pax_global_header 0000666 0000000 0000000 00000000064 13630062715 0014515 g ustar 00root root 0000000 0000000 52 comment=d408e9b0606d07b1ddc5452ffc0ec8512211b174
xxHash-0.7.3/ 0000775 0000000 0000000 00000000000 13630062715 0012767 5 ustar 00root root 0000000 0000000 xxHash-0.7.3/.gitattributes 0000664 0000000 0000000 00000000247 13630062715 0015665 0 ustar 00root root 0000000 0000000 # Set the default behavior
* text eol=lf
# Explicitly declare source files
*.c text eol=lf
*.h text eol=lf
# Denote files that should not be modified.
*.odt binary
xxHash-0.7.3/.gitignore 0000664 0000000 0000000 00000000767 13630062715 0014771 0 ustar 00root root 0000000 0000000 # objects
*.o
*.obj
*.s
# libraries
libxxhash.*
!libxxhash.pc.in
# Executables
*.exe
xxh32sum
xxh64sum
xxh128sum
xxhsum
xxhsum32
xxhsum_privateXXH
xxhsum_inlinedXXH
tests/generate_unicode_test
# compilation chain
.clang_complete
# Mac OS-X artefacts
*.dSYM
.DS_Store
# Wasm / emcc / emscripten artefacts
*.html
*.wasm
*.js
# CMake build directories
build*/
# project managers artifacts
.projectile
# analyzer artifacts
infer-out
# test artifacts
.test*
tmp*
tests/*.unicode
tests/unicode_test*
xxHash-0.7.3/.travis.yml 0000664 0000000 0000000 00000007366 13630062715 0015114 0 ustar 00root root 0000000 0000000 language: c
# Dump CPU info before start
before_install:
- cat /proc/cpuinfo
matrix:
fast_finish: true
include:
- name: General linux tests (Xenial)
dist: xenial
arch: amd64
addons:
apt:
packages:
- clang
- g++-multilib
- gcc-multilib
- cppcheck
script:
- make -B test-all
- name: Check results consistency on x64
arch: amd64
script:
- CPPFLAGS=-DXXH_VECTOR=0 make check # Scalar code path
- make clean
- CPPFLAGS=-DXXH_VECTOR=1 make check # SSE2 code path
- make clean
- CPPFLAGS="-mavx2 -DXXH_VECTOR=2" make check # AVX2 code path
- make clean
- CPPFLAGS=-DXXH_REROLL=1 make check # reroll code path (#240)
- make -C tests/bench
- name: ARM compilation and consistency checks (Qemu)
dist: xenial
arch: amd64
addons:
apt:
packages:
- qemu-system-arm
- qemu-user-static
- gcc-arm-linux-gnueabi
- libc6-dev-armel-cross
script:
# arm (32-bit)
- CC=arm-linux-gnueabi-gcc CPPFLAGS=-DXXH_VECTOR=0 LDFLAGS=-static RUN_ENV=qemu-arm-static make check # Scalar code path
- make clean
# NEON (32-bit)
- CC=arm-linux-gnueabi-gcc CPPFLAGS=-DXXH_VECTOR=3 CFLAGS="-O3 -march=armv7-a -fPIC -mfloat-abi=softfp -mfpu=neon-vfpv4" LDFLAGS=-static RUN_ENV=qemu-arm-static make check # NEON code path
- name: aarch64 compilation and consistency checks
dist: xenial
arch: arm64
script:
# aarch64
- CPPFLAGS=-DXXH_VECTOR=0 LDFLAGS=-static make check # Scalar code path
# NEON (64-bit)
- make clean
- CPPFLAGS=-DXXH_VECTOR=3 LDFLAGS=-static make check # NEON code path
# We need Bionic here because the QEMU versions shipped in the older repos
# do not support POWER8 emulation, and compiling QEMU from source is a pain.
- name: PowerPC + PPC64 compilation and consistency checks (Qemu on Bionic)
dist: bionic
arch: amd64
addons:
apt:
packages:
- qemu-system-ppc
- qemu-user-static
- gcc-powerpc-linux-gnu
- gcc-powerpc64-linux-gnu
- libc6-dev-powerpc-cross
- libc6-dev-ppc64-cross
script:
- CC=powerpc-linux-gnu-gcc RUN_ENV=qemu-ppc-static LDFLAGS=-static make check # Scalar code path
- make clean
- CC=powerpc64-linux-gnu-gcc RUN_ENV=qemu-ppc64-static CPPFLAGS=-DXXH_VECTOR=0 CFLAGS="-O3" LDFLAGS="-static -m64" make check # Scalar code path
- make clean
# VSX code
- CC=powerpc64-linux-gnu-gcc RUN_ENV="qemu-ppc64-static -cpu power8" CFLAGS="-O3 -maltivec -mvsx -mcpu=power8 -mpower8-vector" LDFLAGS="-static -m64" make check # Auto code path
- make clean
- name: PPC64LE compilation and consistency checks
dist: xenial
arch: ppc64le
script:
# Scalar (universal) code path
- CPPFLAGS=-DXXH_VECTOR=0 LDFLAGS=-static make check
# VSX code path (64-bit)
- make clean
- CPPFLAGS=-DXXH_VECTOR=4 CFLAGS="-O3 -maltivec -mvsx -mpower8-vector -mcpu=power8" LDFLAGS="-static" make check
- name: IBM s390x compilation and consistency checks
dist: bionic
arch: s390x
script:
# Scalar (universal) code path
- CPPFLAGS=-DXXH_VECTOR=0 LDFLAGS=-static make check
# s390x code path (64-bit)
- make clean
- CPPFLAGS=-DXXH_VECTOR=4 CFLAGS="-O3 -march=arch11 -mzvector" LDFLAGS="-static" make check
- name: cmake build test
script:
- cd cmake_unofficial
- mkdir build
- cd build
- cmake ..
- make
xxHash-0.7.3/CHANGELOG 0000664 0000000 0000000 00000003720 13630062715 0014203 0 ustar 00root root 0000000 0000000 v0.7.3
- perf: improved speed for large inputs (~+20%)
- perf: improved latency for small inputs (~10%)
- perf: s390x Vectorial code, by @easyaspi314
- cli: improved support for Unicode filenames on Windows, thanks to @easyaspi314 and @t-mat
- api: `xxhash.h` can now be included in any order, with and without `XXH_STATIC_LINKING_ONLY` and `XXH_INLINE_ALL`
- build: xxHash's implementation transferred into `xxhash.h`. No more need to have `xxhash.c` in the `/include` directory for `XXH_INLINE_ALL` to work
- install: created pkg-config file, by @bket
- install: VCpkg installation instructions, by @LilyWangL
- doc: Highly improved code documentation, by @easyaspi314
- misc: New test tool in `/tests/collisions`: brute force collision tester for 64-bit hashes
v0.7.2
- Fixed collision ratio of `XXH128` for some specific input lengths, reported by @svpv
- Improved `VSX` and `NEON` variants, by @easyaspi314
- Improved performance of scalar code path (`XXH_VECTOR=0`), by @easyaspi314
- `xxhsum`: can generate 128-bit hashes with the `-H2` option (note: for experimental purposes only! `XXH128` is not yet frozen)
- `xxhsum`: option `-q` removes status notifications
v0.7.1
- Secret first: the algorithm computation can be altered by providing a "secret", which is any blob of bytes, of size >= `XXH3_SECRET_SIZE_MIN`.
- `seed` is still available, and acts as a secret generator
- updated `ARM NEON` variant by @easyaspi314
- Streaming implementation is available
- Improve compatibility and performance with Visual Studio, with help from @aras-p
- Better integration when using `XXH_INLINE_ALL`: do not pollute host namespace, use its own macros, such as `XXH_ASSERT()`, `XXH_ALIGN`, etc.
- 128-bit variant provides helper functions for comparison of hashes.
- Better `clang` generation of `rotl` instruction, thanks to @easyaspi314
- `XXH_REROLL` build macro to reduce binary size, by @easyaspi314
- Improved `cmake` script, by @Mezozoysky
- Full benchmark program provided in `/tests/bench`
xxHash-0.7.3/LICENSE 0000664 0000000 0000000 00000004274 13630062715 0014003 0 ustar 00root root 0000000 0000000 xxHash Library
Copyright (c) 2012-present, Yann Collet
All rights reserved.
BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------
xxhsum command line interface
Copyright (c) 2013-present, Yann Collet
All rights reserved.
GPL v2 License
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
xxHash-0.7.3/Makefile 0000664 0000000 0000000 00000033143 13630062715 0014433 0 ustar 00root root 0000000 0000000 # ################################################################
# xxHash Makefile
# Copyright (C) Yann Collet 2012-present
#
# GPL v2 License
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# You can contact the author at:
# - xxHash homepage: https://www.xxhash.com
# - xxHash source repository: https://github.com/Cyan4973/xxHash
# ################################################################
# xxhsum: provides 32/64 bits hash of one or multiple files, or stdin
# ################################################################
# Version numbers
LIBVER_MAJOR_SCRIPT:=`sed -n '/define XXH_VERSION_MAJOR/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < xxhash.h`
LIBVER_MINOR_SCRIPT:=`sed -n '/define XXH_VERSION_MINOR/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < xxhash.h`
LIBVER_PATCH_SCRIPT:=`sed -n '/define XXH_VERSION_RELEASE/s/.*[[:blank:]]\([0-9][0-9]*\).*/\1/p' < xxhash.h`
LIBVER_MAJOR := $(shell echo $(LIBVER_MAJOR_SCRIPT))
LIBVER_MINOR := $(shell echo $(LIBVER_MINOR_SCRIPT))
LIBVER_PATCH := $(shell echo $(LIBVER_PATCH_SCRIPT))
LIBVER := $(LIBVER_MAJOR).$(LIBVER_MINOR).$(LIBVER_PATCH)
CFLAGS ?= -O3
DEBUGFLAGS+=-Wall -Wextra -Wconversion -Wcast-qual -Wcast-align -Wshadow \
-Wstrict-aliasing=1 -Wswitch-enum -Wdeclaration-after-statement \
-Wstrict-prototypes -Wundef -Wpointer-arith -Wformat-security \
-Wvla -Wformat=2 -Winit-self -Wfloat-equal -Wwrite-strings \
-Wredundant-decls -Wstrict-overflow=2
CFLAGS += $(DEBUGFLAGS)
FLAGS = $(CFLAGS) $(CPPFLAGS) $(MOREFLAGS)
XXHSUM_VERSION = $(LIBVER)
# Define *.exe as extension for Windows systems
ifneq (,$(filter Windows%,$(OS)))
EXT =.exe
else
EXT =
endif
# OS X linker doesn't support -soname, and use different extension
# see: https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/DynamicLibraryDesignGuidelines.html
ifeq ($(shell uname), Darwin)
SHARED_EXT = dylib
SHARED_EXT_MAJOR = $(LIBVER_MAJOR).$(SHARED_EXT)
SHARED_EXT_VER = $(LIBVER).$(SHARED_EXT)
SONAME_FLAGS = -install_name $(LIBDIR)/libxxhash.$(SHARED_EXT_MAJOR) -compatibility_version $(LIBVER_MAJOR) -current_version $(LIBVER)
else
SONAME_FLAGS = -Wl,-soname=libxxhash.$(SHARED_EXT).$(LIBVER_MAJOR)
SHARED_EXT = so
SHARED_EXT_MAJOR = $(SHARED_EXT).$(LIBVER_MAJOR)
SHARED_EXT_VER = $(SHARED_EXT).$(LIBVER)
endif
LIBXXH = libxxhash.$(SHARED_EXT_VER)
.PHONY: default
default: ## generate CLI and libraries in release mode (default for `make`)
default: DEBUGFLAGS=
default: lib xxhsum_and_links
.PHONY: all
all: lib xxhsum xxhsum_inlinedXXH
xxhsum: xxhash.o xxhsum.o ## generate command line interface (CLI)
$(CC) $(FLAGS) $^ $(LDFLAGS) -o $@$(EXT)
xxhsum32: CFLAGS += -m32 ## generate CLI in 32-bits mode
xxhsum32: xxhash.c xxhsum.c ## do not generate object (avoid mixing different ABI)
$(CC) $(FLAGS) $^ $(LDFLAGS) -o $@$(EXT)
xxhash.o: xxhash.c xxhash.h xxh3.h
$(CC) $(FLAGS) -c $< -o $@
xxhsum.o: xxhsum.c xxhash.h
$(CC) $(FLAGS) -c $< -o $@
.PHONY: xxhsum_and_links
xxhsum_and_links: xxhsum xxh32sum xxh64sum xxh128sum
xxh32sum xxh64sum xxh128sum: xxhsum
ln -sf $<$(EXT) $@$(EXT)
xxhsum_inlinedXXH: CPPFLAGS += -DXXH_INLINE_ALL
