir="${GTEST_LIBDIR:-@libdir@}" includedir="${GTEST_INCLUDEDIR:-@includedir@}" # We try and detect if our binary is not located at its installed location. If # it's not, we provide variables pointing to the source and build tree rather # than to the install tree. This allows building against a just-built gtest # rather than an installed gtest. bindir="@bindir@" this_relative_bindir=`dirname $0` this_bindir=`cd ${this_relative_bindir}; pwd -P` if test "${this_bindir}" = "${this_bindir%${bindir}}"; then # The path to the script doesn't end in the bindir sequence from Autoconf, # assume that we are in a build tree. build_dir=`dirname ${this_bindir}` src_dir=`cd ${this_bindir}; cd @top_srcdir@; pwd -P` # TODO(chandlerc@google.com): This is a dangerous dependency on libtool, we # should work to remove it, and/or remove libtool altogether, replacing it # with direct references to the library and a link path. gtest_libs="${build_dir}/lib/libgtest.la @PTHREAD_CFLAGS@ @PTHREAD_LIBS@" gtest_ldflags="" # We provide hooks to include from either the source or build dir, where the # build dir is always preferred. This will potentially allow us to write # build rules for generated headers and have them automatically be preferred # over provided versions. gtest_cppflags="-I${build_dir}/include -I${src_dir}/include" gtest_cxxflags="@PTHREAD_CFLAGS@" else # We're using an installed gtest, although it may be staged under some # prefix. Assume (as our own libraries do) that we can resolve the prefix, # and are present in the dynamic link paths. gtest_ldflags="-L${libdir}" gtest_libs="-l${name} @PTHREAD_CFLAGS@ @PTHREAD_LIBS@" gtest_cppflags="-I${includedir}" gtest_cxxflags="@PTHREAD_CFLAGS@" fi # Do an installation query if requested. if test -n "$do_query"; then case $do_query in prefix) echo $prefix; exit 0;; exec-prefix) echo $exec_prefix; exit 0;; libdir) echo $libdir; exit 0;; includedir) echo $includedir; exit 0;; version) echo $version; exit 0;; *) show_usage; exit 1;; esac fi # Do a version check if requested. if test "$do_check_versions" = "yes"; then # Make sure we didn't receive a bad combination of parameters. test "$echo_cppflags" = "yes" && show_usage && exit 1 test "$echo_cxxflags" = "yes" && show_usage && exit 1 test "$echo_ldflags" = "yes" && show_usage && exit 1 test "$echo_libs" = "yes" && show_usage && exit 1 if test "$exact_version" != ""; then check_versions $exact_version $exact_version # unreachable else check_versions ${min_version:-0.0.0} ${max_version:-9999.9999.9999} # unreachable fi fi # Do the output in the correct order so that these can be used in-line of # a compiler invocation. output="" test "$echo_cppflags" = "yes" && output="$output $gtest_cppflags" test "$echo_cxxflags" = "yes" && output="$output $gtest_cxxflags" test "$echo_ldflags" = "yes" && output="$output $gtest_ldflags" test "$echo_libs" = "yes" && output="$output $gtest_libs" echo $output exit 0 libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/pump.py000066400000000000000000000561711355420072700237070ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """pump v0.2.0 - Pretty Useful for Meta Programming. A tool for preprocessor meta programming. Useful for generating repetitive boilerplate code. Especially useful for writing C++ classes, functions, macros, and templates that need to work with various number of arguments. USAGE: pump.py SOURCE_FILE EXAMPLES: pump.py foo.cc.pump Converts foo.cc.pump to foo.cc. GRAMMAR: CODE ::= ATOMIC_CODE* ATOMIC_CODE ::= $var ID = EXPRESSION | $var ID = [[ CODE ]] | $range ID EXPRESSION..EXPRESSION | $for ID SEPARATOR [[ CODE ]] | $($) | $ID | $(EXPRESSION) | $if EXPRESSION [[ CODE ]] ELSE_BRANCH | [[ CODE ]] | RAW_CODE SEPARATOR ::= RAW_CODE | EMPTY ELSE_BRANCH ::= $else [[ CODE ]] | $elif EXPRESSION [[ CODE ]] ELSE_BRANCH | EMPTY EXPRESSION has Python syntax. """ __author__ = 'wan@google.com (Zhanyong Wan)' import os import re import sys TOKEN_TABLE = [ (re.compile(r'\$var\s+'), '$var'), (re.compile(r'\$elif\s+'), '$elif'), (re.compile(r'\$else\s+'), '$else'), (re.compile(r'\$for\s+'), '$for'), (re.compile(r'\$if\s+'), '$if'), (re.compile(r'\$range\s+'), '$range'), (re.compile(r'\$[_A-Za-z]\w*'), '$id'), (re.compile(r'\$\(\$\)'), '$($)'), (re.compile(r'\$'), '$'), (re.compile(r'\[\[\n?'), '[['), (re.compile(r'\]\]\n?'), ']]'), ] class Cursor: """Represents a position (line and column) in a text file.""" def __init__(self, line=-1, column=-1): self.line = line self.column = column def __eq__(self, rhs): return self.line == rhs.line and self.column == rhs.column def __ne__(self, rhs): return not self == rhs def __lt__(self, rhs): return self.line < rhs.line or ( self.line == rhs.line and self.column < rhs.column) def __le__(self, rhs): return self < rhs or self == rhs def __gt__(self, rhs): return rhs < self def __ge__(self, rhs): return rhs <= self def __str__(self): if self == Eof(): return 'EOF' else: return '%s(%s)' % (self.line + 1, self.column) def __add__(self, offset): return Cursor(self.line, self.column + offset) def __sub__(self, offset): return Cursor(self.line, self.column - offset) def Clone(self): """Returns a copy of self.""" return Cursor(self.line, self.column) # Special cursor to indicate the end-of-file. def Eof(): """Returns the special cursor to denote the end-of-file.""" return Cursor(-1, -1) class Token: """Represents a token in a Pump source file.""" def __init__(self, start=None, end=None, value=None, token_type=None): if start is None: self.start = Eof() else: self.start = start if end is None: self.end = Eof() else: self.end = end self.value = value self.token_type = token_type def __str__(self): return 'Token @%s: \'%s\' type=%s' % ( self.start, self.value, self.token_type) def Clone(self): """Returns a copy of self.""" return Token(self.start.Clone(), self.end.Clone(), self.value, self.token_type) def StartsWith(lines, pos, string): """Returns True iff the given position in lines starts with 'string'.""" return lines[pos.line][pos.column:].startswith(string) def FindFirstInLine(line, token_table): best_match_start = -1 for (regex, token_type) in token_table: m = regex.search(line) if m: # We found regex in lines if best_match_start < 0 or m.start() < best_match_start: best_match_start = m.start() best_match_length = m.end() - m.start() best_match_token_type = token_type if best_match_start < 0: return None return (best_match_start, best_match_length, best_match_token_type) def FindFirst(lines, token_table, cursor): """Finds the first occurrence of any string in strings in lines.""" start = cursor.Clone() cur_line_number = cursor.line for line in lines[start.line:]: if cur_line_number == start.line: line = line[start.column:] m = FindFirstInLine(line, token_table) if m: # We found a regex in line. (start_column, length, token_type) = m if cur_line_number == start.line: start_column += start.column found_start = Cursor(cur_line_number, start_column) found_end = found_start + length return MakeToken(lines, found_start, found_end, token_type) cur_line_number += 1 # We failed to find str in lines return None def SubString(lines, start, end): """Returns a substring in lines.""" if end == Eof(): end = Cursor(len(lines) - 1, len(lines[-1])) if start >= end: return '' if start.line == end.line: return lines[start.line][start.column:end.column] result_lines = ([lines[start.line][start.column:]] + lines[start.line + 1:end.line] + [lines[end.line][:end.column]]) return ''.join(result_lines) def StripMetaComments(str): """Strip meta comments from each line in the given string.""" # First, completely remove lines containing nothing but a meta # comment, including the trailing \n. str = re.sub(r'^\s*\$\$.*\n', '', str) # Then, remove meta comments from contentful lines. return re.sub(r'\s*\$\$.*', '', str) def MakeToken(lines, start, end, token_type): """Creates a new instance of Token.""" return Token(start, end, SubString(lines, start, end), token_type) def ParseToken(lines, pos, regex, token_type): line = lines[pos.line][pos.column:] m = regex.search(line) if m and not m.start(): return MakeToken(lines, pos, pos + m.end(), token_type) else: print 'ERROR: %s expected at %s.' % (token_type, pos) sys.exit(1) ID_REGEX = re.compile(r'[_A-Za-z]\w*') EQ_REGEX = re.compile(r'=') REST_OF_LINE_REGEX = re.compile(r'.*?(?=$|\$\$)') OPTIONAL_WHITE_SPACES_REGEX = re.compile(r'\s*') WHITE_SPACE_REGEX = re.compile(r'\s') DOT_DOT_REGEX = re.compile(r'\.\.') def Skip(lines, pos, regex): line = lines[pos.line][pos.column:] m = re.search(regex, line) if m and not m.start(): return pos + m.end() else: return pos def SkipUntil(lines, pos, regex, token_type): line = lines[pos.line][pos.column:] m = re.search(regex, line) if m: return pos + m.start() else: print ('ERROR: %s expected on line %s after column %s.' % (token_type, pos.line + 1, pos.column)) sys.exit(1) def ParseExpTokenInParens(lines, pos): def ParseInParens(pos): pos = Skip(lines, pos, OPTIONAL_WHITE_SPACES_REGEX) pos = Skip(lines, pos, r'\(') pos = Parse(pos) pos = Skip(lines, pos, r'\)') return pos def Parse(pos): pos = SkipUntil(lines, pos, r'\(|\)', ')') if SubString(lines, pos, pos + 1) == '(': pos = Parse(pos + 1) pos = Skip(lines, pos, r'\)') return Parse(pos) else: return pos start = pos.Clone() pos = ParseInParens(pos) return MakeToken(lines, start, pos, 'exp') def RStripNewLineFromToken(token): if token.value.endswith('\n'): return Token(token.start, token.end, token.value[:-1], token.token_type) else: return token def TokenizeLines(lines, pos): while True: found = FindFirst(lines, TOKEN_TABLE, pos) if not found: yield MakeToken(lines, pos, Eof(), 'code') return if found.start == pos: prev_token = None prev_token_rstripped = None else: prev_token = MakeToken(lines, pos, found.start, 'code') prev_token_rstripped = RStripNewLineFromToken(prev_token) if found.token_type == '$var': if prev_token_rstripped: yield prev_token_rstripped yield found id_token = ParseToken(lines, found.end, ID_REGEX, 'id') yield id_token pos = Skip(lines, id_token.end, OPTIONAL_WHITE_SPACES_REGEX) eq_token = ParseToken(lines, pos, EQ_REGEX, '=') yield eq_token pos = Skip(lines, eq_token.end, r'\s*') if SubString(lines, pos, pos + 2) != '[[': exp_token = ParseToken(lines, pos, REST_OF_LINE_REGEX, 'exp') yield exp_token pos = Cursor(exp_token.end.line + 1, 0) elif found.token_type == '$for': if prev_token_rstripped: yield prev_token_rstripped yield found id_token = ParseToken(lines, found.end, ID_REGEX, 'id') yield id_token pos = Skip(lines, id_token.end, WHITE_SPACE_REGEX) elif found.token_type == '$range': if prev_token_rstripped: yield prev_token_rstripped yield found id_token = ParseToken(lines, found.end, ID_REGEX, 'id') yield id_token pos = Skip(lines, id_token.end, OPTIONAL_WHITE_SPACES_REGEX) dots_pos = SkipUntil(lines, pos, DOT_DOT_REGEX, '..') yield MakeToken(lines, pos, dots_pos, 'exp') yield MakeToken(lines, dots_pos, dots_pos + 2, '..') pos = dots_pos + 2 new_pos = Cursor(pos.line + 1, 0) yield MakeToken(lines, pos, new_pos, 'exp') pos = new_pos elif found.token_type == '$': if prev_token: yield prev_token yield found exp_token = ParseExpTokenInParens(lines, found.end) yield exp_token pos = exp_token.end elif (found.token_type == ']]' or found.token_type == '$if' or found.token_type == '$elif' or found.token_type == '$else'): if prev_token_rstripped: yield prev_token_rstripped yield found pos = found.end else: if prev_token: yield prev_token yield found pos = found.end def Tokenize(s): """A generator that yields the tokens in the given string.""" if s != '': lines = s.splitlines(True) for token in TokenizeLines(lines, Cursor(0, 0)): yield token class CodeNode: def __init__(self, atomic_code_list=None): self.atomic_code = atomic_code_list class VarNode: def __init__(self, identifier=None, atomic_code=None): self.identifier = identifier self.atomic_code = atomic_code class RangeNode: def __init__(self, identifier=None, exp1=None, exp2=None): self.identifier = identifier self.exp1 = exp1 self.exp2 = exp2 class ForNode: def __init__(self, identifier=None, sep=None, code=None): self.identifier = identifier self.sep = sep self.code = code class ElseNode: def __init__(self, else_branch=None): self.else_branch = else_branch class IfNode: def __init__(self, exp=None, then_branch=None, else_branch=None): self.exp = exp self.then_branch = then_branch self.else_branch = else_branch class RawCodeNode: def __init__(self, token=None): self.raw_code = token class LiteralDollarNode: def __init__(self, token): self.token = token class ExpNode: def __init__(self, token, python_exp): self.token = token self.python_exp = python_exp def PopFront(a_list): head = a_list[0] a_list[:1] = [] return head def PushFront(a_list, elem): a_list[:0] = [elem] def PopToken(a_list, token_type=None): token = PopFront(a_list) if token_type is not None and token.token_type != token_type: print 'ERROR: %s expected at %s' % (token_type, token.start) print 'ERROR: %s found instead' % (token,) sys.exit(1) return token def PeekToken(a_list): if not a_list: return None return a_list[0] def ParseExpNode(token): python_exp = re.sub(r'([_A-Za-z]\w*)', r'self.GetValue("\1")', token.value) return ExpNode(token, python_exp) def ParseElseNode(tokens): def Pop(token_type=None): return PopToken(tokens, token_type) next = PeekToken(tokens) if not next: return None if next.token_type == '$else': Pop('$else') Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') return code_node elif next.token_type == '$elif': Pop('$elif') exp = Pop('code') Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') inner_else_node = ParseElseNode(tokens) return CodeNode([IfNode(ParseExpNode(exp), code_node, inner_else_node)]) elif not next.value.strip(): Pop('code') return ParseElseNode(tokens) else: return None def ParseAtomicCodeNode(tokens): def Pop(token_type=None): return PopToken(tokens, token_type) head = PopFront(tokens) t = head.token_type if t == 'code': return RawCodeNode(head) elif t == '$var': id_token = Pop('id') Pop('=') next = PeekToken(tokens) if next.token_type == 'exp': exp_token = Pop() return VarNode(id_token, ParseExpNode(exp_token)) Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') return VarNode(id_token, code_node) elif t == '$for': id_token = Pop('id') next_token = PeekToken(tokens) if next_token.token_type == 'code': sep_token = next_token Pop('code') else: sep_token = None Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') return ForNode(id_token, sep_token, code_node) elif t == '$if': exp_token = Pop('code') Pop('[[') code_node = ParseCodeNode(tokens) Pop(']]') else_node = ParseElseNode(tokens) return IfNode(ParseExpNode(exp_token), code_node, else_node) elif t == '$range': id_token = Pop('id') exp1_token = Pop('exp') Pop('..') exp2_token = Pop('exp') return RangeNode(id_token, ParseExpNode(exp1_token), ParseExpNode(exp2_token)) elif t == '$id': return ParseExpNode(Token(head.start + 1, head.end, head.value[1:], 'id')) elif t == '$($)': return LiteralDollarNode(head) elif t == '$': exp_token = Pop('exp') return ParseExpNode(exp_token) elif t == '[[': code_node = ParseCodeNode(tokens) Pop(']]') return code_node else: PushFront(tokens, head) return None def ParseCodeNode(tokens): atomic_code_list = [] while True: if not tokens: break atomic_code_node = ParseAtomicCodeNode(tokens) if atomic_code_node: atomic_code_list.append(atomic_code_node) else: break return CodeNode(atomic_code_list) def ParseToAST(pump_src_text): """Convert the given Pump source text into an AST.""" tokens = list(Tokenize(pump_src_text)) code_node = ParseCodeNode(tokens) return code_node class Env: def __init__(self): self.variables = [] self.ranges = [] def Clone(self): clone = Env() clone.variables = self.variables[:] clone.ranges = self.ranges[:] return clone def PushVariable(self, var, value): # If value looks like an int, store it as an int. try: int_value = int(value) if ('%s' % int_value) == value: value = int_value except Exception: pass self.variables[:0] = [(var, value)] def PopVariable(self): self.variables[:1] = [] def PushRange(self, var, lower, upper): self.ranges[:0] = [(var, lower, upper)] def PopRange(self): self.ranges[:1] = [] def GetValue(self, identifier): for (var, value) in self.variables: if identifier == var: return value print 'ERROR: meta variable %s is undefined.' % (identifier,) sys.exit(1) def EvalExp(self, exp): try: result = eval(exp.python_exp) except Exception, e: print 'ERROR: caught exception %s: %s' % (e.__class__.__name__, e) print ('ERROR: failed to evaluate meta expression %s at %s' % (exp.python_exp, exp.token.start)) sys.exit(1) return result def GetRange(self, identifier): for (var, lower, upper) in self.ranges: if identifier == var: return (lower, upper) print 'ERROR: range %s is undefined.' % (identifier,) sys.exit(1) class Output: def __init__(self): self.string = '' def GetLastLine(self): index = self.string.rfind('\n') if index < 0: return '' return self.string[index + 1:] def Append(self, s): self.string += s def RunAtomicCode(env, node, output): if isinstance(node, VarNode): identifier = node.identifier.value.strip() result = Output() RunAtomicCode(env.Clone(), node.atomic_code, result) value = result.string env.PushVariable(identifier, value) elif isinstance(node, RangeNode): identifier = node.identifier.value.strip() lower = int(env.EvalExp(node.exp1)) upper = int(env.EvalExp(node.exp2)) env.PushRange(identifier, lower, upper) elif isinstance(node, ForNode): identifier = node.identifier.value.strip() if node.sep is None: sep = '' else: sep = node.sep.value (lower, upper) = env.GetRange(identifier) for i in range(lower, upper + 1): new_env = env.Clone() new_env.PushVariable(identifier, i) RunCode(new_env, node.code, output) if i != upper: output.Append(sep) elif isinstance(node, RawCodeNode): output.Append(node.raw_code.value) elif isinstance(node, IfNode): cond = env.EvalExp(node.exp) if cond: RunCode(env.Clone(), node.then_branch, output) elif node.else_branch is not None: RunCode(env.Clone(), node.else_branch, output) elif isinstance(node, ExpNode): value = env.EvalExp(node) output.Append('%s' % (value,)) elif isinstance(node, LiteralDollarNode): output.Append('$') elif isinstance(node, CodeNode): RunCode(env.Clone(), node, output) else: print 'BAD' print node sys.exit(1) def RunCode(env, code_node, output): for atomic_code in code_node.atomic_code: RunAtomicCode(env, atomic_code, output) def IsSingleLineComment(cur_line): return '//' in cur_line def IsInPreprocessorDirective(prev_lines, cur_line): if cur_line.lstrip().startswith('#'): return True return prev_lines and prev_lines[-1].endswith('\\') def WrapComment(line, output): loc = line.find('//') before_comment = line[:loc].rstrip() if before_comment == '': indent = loc else: output.append(before_comment) indent = len(before_comment) - len(before_comment.lstrip()) prefix = indent*' ' + '// ' max_len = 80 - len(prefix) comment = line[loc + 2:].strip() segs = [seg for seg in re.split(r'(\w+\W*)', comment) if seg != ''] cur_line = '' for seg in segs: if len((cur_line + seg).rstrip()) < max_len: cur_line += seg else: if cur_line.strip() != '': output.append(prefix + cur_line.rstrip()) cur_line = seg.lstrip() if cur_line.strip() != '': output.append(prefix + cur_line.strip()) def WrapCode(line, line_concat, output): indent = len(line) - len(line.lstrip()) prefix = indent*' ' # Prefix of the current line max_len = 80 - indent - len(line_concat) # Maximum length of the current line new_prefix = prefix + 4*' ' # Prefix of a continuation line new_max_len = max_len - 4 # Maximum length of a continuation line # Prefers to wrap a line after a ',' or ';'. segs = [seg for seg in re.split(r'([^,;]+[,;]?)', line.strip()) if seg != ''] cur_line = '' # The current line without leading spaces. for seg in segs: # If the line is still too long, wrap at a space. while cur_line == '' and len(seg.strip()) > max_len: seg = seg.lstrip() split_at = seg.rfind(' ', 0, max_len) output.append(prefix + seg[:split_at].strip() + line_concat) seg = seg[split_at + 1:] prefix = new_prefix max_len = new_max_len if len((cur_line + seg).rstrip()) < max_len: cur_line = (cur_line + seg).lstrip() else: output.append(prefix + cur_line.rstrip() + line_concat) prefix = new_prefix max_len = new_max_len cur_line = seg.lstrip() if cur_line.strip() != '': output.append(prefix + cur_line.strip()) def WrapPreprocessorDirective(line, output): WrapCode(line, ' \\', output) def WrapPlainCode(line, output): WrapCode(line, '', output) def IsMultiLineIWYUPragma(line): return re.search(r'/\* IWYU pragma: ', line) def IsHeaderGuardIncludeOrOneLineIWYUPragma(line): return (re.match(r'^#(ifndef|define|endif\s*//)\s*[\w_]+\s*$', line) or re.match(r'^#include\s', line) or # Don't break IWYU pragmas, either; that causes iwyu.py problems. re.search(r'// IWYU pragma: ', line)) def WrapLongLine(line, output): line = line.rstrip() if len(line) <= 80: output.append(line) elif IsSingleLineComment(line): if IsHeaderGuardIncludeOrOneLineIWYUPragma(line): # The style guide made an exception to allow long header guard lines, # includes and IWYU pragmas. output.append(line) else: WrapComment(line, output) elif IsInPreprocessorDirective(output, line): if IsHeaderGuardIncludeOrOneLineIWYUPragma(line): # The style guide made an exception to allow long header guard lines, # includes and IWYU pragmas. output.append(line) else: WrapPreprocessorDirective(line, output) elif IsMultiLineIWYUPragma(line): output.append(line) else: WrapPlainCode(line, output) def BeautifyCode(string): lines = string.splitlines() output = [] for line in lines: WrapLongLine(line, output) output2 = [line.rstrip() for line in output] return '\n'.join(output2) + '\n' def ConvertFromPumpSource(src_text): """Return the text generated from the given Pump source text.""" ast = ParseToAST(StripMetaComments(src_text)) output = Output() RunCode(Env(), ast, output) return BeautifyCode(output.string) def main(argv): if len(argv) == 1: print __doc__ sys.exit(1) file_path = argv[-1] output_str = ConvertFromPumpSource(file(file_path, 'r').read()) if file_path.endswith('.pump'): output_file_path = file_path[:-5] else: output_file_path = '-' if output_file_path == '-': print output_str, else: output_file = file(output_file_path, 'w') output_file.write('// This file was GENERATED by command:\n') output_file.write('// %s %s\n' % (os.path.basename(__file__), os.path.basename(file_path))) output_file.write('// DO NOT EDIT BY HAND!!!\n\n') output_file.write(output_str) output_file.close() if __name__ == '__main__': main(sys.argv) libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/release_docs.py000066400000000000000000000137641355420072700253570ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2013 Google Inc. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Script for branching Google Test/Mock wiki pages for a new version. SYNOPSIS release_docs.py NEW_RELEASE_VERSION Google Test and Google Mock's external user documentation is in interlinked wiki files. When we release a new version of Google Test or Google Mock, we need to branch the wiki files such that users of a specific version of Google Test/Mock can look up documenation relevant for that version. This script automates that process by: - branching the current wiki pages (which document the behavior of the SVN trunk head) to pages for the specified version (e.g. branching FAQ.wiki to V2_6_FAQ.wiki when NEW_RELEASE_VERSION is 2.6); - updating the links in the branched files to point to the branched version (e.g. a link in V2_6_FAQ.wiki that pointed to Primer.wiki#Anchor will now point to V2_6_Primer.wiki#Anchor). NOTE: NEW_RELEASE_VERSION must be a NEW version number for which the wiki pages don't yet exist; otherwise you'll get SVN errors like "svn: Path 'V1_7_PumpManual.wiki' is not a directory" when running the script. EXAMPLE $ cd PATH/TO/GTEST_SVN_WORKSPACE/trunk $ scripts/release_docs.py 2.6 # create wiki pages for v2.6 $ svn status # verify the file list $ svn diff # verify the file contents $ svn commit -m "release wiki pages for v2.6" """ __author__ = 'wan@google.com (Zhanyong Wan)' import os import re import sys import common # Wiki pages that shouldn't be branched for every gtest/gmock release. GTEST_UNVERSIONED_WIKIS = ['DevGuide.wiki'] GMOCK_UNVERSIONED_WIKIS = [ 'DesignDoc.wiki', 'DevGuide.wiki', 'KnownIssues.wiki' ] def DropWikiSuffix(wiki_filename): """Removes the .wiki suffix (if any) from the given filename.""" return (wiki_filename[:-len('.wiki')] if wiki_filename.endswith('.wiki') else wiki_filename) class WikiBrancher(object): """Branches ...""" def __init__(self, dot_version): self.project, svn_root_path = common.GetSvnInfo() if self.project not in ('googletest', 'googlemock'): sys.exit('This script must be run in a gtest or gmock SVN workspace.') self.wiki_dir = svn_root_path + '/wiki' # Turn '2.6' to 'V2_6_'. self.version_prefix = 'V' + dot_version.replace('.', '_') + '_' self.files_to_branch = self.GetFilesToBranch() page_names = [DropWikiSuffix(f) for f in self.files_to_branch] # A link to Foo.wiki is in one of the following forms: # [Foo words] # [Foo#Anchor words] # [http://code.google.com/.../wiki/Foo words] # [http://code.google.com/.../wiki/Foo#Anchor words] # We want to replace 'Foo' with 'V2_6_Foo' in the above cases. self.search_for_re = re.compile( # This regex matches either # [Foo # or # /wiki/Foo # followed by a space or a #, where Foo is the name of an # unversioned wiki page. r'(\[|/wiki/)(%s)([ #])' % '|'.join(page_names)) self.replace_with = r'\1%s\2\3' % (self.version_prefix,) def GetFilesToBranch(self): """Returns a list of .wiki file names that need to be branched.""" unversioned_wikis = (GTEST_UNVERSIONED_WIKIS if self.project == 'googletest' else GMOCK_UNVERSIONED_WIKIS) return [f for f in os.listdir(self.wiki_dir) if (f.endswith('.wiki') and not re.match(r'^V\d', f) and # Excluded versioned .wiki files. f not in unversioned_wikis)] def BranchFiles(self): """Branches the .wiki files needed to be branched.""" print 'Branching %d .wiki files:' % (len(self.files_to_branch),) os.chdir(self.wiki_dir) for f in self.files_to_branch: command = 'svn cp %s %s%s' % (f, self.version_prefix, f) print command os.system(command) def UpdateLinksInBranchedFiles(self): for f in self.files_to_branch: source_file = os.path.join(self.wiki_dir, f) versioned_file = os.path.join(self.wiki_dir, self.version_prefix + f) print 'Updating links in %s.' % (versioned_file,) text = file(source_file, 'r').read() new_text = self.search_for_re.sub(self.replace_with, text) file(versioned_file, 'w').write(new_text) def main(): if len(sys.argv) != 2: sys.exit(__doc__) brancher = WikiBrancher(sys.argv[1]) brancher.BranchFiles() brancher.UpdateLinksInBranchedFiles() if __name__ == '__main__': main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/upload.py000066400000000000000000001436141355420072700242110ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tool for uploading diffs from a version control system to the codereview app. Usage summary: upload.py [options] [-- diff_options] Diff options are passed to the diff command of the underlying system. Supported version control systems: Git Mercurial Subversion It is important for Git/Mercurial users to specify a tree/node/branch to diff against by using the '--rev' option. """ # This code is derived from appcfg.py in the App Engine SDK (open source), # and from ASPN recipe #146306. import cookielib import getpass import logging import md5 import mimetypes import optparse import os import re import socket import subprocess import sys import urllib import urllib2 import urlparse try: import readline except ImportError: pass # The logging verbosity: # 0: Errors only. # 1: Status messages. # 2: Info logs. # 3: Debug logs. verbosity = 1 # Max size of patch or base file. MAX_UPLOAD_SIZE = 900 * 1024 def GetEmail(prompt): """Prompts the user for their email address and returns it. The last used email address is saved to a file and offered up as a suggestion to the user. If the user presses enter without typing in anything the last used email address is used. If the user enters a new address, it is saved for next time we prompt. """ last_email_file_name = os.path.expanduser("~/.last_codereview_email_address") last_email = "" if os.path.exists(last_email_file_name): try: last_email_file = open(last_email_file_name, "r") last_email = last_email_file.readline().strip("\n") last_email_file.close() prompt += " [%s]" % last_email except IOError, e: pass email = raw_input(prompt + ": ").strip() if email: try: last_email_file = open(last_email_file_name, "w") last_email_file.write(email) last_email_file.close() except IOError, e: pass else: email = last_email return email def StatusUpdate(msg): """Print a status message to stdout. If 'verbosity' is greater than 0, print the message. Args: msg: The string to print. """ if verbosity > 0: print msg def ErrorExit(msg): """Print an error message to stderr and exit.""" print >>sys.stderr, msg sys.exit(1) class ClientLoginError(urllib2.HTTPError): """Raised to indicate there was an error authenticating with ClientLogin.""" def __init__(self, url, code, msg, headers, args): urllib2.HTTPError.__init__(self, url, code, msg, headers, None) self.args = args self.reason = args["Error"] class AbstractRpcServer(object): """Provides a common interface for a simple RPC server.""" def __init__(self, host, auth_function, host_override=None, extra_headers={}, save_cookies=False): """Creates a new HttpRpcServer. Args: host: The host to send requests to. auth_function: A function that takes no arguments and returns an (email, password) tuple when called. Will be called if authentication is required. host_override: The host header to send to the server (defaults to host). extra_headers: A dict of extra headers to append to every request. save_cookies: If True, save the authentication cookies to local disk. If False, use an in-memory cookiejar instead. Subclasses must implement this functionality. Defaults to False. """ self.host = host self.host_override = host_override self.auth_function = auth_function self.authenticated = False self.extra_headers = extra_headers self.save_cookies = save_cookies self.opener = self._GetOpener() if self.host_override: logging.info("Server: %s; Host: %s", self.host, self.host_override) else: logging.info("Server: %s", self.host) def _GetOpener(self): """Returns an OpenerDirector for making HTTP requests. Returns: A urllib2.OpenerDirector object. """ raise NotImplementedError() def _CreateRequest(self, url, data=None): """Creates a new urllib request.""" logging.debug("Creating request for: '%s' with payload:\n%s", url, data) req = urllib2.Request(url, data=data) if self.host_override: req.add_header("Host", self.host_override) for key, value in self.extra_headers.iteritems(): req.add_header(key, value) return req def _GetAuthToken(self, email, password): """Uses ClientLogin to authenticate the user, returning an auth token. Args: email: The user's email address password: The user's password Raises: ClientLoginError: If there was an error authenticating with ClientLogin. HTTPError: If there was some other form of HTTP error. Returns: The authentication token returned by ClientLogin. """ account_type = "GOOGLE" if self.host.endswith(".google.com"): # Needed for use inside Google. account_type = "HOSTED" req = self._CreateRequest( url="https://www.google.com/accounts/ClientLogin", data=urllib.urlencode({ "Email": email, "Passwd": password, "service": "ah", "source": "rietveld-codereview-upload", "accountType": account_type, }), ) try: response = self.opener.open(req) response_body = response.read() response_dict = dict(x.split("=") for x in response_body.split("\n") if x) return response_dict["Auth"] except urllib2.HTTPError, e: if e.code == 403: body = e.read() response_dict = dict(x.split("=", 1) for x in body.split("\n") if x) raise ClientLoginError(req.get_full_url(), e.code, e.msg, e.headers, response_dict) else: raise def _GetAuthCookie(self, auth_token): """Fetches authentication cookies for an authentication token. Args: auth_token: The authentication token returned by ClientLogin. Raises: HTTPError: If there was an error fetching the authentication cookies. """ # This is a dummy value to allow us to identify when we're successful. continue_location = "http://localhost/" args = {"continue": continue_location, "auth": auth_token} req = self._CreateRequest("http://%s/_ah/login?%s" % (self.host, urllib.urlencode(args))) try: response = self.opener.open(req) except urllib2.HTTPError, e: response = e if (response.code != 302 or response.info()["location"] != continue_location): raise urllib2.HTTPError(req.get_full_url(), response.code, response.msg, response.headers, response.fp) self.authenticated = True def _Authenticate(self): """Authenticates the user. The authentication process works as follows: 1) We get a username and password from the user 2) We use ClientLogin to obtain an AUTH token for the user (see https://developers.google.com/identity/protocols/AuthForInstalledApps). 3) We pass the auth token to /_ah/login on the server to obtain an authentication cookie. If login was successful, it tries to redirect us to the URL we provided. If we attempt to access the upload API without first obtaining an authentication cookie, it returns a 401 response and directs us to authenticate ourselves with ClientLogin. """ for i in range(3): credentials = self.auth_function() try: auth_token = self._GetAuthToken(credentials[0], credentials[1]) except ClientLoginError, e: if e.reason == "BadAuthentication": print >>sys.stderr, "Invalid username or password." continue if e.reason == "CaptchaRequired": print >>sys.stderr, ( "Please go to\n" "https://www.google.com/accounts/DisplayUnlockCaptcha\n" "and verify you are a human. Then try again.") break if e.reason == "NotVerified": print >>sys.stderr, "Account not verified." break if e.reason == "TermsNotAgreed": print >>sys.stderr, "User has not agreed to TOS." break if e.reason == "AccountDeleted": print >>sys.stderr, "The user account has been deleted." break if e.reason == "AccountDisabled": print >>sys.stderr, "The user account has been disabled." break if e.reason == "ServiceDisabled": print >>sys.stderr, ("The user's access to the service has been " "disabled.") break if e.reason == "ServiceUnavailable": print >>sys.stderr, "The service is not available; try again later." break raise self._GetAuthCookie(auth_token) return def Send(self, request_path, payload=None, content_type="application/octet-stream", timeout=None, **kwargs): """Sends an RPC and returns the response. Args: request_path: The path to send the request to, eg /api/appversion/create. payload: The body of the request, or None to send an empty request. content_type: The Content-Type header to use. timeout: timeout in seconds; default None i.e. no timeout. (Note: for large requests on OS X, the timeout doesn't work right.) kwargs: Any keyword arguments are converted into query string parameters. Returns: The response body, as a string. """ # TODO: Don't require authentication. Let the server say # whether it is necessary. if not self.authenticated: self._Authenticate() old_timeout = socket.getdefaulttimeout() socket.setdefaulttimeout(timeout) try: tries = 0 while True: tries += 1 args = dict(kwargs) url = "http://%s%s" % (self.host, request_path) if args: url += "?" + urllib.urlencode(args) req = self._CreateRequest(url=url, data=payload) req.add_header("Content-Type", content_type) try: f = self.opener.open(req) response = f.read() f.close() return response except urllib2.HTTPError, e: if tries > 3: raise elif e.code == 401: self._Authenticate() ## elif e.code >= 500 and e.code < 600: ## # Server Error - try again. ## continue else: raise finally: socket.setdefaulttimeout(old_timeout) class HttpRpcServer(AbstractRpcServer): """Provides a simplified RPC-style interface for HTTP requests.""" def _Authenticate(self): """Save the cookie jar after authentication.""" super(HttpRpcServer, self)._Authenticate() if self.save_cookies: StatusUpdate("Saving authentication cookies to %s" % self.cookie_file) self.cookie_jar.save() def _GetOpener(self): """Returns an OpenerDirector that supports cookies and ignores redirects. Returns: A urllib2.OpenerDirector object. """ opener = urllib2.OpenerDirector() opener.add_handler(urllib2.ProxyHandler()) opener.add_handler(urllib2.UnknownHandler()) opener.add_handler(urllib2.HTTPHandler()) opener.add_handler(urllib2.HTTPDefaultErrorHandler()) opener.add_handler(urllib2.HTTPSHandler()) opener.add_handler(urllib2.HTTPErrorProcessor()) if self.save_cookies: self.cookie_file = os.path.expanduser("~/.codereview_upload_cookies") self.cookie_jar = cookielib.MozillaCookieJar(self.cookie_file) if os.path.exists(self.cookie_file): try: self.cookie_jar.load() self.authenticated = True StatusUpdate("Loaded authentication cookies from %s" % self.cookie_file) except (cookielib.LoadError, IOError): # Failed to load cookies - just ignore them. pass else: # Create an empty cookie file with mode 600 fd = os.open(self.cookie_file, os.O_CREAT, 0600) os.close(fd) # Always chmod the cookie file os.chmod(self.cookie_file, 0600) else: # Don't save cookies across runs of update.py. self.cookie_jar = cookielib.CookieJar() opener.add_handler(urllib2.HTTPCookieProcessor(self.cookie_jar)) return opener parser = optparse.OptionParser(usage="%prog [options] [-- diff_options]") parser.add_option("-y", "--assume_yes", action="store_true", dest="assume_yes", default=False, help="Assume that the answer to yes/no questions is 'yes'.") # Logging group = parser.add_option_group("Logging options") group.add_option("-q", "--quiet", action="store_const", const=0, dest="verbose", help="Print errors only.") group.add_option("-v", "--verbose", action="store_const", const=2, dest="verbose", default=1, help="Print info level logs (default).") group.add_option("--noisy", action="store_const", const=3, dest="verbose", help="Print all logs.") # Review server group = parser.add_option_group("Review server options") group.add_option("-s", "--server", action="store", dest="server", default="codereview.appspot.com", metavar="SERVER", help=("The server to upload to. The format is host[:port]. " "Defaults to 'codereview.appspot.com'.")) group.add_option("-e", "--email", action="store", dest="email", metavar="EMAIL", default=None, help="The username to use. Will prompt if omitted.") group.add_option("-H", "--host", action="store", dest="host", metavar="HOST", default=None, help="Overrides the Host header sent with all RPCs.") group.add_option("--no_cookies", action="store_false", dest="save_cookies", default=True, help="Do not save authentication cookies to local disk.") # Issue group = parser.add_option_group("Issue options") group.add_option("-d", "--description", action="store", dest="description", metavar="DESCRIPTION", default=None, help="Optional description when creating an issue.") group.add_option("-f", "--description_file", action="store", dest="description_file", metavar="DESCRIPTION_FILE", default=None, help="Optional path of a file that contains " "the description when creating an issue.") group.add_option("-r", "--reviewers", action="store", dest="reviewers", metavar="REVIEWERS", default=None, help="Add reviewers (comma separated email addresses).") group.add_option("--cc", action="store", dest="cc", metavar="CC", default=None, help="Add CC (comma separated email addresses).") # Upload options group = parser.add_option_group("Patch options") group.add_option("-m", "--message", action="store", dest="message", metavar="MESSAGE", default=None, help="A message to identify the patch. " "Will prompt if omitted.") group.add_option("-i", "--issue", type="int", action="store", metavar="ISSUE", default=None, help="Issue number to which to add. Defaults to new issue.") group.add_option("--download_base", action="store_true", dest="download_base", default=False, help="Base files will be downloaded by the server " "(side-by-side diffs may not work on files with CRs).") group.add_option("--rev", action="store", dest="revision", metavar="REV", default=None, help="Branch/tree/revision to diff against (used by DVCS).") group.add_option("--send_mail", action="store_true", dest="send_mail", default=False, help="Send notification email to reviewers.") def GetRpcServer(options): """Returns an instance of an AbstractRpcServer. Returns: A new AbstractRpcServer, on which RPC calls can be made. """ rpc_server_class = HttpRpcServer def GetUserCredentials(): """Prompts the user for a username and password.""" email = options.email if email is None: email = GetEmail("Email (login for uploading to %s)" % options.server) password = getpass.getpass("Password for %s: " % email) return (email, password) # If this is the dev_appserver, use fake authentication. host = (options.host or options.server).lower() if host == "localhost" or host.startswith("localhost:"): email = options.email if email is None: email = "test@example.com" logging.info("Using debug user %s. Override with --email" % email) server = rpc_server_class( options.server, lambda: (email, "password"), host_override=options.host, extra_headers={"Cookie": 'dev_appserver_login="%s:False"' % email}, save_cookies=options.save_cookies) # Don't try to talk to ClientLogin. server.authenticated = True return server return rpc_server_class(options.server, GetUserCredentials, host_override=options.host, save_cookies=options.save_cookies) def EncodeMultipartFormData(fields, files): """Encode form fields for multipart/form-data. Args: fields: A sequence of (name, value) elements for regular form fields. files: A sequence of (name, filename, value) elements for data to be uploaded as files. Returns: (content_type, body) ready for httplib.HTTP instance. Source: https://web.archive.org/web/20160116052001/code.activestate.com/recipes/146306 """ BOUNDARY = '-M-A-G-I-C---B-O-U-N-D-A-R-Y-' CRLF = '\r\n' lines = [] for (key, value) in fields: lines.append('--' + BOUNDARY) lines.append('Content-Disposition: form-data; name="%s"' % key) lines.append('') lines.append(value) for (key, filename, value) in files: lines.append('--' + BOUNDARY) lines.append('Content-Disposition: form-data; name="%s"; filename="%s"' % (key, filename)) lines.append('Content-Type: %s' % GetContentType(filename)) lines.append('') lines.append(value) lines.append('--' + BOUNDARY + '--') lines.append('') body = CRLF.join(lines) content_type = 'multipart/form-data; boundary=%s' % BOUNDARY return content_type, body def GetContentType(filename): """Helper to guess the content-type from the filename.""" return mimetypes.guess_type(filename)[0] or 'application/octet-stream' # Use a shell for subcommands on Windows to get a PATH search. use_shell = sys.platform.startswith("win") def RunShellWithReturnCode(command, print_output=False, universal_newlines=True): """Executes a command and returns the output from stdout and the return code. Args: command: Command to execute. print_output: If True, the output is printed to stdout. If False, both stdout and stderr are ignored. universal_newlines: Use universal_newlines flag (default: True). Returns: Tuple (output, return code) """ logging.info("Running %s", command) p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=use_shell, universal_newlines=universal_newlines) if print_output: output_array = [] while True: line = p.stdout.readline() if not line: break print line.strip("\n") output_array.append(line) output = "".join(output_array) else: output = p.stdout.read() p.wait() errout = p.stderr.read() if print_output and errout: print >>sys.stderr, errout p.stdout.close() p.stderr.close() return output, p.returncode def RunShell(command, silent_ok=False, universal_newlines=True, print_output=False): data, retcode = RunShellWithReturnCode(command, print_output, universal_newlines) if retcode: ErrorExit("Got error status from %s:\n%s" % (command, data)) if not silent_ok and not data: ErrorExit("No output from %s" % command) return data class VersionControlSystem(object): """Abstract base class providing an interface to the VCS.""" def __init__(self, options): """Constructor. Args: options: Command line options. """ self.options = options def GenerateDiff(self, args): """Return the current diff as a string. Args: args: Extra arguments to pass to the diff command. """ raise NotImplementedError( "abstract method -- subclass %s must override" % self.__class__) def GetUnknownFiles(self): """Return a list of files unknown to the VCS.""" raise NotImplementedError( "abstract method -- subclass %s must override" % self.__class__) def CheckForUnknownFiles(self): """Show an "are you sure?" prompt if there are unknown files.""" unknown_files = self.GetUnknownFiles() if unknown_files: print "The following files are not added to version control:" for line in unknown_files: print line prompt = "Are you sure to continue?(y/N) " answer = raw_input(prompt).strip() if answer != "y": ErrorExit("User aborted") def GetBaseFile(self, filename): """Get the content of the upstream version of a file. Returns: A tuple (base_content, new_content, is_binary, status) base_content: The contents of the base file. new_content: For text files, this is empty. For binary files, this is the contents of the new file, since the diff output won't contain information to reconstruct the current file. is_binary: True iff the file is binary. status: The status of the file. """ raise NotImplementedError( "abstract method -- subclass %s must override" % self.__class__) def GetBaseFiles(self, diff): """Helper that calls GetBase file for each file in the patch. Returns: A dictionary that maps from filename to GetBaseFile's tuple. Filenames are retrieved based on lines that start with "Index:" or "Property changes on:". """ files = {} for line in diff.splitlines(True): if line.startswith('Index:') or line.startswith('Property changes on:'): unused, filename = line.split(':', 1) # On Windows if a file has property changes its filename uses '\' # instead of '/'. filename = filename.strip().replace('\\', '/') files[filename] = self.GetBaseFile(filename) return files def UploadBaseFiles(self, issue, rpc_server, patch_list, patchset, options, files): """Uploads the base files (and if necessary, the current ones as well).""" def UploadFile(filename, file_id, content, is_binary, status, is_base): """Uploads a file to the server.""" file_too_large = False if is_base: type = "base" else: type = "current" if len(content) > MAX_UPLOAD_SIZE: print ("Not uploading the %s file for %s because it's too large." % (type, filename)) file_too_large = True content = "" checksum = md5.new(content).hexdigest() if options.verbose > 0 and not file_too_large: print "Uploading %s file for %s" % (type, filename) url = "/%d/upload_content/%d/%d" % (int(issue), int(patchset), file_id) form_fields = [("filename", filename), ("status", status), ("checksum", checksum), ("is_binary", str(is_binary)), ("is_current", str(not is_base)), ] if file_too_large: form_fields.append(("file_too_large", "1")) if options.email: form_fields.append(("user", options.email)) ctype, body = EncodeMultipartFormData(form_fields, [("data", filename, content)]) response_body = rpc_server.Send(url, body, content_type=ctype) if not response_body.startswith("OK"): StatusUpdate(" --> %s" % response_body) sys.exit(1) patches = dict() [patches.setdefault(v, k) for k, v in patch_list] for filename in patches.keys(): base_content, new_content, is_binary, status = files[filename] file_id_str = patches.get(filename) if file_id_str.find("nobase") != -1: base_content = None file_id_str = file_id_str[file_id_str.rfind("_") + 1:] file_id = int(file_id_str) if base_content != None: UploadFile(filename, file_id, base_content, is_binary, status, True) if new_content != None: UploadFile(filename, file_id, new_content, is_binary, status, False) def IsImage(self, filename): """Returns true if the filename has an image extension.""" mimetype = mimetypes.guess_type(filename)[0] if not mimetype: return False return mimetype.startswith("image/") class SubversionVCS(VersionControlSystem): """Implementation of the VersionControlSystem interface for Subversion.""" def __init__(self, options): super(SubversionVCS, self).__init__(options) if self.options.revision: match = re.match(r"(\d+)(:(\d+))?", self.options.revision) if not match: ErrorExit("Invalid Subversion revision %s." % self.options.revision) self.rev_start = match.group(1) self.rev_end = match.group(3) else: self.rev_start = self.rev_end = None # Cache output from "svn list -r REVNO dirname". # Keys: dirname, Values: 2-tuple (output for start rev and end rev). self.svnls_cache = {} # SVN base URL is required to fetch files deleted in an older revision. # Result is cached to not guess it over and over again in GetBaseFile(). required = self.options.download_base or self.options.revision is not None self.svn_base = self._GuessBase(required) def GuessBase(self, required): """Wrapper for _GuessBase.""" return self.svn_base def _GuessBase(self, required): """Returns the SVN base URL. Args: required: If true, exits if the url can't be guessed, otherwise None is returned. """ info = RunShell(["svn", "info"]) for line in info.splitlines(): words = line.split() if len(words) == 2 and words[0] == "URL:": url = words[1] scheme, netloc, path, params, query, fragment = urlparse.urlparse(url) username, netloc = urllib.splituser(netloc) if username: logging.info("Removed username from base URL") if netloc.endswith("svn.python.org"): if netloc == "svn.python.org": if path.startswith("/projects/"): path = path[9:] elif netloc != "pythondev@svn.python.org": ErrorExit("Unrecognized Python URL: %s" % url) base = "http://svn.python.org/view/*checkout*%s/" % path logging.info("Guessed Python base = %s", base) elif netloc.endswith("svn.collab.net"): if path.startswith("/repos/"): path = path[6:] base = "http://svn.collab.net/viewvc/*checkout*%s/" % path logging.info("Guessed CollabNet base = %s", base) elif netloc.endswith(".googlecode.com"): path = path + "/" base = urlparse.urlunparse(("http", netloc, path, params, query, fragment)) logging.info("Guessed Google Code base = %s", base) else: path = path + "/" base = urlparse.urlunparse((scheme, netloc, path, params, query, fragment)) logging.info("Guessed base = %s", base) return base if required: ErrorExit("Can't find URL in output from svn info") return None def GenerateDiff(self, args): cmd = ["svn", "diff"] if self.options.revision: cmd += ["-r", self.options.revision] cmd.extend(args) data = RunShell(cmd) count = 0 for line in data.splitlines(): if line.startswith("Index:") or line.startswith("Property changes on:"): count += 1 logging.info(line) if not count: ErrorExit("No valid patches found in output from svn diff") return data def _CollapseKeywords(self, content, keyword_str): """Collapses SVN keywords.""" # svn cat translates keywords but svn diff doesn't. As a result of this # behavior patching.PatchChunks() fails with a chunk mismatch error. # This part was originally written by the Review Board development team # who had the same problem (https://reviews.reviewboard.org/r/276/). # Mapping of keywords to known aliases svn_keywords = { # Standard keywords 'Date': ['Date', 'LastChangedDate'], 'Revision': ['Revision', 'LastChangedRevision', 'Rev'], 'Author': ['Author', 'LastChangedBy'], 'HeadURL': ['HeadURL', 'URL'], 'Id': ['Id'], # Aliases 'LastChangedDate': ['LastChangedDate', 'Date'], 'LastChangedRevision': ['LastChangedRevision', 'Rev', 'Revision'], 'LastChangedBy': ['LastChangedBy', 'Author'], 'URL': ['URL', 'HeadURL'], } def repl(m): if m.group(2): return "$%s::%s$" % (m.group(1), " " * len(m.group(3))) return "$%s$" % m.group(1) keywords = [keyword for name in keyword_str.split(" ") for keyword in svn_keywords.get(name, [])] return re.sub(r"\$(%s):(:?)([^\$]+)\$" % '|'.join(keywords), repl, content) def GetUnknownFiles(self): status = RunShell(["svn", "status", "--ignore-externals"], silent_ok=True) unknown_files = [] for line in status.split("\n"): if line and line[0] == "?": unknown_files.append(line) return unknown_files def ReadFile(self, filename): """Returns the contents of a file.""" file = open(filename, 'rb') result = "" try: result = file.read() finally: file.close() return result def GetStatus(self, filename): """Returns the status of a file.""" if not self.options.revision: status = RunShell(["svn", "status", "--ignore-externals", filename]) if not status: ErrorExit("svn status returned no output for %s" % filename) status_lines = status.splitlines() # If file is in a cl, the output will begin with # "\n--- Changelist 'cl_name':\n". See # https://web.archive.org/web/20090918234815/svn.collab.net/repos/svn/trunk/notes/changelist-design.txt if (len(status_lines) == 3 and not status_lines[0] and status_lines[1].startswith("--- Changelist")): status = status_lines[2] else: status = status_lines[0] # If we have a revision to diff against we need to run "svn list" # for the old and the new revision and compare the results to get # the correct status for a file. else: dirname, relfilename = os.path.split(filename) if dirname not in self.svnls_cache: cmd = ["svn", "list", "-r", self.rev_start, dirname or "."] out, returncode = RunShellWithReturnCode(cmd) if returncode: ErrorExit("Failed to get status for %s." % filename) old_files = out.splitlines() args = ["svn", "list"] if self.rev_end: args += ["-r", self.rev_end] cmd = args + [dirname or "."] out, returncode = RunShellWithReturnCode(cmd) if returncode: ErrorExit("Failed to run command %s" % cmd) self.svnls_cache[dirname] = (old_files, out.splitlines()) old_files, new_files = self.svnls_cache[dirname] if relfilename in old_files and relfilename not in new_files: status = "D " elif relfilename in old_files and relfilename in new_files: status = "M " else: status = "A " return status def GetBaseFile(self, filename): status = self.GetStatus(filename) base_content = None new_content = None # If a file is copied its status will be "A +", which signifies # "addition-with-history". See "svn st" for more information. We need to # upload the original file or else diff parsing will fail if the file was # edited. if status[0] == "A" and status[3] != "+": # We'll need to upload the new content if we're adding a binary file # since diff's output won't contain it. mimetype = RunShell(["svn", "propget", "svn:mime-type", filename], silent_ok=True) base_content = "" is_binary = mimetype and not mimetype.startswith("text/") if is_binary and self.IsImage(filename): new_content = self.ReadFile(filename) elif (status[0] in ("M", "D", "R") or (status[0] == "A" and status[3] == "+") or # Copied file. (status[0] == " " and status[1] == "M")): # Property change. args = [] if self.options.revision: url = "%s/%s@%s" % (self.svn_base, filename, self.rev_start) else: # Don't change filename, it's needed later. url = filename args += ["-r", "BASE"] cmd = ["svn"] + args + ["propget", "svn:mime-type", url] mimetype, returncode = RunShellWithReturnCode(cmd) if returncode: # File does not exist in the requested revision. # Reset mimetype, it contains an error message. mimetype = "" get_base = False is_binary = mimetype and not mimetype.startswith("text/") if status[0] == " ": # Empty base content just to force an upload. base_content = "" elif is_binary: if self.IsImage(filename): get_base = True if status[0] == "M": if not self.rev_end: new_content = self.ReadFile(filename) else: url = "%s/%s@%s" % (self.svn_base, filename, self.rev_end) new_content = RunShell(["svn", "cat", url], universal_newlines=True, silent_ok=True) else: base_content = "" else: get_base = True if get_base: if is_binary: universal_newlines = False else: universal_newlines = True if self.rev_start: # "svn cat -r REV delete_file.txt" doesn't work. cat requires # the full URL with "@REV" appended instead of using "-r" option. url = "%s/%s@%s" % (self.svn_base, filename, self.rev_start) base_content = RunShell(["svn", "cat", url], universal_newlines=universal_newlines, silent_ok=True) else: base_content = RunShell(["svn", "cat", filename], universal_newlines=universal_newlines, silent_ok=True) if not is_binary: args = [] if self.rev_start: url = "%s/%s@%s" % (self.svn_base, filename, self.rev_start) else: url = filename args += ["-r", "BASE"] cmd = ["svn"] + args + ["propget", "svn:keywords", url] keywords, returncode = RunShellWithReturnCode(cmd) if keywords and not returncode: base_content = self._CollapseKeywords(base_content, keywords) else: StatusUpdate("svn status returned unexpected output: %s" % status) sys.exit(1) return base_content, new_content, is_binary, status[0:5] class GitVCS(VersionControlSystem): """Implementation of the VersionControlSystem interface for Git.""" def __init__(self, options): super(GitVCS, self).__init__(options) # Map of filename -> hash of base file. self.base_hashes = {} def GenerateDiff(self, extra_args): # This is more complicated than svn's GenerateDiff because we must convert # the diff output to include an svn-style "Index:" line as well as record # the hashes of the base files, so we can upload them along with our diff. if self.options.revision: extra_args = [self.options.revision] + extra_args gitdiff = RunShell(["git", "diff", "--full-index"] + extra_args) svndiff = [] filecount = 0 filename = None for line in gitdiff.splitlines(): match = re.match(r"diff --git a/(.*) b/.*$", line) if match: filecount += 1 filename = match.group(1) svndiff.append("Index: %s\n" % filename) else: # The "index" line in a git diff looks like this (long hashes elided): # index 82c0d44..b2cee3f 100755 # We want to save the left hash, as that identifies the base file. match = re.match(r"index (\w+)\.\.", line) if match: self.base_hashes[filename] = match.group(1) svndiff.append(line + "\n") if not filecount: ErrorExit("No valid patches found in output from git diff") return "".join(svndiff) def GetUnknownFiles(self): status = RunShell(["git", "ls-files", "--exclude-standard", "--others"], silent_ok=True) return status.splitlines() def GetBaseFile(self, filename): hash = self.base_hashes[filename] base_content = None new_content = None is_binary = False if hash == "0" * 40: # All-zero hash indicates no base file. status = "A" base_content = "" else: status = "M" base_content, returncode = RunShellWithReturnCode(["git", "show", hash]) if returncode: ErrorExit("Got error status from 'git show %s'" % hash) return (base_content, new_content, is_binary, status) class MercurialVCS(VersionControlSystem): """Implementation of the VersionControlSystem interface for Mercurial.""" def __init__(self, options, repo_dir): super(MercurialVCS, self).__init__(options) # Absolute path to repository (we can be in a subdir) self.repo_dir = os.path.normpath(repo_dir) # Compute the subdir cwd = os.path.normpath(os.getcwd()) assert cwd.startswith(self.repo_dir) self.subdir = cwd[len(self.repo_dir):].lstrip(r"\/") if self.options.revision: self.base_rev = self.options.revision else: self.base_rev = RunShell(["hg", "parent", "-q"]).split(':')[1].strip() def _GetRelPath(self, filename): """Get relative path of a file according to the current directory, given its logical path in the repo.""" assert filename.startswith(self.subdir), filename return filename[len(self.subdir):].lstrip(r"\/") def GenerateDiff(self, extra_args): # If no file specified, restrict to the current subdir extra_args = extra_args or ["."] cmd = ["hg", "diff", "--git", "-r", self.base_rev] + extra_args data = RunShell(cmd, silent_ok=True) svndiff = [] filecount = 0 for line in data.splitlines(): m = re.match("diff --git a/(\S+) b/(\S+)", line) if m: # Modify line to make it look like as it comes from svn diff. # With this modification no changes on the server side are required # to make upload.py work with Mercurial repos. # NOTE: for proper handling of moved/copied files, we have to use # the second filename. filename = m.group(2) svndiff.append("Index: %s" % filename) svndiff.append("=" * 67) filecount += 1 logging.info(line) else: svndiff.append(line) if not filecount: ErrorExit("No valid patches found in output from hg diff") return "\n".join(svndiff) + "\n" def GetUnknownFiles(self): """Return a list of files unknown to the VCS.""" args = [] status = RunShell(["hg", "status", "--rev", self.base_rev, "-u", "."], silent_ok=True) unknown_files = [] for line in status.splitlines(): st, fn = line.split(" ", 1) if st == "?": unknown_files.append(fn) return unknown_files def GetBaseFile(self, filename): # "hg status" and "hg cat" both take a path relative to the current subdir # rather than to the repo root, but "hg diff" has given us the full path # to the repo root. base_content = "" new_content = None is_binary = False oldrelpath = relpath = self._GetRelPath(filename) # "hg status -C" returns two lines for moved/copied files, one otherwise out = RunShell(["hg", "status", "-C", "--rev", self.base_rev, relpath]) out = out.splitlines() # HACK: strip error message about missing file/directory if it isn't in # the working copy if out[0].startswith('%s: ' % relpath): out = out[1:] if len(out) > 1: # Moved/copied => considered as modified, use old filename to # retrieve base contents oldrelpath = out[1].strip() status = "M" else: status, _ = out[0].split(' ', 1) if status != "A": base_content = RunShell(["hg", "cat", "-r", self.base_rev, oldrelpath], silent_ok=True) is_binary = "\0" in base_content # Mercurial's heuristic if status != "R": new_content = open(relpath, "rb").read() is_binary = is_binary or "\0" in new_content if is_binary and base_content: # Fetch again without converting newlines base_content = RunShell(["hg", "cat", "-r", self.base_rev, oldrelpath], silent_ok=True, universal_newlines=False) if not is_binary or not self.IsImage(relpath): new_content = None return base_content, new_content, is_binary, status # NOTE: The SplitPatch function is duplicated in engine.py, keep them in sync. def SplitPatch(data): """Splits a patch into separate pieces for each file. Args: data: A string containing the output of svn diff. Returns: A list of 2-tuple (filename, text) where text is the svn diff output pertaining to filename. """ patches = [] filename = None diff = [] for line in data.splitlines(True): new_filename = None if line.startswith('Index:'): unused, new_filename = line.split(':', 1) new_filename = new_filename.strip() elif line.startswith('Property changes on:'): unused, temp_filename = line.split(':', 1) # When a file is modified, paths use '/' between directories, however # when a property is modified '\' is used on Windows. Make them the same # otherwise the file shows up twice. temp_filename = temp_filename.strip().replace('\\', '/') if temp_filename != filename: # File has property changes but no modifications, create a new diff. new_filename = temp_filename if new_filename: if filename and diff: patches.append((filename, ''.join(diff))) filename = new_filename diff = [line] continue if diff is not None: diff.append(line) if filename and diff: patches.append((filename, ''.join(diff))) return patches def UploadSeparatePatches(issue, rpc_server, patchset, data, options): """Uploads a separate patch for each file in the diff output. Returns a list of [patch_key, filename] for each file. """ patches = SplitPatch(data) rv = [] for patch in patches: if len(patch[1]) > MAX_UPLOAD_SIZE: print ("Not uploading the patch for " + patch[0] + " because the file is too large.") continue form_fields = [("filename", patch[0])] if not options.download_base: form_fields.append(("content_upload", "1")) files = [("data", "data.diff", patch[1])] ctype, body = EncodeMultipartFormData(form_fields, files) url = "/%d/upload_patch/%d" % (int(issue), int(patchset)) print "Uploading patch for " + patch[0] response_body = rpc_server.Send(url, body, content_type=ctype) lines = response_body.splitlines() if not lines or lines[0] != "OK": StatusUpdate(" --> %s" % response_body) sys.exit(1) rv.append([lines[1], patch[0]]) return rv def GuessVCS(options): """Helper to guess the version control system. This examines the current directory, guesses which VersionControlSystem we're using, and returns an instance of the appropriate class. Exit with an error if we can't figure it out. Returns: A VersionControlSystem instance. Exits if the VCS can't be guessed. """ # Mercurial has a command to get the base directory of a repository # Try running it, but don't die if we don't have hg installed. # NOTE: we try Mercurial first as it can sit on top of an SVN working copy. try: out, returncode = RunShellWithReturnCode(["hg", "root"]) if returncode == 0: return MercurialVCS(options, out.strip()) except OSError, (errno, message): if errno != 2: # ENOENT -- they don't have hg installed. raise # Subversion has a .svn in all working directories. if os.path.isdir('.svn'): logging.info("Guessed VCS = Subversion") return SubversionVCS(options) # Git has a command to test if you're in a git tree. # Try running it, but don't die if we don't have git installed. try: out, returncode = RunShellWithReturnCode(["git", "rev-parse", "--is-inside-work-tree"]) if returncode == 0: return GitVCS(options) except OSError, (errno, message): if errno != 2: # ENOENT -- they don't have git installed. raise ErrorExit(("Could not guess version control system. " "Are you in a working copy directory?")) def RealMain(argv, data=None): """The real main function. Args: argv: Command line arguments. data: Diff contents. If None (default) the diff is generated by the VersionControlSystem implementation returned by GuessVCS(). Returns: A 2-tuple (issue id, patchset id). The patchset id is None if the base files are not uploaded by this script (applies only to SVN checkouts). """ logging.basicConfig(format=("%(asctime).19s %(levelname)s %(filename)s:" "%(lineno)s %(message)s ")) os.environ['LC_ALL'] = 'C' options, args = parser.parse_args(argv[1:]) global verbosity verbosity = options.verbose if verbosity >= 3: logging.getLogger().setLevel(logging.DEBUG) elif verbosity >= 2: logging.getLogger().setLevel(logging.INFO) vcs = GuessVCS(options) if isinstance(vcs, SubversionVCS): # base field is only allowed for Subversion. # Note: Fetching base files may become deprecated in future releases. base = vcs.GuessBase(options.download_base) else: base = None if not base and options.download_base: options.download_base = True logging.info("Enabled upload of base file") if not options.assume_yes: vcs.CheckForUnknownFiles() if data is None: data = vcs.GenerateDiff(args) files = vcs.GetBaseFiles(data) if verbosity >= 1: print "Upload server:", options.server, "(change with -s/--server)" if options.issue: prompt = "Message describing this patch set: " else: prompt = "New issue subject: " message = options.message or raw_input(prompt).strip() if not message: ErrorExit("A non-empty message is required") rpc_server = GetRpcServer(options) form_fields = [("subject", message)] if base: form_fields.append(("base", base)) if options.issue: form_fields.append(("issue", str(options.issue))) if options.email: form_fields.append(("user", options.email)) if options.reviewers: for reviewer in options.reviewers.split(','): if "@" in reviewer and not reviewer.split("@")[1].count(".") == 1: ErrorExit("Invalid email address: %s" % reviewer) form_fields.append(("reviewers", options.reviewers)) if options.cc: for cc in options.cc.split(','): if "@" in cc and not cc.split("@")[1].count(".") == 1: ErrorExit("Invalid email address: %s" % cc) form_fields.append(("cc", options.cc)) description = options.description if options.description_file: if options.description: ErrorExit("Can't specify description and description_file") file = open(options.description_file, 'r') description = file.read() file.close() if description: form_fields.append(("description", description)) # Send a hash of all the base file so the server can determine if a copy # already exists in an earlier patchset. base_hashes = "" for file, info in files.iteritems(): if not info[0] is None: checksum = md5.new(info[0]).hexdigest() if base_hashes: base_hashes += "|" base_hashes += checksum + ":" + file form_fields.append(("base_hashes", base_hashes)) # If we're uploading base files, don't send the email before the uploads, so # that it contains the file status. if options.send_mail and options.download_base: form_fields.append(("send_mail", "1")) if not options.download_base: form_fields.append(("content_upload", "1")) if len(data) > MAX_UPLOAD_SIZE: print "Patch is large, so uploading file patches separately." uploaded_diff_file = [] form_fields.append(("separate_patches", "1")) else: uploaded_diff_file = [("data", "data.diff", data)] ctype, body = EncodeMultipartFormData(form_fields, uploaded_diff_file) response_body = rpc_server.Send("/upload", body, content_type=ctype) patchset = None if not options.download_base or not uploaded_diff_file: lines = response_body.splitlines() if len(lines) >= 2: msg = lines[0] patchset = lines[1].strip() patches = [x.split(" ", 1) for x in lines[2:]] else: msg = response_body else: msg = response_body StatusUpdate(msg) if not response_body.startswith("Issue created.") and \ not response_body.startswith("Issue updated."): sys.exit(0) issue = msg[msg.rfind("/")+1:] if not uploaded_diff_file: result = UploadSeparatePatches(issue, rpc_server, patchset, data, options) if not options.download_base: patches = result if not options.download_base: vcs.UploadBaseFiles(issue, rpc_server, patches, patchset, options, files) if options.send_mail: rpc_server.Send("/" + issue + "/mail", payload="") return issue, patchset def main(): try: RealMain(sys.argv) except KeyboardInterrupt: print StatusUpdate("Interrupted.") sys.exit(1) if __name__ == "__main__": main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/scripts/upload_gtest.py000066400000000000000000000054431355420072700254140ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2009, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """upload_gtest.py v0.1.0 -- uploads a Google Test patch for review. This simple wrapper passes all command line flags and --cc=googletestframework@googlegroups.com to upload.py. USAGE: upload_gtest.py [options for upload.py] """ __author__ = 'wan@google.com (Zhanyong Wan)' import os import sys CC_FLAG = '--cc=' GTEST_GROUP = 'googletestframework@googlegroups.com' def main(): # Finds the path to upload.py, assuming it is in the same directory # as this file. my_dir = os.path.dirname(os.path.abspath(__file__)) upload_py_path = os.path.join(my_dir, 'upload.py') # Adds Google Test discussion group to the cc line if it's not there # already. upload_py_argv = [upload_py_path] found_cc_flag = False for arg in sys.argv[1:]: if arg.startswith(CC_FLAG): found_cc_flag = True cc_line = arg[len(CC_FLAG):] cc_list = [addr for addr in cc_line.split(',') if addr] if GTEST_GROUP not in cc_list: cc_list.append(GTEST_GROUP) upload_py_argv.append(CC_FLAG + ','.join(cc_list)) else: upload_py_argv.append(arg) if not found_cc_flag: upload_py_argv.append(CC_FLAG + GTEST_GROUP) # Invokes upload.py with the modified command line flags. os.execv(upload_py_path, upload_py_argv) if __name__ == '__main__': main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/000077500000000000000000000000001355420072700214425ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-all.cc000066400000000000000000000041601355420072700236460ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Google C++ Testing and Mocking Framework (Google Test) // // Sometimes it's desirable to build Google Test by compiling a single file. // This file serves this purpose. // This line ensures that gtest.h can be compiled on its own, even // when it's fused. #include "gtest/gtest.h" // The following lines pull in the real gtest *.cc files. #include "src/gtest.cc" #include "src/gtest-death-test.cc" #include "src/gtest-filepath.cc" #include "src/gtest-matchers.cc" #include "src/gtest-port.cc" #include "src/gtest-printers.cc" #include "src/gtest-test-part.cc" #include "src/gtest-typed-test.cc" libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-death-test.cc000066400000000000000000001713531355420072700251510ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This file implements death tests. #include "gtest/gtest-death-test.h" #include #include "gtest/internal/gtest-port.h" #include "gtest/internal/custom/gtest.h" #if GTEST_HAS_DEATH_TEST # if GTEST_OS_MAC # include # endif // GTEST_OS_MAC # include # include # include # if GTEST_OS_LINUX # include # endif // GTEST_OS_LINUX # include # if GTEST_OS_WINDOWS # include # else # include # include # endif // GTEST_OS_WINDOWS # if GTEST_OS_QNX # include # endif // GTEST_OS_QNX # if GTEST_OS_FUCHSIA # include # include # include # include # include # include # include # include # include # include # include # endif // GTEST_OS_FUCHSIA #endif // GTEST_HAS_DEATH_TEST #include "gtest/gtest-message.h" #include "gtest/internal/gtest-string.h" #include "src/gtest-internal-inl.h" namespace testing { // Constants. // The default death test style. // // This is defined in internal/gtest-port.h as "fast", but can be overridden by // a definition in internal/custom/gtest-port.h. The recommended value, which is // used internally at Google, is "threadsafe". static const char kDefaultDeathTestStyle[] = GTEST_DEFAULT_DEATH_TEST_STYLE; GTEST_DEFINE_string_( death_test_style, internal::StringFromGTestEnv("death_test_style", kDefaultDeathTestStyle), "Indicates how to run a death test in a forked child process: " "\"threadsafe\" (child process re-executes the test binary " "from the beginning, running only the specific death test) or " "\"fast\" (child process runs the death test immediately " "after forking)."); GTEST_DEFINE_bool_( death_test_use_fork, internal::BoolFromGTestEnv("death_test_use_fork", false), "Instructs to use fork()/_exit() instead of clone() in death tests. " "Ignored and always uses fork() on POSIX systems where clone() is not " "implemented. Useful when running under valgrind or similar tools if " "those do not support clone(). Valgrind 3.3.1 will just fail if " "it sees an unsupported combination of clone() flags. " "It is not recommended to use this flag w/o valgrind though it will " "work in 99% of the cases. Once valgrind is fixed, this flag will " "most likely be removed."); namespace internal { GTEST_DEFINE_string_( internal_run_death_test, "", "Indicates the file, line number, temporal index of " "the single death test to run, and a file descriptor to " "which a success code may be sent, all separated by " "the '|' characters. This flag is specified if and only if the " "current process is a sub-process launched for running a thread-safe " "death test. FOR INTERNAL USE ONLY."); } // namespace internal #if GTEST_HAS_DEATH_TEST namespace internal { // Valid only for fast death tests. Indicates the code is running in the // child process of a fast style death test. # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA static bool g_in_fast_death_test_child = false; # endif // Returns a Boolean value indicating whether the caller is currently // executing in the context of the death test child process. Tools such as // Valgrind heap checkers may need this to modify their behavior in death // tests. IMPORTANT: This is an internal utility. Using it may break the // implementation of death tests. User code MUST NOT use it. bool InDeathTestChild() { # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA // On Windows and Fuchsia, death tests are thread-safe regardless of the value // of the death_test_style flag. return !GTEST_FLAG(internal_run_death_test).empty(); # else if (GTEST_FLAG(death_test_style) == "threadsafe") return !GTEST_FLAG(internal_run_death_test).empty(); else return g_in_fast_death_test_child; #endif } } // namespace internal // ExitedWithCode constructor. ExitedWithCode::ExitedWithCode(int exit_code) : exit_code_(exit_code) { } // ExitedWithCode function-call operator. bool ExitedWithCode::operator()(int exit_status) const { # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA return exit_status == exit_code_; # else return WIFEXITED(exit_status) && WEXITSTATUS(exit_status) == exit_code_; # endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA } # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA // KilledBySignal constructor. KilledBySignal::KilledBySignal(int signum) : signum_(signum) { } // KilledBySignal function-call operator. bool KilledBySignal::operator()(int exit_status) const { # if defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_) { bool result; if (GTEST_KILLED_BY_SIGNAL_OVERRIDE_(signum_, exit_status, &result)) { return result; } } # endif // defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_) return WIFSIGNALED(exit_status) && WTERMSIG(exit_status) == signum_; } # endif // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA namespace internal { // Utilities needed for death tests. // Generates a textual description of a given exit code, in the format // specified by wait(2). static std::string ExitSummary(int exit_code) { Message m; # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA m << "Exited with exit status " << exit_code; # else if (WIFEXITED(exit_code)) { m << "Exited with exit status " << WEXITSTATUS(exit_code); } else if (WIFSIGNALED(exit_code)) { m << "Terminated by signal " << WTERMSIG(exit_code); } # ifdef WCOREDUMP if (WCOREDUMP(exit_code)) { m << " (core dumped)"; } # endif # endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA return m.GetString(); } // Returns true if exit_status describes a process that was terminated // by a signal, or exited normally with a nonzero exit code. bool ExitedUnsuccessfully(int exit_status) { return !ExitedWithCode(0)(exit_status); } # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA // Generates a textual failure message when a death test finds more than // one thread running, or cannot determine the number of threads, prior // to executing the given statement. It is the responsibility of the // caller not to pass a thread_count of 1. static std::string DeathTestThreadWarning(size_t thread_count) { Message msg; msg << "Death tests use fork(), which is unsafe particularly" << " in a threaded context. For this test, " << GTEST_NAME_ << " "; if (thread_count == 0) { msg << "couldn't detect the number of threads."; } else { msg << "detected " << thread_count << " threads."; } msg << " See " "https://github.com/google/googletest/blob/master/googletest/docs/" "advanced.md#death-tests-and-threads" << " for more explanation and suggested solutions, especially if" << " this is the last message you see before your test times out."; return msg.GetString(); } # endif // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA // Flag characters for reporting a death test that did not die. static const char kDeathTestLived = 'L'; static const char kDeathTestReturned = 'R'; static const char kDeathTestThrew = 'T'; static const char kDeathTestInternalError = 'I'; #if GTEST_OS_FUCHSIA // File descriptor used for the pipe in the child process. static const int kFuchsiaReadPipeFd = 3; #endif // An enumeration describing all of the possible ways that a death test can // conclude. DIED means that the process died while executing the test // code; LIVED means that process lived beyond the end of the test code; // RETURNED means that the test statement attempted to execute a return // statement, which is not allowed; THREW means that the test statement // returned control by throwing an exception. IN_PROGRESS means the test // has not yet concluded. enum DeathTestOutcome { IN_PROGRESS, DIED, LIVED, RETURNED, THREW }; // Routine for aborting the program which is safe to call from an // exec-style death test child process, in which case the error // message is propagated back to the parent process. Otherwise, the // message is simply printed to stderr. In either case, the program // then exits with status 1. static void DeathTestAbort(const std::string& message) { // On a POSIX system, this function may be called from a threadsafe-style // death test child process, which operates on a very small stack. Use // the heap for any additional non-minuscule memory requirements. const InternalRunDeathTestFlag* const flag = GetUnitTestImpl()->internal_run_death_test_flag(); if (flag != nullptr) { FILE* parent = posix::FDOpen(flag->write_fd(), "w"); fputc(kDeathTestInternalError, parent); fprintf(parent, "%s", message.c_str()); fflush(parent); _exit(1); } else { fprintf(stderr, "%s", message.c_str()); fflush(stderr); posix::Abort(); } } // A replacement for CHECK that calls DeathTestAbort if the assertion // fails. # define GTEST_DEATH_TEST_CHECK_(expression) \ do { \ if (!::testing::internal::IsTrue(expression)) { \ DeathTestAbort( \ ::std::string("CHECK failed: File ") + __FILE__ + ", line " \ + ::testing::internal::StreamableToString(__LINE__) + ": " \ + #expression); \ } \ } while (::testing::internal::AlwaysFalse()) // This macro is similar to GTEST_DEATH_TEST_CHECK_, but it is meant for // evaluating any system call that fulfills two conditions: it must return // -1 on failure, and set errno to EINTR when it is interrupted and // should be tried again. The macro expands to a loop that repeatedly // evaluates the expression as long as it evaluates to -1 and sets // errno to EINTR. If the expression evaluates to -1 but errno is // something other than EINTR, DeathTestAbort is called. # define GTEST_DEATH_TEST_CHECK_SYSCALL_(expression) \ do { \ int gtest_retval; \ do { \ gtest_retval = (expression); \ } while (gtest_retval == -1 && errno == EINTR); \ if (gtest_retval == -1) { \ DeathTestAbort( \ ::std::string("CHECK failed: File ") + __FILE__ + ", line " \ + ::testing::internal::StreamableToString(__LINE__) + ": " \ + #expression + " != -1"); \ } \ } while (::testing::internal::AlwaysFalse()) // Returns the message describing the last system error in errno. std::string GetLastErrnoDescription() { return errno == 0 ? "" : posix::StrError(errno); } // This is called from a death test parent process to read a failure // message from the death test child process and log it with the FATAL // severity. On Windows, the message is read from a pipe handle. On other // platforms, it is read from a file descriptor. static void FailFromInternalError(int fd) { Message error; char buffer[256]; int num_read; do { while ((num_read = posix::Read(fd, buffer, 255)) > 0) { buffer[num_read] = '\0'; error << buffer; } } while (num_read == -1 && errno == EINTR); if (num_read == 0) { GTEST_LOG_(FATAL) << error.GetString(); } else { const int last_error = errno; GTEST_LOG_(FATAL) << "Error while reading death test internal: " << GetLastErrnoDescription() << " [" << last_error << "]"; } } // Death test constructor. Increments the running death test count // for the current test. DeathTest::DeathTest() { TestInfo* const info = GetUnitTestImpl()->current_test_info(); if (info == nullptr) { DeathTestAbort("Cannot run a death test outside of a TEST or " "TEST_F construct"); } } // Creates and returns a death test by dispatching to the current // death test factory. bool DeathTest::Create(const char* statement, Matcher matcher, const char* file, int line, DeathTest** test) { return GetUnitTestImpl()->death_test_factory()->Create( statement, std::move(matcher), file, line, test); } const char* DeathTest::LastMessage() { return last_death_test_message_.c_str(); } void DeathTest::set_last_death_test_message(const std::string& message) { last_death_test_message_ = message; } std::string DeathTest::last_death_test_message_; // Provides cross platform implementation for some death functionality. class DeathTestImpl : public DeathTest { protected: DeathTestImpl(const char* a_statement, Matcher matcher) : statement_(a_statement), matcher_(std::move(matcher)), spawned_(false), status_(-1), outcome_(IN_PROGRESS), read_fd_(-1), write_fd_(-1) {} // read_fd_ is expected to be closed and cleared by a derived class. ~DeathTestImpl() override { GTEST_DEATH_TEST_CHECK_(read_fd_ == -1); } void Abort(AbortReason reason) override; bool Passed(bool status_ok) override; const char* statement() const { return statement_; } bool spawned() const { return spawned_; } void set_spawned(bool is_spawned) { spawned_ = is_spawned; } int status() const { return status_; } void set_status(int a_status) { status_ = a_status; } DeathTestOutcome outcome() const { return outcome_; } void set_outcome(DeathTestOutcome an_outcome) { outcome_ = an_outcome; } int read_fd() const { return read_fd_; } void set_read_fd(int fd) { read_fd_ = fd; } int write_fd() const { return write_fd_; } void set_write_fd(int fd) { write_fd_ = fd; } // Called in the parent process only. Reads the result code of the death // test child process via a pipe, interprets it to set the outcome_ // member, and closes read_fd_. Outputs diagnostics and terminates in // case of unexpected codes. void ReadAndInterpretStatusByte(); // Returns stderr output from the child process. virtual std::string GetErrorLogs(); private: // The textual content of the code this object is testing. This class // doesn't own this string and should not attempt to delete it. const char* const statement_; // A matcher that's expected to match the stderr output by the child process. Matcher matcher_; // True if the death test child process has been successfully spawned. bool spawned_; // The exit status of the child process. int status_; // How the death test concluded. DeathTestOutcome outcome_; // Descriptor to the read end of the pipe to the child process. It is // always -1 in the child process. The child keeps its write end of the // pipe in write_fd_. int read_fd_; // Descriptor to the child's write end of the pipe to the parent process. // It is always -1 in the parent process. The parent keeps its end of the // pipe in read_fd_. int write_fd_; }; // Called in the parent process only. Reads the result code of the death // test child process via a pipe, interprets it to set the outcome_ // member, and closes read_fd_. Outputs diagnostics and terminates in // case of unexpected codes. void DeathTestImpl::ReadAndInterpretStatusByte() { char flag; int bytes_read; // The read() here blocks until data is available (signifying the // failure of the death test) or until the pipe is closed (signifying // its success), so it's okay to call this in the parent before // the child process has exited. do { bytes_read = posix::Read(read_fd(), &flag, 1); } while (bytes_read == -1 && errno == EINTR); if (bytes_read == 0) { set_outcome(DIED); } else if (bytes_read == 1) { switch (flag) { case kDeathTestReturned: set_outcome(RETURNED); break; case kDeathTestThrew: set_outcome(THREW); break; case kDeathTestLived: set_outcome(LIVED); break; case kDeathTestInternalError: FailFromInternalError(read_fd()); // Does not return. break; default: GTEST_LOG_(FATAL) << "Death test child process reported " << "unexpected status byte (" << static_cast(flag) << ")"; } } else { GTEST_LOG_(FATAL) << "Read from death test child process failed: " << GetLastErrnoDescription(); } GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Close(read_fd())); set_read_fd(-1); } std::string DeathTestImpl::GetErrorLogs() { return GetCapturedStderr(); } // Signals that the death test code which should have exited, didn't. // Should be called only in a death test child process. // Writes a status byte to the child's status file descriptor, then // calls _exit(1). void DeathTestImpl::Abort(AbortReason reason) { // The parent process considers the death test to be a failure if // it finds any data in our pipe. So, here we write a single flag byte // to the pipe, then exit. const char status_ch = reason == TEST_DID_NOT_DIE ? kDeathTestLived : reason == TEST_THREW_EXCEPTION ? kDeathTestThrew : kDeathTestReturned; GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Write(write_fd(), &status_ch, 1)); // We are leaking the descriptor here because on some platforms (i.e., // when built as Windows DLL), destructors of global objects will still // run after calling _exit(). On such systems, write_fd_ will be // indirectly closed from the destructor of UnitTestImpl, causing double // close if it is also closed here. On debug configurations, double close // may assert. As there are no in-process buffers to flush here, we are // relying on the OS to close the descriptor after the process terminates // when the destructors are not run. _exit(1); // Exits w/o any normal exit hooks (we were supposed to crash) } // Returns an indented copy of stderr output for a death test. // This makes distinguishing death test output lines from regular log lines // much easier. static ::std::string FormatDeathTestOutput(const ::std::string& output) { ::std::string ret; for (size_t at = 0; ; ) { const size_t line_end = output.find('\n', at); ret += "[ DEATH ] "; if (line_end == ::std::string::npos) { ret += output.substr(at); break; } ret += output.substr(at, line_end + 1 - at); at = line_end + 1; } return ret; } // Assesses the success or failure of a death test, using both private // members which have previously been set, and one argument: // // Private data members: // outcome: An enumeration describing how the death test // concluded: DIED, LIVED, THREW, or RETURNED. The death test // fails in the latter three cases. // status: The exit status of the child process. On *nix, it is in the // in the format specified by wait(2). On Windows, this is the // value supplied to the ExitProcess() API or a numeric code // of the exception that terminated the program. // matcher_: A matcher that's expected to match the stderr output by the child // process. // // Argument: // status_ok: true if exit_status is acceptable in the context of // this particular death test, which fails if it is false // // Returns true if and only if all of the above conditions are met. Otherwise, // the first failing condition, in the order given above, is the one that is // reported. Also sets the last death test message string. bool DeathTestImpl::Passed(bool status_ok) { if (!spawned()) return false; const std::string error_message = GetErrorLogs(); bool success = false; Message buffer; buffer << "Death test: " << statement() << "\n"; switch (outcome()) { case LIVED: buffer << " Result: failed to die.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case THREW: buffer << " Result: threw an exception.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case RETURNED: buffer << " Result: illegal return in test statement.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case DIED: if (status_ok) { if (matcher_.Matches(error_message)) { success = true; } else { std::ostringstream stream; matcher_.DescribeTo(&stream); buffer << " Result: died but not with expected error.\n" << " Expected: " << stream.str() << "\n" << "Actual msg:\n" << FormatDeathTestOutput(error_message); } } else { buffer << " Result: died but not with expected exit code:\n" << " " << ExitSummary(status()) << "\n" << "Actual msg:\n" << FormatDeathTestOutput(error_message); } break; case IN_PROGRESS: default: GTEST_LOG_(FATAL) << "DeathTest::Passed somehow called before conclusion of test"; } DeathTest::set_last_death_test_message(buffer.GetString()); return success; } # if GTEST_OS_WINDOWS // WindowsDeathTest implements death tests on Windows. Due to the // specifics of starting new processes on Windows, death tests there are // always threadsafe, and Google Test considers the // --gtest_death_test_style=fast setting to be equivalent to // --gtest_death_test_style=threadsafe there. // // A few implementation notes: Like the Linux version, the Windows // implementation uses pipes for child-to-parent communication. But due to // the specifics of pipes on Windows, some extra steps are required: // // 1. The parent creates a communication pipe and stores handles to both // ends of it. // 2. The parent starts the child and provides it with the information // necessary to acquire the handle to the write end of the pipe. // 3. The child acquires the write end of the pipe and signals the parent // using a Windows event. // 4. Now the parent can release the write end of the pipe on its side. If // this is done before step 3, the object's reference count goes down to // 0 and it is destroyed, preventing the child from acquiring it. The // parent now has to release it, or read operations on the read end of // the pipe will not return when the child terminates. // 5. The parent reads child's output through the pipe (outcome code and // any possible error messages) from the pipe, and its stderr and then // determines whether to fail the test. // // Note: to distinguish Win32 API calls from the local method and function // calls, the former are explicitly resolved in the global namespace. // class WindowsDeathTest : public DeathTestImpl { public: WindowsDeathTest(const char* a_statement, Matcher matcher, const char* file, int line) : DeathTestImpl(a_statement, std::move(matcher)), file_(file), line_(line) {} // All of these virtual functions are inherited from DeathTest. virtual int Wait(); virtual TestRole AssumeRole(); private: // The name of the file in which the death test is located. const char* const file_; // The line number on which the death test is located. const int line_; // Handle to the write end of the pipe to the child process. AutoHandle write_handle_; // Child process handle. AutoHandle child_handle_; // Event the child process uses to signal the parent that it has // acquired the handle to the write end of the pipe. After seeing this // event the parent can release its own handles to make sure its // ReadFile() calls return when the child terminates. AutoHandle event_handle_; }; // Waits for the child in a death test to exit, returning its exit // status, or 0 if no child process exists. As a side effect, sets the // outcome data member. int WindowsDeathTest::Wait() { if (!spawned()) return 0; // Wait until the child either signals that it has acquired the write end // of the pipe or it dies. const HANDLE wait_handles[2] = { child_handle_.Get(), event_handle_.Get() }; switch (::WaitForMultipleObjects(2, wait_handles, FALSE, // Waits for any of the handles. INFINITE)) { case WAIT_OBJECT_0: case WAIT_OBJECT_0 + 1: break; default: GTEST_DEATH_TEST_CHECK_(false); // Should not get here. } // The child has acquired the write end of the pipe or exited. // We release the handle on our side and continue. write_handle_.Reset(); event_handle_.Reset(); ReadAndInterpretStatusByte(); // Waits for the child process to exit if it haven't already. This // returns immediately if the child has already exited, regardless of // whether previous calls to WaitForMultipleObjects synchronized on this // handle or not. GTEST_DEATH_TEST_CHECK_( WAIT_OBJECT_0 == ::WaitForSingleObject(child_handle_.Get(), INFINITE)); DWORD status_code; GTEST_DEATH_TEST_CHECK_( ::GetExitCodeProcess(child_handle_.Get(), &status_code) != FALSE); child_handle_.Reset(); set_status(static_cast(status_code)); return status(); } // The AssumeRole process for a Windows death test. It creates a child // process with the same executable as the current process to run the // death test. The child process is given the --gtest_filter and // --gtest_internal_run_death_test flags such that it knows to run the // current death test only. DeathTest::TestRole WindowsDeathTest::AssumeRole() { const UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const TestInfo* const info = impl->current_test_info(); const int death_test_index = info->result()->death_test_count(); if (flag != nullptr) { // ParseInternalRunDeathTestFlag() has performed all the necessary // processing. set_write_fd(flag->write_fd()); return EXECUTE_TEST; } // WindowsDeathTest uses an anonymous pipe to communicate results of // a death test. SECURITY_ATTRIBUTES handles_are_inheritable = {sizeof(SECURITY_ATTRIBUTES), nullptr, TRUE}; HANDLE read_handle, write_handle; GTEST_DEATH_TEST_CHECK_( ::CreatePipe(&read_handle, &write_handle, &handles_are_inheritable, 0) // Default buffer size. != FALSE); set_read_fd(::_open_osfhandle(reinterpret_cast(read_handle), O_RDONLY)); write_handle_.Reset(write_handle); event_handle_.Reset(::CreateEvent( &handles_are_inheritable, TRUE, // The event will automatically reset to non-signaled state. FALSE, // The initial state is non-signalled. nullptr)); // The even is unnamed. GTEST_DEATH_TEST_CHECK_(event_handle_.Get() != nullptr); const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + info->test_suite_name() + "." + info->name(); const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + file_ + "|" + StreamableToString(line_) + "|" + StreamableToString(death_test_index) + "|" + StreamableToString(static_cast(::GetCurrentProcessId())) + // size_t has the same width as pointers on both 32-bit and 64-bit // Windows platforms. // See http://msdn.microsoft.com/en-us/library/tcxf1dw6.aspx. "|" + StreamableToString(reinterpret_cast(write_handle)) + "|" + StreamableToString(reinterpret_cast(event_handle_.Get())); char executable_path[_MAX_PATH + 1]; // NOLINT GTEST_DEATH_TEST_CHECK_(_MAX_PATH + 1 != ::GetModuleFileNameA(nullptr, executable_path, _MAX_PATH)); std::string command_line = std::string(::GetCommandLineA()) + " " + filter_flag + " \"" + internal_flag + "\""; DeathTest::set_last_death_test_message(""); CaptureStderr(); // Flush the log buffers since the log streams are shared with the child. FlushInfoLog(); // The child process will share the standard handles with the parent. STARTUPINFOA startup_info; memset(&startup_info, 0, sizeof(STARTUPINFO)); startup_info.dwFlags = STARTF_USESTDHANDLES; startup_info.hStdInput = ::GetStdHandle(STD_INPUT_HANDLE); startup_info.hStdOutput = ::GetStdHandle(STD_OUTPUT_HANDLE); startup_info.hStdError = ::GetStdHandle(STD_ERROR_HANDLE); PROCESS_INFORMATION process_info; GTEST_DEATH_TEST_CHECK_( ::CreateProcessA( executable_path, const_cast(command_line.c_str()), nullptr, // Retuned process handle is not inheritable. nullptr, // Retuned thread handle is not inheritable. TRUE, // Child inherits all inheritable handles (for write_handle_). 0x0, // Default creation flags. nullptr, // Inherit the parent's environment. UnitTest::GetInstance()->original_working_dir(), &startup_info, &process_info) != FALSE); child_handle_.Reset(process_info.hProcess); ::CloseHandle(process_info.hThread); set_spawned(true); return OVERSEE_TEST; } # elif GTEST_OS_FUCHSIA class FuchsiaDeathTest : public DeathTestImpl { public: FuchsiaDeathTest(const char* a_statement, Matcher matcher, const char* file, int line) : DeathTestImpl(a_statement, std::move(matcher)), file_(file), line_(line) {} // All of these virtual functions are inherited from DeathTest. int Wait() override; TestRole AssumeRole() override; std::string GetErrorLogs() override; private: // The name of the file in which the death test is located. const char* const file_; // The line number on which the death test is located. const int line_; // The stderr data captured by the child process. std::string captured_stderr_; zx::process child_process_; zx::channel exception_channel_; zx::socket stderr_socket_; }; // Utility class for accumulating command-line arguments. class Arguments { public: Arguments() { args_.push_back(nullptr); } ~Arguments() { for (std::vector::iterator i = args_.begin(); i != args_.end(); ++i) { free(*i); } } void AddArgument(const char* argument) { args_.insert(args_.end() - 1, posix::StrDup(argument)); } template void AddArguments(const ::std::vector& arguments) { for (typename ::std::vector::const_iterator i = arguments.begin(); i != arguments.end(); ++i) { args_.insert(args_.end() - 1, posix::StrDup(i->c_str())); } } char* const* Argv() { return &args_[0]; } int size() { return args_.size() - 1; } private: std::vector args_; }; // Waits for the child in a death test to exit, returning its exit // status, or 0 if no child process exists. As a side effect, sets the // outcome data member. int FuchsiaDeathTest::Wait() { const int kProcessKey = 0; const int kSocketKey = 1; const int kExceptionKey = 2; if (!spawned()) return 0; // Create a port to wait for socket/task/exception events. zx_status_t status_zx; zx::port port; status_zx = zx::port::create(0, &port); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); // Register to wait for the child process to terminate. status_zx = child_process_.wait_async( port, kProcessKey, ZX_PROCESS_TERMINATED, ZX_WAIT_ASYNC_ONCE); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); // Register to wait for the socket to be readable or closed. status_zx = stderr_socket_.wait_async( port, kSocketKey, ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, ZX_WAIT_ASYNC_ONCE); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); // Register to wait for an exception. status_zx = exception_channel_.wait_async( port, kExceptionKey, ZX_CHANNEL_READABLE, ZX_WAIT_ASYNC_ONCE); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); bool process_terminated = false; bool socket_closed = false; do { zx_port_packet_t packet = {}; status_zx = port.wait(zx::time::infinite(), &packet); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); if (packet.key == kExceptionKey) { // Process encountered an exception. Kill it directly rather than // letting other handlers process the event. We will get a kProcessKey // event when the process actually terminates. status_zx = child_process_.kill(); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); } else if (packet.key == kProcessKey) { // Process terminated. GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type)); GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_PROCESS_TERMINATED); process_terminated = true; } else if (packet.key == kSocketKey) { GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type)); if (packet.signal.observed & ZX_SOCKET_READABLE) { // Read data from the socket. constexpr size_t kBufferSize = 1024; do { size_t old_length = captured_stderr_.length(); size_t bytes_read = 0; captured_stderr_.resize(old_length + kBufferSize); status_zx = stderr_socket_.read( 0, &captured_stderr_.front() + old_length, kBufferSize, &bytes_read); captured_stderr_.resize(old_length + bytes_read); } while (status_zx == ZX_OK); if (status_zx == ZX_ERR_PEER_CLOSED) { socket_closed = true; } else { GTEST_DEATH_TEST_CHECK_(status_zx == ZX_ERR_SHOULD_WAIT); status_zx = stderr_socket_.wait_async( port, kSocketKey, ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, ZX_WAIT_ASYNC_ONCE); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); } } else { GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_SOCKET_PEER_CLOSED); socket_closed = true; } } } while (!process_terminated && !socket_closed); ReadAndInterpretStatusByte(); zx_info_process_t buffer; status_zx = child_process_.get_info( ZX_INFO_PROCESS, &buffer, sizeof(buffer), nullptr, nullptr); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); GTEST_DEATH_TEST_CHECK_(buffer.exited); set_status(buffer.return_code); return status(); } // The AssumeRole process for a Fuchsia death test. It creates a child // process with the same executable as the current process to run the // death test. The child process is given the --gtest_filter and // --gtest_internal_run_death_test flags such that it knows to run the // current death test only. DeathTest::TestRole FuchsiaDeathTest::AssumeRole() { const UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const TestInfo* const info = impl->current_test_info(); const int death_test_index = info->result()->death_test_count(); if (flag != nullptr) { // ParseInternalRunDeathTestFlag() has performed all the necessary // processing. set_write_fd(kFuchsiaReadPipeFd); return EXECUTE_TEST; } // Flush the log buffers since the log streams are shared with the child. FlushInfoLog(); // Build the child process command line. const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + info->test_suite_name() + "." + info->name(); const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + file_ + "|" + StreamableToString(line_) + "|" + StreamableToString(death_test_index); Arguments args; args.AddArguments(GetInjectableArgvs()); args.AddArgument(filter_flag.c_str()); args.AddArgument(internal_flag.c_str()); // Build the pipe for communication with the child. zx_status_t status; zx_handle_t child_pipe_handle; int child_pipe_fd; status = fdio_pipe_half(&child_pipe_fd, &child_pipe_handle); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); set_read_fd(child_pipe_fd); // Set the pipe handle for the child. fdio_spawn_action_t spawn_actions[2] = {}; fdio_spawn_action_t* add_handle_action = &spawn_actions[0]; add_handle_action->action = FDIO_SPAWN_ACTION_ADD_HANDLE; add_handle_action->h.id = PA_HND(PA_FD, kFuchsiaReadPipeFd); add_handle_action->h.handle = child_pipe_handle; // Create a socket pair will be used to receive the child process' stderr. zx::socket stderr_producer_socket; status = zx::socket::create(0, &stderr_producer_socket, &stderr_socket_); GTEST_DEATH_TEST_CHECK_(status >= 0); int stderr_producer_fd = -1; status = fdio_fd_create(stderr_producer_socket.release(), &stderr_producer_fd); GTEST_DEATH_TEST_CHECK_(status >= 0); // Make the stderr socket nonblocking. GTEST_DEATH_TEST_CHECK_(fcntl(stderr_producer_fd, F_SETFL, 0) == 0); fdio_spawn_action_t* add_stderr_action = &spawn_actions[1]; add_stderr_action->action = FDIO_SPAWN_ACTION_CLONE_FD; add_stderr_action->fd.local_fd = stderr_producer_fd; add_stderr_action->fd.target_fd = STDERR_FILENO; // Create a child job. zx_handle_t child_job = ZX_HANDLE_INVALID; status = zx_job_create(zx_job_default(), 0, & child_job); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); zx_policy_basic_t policy; policy.condition = ZX_POL_NEW_ANY; policy.policy = ZX_POL_ACTION_ALLOW; status = zx_job_set_policy( child_job, ZX_JOB_POL_RELATIVE, ZX_JOB_POL_BASIC, &policy, 1); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); // Create an exception channel attached to the |child_job|, to allow // us to suppress the system default exception handler from firing. status = zx_task_create_exception_channel( child_job, 0, exception_channel_.reset_and_get_address()); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); // Spawn the child process. status = fdio_spawn_etc( child_job, FDIO_SPAWN_CLONE_ALL, args.Argv()[0], args.Argv(), nullptr, 2, spawn_actions, child_process_.reset_and_get_address(), nullptr); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); set_spawned(true); return OVERSEE_TEST; } std::string FuchsiaDeathTest::GetErrorLogs() { return captured_stderr_; } #else // We are neither on Windows, nor on Fuchsia. // ForkingDeathTest provides implementations for most of the abstract // methods of the DeathTest interface. Only the AssumeRole method is // left undefined. class ForkingDeathTest : public DeathTestImpl { public: ForkingDeathTest(const char* statement, Matcher matcher); // All of these virtual functions are inherited from DeathTest. int Wait() override; protected: void set_child_pid(pid_t child_pid) { child_pid_ = child_pid; } private: // PID of child process during death test; 0 in the child process itself. pid_t child_pid_; }; // Constructs a ForkingDeathTest. ForkingDeathTest::ForkingDeathTest(const char* a_statement, Matcher matcher) : DeathTestImpl(a_statement, std::move(matcher)), child_pid_(-1) {} // Waits for the child in a death test to exit, returning its exit // status, or 0 if no child process exists. As a side effect, sets the // outcome data member. int ForkingDeathTest::Wait() { if (!spawned()) return 0; ReadAndInterpretStatusByte(); int status_value; GTEST_DEATH_TEST_CHECK_SYSCALL_(waitpid(child_pid_, &status_value, 0)); set_status(status_value); return status_value; } // A concrete death test class that forks, then immediately runs the test // in the child process. class NoExecDeathTest : public ForkingDeathTest { public: NoExecDeathTest(const char* a_statement, Matcher matcher) : ForkingDeathTest(a_statement, std::move(matcher)) {} TestRole AssumeRole() override; }; // The AssumeRole process for a fork-and-run death test. It implements a // straightforward fork, with a simple pipe to transmit the status byte. DeathTest::TestRole NoExecDeathTest::AssumeRole() { const size_t thread_count = GetThreadCount(); if (thread_count != 1) { GTEST_LOG_(WARNING) << DeathTestThreadWarning(thread_count); } int pipe_fd[2]; GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1); DeathTest::set_last_death_test_message(""); CaptureStderr(); // When we fork the process below, the log file buffers are copied, but the // file descriptors are shared. We flush all log files here so that closing // the file descriptors in the child process doesn't throw off the // synchronization between descriptors and buffers in the parent process. // This is as close to the fork as possible to avoid a race condition in case // there are multiple threads running before the death test, and another // thread writes to the log file. FlushInfoLog(); const pid_t child_pid = fork(); GTEST_DEATH_TEST_CHECK_(child_pid != -1); set_child_pid(child_pid); if (child_pid == 0) { GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[0])); set_write_fd(pipe_fd[1]); // Redirects all logging to stderr in the child process to prevent // concurrent writes to the log files. We capture stderr in the parent // process and append the child process' output to a log. LogToStderr(); // Event forwarding to the listeners of event listener API mush be shut // down in death test subprocesses. GetUnitTestImpl()->listeners()->SuppressEventForwarding(); g_in_fast_death_test_child = true; return EXECUTE_TEST; } else { GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1])); set_read_fd(pipe_fd[0]); set_spawned(true); return OVERSEE_TEST; } } // A concrete death test class that forks and re-executes the main // program from the beginning, with command-line flags set that cause // only this specific death test to be run. class ExecDeathTest : public ForkingDeathTest { public: ExecDeathTest(const char* a_statement, Matcher matcher, const char* file, int line) : ForkingDeathTest(a_statement, std::move(matcher)), file_(file), line_(line) {} TestRole AssumeRole() override; private: static ::std::vector GetArgvsForDeathTestChildProcess() { ::std::vector args = GetInjectableArgvs(); # if defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_) ::std::vector extra_args = GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_(); args.insert(args.end(), extra_args.begin(), extra_args.end()); # endif // defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_) return args; } // The name of the file in which the death test is located. const char* const file_; // The line number on which the death test is located. const int line_; }; // Utility class for accumulating command-line arguments. class Arguments { public: Arguments() { args_.push_back(nullptr); } ~Arguments() { for (std::vector::iterator i = args_.begin(); i != args_.end(); ++i) { free(*i); } } void AddArgument(const char* argument) { args_.insert(args_.end() - 1, posix::StrDup(argument)); } template void AddArguments(const ::std::vector& arguments) { for (typename ::std::vector::const_iterator i = arguments.begin(); i != arguments.end(); ++i) { args_.insert(args_.end() - 1, posix::StrDup(i->c_str())); } } char* const* Argv() { return &args_[0]; } private: std::vector args_; }; // A struct that encompasses the arguments to the child process of a // threadsafe-style death test process. struct ExecDeathTestArgs { char* const* argv; // Command-line arguments for the child's call to exec int close_fd; // File descriptor to close; the read end of a pipe }; # if GTEST_OS_MAC inline char** GetEnviron() { // When Google Test is built as a framework on MacOS X, the environ variable // is unavailable. Apple's documentation (man environ) recommends using // _NSGetEnviron() instead. return *_NSGetEnviron(); } # else // Some POSIX platforms expect you to declare environ. extern "C" makes // it reside in the global namespace. extern "C" char** environ; inline char** GetEnviron() { return environ; } # endif // GTEST_OS_MAC # if !GTEST_OS_QNX // The main function for a threadsafe-style death test child process. // This function is called in a clone()-ed process and thus must avoid // any potentially unsafe operations like malloc or libc functions. static int ExecDeathTestChildMain(void* child_arg) { ExecDeathTestArgs* const args = static_cast(child_arg); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(args->close_fd)); // We need to execute the test program in the same environment where // it was originally invoked. Therefore we change to the original // working directory first. const char* const original_dir = UnitTest::GetInstance()->original_working_dir(); // We can safely call chdir() as it's a direct system call. if (chdir(original_dir) != 0) { DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } // We can safely call execve() as it's a direct system call. We // cannot use execvp() as it's a libc function and thus potentially // unsafe. Since execve() doesn't search the PATH, the user must // invoke the test program via a valid path that contains at least // one path separator. execve(args->argv[0], args->argv, GetEnviron()); DeathTestAbort(std::string("execve(") + args->argv[0] + ", ...) in " + original_dir + " failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } # endif // !GTEST_OS_QNX # if GTEST_HAS_CLONE // Two utility routines that together determine the direction the stack // grows. // This could be accomplished more elegantly by a single recursive // function, but we want to guard against the unlikely possibility of // a smart compiler optimizing the recursion away. // // GTEST_NO_INLINE_ is required to prevent GCC 4.6 from inlining // StackLowerThanAddress into StackGrowsDown, which then doesn't give // correct answer. static void StackLowerThanAddress(const void* ptr, bool* result) GTEST_NO_INLINE_; // HWAddressSanitizer add a random tag to the MSB of the local variable address, // making comparison result unpredictable. GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ static void StackLowerThanAddress(const void* ptr, bool* result) { int dummy; *result = (&dummy < ptr); } // Make sure AddressSanitizer does not tamper with the stack here. GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ static bool StackGrowsDown() { int dummy; bool result; StackLowerThanAddress(&dummy, &result); return result; } # endif // GTEST_HAS_CLONE // Spawns a child process with the same executable as the current process in // a thread-safe manner and instructs it to run the death test. The // implementation uses fork(2) + exec. On systems where clone(2) is // available, it is used instead, being slightly more thread-safe. On QNX, // fork supports only single-threaded environments, so this function uses // spawn(2) there instead. The function dies with an error message if // anything goes wrong. static pid_t ExecDeathTestSpawnChild(char* const* argv, int close_fd) { ExecDeathTestArgs args = { argv, close_fd }; pid_t child_pid = -1; # if GTEST_OS_QNX // Obtains the current directory and sets it to be closed in the child // process. const int cwd_fd = open(".", O_RDONLY); GTEST_DEATH_TEST_CHECK_(cwd_fd != -1); GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(cwd_fd, F_SETFD, FD_CLOEXEC)); // We need to execute the test program in the same environment where // it was originally invoked. Therefore we change to the original // working directory first. const char* const original_dir = UnitTest::GetInstance()->original_working_dir(); // We can safely call chdir() as it's a direct system call. if (chdir(original_dir) != 0) { DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } int fd_flags; // Set close_fd to be closed after spawn. GTEST_DEATH_TEST_CHECK_SYSCALL_(fd_flags = fcntl(close_fd, F_GETFD)); GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(close_fd, F_SETFD, fd_flags | FD_CLOEXEC)); struct inheritance inherit = {0}; // spawn is a system call. child_pid = spawn(args.argv[0], 0, nullptr, &inherit, args.argv, GetEnviron()); // Restores the current working directory. GTEST_DEATH_TEST_CHECK_(fchdir(cwd_fd) != -1); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(cwd_fd)); # else // GTEST_OS_QNX # if GTEST_OS_LINUX // When a SIGPROF signal is received while fork() or clone() are executing, // the process may hang. To avoid this, we ignore SIGPROF here and re-enable // it after the call to fork()/clone() is complete. struct sigaction saved_sigprof_action; struct sigaction ignore_sigprof_action; memset(&ignore_sigprof_action, 0, sizeof(ignore_sigprof_action)); sigemptyset(&ignore_sigprof_action.sa_mask); ignore_sigprof_action.sa_handler = SIG_IGN; GTEST_DEATH_TEST_CHECK_SYSCALL_(sigaction( SIGPROF, &ignore_sigprof_action, &saved_sigprof_action)); # endif // GTEST_OS_LINUX # if GTEST_HAS_CLONE const bool use_fork = GTEST_FLAG(death_test_use_fork); if (!use_fork) { static const bool stack_grows_down = StackGrowsDown(); const auto stack_size = static_cast(getpagesize()); // MMAP_ANONYMOUS is not defined on Mac, so we use MAP_ANON instead. void* const stack = mmap(nullptr, stack_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); GTEST_DEATH_TEST_CHECK_(stack != MAP_FAILED); // Maximum stack alignment in bytes: For a downward-growing stack, this // amount is subtracted from size of the stack space to get an address // that is within the stack space and is aligned on all systems we care // about. As far as I know there is no ABI with stack alignment greater // than 64. We assume stack and stack_size already have alignment of // kMaxStackAlignment. const size_t kMaxStackAlignment = 64; void* const stack_top = static_cast(stack) + (stack_grows_down ? stack_size - kMaxStackAlignment : 0); GTEST_DEATH_TEST_CHECK_( static_cast(stack_size) > kMaxStackAlignment && reinterpret_cast(stack_top) % kMaxStackAlignment == 0); child_pid = clone(&ExecDeathTestChildMain, stack_top, SIGCHLD, &args); GTEST_DEATH_TEST_CHECK_(munmap(stack, stack_size) != -1); } # else const bool use_fork = true; # endif // GTEST_HAS_CLONE if (use_fork && (child_pid = fork()) == 0) { ExecDeathTestChildMain(&args); _exit(0); } # endif // GTEST_OS_QNX # if GTEST_OS_LINUX GTEST_DEATH_TEST_CHECK_SYSCALL_( sigaction(SIGPROF, &saved_sigprof_action, nullptr)); # endif // GTEST_OS_LINUX GTEST_DEATH_TEST_CHECK_(child_pid != -1); return child_pid; } // The AssumeRole process for a fork-and-exec death test. It re-executes the // main program from the beginning, setting the --gtest_filter // and --gtest_internal_run_death_test flags to cause only the current // death test to be re-run. DeathTest::TestRole ExecDeathTest::AssumeRole() { const UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const TestInfo* const info = impl->current_test_info(); const int death_test_index = info->result()->death_test_count(); if (flag != nullptr) { set_write_fd(flag->write_fd()); return EXECUTE_TEST; } int pipe_fd[2]; GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1); // Clear the close-on-exec flag on the write end of the pipe, lest // it be closed when the child process does an exec: GTEST_DEATH_TEST_CHECK_(fcntl(pipe_fd[1], F_SETFD, 0) != -1); const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + info->test_suite_name() + "." + info->name(); const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + file_ + "|" + StreamableToString(line_) + "|" + StreamableToString(death_test_index) + "|" + StreamableToString(pipe_fd[1]); Arguments args; args.AddArguments(GetArgvsForDeathTestChildProcess()); args.AddArgument(filter_flag.c_str()); args.AddArgument(internal_flag.c_str()); DeathTest::set_last_death_test_message(""); CaptureStderr(); // See the comment in NoExecDeathTest::AssumeRole for why the next line // is necessary. FlushInfoLog(); const pid_t child_pid = ExecDeathTestSpawnChild(args.Argv(), pipe_fd[0]); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1])); set_child_pid(child_pid); set_read_fd(pipe_fd[0]); set_spawned(true); return OVERSEE_TEST; } # endif // !GTEST_OS_WINDOWS // Creates a concrete DeathTest-derived class that depends on the // --gtest_death_test_style flag, and sets the pointer pointed to // by the "test" argument to its address. If the test should be // skipped, sets that pointer to NULL. Returns true, unless the // flag is set to an invalid value. bool DefaultDeathTestFactory::Create(const char* statement, Matcher matcher, const char* file, int line, DeathTest** test) { UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const int death_test_index = impl->current_test_info() ->increment_death_test_count(); if (flag != nullptr) { if (death_test_index > flag->index()) { DeathTest::set_last_death_test_message( "Death test count (" + StreamableToString(death_test_index) + ") somehow exceeded expected maximum (" + StreamableToString(flag->index()) + ")"); return false; } if (!(flag->file() == file && flag->line() == line && flag->index() == death_test_index)) { *test = nullptr; return true; } } # if GTEST_OS_WINDOWS if (GTEST_FLAG(death_test_style) == "threadsafe" || GTEST_FLAG(death_test_style) == "fast") { *test = new WindowsDeathTest(statement, std::move(matcher), file, line); } # elif GTEST_OS_FUCHSIA if (GTEST_FLAG(death_test_style) == "threadsafe" || GTEST_FLAG(death_test_style) == "fast") { *test = new FuchsiaDeathTest(statement, std::move(matcher), file, line); } # else if (GTEST_FLAG(death_test_style) == "threadsafe") { *test = new ExecDeathTest(statement, std::move(matcher), file, line); } else if (GTEST_FLAG(death_test_style) == "fast") { *test = new NoExecDeathTest(statement, std::move(matcher)); } # endif // GTEST_OS_WINDOWS else { // NOLINT - this is more readable than unbalanced brackets inside #if. DeathTest::set_last_death_test_message( "Unknown death test style \"" + GTEST_FLAG(death_test_style) + "\" encountered"); return false; } return true; } # if GTEST_OS_WINDOWS // Recreates the pipe and event handles from the provided parameters, // signals the event, and returns a file descriptor wrapped around the pipe // handle. This function is called in the child process only. static int GetStatusFileDescriptor(unsigned int parent_process_id, size_t write_handle_as_size_t, size_t event_handle_as_size_t) { AutoHandle parent_process_handle(::OpenProcess(PROCESS_DUP_HANDLE, FALSE, // Non-inheritable. parent_process_id)); if (parent_process_handle.Get() == INVALID_HANDLE_VALUE) { DeathTestAbort("Unable to open parent process " + StreamableToString(parent_process_id)); } GTEST_CHECK_(sizeof(HANDLE) <= sizeof(size_t)); const HANDLE write_handle = reinterpret_cast(write_handle_as_size_t); HANDLE dup_write_handle; // The newly initialized handle is accessible only in the parent // process. To obtain one accessible within the child, we need to use // DuplicateHandle. if (!::DuplicateHandle(parent_process_handle.Get(), write_handle, ::GetCurrentProcess(), &dup_write_handle, 0x0, // Requested privileges ignored since // DUPLICATE_SAME_ACCESS is used. FALSE, // Request non-inheritable handler. DUPLICATE_SAME_ACCESS)) { DeathTestAbort("Unable to duplicate the pipe handle " + StreamableToString(write_handle_as_size_t) + " from the parent process " + StreamableToString(parent_process_id)); } const HANDLE event_handle = reinterpret_cast(event_handle_as_size_t); HANDLE dup_event_handle; if (!::DuplicateHandle(parent_process_handle.Get(), event_handle, ::GetCurrentProcess(), &dup_event_handle, 0x0, FALSE, DUPLICATE_SAME_ACCESS)) { DeathTestAbort("Unable to duplicate the event handle " + StreamableToString(event_handle_as_size_t) + " from the parent process " + StreamableToString(parent_process_id)); } const int write_fd = ::_open_osfhandle(reinterpret_cast(dup_write_handle), O_APPEND); if (write_fd == -1) { DeathTestAbort("Unable to convert pipe handle " + StreamableToString(write_handle_as_size_t) + " to a file descriptor"); } // Signals the parent that the write end of the pipe has been acquired // so the parent can release its own write end. ::SetEvent(dup_event_handle); return write_fd; } # endif // GTEST_OS_WINDOWS // Returns a newly created InternalRunDeathTestFlag object with fields // initialized from the GTEST_FLAG(internal_run_death_test) flag if // the flag is specified; otherwise returns NULL. InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag() { if (GTEST_FLAG(internal_run_death_test) == "") return nullptr; // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we // can use it here. int line = -1; int index = -1; ::std::vector< ::std::string> fields; SplitString(GTEST_FLAG(internal_run_death_test).c_str(), '|', &fields); int write_fd = -1; # if GTEST_OS_WINDOWS unsigned int parent_process_id = 0; size_t write_handle_as_size_t = 0; size_t event_handle_as_size_t = 0; if (fields.size() != 6 || !ParseNaturalNumber(fields[1], &line) || !ParseNaturalNumber(fields[2], &index) || !ParseNaturalNumber(fields[3], &parent_process_id) || !ParseNaturalNumber(fields[4], &write_handle_as_size_t) || !ParseNaturalNumber(fields[5], &event_handle_as_size_t)) { DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + GTEST_FLAG(internal_run_death_test)); } write_fd = GetStatusFileDescriptor(parent_process_id, write_handle_as_size_t, event_handle_as_size_t); # elif GTEST_OS_FUCHSIA if (fields.size() != 3 || !ParseNaturalNumber(fields[1], &line) || !ParseNaturalNumber(fields[2], &index)) { DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + GTEST_FLAG(internal_run_death_test)); } # else if (fields.size() != 4 || !ParseNaturalNumber(fields[1], &line) || !ParseNaturalNumber(fields[2], &index) || !ParseNaturalNumber(fields[3], &write_fd)) { DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + GTEST_FLAG(internal_run_death_test)); } # endif // GTEST_OS_WINDOWS return new InternalRunDeathTestFlag(fields[0], line, index, write_fd); } } // namespace internal #endif // GTEST_HAS_DEATH_TEST } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-filepath.cc000066400000000000000000000336401355420072700246770ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/internal/gtest-filepath.h" #include #include "gtest/internal/gtest-port.h" #include "gtest/gtest-message.h" #if GTEST_OS_WINDOWS_MOBILE # include #elif GTEST_OS_WINDOWS # include # include #else # include # include // Some Linux distributions define PATH_MAX here. #endif // GTEST_OS_WINDOWS_MOBILE #include "gtest/internal/gtest-string.h" #if GTEST_OS_WINDOWS # define GTEST_PATH_MAX_ _MAX_PATH #elif defined(PATH_MAX) # define GTEST_PATH_MAX_ PATH_MAX #elif defined(_XOPEN_PATH_MAX) # define GTEST_PATH_MAX_ _XOPEN_PATH_MAX #else # define GTEST_PATH_MAX_ _POSIX_PATH_MAX #endif // GTEST_OS_WINDOWS namespace testing { namespace internal { #if GTEST_OS_WINDOWS // On Windows, '\\' is the standard path separator, but many tools and the // Windows API also accept '/' as an alternate path separator. Unless otherwise // noted, a file path can contain either kind of path separators, or a mixture // of them. const char kPathSeparator = '\\'; const char kAlternatePathSeparator = '/'; const char kAlternatePathSeparatorString[] = "/"; # if GTEST_OS_WINDOWS_MOBILE // Windows CE doesn't have a current directory. You should not use // the current directory in tests on Windows CE, but this at least // provides a reasonable fallback. const char kCurrentDirectoryString[] = "\\"; // Windows CE doesn't define INVALID_FILE_ATTRIBUTES const DWORD kInvalidFileAttributes = 0xffffffff; # else const char kCurrentDirectoryString[] = ".\\"; # endif // GTEST_OS_WINDOWS_MOBILE #else const char kPathSeparator = '/'; const char kCurrentDirectoryString[] = "./"; #endif // GTEST_OS_WINDOWS // Returns whether the given character is a valid path separator. static bool IsPathSeparator(char c) { #if GTEST_HAS_ALT_PATH_SEP_ return (c == kPathSeparator) || (c == kAlternatePathSeparator); #else return c == kPathSeparator; #endif } // Returns the current working directory, or "" if unsuccessful. FilePath FilePath::GetCurrentDir() { #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_PHONE || \ GTEST_OS_WINDOWS_RT || ARDUINO || defined(ESP_PLATFORM) // These platforms do not have a current directory, so we just return // something reasonable. return FilePath(kCurrentDirectoryString); #elif GTEST_OS_WINDOWS char cwd[GTEST_PATH_MAX_ + 1] = { '\0' }; return FilePath(_getcwd(cwd, sizeof(cwd)) == nullptr ? "" : cwd); #else char cwd[GTEST_PATH_MAX_ + 1] = { '\0' }; char* result = getcwd(cwd, sizeof(cwd)); # if GTEST_OS_NACL // getcwd will likely fail in NaCl due to the sandbox, so return something // reasonable. The user may have provided a shim implementation for getcwd, // however, so fallback only when failure is detected. return FilePath(result == nullptr ? kCurrentDirectoryString : cwd); # endif // GTEST_OS_NACL return FilePath(result == nullptr ? "" : cwd); #endif // GTEST_OS_WINDOWS_MOBILE } // Returns a copy of the FilePath with the case-insensitive extension removed. // Example: FilePath("dir/file.exe").RemoveExtension("EXE") returns // FilePath("dir/file"). If a case-insensitive extension is not // found, returns a copy of the original FilePath. FilePath FilePath::RemoveExtension(const char* extension) const { const std::string dot_extension = std::string(".") + extension; if (String::EndsWithCaseInsensitive(pathname_, dot_extension)) { return FilePath(pathname_.substr( 0, pathname_.length() - dot_extension.length())); } return *this; } // Returns a pointer to the last occurrence of a valid path separator in // the FilePath. On Windows, for example, both '/' and '\' are valid path // separators. Returns NULL if no path separator was found. const char* FilePath::FindLastPathSeparator() const { const char* const last_sep = strrchr(c_str(), kPathSeparator); #if GTEST_HAS_ALT_PATH_SEP_ const char* const last_alt_sep = strrchr(c_str(), kAlternatePathSeparator); // Comparing two pointers of which only one is NULL is undefined. if (last_alt_sep != nullptr && (last_sep == nullptr || last_alt_sep > last_sep)) { return last_alt_sep; } #endif return last_sep; } // Returns a copy of the FilePath with the directory part removed. // Example: FilePath("path/to/file").RemoveDirectoryName() returns // FilePath("file"). If there is no directory part ("just_a_file"), it returns // the FilePath unmodified. If there is no file part ("just_a_dir/") it // returns an empty FilePath (""). // On Windows platform, '\' is the path separator, otherwise it is '/'. FilePath FilePath::RemoveDirectoryName() const { const char* const last_sep = FindLastPathSeparator(); return last_sep ? FilePath(last_sep + 1) : *this; } // RemoveFileName returns the directory path with the filename removed. // Example: FilePath("path/to/file").RemoveFileName() returns "path/to/". // If the FilePath is "a_file" or "/a_file", RemoveFileName returns // FilePath("./") or, on Windows, FilePath(".\\"). If the filepath does // not have a file, like "just/a/dir/", it returns the FilePath unmodified. // On Windows platform, '\' is the path separator, otherwise it is '/'. FilePath FilePath::RemoveFileName() const { const char* const last_sep = FindLastPathSeparator(); std::string dir; if (last_sep) { dir = std::string(c_str(), static_cast(last_sep + 1 - c_str())); } else { dir = kCurrentDirectoryString; } return FilePath(dir); } // Helper functions for naming files in a directory for xml output. // Given directory = "dir", base_name = "test", number = 0, // extension = "xml", returns "dir/test.xml". If number is greater // than zero (e.g., 12), returns "dir/test_12.xml". // On Windows platform, uses \ as the separator rather than /. FilePath FilePath::MakeFileName(const FilePath& directory, const FilePath& base_name, int number, const char* extension) { std::string file; if (number == 0) { file = base_name.string() + "." + extension; } else { file = base_name.string() + "_" + StreamableToString(number) + "." + extension; } return ConcatPaths(directory, FilePath(file)); } // Given directory = "dir", relative_path = "test.xml", returns "dir/test.xml". // On Windows, uses \ as the separator rather than /. FilePath FilePath::ConcatPaths(const FilePath& directory, const FilePath& relative_path) { if (directory.IsEmpty()) return relative_path; const FilePath dir(directory.RemoveTrailingPathSeparator()); return FilePath(dir.string() + kPathSeparator + relative_path.string()); } // Returns true if pathname describes something findable in the file-system, // either a file, directory, or whatever. bool FilePath::FileOrDirectoryExists() const { #if GTEST_OS_WINDOWS_MOBILE LPCWSTR unicode = String::AnsiToUtf16(pathname_.c_str()); const DWORD attributes = GetFileAttributes(unicode); delete [] unicode; return attributes != kInvalidFileAttributes; #else posix::StatStruct file_stat; return posix::Stat(pathname_.c_str(), &file_stat) == 0; #endif // GTEST_OS_WINDOWS_MOBILE } // Returns true if pathname describes a directory in the file-system // that exists. bool FilePath::DirectoryExists() const { bool result = false; #if GTEST_OS_WINDOWS // Don't strip off trailing separator if path is a root directory on // Windows (like "C:\\"). const FilePath& path(IsRootDirectory() ? *this : RemoveTrailingPathSeparator()); #else const FilePath& path(*this); #endif #if GTEST_OS_WINDOWS_MOBILE LPCWSTR unicode = String::AnsiToUtf16(path.c_str()); const DWORD attributes = GetFileAttributes(unicode); delete [] unicode; if ((attributes != kInvalidFileAttributes) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { result = true; } #else posix::StatStruct file_stat; result = posix::Stat(path.c_str(), &file_stat) == 0 && posix::IsDir(file_stat); #endif // GTEST_OS_WINDOWS_MOBILE return result; } // Returns true if pathname describes a root directory. (Windows has one // root directory per disk drive.) bool FilePath::IsRootDirectory() const { #if GTEST_OS_WINDOWS return pathname_.length() == 3 && IsAbsolutePath(); #else return pathname_.length() == 1 && IsPathSeparator(pathname_.c_str()[0]); #endif } // Returns true if pathname describes an absolute path. bool FilePath::IsAbsolutePath() const { const char* const name = pathname_.c_str(); #if GTEST_OS_WINDOWS return pathname_.length() >= 3 && ((name[0] >= 'a' && name[0] <= 'z') || (name[0] >= 'A' && name[0] <= 'Z')) && name[1] == ':' && IsPathSeparator(name[2]); #else return IsPathSeparator(name[0]); #endif } // Returns a pathname for a file that does not currently exist. The pathname // will be directory/base_name.extension or // directory/base_name_.extension if directory/base_name.extension // already exists. The number will be incremented until a pathname is found // that does not already exist. // Examples: 'dir/foo_test.xml' or 'dir/foo_test_1.xml'. // There could be a race condition if two or more processes are calling this // function at the same time -- they could both pick the same filename. FilePath FilePath::GenerateUniqueFileName(const FilePath& directory, const FilePath& base_name, const char* extension) { FilePath full_pathname; int number = 0; do { full_pathname.Set(MakeFileName(directory, base_name, number++, extension)); } while (full_pathname.FileOrDirectoryExists()); return full_pathname; } // Returns true if FilePath ends with a path separator, which indicates that // it is intended to represent a directory. Returns false otherwise. // This does NOT check that a directory (or file) actually exists. bool FilePath::IsDirectory() const { return !pathname_.empty() && IsPathSeparator(pathname_.c_str()[pathname_.length() - 1]); } // Create directories so that path exists. Returns true if successful or if // the directories already exist; returns false if unable to create directories // for any reason. bool FilePath::CreateDirectoriesRecursively() const { if (!this->IsDirectory()) { return false; } if (pathname_.length() == 0 || this->DirectoryExists()) { return true; } const FilePath parent(this->RemoveTrailingPathSeparator().RemoveFileName()); return parent.CreateDirectoriesRecursively() && this->CreateFolder(); } // Create the directory so that path exists. Returns true if successful or // if the directory already exists; returns false if unable to create the // directory for any reason, including if the parent directory does not // exist. Not named "CreateDirectory" because that's a macro on Windows. bool FilePath::CreateFolder() const { #if GTEST_OS_WINDOWS_MOBILE FilePath removed_sep(this->RemoveTrailingPathSeparator()); LPCWSTR unicode = String::AnsiToUtf16(removed_sep.c_str()); int result = CreateDirectory(unicode, nullptr) ? 0 : -1; delete [] unicode; #elif GTEST_OS_WINDOWS int result = _mkdir(pathname_.c_str()); #else int result = mkdir(pathname_.c_str(), 0777); #endif // GTEST_OS_WINDOWS_MOBILE if (result == -1) { return this->DirectoryExists(); // An error is OK if the directory exists. } return true; // No error. } // If input name has a trailing separator character, remove it and return the // name, otherwise return the name string unmodified. // On Windows platform, uses \ as the separator, other platforms use /. FilePath FilePath::RemoveTrailingPathSeparator() const { return IsDirectory() ? FilePath(pathname_.substr(0, pathname_.length() - 1)) : *this; } // Removes any redundant separators that might be in the pathname. // For example, "bar///foo" becomes "bar/foo". Does not eliminate other // redundancies that might be in a pathname involving "." or "..". void FilePath::Normalize() { if (pathname_.c_str() == nullptr) { pathname_ = ""; return; } const char* src = pathname_.c_str(); char* const dest = new char[pathname_.length() + 1]; char* dest_ptr = dest; memset(dest_ptr, 0, pathname_.length() + 1); while (*src != '\0') { *dest_ptr = *src; if (!IsPathSeparator(*src)) { src++; } else { #if GTEST_HAS_ALT_PATH_SEP_ if (*dest_ptr == kAlternatePathSeparator) { *dest_ptr = kPathSeparator; } #endif while (IsPathSeparator(*src)) src++; } dest_ptr++; } *dest_ptr = '\0'; pathname_ = dest; delete[] dest; } } // namespace internal } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-internal-inl.h000066400000000000000000001336761355420072700253530ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Utility functions and classes used by the Google C++ testing framework.// // This file contains purely Google Test's internal implementation. Please // DO NOT #INCLUDE IT IN A USER PROGRAM. #ifndef GTEST_SRC_GTEST_INTERNAL_INL_H_ #define GTEST_SRC_GTEST_INTERNAL_INL_H_ #ifndef _WIN32_WCE # include #endif // !_WIN32_WCE #include #include // For strtoll/_strtoul64/malloc/free. #include // For memmove. #include #include #include #include #include "gtest/internal/gtest-port.h" #if GTEST_CAN_STREAM_RESULTS_ # include // NOLINT # include // NOLINT #endif #if GTEST_OS_WINDOWS # include // NOLINT #endif // GTEST_OS_WINDOWS #include "gtest/gtest.h" #include "gtest/gtest-spi.h" GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // Declares the flags. // // We don't want the users to modify this flag in the code, but want // Google Test's own unit tests to be able to access it. Therefore we // declare it here as opposed to in gtest.h. GTEST_DECLARE_bool_(death_test_use_fork); namespace internal { // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). GTEST_API_ extern const TypeId kTestTypeIdInGoogleTest; // Names of the flags (needed for parsing Google Test flags). const char kAlsoRunDisabledTestsFlag[] = "also_run_disabled_tests"; const char kBreakOnFailureFlag[] = "break_on_failure"; const char kCatchExceptionsFlag[] = "catch_exceptions"; const char kColorFlag[] = "color"; const char kFilterFlag[] = "filter"; const char kListTestsFlag[] = "list_tests"; const char kOutputFlag[] = "output"; const char kPrintTimeFlag[] = "print_time"; const char kPrintUTF8Flag[] = "print_utf8"; const char kRandomSeedFlag[] = "random_seed"; const char kRepeatFlag[] = "repeat"; const char kShuffleFlag[] = "shuffle"; const char kStackTraceDepthFlag[] = "stack_trace_depth"; const char kStreamResultToFlag[] = "stream_result_to"; const char kThrowOnFailureFlag[] = "throw_on_failure"; const char kFlagfileFlag[] = "flagfile"; // A valid random seed must be in [1, kMaxRandomSeed]. const int kMaxRandomSeed = 99999; // g_help_flag is true if and only if the --help flag or an equivalent form // is specified on the command line. GTEST_API_ extern bool g_help_flag; // Returns the current time in milliseconds. GTEST_API_ TimeInMillis GetTimeInMillis(); // Returns true if and only if Google Test should use colors in the output. GTEST_API_ bool ShouldUseColor(bool stdout_is_tty); // Formats the given time in milliseconds as seconds. GTEST_API_ std::string FormatTimeInMillisAsSeconds(TimeInMillis ms); // Converts the given time in milliseconds to a date string in the ISO 8601 // format, without the timezone information. N.B.: due to the use the // non-reentrant localtime() function, this function is not thread safe. Do // not use it in any code that can be called from multiple threads. GTEST_API_ std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms); // Parses a string for an Int32 flag, in the form of "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. GTEST_API_ bool ParseInt32Flag( const char* str, const char* flag, Int32* value); // Returns a random seed in range [1, kMaxRandomSeed] based on the // given --gtest_random_seed flag value. inline int GetRandomSeedFromFlag(Int32 random_seed_flag) { const unsigned int raw_seed = (random_seed_flag == 0) ? static_cast(GetTimeInMillis()) : static_cast(random_seed_flag); // Normalizes the actual seed to range [1, kMaxRandomSeed] such that // it's easy to type. const int normalized_seed = static_cast((raw_seed - 1U) % static_cast(kMaxRandomSeed)) + 1; return normalized_seed; } // Returns the first valid random seed after 'seed'. The behavior is // undefined if 'seed' is invalid. The seed after kMaxRandomSeed is // considered to be 1. inline int GetNextRandomSeed(int seed) { GTEST_CHECK_(1 <= seed && seed <= kMaxRandomSeed) << "Invalid random seed " << seed << " - must be in [1, " << kMaxRandomSeed << "]."; const int next_seed = seed + 1; return (next_seed > kMaxRandomSeed) ? 1 : next_seed; } // This class saves the values of all Google Test flags in its c'tor, and // restores them in its d'tor. class GTestFlagSaver { public: // The c'tor. GTestFlagSaver() { also_run_disabled_tests_ = GTEST_FLAG(also_run_disabled_tests); break_on_failure_ = GTEST_FLAG(break_on_failure); catch_exceptions_ = GTEST_FLAG(catch_exceptions); color_ = GTEST_FLAG(color); death_test_style_ = GTEST_FLAG(death_test_style); death_test_use_fork_ = GTEST_FLAG(death_test_use_fork); filter_ = GTEST_FLAG(filter); internal_run_death_test_ = GTEST_FLAG(internal_run_death_test); list_tests_ = GTEST_FLAG(list_tests); output_ = GTEST_FLAG(output); print_time_ = GTEST_FLAG(print_time); print_utf8_ = GTEST_FLAG(print_utf8); random_seed_ = GTEST_FLAG(random_seed); repeat_ = GTEST_FLAG(repeat); shuffle_ = GTEST_FLAG(shuffle); stack_trace_depth_ = GTEST_FLAG(stack_trace_depth); stream_result_to_ = GTEST_FLAG(stream_result_to); throw_on_failure_ = GTEST_FLAG(throw_on_failure); } // The d'tor is not virtual. DO NOT INHERIT FROM THIS CLASS. ~GTestFlagSaver() { GTEST_FLAG(also_run_disabled_tests) = also_run_disabled_tests_; GTEST_FLAG(break_on_failure) = break_on_failure_; GTEST_FLAG(catch_exceptions) = catch_exceptions_; GTEST_FLAG(color) = color_; GTEST_FLAG(death_test_style) = death_test_style_; GTEST_FLAG(death_test_use_fork) = death_test_use_fork_; GTEST_FLAG(filter) = filter_; GTEST_FLAG(internal_run_death_test) = internal_run_death_test_; GTEST_FLAG(list_tests) = list_tests_; GTEST_FLAG(output) = output_; GTEST_FLAG(print_time) = print_time_; GTEST_FLAG(print_utf8) = print_utf8_; GTEST_FLAG(random_seed) = random_seed_; GTEST_FLAG(repeat) = repeat_; GTEST_FLAG(shuffle) = shuffle_; GTEST_FLAG(stack_trace_depth) = stack_trace_depth_; GTEST_FLAG(stream_result_to) = stream_result_to_; GTEST_FLAG(throw_on_failure) = throw_on_failure_; } private: // Fields for saving the original values of flags. bool also_run_disabled_tests_; bool break_on_failure_; bool catch_exceptions_; std::string color_; std::string death_test_style_; bool death_test_use_fork_; std::string filter_; std::string internal_run_death_test_; bool list_tests_; std::string output_; bool print_time_; bool print_utf8_; internal::Int32 random_seed_; internal::Int32 repeat_; bool shuffle_; internal::Int32 stack_trace_depth_; std::string stream_result_to_; bool throw_on_failure_; } GTEST_ATTRIBUTE_UNUSED_; // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type UInt32 because wchar_t may not be // wide enough to contain a code point. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted // to "(Invalid Unicode 0xXXXXXXXX)". GTEST_API_ std::string CodePointToUtf8(UInt32 code_point); // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. GTEST_API_ std::string WideStringToUtf8(const wchar_t* str, int num_chars); // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file // if the variable is present. If a file already exists at this location, this // function will write over it. If the variable is present, but the file cannot // be created, prints an error and exits. void WriteToShardStatusFileIfNeeded(); // Checks whether sharding is enabled by examining the relevant // environment variable values. If the variables are present, // but inconsistent (e.g., shard_index >= total_shards), prints // an error and exits. If in_subprocess_for_death_test, sharding is // disabled because it must only be applied to the original test // process. Otherwise, we could filter out death tests we intended to execute. GTEST_API_ bool ShouldShard(const char* total_shards_str, const char* shard_index_str, bool in_subprocess_for_death_test); // Parses the environment variable var as an Int32. If it is unset, // returns default_val. If it is not an Int32, prints an error and // and aborts. GTEST_API_ Int32 Int32FromEnvOrDie(const char* env_var, Int32 default_val); // Given the total number of shards, the shard index, and the test id, // returns true if and only if the test should be run on this shard. The test id // is some arbitrary but unique non-negative integer assigned to each test // method. Assumes that 0 <= shard_index < total_shards. GTEST_API_ bool ShouldRunTestOnShard( int total_shards, int shard_index, int test_id); // STL container utilities. // Returns the number of elements in the given container that satisfy // the given predicate. template inline int CountIf(const Container& c, Predicate predicate) { // Implemented as an explicit loop since std::count_if() in libCstd on // Solaris has a non-standard signature. int count = 0; for (typename Container::const_iterator it = c.begin(); it != c.end(); ++it) { if (predicate(*it)) ++count; } return count; } // Applies a function/functor to each element in the container. template void ForEach(const Container& c, Functor functor) { std::for_each(c.begin(), c.end(), functor); } // Returns the i-th element of the vector, or default_value if i is not // in range [0, v.size()). template inline E GetElementOr(const std::vector& v, int i, E default_value) { return (i < 0 || i >= static_cast(v.size())) ? default_value : v[static_cast(i)]; } // Performs an in-place shuffle of a range of the vector's elements. // 'begin' and 'end' are element indices as an STL-style range; // i.e. [begin, end) are shuffled, where 'end' == size() means to // shuffle to the end of the vector. template void ShuffleRange(internal::Random* random, int begin, int end, std::vector* v) { const int size = static_cast(v->size()); GTEST_CHECK_(0 <= begin && begin <= size) << "Invalid shuffle range start " << begin << ": must be in range [0, " << size << "]."; GTEST_CHECK_(begin <= end && end <= size) << "Invalid shuffle range finish " << end << ": must be in range [" << begin << ", " << size << "]."; // Fisher-Yates shuffle, from // http://en.wikipedia.org/wiki/Fisher-Yates_shuffle for (int range_width = end - begin; range_width >= 2; range_width--) { const int last_in_range = begin + range_width - 1; const int selected = begin + static_cast(random->Generate(static_cast(range_width))); std::swap((*v)[static_cast(selected)], (*v)[static_cast(last_in_range)]); } } // Performs an in-place shuffle of the vector's elements. template inline void Shuffle(internal::Random* random, std::vector* v) { ShuffleRange(random, 0, static_cast(v->size()), v); } // A function for deleting an object. Handy for being used as a // functor. template static void Delete(T* x) { delete x; } // A predicate that checks the key of a TestProperty against a known key. // // TestPropertyKeyIs is copyable. class TestPropertyKeyIs { public: // Constructor. // // TestPropertyKeyIs has NO default constructor. explicit TestPropertyKeyIs(const std::string& key) : key_(key) {} // Returns true if and only if the test name of test property matches on key_. bool operator()(const TestProperty& test_property) const { return test_property.key() == key_; } private: std::string key_; }; // Class UnitTestOptions. // // This class contains functions for processing options the user // specifies when running the tests. It has only static members. // // In most cases, the user can specify an option using either an // environment variable or a command line flag. E.g. you can set the // test filter using either GTEST_FILTER or --gtest_filter. If both // the variable and the flag are present, the latter overrides the // former. class GTEST_API_ UnitTestOptions { public: // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. static std::string GetOutputFormat(); // Returns the absolute path of the requested output file, or the // default (test_detail.xml in the original working directory) if // none was explicitly specified. static std::string GetAbsolutePathToOutputFile(); // Functions for processing the gtest_filter flag. // Returns true if and only if the wildcard pattern matches the string. // The first ':' or '\0' character in pattern marks the end of it. // // This recursive algorithm isn't very efficient, but is clear and // works well enough for matching test names, which are short. static bool PatternMatchesString(const char *pattern, const char *str); // Returns true if and only if the user-specified filter matches the test // suite name and the test name. static bool FilterMatchesTest(const std::string& test_suite_name, const std::string& test_name); #if GTEST_OS_WINDOWS // Function for supporting the gtest_catch_exception flag. // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. // This function is useful as an __except condition. static int GTestShouldProcessSEH(DWORD exception_code); #endif // GTEST_OS_WINDOWS // Returns true if "name" matches the ':' separated list of glob-style // filters in "filter". static bool MatchesFilter(const std::string& name, const char* filter); }; // Returns the current application's name, removing directory path if that // is present. Used by UnitTestOptions::GetOutputFile. GTEST_API_ FilePath GetCurrentExecutableName(); // The role interface for getting the OS stack trace as a string. class OsStackTraceGetterInterface { public: OsStackTraceGetterInterface() {} virtual ~OsStackTraceGetterInterface() {} // Returns the current OS stack trace as an std::string. Parameters: // // max_depth - the maximum number of stack frames to be included // in the trace. // skip_count - the number of top frames to be skipped; doesn't count // against max_depth. virtual std::string CurrentStackTrace(int max_depth, int skip_count) = 0; // UponLeavingGTest() should be called immediately before Google Test calls // user code. It saves some information about the current stack that // CurrentStackTrace() will use to find and hide Google Test stack frames. virtual void UponLeavingGTest() = 0; // This string is inserted in place of stack frames that are part of // Google Test's implementation. static const char* const kElidedFramesMarker; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetterInterface); }; // A working implementation of the OsStackTraceGetterInterface interface. class OsStackTraceGetter : public OsStackTraceGetterInterface { public: OsStackTraceGetter() {} std::string CurrentStackTrace(int max_depth, int skip_count) override; void UponLeavingGTest() override; private: #if GTEST_HAS_ABSL Mutex mutex_; // Protects all internal state. // We save the stack frame below the frame that calls user code. // We do this because the address of the frame immediately below // the user code changes between the call to UponLeavingGTest() // and any calls to the stack trace code from within the user code. void* caller_frame_ = nullptr; #endif // GTEST_HAS_ABSL GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetter); }; // Information about a Google Test trace point. struct TraceInfo { const char* file; int line; std::string message; }; // This is the default global test part result reporter used in UnitTestImpl. // This class should only be used by UnitTestImpl. class DefaultGlobalTestPartResultReporter : public TestPartResultReporterInterface { public: explicit DefaultGlobalTestPartResultReporter(UnitTestImpl* unit_test); // Implements the TestPartResultReporterInterface. Reports the test part // result in the current test. void ReportTestPartResult(const TestPartResult& result) override; private: UnitTestImpl* const unit_test_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultGlobalTestPartResultReporter); }; // This is the default per thread test part result reporter used in // UnitTestImpl. This class should only be used by UnitTestImpl. class DefaultPerThreadTestPartResultReporter : public TestPartResultReporterInterface { public: explicit DefaultPerThreadTestPartResultReporter(UnitTestImpl* unit_test); // Implements the TestPartResultReporterInterface. The implementation just // delegates to the current global test part result reporter of *unit_test_. void ReportTestPartResult(const TestPartResult& result) override; private: UnitTestImpl* const unit_test_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultPerThreadTestPartResultReporter); }; // The private implementation of the UnitTest class. We don't protect // the methods under a mutex, as this class is not accessible by a // user and the UnitTest class that delegates work to this class does // proper locking. class GTEST_API_ UnitTestImpl { public: explicit UnitTestImpl(UnitTest* parent); virtual ~UnitTestImpl(); // There are two different ways to register your own TestPartResultReporter. // You can register your own repoter to listen either only for test results // from the current thread or for results from all threads. // By default, each per-thread test result repoter just passes a new // TestPartResult to the global test result reporter, which registers the // test part result for the currently running test. // Returns the global test part result reporter. TestPartResultReporterInterface* GetGlobalTestPartResultReporter(); // Sets the global test part result reporter. void SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter); // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* GetTestPartResultReporterForCurrentThread(); // Sets the test part result reporter for the current thread. void SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter); // Gets the number of successful test suites. int successful_test_suite_count() const; // Gets the number of failed test suites. int failed_test_suite_count() const; // Gets the number of all test suites. int total_test_suite_count() const; // Gets the number of all test suites that contain at least one test // that should run. int test_suite_to_run_count() const; // Gets the number of successful tests. int successful_test_count() const; // Gets the number of skipped tests. int skipped_test_count() const; // Gets the number of failed tests. int failed_test_count() const; // Gets the number of disabled tests that will be reported in the XML report. int reportable_disabled_test_count() const; // Gets the number of disabled tests. int disabled_test_count() const; // Gets the number of tests to be printed in the XML report. int reportable_test_count() const; // Gets the number of all tests. int total_test_count() const; // Gets the number of tests that should run. int test_to_run_count() const; // Gets the time of the test program start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp() const { return start_timestamp_; } // Gets the elapsed time, in milliseconds. TimeInMillis elapsed_time() const { return elapsed_time_; } // Returns true if and only if the unit test passed (i.e. all test suites // passed). bool Passed() const { return !Failed(); } // Returns true if and only if the unit test failed (i.e. some test suite // failed or something outside of all tests failed). bool Failed() const { return failed_test_suite_count() > 0 || ad_hoc_test_result()->Failed(); } // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. const TestSuite* GetTestSuite(int i) const { const int index = GetElementOr(test_suite_indices_, i, -1); return index < 0 ? nullptr : test_suites_[static_cast(i)]; } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* GetTestCase(int i) const { return GetTestSuite(i); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. TestSuite* GetMutableSuiteCase(int i) { const int index = GetElementOr(test_suite_indices_, i, -1); return index < 0 ? nullptr : test_suites_[static_cast(index)]; } // Provides access to the event listener list. TestEventListeners* listeners() { return &listeners_; } // Returns the TestResult for the test that's currently running, or // the TestResult for the ad hoc test if no test is running. TestResult* current_test_result(); // Returns the TestResult for the ad hoc test. const TestResult* ad_hoc_test_result() const { return &ad_hoc_test_result_; } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter // are the same; otherwise, deletes the old getter and makes the // input the current getter. void set_os_stack_trace_getter(OsStackTraceGetterInterface* getter); // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* os_stack_trace_getter(); // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. std::string CurrentOsStackTraceExceptTop(int skip_count) GTEST_NO_INLINE_; // Finds and returns a TestSuite with the given name. If one doesn't // exist, creates one and returns it. // // Arguments: // // test_suite_name: name of the test suite // type_param: the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite* GetTestSuite(const char* test_suite_name, const char* type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ TestCase* GetTestCase(const char* test_case_name, const char* type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc) { return GetTestSuite(test_case_name, type_param, set_up_tc, tear_down_tc); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Adds a TestInfo to the unit test. // // Arguments: // // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite // test_info: the TestInfo object void AddTestInfo(internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc, TestInfo* test_info) { // In order to support thread-safe death tests, we need to // remember the original working directory when the test program // was first invoked. We cannot do this in RUN_ALL_TESTS(), as // the user may have changed the current directory before calling // RUN_ALL_TESTS(). Therefore we capture the current directory in // AddTestInfo(), which is called to register a TEST or TEST_F // before main() is reached. if (original_working_dir_.IsEmpty()) { original_working_dir_.Set(FilePath::GetCurrentDir()); GTEST_CHECK_(!original_working_dir_.IsEmpty()) << "Failed to get the current working directory."; } GetTestSuite(test_info->test_suite_name(), test_info->type_param(), set_up_tc, tear_down_tc) ->AddTestInfo(test_info); } // Returns ParameterizedTestSuiteRegistry object used to keep track of // value-parameterized tests and instantiate and register them. internal::ParameterizedTestSuiteRegistry& parameterized_test_registry() { return parameterized_test_registry_; } // Sets the TestSuite object for the test that's currently running. void set_current_test_suite(TestSuite* a_current_test_suite) { current_test_suite_ = a_current_test_suite; } // Sets the TestInfo object for the test that's currently running. If // current_test_info is NULL, the assertion results will be stored in // ad_hoc_test_result_. void set_current_test_info(TestInfo* a_current_test_info) { current_test_info_ = a_current_test_info; } // Registers all parameterized tests defined using TEST_P and // INSTANTIATE_TEST_SUITE_P, creating regular tests for each test/parameter // combination. This method can be called more then once; it has guards // protecting from registering the tests more then once. If // value-parameterized tests are disabled, RegisterParameterizedTests is // present but does nothing. void RegisterParameterizedTests(); // Runs all tests in this UnitTest object, prints the result, and // returns true if all tests are successful. If any exception is // thrown during a test, this test is considered to be failed, but // the rest of the tests will still be run. bool RunAllTests(); // Clears the results of all tests, except the ad hoc tests. void ClearNonAdHocTestResult() { ForEach(test_suites_, TestSuite::ClearTestSuiteResult); } // Clears the results of ad-hoc test assertions. void ClearAdHocTestResult() { ad_hoc_test_result_.Clear(); } // Adds a TestProperty to the current TestResult object when invoked in a // context of a test or a test suite, or to the global property set. If the // result already contains a property with the same key, the value will be // updated. void RecordProperty(const TestProperty& test_property); enum ReactionToSharding { HONOR_SHARDING_PROTOCOL, IGNORE_SHARDING_PROTOCOL }; // Matches the full name of each test against the user-specified // filter to decide whether the test should run, then records the // result in each TestSuite and TestInfo object. // If shard_tests == HONOR_SHARDING_PROTOCOL, further filters tests // based on sharding variables in the environment. // Returns the number of tests that should run. int FilterTests(ReactionToSharding shard_tests); // Prints the names of the tests matching the user-specified filter flag. void ListTestsMatchingFilter(); const TestSuite* current_test_suite() const { return current_test_suite_; } TestInfo* current_test_info() { return current_test_info_; } const TestInfo* current_test_info() const { return current_test_info_; } // Returns the vector of environments that need to be set-up/torn-down // before/after the tests are run. std::vector& environments() { return environments_; } // Getters for the per-thread Google Test trace stack. std::vector& gtest_trace_stack() { return *(gtest_trace_stack_.pointer()); } const std::vector& gtest_trace_stack() const { return gtest_trace_stack_.get(); } #if GTEST_HAS_DEATH_TEST void InitDeathTestSubprocessControlInfo() { internal_run_death_test_flag_.reset(ParseInternalRunDeathTestFlag()); } // Returns a pointer to the parsed --gtest_internal_run_death_test // flag, or NULL if that flag was not specified. // This information is useful only in a death test child process. // Must not be called before a call to InitGoogleTest. const InternalRunDeathTestFlag* internal_run_death_test_flag() const { return internal_run_death_test_flag_.get(); } // Returns a pointer to the current death test factory. internal::DeathTestFactory* death_test_factory() { return death_test_factory_.get(); } void SuppressTestEventsIfInSubprocess(); friend class ReplaceDeathTestFactory; #endif // GTEST_HAS_DEATH_TEST // Initializes the event listener performing XML output as specified by // UnitTestOptions. Must not be called before InitGoogleTest. void ConfigureXmlOutput(); #if GTEST_CAN_STREAM_RESULTS_ // Initializes the event listener for streaming test results to a socket. // Must not be called before InitGoogleTest. void ConfigureStreamingOutput(); #endif // Performs initialization dependent upon flag values obtained in // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest // this function is also called from RunAllTests. Since this function can be // called more than once, it has to be idempotent. void PostFlagParsingInit(); // Gets the random seed used at the start of the current test iteration. int random_seed() const { return random_seed_; } // Gets the random number generator. internal::Random* random() { return &random_; } // Shuffles all test suites, and the tests within each test suite, // making sure that death tests are still run first. void ShuffleTests(); // Restores the test suites and tests to their order before the first shuffle. void UnshuffleTests(); // Returns the value of GTEST_FLAG(catch_exceptions) at the moment // UnitTest::Run() starts. bool catch_exceptions() const { return catch_exceptions_; } private: friend class ::testing::UnitTest; // Used by UnitTest::Run() to capture the state of // GTEST_FLAG(catch_exceptions) at the moment it starts. void set_catch_exceptions(bool value) { catch_exceptions_ = value; } // The UnitTest object that owns this implementation object. UnitTest* const parent_; // The working directory when the first TEST() or TEST_F() was // executed. internal::FilePath original_working_dir_; // The default test part result reporters. DefaultGlobalTestPartResultReporter default_global_test_part_result_reporter_; DefaultPerThreadTestPartResultReporter default_per_thread_test_part_result_reporter_; // Points to (but doesn't own) the global test part result reporter. TestPartResultReporterInterface* global_test_part_result_repoter_; // Protects read and write access to global_test_part_result_reporter_. internal::Mutex global_test_part_result_reporter_mutex_; // Points to (but doesn't own) the per-thread test part result reporter. internal::ThreadLocal per_thread_test_part_result_reporter_; // The vector of environments that need to be set-up/torn-down // before/after the tests are run. std::vector environments_; // The vector of TestSuites in their original order. It owns the // elements in the vector. std::vector test_suites_; // Provides a level of indirection for the test suite list to allow // easy shuffling and restoring the test suite order. The i-th // element of this vector is the index of the i-th test suite in the // shuffled order. std::vector test_suite_indices_; // ParameterizedTestRegistry object used to register value-parameterized // tests. internal::ParameterizedTestSuiteRegistry parameterized_test_registry_; // Indicates whether RegisterParameterizedTests() has been called already. bool parameterized_tests_registered_; // Index of the last death test suite registered. Initially -1. int last_death_test_suite_; // This points to the TestSuite for the currently running test. It // changes as Google Test goes through one test suite after another. // When no test is running, this is set to NULL and Google Test // stores assertion results in ad_hoc_test_result_. Initially NULL. TestSuite* current_test_suite_; // This points to the TestInfo for the currently running test. It // changes as Google Test goes through one test after another. When // no test is running, this is set to NULL and Google Test stores // assertion results in ad_hoc_test_result_. Initially NULL. TestInfo* current_test_info_; // Normally, a user only writes assertions inside a TEST or TEST_F, // or inside a function called by a TEST or TEST_F. Since Google // Test keeps track of which test is current running, it can // associate such an assertion with the test it belongs to. // // If an assertion is encountered when no TEST or TEST_F is running, // Google Test attributes the assertion result to an imaginary "ad hoc" // test, and records the result in ad_hoc_test_result_. TestResult ad_hoc_test_result_; // The list of event listeners that can be used to track events inside // Google Test. TestEventListeners listeners_; // The OS stack trace getter. Will be deleted when the UnitTest // object is destructed. By default, an OsStackTraceGetter is used, // but the user can set this field to use a custom getter if that is // desired. OsStackTraceGetterInterface* os_stack_trace_getter_; // True if and only if PostFlagParsingInit() has been called. bool post_flag_parse_init_performed_; // The random number seed used at the beginning of the test run. int random_seed_; // Our random number generator. internal::Random random_; // The time of the test program start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp_; // How long the test took to run, in milliseconds. TimeInMillis elapsed_time_; #if GTEST_HAS_DEATH_TEST // The decomposed components of the gtest_internal_run_death_test flag, // parsed when RUN_ALL_TESTS is called. std::unique_ptr internal_run_death_test_flag_; std::unique_ptr death_test_factory_; #endif // GTEST_HAS_DEATH_TEST // A per-thread stack of traces created by the SCOPED_TRACE() macro. internal::ThreadLocal > gtest_trace_stack_; // The value of GTEST_FLAG(catch_exceptions) at the moment RunAllTests() // starts. bool catch_exceptions_; GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTestImpl); }; // class UnitTestImpl // Convenience function for accessing the global UnitTest // implementation object. inline UnitTestImpl* GetUnitTestImpl() { return UnitTest::GetInstance()->impl(); } #if GTEST_USES_SIMPLE_RE // Internal helper functions for implementing the simple regular // expression matcher. GTEST_API_ bool IsInSet(char ch, const char* str); GTEST_API_ bool IsAsciiDigit(char ch); GTEST_API_ bool IsAsciiPunct(char ch); GTEST_API_ bool IsRepeat(char ch); GTEST_API_ bool IsAsciiWhiteSpace(char ch); GTEST_API_ bool IsAsciiWordChar(char ch); GTEST_API_ bool IsValidEscape(char ch); GTEST_API_ bool AtomMatchesChar(bool escaped, char pattern, char ch); GTEST_API_ bool ValidateRegex(const char* regex); GTEST_API_ bool MatchRegexAtHead(const char* regex, const char* str); GTEST_API_ bool MatchRepetitionAndRegexAtHead( bool escaped, char ch, char repeat, const char* regex, const char* str); GTEST_API_ bool MatchRegexAnywhere(const char* regex, const char* str); #endif // GTEST_USES_SIMPLE_RE // Parses the command line for Google Test flags, without initializing // other parts of Google Test. GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, char** argv); GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv); #if GTEST_HAS_DEATH_TEST // Returns the message describing the last system error, regardless of the // platform. GTEST_API_ std::string GetLastErrnoDescription(); // Attempts to parse a string into a positive integer pointed to by the // number parameter. Returns true if that is possible. // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we can use // it here. template bool ParseNaturalNumber(const ::std::string& str, Integer* number) { // Fail fast if the given string does not begin with a digit; // this bypasses strtoXXX's "optional leading whitespace and plus // or minus sign" semantics, which are undesirable here. if (str.empty() || !IsDigit(str[0])) { return false; } errno = 0; char* end; // BiggestConvertible is the largest integer type that system-provided // string-to-number conversion routines can return. # if GTEST_OS_WINDOWS && !defined(__GNUC__) // MSVC and C++ Builder define __int64 instead of the standard long long. typedef unsigned __int64 BiggestConvertible; const BiggestConvertible parsed = _strtoui64(str.c_str(), &end, 10); # else typedef unsigned long long BiggestConvertible; // NOLINT const BiggestConvertible parsed = strtoull(str.c_str(), &end, 10); # endif // GTEST_OS_WINDOWS && !defined(__GNUC__) const bool parse_success = *end == '\0' && errno == 0; GTEST_CHECK_(sizeof(Integer) <= sizeof(parsed)); const Integer result = static_cast(parsed); if (parse_success && static_cast(result) == parsed) { *number = result; return true; } return false; } #endif // GTEST_HAS_DEATH_TEST // TestResult contains some private methods that should be hidden from // Google Test user but are required for testing. This class allow our tests // to access them. // // This class is supplied only for the purpose of testing Google Test's own // constructs. Do not use it in user tests, either directly or indirectly. class TestResultAccessor { public: static void RecordProperty(TestResult* test_result, const std::string& xml_element, const TestProperty& property) { test_result->RecordProperty(xml_element, property); } static void ClearTestPartResults(TestResult* test_result) { test_result->ClearTestPartResults(); } static const std::vector& test_part_results( const TestResult& test_result) { return test_result.test_part_results(); } }; #if GTEST_CAN_STREAM_RESULTS_ // Streams test results to the given port on the given host machine. class StreamingListener : public EmptyTestEventListener { public: // Abstract base class for writing strings to a socket. class AbstractSocketWriter { public: virtual ~AbstractSocketWriter() {} // Sends a string to the socket. virtual void Send(const std::string& message) = 0; // Closes the socket. virtual void CloseConnection() {} // Sends a string and a newline to the socket. void SendLn(const std::string& message) { Send(message + "\n"); } }; // Concrete class for actually writing strings to a socket. class SocketWriter : public AbstractSocketWriter { public: SocketWriter(const std::string& host, const std::string& port) : sockfd_(-1), host_name_(host), port_num_(port) { MakeConnection(); } ~SocketWriter() override { if (sockfd_ != -1) CloseConnection(); } // Sends a string to the socket. void Send(const std::string& message) override { GTEST_CHECK_(sockfd_ != -1) << "Send() can be called only when there is a connection."; const auto len = static_cast(message.length()); if (write(sockfd_, message.c_str(), len) != static_cast(len)) { GTEST_LOG_(WARNING) << "stream_result_to: failed to stream to " << host_name_ << ":" << port_num_; } } private: // Creates a client socket and connects to the server. void MakeConnection(); // Closes the socket. void CloseConnection() override { GTEST_CHECK_(sockfd_ != -1) << "CloseConnection() can be called only when there is a connection."; close(sockfd_); sockfd_ = -1; } int sockfd_; // socket file descriptor const std::string host_name_; const std::string port_num_; GTEST_DISALLOW_COPY_AND_ASSIGN_(SocketWriter); }; // class SocketWriter // Escapes '=', '&', '%', and '\n' characters in str as "%xx". static std::string UrlEncode(const char* str); StreamingListener(const std::string& host, const std::string& port) : socket_writer_(new SocketWriter(host, port)) { Start(); } explicit StreamingListener(AbstractSocketWriter* socket_writer) : socket_writer_(socket_writer) { Start(); } void OnTestProgramStart(const UnitTest& /* unit_test */) override { SendLn("event=TestProgramStart"); } void OnTestProgramEnd(const UnitTest& unit_test) override { // Note that Google Test current only report elapsed time for each // test iteration, not for the entire test program. SendLn("event=TestProgramEnd&passed=" + FormatBool(unit_test.Passed())); // Notify the streaming server to stop. socket_writer_->CloseConnection(); } void OnTestIterationStart(const UnitTest& /* unit_test */, int iteration) override { SendLn("event=TestIterationStart&iteration=" + StreamableToString(iteration)); } void OnTestIterationEnd(const UnitTest& unit_test, int /* iteration */) override { SendLn("event=TestIterationEnd&passed=" + FormatBool(unit_test.Passed()) + "&elapsed_time=" + StreamableToString(unit_test.elapsed_time()) + "ms"); } // Note that "event=TestCaseStart" is a wire format and has to remain // "case" for compatibilty void OnTestCaseStart(const TestCase& test_case) override { SendLn(std::string("event=TestCaseStart&name=") + test_case.name()); } // Note that "event=TestCaseEnd" is a wire format and has to remain // "case" for compatibilty void OnTestCaseEnd(const TestCase& test_case) override { SendLn("event=TestCaseEnd&passed=" + FormatBool(test_case.Passed()) + "&elapsed_time=" + StreamableToString(test_case.elapsed_time()) + "ms"); } void OnTestStart(const TestInfo& test_info) override { SendLn(std::string("event=TestStart&name=") + test_info.name()); } void OnTestEnd(const TestInfo& test_info) override { SendLn("event=TestEnd&passed=" + FormatBool((test_info.result())->Passed()) + "&elapsed_time=" + StreamableToString((test_info.result())->elapsed_time()) + "ms"); } void OnTestPartResult(const TestPartResult& test_part_result) override { const char* file_name = test_part_result.file_name(); if (file_name == nullptr) file_name = ""; SendLn("event=TestPartResult&file=" + UrlEncode(file_name) + "&line=" + StreamableToString(test_part_result.line_number()) + "&message=" + UrlEncode(test_part_result.message())); } private: // Sends the given message and a newline to the socket. void SendLn(const std::string& message) { socket_writer_->SendLn(message); } // Called at the start of streaming to notify the receiver what // protocol we are using. void Start() { SendLn("gtest_streaming_protocol_version=1.0"); } std::string FormatBool(bool value) { return value ? "1" : "0"; } const std::unique_ptr socket_writer_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamingListener); }; // class StreamingListener #endif // GTEST_CAN_STREAM_RESULTS_ } // namespace internal } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 #endif // GTEST_SRC_GTEST_INTERNAL_INL_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-matchers.cc000066400000000000000000000071751355420072700247150ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The Google C++ Testing and Mocking Framework (Google Test) // // This file implements just enough of the matcher interface to allow // EXPECT_DEATH and friends to accept a matcher argument. #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-port.h" #include "gtest/gtest-matchers.h" #include namespace testing { // Constructs a matcher that matches a const std::string& whose value is // equal to s. Matcher::Matcher(const std::string& s) { *this = Eq(s); } // Constructs a matcher that matches a const std::string& whose value is // equal to s. Matcher::Matcher(const char* s) { *this = Eq(std::string(s)); } // Constructs a matcher that matches a std::string whose value is equal to // s. Matcher::Matcher(const std::string& s) { *this = Eq(s); } // Constructs a matcher that matches a std::string whose value is equal to // s. Matcher::Matcher(const char* s) { *this = Eq(std::string(s)); } #if GTEST_HAS_ABSL // Constructs a matcher that matches a const absl::string_view& whose value is // equal to s. Matcher::Matcher(const std::string& s) { *this = Eq(s); } // Constructs a matcher that matches a const absl::string_view& whose value is // equal to s. Matcher::Matcher(const char* s) { *this = Eq(std::string(s)); } // Constructs a matcher that matches a const absl::string_view& whose value is // equal to s. Matcher::Matcher(absl::string_view s) { *this = Eq(std::string(s)); } // Constructs a matcher that matches a absl::string_view whose value is equal to // s. Matcher::Matcher(const std::string& s) { *this = Eq(s); } // Constructs a matcher that matches a absl::string_view whose value is equal to // s. Matcher::Matcher(const char* s) { *this = Eq(std::string(s)); } // Constructs a matcher that matches a absl::string_view whose value is equal to // s. Matcher::Matcher(absl::string_view s) { *this = Eq(std::string(s)); } #endif // GTEST_HAS_ABSL } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-port.cc000066400000000000000000001325521355420072700240710ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/internal/gtest-port.h" #include #include #include #include #include #include #if GTEST_OS_WINDOWS # include # include # include # include // Used in ThreadLocal. # ifdef _MSC_VER # include # endif // _MSC_VER #else # include #endif // GTEST_OS_WINDOWS #if GTEST_OS_MAC # include # include # include #endif // GTEST_OS_MAC #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \ GTEST_OS_NETBSD || GTEST_OS_OPENBSD # include # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD # include # endif #endif #if GTEST_OS_QNX # include # include # include #endif // GTEST_OS_QNX #if GTEST_OS_AIX # include # include #endif // GTEST_OS_AIX #if GTEST_OS_FUCHSIA # include # include #endif // GTEST_OS_FUCHSIA #include "gtest/gtest-spi.h" #include "gtest/gtest-message.h" #include "gtest/internal/gtest-internal.h" #include "gtest/internal/gtest-string.h" #include "src/gtest-internal-inl.h" namespace testing { namespace internal { #if defined(_MSC_VER) || defined(__BORLANDC__) // MSVC and C++Builder do not provide a definition of STDERR_FILENO. const int kStdOutFileno = 1; const int kStdErrFileno = 2; #else const int kStdOutFileno = STDOUT_FILENO; const int kStdErrFileno = STDERR_FILENO; #endif // _MSC_VER #if GTEST_OS_LINUX namespace { template T ReadProcFileField(const std::string& filename, int field) { std::string dummy; std::ifstream file(filename.c_str()); while (field-- > 0) { file >> dummy; } T output = 0; file >> output; return output; } } // namespace // Returns the number of active threads, or 0 when there is an error. size_t GetThreadCount() { const std::string filename = (Message() << "/proc/" << getpid() << "/stat").GetString(); return ReadProcFileField(filename, 19); } #elif GTEST_OS_MAC size_t GetThreadCount() { const task_t task = mach_task_self(); mach_msg_type_number_t thread_count; thread_act_array_t thread_list; const kern_return_t status = task_threads(task, &thread_list, &thread_count); if (status == KERN_SUCCESS) { // task_threads allocates resources in thread_list and we need to free them // to avoid leaks. vm_deallocate(task, reinterpret_cast(thread_list), sizeof(thread_t) * thread_count); return static_cast(thread_count); } else { return 0; } } #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \ GTEST_OS_NETBSD #if GTEST_OS_NETBSD #undef KERN_PROC #define KERN_PROC KERN_PROC2 #define kinfo_proc kinfo_proc2 #endif #if GTEST_OS_DRAGONFLY #define KP_NLWP(kp) (kp.kp_nthreads) #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD #define KP_NLWP(kp) (kp.ki_numthreads) #elif GTEST_OS_NETBSD #define KP_NLWP(kp) (kp.p_nlwps) #endif // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, getpid(), #if GTEST_OS_NETBSD sizeof(struct kinfo_proc), 1, #endif }; u_int miblen = sizeof(mib) / sizeof(mib[0]); struct kinfo_proc info; size_t size = sizeof(info); if (sysctl(mib, miblen, &info, &size, NULL, 0)) { return 0; } return static_cast(KP_NLWP(info)); } #elif GTEST_OS_OPENBSD // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID | KERN_PROC_SHOW_THREADS, getpid(), sizeof(struct kinfo_proc), 0, }; u_int miblen = sizeof(mib) / sizeof(mib[0]); // get number of structs size_t size; if (sysctl(mib, miblen, NULL, &size, NULL, 0)) { return 0; } mib[5] = size / mib[4]; // populate array of structs struct kinfo_proc info[mib[5]]; if (sysctl(mib, miblen, &info, &size, NULL, 0)) { return 0; } // exclude empty members int nthreads = 0; for (int i = 0; i < size / mib[4]; i++) { if (info[i].p_tid != -1) nthreads++; } return nthreads; } #elif GTEST_OS_QNX // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { const int fd = open("/proc/self/as", O_RDONLY); if (fd < 0) { return 0; } procfs_info process_info; const int status = devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr); close(fd); if (status == EOK) { return static_cast(process_info.num_threads); } else { return 0; } } #elif GTEST_OS_AIX size_t GetThreadCount() { struct procentry64 entry; pid_t pid = getpid(); int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1); if (status == 1) { return entry.pi_thcount; } else { return 0; } } #elif GTEST_OS_FUCHSIA size_t GetThreadCount() { int dummy_buffer; size_t avail; zx_status_t status = zx_object_get_info( zx_process_self(), ZX_INFO_PROCESS_THREADS, &dummy_buffer, 0, nullptr, &avail); if (status == ZX_OK) { return avail; } else { return 0; } } #else size_t GetThreadCount() { // There's no portable way to detect the number of threads, so we just // return 0 to indicate that we cannot detect it. return 0; } #endif // GTEST_OS_LINUX #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS void SleepMilliseconds(int n) { ::Sleep(static_cast(n)); } AutoHandle::AutoHandle() : handle_(INVALID_HANDLE_VALUE) {} AutoHandle::AutoHandle(Handle handle) : handle_(handle) {} AutoHandle::~AutoHandle() { Reset(); } AutoHandle::Handle AutoHandle::Get() const { return handle_; } void AutoHandle::Reset() { Reset(INVALID_HANDLE_VALUE); } void AutoHandle::Reset(HANDLE handle) { // Resetting with the same handle we already own is invalid. if (handle_ != handle) { if (IsCloseable()) { ::CloseHandle(handle_); } handle_ = handle; } else { GTEST_CHECK_(!IsCloseable()) << "Resetting a valid handle to itself is likely a programmer error " "and thus not allowed."; } } bool AutoHandle::IsCloseable() const { // Different Windows APIs may use either of these values to represent an // invalid handle. return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE; } Notification::Notification() : event_(::CreateEvent(nullptr, // Default security attributes. TRUE, // Do not reset automatically. FALSE, // Initially unset. nullptr)) { // Anonymous event. GTEST_CHECK_(event_.Get() != nullptr); } void Notification::Notify() { GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE); } void Notification::WaitForNotification() { GTEST_CHECK_( ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0); } Mutex::Mutex() : owner_thread_id_(0), type_(kDynamic), critical_section_init_phase_(0), critical_section_(new CRITICAL_SECTION) { ::InitializeCriticalSection(critical_section_); } Mutex::~Mutex() { // Static mutexes are leaked intentionally. It is not thread-safe to try // to clean them up. if (type_ == kDynamic) { ::DeleteCriticalSection(critical_section_); delete critical_section_; critical_section_ = nullptr; } } void Mutex::Lock() { ThreadSafeLazyInit(); ::EnterCriticalSection(critical_section_); owner_thread_id_ = ::GetCurrentThreadId(); } void Mutex::Unlock() { ThreadSafeLazyInit(); // We don't protect writing to owner_thread_id_ here, as it's the // caller's responsibility to ensure that the current thread holds the // mutex when this is called. owner_thread_id_ = 0; ::LeaveCriticalSection(critical_section_); } // Does nothing if the current thread holds the mutex. Otherwise, crashes // with high probability. void Mutex::AssertHeld() { ThreadSafeLazyInit(); GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId()) << "The current thread is not holding the mutex @" << this; } namespace { #ifdef _MSC_VER // Use the RAII idiom to flag mem allocs that are intentionally never // deallocated. The motivation is to silence the false positive mem leaks // that are reported by the debug version of MS's CRT which can only detect // if an alloc is missing a matching deallocation. // Example: // MemoryIsNotDeallocated memory_is_not_deallocated; // critical_section_ = new CRITICAL_SECTION; // class MemoryIsNotDeallocated { public: MemoryIsNotDeallocated() : old_crtdbg_flag_(0) { old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG); // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT // doesn't report mem leak if there's no matching deallocation. _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF); } ~MemoryIsNotDeallocated() { // Restore the original _CRTDBG_ALLOC_MEM_DF flag _CrtSetDbgFlag(old_crtdbg_flag_); } private: int old_crtdbg_flag_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated); }; #endif // _MSC_VER } // namespace // Initializes owner_thread_id_ and critical_section_ in static mutexes. void Mutex::ThreadSafeLazyInit() { // Dynamic mutexes are initialized in the constructor. if (type_ == kStatic) { switch ( ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) { case 0: // If critical_section_init_phase_ was 0 before the exchange, we // are the first to test it and need to perform the initialization. owner_thread_id_ = 0; { // Use RAII to flag that following mem alloc is never deallocated. #ifdef _MSC_VER MemoryIsNotDeallocated memory_is_not_deallocated; #endif // _MSC_VER critical_section_ = new CRITICAL_SECTION; } ::InitializeCriticalSection(critical_section_); // Updates the critical_section_init_phase_ to 2 to signal // initialization complete. GTEST_CHECK_(::InterlockedCompareExchange( &critical_section_init_phase_, 2L, 1L) == 1L); break; case 1: // Somebody else is already initializing the mutex; spin until they // are done. while (::InterlockedCompareExchange(&critical_section_init_phase_, 2L, 2L) != 2L) { // Possibly yields the rest of the thread's time slice to other // threads. ::Sleep(0); } break; case 2: break; // The mutex is already initialized and ready for use. default: GTEST_CHECK_(false) << "Unexpected value of critical_section_init_phase_ " << "while initializing a static mutex."; } } } namespace { class ThreadWithParamSupport : public ThreadWithParamBase { public: static HANDLE CreateThread(Runnable* runnable, Notification* thread_can_start) { ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start); DWORD thread_id; HANDLE thread_handle = ::CreateThread( nullptr, // Default security. 0, // Default stack size. &ThreadWithParamSupport::ThreadMain, param, // Parameter to ThreadMainStatic 0x0, // Default creation flags. &thread_id); // Need a valid pointer for the call to work under Win98. GTEST_CHECK_(thread_handle != nullptr) << "CreateThread failed with error " << ::GetLastError() << "."; if (thread_handle == nullptr) { delete param; } return thread_handle; } private: struct ThreadMainParam { ThreadMainParam(Runnable* runnable, Notification* thread_can_start) : runnable_(runnable), thread_can_start_(thread_can_start) { } std::unique_ptr runnable_; // Does not own. Notification* thread_can_start_; }; static DWORD WINAPI ThreadMain(void* ptr) { // Transfers ownership. std::unique_ptr param(static_cast(ptr)); if (param->thread_can_start_ != nullptr) param->thread_can_start_->WaitForNotification(); param->runnable_->Run(); return 0; } // Prohibit instantiation. ThreadWithParamSupport(); GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport); }; } // namespace ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable, Notification* thread_can_start) : thread_(ThreadWithParamSupport::CreateThread(runnable, thread_can_start)) { } ThreadWithParamBase::~ThreadWithParamBase() { Join(); } void ThreadWithParamBase::Join() { GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0) << "Failed to join the thread with error " << ::GetLastError() << "."; } // Maps a thread to a set of ThreadIdToThreadLocals that have values // instantiated on that thread and notifies them when the thread exits. A // ThreadLocal instance is expected to persist until all threads it has // values on have terminated. class ThreadLocalRegistryImpl { public: // Registers thread_local_instance as having value on the current thread. // Returns a value that can be used to identify the thread from other threads. static ThreadLocalValueHolderBase* GetValueOnCurrentThread( const ThreadLocalBase* thread_local_instance) { DWORD current_thread = ::GetCurrentThreadId(); MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); ThreadIdToThreadLocals::iterator thread_local_pos = thread_to_thread_locals->find(current_thread); if (thread_local_pos == thread_to_thread_locals->end()) { thread_local_pos = thread_to_thread_locals->insert( std::make_pair(current_thread, ThreadLocalValues())).first; StartWatcherThreadFor(current_thread); } ThreadLocalValues& thread_local_values = thread_local_pos->second; ThreadLocalValues::iterator value_pos = thread_local_values.find(thread_local_instance); if (value_pos == thread_local_values.end()) { value_pos = thread_local_values .insert(std::make_pair( thread_local_instance, std::shared_ptr( thread_local_instance->NewValueForCurrentThread()))) .first; } return value_pos->second.get(); } static void OnThreadLocalDestroyed( const ThreadLocalBase* thread_local_instance) { std::vector > value_holders; // Clean up the ThreadLocalValues data structure while holding the lock, but // defer the destruction of the ThreadLocalValueHolderBases. { MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); for (ThreadIdToThreadLocals::iterator it = thread_to_thread_locals->begin(); it != thread_to_thread_locals->end(); ++it) { ThreadLocalValues& thread_local_values = it->second; ThreadLocalValues::iterator value_pos = thread_local_values.find(thread_local_instance); if (value_pos != thread_local_values.end()) { value_holders.push_back(value_pos->second); thread_local_values.erase(value_pos); // This 'if' can only be successful at most once, so theoretically we // could break out of the loop here, but we don't bother doing so. } } } // Outside the lock, let the destructor for 'value_holders' deallocate the // ThreadLocalValueHolderBases. } static void OnThreadExit(DWORD thread_id) { GTEST_CHECK_(thread_id != 0) << ::GetLastError(); std::vector > value_holders; // Clean up the ThreadIdToThreadLocals data structure while holding the // lock, but defer the destruction of the ThreadLocalValueHolderBases. { MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); ThreadIdToThreadLocals::iterator thread_local_pos = thread_to_thread_locals->find(thread_id); if (thread_local_pos != thread_to_thread_locals->end()) { ThreadLocalValues& thread_local_values = thread_local_pos->second; for (ThreadLocalValues::iterator value_pos = thread_local_values.begin(); value_pos != thread_local_values.end(); ++value_pos) { value_holders.push_back(value_pos->second); } thread_to_thread_locals->erase(thread_local_pos); } } // Outside the lock, let the destructor for 'value_holders' deallocate the // ThreadLocalValueHolderBases. } private: // In a particular thread, maps a ThreadLocal object to its value. typedef std::map > ThreadLocalValues; // Stores all ThreadIdToThreadLocals having values in a thread, indexed by // thread's ID. typedef std::map ThreadIdToThreadLocals; // Holds the thread id and thread handle that we pass from // StartWatcherThreadFor to WatcherThreadFunc. typedef std::pair ThreadIdAndHandle; static void StartWatcherThreadFor(DWORD thread_id) { // The returned handle will be kept in thread_map and closed by // watcher_thread in WatcherThreadFunc. HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION, FALSE, thread_id); GTEST_CHECK_(thread != nullptr); // We need to pass a valid thread ID pointer into CreateThread for it // to work correctly under Win98. DWORD watcher_thread_id; HANDLE watcher_thread = ::CreateThread( nullptr, // Default security. 0, // Default stack size &ThreadLocalRegistryImpl::WatcherThreadFunc, reinterpret_cast(new ThreadIdAndHandle(thread_id, thread)), CREATE_SUSPENDED, &watcher_thread_id); GTEST_CHECK_(watcher_thread != nullptr); // Give the watcher thread the same priority as ours to avoid being // blocked by it. ::SetThreadPriority(watcher_thread, ::GetThreadPriority(::GetCurrentThread())); ::ResumeThread(watcher_thread); ::CloseHandle(watcher_thread); } // Monitors exit from a given thread and notifies those // ThreadIdToThreadLocals about thread termination. static DWORD WINAPI WatcherThreadFunc(LPVOID param) { const ThreadIdAndHandle* tah = reinterpret_cast(param); GTEST_CHECK_( ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0); OnThreadExit(tah->first); ::CloseHandle(tah->second); delete tah; return 0; } // Returns map of thread local instances. static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() { mutex_.AssertHeld(); #ifdef _MSC_VER MemoryIsNotDeallocated memory_is_not_deallocated; #endif // _MSC_VER static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals(); return map; } // Protects access to GetThreadLocalsMapLocked() and its return value. static Mutex mutex_; // Protects access to GetThreadMapLocked() and its return value. static Mutex thread_map_mutex_; }; Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex); Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex); ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread( const ThreadLocalBase* thread_local_instance) { return ThreadLocalRegistryImpl::GetValueOnCurrentThread( thread_local_instance); } void ThreadLocalRegistry::OnThreadLocalDestroyed( const ThreadLocalBase* thread_local_instance) { ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance); } #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS #if GTEST_USES_POSIX_RE // Implements RE. Currently only needed for death tests. RE::~RE() { if (is_valid_) { // regfree'ing an invalid regex might crash because the content // of the regex is undefined. Since the regex's are essentially // the same, one cannot be valid (or invalid) without the other // being so too. regfree(&partial_regex_); regfree(&full_regex_); } free(const_cast(pattern_)); } // Returns true if and only if regular expression re matches the entire str. bool RE::FullMatch(const char* str, const RE& re) { if (!re.is_valid_) return false; regmatch_t match; return regexec(&re.full_regex_, str, 1, &match, 0) == 0; } // Returns true if and only if regular expression re matches a substring of // str (including str itself). bool RE::PartialMatch(const char* str, const RE& re) { if (!re.is_valid_) return false; regmatch_t match; return regexec(&re.partial_regex_, str, 1, &match, 0) == 0; } // Initializes an RE from its string representation. void RE::Init(const char* regex) { pattern_ = posix::StrDup(regex); // Reserves enough bytes to hold the regular expression used for a // full match. const size_t full_regex_len = strlen(regex) + 10; char* const full_pattern = new char[full_regex_len]; snprintf(full_pattern, full_regex_len, "^(%s)$", regex); is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0; // We want to call regcomp(&partial_regex_, ...) even if the // previous expression returns false. Otherwise partial_regex_ may // not be properly initialized can may cause trouble when it's // freed. // // Some implementation of POSIX regex (e.g. on at least some // versions of Cygwin) doesn't accept the empty string as a valid // regex. We change it to an equivalent form "()" to be safe. if (is_valid_) { const char* const partial_regex = (*regex == '\0') ? "()" : regex; is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0; } EXPECT_TRUE(is_valid_) << "Regular expression \"" << regex << "\" is not a valid POSIX Extended regular expression."; delete[] full_pattern; } #elif GTEST_USES_SIMPLE_RE // Returns true if and only if ch appears anywhere in str (excluding the // terminating '\0' character). bool IsInSet(char ch, const char* str) { return ch != '\0' && strchr(str, ch) != nullptr; } // Returns true if and only if ch belongs to the given classification. // Unlike similar functions in , these aren't affected by the // current locale. bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; } bool IsAsciiPunct(char ch) { return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"); } bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); } bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); } bool IsAsciiWordChar(char ch) { return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') || ('0' <= ch && ch <= '9') || ch == '_'; } // Returns true if and only if "\\c" is a supported escape sequence. bool IsValidEscape(char c) { return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW")); } // Returns true if and only if the given atom (specified by escaped and // pattern) matches ch. The result is undefined if the atom is invalid. bool AtomMatchesChar(bool escaped, char pattern_char, char ch) { if (escaped) { // "\\p" where p is pattern_char. switch (pattern_char) { case 'd': return IsAsciiDigit(ch); case 'D': return !IsAsciiDigit(ch); case 'f': return ch == '\f'; case 'n': return ch == '\n'; case 'r': return ch == '\r'; case 's': return IsAsciiWhiteSpace(ch); case 'S': return !IsAsciiWhiteSpace(ch); case 't': return ch == '\t'; case 'v': return ch == '\v'; case 'w': return IsAsciiWordChar(ch); case 'W': return !IsAsciiWordChar(ch); } return IsAsciiPunct(pattern_char) && pattern_char == ch; } return (pattern_char == '.' && ch != '\n') || pattern_char == ch; } // Helper function used by ValidateRegex() to format error messages. static std::string FormatRegexSyntaxError(const char* regex, int index) { return (Message() << "Syntax error at index " << index << " in simple regular expression \"" << regex << "\": ").GetString(); } // Generates non-fatal failures and returns false if regex is invalid; // otherwise returns true. bool ValidateRegex(const char* regex) { if (regex == nullptr) { ADD_FAILURE() << "NULL is not a valid simple regular expression."; return false; } bool is_valid = true; // True if and only if ?, *, or + can follow the previous atom. bool prev_repeatable = false; for (int i = 0; regex[i]; i++) { if (regex[i] == '\\') { // An escape sequence i++; if (regex[i] == '\0') { ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) << "'\\' cannot appear at the end."; return false; } if (!IsValidEscape(regex[i])) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) << "invalid escape sequence \"\\" << regex[i] << "\"."; is_valid = false; } prev_repeatable = true; } else { // Not an escape sequence. const char ch = regex[i]; if (ch == '^' && i > 0) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'^' can only appear at the beginning."; is_valid = false; } else if (ch == '$' && regex[i + 1] != '\0') { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'$' can only appear at the end."; is_valid = false; } else if (IsInSet(ch, "()[]{}|")) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch << "' is unsupported."; is_valid = false; } else if (IsRepeat(ch) && !prev_repeatable) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch << "' can only follow a repeatable token."; is_valid = false; } prev_repeatable = !IsInSet(ch, "^$?*+"); } } return is_valid; } // Matches a repeated regex atom followed by a valid simple regular // expression. The regex atom is defined as c if escaped is false, // or \c otherwise. repeat is the repetition meta character (?, *, // or +). The behavior is undefined if str contains too many // characters to be indexable by size_t, in which case the test will // probably time out anyway. We are fine with this limitation as // std::string has it too. bool MatchRepetitionAndRegexAtHead( bool escaped, char c, char repeat, const char* regex, const char* str) { const size_t min_count = (repeat == '+') ? 1 : 0; const size_t max_count = (repeat == '?') ? 1 : static_cast(-1) - 1; // We cannot call numeric_limits::max() as it conflicts with the // max() macro on Windows. for (size_t i = 0; i <= max_count; ++i) { // We know that the atom matches each of the first i characters in str. if (i >= min_count && MatchRegexAtHead(regex, str + i)) { // We have enough matches at the head, and the tail matches too. // Since we only care about *whether* the pattern matches str // (as opposed to *how* it matches), there is no need to find a // greedy match. return true; } if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i])) return false; } return false; } // Returns true if and only if regex matches a prefix of str. regex must // be a valid simple regular expression and not start with "^", or the // result is undefined. bool MatchRegexAtHead(const char* regex, const char* str) { if (*regex == '\0') // An empty regex matches a prefix of anything. return true; // "$" only matches the end of a string. Note that regex being // valid guarantees that there's nothing after "$" in it. if (*regex == '$') return *str == '\0'; // Is the first thing in regex an escape sequence? const bool escaped = *regex == '\\'; if (escaped) ++regex; if (IsRepeat(regex[1])) { // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so // here's an indirect recursion. It terminates as the regex gets // shorter in each recursion. return MatchRepetitionAndRegexAtHead( escaped, regex[0], regex[1], regex + 2, str); } else { // regex isn't empty, isn't "$", and doesn't start with a // repetition. We match the first atom of regex with the first // character of str and recurse. return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) && MatchRegexAtHead(regex + 1, str + 1); } } // Returns true if and only if regex matches any substring of str. regex must // be a valid simple regular expression, or the result is undefined. // // The algorithm is recursive, but the recursion depth doesn't exceed // the regex length, so we won't need to worry about running out of // stack space normally. In rare cases the time complexity can be // exponential with respect to the regex length + the string length, // but usually it's must faster (often close to linear). bool MatchRegexAnywhere(const char* regex, const char* str) { if (regex == nullptr || str == nullptr) return false; if (*regex == '^') return MatchRegexAtHead(regex + 1, str); // A successful match can be anywhere in str. do { if (MatchRegexAtHead(regex, str)) return true; } while (*str++ != '\0'); return false; } // Implements the RE class. RE::~RE() { free(const_cast(pattern_)); free(const_cast(full_pattern_)); } // Returns true if and only if regular expression re matches the entire str. bool RE::FullMatch(const char* str, const RE& re) { return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str); } // Returns true if and only if regular expression re matches a substring of // str (including str itself). bool RE::PartialMatch(const char* str, const RE& re) { return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str); } // Initializes an RE from its string representation. void RE::Init(const char* regex) { pattern_ = full_pattern_ = nullptr; if (regex != nullptr) { pattern_ = posix::StrDup(regex); } is_valid_ = ValidateRegex(regex); if (!is_valid_) { // No need to calculate the full pattern when the regex is invalid. return; } const size_t len = strlen(regex); // Reserves enough bytes to hold the regular expression used for a // full match: we need space to prepend a '^', append a '$', and // terminate the string with '\0'. char* buffer = static_cast(malloc(len + 3)); full_pattern_ = buffer; if (*regex != '^') *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'. // We don't use snprintf or strncpy, as they trigger a warning when // compiled with VC++ 8.0. memcpy(buffer, regex, len); buffer += len; if (len == 0 || regex[len - 1] != '$') *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'. *buffer = '\0'; } #endif // GTEST_USES_POSIX_RE const char kUnknownFile[] = "unknown file"; // Formats a source file path and a line number as they would appear // in an error message from the compiler used to compile this code. GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) { const std::string file_name(file == nullptr ? kUnknownFile : file); if (line < 0) { return file_name + ":"; } #ifdef _MSC_VER return file_name + "(" + StreamableToString(line) + "):"; #else return file_name + ":" + StreamableToString(line) + ":"; #endif // _MSC_VER } // Formats a file location for compiler-independent XML output. // Although this function is not platform dependent, we put it next to // FormatFileLocation in order to contrast the two functions. // Note that FormatCompilerIndependentFileLocation() does NOT append colon // to the file location it produces, unlike FormatFileLocation(). GTEST_API_ ::std::string FormatCompilerIndependentFileLocation( const char* file, int line) { const std::string file_name(file == nullptr ? kUnknownFile : file); if (line < 0) return file_name; else return file_name + ":" + StreamableToString(line); } GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line) : severity_(severity) { const char* const marker = severity == GTEST_INFO ? "[ INFO ]" : severity == GTEST_WARNING ? "[WARNING]" : severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]"; GetStream() << ::std::endl << marker << " " << FormatFileLocation(file, line).c_str() << ": "; } // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. GTestLog::~GTestLog() { GetStream() << ::std::endl; if (severity_ == GTEST_FATAL) { fflush(stderr); posix::Abort(); } } // Disable Microsoft deprecation warnings for POSIX functions called from // this class (creat, dup, dup2, and close) GTEST_DISABLE_MSC_DEPRECATED_PUSH_() #if GTEST_HAS_STREAM_REDIRECTION // Object that captures an output stream (stdout/stderr). class CapturedStream { public: // The ctor redirects the stream to a temporary file. explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) { # if GTEST_OS_WINDOWS char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path); const UINT success = ::GetTempFileNameA(temp_dir_path, "gtest_redir", 0, // Generate unique file name. temp_file_path); GTEST_CHECK_(success != 0) << "Unable to create a temporary file in " << temp_dir_path; const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE); GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file " << temp_file_path; filename_ = temp_file_path; # else // There's no guarantee that a test has write access to the current // directory, so we create the temporary file in the /tmp directory // instead. We use /tmp on most systems, and /sdcard on Android. // That's because Android doesn't have /tmp. # if GTEST_OS_LINUX_ANDROID // Note: Android applications are expected to call the framework's // Context.getExternalStorageDirectory() method through JNI to get // the location of the world-writable SD Card directory. However, // this requires a Context handle, which cannot be retrieved // globally from native code. Doing so also precludes running the // code as part of a regular standalone executable, which doesn't // run in a Dalvik process (e.g. when running it through 'adb shell'). // // The location /data/local/tmp is directly accessible from native code. // '/sdcard' and other variants cannot be relied on, as they are not // guaranteed to be mounted, or may have a delay in mounting. char name_template[] = "/data/local/tmp/gtest_captured_stream.XXXXXX"; # else char name_template[] = "/tmp/captured_stream.XXXXXX"; # endif // GTEST_OS_LINUX_ANDROID const int captured_fd = mkstemp(name_template); if (captured_fd == -1) { GTEST_LOG_(WARNING) << "Failed to create tmp file " << name_template << " for test; does the test have access to the /tmp directory?"; } filename_ = name_template; # endif // GTEST_OS_WINDOWS fflush(nullptr); dup2(captured_fd, fd_); close(captured_fd); } ~CapturedStream() { remove(filename_.c_str()); } std::string GetCapturedString() { if (uncaptured_fd_ != -1) { // Restores the original stream. fflush(nullptr); dup2(uncaptured_fd_, fd_); close(uncaptured_fd_); uncaptured_fd_ = -1; } FILE* const file = posix::FOpen(filename_.c_str(), "r"); if (file == nullptr) { GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_ << " for capturing stream."; } const std::string content = ReadEntireFile(file); posix::FClose(file); return content; } private: const int fd_; // A stream to capture. int uncaptured_fd_; // Name of the temporary file holding the stderr output. ::std::string filename_; GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream); }; GTEST_DISABLE_MSC_DEPRECATED_POP_() static CapturedStream* g_captured_stderr = nullptr; static CapturedStream* g_captured_stdout = nullptr; // Starts capturing an output stream (stdout/stderr). static void CaptureStream(int fd, const char* stream_name, CapturedStream** stream) { if (*stream != nullptr) { GTEST_LOG_(FATAL) << "Only one " << stream_name << " capturer can exist at a time."; } *stream = new CapturedStream(fd); } // Stops capturing the output stream and returns the captured string. static std::string GetCapturedStream(CapturedStream** captured_stream) { const std::string content = (*captured_stream)->GetCapturedString(); delete *captured_stream; *captured_stream = nullptr; return content; } // Starts capturing stdout. void CaptureStdout() { CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout); } // Starts capturing stderr. void CaptureStderr() { CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr); } // Stops capturing stdout and returns the captured string. std::string GetCapturedStdout() { return GetCapturedStream(&g_captured_stdout); } // Stops capturing stderr and returns the captured string. std::string GetCapturedStderr() { return GetCapturedStream(&g_captured_stderr); } #endif // GTEST_HAS_STREAM_REDIRECTION size_t GetFileSize(FILE* file) { fseek(file, 0, SEEK_END); return static_cast(ftell(file)); } std::string ReadEntireFile(FILE* file) { const size_t file_size = GetFileSize(file); char* const buffer = new char[file_size]; size_t bytes_last_read = 0; // # of bytes read in the last fread() size_t bytes_read = 0; // # of bytes read so far fseek(file, 0, SEEK_SET); // Keeps reading the file until we cannot read further or the // pre-determined file size is reached. do { bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file); bytes_read += bytes_last_read; } while (bytes_last_read > 0 && bytes_read < file_size); const std::string content(buffer, bytes_read); delete[] buffer; return content; } #if GTEST_HAS_DEATH_TEST static const std::vector* g_injected_test_argvs = nullptr; // Owned. std::vector GetInjectableArgvs() { if (g_injected_test_argvs != nullptr) { return *g_injected_test_argvs; } return GetArgvs(); } void SetInjectableArgvs(const std::vector* new_argvs) { if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs; g_injected_test_argvs = new_argvs; } void SetInjectableArgvs(const std::vector& new_argvs) { SetInjectableArgvs( new std::vector(new_argvs.begin(), new_argvs.end())); } void ClearInjectableArgvs() { delete g_injected_test_argvs; g_injected_test_argvs = nullptr; } #endif // GTEST_HAS_DEATH_TEST #if GTEST_OS_WINDOWS_MOBILE namespace posix { void Abort() { DebugBreak(); TerminateProcess(GetCurrentProcess(), 1); } } // namespace posix #endif // GTEST_OS_WINDOWS_MOBILE // Returns the name of the environment variable corresponding to the // given flag. For example, FlagToEnvVar("foo") will return // "GTEST_FOO" in the open-source version. static std::string FlagToEnvVar(const char* flag) { const std::string full_flag = (Message() << GTEST_FLAG_PREFIX_ << flag).GetString(); Message env_var; for (size_t i = 0; i != full_flag.length(); i++) { env_var << ToUpper(full_flag.c_str()[i]); } return env_var.GetString(); } // Parses 'str' for a 32-bit signed integer. If successful, writes // the result to *value and returns true; otherwise leaves *value // unchanged and returns false. bool ParseInt32(const Message& src_text, const char* str, Int32* value) { // Parses the environment variable as a decimal integer. char* end = nullptr; const long long_value = strtol(str, &end, 10); // NOLINT // Has strtol() consumed all characters in the string? if (*end != '\0') { // No - an invalid character was encountered. Message msg; msg << "WARNING: " << src_text << " is expected to be a 32-bit integer, but actually" << " has value \"" << str << "\".\n"; printf("%s", msg.GetString().c_str()); fflush(stdout); return false; } // Is the parsed value in the range of an Int32? const Int32 result = static_cast(long_value); if (long_value == LONG_MAX || long_value == LONG_MIN || // The parsed value overflows as a long. (strtol() returns // LONG_MAX or LONG_MIN when the input overflows.) result != long_value // The parsed value overflows as an Int32. ) { Message msg; msg << "WARNING: " << src_text << " is expected to be a 32-bit integer, but actually" << " has value " << str << ", which overflows.\n"; printf("%s", msg.GetString().c_str()); fflush(stdout); return false; } *value = result; return true; } // Reads and returns the Boolean environment variable corresponding to // the given flag; if it's not set, returns default_value. // // The value is considered true if and only if it's not "0". bool BoolFromGTestEnv(const char* flag, bool default_value) { #if defined(GTEST_GET_BOOL_FROM_ENV_) return GTEST_GET_BOOL_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const string_value = posix::GetEnv(env_var.c_str()); return string_value == nullptr ? default_value : strcmp(string_value, "0") != 0; #endif // defined(GTEST_GET_BOOL_FROM_ENV_) } // Reads and returns a 32-bit integer stored in the environment // variable corresponding to the given flag; if it isn't set or // doesn't represent a valid 32-bit integer, returns default_value. Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) { #if defined(GTEST_GET_INT32_FROM_ENV_) return GTEST_GET_INT32_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const string_value = posix::GetEnv(env_var.c_str()); if (string_value == nullptr) { // The environment variable is not set. return default_value; } Int32 result = default_value; if (!ParseInt32(Message() << "Environment variable " << env_var, string_value, &result)) { printf("The default value %s is used.\n", (Message() << default_value).GetString().c_str()); fflush(stdout); return default_value; } return result; #endif // defined(GTEST_GET_INT32_FROM_ENV_) } // As a special case for the 'output' flag, if GTEST_OUTPUT is not // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build // system. The value of XML_OUTPUT_FILE is a filename without the // "xml:" prefix of GTEST_OUTPUT. // Note that this is meant to be called at the call site so it does // not check that the flag is 'output' // In essence this checks an env variable called XML_OUTPUT_FILE // and if it is set we prepend "xml:" to its value, if it not set we return "" std::string OutputFlagAlsoCheckEnvVar(){ std::string default_value_for_output_flag = ""; const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE"); if (nullptr != xml_output_file_env) { default_value_for_output_flag = std::string("xml:") + xml_output_file_env; } return default_value_for_output_flag; } // Reads and returns the string environment variable corresponding to // the given flag; if it's not set, returns default_value. const char* StringFromGTestEnv(const char* flag, const char* default_value) { #if defined(GTEST_GET_STRING_FROM_ENV_) return GTEST_GET_STRING_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const value = posix::GetEnv(env_var.c_str()); return value == nullptr ? default_value : value; #endif // defined(GTEST_GET_STRING_FROM_ENV_) } } // namespace internal } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-printers.cc000066400000000000000000000345671355420072700247620ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Test - The Google C++ Testing and Mocking Framework // // This file implements a universal value printer that can print a // value of any type T: // // void ::testing::internal::UniversalPrinter::Print(value, ostream_ptr); // // It uses the << operator when possible, and prints the bytes in the // object otherwise. A user can override its behavior for a class // type Foo by defining either operator<<(::std::ostream&, const Foo&) // or void PrintTo(const Foo&, ::std::ostream*) in the namespace that // defines Foo. #include "gtest/gtest-printers.h" #include #include #include #include // NOLINT #include #include "gtest/internal/gtest-port.h" #include "src/gtest-internal-inl.h" namespace testing { namespace { using ::std::ostream; // Prints a segment of bytes in the given object. GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ void PrintByteSegmentInObjectTo(const unsigned char* obj_bytes, size_t start, size_t count, ostream* os) { char text[5] = ""; for (size_t i = 0; i != count; i++) { const size_t j = start + i; if (i != 0) { // Organizes the bytes into groups of 2 for easy parsing by // human. if ((j % 2) == 0) *os << ' '; else *os << '-'; } GTEST_SNPRINTF_(text, sizeof(text), "%02X", obj_bytes[j]); *os << text; } } // Prints the bytes in the given value to the given ostream. void PrintBytesInObjectToImpl(const unsigned char* obj_bytes, size_t count, ostream* os) { // Tells the user how big the object is. *os << count << "-byte object <"; const size_t kThreshold = 132; const size_t kChunkSize = 64; // If the object size is bigger than kThreshold, we'll have to omit // some details by printing only the first and the last kChunkSize // bytes. if (count < kThreshold) { PrintByteSegmentInObjectTo(obj_bytes, 0, count, os); } else { PrintByteSegmentInObjectTo(obj_bytes, 0, kChunkSize, os); *os << " ... "; // Rounds up to 2-byte boundary. const size_t resume_pos = (count - kChunkSize + 1)/2*2; PrintByteSegmentInObjectTo(obj_bytes, resume_pos, count - resume_pos, os); } *os << ">"; } } // namespace namespace internal2 { // Delegates to PrintBytesInObjectToImpl() to print the bytes in the // given object. The delegation simplifies the implementation, which // uses the << operator and thus is easier done outside of the // ::testing::internal namespace, which contains a << operator that // sometimes conflicts with the one in STL. void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count, ostream* os) { PrintBytesInObjectToImpl(obj_bytes, count, os); } } // namespace internal2 namespace internal { // Depending on the value of a char (or wchar_t), we print it in one // of three formats: // - as is if it's a printable ASCII (e.g. 'a', '2', ' '), // - as a hexadecimal escape sequence (e.g. '\x7F'), or // - as a special escape sequence (e.g. '\r', '\n'). enum CharFormat { kAsIs, kHexEscape, kSpecialEscape }; // Returns true if c is a printable ASCII character. We test the // value of c directly instead of calling isprint(), which is buggy on // Windows Mobile. inline bool IsPrintableAscii(wchar_t c) { return 0x20 <= c && c <= 0x7E; } // Prints a wide or narrow char c as a character literal without the // quotes, escaping it when necessary; returns how c was formatted. // The template argument UnsignedChar is the unsigned version of Char, // which is the type of c. template static CharFormat PrintAsCharLiteralTo(Char c, ostream* os) { wchar_t w_c = static_cast(c); switch (w_c) { case L'\0': *os << "\\0"; break; case L'\'': *os << "\\'"; break; case L'\\': *os << "\\\\"; break; case L'\a': *os << "\\a"; break; case L'\b': *os << "\\b"; break; case L'\f': *os << "\\f"; break; case L'\n': *os << "\\n"; break; case L'\r': *os << "\\r"; break; case L'\t': *os << "\\t"; break; case L'\v': *os << "\\v"; break; default: if (IsPrintableAscii(w_c)) { *os << static_cast(c); return kAsIs; } else { ostream::fmtflags flags = os->flags(); *os << "\\x" << std::hex << std::uppercase << static_cast(static_cast(c)); os->flags(flags); return kHexEscape; } } return kSpecialEscape; } // Prints a wchar_t c as if it's part of a string literal, escaping it when // necessary; returns how c was formatted. static CharFormat PrintAsStringLiteralTo(wchar_t c, ostream* os) { switch (c) { case L'\'': *os << "'"; return kAsIs; case L'"': *os << "\\\""; return kSpecialEscape; default: return PrintAsCharLiteralTo(c, os); } } // Prints a char c as if it's part of a string literal, escaping it when // necessary; returns how c was formatted. static CharFormat PrintAsStringLiteralTo(char c, ostream* os) { return PrintAsStringLiteralTo( static_cast(static_cast(c)), os); } // Prints a wide or narrow character c and its code. '\0' is printed // as "'\\0'", other unprintable characters are also properly escaped // using the standard C++ escape sequence. The template argument // UnsignedChar is the unsigned version of Char, which is the type of c. template void PrintCharAndCodeTo(Char c, ostream* os) { // First, print c as a literal in the most readable form we can find. *os << ((sizeof(c) > 1) ? "L'" : "'"); const CharFormat format = PrintAsCharLiteralTo(c, os); *os << "'"; // To aid user debugging, we also print c's code in decimal, unless // it's 0 (in which case c was printed as '\\0', making the code // obvious). if (c == 0) return; *os << " (" << static_cast(c); // For more convenience, we print c's code again in hexadecimal, // unless c was already printed in the form '\x##' or the code is in // [1, 9]. if (format == kHexEscape || (1 <= c && c <= 9)) { // Do nothing. } else { *os << ", 0x" << String::FormatHexInt(static_cast(c)); } *os << ")"; } void PrintTo(unsigned char c, ::std::ostream* os) { PrintCharAndCodeTo(c, os); } void PrintTo(signed char c, ::std::ostream* os) { PrintCharAndCodeTo(c, os); } // Prints a wchar_t as a symbol if it is printable or as its internal // code otherwise and also as its code. L'\0' is printed as "L'\\0'". void PrintTo(wchar_t wc, ostream* os) { PrintCharAndCodeTo(wc, os); } // Prints the given array of characters to the ostream. CharType must be either // char or wchar_t. // The array starts at begin, the length is len, it may include '\0' characters // and may not be NUL-terminated. template GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ static CharFormat PrintCharsAsStringTo( const CharType* begin, size_t len, ostream* os) { const char* const kQuoteBegin = sizeof(CharType) == 1 ? "\"" : "L\""; *os << kQuoteBegin; bool is_previous_hex = false; CharFormat print_format = kAsIs; for (size_t index = 0; index < len; ++index) { const CharType cur = begin[index]; if (is_previous_hex && IsXDigit(cur)) { // Previous character is of '\x..' form and this character can be // interpreted as another hexadecimal digit in its number. Break string to // disambiguate. *os << "\" " << kQuoteBegin; } is_previous_hex = PrintAsStringLiteralTo(cur, os) == kHexEscape; // Remember if any characters required hex escaping. if (is_previous_hex) { print_format = kHexEscape; } } *os << "\""; return print_format; } // Prints a (const) char/wchar_t array of 'len' elements, starting at address // 'begin'. CharType must be either char or wchar_t. template GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ static void UniversalPrintCharArray( const CharType* begin, size_t len, ostream* os) { // The code // const char kFoo[] = "foo"; // generates an array of 4, not 3, elements, with the last one being '\0'. // // Therefore when printing a char array, we don't print the last element if // it's '\0', such that the output matches the string literal as it's // written in the source code. if (len > 0 && begin[len - 1] == '\0') { PrintCharsAsStringTo(begin, len - 1, os); return; } // If, however, the last element in the array is not '\0', e.g. // const char kFoo[] = { 'f', 'o', 'o' }; // we must print the entire array. We also print a message to indicate // that the array is not NUL-terminated. PrintCharsAsStringTo(begin, len, os); *os << " (no terminating NUL)"; } // Prints a (const) char array of 'len' elements, starting at address 'begin'. void UniversalPrintArray(const char* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } // Prints a (const) wchar_t array of 'len' elements, starting at address // 'begin'. void UniversalPrintArray(const wchar_t* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } // Prints the given C string to the ostream. void PrintTo(const char* s, ostream* os) { if (s == nullptr) { *os << "NULL"; } else { *os << ImplicitCast_(s) << " pointing to "; PrintCharsAsStringTo(s, strlen(s), os); } } // MSVC compiler can be configured to define whar_t as a typedef // of unsigned short. Defining an overload for const wchar_t* in that case // would cause pointers to unsigned shorts be printed as wide strings, // possibly accessing more memory than intended and causing invalid // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when // wchar_t is implemented as a native type. #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) // Prints the given wide C string to the ostream. void PrintTo(const wchar_t* s, ostream* os) { if (s == nullptr) { *os << "NULL"; } else { *os << ImplicitCast_(s) << " pointing to "; PrintCharsAsStringTo(s, wcslen(s), os); } } #endif // wchar_t is native namespace { bool ContainsUnprintableControlCodes(const char* str, size_t length) { const unsigned char *s = reinterpret_cast(str); for (size_t i = 0; i < length; i++) { unsigned char ch = *s++; if (std::iscntrl(ch)) { switch (ch) { case '\t': case '\n': case '\r': break; default: return true; } } } return false; } bool IsUTF8TrailByte(unsigned char t) { return 0x80 <= t && t<= 0xbf; } bool IsValidUTF8(const char* str, size_t length) { const unsigned char *s = reinterpret_cast(str); for (size_t i = 0; i < length;) { unsigned char lead = s[i++]; if (lead <= 0x7f) { continue; // single-byte character (ASCII) 0..7F } if (lead < 0xc2) { return false; // trail byte or non-shortest form } else if (lead <= 0xdf && (i + 1) <= length && IsUTF8TrailByte(s[i])) { ++i; // 2-byte character } else if (0xe0 <= lead && lead <= 0xef && (i + 2) <= length && IsUTF8TrailByte(s[i]) && IsUTF8TrailByte(s[i + 1]) && // check for non-shortest form and surrogate (lead != 0xe0 || s[i] >= 0xa0) && (lead != 0xed || s[i] < 0xa0)) { i += 2; // 3-byte character } else if (0xf0 <= lead && lead <= 0xf4 && (i + 3) <= length && IsUTF8TrailByte(s[i]) && IsUTF8TrailByte(s[i + 1]) && IsUTF8TrailByte(s[i + 2]) && // check for non-shortest form (lead != 0xf0 || s[i] >= 0x90) && (lead != 0xf4 || s[i] < 0x90)) { i += 3; // 4-byte character } else { return false; } } return true; } void ConditionalPrintAsText(const char* str, size_t length, ostream* os) { if (!ContainsUnprintableControlCodes(str, length) && IsValidUTF8(str, length)) { *os << "\n As Text: \"" << str << "\""; } } } // anonymous namespace void PrintStringTo(const ::std::string& s, ostream* os) { if (PrintCharsAsStringTo(s.data(), s.size(), os) == kHexEscape) { if (GTEST_FLAG(print_utf8)) { ConditionalPrintAsText(s.data(), s.size(), os); } } } #if GTEST_HAS_STD_WSTRING void PrintWideStringTo(const ::std::wstring& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } #endif // GTEST_HAS_STD_WSTRING } // namespace internal } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-test-part.cc000066400000000000000000000076521355420072700250320ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) #include "gtest/gtest-test-part.h" #include "src/gtest-internal-inl.h" namespace testing { using internal::GetUnitTestImpl; // Gets the summary of the failure message by omitting the stack trace // in it. std::string TestPartResult::ExtractSummary(const char* message) { const char* const stack_trace = strstr(message, internal::kStackTraceMarker); return stack_trace == nullptr ? message : std::string(message, stack_trace); } // Prints a TestPartResult object. std::ostream& operator<<(std::ostream& os, const TestPartResult& result) { return os << result.file_name() << ":" << result.line_number() << ": " << (result.type() == TestPartResult::kSuccess ? "Success" : result.type() == TestPartResult::kSkip ? "Skipped" : result.type() == TestPartResult::kFatalFailure ? "Fatal failure" : "Non-fatal failure") << ":\n" << result.message() << std::endl; } // Appends a TestPartResult to the array. void TestPartResultArray::Append(const TestPartResult& result) { array_.push_back(result); } // Returns the TestPartResult at the given index (0-based). const TestPartResult& TestPartResultArray::GetTestPartResult(int index) const { if (index < 0 || index >= size()) { printf("\nInvalid index (%d) into TestPartResultArray.\n", index); internal::posix::Abort(); } return array_[static_cast(index)]; } // Returns the number of TestPartResult objects in the array. int TestPartResultArray::size() const { return static_cast(array_.size()); } namespace internal { HasNewFatalFailureHelper::HasNewFatalFailureHelper() : has_new_fatal_failure_(false), original_reporter_(GetUnitTestImpl()-> GetTestPartResultReporterForCurrentThread()) { GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread(this); } HasNewFatalFailureHelper::~HasNewFatalFailureHelper() { GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread( original_reporter_); } void HasNewFatalFailureHelper::ReportTestPartResult( const TestPartResult& result) { if (result.fatally_failed()) has_new_fatal_failure_ = true; original_reporter_->ReportTestPartResult(result); } } // namespace internal } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest-typed-test.cc000066400000000000000000000075231355420072700252060ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/gtest-typed-test.h" #include "gtest/gtest.h" namespace testing { namespace internal { #if GTEST_HAS_TYPED_TEST_P // Skips to the first non-space char in str. Returns an empty string if str // contains only whitespace characters. static const char* SkipSpaces(const char* str) { while (IsSpace(*str)) str++; return str; } static std::vector SplitIntoTestNames(const char* src) { std::vector name_vec; src = SkipSpaces(src); for (; src != nullptr; src = SkipComma(src)) { name_vec.push_back(StripTrailingSpaces(GetPrefixUntilComma(src))); } return name_vec; } // Verifies that registered_tests match the test names in // registered_tests_; returns registered_tests if successful, or // aborts the program otherwise. const char* TypedTestSuitePState::VerifyRegisteredTestNames( const char* file, int line, const char* registered_tests) { typedef RegisteredTestsMap::const_iterator RegisteredTestIter; registered_ = true; std::vector name_vec = SplitIntoTestNames(registered_tests); Message errors; std::set tests; for (std::vector::const_iterator name_it = name_vec.begin(); name_it != name_vec.end(); ++name_it) { const std::string& name = *name_it; if (tests.count(name) != 0) { errors << "Test " << name << " is listed more than once.\n"; continue; } bool found = false; for (RegisteredTestIter it = registered_tests_.begin(); it != registered_tests_.end(); ++it) { if (name == it->first) { found = true; break; } } if (found) { tests.insert(name); } else { errors << "No test named " << name << " can be found in this test suite.\n"; } } for (RegisteredTestIter it = registered_tests_.begin(); it != registered_tests_.end(); ++it) { if (tests.count(it->first) == 0) { errors << "You forgot to list test " << it->first << ".\n"; } } const std::string& errors_str = errors.GetString(); if (errors_str != "") { fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(), errors_str.c_str()); fflush(stderr); posix::Abort(); } return registered_tests; } #endif // GTEST_HAS_TYPED_TEST_P } // namespace internal } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest.cc000066400000000000000000006723311355420072700231130ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) #include "gtest/gtest.h" #include "gtest/internal/custom/gtest.h" #include "gtest/gtest-spi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include // NOLINT #include #include #if GTEST_OS_LINUX # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT # include // NOLINT # include // NOLINT // Declares vsnprintf(). This header is not available on Windows. # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT # include #elif GTEST_OS_ZOS # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT // On z/OS we additionally need strings.h for strcasecmp. # include // NOLINT #elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE. # include // NOLINT # undef min #elif GTEST_OS_WINDOWS // We are on Windows proper. # include // NOLINT # undef min # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT # if GTEST_OS_WINDOWS_MINGW // MinGW has gettimeofday() but not _ftime64(). # define GTEST_HAS_GETTIMEOFDAY_ 1 # include // NOLINT # endif // GTEST_OS_WINDOWS_MINGW #else // Assume other platforms have gettimeofday(). # define GTEST_HAS_GETTIMEOFDAY_ 1 // cpplint thinks that the header is already included, so we want to // silence it. # include // NOLINT # include // NOLINT #endif // GTEST_OS_LINUX #if GTEST_HAS_EXCEPTIONS # include #endif #if GTEST_CAN_STREAM_RESULTS_ # include // NOLINT # include // NOLINT # include // NOLINT # include // NOLINT #endif #include "src/gtest-internal-inl.h" #if GTEST_OS_WINDOWS # define vsnprintf _vsnprintf #endif // GTEST_OS_WINDOWS #if GTEST_OS_MAC #ifndef GTEST_OS_IOS #include #endif #endif #if GTEST_HAS_ABSL #include "absl/debugging/failure_signal_handler.h" #include "absl/debugging/stacktrace.h" #include "absl/debugging/symbolize.h" #include "absl/strings/str_cat.h" #endif // GTEST_HAS_ABSL namespace testing { using internal::CountIf; using internal::ForEach; using internal::GetElementOr; using internal::Shuffle; // Constants. // A test whose test suite name or test name matches this filter is // disabled and not run. static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*"; // A test suite whose name matches this filter is considered a death // test suite and will be run before test suites whose name doesn't // match this filter. static const char kDeathTestSuiteFilter[] = "*DeathTest:*DeathTest/*"; // A test filter that matches everything. static const char kUniversalFilter[] = "*"; // The default output format. static const char kDefaultOutputFormat[] = "xml"; // The default output file. static const char kDefaultOutputFile[] = "test_detail"; // The environment variable name for the test shard index. static const char kTestShardIndex[] = "GTEST_SHARD_INDEX"; // The environment variable name for the total number of test shards. static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS"; // The environment variable name for the test shard status file. static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE"; namespace internal { // The text used in failure messages to indicate the start of the // stack trace. const char kStackTraceMarker[] = "\nStack trace:\n"; // g_help_flag is true if and only if the --help flag or an equivalent form // is specified on the command line. bool g_help_flag = false; // Utilty function to Open File for Writing static FILE* OpenFileForWriting(const std::string& output_file) { FILE* fileout = nullptr; FilePath output_file_path(output_file); FilePath output_dir(output_file_path.RemoveFileName()); if (output_dir.CreateDirectoriesRecursively()) { fileout = posix::FOpen(output_file.c_str(), "w"); } if (fileout == nullptr) { GTEST_LOG_(FATAL) << "Unable to open file \"" << output_file << "\""; } return fileout; } } // namespace internal // Bazel passes in the argument to '--test_filter' via the TESTBRIDGE_TEST_ONLY // environment variable. static const char* GetDefaultFilter() { const char* const testbridge_test_only = internal::posix::GetEnv("TESTBRIDGE_TEST_ONLY"); if (testbridge_test_only != nullptr) { return testbridge_test_only; } return kUniversalFilter; } GTEST_DEFINE_bool_( also_run_disabled_tests, internal::BoolFromGTestEnv("also_run_disabled_tests", false), "Run disabled tests too, in addition to the tests normally being run."); GTEST_DEFINE_bool_( break_on_failure, internal::BoolFromGTestEnv("break_on_failure", false), "True if and only if a failed assertion should be a debugger " "break-point."); GTEST_DEFINE_bool_(catch_exceptions, internal::BoolFromGTestEnv("catch_exceptions", true), "True if and only if " GTEST_NAME_ " should catch exceptions and treat them as test failures."); GTEST_DEFINE_string_( color, internal::StringFromGTestEnv("color", "auto"), "Whether to use colors in the output. Valid values: yes, no, " "and auto. 'auto' means to use colors if the output is " "being sent to a terminal and the TERM environment variable " "is set to a terminal type that supports colors."); GTEST_DEFINE_string_( filter, internal::StringFromGTestEnv("filter", GetDefaultFilter()), "A colon-separated list of glob (not regex) patterns " "for filtering the tests to run, optionally followed by a " "'-' and a : separated list of negative patterns (tests to " "exclude). A test is run if it matches one of the positive " "patterns and does not match any of the negative patterns."); GTEST_DEFINE_bool_( install_failure_signal_handler, internal::BoolFromGTestEnv("install_failure_signal_handler", false), "If true and supported on the current platform, " GTEST_NAME_ " should " "install a signal handler that dumps debugging information when fatal " "signals are raised."); GTEST_DEFINE_bool_(list_tests, false, "List all tests without running them."); // The net priority order after flag processing is thus: // --gtest_output command line flag // GTEST_OUTPUT environment variable // XML_OUTPUT_FILE environment variable // '' GTEST_DEFINE_string_( output, internal::StringFromGTestEnv("output", internal::OutputFlagAlsoCheckEnvVar().c_str()), "A format (defaults to \"xml\" but can be specified to be \"json\"), " "optionally followed by a colon and an output file name or directory. " "A directory is indicated by a trailing pathname separator. " "Examples: \"xml:filename.xml\", \"xml::directoryname/\". " "If a directory is specified, output files will be created " "within that directory, with file-names based on the test " "executable's name and, if necessary, made unique by adding " "digits."); GTEST_DEFINE_bool_(print_time, internal::BoolFromGTestEnv("print_time", true), "True if and only if " GTEST_NAME_ " should display elapsed time in text output."); GTEST_DEFINE_bool_(print_utf8, internal::BoolFromGTestEnv("print_utf8", true), "True if and only if " GTEST_NAME_ " prints UTF8 characters as text."); GTEST_DEFINE_int32_( random_seed, internal::Int32FromGTestEnv("random_seed", 0), "Random number seed to use when shuffling test orders. Must be in range " "[1, 99999], or 0 to use a seed based on the current time."); GTEST_DEFINE_int32_( repeat, internal::Int32FromGTestEnv("repeat", 1), "How many times to repeat each test. Specify a negative number " "for repeating forever. Useful for shaking out flaky tests."); GTEST_DEFINE_bool_(show_internal_stack_frames, false, "True if and only if " GTEST_NAME_ " should include internal stack frames when " "printing test failure stack traces."); GTEST_DEFINE_bool_(shuffle, internal::BoolFromGTestEnv("shuffle", false), "True if and only if " GTEST_NAME_ " should randomize tests' order on every run."); GTEST_DEFINE_int32_( stack_trace_depth, internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth), "The maximum number of stack frames to print when an " "assertion fails. The valid range is 0 through 100, inclusive."); GTEST_DEFINE_string_( stream_result_to, internal::StringFromGTestEnv("stream_result_to", ""), "This flag specifies the host name and the port number on which to stream " "test results. Example: \"localhost:555\". The flag is effective only on " "Linux."); GTEST_DEFINE_bool_( throw_on_failure, internal::BoolFromGTestEnv("throw_on_failure", false), "When this flag is specified, a failed assertion will throw an exception " "if exceptions are enabled or exit the program with a non-zero code " "otherwise. For use with an external test framework."); #if GTEST_USE_OWN_FLAGFILE_FLAG_ GTEST_DEFINE_string_( flagfile, internal::StringFromGTestEnv("flagfile", ""), "This flag specifies the flagfile to read command-line flags from."); #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ namespace internal { // Generates a random number from [0, range), using a Linear // Congruential Generator (LCG). Crashes if 'range' is 0 or greater // than kMaxRange. UInt32 Random::Generate(UInt32 range) { // These constants are the same as are used in glibc's rand(3). // Use wider types than necessary to prevent unsigned overflow diagnostics. state_ = static_cast(1103515245ULL*state_ + 12345U) % kMaxRange; GTEST_CHECK_(range > 0) << "Cannot generate a number in the range [0, 0)."; GTEST_CHECK_(range <= kMaxRange) << "Generation of a number in [0, " << range << ") was requested, " << "but this can only generate numbers in [0, " << kMaxRange << ")."; // Converting via modulus introduces a bit of downward bias, but // it's simple, and a linear congruential generator isn't too good // to begin with. return state_ % range; } // GTestIsInitialized() returns true if and only if the user has initialized // Google Test. Useful for catching the user mistake of not initializing // Google Test before calling RUN_ALL_TESTS(). static bool GTestIsInitialized() { return GetArgvs().size() > 0; } // Iterates over a vector of TestSuites, keeping a running sum of the // results of calling a given int-returning method on each. // Returns the sum. static int SumOverTestSuiteList(const std::vector& case_list, int (TestSuite::*method)() const) { int sum = 0; for (size_t i = 0; i < case_list.size(); i++) { sum += (case_list[i]->*method)(); } return sum; } // Returns true if and only if the test suite passed. static bool TestSuitePassed(const TestSuite* test_suite) { return test_suite->should_run() && test_suite->Passed(); } // Returns true if and only if the test suite failed. static bool TestSuiteFailed(const TestSuite* test_suite) { return test_suite->should_run() && test_suite->Failed(); } // Returns true if and only if test_suite contains at least one test that // should run. static bool ShouldRunTestSuite(const TestSuite* test_suite) { return test_suite->should_run(); } // AssertHelper constructor. AssertHelper::AssertHelper(TestPartResult::Type type, const char* file, int line, const char* message) : data_(new AssertHelperData(type, file, line, message)) { } AssertHelper::~AssertHelper() { delete data_; } // Message assignment, for assertion streaming support. void AssertHelper::operator=(const Message& message) const { UnitTest::GetInstance()-> AddTestPartResult(data_->type, data_->file, data_->line, AppendUserMessage(data_->message, message), UnitTest::GetInstance()->impl() ->CurrentOsStackTraceExceptTop(1) // Skips the stack frame for this function itself. ); // NOLINT } // A copy of all command line arguments. Set by InitGoogleTest(). static ::std::vector g_argvs; ::std::vector GetArgvs() { #if defined(GTEST_CUSTOM_GET_ARGVS_) // GTEST_CUSTOM_GET_ARGVS_() may return a container of std::string or // ::string. This code converts it to the appropriate type. const auto& custom = GTEST_CUSTOM_GET_ARGVS_(); return ::std::vector(custom.begin(), custom.end()); #else // defined(GTEST_CUSTOM_GET_ARGVS_) return g_argvs; #endif // defined(GTEST_CUSTOM_GET_ARGVS_) } // Returns the current application's name, removing directory path if that // is present. FilePath GetCurrentExecutableName() { FilePath result; #if GTEST_OS_WINDOWS || GTEST_OS_OS2 result.Set(FilePath(GetArgvs()[0]).RemoveExtension("exe")); #else result.Set(FilePath(GetArgvs()[0])); #endif // GTEST_OS_WINDOWS return result.RemoveDirectoryName(); } // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. std::string UnitTestOptions::GetOutputFormat() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); const char* const colon = strchr(gtest_output_flag, ':'); return (colon == nullptr) ? std::string(gtest_output_flag) : std::string(gtest_output_flag, static_cast(colon - gtest_output_flag)); } // Returns the name of the requested output file, or the default if none // was explicitly specified. std::string UnitTestOptions::GetAbsolutePathToOutputFile() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); std::string format = GetOutputFormat(); if (format.empty()) format = std::string(kDefaultOutputFormat); const char* const colon = strchr(gtest_output_flag, ':'); if (colon == nullptr) return internal::FilePath::MakeFileName( internal::FilePath( UnitTest::GetInstance()->original_working_dir()), internal::FilePath(kDefaultOutputFile), 0, format.c_str()).string(); internal::FilePath output_name(colon + 1); if (!output_name.IsAbsolutePath()) output_name = internal::FilePath::ConcatPaths( internal::FilePath(UnitTest::GetInstance()->original_working_dir()), internal::FilePath(colon + 1)); if (!output_name.IsDirectory()) return output_name.string(); internal::FilePath result(internal::FilePath::GenerateUniqueFileName( output_name, internal::GetCurrentExecutableName(), GetOutputFormat().c_str())); return result.string(); } // Returns true if and only if the wildcard pattern matches the string. // The first ':' or '\0' character in pattern marks the end of it. // // This recursive algorithm isn't very efficient, but is clear and // works well enough for matching test names, which are short. bool UnitTestOptions::PatternMatchesString(const char *pattern, const char *str) { switch (*pattern) { case '\0': case ':': // Either ':' or '\0' marks the end of the pattern. return *str == '\0'; case '?': // Matches any single character. return *str != '\0' && PatternMatchesString(pattern + 1, str + 1); case '*': // Matches any string (possibly empty) of characters. return (*str != '\0' && PatternMatchesString(pattern, str + 1)) || PatternMatchesString(pattern + 1, str); default: // Non-special character. Matches itself. return *pattern == *str && PatternMatchesString(pattern + 1, str + 1); } } bool UnitTestOptions::MatchesFilter( const std::string& name, const char* filter) { const char *cur_pattern = filter; for (;;) { if (PatternMatchesString(cur_pattern, name.c_str())) { return true; } // Finds the next pattern in the filter. cur_pattern = strchr(cur_pattern, ':'); // Returns if no more pattern can be found. if (cur_pattern == nullptr) { return false; } // Skips the pattern separater (the ':' character). cur_pattern++; } } // Returns true if and only if the user-specified filter matches the test // suite name and the test name. bool UnitTestOptions::FilterMatchesTest(const std::string& test_suite_name, const std::string& test_name) { const std::string& full_name = test_suite_name + "." + test_name.c_str(); // Split --gtest_filter at '-', if there is one, to separate into // positive filter and negative filter portions const char* const p = GTEST_FLAG(filter).c_str(); const char* const dash = strchr(p, '-'); std::string positive; std::string negative; if (dash == nullptr) { positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter negative = ""; } else { positive = std::string(p, dash); // Everything up to the dash negative = std::string(dash + 1); // Everything after the dash if (positive.empty()) { // Treat '-test1' as the same as '*-test1' positive = kUniversalFilter; } } // A filter is a colon-separated list of patterns. It matches a // test if any pattern in it matches the test. return (MatchesFilter(full_name, positive.c_str()) && !MatchesFilter(full_name, negative.c_str())); } #if GTEST_HAS_SEH // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. // This function is useful as an __except condition. int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) { // Google Test should handle a SEH exception if: // 1. the user wants it to, AND // 2. this is not a breakpoint exception, AND // 3. this is not a C++ exception (VC++ implements them via SEH, // apparently). // // SEH exception code for C++ exceptions. // (see http://support.microsoft.com/kb/185294 for more information). const DWORD kCxxExceptionCode = 0xe06d7363; bool should_handle = true; if (!GTEST_FLAG(catch_exceptions)) should_handle = false; else if (exception_code == EXCEPTION_BREAKPOINT) should_handle = false; else if (exception_code == kCxxExceptionCode) should_handle = false; return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH; } #endif // GTEST_HAS_SEH } // namespace internal // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. Intercepts only failures from the current thread. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( TestPartResultArray* result) : intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD), result_(result) { Init(); } // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( InterceptMode intercept_mode, TestPartResultArray* result) : intercept_mode_(intercept_mode), result_(result) { Init(); } void ScopedFakeTestPartResultReporter::Init() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { old_reporter_ = impl->GetGlobalTestPartResultReporter(); impl->SetGlobalTestPartResultReporter(this); } else { old_reporter_ = impl->GetTestPartResultReporterForCurrentThread(); impl->SetTestPartResultReporterForCurrentThread(this); } } // The d'tor restores the test part result reporter used by Google Test // before. ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { impl->SetGlobalTestPartResultReporter(old_reporter_); } else { impl->SetTestPartResultReporterForCurrentThread(old_reporter_); } } // Increments the test part result count and remembers the result. // This method is from the TestPartResultReporterInterface interface. void ScopedFakeTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { result_->Append(result); } namespace internal { // Returns the type ID of ::testing::Test. We should always call this // instead of GetTypeId< ::testing::Test>() to get the type ID of // testing::Test. This is to work around a suspected linker bug when // using Google Test as a framework on Mac OS X. The bug causes // GetTypeId< ::testing::Test>() to return different values depending // on whether the call is from the Google Test framework itself or // from user test code. GetTestTypeId() is guaranteed to always // return the same value, as it always calls GetTypeId<>() from the // gtest.cc, which is within the Google Test framework. TypeId GetTestTypeId() { return GetTypeId(); } // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId(); // This predicate-formatter checks that 'results' contains a test part // failure of the given type and that the failure message contains the // given substring. static AssertionResult HasOneFailure(const char* /* results_expr */, const char* /* type_expr */, const char* /* substr_expr */, const TestPartResultArray& results, TestPartResult::Type type, const std::string& substr) { const std::string expected(type == TestPartResult::kFatalFailure ? "1 fatal failure" : "1 non-fatal failure"); Message msg; if (results.size() != 1) { msg << "Expected: " << expected << "\n" << " Actual: " << results.size() << " failures"; for (int i = 0; i < results.size(); i++) { msg << "\n" << results.GetTestPartResult(i); } return AssertionFailure() << msg; } const TestPartResult& r = results.GetTestPartResult(0); if (r.type() != type) { return AssertionFailure() << "Expected: " << expected << "\n" << " Actual:\n" << r; } if (strstr(r.message(), substr.c_str()) == nullptr) { return AssertionFailure() << "Expected: " << expected << " containing \"" << substr << "\"\n" << " Actual:\n" << r; } return AssertionSuccess(); } // The constructor of SingleFailureChecker remembers where to look up // test part results, what type of failure we expect, and what // substring the failure message should contain. SingleFailureChecker::SingleFailureChecker(const TestPartResultArray* results, TestPartResult::Type type, const std::string& substr) : results_(results), type_(type), substr_(substr) {} // The destructor of SingleFailureChecker verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. SingleFailureChecker::~SingleFailureChecker() { EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_); } DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultGlobalTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->current_test_result()->AddTestPartResult(result); unit_test_->listeners()->repeater()->OnTestPartResult(result); } DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultPerThreadTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result); } // Returns the global test part result reporter. TestPartResultReporterInterface* UnitTestImpl::GetGlobalTestPartResultReporter() { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); return global_test_part_result_repoter_; } // Sets the global test part result reporter. void UnitTestImpl::SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter) { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); global_test_part_result_repoter_ = reporter; } // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* UnitTestImpl::GetTestPartResultReporterForCurrentThread() { return per_thread_test_part_result_reporter_.get(); } // Sets the test part result reporter for the current thread. void UnitTestImpl::SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter) { per_thread_test_part_result_reporter_.set(reporter); } // Gets the number of successful test suites. int UnitTestImpl::successful_test_suite_count() const { return CountIf(test_suites_, TestSuitePassed); } // Gets the number of failed test suites. int UnitTestImpl::failed_test_suite_count() const { return CountIf(test_suites_, TestSuiteFailed); } // Gets the number of all test suites. int UnitTestImpl::total_test_suite_count() const { return static_cast(test_suites_.size()); } // Gets the number of all test suites that contain at least one test // that should run. int UnitTestImpl::test_suite_to_run_count() const { return CountIf(test_suites_, ShouldRunTestSuite); } // Gets the number of successful tests. int UnitTestImpl::successful_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::successful_test_count); } // Gets the number of skipped tests. int UnitTestImpl::skipped_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::skipped_test_count); } // Gets the number of failed tests. int UnitTestImpl::failed_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::failed_test_count); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTestImpl::reportable_disabled_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::reportable_disabled_test_count); } // Gets the number of disabled tests. int UnitTestImpl::disabled_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::disabled_test_count); } // Gets the number of tests to be printed in the XML report. int UnitTestImpl::reportable_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::reportable_test_count); } // Gets the number of all tests. int UnitTestImpl::total_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::total_test_count); } // Gets the number of tests that should run. int UnitTestImpl::test_to_run_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::test_to_run_count); } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) { return os_stack_trace_getter()->CurrentStackTrace( static_cast(GTEST_FLAG(stack_trace_depth)), skip_count + 1 // Skips the user-specified number of frames plus this function // itself. ); // NOLINT } // Returns the current time in milliseconds. TimeInMillis GetTimeInMillis() { #if GTEST_OS_WINDOWS_MOBILE || defined(__BORLANDC__) // Difference between 1970-01-01 and 1601-01-01 in milliseconds. // http://analogous.blogspot.com/2005/04/epoch.html const TimeInMillis kJavaEpochToWinFileTimeDelta = static_cast(116444736UL) * 100000UL; const DWORD kTenthMicrosInMilliSecond = 10000; SYSTEMTIME now_systime; FILETIME now_filetime; ULARGE_INTEGER now_int64; GetSystemTime(&now_systime); if (SystemTimeToFileTime(&now_systime, &now_filetime)) { now_int64.LowPart = now_filetime.dwLowDateTime; now_int64.HighPart = now_filetime.dwHighDateTime; now_int64.QuadPart = (now_int64.QuadPart / kTenthMicrosInMilliSecond) - kJavaEpochToWinFileTimeDelta; return now_int64.QuadPart; } return 0; #elif GTEST_OS_WINDOWS && !GTEST_HAS_GETTIMEOFDAY_ __timeb64 now; // MSVC 8 deprecates _ftime64(), so we want to suppress warning 4996 // (deprecated function) there. GTEST_DISABLE_MSC_DEPRECATED_PUSH_() _ftime64(&now); GTEST_DISABLE_MSC_DEPRECATED_POP_() return static_cast(now.time) * 1000 + now.millitm; #elif GTEST_HAS_GETTIMEOFDAY_ struct timeval now; gettimeofday(&now, nullptr); return static_cast(now.tv_sec) * 1000 + now.tv_usec / 1000; #else # error "Don't know how to get the current time on your system." #endif } // Utilities // class String. #if GTEST_OS_WINDOWS_MOBILE // Creates a UTF-16 wide string from the given ANSI string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the wide string, or NULL if the // input is NULL. LPCWSTR String::AnsiToUtf16(const char* ansi) { if (!ansi) return nullptr; const int length = strlen(ansi); const int unicode_length = MultiByteToWideChar(CP_ACP, 0, ansi, length, nullptr, 0); WCHAR* unicode = new WCHAR[unicode_length + 1]; MultiByteToWideChar(CP_ACP, 0, ansi, length, unicode, unicode_length); unicode[unicode_length] = 0; return unicode; } // Creates an ANSI string from the given wide string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the ANSI string, or NULL if the // input is NULL. const char* String::Utf16ToAnsi(LPCWSTR utf16_str) { if (!utf16_str) return nullptr; const int ansi_length = WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, nullptr, 0, nullptr, nullptr); char* ansi = new char[ansi_length + 1]; WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, ansi, ansi_length, nullptr, nullptr); ansi[ansi_length] = 0; return ansi; } #endif // GTEST_OS_WINDOWS_MOBILE // Compares two C strings. Returns true if and only if they have the same // content. // // Unlike strcmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::CStringEquals(const char * lhs, const char * rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return strcmp(lhs, rhs) == 0; } #if GTEST_HAS_STD_WSTRING // Converts an array of wide chars to a narrow string using the UTF-8 // encoding, and streams the result to the given Message object. static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length, Message* msg) { for (size_t i = 0; i != length; ) { // NOLINT if (wstr[i] != L'\0') { *msg << WideStringToUtf8(wstr + i, static_cast(length - i)); while (i != length && wstr[i] != L'\0') i++; } else { *msg << '\0'; i++; } } } #endif // GTEST_HAS_STD_WSTRING void SplitString(const ::std::string& str, char delimiter, ::std::vector< ::std::string>* dest) { ::std::vector< ::std::string> parsed; ::std::string::size_type pos = 0; while (::testing::internal::AlwaysTrue()) { const ::std::string::size_type colon = str.find(delimiter, pos); if (colon == ::std::string::npos) { parsed.push_back(str.substr(pos)); break; } else { parsed.push_back(str.substr(pos, colon - pos)); pos = colon + 1; } } dest->swap(parsed); } } // namespace internal // Constructs an empty Message. // We allocate the stringstream separately because otherwise each use of // ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's // stack frame leading to huge stack frames in some cases; gcc does not reuse // the stack space. Message::Message() : ss_(new ::std::stringstream) { // By default, we want there to be enough precision when printing // a double to a Message. *ss_ << std::setprecision(std::numeric_limits::digits10 + 2); } // These two overloads allow streaming a wide C string to a Message // using the UTF-8 encoding. Message& Message::operator <<(const wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } Message& Message::operator <<(wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } #if GTEST_HAS_STD_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator <<(const ::std::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_STD_WSTRING // Gets the text streamed to this object so far as an std::string. // Each '\0' character in the buffer is replaced with "\\0". std::string Message::GetString() const { return internal::StringStreamToString(ss_.get()); } // AssertionResult constructors. // Used in EXPECT_TRUE/FALSE(assertion_result). AssertionResult::AssertionResult(const AssertionResult& other) : success_(other.success_), message_(other.message_.get() != nullptr ? new ::std::string(*other.message_) : static_cast< ::std::string*>(nullptr)) {} // Swaps two AssertionResults. void AssertionResult::swap(AssertionResult& other) { using std::swap; swap(success_, other.success_); swap(message_, other.message_); } // Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE. AssertionResult AssertionResult::operator!() const { AssertionResult negation(!success_); if (message_.get() != nullptr) negation << *message_; return negation; } // Makes a successful assertion result. AssertionResult AssertionSuccess() { return AssertionResult(true); } // Makes a failed assertion result. AssertionResult AssertionFailure() { return AssertionResult(false); } // Makes a failed assertion result with the given failure message. // Deprecated; use AssertionFailure() << message. AssertionResult AssertionFailure(const Message& message) { return AssertionFailure() << message; } namespace internal { namespace edit_distance { std::vector CalculateOptimalEdits(const std::vector& left, const std::vector& right) { std::vector > costs( left.size() + 1, std::vector(right.size() + 1)); std::vector > best_move( left.size() + 1, std::vector(right.size() + 1)); // Populate for empty right. for (size_t l_i = 0; l_i < costs.size(); ++l_i) { costs[l_i][0] = static_cast(l_i); best_move[l_i][0] = kRemove; } // Populate for empty left. for (size_t r_i = 1; r_i < costs[0].size(); ++r_i) { costs[0][r_i] = static_cast(r_i); best_move[0][r_i] = kAdd; } for (size_t l_i = 0; l_i < left.size(); ++l_i) { for (size_t r_i = 0; r_i < right.size(); ++r_i) { if (left[l_i] == right[r_i]) { // Found a match. Consume it. costs[l_i + 1][r_i + 1] = costs[l_i][r_i]; best_move[l_i + 1][r_i + 1] = kMatch; continue; } const double add = costs[l_i + 1][r_i]; const double remove = costs[l_i][r_i + 1]; const double replace = costs[l_i][r_i]; if (add < remove && add < replace) { costs[l_i + 1][r_i + 1] = add + 1; best_move[l_i + 1][r_i + 1] = kAdd; } else if (remove < add && remove < replace) { costs[l_i + 1][r_i + 1] = remove + 1; best_move[l_i + 1][r_i + 1] = kRemove; } else { // We make replace a little more expensive than add/remove to lower // their priority. costs[l_i + 1][r_i + 1] = replace + 1.00001; best_move[l_i + 1][r_i + 1] = kReplace; } } } // Reconstruct the best path. We do it in reverse order. std::vector best_path; for (size_t l_i = left.size(), r_i = right.size(); l_i > 0 || r_i > 0;) { EditType move = best_move[l_i][r_i]; best_path.push_back(move); l_i -= move != kAdd; r_i -= move != kRemove; } std::reverse(best_path.begin(), best_path.end()); return best_path; } namespace { // Helper class to convert string into ids with deduplication. class InternalStrings { public: size_t GetId(const std::string& str) { IdMap::iterator it = ids_.find(str); if (it != ids_.end()) return it->second; size_t id = ids_.size(); return ids_[str] = id; } private: typedef std::map IdMap; IdMap ids_; }; } // namespace std::vector CalculateOptimalEdits( const std::vector& left, const std::vector& right) { std::vector left_ids, right_ids; { InternalStrings intern_table; for (size_t i = 0; i < left.size(); ++i) { left_ids.push_back(intern_table.GetId(left[i])); } for (size_t i = 0; i < right.size(); ++i) { right_ids.push_back(intern_table.GetId(right[i])); } } return CalculateOptimalEdits(left_ids, right_ids); } namespace { // Helper class that holds the state for one hunk and prints it out to the // stream. // It reorders adds/removes when possible to group all removes before all // adds. It also adds the hunk header before printint into the stream. class Hunk { public: Hunk(size_t left_start, size_t right_start) : left_start_(left_start), right_start_(right_start), adds_(), removes_(), common_() {} void PushLine(char edit, const char* line) { switch (edit) { case ' ': ++common_; FlushEdits(); hunk_.push_back(std::make_pair(' ', line)); break; case '-': ++removes_; hunk_removes_.push_back(std::make_pair('-', line)); break; case '+': ++adds_; hunk_adds_.push_back(std::make_pair('+', line)); break; } } void PrintTo(std::ostream* os) { PrintHeader(os); FlushEdits(); for (std::list >::const_iterator it = hunk_.begin(); it != hunk_.end(); ++it) { *os << it->first << it->second << "\n"; } } bool has_edits() const { return adds_ || removes_; } private: void FlushEdits() { hunk_.splice(hunk_.end(), hunk_removes_); hunk_.splice(hunk_.end(), hunk_adds_); } // Print a unified diff header for one hunk. // The format is // "@@ -, +, @@" // where the left/right parts are omitted if unnecessary. void PrintHeader(std::ostream* ss) const { *ss << "@@ "; if (removes_) { *ss << "-" << left_start_ << "," << (removes_ + common_); } if (removes_ && adds_) { *ss << " "; } if (adds_) { *ss << "+" << right_start_ << "," << (adds_ + common_); } *ss << " @@\n"; } size_t left_start_, right_start_; size_t adds_, removes_, common_; std::list > hunk_, hunk_adds_, hunk_removes_; }; } // namespace // Create a list of diff hunks in Unified diff format. // Each hunk has a header generated by PrintHeader above plus a body with // lines prefixed with ' ' for no change, '-' for deletion and '+' for // addition. // 'context' represents the desired unchanged prefix/suffix around the diff. // If two hunks are close enough that their contexts overlap, then they are // joined into one hunk. std::string CreateUnifiedDiff(const std::vector& left, const std::vector& right, size_t context) { const std::vector edits = CalculateOptimalEdits(left, right); size_t l_i = 0, r_i = 0, edit_i = 0; std::stringstream ss; while (edit_i < edits.size()) { // Find first edit. while (edit_i < edits.size() && edits[edit_i] == kMatch) { ++l_i; ++r_i; ++edit_i; } // Find the first line to include in the hunk. const size_t prefix_context = std::min(l_i, context); Hunk hunk(l_i - prefix_context + 1, r_i - prefix_context + 1); for (size_t i = prefix_context; i > 0; --i) { hunk.PushLine(' ', left[l_i - i].c_str()); } // Iterate the edits until we found enough suffix for the hunk or the input // is over. size_t n_suffix = 0; for (; edit_i < edits.size(); ++edit_i) { if (n_suffix >= context) { // Continue only if the next hunk is very close. auto it = edits.begin() + static_cast(edit_i); while (it != edits.end() && *it == kMatch) ++it; if (it == edits.end() || static_cast(it - edits.begin()) - edit_i >= context) { // There is no next edit or it is too far away. break; } } EditType edit = edits[edit_i]; // Reset count when a non match is found. n_suffix = edit == kMatch ? n_suffix + 1 : 0; if (edit == kMatch || edit == kRemove || edit == kReplace) { hunk.PushLine(edit == kMatch ? ' ' : '-', left[l_i].c_str()); } if (edit == kAdd || edit == kReplace) { hunk.PushLine('+', right[r_i].c_str()); } // Advance indices, depending on edit type. l_i += edit != kAdd; r_i += edit != kRemove; } if (!hunk.has_edits()) { // We are done. We don't want this hunk. break; } hunk.PrintTo(&ss); } return ss.str(); } } // namespace edit_distance namespace { // The string representation of the values received in EqFailure() are already // escaped. Split them on escaped '\n' boundaries. Leave all other escaped // characters the same. std::vector SplitEscapedString(const std::string& str) { std::vector lines; size_t start = 0, end = str.size(); if (end > 2 && str[0] == '"' && str[end - 1] == '"') { ++start; --end; } bool escaped = false; for (size_t i = start; i + 1 < end; ++i) { if (escaped) { escaped = false; if (str[i] == 'n') { lines.push_back(str.substr(start, i - start - 1)); start = i + 1; } } else { escaped = str[i] == '\\'; } } lines.push_back(str.substr(start, end - start)); return lines; } } // namespace // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // lhs_expression: "foo" // rhs_expression: "bar" // lhs_value: "5" // rhs_value: "6" // // The ignoring_case parameter is true if and only if the assertion is a // *_STRCASEEQ*. When it's true, the string "Ignoring case" will // be inserted into the message. AssertionResult EqFailure(const char* lhs_expression, const char* rhs_expression, const std::string& lhs_value, const std::string& rhs_value, bool ignoring_case) { Message msg; msg << "Expected equality of these values:"; msg << "\n " << lhs_expression; if (lhs_value != lhs_expression) { msg << "\n Which is: " << lhs_value; } msg << "\n " << rhs_expression; if (rhs_value != rhs_expression) { msg << "\n Which is: " << rhs_value; } if (ignoring_case) { msg << "\nIgnoring case"; } if (!lhs_value.empty() && !rhs_value.empty()) { const std::vector lhs_lines = SplitEscapedString(lhs_value); const std::vector rhs_lines = SplitEscapedString(rhs_value); if (lhs_lines.size() > 1 || rhs_lines.size() > 1) { msg << "\nWith diff:\n" << edit_distance::CreateUnifiedDiff(lhs_lines, rhs_lines); } } return AssertionFailure() << msg; } // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. std::string GetBoolAssertionFailureMessage( const AssertionResult& assertion_result, const char* expression_text, const char* actual_predicate_value, const char* expected_predicate_value) { const char* actual_message = assertion_result.message(); Message msg; msg << "Value of: " << expression_text << "\n Actual: " << actual_predicate_value; if (actual_message[0] != '\0') msg << " (" << actual_message << ")"; msg << "\nExpected: " << expected_predicate_value; return msg.GetString(); } // Helper function for implementing ASSERT_NEAR. AssertionResult DoubleNearPredFormat(const char* expr1, const char* expr2, const char* abs_error_expr, double val1, double val2, double abs_error) { const double diff = fabs(val1 - val2); if (diff <= abs_error) return AssertionSuccess(); return AssertionFailure() << "The difference between " << expr1 << " and " << expr2 << " is " << diff << ", which exceeds " << abs_error_expr << ", where\n" << expr1 << " evaluates to " << val1 << ",\n" << expr2 << " evaluates to " << val2 << ", and\n" << abs_error_expr << " evaluates to " << abs_error << "."; } // Helper template for implementing FloatLE() and DoubleLE(). template AssertionResult FloatingPointLE(const char* expr1, const char* expr2, RawType val1, RawType val2) { // Returns success if val1 is less than val2, if (val1 < val2) { return AssertionSuccess(); } // or if val1 is almost equal to val2. const FloatingPoint lhs(val1), rhs(val2); if (lhs.AlmostEquals(rhs)) { return AssertionSuccess(); } // Note that the above two checks will both fail if either val1 or // val2 is NaN, as the IEEE floating-point standard requires that // any predicate involving a NaN must return false. ::std::stringstream val1_ss; val1_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val1; ::std::stringstream val2_ss; val2_ss << std::setprecision(std::numeric_limits::digits10 + 2) << val2; return AssertionFailure() << "Expected: (" << expr1 << ") <= (" << expr2 << ")\n" << " Actual: " << StringStreamToString(&val1_ss) << " vs " << StringStreamToString(&val2_ss); } } // namespace internal // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult FloatLE(const char* expr1, const char* expr2, float val1, float val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult DoubleLE(const char* expr1, const char* expr2, double val1, double val2) { return internal::FloatingPointLE(expr1, expr2, val1, val2); } namespace internal { // The helper function for {ASSERT|EXPECT}_EQ with int or enum // arguments. AssertionResult CmpHelperEQ(const char* lhs_expression, const char* rhs_expression, BiggestInt lhs, BiggestInt rhs) { if (lhs == rhs) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, FormatForComparisonFailureMessage(lhs, rhs), FormatForComparisonFailureMessage(rhs, lhs), false); } // A macro for implementing the helper functions needed to implement // ASSERT_?? and EXPECT_?? with integer or enum arguments. It is here // just to avoid copy-and-paste of similar code. #define GTEST_IMPL_CMP_HELPER_(op_name, op)\ AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \ BiggestInt val1, BiggestInt val2) {\ if (val1 op val2) {\ return AssertionSuccess();\ } else {\ return AssertionFailure() \ << "Expected: (" << expr1 << ") " #op " (" << expr2\ << "), actual: " << FormatForComparisonFailureMessage(val1, val2)\ << " vs " << FormatForComparisonFailureMessage(val2, val1);\ }\ } // Implements the helper function for {ASSERT|EXPECT}_NE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(NE, !=) // Implements the helper function for {ASSERT|EXPECT}_LE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(LE, <=) // Implements the helper function for {ASSERT|EXPECT}_LT with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(LT, < ) // Implements the helper function for {ASSERT|EXPECT}_GE with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(GE, >=) // Implements the helper function for {ASSERT|EXPECT}_GT with int or // enum arguments. GTEST_IMPL_CMP_HELPER_(GT, > ) #undef GTEST_IMPL_CMP_HELPER_ // The helper function for {ASSERT|EXPECT}_STREQ. AssertionResult CmpHelperSTREQ(const char* lhs_expression, const char* rhs_expression, const char* lhs, const char* rhs) { if (String::CStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), false); } // The helper function for {ASSERT|EXPECT}_STRCASEEQ. AssertionResult CmpHelperSTRCASEEQ(const char* lhs_expression, const char* rhs_expression, const char* lhs, const char* rhs) { if (String::CaseInsensitiveCStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), true); } // The helper function for {ASSERT|EXPECT}_STRNE. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } // The helper function for {ASSERT|EXPECT}_STRCASENE. AssertionResult CmpHelperSTRCASENE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CaseInsensitiveCStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << ") (ignoring case), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } } // namespace internal namespace { // Helper functions for implementing IsSubString() and IsNotSubstring(). // This group of overloaded functions return true if and only if needle // is a substring of haystack. NULL is considered a substring of // itself only. bool IsSubstringPred(const char* needle, const char* haystack) { if (needle == nullptr || haystack == nullptr) return needle == haystack; return strstr(haystack, needle) != nullptr; } bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) { if (needle == nullptr || haystack == nullptr) return needle == haystack; return wcsstr(haystack, needle) != nullptr; } // StringType here can be either ::std::string or ::std::wstring. template bool IsSubstringPred(const StringType& needle, const StringType& haystack) { return haystack.find(needle) != StringType::npos; } // This function implements either IsSubstring() or IsNotSubstring(), // depending on the value of the expected_to_be_substring parameter. // StringType here can be const char*, const wchar_t*, ::std::string, // or ::std::wstring. template AssertionResult IsSubstringImpl( bool expected_to_be_substring, const char* needle_expr, const char* haystack_expr, const StringType& needle, const StringType& haystack) { if (IsSubstringPred(needle, haystack) == expected_to_be_substring) return AssertionSuccess(); const bool is_wide_string = sizeof(needle[0]) > 1; const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; return AssertionFailure() << "Value of: " << needle_expr << "\n" << " Actual: " << begin_string_quote << needle << "\"\n" << "Expected: " << (expected_to_be_substring ? "" : "not ") << "a substring of " << haystack_expr << "\n" << "Which is: " << begin_string_quote << haystack << "\""; } } // namespace // IsSubstring() and IsNotSubstring() check whether needle is a // substring of haystack (NULL is considered a substring of itself // only), and return an appropriate error message when they fail. AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #if GTEST_HAS_STD_WSTRING AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #endif // GTEST_HAS_STD_WSTRING namespace internal { #if GTEST_OS_WINDOWS namespace { // Helper function for IsHRESULT{SuccessFailure} predicates AssertionResult HRESULTFailureHelper(const char* expr, const char* expected, long hr) { // NOLINT # if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_TV_TITLE // Windows CE doesn't support FormatMessage. const char error_text[] = ""; # else // Looks up the human-readable system message for the HRESULT code // and since we're not passing any params to FormatMessage, we don't // want inserts expanded. const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS; const DWORD kBufSize = 4096; // Gets the system's human readable message string for this HRESULT. char error_text[kBufSize] = { '\0' }; DWORD message_length = ::FormatMessageA(kFlags, 0, // no source, we're asking system static_cast(hr), // the error 0, // no line width restrictions error_text, // output buffer kBufSize, // buf size nullptr); // no arguments for inserts // Trims tailing white space (FormatMessage leaves a trailing CR-LF) for (; message_length && IsSpace(error_text[message_length - 1]); --message_length) { error_text[message_length - 1] = '\0'; } # endif // GTEST_OS_WINDOWS_MOBILE const std::string error_hex("0x" + String::FormatHexInt(hr)); return ::testing::AssertionFailure() << "Expected: " << expr << " " << expected << ".\n" << " Actual: " << error_hex << " " << error_text << "\n"; } } // namespace AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT if (SUCCEEDED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "succeeds", hr); } AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT if (FAILED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "fails", hr); } #endif // GTEST_OS_WINDOWS // Utility functions for encoding Unicode text (wide strings) in // UTF-8. // A Unicode code-point can have up to 21 bits, and is encoded in UTF-8 // like this: // // Code-point length Encoding // 0 - 7 bits 0xxxxxxx // 8 - 11 bits 110xxxxx 10xxxxxx // 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx // 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx // The maximum code-point a one-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint1 = (static_cast(1) << 7) - 1; // The maximum code-point a two-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint2 = (static_cast(1) << (5 + 6)) - 1; // The maximum code-point a three-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint3 = (static_cast(1) << (4 + 2*6)) - 1; // The maximum code-point a four-byte UTF-8 sequence can represent. const UInt32 kMaxCodePoint4 = (static_cast(1) << (3 + 3*6)) - 1; // Chops off the n lowest bits from a bit pattern. Returns the n // lowest bits. As a side effect, the original bit pattern will be // shifted to the right by n bits. inline UInt32 ChopLowBits(UInt32* bits, int n) { const UInt32 low_bits = *bits & ((static_cast(1) << n) - 1); *bits >>= n; return low_bits; } // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type UInt32 because wchar_t may not be // wide enough to contain a code point. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted // to "(Invalid Unicode 0xXXXXXXXX)". std::string CodePointToUtf8(UInt32 code_point) { if (code_point > kMaxCodePoint4) { return "(Invalid Unicode 0x" + String::FormatHexUInt32(code_point) + ")"; } char str[5]; // Big enough for the largest valid code point. if (code_point <= kMaxCodePoint1) { str[1] = '\0'; str[0] = static_cast(code_point); // 0xxxxxxx } else if (code_point <= kMaxCodePoint2) { str[2] = '\0'; str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xC0 | code_point); // 110xxxxx } else if (code_point <= kMaxCodePoint3) { str[3] = '\0'; str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xE0 | code_point); // 1110xxxx } else { // code_point <= kMaxCodePoint4 str[4] = '\0'; str[3] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[2] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast(0xF0 | code_point); // 11110xxx } return str; } // The following two functions only make sense if the system // uses UTF-16 for wide string encoding. All supported systems // with 16 bit wchar_t (Windows, Cygwin) do use UTF-16. // Determines if the arguments constitute UTF-16 surrogate pair // and thus should be combined into a single Unicode code point // using CreateCodePointFromUtf16SurrogatePair. inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) { return sizeof(wchar_t) == 2 && (first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00; } // Creates a Unicode code point from UTF16 surrogate pair. inline UInt32 CreateCodePointFromUtf16SurrogatePair(wchar_t first, wchar_t second) { const auto first_u = static_cast(first); const auto second_u = static_cast(second); const UInt32 mask = (1 << 10) - 1; return (sizeof(wchar_t) == 2) ? (((first_u & mask) << 10) | (second_u & mask)) + 0x10000 : // This function should not be called when the condition is // false, but we provide a sensible default in case it is. first_u; } // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. std::string WideStringToUtf8(const wchar_t* str, int num_chars) { if (num_chars == -1) num_chars = static_cast(wcslen(str)); ::std::stringstream stream; for (int i = 0; i < num_chars; ++i) { UInt32 unicode_code_point; if (str[i] == L'\0') { break; } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) { unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]); i++; } else { unicode_code_point = static_cast(str[i]); } stream << CodePointToUtf8(unicode_code_point); } return StringStreamToString(&stream); } // Converts a wide C string to an std::string using the UTF-8 encoding. // NULL will be converted to "(null)". std::string String::ShowWideCString(const wchar_t * wide_c_str) { if (wide_c_str == nullptr) return "(null)"; return internal::WideStringToUtf8(wide_c_str, -1); } // Compares two wide C strings. Returns true if and only if they have the // same content. // // Unlike wcscmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return wcscmp(lhs, rhs) == 0; } // Helper function for *_STREQ on wide strings. AssertionResult CmpHelperSTREQ(const char* lhs_expression, const char* rhs_expression, const wchar_t* lhs, const wchar_t* rhs) { if (String::WideCStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), false); } // Helper function for *_STRNE on wide strings. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const wchar_t* s1, const wchar_t* s2) { if (!String::WideCStringEquals(s1, s2)) { return AssertionSuccess(); } return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: " << PrintToString(s1) << " vs " << PrintToString(s2); } // Compares two C strings, ignoring case. Returns true if and only if they have // the same content. // // Unlike strcasecmp(), this function can handle NULL argument(s). A // NULL C string is considered different to any non-NULL C string, // including the empty string. bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return posix::StrCaseCmp(lhs, rhs) == 0; } // Compares two wide C strings, ignoring case. Returns true if and only if they // have the same content. // // Unlike wcscasecmp(), this function can handle NULL argument(s). // A NULL C string is considered different to any non-NULL wide C string, // including the empty string. // NB: The implementations on different platforms slightly differ. // On windows, this method uses _wcsicmp which compares according to LC_CTYPE // environment variable. On GNU platform this method uses wcscasecmp // which compares according to LC_CTYPE category of the current locale. // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the // current locale. bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; #if GTEST_OS_WINDOWS return _wcsicmp(lhs, rhs) == 0; #elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID return wcscasecmp(lhs, rhs) == 0; #else // Android, Mac OS X and Cygwin don't define wcscasecmp. // Other unknown OSes may not define it either. wint_t left, right; do { left = towlower(static_cast(*lhs++)); right = towlower(static_cast(*rhs++)); } while (left && left == right); return left == right; #endif // OS selector } // Returns true if and only if str ends with the given suffix, ignoring case. // Any string is considered to end with an empty suffix. bool String::EndsWithCaseInsensitive( const std::string& str, const std::string& suffix) { const size_t str_len = str.length(); const size_t suffix_len = suffix.length(); return (str_len >= suffix_len) && CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len, suffix.c_str()); } // Formats an int value as "%02d". std::string String::FormatIntWidth2(int value) { std::stringstream ss; ss << std::setfill('0') << std::setw(2) << value; return ss.str(); } // Formats an int value as "%X". std::string String::FormatHexUInt32(UInt32 value) { std::stringstream ss; ss << std::hex << std::uppercase << value; return ss.str(); } // Formats an int value as "%X". std::string String::FormatHexInt(int value) { return FormatHexUInt32(static_cast(value)); } // Formats a byte as "%02X". std::string String::FormatByte(unsigned char value) { std::stringstream ss; ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase << static_cast(value); return ss.str(); } // Converts the buffer in a stringstream to an std::string, converting NUL // bytes to "\\0" along the way. std::string StringStreamToString(::std::stringstream* ss) { const ::std::string& str = ss->str(); const char* const start = str.c_str(); const char* const end = start + str.length(); std::string result; result.reserve(static_cast(2 * (end - start))); for (const char* ch = start; ch != end; ++ch) { if (*ch == '\0') { result += "\\0"; // Replaces NUL with "\\0"; } else { result += *ch; } } return result; } // Appends the user-supplied message to the Google-Test-generated message. std::string AppendUserMessage(const std::string& gtest_msg, const Message& user_msg) { // Appends the user message if it's non-empty. const std::string user_msg_string = user_msg.GetString(); if (user_msg_string.empty()) { return gtest_msg; } return gtest_msg + "\n" + user_msg_string; } } // namespace internal // class TestResult // Creates an empty TestResult. TestResult::TestResult() : death_test_count_(0), start_timestamp_(0), elapsed_time_(0) {} // D'tor. TestResult::~TestResult() { } // Returns the i-th test part result among all the results. i can // range from 0 to total_part_count() - 1. If i is not in that range, // aborts the program. const TestPartResult& TestResult::GetTestPartResult(int i) const { if (i < 0 || i >= total_part_count()) internal::posix::Abort(); return test_part_results_.at(static_cast(i)); } // Returns the i-th test property. i can range from 0 to // test_property_count() - 1. If i is not in that range, aborts the // program. const TestProperty& TestResult::GetTestProperty(int i) const { if (i < 0 || i >= test_property_count()) internal::posix::Abort(); return test_properties_.at(static_cast(i)); } // Clears the test part results. void TestResult::ClearTestPartResults() { test_part_results_.clear(); } // Adds a test part result to the list. void TestResult::AddTestPartResult(const TestPartResult& test_part_result) { test_part_results_.push_back(test_part_result); } // Adds a test property to the list. If a property with the same key as the // supplied property is already represented, the value of this test_property // replaces the old value for that key. void TestResult::RecordProperty(const std::string& xml_element, const TestProperty& test_property) { if (!ValidateTestProperty(xml_element, test_property)) { return; } internal::MutexLock lock(&test_properites_mutex_); const std::vector::iterator property_with_matching_key = std::find_if(test_properties_.begin(), test_properties_.end(), internal::TestPropertyKeyIs(test_property.key())); if (property_with_matching_key == test_properties_.end()) { test_properties_.push_back(test_property); return; } property_with_matching_key->SetValue(test_property.value()); } // The list of reserved attributes used in the element of XML // output. static const char* const kReservedTestSuitesAttributes[] = { "disabled", "errors", "failures", "name", "random_seed", "tests", "time", "timestamp" }; // The list of reserved attributes used in the element of XML // output. static const char* const kReservedTestSuiteAttributes[] = { "disabled", "errors", "failures", "name", "tests", "time", "timestamp"}; // The list of reserved attributes used in the element of XML output. static const char* const kReservedTestCaseAttributes[] = { "classname", "name", "status", "time", "type_param", "value_param", "file", "line"}; // Use a slightly different set for allowed output to ensure existing tests can // still RecordProperty("result") or "RecordProperty(timestamp") static const char* const kReservedOutputTestCaseAttributes[] = { "classname", "name", "status", "time", "type_param", "value_param", "file", "line", "result", "timestamp"}; template std::vector ArrayAsVector(const char* const (&array)[kSize]) { return std::vector(array, array + kSize); } static std::vector GetReservedAttributesForElement( const std::string& xml_element) { if (xml_element == "testsuites") { return ArrayAsVector(kReservedTestSuitesAttributes); } else if (xml_element == "testsuite") { return ArrayAsVector(kReservedTestSuiteAttributes); } else if (xml_element == "testcase") { return ArrayAsVector(kReservedTestCaseAttributes); } else { GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; } // This code is unreachable but some compilers may not realizes that. return std::vector(); } // TODO(jdesprez): Merge the two getReserved attributes once skip is improved static std::vector GetReservedOutputAttributesForElement( const std::string& xml_element) { if (xml_element == "testsuites") { return ArrayAsVector(kReservedTestSuitesAttributes); } else if (xml_element == "testsuite") { return ArrayAsVector(kReservedTestSuiteAttributes); } else if (xml_element == "testcase") { return ArrayAsVector(kReservedOutputTestCaseAttributes); } else { GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; } // This code is unreachable but some compilers may not realizes that. return std::vector(); } static std::string FormatWordList(const std::vector& words) { Message word_list; for (size_t i = 0; i < words.size(); ++i) { if (i > 0 && words.size() > 2) { word_list << ", "; } if (i == words.size() - 1) { word_list << "and "; } word_list << "'" << words[i] << "'"; } return word_list.GetString(); } static bool ValidateTestPropertyName( const std::string& property_name, const std::vector& reserved_names) { if (std::find(reserved_names.begin(), reserved_names.end(), property_name) != reserved_names.end()) { ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name << " (" << FormatWordList(reserved_names) << " are reserved by " << GTEST_NAME_ << ")"; return false; } return true; } // Adds a failure if the key is a reserved attribute of the element named // xml_element. Returns true if the property is valid. bool TestResult::ValidateTestProperty(const std::string& xml_element, const TestProperty& test_property) { return ValidateTestPropertyName(test_property.key(), GetReservedAttributesForElement(xml_element)); } // Clears the object. void TestResult::Clear() { test_part_results_.clear(); test_properties_.clear(); death_test_count_ = 0; elapsed_time_ = 0; } // Returns true off the test part was skipped. static bool TestPartSkipped(const TestPartResult& result) { return result.skipped(); } // Returns true if and only if the test was skipped. bool TestResult::Skipped() const { return !Failed() && CountIf(test_part_results_, TestPartSkipped) > 0; } // Returns true if and only if the test failed. bool TestResult::Failed() const { for (int i = 0; i < total_part_count(); ++i) { if (GetTestPartResult(i).failed()) return true; } return false; } // Returns true if and only if the test part fatally failed. static bool TestPartFatallyFailed(const TestPartResult& result) { return result.fatally_failed(); } // Returns true if and only if the test fatally failed. bool TestResult::HasFatalFailure() const { return CountIf(test_part_results_, TestPartFatallyFailed) > 0; } // Returns true if and only if the test part non-fatally failed. static bool TestPartNonfatallyFailed(const TestPartResult& result) { return result.nonfatally_failed(); } // Returns true if and only if the test has a non-fatal failure. bool TestResult::HasNonfatalFailure() const { return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0; } // Gets the number of all test parts. This is the sum of the number // of successful test parts and the number of failed test parts. int TestResult::total_part_count() const { return static_cast(test_part_results_.size()); } // Returns the number of the test properties. int TestResult::test_property_count() const { return static_cast(test_properties_.size()); } // class Test // Creates a Test object. // The c'tor saves the states of all flags. Test::Test() : gtest_flag_saver_(new GTEST_FLAG_SAVER_) { } // The d'tor restores the states of all flags. The actual work is // done by the d'tor of the gtest_flag_saver_ field, and thus not // visible here. Test::~Test() { } // Sets up the test fixture. // // A sub-class may override this. void Test::SetUp() { } // Tears down the test fixture. // // A sub-class may override this. void Test::TearDown() { } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, const std::string& value) { UnitTest::GetInstance()->RecordProperty(key, value); } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, int value) { Message value_message; value_message << value; RecordProperty(key, value_message.GetString().c_str()); } namespace internal { void ReportFailureInUnknownLocation(TestPartResult::Type result_type, const std::string& message) { // This function is a friend of UnitTest and as such has access to // AddTestPartResult. UnitTest::GetInstance()->AddTestPartResult( result_type, nullptr, // No info about the source file where the exception occurred. -1, // We have no info on which line caused the exception. message, ""); // No stack trace, either. } } // namespace internal // Google Test requires all tests in the same test suite to use the same test // fixture class. This function checks if the current test has the // same fixture class as the first test in the current test suite. If // yes, it returns true; otherwise it generates a Google Test failure and // returns false. bool Test::HasSameFixtureClass() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); const TestSuite* const test_suite = impl->current_test_suite(); // Info about the first test in the current test suite. const TestInfo* const first_test_info = test_suite->test_info_list()[0]; const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_; const char* const first_test_name = first_test_info->name(); // Info about the current test. const TestInfo* const this_test_info = impl->current_test_info(); const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_; const char* const this_test_name = this_test_info->name(); if (this_fixture_id != first_fixture_id) { // Is the first test defined using TEST? const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId(); // Is this test defined using TEST? const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId(); if (first_is_TEST || this_is_TEST) { // Both TEST and TEST_F appear in same test suite, which is incorrect. // Tell the user how to fix this. // Gets the name of the TEST and the name of the TEST_F. Note // that first_is_TEST and this_is_TEST cannot both be true, as // the fixture IDs are different for the two tests. const char* const TEST_name = first_is_TEST ? first_test_name : this_test_name; const char* const TEST_F_name = first_is_TEST ? this_test_name : first_test_name; ADD_FAILURE() << "All tests in the same test suite must use the same test fixture\n" << "class, so mixing TEST_F and TEST in the same test suite is\n" << "illegal. In test suite " << this_test_info->test_suite_name() << ",\n" << "test " << TEST_F_name << " is defined using TEST_F but\n" << "test " << TEST_name << " is defined using TEST. You probably\n" << "want to change the TEST to TEST_F or move it to another test\n" << "case."; } else { // Two fixture classes with the same name appear in two different // namespaces, which is not allowed. Tell the user how to fix this. ADD_FAILURE() << "All tests in the same test suite must use the same test fixture\n" << "class. However, in test suite " << this_test_info->test_suite_name() << ",\n" << "you defined test " << first_test_name << " and test " << this_test_name << "\n" << "using two different test fixture classes. This can happen if\n" << "the two classes are from different namespaces or translation\n" << "units and have the same name. You should probably rename one\n" << "of the classes to put the tests into different test suites."; } return false; } return true; } #if GTEST_HAS_SEH // Adds an "exception thrown" fatal failure to the current test. This // function returns its result via an output parameter pointer because VC++ // prohibits creation of objects with destructors on stack in functions // using __try (see error C2712). static std::string* FormatSehExceptionMessage(DWORD exception_code, const char* location) { Message message; message << "SEH exception with code 0x" << std::setbase(16) << exception_code << std::setbase(10) << " thrown in " << location << "."; return new std::string(message.GetString()); } #endif // GTEST_HAS_SEH namespace internal { #if GTEST_HAS_EXCEPTIONS // Adds an "exception thrown" fatal failure to the current test. static std::string FormatCxxExceptionMessage(const char* description, const char* location) { Message message; if (description != nullptr) { message << "C++ exception with description \"" << description << "\""; } else { message << "Unknown C++ exception"; } message << " thrown in " << location << "."; return message.GetString(); } static std::string PrintTestPartResultToString( const TestPartResult& test_part_result); GoogleTestFailureException::GoogleTestFailureException( const TestPartResult& failure) : ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {} #endif // GTEST_HAS_EXCEPTIONS // We put these helper functions in the internal namespace as IBM's xlC // compiler rejects the code if they were declared static. // Runs the given method and handles SEH exceptions it throws, when // SEH is supported; returns the 0-value for type Result in case of an // SEH exception. (Microsoft compilers cannot handle SEH and C++ // exceptions in the same function. Therefore, we provide a separate // wrapper function for handling SEH exceptions.) template Result HandleSehExceptionsInMethodIfSupported( T* object, Result (T::*method)(), const char* location) { #if GTEST_HAS_SEH __try { return (object->*method)(); } __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT GetExceptionCode())) { // We create the exception message on the heap because VC++ prohibits // creation of objects with destructors on stack in functions using __try // (see error C2712). std::string* exception_message = FormatSehExceptionMessage( GetExceptionCode(), location); internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure, *exception_message); delete exception_message; return static_cast(0); } #else (void)location; return (object->*method)(); #endif // GTEST_HAS_SEH } // Runs the given method and catches and reports C++ and/or SEH-style // exceptions, if they are supported; returns the 0-value for type // Result in case of an SEH exception. template Result HandleExceptionsInMethodIfSupported( T* object, Result (T::*method)(), const char* location) { // NOTE: The user code can affect the way in which Google Test handles // exceptions by setting GTEST_FLAG(catch_exceptions), but only before // RUN_ALL_TESTS() starts. It is technically possible to check the flag // after the exception is caught and either report or re-throw the // exception based on the flag's value: // // try { // // Perform the test method. // } catch (...) { // if (GTEST_FLAG(catch_exceptions)) // // Report the exception as failure. // else // throw; // Re-throws the original exception. // } // // However, the purpose of this flag is to allow the program to drop into // the debugger when the exception is thrown. On most platforms, once the // control enters the catch block, the exception origin information is // lost and the debugger will stop the program at the point of the // re-throw in this function -- instead of at the point of the original // throw statement in the code under test. For this reason, we perform // the check early, sacrificing the ability to affect Google Test's // exception handling in the method where the exception is thrown. if (internal::GetUnitTestImpl()->catch_exceptions()) { #if GTEST_HAS_EXCEPTIONS try { return HandleSehExceptionsInMethodIfSupported(object, method, location); } catch (const AssertionException&) { // NOLINT // This failure was reported already. } catch (const internal::GoogleTestFailureException&) { // NOLINT // This exception type can only be thrown by a failed Google // Test assertion with the intention of letting another testing // framework catch it. Therefore we just re-throw it. throw; } catch (const std::exception& e) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(e.what(), location)); } catch (...) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(nullptr, location)); } return static_cast(0); #else return HandleSehExceptionsInMethodIfSupported(object, method, location); #endif // GTEST_HAS_EXCEPTIONS } else { return (object->*method)(); } } } // namespace internal // Runs the test and updates the test result. void Test::Run() { if (!HasSameFixtureClass()) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()"); // We will run the test only if SetUp() was successful and didn't call // GTEST_SKIP(). if (!HasFatalFailure() && !IsSkipped()) { impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &Test::TestBody, "the test body"); } // However, we want to clean up as much as possible. Hence we will // always call TearDown(), even if SetUp() or the test body has // failed. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &Test::TearDown, "TearDown()"); } // Returns true if and only if the current test has a fatal failure. bool Test::HasFatalFailure() { return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure(); } // Returns true if and only if the current test has a non-fatal failure. bool Test::HasNonfatalFailure() { return internal::GetUnitTestImpl()->current_test_result()-> HasNonfatalFailure(); } // Returns true if and only if the current test was skipped. bool Test::IsSkipped() { return internal::GetUnitTestImpl()->current_test_result()->Skipped(); } // class TestInfo // Constructs a TestInfo object. It assumes ownership of the test factory // object. TestInfo::TestInfo(const std::string& a_test_suite_name, const std::string& a_name, const char* a_type_param, const char* a_value_param, internal::CodeLocation a_code_location, internal::TypeId fixture_class_id, internal::TestFactoryBase* factory) : test_suite_name_(a_test_suite_name), name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : nullptr), value_param_(a_value_param ? new std::string(a_value_param) : nullptr), location_(a_code_location), fixture_class_id_(fixture_class_id), should_run_(false), is_disabled_(false), matches_filter_(false), factory_(factory), result_() {} // Destructs a TestInfo object. TestInfo::~TestInfo() { delete factory_; } namespace internal { // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_suite_name: name of the test suite // name: name of the test // type_param: the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // value_param: text representation of the test's value parameter, // or NULL if this is not a value-parameterized test. // code_location: code location where the test is defined // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. TestInfo* MakeAndRegisterTestInfo( const char* test_suite_name, const char* name, const char* type_param, const char* value_param, CodeLocation code_location, TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory) { TestInfo* const test_info = new TestInfo(test_suite_name, name, type_param, value_param, code_location, fixture_class_id, factory); GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info); return test_info; } void ReportInvalidTestSuiteType(const char* test_suite_name, CodeLocation code_location) { Message errors; errors << "Attempted redefinition of test suite " << test_suite_name << ".\n" << "All tests in the same test suite must use the same test fixture\n" << "class. However, in test suite " << test_suite_name << ", you tried\n" << "to define a test using a fixture class different from the one\n" << "used earlier. This can happen if the two fixture classes are\n" << "from different namespaces and have the same name. You should\n" << "probably rename one of the classes to put the tests into different\n" << "test suites."; GTEST_LOG_(ERROR) << FormatFileLocation(code_location.file.c_str(), code_location.line) << " " << errors.GetString(); } } // namespace internal namespace { // A predicate that checks the test name of a TestInfo against a known // value. // // This is used for implementation of the TestSuite class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestNameIs is copyable. class TestNameIs { public: // Constructor. // // TestNameIs has NO default constructor. explicit TestNameIs(const char* name) : name_(name) {} // Returns true if and only if the test name of test_info matches name_. bool operator()(const TestInfo * test_info) const { return test_info && test_info->name() == name_; } private: std::string name_; }; } // namespace namespace internal { // This method expands all parameterized tests registered with macros TEST_P // and INSTANTIATE_TEST_SUITE_P into regular tests and registers those. // This will be done just once during the program runtime. void UnitTestImpl::RegisterParameterizedTests() { if (!parameterized_tests_registered_) { parameterized_test_registry_.RegisterTests(); parameterized_tests_registered_ = true; } } } // namespace internal // Creates the test object, runs it, records its result, and then // deletes it. void TestInfo::Run() { if (!should_run_) return; // Tells UnitTest where to store test result. internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_info(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Notifies the unit test event listeners that a test is about to start. repeater->OnTestStart(*this); const TimeInMillis start = internal::GetTimeInMillis(); impl->os_stack_trace_getter()->UponLeavingGTest(); // Creates the test object. Test* const test = internal::HandleExceptionsInMethodIfSupported( factory_, &internal::TestFactoryBase::CreateTest, "the test fixture's constructor"); // Runs the test if the constructor didn't generate a fatal failure or invoke // GTEST_SKIP(). // Note that the object will not be null if (!Test::HasFatalFailure() && !Test::IsSkipped()) { // This doesn't throw as all user code that can throw are wrapped into // exception handling code. test->Run(); } if (test != nullptr) { // Deletes the test object. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( test, &Test::DeleteSelf_, "the test fixture's destructor"); } result_.set_start_timestamp(start); result_.set_elapsed_time(internal::GetTimeInMillis() - start); // Notifies the unit test event listener that a test has just finished. repeater->OnTestEnd(*this); // Tells UnitTest to stop associating assertion results to this // test. impl->set_current_test_info(nullptr); } // class TestSuite // Gets the number of successful tests in this test suite. int TestSuite::successful_test_count() const { return CountIf(test_info_list_, TestPassed); } // Gets the number of successful tests in this test suite. int TestSuite::skipped_test_count() const { return CountIf(test_info_list_, TestSkipped); } // Gets the number of failed tests in this test suite. int TestSuite::failed_test_count() const { return CountIf(test_info_list_, TestFailed); } // Gets the number of disabled tests that will be reported in the XML report. int TestSuite::reportable_disabled_test_count() const { return CountIf(test_info_list_, TestReportableDisabled); } // Gets the number of disabled tests in this test suite. int TestSuite::disabled_test_count() const { return CountIf(test_info_list_, TestDisabled); } // Gets the number of tests to be printed in the XML report. int TestSuite::reportable_test_count() const { return CountIf(test_info_list_, TestReportable); } // Get the number of tests in this test suite that should run. int TestSuite::test_to_run_count() const { return CountIf(test_info_list_, ShouldRunTest); } // Gets the number of all tests. int TestSuite::total_test_count() const { return static_cast(test_info_list_.size()); } // Creates a TestSuite with the given name. // // Arguments: // // name: name of the test suite // a_type_param: the name of the test suite's type parameter, or NULL if // this is not a typed or a type-parameterized test suite. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite::TestSuite(const char* a_name, const char* a_type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc) : name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : nullptr), set_up_tc_(set_up_tc), tear_down_tc_(tear_down_tc), should_run_(false), start_timestamp_(0), elapsed_time_(0) {} // Destructor of TestSuite. TestSuite::~TestSuite() { // Deletes every Test in the collection. ForEach(test_info_list_, internal::Delete); } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. const TestInfo* TestSuite::GetTestInfo(int i) const { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? nullptr : test_info_list_[static_cast(index)]; } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. TestInfo* TestSuite::GetMutableTestInfo(int i) { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? nullptr : test_info_list_[static_cast(index)]; } // Adds a test to this test suite. Will delete the test upon // destruction of the TestSuite object. void TestSuite::AddTestInfo(TestInfo* test_info) { test_info_list_.push_back(test_info); test_indices_.push_back(static_cast(test_indices_.size())); } // Runs every test in this TestSuite. void TestSuite::Run() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_suite(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Call both legacy and the new API repeater->OnTestSuiteStart(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI repeater->OnTestCaseStart(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestSuite::RunSetUpTestSuite, "SetUpTestSuite()"); start_timestamp_ = internal::GetTimeInMillis(); for (int i = 0; i < total_test_count(); i++) { GetMutableTestInfo(i)->Run(); } elapsed_time_ = internal::GetTimeInMillis() - start_timestamp_; impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestSuite::RunTearDownTestSuite, "TearDownTestSuite()"); // Call both legacy and the new API repeater->OnTestSuiteEnd(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI repeater->OnTestCaseEnd(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI impl->set_current_test_suite(nullptr); } // Clears the results of all tests in this test suite. void TestSuite::ClearResult() { ad_hoc_test_result_.Clear(); ForEach(test_info_list_, TestInfo::ClearTestResult); } // Shuffles the tests in this test suite. void TestSuite::ShuffleTests(internal::Random* random) { Shuffle(random, &test_indices_); } // Restores the test order to before the first shuffle. void TestSuite::UnshuffleTests() { for (size_t i = 0; i < test_indices_.size(); i++) { test_indices_[i] = static_cast(i); } } // Formats a countable noun. Depending on its quantity, either the // singular form or the plural form is used. e.g. // // FormatCountableNoun(1, "formula", "formuli") returns "1 formula". // FormatCountableNoun(5, "book", "books") returns "5 books". static std::string FormatCountableNoun(int count, const char * singular_form, const char * plural_form) { return internal::StreamableToString(count) + " " + (count == 1 ? singular_form : plural_form); } // Formats the count of tests. static std::string FormatTestCount(int test_count) { return FormatCountableNoun(test_count, "test", "tests"); } // Formats the count of test suites. static std::string FormatTestSuiteCount(int test_suite_count) { return FormatCountableNoun(test_suite_count, "test suite", "test suites"); } // Converts a TestPartResult::Type enum to human-friendly string // representation. Both kNonFatalFailure and kFatalFailure are translated // to "Failure", as the user usually doesn't care about the difference // between the two when viewing the test result. static const char * TestPartResultTypeToString(TestPartResult::Type type) { switch (type) { case TestPartResult::kSkip: return "Skipped"; case TestPartResult::kSuccess: return "Success"; case TestPartResult::kNonFatalFailure: case TestPartResult::kFatalFailure: #ifdef _MSC_VER return "error: "; #else return "Failure\n"; #endif default: return "Unknown result type"; } } namespace internal { // Prints a TestPartResult to an std::string. static std::string PrintTestPartResultToString( const TestPartResult& test_part_result) { return (Message() << internal::FormatFileLocation(test_part_result.file_name(), test_part_result.line_number()) << " " << TestPartResultTypeToString(test_part_result.type()) << test_part_result.message()).GetString(); } // Prints a TestPartResult. static void PrintTestPartResult(const TestPartResult& test_part_result) { const std::string& result = PrintTestPartResultToString(test_part_result); printf("%s\n", result.c_str()); fflush(stdout); // If the test program runs in Visual Studio or a debugger, the // following statements add the test part result message to the Output // window such that the user can double-click on it to jump to the // corresponding source code location; otherwise they do nothing. #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // We don't call OutputDebugString*() on Windows Mobile, as printing // to stdout is done by OutputDebugString() there already - we don't // want the same message printed twice. ::OutputDebugStringA(result.c_str()); ::OutputDebugStringA("\n"); #endif } // class PrettyUnitTestResultPrinter #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \ !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT && !GTEST_OS_WINDOWS_MINGW // Returns the character attribute for the given color. static WORD GetColorAttribute(GTestColor color) { switch (color) { case COLOR_RED: return FOREGROUND_RED; case COLOR_GREEN: return FOREGROUND_GREEN; case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN; default: return 0; } } static int GetBitOffset(WORD color_mask) { if (color_mask == 0) return 0; int bitOffset = 0; while ((color_mask & 1) == 0) { color_mask >>= 1; ++bitOffset; } return bitOffset; } static WORD GetNewColor(GTestColor color, WORD old_color_attrs) { // Let's reuse the BG static const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_RED | BACKGROUND_INTENSITY; static const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_INTENSITY; const WORD existing_bg = old_color_attrs & background_mask; WORD new_color = GetColorAttribute(color) | existing_bg | FOREGROUND_INTENSITY; static const int bg_bitOffset = GetBitOffset(background_mask); static const int fg_bitOffset = GetBitOffset(foreground_mask); if (((new_color & background_mask) >> bg_bitOffset) == ((new_color & foreground_mask) >> fg_bitOffset)) { new_color ^= FOREGROUND_INTENSITY; // invert intensity } return new_color; } #else // Returns the ANSI color code for the given color. COLOR_DEFAULT is // an invalid input. static const char* GetAnsiColorCode(GTestColor color) { switch (color) { case COLOR_RED: return "1"; case COLOR_GREEN: return "2"; case COLOR_YELLOW: return "3"; default: return nullptr; } } #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // Returns true if and only if Google Test should use colors in the output. bool ShouldUseColor(bool stdout_is_tty) { const char* const gtest_color = GTEST_FLAG(color).c_str(); if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) { #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW // On Windows the TERM variable is usually not set, but the // console there does support colors. return stdout_is_tty; #else // On non-Windows platforms, we rely on the TERM variable. const char* const term = posix::GetEnv("TERM"); const bool term_supports_color = String::CStringEquals(term, "xterm") || String::CStringEquals(term, "xterm-color") || String::CStringEquals(term, "xterm-256color") || String::CStringEquals(term, "screen") || String::CStringEquals(term, "screen-256color") || String::CStringEquals(term, "tmux") || String::CStringEquals(term, "tmux-256color") || String::CStringEquals(term, "rxvt-unicode") || String::CStringEquals(term, "rxvt-unicode-256color") || String::CStringEquals(term, "linux") || String::CStringEquals(term, "cygwin"); return stdout_is_tty && term_supports_color; #endif // GTEST_OS_WINDOWS } return String::CaseInsensitiveCStringEquals(gtest_color, "yes") || String::CaseInsensitiveCStringEquals(gtest_color, "true") || String::CaseInsensitiveCStringEquals(gtest_color, "t") || String::CStringEquals(gtest_color, "1"); // We take "yes", "true", "t", and "1" as meaning "yes". If the // value is neither one of these nor "auto", we treat it as "no" to // be conservative. } // Helpers for printing colored strings to stdout. Note that on Windows, we // cannot simply emit special characters and have the terminal change colors. // This routine must actually emit the characters rather than return a string // that would be colored when printed, as can be done on Linux. void ColoredPrintf(GTestColor color, const char* fmt, ...) { va_list args; va_start(args, fmt); #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_ZOS || GTEST_OS_IOS || \ GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT || defined(ESP_PLATFORM) const bool use_color = AlwaysFalse(); #else static const bool in_color_mode = ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0); const bool use_color = in_color_mode && (color != COLOR_DEFAULT); #endif // GTEST_OS_WINDOWS_MOBILE || GTEST_OS_ZOS if (!use_color) { vprintf(fmt, args); va_end(args); return; } #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \ !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT && !GTEST_OS_WINDOWS_MINGW const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE); // Gets the current text color. CONSOLE_SCREEN_BUFFER_INFO buffer_info; GetConsoleScreenBufferInfo(stdout_handle, &buffer_info); const WORD old_color_attrs = buffer_info.wAttributes; const WORD new_color = GetNewColor(color, old_color_attrs); // We need to flush the stream buffers into the console before each // SetConsoleTextAttribute call lest it affect the text that is already // printed but has not yet reached the console. fflush(stdout); SetConsoleTextAttribute(stdout_handle, new_color); vprintf(fmt, args); fflush(stdout); // Restores the text color. SetConsoleTextAttribute(stdout_handle, old_color_attrs); #else printf("\033[0;3%sm", GetAnsiColorCode(color)); vprintf(fmt, args); printf("\033[m"); // Resets the terminal to default. #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE va_end(args); } // Text printed in Google Test's text output and --gtest_list_tests // output to label the type parameter and value parameter for a test. static const char kTypeParamLabel[] = "TypeParam"; static const char kValueParamLabel[] = "GetParam()"; static void PrintFullTestCommentIfPresent(const TestInfo& test_info) { const char* const type_param = test_info.type_param(); const char* const value_param = test_info.value_param(); if (type_param != nullptr || value_param != nullptr) { printf(", where "); if (type_param != nullptr) { printf("%s = %s", kTypeParamLabel, type_param); if (value_param != nullptr) printf(" and "); } if (value_param != nullptr) { printf("%s = %s", kValueParamLabel, value_param); } } } // This class implements the TestEventListener interface. // // Class PrettyUnitTestResultPrinter is copyable. class PrettyUnitTestResultPrinter : public TestEventListener { public: PrettyUnitTestResultPrinter() {} static void PrintTestName(const char* test_suite, const char* test) { printf("%s.%s", test_suite, test); } // The following methods override what's in the TestEventListener class. void OnTestProgramStart(const UnitTest& /*unit_test*/) override {} void OnTestIterationStart(const UnitTest& unit_test, int iteration) override; void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override; void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {} #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestCase& test_case) override; #else void OnTestSuiteStart(const TestSuite& test_suite) override; #endif // OnTestCaseStart void OnTestStart(const TestInfo& test_info) override; void OnTestPartResult(const TestPartResult& result) override; void OnTestEnd(const TestInfo& test_info) override; #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& test_case) override; #else void OnTestSuiteEnd(const TestSuite& test_suite) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override; void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {} void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {} private: static void PrintFailedTests(const UnitTest& unit_test); static void PrintSkippedTests(const UnitTest& unit_test); }; // Fired before each iteration of tests starts. void PrettyUnitTestResultPrinter::OnTestIterationStart( const UnitTest& unit_test, int iteration) { if (GTEST_FLAG(repeat) != 1) printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1); const char* const filter = GTEST_FLAG(filter).c_str(); // Prints the filter if it's not *. This reminds the user that some // tests may be skipped. if (!String::CStringEquals(filter, kUniversalFilter)) { ColoredPrintf(COLOR_YELLOW, "Note: %s filter = %s\n", GTEST_NAME_, filter); } if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) { const Int32 shard_index = Int32FromEnvOrDie(kTestShardIndex, -1); ColoredPrintf(COLOR_YELLOW, "Note: This is test shard %d of %s.\n", static_cast(shard_index) + 1, internal::posix::GetEnv(kTestTotalShards)); } if (GTEST_FLAG(shuffle)) { ColoredPrintf(COLOR_YELLOW, "Note: Randomizing tests' orders with a seed of %d .\n", unit_test.random_seed()); } ColoredPrintf(COLOR_GREEN, "[==========] "); printf("Running %s from %s.\n", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart( const UnitTest& /*unit_test*/) { ColoredPrintf(COLOR_GREEN, "[----------] "); printf("Global test environment set-up.\n"); fflush(stdout); } #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) { const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s", counts.c_str(), test_case.name()); if (test_case.type_param() == nullptr) { printf("\n"); } else { printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param()); } fflush(stdout); } #else void PrettyUnitTestResultPrinter::OnTestSuiteStart( const TestSuite& test_suite) { const std::string counts = FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s", counts.c_str(), test_suite.name()); if (test_suite.type_param() == nullptr) { printf("\n"); } else { printf(", where %s = %s\n", kTypeParamLabel, test_suite.type_param()); } fflush(stdout); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) { ColoredPrintf(COLOR_GREEN, "[ RUN ] "); PrintTestName(test_info.test_suite_name(), test_info.name()); printf("\n"); fflush(stdout); } // Called after an assertion failure. void PrettyUnitTestResultPrinter::OnTestPartResult( const TestPartResult& result) { switch (result.type()) { // If the test part succeeded, or was skipped, // we don't need to do anything. case TestPartResult::kSkip: case TestPartResult::kSuccess: return; default: // Print failure message from the assertion // (e.g. expected this and got that). PrintTestPartResult(result); fflush(stdout); } } void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) { if (test_info.result()->Passed()) { ColoredPrintf(COLOR_GREEN, "[ OK ] "); } else if (test_info.result()->Skipped()) { ColoredPrintf(COLOR_GREEN, "[ SKIPPED ] "); } else { ColoredPrintf(COLOR_RED, "[ FAILED ] "); } PrintTestName(test_info.test_suite_name(), test_info.name()); if (test_info.result()->Failed()) PrintFullTestCommentIfPresent(test_info); if (GTEST_FLAG(print_time)) { printf(" (%s ms)\n", internal::StreamableToString( test_info.result()->elapsed_time()).c_str()); } else { printf("\n"); } fflush(stdout); } #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) { if (!GTEST_FLAG(print_time)) return; const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_case.name(), internal::StreamableToString(test_case.elapsed_time()).c_str()); fflush(stdout); } #else void PrettyUnitTestResultPrinter::OnTestSuiteEnd(const TestSuite& test_suite) { if (!GTEST_FLAG(print_time)) return; const std::string counts = FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests"); ColoredPrintf(COLOR_GREEN, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_suite.name(), internal::StreamableToString(test_suite.elapsed_time()).c_str()); fflush(stdout); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart( const UnitTest& /*unit_test*/) { ColoredPrintf(COLOR_GREEN, "[----------] "); printf("Global test environment tear-down\n"); fflush(stdout); } // Internal helper for printing the list of failed tests. void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) { const int failed_test_count = unit_test.failed_test_count(); if (failed_test_count == 0) { return; } for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite& test_suite = *unit_test.GetTestSuite(i); if (!test_suite.should_run() || (test_suite.failed_test_count() == 0)) { continue; } for (int j = 0; j < test_suite.total_test_count(); ++j) { const TestInfo& test_info = *test_suite.GetTestInfo(j); if (!test_info.should_run() || !test_info.result()->Failed()) { continue; } ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s.%s", test_suite.name(), test_info.name()); PrintFullTestCommentIfPresent(test_info); printf("\n"); } } } // Internal helper for printing the list of skipped tests. void PrettyUnitTestResultPrinter::PrintSkippedTests(const UnitTest& unit_test) { const int skipped_test_count = unit_test.skipped_test_count(); if (skipped_test_count == 0) { return; } for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite& test_suite = *unit_test.GetTestSuite(i); if (!test_suite.should_run() || (test_suite.skipped_test_count() == 0)) { continue; } for (int j = 0; j < test_suite.total_test_count(); ++j) { const TestInfo& test_info = *test_suite.GetTestInfo(j); if (!test_info.should_run() || !test_info.result()->Skipped()) { continue; } ColoredPrintf(COLOR_GREEN, "[ SKIPPED ] "); printf("%s.%s", test_suite.name(), test_info.name()); printf("\n"); } } } void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { ColoredPrintf(COLOR_GREEN, "[==========] "); printf("%s from %s ran.", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str()); if (GTEST_FLAG(print_time)) { printf(" (%s ms total)", internal::StreamableToString(unit_test.elapsed_time()).c_str()); } printf("\n"); ColoredPrintf(COLOR_GREEN, "[ PASSED ] "); printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str()); const int skipped_test_count = unit_test.skipped_test_count(); if (skipped_test_count > 0) { ColoredPrintf(COLOR_GREEN, "[ SKIPPED ] "); printf("%s, listed below:\n", FormatTestCount(skipped_test_count).c_str()); PrintSkippedTests(unit_test); } int num_failures = unit_test.failed_test_count(); if (!unit_test.Passed()) { const int failed_test_count = unit_test.failed_test_count(); ColoredPrintf(COLOR_RED, "[ FAILED ] "); printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str()); PrintFailedTests(unit_test); printf("\n%2d FAILED %s\n", num_failures, num_failures == 1 ? "TEST" : "TESTS"); } int num_disabled = unit_test.reportable_disabled_test_count(); if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) { if (!num_failures) { printf("\n"); // Add a spacer if no FAILURE banner is displayed. } ColoredPrintf(COLOR_YELLOW, " YOU HAVE %d DISABLED %s\n\n", num_disabled, num_disabled == 1 ? "TEST" : "TESTS"); } // Ensure that Google Test output is printed before, e.g., heapchecker output. fflush(stdout); } // End PrettyUnitTestResultPrinter // class TestEventRepeater // // This class forwards events to other event listeners. class TestEventRepeater : public TestEventListener { public: TestEventRepeater() : forwarding_enabled_(true) {} ~TestEventRepeater() override; void Append(TestEventListener *listener); TestEventListener* Release(TestEventListener* listener); // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled() const { return forwarding_enabled_; } void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; } void OnTestProgramStart(const UnitTest& unit_test) override; void OnTestIterationStart(const UnitTest& unit_test, int iteration) override; void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override; void OnEnvironmentsSetUpEnd(const UnitTest& unit_test) override; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestSuite& parameter) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestSuiteStart(const TestSuite& parameter) override; void OnTestStart(const TestInfo& test_info) override; void OnTestPartResult(const TestPartResult& result) override; void OnTestEnd(const TestInfo& test_info) override; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& parameter) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestSuiteEnd(const TestSuite& parameter) override; void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override; void OnEnvironmentsTearDownEnd(const UnitTest& unit_test) override; void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void OnTestProgramEnd(const UnitTest& unit_test) override; private: // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled_; // The list of listeners that receive events. std::vector listeners_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventRepeater); }; TestEventRepeater::~TestEventRepeater() { ForEach(listeners_, Delete); } void TestEventRepeater::Append(TestEventListener *listener) { listeners_.push_back(listener); } TestEventListener* TestEventRepeater::Release(TestEventListener *listener) { for (size_t i = 0; i < listeners_.size(); ++i) { if (listeners_[i] == listener) { listeners_.erase(listeners_.begin() + static_cast(i)); return listener; } } return nullptr; } // Since most methods are very similar, use macros to reduce boilerplate. // This defines a member that forwards the call to all listeners. #define GTEST_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (size_t i = 0; i < listeners_.size(); i++) { \ listeners_[i]->Name(parameter); \ } \ } \ } // This defines a member that forwards the call to all listeners in reverse // order. #define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (size_t i = listeners_.size(); i != 0; i--) { \ listeners_[i - 1]->Name(parameter); \ } \ } \ } GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest) GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REPEATER_METHOD_(OnTestCaseStart, TestSuite) #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REPEATER_METHOD_(OnTestSuiteStart, TestSuite) GTEST_REPEATER_METHOD_(OnTestStart, TestInfo) GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult) GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestSuite) #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REVERSE_REPEATER_METHOD_(OnTestSuiteEnd, TestSuite) GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest) #undef GTEST_REPEATER_METHOD_ #undef GTEST_REVERSE_REPEATER_METHOD_ void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (size_t i = 0; i < listeners_.size(); i++) { listeners_[i]->OnTestIterationStart(unit_test, iteration); } } } void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (size_t i = listeners_.size(); i > 0; i--) { listeners_[i - 1]->OnTestIterationEnd(unit_test, iteration); } } } // End TestEventRepeater // This class generates an XML output file. class XmlUnitTestResultPrinter : public EmptyTestEventListener { public: explicit XmlUnitTestResultPrinter(const char* output_file); void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void ListTestsMatchingFilter(const std::vector& test_suites); // Prints an XML summary of all unit tests. static void PrintXmlTestsList(std::ostream* stream, const std::vector& test_suites); private: // Is c a whitespace character that is normalized to a space character // when it appears in an XML attribute value? static bool IsNormalizableWhitespace(char c) { return c == 0x9 || c == 0xA || c == 0xD; } // May c appear in a well-formed XML document? static bool IsValidXmlCharacter(char c) { return IsNormalizableWhitespace(c) || c >= 0x20; } // Returns an XML-escaped copy of the input string str. If // is_attribute is true, the text is meant to appear as an attribute // value, and normalizable whitespace is preserved by replacing it // with character references. static std::string EscapeXml(const std::string& str, bool is_attribute); // Returns the given string with all characters invalid in XML removed. static std::string RemoveInvalidXmlCharacters(const std::string& str); // Convenience wrapper around EscapeXml when str is an attribute value. static std::string EscapeXmlAttribute(const std::string& str) { return EscapeXml(str, true); } // Convenience wrapper around EscapeXml when str is not an attribute value. static std::string EscapeXmlText(const char* str) { return EscapeXml(str, false); } // Verifies that the given attribute belongs to the given element and // streams the attribute as XML. static void OutputXmlAttribute(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value); // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. static void OutputXmlCDataSection(::std::ostream* stream, const char* data); // Streams an XML representation of a TestInfo object. static void OutputXmlTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info); // Prints an XML representation of a TestSuite object static void PrintXmlTestSuite(::std::ostream* stream, const TestSuite& test_suite); // Prints an XML summary of unit_test to output stream out. static void PrintXmlUnitTest(::std::ostream* stream, const UnitTest& unit_test); // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. // When the std::string is not empty, it includes a space at the beginning, // to delimit this attribute from prior attributes. static std::string TestPropertiesAsXmlAttributes(const TestResult& result); // Streams an XML representation of the test properties of a TestResult // object. static void OutputXmlTestProperties(std::ostream* stream, const TestResult& result); // The output file. const std::string output_file_; GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter); }; // Creates a new XmlUnitTestResultPrinter. XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.empty()) { GTEST_LOG_(FATAL) << "XML output file may not be null"; } } // Called after the unit test ends. void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { FILE* xmlout = OpenFileForWriting(output_file_); std::stringstream stream; PrintXmlUnitTest(&stream, unit_test); fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); fclose(xmlout); } void XmlUnitTestResultPrinter::ListTestsMatchingFilter( const std::vector& test_suites) { FILE* xmlout = OpenFileForWriting(output_file_); std::stringstream stream; PrintXmlTestsList(&stream, test_suites); fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); fclose(xmlout); } // Returns an XML-escaped copy of the input string str. If is_attribute // is true, the text is meant to appear as an attribute value, and // normalizable whitespace is preserved by replacing it with character // references. // // Invalid XML characters in str, if any, are stripped from the output. // It is expected that most, if not all, of the text processed by this // module will consist of ordinary English text. // If this module is ever modified to produce version 1.1 XML output, // most invalid characters can be retained using character references. std::string XmlUnitTestResultPrinter::EscapeXml( const std::string& str, bool is_attribute) { Message m; for (size_t i = 0; i < str.size(); ++i) { const char ch = str[i]; switch (ch) { case '<': m << "<"; break; case '>': m << ">"; break; case '&': m << "&"; break; case '\'': if (is_attribute) m << "'"; else m << '\''; break; case '"': if (is_attribute) m << """; else m << '"'; break; default: if (IsValidXmlCharacter(ch)) { if (is_attribute && IsNormalizableWhitespace(ch)) m << "&#x" << String::FormatByte(static_cast(ch)) << ";"; else m << ch; } break; } } return m.GetString(); } // Returns the given string with all characters invalid in XML removed. // Currently invalid characters are dropped from the string. An // alternative is to replace them with certain characters such as . or ?. std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters( const std::string& str) { std::string output; output.reserve(str.size()); for (std::string::const_iterator it = str.begin(); it != str.end(); ++it) if (IsValidXmlCharacter(*it)) output.push_back(*it); return output; } // The following routines generate an XML representation of a UnitTest // object. // GOOGLETEST_CM0009 DO NOT DELETE // // This is how Google Test concepts map to the DTD: // // <-- corresponds to a UnitTest object // <-- corresponds to a TestSuite object // <-- corresponds to a TestInfo object // ... // ... // ... // <-- individual assertion failures // // // // Formats the given time in milliseconds as seconds. std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) { ::std::stringstream ss; ss << (static_cast(ms) * 1e-3); return ss.str(); } static bool PortableLocaltime(time_t seconds, struct tm* out) { #if defined(_MSC_VER) return localtime_s(out, &seconds) == 0; #elif defined(__MINGW32__) || defined(__MINGW64__) // MINGW provides neither localtime_r nor localtime_s, but uses // Windows' localtime(), which has a thread-local tm buffer. struct tm* tm_ptr = localtime(&seconds); // NOLINT if (tm_ptr == nullptr) return false; *out = *tm_ptr; return true; #else return localtime_r(&seconds, out) != nullptr; #endif } // Converts the given epoch time in milliseconds to a date string in the ISO // 8601 format, without the timezone information. std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) { struct tm time_struct; if (!PortableLocaltime(static_cast(ms / 1000), &time_struct)) return ""; // YYYY-MM-DDThh:mm:ss return StreamableToString(time_struct.tm_year + 1900) + "-" + String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" + String::FormatIntWidth2(time_struct.tm_mday) + "T" + String::FormatIntWidth2(time_struct.tm_hour) + ":" + String::FormatIntWidth2(time_struct.tm_min) + ":" + String::FormatIntWidth2(time_struct.tm_sec); } // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream, const char* data) { const char* segment = data; *stream << ""); if (next_segment != nullptr) { stream->write( segment, static_cast(next_segment - segment)); *stream << "]]>]]>"); } else { *stream << segment; break; } } *stream << "]]>"; } void XmlUnitTestResultPrinter::OutputXmlAttribute( std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value) { const std::vector& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Attribute " << name << " is not allowed for element <" << element_name << ">."; *stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\""; } // Prints an XML representation of a TestInfo object. void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info) { const TestResult& result = *test_info.result(); const std::string kTestsuite = "testcase"; if (test_info.is_in_another_shard()) { return; } *stream << " \n"; return; } OutputXmlAttribute(stream, kTestsuite, "status", test_info.should_run() ? "run" : "notrun"); OutputXmlAttribute(stream, kTestsuite, "result", test_info.should_run() ? (result.Skipped() ? "skipped" : "completed") : "suppressed"); OutputXmlAttribute(stream, kTestsuite, "time", FormatTimeInMillisAsSeconds(result.elapsed_time())); OutputXmlAttribute( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsIso8601(result.start_timestamp())); OutputXmlAttribute(stream, kTestsuite, "classname", test_suite_name); int failures = 0; for (int i = 0; i < result.total_part_count(); ++i) { const TestPartResult& part = result.GetTestPartResult(i); if (part.failed()) { if (++failures == 1) { *stream << ">\n"; } const std::string location = internal::FormatCompilerIndependentFileLocation(part.file_name(), part.line_number()); const std::string summary = location + "\n" + part.summary(); *stream << " "; const std::string detail = location + "\n" + part.message(); OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str()); *stream << "\n"; } } if (failures == 0 && result.test_property_count() == 0) { *stream << " />\n"; } else { if (failures == 0) { *stream << ">\n"; } OutputXmlTestProperties(stream, result); *stream << " \n"; } } // Prints an XML representation of a TestSuite object void XmlUnitTestResultPrinter::PrintXmlTestSuite(std::ostream* stream, const TestSuite& test_suite) { const std::string kTestsuite = "testsuite"; *stream << " <" << kTestsuite; OutputXmlAttribute(stream, kTestsuite, "name", test_suite.name()); OutputXmlAttribute(stream, kTestsuite, "tests", StreamableToString(test_suite.reportable_test_count())); if (!GTEST_FLAG(list_tests)) { OutputXmlAttribute(stream, kTestsuite, "failures", StreamableToString(test_suite.failed_test_count())); OutputXmlAttribute( stream, kTestsuite, "disabled", StreamableToString(test_suite.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuite, "errors", "0"); OutputXmlAttribute(stream, kTestsuite, "time", FormatTimeInMillisAsSeconds(test_suite.elapsed_time())); OutputXmlAttribute( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsIso8601(test_suite.start_timestamp())); *stream << TestPropertiesAsXmlAttributes(test_suite.ad_hoc_test_result()); } *stream << ">\n"; for (int i = 0; i < test_suite.total_test_count(); ++i) { if (test_suite.GetTestInfo(i)->is_reportable()) OutputXmlTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i)); } *stream << " \n"; } // Prints an XML summary of unit_test to output stream out. void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream, const UnitTest& unit_test) { const std::string kTestsuites = "testsuites"; *stream << "\n"; *stream << "<" << kTestsuites; OutputXmlAttribute(stream, kTestsuites, "tests", StreamableToString(unit_test.reportable_test_count())); OutputXmlAttribute(stream, kTestsuites, "failures", StreamableToString(unit_test.failed_test_count())); OutputXmlAttribute( stream, kTestsuites, "disabled", StreamableToString(unit_test.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuites, "errors", "0"); OutputXmlAttribute(stream, kTestsuites, "time", FormatTimeInMillisAsSeconds(unit_test.elapsed_time())); OutputXmlAttribute( stream, kTestsuites, "timestamp", FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp())); if (GTEST_FLAG(shuffle)) { OutputXmlAttribute(stream, kTestsuites, "random_seed", StreamableToString(unit_test.random_seed())); } *stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result()); OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); *stream << ">\n"; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { if (unit_test.GetTestSuite(i)->reportable_test_count() > 0) PrintXmlTestSuite(stream, *unit_test.GetTestSuite(i)); } *stream << "\n"; } void XmlUnitTestResultPrinter::PrintXmlTestsList( std::ostream* stream, const std::vector& test_suites) { const std::string kTestsuites = "testsuites"; *stream << "\n"; *stream << "<" << kTestsuites; int total_tests = 0; for (auto test_suite : test_suites) { total_tests += test_suite->total_test_count(); } OutputXmlAttribute(stream, kTestsuites, "tests", StreamableToString(total_tests)); OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); *stream << ">\n"; for (auto test_suite : test_suites) { PrintXmlTestSuite(stream, *test_suite); } *stream << "\n"; } // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes( const TestResult& result) { Message attributes; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); attributes << " " << property.key() << "=" << "\"" << EscapeXmlAttribute(property.value()) << "\""; } return attributes.GetString(); } void XmlUnitTestResultPrinter::OutputXmlTestProperties( std::ostream* stream, const TestResult& result) { const std::string kProperties = "properties"; const std::string kProperty = "property"; if (result.test_property_count() <= 0) { return; } *stream << "<" << kProperties << ">\n"; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); *stream << "<" << kProperty; *stream << " name=\"" << EscapeXmlAttribute(property.key()) << "\""; *stream << " value=\"" << EscapeXmlAttribute(property.value()) << "\""; *stream << "/>\n"; } *stream << "\n"; } // End XmlUnitTestResultPrinter // This class generates an JSON output file. class JsonUnitTestResultPrinter : public EmptyTestEventListener { public: explicit JsonUnitTestResultPrinter(const char* output_file); void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; // Prints an JSON summary of all unit tests. static void PrintJsonTestList(::std::ostream* stream, const std::vector& test_suites); private: // Returns an JSON-escaped copy of the input string str. static std::string EscapeJson(const std::string& str); //// Verifies that the given attribute belongs to the given element and //// streams the attribute as JSON. static void OutputJsonKey(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value, const std::string& indent, bool comma = true); static void OutputJsonKey(std::ostream* stream, const std::string& element_name, const std::string& name, int value, const std::string& indent, bool comma = true); // Streams a JSON representation of a TestInfo object. static void OutputJsonTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info); // Prints a JSON representation of a TestSuite object static void PrintJsonTestSuite(::std::ostream* stream, const TestSuite& test_suite); // Prints a JSON summary of unit_test to output stream out. static void PrintJsonUnitTest(::std::ostream* stream, const UnitTest& unit_test); // Produces a string representing the test properties in a result as // a JSON dictionary. static std::string TestPropertiesAsJson(const TestResult& result, const std::string& indent); // The output file. const std::string output_file_; GTEST_DISALLOW_COPY_AND_ASSIGN_(JsonUnitTestResultPrinter); }; // Creates a new JsonUnitTestResultPrinter. JsonUnitTestResultPrinter::JsonUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.empty()) { GTEST_LOG_(FATAL) << "JSON output file may not be null"; } } void JsonUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { FILE* jsonout = OpenFileForWriting(output_file_); std::stringstream stream; PrintJsonUnitTest(&stream, unit_test); fprintf(jsonout, "%s", StringStreamToString(&stream).c_str()); fclose(jsonout); } // Returns an JSON-escaped copy of the input string str. std::string JsonUnitTestResultPrinter::EscapeJson(const std::string& str) { Message m; for (size_t i = 0; i < str.size(); ++i) { const char ch = str[i]; switch (ch) { case '\\': case '"': case '/': m << '\\' << ch; break; case '\b': m << "\\b"; break; case '\t': m << "\\t"; break; case '\n': m << "\\n"; break; case '\f': m << "\\f"; break; case '\r': m << "\\r"; break; default: if (ch < ' ') { m << "\\u00" << String::FormatByte(static_cast(ch)); } else { m << ch; } break; } } return m.GetString(); } // The following routines generate an JSON representation of a UnitTest // object. // Formats the given time in milliseconds as seconds. static std::string FormatTimeInMillisAsDuration(TimeInMillis ms) { ::std::stringstream ss; ss << (static_cast(ms) * 1e-3) << "s"; return ss.str(); } // Converts the given epoch time in milliseconds to a date string in the // RFC3339 format, without the timezone information. static std::string FormatEpochTimeInMillisAsRFC3339(TimeInMillis ms) { struct tm time_struct; if (!PortableLocaltime(static_cast(ms / 1000), &time_struct)) return ""; // YYYY-MM-DDThh:mm:ss return StreamableToString(time_struct.tm_year + 1900) + "-" + String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" + String::FormatIntWidth2(time_struct.tm_mday) + "T" + String::FormatIntWidth2(time_struct.tm_hour) + ":" + String::FormatIntWidth2(time_struct.tm_min) + ":" + String::FormatIntWidth2(time_struct.tm_sec) + "Z"; } static inline std::string Indent(size_t width) { return std::string(width, ' '); } void JsonUnitTestResultPrinter::OutputJsonKey( std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value, const std::string& indent, bool comma) { const std::vector& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Key \"" << name << "\" is not allowed for value \"" << element_name << "\"."; *stream << indent << "\"" << name << "\": \"" << EscapeJson(value) << "\""; if (comma) *stream << ",\n"; } void JsonUnitTestResultPrinter::OutputJsonKey( std::ostream* stream, const std::string& element_name, const std::string& name, int value, const std::string& indent, bool comma) { const std::vector& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Key \"" << name << "\" is not allowed for value \"" << element_name << "\"."; *stream << indent << "\"" << name << "\": " << StreamableToString(value); if (comma) *stream << ",\n"; } // Prints a JSON representation of a TestInfo object. void JsonUnitTestResultPrinter::OutputJsonTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info) { const TestResult& result = *test_info.result(); const std::string kTestsuite = "testcase"; const std::string kIndent = Indent(10); *stream << Indent(8) << "{\n"; OutputJsonKey(stream, kTestsuite, "name", test_info.name(), kIndent); if (test_info.value_param() != nullptr) { OutputJsonKey(stream, kTestsuite, "value_param", test_info.value_param(), kIndent); } if (test_info.type_param() != nullptr) { OutputJsonKey(stream, kTestsuite, "type_param", test_info.type_param(), kIndent); } if (GTEST_FLAG(list_tests)) { OutputJsonKey(stream, kTestsuite, "file", test_info.file(), kIndent); OutputJsonKey(stream, kTestsuite, "line", test_info.line(), kIndent, false); *stream << "\n" << Indent(8) << "}"; return; } OutputJsonKey(stream, kTestsuite, "status", test_info.should_run() ? "RUN" : "NOTRUN", kIndent); OutputJsonKey(stream, kTestsuite, "result", test_info.should_run() ? (result.Skipped() ? "SKIPPED" : "COMPLETED") : "SUPPRESSED", kIndent); OutputJsonKey(stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuite, "time", FormatTimeInMillisAsDuration(result.elapsed_time()), kIndent); OutputJsonKey(stream, kTestsuite, "classname", test_suite_name, kIndent, false); *stream << TestPropertiesAsJson(result, kIndent); int failures = 0; for (int i = 0; i < result.total_part_count(); ++i) { const TestPartResult& part = result.GetTestPartResult(i); if (part.failed()) { *stream << ",\n"; if (++failures == 1) { *stream << kIndent << "\"" << "failures" << "\": [\n"; } const std::string location = internal::FormatCompilerIndependentFileLocation(part.file_name(), part.line_number()); const std::string message = EscapeJson(location + "\n" + part.message()); *stream << kIndent << " {\n" << kIndent << " \"failure\": \"" << message << "\",\n" << kIndent << " \"type\": \"\"\n" << kIndent << " }"; } } if (failures > 0) *stream << "\n" << kIndent << "]"; *stream << "\n" << Indent(8) << "}"; } // Prints an JSON representation of a TestSuite object void JsonUnitTestResultPrinter::PrintJsonTestSuite( std::ostream* stream, const TestSuite& test_suite) { const std::string kTestsuite = "testsuite"; const std::string kIndent = Indent(6); *stream << Indent(4) << "{\n"; OutputJsonKey(stream, kTestsuite, "name", test_suite.name(), kIndent); OutputJsonKey(stream, kTestsuite, "tests", test_suite.reportable_test_count(), kIndent); if (!GTEST_FLAG(list_tests)) { OutputJsonKey(stream, kTestsuite, "failures", test_suite.failed_test_count(), kIndent); OutputJsonKey(stream, kTestsuite, "disabled", test_suite.reportable_disabled_test_count(), kIndent); OutputJsonKey(stream, kTestsuite, "errors", 0, kIndent); OutputJsonKey( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsRFC3339(test_suite.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuite, "time", FormatTimeInMillisAsDuration(test_suite.elapsed_time()), kIndent, false); *stream << TestPropertiesAsJson(test_suite.ad_hoc_test_result(), kIndent) << ",\n"; } *stream << kIndent << "\"" << kTestsuite << "\": [\n"; bool comma = false; for (int i = 0; i < test_suite.total_test_count(); ++i) { if (test_suite.GetTestInfo(i)->is_reportable()) { if (comma) { *stream << ",\n"; } else { comma = true; } OutputJsonTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i)); } } *stream << "\n" << kIndent << "]\n" << Indent(4) << "}"; } // Prints a JSON summary of unit_test to output stream out. void JsonUnitTestResultPrinter::PrintJsonUnitTest(std::ostream* stream, const UnitTest& unit_test) { const std::string kTestsuites = "testsuites"; const std::string kIndent = Indent(2); *stream << "{\n"; OutputJsonKey(stream, kTestsuites, "tests", unit_test.reportable_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "failures", unit_test.failed_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "disabled", unit_test.reportable_disabled_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "errors", 0, kIndent); if (GTEST_FLAG(shuffle)) { OutputJsonKey(stream, kTestsuites, "random_seed", unit_test.random_seed(), kIndent); } OutputJsonKey(stream, kTestsuites, "timestamp", FormatEpochTimeInMillisAsRFC3339(unit_test.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuites, "time", FormatTimeInMillisAsDuration(unit_test.elapsed_time()), kIndent, false); *stream << TestPropertiesAsJson(unit_test.ad_hoc_test_result(), kIndent) << ",\n"; OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent); *stream << kIndent << "\"" << kTestsuites << "\": [\n"; bool comma = false; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { if (unit_test.GetTestSuite(i)->reportable_test_count() > 0) { if (comma) { *stream << ",\n"; } else { comma = true; } PrintJsonTestSuite(stream, *unit_test.GetTestSuite(i)); } } *stream << "\n" << kIndent << "]\n" << "}\n"; } void JsonUnitTestResultPrinter::PrintJsonTestList( std::ostream* stream, const std::vector& test_suites) { const std::string kTestsuites = "testsuites"; const std::string kIndent = Indent(2); *stream << "{\n"; int total_tests = 0; for (auto test_suite : test_suites) { total_tests += test_suite->total_test_count(); } OutputJsonKey(stream, kTestsuites, "tests", total_tests, kIndent); OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent); *stream << kIndent << "\"" << kTestsuites << "\": [\n"; for (size_t i = 0; i < test_suites.size(); ++i) { if (i != 0) { *stream << ",\n"; } PrintJsonTestSuite(stream, *test_suites[i]); } *stream << "\n" << kIndent << "]\n" << "}\n"; } // Produces a string representing the test properties in a result as // a JSON dictionary. std::string JsonUnitTestResultPrinter::TestPropertiesAsJson( const TestResult& result, const std::string& indent) { Message attributes; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); attributes << ",\n" << indent << "\"" << property.key() << "\": " << "\"" << EscapeJson(property.value()) << "\""; } return attributes.GetString(); } // End JsonUnitTestResultPrinter #if GTEST_CAN_STREAM_RESULTS_ // Checks if str contains '=', '&', '%' or '\n' characters. If yes, // replaces them by "%xx" where xx is their hexadecimal value. For // example, replaces "=" with "%3D". This algorithm is O(strlen(str)) // in both time and space -- important as the input str may contain an // arbitrarily long test failure message and stack trace. std::string StreamingListener::UrlEncode(const char* str) { std::string result; result.reserve(strlen(str) + 1); for (char ch = *str; ch != '\0'; ch = *++str) { switch (ch) { case '%': case '=': case '&': case '\n': result.append("%" + String::FormatByte(static_cast(ch))); break; default: result.push_back(ch); break; } } return result; } void StreamingListener::SocketWriter::MakeConnection() { GTEST_CHECK_(sockfd_ == -1) << "MakeConnection() can't be called when there is already a connection."; addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses. hints.ai_socktype = SOCK_STREAM; addrinfo* servinfo = nullptr; // Use the getaddrinfo() to get a linked list of IP addresses for // the given host name. const int error_num = getaddrinfo( host_name_.c_str(), port_num_.c_str(), &hints, &servinfo); if (error_num != 0) { GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: " << gai_strerror(error_num); } // Loop through all the results and connect to the first we can. for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != nullptr; cur_addr = cur_addr->ai_next) { sockfd_ = socket( cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol); if (sockfd_ != -1) { // Connect the client socket to the server socket. if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) { close(sockfd_); sockfd_ = -1; } } } freeaddrinfo(servinfo); // all done with this structure if (sockfd_ == -1) { GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to " << host_name_ << ":" << port_num_; } } // End of class Streaming Listener #endif // GTEST_CAN_STREAM_RESULTS__ // class OsStackTraceGetter const char* const OsStackTraceGetterInterface::kElidedFramesMarker = "... " GTEST_NAME_ " internal frames ..."; std::string OsStackTraceGetter::CurrentStackTrace(int max_depth, int skip_count) GTEST_LOCK_EXCLUDED_(mutex_) { #if GTEST_HAS_ABSL std::string result; if (max_depth <= 0) { return result; } max_depth = std::min(max_depth, kMaxStackTraceDepth); std::vector raw_stack(max_depth); // Skips the frames requested by the caller, plus this function. const int raw_stack_size = absl::GetStackTrace(&raw_stack[0], max_depth, skip_count + 1); void* caller_frame = nullptr; { MutexLock lock(&mutex_); caller_frame = caller_frame_; } for (int i = 0; i < raw_stack_size; ++i) { if (raw_stack[i] == caller_frame && !GTEST_FLAG(show_internal_stack_frames)) { // Add a marker to the trace and stop adding frames. absl::StrAppend(&result, kElidedFramesMarker, "\n"); break; } char tmp[1024]; const char* symbol = "(unknown)"; if (absl::Symbolize(raw_stack[i], tmp, sizeof(tmp))) { symbol = tmp; } char line[1024]; snprintf(line, sizeof(line), " %p: %s\n", raw_stack[i], symbol); result += line; } return result; #else // !GTEST_HAS_ABSL static_cast(max_depth); static_cast(skip_count); return ""; #endif // GTEST_HAS_ABSL } void OsStackTraceGetter::UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_) { #if GTEST_HAS_ABSL void* caller_frame = nullptr; if (absl::GetStackTrace(&caller_frame, 1, 3) <= 0) { caller_frame = nullptr; } MutexLock lock(&mutex_); caller_frame_ = caller_frame; #endif // GTEST_HAS_ABSL } // A helper class that creates the premature-exit file in its // constructor and deletes the file in its destructor. class ScopedPrematureExitFile { public: explicit ScopedPrematureExitFile(const char* premature_exit_filepath) : premature_exit_filepath_(premature_exit_filepath ? premature_exit_filepath : "") { // If a path to the premature-exit file is specified... if (!premature_exit_filepath_.empty()) { // create the file with a single "0" character in it. I/O // errors are ignored as there's nothing better we can do and we // don't want to fail the test because of this. FILE* pfile = posix::FOpen(premature_exit_filepath, "w"); fwrite("0", 1, 1, pfile); fclose(pfile); } } ~ScopedPrematureExitFile() { if (!premature_exit_filepath_.empty()) { int retval = remove(premature_exit_filepath_.c_str()); if (retval) { GTEST_LOG_(ERROR) << "Failed to remove premature exit filepath \"" << premature_exit_filepath_ << "\" with error " << retval; } } } private: const std::string premature_exit_filepath_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedPrematureExitFile); }; } // namespace internal // class TestEventListeners TestEventListeners::TestEventListeners() : repeater_(new internal::TestEventRepeater()), default_result_printer_(nullptr), default_xml_generator_(nullptr) {} TestEventListeners::~TestEventListeners() { delete repeater_; } // Returns the standard listener responsible for the default console // output. Can be removed from the listeners list to shut down default // console output. Note that removing this object from the listener list // with Release transfers its ownership to the user. void TestEventListeners::Append(TestEventListener* listener) { repeater_->Append(listener); } // Removes the given event listener from the list and returns it. It then // becomes the caller's responsibility to delete the listener. Returns // NULL if the listener is not found in the list. TestEventListener* TestEventListeners::Release(TestEventListener* listener) { if (listener == default_result_printer_) default_result_printer_ = nullptr; else if (listener == default_xml_generator_) default_xml_generator_ = nullptr; return repeater_->Release(listener); } // Returns repeater that broadcasts the TestEventListener events to all // subscribers. TestEventListener* TestEventListeners::repeater() { return repeater_; } // Sets the default_result_printer attribute to the provided listener. // The listener is also added to the listener list and previous // default_result_printer is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) { if (default_result_printer_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_result_printer_); default_result_printer_ = listener; if (listener != nullptr) Append(listener); } } // Sets the default_xml_generator attribute to the provided listener. The // listener is also added to the listener list and previous // default_xml_generator is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) { if (default_xml_generator_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_xml_generator_); default_xml_generator_ = listener; if (listener != nullptr) Append(listener); } } // Controls whether events will be forwarded by the repeater to the // listeners in the list. bool TestEventListeners::EventForwardingEnabled() const { return repeater_->forwarding_enabled(); } void TestEventListeners::SuppressEventForwarding() { repeater_->set_forwarding_enabled(false); } // class UnitTest // Gets the singleton UnitTest object. The first time this method is // called, a UnitTest object is constructed and returned. Consecutive // calls will return the same object. // // We don't protect this under mutex_ as a user is not supposed to // call this before main() starts, from which point on the return // value will never change. UnitTest* UnitTest::GetInstance() { // CodeGear C++Builder insists on a public destructor for the // default implementation. Use this implementation to keep good OO // design with private destructor. #if defined(__BORLANDC__) static UnitTest* const instance = new UnitTest; return instance; #else static UnitTest instance; return &instance; #endif // defined(__BORLANDC__) } // Gets the number of successful test suites. int UnitTest::successful_test_suite_count() const { return impl()->successful_test_suite_count(); } // Gets the number of failed test suites. int UnitTest::failed_test_suite_count() const { return impl()->failed_test_suite_count(); } // Gets the number of all test suites. int UnitTest::total_test_suite_count() const { return impl()->total_test_suite_count(); } // Gets the number of all test suites that contain at least one test // that should run. int UnitTest::test_suite_to_run_count() const { return impl()->test_suite_to_run_count(); } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ int UnitTest::successful_test_case_count() const { return impl()->successful_test_suite_count(); } int UnitTest::failed_test_case_count() const { return impl()->failed_test_suite_count(); } int UnitTest::total_test_case_count() const { return impl()->total_test_suite_count(); } int UnitTest::test_case_to_run_count() const { return impl()->test_suite_to_run_count(); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Gets the number of successful tests. int UnitTest::successful_test_count() const { return impl()->successful_test_count(); } // Gets the number of skipped tests. int UnitTest::skipped_test_count() const { return impl()->skipped_test_count(); } // Gets the number of failed tests. int UnitTest::failed_test_count() const { return impl()->failed_test_count(); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTest::reportable_disabled_test_count() const { return impl()->reportable_disabled_test_count(); } // Gets the number of disabled tests. int UnitTest::disabled_test_count() const { return impl()->disabled_test_count(); } // Gets the number of tests to be printed in the XML report. int UnitTest::reportable_test_count() const { return impl()->reportable_test_count(); } // Gets the number of all tests. int UnitTest::total_test_count() const { return impl()->total_test_count(); } // Gets the number of tests that should run. int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); } // Gets the time of the test program start, in ms from the start of the // UNIX epoch. internal::TimeInMillis UnitTest::start_timestamp() const { return impl()->start_timestamp(); } // Gets the elapsed time, in milliseconds. internal::TimeInMillis UnitTest::elapsed_time() const { return impl()->elapsed_time(); } // Returns true if and only if the unit test passed (i.e. all test suites // passed). bool UnitTest::Passed() const { return impl()->Passed(); } // Returns true if and only if the unit test failed (i.e. some test suite // failed or something outside of all tests failed). bool UnitTest::Failed() const { return impl()->Failed(); } // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. const TestSuite* UnitTest::GetTestSuite(int i) const { return impl()->GetTestSuite(i); } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* UnitTest::GetTestCase(int i) const { return impl()->GetTestCase(i); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Returns the TestResult containing information on test failures and // properties logged outside of individual test suites. const TestResult& UnitTest::ad_hoc_test_result() const { return *impl()->ad_hoc_test_result(); } // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. TestSuite* UnitTest::GetMutableTestSuite(int i) { return impl()->GetMutableSuiteCase(i); } // Returns the list of event listeners that can be used to track events // inside Google Test. TestEventListeners& UnitTest::listeners() { return *impl()->listeners(); } // Registers and returns a global test environment. When a test // program is run, all global test environments will be set-up in the // order they were registered. After all tests in the program have // finished, all global test environments will be torn-down in the // *reverse* order they were registered. // // The UnitTest object takes ownership of the given environment. // // We don't protect this under mutex_, as we only support calling it // from the main thread. Environment* UnitTest::AddEnvironment(Environment* env) { if (env == nullptr) { return nullptr; } impl_->environments().push_back(env); return env; } // Adds a TestPartResult to the current TestResult object. All Google Test // assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call // this to report their results. The user code should use the // assertion macros instead of calling this directly. void UnitTest::AddTestPartResult( TestPartResult::Type result_type, const char* file_name, int line_number, const std::string& message, const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_) { Message msg; msg << message; internal::MutexLock lock(&mutex_); if (impl_->gtest_trace_stack().size() > 0) { msg << "\n" << GTEST_NAME_ << " trace:"; for (size_t i = impl_->gtest_trace_stack().size(); i > 0; --i) { const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1]; msg << "\n" << internal::FormatFileLocation(trace.file, trace.line) << " " << trace.message; } } if (os_stack_trace.c_str() != nullptr && !os_stack_trace.empty()) { msg << internal::kStackTraceMarker << os_stack_trace; } const TestPartResult result = TestPartResult( result_type, file_name, line_number, msg.GetString().c_str()); impl_->GetTestPartResultReporterForCurrentThread()-> ReportTestPartResult(result); if (result_type != TestPartResult::kSuccess && result_type != TestPartResult::kSkip) { // gtest_break_on_failure takes precedence over // gtest_throw_on_failure. This allows a user to set the latter // in the code (perhaps in order to use Google Test assertions // with another testing framework) and specify the former on the // command line for debugging. if (GTEST_FLAG(break_on_failure)) { #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT // Using DebugBreak on Windows allows gtest to still break into a debugger // when a failure happens and both the --gtest_break_on_failure and // the --gtest_catch_exceptions flags are specified. DebugBreak(); #elif (!defined(__native_client__)) && \ ((defined(__clang__) || defined(__GNUC__)) && \ (defined(__x86_64__) || defined(__i386__))) // with clang/gcc we can achieve the same effect on x86 by invoking int3 asm("int3"); #else // Dereference nullptr through a volatile pointer to prevent the compiler // from removing. We use this rather than abort() or __builtin_trap() for // portability: some debuggers don't correctly trap abort(). *static_cast(nullptr) = 1; #endif // GTEST_OS_WINDOWS } else if (GTEST_FLAG(throw_on_failure)) { #if GTEST_HAS_EXCEPTIONS throw internal::GoogleTestFailureException(result); #else // We cannot call abort() as it generates a pop-up in debug mode // that cannot be suppressed in VC 7.1 or below. exit(1); #endif } } } // Adds a TestProperty to the current TestResult object when invoked from // inside a test, to current TestSuite's ad_hoc_test_result_ when invoked // from SetUpTestSuite or TearDownTestSuite, or to the global property set // when invoked elsewhere. If the result already contains a property with // the same key, the value will be updated. void UnitTest::RecordProperty(const std::string& key, const std::string& value) { impl_->RecordProperty(TestProperty(key, value)); } // Runs all tests in this UnitTest object and prints the result. // Returns 0 if successful, or 1 otherwise. // // We don't protect this under mutex_, as we only support calling it // from the main thread. int UnitTest::Run() { const bool in_death_test_child_process = internal::GTEST_FLAG(internal_run_death_test).length() > 0; // Google Test implements this protocol for catching that a test // program exits before returning control to Google Test: // // 1. Upon start, Google Test creates a file whose absolute path // is specified by the environment variable // TEST_PREMATURE_EXIT_FILE. // 2. When Google Test has finished its work, it deletes the file. // // This allows a test runner to set TEST_PREMATURE_EXIT_FILE before // running a Google-Test-based test program and check the existence // of the file at the end of the test execution to see if it has // exited prematurely. // If we are in the child process of a death test, don't // create/delete the premature exit file, as doing so is unnecessary // and will confuse the parent process. Otherwise, create/delete // the file upon entering/leaving this function. If the program // somehow exits before this function has a chance to return, the // premature-exit file will be left undeleted, causing a test runner // that understands the premature-exit-file protocol to report the // test as having failed. const internal::ScopedPrematureExitFile premature_exit_file( in_death_test_child_process ? nullptr : internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE")); // Captures the value of GTEST_FLAG(catch_exceptions). This value will be // used for the duration of the program. impl()->set_catch_exceptions(GTEST_FLAG(catch_exceptions)); #if GTEST_OS_WINDOWS // Either the user wants Google Test to catch exceptions thrown by the // tests or this is executing in the context of death test child // process. In either case the user does not want to see pop-up dialogs // about crashes - they are expected. if (impl()->catch_exceptions() || in_death_test_child_process) { # if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT // SetErrorMode doesn't exist on CE. SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); # endif // !GTEST_OS_WINDOWS_MOBILE # if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE // Death test children can be terminated with _abort(). On Windows, // _abort() can show a dialog with a warning message. This forces the // abort message to go to stderr instead. _set_error_mode(_OUT_TO_STDERR); # endif # if defined(_MSC_VER) && !GTEST_OS_WINDOWS_MOBILE // In the debug version, Visual Studio pops up a separate dialog // offering a choice to debug the aborted program. We need to suppress // this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement // executed. Google Test will notify the user of any unexpected // failure via stderr. if (!GTEST_FLAG(break_on_failure)) _set_abort_behavior( 0x0, // Clear the following flags: _WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump. # endif // In debug mode, the Windows CRT can crash with an assertion over invalid // input (e.g. passing an invalid file descriptor). The default handling // for these assertions is to pop up a dialog and wait for user input. // Instead ask the CRT to dump such assertions to stderr non-interactively. if (!IsDebuggerPresent()) { (void)_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG); (void)_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR); } } #endif // GTEST_OS_WINDOWS return internal::HandleExceptionsInMethodIfSupported( impl(), &internal::UnitTestImpl::RunAllTests, "auxiliary test code (environments or event listeners)") ? 0 : 1; } // Returns the working directory when the first TEST() or TEST_F() was // executed. const char* UnitTest::original_working_dir() const { return impl_->original_working_dir_.c_str(); } // Returns the TestSuite object for the test that's currently running, // or NULL if no test is running. const TestSuite* UnitTest::current_test_suite() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_suite(); } // Legacy API is still available but deprecated #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* UnitTest::current_test_case() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_suite(); } #endif // Returns the TestInfo object for the test that's currently running, // or NULL if no test is running. const TestInfo* UnitTest::current_test_info() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_info(); } // Returns the random seed used at the start of the current test run. int UnitTest::random_seed() const { return impl_->random_seed(); } // Returns ParameterizedTestSuiteRegistry object used to keep track of // value-parameterized tests and instantiate and register them. internal::ParameterizedTestSuiteRegistry& UnitTest::parameterized_test_registry() GTEST_LOCK_EXCLUDED_(mutex_) { return impl_->parameterized_test_registry(); } // Creates an empty UnitTest. UnitTest::UnitTest() { impl_ = new internal::UnitTestImpl(this); } // Destructor of UnitTest. UnitTest::~UnitTest() { delete impl_; } // Pushes a trace defined by SCOPED_TRACE() on to the per-thread // Google Test trace stack. void UnitTest::PushGTestTrace(const internal::TraceInfo& trace) GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().push_back(trace); } // Pops a trace from the per-thread Google Test trace stack. void UnitTest::PopGTestTrace() GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().pop_back(); } namespace internal { UnitTestImpl::UnitTestImpl(UnitTest* parent) : parent_(parent), GTEST_DISABLE_MSC_WARNINGS_PUSH_(4355 /* using this in initializer */) default_global_test_part_result_reporter_(this), default_per_thread_test_part_result_reporter_(this), GTEST_DISABLE_MSC_WARNINGS_POP_() global_test_part_result_repoter_( &default_global_test_part_result_reporter_), per_thread_test_part_result_reporter_( &default_per_thread_test_part_result_reporter_), parameterized_test_registry_(), parameterized_tests_registered_(false), last_death_test_suite_(-1), current_test_suite_(nullptr), current_test_info_(nullptr), ad_hoc_test_result_(), os_stack_trace_getter_(nullptr), post_flag_parse_init_performed_(false), random_seed_(0), // Will be overridden by the flag before first use. random_(0), // Will be reseeded before first use. start_timestamp_(0), elapsed_time_(0), #if GTEST_HAS_DEATH_TEST death_test_factory_(new DefaultDeathTestFactory), #endif // Will be overridden by the flag before first use. catch_exceptions_(false) { listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter); } UnitTestImpl::~UnitTestImpl() { // Deletes every TestSuite. ForEach(test_suites_, internal::Delete); // Deletes every Environment. ForEach(environments_, internal::Delete); delete os_stack_trace_getter_; } // Adds a TestProperty to the current TestResult object when invoked in a // context of a test, to current test suite's ad_hoc_test_result when invoke // from SetUpTestSuite/TearDownTestSuite, or to the global property set // otherwise. If the result already contains a property with the same key, // the value will be updated. void UnitTestImpl::RecordProperty(const TestProperty& test_property) { std::string xml_element; TestResult* test_result; // TestResult appropriate for property recording. if (current_test_info_ != nullptr) { xml_element = "testcase"; test_result = &(current_test_info_->result_); } else if (current_test_suite_ != nullptr) { xml_element = "testsuite"; test_result = &(current_test_suite_->ad_hoc_test_result_); } else { xml_element = "testsuites"; test_result = &ad_hoc_test_result_; } test_result->RecordProperty(xml_element, test_property); } #if GTEST_HAS_DEATH_TEST // Disables event forwarding if the control is currently in a death test // subprocess. Must not be called before InitGoogleTest. void UnitTestImpl::SuppressTestEventsIfInSubprocess() { if (internal_run_death_test_flag_.get() != nullptr) listeners()->SuppressEventForwarding(); } #endif // GTEST_HAS_DEATH_TEST // Initializes event listeners performing XML output as specified by // UnitTestOptions. Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureXmlOutput() { const std::string& output_format = UnitTestOptions::GetOutputFormat(); if (output_format == "xml") { listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); } else if (output_format == "json") { listeners()->SetDefaultXmlGenerator(new JsonUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); } else if (output_format != "") { GTEST_LOG_(WARNING) << "WARNING: unrecognized output format \"" << output_format << "\" ignored."; } } #if GTEST_CAN_STREAM_RESULTS_ // Initializes event listeners for streaming test results in string form. // Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureStreamingOutput() { const std::string& target = GTEST_FLAG(stream_result_to); if (!target.empty()) { const size_t pos = target.find(':'); if (pos != std::string::npos) { listeners()->Append(new StreamingListener(target.substr(0, pos), target.substr(pos+1))); } else { GTEST_LOG_(WARNING) << "unrecognized streaming target \"" << target << "\" ignored."; } } } #endif // GTEST_CAN_STREAM_RESULTS_ // Performs initialization dependent upon flag values obtained in // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest // this function is also called from RunAllTests. Since this function can be // called more than once, it has to be idempotent. void UnitTestImpl::PostFlagParsingInit() { // Ensures that this function does not execute more than once. if (!post_flag_parse_init_performed_) { post_flag_parse_init_performed_ = true; #if defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_) // Register to send notifications about key process state changes. listeners()->Append(new GTEST_CUSTOM_TEST_EVENT_LISTENER_()); #endif // defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_) #if GTEST_HAS_DEATH_TEST InitDeathTestSubprocessControlInfo(); SuppressTestEventsIfInSubprocess(); #endif // GTEST_HAS_DEATH_TEST // Registers parameterized tests. This makes parameterized tests // available to the UnitTest reflection API without running // RUN_ALL_TESTS. RegisterParameterizedTests(); // Configures listeners for XML output. This makes it possible for users // to shut down the default XML output before invoking RUN_ALL_TESTS. ConfigureXmlOutput(); #if GTEST_CAN_STREAM_RESULTS_ // Configures listeners for streaming test results to the specified server. ConfigureStreamingOutput(); #endif // GTEST_CAN_STREAM_RESULTS_ #if GTEST_HAS_ABSL if (GTEST_FLAG(install_failure_signal_handler)) { absl::FailureSignalHandlerOptions options; absl::InstallFailureSignalHandler(options); } #endif // GTEST_HAS_ABSL } } // A predicate that checks the name of a TestSuite against a known // value. // // This is used for implementation of the UnitTest class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestSuiteNameIs is copyable. class TestSuiteNameIs { public: // Constructor. explicit TestSuiteNameIs(const std::string& name) : name_(name) {} // Returns true if and only if the name of test_suite matches name_. bool operator()(const TestSuite* test_suite) const { return test_suite != nullptr && strcmp(test_suite->name(), name_.c_str()) == 0; } private: std::string name_; }; // Finds and returns a TestSuite with the given name. If one doesn't // exist, creates one and returns it. It's the CALLER'S // RESPONSIBILITY to ensure that this function is only called WHEN THE // TESTS ARE NOT SHUFFLED. // // Arguments: // // test_suite_name: name of the test suite // type_param: the name of the test suite's type parameter, or NULL if // this is not a typed or a type-parameterized test suite. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite* UnitTestImpl::GetTestSuite( const char* test_suite_name, const char* type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc) { // Can we find a TestSuite with the given name? const auto test_suite = std::find_if(test_suites_.rbegin(), test_suites_.rend(), TestSuiteNameIs(test_suite_name)); if (test_suite != test_suites_.rend()) return *test_suite; // No. Let's create one. auto* const new_test_suite = new TestSuite(test_suite_name, type_param, set_up_tc, tear_down_tc); // Is this a death test suite? if (internal::UnitTestOptions::MatchesFilter(test_suite_name, kDeathTestSuiteFilter)) { // Yes. Inserts the test suite after the last death test suite // defined so far. This only works when the test suites haven't // been shuffled. Otherwise we may end up running a death test // after a non-death test. ++last_death_test_suite_; test_suites_.insert(test_suites_.begin() + last_death_test_suite_, new_test_suite); } else { // No. Appends to the end of the list. test_suites_.push_back(new_test_suite); } test_suite_indices_.push_back(static_cast(test_suite_indices_.size())); return new_test_suite; } // Helpers for setting up / tearing down the given environment. They // are for use in the ForEach() function. static void SetUpEnvironment(Environment* env) { env->SetUp(); } static void TearDownEnvironment(Environment* env) { env->TearDown(); } // Runs all tests in this UnitTest object, prints the result, and // returns true if all tests are successful. If any exception is // thrown during a test, the test is considered to be failed, but the // rest of the tests will still be run. // // When parameterized tests are enabled, it expands and registers // parameterized tests first in RegisterParameterizedTests(). // All other functions called from RunAllTests() may safely assume that // parameterized tests are ready to be counted and run. bool UnitTestImpl::RunAllTests() { // True if and only if Google Test is initialized before RUN_ALL_TESTS() is // called. const bool gtest_is_initialized_before_run_all_tests = GTestIsInitialized(); // Do not run any test if the --help flag was specified. if (g_help_flag) return true; // Repeats the call to the post-flag parsing initialization in case the // user didn't call InitGoogleTest. PostFlagParsingInit(); // Even if sharding is not on, test runners may want to use the // GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding // protocol. internal::WriteToShardStatusFileIfNeeded(); // True if and only if we are in a subprocess for running a thread-safe-style // death test. bool in_subprocess_for_death_test = false; #if GTEST_HAS_DEATH_TEST in_subprocess_for_death_test = (internal_run_death_test_flag_.get() != nullptr); # if defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_) if (in_subprocess_for_death_test) { GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_(); } # endif // defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_) #endif // GTEST_HAS_DEATH_TEST const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex, in_subprocess_for_death_test); // Compares the full test names with the filter to decide which // tests to run. const bool has_tests_to_run = FilterTests(should_shard ? HONOR_SHARDING_PROTOCOL : IGNORE_SHARDING_PROTOCOL) > 0; // Lists the tests and exits if the --gtest_list_tests flag was specified. if (GTEST_FLAG(list_tests)) { // This must be called *after* FilterTests() has been called. ListTestsMatchingFilter(); return true; } random_seed_ = GTEST_FLAG(shuffle) ? GetRandomSeedFromFlag(GTEST_FLAG(random_seed)) : 0; // True if and only if at least one test has failed. bool failed = false; TestEventListener* repeater = listeners()->repeater(); start_timestamp_ = GetTimeInMillis(); repeater->OnTestProgramStart(*parent_); // How many times to repeat the tests? We don't want to repeat them // when we are inside the subprocess of a death test. const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat); // Repeats forever if the repeat count is negative. const bool gtest_repeat_forever = repeat < 0; for (int i = 0; gtest_repeat_forever || i != repeat; i++) { // We want to preserve failures generated by ad-hoc test // assertions executed before RUN_ALL_TESTS(). ClearNonAdHocTestResult(); const TimeInMillis start = GetTimeInMillis(); // Shuffles test suites and tests if requested. if (has_tests_to_run && GTEST_FLAG(shuffle)) { random()->Reseed(static_cast(random_seed_)); // This should be done before calling OnTestIterationStart(), // such that a test event listener can see the actual test order // in the event. ShuffleTests(); } // Tells the unit test event listeners that the tests are about to start. repeater->OnTestIterationStart(*parent_, i); // Runs each test suite if there is at least one test to run. if (has_tests_to_run) { // Sets up all environments beforehand. repeater->OnEnvironmentsSetUpStart(*parent_); ForEach(environments_, SetUpEnvironment); repeater->OnEnvironmentsSetUpEnd(*parent_); // Runs the tests only if there was no fatal failure or skip triggered // during global set-up. if (Test::IsSkipped()) { // Emit diagnostics when global set-up calls skip, as it will not be // emitted by default. TestResult& test_result = *internal::GetUnitTestImpl()->current_test_result(); for (int j = 0; j < test_result.total_part_count(); ++j) { const TestPartResult& test_part_result = test_result.GetTestPartResult(j); if (test_part_result.type() == TestPartResult::kSkip) { const std::string& result = test_part_result.message(); printf("%s\n", result.c_str()); } } fflush(stdout); } else if (!Test::HasFatalFailure()) { for (int test_index = 0; test_index < total_test_suite_count(); test_index++) { GetMutableSuiteCase(test_index)->Run(); } } // Tears down all environments in reverse order afterwards. repeater->OnEnvironmentsTearDownStart(*parent_); std::for_each(environments_.rbegin(), environments_.rend(), TearDownEnvironment); repeater->OnEnvironmentsTearDownEnd(*parent_); } elapsed_time_ = GetTimeInMillis() - start; // Tells the unit test event listener that the tests have just finished. repeater->OnTestIterationEnd(*parent_, i); // Gets the result and clears it. if (!Passed()) { failed = true; } // Restores the original test order after the iteration. This // allows the user to quickly repro a failure that happens in the // N-th iteration without repeating the first (N - 1) iterations. // This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in // case the user somehow changes the value of the flag somewhere // (it's always safe to unshuffle the tests). UnshuffleTests(); if (GTEST_FLAG(shuffle)) { // Picks a new random seed for each iteration. random_seed_ = GetNextRandomSeed(random_seed_); } } repeater->OnTestProgramEnd(*parent_); if (!gtest_is_initialized_before_run_all_tests) { ColoredPrintf( COLOR_RED, "\nIMPORTANT NOTICE - DO NOT IGNORE:\n" "This test program did NOT call " GTEST_INIT_GOOGLE_TEST_NAME_ "() before calling RUN_ALL_TESTS(). This is INVALID. Soon " GTEST_NAME_ " will start to enforce the valid usage. " "Please fix it ASAP, or IT WILL START TO FAIL.\n"); // NOLINT #if GTEST_FOR_GOOGLE_ ColoredPrintf(COLOR_RED, "For more details, see http://wiki/Main/ValidGUnitMain.\n"); #endif // GTEST_FOR_GOOGLE_ } return !failed; } // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file // if the variable is present. If a file already exists at this location, this // function will write over it. If the variable is present, but the file cannot // be created, prints an error and exits. void WriteToShardStatusFileIfNeeded() { const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile); if (test_shard_file != nullptr) { FILE* const file = posix::FOpen(test_shard_file, "w"); if (file == nullptr) { ColoredPrintf(COLOR_RED, "Could not write to the test shard status file \"%s\" " "specified by the %s environment variable.\n", test_shard_file, kTestShardStatusFile); fflush(stdout); exit(EXIT_FAILURE); } fclose(file); } } // Checks whether sharding is enabled by examining the relevant // environment variable values. If the variables are present, // but inconsistent (i.e., shard_index >= total_shards), prints // an error and exits. If in_subprocess_for_death_test, sharding is // disabled because it must only be applied to the original test // process. Otherwise, we could filter out death tests we intended to execute. bool ShouldShard(const char* total_shards_env, const char* shard_index_env, bool in_subprocess_for_death_test) { if (in_subprocess_for_death_test) { return false; } const Int32 total_shards = Int32FromEnvOrDie(total_shards_env, -1); const Int32 shard_index = Int32FromEnvOrDie(shard_index_env, -1); if (total_shards == -1 && shard_index == -1) { return false; } else if (total_shards == -1 && shard_index != -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestShardIndex << " = " << shard_index << ", but have left " << kTestTotalShards << " unset.\n"; ColoredPrintf(COLOR_RED, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (total_shards != -1 && shard_index == -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestTotalShards << " = " << total_shards << ", but have left " << kTestShardIndex << " unset.\n"; ColoredPrintf(COLOR_RED, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (shard_index < 0 || shard_index >= total_shards) { const Message msg = Message() << "Invalid environment variables: we require 0 <= " << kTestShardIndex << " < " << kTestTotalShards << ", but you have " << kTestShardIndex << "=" << shard_index << ", " << kTestTotalShards << "=" << total_shards << ".\n"; ColoredPrintf(COLOR_RED, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } return total_shards > 1; } // Parses the environment variable var as an Int32. If it is unset, // returns default_val. If it is not an Int32, prints an error // and aborts. Int32 Int32FromEnvOrDie(const char* var, Int32 default_val) { const char* str_val = posix::GetEnv(var); if (str_val == nullptr) { return default_val; } Int32 result; if (!ParseInt32(Message() << "The value of environment variable " << var, str_val, &result)) { exit(EXIT_FAILURE); } return result; } // Given the total number of shards, the shard index, and the test id, // returns true if and only if the test should be run on this shard. The test id // is some arbitrary but unique non-negative integer assigned to each test // method. Assumes that 0 <= shard_index < total_shards. bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) { return (test_id % total_shards) == shard_index; } // Compares the name of each test with the user-specified filter to // decide whether the test should be run, then records the result in // each TestSuite and TestInfo object. // If shard_tests == true, further filters tests based on sharding // variables in the environment - see // https://github.com/google/googletest/blob/master/googletest/docs/advanced.md // . Returns the number of tests that should run. int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) { const Int32 total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestTotalShards, -1) : -1; const Int32 shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestShardIndex, -1) : -1; // num_runnable_tests are the number of tests that will // run across all shards (i.e., match filter and are not disabled). // num_selected_tests are the number of tests to be run on // this shard. int num_runnable_tests = 0; int num_selected_tests = 0; for (auto* test_suite : test_suites_) { const std::string& test_suite_name = test_suite->name(); test_suite->set_should_run(false); for (size_t j = 0; j < test_suite->test_info_list().size(); j++) { TestInfo* const test_info = test_suite->test_info_list()[j]; const std::string test_name(test_info->name()); // A test is disabled if test suite name or test name matches // kDisableTestFilter. const bool is_disabled = internal::UnitTestOptions::MatchesFilter( test_suite_name, kDisableTestFilter) || internal::UnitTestOptions::MatchesFilter( test_name, kDisableTestFilter); test_info->is_disabled_ = is_disabled; const bool matches_filter = internal::UnitTestOptions::FilterMatchesTest( test_suite_name, test_name); test_info->matches_filter_ = matches_filter; const bool is_runnable = (GTEST_FLAG(also_run_disabled_tests) || !is_disabled) && matches_filter; const bool is_in_another_shard = shard_tests != IGNORE_SHARDING_PROTOCOL && !ShouldRunTestOnShard(total_shards, shard_index, num_runnable_tests); test_info->is_in_another_shard_ = is_in_another_shard; const bool is_selected = is_runnable && !is_in_another_shard; num_runnable_tests += is_runnable; num_selected_tests += is_selected; test_info->should_run_ = is_selected; test_suite->set_should_run(test_suite->should_run() || is_selected); } } return num_selected_tests; } // Prints the given C-string on a single line by replacing all '\n' // characters with string "\\n". If the output takes more than // max_length characters, only prints the first max_length characters // and "...". static void PrintOnOneLine(const char* str, int max_length) { if (str != nullptr) { for (int i = 0; *str != '\0'; ++str) { if (i >= max_length) { printf("..."); break; } if (*str == '\n') { printf("\\n"); i += 2; } else { printf("%c", *str); ++i; } } } } // Prints the names of the tests matching the user-specified filter flag. void UnitTestImpl::ListTestsMatchingFilter() { // Print at most this many characters for each type/value parameter. const int kMaxParamLength = 250; for (auto* test_suite : test_suites_) { bool printed_test_suite_name = false; for (size_t j = 0; j < test_suite->test_info_list().size(); j++) { const TestInfo* const test_info = test_suite->test_info_list()[j]; if (test_info->matches_filter_) { if (!printed_test_suite_name) { printed_test_suite_name = true; printf("%s.", test_suite->name()); if (test_suite->type_param() != nullptr) { printf(" # %s = ", kTypeParamLabel); // We print the type parameter on a single line to make // the output easy to parse by a program. PrintOnOneLine(test_suite->type_param(), kMaxParamLength); } printf("\n"); } printf(" %s", test_info->name()); if (test_info->value_param() != nullptr) { printf(" # %s = ", kValueParamLabel); // We print the value parameter on a single line to make the // output easy to parse by a program. PrintOnOneLine(test_info->value_param(), kMaxParamLength); } printf("\n"); } } } fflush(stdout); const std::string& output_format = UnitTestOptions::GetOutputFormat(); if (output_format == "xml" || output_format == "json") { FILE* fileout = OpenFileForWriting( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()); std::stringstream stream; if (output_format == "xml") { XmlUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()) .PrintXmlTestsList(&stream, test_suites_); } else if (output_format == "json") { JsonUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()) .PrintJsonTestList(&stream, test_suites_); } fprintf(fileout, "%s", StringStreamToString(&stream).c_str()); fclose(fileout); } } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter are // the same; otherwise, deletes the old getter and makes the input the // current getter. void UnitTestImpl::set_os_stack_trace_getter( OsStackTraceGetterInterface* getter) { if (os_stack_trace_getter_ != getter) { delete os_stack_trace_getter_; os_stack_trace_getter_ = getter; } } // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() { if (os_stack_trace_getter_ == nullptr) { #ifdef GTEST_OS_STACK_TRACE_GETTER_ os_stack_trace_getter_ = new GTEST_OS_STACK_TRACE_GETTER_; #else os_stack_trace_getter_ = new OsStackTraceGetter; #endif // GTEST_OS_STACK_TRACE_GETTER_ } return os_stack_trace_getter_; } // Returns the most specific TestResult currently running. TestResult* UnitTestImpl::current_test_result() { if (current_test_info_ != nullptr) { return ¤t_test_info_->result_; } if (current_test_suite_ != nullptr) { return ¤t_test_suite_->ad_hoc_test_result_; } return &ad_hoc_test_result_; } // Shuffles all test suites, and the tests within each test suite, // making sure that death tests are still run first. void UnitTestImpl::ShuffleTests() { // Shuffles the death test suites. ShuffleRange(random(), 0, last_death_test_suite_ + 1, &test_suite_indices_); // Shuffles the non-death test suites. ShuffleRange(random(), last_death_test_suite_ + 1, static_cast(test_suites_.size()), &test_suite_indices_); // Shuffles the tests inside each test suite. for (auto& test_suite : test_suites_) { test_suite->ShuffleTests(random()); } } // Restores the test suites and tests to their order before the first shuffle. void UnitTestImpl::UnshuffleTests() { for (size_t i = 0; i < test_suites_.size(); i++) { // Unshuffles the tests in each test suite. test_suites_[i]->UnshuffleTests(); // Resets the index of each test suite. test_suite_indices_[i] = static_cast(i); } } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. std::string GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/, int skip_count) { // We pass skip_count + 1 to skip this wrapper function in addition // to what the user really wants to skip. return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1); } // Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to // suppress unreachable code warnings. namespace { class ClassUniqueToAlwaysTrue {}; } bool IsTrue(bool condition) { return condition; } bool AlwaysTrue() { #if GTEST_HAS_EXCEPTIONS // This condition is always false so AlwaysTrue() never actually throws, // but it makes the compiler think that it may throw. if (IsTrue(false)) throw ClassUniqueToAlwaysTrue(); #endif // GTEST_HAS_EXCEPTIONS return true; } // If *pstr starts with the given prefix, modifies *pstr to be right // past the prefix and returns true; otherwise leaves *pstr unchanged // and returns false. None of pstr, *pstr, and prefix can be NULL. bool SkipPrefix(const char* prefix, const char** pstr) { const size_t prefix_len = strlen(prefix); if (strncmp(*pstr, prefix, prefix_len) == 0) { *pstr += prefix_len; return true; } return false; } // Parses a string as a command line flag. The string should have // the format "--flag=value". When def_optional is true, the "=value" // part can be omitted. // // Returns the value of the flag, or NULL if the parsing failed. static const char* ParseFlagValue(const char* str, const char* flag, bool def_optional) { // str and flag must not be NULL. if (str == nullptr || flag == nullptr) return nullptr; // The flag must start with "--" followed by GTEST_FLAG_PREFIX_. const std::string flag_str = std::string("--") + GTEST_FLAG_PREFIX_ + flag; const size_t flag_len = flag_str.length(); if (strncmp(str, flag_str.c_str(), flag_len) != 0) return nullptr; // Skips the flag name. const char* flag_end = str + flag_len; // When def_optional is true, it's OK to not have a "=value" part. if (def_optional && (flag_end[0] == '\0')) { return flag_end; } // If def_optional is true and there are more characters after the // flag name, or if def_optional is false, there must be a '=' after // the flag name. if (flag_end[0] != '=') return nullptr; // Returns the string after "=". return flag_end + 1; } // Parses a string for a bool flag, in the form of either // "--flag=value" or "--flag". // // In the former case, the value is taken as true as long as it does // not start with '0', 'f', or 'F'. // // In the latter case, the value is taken as true. // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. static bool ParseBoolFlag(const char* str, const char* flag, bool* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, true); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Converts the string value to a bool. *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); return true; } // Parses a string for an Int32 flag, in the form of // "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseInt32Flag(const char* str, const char* flag, Int32* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Sets *value to the value of the flag. return ParseInt32(Message() << "The value of flag --" << flag, value_str, value); } // Parses a string for a string flag, in the form of // "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. template static bool ParseStringFlag(const char* str, const char* flag, String* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Sets *value to the value of the flag. *value = value_str; return true; } // Determines whether a string has a prefix that Google Test uses for its // flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_. // If Google Test detects that a command line flag has its prefix but is not // recognized, it will print its help message. Flags starting with // GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test // internal flags and do not trigger the help message. static bool HasGoogleTestFlagPrefix(const char* str) { return (SkipPrefix("--", &str) || SkipPrefix("-", &str) || SkipPrefix("/", &str)) && !SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) && (SkipPrefix(GTEST_FLAG_PREFIX_, &str) || SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str)); } // Prints a string containing code-encoded text. The following escape // sequences can be used in the string to control the text color: // // @@ prints a single '@' character. // @R changes the color to red. // @G changes the color to green. // @Y changes the color to yellow. // @D changes to the default terminal text color. // static void PrintColorEncoded(const char* str) { GTestColor color = COLOR_DEFAULT; // The current color. // Conceptually, we split the string into segments divided by escape // sequences. Then we print one segment at a time. At the end of // each iteration, the str pointer advances to the beginning of the // next segment. for (;;) { const char* p = strchr(str, '@'); if (p == nullptr) { ColoredPrintf(color, "%s", str); return; } ColoredPrintf(color, "%s", std::string(str, p).c_str()); const char ch = p[1]; str = p + 2; if (ch == '@') { ColoredPrintf(color, "@"); } else if (ch == 'D') { color = COLOR_DEFAULT; } else if (ch == 'R') { color = COLOR_RED; } else if (ch == 'G') { color = COLOR_GREEN; } else if (ch == 'Y') { color = COLOR_YELLOW; } else { --str; } } } static const char kColorEncodedHelpMessage[] = "This program contains tests written using " GTEST_NAME_ ". You can use the\n" "following command line flags to control its behavior:\n" "\n" "Test Selection:\n" " @G--" GTEST_FLAG_PREFIX_ "list_tests@D\n" " List the names of all tests instead of running them. The name of\n" " TEST(Foo, Bar) is \"Foo.Bar\".\n" " @G--" GTEST_FLAG_PREFIX_ "filter=@YPOSTIVE_PATTERNS" "[@G-@YNEGATIVE_PATTERNS]@D\n" " Run only the tests whose name matches one of the positive patterns but\n" " none of the negative patterns. '?' matches any single character; '*'\n" " matches any substring; ':' separates two patterns.\n" " @G--" GTEST_FLAG_PREFIX_ "also_run_disabled_tests@D\n" " Run all disabled tests too.\n" "\n" "Test Execution:\n" " @G--" GTEST_FLAG_PREFIX_ "repeat=@Y[COUNT]@D\n" " Run the tests repeatedly; use a negative count to repeat forever.\n" " @G--" GTEST_FLAG_PREFIX_ "shuffle@D\n" " Randomize tests' orders on every iteration.\n" " @G--" GTEST_FLAG_PREFIX_ "random_seed=@Y[NUMBER]@D\n" " Random number seed to use for shuffling test orders (between 1 and\n" " 99999, or 0 to use a seed based on the current time).\n" "\n" "Test Output:\n" " @G--" GTEST_FLAG_PREFIX_ "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n" " Enable/disable colored output. The default is @Gauto@D.\n" " -@G-" GTEST_FLAG_PREFIX_ "print_time=0@D\n" " Don't print the elapsed time of each test.\n" " @G--" GTEST_FLAG_PREFIX_ "output=@Y(@Gjson@Y|@Gxml@Y)[@G:@YDIRECTORY_PATH@G" GTEST_PATH_SEP_ "@Y|@G:@YFILE_PATH]@D\n" " Generate a JSON or XML report in the given directory or with the given\n" " file name. @YFILE_PATH@D defaults to @Gtest_detail.xml@D.\n" # if GTEST_CAN_STREAM_RESULTS_ " @G--" GTEST_FLAG_PREFIX_ "stream_result_to=@YHOST@G:@YPORT@D\n" " Stream test results to the given server.\n" # endif // GTEST_CAN_STREAM_RESULTS_ "\n" "Assertion Behavior:\n" # if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n" " Set the default death test style.\n" # endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "break_on_failure@D\n" " Turn assertion failures into debugger break-points.\n" " @G--" GTEST_FLAG_PREFIX_ "throw_on_failure@D\n" " Turn assertion failures into C++ exceptions for use by an external\n" " test framework.\n" " @G--" GTEST_FLAG_PREFIX_ "catch_exceptions=0@D\n" " Do not report exceptions as test failures. Instead, allow them\n" " to crash the program or throw a pop-up (on Windows).\n" "\n" "Except for @G--" GTEST_FLAG_PREFIX_ "list_tests@D, you can alternatively set " "the corresponding\n" "environment variable of a flag (all letters in upper-case). For example, to\n" "disable colored text output, you can either specify @G--" GTEST_FLAG_PREFIX_ "color=no@D or set\n" "the @G" GTEST_FLAG_PREFIX_UPPER_ "COLOR@D environment variable to @Gno@D.\n" "\n" "For more information, please read the " GTEST_NAME_ " documentation at\n" "@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_ "\n" "(not one in your own code or tests), please report it to\n" "@G<" GTEST_DEV_EMAIL_ ">@D.\n"; static bool ParseGoogleTestFlag(const char* const arg) { return ParseBoolFlag(arg, kAlsoRunDisabledTestsFlag, >EST_FLAG(also_run_disabled_tests)) || ParseBoolFlag(arg, kBreakOnFailureFlag, >EST_FLAG(break_on_failure)) || ParseBoolFlag(arg, kCatchExceptionsFlag, >EST_FLAG(catch_exceptions)) || ParseStringFlag(arg, kColorFlag, >EST_FLAG(color)) || ParseStringFlag(arg, kDeathTestStyleFlag, >EST_FLAG(death_test_style)) || ParseBoolFlag(arg, kDeathTestUseFork, >EST_FLAG(death_test_use_fork)) || ParseStringFlag(arg, kFilterFlag, >EST_FLAG(filter)) || ParseStringFlag(arg, kInternalRunDeathTestFlag, >EST_FLAG(internal_run_death_test)) || ParseBoolFlag(arg, kListTestsFlag, >EST_FLAG(list_tests)) || ParseStringFlag(arg, kOutputFlag, >EST_FLAG(output)) || ParseBoolFlag(arg, kPrintTimeFlag, >EST_FLAG(print_time)) || ParseBoolFlag(arg, kPrintUTF8Flag, >EST_FLAG(print_utf8)) || ParseInt32Flag(arg, kRandomSeedFlag, >EST_FLAG(random_seed)) || ParseInt32Flag(arg, kRepeatFlag, >EST_FLAG(repeat)) || ParseBoolFlag(arg, kShuffleFlag, >EST_FLAG(shuffle)) || ParseInt32Flag(arg, kStackTraceDepthFlag, >EST_FLAG(stack_trace_depth)) || ParseStringFlag(arg, kStreamResultToFlag, >EST_FLAG(stream_result_to)) || ParseBoolFlag(arg, kThrowOnFailureFlag, >EST_FLAG(throw_on_failure)); } #if GTEST_USE_OWN_FLAGFILE_FLAG_ static void LoadFlagsFromFile(const std::string& path) { FILE* flagfile = posix::FOpen(path.c_str(), "r"); if (!flagfile) { GTEST_LOG_(FATAL) << "Unable to open file \"" << GTEST_FLAG(flagfile) << "\""; } std::string contents(ReadEntireFile(flagfile)); posix::FClose(flagfile); std::vector lines; SplitString(contents, '\n', &lines); for (size_t i = 0; i < lines.size(); ++i) { if (lines[i].empty()) continue; if (!ParseGoogleTestFlag(lines[i].c_str())) g_help_flag = true; } } #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ // Parses the command line for Google Test flags, without initializing // other parts of Google Test. The type parameter CharType can be // instantiated to either char or wchar_t. template void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) { for (int i = 1; i < *argc; i++) { const std::string arg_string = StreamableToString(argv[i]); const char* const arg = arg_string.c_str(); using internal::ParseBoolFlag; using internal::ParseInt32Flag; using internal::ParseStringFlag; bool remove_flag = false; if (ParseGoogleTestFlag(arg)) { remove_flag = true; #if GTEST_USE_OWN_FLAGFILE_FLAG_ } else if (ParseStringFlag(arg, kFlagfileFlag, >EST_FLAG(flagfile))) { LoadFlagsFromFile(GTEST_FLAG(flagfile)); remove_flag = true; #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ } else if (arg_string == "--help" || arg_string == "-h" || arg_string == "-?" || arg_string == "/?" || HasGoogleTestFlagPrefix(arg)) { // Both help flag and unrecognized Google Test flags (excluding // internal ones) trigger help display. g_help_flag = true; } if (remove_flag) { // Shift the remainder of the argv list left by one. Note // that argv has (*argc + 1) elements, the last one always being // NULL. The following loop moves the trailing NULL element as // well. for (int j = i; j != *argc; j++) { argv[j] = argv[j + 1]; } // Decrements the argument count. (*argc)--; // We also need to decrement the iterator as we just removed // an element. i--; } } if (g_help_flag) { // We print the help here instead of in RUN_ALL_TESTS(), as the // latter may not be called at all if the user is using Google // Test with another testing framework. PrintColorEncoded(kColorEncodedHelpMessage); } } // Parses the command line for Google Test flags, without initializing // other parts of Google Test. void ParseGoogleTestFlagsOnly(int* argc, char** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); // Fix the value of *_NSGetArgc() on macOS, but if and only if // *_NSGetArgv() == argv // Only applicable to char** version of argv #if GTEST_OS_MAC #ifndef GTEST_OS_IOS if (*_NSGetArgv() == argv) { *_NSGetArgc() = *argc; } #endif #endif } void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } // The internal implementation of InitGoogleTest(). // // The type parameter CharType can be instantiated to either char or // wchar_t. template void InitGoogleTestImpl(int* argc, CharType** argv) { // We don't want to run the initialization code twice. if (GTestIsInitialized()) return; if (*argc <= 0) return; g_argvs.clear(); for (int i = 0; i != *argc; i++) { g_argvs.push_back(StreamableToString(argv[i])); } #if GTEST_HAS_ABSL absl::InitializeSymbolizer(g_argvs[0].c_str()); #endif // GTEST_HAS_ABSL ParseGoogleTestFlagsOnly(argc, argv); GetUnitTestImpl()->PostFlagParsingInit(); } } // namespace internal // Initializes Google Test. This must be called before calling // RUN_ALL_TESTS(). In particular, it parses a command line for the // flags that Google Test recognizes. Whenever a Google Test flag is // seen, it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Test flag variables are // updated. // // Calling the function for the second time has no user-visible effect. void InitGoogleTest(int* argc, char** argv) { #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } // This overloaded version can be used in Windows programs compiled in // UNICODE mode. void InitGoogleTest(int* argc, wchar_t** argv) { #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } // This overloaded version can be used on Arduino/embedded platforms where // there is no argc/argv. void InitGoogleTest() { // Since Arduino doesn't have a command line, fake out the argc/argv arguments int argc = 1; const auto arg0 = "dummy"; char* argv0 = const_cast(arg0); char** argv = &argv0; #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(&argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(&argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } std::string TempDir() { #if defined(GTEST_CUSTOM_TEMPDIR_FUNCTION_) return GTEST_CUSTOM_TEMPDIR_FUNCTION_(); #endif #if GTEST_OS_WINDOWS_MOBILE return "\\temp\\"; #elif GTEST_OS_WINDOWS const char* temp_dir = internal::posix::GetEnv("TEMP"); if (temp_dir == nullptr || temp_dir[0] == '\0') return "\\temp\\"; else if (temp_dir[strlen(temp_dir) - 1] == '\\') return temp_dir; else return std::string(temp_dir) + "\\"; #elif GTEST_OS_LINUX_ANDROID return "/sdcard/"; #else return "/tmp/"; #endif // GTEST_OS_WINDOWS_MOBILE } // Class ScopedTrace // Pushes the given source file location and message onto a per-thread // trace stack maintained by Google Test. void ScopedTrace::PushTrace(const char* file, int line, std::string message) { internal::TraceInfo trace; trace.file = file; trace.line = line; trace.message.swap(message); UnitTest::GetInstance()->PushGTestTrace(trace); } // Pops the info pushed by the c'tor. ScopedTrace::~ScopedTrace() GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { UnitTest::GetInstance()->PopGTestTrace(); } } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/src/gtest_main.cc000066400000000000000000000035201355420072700241030ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "gtest/gtest.h" #ifdef ARDUINO void setup() { testing::InitGoogleTest(); } void loop() { RUN_ALL_TESTS(); } #else GTEST_API_ int main(int argc, char **argv) { printf("Running main() from %s\n", __FILE__); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } #endif libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/000077500000000000000000000000001355420072700216325ustar00rootroot00000000000000libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/BUILD.bazel000066400000000000000000000323341355420072700235150ustar00rootroot00000000000000# Copyright 2017 Google Inc. # All Rights Reserved. # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Author: misterg@google.com (Gennadiy Civil) # # Bazel BUILD for The Google C++ Testing Framework (Google Test) load("@rules_cc//cc:defs.bzl", "cc_binary", "cc_test") load("@rules_python//python:defs.bzl", "py_library", "py_test") licenses(["notice"]) #on windows exclude gtest-tuple.h cc_test( name = "gtest_all_test", size = "small", srcs = glob( include = [ "gtest-*.cc", "googletest-*.cc", "*.h", "googletest/include/gtest/**/*.h", ], exclude = [ "gtest-unittest-api_test.cc", "googletest/src/gtest-all.cc", "gtest_all_test.cc", "gtest-death-test_ex_test.cc", "gtest-listener_test.cc", "gtest-unittest-api_test.cc", "googletest-param-test-test.cc", "googletest-catch-exceptions-test_.cc", "googletest-color-test_.cc", "googletest-env-var-test_.cc", "googletest-filter-unittest_.cc", "googletest-break-on-failure-unittest_.cc", "googletest-listener-test.cc", "googletest-output-test_.cc", "googletest-list-tests-unittest_.cc", "googletest-shuffle-test_.cc", "googletest-uninitialized-test_.cc", "googletest-death-test_ex_test.cc", "googletest-param-test-test", "googletest-throw-on-failure-test_.cc", "googletest-param-test-invalid-name1-test_.cc", "googletest-param-test-invalid-name2-test_.cc", ], ) + select({ "//:windows": [], "//conditions:default": [], }), copts = select({ "//:windows": ["-DGTEST_USE_OWN_TR1_TUPLE=0"], "//conditions:default": ["-DGTEST_USE_OWN_TR1_TUPLE=1"], }), includes = [ "googletest", "googletest/include", "googletest/include/internal", "googletest/test", ], linkopts = select({ "//:windows": [], "//conditions:default": ["-pthread"], }), deps = ["//:gtest_main"], ) # Tests death tests. cc_test( name = "googletest-death-test-test", size = "medium", srcs = ["googletest-death-test-test.cc"], deps = ["//:gtest_main"], ) cc_test( name = "gtest_test_macro_stack_footprint_test", size = "small", srcs = ["gtest_test_macro_stack_footprint_test.cc"], deps = ["//:gtest"], ) #These googletest tests have their own main() cc_test( name = "googletest-listener-test", size = "small", srcs = ["googletest-listener-test.cc"], deps = ["//:gtest_main"], ) cc_test( name = "gtest-unittest-api_test", size = "small", srcs = [ "gtest-unittest-api_test.cc", ], deps = [ "//:gtest", ], ) cc_test( name = "googletest-param-test-test", size = "small", srcs = [ "googletest-param-test-test.cc", "googletest-param-test-test.h", "googletest-param-test2-test.cc", ], deps = ["//:gtest"], ) cc_test( name = "gtest_unittest", size = "small", srcs = ["gtest_unittest.cc"], args = ["--heap_check=strict"], shard_count = 2, deps = ["//:gtest_main"], ) # Py tests py_library( name = "gtest_test_utils", testonly = 1, srcs = ["gtest_test_utils.py"], ) cc_binary( name = "gtest_help_test_", testonly = 1, srcs = ["gtest_help_test_.cc"], deps = ["//:gtest_main"], ) py_test( name = "gtest_help_test", size = "small", srcs = ["gtest_help_test.py"], data = [":gtest_help_test_"], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-output-test_", testonly = 1, srcs = ["googletest-output-test_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-output-test", size = "small", srcs = ["googletest-output-test.py"], args = select({ "//:has_absl": [], "//conditions:default": ["--no_stacktrace_support"], }), data = [ "googletest-output-test-golden-lin.txt", ":googletest-output-test_", ], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-color-test_", testonly = 1, srcs = ["googletest-color-test_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-color-test", size = "small", srcs = ["googletest-color-test.py"], data = [":googletest-color-test_"], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-env-var-test_", testonly = 1, srcs = ["googletest-env-var-test_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-env-var-test", size = "medium", srcs = ["googletest-env-var-test.py"], data = [":googletest-env-var-test_"], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-filter-unittest_", testonly = 1, srcs = ["googletest-filter-unittest_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-filter-unittest", size = "medium", srcs = ["googletest-filter-unittest.py"], data = [":googletest-filter-unittest_"], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-break-on-failure-unittest_", testonly = 1, srcs = ["googletest-break-on-failure-unittest_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-break-on-failure-unittest", size = "small", srcs = ["googletest-break-on-failure-unittest.py"], data = [":googletest-break-on-failure-unittest_"], deps = [":gtest_test_utils"], ) cc_test( name = "gtest_assert_by_exception_test", size = "small", srcs = ["gtest_assert_by_exception_test.cc"], deps = ["//:gtest"], ) cc_binary( name = "googletest-throw-on-failure-test_", testonly = 1, srcs = ["googletest-throw-on-failure-test_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-throw-on-failure-test", size = "small", srcs = ["googletest-throw-on-failure-test.py"], data = [":googletest-throw-on-failure-test_"], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-list-tests-unittest_", testonly = 1, srcs = ["googletest-list-tests-unittest_.cc"], deps = ["//:gtest"], ) cc_test( name = "gtest_skip_test", size = "small", srcs = ["gtest_skip_test.cc"], deps = ["//:gtest_main"], ) cc_test( name = "gtest_skip_in_environment_setup_test", size = "small", srcs = ["gtest_skip_in_environment_setup_test.cc"], deps = ["//:gtest_main"], ) py_test( name = "gtest_skip_environment_check_output_test", size = "small", srcs = ["gtest_skip_environment_check_output_test.py"], data = [ ":gtest_skip_in_environment_setup_test", ], deps = [":gtest_test_utils"], ) py_test( name = "googletest-list-tests-unittest", size = "small", srcs = ["googletest-list-tests-unittest.py"], data = [":googletest-list-tests-unittest_"], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-shuffle-test_", srcs = ["googletest-shuffle-test_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-shuffle-test", size = "small", srcs = ["googletest-shuffle-test.py"], data = [":googletest-shuffle-test_"], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-catch-exceptions-no-ex-test_", testonly = 1, srcs = ["googletest-catch-exceptions-test_.cc"], deps = ["//:gtest_main"], ) cc_binary( name = "googletest-catch-exceptions-ex-test_", testonly = 1, srcs = ["googletest-catch-exceptions-test_.cc"], copts = ["-fexceptions"], deps = ["//:gtest_main"], ) py_test( name = "googletest-catch-exceptions-test", size = "small", srcs = ["googletest-catch-exceptions-test.py"], data = [ ":googletest-catch-exceptions-ex-test_", ":googletest-catch-exceptions-no-ex-test_", ], deps = [":gtest_test_utils"], ) cc_binary( name = "gtest_xml_output_unittest_", testonly = 1, srcs = ["gtest_xml_output_unittest_.cc"], deps = ["//:gtest"], ) cc_test( name = "gtest_no_test_unittest", size = "small", srcs = ["gtest_no_test_unittest.cc"], deps = ["//:gtest"], ) py_test( name = "gtest_xml_output_unittest", size = "small", srcs = [ "gtest_xml_output_unittest.py", "gtest_xml_test_utils.py", ], args = select({ "//:has_absl": [], "//conditions:default": ["--no_stacktrace_support"], }), data = [ # We invoke gtest_no_test_unittest to verify the XML output # when the test program contains no test definition. ":gtest_no_test_unittest", ":gtest_xml_output_unittest_", ], deps = [":gtest_test_utils"], ) cc_binary( name = "gtest_xml_outfile1_test_", testonly = 1, srcs = ["gtest_xml_outfile1_test_.cc"], deps = ["//:gtest_main"], ) cc_binary( name = "gtest_xml_outfile2_test_", testonly = 1, srcs = ["gtest_xml_outfile2_test_.cc"], deps = ["//:gtest_main"], ) py_test( name = "gtest_xml_outfiles_test", size = "small", srcs = [ "gtest_xml_outfiles_test.py", "gtest_xml_test_utils.py", ], data = [ ":gtest_xml_outfile1_test_", ":gtest_xml_outfile2_test_", ], deps = [":gtest_test_utils"], ) cc_binary( name = "googletest-uninitialized-test_", testonly = 1, srcs = ["googletest-uninitialized-test_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-uninitialized-test", size = "medium", srcs = ["googletest-uninitialized-test.py"], data = ["googletest-uninitialized-test_"], deps = [":gtest_test_utils"], ) cc_binary( name = "gtest_testbridge_test_", testonly = 1, srcs = ["gtest_testbridge_test_.cc"], deps = ["//:gtest_main"], ) # Tests that filtering via testbridge works py_test( name = "gtest_testbridge_test", size = "small", srcs = ["gtest_testbridge_test.py"], data = [":gtest_testbridge_test_"], deps = [":gtest_test_utils"], ) py_test( name = "googletest-json-outfiles-test", size = "small", srcs = [ "googletest-json-outfiles-test.py", "gtest_json_test_utils.py", ], data = [ ":gtest_xml_outfile1_test_", ":gtest_xml_outfile2_test_", ], deps = [":gtest_test_utils"], ) py_test( name = "googletest-json-output-unittest", size = "medium", srcs = [ "googletest-json-output-unittest.py", "gtest_json_test_utils.py", ], args = select({ "//:has_absl": [], "//conditions:default": ["--no_stacktrace_support"], }), data = [ # We invoke gtest_no_test_unittest to verify the JSON output # when the test program contains no test definition. ":gtest_no_test_unittest", ":gtest_xml_output_unittest_", ], deps = [":gtest_test_utils"], ) # Verifies interaction of death tests and exceptions. cc_test( name = "googletest-death-test_ex_catch_test", size = "medium", srcs = ["googletest-death-test_ex_test.cc"], copts = ["-fexceptions"], defines = ["GTEST_ENABLE_CATCH_EXCEPTIONS_=1"], deps = ["//:gtest"], ) cc_binary( name = "googletest-param-test-invalid-name1-test_", testonly = 1, srcs = ["googletest-param-test-invalid-name1-test_.cc"], deps = ["//:gtest"], ) cc_binary( name = "googletest-param-test-invalid-name2-test_", testonly = 1, srcs = ["googletest-param-test-invalid-name2-test_.cc"], deps = ["//:gtest"], ) py_test( name = "googletest-param-test-invalid-name1-test", size = "small", srcs = ["googletest-param-test-invalid-name1-test.py"], data = [":googletest-param-test-invalid-name1-test_"], deps = [":gtest_test_utils"], ) py_test( name = "googletest-param-test-invalid-name2-test", size = "small", srcs = ["googletest-param-test-invalid-name2-test.py"], data = [":googletest-param-test-invalid-name2-test_"], deps = [":gtest_test_utils"], ) libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-break-on-failure-unittest.py000066400000000000000000000162051355420072700313620ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's break-on-failure mode. A user can ask Google Test to seg-fault when an assertion fails, using either the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag. This script tests such functionality by invoking googletest-break-on-failure-unittest_ (a program written with Google Test) with different environments and command line flags. """ import os import gtest_test_utils # Constants. IS_WINDOWS = os.name == 'nt' # The environment variable for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_ENV_VAR = 'GTEST_BREAK_ON_FAILURE' # The command line flag for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_FLAG = 'gtest_break_on_failure' # The environment variable for enabling/disabling the throw-on-failure mode. THROW_ON_FAILURE_ENV_VAR = 'GTEST_THROW_ON_FAILURE' # The environment variable for enabling/disabling the catch-exceptions mode. CATCH_EXCEPTIONS_ENV_VAR = 'GTEST_CATCH_EXCEPTIONS' # Path to the googletest-break-on-failure-unittest_ program. EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'googletest-break-on-failure-unittest_') environ = gtest_test_utils.environ SetEnvVar = gtest_test_utils.SetEnvVar # Tests in this file run a Google-Test-based test program and expect it # to terminate prematurely. Therefore they are incompatible with # the premature-exit-file protocol by design. Unset the # premature-exit filepath to prevent Google Test from creating # the file. SetEnvVar(gtest_test_utils.PREMATURE_EXIT_FILE_ENV_VAR, None) def Run(command): """Runs a command; returns 1 if it was killed by a signal, or 0 otherwise.""" p = gtest_test_utils.Subprocess(command, env=environ) if p.terminated_by_signal: return 1 else: return 0 # The tests. class GTestBreakOnFailureUnitTest(gtest_test_utils.TestCase): """Tests using the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag to turn assertion failures into segmentation faults. """ def RunAndVerify(self, env_var_value, flag_value, expect_seg_fault): """Runs googletest-break-on-failure-unittest_ and verifies that it does (or does not) have a seg-fault. Args: env_var_value: value of the GTEST_BREAK_ON_FAILURE environment variable; None if the variable should be unset. flag_value: value of the --gtest_break_on_failure flag; None if the flag should not be present. expect_seg_fault: 1 if the program is expected to generate a seg-fault; 0 otherwise. """ SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, env_var_value) if env_var_value is None: env_var_value_msg = ' is not set' else: env_var_value_msg = '=' + env_var_value if flag_value is None: flag = '' elif flag_value == '0': flag = '--%s=0' % BREAK_ON_FAILURE_FLAG else: flag = '--%s' % BREAK_ON_FAILURE_FLAG command = [EXE_PATH] if flag: command.append(flag) if expect_seg_fault: should_or_not = 'should' else: should_or_not = 'should not' has_seg_fault = Run(command) SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, None) msg = ('when %s%s, an assertion failure in "%s" %s cause a seg-fault.' % (BREAK_ON_FAILURE_ENV_VAR, env_var_value_msg, ' '.join(command), should_or_not)) self.assert_(has_seg_fault == expect_seg_fault, msg) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(env_var_value=None, flag_value=None, expect_seg_fault=0) def testEnvVar(self): """Tests using the GTEST_BREAK_ON_FAILURE environment variable.""" self.RunAndVerify(env_var_value='0', flag_value=None, expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value=None, expect_seg_fault=1) def testFlag(self): """Tests using the --gtest_break_on_failure flag.""" self.RunAndVerify(env_var_value=None, flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) def testFlagOverridesEnvVar(self): """Tests that the flag overrides the environment variable.""" self.RunAndVerify(env_var_value='0', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='0', flag_value='1', expect_seg_fault=1) self.RunAndVerify(env_var_value='1', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) def testBreakOnFailureOverridesThrowOnFailure(self): """Tests that gtest_break_on_failure overrides gtest_throw_on_failure.""" SetEnvVar(THROW_ON_FAILURE_ENV_VAR, '1') try: self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) finally: SetEnvVar(THROW_ON_FAILURE_ENV_VAR, None) if IS_WINDOWS: def testCatchExceptionsDoesNotInterfere(self): """Tests that gtest_catch_exceptions doesn't interfere.""" SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, '1') try: self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) finally: SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, None) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-break-on-failure-unittest_.cc000066400000000000000000000062501355420072700314550ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Unit test for Google Test's break-on-failure mode. // // A user can ask Google Test to seg-fault when an assertion fails, using // either the GTEST_BREAK_ON_FAILURE environment variable or the // --gtest_break_on_failure flag. This file is used for testing such // functionality. // // This program will be invoked from a Python unit test. It is // expected to fail. Don't run it directly. #include "gtest/gtest.h" #if GTEST_OS_WINDOWS # include # include #endif namespace { // A test that's expected to fail. TEST(Foo, Bar) { EXPECT_EQ(2, 3); } #if GTEST_HAS_SEH && !GTEST_OS_WINDOWS_MOBILE // On Windows Mobile global exception handlers are not supported. LONG WINAPI ExitWithExceptionCode( struct _EXCEPTION_POINTERS* exception_pointers) { exit(exception_pointers->ExceptionRecord->ExceptionCode); } #endif } // namespace int main(int argc, char **argv) { #if GTEST_OS_WINDOWS // Suppresses display of the Windows error dialog upon encountering // a general protection fault (segment violation). SetErrorMode(SEM_NOGPFAULTERRORBOX | SEM_FAILCRITICALERRORS); # if GTEST_HAS_SEH && !GTEST_OS_WINDOWS_MOBILE // The default unhandled exception filter does not always exit // with the exception code as exit code - for example it exits with // 0 for EXCEPTION_ACCESS_VIOLATION and 1 for EXCEPTION_BREAKPOINT // if the application is compiled in debug mode. Thus we use our own // filter which always exits with the exception code for unhandled // exceptions. SetUnhandledExceptionFilter(ExitWithExceptionCode); # endif #endif // GTEST_OS_WINDOWS testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-catch-exceptions-test.py000066400000000000000000000234151355420072700306010ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2010 Google Inc. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Tests Google Test's exception catching behavior. This script invokes googletest-catch-exceptions-test_ and googletest-catch-exceptions-ex-test_ (programs written with Google Test) and verifies their output. """ import gtest_test_utils # Constants. FLAG_PREFIX = '--gtest_' LIST_TESTS_FLAG = FLAG_PREFIX + 'list_tests' NO_CATCH_EXCEPTIONS_FLAG = FLAG_PREFIX + 'catch_exceptions=0' FILTER_FLAG = FLAG_PREFIX + 'filter' # Path to the googletest-catch-exceptions-ex-test_ binary, compiled with # exceptions enabled. EX_EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'googletest-catch-exceptions-ex-test_') # Path to the googletest-catch-exceptions-test_ binary, compiled with # exceptions disabled. EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'googletest-catch-exceptions-no-ex-test_') environ = gtest_test_utils.environ SetEnvVar = gtest_test_utils.SetEnvVar # Tests in this file run a Google-Test-based test program and expect it # to terminate prematurely. Therefore they are incompatible with # the premature-exit-file protocol by design. Unset the # premature-exit filepath to prevent Google Test from creating # the file. SetEnvVar(gtest_test_utils.PREMATURE_EXIT_FILE_ENV_VAR, None) TEST_LIST = gtest_test_utils.Subprocess( [EXE_PATH, LIST_TESTS_FLAG], env=environ).output SUPPORTS_SEH_EXCEPTIONS = 'ThrowsSehException' in TEST_LIST if SUPPORTS_SEH_EXCEPTIONS: BINARY_OUTPUT = gtest_test_utils.Subprocess([EXE_PATH], env=environ).output EX_BINARY_OUTPUT = gtest_test_utils.Subprocess( [EX_EXE_PATH], env=environ).output # The tests. if SUPPORTS_SEH_EXCEPTIONS: # pylint:disable-msg=C6302 class CatchSehExceptionsTest(gtest_test_utils.TestCase): """Tests exception-catching behavior.""" def TestSehExceptions(self, test_output): self.assert_('SEH exception with code 0x2a thrown ' 'in the test fixture\'s constructor' in test_output) self.assert_('SEH exception with code 0x2a thrown ' 'in the test fixture\'s destructor' in test_output) self.assert_('SEH exception with code 0x2a thrown in SetUpTestSuite()' in test_output) self.assert_('SEH exception with code 0x2a thrown in TearDownTestSuite()' in test_output) self.assert_('SEH exception with code 0x2a thrown in SetUp()' in test_output) self.assert_('SEH exception with code 0x2a thrown in TearDown()' in test_output) self.assert_('SEH exception with code 0x2a thrown in the test body' in test_output) def testCatchesSehExceptionsWithCxxExceptionsEnabled(self): self.TestSehExceptions(EX_BINARY_OUTPUT) def testCatchesSehExceptionsWithCxxExceptionsDisabled(self): self.TestSehExceptions(BINARY_OUTPUT) class CatchCxxExceptionsTest(gtest_test_utils.TestCase): """Tests C++ exception-catching behavior. Tests in this test case verify that: * C++ exceptions are caught and logged as C++ (not SEH) exceptions * Exception thrown affect the remainder of the test work flow in the expected manner. """ def testCatchesCxxExceptionsInFixtureConstructor(self): self.assertTrue( 'C++ exception with description ' '"Standard C++ exception" thrown ' 'in the test fixture\'s constructor' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assert_('unexpected' not in EX_BINARY_OUTPUT, 'This failure belongs in this test only if ' '"CxxExceptionInConstructorTest" (no quotes) ' 'appears on the same line as words "called unexpectedly"') if ('CxxExceptionInDestructorTest.ThrowsExceptionInDestructor' in EX_BINARY_OUTPUT): def testCatchesCxxExceptionsInFixtureDestructor(self): self.assertTrue( 'C++ exception with description ' '"Standard C++ exception" thrown ' 'in the test fixture\'s destructor' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInDestructorTest::TearDownTestSuite() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) def testCatchesCxxExceptionsInSetUpTestCase(self): self.assertTrue( 'C++ exception with description "Standard C++ exception"' ' thrown in SetUpTestSuite()' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInConstructorTest::TearDownTestSuite() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInSetUpTestSuiteTest constructor ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInSetUpTestSuiteTest destructor ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInSetUpTestSuiteTest::SetUp() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInSetUpTestSuiteTest::TearDown() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInSetUpTestSuiteTest test body ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) def testCatchesCxxExceptionsInTearDownTestCase(self): self.assertTrue( 'C++ exception with description "Standard C++ exception"' ' thrown in TearDownTestSuite()' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) def testCatchesCxxExceptionsInSetUp(self): self.assertTrue( 'C++ exception with description "Standard C++ exception"' ' thrown in SetUp()' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInSetUpTest::TearDownTestSuite() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInSetUpTest destructor ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInSetUpTest::TearDown() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assert_('unexpected' not in EX_BINARY_OUTPUT, 'This failure belongs in this test only if ' '"CxxExceptionInSetUpTest" (no quotes) ' 'appears on the same line as words "called unexpectedly"') def testCatchesCxxExceptionsInTearDown(self): self.assertTrue( 'C++ exception with description "Standard C++ exception"' ' thrown in TearDown()' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInTearDownTest::TearDownTestSuite() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInTearDownTest destructor ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) def testCatchesCxxExceptionsInTestBody(self): self.assertTrue( 'C++ exception with description "Standard C++ exception"' ' thrown in the test body' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInTestBodyTest::TearDownTestSuite() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInTestBodyTest destructor ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) self.assertTrue( 'CxxExceptionInTestBodyTest::TearDown() ' 'called as expected.' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) def testCatchesNonStdCxxExceptions(self): self.assertTrue( 'Unknown C++ exception thrown in the test body' in EX_BINARY_OUTPUT, EX_BINARY_OUTPUT) def testUnhandledCxxExceptionsAbortTheProgram(self): # Filters out SEH exception tests on Windows. Unhandled SEH exceptions # cause tests to show pop-up windows there. FITLER_OUT_SEH_TESTS_FLAG = FILTER_FLAG + '=-*Seh*' # By default, Google Test doesn't catch the exceptions. uncaught_exceptions_ex_binary_output = gtest_test_utils.Subprocess( [EX_EXE_PATH, NO_CATCH_EXCEPTIONS_FLAG, FITLER_OUT_SEH_TESTS_FLAG], env=environ).output self.assert_('Unhandled C++ exception terminating the program' in uncaught_exceptions_ex_binary_output) self.assert_('unexpected' not in uncaught_exceptions_ex_binary_output) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-catch-exceptions-test_.cc000066400000000000000000000203021355420072700306650ustar00rootroot00000000000000// Copyright 2010, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for Google Test itself. Tests in this file throw C++ or SEH // exceptions, and the output is verified by // googletest-catch-exceptions-test.py. #include // NOLINT #include // For exit(). #include "gtest/gtest.h" #if GTEST_HAS_SEH # include #endif #if GTEST_HAS_EXCEPTIONS # include // For set_terminate(). # include #endif using testing::Test; #if GTEST_HAS_SEH class SehExceptionInConstructorTest : public Test { public: SehExceptionInConstructorTest() { RaiseException(42, 0, 0, NULL); } }; TEST_F(SehExceptionInConstructorTest, ThrowsExceptionInConstructor) {} class SehExceptionInDestructorTest : public Test { public: ~SehExceptionInDestructorTest() { RaiseException(42, 0, 0, NULL); } }; TEST_F(SehExceptionInDestructorTest, ThrowsExceptionInDestructor) {} class SehExceptionInSetUpTestSuiteTest : public Test { public: static void SetUpTestSuite() { RaiseException(42, 0, 0, NULL); } }; TEST_F(SehExceptionInSetUpTestSuiteTest, ThrowsExceptionInSetUpTestSuite) {} class SehExceptionInTearDownTestSuiteTest : public Test { public: static void TearDownTestSuite() { RaiseException(42, 0, 0, NULL); } }; TEST_F(SehExceptionInTearDownTestSuiteTest, ThrowsExceptionInTearDownTestSuite) {} class SehExceptionInSetUpTest : public Test { protected: virtual void SetUp() { RaiseException(42, 0, 0, NULL); } }; TEST_F(SehExceptionInSetUpTest, ThrowsExceptionInSetUp) {} class SehExceptionInTearDownTest : public Test { protected: virtual void TearDown() { RaiseException(42, 0, 0, NULL); } }; TEST_F(SehExceptionInTearDownTest, ThrowsExceptionInTearDown) {} TEST(SehExceptionTest, ThrowsSehException) { RaiseException(42, 0, 0, NULL); } #endif // GTEST_HAS_SEH #if GTEST_HAS_EXCEPTIONS class CxxExceptionInConstructorTest : public Test { public: CxxExceptionInConstructorTest() { // Without this macro VC++ complains about unreachable code at the end of // the constructor. GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( throw std::runtime_error("Standard C++ exception")); } static void TearDownTestSuite() { printf("%s", "CxxExceptionInConstructorTest::TearDownTestSuite() " "called as expected.\n"); } protected: ~CxxExceptionInConstructorTest() override { ADD_FAILURE() << "CxxExceptionInConstructorTest destructor " << "called unexpectedly."; } void SetUp() override { ADD_FAILURE() << "CxxExceptionInConstructorTest::SetUp() " << "called unexpectedly."; } void TearDown() override { ADD_FAILURE() << "CxxExceptionInConstructorTest::TearDown() " << "called unexpectedly."; } }; TEST_F(CxxExceptionInConstructorTest, ThrowsExceptionInConstructor) { ADD_FAILURE() << "CxxExceptionInConstructorTest test body " << "called unexpectedly."; } class CxxExceptionInSetUpTestSuiteTest : public Test { public: CxxExceptionInSetUpTestSuiteTest() { printf("%s", "CxxExceptionInSetUpTestSuiteTest constructor " "called as expected.\n"); } static void SetUpTestSuite() { throw std::runtime_error("Standard C++ exception"); } static void TearDownTestSuite() { printf("%s", "CxxExceptionInSetUpTestSuiteTest::TearDownTestSuite() " "called as expected.\n"); } protected: ~CxxExceptionInSetUpTestSuiteTest() override { printf("%s", "CxxExceptionInSetUpTestSuiteTest destructor " "called as expected.\n"); } void SetUp() override { printf("%s", "CxxExceptionInSetUpTestSuiteTest::SetUp() " "called as expected.\n"); } void TearDown() override { printf("%s", "CxxExceptionInSetUpTestSuiteTest::TearDown() " "called as expected.\n"); } }; TEST_F(CxxExceptionInSetUpTestSuiteTest, ThrowsExceptionInSetUpTestSuite) { printf("%s", "CxxExceptionInSetUpTestSuiteTest test body " "called as expected.\n"); } class CxxExceptionInTearDownTestSuiteTest : public Test { public: static void TearDownTestSuite() { throw std::runtime_error("Standard C++ exception"); } }; TEST_F(CxxExceptionInTearDownTestSuiteTest, ThrowsExceptionInTearDownTestSuite) {} class CxxExceptionInSetUpTest : public Test { public: static void TearDownTestSuite() { printf("%s", "CxxExceptionInSetUpTest::TearDownTestSuite() " "called as expected.\n"); } protected: ~CxxExceptionInSetUpTest() override { printf("%s", "CxxExceptionInSetUpTest destructor " "called as expected.\n"); } void SetUp() override { throw std::runtime_error("Standard C++ exception"); } void TearDown() override { printf("%s", "CxxExceptionInSetUpTest::TearDown() " "called as expected.\n"); } }; TEST_F(CxxExceptionInSetUpTest, ThrowsExceptionInSetUp) { ADD_FAILURE() << "CxxExceptionInSetUpTest test body " << "called unexpectedly."; } class CxxExceptionInTearDownTest : public Test { public: static void TearDownTestSuite() { printf("%s", "CxxExceptionInTearDownTest::TearDownTestSuite() " "called as expected.\n"); } protected: ~CxxExceptionInTearDownTest() override { printf("%s", "CxxExceptionInTearDownTest destructor " "called as expected.\n"); } void TearDown() override { throw std::runtime_error("Standard C++ exception"); } }; TEST_F(CxxExceptionInTearDownTest, ThrowsExceptionInTearDown) {} class CxxExceptionInTestBodyTest : public Test { public: static void TearDownTestSuite() { printf("%s", "CxxExceptionInTestBodyTest::TearDownTestSuite() " "called as expected.\n"); } protected: ~CxxExceptionInTestBodyTest() override { printf("%s", "CxxExceptionInTestBodyTest destructor " "called as expected.\n"); } void TearDown() override { printf("%s", "CxxExceptionInTestBodyTest::TearDown() " "called as expected.\n"); } }; TEST_F(CxxExceptionInTestBodyTest, ThrowsStdCxxException) { throw std::runtime_error("Standard C++ exception"); } TEST(CxxExceptionTest, ThrowsNonStdCxxException) { throw "C-string"; } // This terminate handler aborts the program using exit() rather than abort(). // This avoids showing pop-ups on Windows systems and core dumps on Unix-like // ones. void TerminateHandler() { fprintf(stderr, "%s\n", "Unhandled C++ exception terminating the program."); fflush(nullptr); exit(3); } #endif // GTEST_HAS_EXCEPTIONS int main(int argc, char** argv) { #if GTEST_HAS_EXCEPTIONS std::set_terminate(&TerminateHandler); #endif testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-color-test.py000066400000000000000000000114131355420072700264510ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Verifies that Google Test correctly determines whether to use colors.""" import os import gtest_test_utils IS_WINDOWS = os.name == 'nt' COLOR_ENV_VAR = 'GTEST_COLOR' COLOR_FLAG = 'gtest_color' COMMAND = gtest_test_utils.GetTestExecutablePath('googletest-color-test_') def SetEnvVar(env_var, value): """Sets the env variable to 'value'; unsets it when 'value' is None.""" if value is not None: os.environ[env_var] = value elif env_var in os.environ: del os.environ[env_var] def UsesColor(term, color_env_var, color_flag): """Runs googletest-color-test_ and returns its exit code.""" SetEnvVar('TERM', term) SetEnvVar(COLOR_ENV_VAR, color_env_var) if color_flag is None: args = [] else: args = ['--%s=%s' % (COLOR_FLAG, color_flag)] p = gtest_test_utils.Subprocess([COMMAND] + args) return not p.exited or p.exit_code class GTestColorTest(gtest_test_utils.TestCase): def testNoEnvVarNoFlag(self): """Tests the case when there's neither GTEST_COLOR nor --gtest_color.""" if not IS_WINDOWS: self.assert_(not UsesColor('dumb', None, None)) self.assert_(not UsesColor('emacs', None, None)) self.assert_(not UsesColor('xterm-mono', None, None)) self.assert_(not UsesColor('unknown', None, None)) self.assert_(not UsesColor(None, None, None)) self.assert_(UsesColor('linux', None, None)) self.assert_(UsesColor('cygwin', None, None)) self.assert_(UsesColor('xterm', None, None)) self.assert_(UsesColor('xterm-color', None, None)) self.assert_(UsesColor('xterm-256color', None, None)) def testFlagOnly(self): """Tests the case when there's --gtest_color but not GTEST_COLOR.""" self.assert_(not UsesColor('dumb', None, 'no')) self.assert_(not UsesColor('xterm-color', None, 'no')) if not IS_WINDOWS: self.assert_(not UsesColor('emacs', None, 'auto')) self.assert_(UsesColor('xterm', None, 'auto')) self.assert_(UsesColor('dumb', None, 'yes')) self.assert_(UsesColor('xterm', None, 'yes')) def testEnvVarOnly(self): """Tests the case when there's GTEST_COLOR but not --gtest_color.""" self.assert_(not UsesColor('dumb', 'no', None)) self.assert_(not UsesColor('xterm-color', 'no', None)) if not IS_WINDOWS: self.assert_(not UsesColor('dumb', 'auto', None)) self.assert_(UsesColor('xterm-color', 'auto', None)) self.assert_(UsesColor('dumb', 'yes', None)) self.assert_(UsesColor('xterm-color', 'yes', None)) def testEnvVarAndFlag(self): """Tests the case when there are both GTEST_COLOR and --gtest_color.""" self.assert_(not UsesColor('xterm-color', 'no', 'no')) self.assert_(UsesColor('dumb', 'no', 'yes')) self.assert_(UsesColor('xterm-color', 'no', 'auto')) def testAliasesOfYesAndNo(self): """Tests using aliases in specifying --gtest_color.""" self.assert_(UsesColor('dumb', None, 'true')) self.assert_(UsesColor('dumb', None, 'YES')) self.assert_(UsesColor('dumb', None, 'T')) self.assert_(UsesColor('dumb', None, '1')) self.assert_(not UsesColor('xterm', None, 'f')) self.assert_(not UsesColor('xterm', None, 'false')) self.assert_(not UsesColor('xterm', None, '0')) self.assert_(not UsesColor('xterm', None, 'unknown')) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-color-test_.cc000066400000000000000000000047111355420072700265500ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A helper program for testing how Google Test determines whether to use // colors in the output. It prints "YES" and returns 1 if Google Test // decides to use colors, and prints "NO" and returns 0 otherwise. #include #include "gtest/gtest.h" #include "src/gtest-internal-inl.h" using testing::internal::ShouldUseColor; // The purpose of this is to ensure that the UnitTest singleton is // created before main() is entered, and thus that ShouldUseColor() // works the same way as in a real Google-Test-based test. We don't actual // run the TEST itself. TEST(GTestColorTest, Dummy) { } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); if (ShouldUseColor(true)) { // Google Test decides to use colors in the output (assuming it // goes to a TTY). printf("YES\n"); return 1; } else { // Google Test decides not to use colors in the output. printf("NO\n"); return 0; } } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-death-test-test.cc000066400000000000000000001345071355420072700273440ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for death tests. #include "gtest/gtest-death-test.h" #include "gtest/gtest.h" #include "gtest/internal/gtest-filepath.h" using testing::internal::AlwaysFalse; using testing::internal::AlwaysTrue; #if GTEST_HAS_DEATH_TEST # if GTEST_OS_WINDOWS # include // For O_BINARY # include // For chdir(). # include # else # include # include // For waitpid. # endif // GTEST_OS_WINDOWS # include # include # include # if GTEST_OS_LINUX # include # endif // GTEST_OS_LINUX # include "gtest/gtest-spi.h" # include "src/gtest-internal-inl.h" namespace posix = ::testing::internal::posix; using testing::ContainsRegex; using testing::Matcher; using testing::Message; using testing::internal::DeathTest; using testing::internal::DeathTestFactory; using testing::internal::FilePath; using testing::internal::GetLastErrnoDescription; using testing::internal::GetUnitTestImpl; using testing::internal::InDeathTestChild; using testing::internal::ParseNaturalNumber; namespace testing { namespace internal { // A helper class whose objects replace the death test factory for a // single UnitTest object during their lifetimes. class ReplaceDeathTestFactory { public: explicit ReplaceDeathTestFactory(DeathTestFactory* new_factory) : unit_test_impl_(GetUnitTestImpl()) { old_factory_ = unit_test_impl_->death_test_factory_.release(); unit_test_impl_->death_test_factory_.reset(new_factory); } ~ReplaceDeathTestFactory() { unit_test_impl_->death_test_factory_.release(); unit_test_impl_->death_test_factory_.reset(old_factory_); } private: // Prevents copying ReplaceDeathTestFactory objects. ReplaceDeathTestFactory(const ReplaceDeathTestFactory&); void operator=(const ReplaceDeathTestFactory&); UnitTestImpl* unit_test_impl_; DeathTestFactory* old_factory_; }; } // namespace internal } // namespace testing namespace { void DieWithMessage(const ::std::string& message) { fprintf(stderr, "%s", message.c_str()); fflush(stderr); // Make sure the text is printed before the process exits. // We call _exit() instead of exit(), as the former is a direct // system call and thus safer in the presence of threads. exit() // will invoke user-defined exit-hooks, which may do dangerous // things that conflict with death tests. // // Some compilers can recognize that _exit() never returns and issue the // 'unreachable code' warning for code following this function, unless // fooled by a fake condition. if (AlwaysTrue()) _exit(1); } void DieInside(const ::std::string& function) { DieWithMessage("death inside " + function + "()."); } // Tests that death tests work. class TestForDeathTest : public testing::Test { protected: TestForDeathTest() : original_dir_(FilePath::GetCurrentDir()) {} ~TestForDeathTest() override { posix::ChDir(original_dir_.c_str()); } // A static member function that's expected to die. static void StaticMemberFunction() { DieInside("StaticMemberFunction"); } // A method of the test fixture that may die. void MemberFunction() { if (should_die_) DieInside("MemberFunction"); } // True if and only if MemberFunction() should die. bool should_die_; const FilePath original_dir_; }; // A class with a member function that may die. class MayDie { public: explicit MayDie(bool should_die) : should_die_(should_die) {} // A member function that may die. void MemberFunction() const { if (should_die_) DieInside("MayDie::MemberFunction"); } private: // True if and only if MemberFunction() should die. bool should_die_; }; // A global function that's expected to die. void GlobalFunction() { DieInside("GlobalFunction"); } // A non-void function that's expected to die. int NonVoidFunction() { DieInside("NonVoidFunction"); return 1; } // A unary function that may die. void DieIf(bool should_die) { if (should_die) DieInside("DieIf"); } // A binary function that may die. bool DieIfLessThan(int x, int y) { if (x < y) { DieInside("DieIfLessThan"); } return true; } // Tests that ASSERT_DEATH can be used outside a TEST, TEST_F, or test fixture. void DeathTestSubroutine() { EXPECT_DEATH(GlobalFunction(), "death.*GlobalFunction"); ASSERT_DEATH(GlobalFunction(), "death.*GlobalFunction"); } // Death in dbg, not opt. int DieInDebugElse12(int* sideeffect) { if (sideeffect) *sideeffect = 12; # ifndef NDEBUG DieInside("DieInDebugElse12"); # endif // NDEBUG return 12; } # if GTEST_OS_WINDOWS // Death in dbg due to Windows CRT assertion failure, not opt. int DieInCRTDebugElse12(int* sideeffect) { if (sideeffect) *sideeffect = 12; // Create an invalid fd by closing a valid one int fdpipe[2]; EXPECT_EQ(_pipe(fdpipe, 256, O_BINARY), 0); EXPECT_EQ(_close(fdpipe[0]), 0); EXPECT_EQ(_close(fdpipe[1]), 0); // _dup() should crash in debug mode EXPECT_EQ(_dup(fdpipe[0]), -1); return 12; } #endif // GTEST_OS_WINDOWS # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA // Tests the ExitedWithCode predicate. TEST(ExitStatusPredicateTest, ExitedWithCode) { // On Windows, the process's exit code is the same as its exit status, // so the predicate just compares the its input with its parameter. EXPECT_TRUE(testing::ExitedWithCode(0)(0)); EXPECT_TRUE(testing::ExitedWithCode(1)(1)); EXPECT_TRUE(testing::ExitedWithCode(42)(42)); EXPECT_FALSE(testing::ExitedWithCode(0)(1)); EXPECT_FALSE(testing::ExitedWithCode(1)(0)); } # else // Returns the exit status of a process that calls _exit(2) with a // given exit code. This is a helper function for the // ExitStatusPredicateTest test suite. static int NormalExitStatus(int exit_code) { pid_t child_pid = fork(); if (child_pid == 0) { _exit(exit_code); } int status; waitpid(child_pid, &status, 0); return status; } // Returns the exit status of a process that raises a given signal. // If the signal does not cause the process to die, then it returns // instead the exit status of a process that exits normally with exit // code 1. This is a helper function for the ExitStatusPredicateTest // test suite. static int KilledExitStatus(int signum) { pid_t child_pid = fork(); if (child_pid == 0) { raise(signum); _exit(1); } int status; waitpid(child_pid, &status, 0); return status; } // Tests the ExitedWithCode predicate. TEST(ExitStatusPredicateTest, ExitedWithCode) { const int status0 = NormalExitStatus(0); const int status1 = NormalExitStatus(1); const int status42 = NormalExitStatus(42); const testing::ExitedWithCode pred0(0); const testing::ExitedWithCode pred1(1); const testing::ExitedWithCode pred42(42); EXPECT_PRED1(pred0, status0); EXPECT_PRED1(pred1, status1); EXPECT_PRED1(pred42, status42); EXPECT_FALSE(pred0(status1)); EXPECT_FALSE(pred42(status0)); EXPECT_FALSE(pred1(status42)); } // Tests the KilledBySignal predicate. TEST(ExitStatusPredicateTest, KilledBySignal) { const int status_segv = KilledExitStatus(SIGSEGV); const int status_kill = KilledExitStatus(SIGKILL); const testing::KilledBySignal pred_segv(SIGSEGV); const testing::KilledBySignal pred_kill(SIGKILL); EXPECT_PRED1(pred_segv, status_segv); EXPECT_PRED1(pred_kill, status_kill); EXPECT_FALSE(pred_segv(status_kill)); EXPECT_FALSE(pred_kill(status_segv)); } # endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA // Tests that the death test macros expand to code which may or may not // be followed by operator<<, and that in either case the complete text // comprises only a single C++ statement. TEST_F(TestForDeathTest, SingleStatement) { if (AlwaysFalse()) // This would fail if executed; this is a compilation test only ASSERT_DEATH(return, ""); if (AlwaysTrue()) EXPECT_DEATH(_exit(1), ""); else // This empty "else" branch is meant to ensure that EXPECT_DEATH // doesn't expand into an "if" statement without an "else" ; if (AlwaysFalse()) ASSERT_DEATH(return, "") << "did not die"; if (AlwaysFalse()) ; else EXPECT_DEATH(_exit(1), "") << 1 << 2 << 3; } # if GTEST_USES_PCRE void DieWithEmbeddedNul() { fprintf(stderr, "Hello%cmy null world.\n", '\0'); fflush(stderr); _exit(1); } // Tests that EXPECT_DEATH and ASSERT_DEATH work when the error // message has a NUL character in it. TEST_F(TestForDeathTest, EmbeddedNulInMessage) { EXPECT_DEATH(DieWithEmbeddedNul(), "my null world"); ASSERT_DEATH(DieWithEmbeddedNul(), "my null world"); } # endif // GTEST_USES_PCRE // Tests that death test macros expand to code which interacts well with switch // statements. TEST_F(TestForDeathTest, SwitchStatement) { // Microsoft compiler usually complains about switch statements without // case labels. We suppress that warning for this test. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4065) switch (0) default: ASSERT_DEATH(_exit(1), "") << "exit in default switch handler"; switch (0) case 0: EXPECT_DEATH(_exit(1), "") << "exit in switch case"; GTEST_DISABLE_MSC_WARNINGS_POP_() } // Tests that a static member function can be used in a "fast" style // death test. TEST_F(TestForDeathTest, StaticMemberFunctionFastStyle) { testing::GTEST_FLAG(death_test_style) = "fast"; ASSERT_DEATH(StaticMemberFunction(), "death.*StaticMember"); } // Tests that a method of the test fixture can be used in a "fast" // style death test. TEST_F(TestForDeathTest, MemberFunctionFastStyle) { testing::GTEST_FLAG(death_test_style) = "fast"; should_die_ = true; EXPECT_DEATH(MemberFunction(), "inside.*MemberFunction"); } void ChangeToRootDir() { posix::ChDir(GTEST_PATH_SEP_); } // Tests that death tests work even if the current directory has been // changed. TEST_F(TestForDeathTest, FastDeathTestInChangedDir) { testing::GTEST_FLAG(death_test_style) = "fast"; ChangeToRootDir(); EXPECT_EXIT(_exit(1), testing::ExitedWithCode(1), ""); ChangeToRootDir(); ASSERT_DEATH(_exit(1), ""); } # if GTEST_OS_LINUX void SigprofAction(int, siginfo_t*, void*) { /* no op */ } // Sets SIGPROF action and ITIMER_PROF timer (interval: 1ms). void SetSigprofActionAndTimer() { struct itimerval timer; timer.it_interval.tv_sec = 0; timer.it_interval.tv_usec = 1; timer.it_value = timer.it_interval; ASSERT_EQ(0, setitimer(ITIMER_PROF, &timer, nullptr)); struct sigaction signal_action; memset(&signal_action, 0, sizeof(signal_action)); sigemptyset(&signal_action.sa_mask); signal_action.sa_sigaction = SigprofAction; signal_action.sa_flags = SA_RESTART | SA_SIGINFO; ASSERT_EQ(0, sigaction(SIGPROF, &signal_action, nullptr)); } // Disables ITIMER_PROF timer and ignores SIGPROF signal. void DisableSigprofActionAndTimer(struct sigaction* old_signal_action) { struct itimerval timer; timer.it_interval.tv_sec = 0; timer.it_interval.tv_usec = 0; timer.it_value = timer.it_interval; ASSERT_EQ(0, setitimer(ITIMER_PROF, &timer, nullptr)); struct sigaction signal_action; memset(&signal_action, 0, sizeof(signal_action)); sigemptyset(&signal_action.sa_mask); signal_action.sa_handler = SIG_IGN; ASSERT_EQ(0, sigaction(SIGPROF, &signal_action, old_signal_action)); } // Tests that death tests work when SIGPROF handler and timer are set. TEST_F(TestForDeathTest, FastSigprofActionSet) { testing::GTEST_FLAG(death_test_style) = "fast"; SetSigprofActionAndTimer(); EXPECT_DEATH(_exit(1), ""); struct sigaction old_signal_action; DisableSigprofActionAndTimer(&old_signal_action); EXPECT_TRUE(old_signal_action.sa_sigaction == SigprofAction); } TEST_F(TestForDeathTest, ThreadSafeSigprofActionSet) { testing::GTEST_FLAG(death_test_style) = "threadsafe"; SetSigprofActionAndTimer(); EXPECT_DEATH(_exit(1), ""); struct sigaction old_signal_action; DisableSigprofActionAndTimer(&old_signal_action); EXPECT_TRUE(old_signal_action.sa_sigaction == SigprofAction); } # endif // GTEST_OS_LINUX // Repeats a representative sample of death tests in the "threadsafe" style: TEST_F(TestForDeathTest, StaticMemberFunctionThreadsafeStyle) { testing::GTEST_FLAG(death_test_style) = "threadsafe"; ASSERT_DEATH(StaticMemberFunction(), "death.*StaticMember"); } TEST_F(TestForDeathTest, MemberFunctionThreadsafeStyle) { testing::GTEST_FLAG(death_test_style) = "threadsafe"; should_die_ = true; EXPECT_DEATH(MemberFunction(), "inside.