pax_global_header00006660000000000000000000000064140571624200014513gustar00rootroot0000000000000052 comment=b85efd66a76caccbe0c186b00cab34df1e4281fa utfcpp-3.2.1/000077500000000000000000000000001405716242000130175ustar00rootroot00000000000000utfcpp-3.2.1/.circleci/000077500000000000000000000000001405716242000146525ustar00rootroot00000000000000utfcpp-3.2.1/.circleci/config.yml000066400000000000000000000004551405716242000166460ustar00rootroot00000000000000version: 2 jobs: build: docker: - image: nemtrif/utf8cpp:3.1.3 steps: - checkout - run: git submodule update --init --recursive --remote - run: mkdir build - run: cd build && cmake .. - run: cd build && cmake --build . - run: cd build && ctest -VV utfcpp-3.2.1/.gitignore000066400000000000000000000000611405716242000150040ustar00rootroot00000000000000# VS Code: .vscode/ # Often used by CMake build/utfcpp-3.2.1/.gitmodules000066400000000000000000000001301405716242000151660ustar00rootroot00000000000000[submodule "extern/ftest"] path = extern/ftest url = https://github.com/nemtrif/ftest utfcpp-3.2.1/CMakeLists.txt000066400000000000000000000024131405716242000155570ustar00rootroot00000000000000cmake_minimum_required (VERSION 3.0.2) project (utf8cpp VERSION 3.2 LANGUAGES CXX) if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR) set(IS_ROOT_PROJECT ON) else() set(IS_ROOT_PROJECT OFF) endif() option(UTF8_TESTS "Enable tests for UTF8-CPP" ${IS_ROOT_PROJECT}) option(UTF8_INSTALL "Enable installation for UTF8-CPP" ${IS_ROOT_PROJECT}) option(UTF8_SAMPLES "Enable building samples for UTF8-CPP" ${IS_ROOT_PROJECT}) add_library(utf8cpp INTERFACE) target_include_directories(utf8cpp INTERFACE "$" $ ) add_library(utf8::cpp ALIAS utf8cpp) if(UTF8_INSTALL) if(MSVC) set(DEF_INSTALL_CMAKE_DIR CMake) else() include(GNUInstallDirs) # define CMAKE_INSTALL_* set(DEF_INSTALL_CMAKE_DIR ${CMAKE_INSTALL_LIBDIR}/cmake/utf8cpp) endif() install(DIRECTORY source/ DESTINATION include/utf8cpp) install(TARGETS utf8cpp EXPORT utf8cppConfig) install(EXPORT utf8cppConfig DESTINATION ${DEF_INSTALL_CMAKE_DIR}) endif() if(UTF8_SAMPLES) add_executable(docsample ${PROJECT_SOURCE_DIR}/samples/docsample.cpp) target_link_libraries(docsample PRIVATE utf8::cpp) endif() if(UTF8_TESTS) enable_testing() add_subdirectory(tests) endif() utfcpp-3.2.1/LICENSE000066400000000000000000000024721405716242000140310ustar00rootroot00000000000000Boost Software License - Version 1.0 - August 17th, 2003 Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. utfcpp-3.2.1/README.md000066400000000000000000001546561405716242000143170ustar00rootroot00000000000000# UTF8-CPP: UTF-8 with C++ in a Portable Way ## Introduction C++ developers miss an easy and portable way of handling Unicode encoded strings. The original C++ Standard (known as C++98 or C++03) is Unicode agnostic. C++11 provides some support for Unicode on core language and library level: u8, u, and U character and string literals, char16_t and char32_t character types, u16string and u32string library classes, and codecvt support for conversions between Unicode encoding forms. In the meantime, developers use third party libraries like ICU, OS specific capabilities, or simply roll out their own solutions. In order to easily handle UTF-8 encoded Unicode strings, I came up with a small, C++98 compatible generic library. For anybody used to work with STL algorithms and iterators, it should be easy and natural to use. The code is freely available for any purpose - check out the [license](./LICENSE). The library has been used a lot in the past ten years both in commercial and open-source projects and is considered feature-complete now. If you run into bugs or performance issues, please let me know and I'll do my best to address them. The purpose of this article is not to offer an introduction to Unicode in general, and UTF-8 in particular. If you are not familiar with Unicode, be sure to check out [Unicode Home Page](http://www.unicode.org/) or some other source of information for Unicode. Also, it is not my aim to advocate the use of UTF-8 encoded strings in C++ programs; if you want to handle UTF-8 encoded strings from C++, I am sure you have good reasons for it. ## Examples of use ### Introductionary Sample To illustrate the use of the library, let's start with a small but complete program that opens a file containing UTF-8 encoded text, reads it line by line, checks each line for invalid UTF-8 byte sequences, and converts it to UTF-16 encoding and back to UTF-8: ```cpp #include #include #include #include #include "utf8.h" using namespace std; int main(int argc, char** argv) { if (argc != 2) { cout << "\nUsage: docsample filename\n"; return 0; } const char* test_file_path = argv[1]; // Open the test file (must be UTF-8 encoded) ifstream fs8(test_file_path); if (!fs8.is_open()) { cout << "Could not open " << test_file_path << endl; return 0; } unsigned line_count = 1; string line; // Play with all the lines in the file while (getline(fs8, line)) { // check for invalid utf-8 (for a simple yes/no check, there is also utf8::is_valid function) #if __cplusplus >= 201103L // C++ 11 or later auto end_it = utf8::find_invalid(line.begin(), line.end()); #else string::iterator end_it = utf8::find_invalid(line.begin(), line.end()); #endif // C++ 11 if (end_it != line.end()) { cout << "Invalid UTF-8 encoding detected at line " << line_count << "\n"; cout << "This part is fine: " << string(line.begin(), end_it) << "\n"; } // Get the line length (at least for the valid part) int length = utf8::distance(line.begin(), end_it); cout << "Length of line " << line_count << " is " << length << "\n"; // Convert it to utf-16 #if __cplusplus >= 201103L // C++ 11 or later u16string utf16line = utf8::utf8to16(line); #else vector utf16line; utf8::utf8to16(line.begin(), end_it, back_inserter(utf16line)); #endif // C++ 11 // And back to utf-8; #if __cplusplus >= 201103L // C++ 11 or later string utf8line = utf8::utf16to8(utf16line); #else string utf8line; utf8::utf16to8(utf16line.begin(), utf16line.end(), back_inserter(utf8line)); #endif // C++ 11 // Confirm that the conversion went OK: if (utf8line != string(line.begin(), end_it)) cout << "Error in UTF-16 conversion at line: " << line_count << "\n"; line_count++; } return 0; } ``` In the previous code sample, for each line we performed a detection of invalid UTF-8 sequences with `find_invalid`; the number of characters (more precisely - the number of Unicode code points, including the end of line and even BOM if there is one) in each line was determined with a use of `utf8::distance`; finally, we have converted each line to UTF-16 encoding with `utf8to16` and back to UTF-8 with `utf16to8`. Note a different pattern of usage for old compilers. For instance, this is how we convert a UTF-8 encoded string to a UTF-16 encoded one with a pre - C++11 compiler: ```cpp vector utf16line; utf8::utf8to16(line.begin(), end_it, back_inserter(utf16line)); ``` With a more modern compiler, the same operation would look like: ```cpp u16string utf16line = utf8::utf8to16(line); ``` If `__cplusplus` macro points to a C++ 11 or later, the library exposes API that takes into account C++ standard Unicode strings and move semantics. With an older compiler, it is still possible to use the same functionality, just in a little less convenient way In case you do not trust the `__cplusplus` macro or, for instance, do not want to include the C++ 11 helper functions even with a modern compiler, define `UTF_CPP_CPLUSPLUS` macro before including `utf8.h` and assign it a value for the standard you want to use - the values are the same as for the `__cplusplus` macro. This can be also useful with compilers that are conservative in setting the `__cplusplus` macro even if they have a good support for a recent standard edition - Microsoft's Visual C++ is one example. ### Checking if a file contains valid UTF-8 text Here is a function that checks whether the content of a file is valid UTF-8 encoded text without reading the content into the memory: ```cpp bool valid_utf8_file(const char* file_name) { ifstream ifs(file_name); if (!ifs) return false; // even better, throw here istreambuf_iterator it(ifs.rdbuf()); istreambuf_iterator eos; return utf8::is_valid(it, eos); } ``` Because the function `utf8::is_valid()` works with input iterators, we were able to pass an `istreambuf_iterator` to `it` and read the content of the file directly without loading it to the memory first. Note that other functions that take input iterator arguments can be used in a similar way. For instance, to read the content of a UTF-8 encoded text file and convert the text to UTF-16, just do something like: ```cpp utf8::utf8to16(it, eos, back_inserter(u16string)); ``` ### Ensure that a string contains valid UTF-8 text If we have some text that "probably" contains UTF-8 encoded text and we want to replace any invalid UTF-8 sequence with a replacement character, something like the following function may be used: ```cpp void fix_utf8_string(std::string& str) { std::string temp; utf8::replace_invalid(str.begin(), str.end(), back_inserter(temp)); str = temp; } ``` The function will replace any invalid UTF-8 sequence with a Unicode replacement character. There is an overloaded function that enables the caller to supply their own replacement character. ## Points of interest #### Design goals and decisions The library was designed to be: 1. Generic: for better or worse, there are many C++ string classes out there, and the library should work with as many of them as possible. 2. Portable: the library should be portable both accross different platforms and compilers. The only non-portable code is a small section that declares unsigned integers of different sizes: three typedefs. They can be changed by the users of the library if they don't match their platform. The default setting should work for Windows (both 32 and 64 bit), and most 32 bit and 64 bit Unix derivatives. Support for post C++03 language features is included for modern compilers at API level only, so the library should work even with pretty old compilers. 3. Lightweight: follow the "pay only for what you use" guideline. 4. Unintrusive: avoid forcing any particular design or even programming style on the user. This is a library, not a framework. #### Alternatives In case you want to look into other means of working with UTF-8 strings from C++, here is the list of solutions I am aware of: 1. [ICU Library](http://icu.sourceforge.net/). It is very powerful, complete, feature-rich, mature, and widely used. Also big, intrusive, non-generic, and doesn't play well with the Standard Library. I definitelly recommend looking at ICU even if you don't plan to use it. 2. C++11 language and library features. Still far from complete, and not easy to use. 3. [Glib::ustring](http://www.gtkmm.org/gtkmm2/docs/tutorial/html/ch03s04.html). A class specifically made to work with UTF-8 strings, and also feel like `std::string`. If you prefer to have yet another string class in your code, it may be worth a look. Be aware of the licensing issues, though. 4. Platform dependent solutions: Windows and POSIX have functions to convert strings from one encoding to another. That is only a subset of what my library offers, but if that is all you need it may be good enough. ## Reference ### Functions From utf8 Namespace #### utf8::append Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Encodes a 32 bit code point as a UTF-8 sequence of octets and appends the sequence to a UTF-8 string. ```cpp void append(char32_t cp, std::string& s); ``` `cp`: a code point to append to the string. `s`: a utf-8 encoded string to append the code point to. Example of use: ```cpp std::string u; append(0x0448, u); assert (u[0] == char(0xd1) && u[1] == char(0x88) && u.length() == 2); ``` In case of an invalid code point, a `utf8::invalid_code_point` exception is thrown. #### utf8::append Available in version 1.0 and later. Encodes a 32 bit code point as a UTF-8 sequence of octets and appends the sequence to a UTF-8 string. ```cpp template octet_iterator append(uint32_t cp, octet_iterator result); ``` `octet_iterator`: an output iterator. `cp`: a 32 bit integer representing a code point to append to the sequence. `result`: an output iterator to the place in the sequence where to append the code point. Return value: an iterator pointing to the place after the newly appended sequence. Example of use: ```cpp unsigned char u[5] = {0,0,0,0,0}; unsigned char* end = append(0x0448, u); assert (u[0] == 0xd1 && u[1] == 0x88 && u[2] == 0 && u[3] == 0 && u[4] == 0); ``` Note that `append` does not allocate any memory - it is the burden of the caller to make sure there is enough memory allocated for the operation. To make things more interesting, `append` can add anywhere between 1 and 4 octets to the sequence. In practice, you would most often want to use `std::back_inserter` to ensure that the necessary memory is allocated. In case of an invalid code point, a `utf8::invalid_code_point` exception is thrown. #### utf8::next Available in version 1.0 and later. Given the iterator to the beginning of the UTF-8 sequence, it returns the code point and moves the iterator to the next position. ```cpp template uint32_t next(octet_iterator& it, octet_iterator end); ``` `octet_iterator`: an input iterator. `it`: a reference to an iterator pointing to the beginning of an UTF-8 encoded code point. After the function returns, it is incremented to point to the beginning of the next code point. `end`: end of the UTF-8 sequence to be processed. If `it` gets equal to `end` during the extraction of a code point, an `utf8::not_enough_room` exception is thrown. Return value: the 32 bit representation of the processed UTF-8 code point. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; char* w = twochars; int cp = next(w, twochars + 6); assert (cp == 0x65e5); assert (w == twochars + 3); ``` This function is typically used to iterate through a UTF-8 encoded string. In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. #### utf8::peek_next Available in version 2.1 and later. Given the iterator to the beginning of the UTF-8 sequence, it returns the code point for the following sequence without changing the value of the iterator. ```cpp template uint32_t peek_next(octet_iterator it, octet_iterator end); ``` `octet_iterator`: an input iterator. `it`: an iterator pointing to the beginning of an UTF-8 encoded code point. `end`: end of the UTF-8 sequence to be processed. If `it` gets equal to `end` during the extraction of a code point, an `utf8::not_enough_room` exception is thrown. Return value: the 32 bit representation of the processed UTF-8 code point. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; char* w = twochars; int cp = peek_next(w, twochars + 6); assert (cp == 0x65e5); assert (w == twochars); ``` In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. #### utf8::prior Available in version 1.02 and later. Given a reference to an iterator pointing to an octet in a UTF-8 sequence, it decreases the iterator until it hits the beginning of the previous UTF-8 encoded code point and returns the 32 bits representation of the code point. ```cpp template uint32_t prior(octet_iterator& it, octet_iterator start); ``` `octet_iterator`: a bidirectional iterator. `it`: a reference pointing to an octet within a UTF-8 encoded string. After the function returns, it is decremented to point to the beginning of the previous code point. `start`: an iterator to the beginning of the sequence where the search for the beginning of a code point is performed. It is a safety measure to prevent passing the beginning of the string in the search for a UTF-8 lead octet. Return value: the 32 bit representation of the previous code point. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; unsigned char* w = twochars + 3; int cp = prior (w, twochars); assert (cp == 0x65e5); assert (w == twochars); ``` This function has two purposes: one is two iterate backwards through a UTF-8 encoded string. Note that it is usually a better idea to iterate forward instead, since `utf8::next` is faster. The second purpose is to find a beginning of a UTF-8 sequence if we have a random position within a string. Note that in that case `utf8::prior` may not detect an invalid UTF-8 sequence in some scenarios: for instance if there are superfluous trail octets, it will just skip them. `it` will typically point to the beginning of a code point, and `start` will point to the beginning of the string to ensure we don't go backwards too far. `it` is decreased until it points to a lead UTF-8 octet, and then the UTF-8 sequence beginning with that octet is decoded to a 32 bit representation and returned. In case `start` is reached before a UTF-8 lead octet is hit, or if an invalid UTF-8 sequence is started by the lead octet, an `invalid_utf8` exception is thrown. In case `start` equals `it`, a `not_enough_room` exception is thrown. #### utf8::advance Available in version 1.0 and later. Advances an iterator by the specified number of code points within an UTF-8 sequence. ```cpp template void advance (octet_iterator& it, distance_type n, octet_iterator end); ``` `octet_iterator`: an input iterator. `distance_type`: an integral type convertible to `octet_iterator`'s difference type. `it`: a reference to an iterator pointing to the beginning of an UTF-8 encoded code point. After the function returns, it is incremented to point to the nth following code point. `n`: number of code points `it` should be advanced. A negative value means decrement. `end`: limit of the UTF-8 sequence to be processed. If `n` is positive and `it` gets equal to `end` during the extraction of a code point, an `utf8::not_enough_room` exception is thrown. If `n` is negative and `it` reaches `end` while `it` points t a trail byte of a UTF-8 sequence, a `utf8::invalid_code_point` exception is thrown. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; unsigned char* w = twochars; advance (w, 2, twochars + 6); assert (w == twochars + 5); advance (w, -2, twochars); assert (w == twochars); ``` In case of an invalid code point, a `utf8::invalid_code_point` exception is thrown. #### utf8::distance Available in version 1.0 and later. Given the iterators to two UTF-8 encoded code points in a seqence, returns the number of code points between them. ```cpp template typename std::iterator_traits::difference_type distance (octet_iterator first, octet_iterator last); ``` `octet_iterator`: an input iterator. `first`: an iterator to a beginning of a UTF-8 encoded code point. `last`: an iterator to a "post-end" of the last UTF-8 encoded code point in the sequence we are trying to determine the length. It can be the beginning of a new code point, or not. Return value the distance between the iterators, in code points. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; size_t dist = utf8::distance(twochars, twochars + 5); assert (dist == 2); ``` This function is used to find the length (in code points) of a UTF-8 encoded string. The reason it is called _distance_, rather than, say, _length_ is mainly because developers are used that _length_ is an O(1) function. Computing the length of an UTF-8 string is a linear operation, and it looked better to model it after `std::distance` algorithm. In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. If `last` does not point to the past-of-end of a UTF-8 seqence, a `utf8::not_enough_room` exception is thrown. #### utf8::utf16to8 Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Converts a UTF-16 encoded string to UTF-8. ```cpp std::string utf16to8(const std::u16string& s); ``` `s`: a UTF-16 encoded string. Return value: A UTF-8 encoded string. Example of use: ```cpp u16string utf16string = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e}; string u = utf16to8(utf16string); assert (u.size() == 10); ``` In case of invalid UTF-16 sequence, a `utf8::invalid_utf16` exception is thrown. #### utf8::utf16to8 Available in version 3.2 and later. Requires a C++ 17 compliant compiler. Converts a UTF-16 encoded string to UTF-8. ```cpp std::string utf16to8(std::u16string_view s); ``` `s`: a UTF-16 encoded string. Return value: A UTF-8 encoded string. Example of use: ```cpp u16string utf16string = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e}; u16string_view utf16stringview(u16string); string u = utf16to8(utf16string); assert (u.size() == 10); ``` In case of invalid UTF-16 sequence, a `utf8::invalid_utf16` exception is thrown. #### utf8::utf16to8 Available in version 1.0 and later. Converts a UTF-16 encoded string to UTF-8. ```cpp template octet_iterator utf16to8 (u16bit_iterator start, u16bit_iterator end, octet_iterator result); ``` `u16bit_iterator`: an input iterator. `octet_iterator`: an output iterator. `start`: an iterator pointing to the beginning of the UTF-16 encoded string to convert. `end`: an iterator pointing to pass-the-end of the UTF-16 encoded string to convert. `result`: an output iterator to the place in the UTF-8 string where to append the result of conversion. Return value: An iterator pointing to the place after the appended UTF-8 string. Example of use: ```cpp unsigned short utf16string[] = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e}; vector utf8result; utf16to8(utf16string, utf16string + 5, back_inserter(utf8result)); assert (utf8result.size() == 10); ``` In case of invalid UTF-16 sequence, a `utf8::invalid_utf16` exception is thrown. #### utf8::utf8to16 Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Converts an UTF-8 encoded string to UTF-16. ```cpp std::u16string utf8to16(const std::string& s); ``` `s`: an UTF-8 encoded string to convert. Return value: A UTF-16 encoded string Example of use: ```cpp string utf8_with_surrogates = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; u16string utf16result = utf8to16(utf8_with_surrogates); assert (utf16result.length() == 4); assert (utf16result[2] == 0xd834); assert (utf16result[3] == 0xdd1e); ``` In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. #### utf8::utf8to16 Available in version 3.2 and later. Requires a C++ 17 compliant compiler. Converts an UTF-8 encoded string to UTF-16. ```cpp std::u16string utf8to16(std::string_view s); ``` `s`: an UTF-8 encoded string to convert. Return value: A UTF-16 encoded string Example of use: ```cpp string_view utf8_with_surrogates = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; u16string utf16result = utf8to16(utf8_with_surrogates); assert (utf16result.length() == 4); assert (utf16result[2] == 0xd834); assert (utf16result[3] == 0xdd1e); ``` In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. #### utf8::utf8to16 Available in version 1.0 and later. Converts an UTF-8 encoded string to UTF-16 ```cpp template u16bit_iterator utf8to16 (octet_iterator start, octet_iterator end, u16bit_iterator result); ``` `octet_iterator`: an input iterator. `u16bit_iterator`: an output iterator. `start`: an iterator pointing to the beginning of the UTF-8 encoded string to convert. < br /> `end`: an iterator pointing to pass-the-end of the UTF-8 encoded string to convert. `result`: an output iterator to the place in the UTF-16 string where to append the result of conversion. Return value: An iterator pointing to the place after the appended UTF-16 string. Example of use: ```cpp char utf8_with_surrogates[] = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; vector utf16result; utf8to16(utf8_with_surrogates, utf8_with_surrogates + 9, back_inserter(utf16result)); assert (utf16result.size() == 4); assert (utf16result[2] == 0xd834); assert (utf16result[3] == 0xdd1e); ``` In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. If `end` does not point to the past-of-end of a UTF-8 seqence, a `utf8::not_enough_room` exception is thrown. #### utf8::utf32to8 Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Converts a UTF-32 encoded string to UTF-8. ```cpp std::string utf32to8(const std::u32string& s); ``` `s`: a UTF-32 encoded string. Return value: a UTF-8 encoded string. Example of use: ```cpp u32string utf32string = {0x448, 0x65E5, 0x10346}; string utf8result = utf32to8(utf32string); assert (utf8result.size() == 9); ``` In case of invalid UTF-32 string, a `utf8::invalid_code_point` exception is thrown. #### utf8::utf32to8 Available in version 3.2 and later. Requires a C++ 17 compliant compiler. Converts a UTF-32 encoded string to UTF-8. ```cpp std::string utf32to8(std::u32string_view s); ``` `s`: a UTF-32 encoded string. Return value: a UTF-8 encoded string. Example of use: ```cpp u32string utf32string = {0x448, 0x65E5, 0x10346}; u32string_view utf32stringview(utf32string); string utf8result = utf32to8(utf32stringview); assert (utf8result.size() == 9); ``` In case of invalid UTF-32 string, a `utf8::invalid_code_point` exception is thrown. #### utf8::utf32to8 Available in version 1.0 and later. Converts a UTF-32 encoded string to UTF-8. ```cpp template octet_iterator utf32to8 (u32bit_iterator start, u32bit_iterator end, octet_iterator result); ``` `octet_iterator`: an output iterator. `u32bit_iterator`: an input iterator. `start`: an iterator pointing to the beginning of the UTF-32 encoded string to convert. `end`: an iterator pointing to pass-the-end of the UTF-32 encoded string to convert. `result`: an output iterator to the place in the UTF-8 string where to append the result of conversion. Return value: An iterator pointing to the place after the appended UTF-8 string. Example of use: ```cpp int utf32string[] = {0x448, 0x65E5, 0x10346, 0}; vector utf8result; utf32to8(utf32string, utf32string + 3, back_inserter(utf8result)); assert (utf8result.size() == 9); ``` In case of invalid UTF-32 string, a `utf8::invalid_code_point` exception is thrown. #### utf8::utf8to32 Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Converts a UTF-8 encoded string to UTF-32. ```cpp std::u32string utf8to32(const std::string& s); ``` `s`: a UTF-8 encoded string. Return value: a UTF-32 encoded string. Example of use: ```cpp const char* twochars = "\xe6\x97\xa5\xd1\x88"; u32string utf32result = utf8to32(twochars); assert (utf32result.size() == 2); ``` In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. #### utf8::utf8to32 Available in version 3.2 and later. Requires a C++ 17 compliant compiler. Converts a UTF-8 encoded string to UTF-32. ```cpp std::u32string utf8to32(std::string_view s); ``` `s`: a UTF-8 encoded string. Return value: a UTF-32 encoded string. Example of use: ```cpp string_view twochars = "\xe6\x97\xa5\xd1\x88"; u32string utf32result = utf8to32(twochars); assert (utf32result.size() == 2); ``` In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. #### utf8::utf8to32 Available in version 1.0 and later. Converts a UTF-8 encoded string to UTF-32. ```cpp template u32bit_iterator utf8to32 (octet_iterator start, octet_iterator end, u32bit_iterator result); ``` `octet_iterator`: an input iterator. `u32bit_iterator`: an output iterator. `start`: an iterator pointing to the beginning of the UTF-8 encoded string to convert. `end`: an iterator pointing to pass-the-end of the UTF-8 encoded string to convert. `result`: an output iterator to the place in the UTF-32 string where to append the result of conversion. Return value: An iterator pointing to the place after the appended UTF-32 string. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; vector utf32result; utf8to32(twochars, twochars + 5, back_inserter(utf32result)); assert (utf32result.size() == 2); ``` In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. If `end` does not point to the past-of-end of a UTF-8 seqence, a `utf8::not_enough_room` exception is thrown. #### utf8::find_invalid Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Detects an invalid sequence within a UTF-8 string. ```cpp std::size_t find_invalid(const std::string& s); ``` `s`: a UTF-8 encoded string. Return value: the index of the first invalid octet in the UTF-8 string. In case none were found, equals `std::string::npos`. Example of use: ```cpp string utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa"; auto invalid = find_invalid(utf_invalid); assert (invalid == 5); ``` This function is typically used to make sure a UTF-8 string is valid before processing it with other functions. It is especially important to call it if before doing any of the _unchecked_ operations on it. #### utf8::find_invalid Available in version 3.2 and later. Requires a C++ 17 compliant compiler. Detects an invalid sequence within a UTF-8 string. ```cpp std::size_t find_invalid(std::string_view s); ``` `s`: a UTF-8 encoded string. Return value: the index of the first invalid octet in the UTF-8 string. In case none were found, equals `std::string_view::npos`. Example of use: ```cpp string_view utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa"; auto invalid = find_invalid(utf_invalid); assert (invalid == 5); ``` This function is typically used to make sure a UTF-8 string is valid before processing it with other functions. It is especially important to call it if before doing any of the _unchecked_ operations on it. #### utf8::find_invalid Available in version 1.0 and later. Detects an invalid sequence within a UTF-8 string. ```cpp template octet_iterator find_invalid(octet_iterator start, octet_iterator end); ``` `octet_iterator`: an input iterator. `start`: an iterator pointing to the beginning of the UTF-8 string to test for validity. `end`: an iterator pointing to pass-the-end of the UTF-8 string to test for validity. Return value: an iterator pointing to the first invalid octet in the UTF-8 string. In case none were found, equals `end`. Example of use: ```cpp char utf_invalid[] = "\xe6\x97\xa5\xd1\x88\xfa"; char* invalid = find_invalid(utf_invalid, utf_invalid + 6); assert (invalid == utf_invalid + 5); ``` This function is typically used to make sure a UTF-8 string is valid before processing it with other functions. It is especially important to call it if before doing any of the _unchecked_ operations on it. #### utf8::is_valid Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Checks whether a string object contains valid UTF-8 encoded text. ```cpp bool is_valid(const std::string& s); ``` `s`: a UTF-8 encoded string. Return value: `true` if the string contains valid UTF-8 encoded text; `false` if not. Example of use: ```cpp char utf_invalid[] = "\xe6\x97\xa5\xd1\x88\xfa"; bool bvalid = is_valid(utf_invalid); assert (bvalid == false); ``` You may want to use `is_valid` to make sure that a string contains valid UTF-8 text without the need to know where it fails if it is not valid. #### utf8::is_valid Available in version 3.2 and later. Requires a C++ 17 compliant compiler. Checks whether a string object contains valid UTF-8 encoded text. ```cpp bool is_valid(std::string_view s); ``` `s`: a UTF-8 encoded string. Return value: `true` if the string contains valid UTF-8 encoded text; `false` if not. Example of use: ```cpp string_view utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa"; bool bvalid = is_valid(utf_invalid); assert (bvalid == false); ``` You may want to use `is_valid` to make sure that a string contains valid UTF-8 text without the need to know where it fails if it is not valid. #### utf8::is_valid Available in version 1.0 and later. Checks whether a sequence of octets is a valid UTF-8 string. ```cpp template bool is_valid(octet_iterator start, octet_iterator end); ``` `octet_iterator`: an input iterator. `start`: an iterator pointing to the beginning of the UTF-8 string to test for validity. `end`: an iterator pointing to pass-the-end of the UTF-8 string to test for validity. Return value: `true` if the sequence is a valid UTF-8 string; `false` if not. Example of use: ```cpp char utf_invalid[] = "\xe6\x97\xa5\xd1\x88\xfa"; bool bvalid = is_valid(utf_invalid, utf_invalid + 6); assert (bvalid == false); ``` `is_valid` is a shorthand for `find_invalid(start, end) == end;`. You may want to use it to make sure that a byte seqence is a valid UTF-8 string without the need to know where it fails if it is not valid. #### utf8::replace_invalid Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Replaces all invalid UTF-8 sequences within a string with a replacement marker. ```cpp std::string replace_invalid(const std::string& s, char32_t replacement); std::string replace_invalid(const std::string& s); ``` `s`: a UTF-8 encoded string. `replacement`: A Unicode code point for the replacement marker. The version without this parameter assumes the value `0xfffd` Return value: A UTF-8 encoded string with replaced invalid sequences. Example of use: ```cpp string invalid_sequence = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z"; string replace_invalid_result = replace_invalid(invalid_sequence, '?'); bvalid = is_valid(replace_invalid_result); assert (bvalid); const string fixed_invalid_sequence = "a????z"; assert (fixed_invalid_sequence == replace_invalid_result); ``` #### utf8::replace_invalid Available in version 3.2 and later. Requires a C++ 17 compliant compiler. Replaces all invalid UTF-8 sequences within a string with a replacement marker. ```cpp std::string replace_invalid(std::string_view s, char32_t replacement); std::string replace_invalid(std::string_view s); ``` `s`: a UTF-8 encoded string. `replacement`: A Unicode code point for the replacement marker. The version without this parameter assumes the value `0xfffd` Return value: A UTF-8 encoded string with replaced invalid sequences. Example of use: ```cpp string_view invalid_sequence = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z"; string replace_invalid_result = replace_invalid(invalid_sequence, '?'); bool bvalid = is_valid(replace_invalid_result); assert (bvalid); const string fixed_invalid_sequence = "a????z"; assert(fixed_invalid_sequence, replace_invalid_result); ``` #### utf8::replace_invalid Available in version 2.0 and later. Replaces all invalid UTF-8 sequences within a string with a replacement marker. ```cpp template output_iterator replace_invalid(octet_iterator start, octet_iterator end, output_iterator out, uint32_t replacement); template output_iterator replace_invalid(octet_iterator start, octet_iterator end, output_iterator out); ``` `octet_iterator`: an input iterator. `output_iterator`: an output iterator. `start`: an iterator pointing to the beginning of the UTF-8 string to look for invalid UTF-8 sequences. `end`: an iterator pointing to pass-the-end of the UTF-8 string to look for invalid UTF-8 sequences. `out`: An output iterator to the range where the result of replacement is stored. `replacement`: A Unicode code point for the replacement marker. The version without this parameter assumes the value `0xfffd` Return value: An iterator pointing to the place after the UTF-8 string with replaced invalid sequences. Example of use: ```cpp char invalid_sequence[] = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z"; vector replace_invalid_result; replace_invalid (invalid_sequence, invalid_sequence + sizeof(invalid_sequence), back_inserter(replace_invalid_result), '?'); bvalid = is_valid(replace_invalid_result.begin(), replace_invalid_result.end()); assert (bvalid); char* fixed_invalid_sequence = "a????z"; assert (std::equal(replace_invalid_result.begin(), replace_invalid_result.end(), fixed_invalid_sequence)); ``` `replace_invalid` does not perform in-place replacement of invalid sequences. Rather, it produces a copy of the original string with the invalid sequences replaced with a replacement marker. Therefore, `out` must not be in the `[start, end]` range. #### utf8::starts_with_bom Available in version 3.0 and later. Requires a C++ 11 compliant compiler. Checks whether a string starts with a UTF-8 byte order mark (BOM) ```cpp bool starts_with_bom(const std::string& s); ``` `s`: a UTF-8 encoded string. Return value: `true` if the string starts with a UTF-8 byte order mark; `false` if not. Example of use: ```cpp string byte_order_mark = {char(0xef), char(0xbb), char(0xbf)}; bool bbom = starts_with_bom(byte_order_mark); assert (bbom == true); string threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; bool no_bbom = starts_with_bom(threechars); assert (no_bbom == false); ``` The typical use of this function is to check the first three bytes of a file. If they form the UTF-8 BOM, we want to skip them before processing the actual UTF-8 encoded text. #### utf8::starts_with_bom Available in version 3.2 and later. Requires a C++ 17 compliant compiler. Checks whether a string starts with a UTF-8 byte order mark (BOM) ```cpp bool starts_with_bom(std::string_view s); ``` `s`: a UTF-8 encoded string. Return value: `true` if the string starts with a UTF-8 byte order mark; `false` if not. Example of use: ```cpp string byte_order_mark = {char(0xef), char(0xbb), char(0xbf)}; string_view byte_order_mark_view(byte_order_mark); bool bbom = starts_with_bom(byte_order_mark_view); assert (bbom); string_view threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; bool no_bbom = starts_with_bom(threechars); assert (!no_bbom); ``` The typical use of this function is to check the first three bytes of a file. If they form the UTF-8 BOM, we want to skip them before processing the actual UTF-8 encoded text. #### utf8::starts_with_bom Available in version 2.3 and later. Checks whether an octet sequence starts with a UTF-8 byte order mark (BOM) ```cpp template bool starts_with_bom (octet_iterator it, octet_iterator end); ``` `octet_iterator`: an input iterator. `it`: beginning of the octet sequence to check `end`: pass-end of the sequence to check Return value: `true` if the sequence starts with a UTF-8 byte order mark; `false` if not. Example of use: ```cpp unsigned char byte_order_mark[] = {0xef, 0xbb, 0xbf}; bool bbom = starts_with_bom(byte_order_mark, byte_order_mark + sizeof(byte_order_mark)); assert (bbom == true); ``` The typical use of this function is to check the first three bytes of a file. If they form the UTF-8 BOM, we want to skip them before processing the actual UTF-8 encoded text. ### Types From utf8 Namespace #### utf8::exception Available in version 2.3 and later. Base class for the exceptions thrown by UTF CPP library functions. ```cpp class exception : public std::exception {}; ``` Example of use: ```cpp try { code_that_uses_utf_cpp_library(); } catch(const utf8::exception& utfcpp_ex) { cerr << utfcpp_ex.what(); } ``` #### utf8::invalid_code_point Available in version 1.0 and later. Thrown by UTF8 CPP functions such as `advance` and `next` if an UTF-8 sequence represents and invalid code point. ```cpp class invalid_code_point : public exception { public: uint32_t code_point() const; }; ``` Member function `code_point()` can be used to determine the invalid code point that caused the exception to be thrown. #### utf8::invalid_utf8 Available in version 1.0 and later. Thrown by UTF8 CPP functions such as `next` and `prior` if an invalid UTF-8 sequence is detected during decoding. ```cpp class invalid_utf8 : public exception { public: uint8_t utf8_octet() const; }; ``` Member function `utf8_octet()` can be used to determine the beginning of the byte sequence that caused the exception to be thrown. #### utf8::invalid_utf16 Available in version 1.0 and later. Thrown by UTF8 CPP function `utf16to8` if an invalid UTF-16 sequence is detected during decoding. ```cpp class invalid_utf16 : public exception { public: uint16_t utf16_word() const; }; ``` Member function `utf16_word()` can be used to determine the UTF-16 code unit that caused the exception to be thrown. #### utf8::not_enough_room Available in version 1.0 and later. Thrown by UTF8 CPP functions such as `next` if the end of the decoded UTF-8 sequence was reached before the code point was decoded. ```cpp class not_enough_room : public exception {}; ``` #### utf8::iterator Available in version 2.0 and later. Adapts the underlying octet iterator to iterate over the sequence of code points, rather than raw octets. ```cpp template class iterator; ``` ##### Member functions `iterator();` the deafult constructor; the underlying octet_iterator is constructed with its default constructor. `explicit iterator (const octet_iterator& octet_it, const octet_iterator& range_start, const octet_iterator& range_end);` a constructor that initializes the underlying octet_iterator with octet_it and sets the range in which the iterator is considered valid. `octet_iterator base () const;` returns the underlying octet_iterator. `uint32_t operator * () const;` decodes the utf-8 sequence the underlying octet_iterator is pointing to and returns the code point. `bool operator == (const iterator& rhs) const;` returns `true` if the two underlaying iterators are equal. `bool operator != (const iterator& rhs) const;` returns `true` if the two underlaying iterators are not equal. `iterator& operator ++ ();` the prefix increment - moves the iterator to the next UTF-8 encoded code point. `iterator operator ++ (int);` the postfix increment - moves the iterator to the next UTF-8 encoded code point and returns the current one. `iterator& operator -- ();` the prefix decrement - moves the iterator to the previous UTF-8 encoded code point. `iterator operator -- (int);` the postfix decrement - moves the iterator to the previous UTF-8 encoded code point and returns the current one. Example of use: ```cpp char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; utf8::iterator it(threechars, threechars, threechars + 9); utf8::iterator it2 = it; assert (it2 == it); assert (*it == 0x10346); assert (*(++it) == 0x65e5); assert ((*it++) == 0x65e5); assert (*it == 0x0448); assert (it != it2); utf8::iterator endit (threechars + 9, threechars, threechars + 9); assert (++it == endit); assert (*(--it) == 0x0448); assert ((*it--) == 0x0448); assert (*it == 0x65e5); assert (--it == utf8::iterator(threechars, threechars, threechars + 9)); assert (*it == 0x10346); ``` The purpose of `utf8::iterator` adapter is to enable easy iteration as well as the use of STL algorithms with UTF-8 encoded strings. Increment and decrement operators are implemented in terms of `utf8::next()` and `utf8::prior()` functions. Note that `utf8::iterator` adapter is a checked iterator. It operates on the range specified in the constructor; any attempt to go out of that range will result in an exception. Even the comparison operators require both iterator object to be constructed against the same range - otherwise an exception is thrown. Typically, the range will be determined by sequence container functions `begin` and `end`, i.e.: ```cpp std::string s = "example"; utf8::iterator i (s.begin(), s.begin(), s.end()); ``` ### Functions From utf8::unchecked Namespace #### utf8::unchecked::append Available in version 1.0 and later. Encodes a 32 bit code point as a UTF-8 sequence of octets and appends the sequence to a UTF-8 string. ```cpp template octet_iterator append(uint32_t cp, octet_iterator result); ``` `cp`: A 32 bit integer representing a code point to append to the sequence. `result`: An output iterator to the place in the sequence where to append the code point. Return value: An iterator pointing to the place after the newly appended sequence. Example of use: ```cpp unsigned char u[5] = {0,0,0,0,0}; unsigned char* end = unchecked::append(0x0448, u); assert (u[0] == 0xd1 && u[1] == 0x88 && u[2] == 0 && u[3] == 0 && u[4] == 0); ``` This is a faster but less safe version of `utf8::append`. It does not check for validity of the supplied code point, and may produce an invalid UTF-8 sequence. #### utf8::unchecked::next Available in version 1.0 and later. Given the iterator to the beginning of a UTF-8 sequence, it returns the code point and moves the iterator to the next position. ```cpp template uint32_t next(octet_iterator& it); ``` `it`: a reference to an iterator pointing to the beginning of an UTF-8 encoded code point. After the function returns, it is incremented to point to the beginning of the next code point. Return value: the 32 bit representation of the processed UTF-8 code point. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; char* w = twochars; int cp = unchecked::next(w); assert (cp == 0x65e5); assert (w == twochars + 3); ``` This is a faster but less safe version of `utf8::next`. It does not check for validity of the supplied UTF-8 sequence. #### utf8::unchecked::peek_next Available in version 2.1 and later. Given the iterator to the beginning of a UTF-8 sequence, it returns the code point. ```cpp template uint32_t peek_next(octet_iterator it); ``` `it`: an iterator pointing to the beginning of an UTF-8 encoded code point. Return value: the 32 bit representation of the processed UTF-8 code point. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; char* w = twochars; int cp = unchecked::peek_next(w); assert (cp == 0x65e5); assert (w == twochars); ``` This is a faster but less safe version of `utf8::peek_next`. It does not check for validity of the supplied UTF-8 sequence. #### utf8::unchecked::prior Available in version 1.02 and later. Given a reference to an iterator pointing to an octet in a UTF-8 seqence, it decreases the iterator until it hits the beginning of the previous UTF-8 encoded code point and returns the 32 bits representation of the code point. ```cpp template uint32_t prior(octet_iterator& it); ``` `it`: a reference pointing to an octet within a UTF-8 encoded string. After the function returns, it is decremented to point to the beginning of the previous code point. Return value: the 32 bit representation of the previous code point. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; char* w = twochars + 3; int cp = unchecked::prior (w); assert (cp == 0x65e5); assert (w == twochars); ``` This is a faster but less safe version of `utf8::prior`. It does not check for validity of the supplied UTF-8 sequence and offers no boundary checking. #### utf8::unchecked::advance Available in version 1.0 and later. Advances an iterator by the specified number of code points within an UTF-8 sequence. ```cpp template void advance (octet_iterator& it, distance_type n); ``` `it`: a reference to an iterator pointing to the beginning of an UTF-8 encoded code point. After the function returns, it is incremented to point to the nth following code point. `n`: number of code points `it` should be advanced. A negative value means decrement. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; char* w = twochars; unchecked::advance (w, 2); assert (w == twochars + 5); ``` This is a faster but less safe version of `utf8::advance`. It does not check for validity of the supplied UTF-8 sequence and offers no boundary checking. #### utf8::unchecked::distance Available in version 1.0 and later. Given the iterators to two UTF-8 encoded code points in a seqence, returns the number of code points between them. ```cpp template typename std::iterator_traits::difference_type distance (octet_iterator first, octet_iterator last); ``` `first`: an iterator to a beginning of a UTF-8 encoded code point. `last`: an iterator to a "post-end" of the last UTF-8 encoded code point in the sequence we are trying to determine the length. It can be the beginning of a new code point, or not. Return value: the distance between the iterators, in code points. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; size_t dist = utf8::unchecked::distance(twochars, twochars + 5); assert (dist == 2); ``` This is a faster but less safe version of `utf8::distance`. It does not check for validity of the supplied UTF-8 sequence. #### utf8::unchecked::utf16to8 Available in version 1.0 and later. Converts a UTF-16 encoded string to UTF-8. ```cpp template octet_iterator utf16to8 (u16bit_iterator start, u16bit_iterator end, octet_iterator result); ``` `start`: an iterator pointing to the beginning of the UTF-16 encoded string to convert. `end`: an iterator pointing to pass-the-end of the UTF-16 encoded string to convert. `result`: an output iterator to the place in the UTF-8 string where to append the result of conversion. Return value: An iterator pointing to the place after the appended UTF-8 string. Example of use: ```cpp unsigned short utf16string[] = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e}; vector utf8result; unchecked::utf16to8(utf16string, utf16string + 5, back_inserter(utf8result)); assert (utf8result.size() == 10); ``` This is a faster but less safe version of `utf8::utf16to8`. It does not check for validity of the supplied UTF-16 sequence. #### utf8::unchecked::utf8to16 Available in version 1.0 and later. Converts an UTF-8 encoded string to UTF-16 ```cpp template u16bit_iterator utf8to16 (octet_iterator start, octet_iterator end, u16bit_iterator result); ``` `start`: an iterator pointing to the beginning of the UTF-8 encoded string to convert. < br /> `end`: an iterator pointing to pass-the-end of the UTF-8 encoded string to convert. `result`: an output iterator to the place in the UTF-16 string where to append the result of conversion. Return value: An iterator pointing to the place after the appended UTF-16 string. Example of use: ```cpp char utf8_with_surrogates[] = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; vector utf16result; unchecked::utf8to16(utf8_with_surrogates, utf8_with_surrogates + 9, back_inserter(utf16result)); assert (utf16result.size() == 4); assert (utf16result[2] == 0xd834); assert (utf16result[3] == 0xdd1e); ``` This is a faster but less safe version of `utf8::utf8to16`. It does not check for validity of the supplied UTF-8 sequence. #### utf8::unchecked::utf32to8 Available in version 1.0 and later. Converts a UTF-32 encoded string to UTF-8. ```cpp template octet_iterator utf32to8 (u32bit_iterator start, u32bit_iterator end, octet_iterator result); ``` `start`: an iterator pointing to the beginning of the UTF-32 encoded string to convert. `end`: an iterator pointing to pass-the-end of the UTF-32 encoded string to convert. `result`: an output iterator to the place in the UTF-8 string where to append the result of conversion. Return value: An iterator pointing to the place after the appended UTF-8 string. Example of use: ```cpp int utf32string[] = {0x448, 0x65e5, 0x10346, 0}; vector utf8result; utf32to8(utf32string, utf32string + 3, back_inserter(utf8result)); assert (utf8result.size() == 9); ``` This is a faster but less safe version of `utf8::utf32to8`. It does not check for validity of the supplied UTF-32 sequence. #### utf8::unchecked::utf8to32 Available in version 1.0 and later. Converts a UTF-8 encoded string to UTF-32. ```cpp template u32bit_iterator utf8to32 (octet_iterator start, octet_iterator end, u32bit_iterator result); ``` `start`: an iterator pointing to the beginning of the UTF-8 encoded string to convert. `end`: an iterator pointing to pass-the-end of the UTF-8 encoded string to convert. `result`: an output iterator to the place in the UTF-32 string where to append the result of conversion. Return value: An iterator pointing to the place after the appended UTF-32 string. Example of use: ```cpp char* twochars = "\xe6\x97\xa5\xd1\x88"; vector utf32result; unchecked::utf8to32(twochars, twochars + 5, back_inserter(utf32result)); assert (utf32result.size() == 2); ``` This is a faster but less safe version of `utf8::utf8to32`. It does not check for validity of the supplied UTF-8 sequence. #### utf8::unchecked::replace_invalid Available in version 3.1 and later. Replaces all invalid UTF-8 sequences within a string with a replacement marker. ```cpp template output_iterator replace_invalid(octet_iterator start, octet_iterator end, output_iterator out, uint32_t replacement); template output_iterator replace_invalid(octet_iterator start, octet_iterator end, output_iterator out); ``` `octet_iterator`: an input iterator. `output_iterator`: an output iterator. `start`: an iterator pointing to the beginning of the UTF-8 string to look for invalid UTF-8 sequences. `end`: an iterator pointing to pass-the-end of the UTF-8 string to look for invalid UTF-8 sequences. `out`: An output iterator to the range where the result of replacement is stored. `replacement`: A Unicode code point for the replacement marker. The version without this parameter assumes the value `0xfffd` Return value: An iterator pointing to the place after the UTF-8 string with replaced invalid sequences. Example of use: ```cpp char invalid_sequence[] = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z"; vector replace_invalid_result; unchecked::replace_invalid (invalid_sequence, invalid_sequence + sizeof(invalid_sequence), back_inserter(replace_invalid_result), '?'); bvalid = utf8::is_valid(replace_invalid_result.begin(), replace_invalid_result.end()); assert (bvalid); char* fixed_invalid_sequence = "a????z"; assert (std::equal(replace_invalid_result.begin(), replace_invalid_result.end(), fixed_invalid_sequence)); ``` `replace_invalid` does not perform in-place replacement of invalid sequences. Rather, it produces a copy of the original string with the invalid sequences replaced with a replacement marker. Therefore, `out` must not be in the `[start, end]` range. Unlike `utf8::replace_invalid`, this function does not verify validity of the replacement marker. ### Types From utf8::unchecked Namespace #### utf8::iterator Available in version 2.0 and later. Adapts the underlying octet iterator to iterate over the sequence of code points, rather than raw octets. ```cpp template class iterator; ``` ##### Member functions `iterator();` the deafult constructor; the underlying octet_iterator is constructed with its default constructor. `explicit iterator (const octet_iterator& octet_it);` a constructor that initializes the underlying octet_iterator with `octet_it`. `octet_iterator base () const;` returns the underlying octet_iterator. `uint32_t operator * () const;` decodes the utf-8 sequence the underlying octet_iterator is pointing to and returns the code point. `bool operator == (const iterator& rhs) const;` returns `true` if the two underlaying iterators are equal. `bool operator != (const iterator& rhs) const;` returns `true` if the two underlaying iterators are not equal. `iterator& operator ++ ();` the prefix increment - moves the iterator to the next UTF-8 encoded code point. `iterator operator ++ (int);` the postfix increment - moves the iterator to the next UTF-8 encoded code point and returns the current one. `iterator& operator -- ();` the prefix decrement - moves the iterator to the previous UTF-8 encoded code point. `iterator operator -- (int);` the postfix decrement - moves the iterator to the previous UTF-8 encoded code point and returns the current one. Example of use: ```cpp char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; utf8::unchecked::iterator un_it(threechars); utf8::unchecked::iterator un_it2 = un_it; assert (un_it2 == un_it); assert (*un_it == 0x10346); assert (*(++un_it) == 0x65e5); assert ((*un_it++) == 0x65e5); assert (*un_it == 0x0448); assert (un_it != un_it2); utf8::::unchecked::iterator un_endit (threechars + 9); assert (++un_it == un_endit); assert (*(--un_it) == 0x0448); assert ((*un_it--) == 0x0448); assert (*un_it == 0x65e5); assert (--un_it == utf8::unchecked::iterator(threechars)); assert (*un_it == 0x10346); ``` This is an unchecked version of `utf8::iterator`. It is faster in many cases, but offers no validity or range checks. ## Links 1. [The Unicode Consortium](http://www.unicode.org/). 2. [ICU Library](http://icu.sourceforge.net/). 