xxhsum_inlinedXXH: xxhsum.c
$(CC) $(FLAGS) $^ -o $@$(EXT)
# library
libxxhash.a: ARFLAGS = rcs
libxxhash.a: xxhash.o
$(AR) $(ARFLAGS) $@ $^
$(LIBXXH): LDFLAGS += -shared
ifeq (,$(filter Windows%,$(OS)))
$(LIBXXH): CFLAGS += -fPIC
endif
$(LIBXXH): xxhash.c
$(CC) $(FLAGS) $^ $(LDFLAGS) $(SONAME_FLAGS) -o $@
ln -sf $@ libxxhash.$(SHARED_EXT_MAJOR)
ln -sf $@ libxxhash.$(SHARED_EXT)
.PHONY: libxxhash
libxxhash: ## generate dynamic xxhash library
libxxhash: $(LIBXXH)
.PHONY: lib
lib: ## generate static and dynamic xxhash libraries
lib: libxxhash.a libxxhash
pkgconfig:
@sed -e 's|@PREFIX@|$(PREFIX)|' \
-e 's|@VERSION@|$(LIBVER)|' \
libxxhash.pc.in >libxxhash.pc
# helper targets
AWK = awk
GREP = grep
SORT = sort
.PHONY: list
list: ## list all Makefile targets
@$(MAKE) -pRrq -f $(lastword $(MAKEFILE_LIST)) : 2>/dev/null | $(AWK) -v RS= -F: '/^# File/,/^# Finished Make data base/ {if ($$1 !~ "^[#.]") {print $$1}}' | $(SORT) | egrep -v -e '^[^[:alnum:]]' -e '^$@$$' | xargs
.PHONY: help
help: ## list documented targets
@$(GREP) -E '^[0-9a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | \
$(SORT) | \
$(AWK) 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}'
.PHONY: clean
clean: ## remove all build artifacts
@$(RM) -r *.dSYM # Mac OS-X specific
@$(RM) core *.o *.$(SHARED_EXT) *.$(SHARED_EXT).* *.a libxxhash.pc
@$(RM) xxhsum$(EXT) xxhsum32$(EXT) xxhsum_inlinedXXH$(EXT)
@$(RM) xxh32sum$(EXT) xxh64sum$(EXT) xxh128sum$(EXT)
@echo cleaning completed
# =================================================
# tests
# =================================================
# make check can be run with cross-compiled binaries on emulated environments (qemu user mode)
# by setting $(RUN_ENV) to the target emulation environment
.PHONY: check
check: xxhsum ## basic tests for xxhsum CLI, set RUN_ENV for emulated environments
# stdin
$(RUN_ENV) ./xxhsum$(EXT) < xxhash.c
# multiple files
$(RUN_ENV) ./xxhsum$(EXT) xxhash.* xxhsum.*
# internal bench
$(RUN_ENV) ./xxhsum$(EXT) -bi1
# file bench
$(RUN_ENV) ./xxhsum$(EXT) -bi1 xxhash.c
# 32-bit
$(RUN_ENV) ./xxhsum$(EXT) -H0 xxhash.c
# 128-bit
$(RUN_ENV) ./xxhsum$(EXT) -H2 xxhash.c
# request incorrect variant
$(RUN_ENV) ./xxhsum$(EXT) -H9 xxhash.c ; test $$? -eq 1
.PHONY: test-unicode
test-unicode:
$(MAKE) -C tests test_unicode
.PHONY: test-mem
VALGRIND = valgrind --leak-check=yes --error-exitcode=1
test-mem: RUN_ENV = $(VALGRIND)
test-mem: xxhsum check
.PHONY: test32
test32: clean xxhsum32
@echo ---- test 32-bit ----
./xxhsum32 -bi1 xxhash.c
.PHONY: test-xxhsum-c
test-xxhsum-c: xxhsum
# xxhsum to/from pipe
./xxhsum xxh* | ./xxhsum -c -
./xxhsum -H0 xxh* | ./xxhsum -c -
# xxhsum -q does not display "Loading" message into stderr (#251)
! ./xxhsum -q xxh* 2>&1 | grep Loading
# xxhsum to/from file, shell redirection
./xxhsum xxh* > .test.xxh64
./xxhsum -H0 xxh* > .test.xxh32
./xxhsum -H2 xxh* > .test.xxh128
./xxhsum -c .test.xxh64
./xxhsum -c .test.xxh32
./xxhsum -c .test.xxh128
# read list of files from stdin
./xxhsum -c < .test.xxh64
./xxhsum -c < .test.xxh32
# xxhsum -c warns improperly format lines.
cat .test.xxh64 .test.xxh32 | ./xxhsum -c - | $(GREP) improperly
cat .test.xxh32 .test.xxh64 | ./xxhsum -c - | $(GREP) improperly
# Expects "FAILED"
echo "0000000000000000 LICENSE" | ./xxhsum -c -; test $$? -eq 1
echo "00000000 LICENSE" | ./xxhsum -c -; test $$? -eq 1
# Expects "FAILED open or read"
echo "0000000000000000 test-expects-file-not-found" | ./xxhsum -c -; test $$? -eq 1
echo "00000000 test-expects-file-not-found" | ./xxhsum -c -; test $$? -eq 1
@$(RM) .test.xxh32 .test.xxh64 .test.xxh128
.PHONY: armtest
armtest: clean
@echo ---- test ARM compilation ----
CC=arm-linux-gnueabi-gcc MOREFLAGS="-Werror -static" $(MAKE) xxhsum
.PHONY: clangtest
clangtest: clean
@echo ---- test clang compilation ----
CC=clang MOREFLAGS="-Werror -Wconversion -Wno-sign-conversion" $(MAKE) all
.PHONY: cxxtest
cxxtest: clean
@echo ---- test C++ compilation ----
CC="$(CXX) -Wno-deprecated" $(MAKE) all CFLAGS="-O3 -Wall -Wextra -Wundef -Wshadow -Wcast-align -Werror -fPIC"
.PHONY: c90test
ifeq ($(NO_C90_TEST),true)
c90test:
@echo no c90 compatibility test
else
c90test: CPPFLAGS += -DXXH_NO_LONG_LONG
c90test: CFLAGS += -std=c90 -Werror -pedantic
c90test: xxhash.c
@echo ---- test strict C90 compilation [xxh32 only] ----
$(RM) xxhash.o
$(CC) $(FLAGS) $^ $(LDFLAGS) -c
$(RM) xxhash.o
endif
.PHONY: usan
usan: CC=clang
usan: CXX=clang++
usan: ## check CLI runtime for undefined behavior, using clang's sanitizer
@echo ---- check undefined behavior - sanitize ----
$(MAKE) clean
$(MAKE) test CC=$(CC) CXX=$(CXX) MOREFLAGS="-g -fsanitize=undefined -fno-sanitize-recover=all"
.PHONY: staticAnalyze
SCANBUILD ?= scan-build
staticAnalyze: clean ## check C source files using $(SCANBUILD) static analyzer
@echo ---- static analyzer - $(SCANBUILD) ----
CFLAGS="-g -Werror" $(SCANBUILD) --status-bugs -v $(MAKE) all
CPPCHECK ?= cppcheck
.PHONY: cppcheck
cppcheck: ## check C source files using $(CPPCHECK) static analyzer
@echo ---- static analyzer - $(CPPCHECK) ----
$(CPPCHECK) . --force --enable=warning,portability,performance,style --error-exitcode=1 > /dev/null
.PHONY: namespaceTest
namespaceTest: ## ensure XXH_NAMESPACE redefines all public symbols
$(CC) -c xxhash.c
$(CC) -DXXH_NAMESPACE=TEST_ -c xxhash.c -o xxhash2.o
$(CC) xxhash.o xxhash2.o xxhsum.c -o xxhsum2 # will fail if one namespace missing (symbol collision)
$(RM) *.o xxhsum2 # clean
MD2ROFF ?= ronn
MD2ROFF_FLAGS ?= --roff --warnings --manual="User Commands" --organization="xxhsum $(XXHSUM_VERSION)"
xxhsum.1: xxhsum.1.md xxhash.h
cat $< | $(MD2ROFF) $(MD2ROFF_FLAGS) | sed -n '/^\.\\\".*/!p' > $@
.PHONY: man
man: xxhsum.1 ## generate man page from markdown source
.PHONY: clean-man
clean-man:
$(RM) xxhsum.1
.PHONY: preview-man
preview-man: man
man ./xxhsum.1
.PHONY: test
test: DEBUGFLAGS += -DDEBUGLEVEL=1
test: all namespaceTest check test-xxhsum-c c90test test-tools
.PHONY: test-inline
test-inline:
$(MAKE) -C tests test_multiInclude
.PHONY: test-all
test-all: CFLAGS += -Werror
test-all: test test32 clangtest cxxtest usan test-inline listL120 trailingWhitespace staticAnalyze test-unicode
.PHONY: test-tools
test-tools:
CFLAGS=-Werror $(MAKE) -C tests/bench
CFLAGS=-Werror $(MAKE) -C tests/collisions
.PHONY: listL120
listL120: # extract lines >= 120 characters in *.{c,h}, by Takayuki Matsuoka (note: $$, for Makefile compatibility)
find . -type f -name '*.c' -o -name '*.h' | while read -r filename; do awk 'length > 120 {print FILENAME "(" FNR "): " $$0}' $$filename; done
.PHONY: trailingWhitespace
trailingWhitespace:
! $(GREP) -E "`printf '[ \\t]$$'`" xxhsum.1 *.c *.h LICENSE Makefile cmake_unofficial/CMakeLists.txt
# =========================================================
# make install is validated only for the following targets
# =========================================================
ifneq (,$(filter $(shell uname),Linux Darwin GNU/kFreeBSD GNU OpenBSD FreeBSD NetBSD DragonFly SunOS))
DESTDIR ?=
# directory variables: GNU conventions prefer lowercase
# see https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html
# support both lower and uppercase (BSD), use uppercase in script
prefix ?= /usr/local
PREFIX ?= $(prefix)
exec_prefix ?= $(PREFIX)
libdir ?= $(exec_prefix)/lib
LIBDIR ?= $(libdir)
includedir ?= $(PREFIX)/include
INCLUDEDIR ?= $(includedir)
bindir ?= $(exec_prefix)/bin
BINDIR ?= $(bindir)
datarootdir ?= $(PREFIX)/share
mandir ?= $(datarootdir)/man
man1dir ?= $(mandir)/man1
ifneq (,$(filter $(shell uname),FreeBSD NetBSD DragonFly))
PKGCONFIGDIR ?= $(PREFIX)/libdata/pkgconfig
else
PKGCONFIGDIR ?= $(LIBDIR)/pkgconfig
endif
ifneq (,$(filter $(shell uname),OpenBSD FreeBSD NetBSD DragonFly SunOS))
MANDIR ?= $(PREFIX)/man/man1
else
MANDIR ?= $(man1dir)
endif
ifneq (,$(filter $(shell uname),SunOS))
INSTALL ?= ginstall
else
INSTALL ?= install
endif
INSTALL_PROGRAM ?= $(INSTALL)
INSTALL_DATA ?= $(INSTALL) -m 644
.PHONY: install
install: lib pkgconfig xxhsum ## install libraries, CLI, links and man page
@echo Installing libxxhash
@$(INSTALL) -d -m 755 $(DESTDIR)$(LIBDIR)
@$(INSTALL_DATA) libxxhash.a $(DESTDIR)$(LIBDIR)
@$(INSTALL_PROGRAM) $(LIBXXH) $(DESTDIR)$(LIBDIR)
@ln -sf $(LIBXXH) $(DESTDIR)$(LIBDIR)/libxxhash.$(SHARED_EXT_MAJOR)
@ln -sf $(LIBXXH) $(DESTDIR)$(LIBDIR)/libxxhash.$(SHARED_EXT)
@$(INSTALL) -d -m 755 $(DESTDIR)$(INCLUDEDIR) # includes
@$(INSTALL_DATA) xxhash.h $(DESTDIR)$(INCLUDEDIR)
@$(INSTALL_DATA) xxh3.h $(DESTDIR)$(INCLUDEDIR)
@echo Installing pkgconfig
@$(INSTALL) -d -m 755 $(DESTDIR)$(PKGCONFIGDIR)/
@$(INSTALL_DATA) libxxhash.pc $(DESTDIR)$(PKGCONFIGDIR)/
@echo Installing xxhsum
@$(INSTALL) -d -m 755 $(DESTDIR)$(BINDIR)/ $(DESTDIR)$(MANDIR)/
@$(INSTALL_PROGRAM) xxhsum $(DESTDIR)$(BINDIR)/xxhsum
@ln -sf xxhsum $(DESTDIR)$(BINDIR)/xxh32sum
@ln -sf xxhsum $(DESTDIR)$(BINDIR)/xxh64sum
@ln -sf xxhsum $(DESTDIR)$(BINDIR)/xxh128sum
@echo Installing man pages
@$(INSTALL_DATA) xxhsum.1 $(DESTDIR)$(MANDIR)/xxhsum.1
@ln -sf xxhsum.1 $(DESTDIR)$(MANDIR)/xxh32sum.1
@ln -sf xxhsum.1 $(DESTDIR)$(MANDIR)/xxh64sum.1
@ln -sf xxhsum.1 $(DESTDIR)$(MANDIR)/xxh128sum.1
@echo xxhash installation completed
.PHONY: uninstall
uninstall: ## uninstall libraries, CLI, links and man page
@$(RM) $(DESTDIR)$(LIBDIR)/libxxhash.a
@$(RM) $(DESTDIR)$(LIBDIR)/libxxhash.$(SHARED_EXT)
@$(RM) $(DESTDIR)$(LIBDIR)/libxxhash.$(SHARED_EXT_MAJOR)
@$(RM) $(DESTDIR)$(LIBDIR)/$(LIBXXH)
@$(RM) $(DESTDIR)$(INCLUDEDIR)/xxhash.h
@$(RM) $(DESTDIR)$(PKGCONFIGDIR)/libxxhash.pc
@$(RM) $(DESTDIR)$(BINDIR)/xxh32sum
@$(RM) $(DESTDIR)$(BINDIR)/xxh64sum
@$(RM) $(DESTDIR)$(BINDIR)/xxh128sum
@$(RM) $(DESTDIR)$(BINDIR)/xxhsum
@$(RM) $(DESTDIR)$(MANDIR)/xxh32sum.1
@$(RM) $(DESTDIR)$(MANDIR)/xxh64sum.1
@$(RM) $(DESTDIR)$(MANDIR)/xxh128sum.1
@$(RM) $(DESTDIR)$(MANDIR)/xxhsum.1
@echo xxhsum successfully uninstalled
endif
xxHash-0.7.3/README.md 0000664 0000000 0000000 00000023133 13630062715 0014250 0 ustar 00root root 0000000 0000000 xxHash - Extremely fast hash algorithm
======================================
xxHash is an Extremely fast Hash algorithm, running at RAM speed limits.
