survival/0000755000176000001440000000000012267773255012175 5ustar ripleyuserssurvival/inst/0000755000176000001440000000000012267746072013147 5ustar ripleyuserssurvival/inst/CITATION0000644000176000001440000000156312267746072014311 0ustar ripleyusers#citHeader("To cite package 'survival' in publications use:") # Grab the version and date from the DESCRIPTION file if(!exists("meta") || is.null(meta)) meta <- packageDescription("survival") year <- sub(".*(2[[:digit:]]{3})-.*", "\\1", meta$Date) vers <- paste("R package version", meta$Version) bibentry(bibtype="Manual", title = "A Package for Survival Analysis in S", author= person(c("Terry M"), "Therneau"), year =year, note =vers, url="http://CRAN.R-project.org/package=survival", key= "survival-package" ) bibentry(bibtype= "Book", title="Modeling Survival Data: Extending the {C}ox Model", author=c(person(c("Terry M.", "Therneau")), person(c("Patricia M.", "Grambsch"))), year = "2000", publisher= "Springer", address = "New York", isbn = "0-387-98784-3", key = "survival-book" ) 4 survival/inst/NEWS.Rd0000644000176000001440000013276412267746072014227 0ustar ripleyusers\name{NEWS} \title{NEWS file for the survival package} \section{Changes in version 2.37-7}{ \itemize{ \item Remove a dependency on the survey package from the adjusted survival curves vignette, at the request of CRAN. (The base + required bundle needs to be capable of a stand-alone build.) \item Fix error in calcuation of the y-axis range for survival curve plots whenever the "fun" argument could produce infinite values, e.g., complimentary log-log plots transform 1 to -Inf. Pointed out by Eva Boj del Val. (Add finite=TRUE to range() call). }} \section{Changes in version 2.37-6}{ \itemize{ \item The plot for competing risk curves could have a spurious segment. (Found within 3 hours of submitting 2.37-5 to CRAN.) \item The lines method for survexp objects was defaulting to a step function, restore the documented default of a connected line. \item Add a levels method for tcut objects. 14Jan2014 } } \section{Changes in version 2.37-5}{ \itemize{ \item Add vignette on adjusted survival curves. \item Add vignette concerning "type 3" tests. \item Make the tt() function invisible outside of a coxph formula. There was a complaint about conflicts with another package, and there is not really a good reason to have it be a global name. An R-devel discussion just over 1 year ago showed how to accomplish this. \item The modeling routines are set in two parts, e.g., coxph sets up the model and coxph.fit does the work. Export more of the ".fit" routines to make it easier for other packages to build on top of this one. \item Updates to the model.matrix and model.frame logic for coxph. A note from F Harrell showed that I was not correctly dealing with the "assign" attribute when there are strata * factor interactions. This led to cleanup in other cases that I had missed but which never had proven fatal. Also added support for tt() terms to the stand alone model.matrix and model.frame functions. (Residuals for tt models are still not available, but this was a necessary first step to that end.) 26Dec13 \item The Surv function now remembers attributes of the input variables that were passed to it; they are saved as "inputAttributes". This allows the rms package, for instance, to retain labels and units through the call. \item Update summary.coxph.penal to produce an object, which in turn has a print method, i.e., make it a "standard" summary function. \item Add a logLik method for coxph and survfit objects. \item Allow for Inf as the end of the time interval, for interval censored data in the Surv function. \item The predict.coxph function would fail if it had both a newdata and a collapse argument. Pointed out by Julian Bothe. 25Sep13 \item Survexp can now produce expecteds based on a stratified Cox model. Add the 'individual.s' and 'individual.h' options to return indivudual survival and cumulative hazard estimates, respectively. The result of survfit now (sometimes) includes the cumulative hazard. This will be expanded. 29Jul13 \item Change code in the coxpenal.fit routine: the use of a vector of symbols as arguments to my .C calls was confusing to a new CRAN consistency check. Both the old and new are legal R; but the old was admittedly an unusual construction and it was simpler to change it. \item Fix a bug in survfit.coxph pointed out by Chris Andrews, whose root cause was incorrect curve labels when the id option is used. 27Jun13 \item Add rsurvreg routine. \item Change survfit.coxph routine so that it detects whether newdata contains or does not contain strata variables, and acts accordingly. If newdata does containe strata then the output will contain only those data-value and strata combinations specified by the user. Retain strata levels in the coxph routine for use in the survfit routine, to correctly reconstruct strata levels. Warn about curves with interactions. 18Ju13 \item Add a dim method for survival curves. \item For competing risks curves that use the istate option, the plotted curves now start with the correct (initial) prevalence of each state. 22May13 \item The survreg function failed with the "robust=T" option. Pointed out by Jon Peck. Test case added. 6May13 \item Kazuki Yoshida pointed out that rep() had no method for Surv objects. This caused the survSplit routine to fail if the data frame contained a Surv object. 3May13 \item Per a request from Milan Bouchet-Valet fix an issue in survfit that arose when the OutDec option is set to ',': it did not correctly convert times back from character to numeric. \item The plot.survfit function now obeys "cex" for the size of the marks used for censored observations. }} \section{Changes in version 2.37-4}{ \itemize{ \item Subscripting error in predict.coxph for type=expected, se=T, strata in the model, newdata, and multiple strata in the new data set. Pointed out by Chris Andrews. The test program has been tweaked to include multiple strata in newdata. }} \section{Changes in version 2.37-3}{ \itemize{ \item Minor flaw in [.survfit. If "fit" had multiple curves, and fit$surv was a matrix, and one of those curves had only a single observation time, fit[i,] would collapse columns when "i" selected that curve, though it shouldn't. \item Changed all of the .C and .Call statements to make use of "registered native routines", per R-core request. Add file src/init.c \item Error in plot.survfit pointed out by K Hoggart -- the "+" signs for censored observations were printing one survival time to the left of the proper spot. Eik Vettorazi found another error if mark.time is a vector of numerics. These are the results of merging the code for plot, lines and points due to some discrepancies between them, plus not having any graphical checks in the test suite. \item Repair an error in using double subscripts for the survfitms objects. \item Add the US population data set, with yearly totals by age and sex for 2000 onward. It is named uspop2, since there is already a "uspop" data set containing decennial totals from 1790 to 1970. \item Not all combinations of strata Y/N and CI Y/N worked in the quantile.survfit function, pointed out by Daniel Wallschlaeger (missing a function argument in one if-else combination). Added a new test routine that verifies all paths. \item The first example in predict.survreg help file needed to have \code{I(age^2)} instead of \code{age^2} in the model: R ignores the second form. (I'm almost sure this worked at one time, perhaps in Splus). It also needed different plot symbols to actually match the referenced figure. Pointed out by Evan Newell. \item Fix a long-standing problem with cch pointed out by Ornulf Borgan leading to incorrect standard errors. A check in the underlying coxph routines to deal with out of bounds exponents, added in version 2.36-6, interacted badly with the -100 offset used in cch. It only affected models using (start, stop) survival times. }} \section{Changes in version 2.37-2}{ \itemize{ \item Two bugs were turned up by running tests for all the packages that depend on survival (158 of them). }} \section{Changes in version 2.37-1}{ \itemize{ \item Add a new multi-state type to the Surv object. Update the survfit routine to work with it. The major change is addition of a proper variance for this case. More functionality is planned. \item Remove the fr_colon.R test program. It tests an ability that has been superseded by coxme, on a numerically touchy data set, and it was slow besides. For several other tests that produce warning messages and are supposed to produce said messages, add extra comments to that effect so testers will know it is expected. \item The code has had several "if.R" clauses to accomodate Splus vs R differences, which are mostly class vs oldClass. These are now being removed as I encounter them; since our institution no longer uses Splus I can no longer test the clauses' validity. \item The fast subsets routine coxexact.fit incorrectly returned the linear predictor vector in the (internal) sorted order rather than data set order. Pointed out by Tatsuki Koyama, affecting the result of a clogit call. 6Nov2012 \item Jason Law pointed out that the sample data set "rats" is from the paper by Mantel et.al, but the documentation was for a data set from Gail, Santner and Brown. Added the Gail data as rats2 and fixed the documentation for rats. \item For predict.coxph with type="terms", use "sample" as the default value for the reference option. For all others the default remains "strata", the current value. Type terms are nearly always passed forward for further manipulation and per strata centering can mess things up: termplot() for instance will no longer show a smooth function if the results are recentered within strata. \item Fix bug in summary.aareg, which was unhappy (without cause) if the maxtime option was used for a fit that did not include the dfbeta option. Pointed out by Asa Johannesen. \item The coxph fitting functions would report an error for a null model (no X variables) if init was specified as numeric(0) rather than NULL. \item Update the description and citation files to use the new "person" function described in the R Journal. Also add the ByteCompile directive per suggestion of R core. \item Allow an ordinary vector as the left hand side of survConcordance. \item Update anova.coxphlist to reject models with a robust variance. \item The survfit function had an undocumented backwards-compatability that allows the newdata argument to be a vector with no names. An example from Damon Krstajic showed that this does not work when the original model has a matrix in the formula. Removed the feature. (This is for survfit.coxph.) Also clarified the code and its documentation about what is found where -- environments, formulas, and the arguments of eval, which fixes a problem pointed out by xxx where the result of a Surv call is used in the coxph formula. \item Fix an issue in summary.survfit pointed out by Frank Harrell. The strata variable for the output always had its labels in sorted order, even when a factor creating the survival curves was otherwise. (This was due to a call to factor() in the code.) The print routine would then list curves in sorted order, which might well be contrary to the user's wishes. The curves were numerically correct. \item Add the anova.coxmelist function to the namespace so that it is visible. If someone has a list of models the first of which was a coxph fit and the list includes coxme fits, then anova.coxph will be the function called by R, and it will call anova.coxmelist. \item Fix a bug pointed out by Yi Zhang and Mickael Hartweg. If a coxph model used an offset, then a predicted survival curve that used newdata (and the offset variable of course) would be wrong, e.g. survival values > 1. A simple misplaced parenthesis was the cause. A recent paper by Langholz shows how to get absolute survival from case-control data using an offset, which seems to have suddenly made this feature popular. \item Per further interaction with Yi Zhang, a few items were missing from the S3methods in the NAMESPACE file: as.matrix.Surv, model.matrix.coxph, model.matrix.survreg, model.frame.survreg. }} \section{Changes in version 2.36-14}{ \itemize{ \item A supposedly cosmetic change to coxph in the last release caused formulas with a "." on the right hand side to fail. Fix this and add a case with "." to the test suite. } } \section{Changes in version 2.36-13}{ \itemize{ \item Add the anova.coxmelist function. This is in the survival package rather than in coxme since "anova(fit1, fit2)" is valid when fit1 is a coxph and fit2 a coxme object, a case which will cause this function to be called by way of anova.coxph. \item More work on "predvars" handling for the pspline function, when used in predict calls. Add a new test of this to the suite, and the makepredictcall method to the namespace. Fixes a bug pointed out by C Crowson. \item Deprecate the "robust" option of coxph. When there are multiple observations per subject it is almost surely the wrong thing to do, while adding a "cluster(id)" term does the correct thing. When there is only one obs per subject both methods work correctly. \item Add documentation of the output structure to the aareg help file. \item Change ratetableDate so that it still allows use of chron objects, but doesn't need the chron library. This eliminates a warning messge from the package checks, but is also a reasonable support strategy for a moribund package. (Some of the local users keep datasets for a long long time.) \item Fix a bug in summary.survfit for a multiple-strata survival object. If one of the curves had no data after application of the times argument, an output label was the wrong length. \item Fix a bug pointed out by Charles Berry: predict for a Cox model which has strata, and the strata is a factor with not all its levels represented in the data. I had a mistake in the subscripting logic: number of groups is not equal to max(as.integer(strata)). \item Changes to avoid overflow in the exponent made in 2.36-6 caused failure for one special usage: in case-cohort designs a dummy offset of -100 could be added to some observations. This was being rounded away. The solution is to 1: have coxsafe not truncate small exponents and 2: do not recenter user provided offset values. \item Fix bug in survfit.coxph. Due to an indexing error I would sometimes create a huge scratch vector midway through the calculations (size = max value of "id"); the final result was always correct however. Data set provided by Cindy Crowson which had a user id in the billions. \item Fix bug pointed out by Nicholas Horton: predictions of type expected, with newdata, from a Cox model without a strata statement would fail with "x not found". A misplaced parenthesis from an earlier update caused it to not recreate the X matrix even though it was needed later. Also add some further information to the predict manual page to clarify an issue with frailty terms. }} \section{Changes in version 2.36-12}{ \itemize{ \item Fix a bug in the new fast subsets code. The test suite had no examples of strata + lots of tied times, so of course that's the case where I had an indexing error. Add a test case using the clogit function, which exercises this. \item Further memory tuning for survexp. }} \section{Changes in version 2.36-11}{ \itemize{ \item Make survexp more efficient. The X matrix was being modified in several places, leading to multiple copies of the data. When the data set was large this would lead to a memory shortage. \item Cause anova.coxph to call anova.coxme when a list of models has both coxph and coxme objects. \item Add the quantile.survfit function. This allows a user to extract arbitrary quantiles from a fitted curve (and std err). \item Fix an error in predict.coxph. When the model had a strata and the newdata and reference="sample" arguments were used, it would (incorrectly) ask for a strata variable in the new data set. \item Incorporate the fast subsets algorithm of Gail et al, when using coxph with the "exact" option. The speed increase is profound though at the cost of some memory. Reflect this in the documentation for the clogit routine. Note that the fast computation is not yet implemented for (start,stop) coxph models. \item Change the C routine used by coxph.fit from .C to .Call semantics to improve memory efficiency, in particular fewer copies of the X matrix. \item Add scaling to the above routine. This was prompted by a user who had some variables with a 0-1 range and others that were 0 - 10^7, resulting in 0 digits of accuracy in the variance matrix. (Economics data). \item Comment out some code sections that are specific to Splus. This reduced the number of "function not found" warnings from R CMD check. }} \section{Changes in version 2.36-10}{ \itemize{ \item 30 Sept 2011: The na.action argument was being ignored in predict.coxph; pointed out by Cindy Crowson. \item The log-likelihood for survreg was incorrect when there are case weights in the model. The error is a fixed constant for any given data set, so had no impact on tests or inferences. The error and correction were pointed out by Robert Kusher. \item A variable name was incorrect in survpenal.fit. This was in a program path that had never been traversed until Carina Salt used survreg with a psline(..., method='aic') call, leading to a "variable not found" message. \item Punctuation error in psline made it impossible for a user to specify the boundary.knots argument. Pointed out by Brandon Stewart. \item Add an "id" variable to the output of survobrien. \item The survfitCI routine would fail for a curve with only one jump point (a matrix collapsed into a vector). \item Fix an error in survfit.coxph when the coxph model has both a strata by covariate interaction and a cluster statement. The cluster term was not dropped from the Terms object as it should have been, led to a spurious "variable not found" error. Pointed out by Eva Bouguen. \item If a coxph model with penalized terms (frailty, pspline) also had a redundant covariate, the linear predictor would be returned as NA. Pointed out by Pavel Krivitsky. }} \section{Changes in version 2.36-9}{ \itemize{ \item Due to a mistake in my script that submits to CRAN, the fix in 2.36-8 below was actually not propogated to the CRAN submission. \item Fix an error in the Cauchy example found in the survreg.distributions help page, pointed out by James Price. \item Update the coxph.getdata routine to use the model.frame.coxph and model.matrix.coxph methods. \item Add the concordance statistic to the printout for penalized models. }} \section{Changes in version 2.36-8}{ \itemize{ \item Unitialized variable in calcuation of the variance of the concordance. Found on platform cross-checking by Brian Ripley. \item Changed testci to use a fixed file of results from cmprsk rather than invoking that package on-the-fly. Suggested by the CRAN maintainers. } } \section{Changes in version 2.36-7}{ \itemize{ \item Due to changes in R 2.13 default printout, the results of many of the test programs change in trivial way (one more or fewer digits). Update the necessary test/___.Rout.save files. Per the core team's suggestion the dependency for the package is marked as >=2.13. }} \section{Changes in version 2.36-6}{ \itemize{ \item An example from A Drummond caused iteration failure in coxph: x=c(1,1,1,0,1, rep(0,35)), time=1:40, status=1. The first iteration overshoots the solution and lands on an almost perfectly linear part of the loglik surface, which made the second iteration go to a huge number and exp() overflows. A sanity check routine coxsafe is now invoked on all values of the linear predictor. \item 1 April: Fix minor bug in survfit. For left censored data where all the left censored are on the very left, it would give a spurious warning message when trying to create a 0 row matrix that it didn't need or use. Pointed out by Steve Su. \item 31 March 2011: One of the plots in the r_sas test was wrong (it's been a long time since I visually checked these). The error was in predict.survreg; it had not taken into account a change in R2.7.1: the intercept attribute is reset to 1 whenever one subscripts a terms object, leading to incorrect results for a model with "-1" in the formula and a strata(): the intercept returned when removing the strata. I used this opportunity to move most of the logic into model.frame.survreg and model.matrix.survreg functions. Small change to the model.frame.coxph and model.matrix.coxph functions due to a better understanding of xlevels processing. \item Round off error issue in survfit: it used both unique(time) and table(time), and the resulting number of unique values is not guarranteed to be the same for times that differ by a tiny amount. Now times are coverted to a factor first. Peter Savicky from the R core team provided a nice discussion of the issue and helped me clarify how best to deal with it. The prior fix of first rounding to 15 digits was good enough for almost every data set -- except the one found by a local user just last week. \item Round off error in print.survfit pointed out by Micheal Faye. If a survival value was .5 in truth, but .5- eps due to round off the printed median was wrong. But it was ok for .5+eps. Simple if-then logic error. \item Re-fix a bug in survfit. It uses both unique and table in various places, which do not round the same; I had added a pre-rounding step to the code. A data set from Fan Chun showed that I didn't round quite enough. But the prior rounding did work for a time of 2 vs (sqrt(2))^2: this bug is very hard to produce. I now use as.numeric(as.character(factor(x))), which induces exactly the same rounding as table, since it is the same compuation path. \item Further changes to pspline. The new Boundary.knots argument allows a user to set the boundary knots inside the range of data. Code for extrapolation outside that range was needed, essentially a copy of the code found in ns() for the same issue. Also added a psplineinverse function, which may be useful with certain tt() calls in coxph. \item 10 Mar 2011: Add the capablilty for time-dependent transformations to coxph, along with a small vignette describing use of the feature. This code is still incompletely incorporated in that the models work but other methods (residuals, predict, etc) are not yet defined. \item 8 Mar 2011: Expand the survConcordance function. The function now correctly handles strata and time dependent covariates, and computes a standard error for the estimate. All computation is based on a balanced binary tree strucure, which leads to computation in \eqn{O(n \log_2(n))}{O(n log(n))} time. The \code{coxph} function now adds concordance to its output, and \code{summary.coxph} displays the result. \item 8 Mar 2011: Add the "reference" option to predict.coxph, a feature and need pointed out by Stephen Bond. \item 4 Mar 2011: Add a makepredictcall method for pspline(), which in turn required addition of a Boundary.knots argument to the function. \item 25 Feb 2011: Bug in pyears pointed out by Norm Phillips. If a subject started out with "off table" time, their age was not incremented by that amount as they moved forward to the next "in table" cell of the result. This could lead to using the wrong expected rate from the rate table. } } \section{Changes in version 2.36-5}{ \itemize{ \item 20 Feb 2011: Update survConcordance to correctly handle case weights, time dependent covariates, and strata. \item 18 Feb 2011: Bug in predict.coxph found by a user (1 day after 36-4!). If the coxph call had a subset and predict used newdata, the subset clause was "remembered" in the newdata construction, which is not appropriate. }} \section{Changes in version 2.36-4}{ \itemize{ \item 17 Feb 2011: Fix to predict.coxph. A small typo that only was exercised if the coxph model had x=T. Discovered via induced error in the rankhazard package. Added lines to the test suite to test for this in the future. \item Removed some files from test and src that are no longer needed. \item Update the configure script per suggestion from Kurt H. }} \section{Changes in version 2.36-3}{ \itemize{ \item 13 Feb 2011: Add the rmap argument to pyears, as was done for survexp, and update the manual pages and examples. Fix one last bug in predict.coxph (na.action use). Passes all the tests for inclusion on the next R release. \item 8 Feb 2011: Change the name of the new survfit.coxph.fit routine to survfitcoxph.fit; R was mistaking it for a survfit method. Fix errors in predict.coxph when there is a newdata argument, including adding yet another test program. \item 1 Feb 2011: Fix bugs in coxph and survreg pointed out by Heinz Tuechler and dtdenes@cogpsyphy.hu, independently, that were the same wrong line in both programs. With interactions, a non-penalized term could be marked as penalized due to a mismatched vector length, leading to a spurious error message later in the code. \item 1 Feb 2011: Update survfit.coxph to handle the case of a strata by covariate interaction. All prior releases of the code did this wrong, but it is a very rare case (found by Frank Harrell). Added a new test routine coxsurv4. Also found a bug in [.survfit; for a curve with both strata and multiple columns, as produced by survfit.coxph, it could drop the n.censored item when subscripting. A minor issue was fixed in coxph: when iter=0 the output coefficient vector should be equal to the input even when the variance is singular. \item 30 Jan 2011: Move the noweb files to a top level directory, out of inst/. They don't need to be copied to binary installs. \item 22 Jan 2011: Convert the Changelog files to the new inst/NEWS.Rd format. \item 1 Jan 202011: The match.ratetable would fail when passed a data frame with a character variable. This was pointed out by Heinz Tuechler, who also did most of the legwork to find it. It was triggered by the first few lines of tests/jasa.R (expect <- ....) when options(stringsAsFactors=FALSE) is set. } } \section{Changes in version 2.36-2}{ \itemize{ \item 20 Dec 2010: Add more test cases for survfit.coxph, which led to significant updates in the code. \item 18 Nov 2010: Add nevent to the coxph output and printout in response to a long standing user request. \item 14 Dec 2010: Add an as.matrix method for Surv objects. \item 11 Nov 2010: The prior changes broke 5 packages: the dependencies form a bigger test suite than mine! 1. Survival curve for a coxph model with sparse frailty fit; fixed and added a new test case. 2. survexp could fail if called from within a function due to a scoping error. 