3. [UTF-8 at Wikipedia](http://en.wikipedia.org/wiki/UTF-8) 4. [UTF-8 and Unicode FAQ for Unix/Linux](http://www.cl.cam.ac.uk/~mgk25/unicode.html) utfcpp-3.2.1/extern/000077500000000000000000000000001405716242000143245ustar00rootroot00000000000000utfcpp-3.2.1/extern/ftest/000077500000000000000000000000001405716242000154515ustar00rootroot00000000000000utfcpp-3.2.1/samples/000077500000000000000000000000001405716242000144635ustar00rootroot00000000000000utfcpp-3.2.1/samples/docsample.cpp000066400000000000000000000041131405716242000171350ustar00rootroot00000000000000#include "../source/utf8.h" #include #include #include #include using namespace std; int main(int argc, char** argv) { if (argc != 2) { cout << "\nUsage: docsample filename\n"; return 0; } const char* test_file_path = argv[1]; // Open the test file (must be UTF-8 encoded) ifstream fs8(test_file_path); if (!fs8.is_open()) { cout << "Could not open " << test_file_path << endl; return 0; } unsigned line_count = 1; string line; // Play with all the lines in the file while (getline(fs8, line)) { // check for invalid utf-8 (for a simple yes/no check, there is also utf8::is_valid function) #if __cplusplus >= 201103L // C++ 11 or later auto end_it = utf8::find_invalid(line.begin(), line.end()); #else string::iterator end_it = utf8::find_invalid(line.begin(), line.end()); #endif // C++ 11 if (end_it != line.end()) { cout << "Invalid UTF-8 encoding detected at line " << line_count << "\n"; cout << "This part is fine: " << string(line.begin(), end_it) << "\n"; } // Get the line length (at least for the valid part) ptrdiff_t length = utf8::distance(line.begin(), end_it); cout << "Length of line " << line_count << " is " << length << "\n"; // Convert it to utf-16 #if __cplusplus >= 201103L // C++ 11 or later u16string utf16line = utf8::utf8to16(line); #else vector utf16line; utf8::utf8to16(line.begin(), end_it, back_inserter(utf16line)); #endif // C++ 11 // And back to utf-8; #if __cplusplus >= 201103L // C++ 11 or later string utf8line = utf8::utf16to8(utf16line); #else string utf8line; utf8::utf16to8(utf16line.begin(), utf16line.end(), back_inserter(utf8line)); #endif // C++ 11 // Confirm that the conversion went OK: if (utf8line != string(line.begin(), end_it)) cout << "Error in UTF-16 conversion at line: " << line_count << "\n"; line_count++; } return 0; } utfcpp-3.2.1/source/000077500000000000000000000000001405716242000143175ustar00rootroot00000000000000utfcpp-3.2.1/source/utf8.h000066400000000000000000000027611405716242000153640ustar00rootroot00000000000000// Copyright 2006 Nemanja Trifunovic /* Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef UTF8_FOR_CPP_2675DCD0_9480_4c0c_B92A_CC14C027B731 #define UTF8_FOR_CPP_2675DCD0_9480_4c0c_B92A_CC14C027B731 #include "utf8/checked.h" #include "utf8/unchecked.h" #endif // header guard utfcpp-3.2.1/source/utf8/000077500000000000000000000000001405716242000152055ustar00rootroot00000000000000utfcpp-3.2.1/source/utf8/checked.h000066400000000000000000000302721405716242000167500ustar00rootroot00000000000000// Copyright 2006-2016 Nemanja Trifunovic /* Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef UTF8_FOR_CPP_CHECKED_H_2675DCD0_9480_4c0c_B92A_CC14C027B731 #define UTF8_FOR_CPP_CHECKED_H_2675DCD0_9480_4c0c_B92A_CC14C027B731 #include "core.h" #include namespace utf8 { // Base for the exceptions that may be thrown from the library class exception : public ::std::exception { }; // Exceptions that may be thrown from the library functions. class invalid_code_point : public exception { uint32_t cp; public: invalid_code_point(uint32_t codepoint) : cp(codepoint) {} virtual const char* what() const UTF_CPP_NOEXCEPT UTF_CPP_OVERRIDE { return "Invalid code point"; } uint32_t code_point() const {return cp;} }; class invalid_utf8 : public exception { uint8_t u8; public: invalid_utf8 (uint8_t u) : u8(u) {} virtual const char* what() const UTF_CPP_NOEXCEPT UTF_CPP_OVERRIDE { return "Invalid UTF-8"; } uint8_t utf8_octet() const {return u8;} }; class invalid_utf16 : public exception { uint16_t u16; public: invalid_utf16 (uint16_t u) : u16(u) {} virtual const char* what() const UTF_CPP_NOEXCEPT UTF_CPP_OVERRIDE { return "Invalid UTF-16"; } uint16_t utf16_word() const {return u16;} }; class not_enough_room : public exception { public: virtual const char* what() const UTF_CPP_NOEXCEPT UTF_CPP_OVERRIDE { return "Not enough space"; } }; /// The library API - functions intended to be called by the users template octet_iterator append(uint32_t cp, octet_iterator result) { if (!utf8::internal::is_code_point_valid(cp)) throw invalid_code_point(cp); if (cp < 0x80) // one octet *(result++) = static_cast(cp); else if (cp < 0x800) { // two octets *(result++) = static_cast((cp >> 6) | 0xc0); *(result++) = static_cast((cp & 0x3f) | 0x80); } else if (cp < 0x10000) { // three octets *(result++) = static_cast((cp >> 12) | 0xe0); *(result++) = static_cast(((cp >> 6) & 0x3f) | 0x80); *(result++) = static_cast((cp & 0x3f) | 0x80); } else { // four octets *(result++) = static_cast((cp >> 18) | 0xf0); *(result++) = static_cast(((cp >> 12) & 0x3f) | 0x80); *(result++) = static_cast(((cp >> 6) & 0x3f) | 0x80); *(result++) = static_cast((cp & 0x3f) | 0x80); } return result; } template output_iterator replace_invalid(octet_iterator start, octet_iterator end, output_iterator out, uint32_t replacement) { while (start != end) { octet_iterator sequence_start = start; internal::utf_error err_code = utf8::internal::validate_next(start, end); switch (err_code) { case internal::UTF8_OK : for (octet_iterator it = sequence_start; it != start; ++it) *out++ = *it; break; case internal::NOT_ENOUGH_ROOM: out = utf8::append (replacement, out); start = end; break; case internal::INVALID_LEAD: out = utf8::append (replacement, out); ++start; break; case internal::INCOMPLETE_SEQUENCE: case internal::OVERLONG_SEQUENCE: case internal::INVALID_CODE_POINT: out = utf8::append (replacement, out); ++start; // just one replacement mark for the sequence while (start != end && utf8::internal::is_trail(*start)) ++start; break; } } return out; } template inline output_iterator replace_invalid(octet_iterator start, octet_iterator end, output_iterator out) { static const uint32_t replacement_marker = utf8::internal::mask16(0xfffd); return utf8::replace_invalid(start, end, out, replacement_marker); } template uint32_t next(octet_iterator& it, octet_iterator end) { uint32_t cp = 0; internal::utf_error err_code = utf8::internal::validate_next(it, end, cp); switch (err_code) { case internal::UTF8_OK : break; case internal::NOT_ENOUGH_ROOM : throw not_enough_room(); case internal::INVALID_LEAD : case internal::INCOMPLETE_SEQUENCE : case internal::OVERLONG_SEQUENCE : throw invalid_utf8(*it); case internal::INVALID_CODE_POINT : throw invalid_code_point(cp); } return cp; } template uint32_t peek_next(octet_iterator it, octet_iterator end) { return utf8::next(it, end); } template uint32_t prior(octet_iterator& it, octet_iterator start) { // can't do much if it == start if (it == start) throw not_enough_room(); octet_iterator end = it; // Go back until we hit either a lead octet or start while (utf8::internal::is_trail(*(--it))) if (it == start) throw invalid_utf8(*it); // error - no lead byte in the sequence return utf8::peek_next(it, end); } template void advance (octet_iterator& it, distance_type n, octet_iterator end) { const distance_type zero(0); if (n < zero) { // backward for (distance_type i = n; i < zero; ++i) utf8::prior(it, end); } else { // forward for (distance_type i = zero; i < n; ++i) utf8::next(it, end); } } template typename std::iterator_traits::difference_type distance (octet_iterator first, octet_iterator last) { typename std::iterator_traits::difference_type dist; for (dist = 0; first < last; ++dist) utf8::next(first, last); return dist; } template octet_iterator utf16to8 (u16bit_iterator start, u16bit_iterator end, octet_iterator result) { while (start != end) { uint32_t cp = utf8::internal::mask16(*start++); // Take care of surrogate pairs first if (utf8::internal::is_lead_surrogate(cp)) { if (start != end) { uint32_t trail_surrogate = utf8::internal::mask16(*start++); if (utf8::internal::is_trail_surrogate(trail_surrogate)) cp = (cp << 10) + trail_surrogate + internal::SURROGATE_OFFSET; else throw invalid_utf16(static_cast(trail_surrogate)); } else throw invalid_utf16(static_cast(cp)); } // Lone trail surrogate else if (utf8::internal::is_trail_surrogate(cp)) throw invalid_utf16(static_cast(cp)); result = utf8::append(cp, result); } return result; } template u16bit_iterator utf8to16 (octet_iterator start, octet_iterator end, u16bit_iterator result) { while (start < end) { uint32_t cp = utf8::next(start, end); if (cp > 0xffff) { //make a surrogate pair *result++ = static_cast((cp >> 10) + internal::LEAD_OFFSET); *result++ = static_cast((cp & 0x3ff) + internal::TRAIL_SURROGATE_MIN); } else *result++ = static_cast(cp); } return result; } template octet_iterator utf32to8 (u32bit_iterator start, u32bit_iterator end, octet_iterator result) { while (start != end) result = utf8::append(*(start++), result); return result; } template u32bit_iterator utf8to32 (octet_iterator start, octet_iterator end, u32bit_iterator result) { while (start < end) (*result++) = utf8::next(start, end); return result; } // The iterator class template class iterator { octet_iterator it; octet_iterator range_start; octet_iterator range_end; public: typedef uint32_t value_type; typedef uint32_t* pointer; typedef uint32_t& reference; typedef std::ptrdiff_t difference_type; typedef std::bidirectional_iterator_tag iterator_category; iterator () {} explicit iterator (const octet_iterator& octet_it, const octet_iterator& rangestart, const octet_iterator& rangeend) : it(octet_it), range_start(rangestart), range_end(rangeend) { if (it < range_start || it > range_end) throw std::out_of_range("Invalid utf-8 iterator position"); } // the default "big three" are OK octet_iterator base () const { return it; } uint32_t operator * () const { octet_iterator temp = it; return utf8::next(temp, range_end); } bool operator == (const iterator& rhs) const { if (range_start != rhs.range_start || range_end != rhs.range_end) throw std::logic_error("Comparing utf-8 iterators defined with different ranges"); return (it == rhs.it); } bool operator != (const iterator& rhs) const { return !(operator == (rhs)); } iterator& operator ++ () { utf8::next(it, range_end); return *this; } iterator operator ++ (int) { iterator temp = *this; utf8::next(it, range_end); return temp; } iterator& operator -- () { utf8::prior(it, range_start); return *this; } iterator operator -- (int) { iterator temp = *this; utf8::prior(it, range_start); return temp; } }; // class iterator } // namespace utf8 #if UTF_CPP_CPLUSPLUS >= 201703L // C++ 17 or later #include "cpp17.h" #elif UTF_CPP_CPLUSPLUS >= 201103L // C++ 11 or later #include "cpp11.h" #endif // C++ 11 or later #endif //header guard utfcpp-3.2.1/source/utf8/core.h000066400000000000000000000252601405716242000163130ustar00rootroot00000000000000// Copyright 2006 Nemanja Trifunovic /* Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef UTF8_FOR_CPP_CORE_H_2675DCD0_9480_4c0c_B92A_CC14C027B731 #define UTF8_FOR_CPP_CORE_H_2675DCD0_9480_4c0c_B92A_CC14C027B731 #include // Determine the C++ standard version. // If the user defines UTF_CPP_CPLUSPLUS, use that. // Otherwise, trust the unreliable predefined macro __cplusplus #if !defined UTF_CPP_CPLUSPLUS #define UTF_CPP_CPLUSPLUS __cplusplus #endif #if UTF_CPP_CPLUSPLUS >= 201103L // C++ 11 or later #define UTF_CPP_OVERRIDE override #define UTF_CPP_NOEXCEPT noexcept #else // C++ 98/03 #define UTF_CPP_OVERRIDE #define UTF_CPP_NOEXCEPT throw() #endif // C++ 11 or later namespace utf8 { // The typedefs for 8-bit, 16-bit and 32-bit unsigned integers // You may need to change them to match your system. // These typedefs have the same names as ones from cstdint, or boost/cstdint typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; // Helper code - not intended to be directly called by the library users. May be changed at any time namespace internal { // Unicode constants // Leading (high) surrogates: 0xd800 - 0xdbff // Trailing (low) surrogates: 0xdc00 - 0xdfff const uint16_t LEAD_SURROGATE_MIN = 0xd800u; const uint16_t LEAD_SURROGATE_MAX = 0xdbffu; const uint16_t TRAIL_SURROGATE_MIN = 0xdc00u; const uint16_t TRAIL_SURROGATE_MAX = 0xdfffu; const uint16_t LEAD_OFFSET = 0xd7c0u; // LEAD_SURROGATE_MIN - (0x10000 >> 10) const uint32_t SURROGATE_OFFSET = 0xfca02400u; // 0x10000u - (LEAD_SURROGATE_MIN << 10) - TRAIL_SURROGATE_MIN // Maximum valid value for a Unicode code point const uint32_t CODE_POINT_MAX = 0x0010ffffu; template inline uint8_t mask8(octet_type oc) { return static_cast(0xff & oc); } template inline uint16_t mask16(u16_type oc) { return static_cast(0xffff & oc); } template inline bool is_trail(octet_type oc) { return ((utf8::internal::mask8(oc) >> 6) == 0x2); } template inline bool is_lead_surrogate(u16 cp) { return (cp >= LEAD_SURROGATE_MIN && cp <= LEAD_SURROGATE_MAX); } template inline bool is_trail_surrogate(u16 cp) { return (cp >= TRAIL_SURROGATE_MIN && cp <= TRAIL_SURROGATE_MAX); } template inline bool is_surrogate(u16 cp) { return (cp >= LEAD_SURROGATE_MIN && cp <= TRAIL_SURROGATE_MAX); } template inline bool is_code_point_valid(u32 cp) { return (cp <= CODE_POINT_MAX && !utf8::internal::is_surrogate(cp)); } template inline typename std::iterator_traits::difference_type sequence_length(octet_iterator lead_it) { uint8_t lead = utf8::internal::mask8(*lead_it); if (lead < 0x80) return 1; else if ((lead >> 5) == 0x6) return 2; else if ((lead >> 4) == 0xe) return 3; else if ((lead >> 3) == 0x1e) return 4; else return 0; } template inline bool is_overlong_sequence(uint32_t cp, octet_difference_type length) { if (cp < 0x80) { if (length != 1) return true; } else if (cp < 0x800) { if (length != 2) return true; } else if (cp < 0x10000) { if (length != 3) return true; } return false; } enum utf_error {UTF8_OK, NOT_ENOUGH_ROOM, INVALID_LEAD, INCOMPLETE_SEQUENCE, OVERLONG_SEQUENCE, INVALID_CODE_POINT}; /// Helper for get_sequence_x template utf_error increase_safely(octet_iterator& it, octet_iterator end) { if (++it == end) return NOT_ENOUGH_ROOM; if (!utf8::internal::is_trail(*it)) return INCOMPLETE_SEQUENCE; return UTF8_OK; } #define UTF8_CPP_INCREASE_AND_RETURN_ON_ERROR(IT, END) {utf_error ret = increase_safely(IT, END); if (ret != UTF8_OK) return ret;} /// get_sequence_x functions decode utf-8 sequences of the length x template utf_error get_sequence_1(octet_iterator& it, octet_iterator end, uint32_t& code_point) { if (it == end) return NOT_ENOUGH_ROOM; code_point = utf8::internal::mask8(*it); return UTF8_OK; } template utf_error get_sequence_2(octet_iterator& it, octet_iterator end, uint32_t& code_point) { if (it == end) return NOT_ENOUGH_ROOM; code_point = utf8::internal::mask8(*it); UTF8_CPP_INCREASE_AND_RETURN_ON_ERROR(it, end) code_point = ((code_point << 6) & 0x7ff) + ((*it) & 0x3f); return UTF8_OK; } template utf_error get_sequence_3(octet_iterator& it, octet_iterator end, uint32_t& code_point) { if (it == end) return NOT_ENOUGH_ROOM; code_point = utf8::internal::mask8(*it); UTF8_CPP_INCREASE_AND_RETURN_ON_ERROR(it, end) code_point = ((code_point << 12) & 0xffff) + ((utf8::internal::mask8(*it) << 6) & 0xfff); UTF8_CPP_INCREASE_AND_RETURN_ON_ERROR(it, end) code_point += (*it) & 0x3f; return UTF8_OK; } template utf_error get_sequence_4(octet_iterator& it, octet_iterator end, uint32_t& code_point) { if (it == end) return NOT_ENOUGH_ROOM; code_point = utf8::internal::mask8(*it); UTF8_CPP_INCREASE_AND_RETURN_ON_ERROR(it, end) code_point = ((code_point << 18) & 0x1fffff) + ((utf8::internal::mask8(*it) << 12) & 0x3ffff); UTF8_CPP_INCREASE_AND_RETURN_ON_ERROR(it, end) code_point += (utf8::internal::mask8(*it) << 6) & 0xfff; UTF8_CPP_INCREASE_AND_RETURN_ON_ERROR(it, end) code_point += (*it) & 0x3f; return UTF8_OK; } #undef UTF8_CPP_INCREASE_AND_RETURN_ON_ERROR template utf_error validate_next(octet_iterator& it, octet_iterator end, uint32_t& code_point) { if (it == end) return NOT_ENOUGH_ROOM; // Save the original value of it so we can go back in case of failure // Of