It successfully completes the [SMHasher](https://code.google.com/p/smhasher/wiki/SMHasher) test suite
which evaluates collision, dispersion and randomness qualities of hash functions.
Code is highly portable, and hashes are identical on all platforms (little / big endian).
|Branch |Status |
|------------|---------|
|master | [](https://travis-ci.org/Cyan4973/xxHash?branch=master) |
|dev | [](https://travis-ci.org/Cyan4973/xxHash?branch=dev) |
Benchmarks
-------------------------
The benchmark uses SMHasher speed test, compiled with Visual 2010 on a Windows Seven 32-bit box.
The reference system uses a Core 2 Duo @3GHz
| Name | Speed | Quality | Author |
|---------------|--------------------|:-------:|-------------------|
| [xxHash] | 5.4 GB/s | 10 | Y.C. |
| MurmurHash 3a | 2.7 GB/s | 10 | Austin Appleby |
| SBox | 1.4 GB/s | 9 | Bret Mulvey |
| Lookup3 | 1.2 GB/s | 9 | Bob Jenkins |
| CityHash64 | 1.05 GB/s | 10 | Pike & Alakuijala |
| FNV | 0.55 GB/s | 5 | Fowler, Noll, Vo |
| CRC32 | 0.43 GB/s † | 9 | |
| MD5-32 | 0.33 GB/s | 10 | Ronald L.Rivest |
| SHA1-32 | 0.28 GB/s | 10 | |
[xxHash]: https://www.xxhash.com
Note †: SMHasher's CRC32 implementation is known to be slow. Faster implementations exist.
Q.Score is a measure of quality of the hash function.
It depends on successfully passing SMHasher test set.
10 is a perfect score.
Algorithms with a score < 5 are not listed on this table.
A more recent version, XXH64, has been created thanks to [Mathias Westerdahl](https://github.com/JCash),
which offers superior speed and dispersion for 64-bit systems.
Note however that 32-bit applications will still run faster using the 32-bit version.
SMHasher speed test, compiled using GCC 4.8.2, on Linux Mint 64-bit.
The reference system uses a Core i5-3340M @2.7GHz
| Version | Speed on 64-bit | Speed on 32-bit |
|------------|------------------|------------------|
| XXH64 | 13.8 GB/s | 1.9 GB/s |
| XXH32 | 6.8 GB/s | 6.0 GB/s |
This project also includes a command line utility, named `xxhsum`, offering similar features to `md5sum`,
thanks to [Takayuki Matsuoka](https://github.com/t-mat)'s contributions.
### License
The library files `xxhash.c` and `xxhash.h` are BSD licensed.
The utility `xxhsum` is GPL licensed.
### New hash algorithms
Starting with `v0.7.0`, the library includes a new algorithm named `XXH3`,
which is able to generate 64 and 128-bit hashes.
The new algorithm is much faster than its predecessors for both long and small inputs,
which can be observed in the following graphs:


To access these new prototypes, one needs to unlock their declaration, using the build macro `XXH_STATIC_LINKING_ONLY`.
The algorithm is currently in development, meaning its return values might still change in future versions.
However, the API is stable, and can be used in production, typically for ephemeral
data (produced and consumed in same session).
`XXH3`'s return values will be finalized upon reaching `v0.8.0`.
### Build modifiers
The following macros can be set at compilation time to modify libxxhash's behavior. They are all disabled by default.
- `XXH_INLINE_ALL`: Make all functions `inline`, with implementations being directly included within `xxhash.h`.
Inlining functions is beneficial for speed on small keys.
It's _extremely effective_ when key length is expressed as _a compile time constant_,
with performance improvements being observed in the +200% range .
See [this article](https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html) for details.
Note: there is no need to compile an `xxhash.o` object file in this case.
- `XXH_NO_INLINE_HINTS`: By default, xxHash uses tricks like `__attribute__((always_inline))` and `__forceinline` to try and improve performance at the cost of code size. Defining this to 1 will mark all internal functions as `static`, allowing the compiler to decide whether to inline a function or not. This is very useful when optimizing for the smallest binary size, and it is automatically defined when compiling with `-O0`, `-Os`, `-Oz`, or `-fno-inline` on GCC and Clang. This may also increase performance depending on the compiler and the architecture.
- `XXH_REROLL`: Reduces the size of the generated code by not unrolling some loops. Impact on performance may vary, depending on the platform and the algorithm.
- `XXH_ACCEPT_NULL_INPUT_POINTER`: if set to `1`, when input is a `NULL` pointer,
xxHash'd result is the same as a zero-length input
(instead of a dereference segfault).
Adds one branch at the beginning of the hash.
- `XXH_FORCE_MEMORY_ACCESS`: The default method `0` uses a portable `memcpy()` notation.
Method `1` uses a gcc-specific `packed` attribute, which can provide better performance for some targets.
Method `2` forces unaligned reads, which is not standards compliant, but might sometimes be the only way to extract better read performance.
Method `3` uses a byteshift operation, which is best for old compilers which don't inline `memcpy()` or big-endian systems without a byteswap instruction
- `XXH_CPU_LITTLE_ENDIAN`: By default, endianess is determined at compile time.
It's possible to skip auto-detection and force format to little-endian, by setting this macro to 1.
Setting it to 0 forces big-endian.
- `XXH_PRIVATE_API`: same impact as `XXH_INLINE_ALL`.
Name underlines that XXH_* symbols will not be exported.
- `XXH_NAMESPACE`: Prefixes all symbols with the value of `XXH_NAMESPACE`.
Useful to evade symbol naming collisions,
in case of multiple inclusions of xxHash's source code.
Client applications can still use the regular function name,
as symbols are automatically translated through `xxhash.h`.
- `XXH_STATIC_LINKING_ONLY`: gives access to the state declaration for static allocation.
Incompatible with dynamic linking, due to risks of ABI changes.
- `XXH_NO_LONG_LONG`: removes support for XXH3 and XXH64 for targets without 64-bit support.
- `XXH_IMPORT`: MSVC specific: should only be defined for dynamic linking, as it prevents linkage errors.
### Building xxHash - Using vcpkg
You can download and install xxHash using the [vcpkg](https://github.com/Microsoft/vcpkg) dependency manager:
git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
./vcpkg install xxhash
The xxHash port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please [create an issue or pull request](https://github.com/Microsoft/vcpkg) on the vcpkg repository.
### Example
Calling xxhash 64-bit variant from a C program:
```C
#include "xxhash.h"
(...)
XXH64_hash_t hash = XXH64(buffer, size, seed);
}
```
Using streaming variant is more involved, but makes it possible to provide data incrementally:
```C
#include "stdlib.h" /* abort() */
#include "xxhash.h"
XXH64_hash_t calcul_hash_streaming(FileHandler fh)
{
/* create a hash state */
XXH64_state_t* const state = XXH64_createState();
if (state==NULL) abort();
size_t const bufferSize = SOME_SIZE;
void* const buffer = malloc(bufferSize);
if (buffer==NULL) abort();
/* Initialize state with selected seed */
XXH64_hash_t const seed = 0; /* or any other value */
if (XXH64_reset(state, seed) == XXH_ERROR) abort();
/* Feed the state with input data, any size, any number of times */
(...)
while ( /* any condition */ ) {
size_t const length = get_more_data(buffer, bufferSize, fh);
if (XXH64_update(state, buffer, length) == XXH_ERROR) abort();
(...)
}
(...)
/* Get the hash */
XXH64_hash_t const hash = XXH64_digest(state);
/* State can be re-used; in this example, it is simply freed */
free(buffer);
XXH64_freeState(state);
return hash;
}
```
### Other programming languages
Aside from the C reference version,
xxHash is also available in many different programming languages,
thanks to many great contributors.
They are [listed here](https://www.xxhash.com/#other-languages).
### Branch Policy
> - The "master" branch is considered stable, at all times.
> - The "dev" branch is the one where all contributions must be merged
before being promoted to master.
> + If you plan to propose a patch, please commit into the "dev" branch,
or its own feature branch.