3. "Tsiatis" was once a valid type (alias for 'aalen') for survfit.coxph; now removed from the documentation but the code needed to be backwards compatable. The other two conflicts were fixed in the packages that call survival. There are still issues with the rms package which I am working out with Frank H. } } \section{Changes in version 2.36-1}{ \itemize{ \item{27 Oct 2010: Finish corrections and test to the new code. It now passes the checks. The predict.coxph routine now does strata and standard errors correctly, factors propogate through to predictions, and numerous small errors are addressed. Predicted survival curves for a Cox model has been rewritten in noweb and expanded. Change the version number to 2.36-1.} \item{17 Oct 2010: Per a request from Frank Harrell (interaction with his library), survfit.coxph no longer reconstructs the model frame unless it really needs it: in some cases the 'x' and 'y' matrices may be sufficient, and may be saved in the result. Add an argument "mf" to model.matrix.coxph for more efficient interaction when a parent routine has already recovered the model frame. In general, we are trying to make use of model.matrix.coxph in many of the routines, so that the logic contained there (remove cluster() calls, pull out strata, how to handle intercepts) need not be replicated in multiple places.} \item{12 Oct 2010: Fix a bug in the modified lower limits for survfit (Dory & Korn). A logical vector was being inadvertently converted to numeric. Pointed out by Andy Mugglin. A new case was added to the test suite. } } } \section{Changes in version 2.35}{ \itemize{ \item{15 July 2010: Add a coxph method for the logLik function. This is used by the AIC function and was requested by a user.} \item{29 July 2010: Fix 2 bugs in pyears. The check for a US rate table was off (minor effect on calculations), and there was a call to julian which assumed that the origin argument could be a vector. } \item{21 July 2010: Fix a problem pointed out by a user: calling survfit with almost tied times, e.g., c(2, sqrt(2)^2), could lead to an inconsistent result. Some parts of the code saw these as 2 unique values per the unique() function, some as a single value using the results of table(). We now pre-round the input times to one less decimal digit than the max from .Machine$double.digits. Also added the noweb.R processing function from the coxme package, so that the noweb code can be extracted "on the fly" during installation using commands in the configure and cleanup scripts. } \item{11 July 2010: A rewrite of the majority of the survfit.coxph code. The primary benefits are 1: finally tracked down and eliminated the bug for standard errors of case weights + Cox survival + Efron method; 2: the individual=TRUE and FALSE options now use the same underlying code for curves, before there were some options valid only for one or the other; 3: code was rewritten using noweb with a considerable increase in documentation; 4: during the verification process some errors were found in the test suite and corrected, e.g., a typo in my book led to failure of an all.equal test in book4.R. Similar to the rewrite for survfit several years ago, the new code has far less use of .C to help transparency.} \item{21 May 2010: Fix bug in summary.survfit. For a survival curve from a Cox model with start,stop data, the 'times' argument would generate an error.} \item{24 May 2010: Fix an annoyance in summary.survfit. When the survival data had an event or censor at time 0 and summary is called with a times argument, then my constructed call to approx() would have duplicate x values. The answer was always right, but approx has begun to print a bothersome warning message. A small change to the constructed argument vector avoids it.} \item{7 April 2010: Minor bug pointed out by Fredrik Lundgren. In survfit if the method was KM (default) and error = Tsiatis an error message results. Simple fix: code went down the wrong branch.} \item{24 Feb 2010: Serious bug pointed out by Kevin Buhr. In Surv(time1, time2,stat) if there were i) missing values in time1 and/or time2, ii) illegal value sets with time1 >=time2, and iii) all the instances of ii do not preceed all the instances of i, then the wrong observation (not the illegal) will be thrown out. Repaired, and a new test added. Minor updates to 3 test files: survreg2, testci, ratetable.} \item{8 Feb 2010: Bug pointed out by Heinz Tuechler -- if a subscript was dropped from a rate table the 'type' attribute got dropped, e.g. survexp.usr[,1,,].} \item{26 Jan 2010: At the request of Alex Bokov, added the xmax, xscale, and fun arguments to points.survfit.} \item{26 Jan 2010: Fix bug pointed out by Thomas Lumley -- with case weights <1 a Cox model with (start, stop) input would inappropriately decide it needed to do step halving to find a solution, eventually failing to converge. It was treating a loglik >0 as an indication of failure, but such values arise for small case weights. Let L(w) be the loglik for a data set where everyone is given a weight of w, then L(w)= wL(1) - d log(w) where d=number of deaths in the data. For small enough w positivity of L(w) is certain.} \item{25 Jan 2010: Fix bug in summary.ratetable pointed out by Heinze Tuechler. Added a call to the function to the test suite as well.} \item{15 Dec 2009: Two users pointed out a bug that crept into survreg() with a cluster statement, when a t(x)%*%x was replaced with crossprod. A trivial fix, but in response I added another test that more formally checks the dfbeta residuals and found a major oversight for the case of multiple strata. } \item{14 Dec 2009: 1.Fix bug in frailty.xxx, if there is a missing value in the levels it gets counted by "length(unique(x))" (frailty is called before NA removal.) 2.SurvfitCI had an incorrect CI with case weights, and 3. in survreg a call to resid instead of residuals.survreg, before the class was attached.} \item{11 Nov 2009: The 'type' argument does not make sense for plot.survfit. (If type='p', should one plot the tops of the step function, the bottoms, or both?). Make it explicitly disallowed in response to an R-help query, rather than the confusing error message that currently arose.} \item{28 Oct 2009: The basehaz function would reorder the labels of the strata factor. Not a bug really, but a "why do this?" Unintended consequence of a character -> factor conversion.} \item{1 Oct 2009: Fix a bug pointed out by Ben Domingue. There was one if-then-else path into step-halving in the frailty.controldf routine that would refer to a non-existent variable. A very rarely followed path, obviously, and with the obvious fix. The mathematics of the update was fine.} \item{30 Sep 2009: For coxph and model.matrix.coxph, re-attach the attributues lost from the X matrix when the intercept is removed, i.e., X <- X[,1]. In particular, some downstream libraries depend on the assign attribute. For predict.coxph remove an earlier edit so that a single variable model + type='terms' returns a matrix, not a vector. This is expected by the termplot() function. It led to a whole lot of changes in the test suite results, though, due to more "matrix" printouts.} \item{4 Sep 2009: Added a model.matrix.coxph and model.frame.coxph methods. The model.matrix.default function ceased to work for coxph models sometime between R 2.9 and 2.9.2 (best guess). This wasn't picked up in the test suite but rather by failure of 3 packages that depend on survival. Also added a test. Update CRAN since this broke other's packages.} \item{20 Aug 2009: One more fix to predict.coxph. It needed to use delete.response(Terms) rather than Terms, so as to not look for (unnecessarily) the response variable when the newdata argment is used. Pointed out by Michael Conklin.} \item{17 Aug 2009: Small bug in survfit.coxph.null pointed out by Frank Harrell. The 'n' component would be missing if the input data included strata, i.e., the initial model had used x=TRUE. He also pointed out the fix.} \item{10 June 2009: Fix an error pointed out by Nick Reich, who was the first to use interval censored data + user defined distribution in survreg, jointly. There was no test case and creating one uncovered several errors (but only for this combination). All the error cases led to catastrophic failure, highlighting the extreme rarity of a user requesting this combination.} \item{2 June 2009: Surv(time1, time2, status, type='interval') would fail for an NA status code. Pointed out by Achim Zeilus.} \item{22 May 2009: Allow single subscripts to rate tables, e.g. survexp[1:10: . Returns a simple vector of values. The str() function does this to print out a short summary. Problem pointed out by Heinz Tuechler.} \item{21 May 2009: Create a test case for factor variables/newdata/predict for coxph and survreg. This led to a set of minor fixes; the code is now in line with the R standard for model functions. One consequence is that model.frame.coxph and model.frame.survreg are no longer needed, so have been removed.} \item{20 May 2009: The manual page for survfit was confusing, since it tries to document both the standard KM (formula method) and the coxph method. I've split them out so that now survfit documents only the basic method and points a user the appropriate specialized page.} \item{1 May 2009: The anova.coxph function was incorrect for models with a strata term. Fixed this, and made chisquare tests the default.} \item{22 April 2009: The coxph code had an override to iter and eps, making both of them more strict for a penalized model. However, the overall default values have changed over time, so that these lines actually decreased accuracy - the opposite of their intent. Removed the lines. Also removed the iter.miss and eps.miss components (on which this check depended) from coxph.control, which makes that function match its documentation.} } } \section{Changes in version 2.34 and earlier}{ \subsection{Merge of the TMT source code tree with the Lumley code tree}{ \itemize{ \item Issues/decisions in remerging the Mayo and R code: For most of routines, it was easier to start with the Lumley code and add the Therneau fixes. This is because Tom had expanded a lot of partial matches, e.g., fit$coef in the TT code vs fit$coefficients. Routines with substantial changes were, of course, a special case. The most common change is an is.R() construct to choose class vs oldClass. \item xtras.R: Move anova.coxph and anova.coxphlist to their own source files. The remainder of the code is R only. \item survsum: removed from package \item survreg.old: has been removed from the package \item survfit.s: Depreciate the "formula with no ~1" option Mayo code for [ allows for reordering curves Separate out the R "basehaz" function as a separate source file \item survfit.km.s: The major change of did not get copied into R, so lots of changes. R had "new.time" and Splus 'start.time' for the same argument. Allow them both as synonyms. The output structure also changed: adapt the new one. This is mostly some name changes in the components, removing unneeded redundancies created by a different programmer. \item survfit.coxph.s: TMT code finally fixed the "Can't (yet) to case weights" problem. There must have been 10 years been the intent and execution. \item survexp.s: Add "bareterms" function from R, which replaces a prior use of terms.inner (in Splus but not R). \item survdiff.s: R code had the old (incorrect) expected <- sum(1-offset), since corrected to sum(-log(offset)) . \item{summary.coxph.s: This was a mess, since Tom and I had independently made the addition of a print.summary.coxph function. Below, TMT means that it was the choice in the Splus code, TL means that it was the choice in R 1. Put the coef=T argument in the print function, not summary (TMT) 2. Change the output's name from coef to coefficients (suggestion of Peter Dalgaard). Also change one column name to Pr(>|z|) for R. 3. Remove last vestiges of a reference to the 'icc' component (TMT) 4. Do not include score, rscore, naive.var in the result (TL) 5. Do include loglik in the result (TMT) 6. Compute the test statistics (loglik, Wald, etc) in the summary function rather than in the print.summary function (TL) 7. Remove the digits option from summary, it belongs in print.summary. (neither)} \item{strata.s: R code added a sep argument, this is ok R changed the character string NA to as.character(NA). Not okay 1. won't work with Splus, 2. This is a label, designed for printing, and so it should be a character string. } \item{residuals.coxph.s: R had added type='partial'. (Which I'm not very partial to, from their statistical properties. But they are legal, and I assume that someone requested them).} \item{print.survfit.s: Rewritten as a part of the general survival rewrite. Created the function 'survmean' which does most of the work, and is shared by print and summary, so that the values from 'print' are now available. Fix the minmin function: min(NULL) gives NA in Splus, which is the right answer for a non-estimable median, but Inf in R. Explicitly deal with this case, and add a bunch of comments. R had the print.rmean option, this has been expanded to a more general rmean option that allows setting the cutoff point. R added a print.n option with 3 choices, my code includes all 3 in the output. } \item{lines.survfit.s: The S version has a new block of code for guessing "firstx" more intellegently when it is missing. (Or, one hopes is is more intellegent!)} \item{coxph.control.s: The R code had tighter tolerances (eps= 1e-9) than Splus (1e-4) and a higher iterationn count (20 vs 10). Set eps to 1e-8 and iter to 15, mostly bending to the world. The tighter iteration is defensible, but I still maintain that a Cox model that takes >10 iterations is not going to finish if you give it 100. The likelihood surface is almost perfectly quadratic near the minimum. (Not true for survreg by the way).} \item{: In Surv, the Mayo code creates NA's out of invalid status values or start,stop pairs, rather than a stop and error message. This is to allow for example coxph(Surv(time1,time2, status).... , subset=(goodlines)) succeed, when "goodlines" is the subset with correct values.} } } \subsection{Older changes}{ \itemize{ \item{25SepO7: How embarrassing -- someone pointed out that I had Dave Harrington's name spelled wrong in the options to survfit.coxph!} \item{9Jul07: In a model with offsets, survreg mistakenly omitted the offset from the returned linear.predictor component.} \item{10May07: Change summary.coxph so that it returns an object of class summary.coxph, and add a print method for that object.} \item{22Jun06: Update match.ratetable, so that more liberal matches are now allowed. For instance, 'F', 'f', 'female', 'fem', 'FEMA', etc are now all considered matches to the dimname "female" in survexp.us.} \item{26Apr06: Fix bug in summary.survfit, pointed out by Bob Treder. With the times option, the value of n.risk would be wrong for "in between" times; e.g., the data had events and/or censoring at times 10, 20,... and we asked for printout at time 15. It should give n.risk at time 20, it was returning the value at time 10. Interestingly, the code had a very careful treatment of this case, along with an example in the comments, and the "the right answer is" part of the comment was wrong! So the code correctly computed an incorrect answer. Added another test case to the test suite, survtest2.} \item{21Apr06: Fix problem in [.survfit, pointed out by Thomas Lumley. If fit <- survfit(Surv(time, status) ~ ph.ecog, lung), then fit[2:1] did not reorder the output correctly. I had never tested putting the subscripts in non-increasing order.} \item{7Feb06: Fix a problem in the coxph iteration (coxfit2.c, coxfit5, agfit3, agfit5, agexact). It will likely never catch anyone again, even if I didn't fix it. In a particular data set, beta overshot and step halving was invoked. During step halving, a loglik happened to occur that was within eps of the prior step's loglik --- and the routine decided, erroneously, that it had converged! (A nice quadratic curve, a first guess b1 to the left of the desired max of the curve. The next guess b2 overshot and ends up with a lower loglik, on the right side of the max. Back up to the midpoint of b1 and b2, and this guess, still to the right of the max (still too large) has EXACTLY the same value of y as b1 did, but on the other side of the max from b1. "Last two guesses give the same answer, I'm done" said the routine).} \item{27Sep05: Found and fixed a nasty bug in survfit. When method='fh2' and there were multiple groups I had a subscripting bug, leading to vectors that were supposed to be the same length, but weren't, passed into C. The resulting curves were obviously wrong -- survival precipitously drops to zero.} \item{5May05: Add the drop=F arg to one subscripting selection in survfit.coxph. temp <- (matrix(surv$y, ncol=3))[ntime,,drop=F] If you selected only 1 time point (1 row) in the final output, the code would fail. Pointed out by Cindy Crowson.} \item{18Apr05: Bug in survfit.turnbull. The strata variable was not being filled in (number of points per curve). So if multiple curves were generated at once, i.e., with something on the right hand side of ~ in the formula, all the downstream print/plot functions would not work with the result.} \item{8Feb05: Fix small typo in is.ratetable, introduced on 24Nov04: (Today was the first time I added to the standard library, and thus ended up using the non-verbose mode.)} \item{8Feb05: Add the data.frame argument to pyears. This causes the output to contain a dataframe rather than a set of arrays. It is useful for further processing of the data using Poisson regression.} \item{7Feb05: Modified print.ratetable to be more useful. It now tells about the ratetable, rather than printing all of its values.} \item{8Dec04: Fix a small bug in survfit.turnbull. If there are people left censored before the first time point of any other kind (interval, exact, or right censored), the the plotted height of the curve from "rightmost left censoring time" to "leftmost event time", that is the flat tail on the left, was at the wrong height. Added another test to testreg/reliability.s for this.} \item{24Nov04: Change is.ratetable to give longer messages} } } } survival/inst/COPYRIGHTS0000644000176000001440000000024112267746072014562 0ustar ripleyusersCopyright 2000 Mayo Foundation for Medical Education and Research. This software is accepted by users "as is" and without warranties or guarantees of any kind. survival/inst/doc/0000755000176000001440000000000012267746150013711 5ustar ripleyuserssurvival/inst/doc/adjcurve.Rnw0000644000176000001440000013621412267746150016213 0ustar ripleyusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Adjusted Survival Curves} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text if (!exists('coxph')) library(survival) @ \title{Adjusted Survival Curves} \author{Terry M Therneau, Cynthia S Crowson, Elizabeth J Atkinson} \date{} % no date \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {adjcurve-#1.pdf}} \begin{document} \maketitle \section{Introduction} Suppose we want to investigate to what extent some factor influences survival, as an example we might compare the experience of diabetic patients who are using metformin versus those on injected insulin as their primary treatment modality. There is some evidence that metformin has a positive influence, particularly in cancers, but the ascertainment is confounded by the fact that it is a first line therapy: the patients on metformin will on average be younger and have had a diabetes diagnosis for a shorter amount of time than those using insulin. ``Young people live longer'' is not a particularly novel observation. The ideal way to test this is with a controlled clinical trial. This is of course not always possible, and assessments using available data that includes and adjusts for such confounders is also needed. There is extensive literature --- and debate --- on this topic in the areas of modeling and testing. The subtopic of how to create honest survival curve estimates in the presence of confounders is less well known, and is the focus of this note. Assume that we have an effect of interest $x$ and a set of possible confounding variables $c$. There are two main approaches to adjustment. The first approach, sometimes known as \emph{marginal} analysis, modifies the data so that the confounders $c$ are balanced across the factor of interest $x$, we can then proceed with simple analysis of survival versus $x$ using the reformulated data, ignoring the confounders. The second approach seeks to understand and model the effect of each confounder, with this we can then correct for them. This is often called the \emph{conditional} approach since we are examining the conditional survivals given $x$ and $c$. From these conditional survivals average curves are created that balance on the confounder. As shown below, these differ essentially in the \emph{order} in which the two necessary operations are done, balancing and survival curve creation. \begin{center} \begin{tabular}{rccc} Marginal: & balance data on $c$ & $\longrightarrow$ & form survival curves by $x$ \\ Conditional: & form survival curves by $x$ and $c$& $\longrightarrow$ & average curves over $c$ to balance \end{tabular} \end{center} Many analyses use combinations of these, of course, balancing on some factors and modeling others. All analyses are marginal analyses with respect to important predictors that are unknown to us, and most are conditional with respect to at least a few variables. \begin{figure}[tb] \myfig{flc1} \caption{Survival of \Sexpr{nrow(flchain)} residents of Olmsted County, broken into three cohorts based on FLC value.