course, it does not make much sense with i.e. stream iterators octet_iterator original_it = it; uint32_t cp = 0; // Determine the sequence length based on the lead octet typedef typename std::iterator_traits::difference_type octet_difference_type; const octet_difference_type length = utf8::internal::sequence_length(it); // Get trail octets and calculate the code point utf_error err = UTF8_OK; switch (length) { case 0: return INVALID_LEAD; case 1: err = utf8::internal::get_sequence_1(it, end, cp); break; case 2: err = utf8::internal::get_sequence_2(it, end, cp); break; case 3: err = utf8::internal::get_sequence_3(it, end, cp); break; case 4: err = utf8::internal::get_sequence_4(it, end, cp); break; } if (err == UTF8_OK) { // Decoding succeeded. Now, security checks... if (utf8::internal::is_code_point_valid(cp)) { if (!utf8::internal::is_overlong_sequence(cp, length)){ // Passed! Return here. code_point = cp; ++it; return UTF8_OK; } else err = OVERLONG_SEQUENCE; } else err = INVALID_CODE_POINT; } // Failure branch - restore the original value of the iterator it = original_it; return err; } template inline utf_error validate_next(octet_iterator& it, octet_iterator end) { uint32_t ignored; return utf8::internal::validate_next(it, end, ignored); } } // namespace internal /// The library API - functions intended to be called by the users // Byte order mark const uint8_t bom[] = {0xef, 0xbb, 0xbf}; template octet_iterator find_invalid(octet_iterator start, octet_iterator end) { octet_iterator result = start; while (result != end) { utf8::internal::utf_error err_code = utf8::internal::validate_next(result, end); if (err_code != internal::UTF8_OK) return result; } return result; } template inline bool is_valid(octet_iterator start, octet_iterator end) { return (utf8::find_invalid(start, end) == end); } template inline bool starts_with_bom (octet_iterator it, octet_iterator end) { return ( ((it != end) && (utf8::internal::mask8(*it++)) == bom[0]) && ((it != end) && (utf8::internal::mask8(*it++)) == bom[1]) && ((it != end) && (utf8::internal::mask8(*it)) == bom[2]) ); } } // namespace utf8 #endif // header guard utfcpp-3.2.1/source/utf8/cpp11.h000066400000000000000000000063521405716242000163100ustar00rootroot00000000000000// Copyright 2018 Nemanja Trifunovic /* Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef UTF8_FOR_CPP_a184c22c_d012_11e8_a8d5_f2801f1b9fd1 #define UTF8_FOR_CPP_a184c22c_d012_11e8_a8d5_f2801f1b9fd1 #include "checked.h" #include namespace utf8 { inline void append(char32_t cp, std::string& s) { append(uint32_t(cp), std::back_inserter(s)); } inline std::string utf16to8(const std::u16string& s) { std::string result; utf16to8(s.begin(), s.end(), std::back_inserter(result)); return result; } inline std::u16string utf8to16(const std::string& s) { std::u16string result; utf8to16(s.begin(), s.end(), std::back_inserter(result)); return result; } inline std::string utf32to8(const std::u32string& s) { std::string result; utf32to8(s.begin(), s.end(), std::back_inserter(result)); return result; } inline std::u32string utf8to32(const std::string& s) { std::u32string result; utf8to32(s.begin(), s.end(), std::back_inserter(result)); return result; } inline std::size_t find_invalid(const std::string& s) { std::string::const_iterator invalid = find_invalid(s.begin(), s.end()); return (invalid == s.end()) ? std::string::npos : (invalid - s.begin()); } inline bool is_valid(const std::string& s) { return is_valid(s.begin(), s.end()); } inline std::string replace_invalid(const std::string& s, char32_t replacement) { std::string result; replace_invalid(s.begin(), s.end(), std::back_inserter(result), replacement); return result; } inline std::string replace_invalid(const std::string& s) { std::string result; replace_invalid(s.begin(), s.end(), std::back_inserter(result)); return result; } inline bool starts_with_bom(const std::string& s) { return starts_with_bom(s.begin(), s.end()); } } // namespace utf8 #endif // header guard utfcpp-3.2.1/source/utf8/cpp17.h000066400000000000000000000063421405716242000163150ustar00rootroot00000000000000// Copyright 2018 Nemanja Trifunovic /* Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef UTF8_FOR_CPP_7e906c01_03a3_4daf_b420_ea7ea952b3c9 #define UTF8_FOR_CPP_7e906c01_03a3_4daf_b420_ea7ea952b3c9 #include "checked.h" #include namespace utf8 { inline void append(char32_t cp, std::string& s) { append(uint32_t(cp), std::back_inserter(s)); } inline std::string utf16to8(std::u16string_view s) { std::string result; utf16to8(s.begin(), s.end(), std::back_inserter(result)); return result; } inline std::u16string utf8to16(std::string_view s) { std::u16string result; utf8to16(s.begin(), s.end(), std::back_inserter(result)); return result; } inline std::string utf32to8(std::u32string_view s) { std::string result; utf32to8(s.begin(), s.end(), std::back_inserter(result)); return result; } inline std::u32string utf8to32(std::string_view s) { std::u32string result; utf8to32(s.begin(), s.end(), std::back_inserter(result)); return result; } inline std::size_t find_invalid(std::string_view s) { std::string_view::const_iterator invalid = find_invalid(s.begin(), s.end()); return (invalid == s.end()) ? std::string_view::npos : (invalid - s.begin()); } inline bool is_valid(std::string_view s) { return is_valid(s.begin(), s.end()); } inline std::string replace_invalid(std::string_view s, char32_t replacement) { std::string result; replace_invalid(s.begin(), s.end(), std::back_inserter(result), replacement); return result; } inline std::string replace_invalid(std::string_view s) { std::string result; replace_invalid(s.begin(), s.end(), std::back_inserter(result)); return result; } inline bool starts_with_bom(std::string_view s) { return starts_with_bom(s.begin(), s.end()); } } // namespace utf8 #endif // header guard utfcpp-3.2.1/source/utf8/unchecked.h000066400000000000000000000253551405716242000173210ustar00rootroot00000000000000// Copyright 2006 Nemanja Trifunovic /* Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef UTF8_FOR_CPP_UNCHECKED_H_2675DCD0_9480_4c0c_B92A_CC14C027B731 #define UTF8_FOR_CPP_UNCHECKED_H_2675DCD0_9480_4c0c_B92A_CC14C027B731 #include "core.h" namespace utf8 { namespace unchecked { template octet_iterator append(uint32_t cp, octet_iterator result) { if (cp < 0x80) // one octet *(result++) = static_cast(cp); else if (cp < 0x800) { // two octets *(result++) = static_cast((cp >> 6) | 0xc0); *(result++) = static_cast((cp & 0x3f) | 0x80); } else if (cp < 0x10000) { // three octets *(result++) = static_cast((cp >> 12) | 0xe0); *(result++) = static_cast(((cp >> 6) & 0x3f) | 0x80); *(result++) = static_cast((cp & 0x3f) | 0x80); } else { // four octets *(result++) = static_cast((cp >> 18) | 0xf0); *(result++) = static_cast(((cp >> 12) & 0x3f)| 0x80); *(result++) = static_cast(((cp >> 6) & 0x3f) | 0x80); *(result++) = static_cast((cp & 0x3f) | 0x80); } return result; } template output_iterator replace_invalid(octet_iterator start, octet_iterator end, output_iterator out, uint32_t replacement) { while (start != end) { octet_iterator sequence_start = start; internal::utf_error err_code = utf8::internal::validate_next(start, end); switch (err_code) { case internal::UTF8_OK : for (octet_iterator it = sequence_start; it != start; ++it) *out++ = *it; break; case internal::NOT_ENOUGH_ROOM: out = utf8::unchecked::append (replacement, out); start = end; break; case internal::INVALID_LEAD: out = utf8::unchecked::append (replacement, out); ++start; break; case internal::INCOMPLETE_SEQUENCE: case internal::OVERLONG_SEQUENCE: case internal::INVALID_CODE_POINT: out = utf8::unchecked::append (replacement, out); ++start; // just one replacement mark for the sequence while (start != end && utf8::internal::is_trail(*start)) ++start; break; } } return out; } template inline output_iterator replace_invalid(octet_iterator start, octet_iterator end, output_iterator out) { static const uint32_t replacement_marker = utf8::internal::mask16(0xfffd); return utf8::unchecked::replace_invalid(start, end, out, replacement_marker); } template uint32_t next(octet_iterator& it) { uint32_t cp = utf8::internal::mask8(*it); typename std::iterator_traits::difference_type length = utf8::internal::sequence_length(it); switch (length) { case 1: break; case 2: it++; cp = ((cp << 6) & 0x7ff) + ((*it) & 0x3f); break; case 3: ++it; cp = ((cp << 12) & 0xffff) + ((utf8::internal::mask8(*it) << 6) & 0xfff); ++it; cp += (*it) & 0x3f; break; case 4: ++it; cp = ((cp << 18) & 0x1fffff) + ((utf8::internal::mask8(*it) << 12) & 0x3ffff); ++it; cp += (utf8::internal::mask8(*it) << 6) & 0xfff; ++it; cp += (*it) & 0x3f; break; } ++it; return cp; } template uint32_t peek_next(octet_iterator it) { return utf8::unchecked::next(it); } template uint32_t prior(octet_iterator& it) { while (utf8::internal::is_trail(*(--it))) ; octet_iterator temp = it; return utf8::unchecked::next(temp); } template void advance (octet_iterator& it, distance_type n) { const distance_type zero(0); if (n < zero) { // backward for (distance_type i = n; i < zero; ++i) utf8::unchecked::prior(it); } else { // forward for (distance_type i = zero; i < n; ++i) utf8::unchecked::next(it); } } template typename std::iterator_traits::difference_type distance (octet_iterator first, octet_iterator last) { typename std::iterator_traits::difference_type dist; for (dist = 0; first < last; ++dist) utf8::unchecked::next(first); return dist; } template octet_iterator utf16to8 (u16bit_iterator start, u16bit_iterator end, octet_iterator result) { while (start != end) { uint32_t cp = utf8::internal::mask16(*start++); // Take care of surrogate pairs first if (utf8::internal::is_lead_surrogate(cp)) { uint32_t trail_surrogate = utf8::internal::mask16(*start++); cp = (cp << 10) + trail_surrogate + internal::SURROGATE_OFFSET; } result = utf8::unchecked::append(cp, result); } return result; } template u16bit_iterator utf8to16 (octet_iterator start, octet_iterator end, u16bit_iterator result) { while (start < end) { uint32_t cp = utf8::unchecked::next(start); if (cp > 0xffff) { //make a surrogate pair *result++ = static_cast((cp >> 10) + internal::LEAD_OFFSET); *result++ = static_cast((cp & 0x3ff) + internal::TRAIL_SURROGATE_MIN); } else *result++ = static_cast(cp); } return result; } template octet_iterator utf32to8 (u32bit_iterator start, u32bit_iterator end, octet_iterator result) { while (start != end) result = utf8::unchecked::append(*(start++), result); return result; } template u32bit_iterator utf8to32 (octet_iterator start, octet_iterator end, u32bit_iterator result) { while (start < end) (*result++) = utf8::unchecked::next(start); return result; } // The iterator class template class iterator { octet_iterator it; public: typedef uint32_t value_type; typedef uint32_t* pointer; typedef uint32_t& reference; typedef std::ptrdiff_t difference_type; typedef std::bidirectional_iterator_tag iterator_category; iterator () {} explicit iterator (const octet_iterator& octet_it): it(octet_it) {} // the default "big three" are OK octet_iterator base () const { return it; } uint32_t operator * () const { octet_iterator temp = it; return utf8::unchecked::next(temp); } bool operator == (const iterator& rhs) const { return (it == rhs.it); } bool operator != (const iterator& rhs) const { return !(operator == (rhs)); } iterator& operator ++ () { ::std::advance(it, utf8::internal::sequence_length(it)); return *this; } iterator operator ++ (int) { iterator temp = *this; ::std::advance(it, utf8::internal::sequence_length(it)); return temp; } iterator& operator -- () { utf8::unchecked::prior(it); return *this; } iterator operator -- (int) { iterator temp = *this; utf8::unchecked::prior(it); return temp; } }; // class iterator } // namespace utf8::unchecked } // namespace utf8 #endif // header guard utfcpp-3.2.1/tests/000077500000000000000000000000001405716242000141615ustar00rootroot00000000000000utfcpp-3.2.1/tests/CMakeLists.txt000066400000000000000000000033061405716242000167230ustar00rootroot00000000000000add_executable(negative ${PROJECT_SOURCE_DIR}/tests/negative.cpp) add_executable(cpp11 ${PROJECT_SOURCE_DIR}/tests/test_cpp11.cpp) add_executable(cpp17 ${PROJECT_SOURCE_DIR}/tests/test_cpp17.cpp) add_executable(apitests ${PROJECT_SOURCE_DIR}/tests/test_checked_api.cpp ${PROJECT_SOURCE_DIR}/tests/test_unchecked_api.cpp ${PROJECT_SOURCE_DIR}/tests/test_checked_iterator.cpp ${PROJECT_SOURCE_DIR}/tests/test_unchecked_iterator.cpp ) add_executable(noexceptionstests ${PROJECT_SOURCE_DIR}/tests/test_unchecked_api.cpp ${PROJECT_SOURCE_DIR}/tests/test_unchecked_iterator.cpp ) target_link_libraries(negative PRIVATE utf8::cpp) target_link_libraries(cpp11 PRIVATE utf8::cpp) target_link_libraries(cpp17 PRIVATE utf8::cpp) target_link_libraries(apitests PRIVATE utf8::cpp) target_link_libraries(noexceptionstests PRIVATE utf8::cpp) target_compile_options(noexceptionstests PUBLIC -fno-exceptions) set_target_properties(negative apitests noexceptionstests PROPERTIES CXX_STANDARD 98 CXX_STANDARD_REQUIRED YES CXX_EXTENSIONS NO) set_target_properties(cpp11 PROPERTIES CXX_STANDARD 11 CXX_STANDARD_REQUIRED YES CXX_EXTENSIONS NO) set_target_properties(cpp17 PROPERTIES CXX_STANDARD 17 CXX_STANDARD_REQUIRED YES CXX_EXTENSIONS NO) add_test(negative_test negative ${PROJECT_SOURCE_DIR}/tests/test_data/utf8_invalid.txt) add_test(cpp11_test cpp11) add_test(cpp17_test cpp17) add_test(api_test apitests) add_test(noexceptions_test noexceptionstests) utfcpp-3.2.1/tests/docker/000077500000000000000000000000001405716242000154305ustar00rootroot00000000000000utfcpp-3.2.1/tests/docker/Dockerfile000066400000000000000000000001751405716242000174250ustar00rootroot00000000000000FROM debian:buster-slim RUN apt-get update \ && apt-get install -y make g++ cmake git \ && rm -rf /var/lib/apt/lists/* utfcpp-3.2.1/tests/negative.cpp000066400000000000000000000041371405716242000164740ustar00rootroot00000000000000#include "utf8.h" using namespace utf8; #include #include #include #include using namespace std; const unsigned INVALID_LINES[] = { 75, 76, 83, 84, 85, 93, 102, 103, 105, 106, 107, 108, 109, 110, 114, 115, 116, 117, 124, 125, 130, 135, 140, 145, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 169, 175, 176, 177, 207, 208, 209, 210, 211, 220, 221, 222, 223, 224, 232, 233, 234, 235, 236, 247, 248, 249, 250, 