Direct commit to "master" are not permitted.
xxHash-0.7.3/appveyor.yml 0000664 0000000 0000000 00000006633 13630062715 0015367 0 ustar 00root root 0000000 0000000 #---------------------------------#
# general configuration #
#---------------------------------#
version: 1.0.{build}
max_jobs: 2
#---------------------------------#
# environment configuration #
#---------------------------------#
clone_depth: 2
environment:
matrix:
- COMPILER: "visual"
ARCH: "x64"
TEST_XXHSUM: "true"
- COMPILER: "visual"
ARCH: "x64"
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
TEST_XXHSUM: "true"
- COMPILER: "visual"
ARCH: "Win32"
TEST_XXHSUM: "true"
- COMPILER: "visual"
ARCH: "Win32"
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2013
TEST_XXHSUM: "true"
- COMPILER: "visual"
ARCH: "ARM"
- COMPILER: "visual"
ARCH: "ARM64"
APPVEYOR_BUILD_WORKER_IMAGE: Visual Studio 2017
# note: ARM64 is not available with Visual Studio 14 2015, which is default for Appveyor
- COMPILER: "gcc"
PLATFORM: "mingw64"
- COMPILER: "gcc"
PLATFORM: "mingw32"
- COMPILER: "gcc"
PLATFORM: "clang"
install:
- ECHO Installing %COMPILER% %PLATFORM% %ARCH%
- MKDIR bin
- if [%COMPILER%]==[gcc] SET PATH_ORIGINAL=%PATH%
- if [%COMPILER%]==[gcc] (
SET "PATH_MINGW32=c:\MinGW\bin;c:\MinGW\usr\bin" &&
SET "PATH_MINGW64=c:\msys64\mingw64\bin;c:\msys64\usr\bin" &&
COPY C:\MinGW\bin\mingw32-make.exe C:\MinGW\bin\make.exe &&
COPY C:\MinGW\bin\gcc.exe C:\MinGW\bin\cc.exe
)
#---------------------------------#
# build configuration #
#---------------------------------#
build_script:
- if [%PLATFORM%]==[mingw32] SET PATH=%PATH_MINGW32%;%PATH_ORIGINAL%
- if [%PLATFORM%]==[mingw64] SET PATH=%PATH_MINGW64%;%PATH_ORIGINAL%
- if [%PLATFORM%]==[clang] SET PATH=%PATH_MINGW64%;%PATH_ORIGINAL%
- ECHO ***
- ECHO Building %COMPILER% %PLATFORM% %ARCH%
- ECHO ***
- if [%COMPILER%]==[gcc] (
if [%PLATFORM%]==[clang] (
clang -v
) ELSE (
gcc -v
)
)
- if [%COMPILER%]==[gcc] (
echo ----- &&
make -v &&
echo ----- &&
if not [%PLATFORM%]==[clang] (
if [%PLATFORM%]==[mingw32] ( SET CPPFLAGS=-DPOOL_MT=0 ) &&
make -B clean test MOREFLAGS=-Werror
) ELSE (
SET CXXFLAGS=--std=c++14 &&
make -B clean test CC=clang CXX=clang++ MOREFLAGS="--target=x86_64-w64-mingw32 -Werror -Wno-pass-failed" NO_C90_TEST=true
) &&
make -C tests/bench
)
# note 1: strict c90 tests with clang fail, due to (erroneous) presence on `inline` keyword in some included system file
# note 2: multi-threading code doesn't work with mingw32, disabled through POOL_MT=0
# note 3: clang requires C++14 to compile sort because its own code contains c++14-only code
- if [%COMPILER%]==[visual] (
cd cmake_unofficial &&
cmake . -DCMAKE_BUILD_TYPE=Release -A %ARCH% -DXXHASH_C_FLAGS="/WX" &&
cmake --build . --config Release
)
#---------------------------------#
# tests configuration #
#---------------------------------#
test_script:
# note: can only run x86 and x64 binaries on Appveyor
# note: if %COMPILER%==gcc, xxhsum was already tested within `make test`
- if [%TEST_XXHSUM%]==[true] (
ECHO *** &&
ECHO Testing %COMPILER% %PLATFORM% %ARCH% &&
ECHO *** &&
cd Release &&
xxhsum.exe -bi1 &&
ECHO ------- xxhsum tested -------
)
#---------------------------------#
# artifacts configuration #
#---------------------------------#
# none yet
xxHash-0.7.3/cmake_unofficial/ 0000775 0000000 0000000 00000000000 13630062715 0016246 5 ustar 00root root 0000000 0000000 xxHash-0.7.3/cmake_unofficial/.gitignore 0000664 0000000 0000000 00000000164 13630062715 0020237 0 ustar 00root root 0000000 0000000 # cmake artifacts
CMakeCache.txt
CMakeFiles
Makefile
cmake_install.cmake
# make compilation results
*.dylib
*.a
xxHash-0.7.3/cmake_unofficial/CMakeLists.txt 0000664 0000000 0000000 00000014676 13630062715 0021024 0 ustar 00root root 0000000 0000000 # To the extent possible under law, the author(s) have dedicated all
# copyright and related and neighboring rights to this software to
# the public domain worldwide. This software is distributed without
# any warranty.
#
# For details, see .
cmake_minimum_required (VERSION 2.8.12 FATAL_ERROR)
set(XXHASH_DIR "${CMAKE_CURRENT_SOURCE_DIR}/..")
file(STRINGS "${XXHASH_DIR}/xxhash.h" XXHASH_VERSION_MAJOR REGEX "^#define XXH_VERSION_MAJOR +([0-9]+) *$")
string(REGEX REPLACE "^#define XXH_VERSION_MAJOR +([0-9]+) *$" "\\1" XXHASH_VERSION_MAJOR "${XXHASH_VERSION_MAJOR}")
file(STRINGS "${XXHASH_DIR}/xxhash.h" XXHASH_VERSION_MINOR REGEX "^#define XXH_VERSION_MINOR +([0-9]+) *$")
string(REGEX REPLACE "^#define XXH_VERSION_MINOR +([0-9]+) *$" "\\1" XXHASH_VERSION_MINOR "${XXHASH_VERSION_MINOR}")
file(STRINGS "${XXHASH_DIR}/xxhash.h" XXHASH_VERSION_RELEASE REGEX "^#define XXH_VERSION_RELEASE +([0-9]+) *$")
string(REGEX REPLACE "^#define XXH_VERSION_RELEASE +([0-9]+) *$" "\\1" XXHASH_VERSION_RELEASE "${XXHASH_VERSION_RELEASE}")
set(XXHASH_VERSION_STRING "${XXHASH_VERSION_MAJOR}.${XXHASH_VERSION_MINOR}.${XXHASH_VERSION_RELEASE}")
set(XXHASH_LIB_VERSION ${XXHASH_VERSION_STRING})
set(XXHASH_LIB_SOVERSION "${XXHASH_VERSION_MAJOR}")
mark_as_advanced(XXHASH_VERSION_MAJOR XXHASH_VERSION_MINOR XXHASH_VERSION_RELEASE XXHASH_VERSION_STRING XXHASH_LIB_VERSION XXHASH_LIB_SOVERSION)
if("${CMAKE_VERSION}" VERSION_LESS "3.13")
#message(WARNING "CMake ${CMAKE_VERSION} has no CMP0077 policy: options will erase uncached/untyped normal vars!")
else()
cmake_policy (SET CMP0077 NEW)
endif()
if("${CMAKE_VERSION}" VERSION_LESS "3.0")
project(xxHash C)
else()
cmake_policy (SET CMP0048 NEW)
project(xxHash
VERSION ${XXHASH_VERSION_STRING}
LANGUAGES C)
endif()
if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Project build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE
PROPERTY STRINGS "Debug" "Release" "RelWithDebInfo" "MinSizeRel")
endif()
if(NOT CMAKE_CONFIGURATION_TYPES)
message(STATUS "xxHash build type: ${CMAKE_BUILD_TYPE}")
endif()
option(BUILD_SHARED_LIBS "Build shared library" ON)
set(XXHASH_BUILD_XXHSUM ON CACHE BOOL "Build the xxhsum binary")
# If XXHASH is being bundled in another project, we don't want to
# install anything. However, we want to let people override this, so
# we'll use the XXHASH_BUNDLED_MODE variable to let them do that; just
# set it to OFF in your project before you add_subdirectory(xxhash/cmake_unofficial).
if(NOT DEFINED XXHASH_BUNDLED_MODE)
if("${PROJECT_SOURCE_DIR}" STREQUAL "${CMAKE_SOURCE_DIR}")
set(XXHASH_BUNDLED_MODE OFF)
else()
set(XXHASH_BUNDLED_MODE ON)
endif()
endif()
set(XXHASH_BUNDLED_MODE ${XXHASH_BUNDLED_MODE} CACHE BOOL "" FORCE)
mark_as_advanced(XXHASH_BUNDLED_MODE)
# Allow people to choose whether to build shared or static libraries
# via the BUILD_SHARED_LIBS option unless we are in bundled mode, in
# which case we always use static libraries.
include(CMakeDependentOption)
CMAKE_DEPENDENT_OPTION(BUILD_SHARED_LIBS "Build shared libraries" ON "NOT XXHASH_BUNDLED_MODE" OFF)
# libxxhash
add_library(xxhash "${XXHASH_DIR}/xxhash.c")
add_library(${PROJECT_NAME}::xxhash ALIAS xxhash)
target_include_directories(xxhash
PUBLIC
$
$)
if (BUILD_SHARED_LIBS)
target_compile_definitions(xxhash PUBLIC XXH_EXPORT)
endif ()
set_target_properties(xxhash PROPERTIES
SOVERSION "${XXHASH_VERSION_STRING}"
VERSION "${XXHASH_VERSION_STRING}")
if(XXHASH_BUILD_XXHSUM)
# xxhsum
add_executable(xxhsum "${XXHASH_DIR}/xxhsum.c")
add_executable(${PROJECT_NAME}::xxhsum ALIAS xxhsum)
target_link_libraries(xxhsum PRIVATE xxhash)
target_include_directories(xxhsum PRIVATE "${XXHASH_DIR}")
endif(XXHASH_BUILD_XXHSUM)
# Extra warning flags
include (CheckCCompilerFlag)
if (XXHASH_C_FLAGS)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${XXHASH_C_FLAGS}")
endif()
foreach (flag
-Wall -Wextra -Wcast-qual -Wcast-align -Wshadow
-Wstrict-aliasing=1 -Wswitch-enum -Wdeclaration-after-statement
-Wstrict-prototypes -Wundef)
# Because https://gcc.gnu.org/wiki/FAQ#wnowarning
string(REGEX REPLACE "\\-Wno\\-(.+)" "-W\\1" flag_to_test "${flag}")
string(REGEX REPLACE "[^a-zA-Z0-9]+" "_" test_name "CFLAG_${flag_to_test}")
check_c_compiler_flag("${ADD_COMPILER_FLAGS_PREPEND} ${flag_to_test}" ${test_name})
if(${test_name})
set(CMAKE_C_FLAGS "${flag} ${CMAKE_C_FLAGS}")
endif()
unset(test_name)
unset(flag_to_test)
endforeach (flag)
if(NOT XXHASH_BUNDLED_MODE)
include(GNUInstallDirs)
install(TARGETS xxhash
EXPORT xxHashTargets
LIBRARY DESTINATION "${CMAKE_INSTALL_LIBDIR}"
ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}")
install(FILES "${XXHASH_DIR}/xxhash.h"
DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}")
install(FILES "${XXHASH_DIR}/xxh3.h"
DESTINATION "${CMAKE_INSTALL_INCLUDEDIR}")
if(XXHASH_BUILD_XXHSUM)
install(TARGETS xxhsum
EXPORT xxHashTargets
RUNTIME DESTINATION "${CMAKE_INSTALL_BINDIR}")
install(FILES "${XXHASH_DIR}/xxhsum.1"
DESTINATION "${CMAKE_INSTALL_MANDIR}/man1")
endif(XXHASH_BUILD_XXHSUM)
include(CMakePackageConfigHelpers)
set(xxHash_VERSION_CONFIG "${PROJECT_BINARY_DIR}/xxHashConfigVersion.cmake")
set(xxHash_PROJECT_CONFIG "${PROJECT_BINARY_DIR}/xxHashConfig.cmake")
set(xxHash_TARGETS_CONFIG "${PROJECT_BINARY_DIR}/xxHashTargets.cmake")
set(xxHash_CONFIG_INSTALL_DIR "${CMAKE_INSTALL_LIBDIR}/cmake/xxHash/")
write_basic_package_version_file(${xxHash_VERSION_CONFIG}
VERSION ${XXHASH_VERSION_STRING}
COMPATIBILITY AnyNewerVersion)
configure_package_config_file(
${PROJECT_SOURCE_DIR}/xxHashConfig.cmake.in
${xxHash_PROJECT_CONFIG}
INSTALL_DESTINATION ${xxHash_CONFIG_INSTALL_DIR})
if("${CMAKE_VERSION}" VERSION_LESS "3.0")
set(XXHASH_EXPORT_SET xxhash)
if(XXHASH_BUILD_XXHSUM)
set(XXHASH_EXPORT_SET ${XXHASH_EXPORT_SET} xxhsum)
endif()
export(TARGETS ${XXHASH_EXPORT_SET}
FILE ${xxHash_TARGETS_CONFIG}
NAMESPACE ${PROJECT_NAME}::)
else()
export(EXPORT xxHashTargets
FILE ${xxHash_TARGETS_CONFIG}
NAMESPACE ${PROJECT_NAME}::)
endif()
install(FILES ${xxHash_PROJECT_CONFIG} ${xxHash_VERSION_CONFIG}
DESTINATION ${xxHash_CONFIG_INSTALL_DIR})
install(EXPORT xxHashTargets
DESTINATION ${xxHash_CONFIG_INSTALL_DIR}
NAMESPACE ${PROJECT_NAME}::)
endif(NOT XXHASH_BUNDLED_MODE)
xxHash-0.7.3/cmake_unofficial/README.md 0000664 0000000 0000000 00000002167 13630062715 0017533 0 ustar 00root root 0000000 0000000
## Usage
### Way 1: import targets
Build xxHash targets:
cd
mkdir build
cd build
cmake ../cmake_unofficial [options]
cmake --build .
cmake --build . --target install #optional
Where possible options are:
- `-DXXHASH_BUILD_ENABLE_INLINE_API=`: adds xxhash.c for the `-DXXH_INLINE_ALL` api. ON by default.