*MemberFunction"); } TEST_F(TestForDeathTest, ThreadsafeDeathTestInLoop) { testing::GTEST_FLAG(death_test_style) = "threadsafe"; for (int i = 0; i < 3; ++i) EXPECT_EXIT(_exit(i), testing::ExitedWithCode(i), "") << ": i = " << i; } TEST_F(TestForDeathTest, ThreadsafeDeathTestInChangedDir) { testing::GTEST_FLAG(death_test_style) = "threadsafe"; ChangeToRootDir(); EXPECT_EXIT(_exit(1), testing::ExitedWithCode(1), ""); ChangeToRootDir(); ASSERT_DEATH(_exit(1), ""); } TEST_F(TestForDeathTest, MixedStyles) { testing::GTEST_FLAG(death_test_style) = "threadsafe"; EXPECT_DEATH(_exit(1), ""); testing::GTEST_FLAG(death_test_style) = "fast"; EXPECT_DEATH(_exit(1), ""); } # if GTEST_HAS_CLONE && GTEST_HAS_PTHREAD bool pthread_flag; void SetPthreadFlag() { pthread_flag = true; } TEST_F(TestForDeathTest, DoesNotExecuteAtforkHooks) { if (!testing::GTEST_FLAG(death_test_use_fork)) { testing::GTEST_FLAG(death_test_style) = "threadsafe"; pthread_flag = false; ASSERT_EQ(0, pthread_atfork(&SetPthreadFlag, nullptr, nullptr)); ASSERT_DEATH(_exit(1), ""); ASSERT_FALSE(pthread_flag); } } # endif // GTEST_HAS_CLONE && GTEST_HAS_PTHREAD // Tests that a method of another class can be used in a death test. TEST_F(TestForDeathTest, MethodOfAnotherClass) { const MayDie x(true); ASSERT_DEATH(x.MemberFunction(), "MayDie\\:\\:MemberFunction"); } // Tests that a global function can be used in a death test. TEST_F(TestForDeathTest, GlobalFunction) { EXPECT_DEATH(GlobalFunction(), "GlobalFunction"); } // Tests that any value convertible to an RE works as a second // argument to EXPECT_DEATH. TEST_F(TestForDeathTest, AcceptsAnythingConvertibleToRE) { static const char regex_c_str[] = "GlobalFunction"; EXPECT_DEATH(GlobalFunction(), regex_c_str); const testing::internal::RE regex(regex_c_str); EXPECT_DEATH(GlobalFunction(), regex); # if !GTEST_USES_PCRE const ::std::string regex_std_str(regex_c_str); EXPECT_DEATH(GlobalFunction(), regex_std_str); // This one is tricky; a temporary pointer into another temporary. Reference // lifetime extension of the pointer is not sufficient. EXPECT_DEATH(GlobalFunction(), ::std::string(regex_c_str).c_str()); # endif // !GTEST_USES_PCRE } // Tests that a non-void function can be used in a death test. TEST_F(TestForDeathTest, NonVoidFunction) { ASSERT_DEATH(NonVoidFunction(), "NonVoidFunction"); } // Tests that functions that take parameter(s) can be used in a death test. TEST_F(TestForDeathTest, FunctionWithParameter) { EXPECT_DEATH(DieIf(true), "DieIf\\(\\)"); EXPECT_DEATH(DieIfLessThan(2, 3), "DieIfLessThan"); } // Tests that ASSERT_DEATH can be used outside a TEST, TEST_F, or test fixture. TEST_F(TestForDeathTest, OutsideFixture) { DeathTestSubroutine(); } // Tests that death tests can be done inside a loop. TEST_F(TestForDeathTest, InsideLoop) { for (int i = 0; i < 5; i++) { EXPECT_DEATH(DieIfLessThan(-1, i), "DieIfLessThan") << "where i == " << i; } } // Tests that a compound statement can be used in a death test. TEST_F(TestForDeathTest, CompoundStatement) { EXPECT_DEATH({ // NOLINT const int x = 2; const int y = x + 1; DieIfLessThan(x, y); }, "DieIfLessThan"); } // Tests that code that doesn't die causes a death test to fail. TEST_F(TestForDeathTest, DoesNotDie) { EXPECT_NONFATAL_FAILURE(EXPECT_DEATH(DieIf(false), "DieIf"), "failed to die"); } // Tests that a death test fails when the error message isn't expected. TEST_F(TestForDeathTest, ErrorMessageMismatch) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_DEATH(DieIf(true), "DieIfLessThan") << "End of death test message."; }, "died but not with expected error"); } // On exit, *aborted will be true if and only if the EXPECT_DEATH() // statement aborted the function. void ExpectDeathTestHelper(bool* aborted) { *aborted = true; EXPECT_DEATH(DieIf(false), "DieIf"); // This assertion should fail. *aborted = false; } // Tests that EXPECT_DEATH doesn't abort the test on failure. TEST_F(TestForDeathTest, EXPECT_DEATH) { bool aborted = true; EXPECT_NONFATAL_FAILURE(ExpectDeathTestHelper(&aborted), "failed to die"); EXPECT_FALSE(aborted); } // Tests that ASSERT_DEATH does abort the test on failure. TEST_F(TestForDeathTest, ASSERT_DEATH) { static bool aborted; EXPECT_FATAL_FAILURE({ // NOLINT aborted = true; ASSERT_DEATH(DieIf(false), "DieIf"); // This assertion should fail. aborted = false; }, "failed to die"); EXPECT_TRUE(aborted); } // Tests that EXPECT_DEATH evaluates the arguments exactly once. TEST_F(TestForDeathTest, SingleEvaluation) { int x = 3; EXPECT_DEATH(DieIf((++x) == 4), "DieIf"); const char* regex = "DieIf"; const char* regex_save = regex; EXPECT_DEATH(DieIfLessThan(3, 4), regex++); EXPECT_EQ(regex_save + 1, regex); } // Tests that run-away death tests are reported as failures. TEST_F(TestForDeathTest, RunawayIsFailure) { EXPECT_NONFATAL_FAILURE(EXPECT_DEATH(static_cast(0), "Foo"), "failed to die."); } // Tests that death tests report executing 'return' in the statement as // failure. TEST_F(TestForDeathTest, ReturnIsFailure) { EXPECT_FATAL_FAILURE(ASSERT_DEATH(return, "Bar"), "illegal return in test statement."); } // Tests that EXPECT_DEBUG_DEATH works as expected, that is, you can stream a // message to it, and in debug mode it: // 1. Asserts on death. // 2. Has no side effect. // // And in opt mode, it: // 1. Has side effects but does not assert. TEST_F(TestForDeathTest, TestExpectDebugDeath) { int sideeffect = 0; // Put the regex in a local variable to make sure we don't get an "unused" // warning in opt mode. const char* regex = "death.*DieInDebugElse12"; EXPECT_DEBUG_DEATH(DieInDebugElse12(&sideeffect), regex) << "Must accept a streamed message"; # ifdef NDEBUG // Checks that the assignment occurs in opt mode (sideeffect). EXPECT_EQ(12, sideeffect); # else // Checks that the assignment does not occur in dbg mode (no sideeffect). EXPECT_EQ(0, sideeffect); # endif } # if GTEST_OS_WINDOWS // Tests that EXPECT_DEBUG_DEATH works as expected when in debug mode // the Windows CRT crashes the process with an assertion failure. // 1. Asserts on death. // 2. Has no side effect (doesn't pop up a window or wait for user input). // // And in opt mode, it: // 1. Has side effects but does not assert. TEST_F(TestForDeathTest, CRTDebugDeath) { int sideeffect = 0; // Put the regex in a local variable to make sure we don't get an "unused" // warning in opt mode. const char* regex = "dup.* : Assertion failed"; EXPECT_DEBUG_DEATH(DieInCRTDebugElse12(&sideeffect), regex) << "Must accept a streamed message"; # ifdef NDEBUG // Checks that the assignment occurs in opt mode (sideeffect). EXPECT_EQ(12, sideeffect); # else // Checks that the assignment does not occur in dbg mode (no sideeffect). EXPECT_EQ(0, sideeffect); # endif } # endif // GTEST_OS_WINDOWS // Tests that ASSERT_DEBUG_DEATH works as expected, that is, you can stream a // message to it, and in debug mode it: // 1. Asserts on death. // 2. Has no side effect. // // And in opt mode, it: // 1. Has side effects but does not assert. TEST_F(TestForDeathTest, TestAssertDebugDeath) { int sideeffect = 0; ASSERT_DEBUG_DEATH(DieInDebugElse12(&sideeffect), "death.*DieInDebugElse12") << "Must accept a streamed message"; # ifdef NDEBUG // Checks that the assignment occurs in opt mode (sideeffect). EXPECT_EQ(12, sideeffect); # else // Checks that the assignment does not occur in dbg mode (no sideeffect). EXPECT_EQ(0, sideeffect); # endif } # ifndef NDEBUG void ExpectDebugDeathHelper(bool* aborted) { *aborted = true; EXPECT_DEBUG_DEATH(return, "") << "This is expected to fail."; *aborted = false; } # if GTEST_OS_WINDOWS TEST(PopUpDeathTest, DoesNotShowPopUpOnAbort) { printf("This test should be considered failing if it shows " "any pop-up dialogs.\n"); fflush(stdout); EXPECT_DEATH({ testing::GTEST_FLAG(catch_exceptions) = false; abort(); }, ""); } # endif // GTEST_OS_WINDOWS // Tests that EXPECT_DEBUG_DEATH in debug mode does not abort // the function. TEST_F(TestForDeathTest, ExpectDebugDeathDoesNotAbort) { bool aborted = true; EXPECT_NONFATAL_FAILURE(ExpectDebugDeathHelper(&aborted), ""); EXPECT_FALSE(aborted); } void AssertDebugDeathHelper(bool* aborted) { *aborted = true; GTEST_LOG_(INFO) << "Before ASSERT_DEBUG_DEATH"; ASSERT_DEBUG_DEATH(GTEST_LOG_(INFO) << "In ASSERT_DEBUG_DEATH"; return, "") << "This is expected to fail."; GTEST_LOG_(INFO) << "After ASSERT_DEBUG_DEATH"; *aborted = false; } // Tests that ASSERT_DEBUG_DEATH in debug mode aborts the function on // failure. TEST_F(TestForDeathTest, AssertDebugDeathAborts) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts2) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts3) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts4) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts5) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts6) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts7) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts8) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts9) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } TEST_F(TestForDeathTest, AssertDebugDeathAborts10) { static bool aborted; aborted = false; EXPECT_FATAL_FAILURE(AssertDebugDeathHelper(&aborted), ""); EXPECT_TRUE(aborted); } # endif // _NDEBUG // Tests the *_EXIT family of macros, using a variety of predicates. static void TestExitMacros() { EXPECT_EXIT(_exit(1), testing::ExitedWithCode(1), ""); ASSERT_EXIT(_exit(42), testing::ExitedWithCode(42), ""); # if GTEST_OS_WINDOWS // Of all signals effects on the process exit code, only those of SIGABRT // are documented on Windows. // See https://msdn.microsoft.com/en-us/query-bi/m/dwwzkt4c. EXPECT_EXIT(raise(SIGABRT), testing::ExitedWithCode(3), "") << "b_ar"; # elif !GTEST_OS_FUCHSIA // Fuchsia has no unix signals. EXPECT_EXIT(raise(SIGKILL), testing::KilledBySignal(SIGKILL), "") << "foo"; ASSERT_EXIT(raise(SIGUSR2), testing::KilledBySignal(SIGUSR2), "") << "bar"; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_EXIT(_exit(0), testing::KilledBySignal(SIGSEGV), "") << "This failure is expected, too."; }, "This failure is expected, too."); # endif // GTEST_OS_WINDOWS EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_EXIT(raise(SIGSEGV), testing::ExitedWithCode(0), "") << "This failure is expected."; }, "This failure is expected."); } TEST_F(TestForDeathTest, ExitMacros) { TestExitMacros(); } TEST_F(TestForDeathTest, ExitMacrosUsingFork) { testing::GTEST_FLAG(death_test_use_fork) = true; TestExitMacros(); } TEST_F(TestForDeathTest, InvalidStyle) { testing::GTEST_FLAG(death_test_style) = "rococo"; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_DEATH(_exit(0), "") << "This failure is expected."; }, "This failure is expected."); } TEST_F(TestForDeathTest, DeathTestFailedOutput) { testing::GTEST_FLAG(death_test_style) = "fast"; EXPECT_NONFATAL_FAILURE( EXPECT_DEATH(DieWithMessage("death\n"), "expected message"), "Actual msg:\n" "[ DEATH ] death\n"); } TEST_F(TestForDeathTest, DeathTestUnexpectedReturnOutput) { testing::GTEST_FLAG(death_test_style) = "fast"; EXPECT_NONFATAL_FAILURE( EXPECT_DEATH({ fprintf(stderr, "returning\n"); fflush(stderr); return; }, ""), " Result: illegal return in test statement.\n" " Error msg:\n" "[ DEATH ] returning\n"); } TEST_F(TestForDeathTest, DeathTestBadExitCodeOutput) { testing::GTEST_FLAG(death_test_style) = "fast"; EXPECT_NONFATAL_FAILURE( EXPECT_EXIT(DieWithMessage("exiting with rc 1\n"), testing::ExitedWithCode(3), "expected message"), " Result: died but not with expected exit code:\n" " Exited with exit status 1\n" "Actual msg:\n" "[ DEATH ] exiting with rc 1\n"); } TEST_F(TestForDeathTest, DeathTestMultiLineMatchFail) { testing::GTEST_FLAG(death_test_style) = "fast"; EXPECT_NONFATAL_FAILURE( EXPECT_DEATH(DieWithMessage("line 1\nline 2\nline 3\n"), "line 1\nxyz\nline 3\n"), "Actual msg:\n" "[ DEATH ] line 1\n" "[ DEATH ] line 2\n" "[ DEATH ] line 3\n"); } TEST_F(TestForDeathTest, DeathTestMultiLineMatchPass) { testing::GTEST_FLAG(death_test_style) = "fast"; EXPECT_DEATH(DieWithMessage("line 1\nline 2\nline 3\n"), "line 1\nline 2\nline 3\n"); } // A DeathTestFactory that returns MockDeathTests. class MockDeathTestFactory : public DeathTestFactory { public: MockDeathTestFactory(); bool Create(const char* statement, testing::Matcher matcher, const char* file, int line, DeathTest** test) override; // Sets the parameters for subsequent calls to Create. void SetParameters(bool create, DeathTest::TestRole role, int status, bool passed); // Accessors. int AssumeRoleCalls() const { return assume_role_calls_; } int WaitCalls() const { return wait_calls_; } size_t PassedCalls() const { return passed_args_.size(); } bool PassedArgument(int n) const { return passed_args_[static_cast(n)]; } size_t AbortCalls() const { return abort_args_.size(); } DeathTest::AbortReason AbortArgument(int n) const { return abort_args_[static_cast(n)]; } bool TestDeleted() const { return test_deleted_; } private: friend class MockDeathTest; // If true, Create will return a MockDeathTest; otherwise it returns // NULL. bool create_; // The value a MockDeathTest will return from its AssumeRole method. DeathTest::TestRole role_; // The value a MockDeathTest will return from its Wait method. int status_; // The value a MockDeathTest will return from its Passed method. bool passed_; // Number of times AssumeRole was called. int assume_role_calls_; // Number of times Wait was called. int wait_calls_; // The arguments to the calls to Passed since the last call to // SetParameters. std::vector passed_args_; // The arguments to the calls to Abort since the last call to // SetParameters. std::vector abort_args_; // True if the last MockDeathTest returned by Create has been // deleted. bool test_deleted_; }; // A DeathTest implementation useful in testing. It returns values set // at its creation from its various inherited DeathTest methods, and // reports calls to those methods to its parent MockDeathTestFactory // object. class MockDeathTest : public DeathTest { public: MockDeathTest(MockDeathTestFactory *parent, TestRole role, int status, bool passed) : parent_(parent), role_(role), status_(status), passed_(passed) { } ~MockDeathTest() override { parent_->test_deleted_ = true; } TestRole AssumeRole() override { ++parent_->assume_role_calls_; return role_; } int Wait() override { ++parent_->wait_calls_; return status_; } bool Passed(bool exit_status_ok) override { parent_->passed_args_.push_back(exit_status_ok); return passed_; } void Abort(AbortReason reason) override { parent_->abort_args_.push_back(reason); } private: MockDeathTestFactory* const parent_; const TestRole role_; const int status_; const bool passed_; }; // MockDeathTestFactory constructor. MockDeathTestFactory::MockDeathTestFactory() : create_(true), role_(DeathTest::OVERSEE_TEST), status_(0), passed_(true), assume_role_calls_(0), wait_calls_(0), passed_args_(), abort_args_() { } // Sets the parameters for subsequent calls to Create. void MockDeathTestFactory::SetParameters(bool create, DeathTest::TestRole role, int status, bool passed) { create_ = create; role_ = role; status_ = status; passed_ = passed; assume_role_calls_ = 0; wait_calls_ = 0; passed_args_.clear(); abort_args_.clear(); } // Sets test to NULL (if create_ is false) or to the address of a new // MockDeathTest object with parameters taken from the last call // to SetParameters (if create_ is true). Always returns true. bool MockDeathTestFactory::Create( const char* /*statement*/, testing::Matcher /*matcher*/, const char* /*file*/, int /*line*/, DeathTest** test) { test_deleted_ = false; if (create_) { *test = new MockDeathTest(this, role_, status_, passed_); } else { *test = nullptr; } return true; } // A test fixture for testing the logic of the GTEST_DEATH_TEST_ macro. // It installs a MockDeathTestFactory that is used for the duration // of the test case. class MacroLogicDeathTest : public testing::Test { protected: static testing::internal::ReplaceDeathTestFactory* replacer_; static MockDeathTestFactory* factory_; static void SetUpTestSuite() { factory_ = new MockDeathTestFactory; replacer_ = new testing::internal::ReplaceDeathTestFactory(factory_); } static void TearDownTestSuite() { delete replacer_; replacer_ = nullptr; delete factory_; factory_ = nullptr; } // Runs a death test that breaks the rules by returning. Such a death // test cannot be run directly from a test routine that uses a // MockDeathTest, or the remainder of the routine will not be executed. static void RunReturningDeathTest(bool* flag) { ASSERT_DEATH({ // NOLINT *flag = true; return; }, ""); } }; testing::internal::ReplaceDeathTestFactory* MacroLogicDeathTest::replacer_ = nullptr; MockDeathTestFactory* MacroLogicDeathTest::factory_ = nullptr; // Test that nothing happens when the factory doesn't return a DeathTest: TEST_F(MacroLogicDeathTest, NothingHappens) { bool flag = false; factory_->SetParameters(false, DeathTest::OVERSEE_TEST, 0, true); EXPECT_DEATH(flag = true, ""); EXPECT_FALSE(flag); EXPECT_EQ(0, factory_->AssumeRoleCalls()); EXPECT_EQ(0, factory_->WaitCalls()); EXPECT_EQ(0U, factory_->PassedCalls()); EXPECT_EQ(0U, factory_->AbortCalls()); EXPECT_FALSE(factory_->TestDeleted()); } // Test that the parent process doesn't run the death test code, // and that the Passed method returns false when the (simulated) // child process exits with status 0: TEST_F(MacroLogicDeathTest, ChildExitsSuccessfully) { bool flag = false; factory_->SetParameters(true, DeathTest::OVERSEE_TEST, 0, true); EXPECT_DEATH(flag = true, ""); EXPECT_FALSE(flag); EXPECT_EQ(1, factory_->AssumeRoleCalls()); EXPECT_EQ(1, factory_->WaitCalls()); ASSERT_EQ(1U, factory_->PassedCalls()); EXPECT_FALSE(factory_->PassedArgument(0)); EXPECT_EQ(0U, factory_->AbortCalls()); EXPECT_TRUE(factory_->TestDeleted()); } // Tests that the Passed method was given the argument "true" when // the (simulated) child process exits with status 1: TEST_F(MacroLogicDeathTest, ChildExitsUnsuccessfully) { bool flag = false; factory_->SetParameters(true, DeathTest::OVERSEE_TEST, 1, true); EXPECT_DEATH(flag = true, ""); EXPECT_FALSE(flag); EXPECT_EQ(1, factory_->AssumeRoleCalls()); EXPECT_EQ(1, factory_->WaitCalls()); ASSERT_EQ(1U, factory_->PassedCalls()); EXPECT_TRUE(factory_->PassedArgument(0)); EXPECT_EQ(0U, factory_->AbortCalls()); EXPECT_TRUE(factory_->TestDeleted()); } // Tests that the (simulated) child process executes the death test // code, and is aborted with the correct AbortReason if it // executes a return statement. TEST_F(MacroLogicDeathTest, ChildPerformsReturn) { bool flag = false; factory_->SetParameters(true, DeathTest::EXECUTE_TEST, 0, true); RunReturningDeathTest(&flag); EXPECT_TRUE(flag); EXPECT_EQ(1, factory_->AssumeRoleCalls()); EXPECT_EQ(0, factory_->WaitCalls()); EXPECT_EQ(0U, factory_->PassedCalls()); EXPECT_EQ(1U, factory_->AbortCalls()); EXPECT_EQ(DeathTest::TEST_ENCOUNTERED_RETURN_STATEMENT, factory_->AbortArgument(0)); EXPECT_TRUE(factory_->TestDeleted()); } // Tests that the (simulated) child process is aborted with the // correct AbortReason if it does not die. TEST_F(MacroLogicDeathTest, ChildDoesNotDie) { bool flag = false; factory_->SetParameters(true, DeathTest::EXECUTE_TEST, 0, true); EXPECT_DEATH(flag = true, ""); EXPECT_TRUE(flag); EXPECT_EQ(1, factory_->AssumeRoleCalls()); EXPECT_EQ(0, factory_->WaitCalls()); EXPECT_EQ(0U, factory_->PassedCalls()); // This time there are two calls to Abort: one since the test didn't // die, and another from the ReturnSentinel when it's destroyed. The // sentinel normally isn't destroyed if a test doesn't die, since // _exit(2) is called in that case by ForkingDeathTest, but not by // our MockDeathTest. ASSERT_EQ(2U, factory_->AbortCalls()); EXPECT_EQ(DeathTest::TEST_DID_NOT_DIE, factory_->AbortArgument(0)); EXPECT_EQ(DeathTest::TEST_ENCOUNTERED_RETURN_STATEMENT, factory_->AbortArgument(1)); EXPECT_TRUE(factory_->TestDeleted()); } // Tests that a successful death test does not register a successful // test part. TEST(SuccessRegistrationDeathTest, NoSuccessPart) { EXPECT_DEATH(_exit(1), ""); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } TEST(StreamingAssertionsDeathTest, DeathTest) { EXPECT_DEATH(_exit(1), "") << "unexpected failure"; ASSERT_DEATH(_exit(1), "") << "unexpected failure"; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_DEATH(_exit(0), "") << "expected failure"; }, "expected failure"); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_DEATH(_exit(0), "") << "expected failure"; }, "expected failure"); } // Tests that GetLastErrnoDescription returns an empty string when the // last error is 0 and non-empty string when it is non-zero. TEST(GetLastErrnoDescription, GetLastErrnoDescriptionWorks) { errno = ENOENT; EXPECT_STRNE("", GetLastErrnoDescription().c_str()); errno = 0; EXPECT_STREQ("", GetLastErrnoDescription().c_str()); } # if GTEST_OS_WINDOWS TEST(AutoHandleTest, AutoHandleWorks) { HANDLE handle = ::CreateEvent(NULL, FALSE, FALSE, NULL); ASSERT_NE(INVALID_HANDLE_VALUE, handle); // Tests that the AutoHandle is correctly initialized with a handle. testing::internal::AutoHandle auto_handle(handle); EXPECT_EQ(handle, auto_handle.Get()); // Tests that Reset assigns INVALID_HANDLE_VALUE. // Note that this cannot verify whether the original handle is closed. auto_handle.Reset(); EXPECT_EQ(INVALID_HANDLE_VALUE, auto_handle.Get()); // Tests that Reset assigns the new handle. // Note that this cannot verify whether the original handle is closed. handle = ::CreateEvent(NULL, FALSE, FALSE, NULL); ASSERT_NE(INVALID_HANDLE_VALUE, handle); auto_handle.Reset(handle); EXPECT_EQ(handle, auto_handle.Get()); // Tests that AutoHandle contains INVALID_HANDLE_VALUE by default. testing::internal::AutoHandle auto_handle2; EXPECT_EQ(INVALID_HANDLE_VALUE, auto_handle2.Get()); } # endif // GTEST_OS_WINDOWS # if GTEST_OS_WINDOWS typedef unsigned __int64 BiggestParsable; typedef signed __int64 BiggestSignedParsable; # else typedef unsigned long long BiggestParsable; typedef signed long long BiggestSignedParsable; # endif // GTEST_OS_WINDOWS // We cannot use std::numeric_limits::max() as it clashes with the // max() macro defined by . const BiggestParsable kBiggestParsableMax = ULLONG_MAX; const BiggestSignedParsable kBiggestSignedParsableMax = LLONG_MAX; TEST(ParseNaturalNumberTest, RejectsInvalidFormat) { BiggestParsable result = 0; // Rejects non-numbers. EXPECT_FALSE(ParseNaturalNumber("non-number string", &result)); // Rejects numbers with whitespace prefix. EXPECT_FALSE(ParseNaturalNumber(" 123", &result)); // Rejects negative numbers. EXPECT_FALSE(ParseNaturalNumber("-123", &result)); // Rejects numbers starting with a plus sign. EXPECT_FALSE(ParseNaturalNumber("+123", &result)); errno = 0; } TEST(ParseNaturalNumberTest, RejectsOverflownNumbers) { BiggestParsable result = 0; EXPECT_FALSE(ParseNaturalNumber("99999999999999999999999", &result)); signed char char_result = 0; EXPECT_FALSE(ParseNaturalNumber("200", &char_result)); errno = 0; } TEST(ParseNaturalNumberTest, AcceptsValidNumbers) { BiggestParsable result = 0; result = 0; ASSERT_TRUE(ParseNaturalNumber("123", &result)); EXPECT_EQ(123U, result); // Check 0 as an edge case. result = 1; ASSERT_TRUE(ParseNaturalNumber("0", &result)); EXPECT_EQ(0U, result); result = 1; ASSERT_TRUE(ParseNaturalNumber("00000", &result)); EXPECT_EQ(0U, result); } TEST(ParseNaturalNumberTest, AcceptsTypeLimits) { Message msg; msg << kBiggestParsableMax; BiggestParsable result = 0; EXPECT_TRUE(ParseNaturalNumber(msg.GetString(), &result)); EXPECT_EQ(kBiggestParsableMax, result); Message msg2; msg2 << kBiggestSignedParsableMax; BiggestSignedParsable signed_result = 0; EXPECT_TRUE(ParseNaturalNumber(msg2.GetString(), &signed_result)); EXPECT_EQ(kBiggestSignedParsableMax, signed_result); Message msg3; msg3 << INT_MAX; int int_result = 0; EXPECT_TRUE(ParseNaturalNumber(msg3.GetString(), &int_result)); EXPECT_EQ(INT_MAX, int_result); Message msg4; msg4 << UINT_MAX; unsigned int uint_result = 0; EXPECT_TRUE(ParseNaturalNumber(msg4.GetString(), &uint_result)); EXPECT_EQ(UINT_MAX, uint_result); } TEST(ParseNaturalNumberTest, WorksForShorterIntegers) { short short_result = 0; ASSERT_TRUE(ParseNaturalNumber("123", &short_result)); EXPECT_EQ(123, short_result); signed char char_result = 0; ASSERT_TRUE(ParseNaturalNumber("123", &char_result)); EXPECT_EQ(123, char_result); } # if GTEST_OS_WINDOWS TEST(EnvironmentTest, HandleFitsIntoSizeT) { ASSERT_TRUE(sizeof(HANDLE) <= sizeof(size_t)); } # endif // GTEST_OS_WINDOWS // Tests that EXPECT_DEATH_IF_SUPPORTED/ASSERT_DEATH_IF_SUPPORTED trigger // failures when death tests are available on the system. TEST(ConditionalDeathMacrosDeathTest, ExpectsDeathWhenDeathTestsAvailable) { EXPECT_DEATH_IF_SUPPORTED(DieInside("CondDeathTestExpectMacro"), "death inside CondDeathTestExpectMacro"); ASSERT_DEATH_IF_SUPPORTED(DieInside("CondDeathTestAssertMacro"), "death inside CondDeathTestAssertMacro"); // Empty statement will not crash, which must trigger a failure. EXPECT_NONFATAL_FAILURE(EXPECT_DEATH_IF_SUPPORTED(;, ""), ""); EXPECT_FATAL_FAILURE(ASSERT_DEATH_IF_SUPPORTED(;, ""), ""); } TEST(InDeathTestChildDeathTest, ReportsDeathTestCorrectlyInFastStyle) { testing::GTEST_FLAG(death_test_style) = "fast"; EXPECT_FALSE(InDeathTestChild()); EXPECT_DEATH({ fprintf(stderr, InDeathTestChild() ? "Inside" : "Outside"); fflush(stderr); _exit(1); }, "Inside"); } TEST(InDeathTestChildDeathTest, ReportsDeathTestCorrectlyInThreadSafeStyle) { testing::GTEST_FLAG(death_test_style) = "threadsafe"; EXPECT_FALSE(InDeathTestChild()); EXPECT_DEATH({ fprintf(stderr, InDeathTestChild() ? "Inside" : "Outside"); fflush(stderr); _exit(1); }, "Inside"); } void DieWithMessage(const char* message) { fputs(message, stderr); fflush(stderr); // Make sure the text is printed before the process exits. _exit(1); } TEST(MatcherDeathTest, DoesNotBreakBareRegexMatching) { // googletest tests this, of course; here we ensure that including googlemock // has not broken it. EXPECT_DEATH(DieWithMessage("O, I die, Horatio."), "I d[aeiou]e"); } TEST(MatcherDeathTest, MonomorphicMatcherMatches) { EXPECT_DEATH(DieWithMessage("Behind O, I am slain!"), Matcher(ContainsRegex("I am slain"))); } TEST(MatcherDeathTest, MonomorphicMatcherDoesNotMatch) { EXPECT_NONFATAL_FAILURE( EXPECT_DEATH( DieWithMessage("Behind O, I am slain!"), Matcher(ContainsRegex("Ow, I am slain"))), "Expected: contains regular expression \"Ow, I am slain\""); } TEST(MatcherDeathTest, PolymorphicMatcherMatches) { EXPECT_DEATH(DieWithMessage("The rest is silence."), ContainsRegex("rest is silence")); } TEST(MatcherDeathTest, PolymorphicMatcherDoesNotMatch) { EXPECT_NONFATAL_FAILURE( EXPECT_DEATH(DieWithMessage("The rest is silence."), ContainsRegex("rest is science")), "Expected: contains regular expression \"rest is science\""); } } // namespace #else // !GTEST_HAS_DEATH_TEST follows namespace { using testing::internal::CaptureStderr; using testing::internal::GetCapturedStderr; // Tests that EXPECT_DEATH_IF_SUPPORTED/ASSERT_DEATH_IF_SUPPORTED are still // defined but do not trigger failures when death tests are not available on // the system. TEST(ConditionalDeathMacrosTest, WarnsWhenDeathTestsNotAvailable) { // Empty statement will not crash, but that should not trigger a failure // when death tests are not supported. CaptureStderr(); EXPECT_DEATH_IF_SUPPORTED(;, ""); std::string output = GetCapturedStderr(); ASSERT_TRUE(NULL != strstr(output.c_str(), "Death tests are not supported on this platform")); ASSERT_TRUE(NULL != strstr(output.c_str(), ";")); // The streamed message should not be printed as there is no test failure. CaptureStderr(); EXPECT_DEATH_IF_SUPPORTED(;, "") << "streamed message"; output = GetCapturedStderr(); ASSERT_TRUE(NULL == strstr(output.c_str(), "streamed message")); CaptureStderr(); ASSERT_DEATH_IF_SUPPORTED(;, ""); // NOLINT output = GetCapturedStderr(); ASSERT_TRUE(NULL != strstr(output.c_str(), "Death tests are not supported on this platform")); ASSERT_TRUE(NULL != strstr(output.c_str(), ";")); CaptureStderr(); ASSERT_DEATH_IF_SUPPORTED(;, "") << "streamed message"; // NOLINT output = GetCapturedStderr(); ASSERT_TRUE(NULL == strstr(output.c_str(), "streamed message")); } void FuncWithAssert(int* n) { ASSERT_DEATH_IF_SUPPORTED(return;, ""); (*n)++; } // Tests that ASSERT_DEATH_IF_SUPPORTED does not return from the current // function (as ASSERT_DEATH does) if death tests are not supported. TEST(ConditionalDeathMacrosTest, AssertDeatDoesNotReturnhIfUnsupported) { int n = 0; FuncWithAssert(&n); EXPECT_EQ(1, n); } } // namespace #endif // !GTEST_HAS_DEATH_TEST namespace { // Tests that the death test macros expand to code which may or may not // be followed by operator<<, and that in either case the complete text // comprises only a single C++ statement. // // The syntax should work whether death tests are available or not. TEST(ConditionalDeathMacrosSyntaxDeathTest, SingleStatement) { if (AlwaysFalse()) // This would fail if executed; this is a compilation test only ASSERT_DEATH_IF_SUPPORTED(return, ""); if (AlwaysTrue()) EXPECT_DEATH_IF_SUPPORTED(_exit(1), ""); else // This empty "else" branch is meant to ensure that EXPECT_DEATH // doesn't expand into an "if" statement without an "else" ; // NOLINT if (AlwaysFalse()) ASSERT_DEATH_IF_SUPPORTED(return, "") << "did not die"; if (AlwaysFalse()) ; // NOLINT else EXPECT_DEATH_IF_SUPPORTED(_exit(1), "") << 1 << 2 << 3; } // Tests that conditional death test macros expand to code which interacts // well with switch statements. TEST(ConditionalDeathMacrosSyntaxDeathTest, SwitchStatement) { // Microsoft compiler usually complains about switch statements without // case labels. We suppress that warning for this test. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4065) switch (0) default: ASSERT_DEATH_IF_SUPPORTED(_exit(1), "") << "exit in default switch handler"; switch (0) case 0: EXPECT_DEATH_IF_SUPPORTED(_exit(1), "") << "exit in switch case"; GTEST_DISABLE_MSC_WARNINGS_POP_() } // Tests that a test case whose name ends with "DeathTest" works fine // on Windows. TEST(NotADeathTest, Test) { SUCCEED(); } } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-death-test_ex_test.cc000066400000000000000000000070401355420072700301110ustar00rootroot00000000000000// Copyright 2010, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests that verify interaction of exceptions and death tests. #include "gtest/gtest-death-test.h" #include "gtest/gtest.h" #if GTEST_HAS_DEATH_TEST # if GTEST_HAS_SEH # include // For RaiseException(). # endif # include "gtest/gtest-spi.h" # if GTEST_HAS_EXCEPTIONS # include // For std::exception. // Tests that death tests report thrown exceptions as failures and that the // exceptions do not escape death test macros. TEST(CxxExceptionDeathTest, ExceptionIsFailure) { try { EXPECT_NONFATAL_FAILURE(EXPECT_DEATH(throw 1, ""), "threw an exception"); } catch (...) { // NOLINT FAIL() << "An exception escaped a death test macro invocation " << "with catch_exceptions " << (testing::GTEST_FLAG(catch_exceptions) ? "enabled" : "disabled"); } } class TestException : public std::exception { public: const char* what() const throw() override { return "exceptional message"; } }; TEST(CxxExceptionDeathTest, PrintsMessageForStdExceptions) { // Verifies that the exception message is quoted in the failure text. EXPECT_NONFATAL_FAILURE(EXPECT_DEATH(throw TestException(), ""), "exceptional message"); // Verifies that the location is mentioned in the failure text. EXPECT_NONFATAL_FAILURE(EXPECT_DEATH(throw TestException(), ""), __FILE__); } # endif // GTEST_HAS_EXCEPTIONS # if GTEST_HAS_SEH // Tests that enabling interception of SEH exceptions with the // catch_exceptions flag does not interfere with SEH exceptions being // treated as death by death tests. TEST(SehExceptionDeasTest, CatchExceptionsDoesNotInterfere) { EXPECT_DEATH(RaiseException(42, 0x0, 0, NULL), "") << "with catch_exceptions " << (testing::GTEST_FLAG(catch_exceptions) ? "enabled" : "disabled"); } # endif #endif // GTEST_HAS_DEATH_TEST int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); testing::GTEST_FLAG(catch_exceptions) = GTEST_ENABLE_CATCH_EXCEPTIONS_ != 0; return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-env-var-test.py000066400000000000000000000076441355420072700267240ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Verifies that Google Test correctly parses environment variables.""" import os import gtest_test_utils IS_WINDOWS = os.name == 'nt' IS_LINUX = os.name == 'posix' and os.uname()[0] == 'Linux' COMMAND = gtest_test_utils.GetTestExecutablePath('googletest-env-var-test_') environ = os.environ.copy() def AssertEq(expected, actual): if expected != actual: print('Expected: %s' % (expected,)) print(' Actual: %s' % (actual,)) raise AssertionError def SetEnvVar(env_var, value): """Sets the env variable to 'value'; unsets it when 'value' is None.""" if value is not None: environ[env_var] = value elif env_var in environ: del environ[env_var] def GetFlag(flag): """Runs googletest-env-var-test_ and returns its output.""" args = [COMMAND] if flag is not None: args += [flag] return gtest_test_utils.Subprocess(args, env=environ).output def TestFlag(flag, test_val, default_val): """Verifies that the given flag is affected by the corresponding env var.""" env_var = 'GTEST_' + flag.upper() SetEnvVar(env_var, test_val) AssertEq(test_val, GetFlag(flag)) SetEnvVar(env_var, None) AssertEq(default_val, GetFlag(flag)) class GTestEnvVarTest(gtest_test_utils.TestCase): def testEnvVarAffectsFlag(self): """Tests that environment variable should affect the corresponding flag.""" TestFlag('break_on_failure', '1', '0') TestFlag('color', 'yes', 'auto') TestFlag('filter', 'FooTest.Bar', '*') SetEnvVar('XML_OUTPUT_FILE', None) # For 'output' test TestFlag('output', 'xml:tmp/foo.xml', '') TestFlag('print_time', '0', '1') TestFlag('repeat', '999', '1') TestFlag('throw_on_failure', '1', '0') TestFlag('death_test_style', 'threadsafe', 'fast') TestFlag('catch_exceptions', '0', '1') if IS_LINUX: TestFlag('death_test_use_fork', '1', '0') TestFlag('stack_trace_depth', '0', '100') def testXmlOutputFile(self): """Tests that $XML_OUTPUT_FILE affects the output flag.""" SetEnvVar('GTEST_OUTPUT', None) SetEnvVar('XML_OUTPUT_FILE', 'tmp/bar.xml') AssertEq('xml:tmp/bar.xml', GetFlag('output')) def testXmlOutputFileOverride(self): """Tests that $XML_OUTPUT_FILE is overridden by $GTEST_OUTPUT.""" SetEnvVar('GTEST_OUTPUT', 'xml:tmp/foo.xml') SetEnvVar('XML_OUTPUT_FILE', 'tmp/bar.xml') AssertEq('xml:tmp/foo.xml', GetFlag('output')) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-env-var-test_.cc000066400000000000000000000066241355420072700270150ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A helper program for testing that Google Test parses the environment // variables correctly. #include #include "gtest/gtest.h" #include "src/gtest-internal-inl.h" using ::std::cout; namespace testing { // The purpose of this is to make the test more realistic by ensuring // that the UnitTest singleton is created before main() is entered. // We don't actual run the TEST itself. TEST(GTestEnvVarTest, Dummy) { } void PrintFlag(const char* flag) { if (strcmp(flag, "break_on_failure") == 0) { cout << GTEST_FLAG(break_on_failure); return; } if (strcmp(flag, "catch_exceptions") == 0) { cout << GTEST_FLAG(catch_exceptions); return; } if (strcmp(flag, "color") == 0) { cout << GTEST_FLAG(color); return; } if (strcmp(flag, "death_test_style") == 0) { cout << GTEST_FLAG(death_test_style); return; } if (strcmp(flag, "death_test_use_fork") == 0) { cout << GTEST_FLAG(death_test_use_fork); return; } if (strcmp(flag, "filter") == 0) { cout << GTEST_FLAG(filter); return; } if (strcmp(flag, "output") == 0) { cout << GTEST_FLAG(output); return; } if (strcmp(flag, "print_time") == 0) { cout << GTEST_FLAG(print_time); return; } if (strcmp(flag, "repeat") == 0) { cout << GTEST_FLAG(repeat); return; } if (strcmp(flag, "stack_trace_depth") == 0) { cout << GTEST_FLAG(stack_trace_depth); return; } if (strcmp(flag, "throw_on_failure") == 0) { cout << GTEST_FLAG(throw_on_failure); return; } cout << "Invalid flag name " << flag << ". Valid names are break_on_failure, color, filter, etc.\n"; exit(1); } } // namespace testing int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); if (argc != 2) { cout << "Usage: googletest-env-var-test_ NAME_OF_FLAG\n"; return 1; } testing::PrintFlag(argv[1]); return 0; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-filepath-test.cc000066400000000000000000000541621355420072700270740ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Google Test filepath utilities // // This file tests classes and functions used internally by // Google Test. They are subject to change without notice. // // This file is #included from gtest-internal.h. // Do not #include this file anywhere else! #include "gtest/internal/gtest-filepath.h" #include "gtest/gtest.h" #include "src/gtest-internal-inl.h" #if GTEST_OS_WINDOWS_MOBILE # include // NOLINT #elif GTEST_OS_WINDOWS # include // NOLINT #endif // GTEST_OS_WINDOWS_MOBILE namespace testing { namespace internal { namespace { #if GTEST_OS_WINDOWS_MOBILE // Windows CE doesn't have the remove C function. int remove(const char* path) { LPCWSTR wpath = String::AnsiToUtf16(path); int ret = DeleteFile(wpath) ? 0 : -1; delete [] wpath; return ret; } // Windows CE doesn't have the _rmdir C function. int _rmdir(const char* path) { FilePath filepath(path); LPCWSTR wpath = String::AnsiToUtf16( filepath.RemoveTrailingPathSeparator().c_str()); int ret = RemoveDirectory(wpath) ? 0 : -1; delete [] wpath; return ret; } #else TEST(GetCurrentDirTest, ReturnsCurrentDir) { const FilePath original_dir = FilePath::GetCurrentDir(); EXPECT_FALSE(original_dir.IsEmpty()); posix::ChDir(GTEST_PATH_SEP_); const FilePath cwd = FilePath::GetCurrentDir(); posix::ChDir(original_dir.c_str()); # if GTEST_OS_WINDOWS || GTEST_OS_OS2 // Skips the ":". const char* const cwd_without_drive = strchr(cwd.c_str(), ':'); ASSERT_TRUE(cwd_without_drive != NULL); EXPECT_STREQ(GTEST_PATH_SEP_, cwd_without_drive + 1); # else EXPECT_EQ(GTEST_PATH_SEP_, cwd.string()); # endif } #endif // GTEST_OS_WINDOWS_MOBILE TEST(IsEmptyTest, ReturnsTrueForEmptyPath) { EXPECT_TRUE(FilePath("").IsEmpty()); } TEST(IsEmptyTest, ReturnsFalseForNonEmptyPath) { EXPECT_FALSE(FilePath("a").IsEmpty()); EXPECT_FALSE(FilePath(".").IsEmpty()); EXPECT_FALSE(FilePath("a/b").IsEmpty()); EXPECT_FALSE(FilePath("a\\b\\").IsEmpty()); } // RemoveDirectoryName "" -> "" TEST(RemoveDirectoryNameTest, WhenEmptyName) { EXPECT_EQ("", FilePath("").RemoveDirectoryName().string()); } // RemoveDirectoryName "afile" -> "afile" TEST(RemoveDirectoryNameTest, ButNoDirectory) { EXPECT_EQ("afile", FilePath("afile").RemoveDirectoryName().string()); } // RemoveDirectoryName "/afile" -> "afile" TEST(RemoveDirectoryNameTest, RootFileShouldGiveFileName) { EXPECT_EQ("afile", FilePath(GTEST_PATH_SEP_ "afile").RemoveDirectoryName().string()); } // RemoveDirectoryName "adir/" -> "" TEST(RemoveDirectoryNameTest, WhereThereIsNoFileName) { EXPECT_EQ("", FilePath("adir" GTEST_PATH_SEP_).RemoveDirectoryName().string()); } // RemoveDirectoryName "adir/afile" -> "afile" TEST(RemoveDirectoryNameTest, ShouldGiveFileName) { EXPECT_EQ("afile", FilePath("adir" GTEST_PATH_SEP_ "afile").RemoveDirectoryName().string()); } // RemoveDirectoryName "adir/subdir/afile" -> "afile" TEST(RemoveDirectoryNameTest, ShouldAlsoGiveFileName) { EXPECT_EQ("afile", FilePath("adir" GTEST_PATH_SEP_ "subdir" GTEST_PATH_SEP_ "afile") .RemoveDirectoryName().string()); } #if GTEST_HAS_ALT_PATH_SEP_ // Tests that RemoveDirectoryName() works with the alternate separator // on Windows. // RemoveDirectoryName("/afile") -> "afile" TEST(RemoveDirectoryNameTest, RootFileShouldGiveFileNameForAlternateSeparator) { EXPECT_EQ("afile", FilePath("/afile").RemoveDirectoryName().string()); } // RemoveDirectoryName("adir/") -> "" TEST(RemoveDirectoryNameTest, WhereThereIsNoFileNameForAlternateSeparator) { EXPECT_EQ("", FilePath("adir/").RemoveDirectoryName().string()); } // RemoveDirectoryName("adir/afile") -> "afile" TEST(RemoveDirectoryNameTest, ShouldGiveFileNameForAlternateSeparator) { EXPECT_EQ("afile", FilePath("adir/afile").RemoveDirectoryName().string()); } // RemoveDirectoryName("adir/subdir/afile") -> "afile" TEST(RemoveDirectoryNameTest, ShouldAlsoGiveFileNameForAlternateSeparator) { EXPECT_EQ("afile", FilePath("adir/subdir/afile").RemoveDirectoryName().string()); } #endif // RemoveFileName "" -> "./" TEST(RemoveFileNameTest, EmptyName) { #if GTEST_OS_WINDOWS_MOBILE // On Windows CE, we use the root as the current directory. EXPECT_EQ(GTEST_PATH_SEP_, FilePath("").RemoveFileName().string()); #else EXPECT_EQ("." GTEST_PATH_SEP_, FilePath("").RemoveFileName().string()); #endif } // RemoveFileName "adir/" -> "adir/" TEST(RemoveFileNameTest, ButNoFile) { EXPECT_EQ("adir" GTEST_PATH_SEP_, FilePath("adir" GTEST_PATH_SEP_).RemoveFileName().string()); } // RemoveFileName "adir/afile" -> "adir/" TEST(RemoveFileNameTest, GivesDirName) { EXPECT_EQ("adir" GTEST_PATH_SEP_, FilePath("adir" GTEST_PATH_SEP_ "afile").RemoveFileName().string()); } // RemoveFileName "adir/subdir/afile" -> "adir/subdir/" TEST(RemoveFileNameTest, GivesDirAndSubDirName) { EXPECT_EQ("adir" GTEST_PATH_SEP_ "subdir" GTEST_PATH_SEP_, FilePath("adir" GTEST_PATH_SEP_ "subdir" GTEST_PATH_SEP_ "afile") .RemoveFileName().string()); } // RemoveFileName "/afile" -> "/" TEST(RemoveFileNameTest, GivesRootDir) { EXPECT_EQ(GTEST_PATH_SEP_, FilePath(GTEST_PATH_SEP_ "afile").RemoveFileName().string()); } #if GTEST_HAS_ALT_PATH_SEP_ // Tests that RemoveFileName() works with the alternate separator on // Windows. // RemoveFileName("adir/") -> "adir/" TEST(RemoveFileNameTest, ButNoFileForAlternateSeparator) { EXPECT_EQ("adir" GTEST_PATH_SEP_, FilePath("adir/").RemoveFileName().string()); } // RemoveFileName("adir/afile") -> "adir/" TEST(RemoveFileNameTest, GivesDirNameForAlternateSeparator) { EXPECT_EQ("adir" GTEST_PATH_SEP_, FilePath("adir/afile").RemoveFileName().string()); } // RemoveFileName("adir/subdir/afile") -> "adir/subdir/" TEST(RemoveFileNameTest, GivesDirAndSubDirNameForAlternateSeparator) { EXPECT_EQ("adir" GTEST_PATH_SEP_ "subdir" GTEST_PATH_SEP_, FilePath("adir/subdir/afile").RemoveFileName().string()); } // RemoveFileName("/afile") -> "\" TEST(RemoveFileNameTest, GivesRootDirForAlternateSeparator) { EXPECT_EQ(GTEST_PATH_SEP_, FilePath("/afile").RemoveFileName().string()); } #endif TEST(MakeFileNameTest, GenerateWhenNumberIsZero) { FilePath actual = FilePath::MakeFileName(FilePath("foo"), FilePath("bar"), 0, "xml"); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar.xml", actual.string()); } TEST(MakeFileNameTest, GenerateFileNameNumberGtZero) { FilePath actual = FilePath::MakeFileName(FilePath("foo"), FilePath("bar"), 12, "xml"); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar_12.xml", actual.string()); } TEST(MakeFileNameTest, GenerateFileNameWithSlashNumberIsZero) { FilePath actual = FilePath::MakeFileName(FilePath("foo" GTEST_PATH_SEP_), FilePath("bar"), 0, "xml"); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar.xml", actual.string()); } TEST(MakeFileNameTest, GenerateFileNameWithSlashNumberGtZero) { FilePath actual = FilePath::MakeFileName(FilePath("foo" GTEST_PATH_SEP_), FilePath("bar"), 12, "xml"); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar_12.xml", actual.string()); } TEST(MakeFileNameTest, GenerateWhenNumberIsZeroAndDirIsEmpty) { FilePath actual = FilePath::MakeFileName(FilePath(""), FilePath("bar"), 0, "xml"); EXPECT_EQ("bar.xml", actual.string()); } TEST(MakeFileNameTest, GenerateWhenNumberIsNotZeroAndDirIsEmpty) { FilePath actual = FilePath::MakeFileName(FilePath(""), FilePath("bar"), 14, "xml"); EXPECT_EQ("bar_14.xml", actual.string()); } TEST(ConcatPathsTest, WorksWhenDirDoesNotEndWithPathSep) { FilePath actual = FilePath::ConcatPaths(FilePath("foo"), FilePath("bar.xml")); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar.xml", actual.string()); } TEST(ConcatPathsTest, WorksWhenPath1EndsWithPathSep) { FilePath actual = FilePath::ConcatPaths(FilePath("foo" GTEST_PATH_SEP_), FilePath("bar.xml")); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar.xml", actual.string()); } TEST(ConcatPathsTest, Path1BeingEmpty) { FilePath actual = FilePath::ConcatPaths(FilePath(""), FilePath("bar.xml")); EXPECT_EQ("bar.xml", actual.string()); } TEST(ConcatPathsTest, Path2BeingEmpty) { FilePath actual = FilePath::ConcatPaths(FilePath("foo"), FilePath("")); EXPECT_EQ("foo" GTEST_PATH_SEP_, actual.string()); } TEST(ConcatPathsTest, BothPathBeingEmpty) { FilePath actual = FilePath::ConcatPaths(FilePath(""), FilePath("")); EXPECT_EQ("", actual.string()); } TEST(ConcatPathsTest, Path1ContainsPathSep) { FilePath actual = FilePath::ConcatPaths(FilePath("foo" GTEST_PATH_SEP_ "bar"), FilePath("foobar.xml")); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar" GTEST_PATH_SEP_ "foobar.xml", actual.string()); } TEST(ConcatPathsTest, Path2ContainsPathSep) { FilePath actual = FilePath::ConcatPaths( FilePath("foo" GTEST_PATH_SEP_), FilePath("bar" GTEST_PATH_SEP_ "bar.xml")); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar" GTEST_PATH_SEP_ "bar.xml", actual.string()); } TEST(ConcatPathsTest, Path2EndsWithPathSep) { FilePath actual = FilePath::ConcatPaths(FilePath("foo"), FilePath("bar" GTEST_PATH_SEP_)); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar" GTEST_PATH_SEP_, actual.string()); } // RemoveTrailingPathSeparator "" -> "" TEST(RemoveTrailingPathSeparatorTest, EmptyString) { EXPECT_EQ("", FilePath("").RemoveTrailingPathSeparator().string()); } // RemoveTrailingPathSeparator "foo" -> "foo" TEST(RemoveTrailingPathSeparatorTest, FileNoSlashString) { EXPECT_EQ("foo", FilePath("foo").RemoveTrailingPathSeparator().string()); } // RemoveTrailingPathSeparator "foo/" -> "foo" TEST(RemoveTrailingPathSeparatorTest, ShouldRemoveTrailingSeparator) { EXPECT_EQ("foo", FilePath("foo" GTEST_PATH_SEP_).RemoveTrailingPathSeparator().string()); #if GTEST_HAS_ALT_PATH_SEP_ EXPECT_EQ("foo", FilePath("foo/").RemoveTrailingPathSeparator().string()); #endif } // RemoveTrailingPathSeparator "foo/bar/" -> "foo/bar/" TEST(RemoveTrailingPathSeparatorTest, ShouldRemoveLastSeparator) { EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar", FilePath("foo" GTEST_PATH_SEP_ "bar" GTEST_PATH_SEP_) .RemoveTrailingPathSeparator().string()); } // RemoveTrailingPathSeparator "foo/bar" -> "foo/bar" TEST(RemoveTrailingPathSeparatorTest, ShouldReturnUnmodified) { EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar", FilePath("foo" GTEST_PATH_SEP_ "bar") .RemoveTrailingPathSeparator().string()); } TEST(DirectoryTest, RootDirectoryExists) { #if GTEST_OS_WINDOWS // We are on Windows. char current_drive[_MAX_PATH]; // NOLINT current_drive[0] = static_cast(_getdrive() + 'A' - 1); current_drive[1] = ':'; current_drive[2] = '\\'; current_drive[3] = '\0'; EXPECT_TRUE(FilePath(current_drive).DirectoryExists()); #else EXPECT_TRUE(FilePath("/").DirectoryExists()); #endif // GTEST_OS_WINDOWS } #if GTEST_OS_WINDOWS TEST(DirectoryTest, RootOfWrongDriveDoesNotExists) { const int saved_drive_ = _getdrive(); // Find a drive that doesn't exist. Start with 'Z' to avoid common ones. for (char drive = 'Z'; drive >= 'A'; drive--) if (_chdrive(drive - 'A' + 1) == -1) { char non_drive[_MAX_PATH]; // NOLINT non_drive[0] = drive; non_drive[1] = ':'; non_drive[2] = '\\'; non_drive[3] = '\0'; EXPECT_FALSE(FilePath(non_drive).DirectoryExists()); break; } _chdrive(saved_drive_); } #endif // GTEST_OS_WINDOWS #if !GTEST_OS_WINDOWS_MOBILE // Windows CE _does_ consider an empty directory to exist. TEST(DirectoryTest, EmptyPathDirectoryDoesNotExist) { EXPECT_FALSE(FilePath("").DirectoryExists()); } #endif // !GTEST_OS_WINDOWS_MOBILE TEST(DirectoryTest, CurrentDirectoryExists) { #if GTEST_OS_WINDOWS // We are on Windows. # ifndef _WIN32_CE // Windows CE doesn't have a current directory. EXPECT_TRUE(FilePath(".").DirectoryExists()); EXPECT_TRUE(FilePath(".\\").DirectoryExists()); # endif // _WIN32_CE #else EXPECT_TRUE(FilePath(".").DirectoryExists()); EXPECT_TRUE(FilePath("./").DirectoryExists()); #endif // GTEST_OS_WINDOWS } // "foo/bar" == foo//bar" == "foo///bar" TEST(NormalizeTest, MultipleConsecutiveSepaparatorsInMidstring) { EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar", FilePath("foo" GTEST_PATH_SEP_ "bar").string()); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar", FilePath("foo" GTEST_PATH_SEP_ GTEST_PATH_SEP_ "bar").string()); EXPECT_EQ("foo" GTEST_PATH_SEP_ "bar", FilePath("foo" GTEST_PATH_SEP_ GTEST_PATH_SEP_ GTEST_PATH_SEP_ "bar").string()); } // "/bar" == //bar" == "///bar" TEST(NormalizeTest, MultipleConsecutiveSepaparatorsAtStringStart) { EXPECT_EQ(GTEST_PATH_SEP_ "bar", FilePath(GTEST_PATH_SEP_ "bar").string()); EXPECT_EQ(GTEST_PATH_SEP_ "bar", FilePath(GTEST_PATH_SEP_ GTEST_PATH_SEP_ "bar").string()); EXPECT_EQ(GTEST_PATH_SEP_ "bar", FilePath(GTEST_PATH_SEP_ GTEST_PATH_SEP_ GTEST_PATH_SEP_ "bar").string()); } // "foo/" == foo//" == "foo///" TEST(NormalizeTest, MultipleConsecutiveSepaparatorsAtStringEnd) { EXPECT_EQ("foo" GTEST_PATH_SEP_, FilePath("foo" GTEST_PATH_SEP_).string()); EXPECT_EQ("foo" GTEST_PATH_SEP_, FilePath("foo" GTEST_PATH_SEP_ GTEST_PATH_SEP_).string()); EXPECT_EQ("foo" GTEST_PATH_SEP_, FilePath("foo" GTEST_PATH_SEP_ GTEST_PATH_SEP_ GTEST_PATH_SEP_).string()); } #if GTEST_HAS_ALT_PATH_SEP_ // Tests that separators at the end of the string are normalized // regardless of their combination (e.g. "foo\" =="foo/\" == // "foo\\/"). TEST(NormalizeTest, MixAlternateSeparatorAtStringEnd) { EXPECT_EQ("foo" GTEST_PATH_SEP_, FilePath("foo/").string()); EXPECT_EQ("foo" GTEST_PATH_SEP_, FilePath("foo" GTEST_PATH_SEP_ "/").string()); EXPECT_EQ("foo" GTEST_PATH_SEP_, FilePath("foo//" GTEST_PATH_SEP_).string()); } #endif TEST(AssignmentOperatorTest, DefaultAssignedToNonDefault) { FilePath default_path; FilePath non_default_path("path"); non_default_path = default_path; EXPECT_EQ("", non_default_path.string()); EXPECT_EQ("", default_path.string()); // RHS var is unchanged. } TEST(AssignmentOperatorTest, NonDefaultAssignedToDefault) { FilePath non_default_path("path"); FilePath default_path; default_path = non_default_path; EXPECT_EQ("path", default_path.string()); EXPECT_EQ("path", non_default_path.string()); // RHS var is unchanged. } TEST(AssignmentOperatorTest, ConstAssignedToNonConst) { const FilePath const_default_path("const_path"); FilePath non_default_path("path"); non_default_path = const_default_path; EXPECT_EQ("const_path", non_default_path.string()); } class DirectoryCreationTest : public Test { protected: void SetUp() override { testdata_path_.Set(FilePath( TempDir() + GetCurrentExecutableName().string() + "_directory_creation" GTEST_PATH_SEP_ "test" GTEST_PATH_SEP_)); testdata_file_.Set(testdata_path_.RemoveTrailingPathSeparator()); unique_file0_.Set(FilePath::MakeFileName(testdata_path_, FilePath("unique"), 0, "txt")); unique_file1_.Set(FilePath::MakeFileName(testdata_path_, FilePath("unique"), 1, "txt")); remove(testdata_file_.c_str()); remove(unique_file0_.c_str()); remove(unique_file1_.c_str()); posix::RmDir(testdata_path_.c_str()); } void TearDown() override { remove(testdata_file_.c_str()); remove(unique_file0_.c_str()); remove(unique_file1_.c_str()); posix::RmDir(testdata_path_.c_str()); } void CreateTextFile(const char* filename) { FILE* f = posix::FOpen(filename, "w"); fprintf(f, "text\n"); fclose(f); } // Strings representing a directory and a file, with identical paths // except for the trailing separator character that distinquishes // a directory named 'test' from a file named 'test'. Example names: FilePath testdata_path_; // "/tmp/directory_creation/test/" FilePath testdata_file_; // "/tmp/directory_creation/test" FilePath unique_file0_; // "/tmp/directory_creation/test/unique.txt" FilePath unique_file1_; // "/tmp/directory_creation/test/unique_1.txt" }; TEST_F(DirectoryCreationTest, CreateDirectoriesRecursively) { EXPECT_FALSE(testdata_path_.DirectoryExists()) << testdata_path_.string(); EXPECT_TRUE(testdata_path_.CreateDirectoriesRecursively()); EXPECT_TRUE(testdata_path_.DirectoryExists()); } TEST_F(DirectoryCreationTest, CreateDirectoriesForAlreadyExistingPath) { EXPECT_FALSE(testdata_path_.DirectoryExists()) << testdata_path_.string(); EXPECT_TRUE(testdata_path_.CreateDirectoriesRecursively()); // Call 'create' again... should still succeed. EXPECT_TRUE(testdata_path_.CreateDirectoriesRecursively()); } TEST_F(DirectoryCreationTest, CreateDirectoriesAndUniqueFilename) { FilePath file_path(FilePath::GenerateUniqueFileName(testdata_path_, FilePath("unique"), "txt")); EXPECT_EQ(unique_file0_.string(), file_path.string()); EXPECT_FALSE(file_path.FileOrDirectoryExists()); // file not there testdata_path_.CreateDirectoriesRecursively(); EXPECT_FALSE(file_path.FileOrDirectoryExists()); // file still not there CreateTextFile(file_path.c_str()); EXPECT_TRUE(file_path.FileOrDirectoryExists()); FilePath file_path2(FilePath::GenerateUniqueFileName(testdata_path_, FilePath("unique"), "txt")); EXPECT_EQ(unique_file1_.string(), file_path2.string()); EXPECT_FALSE(file_path2.FileOrDirectoryExists()); // file not there CreateTextFile(file_path2.c_str()); EXPECT_TRUE(file_path2.FileOrDirectoryExists()); } TEST_F(DirectoryCreationTest, CreateDirectoriesFail) { // force a failure by putting a file where we will try to create a directory. CreateTextFile(testdata_file_.c_str()); EXPECT_TRUE(testdata_file_.FileOrDirectoryExists()); EXPECT_FALSE(testdata_file_.DirectoryExists()); EXPECT_FALSE(testdata_file_.CreateDirectoriesRecursively()); } TEST(NoDirectoryCreationTest, CreateNoDirectoriesForDefaultXmlFile) { const FilePath test_detail_xml("test_detail.xml"); EXPECT_FALSE(test_detail_xml.CreateDirectoriesRecursively()); } TEST(FilePathTest, DefaultConstructor) { FilePath fp; EXPECT_EQ("", fp.string()); } TEST(FilePathTest, CharAndCopyConstructors) { const FilePath fp("spicy"); EXPECT_EQ("spicy", fp.string()); const FilePath fp_copy(fp); EXPECT_EQ("spicy", fp_copy.string()); } TEST(FilePathTest, StringConstructor) { const FilePath fp(std::string("cider")); EXPECT_EQ("cider", fp.string()); } TEST(FilePathTest, Set) { const FilePath apple("apple"); FilePath mac("mac"); mac.Set(apple); // Implement Set() since overloading operator= is forbidden. EXPECT_EQ("apple", mac.string()); EXPECT_EQ("apple", apple.string()); } TEST(FilePathTest, ToString) { const FilePath file("drink"); EXPECT_EQ("drink", file.string()); } TEST(FilePathTest, RemoveExtension) { EXPECT_EQ("app", FilePath("app.cc").RemoveExtension("cc").string()); EXPECT_EQ("app", FilePath("app.exe").RemoveExtension("exe").string()); EXPECT_EQ("APP", FilePath("APP.EXE").RemoveExtension("exe").string()); } TEST(FilePathTest, RemoveExtensionWhenThereIsNoExtension) { EXPECT_EQ("app", FilePath("app").RemoveExtension("exe").string()); } TEST(FilePathTest, IsDirectory) { EXPECT_FALSE(FilePath("cola").IsDirectory()); EXPECT_TRUE(FilePath("koala" GTEST_PATH_SEP_).IsDirectory()); #if GTEST_HAS_ALT_PATH_SEP_ EXPECT_TRUE(FilePath("koala/").IsDirectory()); #endif } TEST(FilePathTest, IsAbsolutePath) { EXPECT_FALSE(FilePath("is" GTEST_PATH_SEP_ "relative").IsAbsolutePath()); EXPECT_FALSE(FilePath("").IsAbsolutePath()); #if GTEST_OS_WINDOWS EXPECT_TRUE(FilePath("c:\\" GTEST_PATH_SEP_ "is_not" GTEST_PATH_SEP_ "relative").IsAbsolutePath()); EXPECT_FALSE(FilePath("c:foo" GTEST_PATH_SEP_ "bar").IsAbsolutePath()); EXPECT_TRUE(FilePath("c:/" GTEST_PATH_SEP_ "is_not" GTEST_PATH_SEP_ "relative").IsAbsolutePath()); #else EXPECT_TRUE(FilePath(GTEST_PATH_SEP_ "is_not" GTEST_PATH_SEP_ "relative") .IsAbsolutePath()); #endif // GTEST_OS_WINDOWS } TEST(FilePathTest, IsRootDirectory) { #if GTEST_OS_WINDOWS EXPECT_TRUE(FilePath("a:\\").IsRootDirectory()); EXPECT_TRUE(FilePath("Z:/").IsRootDirectory()); EXPECT_TRUE(FilePath("e://").IsRootDirectory()); EXPECT_FALSE(FilePath("").IsRootDirectory()); EXPECT_FALSE(FilePath("b:").IsRootDirectory()); EXPECT_FALSE(FilePath("b:a").IsRootDirectory()); EXPECT_FALSE(FilePath("8:/").IsRootDirectory()); EXPECT_FALSE(FilePath("c|/").IsRootDirectory()); #else EXPECT_TRUE(FilePath("/").IsRootDirectory()); EXPECT_TRUE(FilePath("//").IsRootDirectory()); EXPECT_FALSE(FilePath("").IsRootDirectory()); EXPECT_FALSE(FilePath("\\").IsRootDirectory()); EXPECT_FALSE(FilePath("/x").IsRootDirectory()); #endif } } // namespace } // namespace internal } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-filter-unittest.py000066400000000000000000000517051355420072700275300ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2005 Google Inc. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test test filters. A user can specify which test(s) in a Google Test program to run via either the GTEST_FILTER environment variable or the --gtest_filter flag. This script tests such functionality by invoking googletest-filter-unittest_ (a program written with Google Test) with different environments and command line flags. Note that test sharding may also influence which tests are filtered. Therefore, we test that here also. """ import os import re try: from sets import Set as set # For Python 2.3 compatibility except ImportError: pass import sys import gtest_test_utils # Constants. # Checks if this platform can pass empty environment variables to child # processes. We set an env variable to an empty string and invoke a python # script in a subprocess to print whether the variable is STILL in # os.environ. We then use 'eval' to parse the child's output so that an # exception is thrown if the input is anything other than 'True' nor 'False'. CAN_PASS_EMPTY_ENV = False if sys.executable: os.environ['EMPTY_VAR'] = '' child = gtest_test_utils.Subprocess( [sys.executable, '-c', 'import os; print(\'EMPTY_VAR\' in os.environ)']) CAN_PASS_EMPTY_ENV = eval(child.output) # Check if this platform can unset environment variables in child processes. # We set an env variable to a non-empty string, unset it, and invoke # a python script in a subprocess to print whether the variable # is NO LONGER in os.environ. # We use 'eval' to parse the child's output so that an exception # is thrown if the input is neither 'True' nor 'False'. CAN_UNSET_ENV = False if sys.executable: os.environ['UNSET_VAR'] = 'X' del os.environ['UNSET_VAR'] child = gtest_test_utils.Subprocess( [sys.executable, '-c', 'import os; print(\'UNSET_VAR\' not in os.environ)' ]) CAN_UNSET_ENV = eval(child.output) # Checks if we should test with an empty filter. This doesn't # make sense on platforms that cannot pass empty env variables (Win32) # and on platforms that cannot unset variables (since we cannot tell # the difference between "" and NULL -- Borland and Solaris < 5.10) CAN_TEST_EMPTY_FILTER = (CAN_PASS_EMPTY_ENV and CAN_UNSET_ENV) # The environment variable for specifying the test filters. FILTER_ENV_VAR = 'GTEST_FILTER' # The environment variables for test sharding. TOTAL_SHARDS_ENV_VAR = 'GTEST_TOTAL_SHARDS' SHARD_INDEX_ENV_VAR = 'GTEST_SHARD_INDEX' SHARD_STATUS_FILE_ENV_VAR = 'GTEST_SHARD_STATUS_FILE' # The command line flag for specifying the test filters. FILTER_FLAG = 'gtest_filter' # The command line flag for including disabled tests. ALSO_RUN_DISABLED_TESTS_FLAG = 'gtest_also_run_disabled_tests' # Command to run the googletest-filter-unittest_ program. COMMAND = gtest_test_utils.GetTestExecutablePath('googletest-filter-unittest_') # Regex for determining whether parameterized tests are enabled in the binary. PARAM_TEST_REGEX = re.compile(r'/ParamTest') # Regex for parsing test case names from Google Test's output. TEST_CASE_REGEX = re.compile(r'^\[\-+\] \d+ tests? from (\w+(/\w+)?)') # Regex for parsing test names from Google Test's output. TEST_REGEX = re.compile(r'^\[\s*RUN\s*\].*\.(\w+(/\w+)?)') # The command line flag to tell Google Test to output the list of tests it # will run. LIST_TESTS_FLAG = '--gtest_list_tests' # Indicates whether Google Test supports death tests. SUPPORTS_DEATH_TESTS = 'HasDeathTest' in gtest_test_utils.Subprocess( [COMMAND, LIST_TESTS_FLAG]).output # Full names of all tests in googletest-filter-unittests_. PARAM_TESTS = [ 'SeqP/ParamTest.TestX/0', 'SeqP/ParamTest.TestX/1', 'SeqP/ParamTest.TestY/0', 'SeqP/ParamTest.TestY/1', 'SeqQ/ParamTest.TestX/0', 'SeqQ/ParamTest.TestX/1', 'SeqQ/ParamTest.TestY/0', 'SeqQ/ParamTest.TestY/1', ] DISABLED_TESTS = [ 'BarTest.DISABLED_TestFour', 'BarTest.DISABLED_TestFive', 'BazTest.DISABLED_TestC', 'DISABLED_FoobarTest.Test1', 'DISABLED_FoobarTest.DISABLED_Test2', 'DISABLED_FoobarbazTest.TestA', ] if SUPPORTS_DEATH_TESTS: DEATH_TESTS = [ 'HasDeathTest.Test1', 'HasDeathTest.Test2', ] else: DEATH_TESTS = [] # All the non-disabled tests. ACTIVE_TESTS = [ 'FooTest.Abc', 'FooTest.Xyz', 'BarTest.TestOne', 'BarTest.TestTwo', 'BarTest.TestThree', 'BazTest.TestOne', 'BazTest.TestA', 'BazTest.TestB', ] + DEATH_TESTS + PARAM_TESTS param_tests_present = None # Utilities. environ = os.environ.copy() def SetEnvVar(env_var, value): """Sets the env variable to 'value'; unsets it when 'value' is None.""" if value is not None: environ[env_var] = value elif env_var in environ: del environ[env_var] def RunAndReturnOutput(args = None): """Runs the test program and returns its output.""" return gtest_test_utils.Subprocess([COMMAND] + (args or []), env=environ).output def RunAndExtractTestList(args = None): """Runs the test program and returns its exit code and a list of tests run.""" p = gtest_test_utils.Subprocess([COMMAND] + (args or []), env=environ) tests_run = [] test_case = '' test = '' for line in p.output.split('\n'): match = TEST_CASE_REGEX.match(line) if match is not None: test_case = match.group(1) else: match = TEST_REGEX.match(line) if match is not None: test = match.group(1) tests_run.append(test_case + '.' + test) return (tests_run, p.exit_code) def InvokeWithModifiedEnv(extra_env, function, *args, **kwargs): """Runs the given function and arguments in a modified environment.""" try: original_env = environ.copy() environ.update(extra_env) return function(*args, **kwargs) finally: environ.clear() environ.update(original_env) def RunWithSharding(total_shards, shard_index, command): """Runs a test program shard and returns exit code and a list of tests run.""" extra_env = {SHARD_INDEX_ENV_VAR: str(shard_index), TOTAL_SHARDS_ENV_VAR: str(total_shards)} return InvokeWithModifiedEnv(extra_env, RunAndExtractTestList, command) # The unit test. class GTestFilterUnitTest(gtest_test_utils.TestCase): """Tests the env variable or the command line flag to filter tests.""" # Utilities. def AssertSetEqual(self, lhs, rhs): """Asserts that two sets are equal.""" for elem in lhs: self.assert_(elem in rhs, '%s in %s' % (elem, rhs)) for elem in rhs: self.assert_(elem in lhs, '%s in %s' % (elem, lhs)) def AssertPartitionIsValid(self, set_var, list_of_sets): """Asserts that list_of_sets is a valid partition of set_var.""" full_partition = [] for slice_var in list_of_sets: full_partition.extend(slice_var) self.assertEqual(len(set_var), len(full_partition)) self.assertEqual(set(set_var), set(full_partition)) def AdjustForParameterizedTests(self, tests_to_run): """Adjust tests_to_run in case value parameterized tests are disabled.""" global param_tests_present if not param_tests_present: return list(set(tests_to_run) - set(PARAM_TESTS)) else: return tests_to_run def RunAndVerify(self, gtest_filter, tests_to_run): """Checks that the binary runs correct set of tests for a given filter.""" tests_to_run = self.AdjustForParameterizedTests(tests_to_run) # First, tests using the environment variable. # Windows removes empty variables from the environment when passing it # to a new process. This means it is impossible to pass an empty filter # into a process using the environment variable. However, we can still # test the case when the variable is not supplied (i.e., gtest_filter is # None). # pylint: disable-msg=C6403 if CAN_TEST_EMPTY_FILTER or gtest_filter != '': SetEnvVar(FILTER_ENV_VAR, gtest_filter) tests_run = RunAndExtractTestList()[0] SetEnvVar(FILTER_ENV_VAR, None) self.AssertSetEqual(tests_run, tests_to_run) # pylint: enable-msg=C6403 # Next, tests using the command line flag. if gtest_filter is None: args = [] else: args = ['--%s=%s' % (FILTER_FLAG, gtest_filter)] tests_run = RunAndExtractTestList(args)[0] self.AssertSetEqual(tests_run, tests_to_run) def RunAndVerifyWithSharding(self, gtest_filter, total_shards, tests_to_run, args=None, check_exit_0=False): """Checks that binary runs correct tests for the given filter and shard. Runs all shards of googletest-filter-unittest_ with the given filter, and verifies that the right set of tests were run. The union of tests run on each shard should be identical to tests_to_run, without duplicates. If check_exit_0, . Args: gtest_filter: A filter to apply to the tests. total_shards: A total number of shards to split test run into. tests_to_run: A set of tests expected to run. args : Arguments to pass to the to the test binary. check_exit_0: When set to a true value, make sure that all shards return 0. """ tests_to_run = self.AdjustForParameterizedTests(tests_to_run) # Windows removes empty variables from the environment when passing it # to a new process. This means it is impossible to pass an empty filter # into a process using the environment variable. However, we can still # test the case when the variable is not supplied (i.e., gtest_filter is # None). # pylint: disable-msg=C6403 if CAN_TEST_EMPTY_FILTER or gtest_filter != '': SetEnvVar(FILTER_ENV_VAR, gtest_filter) partition = [] for i in range(0, total_shards): (tests_run, exit_code) = RunWithSharding(total_shards, i, args) if check_exit_0: self.assertEqual(0, exit_code) partition.append(tests_run) self.AssertPartitionIsValid(tests_to_run, partition) SetEnvVar(FILTER_ENV_VAR, None) # pylint: enable-msg=C6403 def RunAndVerifyAllowingDisabled(self, gtest_filter, tests_to_run): """Checks that the binary runs correct set of tests for the given filter. Runs googletest-filter-unittest_ with the given filter, and enables disabled tests. Verifies that the right set of tests were run. Args: gtest_filter: A filter to apply to the tests. tests_to_run: A set of tests expected to run. """ tests_to_run = self.AdjustForParameterizedTests(tests_to_run) # Construct the command line. args = ['--%s' % ALSO_RUN_DISABLED_TESTS_FLAG] if gtest_filter is not None: args.append('--%s=%s' % (FILTER_FLAG, gtest_filter)) tests_run = RunAndExtractTestList(args)[0] self.AssertSetEqual(tests_run, tests_to_run) def setUp(self): """Sets up test case. Determines whether value-parameterized tests are enabled in the binary and sets the flags accordingly. """ global param_tests_present if param_tests_present is None: param_tests_present = PARAM_TEST_REGEX.search( RunAndReturnOutput()) is not None def testDefaultBehavior(self): """Tests the behavior of not specifying the filter.""" self.RunAndVerify(None, ACTIVE_TESTS) def testDefaultBehaviorWithShards(self): """Tests the behavior without the filter, with sharding enabled.""" self.RunAndVerifyWithSharding(None, 1, ACTIVE_TESTS) self.RunAndVerifyWithSharding(None, 2, ACTIVE_TESTS) self.RunAndVerifyWithSharding(None, len(ACTIVE_TESTS) - 1, ACTIVE_TESTS) self.RunAndVerifyWithSharding(None, len(ACTIVE_TESTS), ACTIVE_TESTS) self.RunAndVerifyWithSharding(None, len(ACTIVE_TESTS) + 1, ACTIVE_TESTS) def testEmptyFilter(self): """Tests an empty filter.""" self.RunAndVerify('', []) self.RunAndVerifyWithSharding('', 1, []) self.RunAndVerifyWithSharding('', 2, []) def testBadFilter(self): """Tests a filter that matches nothing.""" self.RunAndVerify('BadFilter', []) self.RunAndVerifyAllowingDisabled('BadFilter', []) def testFullName(self): """Tests filtering by full name.""" self.RunAndVerify('FooTest.Xyz', ['FooTest.Xyz']) self.RunAndVerifyAllowingDisabled('FooTest.Xyz', ['FooTest.Xyz']) self.RunAndVerifyWithSharding('FooTest.Xyz', 5, ['FooTest.Xyz']) def testUniversalFilters(self): """Tests filters that match everything.""" self.RunAndVerify('*', ACTIVE_TESTS) self.RunAndVerify('*.*', ACTIVE_TESTS) self.RunAndVerifyWithSharding('*.*', len(ACTIVE_TESTS) - 3, ACTIVE_TESTS) self.RunAndVerifyAllowingDisabled('*', ACTIVE_TESTS + DISABLED_TESTS) self.RunAndVerifyAllowingDisabled('*.*', ACTIVE_TESTS + DISABLED_TESTS) def testFilterByTestCase(self): """Tests filtering by test case name.""" self.RunAndVerify('FooTest.*', ['FooTest.Abc', 'FooTest.Xyz']) BAZ_TESTS = ['BazTest.TestOne', 'BazTest.TestA', 'BazTest.TestB'] self.RunAndVerify('BazTest.*', BAZ_TESTS) self.RunAndVerifyAllowingDisabled('BazTest.*', BAZ_TESTS + ['BazTest.DISABLED_TestC']) def testFilterByTest(self): """Tests filtering by test name.""" self.RunAndVerify('*.TestOne', ['BarTest.TestOne', 'BazTest.TestOne']) def testFilterDisabledTests(self): """Select only the disabled tests to run.""" self.RunAndVerify('DISABLED_FoobarTest.Test1', []) self.RunAndVerifyAllowingDisabled('DISABLED_FoobarTest.Test1', ['DISABLED_FoobarTest.Test1']) self.RunAndVerify('*DISABLED_*', []) self.RunAndVerifyAllowingDisabled('*DISABLED_*', DISABLED_TESTS) self.RunAndVerify('*.DISABLED_*', []) self.RunAndVerifyAllowingDisabled('*.DISABLED_*', [ 'BarTest.DISABLED_TestFour', 'BarTest.DISABLED_TestFive', 'BazTest.DISABLED_TestC', 'DISABLED_FoobarTest.DISABLED_Test2', ]) self.RunAndVerify('DISABLED_*', []) self.RunAndVerifyAllowingDisabled('DISABLED_*', [ 'DISABLED_FoobarTest.Test1', 'DISABLED_FoobarTest.DISABLED_Test2', 'DISABLED_FoobarbazTest.TestA', ]) def testWildcardInTestCaseName(self): """Tests using wildcard in the test case name.""" self.RunAndVerify('*a*.*', [ 'BarTest.TestOne', 'BarTest.TestTwo', 'BarTest.TestThree', 'BazTest.TestOne', 'BazTest.TestA', 'BazTest.TestB', ] + DEATH_TESTS + PARAM_TESTS) def testWildcardInTestName(self): """Tests using wildcard in the test name.""" self.RunAndVerify('*.*A*', ['FooTest.Abc', 'BazTest.TestA']) def testFilterWithoutDot(self): """Tests a filter that has no '.' in it.""" self.RunAndVerify('*z*', [ 'FooTest.Xyz', 'BazTest.TestOne', 'BazTest.TestA', 'BazTest.TestB', ]) def testTwoPatterns(self): """Tests filters that consist of two patterns.""" self.RunAndVerify('Foo*.*:*A*', [ 'FooTest.Abc', 'FooTest.Xyz', 'BazTest.TestA', ]) # An empty pattern + a non-empty one self.RunAndVerify(':*A*', ['FooTest.Abc', 'BazTest.TestA']) def testThreePatterns(self): """Tests filters that consist of three patterns.""" self.RunAndVerify('*oo*:*A*:*One', [ 'FooTest.Abc', 'FooTest.Xyz', 'BarTest.TestOne', 'BazTest.TestOne', 'BazTest.TestA', ]) # The 2nd pattern is empty. self.RunAndVerify('*oo*::*One', [ 'FooTest.Abc', 'FooTest.Xyz', 'BarTest.TestOne', 'BazTest.TestOne', ]) # The last 2 patterns are empty. self.RunAndVerify('*oo*::', [ 'FooTest.Abc', 'FooTest.Xyz', ]) def testNegativeFilters(self): self.RunAndVerify('*-BazTest.TestOne', [ 'FooTest.Abc', 'FooTest.Xyz', 'BarTest.TestOne', 'BarTest.TestTwo', 'BarTest.TestThree', 'BazTest.TestA', 'BazTest.TestB', ] + DEATH_TESTS + PARAM_TESTS) self.RunAndVerify('*-FooTest.Abc:BazTest.*', [ 'FooTest.Xyz', 'BarTest.TestOne', 'BarTest.TestTwo', 'BarTest.TestThree', ] + DEATH_TESTS + PARAM_TESTS) self.RunAndVerify('BarTest.*-BarTest.TestOne', [ 'BarTest.TestTwo', 'BarTest.TestThree', ]) # Tests without leading '*'. self.RunAndVerify('-FooTest.Abc:FooTest.Xyz:BazTest.*', [ 'BarTest.TestOne', 'BarTest.TestTwo', 'BarTest.TestThree', ] + DEATH_TESTS + PARAM_TESTS) # Value parameterized tests. self.RunAndVerify('*/*', PARAM_TESTS) # Value parameterized tests filtering by the sequence name. self.RunAndVerify('SeqP/*', [ 'SeqP/ParamTest.TestX/0', 'SeqP/ParamTest.TestX/1', 'SeqP/ParamTest.TestY/0', 'SeqP/ParamTest.TestY/1', ]) # Value parameterized tests filtering by the test name. self.RunAndVerify('*/0', [ 'SeqP/ParamTest.TestX/0', 'SeqP/ParamTest.TestY/0', 'SeqQ/ParamTest.TestX/0', 'SeqQ/ParamTest.TestY/0', ]) def testFlagOverridesEnvVar(self): """Tests that the filter flag overrides the filtering env. variable.""" SetEnvVar(FILTER_ENV_VAR, 'Foo*') args = ['--%s=%s' % (FILTER_FLAG, '*One')] tests_run = RunAndExtractTestList(args)[0] SetEnvVar(FILTER_ENV_VAR, None) self.AssertSetEqual(tests_run, ['BarTest.TestOne', 'BazTest.TestOne']) def testShardStatusFileIsCreated(self): """Tests that the shard file is created if specified in the environment.""" shard_status_file = os.path.join(gtest_test_utils.GetTempDir(), 'shard_status_file') self.assert_(not os.path.exists(shard_status_file)) extra_env = {SHARD_STATUS_FILE_ENV_VAR: shard_status_file} try: InvokeWithModifiedEnv(extra_env, RunAndReturnOutput) finally: self.assert_(os.path.exists(shard_status_file)) os.remove(shard_status_file) def testShardStatusFileIsCreatedWithListTests(self): """Tests that the shard file is created with the "list_tests" flag.""" shard_status_file = os.path.join(gtest_test_utils.GetTempDir(), 'shard_status_file2') self.assert_(not os.path.exists(shard_status_file)) extra_env = {SHARD_STATUS_FILE_ENV_VAR: shard_status_file} try: output = InvokeWithModifiedEnv(extra_env, RunAndReturnOutput, [LIST_TESTS_FLAG]) finally: # This assertion ensures that Google Test enumerated the tests as # opposed to running them. self.assert_('[==========]' not in output, 'Unexpected output during test enumeration.\n' 'Please ensure that LIST_TESTS_FLAG is assigned the\n' 'correct flag value for listing Google Test tests.') self.assert_(os.path.exists(shard_status_file)) os.remove(shard_status_file) if SUPPORTS_DEATH_TESTS: def testShardingWorksWithDeathTests(self): """Tests integration with death tests and sharding.""" gtest_filter = 'HasDeathTest.*:SeqP/*' expected_tests = [ 'HasDeathTest.Test1', 'HasDeathTest.Test2', 'SeqP/ParamTest.TestX/0', 'SeqP/ParamTest.TestX/1', 'SeqP/ParamTest.TestY/0', 'SeqP/ParamTest.TestY/1', ] for flag in ['--gtest_death_test_style=threadsafe', '--gtest_death_test_style=fast']: self.RunAndVerifyWithSharding(gtest_filter, 3, expected_tests, check_exit_0=True, args=[flag]) self.RunAndVerifyWithSharding(gtest_filter, 5, expected_tests, check_exit_0=True, args=[flag]) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-filter-unittest_.cc000066400000000000000000000066121355420072700276210ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Unit test for Google Test test filters. // // A user can specify which test(s) in a Google Test program to run via // either the GTEST_FILTER environment variable or the --gtest_filter // flag. This is used for testing such functionality. // // The program will be invoked from a Python unit test. Don't run it // directly. #include "gtest/gtest.h" namespace { // Test case FooTest. class FooTest : public testing::Test { }; TEST_F(FooTest, Abc) { } TEST_F(FooTest, Xyz) { FAIL() << "Expected failure."; } // Test case BarTest. TEST(BarTest, TestOne) { } TEST(BarTest, TestTwo) { } TEST(BarTest, TestThree) { } TEST(BarTest, DISABLED_TestFour) { FAIL() << "Expected failure."; } TEST(BarTest, DISABLED_TestFive) { FAIL() << "Expected failure."; } // Test case BazTest. TEST(BazTest, TestOne) { FAIL() << "Expected failure."; } TEST(BazTest, TestA) { } TEST(BazTest, TestB) { } TEST(BazTest, DISABLED_TestC) { FAIL() << "Expected failure."; } // Test case HasDeathTest TEST(HasDeathTest, Test1) { EXPECT_DEATH_IF_SUPPORTED(exit(1), ".*"); } // We need at least two death tests to make sure that the all death tests // aren't on the first shard. TEST(HasDeathTest, Test2) { EXPECT_DEATH_IF_SUPPORTED(exit(1), ".*"); } // Test case FoobarTest TEST(DISABLED_FoobarTest, Test1) { FAIL() << "Expected failure."; } TEST(DISABLED_FoobarTest, DISABLED_Test2) { FAIL() << "Expected failure."; } // Test case FoobarbazTest TEST(DISABLED_FoobarbazTest, TestA) { FAIL() << "Expected failure."; } class ParamTest : public testing::TestWithParam { }; TEST_P(ParamTest, TestX) { } TEST_P(ParamTest, TestY) { } INSTANTIATE_TEST_SUITE_P(SeqP, ParamTest, testing::Values(1, 2)); INSTANTIATE_TEST_SUITE_P(SeqQ, ParamTest, testing::Values(5, 6)); } // namespace int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-json-outfiles-test.py000066400000000000000000000130371355420072700301400ustar00rootroot00000000000000#!/usr/bin/env python # Copyright 2018, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for the gtest_json_output module.""" import json import os import gtest_json_test_utils import gtest_test_utils GTEST_OUTPUT_SUBDIR = 'json_outfiles' GTEST_OUTPUT_1_TEST = 'gtest_xml_outfile1_test_' GTEST_OUTPUT_2_TEST = 'gtest_xml_outfile2_test_' EXPECTED_1 = { u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'name': u'AllTests', u'testsuites': [{ u'name': u'PropertyOne', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'TestSomeProperties', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'PropertyOne', u'SetUpProp': u'1', u'TestSomeProperty': u'1', u'TearDownProp': u'1', }], }], } EXPECTED_2 = { u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'name': u'AllTests', u'testsuites': [{ u'name': u'PropertyTwo', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'TestSomeProperties', u'status': u'RUN', u'result': u'COMPLETED', u'timestamp': u'*', u'time': u'*', u'classname': u'PropertyTwo', u'SetUpProp': u'2', u'TestSomeProperty': u'2', u'TearDownProp': u'2', }], }], } class GTestJsonOutFilesTest(gtest_test_utils.TestCase): """Unit test for Google Test's JSON output functionality.""" def setUp(self): # We want the trailing '/' that the last "" provides in os.path.join, for # telling Google Test to create an output directory instead of a single file # for xml output. self.output_dir_ = os.path.join(gtest_test_utils.GetTempDir(), GTEST_OUTPUT_SUBDIR, '') self.DeleteFilesAndDir() def tearDown(self): self.DeleteFilesAndDir() def DeleteFilesAndDir(self): try: os.remove(os.path.join(self.output_dir_, GTEST_OUTPUT_1_TEST + '.json')) except os.error: pass try: os.remove(os.path.join(self.output_dir_, GTEST_OUTPUT_2_TEST + '.json')) except os.error: pass try: os.rmdir(self.output_dir_) except os.error: pass def testOutfile1(self): self._TestOutFile(GTEST_OUTPUT_1_TEST, EXPECTED_1) def testOutfile2(self): self._TestOutFile(GTEST_OUTPUT_2_TEST, EXPECTED_2) def _TestOutFile(self, test_name, expected): gtest_prog_path = gtest_test_utils.GetTestExecutablePath(test_name) command = [gtest_prog_path, '--gtest_output=json:%s' % self.output_dir_] p = gtest_test_utils.Subprocess(command, working_dir=gtest_test_utils.GetTempDir()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) output_file_name1 = test_name + '.json' output_file1 = os.path.join(self.output_dir_, output_file_name1) output_file_name2 = 'lt-' + output_file_name1 output_file2 = os.path.join(self.output_dir_, output_file_name2) self.assert_(os.path.isfile(output_file1) or os.path.isfile(output_file2), output_file1) if os.path.isfile(output_file1): with open(output_file1) as f: actual = json.load(f) else: with open(output_file2) as f: actual = json.load(f) self.assertEqual(expected, gtest_json_test_utils.normalize(actual)) if __name__ == '__main__': os.environ['GTEST_STACK_TRACE_DEPTH'] = '0' gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-json-output-unittest.py000066400000000000000000000541751355420072700305560ustar00rootroot00000000000000#!/usr/bin/env python # Copyright 2018, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for the gtest_json_output module.""" import datetime import errno import json import os import re import sys import gtest_json_test_utils import gtest_test_utils GTEST_FILTER_FLAG = '--gtest_filter' GTEST_LIST_TESTS_FLAG = '--gtest_list_tests' GTEST_OUTPUT_FLAG = '--gtest_output' GTEST_DEFAULT_OUTPUT_FILE = 'test_detail.json' GTEST_PROGRAM_NAME = 'gtest_xml_output_unittest_' # The flag indicating stacktraces are not supported NO_STACKTRACE_SUPPORT_FLAG = '--no_stacktrace_support' SUPPORTS_STACK_TRACES = NO_STACKTRACE_SUPPORT_FLAG not in sys.argv if SUPPORTS_STACK_TRACES: STACK_TRACE_TEMPLATE = '\nStack trace:\n*' else: STACK_TRACE_TEMPLATE = '' EXPECTED_NON_EMPTY = { u'tests': 24, u'failures': 4, u'disabled': 2, u'errors': 0, u'timestamp': u'*', u'time': u'*', u'ad_hoc_property': u'42', u'name': u'AllTests', u'testsuites': [{ u'name': u'SuccessfulTest', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'Succeeds', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'SuccessfulTest' }] }, { u'name': u'FailedTest', u'tests': 1, u'failures': 1, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'Fails', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'FailedTest', u'failures': [{ u'failure': u'gtest_xml_output_unittest_.cc:*\n' u'Expected equality of these values:\n' u' 1\n 2' + STACK_TRACE_TEMPLATE, u'type': u'' }] }] }, { u'name': u'DisabledTest', u'tests': 1, u'failures': 0, u'disabled': 1, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'DISABLED_test_not_run', u'status': u'NOTRUN', u'result': u'SUPPRESSED', u'time': u'*', u'timestamp': u'*', u'classname': u'DisabledTest' }] }, { u'name': u'SkippedTest', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'Skipped', u'status': u'RUN', u'result': u'SKIPPED', u'time': u'*', u'timestamp': u'*', u'classname': u'SkippedTest' }] }, { u'name': u'MixedResultTest', u'tests': 3, u'failures': 1, u'disabled': 1, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'Succeeds', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'MixedResultTest' }, { u'name': u'Fails', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'MixedResultTest', u'failures': [{ u'failure': u'gtest_xml_output_unittest_.cc:*\n' u'Expected equality of these values:\n' u' 1\n 2' + STACK_TRACE_TEMPLATE, u'type': u'' }, { u'failure': u'gtest_xml_output_unittest_.cc:*\n' u'Expected equality of these values:\n' u' 2\n 3' + STACK_TRACE_TEMPLATE, u'type': u'' }] }, { u'name': u'DISABLED_test', u'status': u'NOTRUN', u'result': u'SUPPRESSED', u'time': u'*', u'timestamp': u'*', u'classname': u'MixedResultTest' }] }, { u'name': u'XmlQuotingTest', u'tests': 1, u'failures': 1, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'OutputsCData', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'XmlQuotingTest', u'failures': [{ u'failure': u'gtest_xml_output_unittest_.cc:*\n' u'Failed\nXML output: ' u'' + STACK_TRACE_TEMPLATE, u'type': u'' }] }] }, { u'name': u'InvalidCharactersTest', u'tests': 1, u'failures': 1, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'InvalidCharactersInMessage', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'InvalidCharactersTest', u'failures': [{ u'failure': u'gtest_xml_output_unittest_.cc:*\n' u'Failed\nInvalid characters in brackets' u' [\x01\x02]' + STACK_TRACE_TEMPLATE, u'type': u'' }] }] }, { u'name': u'PropertyRecordingTest', u'tests': 4, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'SetUpTestSuite': u'yes', u'TearDownTestSuite': u'aye', u'testsuite': [{ u'name': u'OneProperty', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'PropertyRecordingTest', u'key_1': u'1' }, { u'name': u'IntValuedProperty', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'PropertyRecordingTest', u'key_int': u'1' }, { u'name': u'ThreeProperties', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'PropertyRecordingTest', u'key_1': u'1', u'key_2': u'2', u'key_3': u'3' }, { u'name': u'TwoValuesForOneKeyUsesLastValue', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'PropertyRecordingTest', u'key_1': u'2' }] }, { u'name': u'NoFixtureTest', u'tests': 3, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'RecordProperty', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'NoFixtureTest', u'key': u'1' }, { u'name': u'ExternalUtilityThatCallsRecordIntValuedProperty', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'NoFixtureTest', u'key_for_utility_int': u'1' }, { u'name': u'ExternalUtilityThatCallsRecordStringValuedProperty', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'NoFixtureTest', u'key_for_utility_string': u'1' }] }, { u'name': u'TypedTest/0', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'HasTypeParamAttribute', u'type_param': u'int', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'TypedTest/0' }] }, { u'name': u'TypedTest/1', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'HasTypeParamAttribute', u'type_param': u'long', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'TypedTest/1' }] }, { u'name': u'Single/TypeParameterizedTestSuite/0', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'HasTypeParamAttribute', u'type_param': u'int', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'Single/TypeParameterizedTestSuite/0' }] }, { u'name': u'Single/TypeParameterizedTestSuite/1', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'HasTypeParamAttribute', u'type_param': u'long', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'Single/TypeParameterizedTestSuite/1' }] }, { u'name': u'Single/ValueParamTest', u'tests': 4, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'HasValueParamAttribute/0', u'value_param': u'33', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'Single/ValueParamTest' }, { u'name': u'HasValueParamAttribute/1', u'value_param': u'42', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'Single/ValueParamTest' }, { u'name': u'AnotherTestThatHasValueParamAttribute/0', u'value_param': u'33', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'Single/ValueParamTest' }, { u'name': u'AnotherTestThatHasValueParamAttribute/1', u'value_param': u'42', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'Single/ValueParamTest' }] }] } EXPECTED_FILTERED = { u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'name': u'AllTests', u'ad_hoc_property': u'42', u'testsuites': [{ u'name': u'SuccessfulTest', u'tests': 1, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'testsuite': [{ u'name': u'Succeeds', u'status': u'RUN', u'result': u'COMPLETED', u'time': u'*', u'timestamp': u'*', u'classname': u'SuccessfulTest', }] }], } EXPECTED_EMPTY = { u'tests': 0, u'failures': 0, u'disabled': 0, u'errors': 0, u'time': u'*', u'timestamp': u'*', u'name': u'AllTests', u'testsuites': [], } GTEST_PROGRAM_PATH = gtest_test_utils.GetTestExecutablePath(GTEST_PROGRAM_NAME) SUPPORTS_TYPED_TESTS = 'TypedTest' in gtest_test_utils.Subprocess( [GTEST_PROGRAM_PATH, GTEST_LIST_TESTS_FLAG], capture_stderr=False).output class GTestJsonOutputUnitTest(gtest_test_utils.TestCase): """Unit test for Google Test's JSON output functionality. """ # This test currently breaks on platforms that do not support typed and # type-parameterized tests, so we don't run it under them. if SUPPORTS_TYPED_TESTS: def testNonEmptyJsonOutput(self): """Verifies JSON output for a Google Test binary with non-empty output. Runs a test program that generates a non-empty JSON output, and tests that the JSON output is expected. """ self._TestJsonOutput(GTEST_PROGRAM_NAME, EXPECTED_NON_EMPTY, 1) def testEmptyJsonOutput(self): """Verifies JSON output for a Google Test binary without actual tests. Runs a test program that generates an empty JSON output, and tests that the JSON output is expected. """ self._TestJsonOutput('gtest_no_test_unittest', EXPECTED_EMPTY, 0) def testTimestampValue(self): """Checks whether the timestamp attribute in the JSON output is valid. Runs a test program that generates an empty JSON output, and checks if the timestamp attribute in the testsuites tag is valid. """ actual = self._GetJsonOutput('gtest_no_test_unittest', [], 0) date_time_str = actual['timestamp'] # datetime.strptime() is only available in Python 2.5+ so we have to # parse the expected datetime manually. match = re.match(r'(\d+)-(\d\d)-(\d\d)T(\d\d):(\d\d):(\d\d)', date_time_str) self.assertTrue( re.match, 'JSON datettime string %s has incorrect format' % date_time_str) date_time_from_json = datetime.datetime( year=int(match.group(1)), month=int(match.group(2)), day=int(match.group(3)), hour=int(match.group(4)), minute=int(match.group(5)), second=int(match.group(6))) time_delta = abs(datetime.datetime.now() - date_time_from_json) # timestamp value should be near the current local time self.assertTrue(time_delta < datetime.timedelta(seconds=600), 'time_delta is %s' % time_delta) def testDefaultOutputFile(self): """Verifies the default output file name. Confirms that Google Test produces an JSON output file with the expected default name if no name is explicitly specified. """ output_file = os.path.join(gtest_test_utils.GetTempDir(), GTEST_DEFAULT_OUTPUT_FILE) gtest_prog_path = gtest_test_utils.GetTestExecutablePath( 'gtest_no_test_unittest') try: os.remove(output_file) except OSError: e = sys.exc_info()[1] if e.errno != errno.ENOENT: raise p = gtest_test_utils.Subprocess( [gtest_prog_path, '%s=json' % GTEST_OUTPUT_FLAG], working_dir=gtest_test_utils.GetTempDir()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) self.assert_(os.path.isfile(output_file)) def testSuppressedJsonOutput(self): """Verifies that no JSON output is generated. Tests that no JSON file is generated if the default JSON listener is shut down before RUN_ALL_TESTS is invoked. """ json_path = os.path.join(gtest_test_utils.GetTempDir(), GTEST_PROGRAM_NAME + 'out.json') if os.path.isfile(json_path): os.remove(json_path) command = [GTEST_PROGRAM_PATH, '%s=json:%s' % (GTEST_OUTPUT_FLAG, json_path), '--shut_down_xml'] p = gtest_test_utils.Subprocess(command) if p.terminated_by_signal: # p.signal is available only if p.terminated_by_signal is True. self.assertFalse( p.terminated_by_signal, '%s was killed by signal %d' % (GTEST_PROGRAM_NAME, p.signal)) else: self.assert_(p.exited) self.assertEquals(1, p.exit_code, "'%s' exited with code %s, which doesn't match " 'the expected exit code %s.' % (command, p.exit_code, 1)) self.assert_(not os.path.isfile(json_path)) def testFilteredTestJsonOutput(self): """Verifies JSON output when a filter is applied. Runs a test program that executes only some tests and verifies that non-selected tests do not show up in the JSON output. """ self._TestJsonOutput(GTEST_PROGRAM_NAME, EXPECTED_FILTERED, 0, extra_args=['%s=SuccessfulTest.*' % GTEST_FILTER_FLAG]) def _GetJsonOutput(self, gtest_prog_name, extra_args, expected_exit_code): """Returns the JSON output generated by running the program gtest_prog_name. Furthermore, the program's exit code must be expected_exit_code. Args: gtest_prog_name: Google Test binary name. extra_args: extra arguments to binary invocation. expected_exit_code: program's exit code. """ json_path = os.path.join(gtest_test_utils.GetTempDir(), gtest_prog_name + 'out.json') gtest_prog_path = gtest_test_utils.GetTestExecutablePath(gtest_prog_name) command = ( [gtest_prog_path, '%s=json:%s' % (GTEST_OUTPUT_FLAG, json_path)] + extra_args ) p = gtest_test_utils.Subprocess(command) if p.terminated_by_signal: self.assert_(False, '%s was killed by signal %d' % (gtest_prog_name, p.signal)) else: self.assert_(p.exited) self.assertEquals(expected_exit_code, p.exit_code, "'%s' exited with code %s, which doesn't match " 'the expected exit code %s.' % (command, p.exit_code, expected_exit_code)) with open(json_path) as f: actual = json.load(f) return actual def _TestJsonOutput(self, gtest_prog_name, expected, expected_exit_code, extra_args=None): """Checks the JSON output generated by the Google Test binary. Asserts that the JSON document generated by running the program gtest_prog_name matches expected_json, a string containing another JSON document. Furthermore, the program's exit code must be expected_exit_code. Args: gtest_prog_name: Google Test binary name. expected: expected output. expected_exit_code: program's exit code. extra_args: extra arguments to binary invocation. """ actual = self._GetJsonOutput(gtest_prog_name, extra_args or [], expected_exit_code) self.assertEqual(expected, gtest_json_test_utils.normalize(actual)) if __name__ == '__main__': if NO_STACKTRACE_SUPPORT_FLAG in sys.argv: # unittest.main() can't handle unknown flags sys.argv.remove(NO_STACKTRACE_SUPPORT_FLAG) os.environ['GTEST_STACK_TRACE_DEPTH'] = '1' gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-list-tests-unittest.py000066400000000000000000000145721355420072700303570ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's --gtest_list_tests flag. A user can ask Google Test to list all tests by specifying the --gtest_list_tests flag. This script tests such functionality by invoking googletest-list-tests-unittest_ (a program written with Google Test) the command line flags. """ import re import gtest_test_utils # Constants. # The command line flag for enabling/disabling listing all tests. LIST_TESTS_FLAG = 'gtest_list_tests' # Path to the googletest-list-tests-unittest_ program. EXE_PATH = gtest_test_utils.GetTestExecutablePath('googletest-list-tests-unittest_') # The expected output when running googletest-list-tests-unittest_ with # --gtest_list_tests EXPECTED_OUTPUT_NO_FILTER_RE = re.compile(r"""FooDeathTest\. Test1 Foo\. Bar1 Bar2 DISABLED_Bar3 Abc\. Xyz Def FooBar\. Baz FooTest\. Test1 DISABLED_Test2 Test3 TypedTest/0\. # TypeParam = (VeryLo{245}|class VeryLo{239})\.\.\. TestA TestB TypedTest/1\. # TypeParam = int\s*\*( __ptr64)? TestA TestB TypedTest/2\. # TypeParam = .*MyArray TestA TestB My/TypeParamTest/0\. # TypeParam = (VeryLo{245}|class VeryLo{239})\.\.\. TestA TestB My/TypeParamTest/1\. # TypeParam = int\s*\*( __ptr64)? TestA TestB My/TypeParamTest/2\. # TypeParam = .*MyArray TestA TestB MyInstantiation/ValueParamTest\. TestA/0 # GetParam\(\) = one line TestA/1 # GetParam\(\) = two\\nlines TestA/2 # GetParam\(\) = a very\\nlo{241}\.\.\. TestB/0 # GetParam\(\) = one line TestB/1 # GetParam\(\) = two\\nlines TestB/2 # GetParam\(\) = a very\\nlo{241}\.\.\. """) # The expected output when running googletest-list-tests-unittest_ with # --gtest_list_tests and --gtest_filter=Foo*. EXPECTED_OUTPUT_FILTER_FOO_RE = re.compile(r"""FooDeathTest\. Test1 Foo\. Bar1 Bar2 DISABLED_Bar3 FooBar\. Baz FooTest\. Test1 DISABLED_Test2 Test3 """) # Utilities. def Run(args): """Runs googletest-list-tests-unittest_ and returns the list of tests printed.""" return gtest_test_utils.Subprocess([EXE_PATH] + args, capture_stderr=False).output # The unit test. class GTestListTestsUnitTest(gtest_test_utils.TestCase): """Tests using the --gtest_list_tests flag to list all tests.""" def RunAndVerify(self, flag_value, expected_output_re, other_flag): """Runs googletest-list-tests-unittest_ and verifies that it prints the correct tests. Args: flag_value: value of the --gtest_list_tests flag; None if the flag should not be present. expected_output_re: regular expression that matches the expected output after running command; other_flag: a different flag to be passed to command along with gtest_list_tests; None if the flag should not be present. """ if flag_value is None: flag = '' flag_expression = 'not set' elif flag_value == '0': flag = '--%s=0' % LIST_TESTS_FLAG flag_expression = '0' else: flag = '--%s' % LIST_TESTS_FLAG flag_expression = '1' args = [flag] if other_flag is not None: args += [other_flag] output = Run(args) if expected_output_re: self.assert_( expected_output_re.match(output), ('when %s is %s, the output of "%s" is "%s",\n' 'which does not match regex "%s"' % (LIST_TESTS_FLAG, flag_expression, ' '.join(args), output, expected_output_re.pattern))) else: self.assert_( not EXPECTED_OUTPUT_NO_FILTER_RE.match(output), ('when %s is %s, the output of "%s" is "%s"'% (LIST_TESTS_FLAG, flag_expression, ' '.join(args), output))) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(flag_value=None, expected_output_re=None, other_flag=None) def testFlag(self): """Tests using the --gtest_list_tests flag.""" self.RunAndVerify(flag_value='0', expected_output_re=None, other_flag=None) self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_NO_FILTER_RE, other_flag=None) def testOverrideNonFilterFlags(self): """Tests that --gtest_list_tests overrides the non-filter flags.""" self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_NO_FILTER_RE, other_flag='--gtest_break_on_failure') def testWithFilterFlags(self): """Tests that --gtest_list_tests takes into account the --gtest_filter flag.""" self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_FILTER_FOO_RE, other_flag='--gtest_filter=Foo*') if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-list-tests-unittest_.cc000066400000000000000000000110741355420072700304450ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Unit test for Google Test's --gtest_list_tests flag. // // A user can ask Google Test to list all tests that will run // so that when using a filter, a user will know what // tests to look for. The tests will not be run after listing. // // This program will be invoked from a Python unit test. // Don't run it directly. #include "gtest/gtest.h" // Several different test cases and tests that will be listed. TEST(Foo, Bar1) { } TEST(Foo, Bar2) { } TEST(Foo, DISABLED_Bar3) { } TEST(Abc, Xyz) { } TEST(Abc, Def) { } TEST(FooBar, Baz) { } class FooTest : public testing::Test { }; TEST_F(FooTest, Test1) { } TEST_F(FooTest, DISABLED_Test2) { } TEST_F(FooTest, Test3) { } TEST(FooDeathTest, Test1) { } // A group of value-parameterized tests. class MyType { public: explicit MyType(const std::string& a_value) : value_(a_value) {} const std::string& value() const { return value_; } private: std::string value_; }; // Teaches Google Test how to print a MyType. void PrintTo(const MyType& x, std::ostream* os) { *os << x.value(); } class ValueParamTest : public testing::TestWithParam { }; TEST_P(ValueParamTest, TestA) { } TEST_P(ValueParamTest, TestB) { } INSTANTIATE_TEST_SUITE_P( MyInstantiation, ValueParamTest, testing::Values(MyType("one line"), MyType("two\nlines"), MyType("a very\nloooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooong line"))); // NOLINT // A group of typed tests. // A deliberately long type name for testing the line-truncating // behavior when printing a type parameter. class VeryLoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooogName { // NOLINT }; template class TypedTest : public testing::Test { }; template class MyArray { }; typedef testing::Types > MyTypes; TYPED_TEST_SUITE(TypedTest, MyTypes); TYPED_TEST(TypedTest, TestA) { } TYPED_TEST(TypedTest, TestB) { } // A group of type-parameterized tests. template class TypeParamTest : public testing::Test { }; TYPED_TEST_SUITE_P(TypeParamTest); TYPED_TEST_P(TypeParamTest, TestA) { } TYPED_TEST_P(TypeParamTest, TestB) { } REGISTER_TYPED_TEST_SUITE_P(TypeParamTest, TestA, TestB); INSTANTIATE_TYPED_TEST_SUITE_P(My, TypeParamTest, MyTypes); int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-listener-test.cc000066400000000000000000000576421355420072700271330ustar00rootroot00000000000000// Copyright 2009 Google Inc. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This file verifies Google Test event listeners receive events at the // right times. #include #include "gtest/gtest.h" #include "gtest/internal/custom/gtest.h" using ::testing::AddGlobalTestEnvironment; using ::testing::Environment; using ::testing::InitGoogleTest; using ::testing::Test; using ::testing::TestSuite; using ::testing::TestEventListener; using ::testing::TestInfo; using ::testing::TestPartResult; using ::testing::UnitTest; // Used by tests to register their events. std::vector* g_events = nullptr; namespace testing { namespace internal { class EventRecordingListener : public TestEventListener { public: explicit EventRecordingListener(const char* name) : name_(name) {} protected: void OnTestProgramStart(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnTestProgramStart")); } void OnTestIterationStart(const UnitTest& /*unit_test*/, int iteration) override { Message message; message << GetFullMethodName("OnTestIterationStart") << "(" << iteration << ")"; g_events->push_back(message.GetString()); } void OnEnvironmentsSetUpStart(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnEnvironmentsSetUpStart")); } void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnEnvironmentsSetUpEnd")); } #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestCase& /*test_case*/) override { g_events->push_back(GetFullMethodName("OnTestCaseStart")); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestStart(const TestInfo& /*test_info*/) override { g_events->push_back(GetFullMethodName("OnTestStart")); } void OnTestPartResult(const TestPartResult& /*test_part_result*/) override { g_events->push_back(GetFullMethodName("OnTestPartResult")); } void OnTestEnd(const TestInfo& /*test_info*/) override { g_events->push_back(GetFullMethodName("OnTestEnd")); } #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& /*test_case*/) override { g_events->push_back(GetFullMethodName("OnTestCaseEnd")); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnEnvironmentsTearDownStart(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnEnvironmentsTearDownStart")); } void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnEnvironmentsTearDownEnd")); } void OnTestIterationEnd(const UnitTest& /*unit_test*/, int iteration) override { Message message; message << GetFullMethodName("OnTestIterationEnd") << "(" << iteration << ")"; g_events->push_back(message.GetString()); } void OnTestProgramEnd(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnTestProgramEnd")); } private: std::string GetFullMethodName(const char* name) { return name_ + "." + name; } std::string name_; }; // This listener is using OnTestSuiteStart, OnTestSuiteEnd API class EventRecordingListener2 : public TestEventListener { public: explicit EventRecordingListener2(const char* name) : name_(name) {} protected: void OnTestProgramStart(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnTestProgramStart")); } void OnTestIterationStart(const UnitTest& /*unit_test*/, int iteration) override { Message message; message << GetFullMethodName("OnTestIterationStart") << "(" << iteration << ")"; g_events->push_back(message.GetString()); } void OnEnvironmentsSetUpStart(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnEnvironmentsSetUpStart")); } void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnEnvironmentsSetUpEnd")); } void OnTestSuiteStart(const TestSuite& /*test_suite*/) override { g_events->push_back(GetFullMethodName("OnTestSuiteStart")); } void OnTestStart(const TestInfo& /*test_info*/) override { g_events->push_back(GetFullMethodName("OnTestStart")); } void OnTestPartResult(const TestPartResult& /*test_part_result*/) override { g_events->push_back(GetFullMethodName("OnTestPartResult")); } void OnTestEnd(const TestInfo& /*test_info*/) override { g_events->push_back(GetFullMethodName("OnTestEnd")); } void OnTestSuiteEnd(const TestSuite& /*test_suite*/) override { g_events->push_back(GetFullMethodName("OnTestSuiteEnd")); } void OnEnvironmentsTearDownStart(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnEnvironmentsTearDownStart")); } void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnEnvironmentsTearDownEnd")); } void OnTestIterationEnd(const UnitTest& /*unit_test*/, int iteration) override { Message message; message << GetFullMethodName("OnTestIterationEnd") << "(" << iteration << ")"; g_events->push_back(message.GetString()); } void OnTestProgramEnd(const UnitTest& /*unit_test*/) override { g_events->push_back(GetFullMethodName("OnTestProgramEnd")); } private: std::string GetFullMethodName(const char* name) { return name_ + "." + name; } std::string name_; }; class EnvironmentInvocationCatcher : public Environment { protected: void SetUp() override { g_events->push_back("Environment::SetUp"); } void TearDown() override { g_events->push_back("Environment::TearDown"); } }; class ListenerTest : public Test { protected: static void SetUpTestSuite() { g_events->push_back("ListenerTest::SetUpTestSuite"); } static void TearDownTestSuite() { g_events->push_back("ListenerTest::TearDownTestSuite"); } void SetUp() override { g_events->push_back("ListenerTest::SetUp"); } void TearDown() override { g_events->push_back("ListenerTest::TearDown"); } }; TEST_F(ListenerTest, DoesFoo) { // Test execution order within a test case is not guaranteed so we are not // recording the test name. g_events->push_back("ListenerTest::* Test Body"); SUCCEED(); // Triggers OnTestPartResult. } TEST_F(ListenerTest, DoesBar) { g_events->push_back("ListenerTest::* Test Body"); SUCCEED(); // Triggers OnTestPartResult. } } // namespace internal } // namespace testing using ::testing::internal::EnvironmentInvocationCatcher; using ::testing::internal::EventRecordingListener; using ::testing::internal::EventRecordingListener2; void VerifyResults(const std::vector& data, const char* const* expected_data, size_t expected_data_size) { const size_t actual_size = data.size(); // If the following assertion fails, a new entry will be appended to // data. Hence we save data.size() first. EXPECT_EQ(expected_data_size, actual_size); // Compares the common prefix. const size_t shorter_size = expected_data_size <= actual_size ? expected_data_size : actual_size; size_t i = 0; for (; i < shorter_size; ++i) { ASSERT_STREQ(expected_data[i], data[i].c_str()) << "at position " << i; } // Prints extra elements in the actual data. for (; i < actual_size; ++i) { printf(" Actual event #%lu: %s\n", static_cast(i), data[i].c_str()); } } int main(int argc, char **argv) { std::vector events; g_events = &events; InitGoogleTest(&argc, argv); UnitTest::GetInstance()->listeners().Append( new EventRecordingListener("1st")); UnitTest::GetInstance()->listeners().Append( new EventRecordingListener("2nd")); UnitTest::GetInstance()->listeners().Append( new EventRecordingListener2("3rd")); AddGlobalTestEnvironment(new EnvironmentInvocationCatcher); GTEST_CHECK_(events.size() == 0) << "AddGlobalTestEnvironment should not generate any events itself."; ::testing::GTEST_FLAG(repeat) = 2; int ret_val = RUN_ALL_TESTS(); #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // The deprecated OnTestSuiteStart/OnTestCaseStart events are included const char* const expected_events[] = {"1st.OnTestProgramStart", "2nd.OnTestProgramStart", "3rd.OnTestProgramStart", "1st.OnTestIterationStart(0)", "2nd.OnTestIterationStart(0)", "3rd.OnTestIterationStart(0)", "1st.OnEnvironmentsSetUpStart", "2nd.OnEnvironmentsSetUpStart", "3rd.OnEnvironmentsSetUpStart", "Environment::SetUp", "3rd.OnEnvironmentsSetUpEnd", "2nd.OnEnvironmentsSetUpEnd", "1st.OnEnvironmentsSetUpEnd", "3rd.OnTestSuiteStart", "1st.OnTestCaseStart", "2nd.OnTestCaseStart", "ListenerTest::SetUpTestSuite", "1st.OnTestStart", "2nd.OnTestStart", "3rd.OnTestStart", "ListenerTest::SetUp", "ListenerTest::* Test Body", "1st.OnTestPartResult", "2nd.OnTestPartResult", "3rd.OnTestPartResult", "ListenerTest::TearDown", "3rd.OnTestEnd", "2nd.OnTestEnd", "1st.OnTestEnd", "1st.OnTestStart", "2nd.OnTestStart", "3rd.OnTestStart", "ListenerTest::SetUp", "ListenerTest::* Test Body", "1st.OnTestPartResult", "2nd.OnTestPartResult", "3rd.OnTestPartResult", "ListenerTest::TearDown", "3rd.OnTestEnd", "2nd.OnTestEnd", "1st.OnTestEnd", "ListenerTest::TearDownTestSuite", "3rd.OnTestSuiteEnd", "2nd.OnTestCaseEnd", "1st.OnTestCaseEnd", "1st.OnEnvironmentsTearDownStart", "2nd.OnEnvironmentsTearDownStart", "3rd.OnEnvironmentsTearDownStart", "Environment::TearDown", "3rd.OnEnvironmentsTearDownEnd", "2nd.OnEnvironmentsTearDownEnd", "1st.OnEnvironmentsTearDownEnd", "3rd.OnTestIterationEnd(0)", "2nd.OnTestIterationEnd(0)", "1st.OnTestIterationEnd(0)", "1st.OnTestIterationStart(1)", "2nd.OnTestIterationStart(1)", "3rd.OnTestIterationStart(1)", "1st.OnEnvironmentsSetUpStart", "2nd.OnEnvironmentsSetUpStart", "3rd.OnEnvironmentsSetUpStart", "Environment::SetUp", "3rd.OnEnvironmentsSetUpEnd", "2nd.OnEnvironmentsSetUpEnd", "1st.OnEnvironmentsSetUpEnd", "3rd.OnTestSuiteStart", "1st.OnTestCaseStart", "2nd.OnTestCaseStart", "ListenerTest::SetUpTestSuite", "1st.OnTestStart", "2nd.OnTestStart", "3rd.OnTestStart", "ListenerTest::SetUp", "ListenerTest::* Test Body", "1st.OnTestPartResult", "2nd.OnTestPartResult", "3rd.OnTestPartResult", "ListenerTest::TearDown", "3rd.OnTestEnd", "2nd.OnTestEnd", "1st.OnTestEnd", "1st.OnTestStart", "2nd.OnTestStart", "3rd.OnTestStart", "ListenerTest::SetUp", "ListenerTest::* Test Body", "1st.OnTestPartResult", "2nd.OnTestPartResult", "3rd.OnTestPartResult", "ListenerTest::TearDown", "3rd.OnTestEnd", "2nd.OnTestEnd", "1st.OnTestEnd", "ListenerTest::TearDownTestSuite", "3rd.OnTestSuiteEnd", "2nd.OnTestCaseEnd", "1st.OnTestCaseEnd", "1st.OnEnvironmentsTearDownStart", "2nd.OnEnvironmentsTearDownStart", "3rd.OnEnvironmentsTearDownStart", "Environment::TearDown", "3rd.OnEnvironmentsTearDownEnd", "2nd.OnEnvironmentsTearDownEnd", "1st.OnEnvironmentsTearDownEnd", "3rd.OnTestIterationEnd(1)", "2nd.OnTestIterationEnd(1)", "1st.OnTestIterationEnd(1)", "3rd.OnTestProgramEnd", "2nd.OnTestProgramEnd", "1st.OnTestProgramEnd"}; #else const char* const expected_events[] = {"1st.OnTestProgramStart", "2nd.OnTestProgramStart", "3rd.OnTestProgramStart", "1st.OnTestIterationStart(0)", "2nd.OnTestIterationStart(0)", "3rd.OnTestIterationStart(0)", "1st.OnEnvironmentsSetUpStart", "2nd.OnEnvironmentsSetUpStart", "3rd.OnEnvironmentsSetUpStart", "Environment::SetUp", "3rd.OnEnvironmentsSetUpEnd", "2nd.OnEnvironmentsSetUpEnd", "1st.OnEnvironmentsSetUpEnd", "3rd.OnTestSuiteStart", "ListenerTest::SetUpTestSuite", "1st.OnTestStart", "2nd.OnTestStart", "3rd.OnTestStart", "ListenerTest::SetUp", "ListenerTest::* Test Body", "1st.OnTestPartResult", "2nd.OnTestPartResult", "3rd.OnTestPartResult", "ListenerTest::TearDown", "3rd.OnTestEnd", "2nd.OnTestEnd", "1st.OnTestEnd", "1st.OnTestStart", "2nd.OnTestStart", "3rd.OnTestStart", "ListenerTest::SetUp", "ListenerTest::* Test Body", "1st.OnTestPartResult", "2nd.OnTestPartResult", "3rd.OnTestPartResult", "ListenerTest::TearDown", "3rd.OnTestEnd", "2nd.OnTestEnd", "1st.OnTestEnd", "ListenerTest::TearDownTestSuite", "3rd.OnTestSuiteEnd", "1st.OnEnvironmentsTearDownStart", "2nd.OnEnvironmentsTearDownStart", "3rd.OnEnvironmentsTearDownStart", "Environment::TearDown", "3rd.OnEnvironmentsTearDownEnd", "2nd.OnEnvironmentsTearDownEnd", "1st.OnEnvironmentsTearDownEnd", "3rd.OnTestIterationEnd(0)", "2nd.OnTestIterationEnd(0)", "1st.OnTestIterationEnd(0)", "1st.OnTestIterationStart(1)", "2nd.OnTestIterationStart(1)", "3rd.OnTestIterationStart(1)", "1st.OnEnvironmentsSetUpStart", "2nd.OnEnvironmentsSetUpStart", "3rd.OnEnvironmentsSetUpStart", "Environment::SetUp", "3rd.OnEnvironmentsSetUpEnd", "2nd.OnEnvironmentsSetUpEnd", "1st.OnEnvironmentsSetUpEnd", "3rd.OnTestSuiteStart", "ListenerTest::SetUpTestSuite", "1st.OnTestStart", "2nd.OnTestStart", "3rd.OnTestStart", "ListenerTest::SetUp", "ListenerTest::* Test Body", "1st.OnTestPartResult", "2nd.OnTestPartResult", "3rd.OnTestPartResult", "ListenerTest::TearDown", "3rd.OnTestEnd", "2nd.OnTestEnd", "1st.OnTestEnd", "1st.OnTestStart", "2nd.OnTestStart", "3rd.OnTestStart", "ListenerTest::SetUp", "ListenerTest::* Test Body", "1st.OnTestPartResult", "2nd.OnTestPartResult", "3rd.OnTestPartResult", "ListenerTest::TearDown", "3rd.OnTestEnd", "2nd.OnTestEnd", "1st.OnTestEnd", "ListenerTest::TearDownTestSuite", "3rd.OnTestSuiteEnd", "1st.OnEnvironmentsTearDownStart", "2nd.OnEnvironmentsTearDownStart", "3rd.OnEnvironmentsTearDownStart", "Environment::TearDown", "3rd.OnEnvironmentsTearDownEnd", "2nd.OnEnvironmentsTearDownEnd", "1st.OnEnvironmentsTearDownEnd", "3rd.OnTestIterationEnd(1)", "2nd.OnTestIterationEnd(1)", "1st.OnTestIterationEnd(1)", "3rd.OnTestProgramEnd", "2nd.OnTestProgramEnd", "1st.OnTestProgramEnd"}; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ VerifyResults(events, expected_events, sizeof(expected_events)/sizeof(expected_events[0])); // We need to check manually for ad hoc test failures that happen after // RUN_ALL_TESTS finishes. if (UnitTest::GetInstance()->Failed()) ret_val = 1; return ret_val; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-message-test.cc000066400000000000000000000122211355420072700267120ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for the Message class. #include "gtest/gtest-message.h" #include "gtest/gtest.h" namespace { using ::testing::Message; // Tests the testing::Message class // Tests the default constructor. TEST(MessageTest, DefaultConstructor) { const Message msg; EXPECT_EQ("", msg.GetString()); } // Tests the copy constructor. TEST(MessageTest, CopyConstructor) { const Message msg1("Hello"); const Message msg2(msg1); EXPECT_EQ("Hello", msg2.GetString()); } // Tests constructing a Message from a C-string. TEST(MessageTest, ConstructsFromCString) { Message msg("Hello"); EXPECT_EQ("Hello", msg.GetString()); } // Tests streaming a float. TEST(MessageTest, StreamsFloat) { const std::string s = (Message() << 1.23456F << " " << 2.34567F).GetString(); // Both numbers should be printed with enough precision. EXPECT_PRED_FORMAT2(testing::IsSubstring, "1.234560", s.c_str()); EXPECT_PRED_FORMAT2(testing::IsSubstring, " 2.345669", s.c_str()); } // Tests streaming a double. TEST(MessageTest, StreamsDouble) { const std::string s = (Message() << 1260570880.4555497 << " " << 1260572265.1954534).GetString(); // Both numbers should be printed with enough precision. EXPECT_PRED_FORMAT2(testing::IsSubstring, "1260570880.45", s.c_str()); EXPECT_PRED_FORMAT2(testing::IsSubstring, " 1260572265.19", s.c_str()); } // Tests streaming a non-char pointer. TEST(MessageTest, StreamsPointer) { int n = 0; int* p = &n; EXPECT_NE("(null)", (Message() << p).GetString()); } // Tests streaming a NULL non-char pointer. TEST(MessageTest, StreamsNullPointer) { int* p = nullptr; EXPECT_EQ("(null)", (Message() << p).GetString()); } // Tests streaming a C string. TEST(MessageTest, StreamsCString) { EXPECT_EQ("Foo", (Message() << "Foo").GetString()); } // Tests streaming a NULL C string. TEST(MessageTest, StreamsNullCString) { char* p = nullptr; EXPECT_EQ("(null)", (Message() << p).GetString()); } // Tests streaming std::string. TEST(MessageTest, StreamsString) { const ::std::string str("Hello"); EXPECT_EQ("Hello", (Message() << str).GetString()); } // Tests that we can output strings containing embedded NULs. TEST(MessageTest, StreamsStringWithEmbeddedNUL) { const char char_array_with_nul[] = "Here's a NUL\0 and some more string"; const ::std::string string_with_nul(char_array_with_nul, sizeof(char_array_with_nul) - 1); EXPECT_EQ("Here's a NUL\\0 and some more string", (Message() << string_with_nul).GetString()); } // Tests streaming a NUL char. TEST(MessageTest, StreamsNULChar) { EXPECT_EQ("\\0", (Message() << '\0').GetString()); } // Tests streaming int. TEST(MessageTest, StreamsInt) { EXPECT_EQ("123", (Message() << 123).GetString()); } // Tests that basic IO manipulators (endl, ends, and flush) can be // streamed to Message. TEST(MessageTest, StreamsBasicIoManip) { EXPECT_EQ("Line 1.\nA NUL char \\0 in line 2.", (Message() << "Line 1." << std::endl << "A NUL char " << std::ends << std::flush << " in line 2.").GetString()); } // Tests Message::GetString() TEST(MessageTest, GetString) { Message msg; msg << 1 << " lamb"; EXPECT_EQ("1 lamb", msg.GetString()); } // Tests streaming a Message object to an ostream. TEST(MessageTest, StreamsToOStream) { Message msg("Hello"); ::std::stringstream ss; ss << msg; EXPECT_EQ("Hello", testing::internal::StringStreamToString(&ss)); } // Tests that a Message object doesn't take up too much stack space. TEST(MessageTest, DoesNotTakeUpMuchStackSpace) { EXPECT_LE(sizeof(Message), 16U); } } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-options-test.cc000066400000000000000000000172561355420072700267760ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Google Test UnitTestOptions tests // // This file tests classes and functions used internally by // Google Test. They are subject to change without notice. // // This file is #included from gtest.cc, to avoid changing build or // make-files on Windows and other platforms. Do not #include this file // anywhere else! #include "gtest/gtest.h" #if GTEST_OS_WINDOWS_MOBILE # include #elif GTEST_OS_WINDOWS # include #endif // GTEST_OS_WINDOWS_MOBILE #include "src/gtest-internal-inl.h" namespace testing { namespace internal { namespace { // Turns the given relative path into an absolute path. FilePath GetAbsolutePathOf(const FilePath& relative_path) { return FilePath::ConcatPaths(FilePath::GetCurrentDir(), relative_path); } // Testing UnitTestOptions::GetOutputFormat/GetOutputFile. TEST(XmlOutputTest, GetOutputFormatDefault) { GTEST_FLAG(output) = ""; EXPECT_STREQ("", UnitTestOptions::GetOutputFormat().c_str()); } TEST(XmlOutputTest, GetOutputFormat) { GTEST_FLAG(output) = "xml:filename"; EXPECT_STREQ("xml", UnitTestOptions::GetOutputFormat().c_str()); } TEST(XmlOutputTest, GetOutputFileDefault) { GTEST_FLAG(output) = ""; EXPECT_EQ(GetAbsolutePathOf(FilePath("test_detail.xml")).string(), UnitTestOptions::GetAbsolutePathToOutputFile()); } TEST(XmlOutputTest, GetOutputFileSingleFile) { GTEST_FLAG(output) = "xml:filename.abc"; EXPECT_EQ(GetAbsolutePathOf(FilePath("filename.abc")).string(), UnitTestOptions::GetAbsolutePathToOutputFile()); } TEST(XmlOutputTest, GetOutputFileFromDirectoryPath) { GTEST_FLAG(output) = "xml:path" GTEST_PATH_SEP_; const std::string expected_output_file = GetAbsolutePathOf( FilePath(std::string("path") + GTEST_PATH_SEP_ + GetCurrentExecutableName().string() + ".xml")).string(); const std::string& output_file = UnitTestOptions::GetAbsolutePathToOutputFile(); #if GTEST_OS_WINDOWS EXPECT_STRCASEEQ(expected_output_file.c_str(), output_file.c_str()); #else EXPECT_EQ(expected_output_file, output_file.c_str()); #endif } TEST(OutputFileHelpersTest, GetCurrentExecutableName) { const std::string exe_str = GetCurrentExecutableName().string(); #if GTEST_OS_WINDOWS const bool success = _strcmpi("googletest-options-test", exe_str.c_str()) == 0 || _strcmpi("gtest-options-ex_test", exe_str.c_str()) == 0 || _strcmpi("gtest_all_test", exe_str.c_str()) == 0 || _strcmpi("gtest_dll_test", exe_str.c_str()) == 0; #elif GTEST_OS_OS2 const bool success = strcasecmp("googletest-options-test", exe_str.c_str()) == 0 || strcasecmp("gtest-options-ex_test", exe_str.c_str()) == 0 || strcasecmp("gtest_all_test", exe_str.c_str()) == 0 || strcasecmp("gtest_dll_test", exe_str.c_str()) == 0; #elif GTEST_OS_FUCHSIA const bool success = exe_str == "app"; #else const bool success = exe_str == "googletest-options-test" || exe_str == "gtest_all_test" || exe_str == "lt-gtest_all_test" || exe_str == "gtest_dll_test"; #endif // GTEST_OS_WINDOWS if (!success) FAIL() << "GetCurrentExecutableName() returns " << exe_str; } #if !GTEST_OS_FUCHSIA class XmlOutputChangeDirTest : public Test { protected: void SetUp() override { original_working_dir_ = FilePath::GetCurrentDir(); posix::ChDir(".."); // This will make the test fail if run from the root directory. EXPECT_NE(original_working_dir_.string(), FilePath::GetCurrentDir().string()); } void TearDown() override { posix::ChDir(original_working_dir_.string().c_str()); } FilePath original_working_dir_; }; TEST_F(XmlOutputChangeDirTest, PreserveOriginalWorkingDirWithDefault) { GTEST_FLAG(output) = ""; EXPECT_EQ(FilePath::ConcatPaths(original_working_dir_, FilePath("test_detail.xml")).string(), UnitTestOptions::GetAbsolutePathToOutputFile()); } TEST_F(XmlOutputChangeDirTest, PreserveOriginalWorkingDirWithDefaultXML) { GTEST_FLAG(output) = "xml"; EXPECT_EQ(FilePath::ConcatPaths(original_working_dir_, FilePath("test_detail.xml")).string(), UnitTestOptions::GetAbsolutePathToOutputFile()); } TEST_F(XmlOutputChangeDirTest, PreserveOriginalWorkingDirWithRelativeFile) { GTEST_FLAG(output) = "xml:filename.abc"; EXPECT_EQ(FilePath::ConcatPaths(original_working_dir_, FilePath("filename.abc")).string(), UnitTestOptions::GetAbsolutePathToOutputFile()); } TEST_F(XmlOutputChangeDirTest, PreserveOriginalWorkingDirWithRelativePath) { GTEST_FLAG(output) = "xml:path" GTEST_PATH_SEP_; const std::string expected_output_file = FilePath::ConcatPaths( original_working_dir_, FilePath(std::string("path") + GTEST_PATH_SEP_ + GetCurrentExecutableName().string() + ".xml")).string(); const std::string& output_file = UnitTestOptions::GetAbsolutePathToOutputFile(); #if GTEST_OS_WINDOWS EXPECT_STRCASEEQ(expected_output_file.c_str(), output_file.c_str()); #else EXPECT_EQ(expected_output_file, output_file.c_str()); #endif } TEST_F(XmlOutputChangeDirTest, PreserveOriginalWorkingDirWithAbsoluteFile) { #if GTEST_OS_WINDOWS GTEST_FLAG(output) = "xml:c:\\tmp\\filename.abc"; EXPECT_EQ(FilePath("c:\\tmp\\filename.abc").string(), UnitTestOptions::GetAbsolutePathToOutputFile()); #else GTEST_FLAG(output) ="xml:/tmp/filename.abc"; EXPECT_EQ(FilePath("/tmp/filename.abc").string(), UnitTestOptions::GetAbsolutePathToOutputFile()); #endif } TEST_F(XmlOutputChangeDirTest, PreserveOriginalWorkingDirWithAbsolutePath) { #if GTEST_OS_WINDOWS const std::string path = "c:\\tmp\\"; #else const std::string path = "/tmp/"; #endif GTEST_FLAG(output) = "xml:" + path; const std::string expected_output_file = path + GetCurrentExecutableName().string() + ".xml"; const std::string& output_file = UnitTestOptions::GetAbsolutePathToOutputFile(); #if GTEST_OS_WINDOWS EXPECT_STRCASEEQ(expected_output_file.c_str(), output_file.c_str()); #else EXPECT_EQ(expected_output_file, output_file.c_str()); #endif } #endif // !GTEST_OS_FUCHSIA } // namespace } // namespace internal } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-output-test-golden-lin.txt000066400000000000000000001143661355420072700311230ustar00rootroot00000000000000The non-test part of the code is expected to have 2 failures. googletest-output-test_.cc:#: Failure Value of: false Actual: false Expected: true Stack trace: (omitted) googletest-output-test_.cc:#: Failure Expected equality of these values: 2 3 Stack trace: (omitted) [==========] Running 85 tests from 40 test suites. [----------] Global test environment set-up. FooEnvironment::SetUp() called. BarEnvironment::SetUp() called. [----------] 1 test from ADeathTest [ RUN ] ADeathTest.ShouldRunFirst [ OK ] ADeathTest.ShouldRunFirst [----------] 1 test from ATypedDeathTest/0, where TypeParam = int [ RUN ] ATypedDeathTest/0.ShouldRunFirst [ OK ] ATypedDeathTest/0.ShouldRunFirst [----------] 1 test from ATypedDeathTest/1, where TypeParam = double [ RUN ] ATypedDeathTest/1.ShouldRunFirst [ OK ] ATypedDeathTest/1.ShouldRunFirst [----------] 1 test from My/ATypeParamDeathTest/0, where TypeParam = int [ RUN ] My/ATypeParamDeathTest/0.ShouldRunFirst [ OK ] My/ATypeParamDeathTest/0.ShouldRunFirst [----------] 1 test from My/ATypeParamDeathTest/1, where TypeParam = double [ RUN ] My/ATypeParamDeathTest/1.ShouldRunFirst [ OK ] My/ATypeParamDeathTest/1.ShouldRunFirst [----------] 2 tests from PassingTest [ RUN ] PassingTest.PassingTest1 [ OK ] PassingTest.PassingTest1 [ RUN ] PassingTest.PassingTest2 [ OK ] PassingTest.PassingTest2 [----------] 2 tests from NonfatalFailureTest [ RUN ] NonfatalFailureTest.EscapesStringOperands googletest-output-test_.cc:#: Failure Expected equality of these values: kGoldenString Which is: "\"Line" actual Which is: "actual \"string\"" Stack trace: (omitted) googletest-output-test_.cc:#: Failure Expected equality of these values: golden Which is: "\"Line" actual Which is: "actual \"string\"" Stack trace: (omitted) [ FAILED ] NonfatalFailureTest.EscapesStringOperands [ RUN ] NonfatalFailureTest.DiffForLongStrings googletest-output-test_.cc:#: Failure Expected equality of these values: golden_str Which is: "\"Line\0 1\"\nLine 2" "Line 2" With diff: @@ -1,2 @@ -\"Line\0 1\" Line 2 Stack trace: (omitted) [ FAILED ] NonfatalFailureTest.DiffForLongStrings [----------] 3 tests from FatalFailureTest [ RUN ] FatalFailureTest.FatalFailureInSubroutine (expecting a failure that x should be 1) googletest-output-test_.cc:#: Failure Expected equality of these values: 1 x Which is: 2 Stack trace: (omitted) [ FAILED ] FatalFailureTest.FatalFailureInSubroutine [ RUN ] FatalFailureTest.FatalFailureInNestedSubroutine (expecting a failure that x should be 1) googletest-output-test_.cc:#: Failure Expected equality of these values: 1 x Which is: 2 Stack trace: (omitted) [ FAILED ] FatalFailureTest.FatalFailureInNestedSubroutine [ RUN ] FatalFailureTest.NonfatalFailureInSubroutine (expecting a failure on false) googletest-output-test_.cc:#: Failure Value of: false Actual: false Expected: true Stack trace: (omitted) [ FAILED ] FatalFailureTest.NonfatalFailureInSubroutine [----------] 1 test from LoggingTest [ RUN ] LoggingTest.InterleavingLoggingAndAssertions (expecting 2 failures on (3) >= (a[i])) i == 0 i == 1 googletest-output-test_.cc:#: Failure Expected: (3) >= (a[i]), actual: 3 vs 9 Stack trace: (omitted) i == 2 i == 3 googletest-output-test_.cc:#: Failure Expected: (3) >= (a[i]), actual: 3 vs 6 Stack trace: (omitted) [ FAILED ] LoggingTest.InterleavingLoggingAndAssertions [----------] 7 tests from SCOPED_TRACETest [ RUN ] SCOPED_TRACETest.AcceptedValues googletest-output-test_.cc:#: Failure Failed Just checking that all these values work fine. Google Test trace: googletest-output-test_.cc:#: (null) googletest-output-test_.cc:#: 1337 googletest-output-test_.cc:#: std::string googletest-output-test_.cc:#: literal string Stack trace: (omitted) [ FAILED ] SCOPED_TRACETest.AcceptedValues [ RUN ] SCOPED_TRACETest.ObeysScopes (expected to fail) googletest-output-test_.cc:#: Failure Failed This failure is expected, and shouldn't have a trace. Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed This failure is expected, and should have a trace. Google Test trace: googletest-output-test_.cc:#: Expected trace Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed This failure is expected, and shouldn't have a trace. Stack trace: (omitted) [ FAILED ] SCOPED_TRACETest.ObeysScopes [ RUN ] SCOPED_TRACETest.WorksInLoop (expected to fail) googletest-output-test_.cc:#: Failure Expected equality of these values: 2 n Which is: 1 Google Test trace: googletest-output-test_.cc:#: i = 1 Stack trace: (omitted) googletest-output-test_.cc:#: Failure Expected equality of these values: 1 n Which is: 2 Google Test trace: googletest-output-test_.cc:#: i = 2 Stack trace: (omitted) [ FAILED ] SCOPED_TRACETest.WorksInLoop [ RUN ] SCOPED_TRACETest.WorksInSubroutine (expected to fail) googletest-output-test_.cc:#: Failure Expected equality of these values: 2 n Which is: 1 Google Test trace: googletest-output-test_.cc:#: n = 1 Stack trace: (omitted) googletest-output-test_.cc:#: Failure Expected equality of these values: 1 n Which is: 2 Google Test trace: googletest-output-test_.cc:#: n = 2 Stack trace: (omitted) [ FAILED ] SCOPED_TRACETest.WorksInSubroutine [ RUN ] SCOPED_TRACETest.CanBeNested (expected to fail) googletest-output-test_.cc:#: Failure Expected equality of these values: 1 n Which is: 2 Google Test trace: googletest-output-test_.cc:#: n = 2 googletest-output-test_.cc:#: Stack trace: (omitted) [ FAILED ] SCOPED_TRACETest.CanBeNested [ RUN ] SCOPED_TRACETest.CanBeRepeated (expected to fail) googletest-output-test_.cc:#: Failure Failed This failure is expected, and should contain trace point A. Google Test trace: googletest-output-test_.cc:#: A Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed This failure is expected, and should contain trace point A and B. Google Test trace: googletest-output-test_.cc:#: B googletest-output-test_.cc:#: A Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed This failure is expected, and should contain trace point A, B, and C. Google Test trace: googletest-output-test_.cc:#: C googletest-output-test_.cc:#: B googletest-output-test_.cc:#: A Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed This failure is expected, and should contain trace point A, B, and D. Google Test trace: googletest-output-test_.cc:#: D googletest-output-test_.cc:#: B googletest-output-test_.cc:#: A Stack trace: (omitted) [ FAILED ] SCOPED_TRACETest.CanBeRepeated [ RUN ] SCOPED_TRACETest.WorksConcurrently (expecting 6 failures) googletest-output-test_.cc:#: Failure Failed Expected failure #1 (in thread B, only trace B alive). Google Test trace: googletest-output-test_.cc:#: Trace B Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #2 (in thread A, trace A & B both alive). Google Test trace: googletest-output-test_.cc:#: Trace A Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #3 (in thread B, trace A & B both alive). Google Test trace: googletest-output-test_.cc:#: Trace B Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #4 (in thread B, only trace A alive). Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #5 (in thread A, only trace A alive). Google Test trace: googletest-output-test_.cc:#: Trace A Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #6 (in thread A, no trace alive). Stack trace: (omitted) [ FAILED ] SCOPED_TRACETest.WorksConcurrently [----------] 1 test from ScopedTraceTest [ RUN ] ScopedTraceTest.WithExplicitFileAndLine googletest-output-test_.cc:#: Failure Failed Check that the trace is attached to a particular location. Google Test trace: explicit_file.cc:123: expected trace message Stack trace: (omitted) [ FAILED ] ScopedTraceTest.WithExplicitFileAndLine [----------] 1 test from NonFatalFailureInFixtureConstructorTest [ RUN ] NonFatalFailureInFixtureConstructorTest.FailureInConstructor (expecting 5 failures) googletest-output-test_.cc:#: Failure Failed Expected failure #1, in the test fixture c'tor. Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #2, in SetUp(). Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #3, in the test body. Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #4, in TearDown. Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #5, in the test fixture d'tor. Stack trace: (omitted) [ FAILED ] NonFatalFailureInFixtureConstructorTest.FailureInConstructor [----------] 1 test from FatalFailureInFixtureConstructorTest [ RUN ] FatalFailureInFixtureConstructorTest.FailureInConstructor (expecting 2 failures) googletest-output-test_.cc:#: Failure Failed Expected failure #1, in the test fixture c'tor. Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #2, in the test fixture d'tor. Stack trace: (omitted) [ FAILED ] FatalFailureInFixtureConstructorTest.FailureInConstructor [----------] 1 test from NonFatalFailureInSetUpTest [ RUN ] NonFatalFailureInSetUpTest.FailureInSetUp (expecting 4 failures) googletest-output-test_.cc:#: Failure Failed Expected failure #1, in SetUp(). Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #2, in the test function. Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #3, in TearDown(). Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #4, in the test fixture d'tor. Stack trace: (omitted) [ FAILED ] NonFatalFailureInSetUpTest.FailureInSetUp [----------] 1 test from FatalFailureInSetUpTest [ RUN ] FatalFailureInSetUpTest.FailureInSetUp (expecting 3 failures) googletest-output-test_.cc:#: Failure Failed Expected failure #1, in SetUp(). Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #2, in TearDown(). Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected failure #3, in the test fixture d'tor. Stack trace: (omitted) [ FAILED ] FatalFailureInSetUpTest.FailureInSetUp [----------] 1 test from AddFailureAtTest [ RUN ] AddFailureAtTest.MessageContainsSpecifiedFileAndLineNumber foo.cc:42: Failure Failed Expected nonfatal failure in foo.cc Stack trace: (omitted) [ FAILED ] AddFailureAtTest.MessageContainsSpecifiedFileAndLineNumber [----------] 1 test from GtestFailAtTest [ RUN ] GtestFailAtTest.MessageContainsSpecifiedFileAndLineNumber foo.cc:42: Failure Failed Expected fatal failure in foo.cc Stack trace: (omitted) [ FAILED ] GtestFailAtTest.MessageContainsSpecifiedFileAndLineNumber [----------] 4 tests from MixedUpTestSuiteTest [ RUN ] MixedUpTestSuiteTest.FirstTestFromNamespaceFoo [ OK ] MixedUpTestSuiteTest.FirstTestFromNamespaceFoo [ RUN ] MixedUpTestSuiteTest.SecondTestFromNamespaceFoo [ OK ] MixedUpTestSuiteTest.SecondTestFromNamespaceFoo [ RUN ] MixedUpTestSuiteTest.ThisShouldFail gtest.cc:#: Failure Failed All tests in the same test suite must use the same test fixture class. However, in test suite MixedUpTestSuiteTest, you defined test FirstTestFromNamespaceFoo and test ThisShouldFail using two different test fixture classes. This can happen if the two classes are from different namespaces or translation units and have the same name. You should probably rename one of the classes to put the tests into different test suites. Stack trace: (omitted) [ FAILED ] MixedUpTestSuiteTest.ThisShouldFail [ RUN ] MixedUpTestSuiteTest.ThisShouldFailToo gtest.cc:#: Failure Failed All tests in the same test suite must use the same test fixture class. However, in test suite MixedUpTestSuiteTest, you defined test FirstTestFromNamespaceFoo and test ThisShouldFailToo using two different test fixture classes. This can happen if the two classes are from different namespaces or translation units and have the same name. You should probably rename one of the classes to put the tests into different test suites. Stack trace: (omitted) [ FAILED ] MixedUpTestSuiteTest.ThisShouldFailToo [----------] 2 tests from MixedUpTestSuiteWithSameTestNameTest [ RUN ] MixedUpTestSuiteWithSameTestNameTest.TheSecondTestWithThisNameShouldFail [ OK ] MixedUpTestSuiteWithSameTestNameTest.TheSecondTestWithThisNameShouldFail [ RUN ] MixedUpTestSuiteWithSameTestNameTest.TheSecondTestWithThisNameShouldFail gtest.cc:#: Failure Failed All tests in the same test suite must use the same test fixture class. However, in test suite MixedUpTestSuiteWithSameTestNameTest, you defined test TheSecondTestWithThisNameShouldFail and test TheSecondTestWithThisNameShouldFail using two different test fixture classes. This can happen if the two classes are from different namespaces or translation units and have the same name. You should probably rename one of the classes to put the tests into different test suites. Stack trace: (omitted) [ FAILED ] MixedUpTestSuiteWithSameTestNameTest.TheSecondTestWithThisNameShouldFail [----------] 2 tests from TEST_F_before_TEST_in_same_test_case [ RUN ] TEST_F_before_TEST_in_same_test_case.DefinedUsingTEST_F [ OK ] TEST_F_before_TEST_in_same_test_case.DefinedUsingTEST_F [ RUN ] TEST_F_before_TEST_in_same_test_case.DefinedUsingTESTAndShouldFail gtest.cc:#: Failure Failed All tests in the same test suite must use the same test fixture class, so mixing TEST_F and TEST in the same test suite is illegal. In test suite TEST_F_before_TEST_in_same_test_case, test DefinedUsingTEST_F is defined using TEST_F but test DefinedUsingTESTAndShouldFail is defined using TEST. You probably want to change the TEST to TEST_F or move it to another test case. Stack trace: (omitted) [ FAILED ] TEST_F_before_TEST_in_same_test_case.DefinedUsingTESTAndShouldFail [----------] 2 tests from TEST_before_TEST_F_in_same_test_case [ RUN ] TEST_before_TEST_F_in_same_test_case.DefinedUsingTEST [ OK ] TEST_before_TEST_F_in_same_test_case.DefinedUsingTEST [ RUN ] TEST_before_TEST_F_in_same_test_case.DefinedUsingTEST_FAndShouldFail gtest.cc:#: Failure Failed All tests in the same test suite must use the same test fixture class, so mixing TEST_F and TEST in the same test suite is illegal. In test suite TEST_before_TEST_F_in_same_test_case, test DefinedUsingTEST_FAndShouldFail is defined using TEST_F but test DefinedUsingTEST is defined using TEST. You probably want to change the TEST to TEST_F or move it to another test case. Stack trace: (omitted) [ FAILED ] TEST_before_TEST_F_in_same_test_case.DefinedUsingTEST_FAndShouldFail [----------] 8 tests from ExpectNonfatalFailureTest [ RUN ] ExpectNonfatalFailureTest.CanReferenceGlobalVariables [ OK ] ExpectNonfatalFailureTest.CanReferenceGlobalVariables [ RUN ] ExpectNonfatalFailureTest.CanReferenceLocalVariables [ OK ] ExpectNonfatalFailureTest.CanReferenceLocalVariables [ RUN ] ExpectNonfatalFailureTest.SucceedsWhenThereIsOneNonfatalFailure [ OK ] ExpectNonfatalFailureTest.SucceedsWhenThereIsOneNonfatalFailure [ RUN ] ExpectNonfatalFailureTest.FailsWhenThereIsNoNonfatalFailure (expecting a failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: 0 failures Stack trace: (omitted) [ FAILED ] ExpectNonfatalFailureTest.FailsWhenThereIsNoNonfatalFailure [ RUN ] ExpectNonfatalFailureTest.FailsWhenThereAreTwoNonfatalFailures (expecting a failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: 2 failures googletest-output-test_.cc:#: Non-fatal failure: Failed Expected non-fatal failure 1. Stack trace: (omitted) googletest-output-test_.cc:#: Non-fatal failure: Failed Expected non-fatal failure 2. Stack trace: (omitted) Stack trace: (omitted) [ FAILED ] ExpectNonfatalFailureTest.FailsWhenThereAreTwoNonfatalFailures [ RUN ] ExpectNonfatalFailureTest.FailsWhenThereIsOneFatalFailure (expecting a failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: googletest-output-test_.cc:#: Fatal failure: Failed Expected fatal failure. Stack trace: (omitted) Stack trace: (omitted) [ FAILED ] ExpectNonfatalFailureTest.FailsWhenThereIsOneFatalFailure [ RUN ] ExpectNonfatalFailureTest.FailsWhenStatementReturns (expecting a failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: 0 failures Stack trace: (omitted) [ FAILED ] ExpectNonfatalFailureTest.FailsWhenStatementReturns [ RUN ] ExpectNonfatalFailureTest.FailsWhenStatementThrows (expecting a failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: 0 failures Stack trace: (omitted) [ FAILED ] ExpectNonfatalFailureTest.FailsWhenStatementThrows [----------] 8 tests from ExpectFatalFailureTest [ RUN ] ExpectFatalFailureTest.CanReferenceGlobalVariables [ OK ] ExpectFatalFailureTest.CanReferenceGlobalVariables [ RUN ] ExpectFatalFailureTest.CanReferenceLocalStaticVariables [ OK ] ExpectFatalFailureTest.CanReferenceLocalStaticVariables [ RUN ] ExpectFatalFailureTest.SucceedsWhenThereIsOneFatalFailure [ OK ] ExpectFatalFailureTest.SucceedsWhenThereIsOneFatalFailure [ RUN ] ExpectFatalFailureTest.FailsWhenThereIsNoFatalFailure (expecting a failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: 0 failures Stack trace: (omitted) [ FAILED ] ExpectFatalFailureTest.FailsWhenThereIsNoFatalFailure [ RUN ] ExpectFatalFailureTest.FailsWhenThereAreTwoFatalFailures (expecting a failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: 2 failures googletest-output-test_.cc:#: Fatal failure: Failed Expected fatal failure. Stack trace: (omitted) googletest-output-test_.cc:#: Fatal failure: Failed Expected fatal failure. Stack trace: (omitted) Stack trace: (omitted) [ FAILED ] ExpectFatalFailureTest.FailsWhenThereAreTwoFatalFailures [ RUN ] ExpectFatalFailureTest.FailsWhenThereIsOneNonfatalFailure (expecting a failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: googletest-output-test_.cc:#: Non-fatal failure: Failed Expected non-fatal failure. Stack trace: (omitted) Stack trace: (omitted) [ FAILED ] ExpectFatalFailureTest.FailsWhenThereIsOneNonfatalFailure [ RUN ] ExpectFatalFailureTest.FailsWhenStatementReturns (expecting a failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: 0 failures Stack trace: (omitted) [ FAILED ] ExpectFatalFailureTest.FailsWhenStatementReturns [ RUN ] ExpectFatalFailureTest.FailsWhenStatementThrows (expecting a failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: 0 failures Stack trace: (omitted) [ FAILED ] ExpectFatalFailureTest.FailsWhenStatementThrows [----------] 2 tests from TypedTest/0, where TypeParam = int [ RUN ] TypedTest/0.Success [ OK ] TypedTest/0.Success [ RUN ] TypedTest/0.Failure googletest-output-test_.cc:#: Failure Expected equality of these values: 1 TypeParam() Which is: 0 Expected failure Stack trace: (omitted) [ FAILED ] TypedTest/0.Failure, where TypeParam = int [----------] 2 tests from TypedTestWithNames/char0, where TypeParam = char [ RUN ] TypedTestWithNames/char0.Success [ OK ] TypedTestWithNames/char0.Success [ RUN ] TypedTestWithNames/char0.Failure googletest-output-test_.cc:#: Failure Failed Stack trace: (omitted) [ FAILED ] TypedTestWithNames/char0.Failure, where TypeParam = char [----------] 2 tests from TypedTestWithNames/int1, where TypeParam = int [ RUN ] TypedTestWithNames/int1.Success [ OK ] TypedTestWithNames/int1.Success [ RUN ] TypedTestWithNames/int1.Failure googletest-output-test_.cc:#: Failure Failed Stack trace: (omitted) [ FAILED ] TypedTestWithNames/int1.Failure, where TypeParam = int [----------] 2 tests from Unsigned/TypedTestP/0, where TypeParam = unsigned char [ RUN ] Unsigned/TypedTestP/0.Success [ OK ] Unsigned/TypedTestP/0.Success [ RUN ] Unsigned/TypedTestP/0.Failure googletest-output-test_.cc:#: Failure Expected equality of these values: 1U Which is: 1 TypeParam() Which is: '\0' Expected failure Stack trace: (omitted) [ FAILED ] Unsigned/TypedTestP/0.Failure, where TypeParam = unsigned char [----------] 2 tests from Unsigned/TypedTestP/1, where TypeParam = unsigned int [ RUN ] Unsigned/TypedTestP/1.Success [ OK ] Unsigned/TypedTestP/1.Success [ RUN ] Unsigned/TypedTestP/1.Failure googletest-output-test_.cc:#: Failure Expected equality of these values: 1U Which is: 1 TypeParam() Which is: 0 Expected failure Stack trace: (omitted) [ FAILED ] Unsigned/TypedTestP/1.Failure, where TypeParam = unsigned int [----------] 2 tests from UnsignedCustomName/TypedTestP/unsignedChar0, where TypeParam = unsigned char [ RUN ] UnsignedCustomName/TypedTestP/unsignedChar0.Success [ OK ] UnsignedCustomName/TypedTestP/unsignedChar0.Success [ RUN ] UnsignedCustomName/TypedTestP/unsignedChar0.Failure googletest-output-test_.cc:#: Failure Expected equality of these values: 1U Which is: 1 TypeParam() Which is: '\0' Expected failure Stack trace: (omitted) [ FAILED ] UnsignedCustomName/TypedTestP/unsignedChar0.Failure, where TypeParam = unsigned char [----------] 2 tests from UnsignedCustomName/TypedTestP/unsignedInt1, where TypeParam = unsigned int [ RUN ] UnsignedCustomName/TypedTestP/unsignedInt1.Success [ OK ] UnsignedCustomName/TypedTestP/unsignedInt1.Success [ RUN ] UnsignedCustomName/TypedTestP/unsignedInt1.Failure googletest-output-test_.cc:#: Failure Expected equality of these values: 1U Which is: 1 TypeParam() Which is: 0 Expected failure Stack trace: (omitted) [ FAILED ] UnsignedCustomName/TypedTestP/unsignedInt1.Failure, where TypeParam = unsigned int [----------] 4 tests from ExpectFailureTest [ RUN ] ExpectFailureTest.ExpectFatalFailure (expecting 1 failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: googletest-output-test_.cc:#: Success: Succeeded Stack trace: (omitted) Stack trace: (omitted) (expecting 1 failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: googletest-output-test_.cc:#: Non-fatal failure: Failed Expected non-fatal failure. Stack trace: (omitted) Stack trace: (omitted) (expecting 1 failure) gtest.cc:#: Failure Expected: 1 fatal failure containing "Some other fatal failure expected." Actual: googletest-output-test_.cc:#: Fatal failure: Failed Expected fatal failure. Stack trace: (omitted) Stack trace: (omitted) [ FAILED ] ExpectFailureTest.ExpectFatalFailure [ RUN ] ExpectFailureTest.ExpectNonFatalFailure (expecting 1 failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: googletest-output-test_.cc:#: Success: Succeeded Stack trace: (omitted) Stack trace: (omitted) (expecting 1 failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: googletest-output-test_.cc:#: Fatal failure: Failed Expected fatal failure. Stack trace: (omitted) Stack trace: (omitted) (expecting 1 failure) gtest.cc:#: Failure Expected: 1 non-fatal failure containing "Some other non-fatal failure." Actual: googletest-output-test_.cc:#: Non-fatal failure: Failed Expected non-fatal failure. Stack trace: (omitted) Stack trace: (omitted) [ FAILED ] ExpectFailureTest.ExpectNonFatalFailure [ RUN ] ExpectFailureTest.ExpectFatalFailureOnAllThreads (expecting 1 failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: googletest-output-test_.cc:#: Success: Succeeded Stack trace: (omitted) Stack trace: (omitted) (expecting 1 failure) gtest.cc:#: Failure Expected: 1 fatal failure Actual: googletest-output-test_.cc:#: Non-fatal failure: Failed Expected non-fatal failure. Stack trace: (omitted) Stack trace: (omitted) (expecting 1 failure) gtest.cc:#: Failure Expected: 1 fatal failure containing "Some other fatal failure expected." Actual: googletest-output-test_.cc:#: Fatal failure: Failed Expected fatal failure. Stack trace: (omitted) Stack trace: (omitted) [ FAILED ] ExpectFailureTest.ExpectFatalFailureOnAllThreads [ RUN ] ExpectFailureTest.ExpectNonFatalFailureOnAllThreads (expecting 1 failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: googletest-output-test_.cc:#: Success: Succeeded Stack trace: (omitted) Stack trace: (omitted) (expecting 1 failure) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: googletest-output-test_.cc:#: Fatal failure: Failed Expected fatal failure. Stack trace: (omitted) Stack trace: (omitted) (expecting 1 failure) gtest.cc:#: Failure Expected: 1 non-fatal failure containing "Some other non-fatal failure." Actual: googletest-output-test_.cc:#: Non-fatal failure: Failed Expected non-fatal failure. Stack trace: (omitted) Stack trace: (omitted) [ FAILED ] ExpectFailureTest.ExpectNonFatalFailureOnAllThreads [----------] 2 tests from ExpectFailureWithThreadsTest [ RUN ] ExpectFailureWithThreadsTest.ExpectFatalFailure (expecting 2 failures) googletest-output-test_.cc:#: Failure Failed Expected fatal failure. Stack trace: (omitted) gtest.cc:#: Failure Expected: 1 fatal failure Actual: 0 failures Stack trace: (omitted) [ FAILED ] ExpectFailureWithThreadsTest.ExpectFatalFailure [ RUN ] ExpectFailureWithThreadsTest.ExpectNonFatalFailure (expecting 2 failures) googletest-output-test_.cc:#: Failure Failed Expected non-fatal failure. Stack trace: (omitted) gtest.cc:#: Failure Expected: 1 non-fatal failure Actual: 0 failures Stack trace: (omitted) [ FAILED ] ExpectFailureWithThreadsTest.ExpectNonFatalFailure [----------] 1 test from ScopedFakeTestPartResultReporterTest [ RUN ] ScopedFakeTestPartResultReporterTest.InterceptOnlyCurrentThread (expecting 2 failures) googletest-output-test_.cc:#: Failure Failed Expected fatal failure. Stack trace: (omitted) googletest-output-test_.cc:#: Failure Failed Expected non-fatal failure. Stack trace: (omitted) [ FAILED ] ScopedFakeTestPartResultReporterTest.InterceptOnlyCurrentThread [----------] 2 tests from DynamicFixture DynamicFixture::SetUpTestSuite [ RUN ] DynamicFixture.DynamicTestPass DynamicFixture() DynamicFixture::SetUp DynamicFixture::TearDown ~DynamicFixture() [ OK ] DynamicFixture.DynamicTestPass [ RUN ] DynamicFixture.DynamicTestFail DynamicFixture() DynamicFixture::SetUp googletest-output-test_.cc:#: Failure Value of: Pass Actual: false Expected: true Stack trace: (omitted) DynamicFixture::TearDown ~DynamicFixture() [ FAILED ] DynamicFixture.DynamicTestFail DynamicFixture::TearDownTestSuite [----------] 1 test from DynamicFixtureAnotherName DynamicFixture::SetUpTestSuite [ RUN ] DynamicFixtureAnotherName.DynamicTestPass DynamicFixture() DynamicFixture::SetUp DynamicFixture::TearDown ~DynamicFixture() [ OK ] DynamicFixtureAnotherName.DynamicTestPass DynamicFixture::TearDownTestSuite [----------] 2 tests from BadDynamicFixture1 DynamicFixture::SetUpTestSuite [ RUN ] BadDynamicFixture1.FixtureBase DynamicFixture() DynamicFixture::SetUp DynamicFixture::TearDown ~DynamicFixture() [ OK ] BadDynamicFixture1.FixtureBase [ RUN ] BadDynamicFixture1.TestBase DynamicFixture() gtest.cc:#: Failure Failed All tests in the same test suite must use the same test fixture class, so mixing TEST_F and TEST in the same test suite is illegal. In test suite BadDynamicFixture1, test FixtureBase is defined using TEST_F but test TestBase is defined using TEST. You probably want to change the TEST to TEST_F or move it to another test case. Stack trace: (omitted) ~DynamicFixture() [ FAILED ] BadDynamicFixture1.TestBase DynamicFixture::TearDownTestSuite [----------] 2 tests from BadDynamicFixture2 DynamicFixture::SetUpTestSuite [ RUN ] BadDynamicFixture2.FixtureBase DynamicFixture() DynamicFixture::SetUp DynamicFixture::TearDown ~DynamicFixture() [ OK ] BadDynamicFixture2.FixtureBase [ RUN ] BadDynamicFixture2.Derived DynamicFixture() gtest.cc:#: Failure Failed All tests in the same test suite must use the same test fixture class. However, in test suite BadDynamicFixture2, you defined test FixtureBase and test Derived using two different test fixture classes. This can happen if the two classes are from different namespaces or translation units and have the same name. You should probably rename one of the classes to put the tests into different test suites. Stack trace: (omitted) ~DynamicFixture() [ FAILED ] BadDynamicFixture2.Derived DynamicFixture::TearDownTestSuite [----------] 1 test from PrintingFailingParams/FailingParamTest [ RUN ] PrintingFailingParams/FailingParamTest.Fails/0 googletest-output-test_.cc:#: Failure Expected equality of these values: 1 GetParam() Which is: 2 Stack trace: (omitted) [ FAILED ] PrintingFailingParams/FailingParamTest.Fails/0, where GetParam() = 2 [----------] 1 test from EmptyBasenameParamInst [ RUN ] EmptyBasenameParamInst.Passes/0 [ OK ] EmptyBasenameParamInst.Passes/0 [----------] 2 tests from PrintingStrings/ParamTest [ RUN ] PrintingStrings/ParamTest.Success/a [ OK ] PrintingStrings/ParamTest.Success/a [ RUN ] PrintingStrings/ParamTest.Failure/a googletest-output-test_.cc:#: Failure Expected equality of these values: "b" GetParam() Which is: "a" Expected failure Stack trace: (omitted) [ FAILED ] PrintingStrings/ParamTest.Failure/a, where GetParam() = "a" [----------] Global test environment tear-down BarEnvironment::TearDown() called. googletest-output-test_.cc:#: Failure Failed Expected non-fatal failure. Stack trace: (omitted) FooEnvironment::TearDown() called. googletest-output-test_.cc:#: Failure Failed Expected fatal failure. Stack trace: (omitted) [==========] 85 tests from 40 test suites ran. [ PASSED ] 31 tests. [ FAILED ] 54 tests, listed below: [ FAILED ] NonfatalFailureTest.EscapesStringOperands [ FAILED ] NonfatalFailureTest.DiffForLongStrings [ FAILED ] FatalFailureTest.FatalFailureInSubroutine [ FAILED ] FatalFailureTest.FatalFailureInNestedSubroutine [ FAILED ] FatalFailureTest.NonfatalFailureInSubroutine [ FAILED ] LoggingTest.InterleavingLoggingAndAssertions [ FAILED ] SCOPED_TRACETest.AcceptedValues [ FAILED ] SCOPED_TRACETest.ObeysScopes [ FAILED ] SCOPED_TRACETest.WorksInLoop [ FAILED ] SCOPED_TRACETest.WorksInSubroutine [ FAILED ] SCOPED_TRACETest.CanBeNested [ FAILED ] SCOPED_TRACETest.CanBeRepeated [ FAILED ] SCOPED_TRACETest.WorksConcurrently [ FAILED ] ScopedTraceTest.WithExplicitFileAndLine [ FAILED ] NonFatalFailureInFixtureConstructorTest.FailureInConstructor [ FAILED ] FatalFailureInFixtureConstructorTest.FailureInConstructor [ FAILED ] NonFatalFailureInSetUpTest.FailureInSetUp [ FAILED ] FatalFailureInSetUpTest.FailureInSetUp [ FAILED ] AddFailureAtTest.MessageContainsSpecifiedFileAndLineNumber [ FAILED ] GtestFailAtTest.MessageContainsSpecifiedFileAndLineNumber [ FAILED ] MixedUpTestSuiteTest.ThisShouldFail [ FAILED ] MixedUpTestSuiteTest.ThisShouldFailToo [ FAILED ] MixedUpTestSuiteWithSameTestNameTest.TheSecondTestWithThisNameShouldFail [ FAILED ] TEST_F_before_TEST_in_same_test_case.DefinedUsingTESTAndShouldFail [ FAILED ] TEST_before_TEST_F_in_same_test_case.DefinedUsingTEST_FAndShouldFail [ FAILED ] ExpectNonfatalFailureTest.FailsWhenThereIsNoNonfatalFailure [ FAILED ] ExpectNonfatalFailureTest.FailsWhenThereAreTwoNonfatalFailures [ FAILED ] ExpectNonfatalFailureTest.FailsWhenThereIsOneFatalFailure [ FAILED ] ExpectNonfatalFailureTest.FailsWhenStatementReturns [ FAILED ] ExpectNonfatalFailureTest.FailsWhenStatementThrows [ FAILED ] ExpectFatalFailureTest.FailsWhenThereIsNoFatalFailure [ FAILED ] ExpectFatalFailureTest.FailsWhenThereAreTwoFatalFailures [ FAILED ] ExpectFatalFailureTest.FailsWhenThereIsOneNonfatalFailure [ FAILED ] ExpectFatalFailureTest.FailsWhenStatementReturns [ FAILED ] ExpectFatalFailureTest.FailsWhenStatementThrows [ FAILED ] TypedTest/0.Failure, where TypeParam = int [ FAILED ] TypedTestWithNames/char0.Failure, where TypeParam = char [ FAILED ] TypedTestWithNames/int1.Failure, where TypeParam = int [ FAILED ] Unsigned/TypedTestP/0.Failure, where TypeParam = unsigned char [ FAILED ] Unsigned/TypedTestP/1.Failure, where TypeParam = unsigned int [ FAILED ] UnsignedCustomName/TypedTestP/unsignedChar0.Failure, where TypeParam = unsigned char [ FAILED ] UnsignedCustomName/TypedTestP/unsignedInt1.Failure, where TypeParam = unsigned int [ FAILED ] ExpectFailureTest.ExpectFatalFailure [ FAILED ] ExpectFailureTest.ExpectNonFatalFailure [ FAILED ] ExpectFailureTest.ExpectFatalFailureOnAllThreads [ FAILED ] ExpectFailureTest.ExpectNonFatalFailureOnAllThreads [ FAILED ] ExpectFailureWithThreadsTest.ExpectFatalFailure [ FAILED ] ExpectFailureWithThreadsTest.ExpectNonFatalFailure [ FAILED ] ScopedFakeTestPartResultReporterTest.InterceptOnlyCurrentThread [ FAILED ] DynamicFixture.DynamicTestFail [ FAILED ] BadDynamicFixture1.TestBase [ FAILED ] BadDynamicFixture2.Derived [ FAILED ] PrintingFailingParams/FailingParamTest.Fails/0, where GetParam() = 2 [ FAILED ] PrintingStrings/ParamTest.Failure/a, where GetParam() = "a" 54 FAILED TESTS  YOU HAVE 1 DISABLED TEST Note: Google Test filter = FatalFailureTest.*:LoggingTest.* [==========] Running 4 tests from 2 test suites. [----------] Global test environment set-up. [----------] 3 tests from FatalFailureTest [ RUN ] FatalFailureTest.FatalFailureInSubroutine (expecting a failure that x should be 1) googletest-output-test_.cc:#: Failure Expected equality of these values: 1 x Which is: 2 Stack trace: (omitted) [ FAILED ] FatalFailureTest.FatalFailureInSubroutine (? ms) [ RUN ] FatalFailureTest.FatalFailureInNestedSubroutine (expecting a failure that x should be 1) googletest-output-test_.cc:#: Failure Expected equality of these values: 1 x Which is: 2 Stack trace: (omitted) [ FAILED ] FatalFailureTest.FatalFailureInNestedSubroutine (? ms) [ RUN ] FatalFailureTest.NonfatalFailureInSubroutine (expecting a failure on false) googletest-output-test_.cc:#: Failure Value of: false Actual: false Expected: true Stack trace: (omitted) [ FAILED ] FatalFailureTest.NonfatalFailureInSubroutine (? ms) [----------] 3 tests from FatalFailureTest (? ms total) [----------] 1 test from LoggingTest [ RUN ] LoggingTest.InterleavingLoggingAndAssertions (expecting 2 failures on (3) >= (a[i])) i == 0 i == 1 googletest-output-test_.cc:#: Failure Expected: (3) >= (a[i]), actual: 3 vs 9 Stack trace: (omitted) i == 2 i == 3 googletest-output-test_.cc:#: Failure Expected: (3) >= (a[i]), actual: 3 vs 6 Stack trace: (omitted) [ FAILED ] LoggingTest.InterleavingLoggingAndAssertions (? ms) [----------] 1 test from LoggingTest (? ms total) [----------] Global test environment tear-down [==========] 4 tests from 2 test suites ran. (? ms total) [ PASSED ] 0 tests. [ FAILED ] 4 tests, listed below: [ FAILED ] FatalFailureTest.FatalFailureInSubroutine [ FAILED ] FatalFailureTest.FatalFailureInNestedSubroutine [ FAILED ] FatalFailureTest.NonfatalFailureInSubroutine [ FAILED ] LoggingTest.InterleavingLoggingAndAssertions 4 FAILED TESTS Note: Google Test filter = *DISABLED_* [==========] Running 1 test from 1 test suite. [----------] Global test environment set-up. [----------] 1 test from DisabledTestsWarningTest [ RUN ] DisabledTestsWarningTest.DISABLED_AlsoRunDisabledTestsFlagSuppressesWarning [ OK ] DisabledTestsWarningTest.DISABLED_AlsoRunDisabledTestsFlagSuppressesWarning [----------] Global test environment tear-down [==========] 1 test from 1 test suite ran. [ PASSED ] 1 test. Note: Google Test filter = PassingTest.* Note: This is test shard 2 of 2. [==========] Running 1 test from 1 test suite. [----------] Global test environment set-up. [----------] 1 test from PassingTest [ RUN ] PassingTest.PassingTest2 [ OK ] PassingTest.PassingTest2 [----------] Global test environment tear-down [==========] 1 test from 1 test suite ran. [ PASSED ] 1 test. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-output-test.py000066400000000000000000000305111355420072700266730ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Tests the text output of Google C++ Testing and Mocking Framework. To update the golden file: googletest_output_test.py --build_dir=BUILD/DIR --gengolden where BUILD/DIR contains the built googletest-output-test_ file. googletest_output_test.py --gengolden googletest_output_test.py """ import difflib import os import re import sys import gtest_test_utils # The flag for generating the golden file GENGOLDEN_FLAG = '--gengolden' CATCH_EXCEPTIONS_ENV_VAR_NAME = 'GTEST_CATCH_EXCEPTIONS' # The flag indicating stacktraces are not supported NO_STACKTRACE_SUPPORT_FLAG = '--no_stacktrace_support' IS_LINUX = os.name == 'posix' and os.uname()[0] == 'Linux' IS_WINDOWS = os.name == 'nt' GOLDEN_NAME = 'googletest-output-test-golden-lin.txt' PROGRAM_PATH = gtest_test_utils.GetTestExecutablePath('googletest-output-test_') # At least one command we exercise must not have the # 'internal_skip_environment_and_ad_hoc_tests' argument. COMMAND_LIST_TESTS = ({}, [PROGRAM_PATH, '--gtest_list_tests']) COMMAND_WITH_COLOR = ({}, [PROGRAM_PATH, '--gtest_color=yes']) COMMAND_WITH_TIME = ({}, [PROGRAM_PATH, '--gtest_print_time', 'internal_skip_environment_and_ad_hoc_tests', '--gtest_filter=FatalFailureTest.*:LoggingTest.*']) COMMAND_WITH_DISABLED = ( {}, [PROGRAM_PATH, '--gtest_also_run_disabled_tests', 'internal_skip_environment_and_ad_hoc_tests', '--gtest_filter=*DISABLED_*']) COMMAND_WITH_SHARDING = ( {'GTEST_SHARD_INDEX': '1', 'GTEST_TOTAL_SHARDS': '2'}, [PROGRAM_PATH, 'internal_skip_environment_and_ad_hoc_tests', '--gtest_filter=PassingTest.