} \label{flc1} \end{figure} \section{Free Light Chain} Our example data set for this comparison uses a particular assay of plasma immunoglobulins and is based on work of Dr Angela Dispenzieri and her colleagues at the Mayo Clinic \cite{Dispenzieri12}. In brief, plasma cells are responsible for the production of immunoglobulins; they comprise a small portion ($<1$\%) of the total blood and marrow hematapoetic cell population in normal patients. The normal human repertoire is estimated to contain over $10^{8}$ unique immunoglobulins, conferring a broad range of immune protection. In multiple myeloma, the most common form of plasma cell malignancy, almost all of the circulating antigen will be the product of a single malignant clone. An electrophoresis examination of circulating immunoglobulins will exhibit a ``spike'' corresponding to this unique molecule. This anomaly is used both as a diagnostic method and in monitoring the course of the disease under treatment. The presence of a similar, albeit much smaller, spike in normal patients has been a long term research interest of the Mayo Clinic hematology research group \cite{Kyle93}. In 1995 Dr Robert Kyle undertook a population based study of this, and collected serum samples on 19,261 of the 24,539 residents of Olmsted County, Minnesota, aged 50 years or more \cite{Kyle06}. In 2010 Dr. Dispenzieri assayed a sub fraction of the immunoglobulins, the free light chain (FLC), on 15,748 of these subjects who had sufficient remaining sera from the original sample collection. All studies took place under the oversight of the appropriate Institutional Review Boards, which ensure rigorous safety and ethical standards in research. \begin{table} \centering \begin{tabular}{r|cccc} & 50--59 & 60--69 & 70--79 & 80+ \\ \hline <>= group3 <- factor(1+ 1*(flchain$flc.grp >7) + 1*(flchain$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) age1 <- cut(flchain$age, c(49,59,69,79, 110)) levels(age1) <- c(paste(c(50,60,70), c(59,69,79), sep='-'), '80+') temp1 <- table(group3, age1) temp2 <- round(100* temp1/rowSums(temp1)) pfun <- function(x,y) { paste(ifelse(x<1000, "\\phantom{0}", ""), x, " (", ifelse(y<10, "\\phantom{0}", ""), y, ") ", sep="") } cat(paste(c("FLC low", pfun(temp1[1,], temp2[1,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC med", pfun(temp1[2,], temp2[2,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC high", pfun(temp1[3,], temp2[3,])), collapse=" & "), "\n") @ \end{tabular} \caption{Comparison of the age distributions (percents) for each of the three groups.} \label{tflc1} \end{table} Our data set is an age and sex stratified sample of this second data set and contains 7874 of the subjects from the original study. It is included in the survival package as the data frame \texttt{flchain}. Figure \ref{flc1} shows the survival curves for three subgroups of the patients: those whose total free light chain (FLC) is in the upper 10\% of all values found in the full study, those in the 70--89th percentile, and the remainder. There is a clear survival effect. Average free light chain amounts rise with age, however, at least in part because it is eliminated through the kidneys and renal function declines with age. Table \ref{tflc1} shows the FLC by age distribution. In the highest decile of FLC (group 3) over half the subjects are age 70 or older compared to only 23\% in those below the 70th percentile. How much of the survival difference is truly associated with FLC and how much is simply an artifact of age? The data set contains 3 subjects whose blood sample was obtained on the day of their death. It is rather odd to think of a sample obtained on the final day as ``predicting'' death, or indeed for any results obtained during a patient's final mortality cascade. There are also a few patients with no follow-up beyond the clinic visit at which the assay occurred. Therefore, all the analyses below have excluded subjects with less than 7 days of follow-up. <>= fdata <- flchain[flchain$futime > 7,] fdata$group <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) fdata$age2 <- cut(fdata$age, c(49,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) sfit1 <- survfit(Surv(futime, death) ~ group, fdata) plot(sfit1, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") text(c(11.1, 10.5, 7.5), c(.88, .57, .4), c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71"), col=c(1,2,4)) @ \section{Marginal methods} \subsection{Selection} \begin{figure}[tb] \myfig{flc2} \caption{Survival curves from a balanced subset are shown as solid lines, dashed lines are curves for the unweighted data set (as found in figure \ref{flc1}).} \label{flc2} \end{figure} <>= temp <- with(fdata, table(group, age2, sex)) size <- apply(temp, 2:3, min) set.seed(1978) select <- NULL dd <- dim(temp) for (i in 1:dd[1]) { for (j in 1:dd[2]) { for (k in 1:dd[3]) { indx <- which(as.numeric(fdata$group)==i & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select <- c(select, sample(indx, size[j,k])) } } } data2 <- fdata[select,] sfit2 <- survfit(Surv(futime, death) ~ group, data2) plot(sfit2, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) @ \begin{table} \centering \begin{tabular}{crrrrrrrr} \multicolumn{3}{c}{Females} \\ & \multicolumn{8}{c}{Age} \\ FLC group & 50--54& 55--59& 60--64 & 65--69 & 70--74 & 75--79 & 80--89& 90+ \\ \hline <>= tab1 <- with(fdata, table(group, age2, sex)) cat("Low&", paste(tab1[1,,1], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,1], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,1], collapse=" &"), "\\\\\n") @ \\ \multicolumn{3}{c}{Males} \\ % & 50--54& 55--59& 60--64 & 65--69 & 70--74 & 75--79 & 80--89& 90+ \\ \hline <>= cat("Low&", paste(tab1[1,,2], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,2], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,2], collapse=" &"), "\n") @ \end{tabular} \caption{Detailed age and sex distribution for the study population} \label{tab2} \end{table} One way to balance the data set is to select a subset of subjects such that the subset is balanced. Table \ref{tab2} is shows an expanded age/sex distribution for the study. The balanced subset has all \Sexpr{tab1[3,1,1]} females aged 50--54 from FLC group 3, a random sample of \Sexpr{tab1[3,1,1]} out of the \Sexpr{tab1[1,1,1]} females in FLC group 1, and \Sexpr{tab1[3,1,1]} out of \Sexpr{tab1[2,1,1]} of the females in FLC group 2 for that age group. The same is done for all of the triplets in the table: select the largest number possible for which we can get perfect balance. \begin{table}[tb] \centering \begin{tabular}{ccccccc} &\multicolumn{2}{c}{FLC low} & \multicolumn{2}{c}{FLC med}& \multicolumn{2}{c}{FLC high} \\ & Total & Subset & Total & Subset & Total & Subset \\ \hline <>= tab3 <- with(fdata, table(age2, group)) tab3 <- round(100*scale(tab3, center=F, scale=colSums(tab3))) tab4 <- with(data2, table(age2, group)) tab4 <- round(100*scale(tab4, center=F, scale=colSums(tab4))) tab5 <- cbind(tab3[,1], tab4[,1], tab3[,2], tab4[,2], tab3[,3], tab4[,3]) pfun <- function(x) paste(ifelse(x<10, paste("\\phantom{0}", x), x), collapse=" &") dtemp <- dimnames(tab5)[[1]] for (j in 1:7) cat(dtemp[j], " &", pfun(tab5[j,]), "\\\\\n") cat(dtemp[8], " & ", pfun(tab5[8,]), "\n") @ \end{tabular} \caption{Age distributions (\%) of the original data set along with that of the subset, for the three FLC groups.} \label{tflc2} \end{table} The survival curves for the balanced subset are shown in figure \ref{flc2}. Two features stand out. First we see that adjustment for age and sex has reduced the apparent survival difference between the groups by about half, but a clinically significant effect for high FLC values remains. The second is that the curve for group 1 has moved a lot while that for group 3 has changed hardly at all. This is a consequence of an overall shift in the distribution of ages, as shown in table \ref{tflc2}. For group 3, the subsetting process has hardly shifted the age distribution, whereas for group 1 it has moved the average age from young to old. The subsetting approach is most often labeled as a ``case-control'' method, and is applied in the situation where one of the groups is small and precious (a rare disease say) and the other group (the controls) is much larger. Since there are excess controls the final age/sex distribution will match that of the cases, and the resulting survival curves have a ready interpretation. Interpretation of the curves for the FLC data is much less clear; we have gained an unbiased comparison, but for a very peculiar population of subjects. <>= # I can't seem to put this all into an Sexpr z1 <- with(fdata,table(age, sex, group)) z2<- apply(z1, 1:2, min) ztemp <- 3*sum(z2) z1b <- with(fdata, table(age>64, sex, group)) ztemp2 <- sum(apply(z1b, 1:2, min)) @ A second deficit of the matching approach is that the choice of our matching criteria is somewhat arbitrary. We want to make the subsets fine enough that subjects are biologically homogeneous within age group, yet large enough so as to limit the number of subjects excluded. For instance, if we had divided the data set only into age 50--64 versus $\ge$ 65, the upper group would still be quite heterogeneous with respect to expected survival (a 70 vs 90 year old for instance) and the distribution of ages within the upper group would remain unbalanced. The resulting data set would have been larger, however, %with \Sexpr{ztemp2} in each group rather than %\Sexpr{nrow(data2)/3}. due to less stringent balancing criteria. On the other hand, if we had done a very fine division, say by age in weeks, the resulting matched data set will be reduced to almost zero; we become hostage to the random fluctuations in sample size for these small groups. In this large data set we have the luxury of dividing finely enough to create acceptably homogeneous groups, but this is not common. @ One advantage of matched subsets is that standard variance calculations for the curves are correct; the values provided by the usual Kaplan-Meier program need no further processing. We can also use the usual statistical tests to check for differences between the curves. <<>>= survdiff(Surv(futime, death) ~ group, data=data2) @ \subsection{Reweighting} \label{sect:logistic} Another way to adjust the data is by reweighting. Let $\pi(a,s)$, $a$ = age group, $s$ = sex be a target population age/sex distribution for our graph, and $p(a,s,i)$ the observed probability of each group/age/sex combination in the data. Each of these will sum to 1. Then if each observation in the data set is given a case weight of \begin{equation} w_{asi} = \frac{\pi(a,s)}{p(a,s,i)} \label{wt1} \end{equation} the weighted age/sex distribution for each of the groups will equal the target distribution $\pi$. When results from multiple studies are to be compared, the target distribution $\pi$ will often be based on external criteria, e.g., the US 2000 population, and the result from the re weighted sample is called the \emph{direct adjustment} method. An obvious advantage of this approach, as compared to subset selection, is that the resulting curves represent a tangible and well defined group. As an example, we will adjust our curves to match the age/sex distribution of the 2000 US population, a common reference target in epidemiology studies. The \texttt{uspop2} data set is found in later releases of the survival package in R. It is an array of counts with dimensions of age, sex, and calendar year. We only want ages of 50 and over, and the population data set has collapsed ages of 100 and over into a single category. We create a table \texttt{tab100} of observed age/sex counts within group for our own data, using the same upper age threshold. New weights are the values $\pi/p$ = \texttt{pi.us/tab100}. <<>>= refpop <- uspop2[as.character(50:100),c("female", "male"), "2000"] pi.us <- refpop/sum(refpop) age100 <- factor(ifelse(fdata$age >100, 100, fdata$age), levels=50:100) tab100 <- with(fdata, table(age100, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab100 #new weights by age,sex, group range(us.wt) @ There are infinite weights! This is because the US population has coverage at all ages, but our data set does not have representatives in every age/sex/FLC group combination. (There are 32 zeros in tab100). Let us repeat the process, collapsing the US population from single years into the 8 age groups used previously in table \ref{tab2}. Merging the per age/sex/group weights found in the 3-dimensional array \texttt{us.wt} into the data set as per-subject weights uses matrix subscripts, a useful but less known feature of R. <<>>= temp <- as.numeric(cut(50:100, c(49, 54, 59, 64, 69, 74, 79, 89, 110)+.5)) pi.us<- tapply(refpop, list(temp[row(refpop)], col(refpop)), sum)/sum(refpop) tab2 <- with(fdata, table(age2, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab2 range(us.wt) index <- with(fdata, cbind(as.numeric(age2), as.numeric(sex), as.numeric(group))) fdata$uswt <- us.wt[index] sfit3a <-survfit(Surv(futime, death) ~ group, data=fdata, weight=uswt) @ \begin{figure}[tb] \myfig{flc3a} \caption{Population totals for the US reference (red) and for the observed data set (black).} \label{flc3a} \end{figure} Since the present data set is itself population based and has excellent coverage of the county, it is sensible to use the overall age/sex distribution of the sample itself as our target distribution $\pi$. If we compare the target distribution $\pi$ based on the US population and on the Olmsted County population they are quite similar as shown in figure \ref{flc3a}. Not surprisingly, the population adjusted survival curves based on these two reference populations nearly overlap. <>= tab1 <- with(fdata, table(age2, sex))/ nrow(fdata) matplot(1:8, cbind(pi.us, tab1), pch="fmfm", col=c(2,2,1,1), xlab="Age group", ylab="Fraction of population", xaxt='n') axis(1, 1:8, levels(fdata$age2)) tab2 <- with(fdata, table(age2, sex, group))/nrow(fdata) tab3 <- with(fdata, table(group)) / nrow(fdata) rwt <- rep(tab1,3)/tab2 round(rwt[,1,], 1) #show female data fdata$rwt <- rwt[index] # add per subject weights to the data set sfit3 <- survfit(Surv(futime, death) ~ group, data=fdata, weight=rwt) @ \begin{figure}[tb] \myfig{flc3} \caption{Survival curves for the three groups using reweighted data are shown with solid lines, the original unweighted analysis as dashed lines. The heavier solid line adjusts to the Olmsted population and the lighter one to the US population.} \label{flc3} \end{figure} <>= plot(sfit3, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3a, mark.time=F, col=c(1,2,4), lty=1, lwd=1, xscale=365.25) lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) @ We see that for the low FLC group there are somewhat larger weights for the older ages, whereas the high FLC group requires substantial weights for the youngest ages in order to achieve balance. The resulting survival curve is shown in figure \ref{flc3}. The distance between the adjusted curves is similar to the results from subset selection, which is as expected since both approaches are correcting for the same bias, but results are now for an overall population distribution that matches Olmsted County. The curves estimate what the results would have looked like, had each of the FLC groups contained the full distribution of ages. Estimation based on reweighted data is a common theme in survey sampling. Correct standard errors for the curves are readily computed using methods from that literature, and are available in some software packages. In R the \texttt{svykm} routine in the \texttt{survey} package handles both this simple case and more complex sampling schemes. Tests of the curves can be done using a weighted Cox model; the robust variance produced by \texttt{coxph} is identical to the standard Horvitz-Thompsen variance estimate used in survey sampling \cite{Binder92}. The score test from \texttt{coxph} is equivalent to the log-rank test that is often used to label curves. (In the example below the sykm function is only run if the survey package is already loaded, as the variance calculation is very slow for this large data set.) <<>>= id <- 1:nrow(fdata) cfit <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=rwt) summary(cfit)$robscore if (exists("svykm")) { #true if the survey package is loaded sdes <- svydesign(id = ~0, weights=~rwt, data=fdata) dfit <- svykm(Surv(futime, death) ~ group, design=sdes, se=TRUE) } @ Note: including the \texttt{cluster} term in the coxph call causes it to treat the weights as resampling values and thus use the proper survey sampling style variance. The default without that term would be to treat the case weights as replication counts. (This same alternate variance estimate is also called for when there are correlated observations; many users will be more familiar with the cluster statement in that context.) \paragraph{Inverse probability weighting} Notice that when using the overall population as the target distribution $\pi$ we can use Bayes rule to rewrite the weights as \begin{align*} \frac{1}{w_{asi}} &= \frac{{\rm Pr}({\rm age}=a, {\rm sex} =s, {\rm group}=i)} {{\rm Pr}({\rm age}=a, {\rm sex} =s)} \\ &= {\rm Pr}({\rm group}=i | {\rm age}=a, {\rm sex} =s) \end{align*} This last is precisely the probability estimated by a logistic regression model, leading to \emph{inverse probability weighting} as an alternate label for this approach. We can reproduce the weights calculated just above with three logistic regression models. <>= options(na.action="na.exclude") gg <- as.numeric(fdata$group) lfit1 <- glm(I(gg==1) ~ factor(age2) * sex, data=fdata, family="binomial") lfit2 <- glm(I(gg==2) ~ factor(age2) * sex, data=fdata, family="binomial") lfit3 <- glm(I(gg==3) ~ factor(age2) * sex, data=fdata, family="binomial") temp <- ifelse(gg==1, predict(lfit1, type='response'), ifelse(gg==2, predict(lfit2, type='response'), predict(lfit3, type='response'))) all.equal(1/temp, fdata$rwt) @ If there were only 2 groups then only a single regression model is needed since P(group 2) = 1 - P(group 1). Note the setting of na.action, which causes the predicted vector to have the same length as the original data even when there are missing values. This simplifies using the derived weights with the original data set. An advantage of the regression framework is that one can easily accommodate more variables by using a model with additive terms and only a few selected interactions, and the model can contain continuous as well as categorical predictors. The disadvantage is that such models are often used without the necessary work to check their validity. For instance models with \texttt{age + sex} could have been used above. This makes the assumption that the odds of being a member of group 1 is linear in age and with the same slope for males and females; ditto for the models for group 2 and group 3. How well does this work? Since the goal of reweighting is to standardize the ages, a reasonable check is to compute and plot the reweighted age distribution for each flc group. \begin{figure}[tb] \myfig{flc4} \caption{The re-weighted age distribution using logistic regression with continuous age, for females, FLC groups 1--3. The target distribution is shown as a ``+''. The original unadjusted distribution is shown as dashed lines.} \label{flc4} \end{figure} Figure \ref{flc4} shows the result. The reweighted age distribution is not perfectly balanced, i.e., the 123 symbols do not over plot one another, but in this case the simple linear model has done an excellent job. We emphasize that whenever the reweighting is based on a simplified model then such a check is obligatory. It is quite common that a simple model is not sufficient and the resulting weight adjustment is inadequate. Like a duct tape auto repair, proceeding forward as though the underlying problem has been addressed is then most unwise. <>= lfit1b <-glm(I(gg==1) ~ age + sex, data=fdata, family="binomial") lfit2b <- glm(I(gg==2) ~ age +sex, data=fdata, family="binomial") lfit3b <- glm(I(gg==3) ~ age + sex, data=fdata, family="binomial") # weights for each group using simple logistic twt <- ifelse(gg==1, 1/predict(lfit1b, type="response"), ifelse(gg==2, 1/predict(lfit2b, type="response"), 1/predict(lfit3b, type="response"))) tdata <- data.frame(fdata, lwt=twt) #grouped plot for the females temp <- tdata[tdata$sex=='F',] temp$gg <- as.numeric(temp$group) c1 <- with(temp[temp$gg==1,], tapply(lwt, age2, sum)) c2 <- with(temp[temp$gg==2,], tapply(lwt, age2, sum)) c3 <- with(temp[temp$gg==3,], tapply(lwt, age2, sum)) xtemp <- outer(1:8, c(-.1, 0, .1), "+") #avoid overplotting ytemp <- 100* cbind(c1/sum(c1), c2/sum(c2), c3/sum(c3)) matplot(xtemp, ytemp, col=c(1,2,4), xlab="Age group", ylab="Weighted frequency (%)", xaxt='n') ztab <- table(fdata$age2) points(1:8, 100*ztab/sum(ztab), pch='+', cex=1.5, lty=2) # Add the unadjusted temp <- tab2[,1,] temp <- scale(temp, center=F, scale=colSums(temp)) matlines(1:8, 100*temp, pch='o', col=c(1,2,4), lty=2) axis(1, 1:8, levels(fdata$age2)) @ \paragraph{Rescaled weights} As the weights were defined in equation \ref{wt1}, the sum of weights for each of the groups is \Sexpr{nrow(fdata)}, the number of observations in the data set. Since the number of subjects in group 3 is one seventh of that in group 1, the average weight in group 3 is much larger. An alternative is to define weights in terms of the \emph{within} group distribution rather than the overall distribution, leading to the rescaled weights $w^*$ \begin{align} w^* &= \frac{\pi(a,s)}{p(a,s|i)} \label{wt2} \\ &= \frac{{\rm P}({\rm group}=i)} {{\rm P}({\rm group}=i | {\rm age}=a, {\rm sex}=s)} \label{wt2b} \end{align} Each group's weights are rescaled by the overall prevalence of the group. In its simplest form, the weights in each group are scaled to add up to the number of subjects in the group. <<>>= # compute new weights wtscale <- table(fdata$group)/ tapply(fdata$rwt, fdata$group, sum) wt2 <- c(fdata$rwt * wtscale[fdata$group]) c("rescaled cv"= sd(wt2)/mean(wt2), "rwt cv"=sd(fdata$rwt)/mean(fdata$rwt)) cfit2a <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight= rwt) cfit2b <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=wt2) round(c(cfit2a$rscore, cfit2b$rscore),1) @ The rescaling results in weights that are much less variable across groups. This operation has no impact on the individual survival curves or their standard errors, since within group we have multiplied all weights by a constant. When comparing curves across groups, however, the rescaled weights reduce the standard error of the test statistic. This results in increased power for the robust score test, although in this particular data set the improvement is not very large. \section{Conditional method} In the marginal approach we first balance the data set and then compute results on the adjusted data. In the conditional approach we first compute a predicted survival curve for each subject that accounts for flc group, age and sex, and then take a weighted average of the curves to get an overall estimate for each flc group. For both methods a central consideration is the population of interest, which drives the weights. Modeling has not removed the question of \emph{who} these curves should represent, it has simply changed the order of operation between the weighting step and the survival curves step. \subsection{Stratification} Our first approach is to subset the data into homogeneous age/sex strata, compute survival curves within each strata, and then combine results. We will use the same age/sex combinations as before. The interpretation of these groups is different, however. In the marginal approach it was important to find age/sex groups for which the probability of membership within each FLC group was constant within the strata (independent of age and sex, within strata), in this case it is important that the survival for each FLC group is constant in each age/sex stratum. Homogeneity of membership within each stratum and homogeneity of survival within each stratum may lead to different partitions for some data sets. Computing curves for all the combinations is easy. <>= allfit <- survfit(Surv(futime/365.25, death) ~ group + age2 + sex, fdata) temp <- summary(allfit)$table temp[1:6, c(1,4)] #abbrev printout to fit page @ The resultant survival object has 48 curves: 8 age groups * 2 sexes * 3 FLC groups. To get a single curve for the first FLC group we need to take a weighted average over the 16 age/sex combinations that apply to that group, and similarly for the second and third FLC subset. Combining the curves is a bit of a nuisance computationally because each of them is reported on a different set of time points. A solution is to use the \texttt{summary} function for survfit objects along with the \texttt{times} argument of that function. This feature was originally designed to allow printout of curves at selected time points (6 months, 1 year, \ldots), but can also be used to select a common set of time points for averaging. We will arbitrarily use 4 per year, which is sufficient to create a visually smooth plot over the time span of interest. By default \texttt{summary} does not return data for times beyond the end of a curve, i.e., when there are no subjects left at risk; the \texttt{extend} argument causes a full set of times to always be reported. As seen in the printout above, the computed curves are in sex within age within group order. The overall curve is a weighted average chosen to match the original age/sex distribution of the population. <>= xtime <- seq(0, 14, length=57) #four points/year for 14 years smat <- matrix(0, nrow=57, ncol=3) # survival curves serr <- smat #matrix of standard errors pi <- with(fdata, table(age2, sex))/nrow(fdata) #overall dist for (i in 1:3) { temp <- allfit[1:16 + (i-1)*16] #curves for group i for (j in 1:16) { stemp <- summary(temp[j], times=xtime, extend=T) smat[,i] <- smat[,i] + pi[j]*stemp$surv serr[,i] <- serr[,i] + pi[i]*stemp$std.err^2 } } serr <- sqrt(serr) matplot(xtime, smat, type='l', lwd=2, col=c(1,2,4), ylim=c(0,1), lty=1, xlab="Years from sample", ylab="Survival") lines(sfit1, mark.time=F, lty=2, col=c(1,2,4), xscale=365.25) @ \begin{figure}[tb] \myfig{flc5} \caption{Estimated curves from a stratified model, along with those from the uncorrected fit as dashed lines.