- `-DXXHASH_BUILD_XXHSUM=`: build the command line binary. ON by default
- `-DBUILD_SHARED_LIBS=`: build dynamic library. ON by default.
- `-DCMAKE_INSTALL_PREFIX=`: use custom install prefix path.
Add lines into downstream CMakeLists.txt:
find_package(xxHash 0.7 CONFIG REQUIRED)
...
target_link_libraries(MyTarget PRIVATE xxHash::xxhash)
### Way 2: Add subdirectory
Add lines into downstream CMakeLists.txt:
option(BUILD_SHARE_LIBS "Build shared libs" OFF) #optional
...
set(XXHASH_BUILD_ENABLE_INLINE_API OFF) #optional
set(XXHASH_BUILD_XXHSUM OFF) #optional
add_subdirectory( EXCLUDE_FROM_ALL)
...
target_link_libraries(MyTarget PRIVATE xxHash::xxhash)
xxHash-0.7.3/cmake_unofficial/xxHashConfig.cmake.in 0000664 0000000 0000000 00000000110 13630062715 0022236 0 ustar 00root root 0000000 0000000 @PACKAGE_INIT@
include(${CMAKE_CURRENT_LIST_DIR}/xxHashTargets.cmake)
xxHash-0.7.3/doc/ 0000775 0000000 0000000 00000000000 13630062715 0013534 5 ustar 00root root 0000000 0000000 xxHash-0.7.3/doc/README.md 0000664 0000000 0000000 00000000635 13630062715 0015017 0 ustar 00root root 0000000 0000000 xxHash Specification
=======================
This directory contains material defining the xxHash algorithm.
It's described in [this specification document](xxhash_spec.md).
The algorithm is also be illustrated by a [simple educational library](https://github.com/easyaspi314/xxhash-clean),
written by @easyaspi314 and designed for readability
(as opposed to the reference library which is designed for speed).
xxHash-0.7.3/doc/xxhash_spec.md 0000664 0000000 0000000 00000033630 13630062715 0016400 0 ustar 00root root 0000000 0000000 xxHash fast digest algorithm
======================
### Notices
Copyright (c) Yann Collet
Permission is granted to copy and distribute this document
for any purpose and without charge,
including translations into other languages
and incorporation into compilations,
provided that the copyright notice and this notice are preserved,
and that any substantive changes or deletions from the original
are clearly marked.
Distribution of this document is unlimited.
### Version
0.1.1 (10/10/18)
Table of Contents
---------------------
- [Introduction](#introduction)
- [XXH32 algorithm description](#xxh32-algorithm-description)
- [XXH64 algorithm description](#xxh64-algorithm-description)
- [Performance considerations](#performance-considerations)
- [Reference Implementation](#reference-implementation)
Introduction
----------------
This document describes the xxHash digest algorithm for both 32-bit and 64-bit variants, named `XXH32` and `XXH64`. The algorithm takes an input a message of arbitrary length and an optional seed value, then produces an output of 32 or 64-bit as "fingerprint" or "digest".
xxHash is primarily designed for speed. It is labeled non-cryptographic, and is not meant to avoid intentional collisions (same digest for 2 different messages), or to prevent producing a message with a predefined digest.
XXH32 is designed to be fast on 32-bit machines.
XXH64 is designed to be fast on 64-bit machines.
Both variants produce different output.
However, a given variant shall produce exactly the same output, irrespective of the cpu / os used. In particular, the result remains identical whatever the endianness and width of the cpu is.
### Operation notations
All operations are performed modulo {32,64} bits. Arithmetic overflows are expected.
`XXH32` uses 32-bit modular operations. `XXH64` uses 64-bit modular operations.
- `+`: denotes modular addition
- `*`: denotes modular multiplication
- `X <<< s`: denotes the value obtained by circularly shifting (rotating) `X` left by `s` bit positions.
- `X >> s`: denotes the value obtained by shifting `X` right by s bit positions. Upper `s` bits become `0`.
- `X xor Y`: denotes the bit-wise XOR of `X` and `Y` (same width).
XXH32 Algorithm Description
-------------------------------------
### Overview
We begin by supposing that we have a message of any length `L` as input, and that we wish to find its digest. Here `L` is an arbitrary nonnegative integer; `L` may be zero. The following steps are performed to compute the digest of the message.
The algorithm collect and transform input in _stripes_ of 16 bytes. The transforms are stored inside 4 "accumulators", each one storing an unsigned 32-bit value. Each accumulator can be processed independently in parallel, speeding up processing for cpu with multiple execution units.
The algorithm uses 32-bits addition, multiplication, rotate, shift and xor operations. Many operations require some 32-bits prime number constants, all defined below:
static const u32 PRIME32_1 = 0x9E3779B1U; // 0b10011110001101110111100110110001
static const u32 PRIME32_2 = 0x85EBCA77U; // 0b10000101111010111100101001110111
static const u32 PRIME32_3 = 0xC2B2AE3DU; // 0b11000010101100101010111000111101
static const u32 PRIME32_4 = 0x27D4EB2FU; // 0b00100111110101001110101100101111
static const u32 PRIME32_5 = 0x165667B1U; // 0b00010110010101100110011110110001
These constants are prime numbers, and feature a good mix of bits 1 and 0, neither too regular, nor too dissymmetric. These properties help dispersion capabilities.
### Step 1. Initialize internal accumulators
Each accumulator gets an initial value based on optional `seed` input. Since the `seed` is optional, it can be `0`.
u32 acc1 = seed + PRIME32_1 + PRIME32_2;
u32 acc2 = seed + PRIME32_2;
u32 acc3 = seed + 0;
u32 acc4 = seed - PRIME32_1;
#### Special case: input is less than 16 bytes
When the input is too small (< 16 bytes), the algorithm will not process any stripes. Consequently, it will not make use of parallel accumulators.
In this case, a simplified initialization is performed, using a single accumulator:
u32 acc = seed + PRIME32_5;
The algorithm then proceeds directly to step 4.
### Step 2. Process stripes
A stripe is a contiguous segment of 16 bytes.
It is evenly divided into 4 _lanes_, of 4 bytes each.
The first lane is used to update accumulator 1, the second lane is used to update accumulator 2, and so on.
Each lane read its associated 32-bit value using __little-endian__ convention.
For each {lane, accumulator}, the update process is called a _round_, and applies the following formula:
accN = accN + (laneN * PRIME32_2);
accN = accN <<< 13;
accN = accN * PRIME32_1;
This shuffles the bits so that any bit from input _lane_ impacts several bits in output _accumulator_. All operations are performed modulo 2^32.
Input is consumed one full stripe at a time. Step 2 is looped as many times as necessary to consume the whole input, except for the last remaining bytes which cannot form a stripe (< 16 bytes).
When that happens, move to step 3.
### Step 3. Accumulator convergence
All 4 lane accumulators from the previous steps are merged to produce a single remaining accumulator of the same width (32-bit). The associated formula is as follows:
acc = (acc1 <<< 1) + (acc2 <<< 7) + (acc3 <<< 12) + (acc4 <<< 18);
### Step 4. Add input length
The input total length is presumed known at this stage. This step is just about adding the length to accumulator, so that it participates to final mixing.
acc = acc + (u32)inputLength;
Note that, if input length is so large that it requires more than 32-bits, only the lower 32-bits are added to the accumulator.
### Step 5. Consume remaining input
There may be up to 15 bytes remaining to consume from the input.
The final stage will digest them according to following pseudo-code:
while (remainingLength >= 4) {
lane = read_32bit_little_endian(input_ptr);
acc = acc + lane * PRIME32_3;
acc = (acc <<< 17) * PRIME32_4;
input_ptr += 4; remainingLength -= 4;
}
while (remainingLength >= 1) {
lane = read_byte(input_ptr);
acc = acc + lane * PRIME32_5;
acc = (acc <<< 11) * PRIME32_1;
input_ptr += 1; remainingLength -= 1;
}
This process ensures that all input bytes are present in the final mix.
### Step 6. Final mix (avalanche)
The final mix ensures that all input bits have a chance to impact any bit in the output digest, resulting in an unbiased distribution. This is also called avalanche effect.
acc = acc xor (acc >> 15);
acc = acc * PRIME32_2;
acc = acc xor (acc >> 13);
acc = acc * PRIME32_3;
acc = acc xor (acc >> 16);
### Step 7. Output
The `XXH32()` function produces an unsigned 32-bit value as output.
For systems which require to store and/or display the result in binary or hexadecimal format, the canonical format is defined to reproduce the same value as the natural decimal format, hence follows __big-endian__ convention (most significant byte first).
XXH64 Algorithm Description
-------------------------------------
### Overview
`XXH64`'s algorithm structure is very similar to `XXH32` one. The major difference is that `XXH64` uses 64-bit arithmetic, speeding up memory transfer for 64-bit compliant systems, but also relying on cpu capability to efficiently perform 64-bit operations.
The algorithm collects and transforms input in _stripes_ of 32 bytes. The transforms are stored inside 4 "accumulators", each one storing an unsigned 64-bit value. Each accumulator can be processed independently in parallel, speeding up processing for cpu with multiple execution units.
The algorithm uses 64-bit addition, multiplication, rotate, shift and xor operations. Many operations require some 64-bit prime number constants, all defined below:
static const u64 PRIME64_1 = 0x9E3779B185EBCA87ULL; // 0b1001111000110111011110011011000110000101111010111100101010000111
static const u64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; // 0b1100001010110010101011100011110100100111110101001110101101001111
static const u64 PRIME64_3 = 0x165667B19E3779F9ULL; // 0b0001011001010110011001111011000110011110001101110111100111111001
static const u64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL; // 0b1000010111101011110010100111011111000010101100101010111001100011
static const u64 PRIME64_5 = 0x27D4EB2F165667C5ULL; // 0b0010011111010100111010110010111100010110010101100110011111000101
These constants are prime numbers, and feature a good mix of bits 1 and 0, neither too regular, nor too dissymmetric. These properties help dispersion capabilities.
### Step 1. Initialise internal accumulators
Each accumulator gets an initial value based on optional `seed` input. Since the `seed` is optional, it can be `0`.
u64 acc1 = seed + PRIME64_1 + PRIME64_2;
u64 acc2 = seed + PRIME64_2;
u64 acc3 = seed + 0;
u64 acc4 = seed - PRIME64_1;
#### Special case: input is less than 32 bytes
When the input is too small (< 32 bytes), the algorithm will not process any stripes. Consequently, it will not make use of parallel accumulators.