251, 252, 253, 257, 258, 259, 260, 261, 262, 263, 264}; const unsigned* INVALID_LINES_END = INVALID_LINES + sizeof(INVALID_LINES)/sizeof(unsigned); int main(int argc, char** argv) { string test_file_path; if (argc == 2) test_file_path = argv[1]; else { cout << "Wrong number of arguments" << endl; return 1; } // Open the test file ifstream fs8(test_file_path.c_str()); if (!fs8.is_open()) { cout << "Could not open " << test_file_path << endl; return 1; } // Read it line by line unsigned int line_count = 0; char byte; while (!fs8.eof()) { string line; while ((byte = static_cast(fs8.get())) != '\n' && !fs8.eof()) line.push_back(byte); line_count++; bool expected_valid = (find(INVALID_LINES, INVALID_LINES_END, line_count) == INVALID_LINES_END); // Print out lines that contain unexpected invalid UTF-8 if (!is_valid(line.begin(), line.end())) { if (expected_valid) { cout << "Unexpected invalid utf-8 at line " << line_count << '\n'; return 1; } // try fixing it: string fixed_line; replace_invalid(line.begin(), line.end(), back_inserter(fixed_line)); if (!is_valid(fixed_line.begin(), fixed_line.end())) { cout << "replace_invalid() resulted in an invalid utf-8 at line " << line_count << '\n'; return 1; } } else if (!expected_valid) { cout << "Invalid utf-8 NOT detected at line " << line_count << '\n'; return 1; } } } utfcpp-3.2.1/tests/test_checked_api.cpp000066400000000000000000000127121405716242000201460ustar00rootroot00000000000000#define F_TEST_NO_MAIN #include "../extern/ftest/ftest.h" #include "utf8.h" #include #include using namespace utf8; using namespace std; TEST(CheckedAPITests, test_append) { unsigned char u[5] = {0,0,0,0,0}; append(0x0448, u); EXPECT_EQ (u[0], 0xd1); EXPECT_EQ (u[1], 0x88); EXPECT_EQ (u[2], 0); EXPECT_EQ (u[3], 0); EXPECT_EQ (u[4], 0); append(0x65e5, u); EXPECT_EQ (u[0], 0xe6); EXPECT_EQ (u[1], 0x97); EXPECT_EQ (u[2], 0xa5); EXPECT_EQ (u[3], 0); EXPECT_EQ (u[4], 0); append(0x3044, u); EXPECT_EQ (u[0], 0xe3); EXPECT_EQ (u[1], 0x81); EXPECT_EQ (u[2], 0x84); EXPECT_EQ (u[3], 0); EXPECT_EQ (u[4], 0); append(0x10346, u); EXPECT_EQ (u[0], 0xf0); EXPECT_EQ (u[1], 0x90); EXPECT_EQ (u[2], 0x8d); EXPECT_EQ (u[3], 0x86); EXPECT_EQ (u[4], 0); } TEST(CheckedAPITests, test_next) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; const char* w = twochars; int cp = next(w, twochars + 6); EXPECT_EQ (cp, 0x65e5); EXPECT_EQ (w, twochars + 3); const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; w = threechars; cp = next(w, threechars + 9); EXPECT_EQ (cp, 0x10346); EXPECT_EQ (w, threechars + 4); cp = next(w, threechars + 9); EXPECT_EQ (cp, 0x65e5); EXPECT_EQ (w, threechars + 7); cp = next(w, threechars + 9); EXPECT_EQ (cp, 0x0448); EXPECT_EQ (w, threechars + 9); } TEST(CheckedAPITests, test_peek_next) { const char* const cw = "\xe6\x97\xa5\xd1\x88"; int cp = peek_next(cw, cw + 6); EXPECT_EQ (cp, 0x65e5); } TEST(CheckedAPITests, test_prior) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; const char* w = twochars + 3; int cp = prior (w, twochars); EXPECT_EQ (cp, 0x65e5); EXPECT_EQ (w, twochars); const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; w = threechars + 9; cp = prior(w, threechars); EXPECT_EQ (cp, 0x0448); EXPECT_EQ (w, threechars + 7); cp = prior(w, threechars); EXPECT_EQ (cp, 0x65e5); EXPECT_EQ (w, threechars + 4); cp = prior(w, threechars); EXPECT_EQ (cp, 0x10346); EXPECT_EQ (w, threechars); } TEST(CheckedAPITests, test_advance) { const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; const char* w = threechars; advance(w, 2, threechars + 9); EXPECT_EQ(w, threechars + 7); advance(w, -2, threechars); EXPECT_EQ(w, threechars); advance(w, 3, threechars + 9); EXPECT_EQ(w, threechars + 9); advance(w, -2, threechars); EXPECT_EQ(w, threechars + 4); advance(w, -1, threechars); EXPECT_EQ(w, threechars); } TEST(CheckedAPITests, test_distance) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; size_t dist = utf8::distance(twochars, twochars + 5); EXPECT_EQ (dist, 2); } TEST(CheckedAPITests, test_utf32to8) { int utf32string[] = {0x448, 0x65E5, 0x10346, 0}; string utf8result; utf32to8(utf32string, utf32string + 3, back_inserter(utf8result)); EXPECT_EQ (utf8result.size(), 9); } TEST(CheckedAPITests, test_utf8to32) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; vector utf32result; utf8to32(twochars, twochars + 5, back_inserter(utf32result)); EXPECT_EQ (utf32result.size(), 2); } TEST(CheckedAPITests, test_utf16to8) { unsigned short utf16string[] = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e}; string utf8result; utf16to8(utf16string, utf16string + 5, back_inserter(utf8result)); EXPECT_EQ (utf8result.size(), 10); } TEST(CheckedAPITests, test_utf8to16) { char utf8_with_surrogates[] = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; vector utf16result; utf8to16(utf8_with_surrogates, utf8_with_surrogates + 9, back_inserter(utf16result)); EXPECT_EQ (utf16result.size(), 4); EXPECT_EQ (utf16result[2], 0xd834); EXPECT_EQ (utf16result[3], 0xdd1e); } TEST(CheckedAPITests, test_replace_invalid) { char invalid_sequence[] = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z"; vector replace_invalid_result; replace_invalid (invalid_sequence, invalid_sequence + sizeof(invalid_sequence), std::back_inserter(replace_invalid_result), '?'); bool bvalid = is_valid(replace_invalid_result.begin(), replace_invalid_result.end()); EXPECT_TRUE (bvalid); const char fixed_invalid_sequence[] = "a????z"; EXPECT_EQ (sizeof(fixed_invalid_sequence), replace_invalid_result.size()); EXPECT_TRUE (std::equal(replace_invalid_result.begin(), replace_invalid_result.begin() + sizeof(fixed_invalid_sequence), fixed_invalid_sequence)); } TEST(CheckedAPITests, test_find_invalid) { char utf_invalid[] = "\xe6\x97\xa5\xd1\x88\xfa"; char* invalid = find_invalid(utf_invalid, utf_invalid + 6); EXPECT_EQ (invalid, utf_invalid + 5); } TEST(CheckedAPITests, test_is_valid) { char utf_invalid[] = "\xe6\x97\xa5\xd1\x88\xfa"; bool bvalid = is_valid(utf_invalid, utf_invalid + 6); EXPECT_FALSE (bvalid); char utf8_with_surrogates[] = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; bvalid = is_valid(utf8_with_surrogates, utf8_with_surrogates + 9); EXPECT_TRUE (bvalid); } TEST(CheckedAPITests, test_starts_with_bom) { unsigned char byte_order_mark[] = {0xef, 0xbb, 0xbf}; bool bbom = starts_with_bom(byte_order_mark, byte_order_mark + sizeof(byte_order_mark)); EXPECT_TRUE (bbom); const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; bool no_bbom = starts_with_bom(threechars, threechars + sizeof(threechars)); EXPECT_FALSE (no_bbom); } utfcpp-3.2.1/tests/test_checked_iterator.cpp000066400000000000000000000020101405716242000212140ustar00rootroot00000000000000#define F_TEST_NO_MAIN #include "../extern/ftest/ftest.h" #include "utf8.h" using namespace utf8; TEST(CheckedIteratrTests, test_increment) { const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; utf8::iterator it(threechars, threechars, threechars + 9); utf8::iterator it2 = it; EXPECT_EQ (it2, it); EXPECT_EQ (*it, 0x10346); EXPECT_EQ (*(++it), 0x65e5); EXPECT_EQ ((*it++), 0x65e5); EXPECT_EQ (*it, 0x0448); EXPECT_NE (it, it2); utf8::iterator endit (threechars + 9, threechars, threechars + 9); EXPECT_EQ (++it, endit); } TEST(CheckedIteratrTests, test_decrement) { const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; utf8::iterator it(threechars+9, threechars, threechars + 9); EXPECT_EQ (*(--it), 0x0448); EXPECT_EQ ((*it--), 0x0448); EXPECT_EQ (*it, 0x65e5); EXPECT_EQ (--it, utf8::iterator(threechars, threechars, threechars + 9)); EXPECT_EQ (*it, 0x10346); } utfcpp-3.2.1/tests/test_cpp11.cpp000066400000000000000000000057341405716242000166610ustar00rootroot00000000000000#include "../extern/ftest/ftest.h" #include "utf8.h" #include using namespace utf8; using namespace std; #if __cplusplus >= 201103L // C++ 11 or later TEST(CPP11APITests, test_append) { string u; append(0x0448, u); EXPECT_EQ (u[0], char(0xd1)); EXPECT_EQ (u[1], char(0x88)); EXPECT_EQ (u.length(), 2); u.clear(); append(0x65e5, u); EXPECT_EQ (u[0], char(0xe6)); EXPECT_EQ (u[1], char(0x97)); EXPECT_EQ (u[2], char(0xa5)); EXPECT_EQ (u.length(), 3); u.clear(); append(0x3044, u); EXPECT_EQ (u[0], char(0xe3)); EXPECT_EQ (u[1], char(0x81)); EXPECT_EQ (u[2], char(0x84)); EXPECT_EQ (u.length(), 3); u.clear(); append(0x10346, u); EXPECT_EQ (u[0], char(0xf0)); EXPECT_EQ (u[1], char(0x90)); EXPECT_EQ (u[2], char(0x8d)); EXPECT_EQ (u[3], char(0x86)); EXPECT_EQ (u.length(), 4); } TEST(CPP11APITests, test_utf16to8) { u16string utf16string = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e}; string u = utf16to8(utf16string); EXPECT_EQ (u.size(), 10); } TEST(CPP11APITests, test_utf8to16) { string utf8_with_surrogates = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; u16string utf16result = utf8to16(utf8_with_surrogates); EXPECT_EQ (utf16result.size(), 4); EXPECT_EQ (utf16result[2], 0xd834); EXPECT_EQ (utf16result[3], 0xdd1e); // Just to make sure it compiles with string literals utf8to16(u8"simple"); utf8to16("simple"); } TEST(CPP11APITests, test_utf32to8) { u32string utf32string = {0x448, 0x65E5, 0x10346}; string utf8result = utf32to8(utf32string); EXPECT_EQ (utf8result.size(), 9); } TEST(CPP11APITests, test_utf8to32) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; u32string utf32result = utf8to32(twochars); EXPECT_EQ (utf32result.size(), 2); } TEST(CPP11APITests, test_find_invalid) { string utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa"; auto invalid = find_invalid(utf_invalid); EXPECT_EQ (invalid, 5); } TEST(CPP11APITests, test_is_valid) { string utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa"; bool bvalid = is_valid(utf_invalid); EXPECT_FALSE (bvalid); string utf8_with_surrogates = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; bvalid = is_valid(utf8_with_surrogates); EXPECT_TRUE (bvalid); } TEST(CPP11APITests, test_replace_invalid) { string invalid_sequence = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z"; string replace_invalid_result = replace_invalid(invalid_sequence, '?'); bool bvalid = is_valid(replace_invalid_result); EXPECT_TRUE (bvalid); const string fixed_invalid_sequence = "a????z"; EXPECT_EQ(fixed_invalid_sequence, replace_invalid_result); } TEST(CPP11APITests, test_starts_with_bom) { string byte_order_mark = {char(0xef), char(0xbb), char(0xbf)}; bool bbom = starts_with_bom(byte_order_mark); EXPECT_TRUE (bbom); string threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; bool no_bbom = starts_with_bom(threechars); EXPECT_FALSE (no_bbom); } #endif // C++ 11 or later utfcpp-3.2.1/tests/test_cpp17.cpp000066400000000000000000000050631405716242000166620ustar00rootroot00000000000000#include "../extern/ftest/ftest.h" #include "utf8.h" #include using namespace utf8; using namespace std; #if __cplusplus >= 201703L // C++ 17 or later TEST(CPP17APITests, test_utf16to8) { u16string utf16string = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e}; u16string_view utf16stringview(u16string); string u = utf16to8(utf16string); EXPECT_EQ (u.size(), 10); } TEST(CPP17APITests, test_utf8to16) { string_view utf8_with_surrogates = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; u16string utf16result = utf8to16(utf8_with_surrogates); EXPECT_EQ (utf16result.size(), 4); EXPECT_EQ (utf16result[2], 0xd834); EXPECT_EQ (utf16result[3], 0xdd1e); } TEST(CPP17APITests, test_utf32to8) { u32string utf32string = {0x448, 0x65E5, 0x10346}; u32string_view utf32stringview(utf32string); string utf8result = utf32to8(utf32stringview); EXPECT_EQ (utf8result.size(), 9); } TEST(CPP17APITests, test_utf8to32) { string_view twochars = "\xe6\x97\xa5\xd1\x88"; u32string utf32result = utf8to32(twochars); EXPECT_EQ (utf32result.size(), 2); } TEST(CPP17APITests, test_find_invalid) { string_view utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa"; auto invalid = find_invalid(utf_invalid); EXPECT_EQ (invalid, 5); } TEST(CPP17APITests, test_is_valid) { string_view utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa"; bool bvalid = is_valid(utf_invalid); EXPECT_FALSE (bvalid); string_view utf8_with_surrogates = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; bvalid = is_valid(utf8_with_surrogates); EXPECT_TRUE (bvalid); } TEST(CPP17APITests, test_replace_invalid) { string_view invalid_sequence = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z"; string replace_invalid_result = replace_invalid(invalid_sequence, '?'); bool bvalid = is_valid(replace_invalid_result); EXPECT_TRUE (bvalid); const string fixed_invalid_sequence = "a????z"; EXPECT_EQ(fixed_invalid_sequence, replace_invalid_result); } TEST(CPP17APITests, test_starts_with_bom) { string byte_order_mark = {char(0xef), char(0xbb), char(0xbf)}; string_view byte_order_mark_view(byte_order_mark); bool bbom = starts_with_bom(byte_order_mark_view); EXPECT_TRUE (bbom); string_view threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; bool no_bbom = starts_with_bom(threechars); EXPECT_FALSE (no_bbom); } TEST(CPP17APITests, string_class_and_literals) { const char* twochars = u8"ab"; EXPECT_TRUE (is_valid(twochars)); const string two_chars_string(twochars); EXPECT_TRUE (is_valid(two_chars_string)); } #endif // C++ 11 or later utfcpp-3.2.1/tests/test_data/000077500000000000000000000000001405716242000161315ustar00rootroot00000000000000utfcpp-3.2.1/tests/test_data/utf8_invalid.txt000066400000000000000000000470521405716242000212760ustar00rootroot00000000000000UTF-8 decoder capability and stress test ---------------------------------------- Markus Kuhn - 2003-02-19 This test file can help you examine, how your UTF-8 decoder handles various types of correct, malformed, or otherwise interesting UTF-8 sequences. This file is not meant to be a conformance test. It does not prescribes any particular outcome and therefore there is no way to "pass" or "fail" this test file, even though the texts suggests a preferable decoder behaviour at some places. The aim is instead to help you think about and test the behaviour of your UTF-8 on a systematic collection of unusual inputs. Experience so far suggests that most first-time authors of UTF-8 decoders find at least one serious problem in their decoder by using this file. The test lines below cover boundary conditions, malformed UTF-8 sequences as well as correctly encoded UTF-8 sequences of Unicode code points that should never occur