} \label{flc5} \end{figure} Figure \ref{flc5} shows the resulting averaged curves. Overlaid are the curves for the unadjusted model. Very careful comparison of these curves with the weighted estimate shows that they have almost identical spread, with just a tiny amount of downward shift. There are two major disadvantages to the stratified curves. The first is that when the original data set is small or the number of confounders is large, it is not always feasible to stratify into a large enough set of groups that each will be homogeneous. The second is a technical aspect of the standard error estimate. Since the curves are formed from disjoint sets of observations they are independent and the variance of the weighted average is then a weighted sum of variances. However, when a Kaplan-Meier curve drops to zero the usual standard error estimate at that point involves 0/0 and becomes undefined, leading to the NaN (not a number) value in R. Thus the overall standard error becomes undefined if any of the component curves falls to zero. In the above example this happens at about the half way point of the graph. (Other software packages carry forward the se value from the last no-zero point on the curve, but the statistical validity of this is uncertain.) To test for overall difference between the curves we can use a stratified test statistic, which is a sum of the test statistics computed within each subgroup. The most common choice is the stratified log-rank statistic which is shown below. The score test from a stratified Cox model would give the same result. <<>>= survdiff(Surv(futime, death) ~ group + strata(age2, sex), fdata) @ \subsection{Modeling} The other approach for conditional estimation is to model the risks due to the confounders. Though we have left it till last, this is usually the first (and most often the only) approach used by most data analysts. Let's start with the very simplest method: a stratified Cox model. <>= cfit4a <- coxph(Surv(futime, death) ~ age + sex + strata(group), data=fdata) surv4a <- survfit(cfit4a) plot(surv4a, col=c(1,2,4), mark.time=F, xscale=365.25, xlab="Years post sample", ylab="Survival") @ This is a very fast and easy way to produce a set of curves, but it has three problems. First is the assumption that this simple model adequately accounts for the effects of age and sex on survival. That is, it assumes that the effect of age on mortality is linear, the sex difference is constant across all ages, and that the coefficients for both are identical for the three FLC groups. The second problem with this approach is that it produces the predicted curve for a single hypothetical subject of age \Sexpr{round(cfit4a[['means']][1], 1)} years and sex \Sexpr{round(cfit4a[['means']][2],2)}, the means of the covariates, under each of the 3 FLC scenarios. However, we are interested in the adjusted survival of a \emph{cohort} of subjects in each range of FLC, and the survival of an ``average'' subject is not the average survival of a cohort. The third and most serious issue is that it is not clear exactly what these ``adjusted'' curves represent --- exactly who \emph{is} this subject a sex of \Sexpr{round(cfit4a[['means']][2],2)}? Multiple authors have commented on this problem, see Thomsen et al \cite{Thomsen91}, Nieto and Coresh \cite{Nieto96} or chapter 10 of Therneau and Grambsh \cite{Therneau00} for examples. Even worse is a Cox model that treated the FLC group as a covariate, since that will impose a an additional constraint of proportional hazards across the 3 FLC groups. \begin{figure} \myfig{flc6} \caption{Curves for the three groups, adjusted for age and sex via a risk model. Dotted lines show the curves from marginal adjustment. Solid curves are for the simple risk model \texttt{cfit4a}.} \label{flc6} \end{figure} We can address this last problem problem by doing a proper average. A Cox model fit can produce the predicted curves for any age/sex combination. The key idea is to produce a predicted survival curve for every subject of some hypothetical population, and then take the average of these curves. The most straightforward approach is to retrieve the predicted individual curves for all \Sexpr{nrow(fdata)} subjects in the data set, assuming each of the three FLC strata one by one, and take a simple average for each strata. For this particular data set that is a bit slow since it involves \Sexpr{nrow(fdata)} curves. However there are only 98 unique age/sex pairs in the data, it is sufficient to obtain the 98 * 3 FLC groups unique curves and take a weighted average. We will make use of the survexp function, which is designed for just this purpose. Start by creating a data set which has one row for each age/sex combination along with its count. Then replicate it into 3 copies, assigning one copy to each of the three FLC strata. <>= tab4a <- with(fdata, table(age, sex)) uage <- as.numeric(dimnames(tab4a)[[1]]) tdata <- data.frame(age = uage[row(tab4a)], sex = c("F","M")[col(tab4a)], count= c(tab4a)) tdata3 <- tdata[rep(1:nrow(tdata), 3),] #three copies tdata3$group <- factor(rep(1:3, each=nrow(tdata)), labels=levels(fdata$group)) sfit4a <- survexp(~group, data=tdata3, weight = count, ratetable=cfit4a) plot(sfit4a, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, c("FLC low", "FLC med", "FLC high"), lty=1, col=c(1,2,4), bty='n', lwd=2) @ Figure \ref{flc6} shows the result. Comparing this to the prior 3 adjustments shown in figures \ref{flc3}, \ref{flc4}, and \ref{flc5} we see that this result is different. Why? Part of the reason is due to the fact that $E[f(X)] \ne f(E[X])$ for any non-linear operation $f$, so that averages of survival curves and survival curves of averages will never be exactly the same. This may explain the small difference between the stratified and the marginal approaches of figures \ref{flc3} and \ref{flc5}, which were based on the same subsets. The Cox based result is systematically higher than the stratified one, however, so something more is indicated. Aside: An alternate computational approach is to create the individual survival curves using the \texttt{survfit} function and then take averages. <<>>= tfit <- survfit(cfit4a, newdata=tdata, se.fit=FALSE) curves <- vector('list', 3) twt <- c(tab4a)/sum(tab4a) for (i in 1:3) { temp <- tfit[i,] curves[[i]] <- list(time=temp$time, surv= c(temp$surv %*% twt)) } @ The above code is a bit sneaky. I know that the result from the survfit function contains a matrix \texttt{tfit\$surv} of 104 columns, one for each row in the tdata data frame, each column containing the curves for the three strata one after the other. Sub setting \texttt{tfit} results in the matrix for a single flc group. Outside of R an approach like the above may be needed, however. \begin{figure} \myfig{flc6b} \caption{Left panel: comparison of Cox model based adjustment (solid) with the curves based on marginal adjustment (dashed). The Cox model curves without (black) and with (red) an age*sex interaction term overlay. Right panel: plot of the predicted relative risks from a Cox model \texttt{crate} versus population values from the Minnesota rate table.} \label{flc6b} \end{figure} So why are the modeling results so different than either reweighting or stratification? Suspicion first falls on the use of a simple linear model for age and sex, so start by fitting a slightly more refined model that allows for a different slope for the two sexes, but is still linear in age. In this particular data set an external check on the fit is also available via the Minnesota death rate tables, which are included with the survival package as \texttt{survexp.mn}. This is an array that contains daily death rates by age, sex, and calender year. <>= par(mfrow=c(1,2)) cfit4b <- coxph(Surv(futime, death) ~ age*sex + strata(group), fdata) sfit4b <- survexp(~group, data=tdata3, ratetable=cfit4b, weights=count) plot(sfit4b, fun='event', xscale=365.25, xlab="Years from sample", ylab="Deaths") lines(sfit3, mark.time=FALSE, fun='event', xscale=365.25, lty=2) lines(sfit4a, fun='event', xscale=365.25, col=2) temp <- median(fdata$sample.yr) mrate <- survexp.mn[as.character(uage),, as.character(temp)] crate <- predict(cfit4b, newdata=tdata, reference='sample', type='lp') crate <- matrix(crate, ncol=2)[,2:1] # mrate has males then females, match it # crate contains estimated log(hazards) relative to a baseline, # and mrate absolute hazards, make both relative to a 70 year old for (i in 1:2) { mrate[,i] <- log(mrate[,i]/ mrate[21,2]) crate[,i] <- crate[,i] - crate[21,2] } matplot(mrate, crate, col=2:1, type='l') abline(0, 1, lty=2, col=4) @ The resulting curves are shown in the left panel of figure \ref{flc6b} and reveal that addition of an interaction term did not change the predictions, and that the Cox model result for the highest risk group is distinctly different predicted survival for the highest FLC group is distinctly different when using model based prediction. The right hand panel of the figure shows that though there are slight differences with the Minnesota values, linearity of the age effect is very well supported. So where exactly does the model go wrong? Since this is such a large data set we have the luxury of looking at subsets. This would be a very large number of curves to plot --- age by sex by FLC = 48 --- so an overlay of the observed and expected curves by group would be too confusing. Instead we will summarize each of the groups according to their observed and predicted number of events. <>= obs <- with(fdata, tapply(death, list(age2, sex, group), sum)) pred<- with(fdata, tapply(predict(cfit4b, type='expected'), list(age2, sex, group), sum)) excess <- matrix(obs/pred, nrow=8) #collapse 3 way array to 2 dimnames(excess) <- list(dimnames(obs)[[1]], c("low F", "low M", "med F", "med M", "high F", "high M")) round(excess, 1) @ The excess risks, defined as the observed/expected number of deaths, are mostly modest ranging from .8 to 1.2. The primary exception exception is the high FLC group for ages 50--59 which has values of 1.6 to 2.5; the Cox model fit has greatly overestimated the survival for the age 50--54 and 55--59 groups. Since this is also the age category with the highest count in the data set, this overestimation will have a large impact on the overall curve for high FLC subset, which is exactly where the the deviation in figure \ref{flc6b} is observed to lie. There is also mild evidence for a linear trend in age for the low FLC females, in the other direction. Altogether this suggests that the model might need to have a different age coefficient for each of the three FLC groups. <<>>= cfit5a <- coxph(Surv(futime, death) ~ group:age +sex + strata(group), fdata) cfit5b <- coxph(Surv(futime, death) ~ group:(age +sex) + strata(group), fdata) cfit5c <- coxph(Surv(futime, death) ~ group:(age *sex) + strata(group), fdata) options(show.signif.stars=FALSE) # see footnote anova(cfit4a, cfit5a, cfit5b, cfit5c) temp <- coef(cfit5a) names(temp) <- c("sex", "ageL", "ageM", "ageH") round(temp,3) @ The model with separate age coefficients for each FLC group gives a major improvement in goodness of fit, but adding separate sex coefficients per group or further interactions does not add importantly beyond that. \footnote{There are certain TV shows that make one dumber just by watching them; adding stars to the output has the same effect on statisticians.} \begin{figure} \myfig{flc7} \caption{Adjusted survival for the 3 FLC groups based on the improved Cox model fit. Dashed lines show the predictions from the marginal model.} \label{flc7} \end{figure} A recheck of the observed/expected values now shows a much more random pattern, though some excess remains in the upper right corner. The updated survival curves are shown in figure \ref{flc7} and now are in closer concordance with the marginal fit. <>= pred5a <- with(fdata, tapply(predict(cfit5a, type='expected'), list(age2, sex, group), sum)) excess5a <- matrix(obs/pred5a, nrow=8, dimnames=dimnames(excess)) round(excess5a, 1) sfit5 <- survexp(~group, data=tdata3, ratetable=cfit5a, weights=count) plot(sfit3, fun='event', xscale=365.25, mark.time=FALSE, lty=2, xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25) @ One problem with the model based estimate is that standard errors for the curves are complex. Standard errors of the individual curves for each age/sex/FLC combination are a standard output of the survfit function, but the collection of curves is correlated since they all depend on a common estimate of the model's coefficient vector $\beta$. Curves with disparate ages are anti-correlated (an increase in the age coefficient of the model would raise one and lower the other) whereas those for close ages are positively correlated. A proper variance for the unweighted average has been derived by Gail and Byar \cite{Gail86}, but this has not been implemented in any of the standard packages, nor extended to the weighted case. A bootstrap estimate would appear to be the most feasible. \section{Conclusions} When two populations need to be adjusted and one is much larger than the other, the balanced subset method has been popular. It is most often seen in the context of a case-control study, with cases as the rarer group and a set of matched controls selected from the larger one. This method has the advantage that the usual standard error estimates from a standard package are appropriate, so no further work is required. However, in the general situation it leads to a correct answer but for the wrong problem, i.e., not for a population in which we are interested. The population reweighted estimate is flexible, has a readily available variance in some statistical packages (but not all), and the result is directly interpretable. It is the method we recommend in general. The approach can be extended to a large number of balancing factors by using a regression model to derive the weights. Exploration and checking of said model for adequacy is an important step in this case. The biggest downside to the method arises when there is a subset which is rare in the data sample but frequent in the adjusting population. In this case subjects in that subset will be assigned large weights, and the resulting curves will have high variance. The stratified method is closely related to reweighting (not shown). It does not do well if the sample size is small, however. Risk set modeling is a very flexible method, but is also the one where it is easiest to go wrong by using an inadequate model, and variance estimation is also difficult. To the extent that the fitted model is relevant, it allows for interpolation and extrapolation to a reference population with a different distribution of covariates than the one in the training data. It may be applicable in cases such as rare subsets where population reweighting is problematic, with the understanding that one is depending heavily on extrapolation in this case, which is always dangerous. \bibliographystyle{plain} \bibliography{refer} \end{document} survival/inst/doc/tests.pdf0000644000176000001440000124744212267746150015564 0ustar ripleyusers%PDF-1.4 %ÐÔÅØ 3 0 obj << /Length 1402 /Filter /FlateDecode >> stream xÚíYKoã6¾çW{’€J_y*’´²hzhE·­­µÝúÕHi6ÿ~çEGNå& ´À¢ÎÁ6E ‡Ãoœ_Ôg_oüDU¹VÎNêÊ<jR*—› 'õlòkr™ªd›ê2ù˜f¦(’õ6Í´Kf0Ý®à«Ãi•40ÜÌÒßê·®†¸*“ë'ó{§Œ}BF›W¹÷6õ¸á°ÜÑf-ïqEø]Â÷ÈVÎäªT‘É›±mT‘õ¸OÛÁ&}Ç”*€°ypN#e¦´Í«JM2ís¯¨S¿…UøyÁ@¤kü)“z‘Ê» ’;ælÝ3Àë‡ â{ ÄÍ`k\‘\®–›åt\(•ûÒL&7•åµo üT{ظ ÓÆ_Ɇ…‚/ßVescKa\Ú\Ã8³:·¡åo‰³ŒÚýHÐBJ]âò$)•œF¥Y@UÁô·dB B²”qÚ/™3pšØøu¢h2‹³|5óýÖ.ã[àëuÒìÈX@+[Üò#¬Œ¸*RâxÆãž†c#vNkéy} 4˜z¦¼1D@ñžœ×°\ßÒŽ 3@Ëjû±š± âöØ ×CaFβ£×[A^Ááéûók Η8ÖŸ¨ !XKÖ\)’ä°© è4âðܧºJZd<_ ÉõÌ:À«<ÍlGDgH^Nùå2SÞ©¤ŒV¾;@TïEäÚù½áœ6+F˜ÌÝmFÓ ˆ¨ã×ÍfƃévpÛPc":þ×Nó߃x‰?Š—¼Ð·–ï ebŒmåô‚XwEÞ mæ€CWÆÿË´^ÎL0B¥Ž¢jÕ k±¬íüåÈõ'ºJÚ§v·“xî\ò;¾' ¥H#aF,ç— ä?Q*¼•; è~†ñ¢û[FÿHax~ÃÓ=˘ǔtÕ…ù63§d•lއ˜¯™rˆ)G=nÁ ¶1¶á‹5‡Mr€ú{8’ÂUiOÀÅË‘d,‹×ù0±pœX<—æt’°@2XÙÇ”Lq„>Ì€AÈ9ô7L [6JUí³O9l€²{I©›NH­ §¾Y©~ÌQÜ0{¸‰“……é9#*!¢÷êvŠÓKÄ„„â¹6cñÜ ŒKº¾¦ˆÚ]'Ѧ²Ü ¡õÒÀ£í³Gj£ó4+¡l¼”RdËJòùß‹±_R½¡š³ã"r•6UÁ5­}¦œ]ŸK\ª*“üxSÃCͳnÑI)‡Ì‚5'«Ý¯Í‚Î%!’çàë“A÷Zÿ}V”×ÕQp ƒ­´,«W4?ÏpÃQl-c{Y9¥œŽ´’~`+CùW.žVDO -:†ôšÓqø #;&yÔ(^ÅTDžQ> ÂKóø ˆp[î«LOÍE‰üþj=l{êP›`ã¤ký‚JÎ}ö½[¥¨Ï¾âX&€§ÜM©Û÷o¯^nŒúB.j‰Ç2ÍÙd³å›3â~Èšnú“Ü/%o]0ø'ͳQI¥@î:ÅЂüwÞ2ÑvËh½Ìý”ñ›àŽ'WQ®~° ‘)&§Í: k“†Þ³t,Ùì/”€déè(ø²AÖ¤ú s\„:é8ÂŒ„¥¦û#²T¨è?NHà¸÷ؾ×Tžmyx…?@, ?Žô˜–þ-ÁÌæŠ§úX!ô¼pŸínæÂ)fb0¾$>òÃú±ËF.ý&EC¡ÿŒô‡´ŠÛÜŠšvêvåt«ée%k–Þ‘\]»‘Æg+}ì tLFMè†kU]¸ÜÐ_"!÷ÞþD8û®>ûä³–L endstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 612 792] /Parent 10 0 R >> endobj 1 0 obj << /Font << /F38 4 0 R /F19 5 0 R /F45 6 0 R /F47 7 0 R /F52 8 0 R /F8 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 13 0 obj << /Length 3339 /Filter /FlateDecode >> stream xÚ•ËŽÛÈñî¯ìÅÀC“l>±‡…³‰äà‚`½‡’’K¢BRùùÔ³»)q`ïaFý¨î®®wUó/¯Þ¾¯îê¨.Òâîq{W—QYTwE^F©ÉïÛ»ß7§ûd3Ì÷im6–žïÓrÓ`â€é¦í ý)N2îZ†ú/´/ØŸàß ý€ÓÑýCfâ͇-Cíâ-‚ì;iðÀ î.µ‚»Ã/ÀÃÝWhÛf&4’Í7Fåyognõt¬GØNÜÁxªÂÍ„‚.§«þ»ìiðÍýƒ‰·EwºÿãñwñÝC’Du.û@F.‚^˃Ø`g˜ùŒ#Œæ AgžB¨^ÎDZefó¸g|tê„äþ‚E û$GĨ4?ó9H²©ãÃ!pAˆ¸Ü|JLöñÝG†l¢Ý´Dê§û$Í5¼y’Eu–-¯ÿQîtzÖíMo鯶‘]DðzÓO<+ÜÂfˆöqCB Ú!Z¿ $™Í;ž¹¢¬ly ¶ì¸}Æ6i'{ò2Äìrd®¦-±3î1› ;GeAËã—3ÿžüʼn‘˜P/Qªû‚‡‘pYÐ&SÄ›u iÝv‡^•`â)XÁªã±ƒÐ/Cð;·§–ä Ôk“×,ßÓŒ'~ã+'+/p:‘ÅªØ "·€#*EQl¦!XÒyÄi)…rrÕéVnôZ$ëæ5Åbš à”ñf«ÜpÊ8ŠÆ¤©ÓD~+S5¸B­¦ÍAÎBÆ^è‹0óÀ¿ ²ÔŽ8µkSÔî®Ø¦{NÎâ &ÿv *ÉxXÖÊI¯üö}‘Ù$u”f%‚0#µÎÅ:UÃkBžÖQæà½ùõ(òñ£W—Y¶@°Q{0Yp6³ à*R‘e›#oDRz #ÈR¦eÉ"—†ôŸìäŽ3$¸ƒ½ÝhdºÉ–ß¾!™>“z}å!‹€»+Å%â'›¿ÈígÞœìÏË€‰¥©Ã=‰­Ì´ÕVd¥ì`ñ8Ô S±åGy6µ³D0lyäWÂì+wŽr¤q4YP»2 |œ°ªû¦ö®‰» ‰ißA Ê81>a‡;’Ìì +¦nÕW'ÈEGÅÙÎ8OV‹s]#’‡´…Ìž¸FDí3DííEHE0È79ÑèÅ_Ú“zØ”MÍ0ŠÃSËÆBùË‹Nëý}•Á*X$D ÚˆÃñìèšœe&xÔÉë¢ÙMkàRJâ@¯…ZÕ{Nsp¶ðÀVe'u"z†r÷ †Ž&suñöV¶Á)½G˜x(ñÂH‡¼è´XSO$¤ùÌÖ@£6dq`•h§vª#g¼Ó§4‰oí¶5`j03SlØ=±÷éxÈàO©f G,œ>ýBüGÂÎŽnÚ+Á<µ†Äèˆ]”ùÂS<@Î93î~kiØÇÁxš¿ƒ3ŸONÕN‚à$ ëŸ/-0Fiÿ¹¯Œlj<§î:Ü}·';Õù¸Á( ·£°‚Äfɶ‘Mݽ‘Õõ7¸õ^Oê׸mÀ¦ó€|ö²¡ªÉ?Im2nkXÔ8l‘-$ö€ÕïÙ€ãppQVüšIö‡—´< %-²Â¤‰HÚÿnÅ,‰#çV]´€ö0`ÒƒR‰9€ÝH¯Ô,”»7Xâ Å‹žÉÍZ%îA†IífG&]˜…K[e,ñò41|/¿—“ò²c»¡=0äi^WÄá¦Ï¬¯‰*.‘'4OrŠ´y!žœ<°‹cfä‰\Sõ Y$#¹¡¹Eý0y ú1z€†Q—ügTEðQ10::Ä<œÛÕqõ„yâ…«ðö†Û^@C&q ”™0Ãђλ0ƒcCbˆr çXAÀü¬éÑûâW5øÎò…cÆîÌà é@2Sñf5el¸©å.ÉF¡–¬Ú,“'Âø›\µ÷ÛÛÅ[±KÆKÅÖ©§Y._’‰ã áeìèº'8* ›³Úì3fïþD‚&žV‰š±à…$ç FwÙ’äWKÈKÊI|%6|šUá¸- ë ŠiÀ-HIlìN63°BEäeVˆ¾n¯È=$yVëG¬Õ?%r3í|v¾hˆòÌ} ö¡éãY  h<Ilµ>¸éȿΧaçI•Оßa˜BÒ@ßȵ-T(Ä@,&tEúIô_36{5,’_:35éW­“7H—3½“.tö­bVQM"ê=]5¤8ÍSZA•* »^5lI -ö~§†Lg™‚?Ù“‰!ÅbSÖ~¹Ï% é…òyºL×`Wr7~M˜ü¨Ç`=[¡I/Ö”£s.á‘.xGë+t '²¿=˜$ªÊZÜjþÃV2³05iHÆ¡üÙšµ°BÙ@–:D/À÷$À<ñ\-Ù^Åh¸1Q×I1®Df8Üs}Ezâ—™…bC×§n¸ãUêFIT¶q¦‘EöËåW¸µ¥šçÉÇk‹FØÄû.˜t—•¨¨]–Iüºn¹ã¨ú>mÙ¬rø ÈR§'Ø>ºÂ nô)ÎcŠ—á<H¤h(¸ÂÊj€AmR-%é;&ÏggeMb?7¡·)+ÇàN,š]m¨“õAûˆ÷'*’&Ž—Þ ’ã­ŒÜ˺‹åéŽn¯•i¢4+yݪ¤Œª9Ûй>#Ï5Þîf*|¾# ÆÌuiH)–Uð.ÉãüæENCZ%‹Œ¼XÔ”™ù{¸/Ü/…«ôN™ý^ÔÁiÁ  -\œ®—>·GD„8°ÐêÃUÂ_%MîÞKΚÌÄ )RRò×WO ¸ÆüÄÓÎlÉ×-äöÎÊ1ç"þá¯ÞÁÓ'Ëb Ø+tÂx"ËÜÈ0ûUÚ\0ÎÌÀIŸýƒ-k.þÍW¨]ÉU W'ÞPqúh¼fp“Ø-©Ýã>Ø-hR yÑ3¥~‚ gP²$¬ÜJ@BÃu=ó3–ps2¢0¶ Û×ÏÎ¥è{I˜¹ôÑž\ä%±äö Žî(ÀNsìiG1¥¯Ld%¾S™¬H)ðH³¨Ž!©1iTÖR›KA:ðä7±Y‰©J|ÅŒÏãpÇ|åtÌ}ú„°“€qú—ûpÚ¿{MBQÉOá&Ù;Ü:@¨‚Þ¸bœþÅŠEß l_Ë^ún.'!ÌQ_©¡-¯…dÝå3—½ü÷.ò=K«ô%×ŇPÜuþÚ. Jõò•Ì“«-“öñ£U§®:YÉëå«çñItÙÅ X‚ãx’Sø}´&RîC*¬úDê?òÉwé<ñì¶Vóø*Ò¡ùν¯-o.Vv÷^.Žæì¬žÿz bΦŠ~Oþ1EÖh—¶(x¹Œ£úXng‡0l¾©nÀå†4Î#Sä YuTU•J;L½úÛã«ÿã6 endstream endobj 12 0 obj << /Type /Page /Contents 13 0 R /Resources 11 0 R /MediaBox [0 0 612 792] /Parent 10 0 R >> endobj 11 0 obj << /Font << /F8 9 0 R /F61 14 0 R /F60 15 0 R /F52 8 0 R /F47 7 0 R >> /ProcSet [ /PDF /Text ] >> endobj 19 0 obj << /Length 4109 /Filter /FlateDecode >> stream xÚ}ZK“ã¶¾ï¯Ð!)KU;\|»RI­7žx“¸\‰§ÊÛE=<©%¥üúô)ÎfD  ÑèÇ× ~÷ðæÝ}±*ƒ23Ùêa·*ó ÏŠU–æ‰ÓÕÃvõëzü´‰ÖWø«†þ›»8,ÖgxúGøßÂ_sz Í‘Y?áí&«:üÍ××óæÎdëm…}8Í–ûŸ7&§÷ãþ°1 %òÑ Øþ…[`";¨ÚÂóÈÒHÓm™d‹óà:ƒ ÜxéåWmž?å~™"#hJ ²ŒBùȶ» *Rì³²0ú.ÜN¦é`‰ë»ùšxm<$ÅQ—PZ¹~¿³ „§¬øgWµ-Z?2à/j¥Ž¬”‹=ó2‹XŸ"4£p Ö4Ö ðñÃóÀ-ä§Ý "û:¢øwñÝI²þÀ±—¢æ4ªÝ%4Vü3—'…¸9¾™Öyc¡äh¸gTÐyV¿óŽ[~fÉIJÛ'î‹×Ȫ1 I1Çæ«Qö2’+z„0ÅCÀp9ôÛ©\† ¨w$8uÖæ#,ì~hÿXvƒLÎ?Vp ›5ÎT1 öZ ‹* 3ëý€zO\í<³ÇÖ޺ўGÈ‚ÖÎh¡¹3{5¬Ö„ Î×Ið&ç#YË•— hLƒŒ€v^+ÉÖ^¼Dbïc”-ä4¤Ã]3K5r–) h¦+W—Nr•4ÝH¸®Ÿ‘™{«úyi\² Õ¼ÒKXàYµŽ^ˆ#ø%î(YýÄXó£´WžmQ‹Õtxž:œ®ST[”,믕|¸åègx~ÿ³pÇ@†ŽsšC•’œÐà)HÂÖhs'g6…ÔtAÝÀ+¹ó¡‘µfþ,GD³í¥m~NW¾M€B‹ÀXÕº‹b½u˜iD}sávB®T’€)Õ  ˆRKçK( &¡Q+§Þ“ðŒe‹|2MË .‚!?Aǿةâëû­èÛq"kE²Šêµ„¹yf/vRÌyPç`]?qÅg¿Ÿbì%yö£G•ÜEB&§Z yÏT»`@%^öHþ…UvÔ"Â~ªKH6:ÿ< ê¸rÃñ{,zËÔÄ".ÊRVÇ)üÝ}’£“Ì Ö©Å0iÁR"“®ÿNÞœ„äß7P5Ä”9(BN Ê,)Yfª (U¯ûcTuï]ýuà‡-×^ĺÆÑJú&%3˜ßš'ôM³Sa ®F÷Bº’”tÐ4Ø"Û»¤v•:†ëq»12!—2âú’àú¬ô3‰4 àÌ5OØ +µºÕgÜ3´¡‰tà–|0k4¸˜4…ÛÕnNº50t®*R¿‘Û}¯ËN:X4\eƒŸñdí7É8}º*à;ü§;|z[Óë‡âzKnûÎ1Æl×·ÉÞMóv¥Õ¥/¯Ì¢²Lȉ…žuëzÐ2ZÿÔj=ÁÖJ¡õƒdGä»È£ƒ‚KíèGm„?FRo²à8d‚4ä–^Pmßn-A&oùÙX ªšÑÈÿ:8ZyKŒƒÇ ° Þ9 ÿŒ1WD(2ö'î]¡ á’NMqahäÐkÑVd,a€­„ÿÐxÅh‡µå±CËh¯šO Q%Âê¹d“¡Tè¥"²(ÁÏεd\èÂá7ÞœðVìYñRÂHiÅIÁ–)3j¥eD•š`;²„¿Ê> „¶n¼Íõ”ÃP™Kœµ8ÌNŇdç^Z?r³.¬¯£åâÝV¨»~O™ƈ«ŸgÈ<¶zå6¡cA8‚c]üi_/ò+nRnÑÂ{–s¦£}ËLá<¦’(´59YÒÖBöçø[ñ™AÉ.J ½hZÓí–‘ ƒIº–ëÅjj°$¡ñ:›¦U-—>èÁGBäûCQýE÷;á 7]ß,wÔb¦@[¶P÷HCv¼ª*&¶ù›¥«lœm6Šm¥Ž¶Üy4šPêŽg-îÄóC–’OÝhÊ7õI™»1hª­Ÿ-'.SÁ@|”æV¡aáz”1‰”¼žh6©!÷š‰ìq+8SÎÉÇ¡b(w¬³"(c£jú¢ÁV²Q­f7KùŠlýýAÍ8ZßE¨xa‡7¡š¢bÓ¸€é,ç¡eDéì"ãÆ @»ßÂ4¼Ç›µT:M#n®È#å‰{­æh3©`êÐ;¾Tüs¢ñäU<Œ”Ãp°½f£}ìo#3yØNÔ [r!NóÐÅ»ÉÖ ä8­EÃyؤb€-Õ”Fœ4«ò²„4RÎtß¾^ùy>ØëΓ¬˜œO’¹«hzá g«Cáš'×d8IÅ?®"•¹;ñFÌ , €\ç- gúYµáÖ› äÒl£r¯Ì“‡HeÄp ¹/˜“B5«^˜šL}‰jpLµ,#¥µ¤©\ª¾¢j¼nÑïyƚµWšT3êáƒ1º»·2é´,†K R)lxðMPE¢7‹²Ý«½›æ[¯£'¼{îB¨øJ· ¹ ;yæ!äÜÊ®®®RÁ§¢n+8¹-}b«½o³·4•uH4™dÃù”âÈ'¸ÕÜçE®1øDàaк-AqhØ©¯žfr¹jkÑ#J^™m’ð%VcH©Spö¯Cx.ÚZL°È þºÎ¼ V¸ŠTÌô ËJêx¡sטötúßÂ(ÖËèQÊ_c?©rI‘ÌóÉ…Tvõ¢©(-âÁeg×^\ê¢ ¡É¥NÁ3ÿšß&¬ø¨).ï'¦[çTh䮩ž!‘¨ý÷†_©Zö…ŸmòñÕЀ”Pù»YIM¯äCfz¯‰—¡Äí#BÕé÷F[ž€Y,\rm}«•°á•˜¦_€Í’¡ôò1UÅLÚK‰èq5ñ<Ý­{!€¯¦«ÉläG©ýì<ÍôÎ$ù¯ÁùÙ™GÿÕåx»B°PPàÑ`þšy±þ ±ß¸JÆ£¤ü¾pŠ©XÏf;“¶šç.ZV¨H±Ù* 7ý¿sàG½Ÿ¸¸õ^¯÷Gë?