In this case, a simplified initialization is performed, using a single accumulator:
u64 acc = seed + PRIME64_5;
The algorithm then proceeds directly to step 4.
### Step 2. Process stripes
A stripe is a contiguous segment of 32 bytes.
It is evenly divided into 4 _lanes_, of 8 bytes each.
The first lane is used to update accumulator 1, the second lane is used to update accumulator 2, and so on.
Each lane read its associated 64-bit value using __little-endian__ convention.
For each {lane, accumulator}, the update process is called a _round_, and applies the following formula:
round(accN,laneN):
accN = accN + (laneN * PRIME64_2);
accN = accN <<< 31;
return accN * PRIME64_1;
This shuffles the bits so that any bit from input _lane_ impacts several bits in output _accumulator_. All operations are performed modulo 2^64.
Input is consumed one full stripe at a time. Step 2 is looped as many times as necessary to consume the whole input, except for the last remaining bytes which cannot form a stripe (< 32 bytes).
When that happens, move to step 3.
### Step 3. Accumulator convergence
All 4 lane accumulators from previous steps are merged to produce a single remaining accumulator of same width (64-bit). The associated formula is as follows.
Note that accumulator convergence is more complex than 32-bit variant, and requires to define another function called _mergeAccumulator()_:
mergeAccumulator(acc,accN):
acc = acc xor round(0, accN);
acc = acc * PRIME64_1
return acc + PRIME64_4;
which is then used in the convergence formula:
acc = (acc1 <<< 1) + (acc2 <<< 7) + (acc3 <<< 12) + (acc4 <<< 18);
acc = mergeAccumulator(acc, acc1);
acc = mergeAccumulator(acc, acc2);
acc = mergeAccumulator(acc, acc3);
acc = mergeAccumulator(acc, acc4);
### Step 4. Add input length
The input total length is presumed known at this stage. This step is just about adding the length to accumulator, so that it participates to final mixing.
acc = acc + inputLength;
### Step 5. Consume remaining input
There may be up to 31 bytes remaining to consume from the input.
The final stage will digest them according to following pseudo-code:
while (remainingLength >= 8) {
lane = read_64bit_little_endian(input_ptr);
acc = acc xor round(0, lane);
acc = (acc <<< 27) * PRIME64_1;
acc = acc + PRIME64_4;
input_ptr += 8; remainingLength -= 8;
}
if (remainingLength >= 4) {
lane = read_32bit_little_endian(input_ptr);
acc = acc xor (lane * PRIME64_1);
acc = (acc <<< 23) * PRIME64_2;
acc = acc + PRIME64_3;
input_ptr += 4; remainingLength -= 4;
}
while (remainingLength >= 1) {
lane = read_byte(input_ptr);
acc = acc xor (lane * PRIME64_5);
acc = (acc <<< 11) * PRIME64_1;
input_ptr += 1; remainingLength -= 1;
}
This process ensures that all input bytes are present in the final mix.
### Step 6. Final mix (avalanche)
The final mix ensures that all input bits have a chance to impact any bit in the output digest, resulting in an unbiased distribution. This is also called avalanche effect.
acc = acc xor (acc >> 33);
acc = acc * PRIME64_2;
acc = acc xor (acc >> 29);
acc = acc * PRIME64_3;
acc = acc xor (acc >> 32);
### Step 7. Output
The `XXH64()` function produces an unsigned 64-bit value as output.
For systems which require to store and/or display the result in binary or hexadecimal format, the canonical format is defined to reproduce the same value as the natural decimal format, hence follows __big-endian__ convention (most significant byte first).
Performance considerations
----------------------------------
The xxHash algorithms are simple and compact to implement. They provide a system independent "fingerprint" or digest of a message of arbitrary length.
The algorithm allows input to be streamed and processed in multiple steps. In such case, an internal buffer is needed to ensure data is presented to the algorithm in full stripes.
On 64-bit systems, the 64-bit variant `XXH64` is generally faster to compute, so it is a recommended variant, even when only 32-bit are needed.
On 32-bit systems though, positions are reversed: `XXH64` performance is reduced, due to its usage of 64-bit arithmetic. `XXH32` becomes a faster variant.
Reference Implementation
----------------------------------------
A reference library written in C is available at https://www.xxhash.com.
The web page also links to multiple other implementations written in many different languages.
It links to the [github project page](https://github.com/Cyan4973/xxHash) where an [issue board](https://github.com/Cyan4973/xxHash/issues) can be used for further public discussions on the topic.
Version changes
--------------------
v0.7.3: Minor fixes
v0.1.1: added a note on rationale for selection of constants
v0.1.0: initial release
xxHash-0.7.3/libxxhash.pc.in 0000664 0000000 0000000 00000000564 13630062715 0015717 0 ustar 00root root 0000000 0000000 # xxHash - Extremely fast hash algorithm
# BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
prefix=@PREFIX@
exec_prefix=${prefix}
includedir=${prefix}/include
libdir=${exec_prefix}/lib
Name: xxhash
Description: extremely fast hash algorithm
URL: https://www.xxhash.com/
Version: @VERSION@
Libs: -L${libdir} -lxxhash
Cflags: -I${includedir}
xxHash-0.7.3/tests/ 0000775 0000000 0000000 00000000000 13630062715 0014131 5 ustar 00root root 0000000 0000000 xxHash-0.7.3/tests/Makefile 0000664 0000000 0000000 00000004132 13630062715 0015571 0 ustar 00root root 0000000 0000000 CFLAGS += -Wall -Wextra -g
NM = nm
GREP = grep
# Define *.exe as extension for Windows systems
ifneq (,$(filter Windows%,$(OS)))
EXT =.exe
else
EXT =
endif
ifneq (,$(filter %UTF-8,$(LANG)))
ENABLE_UNICODE ?= 1
else
ENABLE_UNICODE ?= 0
endif
.PHONY: default
default: all
.PHONY: all
all: test
.PHONY: test
test: test_multiInclude test_unicode
.PHONY: test_multiInclude
test_multiInclude:
@$(MAKE) clean
# compile without xxhash.o, ensure symbols exist within target
# Note: built using only default rules
$(MAKE) multiInclude
@$(MAKE) clean
# compile with xxhash.o, to detect duplicated symbols
$(MAKE) multiInclude_withxxhash
@$(MAKE) clean
# Note: XXH_INLINE_ALL with XXH_NAMESPACE is currently disabled
# compile with XXH_NAMESPACE
# CPPFLAGS=-DXXH_NAMESPACE=TESTN_ $(MAKE) multiInclude_withxxhash
# no symbol prefixed TESTN_ should exist
# ! $(NM) multiInclude_withxxhash | $(GREP) TESTN_
#$(MAKE) clean
# compile with XXH_NAMESPACE and without xxhash.o
# CPPFLAGS=-DXXH_NAMESPACE=TESTN_ $(MAKE) multiInclude
# no symbol prefixed TESTN_ should exist
# ! $(NM) multiInclude | $(GREP) TESTN_
#@$(MAKE) clean
xxhsum$(EXT): ../xxhash.c ../xxhash.h ../xxh3.h ../xxhsum.c
$(CC) $(CFLAGS) $(LDFLAGS) ../xxhash.c ../xxhsum.c -o $@
# Make sure that Unicode filenames work.
# https://github.com/Cyan4973/xxHash/issues/293
.PHONY: test_unicode
ifeq (0,$(ENABLE_UNICODE))
test_unicode:
@echo "Skipping Unicode test, your terminal doesn't appear to support UTF-8."
@echo "Try with ENABLE_UNICODE=1"
else
test_unicode: xxhsum$(EXT) generate_unicode_test.c
# Generate a Unicode filename test dynamically
# to keep UTF-8 out of the source tree.
$(CC) $(CFLAGS) $(LDFLAGS) generate_unicode_test.c -o generate_unicode_test$(EXT)
./generate_unicode_test$(EXT)
$(SHELL) ./unicode_test.sh
endif
xxhash.o: ../xxhash.c ../xxhash.h
$(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) -c -o $@ $<
multiInclude_withxxhash: multiInclude.o xxhash.o
$(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS) -o $@ $^
clean:
@$(RM) *.o
@$(RM) multiInclude multiInclude_withxxhash
@$(RM) *.unicode generate_unicode_test$(EXT) unicode_test.* xxhsum$(EXT)
xxHash-0.7.3/tests/bench/ 0000775 0000000 0000000 00000000000 13630062715 0015210 5 ustar 00root root 0000000 0000000 xxHash-0.7.3/tests/bench/.clang_complete 0000664 0000000 0000000 00000000010 13630062715 0020154 0 ustar 00root root 0000000 0000000 -I../..
xxHash-0.7.3/tests/bench/.gitignore 0000664 0000000 0000000 00000000136 13630062715 0017200 0 ustar 00root root 0000000 0000000 # build artifacts
*.o
benchHash
benchHash32
benchHash_avx2
benchHash_hw
# test files
test*
xxHash-0.7.3/tests/bench/LICENSE 0000664 0000000 0000000 00000043254 13630062715 0016225 0 ustar 00root root 0000000 0000000 GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.