*']) GOLDEN_PATH = os.path.join(gtest_test_utils.GetSourceDir(), GOLDEN_NAME) def ToUnixLineEnding(s): """Changes all Windows/Mac line endings in s to UNIX line endings.""" return s.replace('\r\n', '\n').replace('\r', '\n') def RemoveLocations(test_output): """Removes all file location info from a Google Test program's output. Args: test_output: the output of a Google Test program. Returns: output with all file location info (in the form of 'DIRECTORY/FILE_NAME:LINE_NUMBER: 'or 'DIRECTORY\\FILE_NAME(LINE_NUMBER): ') replaced by 'FILE_NAME:#: '. """ return re.sub(r'.*[/\\]((googletest-output-test_|gtest).cc)(\:\d+|\(\d+\))\: ', r'\1:#: ', test_output) def RemoveStackTraceDetails(output): """Removes all stack traces from a Google Test program's output.""" # *? means "find the shortest string that matches". return re.sub(r'Stack trace:(.|\n)*?\n\n', 'Stack trace: (omitted)\n\n', output) def RemoveStackTraces(output): """Removes all traces of stack traces from a Google Test program's output.""" # *? means "find the shortest string that matches". return re.sub(r'Stack trace:(.|\n)*?\n\n', '', output) def RemoveTime(output): """Removes all time information from a Google Test program's output.""" return re.sub(r'\(\d+ ms', '(? ms', output) def RemoveTypeInfoDetails(test_output): """Removes compiler-specific type info from Google Test program's output. Args: test_output: the output of a Google Test program. Returns: output with type information normalized to canonical form. """ # some compilers output the name of type 'unsigned int' as 'unsigned' return re.sub(r'unsigned int', 'unsigned', test_output) def NormalizeToCurrentPlatform(test_output): """Normalizes platform specific output details for easier comparison.""" if IS_WINDOWS: # Removes the color information that is not present on Windows. test_output = re.sub('\x1b\\[(0;3\d)?m', '', test_output) # Changes failure message headers into the Windows format. test_output = re.sub(r': Failure\n', r': error: ', test_output) # Changes file(line_number) to file:line_number. test_output = re.sub(r'((\w|\.)+)\((\d+)\):', r'\1:\3:', test_output) return test_output def RemoveTestCounts(output): """Removes test counts from a Google Test program's output.""" output = re.sub(r'\d+ tests?, listed below', '? tests, listed below', output) output = re.sub(r'\d+ FAILED TESTS', '? FAILED TESTS', output) output = re.sub(r'\d+ tests? from \d+ test cases?', '? tests from ? test cases', output) output = re.sub(r'\d+ tests? from ([a-zA-Z_])', r'? tests from \1', output) return re.sub(r'\d+ tests?\.', '? tests.', output) def RemoveMatchingTests(test_output, pattern): """Removes output of specified tests from a Google Test program's output. This function strips not only the beginning and the end of a test but also all output in between. Args: test_output: A string containing the test output. pattern: A regex string that matches names of test cases or tests to remove. Returns: Contents of test_output with tests whose names match pattern removed. """ test_output = re.sub( r'.*\[ RUN \] .*%s(.|\n)*?\[( FAILED | OK )\] .*%s.*\n' % ( pattern, pattern), '', test_output) return re.sub(r'.*%s.*\n' % pattern, '', test_output) def NormalizeOutput(output): """Normalizes output (the output of googletest-output-test_.exe).""" output = ToUnixLineEnding(output) output = RemoveLocations(output) output = RemoveStackTraceDetails(output) output = RemoveTime(output) return output def GetShellCommandOutput(env_cmd): """Runs a command in a sub-process, and returns its output in a string. Args: env_cmd: The shell command. A 2-tuple where element 0 is a dict of extra environment variables to set, and element 1 is a string with the command and any flags. Returns: A string with the command's combined standard and diagnostic output. """ # Spawns cmd in a sub-process, and gets its standard I/O file objects. # Set and save the environment properly. environ = os.environ.copy() environ.update(env_cmd[0]) p = gtest_test_utils.Subprocess(env_cmd[1], env=environ) return p.output def GetCommandOutput(env_cmd): """Runs a command and returns its output with all file location info stripped off. Args: env_cmd: The shell command. A 2-tuple where element 0 is a dict of extra environment variables to set, and element 1 is a string with the command and any flags. """ # Disables exception pop-ups on Windows. environ, cmdline = env_cmd environ = dict(environ) # Ensures we are modifying a copy. environ[CATCH_EXCEPTIONS_ENV_VAR_NAME] = '1' return NormalizeOutput(GetShellCommandOutput((environ, cmdline))) def GetOutputOfAllCommands(): """Returns concatenated output from several representative commands.""" return (GetCommandOutput(COMMAND_WITH_COLOR) + GetCommandOutput(COMMAND_WITH_TIME) + GetCommandOutput(COMMAND_WITH_DISABLED) + GetCommandOutput(COMMAND_WITH_SHARDING)) test_list = GetShellCommandOutput(COMMAND_LIST_TESTS) SUPPORTS_DEATH_TESTS = 'DeathTest' in test_list SUPPORTS_TYPED_TESTS = 'TypedTest' in test_list SUPPORTS_THREADS = 'ExpectFailureWithThreadsTest' in test_list SUPPORTS_STACK_TRACES = NO_STACKTRACE_SUPPORT_FLAG not in sys.argv CAN_GENERATE_GOLDEN_FILE = (SUPPORTS_DEATH_TESTS and SUPPORTS_TYPED_TESTS and SUPPORTS_THREADS and SUPPORTS_STACK_TRACES) class GTestOutputTest(gtest_test_utils.TestCase): def RemoveUnsupportedTests(self, test_output): if not SUPPORTS_DEATH_TESTS: test_output = RemoveMatchingTests(test_output, 'DeathTest') if not SUPPORTS_TYPED_TESTS: test_output = RemoveMatchingTests(test_output, 'TypedTest') test_output = RemoveMatchingTests(test_output, 'TypedDeathTest') test_output = RemoveMatchingTests(test_output, 'TypeParamDeathTest') if not SUPPORTS_THREADS: test_output = RemoveMatchingTests(test_output, 'ExpectFailureWithThreadsTest') test_output = RemoveMatchingTests(test_output, 'ScopedFakeTestPartResultReporterTest') test_output = RemoveMatchingTests(test_output, 'WorksConcurrently') if not SUPPORTS_STACK_TRACES: test_output = RemoveStackTraces(test_output) return test_output def testOutput(self): output = GetOutputOfAllCommands() golden_file = open(GOLDEN_PATH, 'rb') # A mis-configured source control system can cause \r appear in EOL # sequences when we read the golden file irrespective of an operating # system used. Therefore, we need to strip those \r's from newlines # unconditionally. golden = ToUnixLineEnding(golden_file.read().decode()) golden_file.close() # We want the test to pass regardless of certain features being # supported or not. # We still have to remove type name specifics in all cases. normalized_actual = RemoveTypeInfoDetails(output) normalized_golden = RemoveTypeInfoDetails(golden) if CAN_GENERATE_GOLDEN_FILE: self.assertEqual(normalized_golden, normalized_actual, '\n'.join(difflib.unified_diff( normalized_golden.split('\n'), normalized_actual.split('\n'), 'golden', 'actual'))) else: normalized_actual = NormalizeToCurrentPlatform( RemoveTestCounts(normalized_actual)) normalized_golden = NormalizeToCurrentPlatform( RemoveTestCounts(self.RemoveUnsupportedTests(normalized_golden))) # This code is very handy when debugging golden file differences: if os.getenv('DEBUG_GTEST_OUTPUT_TEST'): open(os.path.join( gtest_test_utils.GetSourceDir(), '_googletest-output-test_normalized_actual.txt'), 'wb').write( normalized_actual) open(os.path.join( gtest_test_utils.GetSourceDir(), '_googletest-output-test_normalized_golden.txt'), 'wb').write( normalized_golden) self.assertEqual(normalized_golden, normalized_actual) if __name__ == '__main__': if NO_STACKTRACE_SUPPORT_FLAG in sys.argv: # unittest.main() can't handle unknown flags sys.argv.remove(NO_STACKTRACE_SUPPORT_FLAG) if GENGOLDEN_FLAG in sys.argv: if CAN_GENERATE_GOLDEN_FILE: output = GetOutputOfAllCommands() golden_file = open(GOLDEN_PATH, 'wb') golden_file.write(output) golden_file.close() else: message = ( """Unable to write a golden file when compiled in an environment that does not support all the required features (death tests, typed tests, stack traces, and multiple threads). Please build this test and generate the golden file using Blaze on Linux.""") sys.stderr.write(message) sys.exit(1) else: gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-output-test_.cc000066400000000000000000001105421355420072700267720ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The purpose of this file is to generate Google Test output under // various conditions. The output will then be verified by // googletest-output-test.py to ensure that Google Test generates the // desired messages. Therefore, most tests in this file are MEANT TO // FAIL. #include "gtest/gtest-spi.h" #include "gtest/gtest.h" #include "src/gtest-internal-inl.h" #include #if _MSC_VER GTEST_DISABLE_MSC_WARNINGS_PUSH_(4127 /* conditional expression is constant */) #endif // _MSC_VER #if GTEST_IS_THREADSAFE using testing::ScopedFakeTestPartResultReporter; using testing::TestPartResultArray; using testing::internal::Notification; using testing::internal::ThreadWithParam; #endif namespace posix = ::testing::internal::posix; // Tests catching fatal failures. // A subroutine used by the following test. void TestEq1(int x) { ASSERT_EQ(1, x); } // This function calls a test subroutine, catches the fatal failure it // generates, and then returns early. void TryTestSubroutine() { // Calls a subrountine that yields a fatal failure. TestEq1(2); // Catches the fatal failure and aborts the test. // // The testing::Test:: prefix is necessary when calling // HasFatalFailure() outside of a TEST, TEST_F, or test fixture. if (testing::Test::HasFatalFailure()) return; // If we get here, something is wrong. FAIL() << "This should never be reached."; } TEST(PassingTest, PassingTest1) { } TEST(PassingTest, PassingTest2) { } // Tests that parameters of failing parameterized tests are printed in the // failing test summary. class FailingParamTest : public testing::TestWithParam {}; TEST_P(FailingParamTest, Fails) { EXPECT_EQ(1, GetParam()); } // This generates a test which will fail. Google Test is expected to print // its parameter when it outputs the list of all failed tests. INSTANTIATE_TEST_SUITE_P(PrintingFailingParams, FailingParamTest, testing::Values(2)); // Tests that an empty value for the test suite basename yields just // the test name without any prior / class EmptyBasenameParamInst : public testing::TestWithParam {}; TEST_P(EmptyBasenameParamInst, Passes) { EXPECT_EQ(1, GetParam()); } INSTANTIATE_TEST_SUITE_P(, EmptyBasenameParamInst, testing::Values(1)); static const char kGoldenString[] = "\"Line\0 1\"\nLine 2"; TEST(NonfatalFailureTest, EscapesStringOperands) { std::string actual = "actual \"string\""; EXPECT_EQ(kGoldenString, actual); const char* golden = kGoldenString; EXPECT_EQ(golden, actual); } TEST(NonfatalFailureTest, DiffForLongStrings) { std::string golden_str(kGoldenString, sizeof(kGoldenString) - 1); EXPECT_EQ(golden_str, "Line 2"); } // Tests catching a fatal failure in a subroutine. TEST(FatalFailureTest, FatalFailureInSubroutine) { printf("(expecting a failure that x should be 1)\n"); TryTestSubroutine(); } // Tests catching a fatal failure in a nested subroutine. TEST(FatalFailureTest, FatalFailureInNestedSubroutine) { printf("(expecting a failure that x should be 1)\n"); // Calls a subrountine that yields a fatal failure. TryTestSubroutine(); // Catches the fatal failure and aborts the test. // // When calling HasFatalFailure() inside a TEST, TEST_F, or test // fixture, the testing::Test:: prefix is not needed. if (HasFatalFailure()) return; // If we get here, something is wrong. FAIL() << "This should never be reached."; } // Tests HasFatalFailure() after a failed EXPECT check. TEST(FatalFailureTest, NonfatalFailureInSubroutine) { printf("(expecting a failure on false)\n"); EXPECT_TRUE(false); // Generates a nonfatal failure ASSERT_FALSE(HasFatalFailure()); // This should succeed. } // Tests interleaving user logging and Google Test assertions. TEST(LoggingTest, InterleavingLoggingAndAssertions) { static const int a[4] = { 3, 9, 2, 6 }; printf("(expecting 2 failures on (3) >= (a[i]))\n"); for (int i = 0; i < static_cast(sizeof(a)/sizeof(*a)); i++) { printf("i == %d\n", i); EXPECT_GE(3, a[i]); } } // Tests the SCOPED_TRACE macro. // A helper function for testing SCOPED_TRACE. void SubWithoutTrace(int n) { EXPECT_EQ(1, n); ASSERT_EQ(2, n); } // Another helper function for testing SCOPED_TRACE. void SubWithTrace(int n) { SCOPED_TRACE(testing::Message() << "n = " << n); SubWithoutTrace(n); } TEST(SCOPED_TRACETest, AcceptedValues) { SCOPED_TRACE("literal string"); SCOPED_TRACE(std::string("std::string")); SCOPED_TRACE(1337); // streamable type const char* null_value = nullptr; SCOPED_TRACE(null_value); ADD_FAILURE() << "Just checking that all these values work fine."; } // Tests that SCOPED_TRACE() obeys lexical scopes. TEST(SCOPED_TRACETest, ObeysScopes) { printf("(expected to fail)\n"); // There should be no trace before SCOPED_TRACE() is invoked. ADD_FAILURE() << "This failure is expected, and shouldn't have a trace."; { SCOPED_TRACE("Expected trace"); // After SCOPED_TRACE(), a failure in the current scope should contain // the trace. ADD_FAILURE() << "This failure is expected, and should have a trace."; } // Once the control leaves the scope of the SCOPED_TRACE(), there // should be no trace again. ADD_FAILURE() << "This failure is expected, and shouldn't have a trace."; } // Tests that SCOPED_TRACE works inside a loop. TEST(SCOPED_TRACETest, WorksInLoop) { printf("(expected to fail)\n"); for (int i = 1; i <= 2; i++) { SCOPED_TRACE(testing::Message() << "i = " << i); SubWithoutTrace(i); } } // Tests that SCOPED_TRACE works in a subroutine. TEST(SCOPED_TRACETest, WorksInSubroutine) { printf("(expected to fail)\n"); SubWithTrace(1); SubWithTrace(2); } // Tests that SCOPED_TRACE can be nested. TEST(SCOPED_TRACETest, CanBeNested) { printf("(expected to fail)\n"); SCOPED_TRACE(""); // A trace without a message. SubWithTrace(2); } // Tests that multiple SCOPED_TRACEs can be used in the same scope. TEST(SCOPED_TRACETest, CanBeRepeated) { printf("(expected to fail)\n"); SCOPED_TRACE("A"); ADD_FAILURE() << "This failure is expected, and should contain trace point A."; SCOPED_TRACE("B"); ADD_FAILURE() << "This failure is expected, and should contain trace point A and B."; { SCOPED_TRACE("C"); ADD_FAILURE() << "This failure is expected, and should " << "contain trace point A, B, and C."; } SCOPED_TRACE("D"); ADD_FAILURE() << "This failure is expected, and should " << "contain trace point A, B, and D."; } #if GTEST_IS_THREADSAFE // Tests that SCOPED_TRACE()s can be used concurrently from multiple // threads. Namely, an assertion should be affected by // SCOPED_TRACE()s in its own thread only. // Here's the sequence of actions that happen in the test: // // Thread A (main) | Thread B (spawned) // ===============================|================================ // spawns thread B | // -------------------------------+-------------------------------- // waits for n1 | SCOPED_TRACE("Trace B"); // | generates failure #1 // | notifies n1 // -------------------------------+-------------------------------- // SCOPED_TRACE("Trace A"); | waits for n2 // generates failure #2 | // notifies n2 | // -------------------------------|-------------------------------- // waits for n3 | generates failure #3 // | trace B dies // | generates failure #4 // | notifies n3 // -------------------------------|-------------------------------- // generates failure #5 | finishes // trace A dies | // generates failure #6 | // -------------------------------|-------------------------------- // waits for thread B to finish | struct CheckPoints { Notification n1; Notification n2; Notification n3; }; static void ThreadWithScopedTrace(CheckPoints* check_points) { { SCOPED_TRACE("Trace B"); ADD_FAILURE() << "Expected failure #1 (in thread B, only trace B alive)."; check_points->n1.Notify(); check_points->n2.WaitForNotification(); ADD_FAILURE() << "Expected failure #3 (in thread B, trace A & B both alive)."; } // Trace B dies here. ADD_FAILURE() << "Expected failure #4 (in thread B, only trace A alive)."; check_points->n3.Notify(); } TEST(SCOPED_TRACETest, WorksConcurrently) { printf("(expecting 6 failures)\n"); CheckPoints check_points; ThreadWithParam thread(&ThreadWithScopedTrace, &check_points, nullptr); check_points.n1.WaitForNotification(); { SCOPED_TRACE("Trace A"); ADD_FAILURE() << "Expected failure #2 (in thread A, trace A & B both alive)."; check_points.n2.Notify(); check_points.n3.WaitForNotification(); ADD_FAILURE() << "Expected failure #5 (in thread A, only trace A alive)."; } // Trace A dies here. ADD_FAILURE() << "Expected failure #6 (in thread A, no trace alive)."; thread.Join(); } #endif // GTEST_IS_THREADSAFE // Tests basic functionality of the ScopedTrace utility (most of its features // are already tested in SCOPED_TRACETest). TEST(ScopedTraceTest, WithExplicitFileAndLine) { testing::ScopedTrace trace("explicit_file.cc", 123, "expected trace message"); ADD_FAILURE() << "Check that the trace is attached to a particular location."; } TEST(DisabledTestsWarningTest, DISABLED_AlsoRunDisabledTestsFlagSuppressesWarning) { // This test body is intentionally empty. Its sole purpose is for // verifying that the --gtest_also_run_disabled_tests flag // suppresses the "YOU HAVE 12 DISABLED TESTS" warning at the end of // the test output. } // Tests using assertions outside of TEST and TEST_F. // // This function creates two failures intentionally. void AdHocTest() { printf("The non-test part of the code is expected to have 2 failures.\n\n"); EXPECT_TRUE(false); EXPECT_EQ(2, 3); } // Runs all TESTs, all TEST_Fs, and the ad hoc test. int RunAllTests() { AdHocTest(); return RUN_ALL_TESTS(); } // Tests non-fatal failures in the fixture constructor. class NonFatalFailureInFixtureConstructorTest : public testing::Test { protected: NonFatalFailureInFixtureConstructorTest() { printf("(expecting 5 failures)\n"); ADD_FAILURE() << "Expected failure #1, in the test fixture c'tor."; } ~NonFatalFailureInFixtureConstructorTest() override { ADD_FAILURE() << "Expected failure #5, in the test fixture d'tor."; } void SetUp() override { ADD_FAILURE() << "Expected failure #2, in SetUp()."; } void TearDown() override { ADD_FAILURE() << "Expected failure #4, in TearDown."; } }; TEST_F(NonFatalFailureInFixtureConstructorTest, FailureInConstructor) { ADD_FAILURE() << "Expected failure #3, in the test body."; } // Tests fatal failures in the fixture constructor. class FatalFailureInFixtureConstructorTest : public testing::Test { protected: FatalFailureInFixtureConstructorTest() { printf("(expecting 2 failures)\n"); Init(); } ~FatalFailureInFixtureConstructorTest() override { ADD_FAILURE() << "Expected failure #2, in the test fixture d'tor."; } void SetUp() override { ADD_FAILURE() << "UNEXPECTED failure in SetUp(). " << "We should never get here, as the test fixture c'tor " << "had a fatal failure."; } void TearDown() override { ADD_FAILURE() << "UNEXPECTED failure in TearDown(). " << "We should never get here, as the test fixture c'tor " << "had a fatal failure."; } private: void Init() { FAIL() << "Expected failure #1, in the test fixture c'tor."; } }; TEST_F(FatalFailureInFixtureConstructorTest, FailureInConstructor) { ADD_FAILURE() << "UNEXPECTED failure in the test body. " << "We should never get here, as the test fixture c'tor " << "had a fatal failure."; } // Tests non-fatal failures in SetUp(). class NonFatalFailureInSetUpTest : public testing::Test { protected: ~NonFatalFailureInSetUpTest() override { Deinit(); } void SetUp() override { printf("(expecting 4 failures)\n"); ADD_FAILURE() << "Expected failure #1, in SetUp()."; } void TearDown() override { FAIL() << "Expected failure #3, in TearDown()."; } private: void Deinit() { FAIL() << "Expected failure #4, in the test fixture d'tor."; } }; TEST_F(NonFatalFailureInSetUpTest, FailureInSetUp) { FAIL() << "Expected failure #2, in the test function."; } // Tests fatal failures in SetUp(). class FatalFailureInSetUpTest : public testing::Test { protected: ~FatalFailureInSetUpTest() override { Deinit(); } void SetUp() override { printf("(expecting 3 failures)\n"); FAIL() << "Expected failure #1, in SetUp()."; } void TearDown() override { FAIL() << "Expected failure #2, in TearDown()."; } private: void Deinit() { FAIL() << "Expected failure #3, in the test fixture d'tor."; } }; TEST_F(FatalFailureInSetUpTest, FailureInSetUp) { FAIL() << "UNEXPECTED failure in the test function. " << "We should never get here, as SetUp() failed."; } TEST(AddFailureAtTest, MessageContainsSpecifiedFileAndLineNumber) { ADD_FAILURE_AT("foo.cc", 42) << "Expected nonfatal failure in foo.cc"; } TEST(GtestFailAtTest, MessageContainsSpecifiedFileAndLineNumber) { GTEST_FAIL_AT("foo.cc", 42) << "Expected fatal failure in foo.cc"; } #if GTEST_IS_THREADSAFE // A unary function that may die. void DieIf(bool should_die) { GTEST_CHECK_(!should_die) << " - death inside DieIf()."; } // Tests running death tests in a multi-threaded context. // Used for coordination between the main and the spawn thread. struct SpawnThreadNotifications { SpawnThreadNotifications() {} Notification spawn_thread_started; Notification spawn_thread_ok_to_terminate; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(SpawnThreadNotifications); }; // The function to be executed in the thread spawn by the // MultipleThreads test (below). static void ThreadRoutine(SpawnThreadNotifications* notifications) { // Signals the main thread that this thread has started. notifications->spawn_thread_started.Notify(); // Waits for permission to finish from the main thread. notifications->spawn_thread_ok_to_terminate.WaitForNotification(); } // This is a death-test test, but it's not named with a DeathTest // suffix. It starts threads which might interfere with later // death tests, so it must run after all other death tests. class DeathTestAndMultiThreadsTest : public testing::Test { protected: // Starts a thread and waits for it to begin. void SetUp() override { thread_.reset(new ThreadWithParam( &ThreadRoutine, ¬ifications_, nullptr)); notifications_.spawn_thread_started.WaitForNotification(); } // Tells the thread to finish, and reaps it. // Depending on the version of the thread library in use, // a manager thread might still be left running that will interfere // with later death tests. This is unfortunate, but this class // cleans up after itself as best it can. void TearDown() override { notifications_.spawn_thread_ok_to_terminate.Notify(); } private: SpawnThreadNotifications notifications_; std::unique_ptr > thread_; }; #endif // GTEST_IS_THREADSAFE // The MixedUpTestSuiteTest test case verifies that Google Test will fail a // test if it uses a different fixture class than what other tests in // the same test case use. It deliberately contains two fixture // classes with the same name but defined in different namespaces. // The MixedUpTestSuiteWithSameTestNameTest test case verifies that // when the user defines two tests with the same test case name AND // same test name (but in different namespaces), the second test will // fail. namespace foo { class MixedUpTestSuiteTest : public testing::Test { }; TEST_F(MixedUpTestSuiteTest, FirstTestFromNamespaceFoo) {} TEST_F(MixedUpTestSuiteTest, SecondTestFromNamespaceFoo) {} class MixedUpTestSuiteWithSameTestNameTest : public testing::Test { }; TEST_F(MixedUpTestSuiteWithSameTestNameTest, TheSecondTestWithThisNameShouldFail) {} } // namespace foo namespace bar { class MixedUpTestSuiteTest : public testing::Test { }; // The following two tests are expected to fail. We rely on the // golden file to check that Google Test generates the right error message. TEST_F(MixedUpTestSuiteTest, ThisShouldFail) {} TEST_F(MixedUpTestSuiteTest, ThisShouldFailToo) {} class MixedUpTestSuiteWithSameTestNameTest : public testing::Test { }; // Expected to fail. We rely on the golden file to check that Google Test // generates the right error message. TEST_F(MixedUpTestSuiteWithSameTestNameTest, TheSecondTestWithThisNameShouldFail) {} } // namespace bar // The following two test cases verify that Google Test catches the user // error of mixing TEST and TEST_F in the same test case. The first // test case checks the scenario where TEST_F appears before TEST, and // the second one checks where TEST appears before TEST_F. class TEST_F_before_TEST_in_same_test_case : public testing::Test { }; TEST_F(TEST_F_before_TEST_in_same_test_case, DefinedUsingTEST_F) {} // Expected to fail. We rely on the golden file to check that Google Test // generates the right error message. TEST(TEST_F_before_TEST_in_same_test_case, DefinedUsingTESTAndShouldFail) {} class TEST_before_TEST_F_in_same_test_case : public testing::Test { }; TEST(TEST_before_TEST_F_in_same_test_case, DefinedUsingTEST) {} // Expected to fail. We rely on the golden file to check that Google Test // generates the right error message. TEST_F(TEST_before_TEST_F_in_same_test_case, DefinedUsingTEST_FAndShouldFail) { } // Used for testing EXPECT_NONFATAL_FAILURE() and EXPECT_FATAL_FAILURE(). int global_integer = 0; // Tests that EXPECT_NONFATAL_FAILURE() can reference global variables. TEST(ExpectNonfatalFailureTest, CanReferenceGlobalVariables) { global_integer = 0; EXPECT_NONFATAL_FAILURE({ EXPECT_EQ(1, global_integer) << "Expected non-fatal failure."; }, "Expected non-fatal failure."); } // Tests that EXPECT_NONFATAL_FAILURE() can reference local variables // (static or not). TEST(ExpectNonfatalFailureTest, CanReferenceLocalVariables) { int m = 0; static int n; n = 1; EXPECT_NONFATAL_FAILURE({ EXPECT_EQ(m, n) << "Expected non-fatal failure."; }, "Expected non-fatal failure."); } // Tests that EXPECT_NONFATAL_FAILURE() succeeds when there is exactly // one non-fatal failure and no fatal failure. TEST(ExpectNonfatalFailureTest, SucceedsWhenThereIsOneNonfatalFailure) { EXPECT_NONFATAL_FAILURE({ ADD_FAILURE() << "Expected non-fatal failure."; }, "Expected non-fatal failure."); } // Tests that EXPECT_NONFATAL_FAILURE() fails when there is no // non-fatal failure. TEST(ExpectNonfatalFailureTest, FailsWhenThereIsNoNonfatalFailure) { printf("(expecting a failure)\n"); EXPECT_NONFATAL_FAILURE({ }, ""); } // Tests that EXPECT_NONFATAL_FAILURE() fails when there are two // non-fatal failures. TEST(ExpectNonfatalFailureTest, FailsWhenThereAreTwoNonfatalFailures) { printf("(expecting a failure)\n"); EXPECT_NONFATAL_FAILURE({ ADD_FAILURE() << "Expected non-fatal failure 1."; ADD_FAILURE() << "Expected non-fatal failure 2."; }, ""); } // Tests that EXPECT_NONFATAL_FAILURE() fails when there is one fatal // failure. TEST(ExpectNonfatalFailureTest, FailsWhenThereIsOneFatalFailure) { printf("(expecting a failure)\n"); EXPECT_NONFATAL_FAILURE({ FAIL() << "Expected fatal failure."; }, ""); } // Tests that EXPECT_NONFATAL_FAILURE() fails when the statement being // tested returns. TEST(ExpectNonfatalFailureTest, FailsWhenStatementReturns) { printf("(expecting a failure)\n"); EXPECT_NONFATAL_FAILURE({ return; }, ""); } #if GTEST_HAS_EXCEPTIONS // Tests that EXPECT_NONFATAL_FAILURE() fails when the statement being // tested throws. TEST(ExpectNonfatalFailureTest, FailsWhenStatementThrows) { printf("(expecting a failure)\n"); try { EXPECT_NONFATAL_FAILURE({ throw 0; }, ""); } catch(int) { // NOLINT } } #endif // GTEST_HAS_EXCEPTIONS // Tests that EXPECT_FATAL_FAILURE() can reference global variables. TEST(ExpectFatalFailureTest, CanReferenceGlobalVariables) { global_integer = 0; EXPECT_FATAL_FAILURE({ ASSERT_EQ(1, global_integer) << "Expected fatal failure."; }, "Expected fatal failure."); } // Tests that EXPECT_FATAL_FAILURE() can reference local static // variables. TEST(ExpectFatalFailureTest, CanReferenceLocalStaticVariables) { static int n; n = 1; EXPECT_FATAL_FAILURE({ ASSERT_EQ(0, n) << "Expected fatal failure."; }, "Expected fatal failure."); } // Tests that EXPECT_FATAL_FAILURE() succeeds when there is exactly // one fatal failure and no non-fatal failure. TEST(ExpectFatalFailureTest, SucceedsWhenThereIsOneFatalFailure) { EXPECT_FATAL_FAILURE({ FAIL() << "Expected fatal failure."; }, "Expected fatal failure."); } // Tests that EXPECT_FATAL_FAILURE() fails when there is no fatal // failure. TEST(ExpectFatalFailureTest, FailsWhenThereIsNoFatalFailure) { printf("(expecting a failure)\n"); EXPECT_FATAL_FAILURE({ }, ""); } // A helper for generating a fatal failure. void FatalFailure() { FAIL() << "Expected fatal failure."; } // Tests that EXPECT_FATAL_FAILURE() fails when there are two // fatal failures. TEST(ExpectFatalFailureTest, FailsWhenThereAreTwoFatalFailures) { printf("(expecting a failure)\n"); EXPECT_FATAL_FAILURE({ FatalFailure(); FatalFailure(); }, ""); } // Tests that EXPECT_FATAL_FAILURE() fails when there is one non-fatal // failure. TEST(ExpectFatalFailureTest, FailsWhenThereIsOneNonfatalFailure) { printf("(expecting a failure)\n"); EXPECT_FATAL_FAILURE({ ADD_FAILURE() << "Expected non-fatal failure."; }, ""); } // Tests that EXPECT_FATAL_FAILURE() fails when the statement being // tested returns. TEST(ExpectFatalFailureTest, FailsWhenStatementReturns) { printf("(expecting a failure)\n"); EXPECT_FATAL_FAILURE({ return; }, ""); } #if GTEST_HAS_EXCEPTIONS // Tests that EXPECT_FATAL_FAILURE() fails when the statement being // tested throws. TEST(ExpectFatalFailureTest, FailsWhenStatementThrows) { printf("(expecting a failure)\n"); try { EXPECT_FATAL_FAILURE({ throw 0; }, ""); } catch(int) { // NOLINT } } #endif // GTEST_HAS_EXCEPTIONS // This #ifdef block tests the output of value-parameterized tests. std::string ParamNameFunc(const testing::TestParamInfo& info) { return info.param; } class ParamTest : public testing::TestWithParam { }; TEST_P(ParamTest, Success) { EXPECT_EQ("a", GetParam()); } TEST_P(ParamTest, Failure) { EXPECT_EQ("b", GetParam()) << "Expected failure"; } INSTANTIATE_TEST_SUITE_P(PrintingStrings, ParamTest, testing::Values(std::string("a")), ParamNameFunc); // This #ifdef block tests the output of typed tests. #if GTEST_HAS_TYPED_TEST template class TypedTest : public testing::Test { }; TYPED_TEST_SUITE(TypedTest, testing::Types); TYPED_TEST(TypedTest, Success) { EXPECT_EQ(0, TypeParam()); } TYPED_TEST(TypedTest, Failure) { EXPECT_EQ(1, TypeParam()) << "Expected failure"; } typedef testing::Types TypesForTestWithNames; template class TypedTestWithNames : public testing::Test {}; class TypedTestNames { public: template static std::string GetName(int i) { if (std::is_same::value) return std::string("char") + ::testing::PrintToString(i); if (std::is_same::value) return std::string("int") + ::testing::PrintToString(i); } }; TYPED_TEST_SUITE(TypedTestWithNames, TypesForTestWithNames, TypedTestNames); TYPED_TEST(TypedTestWithNames, Success) {} TYPED_TEST(TypedTestWithNames, Failure) { FAIL(); } #endif // GTEST_HAS_TYPED_TEST // This #ifdef block tests the output of type-parameterized tests. #if GTEST_HAS_TYPED_TEST_P template class TypedTestP : public testing::Test { }; TYPED_TEST_SUITE_P(TypedTestP); TYPED_TEST_P(TypedTestP, Success) { EXPECT_EQ(0U, TypeParam()); } TYPED_TEST_P(TypedTestP, Failure) { EXPECT_EQ(1U, TypeParam()) << "Expected failure"; } REGISTER_TYPED_TEST_SUITE_P(TypedTestP, Success, Failure); typedef testing::Types UnsignedTypes; INSTANTIATE_TYPED_TEST_SUITE_P(Unsigned, TypedTestP, UnsignedTypes); class TypedTestPNames { public: template static std::string GetName(int i) { if (std::is_same::value) { return std::string("unsignedChar") + ::testing::PrintToString(i); } if (std::is_same::value) { return std::string("unsignedInt") + ::testing::PrintToString(i); } } }; INSTANTIATE_TYPED_TEST_SUITE_P(UnsignedCustomName, TypedTestP, UnsignedTypes, TypedTestPNames); #endif // GTEST_HAS_TYPED_TEST_P #if GTEST_HAS_DEATH_TEST // We rely on the golden file to verify that tests whose test case // name ends with DeathTest are run first. TEST(ADeathTest, ShouldRunFirst) { } # if GTEST_HAS_TYPED_TEST // We rely on the golden file to verify that typed tests whose test // case name ends with DeathTest are run first. template class ATypedDeathTest : public testing::Test { }; typedef testing::Types NumericTypes; TYPED_TEST_SUITE(ATypedDeathTest, NumericTypes); TYPED_TEST(ATypedDeathTest, ShouldRunFirst) { } # endif // GTEST_HAS_TYPED_TEST # if GTEST_HAS_TYPED_TEST_P // We rely on the golden file to verify that type-parameterized tests // whose test case name ends with DeathTest are run first. template class ATypeParamDeathTest : public testing::Test { }; TYPED_TEST_SUITE_P(ATypeParamDeathTest); TYPED_TEST_P(ATypeParamDeathTest, ShouldRunFirst) { } REGISTER_TYPED_TEST_SUITE_P(ATypeParamDeathTest, ShouldRunFirst); INSTANTIATE_TYPED_TEST_SUITE_P(My, ATypeParamDeathTest, NumericTypes); # endif // GTEST_HAS_TYPED_TEST_P #endif // GTEST_HAS_DEATH_TEST // Tests various failure conditions of // EXPECT_{,NON}FATAL_FAILURE{,_ON_ALL_THREADS}. class ExpectFailureTest : public testing::Test { public: // Must be public and not protected due to a bug in g++ 3.4.2. enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE }; static void AddFailure(FailureMode failure) { if (failure == FATAL_FAILURE) { FAIL() << "Expected fatal failure."; } else { ADD_FAILURE() << "Expected non-fatal failure."; } } }; TEST_F(ExpectFailureTest, ExpectFatalFailure) { // Expected fatal failure, but succeeds. printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE(SUCCEED(), "Expected fatal failure."); // Expected fatal failure, but got a non-fatal failure. printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE(AddFailure(NONFATAL_FAILURE), "Expected non-fatal " "failure."); // Wrong message. printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE(AddFailure(FATAL_FAILURE), "Some other fatal failure " "expected."); } TEST_F(ExpectFailureTest, ExpectNonFatalFailure) { // Expected non-fatal failure, but succeeds. printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE(SUCCEED(), "Expected non-fatal failure."); // Expected non-fatal failure, but got a fatal failure. printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE(AddFailure(FATAL_FAILURE), "Expected fatal failure."); // Wrong message. printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE(AddFailure(NONFATAL_FAILURE), "Some other non-fatal " "failure."); } #if GTEST_IS_THREADSAFE class ExpectFailureWithThreadsTest : public ExpectFailureTest { protected: static void AddFailureInOtherThread(FailureMode failure) { ThreadWithParam thread(&AddFailure, failure, nullptr); thread.Join(); } }; TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailure) { // We only intercept the current thread. printf("(expecting 2 failures)\n"); EXPECT_FATAL_FAILURE(AddFailureInOtherThread(FATAL_FAILURE), "Expected fatal failure."); } TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailure) { // We only intercept the current thread. printf("(expecting 2 failures)\n"); EXPECT_NONFATAL_FAILURE(AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure."); } typedef ExpectFailureWithThreadsTest ScopedFakeTestPartResultReporterTest; // Tests that the ScopedFakeTestPartResultReporter only catches failures from // the current thread if it is instantiated with INTERCEPT_ONLY_CURRENT_THREAD. TEST_F(ScopedFakeTestPartResultReporterTest, InterceptOnlyCurrentThread) { printf("(expecting 2 failures)\n"); TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter( ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD, &results); AddFailureInOtherThread(FATAL_FAILURE); AddFailureInOtherThread(NONFATAL_FAILURE); } // The two failures should not have been intercepted. EXPECT_EQ(0, results.size()) << "This shouldn't fail."; } #endif // GTEST_IS_THREADSAFE TEST_F(ExpectFailureTest, ExpectFatalFailureOnAllThreads) { // Expected fatal failure, but succeeds. printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(SUCCEED(), "Expected fatal failure."); // Expected fatal failure, but got a non-fatal failure. printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailure(NONFATAL_FAILURE), "Expected non-fatal failure."); // Wrong message. printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailure(FATAL_FAILURE), "Some other fatal failure expected."); } TEST_F(ExpectFailureTest, ExpectNonFatalFailureOnAllThreads) { // Expected non-fatal failure, but succeeds. printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(SUCCEED(), "Expected non-fatal " "failure."); // Expected non-fatal failure, but got a fatal failure. printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddFailure(FATAL_FAILURE), "Expected fatal failure."); // Wrong message. printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddFailure(NONFATAL_FAILURE), "Some other non-fatal failure."); } class DynamicFixture : public testing::Test { protected: DynamicFixture() { printf("DynamicFixture()\n"); } ~DynamicFixture() override { printf("~DynamicFixture()\n"); } void SetUp() override { printf("DynamicFixture::SetUp\n"); } void TearDown() override { printf("DynamicFixture::TearDown\n"); } static void SetUpTestSuite() { printf("DynamicFixture::SetUpTestSuite\n"); } static void TearDownTestSuite() { printf("DynamicFixture::TearDownTestSuite\n"); } }; template class DynamicTest : public DynamicFixture { public: void TestBody() override { EXPECT_TRUE(Pass); } }; auto dynamic_test = ( // Register two tests with the same fixture correctly. testing::RegisterTest( "DynamicFixture", "DynamicTestPass", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest; }), testing::RegisterTest( "DynamicFixture", "DynamicTestFail", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest; }), // Register the same fixture with another name. That's fine. testing::RegisterTest( "DynamicFixtureAnotherName", "DynamicTestPass", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest; }), // Register two tests with the same fixture incorrectly. testing::RegisterTest( "BadDynamicFixture1", "FixtureBase", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest; }), testing::RegisterTest( "BadDynamicFixture1", "TestBase", nullptr, nullptr, __FILE__, __LINE__, []() -> testing::Test* { return new DynamicTest; }), // Register two tests with the same fixture incorrectly by ommiting the // return type. testing::RegisterTest( "BadDynamicFixture2", "FixtureBase", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest; }), testing::RegisterTest("BadDynamicFixture2", "Derived", nullptr, nullptr, __FILE__, __LINE__, []() { return new DynamicTest; })); // Two test environments for testing testing::AddGlobalTestEnvironment(). class FooEnvironment : public testing::Environment { public: void SetUp() override { printf("%s", "FooEnvironment::SetUp() called.\n"); } void TearDown() override { printf("%s", "FooEnvironment::TearDown() called.\n"); FAIL() << "Expected fatal failure."; } }; class BarEnvironment : public testing::Environment { public: void SetUp() override { printf("%s", "BarEnvironment::SetUp() called.\n"); } void TearDown() override { printf("%s", "BarEnvironment::TearDown() called.\n"); ADD_FAILURE() << "Expected non-fatal failure."; } }; // The main function. // // The idea is to use Google Test to run all the tests we have defined (some // of them are intended to fail), and then compare the test results // with the "golden" file. int main(int argc, char **argv) { testing::GTEST_FLAG(print_time) = false; // We just run the tests, knowing some of them are intended to fail. // We will use a separate Python script to compare the output of // this program with the golden file. // It's hard to test InitGoogleTest() directly, as it has many // global side effects. The following line serves as a sanity test // for it. testing::InitGoogleTest(&argc, argv); bool internal_skip_environment_and_ad_hoc_tests = std::count(argv, argv + argc, std::string("internal_skip_environment_and_ad_hoc_tests")) > 0; #if GTEST_HAS_DEATH_TEST if (testing::internal::GTEST_FLAG(internal_run_death_test) != "") { // Skip the usual output capturing if we're running as the child // process of an threadsafe-style death test. # if GTEST_OS_WINDOWS posix::FReopen("nul:", "w", stdout); # else posix::FReopen("/dev/null", "w", stdout); # endif // GTEST_OS_WINDOWS return RUN_ALL_TESTS(); } #endif // GTEST_HAS_DEATH_TEST if (internal_skip_environment_and_ad_hoc_tests) return RUN_ALL_TESTS(); // Registers two global test environments. // The golden file verifies that they are set up in the order they // are registered, and torn down in the reverse order. testing::AddGlobalTestEnvironment(new FooEnvironment); testing::AddGlobalTestEnvironment(new BarEnvironment); #if _MSC_VER GTEST_DISABLE_MSC_WARNINGS_POP_() // 4127 #endif // _MSC_VER return RunAllTests(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-param-test-invalid-name1-test.py000066400000000000000000000045131355420072700320360ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2015 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Verifies that Google Test warns the user when not initialized properly.""" import gtest_test_utils binary_name = 'googletest-param-test-invalid-name1-test_' COMMAND = gtest_test_utils.GetTestExecutablePath(binary_name) def Assert(condition): if not condition: raise AssertionError def TestExitCodeAndOutput(command): """Runs the given command and verifies its exit code and output.""" err = ('Parameterized test name \'"InvalidWithQuotes"\' is invalid') p = gtest_test_utils.Subprocess(command) Assert(p.terminated_by_signal) # Verify the output message contains appropriate output Assert(err in p.output) class GTestParamTestInvalidName1Test(gtest_test_utils.TestCase): def testExitCodeAndOutput(self): TestExitCodeAndOutput(COMMAND) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-param-test-invalid-name1-test_.cc000066400000000000000000000037471355420072700321420ustar00rootroot00000000000000// Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/gtest.h" namespace { class DummyTest : public ::testing::TestWithParam {}; TEST_P(DummyTest, Dummy) { } INSTANTIATE_TEST_SUITE_P(InvalidTestName, DummyTest, ::testing::Values("InvalidWithQuotes"), ::testing::PrintToStringParamName()); } // namespace int main(int argc, char *argv[]) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-param-test-invalid-name2-test.py000066400000000000000000000044361355420072700320430ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2015 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Verifies that Google Test warns the user when not initialized properly.""" import gtest_test_utils binary_name = 'googletest-param-test-invalid-name2-test_' COMMAND = gtest_test_utils.GetTestExecutablePath(binary_name) def Assert(condition): if not condition: raise AssertionError def TestExitCodeAndOutput(command): """Runs the given command and verifies its exit code and output.""" err = ('Duplicate parameterized test name \'a\'') p = gtest_test_utils.Subprocess(command) Assert(p.terminated_by_signal) # Check for appropriate output Assert(err in p.output) class GTestParamTestInvalidName2Test(gtest_test_utils.TestCase): def testExitCodeAndOutput(self): TestExitCodeAndOutput(COMMAND) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-param-test-invalid-name2-test_.cc000066400000000000000000000041321355420072700321300ustar00rootroot00000000000000// Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/gtest.h" namespace { class DummyTest : public ::testing::TestWithParam {}; std::string StringParamTestSuffix( const testing::TestParamInfo& info) { return std::string(info.param); } TEST_P(DummyTest, Dummy) { } INSTANTIATE_TEST_SUITE_P(DuplicateTestNames, DummyTest, ::testing::Values("a", "b", "a", "c"), StringParamTestSuffix); } // namespace int main(int argc, char *argv[]) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-param-test-test.cc000066400000000000000000001134451355420072700273550ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for Google Test itself. This file verifies that the parameter // generators objects produce correct parameter sequences and that // Google Test runtime instantiates correct tests from those sequences. #include "gtest/gtest.h" # include # include # include # include # include # include # include "src/gtest-internal-inl.h" // for UnitTestOptions # include "test/googletest-param-test-test.h" using ::std::vector; using ::std::sort; using ::testing::AddGlobalTestEnvironment; using ::testing::Bool; using ::testing::Combine; using ::testing::Message; using ::testing::Range; using ::testing::TestWithParam; using ::testing::Values; using ::testing::ValuesIn; using ::testing::internal::ParamGenerator; using ::testing::internal::UnitTestOptions; // Prints a value to a string. // // FIXME: remove PrintValue() when we move matchers and // EXPECT_THAT() from Google Mock to Google Test. At that time, we // can write EXPECT_THAT(x, Eq(y)) to compare two tuples x and y, as // EXPECT_THAT() and the matchers know how to print tuples. template ::std::string PrintValue(const T& value) { return testing::PrintToString(value); } // Verifies that a sequence generated by the generator and accessed // via the iterator object matches the expected one using Google Test // assertions. template void VerifyGenerator(const ParamGenerator& generator, const T (&expected_values)[N]) { typename ParamGenerator::iterator it = generator.begin(); for (size_t i = 0; i < N; ++i) { ASSERT_FALSE(it == generator.end()) << "At element " << i << " when accessing via an iterator " << "created with the copy constructor.\n"; // We cannot use EXPECT_EQ() here as the values may be tuples, // which don't support <<. EXPECT_TRUE(expected_values[i] == *it) << "where i is " << i << ", expected_values[i] is " << PrintValue(expected_values[i]) << ", *it is " << PrintValue(*it) << ", and 'it' is an iterator created with the copy constructor.\n"; ++it; } EXPECT_TRUE(it == generator.end()) << "At the presumed end of sequence when accessing via an iterator " << "created with the copy constructor.\n"; // Test the iterator assignment. The following lines verify that // the sequence accessed via an iterator initialized via the // assignment operator (as opposed to a copy constructor) matches // just the same. it = generator.begin(); for (size_t i = 0; i < N; ++i) { ASSERT_FALSE(it == generator.end()) << "At element " << i << " when accessing via an iterator " << "created with the assignment operator.\n"; EXPECT_TRUE(expected_values[i] == *it) << "where i is " << i << ", expected_values[i] is " << PrintValue(expected_values[i]) << ", *it is " << PrintValue(*it) << ", and 'it' is an iterator created with the copy constructor.\n"; ++it; } EXPECT_TRUE(it == generator.end()) << "At the presumed end of sequence when accessing via an iterator " << "created with the assignment operator.\n"; } template void VerifyGeneratorIsEmpty(const ParamGenerator& generator) { typename ParamGenerator::iterator it = generator.begin(); EXPECT_TRUE(it == generator.end()); it = generator.begin(); EXPECT_TRUE(it == generator.end()); } // Generator tests. They test that each of the provided generator functions // generates an expected sequence of values. The general test pattern // instantiates a generator using one of the generator functions, // checks the sequence produced by the generator using its iterator API, // and then resets the iterator back to the beginning of the sequence // and checks the sequence again. // Tests that iterators produced by generator functions conform to the // ForwardIterator concept. TEST(IteratorTest, ParamIteratorConformsToForwardIteratorConcept) { const ParamGenerator gen = Range(0, 10); ParamGenerator::iterator it = gen.begin(); // Verifies that iterator initialization works as expected. ParamGenerator::iterator it2 = it; EXPECT_TRUE(*it == *it2) << "Initialized iterators must point to the " << "element same as its source points to"; // Verifies that iterator assignment works as expected. ++it; EXPECT_FALSE(*it == *it2); it2 = it; EXPECT_TRUE(*it == *it2) << "Assigned iterators must point to the " << "element same as its source points to"; // Verifies that prefix operator++() returns *this. EXPECT_EQ(&it, &(++it)) << "Result of the prefix operator++ must be " << "refer to the original object"; // Verifies that the result of the postfix operator++ points to the value // pointed to by the original iterator. int original_value = *it; // Have to compute it outside of macro call to be // unaffected by the parameter evaluation order. EXPECT_EQ(original_value, *(it++)); // Verifies that prefix and postfix operator++() advance an iterator // all the same. it2 = it; ++it; ++it2; EXPECT_TRUE(*it == *it2); } // Tests that Range() generates the expected sequence. TEST(RangeTest, IntRangeWithDefaultStep) { const ParamGenerator gen = Range(0, 3); const int expected_values[] = {0, 1, 2}; VerifyGenerator(gen, expected_values); } // Edge case. Tests that Range() generates the single element sequence // as expected when provided with range limits that are equal. TEST(RangeTest, IntRangeSingleValue) { const ParamGenerator gen = Range(0, 1); const int expected_values[] = {0}; VerifyGenerator(gen, expected_values); } // Edge case. Tests that Range() with generates empty sequence when // supplied with an empty range. TEST(RangeTest, IntRangeEmpty) { const ParamGenerator gen = Range(0, 0); VerifyGeneratorIsEmpty(gen); } // Tests that Range() with custom step (greater then one) generates // the expected sequence. TEST(RangeTest, IntRangeWithCustomStep) { const ParamGenerator gen = Range(0, 9, 3); const int expected_values[] = {0, 3, 6}; VerifyGenerator(gen, expected_values); } // Tests that Range() with custom step (greater then one) generates // the expected sequence when the last element does not fall on the // upper range limit. Sequences generated by Range() must not have // elements beyond the range limits. TEST(RangeTest, IntRangeWithCustomStepOverUpperBound) { const ParamGenerator gen = Range(0, 4, 3); const int expected_values[] = {0, 3}; VerifyGenerator(gen, expected_values); } // Verifies that Range works with user-defined types that define // copy constructor, operator=(), operator+(), and operator<(). class DogAdder { public: explicit DogAdder(const char* a_value) : value_(a_value) {} DogAdder(const DogAdder& other) : value_(other.value_.c_str()) {} DogAdder operator=(const DogAdder& other) { if (this != &other) value_ = other.value_; return *this; } DogAdder operator+(const DogAdder& other) const { Message msg; msg << value_.c_str() << other.value_.c_str(); return DogAdder(msg.GetString().c_str()); } bool operator<(const DogAdder& other) const { return value_ < other.value_; } const std::string& value() const { return value_; } private: std::string value_; }; TEST(RangeTest, WorksWithACustomType) { const ParamGenerator gen = Range(DogAdder("cat"), DogAdder("catdogdog"), DogAdder("dog")); ParamGenerator::iterator it = gen.begin(); ASSERT_FALSE(it == gen.end()); EXPECT_STREQ("cat", it->value().c_str()); ASSERT_FALSE(++it == gen.end()); EXPECT_STREQ("catdog", it->value().c_str()); EXPECT_TRUE(++it == gen.end()); } class IntWrapper { public: explicit IntWrapper(int a_value) : value_(a_value) {} IntWrapper(const IntWrapper& other) : value_(other.value_) {} IntWrapper operator=(const IntWrapper& other) { value_ = other.value_; return *this; } // operator+() adds a different type. IntWrapper operator+(int other) const { return IntWrapper(value_ + other); } bool operator<(const IntWrapper& other) const { return value_ < other.value_; } int value() const { return value_; } private: int value_; }; TEST(RangeTest, WorksWithACustomTypeWithDifferentIncrementType) { const ParamGenerator gen = Range(IntWrapper(0), IntWrapper(2)); ParamGenerator::iterator it = gen.begin(); ASSERT_FALSE(it == gen.end()); EXPECT_EQ(0, it->value()); ASSERT_FALSE(++it == gen.end()); EXPECT_EQ(1, it->value()); EXPECT_TRUE(++it == gen.end()); } // Tests that ValuesIn() with an array parameter generates // the expected sequence. TEST(ValuesInTest, ValuesInArray) { int array[] = {3, 5, 8}; const ParamGenerator gen = ValuesIn(array); VerifyGenerator(gen, array); } // Tests that ValuesIn() with a const array parameter generates // the expected sequence. TEST(ValuesInTest, ValuesInConstArray) { const int array[] = {3, 5, 8}; const ParamGenerator gen = ValuesIn(array); VerifyGenerator(gen, array); } // Edge case. Tests that ValuesIn() with an array parameter containing a // single element generates the single element sequence. TEST(ValuesInTest, ValuesInSingleElementArray) { int array[] = {42}; const ParamGenerator gen = ValuesIn(array); VerifyGenerator(gen, array); } // Tests that ValuesIn() generates the expected sequence for an STL // container (vector). TEST(ValuesInTest, ValuesInVector) { typedef ::std::vector ContainerType; ContainerType values; values.push_back(3); values.push_back(5); values.push_back(8); const ParamGenerator gen = ValuesIn(values); const int expected_values[] = {3, 5, 8}; VerifyGenerator(gen, expected_values); } // Tests that ValuesIn() generates the expected sequence. TEST(ValuesInTest, ValuesInIteratorRange) { typedef ::std::vector ContainerType; ContainerType values; values.push_back(3); values.push_back(5); values.push_back(8); const ParamGenerator gen = ValuesIn(values.begin(), values.end()); const int expected_values[] = {3, 5, 8}; VerifyGenerator(gen, expected_values); } // Edge case. Tests that ValuesIn() provided with an iterator range specifying a // single value generates a single-element sequence. TEST(ValuesInTest, ValuesInSingleElementIteratorRange) { typedef ::std::vector ContainerType; ContainerType values; values.push_back(42); const ParamGenerator gen = ValuesIn(values.begin(), values.end()); const int expected_values[] = {42}; VerifyGenerator(gen, expected_values); } // Edge case. Tests that ValuesIn() provided with an empty iterator range // generates an empty sequence. TEST(ValuesInTest, ValuesInEmptyIteratorRange) { typedef ::std::vector ContainerType; ContainerType values; const ParamGenerator gen = ValuesIn(values.begin(), values.end()); VerifyGeneratorIsEmpty(gen); } // Tests that the Values() generates the expected sequence. TEST(ValuesTest, ValuesWorks) { const ParamGenerator gen = Values(3, 5, 8); const int expected_values[] = {3, 5, 8}; VerifyGenerator(gen, expected_values); } // Tests that Values() generates the expected sequences from elements of // different types convertible to ParamGenerator's parameter type. TEST(ValuesTest, ValuesWorksForValuesOfCompatibleTypes) { const ParamGenerator gen = Values(3, 5.0f, 8.0); const double expected_values[] = {3.0, 5.0, 8.0}; VerifyGenerator(gen, expected_values); } TEST(ValuesTest, ValuesWorksForMaxLengthList) { const ParamGenerator gen = Values( 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500); const int expected_values[] = { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500}; VerifyGenerator(gen, expected_values); } // Edge case test. Tests that single-parameter Values() generates the sequence // with the single value. TEST(ValuesTest, ValuesWithSingleParameter) { const ParamGenerator gen = Values(42); const int expected_values[] = {42}; VerifyGenerator(gen, expected_values); } // Tests that Bool() generates sequence (false, true). TEST(BoolTest, BoolWorks) { const ParamGenerator gen = Bool(); const bool expected_values[] = {false, true}; VerifyGenerator(gen, expected_values); } // Tests that Combine() with two parameters generates the expected sequence. TEST(CombineTest, CombineWithTwoParameters) { const char* foo = "foo"; const char* bar = "bar"; const ParamGenerator > gen = Combine(Values(foo, bar), Values(3, 4)); std::tuple expected_values[] = { std::make_tuple(foo, 3), std::make_tuple(foo, 4), std::make_tuple(bar, 3), std::make_tuple(bar, 4)}; VerifyGenerator(gen, expected_values); } // Tests that Combine() with three parameters generates the expected sequence. TEST(CombineTest, CombineWithThreeParameters) { const ParamGenerator > gen = Combine(Values(0, 1), Values(3, 4), Values(5, 6)); std::tuple expected_values[] = { std::make_tuple(0, 3, 5), std::make_tuple(0, 3, 6), std::make_tuple(0, 4, 5), std::make_tuple(0, 4, 6), std::make_tuple(1, 3, 5), std::make_tuple(1, 3, 6), std::make_tuple(1, 4, 5), std::make_tuple(1, 4, 6)}; VerifyGenerator(gen, expected_values); } // Tests that the Combine() with the first parameter generating a single value // sequence generates a sequence with the number of elements equal to the // number of elements in the sequence generated by the second parameter. TEST(CombineTest, CombineWithFirstParameterSingleValue) { const ParamGenerator > gen = Combine(Values(42), Values(0, 1)); std::tuple expected_values[] = {std::make_tuple(42, 0), std::make_tuple(42, 1)}; VerifyGenerator(gen, expected_values); } // Tests that the Combine() with the second parameter generating a single value // sequence generates a sequence with the number of elements equal to the // number of elements in the sequence generated by the first parameter. TEST(CombineTest, CombineWithSecondParameterSingleValue) { const ParamGenerator > gen = Combine(Values(0, 1), Values(42)); std::tuple expected_values[] = {std::make_tuple(0, 42), std::make_tuple(1, 42)}; VerifyGenerator(gen, expected_values); } // Tests that when the first parameter produces an empty sequence, // Combine() produces an empty sequence, too. TEST(CombineTest, CombineWithFirstParameterEmptyRange) { const ParamGenerator > gen = Combine(Range(0, 0), Values(0, 1)); VerifyGeneratorIsEmpty(gen); } // Tests that when the second parameter produces an empty sequence, // Combine() produces an empty sequence, too. TEST(CombineTest, CombineWithSecondParameterEmptyRange) { const ParamGenerator > gen = Combine(Values(0, 1), Range(1, 1)); VerifyGeneratorIsEmpty(gen); } // Edge case. Tests that combine works with the maximum number // of parameters supported by Google Test (currently 10). TEST(CombineTest, CombineWithMaxNumberOfParameters) { const char* foo = "foo"; const char* bar = "bar"; const ParamGenerator< std::tuple > gen = Combine(Values(foo, bar), Values(1), Values(2), Values(3), Values(4), Values(5), Values(6), Values(7), Values(8), Values(9)); std::tuple expected_values[] = {std::make_tuple(foo, 1, 2, 3, 4, 5, 6, 7, 8, 9), std::make_tuple(bar, 1, 2, 3, 4, 5, 6, 7, 8, 9)}; VerifyGenerator(gen, expected_values); } class NonDefaultConstructAssignString { public: NonDefaultConstructAssignString(const std::string& s) : str_(s) {} const std::string& str() const { return str_; } private: std::string str_; // Not default constructible NonDefaultConstructAssignString(); // Not assignable void operator=(const NonDefaultConstructAssignString&); }; TEST(CombineTest, NonDefaultConstructAssign) { const ParamGenerator > gen = Combine(Values(0, 1), Values(NonDefaultConstructAssignString("A"), NonDefaultConstructAssignString("B"))); ParamGenerator >::iterator it = gen.begin(); EXPECT_EQ(0, std::get<0>(*it)); EXPECT_EQ("A", std::get<1>(*it).str()); ++it; EXPECT_EQ(0, std::get<0>(*it)); EXPECT_EQ("B", std::get<1>(*it).str()); ++it; EXPECT_EQ(1, std::get<0>(*it)); EXPECT_EQ("A", std::get<1>(*it).str()); ++it; EXPECT_EQ(1, std::get<0>(*it)); EXPECT_EQ("B", std::get<1>(*it).str()); ++it; EXPECT_TRUE(it == gen.end()); } // Tests that an generator produces correct sequence after being // assigned from another generator. TEST(ParamGeneratorTest, AssignmentWorks) { ParamGenerator gen = Values(1, 2); const ParamGenerator gen2 = Values(3, 4); gen = gen2; const int expected_values[] = {3, 4}; VerifyGenerator(gen, expected_values); } // This test verifies that the tests are expanded and run as specified: // one test per element from the sequence produced by the generator // specified in INSTANTIATE_TEST_SUITE_P. It also verifies that the test's // fixture constructor, SetUp(), and TearDown() have run and have been // supplied with the correct parameters. // The use of environment object allows detection of the case where no test // case functionality is run at all. In this case TearDownTestSuite will not // be able to detect missing tests, naturally. template class TestGenerationEnvironment : public ::testing::Environment { public: static TestGenerationEnvironment* Instance() { static TestGenerationEnvironment* instance = new TestGenerationEnvironment; return instance; } void FixtureConstructorExecuted() { fixture_constructor_count_++; } void SetUpExecuted() { set_up_count_++; } void TearDownExecuted() { tear_down_count_++; } void TestBodyExecuted() { test_body_count_++; } void TearDown() override { // If all MultipleTestGenerationTest tests have been de-selected // by the filter flag, the following checks make no sense. bool perform_check = false; for (int i = 0; i < kExpectedCalls; ++i) { Message msg; msg << "TestsExpandedAndRun/" << i; if (UnitTestOptions::FilterMatchesTest( "TestExpansionModule/MultipleTestGenerationTest", msg.GetString().c_str())) { perform_check = true; } } if (perform_check) { EXPECT_EQ(kExpectedCalls, fixture_constructor_count_) << "Fixture constructor of ParamTestGenerationTest test case " << "has not been run as expected."; EXPECT_EQ(kExpectedCalls, set_up_count_) << "Fixture SetUp method of ParamTestGenerationTest test case " << "has not been run as expected."; EXPECT_EQ(kExpectedCalls, tear_down_count_) << "Fixture TearDown method of ParamTestGenerationTest test case " << "has not been run as expected."; EXPECT_EQ(kExpectedCalls, test_body_count_) << "Test in ParamTestGenerationTest test case " << "has not been run as expected."; } } private: TestGenerationEnvironment() : fixture_constructor_count_(0), set_up_count_(0), tear_down_count_(0), test_body_count_(0) {} int fixture_constructor_count_; int set_up_count_; int tear_down_count_; int test_body_count_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TestGenerationEnvironment); }; const int test_generation_params[] = {36, 42, 72}; class TestGenerationTest : public TestWithParam { public: enum { PARAMETER_COUNT = sizeof(test_generation_params)/sizeof(test_generation_params[0]) }; typedef TestGenerationEnvironment Environment; TestGenerationTest() { Environment::Instance()->FixtureConstructorExecuted(); current_parameter_ = GetParam(); } void SetUp() override { Environment::Instance()->SetUpExecuted(); EXPECT_EQ(current_parameter_, GetParam()); } void TearDown() override { Environment::Instance()->TearDownExecuted(); EXPECT_EQ(current_parameter_, GetParam()); } static void SetUpTestSuite() { bool all_tests_in_test_case_selected = true; for (int i = 0; i < PARAMETER_COUNT; ++i) { Message test_name; test_name << "TestsExpandedAndRun/" << i; if ( !UnitTestOptions::FilterMatchesTest( "TestExpansionModule/MultipleTestGenerationTest", test_name.GetString())) { all_tests_in_test_case_selected = false; } } EXPECT_TRUE(all_tests_in_test_case_selected) << "When running the TestGenerationTest test case all of its tests\n" << "must be selected by the filter flag for the test case to pass.\n" << "If not all of them are enabled, we can't reliably conclude\n" << "that the correct number of tests have been generated."; collected_parameters_.clear(); } static void TearDownTestSuite() { vector expected_values(test_generation_params, test_generation_params + PARAMETER_COUNT); // Test execution order is not guaranteed by Google Test, // so the order of values in collected_parameters_ can be // different and we have to sort to compare. sort(expected_values.begin(), expected_values.end()); sort(collected_parameters_.begin(), collected_parameters_.end()); EXPECT_TRUE(collected_parameters_ == expected_values); } protected: int current_parameter_; static vector collected_parameters_; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(TestGenerationTest); }; vector TestGenerationTest::collected_parameters_; TEST_P(TestGenerationTest, TestsExpandedAndRun) { Environment::Instance()->TestBodyExecuted(); EXPECT_EQ(current_parameter_, GetParam()); collected_parameters_.push_back(GetParam()); } INSTANTIATE_TEST_SUITE_P(TestExpansionModule, TestGenerationTest, ValuesIn(test_generation_params)); // This test verifies that the element sequence (third parameter of // INSTANTIATE_TEST_SUITE_P) is evaluated in InitGoogleTest() and neither at // the call site of INSTANTIATE_TEST_SUITE_P nor in RUN_ALL_TESTS(). For // that, we declare param_value_ to be a static member of // GeneratorEvaluationTest and initialize it to 0. We set it to 1 in // main(), just before invocation of InitGoogleTest(). After calling // InitGoogleTest(), we set the value to 2. If the sequence is evaluated // before or after InitGoogleTest, INSTANTIATE_TEST_SUITE_P will create a // test with parameter other than 1, and the test body will fail the // assertion. class GeneratorEvaluationTest : public TestWithParam { public: static int param_value() { return param_value_; } static void set_param_value(int param_value) { param_value_ = param_value; } private: static int param_value_; }; int GeneratorEvaluationTest::param_value_ = 0; TEST_P(GeneratorEvaluationTest, GeneratorsEvaluatedInMain) { EXPECT_EQ(1, GetParam()); } INSTANTIATE_TEST_SUITE_P(GenEvalModule, GeneratorEvaluationTest, Values(GeneratorEvaluationTest::param_value())); // Tests that generators defined in a different translation unit are // functional. Generator extern_gen is defined in gtest-param-test_test2.cc. extern ParamGenerator extern_gen; class ExternalGeneratorTest : public TestWithParam {}; TEST_P(ExternalGeneratorTest, ExternalGenerator) { // Sequence produced by extern_gen contains only a single value // which we verify here. EXPECT_EQ(GetParam(), 33); } INSTANTIATE_TEST_SUITE_P(ExternalGeneratorModule, ExternalGeneratorTest, extern_gen); // Tests that a parameterized test case can be defined in one translation // unit and instantiated in another. This test will be instantiated in // gtest-param-test_test2.cc. ExternalInstantiationTest fixture class is // defined in gtest-param-test_test.h. TEST_P(ExternalInstantiationTest, IsMultipleOf33) { EXPECT_EQ(0, GetParam() % 33); } // Tests that a parameterized test case can be instantiated with multiple // generators. class MultipleInstantiationTest : public TestWithParam {}; TEST_P(MultipleInstantiationTest, AllowsMultipleInstances) { } INSTANTIATE_TEST_SUITE_P(Sequence1, MultipleInstantiationTest, Values(1, 2)); INSTANTIATE_TEST_SUITE_P(Sequence2, MultipleInstantiationTest, Range(3, 5)); // Tests that a parameterized test case can be instantiated // in multiple translation units. This test will be instantiated // here and in gtest-param-test_test2.cc. // InstantiationInMultipleTranslationUnitsTest fixture class // is defined in gtest-param-test_test.h. TEST_P(InstantiationInMultipleTranslationUnitsTest, IsMultipleOf42) { EXPECT_EQ(0, GetParam() % 42); } INSTANTIATE_TEST_SUITE_P(Sequence1, InstantiationInMultipleTranslationUnitsTest, Values(42, 42 * 2)); // Tests that each iteration of parameterized test runs in a separate test // object. class SeparateInstanceTest : public TestWithParam { public: SeparateInstanceTest() : count_(0) {} static void TearDownTestSuite() { EXPECT_GE(global_count_, 2) << "If some (but not all) SeparateInstanceTest tests have been " << "filtered out this test will fail. Make sure that all " << "GeneratorEvaluationTest are selected or de-selected together " << "by the test filter."; } protected: int count_; static int global_count_; }; int SeparateInstanceTest::global_count_ = 0; TEST_P(SeparateInstanceTest, TestsRunInSeparateInstances) { EXPECT_EQ(0, count_++); global_count_++; } INSTANTIATE_TEST_SUITE_P(FourElemSequence, SeparateInstanceTest, Range(1, 4)); // Tests that all instantiations of a test have named appropriately. Test // defined with TEST_P(TestSuiteName, TestName) and instantiated with // INSTANTIATE_TEST_SUITE_P(SequenceName, TestSuiteName, generator) must be // named SequenceName/TestSuiteName.TestName/i, where i is the 0-based index of // the sequence element used to instantiate the test. class NamingTest : public TestWithParam {}; TEST_P(NamingTest, TestsReportCorrectNamesAndParameters) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); EXPECT_STREQ("ZeroToFiveSequence/NamingTest", test_info->test_suite_name()); Message index_stream; index_stream << "TestsReportCorrectNamesAndParameters/" << GetParam(); EXPECT_STREQ(index_stream.GetString().c_str(), test_info->name()); EXPECT_EQ(::testing::PrintToString(GetParam()), test_info->value_param()); } INSTANTIATE_TEST_SUITE_P(ZeroToFiveSequence, NamingTest, Range(0, 5)); // Tests that macros in test names are expanded correctly. class MacroNamingTest : public TestWithParam {}; #define PREFIX_WITH_FOO(test_name) Foo##test_name #define PREFIX_WITH_MACRO(test_name) Macro##test_name TEST_P(PREFIX_WITH_MACRO(NamingTest), PREFIX_WITH_FOO(SomeTestName)) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); EXPECT_STREQ("FortyTwo/MacroNamingTest", test_info->test_suite_name()); EXPECT_STREQ("FooSomeTestName", test_info->name()); } INSTANTIATE_TEST_SUITE_P(FortyTwo, MacroNamingTest, Values(42)); // Tests the same thing for non-parametrized tests. class MacroNamingTestNonParametrized : public ::testing::Test {}; TEST_F(PREFIX_WITH_MACRO(NamingTestNonParametrized), PREFIX_WITH_FOO(SomeTestName)) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); EXPECT_STREQ("MacroNamingTestNonParametrized", test_info->test_suite_name()); EXPECT_STREQ("FooSomeTestName", test_info->name()); } // Tests that user supplied custom parameter names are working correctly. // Runs the test with a builtin helper method which uses PrintToString, // as well as a custom function and custom functor to ensure all possible // uses work correctly. class CustomFunctorNamingTest : public TestWithParam {}; TEST_P(CustomFunctorNamingTest, CustomTestNames) {} struct CustomParamNameFunctor { std::string operator()(const ::testing::TestParamInfo& inf) { return inf.param; } }; INSTANTIATE_TEST_SUITE_P(CustomParamNameFunctor, CustomFunctorNamingTest, Values(std::string("FunctorName")), CustomParamNameFunctor()); INSTANTIATE_TEST_SUITE_P(AllAllowedCharacters, CustomFunctorNamingTest, Values("abcdefghijklmnopqrstuvwxyz", "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "01234567890_"), CustomParamNameFunctor()); inline std::string CustomParamNameFunction( const ::testing::TestParamInfo& inf) { return inf.param; } class CustomFunctionNamingTest : public TestWithParam {}; TEST_P(CustomFunctionNamingTest, CustomTestNames) {} INSTANTIATE_TEST_SUITE_P(CustomParamNameFunction, CustomFunctionNamingTest, Values(std::string("FunctionName")), CustomParamNameFunction); INSTANTIATE_TEST_SUITE_P(CustomParamNameFunctionP, CustomFunctionNamingTest, Values(std::string("FunctionNameP")), &CustomParamNameFunction); // Test custom naming with a lambda class CustomLambdaNamingTest : public TestWithParam {}; TEST_P(CustomLambdaNamingTest, CustomTestNames) {} INSTANTIATE_TEST_SUITE_P(CustomParamNameLambda, CustomLambdaNamingTest, Values(std::string("LambdaName")), [](const ::testing::TestParamInfo& inf) { return inf.param; }); TEST(CustomNamingTest, CheckNameRegistry) { ::testing::UnitTest* unit_test = ::testing::UnitTest::GetInstance(); std::set test_names; for (int suite_num = 0; suite_num < unit_test->total_test_suite_count(); ++suite_num) { const ::testing::TestSuite* test_suite = unit_test->GetTestSuite(suite_num); for (int test_num = 0; test_num < test_suite->total_test_count(); ++test_num) { const ::testing::TestInfo* test_info = test_suite->GetTestInfo(test_num); test_names.insert(std::string(test_info->name())); } } EXPECT_EQ(1u, test_names.count("CustomTestNames/FunctorName")); EXPECT_EQ(1u, test_names.count("CustomTestNames/FunctionName")); EXPECT_EQ(1u, test_names.count("CustomTestNames/FunctionNameP")); EXPECT_EQ(1u, test_names.count("CustomTestNames/LambdaName")); } // Test a numeric name to ensure PrintToStringParamName works correctly. class CustomIntegerNamingTest : public TestWithParam {}; TEST_P(CustomIntegerNamingTest, TestsReportCorrectNames) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); Message test_name_stream; test_name_stream << "TestsReportCorrectNames/" << GetParam(); EXPECT_STREQ(test_name_stream.GetString().c_str(), test_info->name()); } INSTANTIATE_TEST_SUITE_P(PrintToString, CustomIntegerNamingTest, Range(0, 5), ::testing::PrintToStringParamName()); // Test a custom struct with PrintToString. struct CustomStruct { explicit CustomStruct(int value) : x(value) {} int x; }; std::ostream& operator<<(std::ostream& stream, const CustomStruct& val) { stream << val.x; return stream; } class CustomStructNamingTest : public TestWithParam {}; TEST_P(CustomStructNamingTest, TestsReportCorrectNames) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); Message test_name_stream; test_name_stream << "TestsReportCorrectNames/" << GetParam(); EXPECT_STREQ(test_name_stream.GetString().c_str(), test_info->name()); } INSTANTIATE_TEST_SUITE_P(PrintToString, CustomStructNamingTest, Values(CustomStruct(0), CustomStruct(1)), ::testing::PrintToStringParamName()); // Test that using a stateful parameter naming function works as expected. struct StatefulNamingFunctor { StatefulNamingFunctor() : sum(0) {} std::string operator()(const ::testing::TestParamInfo& info) { int value = info.param + sum; sum += info.param; return ::testing::PrintToString(value); } int sum; }; class StatefulNamingTest : public ::testing::TestWithParam { protected: StatefulNamingTest() : sum_(0) {} int sum_; }; TEST_P(StatefulNamingTest, TestsReportCorrectNames) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); sum_ += GetParam(); Message test_name_stream; test_name_stream << "TestsReportCorrectNames/" << sum_; EXPECT_STREQ(test_name_stream.GetString().c_str(), test_info->name()); } INSTANTIATE_TEST_SUITE_P(StatefulNamingFunctor, StatefulNamingTest, Range(0, 5), StatefulNamingFunctor()); // Class that cannot be streamed into an ostream. It needs to be copyable // (and, in case of MSVC, also assignable) in order to be a test parameter // type. Its default copy constructor and assignment operator do exactly // what we need. class Unstreamable { public: explicit Unstreamable(int value) : value_(value) {} // -Wunused-private-field: dummy accessor for `value_`. const int& dummy_value() const { return value_; } private: int value_; }; class CommentTest : public TestWithParam {}; TEST_P(CommentTest, TestsCorrectlyReportUnstreamableParams) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); EXPECT_EQ(::testing::PrintToString(GetParam()), test_info->value_param()); } INSTANTIATE_TEST_SUITE_P(InstantiationWithComments, CommentTest, Values(Unstreamable(1))); // Verify that we can create a hierarchy of test fixtures, where the base // class fixture is not parameterized and the derived class is. In this case // ParameterizedDerivedTest inherits from NonParameterizedBaseTest. We // perform simple tests on both. class NonParameterizedBaseTest : public ::testing::Test { public: NonParameterizedBaseTest() : n_(17) { } protected: int n_; }; class ParameterizedDerivedTest : public NonParameterizedBaseTest, public ::testing::WithParamInterface { protected: ParameterizedDerivedTest() : count_(0) { } int count_; static int global_count_; }; int ParameterizedDerivedTest::global_count_ = 0; TEST_F(NonParameterizedBaseTest, FixtureIsInitialized) { EXPECT_EQ(17, n_); } TEST_P(ParameterizedDerivedTest, SeesSequence) { EXPECT_EQ(17, n_); EXPECT_EQ(0, count_++); EXPECT_EQ(GetParam(), global_count_++); } class ParameterizedDeathTest : public ::testing::TestWithParam { }; TEST_F(ParameterizedDeathTest, GetParamDiesFromTestF) { EXPECT_DEATH_IF_SUPPORTED(GetParam(), ".* value-parameterized test .*"); } INSTANTIATE_TEST_SUITE_P(RangeZeroToFive, ParameterizedDerivedTest, Range(0, 5)); // Tests param generator working with Enums enum MyEnums { ENUM1 = 1, ENUM2 = 3, ENUM3 = 8, }; class MyEnumTest : public testing::TestWithParam {}; TEST_P(MyEnumTest, ChecksParamMoreThanZero) { EXPECT_GE(10, GetParam()); } INSTANTIATE_TEST_SUITE_P(MyEnumTests, MyEnumTest, ::testing::Values(ENUM1, ENUM2, 0)); int main(int argc, char **argv) { // Used in TestGenerationTest test suite. AddGlobalTestEnvironment(TestGenerationTest::Environment::Instance()); // Used in GeneratorEvaluationTest test suite. Tests that the updated value // will be picked up for instantiating tests in GeneratorEvaluationTest. GeneratorEvaluationTest::set_param_value(1); ::testing::InitGoogleTest(&argc, argv); // Used in GeneratorEvaluationTest test suite. Tests that value updated // here will NOT be used for instantiating tests in // GeneratorEvaluationTest. GeneratorEvaluationTest::set_param_value(2); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-param-test-test.h000066400000000000000000000043141355420072700272110ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This header file provides classes and functions used internally // for testing Google Test itself. #ifndef GTEST_TEST_GTEST_PARAM_TEST_TEST_H_ #define GTEST_TEST_GTEST_PARAM_TEST_TEST_H_ #include "gtest/gtest.h" // Test fixture for testing definition and instantiation of a test // in separate translation units. class ExternalInstantiationTest : public ::testing::TestWithParam { }; // Test fixture for testing instantiation of a test in multiple // translation units. class InstantiationInMultipleTranslationUnitsTest : public ::testing::TestWithParam { }; #endif // GTEST_TEST_GTEST_PARAM_TEST_TEST_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-param-test2-test.cc000066400000000000000000000053751355420072700274410ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for Google Test itself. This verifies that the basic constructs of // Google Test work. #include "gtest/gtest.h" #include "test/googletest-param-test-test.h" using ::testing::Values; using ::testing::internal::ParamGenerator; // Tests that generators defined in a different translation unit // are functional. The test using extern_gen is defined // in googletest-param-test-test.cc. ParamGenerator extern_gen = Values(33); // Tests that a parameterized test case can be defined in one translation unit // and instantiated in another. The test is defined in // googletest-param-test-test.cc and ExternalInstantiationTest fixture class is // defined in gtest-param-test_test.h. INSTANTIATE_TEST_SUITE_P(MultiplesOf33, ExternalInstantiationTest, Values(33, 66)); // Tests that a parameterized test case can be instantiated // in multiple translation units. Another instantiation is defined // in googletest-param-test-test.cc and // InstantiationInMultipleTranslationUnitsTest fixture is defined in // gtest-param-test_test.h INSTANTIATE_TEST_SUITE_P(Sequence2, InstantiationInMultipleTranslationUnitsTest, Values(42*3, 42*4, 42*5)); libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-port-test.cc000066400000000000000000001152101355420072700262540ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This file tests the internal cross-platform support utilities. #include #include "gtest/internal/gtest-port.h" #if GTEST_OS_MAC # include #endif // GTEST_OS_MAC #include #include #include // For std::pair and std::make_pair. #include #include "gtest/gtest.h" #include "gtest/gtest-spi.h" #include "src/gtest-internal-inl.h" using std::make_pair; using std::pair; namespace testing { namespace internal { TEST(IsXDigitTest, WorksForNarrowAscii) { EXPECT_TRUE(IsXDigit('0')); EXPECT_TRUE(IsXDigit('9')); EXPECT_TRUE(IsXDigit('A')); EXPECT_TRUE(IsXDigit('F')); EXPECT_TRUE(IsXDigit('a')); EXPECT_TRUE(IsXDigit('f')); EXPECT_FALSE(IsXDigit('-')); EXPECT_FALSE(IsXDigit('g')); EXPECT_FALSE(IsXDigit('G')); } TEST(IsXDigitTest, ReturnsFalseForNarrowNonAscii) { EXPECT_FALSE(IsXDigit(static_cast('\x80'))); EXPECT_FALSE(IsXDigit(static_cast('0' | '\x80'))); } TEST(IsXDigitTest, WorksForWideAscii) { EXPECT_TRUE(IsXDigit(L'0')); EXPECT_TRUE(IsXDigit(L'9')); EXPECT_TRUE(IsXDigit(L'A')); EXPECT_TRUE(IsXDigit(L'F')); EXPECT_TRUE(IsXDigit(L'a')); EXPECT_TRUE(IsXDigit(L'f')); EXPECT_FALSE(IsXDigit(L'-')); EXPECT_FALSE(IsXDigit(L'g')); EXPECT_FALSE(IsXDigit(L'G')); } TEST(IsXDigitTest, ReturnsFalseForWideNonAscii) { EXPECT_FALSE(IsXDigit(static_cast(0x80))); EXPECT_FALSE(IsXDigit(static_cast(L'0' | 0x80))); EXPECT_FALSE(IsXDigit(static_cast(L'0' | 0x100))); } class Base { public: // Copy constructor and assignment operator do exactly what we need, so we // use them. Base() : member_(0) {} explicit Base(int n) : member_(n) {} virtual ~Base() {} int member() { return member_; } private: int member_; }; class Derived : public Base { public: explicit Derived(int n) : Base(n) {} }; TEST(ImplicitCastTest, ConvertsPointers) { Derived derived(0); EXPECT_TRUE(&derived == ::testing::internal::ImplicitCast_(&derived)); } TEST(ImplicitCastTest, CanUseInheritance) { Derived derived(1); Base base = ::testing::internal::ImplicitCast_(derived); EXPECT_EQ(derived.member(), base.member()); } class Castable { public: explicit Castable(bool* converted) : converted_(converted) {} operator Base() { *converted_ = true; return Base(); } private: bool* converted_; }; TEST(ImplicitCastTest, CanUseNonConstCastOperator) { bool converted = false; Castable castable(&converted); Base base = ::testing::internal::ImplicitCast_(castable); EXPECT_TRUE(converted); } class ConstCastable { public: explicit ConstCastable(bool* converted) : converted_(converted) {} operator Base() const { *converted_ = true; return Base(); } private: bool* converted_; }; TEST(ImplicitCastTest, CanUseConstCastOperatorOnConstValues) { bool converted = false; const ConstCastable const_castable(&converted); Base base = ::testing::internal::ImplicitCast_(const_castable); EXPECT_TRUE(converted); } class ConstAndNonConstCastable { public: ConstAndNonConstCastable(bool* converted, bool* const_converted) : converted_(converted), const_converted_(const_converted) {} operator Base() { *converted_ = true; return Base(); } operator Base() const { *const_converted_ = true; return Base(); } private: bool* converted_; bool* const_converted_; }; TEST(ImplicitCastTest, CanSelectBetweenConstAndNonConstCasrAppropriately) { bool converted = false; bool const_converted = false; ConstAndNonConstCastable castable(&converted, &const_converted); Base base = ::testing::internal::ImplicitCast_(castable); EXPECT_TRUE(converted); EXPECT_FALSE(const_converted); converted = false; const_converted = false; const ConstAndNonConstCastable const_castable(&converted, &const_converted); base = ::testing::internal::ImplicitCast_(const_castable); EXPECT_FALSE(converted); EXPECT_TRUE(const_converted); } class To { public: To(bool* converted) { *converted = true; } // NOLINT }; TEST(ImplicitCastTest, CanUseImplicitConstructor) { bool converted = false; To to = ::testing::internal::ImplicitCast_(&converted); (void)to; EXPECT_TRUE(converted); } TEST(GtestCheckSyntaxTest, BehavesLikeASingleStatement) { if (AlwaysFalse()) GTEST_CHECK_(false) << "This should never be executed; " "It's a compilation test only."; if (AlwaysTrue()) GTEST_CHECK_(true); else ; // NOLINT if (AlwaysFalse()) ; // NOLINT else GTEST_CHECK_(true) << ""; } TEST(GtestCheckSyntaxTest, WorksWithSwitch) { switch (0) { case 1: break; default: GTEST_CHECK_(true); } switch (0) case 0: GTEST_CHECK_(true) << "Check failed in switch case"; } // Verifies behavior of FormatFileLocation. TEST(FormatFileLocationTest, FormatsFileLocation) { EXPECT_PRED_FORMAT2(IsSubstring, "foo.cc", FormatFileLocation("foo.cc", 42)); EXPECT_PRED_FORMAT2(IsSubstring, "42", FormatFileLocation("foo.cc", 42)); } TEST(FormatFileLocationTest, FormatsUnknownFile) { EXPECT_PRED_FORMAT2(IsSubstring, "unknown file", FormatFileLocation(nullptr, 42)); EXPECT_PRED_FORMAT2(IsSubstring, "42", FormatFileLocation(nullptr, 42)); } TEST(FormatFileLocationTest, FormatsUknownLine) { EXPECT_EQ("foo.cc:", FormatFileLocation("foo.cc", -1)); } TEST(FormatFileLocationTest, FormatsUknownFileAndLine) { EXPECT_EQ("unknown file:", FormatFileLocation(nullptr, -1)); } // Verifies behavior of FormatCompilerIndependentFileLocation. TEST(FormatCompilerIndependentFileLocationTest, FormatsFileLocation) { EXPECT_EQ("foo.cc:42", FormatCompilerIndependentFileLocation("foo.cc", 42)); } TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownFile) { EXPECT_EQ("unknown file:42", FormatCompilerIndependentFileLocation(nullptr, 42)); } TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownLine) { EXPECT_EQ("foo.cc", FormatCompilerIndependentFileLocation("foo.cc", -1)); } TEST(FormatCompilerIndependentFileLocationTest, FormatsUknownFileAndLine) { EXPECT_EQ("unknown file", FormatCompilerIndependentFileLocation(nullptr, -1)); } #if GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_QNX || GTEST_OS_FUCHSIA || \ GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \ GTEST_OS_NETBSD || GTEST_OS_OPENBSD void* ThreadFunc(void* data) { internal::Mutex* mutex = static_cast(data); mutex->Lock(); mutex->Unlock(); return nullptr; } TEST(GetThreadCountTest, ReturnsCorrectValue) { const size_t starting_count = GetThreadCount(); pthread_t thread_id; internal::Mutex mutex; { internal::MutexLock lock(&mutex); pthread_attr_t attr; ASSERT_EQ(0, pthread_attr_init(&attr)); ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)); const int status = pthread_create(&thread_id, &attr, &ThreadFunc, &mutex); ASSERT_EQ(0, pthread_attr_destroy(&attr)); ASSERT_EQ(0, status); EXPECT_EQ(starting_count + 1, GetThreadCount()); } void* dummy; ASSERT_EQ(0, pthread_join(thread_id, &dummy)); // The OS may not immediately report the updated thread count after // joining a thread, causing flakiness in this test. To counter that, we // wait for up to .5 seconds for the OS to report the correct value. for (int i = 0; i < 5; ++i) { if (GetThreadCount() == starting_count) break; SleepMilliseconds(100); } EXPECT_EQ(starting_count, GetThreadCount()); } #else TEST(GetThreadCountTest, ReturnsZeroWhenUnableToCountThreads) { EXPECT_EQ(0U, GetThreadCount()); } #endif // GTEST_OS_LINUX || GTEST_OS_MAC || GTEST_OS_QNX || GTEST_OS_FUCHSIA TEST(GtestCheckDeathTest, DiesWithCorrectOutputOnFailure) { const bool a_false_condition = false; const char regex[] = #ifdef _MSC_VER "googletest-port-test\\.cc\\(\\d+\\):" #elif GTEST_USES_POSIX_RE "googletest-port-test\\.cc:[0-9]+" #else "googletest-port-test\\.cc:\\d+" #endif // _MSC_VER ".*a_false_condition.*Extra info.*"; EXPECT_DEATH_IF_SUPPORTED(GTEST_CHECK_(a_false_condition) << "Extra info", regex); } #if GTEST_HAS_DEATH_TEST TEST(GtestCheckDeathTest, LivesSilentlyOnSuccess) { EXPECT_EXIT({ GTEST_CHECK_(true) << "Extra info"; ::std::cerr << "Success\n"; exit(0); }, ::testing::ExitedWithCode(0), "Success"); } #endif // GTEST_HAS_DEATH_TEST // Verifies that Google Test choose regular expression engine appropriate to // the platform. The test will produce compiler errors in case of failure. // For simplicity, we only cover the most important platforms here. TEST(RegexEngineSelectionTest, SelectsCorrectRegexEngine) { #if !GTEST_USES_PCRE # if GTEST_HAS_POSIX_RE EXPECT_TRUE(GTEST_USES_POSIX_RE); # else EXPECT_TRUE(GTEST_USES_SIMPLE_RE); # endif #endif // !GTEST_USES_PCRE } #if GTEST_USES_POSIX_RE # if GTEST_HAS_TYPED_TEST template class RETest : public ::testing::Test {}; // Defines StringTypes as the list of all string types that class RE // supports. typedef testing::Types< ::std::string, const char*> StringTypes; TYPED_TEST_SUITE(RETest, StringTypes); // Tests RE's implicit constructors. TYPED_TEST(RETest, ImplicitConstructorWorks) { const RE empty(TypeParam("")); EXPECT_STREQ("", empty.pattern()); const RE simple(TypeParam("hello")); EXPECT_STREQ("hello", simple.pattern()); const RE normal(TypeParam(".*(\\w+)")); EXPECT_STREQ(".*(\\w+)", normal.pattern()); } // Tests that RE's constructors reject invalid regular expressions. TYPED_TEST(RETest, RejectsInvalidRegex) { EXPECT_NONFATAL_FAILURE({ const RE invalid(TypeParam("?")); }, "\"?\" is not a valid POSIX Extended regular expression."); } // Tests RE::FullMatch(). TYPED_TEST(RETest, FullMatchWorks) { const RE empty(TypeParam("")); EXPECT_TRUE(RE::FullMatch(TypeParam(""), empty)); EXPECT_FALSE(RE::FullMatch(TypeParam("a"), empty)); const RE re(TypeParam("a.*z")); EXPECT_TRUE(RE::FullMatch(TypeParam("az"), re)); EXPECT_TRUE(RE::FullMatch(TypeParam("axyz"), re)); EXPECT_FALSE(RE::FullMatch(TypeParam("baz"), re)); EXPECT_FALSE(RE::FullMatch(TypeParam("azy"), re)); } // Tests RE::PartialMatch(). TYPED_TEST(RETest, PartialMatchWorks) { const RE empty(TypeParam("")); EXPECT_TRUE(RE::PartialMatch(TypeParam(""), empty)); EXPECT_TRUE(RE::PartialMatch(TypeParam("a"), empty)); const RE re(TypeParam("a.*z")); EXPECT_TRUE(RE::PartialMatch(TypeParam("az"), re)); EXPECT_TRUE(RE::PartialMatch(TypeParam("axyz"), re)); EXPECT_TRUE(RE::PartialMatch(TypeParam("baz"), re)); EXPECT_TRUE(RE::PartialMatch(TypeParam("azy"), re)); EXPECT_FALSE(RE::PartialMatch(TypeParam("zza"), re)); } # endif // GTEST_HAS_TYPED_TEST #elif GTEST_USES_SIMPLE_RE TEST(IsInSetTest, NulCharIsNotInAnySet) { EXPECT_FALSE(IsInSet('\0', "")); EXPECT_FALSE(IsInSet('\0', "\0")); EXPECT_FALSE(IsInSet('\0', "a")); } TEST(IsInSetTest, WorksForNonNulChars) { EXPECT_FALSE(IsInSet('a', "Ab")); EXPECT_FALSE(IsInSet('c', "")); EXPECT_TRUE(IsInSet('b', "bcd")); EXPECT_TRUE(IsInSet('b', "ab")); } TEST(IsAsciiDigitTest, IsFalseForNonDigit) { EXPECT_FALSE(IsAsciiDigit('\0')); EXPECT_FALSE(IsAsciiDigit(' ')); EXPECT_FALSE(IsAsciiDigit('+')); EXPECT_FALSE(IsAsciiDigit('-')); EXPECT_FALSE(IsAsciiDigit('.')); EXPECT_FALSE(IsAsciiDigit('a')); } TEST(IsAsciiDigitTest, IsTrueForDigit) { EXPECT_TRUE(IsAsciiDigit('0')); EXPECT_TRUE(IsAsciiDigit('1')); EXPECT_TRUE(IsAsciiDigit('5')); EXPECT_TRUE(IsAsciiDigit('9')); } TEST(IsAsciiPunctTest, IsFalseForNonPunct) { EXPECT_FALSE(IsAsciiPunct('\0')); EXPECT_FALSE(IsAsciiPunct(' ')); EXPECT_FALSE(IsAsciiPunct('\n')); EXPECT_FALSE(IsAsciiPunct('a')); EXPECT_FALSE(IsAsciiPunct('0')); } TEST(IsAsciiPunctTest, IsTrueForPunct) { for (const char* p = "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"; *p; p++) { EXPECT_PRED1(IsAsciiPunct, *p); } } TEST(IsRepeatTest, IsFalseForNonRepeatChar) { EXPECT_FALSE(IsRepeat('\0')); EXPECT_FALSE(IsRepeat(' ')); EXPECT_FALSE(IsRepeat('a')); EXPECT_FALSE(IsRepeat('1')); EXPECT_FALSE(IsRepeat('-')); } TEST(IsRepeatTest, IsTrueForRepeatChar) { EXPECT_TRUE(IsRepeat('?')); EXPECT_TRUE(IsRepeat('*')); EXPECT_TRUE(IsRepeat('+')); } TEST(IsAsciiWhiteSpaceTest, IsFalseForNonWhiteSpace) { EXPECT_FALSE(IsAsciiWhiteSpace('\0')); EXPECT_FALSE(IsAsciiWhiteSpace('a')); EXPECT_FALSE(IsAsciiWhiteSpace('1')); EXPECT_FALSE(IsAsciiWhiteSpace('+')); EXPECT_FALSE(IsAsciiWhiteSpace('_')); } TEST(IsAsciiWhiteSpaceTest, IsTrueForWhiteSpace) { EXPECT_TRUE(IsAsciiWhiteSpace(' ')); EXPECT_TRUE(IsAsciiWhiteSpace('\n')); EXPECT_TRUE(IsAsciiWhiteSpace('\r')); EXPECT_TRUE(IsAsciiWhiteSpace('\t')); EXPECT_TRUE(IsAsciiWhiteSpace('\v')); EXPECT_TRUE(IsAsciiWhiteSpace('\f')); } TEST(IsAsciiWordCharTest, IsFalseForNonWordChar) { EXPECT_FALSE(IsAsciiWordChar('\0')); EXPECT_FALSE(IsAsciiWordChar('+')); EXPECT_FALSE(IsAsciiWordChar('.')); EXPECT_FALSE(IsAsciiWordChar(' ')); EXPECT_FALSE(IsAsciiWordChar('\n')); } TEST(IsAsciiWordCharTest, IsTrueForLetter) { EXPECT_TRUE(IsAsciiWordChar('a')); EXPECT_TRUE(IsAsciiWordChar('b')); EXPECT_TRUE(IsAsciiWordChar('A')); EXPECT_TRUE(IsAsciiWordChar('Z')); } TEST(IsAsciiWordCharTest, IsTrueForDigit) { EXPECT_TRUE(IsAsciiWordChar('0')); EXPECT_TRUE(IsAsciiWordChar('1')); EXPECT_TRUE(IsAsciiWordChar('7')); EXPECT_TRUE(IsAsciiWordChar('9')); } TEST(IsAsciiWordCharTest, IsTrueForUnderscore) { EXPECT_TRUE(IsAsciiWordChar('_')); } TEST(IsValidEscapeTest, IsFalseForNonPrintable) { EXPECT_FALSE(IsValidEscape('\0')); EXPECT_FALSE(IsValidEscape('\007')); } TEST(IsValidEscapeTest, IsFalseForDigit) { EXPECT_FALSE(IsValidEscape('0')); EXPECT_FALSE(IsValidEscape('9')); } TEST(IsValidEscapeTest, IsFalseForWhiteSpace) { EXPECT_FALSE(IsValidEscape(' ')); EXPECT_FALSE(IsValidEscape('\n')); } TEST(IsValidEscapeTest, IsFalseForSomeLetter) { EXPECT_FALSE(IsValidEscape('a')); EXPECT_FALSE(IsValidEscape('Z')); } TEST(IsValidEscapeTest, IsTrueForPunct) { EXPECT_TRUE(IsValidEscape('.')); EXPECT_TRUE(IsValidEscape('-')); EXPECT_TRUE(IsValidEscape('^')); EXPECT_TRUE(IsValidEscape('$')); EXPECT_TRUE(IsValidEscape('(')); EXPECT_TRUE(IsValidEscape(']')); EXPECT_TRUE(IsValidEscape('{')); EXPECT_TRUE(IsValidEscape('|')); } TEST(IsValidEscapeTest, IsTrueForSomeLetter) { EXPECT_TRUE(IsValidEscape('d')); EXPECT_TRUE(IsValidEscape('D')); EXPECT_TRUE(IsValidEscape('s')); EXPECT_TRUE(IsValidEscape('S')); EXPECT_TRUE(IsValidEscape('w')); EXPECT_TRUE(IsValidEscape('W')); } TEST(AtomMatchesCharTest, EscapedPunct) { EXPECT_FALSE(AtomMatchesChar(true, '\\', '\0')); EXPECT_FALSE(AtomMatchesChar(true, '\\', ' ')); EXPECT_FALSE(AtomMatchesChar(true, '_', '.')); EXPECT_FALSE(AtomMatchesChar(true, '.', 'a')); EXPECT_TRUE(AtomMatchesChar(true, '\\', '\\')); EXPECT_TRUE(AtomMatchesChar(true, '_', '_')); EXPECT_TRUE(AtomMatchesChar(true, '+', '+')); EXPECT_TRUE(AtomMatchesChar(true, '.', '.')); } TEST(AtomMatchesCharTest, Escaped_d) { EXPECT_FALSE(AtomMatchesChar(true, 'd', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'd', 'a')); EXPECT_FALSE(AtomMatchesChar(true, 'd', '.')); EXPECT_TRUE(AtomMatchesChar(true, 'd', '0')); EXPECT_TRUE(AtomMatchesChar(true, 'd', '9')); } TEST(AtomMatchesCharTest, Escaped_D) { EXPECT_FALSE(AtomMatchesChar(true, 'D', '0')); EXPECT_FALSE(AtomMatchesChar(true, 'D', '9')); EXPECT_TRUE(AtomMatchesChar(true, 'D', '\0')); EXPECT_TRUE(AtomMatchesChar(true, 'D', 'a')); EXPECT_TRUE(AtomMatchesChar(true, 'D', '-')); } TEST(AtomMatchesCharTest, Escaped_s) { EXPECT_FALSE(AtomMatchesChar(true, 's', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 's', 'a')); EXPECT_FALSE(AtomMatchesChar(true, 's', '.')); EXPECT_FALSE(AtomMatchesChar(true, 's', '9')); EXPECT_TRUE(AtomMatchesChar(true, 's', ' ')); EXPECT_TRUE(AtomMatchesChar(true, 's', '\n')); EXPECT_TRUE(AtomMatchesChar(true, 's', '\t')); } TEST(AtomMatchesCharTest, Escaped_S) { EXPECT_FALSE(AtomMatchesChar(true, 'S', ' ')); EXPECT_FALSE(AtomMatchesChar(true, 'S', '\r')); EXPECT_TRUE(AtomMatchesChar(true, 'S', '\0')); EXPECT_TRUE(AtomMatchesChar(true, 'S', 'a')); EXPECT_TRUE(AtomMatchesChar(true, 'S', '9')); } TEST(AtomMatchesCharTest, Escaped_w) { EXPECT_FALSE(AtomMatchesChar(true, 'w', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'w', '+')); EXPECT_FALSE(AtomMatchesChar(true, 'w', ' ')); EXPECT_FALSE(AtomMatchesChar(true, 'w', '\n')); EXPECT_TRUE(AtomMatchesChar(true, 'w', '0')); EXPECT_TRUE(AtomMatchesChar(true, 'w', 'b')); EXPECT_TRUE(AtomMatchesChar(true, 'w', 'C')); EXPECT_TRUE(AtomMatchesChar(true, 'w', '_')); } TEST(AtomMatchesCharTest, Escaped_W) { EXPECT_FALSE(AtomMatchesChar(true, 'W', 'A')); EXPECT_FALSE(AtomMatchesChar(true, 'W', 'b')); EXPECT_FALSE(AtomMatchesChar(true, 'W', '9')); EXPECT_FALSE(AtomMatchesChar(true, 'W', '_')); EXPECT_TRUE(AtomMatchesChar(true, 'W', '\0')); EXPECT_TRUE(AtomMatchesChar(true, 'W', '*')); EXPECT_TRUE(AtomMatchesChar(true, 'W', '\n')); } TEST(AtomMatchesCharTest, EscapedWhiteSpace) { EXPECT_FALSE(AtomMatchesChar(true, 'f', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'f', '\n')); EXPECT_FALSE(AtomMatchesChar(true, 'n', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'n', '\r')); EXPECT_FALSE(AtomMatchesChar(true, 'r', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'r', 'a')); EXPECT_FALSE(AtomMatchesChar(true, 't', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 't', 't')); EXPECT_FALSE(AtomMatchesChar(true, 'v', '\0')); EXPECT_FALSE(AtomMatchesChar(true, 'v', '\f')); EXPECT_TRUE(AtomMatchesChar(true, 'f', '\f')); EXPECT_TRUE(AtomMatchesChar(true, 'n', '\n')); EXPECT_TRUE(AtomMatchesChar(true, 'r', '\r')); EXPECT_TRUE(AtomMatchesChar(true, 't', '\t')); EXPECT_TRUE(AtomMatchesChar(true, 'v', '\v')); } TEST(AtomMatchesCharTest, UnescapedDot) { EXPECT_FALSE(AtomMatchesChar(false, '.', '\n')); EXPECT_TRUE(AtomMatchesChar(false, '.', '\0')); EXPECT_TRUE(AtomMatchesChar(false, '.', '.')); EXPECT_TRUE(AtomMatchesChar(false, '.', 'a')); EXPECT_TRUE(AtomMatchesChar(false, '.', ' ')); } TEST(AtomMatchesCharTest, UnescapedChar) { EXPECT_FALSE(AtomMatchesChar(false, 'a', '\0')); EXPECT_FALSE(AtomMatchesChar(false, 'a', 'b')); EXPECT_FALSE(AtomMatchesChar(false, '$', 'a')); EXPECT_TRUE(AtomMatchesChar(false, '$', '$')); EXPECT_TRUE(AtomMatchesChar(false, '5', '5')); EXPECT_TRUE(AtomMatchesChar(false, 'Z', 'Z')); } TEST(ValidateRegexTest, GeneratesFailureAndReturnsFalseForInvalid) { EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex(NULL)), "NULL is not a valid simple regular expression"); EXPECT_NONFATAL_FAILURE( ASSERT_FALSE(ValidateRegex("a\\")), "Syntax error at index 1 in simple regular expression \"a\\\": "); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a\\")), "'\\' cannot appear at the end"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("\\n\\")), "'\\' cannot appear at the end"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("\\s\\hb")), "invalid escape sequence \"\\h\""); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^^")), "'^' can only appear at the beginning"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex(".*^b")), "'^' can only appear at the beginning"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("$$")), "'$' can only appear at the end"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^$a")), "'$' can only appear at the end"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a(b")), "'(' is unsupported"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("ab)")), "')' is unsupported"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("[ab")), "'[' is unsupported"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("a{2")), "'{' is unsupported"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("?")), "'?' can only follow a repeatable token"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("^*")), "'*' can only follow a repeatable token"); EXPECT_NONFATAL_FAILURE(ASSERT_FALSE(ValidateRegex("5*+")), "'+' can only follow a repeatable token"); } TEST(ValidateRegexTest, ReturnsTrueForValid) { EXPECT_TRUE(ValidateRegex("")); EXPECT_TRUE(ValidateRegex("a")); EXPECT_TRUE(ValidateRegex(".*")); EXPECT_TRUE(ValidateRegex("^a_+")); EXPECT_TRUE(ValidateRegex("^a\\t\\&?")); EXPECT_TRUE(ValidateRegex("09*$")); EXPECT_TRUE(ValidateRegex("^Z$")); EXPECT_TRUE(ValidateRegex("a\\^Z\\$\\(\\)\\|\\[\\]\\{\\}")); } TEST(MatchRepetitionAndRegexAtHeadTest, WorksForZeroOrOne) { EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "a", "ba")); // Repeating more than once. EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "aab")); // Repeating zero times. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "ba")); // Repeating once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, 'a', '?', "b", "ab")); EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '#', '?', ".", "##")); } TEST(MatchRepetitionAndRegexAtHeadTest, WorksForZeroOrMany) { EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '*', "a$", "baab")); // Repeating zero times. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '*', "b", "bc")); // Repeating once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '*', "b", "abc")); // Repeating more than once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(true, 'w', '*', "-", "ab_1-g")); } TEST(MatchRepetitionAndRegexAtHeadTest, WorksForOneOrMany) { EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '+', "a$", "baab")); // Repeating zero times. EXPECT_FALSE(MatchRepetitionAndRegexAtHead(false, '.', '+', "b", "bc")); // Repeating once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(false, '.', '+', "b", "abc")); // Repeating more than once. EXPECT_TRUE(MatchRepetitionAndRegexAtHead(true, 'w', '+', "-", "ab_1-g")); } TEST(MatchRegexAtHeadTest, ReturnsTrueForEmptyRegex) { EXPECT_TRUE(MatchRegexAtHead("", "")); EXPECT_TRUE(MatchRegexAtHead("", "ab")); } TEST(MatchRegexAtHeadTest, WorksWhenDollarIsInRegex) { EXPECT_FALSE(MatchRegexAtHead("$", "a")); EXPECT_TRUE(MatchRegexAtHead("$", "")); EXPECT_TRUE(MatchRegexAtHead("a$", "a")); } TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithEscapeSequence) { EXPECT_FALSE(MatchRegexAtHead("\\w", "+")); EXPECT_FALSE(MatchRegexAtHead("\\W", "ab")); EXPECT_TRUE(MatchRegexAtHead("\\sa", "\nab")); EXPECT_TRUE(MatchRegexAtHead("\\d", "1a")); } TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithRepetition) { EXPECT_FALSE(MatchRegexAtHead(".+a", "abc")); EXPECT_FALSE(MatchRegexAtHead("a?b", "aab")); EXPECT_TRUE(MatchRegexAtHead(".*a", "bc12-ab")); EXPECT_TRUE(MatchRegexAtHead("a?b", "b")); EXPECT_TRUE(MatchRegexAtHead("a?b", "ab")); } TEST(MatchRegexAtHeadTest, WorksWhenRegexStartsWithRepetionOfEscapeSequence) { EXPECT_FALSE(MatchRegexAtHead("\\.+a", "abc")); EXPECT_FALSE(MatchRegexAtHead("\\s?b", " b")); EXPECT_TRUE(MatchRegexAtHead("\\(*a", "((((ab")); EXPECT_TRUE(MatchRegexAtHead("\\^?b", "^b")); EXPECT_TRUE(MatchRegexAtHead("\\\\?b", "b")); EXPECT_TRUE(MatchRegexAtHead("\\\\?b", "\\b")); } TEST(MatchRegexAtHeadTest, MatchesSequentially) { EXPECT_FALSE(MatchRegexAtHead("ab.*c", "acabc")); EXPECT_TRUE(MatchRegexAtHead("ab.*c", "ab-fsc")); } TEST(MatchRegexAnywhereTest, ReturnsFalseWhenStringIsNull) { EXPECT_FALSE(MatchRegexAnywhere("", NULL)); } TEST(MatchRegexAnywhereTest, WorksWhenRegexStartsWithCaret) { EXPECT_FALSE(MatchRegexAnywhere("^a", "ba")); EXPECT_FALSE(MatchRegexAnywhere("^$", "a")); EXPECT_TRUE(MatchRegexAnywhere("^a", "ab")); EXPECT_TRUE(MatchRegexAnywhere("^", "ab")); EXPECT_TRUE(MatchRegexAnywhere("^$", "")); } TEST(MatchRegexAnywhereTest, ReturnsFalseWhenNoMatch) { EXPECT_FALSE(MatchRegexAnywhere("a", "bcde123")); EXPECT_FALSE(MatchRegexAnywhere("a.+a", "--aa88888888")); } TEST(MatchRegexAnywhereTest, ReturnsTrueWhenMatchingPrefix) { EXPECT_TRUE(MatchRegexAnywhere("\\w+", "ab1_ - 5")); EXPECT_TRUE(MatchRegexAnywhere(".*=", "=")); EXPECT_TRUE(MatchRegexAnywhere("x.*ab?.*bc", "xaaabc")); } TEST(MatchRegexAnywhereTest, ReturnsTrueWhenMatchingNonPrefix) { EXPECT_TRUE(MatchRegexAnywhere("\\w+", "$$$ ab1_ - 5")); EXPECT_TRUE(MatchRegexAnywhere("\\.+=", "= ...=")); } // Tests RE's implicit constructors. TEST(RETest, ImplicitConstructorWorks) { const RE empty(""); EXPECT_STREQ("", empty.pattern()); const RE simple("hello"); EXPECT_STREQ("hello", simple.pattern()); } // Tests that RE's constructors reject invalid regular expressions. TEST(RETest, RejectsInvalidRegex) { EXPECT_NONFATAL_FAILURE({ const RE normal(NULL); }, "NULL is not a valid simple regular expression"); EXPECT_NONFATAL_FAILURE({ const RE normal(".*(\\w+"); }, "'(' is unsupported"); EXPECT_NONFATAL_FAILURE({ const RE invalid("^?"); }, "'?' can only follow a repeatable token"); } // Tests RE::FullMatch(). TEST(RETest, FullMatchWorks) { const RE empty(""); EXPECT_TRUE(RE::FullMatch("", empty)); EXPECT_FALSE(RE::FullMatch("a", empty)); const RE re1("a"); EXPECT_TRUE(RE::FullMatch("a", re1)); const RE re("a.*z"); EXPECT_TRUE(RE::FullMatch("az", re)); EXPECT_TRUE(RE::FullMatch("axyz", re)); EXPECT_FALSE(RE::FullMatch("baz", re)); EXPECT_FALSE(RE::FullMatch("azy", re)); } // Tests RE::PartialMatch(). TEST(RETest, PartialMatchWorks) { const RE empty(""); EXPECT_TRUE(RE::PartialMatch("", empty)); EXPECT_TRUE(RE::PartialMatch("a", empty)); const RE re("a.*z"); EXPECT_TRUE(RE::PartialMatch("az", re)); EXPECT_TRUE(RE::PartialMatch("axyz", re)); EXPECT_TRUE(RE::PartialMatch("baz", re)); EXPECT_TRUE(RE::PartialMatch("azy", re)); EXPECT_FALSE(RE::PartialMatch("zza", re)); } #endif // GTEST_USES_POSIX_RE #if !GTEST_OS_WINDOWS_MOBILE TEST(CaptureTest, CapturesStdout) { CaptureStdout(); fprintf(stdout, "abc"); EXPECT_STREQ("abc", GetCapturedStdout().c_str()); CaptureStdout(); fprintf(stdout, "def%cghi", '\0'); EXPECT_EQ(::std::string("def\0ghi", 7), ::std::string(GetCapturedStdout())); } TEST(CaptureTest, CapturesStderr) { CaptureStderr(); fprintf(stderr, "jkl"); EXPECT_STREQ("jkl", GetCapturedStderr().c_str()); CaptureStderr(); fprintf(stderr, "jkl%cmno", '\0'); EXPECT_EQ(::std::string("jkl\0mno", 7), ::std::string(GetCapturedStderr())); } // Tests that stdout and stderr capture don't interfere with each other. TEST(CaptureTest, CapturesStdoutAndStderr) { CaptureStdout(); CaptureStderr(); fprintf(stdout, "pqr"); fprintf(stderr, "stu"); EXPECT_STREQ("pqr", GetCapturedStdout().c_str()); EXPECT_STREQ("stu", GetCapturedStderr().c_str()); } TEST(CaptureDeathTest, CannotReenterStdoutCapture) { CaptureStdout(); EXPECT_DEATH_IF_SUPPORTED(CaptureStdout(), "Only one stdout capturer can exist at a time"); GetCapturedStdout(); // We cannot test stderr capturing using death tests as they use it // themselves. } #endif // !GTEST_OS_WINDOWS_MOBILE TEST(ThreadLocalTest, DefaultConstructorInitializesToDefaultValues) { ThreadLocal t1; EXPECT_EQ(0, t1.get()); ThreadLocal t2; EXPECT_TRUE(t2.get() == nullptr); } TEST(ThreadLocalTest, SingleParamConstructorInitializesToParam) { ThreadLocal t1(123); EXPECT_EQ(123, t1.get()); int i = 0; ThreadLocal t2(&i); EXPECT_EQ(&i, t2.get()); } class NoDefaultContructor { public: explicit NoDefaultContructor(const char*) {} NoDefaultContructor(const NoDefaultContructor&) {} }; TEST(ThreadLocalTest, ValueDefaultContructorIsNotRequiredForParamVersion) { ThreadLocal bar(NoDefaultContructor("foo")); bar.pointer(); } TEST(ThreadLocalTest, GetAndPointerReturnSameValue) { ThreadLocal thread_local_string; EXPECT_EQ(thread_local_string.pointer(), &(thread_local_string.get())); // Verifies the condition still holds after calling set. thread_local_string.set("foo"); EXPECT_EQ(thread_local_string.pointer(), &(thread_local_string.get())); } TEST(ThreadLocalTest, PointerAndConstPointerReturnSameValue) { ThreadLocal thread_local_string; const ThreadLocal& const_thread_local_string = thread_local_string; EXPECT_EQ(thread_local_string.pointer(), const_thread_local_string.pointer()); thread_local_string.set("foo"); EXPECT_EQ(thread_local_string.pointer(), const_thread_local_string.pointer()); } #if GTEST_IS_THREADSAFE void AddTwo(int* param) { *param += 2; } TEST(ThreadWithParamTest, ConstructorExecutesThreadFunc) { int i = 40; ThreadWithParam thread(&AddTwo, &i, nullptr); thread.Join(); EXPECT_EQ(42, i); } TEST(MutexDeathTest, AssertHeldShouldAssertWhenNotLocked) { // AssertHeld() is flaky only in the presence of multiple threads accessing // the lock. In this case, the test is robust. EXPECT_DEATH_IF_SUPPORTED({ Mutex m; { MutexLock lock(&m); } m.AssertHeld(); }, "thread .*hold"); } TEST(MutexTest, AssertHeldShouldNotAssertWhenLocked) { Mutex m; MutexLock lock(&m); m.AssertHeld(); } class AtomicCounterWithMutex { public: explicit AtomicCounterWithMutex(Mutex* mutex) : value_(0), mutex_(mutex), random_(42) {} void Increment() { MutexLock lock(mutex_); int temp = value_; { // We need to put up a memory barrier to prevent reads and writes to // value_ rearranged with the call to SleepMilliseconds when observed // from other threads. #if GTEST_HAS_PTHREAD // On POSIX, locking a mutex puts up a memory barrier. We cannot use // Mutex and MutexLock here or rely on their memory barrier // functionality as we are testing them here. pthread_mutex_t memory_barrier_mutex; GTEST_CHECK_POSIX_SUCCESS_( pthread_mutex_init(&memory_barrier_mutex, nullptr)); GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_lock(&memory_barrier_mutex)); SleepMilliseconds(static_cast(random_.Generate(30))); GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_unlock(&memory_barrier_mutex)); GTEST_CHECK_POSIX_SUCCESS_(pthread_mutex_destroy(&memory_barrier_mutex)); #elif GTEST_OS_WINDOWS // On Windows, performing an interlocked access puts up a memory barrier. volatile LONG dummy = 0; ::InterlockedIncrement(&dummy); SleepMilliseconds(static_cast(random_.Generate(30))); ::InterlockedIncrement(&dummy); #else # error "Memory barrier not implemented on this platform." #endif // GTEST_HAS_PTHREAD } value_ = temp + 1; } int value() const { return value_; } private: volatile int value_; Mutex* const mutex_; // Protects value_. Random random_; }; void CountingThreadFunc(pair param) { for (int i = 0; i < param.second; ++i) param.first->Increment(); } // Tests that the mutex only lets one thread at a time to lock it. TEST(MutexTest, OnlyOneThreadCanLockAtATime) { Mutex mutex; AtomicCounterWithMutex locked_counter(&mutex); typedef ThreadWithParam > ThreadType; const int kCycleCount = 20; const int kThreadCount = 7; std::unique_ptr counting_threads[kThreadCount]; Notification threads_can_start; // Creates and runs kThreadCount threads that increment locked_counter // kCycleCount times each. for (int i = 0; i < kThreadCount; ++i) { counting_threads[i].reset(new ThreadType(&CountingThreadFunc, make_pair(&locked_counter, kCycleCount), &threads_can_start)); } threads_can_start.Notify(); for (int i = 0; i < kThreadCount; ++i) counting_threads[i]->Join(); // If the mutex lets more than one thread to increment the counter at a // time, they are likely to encounter a race condition and have some // increments overwritten, resulting in the lower then expected counter // value. EXPECT_EQ(kCycleCount * kThreadCount, locked_counter.value()); } template void RunFromThread(void (func)(T), T param) { ThreadWithParam thread(func, param, nullptr); thread.Join(); } void RetrieveThreadLocalValue( pair*, std::string*> param) { *param.second = param.first->get(); } TEST(ThreadLocalTest, ParameterizedConstructorSetsDefault) { ThreadLocal thread_local_string("foo"); EXPECT_STREQ("foo", thread_local_string.get().c_str()); thread_local_string.set("bar"); EXPECT_STREQ("bar", thread_local_string.get().c_str()); std::string result; RunFromThread(&RetrieveThreadLocalValue, make_pair(&thread_local_string, &result)); EXPECT_STREQ("foo", result.c_str()); } // Keeps track of whether of destructors being called on instances of // DestructorTracker. On Windows, waits for the destructor call reports. class DestructorCall { public: DestructorCall() { invoked_ = false; #if GTEST_OS_WINDOWS wait_event_.Reset(::CreateEvent(NULL, TRUE, FALSE, NULL)); GTEST_CHECK_(wait_event_.Get() != NULL); #endif } bool CheckDestroyed() const { #if GTEST_OS_WINDOWS if (::WaitForSingleObject(wait_event_.Get(), 1000) != WAIT_OBJECT_0) return false; #endif return invoked_; } void ReportDestroyed() { invoked_ = true; #if GTEST_OS_WINDOWS ::SetEvent(wait_event_.Get()); #endif } static std::vector& List() { return *list_; } static void ResetList() { for (size_t i = 0; i < list_->size(); ++i) { delete list_->at(i); } list_->clear(); } private: bool invoked_; #if GTEST_OS_WINDOWS AutoHandle wait_event_; #endif static std::vector* const list_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DestructorCall); }; std::vector* const DestructorCall::list_ = new std::vector; // DestructorTracker keeps track of whether its instances have been // destroyed. class DestructorTracker { public: DestructorTracker() : index_(GetNewIndex()) {} DestructorTracker(const DestructorTracker& /* rhs */) : index_(GetNewIndex()) {} ~DestructorTracker() { // We never access DestructorCall::List() concurrently, so we don't need // to protect this access with a mutex. DestructorCall::List()[index_]->ReportDestroyed(); } private: static size_t GetNewIndex() { DestructorCall::List().push_back(new DestructorCall); return DestructorCall::List().size() - 1; } const size_t index_; GTEST_DISALLOW_ASSIGN_(DestructorTracker); }; typedef ThreadLocal* ThreadParam; void CallThreadLocalGet(ThreadParam thread_local_param) { thread_local_param->get(); } // Tests that when a ThreadLocal object dies in a thread, it destroys // the managed object for that thread. TEST(ThreadLocalTest, DestroysManagedObjectForOwnThreadWhenDying) { DestructorCall::ResetList(); { ThreadLocal thread_local_tracker; ASSERT_EQ(0U, DestructorCall::List().size()); // This creates another DestructorTracker object for the main thread. thread_local_tracker.get(); ASSERT_EQ(1U, DestructorCall::List().size()); ASSERT_FALSE(DestructorCall::List()[0]->CheckDestroyed()); } // Now thread_local_tracker has died. ASSERT_EQ(1U, DestructorCall::List().size()); EXPECT_TRUE(DestructorCall::List()[0]->CheckDestroyed()); DestructorCall::ResetList(); } // Tests that when a thread exits, the thread-local object for that // thread is destroyed. TEST(ThreadLocalTest, DestroysManagedObjectAtThreadExit) { DestructorCall::ResetList(); { ThreadLocal thread_local_tracker; ASSERT_EQ(0U, DestructorCall::List().size()); // This creates another DestructorTracker object in the new thread. ThreadWithParam thread(&CallThreadLocalGet, &thread_local_tracker, nullptr); thread.Join(); // The thread has exited, and we should have a DestroyedTracker // instance created for it. But it may not have been destroyed yet. ASSERT_EQ(1U, DestructorCall::List().size()); } // The thread has exited and thread_local_tracker has died. ASSERT_EQ(1U, DestructorCall::List().size()); EXPECT_TRUE(DestructorCall::List()[0]->CheckDestroyed()); DestructorCall::ResetList(); } TEST(ThreadLocalTest, ThreadLocalMutationsAffectOnlyCurrentThread) { ThreadLocal thread_local_string; thread_local_string.set("Foo"); EXPECT_STREQ("Foo", thread_local_string.get().c_str()); std::string result; RunFromThread(&RetrieveThreadLocalValue, make_pair(&thread_local_string, &result)); EXPECT_TRUE(result.empty()); } #endif // GTEST_IS_THREADSAFE #if GTEST_OS_WINDOWS TEST(WindowsTypesTest, HANDLEIsVoidStar) { StaticAssertTypeEq(); } #if GTEST_OS_WINDOWS_MINGW && !defined(__MINGW64_VERSION_MAJOR) TEST(WindowsTypesTest, _CRITICAL_SECTIONIs_CRITICAL_SECTION) { StaticAssertTypeEq(); } #else TEST(WindowsTypesTest, CRITICAL_SECTIONIs_RTL_CRITICAL_SECTION) { StaticAssertTypeEq(); } #endif #endif // GTEST_OS_WINDOWS } // namespace internal } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-printers-test.cc000066400000000000000000001445451355420072700271530ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Test - The Google C++ Testing and Mocking Framework // // This file tests the universal value printer. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gtest/gtest-printers.h" #include "gtest/gtest.h" // Some user-defined types for testing the universal value printer. // An anonymous enum type. enum AnonymousEnum { kAE1 = -1, kAE2 = 1 }; // An enum without a user-defined printer. enum EnumWithoutPrinter { kEWP1 = -2, kEWP2 = 42 }; // An enum with a << operator. enum EnumWithStreaming { kEWS1 = 10 }; std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) { return os << (e == kEWS1 ? "kEWS1" : "invalid"); } // An enum with a PrintTo() function. enum EnumWithPrintTo { kEWPT1 = 1 }; void PrintTo(EnumWithPrintTo e, std::ostream* os) { *os << (e == kEWPT1 ? "kEWPT1" : "invalid"); } // A class implicitly convertible to BiggestInt. class BiggestIntConvertible { public: operator ::testing::internal::BiggestInt() const { return 42; } }; // A user-defined unprintable class template in the global namespace. template class UnprintableTemplateInGlobal { public: UnprintableTemplateInGlobal() : value_() {} private: T value_; }; // A user-defined streamable type in the global namespace. class StreamableInGlobal { public: virtual ~StreamableInGlobal() {} }; inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) { os << "StreamableInGlobal"; } void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) { os << "StreamableInGlobal*"; } namespace foo { // A user-defined unprintable type in a user namespace. class UnprintableInFoo { public: UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); } double z() const { return z_; } private: char xy_[8]; double z_; }; // A user-defined printable type in a user-chosen namespace. struct PrintableViaPrintTo { PrintableViaPrintTo() : value() {} int value; }; void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) { *os << "PrintableViaPrintTo: " << x.value; } // A type with a user-defined << for printing its pointer. struct PointerPrintable { }; ::std::ostream& operator<<(::std::ostream& os, const PointerPrintable* /* x */) { return os << "PointerPrintable*"; } // A user-defined printable class template in a user-chosen namespace. template class PrintableViaPrintToTemplate { public: explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {} const T& value() const { return value_; } private: T value_; }; template void PrintTo(const PrintableViaPrintToTemplate& x, ::std::ostream* os) { *os << "PrintableViaPrintToTemplate: " << x.value(); } // A user-defined streamable class template in a user namespace. template class StreamableTemplateInFoo { public: StreamableTemplateInFoo() : value_() {} const T& value() const { return value_; } private: T value_; }; template inline ::std::ostream& operator<<(::std::ostream& os, const StreamableTemplateInFoo& x) { return os << "StreamableTemplateInFoo: " << x.value(); } // A user-defined streamable but recursivly-defined container type in // a user namespace, it mimics therefore std::filesystem::path or // boost::filesystem::path. class PathLike { public: struct iterator { typedef PathLike value_type; iterator& operator++(); PathLike& operator*(); }; using value_type = char; using const_iterator = iterator; PathLike() {} iterator begin() const { return iterator(); } iterator end() const { return iterator(); } friend ::std::ostream& operator<<(::std::ostream& os, const PathLike&) { return os << "Streamable-PathLike"; } }; } // namespace foo namespace testing { namespace gtest_printers_test { using ::std::deque; using ::std::list; using ::std::make_pair; using ::std::map; using ::std::multimap; using ::std::multiset; using ::std::pair; using ::std::set; using ::std::vector; using ::testing::PrintToString; using ::testing::internal::FormatForComparisonFailureMessage; using ::testing::internal::ImplicitCast_; using ::testing::internal::NativeArray; using ::testing::internal::RE; using ::testing::internal::RelationToSourceReference; using ::testing::internal::Strings; using ::testing::internal::UniversalPrint; using ::testing::internal::UniversalPrinter; using ::testing::internal::UniversalTersePrint; using ::testing::internal::UniversalTersePrintTupleFieldsToStrings; // Prints a value to a string using the universal value printer. This // is a helper for testing UniversalPrinter::Print() for various types. template std::string Print(const T& value) { ::std::stringstream ss; UniversalPrinter::Print(value, &ss); return ss.str(); } // Prints a value passed by reference to a string, using the universal // value printer. This is a helper for testing // UniversalPrinter::Print() for various types. template std::string PrintByRef(const T& value) { ::std::stringstream ss; UniversalPrinter::Print(value, &ss); return ss.str(); } // Tests printing various enum types. TEST(PrintEnumTest, AnonymousEnum) { EXPECT_EQ("-1", Print(kAE1)); EXPECT_EQ("1", Print(kAE2)); } TEST(PrintEnumTest, EnumWithoutPrinter) { EXPECT_EQ("-2", Print(kEWP1)); EXPECT_EQ("42", Print(kEWP2)); } TEST(PrintEnumTest, EnumWithStreaming) { EXPECT_EQ("kEWS1", Print(kEWS1)); EXPECT_EQ("invalid", Print(static_cast(0))); } TEST(PrintEnumTest, EnumWithPrintTo) { EXPECT_EQ("kEWPT1", Print(kEWPT1)); EXPECT_EQ("invalid", Print(static_cast(0))); } // Tests printing a class implicitly convertible to BiggestInt. TEST(PrintClassTest, BiggestIntConvertible) { EXPECT_EQ("42", Print(BiggestIntConvertible())); } // Tests printing various char types. // char. TEST(PrintCharTest, PlainChar) { EXPECT_EQ("'\\0'", Print('\0')); EXPECT_EQ("'\\'' (39, 0x27)", Print('\'')); EXPECT_EQ("'\"' (34, 0x22)", Print('"')); EXPECT_EQ("'?' (63, 0x3F)", Print('?')); EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\')); EXPECT_EQ("'\\a' (7)", Print('\a')); EXPECT_EQ("'\\b' (8)", Print('\b')); EXPECT_EQ("'\\f' (12, 0xC)", Print('\f')); EXPECT_EQ("'\\n' (10, 0xA)", Print('\n')); EXPECT_EQ("'\\r' (13, 0xD)", Print('\r')); EXPECT_EQ("'\\t' (9)", Print('\t')); EXPECT_EQ("'\\v' (11, 0xB)", Print('\v')); EXPECT_EQ("'\\x7F' (127)", Print('\x7F')); EXPECT_EQ("'\\xFF' (255)", Print('\xFF')); EXPECT_EQ("' ' (32, 0x20)", Print(' ')); EXPECT_EQ("'a' (97, 0x61)", Print('a')); } // signed char. TEST(PrintCharTest, SignedChar) { EXPECT_EQ("'\\0'", Print(static_cast('\0'))); EXPECT_EQ("'\\xCE' (-50)", Print(static_cast(-50))); } // unsigned char. TEST(PrintCharTest, UnsignedChar) { EXPECT_EQ("'\\0'", Print(static_cast('\0'))); EXPECT_EQ("'b' (98, 0x62)", Print(static_cast('b'))); } // Tests printing other simple, built-in types. // bool. TEST(PrintBuiltInTypeTest, Bool) { EXPECT_EQ("false", Print(false)); EXPECT_EQ("true", Print(true)); } // wchar_t. TEST(PrintBuiltInTypeTest, Wchar_t) { EXPECT_EQ("L'\\0'", Print(L'\0')); EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\'')); EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"')); EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?')); EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\')); EXPECT_EQ("L'\\a' (7)", Print(L'\a')); EXPECT_EQ("L'\\b' (8)", Print(L'\b')); EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f')); EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n')); EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r')); EXPECT_EQ("L'\\t' (9)", Print(L'\t')); EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v')); EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F')); EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF')); EXPECT_EQ("L' ' (32, 0x20)", Print(L' ')); EXPECT_EQ("L'a' (97, 0x61)", Print(L'a')); EXPECT_EQ("L'\\x576' (1398)", Print(static_cast(0x576))); EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast(0xC74D))); } // Test that Int64 provides more storage than wchar_t. TEST(PrintTypeSizeTest, Wchar_t) { EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64)); } // Various integer types. TEST(PrintBuiltInTypeTest, Integer) { EXPECT_EQ("'\\xFF' (255)", Print(static_cast(255))); // uint8 EXPECT_EQ("'\\x80' (-128)", Print(static_cast(-128))); // int8 EXPECT_EQ("65535", Print(USHRT_MAX)); // uint16 EXPECT_EQ("-32768", Print(SHRT_MIN)); // int16 EXPECT_EQ("4294967295", Print(UINT_MAX)); // uint32 EXPECT_EQ("-2147483648", Print(INT_MIN)); // int32 EXPECT_EQ("18446744073709551615", Print(static_cast(-1))); // uint64 EXPECT_EQ("-9223372036854775808", Print(static_cast(1) << 63)); // int64 } // Size types. TEST(PrintBuiltInTypeTest, Size_t) { EXPECT_EQ("1", Print(sizeof('a'))); // size_t. #if !GTEST_OS_WINDOWS // Windows has no ssize_t type. EXPECT_EQ("-2", Print(static_cast(-2))); // ssize_t. #endif // !GTEST_OS_WINDOWS } // Floating-points. TEST(PrintBuiltInTypeTest, FloatingPoints) { EXPECT_EQ("1.5", Print(1.5f)); // float EXPECT_EQ("-2.5", Print(-2.5)); // double } // Since ::std::stringstream::operator<<(const void *) formats the pointer // output differently with different compilers, we have to create the expected // output first and use it as our expectation. static std::string PrintPointer(const void* p) { ::std::stringstream expected_result_stream; expected_result_stream << p; return expected_result_stream.str(); } // Tests printing C strings. // const char*. TEST(PrintCStringTest, Const) { const char* p = "World"; EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p)); } // char*. TEST(PrintCStringTest, NonConst) { char p[] = "Hi"; EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"", Print(static_cast(p))); } // NULL C string. TEST(PrintCStringTest, Null) { const char* p = nullptr; EXPECT_EQ("NULL", Print(p)); } // Tests that C strings are escaped properly. TEST(PrintCStringTest, EscapesProperly) { const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a"; EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f" "\\n\\r\\t\\v\\x7F\\xFF a\"", Print(p)); } // MSVC compiler can be configured to define whar_t as a typedef // of unsigned short. Defining an overload for const wchar_t* in that case // would cause pointers to unsigned shorts be printed as wide strings, // possibly accessing more memory than intended and causing invalid // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when // wchar_t is implemented as a native type. #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) // const wchar_t*. TEST(PrintWideCStringTest, Const) { const wchar_t* p = L"World"; EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p)); } // wchar_t*. TEST(PrintWideCStringTest, NonConst) { wchar_t p[] = L"Hi"; EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"", Print(static_cast(p))); } // NULL wide C string. TEST(PrintWideCStringTest, Null) { const wchar_t* p = nullptr; EXPECT_EQ("NULL", Print(p)); } // Tests that wide C strings are escaped properly. TEST(PrintWideCStringTest, EscapesProperly) { const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r', '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'}; EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f" "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"", Print(static_cast(s))); } #endif // native wchar_t // Tests printing pointers to other char types. // signed char*. TEST(PrintCharPointerTest, SignedChar) { signed char* p = reinterpret_cast(0x1234); EXPECT_EQ(PrintPointer(p), Print(p)); p = nullptr; EXPECT_EQ("NULL", Print(p)); } // const signed char*. TEST(PrintCharPointerTest, ConstSignedChar) { signed char* p = reinterpret_cast(0x1234); EXPECT_EQ(PrintPointer(p), Print(p)); p = nullptr; EXPECT_EQ("NULL", Print(p)); } // unsigned char*. TEST(PrintCharPointerTest, UnsignedChar) { unsigned char* p = reinterpret_cast(0x1234); EXPECT_EQ(PrintPointer(p), Print(p)); p = nullptr; EXPECT_EQ("NULL", Print(p)); } // const unsigned char*. TEST(PrintCharPointerTest, ConstUnsignedChar) { const unsigned char* p = reinterpret_cast(0x1234); EXPECT_EQ(PrintPointer(p), Print(p)); p = nullptr; EXPECT_EQ("NULL", Print(p)); } // Tests printing pointers to simple, built-in types. // bool*. TEST(PrintPointerToBuiltInTypeTest, Bool) { bool* p = reinterpret_cast(0xABCD); EXPECT_EQ(PrintPointer(p), Print(p)); p = nullptr; EXPECT_EQ("NULL", Print(p)); } // void*. TEST(PrintPointerToBuiltInTypeTest, Void) { void* p = reinterpret_cast(0xABCD); EXPECT_EQ(PrintPointer(p), Print(p)); p = nullptr; EXPECT_EQ("NULL", Print(p)); } // const void*. TEST(PrintPointerToBuiltInTypeTest, ConstVoid) { const void* p = reinterpret_cast(0xABCD); EXPECT_EQ(PrintPointer(p), Print(p)); p = nullptr; EXPECT_EQ("NULL", Print(p)); } // Tests printing pointers to pointers. TEST(PrintPointerToPointerTest, IntPointerPointer) { int** p = reinterpret_cast(0xABCD); EXPECT_EQ(PrintPointer(p), Print(p)); p = nullptr; EXPECT_EQ("NULL", Print(p)); } // Tests printing (non-member) function pointers. void MyFunction(int /* n */) {} TEST(PrintPointerTest, NonMemberFunctionPointer) { // We cannot directly cast &MyFunction to const void* because the // standard disallows casting between pointers to functions and // pointers to objects, and some compilers (e.g. GCC 3.4) enforce // this limitation. EXPECT_EQ( PrintPointer(reinterpret_cast( reinterpret_cast(&MyFunction))), Print(&MyFunction)); int (*p)(bool) = NULL; // NOLINT EXPECT_EQ("NULL", Print(p)); } // An assertion predicate determining whether a one string is a prefix for // another. template AssertionResult HasPrefix(const StringType& str, const StringType& prefix) { if (str.find(prefix, 0) == 0) return AssertionSuccess(); const bool is_wide_string = sizeof(prefix[0]) > 1; const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; return AssertionFailure() << begin_string_quote << prefix << "\" is not a prefix of " << begin_string_quote << str << "\"\n"; } // Tests printing member variable pointers. Although they are called // pointers, they don't point to a location in the address space. // Their representation is implementation-defined. Thus they will be // printed as raw bytes. struct Foo { public: virtual ~Foo() {} int MyMethod(char x) { return x + 1; } virtual char MyVirtualMethod(int /* n */) { return 'a'; } int value; }; TEST(PrintPointerTest, MemberVariablePointer) { EXPECT_TRUE(HasPrefix(Print(&Foo::value), Print(sizeof(&Foo::value)) + "-byte object ")); int Foo::*p = NULL; // NOLINT EXPECT_TRUE(HasPrefix(Print(p), Print(sizeof(p)) + "-byte object ")); } // Tests printing member function pointers. Although they are called // pointers, they don't point to a location in the address space. // Their representation is implementation-defined. Thus they will be // printed as raw bytes. TEST(PrintPointerTest, MemberFunctionPointer) { EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod), Print(sizeof(&Foo::MyMethod)) + "-byte object ")); EXPECT_TRUE( HasPrefix(Print(&Foo::MyVirtualMethod), Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object ")); int (Foo::*p)(char) = NULL; // NOLINT EXPECT_TRUE(HasPrefix(Print(p), Print(sizeof(p)) + "-byte object ")); } // Tests printing C arrays. // The difference between this and Print() is that it ensures that the // argument is a reference to an array. template std::string PrintArrayHelper(T (&a)[N]) { return Print(a); } // One-dimensional array. TEST(PrintArrayTest, OneDimensionalArray) { int a[5] = { 1, 2, 3, 4, 5 }; EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a)); } // Two-dimensional array. TEST(PrintArrayTest, TwoDimensionalArray) { int a[2][5] = { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }; EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a)); } // Array of const elements. TEST(PrintArrayTest, ConstArray) { const bool a[1] = { false }; EXPECT_EQ("{ false }", PrintArrayHelper(a)); } // char array without terminating NUL. TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) { // Array a contains '\0' in the middle and doesn't end with '\0'. char a[] = { 'H', '\0', 'i' }; EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a)); } // const char array with terminating NUL. TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) { const char a[] = "\0Hi"; EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a)); } // const wchar_t array without terminating NUL. TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) { // Array a contains '\0' in the middle and doesn't end with '\0'. const wchar_t a[] = { L'H', L'\0', L'i' }; EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a)); } // wchar_t array with terminating NUL. TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) { const wchar_t a[] = L"\0Hi"; EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a)); } // Array of objects. TEST(PrintArrayTest, ObjectArray) { std::string a[3] = {"Hi", "Hello", "Ni hao"}; EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a)); } // Array with many elements. TEST(PrintArrayTest, BigArray) { int a[100] = { 1, 2, 3 }; EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }", PrintArrayHelper(a)); } // Tests printing ::string and ::std::string. // ::std::string. TEST(PrintStringTest, StringInStdNamespace) { const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a"; const ::std::string str(s, sizeof(s)); EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"", Print(str)); } TEST(PrintStringTest, StringAmbiguousHex) { // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of: // '\x6', '\x6B', or '\x6BA'. // a hex escaping sequence following by a decimal digit EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3"))); // a hex escaping sequence following by a hex digit (lower-case) EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas"))); // a hex escaping sequence following by a hex digit (upper-case) EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA"))); // a hex escaping sequence following by a non-xdigit EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!"))); } // Tests printing ::std::wstring. #if GTEST_HAS_STD_WSTRING // ::std::wstring. TEST(PrintWideStringTest, StringInStdNamespace) { const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a"; const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t)); EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v" "\\xD3\\x576\\x8D3\\xC74D a\\0\"", Print(str)); } TEST(PrintWideStringTest, StringAmbiguousHex) { // same for wide strings. EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3"))); EXPECT_EQ("L\"mm\\x6\" L\"bananas\"", Print(::std::wstring(L"mm\x6" L"bananas"))); EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"", Print(::std::wstring(L"NOM\x6" L"BANANA"))); EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!"))); } #endif // GTEST_HAS_STD_WSTRING // Tests printing types that support generic streaming (i.e. streaming // to std::basic_ostream for any valid Char and // CharTraits types). // Tests printing a non-template type that supports generic streaming. class AllowsGenericStreaming {}; template std::basic_ostream& operator<<( std::basic_ostream& os, const AllowsGenericStreaming& /* a */) { return os << "AllowsGenericStreaming"; } TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) { AllowsGenericStreaming a; EXPECT_EQ("AllowsGenericStreaming", Print(a)); } // Tests printing a template type that supports generic streaming. template class AllowsGenericStreamingTemplate {}; template std::basic_ostream& operator<<( std::basic_ostream& os, const AllowsGenericStreamingTemplate& /* a */) { return os << "AllowsGenericStreamingTemplate"; } TEST(PrintTypeWithGenericStreamingTest, TemplateType) { AllowsGenericStreamingTemplate a; EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a)); } // Tests printing a type that supports generic streaming and can be // implicitly converted to another printable type. template class AllowsGenericStreamingAndImplicitConversionTemplate { public: operator bool() const { return false; } }; template std::basic_ostream& operator<<( std::basic_ostream& os, const AllowsGenericStreamingAndImplicitConversionTemplate& /* a */) { return os << "AllowsGenericStreamingAndImplicitConversionTemplate"; } TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) { AllowsGenericStreamingAndImplicitConversionTemplate a; EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a)); } #if GTEST_HAS_ABSL // Tests printing ::absl::string_view. TEST(PrintStringViewTest, SimpleStringView) { const ::absl::string_view sp = "Hello"; EXPECT_EQ("\"Hello\"", Print(sp)); } TEST(PrintStringViewTest, UnprintableCharacters) { const char str[] = "NUL (\0) and \r\t"; const ::absl::string_view sp(str, sizeof(str) - 1); EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp)); } #endif // GTEST_HAS_ABSL // Tests printing STL containers. TEST(PrintStlContainerTest, EmptyDeque) { deque empty; EXPECT_EQ("{}", Print(empty)); } TEST(PrintStlContainerTest, NonEmptyDeque) { deque non_empty; non_empty.push_back(1); non_empty.push_back(3); EXPECT_EQ("{ 1, 3 }", Print(non_empty)); } TEST(PrintStlContainerTest, OneElementHashMap) { ::std::unordered_map map1; map1[1] = 'a'; EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1)); } TEST(PrintStlContainerTest, HashMultiMap) { ::std::unordered_multimap map1; map1.insert(make_pair(5, true)); map1.insert(make_pair(5, false)); // Elements of hash_multimap can be printed in any order. const std::string result = Print(map1); EXPECT_TRUE(result == "{ (5, true), (5, false) }" || result == "{ (5, false), (5, true) }") << " where Print(map1) returns \"" << result << "\"."; } TEST(PrintStlContainerTest, HashSet) { ::std::unordered_set set1; set1.insert(1); EXPECT_EQ("{ 1 }", Print(set1)); } TEST(PrintStlContainerTest, HashMultiSet) { const int kSize = 5; int a[kSize] = { 1, 1, 2, 5, 1 }; ::std::unordered_multiset set1(a, a + kSize); // Elements of hash_multiset can be printed in any order. const std::string result = Print(set1); const std::string expected_pattern = "{ d, d, d, d, d }"; // d means a digit. // Verifies the result matches the expected pattern; also extracts // the numbers in the result. ASSERT_EQ(expected_pattern.length(), result.length()); std::vector numbers; for (size_t i = 0; i != result.length(); i++) { if (expected_pattern[i] == 'd') { ASSERT_NE(isdigit(static_cast(result[i])), 0); numbers.push_back(result[i] - '0'); } else { EXPECT_EQ(expected_pattern[i], result[i]) << " where result is " << result; } } // Makes sure the result contains the right numbers. std::sort(numbers.begin(), numbers.end()); std::sort(a, a + kSize); EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin())); } TEST(PrintStlContainerTest, List) { const std::string a[] = {"hello", "world"}; const list strings(a, a + 2); EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings)); } TEST(PrintStlContainerTest, Map) { map map1; map1[1] = true; map1[5] = false; map1[3] = true; EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1)); } TEST(PrintStlContainerTest, MultiMap) { multimap map1; // The make_pair template function would deduce the type as // pair here, and since the key part in a multimap has to // be constant, without a templated ctor in the pair class (as in // libCstd on Solaris), make_pair call would fail to compile as no // implicit conversion is found. Thus explicit typename is used // here instead. map1.insert(pair(true, 0)); map1.insert(pair(true, 1)); map1.insert(pair(false, 2)); EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1)); } TEST(PrintStlContainerTest, Set) { const unsigned int a[] = { 3, 0, 5 }; set set1(a, a + 3); EXPECT_EQ("{ 0, 3, 5 }", Print(set1)); } TEST(PrintStlContainerTest, MultiSet) { const int a[] = { 1, 1, 2, 5, 1 }; multiset set1(a, a + 5); EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1)); } TEST(PrintStlContainerTest, SinglyLinkedList) { int a[] = { 9, 2, 8 }; const std::forward_list ints(a, a + 3); EXPECT_EQ("{ 9, 2, 8 }", Print(ints)); } TEST(PrintStlContainerTest, Pair) { pair p(true, 5); EXPECT_EQ("(true, 5)", Print(p)); } TEST(PrintStlContainerTest, Vector) { vector v; v.push_back(1); v.push_back(2); EXPECT_EQ("{ 1, 2 }", Print(v)); } TEST(PrintStlContainerTest, LongSequence) { const int a[100] = { 1, 2, 3 }; const vector v(a, a + 100); EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, " "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v)); } TEST(PrintStlContainerTest, NestedContainer) { const int a1[] = { 1, 2 }; const int a2[] = { 3, 4, 5 }; const list l1(a1, a1 + 2); const list l2(a2, a2 + 3); vector > v; v.push_back(l1); v.push_back(l2); EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v)); } TEST(PrintStlContainerTest, OneDimensionalNativeArray) { const int a[3] = { 1, 2, 3 }; NativeArray b(a, 3, RelationToSourceReference()); EXPECT_EQ("{ 1, 2, 3 }", Print(b)); } TEST(PrintStlContainerTest, TwoDimensionalNativeArray) { const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; NativeArray b(a, 2, RelationToSourceReference()); EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b)); } // Tests that a class named iterator isn't treated as a container. struct iterator { char x; }; TEST(PrintStlContainerTest, Iterator) { iterator it = {}; EXPECT_EQ("1-byte object <00>", Print(it)); } // Tests that a class named const_iterator isn't treated as a container. struct const_iterator { char x; }; TEST(PrintStlContainerTest, ConstIterator) { const_iterator it = {}; EXPECT_EQ("1-byte object <00>", Print(it)); } // Tests printing ::std::tuples. // Tuples of various arities. TEST(PrintStdTupleTest, VariousSizes) { ::std::tuple<> t0; EXPECT_EQ("()", Print(t0)); ::std::tuple t1(5); EXPECT_EQ("(5)", Print(t1)); ::std::tuple t2('a', true); EXPECT_EQ("('a' (97, 0x61), true)", Print(t2)); ::std::tuple t3(false, 2, 3); EXPECT_EQ("(false, 2, 3)", Print(t3)); ::std::tuple t4(false, 2, 3, 4); EXPECT_EQ("(false, 2, 3, 4)", Print(t4)); const char* const str = "8"; ::std::tuple t10(false, 'a', static_cast(3), 4, 5, 1.5F, -2.5, str, // NOLINT nullptr, "10"); EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) + " pointing to \"8\", NULL, \"10\")", Print(t10)); } // Nested tuples. TEST(PrintStdTupleTest, NestedTuple) { ::std::tuple< ::std::tuple, char> nested( ::std::make_tuple(5, true), 'a'); EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested)); } TEST(PrintNullptrT, Basic) { EXPECT_EQ("(nullptr)", Print(nullptr)); } TEST(PrintReferenceWrapper, Printable) { int x = 5; EXPECT_EQ("@" + PrintPointer(&x) + " 5", Print(std::ref(x))); EXPECT_EQ("@" + PrintPointer(&x) + " 5", Print(std::cref(x))); } TEST(PrintReferenceWrapper, Unprintable) { ::foo::UnprintableInFoo up; EXPECT_EQ( "@" + PrintPointer(&up) + " 16-byte object ", Print(std::ref(up))); EXPECT_EQ( "@" + PrintPointer(&up) + " 16-byte object ", Print(std::cref(up))); } // Tests printing user-defined unprintable types. // Unprintable types in the global namespace. TEST(PrintUnprintableTypeTest, InGlobalNamespace) { EXPECT_EQ("1-byte object <00>", Print(UnprintableTemplateInGlobal())); } // Unprintable types in a user namespace. TEST(PrintUnprintableTypeTest, InUserNamespace) { EXPECT_EQ("16-byte object ", Print(::foo::UnprintableInFoo())); } // Unprintable types are that too big to be printed completely. struct Big { Big() { memset(array, 0, sizeof(array)); } char array[257]; }; TEST(PrintUnpritableTypeTest, BigObject) { EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 " "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>", Print(Big())); } // Tests printing user-defined streamable types. // Streamable types in the global namespace. TEST(PrintStreamableTypeTest, InGlobalNamespace) { StreamableInGlobal x; EXPECT_EQ("StreamableInGlobal", Print(x)); EXPECT_EQ("StreamableInGlobal*", Print(&x)); } // Printable template types in a user namespace. TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) { EXPECT_EQ("StreamableTemplateInFoo: 0", Print(::foo::StreamableTemplateInFoo())); } // Tests printing a user-defined recursive container type that has a << // operator. TEST(PrintStreamableTypeTest, PathLikeInUserNamespace) { ::foo::PathLike x; EXPECT_EQ("Streamable-PathLike", Print(x)); const ::foo::PathLike cx; EXPECT_EQ("Streamable-PathLike", Print(cx)); } // Tests printing user-defined types that have a PrintTo() function. TEST(PrintPrintableTypeTest, InUserNamespace) { EXPECT_EQ("PrintableViaPrintTo: 0", Print(::foo::PrintableViaPrintTo())); } // Tests printing a pointer to a user-defined type that has a << // operator for its pointer. TEST(PrintPrintableTypeTest, PointerInUserNamespace) { ::foo::PointerPrintable x; EXPECT_EQ("PointerPrintable*", Print(&x)); } // Tests printing user-defined class template that have a PrintTo() function. TEST(PrintPrintableTypeTest, TemplateInUserNamespace) { EXPECT_EQ("PrintableViaPrintToTemplate: 5", Print(::foo::PrintableViaPrintToTemplate(5))); } // Tests that the universal printer prints both the address and the // value of a reference. TEST(PrintReferenceTest, PrintsAddressAndValue) { int n = 5; EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n)); int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } }; EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }", PrintByRef(a)); const ::foo::UnprintableInFoo x; EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object " "", PrintByRef(x)); } // Tests that the universal printer prints a function pointer passed by // reference. TEST(PrintReferenceTest, HandlesFunctionPointer) { void (*fp)(int n) = &MyFunction; const std::string fp_pointer_string = PrintPointer(reinterpret_cast(&fp)); // We cannot directly cast &MyFunction to const void* because the // standard disallows casting between pointers to functions and // pointers to objects, and some compilers (e.g. GCC 3.4) enforce // this limitation. const std::string fp_string = PrintPointer(reinterpret_cast( reinterpret_cast(fp))); EXPECT_EQ("@" + fp_pointer_string + " " + fp_string, PrintByRef(fp)); } // Tests that the universal printer prints a member function pointer // passed by reference. TEST(PrintReferenceTest, HandlesMemberFunctionPointer) { int (Foo::*p)(char ch) = &Foo::MyMethod; EXPECT_TRUE(HasPrefix( PrintByRef(p), "@" + PrintPointer(reinterpret_cast(&p)) + " " + Print(sizeof(p)) + "-byte object ")); char (Foo::*p2)(int n) = &Foo::MyVirtualMethod; EXPECT_TRUE(HasPrefix( PrintByRef(p2), "@" + PrintPointer(reinterpret_cast(&p2)) + " " + Print(sizeof(p2)) + "-byte object ")); } // Tests that the universal printer prints a member variable pointer // passed by reference. TEST(PrintReferenceTest, HandlesMemberVariablePointer) { int Foo::*p = &Foo::value; // NOLINT EXPECT_TRUE(HasPrefix( PrintByRef(p), "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object ")); } // Tests that FormatForComparisonFailureMessage(), which is used to print // an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion // fails, formats the operand in the desired way. // scalar TEST(FormatForComparisonFailureMessageTest, WorksForScalar) { EXPECT_STREQ("123", FormatForComparisonFailureMessage(123, 124).c_str()); } // non-char pointer TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) { int n = 0; EXPECT_EQ(PrintPointer(&n), FormatForComparisonFailureMessage(&n, &n).c_str()); } // non-char array TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) { // In expression 'array == x', 'array' is compared by pointer. // Therefore we want to print an array operand as a pointer. int n[] = { 1, 2, 3 }; EXPECT_EQ(PrintPointer(n), FormatForComparisonFailureMessage(n, n).c_str()); } // Tests formatting a char pointer when it's compared with another pointer. // In this case we want to print it as a raw pointer, as the comparison is by // pointer. // char pointer vs pointer TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) { // In expression 'p == x', where 'p' and 'x' are (const or not) char // pointers, the operands are compared by pointer. Therefore we // want to print 'p' as a pointer instead of a C string (we don't // even know if it's supposed to point to a valid C string). // const char* const char* s = "hello"; EXPECT_EQ(PrintPointer(s), FormatForComparisonFailureMessage(s, s).c_str()); // char* char ch = 'a'; EXPECT_EQ(PrintPointer(&ch), FormatForComparisonFailureMessage(&ch, &ch).c_str()); } // wchar_t pointer vs pointer TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) { // In expression 'p == x', where 'p' and 'x' are (const or not) char // pointers, the operands are compared by pointer. Therefore we // want to print 'p' as a pointer instead of a wide C string (we don't // even know if it's supposed to point to a valid wide C string). // const wchar_t* const wchar_t* s = L"hello"; EXPECT_EQ(PrintPointer(s), FormatForComparisonFailureMessage(s, s).c_str()); // wchar_t* wchar_t ch = L'a'; EXPECT_EQ(PrintPointer(&ch), FormatForComparisonFailureMessage(&ch, &ch).c_str()); } // Tests formatting a char pointer when it's compared to a string object. // In this case we want to print the char pointer as a C string. // char pointer vs std::string TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) { const char* s = "hello \"world"; EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped. FormatForComparisonFailureMessage(s, ::std::string()).c_str()); // char* char str[] = "hi\1"; char* p = str; EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped. FormatForComparisonFailureMessage(p, ::std::string()).c_str()); } #if GTEST_HAS_STD_WSTRING // wchar_t pointer vs std::wstring TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) { const wchar_t* s = L"hi \"world"; EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped. FormatForComparisonFailureMessage(s, ::std::wstring()).c_str()); // wchar_t* wchar_t str[] = L"hi\1"; wchar_t* p = str; EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped. FormatForComparisonFailureMessage(p, ::std::wstring()).c_str()); } #endif // Tests formatting a char array when it's compared with a pointer or array. // In this case we want to print the array as a row pointer, as the comparison // is by pointer. // char array vs pointer TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) { char str[] = "hi \"world\""; char* p = nullptr; EXPECT_EQ(PrintPointer(str), FormatForComparisonFailureMessage(str, p).c_str()); } // char array vs char array TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) { const char str[] = "hi \"world\""; EXPECT_EQ(PrintPointer(str), FormatForComparisonFailureMessage(str, str).c_str()); } // wchar_t array vs pointer TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) { wchar_t str[] = L"hi \"world\""; wchar_t* p = nullptr; EXPECT_EQ(PrintPointer(str), FormatForComparisonFailureMessage(str, p).c_str()); } // wchar_t array vs wchar_t array TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) { const wchar_t str[] = L"hi \"world\""; EXPECT_EQ(PrintPointer(str), FormatForComparisonFailureMessage(str, str).c_str()); } // Tests formatting a char array when it's compared with a string object. // In this case we want to print the array as a C string. // char array vs std::string TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) { const char str[] = "hi \"world\""; EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped. FormatForComparisonFailureMessage(str, ::std::string()).c_str()); } #if GTEST_HAS_STD_WSTRING // wchar_t array vs std::wstring TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) { const wchar_t str[] = L"hi \"w\0rld\""; EXPECT_STREQ( "L\"hi \\\"w\"", // The content should be escaped. // Embedded NUL terminates the string. FormatForComparisonFailureMessage(str, ::std::wstring()).c_str()); } #endif // Useful for testing PrintToString(). We cannot use EXPECT_EQ() // there as its implementation uses PrintToString(). The caller must // ensure that 'value' has no side effect. #define EXPECT_PRINT_TO_STRING_(value, expected_string) \ EXPECT_TRUE(PrintToString(value) == (expected_string)) \ << " where " #value " prints as " << (PrintToString(value)) TEST(PrintToStringTest, WorksForScalar) { EXPECT_PRINT_TO_STRING_(123, "123"); } TEST(PrintToStringTest, WorksForPointerToConstChar) { const char* p = "hello"; EXPECT_PRINT_TO_STRING_(p, "\"hello\""); } TEST(PrintToStringTest, WorksForPointerToNonConstChar) { char s[] = "hello"; char* p = s; EXPECT_PRINT_TO_STRING_(p, "\"hello\""); } TEST(PrintToStringTest, EscapesForPointerToConstChar) { const char* p = "hello\n"; EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\""); } TEST(PrintToStringTest, EscapesForPointerToNonConstChar) { char s[] = "hello\1"; char* p = s; EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\""); } TEST(PrintToStringTest, WorksForArray) { int n[3] = { 1, 2, 3 }; EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }"); } TEST(PrintToStringTest, WorksForCharArray) { char s[] = "hello"; EXPECT_PRINT_TO_STRING_(s, "\"hello\""); } TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) { const char str_with_nul[] = "hello\0 world"; EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\""); char mutable_str_with_nul[] = "hello\0 world"; EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\""); } TEST(PrintToStringTest, ContainsNonLatin) { // Sanity test with valid UTF-8. Prints both in hex and as text. std::string non_ascii_str = ::std::string("오전 4:30"); EXPECT_PRINT_TO_STRING_(non_ascii_str, "\"\\xEC\\x98\\xA4\\xEC\\xA0\\x84 4:30\"\n" " As Text: \"오전 4:30\""); non_ascii_str = ::std::string("From ä — ẑ"); EXPECT_PRINT_TO_STRING_(non_ascii_str, "\"From \\xC3\\xA4 \\xE2\\x80\\x94 \\xE1\\xBA\\x91\"" "\n As Text: \"From ä — ẑ\""); } TEST(IsValidUTF8Test, IllFormedUTF8) { // The following test strings are ill-formed UTF-8 and are printed // as hex only (or ASCII, in case of ASCII bytes) because IsValidUTF8() is // expected to fail, thus output does not contain "As Text:". static const char *const kTestdata[][2] = { // 2-byte lead byte followed by a single-byte character. {"\xC3\x74", "\"\\xC3t\""}, // Valid 2-byte character followed by an orphan trail byte. {"\xC3\x84\xA4", "\"\\xC3\\x84\\xA4\""}, // Lead byte without trail byte. {"abc\xC3", "\"abc\\xC3\""}, // 3-byte lead byte, single-byte character, orphan trail byte. {"x\xE2\x70\x94", "\"x\\xE2p\\x94\""}, // Truncated 3-byte character. {"\xE2\x80", "\"\\xE2\\x80\""}, // Truncated 3-byte character followed by valid 2-byte char. {"\xE2\x80\xC3\x84", "\"\\xE2\\x80\\xC3\\x84\""}, // Truncated 3-byte character followed by a single-byte character. {"\xE2\x80\x7A", "\"\\xE2\\x80z\""}, // 3-byte lead byte followed by valid 3-byte character. {"\xE2\xE2\x80\x94", "\"\\xE2\\xE2\\x80\\x94\""}, // 4-byte lead byte followed by valid 3-byte character. {"\xF0\xE2\x80\x94", "\"\\xF0\\xE2\\x80\\x94\""}, // Truncated 4-byte character. {"\xF0\xE2\x80", "\"\\xF0\\xE2\\x80\""}, // Invalid UTF-8 byte sequences embedded in other chars. {"abc\xE2\x80\x94\xC3\x74xyc", "\"abc\\xE2\\x80\\x94\\xC3txyc\""}, {"abc\xC3\x84\xE2\x80\xC3\x84xyz", "\"abc\\xC3\\x84\\xE2\\x80\\xC3\\x84xyz\""}, // Non-shortest UTF-8 byte sequences are also ill-formed. // The classics: xC0, xC1 lead byte. {"\xC0\x80", "\"\\xC0\\x80\""}, {"\xC1\x81", "\"\\xC1\\x81\""}, // Non-shortest sequences. {"\xE0\x80\x80", "\"\\xE0\\x80\\x80\""}, {"\xf0\x80\x80\x80", "\"\\xF0\\x80\\x80\\x80\""}, // Last valid code point before surrogate range, should be printed as text, // too. {"\xED\x9F\xBF", "\"\\xED\\x9F\\xBF\"\n As Text: \"퟿\""}, // Start of surrogate lead. Surrogates are not printed as text. {"\xED\xA0\x80", "\"\\xED\\xA0\\x80\""}, // Last non-private surrogate lead. {"\xED\xAD\xBF", "\"\\xED\\xAD\\xBF\""}, // First private-use surrogate lead. {"\xED\xAE\x80", "\"\\xED\\xAE\\x80\""}, // Last private-use surrogate lead. {"\xED\xAF\xBF", "\"\\xED\\xAF\\xBF\""}, // Mid-point of surrogate trail. {"\xED\xB3\xBF", "\"\\xED\\xB3\\xBF\""}, // First valid code point after surrogate range, should be printed as text, // too. {"\xEE\x80\x80", "\"\\xEE\\x80\\x80\"\n As Text: \"\""} }; for (int i = 0; i < int(sizeof(kTestdata)/sizeof(kTestdata[0])); ++i) { EXPECT_PRINT_TO_STRING_(kTestdata[i][0], kTestdata[i][1]); } } #undef EXPECT_PRINT_TO_STRING_ TEST(UniversalTersePrintTest, WorksForNonReference) { ::std::stringstream ss; UniversalTersePrint(123, &ss); EXPECT_EQ("123", ss.str()); } TEST(UniversalTersePrintTest, WorksForReference) { const int& n = 123; ::std::stringstream ss; UniversalTersePrint(n, &ss); EXPECT_EQ("123", ss.str()); } TEST(UniversalTersePrintTest, WorksForCString) { const char* s1 = "abc"; ::std::stringstream ss1; UniversalTersePrint(s1, &ss1); EXPECT_EQ("\"abc\"", ss1.str()); char* s2 = const_cast(s1); ::std::stringstream ss2; UniversalTersePrint(s2, &ss2); EXPECT_EQ("\"abc\"", ss2.str()); const char* s3 = nullptr; ::std::stringstream ss3; UniversalTersePrint(s3, &ss3); EXPECT_EQ("NULL", ss3.str()); } TEST(UniversalPrintTest, WorksForNonReference) { ::std::stringstream ss; UniversalPrint(123, &ss); EXPECT_EQ("123", ss.str()); } TEST(UniversalPrintTest, WorksForReference) { const int& n = 123; ::std::stringstream ss; UniversalPrint(n, &ss); EXPECT_EQ("123", ss.str()); } TEST(UniversalPrintTest, WorksForCString) { const char* s1 = "abc"; ::std::stringstream ss1; UniversalPrint(s1, &ss1); EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", std::string(ss1.str())); char* s2 = const_cast(s1); ::std::stringstream ss2; UniversalPrint(s2, &ss2); EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", std::string(ss2.str())); const char* s3 = nullptr; ::std::stringstream ss3; UniversalPrint(s3, &ss3); EXPECT_EQ("NULL", ss3.str()); } TEST(UniversalPrintTest, WorksForCharArray) { const char str[] = "\"Line\0 1\"\nLine 2"; ::std::stringstream ss1; UniversalPrint(str, &ss1); EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str()); const char mutable_str[] = "\"Line\0 1\"\nLine 2"; ::std::stringstream ss2; UniversalPrint(mutable_str, &ss2); EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str()); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple()); EXPECT_EQ(0u, result.size()); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::make_tuple(1)); ASSERT_EQ(1u, result.size()); EXPECT_EQ("1", result[0]); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) { Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::make_tuple(1, 'a')); ASSERT_EQ(2u, result.size()); EXPECT_EQ("1", result[0]); EXPECT_EQ("'a' (97, 0x61)", result[1]); } TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) { const int n = 1; Strings result = UniversalTersePrintTupleFieldsToStrings( ::std::tuple(n, "a")); ASSERT_EQ(2u, result.size()); EXPECT_EQ("1", result[0]); EXPECT_EQ("\"a\"", result[1]); } #if GTEST_HAS_ABSL TEST(PrintOptionalTest, Basic) { absl::optional value; EXPECT_EQ("(nullopt)", PrintToString(value)); value = {7}; EXPECT_EQ("(7)", PrintToString(value)); EXPECT_EQ("(1.1)", PrintToString(absl::optional{1.1})); EXPECT_EQ("(\"A\")", PrintToString(absl::optional{"A"})); } struct NonPrintable { unsigned char contents = 17; }; TEST(PrintOneofTest, Basic) { using Type = absl::variant; EXPECT_EQ("('int' with value 7)", PrintToString(Type(7))); EXPECT_EQ("('StreamableInGlobal' with value StreamableInGlobal)", PrintToString(Type(StreamableInGlobal{}))); EXPECT_EQ( "('testing::gtest_printers_test::NonPrintable' with value 1-byte object " "<11>)", PrintToString(Type(NonPrintable{}))); } #endif // GTEST_HAS_ABSL namespace { class string_ref; /** * This is a synthetic pointer to a fixed size string. */ class string_ptr { public: string_ptr(const char* data, size_t size) : data_(data), size_(size) {} string_ptr& operator++() noexcept { data_ += size_; return *this; } string_ref operator*() const noexcept; private: const char* data_; size_t size_; }; /** * This is a synthetic reference of a fixed size string. */ class string_ref { public: string_ref(const char* data, size_t size) : data_(data), size_(size) {} string_ptr operator&() const noexcept { return {data_, size_}; } // NOLINT bool operator==(const char* s) const noexcept { if (size_ > 0 && data_[size_ - 1] != 0) { return std::string(data_, size_) == std::string(s); } else { return std::string(data_) == std::string(s); } } private: const char* data_; size_t size_; }; string_ref string_ptr::operator*() const noexcept { return {data_, size_}; } TEST(string_ref, compare) { const char* s = "alex\0davidjohn\0"; string_ptr ptr(s, 5); EXPECT_EQ(*ptr, "alex"); EXPECT_TRUE(*ptr == "alex"); ++ptr; EXPECT_EQ(*ptr, "david"); EXPECT_TRUE(*ptr == "david"); ++ptr; EXPECT_EQ(*ptr, "john"); } } // namespace } // namespace gtest_printers_test } // namespace testing libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-shuffle-test.py000066400000000000000000000303461355420072700267750ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2009 Google Inc. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Verifies that test shuffling works.""" import os import gtest_test_utils # Command to run the googletest-shuffle-test_ program. COMMAND = gtest_test_utils.GetTestExecutablePath('googletest-shuffle-test_') # The environment variables for test sharding. TOTAL_SHARDS_ENV_VAR = 'GTEST_TOTAL_SHARDS' SHARD_INDEX_ENV_VAR = 'GTEST_SHARD_INDEX' TEST_FILTER = 'A*.A:A*.B:C*' ALL_TESTS = [] ACTIVE_TESTS = [] FILTERED_TESTS = [] SHARDED_TESTS = [] SHUFFLED_ALL_TESTS = [] SHUFFLED_ACTIVE_TESTS = [] SHUFFLED_FILTERED_TESTS = [] SHUFFLED_SHARDED_TESTS = [] def AlsoRunDisabledTestsFlag(): return '--gtest_also_run_disabled_tests' def FilterFlag(test_filter): return '--gtest_filter=%s' % (test_filter,) def RepeatFlag(n): return '--gtest_repeat=%s' % (n,) def ShuffleFlag(): return '--gtest_shuffle' def RandomSeedFlag(n): return '--gtest_random_seed=%s' % (n,) def RunAndReturnOutput(extra_env, args): """Runs the test program and returns its output.""" environ_copy = os.environ.copy() environ_copy.update(extra_env) return gtest_test_utils.Subprocess([COMMAND] + args, env=environ_copy).output def GetTestsForAllIterations(extra_env, args): """Runs the test program and returns a list of test lists. Args: extra_env: a map from environment variables to their values args: command line flags to pass to googletest-shuffle-test_ Returns: A list where the i-th element is the list of tests run in the i-th test iteration. """ test_iterations = [] for line in RunAndReturnOutput(extra_env, args).split('\n'): if line.startswith('----'): tests = [] test_iterations.append(tests) elif line.strip(): tests.append(line.strip()) # 'TestCaseName.TestName' return test_iterations def GetTestCases(tests): """Returns a list of test cases in the given full test names. Args: tests: a list of full test names Returns: A list of test cases from 'tests', in their original order. Consecutive duplicates are removed. """ test_cases = [] for test in tests: test_case = test.split('.')[0] if not test_case in test_cases: test_cases.append(test_case) return test_cases def CalculateTestLists(): """Calculates the list of tests run under different flags.""" if not ALL_TESTS: ALL_TESTS.extend( GetTestsForAllIterations({}, [AlsoRunDisabledTestsFlag()])[0]) if not ACTIVE_TESTS: ACTIVE_TESTS.extend(GetTestsForAllIterations({}, [])[0]) if not FILTERED_TESTS: FILTERED_TESTS.extend( GetTestsForAllIterations({}, [FilterFlag(TEST_FILTER)])[0]) if not SHARDED_TESTS: SHARDED_TESTS.extend( GetTestsForAllIterations({TOTAL_SHARDS_ENV_VAR: '3', SHARD_INDEX_ENV_VAR: '1'}, [])[0]) if not SHUFFLED_ALL_TESTS: SHUFFLED_ALL_TESTS.extend(GetTestsForAllIterations( {}, [AlsoRunDisabledTestsFlag(), ShuffleFlag(), RandomSeedFlag(1)])[0]) if not SHUFFLED_ACTIVE_TESTS: SHUFFLED_ACTIVE_TESTS.extend(GetTestsForAllIterations( {}, [ShuffleFlag(), RandomSeedFlag(1)])[0]) if not SHUFFLED_FILTERED_TESTS: SHUFFLED_FILTERED_TESTS.extend(GetTestsForAllIterations( {}, [ShuffleFlag(), RandomSeedFlag(1), FilterFlag(TEST_FILTER)])[0]) if not SHUFFLED_SHARDED_TESTS: SHUFFLED_SHARDED_TESTS.extend( GetTestsForAllIterations({TOTAL_SHARDS_ENV_VAR: '3', SHARD_INDEX_ENV_VAR: '1'}, [ShuffleFlag(), RandomSeedFlag(1)])[0]) class GTestShuffleUnitTest(gtest_test_utils.TestCase): """Tests test shuffling.""" def setUp(self): CalculateTestLists() def testShufflePreservesNumberOfTests(self): self.assertEqual(len(ALL_TESTS), len(SHUFFLED_ALL_TESTS)) self.assertEqual(len(ACTIVE_TESTS), len(SHUFFLED_ACTIVE_TESTS)) self.assertEqual(len(FILTERED_TESTS), len(SHUFFLED_FILTERED_TESTS)) self.assertEqual(len(SHARDED_TESTS), len(SHUFFLED_SHARDED_TESTS)) def testShuffleChangesTestOrder(self): self.assert_(SHUFFLED_ALL_TESTS != ALL_TESTS, SHUFFLED_ALL_TESTS) self.assert_(SHUFFLED_ACTIVE_TESTS != ACTIVE_TESTS, SHUFFLED_ACTIVE_TESTS) self.assert_(SHUFFLED_FILTERED_TESTS != FILTERED_TESTS, SHUFFLED_FILTERED_TESTS) self.assert_(SHUFFLED_SHARDED_TESTS != SHARDED_TESTS, SHUFFLED_SHARDED_TESTS) def testShuffleChangesTestCaseOrder(self): self.assert_(GetTestCases(SHUFFLED_ALL_TESTS) != GetTestCases(ALL_TESTS), GetTestCases(SHUFFLED_ALL_TESTS)) self.assert_( GetTestCases(SHUFFLED_ACTIVE_TESTS) != GetTestCases(ACTIVE_TESTS), GetTestCases(SHUFFLED_ACTIVE_TESTS)) self.assert_( GetTestCases(SHUFFLED_FILTERED_TESTS) != GetTestCases(FILTERED_TESTS), GetTestCases(SHUFFLED_FILTERED_TESTS)) self.assert_( GetTestCases(SHUFFLED_SHARDED_TESTS) != GetTestCases(SHARDED_TESTS), GetTestCases(SHUFFLED_SHARDED_TESTS)) def testShuffleDoesNotRepeatTest(self): for test in SHUFFLED_ALL_TESTS: self.assertEqual(1, SHUFFLED_ALL_TESTS.count(test), '%s appears more than once' % (test,)) for test in SHUFFLED_ACTIVE_TESTS: self.assertEqual(1, SHUFFLED_ACTIVE_TESTS.count(test), '%s appears more than once' % (test,)) for test in SHUFFLED_FILTERED_TESTS: self.assertEqual(1, SHUFFLED_FILTERED_TESTS.count(test), '%s appears more than once' % (test,)) for test in SHUFFLED_SHARDED_TESTS: self.assertEqual(1, SHUFFLED_SHARDED_TESTS.count(test), '%s appears more than once' % (test,)) def testShuffleDoesNotCreateNewTest(self): for test in SHUFFLED_ALL_TESTS: self.assert_(test in ALL_TESTS, '%s is an invalid test' % (test,)) for test in SHUFFLED_ACTIVE_TESTS: self.assert_(test in ACTIVE_TESTS, '%s is an invalid test' % (test,)) for test in SHUFFLED_FILTERED_TESTS: self.assert_(test in FILTERED_TESTS, '%s is an invalid test' % (test,)) for test in SHUFFLED_SHARDED_TESTS: self.assert_(test in SHARDED_TESTS, '%s is an invalid test' % (test,)) def testShuffleIncludesAllTests(self): for test in ALL_TESTS: self.assert_(test in SHUFFLED_ALL_TESTS, '%s is missing' % (test,)) for test in ACTIVE_TESTS: self.assert_(test in SHUFFLED_ACTIVE_TESTS, '%s is missing' % (test,)) for test in FILTERED_TESTS: self.assert_(test in SHUFFLED_FILTERED_TESTS, '%s is missing' % (test,)) for test in SHARDED_TESTS: self.assert_(test in SHUFFLED_SHARDED_TESTS, '%s is missing' % (test,)) def testShuffleLeavesDeathTestsAtFront(self): non_death_test_found = False for test in SHUFFLED_ACTIVE_TESTS: if 'DeathTest.' in test: self.assert_(not non_death_test_found, '%s appears after a non-death test' % (test,)) else: non_death_test_found = True def _VerifyTestCasesDoNotInterleave(self, tests): test_cases = [] for test in tests: [test_case, _] = test.split('.') if test_cases and test_cases[-1] != test_case: test_cases.append(test_case) self.assertEqual(1, test_cases.count(test_case), 'Test case %s is not grouped together in %s' % (test_case, tests)) def testShuffleDoesNotInterleaveTestCases(self): self._VerifyTestCasesDoNotInterleave(SHUFFLED_ALL_TESTS) self._VerifyTestCasesDoNotInterleave(SHUFFLED_ACTIVE_TESTS) self._VerifyTestCasesDoNotInterleave(SHUFFLED_FILTERED_TESTS) self._VerifyTestCasesDoNotInterleave(SHUFFLED_SHARDED_TESTS) def testShuffleRestoresOrderAfterEachIteration(self): # Get the test lists in all 3 iterations, using random seed 1, 2, # and 3 respectively. Google Test picks a different seed in each # iteration, and this test depends on the current implementation # picking successive numbers. This dependency is not ideal, but # makes the test much easier to write. [tests_in_iteration1, tests_in_iteration2, tests_in_iteration3] = ( GetTestsForAllIterations( {}, [ShuffleFlag(), RandomSeedFlag(1), RepeatFlag(3)])) # Make sure running the tests with random seed 1 gets the same # order as in iteration 1 above. [tests_with_seed1] = GetTestsForAllIterations( {}, [ShuffleFlag(), RandomSeedFlag(1)]) self.assertEqual(tests_in_iteration1, tests_with_seed1) # Make sure running the tests with random seed 2 gets the same # order as in iteration 2 above. Success means that Google Test # correctly restores the test order before re-shuffling at the # beginning of iteration 2. [tests_with_seed2] = GetTestsForAllIterations( {}, [ShuffleFlag(), RandomSeedFlag(2)]) self.assertEqual(tests_in_iteration2, tests_with_seed2) # Make sure running the tests with random seed 3 gets the same # order as in iteration 3 above. Success means that Google Test # correctly restores the test order before re-shuffling at the # beginning of iteration 3. [tests_with_seed3] = GetTestsForAllIterations( {}, [ShuffleFlag(), RandomSeedFlag(3)]) self.assertEqual(tests_in_iteration3, tests_with_seed3) def testShuffleGeneratesNewOrderInEachIteration(self): [tests_in_iteration1, tests_in_iteration2, tests_in_iteration3] = ( GetTestsForAllIterations( {}, [ShuffleFlag(), RandomSeedFlag(1), RepeatFlag(3)])) self.assert_(tests_in_iteration1 != tests_in_iteration2, tests_in_iteration1) self.assert_(tests_in_iteration1 != tests_in_iteration3, tests_in_iteration1) self.assert_(tests_in_iteration2 != tests_in_iteration3, tests_in_iteration2) def testShuffleShardedTestsPreservesPartition(self): # If we run M tests on N shards, the same M tests should be run in # total, regardless of the random seeds used by the shards. [tests1] = GetTestsForAllIterations({TOTAL_SHARDS_ENV_VAR: '3', SHARD_INDEX_ENV_VAR: '0'}, [ShuffleFlag(), RandomSeedFlag(1)]) [tests2] = GetTestsForAllIterations({TOTAL_SHARDS_ENV_VAR: '3', SHARD_INDEX_ENV_VAR: '1'}, [ShuffleFlag(), RandomSeedFlag(20)]) [tests3] = GetTestsForAllIterations({TOTAL_SHARDS_ENV_VAR: '3', SHARD_INDEX_ENV_VAR: '2'}, [ShuffleFlag(), RandomSeedFlag(25)]) sorted_sharded_tests = tests1 + tests2 + tests3 sorted_sharded_tests.sort() sorted_active_tests = [] sorted_active_tests.extend(ACTIVE_TESTS) sorted_active_tests.sort() self.assertEqual(sorted_active_tests, sorted_sharded_tests) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-shuffle-test_.cc000066400000000000000000000062221355420072700270650ustar00rootroot00000000000000// Copyright 2009, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Verifies that test shuffling works. #include "gtest/gtest.h" namespace { using ::testing::EmptyTestEventListener; using ::testing::InitGoogleTest; using ::testing::Message; using ::testing::Test; using ::testing::TestEventListeners; using ::testing::TestInfo; using ::testing::UnitTest; // The test methods are empty, as the sole purpose of this program is // to print the test names before/after shuffling. class A : public Test {}; TEST_F(A, A) {} TEST_F(A, B) {} TEST(ADeathTest, A) {} TEST(ADeathTest, B) {} TEST(ADeathTest, C) {} TEST(B, A) {} TEST(B, B) {} TEST(B, C) {} TEST(B, DISABLED_D) {} TEST(B, DISABLED_E) {} TEST(BDeathTest, A) {} TEST(BDeathTest, B) {} TEST(C, A) {} TEST(C, B) {} TEST(C, C) {} TEST(C, DISABLED_D) {} TEST(CDeathTest, A) {} TEST(DISABLED_D, A) {} TEST(DISABLED_D, DISABLED_B) {} // This printer prints the full test names only, starting each test // iteration with a "----" marker. class TestNamePrinter : public EmptyTestEventListener { public: void OnTestIterationStart(const UnitTest& /* unit_test */, int /* iteration */) override { printf("----\n"); } void OnTestStart(const TestInfo& test_info) override { printf("%s.%s\n", test_info.test_case_name(), test_info.name()); } }; } // namespace int main(int argc, char **argv) { InitGoogleTest(&argc, argv); // Replaces the default printer with TestNamePrinter, which prints // the test name only. TestEventListeners& listeners = UnitTest::GetInstance()->listeners(); delete listeners.Release(listeners.default_result_printer()); listeners.Append(new TestNamePrinter); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-test-part-test.cc000066400000000000000000000176601355420072700272250ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/gtest-test-part.h" #include "gtest/gtest.h" using testing::Message; using testing::Test; using testing::TestPartResult; using testing::TestPartResultArray; namespace { // Tests the TestPartResult class. // The test fixture for testing TestPartResult. class TestPartResultTest : public Test { protected: TestPartResultTest() : r1_(TestPartResult::kSuccess, "foo/bar.cc", 10, "Success!"), r2_(TestPartResult::kNonFatalFailure, "foo/bar.cc", -1, "Failure!"), r3_(TestPartResult::kFatalFailure, nullptr, -1, "Failure!"), r4_(TestPartResult::kSkip, "foo/bar.cc", 2, "Skipped!") {} TestPartResult r1_, r2_, r3_, r4_; }; TEST_F(TestPartResultTest, ConstructorWorks) { Message message; message << "something is terribly wrong"; message << static_cast(testing::internal::kStackTraceMarker); message << "some unimportant stack trace"; const TestPartResult result(TestPartResult::kNonFatalFailure, "some_file.cc", 42, message.GetString().c_str()); EXPECT_EQ(TestPartResult::kNonFatalFailure, result.type()); EXPECT_STREQ("some_file.cc", result.file_name()); EXPECT_EQ(42, result.line_number()); EXPECT_STREQ(message.GetString().c_str(), result.message()); EXPECT_STREQ("something is terribly wrong", result.summary()); } TEST_F(TestPartResultTest, ResultAccessorsWork) { const TestPartResult success(TestPartResult::kSuccess, "file.cc", 42, "message"); EXPECT_TRUE(success.passed()); EXPECT_FALSE(success.failed()); EXPECT_FALSE(success.nonfatally_failed()); EXPECT_FALSE(success.fatally_failed()); EXPECT_FALSE(success.skipped()); const TestPartResult nonfatal_failure(TestPartResult::kNonFatalFailure, "file.cc", 42, "message"); EXPECT_FALSE(nonfatal_failure.passed()); EXPECT_TRUE(nonfatal_failure.failed()); EXPECT_TRUE(nonfatal_failure.nonfatally_failed()); EXPECT_FALSE(nonfatal_failure.fatally_failed()); EXPECT_FALSE(nonfatal_failure.skipped()); const TestPartResult fatal_failure(TestPartResult::kFatalFailure, "file.cc", 42, "message"); EXPECT_FALSE(fatal_failure.passed()); EXPECT_TRUE(fatal_failure.failed()); EXPECT_FALSE(fatal_failure.nonfatally_failed()); EXPECT_TRUE(fatal_failure.fatally_failed()); EXPECT_FALSE(fatal_failure.skipped()); const TestPartResult skip(TestPartResult::kSkip, "file.cc", 42, "message"); EXPECT_FALSE(skip.passed()); EXPECT_FALSE(skip.failed()); EXPECT_FALSE(skip.nonfatally_failed()); EXPECT_FALSE(skip.fatally_failed()); EXPECT_TRUE(skip.skipped()); } // Tests TestPartResult::type(). TEST_F(TestPartResultTest, type) { EXPECT_EQ(TestPartResult::kSuccess, r1_.type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, r2_.type()); EXPECT_EQ(TestPartResult::kFatalFailure, r3_.type()); EXPECT_EQ(TestPartResult::kSkip, r4_.type()); } // Tests TestPartResult::file_name(). TEST_F(TestPartResultTest, file_name) { EXPECT_STREQ("foo/bar.cc", r1_.file_name()); EXPECT_STREQ(nullptr, r3_.file_name()); EXPECT_STREQ("foo/bar.cc", r4_.file_name()); } // Tests TestPartResult::line_number(). TEST_F(TestPartResultTest, line_number) { EXPECT_EQ(10, r1_.line_number()); EXPECT_EQ(-1, r2_.line_number()); EXPECT_EQ(2, r4_.line_number()); } // Tests TestPartResult::message(). TEST_F(TestPartResultTest, message) { EXPECT_STREQ("Success!", r1_.message()); EXPECT_STREQ("Skipped!", r4_.message()); } // Tests TestPartResult::passed(). TEST_F(TestPartResultTest, Passed) { EXPECT_TRUE(r1_.passed()); EXPECT_FALSE(r2_.passed()); EXPECT_FALSE(r3_.passed()); EXPECT_FALSE(r4_.passed()); } // Tests TestPartResult::failed(). TEST_F(TestPartResultTest, Failed) { EXPECT_FALSE(r1_.failed()); EXPECT_TRUE(r2_.failed()); EXPECT_TRUE(r3_.failed()); EXPECT_FALSE(r4_.failed()); } // Tests TestPartResult::failed(). TEST_F(TestPartResultTest, Skipped) { EXPECT_FALSE(r1_.skipped()); EXPECT_FALSE(r2_.skipped()); EXPECT_FALSE(r3_.skipped()); EXPECT_TRUE(r4_.skipped()); } // Tests TestPartResult::fatally_failed(). TEST_F(TestPartResultTest, FatallyFailed) { EXPECT_FALSE(r1_.fatally_failed()); EXPECT_FALSE(r2_.fatally_failed()); EXPECT_TRUE(r3_.fatally_failed()); EXPECT_FALSE(r4_.fatally_failed()); } // Tests TestPartResult::nonfatally_failed(). TEST_F(TestPartResultTest, NonfatallyFailed) { EXPECT_FALSE(r1_.nonfatally_failed()); EXPECT_TRUE(r2_.nonfatally_failed()); EXPECT_FALSE(r3_.nonfatally_failed()); EXPECT_FALSE(r4_.nonfatally_failed()); } // Tests the TestPartResultArray class. class TestPartResultArrayTest : public Test { protected: TestPartResultArrayTest() : r1_(TestPartResult::kNonFatalFailure, "foo/bar.cc", -1, "Failure 1"), r2_(TestPartResult::kFatalFailure, "foo/bar.cc", -1, "Failure 2") {} const TestPartResult r1_, r2_; }; // Tests that TestPartResultArray initially has size 0. TEST_F(TestPartResultArrayTest, InitialSizeIsZero) { TestPartResultArray results; EXPECT_EQ(0, results.size()); } // Tests that TestPartResultArray contains the given TestPartResult // after one Append() operation. TEST_F(TestPartResultArrayTest, ContainsGivenResultAfterAppend) { TestPartResultArray results; results.Append(r1_); EXPECT_EQ(1, results.size()); EXPECT_STREQ("Failure 1", results.GetTestPartResult(0).message()); } // Tests that TestPartResultArray contains the given TestPartResults // after two Append() operations. TEST_F(TestPartResultArrayTest, ContainsGivenResultsAfterTwoAppends) { TestPartResultArray results; results.Append(r1_); results.Append(r2_); EXPECT_EQ(2, results.size()); EXPECT_STREQ("Failure 1", results.GetTestPartResult(0).message()); EXPECT_STREQ("Failure 2", results.GetTestPartResult(1).message()); } typedef TestPartResultArrayTest TestPartResultArrayDeathTest; // Tests that the program dies when GetTestPartResult() is called with // an invalid index. TEST_F(TestPartResultArrayDeathTest, DiesWhenIndexIsOutOfBound) { TestPartResultArray results; results.Append(r1_); EXPECT_DEATH_IF_SUPPORTED(results.GetTestPartResult(-1), ""); EXPECT_DEATH_IF_SUPPORTED(results.GetTestPartResult(1), ""); } } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-test2_test.cc000066400000000000000000000053741355420072700264240ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for Google Test itself. This verifies that the basic constructs of // Google Test work. #include "gtest/gtest.h" #include "googletest-param-test-test.h" using ::testing::Values; using ::testing::internal::ParamGenerator; // Tests that generators defined in a different translation unit // are functional. The test using extern_gen_2 is defined // in googletest-param-test-test.cc. ParamGenerator extern_gen_2 = Values(33); // Tests that a parameterized test case can be defined in one translation unit // and instantiated in another. The test is defined in // googletest-param-test-test.cc and ExternalInstantiationTest fixture class is // defined in gtest-param-test_test.h. INSTANTIATE_TEST_SUITE_P(MultiplesOf33, ExternalInstantiationTest, Values(33, 66)); // Tests that a parameterized test case can be instantiated // in multiple translation units. Another instantiation is defined // in googletest-param-test-test.cc and // InstantiationInMultipleTranslationUnitsTest fixture is defined in // gtest-param-test_test.h INSTANTIATE_TEST_SUITE_P(Sequence2, InstantiationInMultipleTranslationUnitsTest, Values(42*3, 42*4, 42*5)); libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-throw-on-failure-test.py000066400000000000000000000130051355420072700305340ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2009, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Tests Google Test's throw-on-failure mode with exceptions disabled. This script invokes googletest-throw-on-failure-test_ (a program written with Google Test) with different environments and command line flags. """ import os import gtest_test_utils # Constants. # The command line flag for enabling/disabling the throw-on-failure mode. THROW_ON_FAILURE = 'gtest_throw_on_failure' # Path to the googletest-throw-on-failure-test_ program, compiled with # exceptions disabled. EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'googletest-throw-on-failure-test_') # Utilities. def SetEnvVar(env_var, value): """Sets an environment variable to a given value; unsets it when the given value is None. """ env_var = env_var.upper() if value is not None: os.environ[env_var] = value elif env_var in os.environ: del os.environ[env_var] def Run(command): """Runs a command; returns True/False if its exit code is/isn't 0.""" print('Running "%s". . .' % ' '.join(command)) p = gtest_test_utils.Subprocess(command) return p.exited and p.exit_code == 0 # The tests. class ThrowOnFailureTest(gtest_test_utils.TestCase): """Tests the throw-on-failure mode.""" def RunAndVerify(self, env_var_value, flag_value, should_fail): """Runs googletest-throw-on-failure-test_ and verifies that it does (or does not) exit with a non-zero code. Args: env_var_value: value of the GTEST_BREAK_ON_FAILURE environment variable; None if the variable should be unset. flag_value: value of the --gtest_break_on_failure flag; None if the flag should not be present. should_fail: True if and only if the program is expected to fail. """ SetEnvVar(THROW_ON_FAILURE, env_var_value) if env_var_value is None: env_var_value_msg = ' is not set' else: env_var_value_msg = '=' + env_var_value if flag_value is None: flag = '' elif flag_value == '0': flag = '--%s=0' % THROW_ON_FAILURE else: flag = '--%s' % THROW_ON_FAILURE command = [EXE_PATH] if flag: command.append(flag) if should_fail: should_or_not = 'should' else: should_or_not = 'should not' failed = not Run(command) SetEnvVar(THROW_ON_FAILURE, None) msg = ('when %s%s, an assertion failure in "%s" %s cause a non-zero ' 'exit code.' % (THROW_ON_FAILURE, env_var_value_msg, ' '.join(command), should_or_not)) self.assert_(failed == should_fail, msg) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(env_var_value=None, flag_value=None, should_fail=False) def testThrowOnFailureEnvVar(self): """Tests using the GTEST_THROW_ON_FAILURE environment variable.""" self.RunAndVerify(env_var_value='0', flag_value=None, should_fail=False) self.RunAndVerify(env_var_value='1', flag_value=None, should_fail=True) def testThrowOnFailureFlag(self): """Tests using the --gtest_throw_on_failure flag.""" self.RunAndVerify(env_var_value=None, flag_value='0', should_fail=False) self.RunAndVerify(env_var_value=None, flag_value='1', should_fail=True) def testThrowOnFailureFlagOverridesEnvVar(self): """Tests that --gtest_throw_on_failure overrides GTEST_THROW_ON_FAILURE.""" self.RunAndVerify(env_var_value='0', flag_value='0', should_fail=False) self.RunAndVerify(env_var_value='0', flag_value='1', should_fail=True) self.RunAndVerify(env_var_value='1', flag_value='0', should_fail=False) self.RunAndVerify(env_var_value='1', flag_value='1', should_fail=True) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-throw-on-failure-test_.cc000066400000000000000000000057751355420072700306470ustar00rootroot00000000000000// Copyright 2009, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Tests Google Test's throw-on-failure mode with exceptions disabled. // // This program must be compiled with exceptions disabled. It will be // invoked by googletest-throw-on-failure-test.py, and is expected to exit // with non-zero in the throw-on-failure mode or 0 otherwise. #include "gtest/gtest.h" #include // for fflush, fprintf, NULL, etc. #include // for exit #include // for set_terminate // This terminate handler aborts the program using exit() rather than abort(). // This avoids showing pop-ups on Windows systems and core dumps on Unix-like // ones. void TerminateHandler() { fprintf(stderr, "%s\n", "Unhandled C++ exception terminating the program."); fflush(nullptr); exit(1); } int main(int argc, char** argv) { #if GTEST_HAS_EXCEPTIONS std::set_terminate(&TerminateHandler); #endif testing::InitGoogleTest(&argc, argv); // We want to ensure that people can use Google Test assertions in // other testing frameworks, as long as they initialize Google Test // properly and set the throw-on-failure mode. Therefore, we don't // use Google Test's constructs for defining and running tests // (e.g. TEST and RUN_ALL_TESTS) here. // In the throw-on-failure mode with exceptions disabled, this // assertion will cause the program to exit with a non-zero code. EXPECT_EQ(2, 3); // When not in the throw-on-failure mode, the control will reach // here. return 0; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-uninitialized-test.py000066400000000000000000000046521355420072700302120ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Verifies that Google Test warns the user when not initialized properly.""" import gtest_test_utils COMMAND = gtest_test_utils.GetTestExecutablePath('googletest-uninitialized-test_') def Assert(condition): if not condition: raise AssertionError def AssertEq(expected, actual): if expected != actual: print('Expected: %s' % (expected,)) print(' Actual: %s' % (actual,)) raise AssertionError def TestExitCodeAndOutput(command): """Runs the given command and verifies its exit code and output.""" # Verifies that 'command' exits with code 1. p = gtest_test_utils.Subprocess(command) if p.exited and p.exit_code == 0: Assert('IMPORTANT NOTICE' in p.output); Assert('InitGoogleTest' in p.output) class GTestUninitializedTest(gtest_test_utils.TestCase): def testExitCodeAndOutput(self): TestExitCodeAndOutput(COMMAND) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/googletest-uninitialized-test_.cc000066400000000000000000000035261355420072700303050ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/gtest.h" TEST(DummyTest, Dummy) { // This test doesn't verify anything. We just need it to create a // realistic stage for testing the behavior of Google Test when // RUN_ALL_TESTS() is called without // testing::InitGoogleTest() being called first. } int main() { return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest-typed-test2_test.cc000066400000000000000000000037421355420072700265160ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include "test/gtest-typed-test_test.h" #include "gtest/gtest.h" #if GTEST_HAS_TYPED_TEST_P // Tests that the same type-parameterized test case can be // instantiated in different translation units linked together. // (ContainerTest is also instantiated in gtest-typed-test_test.cc.) INSTANTIATE_TYPED_TEST_SUITE_P(Vector, ContainerTest, testing::Types >); #endif // GTEST_HAS_TYPED_TEST_P libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest-typed-test_test.cc000066400000000000000000000351741355420072700264400ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "test/gtest-typed-test_test.h" #include #include #include #include "gtest/gtest.h" #if _MSC_VER GTEST_DISABLE_MSC_WARNINGS_PUSH_(4127 /* conditional expression is constant */) #endif // _MSC_VER using testing::Test; // Used for testing that SetUpTestSuite()/TearDownTestSuite(), fixture // ctor/dtor, and SetUp()/TearDown() work correctly in typed tests and // type-parameterized test. template class CommonTest : public Test { // For some technical reason, SetUpTestSuite() and TearDownTestSuite() // must be public. public: static void SetUpTestSuite() { shared_ = new T(5); } static void TearDownTestSuite() { delete shared_; shared_ = nullptr; } // This 'protected:' is optional. There's no harm in making all // members of this fixture class template public. protected: // We used to use std::list here, but switched to std::vector since // MSVC's doesn't compile cleanly with /W4. typedef std::vector Vector; typedef std::set IntSet; CommonTest() : value_(1) {} ~CommonTest() override { EXPECT_EQ(3, value_); } void SetUp() override { EXPECT_EQ(1, value_); value_++; } void TearDown() override { EXPECT_EQ(2, value_); value_++; } T value_; static T* shared_; }; template T* CommonTest::shared_ = nullptr; // This #ifdef block tests typed tests. #if GTEST_HAS_TYPED_TEST using testing::Types; // Tests that SetUpTestSuite()/TearDownTestSuite(), fixture ctor/dtor, // and SetUp()/TearDown() work correctly in typed tests typedef Types TwoTypes; TYPED_TEST_SUITE(CommonTest, TwoTypes); TYPED_TEST(CommonTest, ValuesAreCorrect) { // Static members of the fixture class template can be visited via // the TestFixture:: prefix. EXPECT_EQ(5, *TestFixture::shared_); // Typedefs in the fixture class template can be visited via the // "typename TestFixture::" prefix. typename TestFixture::Vector empty; EXPECT_EQ(0U, empty.size()); typename TestFixture::IntSet empty2; EXPECT_EQ(0U, empty2.size()); // Non-static members of the fixture class must be visited via // 'this', as required by C++ for class templates. EXPECT_EQ(2, this->value_); } // The second test makes sure shared_ is not deleted after the first // test. TYPED_TEST(CommonTest, ValuesAreStillCorrect) { // Static members of the fixture class template can also be visited // via 'this'. ASSERT_TRUE(this->shared_ != nullptr); EXPECT_EQ(5, *this->shared_); // TypeParam can be used to refer to the type parameter. EXPECT_EQ(static_cast(2), this->value_); } // Tests that multiple TYPED_TEST_SUITE's can be defined in the same // translation unit. template class TypedTest1 : public Test { }; // Verifies that the second argument of TYPED_TEST_SUITE can be a // single type. TYPED_TEST_SUITE(TypedTest1, int); TYPED_TEST(TypedTest1, A) {} template class TypedTest2 : public Test { }; // Verifies that the second argument of TYPED_TEST_SUITE can be a // Types<...> type list. TYPED_TEST_SUITE(TypedTest2, Types); // This also verifies that tests from different typed test cases can // share the same name. TYPED_TEST(TypedTest2, A) {} // Tests that a typed test case can be defined in a namespace. namespace library1 { template class NumericTest : public Test { }; typedef Types NumericTypes; TYPED_TEST_SUITE(NumericTest, NumericTypes); TYPED_TEST(NumericTest, DefaultIsZero) { EXPECT_EQ(0, TypeParam()); } } // namespace library1 // Tests that custom names work. template class TypedTestWithNames : public Test {}; class TypedTestNames { public: template static std::string GetName(int i) { if (std::is_same::value) { return std::string("char") + ::testing::PrintToString(i); } if (std::is_same::value) { return std::string("int") + ::testing::PrintToString(i); } } }; TYPED_TEST_SUITE(TypedTestWithNames, TwoTypes, TypedTestNames); TYPED_TEST(TypedTestWithNames, TestSuiteName) { if (std::is_same::value) { EXPECT_STREQ(::testing::UnitTest::GetInstance() ->current_test_info() ->test_case_name(), "TypedTestWithNames/char0"); } if (std::is_same::value) { EXPECT_STREQ(::testing::UnitTest::GetInstance() ->current_test_info() ->test_case_name(), "TypedTestWithNames/int1"); } } #endif // GTEST_HAS_TYPED_TEST // This #ifdef block tests type-parameterized tests. #if GTEST_HAS_TYPED_TEST_P using testing::Types; using testing::internal::TypedTestSuitePState; // Tests TypedTestSuitePState. class TypedTestSuitePStateTest : public Test { protected: void SetUp() override { state_.AddTestName("foo.cc", 0, "FooTest", "A"); state_.AddTestName("foo.cc", 0, "FooTest", "B"); state_.AddTestName("foo.cc", 0, "FooTest", "C"); } TypedTestSuitePState state_; }; TEST_F(TypedTestSuitePStateTest, SucceedsForMatchingList) { const char* tests = "A, B, C"; EXPECT_EQ(tests, state_.VerifyRegisteredTestNames("foo.cc", 1, tests)); } // Makes sure that the order of the tests and spaces around the names // don't matter. TEST_F(TypedTestSuitePStateTest, IgnoresOrderAndSpaces) { const char* tests = "A,C, B"; EXPECT_EQ(tests, state_.VerifyRegisteredTestNames("foo.cc", 1, tests)); } using TypedTestSuitePStateDeathTest = TypedTestSuitePStateTest; TEST_F(TypedTestSuitePStateDeathTest, DetectsDuplicates) { EXPECT_DEATH_IF_SUPPORTED( state_.VerifyRegisteredTestNames("foo.cc", 1, "A, B, A, C"), "foo\\.cc.1.?: Test A is listed more than once\\."); } TEST_F(TypedTestSuitePStateDeathTest, DetectsExtraTest) { EXPECT_DEATH_IF_SUPPORTED( state_.VerifyRegisteredTestNames("foo.cc", 1, "A, B, C, D"), "foo\\.cc.1.?: No test named D can be found in this test suite\\."); } TEST_F(TypedTestSuitePStateDeathTest, DetectsMissedTest) { EXPECT_DEATH_IF_SUPPORTED( state_.VerifyRegisteredTestNames("foo.cc", 1, "A, C"), "foo\\.cc.1.?: You forgot to list test B\\."); } // Tests that defining a test for a parameterized test case generates // a run-time error if the test case has been registered. TEST_F(TypedTestSuitePStateDeathTest, DetectsTestAfterRegistration) { state_.VerifyRegisteredTestNames("foo.cc", 1, "A, B, C"); EXPECT_DEATH_IF_SUPPORTED( state_.AddTestName("foo.cc", 2, "FooTest", "D"), "foo\\.cc.2.?: Test D must be defined before REGISTER_TYPED_TEST_SUITE_P" "\\(FooTest, \\.\\.\\.\\)\\."); } // Tests that SetUpTestSuite()/TearDownTestSuite(), fixture ctor/dtor, // and SetUp()/TearDown() work correctly in type-parameterized tests. template class DerivedTest : public CommonTest { }; TYPED_TEST_SUITE_P(DerivedTest); TYPED_TEST_P(DerivedTest, ValuesAreCorrect) { // Static members of the fixture class template can be visited via // the TestFixture:: prefix. EXPECT_EQ(5, *TestFixture::shared_); // Non-static members of the fixture class must be visited via // 'this', as required by C++ for class templates. EXPECT_EQ(2, this->value_); } // The second test makes sure shared_ is not deleted after the first // test. TYPED_TEST_P(DerivedTest, ValuesAreStillCorrect) { // Static members of the fixture class template can also be visited // via 'this'. ASSERT_TRUE(this->shared_ != nullptr); EXPECT_EQ(5, *this->shared_); EXPECT_EQ(2, this->value_); } REGISTER_TYPED_TEST_SUITE_P(DerivedTest, ValuesAreCorrect, ValuesAreStillCorrect); typedef Types MyTwoTypes; INSTANTIATE_TYPED_TEST_SUITE_P(My, DerivedTest, MyTwoTypes); // Tests that custom names work with type parametrized tests. We reuse the // TwoTypes from above here. template class TypeParametrizedTestWithNames : public Test {}; TYPED_TEST_SUITE_P(TypeParametrizedTestWithNames); TYPED_TEST_P(TypeParametrizedTestWithNames, TestSuiteName) { if (std::is_same::value) { EXPECT_STREQ(::testing::UnitTest::GetInstance() ->current_test_info() ->test_case_name(), "CustomName/TypeParametrizedTestWithNames/parChar0"); } if (std::is_same::value) { EXPECT_STREQ(::testing::UnitTest::GetInstance() ->current_test_info() ->test_case_name(), "CustomName/TypeParametrizedTestWithNames/parInt1"); } } REGISTER_TYPED_TEST_SUITE_P(TypeParametrizedTestWithNames, TestSuiteName); class TypeParametrizedTestNames { public: template static std::string GetName(int i) { if (std::is_same::value) { return std::string("parChar") + ::testing::PrintToString(i); } if (std::is_same::value) { return std::string("parInt") + ::testing::PrintToString(i); } } }; INSTANTIATE_TYPED_TEST_SUITE_P(CustomName, TypeParametrizedTestWithNames, TwoTypes, TypeParametrizedTestNames); // Tests that multiple TYPED_TEST_SUITE_P's can be defined in the same // translation unit. template class TypedTestP1 : public Test { }; TYPED_TEST_SUITE_P(TypedTestP1); // For testing that the code between TYPED_TEST_SUITE_P() and // TYPED_TEST_P() is not enclosed in a namespace. using IntAfterTypedTestSuiteP = int; TYPED_TEST_P(TypedTestP1, A) {} TYPED_TEST_P(TypedTestP1, B) {} // For testing that the code between TYPED_TEST_P() and // REGISTER_TYPED_TEST_SUITE_P() is not enclosed in a namespace. using IntBeforeRegisterTypedTestSuiteP = int; REGISTER_TYPED_TEST_SUITE_P(TypedTestP1, A, B); template class TypedTestP2 : public Test { }; TYPED_TEST_SUITE_P(TypedTestP2); // This also verifies that tests from different type-parameterized // test cases can share the same name. TYPED_TEST_P(TypedTestP2, A) {} REGISTER_TYPED_TEST_SUITE_P(TypedTestP2, A); // Verifies that the code between TYPED_TEST_SUITE_P() and // REGISTER_TYPED_TEST_SUITE_P() is not enclosed in a namespace. IntAfterTypedTestSuiteP after = 0; IntBeforeRegisterTypedTestSuiteP before = 0; // Verifies that the last argument of INSTANTIATE_TYPED_TEST_SUITE_P() // can be either a single type or a Types<...> type list. INSTANTIATE_TYPED_TEST_SUITE_P(Int, TypedTestP1, int); INSTANTIATE_TYPED_TEST_SUITE_P(Int, TypedTestP2, Types); // Tests that the same type-parameterized test case can be // instantiated more than once in the same translation unit. INSTANTIATE_TYPED_TEST_SUITE_P(Double, TypedTestP2, Types); // Tests that the same type-parameterized test case can be // instantiated in different translation units linked together. // (ContainerTest is also instantiated in gtest-typed-test_test.cc.) typedef Types, std::set > MyContainers; INSTANTIATE_TYPED_TEST_SUITE_P(My, ContainerTest, MyContainers); // Tests that a type-parameterized test case can be defined and // instantiated in a namespace. namespace library2 { template class NumericTest : public Test { }; TYPED_TEST_SUITE_P(NumericTest); TYPED_TEST_P(NumericTest, DefaultIsZero) { EXPECT_EQ(0, TypeParam()); } TYPED_TEST_P(NumericTest, ZeroIsLessThanOne) { EXPECT_LT(TypeParam(0), TypeParam(1)); } REGISTER_TYPED_TEST_SUITE_P(NumericTest, DefaultIsZero, ZeroIsLessThanOne); typedef Types NumericTypes; INSTANTIATE_TYPED_TEST_SUITE_P(My, NumericTest, NumericTypes); static const char* GetTestName() { return testing::UnitTest::GetInstance()->current_test_info()->name(); } // Test the stripping of space from test names template class TrimmedTest : public Test { }; TYPED_TEST_SUITE_P(TrimmedTest); TYPED_TEST_P(TrimmedTest, Test1) { EXPECT_STREQ("Test1", GetTestName()); } TYPED_TEST_P(TrimmedTest, Test2) { EXPECT_STREQ("Test2", GetTestName()); } TYPED_TEST_P(TrimmedTest, Test3) { EXPECT_STREQ("Test3", GetTestName()); } TYPED_TEST_P(TrimmedTest, Test4) { EXPECT_STREQ("Test4", GetTestName()); } TYPED_TEST_P(TrimmedTest, Test5) { EXPECT_STREQ("Test5", GetTestName()); } REGISTER_TYPED_TEST_SUITE_P( TrimmedTest, Test1, Test2,Test3 , Test4 ,Test5 ); // NOLINT template struct MyPair {}; // Be sure to try a type with a comma in its name just in case it matters. typedef Types > TrimTypes; INSTANTIATE_TYPED_TEST_SUITE_P(My, TrimmedTest, TrimTypes); } // namespace library2 #endif // GTEST_HAS_TYPED_TEST_P #if !defined(GTEST_HAS_TYPED_TEST) && !defined(GTEST_HAS_TYPED_TEST_P) // Google Test may not support type-parameterized tests with some // compilers. If we use conditional compilation to compile out all // code referring to the gtest_main library, MSVC linker will not link // that library at all and consequently complain about missing entry // point defined in that library (fatal error LNK1561: entry point // must be defined). This dummy test keeps gtest_main linked in. TEST(DummyTest, TypedTestsAreNotSupportedOnThisPlatform) {} #if _MSC_VER GTEST_DISABLE_MSC_WARNINGS_POP_() // 4127 #endif // _MSC_VER #endif // #if !defined(GTEST_HAS_TYPED_TEST) && !defined(GTEST_HAS_TYPED_TEST_P) libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest-typed-test_test.h000066400000000000000000000046151355420072700262760ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef GTEST_TEST_GTEST_TYPED_TEST_TEST_H_ #define GTEST_TEST_GTEST_TYPED_TEST_TEST_H_ #include "gtest/gtest.h" #if GTEST_HAS_TYPED_TEST_P using testing::Test; // For testing that the same type-parameterized test case can be // instantiated in different translation units linked together. // ContainerTest will be instantiated in both gtest-typed-test_test.cc // and gtest-typed-test2_test.cc. template class ContainerTest : public Test { }; TYPED_TEST_SUITE_P(ContainerTest); TYPED_TEST_P(ContainerTest, CanBeDefaultConstructed) { TypeParam container; } TYPED_TEST_P(ContainerTest, InitialSizeIsZero) { TypeParam container; EXPECT_EQ(0U, container.size()); } REGISTER_TYPED_TEST_SUITE_P(ContainerTest, CanBeDefaultConstructed, InitialSizeIsZero); #endif // GTEST_HAS_TYPED_TEST_P #endif // GTEST_TEST_GTEST_TYPED_TEST_TEST_H_ libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest-unittest-api_test.cc000066400000000000000000000320151355420072700267530ustar00rootroot00000000000000// Copyright 2009 Google Inc. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // // This file contains tests verifying correctness of data provided via // UnitTest's public methods. #include "gtest/gtest.h" #include // For strcmp. #include using ::testing::InitGoogleTest; namespace testing { namespace internal { template struct LessByName { bool operator()(const T* a, const T* b) { return strcmp(a->name(), b->name()) < 0; } }; class UnitTestHelper { public: // Returns the array of pointers to all test suites sorted by the test suite // name. The caller is responsible for deleting the array. static TestSuite const** GetSortedTestSuites() { UnitTest& unit_test = *UnitTest::GetInstance(); auto const** const test_suites = new const TestSuite*[unit_test.total_test_suite_count()]; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) test_suites[i] = unit_test.GetTestSuite(i); std::sort(test_suites, test_suites + unit_test.total_test_suite_count(), LessByName()); return test_suites; } // Returns the test suite by its name. The caller doesn't own the returned // pointer. static const TestSuite* FindTestSuite(const char* name) { UnitTest& unit_test = *UnitTest::GetInstance(); for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite* test_suite = unit_test.GetTestSuite(i); if (0 == strcmp(test_suite->name(), name)) return test_suite; } return nullptr; } // Returns the array of pointers to all tests in a particular test suite // sorted by the test name. The caller is responsible for deleting the // array. static TestInfo const** GetSortedTests(const TestSuite* test_suite) { TestInfo const** const tests = new const TestInfo*[test_suite->total_test_count()]; for (int i = 0; i < test_suite->total_test_count(); ++i) tests[i] = test_suite->GetTestInfo(i); std::sort(tests, tests + test_suite->total_test_count(), LessByName()); return tests; } }; #if GTEST_HAS_TYPED_TEST template class TestSuiteWithCommentTest : public Test {}; TYPED_TEST_SUITE(TestSuiteWithCommentTest, Types); TYPED_TEST(TestSuiteWithCommentTest, Dummy) {} const int kTypedTestSuites = 1; const int kTypedTests = 1; #else const int kTypedTestSuites = 0; const int kTypedTests = 0; #endif // GTEST_HAS_TYPED_TEST // We can only test the accessors that do not change value while tests run. // Since tests can be run in any order, the values the accessors that track // test execution (such as failed_test_count) can not be predicted. TEST(ApiTest, UnitTestImmutableAccessorsWork) { UnitTest* unit_test = UnitTest::GetInstance(); ASSERT_EQ(2 + kTypedTestSuites, unit_test->total_test_suite_count()); EXPECT_EQ(1 + kTypedTestSuites, unit_test->test_suite_to_run_count()); EXPECT_EQ(2, unit_test->disabled_test_count()); EXPECT_EQ(5 + kTypedTests, unit_test->total_test_count()); EXPECT_EQ(3 + kTypedTests, unit_test->test_to_run_count()); const TestSuite** const test_suites = UnitTestHelper::GetSortedTestSuites(); EXPECT_STREQ("ApiTest", test_suites[0]->name()); EXPECT_STREQ("DISABLED_Test", test_suites[1]->name()); #if GTEST_HAS_TYPED_TEST EXPECT_STREQ("TestSuiteWithCommentTest/0", test_suites[2]->name()); #endif // GTEST_HAS_TYPED_TEST delete[] test_suites; // The following lines initiate actions to verify certain methods in // FinalSuccessChecker::TearDown. // Records a test property to verify TestResult::GetTestProperty(). RecordProperty("key", "value"); } AssertionResult IsNull(const char* str) { if (str != nullptr) { return testing::AssertionFailure() << "argument is " << str; } return AssertionSuccess(); } TEST(ApiTest, TestSuiteImmutableAccessorsWork) { const TestSuite* test_suite = UnitTestHelper::FindTestSuite("ApiTest"); ASSERT_TRUE(test_suite != nullptr); EXPECT_STREQ("ApiTest", test_suite->name()); EXPECT_TRUE(IsNull(test_suite->type_param())); EXPECT_TRUE(test_suite->should_run()); EXPECT_EQ(1, test_suite->disabled_test_count()); EXPECT_EQ(3, test_suite->test_to_run_count()); ASSERT_EQ(4, test_suite->total_test_count()); const TestInfo** tests = UnitTestHelper::GetSortedTests(test_suite); EXPECT_STREQ("DISABLED_Dummy1", tests[0]->name()); EXPECT_STREQ("ApiTest", tests[0]->test_suite_name()); EXPECT_TRUE(IsNull(tests[0]->value_param())); EXPECT_TRUE(IsNull(tests[0]->type_param())); EXPECT_FALSE(tests[0]->should_run()); EXPECT_STREQ("TestSuiteDisabledAccessorsWork", tests[1]->name()); EXPECT_STREQ("ApiTest", tests[1]->test_suite_name()); EXPECT_TRUE(IsNull(tests[1]->value_param())); EXPECT_TRUE(IsNull(tests[1]->type_param())); EXPECT_TRUE(tests[1]->should_run()); EXPECT_STREQ("TestSuiteImmutableAccessorsWork", tests[2]->name()); EXPECT_STREQ("ApiTest", tests[2]->test_suite_name()); EXPECT_TRUE(IsNull(tests[2]->value_param())); EXPECT_TRUE(IsNull(tests[2]->type_param())); EXPECT_TRUE(tests[2]->should_run()); EXPECT_STREQ("UnitTestImmutableAccessorsWork", tests[3]->name()); EXPECT_STREQ("ApiTest", tests[3]->test_suite_name()); EXPECT_TRUE(IsNull(tests[3]->value_param())); EXPECT_TRUE(IsNull(tests[3]->type_param())); EXPECT_TRUE(tests[3]->should_run()); delete[] tests; tests = nullptr; #if GTEST_HAS_TYPED_TEST test_suite = UnitTestHelper::FindTestSuite("TestSuiteWithCommentTest/0"); ASSERT_TRUE(test_suite != nullptr); EXPECT_STREQ("TestSuiteWithCommentTest/0", test_suite->name()); EXPECT_STREQ(GetTypeName().c_str(), test_suite->type_param()); EXPECT_TRUE(test_suite->should_run()); EXPECT_EQ(0, test_suite->disabled_test_count()); EXPECT_EQ(1, test_suite->test_to_run_count()); ASSERT_EQ(1, test_suite->total_test_count()); tests = UnitTestHelper::GetSortedTests(test_suite); EXPECT_STREQ("Dummy", tests[0]->name()); EXPECT_STREQ("TestSuiteWithCommentTest/0", tests[0]->test_suite_name()); EXPECT_TRUE(IsNull(tests[0]->value_param())); EXPECT_STREQ(GetTypeName().c_str(), tests[0]->type_param()); EXPECT_TRUE(tests[0]->should_run()); delete[] tests; #endif // GTEST_HAS_TYPED_TEST } TEST(ApiTest, TestSuiteDisabledAccessorsWork) { const TestSuite* test_suite = UnitTestHelper::FindTestSuite("DISABLED_Test"); ASSERT_TRUE(test_suite != nullptr); EXPECT_STREQ("DISABLED_Test", test_suite->name()); EXPECT_TRUE(IsNull(test_suite->type_param())); EXPECT_FALSE(test_suite->should_run()); EXPECT_EQ(1, test_suite->disabled_test_count()); EXPECT_EQ(0, test_suite->test_to_run_count()); ASSERT_EQ(1, test_suite->total_test_count()); const TestInfo* const test_info = test_suite->GetTestInfo(0); EXPECT_STREQ("Dummy2", test_info->name()); EXPECT_STREQ("DISABLED_Test", test_info->test_suite_name()); EXPECT_TRUE(IsNull(test_info->value_param())); EXPECT_TRUE(IsNull(test_info->type_param())); EXPECT_FALSE(test_info->should_run()); } // These two tests are here to provide support for testing // test_suite_to_run_count, disabled_test_count, and test_to_run_count. TEST(ApiTest, DISABLED_Dummy1) {} TEST(DISABLED_Test, Dummy2) {} class FinalSuccessChecker : public Environment { protected: void TearDown() override { UnitTest* unit_test = UnitTest::GetInstance(); EXPECT_EQ(1 + kTypedTestSuites, unit_test->successful_test_suite_count()); EXPECT_EQ(3 + kTypedTests, unit_test->successful_test_count()); EXPECT_EQ(0, unit_test->failed_test_suite_count()); EXPECT_EQ(0, unit_test->failed_test_count()); EXPECT_TRUE(unit_test->Passed()); EXPECT_FALSE(unit_test->Failed()); ASSERT_EQ(2 + kTypedTestSuites, unit_test->total_test_suite_count()); const TestSuite** const test_suites = UnitTestHelper::GetSortedTestSuites(); EXPECT_STREQ("ApiTest", test_suites[0]->name()); EXPECT_TRUE(IsNull(test_suites[0]->type_param())); EXPECT_TRUE(test_suites[0]->should_run()); EXPECT_EQ(1, test_suites[0]->disabled_test_count()); ASSERT_EQ(4, test_suites[0]->total_test_count()); EXPECT_EQ(3, test_suites[0]->successful_test_count()); EXPECT_EQ(0, test_suites[0]->failed_test_count()); EXPECT_TRUE(test_suites[0]->Passed()); EXPECT_FALSE(test_suites[0]->Failed()); EXPECT_STREQ("DISABLED_Test", test_suites[1]->name()); EXPECT_TRUE(IsNull(test_suites[1]->type_param())); EXPECT_FALSE(test_suites[1]->should_run()); EXPECT_EQ(1, test_suites[1]->disabled_test_count()); ASSERT_EQ(1, test_suites[1]->total_test_count()); EXPECT_EQ(0, test_suites[1]->successful_test_count()); EXPECT_EQ(0, test_suites[1]->failed_test_count()); #if GTEST_HAS_TYPED_TEST EXPECT_STREQ("TestSuiteWithCommentTest/0", test_suites[2]->name()); EXPECT_STREQ(GetTypeName().c_str(), test_suites[2]->type_param()); EXPECT_TRUE(test_suites[2]->should_run()); EXPECT_EQ(0, test_suites[2]->disabled_test_count()); ASSERT_EQ(1, test_suites[2]->total_test_count()); EXPECT_EQ(1, test_suites[2]->successful_test_count()); EXPECT_EQ(0, test_suites[2]->failed_test_count()); EXPECT_TRUE(test_suites[2]->Passed()); EXPECT_FALSE(test_suites[2]->Failed()); #endif // GTEST_HAS_TYPED_TEST const TestSuite* test_suite = UnitTestHelper::FindTestSuite("ApiTest"); const TestInfo** tests = UnitTestHelper::GetSortedTests(test_suite); EXPECT_STREQ("DISABLED_Dummy1", tests[0]->name()); EXPECT_STREQ("ApiTest", tests[0]->test_suite_name()); EXPECT_FALSE(tests[0]->should_run()); EXPECT_STREQ("TestSuiteDisabledAccessorsWork", tests[1]->name()); EXPECT_STREQ("ApiTest", tests[1]->test_suite_name()); EXPECT_TRUE(IsNull(tests[1]->value_param())); EXPECT_TRUE(IsNull(tests[1]->type_param())); EXPECT_TRUE(tests[1]->should_run()); EXPECT_TRUE(tests[1]->result()->Passed()); EXPECT_EQ(0, tests[1]->result()->test_property_count()); EXPECT_STREQ("TestSuiteImmutableAccessorsWork", tests[2]->name()); EXPECT_STREQ("ApiTest", tests[2]->test_suite_name()); EXPECT_TRUE(IsNull(tests[2]->value_param())); EXPECT_TRUE(IsNull(tests[2]->type_param())); EXPECT_TRUE(tests[2]->should_run()); EXPECT_TRUE(tests[2]->result()->Passed()); EXPECT_EQ(0, tests[2]->result()->test_property_count()); EXPECT_STREQ("UnitTestImmutableAccessorsWork", tests[3]->name()); EXPECT_STREQ("ApiTest", tests[3]->test_suite_name()); EXPECT_TRUE(IsNull(tests[3]->value_param())); EXPECT_TRUE(IsNull(tests[3]->type_param())); EXPECT_TRUE(tests[3]->should_run()); EXPECT_TRUE(tests[3]->result()->Passed()); EXPECT_EQ(1, tests[3]->result()->test_property_count()); const TestProperty& property = tests[3]->result()->GetTestProperty(0); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("value", property.value()); delete[] tests; #if GTEST_HAS_TYPED_TEST test_suite = UnitTestHelper::FindTestSuite("TestSuiteWithCommentTest/0"); tests = UnitTestHelper::GetSortedTests(test_suite); EXPECT_STREQ("Dummy", tests[0]->name()); EXPECT_STREQ("TestSuiteWithCommentTest/0", tests[0]->test_suite_name()); EXPECT_TRUE(IsNull(tests[0]->value_param())); EXPECT_STREQ(GetTypeName().c_str(), tests[0]->type_param()); EXPECT_TRUE(tests[0]->should_run()); EXPECT_TRUE(tests[0]->result()->Passed()); EXPECT_EQ(0, tests[0]->result()->test_property_count()); delete[] tests; #endif // GTEST_HAS_TYPED_TEST delete[] test_suites; } }; } // namespace internal } // namespace testing int main(int argc, char **argv) { InitGoogleTest(&argc, argv); AddGlobalTestEnvironment(new testing::internal::FinalSuccessChecker()); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_all_test.cc000066400000000000000000000042771355420072700251700ustar00rootroot00000000000000// Copyright 2009, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for Google C++ Testing and Mocking Framework (Google Test) // // Sometimes it's desirable to build most of Google Test's own tests // by compiling a single file. This file serves this purpose. #include "test/googletest-filepath-test.cc" #include "test/googletest-message-test.cc" #include "test/googletest-options-test.cc" #include "test/googletest-port-test.cc" #include "test/googletest-test-part-test.cc" #include "test/gtest-typed-test2_test.cc" #include "test/gtest-typed-test_test.cc" #include "test/gtest_pred_impl_unittest.cc" #include "test/gtest_prod_test.cc" #include "test/gtest_skip_test.cc" #include "test/gtest_unittest.cc" #include "test/production.cc" libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_assert_by_exception_test.cc000066400000000000000000000074021355420072700304620ustar00rootroot00000000000000// Copyright 2009, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Tests Google Test's assert-by-exception mode with exceptions enabled. #include "gtest/gtest.h" #include #include #include #include class ThrowListener : public testing::EmptyTestEventListener { void OnTestPartResult(const testing::TestPartResult& result) override { if (result.type() == testing::TestPartResult::kFatalFailure) { throw testing::AssertionException(result); } } }; // Prints the given failure message and exits the program with // non-zero. We use this instead of a Google Test assertion to // indicate a failure, as the latter is been tested and cannot be // relied on. void Fail(const char* msg) { printf("FAILURE: %s\n", msg); fflush(stdout); exit(1); } static void AssertFalse() { ASSERT_EQ(2, 3) << "Expected failure"; } // Tests that an assertion failure throws a subclass of // std::runtime_error. TEST(Test, Test) { // A successful assertion shouldn't throw. try { EXPECT_EQ(3, 3); } catch(...) { Fail("A successful assertion wrongfully threw."); } // A successful assertion shouldn't throw. try { EXPECT_EQ(3, 4); } catch(...) { Fail("A failed non-fatal assertion wrongfully threw."); } // A failed assertion should throw. try { AssertFalse(); } catch(const testing::AssertionException& e) { if (strstr(e.what(), "Expected failure") != nullptr) throw; printf("%s", "A failed assertion did throw an exception of the right type, " "but the message is incorrect. Instead of containing \"Expected " "failure\", it is:\n"); Fail(e.what()); } catch(...) { Fail("A failed assertion threw the wrong type of exception."); } Fail("A failed assertion should've thrown but didn't."); } int kTestForContinuingTest = 0; TEST(Test, Test2) { kTestForContinuingTest = 1; } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); testing::UnitTest::GetInstance()->listeners().Append(new ThrowListener); int result = RUN_ALL_TESTS(); if (result == 0) { printf("RUN_ALL_TESTS returned %d\n", result); Fail("Expected failure instead."); } if (kTestForContinuingTest == 0) { Fail("Should have continued with other tests, but did not."); } return 0; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_environment_test.cc000066400000000000000000000145161355420072700267610ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests using global test environments. #include #include #include "gtest/gtest.h" #include "src/gtest-internal-inl.h" namespace testing { GTEST_DECLARE_string_(filter); } namespace { enum FailureType { NO_FAILURE, NON_FATAL_FAILURE, FATAL_FAILURE }; // For testing using global test environments. class MyEnvironment : public testing::Environment { public: MyEnvironment() { Reset(); } // Depending on the value of failure_in_set_up_, SetUp() will // generate a non-fatal failure, generate a fatal failure, or // succeed. void SetUp() override { set_up_was_run_ = true; switch (failure_in_set_up_) { case NON_FATAL_FAILURE: ADD_FAILURE() << "Expected non-fatal failure in global set-up."; break; case FATAL_FAILURE: FAIL() << "Expected fatal failure in global set-up."; break; default: break; } } // Generates a non-fatal failure. void TearDown() override { tear_down_was_run_ = true; ADD_FAILURE() << "Expected non-fatal failure in global tear-down."; } // Resets the state of the environment s.t. it can be reused. void Reset() { failure_in_set_up_ = NO_FAILURE; set_up_was_run_ = false; tear_down_was_run_ = false; } // We call this function to set the type of failure SetUp() should // generate. void set_failure_in_set_up(FailureType type) { failure_in_set_up_ = type; } // Was SetUp() run? bool set_up_was_run() const { return set_up_was_run_; } // Was TearDown() run? bool tear_down_was_run() const { return tear_down_was_run_; } private: FailureType failure_in_set_up_; bool set_up_was_run_; bool tear_down_was_run_; }; // Was the TEST run? bool test_was_run; // The sole purpose of this TEST is to enable us to check whether it // was run. TEST(FooTest, Bar) { test_was_run = true; } // Prints the message and aborts the program if condition is false. void Check(bool condition, const char* msg) { if (!condition) { printf("FAILED: %s\n", msg); testing::internal::posix::Abort(); } } // Runs the tests. Return true if and only if successful. // // The 'failure' parameter specifies the type of failure that should // be generated by the global set-up. int RunAllTests(MyEnvironment* env, FailureType failure) { env->Reset(); env->set_failure_in_set_up(failure); test_was_run = false; testing::internal::GetUnitTestImpl()->ClearAdHocTestResult(); return RUN_ALL_TESTS(); } } // namespace int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); // Registers a global test environment, and verifies that the // registration function returns its argument. MyEnvironment* const env = new MyEnvironment; Check(testing::AddGlobalTestEnvironment(env) == env, "AddGlobalTestEnvironment() should return its argument."); // Verifies that RUN_ALL_TESTS() runs the tests when the global // set-up is successful. Check(RunAllTests(env, NO_FAILURE) != 0, "RUN_ALL_TESTS() should return non-zero, as the global tear-down " "should generate a failure."); Check(test_was_run, "The tests should run, as the global set-up should generate no " "failure"); Check(env->tear_down_was_run(), "The global tear-down should run, as the global set-up was run."); // Verifies that RUN_ALL_TESTS() runs the tests when the global // set-up generates no fatal failure. Check(RunAllTests(env, NON_FATAL_FAILURE) != 0, "RUN_ALL_TESTS() should return non-zero, as both the global set-up " "and the global tear-down should generate a non-fatal failure."); Check(test_was_run, "The tests should run, as the global set-up should generate no " "fatal failure."); Check(env->tear_down_was_run(), "The global tear-down should run, as the global set-up was run."); // Verifies that RUN_ALL_TESTS() runs no test when the global set-up // generates a fatal failure. Check(RunAllTests(env, FATAL_FAILURE) != 0, "RUN_ALL_TESTS() should return non-zero, as the global set-up " "should generate a fatal failure."); Check(!test_was_run, "The tests should not run, as the global set-up should generate " "a fatal failure."); Check(env->tear_down_was_run(), "The global tear-down should run, as the global set-up was run."); // Verifies that RUN_ALL_TESTS() doesn't do global set-up or // tear-down when there is no test to run. testing::GTEST_FLAG(filter) = "-*"; Check(RunAllTests(env, NO_FAILURE) == 0, "RUN_ALL_TESTS() should return zero, as there is no test to run."); Check(!env->set_up_was_run(), "The global set-up should not run, as there is no test to run."); Check(!env->tear_down_was_run(), "The global tear-down should not run, " "as the global set-up was not run."); printf("PASS\n"); return 0; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_help_test.py000066400000000000000000000132761355420072700254120ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2009, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Tests the --help flag of Google C++ Testing and Mocking Framework. SYNOPSIS gtest_help_test.py --build_dir=BUILD/DIR # where BUILD/DIR contains the built gtest_help_test_ file. gtest_help_test.py """ import os import re import gtest_test_utils IS_LINUX = os.name == 'posix' and os.uname()[0] == 'Linux' IS_WINDOWS = os.name == 'nt' PROGRAM_PATH = gtest_test_utils.GetTestExecutablePath('gtest_help_test_') FLAG_PREFIX = '--gtest_' DEATH_TEST_STYLE_FLAG = FLAG_PREFIX + 'death_test_style' STREAM_RESULT_TO_FLAG = FLAG_PREFIX + 'stream_result_to' UNKNOWN_FLAG = FLAG_PREFIX + 'unknown_flag_for_testing' LIST_TESTS_FLAG = FLAG_PREFIX + 'list_tests' INCORRECT_FLAG_VARIANTS = [re.sub('^--', '-', LIST_TESTS_FLAG), re.sub('^--', '/', LIST_TESTS_FLAG), re.sub('_', '-', LIST_TESTS_FLAG)] INTERNAL_FLAG_FOR_TESTING = FLAG_PREFIX + 'internal_flag_for_testing' SUPPORTS_DEATH_TESTS = "DeathTest" in gtest_test_utils.Subprocess( [PROGRAM_PATH, LIST_TESTS_FLAG]).output # The help message must match this regex. HELP_REGEX = re.compile( FLAG_PREFIX + r'list_tests.*' + FLAG_PREFIX + r'filter=.*' + FLAG_PREFIX + r'also_run_disabled_tests.*' + FLAG_PREFIX + r'repeat=.*' + FLAG_PREFIX + r'shuffle.*' + FLAG_PREFIX + r'random_seed=.*' + FLAG_PREFIX + r'color=.*' + FLAG_PREFIX + r'print_time.*' + FLAG_PREFIX + r'output=.*' + FLAG_PREFIX + r'break_on_failure.*' + FLAG_PREFIX + r'throw_on_failure.*' + FLAG_PREFIX + r'catch_exceptions=0.*', re.DOTALL) def RunWithFlag(flag): """Runs gtest_help_test_ with the given flag. Returns: the exit code and the text output as a tuple. Args: flag: the command-line flag to pass to gtest_help_test_, or None. """ if flag is None: command = [PROGRAM_PATH] else: command = [PROGRAM_PATH, flag] child = gtest_test_utils.Subprocess(command) return child.exit_code, child.output class GTestHelpTest(gtest_test_utils.TestCase): """Tests the --help flag and its equivalent forms.""" def TestHelpFlag(self, flag): """Verifies correct behavior when help flag is specified. The right message must be printed and the tests must skipped when the given flag is specified. Args: flag: A flag to pass to the binary or None. """ exit_code, output = RunWithFlag(flag) self.assertEquals(0, exit_code) self.assert_(HELP_REGEX.search(output), output) if IS_LINUX: self.assert_(STREAM_RESULT_TO_FLAG in output, output) else: self.assert_(STREAM_RESULT_TO_FLAG not in output, output) if SUPPORTS_DEATH_TESTS and not IS_WINDOWS: self.assert_(DEATH_TEST_STYLE_FLAG in output, output) else: self.assert_(DEATH_TEST_STYLE_FLAG not in output, output) def TestNonHelpFlag(self, flag): """Verifies correct behavior when no help flag is specified. Verifies that when no help flag is specified, the tests are run and the help message is not printed. Args: flag: A flag to pass to the binary or None. """ exit_code, output = RunWithFlag(flag) self.assert_(exit_code != 0) self.assert_(not HELP_REGEX.search(output), output) def testPrintsHelpWithFullFlag(self): self.TestHelpFlag('--help') def testPrintsHelpWithShortFlag(self): self.TestHelpFlag('-h') def testPrintsHelpWithQuestionFlag(self): self.TestHelpFlag('-?') def testPrintsHelpWithWindowsStyleQuestionFlag(self): self.TestHelpFlag('/?') def testPrintsHelpWithUnrecognizedGoogleTestFlag(self): self.TestHelpFlag(UNKNOWN_FLAG) def testPrintsHelpWithIncorrectFlagStyle(self): for incorrect_flag in INCORRECT_FLAG_VARIANTS: self.TestHelpFlag(incorrect_flag) def testRunsTestsWithoutHelpFlag(self): """Verifies that when no help flag is specified, the tests are run and the help message is not printed.""" self.TestNonHelpFlag(None) def testRunsTestsWithGtestInternalFlag(self): """Verifies that the tests are run and no help message is printed when a flag starting with Google Test prefix and 'internal_' is supplied.""" self.TestNonHelpFlag(INTERNAL_FLAG_FOR_TESTING) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_help_test_.cc000066400000000000000000000040501355420072700254740ustar00rootroot00000000000000// Copyright 2009, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This program is meant to be run by gtest_help_test.py. Do not run // it directly. #include "gtest/gtest.h" // When a help flag is specified, this program should skip the tests // and exit with 0; otherwise the following test will be executed, // causing this program to exit with a non-zero code. TEST(HelpFlagTest, ShouldNotBeRun) { ASSERT_TRUE(false) << "Tests shouldn't be run when --help is specified."; } #if GTEST_HAS_DEATH_TEST TEST(DeathTest, UsedByPythonScriptToDetectSupportForDeathTestsInThisBinary) {} #endif libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_json_test_utils.py000066400000000000000000000045531355420072700266510ustar00rootroot00000000000000# Copyright 2018, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test utilities for gtest_json_output.""" import re def normalize(obj): """Normalize output object. Args: obj: Google Test's JSON output object to normalize. Returns: Normalized output without any references to transient information that may change from run to run. """ def _normalize(key, value): if key == 'time': return re.sub(r'^\d+(\.\d+)?s$', '*', value) elif key == 'timestamp': return re.sub(r'^\d{4}-\d\d-\d\dT\d\d:\d\d:\d\dZ$', '*', value) elif key == 'failure': value = re.sub(r'^.*[/\\](.*:)\d+\n', '\\1*\n', value) return re.sub(r'Stack trace:\n(.|\n)*', 'Stack trace:\n*', value) else: return normalize(value) if isinstance(obj, dict): return {k: _normalize(k, v) for k, v in obj.items()} if isinstance(obj, list): return [normalize(x) for x in obj] else: return obj libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_list_output_unittest.py000066400000000000000000000114671355420072700277550ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's --gtest_list_tests flag. A user can ask Google Test to list all tests by specifying the --gtest_list_tests flag. If output is requested, via --gtest_output=xml or --gtest_output=json, the tests are listed, with extra information in the output file. This script tests such functionality by invoking gtest_list_output_unittest_ (a program written with Google Test) the command line flags. """ import os import re import gtest_test_utils GTEST_LIST_TESTS_FLAG = '--gtest_list_tests' GTEST_OUTPUT_FLAG = '--gtest_output' EXPECTED_XML = """<\?xml version="1.0" encoding="UTF-8"\?> """ EXPECTED_JSON = """{ "tests": 2, "name": "AllTests", "testsuites": \[ { "name": "FooTest", "tests": 2, "testsuite": \[ { "name": "Test1", "file": ".*gtest_list_output_unittest_.cc", "line": 43 }, { "name": "Test2", "file": ".*gtest_list_output_unittest_.cc", "line": 45 } \] } \] } """ class GTestListTestsOutputUnitTest(gtest_test_utils.TestCase): """Unit test for Google Test's list tests with output to file functionality. """ def testXml(self): """Verifies XML output for listing tests in a Google Test binary. Runs a test program that generates an empty XML output, and tests that the XML output is expected. """ self._TestOutput('xml', EXPECTED_XML) def testJSON(self): """Verifies XML output for listing tests in a Google Test binary. Runs a test program that generates an empty XML output, and tests that the XML output is expected. """ self._TestOutput('json', EXPECTED_JSON) def _GetOutput(self, out_format): file_path = os.path.join(gtest_test_utils.GetTempDir(), 'test_out.' + out_format) gtest_prog_path = gtest_test_utils.GetTestExecutablePath( 'gtest_list_output_unittest_') command = ([ gtest_prog_path, '%s=%s:%s' % (GTEST_OUTPUT_FLAG, out_format, file_path), '--gtest_list_tests' ]) environ_copy = os.environ.copy() p = gtest_test_utils.Subprocess( command, env=environ_copy, working_dir=gtest_test_utils.GetTempDir()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) with open(file_path) as f: result = f.read() return result def _TestOutput(self, test_format, expected_output): actual = self._GetOutput(test_format) actual_lines = actual.splitlines() expected_lines = expected_output.splitlines() line_count = 0 for actual_line in actual_lines: expected_line = expected_lines[line_count] expected_line_re = re.compile(expected_line.strip()) self.assert_( expected_line_re.match(actual_line.strip()), ('actual output of "%s",\n' 'which does not match expected regex of "%s"\n' 'on line %d' % (actual, expected_output, line_count))) line_count = line_count + 1 if __name__ == '__main__': os.environ['GTEST_STACK_TRACE_DEPTH'] = '1' gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_list_output_unittest_.cc000066400000000000000000000041131355420072700300370ustar00rootroot00000000000000// Copyright 2018, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: david.schuldenfrei@gmail.com (David Schuldenfrei) // Unit test for Google Test's --gtest_list_tests and --gtest_output flag. // // A user can ask Google Test to list all tests that will run, // and have the output saved in a Json/Xml file. // The tests will not be run after listing. // // This program will be invoked from a Python unit test. // Don't run it directly. #include "gtest/gtest.h" TEST(FooTest, Test1) {} TEST(FooTest, Test2) {} int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_main_unittest.cc000066400000000000000000000034611355420072700262360ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "gtest/gtest.h" // Tests that we don't have to define main() when we link to // gtest_main instead of gtest. namespace { TEST(GTestMainTest, ShouldSucceed) { } } // namespace // We are using the main() function defined in gtest_main.cc, so we // don't define it here. libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_no_test_unittest.cc000066400000000000000000000045431355420072700267670ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Tests that a Google Test program that has no test defined can run // successfully. #include "gtest/gtest.h" int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); // An ad-hoc assertion outside of all tests. // // This serves three purposes: // // 1. It verifies that an ad-hoc assertion can be executed even if // no test is defined. // 2. It verifies that a failed ad-hoc assertion causes the test // program to fail. // 3. We had a bug where the XML output won't be generated if an // assertion is executed before RUN_ALL_TESTS() is called, even // though --gtest_output=xml is specified. This makes sure the // bug is fixed and doesn't regress. EXPECT_EQ(1, 2); // The above EXPECT_EQ() should cause RUN_ALL_TESTS() to return non-zero. return RUN_ALL_TESTS() ? 0 : 1; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_pred_impl_unittest.cc000066400000000000000000002272721355420072700272750ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file is AUTOMATICALLY GENERATED on 01/02/2019 by command // 'gen_gtest_pred_impl.py 5'. DO NOT EDIT BY HAND! // Regression test for gtest_pred_impl.h // // This file is generated by a script and quite long. If you intend to // learn how Google Test works by reading its unit tests, read // gtest_unittest.cc instead. // // This is intended as a regression test for the Google Test predicate // assertions. We compile it as part of the gtest_unittest target // only to keep the implementation tidy and compact, as it is quite // involved to set up the stage for testing Google Test using Google // Test itself. // // Currently, gtest_unittest takes ~11 seconds to run in the testing // daemon. In the future, if it grows too large and needs much more // time to finish, we should consider separating this file into a // stand-alone regression test. #include #include "gtest/gtest.h" #include "gtest/gtest-spi.h" // A user-defined data type. struct Bool { explicit Bool(int val) : value(val != 0) {} bool operator>(int n) const { return value > Bool(n).value; } Bool operator+(const Bool& rhs) const { return Bool(value + rhs.value); } bool operator==(const Bool& rhs) const { return value == rhs.value; } bool value; }; // Enables Bool to be used in assertions. std::ostream& operator<<(std::ostream& os, const Bool& x) { return os << (x.value ? "true" : "false"); } // Sample functions/functors for testing unary predicate assertions. // A unary predicate function. template bool PredFunction1(T1 v1) { return v1 > 0; } // The following two functions are needed to circumvent a bug in // gcc 2.95.3, which sometimes has problem with the above template // function. bool PredFunction1Int(int v1) { return v1 > 0; } bool PredFunction1Bool(Bool v1) { return v1 > 0; } // A unary predicate functor. struct PredFunctor1 { template bool operator()(const T1& v1) { return v1 > 0; } }; // A unary predicate-formatter function. template testing::AssertionResult PredFormatFunction1(const char* e1, const T1& v1) { if (PredFunction1(v1)) return testing::AssertionSuccess(); return testing::AssertionFailure() << e1 << " is expected to be positive, but evaluates to " << v1 << "."; } // A unary predicate-formatter functor. struct PredFormatFunctor1 { template testing::AssertionResult operator()(const char* e1, const T1& v1) const { return PredFormatFunction1(e1, v1); } }; // Tests for {EXPECT|ASSERT}_PRED_FORMAT1. class Predicate1Test : public testing::Test { protected: void SetUp() override { expected_to_finish_ = true; finished_ = false; n1_ = 0; } void TearDown() override { // Verifies that each of the predicate's arguments was evaluated // exactly once. EXPECT_EQ(1, n1_) << "The predicate assertion didn't evaluate argument 2 " "exactly once."; // Verifies that the control flow in the test function is expected. if (expected_to_finish_ && !finished_) { FAIL() << "The predicate assertion unexpactedly aborted the test."; } else if (!expected_to_finish_ && finished_) { FAIL() << "The failed predicate assertion didn't abort the test " "as expected."; } } // true if and only if the test function is expected to run to finish. static bool expected_to_finish_; // true if and only if the test function did run to finish. static bool finished_; static int n1_; }; bool Predicate1Test::expected_to_finish_; bool Predicate1Test::finished_; int Predicate1Test::n1_; typedef Predicate1Test EXPECT_PRED_FORMAT1Test; typedef Predicate1Test ASSERT_PRED_FORMAT1Test; typedef Predicate1Test EXPECT_PRED1Test; typedef Predicate1Test ASSERT_PRED1Test; // Tests a successful EXPECT_PRED1 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED1Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED1(PredFunction1Int, ++n1_); finished_ = true; } // Tests a successful EXPECT_PRED1 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED1Test, FunctionOnUserTypeSuccess) { EXPECT_PRED1(PredFunction1Bool, Bool(++n1_)); finished_ = true; } // Tests a successful EXPECT_PRED1 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED1Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED1(PredFunctor1(), ++n1_); finished_ = true; } // Tests a successful EXPECT_PRED1 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED1Test, FunctorOnUserTypeSuccess) { EXPECT_PRED1(PredFunctor1(), Bool(++n1_)); finished_ = true; } // Tests a failed EXPECT_PRED1 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED1Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED1(PredFunction1Int, n1_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED1 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED1Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED1(PredFunction1Bool, Bool(n1_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED1 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED1Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED1(PredFunctor1(), n1_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED1 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED1Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED1(PredFunctor1(), Bool(n1_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED1 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED1Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED1(PredFunction1Int, ++n1_); finished_ = true; } // Tests a successful ASSERT_PRED1 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED1Test, FunctionOnUserTypeSuccess) { ASSERT_PRED1(PredFunction1Bool, Bool(++n1_)); finished_ = true; } // Tests a successful ASSERT_PRED1 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED1Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED1(PredFunctor1(), ++n1_); finished_ = true; } // Tests a successful ASSERT_PRED1 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED1Test, FunctorOnUserTypeSuccess) { ASSERT_PRED1(PredFunctor1(), Bool(++n1_)); finished_ = true; } // Tests a failed ASSERT_PRED1 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED1Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED1(PredFunction1Int, n1_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED1 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED1Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED1(PredFunction1Bool, Bool(n1_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED1 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED1Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED1(PredFunctor1(), n1_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED1 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED1Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED1(PredFunctor1(), Bool(n1_++)); finished_ = true; }, ""); } // Tests a successful EXPECT_PRED_FORMAT1 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT1Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT1(PredFormatFunction1, ++n1_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT1 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT1Test, FunctionOnUserTypeSuccess) { EXPECT_PRED_FORMAT1(PredFormatFunction1, Bool(++n1_)); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT1 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT1Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT1(PredFormatFunctor1(), ++n1_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT1 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT1Test, FunctorOnUserTypeSuccess) { EXPECT_PRED_FORMAT1(PredFormatFunctor1(), Bool(++n1_)); finished_ = true; } // Tests a failed EXPECT_PRED_FORMAT1 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT1Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT1(PredFormatFunction1, n1_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT1 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT1Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT1(PredFormatFunction1, Bool(n1_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT1 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT1Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT1(PredFormatFunctor1(), n1_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT1 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT1Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT1(PredFormatFunctor1(), Bool(n1_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED_FORMAT1 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT1Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT1(PredFormatFunction1, ++n1_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT1 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT1Test, FunctionOnUserTypeSuccess) { ASSERT_PRED_FORMAT1(PredFormatFunction1, Bool(++n1_)); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT1 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT1Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT1(PredFormatFunctor1(), ++n1_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT1 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT1Test, FunctorOnUserTypeSuccess) { ASSERT_PRED_FORMAT1(PredFormatFunctor1(), Bool(++n1_)); finished_ = true; } // Tests a failed ASSERT_PRED_FORMAT1 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT1Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT1(PredFormatFunction1, n1_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT1 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT1Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT1(PredFormatFunction1, Bool(n1_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT1 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT1Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT1(PredFormatFunctor1(), n1_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT1 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT1Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT1(PredFormatFunctor1(), Bool(n1_++)); finished_ = true; }, ""); } // Sample functions/functors for testing binary predicate assertions. // A binary predicate function. template bool PredFunction2(T1 v1, T2 v2) { return v1 + v2 > 0; } // The following two functions are needed to circumvent a bug in // gcc 2.95.3, which sometimes has problem with the above template // function. bool PredFunction2Int(int v1, int v2) { return v1 + v2 > 0; } bool PredFunction2Bool(Bool v1, Bool v2) { return v1 + v2 > 0; } // A binary predicate functor. struct PredFunctor2 { template bool operator()(const T1& v1, const T2& v2) { return v1 + v2 > 0; } }; // A binary predicate-formatter function. template testing::AssertionResult PredFormatFunction2(const char* e1, const char* e2, const T1& v1, const T2& v2) { if (PredFunction2(v1, v2)) return testing::AssertionSuccess(); return testing::AssertionFailure() << e1 << " + " << e2 << " is expected to be positive, but evaluates to " << v1 + v2 << "."; } // A binary predicate-formatter functor. struct PredFormatFunctor2 { template testing::AssertionResult operator()(const char* e1, const char* e2, const T1& v1, const T2& v2) const { return PredFormatFunction2(e1, e2, v1, v2); } }; // Tests for {EXPECT|ASSERT}_PRED_FORMAT2. class Predicate2Test : public testing::Test { protected: void SetUp() override { expected_to_finish_ = true; finished_ = false; n1_ = n2_ = 0; } void TearDown() override { // Verifies that each of the predicate's arguments was evaluated // exactly once. EXPECT_EQ(1, n1_) << "The predicate assertion didn't evaluate argument 2 " "exactly once."; EXPECT_EQ(1, n2_) << "The predicate assertion didn't evaluate argument 3 " "exactly once."; // Verifies that the control flow in the test function is expected. if (expected_to_finish_ && !finished_) { FAIL() << "The predicate assertion unexpactedly aborted the test."; } else if (!expected_to_finish_ && finished_) { FAIL() << "The failed predicate assertion didn't abort the test " "as expected."; } } // true if and only if the test function is expected to run to finish. static bool expected_to_finish_; // true if and only if the test function did run to finish. static bool finished_; static int n1_; static int n2_; }; bool Predicate2Test::expected_to_finish_; bool Predicate2Test::finished_; int Predicate2Test::n1_; int Predicate2Test::n2_; typedef Predicate2Test EXPECT_PRED_FORMAT2Test; typedef Predicate2Test ASSERT_PRED_FORMAT2Test; typedef Predicate2Test EXPECT_PRED2Test; typedef Predicate2Test ASSERT_PRED2Test; // Tests a successful EXPECT_PRED2 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED2Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED2(PredFunction2Int, ++n1_, ++n2_); finished_ = true; } // Tests a successful EXPECT_PRED2 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED2Test, FunctionOnUserTypeSuccess) { EXPECT_PRED2(PredFunction2Bool, Bool(++n1_), Bool(++n2_)); finished_ = true; } // Tests a successful EXPECT_PRED2 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED2Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED2(PredFunctor2(), ++n1_, ++n2_); finished_ = true; } // Tests a successful EXPECT_PRED2 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED2Test, FunctorOnUserTypeSuccess) { EXPECT_PRED2(PredFunctor2(), Bool(++n1_), Bool(++n2_)); finished_ = true; } // Tests a failed EXPECT_PRED2 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED2Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED2(PredFunction2Int, n1_++, n2_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED2 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED2Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED2(PredFunction2Bool, Bool(n1_++), Bool(n2_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED2 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED2Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED2(PredFunctor2(), n1_++, n2_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED2 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED2Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED2(PredFunctor2(), Bool(n1_++), Bool(n2_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED2 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED2Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED2(PredFunction2Int, ++n1_, ++n2_); finished_ = true; } // Tests a successful ASSERT_PRED2 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED2Test, FunctionOnUserTypeSuccess) { ASSERT_PRED2(PredFunction2Bool, Bool(++n1_), Bool(++n2_)); finished_ = true; } // Tests a successful ASSERT_PRED2 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED2Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED2(PredFunctor2(), ++n1_, ++n2_); finished_ = true; } // Tests a successful ASSERT_PRED2 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED2Test, FunctorOnUserTypeSuccess) { ASSERT_PRED2(PredFunctor2(), Bool(++n1_), Bool(++n2_)); finished_ = true; } // Tests a failed ASSERT_PRED2 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED2Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED2(PredFunction2Int, n1_++, n2_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED2 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED2Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED2(PredFunction2Bool, Bool(n1_++), Bool(n2_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED2 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED2Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED2(PredFunctor2(), n1_++, n2_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED2 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED2Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED2(PredFunctor2(), Bool(n1_++), Bool(n2_++)); finished_ = true; }, ""); } // Tests a successful EXPECT_PRED_FORMAT2 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT2Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT2(PredFormatFunction2, ++n1_, ++n2_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT2 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT2Test, FunctionOnUserTypeSuccess) { EXPECT_PRED_FORMAT2(PredFormatFunction2, Bool(++n1_), Bool(++n2_)); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT2 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT2Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT2(PredFormatFunctor2(), ++n1_, ++n2_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT2 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT2Test, FunctorOnUserTypeSuccess) { EXPECT_PRED_FORMAT2(PredFormatFunctor2(), Bool(++n1_), Bool(++n2_)); finished_ = true; } // Tests a failed EXPECT_PRED_FORMAT2 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT2Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(PredFormatFunction2, n1_++, n2_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT2 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT2Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(PredFormatFunction2, Bool(n1_++), Bool(n2_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT2 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT2Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(PredFormatFunctor2(), n1_++, n2_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT2 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT2Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(PredFormatFunctor2(), Bool(n1_++), Bool(n2_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED_FORMAT2 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT2Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT2(PredFormatFunction2, ++n1_, ++n2_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT2 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT2Test, FunctionOnUserTypeSuccess) { ASSERT_PRED_FORMAT2(PredFormatFunction2, Bool(++n1_), Bool(++n2_)); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT2 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT2Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT2(PredFormatFunctor2(), ++n1_, ++n2_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT2 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT2Test, FunctorOnUserTypeSuccess) { ASSERT_PRED_FORMAT2(PredFormatFunctor2(), Bool(++n1_), Bool(++n2_)); finished_ = true; } // Tests a failed ASSERT_PRED_FORMAT2 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT2Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT2(PredFormatFunction2, n1_++, n2_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT2 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT2Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT2(PredFormatFunction2, Bool(n1_++), Bool(n2_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT2 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT2Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT2(PredFormatFunctor2(), n1_++, n2_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT2 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT2Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT2(PredFormatFunctor2(), Bool(n1_++), Bool(n2_++)); finished_ = true; }, ""); } // Sample functions/functors for testing ternary predicate assertions. // A ternary predicate function. template bool PredFunction3(T1 v1, T2 v2, T3 v3) { return v1 + v2 + v3 > 0; } // The following two functions are needed to circumvent a bug in // gcc 2.95.3, which sometimes has problem with the above template // function. bool PredFunction3Int(int v1, int v2, int v3) { return v1 + v2 + v3 > 0; } bool PredFunction3Bool(Bool v1, Bool v2, Bool v3) { return v1 + v2 + v3 > 0; } // A ternary predicate functor. struct PredFunctor3 { template bool operator()(const T1& v1, const T2& v2, const T3& v3) { return v1 + v2 + v3 > 0; } }; // A ternary predicate-formatter function. template testing::AssertionResult PredFormatFunction3(const char* e1, const char* e2, const char* e3, const T1& v1, const T2& v2, const T3& v3) { if (PredFunction3(v1, v2, v3)) return testing::AssertionSuccess(); return testing::AssertionFailure() << e1 << " + " << e2 << " + " << e3 << " is expected to be positive, but evaluates to " << v1 + v2 + v3 << "."; } // A ternary predicate-formatter functor. struct PredFormatFunctor3 { template testing::AssertionResult operator()(const char* e1, const char* e2, const char* e3, const T1& v1, const T2& v2, const T3& v3) const { return PredFormatFunction3(e1, e2, e3, v1, v2, v3); } }; // Tests for {EXPECT|ASSERT}_PRED_FORMAT3. class Predicate3Test : public testing::Test { protected: void SetUp() override { expected_to_finish_ = true; finished_ = false; n1_ = n2_ = n3_ = 0; } void TearDown() override { // Verifies that each of the predicate's arguments was evaluated // exactly once. EXPECT_EQ(1, n1_) << "The predicate assertion didn't evaluate argument 2 " "exactly once."; EXPECT_EQ(1, n2_) << "The predicate assertion didn't evaluate argument 3 " "exactly once."; EXPECT_EQ(1, n3_) << "The predicate assertion didn't evaluate argument 4 " "exactly once."; // Verifies that the control flow in the test function is expected. if (expected_to_finish_ && !finished_) { FAIL() << "The predicate assertion unexpactedly aborted the test."; } else if (!expected_to_finish_ && finished_) { FAIL() << "The failed predicate assertion didn't abort the test " "as expected."; } } // true if and only if the test function is expected to run to finish. static bool expected_to_finish_; // true if and only if the test function did run to finish. static bool finished_; static int n1_; static int n2_; static int n3_; }; bool Predicate3Test::expected_to_finish_; bool Predicate3Test::finished_; int Predicate3Test::n1_; int Predicate3Test::n2_; int Predicate3Test::n3_; typedef Predicate3Test EXPECT_PRED_FORMAT3Test; typedef Predicate3Test ASSERT_PRED_FORMAT3Test; typedef Predicate3Test EXPECT_PRED3Test; typedef Predicate3Test ASSERT_PRED3Test; // Tests a successful EXPECT_PRED3 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED3Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED3(PredFunction3Int, ++n1_, ++n2_, ++n3_); finished_ = true; } // Tests a successful EXPECT_PRED3 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED3Test, FunctionOnUserTypeSuccess) { EXPECT_PRED3(PredFunction3Bool, Bool(++n1_), Bool(++n2_), Bool(++n3_)); finished_ = true; } // Tests a successful EXPECT_PRED3 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED3Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED3(PredFunctor3(), ++n1_, ++n2_, ++n3_); finished_ = true; } // Tests a successful EXPECT_PRED3 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED3Test, FunctorOnUserTypeSuccess) { EXPECT_PRED3(PredFunctor3(), Bool(++n1_), Bool(++n2_), Bool(++n3_)); finished_ = true; } // Tests a failed EXPECT_PRED3 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED3Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED3(PredFunction3Int, n1_++, n2_++, n3_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED3 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED3Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED3(PredFunction3Bool, Bool(n1_++), Bool(n2_++), Bool(n3_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED3 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED3Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED3(PredFunctor3(), n1_++, n2_++, n3_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED3 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED3Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED3(PredFunctor3(), Bool(n1_++), Bool(n2_++), Bool(n3_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED3 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED3Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED3(PredFunction3Int, ++n1_, ++n2_, ++n3_); finished_ = true; } // Tests a successful ASSERT_PRED3 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED3Test, FunctionOnUserTypeSuccess) { ASSERT_PRED3(PredFunction3Bool, Bool(++n1_), Bool(++n2_), Bool(++n3_)); finished_ = true; } // Tests a successful ASSERT_PRED3 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED3Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED3(PredFunctor3(), ++n1_, ++n2_, ++n3_); finished_ = true; } // Tests a successful ASSERT_PRED3 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED3Test, FunctorOnUserTypeSuccess) { ASSERT_PRED3(PredFunctor3(), Bool(++n1_), Bool(++n2_), Bool(++n3_)); finished_ = true; } // Tests a failed ASSERT_PRED3 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED3Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED3(PredFunction3Int, n1_++, n2_++, n3_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED3 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED3Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED3(PredFunction3Bool, Bool(n1_++), Bool(n2_++), Bool(n3_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED3 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED3Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED3(PredFunctor3(), n1_++, n2_++, n3_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED3 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED3Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED3(PredFunctor3(), Bool(n1_++), Bool(n2_++), Bool(n3_++)); finished_ = true; }, ""); } // Tests a successful EXPECT_PRED_FORMAT3 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT3Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT3(PredFormatFunction3, ++n1_, ++n2_, ++n3_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT3 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT3Test, FunctionOnUserTypeSuccess) { EXPECT_PRED_FORMAT3(PredFormatFunction3, Bool(++n1_), Bool(++n2_), Bool(++n3_)); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT3 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT3Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT3(PredFormatFunctor3(), ++n1_, ++n2_, ++n3_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT3 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT3Test, FunctorOnUserTypeSuccess) { EXPECT_PRED_FORMAT3(PredFormatFunctor3(), Bool(++n1_), Bool(++n2_), Bool(++n3_)); finished_ = true; } // Tests a failed EXPECT_PRED_FORMAT3 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT3Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT3(PredFormatFunction3, n1_++, n2_++, n3_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT3 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT3Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT3(PredFormatFunction3, Bool(n1_++), Bool(n2_++), Bool(n3_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT3 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT3Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT3(PredFormatFunctor3(), n1_++, n2_++, n3_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT3 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT3Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT3(PredFormatFunctor3(), Bool(n1_++), Bool(n2_++), Bool(n3_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED_FORMAT3 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT3Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT3(PredFormatFunction3, ++n1_, ++n2_, ++n3_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT3 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT3Test, FunctionOnUserTypeSuccess) { ASSERT_PRED_FORMAT3(PredFormatFunction3, Bool(++n1_), Bool(++n2_), Bool(++n3_)); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT3 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT3Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT3(PredFormatFunctor3(), ++n1_, ++n2_, ++n3_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT3 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT3Test, FunctorOnUserTypeSuccess) { ASSERT_PRED_FORMAT3(PredFormatFunctor3(), Bool(++n1_), Bool(++n2_), Bool(++n3_)); finished_ = true; } // Tests a failed ASSERT_PRED_FORMAT3 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT3Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT3(PredFormatFunction3, n1_++, n2_++, n3_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT3 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT3Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT3(PredFormatFunction3, Bool(n1_++), Bool(n2_++), Bool(n3_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT3 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT3Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT3(PredFormatFunctor3(), n1_++, n2_++, n3_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT3 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT3Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT3(PredFormatFunctor3(), Bool(n1_++), Bool(n2_++), Bool(n3_++)); finished_ = true; }, ""); } // Sample functions/functors for testing 4-ary predicate assertions. // A 4-ary predicate function. template bool PredFunction4(T1 v1, T2 v2, T3 v3, T4 v4) { return v1 + v2 + v3 + v4 > 0; } // The following two functions are needed to circumvent a bug in // gcc 2.95.3, which sometimes has problem with the above template // function. bool PredFunction4Int(int v1, int v2, int v3, int v4) { return v1 + v2 + v3 + v4 > 0; } bool PredFunction4Bool(Bool v1, Bool v2, Bool v3, Bool v4) { return v1 + v2 + v3 + v4 > 0; } // A 4-ary predicate functor. struct PredFunctor4 { template bool operator()(const T1& v1, const T2& v2, const T3& v3, const T4& v4) { return v1 + v2 + v3 + v4 > 0; } }; // A 4-ary predicate-formatter function. template testing::AssertionResult PredFormatFunction4(const char* e1, const char* e2, const char* e3, const char* e4, const T1& v1, const T2& v2, const T3& v3, const T4& v4) { if (PredFunction4(v1, v2, v3, v4)) return testing::AssertionSuccess(); return testing::AssertionFailure() << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " is expected to be positive, but evaluates to " << v1 + v2 + v3 + v4 << "."; } // A 4-ary predicate-formatter functor. struct PredFormatFunctor4 { template testing::AssertionResult operator()(const char* e1, const char* e2, const char* e3, const char* e4, const T1& v1, const T2& v2, const T3& v3, const T4& v4) const { return PredFormatFunction4(e1, e2, e3, e4, v1, v2, v3, v4); } }; // Tests for {EXPECT|ASSERT}_PRED_FORMAT4. class Predicate4Test : public testing::Test { protected: void SetUp() override { expected_to_finish_ = true; finished_ = false; n1_ = n2_ = n3_ = n4_ = 0; } void TearDown() override { // Verifies that each of the predicate's arguments was evaluated // exactly once. EXPECT_EQ(1, n1_) << "The predicate assertion didn't evaluate argument 2 " "exactly once."; EXPECT_EQ(1, n2_) << "The predicate assertion didn't evaluate argument 3 " "exactly once."; EXPECT_EQ(1, n3_) << "The predicate assertion didn't evaluate argument 4 " "exactly once."; EXPECT_EQ(1, n4_) << "The predicate assertion didn't evaluate argument 5 " "exactly once."; // Verifies that the control flow in the test function is expected. if (expected_to_finish_ && !finished_) { FAIL() << "The predicate assertion unexpactedly aborted the test."; } else if (!expected_to_finish_ && finished_) { FAIL() << "The failed predicate assertion didn't abort the test " "as expected."; } } // true if and only if the test function is expected to run to finish. static bool expected_to_finish_; // true if and only if the test function did run to finish. static bool finished_; static int n1_; static int n2_; static int n3_; static int n4_; }; bool Predicate4Test::expected_to_finish_; bool Predicate4Test::finished_; int Predicate4Test::n1_; int Predicate4Test::n2_; int Predicate4Test::n3_; int Predicate4Test::n4_; typedef Predicate4Test EXPECT_PRED_FORMAT4Test; typedef Predicate4Test ASSERT_PRED_FORMAT4Test; typedef Predicate4Test EXPECT_PRED4Test; typedef Predicate4Test ASSERT_PRED4Test; // Tests a successful EXPECT_PRED4 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED4Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED4(PredFunction4Int, ++n1_, ++n2_, ++n3_, ++n4_); finished_ = true; } // Tests a successful EXPECT_PRED4 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED4Test, FunctionOnUserTypeSuccess) { EXPECT_PRED4(PredFunction4Bool, Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_)); finished_ = true; } // Tests a successful EXPECT_PRED4 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED4Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED4(PredFunctor4(), ++n1_, ++n2_, ++n3_, ++n4_); finished_ = true; } // Tests a successful EXPECT_PRED4 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED4Test, FunctorOnUserTypeSuccess) { EXPECT_PRED4(PredFunctor4(), Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_)); finished_ = true; } // Tests a failed EXPECT_PRED4 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED4Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED4(PredFunction4Int, n1_++, n2_++, n3_++, n4_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED4 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED4Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED4(PredFunction4Bool, Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED4 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED4Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED4(PredFunctor4(), n1_++, n2_++, n3_++, n4_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED4 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED4Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED4(PredFunctor4(), Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED4 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED4Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED4(PredFunction4Int, ++n1_, ++n2_, ++n3_, ++n4_); finished_ = true; } // Tests a successful ASSERT_PRED4 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED4Test, FunctionOnUserTypeSuccess) { ASSERT_PRED4(PredFunction4Bool, Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_)); finished_ = true; } // Tests a successful ASSERT_PRED4 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED4Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED4(PredFunctor4(), ++n1_, ++n2_, ++n3_, ++n4_); finished_ = true; } // Tests a successful ASSERT_PRED4 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED4Test, FunctorOnUserTypeSuccess) { ASSERT_PRED4(PredFunctor4(), Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_)); finished_ = true; } // Tests a failed ASSERT_PRED4 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED4Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED4(PredFunction4Int, n1_++, n2_++, n3_++, n4_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED4 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED4Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED4(PredFunction4Bool, Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED4 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED4Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED4(PredFunctor4(), n1_++, n2_++, n3_++, n4_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED4 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED4Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED4(PredFunctor4(), Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++)); finished_ = true; }, ""); } // Tests a successful EXPECT_PRED_FORMAT4 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT4Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT4(PredFormatFunction4, ++n1_, ++n2_, ++n3_, ++n4_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT4 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT4Test, FunctionOnUserTypeSuccess) { EXPECT_PRED_FORMAT4(PredFormatFunction4, Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_)); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT4 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT4Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT4(PredFormatFunctor4(), ++n1_, ++n2_, ++n3_, ++n4_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT4 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT4Test, FunctorOnUserTypeSuccess) { EXPECT_PRED_FORMAT4(PredFormatFunctor4(), Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_)); finished_ = true; } // Tests a failed EXPECT_PRED_FORMAT4 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT4Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT4(PredFormatFunction4, n1_++, n2_++, n3_++, n4_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT4 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT4Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT4(PredFormatFunction4, Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT4 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT4Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT4(PredFormatFunctor4(), n1_++, n2_++, n3_++, n4_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT4 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT4Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT4(PredFormatFunctor4(), Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED_FORMAT4 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT4Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT4(PredFormatFunction4, ++n1_, ++n2_, ++n3_, ++n4_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT4 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT4Test, FunctionOnUserTypeSuccess) { ASSERT_PRED_FORMAT4(PredFormatFunction4, Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_)); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT4 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT4Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT4(PredFormatFunctor4(), ++n1_, ++n2_, ++n3_, ++n4_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT4 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT4Test, FunctorOnUserTypeSuccess) { ASSERT_PRED_FORMAT4(PredFormatFunctor4(), Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_)); finished_ = true; } // Tests a failed ASSERT_PRED_FORMAT4 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT4Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT4(PredFormatFunction4, n1_++, n2_++, n3_++, n4_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT4 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT4Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT4(PredFormatFunction4, Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT4 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT4Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT4(PredFormatFunctor4(), n1_++, n2_++, n3_++, n4_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT4 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT4Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT4(PredFormatFunctor4(), Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++)); finished_ = true; }, ""); } // Sample functions/functors for testing 5-ary predicate assertions. // A 5-ary predicate function. template bool PredFunction5(T1 v1, T2 v2, T3 v3, T4 v4, T5 v5) { return v1 + v2 + v3 + v4 + v5 > 0; } // The following two functions are needed to circumvent a bug in // gcc 2.95.3, which sometimes has problem with the above template // function. bool PredFunction5Int(int v1, int v2, int v3, int v4, int v5) { return v1 + v2 + v3 + v4 + v5 > 0; } bool PredFunction5Bool(Bool v1, Bool v2, Bool v3, Bool v4, Bool v5) { return v1 + v2 + v3 + v4 + v5 > 0; } // A 5-ary predicate functor. struct PredFunctor5 { template bool operator()(const T1& v1, const T2& v2, const T3& v3, const T4& v4, const T5& v5) { return v1 + v2 + v3 + v4 + v5 > 0; } }; // A 5-ary predicate-formatter function. template testing::AssertionResult PredFormatFunction5(const char* e1, const char* e2, const char* e3, const char* e4, const char* e5, const T1& v1, const T2& v2, const T3& v3, const T4& v4, const T5& v5) { if (PredFunction5(v1, v2, v3, v4, v5)) return testing::AssertionSuccess(); return testing::AssertionFailure() << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5 << " is expected to be positive, but evaluates to " << v1 + v2 + v3 + v4 + v5 << "."; } // A 5-ary predicate-formatter functor. struct PredFormatFunctor5 { template testing::AssertionResult operator()(const char* e1, const char* e2, const char* e3, const char* e4, const char* e5, const T1& v1, const T2& v2, const T3& v3, const T4& v4, const T5& v5) const { return PredFormatFunction5(e1, e2, e3, e4, e5, v1, v2, v3, v4, v5); } }; // Tests for {EXPECT|ASSERT}_PRED_FORMAT5. class Predicate5Test : public testing::Test { protected: void SetUp() override { expected_to_finish_ = true; finished_ = false; n1_ = n2_ = n3_ = n4_ = n5_ = 0; } void TearDown() override { // Verifies that each of the predicate's arguments was evaluated // exactly once. EXPECT_EQ(1, n1_) << "The predicate assertion didn't evaluate argument 2 " "exactly once."; EXPECT_EQ(1, n2_) << "The predicate assertion didn't evaluate argument 3 " "exactly once."; EXPECT_EQ(1, n3_) << "The predicate assertion didn't evaluate argument 4 " "exactly once."; EXPECT_EQ(1, n4_) << "The predicate assertion didn't evaluate argument 5 " "exactly once."; EXPECT_EQ(1, n5_) << "The predicate assertion didn't evaluate argument 6 " "exactly once."; // Verifies that the control flow in the test function is expected. if (expected_to_finish_ && !finished_) { FAIL() << "The predicate assertion unexpactedly aborted the test."; } else if (!expected_to_finish_ && finished_) { FAIL() << "The failed predicate assertion didn't abort the test " "as expected."; } } // true if and only if the test function is expected to run to finish. static bool expected_to_finish_; // true if and only if the test function did run to finish. static bool finished_; static int n1_; static int n2_; static int n3_; static int n4_; static int n5_; }; bool Predicate5Test::expected_to_finish_; bool Predicate5Test::finished_; int Predicate5Test::n1_; int Predicate5Test::n2_; int Predicate5Test::n3_; int Predicate5Test::n4_; int Predicate5Test::n5_; typedef Predicate5Test EXPECT_PRED_FORMAT5Test; typedef Predicate5Test ASSERT_PRED_FORMAT5Test; typedef Predicate5Test EXPECT_PRED5Test; typedef Predicate5Test ASSERT_PRED5Test; // Tests a successful EXPECT_PRED5 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED5Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED5(PredFunction5Int, ++n1_, ++n2_, ++n3_, ++n4_, ++n5_); finished_ = true; } // Tests a successful EXPECT_PRED5 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED5Test, FunctionOnUserTypeSuccess) { EXPECT_PRED5(PredFunction5Bool, Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_), Bool(++n5_)); finished_ = true; } // Tests a successful EXPECT_PRED5 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED5Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED5(PredFunctor5(), ++n1_, ++n2_, ++n3_, ++n4_, ++n5_); finished_ = true; } // Tests a successful EXPECT_PRED5 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED5Test, FunctorOnUserTypeSuccess) { EXPECT_PRED5(PredFunctor5(), Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_), Bool(++n5_)); finished_ = true; } // Tests a failed EXPECT_PRED5 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED5Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED5(PredFunction5Int, n1_++, n2_++, n3_++, n4_++, n5_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED5 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED5Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED5(PredFunction5Bool, Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++), Bool(n5_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED5 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED5Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED5(PredFunctor5(), n1_++, n2_++, n3_++, n4_++, n5_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED5 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED5Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED5(PredFunctor5(), Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++), Bool(n5_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED5 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED5Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED5(PredFunction5Int, ++n1_, ++n2_, ++n3_, ++n4_, ++n5_); finished_ = true; } // Tests a successful ASSERT_PRED5 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED5Test, FunctionOnUserTypeSuccess) { ASSERT_PRED5(PredFunction5Bool, Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_), Bool(++n5_)); finished_ = true; } // Tests a successful ASSERT_PRED5 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED5Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED5(PredFunctor5(), ++n1_, ++n2_, ++n3_, ++n4_, ++n5_); finished_ = true; } // Tests a successful ASSERT_PRED5 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED5Test, FunctorOnUserTypeSuccess) { ASSERT_PRED5(PredFunctor5(), Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_), Bool(++n5_)); finished_ = true; } // Tests a failed ASSERT_PRED5 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED5Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED5(PredFunction5Int, n1_++, n2_++, n3_++, n4_++, n5_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED5 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED5Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED5(PredFunction5Bool, Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++), Bool(n5_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED5 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED5Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED5(PredFunctor5(), n1_++, n2_++, n3_++, n4_++, n5_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED5 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED5Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED5(PredFunctor5(), Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++), Bool(n5_++)); finished_ = true; }, ""); } // Tests a successful EXPECT_PRED_FORMAT5 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT5Test, FunctionOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT5(PredFormatFunction5, ++n1_, ++n2_, ++n3_, ++n4_, ++n5_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT5 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT5Test, FunctionOnUserTypeSuccess) { EXPECT_PRED_FORMAT5(PredFormatFunction5, Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_), Bool(++n5_)); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT5 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT5Test, FunctorOnBuiltInTypeSuccess) { EXPECT_PRED_FORMAT5(PredFormatFunctor5(), ++n1_, ++n2_, ++n3_, ++n4_, ++n5_); finished_ = true; } // Tests a successful EXPECT_PRED_FORMAT5 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT5Test, FunctorOnUserTypeSuccess) { EXPECT_PRED_FORMAT5(PredFormatFunctor5(), Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_), Bool(++n5_)); finished_ = true; } // Tests a failed EXPECT_PRED_FORMAT5 where the // predicate-formatter is a function on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT5Test, FunctionOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT5(PredFormatFunction5, n1_++, n2_++, n3_++, n4_++, n5_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT5 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT5Test, FunctionOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT5(PredFormatFunction5, Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++), Bool(n5_++)); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT5 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(EXPECT_PRED_FORMAT5Test, FunctorOnBuiltInTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT5(PredFormatFunctor5(), n1_++, n2_++, n3_++, n4_++, n5_++); finished_ = true; }, ""); } // Tests a failed EXPECT_PRED_FORMAT5 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(EXPECT_PRED_FORMAT5Test, FunctorOnUserTypeFailure) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT5(PredFormatFunctor5(), Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++), Bool(n5_++)); finished_ = true; }, ""); } // Tests a successful ASSERT_PRED_FORMAT5 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT5Test, FunctionOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT5(PredFormatFunction5, ++n1_, ++n2_, ++n3_, ++n4_, ++n5_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT5 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT5Test, FunctionOnUserTypeSuccess) { ASSERT_PRED_FORMAT5(PredFormatFunction5, Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_), Bool(++n5_)); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT5 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT5Test, FunctorOnBuiltInTypeSuccess) { ASSERT_PRED_FORMAT5(PredFormatFunctor5(), ++n1_, ++n2_, ++n3_, ++n4_, ++n5_); finished_ = true; } // Tests a successful ASSERT_PRED_FORMAT5 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT5Test, FunctorOnUserTypeSuccess) { ASSERT_PRED_FORMAT5(PredFormatFunctor5(), Bool(++n1_), Bool(++n2_), Bool(++n3_), Bool(++n4_), Bool(++n5_)); finished_ = true; } // Tests a failed ASSERT_PRED_FORMAT5 where the // predicate-formatter is a function on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT5Test, FunctionOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT5(PredFormatFunction5, n1_++, n2_++, n3_++, n4_++, n5_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT5 where the // predicate-formatter is a function on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT5Test, FunctionOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT5(PredFormatFunction5, Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++), Bool(n5_++)); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT5 where the // predicate-formatter is a functor on a built-in type (int). TEST_F(ASSERT_PRED_FORMAT5Test, FunctorOnBuiltInTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT5(PredFormatFunctor5(), n1_++, n2_++, n3_++, n4_++, n5_++); finished_ = true; }, ""); } // Tests a failed ASSERT_PRED_FORMAT5 where the // predicate-formatter is a functor on a user-defined type (Bool). TEST_F(ASSERT_PRED_FORMAT5Test, FunctorOnUserTypeFailure) { expected_to_finish_ = false; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT5(PredFormatFunctor5(), Bool(n1_++), Bool(n2_++), Bool(n3_++), Bool(n4_++), Bool(n5_++)); finished_ = true; }, ""); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_premature_exit_test.cc000066400000000000000000000102731355420072700274460ustar00rootroot00000000000000// Copyright 2013, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests that Google Test manipulates the premature-exit-detection // file correctly. #include #include "gtest/gtest.h" using ::testing::InitGoogleTest; using ::testing::Test; using ::testing::internal::posix::GetEnv; using ::testing::internal::posix::Stat; using ::testing::internal::posix::StatStruct; namespace { class PrematureExitTest : public Test { public: // Returns true if and only if the given file exists. static bool FileExists(const char* filepath) { StatStruct stat; return Stat(filepath, &stat) == 0; } protected: PrematureExitTest() { premature_exit_file_path_ = GetEnv("TEST_PREMATURE_EXIT_FILE"); // Normalize NULL to "" for ease of handling. if (premature_exit_file_path_ == nullptr) { premature_exit_file_path_ = ""; } } // Returns true if and only if the premature-exit file exists. bool PrematureExitFileExists() const { return FileExists(premature_exit_file_path_); } const char* premature_exit_file_path_; }; typedef PrematureExitTest PrematureExitDeathTest; // Tests that: // - the premature-exit file exists during the execution of a // death test (EXPECT_DEATH*), and // - a death test doesn't interfere with the main test process's // handling of the premature-exit file. TEST_F(PrematureExitDeathTest, FileExistsDuringExecutionOfDeathTest) { if (*premature_exit_file_path_ == '\0') { return; } EXPECT_DEATH_IF_SUPPORTED({ // If the file exists, crash the process such that the main test // process will catch the (expected) crash and report a success; // otherwise don't crash, which will cause the main test process // to report that the death test has failed. if (PrematureExitFileExists()) { exit(1); } }, ""); } // Tests that the premature-exit file exists during the execution of a // normal (non-death) test. TEST_F(PrematureExitTest, PrematureExitFileExistsDuringTestExecution) { if (*premature_exit_file_path_ == '\0') { return; } EXPECT_TRUE(PrematureExitFileExists()) << " file " << premature_exit_file_path_ << " should exist during test execution, but doesn't."; } } // namespace int main(int argc, char **argv) { InitGoogleTest(&argc, argv); const int exit_code = RUN_ALL_TESTS(); // Test that the premature-exit file is deleted upon return from // RUN_ALL_TESTS(). const char* const filepath = GetEnv("TEST_PREMATURE_EXIT_FILE"); if (filepath != nullptr && *filepath != '\0') { if (PrematureExitTest::FileExists(filepath)) { printf( "File %s shouldn't exist after the test program finishes, but does.", filepath); return 1; } } return exit_code; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_prod_test.cc000066400000000000000000000041431355420072700253540ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Unit test for gtest_prod.h. #include "production.h" #include "gtest/gtest.h" // Tests that private members can be accessed from a TEST declared as // a friend of the class. TEST(PrivateCodeTest, CanAccessPrivateMembers) { PrivateCode a; EXPECT_EQ(0, a.x_); a.set_x(1); EXPECT_EQ(1, a.x_); } typedef testing::Test PrivateCodeFixtureTest; // Tests that private members can be accessed from a TEST_F declared // as a friend of the class. TEST_F(PrivateCodeFixtureTest, CanAccessPrivateMembers) { PrivateCode a; EXPECT_EQ(0, a.x_); a.set_x(2); EXPECT_EQ(2, a.x_); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_repeat_test.cc000066400000000000000000000163721355420072700256770ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Tests the --gtest_repeat=number flag. #include #include #include "gtest/gtest.h" #include "src/gtest-internal-inl.h" namespace testing { GTEST_DECLARE_string_(death_test_style); GTEST_DECLARE_string_(filter); GTEST_DECLARE_int32_(repeat); } // namespace testing using testing::GTEST_FLAG(death_test_style); using testing::GTEST_FLAG(filter); using testing::GTEST_FLAG(repeat); namespace { // We need this when we are testing Google Test itself and therefore // cannot use Google Test assertions. #define GTEST_CHECK_INT_EQ_(expected, actual) \ do {\ const int expected_val = (expected);\ const int actual_val = (actual);\ if (::testing::internal::IsTrue(expected_val != actual_val)) {\ ::std::cout << "Value of: " #actual "\n"\ << " Actual: " << actual_val << "\n"\ << "Expected: " #expected "\n"\ << "Which is: " << expected_val << "\n";\ ::testing::internal::posix::Abort();\ }\ } while (::testing::internal::AlwaysFalse()) // Used for verifying that global environment set-up and tear-down are // inside the --gtest_repeat loop. int g_environment_set_up_count = 0; int g_environment_tear_down_count = 0; class MyEnvironment : public testing::Environment { public: MyEnvironment() {} void SetUp() override { g_environment_set_up_count++; } void TearDown() override { g_environment_tear_down_count++; } }; // A test that should fail. int g_should_fail_count = 0; TEST(FooTest, ShouldFail) { g_should_fail_count++; EXPECT_EQ(0, 1) << "Expected failure."; } // A test that should pass. int g_should_pass_count = 0; TEST(FooTest, ShouldPass) { g_should_pass_count++; } // A test that contains a thread-safe death test and a fast death // test. It should pass. int g_death_test_count = 0; TEST(BarDeathTest, ThreadSafeAndFast) { g_death_test_count++; GTEST_FLAG(death_test_style) = "threadsafe"; EXPECT_DEATH_IF_SUPPORTED(::testing::internal::posix::Abort(), ""); GTEST_FLAG(death_test_style) = "fast"; EXPECT_DEATH_IF_SUPPORTED(::testing::internal::posix::Abort(), ""); } int g_param_test_count = 0; const int kNumberOfParamTests = 10; class MyParamTest : public testing::TestWithParam {}; TEST_P(MyParamTest, ShouldPass) { GTEST_CHECK_INT_EQ_(g_param_test_count % kNumberOfParamTests, GetParam()); g_param_test_count++; } INSTANTIATE_TEST_SUITE_P(MyParamSequence, MyParamTest, testing::Range(0, kNumberOfParamTests)); // Resets the count for each test. void ResetCounts() { g_environment_set_up_count = 0; g_environment_tear_down_count = 0; g_should_fail_count = 0; g_should_pass_count = 0; g_death_test_count = 0; g_param_test_count = 0; } // Checks that the count for each test is expected. void CheckCounts(int expected) { GTEST_CHECK_INT_EQ_(expected, g_environment_set_up_count); GTEST_CHECK_INT_EQ_(expected, g_environment_tear_down_count); GTEST_CHECK_INT_EQ_(expected, g_should_fail_count); GTEST_CHECK_INT_EQ_(expected, g_should_pass_count); GTEST_CHECK_INT_EQ_(expected, g_death_test_count); GTEST_CHECK_INT_EQ_(expected * kNumberOfParamTests, g_param_test_count); } // Tests the behavior of Google Test when --gtest_repeat is not specified. void TestRepeatUnspecified() { ResetCounts(); GTEST_CHECK_INT_EQ_(1, RUN_ALL_TESTS()); CheckCounts(1); } // Tests the behavior of Google Test when --gtest_repeat has the given value. void TestRepeat(int repeat) { GTEST_FLAG(repeat) = repeat; ResetCounts(); GTEST_CHECK_INT_EQ_(repeat > 0 ? 1 : 0, RUN_ALL_TESTS()); CheckCounts(repeat); } // Tests using --gtest_repeat when --gtest_filter specifies an empty // set of tests. void TestRepeatWithEmptyFilter(int repeat) { GTEST_FLAG(repeat) = repeat; GTEST_FLAG(filter) = "None"; ResetCounts(); GTEST_CHECK_INT_EQ_(0, RUN_ALL_TESTS()); CheckCounts(0); } // Tests using --gtest_repeat when --gtest_filter specifies a set of // successful tests. void TestRepeatWithFilterForSuccessfulTests(int repeat) { GTEST_FLAG(repeat) = repeat; GTEST_FLAG(filter) = "*-*ShouldFail"; ResetCounts(); GTEST_CHECK_INT_EQ_(0, RUN_ALL_TESTS()); GTEST_CHECK_INT_EQ_(repeat, g_environment_set_up_count); GTEST_CHECK_INT_EQ_(repeat, g_environment_tear_down_count); GTEST_CHECK_INT_EQ_(0, g_should_fail_count); GTEST_CHECK_INT_EQ_(repeat, g_should_pass_count); GTEST_CHECK_INT_EQ_(repeat, g_death_test_count); GTEST_CHECK_INT_EQ_(repeat * kNumberOfParamTests, g_param_test_count); } // Tests using --gtest_repeat when --gtest_filter specifies a set of // failed tests. void TestRepeatWithFilterForFailedTests(int repeat) { GTEST_FLAG(repeat) = repeat; GTEST_FLAG(filter) = "*ShouldFail"; ResetCounts(); GTEST_CHECK_INT_EQ_(1, RUN_ALL_TESTS()); GTEST_CHECK_INT_EQ_(repeat, g_environment_set_up_count); GTEST_CHECK_INT_EQ_(repeat, g_environment_tear_down_count); GTEST_CHECK_INT_EQ_(repeat, g_should_fail_count); GTEST_CHECK_INT_EQ_(0, g_should_pass_count); GTEST_CHECK_INT_EQ_(0, g_death_test_count); GTEST_CHECK_INT_EQ_(0, g_param_test_count); } } // namespace int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); testing::AddGlobalTestEnvironment(new MyEnvironment); TestRepeatUnspecified(); TestRepeat(0); TestRepeat(1); TestRepeat(5); TestRepeatWithEmptyFilter(2); TestRepeatWithEmptyFilter(3); TestRepeatWithFilterForSuccessfulTests(3); TestRepeatWithFilterForFailedTests(4); // It would be nice to verify that the tests indeed loop forever // when GTEST_FLAG(repeat) is negative, but this test will be quite // complicated to write. Since this flag is for interactive // debugging only and doesn't affect the normal test result, such a // test would be an overkill. printf("PASS\n"); return 0; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_skip_environment_check_output_test.py000066400000000000000000000042411355420072700326210ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2019 Google LLC. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Tests Google Test's gtest skip in environment setup behavior. This script invokes gtest_skip_in_environment_setup_test_ and verifies its output. """ import gtest_test_utils # Path to the gtest_skip_in_environment_setup_test binary EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'gtest_skip_in_environment_setup_test') OUTPUT = gtest_test_utils.Subprocess([EXE_PATH]).output # Test. class SkipEntireEnvironmentTest(gtest_test_utils.TestCase): def testSkipEntireEnvironmentTest(self): self.assertIn('Skipping the entire environment', OUTPUT) self.assertNotIn('FAILED', OUTPUT) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_skip_in_environment_setup_test.cc000066400000000000000000000040251355420072700317070ustar00rootroot00000000000000// Copyright 2019, Google LLC. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google LLC. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This test verifies that skipping in the environment results in the // testcases being skipped. #include #include "gtest/gtest.h" class SetupEnvironment : public testing::Environment { public: void SetUp() override { GTEST_SKIP() << "Skipping the entire environment"; } }; TEST(Test, AlwaysFails) { EXPECT_EQ(true, false); } int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); testing::AddGlobalTestEnvironment(new SetupEnvironment()); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_skip_test.cc000066400000000000000000000036731355420072700253650ustar00rootroot00000000000000// Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: arseny.aprelev@gmail.com (Arseny Aprelev) // #include "gtest/gtest.h" using ::testing::Test; TEST(SkipTest, DoesSkip) { GTEST_SKIP(); EXPECT_EQ(0, 1); } class Fixture : public Test { protected: void SetUp() override { GTEST_SKIP() << "skipping all tests for this fixture"; } }; TEST_F(Fixture, SkipsOneTest) { EXPECT_EQ(5, 7); } TEST_F(Fixture, SkipsAnotherTest) { EXPECT_EQ(99, 100); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_sole_header_test.cc000066400000000000000000000041771355420072700266710ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This test verifies that it's possible to use Google Test by including // the gtest.h header file alone. #include "gtest/gtest.h" namespace { void Subroutine() { EXPECT_EQ(42, 42); } TEST(NoFatalFailureTest, ExpectNoFatalFailure) { EXPECT_NO_FATAL_FAILURE(;); EXPECT_NO_FATAL_FAILURE(SUCCEED()); EXPECT_NO_FATAL_FAILURE(Subroutine()); EXPECT_NO_FATAL_FAILURE({ SUCCEED(); }); } TEST(NoFatalFailureTest, AssertNoFatalFailure) { ASSERT_NO_FATAL_FAILURE(;); ASSERT_NO_FATAL_FAILURE(SUCCEED()); ASSERT_NO_FATAL_FAILURE(Subroutine()); ASSERT_NO_FATAL_FAILURE({ SUCCEED(); }); } } // namespace libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_stress_test.cc000066400000000000000000000221461355420072700257360ustar00rootroot00000000000000// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Tests that SCOPED_TRACE() and various Google Test assertions can be // used in a large number of threads concurrently. #include "gtest/gtest.h" #include #include "src/gtest-internal-inl.h" #if GTEST_IS_THREADSAFE namespace testing { namespace { using internal::Notification; using internal::TestPropertyKeyIs; using internal::ThreadWithParam; // In order to run tests in this file, for platforms where Google Test is // thread safe, implement ThreadWithParam. See the description of its API // in gtest-port.h, where it is defined for already supported platforms. // How many threads to create? const int kThreadCount = 50; std::string IdToKey(int id, const char* suffix) { Message key; key << "key_" << id << "_" << suffix; return key.GetString(); } std::string IdToString(int id) { Message id_message; id_message << id; return id_message.GetString(); } void ExpectKeyAndValueWereRecordedForId( const std::vector& properties, int id, const char* suffix) { TestPropertyKeyIs matches_key(IdToKey(id, suffix).c_str()); const std::vector::const_iterator property = std::find_if(properties.begin(), properties.end(), matches_key); ASSERT_TRUE(property != properties.end()) << "expecting " << suffix << " value for id " << id; EXPECT_STREQ(IdToString(id).c_str(), property->value()); } // Calls a large number of Google Test assertions, where exactly one of them // will fail. void ManyAsserts(int id) { GTEST_LOG_(INFO) << "Thread #" << id << " running..."; SCOPED_TRACE(Message() << "Thread #" << id); for (int i = 0; i < kThreadCount; i++) { SCOPED_TRACE(Message() << "Iteration #" << i); // A bunch of assertions that should succeed. EXPECT_TRUE(true); ASSERT_FALSE(false) << "This shouldn't fail."; EXPECT_STREQ("a", "a"); ASSERT_LE(5, 6); EXPECT_EQ(i, i) << "This shouldn't fail."; // RecordProperty() should interact safely with other threads as well. // The shared_key forces property updates. Test::RecordProperty(IdToKey(id, "string").c_str(), IdToString(id).c_str()); Test::RecordProperty(IdToKey(id, "int").c_str(), id); Test::RecordProperty("shared_key", IdToString(id).c_str()); // This assertion should fail kThreadCount times per thread. It // is for testing whether Google Test can handle failed assertions in a // multi-threaded context. EXPECT_LT(i, 0) << "This should always fail."; } } void CheckTestFailureCount(int expected_failures) { const TestInfo* const info = UnitTest::GetInstance()->current_test_info(); const TestResult* const result = info->result(); GTEST_CHECK_(expected_failures == result->total_part_count()) << "Logged " << result->total_part_count() << " failures " << " vs. " << expected_failures << " expected"; } // Tests using SCOPED_TRACE() and Google Test assertions in many threads // concurrently. TEST(StressTest, CanUseScopedTraceAndAssertionsInManyThreads) { { std::unique_ptr > threads[kThreadCount]; Notification threads_can_start; for (int i = 0; i != kThreadCount; i++) threads[i].reset(new ThreadWithParam(&ManyAsserts, i, &threads_can_start)); threads_can_start.Notify(); // Blocks until all the threads are done. for (int i = 0; i != kThreadCount; i++) threads[i]->Join(); } // Ensures that kThreadCount*kThreadCount failures have been reported. const TestInfo* const info = UnitTest::GetInstance()->current_test_info(); const TestResult* const result = info->result(); std::vector properties; // We have no access to the TestResult's list of properties but we can // copy them one by one. for (int i = 0; i < result->test_property_count(); ++i) properties.push_back(result->GetTestProperty(i)); EXPECT_EQ(kThreadCount * 2 + 1, result->test_property_count()) << "String and int values recorded on each thread, " << "as well as one shared_key"; for (int i = 0; i < kThreadCount; ++i) { ExpectKeyAndValueWereRecordedForId(properties, i, "string"); ExpectKeyAndValueWereRecordedForId(properties, i, "int"); } CheckTestFailureCount(kThreadCount*kThreadCount); } void FailingThread(bool is_fatal) { if (is_fatal) FAIL() << "Fatal failure in some other thread. " << "(This failure is expected.)"; else ADD_FAILURE() << "Non-fatal failure in some other thread. " << "(This failure is expected.)"; } void GenerateFatalFailureInAnotherThread(bool is_fatal) { ThreadWithParam thread(&FailingThread, is_fatal, nullptr); thread.Join(); } TEST(NoFatalFailureTest, ExpectNoFatalFailureIgnoresFailuresInOtherThreads) { EXPECT_NO_FATAL_FAILURE(GenerateFatalFailureInAnotherThread(true)); // We should only have one failure (the one from // GenerateFatalFailureInAnotherThread()), since the EXPECT_NO_FATAL_FAILURE // should succeed. CheckTestFailureCount(1); } void AssertNoFatalFailureIgnoresFailuresInOtherThreads() { ASSERT_NO_FATAL_FAILURE(GenerateFatalFailureInAnotherThread(true)); } TEST(NoFatalFailureTest, AssertNoFatalFailureIgnoresFailuresInOtherThreads) { // Using a subroutine, to make sure, that the test continues. AssertNoFatalFailureIgnoresFailuresInOtherThreads(); // We should only have one failure (the one from // GenerateFatalFailureInAnotherThread()), since the EXPECT_NO_FATAL_FAILURE // should succeed. CheckTestFailureCount(1); } TEST(FatalFailureTest, ExpectFatalFailureIgnoresFailuresInOtherThreads) { // This statement should fail, since the current thread doesn't generate a // fatal failure, only another one does. EXPECT_FATAL_FAILURE(GenerateFatalFailureInAnotherThread(true), "expected"); CheckTestFailureCount(2); } TEST(FatalFailureOnAllThreadsTest, ExpectFatalFailureOnAllThreads) { // This statement should succeed, because failures in all threads are // considered. EXPECT_FATAL_FAILURE_ON_ALL_THREADS( GenerateFatalFailureInAnotherThread(true), "expected"); CheckTestFailureCount(0); // We need to add a failure, because main() checks that there are failures. // But when only this test is run, we shouldn't have any failures. ADD_FAILURE() << "This is an expected non-fatal failure."; } TEST(NonFatalFailureTest, ExpectNonFatalFailureIgnoresFailuresInOtherThreads) { // This statement should fail, since the current thread doesn't generate a // fatal failure, only another one does. EXPECT_NONFATAL_FAILURE(GenerateFatalFailureInAnotherThread(false), "expected"); CheckTestFailureCount(2); } TEST(NonFatalFailureOnAllThreadsTest, ExpectNonFatalFailureOnAllThreads) { // This statement should succeed, because failures in all threads are // considered. EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS( GenerateFatalFailureInAnotherThread(false), "expected"); CheckTestFailureCount(0); // We need to add a failure, because main() checks that there are failures, // But when only this test is run, we shouldn't have any failures. ADD_FAILURE() << "This is an expected non-fatal failure."; } } // namespace } // namespace testing int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); const int result = RUN_ALL_TESTS(); // Expected to fail. GTEST_CHECK_(result == 1) << "RUN_ALL_TESTS() did not fail as expected"; printf("\nPASS\n"); return 0; } #else TEST(StressTest, DISABLED_ThreadSafetyTestsAreSkippedWhenGoogleTestIsNotThreadSafe) { } int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } #endif // GTEST_IS_THREADSAFE libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_test_macro_stack_footprint_test.cc000066400000000000000000000072671355420072700320530ustar00rootroot00000000000000// Copyright 2013, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Each TEST() expands to some static registration logic. GCC puts all // such static initialization logic for a translation unit in a common, // internal function. Since Google's build system restricts how much // stack space a function can use, there's a limit on how many TEST()s // one can put in a single C++ test file. This test ensures that a large // number of TEST()s can be defined in the same translation unit. #include "gtest/gtest.h" // This macro defines 10 dummy tests. #define TEN_TESTS_(test_case_name) \ TEST(test_case_name, T0) {} \ TEST(test_case_name, T1) {} \ TEST(test_case_name, T2) {} \ TEST(test_case_name, T3) {} \ TEST(test_case_name, T4) {} \ TEST(test_case_name, T5) {} \ TEST(test_case_name, T6) {} \ TEST(test_case_name, T7) {} \ TEST(test_case_name, T8) {} \ TEST(test_case_name, T9) {} // This macro defines 100 dummy tests. #define HUNDRED_TESTS_(test_case_name_prefix) \ TEN_TESTS_(test_case_name_prefix ## 0) \ TEN_TESTS_(test_case_name_prefix ## 1) \ TEN_TESTS_(test_case_name_prefix ## 2) \ TEN_TESTS_(test_case_name_prefix ## 3) \ TEN_TESTS_(test_case_name_prefix ## 4) \ TEN_TESTS_(test_case_name_prefix ## 5) \ TEN_TESTS_(test_case_name_prefix ## 6) \ TEN_TESTS_(test_case_name_prefix ## 7) \ TEN_TESTS_(test_case_name_prefix ## 8) \ TEN_TESTS_(test_case_name_prefix ## 9) // This macro defines 1000 dummy tests. #define THOUSAND_TESTS_(test_case_name_prefix) \ HUNDRED_TESTS_(test_case_name_prefix ## 0) \ HUNDRED_TESTS_(test_case_name_prefix ## 1) \ HUNDRED_TESTS_(test_case_name_prefix ## 2) \ HUNDRED_TESTS_(test_case_name_prefix ## 3) \ HUNDRED_TESTS_(test_case_name_prefix ## 4) \ HUNDRED_TESTS_(test_case_name_prefix ## 5) \ HUNDRED_TESTS_(test_case_name_prefix ## 6) \ HUNDRED_TESTS_(test_case_name_prefix ## 7) \ HUNDRED_TESTS_(test_case_name_prefix ## 8) \ HUNDRED_TESTS_(test_case_name_prefix ## 9) // Ensures that we can define 1000 TEST()s in the same translation // unit. THOUSAND_TESTS_(T) int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); // We don't actually need to run the dummy tests - the purpose is to // ensure that they compile. return 0; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_test_utils.py000066400000000000000000000246611355420072700256220ustar00rootroot00000000000000# Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test utilities for Google C++ Testing and Mocking Framework.""" # Suppresses the 'Import not at the top of the file' lint complaint. # pylint: disable-msg=C6204 import os import sys IS_WINDOWS = os.name == 'nt' IS_CYGWIN = os.name == 'posix' and 'CYGWIN' in os.uname()[0] IS_OS2 = os.name == 'os2' import atexit import shutil import tempfile import unittest as _test_module try: import subprocess _SUBPROCESS_MODULE_AVAILABLE = True except: import popen2 _SUBPROCESS_MODULE_AVAILABLE = False # pylint: enable-msg=C6204 GTEST_OUTPUT_VAR_NAME = 'GTEST_OUTPUT' # The environment variable for specifying the path to the premature-exit file. PREMATURE_EXIT_FILE_ENV_VAR = 'TEST_PREMATURE_EXIT_FILE' environ = os.environ.copy() def SetEnvVar(env_var, value): """Sets/unsets an environment variable to a given value.""" if value is not None: environ[env_var] = value elif env_var in environ: del environ[env_var] # Here we expose a class from a particular module, depending on the # environment. The comment suppresses the 'Invalid variable name' lint # complaint. TestCase = _test_module.TestCase # pylint: disable=C6409 # Initially maps a flag to its default value. After # _ParseAndStripGTestFlags() is called, maps a flag to its actual value. _flag_map = {'source_dir': os.path.dirname(sys.argv[0]), 'build_dir': os.path.dirname(sys.argv[0])} _gtest_flags_are_parsed = False def _ParseAndStripGTestFlags(argv): """Parses and strips Google Test flags from argv. This is idempotent.""" # Suppresses the lint complaint about a global variable since we need it # here to maintain module-wide state. global _gtest_flags_are_parsed # pylint: disable=W0603 if _gtest_flags_are_parsed: return _gtest_flags_are_parsed = True for flag in _flag_map: # The environment variable overrides the default value. if flag.upper() in os.environ: _flag_map[flag] = os.environ[flag.upper()] # The command line flag overrides the environment variable. i = 1 # Skips the program name. while i < len(argv): prefix = '--' + flag + '=' if argv[i].startswith(prefix): _flag_map[flag] = argv[i][len(prefix):] del argv[i] break else: # We don't increment i in case we just found a --gtest_* flag # and removed it from argv. i += 1 def GetFlag(flag): """Returns the value of the given flag.""" # In case GetFlag() is called before Main(), we always call # _ParseAndStripGTestFlags() here to make sure the --gtest_* flags # are parsed. _ParseAndStripGTestFlags(sys.argv) return _flag_map[flag] def GetSourceDir(): """Returns the absolute path of the directory where the .py files are.""" return os.path.abspath(GetFlag('source_dir')) def GetBuildDir(): """Returns the absolute path of the directory where the test binaries are.""" return os.path.abspath(GetFlag('build_dir')) _temp_dir = None def _RemoveTempDir(): if _temp_dir: shutil.rmtree(_temp_dir, ignore_errors=True) atexit.register(_RemoveTempDir) def GetTempDir(): global _temp_dir if not _temp_dir: _temp_dir = tempfile.mkdtemp() return _temp_dir def GetTestExecutablePath(executable_name, build_dir=None): """Returns the absolute path of the test binary given its name. The function will print a message and abort the program if the resulting file doesn't exist. Args: executable_name: name of the test binary that the test script runs. build_dir: directory where to look for executables, by default the result of GetBuildDir(). Returns: The absolute path of the test binary. """ path = os.path.abspath(os.path.join(build_dir or GetBuildDir(), executable_name)) if (IS_WINDOWS or IS_CYGWIN or IS_OS2) and not path.endswith('.exe'): path += '.exe' if not os.path.exists(path): message = ( 'Unable to find the test binary "%s". Please make sure to provide\n' 'a path to the binary via the --build_dir flag or the BUILD_DIR\n' 'environment variable.' % path) print >> sys.stderr, message sys.exit(1) return path def GetExitStatus(exit_code): """Returns the argument to exit(), or -1 if exit() wasn't called. Args: exit_code: the result value of os.system(command). """ if os.name == 'nt': # On Windows, os.WEXITSTATUS() doesn't work and os.system() returns # the argument to exit() directly. return exit_code else: # On Unix, os.WEXITSTATUS() must be used to extract the exit status # from the result of os.system(). if os.WIFEXITED(exit_code): return os.WEXITSTATUS(exit_code) else: return -1 class Subprocess: def __init__(self, command, working_dir=None, capture_stderr=True, env=None): """Changes into a specified directory, if provided, and executes a command. Restores the old directory afterwards. Args: command: The command to run, in the form of sys.argv. working_dir: The directory to change into. capture_stderr: Determines whether to capture stderr in the output member or to discard it. env: Dictionary with environment to pass to the subprocess. Returns: An object that represents outcome of the executed process. It has the following attributes: terminated_by_signal True if and only if the child process has been terminated by a signal. signal Sygnal that terminated the child process. exited True if and only if the child process exited normally. exit_code The code with which the child process exited. output Child process's stdout and stderr output combined in a string. """ # The subprocess module is the preferrable way of running programs # since it is available and behaves consistently on all platforms, # including Windows. But it is only available starting in python 2.4. # In earlier python versions, we revert to the popen2 module, which is # available in python 2.0 and later but doesn't provide required # functionality (Popen4) under Windows. This allows us to support Mac # OS X 10.4 Tiger, which has python 2.3 installed. if _SUBPROCESS_MODULE_AVAILABLE: if capture_stderr: stderr = subprocess.STDOUT else: stderr = subprocess.PIPE p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=stderr, cwd=working_dir, universal_newlines=True, env=env) # communicate returns a tuple with the file object for the child's # output. self.output = p.communicate()[0] self._return_code = p.returncode else: old_dir = os.getcwd() def _ReplaceEnvDict(dest, src): # Changes made by os.environ.clear are not inheritable by child # processes until Python 2.6. To produce inheritable changes we have # to delete environment items with the del statement. for key in dest.keys(): del dest[key] dest.update(src) # When 'env' is not None, backup the environment variables and replace # them with the passed 'env'. When 'env' is None, we simply use the # current 'os.environ' for compatibility with the subprocess.Popen # semantics used above. if env is not None: old_environ = os.environ.copy() _ReplaceEnvDict(os.environ, env) try: if working_dir is not None: os.chdir(working_dir) if capture_stderr: p = popen2.Popen4(command) else: p = popen2.Popen3(command) p.tochild.close() self.output = p.fromchild.read() ret_code = p.wait() finally: os.chdir(old_dir) # Restore the old environment variables # if they were replaced. if env is not None: _ReplaceEnvDict(os.environ, old_environ) # Converts ret_code to match the semantics of # subprocess.Popen.returncode. if os.WIFSIGNALED(ret_code): self._return_code = -os.WTERMSIG(ret_code) else: # os.WIFEXITED(ret_code) should return True here. self._return_code = os.WEXITSTATUS(ret_code) if self._return_code < 0: self.terminated_by_signal = True self.exited = False self.signal = -self._return_code else: self.terminated_by_signal = False self.exited = True self.exit_code = self._return_code def Main(): """Runs the unit test.""" # We must call _ParseAndStripGTestFlags() before calling # unittest.main(). Otherwise the latter will be confused by the # --gtest_* flags. _ParseAndStripGTestFlags(sys.argv) # The tested binaries should not be writing XML output files unless the # script explicitly instructs them to. if GTEST_OUTPUT_VAR_NAME in os.environ: del os.environ[GTEST_OUTPUT_VAR_NAME] _test_module.main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_testbridge_test.py000066400000000000000000000046531355420072700266150ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2018 Google LLC. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Verifies that Google Test uses filter provided via testbridge.""" import os import gtest_test_utils binary_name = 'gtest_testbridge_test_' COMMAND = gtest_test_utils.GetTestExecutablePath(binary_name) TESTBRIDGE_NAME = 'TESTBRIDGE_TEST_ONLY' def Assert(condition): if not condition: raise AssertionError class GTestTestFilterTest(gtest_test_utils.TestCase): def testTestExecutionIsFiltered(self): """Tests that the test filter is picked up from the testbridge env var.""" subprocess_env = os.environ.copy() subprocess_env[TESTBRIDGE_NAME] = '*.TestThatSucceeds' p = gtest_test_utils.Subprocess(COMMAND, env=subprocess_env) self.assertEquals(0, p.exit_code) Assert('filter = *.TestThatSucceeds' in p.output) Assert('[ OK ] TestFilterTest.TestThatSucceeds' in p.output) Assert('[ PASSED ] 1 test.' in p.output) if __name__ == '__main__': gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_testbridge_test_.cc000066400000000000000000000036031355420072700267030ustar00rootroot00000000000000// Copyright 2018, Google LLC. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This program is meant to be run by gtest_test_filter_test.py. Do not run // it directly. #include "gtest/gtest.h" // These tests are used to detect if filtering is working. Only // 'TestThatSucceeds' should ever run. TEST(TestFilterTest, TestThatSucceeds) {} TEST(TestFilterTest, TestThatFails) { ASSERT_TRUE(false) << "This test should never be run."; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_throw_on_failure_ex_test.cc000066400000000000000000000065061355420072700304570ustar00rootroot00000000000000// Copyright 2009, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Tests Google Test's throw-on-failure mode with exceptions enabled. #include "gtest/gtest.h" #include #include #include #include // Prints the given failure message and exits the program with // non-zero. We use this instead of a Google Test assertion to // indicate a failure, as the latter is been tested and cannot be // relied on. void Fail(const char* msg) { printf("FAILURE: %s\n", msg); fflush(stdout); exit(1); } // Tests that an assertion failure throws a subclass of // std::runtime_error. void TestFailureThrowsRuntimeError() { testing::GTEST_FLAG(throw_on_failure) = true; // A successful assertion shouldn't throw. try { EXPECT_EQ(3, 3); } catch(...) { Fail("A successful assertion wrongfully threw."); } // A failed assertion should throw a subclass of std::runtime_error. try { EXPECT_EQ(2, 3) << "Expected failure"; } catch(const std::runtime_error& e) { if (strstr(e.what(), "Expected failure") != nullptr) return; printf("%s", "A failed assertion did throw an exception of the right type, " "but the message is incorrect. Instead of containing \"Expected " "failure\", it is:\n"); Fail(e.what()); } catch(...) { Fail("A failed assertion threw the wrong type of exception."); } Fail("A failed assertion should've thrown but didn't."); } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); // We want to ensure that people can use Google Test assertions in // other testing frameworks, as long as they initialize Google Test // properly and set the thrown-on-failure mode. Therefore, we don't // use Google Test's constructs for defining and running tests // (e.g. TEST and RUN_ALL_TESTS) here. TestFailureThrowsRuntimeError(); return 0; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_unittest.cc000066400000000000000000007477661355420072700252610ustar00rootroot00000000000000// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Tests for Google Test itself. This verifies that the basic constructs of // Google Test work. #include "gtest/gtest.h" // Verifies that the command line flag variables can be accessed in // code once "gtest.h" has been #included. // Do not move it after other gtest #includes. TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) { bool dummy = testing::GTEST_FLAG(also_run_disabled_tests) || testing::GTEST_FLAG(break_on_failure) || testing::GTEST_FLAG(catch_exceptions) || testing::GTEST_FLAG(color) != "unknown" || testing::GTEST_FLAG(filter) != "unknown" || testing::GTEST_FLAG(list_tests) || testing::GTEST_FLAG(output) != "unknown" || testing::GTEST_FLAG(print_time) || testing::GTEST_FLAG(random_seed) || testing::GTEST_FLAG(repeat) > 0 || testing::GTEST_FLAG(show_internal_stack_frames) || testing::GTEST_FLAG(shuffle) || testing::GTEST_FLAG(stack_trace_depth) > 0 || testing::GTEST_FLAG(stream_result_to) != "unknown" || testing::GTEST_FLAG(throw_on_failure); EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused. } #include // For INT_MAX. #include #include #include #include #include #include #include #include #include "gtest/gtest-spi.h" #include "src/gtest-internal-inl.h" namespace testing { namespace internal { #if GTEST_CAN_STREAM_RESULTS_ class StreamingListenerTest : public Test { public: class FakeSocketWriter : public StreamingListener::AbstractSocketWriter { public: // Sends a string to the socket. void Send(const std::string& message) override { output_ += message; } std::string output_; }; StreamingListenerTest() : fake_sock_writer_(new FakeSocketWriter), streamer_(fake_sock_writer_), test_info_obj_("FooTest", "Bar", nullptr, nullptr, CodeLocation(__FILE__, __LINE__), nullptr, nullptr) {} protected: std::string* output() { return &(fake_sock_writer_->output_); } FakeSocketWriter* const fake_sock_writer_; StreamingListener streamer_; UnitTest unit_test_; TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test. }; TEST_F(StreamingListenerTest, OnTestProgramEnd) { *output() = ""; streamer_.OnTestProgramEnd(unit_test_); EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output()); } TEST_F(StreamingListenerTest, OnTestIterationEnd) { *output() = ""; streamer_.OnTestIterationEnd(unit_test_, 42); EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output()); } TEST_F(StreamingListenerTest, OnTestCaseStart) { *output() = ""; streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", nullptr, nullptr)); EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output()); } TEST_F(StreamingListenerTest, OnTestCaseEnd) { *output() = ""; streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", nullptr, nullptr)); EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output()); } TEST_F(StreamingListenerTest, OnTestStart) { *output() = ""; streamer_.OnTestStart(test_info_obj_); EXPECT_EQ("event=TestStart&name=Bar\n", *output()); } TEST_F(StreamingListenerTest, OnTestEnd) { *output() = ""; streamer_.OnTestEnd(test_info_obj_); EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output()); } TEST_F(StreamingListenerTest, OnTestPartResult) { *output() = ""; streamer_.OnTestPartResult(TestPartResult( TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%")); // Meta characters in the failure message should be properly escaped. EXPECT_EQ( "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n", *output()); } #endif // GTEST_CAN_STREAM_RESULTS_ // Provides access to otherwise private parts of the TestEventListeners class // that are needed to test it. class TestEventListenersAccessor { public: static TestEventListener* GetRepeater(TestEventListeners* listeners) { return listeners->repeater(); } static void SetDefaultResultPrinter(TestEventListeners* listeners, TestEventListener* listener) { listeners->SetDefaultResultPrinter(listener); } static void SetDefaultXmlGenerator(TestEventListeners* listeners, TestEventListener* listener) { listeners->SetDefaultXmlGenerator(listener); } static bool EventForwardingEnabled(const TestEventListeners& listeners) { return listeners.EventForwardingEnabled(); } static void SuppressEventForwarding(TestEventListeners* listeners) { listeners->SuppressEventForwarding(); } }; class UnitTestRecordPropertyTestHelper : public Test { protected: UnitTestRecordPropertyTestHelper() {} // Forwards to UnitTest::RecordProperty() to bypass access controls. void UnitTestRecordProperty(const char* key, const std::string& value) { unit_test_.RecordProperty(key, value); } UnitTest unit_test_; }; } // namespace internal } // namespace testing using testing::AssertionFailure; using testing::AssertionResult; using testing::AssertionSuccess; using testing::DoubleLE; using testing::EmptyTestEventListener; using testing::Environment; using testing::FloatLE; using testing::GTEST_FLAG(also_run_disabled_tests); using testing::GTEST_FLAG(break_on_failure); using testing::GTEST_FLAG(catch_exceptions); using testing::GTEST_FLAG(color); using testing::GTEST_FLAG(death_test_use_fork); using testing::GTEST_FLAG(filter); using testing::GTEST_FLAG(list_tests); using testing::GTEST_FLAG(output); using testing::GTEST_FLAG(print_time); using testing::GTEST_FLAG(random_seed); using testing::GTEST_FLAG(repeat); using testing::GTEST_FLAG(show_internal_stack_frames); using testing::GTEST_FLAG(shuffle); using testing::GTEST_FLAG(stack_trace_depth); using testing::GTEST_FLAG(stream_result_to); using testing::GTEST_FLAG(throw_on_failure); using testing::IsNotSubstring; using testing::IsSubstring; using testing::Message; using testing::ScopedFakeTestPartResultReporter; using testing::StaticAssertTypeEq; using testing::Test; using testing::TestCase; using testing::TestEventListeners; using testing::TestInfo; using testing::TestPartResult; using testing::TestPartResultArray; using testing::TestProperty; using testing::TestResult; using testing::TimeInMillis; using testing::UnitTest; using testing::internal::AlwaysFalse; using testing::internal::AlwaysTrue; using testing::internal::AppendUserMessage; using testing::internal::ArrayAwareFind; using testing::internal::ArrayEq; using testing::internal::CodePointToUtf8; using testing::internal::CopyArray; using testing::internal::CountIf; using testing::internal::EqFailure; using testing::internal::FloatingPoint; using testing::internal::ForEach; using testing::internal::FormatEpochTimeInMillisAsIso8601; using testing::internal::FormatTimeInMillisAsSeconds; using testing::internal::GTestFlagSaver; using testing::internal::GetCurrentOsStackTraceExceptTop; using testing::internal::GetElementOr; using testing::internal::GetNextRandomSeed; using testing::internal::GetRandomSeedFromFlag; using testing::internal::GetTestTypeId; using testing::internal::GetTimeInMillis; using testing::internal::GetTypeId; using testing::internal::GetUnitTestImpl; using testing::internal::Int32; using testing::internal::Int32FromEnvOrDie; using testing::internal::IsAProtocolMessage; using testing::internal::IsContainer; using testing::internal::IsContainerTest; using testing::internal::IsNotContainer; using testing::internal::NativeArray; using testing::internal::OsStackTraceGetter; using testing::internal::OsStackTraceGetterInterface; using testing::internal::ParseInt32Flag; using testing::internal::RelationToSourceCopy; using testing::internal::RelationToSourceReference; using testing::internal::ShouldRunTestOnShard; using testing::internal::ShouldShard; using testing::internal::ShouldUseColor; using testing::internal::Shuffle; using testing::internal::ShuffleRange; using testing::internal::SkipPrefix; using testing::internal::StreamableToString; using testing::internal::String; using testing::internal::TestEventListenersAccessor; using testing::internal::TestResultAccessor; using testing::internal::UInt32; using testing::internal::UnitTestImpl; using testing::internal::WideStringToUtf8; using testing::internal::edit_distance::CalculateOptimalEdits; using testing::internal::edit_distance::CreateUnifiedDiff; using testing::internal::edit_distance::EditType; using testing::internal::kMaxRandomSeed; using testing::internal::kTestTypeIdInGoogleTest; using testing::kMaxStackTraceDepth; #if GTEST_HAS_STREAM_REDIRECTION using testing::internal::CaptureStdout; using testing::internal::GetCapturedStdout; #endif #if GTEST_IS_THREADSAFE using testing::internal::ThreadWithParam; #endif class TestingVector : public std::vector { }; ::std::ostream& operator<<(::std::ostream& os, const TestingVector& vector) { os << "{ "; for (size_t i = 0; i < vector.size(); i++) { os << vector[i] << " "; } os << "}"; return os; } // This line tests that we can define tests in an unnamed namespace. namespace { TEST(GetRandomSeedFromFlagTest, HandlesZero) { const int seed = GetRandomSeedFromFlag(0); EXPECT_LE(1, seed); EXPECT_LE(seed, static_cast(kMaxRandomSeed)); } TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) { EXPECT_EQ(1, GetRandomSeedFromFlag(1)); EXPECT_EQ(2, GetRandomSeedFromFlag(2)); EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1)); EXPECT_EQ(static_cast(kMaxRandomSeed), GetRandomSeedFromFlag(kMaxRandomSeed)); } TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) { const int seed1 = GetRandomSeedFromFlag(-1); EXPECT_LE(1, seed1); EXPECT_LE(seed1, static_cast(kMaxRandomSeed)); const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1); EXPECT_LE(1, seed2); EXPECT_LE(seed2, static_cast(kMaxRandomSeed)); } TEST(GetNextRandomSeedTest, WorksForValidInput) { EXPECT_EQ(2, GetNextRandomSeed(1)); EXPECT_EQ(3, GetNextRandomSeed(2)); EXPECT_EQ(static_cast(kMaxRandomSeed), GetNextRandomSeed(kMaxRandomSeed - 1)); EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed)); // We deliberately don't test GetNextRandomSeed() with invalid // inputs, as that requires death tests, which are expensive. This // is fine as GetNextRandomSeed() is internal and has a // straightforward definition. } static void ClearCurrentTestPartResults() { TestResultAccessor::ClearTestPartResults( GetUnitTestImpl()->current_test_result()); } // Tests GetTypeId. TEST(GetTypeIdTest, ReturnsSameValueForSameType) { EXPECT_EQ(GetTypeId(), GetTypeId()); EXPECT_EQ(GetTypeId(), GetTypeId()); } class SubClassOfTest : public Test {}; class AnotherSubClassOfTest : public Test {}; TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) { EXPECT_NE(GetTypeId(), GetTypeId()); EXPECT_NE(GetTypeId(), GetTypeId()); EXPECT_NE(GetTypeId(), GetTestTypeId()); EXPECT_NE(GetTypeId(), GetTestTypeId()); EXPECT_NE(GetTypeId(), GetTestTypeId()); EXPECT_NE(GetTypeId(), GetTypeId()); } // Verifies that GetTestTypeId() returns the same value, no matter it // is called from inside Google Test or outside of it. TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) { EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId()); } // Tests CanonicalizeForStdLibVersioning. using ::testing::internal::CanonicalizeForStdLibVersioning; TEST(CanonicalizeForStdLibVersioning, LeavesUnversionedNamesUnchanged) { EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::bind")); EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::_")); EXPECT_EQ("std::__foo", CanonicalizeForStdLibVersioning("std::__foo")); EXPECT_EQ("gtl::__1::x", CanonicalizeForStdLibVersioning("gtl::__1::x")); EXPECT_EQ("__1::x", CanonicalizeForStdLibVersioning("__1::x")); EXPECT_EQ("::__1::x", CanonicalizeForStdLibVersioning("::__1::x")); } TEST(CanonicalizeForStdLibVersioning, ElidesDoubleUnderNames) { EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__1::bind")); EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__1::_")); EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__g::bind")); EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__g::_")); EXPECT_EQ("std::bind", CanonicalizeForStdLibVersioning("std::__google::bind")); EXPECT_EQ("std::_", CanonicalizeForStdLibVersioning("std::__google::_")); } // Tests FormatTimeInMillisAsSeconds(). TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) { EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0)); } TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) { EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3)); EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10)); EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200)); EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200)); EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000)); } TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) { EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3)); EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10)); EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200)); EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200)); EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000)); } // Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion // for particular dates below was verified in Python using // datetime.datetime.fromutctimestamp(/1000). // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we // have to set up a particular timezone to obtain predictable results. class FormatEpochTimeInMillisAsIso8601Test : public Test { public: // On Cygwin, GCC doesn't allow unqualified integer literals to exceed // 32 bits, even when 64-bit integer types are available. We have to // force the constants to have a 64-bit type here. static const TimeInMillis kMillisPerSec = 1000; private: void SetUp() override { saved_tz_ = nullptr; GTEST_DISABLE_MSC_DEPRECATED_PUSH_(/* getenv, strdup: deprecated */) if (getenv("TZ")) saved_tz_ = strdup(getenv("TZ")); GTEST_DISABLE_MSC_DEPRECATED_POP_() // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use. We // cannot use the local time zone because the function's output depends // on the time zone. SetTimeZone("UTC+00"); } void TearDown() override { SetTimeZone(saved_tz_); free(const_cast(saved_tz_)); saved_tz_ = nullptr; } static void SetTimeZone(const char* time_zone) { // tzset() distinguishes between the TZ variable being present and empty // and not being present, so we have to consider the case of time_zone // being NULL. #if _MSC_VER || GTEST_OS_WINDOWS_MINGW // ...Unless it's MSVC, whose standard library's _putenv doesn't // distinguish between an empty and a missing variable. const std::string env_var = std::string("TZ=") + (time_zone ? time_zone : ""); _putenv(env_var.c_str()); GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */) tzset(); GTEST_DISABLE_MSC_WARNINGS_POP_() #else if (time_zone) { setenv(("TZ"), time_zone, 1); } else { unsetenv("TZ"); } tzset(); #endif } const char* saved_tz_; }; const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec; TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) { EXPECT_EQ("2011-10-31T18:52:42", FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec)); } TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) { EXPECT_EQ( "2011-10-31T18:52:42", FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234)); } TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) { EXPECT_EQ("2011-09-03T05:07:02", FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec)); } TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) { EXPECT_EQ("2011-09-28T17:08:22", FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec)); } TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) { EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0)); } # ifdef __BORLANDC__ // Silences warnings: "Condition is always true", "Unreachable code" # pragma option push -w-ccc -w-rch # endif // Tests that the LHS of EXPECT_EQ or ASSERT_EQ can be used as a null literal // when the RHS is a pointer type. TEST(NullLiteralTest, LHSAllowsNullLiterals) { EXPECT_EQ(0, static_cast(nullptr)); // NOLINT ASSERT_EQ(0, static_cast(nullptr)); // NOLINT EXPECT_EQ(NULL, static_cast(nullptr)); // NOLINT ASSERT_EQ(NULL, static_cast(nullptr)); // NOLINT EXPECT_EQ(nullptr, static_cast(nullptr)); ASSERT_EQ(nullptr, static_cast(nullptr)); const int* const p = nullptr; EXPECT_EQ(0, p); // NOLINT ASSERT_EQ(0, p); // NOLINT EXPECT_EQ(NULL, p); // NOLINT ASSERT_EQ(NULL, p); // NOLINT EXPECT_EQ(nullptr, p); ASSERT_EQ(nullptr, p); } struct ConvertToAll { template operator T() const { // NOLINT return T(); } }; struct ConvertToPointer { template operator T*() const { // NOLINT return nullptr; } }; struct ConvertToAllButNoPointers { template ::value, int>::type = 0> operator T() const { // NOLINT return T(); } }; struct MyType {}; inline bool operator==(MyType const&, MyType const&) { return true; } TEST(NullLiteralTest, ImplicitConversion) { EXPECT_EQ(ConvertToPointer{}, static_cast(nullptr)); #if !defined(__GNUC__) || defined(__clang__) // Disabled due to GCC bug gcc.gnu.org/PR89580 EXPECT_EQ(ConvertToAll{}, static_cast(nullptr)); #endif EXPECT_EQ(ConvertToAll{}, MyType{}); EXPECT_EQ(ConvertToAllButNoPointers{}, MyType{}); } #ifdef __clang__ #pragma clang diagnostic push #if __has_warning("-Wzero-as-null-pointer-constant") #pragma clang diagnostic error "-Wzero-as-null-pointer-constant" #endif #endif TEST(NullLiteralTest, NoConversionNoWarning) { // Test that gtests detection and handling of null pointer constants // doesn't trigger a warning when '0' isn't actually used as null. EXPECT_EQ(0, 0); ASSERT_EQ(0, 0); } #ifdef __clang__ #pragma clang diagnostic pop #endif # ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them. # pragma option pop # endif // // Tests CodePointToUtf8(). // Tests that the NUL character L'\0' is encoded correctly. TEST(CodePointToUtf8Test, CanEncodeNul) { EXPECT_EQ("", CodePointToUtf8(L'\0')); } // Tests that ASCII characters are encoded correctly. TEST(CodePointToUtf8Test, CanEncodeAscii) { EXPECT_EQ("a", CodePointToUtf8(L'a')); EXPECT_EQ("Z", CodePointToUtf8(L'Z')); EXPECT_EQ("&", CodePointToUtf8(L'&')); EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F')); } // Tests that Unicode code-points that have 8 to 11 bits are encoded // as 110xxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode8To11Bits) { // 000 1101 0011 => 110-00011 10-010011 EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3')); // 101 0111 0110 => 110-10101 10-110110 // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints // in wide strings and wide chars. In order to accommodate them, we have to // introduce such character constants as integers. EXPECT_EQ("\xD5\xB6", CodePointToUtf8(static_cast(0x576))); } // Tests that Unicode code-points that have 12 to 16 bits are encoded // as 1110xxxx 10xxxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode12To16Bits) { // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 EXPECT_EQ("\xE0\xA3\x93", CodePointToUtf8(static_cast(0x8D3))); // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 EXPECT_EQ("\xEC\x9D\x8D", CodePointToUtf8(static_cast(0xC74D))); } #if !GTEST_WIDE_STRING_USES_UTF16_ // Tests in this group require a wchar_t to hold > 16 bits, and thus // are skipped on Windows, and Cygwin, where a wchar_t is // 16-bit wide. This code may not compile on those systems. // Tests that Unicode code-points that have 17 to 21 bits are encoded // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. TEST(CodePointToUtf8Test, CanEncode17To21Bits) { // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3')); // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000 EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400')); // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634')); } // Tests that encoding an invalid code-point generates the expected result. TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) { EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD')); } #endif // !GTEST_WIDE_STRING_USES_UTF16_ // Tests WideStringToUtf8(). // Tests that the NUL character L'\0' is encoded correctly. TEST(WideStringToUtf8Test, CanEncodeNul) { EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str()); EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str()); } // Tests that ASCII strings are encoded correctly. TEST(WideStringToUtf8Test, CanEncodeAscii) { EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str()); EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str()); EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str()); EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str()); } // Tests that Unicode code-points that have 8 to 11 bits are encoded // as 110xxxxx 10xxxxxx. TEST(WideStringToUtf8Test, CanEncode8To11Bits) { // 000 1101 0011 => 110-00011 10-010011 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str()); EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str()); // 101 0111 0110 => 110-10101 10-110110 const wchar_t s[] = { 0x576, '\0' }; EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str()); EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str()); } // Tests that Unicode code-points that have 12 to 16 bits are encoded // as 1110xxxx 10xxxxxx 10xxxxxx. TEST(WideStringToUtf8Test, CanEncode12To16Bits) { // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 const wchar_t s1[] = { 0x8D3, '\0' }; EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str()); EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str()); // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 const wchar_t s2[] = { 0xC74D, '\0' }; EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str()); EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str()); } // Tests that the conversion stops when the function encounters \0 character. TEST(WideStringToUtf8Test, StopsOnNulCharacter) { EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str()); } // Tests that the conversion stops when the function reaches the limit // specified by the 'length' parameter. TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) { EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str()); } #if !GTEST_WIDE_STRING_USES_UTF16_ // Tests that Unicode code-points that have 17 to 21 bits are encoded // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile // on the systems using UTF-16 encoding. TEST(WideStringToUtf8Test, CanEncode17To21Bits) { // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str()); EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str()); // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str()); EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str()); } // Tests that encoding an invalid code-point generates the expected result. TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) { EXPECT_STREQ("(Invalid Unicode 0xABCDFF)", WideStringToUtf8(L"\xABCDFF", -1).c_str()); } #else // !GTEST_WIDE_STRING_USES_UTF16_ // Tests that surrogate pairs are encoded correctly on the systems using // UTF-16 encoding in the wide strings. TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) { const wchar_t s[] = { 0xD801, 0xDC00, '\0' }; EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str()); } // Tests that encoding an invalid UTF-16 surrogate pair // generates the expected result. TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) { // Leading surrogate is at the end of the string. const wchar_t s1[] = { 0xD800, '\0' }; EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str()); // Leading surrogate is not followed by the trailing surrogate. const wchar_t s2[] = { 0xD800, 'M', '\0' }; EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str()); // Trailing surrogate appearas without a leading surrogate. const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' }; EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str()); } #endif // !GTEST_WIDE_STRING_USES_UTF16_ // Tests that codepoint concatenation works correctly. #if !GTEST_WIDE_STRING_USES_UTF16_ TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'}; EXPECT_STREQ( "\xF4\x88\x98\xB4" "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93" "\xF4\x88\x98\xB4", WideStringToUtf8(s, -1).c_str()); } #else TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'}; EXPECT_STREQ( "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93", WideStringToUtf8(s, -1).c_str()); } #endif // !GTEST_WIDE_STRING_USES_UTF16_ // Tests the Random class. TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) { testing::internal::Random random(42); EXPECT_DEATH_IF_SUPPORTED( random.Generate(0), "Cannot generate a number in the range \\[0, 0\\)"); EXPECT_DEATH_IF_SUPPORTED( random.Generate(testing::internal::Random::kMaxRange + 1), "Generation of a number in \\[0, 2147483649\\) was requested, " "but this can only generate numbers in \\[0, 2147483648\\)"); } TEST(RandomTest, GeneratesNumbersWithinRange) { const UInt32 kRange = 10000; testing::internal::Random random(12345); for (int i = 0; i < 10; i++) { EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i; } testing::internal::Random random2(testing::internal::Random::kMaxRange); for (int i = 0; i < 10; i++) { EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i; } } TEST(RandomTest, RepeatsWhenReseeded) { const int kSeed = 123; const int kArraySize = 10; const UInt32 kRange = 10000; UInt32 values[kArraySize]; testing::internal::Random random(kSeed); for (int i = 0; i < kArraySize; i++) { values[i] = random.Generate(kRange); } random.Reseed(kSeed); for (int i = 0; i < kArraySize; i++) { EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i; } } // Tests STL container utilities. // Tests CountIf(). static bool IsPositive(int n) { return n > 0; } TEST(ContainerUtilityTest, CountIf) { std::vector v; EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container. v.push_back(-1); v.push_back(0); EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies. v.push_back(2); v.push_back(-10); v.push_back(10); EXPECT_EQ(2, CountIf(v, IsPositive)); } // Tests ForEach(). static int g_sum = 0; static void Accumulate(int n) { g_sum += n; } TEST(ContainerUtilityTest, ForEach) { std::vector v; g_sum = 0; ForEach(v, Accumulate); EXPECT_EQ(0, g_sum); // Works for an empty container; g_sum = 0; v.push_back(1); ForEach(v, Accumulate); EXPECT_EQ(1, g_sum); // Works for a container with one element. g_sum = 0; v.push_back(20); v.push_back(300); ForEach(v, Accumulate); EXPECT_EQ(321, g_sum); } // Tests GetElementOr(). TEST(ContainerUtilityTest, GetElementOr) { std::vector a; EXPECT_EQ('x', GetElementOr(a, 0, 'x')); a.push_back('a'); a.push_back('b'); EXPECT_EQ('a', GetElementOr(a, 0, 'x')); EXPECT_EQ('b', GetElementOr(a, 1, 'x')); EXPECT_EQ('x', GetElementOr(a, -2, 'x')); EXPECT_EQ('x', GetElementOr(a, 2, 'x')); } TEST(ContainerUtilityDeathTest, ShuffleRange) { std::vector a; a.push_back(0); a.push_back(1); a.push_back(2); testing::internal::Random random(1); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, -1, 1, &a), "Invalid shuffle range start -1: must be in range \\[0, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 4, 4, &a), "Invalid shuffle range start 4: must be in range \\[0, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 3, 2, &a), "Invalid shuffle range finish 2: must be in range \\[3, 3\\]"); EXPECT_DEATH_IF_SUPPORTED( ShuffleRange(&random, 3, 4, &a), "Invalid shuffle range finish 4: must be in range \\[3, 3\\]"); } class VectorShuffleTest : public Test { protected: static const size_t kVectorSize = 20; VectorShuffleTest() : random_(1) { for (int i = 0; i < static_cast(kVectorSize); i++) { vector_.push_back(i); } } static bool VectorIsCorrupt(const TestingVector& vector) { if (kVectorSize != vector.size()) { return true; } bool found_in_vector[kVectorSize] = { false }; for (size_t i = 0; i < vector.size(); i++) { const int e = vector[i]; if (e < 0 || e >= static_cast(kVectorSize) || found_in_vector[e]) { return true; } found_in_vector[e] = true; } // Vector size is correct, elements' range is correct, no // duplicate elements. Therefore no corruption has occurred. return false; } static bool VectorIsNotCorrupt(const TestingVector& vector) { return !VectorIsCorrupt(vector); } static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) { for (int i = begin; i < end; i++) { if (i != vector[static_cast(i)]) { return true; } } return false; } static bool RangeIsUnshuffled( const TestingVector& vector, int begin, int end) { return !RangeIsShuffled(vector, begin, end); } static bool VectorIsShuffled(const TestingVector& vector) { return RangeIsShuffled(vector, 0, static_cast(vector.size())); } static bool VectorIsUnshuffled(const TestingVector& vector) { return !VectorIsShuffled(vector); } testing::internal::Random random_; TestingVector vector_; }; // class VectorShuffleTest const size_t VectorShuffleTest::kVectorSize; TEST_F(VectorShuffleTest, HandlesEmptyRange) { // Tests an empty range at the beginning... ShuffleRange(&random_, 0, 0, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...in the middle... ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...at the end... ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...and past the end. ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); } TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) { // Tests a size one range at the beginning... ShuffleRange(&random_, 0, 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...in the middle... ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); // ...and at the end. ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsUnshuffled, vector_); } // Because we use our own random number generator and a fixed seed, // we can guarantee that the following "random" tests will succeed. TEST_F(VectorShuffleTest, ShufflesEntireVector) { Shuffle(&random_, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_; // Tests the first and last elements in particular to ensure that // there are no off-by-one problems in our shuffle algorithm. EXPECT_NE(0, vector_[0]); EXPECT_NE(static_cast(kVectorSize - 1), vector_[kVectorSize - 1]); } TEST_F(VectorShuffleTest, ShufflesStartOfVector) { const int kRangeSize = kVectorSize/2; ShuffleRange(&random_, 0, kRangeSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, static_cast(kVectorSize)); } TEST_F(VectorShuffleTest, ShufflesEndOfVector) { const int kRangeSize = kVectorSize / 2; ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, static_cast(kVectorSize)); } TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) { const int kRangeSize = static_cast(kVectorSize) / 3; ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector_); EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize); EXPECT_PRED3(RangeIsUnshuffled, vector_, 2 * kRangeSize, static_cast(kVectorSize)); } TEST_F(VectorShuffleTest, ShufflesRepeatably) { TestingVector vector2; for (size_t i = 0; i < kVectorSize; i++) { vector2.push_back(static_cast(i)); } random_.Reseed(1234); Shuffle(&random_, &vector_); random_.Reseed(1234); Shuffle(&random_, &vector2); ASSERT_PRED1(VectorIsNotCorrupt, vector_); ASSERT_PRED1(VectorIsNotCorrupt, vector2); for (size_t i = 0; i < kVectorSize; i++) { EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i; } } // Tests the size of the AssertHelper class. TEST(AssertHelperTest, AssertHelperIsSmall) { // To avoid breaking clients that use lots of assertions in one // function, we cannot grow the size of AssertHelper. EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*)); } // Tests String::EndsWithCaseInsensitive(). TEST(StringTest, EndsWithCaseInsensitive) { EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR")); EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar")); EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "")); EXPECT_TRUE(String::EndsWithCaseInsensitive("", "")); EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo")); EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo")); EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo")); } // C++Builder's preprocessor is buggy; it fails to expand macros that // appear in macro parameters after wide char literals. Provide an alias // for NULL as a workaround. static const wchar_t* const kNull = nullptr; // Tests String::CaseInsensitiveWideCStringEquals TEST(StringTest, CaseInsensitiveWideCStringEquals) { EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(nullptr, nullptr)); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"")); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull)); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar")); EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull)); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar")); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR")); EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar")); } #if GTEST_OS_WINDOWS // Tests String::ShowWideCString(). TEST(StringTest, ShowWideCString) { EXPECT_STREQ("(null)", String::ShowWideCString(NULL).c_str()); EXPECT_STREQ("", String::ShowWideCString(L"").c_str()); EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str()); } # if GTEST_OS_WINDOWS_MOBILE TEST(StringTest, AnsiAndUtf16Null) { EXPECT_EQ(NULL, String::AnsiToUtf16(NULL)); EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL)); } TEST(StringTest, AnsiAndUtf16ConvertBasic) { const char* ansi = String::Utf16ToAnsi(L"str"); EXPECT_STREQ("str", ansi); delete [] ansi; const WCHAR* utf16 = String::AnsiToUtf16("str"); EXPECT_EQ(0, wcsncmp(L"str", utf16, 3)); delete [] utf16; } TEST(StringTest, AnsiAndUtf16ConvertPathChars) { const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?"); EXPECT_STREQ(".:\\ \"*?", ansi); delete [] ansi; const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?"); EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3)); delete [] utf16; } # endif // GTEST_OS_WINDOWS_MOBILE #endif // GTEST_OS_WINDOWS // Tests TestProperty construction. TEST(TestPropertyTest, StringValue) { TestProperty property("key", "1"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("1", property.value()); } // Tests TestProperty replacing a value. TEST(TestPropertyTest, ReplaceStringValue) { TestProperty property("key", "1"); EXPECT_STREQ("1", property.value()); property.SetValue("2"); EXPECT_STREQ("2", property.value()); } // AddFatalFailure() and AddNonfatalFailure() must be stand-alone // functions (i.e. their definitions cannot be inlined at the call // sites), or C++Builder won't compile the code. static void AddFatalFailure() { FAIL() << "Expected fatal failure."; } static void AddNonfatalFailure() { ADD_FAILURE() << "Expected non-fatal failure."; } class ScopedFakeTestPartResultReporterTest : public Test { public: // Must be public and not protected due to a bug in g++ 3.4.2. enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE }; static void AddFailure(FailureMode failure) { if (failure == FATAL_FAILURE) { AddFatalFailure(); } else { AddNonfatalFailure(); } } }; // Tests that ScopedFakeTestPartResultReporter intercepts test // failures. TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) { TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter( ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD, &results); AddFailure(NONFATAL_FAILURE); AddFailure(FATAL_FAILURE); } EXPECT_EQ(2, results.size()); EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); } TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) { TestPartResultArray results; { // Tests, that the deprecated constructor still works. ScopedFakeTestPartResultReporter reporter(&results); AddFailure(NONFATAL_FAILURE); } EXPECT_EQ(1, results.size()); } #if GTEST_IS_THREADSAFE class ScopedFakeTestPartResultReporterWithThreadsTest : public ScopedFakeTestPartResultReporterTest { protected: static void AddFailureInOtherThread(FailureMode failure) { ThreadWithParam thread(&AddFailure, failure, nullptr); thread.Join(); } }; TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest, InterceptsTestFailuresInAllThreads) { TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter( ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results); AddFailure(NONFATAL_FAILURE); AddFailure(FATAL_FAILURE); AddFailureInOtherThread(NONFATAL_FAILURE); AddFailureInOtherThread(FATAL_FAILURE); } EXPECT_EQ(4, results.size()); EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed()); EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed()); } #endif // GTEST_IS_THREADSAFE // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they // work even if the failure is generated in a called function rather than // the current context. typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest; TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) { EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure."); } TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) { EXPECT_FATAL_FAILURE(AddFatalFailure(), ::std::string("Expected fatal failure.")); } TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) { // We have another test below to verify that the macro catches fatal // failures generated on another thread. EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(), "Expected fatal failure."); } #ifdef __BORLANDC__ // Silences warnings: "Condition is always true" # pragma option push -w-ccc #endif // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void // function even when the statement in it contains ASSERT_*. int NonVoidFunction() { EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); return 0; } TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) { NonVoidFunction(); } // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the // current function even though 'statement' generates a fatal failure. void DoesNotAbortHelper(bool* aborted) { EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); *aborted = false; } #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them. # pragma option pop #endif TEST_F(ExpectFatalFailureTest, DoesNotAbort) { bool aborted = true; DoesNotAbortHelper(&aborted); EXPECT_FALSE(aborted); } // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a // statement that contains a macro which expands to code containing an // unprotected comma. static int global_var = 0; #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++ TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE({ GTEST_USE_UNPROTECTED_COMMA_; AddFatalFailure(); }, ""); #endif EXPECT_FATAL_FAILURE_ON_ALL_THREADS({ GTEST_USE_UNPROTECTED_COMMA_; AddFatalFailure(); }, ""); } // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}. typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest; TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) { EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), "Expected non-fatal failure."); } TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) { EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), ::std::string("Expected non-fatal failure.")); } TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) { // We have another test below to verify that the macro catches // non-fatal failures generated on another thread. EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(), "Expected non-fatal failure."); } // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a // statement that contains a macro which expands to code containing an // unprotected comma. TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { EXPECT_NONFATAL_FAILURE({ GTEST_USE_UNPROTECTED_COMMA_; AddNonfatalFailure(); }, ""); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({ GTEST_USE_UNPROTECTED_COMMA_; AddNonfatalFailure(); }, ""); } #if GTEST_IS_THREADSAFE typedef ScopedFakeTestPartResultReporterWithThreadsTest ExpectFailureWithThreadsTest; TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) { EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE), "Expected fatal failure."); } TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) { EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS( AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure."); } #endif // GTEST_IS_THREADSAFE // Tests the TestProperty class. TEST(TestPropertyTest, ConstructorWorks) { const TestProperty property("key", "value"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("value", property.value()); } TEST(TestPropertyTest, SetValue) { TestProperty property("key", "value_1"); EXPECT_STREQ("key", property.key()); property.SetValue("value_2"); EXPECT_STREQ("key", property.key()); EXPECT_STREQ("value_2", property.value()); } // Tests the TestResult class // The test fixture for testing TestResult. class TestResultTest : public Test { protected: typedef std::vector TPRVector; // We make use of 2 TestPartResult objects, TestPartResult * pr1, * pr2; // ... and 3 TestResult objects. TestResult * r0, * r1, * r2; void SetUp() override { // pr1 is for success. pr1 = new TestPartResult(TestPartResult::kSuccess, "foo/bar.cc", 10, "Success!"); // pr2 is for fatal failure. pr2 = new TestPartResult(TestPartResult::kFatalFailure, "foo/bar.cc", -1, // This line number means "unknown" "Failure!"); // Creates the TestResult objects. r0 = new TestResult(); r1 = new TestResult(); r2 = new TestResult(); // In order to test TestResult, we need to modify its internal // state, in particular the TestPartResult vector it holds. // test_part_results() returns a const reference to this vector. // We cast it to a non-const object s.t. it can be modified TPRVector* results1 = const_cast( &TestResultAccessor::test_part_results(*r1)); TPRVector* results2 = const_cast( &TestResultAccessor::test_part_results(*r2)); // r0 is an empty TestResult. // r1 contains a single SUCCESS TestPartResult. results1->push_back(*pr1); // r2 contains a SUCCESS, and a FAILURE. results2->push_back(*pr1); results2->push_back(*pr2); } void TearDown() override { delete pr1; delete pr2; delete r0; delete r1; delete r2; } // Helper that compares two TestPartResults. static void CompareTestPartResult(const TestPartResult& expected, const TestPartResult& actual) { EXPECT_EQ(expected.type(), actual.type()); EXPECT_STREQ(expected.file_name(), actual.file_name()); EXPECT_EQ(expected.line_number(), actual.line_number()); EXPECT_STREQ(expected.summary(), actual.summary()); EXPECT_STREQ(expected.message(), actual.message()); EXPECT_EQ(expected.passed(), actual.passed()); EXPECT_EQ(expected.failed(), actual.failed()); EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed()); EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed()); } }; // Tests TestResult::total_part_count(). TEST_F(TestResultTest, total_part_count) { ASSERT_EQ(0, r0->total_part_count()); ASSERT_EQ(1, r1->total_part_count()); ASSERT_EQ(2, r2->total_part_count()); } // Tests TestResult::Passed(). TEST_F(TestResultTest, Passed) { ASSERT_TRUE(r0->Passed()); ASSERT_TRUE(r1->Passed()); ASSERT_FALSE(r2->Passed()); } // Tests TestResult::Failed(). TEST_F(TestResultTest, Failed) { ASSERT_FALSE(r0->Failed()); ASSERT_FALSE(r1->Failed()); ASSERT_TRUE(r2->Failed()); } // Tests TestResult::GetTestPartResult(). typedef TestResultTest TestResultDeathTest; TEST_F(TestResultDeathTest, GetTestPartResult) { CompareTestPartResult(*pr1, r2->GetTestPartResult(0)); CompareTestPartResult(*pr2, r2->GetTestPartResult(1)); EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), ""); EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), ""); } // Tests TestResult has no properties when none are added. TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) { TestResult test_result; ASSERT_EQ(0, test_result.test_property_count()); } // Tests TestResult has the expected property when added. TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) { TestResult test_result; TestProperty property("key_1", "1"); TestResultAccessor::RecordProperty(&test_result, "testcase", property); ASSERT_EQ(1, test_result.test_property_count()); const TestProperty& actual_property = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property.key()); EXPECT_STREQ("1", actual_property.value()); } // Tests TestResult has multiple properties when added. TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) { TestResult test_result; TestProperty property_1("key_1", "1"); TestProperty property_2("key_2", "2"); TestResultAccessor::RecordProperty(&test_result, "testcase", property_1); TestResultAccessor::RecordProperty(&test_result, "testcase", property_2); ASSERT_EQ(2, test_result.test_property_count()); const TestProperty& actual_property_1 = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property_1.key()); EXPECT_STREQ("1", actual_property_1.value()); const TestProperty& actual_property_2 = test_result.GetTestProperty(1); EXPECT_STREQ("key_2", actual_property_2.key()); EXPECT_STREQ("2", actual_property_2.value()); } // Tests TestResult::RecordProperty() overrides values for duplicate keys. TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) { TestResult test_result; TestProperty property_1_1("key_1", "1"); TestProperty property_2_1("key_2", "2"); TestProperty property_1_2("key_1", "12"); TestProperty property_2_2("key_2", "22"); TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1); TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1); TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2); TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2); ASSERT_EQ(2, test_result.test_property_count()); const TestProperty& actual_property_1 = test_result.GetTestProperty(0); EXPECT_STREQ("key_1", actual_property_1.key()); EXPECT_STREQ("12", actual_property_1.value()); const TestProperty& actual_property_2 = test_result.GetTestProperty(1); EXPECT_STREQ("key_2", actual_property_2.key()); EXPECT_STREQ("22", actual_property_2.value()); } // Tests TestResult::GetTestProperty(). TEST(TestResultPropertyTest, GetTestProperty) { TestResult test_result; TestProperty property_1("key_1", "1"); TestProperty property_2("key_2", "2"); TestProperty property_3("key_3", "3"); TestResultAccessor::RecordProperty(&test_result, "testcase", property_1); TestResultAccessor::RecordProperty(&test_result, "testcase", property_2); TestResultAccessor::RecordProperty(&test_result, "testcase", property_3); const TestProperty& fetched_property_1 = test_result.GetTestProperty(0); const TestProperty& fetched_property_2 = test_result.GetTestProperty(1); const TestProperty& fetched_property_3 = test_result.GetTestProperty(2); EXPECT_STREQ("key_1", fetched_property_1.key()); EXPECT_STREQ("1", fetched_property_1.value()); EXPECT_STREQ("key_2", fetched_property_2.key()); EXPECT_STREQ("2", fetched_property_2.value()); EXPECT_STREQ("key_3", fetched_property_3.key()); EXPECT_STREQ("3", fetched_property_3.value()); EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), ""); EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), ""); } // Tests the Test class. // // It's difficult to test every public method of this class (we are // already stretching the limit of Google Test by using it to test itself!). // Fortunately, we don't have to do that, as we are already testing // the functionalities of the Test class extensively by using Google Test // alone. // // Therefore, this section only contains one test. // Tests that GTestFlagSaver works on Windows and Mac. class GTestFlagSaverTest : public Test { protected: // Saves the Google Test flags such that we can restore them later, and // then sets them to their default values. This will be called // before the first test in this test case is run. static void SetUpTestSuite() { saver_ = new GTestFlagSaver; GTEST_FLAG(also_run_disabled_tests) = false; GTEST_FLAG(break_on_failure) = false; GTEST_FLAG(catch_exceptions) = false; GTEST_FLAG(death_test_use_fork) = false; GTEST_FLAG(color) = "auto"; GTEST_FLAG(filter) = ""; GTEST_FLAG(list_tests) = false; GTEST_FLAG(output) = ""; GTEST_FLAG(print_time) = true; GTEST_FLAG(random_seed) = 0; GTEST_FLAG(repeat) = 1; GTEST_FLAG(shuffle) = false; GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth; GTEST_FLAG(stream_result_to) = ""; GTEST_FLAG(throw_on_failure) = false; } // Restores the Google Test flags that the tests have modified. This will // be called after the last test in this test case is run. static void TearDownTestSuite() { delete saver_; saver_ = nullptr; } // Verifies that the Google Test flags have their default values, and then // modifies each of them. void VerifyAndModifyFlags() { EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests)); EXPECT_FALSE(GTEST_FLAG(break_on_failure)); EXPECT_FALSE(GTEST_FLAG(catch_exceptions)); EXPECT_STREQ("auto", GTEST_FLAG(color).c_str()); EXPECT_FALSE(GTEST_FLAG(death_test_use_fork)); EXPECT_STREQ("", GTEST_FLAG(filter).c_str()); EXPECT_FALSE(GTEST_FLAG(list_tests)); EXPECT_STREQ("", GTEST_FLAG(output).c_str()); EXPECT_TRUE(GTEST_FLAG(print_time)); EXPECT_EQ(0, GTEST_FLAG(random_seed)); EXPECT_EQ(1, GTEST_FLAG(repeat)); EXPECT_FALSE(GTEST_FLAG(shuffle)); EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth)); EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str()); EXPECT_FALSE(GTEST_FLAG(throw_on_failure)); GTEST_FLAG(also_run_disabled_tests) = true; GTEST_FLAG(break_on_failure) = true; GTEST_FLAG(catch_exceptions) = true; GTEST_FLAG(color) = "no"; GTEST_FLAG(death_test_use_fork) = true; GTEST_FLAG(filter) = "abc"; GTEST_FLAG(list_tests) = true; GTEST_FLAG(output) = "xml:foo.xml"; GTEST_FLAG(print_time) = false; GTEST_FLAG(random_seed) = 1; GTEST_FLAG(repeat) = 100; GTEST_FLAG(shuffle) = true; GTEST_FLAG(stack_trace_depth) = 1; GTEST_FLAG(stream_result_to) = "localhost:1234"; GTEST_FLAG(throw_on_failure) = true; } private: // For saving Google Test flags during this test case. static GTestFlagSaver* saver_; }; GTestFlagSaver* GTestFlagSaverTest::saver_ = nullptr; // Google Test doesn't guarantee the order of tests. The following two // tests are designed to work regardless of their order. // Modifies the Google Test flags in the test body. TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { VerifyAndModifyFlags(); } // Verifies that the Google Test flags in the body of the previous test were // restored to their original values. TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { VerifyAndModifyFlags(); } // Sets an environment variable with the given name to the given // value. If the value argument is "", unsets the environment // variable. The caller must ensure that both arguments are not NULL. static void SetEnv(const char* name, const char* value) { #if GTEST_OS_WINDOWS_MOBILE // Environment variables are not supported on Windows CE. return; #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9) // C++Builder's putenv only stores a pointer to its parameter; we have to // ensure that the string remains valid as long as it might be needed. // We use an std::map to do so. static std::map added_env; // Because putenv stores a pointer to the string buffer, we can't delete the // previous string (if present) until after it's replaced. std::string *prev_env = NULL; if (added_env.find(name) != added_env.end()) { prev_env = added_env[name]; } added_env[name] = new std::string( (Message() << name << "=" << value).GetString()); // The standard signature of putenv accepts a 'char*' argument. Other // implementations, like C++Builder's, accept a 'const char*'. // We cast away the 'const' since that would work for both variants. putenv(const_cast(added_env[name]->c_str())); delete prev_env; #elif GTEST_OS_WINDOWS // If we are on Windows proper. _putenv((Message() << name << "=" << value).GetString().c_str()); #else if (*value == '\0') { unsetenv(name); } else { setenv(name, value, 1); } #endif // GTEST_OS_WINDOWS_MOBILE } #if !GTEST_OS_WINDOWS_MOBILE // Environment variables are not supported on Windows CE. using testing::internal::Int32FromGTestEnv; // Tests Int32FromGTestEnv(). // Tests that Int32FromGTestEnv() returns the default value when the // environment variable is not set. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", ""); EXPECT_EQ(10, Int32FromGTestEnv("temp", 10)); } # if !defined(GTEST_GET_INT32_FROM_ENV_) // Tests that Int32FromGTestEnv() returns the default value when the // environment variable overflows as an Int32. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) { printf("(expecting 2 warnings)\n"); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321"); EXPECT_EQ(20, Int32FromGTestEnv("temp", 20)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321"); EXPECT_EQ(30, Int32FromGTestEnv("temp", 30)); } // Tests that Int32FromGTestEnv() returns the default value when the // environment variable does not represent a valid decimal integer. TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) { printf("(expecting 2 warnings)\n"); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1"); EXPECT_EQ(40, Int32FromGTestEnv("temp", 40)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X"); EXPECT_EQ(50, Int32FromGTestEnv("temp", 50)); } # endif // !defined(GTEST_GET_INT32_FROM_ENV_) // Tests that Int32FromGTestEnv() parses and returns the value of the // environment variable when it represents a valid decimal integer in // the range of an Int32. TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123"); EXPECT_EQ(123, Int32FromGTestEnv("temp", 0)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321"); EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Tests ParseInt32Flag(). // Tests that ParseInt32Flag() returns false and doesn't change the // output value when the flag has wrong format TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) { Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value)); EXPECT_EQ(123, value); } // Tests that ParseInt32Flag() returns false and doesn't change the // output value when the flag overflows as an Int32. TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) { printf("(expecting 2 warnings)\n"); Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value)); EXPECT_EQ(123, value); } // Tests that ParseInt32Flag() returns false and doesn't change the // output value when the flag does not represent a valid decimal // integer. TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) { printf("(expecting 2 warnings)\n"); Int32 value = 123; EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value)); EXPECT_EQ(123, value); EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value)); EXPECT_EQ(123, value); } // Tests that ParseInt32Flag() parses the value of the flag and // returns true when the flag represents a valid decimal integer in // the range of an Int32. TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) { Int32 value = 123; EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value)); EXPECT_EQ(456, value); EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789", "abc", &value)); EXPECT_EQ(-789, value); } // Tests that Int32FromEnvOrDie() parses the value of the var or // returns the correct default. // Environment variables are not supported on Windows CE. #if !GTEST_OS_WINDOWS_MOBILE TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) { EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123"); EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123"); EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Tests that Int32FromEnvOrDie() aborts with an error message // if the variable is not an Int32. TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx"); EXPECT_DEATH_IF_SUPPORTED( Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*"); } // Tests that Int32FromEnvOrDie() aborts with an error message // if the variable cannot be represented by an Int32. TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) { SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234"); EXPECT_DEATH_IF_SUPPORTED( Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), ".*"); } // Tests that ShouldRunTestOnShard() selects all tests // where there is 1 shard. TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) { EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3)); EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4)); } class ShouldShardTest : public testing::Test { protected: void SetUp() override { index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX"; total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL"; } void TearDown() override { SetEnv(index_var_, ""); SetEnv(total_var_, ""); } const char* index_var_; const char* total_var_; }; // Tests that sharding is disabled if neither of the environment variables // are set. TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) { SetEnv(index_var_, ""); SetEnv(total_var_, ""); EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); } // Tests that sharding is not enabled if total_shards == 1. TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) { SetEnv(index_var_, "0"); SetEnv(total_var_, "1"); EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); } // Tests that sharding is enabled if total_shards > 1 and // we are not in a death test subprocess. // Environment variables are not supported on Windows CE. #if !GTEST_OS_WINDOWS_MOBILE TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) { SetEnv(index_var_, "4"); SetEnv(total_var_, "22"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); SetEnv(index_var_, "8"); SetEnv(total_var_, "9"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); SetEnv(index_var_, "0"); SetEnv(total_var_, "9"); EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Tests that we exit in error if the sharding values are not valid. typedef ShouldShardTest ShouldShardDeathTest; TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) { SetEnv(index_var_, "4"); SetEnv(total_var_, "4"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); SetEnv(index_var_, "4"); SetEnv(total_var_, "-2"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); SetEnv(index_var_, "5"); SetEnv(total_var_, ""); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); SetEnv(index_var_, ""); SetEnv(total_var_, "5"); EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); } // Tests that ShouldRunTestOnShard is a partition when 5 // shards are used. TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) { // Choose an arbitrary number of tests and shards. const int num_tests = 17; const int num_shards = 5; // Check partitioning: each test should be on exactly 1 shard. for (int test_id = 0; test_id < num_tests; test_id++) { int prev_selected_shard_index = -1; for (int shard_index = 0; shard_index < num_shards; shard_index++) { if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) { if (prev_selected_shard_index < 0) { prev_selected_shard_index = shard_index; } else { ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and " << shard_index << " are both selected to run test " << test_id; } } } } // Check balance: This is not required by the sharding protocol, but is a // desirable property for performance. for (int shard_index = 0; shard_index < num_shards; shard_index++) { int num_tests_on_shard = 0; for (int test_id = 0; test_id < num_tests; test_id++) { num_tests_on_shard += ShouldRunTestOnShard(num_shards, shard_index, test_id); } EXPECT_GE(num_tests_on_shard, num_tests / num_shards); } } // For the same reason we are not explicitly testing everything in the // Test class, there are no separate tests for the following classes // (except for some trivial cases): // // TestSuite, UnitTest, UnitTestResultPrinter. // // Similarly, there are no separate tests for the following macros: // // TEST, TEST_F, RUN_ALL_TESTS TEST(UnitTestTest, CanGetOriginalWorkingDir) { ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != nullptr); EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), ""); } TEST(UnitTestTest, ReturnsPlausibleTimestamp) { EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp()); EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis()); } // When a property using a reserved key is supplied to this function, it // tests that a non-fatal failure is added, a fatal failure is not added, // and that the property is not recorded. void ExpectNonFatalFailureRecordingPropertyWithReservedKey( const TestResult& test_result, const char* key) { EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key"); ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key << "' recorded unexpectedly."; } void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( const char* key) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(test_info != nullptr); ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(), key); } void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( const char* key) { const testing::TestSuite* test_suite = UnitTest::GetInstance()->current_test_suite(); ASSERT_TRUE(test_suite != nullptr); ExpectNonFatalFailureRecordingPropertyWithReservedKey( test_suite->ad_hoc_test_result(), key); } void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( const char* key) { ExpectNonFatalFailureRecordingPropertyWithReservedKey( UnitTest::GetInstance()->ad_hoc_test_result(), key); } // Tests that property recording functions in UnitTest outside of tests // functions correcly. Creating a separate instance of UnitTest ensures it // is in a state similar to the UnitTest's singleton's between tests. class UnitTestRecordPropertyTest : public testing::internal::UnitTestRecordPropertyTestHelper { public: static void SetUpTestSuite() { ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "disabled"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "errors"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "failures"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "name"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "tests"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestSuite( "time"); Test::RecordProperty("test_case_key_1", "1"); const testing::TestSuite* test_suite = UnitTest::GetInstance()->current_test_suite(); ASSERT_TRUE(test_suite != nullptr); ASSERT_EQ(1, test_suite->ad_hoc_test_result().test_property_count()); EXPECT_STREQ("test_case_key_1", test_suite->ad_hoc_test_result().GetTestProperty(0).key()); EXPECT_STREQ("1", test_suite->ad_hoc_test_result().GetTestProperty(0).value()); } }; // Tests TestResult has the expected property when added. TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) { UnitTestRecordProperty("key_1", "1"); ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count()); EXPECT_STREQ("key_1", unit_test_.ad_hoc_test_result().GetTestProperty(0).key()); EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value()); } // Tests TestResult has multiple properties when added. TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) { UnitTestRecordProperty("key_1", "1"); UnitTestRecordProperty("key_2", "2"); ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count()); EXPECT_STREQ("key_1", unit_test_.ad_hoc_test_result().GetTestProperty(0).key()); EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value()); EXPECT_STREQ("key_2", unit_test_.ad_hoc_test_result().GetTestProperty(1).key()); EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value()); } // Tests TestResult::RecordProperty() overrides values for duplicate keys. TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) { UnitTestRecordProperty("key_1", "1"); UnitTestRecordProperty("key_2", "2"); UnitTestRecordProperty("key_1", "12"); UnitTestRecordProperty("key_2", "22"); ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count()); EXPECT_STREQ("key_1", unit_test_.ad_hoc_test_result().GetTestProperty(0).key()); EXPECT_STREQ("12", unit_test_.ad_hoc_test_result().GetTestProperty(0).value()); EXPECT_STREQ("key_2", unit_test_.ad_hoc_test_result().GetTestProperty(1).key()); EXPECT_STREQ("22", unit_test_.ad_hoc_test_result().GetTestProperty(1).value()); } TEST_F(UnitTestRecordPropertyTest, AddFailureInsideTestsWhenUsingTestSuiteReservedKeys) { ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "name"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "value_param"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "type_param"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "status"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "time"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest( "classname"); } TEST_F(UnitTestRecordPropertyTest, AddRecordWithReservedKeysGeneratesCorrectPropertyList) { EXPECT_NONFATAL_FAILURE( Test::RecordProperty("name", "1"), "'classname', 'name', 'status', 'time', 'type_param', 'value_param'," " 'file', and 'line' are reserved"); } class UnitTestRecordPropertyTestEnvironment : public Environment { public: void TearDown() override { ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "tests"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "failures"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "disabled"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "errors"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "name"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "timestamp"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "time"); ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestSuite( "random_seed"); } }; // This will test property recording outside of any test or test case. static Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ = AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment); // This group of tests is for predicate assertions (ASSERT_PRED*, etc) // of various arities. They do not attempt to be exhaustive. Rather, // view them as smoke tests that can be easily reviewed and verified. // A more complete set of tests for predicate assertions can be found // in gtest_pred_impl_unittest.cc. // First, some predicates and predicate-formatters needed by the tests. // Returns true if and only if the argument is an even number. bool IsEven(int n) { return (n % 2) == 0; } // A functor that returns true if and only if the argument is an even number. struct IsEvenFunctor { bool operator()(int n) { return IsEven(n); } }; // A predicate-formatter function that asserts the argument is an even // number. AssertionResult AssertIsEven(const char* expr, int n) { if (IsEven(n)) { return AssertionSuccess(); } Message msg; msg << expr << " evaluates to " << n << ", which is not even."; return AssertionFailure(msg); } // A predicate function that returns AssertionResult for use in // EXPECT/ASSERT_TRUE/FALSE. AssertionResult ResultIsEven(int n) { if (IsEven(n)) return AssertionSuccess() << n << " is even"; else return AssertionFailure() << n << " is odd"; } // A predicate function that returns AssertionResult but gives no // explanation why it succeeds. Needed for testing that // EXPECT/ASSERT_FALSE handles such functions correctly. AssertionResult ResultIsEvenNoExplanation(int n) { if (IsEven(n)) return AssertionSuccess(); else return AssertionFailure() << n << " is odd"; } // A predicate-formatter functor that asserts the argument is an even // number. struct AssertIsEvenFunctor { AssertionResult operator()(const char* expr, int n) { return AssertIsEven(expr, n); } }; // Returns true if and only if the sum of the arguments is an even number. bool SumIsEven2(int n1, int n2) { return IsEven(n1 + n2); } // A functor that returns true if and only if the sum of the arguments is an // even number. struct SumIsEven3Functor { bool operator()(int n1, int n2, int n3) { return IsEven(n1 + n2 + n3); } }; // A predicate-formatter function that asserts the sum of the // arguments is an even number. AssertionResult AssertSumIsEven4( const char* e1, const char* e2, const char* e3, const char* e4, int n1, int n2, int n3, int n4) { const int sum = n1 + n2 + n3 + n4; if (IsEven(sum)) { return AssertionSuccess(); } Message msg; msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << ") evaluates to " << sum << ", which is not even."; return AssertionFailure(msg); } // A predicate-formatter functor that asserts the sum of the arguments // is an even number. struct AssertSumIsEven5Functor { AssertionResult operator()( const char* e1, const char* e2, const char* e3, const char* e4, const char* e5, int n1, int n2, int n3, int n4, int n5) { const int sum = n1 + n2 + n3 + n4 + n5; if (IsEven(sum)) { return AssertionSuccess(); } Message msg; msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5 << ") evaluates to " << sum << ", which is not even."; return AssertionFailure(msg); } }; // Tests unary predicate assertions. // Tests unary predicate assertions that don't use a custom formatter. TEST(Pred1Test, WithoutFormat) { // Success cases. EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!"; ASSERT_PRED1(IsEven, 4); // Failure cases. EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED1(IsEven, 5) << "This failure is expected."; }, "This failure is expected."); EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), "evaluates to false"); } // Tests unary predicate assertions that use a custom formatter. TEST(Pred1Test, WithFormat) { // Success cases. EXPECT_PRED_FORMAT1(AssertIsEven, 2); ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4) << "This failure is UNEXPECTED!"; // Failure cases. const int n = 5; EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n), "n evaluates to 5, which is not even."); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected."; }, "This failure is expected."); } // Tests that unary predicate assertions evaluates their arguments // exactly once. TEST(Pred1Test, SingleEvaluationOnFailure) { // A success case. static int n = 0; EXPECT_PRED1(IsEven, n++); EXPECT_EQ(1, n) << "The argument is not evaluated exactly once."; // A failure case. EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++) << "This failure is expected."; }, "This failure is expected."); EXPECT_EQ(2, n) << "The argument is not evaluated exactly once."; } // Tests predicate assertions whose arity is >= 2. // Tests predicate assertions that don't use a custom formatter. TEST(PredTest, WithoutFormat) { // Success cases. ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!"; EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8); // Failure cases. const int n1 = 1; const int n2 = 2; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected."; }, "This failure is expected."); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4); }, "evaluates to false"); } // Tests predicate assertions that use a custom formatter. TEST(PredTest, WithFormat) { // Success cases. ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) << "This failure is UNEXPECTED!"; EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10); // Failure cases. const int n1 = 1; const int n2 = 2; const int n3 = 4; const int n4 = 6; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4); }, "evaluates to 13, which is not even."); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8) << "This failure is expected."; }, "This failure is expected."); } // Tests that predicate assertions evaluates their arguments // exactly once. TEST(PredTest, SingleEvaluationOnFailure) { // A success case. int n1 = 0; int n2 = 0; EXPECT_PRED2(SumIsEven2, n1++, n2++); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; // Another success case. n1 = n2 = 0; int n3 = 0; int n4 = 0; int n5 = 0; ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), n1++, n2++, n3++, n4++, n5++) << "This failure is UNEXPECTED!"; EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once."; // A failure case. n1 = n2 = n3 = 0; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++) << "This failure is expected."; }, "This failure is expected."); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; // Another failure case. n1 = n2 = n3 = n4 = 0; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++); }, "evaluates to 1, which is not even."); EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; } // Test predicate assertions for sets TEST(PredTest, ExpectPredEvalFailure) { std::set set_a = {2, 1, 3, 4, 5}; std::set set_b = {0, 4, 8}; const auto compare_sets = [] (std::set, std::set) { return false; }; EXPECT_NONFATAL_FAILURE( EXPECT_PRED2(compare_sets, set_a, set_b), "compare_sets(set_a, set_b) evaluates to false, where\nset_a evaluates " "to { 1, 2, 3, 4, 5 }\nset_b evaluates to { 0, 4, 8 }"); } // Some helper functions for testing using overloaded/template // functions with ASSERT_PREDn and EXPECT_PREDn. bool IsPositive(double x) { return x > 0; } template bool IsNegative(T x) { return x < 0; } template bool GreaterThan(T1 x1, T2 x2) { return x1 > x2; } // Tests that overloaded functions can be used in *_PRED* as long as // their types are explicitly specified. TEST(PredicateAssertionTest, AcceptsOverloadedFunction) { // C++Builder requires C-style casts rather than static_cast. EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT } // Tests that template functions can be used in *_PRED* as long as // their types are explicitly specified. TEST(PredicateAssertionTest, AcceptsTemplateFunction) { EXPECT_PRED1(IsNegative, -5); // Makes sure that we can handle templates with more than one // parameter. ASSERT_PRED2((GreaterThan), 5, 0); } // Some helper functions for testing using overloaded/template // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn. AssertionResult IsPositiveFormat(const char* /* expr */, int n) { return n > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } AssertionResult IsPositiveFormat(const char* /* expr */, double x) { return x > 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } template AssertionResult IsNegativeFormat(const char* /* expr */, T x) { return x < 0 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } template AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */, const T1& x1, const T2& x2) { return x1 == x2 ? AssertionSuccess() : AssertionFailure(Message() << "Failure"); } // Tests that overloaded functions can be used in *_PRED_FORMAT* // without explicitly specifying their types. TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) { EXPECT_PRED_FORMAT1(IsPositiveFormat, 5); ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0); } // Tests that template functions can be used in *_PRED_FORMAT* without // explicitly specifying their types. TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) { EXPECT_PRED_FORMAT1(IsNegativeFormat, -5); ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3); } // Tests string assertions. // Tests ASSERT_STREQ with non-NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ) { const char * const p1 = "good"; ASSERT_STREQ(p1, p1); // Let p2 have the same content as p1, but be at a different address. const char p2[] = "good"; ASSERT_STREQ(p1, p2); EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), " \"bad\"\n \"good\""); } // Tests ASSERT_STREQ with NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ_Null) { ASSERT_STREQ(static_cast(nullptr), nullptr); EXPECT_FATAL_FAILURE(ASSERT_STREQ(nullptr, "non-null"), "non-null"); } // Tests ASSERT_STREQ with NULL arguments. TEST(StringAssertionTest, ASSERT_STREQ_Null2) { EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", nullptr), "non-null"); } // Tests ASSERT_STRNE. TEST(StringAssertionTest, ASSERT_STRNE) { ASSERT_STRNE("hi", "Hi"); ASSERT_STRNE("Hi", nullptr); ASSERT_STRNE(nullptr, "Hi"); ASSERT_STRNE("", nullptr); ASSERT_STRNE(nullptr, ""); ASSERT_STRNE("", "Hi"); ASSERT_STRNE("Hi", ""); EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), "\"Hi\" vs \"Hi\""); } // Tests ASSERT_STRCASEEQ. TEST(StringAssertionTest, ASSERT_STRCASEEQ) { ASSERT_STRCASEEQ("hi", "Hi"); ASSERT_STRCASEEQ(static_cast(nullptr), nullptr); ASSERT_STRCASEEQ("", ""); EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), "Ignoring case"); } // Tests ASSERT_STRCASENE. TEST(StringAssertionTest, ASSERT_STRCASENE) { ASSERT_STRCASENE("hi1", "Hi2"); ASSERT_STRCASENE("Hi", nullptr); ASSERT_STRCASENE(nullptr, "Hi"); ASSERT_STRCASENE("", nullptr); ASSERT_STRCASENE(nullptr, ""); ASSERT_STRCASENE("", "Hi"); ASSERT_STRCASENE("Hi", ""); EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), "(ignoring case)"); } // Tests *_STREQ on wide strings. TEST(StringAssertionTest, STREQ_Wide) { // NULL strings. ASSERT_STREQ(static_cast(nullptr), nullptr); // Empty strings. ASSERT_STREQ(L"", L""); // Non-null vs NULL. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", nullptr), "non-null"); // Equal strings. EXPECT_STREQ(L"Hi", L"Hi"); // Unequal strings. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), "Abc"); // Strings containing wide characters. EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), "abc"); // The streaming variation. EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure"; }, "Expected failure"); } // Tests *_STRNE on wide strings. TEST(StringAssertionTest, STRNE_Wide) { // NULL strings. EXPECT_NONFATAL_FAILURE( { // NOLINT EXPECT_STRNE(static_cast(nullptr), nullptr); }, ""); // Empty strings. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), "L\"\""); // Non-null vs NULL. ASSERT_STRNE(L"non-null", nullptr); // Equal strings. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), "L\"Hi\""); // Unequal strings. EXPECT_STRNE(L"abc", L"Abc"); // Strings containing wide characters. EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), "abc"); // The streaming variation. ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen"; } // Tests for ::testing::IsSubstring(). // Tests that IsSubstring() returns the correct result when the input // argument type is const char*. TEST(IsSubstringTest, ReturnsCorrectResultForCString) { EXPECT_FALSE(IsSubstring("", "", nullptr, "a")); EXPECT_FALSE(IsSubstring("", "", "b", nullptr)); EXPECT_FALSE(IsSubstring("", "", "needle", "haystack")); EXPECT_TRUE(IsSubstring("", "", static_cast(nullptr), nullptr)); EXPECT_TRUE(IsSubstring("", "", "needle", "two needles")); } // Tests that IsSubstring() returns the correct result when the input // argument type is const wchar_t*. TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) { EXPECT_FALSE(IsSubstring("", "", kNull, L"a")); EXPECT_FALSE(IsSubstring("", "", L"b", kNull)); EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack")); EXPECT_TRUE( IsSubstring("", "", static_cast(nullptr), nullptr)); EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles")); } // Tests that IsSubstring() generates the correct message when the input // argument type is const char*. TEST(IsSubstringTest, GeneratesCorrectMessageForCString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: \"needle\"\n" "Expected: a substring of haystack_expr\n" "Which is: \"haystack\"", IsSubstring("needle_expr", "haystack_expr", "needle", "haystack").failure_message()); } // Tests that IsSubstring returns the correct result when the input // argument type is ::std::string. TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) { EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob")); EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world"))); } #if GTEST_HAS_STD_WSTRING // Tests that IsSubstring returns the correct result when the input // argument type is ::std::wstring. TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) { EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles")); EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack"))); } // Tests that IsSubstring() generates the correct message when the input // argument type is ::std::wstring. TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: L\"needle\"\n" "Expected: a substring of haystack_expr\n" "Which is: L\"haystack\"", IsSubstring( "needle_expr", "haystack_expr", ::std::wstring(L"needle"), L"haystack").failure_message()); } #endif // GTEST_HAS_STD_WSTRING // Tests for ::testing::IsNotSubstring(). // Tests that IsNotSubstring() returns the correct result when the input // argument type is const char*. TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) { EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack")); EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles")); } // Tests that IsNotSubstring() returns the correct result when the input // argument type is const wchar_t*. TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) { EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack")); EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles")); } // Tests that IsNotSubstring() generates the correct message when the input // argument type is const wchar_t*. TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: L\"needle\"\n" "Expected: not a substring of haystack_expr\n" "Which is: L\"two needles\"", IsNotSubstring( "needle_expr", "haystack_expr", L"needle", L"two needles").failure_message()); } // Tests that IsNotSubstring returns the correct result when the input // argument type is ::std::string. TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) { EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob")); EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world"))); } // Tests that IsNotSubstring() generates the correct message when the input // argument type is ::std::string. TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) { EXPECT_STREQ("Value of: needle_expr\n" " Actual: \"needle\"\n" "Expected: not a substring of haystack_expr\n" "Which is: \"two needles\"", IsNotSubstring( "needle_expr", "haystack_expr", ::std::string("needle"), "two needles").failure_message()); } #if GTEST_HAS_STD_WSTRING // Tests that IsNotSubstring returns the correct result when the input // argument type is ::std::wstring. TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) { EXPECT_FALSE( IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles")); EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack"))); } #endif // GTEST_HAS_STD_WSTRING // Tests floating-point assertions. template class FloatingPointTest : public Test { protected: // Pre-calculated numbers to be used by the tests. struct TestValues { RawType close_to_positive_zero; RawType close_to_negative_zero; RawType further_from_negative_zero; RawType close_to_one; RawType further_from_one; RawType infinity; RawType close_to_infinity; RawType further_from_infinity; RawType nan1; RawType nan2; }; typedef typename testing::internal::FloatingPoint Floating; typedef typename Floating::Bits Bits; void SetUp() override { const size_t max_ulps = Floating::kMaxUlps; // The bits that represent 0.0. const Bits zero_bits = Floating(0).bits(); // Makes some numbers close to 0.0. values_.close_to_positive_zero = Floating::ReinterpretBits( zero_bits + max_ulps/2); values_.close_to_negative_zero = -Floating::ReinterpretBits( zero_bits + max_ulps - max_ulps/2); values_.further_from_negative_zero = -Floating::ReinterpretBits( zero_bits + max_ulps + 1 - max_ulps/2); // The bits that represent 1.0. const Bits one_bits = Floating(1).bits(); // Makes some numbers close to 1.0. values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps); values_.further_from_one = Floating::ReinterpretBits( one_bits + max_ulps + 1); // +infinity. values_.infinity = Floating::Infinity(); // The bits that represent +infinity. const Bits infinity_bits = Floating(values_.infinity).bits(); // Makes some numbers close to infinity. values_.close_to_infinity = Floating::ReinterpretBits( infinity_bits - max_ulps); values_.further_from_infinity = Floating::ReinterpretBits( infinity_bits - max_ulps - 1); // Makes some NAN's. Sets the most significant bit of the fraction so that // our NaN's are quiet; trying to process a signaling NaN would raise an // exception if our environment enables floating point exceptions. values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask | (static_cast(1) << (Floating::kFractionBitCount - 1)) | 1); values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask | (static_cast(1) << (Floating::kFractionBitCount - 1)) | 200); } void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); } static TestValues values_; }; template typename FloatingPointTest::TestValues FloatingPointTest::values_; // Instantiates FloatingPointTest for testing *_FLOAT_EQ. typedef FloatingPointTest FloatTest; // Tests that the size of Float::Bits matches the size of float. TEST_F(FloatTest, Size) { TestSize(); } // Tests comparing with +0 and -0. TEST_F(FloatTest, Zeros) { EXPECT_FLOAT_EQ(0.0, -0.0); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), "1.0"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), "1.5"); } // Tests comparing numbers close to 0. // // This ensures that *_FLOAT_EQ handles the sign correctly and no // overflow occurs when comparing numbers whose absolute value is very // small. TEST_F(FloatTest, AlmostZeros) { // In C++Builder, names within local classes (such as used by // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the // scoping class. Use a static local alias as a workaround. // We use the assignment syntax since some compilers, like Sun Studio, // don't allow initializing references using construction syntax // (parentheses). static const FloatTest::TestValues& v = this->values_; EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero); EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero); EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_FLOAT_EQ(v.close_to_positive_zero, v.further_from_negative_zero); }, "v.further_from_negative_zero"); } // Tests comparing numbers close to each other. TEST_F(FloatTest, SmallDiff) { EXPECT_FLOAT_EQ(1.0, values_.close_to_one); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one), "values_.further_from_one"); } // Tests comparing numbers far apart. TEST_F(FloatTest, LargeDiff) { EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), "3.0"); } // Tests comparing with infinity. // // This ensures that no overflow occurs when comparing numbers whose // absolute value is very large. TEST_F(FloatTest, Infinity) { EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity); EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity), "-values_.infinity"); // This is interesting as the representations of infinity and nan1 // are only 1 DLP apart. EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1), "values_.nan1"); } // Tests that comparing with NAN always returns false. TEST_F(FloatTest, NaN) { // In C++Builder, names within local classes (such as used by // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the // scoping class. Use a static local alias as a workaround. // We use the assignment syntax since some compilers, like Sun Studio, // don't allow initializing references using construction syntax // (parentheses). static const FloatTest::TestValues& v = this->values_; EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), "v.nan1"); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), "v.nan2"); EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), "v.nan1"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), "v.infinity"); } // Tests that *_FLOAT_EQ are reflexive. TEST_F(FloatTest, Reflexive) { EXPECT_FLOAT_EQ(0.0, 0.0); EXPECT_FLOAT_EQ(1.0, 1.0); ASSERT_FLOAT_EQ(values_.infinity, values_.infinity); } // Tests that *_FLOAT_EQ are commutative. TEST_F(FloatTest, Commutative) { // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one). EXPECT_FLOAT_EQ(values_.close_to_one, 1.0); // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one). EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0), "1.0"); } // Tests EXPECT_NEAR. TEST_F(FloatTest, EXPECT_NEAR) { EXPECT_NEAR(-1.0f, -1.1f, 0.2f); EXPECT_NEAR(2.0f, 3.0f, 1.0f); EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f), // NOLINT "The difference between 1.0f and 1.5f is 0.5, " "which exceeds 0.25f"); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous line. } // Tests ASSERT_NEAR. TEST_F(FloatTest, ASSERT_NEAR) { ASSERT_NEAR(-1.0f, -1.1f, 0.2f); ASSERT_NEAR(2.0f, 3.0f, 1.0f); EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f), // NOLINT "The difference between 1.0f and 1.5f is 0.5, " "which exceeds 0.25f"); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous line. } // Tests the cases where FloatLE() should succeed. TEST_F(FloatTest, FloatLESucceeds) { EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2, ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2, // or when val1 is greater than, but almost equals to, val2. EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f); } // Tests the cases where FloatLE() should fail. TEST_F(FloatTest, FloatLEFails) { // When val1 is greater than val2 by a large margin, EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f), "(2.0f) <= (1.0f)"); // or by a small yet non-negligible margin, EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f); }, "(values_.further_from_one) <= (1.0f)"); EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity); }, "(values_.nan1) <= (values_.infinity)"); EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1); }, "(-values_.infinity) <= (values_.nan1)"); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1); }, "(values_.nan1) <= (values_.nan1)"); } // Instantiates FloatingPointTest for testing *_DOUBLE_EQ. typedef FloatingPointTest DoubleTest; // Tests that the size of Double::Bits matches the size of double. TEST_F(DoubleTest, Size) { TestSize(); } // Tests comparing with +0 and -0. TEST_F(DoubleTest, Zeros) { EXPECT_DOUBLE_EQ(0.0, -0.0); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), "1.0"); EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), "1.0"); } // Tests comparing numbers close to 0. // // This ensures that *_DOUBLE_EQ handles the sign correctly and no // overflow occurs when comparing numbers whose absolute value is very // small. TEST_F(DoubleTest, AlmostZeros) { // In C++Builder, names within local classes (such as used by // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the // scoping class. Use a static local alias as a workaround. // We use the assignment syntax since some compilers, like Sun Studio, // don't allow initializing references using construction syntax // (parentheses). static const DoubleTest::TestValues& v = this->values_; EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero); EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero); EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_DOUBLE_EQ(v.close_to_positive_zero, v.further_from_negative_zero); }, "v.further_from_negative_zero"); } // Tests comparing numbers close to each other. TEST_F(DoubleTest, SmallDiff) { EXPECT_DOUBLE_EQ(1.0, values_.close_to_one); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one), "values_.further_from_one"); } // Tests comparing numbers far apart. TEST_F(DoubleTest, LargeDiff) { EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), "3.0"); } // Tests comparing with infinity. // // This ensures that no overflow occurs when comparing numbers whose // absolute value is very large. TEST_F(DoubleTest, Infinity) { EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity); EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity), "-values_.infinity"); // This is interesting as the representations of infinity_ and nan1_ // are only 1 DLP apart. EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1), "values_.nan1"); } // Tests that comparing with NAN always returns false. TEST_F(DoubleTest, NaN) { static const DoubleTest::TestValues& v = this->values_; // Nokia's STLport crashes if we try to output infinity or NaN. EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), "v.nan1"); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2"); EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1"); EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), "v.infinity"); } // Tests that *_DOUBLE_EQ are reflexive. TEST_F(DoubleTest, Reflexive) { EXPECT_DOUBLE_EQ(0.0, 0.0); EXPECT_DOUBLE_EQ(1.0, 1.0); ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity); } // Tests that *_DOUBLE_EQ are commutative. TEST_F(DoubleTest, Commutative) { // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one). EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0); // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one). EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0), "1.0"); } // Tests EXPECT_NEAR. TEST_F(DoubleTest, EXPECT_NEAR) { EXPECT_NEAR(-1.0, -1.1, 0.2); EXPECT_NEAR(2.0, 3.0, 1.0); EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT "The difference between 1.0 and 1.5 is 0.5, " "which exceeds 0.25"); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous statement. } // Tests ASSERT_NEAR. TEST_F(DoubleTest, ASSERT_NEAR) { ASSERT_NEAR(-1.0, -1.1, 0.2); ASSERT_NEAR(2.0, 3.0, 1.0); EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT "The difference between 1.0 and 1.5 is 0.5, " "which exceeds 0.25"); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous statement. } // Tests the cases where DoubleLE() should succeed. TEST_F(DoubleTest, DoubleLESucceeds) { EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2, ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2, // or when val1 is greater than, but almost equals to, val2. EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0); } // Tests the cases where DoubleLE() should fail. TEST_F(DoubleTest, DoubleLEFails) { // When val1 is greater than val2 by a large margin, EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0), "(2.0) <= (1.0)"); // or by a small yet non-negligible margin, EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0); }, "(values_.further_from_one) <= (1.0)"); EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity); }, "(values_.nan1) <= (values_.infinity)"); EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1); }, " (-values_.infinity) <= (values_.nan1)"); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1); }, "(values_.nan1) <= (values_.nan1)"); } // Verifies that a test or test case whose name starts with DISABLED_ is // not run. // A test whose name starts with DISABLED_. // Should not run. TEST(DisabledTest, DISABLED_TestShouldNotRun) { FAIL() << "Unexpected failure: Disabled test should not be run."; } // A test whose name does not start with DISABLED_. // Should run. TEST(DisabledTest, NotDISABLED_TestShouldRun) { EXPECT_EQ(1, 1); } // A test case whose name starts with DISABLED_. // Should not run. TEST(DISABLED_TestSuite, TestShouldNotRun) { FAIL() << "Unexpected failure: Test in disabled test case should not be run."; } // A test case and test whose names start with DISABLED_. // Should not run. TEST(DISABLED_TestSuite, DISABLED_TestShouldNotRun) { FAIL() << "Unexpected failure: Test in disabled test case should not be run."; } // Check that when all tests in a test case are disabled, SetUpTestSuite() and // TearDownTestSuite() are not called. class DisabledTestsTest : public Test { protected: static void SetUpTestSuite() { FAIL() << "Unexpected failure: All tests disabled in test case. " "SetUpTestSuite() should not be called."; } static void TearDownTestSuite() { FAIL() << "Unexpected failure: All tests disabled in test case. " "TearDownTestSuite() should not be called."; } }; TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) { FAIL() << "Unexpected failure: Disabled test should not be run."; } TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) { FAIL() << "Unexpected failure: Disabled test should not be run."; } // Tests that disabled typed tests aren't run. #if GTEST_HAS_TYPED_TEST template class TypedTest : public Test { }; typedef testing::Types NumericTypes; TYPED_TEST_SUITE(TypedTest, NumericTypes); TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) { FAIL() << "Unexpected failure: Disabled typed test should not run."; } template class DISABLED_TypedTest : public Test { }; TYPED_TEST_SUITE(DISABLED_TypedTest, NumericTypes); TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) { FAIL() << "Unexpected failure: Disabled typed test should not run."; } #endif // GTEST_HAS_TYPED_TEST // Tests that disabled type-parameterized tests aren't run. #if GTEST_HAS_TYPED_TEST_P template class TypedTestP : public Test { }; TYPED_TEST_SUITE_P(TypedTestP); TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) { FAIL() << "Unexpected failure: " << "Disabled type-parameterized test should not run."; } REGISTER_TYPED_TEST_SUITE_P(TypedTestP, DISABLED_ShouldNotRun); INSTANTIATE_TYPED_TEST_SUITE_P(My, TypedTestP, NumericTypes); template class DISABLED_TypedTestP : public Test { }; TYPED_TEST_SUITE_P(DISABLED_TypedTestP); TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) { FAIL() << "Unexpected failure: " << "Disabled type-parameterized test should not run."; } REGISTER_TYPED_TEST_SUITE_P(DISABLED_TypedTestP, ShouldNotRun); INSTANTIATE_TYPED_TEST_SUITE_P(My, DISABLED_TypedTestP, NumericTypes); #endif // GTEST_HAS_TYPED_TEST_P // Tests that assertion macros evaluate their arguments exactly once. class SingleEvaluationTest : public Test { public: // Must be public and not protected due to a bug in g++ 3.4.2. // This helper function is needed by the FailedASSERT_STREQ test // below. It's public to work around C++Builder's bug with scoping local // classes. static void CompareAndIncrementCharPtrs() { ASSERT_STREQ(p1_++, p2_++); } // This helper function is needed by the FailedASSERT_NE test below. It's // public to work around C++Builder's bug with scoping local classes. static void CompareAndIncrementInts() { ASSERT_NE(a_++, b_++); } protected: SingleEvaluationTest() { p1_ = s1_; p2_ = s2_; a_ = 0; b_ = 0; } static const char* const s1_; static const char* const s2_; static const char* p1_; static const char* p2_; static int a_; static int b_; }; const char* const SingleEvaluationTest::s1_ = "01234"; const char* const SingleEvaluationTest::s2_ = "abcde"; const char* SingleEvaluationTest::p1_; const char* SingleEvaluationTest::p2_; int SingleEvaluationTest::a_; int SingleEvaluationTest::b_; // Tests that when ASSERT_STREQ fails, it evaluates its arguments // exactly once. TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) { EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(), "p2_++"); EXPECT_EQ(s1_ + 1, p1_); EXPECT_EQ(s2_ + 1, p2_); } // Tests that string assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, ASSERT_STR) { // successful EXPECT_STRNE EXPECT_STRNE(p1_++, p2_++); EXPECT_EQ(s1_ + 1, p1_); EXPECT_EQ(s2_ + 1, p2_); // failed EXPECT_STRCASEEQ EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), "Ignoring case"); EXPECT_EQ(s1_ + 2, p1_); EXPECT_EQ(s2_ + 2, p2_); } // Tests that when ASSERT_NE fails, it evaluates its arguments exactly // once. TEST_F(SingleEvaluationTest, FailedASSERT_NE) { EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(), "(a_++) != (b_++)"); EXPECT_EQ(1, a_); EXPECT_EQ(1, b_); } // Tests that assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, OtherCases) { // successful EXPECT_TRUE EXPECT_TRUE(0 == a_++); // NOLINT EXPECT_EQ(1, a_); // failed EXPECT_TRUE EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++"); EXPECT_EQ(2, a_); // successful EXPECT_GT EXPECT_GT(a_++, b_++); EXPECT_EQ(3, a_); EXPECT_EQ(1, b_); // failed EXPECT_LT EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)"); EXPECT_EQ(4, a_); EXPECT_EQ(2, b_); // successful ASSERT_TRUE ASSERT_TRUE(0 < a_++); // NOLINT EXPECT_EQ(5, a_); // successful ASSERT_GT ASSERT_GT(a_++, b_++); EXPECT_EQ(6, a_); EXPECT_EQ(3, b_); } #if GTEST_HAS_EXCEPTIONS void ThrowAnInteger() { throw 1; } // Tests that assertion arguments are evaluated exactly once. TEST_F(SingleEvaluationTest, ExceptionTests) { // successful EXPECT_THROW EXPECT_THROW({ // NOLINT a_++; ThrowAnInteger(); }, int); EXPECT_EQ(1, a_); // failed EXPECT_THROW, throws different EXPECT_NONFATAL_FAILURE(EXPECT_THROW({ // NOLINT a_++; ThrowAnInteger(); }, bool), "throws a different type"); EXPECT_EQ(2, a_); // failed EXPECT_THROW, throws nothing EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing"); EXPECT_EQ(3, a_); // successful EXPECT_NO_THROW EXPECT_NO_THROW(a_++); EXPECT_EQ(4, a_); // failed EXPECT_NO_THROW EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT a_++; ThrowAnInteger(); }), "it throws"); EXPECT_EQ(5, a_); // successful EXPECT_ANY_THROW EXPECT_ANY_THROW({ // NOLINT a_++; ThrowAnInteger(); }); EXPECT_EQ(6, a_); // failed EXPECT_ANY_THROW EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't"); EXPECT_EQ(7, a_); } #endif // GTEST_HAS_EXCEPTIONS // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE. class NoFatalFailureTest : public Test { protected: void Succeeds() {} void FailsNonFatal() { ADD_FAILURE() << "some non-fatal failure"; } void Fails() { FAIL() << "some fatal failure"; } void DoAssertNoFatalFailureOnFails() { ASSERT_NO_FATAL_FAILURE(Fails()); ADD_FAILURE() << "should not reach here."; } void DoExpectNoFatalFailureOnFails() { EXPECT_NO_FATAL_FAILURE(Fails()); ADD_FAILURE() << "other failure"; } }; TEST_F(NoFatalFailureTest, NoFailure) { EXPECT_NO_FATAL_FAILURE(Succeeds()); ASSERT_NO_FATAL_FAILURE(Succeeds()); } TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) { EXPECT_NONFATAL_FAILURE( EXPECT_NO_FATAL_FAILURE(FailsNonFatal()), "some non-fatal failure"); EXPECT_NONFATAL_FAILURE( ASSERT_NO_FATAL_FAILURE(FailsNonFatal()), "some non-fatal failure"); } TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); DoAssertNoFatalFailureOnFails(); } ASSERT_EQ(2, gtest_failures.size()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", gtest_failures.GetTestPartResult(1).message()); } TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); DoExpectNoFatalFailureOnFails(); } ASSERT_EQ(3, gtest_failures.size()); EXPECT_EQ(TestPartResult::kFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(2).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", gtest_failures.GetTestPartResult(1).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure", gtest_failures.GetTestPartResult(2).message()); } TEST_F(NoFatalFailureTest, MessageIsStreamable) { TestPartResultArray gtest_failures; { ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message"; } ASSERT_EQ(2, gtest_failures.size()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(0).type()); EXPECT_EQ(TestPartResult::kNonFatalFailure, gtest_failures.GetTestPartResult(1).type()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo", gtest_failures.GetTestPartResult(0).message()); EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message", gtest_failures.GetTestPartResult(1).message()); } // Tests non-string assertions. std::string EditsToString(const std::vector& edits) { std::string out; for (size_t i = 0; i < edits.size(); ++i) { static const char kEdits[] = " +-/"; out.append(1, kEdits[edits[i]]); } return out; } std::vector CharsToIndices(const std::string& str) { std::vector out; for (size_t i = 0; i < str.size(); ++i) { out.push_back(static_cast(str[i])); } return out; } std::vector CharsToLines(const std::string& str) { std::vector out; for (size_t i = 0; i < str.size(); ++i) { out.push_back(str.substr(i, 1)); } return out; } TEST(EditDistance, TestSuites) { struct Case { int line; const char* left; const char* right; const char* expected_edits; const char* expected_diff; }; static const Case kCases[] = { // No change. {__LINE__, "A", "A", " ", ""}, {__LINE__, "ABCDE", "ABCDE", " ", ""}, // Simple adds. {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"}, {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"}, // Simple removes. {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"}, {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"}, // Simple replaces. {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"}, {__LINE__, "ABCD", "abcd", "////", "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"}, // Path finding. {__LINE__, "ABCDEFGH", "ABXEGH1", " -/ - +", "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"}, {__LINE__, "AAAABCCCC", "ABABCDCDC", "- / + / ", "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"}, {__LINE__, "ABCDE", "BCDCD", "- +/", "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"}, {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++ -- ++", "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n" "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"}, {}}; for (const Case* c = kCases; c->left; ++c) { EXPECT_TRUE(c->expected_edits == EditsToString(CalculateOptimalEdits(CharsToIndices(c->left), CharsToIndices(c->right)))) << "Left <" << c->left << "> Right <" << c->right << "> Edits <" << EditsToString(CalculateOptimalEdits( CharsToIndices(c->left), CharsToIndices(c->right))) << ">"; EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))) << "Left <" << c->left << "> Right <" << c->right << "> Diff <" << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right)) << ">"; } } // Tests EqFailure(), used for implementing *EQ* assertions. TEST(AssertionTest, EqFailure) { const std::string foo_val("5"), bar_val("6"); const std::string msg1( EqFailure("foo", "bar", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " foo\n" " Which is: 5\n" " bar\n" " Which is: 6", msg1.c_str()); const std::string msg2( EqFailure("foo", "6", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " foo\n" " Which is: 5\n" " 6", msg2.c_str()); const std::string msg3( EqFailure("5", "bar", foo_val, bar_val, false) .failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " 5\n" " bar\n" " Which is: 6", msg3.c_str()); const std::string msg4( EqFailure("5", "6", foo_val, bar_val, false).failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " 5\n" " 6", msg4.c_str()); const std::string msg5( EqFailure("foo", "bar", std::string("\"x\""), std::string("\"y\""), true).failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " foo\n" " Which is: \"x\"\n" " bar\n" " Which is: \"y\"\n" "Ignoring case", msg5.c_str()); } TEST(AssertionTest, EqFailureWithDiff) { const std::string left( "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15"); const std::string right( "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14"); const std::string msg1( EqFailure("left", "right", left, right, false).failure_message()); EXPECT_STREQ( "Expected equality of these values:\n" " left\n" " Which is: " "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n" " right\n" " Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n" "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n" "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n", msg1.c_str()); } // Tests AppendUserMessage(), used for implementing the *EQ* macros. TEST(AssertionTest, AppendUserMessage) { const std::string foo("foo"); Message msg; EXPECT_STREQ("foo", AppendUserMessage(foo, msg).c_str()); msg << "bar"; EXPECT_STREQ("foo\nbar", AppendUserMessage(foo, msg).c_str()); } #ifdef __BORLANDC__ // Silences warnings: "Condition is always true", "Unreachable code" # pragma option push -w-ccc -w-rch #endif // Tests ASSERT_TRUE. TEST(AssertionTest, ASSERT_TRUE) { ASSERT_TRUE(2 > 1); // NOLINT EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), "2 < 1"); } // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult. TEST(AssertionTest, AssertTrueWithAssertionResult) { ASSERT_TRUE(ResultIsEven(2)); #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)), "Value of: ResultIsEven(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); #endif ASSERT_TRUE(ResultIsEvenNoExplanation(2)); EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)), "Value of: ResultIsEvenNoExplanation(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); } // Tests ASSERT_FALSE. TEST(AssertionTest, ASSERT_FALSE) { ASSERT_FALSE(2 < 1); // NOLINT EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1), "Value of: 2 > 1\n" " Actual: true\n" "Expected: false"); } // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult. TEST(AssertionTest, AssertFalseWithAssertionResult) { ASSERT_FALSE(ResultIsEven(3)); #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)), "Value of: ResultIsEven(2)\n" " Actual: true (2 is even)\n" "Expected: false"); #endif ASSERT_FALSE(ResultIsEvenNoExplanation(3)); EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)), "Value of: ResultIsEvenNoExplanation(2)\n" " Actual: true\n" "Expected: false"); } #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them # pragma option pop #endif // Tests using ASSERT_EQ on double values. The purpose is to make // sure that the specialization we did for integer and anonymous enums // isn't used for double arguments. TEST(ExpectTest, ASSERT_EQ_Double) { // A success. ASSERT_EQ(5.6, 5.6); // A failure. EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), "5.1"); } // Tests ASSERT_EQ. TEST(AssertionTest, ASSERT_EQ) { ASSERT_EQ(5, 2 + 3); EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3), "Expected equality of these values:\n" " 5\n" " 2*3\n" " Which is: 6"); } // Tests ASSERT_EQ(NULL, pointer). TEST(AssertionTest, ASSERT_EQ_NULL) { // A success. const char* p = nullptr; // Some older GCC versions may issue a spurious warning in this or the next // assertion statement. This warning should not be suppressed with // static_cast since the test verifies the ability to use bare NULL as the // expected parameter to the macro. ASSERT_EQ(nullptr, p); // A failure. static int n = 0; EXPECT_FATAL_FAILURE(ASSERT_EQ(nullptr, &n), " &n\n Which is:"); } // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be // treated as a null pointer by the compiler, we need to make sure // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as // ASSERT_EQ(static_cast(NULL), non_pointer). TEST(ExpectTest, ASSERT_EQ_0) { int n = 0; // A success. ASSERT_EQ(0, n); // A failure. EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), " 0\n 5.6"); } // Tests ASSERT_NE. TEST(AssertionTest, ASSERT_NE) { ASSERT_NE(6, 7); EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'), "Expected: ('a') != ('a'), " "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); } // Tests ASSERT_LE. TEST(AssertionTest, ASSERT_LE) { ASSERT_LE(2, 3); ASSERT_LE(2, 2); EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0"); } // Tests ASSERT_LT. TEST(AssertionTest, ASSERT_LT) { ASSERT_LT(2, 3); EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2"); } // Tests ASSERT_GE. TEST(AssertionTest, ASSERT_GE) { ASSERT_GE(2, 1); ASSERT_GE(2, 2); EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3"); } // Tests ASSERT_GT. TEST(AssertionTest, ASSERT_GT) { ASSERT_GT(2, 1); EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2"); } #if GTEST_HAS_EXCEPTIONS void ThrowNothing() {} // Tests ASSERT_THROW. TEST(AssertionTest, ASSERT_THROW) { ASSERT_THROW(ThrowAnInteger(), int); # ifndef __BORLANDC__ // ICE's in C++Builder 2007 and 2009. EXPECT_FATAL_FAILURE( ASSERT_THROW(ThrowAnInteger(), bool), "Expected: ThrowAnInteger() throws an exception of type bool.\n" " Actual: it throws a different type."); # endif EXPECT_FATAL_FAILURE( ASSERT_THROW(ThrowNothing(), bool), "Expected: ThrowNothing() throws an exception of type bool.\n" " Actual: it throws nothing."); } // Tests ASSERT_NO_THROW. TEST(AssertionTest, ASSERT_NO_THROW) { ASSERT_NO_THROW(ThrowNothing()); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()), "Expected: ThrowAnInteger() doesn't throw an exception." "\n Actual: it throws."); } // Tests ASSERT_ANY_THROW. TEST(AssertionTest, ASSERT_ANY_THROW) { ASSERT_ANY_THROW(ThrowAnInteger()); EXPECT_FATAL_FAILURE( ASSERT_ANY_THROW(ThrowNothing()), "Expected: ThrowNothing() throws an exception.\n" " Actual: it doesn't."); } #endif // GTEST_HAS_EXCEPTIONS // Makes sure we deal with the precedence of <<. This test should // compile. TEST(AssertionTest, AssertPrecedence) { ASSERT_EQ(1 < 2, true); bool false_value = false; ASSERT_EQ(true && false_value, false); } // A subroutine used by the following test. void TestEq1(int x) { ASSERT_EQ(1, x); } // Tests calling a test subroutine that's not part of a fixture. TEST(AssertionTest, NonFixtureSubroutine) { EXPECT_FATAL_FAILURE(TestEq1(2), " x\n Which is: 2"); } // An uncopyable class. class Uncopyable { public: explicit Uncopyable(int a_value) : value_(a_value) {} int value() const { return value_; } bool operator==(const Uncopyable& rhs) const { return value() == rhs.value(); } private: // This constructor deliberately has no implementation, as we don't // want this class to be copyable. Uncopyable(const Uncopyable&); // NOLINT int value_; }; ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) { return os << value.value(); } bool IsPositiveUncopyable(const Uncopyable& x) { return x.value() > 0; } // A subroutine used by the following test. void TestAssertNonPositive() { Uncopyable y(-1); ASSERT_PRED1(IsPositiveUncopyable, y); } // A subroutine used by the following test. void TestAssertEqualsUncopyable() { Uncopyable x(5); Uncopyable y(-1); ASSERT_EQ(x, y); } // Tests that uncopyable objects can be used in assertions. TEST(AssertionTest, AssertWorksWithUncopyableObject) { Uncopyable x(5); ASSERT_PRED1(IsPositiveUncopyable, x); ASSERT_EQ(x, x); EXPECT_FATAL_FAILURE(TestAssertNonPositive(), "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(), "Expected equality of these values:\n" " x\n Which is: 5\n y\n Which is: -1"); } // Tests that uncopyable objects can be used in expects. TEST(AssertionTest, ExpectWorksWithUncopyableObject) { Uncopyable x(5); EXPECT_PRED1(IsPositiveUncopyable, x); Uncopyable y(-1); EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y), "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); EXPECT_EQ(x, x); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "Expected equality of these values:\n" " x\n Which is: 5\n y\n Which is: -1"); } enum NamedEnum { kE1 = 0, kE2 = 1 }; TEST(AssertionTest, NamedEnum) { EXPECT_EQ(kE1, kE1); EXPECT_LT(kE1, kE2); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1"); } // Sun Studio and HP aCC2reject this code. #if !defined(__SUNPRO_CC) && !defined(__HP_aCC) // Tests using assertions with anonymous enums. enum { kCaseA = -1, # if GTEST_OS_LINUX // We want to test the case where the size of the anonymous enum is // larger than sizeof(int), to make sure our implementation of the // assertions doesn't truncate the enums. However, MSVC // (incorrectly) doesn't allow an enum value to exceed the range of // an int, so this has to be conditionally compiled. // // On Linux, kCaseB and kCaseA have the same value when truncated to // int size. We want to test whether this will confuse the // assertions. kCaseB = testing::internal::kMaxBiggestInt, # else kCaseB = INT_MAX, # endif // GTEST_OS_LINUX kCaseC = 42 }; TEST(AssertionTest, AnonymousEnum) { # if GTEST_OS_LINUX EXPECT_EQ(static_cast(kCaseA), static_cast(kCaseB)); # endif // GTEST_OS_LINUX EXPECT_EQ(kCaseA, kCaseA); EXPECT_NE(kCaseA, kCaseB); EXPECT_LT(kCaseA, kCaseB); EXPECT_LE(kCaseA, kCaseB); EXPECT_GT(kCaseB, kCaseA); EXPECT_GE(kCaseA, kCaseA); EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), "(kCaseA) >= (kCaseB)"); EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), "-1 vs 42"); ASSERT_EQ(kCaseA, kCaseA); ASSERT_NE(kCaseA, kCaseB); ASSERT_LT(kCaseA, kCaseB); ASSERT_LE(kCaseA, kCaseB); ASSERT_GT(kCaseB, kCaseA); ASSERT_GE(kCaseA, kCaseA); # ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), " kCaseB\n Which is: "); EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: 42"); # endif EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), "\n Which is: -1"); } #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC) #if GTEST_OS_WINDOWS static HRESULT UnexpectedHRESULTFailure() { return E_UNEXPECTED; } static HRESULT OkHRESULTSuccess() { return S_OK; } static HRESULT FalseHRESULTSuccess() { return S_FALSE; } // HRESULT assertion tests test both zero and non-zero // success codes as well as failure message for each. // // Windows CE doesn't support message texts. TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) { EXPECT_HRESULT_SUCCEEDED(S_OK); EXPECT_HRESULT_SUCCEEDED(S_FALSE); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" " Actual: 0x8000FFFF"); } TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) { ASSERT_HRESULT_SUCCEEDED(S_OK); ASSERT_HRESULT_SUCCEEDED(S_FALSE); EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" " Actual: 0x8000FFFF"); } TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) { EXPECT_HRESULT_FAILED(E_UNEXPECTED); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()), "Expected: (OkHRESULTSuccess()) fails.\n" " Actual: 0x0"); EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()), "Expected: (FalseHRESULTSuccess()) fails.\n" " Actual: 0x1"); } TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) { ASSERT_HRESULT_FAILED(E_UNEXPECTED); # ifndef __BORLANDC__ // ICE's in C++Builder 2007 and 2009. EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()), "Expected: (OkHRESULTSuccess()) fails.\n" " Actual: 0x0"); # endif EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()), "Expected: (FalseHRESULTSuccess()) fails.\n" " Actual: 0x1"); } // Tests that streaming to the HRESULT macros works. TEST(HRESULTAssertionTest, Streaming) { EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; EXPECT_NONFATAL_FAILURE( EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", "expected failure"); # ifndef __BORLANDC__ // ICE's in C++Builder 2007 and 2009. EXPECT_FATAL_FAILURE( ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", "expected failure"); # endif EXPECT_NONFATAL_FAILURE( EXPECT_HRESULT_FAILED(S_OK) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE( ASSERT_HRESULT_FAILED(S_OK) << "expected failure", "expected failure"); } #endif // GTEST_OS_WINDOWS #ifdef __BORLANDC__ // Silences warnings: "Condition is always true", "Unreachable code" # pragma option push -w-ccc -w-rch #endif // Tests that the assertion macros behave like single statements. TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) ASSERT_TRUE(false) << "This should never be executed; " "It's a compilation test only."; if (AlwaysTrue()) EXPECT_FALSE(false); else ; // NOLINT if (AlwaysFalse()) ASSERT_LT(1, 3); if (AlwaysFalse()) ; // NOLINT else EXPECT_GT(3, 2) << ""; } #if GTEST_HAS_EXCEPTIONS // Tests that the compiler will not complain about unreachable code in the // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros. TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) { int n = 0; EXPECT_THROW(throw 1, int); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), ""); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), ""); EXPECT_NO_THROW(n++); EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), ""); EXPECT_ANY_THROW(throw 1); EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), ""); } TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) EXPECT_THROW(ThrowNothing(), bool); if (AlwaysTrue()) EXPECT_THROW(ThrowAnInteger(), int); else ; // NOLINT if (AlwaysFalse()) EXPECT_NO_THROW(ThrowAnInteger()); if (AlwaysTrue()) EXPECT_NO_THROW(ThrowNothing()); else ; // NOLINT if (AlwaysFalse()) EXPECT_ANY_THROW(ThrowNothing()); if (AlwaysTrue()) EXPECT_ANY_THROW(ThrowAnInteger()); else ; // NOLINT } #endif // GTEST_HAS_EXCEPTIONS TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) { if (AlwaysFalse()) EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. " << "It's a compilation test only."; else ; // NOLINT if (AlwaysFalse()) ASSERT_NO_FATAL_FAILURE(FAIL()) << ""; else ; // NOLINT if (AlwaysTrue()) EXPECT_NO_FATAL_FAILURE(SUCCEED()); else ; // NOLINT if (AlwaysFalse()) ; // NOLINT else ASSERT_NO_FATAL_FAILURE(SUCCEED()); } // Tests that the assertion macros work well with switch statements. TEST(AssertionSyntaxTest, WorksWithSwitch) { switch (0) { case 1: break; default: ASSERT_TRUE(true); } switch (0) case 0: EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case"; // Binary assertions are implemented using a different code path // than the Boolean assertions. Hence we test them separately. switch (0) { case 1: default: ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler"; } switch (0) case 0: EXPECT_NE(1, 2); } #if GTEST_HAS_EXCEPTIONS void ThrowAString() { throw "std::string"; } // Test that the exception assertion macros compile and work with const // type qualifier. TEST(AssertionSyntaxTest, WorksWithConst) { ASSERT_THROW(ThrowAString(), const char*); EXPECT_THROW(ThrowAString(), const char*); } #endif // GTEST_HAS_EXCEPTIONS } // namespace namespace testing { // Tests that Google Test tracks SUCCEED*. TEST(SuccessfulAssertionTest, SUCCEED) { SUCCEED(); SUCCEED() << "OK"; EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count()); } // Tests that Google Test doesn't track successful EXPECT_*. TEST(SuccessfulAssertionTest, EXPECT) { EXPECT_TRUE(true); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } // Tests that Google Test doesn't track successful EXPECT_STR*. TEST(SuccessfulAssertionTest, EXPECT_STR) { EXPECT_STREQ("", ""); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } // Tests that Google Test doesn't track successful ASSERT_*. TEST(SuccessfulAssertionTest, ASSERT) { ASSERT_TRUE(true); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } // Tests that Google Test doesn't track successful ASSERT_STR*. TEST(SuccessfulAssertionTest, ASSERT_STR) { ASSERT_STREQ("", ""); EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); } } // namespace testing namespace { // Tests the message streaming variation of assertions. TEST(AssertionWithMessageTest, EXPECT) { EXPECT_EQ(1, 1) << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.", "Expected failure #1"); EXPECT_LE(1, 2) << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.", "Expected failure #2."); EXPECT_GE(1, 0) << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.", "Expected failure #3."); EXPECT_STREQ("1", "1") << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.", "Expected failure #4."); EXPECT_STRCASEEQ("a", "A") << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.", "Expected failure #5."); EXPECT_FLOAT_EQ(1, 1) << "This should succeed."; EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.", "Expected failure #6."); EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed."; } TEST(AssertionWithMessageTest, ASSERT) { ASSERT_EQ(1, 1) << "This should succeed."; ASSERT_NE(1, 2) << "This should succeed."; ASSERT_LE(1, 2) << "This should succeed."; ASSERT_LT(1, 2) << "This should succeed."; ASSERT_GE(1, 0) << "This should succeed."; EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.", "Expected failure."); } TEST(AssertionWithMessageTest, ASSERT_STR) { ASSERT_STREQ("1", "1") << "This should succeed."; ASSERT_STRNE("1", "2") << "This should succeed."; ASSERT_STRCASEEQ("a", "A") << "This should succeed."; EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.", "Expected failure."); } TEST(AssertionWithMessageTest, ASSERT_FLOATING) { ASSERT_FLOAT_EQ(1, 1) << "This should succeed."; ASSERT_DOUBLE_EQ(1, 1) << "This should succeed."; EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.", // NOLINT "Expect failure."); // To work around a bug in gcc 2.95.0, there is intentionally no // space after the first comma in the previous statement. } // Tests using ASSERT_FALSE with a streamed message. TEST(AssertionWithMessageTest, ASSERT_FALSE) { ASSERT_FALSE(false) << "This shouldn't fail."; EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1 << " evaluates to " << true; }, "Expected failure"); } // Tests using FAIL with a streamed message. TEST(AssertionWithMessageTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL() << 0, "0"); } // Tests using SUCCEED with a streamed message. TEST(AssertionWithMessageTest, SUCCEED) { SUCCEED() << "Success == " << 1; } // Tests using ASSERT_TRUE with a streamed message. TEST(AssertionWithMessageTest, ASSERT_TRUE) { ASSERT_TRUE(true) << "This should succeed."; ASSERT_TRUE(true) << true; EXPECT_FATAL_FAILURE( { // NOLINT ASSERT_TRUE(false) << static_cast(nullptr) << static_cast(nullptr); }, "(null)(null)"); } #if GTEST_OS_WINDOWS // Tests using wide strings in assertion messages. TEST(AssertionWithMessageTest, WideStringMessage) { EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_TRUE(false) << L"This failure is expected.\x8119"; }, "This failure is expected."); EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_EQ(1, 2) << "This failure is " << L"expected too.\x8120"; }, "This failure is expected too."); } #endif // GTEST_OS_WINDOWS // Tests EXPECT_TRUE. TEST(ExpectTest, EXPECT_TRUE) { EXPECT_TRUE(true) << "Intentional success"; EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.", "Intentional failure #1."); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.", "Intentional failure #2."); EXPECT_TRUE(2 > 1); // NOLINT EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1), "Value of: 2 < 1\n" " Actual: false\n" "Expected: true"); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), "2 > 3"); } // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult. TEST(ExpectTest, ExpectTrueWithAssertionResult) { EXPECT_TRUE(ResultIsEven(2)); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)), "Value of: ResultIsEven(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); EXPECT_TRUE(ResultIsEvenNoExplanation(2)); EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)), "Value of: ResultIsEvenNoExplanation(3)\n" " Actual: false (3 is odd)\n" "Expected: true"); } // Tests EXPECT_FALSE with a streamed message. TEST(ExpectTest, EXPECT_FALSE) { EXPECT_FALSE(2 < 1); // NOLINT EXPECT_FALSE(false) << "Intentional success"; EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.", "Intentional failure #1."); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.", "Intentional failure #2."); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1), "Value of: 2 > 1\n" " Actual: true\n" "Expected: false"); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), "2 < 3"); } // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult. TEST(ExpectTest, ExpectFalseWithAssertionResult) { EXPECT_FALSE(ResultIsEven(3)); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)), "Value of: ResultIsEven(2)\n" " Actual: true (2 is even)\n" "Expected: false"); EXPECT_FALSE(ResultIsEvenNoExplanation(3)); EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)), "Value of: ResultIsEvenNoExplanation(2)\n" " Actual: true\n" "Expected: false"); } #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them # pragma option pop #endif // Tests EXPECT_EQ. TEST(ExpectTest, EXPECT_EQ) { EXPECT_EQ(5, 2 + 3); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3), "Expected equality of these values:\n" " 5\n" " 2*3\n" " Which is: 6"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), "2 - 3"); } // Tests using EXPECT_EQ on double values. The purpose is to make // sure that the specialization we did for integer and anonymous enums // isn't used for double arguments. TEST(ExpectTest, EXPECT_EQ_Double) { // A success. EXPECT_EQ(5.6, 5.6); // A failure. EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), "5.1"); } // Tests EXPECT_EQ(NULL, pointer). TEST(ExpectTest, EXPECT_EQ_NULL) { // A success. const char* p = nullptr; // Some older GCC versions may issue a spurious warning in this or the next // assertion statement. This warning should not be suppressed with // static_cast since the test verifies the ability to use bare NULL as the // expected parameter to the macro. EXPECT_EQ(nullptr, p); // A failure. int n = 0; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(nullptr, &n), " &n\n Which is:"); } // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be // treated as a null pointer by the compiler, we need to make sure // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as // EXPECT_EQ(static_cast(NULL), non_pointer). TEST(ExpectTest, EXPECT_EQ_0) { int n = 0; // A success. EXPECT_EQ(0, n); // A failure. EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), " 0\n 5.6"); } // Tests EXPECT_NE. TEST(ExpectTest, EXPECT_NE) { EXPECT_NE(6, 7); EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'), "Expected: ('a') != ('a'), " "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), "2"); char* const p0 = nullptr; EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), "p0"); // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT char* const p1 = reinterpret_cast(pv1); EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), "p1"); } // Tests EXPECT_LE. TEST(ExpectTest, EXPECT_LE) { EXPECT_LE(2, 3); EXPECT_LE(2, 2); EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0), "Expected: (2) <= (0), actual: 2 vs 0"); EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), "(1.1) <= (0.9)"); } // Tests EXPECT_LT. TEST(ExpectTest, EXPECT_LT) { EXPECT_LT(2, 3); EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2), "Expected: (2) < (2), actual: 2 vs 2"); EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), "(2) < (1)"); } // Tests EXPECT_GE. TEST(ExpectTest, EXPECT_GE) { EXPECT_GE(2, 1); EXPECT_GE(2, 2); EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3), "Expected: (2) >= (3), actual: 2 vs 3"); EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), "(0.9) >= (1.1)"); } // Tests EXPECT_GT. TEST(ExpectTest, EXPECT_GT) { EXPECT_GT(2, 1); EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2), "Expected: (2) > (2), actual: 2 vs 2"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), "(2) > (3)"); } #if GTEST_HAS_EXCEPTIONS // Tests EXPECT_THROW. TEST(ExpectTest, EXPECT_THROW) { EXPECT_THROW(ThrowAnInteger(), int); EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool), "Expected: ThrowAnInteger() throws an exception of " "type bool.\n Actual: it throws a different type."); EXPECT_NONFATAL_FAILURE( EXPECT_THROW(ThrowNothing(), bool), "Expected: ThrowNothing() throws an exception of type bool.\n" " Actual: it throws nothing."); } // Tests EXPECT_NO_THROW. TEST(ExpectTest, EXPECT_NO_THROW) { EXPECT_NO_THROW(ThrowNothing()); EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()), "Expected: ThrowAnInteger() doesn't throw an " "exception.\n Actual: it throws."); } // Tests EXPECT_ANY_THROW. TEST(ExpectTest, EXPECT_ANY_THROW) { EXPECT_ANY_THROW(ThrowAnInteger()); EXPECT_NONFATAL_FAILURE( EXPECT_ANY_THROW(ThrowNothing()), "Expected: ThrowNothing() throws an exception.\n" " Actual: it doesn't."); } #endif // GTEST_HAS_EXCEPTIONS // Make sure we deal with the precedence of <<. TEST(ExpectTest, ExpectPrecedence) { EXPECT_EQ(1 < 2, true); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false), " true && false\n Which is: false"); } // Tests the StreamableToString() function. // Tests using StreamableToString() on a scalar. TEST(StreamableToStringTest, Scalar) { EXPECT_STREQ("5", StreamableToString(5).c_str()); } // Tests using StreamableToString() on a non-char pointer. TEST(StreamableToStringTest, Pointer) { int n = 0; int* p = &n; EXPECT_STRNE("(null)", StreamableToString(p).c_str()); } // Tests using StreamableToString() on a NULL non-char pointer. TEST(StreamableToStringTest, NullPointer) { int* p = nullptr; EXPECT_STREQ("(null)", StreamableToString(p).c_str()); } // Tests using StreamableToString() on a C string. TEST(StreamableToStringTest, CString) { EXPECT_STREQ("Foo", StreamableToString("Foo").c_str()); } // Tests using StreamableToString() on a NULL C string. TEST(StreamableToStringTest, NullCString) { char* p = nullptr; EXPECT_STREQ("(null)", StreamableToString(p).c_str()); } // Tests using streamable values as assertion messages. // Tests using std::string as an assertion message. TEST(StreamableTest, string) { static const std::string str( "This failure message is a std::string, and is expected."); EXPECT_FATAL_FAILURE(FAIL() << str, str.c_str()); } // Tests that we can output strings containing embedded NULs. // Limited to Linux because we can only do this with std::string's. TEST(StreamableTest, stringWithEmbeddedNUL) { static const char char_array_with_nul[] = "Here's a NUL\0 and some more string"; static const std::string string_with_nul(char_array_with_nul, sizeof(char_array_with_nul) - 1); // drops the trailing NUL EXPECT_FATAL_FAILURE(FAIL() << string_with_nul, "Here's a NUL\\0 and some more string"); } // Tests that we can output a NUL char. TEST(StreamableTest, NULChar) { EXPECT_FATAL_FAILURE({ // NOLINT FAIL() << "A NUL" << '\0' << " and some more string"; }, "A NUL\\0 and some more string"); } // Tests using int as an assertion message. TEST(StreamableTest, int) { EXPECT_FATAL_FAILURE(FAIL() << 900913, "900913"); } // Tests using NULL char pointer as an assertion message. // // In MSVC, streaming a NULL char * causes access violation. Google Test // implemented a workaround (substituting "(null)" for NULL). This // tests whether the workaround works. TEST(StreamableTest, NullCharPtr) { EXPECT_FATAL_FAILURE(FAIL() << static_cast(nullptr), "(null)"); } // Tests that basic IO manipulators (endl, ends, and flush) can be // streamed to testing::Message. TEST(StreamableTest, BasicIoManip) { EXPECT_FATAL_FAILURE({ // NOLINT FAIL() << "Line 1." << std::endl << "A NUL char " << std::ends << std::flush << " in line 2."; }, "Line 1.\nA NUL char \\0 in line 2."); } // Tests the macros that haven't been covered so far. void AddFailureHelper(bool* aborted) { *aborted = true; ADD_FAILURE() << "Intentional failure."; *aborted = false; } // Tests ADD_FAILURE. TEST(MacroTest, ADD_FAILURE) { bool aborted = true; EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), "Intentional failure."); EXPECT_FALSE(aborted); } // Tests ADD_FAILURE_AT. TEST(MacroTest, ADD_FAILURE_AT) { // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and // the failure message contains the user-streamed part. EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!"); // Verifies that the user-streamed part is optional. EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed"); // Unfortunately, we cannot verify that the failure message contains // the right file path and line number the same way, as // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and // line number. Instead, we do that in googletest-output-test_.cc. } // Tests FAIL. TEST(MacroTest, FAIL) { EXPECT_FATAL_FAILURE(FAIL(), "Failed"); EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.", "Intentional failure."); } // Tests GTEST_FAIL_AT. TEST(MacroTest, GTEST_FAIL_AT) { // Verifies that GTEST_FAIL_AT does generate a fatal failure and // the failure message contains the user-streamed part. EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42) << "Wrong!", "Wrong!"); // Verifies that the user-streamed part is optional. EXPECT_FATAL_FAILURE(GTEST_FAIL_AT("foo.cc", 42), "Failed"); // See the ADD_FAIL_AT test above to see how we test that the failure message // contains the right filename and line number -- the same applies here. } // Tests SUCCEED TEST(MacroTest, SUCCEED) { SUCCEED(); SUCCEED() << "Explicit success."; } // Tests for EXPECT_EQ() and ASSERT_EQ(). // // These tests fail *intentionally*, s.t. the failure messages can be // generated and tested. // // We have different tests for different argument types. // Tests using bool values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Bool) { EXPECT_EQ(true, true); EXPECT_FATAL_FAILURE({ bool false_value = false; ASSERT_EQ(false_value, true); }, " false_value\n Which is: false\n true"); } // Tests using int values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Int) { ASSERT_EQ(32, 32); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), " 32\n 33"); } // Tests using time_t values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Time_T) { EXPECT_EQ(static_cast(0), static_cast(0)); EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast(0), static_cast(1234)), "1234"); } // Tests using char values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, Char) { ASSERT_EQ('z', 'z'); const char ch = 'b'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), " ch\n Which is: 'b'"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), " ch\n Which is: 'b'"); } // Tests using wchar_t values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, WideChar) { EXPECT_EQ(L'b', L'b'); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'), "Expected equality of these values:\n" " L'\0'\n" " Which is: L'\0' (0, 0x0)\n" " L'x'\n" " Which is: L'x' (120, 0x78)"); static wchar_t wchar; wchar = L'b'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), "wchar"); wchar = 0x8119; EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast(0x8120), wchar), " wchar\n Which is: L'"); } // Tests using ::std::string values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, StdString) { // Compares a const char* to an std::string that has identical // content. ASSERT_EQ("Test", ::std::string("Test")); // Compares two identical std::strings. static const ::std::string str1("A * in the middle"); static const ::std::string str2(str1); EXPECT_EQ(str1, str2); // Compares a const char* to an std::string that has different // content EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), "\"test\""); // Compares an std::string to a char* that has different content. char* const p1 = const_cast("foo"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), "p1"); // Compares two std::strings that have different contents, one of // which having a NUL character in the middle. This should fail. static ::std::string str3(str1); str3.at(2) = '\0'; EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3), " str3\n Which is: \"A \\0 in the middle\""); } #if GTEST_HAS_STD_WSTRING // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, StdWideString) { // Compares two identical std::wstrings. const ::std::wstring wstr1(L"A * in the middle"); const ::std::wstring wstr2(wstr1); ASSERT_EQ(wstr1, wstr2); // Compares an std::wstring to a const wchar_t* that has identical // content. const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' }; EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119); // Compares an std::wstring to a const wchar_t* that has different // content. const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' }; EXPECT_NONFATAL_FAILURE({ // NOLINT EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120); }, "kTestX8120"); // Compares two std::wstrings that have different contents, one of // which having a NUL character in the middle. ::std::wstring wstr3(wstr1); wstr3.at(2) = L'\0'; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), "wstr3"); // Compares a wchar_t* to an std::wstring that has different // content. EXPECT_FATAL_FAILURE({ // NOLINT ASSERT_EQ(const_cast(L"foo"), ::std::wstring(L"bar")); }, ""); } #endif // GTEST_HAS_STD_WSTRING // Tests using char pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, CharPointer) { char* const p0 = nullptr; // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT void* pv2 = (void*)0xABC0; // NOLINT char* const p1 = reinterpret_cast(pv1); char* const p2 = reinterpret_cast(pv2); ASSERT_EQ(p1, p1); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:"); EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast(0x1234), reinterpret_cast(0xABC0)), "ABC0"); } // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, WideCharPointer) { wchar_t* const p0 = nullptr; // Only way to get the Nokia compiler to compile the cast // is to have a separate void* variable first. Putting // the two casts on the same line doesn't work, neither does // a direct C-style to char*. void* pv1 = (void*)0x1234; // NOLINT void* pv2 = (void*)0xABC0; // NOLINT wchar_t* const p1 = reinterpret_cast(pv1); wchar_t* const p2 = reinterpret_cast(pv2); EXPECT_EQ(p0, p0); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), " p2\n Which is:"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), " p2\n Which is:"); void* pv3 = (void*)0x1234; // NOLINT void* pv4 = (void*)0xABC0; // NOLINT const wchar_t* p3 = reinterpret_cast(pv3); const wchar_t* p4 = reinterpret_cast(pv4); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), "p4"); } // Tests using other types of pointers in {EXPECT|ASSERT}_EQ. TEST(EqAssertionTest, OtherPointer) { ASSERT_EQ(static_cast(nullptr), static_cast(nullptr)); EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast(nullptr), reinterpret_cast(0x1234)), "0x1234"); } // A class that supports binary comparison operators but not streaming. class UnprintableChar { public: explicit UnprintableChar(char ch) : char_(ch) {} bool operator==(const UnprintableChar& rhs) const { return char_ == rhs.char_; } bool operator!=(const UnprintableChar& rhs) const { return char_ != rhs.char_; } bool operator<(const UnprintableChar& rhs) const { return char_ < rhs.char_; } bool operator<=(const UnprintableChar& rhs) const { return char_ <= rhs.char_; } bool operator>(const UnprintableChar& rhs) const { return char_ > rhs.char_; } bool operator>=(const UnprintableChar& rhs) const { return char_ >= rhs.char_; } private: char char_; }; // Tests that ASSERT_EQ() and friends don't require the arguments to // be printable. TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) { const UnprintableChar x('x'), y('y'); ASSERT_EQ(x, x); EXPECT_NE(x, y); ASSERT_LT(x, y); EXPECT_LE(x, y); ASSERT_GT(y, x); EXPECT_GE(x, x); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>"); EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>"); EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>"); EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>"); // Code tested by EXPECT_FATAL_FAILURE cannot reference local // variables, so we have to write UnprintableChar('x') instead of x. #ifndef __BORLANDC__ // ICE's in C++Builder. EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')), "1-byte object <78>"); EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), "1-byte object <78>"); #endif EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), "1-byte object <79>"); EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), "1-byte object <78>"); EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), "1-byte object <79>"); } // Tests the FRIEND_TEST macro. // This class has a private member we want to test. We will test it // both in a TEST and in a TEST_F. class Foo { public: Foo() {} private: int Bar() const { return 1; } // Declares the friend tests that can access the private member // Bar(). FRIEND_TEST(FRIEND_TEST_Test, TEST); FRIEND_TEST(FRIEND_TEST_Test2, TEST_F); }; // Tests that the FRIEND_TEST declaration allows a TEST to access a // class's private members. This should compile. TEST(FRIEND_TEST_Test, TEST) { ASSERT_EQ(1, Foo().Bar()); } // The fixture needed to test using FRIEND_TEST with TEST_F. class FRIEND_TEST_Test2 : public Test { protected: Foo foo; }; // Tests that the FRIEND_TEST declaration allows a TEST_F to access a // class's private members. This should compile. TEST_F(FRIEND_TEST_Test2, TEST_F) { ASSERT_EQ(1, foo.Bar()); } // Tests the life cycle of Test objects. // The test fixture for testing the life cycle of Test objects. // // This class counts the number of live test objects that uses this // fixture. class TestLifeCycleTest : public Test { protected: // Constructor. Increments the number of test objects that uses // this fixture. TestLifeCycleTest() { count_++; } // Destructor. Decrements the number of test objects that uses this // fixture. ~TestLifeCycleTest() override { count_--; } // Returns the number of live test objects that uses this fixture. int count() const { return count_; } private: static int count_; }; int TestLifeCycleTest::count_ = 0; // Tests the life cycle of test objects. TEST_F(TestLifeCycleTest, Test1) { // There should be only one test object in this test case that's // currently alive. ASSERT_EQ(1, count()); } // Tests the life cycle of test objects. TEST_F(TestLifeCycleTest, Test2) { // After Test1 is done and Test2 is started, there should still be // only one live test object, as the object for Test1 should've been // deleted. ASSERT_EQ(1, count()); } } // namespace // Tests that the copy constructor works when it is NOT optimized away by // the compiler. TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) { // Checks that the copy constructor doesn't try to dereference NULL pointers // in the source object. AssertionResult r1 = AssertionSuccess(); AssertionResult r2 = r1; // The following line is added to prevent the compiler from optimizing // away the constructor call. r1 << "abc"; AssertionResult r3 = r1; EXPECT_EQ(static_cast(r3), static_cast(r1)); EXPECT_STREQ("abc", r1.message()); } // Tests that AssertionSuccess and AssertionFailure construct // AssertionResult objects as expected. TEST(AssertionResultTest, ConstructionWorks) { AssertionResult r1 = AssertionSuccess(); EXPECT_TRUE(r1); EXPECT_STREQ("", r1.message()); AssertionResult r2 = AssertionSuccess() << "abc"; EXPECT_TRUE(r2); EXPECT_STREQ("abc", r2.message()); AssertionResult r3 = AssertionFailure(); EXPECT_FALSE(r3); EXPECT_STREQ("", r3.message()); AssertionResult r4 = AssertionFailure() << "def"; EXPECT_FALSE(r4); EXPECT_STREQ("def", r4.message()); AssertionResult r5 = AssertionFailure(Message() << "ghi"); EXPECT_FALSE(r5); EXPECT_STREQ("ghi", r5.message()); } // Tests that the negation flips the predicate result but keeps the message. TEST(AssertionResultTest, NegationWorks) { AssertionResult r1 = AssertionSuccess() << "abc"; EXPECT_FALSE(!r1); EXPECT_STREQ("abc", (!r1).message()); AssertionResult r2 = AssertionFailure() << "def"; EXPECT_TRUE(!r2); EXPECT_STREQ("def", (!r2).message()); } TEST(AssertionResultTest, StreamingWorks) { AssertionResult r = AssertionSuccess(); r << "abc" << 'd' << 0 << true; EXPECT_STREQ("abcd0true", r.message()); } TEST(AssertionResultTest, CanStreamOstreamManipulators) { AssertionResult r = AssertionSuccess(); r << "Data" << std::endl << std::flush << std::ends << "Will be visible"; EXPECT_STREQ("Data\n\\0Will be visible", r.message()); } // The next test uses explicit conversion operators TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) { struct ExplicitlyConvertibleToBool { explicit operator bool() const { return value; } bool value; }; ExplicitlyConvertibleToBool v1 = {false}; ExplicitlyConvertibleToBool v2 = {true}; EXPECT_FALSE(v1); EXPECT_TRUE(v2); } struct ConvertibleToAssertionResult { operator AssertionResult() const { return AssertionResult(true); } }; TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) { ConvertibleToAssertionResult obj; EXPECT_TRUE(obj); } // Tests streaming a user type whose definition and operator << are // both in the global namespace. class Base { public: explicit Base(int an_x) : x_(an_x) {} int x() const { return x_; } private: int x_; }; std::ostream& operator<<(std::ostream& os, const Base& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const Base* pointer) { return os << "(" << pointer->x() << ")"; } TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) { Message msg; Base a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition and operator<< are // both in an unnamed namespace. namespace { class MyTypeInUnnamedNameSpace : public Base { public: explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {} }; std::ostream& operator<<(std::ostream& os, const MyTypeInUnnamedNameSpace& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const MyTypeInUnnamedNameSpace* pointer) { return os << "(" << pointer->x() << ")"; } } // namespace TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) { Message msg; MyTypeInUnnamedNameSpace a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition and operator<< are // both in a user namespace. namespace namespace1 { class MyTypeInNameSpace1 : public Base { public: explicit MyTypeInNameSpace1(int an_x): Base(an_x) {} }; std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const MyTypeInNameSpace1* pointer) { return os << "(" << pointer->x() << ")"; } } // namespace namespace1 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) { Message msg; namespace1::MyTypeInNameSpace1 a(1); msg << a << &a; // Uses namespace1::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming a user type whose definition is in a user namespace // but whose operator<< is in the global namespace. namespace namespace2 { class MyTypeInNameSpace2 : public ::Base { public: explicit MyTypeInNameSpace2(int an_x): Base(an_x) {} }; } // namespace namespace2 std::ostream& operator<<(std::ostream& os, const namespace2::MyTypeInNameSpace2& val) { return os << val.x(); } std::ostream& operator<<(std::ostream& os, const namespace2::MyTypeInNameSpace2* pointer) { return os << "(" << pointer->x() << ")"; } TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) { Message msg; namespace2::MyTypeInNameSpace2 a(1); msg << a << &a; // Uses ::operator<<. EXPECT_STREQ("1(1)", msg.GetString().c_str()); } // Tests streaming NULL pointers to testing::Message. TEST(MessageTest, NullPointers) { Message msg; char* const p1 = nullptr; unsigned char* const p2 = nullptr; int* p3 = nullptr; double* p4 = nullptr; bool* p5 = nullptr; Message* p6 = nullptr; msg << p1 << p2 << p3 << p4 << p5 << p6; ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", msg.GetString().c_str()); } // Tests streaming wide strings to testing::Message. TEST(MessageTest, WideStrings) { // Streams a NULL of type const wchar_t*. const wchar_t* const_wstr = nullptr; EXPECT_STREQ("(null)", (Message() << const_wstr).GetString().c_str()); // Streams a NULL of type wchar_t*. wchar_t* wstr = nullptr; EXPECT_STREQ("(null)", (Message() << wstr).GetString().c_str()); // Streams a non-NULL of type const wchar_t*. const_wstr = L"abc\x8119"; EXPECT_STREQ("abc\xe8\x84\x99", (Message() << const_wstr).GetString().c_str()); // Streams a non-NULL of type wchar_t*. wstr = const_cast(const_wstr); EXPECT_STREQ("abc\xe8\x84\x99", (Message() << wstr).GetString().c_str()); } // This line tests that we can define tests in the testing namespace. namespace testing { // Tests the TestInfo class. class TestInfoTest : public Test { protected: static const TestInfo* GetTestInfo(const char* test_name) { const TestSuite* const test_suite = GetUnitTestImpl()->GetTestSuite("TestInfoTest", "", nullptr, nullptr); for (int i = 0; i < test_suite->total_test_count(); ++i) { const TestInfo* const test_info = test_suite->GetTestInfo(i); if (strcmp(test_name, test_info->name()) == 0) return test_info; } return nullptr; } static const TestResult* GetTestResult( const TestInfo* test_info) { return test_info->result(); } }; // Tests TestInfo::test_case_name() and TestInfo::name(). TEST_F(TestInfoTest, Names) { const TestInfo* const test_info = GetTestInfo("Names"); ASSERT_STREQ("TestInfoTest", test_info->test_case_name()); ASSERT_STREQ("Names", test_info->name()); } // Tests TestInfo::result(). TEST_F(TestInfoTest, result) { const TestInfo* const test_info = GetTestInfo("result"); // Initially, there is no TestPartResult for this test. ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); // After the previous assertion, there is still none. ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); } #define VERIFY_CODE_LOCATION \ const int expected_line = __LINE__ - 1; \ const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \ ASSERT_TRUE(test_info); \ EXPECT_STREQ(__FILE__, test_info->file()); \ EXPECT_EQ(expected_line, test_info->line()) TEST(CodeLocationForTEST, Verify) { VERIFY_CODE_LOCATION; } class CodeLocationForTESTF : public Test { }; TEST_F(CodeLocationForTESTF, Verify) { VERIFY_CODE_LOCATION; } class CodeLocationForTESTP : public TestWithParam { }; TEST_P(CodeLocationForTESTP, Verify) { VERIFY_CODE_LOCATION; } INSTANTIATE_TEST_SUITE_P(, CodeLocationForTESTP, Values(0)); template class CodeLocationForTYPEDTEST : public Test { }; TYPED_TEST_SUITE(CodeLocationForTYPEDTEST, int); TYPED_TEST(CodeLocationForTYPEDTEST, Verify) { VERIFY_CODE_LOCATION; } template class CodeLocationForTYPEDTESTP : public Test { }; TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP); TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) { VERIFY_CODE_LOCATION; } REGISTER_TYPED_TEST_SUITE_P(CodeLocationForTYPEDTESTP, Verify); INSTANTIATE_TYPED_TEST_SUITE_P(My, CodeLocationForTYPEDTESTP, int); #undef VERIFY_CODE_LOCATION // Tests setting up and tearing down a test case. // Legacy API is deprecated but still available #ifndef REMOVE_LEGACY_TEST_CASEAPI class SetUpTestCaseTest : public Test { protected: // This will be called once before the first test in this test case // is run. static void SetUpTestCase() { printf("Setting up the test case . . .\n"); // Initializes some shared resource. In this simple example, we // just create a C string. More complex stuff can be done if // desired. shared_resource_ = "123"; // Increments the number of test cases that have been set up. counter_++; // SetUpTestCase() should be called only once. EXPECT_EQ(1, counter_); } // This will be called once after the last test in this test case is // run. static void TearDownTestCase() { printf("Tearing down the test case . . .\n"); // Decrements the number of test cases that have been set up. counter_--; // TearDownTestCase() should be called only once. EXPECT_EQ(0, counter_); // Cleans up the shared resource. shared_resource_ = nullptr; } // This will be called before each test in this test case. void SetUp() override { // SetUpTestCase() should be called only once, so counter_ should // always be 1. EXPECT_EQ(1, counter_); } // Number of test cases that have been set up. static int counter_; // Some resource to be shared by all tests in this test case. static const char* shared_resource_; }; int SetUpTestCaseTest::counter_ = 0; const char* SetUpTestCaseTest::shared_resource_ = nullptr; // A test that uses the shared resource. TEST_F(SetUpTestCaseTest, Test1) { EXPECT_STRNE(nullptr, shared_resource_); } // Another test that uses the shared resource. TEST_F(SetUpTestCaseTest, Test2) { EXPECT_STREQ("123", shared_resource_); } #endif // REMOVE_LEGACY_TEST_CASEAPI // Tests SetupTestSuite/TearDown TestSuite class SetUpTestSuiteTest : public Test { protected: // This will be called once before the first test in this test case // is run. static void SetUpTestSuite() { printf("Setting up the test suite . . .\n"); // Initializes some shared resource. In this simple example, we // just create a C string. More complex stuff can be done if // desired. shared_resource_ = "123"; // Increments the number of test cases that have been set up. counter_++; // SetUpTestSuite() should be called only once. EXPECT_EQ(1, counter_); } // This will be called once after the last test in this test case is // run. static void TearDownTestSuite() { printf("Tearing down the test suite . . .