É»NøÖÍ"£ñã¶Òõ¤Ó×lúšO_‹ékDGëP7)ùÉ›ïÞ|zƒ× á*Òï—£$§oŒêÓ›_W[è‰qY¬ž‰ò´Š²,0V<ÚÕÏoþóæ;üÚD«4(óœ*,‚"M`²0(ËtòU“ W9âùágMQºº3AÅR-åÈ’õy`?w¤ïW¡Pù±µWÔÐÔw-‚,æò麦sFî=ÊL—ƒ•7V¾€Éï³YšRB>ït×VóJ ~QF(@8ŽCrC´¦ü^º—>Rý ß{Ë>Û/8îe` ,šzl?^"tÇf é2©;^¦‰ÁÊ ÉÔGRaJ.^ëJsÁ‚;R½ö:ÈûQÐ,lq~×| L$ÆíÚã±ÑZ¡–ÿ‚‡Š¿?ž£ã’¾–Y#+Íxq(ú‘%(Aª\ó^õ›úpìŽ!0cçÒ»!.Õ?O÷úËi= ÍŽ o­m Å—H:¾¡=Ár—;Å1XøH9Lƒ8CU-ƒ¢°£bDÿ~ꌞ endstream endobj 18 0 obj << /Type /Page /Contents 19 0 R /Resources 17 0 R /MediaBox [0 0 612 792] /Parent 10 0 R >> endobj 17 0 obj << /Font << /F8 9 0 R /F61 14 0 R /F11 20 0 R /F7 21 0 R /F47 7 0 R /F69 22 0 R /F21 23 0 R /F20 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 27 0 obj << /Length 297 /Filter /FlateDecode >> stream xÚMPËNÃ0¼û+|´v³~%á‚JpCÊ 8¤IÓ 5‰H ý}vc*Ë«õÌxfmà.àe®óPp“í=ðf`_,Óe0Ö­ŠÛ~%!]LÀîyþ8±W\¥’©ºq}¨Øn_ð’쯺¿`Ÿé€þUËßÄ^‚øÄ}úž±¥²Þ ¸“Ê¥¸ÿ‘¦GbêS⺨KÚ Î›A/M..:ÑPßÓ5¢Æ¨ì°æè2Ôçd³D²±oSQI±`ÑRyQõÿ©ï¸uj,sšl!~¢ä둃T&ˆéÒÇctÄxŽ8ê7*ÆT/ø @—>ÄZE”`hàz\âéJo[éí‘¶$iHã#jÅÔEQ¯!&óÚQ®ÔlÌrı§ŠýIoG endstream endobj 26 0 obj << /Type /Page /Contents 27 0 R /Resources 25 0 R /MediaBox [0 0 612 792] /Parent 10 0 R >> endobj 16 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./tests-data.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 28 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 29 0 R>> /ExtGState << >>/ColorSpace << /sRGB 30 0 R >>>> /Length 1153 /Filter /FlateDecode >> stream xœ­VËŽ\E Ý߯ð˜²ë½LF)¤0#±@¬Bi”F ³à÷9vÕíº¢ÐMX¤3çº\å·ÐKz¤Û+ú@±s,ûoS4e®…þ|C¿ÐÛ·O?ÿœîî·À!:þÞßý„¯5Ó_Û¯¿Q ß7¡—ø÷¸‰ ·9 ¥Æ©Ði+S¦„·½ßJåØ(– TG¥,PÖBYí Æw…Ô3K¤œXª”³]m°sÊ…›K%sO”a€Tµï°Ã_íÜ”Špññ˜3%rtiŠ\:•ÌÁuai‰TüŒÁʹPiœÍ()‰s ¦nN‰ª²ºnm+ÕÝæ–9 Õ2¥Ç2Ù¿¹w;Öç ¨¡°(!5­„¡ÝvîZåpÔ7»JcäV©'‹ `Âw¡^95‡•k" ¶cÄG´Ô£d!õ`ª9›I$Y €+vànq†)’háÕæU%sãz±Ì[˜³ÝCdÅûI-’À¨©Àku\Y„${Â~à}3Ë܉¸¸Ã^˜%Ý1¢{ææú à}“ÛQ]ö¢œRrŒ‡`/ JývùÏò s—õgùó‡œ×OŸÎÓkÌ¢H/=¼¥Æóûøqˆ¹‚ÆPa'ú*‡¯éáqûîÁ/þœ¦H³Â]ªåzUt^ Õzµªb‚ Ü—j»Z5¢Í­ϪýzU-š|©J8ëŽÌ }Ч™'Å®2ò{)ö¼ ´¤‚Ï—»xƒÏêò—|>·Ë¯[î|³|TdÂG.9?’ÏhJôñ`ªéVÕ.,iTÝªŠµ’fÕ]æaöÉ–ÔwÉìò*6€øq»„ûá1r¾°±T£-Ÿfç³wo®v²qAxÆb1Ý?Üíº·±ùÏÓm†)½³ÌüÏìþ¥3ûÀ@ó-:Øx€¯¥Á>°t±°€ÞûÀjöÐt±”¤?9.¶¦ÔÅ>j{~²¬} ‹} &µ/ö,—û€iƒ¹ ö*ìa±˜ãb½0Ù‡™Þó¢‚m%þ!2×ì$ "e\7ˆ ÇM "6“Ââ ÖNƒ± "ØÎ).bŠhÖ¾[¿Óü׆ WRÊëNCj4`§!¶­Û†´båµhÜ®á@CදéICÜí¾hˆ»} !îv\4ÄÜneÑw;.2Ý>Ós{È 1·‡þ¤p³—í]t"úÅ‹+ °pAùöêeZBàõFM'D­·´Ïë5­á¬º¼znReì˜æõü±ê?Ê¿Î3TÔæ]wº>pɦÇh¼›4mö¢¬¹¿ÛTQàg‚i”n´7ÂÇ8vSM—ª¯¶¿$¨Òì endstream endobj 28 0 obj << /CreationDate (D:20140122074924) /ModDate (D:20140122074924) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 29 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 31 0 R >> endobj 30 0 obj [/ICCBased 32 0 R] endobj 31 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 32 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 25 0 obj << /Font << /F8 9 0 R >> /XObject << /Im1 16 0 R >> /ProcSet [ /PDF /Text ] >> endobj 36 0 obj << /Length 2599 /Filter /FlateDecode >> stream xÚ½kã¶ñûýŠmz@½ÈZ§÷ãÚ¸9 EÒÁ~Kò'Ë^7–åJrö|ýó'IÙòÆùÀ59ç=Cí?_½yŸWwUPåq~÷¸¾‹ª0(Šê.ÏŠ N²»ÇÕÝ‹Ý}´00>Àh`àz€ñŒÆOaÂÏ028_ʼøÃý2‹šæJ>Rx(Å9E¬EGµ€ í£§Ò¨UN²üè°s#àxF’ðwÈ€øQäy‡’ JK>4½ƒôcÑ<ÚŽ;ºãÒÞ¾´1/íJàK[.£0-<Óa¦SfÞ b$פD×ÁPWÁA–‚="• p:®i]þŒF¿÷ˆfB4ô`:2!”‹€zq,’ÄÞ:%‹Xž)Ä~~Á¶/¹Øë‰ žûìoüE`†}yÛiM­øöŠÖ×åhŸcàœ×âéõYÄ|E.|ó¾HýÄgA\tû_c’ú`ß!|?Cn&à²L”†€R^'aúü9ÒË¢{ãå•?s2!‡§“¡äQåAÎ*M/7ùIâáÒ#®å¥|Öw?«ÐzYp¤üÇË=5öÁ“{¼”ŒÕ1©'᪹âÔ$¼¸Ù'wWœ:º™‚ðvò4ÕJÐõ¢¦½§ª+¾Ñæ‚Àm‹Vl±ŽÂdªØ^Æù |`¥çñà5§+èïa|ãk¿Q K“<ÈÒdÖšçž28yÛy‹j=ÞÉÕñm%\;®Pn¬¢?;rðÂà4Oáa*þ0uæÛ›Ïøç:Þ (ÏR/{¼9Ú4Œ"RçI=Níåõ°™Œé(t^عíX¼e%Ë©hãô†ëv2På>¸Æ›öV+¯€l™MÞj™>î7x⯎[hH¥&ZFE¹ø)JR¶NÌÖ'û™ZéwÈåð#,òF:iæ7ÐêXƒõ0„îàp&/–^ë<; êlñn(á¢ù¨©fÒ­ùwMb4¼ ·yB%Œ ©qþdÄ㲪‡î89 BeØn}nFwEc±Äúh 0c3…žª(ÃßZeïöV„…‘•[ÔÿÑv*ÐÓp+ÜÐz¨uZk¡õá$«£;§¸;ö|=Må®éÐq"ð 8Y¤“ŠÓ‘»nУÜÞ¡–ôÑ;á‘Zð„dNƒf³ób ÏÛ²YΧJÔVì„1''Ó“ÈÊ„;øUܦ»-úÌ‹¶W3œ:Û6·l@¬A„:˜sÞo°•öߥõV²Eœ²ÔÝfïgmJ°I9 ~Iy[a/ÎvšbÈvb” µõ'mo£÷ó.E9Lj½'ó—èÇÇ^šwë£x`Õ;ÍJ…ó é CQVÀeTUTF’=Üà8@"Ÿò¡Õ‘êWVg”ìàq¼aé/JÚË´(,ó3®? f>}¢W¯gM¡^ukÍ!{Æ]Û"\K#=îÞ9¢v{†Sã±WÙÖ¼K5ƒØÖU›œ1”U2ÊI„¿q^¼wÌ8ûÕmhÄ}Šbù¸žˆ„W³D7,_Ç€¡5Þa- –”ÉÞÝd}c,nÐÔ<ç$0ÊRâY;’'ñ½Wš#œ´–Ñ•û_]IÏcçsP@Sþëg+IÝÙ2É*DÉÏ¡=Ùž¢heEH*v¡‘‘¯¥{× ñ£Ýœ!÷Há`Ÿ´ #—Ïêa·cÀAcLn¯Å‚yúEä‰Q}Ão[UmÜPp'%g \#ɘØË±òæ‚ÏvIPS¿$!@s”X ÛÑ5ç¸mdϸ‹Io›fåÑF†kÕsrÎ%)o´RØT4:ÔÑq7u?!±fò5ÙeíÚµÂðCžœPæ’4ñ)ZHbx É;¿þcÂùN½¢1êÇ)µÔ Ôãf70À°Á&qιjw´_úÊI¿1 YÜø>1`àlÁ‘õø$µüjÝ%úWÃkÙ|ñÙ‹[ÇG3œ+»*Ø2‚â«©OH{%fFOÔ>V¶I¦ÊF€¶1¶E?~ôú ÜÞÊï³Tê~Š›tF[­‚+ÞY SmimøG{9~µ ö#lÃï>’²6½¤Gé‰pCeq Ò…îMí.þ½·ß.¤kOÒ†>1BÄFž[Ÿ¨eÐwTM;±(Òn&híÿ`.Ò§ ×Ü%GÞ÷‰(s‰áÈØ?m“I»H1i„ÌyY&j¨(ví¾Rzÿ‹–åW.±ý8:Ť*Lß>9µ“}5˜Ñ ÍRy5­È°&ƒØ›ô‚¥ÞL…m^97mù!+2ílù›¿œ»töþdÇáÚ ÊŠ.;TQE”gkÅÝ¥Í_ô/ð£,Køé¦~Ÿ¦ÔÎ*Òy¹è;cÄ•|XÍýçLÛ+(M?t-ÿ[c‡Pæ)R¸ž5ÜriawUì"JpóJŸ”$~y¶yÝ£fU¼í°&Ö*¹-¦ôzÀ"Îÿ\ÓÀ¨­±°ŽE÷)œË(iµfœyÇÙyfA’gwË, Ê,ÕOÀ°õê›ÇWÿu²øŸ endstream endobj 35 0 obj << /Type /Page /Contents 36 0 R /Resources 34 0 R /MediaBox [0 0 612 792] /Parent 10 0 R >> endobj 34 0 obj << /Font << /F69 22 0 R /F74 37 0 R /F8 9 0 R /F47 7 0 R >> /ProcSet [ /PDF /Text ] >> endobj 40 0 obj << /Length 1433 /Filter /FlateDecode >> stream xÚ…WKoÛF¾ëW½t ˜4wùî¥HÒI‘C‹*§º@)’’™ˆ¤BJ±õï;¯%)[n`XÚÇÌìì73ߎ´ÀŸvòÔO“Ì óÀ¢È)ÛÕ·Uàç‰ #’XŽiS‹¢,Ü~ló[¿úþì–'F½…Õ·ëÕí]æäh.qÖÛéà$óµIuåü­î\­øßø¬]/ ´2¿¸^œiµ~€5Z—ƒë™Tõ#,¨µÙÏJEã/'Ü:ŠÑ ã®±šXA‘}aezÙĶx€›Ö´!'?½ã­Š4 žŒ5Nn`¢3^3 £U{ë~”¨°g··øA£®œ/Ðtî?ëßNOk?hCÞ–®ÉÔW>+ CÅ÷³pWX0jü&7+ÈîÈbÁ…Šè¶5!Ò&ê†'E7Ë/€Àéç¿XÄAÀ+-~ÐUËš…–£¿KÈù ñò_”ø>|àö.JB 6˜5€G¨ýÌ0‘rÚˆL¤ÞtUv/Õ£2,ÍŽü†Ùqd›ËHz±¿Ãì"]ä4°bÙ“CýeÖÅŒI‰×ÇÀ÷ Gp¦è8Úø:‹Að4’£Ú‡ Îsõ¹ã"ÄxŽ.—Q]Q`½Ž\Û{f©Â³ë¢ã #õ\Ã_-¡îÄ!¹8yKÂášžÝo‹iÕ×Rl J˜ð“ÈDZ-BIæ8#¥ÙÏJD^D.mMirœ-¼á¯‰Ò`ü–M Å”Eƒ5sJ#˜HÆÜn9 ˆÀa„™ö.ïMÀâârpí»e 6„‡¯ÀB¦Ð´ÑÄ# <~è“ ùÝbұ̑ó‡ FÕ£ÇMÇe!ˆìÏl%¼$f…3îÕÅÀ=Þ°ykº¡¹x qº§‰2—ºr>:ùòü…Ôo®?´_J"×€¡#¿“Ç¿Y€i…êMÇÉIÞü¢zNA$_5–[m[1?W!ÞX•^*‘/JÔ>{©¤³<–¨iÁ€—§¸Ëx8Íïf?U)s[I´³}©]R9ñ 3ñzé,˜×óþá¾ÚÝ=kŽ(HBÊ^†Û„/Oœƒª¯³îÎOÝ\›µMO¤êO?¿× ÷=|MMàªO²_Ü>Ë5vµ¥ðLºÃz*¤k¤\R&¶¶ã`÷ìQœ—T&;iEäµDs‘oL$h‹µû 0½à[3îïŸlŽ¡/4za½Ò‘óq’«Èi8±t/˜ýð&“¯`€ª©°%ÑXÌaÇ6n ƒM.ª:*ã~wfY[m0<-:¥BAý§«þˆ{úÆÌc|S?É£K|_öu€*õuHÊi¿Ö'* ªÿyÚÈü ÛŸºÐ!,l¡¶%¶ó”ZWPÖVJëÑÐÈ‹?xaÉ ÿ=­—ofRcÙònjµC‰òZÁÅoê¥ç7x"Biãé¸RaØùIY¿¥ÇaÂÈ|Áo3ûy¤/RxCLˆYzÿêO–ôñ¿ëÅO„þH b Ù”š õË{ Â`̼öå‡]æÉ?H¨Q£8Â+–ê­ùBºÖ4ñShø½(Lä·g‚[«÷ëÕ…é™þ endstream endobj 39 0 obj << /Type /Page /Contents 40 0 R /Resources 38 0 R /MediaBox [0 0 612 792] /Parent 10 0 R >> endobj 33 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./tests-pop.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 41 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 42 0 R>> /ExtGState << >>/ColorSpace << /sRGB 43 0 R >>>> /Length 1596 /Filter /FlateDecode >> stream xœ­XM]5 Ý¿_‘åÌ¢&±ó¹¤¥ U€Tf$Uh˜¢VŠv@ˆϱ“Ü{§”êEeÑ7õõ=¹‰íŸ$¸g.¸7îýé¹{螺äù[™|u•ì>ܺŸÝ»ÓW÷?}÷Ø=¹:yòÞ»ãïÕ“ñ´$÷×éÅKçݯ§àžáß›SÐܧ$”‚ãœ)Š»;eO©9.¤º·§\(gxñ§À,‘JÄ×峪ÀŠ(f¥ ldb}¹%jÀr¦a/ä–@EÔÆ ÃfjÅìBpN”¢ÚuœÐ"%Ã(v£ÄfWŠÀ¦dã!&ø tr!Á|I8µeà+>cïcÉ…1žP³ï¡êáÇkAíê©*>Söfj þHÞðXŸçÝÏž)Ÿ*ù`v£ ø¨Ë„21ðø¬×ù0 ðH@·ÅSžkK¡X.ËÛøHBÄDŸÅìJEñYÃ;£F€Ç´XãÁ…©&‡ðY:¸4j€#|E“ÇX¾|!¶é#ùºø ÿ©˜l2³êW˘›98D°ØËÌZ>0C4³QÌEd‰Éš1ÄÁâ.Q4àÉV3yÊÕ%«%5‹Ž™°(•äH5:<´ê´ëõ¡š•Zsˆ¨ØËÕB8E¹Ù|"ÞÑÒŽÞëJw o›y¥[ïÿØY}ßÞ¹1~7ߺ«ÜÃêµï¨þéžæîïÕ·ù‡¹ùGö§š›$aú§¹ùLwŸýæ|=‚ssÿ‰àÜ߀•¾Eq»ëW®ÒxÞÌŒM3ÃFf×wî"ùKwýæôôÚþ2„F•Ð|>´ye„ZΆrùÈZφ η´ ÕÍǵ¿a{fP®=f1¶(ÃòûÐmyëÖîmE÷Ãôvk÷*ñ4ÞÜÃ<øAà›ÍßÍÝ?&3ý‡¹—½/öÑ.ºŸ£eK—­?³Ï€Áâ’&8,‚µµ G 4¯¢A; ¥–E4KÒ8t|˜î±O‘Áiq’É4¹¦ÞjFšóåÎl_¸µy1tÕ^˜_ÿv{ö:«µa%Ú¾ÌonßÝ¿þãï‰_“<á $OS¡±Kž¬ ºIž"]LÉ“uï’§öÖ6%úÑAòh'oGÉ“µÓ$OÑ~xTåN´sÙòZ±íÀ¯J[yuÂH'86à€SkPéJY[Ëw± vªžiÑdêêWA‘ûñr5¯ ”¤ÒlÁçCA?Úa””V#ŒMšµÈTGçCÁ)Ú·ðU^0è¼ö%ûÕ ãì«ÝMt59ì³5N[J‹Pìí±)iz× ÖŽYé‹PšjõèW× ÁªM^ï)#¬WE¢WMwü"´™tÐm»X¬— X+ÄÇò„Q¼&HDìÚ@µ tƒ_¤5mŒ*s @òêWkœ—@«<ÌP…µ W‹ ¬¡…ã+Ø7P‚ª7“*A4®çe1D¦–ŠIÕEd±K° m ‰3±ªÇ²¼Ç%ÚÍ,êpY‡&]^g²+ÙTÖ‘¼ýn¯,#›öpPY^Ü-‚L»õ[e2Aó×{‡¶>[œ°š)ëUÝ!Ø_ÍDø*eGœc õ£ñ ÿ­ÝõL¬‡ÉXŒ1E¯u”°ëfÛâgqlgÇ×íïs>-UDÇzSm‘/.žÞýþúÃ¥{j¹x}óË[œë_]bû»‹Û·ïnn/_ºëgçÉ >6¹Ž±¿¿úÏÑžŸþ•ޱ endstream endobj 41 0 obj << /CreationDate (D:20140122074924) /ModDate (D:20140122074924) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 42 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 44 0 R >> endobj 43 0 obj [/ICCBased 45 0 R] endobj 44 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 45 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 38 0 obj << /Font << /F8 9 0 R /F47 7 0 R >> /XObject << /Im2 33 0 R >> /ProcSet [ /PDF /Text ] >> endobj 48 0 obj << /Length 3670 /Filter /FlateDecode >> stream xÚµÛŽë¶ñ=_±hSTÛÆŠDJ¢Ô4’ h‘¼4›6@’Z[ëuc[ŽeÇçä¡ßÞ¹’”¥½¤AlIäp8Îüôî½ßÔ7MÚT¦º¹{¸ÉK‹ÒÝT¥K-oîV7ß&ßeev›'Kxæ·‹¢i’/:øn‡ÓíÂÔe2ÀÇgl9Â_‡Ÿ)À™:¹{Ć:ÀÃ%ýZvÛžà¿~МŽÒ½<ÉËQ†ã7bkeÒÝ#ŠàùfÒÈ*ù鶬˜4„j÷Ë@Sÿ #":‰þ“"&*»Õí÷w»É]šÛêf‘çiS o°{×ni|ž,ôua­MV2çwYn»£€ðü)a\UZ›P6iVWŒÒ3Íå rK)§lÙìÀiº–¿ïáQ%Ý£ŽYas–,i¿:þ¸ÜÂFtؽ~¼…]Â%ÝÀPØÚs+‘Σ¯Žò`Á+å™Ð3ÐfâÐÇ1|+ã—=n"²±?ãÛª“%£áú,àž˜¼ fãýhDzC2>à¦N6©0>•†vM‚Òd"¯øŽóMÛ +¹ÐÚöüѽÅ~’·½2xÍ]´¬Žßœí­ ¡½gæ9i‘SÀÐÄtÈ2èå‘dgD‡×ü[ÏrcÝ‘&æÉ'{܃wÈL‡òXœDÊi¡Ð¶ * _â~í±“½¨jP ÕÙë7“píù]¶ ÿ›DEþB"ìg”…t+ˆ[†"&²éü€’8íø”·ªëá}$~€ñ@äôÌ)A's^6BÏãçf¥Ý&lT#ßâÈßäydA+“ºÜ:BóO†™X›–•öŒhk¶°S\y‘Ú&WØoÂÞTiãl`6ÀJÛ´Ê…î94@Q6&‚úfJbòd‘¥ŸÎfÓÚñlße™Lè"°*5Æs Ÿ!¨H‹ª™#h²¶jfmõ³KKçö$mêê…-É ë4ÌmØÿÊ(ØaŠÇ¥HºôÉ~‚]4ÞodÅ/[Ƶò§v'! d‡H€oàõ‹Ïæ8È3â ¨Ü3g¬ÚîW’™æ)±‹Ì ›H0~R]±†çÁ—Ø€Hú)r Ï ü‹â*x5èëÔ²ùn˜«8ÌÀ/ó?êú3¥€ôʱú¨œ¤†“)ÖFô H¿…_ ?ô.’g&ÏèÇRUÄôÖã*{¿ŸYR !°(ÇÄOñ™,­kójtßóªXg’„¬,Æ%Ü{=:Ñ‚®¹¶. ‡Dl—Üû~ â¹ÞrªXP2y5¡?F¿¿Ãïkø}“½H¯ùµôÒçù± CKJÉ€¸É…’öYãX¢—ã„íÉ“÷eÂ^H{ùDùù~L[àÒËÃ…zÇÓjr™UbÐ/çŠy=WÌ«¹bþ®ÄJ¹øÜ9ÉØ{Qy/Ѧ½BÑß—Y»x%3ÂK©)] !õÂdM)Ê“giqeŸ¢.éÈ30gT/jù•ÒWŠšòÌ#]U+DÍxÓͱ꩹kAào-ó鯑gé²Á ‚rqË:¿!ÐI´ /dô†*Þàó¸à}[[ ½­K|ÀÈ …\rýÕ8²pÉ(vÞH9ážOÊ€âOšcsâĸ.P(«éá}ÙÊ á‰Šˆ„•æV1.‚BÙ¢šöòzòqíñÊÙ[gÒÚùx H×´nÕ@Œæã.ä\!ƒ¨»JkŠ‚GÕÓ9œö JªAõˆëENð㉢­žÕ yÅ·­ÓìÇ[QÔRº +“fuó:.ŠI vd#6!‡–Ü äc(ËqËÉ×r rúÂÍÄÒØŠqÎFF!¡ËÓÜØŽdÙly°hž¯‹6µ¯b}¼ˆ,ÊhÀ–4U>JiæRšÊÚ›L¨ó™M]óü1®OJ¨žÑ¸Yb+ˆZ³â—R»›Ù¿<-m1C.Ñ0!ê%·SªœM«Ê§…sD•Àä—ˆ5Ê ¥8“†fi–U¿h¾W±@¦pÅ”|žw(´z¼‚¥ê£ÂìPÈâxã¤n ï¼µzºÕa1=>ª=„Ó5ÒJŸ‰nÉÊ)%8H’ÝXdÂÙ® å )·@£Iv’èsmgªá®J±²nTM ý ´±Ž<ñ託ƒÂà:¦ƒ ÓX ór£•0앚Žf&I»?§«mÌBé% Ó’ûøÏäšp %8ƒWê"I g½qºOFŒ´4=9åÜ‘X#ª‹ýS͆Œ|^¯rõ³–)§'þ$N϶;_† nϰHDç«éšøã‰Vãƒ!IŒ>¥ÊGëý«+˜&¥ªøX¿.?lÆÒ{”JôkÁªù%ÖË&בÀ®Bïž_ß©ŸkaH8[($R€—u'¤µúVÀlÁ—ÏbF]Æy¨Ï<Þ µ}ìßA ŠÐ¸ìÏq]]•u .Úe”Yàü ’Ï7úŠXsÍ#l›´¤°™$è .wðíÃ:Žó1Ðjˆ¨‚2k¥‹Ôï°‰®C,Ûí\hKx¦ªŽ®›nC£³îbtÖ- d (¹Âã/np¯¿9PÔÞèqý¥ .n$¿h·)ðîT¶ Xžû^èií ˜¤žP”É" oàà*¢%¸èc†Ot³$læYùÔT‰ÔÈŽáÆé©{óôm𦠦ã^{ƒÖõýºóPjzö%üþñõ硃}á¾Ä(øº€£ùó©‹+…òV:\ÏÖðU —±ý_>b2¯•ñ<Ät>[˜˜UÑ-Úè^|Ä1r ä» D.åá°U¬ ÈiÆægüF_h¶DXF\†Oá?ÌmOFÉ Ÿ4Ípi—¤-˜–GÏvA ­æÉãDè:õòDêúA\`â‹;4:äOôÝ2™ ™€¼<þ¸ªg{˜ò1‰?~òÄL.DÑœÇ0ÿžÑs$ÖÔ)x>O´^ÐRXÅG“€ÆZȃm¸L€Ú¨[¯NA·ž<‚­òÔ•åØwŠÓØÚfEêòëàz§»"$«%I+ ‰ïÉ}x[Áw¹0ÄÑÂdð»Ey€­I/ÏÍAòXà;KGg4GU ×­{’ýÆ_AÖ‘ÛGR ƒ:ï˜dšvÎí—>|¤4ºyá`vJR¼*Øù*w“Hl:Mćožò»B–‘ý™#¾Òê)`ͬˆÐqúäšBRžÏ¹s>±€nø­¥›u=Äà„i-ó­6Qñð¸‘ÊàyT„ȳë½-¤É¦†›×!]’…þ;*çnãPU&[ÝæS¤ ØNqà™{;¶*t…ròê笮'œã[qƒ½ÏJ ôo$Ê®‚Æ÷«9ô‚»º„Ô¬|Ð^EA{UúDè,,ˆ$†±zͺ¿Ð:Žt·±Ù¾2s5i ½Ü‹*Tñcßâ2À|­¦'[kˆIàKÌ ~ñûÐEãŸWÔrUy#g­ÔtuqƒXpPJi…ÑŽÈ Tìü”Íì|ŒB¹î³Â.Ú^Zº>¡8¼àfÏOZJ{â_ê+²ññqfÇ7u6á:öyB–¤ƒn/âly‰ýY渄ûÀ´æ¶hWTô×uø dyò¾/¹l_àÄÿ±WiZÍ¿IÊ~•ÿ p½7´62WЭTéZ¶')ž‡sµ¬LA¨Á{ÔiUÉ=5‡]ï}~÷Þ‡Û@ endstream endobj 47 0 obj << /Type /Page /Contents 48 0 R /Resources 46 0 R /MediaBox [0 0 612 792] /Parent 52 0 R >> endobj 46 0 obj << /Font << /F8 9 0 R /F11 20 0 R /F13 49 0 R /F7 21 0 R /F69 22 0 R /F74 37 0 R /F14 50 0 R /F10 51 0 R /F61 14 0 R >> /ProcSet [ /PDF /Text ] >> endobj 55 0 obj << /Length 3373 /Filter /FlateDecode >> stream xÚí]ÛÆñý~…`´¨ŒF4w¹üJëN)Ò‡Ö…ëÅÓÉ–D…”lŸ“ßù\.%Ê>»~ìƒÀårvvv¾gVß]_=yž•³2*3›Í®ogÆäQVºY–æ‘MÒÙõrörþ—Ç‹Ô&óãc3ïágáû}ú3 <ì`ØÂïü^ÀWmeåâ4–)|Ý è^¾„_ ?¿oåËóú½ºþû“ç¹ .l”7‹™Ô?0ÈèLidm©câÏñÙ8* û`t¯øTáf k\§n¶0&*Ó1÷YÁïf’ká× üš[·2UÃïNÀÖðÛÁïwò¾–0)ñ'i°iØË7½èÐ… QÆm2"\ŸC´,éeùÄ9¶‚áPÚÊ»–ŠŒC=ЇÍj9ŒÒ´VŽeæOäÌmS`ãó9ý $=.dAj#ŸèÔAD³>Òä,2ñÃ5y3> Ñïrðœêž¨RÛ%ëp&Ê #ÉxÕ{‘ž2—<‚ß³@? l½¿þ7Ý ›×F&:ÅÍÿû·¯àßNm² ¬ë0æÏ'lsZmèøØ ÷3š´[Bà+̘ãÿh.S]%y>ÉT «@¿W•É«û9F;ø^X·átò¬Ex›AÇ =€éöõ¹UâðG2‡ÏZ=òr.‹Ê"3aÚ—øsµâ ž&ýf´z²b¹¸|°Äw_&ñŠüÉó"Y˜Ž^f0€Ô+/öú޵Hâtþã ~ÖEÔ£ú@<ܺÝñÇ%1daóyÓóLÅ=M¶(ñã° ¡eeµ|­V„Ÿ¶,*XsÀïn^qºÝú…¤,Î ºíxÌÖà °°Ù¼¹SG°dˆƒX¡œ®'•@ÝPÂßâ‚*nF©€D¦Gø=€ç@+RµÂÜt¤Ò4ÛÞòs£” @ÕñäÖ3n‰Ót%hP–Ï u ¸zd+ƒë¦÷Ãk+{SÞ¤lÉ“çó˜óБ•‰Óká "Cy¾„Â<² ¾/Õ€qa}ðÙá­¦R'$£k}~¹âãØvÅHT6‚ͺ…Ó=nÔ ”¹øuBH_zÁ‹ÈæÉt*ÞºáOqd’ßó3dOŠÓîÇš.ŒSª{V$í%¿”)?ï‘S,äž‚MËyµ Û#Éq‚O}µU9"9…ãüµçñ®å'íT¤²ê’-’y»Yò`KŠØàæBEŽ%#¡µJ=¡;ðÑ\ЯµýEÇpØ)U)*%쌰«;±VD$CЈ­ÚîT½¢Jý‰ì fcU¨M8»U Ô¸ÍÝÏtÓD4 ¹(DR}7Ä„SíËsYÉîoÝ3,[g­¾¯“iQBVä¯îùe©›¡õ;KgnüM­: 8ÝÇoEÑ–¢T#vdž.YÀ†èÕ)ð¶þ Í%^ìR“TÖì ‘YÂ>¤aK7íêž¿Vû½¬o+‘̧ž<ÞéÁà=PÇ^œ Œßùí:ž@£òk%H,û8ÍØÍ Nr®ðLåUP˜˜Ÿ÷ì;ÉßÂä pìçǨnª¼…$ˆܪ:¤ÅüŽl¤Ù±UÝr؉yϘ€#¦ž YœÌÒŠ1RÑ5nÁËGž ‡{Q²D½" ³ÊS‹¾¬H¡Ž{ž–|ñ†0V캇dÚÅ`(–¨7ü’ÙÕs7üÑŸ­†•ñ„×⃕±·ç‚<5MH™«–uÍ/`«Í%{k‘ìQ˜Á× 1Ê“/:/Ê 2—ϯåäMùÄ{vðøÞû ¬A ·[IzÆ”#Üȳ„®‰;v*JÍ¥…‚g;Á¢Î“ÜhEác·Æg€“qÓ—Ïâ‚äÎ¥sï{8_BîÔZã­$c¦öº•Š×‰[b¿ë³†ä=Q£ÄG_üÀ)‰_ÙÊðnX×PœU1¤yðiìYnå>•€ÀšxMAé#1ÏåÀ u*./˜~r7Jóc°‰”>-ŠŒCUªwÆ1¡-9ê0ã[¯ÈKY ,÷MÒÔÂ|¬… dÀT U*+^—3;Ù´ÀiŠuò-™iÇyaö¢¿©´oFéô!ï§4¸±‘o´™¿»ó¥+NªNàø¦ê…L|£´/“6ßj­®|]ógÍ%V$é¾÷¦Šy_žÑ·h…‘Ç”>u…u>U‚1Õ4ÄuÔ!œ9¯ hzt—ó¬g|M3aÌI7 9˜ž×^âC-bJ²äã{q•’¤’+‰¡ÁªÉæ’Þ&¬úÕêãXç„Â3 N0ü8A‘ ”'ƒ„qÌ$h‚7poˆYõ†¦WÌ]*Õ]>cY,Öa_›GI‘ó¾.âFº1éüU`¤‹ØœèØ)I¢˜§ì^rõ¡Õ\Ë=­¨v&š¬¨+éÏȃh1LËÏ"vCez7]Mr„àOÌ¢´.ˆ¶h}xã{Á.þ7ŽV‡ij@Éqµ °õöè°dKÖð.¡­n·!ù28; X{îVSu)/:¡Â Ý 6Æu, ë0^úR%¥§à'å{XKg :.ʲFdøìFÑוUº3“ž» ÏAØc ë§Ô™]·ZÍ&\ÎvTÎlá”Kø™:LÕN-xóyCj£u•a~¡/­û¸ºnØy1*œ¯v >ˆÀÇJr&ló6Ê`FZrÚN!dµšÎ‹Ü2±ä&ÑÙ#™b^Fi–+R͘<+„ž¥–‡ÔöM2Y[Œ9¯Œ ·$= ò^>ÃÀ¾¢M†hƒóG 0š%ÉÈžè‡fXk’µM¯é|®, .º7z«$…ågrw£0þ÷cLDU¬}X•ÐД‰cȗƽšìÅ yÎf>£Åq{«ú‚Þæ'-ÌN[;C«Ÿ0ôòäÇy8y¡ç¬Ø|:DoSƒš’[ƒš’°×À;P.èü‰¡¨‘Sôù”APqaó﨡škÈnðRlt0¸‘¦+½ƒˆ¡±xEÝŽ´ðÒI©Ý–¤%µÙÙ¸`n¸H}Çèø;îhÆL0ÔÁ+G~å¾QÒôqC÷‘6û»n¦åÐö¼Øñfç·U­ª4A`¼ï¼qùKl« Ñ j¤i¾6·ÁésîhU{ßÉîèªÜjËô‡ñeQ3î8„e]Qx²<ùˆP¹ í4Hz(‹}gl§sp€cÀ‚vJ— 9M.¦®¿±h¢Cl¤ÊöÕ’ö¤Ãò_o}x€Åì7Ú Ò+6YÕùƒ}(?ò ‚š¨t'ÿµòƒ‚ ‡&º)$U ÊÞH|ð¬½JáWû;šbºÒó·µ<‡Î=¼v èNf?ö’b°]j›±®U‹rÄGxÝ ]ÃuØ[Xs¶­´ýšÓÂ] ¦r–;ú¯Á.DYÎÚqŸ O¢è¤e%S˜èE_´¬Ð2î¿í‰–l endstream endobj 54 0 obj << /Type /Page /Contents 55 0 R /Resources 53 0 R /MediaBox [0 0 612 792] /Parent 52 0 R >> endobj 53 0 obj << /Font << /F69 22 0 R /F74 37 0 R /F8 9 0 R /F47 7 0 R /F61 14 0 R /F11 20 0 R /F10 51 0 R /F7 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 58 0 obj << /Length 3087 /Filter /FlateDecode >> stream xÚµi#Gõûþ ³ a“u§ëèK°H°Ú•@AŠ”‚²‰Ôc·=“ø˜¸í9@â·ó®ª®j×xgA|˜é:ßU¯ÞUþãÕ«/?Ô“&kJ]N®V•C»0“²¨2mŠÉÕròÝTg³¹mšé×3]M÷w35=Áߦ=Âÿ[øÛïfscô´]þ(s=NuËÙ÷Wž¨2kl9™+€¬âǼÈaE _Űß?BŸvÁßa‡“†zÀ‘ ã¿Ý‚!äyž¶È`ˆ_ÃÃ.ò|úzÛ;!ö€ÿ|ܲÄ>boqÌLûN¨a —ÉP™Ê‹‹½¯pO b!XýÏ"§–`õÌMGE€–;Ý +«ý9ƒÓ)‹|úÀ”ëéÝl®K8%:"Ç–;%\€mjªéà C×Óž$2xÎ7¼d±ßbïZ€ìFàà»â8~C2¡îŠá Ùóè I!ØÐ1¾ÝÆ[I.soiÇ\)ÐLÑ’Ÿ?†'–*R‚‡· TtÄ Âá ZÅG–±°ÊêZÅZy%ô è42Þèç®-©£ÐžzlùÓóÑtHÆ-iæa¿ÊÑ`3§™Âö²ŒÍY-º¡­w|ßd‡W‰)íœÂ“xwxÐGÜðWVpþ8|è¼bnD'-(£…ßn„It$­-è ‚$°Âóé[ö<}”­ÒDÀ6I•@måvâ(Y’“Ü'[Ò¥AŒÄ7Z'`ÆžÖÅô³Ú°æóý¢m]ïÝŽ§ðRãŽ.¥#¥~Ú¸¡Í@Aïdz·qH­œŠ-F\Þ26£JXÏš8·¦š~@ZAb4Õòç†ÔGŽÄ'r²P³I`eúº“:ÂìvX•¨ èˆÝvR‰1C·Ü+£¶òJ)Û½u r×c‰$º¦“â±P…qó ~6´ƒ½_FR+EÍÏ=ÒGJ¨lUƒ¼Ôô«wØnÈT èpÛÝ¶Ý '‹£Ç“p³“ý‰ÄÈ“¬‰Øt¬!_~P*t‰MžÙ¼òÄ$ëRVåpm•©qU™å¹AnXñªØ»f¦h&Á¢·*\¤áÊéI•ÙJ󢝸T¡Ð«q"°ÄY b]{ò5¯«h6+«*¢^%ph)'‡6›©¦N°WGkšÚ)ø[2Ù8?Sb |6͉Z,ØÁ!åÄÉÝÚ 4¸?—ò\ÀŽÒ“¹Ílm>!èJ­"Þëë º \÷¹ˆLVWE K/: ýÒð& àtxóœú™XMðÔ‚íK‹h[,÷ˆ±[¦´¤´™-½ü-™ Urª—ü®CaEÓgCÆ$SÇ’˜Rqa,.B"Aó`Uâ&UYm‚š×§Kuß&2Ô&ËMDN Šö‹ˆœoSW)7ë>w3Qu s·Î rbõ9òeß( sÞ길œ—¤àÜúPŽ-dSÞ‘…ïtËY&"X i$Á"¯õÈ<8xÿ> endobj 56 0 obj << /Font << /F8 9 0 R /F11 20 0 R /F10 51 0 R /F1 59 0 R /F7 21 0 R /F14 50 0 R /F13 49 0 R /F69 22 0 R /F61 14 0 R /F74 37 0 R >> /ProcSet [ /PDF /Text ] >> endobj 62 0 obj << /Length 2401 /Filter /FlateDecode >> stream xÚµkoÛÈñ»…šôê1Ü]¾¶¨ ô1ÐÃåÃÁN‹Cš´DK ôpH):èï¼v¹”(Û¹º0dîc8;ï~¹P£þÔÈ$ilµåYëÔŒ¦ë‹Ÿ’Ñ 6%±±åè@ kW±Í²Ñjt}ñËÅ7o¯Ê‘m®óÑÍÝȨ$.­Te\j;º™>Fu;VÑ~Kø­+Õã‰6yáÎ Æ6-¢ëëñ§›Ÿ.ÞÝ\|ñ¤©¢Œ³² Ò’4}Œ4¥qRd0>C›*Ó8ËÓQžæqZäLÛ‡ PPÍ>Ãÿ½#³žâe”ê¸,íÿ&£dSôéHb8XÉx¢J›ó4IUVÀ‚N’HÁ¹”&ʘXç|¡xûÿøðîÏã‰1:šÂl»ëÂKž&{\Æ-‚™¨š×0k’ØšôE˜5 |@Ù1k¬é3›$™0«m†KvˆÙü³Õ®†ÿómƒìÒŠ7gQ•±-^FŸZƒ}e!‹å1‹Ê:KÒgöˆ>ß¡·Ü£æÑàÔ±ô¯$KÈsí fŠ×°¾Ã4B¥Oipžÿ¤ˆý2*ßÏûÖGìëÄk8¥¥GØÿpöž$l§ 2s‡ÿšç°•%yùle¶Œó,Tkš¤G|åÎrM’?ÉFœ%*‰LuÍü‰F—à“„0‘fÏ3YšX)ó"L–y\,f¶‰¬öΩt°¨u'™…ŠSñÍbâ€Vê¢H«f…ŽÞùË`MÖˬHmïø‰k‹šÇëj%–0‰y¬‡˜_ `Ûa{‹—ÏC+`—òl»­ÿK 7¿Ëx^\}wöøFÅFëþÖ_ùˆ‡#9 ñƒÿSͳPŸ (¬Â jIÍPE»…ã Ö¼°Þ ÌÄwZˆ::Ï\ H/úsw<ª(S£…pͬD­“h½ÇhxÅ gM‹bRÑ!³”r†8ɲè3UÒ«$̾ö–&Ød%½‡‰)Ô(>ÍÒeþÍšW‘Á<ÚâÙû•«Ö—ÜX$€¡®ÅÄVZ¾}áJ› v–â «™t"Wà“8 Ì©Ýñký–&ÅhÒ!sVfÑߥþ&Â1–àC‡¿ ñ¢‰!Ê{ßZ“cE6R#ú–‚/ɤ¥ ÜC>¥à²G x¶¡'Jmðý†hÛ(æãGr=i>HB˜üÙ-ãÚa‡DÌ)ZLE¢B%µUÁ×q–spÙ×!ÉyO ˆ>t„«î½)Vâþ¨v (&þ6x3±‚ôÉä «Æ•aµ“Džw¾l2Ë7‚ï­ÀB‹ê¾jºÈŽØHãMEÝ#  ääÛîL« nÁÊ ·zp±ÛùFmTrPů$ÞŠèˆ?$y¿æ—I¸y߯aùaÈÎzªéÚMÿD8PzTÁíCŽ1w²±%¨ðvÂE”Ôrã³b4|8É  {i‡‡i¬ÑM}¶g×ÉÆÅ}!^mfJ[ÛµÐäV Va¿Ã6 # WºÕç½S°=Ô)õ@‘wªÙÂH")v[ÞrºY¶> endobj 60 0 obj << /Font << /F8 9 0 R /F69 22 0 R >> /ProcSet [ /PDF /Text ] >> endobj 65 0 obj << /Length 2427 /Filter /FlateDecode >> stream xÚ½YkoÛºþž_!`_äuVy•¨b°b-†ƒlÃI m(¶’¸‹íÔ²Oûï{o”DGNší`(\‘ùÞ/™wçg¯?„¬.êÒ”Ùùef*STÊd¥E0uv¾Ì>å^=øz6×F©¼TeWꡊã Ž+×êÕìËùgïÏϾéLÁ?éÒΖ@Ùʹl±>ûôEeKøøC¦ [‡ìŽ–®3ÊÂVÆ7ÙOg={÷HJ­ŠÚ¸¬te᪒¥ü¸™é¼Y~…ÿü·‡_»‘jcr]ÀL)š¹dfOÎP•8u²¹3…×Ù\ë¢öž™~˜—·kä|ÓÂ]×ù+˜nfskMþóÌ—y³ƒ‰ ‘ZH8Å™ÂYíÆ³2TžEK j¿‡…ë[d¹ƒ>ÍÍlnÊP ‡2áWöRfAõÌ`Viâ§Rmÿ> 6oȰÝlÕÞFJðÌi¿IÔ2cj%1£™•{"XT aøË‹¯Ca|õÿ k ã|ê«)N•X_¬‡JU£{ÊÄ„©«ñÌT½Î÷„¹>P&‚¯¶=‹4b])Ü Ib^(®êY”6QÈËÌÒ²XU,çc“jm ¶œPÔKq:'V°L kCÈÍ›ÙÜ{—ÿßw­è ö,j¿ÝðÚ»™©òV^^]ã —tüõWîxÜ6‹™ ù5Ï–èL\Ùà¼ÎoÑ–ù–“ŸˆÀë*_lw¾íd ÆÞ’×GÞ„¶Âr{ 4AšŽ¼Å/š[ß"½-ŠS8deÌ»y©Uþû²ÅØ+~ƒ¦¨fèÕ´ãŽã « Ñ‚¡ÙmeUÇó(,¼ºnèÏH®åÍFXs%ä9ÎQÈÃÀs{É›!@ð×Êz”Á†0šC4T.°.¿C¸,Èþ¨†&Íî$—?Áï7ò3ðûÂË Ãù°s+BldW';qÇøi¡ »_óc'¼ÐŸTfMÄ:!¶¦M´²éð3ºé­Ð†]“õõJÙI¥~!Ñ4¨ªOXèÛMŠýßrüUÌ,Y¿•ùzJGzÕqäâp/š7Ä(yÕòt-¤îçøêN^Q­Õ²yÅÙÄúLdŸÈ|ÙËISñÒj ±lòF,FN¡·\ÞuaIM2M÷ëIºf‚®QEGtS#D¯{pa£À;_G!±¢Ðù¯O@ºçË8JŸbþÝ„&ìeÂOÕ–—¨þz*Þâ6j}Sžù÷3ŸR4×¾p4°ÞWREÿ¹UzûOfs…s…} :w¥æB+~0üØlc] ß({dÌ ?‘Ù^%¤—Òƒ±ãWnK±ûöm É\nwƒ @›´ÒnŒîJȇðú¬Œ¬; @¯Ë¸ñ')y%Â^Q7=Üru4Áäw˜×«ØíqÍjjT%pºÝ´â@¢A¡®»•øQƒ‚Ö);­²Ì·0¢íö¼3¹?R@p¬#dÄ=+Šs0ØEÄ’Íf‘~Þ'qŽoÙÍ·’7cDÀÁYÇgÂ:°£aAã‹çü1Õà Ă4Hhò.Yv‘Íš5œÊ4IØÔâ ( ‹´# rÕrÕŠ8äZÄ`° Hsµ„"3K Íډأ×}oزD²þ½ÿJ5D«Ý³p.ïM0È3mÃ1Nƒ–èÜ0ž›0Ut.(á³%'¼Ð~4yÔ†©oú…×2î®#ÔÛ3<ƒw„ÄÂHšÑ!%î&ɃTxRûŠˆÜcA0ùZå$ë°yéek›ÈÐPmØÜ’¡Ä®nÂ.C˜SÅ­¾O|VÚ¶bó%áëe,Q|˜e¨–¸*c~« p7UQ:fî Bc œÿ°BâDˆcÍrâT8a^îß\ET“)T* %Ó}×Ò íÀ˜!÷b®.½}šb„‘£;Iàݰ²áõI°\ˆ%ÚMŒy%ÉÚ†>uè3U/„ ˆ’âÚ•fz/`è$¡äÐ%²C§?Žâ"ŽÅ¸j3åò î/’Ä‘Â>žäåHÖûèÚµ`ø¸‘>œ&…e½EQ]úB—!3E/Æþ! Iû,´c]Aˆ Ë )™Çþv ‹= K°³ùùH˜ô ƒUBz×tR“QÍî¸éõm<÷«íøð†c ×Y¹»!¤È­Í N^s:‰½üRÐ@.O_ Ö¾ð¶ÊŒƒ ÙõÔ=à]¹'îy”†.ï2è¸éý\éÊ2Ÿëמ†U2ÄóÞñT‚†h…º0eyúBÇЕn{z¤=X9Ò¤; ¥–•U5’šÚ‚wIŒzŸ^;ÀœºÖÛÉâ·Š— ‘TËãQÙ o)1àI’"ù¾ŒÀKRH5 ¹/Ã×Èê~"À\ Sã^ReeQW6à ž®–júJȨѢ²Ðxû:ÁÇÈŒ¨¼`…·€¥N™½š€Š¦¨ì˜–?_'¦ÛŽ®<0cÅ€O—ñDú-v.ê½÷½uùnPa|–´ávÉ„ZÀ) œ"è@pZW •Zñ ­åÇ+~J0aÚ„wH‚zí"–ËÛ½|Ús…ØñÆÝxÛ´\Žj+Cvx½ßí ¬1=ÃîXÀA‘ô¸/¦ûýbËÇ:Œp¹ør Ï9«êò?áÓǹۃTÁfïýpÕ©clÐg:Jz Çš{AI•+le§m’q‡q1í;HÁøÒéÂÔ x]ØÒ§ Ëêdá8‚, È2 `Å4È 5¤ DžåãÅS Ë!œYØœ‡Ô15À\{ú sþ{Žëã¹U6™哹ªÒïJÕ=ô:ºXIþ–†jİŸ2?ž2¯þ³¦‘@ãñ2"GôÓ:õ?Èð endstream endobj 64 0 obj << /Type /Page /Contents 65 0 R /Resources 63 0 R /MediaBox [0 0 612 792] /Parent 52 0 R >> endobj 63 0 obj << /Font << /F8 9 0 R /F69 22 0 R /F14 50 0 R /F47 7 0 R /F11 20 0 R /F7 21 0 R /F10 51 0 R /F1 59 0 R >> /ProcSet [ /PDF /Text ] >> endobj 68 0 obj << /Length 2963 /Filter /FlateDecode >> stream xÚÕÛŽÛÆõÝ_±h „ª½Εôn ’¢~ 6M‚8²Dye벑vã¸ýöžÛCj´VŒ6@$çræÜÏ™3üÛÍ“O¿ˆW­jƒ W7««¶QMˆWÁ7ÊXu³¼ú¡új7»vm¨îgººí¸=ßà[¿ÃþæüCMµ…æ~vmšj‰ã›Ù7ÿô‹Ðf»è¶±ÍUͼŸ]{c«Ãì£@ý…»žòc=¯eÄ0¼鯍¨{h„æ€Î hþó›Ïùe¸íf€Î: æÇ{¦hM» &V ü¿åDk„ÝmÙÏ5ÛTDý¶Ãî÷ èeíkx«e‚~†_]ëX+ï4´j½°&éôÇX­á ‹mÂüÚ­ð S½"ævÜ‹4ts™²D4…°nqOÜ'¼ppÿ²Ö–›‹ðõî ëzÎìàïžGçGæ¸ÖË3ª®{žh‡äVÏÝ©|L­œ×Ã\àÏ)D«bãGðNà¥CF+Ø3øêF“¸„ØoïàÿtIû„EËLDŽà¤‡MÒÛ5+3iÅÒ2 S®HëÌ¿“ °mɨT ¶dUÐIì%Žª¦õW×Ù¬ïN9€BÎÂnˆŽËw{Yײa“M ʘ^~º`Tªñf„Ï-™ ðÉ´lÚäÜÏh&Ý’»3Å2µ«^jëûÁn~¿ßñÐ ²I\óŽ ¨×·Iÿd—JæÀ퇡ûÝš´¶êõzÑT:DkɪŒ.ãÚÚššçlph5¬™óãN, –-D!6 [Ι¤[¤ ó~ªßÏÐLIÕŽÅW t0qä`ÈžM €0Røn&»1ïÃø‚ ~·¿gPh阉pÙÔ“ß]rïê@ Ï/ÉC3=Q`Ma±–u»ŒÇ84þdmÁÝñÀV;ön¸k.¸’aág\us+œ$÷Š6bÛþŽé?Ï|˜¢¤EûÍR„,Th6Õën—L›vý vôŽ„  ü§UDà\^Öà#¶3b©3é 4ß%ïx? /EŽ‚R†]D úy‹!Ž”2VÛ9BxÏ/sôWw,ìùaįÀüʬ-r5°ÖûˆûÞ Eµ°›ìf"û{îëXÓZ;(¾0Bû#iÃ+‘n§=íTë&¦p“B ¬%k}` VKnl÷‡aÚŠ¢çZ`ãs.hžã¬aJ ˃Ð@&µçjì5S­Å®^1'^X;«L ~ØhUk“òžXgîÓ©‘~Š4ký¦ä¯˜•Mz^ÚyuNEe† çi¶l>mç  Äq>ÝÉ+osŒ/ÙÌ6ó*@ÐË7{SŠè˜|Án&ÛÍwÓ>~PÚCT“'ÙšNÁ¼|mTÛ¶cø¶w`KŠ&q”F~å¡àîBÓ:&×¶íöÈë7½ŽïßòüdoÙ.iV2mqÛ·ÉuÁûŠl =Ã_1ZÙêù©BvákU›>KéŠlË,ôgµ#(Y`2gðS†Äœ!ÑE–ôÔPƒB;Ø‚µX­%ECÛK} çÚ¶­ ûÙ·%Ó‹:ìLñ¤°E\…â›0ªâs±G‘¢#ÜëÙ%×5‚Vòd1ód¼`Þ»bîã”u*o8a¹,=7¦èSš>æ(LÈ’„+ûô]‰l©›³5À‰ëUü°^ÕÑçzõí"’yê’´àËzäŸÄ^ÕESÈ•sÜÐõ‚.iv ¹ŒH…`ׂã¿ÛqšŸ«•­ ¹ £Û‘ËkFéyç’/ÒG+à¨ùpðHò›r¶iÆœ-8=8") ñø pão‡Ì+éRh8‰C­rÁŸ‹WÖq@7æl Ú›:L˜~ö´çþc$7Ž|%íC¾ûÇ ÜœUdø7r³%¯6>!¡”6ŸÂ$ LIÝA?秨@èŽ÷“´ Œ$*o$HÛt¬&ŸQÔmPÜà. c¥Ôî1­×çåöë¶30ÖF¤ ‹\ ħ֌+nAÀ¾ÁáµbÞñŒ`{¬ÿ4»Ö¡é7Í `ܯáF»Ž´ DPÌ’ŒÒ.œ8íbn­l«/÷ þq1äÑâ)ØÞ°,{–% Œ™ÈÄ€C ™ø8Î ìT‡ g'¦‹îÐ]ä'QjRhrþRwè/wP“85j«ÌÇõÂÏ5„:e ^“/ïgØ¶ÒÆ1î(y»Æ¥#†ŽŒÇ‚ëDê­(Ëç0秇“¢¤æŠ2PàÕWë#w“§JHt¼íkžÛtj¦ÒÌî=4¶7nL«¥\éÁª ï_Se+ΗËlÙŽ<8MÚ1dfÊqKÂ-ƒ|¿ççë‡9]Ky¼PP˜3ÌN ŠOõô@.ípŸ$¹–ácŸm ©ƒ‰¬ŽÕ—åÊ,“‹ýq€³ •Ǿ„´žÖÍ0W>tÒ¸»Kõ *È`)¯á˜í9.õÁxG¸dÐFÊBÈp% !r¤ÖR¨¬‘P]…*Ü8ãpˆ„æ×CÏ‘›Dg—4o›U a¸é j\MC˜G&NÊT£#éWÜòŠá%¿Ú”.Á^Ç1:Èôe¨ wÒé ž¬ïù…h¢K ÊpXðŸóƒHXuéþE¸èNváeqßìrEmš>!{kÂcZAã÷ý5DÈqéËʃf“âä † HÁpÁ‘ »ßcÏÝÿ"èûgÌrDFuD›ÜÅT’ä åà¾PzdÄw˜|ª›gʸ£ê ,uRçküD‘iˆÈÉmÉ–gV²:–´ž÷ÛzÈX¦‹•fBö‡RÈ2Êû>ؾ)r0£™Ä»&0ÛogÑ%ÄéBdpÂÜ)u€nÇD/Ľ¢Æç…̬âŽí-•Jååš+ñÈÛy:íOnØIÞìC=`$L*LJdG©27,Ѽ°ê¼\üøÕ@¦ÝúG¹µo3~¹è+ƒ0Ãùò‹Ã¸j'@'÷XÎZºÇ gS®F#—T!ÛÞ¡ü‘$q{ˆI—bÅ<Åèf55Ã¥«‹UØ¥¸ 7Éð:>È`OéªûÓÛG¾ø¢¶èGÝ®T†8X«P›©™¥ÔµyômJÆÑ´Íø”ym¬«Š…¯jß ‚,¤9:¥q&#Œ*úpšŸ5žXKõ)<“‡ø¡2̪›_¿Ÿ=³_ó?ÚÏýÆôù’™:7-`:ѺáêÆ×ùÍ ö¸¶ÿà‚I:‡îŸS2E÷ÀÛéŒïÚì¶Í ×Â)çÀ]J·t¯ba—‡a^^L€×ñ½Ìÿšûq÷{ñ‚ÜAhÆDþ`¯åþ?«Hœ”,zo))”Üšj½*\‡í¸C«Òg.Ð$w '›Z3"á/ZVÙ¢å®?S2LÍTõ%†®$¿\¤ïdè1ùTæ¥Oeȧ¥ýÒ—¶Òº?LNƒ» ÊúÀWc¤ 2(àEBÐ(2§> endobj 66 0 obj << /Font << /F8 9 0 R /F69 22 0 R /F11 20 0 R /F13 49 0 R /F7 21 0 R /F10 51 0 R /F1 59 0 R /F14 50 0 R /F12 69 0 R >> /ProcSet [ /PDF /Text ] >> endobj 72 0 obj << /Length 2356 /Filter /FlateDecode >> stream xÚÝËŽãÆñ¾_!l|à8KšÝ|'™`#ìÉ3@x}àJ-¼’8!© øÛ]¯~P¢fd}ñb³UÕõ®Ò?n_}ñuÙ,š¤)u¹¸]/”ª’²ÉeQ%:+·«ÅwÑwW*Rð|:£¡†§„'§‘±¾úþö_‹të,iý æàiáéíºRISÌÃNf*O OO%8k×닯ë€ôXÁ†±ðªfð·w°Ù\ÅYÞDGøÓîxb ãî0Àïˆäµ[ø=\é>a½Ž¶¿o¾¼‘ „ÀgñDÀ5~:@¹Clƒ€Ãó€ð Œ„†nÍ‹- ®¢'þXò9íáª(£¶‡‰mû;í0‹÷š5þÐè?KÃÐ7}‡$ßÃófN$[‘IhGœeX¶ãÁ’ï ´š÷©*ñsËoozÜ OïXLJ…*–I™iÀ*ØÎ$Y&nõQÕ z€›E]?/SIš6öÀçàª$ÏOà N$›ÿÂøØŽrŸî ̇]ïÓUQÁ[ 7pu5YÕÁj/b€U”¡yÞª Lÿ„Ðw ;±ÀXei’,XŸE&góèDnŽLº€"4BÈ2˜&µë³jŽïkÙ'G^_8†ò¿çKy¿f}@Bž;r/ó¨¤OrŒ¸#¯PåÊÉõ¶µ\m$Ç@ÓƒaÌC„¹÷”¯Í’Wñ`Á?zzýF¶’V°æˆ*ž%Jÿ¿DÑçŸù…tldEÿ.äfŸ„ÜÏ/r_R×@«e˜^¼ GŽ7>r¼ –§oÚ‹‚êÂoý~s‰É²ƒVÿįÿÈUFaØà™ÕÑMéÓØ„«€…Ç?¬yí#« µ©zŒ¿=ÚY› Ò–´u>¢sdš±ã?@¦gŒïÉźäȹڲ%äY-;I€TÐÀó$Ç>ïƒäÊðª¸JÑwGyyiEÏcŠœ&÷"k!o/°qfgEqF²T':U6î{Ö‹º¬gr!¶²°ä.ç8ušä—Qf3‚Èê&)!xO r¾Ã„è ‰:.ªÒJéw‘'pe‹û«y|*OTSÛMER‰öqÐ%T¼‘¿+#‘¾ª\ü–¡M¶à“D0• M ¤)ÖìÓžS«ºŠÐv‰Ów Õ§=’¶´ð §žö¸óáévÂß%¯‹¡#@ŠË:)¦¼¥t3«'Èl&Œ·w>xmäw·#?Z©ô†'$–¤¨ŽÖ¨ÊZAv¤²|D‚Ÿ¼Eñ–·tù}»sNZñ’ÇËV“ú!BˆÄïŽâ3Í*X™½ë½ÜP²}‘«µIг¼L£w,Èî#ƒX~˜x<̹&k°YZ‚@ÚÜñ§BöNHTµ"ÞÜ ¦~û'‚´2ÅJ@“§ ʧwR4ŽAœ®ÌrÚåè.Ú1¥Èçë¨+A¾.0 Â÷x Ž-ô}b”Pàú*@½¶ºÝËN~a™²™к™`a=&&ÄAnŒ9l¬fw>y&½¤zm7MÔmNm½ÉËiý^«ôÜ+àÈy-€l2kÊÕ!êËÈKRâÐɹ’EÍHú=q­aݽNOê rϹΣ¡ãÕwꚢ`{VpœQøªÈ¶ó@ö8^[cÚÍUNY™ÔUf¯þíŒÃÌ’´vsߎíüÈ®ÙÕ@ÍIl<«$‰‘Š ­šûÀÖ²ˆ×§‰–÷q.ØèZUäSŸnks±râ= ÐAÌYùi/m;%öô%c&½?Ä!ã,Þ³2u6qÿvèTCm ÈTRK‹YQKòÕW·¯~IXL( endstream endobj 71 0 obj << /Type /Page /Contents 72 0 R /Resources 70 0 R /MediaBox [0 0 612 792] /Parent 73 0 R >> endobj 70 0 obj << /Font << /F69 22 0 R /F8 9 0 R /F11 20 0 R /F60 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 76 0 obj << /Length 2616 /Filter /FlateDecode >> stream xÚÍ]oÜÆñ]¿‚p^xEÅpwù$)œ´ )j ( ÛÉû€äùx²ì<ô·w¾v¹¼£µH“>œÈÝï™ê‡Û«¯_A•™Î‚Ûu ”Žr¥ƒ,Í#mÒà¶ Þ†7+\]ë\…Ûa¥óði6¸€¯8£‹°åéª>ÁÂ=üªýþ~Áé4¬‡î ó§–§N[È®® V¸³y¦Fô=ÒÃÙ#âO¼qƒ^¨ °‡qyú ;‡Í±êàù§Õu¢Êð«"±„Ùž~4ÆíÕOžá$ºÕ¸zûSp­’¨Lxª¨LEMÈH™†ÿ„\ãö2!|Ûêă^T€C/\9AÇiAf!2ÞvÊÈ‘}5*§`åcÌ$̯ ²C|÷"Z5F ¸QáKTÈರE^Dø™÷½d¾š™¨-µ;y‘„¶-ÏUHaãØ#ŽÏU´F™À2Ƈ©å!›MH8 ¶¡Ó’Æÿ†^û“¸‡5?Ú‘qÓœÏ1N¼‹Ó†?£gßÞÂHñüŽÕ¯ÂÏž°ˆO‰3ã2*¶?ÚIÜWÝ¡®B%Ýß±,žûˆw¨öz/¾JÊnxE4]W¸0¶K§ îFvŽ$.Qpa¯Ü7Iñ÷=ÓB—Úõü¬ÅËræD¼äõWsŒ>ŽO€¼mh–#[YïÉÛh‡ì(+ŽSqÒуé:ÂmÓ Y¤SËŸ¸Ðj? JÖs<|YÛ&6á÷ÔHkëÑ9Å€#;ýÐ7ĉïœëHÎä‰ç›÷õ«¬ôR¤‰#¥ØL›XŠâÚf©ˆ(°};ÆàçØ4Žò¸pH£Ëp¢1LÀŠ&C™Ü„o˜³JlˆSÌð%‡*ÖQ¦2K¥_˯%!«l™4Š“ül‘!‘¾Ø_o^Þˆ)`Põƒ[NÆç(€{7a/êÆü¶C;Qå†]Y«"JŠtîËukóµ˜?1Î!‰¡D¥ÎAñ}o“£]h9?ÂØ9.µí±uâÌÃÓ’,´¤ •º@„í¿XtIvÇ€¤ ˜Gv(§d‚± œ¶É,JùvÑ&*uj ó.VF â ‹ÊÜ•E PÐS”” î.MœGI–ÌwÌ\Ì>÷Ì›$#^AÅ’r Õ“aŒÉ£<;3Œ  R;õ›Rì¸úÈÁŽÀî„(1~æ””é8|Í[ýl'@B†HŠe’MkIq¼B(Y¨åœ £ï†%ŸÚxÎ:¼Åá§9n¬ðÃÒñç´’¤¡õµÖ&ËQ†<É4Ô(ï”I\¹… V¿ л“]•å‰ÖÁ™¾¬ápê5É-_¬”N)H“ÄÕK'¤á ­;Á¥ˆÂÉ;BÌïöl²œZÆM—p¥S^il=Feˆ Õ¥—ê6L v@Cv.ï!Ù£Gv‰& Å¥škÿ¥ä–ê3PÝ"éÒK]ÎÌz*F€2T޳ã'œÚ¬=ŠdVáÀ°®Žü‚rW5öà ØM‹6“W­q…BÕ|&jÁGeW7ŒÓ:­?Qå*¤:Ž9€wœÔ=îZo#{ç]ÖÃrí–eóXƒñ²ºÕRMU'I›¥äû5Åâ¨î÷ÂqÆi‘‚Ôîí7¼@®…”¬³l©Þ 8xH†žM›{ Rgp£ÉËÀÀÑ(éKH Cfà?¤ðF¸0Lç Ò«âÀû@¢šAxr‡ÒÑ iÈÊ*· ¸XEy’^–#d#Ùf´Å¼ªfR“ÑsƒÀ¼»öA:1›{[KÁ]õ¼×ezœ-ÔÁ–óÓ™-Õð o×ðŒåPù4¦‹pgAƒ†“#u©xªD„DLßñ£ž6¾xdsä½·‚ìDg=-ì .ëS¨2ÏU*o£*@„à«øÚ™µž ¶pˆšÖÞ­ÉÐ>šþc†_÷"€È¾¤5¯þ‹£þÌÃ?ð£¢RŠWô$ó„‚TeÒ ö8»¿—U±¼|)Ï_ÉzÏ·ÉÝóm¢þ÷É~}ƒ(°†z®)¦«Íï`Šúÿ;<¾zb­÷T~ºÃS~L¬`mäX² íp Uœ'%×8ÊJ¶´'‚Ö8rïÆ)¯JYДµ(§5?pÏöý,ÁyK?šê¼ÞÉVð4O(ÈòÛq‹êLAG ÄÉͤŠ{Oª§ågú¿€Íí3ó†y‚žëQ¦ÂD)„ž`¿)cw0v–7~Sžê žäñÖóño$üÞs5´¤Èï§v'Ò cçåÂÜÜ‘üÃú,o<"¿—ß\&¹'Ž¢óÔèì°tÔ-÷eÉÝüG9Ó;ÏŒOi1™ .]Й(×ÙS#ìŸ[®¸`·zN‘ŽË”’T$æU’´2IUè'‰À•òŽ09Äœ @â^ îHðkÁ‘ʼ¥£$YFòôa“%:“5_Ëk!üS²œy"eÂJ9ÉSõâñ‘]øþüæ<;óÎS”xPD s2søç+É í<%'5Ø"×ïŒÏ !}+Åþê²ÿ´÷›Ç>üw§7"KàºW˜¹öþ<\7s{ó•à&iÎÏÞÍ.Œžö~?²·Ïh×ßz…^8«¦0ÎÃŒ¸EÊ ñ†Øs^ó˜Šìp…D/†Ûš*/¢Fðúä2Â?#§<ΖÈÍ•zmTbkFyAc‘¤sÒ©N¦éÒ ÿ)&ž””„3V(†‘¾ü`cQÏ¥O„žžK¯=e§——ÿk{™ÕqT(Í\½Â/…Ô÷HÕt'‡÷ºå.á)]ÝLª¹ GßôžØOm™=C¶Ê´’RqŽnÞÔÚ ºQ¨ Š-"ù8i["€Z¾` G—ídšçF•íCœ‰AóëjºªÒìFѰàÕݸì:à.¹m,V®@M3X 5©,ì¨qE½`^¥C¦£oÆ­ô1Tî:®*ŸICPZùhå„©jÓ2ÎÍ‘¾%ØÄ©ö;|Iå¹û6âêá/ Í@éÒ¢úu<}~Q¹+¤œf/™l¦nÀµß .ñ› ½øZv?®þr{õñJý8PA‰íö"P¦ˆTª‚º»zû>X3D¦,‚‚ì•e‘.4¼ïƒ›«¿_ý€Ÿøµ Ò¨D¹éóPiÈT”šY+LÇAp±â^˜J! èÖ}®ÍÃQsÝc´çεÉ]ï ^1kÜkx k»9¶ü¡ÇîÁ#¬&á* ç-„B~Xe±ØÕdèw´Þ´ãnCß~› ÂØÍ*-—ܬ îÑne‡' o䯢4-çÃ9ôXuÓ —xM#m }”Q’I/ì…ÀÎyjŸÉ-Š&˜V¬ºàNäÀž8:b­°¬}àEû_%Ç@Ñ×äê¸[ó­n†[» \7åó}'ø³-gðAÀ})Q^FE ‘§Ô#.