xxHash-0.7.3/tests/bench/Makefile 0000664 0000000 0000000 00000004130 13630062715 0016646 0 ustar 00root root 0000000 0000000 # ################################################################
# xxHash Makefile
# Copyright (C) Yann Collet 2012-present
#
# GPL v2 License
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# You can contact the author at:
# - xxHash homepage: https://www.xxhash.com
# - xxHash source repository: https://github.com/Cyan4973/xxHash
# ################################################################
# benchHash: A generic benchmark for hash algorithms
# measuring throughput, latency and bandwidth
# ################################################################
CPPFLAGS += -I../.. # directory of xxHash source files
CFLAGS ?= -O3
CFLAGS += -std=c99 -Wall -Wextra -Wstrict-aliasing=1
CFLAGS += $(MOREFLAGS) # custom way to add flags
CXXFLAGS ?= -O3
LDFLAGS += $(MOREFLAGS)
OBJ_LIST = main.o bhDisplay.o benchHash.o benchfn.o timefn.o
default: benchHash
all: benchHash
benchHash32: CFLAGS += -m32
benchHash32: CXXFLAGS += -m32
benchHash_avx2: CFLAGS += -mavx2
benchHash_avx2: CXXFLAGS += -mavx2
benchHash_hw: CPPFLAGS += -DHARDWARE_SUPPORT
benchHash_hw: CFLAGS += -mavx2 -maes
benchHash_hw: CXXFLAGS += -mavx2 -mpclmul -std=c++14
benchHash benchHash32 benchHash_avx2 benchHash_nosimd benchHash_hw: $(OBJ_LIST)
$(CXX) $(CPPFLAGS) $(CXXFLAGS) $^ $(LDFLAGS) -o $@
main.o: bhDisplay.h hashes.h
bhDisplay.o: bhDisplay.h benchHash.h
benchHash.o: benchHash.h
clean:
$(RM) *.o benchHash benchHash32 benchHash_avx2 benchHash_hw
xxHash-0.7.3/tests/bench/benchHash.c 0000664 0000000 0000000 00000012214 13630062715 0017237 0 ustar 00root root 0000000 0000000 /*
* Hash benchmark module
* Part of the xxHash project
* Copyright (C) 2019-present, Yann Collet
*
* GPL v2 License
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
/* benchmark hash functions */
#include // malloc
#include
#include "benchHash.h"
static void initBuffer(void* buffer, size_t size)
{
const unsigned long long k1 = 11400714785074694791ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
const unsigned long long k2 = 14029467366897019727ULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
unsigned long long acc = k2;
unsigned char* const p = (unsigned char*)buffer;
for (size_t s = 0; s < size; s++) {
acc *= k1;
p[s] = (unsigned char)(acc >> 56);
}
}
#define MARGIN_FOR_LATENCY 1024
#define START_MASK (MARGIN_FOR_LATENCY-1)
typedef size_t (*sizeFunction_f)(size_t targetSize);
/*
* bench_hash_internal():
* Benchmarks hashfn repeateadly over single input of size `size`
* return: nb of hashes per second
*/
static double
bench_hash_internal(BMK_benchFn_t hashfn, void* payload,
size_t nbBlocks, sizeFunction_f selectSize, size_t size,
unsigned total_time_ms, unsigned iter_time_ms)
{
BMK_timedFnState_shell shell;
BMK_timedFnState_t* const txf = BMK_initStatic_timedFnState(&shell, sizeof(shell), total_time_ms, iter_time_ms);
assert(txf != NULL);
size_t const srcSize = (size_t)size;
size_t const srcBufferSize = srcSize + MARGIN_FOR_LATENCY;
void* const srcBuffer = malloc(srcBufferSize);
assert(srcBuffer != NULL);
initBuffer(srcBuffer, srcBufferSize);
#define FAKE_DSTSIZE 32
size_t const dstSize = FAKE_DSTSIZE;
char dstBuffer_static[FAKE_DSTSIZE] = {0};
#define NB_BLOCKS_MAX 1024
const void* srcBuffers[NB_BLOCKS_MAX];
size_t srcSizes[NB_BLOCKS_MAX];
void* dstBuffers[NB_BLOCKS_MAX];
size_t dstCapacities[NB_BLOCKS_MAX];
assert(nbBlocks < NB_BLOCKS_MAX);
assert(size > 0);
for (size_t n=0; n < nbBlocks; n++) {
srcBuffers[n] = srcBuffer;
srcSizes[n] = selectSize(size);
dstBuffers[n] = dstBuffer_static;
dstCapacities[n] = dstSize;
}
BMK_benchParams_t params = {
.benchFn = hashfn,
.benchPayload = payload,
.initFn = NULL,
.initPayload = NULL,
.errorFn = NULL,
.blockCount = nbBlocks,
.srcBuffers = srcBuffers,
.srcSizes = srcSizes,
.dstBuffers = dstBuffers,
.dstCapacities = dstCapacities,
.blockResults = NULL
};
BMK_runOutcome_t result;
while (!BMK_isCompleted_TimedFn(txf)) {
result = BMK_benchTimedFn(txf, params);
assert(BMK_isSuccessful_runOutcome(result));
}
BMK_runTime_t const runTime = BMK_extract_runTime(result);
free(srcBuffer);
assert(runTime.nanoSecPerRun != 0);
return (1000000000U / runTime.nanoSecPerRun) * nbBlocks;
}
static size_t rand_1_N(size_t N) { return ((size_t)rand() % N) + 1; }
static size_t identity(size_t s) { return s; }
static size_t
benchLatency(const void* src, size_t srcSize,
void* dst, size_t dstCapacity,
void* customPayload)
{
(void)dst; (void)dstCapacity;
BMK_benchFn_t benchfn = (BMK_benchFn_t)customPayload;
static size_t hash = 0;
const void* const start = (const char*)src + (hash & START_MASK);
return hash = benchfn(start, srcSize, dst, dstCapacity, NULL);
}
#ifndef SIZE_TO_HASH_PER_ROUND
# define SIZE_TO_HASH_PER_ROUND 200000
#endif
#ifndef NB_HASH_ROUNDS_MAX
# define NB_HASH_ROUNDS_MAX 1000
#endif
double bench_hash(BMK_benchFn_t hashfn,
BMK_benchMode benchMode,
size_t size, BMK_sizeMode sizeMode,
unsigned total_time_ms, unsigned iter_time_ms)
{
sizeFunction_f const sizef = (sizeMode == BMK_fixedSize) ? identity : rand_1_N;
BMK_benchFn_t const benchfn = (benchMode == BMK_throughput) ? hashfn : benchLatency;
BMK_benchFn_t const payload = (benchMode == BMK_throughput) ? NULL : hashfn;
size_t nbBlocks = (SIZE_TO_HASH_PER_ROUND / size) + 1;
if (nbBlocks > NB_HASH_ROUNDS_MAX) nbBlocks = NB_HASH_ROUNDS_MAX;
return bench_hash_internal(benchfn, payload,
nbBlocks, sizef, size,
total_time_ms, iter_time_ms);
}
xxHash-0.7.3/tests/bench/benchHash.h 0000664 0000000 0000000 00000003743 13630062715 0017253 0 ustar 00root root 0000000 0000000 /*
* Hash benchmark module
* Part of the xxHash project
* Copyright (C) 2019-present, Yann Collet
*
* GPL v2 License
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
#ifndef BENCH_HASH_H_983426678
#define BENCH_HASH_H_983426678
#if defined (__cplusplus)
extern "C" {
#endif
/* === Dependencies === */
#include "benchfn.h" /* BMK_benchFn_t */
/* === Declarations === */
typedef enum { BMK_throughput, BMK_latency } BMK_benchMode;
typedef enum { BMK_fixedSize, /* hash always `size` bytes */
BMK_randomSize, /* hash a random nb of bytes, between 1 and `size` (inclusive) */
} BMK_sizeMode;
/*
* bench_hash():
* Returns speed expressed as nb hashes per second.
* total_time_ms: time spent benchmarking the hash function with given parameters
* iter_time_ms: time spent for one round. If multiple rounds are run,
* bench_hash() will report the speed of best round.
*/
double bench_hash(BMK_benchFn_t hashfn,
BMK_benchMode benchMode,
size_t size, BMK_sizeMode sizeMode,
unsigned total_time_ms, unsigned iter_time_ms);
#if defined (__cplusplus)
}
#endif
#endif /* BENCH_HASH_H_983426678 */
xxHash-0.7.3/tests/bench/benchfn.c 0000664 0000000 0000000 00000022711 13630062715 0016762 0 ustar 00root root 0000000 0000000 /*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* *************************************
* Includes
***************************************/
#include /* malloc, free */
#include /* memset */
#undef NDEBUG /* assert must not be disabled */
#include /* assert */
#include "timefn.h" /* UTIL_time_t, UTIL_getTime */
#include "benchfn.h"
/* *************************************
* Constants
***************************************/
#define TIMELOOP_MICROSEC SEC_TO_MICRO /* 1 second */
#define TIMELOOP_NANOSEC (1*1000000000ULL) /* 1 second */
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
/* *************************************
* Debug errors
***************************************/
#if defined(DEBUG) && (DEBUG >= 1)
# include /* fprintf */
# define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
# define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#else
# define DEBUGOUTPUT(...)
#endif
/* error without displaying */
#define RETURN_QUIET_ERROR(retValue, ...) { \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DEBUGOUTPUT("Error : "); \
DEBUGOUTPUT(__VA_ARGS__); \
DEBUGOUTPUT(" \n"); \
return retValue; \
}
/* *************************************
* Benchmarking an arbitrary function
***************************************/
int BMK_isSuccessful_runOutcome(BMK_runOutcome_t outcome)
{
return outcome.error_tag_never_ever_use_directly == 0;
}
/* warning : this function will stop program execution if outcome is invalid !
* check outcome validity first, using BMK_isValid_runResult() */
BMK_runTime_t BMK_extract_runTime(BMK_runOutcome_t outcome)
{
assert(outcome.error_tag_never_ever_use_directly == 0);
return outcome.internal_never_ever_use_directly;
}
size_t BMK_extract_errorResult(BMK_runOutcome_t outcome)
{
assert(outcome.error_tag_never_ever_use_directly != 0);
return outcome.error_result_never_ever_use_directly;
}
static BMK_runOutcome_t BMK_runOutcome_error(size_t errorResult)
{
BMK_runOutcome_t b;
memset(&b, 0, sizeof(b));
b.error_tag_never_ever_use_directly = 1;
b.error_result_never_ever_use_directly = errorResult;
return b;
}
static BMK_runOutcome_t BMK_setValid_runTime(BMK_runTime_t runTime)
{
BMK_runOutcome_t outcome;
outcome.error_tag_never_ever_use_directly = 0;
outcome.internal_never_ever_use_directly = runTime;
return outcome;
}
/* initFn will be measured once, benchFn will be measured `nbLoops` times */
/* initFn is optional, provide NULL if none */
/* benchFn must return a size_t value that errorFn can interpret */
/* takes # of blocks and list of size & stuff for each. */
/* can report result of benchFn for each block into blockResult. */
/* blockResult is optional, provide NULL if this information is not required */
/* note : time per loop can be reported as zero if run time < timer resolution */
BMK_runOutcome_t BMK_benchFunction(BMK_benchParams_t p,
unsigned nbLoops)
{
/* init */
{ size_t i;
for (i = 0; i < p.blockCount; i++) {
memset(p.dstBuffers[i], 0xE5, p.dstCapacities[i]); /* warm up and erase result buffer */
} }
/* benchmark */
{ UTIL_time_t const clockStart = UTIL_getTime();
size_t dstSize = 0;
unsigned loopNb, blockNb;
nbLoops += !nbLoops; /* minimum nbLoops is 1 */
if (p.initFn != NULL) p.initFn(p.initPayload);
for (loopNb = 0; loopNb < nbLoops; loopNb++) {
for (blockNb = 0; blockNb < p.blockCount; blockNb++) {
size_t const res = p.benchFn(p.srcBuffers[blockNb], p.srcSizes[blockNb],
p.dstBuffers[blockNb], p.dstCapacities[blockNb],
p.benchPayload);
if (loopNb == 0) {
if (p.blockResults != NULL) p.blockResults[blockNb] = res;
if ((p.errorFn != NULL) && (p.errorFn(res))) {
RETURN_QUIET_ERROR(BMK_runOutcome_error(res),
"Function benchmark failed on block %u (of size %u) with error %i",
blockNb, (unsigned)p.srcSizes[blockNb], (int)res);
}
dstSize += res;
} }
} /* for (loopNb = 0; loopNb < nbLoops; loopNb++) */
{ PTime const totalTime = UTIL_clockSpanNano(clockStart);
BMK_runTime_t rt;
rt.nanoSecPerRun = (double)totalTime / nbLoops;
rt.sumOfReturn = dstSize;
return BMK_setValid_runTime(rt);
} }
}
/* ==== Benchmarking any function, providing intermediate results ==== */
struct BMK_timedFnState_s {
PTime timeSpent_ns;
PTime timeBudget_ns;
PTime runBudget_ns;
BMK_runTime_t fastestRun;
unsigned nbLoops;
UTIL_time_t coolTime;
}; /* typedef'd to BMK_timedFnState_t within bench.h */
BMK_timedFnState_t* BMK_createTimedFnState(unsigned total_ms, unsigned run_ms)
{
BMK_timedFnState_t* const r = (BMK_timedFnState_t*)malloc(sizeof(*r));
if (r == NULL) return NULL; /* malloc() error */
BMK_resetTimedFnState(r, total_ms, run_ms);
return r;
}
void BMK_freeTimedFnState(BMK_timedFnState_t* state) { free(state); }
BMK_timedFnState_t*
BMK_initStatic_timedFnState(void* buffer, size_t size, unsigned total_ms, unsigned run_ms)
{
typedef char check_size[ 2 * (sizeof(BMK_timedFnState_shell) >= sizeof(struct BMK_timedFnState_s)) - 1]; /* static assert : a compilation failure indicates that BMK_timedFnState_shell is not large enough */
typedef struct { check_size c; BMK_timedFnState_t tfs; } tfs_align; /* force tfs to be aligned at its next best position */
size_t const tfs_alignment = offsetof(tfs_align, tfs); /* provides the minimal alignment restriction for BMK_timedFnState_t */
BMK_timedFnState_t* const r = (BMK_timedFnState_t*)buffer;
if (buffer == NULL) return NULL;
if (size < sizeof(struct BMK_timedFnState_s)) return NULL;
if ((size_t)buffer % tfs_alignment) return NULL; /* buffer must be properly aligned */
BMK_resetTimedFnState(r, total_ms, run_ms);
return r;
}
void BMK_resetTimedFnState(BMK_timedFnState_t* timedFnState, unsigned total_ms, unsigned run_ms)
{
if (!total_ms) total_ms = 1 ;
if (!run_ms) run_ms = 1;
if (run_ms > total_ms) run_ms = total_ms;
timedFnState->timeSpent_ns = 0;
timedFnState->timeBudget_ns = (PTime)total_ms * TIMELOOP_NANOSEC / 1000;
timedFnState->runBudget_ns = (PTime)run_ms * TIMELOOP_NANOSEC / 1000;
timedFnState->fastestRun.nanoSecPerRun = (double)TIMELOOP_NANOSEC * 2000000000; /* hopefully large enough : must be larger than any potential measurement */
timedFnState->fastestRun.sumOfReturn = (size_t)(-1LL);
timedFnState->nbLoops = 1;
timedFnState->coolTime = UTIL_getTime();
}
/* Tells if nb of seconds set in timedFnState for all runs is spent.