in a correct UTF-8 file. According to ISO 10646-1:2000, sections D.7 and 2.3c, a device receiving UTF-8 shall interpret a "malformed sequence in the same way that it interprets a character that is outside the adopted subset" and "characters that are not within the adopted subset shall be indicated to the user" by a receiving device. A quite commonly used approach in UTF-8 decoders is to replace any malformed UTF-8 sequence by a replacement character (U+FFFD), which looks a bit like an inverted question mark, or a similar symbol. It might be a good idea to visually distinguish a malformed UTF-8 sequence from a correctly encoded Unicode character that is just not available in the current font but otherwise fully legal, even though ISO 10646-1 doesn't mandate this. In any case, just ignoring malformed sequences or unavailable characters does not conform to ISO 10646, will make debugging more difficult, and can lead to user confusion. Please check, whether a malformed UTF-8 sequence is (1) represented at all, (2) represented by exactly one single replacement character (or equivalent signal), and (3) the following quotation mark after an illegal UTF-8 sequence is correctly displayed, i.e. proper resynchronization takes place immageately after any malformed sequence. This file says "THE END" in the last line, so if you don't see that, your decoder crashed somehow before, which should always be cause for concern. All lines in this file are exactly 79 characters long (plus the line feed). In addition, all lines end with "|", except for the two test lines 2.1.1 and 2.2.1, which contain non-printable ASCII controls U+0000 and U+007F. If you display this file with a fixed-width font, these "|" characters should all line up in column 79 (right margin). This allows you to test quickly, whether your UTF-8 decoder finds the correct number of characters in every line, that is whether each malformed sequences is replaced by a single replacement character. Note that as an alternative to the notion of malformed sequence used here, it is also a perfectly acceptable (and in some situations even preferable) solution to represent each individual byte of a malformed sequence by a replacement character. If you follow this strategy in your decoder, then please ignore the "|" column. Here come the tests: | | 1 Some correct UTF-8 text | | You should see the Greek word 'kosme': "κόσμε" | | 2 Boundary condition test cases | | 2.1 First possible sequence of a certain length | | 2.1.1 1 byte (U-00000000): "" 2.1.2 2 bytes (U-00000080): "€" | 2.1.3 3 bytes (U-00000800): "ࠀ" | 2.1.4 4 bytes (U-00010000): "𐀀" | 2.1.5 5 bytes (U-00200000): "" | 2.1.6 6 bytes (U-04000000): "" | | 2.2 Last possible sequence of a certain length | | 2.2.1 1 byte (U-0000007F): "" 2.2.2 2 bytes (U-000007FF): "߿" | 2.2.3 3 bytes (U-0000FFFF): "￿" | 2.2.4 4 bytes (U-001FFFFF): "" | 2.2.5 5 bytes (U-03FFFFFF): "" | 2.2.6 6 bytes (U-7FFFFFFF): "" | | 2.3 Other boundary conditions | | 2.3.1 U-0000D7FF = ed 9f bf = "퟿" | 2.3.2 U-0000E000 = ee 80 80 = "" | 2.3.3 U-0000FFFD = ef bf bd = "�" | 2.3.4 U-0010FFFF = f4 8f bf bf = "􏿿" | 2.3.5 U-00110000 = f4 90 80 80 = "" | | 3 Malformed sequences | | 3.1 Unexpected continuation bytes | | Each unexpected continuation byte should be separately signalled as a | malformed sequence of its own. | | 3.1.1 First continuation byte 0x80: "" | 3.1.2 Last continuation byte 0xbf: "" | | 3.1.3 2 continuation bytes: "" | 3.1.4 3 continuation bytes: "" | 3.1.5 4 continuation bytes: "" | 3.1.6 5 continuation bytes: "" | 3.1.7 6 continuation bytes: "" | 3.1.8 7 continuation bytes: "" | | 3.1.9 Sequence of all 64 possible continuation bytes (0x80-0xbf): | | " | | | " | | 3.2 Lonely start characters | | 3.2.1 All 32 first bytes of 2-byte sequences (0xc0-0xdf), | each followed by a space character: | | " | " | | 3.2.2 All 16 first bytes of 3-byte sequences (0xe0-0xef), | each followed by a space character: | | " " | | 3.2.3 All 8 first bytes of 4-byte sequences (0xf0-0xf7), | each followed by a space character: | | " " | | 3.2.4 All 4 first bytes of 5-byte sequences (0xf8-0xfb), | each followed by a space character: | | " " | | 3.2.5 All 2 first bytes of 6-byte sequences (0xfc-0xfd), | each followed by a space character: | | " " | | 3.3 Sequences with last continuation byte missing | | All bytes of an incomplete sequence should be signalled as a single | malformed sequence, i.e., you should see only a single replacement | character in each of the next 10 tests. (Characters as in section 2) | | 3.3.1 2-byte sequence with last byte missing (U+0000): "" | 3.3.2 3-byte sequence with last byte missing (U+0000): "" | 3.3.3 4-byte sequence with last byte missing (U+0000): "" | 3.3.4 5-byte sequence with last byte missing (U+0000): "" | 3.3.5 6-byte sequence with last byte missing (U+0000): "" | 3.3.6 2-byte sequence with last byte missing (U-000007FF): "" | 3.3.7 3-byte sequence with last byte missing (U-0000FFFF): "" | 3.3.8 4-byte sequence with last byte missing (U-001FFFFF): "" | 3.3.9 5-byte sequence with last byte missing (U-03FFFFFF): "" | 3.3.10 6-byte sequence with last byte missing (U-7FFFFFFF): "" | | 3.4 Concatenation of incomplete sequences | | All the 10 sequences of 3.3 concatenated, you should see 10 malformed | sequences being signalled: | | "" | | 3.5 Impossible bytes | | The following two bytes cannot appear in a correct UTF-8 string | | 3.5.1 fe = "" | 3.5.2 ff = "" | 3.5.3 fe fe ff ff = "" | | 4 Overlong sequences | | The following sequences are not malformed according to the letter of | the Unicode 2.0 standard. However, they are longer then necessary and | a correct UTF-8 encoder is not allowed to produce them. A "safe UTF-8 | decoder" should reject them just like malformed sequences for two | reasons: (1) It helps to debug applications if overlong sequences are | not treated as valid representations of characters, because this helps | to spot problems more quickly. (2) Overlong sequences provide | alternative representations of characters, that could maliciously be | used to bypass filters that check only for ASCII characters. For | instance, a 2-byte encoded line feed (LF) would not be caught by a | line counter that counts only 0x0a bytes, but it would still be | processed as a line feed by an unsafe UTF-8 decoder later in the | pipeline. From a security point of view, ASCII compatibility of UTF-8 | sequences means also, that ASCII characters are *only* allowed to be | represented by ASCII bytes in the range 0x00-0x7f. To ensure this | aspect of ASCII compatibility, use only "safe UTF-8 decoders" that | reject overlong UTF-8 sequences for which a shorter encoding exists. | | 4.1 Examples of an overlong ASCII character | | With a safe UTF-8 decoder, all of the following five overlong | representations of the ASCII character slash ("/") should be rejected | like a malformed UTF-8 sequence, for instance by substituting it with | a replacement character. If you see a slash below, you do not have a | safe UTF-8 decoder! | | 4.1.1 U+002F = c0 af = "" | 4.1.2 U+002F = e0 80 af = "" | 4.1.3 U+002F = f0 80 80 af = "" | 4.1.4 U+002F = f8 80 80 80 af = "" | 4.1.5 U+002F = fc 80 80 80 80 af = "" | | 4.2 Maximum overlong sequences | | Below you see the highest Unicode value that is still resulting in an | overlong sequence if represented with the given number of bytes. This | is a boundary test for safe UTF-8 decoders. All five characters should | be rejected like malformed UTF-8 sequences. | | 4.2.1 U-0000007F = c1 bf = "" | 4.2.2 U-000007FF = e0 9f bf = "" | 4.2.3 U-0000FFFF = f0 8f bf bf = "" | 4.2.4 U-001FFFFF = f8 87 bf bf bf = "" | 4.2.5 U-03FFFFFF = fc 83 bf bf bf bf = "" | | 4.3 Overlong representation of the NUL character | | The following five sequences should also be rejected like malformed | UTF-8 sequences and should not be treated like the ASCII NUL | character. | | 4.3.1 U+0000 = c0 80 = "" | 4.3.2 U+0000 = e0 80 80 = "" | 4.3.3 U+0000 = f0 80 80 80 = "" | 4.3.4 U+0000 = f8 80 80 80 80 = "" | 4.3.5 U+0000 = fc 80 80 80 80 80 = "" | | 5 Illegal code positions | | The following UTF-8 sequences should be rejected like malformed | sequences, because they never represent valid ISO 10646 characters and | a UTF-8 decoder that accepts them might introduce security problems | comparable to overlong UTF-8 sequences. | | 5.1 Single UTF-16 surrogates | | 5.1.1 U+D800 = ed a0 80 = "" | 5.1.2 U+DB7F = ed ad bf = "" | 5.1.3 U+DB80 = ed ae 80 = "" | 5.1.4 U+DBFF = ed af bf = "" | 5.1.5 U+DC00 = ed b0 80 = "" | 5.1.6 U+DF80 = ed be 80 = "" | 5.1.7 U+DFFF = ed bf bf = "" | | 5.2 Paired UTF-16 surrogates | | 5.2.1 U+D800 U+DC00 = ed a0 80 ed b0 80 = "" | 5.2.2 U+D800 U+DFFF = ed a0 80 ed bf bf = "" | 5.2.3 U+DB7F U+DC00 = ed ad bf ed b0 80 = "" | 5.2.4 U+DB7F U+DFFF = ed ad bf ed bf bf = "" | 5.2.5 U+DB80 U+DC00 = ed ae 80 ed b0 80 = "" | 5.2.6 U+DB80 U+DFFF = ed ae 80 ed bf bf = "" | 5.2.7 U+DBFF U+DC00 = ed af bf ed b0 80 = "" | 5.2.8 U+DBFF U+DFFF = ed af bf ed bf bf = "" | | | THE END | utfcpp-3.2.1/tests/test_unchecked_api.cpp000066400000000000000000000110221405716242000205020ustar00rootroot00000000000000#include "../extern/ftest/ftest.h" #include "utf8/unchecked.h" #include #include using namespace utf8::unchecked; using namespace std; TEST(UnCheckedAPITests, test_append) { unsigned char u[5] = {0,0,0,0,0}; append(0x0448, u); EXPECT_EQ (u[0], 0xd1); EXPECT_EQ (u[1], 0x88); EXPECT_EQ (u[2], 0); EXPECT_EQ (u[3], 0); EXPECT_EQ (u[4], 0); append(0x65e5, u); EXPECT_EQ (u[0], 0xe6); EXPECT_EQ (u[1], 0x97); EXPECT_EQ (u[2], 0xa5); EXPECT_EQ (u[3], 0); EXPECT_EQ (u[4], 0); append(0x3044, u); EXPECT_EQ (u[0], 0xe3); EXPECT_EQ (u[1], 0x81); EXPECT_EQ (u[2], 0x84); EXPECT_EQ (u[3], 0); EXPECT_EQ (u[4], 0); append(0x10346, u); EXPECT_EQ (u[0], 0xf0); EXPECT_EQ (u[1], 0x90); EXPECT_EQ (u[2], 0x8d); EXPECT_EQ (u[3], 0x86); EXPECT_EQ (u[4], 0); } TEST(UnCheckedAPITests, test_next) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; const char* w = twochars; int cp = utf8::unchecked::next(w); EXPECT_EQ (cp, 0x65e5); EXPECT_EQ (w, twochars + 3); const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; w = threechars; cp = utf8::unchecked::next(w); EXPECT_EQ (cp, 0x10346); EXPECT_EQ (w, threechars + 4); cp = utf8::unchecked::next(w); EXPECT_EQ (cp, 0x65e5); EXPECT_EQ (w, threechars + 7); cp = utf8::unchecked::next(w); EXPECT_EQ (cp, 0x0448); EXPECT_EQ (w, threechars + 9); } TEST(UnCheckedAPITests, test_peek_next) { const char* const cw = "\xe6\x97\xa5\xd1\x88"; int cp = peek_next(cw); EXPECT_EQ (cp, 0x65e5); } TEST(UnCheckedAPITests, test_prior) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; const char* w = twochars + 3; int cp = prior (w); EXPECT_EQ (cp, 0x65e5); EXPECT_EQ (w, twochars); const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; w = threechars + 9; cp = prior(w); EXPECT_EQ (cp, 0x0448); EXPECT_EQ (w, threechars + 7); cp = prior(w); EXPECT_EQ (cp, 0x65e5); EXPECT_EQ (w, threechars + 4); cp = prior(w); EXPECT_EQ (cp, 0x10346); EXPECT_EQ (w, threechars); } TEST(UnCheckedAPITests, test_advance) { const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; const char* w = threechars; utf8::unchecked::advance(w, 2); EXPECT_EQ(w, threechars + 7); utf8::unchecked::advance(w, -2); EXPECT_EQ(w, threechars); utf8::unchecked::advance(w, 3); EXPECT_EQ(w, threechars + 9); utf8::unchecked::advance(w, -2); EXPECT_EQ(w, threechars + 4); utf8::unchecked::advance(w, -1); EXPECT_EQ(w, threechars); } TEST(UnCheckedAPITests, test_distance) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; size_t dist = utf8::unchecked::distance(twochars, twochars + 5); EXPECT_EQ (dist, 2); } TEST(UnCheckedAPITests, test_utf32to8) { int utf32string[] = {0x448, 0x65E5, 0x10346, 0}; string utf8result; utf32to8(utf32string, utf32string + 3, back_inserter(utf8result)); EXPECT_EQ (utf8result.size(), 9); } TEST(UnCheckedAPITests, test_utf8to32) { const char* twochars = "\xe6\x97\xa5\xd1\x88"; vector utf32result; utf8to32(twochars, twochars + 5, back_inserter(utf32result)); EXPECT_EQ (utf32result.size(), 2); } TEST(UnCheckedAPITests, test_utf16to8) { unsigned short utf16string[] = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e}; string utf8result; utf16to8(utf16string, utf16string + 5, back_inserter(utf8result)); EXPECT_EQ (utf8result.size(), 10); } TEST(UnCheckedAPITests, test_utf8to16) { char utf8_with_surrogates[] = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e"; vector utf16result; utf8to16(utf8_with_surrogates, utf8_with_surrogates + 9, back_inserter(utf16result)); EXPECT_EQ (utf16result.size(), 4); EXPECT_EQ (utf16result[2], 0xd834); EXPECT_EQ (utf16result[3], 0xdd1e); } TEST(UnCheckedAPITests, test_replace_invalid) { char invalid_sequence[] = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z"; vector replace_invalid_result; replace_invalid (invalid_sequence, invalid_sequence + sizeof(invalid_sequence), std::back_inserter(replace_invalid_result), '?'); bool bvalid = utf8::is_valid(replace_invalid_result.begin(), replace_invalid_result.end()); EXPECT_TRUE (bvalid); const char fixed_invalid_sequence[] = "a????z"; EXPECT_EQ (sizeof(fixed_invalid_sequence), replace_invalid_result.size()); EXPECT_TRUE (std::equal(replace_invalid_result.begin(), replace_invalid_result.begin() + sizeof(fixed_invalid_sequence), fixed_invalid_sequence)); } utfcpp-3.2.1/tests/test_unchecked_iterator.cpp000066400000000000000000000017521405716242000215730ustar00rootroot00000000000000#define F_TEST_NO_MAIN #include "../extern/ftest/ftest.h" #include "utf8/unchecked.h" using namespace utf8::unchecked; TEST(UnCheckedIteratrTests, test_increment) { const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; utf8::unchecked::iterator it(threechars); utf8::unchecked::iterator it2 = it; EXPECT_EQ (it2, it); EXPECT_EQ (*it, 0x10346); EXPECT_EQ (*(++it), 0x65e5); EXPECT_EQ ((*it++), 0x65e5); EXPECT_EQ (*it, 0x0448); EXPECT_NE (it, it2); utf8::unchecked::iterator endit (threechars + 9); EXPECT_EQ (++it, endit); } TEST(UnCheckedIteratrTests, test_decrement) { const char* threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88"; utf8::unchecked::iterator it(threechars+9); EXPECT_EQ (*(--it), 0x0448); EXPECT_EQ ((*it--), 0x0448); EXPECT_EQ (*it, 0x65e5); EXPECT_EQ (--it, utf8::unchecked::iterator(threechars)); EXPECT_EQ (*it, 0x10346); }