Š‚ÅT‰uÙsþÍU endstream endobj 75 0 obj << /Type /Page /Contents 76 0 R /Resources 74 0 R /MediaBox [0 0 612 792] /Parent 73 0 R >> endobj 74 0 obj << /Font << /F8 9 0 R /F69 22 0 R /F11 20 0 R /F10 51 0 R /F7 21 0 R /F52 8 0 R /F21 23 0 R /F20 24 0 R >> /ProcSet [ /PDF /Text ] >> endobj 79 0 obj << /Length 2838 /Filter /FlateDecode >> stream xÚÅË’ÛÆñ®¯Ør.`$˜^©Ä®µe\Ž“ònÙ•ŠrÀ’àr’ ®dùoO?gÔJ)Wå°œÁLOOO¿¦§{¿¹}öå«êªNëÂW·««ºLË¢º*ò2µ.¿º]^ý3y˜™ä8›;WP·çnÃÍ¢Ûîa°9ÀÏC?ÝŽ'º·Ûf£m\xì¸]áðÉl™¼GR[[Ñó"zIdؑ󅑗ľö ÌneŽøí–{-["€F_gÆ ‰Äš%ÂVs@_¸ÃãvÜÕo¸Ñ’çîØ+aGUgl ý¾bÕŠ$†ÌÙ¸ú{=K‡LwnH L‡+Œ g«÷‡“»Á&ºx‰Ô“ç…áþ‘Ø´+"kx‘XdQ Ã@zà<ÓRŒã+Ð6ðÝŒµ/¨;ÑÇZ-ÞªâÔ{RCð{Çþj0Gê#*ÑóNáæº-øûþÐ…}ÇžýÃ,Z£^­wÒäA¶Tö©f*9­Ì/‚;SÑ£“÷BòƒàÊÀAe¾Lþ ý9ƒlˆÛ+ÙiÁ³ÿáÆ°‹Æn`꛳È'é5†NSŸKP3`„ý]ˆk 5à,(ǘ‹aÃé#]œ¶—§Ü)‰.­j¹\®…¶&8¨¨}Ôñwèåƒô£²È­ ß Â CÖ¥µÏ_…Ë ƒAþtÊí±®L0ù2û²±œ?±{ qŒ>Ÿ?µ]ñÑíügn÷ÇKÛ™,õ~|ŸÂc]ÏK–´ÉKCs7ôGø^F%¸‡¹=Sœy Ñ‘© 8ª¹Íê<ù»¨‹(üW3C>,èã|‚.#4”X͸uQ¬…üYŠ‹&$gOÖ#p×û0Äqº-/KŒŒ[iSõQEsùK$—¶R6JQK.ˆ‘S» ‚«1Á^Ö[!Ø­,Ñý<Ÿ•`jY“ŠPXÿ?P*Zê'(õcJu§<²Ö¦’Ô½†RJÅ÷y᥋ìN9ŒZIÌh‹³ v®—5¼P _„²À°žÂÃŽ‚cø¤—†cïù[#ÏšC,=&á{¥Ñ‰Ì­1?‚¡ÓBÌB”Ò“ ÞÁ…3ä2Ät²÷ :$†Àê&wd#ä;Œ²(›;Xù˜ƒ° Ïô›Æ‡‘ê EDÈ­„Óq‹1©ÏbVSxväîŠC¶:2@'BP}¯WÓšWôðÖ¥ÎsžGV’‚8o’1%†²·‘=øuN¨xÙàÍ#¿ûé°ÛŒ»‰ØZFÎ[“Ó[œë¯tµNCƒû)jÖÌ¥ð"D°µæ‹™±9%E ËÊòuƘ„*L-:dá^ó:Çvð’€iqU>’Øàˆ·Šé–ze×$"Éù"ãXÏ ºâ)‚_´ŒkÑ…=F©/D`»xöñ¬(âÿfOñÌe‰Ÿô8jð爺ÑÜ:¤nø7\ß¾›l=™ð{ÇÂ0’<Û|àéFƒ¸v)ÆšWÁ_ø,ɱ©h±ßpCê‹(ÉòC²xã-X!ÅWË7rm²ª,GÈ&8ZC¼YBÏÁû’#t[žHÛ» mïQ 4ÔìÄ|äÉèý‰«eëæÈÃì”&½Û›ŠD´ÞŸ‹VßAszòªŽz|ĘÂê‚þÈX/6Η@›Æ±HÎë(E°è‚JºðÀÑ-¿@[È;_¥DêÄcÂg“‡œÔïÜkHt’B®SSUº[*1S]¦®®ÆÇJ‹ÚÍ‚ãdÉ{9R¼w&ê²3 ³kOÜ’Ô‡r«NW¡³Ävì€ñìt3LZxd¾Ö³\Ÿ¶L}iuþÅ 8vV~“ O ð|@Ö(Ä7)Ç4ËËÿ3 PÛúÓQ|;ÅÊʹxŒ¹5ïfŠü¤YSâ4*€¾þ¶ûø|CgQz},GDwsHcòíÝŽ2pp³jj,¤f(½(¹LðŸ“WL/0†‘,£fÚ6ãL[/[qÖб”;d«ä "ŠíÀ›Òm2õ[\ÉpüzXòÔÐv¹2‚}á”zh×# žÄSZ`R[ÁÑ,ÅŸYËü»×ÌÒ‰n» ÂPçkcrÓŽ‰$÷„’j¸lú=¯#‘Ô ÿ_!®±;Ö‰…'Ö(iÂ+>uÎ|ºW L¼¦ü'ðåiæ>fÀÖÌ|¤ –3‹Û˜Ä>h.螘Dð0Ì÷íÄ>àÕaéY¥Ã€äÕ˜Q~  ^ðᎲ£›·Yb ‚¤‘Ã݈Â/Û îÕäàxâÅt=yò¢žj‚ƒèÝS.2èå׳yiŠxûà¨<ÐÒïÈÀp’n ID>i‘ Øs—Êh=Oˆi7f¡V_jàCáÆ²Ðàß3)§ÑÀ:è®ZH’ßbRßãq=1× þ‡Ÿf•K¸Å¡ Ì…PúƨwÜ-µ€—';BÿH~nX½dÛfC%CE+zRñófί[¾#§ÙÊî\Ṫg¯¿Ö§æß“Ÿ+U’ê‚íÈ-[‰œ´ª"¥”£îÛ£Vk°òØí£÷ÕŠ¬r—’ZãÛF؜Š'ÉiÅGP x'5œ Ä¸VÇŽ™F—Z²‰ÖqX×Lr¤Ó2ËÌø&ì.–TÃË´}P}­IñÑà¢YÇT€(ë;í>§f˜KÍðîKÏE$ho®9³‡ÕÁãÌ­;¾`ó_?Y"üeVy ¨µ6ŠýÝ0™áâ¥C틵Âys”®Ý|๥ªàâês)¦ÉÒµôo®o†eŸþb݇PjÝ'úKŸÖ>Õ}^[“MéØS‡xËO×añÝ[Ì×aCðvüž²12Ú?Š—ÁÁ')b>Å$×?‚P“¿¡%ÿ<3‹AŸ†öòJ’×r{ˆÛ„×qÃófÚ³XNMÚǪÛݽ‘<ÐÿgAÓV¯š©„Ó  ·Ž:tWðÓÇ”%ðºm¯Óª’ôž¡<à³ïnŸýw?. endstream endobj 78 0 obj << /Type /Page /Contents 79 0 R /Resources 77 0 R /MediaBox [0 0 612 792] /Parent 73 0 R >> endobj 77 0 obj << /Font << /F8 9 0 R /F52 8 0 R /F61 14 0 R /F47 7 0 R /F69 22 0 R /F11 20 0 R /F60 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 82 0 obj << /Length 3564 /Filter /FlateDecode >> stream xڥˎã6òž¯hä$iG¤¨WÁ"ÁN°Y`“C; Ij[~dl«#Ù™éýú­'IÉrÏaݦÈR±Xï*êÛÕg_~W¤õ².lñ°Ú>c—¥qE^.m–?¬6¿&¿Y“.~_ýëËïªGæ!eÕ–ÉëÂ$/‹G[$íâ1˲ÄòÏæ^`¸‡?èq8À¿ëþ]pÒ&Ý–}ÅVÉÄßñÄ€Hš xD‹²nq¯©M]<<šz™»šÉ4ËÅ£«ëäG|iƒ›÷¼×„® /™ä4ðú3ŸÆHjûR…›¿”.KÒ¯y{FhÂû¬qðBç3É e¾æNx”Ù'ÛßR“!ðZ€¶‚[øIÌh"ŠPã‰nÖ8DBºs„ÎnŠ|ôSÀ²*6å˼[aÓw‹Ê%°ÈVå˜'¶*HN¸ñãÈ+ïù ¶.X<Â$Ñ£nãã¿aøóOïøaÍd é8Ã…ÑnIÎ'†køçÄr'YÊ‘whkÄy¼Â¿ ë#@ºõ•Vö:É"œ ù‚Ö`-0Ç,ë\˜3:.+¶±‰˜N°,[š"Sù-MÈŒÌ(w¥Â¼¿53‹®¢T²"y׬q÷=oLÖb@_öjK-/|8ÐùèŒðLŒ’E<ïŸhwô×"/˜­J a.lU:ÜÔë®~µ<)Ú†ål’‚e´¹Nµ1µlÛðCäml6øЃxtÕÒš±¾ùáG$óç…c},¶y>ª Ãñ÷$Ó6²ïhÌŠÜ“XàŸWe"‘ÑÉ4œ¸‚vllíF¼Õ¼‡;ª“g;‡õrµõi×’bä£s˪¬Ù³ý¿.:㟆äÇc'S} ¶aM7ê‚›‘Û!ôê'ò kG;îš‹êKäf¦NÙ¨àP]Ý áõ-:/|Ø‹Z­‘ {žløç?‹ Æq 8³î¼ŒûfÈ„óxÎ3#s‚}ð¼ýIÕfX„HípU/1&ðÆ¿ÌÆðe>C6L„ Ò%k¢æP|Ý…æ1/M²R„µy»îTÂ0CŒî®/Œä€+k”0¹ÈVÈ8Ï}Ùu¬ùk_4¨U9²Ö_>⡉WÚ6àÇ“³ž!È£E‘­7ÏèÁZ cÈUUu®;âÃÖ‡>dŸs9¸Ü<]‹l† /°Ç£y>¢QÆ‚ÏÖež» ¿ÿBïêÙÖ²*“¨æ",uýDlfàêös<è¼O‘le-â§1#†qlôJ†Þ݉ðH…p%`‰¸"N2f’Gz.¼Ùõ$â^¥p~Bæ\#æŒMÎÃÝ„}v:@k dŽhU"º¡ýCËÈ7wM.²än‡†ür‘´³~ýŠÇÞ´Ô cã´ö*,¼D²@×]™±|‚õožàMkYñ_˜Øˆˆ1M”àæƒ&vÓ»NURr–°Æ®Ðš©Dˆo;^ºèa³HDb°0yOJè¬zYŸàfœ) Í6²™„§íê8Ú·¬›d¼¢¿›˜œ5Y¡AOœÅ-Z$kiÁ[ø| ÖQ›oæ*Žå®~óE¶¬2«xPs¯` Ç[ °ô™!:·+9ê‘ÿ 36A…€vàkU‚gŽöB©÷è4Žõ È¿“z#ìT³ÍIPû*ìÀp½x Ü@èwc£Û„-åäsO›‚Š›Ì­ˆP ~K…Ô·žÌ–,zVþœ‚c;,>Ç-mò+ŒËß¿tgÙ›ñ–3‘X«ôšäó4òlÆ? @Y[9rñ3`ÆÛ€/tìÁ‰Ïá—Ù¤a¾ ‰€†tä•'äè3Ž¢ƒç]œ¿W¹·P’“Nµ>=,AØ=OÄz¢G: yšžö½¶àÕ(Jéj9ã? .^ ×R"Lx…Åç¹Ãã}ÐH¸ÁÜÔfR²f£¤­¯QݲCˆ2”2ÔôüÚ´öÌŠy;dÔ–M4FU=³cë‘ýÛ£¸ îÁ˜@è9®þhÉwɬfó4–¨9 êÏ£W 4³3y–o¡Ù»Ž] ’l׃ÎÅl-âfã±bkGZ ?êŠ[ExâMb%…uKn[ƒd‘ZßdëyR=&Ž©ú8j]ŠìM ûV‚¤cÁÛ×!ž·]¢%~C'kzyí&éAØ{©Ú¢àé=®…*=\E²ýåÈ%j¹æÊ”]n£ˆƒÊ.ãE:)œ<‹ã …§~¸æC¢tƒpŽªôà¿®ë@@Ã…®5g€ÃyšsÎÍΕÂÉ ç|¤‚×~ñàõ¾ô9r ↀÏÓ´™Õmi]>Ö6LÈ}4g”#ÆoH"} ë)5³‹/›\ˆ‡Î»Y6ü³cf(K<IP`ö¼#I•ò¸æÀG:@AeöGèèÒ'‹9G¦óÎkê+/Ó~Ͼ˜¢IúÁÉ5L~/k¶Â*ÊGÞí–síG©Td•h e¹7L'­Kž¨j}&E-Ór6˹4g3†eS¤—¦¹ Î:~#¯Äe<öAû´ˆ”[D‚㙽»­fÓgžðᦠ Ó”Ç)ÌÄ·Ï…É((4|Í4ïæíL¶“Û«‰½^ £Úhµ\—´qÒ7†7£ØÊ;¿¬2øjÅ)vÆ#ÏJ3ÿcÖˆ~Ô ®Rò¾"ÿ 4Û¥PVfÖÍÜ XÜtæ áÑ¥•F0—Ö£ö¬lˆç ? -:µ´e¦rp&½ÀV,OÚð¾„iß­|Çå3ßi´ßÐÜðÏlÔÅ…^ôjúë—`$½¨#n40Ko‚«5Õøj âèÅó75Ì¢®™šs .[W+nËe‹¬‘‹ø—>ôçÀ³ÝU{²7q«PÏ4·ì­úžÕ^FÊEX Ì·Ê-Úõ†"Ùáãàa·5\ùÀ˜,öD¯-—e*3(€MR,`/Z¿ìÁt2£]òp‹sŠ8£ì[ßÏ(oýûm Q-Á¹ðvÿÐH~ØŒ+ÄÌÍÝ083êF(Ž\"ýz^8ú4’(Ø£ÄÙý‘·Ðm¤ùÚOgoôõ $)"jøç¨~ˆà|ÄÊ-Î%NϵÊfbÕGa*S+)Ó{_LäÞR#•{šˆë¿Ú” Zæœõ‰–j©±qmдàÛ!-!áˆêY ½†}Ú†—ƒßF鄼˜žçsR—{Ç\ˆ6'y 3ºR´~ö$÷¼ÆÄØ;‰ßþøžµ#Tª"äúÿ°ý Éʧé": eá¶c|½l¬Y†>§ûÒ/r¾>I`8¾Þª¿+âVªøñµ:Å %Þ]¤ñŠ‚ƒ¦yî.¢J¾çUbÈzÚM쿨:úßJDPYʘmÛôzg2ƒ»‘ÿ£)Ê%¤wc^R«HŒ´ºBn˽‚þBVÕºQRVUÜn«¸jçR_hkYÏ–ÔW°õòlÑÈ¿?ó–ª|äªò.Ë%ùΉÊ(+9¤…öΠÕì“’4$jÍïÚì!*ÎÉØR’ˆm”Ò1hI²ýz’òàÌÛ™}o‘ú<›Æ>á—–tï?\Úü*kßy¨Rþ"$Bº\ÊÞPqŒ5âP¿»ƒv&E:h¿pôÉÂZõªÎ|ÂÅålt“UØ,ù¡c /ï3iqtƒ=ñ±”ëÖfšÕìÄfŒô%ðWƒÊE¦E‰aؾé£X‚®4˜ ¼“¿–ªå … c‰z„µ¶£æâ¿7“î ¢«ÇÕ$<êyc“ÂyÍÔ94Æ)v–fcËjBS2D+q·.4ËGm/|Þøörã¯!`ú]3½ïû T:×y”,剴$&[b`0eJM‹^:'ÞŽšŸß‹ƒ~UA’ìE¯Û8naòÄVBüÏrøÝ•ïÚ—ì¿ÕºIkIßÌ”ç£ú=K1ýf#IÜF-¨ÑÏG6¡sÙ*ŠKø`äÔ¼W/>a]îÔtÚ7ËYÖ8Çä5aˆª¥Ee¦.‹¢5Uþ.›vY6<«93øöŠƒÝj61HêŠ{Q>ögÎýt'ÿJÃdäòq¡ax¹snΣ#Ø/øO5_±û›-`}ñ^(|´4r|D߈ä–ÿèâ¯öpÆ÷L/ZÕOrDÇÙD{‰³c!ÅߺÄÔµEëuüå_³&ÕE©îöêN•8¼”Ëç ûèmTpæŽçãÒœ+RÊéGaÝ‹–Œ™tæ"íNPßVÚö¦Îíí‡Sp0#Æö>ãòÙÚBú0x9dšw£ïl†Èöèb¬§æ ˦vY•9Dõ²ª*ùœªÀµÏÞ­>ûDQè endstream endobj 81 0 obj << /Type /Page /Contents 82 0 R /Resources 80 0 R /MediaBox [0 0 612 792] /Parent 73 0 R >> endobj 80 0 obj << /Font << /F60 15 0 R /F8 9 0 R /F14 50 0 R /F11 20 0 R /F69 22 0 R /F47 7 0 R /F61 14 0 R >> /ProcSet [ /PDF /Text ] >> endobj 85 0 obj << /Length 3859 /Filter /FlateDecode >> stream xÚ…ZYo#Ç~÷¯PòXÊœ›D Åö:>b+Å@`ïCk8¤&âpèÒZþñ©»»ÉQò ±ê«ºŽ¯ªçoŸ}þ~u³¾]—iyó°½I–P.²›²¨nÓ¬¸yØÜü2Knç‹|½žýcžÌÜažV³×ù"K–³6<ÏÓÕ¬Á†„žàOª#ƒg,)Z·çñw?þ„m?Ï ¾óS¸Gø·÷ó¸‘éކ¿Îaéu¾Êgï°« Ö[ÿ¨-Ÿ9ÙE3Çii†~Ëm$ç¼\³áήŸ/àplÂÕeU·ï‘|Ç#_Ú¹žóãÃw7Iz[¥éÍ"I€o¯½ìòYÕÈQZä / Ë,²<™ î$ä=6¤¼#ÝÚÈm¿.‹%Ô~ø0_e³¨%rÊoDfÚàR53†{ö{.Ô}­G§ìé@27²$MÊÙ¯I–w»ÜÓýºL²¦Ž7„÷ Õ#F,?Ô¾An-cFñLÀ :3vº1䀗ùg¾…¢¤ô¸ÂÙ鹆[Y³ClÙ=é”m‰5x‡Í NÖ$](ñH½0!åMeL*Jû“Š+ñ‘f374\@YoUØøêFÕè~Te‡r¸í4§=¹ú÷¹°.K Õøù__ó(‡ þ/‘µ âÞ#Hb —|áK¦†‰ZA Üh§óõ†G78©‚ñýݵ¦–̤¯$»Ø–Êg©®™.W¤tW¿“¤ L0â^a Ì„ 2)Þ¿2ÕK8ùŽ•³WG=P<’À©ZåŽl2´Y¨IZü/!ÈDÀ¶æËt¶Å)_¸¼÷æè™[pù22âØ\÷f¸ñœn²º·]‚"”u+:lly¼MבaÀu™ƒ#Û°)êꎂãŠÄž K º£í‚ÏN‡“³®r™øí.«Ò‰Zs1Òkgä,øbÒü1òÐÄkïÄ;íìpõw\ 'IYD?e„"°‡y_áÓ7¤‹l]z„ÂHqUJ‚¾N=6¼êrC…PŽÍŠG=šÓ[‘E_—vã@R«ùvƒblÜ…B2JCлG¤lM[¹{\™Ú(¾bz4¾˜âŠØ(Òl K5Æ…˜gÅn´µ£äk–‹‘Ë<´6B›¹.ôÚdäö6Ü¿ÑPš«*©PÄ#€sݪÚ£H‹G§PvFü€ž8‚ŽŽ˜M …Ôìûyˆ×5@ £žÜ8¥ú5!‹‘ùHQ ãŸ­*<­ã)~$µm/P$ÒzþUhLÞ®Ùþ›jy!°¹¨ž”ELeZ‚ï ±(f'#Û÷}Éå(øÈ܇Ë]Œ½tS¬šÀØY™¬u–F¹q¯çdI -Ĩ 9ßO™š3A¢?¸+Ü"´>±p¨@÷€OÔ:¢Y½+9"À§Ãé˜çÿû gƒ‘ƒßbÉ¿hk'˜µÆn@-¯Ê7pC¿'Q“0Ê[ì‮¼ˆô qÇ{®\†wE n0–XK–æièýB§«5•6‚Üä†V6¯˜‘ú*¹qØéöãÝ7“Uöèýé2kù&ÜM-î¹(g–I]d—5˜ÿÁj­)´µ¥’ÕlÃÉ&8‰S¶¢R,×>ñç4RF´’g+PÓ†§éúÑOO\#­$ð(s’m~¼Ø™S\¨•ÙÍGÈœvòÜÉÊ»!(×豨4¡Šbn…Þi¶æð3…S8®«ê6´Á.tÖHuÉH"ŒÄî“Ü"6kè׈Çg?…=”©ê'&ÔÛ=ᒌҹ÷û0 ½ù2¼5\t%I:ûJ¿lmxܵ dè,>&…ÚÑ„58ó'-L¦ È&v“$Õ©Y#L. ·$ÇÐzu¦¡åx-g°O ¤ÂµB,"¹UàG±Ì(']0Öíä-T¼ œµyæùÏ #Óá|ÍÐ5“^€ …e÷Á¹8´%ôÝEªí4Ý›‰ŽãËP+ J¼™*g”ù£_»_ÖlÊ@aà29ŸXYÛ!ÉÍ®!f½ã™Áy¡maêoΖŒ!` ûÆ«®)½ÛÐq0;=ÁŒÖ”óÎgÉò£d3*Jna›fï‘}JQ3:݇±@xÅ÷tõr÷Èè$ùxˆÓÀ(sU\9Ø*_åsÞŠ)(3àæ1hVEi½',ADÓQÚ˜2‚ç=·h ¿fèí<‡¹XÀ DE#z4«õÊØ'ÿü}‘ïbY¶¾ÍÒ ˜L,øâ ¦‰žÎŠÛ2_+…BY3L#¯ÙŸÙ:À¡IùFÆ¥¬|VA_Ÿòr%o8ÎìƒÒ{<ÅÖN´Gö“(ËÉ4Ÿ5_3r±“ ÿó[±×£Íš‚_áßn«>듘‹Þ5~€T4¡^žú¿(iÊ™žË”:L4 q}~>|zq[8XË{&‰r(œðwúwþH¶Á¼á;NÓ!ÀûÀs}© ¬O2ð+šy‚CwÄkºÚY(K—³ïy®,©fßЋý É½½'ŠSMRó ‹ã…ôƒ•λjhâ'ûÒä ۮŜKIQ“*Šö’uʉÀϧšØäû! ÁŒuBì<¡fÑ9MæðºÆTô¡?Or¹øB p µ¬ç&äí;w0-®¾˜À6{+ÚññH÷YxÄÍ9GÀnÃtZ@³éÉeR[:Ö;MwÚq 9N~ýFñæ+öhÀ ÙŒBL‘3×ÜAå l\èUb¯F+”*r1·ÞX¯ÂØ‚O Cršœõü+.?ÉÅ”xAë®gC§?ÈN4_\°ñbc~üÂ+÷ŽÆÆ´ä¬qŽ®•.w‚]™4„<ÁïjJº0ö¯)©©ž}:B:, ”Ua®• úWjEŽ­½.i„þ+~6æ´DåóU›6úlCìBÚ÷P»ç²}uð†yEÎf—ô‘ÅÀòÄYÂstá×é“´ŒÞ*°:J¢K²G–_¸[]KZ/Á?ÔèYô‡‹Åâ¸ï•õ£Ý´º¦>$™=8Â' ðÈôÑ R†3mìyü X†(¶—§ž‚Q{=€ÓÜ߸¸zäK1‹xÔ÷mŸ—Çv}Ó…•øíkÔÏþ"•b6 i×Ð%Õî·©jÖ‰`¨8aŸúi,dž [h-zã&¿·e3’Vˆ^{&aqùyUdCÝiÊž?±´.òeÉΘŒ]{P¤²,§`´ºÍï‚(Å_7ÜkXdzí ^Ù‰¨šd>ãW¤SL6Ê+Ý^¤ÅLÇ):YVæ?Âëlÿ8‘Å0n×L#(²‹>ayýAaWz4¥ç¶³½_…‘¦DÇ9H3YØ4ÐÜÁ g§ ¿,³4ˆã*ÃÁgYšÄ>γÒo¿~A´›¦9 0ÔÅ–(²Méë%yß3&¦©J½Ju#‡ȳyÕû»{~ñ‚Œ}ÿL|$ ®”R«H$Ÿ¨‰¥é ;òT¢EÒ©«;r'݆ØA¶Yo¾ŠmÌÓ’w>1°—KÁÏ_´¼öXÎ%y‚`OœÄIÌcæIQ…éÜ}°Lë—¥\ÑcðF¨ß\X¢'ñÙm¡ïO×^¾P™ÐM to.z]+'£}¦èP;:ÂÈ]¶µ²òO÷¬Qðh³¥¸×2vïeuù,+quoÎY_§8CšÇ‘"’ü%Þä7;ºMþÙûÇz*ßHÁ“jåʨ.¢ÃC’møŠ—zlrØGþœÂ4’žøYG·êÄí­@…‚›¶%åÏVfËæj¹øKÈòRqˆ&PÊÄÝHOPëíc§±&DZé2½]UÅ X6øÍä[í û>ûúá³ÿAø  endstream endobj 84 0 obj << /Type /Page /Contents 85 0 R /Resources 83 0 R /MediaBox [0 0 612 792] /Parent 73 0 R >> endobj 83 0 obj << /Font << /F8 9 0 R /F52 8 0 R >> /ProcSet [ /PDF /Text ] >> endobj 88 0 obj << /Length 3133 /Filter /FlateDecode >> stream xÚ•ÙŽÛÈñ}¿bà¼PˆEó&$k8N $È&Àz °ýÐCµ["µ¤d7A¾=uv7uŒ‡’ÝÕuwuUµþpÿË7ÍÝ"^TYuw¿º[Ôq]5wUYÇY^ÞÝ/ïÞEÇYmìlžçy´·ðqÜÀ¿~6ÏêhÉÃÛ‘ŸEôeSÿ}åqBaŽ #š¼ïû‘úÉýp#©ŽèÁßæÁe0¿À× þl<›Eýy%Ô¿€JðJŒàþì;xwH Gk1IÛ¡¸Î-¬b€»÷¹Kîæi/JÑâ7ãsà©LUy,P-²&ú²ª;þF&ú#¾×уˆN)Ïꣾ´øÏt ³%NiU–™M//3ø×Ÿâ’GJ¥ì˜aG¾¬|µð~i³êønÚ£XÁì·h ×ôëmËsWà_ÄKï5:se  Šp›3çÉU–<Öâ‚Ë¥jÝj´KFõ@Ä7E¯¤!”PÔ£¹wY;Š÷ÅÈþ‹7E}—q^Tî&Ïâ´(XšrÂeeôšÔ—§Ñ# ª‹hÏê„%Š·=.Ò…âÊò¸IRÁdJ‹è~¶È…•‘QåªË¨íI~@¤=¢, ™ps£ú›8o„È+T”9¨;u¤ÀŠw颎þ5krö<«zgó[vD^ æ5+¶Ž^÷¸gyz¯‘Víxhë‘ÄX=ím»wžÞ2èŠ&÷žrÀŠj¶l¸2z#â ºUž3ð— £¦¥g™b•V-l§+Žª¾“Õ 12ïÓ¼x`ÏÆMˆNŽž†âÐ(í¹ n<›¡‡¼ÄáªCxØÞ¸{†ÏôyVV´—ÕR—"[$¡p€K_–Ü­Lõ+~†+š„ƒÓ¯´DØ&,2Ô _žGS›µ´QùTå´9O†kªq9F‘fM,TQËÅ`§{wZF<$kÊè@ J@9rTÎ+›p˜"7Åñ™DVØäÏ‘zàInIä7BO"©â¥c ?Zv`ŠÚøÍz#Õ¸Äd÷ý4/W4†œ•¸–Eô•Hv/oÊ$zMèä…Hü+*ooÑ ‰5S9—ÅöHCC½®³#¬j ^N´W±öîÉþ÷ê ä )ïQë +Fpà`æÙÄùž-sbWÂ}.Ä…(Ò“[â´zÁXñ)b„E Ùse(µNkÈIEšYùÓVN˜­òÎÙD’C'ÚT’HfrФši¸c€3AQ¼{Aó>)MÄFŸ­Ø½É 3<®hôt`ü>S<3ž¨S= 3r8\»Õ¬;£}¸]od#âä™Õ…ßPj£Œ¯ÜôL^Q艭¼¬§¢—5Û_¸)9‹(ë] cY‡1ªhpº…ðX¦Uôçz=™–¼Ìô¸Âj8´êð’—ÁÐ7è¥5£¼‰™Î2SXFáÒª®ÔçzUæl€²¢peÕÅ\‘ðòšòîU󛨶D%+R,¿R>/D¬Â›<²H}5WL¼gN©ƒo87MÓy¢€cÖ…zÎܬ'lÏOçWU»µšù±×ƒŒ°™]P™‰Ð'Ž UD«9ÇzI,%„rr&¤GUþîëôäB3¬/‹A͈…Õ{qˆW‘ô+®VS3„`µ_M Þvšè¬)ÆÁÌRS[ÛŠßì¾òŒ+’~ ab‘Paýµ“v\¡S!LPHÐ8EÖrZ=ÃçLlöZ£sÔÇ-˜ÔÑ+„ñ9ÑV Ö¹p_æP á^5Ï;D*w2½ fŒ q^pIˆ­J¶§NCÇŸœGì=2ðŠ#9¬)Pp%|Üô0˜-¢ÿðãŸT<íä`xΆ[X>îb€ÿëϸà~‚à –_¶‚ÆkZX»éN–ðc§Žl97§ÁóZ Dyp®[¸FޝzY>µ¶»¢®)vwÞŒ=‚_4ÍÒb‚&©—D‘Z u_e © [?ZŽŽP…/ îž†HÔÂA–ÉöÄ/±vj¤Tü$Ø3NIñ±óø?áHC±2«¦µ|öþH$ÇßíÜWiˆ%qFÅ5\ìØã¦3ÄtùH §.NMÎ:$6„å8B¡pÆ=ŽH¸µ}A'›j~Me­ÒÝIƒ£Zí‚^ámžVqÖ4¼âGØÜª™ÛBþ4à};r²‘H´Õa›ä(Ïß3¶Ö¯zvce¼[Áä ˆö›±>…ê ã;) žù$‰„à7üø™K¡´êš\\=~ô‚­fši¥QÂÿƒ×¹‡è¥B>ˆSˆ*Þ ‘Ò{7¼r¹’?w­—zy¦ ÍD¤ÿòc¨Ä¶i¯˜TÈŽúèI:"y8›d™8»ý´š+A>­¶} Gw¡¶} ¡v?§¾'¯‰çHu­V €§Fšú‚[ßiõK©#zo ÷•Cõ»¥¨Ð÷êYN™›.žˆs>õNXzlþ4tê ¿i–eàq Ù»Xô$ËÞ±w®KÁŠ¿4nË7—»ú§ëC/ÚiÔœ9ó³ ƒþõ²ëº z ²wÞ?|Ÿ&G!¼ŒÛ©GÚ |K©l½<¤Yfq–`¤Ïã$o´9ÍŽi>¾/˜‘*®üp ×~¸ †NËŸ<þ[>iý@p¶Ë‚Ü-pˆ†iRÔ¤8+ˆ7«e,#RD=ogJщ°áœ†¯lÅŸÎÈ$/“Êe¬ñ¤Ò€TêIe¢Ž@U‹BW”ÊÁ7”™¹Æ Ž•ÌàÅX~6–]KiíÅÀÜñuœ×r/ðV 1ªW’ d„wßÚOÒ‹t2ñ×n ÷>’ìVrƒƒnÿO7ñ-IáÊdÚ‰€Ïi; I}¡j•“A ÞæEo1’Lª~Gpª-’™ñç7[GÜürå4Ã(gçÎS>‘>Ëäßå‚_¿jǃwl¢i£æ“•/JvÖ·ÙøÖ‘ß}«Ë Æ1.Ós“ È:̵GëP”g¼’"W¾E×ú)ŸT †Î³>ö·/L1Io(…n$í…Z¿XGw+0=u-~s¿‰RÚ“IÌWœ$ÍM}–4#ž­Ëiè{É•¬+éÚ°ÿ€¾¸>𹖕ÑkÕ>ã>†‰é–~‘˜ÐM7ë¹Yr­¯¡éàAmG– ZNE1aû8žêµìÜ5_ÏK»FZaó7h¿ŸÔž2Kß^ê.ÛIƒi}Ëçè[>Òà¡sû7š ê¤ó¦¢ýU¾iëéÄï ÞëÔí2K¾(så0ä‰úñÂdÏä’,·êÄf ¦TÄ|êúÚË ~±á2ÔL¥øÝL›˜¾zŒ/ Ùê¬×XåÚ‹z Ûàžžëés3æ^ítþ³–Ñ·y¹¦ÇöôÚž‰™I‹äàâB·¾*>]𻋄œ“ú€0ÚR"Åu¹ú±fÙR4ýbádÄ‹u¼O¤ýÚHI®?3)²ò¢©÷3Á=ý¼ÎRÀînsÊ(x5á%PÃa<»à)]WßÉ~9M[.îv¦Œ^ýíï8üYš¦ØìRTük ëiwB{*¬¶eÈ @QY6u‚½Ló â_iÔ(/ÝÃÀ]$÷¡Âæ(5“ä£$»®¯…¸uº'œ±t”õ&Na=¿â_À8^LˆÎÊ%$¼Ö-òÈß{ÿë"=Jðê®I&± ¯òÈqÉšdÅKƒßÞˆEK_g F(؇ Xİ¢Hvìñ©EÍ«¾„$·îÚm²Â¾t4/,+iM½`é ˜–ò¹/t,­ûA{bx0‰îd5I؉¦eÜÊ©éƒÊO3Jâ¾CXÄNOXL9Ÿ³¹þ¬çè@d:¸R*£ý^gÍÁ]ëžÈŽrΆvaÛ¿eÌ|ao4Ó’xY×¼6[q£M©”2ÛþtÿÃÿ4œT endstream endobj 87 0 obj << /Type /Page /Contents 88 0 R /Resources 86 0 R /MediaBox [0 0 612 792] /Parent 73 0 R >> endobj 86 0 obj << /Font << /F8 9 0 R /F47 7 0 R /F69 22 0 R >> /ProcSet [ /PDF /Text ] >> endobj 91 0 obj << /Length 2100 /Filter /FlateDecode >> stream xÚÍXYE~ϯ°àeVàÉÜ"HK !”!DxèµÇk{ŒÇÎî"Äo§ÎîžÙÙ@yðNOwUu_Õìç³'O_T“:¬‹¤˜Ì–“8‚užNм “4ŸÌ“Ÿ‚4¼˜fuÌÖqÐÀ:)‚.ª40[ØXðF{äg[sx±”'\v'|Ƀ%“崻Ю—[^ÏaÙ^L“2hÞDq¯<Þ_À2} tYlhX ?v̶Àë¶îjÔÙœ„9ß:Þ]â•¢½Y5`l™dÁ y7ŽŠ—?Ͼ™ÄIX&ÉdÇà*q‘Ùã5ÛvÕž™%©#º¾å%¸+³îJªÚz…‰+kò‰«ñ¹ø¶Ì‘ÉûÖ’[’ºb=Ì·qÂMw/»ü!¥N"rN*áïŽyÐÕ¿Âo/ò‚•nÀý°ZÕ1tÃõËW˜³œ4µ^ªÃ¢ŽÙKÙ ‘Ò*GbôŽÑÀìiwünð‘œPqpƒyРv«5éÔ°ÁHº³¹³ÀÝ-ø$­ÓàÜ©WL77»Ÿ"…D¯žy¯H·³¸H‚…L÷DjÈ6D©p8¨fŽ7¬™Ž²ßßâ]̓ùtfA~¶2˜÷JàH¹Æ'§ŸÕ!µø¤ºç ÞÕd"·¹6 Üê^¬®( Pys² Ê>ouK²…q=á)pçg *GÕNú·l3æÊØÐ­ nvÈrE‰Fù;o¸Ð¢¾O´äã2h¯0¤? Õ„n÷h>’t¢ýy!G”dØ¢.ƒ7QÁÛ%^ÙµÈP×Rb¤ê\dH“§/ŠØɪãÔ#µvì˜< VxÓÞ°³³4gPIL!ôâéLáË9JYšI”`C‚$ 3@å¸ ‹ªÐAûØÙrÙµ^ÐA!4Ñpi¦QVeÑ÷. Ø ¢”iš¦˜?íALØz~F‚D1i:S¡'tT'WbYó4ä —Ìÿ#µ‹ SJÛk®ºxÞîµZFáÅ< EyÏ)ª·|6è,Ž n¼çpæp"D^\’,,ʪoÈ›$ŽîGV?±ñ¨ØN4W[Õ0o»¢(h¡®w¼ßq œ ¡ø~®¢Äœ]C…äŠÉÚGVcæLYËiœ‡eTüms¾GGM߱ᖼÀì9  ðac t^ܾ} ëÙŒó&+Â*Éûîþš‘ÈÇÕReË€,`·À䎅ðÁ¬+xÖ ‹Œ^h·!ËFë]ÛÜ®°Ÿp‚³Q:ãào#Þq‡sW¾x I˜Íš¹Ú—ci -ß5ÔÞBú®ã³v9£Ô˜ÌÜwjeFà–K·Ñük‘™@Ç ZlêÅέ£ÛãN?ØS‹Òõþ‡@(áüÓòK.AT¥«R[°"Yƒ£\¥®©µß Á–¡ vp¨úÈØ9â"ƒi²@¡Y&caVVÁK´õZgʰµ-/Åâ±ÍuÓò Ô‘7¸=f™ËK²ü~û¶œ;h#œk·Þs+÷T}Ï^X1³f,ʱݎ£è8”»Ò:ØWvÌsvVm¸+Ò62«fQéb$Ö¦:åu,ç¹Vo@Àî¯ýжÎìÜË+~Ì[ÜÛ™ýBú% ö_5â¡F¯nXAؽi(8N÷oÄ:=J{8ñ–R|Hº±äâ¤\1ÀݠôžµoI8ÓGE¿½ë¸›¦cmÌÿàtI³ñ:‚- ¡úà¡z®ö…Ú?`™„»Y^²ŸA5')¤OèW!•ô—Ž`Œ†¬¹·m§Wë5~>:aùà¶~Ø.åù'*òËAöÙHf“Š#AóPâÒkÄ1oŠ#‰£h Gøžµ³âµWoÝöR¶Õe;7z£À…¼íýª%þÁNˆnßR œk x_ÿÐÊä=±WB(:}ôØŸ¾wQÚî×ÑIžrqßi6ÑßÝKòã{¡6Ò¤CíœEû¾˜¢'¦úüŒ˜r×GŒ~Õ ”ƒÏ—”…> úoŒOÆ x$zK9:Š6Šþ†•}Æÿ·’½Àúzü­èÅQ˜e“i’†u,Còž –D”°¬à‡ÏÌݹ÷¢r%*Ä/yÙˆý²“H¬ øÕ¤KZ„y–Š2ý`4}±›AÓhÄÍÎoê°G Ó8Kƒß˜á; œ0|¿ßá÷›<­ßð󢆼ꥎž,o ËH:K$ÞÌÄr@Ž8/Ýy-û5ŠÅQVöø39‹(*öŠØ‘ˆŽdŸU@’"Œ£¤ùäÚâé£ [9¹égŒS›^Ï"òðy_µÄûIT縖#ÂR x4TñÁ<çE/GŸ{ƒÄÜC­LÝo\îë’Z"-~”ÁÞ«e?Ž‘sÖC üJ„ü*…jìë©À"W*¸J÷Ð!¨“ßF*};nG-¿äqµ^Фk‘¢óÿZnky\E~¿âQ‘¶µghÿ=R/d±ø’CBDZƒÊ%£™~YrX$±]4¦¼²S >àózD±ä‹ŠË1群_cc‰º­4û£—˜×½Xâ%àcÈX“¶Ä_˜N˜é³GcÿOËÍÈ<<8$—Þ£ßZݽÆ÷…xñ­þ·®D2“mWSxiÿ³ÿÜ#ͳEâ èW0ºÃàÛJ.õ´ý—gÂäûÚÏ,†³¨ÎÅdáY±è÷j-nØ &·»^rkýÔ=9ÜØ>#UëÁΫ$¬³н«ªb#bNž|9{ò'|H–¡ endstream endobj 90 0 obj << /Type /Page /Contents 91 0 R /Resources 89 0 R /MediaBox [0 0 612 792] /Parent 92 0 R >> endobj 89 0 obj << /Font << /F8 9 0 R /F61 14 0 R /F60 15 0 R /F69 22 0 R >> /ProcSet [ /PDF /Text ] >> endobj 95 0 obj << /Length 1161 /Filter /FlateDecode >> stream xÚíXKoÜ6¾ûW,ÐÖHVI‰’‚$@ëÔ‡"(‚f‹Ú6ûˆ±½Ž×vúÛK ?’C‰ÚÍ:}\zH"9Ão†ó¢¾Ÿ=:ÕͨÉ-õhº‰BeU£Gº(3Y¦‹Ñoãóc1Þzc¨}_z{<‘ySŽOÌûƶ†ÞOJ©ÆÏÍëʾ¾4¯×†~ÏËÜ<žúlˆ3~¶Óâøé£‰Ô™Èåh"DÖ”¥…ð“Yñ‹¡D$wb^…¡¤éÙJÈcÞ / ɘ·IC…’øtb3š²âÍ‘•> ,ØÚMœtB³Å¢Á¡´{4†r3WVá;£11.éÛò‰C1¨¬„g–å›vŽ J–öó"¯†Võ³£Nz—%•i'É®‹*,€Bw#;sÆ šCÆa–`@H¼ê¸ß2jxGsÍóm¶ÔÌ +fÉ®÷Ýo¾à°×ÆÃœÓ¾Îë®\ÄØ£°2üm"º¥svEáU4êt´ÌÌ}7jwþ•ÚGéñÐÚçÁ^q­k»BK£+\ °ÚÞ5£Œë2]iûÔ¨ ŸÙ‰Ï‰TL¬ SÝLׂ{à¿÷^ÔmqZèX Å¡ÐBùZÔ×B>'Rv.ük¡ÓZTL‹*ÖBî9‹Ò¤y¬…`¸þÏ¢fZÔ±›¬®ñgT’×ý0=ú ìPp endstream endobj 94 0 obj << /Type /Page /Contents 95 0 R /Resources 93 0 R /MediaBox [0 0 612 792] /Parent 92 0 R >> endobj 93 0 obj << /Font << /F69 22 0 R /F8 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 98 0 obj << /Length 2243 /Filter /FlateDecode >> stream xÚÝY[ÛÆ~÷¯œ>P€Äpxgp§@…« ޏWËFeRò®Ñ´¿½sÎùæBJ»Ø¤ Päàp.ç~›Ã?­^|ùm^ͪ°Êã|¶º)U„y•Îò¬ã$›­6³÷Áj®‚F?½~öúæË,N‚Z7x~óô€Ïú9c|ÐÏI?­~èØÏg9òc”Eúë;zÆA'x•v2Üáüxú šXýe硊âÙ2NÂJ Õ;>¦‚-päŸæK¥Eðµßan`Zü7Lÿ:@Úkýü¬ÿàÏ>KCRa•ApÕ;¾×Ïwü0Ü¥*ý”xr~„h|Öˆñ$_;˜ ÌDCLGn‰©ù2ŽªŒçC¬g%cƒ[K.-÷k§à¤ø ’‡<ÖžºH±/‹ ´7S[¥‹Ð[gJü7àû“g.`ldË Ó7Ø0Ö,Œ'âÿ´?ȱ=>½ÒÑ?ÊR)"ëˆm|©GíßaÙ=ÈôÌ÷ìú@rÊ ­±ånd>—Ôÿ®¼Žmð·öºü¿÷º¤7lÓ£³2õT–b|°!/ øhÞ_¹#!Ž=ÿ%1 ŽŠx©²Â}ûN^¹ ðl¾ü¶ôòÁRé±.cM–‚Cÿ`ŸtÒ‰É/“¤êÍ?`~ÙÉ^Œ0.Ì:™Z×cï¶‘CÁø»wó’ü[”£ÝÄ@ãvwGö½û, À…œ¬â<¾…Õ61yÓÉöÌ^ª‰,-‘–B ãùS&#]ÑRM)ôÔºˆµ7éáÆÙ_l¯³²8Ø×‰ßû‡_ !Ë¬Šƒ7çL#ûK˜å "‘¨TßÚÒÉV‚¾>•R½p0>²1™*-‘iv{Ç.`øÕGÆt¯ÃÄ}k¯B¼õ†¨óf¸4¢ YÛsJ¶»‘Áù€%ªvèªÄ'93&{“>ÏÆ>…ÙZãí‹ Ÿu¿åºvE<œÖÒ8µ©Ø&©Ö*È"ÔnP¨"X sq@&’n>ž½+ö7æ‚F¿kyq”¹3ävNì(ʤtL {ó>¬@[ÓPiM¢?2üÚÖ:&@ÒQ Ý}´]ÉKƒ»53Böá4Iƒ¡f-ï|ðIfÊSs©®öH’ZG+®ç4^>]ùJÇÍ…œY5ZàíRÆ×'{íçýµ¼¤î2Wï%­MSל›5xÖ`Úƒq„L¸ ”œgVÌ“$õk!èÞH¥…¹HúL&|ê72Õ°ÚŒü¸n%åÛ{¸Íñ;5{îýú l¡qòßí®vÜÀ0=„š4wè@ ×O¨Ñ^9z @¸ÖY¸öC;n?D¶7CDÚãÛ;úã×±CÓ––é/„°¶}%Ùå âÜâÕ;<¿O‹X­­ûbÌoòM|2r}5—"óú'o¢{àn!à;×'z5j&­½V0VõžaÉCíÊN-ï½mcãó¶qü½ÆÌ#ÊûìI³qͳßóÿ%¦¿¿xÂ;¿×Ÿ!¬ó¸1{rCÓôìLHE¯l3²ï¤‘qÞDü7O^JŸAôɳšÃ…º¹Ín˜›ôgON“S ¿BÏ™Û?™ªD…I<鎮¯CþˆèÀþ-”zM™ gËá&§Ç¡š?ý#O™Œo9J_ S5ô¿ÐŽÂ²TFççSô° Ÿð1VÞ£>¼³¸¦õ'™,ШýU\‚ú•.ƒässåÆ æ×Î~ %ò êÁ§rª‚GÒ»g§/Ë &{SõN5˜é¤@Ã7Þß’Öó±O82Ùþ|M ïEÃûEa¤nî{õï}i÷J#-À‰uú<µÐKgÿöübLVÿh„y>A8‘ç[༅ LšĤœl9ô/¯ºmœ…q5B¯]1ÙÈÄ#æcŠ [EU˜Ç%~7û:g£ìûnr O’Ï3EBXñ¯ÿ×k‰ÔI¿esUÖR°§.{UªŒ5ƒZˆq¥~ÃļñÅÛÕ‹ÿR6 endstream endobj 97 0 obj << /Type /Page /Contents 98 0 R /Resources 96 0 R /MediaBox [0 0 612 792] /Parent 92 0 R >> endobj 96 0 obj << /Font << /F69 22 0 R /F8 9 0 R /F11 20 0 R /F7 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 101 0 obj << /Length 1980 /Filter /FlateDecode >> stream xÚÍYYo7~ϯš•k³äÞ@ )’‡¢) ÄIQ8yX¯hK­¤uv-}èo/çà±‡Ž¤}èÍ%93œùæ i½:òüMZLŠ He:9¿š‘iOÒ$ d”LΓ‹éË™˜.¸­t»åþN75›§2Ϧsýêèé–r gs™ŠÂ®A3M>ûtþÓ$œÌ…Š„7{­6ºÝèÖðF•n¥nëÙ<‘ÑôWýY3ɧiÙèk["í«%¸?¤V2¦Ö{”Iò¯xUý•Dw¡’ü½ªŒ×èôüMî¹j.ô·þ„>–©y¾$ŸDI¡u™ËlZ[•J«Ì–”þnÍä—UKK— «Ðé8axÀfu?Ó‚3^/adÄl¯‰nÍcÖ¥­7@¿TŒ›2ûÌYÔ-HÑ‚ó©R¸WŽ2—LlKˆÀ?vFmO½rë¾™mĉhÐgÀC¡?<½K[²`ûZ Y³ûÚ`6#9ým–Ç 6Pûà›NU…t8;ƒ0#ŠkÔ­Zq>aˆ¤µÇå ÞÜØ¸'­òŽ+×´s%ðݯ8èØŒkÊO@“&JÚ,«×;?2·žZîl@q!5?†ŠÙ¬lh–‰¤°(Z)¯Í?ÓŽmôÀ­mj´ |ª@ÚLKŠ"–ëIjË`–ðçÑiÚã&6nôxg]·Žõ’ŒÇoðGÍß+.p:ø$…Þ Ð7ò|óXÒ[ýýáýëb)!†„26Æ[ÀÖºˆ\‡6S@…ˆêµ ‡‡†G1؆i4}µ'¦4ÓmíënIøˆ)jͺ³b=P2ÁxxÁ½)ûK«Ï\TŒm‡õPo겺áÐËQ–ȲâåX¤a¸Äòk`¬w70Êш•ÁaÑII] »^š’P’÷8£‰á‘ ±È™IÕhÕ/€4]_“ú 8TuK.ÈB‰’úÊ0hën‰ÑK<Ö“E{‰I]õ„ÒI±Æ´i±8TÅjD‹·†Tr–éë¦8nÎhx¿$K9ú$û@’p“Öz¼@Û1n"4OÝz„ÌLà©çpü©AXÞ X 呎P³/ïÓÛš‹wK ‚"Š8îús‰gP#ÅTÿ|"¬±ÐWõÖHj8(ÑWjáÖä¦4i‰pÇx7õ†%u•)Gkâß(Ì5æè祎ˆ4OíÙ€4=r*›4” ¸ª!Š©‰ïXÅ£Íe53CÆ•¡„ke¸SY™$Gl°®jà¢/!Ío81`†Gº3é¿3•?íàˆ—ƒ[â ´1'ÖÛŠ™v„á%!µÒÊd¶µ %±W¸·9Õ5cyIE è(¿  Æbú®—vSÅø2Nºåù£ˆâ!lÈÃÐ}:FX"}—ÔýˆÛƒ‘EÖ;¿p ã\÷å%´ é ¡ˆ«þ–5IôáÑÃK QeÏEœËò/¬",¨Þ5ô1êPÍ9…•õ/$ÑI èÁd ÍÖå÷ÚÜ‹ZWX…°âoM÷ßæ~šE$Iä º.W|‹6Óôúsî(j (ºTFÃîÄïx㆟ <}ÅÓ¶ž³_ÏHà‚‡åÌ]R4§ Õ¿©k™è†ßSWb2ÒŠt¯ÑÊÜú¼ƒ%\ Øþ§ÔyTÜœþΩìP¸h@oÁxäaE™Æ3ºçF7D»>^„ÃÀL÷ö XäăžêÑïžýŠBÑøëùЪó#§ÖÂsØõƒk!êb)¦\Ÿœ2ÃØï…Kļÿ·ÖÐnX;F”¾°[Z™×¯´/Mj¹ÿ—QP·/åúqù’å˜k/hjYG¶'üŽh¾À£tÄÏ✠ÊÙ¨Ä0.Æòíƒ)õ^Î=ÒÒŽMö®ÔÆYÊUN˜Úx…dë¢ðxP¥GJ \cÿepå»ò¾»íHÖõË&nóuÕ³›F-ú7Q2?AܵÄ*:¨iœ#èdM±ùÕ ÿÇóÔiʧ»±Yy9¼vK ë3çÔ)œ'8ÀO=÷_¬ÚW ^8¯›€÷ÌkØê{ÝÞÂÚ’uñîZo‹³Ù¨ÅÿåÃ% IjTl ³aÑIó^Éèÿ×ï`Ýóê­­§ÆˆîÇ_Ã1²²÷×½@žË¼ðNCkÑ^Ja)&ÎÂsÀ–qÝxgÌ5»'±gª¹¦öB›bx'ÌbÿN§È„ÖõúnäÚ˜R†`> endobj 99 0 obj << /Font << /F69 22 0 R /F8 9 0 R /F74 37 0 R >> /ProcSet [ /PDF /Text ] >> endobj 104 0 obj << /Length 3501 /Filter /FlateDecode >> stream xÚ•ÙŽãÆñÝ_10˜ƒŒdvó™1& ذýàමuØ’(“ÔîŽòí©³‰³A$6»««««ënþcýÉç_•õC½¬K[>¬·Ƭ–e?”y±´ÕÃzóðSò§G“ŒôûeýÍCú°0fYþ~¿<. ›%)4—ðËá·’g ¿Bž™â°Ù²6ÿ;ø5ð¢5Ê®‘xu”@Çç_UÁ¶ÚÐÄgYYFûõùq‘Ù4™`ξãvÛàNéÅ$ý–;…³«äý£­’žÇú;º£L‡žÁÞ=EÒ ðzÀMŠ4MÆ+´[„Ù ö‘±ÑÂàï ßm2íý¤ï߬áeÍ€ ®»ëÄL´ÃïÄC—G¦ê:Þoí ´Ÿß° `ƒôOz;ıyíÈà[H:¤x:Ðê¸ÇŽ»›3M†6“×!ž‰Ç¶ÈŸAàdƒ~NMÖÑñ<Îo;ÅAYnD€‚G‘èþ;>óÒ‡n3³L¡™2Ù°F>ˆ(O÷"bíÒÖ…7;ÙÍnèñÀ.…×2Ö£Ñ "ì/ÄL¦ŸºÛþŒRÀCÃëQÿ–§—µ [dK`ý ‡Y„P°p fù¸¨l‘¼a~JÆ8qsw =ÂI#÷œúAH…—÷Bãa·gâ¨{"‰uͽ@£øîº{#@=g^›ä=1!@¯ÒŠmwRÐîôt[O©²AItŽG/'$ÿym㣽•Á?V™¨òwqÉýw¹Èà¬HÏØ1‰h5(‡Y™)YY8œH¥Ž¼%š«‹£¬»wÁ;èª×#ï 1nIN ¡³šÍFèšäù. ïĬG=ìhyáÐgi¾¬ªZ¥w´ 0Ú1.—&µ:ĦȪäûÎ/ÍœàãrlÅ쬄í§û‹,K—umb‹ ¸ò5O+¯ûi© ÝïÈ2Vp™{¾Ó`d'Ïà'z)¤£š›ƒH(8³‚¨Â5q¹áã}Q&ºbÈã¡uÁL2nˆÒá ·Q'*h¸Ñ®ædóä+qx$µ(We²ÞËt4S¿vÜV¥4R¶žM;ìmÂâm’ëiÄT¸EУÝbÕÝlâ‡ñ¹¹’^2ñåB¹ñ¸˜C†U¼Q†Γ}ŽFc†C-( ˆÀ[]šùÐëW@»z³¬k™(˜IBÁ郃’™$aW^$2Îxò[~Òù4z¼#3RýMpðÈd«ç)KJø>@Úÿ“¨>‘ül‘'¿"p;©Ý² ³…í• ‰3¬õ6yæ!œÓ¼=J0Ö”¡¥W²”WR/h¼ Ð7… oZÈ8xŠð\ú‰ÛM0,ø$piÎDë&†»¡åUšg82+_W:G43jÚ Z'\Õ°ÍÇΔÑÂ0ùêQ“†íï¾ýòBÈ4ùÙd¹ÈåEA£6¾?#þOÒ8K†Óƒ­ ß¢ Ë øŠK3ˆ; †y/ Å^<ÀIZˆ#S° g¤:6’315¡Ø9W62á 9yž±™r«€(‘Jbc‹•êyUF3b$Á„L†n5‚;Õ‚Ýu~"JËõvò ¿“KrœoÀI[ gSjçü‘!/Uª¼0ù²ÎóXf~¤e—©\‚Mçü¡ È1KÔQ% ®‘ý¢œ(ô(p[Pò;ôKQøP¥Û*3wTlÑiÙÁ™3µª;žÖðãz–¡-ñìÄÓ(Î ÉÕ§ìÿçx%Ç£âŽ22c˜P@ŸO§àÅG töz6#’W ÖKªµbCQYXRÆrxÏï5§»è‘,Ð •u–<ï¢ ­@]Ä\Í$¸{ƒ»÷¤Udþþ·ÙYØš“;[›pQ|íðôñµ ÃJG_e”I ÉÒâ°yátS'!›/»Š`$^")ÀN`Ø”É 4“ž-ncßÈ~Æ8TÆ®ûÄ‚Îñj\s`†s/”U“ˆî:U“‰xBƒ,U½H·³É™ƒ2c]¶&`}õü‡¨ÔVæ·â&A(†u8ß=±ó\Y6…˜%–À™÷‹ <@ð E˜øâ€°n†W~ÃYò%+=_¸MOa'v +ÙŠäi?È™ŸÅ†1ÉY)‘•’Ü µÎ¥·‡Ð®Ó?s#²k¸AÂÕêr%[*xB:‘t4¨æñÈû˜z-9<1q*:8ƒÃxN5ŒŸqj÷‘7{¯Í¯\aFœ¼Å÷Ò‹ âÇŒ¥„Þ¸{8 rϨ~øâ‚5“¼øe›|ÞD!erùêÚb.‡e²Õ2¯äà‹%¥|°c›'o¨”³*’Ëž]9¿>bÒ.N‘eÕL>#ý^Îx‘ÙÂ3ÝF•:5*Î0¥“ÎÉþÎ4«¹4@ò —ãR<…„»2TÁ£_`Ìa’¯„Wƒ•Áʘ&GP.™ ¼„Ê–œ®@pùN²q{—«ÅÅ¡Xpnö?£ƒnà@îy‹Ü‡~ Ç&âö´˜Æ cQ!¬üºý(SǽÓDñ´ çRh”cÀ ¼Û:pmRåCgƒõÑö%ߣøCÉœµø|‘¶ ¥¶ +-k¾íy)ÏÆqN?ÝY–°`=ÎÕ1(Ëp “ÑÆÓ{dæËVYPyÂöEMét;˜Ô±MÜ’Á¥xndÁíGΨ’d]YJö‚©0™PdTQ£M§gHXsyT7Û1(/òANŽóy¶ØJÖ·WéÂl­É¾Tœi{Ô­ÖRV£bªMÙ:Öëûz¡œ³£ÐÝ6TÙ{ a’f”Mȯ—€šó5½Èÿ§ hÌä±{E¯E¯^WÛê^m]åh.™Ž F`†÷’LüH¡½²YÙ}Š]ß²ÔIÎr—×ýÄ=ƒœÅë#è Þ ìôt2Œ‰Eâö‘ç ÓxÏmr6râGu³)Œ³åZ¨¥ü{´ákõ} 2*Ýiy)®¤6*/QÍDÉõ7mT¬©úE εŽÖëÝ•­Ï.ª|‘:j,y_r«Ý}YQik„ÄûŠä«éKK«µ³ž<Å t-|½††ÃŠ ¼žzªZÔMÚoHq6’Ä`‡VšhLJ®®ˆV§‘YÃŽàþ¦»£Yx%k°ÄwQÜÃø‰£…$ž‘=ÍÙm´sy^ºÛ†¼p•˼ð”B»£Läàj¹2Üûùú )¿÷7ZŒìC˜”Òä„ûáZ ýáΨ  +$ú‘ý”8RÝ„4]ÙÚGwg/haÃi7½Íìœ9YÁakÔwVÏ¢Æ~U'ÿìOd†›|}ˆ—¦Î«JºÛcÅÅL|†–^]|²’*jÄùžJ+@¢3-^\)߆Y”ð–,û:••®á-{‰ÿØZPª€Yˆñ§þ–ÄÙÔùN}])êê3S!ÇnB!I¡mxÖŠÈF¦ƒÓ^U+æ>Âüº×°ša£)w—²8vÒH~ïE“p”ë}€4h6<ó­ónÔ‹'ŒŽ¥¸õ7|–Ò´­¸Zj«¸êÝ$ÊØ jç´ð:xPJü :ug"pèæÜ±«##³g݇ßBÚÊ{XÄÖ6Á¡¶Óû­ŒvðÂï.%s¨=™uçªïÜ…6H®–ÊBPL¨B›-§–Ë•/ŸñUvìoø!õÁÎO˜» ÆþŸÓ"uõW-P:ö‚ÖUÐ*– ¾9<¸²­“Ђcw„ñUªîª–Пù¢¶0¼¤ÖÿI”Ö¿¥R4œK™›%Wz]¶í-n–Çu¸¼ 2EÒôS”,ÅɶN¦$3‡#Ùkåww‹«šš³F§î~SM®À´$7DYê0ÈÝóÈ £Ûô\õ&ÏJ=¤œÄ!ßßN“Ú™»Š]¥æ)û<¶u§8oã|¹%Mpù¾”𜯑Ý!¤sÀ&pÕéÍUŽºÛÛÚ¶5ƒÞ×´Gˆ®#°ƒƒõnÃoáÊοõN³nÀûõ'©PSZµ2á÷ ÜÑöR<£Ï:¸bÛk‰eu_/ç@´€(癯º·’N?ó*’ºÂÄ,U¦ËLZªÕX~%ÁljZwÄL‹üïÈ0oY$i.§Ÿ^,ï?ÈÓbiWFoö?ÃëUqu$âd'Ÿ lŽiDþÙ}E(«—©ÿÆ@`ÝÙB"![€M"ó:ŽÜM›l4ö÷A&މӋ/÷žùL&‡°®„Ï—:†¿!BÄ^ô‰&Æ‚Ì@3ÑÄŠ–Tä‹b>mÞ8ﺮÄ>V¾i8ý—ˆðÌE‰ Ud7É¡˜øé?,)¼Î!òwZÆÐö•RH-c ¯ßþ€|X?ñÛ{½dsŸš•ÅÇlÆèqö¼Ì¨5ã‹æË%4þæéâCòÂxC(Ÿa»¥:ïõ¤uæ,®Od™Î$)5áç\&­—EQ©œþë^]fE¦l†¨Ðr¯V “ÙUAUQ“­xîßùKÃúm›(OÎÝÃ/ޏÉù³”ªÜõ{<+$AâöCž\ï +…–¹)oïèi…n–YóZ;)¤K÷ÖÕÆäæKvòÄucMð±!ë,Žþç5>úhó‰Ó7έ0ªÕx> endobj 102 0 obj << /Font << /F69 22 0 R /F8 9 0 R /F61 14 0 R /F47 7 0 R /F11 20 0 R >> /ProcSet [ /PDF /Text ] >> endobj 107 0 obj << /Length 2955 /Filter /FlateDecode >> stream xÚ•YÝÛÆ÷_qè“®ˆñ[l€®Û .Z·¨(‚8<‘')IY¤îì èßÞ™ßÌì.u<} ´ÜÝùØÙùæŸï^}ûC^Þ”«2󛻇›(*Vy™ÞäY±Š“ìæ®¾ùyñýí2‹“Eu-:zzzéá÷ëlM[zè9Ð3Ò“ÒsOÏ79·LÑí/w»Yß,£dU¦…{­Tû‘ž/ô ;ºè0ü åç P2ÔÈ–;¾W„ ¨f«8&ÂѪÌr!üFöYÀZ}­•ƒþI–Î:Ålt[§ïJT¹Öi±xOã =gåSeö Ó£²Þ*V•™Ñ­tËþZf̺^Ð?žñ ‘gù¿ò÷YéTÁEüìi.iÈ@¿üDâgDÝ ‚ü£×ž®Ä×W $ŽJb§òf±|T)¾QTП¼¨.üËËö{z~§'ú= á\¥é”z4BAONÏãÄ_Û%fe¥b極,á^ô³Oúznp2wV.»Û¸@oz¿’ƒ’í‹`c>*‰9.VõÙ !ÉÇéâ Lm{¼À#ˆÝ=_Óf•l"AðO˜­a>ªãQô=‰Ø%ðI{“Ï:Ó¾Ç>þéàGjYÓ㫵VN"²Zuºm %¦#,š눯}ËMÇ<ŒÁ'ð̆묥ñDpînÊy]¨ÍErNÐþú32¹1ENò$ÌŸ'Ú­î°•3ÀÚUd麄½ð)ÊÄ0 #Œ½LÕvT¿FÄLèã`Ôªh@qäÿ§ ÷ŒÃ¯n—9Q; ÓqÖŠŠe»½(NÝ6ŠèyØVqçÊ•üíŽý}ÀY ÝoutÊøKå&v—6¸ÀOÀ®∢³¸F¥B“}§ž=‰%dTg£Ëªp²1©#ÓŠÅ¡@(J+æùz]³ÓF¥¿Sš†ûýÄX›PuvðhbÌ"Wš{Ú 7tƽÌì+†}41*œ‘1qèíë샘JìöB'"‡1#9ïå{gB¦„Ë8]{_ÓŸ‘,ã¤$ÑÅJþ~½„VJJÂ~u[ÙDß‘f¥Q¼xSi´f ˜”gùV!ÕB¤LS=±¤tk商'\#£1Þx‡ÛóO®?zòO{Q/ívZ§žbä3âSˆsòõ¯jxì¢ãóè‹‘‰„5ÑnªZ^`Þym¥¿‹S&¸„A;ÝÝB‰ ÞöN69?¢žL\9¡NIÔ.«EÒÙz99?o…–åSoÉ|L 4£îèâÂç";ø ‰-êÜÄÔ(tâ‘t[}‘ÞN(PáªÏS’RJÇ"‰G ºð6Ÿ¯ï ÄAõ/&Ͷb¡³/\Š•óUa×V²Œ“k¼8j®#„ý#í„Ch“¸v—1Y7¥:‹/$œŠÊ®§ ”ŸË/ §óA›/]%inm¾$^•±ëûs‹/“6¼\´Ô¾`)™y#*öÓ-:Ä·u·hÒÚñ£´rdu®3G«ÍZÛ§ÿáD&›j&¥Il.­$'Bž8hȦ¡¼©x„TjËGëtVçZ9I•*)œÒd˜ÊY†b{ù‡Ûh{ ¾¿)ÐlÅ@4°³5w,!ºÚ4oú€²"„Ö£Ñá$œIVò¯L¡ *3J”CIXÿ 2²]Y`GeÐ}ë,LRvéŒÀ<~™H‘•Z†wñQ«H‘zt«–@²ö€ÖÛ^JÈXª¢³E<žiW9ºÆS™øB5 ç*$‰Û  ãfß´?Ο®ìÌûÀ‹Ð´†ýQÞ,1Rp8–Vuq<Ì¢FžtÂX”§êë:¢ƒmHt¬~¥é¨6å ±ŸØw{íÙcãÄØ1 ãÐÂbç¸Û̉jªI–½ÐÇ’‘É|~3)¤Ð;Yî—¡$“ÿ yÉ:·kdÒ˲Ùn¾Ò©¶H¥-(fÓL‰7œNV¸ÎÒºõœ:IA²(Zü(µ¤y ÿAâ›9 ™}¦ä : !Ö¡Ö£òJè³ðÎH+ëÝ¥xq@çÅÚHí];ÌtI•ä^8‘ûØÇã1ü|jëÌÆN‡­·ƒ¬YzÂtM5 öÆÿ½æã²ze.Õ¤ÅD*]¬ËÅk§ kÕ—@Ö­¼×Þõ#Ö|'é$¶*ßÇ/Šé,rÙ«2‰n–ùz•®Ký¤žòÚ«¿Þ½úZIð endstream endobj 106 0 obj << /Type /Page /Contents 107 0 R /Resources 105 0 R /MediaBox [0 0 612 792] /Parent 92 0 R >> endobj 105 0 obj << /Font << /F69 22 0 R /F8 9 0 R /F47 7 0 R >> /ProcSet [ /PDF /Text ] >> endobj 110 0 obj << /Length 2435 /Filter /FlateDecode >> stream xÚåÛŽÛÆõÝ_¡ E+¡Öxn$‡m7€Ç@Š (’ ÐÂÉWâîÊÖÅw½v¿¾çœ9CÎP£]íÆíK(çv®sn£¯ÏŸ½xí&µ¨K]NÎ/'u%ªÒMÊ¢Ú“óåäÍt5SÓí~°±oágq?kx>Íœ>ŸÍÑÓÝßfŠc×ð´þó",jÞÁÏr7ÓÕônë—\BÏîv‹ý¾£mö¸óŠ–Ã:¿!À~ƒö-î†`V;îþE¾¼¼Åì×ó¿¿x­TD™*¤¦žÌµÚyÊ>ñ<9)E]‡ó¬pÎNæJØ:ÐÿÖOKø$*˜M:Ë”¢PåDú¿H]nä„VU˜òçÌ&ÔöP&ƒs)L5ÂùR! c| ˜‰€Ù °B” 1° Ja•>ZLZ‘…¦ w‚8´QWVsH« iÌÝ1 ¯Z>VÔÖ>Bô:«jeUDÛcå–!MK#jYŽh³¶Ñ†s]hQÂ$”þN:þ—GÆœpdÌÿó‘Q%°ºLÈc(z}—cñÓx9œ+µ¨ë`T•Ÿö-Ìùm°ÑhãÁL[0äÉ‚M£Œü~vÐÄ®†\ù…¥!¯ßþÆönã7ÜÝî}ÝÓ ] úêÙà´ÙüÏ˺óݤýÈÐ.hÜÏÚ½#ä:8[8òHä~Ftéô0N=]~ÿëÖ·íšý4fþ>göô •÷Àa¢C×EtÆyÕÀžôŠ© Q– p°XÇÓkmi=FŠÒVÓ—‡¯ýëÿzå7†ðߎ–6á”ÐK'/•“ÈE~&eظðc&· œÄ€Ø@13ÿ˼ñ.óAš}M‚mˆç; múê„M£áKèh†Q Ë–$º±6=^K‚*œÑsxè•)DeÔɆ£9b8îÛßÇïðÒ÷à醹×­WO±gÉQÊ#!ú7ê$+§O¶r_D:±äsùAú2#[s ”h^RüV¼×¼`èÖ÷¨#xœ@yÃx“z™Ô=c³8Ýæfö Òj~F9‡ñâµ­&^@Ú{B 5!×6•ŽõáS* ™ô?ùhfœ]cÜ-Cî'|Èq'L¨ö™…-¨ê¢µßµ 0o×ãJ8ŽoB´wÍyvCJ×ùá ¸Cža]ã_toÞÖæ\t!{ˆŠè±^ Àw—~fŸíA›wÂ4l×q_œá ´›p-Cžº‘ºM¨Œ‡Ï´h)Åç^ãî VÓ¥¯Ã;s£‹Ý£«è¡‚ÆjÍ5öô…fÚíòÆ—–é+¹W3yì¡rý‚ñb|·>?«*¸sð];` ‰ýA1ÍTNHk&•°;¶dÊC|ÿE~°Ti™D%¢ºr-jW?­™Ö2d¡ãrÓÙ!þs‹%,G@xéÌã(x›- »bLÁ“ïÎ*¡T‘Þ-Ò½‚|~H džvüŒ‚¨Fdüž{ìÚØ¹B½£û;y¾÷éo³rwÙ’]š¯[[>…[Ç„^Vn™ÿ·V¹z> endobj 108 0 obj << /Font << /F8 9 0 R /F11 20 0 R /F10 51 0 R /F14 50 0 R /F12 69 0 R /F13 49 0 R /F1 59 0 R /F69 22 0 R /F74 37 0 R /F47 7 0 R >> /ProcSet [ /PDF /Text ] >> endobj 114 0 obj << /Length 1207 /Filter /FlateDecode >> stream xÚíWKÛ6¾ï¯0r¢ƒHIQƒ´@úºzéú–ä XrlÀ¶Ü•Ýí^òÛ;/ÒòZ»X m¶A{ IŽæMÎ|ôw³‹—o«‰O}aŠÉl1ñeZÕ¤pej¬›ÌšÉ;õqj*u;MlîÕaªU¿‚Ÿí'&ìa½l§f?¿|[ø&Ðûb’±Ž9°u(E®a¤¨ êܰ†¡+.KóÂÝ%Ñr·%Ù$÷VÍÐúŠô75ríPyWϧ¦TK¤WjY÷wa´7ML¡ÚejÔ<—OÝ‚gôpµAµk\!ÇŠ‚ ¤hõ <) uƒÖDtŠÈlÓ‰™-†7ItVBx:õNÒÛ¡éf%É©¯1Ó6'OÛ~Ï›0ÑâºC;7¸q`N«÷™¶í\²Ú3ý†\Š»[&Ö23 œß·rõ|/¬ðlÀo0Ó  kɶÓê'’hzÄÞ¯<ÍRL¡l×ÃJ¸!±ìm+ÖvâG·#ù3Þ6”±ì4U(‰™0Y¥Þk›ÇCSD}V]’ù}ÆÜtÿ6h逦ëcÄ/PȨ›®xm€c´P Õc&p®L(Z÷õFV|É…9dOi”}5çXòhùüH1$h‹ÔåV¤ –þò@ŒWñ~Ä :øò–šÇv i¥ s«ÞÀúÆ÷ÜOlˆ‡¯%Ì.†§SVÎÓáb¢ %[LäH ùŒlFEô‘,HÜä’Á~¡= aK3éÖ¢;}žF¢]©£H!<9‰Þcψ=+öÜ@iN0!/it'JµË„î…nâI‡ç*‚r&¹Œ;š)Ø|D'6‚_F؃Xð»:‡ë$O}eNÙL Öø€ÊÃß0õ&T×’÷Ÿ,pÏ€ŽµB€^>éÌQAÆøLŠ•èT x§šžYæèÈjÛ=Ys÷¢ÏØ×QüÐ}Ç·ÀÐ;!÷R ¸žÓ³¤MX`¶ä6Œj¼º\È;r•ç§'šŸ%¡¥!