* note : this function will return 1 if BMK_benchFunctionTimed() has actually errored. */
int BMK_isCompleted_TimedFn(const BMK_timedFnState_t* timedFnState)
{
return (timedFnState->timeSpent_ns >= timedFnState->timeBudget_ns);
}
#undef MIN
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
#define MINUSABLETIME (TIMELOOP_NANOSEC / 2) /* 0.5 seconds */
BMK_runOutcome_t BMK_benchTimedFn(BMK_timedFnState_t* cont,
BMK_benchParams_t p)
{
PTime const runBudget_ns = cont->runBudget_ns;
PTime const runTimeMin_ns = runBudget_ns / 2;
BMK_runTime_t bestRunTime = cont->fastestRun;
for (;;) {
BMK_runOutcome_t const runResult = BMK_benchFunction(p, cont->nbLoops);
if (!BMK_isSuccessful_runOutcome(runResult)) { /* error : move out */
return runResult;
}
{ BMK_runTime_t const newRunTime = BMK_extract_runTime(runResult);
double const loopDuration_ns = newRunTime.nanoSecPerRun * cont->nbLoops;
cont->timeSpent_ns += (unsigned long long)loopDuration_ns;
/* estimate nbLoops for next run to last approximately 1 second */
if (loopDuration_ns > (runBudget_ns / 50)) {
double const fastestRun_ns = MIN(bestRunTime.nanoSecPerRun, newRunTime.nanoSecPerRun);
cont->nbLoops = (unsigned)(runBudget_ns / fastestRun_ns) + 1;
} else {
/* previous run was too short : blindly increase workload by x multiplier */
const unsigned multiplier = 10;
assert(cont->nbLoops < ((unsigned)-1) / multiplier); /* avoid overflow */
cont->nbLoops *= multiplier;
}
if (loopDuration_ns < runTimeMin_ns) {
/* When benchmark run time is too small : don't report results.
* increased risks of rounding errors */
continue;
}
if (newRunTime.nanoSecPerRun < bestRunTime.nanoSecPerRun) {
bestRunTime = newRunTime;
}
}
break;
} /* while (!completed) */
return BMK_setValid_runTime(bestRunTime);
}
xxHash-0.7.3/tests/bench/benchfn.h 0000664 0000000 0000000 00000021030 13630062715 0016760 0 ustar 00root root 0000000 0000000 /*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* benchfn :
* benchmark any function on a set of input
* providing result in nanoSecPerRun
* or detecting and returning an error
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef BENCH_FN_H_23876
#define BENCH_FN_H_23876
/* === Dependencies === */
#include /* size_t */
/* ==== Benchmark any function, iterated on a set of blocks ==== */
/* BMK_runTime_t: valid result return type */
typedef struct {
double nanoSecPerRun; /* time per iteration (over all blocks) */
size_t sumOfReturn; /* sum of return values */
} BMK_runTime_t;
/* BMK_runOutcome_t:
* type expressing the outcome of a benchmark run by BMK_benchFunction(),
* which can be either valid or invalid.
* benchmark outcome can be invalid if errorFn is provided.
* BMK_runOutcome_t must be considered "opaque" : never access its members directly.
* Instead, use its assigned methods :
* BMK_isSuccessful_runOutcome, BMK_extract_runTime, BMK_extract_errorResult.
* The structure is only described here to allow its allocation on stack. */
typedef struct {
BMK_runTime_t internal_never_ever_use_directly;
size_t error_result_never_ever_use_directly;
int error_tag_never_ever_use_directly;
} BMK_runOutcome_t;
/* prototypes for benchmarked functions */
typedef size_t (*BMK_benchFn_t)(const void* src, size_t srcSize, void* dst, size_t dstCapacity, void* customPayload);
typedef size_t (*BMK_initFn_t)(void* initPayload);
typedef unsigned (*BMK_errorFn_t)(size_t);
/* BMK_benchFunction() parameters are provided via the following structure.
* A structure is preferable for readability,
* as the number of parameters required is fairly large.
* No initializer is provided, because it doesn't make sense to provide some "default" :
* all parameters must be specified by the caller.
* optional parameters are labelled explicitly, and accept value NULL when not used */
typedef struct {
BMK_benchFn_t benchFn; /* the function to benchmark, over the set of blocks */
void* benchPayload; /* pass custom parameters to benchFn :
* (*benchFn)(srcBuffers[i], srcSizes[i], dstBuffers[i], dstCapacities[i], benchPayload) */
BMK_initFn_t initFn; /* (*initFn)(initPayload) is run once per run, at the beginning. */
void* initPayload; /* Both arguments can be NULL, in which case nothing is run. */
BMK_errorFn_t errorFn; /* errorFn will check each return value of benchFn over each block, to determine if it failed or not.
* errorFn can be NULL, in which case no check is performed.
* errorFn must return 0 when benchFn was successful, and >= 1 if it detects an error.
* Execution is stopped as soon as an error is detected.
* the triggering return value can be retrieved using BMK_extract_errorResult(). */
size_t blockCount; /* number of blocks to operate benchFn on.
* It's also the size of all array parameters :
* srcBuffers, srcSizes, dstBuffers, dstCapacities, blockResults */
const void *const * srcBuffers; /* read-only array of buffers to be operated on by benchFn */
const size_t* srcSizes; /* read-only array containing sizes of srcBuffers */
void *const * dstBuffers; /* array of buffers to be written into by benchFn. This array is not optional, it must be provided even if unused by benchfn. */
const size_t* dstCapacities; /* read-only array containing capacities of dstBuffers. This array must be present. */
size_t* blockResults; /* Optional: store the return value of benchFn for each block. Use NULL if this result is not requested. */
} BMK_benchParams_t;
/* BMK_benchFunction() :
* This function benchmarks benchFn and initFn, providing a result.
*
* params : see description of BMK_benchParams_t above.
* nbLoops: defines number of times benchFn is run over the full set of blocks.
* Minimum value is 1. A 0 is interpreted as a 1.
*
* @return: can express either an error or a successful result.
* Use BMK_isSuccessful_runOutcome() to check if benchmark was successful.
* If yes, extract the result with BMK_extract_runTime(),
* it will contain :
* .sumOfReturn : the sum of all return values of benchFn through all of blocks
* .nanoSecPerRun : time per run of benchFn + (time for initFn / nbLoops)
* .sumOfReturn is generally intended for functions which return a # of bytes written into dstBuffer,
* in which case, this value will be the total amount of bytes written into dstBuffer.
*
* blockResults : when provided (!= NULL), and when benchmark is successful,
* params.blockResults contains all return values of `benchFn` over all blocks.
* when provided (!= NULL), and when benchmark failed,
* params.blockResults contains return values of `benchFn` over all blocks preceding and including the failed block.
*/
BMK_runOutcome_t BMK_benchFunction(BMK_benchParams_t params, unsigned nbLoops);
/* check first if the benchmark was successful or not */
int BMK_isSuccessful_runOutcome(BMK_runOutcome_t outcome);
/* If the benchmark was successful, extract the result.
* note : this function will abort() program execution if benchmark failed !
* always check if benchmark was successful first !
*/
BMK_runTime_t BMK_extract_runTime(BMK_runOutcome_t outcome);
/* when benchmark failed, it means one invocation of `benchFn` failed.
* The failure was detected by `errorFn`, operating on return values of `benchFn`.
* Returns the faulty return value.
* note : this function will abort() program execution if benchmark did not failed.
* always check if benchmark failed first !
*/
size_t BMK_extract_errorResult(BMK_runOutcome_t outcome);
/* ==== Benchmark any function, returning intermediate results ==== */
/* state information tracking benchmark session */
typedef struct BMK_timedFnState_s BMK_timedFnState_t;
/* BMK_benchTimedFn() :
* Similar to BMK_benchFunction(), most arguments being identical.
* Automatically determines `nbLoops` so that each result is regularly produced at interval of about run_ms.
* Note : minimum `nbLoops` is 1, therefore a run may last more than run_ms, and possibly even more than total_ms.
* Usage - initialize timedFnState, select benchmark duration (total_ms) and each measurement duration (run_ms)
* call BMK_benchTimedFn() repetitively, each measurement is supposed to last about run_ms
* Check if total time budget is spent or exceeded, using BMK_isCompleted_TimedFn()
*/
BMK_runOutcome_t BMK_benchTimedFn(BMK_timedFnState_t* timedFnState,
BMK_benchParams_t params);
/* Tells if duration of all benchmark runs has exceeded total_ms
*/
int BMK_isCompleted_TimedFn(const BMK_timedFnState_t* timedFnState);
/* BMK_createTimedFnState() and BMK_resetTimedFnState() :
* Create/Set BMK_timedFnState_t for next benchmark session,
* which shall last a minimum of total_ms milliseconds,
* producing intermediate results, paced at interval of (approximately) run_ms.
*/
BMK_timedFnState_t* BMK_createTimedFnState(unsigned total_ms, unsigned run_ms);
void BMK_resetTimedFnState(BMK_timedFnState_t* timedFnState, unsigned total_ms, unsigned run_ms);
void BMK_freeTimedFnState(BMK_timedFnState_t* state);
/* BMK_timedFnState_shell and BMK_initStatic_timedFnState() :
* Makes it possible to statically allocate a BMK_timedFnState_t on stack.
* BMK_timedFnState_shell is only there to allocate space,
* never ever access its members.
* BMK_timedFnState_t() actually accepts any buffer.
* It will check if provided buffer is large enough and is correctly aligned,
* and will return NULL if conditions are not respected.
*/
#define BMK_TIMEDFNSTATE_SIZE 64
typedef union {
char never_access_space[BMK_TIMEDFNSTATE_SIZE];
long long alignment_enforcer; /* must be aligned on 8-bytes boundaries */
} BMK_timedFnState_shell;
BMK_timedFnState_t* BMK_initStatic_timedFnState(void* buffer, size_t size, unsigned total_ms, unsigned run_ms);
#endif /* BENCH_FN_H_23876 */
#if defined (__cplusplus)
}
#endif
xxHash-0.7.3/tests/bench/bhDisplay.c 0000664 0000000 0000000 00000013335 13630062715 0017300 0 ustar 00root root 0000000 0000000 /*
* CSV Display module for the hash benchmark program
* Part of the xxHash project
* Copyright (C) 2019-present, Yann Collet
*
* GPL v2 License
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* You can contact the author at :
* - xxHash homepage : https://www.xxhash.com
* - xxHash source repository : https://github.com/Cyan4973/xxHash
*/
/* === Dependencies === */
#include /* rand */
#include /* printf */
#include
#include "benchHash.h"
#include "bhDisplay.h"
/* === benchmark large input === */
#define MB_UNIT 1000000
#define BENCH_LARGE_ITER_MS 490
#define BENCH_LARGE_TOTAL_MS 1010
static void bench_oneHash_largeInput(Bench_Entry hashDesc, int minlog, int maxlog)
{
printf("%-7s", hashDesc.name);
for (int sizelog=minlog; sizelog<=maxlog; sizelog++) {
size_t const inputSize = (size_t)1 << sizelog;
double const nbhps = bench_hash(hashDesc.hash, BMK_throughput,
inputSize, BMK_fixedSize,
BENCH_LARGE_TOTAL_MS, BENCH_LARGE_ITER_MS);
printf(",%9.1f", nbhps * inputSize / MB_UNIT); fflush(NULL);
}
printf("\n");
}
void bench_largeInput(Bench_Entry const* hashDescTable, int nbHashes, int minlog, int maxlog)
{
assert(maxlog < 31);
assert(minlog >= 0);
printf("benchmarking large inputs : from %u bytes (log%i) to %u MB (log%i) \n",
1U << minlog, minlog,
(1U << maxlog) >> 20, maxlog);
for (int i=0; i