\n"); // Decrements the number of test suites that have been set up. counter_--; // TearDownTestSuite() should be called only once. EXPECT_EQ(0, counter_); // Cleans up the shared resource. shared_resource_ = nullptr; } // This will be called before each test in this test case. void SetUp() override { // SetUpTestSuite() should be called only once, so counter_ should // always be 1. EXPECT_EQ(1, counter_); } // Number of test suites that have been set up. static int counter_; // Some resource to be shared by all tests in this test case. static const char* shared_resource_; }; int SetUpTestSuiteTest::counter_ = 0; const char* SetUpTestSuiteTest::shared_resource_ = nullptr; // A test that uses the shared resource. TEST_F(SetUpTestSuiteTest, TestSetupTestSuite1) { EXPECT_STRNE(nullptr, shared_resource_); } // Another test that uses the shared resource. TEST_F(SetUpTestSuiteTest, TestSetupTestSuite2) { EXPECT_STREQ("123", shared_resource_); } // The ParseFlagsTest test case tests ParseGoogleTestFlagsOnly. // The Flags struct stores a copy of all Google Test flags. struct Flags { // Constructs a Flags struct where each flag has its default value. Flags() : also_run_disabled_tests(false), break_on_failure(false), catch_exceptions(false), death_test_use_fork(false), filter(""), list_tests(false), output(""), print_time(true), random_seed(0), repeat(1), shuffle(false), stack_trace_depth(kMaxStackTraceDepth), stream_result_to(""), throw_on_failure(false) {} // Factory methods. // Creates a Flags struct where the gtest_also_run_disabled_tests flag has // the given value. static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) { Flags flags; flags.also_run_disabled_tests = also_run_disabled_tests; return flags; } // Creates a Flags struct where the gtest_break_on_failure flag has // the given value. static Flags BreakOnFailure(bool break_on_failure) { Flags flags; flags.break_on_failure = break_on_failure; return flags; } // Creates a Flags struct where the gtest_catch_exceptions flag has // the given value. static Flags CatchExceptions(bool catch_exceptions) { Flags flags; flags.catch_exceptions = catch_exceptions; return flags; } // Creates a Flags struct where the gtest_death_test_use_fork flag has // the given value. static Flags DeathTestUseFork(bool death_test_use_fork) { Flags flags; flags.death_test_use_fork = death_test_use_fork; return flags; } // Creates a Flags struct where the gtest_filter flag has the given // value. static Flags Filter(const char* filter) { Flags flags; flags.filter = filter; return flags; } // Creates a Flags struct where the gtest_list_tests flag has the // given value. static Flags ListTests(bool list_tests) { Flags flags; flags.list_tests = list_tests; return flags; } // Creates a Flags struct where the gtest_output flag has the given // value. static Flags Output(const char* output) { Flags flags; flags.output = output; return flags; } // Creates a Flags struct where the gtest_print_time flag has the given // value. static Flags PrintTime(bool print_time) { Flags flags; flags.print_time = print_time; return flags; } // Creates a Flags struct where the gtest_random_seed flag has the given // value. static Flags RandomSeed(Int32 random_seed) { Flags flags; flags.random_seed = random_seed; return flags; } // Creates a Flags struct where the gtest_repeat flag has the given // value. static Flags Repeat(Int32 repeat) { Flags flags; flags.repeat = repeat; return flags; } // Creates a Flags struct where the gtest_shuffle flag has the given // value. static Flags Shuffle(bool shuffle) { Flags flags; flags.shuffle = shuffle; return flags; } // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has // the given value. static Flags StackTraceDepth(Int32 stack_trace_depth) { Flags flags; flags.stack_trace_depth = stack_trace_depth; return flags; } // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has // the given value. static Flags StreamResultTo(const char* stream_result_to) { Flags flags; flags.stream_result_to = stream_result_to; return flags; } // Creates a Flags struct where the gtest_throw_on_failure flag has // the given value. static Flags ThrowOnFailure(bool throw_on_failure) { Flags flags; flags.throw_on_failure = throw_on_failure; return flags; } // These fields store the flag values. bool also_run_disabled_tests; bool break_on_failure; bool catch_exceptions; bool death_test_use_fork; const char* filter; bool list_tests; const char* output; bool print_time; Int32 random_seed; Int32 repeat; bool shuffle; Int32 stack_trace_depth; const char* stream_result_to; bool throw_on_failure; }; // Fixture for testing ParseGoogleTestFlagsOnly(). class ParseFlagsTest : public Test { protected: // Clears the flags before each test. void SetUp() override { GTEST_FLAG(also_run_disabled_tests) = false; GTEST_FLAG(break_on_failure) = false; GTEST_FLAG(catch_exceptions) = false; GTEST_FLAG(death_test_use_fork) = false; GTEST_FLAG(filter) = ""; GTEST_FLAG(list_tests) = false; GTEST_FLAG(output) = ""; GTEST_FLAG(print_time) = true; GTEST_FLAG(random_seed) = 0; GTEST_FLAG(repeat) = 1; GTEST_FLAG(shuffle) = false; GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth; GTEST_FLAG(stream_result_to) = ""; GTEST_FLAG(throw_on_failure) = false; } // Asserts that two narrow or wide string arrays are equal. template static void AssertStringArrayEq(int size1, CharType** array1, int size2, CharType** array2) { ASSERT_EQ(size1, size2) << " Array sizes different."; for (int i = 0; i != size1; i++) { ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i; } } // Verifies that the flag values match the expected values. static void CheckFlags(const Flags& expected) { EXPECT_EQ(expected.also_run_disabled_tests, GTEST_FLAG(also_run_disabled_tests)); EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure)); EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions)); EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork)); EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str()); EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests)); EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str()); EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time)); EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed)); EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat)); EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle)); EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth)); EXPECT_STREQ(expected.stream_result_to, GTEST_FLAG(stream_result_to).c_str()); EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure)); } // Parses a command line (specified by argc1 and argv1), then // verifies that the flag values are expected and that the // recognized flags are removed from the command line. template static void TestParsingFlags(int argc1, const CharType** argv1, int argc2, const CharType** argv2, const Flags& expected, bool should_print_help) { const bool saved_help_flag = ::testing::internal::g_help_flag; ::testing::internal::g_help_flag = false; # if GTEST_HAS_STREAM_REDIRECTION CaptureStdout(); # endif // Parses the command line. internal::ParseGoogleTestFlagsOnly(&argc1, const_cast(argv1)); # if GTEST_HAS_STREAM_REDIRECTION const std::string captured_stdout = GetCapturedStdout(); # endif // Verifies the flag values. CheckFlags(expected); // Verifies that the recognized flags are removed from the command // line. AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2); // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the // help message for the flags it recognizes. EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag); # if GTEST_HAS_STREAM_REDIRECTION const char* const expected_help_fragment = "This program contains tests written using"; if (should_print_help) { EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout); } else { EXPECT_PRED_FORMAT2(IsNotSubstring, expected_help_fragment, captured_stdout); } # endif // GTEST_HAS_STREAM_REDIRECTION ::testing::internal::g_help_flag = saved_help_flag; } // This macro wraps TestParsingFlags s.t. the user doesn't need // to specify the array sizes. # define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \ TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \ sizeof(argv2)/sizeof(*argv2) - 1, argv2, \ expected, should_print_help) }; // Tests parsing an empty command line. TEST_F(ParseFlagsTest, Empty) { const char* argv[] = {nullptr}; const char* argv2[] = {nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); } // Tests parsing a command line that has no flag. TEST_F(ParseFlagsTest, NoFlag) { const char* argv[] = {"foo.exe", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); } // Tests parsing a bad --gtest_filter flag. TEST_F(ParseFlagsTest, FilterBad) { const char* argv[] = {"foo.exe", "--gtest_filter", nullptr}; const char* argv2[] = {"foo.exe", "--gtest_filter", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true); } // Tests parsing an empty --gtest_filter flag. TEST_F(ParseFlagsTest, FilterEmpty) { const char* argv[] = {"foo.exe", "--gtest_filter=", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false); } // Tests parsing a non-empty --gtest_filter flag. TEST_F(ParseFlagsTest, FilterNonEmpty) { const char* argv[] = {"foo.exe", "--gtest_filter=abc", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false); } // Tests parsing --gtest_break_on_failure. TEST_F(ParseFlagsTest, BreakOnFailureWithoutValue) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); } // Tests parsing --gtest_break_on_failure=0. TEST_F(ParseFlagsTest, BreakOnFailureFalse_0) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); } // Tests parsing --gtest_break_on_failure=f. TEST_F(ParseFlagsTest, BreakOnFailureFalse_f) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure=f", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); } // Tests parsing --gtest_break_on_failure=F. TEST_F(ParseFlagsTest, BreakOnFailureFalse_F) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure=F", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); } // Tests parsing a --gtest_break_on_failure flag that has a "true" // definition. TEST_F(ParseFlagsTest, BreakOnFailureTrue) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); } // Tests parsing --gtest_catch_exceptions. TEST_F(ParseFlagsTest, CatchExceptions) { const char* argv[] = {"foo.exe", "--gtest_catch_exceptions", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false); } // Tests parsing --gtest_death_test_use_fork. TEST_F(ParseFlagsTest, DeathTestUseFork) { const char* argv[] = {"foo.exe", "--gtest_death_test_use_fork", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false); } // Tests having the same flag twice with different values. The // expected behavior is that the one coming last takes precedence. TEST_F(ParseFlagsTest, DuplicatedFlags) { const char* argv[] = {"foo.exe", "--gtest_filter=a", "--gtest_filter=b", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false); } // Tests having an unrecognized flag on the command line. TEST_F(ParseFlagsTest, UnrecognizedFlag) { const char* argv[] = {"foo.exe", "--gtest_break_on_failure", "bar", // Unrecognized by Google Test. "--gtest_filter=b", nullptr}; const char* argv2[] = {"foo.exe", "bar", nullptr}; Flags flags; flags.break_on_failure = true; flags.filter = "b"; GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false); } // Tests having a --gtest_list_tests flag TEST_F(ParseFlagsTest, ListTestsFlag) { const char* argv[] = {"foo.exe", "--gtest_list_tests", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); } // Tests having a --gtest_list_tests flag with a "true" value TEST_F(ParseFlagsTest, ListTestsTrue) { const char* argv[] = {"foo.exe", "--gtest_list_tests=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); } // Tests having a --gtest_list_tests flag with a "false" value TEST_F(ParseFlagsTest, ListTestsFalse) { const char* argv[] = {"foo.exe", "--gtest_list_tests=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); } // Tests parsing --gtest_list_tests=f. TEST_F(ParseFlagsTest, ListTestsFalse_f) { const char* argv[] = {"foo.exe", "--gtest_list_tests=f", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); } // Tests parsing --gtest_list_tests=F. TEST_F(ParseFlagsTest, ListTestsFalse_F) { const char* argv[] = {"foo.exe", "--gtest_list_tests=F", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); } // Tests parsing --gtest_output (invalid). TEST_F(ParseFlagsTest, OutputEmpty) { const char* argv[] = {"foo.exe", "--gtest_output", nullptr}; const char* argv2[] = {"foo.exe", "--gtest_output", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true); } // Tests parsing --gtest_output=xml TEST_F(ParseFlagsTest, OutputXml) { const char* argv[] = {"foo.exe", "--gtest_output=xml", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false); } // Tests parsing --gtest_output=xml:file TEST_F(ParseFlagsTest, OutputXmlFile) { const char* argv[] = {"foo.exe", "--gtest_output=xml:file", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false); } // Tests parsing --gtest_output=xml:directory/path/ TEST_F(ParseFlagsTest, OutputXmlDirectory) { const char* argv[] = {"foo.exe", "--gtest_output=xml:directory/path/", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:directory/path/"), false); } // Tests having a --gtest_print_time flag TEST_F(ParseFlagsTest, PrintTimeFlag) { const char* argv[] = {"foo.exe", "--gtest_print_time", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); } // Tests having a --gtest_print_time flag with a "true" value TEST_F(ParseFlagsTest, PrintTimeTrue) { const char* argv[] = {"foo.exe", "--gtest_print_time=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); } // Tests having a --gtest_print_time flag with a "false" value TEST_F(ParseFlagsTest, PrintTimeFalse) { const char* argv[] = {"foo.exe", "--gtest_print_time=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); } // Tests parsing --gtest_print_time=f. TEST_F(ParseFlagsTest, PrintTimeFalse_f) { const char* argv[] = {"foo.exe", "--gtest_print_time=f", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); } // Tests parsing --gtest_print_time=F. TEST_F(ParseFlagsTest, PrintTimeFalse_F) { const char* argv[] = {"foo.exe", "--gtest_print_time=F", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); } // Tests parsing --gtest_random_seed=number TEST_F(ParseFlagsTest, RandomSeed) { const char* argv[] = {"foo.exe", "--gtest_random_seed=1000", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false); } // Tests parsing --gtest_repeat=number TEST_F(ParseFlagsTest, Repeat) { const char* argv[] = {"foo.exe", "--gtest_repeat=1000", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false); } // Tests having a --gtest_also_run_disabled_tests flag TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFlag) { const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true), false); } // Tests having a --gtest_also_run_disabled_tests flag with a "true" value TEST_F(ParseFlagsTest, AlsoRunDisabledTestsTrue) { const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(true), false); } // Tests having a --gtest_also_run_disabled_tests flag with a "false" value TEST_F(ParseFlagsTest, AlsoRunDisabledTestsFalse) { const char* argv[] = {"foo.exe", "--gtest_also_run_disabled_tests=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::AlsoRunDisabledTests(false), false); } // Tests parsing --gtest_shuffle. TEST_F(ParseFlagsTest, ShuffleWithoutValue) { const char* argv[] = {"foo.exe", "--gtest_shuffle", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); } // Tests parsing --gtest_shuffle=0. TEST_F(ParseFlagsTest, ShuffleFalse_0) { const char* argv[] = {"foo.exe", "--gtest_shuffle=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false); } // Tests parsing a --gtest_shuffle flag that has a "true" definition. TEST_F(ParseFlagsTest, ShuffleTrue) { const char* argv[] = {"foo.exe", "--gtest_shuffle=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); } // Tests parsing --gtest_stack_trace_depth=number. TEST_F(ParseFlagsTest, StackTraceDepth) { const char* argv[] = {"foo.exe", "--gtest_stack_trace_depth=5", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false); } TEST_F(ParseFlagsTest, StreamResultTo) { const char* argv[] = {"foo.exe", "--gtest_stream_result_to=localhost:1234", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_( argv, argv2, Flags::StreamResultTo("localhost:1234"), false); } // Tests parsing --gtest_throw_on_failure. TEST_F(ParseFlagsTest, ThrowOnFailureWithoutValue) { const char* argv[] = {"foo.exe", "--gtest_throw_on_failure", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); } // Tests parsing --gtest_throw_on_failure=0. TEST_F(ParseFlagsTest, ThrowOnFailureFalse_0) { const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=0", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false); } // Tests parsing a --gtest_throw_on_failure flag that has a "true" // definition. TEST_F(ParseFlagsTest, ThrowOnFailureTrue) { const char* argv[] = {"foo.exe", "--gtest_throw_on_failure=1", nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); } # if GTEST_OS_WINDOWS // Tests parsing wide strings. TEST_F(ParseFlagsTest, WideStrings) { const wchar_t* argv[] = { L"foo.exe", L"--gtest_filter=Foo*", L"--gtest_list_tests=1", L"--gtest_break_on_failure", L"--non_gtest_flag", NULL }; const wchar_t* argv2[] = { L"foo.exe", L"--non_gtest_flag", NULL }; Flags expected_flags; expected_flags.break_on_failure = true; expected_flags.filter = "Foo*"; expected_flags.list_tests = true; GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false); } # endif // GTEST_OS_WINDOWS #if GTEST_USE_OWN_FLAGFILE_FLAG_ class FlagfileTest : public ParseFlagsTest { public: virtual void SetUp() { ParseFlagsTest::SetUp(); testdata_path_.Set(internal::FilePath( testing::TempDir() + internal::GetCurrentExecutableName().string() + "_flagfile_test")); testing::internal::posix::RmDir(testdata_path_.c_str()); EXPECT_TRUE(testdata_path_.CreateFolder()); } virtual void TearDown() { testing::internal::posix::RmDir(testdata_path_.c_str()); ParseFlagsTest::TearDown(); } internal::FilePath CreateFlagfile(const char* contents) { internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName( testdata_path_, internal::FilePath("unique"), "txt")); FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w"); fprintf(f, "%s", contents); fclose(f); return file_path; } private: internal::FilePath testdata_path_; }; // Tests an empty flagfile. TEST_F(FlagfileTest, Empty) { internal::FilePath flagfile_path(CreateFlagfile("")); std::string flagfile_flag = std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str(); const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); } // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile. TEST_F(FlagfileTest, FilterNonEmpty) { internal::FilePath flagfile_path(CreateFlagfile( "--" GTEST_FLAG_PREFIX_ "filter=abc")); std::string flagfile_flag = std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str(); const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr}; const char* argv2[] = {"foo.exe", nullptr}; GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false); } // Tests passing several flags via --gtest_flagfile. TEST_F(FlagfileTest, SeveralFlags) { internal::FilePath flagfile_path(CreateFlagfile( "--" GTEST_FLAG_PREFIX_ "filter=abc\n" "--" GTEST_FLAG_PREFIX_ "break_on_failure\n" "--" GTEST_FLAG_PREFIX_ "list_tests")); std::string flagfile_flag = std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str(); const char* argv[] = {"foo.exe", flagfile_flag.c_str(), nullptr}; const char* argv2[] = {"foo.exe", nullptr}; Flags expected_flags; expected_flags.break_on_failure = true; expected_flags.filter = "abc"; expected_flags.list_tests = true; GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false); } #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ // Tests current_test_info() in UnitTest. class CurrentTestInfoTest : public Test { protected: // Tests that current_test_info() returns NULL before the first test in // the test case is run. static void SetUpTestSuite() { // There should be no tests running at this point. const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); EXPECT_TRUE(test_info == nullptr) << "There should be no tests running at this point."; } // Tests that current_test_info() returns NULL after the last test in // the test case has run. static void TearDownTestSuite() { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); EXPECT_TRUE(test_info == nullptr) << "There should be no tests running at this point."; } }; // Tests that current_test_info() returns TestInfo for currently running // test by checking the expected test name against the actual one. TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestSuite) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(nullptr != test_info) << "There is a test running so we should have a valid TestInfo."; EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) << "Expected the name of the currently running test case."; EXPECT_STREQ("WorksForFirstTestInATestSuite", test_info->name()) << "Expected the name of the currently running test."; } // Tests that current_test_info() returns TestInfo for currently running // test by checking the expected test name against the actual one. We // use this test to see that the TestInfo object actually changed from // the previous invocation. TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestSuite) { const TestInfo* test_info = UnitTest::GetInstance()->current_test_info(); ASSERT_TRUE(nullptr != test_info) << "There is a test running so we should have a valid TestInfo."; EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) << "Expected the name of the currently running test case."; EXPECT_STREQ("WorksForSecondTestInATestSuite", test_info->name()) << "Expected the name of the currently running test."; } } // namespace testing // These two lines test that we can define tests in a namespace that // has the name "testing" and is nested in another namespace. namespace my_namespace { namespace testing { // Makes sure that TEST knows to use ::testing::Test instead of // ::my_namespace::testing::Test. class Test {}; // Makes sure that an assertion knows to use ::testing::Message instead of // ::my_namespace::testing::Message. class Message {}; // Makes sure that an assertion knows to use // ::testing::AssertionResult instead of // ::my_namespace::testing::AssertionResult. class AssertionResult {}; // Tests that an assertion that should succeed works as expected. TEST(NestedTestingNamespaceTest, Success) { EXPECT_EQ(1, 1) << "This shouldn't fail."; } // Tests that an assertion that should fail works as expected. TEST(NestedTestingNamespaceTest, Failure) { EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.", "This failure is expected."); } } // namespace testing } // namespace my_namespace // Tests that one can call superclass SetUp and TearDown methods-- // that is, that they are not private. // No tests are based on this fixture; the test "passes" if it compiles // successfully. class ProtectedFixtureMethodsTest : public Test { protected: void SetUp() override { Test::SetUp(); } void TearDown() override { Test::TearDown(); } }; // StreamingAssertionsTest tests the streaming versions of a representative // sample of assertions. TEST(StreamingAssertionsTest, Unconditional) { SUCCEED() << "expected success"; EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(FAIL() << "expected failure", "expected failure"); } #ifdef __BORLANDC__ // Silences warnings: "Condition is always true", "Unreachable code" # pragma option push -w-ccc -w-rch #endif TEST(StreamingAssertionsTest, Truth) { EXPECT_TRUE(true) << "unexpected failure"; ASSERT_TRUE(true) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, Truth2) { EXPECT_FALSE(false) << "unexpected failure"; ASSERT_FALSE(false) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure", "expected failure"); } #ifdef __BORLANDC__ // Restores warnings after previous "#pragma option push" suppressed them # pragma option pop #endif TEST(StreamingAssertionsTest, IntegerEquals) { EXPECT_EQ(1, 1) << "unexpected failure"; ASSERT_EQ(1, 1) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, IntegerLessThan) { EXPECT_LT(1, 2) << "unexpected failure"; ASSERT_LT(1, 2) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsEqual) { EXPECT_STREQ("foo", "foo") << "unexpected failure"; ASSERT_STREQ("foo", "foo") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsNotEqual) { EXPECT_STRNE("foo", "bar") << "unexpected failure"; ASSERT_STRNE("foo", "bar") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) { EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure"; ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) { EXPECT_STRCASENE("foo", "bar") << "unexpected failure"; ASSERT_STRCASENE("foo", "bar") << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, FloatingPointEquals) { EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure", "expected failure"); } #if GTEST_HAS_EXCEPTIONS TEST(StreamingAssertionsTest, Throw) { EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure"; ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, NoThrow) { EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure"; ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << "expected failure", "expected failure"); } TEST(StreamingAssertionsTest, AnyThrow) { EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) << "expected failure", "expected failure"); EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << "expected failure", "expected failure"); } #endif // GTEST_HAS_EXCEPTIONS // Tests that Google Test correctly decides whether to use colors in the output. TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) { GTEST_FLAG(color) = "yes"; SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) { SetEnv("TERM", "dumb"); // TERM doesn't support colors. GTEST_FLAG(color) = "True"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. GTEST_FLAG(color) = "t"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. GTEST_FLAG(color) = "1"; EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) { GTEST_FLAG(color) = "no"; SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. } TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) { SetEnv("TERM", "xterm"); // TERM supports colors. GTEST_FLAG(color) = "F"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. GTEST_FLAG(color) = "0"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. GTEST_FLAG(color) = "unknown"; EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. } TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) { GTEST_FLAG(color) = "auto"; SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. } TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) { GTEST_FLAG(color) = "auto"; #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW // On Windows, we ignore the TERM variable as it's usually not set. SetEnv("TERM", "dumb"); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", ""); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm"); EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. #else // On non-Windows platforms, we rely on TERM to determine if the // terminal supports colors. SetEnv("TERM", "dumb"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "emacs"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "vt100"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors. EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "xterm-256color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "screen"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "screen-256color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "tmux"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "tmux-256color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "rxvt-unicode"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "rxvt-unicode-256color"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "linux"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. SetEnv("TERM", "cygwin"); // TERM supports colors. EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. #endif // GTEST_OS_WINDOWS } // Verifies that StaticAssertTypeEq works in a namespace scope. static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq(); static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq(); // Verifies that StaticAssertTypeEq works in a class. template class StaticAssertTypeEqTestHelper { public: StaticAssertTypeEqTestHelper() { StaticAssertTypeEq(); } }; TEST(StaticAssertTypeEqTest, WorksInClass) { StaticAssertTypeEqTestHelper(); } // Verifies that StaticAssertTypeEq works inside a function. typedef int IntAlias; TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) { StaticAssertTypeEq(); StaticAssertTypeEq(); } TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) { EXPECT_FALSE(HasNonfatalFailure()); } static void FailFatally() { FAIL(); } TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) { FailFatally(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_FALSE(has_nonfatal_failure); } TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); } TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { FailFatally(); ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); } // A wrapper for calling HasNonfatalFailure outside of a test body. static bool HasNonfatalFailureHelper() { return testing::Test::HasNonfatalFailure(); } TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) { EXPECT_FALSE(HasNonfatalFailureHelper()); } TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) { ADD_FAILURE(); const bool has_nonfatal_failure = HasNonfatalFailureHelper(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_nonfatal_failure); } TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) { EXPECT_FALSE(HasFailure()); } TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) { FailFatally(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); } TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { ADD_FAILURE(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); } TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { FailFatally(); ADD_FAILURE(); const bool has_failure = HasFailure(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); } // A wrapper for calling HasFailure outside of a test body. static bool HasFailureHelper() { return testing::Test::HasFailure(); } TEST(HasFailureTest, WorksOutsideOfTestBody) { EXPECT_FALSE(HasFailureHelper()); } TEST(HasFailureTest, WorksOutsideOfTestBody2) { ADD_FAILURE(); const bool has_failure = HasFailureHelper(); ClearCurrentTestPartResults(); EXPECT_TRUE(has_failure); } class TestListener : public EmptyTestEventListener { public: TestListener() : on_start_counter_(nullptr), is_destroyed_(nullptr) {} TestListener(int* on_start_counter, bool* is_destroyed) : on_start_counter_(on_start_counter), is_destroyed_(is_destroyed) {} ~TestListener() override { if (is_destroyed_) *is_destroyed_ = true; } protected: void OnTestProgramStart(const UnitTest& /*unit_test*/) override { if (on_start_counter_ != nullptr) (*on_start_counter_)++; } private: int* on_start_counter_; bool* is_destroyed_; }; // Tests the constructor. TEST(TestEventListenersTest, ConstructionWorks) { TestEventListeners listeners; EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != nullptr); EXPECT_TRUE(listeners.default_result_printer() == nullptr); EXPECT_TRUE(listeners.default_xml_generator() == nullptr); } // Tests that the TestEventListeners destructor deletes all the listeners it // owns. TEST(TestEventListenersTest, DestructionWorks) { bool default_result_printer_is_destroyed = false; bool default_xml_printer_is_destroyed = false; bool extra_listener_is_destroyed = false; TestListener* default_result_printer = new TestListener(nullptr, &default_result_printer_is_destroyed); TestListener* default_xml_printer = new TestListener(nullptr, &default_xml_printer_is_destroyed); TestListener* extra_listener = new TestListener(nullptr, &extra_listener_is_destroyed); { TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, default_result_printer); TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, default_xml_printer); listeners.Append(extra_listener); } EXPECT_TRUE(default_result_printer_is_destroyed); EXPECT_TRUE(default_xml_printer_is_destroyed); EXPECT_TRUE(extra_listener_is_destroyed); } // Tests that a listener Append'ed to a TestEventListeners list starts // receiving events. TEST(TestEventListenersTest, Append) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; listeners.Append(listener); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); } EXPECT_TRUE(is_destroyed); } // Tests that listeners receive events in the order they were appended to // the list, except for *End requests, which must be received in the reverse // order. class SequenceTestingListener : public EmptyTestEventListener { public: SequenceTestingListener(std::vector* vector, const char* id) : vector_(vector), id_(id) {} protected: void OnTestProgramStart(const UnitTest& /*unit_test*/) override { vector_->push_back(GetEventDescription("OnTestProgramStart")); } void OnTestProgramEnd(const UnitTest& /*unit_test*/) override { vector_->push_back(GetEventDescription("OnTestProgramEnd")); } void OnTestIterationStart(const UnitTest& /*unit_test*/, int /*iteration*/) override { vector_->push_back(GetEventDescription("OnTestIterationStart")); } void OnTestIterationEnd(const UnitTest& /*unit_test*/, int /*iteration*/) override { vector_->push_back(GetEventDescription("OnTestIterationEnd")); } private: std::string GetEventDescription(const char* method) { Message message; message << id_ << "." << method; return message.GetString(); } std::vector* vector_; const char* const id_; GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener); }; TEST(EventListenerTest, AppendKeepsOrder) { std::vector vec; TestEventListeners listeners; listeners.Append(new SequenceTestingListener(&vec, "1st")); listeners.Append(new SequenceTestingListener(&vec, "2nd")); listeners.Append(new SequenceTestingListener(&vec, "3rd")); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str()); EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str()); vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd( *UnitTest::GetInstance()); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str()); EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str()); vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart( *UnitTest::GetInstance(), 0); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str()); EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str()); vec.clear(); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd( *UnitTest::GetInstance(), 0); ASSERT_EQ(3U, vec.size()); EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str()); EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str()); EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str()); } // Tests that a listener removed from a TestEventListeners list stops receiving // events and is not deleted when the list is destroyed. TEST(TestEventListenersTest, Release) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list, // the following calls release it, and we need to delete it before the // test ends. TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; listeners.Append(listener); EXPECT_EQ(listener, listeners.Release(listener)); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_TRUE(listeners.Release(listener) == nullptr); } EXPECT_EQ(0, on_start_counter); EXPECT_FALSE(is_destroyed); delete listener; } // Tests that no events are forwarded when event forwarding is disabled. TEST(EventListenerTest, SuppressEventForwarding) { int on_start_counter = 0; TestListener* listener = new TestListener(&on_start_counter, nullptr); TestEventListeners listeners; listeners.Append(listener); ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); TestEventListenersAccessor::SuppressEventForwarding(&listeners); ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); } // Tests that events generated by Google Test are not forwarded in // death test subprocesses. TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) { EXPECT_DEATH_IF_SUPPORTED({ GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled( *GetUnitTestImpl()->listeners())) << "expected failure";}, "expected failure"); } // Tests that a listener installed via SetDefaultResultPrinter() starts // receiving events and is returned via default_result_printer() and that // the previous default_result_printer is removed from the list and deleted. TEST(EventListenerTest, default_result_printer) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener); EXPECT_EQ(listener, listeners.default_result_printer()); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); // Replacing default_result_printer with something else should remove it // from the list and destroy it. TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, nullptr); EXPECT_TRUE(listeners.default_result_printer() == nullptr); EXPECT_TRUE(is_destroyed); // After broadcasting an event the counter is still the same, indicating // the listener is not in the list anymore. TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); } // Tests that the default_result_printer listener stops receiving events // when removed via Release and that is not owned by the list anymore. TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list, // the following calls release it, and we need to delete it before the // test ends. TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener); EXPECT_EQ(listener, listeners.Release(listener)); EXPECT_TRUE(listeners.default_result_printer() == nullptr); EXPECT_FALSE(is_destroyed); // Broadcasting events now should not affect default_result_printer. TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); } // Destroying the list should not affect the listener now, too. EXPECT_FALSE(is_destroyed); delete listener; } // Tests that a listener installed via SetDefaultXmlGenerator() starts // receiving events and is returned via default_xml_generator() and that // the previous default_xml_generator is removed from the list and deleted. TEST(EventListenerTest, default_xml_generator) { int on_start_counter = 0; bool is_destroyed = false; TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); TestEventListeners listeners; TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener); EXPECT_EQ(listener, listeners.default_xml_generator()); TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); // Replacing default_xml_generator with something else should remove it // from the list and destroy it. TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, nullptr); EXPECT_TRUE(listeners.default_xml_generator() == nullptr); EXPECT_TRUE(is_destroyed); // After broadcasting an event the counter is still the same, indicating // the listener is not in the list anymore. TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(1, on_start_counter); } // Tests that the default_xml_generator listener stops receiving events // when removed via Release and that is not owned by the list anymore. TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) { int on_start_counter = 0; bool is_destroyed = false; // Although Append passes the ownership of this object to the list, // the following calls release it, and we need to delete it before the // test ends. TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); { TestEventListeners listeners; TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener); EXPECT_EQ(listener, listeners.Release(listener)); EXPECT_TRUE(listeners.default_xml_generator() == nullptr); EXPECT_FALSE(is_destroyed); // Broadcasting events now should not affect default_xml_generator. TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( *UnitTest::GetInstance()); EXPECT_EQ(0, on_start_counter); } // Destroying the list should not affect the listener now, too. EXPECT_FALSE(is_destroyed); delete listener; } // Sanity tests to ensure that the alternative, verbose spellings of // some of the macros work. We don't test them thoroughly as that // would be quite involved. Since their implementations are // straightforward, and they are rarely used, we'll just rely on the // users to tell us when they are broken. GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST. GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED. // GTEST_FAIL is the same as FAIL. EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure", "An expected failure"); // GTEST_ASSERT_XY is the same as ASSERT_XY. GTEST_ASSERT_EQ(0, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure", "An expected failure"); GTEST_ASSERT_NE(0, 1); GTEST_ASSERT_NE(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure", "An expected failure"); GTEST_ASSERT_LE(0, 0); GTEST_ASSERT_LE(0, 1); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure", "An expected failure"); GTEST_ASSERT_LT(0, 1); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure", "An expected failure"); GTEST_ASSERT_GE(0, 0); GTEST_ASSERT_GE(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure", "An expected failure"); GTEST_ASSERT_GT(1, 0); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure", "An expected failure"); EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure", "An expected failure"); } // Tests for internal utilities necessary for implementation of the universal // printing. class ConversionHelperBase {}; class ConversionHelperDerived : public ConversionHelperBase {}; // Tests that IsAProtocolMessage::value is a compile-time constant. TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) { GTEST_COMPILE_ASSERT_(IsAProtocolMessage<::proto2::Message>::value, const_true); GTEST_COMPILE_ASSERT_(!IsAProtocolMessage::value, const_false); } // Tests that IsAProtocolMessage::value is true when T is // proto2::Message or a sub-class of it. TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) { EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value); } // Tests that IsAProtocolMessage::value is false when T is neither // ::proto2::Message nor a sub-class of it. TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) { EXPECT_FALSE(IsAProtocolMessage::value); EXPECT_FALSE(IsAProtocolMessage::value); } // Tests GTEST_REMOVE_REFERENCE_AND_CONST_. template void TestGTestRemoveReferenceAndConst() { static_assert(std::is_same::value, "GTEST_REMOVE_REFERENCE_AND_CONST_ failed."); } TEST(RemoveReferenceToConstTest, Works) { TestGTestRemoveReferenceAndConst(); TestGTestRemoveReferenceAndConst(); TestGTestRemoveReferenceAndConst(); TestGTestRemoveReferenceAndConst(); TestGTestRemoveReferenceAndConst(); } // Tests GTEST_REFERENCE_TO_CONST_. template void TestGTestReferenceToConst() { static_assert(std::is_same::value, "GTEST_REFERENCE_TO_CONST_ failed."); } TEST(GTestReferenceToConstTest, Works) { TestGTestReferenceToConst(); TestGTestReferenceToConst(); TestGTestReferenceToConst(); TestGTestReferenceToConst(); } // Tests IsContainerTest. class NonContainer {}; TEST(IsContainerTestTest, WorksForNonContainer) { EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest(0))); EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest(0))); EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest(0))); } TEST(IsContainerTestTest, WorksForContainer) { EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest >(0))); EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest >(0))); } struct ConstOnlyContainerWithPointerIterator { using const_iterator = int*; const_iterator begin() const; const_iterator end() const; }; struct ConstOnlyContainerWithClassIterator { struct const_iterator { const int& operator*() const; const_iterator& operator++(/* pre-increment */); }; const_iterator begin() const; const_iterator end() const; }; TEST(IsContainerTestTest, ConstOnlyContainer) { EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest(0))); EXPECT_EQ(sizeof(IsContainer), sizeof(IsContainerTest(0))); } // Tests IsHashTable. struct AHashTable { typedef void hasher; }; struct NotReallyAHashTable { typedef void hasher; typedef void reverse_iterator; }; TEST(IsHashTable, Basic) { EXPECT_TRUE(testing::internal::IsHashTable::value); EXPECT_FALSE(testing::internal::IsHashTable::value); EXPECT_FALSE(testing::internal::IsHashTable>::value); EXPECT_TRUE(testing::internal::IsHashTable>::value); } // Tests ArrayEq(). TEST(ArrayEqTest, WorksForDegeneratedArrays) { EXPECT_TRUE(ArrayEq(5, 5L)); EXPECT_FALSE(ArrayEq('a', 0)); } TEST(ArrayEqTest, WorksForOneDimensionalArrays) { // Note that a and b are distinct but compatible types. const int a[] = { 0, 1 }; long b[] = { 0, 1 }; EXPECT_TRUE(ArrayEq(a, b)); EXPECT_TRUE(ArrayEq(a, 2, b)); b[0] = 2; EXPECT_FALSE(ArrayEq(a, b)); EXPECT_FALSE(ArrayEq(a, 1, b)); } TEST(ArrayEqTest, WorksForTwoDimensionalArrays) { const char a[][3] = { "hi", "lo" }; const char b[][3] = { "hi", "lo" }; const char c[][3] = { "hi", "li" }; EXPECT_TRUE(ArrayEq(a, b)); EXPECT_TRUE(ArrayEq(a, 2, b)); EXPECT_FALSE(ArrayEq(a, c)); EXPECT_FALSE(ArrayEq(a, 2, c)); } // Tests ArrayAwareFind(). TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) { const char a[] = "hello"; EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o')); EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x')); } TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) { int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } }; const int b[2] = { 2, 3 }; EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b)); const int c[2] = { 6, 7 }; EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c)); } // Tests CopyArray(). TEST(CopyArrayTest, WorksForDegeneratedArrays) { int n = 0; CopyArray('a', &n); EXPECT_EQ('a', n); } TEST(CopyArrayTest, WorksForOneDimensionalArrays) { const char a[3] = "hi"; int b[3]; #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions. CopyArray(a, &b); EXPECT_TRUE(ArrayEq(a, b)); #endif int c[3]; CopyArray(a, 3, c); EXPECT_TRUE(ArrayEq(a, c)); } TEST(CopyArrayTest, WorksForTwoDimensionalArrays) { const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } }; int b[2][3]; #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions. CopyArray(a, &b); EXPECT_TRUE(ArrayEq(a, b)); #endif int c[2][3]; CopyArray(a, 2, c); EXPECT_TRUE(ArrayEq(a, c)); } // Tests NativeArray. TEST(NativeArrayTest, ConstructorFromArrayWorks) { const int a[3] = { 0, 1, 2 }; NativeArray na(a, 3, RelationToSourceReference()); EXPECT_EQ(3U, na.size()); EXPECT_EQ(a, na.begin()); } TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) { typedef int Array[2]; Array* a = new Array[1]; (*a)[0] = 0; (*a)[1] = 1; NativeArray na(*a, 2, RelationToSourceCopy()); EXPECT_NE(*a, na.begin()); delete[] a; EXPECT_EQ(0, na.begin()[0]); EXPECT_EQ(1, na.begin()[1]); // We rely on the heap checker to verify that na deletes the copy of // array. } TEST(NativeArrayTest, TypeMembersAreCorrect) { StaticAssertTypeEq::value_type>(); StaticAssertTypeEq::value_type>(); StaticAssertTypeEq::const_iterator>(); StaticAssertTypeEq::const_iterator>(); } TEST(NativeArrayTest, MethodsWork) { const int a[3] = { 0, 1, 2 }; NativeArray na(a, 3, RelationToSourceCopy()); ASSERT_EQ(3U, na.size()); EXPECT_EQ(3, na.end() - na.begin()); NativeArray::const_iterator it = na.begin(); EXPECT_EQ(0, *it); ++it; EXPECT_EQ(1, *it); it++; EXPECT_EQ(2, *it); ++it; EXPECT_EQ(na.end(), it); EXPECT_TRUE(na == na); NativeArray na2(a, 3, RelationToSourceReference()); EXPECT_TRUE(na == na2); const int b1[3] = { 0, 1, 1 }; const int b2[4] = { 0, 1, 2, 3 }; EXPECT_FALSE(na == NativeArray(b1, 3, RelationToSourceReference())); EXPECT_FALSE(na == NativeArray(b2, 4, RelationToSourceCopy())); } TEST(NativeArrayTest, WorksForTwoDimensionalArray) { const char a[2][3] = { "hi", "lo" }; NativeArray na(a, 2, RelationToSourceReference()); ASSERT_EQ(2U, na.size()); EXPECT_EQ(a, na.begin()); } // IndexSequence TEST(IndexSequence, MakeIndexSequence) { using testing::internal::IndexSequence; using testing::internal::MakeIndexSequence; EXPECT_TRUE( (std::is_same, MakeIndexSequence<0>::type>::value)); EXPECT_TRUE( (std::is_same, MakeIndexSequence<1>::type>::value)); EXPECT_TRUE( (std::is_same, MakeIndexSequence<2>::type>::value)); EXPECT_TRUE(( std::is_same, MakeIndexSequence<3>::type>::value)); EXPECT_TRUE( (std::is_base_of, MakeIndexSequence<3>>::value)); } // ElemFromList TEST(ElemFromList, Basic) { using testing::internal::ElemFromList; using Idx = testing::internal::MakeIndexSequence<3>::type; EXPECT_TRUE(( std::is_same::type>::value)); EXPECT_TRUE( (std::is_same::type>::value)); EXPECT_TRUE( (std::is_same::type>::value)); EXPECT_TRUE( (std::is_same< char, ElemFromList<7, testing::internal::MakeIndexSequence<12>::type, int, int, int, int, int, int, int, char, int, int, int, int>::type>::value)); } // FlatTuple TEST(FlatTuple, Basic) { using testing::internal::FlatTuple; FlatTuple tuple = {}; EXPECT_EQ(0, tuple.Get<0>()); EXPECT_EQ(0.0, tuple.Get<1>()); EXPECT_EQ(nullptr, tuple.Get<2>()); tuple = FlatTuple(7, 3.2, "Foo"); EXPECT_EQ(7, tuple.Get<0>()); EXPECT_EQ(3.2, tuple.Get<1>()); EXPECT_EQ(std::string("Foo"), tuple.Get<2>()); tuple.Get<1>() = 5.1; EXPECT_EQ(5.1, tuple.Get<1>()); } TEST(FlatTuple, ManyTypes) { using testing::internal::FlatTuple; // Instantiate FlatTuple with 257 ints. // Tests show that we can do it with thousands of elements, but very long // compile times makes it unusuitable for this test. #define GTEST_FLAT_TUPLE_INT8 int, int, int, int, int, int, int, int, #define GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT8 GTEST_FLAT_TUPLE_INT8 #define GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT16 GTEST_FLAT_TUPLE_INT16 #define GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT32 GTEST_FLAT_TUPLE_INT32 #define GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT64 GTEST_FLAT_TUPLE_INT64 #define GTEST_FLAT_TUPLE_INT256 GTEST_FLAT_TUPLE_INT128 GTEST_FLAT_TUPLE_INT128 // Let's make sure that we can have a very long list of types without blowing // up the template instantiation depth. FlatTuple tuple; tuple.Get<0>() = 7; tuple.Get<99>() = 17; tuple.Get<256>() = 1000; EXPECT_EQ(7, tuple.Get<0>()); EXPECT_EQ(17, tuple.Get<99>()); EXPECT_EQ(1000, tuple.Get<256>()); } // Tests SkipPrefix(). TEST(SkipPrefixTest, SkipsWhenPrefixMatches) { const char* const str = "hello"; const char* p = str; EXPECT_TRUE(SkipPrefix("", &p)); EXPECT_EQ(str, p); p = str; EXPECT_TRUE(SkipPrefix("hell", &p)); EXPECT_EQ(str + 4, p); } TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) { const char* const str = "world"; const char* p = str; EXPECT_FALSE(SkipPrefix("W", &p)); EXPECT_EQ(str, p); p = str; EXPECT_FALSE(SkipPrefix("world!", &p)); EXPECT_EQ(str, p); } // Tests ad_hoc_test_result(). class AdHocTestResultTest : public testing::Test { protected: static void SetUpTestSuite() { FAIL() << "A failure happened inside SetUpTestSuite()."; } }; TEST_F(AdHocTestResultTest, AdHocTestResultForTestSuiteShowsFailure) { const testing::TestResult& test_result = testing::UnitTest::GetInstance() ->current_test_suite() ->ad_hoc_test_result(); EXPECT_TRUE(test_result.Failed()); } TEST_F(AdHocTestResultTest, AdHocTestResultTestForUnitTestDoesNotShowFailure) { const testing::TestResult& test_result = testing::UnitTest::GetInstance()->ad_hoc_test_result(); EXPECT_FALSE(test_result.Failed()); } class DynamicUnitTestFixture : public testing::Test {}; class DynamicTest : public DynamicUnitTestFixture { void TestBody() override { EXPECT_TRUE(true); } }; auto* dynamic_test = testing::RegisterTest( "DynamicUnitTestFixture", "DynamicTest", "TYPE", "VALUE", __FILE__, __LINE__, []() -> DynamicUnitTestFixture* { return new DynamicTest; }); TEST(RegisterTest, WasRegistered) { auto* unittest = testing::UnitTest::GetInstance(); for (int i = 0; i < unittest->total_test_suite_count(); ++i) { auto* tests = unittest->GetTestSuite(i); if (tests->name() != std::string("DynamicUnitTestFixture")) continue; for (int j = 0; j < tests->total_test_count(); ++j) { if (tests->GetTestInfo(j)->name() != std::string("DynamicTest")) continue; // Found it. EXPECT_STREQ(tests->GetTestInfo(j)->value_param(), "VALUE"); EXPECT_STREQ(tests->GetTestInfo(j)->type_param(), "TYPE"); return; } } FAIL() << "Didn't find the test!"; } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_xml_outfile1_test_.cc000066400000000000000000000036431355420072700271630ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // gtest_xml_outfile1_test_ writes some xml via TestProperty used by // gtest_xml_outfiles_test.py #include "gtest/gtest.h" class PropertyOne : public testing::Test { protected: void SetUp() override { RecordProperty("SetUpProp", 1); } void TearDown() override { RecordProperty("TearDownProp", 1); } }; TEST_F(PropertyOne, TestSomeProperties) { RecordProperty("TestSomeProperty", 1); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_xml_outfile2_test_.cc000066400000000000000000000036431355420072700271640ustar00rootroot00000000000000// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // gtest_xml_outfile2_test_ writes some xml via TestProperty used by // gtest_xml_outfiles_test.py #include "gtest/gtest.h" class PropertyTwo : public testing::Test { protected: void SetUp() override { RecordProperty("SetUpProp", 2); } void TearDown() override { RecordProperty("TearDownProp", 2); } }; TEST_F(PropertyTwo, TestSomeProperties) { RecordProperty("TestSomeProperty", 2); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_xml_outfiles_test.py000066400000000000000000000123451355420072700271700ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for the gtest_xml_output module.""" import os from xml.dom import minidom, Node import gtest_test_utils import gtest_xml_test_utils GTEST_OUTPUT_SUBDIR = "xml_outfiles" GTEST_OUTPUT_1_TEST = "gtest_xml_outfile1_test_" GTEST_OUTPUT_2_TEST = "gtest_xml_outfile2_test_" EXPECTED_XML_1 = """ """ EXPECTED_XML_2 = """ """ class GTestXMLOutFilesTest(gtest_xml_test_utils.GTestXMLTestCase): """Unit test for Google Test's XML output functionality.""" def setUp(self): # We want the trailing '/' that the last "" provides in os.path.join, for # telling Google Test to create an output directory instead of a single file # for xml output. self.output_dir_ = os.path.join(gtest_test_utils.GetTempDir(), GTEST_OUTPUT_SUBDIR, "") self.DeleteFilesAndDir() def tearDown(self): self.DeleteFilesAndDir() def DeleteFilesAndDir(self): try: os.remove(os.path.join(self.output_dir_, GTEST_OUTPUT_1_TEST + ".xml")) except os.error: pass try: os.remove(os.path.join(self.output_dir_, GTEST_OUTPUT_2_TEST + ".xml")) except os.error: pass try: os.rmdir(self.output_dir_) except os.error: pass def testOutfile1(self): self._TestOutFile(GTEST_OUTPUT_1_TEST, EXPECTED_XML_1) def testOutfile2(self): self._TestOutFile(GTEST_OUTPUT_2_TEST, EXPECTED_XML_2) def _TestOutFile(self, test_name, expected_xml): gtest_prog_path = gtest_test_utils.GetTestExecutablePath(test_name) command = [gtest_prog_path, "--gtest_output=xml:%s" % self.output_dir_] p = gtest_test_utils.Subprocess(command, working_dir=gtest_test_utils.GetTempDir()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) output_file_name1 = test_name + ".xml" output_file1 = os.path.join(self.output_dir_, output_file_name1) output_file_name2 = 'lt-' + output_file_name1 output_file2 = os.path.join(self.output_dir_, output_file_name2) self.assert_(os.path.isfile(output_file1) or os.path.isfile(output_file2), output_file1) expected = minidom.parseString(expected_xml) if os.path.isfile(output_file1): actual = minidom.parse(output_file1) else: actual = minidom.parse(output_file2) self.NormalizeXml(actual.documentElement) self.AssertEquivalentNodes(expected.documentElement, actual.documentElement) expected.unlink() actual.unlink() if __name__ == "__main__": os.environ["GTEST_STACK_TRACE_DEPTH"] = "0" gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_xml_output_unittest.py000066400000000000000000000445431355420072700276030ustar00rootroot00000000000000#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for the gtest_xml_output module""" import datetime import errno import os import re import sys from xml.dom import minidom, Node import gtest_test_utils import gtest_xml_test_utils GTEST_FILTER_FLAG = '--gtest_filter' GTEST_LIST_TESTS_FLAG = '--gtest_list_tests' GTEST_OUTPUT_FLAG = '--gtest_output' GTEST_DEFAULT_OUTPUT_FILE = 'test_detail.xml' GTEST_PROGRAM_NAME = 'gtest_xml_output_unittest_' # The flag indicating stacktraces are not supported NO_STACKTRACE_SUPPORT_FLAG = '--no_stacktrace_support' # The environment variables for test sharding. TOTAL_SHARDS_ENV_VAR = 'GTEST_TOTAL_SHARDS' SHARD_INDEX_ENV_VAR = 'GTEST_SHARD_INDEX' SHARD_STATUS_FILE_ENV_VAR = 'GTEST_SHARD_STATUS_FILE' SUPPORTS_STACK_TRACES = NO_STACKTRACE_SUPPORT_FLAG not in sys.argv if SUPPORTS_STACK_TRACES: STACK_TRACE_TEMPLATE = '\nStack trace:\n*' else: STACK_TRACE_TEMPLATE = '' # unittest.main() can't handle unknown flags sys.argv.remove(NO_STACKTRACE_SUPPORT_FLAG) EXPECTED_NON_EMPTY_XML = """ ]]>%(stack)s]]> """ % { 'stack': STACK_TRACE_TEMPLATE } EXPECTED_FILTERED_TEST_XML = """ """ EXPECTED_SHARDED_TEST_XML = """ """ EXPECTED_EMPTY_XML = """ """ GTEST_PROGRAM_PATH = gtest_test_utils.GetTestExecutablePath(GTEST_PROGRAM_NAME) SUPPORTS_TYPED_TESTS = 'TypedTest' in gtest_test_utils.Subprocess( [GTEST_PROGRAM_PATH, GTEST_LIST_TESTS_FLAG], capture_stderr=False).output class GTestXMLOutputUnitTest(gtest_xml_test_utils.GTestXMLTestCase): """ Unit test for Google Test's XML output functionality. """ # This test currently breaks on platforms that do not support typed and # type-parameterized tests, so we don't run it under them. if SUPPORTS_TYPED_TESTS: def testNonEmptyXmlOutput(self): """ Runs a test program that generates a non-empty XML output, and tests that the XML output is expected. """ self._TestXmlOutput(GTEST_PROGRAM_NAME, EXPECTED_NON_EMPTY_XML, 1) def testEmptyXmlOutput(self): """Verifies XML output for a Google Test binary without actual tests. Runs a test program that generates an empty XML output, and tests that the XML output is expected. """ self._TestXmlOutput('gtest_no_test_unittest', EXPECTED_EMPTY_XML, 0) def testTimestampValue(self): """Checks whether the timestamp attribute in the XML output is valid. Runs a test program that generates an empty XML output, and checks if the timestamp attribute in the testsuites tag is valid. """ actual = self._GetXmlOutput('gtest_no_test_unittest', [], {}, 0) date_time_str = actual.documentElement.getAttributeNode('timestamp').value # datetime.strptime() is only available in Python 2.5+ so we have to # parse the expected datetime manually. match = re.match(r'(\d+)-(\d\d)-(\d\d)T(\d\d):(\d\d):(\d\d)', date_time_str) self.assertTrue( re.match, 'XML datettime string %s has incorrect format' % date_time_str) date_time_from_xml = datetime.datetime( year=int(match.group(1)), month=int(match.group(2)), day=int(match.group(3)), hour=int(match.group(4)), minute=int(match.group(5)), second=int(match.group(6))) time_delta = abs(datetime.datetime.now() - date_time_from_xml) # timestamp value should be near the current local time self.assertTrue(time_delta < datetime.timedelta(seconds=600), 'time_delta is %s' % time_delta) actual.unlink() def testDefaultOutputFile(self): """ Confirms that Google Test produces an XML output file with the expected default name if no name is explicitly specified. """ output_file = os.path.join(gtest_test_utils.GetTempDir(), GTEST_DEFAULT_OUTPUT_FILE) gtest_prog_path = gtest_test_utils.GetTestExecutablePath( 'gtest_no_test_unittest') try: os.remove(output_file) except OSError: e = sys.exc_info()[1] if e.errno != errno.ENOENT: raise p = gtest_test_utils.Subprocess( [gtest_prog_path, '%s=xml' % GTEST_OUTPUT_FLAG], working_dir=gtest_test_utils.GetTempDir()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) self.assert_(os.path.isfile(output_file)) def testSuppressedXmlOutput(self): """ Tests that no XML file is generated if the default XML listener is shut down before RUN_ALL_TESTS is invoked. """ xml_path = os.path.join(gtest_test_utils.GetTempDir(), GTEST_PROGRAM_NAME + 'out.xml') if os.path.isfile(xml_path): os.remove(xml_path) command = [GTEST_PROGRAM_PATH, '%s=xml:%s' % (GTEST_OUTPUT_FLAG, xml_path), '--shut_down_xml'] p = gtest_test_utils.Subprocess(command) if p.terminated_by_signal: # p.signal is available only if p.terminated_by_signal is True. self.assertFalse( p.terminated_by_signal, '%s was killed by signal %d' % (GTEST_PROGRAM_NAME, p.signal)) else: self.assert_(p.exited) self.assertEquals(1, p.exit_code, "'%s' exited with code %s, which doesn't match " 'the expected exit code %s.' % (command, p.exit_code, 1)) self.assert_(not os.path.isfile(xml_path)) def testFilteredTestXmlOutput(self): """Verifies XML output when a filter is applied. Runs a test program that executes only some tests and verifies that non-selected tests do not show up in the XML output. """ self._TestXmlOutput(GTEST_PROGRAM_NAME, EXPECTED_FILTERED_TEST_XML, 0, extra_args=['%s=SuccessfulTest.*' % GTEST_FILTER_FLAG]) def testShardedTestXmlOutput(self): """Verifies XML output when run using multiple shards. Runs a test program that executes only one shard and verifies that tests from other shards do not show up in the XML output. """ self._TestXmlOutput( GTEST_PROGRAM_NAME, EXPECTED_SHARDED_TEST_XML, 0, extra_env={SHARD_INDEX_ENV_VAR: '0', TOTAL_SHARDS_ENV_VAR: '10'}) def _GetXmlOutput(self, gtest_prog_name, extra_args, extra_env, expected_exit_code): """ Returns the xml output generated by running the program gtest_prog_name. Furthermore, the program's exit code must be expected_exit_code. """ xml_path = os.path.join(gtest_test_utils.GetTempDir(), gtest_prog_name + 'out.xml') gtest_prog_path = gtest_test_utils.GetTestExecutablePath(gtest_prog_name) command = ([gtest_prog_path, '%s=xml:%s' % (GTEST_OUTPUT_FLAG, xml_path)] + extra_args) environ_copy = os.environ.copy() if extra_env: environ_copy.update(extra_env) p = gtest_test_utils.Subprocess(command, env=environ_copy) if p.terminated_by_signal: self.assert_(False, '%s was killed by signal %d' % (gtest_prog_name, p.signal)) else: self.assert_(p.exited) self.assertEquals(expected_exit_code, p.exit_code, "'%s' exited with code %s, which doesn't match " 'the expected exit code %s.' % (command, p.exit_code, expected_exit_code)) actual = minidom.parse(xml_path) return actual def _TestXmlOutput(self, gtest_prog_name, expected_xml, expected_exit_code, extra_args=None, extra_env=None): """ Asserts that the XML document generated by running the program gtest_prog_name matches expected_xml, a string containing another XML document. Furthermore, the program's exit code must be expected_exit_code. """ actual = self._GetXmlOutput(gtest_prog_name, extra_args or [], extra_env or {}, expected_exit_code) expected = minidom.parseString(expected_xml) self.NormalizeXml(actual.documentElement) self.AssertEquivalentNodes(expected.documentElement, actual.documentElement) expected.unlink() actual.unlink() if __name__ == '__main__': os.environ['GTEST_STACK_TRACE_DEPTH'] = '1' gtest_test_utils.Main() libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_xml_output_unittest_.cc000066400000000000000000000140601355420072700276660ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Unit test for Google Test XML output. // // A user can specify XML output in a Google Test program to run via // either the GTEST_OUTPUT environment variable or the --gtest_output // flag. This is used for testing such functionality. // // This program will be invoked from a Python unit test. Don't run it // directly. #include "gtest/gtest.h" using ::testing::InitGoogleTest; using ::testing::TestEventListeners; using ::testing::TestWithParam; using ::testing::UnitTest; using ::testing::Test; using ::testing::Values; class SuccessfulTest : public Test { }; TEST_F(SuccessfulTest, Succeeds) { SUCCEED() << "This is a success."; ASSERT_EQ(1, 1); } class FailedTest : public Test { }; TEST_F(FailedTest, Fails) { ASSERT_EQ(1, 2); } class DisabledTest : public Test { }; TEST_F(DisabledTest, DISABLED_test_not_run) { FAIL() << "Unexpected failure: Disabled test should not be run"; } class SkippedTest : public Test { }; TEST_F(SkippedTest, Skipped) { GTEST_SKIP(); } TEST(MixedResultTest, Succeeds) { EXPECT_EQ(1, 1); ASSERT_EQ(1, 1); } TEST(MixedResultTest, Fails) { EXPECT_EQ(1, 2); ASSERT_EQ(2, 3); } TEST(MixedResultTest, DISABLED_test) { FAIL() << "Unexpected failure: Disabled test should not be run"; } TEST(XmlQuotingTest, OutputsCData) { FAIL() << "XML output: " ""; } // Helps to test that invalid characters produced by test code do not make // it into the XML file. TEST(InvalidCharactersTest, InvalidCharactersInMessage) { FAIL() << "Invalid characters in brackets [\x1\x2]"; } class PropertyRecordingTest : public Test { public: static void SetUpTestSuite() { RecordProperty("SetUpTestSuite", "yes"); } static void TearDownTestSuite() { RecordProperty("TearDownTestSuite", "aye"); } }; TEST_F(PropertyRecordingTest, OneProperty) { RecordProperty("key_1", "1"); } TEST_F(PropertyRecordingTest, IntValuedProperty) { RecordProperty("key_int", 1); } TEST_F(PropertyRecordingTest, ThreeProperties) { RecordProperty("key_1", "1"); RecordProperty("key_2", "2"); RecordProperty("key_3", "3"); } TEST_F(PropertyRecordingTest, TwoValuesForOneKeyUsesLastValue) { RecordProperty("key_1", "1"); RecordProperty("key_1", "2"); } TEST(NoFixtureTest, RecordProperty) { RecordProperty("key", "1"); } void ExternalUtilityThatCallsRecordProperty(const std::string& key, int value) { testing::Test::RecordProperty(key, value); } void ExternalUtilityThatCallsRecordProperty(const std::string& key, const std::string& value) { testing::Test::RecordProperty(key, value); } TEST(NoFixtureTest, ExternalUtilityThatCallsRecordIntValuedProperty) { ExternalUtilityThatCallsRecordProperty("key_for_utility_int", 1); } TEST(NoFixtureTest, ExternalUtilityThatCallsRecordStringValuedProperty) { ExternalUtilityThatCallsRecordProperty("key_for_utility_string", "1"); } // Verifies that the test parameter value is output in the 'value_param' // XML attribute for value-parameterized tests. class ValueParamTest : public TestWithParam {}; TEST_P(ValueParamTest, HasValueParamAttribute) {} TEST_P(ValueParamTest, AnotherTestThatHasValueParamAttribute) {} INSTANTIATE_TEST_SUITE_P(Single, ValueParamTest, Values(33, 42)); #if GTEST_HAS_TYPED_TEST // Verifies that the type parameter name is output in the 'type_param' // XML attribute for typed tests. template class TypedTest : public Test {}; typedef testing::Types TypedTestTypes; TYPED_TEST_SUITE(TypedTest, TypedTestTypes); TYPED_TEST(TypedTest, HasTypeParamAttribute) {} #endif #if GTEST_HAS_TYPED_TEST_P // Verifies that the type parameter name is output in the 'type_param' // XML attribute for type-parameterized tests. template class TypeParameterizedTestSuite : public Test {}; TYPED_TEST_SUITE_P(TypeParameterizedTestSuite); TYPED_TEST_P(TypeParameterizedTestSuite, HasTypeParamAttribute) {} REGISTER_TYPED_TEST_SUITE_P(TypeParameterizedTestSuite, HasTypeParamAttribute); typedef testing::Types TypeParameterizedTestSuiteTypes; // NOLINT INSTANTIATE_TYPED_TEST_SUITE_P(Single, TypeParameterizedTestSuite, TypeParameterizedTestSuiteTypes); #endif int main(int argc, char** argv) { InitGoogleTest(&argc, argv); if (argc > 1 && strcmp(argv[1], "--shut_down_xml") == 0) { TestEventListeners& listeners = UnitTest::GetInstance()->listeners(); delete listeners.Release(listeners.default_xml_generator()); } testing::Test::RecordProperty("ad_hoc_property", "42"); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/gtest_xml_test_utils.py000066400000000000000000000220341355420072700264720ustar00rootroot00000000000000# Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test utilities for gtest_xml_output""" import re from xml.dom import minidom, Node import gtest_test_utils GTEST_DEFAULT_OUTPUT_FILE = 'test_detail.xml' class GTestXMLTestCase(gtest_test_utils.TestCase): """ Base class for tests of Google Test's XML output functionality. """ def AssertEquivalentNodes(self, expected_node, actual_node): """ Asserts that actual_node (a DOM node object) is equivalent to expected_node (another DOM node object), in that either both of them are CDATA nodes and have the same value, or both are DOM elements and actual_node meets all of the following conditions: * It has the same tag name as expected_node. * It has the same set of attributes as expected_node, each with the same value as the corresponding attribute of expected_node. Exceptions are any attribute named "time", which needs only be convertible to a floating-point number and any attribute named "type_param" which only has to be non-empty. * It has an equivalent set of child nodes (including elements and CDATA sections) as expected_node. Note that we ignore the order of the children as they are not guaranteed to be in any particular order. """ if expected_node.nodeType == Node.CDATA_SECTION_NODE: self.assertEquals(Node.CDATA_SECTION_NODE, actual_node.nodeType) self.assertEquals(expected_node.nodeValue, actual_node.nodeValue) return self.assertEquals(Node.ELEMENT_NODE, actual_node.nodeType) self.assertEquals(Node.ELEMENT_NODE, expected_node.nodeType) self.assertEquals(expected_node.tagName, actual_node.tagName) expected_attributes = expected_node.attributes actual_attributes = actual_node .attributes self.assertEquals( expected_attributes.length, actual_attributes.length, 'attribute numbers differ in element %s:\nExpected: %r\nActual: %r' % ( actual_node.tagName, expected_attributes.keys(), actual_attributes.keys())) for i in range(expected_attributes.length): expected_attr = expected_attributes.item(i) actual_attr = actual_attributes.get(expected_attr.name) self.assert_( actual_attr is not None, 'expected attribute %s not found in element %s' % (expected_attr.name, actual_node.tagName)) self.assertEquals( expected_attr.value, actual_attr.value, ' values of attribute %s in element %s differ: %s vs %s' % (expected_attr.name, actual_node.tagName, expected_attr.value, actual_attr.value)) expected_children = self._GetChildren(expected_node) actual_children = self._GetChildren(actual_node) self.assertEquals( len(expected_children), len(actual_children), 'number of child elements differ in element ' + actual_node.tagName) for child_id, child in expected_children.items(): self.assert_(child_id in actual_children, '<%s> is not in <%s> (in element %s)' % (child_id, actual_children, actual_node.tagName)) self.AssertEquivalentNodes(child, actual_children[child_id]) identifying_attribute = { 'testsuites': 'name', 'testsuite': 'name', 'testcase': 'name', 'failure': 'message', 'property': 'name', } def _GetChildren(self, element): """ Fetches all of the child nodes of element, a DOM Element object. Returns them as the values of a dictionary keyed by the IDs of the children. For , , , and elements, the ID is the value of their "name" attribute; for elements, it is the value of the "message" attribute; for elements, it is the value of their parent's "name" attribute plus the literal string "properties"; CDATA sections and non-whitespace text nodes are concatenated into a single CDATA section with ID "detail". An exception is raised if any element other than the above four is encountered, if two child elements with the same identifying attributes are encountered, or if any other type of node is encountered. """ children = {} for child in element.childNodes: if child.nodeType == Node.ELEMENT_NODE: if child.tagName == 'properties': self.assert_(child.parentNode is not None, 'Encountered element without a parent') child_id = child.parentNode.getAttribute('name') + '-properties' else: self.assert_(child.tagName in self.identifying_attribute, 'Encountered unknown element <%s>' % child.tagName) child_id = child.getAttribute( self.identifying_attribute[child.tagName]) self.assert_(child_id not in children) children[child_id] = child elif child.nodeType in [Node.TEXT_NODE, Node.CDATA_SECTION_NODE]: if 'detail' not in children: if (child.nodeType == Node.CDATA_SECTION_NODE or not child.nodeValue.isspace()): children['detail'] = child.ownerDocument.createCDATASection( child.nodeValue) else: children['detail'].nodeValue += child.nodeValue else: self.fail('Encountered unexpected node type %d' % child.nodeType) return children def NormalizeXml(self, element): """ Normalizes Google Test's XML output to eliminate references to transient information that may change from run to run. * The "time" attribute of , and elements is replaced with a single asterisk, if it contains only digit characters. * The "timestamp" attribute of elements is replaced with a single asterisk, if it contains a valid ISO8601 datetime value. * The "type_param" attribute of elements is replaced with a single asterisk (if it sn non-empty) as it is the type name returned by the compiler and is platform dependent. * The line info reported in the first line of the "message" attribute and CDATA section of elements is replaced with the file's basename and a single asterisk for the line number. * The directory names in file paths are removed. * The stack traces are removed. """ if element.tagName in ('testsuites', 'testsuite', 'testcase'): timestamp = element.getAttributeNode('timestamp') timestamp.value = re.sub(r'^\d{4}-\d\d-\d\dT\d\d:\d\d:\d\d$', '*', timestamp.value) if element.tagName in ('testsuites', 'testsuite', 'testcase'): time = element.getAttributeNode('time') time.value = re.sub(r'^\d+(\.\d+)?$', '*', time.value) type_param = element.getAttributeNode('type_param') if type_param and type_param.value: type_param.value = '*' elif element.tagName == 'failure': source_line_pat = r'^.*[/\\](.*:)\d+\n' # Replaces the source line information with a normalized form. message = element.getAttributeNode('message') message.value = re.sub(source_line_pat, '\\1*\n', message.value) for child in element.childNodes: if child.nodeType == Node.CDATA_SECTION_NODE: # Replaces the source line information with a normalized form. cdata = re.sub(source_line_pat, '\\1*\n', child.nodeValue) # Removes the actual stack trace. child.nodeValue = re.sub(r'Stack trace:\n(.|\n)*', 'Stack trace:\n*', cdata) for child in element.childNodes: if child.nodeType == Node.ELEMENT_NODE: self.NormalizeXml(child) libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/production.cc000066400000000000000000000032131355420072700243260ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of the unit test for gtest_prod.h. #include "production.h" PrivateCode::PrivateCode() : x_(0) {} libspatialindex-1.9.3/test/gtest/gtest-1.10.0/test/production.h000066400000000000000000000041031355420072700241670ustar00rootroot00000000000000// Copyright 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of the unit test for gtest_prod.h. #ifndef GTEST_TEST_PRODUCTION_H_ #define GTEST_TEST_PRODUCTION_H_ #include "gtest/gtest_prod.h" class PrivateCode { public: // Declares a friend test that does not use a fixture. FRIEND_TEST(PrivateCodeTest, CanAccessPrivateMembers); // Declares a friend test that uses a fixture. FRIEND_TEST(PrivateCodeFixtureTest, CanAccessPrivateMembers); PrivateCode(); int x() const { return x_; } private: void set_x(int an_x) { x_ = an_x; } int x_; }; #endif // GTEST_TEST_PRODUCTION_H_ libspatialindex-1.9.3/test/gtest/main.cc000066400000000000000000000003061355420072700202440ustar00rootroot00000000000000#include "test.h" #include "sidx_api_test.h" int main(int argc, char** argv) { printf("Running main() from gtest_main.cc\n"); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } libspatialindex-1.9.3/test/gtest/sidx_api_test.h000066400000000000000000000074651355420072700220360ustar00rootroot00000000000000#ifndef SIDX_API_TEST_H #define SIDX_API_TEST_H #include #include #include "test.h" double min[] = {0.5, 0.5}; double max[] = {0.5, 0.5}; int nDims = 2; int nId = 1; char pszData[5]; class SidxApiRTreeTest : public testing::Test { protected: // virtual void SetUp() will be called before each test is run. You // should define it if you need to initialize the variables. // Otherwise, this can be skipped. void SetUp() override { memset(pszData, '\0', sizeof(pszData)); #ifdef WIN32 strcpy_s(pszData, sizeof(pszData), "TEST"); #else strcpy(pszData, "TEST"); #endif IndexPropertyH props = IndexProperty_Create(); IndexProperty_SetIndexType(props, RT_RTree); IndexProperty_SetIndexStorage(props, RT_Memory); idx = Index_Create(props); IndexProperty_Destroy(props); Index_InsertData(idx, nId, min, max, nDims, (uint8_t *)pszData, strlen(pszData) + 1); } // virtual void TearDown() will be called after each test is run. // You should define it if there is cleanup work to do. Otherwise, // you don't have to provide it. // void TearDown() override { Index_Destroy(idx); } IndexH idx; }; TEST_F(SidxApiRTreeTest, valid) { ASSERT_EQ(1, Index_IsValid(idx)); } TEST_F(SidxApiRTreeTest, intersects_id) { uint64_t nResults; int64_t* items; Index_Intersects_id(idx, min, max, nDims, &items, &nResults); EXPECT_EQ(1, nResults); EXPECT_EQ(nId, items[0]); free(items); } TEST_F(SidxApiRTreeTest, intersects_nearest_id) { uint64_t nResults; int64_t* items; Index_NearestNeighbors_id(idx, min, max, nDims, &items, &nResults); EXPECT_EQ(1, nResults); EXPECT_EQ(nId, items[0]); free(items); } TEST_F(SidxApiRTreeTest, intersects_obj) { uint64_t nResults; IndexItemH* items; char* pszRes = nullptr; uint64_t len = 0; Index_Intersects_obj(idx, min, max, nDims, &items, &nResults); ASSERT_EQ(1, nResults); IndexItem_GetData(items[0], (uint8_t **)&pszRes, &len); EXPECT_EQ(0, strcmp(pszData, pszRes)); free(pszRes); Index_DestroyObjResults(items, (uint32_t) nResults); } TEST_F(SidxApiRTreeTest, intersects_nearest_obj) { uint64_t nResults; IndexItemH* items; char* pszRes = nullptr; uint64_t len = 0; Index_NearestNeighbors_obj(idx, min, max, nDims, &items, &nResults); ASSERT_EQ(1, nResults); IndexItem_GetData(items[0], (uint8_t **)&pszRes, &len); EXPECT_EQ(0, strcmp(pszData, pszRes)); free(pszRes); Index_DestroyObjResults(items, (uint32_t) nResults); } TEST_F(SidxApiRTreeTest, intersects_count) { uint64_t nResults; Index_Intersects_count(idx, min, max, nDims, &nResults); EXPECT_EQ(1, nResults); } TEST_F(SidxApiRTreeTest, intersects_bounds) { double* pMin; double* pMax; uint32_t nResDims; Index_GetBounds(idx, &pMin, &pMax, &nResDims); ASSERT_EQ(nDims, nResDims); EXPECT_EQ(min[0], pMin[0]); EXPECT_EQ(min[1], pMin[1]); EXPECT_EQ(max[0], pMax[0]); EXPECT_EQ(max[1], pMax[1]); free(pMin); free(pMax); } TEST_F(SidxApiRTreeTest, contains_obj) { uint64_t nResults; IndexItemH* items; char* pszRes = nullptr; uint64_t len = 0; Index_Contains_obj(idx, min, max, nDims, &items, &nResults); ASSERT_EQ(1, nResults); IndexItem_GetData(items[0], (uint8_t **)&pszRes, &len); EXPECT_EQ(0, strcmp(pszData, pszRes)); free(pszRes); Index_DestroyObjResults(items, (uint32_t) nResults); } TEST_F(SidxApiRTreeTest, contains_id) { uint64_t nResults; int64_t* items; Index_Contains_id(idx, min, max, nDims, &items, &nResults); EXPECT_EQ(1, nResults); EXPECT_EQ(nId, items[0]); free(items); } TEST_F(SidxApiRTreeTest, contains_count) { uint64_t nResults; Index_Contains_count(idx, min, max, nDims, &nResults); EXPECT_EQ(1, nResults); } #endif // SIDX_API_TEST_H libspatialindex-1.9.3/test/gtest/test.h000066400000000000000000000001121355420072700201340ustar00rootroot00000000000000#ifndef TEST_H #define TEST_H #include #endif // TEST_H libspatialindex-1.9.3/test/mvrtree/000077500000000000000000000000001355420072700173505ustar00rootroot00000000000000libspatialindex-1.9.3/test/mvrtree/Exhaustive.cc000066400000000000000000000125331355420072700220100ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #include #include #include #include #include using namespace std; #define DELETE 0 #define INSERT 1 #define QUERY 2 #include class TimeRegion { public: double m_xmin, m_ymin, m_xmax, m_ymax; double m_startTime, m_endTime; TimeRegion() = default; TimeRegion(double x1, double y1, double x2, double y2, double t1, double t2) { m_xmin = (x1 < x2) ? x1 : x2; m_ymin = (y1 < y2) ? y1 : y2; m_xmax = (x1 > x2) ? x1 : x2; m_ymax = (y1 > y2) ? y1 : y2; m_startTime = t1; m_endTime = (t2 <= 0) ? std::numeric_limits::max() : t2; } bool intersects(TimeRegion& r) { if (m_xmin > r.m_xmax || m_xmax < r.m_xmin || m_ymin > r.m_ymax || m_ymax < r.m_ymin) return false; return true; } bool intersectsInTime(TimeRegion& r) { //if (m_startTime != r.m_startTime && (m_endTime <= r.m_startTime || m_startTime >= r.m_endTime)) return false; if (m_endTime <= r.m_startTime || m_startTime >= r.m_endTime) return false; return intersects(r); } double getMinDist(const TimeRegion& r) { double ret = 0.0; if (r.m_xmax < m_xmin) ret += std::pow(m_xmin - r.m_xmax, 2.0); else if (r.m_xmin > m_xmax) ret += std::pow(r.m_xmin - m_xmax, 2.0); if (r.m_ymax < m_ymin) ret += std::pow(m_ymin - r.m_ymax, 2.0); else if (r.m_ymin > m_ymax) ret += std::pow(r.m_ymin - m_ymax, 2.0); return ret; } }; class NNEntry { public: size_t m_id; double m_dist; NNEntry(size_t id, double dist) : m_id(id), m_dist(dist) {} }; int main(int argc, char** argv) { if (argc != 3) { cerr << "Usage: " << argv[0] << " data_file query_type [intersection | 10NN]." << endl; return -1; } uint32_t queryType = 0; if (strcmp(argv[2], "intersection") == 0) queryType = 0; else if (strcmp(argv[2], "10NN") == 0) queryType = 1; else { cerr << "Unknown query type." << endl; return -1; } ifstream fin(argv[1]); if (! fin) { cerr << "Cannot open data file" << argv[1] << "." << endl; return -1; } multimap data; size_t id; uint32_t op; double x1, x2, y1, y2, t; while (fin) { fin >> t >> op >> id >> x1 >> y1 >> x2 >> y2; if (! fin.good()) continue; if (op == INSERT) { //insert data.insert(pair(id, TimeRegion(x1, y1, x2, y2, t, std::numeric_limits::max()))); } else if (op == DELETE) { //delete // find the live instance of id. multimap::iterator it = data.find(id); assert(it != data.end()); while (it->first == id && it->second.m_endTime < std::numeric_limits::max()) it++; assert(it->first == id); (*it).second.m_endTime = t; } else if (op == QUERY) { size_t qt1, qt2; fin >> qt1 >> qt2; if (! fin.good()) continue; //query if (queryType == 0) { TimeRegion query = TimeRegion(x1, y1, x2, y2, (double)qt1, (double)qt2); for (multimap::iterator it = data.begin(); it != data.end(); it++) { if (query.intersectsInTime((*it).second)) cout << (*it).first << endl; } } else { /* TimeRegion query = TimeRegion(x1, y1, x1, y1, qt1, qt2); priority_queue, NNEntry::greater > queue; for (multimap::iterator it = data.begin(); it != data.end(); it++) { queue.push(new NNEntry((*it).first, (*it).second.getMinDist(query))); } size_t count = 0; double knearest = 0.0; while (! queue.empty()) { NNEntry* e = queue.top(); queue.pop(); if (count >= 10 && e->m_dist > knearest) break; //cout << e->m_id << " " << e->m_dist << endl; cout << e->m_id << endl; count++; knearest = e->m_dist; delete e; } while (! queue.empty()) { NNEntry* e = queue.top(); queue.pop(); delete e; } */ } } } return 0; } libspatialindex-1.9.3/test/mvrtree/Generator.cc000066400000000000000000000143701355420072700216120ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include using namespace std; #define DELETE 0 #define INSERT 1 #define QUERY 2 class Region { public: double m_xmin, m_ymin, m_xmax, m_ymax; bool m_bIsDead; Region() : m_xmin(numeric_limits::max()), m_ymin(numeric_limits::max()), m_xmax(numeric_limits::max()), m_ymax(numeric_limits::max()) {} Region(double x1, double y1, double x2, double y2) { m_xmin = (x1 < x2) ? x1 : x2; m_ymin = (y1 < y2) ? y1 : y2; m_xmax = (x1 > x2) ? x1 : x2; m_ymax = (y1 > y2) ? y1 : y2; m_bIsDead = false; } }; int main(int argc, char** argv) { if (argc != 2) { cerr << "Usage: " << argv[0] << " number_of_data." << endl; return -1; } size_t numberOfObjects = atoi(argv[1]); map data; Tools::Random rnd; for (size_t i = 0; i < numberOfObjects; i++) { double x = rnd.nextUniformDouble(); double y = rnd.nextUniformDouble(); double dx = rnd.nextUniformDouble(0.0001, 0.1); double dy = rnd.nextUniformDouble(0.0001, 0.1); Region r = Region(x, y, x + dx, y + dy); data.insert(pair(i, r)); cout << "0 " << INSERT << " " << i << " " << r.m_xmin << " " << r.m_ymin << " " << r.m_xmax << " " << r.m_ymax << endl; } size_t nextID = numberOfObjects; size_t A = static_cast(std::floor(static_cast(numberOfObjects) * 0.05)); for (size_t T = 1; T <= 100; T++) { cerr << (101 - T) << endl; if (T == 50) { // delete all entries and reinsert for (map::iterator itMap = data.begin(); itMap != data.end(); itMap++) { if (! (*itMap).second.m_bIsDead) { (*itMap).second.m_bIsDead = true; cout << "50 " << DELETE << " " << (*itMap).first << " " << (*itMap).second.m_xmin << " " << (*itMap).second.m_ymin << " " << (*itMap).second.m_xmax << " " << (*itMap).second.m_ymax << endl; } } for (size_t i = nextID; i < nextID + numberOfObjects; i++) { double x = rnd.nextUniformDouble(); double y = rnd.nextUniformDouble(); double dx = rnd.nextUniformDouble(0.0001, 0.1); double dy = rnd.nextUniformDouble(0.0001, 0.1); Region r = Region(x, y, x + dx, y + dy); data.insert(pair(i, r)); cout << "50 " << INSERT << " " << i << " " << r.m_xmin << " " << r.m_ymin << " " << r.m_xmax << " " << r.m_ymax << endl; } nextID += numberOfObjects; continue; } set examined; for (size_t a = 0; a < A; a++) { // find an id that is not examined yet. size_t id = static_cast(rnd.nextUniformLongLong(0, nextID)); set::iterator itSet = examined.find(id); while (itSet != examined.end() || data[id].m_bIsDead == true) { id = static_cast(rnd.nextUniformLongLong(0, nextID)); itSet = examined.find(id); } examined.insert(id); map::iterator itMap = data.find(id); assert(itMap != data.end() && (*itMap).second.m_bIsDead == false); cout << T << " " << DELETE << " " << id << " " << (*itMap).second.m_xmin << " " << (*itMap).second.m_ymin << " " << (*itMap).second.m_xmax << " " << (*itMap).second.m_ymax << endl; (*itMap).second.m_bIsDead = true; double x = rnd.nextUniformDouble(); double y = rnd.nextUniformDouble(); double dx = rnd.nextUniformDouble(0.0001, 0.1); double dy = rnd.nextUniformDouble(0.0001, 0.1); Region r = Region(x, y, x + dx, y + dy); data.insert(pair(nextID, r)); cout << T << " " << INSERT << " " << nextID << " " << r.m_xmin << " " << r.m_ymin << " " << r.m_xmax << " " << r.m_ymax << endl; examined.insert(nextID); nextID++; } double stx = rnd.nextUniformDouble(); double sty = rnd.nextUniformDouble(); size_t qt = rnd.nextUniformLongLong(0, T); cout << T << " " << QUERY << " 9999999 " << stx << " " << sty << " " << (stx + 0.01) << " " << (sty + 0.01) << " " << qt << " " << qt + 2<< endl; stx = rnd.nextUniformDouble(); sty = rnd.nextUniformDouble(); qt = rnd.nextUniformLongLong(0, T); cout << T << " " << QUERY << " 9999999 " << stx << " " << sty << " " << (stx + 0.01) << " " << (sty + 0.01) << " " << qt << " " << qt + 2<< endl; stx = rnd.nextUniformDouble(); sty = rnd.nextUniformDouble(); qt = rnd.nextUniformLongLong(0, T); cout << T << " " << QUERY << " 9999999 " << stx << " " << sty << " " << (stx + 0.01) << " " << (sty + 0.01) << " " << qt << " " << qt + 2<< endl; } // delete everything at the end (for testing the special case when the tree dies out completely) for (map::iterator it = data.begin(); it != data.end(); it++) { if (! it->second.m_bIsDead) { cout << 102 << " " << DELETE << " " << it->first << " " << it->second.m_xmin << " " << it->second.m_ymin << " " << it->second.m_xmax << " " << it->second.m_ymax << endl; } } return 0; } libspatialindex-1.9.3/test/mvrtree/MVRTreeLoad.cc000066400000000000000000000160221355420072700217440ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ // NOTE: Please read README.txt before browsing this code. #include #include // include library header file. #include using namespace SpatialIndex; using namespace std; #define DELETE 0 #define INSERT 1 #define QUERY 2 // example of a Visitor pattern. // see MVRTreeQuery for a more elaborate example. class MyVisitor : public IVisitor { public: void visitNode(const INode& /*n*/) override {} void visitData(const IData& d) override { cout << d.getIdentifier() << endl; // the ID of this data entry is an answer to the query. I will just print it to stdout. } void visitData(std::vector& /*v*/) override {} }; int main(int argc, char** argv) { try { if (argc != 5) { cerr << "Usage: " << argv[0] << " input_file tree_file capacity query_type [intersection | 10NN]." << endl; return -1; } uint32_t queryType = 0; if (strcmp(argv[4], "intersection") == 0) queryType = 0; else if (strcmp(argv[4], "10NN") == 0) queryType = 1; else { cerr << "Unknown query type." << endl; return -1; } ifstream fin(argv[1]); if (! fin) { cerr << "Cannot open data file " << argv[1] << "." << endl; return -1; } // Create a new storage manager with the provided base name and a 4K page size. string baseName = argv[2]; IStorageManager* diskfile = StorageManager::createNewDiskStorageManager(baseName, 4096); //StorageManager::IBuffer* file = StorageManager::createNewRandomEvictionsBuffer(*diskfile, 10, false); // applies a main memory random buffer on top of the persistent storage manager // (LRU buffer, etc can be created the same way). // Create a new, empty, MVRTree with dimensionality 2, minimum load 70%, using "file" as // the StorageManager and the RSTAR splitting policy. id_type indexIdentifier; ISpatialIndex* tree = MVRTree::createNewMVRTree(*diskfile, 0.7, atoi(argv[3]), atoi(argv[3]), 2, SpatialIndex::MVRTree::RV_RSTAR, indexIdentifier); size_t count = 0; id_type id; uint32_t op; double x1, x2, y1, y2, t; double plow[2], phigh[2]; while (fin) { fin >> t >> op >> id >> x1 >> y1 >> x2 >> y2; if (! fin.good()) continue; // skip newlines, etc. if (op == INSERT) { plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; TimeRegion r = TimeRegion(plow, phigh, t, t, 2); //ostringstream os; //os << r; //string data = os.str(); // associate some data with this region. I will use a string that represents the // region itself, as an example. // NOTE: It is not necessary to associate any data here. A null pointer can be used. In that // case you should store the data externally. The index will provide the data IDs of // the answers to any query, which can be used to access the actual data from the external // storage (e.g. a hash table or a database table, etc.). // Storing the data in the index is convinient and in case a clustered storage manager is // provided (one that stores any node in consecutive pages) performance will improve substantially, // since disk accesses will be mostly sequential. On the other hand, the index will need to // manipulate the data, resulting in larger overhead. If you use a main memory storage manager, // storing the data externally is highly recommended (clustering has no effect). // A clustered storage manager is NOT provided yet. // Also you will have to take care of converting you data to and from binary format, since only // array of bytes can be inserted in the index (see MVRTree::Node::load and MVRTree::Node::store for // an example of how to do that). //tree->insertData(data.size() + 1, reinterpret_cast(data.c_str()), r, id); tree->insertData(0, nullptr, r, id); // example of passing zero size and a null pointer as the associated data. } else if (op == DELETE) { plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; TimeRegion r = TimeRegion(plow, phigh, t, t, 2); if (tree->deleteData(r, id) == false) { cerr << "******ERROR******" << endl; cerr << "Cannot delete id: " << id << " , count: " << count << endl; return -1; } } else if (op == QUERY) { size_t qt1, qt2; fin >> qt1 >> qt2; if (! fin.good()) continue; plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; MyVisitor vis; if (queryType == 0) { TimeRegion r = TimeRegion(plow, phigh, (double)qt1, (double)qt2, 2); tree->intersectsWithQuery(r, vis); // this will find all data that intersect with the query range. } else { //Point p = Point(plow, 2); //tree->nearestNeighborQuery(10, p, vis); // this will find the 10 nearest neighbors. } } if ((count % 1000) == 0) cerr << count << endl; count++; } cerr << "Operations: " << count << endl; cerr << *tree; //cerr << "Buffer hits: " << file->getHits() << endl; cerr << "Index ID: " << indexIdentifier << endl; bool ret = tree->isIndexValid(); if (ret == false) cerr << "ERROR: Structure is invalid!" << endl; else cerr << "The stucture seems O.K." << endl; delete tree; //delete file; delete diskfile; // delete the buffer first, then the storage manager // (otherwise the the buffer will fail trying to write the dirty entries). } catch (Tools::Exception& e) { cerr << "******ERROR******" << endl; std::string s = e.what(); cerr << s << endl; return -1; } catch (...) { cerr << "******ERROR******" << endl; cerr << "other exception" << endl; return -1; } return 0; } libspatialindex-1.9.3/test/mvrtree/MVRTreeQuery.cc000066400000000000000000000162461355420072700222020ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2003, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ // NOTE: Please read README.txt before browsing this code. #include // include library header file. #include using namespace SpatialIndex; using namespace std; #define DELETE 0 #define INSERT 1 #define QUERY 2 // example of a Visitor pattern. // findes the index and leaf IO for answering the query and prints // the resulting data IDs to stdout. class MyVisitor : public IVisitor { public: size_t m_indexIO{0}; size_t m_leafIO{0}; public: MyVisitor() = default; void visitNode(const INode& n) override { if (n.isLeaf()) m_leafIO++; else m_indexIO++; } void visitData(const IData& d) override { //IShape* pS; //d.getShape(&pS); // do something. //delete pS; // data should be an array of characters representing a Region as a string. //uint8_t* pData = 0; //size_t cLen = 0; //d.getData(cLen, &pData); // do something. //string s = reinterpret_cast(pData); //cout << s << endl; //delete[] pData; cout << d.getIdentifier() << endl; // the ID of this data entry is an answer to the query. I will just print it to stdout. } void visitData(std::vector& /*v*/) override {} }; // example of a Strategy pattern. // traverses the tree by level. class MyQueryStrategy : public SpatialIndex::IQueryStrategy { private: queue ids; public: void getNextEntry(const IEntry& entry, id_type& nextEntry, bool& hasNext) override { IShape* ps; entry.getShape(&ps); Region* pr = dynamic_cast(ps); cout << pr->m_pLow[0] << " " << pr->m_pLow[1] << endl; cout << pr->m_pHigh[0] << " " << pr->m_pLow[1] << endl; cout << pr->m_pHigh[0] << " " << pr->m_pHigh[1] << endl; cout << pr->m_pLow[0] << " " << pr->m_pHigh[1] << endl; cout << pr->m_pLow[0] << " " << pr->m_pLow[1] << endl << endl << endl; // print node MBRs gnuplot style! delete ps; const INode* n = dynamic_cast(&entry); // traverse only index nodes at levels 2 and higher. if (n != nullptr && n->getLevel() > 1) { for (size_t cChild = 0; cChild < n->getChildrenCount(); cChild++) { ids.push(n->getChildIdentifier((uint32_t)cChild)); } } if (! ids.empty()) { nextEntry = ids.front(); ids.pop(); hasNext = true; } else { hasNext = false; } } }; // example of a Strategy pattern. // find the total indexed space managed by the index (the MBR of the root). class MyQueryStrategy2 : public IQueryStrategy { public: Region m_indexedSpace; public: void getNextEntry(const IEntry& entry, id_type& /*nextEntry*/, bool& hasNext) override { // the first time we are called, entry points to the root. // stop after the root. hasNext = false; IShape* ps; entry.getShape(&ps); ps->getMBR(m_indexedSpace); delete ps; } }; int main(int argc, char** argv) { try { if (argc != 4) { cerr << "Usage: " << argv[0] << " query_file tree_file query_type [intersection | 10NN]." << endl; return -1; } uint32_t queryType = 0; if (strcmp(argv[3], "intersection") == 0) queryType = 0; else if (strcmp(argv[3], "10NN") == 0) queryType = 1; else { cerr << "Unknown query type." << endl; return -1; } ifstream fin(argv[1]); if (! fin) { cerr << "Cannot open query file " << argv[1] << "." << endl; return -1; } string baseName = argv[2]; IStorageManager* diskfile = StorageManager::loadDiskStorageManager(baseName); // this will try to locate and open an already existing storage manager. StorageManager::IBuffer* file = StorageManager::createNewRandomEvictionsBuffer(*diskfile, 10, false); // applies a main memory random buffer on top of the persistent storage manager // (LRU buffer, etc can be created the same way). // If we need to open an existing tree stored in the storage manager, we only // have to specify the index identifier as follows ISpatialIndex* tree = MVRTree::loadMVRTree(*file, 1); size_t count = 0; size_t indexIO = 0; size_t leafIO = 0; id_type id; uint32_t op; double x1, x2, y1, y2, t; double plow[2], phigh[2]; while (fin) { fin >> t >> op >> id >> x1 >> y1 >> x2 >> y2; if (! fin.good()) continue; // skip newlines, etc. if (op == QUERY) { size_t qt1, qt2; fin >> qt1 >> qt2; if (! fin.good()) continue; plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; MyVisitor vis; if (queryType == 0) { TimeRegion r = TimeRegion(plow, phigh, (double)qt1, (double)qt2, 2); tree->intersectsWithQuery(r, vis); // this will find all data that intersect with the query range. } else { //Point p = Point(plow, 2); //tree->nearestNeighborQuery(10, p, vis); // this will find the 10 nearest neighbors. } indexIO += vis.m_indexIO; leafIO += vis.m_leafIO; // example of the Visitor pattern usage, for calculating how many nodes // were visited. } else { cerr << "This is not a query operation." << endl; } if ((count % 1000) == 0) cerr << count << endl; count++; } MyQueryStrategy2 qs; tree->queryStrategy(qs); cerr << "Indexed space: " << qs.m_indexedSpace << endl; cerr << "Operations: " << count << endl; cerr << *tree; cerr << "Index I/O: " << indexIO << endl; cerr << "Leaf I/O: " << leafIO << endl; cerr << "Buffer hits: " << file->getHits() << endl; delete tree; delete file; delete diskfile; // delete the buffer first, then the storage manager // (otherwise the the buffer will fail writting the dirty entries). } catch (Tools::Exception& e) { cerr << "******ERROR******" << endl; std::string s = e.what(); cerr << s << endl; return -1; } catch (...) { cerr << "******ERROR******" << endl; cerr << "other exception" << endl; return -1; } return 0; } libspatialindex-1.9.3/test/mvrtree/test1/000077500000000000000000000000001355420072700204105ustar00rootroot00000000000000libspatialindex-1.9.3/test/mvrtree/test1/run000077500000000000000000000012651355420072700211460ustar00rootroot00000000000000#! /bin/bash echo Generating dataset test-mvrtree-Generator 1000 > d awk '{if ($2 != 2) print $0}' < d > data awk '{if ($2 == 2) print $0}' < d > queries rm -rf d echo Creating new MVR-Tree test-mvrtree-MVRTreeLoad data tree 20 intersection echo Querying MVR-Tree test-mvrtree-MVRTreeQuery queries tree intersection > res cat data queries > .t echo Running exhaustive search test-mvrtree-Exhaustive .t intersection > res2 echo Comparing results sort -n res > a sort -n res2 > b if diff a b then echo "Same results with exhaustive search. Everything seems fine." echo Results: `wc -l a` rm -rf a b res res2 .t tree.* else echo "PROBLEM! We got different results from exhaustive search!" fi libspatialindex-1.9.3/test/mvrtree/test2/000077500000000000000000000000001355420072700204115ustar00rootroot00000000000000libspatialindex-1.9.3/test/mvrtree/test2/run000077500000000000000000000010021355420072700211340ustar00rootroot00000000000000#! /bin/bash echo Generating dataset test-mvrtree-Generator 1000 > mix echo Creating new MVR-Tree and Querying test-mvrtree-MVRTreeLoad mix tree 20 intersection > res echo Running exhaustive search test-mvrtree-Exhaustive mix intersection > res2 echo Comparing results sort -n res > a sort -n res2 > b if diff a b then echo "Same results with exhaustive search. Everything seems fine." echo Results: `wc -l a` rm -rf a b res res2 tree.* else echo "PROBLEM! We got different results from exhaustive search!" fi libspatialindex-1.9.3/test/rtree/000077500000000000000000000000001355420072700170055ustar00rootroot00000000000000libspatialindex-1.9.3/test/rtree/CRTree.cc000066400000000000000000000056641355420072700204530ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Norman Barker, norman.barker@gmail.com ****************************************************************************** * Copyright (c) 2015, Norman Barker * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include void load(IndexH idx); void query(IndexH idx); void bounds(IndexH idx); int main() { char* pszVersion = SIDX_Version(); fprintf(stdout, "libspatialindex version: %s\n", pszVersion); fflush(stdout); free(pszVersion); IndexPropertyH props = IndexProperty_Create(); // create an in-memory r*-tree index IndexProperty_SetIndexType(props, RT_RTree); IndexProperty_SetIndexStorage(props, RT_Memory); IndexH idx = Index_Create(props); IndexProperty_Destroy(props); if (Index_IsValid(idx)) { load(idx); bounds(idx); query(idx); Index_Destroy(idx); } else { printf("Failed to create valid index\n"); } return 0; } void load(IndexH idx) { double min[] = {0.5, 0.5}; double max[] = {0.5, 0.5}; Index_InsertData(idx, 1, min, max, 2, 0, 0); } void query(IndexH idx) { double min[] = {0.0, 0.0}; double max[] = {1.0, 1.0}; uint64_t nResults; Index_Intersects_count(idx, min, max, 2, &nResults); if (nResults == 1) printf("Successful Query\n"); else printf("Failed to execute query\n"); } void bounds(IndexH idx) { uint32_t dims; double* pMins; double* pMaxs; Index_GetBounds(idx, &pMins, &pMaxs, &dims); free(pMins); free(pMaxs); if (dims == 2) printf("Successful bounds query\n"); else printf("Failed to execute bounds query\n"); } libspatialindex-1.9.3/test/rtree/Exhaustive.cc000066400000000000000000000122231355420072700214410ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #define INSERT 1 #define DELETE 0 #define QUERY 2 class Region { public: double m_xmin, m_ymin, m_xmax, m_ymax; Region(double x1, double y1, double x2, double y2) { m_xmin = (x1 < x2) ? x1 : x2; m_ymin = (y1 < y2) ? y1 : y2; m_xmax = (x1 > x2) ? x1 : x2; m_ymax = (y1 > y2) ? y1 : y2; } bool intersects(Region& r) { if ( m_xmin > r.m_xmax || m_xmax < r.m_xmin || m_ymin > r.m_ymax || m_ymax < r.m_ymin) return false; return true; } double getMinDist(const Region& r) { double ret = 0.0; if (r.m_xmax < m_xmin) ret += std::pow(m_xmin - r.m_xmax, 2.0); else if (r.m_xmin > m_xmax) ret += std::pow(r.m_xmin - m_xmax, 2.0); if (r.m_ymax < m_ymin) ret += std::pow(m_ymin - r.m_ymax, 2.0); else if (r.m_ymin > m_ymax) ret += std::pow(r.m_ymin - m_ymax, 2.0); return ret; } }; class NNEntry { public: size_t m_id; double m_dist; NNEntry(size_t id, double dist) : m_id(id), m_dist(dist) {} }; int main(int argc, char** argv) { if (argc != 3) { std::cerr << "Usage: " << argv[0] << " data_file query_type [intersection | 10NN | selfjoin]." << std::endl; return -1; } uint32_t queryType = 0; if (strcmp(argv[2], "intersection") == 0) queryType = 0; else if (strcmp(argv[2], "10NN") == 0) queryType = 1; else if (strcmp(argv[2], "selfjoin") == 0) queryType = 2; else { std::cerr << "Unknown query type." << std::endl; return -1; } std::ifstream fin(argv[1]); if (! fin) { std::cerr << "Cannot open data file" << argv[1] << "." << std::endl; return -1; } std::multimap data; size_t id; uint32_t op; double x1, x2, y1, y2; while (fin) { fin >> op >> id >> x1 >> y1 >> x2 >> y2; if (! fin.good()) continue; if (op == INSERT) { //insert data.insert(std::pair(id, Region(x1, y1, x2, y2))); } else if (op == DELETE) { data.erase(id); } else if (op == QUERY) { //query if (queryType == 0) { Region query = Region(x1, y1, x2, y2); for (std::multimap::iterator it = data.begin(); it != data.end(); it++) { if (query.intersects((*it).second)) std::cout << (*it).first << std::endl; } } else if (queryType == 1) { Region query = Region(x1, y1, x1, y1); auto greater = [](const NNEntry* lhs, const NNEntry* rhs) { return lhs->m_dist > rhs->m_dist; }; std::priority_queue, decltype(greater) > queue(greater); for (std::multimap::iterator it = data.begin(); it != data.end(); it++) { queue.push(new NNEntry((*it).first, (*it).second.getMinDist(query))); } size_t count = 0; double knearest = 0.0; while (! queue.empty()) { NNEntry* e = queue.top(); queue.pop(); if (count >= 10 && e->m_dist > knearest) break; //std::cout << e->m_id << " " << e->m_dist << std::endl; std::cout << e->m_id << std::endl; count++; knearest = e->m_dist; delete e; } while (! queue.empty()) { NNEntry* e = queue.top(); queue.pop(); delete e; } } else { Region query = Region(x1, y1, x2, y2); for (std::multimap::iterator it1 = data.begin(); it1 != data.end(); it1++) { if (query.intersects((*it1).second)) { for (std::multimap::iterator it2 = data.begin(); it2 != data.end(); it2++) { if ( (*it1).first != (*it2).first && query.intersects((*it2).second) && (*it1).second.intersects((*it2).second)) { std::cout << (*it1).first << " " << (*it2).first << std::endl; } } } } } } } return 0; } libspatialindex-1.9.3/test/rtree/Generator.cc000066400000000000000000000107221355420072700212440ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #define INSERT 1 #define DELETE 0 #define QUERY 2 class Region { public: double m_xmin, m_ymin, m_xmax, m_ymax; Region(double x1, double y1, double x2, double y2) { m_xmin = (x1 < x2) ? x1 : x2; m_ymin = (y1 < y2) ? y1 : y2; m_xmax = (x1 > x2) ? x1 : x2; m_ymax = (y1 > y2) ? y1 : y2; } }; int main(int argc, char** argv) { if (argc != 3) { std::cerr << "Usage: " << argv[0] << " number_of_data time_instants." << std::endl; return -1; } size_t simulationLength = atol(argv[2]); size_t numberOfObjects = atol(argv[1]); std::map data; Tools::Random rnd; for (size_t i = 0; i < numberOfObjects; i++) { double x = rnd.nextUniformDouble(); double y = rnd.nextUniformDouble(); double dx = rnd.nextUniformDouble(0.0001, 0.1); double dy = rnd.nextUniformDouble(0.0001, 0.1); Region r = Region(x, y, x + dx, y + dy); data.insert(std::pair(i, r)); std::cout << INSERT << " " << i << " " << r.m_xmin << " " << r.m_ymin << " " << r.m_xmax << " " << r.m_ymax << std::endl; } if (simulationLength == 0) { for (size_t i = 0; i < 1000; i++) { double stx = rnd.nextUniformDouble(); double sty = rnd.nextUniformDouble(); std::cout << QUERY << " 9999999 " << stx << " " << sty << " " << (stx + 0.01) << " " << (sty + 0.01) << std::endl; } } size_t A = static_cast(std::floor(static_cast(numberOfObjects) * 0.05)); for (size_t T = 1; T <= simulationLength; T++) { std::cerr << (simulationLength + 1 - T) << std::endl; std::set examined; for (size_t a = 0; a < A; a++) { // find an id that is not yet examined. size_t id = static_cast(rnd.nextUniformLong(0, (int32_t)numberOfObjects)); std::set::iterator itSet = examined.find(id); while (itSet != examined.end()) { id = static_cast(rnd.nextUniformLong(0, (int32_t)numberOfObjects)); itSet = examined.find(id); } examined.insert(id); std::map::iterator itMap = data.find(id); assert(itMap != data.end()); std::cout << DELETE << " " << id << " " << (*itMap).second.m_xmin << " " << (*itMap).second.m_ymin << " " << (*itMap).second.m_xmax << " " << (*itMap).second.m_ymax << std::endl; double x = rnd.nextUniformDouble(); double dx = rnd.nextUniformDouble(0.0001, 0.1); (*itMap).second.m_xmin = x; (*itMap).second.m_xmax = x + dx; double y = rnd.nextUniformDouble(); double dy = rnd.nextUniformDouble(0.0001, 0.1); (*itMap).second.m_ymin = y; (*itMap).second.m_ymax = y + dy; std::cout << INSERT << " " << id << " " << (*itMap).second.m_xmin << " " << (*itMap).second.m_ymin << " " << (*itMap).second.m_xmax << " " << (*itMap).second.m_ymax << std::endl; } double stx = rnd.nextUniformDouble(); double sty = rnd.nextUniformDouble(); std::cout << QUERY << " 9999999 " << stx << " " << sty << " " << (stx + 0.01) << " " << (sty + 0.01) << std::endl; } return 0; } libspatialindex-1.9.3/test/rtree/RTreeBulkLoad.cc000066400000000000000000000115671355420072700217650ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ // NOTE: Please read README.txt before browsing this code. // include library header file. #include using namespace SpatialIndex; #define INSERT 1 #define DELETE 0 #define QUERY 2 class MyDataStream : public IDataStream { public: MyDataStream(std::string inputFile) : m_pNext(nullptr) { m_fin.open(inputFile.c_str()); if (! m_fin) throw Tools::IllegalArgumentException("Input file not found."); readNextEntry(); } ~MyDataStream() override { if (m_pNext != nullptr) delete m_pNext; } IData* getNext() override { if (m_pNext == nullptr) return nullptr; RTree::Data* ret = m_pNext; m_pNext = nullptr; readNextEntry(); return ret; } bool hasNext() override { return (m_pNext != nullptr); } uint32_t size() override { throw Tools::NotSupportedException("Operation not supported."); } void rewind() override { if (m_pNext != nullptr) { delete m_pNext; m_pNext = nullptr; } m_fin.seekg(0, std::ios::beg); readNextEntry(); } void readNextEntry() { id_type id; uint32_t op; double low[2], high[2]; m_fin >> op >> id >> low[0] >> low[1] >> high[0] >> high[1]; if (m_fin.good()) { if (op != INSERT) throw Tools::IllegalArgumentException( "The data input should contain insertions only." ); Region r(low, high, 2); m_pNext = new RTree::Data(sizeof(double), reinterpret_cast(low), r, id); // Associate a bogus data array with every entry for testing purposes. // Once the data array is given to RTRee:Data a local copy will be created. // Hence, the input data array can be deleted after this operation if not // needed anymore. } } std::ifstream m_fin; RTree::Data* m_pNext; }; int main(int argc, char** argv) { try { if (argc != 5) { std::cerr << "Usage: " << argv[0] << " input_file tree_file capacity utilization." << std::endl; return -1; } std::string baseName = argv[2]; double utilization = atof(argv[4]); IStorageManager* diskfile = StorageManager::createNewDiskStorageManager(baseName, 4096); // Create a new storage manager with the provided base name and a 4K page size. StorageManager::IBuffer* file = StorageManager::createNewRandomEvictionsBuffer(*diskfile, 10, false); // applies a main memory random buffer on top of the persistent storage manager // (LRU buffer, etc can be created the same way). MyDataStream stream(argv[1]); // Create and bulk load a new RTree with dimensionality 2, using "file" as // the StorageManager and the RSTAR splitting policy. id_type indexIdentifier; ISpatialIndex* tree = RTree::createAndBulkLoadNewRTree( RTree::BLM_STR, stream, *file, utilization, atoi(argv[3]), atoi(argv[3]), 2, SpatialIndex::RTree::RV_RSTAR, indexIdentifier); std::cerr << *tree; std::cerr << "Buffer hits: " << file->getHits() << std::endl; std::cerr << "Index ID: " << indexIdentifier << std::endl; bool ret = tree->isIndexValid(); if (ret == false) std::cerr << "ERROR: Structure is invalid!" << std::endl; else std::cerr << "The stucture seems O.K." << std::endl; delete tree; delete file; delete diskfile; // delete the buffer first, then the storage manager // (otherwise the the buffer will fail trying to write the dirty entries). } catch (Tools::Exception& e) { std::cerr << "******ERROR******" << std::endl; std::string s = e.what(); std::cerr << s << std::endl; return -1; } return 0; } libspatialindex-1.9.3/test/rtree/RTreeBulkLoad.vcproj000077500000000000000000000162211355420072700226760ustar00rootroot00000000000000 libspatialindex-1.9.3/test/rtree/RTreeExhaustive.vcproj000077500000000000000000000161711355420072700233320ustar00rootroot00000000000000 libspatialindex-1.9.3/test/rtree/RTreeGenerator.vcproj000077500000000000000000000164661355420072700231420ustar00rootroot00000000000000 libspatialindex-1.9.3/test/rtree/RTreeLoad.cc000066400000000000000000000164651355420072700211510ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ // NOTE: Please read README.txt before browsing this code. #include // include library header file. #include using namespace SpatialIndex; #define INSERT 1 #define DELETE 0 #define QUERY 2 // example of a Visitor pattern. // see RTreeQuery for a more elaborate example. class MyVisitor : public IVisitor { public: void visitNode(const INode& /* n */) override {} void visitData(const IData& d) override { std::cout << d.getIdentifier() << std::endl; // the ID of this data entry is an answer to the query. I will just print it to stdout. } void visitData(std::vector& /* v */) override {} }; int main(int argc, char** argv) { try { if (argc != 5) { std::cerr << "Usage: " << argv[0] << " input_file tree_file capacity query_type [intersection | 10NN | selfjoin | contains]." << std::endl; return -1; } uint32_t queryType = 0; if (strcmp(argv[4], "intersection") == 0) queryType = 0; else if (strcmp(argv[4], "10NN") == 0) queryType = 1; else if (strcmp(argv[4], "selfjoin") == 0) queryType = 2; else if (strcmp(argv[4], "contains") == 0) queryType = 3; else { std::cerr << "Unknown query type." << std::endl; return -1; } std::ifstream fin(argv[1]); if (! fin) { std::cerr << "Cannot open data file " << argv[1] << "." << std::endl; return -1; } // Create a new storage manager with the provided base name and a 4K page size. std::string baseName = argv[2]; IStorageManager* diskfile = StorageManager::createNewDiskStorageManager(baseName, 4096); StorageManager::IBuffer* file = StorageManager::createNewRandomEvictionsBuffer(*diskfile, 10, false); // applies a main memory random buffer on top of the persistent storage manager // (LRU buffer, etc can be created the same way). // Create a new, empty, RTree with dimensionality 2, minimum load 70%, using "file" as // the StorageManager and the RSTAR splitting policy. id_type indexIdentifier; ISpatialIndex* tree = RTree::createNewRTree(*file, 0.7, atoi(argv[3]), atoi(argv[3]), 2, SpatialIndex::RTree::RV_RSTAR, indexIdentifier); size_t count = 0; id_type id; uint32_t op; double x1, x2, y1, y2; double plow[2], phigh[2]; while (fin) { fin >> op >> id >> x1 >> y1 >> x2 >> y2; if (! fin.good()) continue; // skip newlines, etc. if (op == INSERT) { plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; Region r = Region(plow, phigh, 2); std::ostringstream os; os << r; std::string data = os.str(); // associate some data with this region. I will use a string that represents the // region itself, as an example. // NOTE: It is not necessary to associate any data here. A null pointer can be used. In that // case you should store the data externally. The index will provide the data IDs of // the answers to any query, which can be used to access the actual data from the external // storage (e.g. a hash table or a database table, etc.). // Storing the data in the index is convinient and in case a clustered storage manager is // provided (one that stores any node in consecutive pages) performance will improve substantially, // since disk accesses will be mostly sequential. On the other hand, the index will need to // manipulate the data, resulting in larger overhead. If you use a main memory storage manager, // storing the data externally is highly recommended (clustering has no effect). // A clustered storage manager is NOT provided yet. // Also you will have to take care of converting you data to and from binary format, since only // array of bytes can be inserted in the index (see RTree::Node::load and RTree::Node::store for // an example of how to do that). tree->insertData((uint32_t)(data.size() + 1), reinterpret_cast(data.c_str()), r, id); //tree->insertData(0, 0, r, id); // example of passing zero size and a null pointer as the associated data. } else if (op == DELETE) { plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; Region r = Region(plow, phigh, 2); if (tree->deleteData(r, id) == false) { std::cerr << "******ERROR******" << std::endl; std::cerr << "Cannot delete id: " << id << " , count: " << count << std::endl; return -1; } } else if (op == QUERY) { plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; MyVisitor vis; if (queryType == 0) { Region r = Region(plow, phigh, 2); tree->intersectsWithQuery(r, vis); // this will find all data that intersect with the query range. } else if (queryType == 1) { Point p = Point(plow, 2); tree->nearestNeighborQuery(10, p, vis); // this will find the 10 nearest neighbors. } else if(queryType == 2) { Region r = Region(plow, phigh, 2); tree->selfJoinQuery(r, vis); } else { Region r = Region(plow, phigh, 2); tree->containsWhatQuery(r, vis); // this will find all data that is contained by the query range. } } if ((count % 1000) == 0) std::cerr << count << std::endl; count++; } std::cerr << "Operations: " << count << std::endl; std::cerr << *tree; std::cerr << "Buffer hits: " << file->getHits() << std::endl; std::cerr << "Index ID: " << indexIdentifier << std::endl; bool ret = tree->isIndexValid(); if (ret == false) std::cerr << "ERROR: Structure is invalid!" << std::endl; else std::cerr << "The stucture seems O.K." << std::endl; delete tree; delete file; delete diskfile; // delete the buffer first, then the storage manager // (otherwise the the buffer will fail trying to write the dirty entries). } catch (Tools::Exception& e) { std::cerr << "******ERROR******" << std::endl; std::string s = e.what(); std::cerr << s << std::endl; return -1; } return 0; } libspatialindex-1.9.3/test/rtree/RTreeLoad.vcproj000077500000000000000000000162041355420072700220610ustar00rootroot00000000000000 libspatialindex-1.9.3/test/rtree/RTreeParallel.cc000066400000000000000000000151161355420072700220160ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ // NOTE: Please read README.txt before browsing this code. #include #include #include #include // include library header file. #include using namespace SpatialIndex; using namespace std; #define INSERT 1 #define DELETE 0 #define QUERY 2 void StartTheClock(uint64_t& s) { #ifdef _MSC_VER FILETIME ft; LARGE_INTEGER li; GetSystemTimeAsFileTime(&ft); li.LowPart = ft.dwLowDateTime; li.HighPart = ft.dwHighDateTime; s = (uint64_t) (li.QuadPart / 10000); #else struct timeval tv; gettimeofday(&tv, 0); s = (1000 * tv.tv_sec) + (tv.tv_usec / 1000); #endif } uint64_t StopTheClock(uint64_t s) { #ifdef _MSC_VER FILETIME ft; LARGE_INTEGER li; uint64_t t; GetSystemTimeAsFileTime(&ft); li.LowPart = ft.dwLowDateTime; li.HighPart = ft.dwHighDateTime; t = (uint64_t) (li.QuadPart / 10000); return t - s; #else struct timeval tv; gettimeofday(&tv, 0); return (1000 * tv.tv_sec) + (tv.tv_usec / 1000) - s; #endif } // example of a Visitor pattern. // findes the index and leaf IO for answering the query and prints // the resulting data IDs to stdout. class MyVisitor : public IVisitor { public: void visitNode(const INode& n) { } void visitData(const IData& d) { IShape* pS; d.getShape(&pS); // do something. delete pS; // data should be an array of characters representing a Region as a string. uint8_t* pData = 0; uint32_t cLen = 0; d.getData(cLen, &pData); // do something. //string s = reinterpret_cast(pData); //cout << s << "\n"; delete[] pData; cout << d.getIdentifier() << "\n"; // the ID of this data entry is an answer to the query. I will just print it to stdout. } void visitData(std::vector& v) { cout << v[0]->getIdentifier() << " " << v[1]->getIdentifier() << "\n"; } }; int main(int argc, char** argv) { try { if (argc != 4) { cerr << "Usage: " << argv[0] << " query_file tree_file query_type [intersection | 10NN | selfjoin]." << "\n"; return -1; } uint32_t queryType = 0; if (strcmp(argv[3], "intersection") == 0) queryType = 0; else if (strcmp(argv[3], "10NN") == 0) queryType = 1; else if (strcmp(argv[3], "selfjoin") == 0) queryType = 2; else { cerr << "Unknown query type." << "\n"; return -1; } ifstream fin(argv[1]); if (! fin) { cerr << "Cannot open query file " << argv[1] << "." << "\n"; return -1; } string baseName = argv[2]; IStorageManager* diskfile = StorageManager::loadDiskStorageManager(baseName); // this will try to locate and open an already existing storage manager. StorageManager::IBuffer* file = StorageManager::createNewRandomEvictionsBuffer(*diskfile, 10, false); // applies a main memory random buffer on top of the persistent storage manager // (LRU buffer, etc can be created the same way). // If we need to open an existing tree stored in the storage manager, we only // have to specify the index identifier as follows ISpatialIndex* tree = RTree::loadRTree(*file, 1); size_t count = 0; id_type id; uint32_t op; double x1, x2, y1, y2; double plow[2], phigh[2]; boost::asio::io_service IOService; boost::thread_group threads; uint64_t u64Time; StartTheClock(u64Time); { boost::asio::io_service::work work(IOService); for (size_t i = 0; i < 1; ++i) threads.create_thread(boost::bind(&boost::asio::io_service::run, &IOService)); while (fin) { fin >> op >> id >> x1 >> y1 >> x2 >> y2; if (! fin.good()) continue; // skip newlines, etc. if (op == QUERY) { plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; MyVisitor vis; if (queryType == 0) { Region r = Region(plow, phigh, 2); IOService.post(boost::bind(&ISpatialIndex::intersectsWithQuery, tree, r, vis)); // this will find all data that intersect with the query range. } else if (queryType == 1) { Point p = Point(plow, 2); IOService.post(boost::bind(&ISpatialIndex::nearestNeighborQuery, tree, 10, p, vis)); // this will find the 10 nearest neighbors. } else { Region r = Region(plow, phigh, 2); IOService.post(boost::bind(&ISpatialIndex::selfJoinQuery, tree, r, vis)); } } else { cerr << "This is not a query operation." << "\n"; } } } IOService.run(); IOService.stop(); threads.join_all(); u64Time = StopTheClock(u64Time); cerr << "Operations: " << count << "\n"; cerr << *tree; cerr << "Buffer hits: " << file->getHits() << "\n"; cerr << "Total time: " << u64Time << "ms \n"; delete tree; delete file; delete diskfile; // delete the buffer first, then the storage manager // (otherwise the the buffer will fail to write the dirty entries). } catch (Tools::Exception& e) { cerr << "******ERROR******" << "\n"; std::string s = e.what(); cerr << s << "\n"; return -1; } catch (...) { cerr << "******ERROR******" << "\n"; cerr << "other exception" << "\n"; return -1; } return 0; } libspatialindex-1.9.3/test/rtree/RTreeQuery.cc000066400000000000000000000164261355420072700213740ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ // NOTE: Please read README.txt before browsing this code. #include // include library header file. #include using namespace SpatialIndex; using namespace std; #define INSERT 1 #define DELETE 0 #define QUERY 2 // example of a Visitor pattern. // findes the index and leaf IO for answering the query and prints // the resulting data IDs to stdout. class MyVisitor : public IVisitor { public: size_t m_indexIO{0}; size_t m_leafIO{0}; public: MyVisitor() = default; void visitNode(const INode& n) override { if (n.isLeaf()) m_leafIO++; else m_indexIO++; } void visitData(const IData& d) override { IShape* pS; d.getShape(&pS); // do something. delete pS; // data should be an array of characters representing a Region as a string. uint8_t* pData = nullptr; uint32_t cLen = 0; d.getData(cLen, &pData); // do something. //string s = reinterpret_cast(pData); //cout << s << endl; delete[] pData; cout << d.getIdentifier() << endl; // the ID of this data entry is an answer to the query. I will just print it to stdout. } void visitData(std::vector& v) override { cout << v[0]->getIdentifier() << " " << v[1]->getIdentifier() << endl; } }; // example of a Strategy pattern. // traverses the tree by level. class MyQueryStrategy : public SpatialIndex::IQueryStrategy { private: queue ids; public: void getNextEntry(const IEntry& entry, id_type& nextEntry, bool& hasNext) override { IShape* ps; entry.getShape(&ps); Region* pr = dynamic_cast(ps); cout << pr->m_pLow[0] << " " << pr->m_pLow[1] << endl; cout << pr->m_pHigh[0] << " " << pr->m_pLow[1] << endl; cout << pr->m_pHigh[0] << " " << pr->m_pHigh[1] << endl; cout << pr->m_pLow[0] << " " << pr->m_pHigh[1] << endl; cout << pr->m_pLow[0] << " " << pr->m_pLow[1] << endl << endl << endl; // print node MBRs gnuplot style! delete ps; const INode* n = dynamic_cast(&entry); // traverse only index nodes at levels 2 and higher. if (n != nullptr && n->getLevel() > 1) { for (uint32_t cChild = 0; cChild < n->getChildrenCount(); cChild++) { ids.push(n->getChildIdentifier(cChild)); } } if (! ids.empty()) { nextEntry = ids.front(); ids.pop(); hasNext = true; } else { hasNext = false; } } }; // example of a Strategy pattern. // find the total indexed space managed by the index (the MBR of the root). class MyQueryStrategy2 : public IQueryStrategy { public: Region m_indexedSpace; public: void getNextEntry(const IEntry& entry, id_type& /* nextEntry */, bool& hasNext) override { // the first time we are called, entry points to the root. // stop after the root. hasNext = false; IShape* ps; entry.getShape(&ps); ps->getMBR(m_indexedSpace); delete ps; } }; int main(int argc, char** argv) { try { if (argc != 4) { cerr << "Usage: " << argv[0] << " query_file tree_file query_type [intersection | 10NN | selfjoin]." << endl; return -1; } uint32_t queryType = 0; if (strcmp(argv[3], "intersection") == 0) queryType = 0; else if (strcmp(argv[3], "10NN") == 0) queryType = 1; else if (strcmp(argv[3], "selfjoin") == 0) queryType = 2; else { cerr << "Unknown query type." << endl; return -1; } ifstream fin(argv[1]); if (! fin) { cerr << "Cannot open query file " << argv[1] << "." << endl; return -1; } string baseName = argv[2]; IStorageManager* diskfile = StorageManager::loadDiskStorageManager(baseName); // this will try to locate and open an already existing storage manager. StorageManager::IBuffer* file = StorageManager::createNewRandomEvictionsBuffer(*diskfile, 10, false); // applies a main memory random buffer on top of the persistent storage manager // (LRU buffer, etc can be created the same way). // If we need to open an existing tree stored in the storage manager, we only // have to specify the index identifier as follows ISpatialIndex* tree = RTree::loadRTree(*file, 1); size_t count = 0; size_t indexIO = 0; size_t leafIO = 0; id_type id; uint32_t op; double x1, x2, y1, y2; double plow[2], phigh[2]; while (fin) { fin >> op >> id >> x1 >> y1 >> x2 >> y2; if (! fin.good()) continue; // skip newlines, etc. if (op == QUERY) { plow[0] = x1; plow[1] = y1; phigh[0] = x2; phigh[1] = y2; MyVisitor vis; if (queryType == 0) { Region r = Region(plow, phigh, 2); tree->intersectsWithQuery(r, vis); // this will find all data that intersect with the query range. } else if (queryType == 1) { Point p = Point(plow, 2); tree->nearestNeighborQuery(10, p, vis); // this will find the 10 nearest neighbors. } else { Region r = Region(plow, phigh, 2); tree->selfJoinQuery(r, vis); } indexIO += vis.m_indexIO; leafIO += vis.m_leafIO; // example of the Visitor pattern usage, for calculating how many nodes // were visited. } else { cerr << "This is not a query operation." << endl; } if ((count % 1000) == 0) cerr << count << endl; count++; } MyQueryStrategy2 qs; tree->queryStrategy(qs); cerr << "Indexed space: " << qs.m_indexedSpace << endl; cerr << "Operations: " << count << endl; cerr << *tree; cerr << "Index I/O: " << indexIO << endl; cerr << "Leaf I/O: " << leafIO << endl; cerr << "Buffer hits: " << file->getHits() << endl; delete tree; delete file; delete diskfile; // delete the buffer first, then the storage manager // (otherwise the the buffer will fail writting the dirty entries). } catch (Tools::Exception& e) { cerr << "******ERROR******" << endl; std::string s = e.what(); cerr << s << endl; return -1; } catch (...) { cerr << "******ERROR******" << endl; cerr << "other exception" << endl; return -1; } return 0; } libspatialindex-1.9.3/test/rtree/RTreeQuery.vcproj000077500000000000000000000162071355420072700223120ustar00rootroot00000000000000 libspatialindex-1.9.3/test/rtree/test1/000077500000000000000000000000001355420072700200455ustar00rootroot00000000000000libspatialindex-1.9.3/test/rtree/test1/run000077500000000000000000000012231355420072700205750ustar00rootroot00000000000000#! /bin/bash echo Generating dataset test-rtree-Generator 10000 100 > d awk '{if ($1 != 2) print $0}' < d > data awk '{if ($1 == 2) print $0}' < d > queries rm -rf d echo Creating new R-Tree test-rtree-RTreeLoad data tree 20 10NN echo Querying R-Tree test-rtree-RTreeQuery queries tree 10NN > res cat data queries > .t echo Running exhaustive search test-rtree-Exhaustive .t 10NN > res2 echo Comparing results sort -n res > a sort -n res2 > b if diff a b then echo "Same results with exhaustive search. Everything seems fine." echo Results: `wc -l a` rm -rf a b res res2 .t tree.* else echo "PROBLEM! We got different results from exhaustive search!" fi libspatialindex-1.9.3/test/rtree/test2/000077500000000000000000000000001355420072700200465ustar00rootroot00000000000000libspatialindex-1.9.3/test/rtree/test2/run000077500000000000000000000007761355420072700206120ustar00rootroot00000000000000#! /bin/bash echo Generating dataset test-rtree-Generator 10000 100 > mix echo Creating new R-Tree and Querying test-rtree-RTreeLoad mix tree 20 intersection > res echo Running exhaustive search test-rtree-Exhaustive mix intersection > res2 echo Comparing results sort -n res > a sort -n res2 > b if diff a b then echo "Same results with exhaustive search. Everything seems fine." echo Results: `wc -l a` rm -rf a b res res2 tree.* else echo "PROBLEM! We got different results from exhaustive search!" fi libspatialindex-1.9.3/test/rtree/test3/000077500000000000000000000000001355420072700200475ustar00rootroot00000000000000libspatialindex-1.9.3/test/rtree/test3/run000077500000000000000000000013471355420072700206060ustar00rootroot00000000000000#! /bin/bash #echo Generating 10 million entries. This might take a while #echo Generating dataset test-rtree-Generator 1000000 0 > d awk '{if ($1 == 1) print $0}' < d > data awk '{if ($1 == 2) print $0}' < d > queries rm -rf d echo Creating new R-Tree test-rtree-RTreeBulkLoad data tree 1000 0.9 echo Querying R-Tree test-rtree-RTreeQuery queries tree intersection > res cat data queries > .t echo Running exhaustive search test-rtree-Exhaustive .t intersection > res2 echo Comparing results sort -n res > a sort -n res2 > b if diff a b then echo "Same results with exhaustive search. Everything seems fine." else echo "PROBLEM! We got different results from exhaustive search!" fi echo Results: `wc -l a` rm -rf a b res res2 .t tree.* libspatialindex-1.9.3/test/rtree/test4/000077500000000000000000000000001355420072700200505ustar00rootroot00000000000000libspatialindex-1.9.3/test/rtree/test4/run000077500000000000000000000012351355420072700206030ustar00rootroot00000000000000#! /bin/bash echo Generating dataset test-rtree-Generator 10000 0 > d awk '{if ($1 == 1) print $0}' < d > data awk '{if ($1 == 2) print $0}' < d > queries rm -rf d echo Creating new R-Tree test-rtree-RTreeLoad data tree 20 selfjoin echo Querying R-Tree test-rtree-RTreeQuery queries tree selfjoin > res cat data queries > .t echo Running exhaustive search test-rtree-Exhaustive .t selfjoin > res2 echo Comparing results sort -n res > a sort -n res2 > b if diff a b then echo "Same results with exhaustive search. Everything seems fine." echo Results: `wc -l a` rm -rf a b res res2 .t tree.* else echo "PROBLEM! We got different results from exhaustive search!" fi libspatialindex-1.9.3/test/tprtree/000077500000000000000000000000001355420072700173515ustar00rootroot00000000000000libspatialindex-1.9.3/test/tprtree/Exhaustive.cc000066400000000000000000000147011355420072700220100ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include #include #include using namespace std; #define INSERT 1 #define DELETE 0 #define QUERY 2 #include class Rectangle { public: Rectangle(double xlow, double xhigh, double ylow, double yhigh) : m_xlow(xlow), m_xhigh(xhigh), m_ylow(ylow), m_yhigh(yhigh) {} size_t computeCode(double x, double y) { size_t c = 0; if(y > m_yhigh) c |= TOP; else if(y < m_ylow) c |= BOTTOM; if( x > m_xhigh) c |= RIGHT; else if(x < m_xlow) c |= LEFT; return c; } bool intersectsPoint(double x, double y) { if (m_xlow <= x && x <= m_xhigh && m_ylow <= y && y <= m_yhigh) return true; return false; } bool intersectsSegment(double x0, double x1, double y0, double y1) { size_t C0, C1, C; double x,y; C0 = computeCode(x0, y0); C1 = computeCode(x1, y1); for(;;) { /* * trivial accept: both ends inside rectangle */ if((C0 | C1) == 0) { return true; } /* * trivial reject: both ends on the external side * of the rectanlge */ if((C0 & C1) != 0) { return false; } /* * normal case: clip end outside rectangle */ C = C0 ? C0 : C1; if(C & TOP) { x = x0 + (x1 - x0) * (m_yhigh - y0) / (y1 - y0); y = m_yhigh; } else if(C & BOTTOM) { x = x0 + (x1 - x0) * (m_ylow - y0) / (y1 - y0); y = m_ylow; } else if(C & RIGHT) { x = m_xhigh; y = y0 + (y1 - y0) * (m_xhigh - x0) / (x1 - x0); } else { x = m_xlow; y = y0 + (y1 - y0) * (m_xlow - x0) / (x1 - x0); } /* * set new end point and iterate */ if(C == C0) { x0 = x; y0 = y; C0 = computeCode(x0, y0); } else { x1 =x; y1 = y; C1 = computeCode(x1, y1); } } } static const size_t TOP = 0x1; static const size_t BOTTOM = 0x2; static const size_t RIGHT = 0x4; static const size_t LEFT = 0x8; double m_xlow, m_xhigh, m_ylow, m_yhigh; }; class MovingPoint { public: MovingPoint(double ax, double vx, double ay, double vy, double rt) : m_ax(ax), m_vx(vx), m_ay(ay), m_vy(vy), m_rt(rt) {} double getX(double t) { return m_ax + m_vx * (t - m_rt); } double getY(double t) { return m_ay + m_vy * (t - m_rt); } double m_ax, m_vx, m_ay, m_vy; double m_rt; }; class TimeRectangle { public: TimeRectangle(double xlow, double xhigh, double ylow, double yhigh, double tlow, double thigh) : m_xlow(xlow), m_xhigh(xhigh), m_ylow(ylow), m_yhigh(yhigh), m_tlow(tlow), m_thigh(thigh) {} bool intersects(MovingPoint& mp) { double x0 = mp.getX(m_tlow); double x1 = mp.getX(m_thigh); double y0 = mp.getY(m_tlow); double y1 = mp.getY(m_thigh); //double t0 = m_tlow; //double t1 = m_thigh; Rectangle rxy(m_xlow, m_xhigh, m_ylow, m_yhigh); return rxy.intersectsSegment(x0, x1, y0, y1); /* // not needed to check all planes since it is // guaranteed that on the time dimension // the line segment and the query cube have // exactly the same length (thus, if they intersect // they should intersect on the X-Y projection for sure). Rectangle rxy(m_xlow, m_xhigh, m_ylow, m_yhigh); if (rxy.intersectsSegment(x0, x1, y0, y1)) { Rectangle rxt(m_xlow, m_xhigh, m_tlow, m_thigh); if (rxt.intersectsSegment(x0, x1, t0, t1)) { Rectangle ryt(m_ylow, m_yhigh, m_tlow, m_thigh); if (ryt.intersectsSegment(y0, y1, t0, t1)) return true; } } */ //return false; } bool intersectsStupid(MovingPoint& mp) { size_t t0 = static_cast(std::floor(m_tlow)); size_t t1 = static_cast(std::floor(m_thigh)); Rectangle rxy(m_xlow, m_xhigh, m_ylow, m_yhigh); for (size_t T = t0; T <= t1; T++) { if (rxy.intersectsPoint(mp.getX((double)T), mp.getY((double)T))) return true; } return false; } double m_xlow, m_xhigh, m_ylow, m_yhigh; double m_tlow, m_thigh; }; int main(int argc, char** argv) { if (argc != 2) { cerr << "Usage: " << argv[0] << " data_file." << endl; return -1; } ifstream fin(argv[1]); if (! fin) { cerr << "Cannot open data file" << argv[1] << "." << endl; return -1; } map data; size_t id, op; double ax, vx, ay, vy, ct, rt, unused; while (fin) { fin >> id >> op >> ct >> rt >> unused >> ax >> vx >> unused >> ay >> vy; if (! fin.good()) continue; if (op == INSERT) { data.insert(pair(id, MovingPoint(ax, vx, ay, vy, ct))); } else if (op == DELETE) { data.erase(id); } else if (op == QUERY) { TimeRectangle query = TimeRectangle(ax, vx, ay, vy, ct, rt); std::map::iterator it; for (it = data.begin(); it != data.end(); it++) { //assert(query.intersects((*it).second) == query.intersectsStupid((*it).second)); if (query.intersects((*it).second) == false && query.intersectsStupid((*it).second) == true) { cerr << "Something is wrong: " << ct << " " << (*it).first << endl; return -1; } if (query.intersects((*it).second)) cout << (*it).first << endl; } } } return 0; } libspatialindex-1.9.3/test/tprtree/Generator.cc000066400000000000000000000061461355420072700216150ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include #include #include #include "RandomGenerator.h" int main(int argc, char** argv) { size_t ds = 1000, sl = 100, mui = 20, id = UNIFORM; double a = 0.01; for (int i = 1; i < argc; i++) { if (! strcmp(argv[i], "-ds")) { i++; if (i >= argc) { cerr << "Missing dataset size." << endl; return -1; } ds = atoi(argv[i]); } else if (! strcmp(argv[i], "-sl")) { i++; if (i >= argc) { cerr << "Missing simulation length." << endl; return -1; } sl = atoi(argv[i]); } else if (! strcmp(argv[i], "-a")) { i++; if (i >= argc) { cerr << "Missing agility." << endl; return -1; } a = atof(argv[i]); } else if (! strcmp(argv[i], "-mui")) { i++; if (i >= argc) { cerr << "Missing update rate." << endl; return -1; } mui = atoi(argv[i]); } else { cerr << "Usage: " << endl << " -ds dataset size" << endl << " -sl simulation length" << endl << " -a agility" << endl << " -sd speed distribution" << endl << " -id initial distribution" << endl << " -mui maximum update interval" << endl; return -1; } } RandomGenerator g = RandomGenerator((int)ds, (int)sl, (int)mui, a); g.m_initialDistribution = (int) id; g.m_maxX = 1.0; g.m_maxY = 1.0; g.m_minQueryExtent = 0.05; g.m_maxQueryExtent = 0.1; g.m_minSpeed = 0.0025; // 15 miles/hour = 0.25 miles/minute g.m_maxSpeed = 0.0166; // 100 miles/hour = 1.66 miles/minute g.m_speedMean = 0.005; // 30 miles/hour = 0.5 miles/minute g.m_speedStandardDeviation = 0.0033; // 20 miles/hour = 0.33 miles/minute g.generate(); } libspatialindex-1.9.3/test/tprtree/RandomGenerator.cc000066400000000000000000000132431355420072700227520ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #include "RandomGenerator.h" RandomGenerator::MyMovingObject* RandomGenerator::createObject(int id, int st, double xmin, double xmax, double ymin, double ymax) { double x, y; x = m_random.nextUniformDouble(xmin, xmax); y = m_random.nextUniformDouble(ymin, ymax); return createObject(id, st, x, y); } RandomGenerator::MyMovingObject* RandomGenerator::createObject(int id, int st, double x, double y) { MyMovingObject* o = new MyMovingObject(); o->m_id = id; o->m_sx = x; o->m_sy = y; o->m_st = st; o->m_kt = -1; double v = generateSpeed(); if (m_random.flipCoin()) v *= -1.0; double angle = m_random.nextUniformDouble(-M_PI_2 , M_PI_2); if (m_random.flipCoin()) angle *= -1.0; o->m_vx = cos(angle) * v; o->m_vy = sin(angle) * v; cout << o->m_id << " " << INSERT << " " << st << " " << o->m_st << " 1 " << o->m_sx << " " << o->m_vx << " 1 " << o->m_sy << " " << o->m_vy << endl; map::iterator itDataset = m_dataset.find(o->m_id); if (itDataset != m_dataset.end()) m_dataset.erase(itDataset); m_dataset.insert(pair(o->m_id, o)); int t1 = o->m_st + m_maximumUpdateInterval; int t2; for (t2 = st; t2 <= m_simulationLength; t2++) { if (o->getX(t2) > m_maxX || o->getY(t2) > m_maxY || o->getX(t2) < 0.0 || o->getY(t2) < 0.0) break; } o->m_outOfBounds = (t2 < t1) ? true : false; int t = min(t1, t2); if (t == st) t++; if (t < m_simulationLength) { m_updateArray[t].insert(o->m_id); o->m_kt = t; } return o; } double RandomGenerator::generateSpeed() { return m_random.nextUniformDouble(m_minSpeed, m_maxSpeed); } void RandomGenerator::generate() { for (map::iterator itDataset = m_dataset.begin(); itDataset != m_dataset.end(); itDataset++) { delete (*itDataset).second; } m_dataset.clear(); for (int cIndex = 0; cIndex < m_simulationLength; cIndex++) { m_updateArray[cIndex].clear(); } int updatesPerTimeInstant = (int) ceil(((double) m_datasetSize) * m_agility); for (int cObject = 0; cObject < m_datasetSize; cObject++) { createObject(cObject, 0, 0.0, m_maxX, 0.0, m_maxY); if (cObject % 10000 == 0) cerr << cObject << endl; } for (int Tnow = 1; Tnow < m_simulationLength; Tnow++) { cerr << "Time: " << Tnow; int cTotalUpdates = 0; int cNeedToUpdate = updatesPerTimeInstant; set updated; set::iterator itUpdateArray = m_updateArray[Tnow].begin(); while (cNeedToUpdate > 0 || itUpdateArray != m_updateArray[Tnow].end()) { int id; bool bKilled = false; if (itUpdateArray != m_updateArray[Tnow].end()) { bKilled = true; id = *itUpdateArray; itUpdateArray++; } else { id = m_random.nextUniformLong(0, m_datasetSize); set::iterator itUpdated = updated.find(id); while (itUpdated != updated.end()) { id = m_random.nextUniformLong(0, m_datasetSize); itUpdated = updated.find(id); } } updated.insert(id); cNeedToUpdate--; cTotalUpdates++; map::iterator itDataset = m_dataset.find(id); assert(itDataset != m_dataset.end()); MyMovingObject* o = (*itDataset).second; m_dataset.erase(itDataset); if (o->m_kt >= 0) m_updateArray[o->m_kt].erase(o->m_id); cout << o->m_id << " " << DELETE << " " << Tnow << " " << o->m_st << " 1 " << o->m_sx << " " << o->m_vx << " 1 " << o->m_sy << " " << o->m_vy << endl; if (bKilled && o->m_outOfBounds) { createObject(o->m_id, Tnow, 0.0, m_maxX, 0.0, m_maxY); } else { createObject(o->m_id, Tnow, o->getX(Tnow), o->getY(Tnow)); } delete o; } for (int cQuery = 0; cQuery < m_queriesPerTimeInstant; cQuery++) { double x = m_random.nextUniformDouble(0.0, m_maxX); double y = m_random.nextUniformDouble(0.0, m_maxY); double dx = m_random.nextUniformDouble(m_minQueryExtent, m_maxQueryExtent); double dy = m_random.nextUniformDouble(m_minQueryExtent, m_maxQueryExtent); int dt = m_random.nextUniformLong(m_minQueryInterval, m_maxQueryInterval); int t = m_random.nextUniformLong(Tnow, Tnow + m_horizon - dt); cout << "9999999 " << QUERY << " " << t << " " << t + dt << " 1 " << x - dx << " " << x + dx << " 1 " << y - dy << " " << y + dy << endl; } cerr << ", Updates: " << cTotalUpdates << endl; } } libspatialindex-1.9.3/test/tprtree/RandomGenerator.h000066400000000000000000000075251355420072700226220ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ #ifndef _random_generator_h #define _random_generator_h #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define DELETE 0 #define INSERT 1 #define QUERY 2 #define UNIFORM 1 class RandomGenerator { public: RandomGenerator(int ds, int sl, int mui, double a) : m_datasetSize(ds), m_simulationLength(sl), m_initialDistribution(UNIFORM), m_maximumUpdateInterval(mui), m_queriesPerTimeInstant(5), m_minQueryExtent(5), m_maxQueryExtent(10), m_horizon(20), m_maxQueryInterval(10), m_minQueryInterval(2), m_agility(a), m_minSpeed(0.25), // 15 miles/hour = 0.25 miles/minute m_maxSpeed(1.66), // 100 miles/hour = 1.66 miles/minute m_speedMean(0.5), // 30 miles/hour = 0.5 miles/minute m_speedStandardDeviation(0.33), // 20 miles/hour = 0.33 miles/minute m_maxX(100.0), m_maxY(100.0), m_updateArray(nullptr) { m_updateArray = new set[m_simulationLength]; } virtual ~RandomGenerator() { for (map::iterator it = m_dataset.begin(); it != m_dataset.end(); it++) { delete (*it).second; } delete[] m_updateArray; } class MyMovingObject { public: double getX(int t) { return m_sx + m_vx * (t - m_st); } double getY(int t) { return m_sy + m_vy * (t - m_st); } public: int m_id; int m_st; int m_kt; double m_sx, m_sy; double m_vx, m_vy; bool m_outOfBounds; }; virtual void generate(); MyMovingObject* createObject(int id, int st, double xmin, double xmax, double ymin, double ymax); MyMovingObject* createObject(int id, int st, double x, double y); double generateSpeed(); public: int m_datasetSize; int m_simulationLength; int m_initialDistribution; int m_maximumUpdateInterval; int m_queriesPerTimeInstant; double m_minQueryExtent; double m_maxQueryExtent; int m_horizon; int m_maxQueryInterval; int m_minQueryInterval; double m_agility; double m_minSpeed; double m_maxSpeed; double m_speedMean; double m_speedStandardDeviation; double m_maxX; double m_maxY; map m_dataset; set* m_updateArray; Tools::Random m_random; }; #endif libspatialindex-1.9.3/test/tprtree/TPRTreeLoad.cc000066400000000000000000000157061355420072700217560ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ // NOTE: Please read README.txt before browsing this code. // include library header file. #include #include using namespace SpatialIndex; using namespace std; #define INSERT 1 #define DELETE 0 #define QUERY 2 // example of a Visitor pattern. // see RTreeQuery for a more elaborate example. class MyVisitor : public IVisitor { public: void visitNode(const INode& ) override {} void visitData(const IData& d) override { cout << d.getIdentifier() << endl; // the ID of this data entry is an answer to the query. I will just print it to stdout. } void visitData(std::vector& ) override {} }; int main(int argc, char** argv) { try { if (argc != 4) { cerr << "Usage: " << argv[0] << " input_file tree_file capacity." << endl; return -1; } ifstream fin(argv[1]); if (! fin) { cerr << "Cannot open data file " << argv[1] << "." << endl; return -1; } // Create a new storage manager with the provided base name and a 4K page size. string baseName = argv[2]; IStorageManager* diskfile = StorageManager::createNewDiskStorageManager(baseName, 4096); StorageManager::IBuffer* file = StorageManager::createNewRandomEvictionsBuffer(*diskfile, 10, false); // applies a main memory random buffer on top of the persistent storage manager // (LRU buffer, etc can be created the same way). // Create a new, empty, TPRTree with dimensionality 2, minimum load 70%, horizon 20 time instants, using "file" as // the StorageManager and the TPRSTAR splitting policy. id_type indexIdentifier; ISpatialIndex* tree = TPRTree::createNewTPRTree(*file, 0.7, atoi(argv[3]), atoi(argv[3]), 2, SpatialIndex::TPRTree::TPRV_RSTAR, 20, indexIdentifier); size_t count = 0; id_type id; size_t op; double ax, vx, ay, vy, ct, rt, unused; double plow[2], phigh[2]; double pvlow[2], pvhigh[2]; while (fin) { fin >> id >> op >> ct >> rt >> unused >> ax >> vx >> unused >> ay >> vy; if (! fin.good()) continue; // skip newlines, etc. if (op == INSERT) { plow[0] = ax; plow[1] = ay; phigh[0] = ax; phigh[1] = ay; pvlow[0] = vx; pvlow[1] = vy; pvhigh[0] = vx; pvhigh[1] = vy; Tools::Interval ivT(ct, std::numeric_limits::max()); MovingRegion r = MovingRegion(plow, phigh, pvlow, pvhigh, ivT, 2); //ostringstream os; //os << r; //string data = os.str(); // associate some data with this region. I will use a string that represents the // region itself, as an example. // NOTE: It is not necessary to associate any data here. A null pointer can be used. In that // case you should store the data externally. The index will provide the data IDs of // the answers to any query, which can be used to access the actual data from the external // storage (e.g. a hash table or a database table, etc.). // Storing the data in the index is convinient and in case a clustered storage manager is // provided (one that stores any node in consecutive pages) performance will improve substantially, // since disk accesses will be mostly sequential. On the other hand, the index will need to // manipulate the data, resulting in larger overhead. If you use a main memory storage manager, // storing the data externally is highly recommended (clustering has no effect). // A clustered storage manager is NOT provided yet. // Also you will have to take care of converting you data to and from binary format, since only // array of bytes can be inserted in the index (see RTree::Node::load and RTree::Node::store for // an example of how to do that). //tree->insertData(data.size() + 1, reinterpret_cast(data.c_str()), r, id); tree->insertData(0, nullptr, r, id); // example of passing zero size and a null pointer as the associated data. } else if (op == DELETE) { plow[0] = ax; plow[1] = ay; phigh[0] = ax; phigh[1] = ay; pvlow[0] = vx; pvlow[1] = vy; pvhigh[0] = vx; pvhigh[1] = vy; Tools::Interval ivT(rt, ct); MovingRegion r = MovingRegion(plow, phigh, pvlow, pvhigh, ivT, 2); if (tree->deleteData(r, id) == false) { cerr << "******ERROR******" << endl; cerr << "Cannot delete id: " << id << " , count: " << count << endl; return -1; } } else if (op == QUERY) { plow[0] = ax; plow[1] = ay; phigh[0] = vx; phigh[1] = vy; pvlow[0] = 0.0; pvlow[1] = 0.0; pvhigh[0] = 0.0; pvhigh[1] = 0.0; Tools::Interval ivT(ct, rt); MovingRegion r = MovingRegion(plow, phigh, pvlow, pvhigh, ivT, 2); MyVisitor vis; tree->intersectsWithQuery(r, vis); // this will find all data that intersect with the query range. } if ((count % 1000) == 0) cerr << count << endl; count++; } cerr << "Operations: " << count << endl; cerr << *tree; cerr << "Buffer hits: " << file->getHits() << endl; cerr << "Index ID: " << indexIdentifier << endl; bool ret = tree->isIndexValid(); if (ret == false) cerr << "ERROR: Structure is invalid!" << endl; else cerr << "The stucture seems O.K." << endl; delete tree; delete file; delete diskfile; // delete the buffer first, then the storage manager // (otherwise the the buffer will fail trying to write the dirty entries). } catch (Tools::Exception& e) { cerr << "******ERROR******" << endl; std::string s = e.what(); cerr << s << endl; return -1; } catch (...) { cerr << "******ERROR******" << endl; cerr << "other exception" << endl; return -1; } return 0; } libspatialindex-1.9.3/test/tprtree/TPRTreeQuery.cc000066400000000000000000000220001355420072700221650ustar00rootroot00000000000000/****************************************************************************** * Project: libspatialindex - A C++ library for spatial indexing * Author: Marios Hadjieleftheriou, mhadji@gmail.com ****************************************************************************** * Copyright (c) 2002, Marios Hadjieleftheriou * * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. ******************************************************************************/ // NOTE: Please read README.txt before browsing this code. // include library header file. #include #include using namespace SpatialIndex; using namespace std; #define INSERT 1 #define DELETE 0 #define QUERY 2 // example of a Visitor pattern. // findes the index and leaf IO for answering the query and prints // the resulting data IDs to stdout. class MyVisitor : public IVisitor { public: size_t m_indexIO{0}; size_t m_leafIO{0}; public: MyVisitor() = default; void visitNode(const INode& n) override { if (n.isLeaf()) m_leafIO++; else m_indexIO++; } void visitData(const IData& d) override { IShape* pS; d.getShape(&pS); // do something. delete pS; // data should be an array of characters representing a Region as a string. //uint8_t* pData = 0; //size_t cLen = 0; //d.getData(cLen, &pData); // do something. //string s = reinterpret_cast(pData); //cout << s << endl; //delete[] pData; cout << d.getIdentifier() << endl; // the ID of this data entry is an answer to the query. I will just print it to stdout. } void visitData(std::vector& ) override {} }; // example of a Strategy pattern. // traverses the tree by level. class MyQueryStrategy : public SpatialIndex::IQueryStrategy { private: queue ids; public: void getNextEntry(const IEntry& entry, id_type& nextEntry, bool& hasNext) override { IShape* ps; entry.getShape(&ps); MovingRegion* pr = dynamic_cast(ps); cout << pr->m_pLow[0] << " " << pr->m_pLow[1] << endl; cout << pr->m_pHigh[0] << " " << pr->m_pLow[1] << endl; cout << pr->m_pHigh[0] << " " << pr->m_pHigh[1] << endl; cout << pr->m_pLow[0] << " " << pr->m_pHigh[1] << endl; cout << pr->m_pLow[0] << " " << pr->m_pLow[1] << endl << endl << endl; // print node MBRs gnuplot style! delete ps; const INode* n = dynamic_cast(&entry); // traverse only index nodes at levels 2 and higher. if (n != nullptr && n->getLevel() > 1) { for (uint32_t cChild = 0; cChild < n->getChildrenCount(); cChild++) { ids.push(n->getChildIdentifier(cChild)); } } if (! ids.empty()) { nextEntry = ids.front(); ids.pop(); hasNext = true; } else { hasNext = false; } } }; // example of a Strategy pattern. // find the total indexed space managed by the index (the MBR of the root). class MyQueryStrategy2 : public IQueryStrategy { public: Region m_indexedSpace; public: void getNextEntry(const IEntry& entry, id_type&, bool& hasNext) override { // the first time we are called, entry points to the root. // stop after the root. hasNext = false; IShape* ps; entry.getShape(&ps); ps->getMBR(m_indexedSpace); delete ps; } }; int main(int argc, char** argv) { try { if (argc != 3) { cerr << "Usage: " << argv[0] << " input_file tree_file." << endl; return -1; } ifstream fin(argv[1]); if (! fin) { cerr << "Cannot open data file " << argv[1] << "." << endl; return -1; } string baseName = argv[2]; IStorageManager* diskfile = StorageManager::loadDiskStorageManager(baseName); // this will try to locate and open an already existing storage manager. StorageManager::IBuffer* file = StorageManager::createNewRandomEvictionsBuffer(*diskfile, 10, false); // applies a main memory random buffer on top of the persistent storage manager // (LRU buffer, etc can be created the same way). // If we need to open an existing tree stored in the storage manager, we only // have to specify the index identifier as follows ISpatialIndex* tree = TPRTree::loadTPRTree(*file, 1); size_t count = 0; id_type id; size_t op; double ax, vx, ay, vy, ct, rt, unused; double plow[2], phigh[2]; double pvlow[2], pvhigh[2]; size_t indexIO = 0; size_t leafIO = 0; while (fin) { fin >> id >> op >> ct >> rt >> unused >> ax >> vx >> unused >> ay >> vy; if (! fin.good()) continue; // skip newlines, etc. if (op == INSERT) { plow[0] = ax; plow[1] = ay; phigh[0] = ax; phigh[1] = ay; pvlow[0] = vx; pvlow[1] = vy; pvhigh[0] = vx; pvhigh[1] = vy; Tools::Interval ivT(ct, std::numeric_limits::max()); MovingRegion r = MovingRegion(plow, phigh, pvlow, pvhigh, ivT, 2); //ostringstream os; //os << r; //string data = os.str(); // associate some data with this region. I will use a string that represents the // region itself, as an example. // NOTE: It is not necessary to associate any data here. A null pointer can be used. In that // case you should store the data externally. The index will provide the data IDs of // the answers to any query, which can be used to access the actual data from the external // storage (e.g. a hash table or a database table, etc.). // Storing the data in the index is convinient and in case a clustered storage manager is // provided (one that stores any node in consecutive pages) performance will improve substantially, // since disk accesses will be mostly sequential. On the other hand, the index will need to // manipulate the data, resulting in larger overhead. If you use a main memory storage manager, // storing the data externally is highly recommended (clustering has no effect). // A clustered storage manager is NOT provided yet. // Also you will have to take care of converting you data to and from binary format, since only // array of bytes can be inserted in the index (see RTree::Node::load and RTree::Node::store for // an example of how to do that). //tree->insertData(data.size() + 1, reinterpret_cast(data.c_str()), r, id); tree->insertData(0, nullptr, r, id); // example of passing zero size and a null pointer as the associated data. } else if (op == DELETE) { plow[0] = ax; plow[1] = ay; phigh[0] = ax; phigh[1] = ay; pvlow[0] = vx; pvlow[1] = vy; pvhigh[0] = vx; pvhigh[1] = vy; Tools::Interval ivT(rt, ct); MovingRegion r = MovingRegion(plow, phigh, pvlow, pvhigh, ivT, 2); if (tree->deleteData(r, id) == false) { cerr << "******ERROR******" << endl; cerr << "Cannot delete id: " << id << " , count: " << count << endl; return -1; } } else if (op == QUERY) { plow[0] = ax; plow[1] = ay; phigh[0] = vx; phigh[1] = vy; pvlow[0] = 0.0; pvlow[1] = 0.0; pvhigh[0] = 0.0; pvhigh[1] = 0.0; Tools::Interval ivT(ct, rt); MovingRegion r = MovingRegion(plow, phigh, pvlow, pvhigh, ivT, 2); MyVisitor vis; tree->intersectsWithQuery(r, vis); // this will find all data that intersect with the query range. indexIO += vis.m_indexIO; leafIO += vis.m_leafIO; // example of the Visitor pattern usage, for calculating how many nodes // were visited. } if ((count % 1000) == 0) cerr << count << endl; count++; } MyQueryStrategy2 qs; tree->queryStrategy(qs); cerr << "Indexed space: " << qs.m_indexedSpace << endl; cerr << "Operations: " << count << endl; cerr << *tree; cerr << "Index I/O: " << indexIO << endl; cerr << "Leaf I/O: " << leafIO << endl; cerr << "Buffer hits: " << file->getHits() << endl; delete tree; delete file; delete diskfile; // delete the buffer first, then the storage manager // (otherwise the the buffer will fail writting the dirty entries). } catch (Tools::Exception& e) { cerr << "******ERROR******" << endl; std::string s = e.what(); cerr << s << endl; return -1; } catch (...) { cerr << "******ERROR******" << endl; cerr << "other exception" << endl; return -1; } return 0; } libspatialindex-1.9.3/test/tprtree/test1/000077500000000000000000000000001355420072700204115ustar00rootroot00000000000000libspatialindex-1.9.3/test/tprtree/test1/run000077500000000000000000000012501355420072700211410ustar00rootroot00000000000000#! /bin/bash echo Generating dataset test-tprtree-Generator -ds 1000 -sl 100 > d awk '{if ($2 != 2) print $0}' < d > data awk '{if ($2 == 2 && $3 >= 100) print $0}' < d > queries rm -rf d echo Creating new TPR-Tree test-tprtree-TPRTreeLoad data tree 20 echo Querying TPR-Tree test-tprtree-TPRTreeQuery queries tree > res cat data queries > .t echo Running exhaustive search test-tprtree-Exhaustive .t > res2 echo Comparing results sort -n res > a sort -n res2 > b if diff a b then echo "Same results with exhaustive search. Everything seems fine." echo Results: `wc -l a` rm -rf a b res res2 .t tree.* else echo "PROBLEM! We got different results from exhaustive search!" fi libspatialindex-1.9.3/test/tprtree/test2/000077500000000000000000000000001355420072700204125ustar00rootroot00000000000000libspatialindex-1.9.3/test/tprtree/test2/run000077500000000000000000000007661355420072700211550ustar00rootroot00000000000000#! /bin/bash echo Generating dataset test-tprtree-Generator -ds 1000 -sl 100 > mix echo Creating new TPR-Tree and Querying test-tprtree-TPRTreeLoad mix tree 10 > res echo Running exhaustive search test-tpr-tree-Exhaustive mix > res2 echo Comparing results sort -n res > a sort -n res2 > b if diff a b then echo "Same results with exhaustive search. Everything seems fine." echo Results: `wc -l a` rm -rf a b res res2 tree.* else echo "PROBLEM! We got different results from exhaustive search!" fi