‚Œæ ã lî`®ÉTáõšYà… ‰‚æ†D¼Ã×l›€Œ5ï){Ö‚¡n›Ú¡,l7ôŒEôJm„Ÿº\8„‰¥¾²%”kùXîd™Ÿ±¾‘ù‹²ù Ùü×Ùýu@&z‹Æèæu³8" Ûs³„QSáax{ £M3°iã ›F°îŽ;õÀÆÐ§Åe7v韬s…u;(ÿìïíhö+èhöÿ¿GsOÛÑìxwê½Û]´T|¨|K.=²£ mºó.lê‘.ÄÊøïä_ÐÑNÿeèÊÀý÷ðoC§1¹d¨õ^ü8»ø&"‡Ç endstream endobj 113 0 obj << /Type /Page /Contents 114 0 R /Resources 112 0 R /MediaBox [0 0 612 792] /Parent 111 0 R >> endobj 112 0 obj << /Font << /F8 9 0 R /F69 22 0 R >> /ProcSet [ /PDF /Text ] >> endobj 117 0 obj << /Length 1208 /Filter /FlateDecode >> stream xÚWÍnãF ¾ç)Œö"‘"j¤‘Tì l94F±@ÓƒlË±ÑØrm+é¾}IG?ŽbK{ˆf†Cò#9$COg7w_’Qê¥:УÙj”Æ^¬“‘Žb/PÑh¶ýåL‹ÓœõØUAâ,Š-¶ÅNŽã Æ+pŠ ~ùÑ‹•åÞq!ùCvÄ/í˜'u^Hâ®sCȌ̒èÏ>¨œ¤è³#“¹Ív¤áņÄÖe•Ah‹ 8þy$P’Ñ·‚C*–†}>v‘µé`F2bIóW&àîÈÚþžý>òG.€—F¡¯ÈžÆ²¬$SŸ¯ès0â(šÌàl„7“õ´|Ü?'³yÊV5uFÞ}Çóž·Ôµ WnžýÈÇÓã~f3<‘?/Ù¶‘YSh‚ÄwžA…» o&OÖptë&˲“„û^騆—Âä‚„Q;V ÁDáÌù9I] PÊø† Äõ+±ØáŒ Ð‚²Ï)aGމ<žã߫ȒÎÿ1«® Þyc7T£º‘ŒEælOœ„\d Â[‹z.€òUÒ )¸ÿóás¢$ÓÖÚ’1ñéφóÝUJ9{Iàlq’·Zä6トñÈÈT·˜Aì%Ah´L(é ‘3§!f€k;eq⩌Ðl]gþ?¦.Ÿƒ«‚ЗtÎ̽-pŽt.•Cïð&•‰œ\à»):ŽyÔˆ.”¥“7‹vÈ^òº8;¨u2HR‹}Çڤ€.)n)_ŽâkíRþ6Ž´©†2;Yבþ/QÈ;¦CGÅKqÅl½‰† M#Šj›ܸð5m÷Ë÷†…#ˆô*WÍ‘û×–Už*LVò½uTÙ´ãä—K›hè§¡›7×iãÑ·¸sqåá»Q œofùÅ]³Ý2ps‰eÖ–ª»‘*’¨¬­%0dè ¢à–,}Ž]r!EöEòã[—^Ý¡—ë,ò´dR^’ªÖ ~˜“¨'w²ß ݤ©$'ÁTAó8¯äï¤}œ¶÷çªÀùEâw& Ò¬.\ŸKO¥ïZ‡QAt€­Wˆb¨Vÿ“3®JkæçÕ¯ÖŽ§ ®(ï9SjÁ:”‡=•7@:•wZ®*÷‡(Ï”Ÿ‡®(‡KÊÓ+ÊûÆÜïª!às£X«>™2<î`þC ð‡„Ÿø=ã ¾ðcoÐH{ {m«–\ö ÕxÄÏZÙôr+»¿Üï;:]77„ú9ž1ÕÎÒC³®:E3Ra†¾YCÚ­TæàJ\9úQ:A2ûŠakfØÈ8°ìœIÁ@æ´Tøwk¸õmÈÔö*#ã•¡(—9je§×úÇó™Q§î óÚ»Œž¥Ìjr]JùÜvùZv×´Ó?ŒŸk¤R`v†t” ÍNˆïRÈßkSe§m=V72úÒq/²ûjcò\ާ֔ö#‘#™ðøºýöèfà§%=¯Ê´–ŠõãÜ?lj›}i·}Hþ5†Ï0†¨K‡tAí\Ôú½¬ý ¶ýÓ’ÀKÕ¦^’$R”11Þ<Ìnþø endstream endobj 116 0 obj << /Type /Page /Contents 117 0 R /Resources 115 0 R /MediaBox [0 0 612 792] /Parent 111 0 R >> endobj 115 0 obj << /Font << /F8 9 0 R /F47 7 0 R /F69 22 0 R >> /ProcSet [ /PDF /Text ] >> endobj 120 0 obj << /Length 1769 /Filter /FlateDecode >> stream xÚÍYoÛ6ø½¿ÂèV@"V)J¶uÖÛs€ehû Ør¢ÁGfÙqóïÇï DqÚ&-öÀˆÇwó»ÌÌ.^¼~gòI.r›ÉÅr"e*L®'&IE¬’ÉÅbò>ø4•AlÇ›i¨S™‘ ÞK¦a«Ç·>^ü9‰&¡”"Ozdg߆ìùó“•vvül‡g”ØÈüÍÇÈÖ 6W°¡ù gŸ9­Íìûh3{&m¹›óï£Íù3h£„21±ùàîY¡½¥5mÿb§!MawÉæs†®íxoÇ‚’Ì å 0 kÄ Ê°™‰M%…b¶Bˆ°ñh~ˆ°Çvl<š;– æ·¼oAå4”‘NûÙ;é,”œ…z77Ü>逓÷é|¾@âH$z ‘ÙW1ƒÔù4IN%Ê‘{a1Üþ²ì¨¤„ÛÓž}CgßBàó§lÍqŸ/ðëw™×S„ÒÎ1à3‘g)ñ¹¸Á°•‘Á¢ØS<¢.1Îq~@p àEMsÃ7Æì°Æip¬1gÙÍ,Øn˜*ä¶íŽæ@³˜è ml—ôÆž$ŽòóPõàs°ÆOŸbZÌ·ëiœW£Õ¦µ“gÁ “kj§¬ƒ,äØÝAHTÔ¢×ÛK† Ö0Î;2Ûå‡HjN•õžð4øöÁý9ÒƒQÖ˜QC{ˆ/`ˆ ªþ*ÏÚý›’曒ݢˬŠ>‚Ë¢Çà!B#- n5kßlÕœžÿ’©—|m+«ažKð˜T¸GãP³mwtqÀ}C`àü‡=Ìup—›/Π®oѧötè0½»@¨][„<ì!F2¡V²‰€/à¶î@O¬~ÅuÉä—ôíÜ(lÈP&Pd¸Õ×,Ѩ—Yz¦½Þ_$*³ òp‹0p•‹8W±¸‚4DbÞÁŸ²)Úqj¯ ¦¯ó˜—µ3̺p¥G‹€òd‹²Ã–ã–Xmj6¡EpasØ>@mÖÁ?¨)€gG渿!‚˜øÀç ëóqAˆèk€ƒëºváç°aü%ÆÔšZ›$™’][CäV¯Uœ[ŸK³Æ^¨(îø¾d—›â4æ¥çÄhtœo6€~©E´T0‘l eÁ¼lªPhƤŸ—Î40|S{t/”£ÜŒ ‚K¤Â¥#Ýú²­Zú“*]B…³»i’ÅŠ/5Ø“WEMVñÝ&¯+Õ/—‰¯étﲤÿ=ÍTPx½tƒÎ|)/è‰ùJ-r­»ÌÿšfHj+ù”‚I°Ì=8ÃY¾5 Æ<Õ“^'†äÆEM§s²‚ìÂNu°ß‡‚>gm¤)v×\oa‡© =W½|…WäeèëcæAGC×p®°"k(mÍ!V¬ýKÒmˆyÁ äƒ}}㮨&¸Æì¼¹dà€a†öBéKβÖßv: ‹à»;YÓúºj®³&AŠVÐ-ÚlEG—Ü|;´åkÍL¶cµª,\IÓQ‚–*Þ+ÚJ:ÒÔ†YUŒ‰ºªÀa‰¨k?ˆ`Û%y)ý$Ÿ(!­‘ûÝe›‡0Q4dvi„Jš’Àñ rôiMúg®UAöc™»U© vÙöEgÒµ)=Š€½‚Ý{bãüöýòH>jr‘H=(~„éq_;îŸkêЄƈÌ4F¹d51"Omý´¹ˆT2QÂH¾é12±HódzP—à JÞe%r„›Yª}n¢ˆ¦˜qœ:RrD -´íFèfFtËNª®›äM¯&/]Môó9×Λ³£UœþÚ\àùêNÄôÜk¾m*œuué©ò†ž>Øójêô¢`Áuì`6 J{×Ã~$*”ŠG£J¦ {Îî<¸Q"LÚtY÷C«g¢k[Z |(©Mö{a®…ŠR+{*’LvwŽTzNdJêw|ÜxîÛéeÓïÎ+øÉdÇ+Z^’™a:†âcþЂ™YËv,ϱ}c‚[.2 xÛ¼'árήÇeÖ,צ ´âŽeÍ$ëobsþU^3ñq3zŠŸzˆ{ІLU&©tFê2n šêÄÁ°o µdõv­L7-²[î˜o¿ä-2úà)qL‹—'ÌÕ“mRÑŠúœJ~ŒP«Ü²0•÷hèycÁo†·M"ý_IÃk¢§ÏŠŸ??¶±ð^: ~ùÑ{9k£Ã9ŠïÌØKÚà5²û, b‘ý…6ãï9çÔâP<»}Íÿ2ø÷Æù/‘Èüï$zvõz¡,¶ /H[ ÝËvp/Þ^¼øæâý+ endstream endobj 119 0 obj << /Type /Page /Contents 120 0 R /Resources 118 0 R /MediaBox [0 0 612 792] /Parent 111 0 R >> endobj 118 0 obj << /Font << /F69 22 0 R /F8 9 0 R /F11 20 0 R /F13 49 0 R /F7 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 123 0 obj << /Length 3441 /Filter /FlateDecode >> stream xÚZ[“ãF~ϯ˜âI†Œ¢nµZR °UKUx`‡*›­ñxc[Æ’³;<ðÛ9×VKÖ8 3’úzú\¿sÚß<|öÅWÞ“ÖEaïžîê2-}uç‹2µyq÷°¹û.ù:]™$_Ýc‹äÝ|<¬¾øËoª»:­½õ81»»7UšW†ç<<ðvuŸ[Ÿ¼ƒ×¯ßá{‘ +[%/ÐpZÝÛ’GÉ[úÿ±éÐ0 Wé¨y£óMÒü°¢©&éyƒ†û6;hzŸ™»Î¸ÿw¸·9¤¹kÖ¸®ý9ö•É#®Úã4Ù¦;ʤh°&îqiŒ3Žkø÷"D7ƒì¤|b.±)/Ë´ª °‹Øô§kFVia íOW÷Îâ ü<à„»û¼ò©3xN¢ãÁÌ[è,“DÄ ” ±[ì¨åj»@œ÷@[¥{ÿóš6cãóÓÒÆOÝ_|2¨@ã‰ØŽ\Þ#ËÜzéqjD[³ÇÜÙ=ñs¤—†œˆ ø„DÝóP>)½¶ÿ†÷ SDa÷Y‘¡:ÃÓÀì³2y³ª\”ÃÖ:1º¬Ó²žñT¬€kmX?5Té½Ði<“½…ï;:¾ŸTÁQb2cÝí…æÃQç;‘ô3àóYæ |Í iHÇa„ÎÈáP»Môí§I·v7[¡`{¦“Ÿ&ƒ L-ÍQ ÄDÒÅv^ „ÚhG¤ö…8™MyHƆdåUÀ²b¶$ÙõDf0@• -Ðô%>òÄTüDF0ÿPÇž%ëœKþÚ! y,ˆÏ…z˜+|îÉãÐt2gž+zsÜ^D˜Í™'á~¤q¤š²ÒÔï¦3(@»Šò†3–UÎê€þBjG¾+õÌZNS}Í½Ï ŸúÂã¡ÑªòZ“]ïCoºÍ[4=›«Œ¯é¶>­M¾»^.O]ú™HXÑÅb:ò`æ×ëUꭻ퇬NrÝÈbcLÉ#¨ærd"š^žüØ«lU Jèa%¡|ÔÔ“À˜NØnÏM†GÙ&¶Ï‹|ôiQº#‹Y‘º ï³lQteåuˆù\ãCžf>›ó± (,’öœEϯ sÍo؃Þj÷¢aß<ÿùš½î‚hvlÁ£‚7\KJ-”vO%cÄq-Pé]šš,dš ÎW—yÅáØº ø˜ºÚ ;vKA»Îò»hЗ¨ŠU’¥K†i}žàÎÿe˜ev3†[ÀùO˜f>7MXsfš¾N4zA籸m&‚½@è!ת l&ø 0`­–|¤.DZ»£i‘váŒ(ϕ߼[ý“b«k¹™Ør—‘ýÍqIir˜•û_¨3, K]V,ìžñؘ!Ld•PÁJ :§• íÂO)S|Ž_Bò™’³°z–Æÿ\ýJù>K™Å¡?μfa^‰y â¾åHlšÍ5š¼5¬iY­QáΤ\ Þ»ã†w8½À{ÅÉ£~¾ð Ûš ÖäñúQ,œßÛòv\+\8Ë3¢cxƒ]LÛÒZtB(·ÉRÉEŸÁAšçDáÃ(èß#g8øa(çÙõ´úyÅŸí†Ç ,#xê˜yÝ@‹PŒ )¸lІsÄ0´ˆ×|9&ŽNr8œExKÖ¢°{µ&´":O#t’ôOûÀ¨!ò6Nr«Gažl²@¬ÌšZÈØà|ç°6¤º™eêŸT”0®[îúÞËïù}Ï{Ë÷Â]S–É{“»›ÂPNüA|€'CÏ{˜œ§\4EY‚ÒüÕ “yä9ÄLJU•“Žd9gicæUÄÓû¿pð„ÐÅïsÓË ÒÇa†Ày‰e-fì¸ÚšÂ|Í|;)Â&–¹l$ÕêD {u§˜Ò• ¨â,ø³ÊPÑâ&P©GG6©aÓe“ìAõ¬ß‰¡\È eû'¢÷ 'á8“²¦¶ïg*«Ï»YƕɚM >².§lU×V›‘u5ï¸0*Þ«{ªyo±C¹jòn’ÕÂXÂâDÛ©Rñ"xˆg†•=O\=åVmä8“”·~Íw ­Ýí0à¬ñäYk@}ðÞ„16q=¤61Ÿš#§«DêÇq~~T§éÓÜ›[Ú "š8mp$>"¤Ùˆgv±+wŸBµkÛ›ýèj:‘xÛxãàÇv¯&ë aÊgìó3À^Û8;G ìaNÃB¨,àç·ëåTlö.»™ÞO<𳆠õ&M8bfÌ9fÜWý'}¥ô­$9¯™ŒÛ„êb+ù]x! 1)ÑȺ²ÅNÝ*YãfÌúƒ¹æv©¤3]eNh°L#ÐÉ8ÐúYœ~+~2Š}„ÆûnZ“1t90Ÿµ„Á^RÆInUñE‹FÐ/:; -8hŒK°’ØÚIN¾ŸecõR¬ v„³à¢õžz¬ƒÎs¯¥Àm+~0f–hmu‘üÜ.RˆÛƒçFSû†q¦È¤°›@(=î)gוHMÏÏKÂçßßñÓâý½-—ÎøÆº¬8ñÐô²hdÁÒ"gCB6ƒí½ò#+9ƒ„'Qš••YŠ‘‡nþqp`ræ‡h(ëp±®Œ*²tùnÇ;uèlµÜ@ áª.óQ®œü-ö•3ôŸ•ú‡cˆŸÒÉ;ù- Ù\^ãX”´Žð— ½¤¯ìyÔí°ú÷ IlŒ Ä7¸rôñðÔw¡”KÝ’—cK½ØÚ6Šªñ yŒOå¾+èE†ÛåÒœØvç]T€9È–Og¾YäÔnÖ” F5$\M…ˆ#¹,à%|ê†hË_–«²×€ö˜a¶bul(b·ÒBˆŽ° n_qÎLYA¡ƒ(C&{iÅuãov"Sâ1AÏÀ’‚$Ì›ÊÅꯉ´;Ð_Å“ßÑÌjMy§®Â2¹³ÝO\ ›§~¼ÿù I­“o㌠éPüÀŸš´á»°²KI¹-RŸûitéOÂß½:ò•'gh£"”œØÍ£%1® hsx‰·<ü4 µ'Oß×à¸i][èž•ÎÜ2r–à>´4ò»*úPÜQ•„±P–qûV3ˆSÏs¦0Ö3Œ…ÓïÐÏØâ/zÈDBÙ~z okÇé&¾ô ŠI•­dèäÆ{¤çÈÌpô0NìÆŸùÑÝd‰ÃîDÞî9¨|ƒ“!3¦g…ó¡*Óˆßf×ñ0й-O¤òØÉÁ}'ɪ ÙîáÕk"*2qih3Ö{½êjã¶IõE AÎZl¦8º‘*L³ßvç(Û~>Œ+?Žå¤îýr‰QœL~°Ùªi´ìÓmf!‹æ|ZhbokìûìÏŸýwÅž endstream endobj 122 0 obj << /Type /Page /Contents 123 0 R /Resources 121 0 R /MediaBox [0 0 612 792] /Parent 111 0 R >> endobj 121 0 obj << /Font << /F47 7 0 R /F8 9 0 R /F11 20 0 R /F60 15 0 R /F14 50 0 R /F10 51 0 R /F61 14 0 R /F69 22 0 R >> /ProcSet [ /PDF /Text ] >> endobj 126 0 obj << /Length 1684 /Filter /FlateDecode >> stream xÚåXKÛ6¾çW¹Tb­H=,!Èaƒ&(zÈÅzhzP$®mÔ– ÉÞMúëËy‰”-A²( ôà9çù ¹ïÖ/î>dѬ‹Lg³õÃL).U2ËÒe¨ãt¶®g¿Ÿ´Šæ¬½û{¬0R³ˆXÖÛ¹ Ì|G*ø¸²ãõ&QPî7mgç;û;Ùßö@t˜÷Ä_¥FRÙ3£écCç¹^%J"ª 6¯aiÀ®–Ä5nxÀ££cÿÔ=‰;9ÆÏó…΄dá)5ëG«í5í½˜s.Ol\Û EÖMÖ' ¥Â"e÷=mÉÒ$Ž_ô4åë EbGëYø:⇉Ìã\çih†B£{RÈFá]PÐÊ~õ·G÷7œ¡@è<>E*9±‰ ÑOœ0n;XÙH Ê=4Æ:ݪYƒÀ½ýÙê"¦ìZÇžv̰§ùgÜ&â›áú±†S>Þ±¢£ŒU8³«H´¾²cÿs qt{9-d¸u+{1´,»©Xƒ,s¤ÙhdSÁFÃ'¦Ù ×&§V•ƒÝΉʃ{Zh0½@¹hI æ H†=»¶¡¥ö¾ìIßÏ­ á܃‘*äÏn¬YKC°ÖpBBŠU7=û%u•c_d™ðRþ*ãòhhžjÇóErÁ’)+PfK3_1ðÎ>à¼8~iakÁ8@ U8Ť AXǃƒRÒ¤Go±–R¢ñ®ɬxÆÇ²ó´¯ÎœÄù’±'("Ví]_IZ»y{´ÀÔI(ÏddM+%rP¥í Jý–´à×lÀ=g6,² ¾bÒ:ÉéŽd1:ÃyLæ0ñqžfœÞFéXÃ&P€º[I"ÕÖc²×pÒ D/ªWÀ‚Té&XGæ@fyN„;ˆ™—zOœƒ(ë¹æ¼ÍžÑl”‡t°ã¡AÛKJœ0eŸ ¥?Ì-FaŽF.j0^­¡!Ã8™€rDTPóöÞsš—~NtÉ“JJ 7좶^• lí˾‘Î/ÙƒV)噥ó"TI.†ý|m¸M”4ÕÂ0 Iäu Ô¥,Þ´ÒŠÄŽ3zz¸§ßû3å¶a&5÷ÌšÚåFZ ¡iÛl¸t€ïÔIßزÒ×)Ì~@ß Ä.U÷«×¼w¬Ü”‰”Óù÷äîWGU’³ÚÐ[zÆž÷,幓ÆçZ”±]¨Ê×±¢à5$@+޹bpâƒà˜Ÿ6²½åáÖÊÍ–sÒ?§äyÕ€Yî$^^gtnÛs÷+w¢Žÿ)J#Qk0Ïùýið€Ü1ÆWt5à ~ï|N–3•„q’ih„Ed#Ö¡9ÌïæÖ&«û8ràîxFÑòhi›þͬ;´ ó(¿xLY0Àm|©±Îå^»»Bí6`N–ìó…/Е܍†FÚˆû Ì\Z&¡Ä¾×cF iXÅX¿WµxŸpw –ïV©TÇ!H˜·ö·´?¨°7S…# öYÞàO²äôLzt¤—,ºäo-®çïKÿ(‡…r (¯²ýXÜŠ=ø…Hb aÜ…D?§\À-â8îÝð¾M/•{ë)ÿȧBx[5¥£0Ïõøw(NßÞ’¶é’=«;ã4̳ÿª;qZb%I?‹‡Ç§Î¼cZé½W•†lïíP¹¡vÃø‡ƒWyE];kd×k"ñí†ò‘wkÇž­&PâŸÞ*J–—)4¿_±Ž¾Ϙ$‚” •†%‹´ƒçsC½a™x½!ÉÂ"Oä¦þÓD÷HC­ aø:ÇÿQ»©³PEúŸDª(L’AæEÄØàÙþ îDöðû† N¹›«¢"Ì’ì[›×š/m;.ÛÅúÝê)2Q GV c±›g-Ôìß,ÔóEÒ³›_9‹ŒgÕ_†øzˆh¨nù”rwD–óŒwe2ì—΋ț‰rnÍ*b ¡ö®jë Í‹ñ/Þ¯_ü 6õ‡u endstream endobj 125 0 obj << /Type /Page /Contents 126 0 R /Resources 124 0 R /MediaBox [0 0 612 792] /Parent 111 0 R >> endobj 124 0 obj << /Font << /F60 15 0 R /F8 9 0 R /F11 20 0 R /F47 7 0 R /F69 22 0 R /F74 37 0 R >> /ProcSet [ /PDF /Text ] >> endobj 129 0 obj << /Length 1354 /Filter /FlateDecode >> stream xÚÝWÝsÜ4ï_qà >æ¬èöl:y(cÊ4…!3 åÁq|ÉÍ\ìã>’–¿­ve¯¯NÓR该Õj÷·_ÒW‹''󬘢Èt6Y,'…6Ë'Yj…6édq5ù5ÚOU´r¾k7êiœj}æÈܸqcë§UtKK¶c†S;âx¿¥#7®úßkâ˜õSW4‚,øÞÿtúÛ⻉œÄÚˆB¡¶R§u£BQ›q-ArI’á{êÆŽèpŠpcIvW݉ZŠ<דX)Q¤„RE\%IÙ=hw0Ts ¸¨[RÿŠ×=ª†Ämï‹/z‹jfýJ¦Ò}$’ OßC¹XÉÄ2åNQÇ<°íÄÛ`”0:`’ #§&LN‰^25(X߸±!Ó«^²ë`B€-g2÷‡£8HŽvÌmÂ>ÉD‘'Î~÷çÈ1H‰Th]†_âF¼üWNPR$IwÄ‘SÔñ £~ð¾½OÞEvð)Yˆ,ÉÞŽã–²sO~*;P?À—NÌ… ?>xÿ.{{×HW®þšÇìMÃH6’Érì3ó88ý¤‚0"G¾CÜlPµ²ÇdŒŠšU¾Get¢ú 6R¤J å|Ò–åïÙþœZ±¨ªYdU¬<…Èût³“^Ã’|{Tú—D žŽ…Ó® vmìñŽ×ïô»]°èÀtãû¥ŠÜïb¡x2ÏyÝID‘$NU+²Ü ª‹ÔÏÆ¹g@ë¨=ì©•£«üä Ãxï¦:Z0îþ[ÁÑ­·ÀY“HKºi œ“‡"ÂjÕ[”_â˜ÓþQãÍæ7åµ÷†˜Æ™3ûÎîà¸KïØcýtT¿æÍ ò |…K—ÓXgQ½ ÞϨ x¤ódðx(aì´×¹ôybãŵÛÑmƒZÀšÞ’Kô¹§M~Ønûíe€ìûí-„íií­OÑ튂¦m8‰N£ùŠŒÞ1!7ýÉß¾8Gâ¶õ'³ä„Ùe»EbG åmmÖþn—'®þ„Dg(a‘yƘÎT 4H§¯¤2;,Vt òÍ@¸SCùÙ7ˆ7 WtUuâ²teŒ?m(<›Önd˜ ­U¯jíK0f–™ä.µ²RKRV%ˆ JhY×ïm:„ì%e$Ïe×]|V·>Ù=ù=­îXÿ¹c…‘÷ªï?²ÚéIT¡"ëè|ŠßdÌÿ˜6?1ö‡µ‰Çbx¤ð7$3¼5Öfš¾@þÌÚØŠèË®(«è˾#aC…£”ÍEjÜS»’®,xÑ!ÄPÁ²ع~ů0”’Òxåç0þNŒ%ë P@d‘FçÌôÎß«ÔJËí^[ÝÝKÀ¤u<»=+íZ«O*•à-¡{xþ zØAÎÞŸOg*ðh#Z‘E¡Õn±ƒ°Ñ„ŽöÒñôœNDg¤¬¥„¶¡uÃö¡†#š|Ýiл¥b—AºE.ˆmßaÓC}Í‘¾!>Òëˆó©_û°æmèTµ¬ºB›P…»g÷Zøß¹ö艾pö¥/”[×tÇJ]n„ÕjX¿‡å9~ÎxÌ_¯Fs ÔæËõs­¦°C/ÅnõcGð4¿j­H“Õ ª 1ñß2°ò¥BY3,gÞøŠã{+DU>|~‡ñó‘7LÅÊ'„H–Yx—ié.ÅŽ>ë(ï!¯‹è颥ÌúÝÜ¢±Ýší6ƒÝGŸçÂæN›Â]´É&£€ïÉÙâÉŸøë›d endstream endobj 128 0 obj << /Type /Page /Contents 129 0 R /Resources 127 0 R /MediaBox [0 0 612 792] /Parent 131 0 R >> endobj 127 0 obj << /Font << /F69 22 0 R /F74 37 0 R /F8 9 0 R /F83 130 0 R >> /ProcSet [ /PDF /Text ] >> endobj 134 0 obj << /Length 617 /Filter /FlateDecode >> stream xÚíVMo1½çWìqCdãñ·9‰Ôœºâ‚8”6A‘ÒšV‚ÏØžM¼ËVl*µêÃ(³Î{ž{ž5ï›ÉÛ…W•çÁZ]5› ¸·ª²Æq©LÕ\U_ê‹)ÔßÑÖhrÊhU«)“B}†k})„­Åôkó©Áƒ ³uÁ6Ãlÿ8Û›áÚYZ‡ƒ¯ _>rÀ:[D‘ÀP”=Eø…¬uõ¢ˆ Ð8E1h ÐÞô¢álS=\Ü#P–å~º‡‹¿žÖu‹§ ‚I¾:ø~Q+*jLA³‘ÍF4YÐñZ%å57®bZq¯l.¬AÀo´©@f¤ª—è.³;G7–~¶E»F‹]ô mwd,Ð}@»A»,à·´¶OÑåÊw{…ÑýDû@„x̲-m¸¥õÚ|_ð²ÅÌNu›~^l·>äÓ}AXé]qÓ½½,rˆ ;ÚpM'xOí!¦Ìy†2$C(DŒkN)3þYJî=>§‘{oÏiä'>=I¨'½<ímü­nÿ/ugb=“AsLa¤ŒžGJ¸p/¨¥ðê´äþké•i)> endobj 132 0 obj << /Font << /F83 130 0 R /F8 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 137 0 obj << /Length 1118 /Filter /FlateDecode >> stream xÚíXKo7¾ûWè¸*º[¾@ÑCZHÑ"ôÒö Øk[€­M%¹H€üøräRòʆ`R ‡ÑJäóÍ|Ü™¡Þ,Î~¸zºèœ™-®gÑwÞ…™³¾SÚÎW³?šó¹l6,>[)ŒO?B‡ÏV‰h•¾ÉÒ%‰I`N°èykd„'ÍKWe¿¿¿ÎĬU²‹Ò’Ÿ ’>Ée’¿š·VéfÁj0¼Lr‡Ã#^Oö ^Ç’±wŒÅò¸Å9Æct´#<ØÐã¹D­”Bèæ—ôãbÞjiÑ—$ŸH@¾¥lñ±¼c7ózœþ›-,‹×­´^Àæ ò{ñ’Ôú½ÈB 7¼½Jë•õ6ùJveÅOdÿÇB17cædÄñÀs]ÅuŽ™Áõ°·ÁqË’u ·RtÑFB¸etŸ:-bL+Éšš°ù©Ùª9Y7à¸Üc›QiÕÃhy’aù-±œß>W±\ÇÆ”7€<²¿Ç1ÊÛ1²œß¢Ž×ÄÿËþ–!†GYþŸéo”iéCgS¾¦¼mG¾w…¨#W¸¬-ëjŸÞWzð¼gsýI•Ñz§±bny|Åzˢ׺ åTUEòvÇNÅÿ=›I*?Ñã+oüuꜼeG„ùtÓ!ÞqÎéÙ–òLÔÚêÉil¾áº&ªêí«L¯«SâYWWühÔƒqÕüXq–EN¨ƒ3›æCÕV‡ÄVeÞTeÝ—ÖäYBuÖÎfdÕ%xš{¹jÂUUI¶…Ÿ'ýp•’—è?Tå‡z ? äÍ}u®LÕæq+ø”á`¹OºíA†Ó¯áƒ™ðAT‰H–Ä3Ž=ÁE88Sn̨Ňüú…“xÇ}°@Ä³ÂøŸÎäÚ9_Zž–׿º&Ê>>xSñÉaU¬ÆNü1ǶŒŸÀñ!þw/ˆMº.Íbº-)·%iºhL²æº¨¹—XÜR¶ÖÂbÖ½]•‚cw\ÖØlhð~H1õX‡ú;,8ü§†“÷÷Z4—Ãz®/ÜeÅ þV8Ú9kôX§.sÖ[ô8•B“H ¦6{v6T³pè \Å’Ý4n Í;·XžäÀXå.,XA½»ï¯hÅv×ìû@P©ÂæàUTAIÚìù0< .»ßôÝÜf]ˆQ$_×>¹jƒ&ÆE=zYÊòÇ»qêú£¹3š‚†ò’å ¾vßmûÏ„³w{Ú5¶™pî*u#¤/´h¹áíÀøÀ ‡ë©ÓÌÑñcI‡í¦Z_è¥ÐvšÏ(ßjŽ_Gu.¹aí îJÖÕ|ÅÌ·@Š•îL”û ¼Î¯)ù?ˆÂ5ËŠa­x¦«Úûyµýø·µ{U‚Áÿöò º²”yœ >='þ ™H˘Ö~£2€ÈÄ)ù"ƒâqÂSnM6uÓ¢ †h Šg狳çYÂ! endstream endobj 136 0 obj << /Type /Page /Contents 137 0 R /Resources 135 0 R /MediaBox [0 0 612 792] /Parent 131 0 R >> endobj 135 0 obj << /Font << /F83 130 0 R /F8 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 140 0 obj << /Length 867 /Filter /FlateDecode >> stream xÚíYMoÛ0 ½÷Wø˜tkQ¢d]74@‡å–Û°Ã>Ú¡ÀÖ ëlÿ~²M%2#ÙNâŲa5¥¨§'êů}¹¹¸ZÕª¨KgŒ.6w…³¥5uaЖ °Ø|*Þ.Þ/åâ³[°Jjµôþ³ÊGIOíÃQ\úxÓÍ‘h»±^¾Û¼.ªBȪtèò @fåÃÒ3µö¨ó (zÆÅÁ‡ÙG•Ãvl¦¢×‰â 55-’*n§ÇDqI…e¢¸XîåvŒÑØDã-¥“Dß#øMÅ(Yi»X-BÛíš[8®šÖáØBž!ü–í¡Áü"jIcdõåUT˱<³—-FÍò’‡q|á‘<ܳÝ3á©–á(gäA%xã†[göŒ/ÎCè/Íö—âA&$æT4Û_ÜÇ8ÂCà«á!•‡™<Íøç€B±{ÌùÈåá@^N;€øL³:.\]ƒý—Îÿíß[ÚßøáM7¼öƲŸ>î}|%Ê>øø²›±òÃ_>||ŒÒ¿ÑgíòBÖ¥uª¿¾ Ì¯hÙæ@ï(î Ö=}þ@g^»‹v«Ö•µ…~ï]Gn·L ´FE}ÙêX_&ÌÂM´&é¼¥³ô…µtMgµõϸˆå·A(cÚ·‡ÖòPK·ÈªákÔM\G62Ln¶Q¥ Ý÷(OÆ©“Ubòt7ùƒÙM>Þ@Ú“ ¤Þ7L=óû¯GýiÏÜ8LòŒc•~é#ÝY™ÆŠzXý7{÷!î…çmÝlf1£‘gi´òlÍ¢ çdÝãü|¢ïb̈Q|"³ªÔžÖ,>'È¥´jšalœUìÀšuÞŸÊ€Ê41ì\åÕª.\é ˜æ¿’P5çíÏ]˲֪¡Zvq½¹ø Ÿƒþ endstream endobj 139 0 obj << /Type /Page /Contents 140 0 R /Resources 138 0 R /MediaBox [0 0 612 792] /Parent 131 0 R >> endobj 138 0 obj << /Font << /F83 130 0 R /F8 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 143 0 obj << /Length 850 /Filter /FlateDecode >> stream xÚÕXKoÔ0¾÷Wä˜PÅõøm q@t¥"VªÔÄaÅ. (´‹D¥þxügà}ds =Xq<ãÏŸg>;³ûzqv13¼2Ä*%ªÅçÊj¢•©”Ô„qY-VÕ‡úªú‡k×֮ݹö û?ÃxË•Ò5mZü$Xé:o+Zµ ˆÑîqæœ5kZ¦ÀÖïÜÛ" €+maŽ­K( ø.&¢,çDJ3‘ÒN<šp(Bi(s)¡°Š (j4Š( èÑ(r€’"-šm_f}•õÝjVp('a›J¨_¸6X¨‘,äd 5 æ83Þ³ÉÌæóǤ–áÅöv<ž;‘„ÌI@‡„}?‘ˆ‰DĉDô›HDA¤mvid·M=6ôÒ9°Ù™œÓ6,KDß~r<æýó’óÆÄ»ï=3[òÓȰ dä̤ó3S©!˜HHL ¤K„¦êGI蜩tžÎç)¾³î<—âÁ1ZÅxÜ8ík¿{eM @)¯ß¸—~®ÿ€õÎ:è*><Äû>RWhÌ1”ËP1uæ_¸ÂWY‡ÐÒts½GÓ7t[ïÿR¶À©µ]­k†ñŒ ǘ¨Ðëk‚ŸD?b¸Xˆ* –¡Ú IàŠ‰IªQ$2ÒèëíY¤§ Ø"ø©Ì—O¸¬g²l2D†l ¢cl°Â‹6‚vŠl%î‚ë°h°²zŒþBlŠúƒ§¢A†q`YæòLÓ,ËÇûŒå6Ãü™iÐø±ôGÈCoeÏ*þP?¦ûoKc1¤E³ÀZô¡ÙÕ•®7ïÛ†ù¬“àøË #µXÑ‚6Dr9>IiÞÈ$)f&©ó&É׫›áEº$yó$]ÌLe‰ULùÃÀ®Vl#xÜê=»\œýLÚ# endstream endobj 142 0 obj << /Type /Page /Contents 143 0 R /Resources 141 0 R /MediaBox [0 0 612 792] /Parent 131 0 R >> endobj 141 0 obj << /Font << /F83 130 0 R /F8 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 146 0 obj << /Length 1252 /Filter /FlateDecode >> stream xÚÅXËnÜ6Ýû+´Ô+¾É -´vÛ .‚d€.Š.¦ñØj{ZÛiœ¿/‡ÒF{ÜzA’ø8çÞëK¾ž|uädå˜7FUóÓŠ·‚)c+£-RWó“ê·ú§¯¯B¹ eÊu(Ðþ+½o”åº6¡ÍBiQ$j…v¬m(nÖh!ë׳FîS†.%v(>¾ßÙL¤þï¿, Ÿý>SµUÃ[æµÏ\n€ûnÖHcl}j®dݤý$x5Þ ,ÌÓûQü Ÿ5Šv•‡¤¾ ¦ŠøÁß’¥9ÆÚ5ünÿ1êvÄãØGl³ßÏ0¿€]8±Ä2É—}[vvšô¯‡}Zb'Aìã`“á>Ì¿cá 0‘%Ø5@YÔ|Z£–ÈÚ‘ážp°à  ·½8È-8¢Q 2oš)eo â–pÐOí5²×$…QM·i’Q·qpÄå¹%±¢—¬€Þ6÷ZÛÙ‘ƒ~ÂýÖïe^¿e°oUŠOq<`w$N x?åö%H„£V÷ÝŽÏ}} Q›&Óëö¤$s[P2¤nI¸pÓ”8±B/¢uJ6PSAo½ý(É•–Ÿ ù™èiJŠˆÜu´2¥–Pr#ãe·Ä~”Ô%Nb½$&”Ó”Ô L™Îs›”øÈxÛ™bò¿x/%=þ‹-|<¾…ÿ§eÅó,+ŸgYõ<Ëî#©W>$àÂäœ ¥Ç´·Èü<­ÚH)S¾}~ gxŸ?¦$]Ø”¥¯>å´\JQŸ®®s#~8_æöâäcnQÿÇâëå*ð±u첼ȯ>—¾çyÍÅY™)ž NòËd±»dƒLŒ-Œb^¸3¹!@®2±hŸBó"Ò åxà"ú%4?á3^ýš_p$Yuhû>¢~YŒÏëÃP"†W¡|“üuÐHË´³U#8óÜAmœomýVˆ3Çlã}(Ø¥%†ïCû2y›¾%ßæŠÎ”g XëgtøP.ð|«ì‰8ß; (F]u©pŸrYˆU“P’Å} ãéH·s¾÷gÂUO;™¨$(‚œÊÁÉÚãüµÓC"í•ÜLi(;d€;.Æ[ɤ‘A ‚9KÔZ¶ìÂ\¬†:¾I“(Á„Óë2Z‡Ôƹ`Ö¬³‹ÂX‘ GŽr~˜ÎDm7Wyã—]ŽÜ`ÜÜMÞ¶l/‘_#«Þœ“£‚ÃŽx‘ë#o<ÅõÊh1¸îêãÎ&è–H@bŽò›+ä ™C=Ñ}ÊhN@ir‰j¶Xºí.ƒòœœç9ßÙ].[©lHø”ÚžÊÒ,3gqñí縳»DSÄDóòÊô¼–ç¦Ð´øP‚Ðêªäž!†Zæ%AÁ3ç W™ø‡óƒú—º endstream endobj 145 0 obj << /Type /Page /Contents 146 0 R /Resources 144 0 R /MediaBox [0 0 612 792] /Parent 131 0 R >> endobj 144 0 obj << /Font << /F83 130 0 R /F8 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 149 0 obj << /Length 829 /Filter /FlateDecode >> stream xÚÕ—]oÓ0†ï÷+r™"9Ävü…Ým0J»@\”­cˆ­ƒmLÛ¿çØ~:]ZµC ¸8ŠŸœŸÇ'ÎÖhã鎕…­œÖM1:-¯+%l¡•©„TÅè¤øXîxyIrB2!90%d¹Cï$7ñöCòrŒ«ŸºÎÆÇáþÓèm!M¥¬.˜à•ã&ú8jñò þ~¸ÑrnÞ[aÆUÖð‚QÈN¹hf›¦¯2ÕIvïMNLh¿¿EÀIgœ½w½–®©FN6ÃhBÄÅÙ£á{’Ýtˤ֦”ôÈ@üX“T$ޤÂ$od˜SÐñº ôj<¯“û|-^ÒÄ’íÓÂ>Ι )¬àÌWë7œ5 =NbƒÀ™TmÀ2jW}†×”äK\ÝÝÀh,Úg ̾Vç³G¯ixOòo$“ƒÄñ³¨î“’øü ?oW„õqÝ •YW›Ô,{FüÚý@` ° yEã€xæB/â%ZÁR´Òƒá\}k·o¼OÛ,ní`ïpnÿ^¢J"«bÂÁ¢b.T™5Üù1k Wåf‹Œ@µ}E`sŒvX" &CB žõ9œ9[èð¨å!$íÉÛì&NSvveg¼–•Ôâ!­ °I\g/óÇ."lÅÝîÛfYŒFvÀ³{ ™@ÿ &Øj§V…4è.“/ sîÐ38¨QƒÄÕaùœké)ô8ôƒè@à#Òg‡‚‹¬Ù¤†•‚ØÌºÞR¢fYðò 'svq£ F“s•Ñ•2KÏ£x‡NÒ÷Ùt¡êÙ8kÒ‘¬þkpØÕá0í¦í‡£ã¼fv)¡Ëòö37ûjYŒÝ v?ˆÈúî$5☳•Öª È\£[Xüá°ØgrÁ\¬ç#:‡Î`:+¾ù[`¤î!€Ñ´=ÑUҥơg§ÂiÆÆ}ç˜JpІûмƒÆêx1;Ö®x´ÎÁvÑ{‚ö‘ZÛ-öAÆÍoN:çû¸qs¼§ø]Iï,ù"®`ÿÁQly6±,CؼjÛ4ãÊð÷ÅKÿfTA§…¿fµ¯"íɆW¶‘1vi¼âÆp´ñ pãµ endstream endobj 148 0 obj << /Type /Page /Contents 149 0 R /Resources 147 0 R /MediaBox [0 0 612 792] /Parent 150 0 R >> endobj 147 0 obj << /Font << /F83 130 0 R /F8 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 153 0 obj << /Length 1883 /Filter /FlateDecode >> stream xÚ¥W[s7~çWøÑîeu_1Τ„@!\&1tàa‰—Ä%^§vÜ6ßsÓ®| —áA^¯Î‘ôéœó}Òþ>¾sï°2ƒªˆÞÛÁøã †"øjà](´qƒñdðv¸©aí¿Ñžñ> ᩬªÑžö*÷ÀVB+ )hšƒf ñMvÝõ«a-ÊœÉn¥ßP{?~2({ª,¢‹ ¦ÙÒ=-@V&,eQO‹ñ‚›€´®èÉsÙL¿˜½«5`ÕíÀô`&feÂH·)eiÏ¡Ä?m0d~á{#fvSÙN£D$Ü’BµÃ^I_!O×mò;AÙ¯€R2Yª­ÛÒ˜Ré» ¬GJw5ºT_èjø ´ ª´TüN3Æ2ºHk¨îÿ6VßÕ?cÍ9à3…ŸÄ©¿3v\S]üs{J$WãL91Ù^íOâ4ßÀé$ž™°…3é†Î4EeLó“~§ý βc*·ø•xj!Nž÷$U\ˆ3Ä¢ z°g4<ƒ}Ö9´Ú´…^Ò;¯xÿ)úŸC›BC´'Ðþ†¶’q Ú(û¾¤wÚèoüÈGóH‰ŸVETé¹ÇÔhÜæ™ñ²*ª[t~·ÍwqØÈ׎õú”ñz©–£Ìc3n•Ò‚¬ûkÿÔXâ)ðU\OÀ‘„ã“lñBÞÏ%1Ø&ŒêXb|%.sî>‘®Ü´ÌþŸÒ;¹~” %+¸ãkh—¼UQ"|ìKIÔ‚èZæä¹q3ºôEÐ^RWõ›9æ½jgŠPÆõPŸÈú+©”S^)Áůyù#ñ;K¯?[ˆú‡ Qvó®t˜¼?Åï*Ëʊ鑦®²…§Y: Ì–dÞtg—¬—’©²ó2ìºda¾`Ðí£ì°*e‡oq…÷õ‡Ï €¡ÃpŸÄá“D¿ÅÎ*i‡Š¡"â#PòŸ7ìQ“¾vâÊÊJ–ùG~®h:ó!yÖ-)æ„§:¥l.eZ.êešë]©0„§uwZ´Ë5hÿöšFÝ“$ï8Ѫ›gÞvø)8^eÑ1•†:­ J'0“ÓpÀÏüó©çC¡*8)”Š“¯À“«Zn. Oæ#‡‡¼x8z¶’`áâMZEYuŸBëö´6/â]aFi×'KK²ö!ü6¨áA:/¡öUi{#;§R˜Þ…B/ì…R†cžR ÑkFIkÅå8Ù¯…:ú±GõbIQÓXúÇçiÁ1Ô+±?ûƒùQ0^*;$³§+@ò ‚X`݉©ðˆUǶÒq)÷g¸`=wcI†p®h‡O…÷³zÑÛp¾â z}!3oyØÈ_ú ø‹]u;á'8úuÁ/Ç5Lé†}ÊÖ!Ö¢.•î9‚½¯– φLÀŽÙ¼åûVý# J×2…r5넬ÔHgÉ•îüìbþA \$Ò¾‘4üNw±³ó°ãŠ{Nñÿy=•‰Q©+‡— &¨\½hWÿg$· ._ð¿ZÈýaJO A-Ö QU€5mÚsò¼¤\Ì/WR‹ïïîbnð ˆ1q Ó[_Ï…°b[‹âƒ.V|§$®¾\Õ™½[´u ¶°¨,Qd­Sú³ëY[ÖšmÖaíAÁñHž>Äà%“ØÊg †4WõAƒÿ‰ú”«©.õ’ØÂsÿù Ì-œ„JA_ì¢æW-Z?ˆ c¡’ñ.¥@Ñú´›{JYÀ¨ éèÕË}®Xf?/r(yZ0º-úJXLÉy~3‚ûKC<]Þ¢ÊÖZw¢¼?ÒŽîM Gõ¥ò kCúF˜òÖ¶ÒX•E>MgKL£ö ¾¡”4*°—<ú>VòˆJiª’t†Ä²‘ØEMŠˆ¶1§ 0Rm׫ÞåDÎù×âšä?›Öd E| ÜGsñ5p…{&ã_&½f®}ê‹ê£Ó >DÍ|!W4qÙûA:/™yÄÈ›iŠótsÎÛòú4qõF—TUšëlÂ#1Nèà}S»A³2c QtY&¢¯BúvA xpaó L ·K{¹ºÝð¬žÍæ—i¤“×ù`ÏŠ‹Ák®º Äïµ2=K¢J×Íž6Óî2#qÛu_¹BÅNÒž£Û¿ ãa{–d±pPždqD›t4 Û4PJA…4½q–n!óÏðÊÂi —FhåÒh*´Ýy8¾ó?Jå÷ endstream endobj 152 0 obj << /Type /Page /Contents 153 0 R /Resources 151 0 R /MediaBox [0 0 612 792] /Parent 150 0 R >> endobj 151 0 obj << /Font << /F83 130 0 R /F47 7 0 R /F8 9 0 R /F61 14 0 R >> /ProcSet [ /PDF /Text ] >> endobj 156 0 obj << /Length 1303 /Filter /FlateDecode >> stream xÚ…VÉnÛH½û+ä °Úìn®¹)ãØ°1±f‚A’-Ñ–`mI+F~~êUW‹”eR{©õÕòqtrv‘õr•'&éî{yªÒ$ë%qªŒ{£Iï[𭯃øGåyp®hmðQÖ:+ÆKü7ӾɂšèÕ§Qð=ŒCúÔynˆÔD*wð•È)ýfô÷MJ¼_Ñw³p¬W÷²÷›°)é¿r»Å†èÒÑwý±àÃÚ½_Ñ¡µá-R𮘃t—w¿Xòæ3XÌZ!¤ÂÑuOÇ*ÊLo µÊcqÊS?NH‰YËÊYg­ ¶Û­¢¯EQ3+ÔL)6–¼³8«*þóÁŽ;EÁt\žˆË¯á³ÈŸK¨8œ v:îMÓŽ{é`ˆ%ØE÷j?à sÖfæãEÎÕ´BÀlÉŽ…»ÝæbÅîeÁsñ 1á[ð©9œ|{"¬«1D±NÒNC2úì"ÑÐY“)›Û^茿†óóàK?6Áê™ß·uÁ’Q·«~ gòÉбìÂx`µQ¹Öû1ÓQøxDÙï4yÍùIëüTœ;¼%ë#\-¼œ9X›Ú!ÐD&¸¸Æ.øç˜0ÌÄîS: ]GÓöG¦Ù8þ5 ù¼¦$˜ã"ƒµìJ_w‹§†Q؉,=PŽ7ŒÐÁþFýÌ’Ãèoäžæ@¥qô߃ë}+þRRoæ‘wz4!$ 7kqP¹qé@·ÿé™w¶äÏY¡pɉ>ßÉ~Ô¨8K=rþä¼/ ×RŠ¢@1X~«C¬$ZÅiîYœ:Ñ(P³¹dÂ3ü%Ÿ±±mƒ±Ï¹õ(§”ŠÚk#¥“äÐÚ¼c­Î³Ô™‰x-ý”næâFØ4àò²„‹kÎ=ÝÍvß\‰$?ù€ËÒ¤skÚyõ=Ô8ò WúœhvÓxæ á`éq(¨>³¾RëÕQDPÄyµ3¯’"È2 QÅ›Í#0º]‹9«ªT¬³ˆY@ÉwôwŽ­áù«Ã˜Ús26.¨lRß\LaÜì—^öÆ{Sbë ÷¾zׯèÒ~xa9Jc¹àäܵ…ìêX¾ªoùBÂóîfO/g}x.­ß²ûV`UÔ3ßÀzìàÃW®¸l7R†àé§ Ï%@PüA¶ÊR ë –,Z‡ù”šù¢Eùµù´u„$Ócû€ªgzÜPó–¡¾Ôú¨œ>ÏîÐ75\©ÜJ­¿[²‡„[Ü1—[Á½ë©{­—¯Ýb#Ê™Ý&¶ñK”ŸºçdV¸oV·VÌA8uº+v½cãJ.wÃç9è¿àÙ×— Uî¸7#4Ó×ê©Î ~™¯†/ª'ðB¦Ùß͆ï<ðä”9—±kŠýAæÁ'¢ÞšëØ„ñ$Œêiéˆ? ì—£oV(â"õ dªTGmÍæZ`ixÒý-×¾<.¸¿!ÿmìK$6Gª»Çd7xG»™Ž$„h¿&wŒŠZrÕ†íìf£vvÃír¿tô+c)¶y( µè< ×¹€„Œ½}cå¹Híw°+Œ»Ã¾µŸ»œØÔ0Kï&ï°J²ö³ÑlKß¾¤<'XoÖ¹¬ŽÍ‘Š¢ÎÔˆ~?웘Ãônd´q +)w2:€*µJ§ñ‹9ÀäœÃúw"cš«4Í0`&*ÓÆ]¶9ÎN>Nþ€bQ endstream endobj 155 0 obj << /Type /Page /Contents 156 0 R /Resources 154 0 R /MediaBox [0 0 612 792] /Parent 150 0 R >> endobj 154 0 obj << /Font << /F8 9 0 R /F61 14 0 R >> /ProcSet [ /PDF /Text ] >> endobj 157 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 158 0 obj [441] endobj 159 0 obj [1055.6 944.5 472.2 833.3 833.3 833.3 833.3 833.3 1444.5] endobj 160 0 obj [557.1 557.3 668.8 404.2 472.7 607.3 361.3 1013.7] endobj 161 0 obj [777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 1000 777.8 777.8 1000 1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 275 1000 666.7 666.7 888.9 888.9 0 0 555.6] endobj 162 0 obj [892.9 339.3 892.9 585.3 892.9 585.3 892.9 892.9 892.9 892.9 892.9 892.9 892.9 1138.9 585.3 585.3 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 1138.9 1138.9 892.9 892.9 1138.9 1138.9 585.3 585.3 1138.9 1138.9 1138.9 892.9 1138.9 1138.9 708.3 708.3 1138.9 1138.9 1138.9 892.9 329.4] endobj 163 0 obj << /Length 104 /Filter /FlateDecode >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 37 0 obj << /Type /Font /Subtype /Type3 /Name /F74 /FontMatrix [0.01204 0 0 0.01204 0 0] /FontBBox [ 17 27 27 52 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 39 /LastChar 39 /Widths 164 0 R /Encoding 165 0 R /CharProcs 166 0 R >> endobj 164 0 obj [43.59 ] endobj 165 0 obj << /Type /Encoding /Differences [39/a39] >> endobj 166 0 obj << /a39 163 0 R >> endobj 167 0 obj [590.3 590.3 885.4 885.4 295.1 324.7 531.3 531.3 531.3 531.3 531.3 795.8 472.2 531.3 767.4 826.4 531.3 958.7 1076.8 826.4 295.1 295.1 531.3 885.4 531.3 885.4 826.4 295.1 413.2 413.2 531.3 826.4 295.1 354.2 295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 295.1 295.1 826.4 501.7 501.7 826.4 795.8 752.1 767.4 811.1 722.6 693.1 833.5 795.8 382.6 545.5 825.4 663.6 972.9 795.8 826.4 722.6 826.4 781.6 590.3 767.4 795.8 795.8 1091 795.8 795.8 649.3 295.1 531.3 295.1 531.3 295.1 295.1 531.3 590.3 472.2 590.3 472.2 324.7 531.3 590.3 295.1 324.7 560.8 295.1 885.4 590.3 531.3 590.3 560.8 414.1 419.1 413.2 590.3 560.8 767.4 560.8 560.8] endobj 168 0 obj [611.1 611.1] endobj 169 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 170 0 obj [877 323.4 384.9 323.4 569.5 569.5 569.5 569.5 569.5 569.5 569.5 569.5 569.5 569.5 569.5 323.4 323.4 323.4 877] endobj 171 0 obj [639.7 565.6 517.7 444.4 405.9 437.5 496.5 469.4 353.9 576.2 583.3 602.6 494 437.5 570 517 571.4 437.2 540.3 595.8 625.7 651.4 622.5 466.3 591.4 828.1 517 362.8 654.2 1000 1000 1000 1000 277.8 277.8 500 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 777.8 500 777.8 500 530.9 750 758.5 714.7 827.9 738.2 643.1 786.3 831.3 439.6 554.5 849.3 680.6 970.1 803.5 762.8 642 790.6 759.3 613.2 584.4 682.8 583.3 944.4 828.5 580.6 682.6 388.9 388.9 388.9 1000 1000 416.7 528.6 429.2 432.8 520.5 465.6 489.6 477 576.2 344.5 411.8 520.6 298.4 878 600.2 484.7 503.1 446.4 451.2 468.8 361.1 572.5 484.7 715.9 571.5 490.3] endobj 172 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 15 0 obj << /Type /Font /Subtype /Type3 /Name /F60 /FontMatrix [0.01204 0 0 0.01204 0 0] /FontBBox [ 5 5 36 37 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 136 /LastChar 136 /Widths 173 0 R /Encoding 174 0 R /CharProcs 175 0 R >> endobj 173 0 obj [41.52 ] endobj 174 0 obj << /Type /Encoding /Differences [136/a136] >> endobj 175 0 obj << /a136 172 0 R >> endobj 176 0 obj [562.2 587.8 881.7 894.4 306.7 332.2 511.1 511.1 511.1 511.1 511.1 831.3 460 536.7 715.6 715.6 511.1 882.8 985 766.7 255.6 306.7 514.4 817.8 769.1 817.8 766.7 306.7 408.9 408.9 511.1 766.7 306.7 357.8 306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7 306.7 766.7 511.1 511.1 766.7 743.3 703.9 715.6 755 678.3 652.8 773.6 743.3 385.6 525 768.9 627.2 896.7 743.3 766.7 678.3 766.7 729.4 562.2 715.6 743.3 743.3 998.9 743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7 460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7 460 664.4 463.9 485.6] endobj 177 0 obj [583.3 555.6 555.6 833.3 833.3 277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 277.8 277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000] endobj 178 0 obj [575 575 575 575 575 575 575 575 575 575 319.4 319.4 350 894.4 543.1 543.1 894.4 869.4 818.1 830.6 881.9 755.6 723.6 904.2 900 436.1 594.4 901.4 691.7 1091.7 900 863.9 786.1 863.9 862.5 638.9 800 884.7 869.4 1188.9 869.4 869.4 702.8 319.4 602.8 319.4 575 319.4 319.4 559 638.9 511.1 638.9 527.1 351.4 575 638.9 319.4 351.4 606.9 319.4 958.3 638.9 575 638.9 606.9 473.6 453.6 447.2 638.9 606.9 830.6 606.9 606.9 511.1 575] endobj 179 0 obj [656.2 625 625 937.5 937.5 312.5 343.7 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1 812.5 875 562.5 1018.5 1143.5 875 312.5 342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5 343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5 593.7 593.7] endobj 180 0 obj [700 738.4 663.4 638.4 756.7 726.9 376.9 513.4 751.9 613.4 876.9 726.9 750 663.4 750 713.4 550 700 726.9 726.9 976.9 726.9 726.9 600 300 500 300 500 300 300 500 450 450 500 450 300 450 500 300 300 450 250 800 550 500 500 450 412.5 400 325 525 450 650 450 475] endobj 181 0 obj [272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8] endobj 182 0 obj [458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9 249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 510.9 484.7 667.6 484.7 484.7] endobj 183 0 obj << /Length1 1917 /Length2 13950 /Length3 0 /Length 15140 /Filter /FlateDecode >> stream xÚ÷TÛéö ãîR‚(îînÅ¡x€àÜ¡P¤¸SÜÝÝ)î.ÅݵP\Š\f朙9ÿï[ëÞ•µ’ß³íÝÏ–7 5¹²£¨)Ø$¶sfdebáˆ+Ši³²XXØ™XXب©Õ-m@ÿ•#Qk‚,Áv|ÿ²wßd@ç7CE°@ÎÅÀÊ`åâcåæca°±°ðþ×ìȺZš™r`;µ8ØÞÃÑÒÜÂùíœÿ>hM謼¼Ü ºDmAŽ–&@;€"ÐÙdûv¢ Р6±9{üOZ gg{>ff777& ­ØÑ\ˆŽàfélP9]A¦€?(”€¶ ÿPcB¢¨[X:ý¥P›9»A€7¥ ÈÎéÍÅÅÎäx; &«øh²ûËXá/ÀŠ`ebý;ܼÿdi÷§3ÐÄlk´ó°´3˜YÚ€¥˜œÝ@;Ó? 6Nà7 +ÐÒhüfðgê@€”¨ øÆð?üœL-혜,mþàÈüG˜·2KÚ™ŠƒmmAvÎNHä'aé2y«»óškmv³óú/2³´35ûƒ†©‹=³†¥ƒ HVâ?6o"¤dæ g' 7ä¹›X0ÿq€º‡=èO%ëâ7>^ö`{€Ù ¥èíÉË è 8;º€|¼þ­ø_„ÄÊ 0µ4qƒÌ-íþ‰þ&™ý…ßúïhéÐey?V˯¿Ÿôß&ÌlgãñùŸ-f–TSS‘úðÊ+ÅÄÀî/FN.#' €••‹Àýöàó¿qþ®ÀÙÿ)UZþ'»E”µ3xÿ"ñV½ÿqýÏdÐþgmèÿ{‚ømžAÚÆ_…“Åäíõÿóüéòÿoöÿˆòÿ:þÿ7#)›?õ´üÿè¶–6ÿ±x›gç·ÝP¿mˆÝÿ5ÕýµÐb`Óÿ«“u¾mˆ¨¹Íße´t’²t™*[:›Xü5DÿíÂ[pK;2ØÉò ÀÈÊÂòto;gbýv©8½õêOèm¥þ÷HI;°é»ÇöÖw £#Ðé­õoˆàÅú¶¤¦ ÷?gÀÌdv~s¼‘ó˜‘þè('€YôÑ_ˆ À,öâ0‹ÿƒxÞïoÄÍ`–ý½ù)üxÞtjÿ ^ó§¿ï[Là?èMgò7úƒ?³é¿ +€ô7|£ÇüWéÿ6`{;è­"@'‹¬ÞDf–®ÿrc{€]ÿöÍÄü_Àlñ/øVËÁ7Ö6ÿ‚o Ûþß¶Ùî_ð-aðßãÍöíá_ê·Tìÿ©ç[o{èôgïÿ±yËæ_¹²¾eãô/øVƒø¿m³³…#è_dßòqvÿËá­Ü.ÿ*Ø›Þý_ð-€Ç?ù¾Qõ9þåý?Cfââèøvÿy ¼Õû¿øÏÛr™ -̓Mø­jÛï«E‰Ü÷&g©÷´’é½–¿»<¢Á'ÒU¥Ùp¼MîÁXÝ‘¤½Y&{ö:i©‡ÿÚ¯ÒöÛûÉ0Vuz¯ iqêÝÀdþ‰h]? "1£ºÈ¾÷³ƒ·¦¿5t d§u¶ƒ šr.ö½[Ÿ´{]éÊXðüžÊ~—<òSé c¤F„žÑêãŒ9| 8gFz¬_îè?nng±²&_Éäb? ùœF²xél²E=Ìy®•«³9uPèà“@ß`MÓx‰~“Ã[ð*.ŒØ\ÈäZì‹›“×$ ðUÆw ,aLóSèĦêÊr3Is´Ñ4™Tм'«Cð ¢.–6‹¯¤.6Ì ¶üüðLI¢§ iúá{7i×é™F'½w\4>käÁ„-é­ övG†/×ÓspZZ6Ñ brYéã»™qµIÕa§Èú|/ÝþצÂ;F+h«¯Þ…ζzë|}ÈîtÆX ë6TãÜàLavð†ìL9³½°Ç7r_2Ȳቡý,Ëà’KÞ`™Ã±u"Ö€ÒšRy4Õ>%'žîF›}ÎèøY*¼¢r†uÊñ¤.‰¬?Æ”bÿÙpjœX8Ý—ç,“|ÄפAè’/¯£k›bÀ<l˜]Ýÿ<Ï‘„Ð`sÍ17÷nÏYAÀ—†L+5¨ÜMÈkŽ¥ŒÐí`±¥â—:‘ý®Ëʵrš.è\ß©ÆA•âyªj0ˆò)tÖEÒ”øð «#ÿYYæW¬£TšÀ¤\níïT~¢Íi&%ß“?ÍÙj¹†ÓV³õÛHÎ/Ÿ\å—rɾƒô\R~©8D hÆÉŠÎ?ðÛá ×ßÓKI4ñJSj¶<ˆ¸Z‡ ;73I{{–uêäZ¦ñg*Õ |”'cæy$ ø…0Q"#ºÌÝ1/,DQ–™—ç|úmØŸ~z/ùYJ ULk÷‘5H”ü¥*Ÿ¾á”îǸQŸvL«ÿ¥F!|s lîµ°®[áö˜ "ÎQÁtIVÇz5Š“© Hª0éý»fz§ýCÔ™)uSÞbÀÍüpŒ/A˺QcÀXªo浬mOfèðz‡‰ð,GˆÜ?Iª“˜´©O xV˜”£ä¶nëlm”mv£Ž[TÞá¯ÓêX?àâõ§¼Ê´‹Œ^9ú™¤ݰËwW¼•ïÙÄŽÍWëÝ®Œ­»¤ª3‘‘ý•ʋ̬ø£L…)cl(>p–‘ô˜CíG{=Ü`Ò?¬ŸýL"˜FÆfPSÙEc+lËý]N󾨮‚@ϨV_%<0€ïm{­¥‡Ë†ÀŽÅ˜7ØV¿ý×à órqÞ'*.BÝþ’a”ÍŠ9OiQ'k™$ž¶ª¶Kñõnè·Dî=ÙßÒL%rþbKZ… 뤆ý@›xjígT‹/±ñÂ\;•hM‹5mŒa_…æltkp$Öûø{®FOÆß÷ø¶ámÉh\ý .Âolê.t_Zòe$9×'4tŸäA^‡y·ý©M¯l®`¬Ê §‰xLÅÀÄ{Æ^û/ïCiÂRij¹ë1[0¿9ëlü†Ñs$ùìÍ™¨XÔÌIQ÷…¾£ ½“ätùX :b"Q"*¢Ž¡MáÊÌêCBìéHÇ÷ÎQÈÛ“¬á w–ž; Jè² ]‘eŸ­Ã%Šù¤aSÙXIzD€Uç¾þ~¿+S·³{ n âyœµd÷'›ÜªBÓ¯LŒ 9䃺Áñ˜DøÏ…‚d%ò;ï$P­ìªd)ְί&‘ýGUe1K¡«Ý©“‚óÓ×M©9=Q ëprc%ì&F: T Ìù9=\çI¨’,¡Šk/”gÛk(Ç­?:ÀއŽD"ãxÃXp)þUà|\ƒÖ|ïfña6ßè#[RxËs>þЧ1;,Ëòè #¾ºfµW{⽡ÌyL¸ÁWݶØàö6jRÉG„ÒE`·ë1ä]‹P§ («ˆ]%~Š1õ=‹ÇôÆÏü¬(Ê9- ÂÆZ·Þï ,ç_œ•«ì‘ ‚dQ½í‹­0xÅè=óÞºª©[5Bœþ²‘Ø¥ŽM7(î•ä;Öš£jC•Ü_e‘ïÕ-†€êñ78kà“aÿ»À(ÚJ-S' Ù{ÁsýÇÙ EïYØÔXS¹{½O¥ªheÒ~èM¦´JÑ;ÄÍ^ïlôÂúÖC•<šH)÷ç¿DÏ'ïoš»Ÿoé÷lÝohAwåÄ—‚z#Õä/Ù½b™Æ<~S-ÓÚ¨ó)Š%Õßë#*°‹¶±,‘ì£6“ÃéÏKP²}w×X¯R‘{¢Sáø?›2TÌrì™e0(wÙO{ÿª´nWåiån¸&²D i¬ :ëÒ3”fr‰EÚª-°3ŒªtŤ¾v¬3(Pÿ°Õ No?Ä®ùµÓSU“ÙÝ·Øå7=WšTº¹ºÝÏAÉfü/ᑵ™*pV-Wqu±apæm_ÉÌ“6À뫨äÔ$„8]í¡%m«´?2l7‡- Yu5¹E €­úÍ”ïñu§Bâ& õ„£´œG†‚˜ù["Q(öU‰+l×z*³Òè*oKpÒ$£ô‡´XQºg§ãÀ SØ;ó¡Ktbca¿ô:D–Íý"&å„m’K ×<óÓ#ÛèÓYÄÀ'^n”üæ®)¯Šá¢4¬2òzC#FÇe›¥húó6È/iø™»ÄK­‹a9Î(0 âæ3H|vÆrˆ! ­}Ñ„ ƒŽVœ}¼Ð¥JªšurèÜ ÜÍË»ZêÓ­ÉjìO‰.CÎóŸ¿‘®À„àq 4‡ï8Ph9‹éñçˆßÃê?ååÁ’ÖÞ™á»yxxËàäxkø¾°é¾(^À&£@tøaž9­,´,n¢N·÷ýž˜’šïK sSù:l…žõ‚I÷X™Á…KiâM™?èÛƒœ6úq5ûõ=pI5õrô°ß#…ì‚êd`ItäQïÃÐà‹(þ« Îw[u ΨèÙŠ"àÃÒP¹¼u$ª '^húˆl@©Õè“dð…±:Ýzz6EdpPƒÛÑšëïº-o*<&Žãxz‘Y'á$ËûI{ˆzãþm=GÄH^4ѲÞM×¥#pU â»m‰ŠIVx ¢q¾?x„3¹‹Ï, dÑ|éÔ(NôYÒ“Ý# q$ËyÁ“3'BÉèÚâÛ_‘Æ',ÄÁÓ¦]bv3};%áŒÔVE1b^yü^ìÏkTɳ‰‹¾Ý·,…%A£ðeÌÛpî…i¸<;Îx¼©¶—ÄÏ­A=fͽ£€"&ftælïƒ(Ù³‡Þà§"£Š:0N!•rüS£ú«÷ªÇä¹‹ïž ¦E™u§+‡&ül~6$î–¼VëDÏEqÂçvì(ÈߘsŸž c*-Ñú$“ø ÏÅ3]ÅjY–áóg‰!ÝŠ„‰Ë}ÇÒu 9Êgg çJãBîüëhÃHE¾!é&ÌÙ2‡“eH£Æ¨Ål¹§PÞeª¥²?Ó_ôK& ‚Hù;CæÚ&™÷1£Z¹Žu‹Q0æÏ0ÀÍÝDMê(—«%9R¡ µB‚í‹<¿èb2³L÷Âi(YȦÁ÷ Î.ºõ³*ãc¿%5ɉñûGõÈÖcœ°Ý$_¯îË«–N¹ZË´"‘ƒ±UxQÖ  P»ÛÐø!Í_W`œùŠYl nJÕçnP°éµè3ì~ž­qÑ£ÙHÐ÷‡}â~ZŠ\^4ÊG®±W¦n¶ô pö†ÐE¸{g,ð@Ä­(ø>Ãç4„ T’_ÆÎgü&fÍÝùÍJ Ôb6¸çWFIæî¡´ºÇˆú2÷¥€äÊùöK—C¨–¯x}îƒí'‚+ÁГ)õ#Ê>‹Ðk!ÿvgtSÕî…ÁT¶çt&©ß« ù©YÔ Ò½x­8V 4gï4h&ÔÊKYÐSˆ"Ê’Õ*ÆÍ;ôvš{~‡¥œ¬MÃ|°àaúŠC>\T/ûÊáû¡lø:'ùÜT|l>‡ÿö„Tº¯£:Ï/ _‡R´>?§¤î|ä Ù"„Õ©ªPŠøåÅO~Q„Ê{IB«"%|öšYY©Î`*‘žEþf×ÿ¨ïyu ‰ÎgºRîHÑœb†Šó‘ç°üL܉M¼›A># }.Sa¢mb’.{?1„cåm••²ÜZö­¥ W–LÛ$CùnÑ7´‰w„¼ü²kPÐÏñŒ;ÌE2›@gEò±pˆ 袀=ž# ²Ëfhx±7’Bo˨s;ܶ‹­…& W^¬DÊ•½‰­oß}æÈ“z9 vò¡×~î]”/´*J¹2±×ÿì›Â#Ð%²ÓÌÞ˜gղǖñõ u"$/·ÒÄ/*O߃žî0(![…^¥Þ;Гºn‚àSpn’Lã‰N‚Ix|bž·=£ÊŒCõ–­ôY¯z#€šýËÜ”ZÈÜäØÊOëæEÐB¼%wSãŒUÇq3ò¾¼\·M;4²e~ô–DÀ‘ˆè£ñm‡Ö<½æÇhRÅ çåyµ_憆ú Ù,Aa•ÇŒÒ#Ús÷žu‡¤½ãrÌ ãõ%¥cW6€+éQæ1E¶ˆsú Švy¯I®´ÕµÌõ×Ë Æe˜ŸÂL·Ï—T+øW¤Ó„…r½šêè[/‡+¯Mæy¶¾›©Fµ:l‡[S!Þá°S^»¢r&I*ª÷ù(v¦´ëè+é)—M·`‰q#õR9ñh˜Õ+™¯žªÀÕëÁYå§Úç¼…Œ…ãÐ÷tq‘¶—ˆxEû ÝèH–IáâgÐ ?”Žúñuô‡ UÝ\ë{óþÉ¢ÈWÜ€i¼ lP'E©šAñü¯êŽ¥!Dú§Ï/§Žw§KÞ•||Mš°J1b»5<цWeŒ¥«$dЪ~RqQq8+´7`TÉC6 µËž)Éâ‹Ï§;4™äS0*P„üÄã:´9?ðˆ”±Ù» …ÌBwŒJ¯mÝ~{@/–×nvêÇû(° 8€·ä~R®—Î7 8v×4ÅÅÄüK~»³:–”Ðê±ìèìvè0Í®"I ß­mùƒ3"ê]yŽPÑÙ7í¿=ñ`J80ÄtÐܯ¡ë²+¢\o9Áõ9Ï3cO–v7«£ðœÅýnDçÇMЗ¨qaYƒ‚ÏC™ËWyÒôô{)PΡ—×pˆ³Î†HØ¡œÄ>°n©FF¥SD¼øù[šX•´zPK•ŒBõ÷¯"­—¶ÕˆÙãùê“Ðó”–"usêkJêƒÂ×xù+gþÀ6¹2wß‚!û†\oÔVaÎój‚W*]:§g%S ʨª©Í#2Å´â+ÆÚL€Ó@n.©û콡H3²vq¥ÖQµ r4P2Jô`µêÑ3è[%qJ—%¾ö2‰Mú¾˜¹»¹mÇw—‹Õ>Ã}¡\™ Œ±Êtùi’ÎÒÍìÈ—O6S´ 5™1»+‹úñÚ˜nÊHrh}–D"ëä3{%@@Ѱöü^Á(3CŽ»¦‹}­è5ü`µ7_zœ±8·‚¦Ç²—ÏX˸¸ÅG÷_¶–0 eŽËÇ…’žð=t£¢Á!ž›OM¯ðy?ØQCœSEj­Âÿ ¿,…Î^å{}õʱá5W º‡S7ÜÅmÀÌmÉ<àms¢ï²á!ó þ2R´¦NpÁĶl£²Š ô"pÀ@‡†€­èÊÛfýß›´œOQ7‹­²¤}¹OÌ«ä~rH‘9m ÞÐ=¿ƒ ÞaÖKh¬š¨¤/ø « Uÿ™!Œ;r˜àŠ9ÜÛ«9By€“[|Dã·O"C$ ¦кí·sb1›ûº¥ Åïm†7­3—'?±ød€¬‚py‡åážJ'¶ RDG1D•¬ui½±½K>6|#ý+M…ǰã, ùcÑMÁÖd}÷„n³r›'Ì營>L«=\ O'åk€Iö”ö§gm¿»t«Uƒ¸6ž¦t;ý¼V¿ÊðüÑP™`ã ðú¾þí¨üó*‚ 7{‰Ò.wÅLÍ/ ¥àÍ&:`è‘#œ_‚?,•õãùõ—Ä4%ºÆËrÄ"Ó{ù6éf9õ¶Ó¯ÑRË#ÖÍéÉûŽËevH‡fbKŠ‘GÏ–©™ï÷ñ ÷·Ñ£‡¸Li> ^rG_`´l…k¡˜YN/©c’N*Ä^b’Ô”Ö„dU[çlfëér4±ÛYó ÖÓˆ°G0âÍ8 ¹Wk~ôÑÌæú™ktŒôh’˜;ZÀ|ˆRâÚ]ÞÀí¬šçúRÜl/¹Ëg€ÒTé3N»¾óO@I}ìžÃ€gŠT˜4À"oeDêxþ0Ñ&4¿ÌÂuæ5ÍÃM ûA7'µ•D÷¼“(R2ú­ÕÒ#ªÕåóäÂ^Ôªð>ï †Þ¤$z¿ ®û“àjH #çkWóòXh?“˜h›ó%d3„ú‚™Jk#BEÞî5ÛHØzaù´öð!, «fgR Ê'qñŽÏµœáV\Y-~Z¿JN{‘–ì6øf'qo×\±Ò3k$°iÌ3£¾xn•âc34¡f^ey¨:‘^¡¬IY%qx—ó†À¾¸æ¨77Þû6<Ô/Á't‡£¶q{ b»¸aûÙt$ˆlõ ,í÷…lÍíï̺ï$ÃÆ²ìûTH:xh]î«ú%8„Y¬ÌÙÑü«).’ÿ™ÓTW E-_69h<> ù¤Ûâ|ûÌŸ«{»>ˆ:3Û<Tº€ÐÁÝÀ9;+îÒŒwçKU9žYʨ'öj ѧ ,KÕ°š@Ó$<·? r(÷‰þØ] ¾3Å×.˜w ÷SYÑ qÞ¼ØÓ¹þiâ—¹f÷.@»ú~Ì”z0á%^Æ×~I“ÕâWzžÄGýtÉon¤>ý!b„{Ù㯳 <§ïjg *¯Ö'©Ë†+üØŸ¢êA:RÊžAAÀ§k+»³ýÂvX8Ÿ¢¬$6ðÊ4ööÄtG²Q8x’ŽR¿Õ ½Zû™ °H<Š>í ¯»"»‘Ý%é¶Í~ÈÁ{ÁY¿/añT­±=<}ÊôÇáËo¡¸©°Mð·FC¥ú" ½4Ô‰J£Ãèƒ%<–¤_”Ÿ•umã¥èH wG¯ ‰ÑºIj^xõÜuãÕ“‹øƒw7ÙW-üÇn‹Ý}Ù†öPÄÌçþçÏ#á<·xuˆH?Zï8 ®˜î®ˆÎ‚J) çå_’ˆ¾\¨J& 0§YArMsbÎV9—ðÒSíAù˜gÖâåoKq]UhS8¢ ¸_£J½ÎÕîkB ‘ú=PÓž4l-‚ñ«¥uÎdÙ«‹cp{ÍpJ$5Y~ÖOµ"÷âf±5,—‚¸~MDþÌbÎC:ζãÀ¦Æ^ŸHqP*ÞÇÆBZ—eÜÌ`CU®ÃŒä«¡””ØAØ¢ÀÎã€à’Q-ľ)‚¦< $öò•©ÍÜB$TIݸN8æ9"_VfX®À”šo_÷зU‘£wÙhÕ£ üPõda)ãVšÓúd‚­ ¹4r˜¨Î¬åaõ/.¾~³ZÏ܀Ѐ 8)ØtÖÖfEh‰øì¢o®Ã¹ß™v…Ĺ ò@êuQ»½Ýרö¬ѳ)œm2à$uÑÃj?¥axpdvßqì£,Û)ÌO"ñÎ$‚¿^ QäQTXÕŸzzïFöG)zĺÞG[6Œ‡³=ÞLx&?É3‰_Ñ?Ùöü.‡$²kgž°à/×mÖÞ@zñ=ú·ƒØ½ÿ`|^vÞÃ…–moܙӒܧ’@ lÔS kï?ºGÅ”gæig‡ÞÅÎUµ×A)éÞ¢®‘ÎA PYû¬Š¾rØôM©åÐ2Iq‰Å1 Á{îÁ½û7^ØíÕ{m<›Xô¨Ý¶¾öm<›5H§wrîûêKñU:£&) ë÷-#¦û7ç[ùdô?éÖ?žE”«<è k¶²ýƦå•p/øu…(;ôw# '.YÁŸ9Žq§øÂPaõ]•cUU9vÏ'xÇ›8V*Rv °ÇhÔ±5sŠ„§, ‹=ã)¹€´} Ø?ÛqEŠÝkQYdj„EræW‘臜+IkãÖͺÌ\¡ïIð£È<Øû x³"ç»îŽRÑ!–S‚༫,¼8ŽÉêy!dôa«_#ŠïÕHte’|ä÷WœŸ‚ÏÚÇz-vj«©Ñ_ >£H›B†zT,5¤¦Ý¤ÉUÄgÁælÝ—%Î#»Ä&r¥tfÄæ´jjo^½€µ’¡”‡0쥪“ëqd”4ˆÿ5´Ÿ¾¾µD¢©ì˜ˆxÙÚVâЇÃßxÚHla!ì¥ütŽºÃë§¼¦ô[Bù³jú„³U¢y×¼*Bš%j‚ã€ZAëlžiEճޕQbºíWŠ ;ä VAäÿ4uæ]9<´ÅAäêÆBTð@L†¢nÌ3îlœ)ÙQÚ3îh˜8Õ•êpo#Ýwl?ˆïµÜ¼‘uš§S…Óc/Å„ XP¹‹#?0Ãý}šÜàÝÜ0ÎÒ>#D%LÌŸ8=D6XÌf:Q4Ñ¿ÕØN‡ZžgÄ“* ßZ .(Èvº¾FNœT½æ%Ë›Ž­­£©ñœ"‹(šÚ"‡ÛýîcäáóÉ#O¿v;Uè³àY‘¸›áÔž@>èÿPÓÕçdJ ‡V}%}ûOÂVYaHÞðGpðfAú×_ÕdSRì$ï×l»±*-4®UÒíÒ³mÖKÚ±ÑE~®‡Ü¡,Ðv˜hylÁï+b4ô^¼Ûú¨ šÉ—Cß¿ýKr>M,®?½¨èÖõ濃ÑgÂwf¼aÄL÷ýI›¥[jÌ?é©Ãñ¬6¹hØlAƸª!×G¬hä­;í¿rsVq;Áç Ss/ð9{—RúY¥ËºâÄû–2jžι¡…û`ZÒüGlØ èØ{p,×°ú‹¥ì)6ŸóÍyéÛy4l‹+¼6™Xµwjð¬Qe3»CƒŽKV~[$Ùwi)ËÒ-j,ÑEJ3 Á47Ã!Êêm;t~Ú‘”b°$šµö™¿€Ú-æ,?_¢³çŸ×åßÊTè–°O™úöè0#¤BÜr.x~§¿#ÐH êN¢F¥æŠƒðjäßSåÎV ‘#fÙ °ãäb\S’)”™&/h¾gwÊš«C¨82¤f8T&+ MÕ‘?qÕ=4%% È ùíâ¢Õ^ó3ÕÕLo¾TšŠÉ5¸òEÏu§Â¹¥ƒÐmì“H™†ó夅¦%^ïý)R¿€Ü]X•ùtú| ±táØ»dð“YÓ” mEÏ£ôÇÞÿàç¡m´—{œÊ§¢›ïãpú^QN #óHó® ö²åÉ0Øí%ª0&ª±)ôÁñ¾-†Iâ’èH8¡âþ¥ ÷Wc¹ØŽ nNþz3Ïÿ;¼S¡oÌ{˜£x/Œ¹ &:kß·‹`ÅÇüÑܽ$¦fˆVË©‹,O탶K„IÓŸ1$€þ’מ ™A¹qàekô¢ ý£´>ÿ‹6€ÿ®X2@+à2:}íâ=IâÝûBRTiVɽæYzŒK5àïÒž³ÉÈÉ1f~1ø)Ç×AÚgÒØškC1=Ž>³'¡Óo/.žJ q…ž½Á?åKÞ ßoNƒê’ЭW¤qXµŽ6îWöxÕ@ÅTÏ’è±j‡±gyJ R'Úr|50›Ç6sòüzÂaO9éîfÔ’àòðèT)­‡JùÐùöOš­ñðp ²yåsßÁî¯úÄ«GˆC~”èig :9/¶&oY’ œŠß”Ó}Ìw8|8u¬:ÿñª!vǦ~¥Hèë3×PscŒ’&wåØÇ¥·Ë B ¤HÅSÓ~È‚®¥±R|ieŽõ7xÞ2!ï-Ȧ¤œ A¿'!£Û^–ßÂÃBÌ2)ü䛫é{vûVY$„„!·ÿÉTÇ“ÇG舽T‰MeãâMÆü%½æ8)Ëï`°‰3Ì1"Îë©]GÍùåpg[šÒ£r²aay¾`Gþè#£†TÃH®àÚ`õàÏ{LfU8”­à!‹¨×iÃkqGÐÏ3ùmw=I½`¿ô±-$#3-…Æåïê+š©U·A•ªŸjX)=è §.—„µ^÷ßQWÁãþD$Ô¨[‰L‡Âµc©]r’¥øÍpgõ ©!º‚¿2ó%T?X>¤Â`óšËì"qJ{OþðÌ燘j‡w»‹ÌáƒÐåh„æÍ;áwÚõŠÂÎÌP\†21˜÷R–“Λ0—ü¢B5Íáøùbÿô6˜õt)Üh–§Î…ShÄ=ûôóGÒ8'^©Rò˜1$C—…º³5VÃ~¹ÕD³‡Õ àð¼u“¸R±ìŠŒBŒO¼Î$SîX>שüŠ 㾈Ø;åAãäR>w€6'( µM¦„§Ag;r¼4›gÛ¯8½Tú º7Á$+‡¯3žèPúšï¤ÒàÅHÁý•U)6¹+ÄW/c¸·ö4r &–õާÝHU=Õ<|íµÊË|ÌÚ –qíN<"„F>Ìîu`„³‘®nצ§bó²ŸæÏ¡?š×•÷#’ëÜ&“ANÅ'&ÏçFô„Å&f:OpC§iMìËmýÆÙ2[Øö>ì÷lué9BA7Ác}½‰ívÅתýÞ٠Ô#'>“W*®MÔ•!¨ÂtÙ)(Êè8x<Ù =b¯§5›OŠ"·¼X¤} °šMG>J q\c¯ÒÔþð v "ûÖú`š ØG¾ÙÍö+9üáÊ-û—Ji­Õ° Ïâ ŸÙ\Ü[o¿‹º”Î,?žoöUi|#î“„BnfW½­ÁTGOWÅßÅÒ]^•xÄ‘ô( ÏMüýḨ¿iÓ9Ùp;We“©§IñHîéü D<´fÎꇶŠ¥cps"Uè²ÇD/óUž=ß½ry°¾£5yÃA|¼2ñ0›cyã·WD/Å— )´ü4 õö±FÜõÞ ô(s9wïò‹Ý…AA O8Åù.È>±IŽá@f³†“çpÉi>Æ®²(æxOž×6Ý(ÌQ9CÇÚº1r88y‹HUO{TLÊæ¥r}6ú}Ú2ZMÁÂF¦YZáÜßmùN½4G¿kØáQs! Wè¬_¡D § œd‘i¥‚~$›WÀ zÉ(Ýhx¦mâÁc¤õëH¸‹Ò~™–bnÄ™ÉS¶1ûGR'.SKï_›H³ýÊFùż²a€Eé™Q)Õ]Ž¡é"ŽR)—é-‹e÷AïâP3‡º{V5œ£ÑÎ Ê­­w¬è‡U~àøýG/ŽjÊz‡1¹^D}þ±E,€c™a‹ÀÚªöåּ̽6 „fÞÈ×òÕQÿžÂŸGÒùZø†m>w5ç§íÕ”DŸN³…FljC¡á$;C‚³ÍX~iYjóïÚ²@¥xS‚ч臋蚶°[Öw¬ÌÛǼ0cšN± 2L® rÊá7H«¸5£%”¼Óz_Z9ð‘ìöL‘¥X»³þÛã°aè`‡ûJ¬†÷¨žm¹ÝØí«„ý «·á±,s%ýÊÀY&|F§2è—sœqû_Q›êµ#’T/4 4?_)ñ9%–YyüÅíã×Îq®_ÛÓÉÛÒQ'BeÂ+`G˜40ßvòã@5,çöw»úÅû€Yã4ÎÏ«„ûQ¡j7GH{xÈ3þ 䌘7‘§ÂmÄ×U1¤âÛõ·± ñ=ÛR†0ŠNÅ¢§(³L(3ËÜZ–äßÙàë:¡ ãçåëNE1dR™š®¯dÇZ”Æ‘uÚYÙ+;tû”çcå3—OÂé2ø í\€¿E¡ª=G9UÌÛ5ë#¥ ©'·½ )”› »ýõç’Ò1§JœåÃá1ÅxX¡ÿDeå¡JÔœãPtðhe|`çz£LÈ122CrJu(òÔgÀDß ®¬¨>ù>ñÎP‹¥DÝÚ´‚ôû´šbFh„(|½üH˜ø ±Ð©P0’Ýr4½vG$Ìé~4ì ¥b›žß÷3¤*ìuÄÞ-Ú‘½Kñ„Z4‹¬.|¸Øè0i4 ?JôkP1žò­=|:¶¿7Jñ§Á­g‡IFp×/¼ý∠÷õ3‡&×…p¬a¨ýõÂϘ¾þ¾(ÁkÔãDÏZöò<ׇtÐ3ç_J3ÍaѼ©iö¨†ÀÓ’ITÍÝAÆzÏ´(íÜÊOÓ¦R…ìr7-¸È5Îå•|‘Lp¯‰k^cÝEŠÆØÑçnc•ÞÅ\mä2Š02žõíŒq–uzÇÝVºìËéqÅÎoMÇác(NŠ &ùμ*ï€;ÔHã;[žu»Ûþ*8´ÐZ3¤†»~!!úäÙÝw½¶Ták×O…ÛzÏ TX•™Êšô=. ÷‹r†›_2ÇâÝ6àè¶BZWçò &jÉ-å8 ~=¦B©Ž—`.1’‡X€ëXa ½˜Eàlð®Ñp@B?52%d˜%„2’eè;Ã~p7wâ)’•_³½oþêêÔgË4 úct{@½l™ÉX?v”ù‹Y~lw ˜§™+zx*°÷ƳBF895ÓBŽÒßp31ÑîcçÕ¨¢°xJ/e@tÞ+ü%­Ð·rôÉ¢C<|yVñ *Ý”ü¬¼ßG*X+ È8iöêA">ˆ<¡Ó4ô ÈbÕÊl=ÕXjß4—Q«ÚÇÃ’qêq8çÉ^ΛWÛ|nã¤ñfNgVh苯g«¼º%òUús&ÞÁúp€Á¤Öäöw؆-ADb›A™­èërøqì-äK§}§¤Ã±¹~ú»S&ñc™±s_?í ÚôYìþ¢J!¼ÏÌý}ËŸ8ƒA —ô1£ŒªþtÆk›Ë•?dM¦êà?¹ÝÐ%AŒ>JŇˆþ9Q¦ŠòTH(¡»éYÌÆZv‹úεÈÅÛ{ &£˜óË39øî•ãåÔîÿ›œOò endstream endobj 184 0 obj << /Type /FontDescriptor /FontName /DESSQF+CMBX10 /Flags 4 /FontBBox [-56 -250 1164 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 114 /XHeight 444 /CharSet (/A/B/C/D/I/L/S/Y/a/c/d/e/eight/endash/five/four/g/h/i/l/m/n/o/one/p/question/r/s/t/three/two/u/x/y/zero) /FontFile 183 0 R >> endobj 185 0 obj << /Length1 2056 /Length2 14127 /Length3 0 /Length 15369 /Filter /FlateDecode >> stream xÚ÷Pœ[Ó Cp'¸3¸»»»»Cww·àÁ-¸»kp !¸»;—s^Éy¿ÿ¯º·¦Š™µ{µ¬ÞÝÏSP(«1ˆ˜Ù›%íí\X™yb ¢Ú,¬ff6FffVx u‹ ð?çðš@'g½ï?bN@c—÷3qc—w¢‚½@ÖÕÀÂ`áäeáâef°23óü‡hïÄ 7v™²öv@gx 1{O'…¥Ë{žÿüP›ÒXxx¸èÿvˆØ@¦ÆvcK í{FSc€š½)èâù?!¨ù-]\x™˜ÜÝÝmí,ièî K€*Ðèä4ü% hl ü·4Fx €º%Èù_5{swc' àýÀd ´s~wqµ3:Þ³ÔdäJ@»‘åÿE ü»9F–ÿ†û·÷_@v;›šÚÛ:Ûy‚ì,æ  @IRžÑÅÃ…`lgöÑØÆÙþÝߨÍdclòNø»tc€¤ˆ Àø]á¿õ9›:\œA6idú+Ì{›%ìÌÄìmmv.ÎðÕ'rš¾÷Ý“éß—kmgïnçýd²33ÿK†™«“†ÈÑ(#þoÎûüŸ3   €ƒ™™™‹“t=L-™þJ îéüÛÈò×ñ»_o{€ù»  /Èøþïílì¸8¹}½ÿiø_ÏÂ0™ºL€ ;ø?ÑßæÿÂï÷ïòè1¿ €ù¯Ï¼O˜™½çúßW̤ª!"-¦C÷oÉÿ5ŠŠÚ{¼8Ø ¬,63À÷ãü·ÿQÿ÷©²1èßÕ1ÿ‰(cgnàù—ˆ÷îýGˆÛ¿'ƒúßkCøß Šöïó Pÿ}ffÓ÷?,ÿŸ—ào—ÿ³ÿW”ÿ×ñÿ¿IºÚØüm§þáÿÇnl ²ñü7ã}ž]]ÞwCÁþ}Cìþ/U ø¯…µ·1û¿6ã÷ ±³°ùoAÎ’  ™2ÈÅÔò_CôŸ[xn²*Û;ƒþzàX˜™ÿí}çL­ß*Îïwõ· ø¾Rÿ›RÂÎÔÞì¯Ýcåà;9{Â3¿+À›å}IÍ€Ï6€‰ÑÎÞåÝð.Î`nïÿ×rr˜Dþ:úâ0‰þA\&±?ˆÀ$þ_ÄÅ`’ùƒÞýäÿ w?…?èÝOñ¿ˆ›õ}|ÿ ÷(j;€Iýz¢õñ˜tþ‹xÞmÆÐ{“?èiú_ôWO™ÌþYLÀÀ÷rÌÿÀw£ùø¾HLæ ·?tŽ¿Øö®Nÿð§Xü¾+°ü|o.èð½KVÿ€ïeÛü¾×mûRÞë¶û|/Íþ¿ýûþ²ù‡ù½2‡?æ÷Dï»eÿáïo0&Ç?—ùr:ÿ=x8ïåÿCË{ùÎÄ¿ßUÌïY\þ˜ß t±tþ£[ï \Üíÿáð~k®ÿ€ï"Üÿ@Öwú?¢³¾Çóüþϼ›º:9½¿ þ~"½/Ãðß/ Ðh ¿¼`oÊbUÒ~ÿ]ßagR`–bG+•†Á{Ù©Ãõ&‰¦:3è·Ó­HÒH/êê–õð ñ‹÷QK=Lxk¢JۓϳÑÕé6ø¥)¬ÁߎDêáÔ…w}^}4­!ZÀ»d)r]¹‘•óÑïÝû¥<êÊ~އ-ì¨ìVsÊ!<—Í0|ÖˆÑ,ž£È3ÉšÇ!…va „¥E;÷@™»¹EËùñF,û…Þ÷ø3[¡·î:kìüׯ uVçn\r\]Bˆ´ñiJoÑýdYìEï’¢8Ù°è"sBÃ…&ÁcGö’®eþ²±c8Fbe([Óaq¦*›¢#6j98h¹u\Å3/,FðÎ*{/X^Ñ•s™NÁBƒÖ.'ʬái} 6D!7ÔBÐûáûÉ‹œK¸ùƒ<~3Tõ oþÂ_–XMò\ôz¼=N:?pÝ_øþø!e›­w­®s"¨>F0Bf<ÊbI’Ãýé$[kx° íÍZ¿ôóô9«ñšß²]^Èo}ŠÙG¦ÁB+†ü»ˆÖÕw\C–ÌÊô€Ó±éV¼²=vcrOQd¬jùßõ¾ d‰š  W(€Ù‡ÔrU—KŽÌ§Âk·¸.¾S&䬟.‰@80«5Kð™–)›: •6tP@©*ÿ$?cÉ*gÓJ,èŽdŸºê’eÄâ\¬š#äOUÇU9&m q¡ƭP ÂÌNFÜ &Ëlҵ깵Ìi KÕxu¯~»Ø‚®'ßî›ÚÔßÐRd+¤ÖœÑ?SÜÝ%Èíèmfûˆ 5'"tic„êÜSª¦ÜtW†Ðëi®æY²±Ðe²þq¢ï+¡Cìà­òæpüwEW§yWËÒØù ™añÉå¼Öå¹hÃb_œ¦fb¨îî9øm†’I/ Ú‰ŸDl{~·[Ò…îØÁ^;*¼æG`Úˆ‘6&¿Ncšz´–a¸á¤”áQ§¡ñëòGq.¥sÈýœK¯Ÿ¥ózþ(Õ‘Ç NÓíï¤S‘Å»X1bšŽ%ŠTšÇ%£9øµ°“«õÖ’¡j€ÔÉÓ¥«›AhëcŠm^8$£o¦æg—öõpçñ6—Y÷Å\1à ri2©=P©ÿÍvå×ÄIlFe7 8xõ(ÕÊ.q`JyM0Ò3S¡©VJ°xêÐ n 7xðè£ê µ>JIHë$z>dÿòLWú3¹Ã9z"É)áêO]Œ*@€K÷Ò·4s5Þ€îÈ Š£ £—6 ‡mÛÀÐIû{«{½ƒ|ù«¦¸.CurOUڜ֊\²CC5âi~scžŸºë]áù‚ÒQ æ— ’‡@?ã J.öoÁ{P1«3]0ô­tce𒨦»llßÇp‡¸­, N mÚ0÷Dì`ã§ï45Ý*v!Íuñžç륑Oä˜ñNL1Ò¬^ÄžX·?s8UÉÇ]ñàl×}~\¯ìœð[5ÍE[TøW²‰NbÎc$¨|Xí +ù­ô¶Rji7=©1f–=±Û øA–Nçê×ú#."¿ ½´_•aù0¸†`µßG´5?Hìd© £ºsáÐ)¬÷íñ¶é Ý‡É,0§š¤ÒãëAÝòÓñ5¡±ܛʺà¶ûñÐd¶@qåëéô’ÎVü/_xŠÜ,%º´©=ãÃïSa¨yðŠ÷°Í8øó×´ÙË Ú8ÐIâεÅ2 ¿KÉÞÆ–w6¡ê/Íhçaà´&ÕWeÕ-éf‰ùÕ ÙÜ<ÜTD¡µ™¥±|›àe |XÐc Áw¬ú~ÎCV™¤;‡áaÓôt&©|¶Y8’ªjhÜDâ#á#þîéH·±[~4#[Ÿä/r ·ëvgÅä45¿’¬K¨ŒJÃþÝ|NÉAÛ(ÂÅÀ‘¬§ªKÎo™+¶æžÚA|ñÄ®,‚þÕÝÒ¤Ë_ú $áÔ ‡Rh{ìu—¤ŠyON8û ¡'‘ËîÚïà¥Ê¤õp€Ì×Xbl$µÛhk™X4¿¤joØÓsÌh*†eÌZcv%ÐÈ¿#<î ,ÛùI/2 çÎ@JÇ^G¾V(8Óò-U€¬ (,G«õ¡]"²ÚÒh„A¶ãë‚ ádAxÁ•®YÜy©exr|mt\¿ ‡âIiþšÃVœ3DQV‹”|À²R¡¥àUάýçë٣ܒ,¼n°Y¾sY:}[øIbYÜ'NœÑ^k\ôØÛ@RhEDÀ'ñ™½ŽsÀ¾%§»·Š)¿ÀZ•›oÆ8Š2˜XáoØÚ(g‘Å”cs¹AºëJ’ÀÊÏʼnjvß¶üÈ>û}¤ 3 ÌnГ`>ÈN€2GÇRmeruóŽÜOZµpdßÛH”&§»q8ö¹mm˜?ª—® ¾¡üü³â¡ªcú-ÉOZ®Wy¥öIÿ ¿Óg£_²p/bA2Bü…Pêˆ^ÎÅõ'¾®òŸ’–Ê:I¹²å:g NïöÚ.·Ã~q{*¢½//ã¿ùäº}¢!êe# `Ë[ÞM’#OÂÅ(؇Kkгùצ'ÏürîËÇn[ŸU}‹L,ìUGj 7­)g=þLøì)®¯PÿQGzé\åsû|–“ùµT±á³>GxÙÖ²¦^¨ÎzÌ=,¹mµBC‚z?»–´J<í'znÊ.c¤A3ò×”_I†.LZhKž?ºü»úqŠa¯*Ø›Uä¼i–&ÀBµÄÛÍÛìñ€‡+ºËIx  аr‚ü›IœOÅ-™)g—Ügdybeí±ß^&ÈE9ºa¦3w¾o'4ØòKræJ¬(¿ª7×ÔŠsõñÕ õÀ·'ÿœ˜KWDÕòÏuk,ÁVªõZé“YÄ5žé †¯4]O®5ðÝ®t6õf7Ûì Í^¥¦òÎá‰X÷ê²Ðz¼Pn“xÏ¡»1BZ‘Š÷Ñ ˜´­Hß¡@g§òæWæ’sLÅB`ã_íQ'ÇŒ'HrW‘6E] n¼‚ô;°3 *Ö¾ª2¥9±;Ú?ÂRx,IÆšËX”t÷>rPÅ\ú×ëv+O9 ƒÇ..69U +LJŒ LÊ'R1@àÀÿ0ÅüX½zÇ&å[¨Ž»G•¾’g×M6l(ø!n&w*—!£2`-`Uò¾Ó]AI=¾ZÜY6uL¿µþ±'Øî)°C}­³éšµJ÷K•¢óï™Ø§KÿN Ñà˘˟ä‹ôW‚9»áxWör)+¤ÒY?ª‘çPrÍ嬓¢¨%\T²5Ôgm„CÓ—•¦,Ê2¿â7îmrUæÀ­F$)¬rJ”ëáYNÛ¼LXGªj´ÖèlåšBZ‡ÌéIW™Øü ú«ùžn“¹ò™¸z*ÆìöT)¢v×í’ dE „ívÁß8E˜z-»1T%y¾ç¨/ zÇSçS¦ž“ÿ÷ç»¶ì»{»‰Sx³êÞƒ)ÉA\Â?¦ˆ—ü€­ò¶!µ9ìÖ-ôIwýˆWè :8Þ8‚rï¿É“Q“;ö‹_çNÏn8¥±òzhíCì,ÆìzçÆB0÷!ùc)vJmÞšðÂ|Í<$/9.&g ¡ ­4¨QÙ_¢§øæ¹b[È þKÉ[©•6T›¶3Ä‹‚ÞÒ¡DuýqÖ¼ü3é>É1­9] ¸†Hä—£é…ØÐº·<¸’/8Éð»ÞŒI®¢"¶È†ÑŸ^F’F\ ±£Mò›™KuÕ­’¤•ïôKõ?™llÍ“ß: tÒLÅ3áÝñÄògØ£‹j -sU1ær”náˆ6n©ÊÒê yŒIq4Iз( =>²XìU8¦Z' $‡Ç0tYÚÃ>W·ÿ’Ö;«Jß–4†hUsž)4ºïÍx’½˜¥¿}è; C¥pýí—¡|ˆ¼Ÿ5 Ž=[çݹ4fmý&4¾ºêš»³%•³ +\Ë;˜gSñ8àl¼Ë½¿Ü)Õ:£eÞv-û±=oµó¨p\œÿSËi,ƒÐéÃÕ´”¯9‘±â݆=âb£µ+Õ™{êKuŠg ˜äajÈšC_=+FKb¿¯ íZ=¶¨ØAO¡t%£p¨vö´gÞͤ‰½\Mƒ–ÆÍóú`Òp9{If3“xc¼ÖcÜ·ñœ5sv)Ãñ ëjï½¾ ÞUxØ´†×5 lÓ’ ^Ò˜ià¼fMÎó¸åÈ3Úd¾Ôã QƒsFö Z-vÖ>!½±K‰'¼æbzÜéµ…¢þR’ ÷Ùµ0§p-š2_ÁwégÉ0[ޏõ°å§Ïú9N®f‚¿/øî@-"øF§‘˜ðö’FÓi¦Ö7ŠsÑ÷ÄvŸòÝ1çiXÓ“~¦%l““ q>L{¿žÁ>—ïmV5êKºÝhk"tØœÂSx@éYÔÏ¡ž„Zqú¢‰!Ìa®’&$ZÛˆÕžy¢´®R¼ÓLQØ5jÍKf*1a( ¦yVú`Ìíù]é:vœ”®ƒdòCÉ‹rÄÆÔ3h=‚Ë žÊö’i®‰A9àà.ìºÉš`s¶;‘š³`_V”žªnÚi,À@¯-ð— d5sõÌ¿«ksÍ11â…š†cEÂj@FÐßYrq+ä³ÿ8$€óÚçáݯ۰zµur»ÉP¾Ž%CLÈ…5 ð¸lÛ2ºk+“ïkîÏAð,+K þ~ýƒeZU˜ÉÛüHEì·Ül´vxñÖoi˩‚½í%g:þ¦-Æ\¹À¾é$ Ka–Ί>ù”ӈ駖·åÒÄÈÙSätúá¸Õ^šïÌë‰l¸´sXÔ|ãvÔÆ‚6\ÉZŸW†¼·£ˆ>˜êŒ%9M4¯—¢š¬ü/O+Ãìþ¯C „ àñƒD43êS~Srº"˜ÊÌPqAвÊX~Ô‚~<›”}…kn=›†o¤°ÁP4áÚ{ø–Š3AÆŠ¨Kµ¥ŸY 6Ü YV-Ü„öØ9븥o¿`‘¼^5(^¿ôXåo*±–t`,wšüzÛùÖòÜ%OòÒór·nçæ‚òÌûÊ]EN7J6!ß±ž®eCálËÖŽþ·•‚„¹ ¢-B‰ªaµde½r5woú½b(vIÁ[–j/¾Aÿ7Q’²lE¡Y̨³=ªEÆ[ëno~åáÞ¡r&“ü- SÕúÀ° »vHÚà­Ëô< î(âUEW#õ¬Ãt–FDbÊSZ(à7ECÊbWŸ›‡º·æÒR^ðx3l5˜óÊò^Î* ÷%R‰Å'©óË#ɸ>þAâ\”i=ÒPf °[/i7ºÞÞAŸû®×ˆCpO¸Ç†¨uáê{&ŒŒ),ÌüÚüãM¶öå´æÊ4r½Â.Áoó£G³ÂòoéeSÀSÜÞÁÆç½Ê Ó­‚°n(:&ÑÜi? ¯Ð;†Ý\„NE¨L-Lt-Ó6§¸)ôƒÐHì!ÿ^Mz³p}r¾¢ uÕn îñcÿæ)ùgïHñz2v„û`qoãR}+¾&r»BT³Ñª‰ 9 Äd*‡ÄDãY¢ÛU#±Øà, fÈÈÏ£ÏÆÈ«ì¤]Eüz‡#¾P\\K­i{ÖL¬2Ö‘T•Åî&üã¢Ih·>C|:›_ªºlº%½—Êè1o3w yàÑ©èƒmŽ t…¿ŠÄÁ‹þ~J̉»âs©»_«Ç:Tê}ß<¾³ë}mTGõ>Ü6YízÝÔ7©«[¡ñ™”õr$ŒÌ.4…ñ¨æç7ósW\Iб6Óvé î;Úü™>#H]÷yÍçkî8¬dm£¼>cSíœky‹ìÒß ç¬.üdBÀ$b m¯ç.ÒÝ*#«Mè{õÒ=Ê‚7†QuB…›R×ä±›º©‰ÙÆx?Šp‰ÅùiÓí¦vª’Im‹hö»D‰¯™!uÖ“À-0lÒºþ†úéum²ý=(õ;þQ¹“ÎôIQ­bÔ÷œFŠ«i\ X°Ëa< mJˉÎø%¥Î½«Çõ9­IÖÜûxpd/©ê“gH1wf²üåÅÓ¼ÃHítYð‰ÑâÓ-ž(§ÔüËð‘hÑó°™öi|ÆMl‹¶„/XMæIhè.P ­Íh?ÇÆF¥ód_˜ É_Ç6—ö¬ ñúkS‘kMÚÐ}çWptŸw¥De o¾µ%òÿ"@´¤¦IƧ0 >Ço~%£Ú\®díQˆ;õê±mh ̲=.×ùÙžXë0ú7m9µI×9'¯D®<ëïT”1B¼ö`çó“4bZÒŒú|2Ìõ¤1ËlVÃØ~Žêý÷D`@Ÿë¼·%Óï›M‡ë_uqÚN=©ž[êÞoÁ“è哚×CAG6¯/öàÒÖËED‡90CÓ¢âl“)y’º‘e:C ÷#Œ%©ßôÍEÚ €T«CiÒå½ÍÅíìAúòÅÞc¼JR%o7Z-+±IÙR krwÅ­å%]£TÎ]޳rVÏi`x÷õ\f¼¯½"1Ø%”6]•¿ç÷åf#é/#Ä‘ßdÚ=,eåSØrƒ:ÜW0y|Ež:)?:ãÉã<¦ÇŰ6êzø7ø.ˆÑÙ7'ž2Ëæû„›v3r~ü«c©›®žÆŠd*¦ØÜSväÉzFEA½•­¯îa‘z= f{'G*i¯kæõ‘0S ~‘!Sì+´òeÐ6q~¹yÞ4Tèñ|’2k¹‘'(æ$©¥ ’[sXÿBŸ¾eçЃE$ï§%NçãH·hНÀÝÄãªý+˜ä9¤W‹É6©w´k?Eb½Åå C ÛÍž-ZaþœÎónéÇeö@'I½š¿Ìº¼zsvÐ#«gƒ%,:LÙ\5cd„I•›_ÇGäuÍf«W\<~ëÒvfC‹-jûÔ[Ž#5!+BÉuLHÚâ5ÍQ†ÆS¤3Rr4G*$8 ¼‰M`º‚¡ž fsÀDBhŸñ6V'$1tA¿/ÓîOml˜÷›-&RÑÈ*_(ê¯jn.»I—†š"¶eûÆ;UgÕ- Š¡Ã gñHZ<}¶ò¹”/õ'`…Ó‡Ÿ s¸4¨²Ä"Â¥ýî,ýÙXÇ6fÏ)U}I!øzÞv}¦‰/Š]‰û1B`t+ÉE‹g¼pÄ1ã(®—ßt5?¬Få“kçR$+D›‡é3¥ã$TÒÖ©Æú‡¸š·bÉàXFù‡èœœÅùªg“|ci¤‘[TfDTÀ°=šNuò€lǹج¹{è ñ¦8?v5 Cu¨‡Ô#D…ohÇä(ðûÄvÄ"èðûÄø¨ÒêÉÌ^}rè0rÉ`½ VVoøõû/½ýá¡.J2InМ!OF#b xˆû4 .¡Ø¦©C4Ï,3à ýLp[´&žÕaƒHë Çjnã'‚ä¦Z„}Iø„qÖÌKOÞ#)KÓüjNÆ'™±0Rþ¯"J·².ʳÙdw¨ (6cž~#ŒY ]œxK9§EEìÞ²U¡Ó›÷9î‰a¤› zk=¤„é¿5†¹xbï_wl¥¯õÇÝ»^Ùß¿`_°H7&G ‘ë(óÕÚo€ŽžrŒs~&“(²Š<|ÓcéÈì;"Š;ôø\3t(Îå´Z¯) D×»­+/Øin¦ ^OY`l·ÏŸÕ?">§”c«ˆ„:ÀiF°±Rw'é¹Ã^IR·s ¡p©™•«„àóýº³HwÛL8’B¼¶øu_à°ó—<ž(DŒ½ŽÝ¨ÐêÈëÌ{)Ø‹^qËšüfR‚hÑ ÅÑèv×(zž0òUFPqþŠEÃ%ŽB%Ú´ÆÚQoį¦{¨Ÿõ½aæ²ÍÌ)(Š‘ÊØàú¿Ýé~ïÒù™"„·þ{o¬Œ\õ…~~_„…Ol çje&Y¹ÞÞ*Û¼SoƸ³ fê~é·1ˆLÈzÆüD%^tÃöÄù—“öŸõHO'ÒÃGW0öVm^Ô;¦†›¢d*‚LÞ;„¡ÔÚyuÌÌp%dËz>4oÙŒèü)¶Z ÖŸòì%`¯)ÖÄ’)Ù$L1øÇÅéGI_f%H%2‹x fs*ž­å&×:Y¬Oc–QšÆV9d{¹4rw×££ GgÉØˆ™¤»RCÔ`+h‰mz+mÚª³™,Z*üæ!I´ Îß|,¾XàNF¤Ç®jçQÅcvʘ!QÜ¡n«`[ÞµØã×Âïœ °pœ8sOv’omŠ53ƒ~Û «š¼Ø~F¸À?×0ÈuÐà@î´Úž-ÉÒ‘ú½¥8V1ˆC@æè϶¡B` Ü“Ôp¸Zþ‚=„(ãå¤úðÕüè^‹ÿ¢JóãBä­~£¬·gMäì£ëBª’kÐpª †\áåÆü™·v¦¬vÝ‚8R^ :ït§R2œG46G‘¨æT0¡$¡`ŽwH ýg– =ë»«ÅØëŸx¢H:õÒê§ ñVB! qË ‘ÅWÉ¢…¦ðíÇ€Xc;—°2šjB;ÊàôZeNH@j Íç ô]‡)4­úÎNš9vx<ïnÌ7ÝêÛû‹®ñ‰Ž!¢…qõ8Yx^ù:În5~÷Ze¨cì=JI¢û7«°–Ù–X°åó~ºviÙ&ØÇAÐcÙ5 Ç^±žÓŸ1%¢L:˜¾lÐ54¯RU}Õ¸]¹Ë”Éý}®ûòØ¡X‘!œ^.ÏKf«hö¸é×°ŽýÈFO2{¶û0gî¦y-&þ=J£ÿõÔÍd’iß©^œlKq÷£uÝnXÿ ôÔ¬®6KKÜI{•Åd‡ñ¥C°GôËR|8Œ‹ù+~­Õî¯Ñ„óºÈ±'"¬’¯!F»›']0ȆN@yCôغmIíëMú'ŸŽ/¡QnãTÐFÑO=äwPòúƒz{àNéÌ›æë- mQS0œ6/RÔ;;!gš ©Â×KsÖåå–o&ÃÞT·Ò·Ç×m¬ ýnãZsÜMÎÏwa2"¨m Þ»}§žÁ'Ì”kðÎ1(åk˽’Ø=x?•rTêŒõjêëŽä¯@Ѿó "î´˜:Ý|ù¡‚Í:4ó³aq. ”Ø/“dv]ÖΑ” ßèØ‹\&!lN™Ð/¾[#ðJ™I¦i>VPuZŠ3n¯‹m…‚cCᜇîJŸ ÚöÅí±YTÞëK±-Éñ‘ŠçJH¥®îÿnÿµ. C÷ÙÐq®{ tÒe¡`ãnºðµœ²±9Ô| k£a:zÃñÑ%q¯o®¶ÕÊ[R\b4°=¢f§¬A¶r 8Ø3?÷ ‘{¨!ê6æu¬Î2ÁÁÌQ:J}3éÄ©uIÑ-/|-7# 9Rlàs ù)ʽ‘V@ɽÉAÖÄö]Ÿù¦ÏmÕip›-AŒ†.ÐA¥tjþhº'+#È¢oJÞp$fš¼ìÉÃú$$­ÙºôJNnteب4ØÕO˜7¯þ†B‘'P)4˜ÖTvæNZÂÎC"ëurôIgÝç[ Î&Cµ¦´ßö:¶é¸eZݺÊ#VSÕœ3,‘iá‘þ2$Ëž¤iÆq4K½”÷“*‡à˜ÂvâÄÙ·Éxª£ºëtÃÃ…t W¾0òw\“YËæÜ‚ó.ýÍ^ ÒFSetè,Àa!ÇRÍ=rGÐgüê;Ë/?8Oum(år”œ)SQd!z¬ÔI>R/††±‚Ë/EÑçÁ±­Á-{I2w<æÙÏ„ã¢ø*øh|S+Áe&OÔœ˜ ë $îÑXO×;P¢ˆqÕ¨¹aB‹Ùr[ðÆNꎛÖ73g’׬$U½®E™wK ÌCB”oÂâ¡Ï…d" `¥ØÚ¨£I¶jƵØ~o‹‘ªUìWß‹–TI§+S´Â×Ç]óIÛŹÅVÝ%0jßÓÿÎ]ŠÍ+ j²ŠS¢ê‡Š>w†ês{Ð&‚ ùXÿ2”¸/*‡>Øa®KsŠPågAw™›©¯ö'shòÜ Œþ,T</îÉ5‹VFeÀ±.“L)‰‡ì”3X0p3¿–wÓºuÂò4N®¦^“PeÕÛAêêÉÆ}2h‡‘k49TÃå.O½·¥‰ŽvêRâ6 8\ô<ÿq½K!£ˆ!Kp•aÜÙLf°ç©ê„¦“TŠ ì»Âa&¹è¥¹A•½\ºö|#ü3᪄A†Xbþ:ùgW¶öõë‘ä·…‰8‡t€Õ䫦uîü&mC:ä²0nx©¦FæÀÎYyuAñTÛ& ÊÒk z‰Wx2¹îã¸À˜9°ÁzFé’¦•" Ñ5ù _BaÔëéñEM«¼ì,±~îÎ6báÓ¤WÖH£ìS±µ*U=˜ZLºnɇÉæìy")ï_QíÜccc2ѹ.¨²‡ Šo¢T¨•ˆŽR.NBÀJñRf•Jô–ÒM u¾Œ¾—qc_n%Qµn¤B$š^jĬšS'ÌHTh—mv¡H²Ò-’H»„Ù-&×.QÔ*ÛåDmŠ|´*m—(MÔrsö¡‹¢ògM_b¤ôU,o—¼åTãCéŸV?ýÑÊVOòˆ,^v&:Ä<áìÓ³ÉÝìþð·Ôkëê›v_†Õ¹ˆ Þ†4â^¤ðÁ¶´1Iª»sòfa²„GC÷óQ-¸†$0Ú£®õQù"®]>±xjhÞ¹+$”t@k“ÞÑx…Ëé M–VS¡,À󽇧gßÄ" ¸qð•™)Z‡ óàChvFˆªk¦ˆIóUÍ–cŠœŽØµè ·JJ"ˆRúW©çWˆTgYH]U.3ÛРÙdR›2J^k´¢¬á»äÎ⫨ò]äoKšŒ‚y+¶¡ØüO#ƨi H_§ I¦!ùX?/}ˆhO‘!¿"Ôq|}øS©À*Ða˜Ð¾Ìæ[^Iê¨×}GINFjJúu„Ä[Iþ¶Ñ¥2(œÍ]ßjXî*ã˜U™¬Qø ý…úðKÿHÅ#IŸîšÌ´k›äZî ÆÃ•bGvúno¸-xŒY¾93c8»{;òç±x·À‰£B:P¸O/y'_˜™I5å÷:©x‚ëz"­§3ó=Fx.Œç;ø1ÁµËò‘¼„Ÿ5ÂMMån½´öÙvÛ2?÷SÅW9‡ØL«Ü÷mד˜÷]P³3Ä'Ñ^éÈ2Çy~ SÇÁäGªA»@£ñ*ñFëXNèAzѰӟE%ŠBÙN­‡INïµ4ó=ç`[½\þìéŒÖ›É‡§La•ô°[˲lýh$ˆÒ¦Riµd3Vîúѯb%<ü->%YS‹Ì’z°©vwhv&)áŒX¹ŽÐ–)S¬œÃáH¬ûšV×À`¡‰g€¥#Õð´jªñc½±Úån:6x)“eÛ”^H&ˬöwP@;.Æ\lÖ ¡kÞ¹¢] Å(f|ú ;[{öñë*5’ý¨©jÛ)«v jÁ|°€f1O-Qö+ÏÍ/ò•ǛԤô4ȼ´ô¤†æo ÂÍêõåR)Z‰t02‡Ý [dy^5¹#¸%ïšhYYš~Lp-áÉ'ó4¨Œ/é[^»opʬ…רsbù&¯ÙzUŸ‚ ƒ Wä|S˜?ÒàÆ5…h~²3ãmøÈR Â"ÞTÈÍY@ŠulÀü¤Ý ÚÁbBœ§¢8ˆ!:#l›z ~Ó¹ €ÓL(‡ÎrÔ¨!¹ŽÁ]Á®Ò=âŠ;Œ!gˆBžùñ¥þ+ø[üi/¤<ÿꎜ—ƒÜtŠ4”|Òš)uTþL,¸Ö¥ P«לb&ì µ˜ã«m‚5g!-öCµ%” ^ ÄP¿Ä\Xô÷º‘˜|.å-È;² gÞ( á#íΑ0~±=Á×W¸FŠZ<ò¹Y¸ £û0‡H©0ca+AªÃÒóáÒ×»$U´mˆÀ£JmЮ¯8qšûMPF/ëÕBêÀg-űzµj‚³~ÆñaÛHá®@æñ¶Æ/8ðj¤C˜Ýsl}„¸¬âjîÏþak•qà …÷qdד`”Ù²þçix¢ÈcØù‡D´¶D†Ú²ñh˜t•§LcÛ²!ÚJâž©¬£3†ƒí$ÎjN &{†L—siºH0& z]Îñ• Ö_Nm;,Ïû€N»ãZ÷Ü«Œß䉭¥?wŸr÷ëͨÖrû71Ï«ŠvÅøF¨€÷e=„ÉÒùå¸Oà—ž#òFÿk<­%Å[D£ë–/÷µ#ÉBG|øŠÀ:Ó%³ )souC¿u;ƒ½üTæUXQG´VCkêô›YÇå^[2Ṳ̈)•aUë%¦|uÐbômeÈcû/qûµzì/Â/†öt±ö3©ì,Ò#p^σÔW®,v4±u ­k wÑ·ÖÔÜ kÓ¨™› —T-“ ^+‘€oʆ}¯E…¯ºq©?~ìˆìFˆqR(TY鸯ârî¥v¢éÎsäëgu‡£ð‘$øIœéó Rû4ñ±Ê¨Aô¬Û—g 2$ÖÈõW.´úF•SGœ1g™sH*µ­œ²ƒýþOäAø›UkDmÎ^Ý®ßù´#ŸÌ9¬J¤^.ZXIçîÄÞæV[y%eÕ¯ âü1÷¿ší§\RÃyÐ,‰¿%ö¢t˜7¥púnãßu ÷Ô¦~gŽ|JGþU… ’ªÑé¡Ì‚*ÈšV£Ä©§ßw_?|æ —`µùbZkA¹3ˆ )­ÿÑÖ½‘ý¨&=A>€*á=p¿ÒÆ© ˜ž*¶³ÆÆ®óK¢?&ÔË+ö#v‚ñ".7UL¬L[ ÜÁÌRÔj‹J’›Z‰T. P µ•a]3P–kxš–yòõ#—ƒªùË67nŸã--mdAN3”ÚLD¾(<Ù«ûÀW¸Õ|^r‰ömÓ{ñ¹hJ}зH²Uqü$`âm‡šMþºÕuú¯Œ®ì6P4ì"Ž=ìƒÙð.†]߬¤—dbà,Õ+.ÔÂï Í=\YVÑé y_¢zöç_Ä•¦Šµér-÷¦œp³~à pœvÜl~Ÿ ÚMdŒ9¿0¬¼Szb'ÖE.¢e"B Ö;­_â?7¬ K‰_?€ü™ÞFœcR”ô Ä8¡¯ÂEùöëDõœØ#°ÎUAnËÈÕDM¯ísÓŒ‰*.ö]áp86¿‚¿ÑÔ€¤,#|{n˜,{Ü·u!ľ$)ÀÌ}s&MÔÌиY©Ñ9T$0ý¹h©¹#m­÷-5UQ›ÎGBZ˜Œ" =-Õá¼·á¨5gØõeÁö˜³û“×ò uÂŇÇ%ÀÎÌ=pLsÛ¨Øu5ç‘©CXTÿÒF@Ö3ªmB9¦»úö!B;Žž —‚?/ÿ›Û¬|¦©túVmn·ö\€ŒüÎ÷k$tº¶Ϲº Ž#“ÔçýÓÐÊÐ]Z½ZͰ_ÚtElÅœ;>ûÒBå´Gª?ÙÆ!d Õ×ôÏ /z»P‘Ru©ÿŒ\'+H¥ŠW ÛöyçáÏýàKOºpÚ+(eSo6ÌWøÀ”£if9ÇgøðwLJj”v0ZÑOle¨AÙ†Uò5ªðf/YÒøÅ^UvçNç|§6rnRY&‘$P–‹Ï‡!v_#*´ò¤~Aê¾²£ñŠÖìrLT‚JT!ÅŠ èOßè<ú¼g1^eBµ%O±\t5¬ž¹‡ô„=í¦ÉflË$%ÅÐ4sk¹OÖ,48Á/桾O¦î½ŸÂdYÒLÏœ&¯—QCrú­°Çw7ˆKC.°‚ˆk»¥€´©6žf@òw¹T%FáçR8¶gàç·h3€Õ+$Ž(Ôdzî°æš’×þâ`ŒÎ3èx1²v‹º‹­VH¼¤¤Ñ?X<ëøt¿!¦uôŠ·Æ¦¾ìÏ_a£„+>BKlUþ峨.p’Í(’ƒ›Þk@—®ž“BÚÝâRª…¢XíM¯Yß]ÌvG®èøÚK½È_±–à|Ë/‘k´íµPdÿI› F]ä\c†kÞ~êÖ80Qæ×,öµ|˜²KZ"—j ƒœ61Î&cê·×MkvΧRr9ãÐ2ö쯊'`×QØÂÔ¶ðæ1 >äô)»sZF)bíDÙ“gM¿>;e.£QígžnYcÔFÏ^ä·*h±òAûý ‹ ˆ§7˜DcX"Å[¾g[C!GMtÉ þÞœŒÉÁî‚\ª4¯‘ý%Æäç"Î#tÕ{þtüf¢` ˆñág?Ž˜Zª œ 5ÿF©ûúÌ©àºhêî]è”þIñ“€lÔ‹ôϬÃC:€P°±¨¼]v7k5($‡cI:sBÏ©ujòMô+†m`„§Ëø`,+hç®ìÀ«¯Á€éÄRÆÃùkÿ¡Þ™aÊ^¢S–kVrx f“µC Õrjïw÷š!ú¾èºmw =¡„§¶ê®³Ì€ÖZì!í׉|—ºÛUøGp1á°D>HñLSxCEøN¦1Cîàga7ó6Æ W!GƒÃ¹ÅxæÕÃ\¯]5jÎåe«äžÏ¶oèd 𴇬fI…™ûItðQÐaH%S<ûà|vÌÉ<(Ê…GŠÕgØØó«gåÈM\Ÿ……Ô‰}KUÂIsôd ãTIª˜¹„¯c@ÀR²Ù ür²îAŽRÞK «„«£éœEÒÆ6Ùuˆ±OÝŒÌê«°B™?ü8I™Kûʨìó Õìˆf§òE##W‰MMñTË×B(Åàò3F£nžøô ÿ yò®œ°ªfpvÉ0„øPµôh1†Ã-<ù}âþ`÷‡úû9m%ŠÀ¯Ÿóš¿¾y‚›@k½Âc~«¨ÚñG¹IÆÝ†NÁŧE»‘2@e¢ 5ÕD:©çµZ$*ýVÆ6–ªðàª<’ëÌûˆÜP—27Ѐ®öq««Y¦×‰æ^çC@ Å*oò< ‡' µ ?Z+¡ëcV#° "ÅÏO0ÁüSt§wh‚ ‘ËÅÅqEÓw²4Oçvã4¤Gµt¬=7ùü5‹Þë‹Ø BËŽ}:ó‚˜QÔÞ\~IÏÿq9Ú= endstream endobj 186 0 obj << /Type /FontDescriptor /FontName /RUAHCY+CMBX12 /Flags 4 /FontBBox [-53 -251 1139 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 109 /XHeight 444 /CharSet (/A/B/C/D/I/L/M/N/R/S/T/W/Y/a/b/c/d/e/f/ff/five/four/g/h/i/j/l/m/n/o/one/p/period/q/question/r/s/six/t/three/two/u/w/x/y) /FontFile 185 0 R >> endobj 187 0 obj << /Length1 1435 /Length2 6118 /Length3 0 /Length 7088 /Filter /FlateDecode >> stream xÚuT”]×6Ý RHçÐÝ!ÒÝ1  1ÃC·”ˆ”Ò¥(Š´”‚ ©¤„t(!Rßèãó¾ïóþÿZß·îµæ¾Ï¾®½÷¹ÎÞû '›¡‰ Š3Ü ¢ ‡!B"²5= K @DDLHDD”ˆ“ÓŠô„üm'â4‡ |¡p˜ì0ÔmS!ÑD=8 pÏÏ%eR²""Q™¿‰p„,@äuè îÁa_"N5¸wêê†DçùûÀæed¤~»T¼ (èn/tF0È`C!È „à‘wC"½e……„@^¾Bp„«"¯ ŠtC|!ˆ3à—d€>È òGš'ÀÔ êû`wA€Úà C`¾h?˜3@g˜hë ¼!°¿Èºþ+Üï_ °ßÎ 0îå ‚Aa®¨'` ©+„ D @0ç_D§/íòA=ANhÂï­ƒš*FZá}¾`Ôé+ä õü¥QøWô1kÀœÕà^^Ò—è×þÔ¡}îAŠëƒÀP¯\ 0g—_2œý¼…Í`P?ˆ¶úÚDôo›+ ‘•’”@|@°›ð¯¦AÞß ð—­!å ÷¸ e@B¡.ô‹å ò‡?H(ê?®ˆ€@€3Œ8A\¡0¢GG›!.­ÑõG@6"èöD~=ÿú²Cw˜3æôoúï k[êjóÿ‘ü/PU@ ŠŠEe$E@q q€””( ôŸþuËÿm5Aÿlï?BjÃ\à™¿T ïo%þZƒçÏÜðþ™AŽnh€çßýo+"!FÿÿÏSðÛåÿ×ü¿¢ü¯ýÿß;ÒôóôüóüEøpÔ3èÝÐ~HôpèÁÑ#ûoª䯉փ8Cý¼þÕF‚ÐC¢sõü×AB}5¡gC(ìöWý]txO( b÷…þºs‚@‘ÿÂÐcö@ß+¾èjý† è©úgJ îüküD%$ D„.>z%@Ñsê üÝÞa!‰v å…\à¢_5•–ûúyyý¾öœ¡¾Þž  _Œ¿@‘ÿ‘@äoäùÁ~z<÷zs¯ßH L47 ËŸ7Ä´ÿ¨Sa \UøÈ¹n‘Ã+ˆšCtøý$ÃÏä­Í‹ZBœªd¾{C>¿ªÁs¢ü‰õ µÓÚ„ÿú‘QÛEÈ¥ÃCãñõ6¢Ù1Úe;*ýÌ„L‚¦Ê!W>!æ‘Ø­˜]÷8‹|ü¤É K¨~ôi6ö¿øü>nzÝh£VR‡øòÅ„`ŠY²mä³IÎb§ü)zv<¤ 3åaà­É“Ó”…nXï=ä' ÝM+GY/‹¦žO/T™Šúv3Üa°¦gÆ>¡|?Î…RÝ̺G7ƒª(_,dKuñ¾ÑR²95DzøåqKЀßFl„jTß©fîªÂE2FHߛà µä"K¿î0žT©é9ëà3aÇqÙZ™¢8ü«H½ÞÚñ4$¤^k…-“ðG‰Ùô—Ç>‘Jëϧ•åòÓ/¶S]#¼¡ .½ö¿xÃCù%Kê†6™¦0®‡5¯ÖSÈGÁ•ù¤Ê-ýüžô‘&?›‹ûáÊ5Tev¹Oͯ^m¡RÞ¿¼4ÙȲǼ68e˜(WÊi‡È§P.[ÆÄ¿I-¤(ÖÂϬYŽØ[sùyO¯ º“]rKÒÄ8'$\è>"-–KŽòyE1:XñöFÇ-™3ýñ<ÁOßüK—y/MMKÕù˜Û´uC [|˜ê¾T|v œQ<;eö# íH«áÚ’ÝQð´›bÙ}<—}ù²)~»LãQR5ôó³=›*öY®NIm²…o­kȽ=2ÞJ‘Ë cäéިè¤Æ6¢(çêÆÛ9E¢j= ”=g]è–R¦Û8ŒËç¡b•ÿ„™’ËÂÇ:e80O-Êõ¼Þ™%ËÇ |¹Ä±ªMæÖвٻ®y ѾL0iÄa.˜#‰a…­}}‚*³&¸ù§ˆ‹Ô\¼Ù±ó7ˆW:ZH²¦üpHŸC{¿†ÓVf>àÝEo¬a ¶÷ƒï׸¯·; Õ»8-Ђi— ¶æP∈u…*j­¬˜Ôyz½OôÞiVÍšâ@Êø#ÁýQ*©äœœ™iã³t=¦äroë6w«ùmÄÓT¿óa0evøˆ‡ÉI5¢ÿ²±c-”°LÎÚ¸fÄ2+Ælt×÷Î+Oí¹QÉ—†¼æï›ÂŠUr"Öv̦)Sj¢Ô9åR‹°Ÿµ’D! …'S,ó‘EÍ?£ø‡Ú8k¿;©’޾–âá%Ž»ˆ ¤Ñ‘|œqéó¦×èêÊsA–®†ðé;GŸ½É háwƒÒN©-ê/z:l]u<¾Ûô.òC"mw­w]›žõÜÅ+§5²ê'ɰ­ËI+Zz,ñ¡Šk[ðz´ˆÈËÊC5f|j›Èš¬ù@†än…À¸‹ð»ßžCÈ|Éž%RÒ\UÄŸ§¤”6”uD˜o×$ÄBs'ïÅé.ÓüÉ™žÉ€š ZÈÁÒÄ`¸d—%ª™ÚÌ_÷äß²!…MûÆB VìÕ×…²¾åä‘\Yjýw VóµíÔgs*_p—<ˆy8zpª®o‚×gtg"“ñÅTL¾¤üÍ×uaø‡ìê[]®S@êeZø$Ž0¿ô÷šÈÅy«üŽ(¬Û–yü5ƶëªO'b;ïwöȺÐUZRèõÌï’GñP> Câ…&÷mƒ+ø_8Þ?\ó§fÏãÃfÛp]MÅfö$§—ãôØm%åˆJ~â¿ËNõŠó³Þó78*é’Óqú¨ðØ·œ¯3íRèÕ/å6µwÚ7JÖ][ØòŠÕL ›³½9p—±AWºDOz?Y¸XQP³ÙáBÉÌ¡-¨—¶Gw—ûÑò}—Jå•ÜÇþ³_ª¯­¯j݉õUì¢Ë©…‚^AO,Äz/%P Éoï°cPÉ1nÍX]ÚU¦:±AG¨Ë†zë˜:Ø­ïU1æ&þµ’óý_„A^wBV9©çÇ'¾ìñš†«u}Íšô`/}(ÆJ½ oPæ36›H–LX“gä#Nà˜¨>p؇ —Õ˜F~fAéÅHrÈÆgÇÕ<± øºXp’«¦ò¢ “ÛÝ®XáâBG<÷˜y_C¥W¡¬~TvXÏ`40ÁonùÎfõ©“À³hޝ5‘>}DR&Û:±În¨¬­=!:¤Ö‘eèƒ5mÒÿHs³$`v!Ê;0ÆÌzŸeZxMpÛÀ¿^»Ÿ¢G9(üyR” Àî5ÇØ æÌøÛóï˜aq(Œ6ÂáÒàwòÖ'ðT!¤Ó ªËëÛ‡F-ËaCoJê8'ªŒBlIT¡:|úœ‡a;Ìd•(‡ .§¹„<Ó+ê#ÈÅ8íÑ`ßφOD‰xÅ]2"bÖÔW­Çˆ1O‹Úö×" ¸WruJwSôé^¢–÷6°Ý ´³ç9<¡M›AèæîÜ ¨–ä› ¹‰PKLPoÑÞj<ÑBù«Æ¬tÈàç'Q#÷h¯ÅŽ“>_ž¡IN^·ÃcþD_×#€­ùýL¶înñlú´§©fÖ]“ð}(ÓÛ‡·»d3µ¨­V¯b^ÓjÄ Þø²°Æ0Ú¬õµZ²WPĘ~¢iþ)ëÜõªž ÒªW5³W;T믋cJü”2³Ë–b-"!Hckþû¶¹Ï4Ü"Øü%L"”mó±)íëÖFýfBô©SÄæÞÓvF½¾ ®® eƧ0®ÑiÄ7M&WˤMÑÖ‰¬¦²P† —°gÔ[Ìy:µ“”Rº3HçI3˜'+јêÙÊ™9ô¬ëf‡÷ï»ÛÁçb]™Kúxû&øÊB~tµ»>qÍ ‰”+„òó¹,Sí»Y«c`:G¶f½9dßÛh#ñ+Íwxèkø©Â…×u_9> KË@'ø$“(bm£»•ФÄþ0ãd"]€ÕxÊ%m·åZãmnÍM1³ŽÝÿ¹Yö°œìúÑ‘ñÇu™Y& çθó€îÌ!»¯Ðªi†/RL@ÃŽ«zç}çOÍÃÝJURQ¥uª!Ù—ÛY“ï¢ÚUüüÞ*¢LûÕí¤^ßì¼;t^ÙE=:¯&˜`Xµ@Ò|‹Öó¦Š+‚~Šä¡*>ã· #õ¶¶“~ÙÕ[ÒZötи½;{Ùýj4B ‹ƒñ|fòc}Ï›Êíê' vVR”|y©Óˆh£k›…ÑüÇDÿÉ‹SWÌeg=–î°Û|m† €¦N¦T¬¼åD§%±˜Ê-Õ×8· ä$§Ê@c7wܱ´±ç¶g9#ªAಜ`Ú|²!w9¤¹ùãÇ»3Jiý[”M„™f™aÔÞ[ï5¢˜nm®=¥ªòÔ~T³ w•ŸÞj£[û¬ºýúÜzǶ K•†¥2VÂ-*Ñw‹A£´(†ÆÙžª?àÅ›D¬9hóK/@‰þ‰( =»Rÿ6‘£C=ísk=¾´! ¦íÖèq@No$S´ §LÝ÷\çÉðI˥иdþÕÝwV÷>Ø)χ6ÉX;Õ-(–Ì^øÚ•ÑÛOep·¢²R3x<ÊA.뾿NÔ$E\Þ-Ù|‹Éj­{ÌÞØŸÑ´¥„ÛD§ÿcÚ|B{|.Øü4Ð>ßPektêf)¬jãGN>+®2Ýäæ¡£uô²–±#‹i¦«ØîÝñ•üîqˆŽ1©ã‹ùH|þ—•‹ +‹äî!+­Róðå¶»ú†x>”÷Ó(á‰O„ïm-—¢ÎÙ“¿béá/Ü;ø4+´uôûxyŒU nsDå_ÿPH;ߤ?mP†œÆ}Ô¬I×™?¡ù‘‹_Fûpy_˜—Qq½ K¯¯Ö‘Þ¨Óï¶±•èJŸbM¨ó}œWÑ£ mf·2pŠ!{;³—ßZ1¤ã”ùäù”š×6ØN¤ íÚº¥ÒéOUŽ©ÞûDôl ¬¨\÷êôR›Œ¿'‘Qn÷;X¾›]këÜAøq«,yûA¨ø‡o;Zá+úÄ,¾YjµK:$œuZ“§“vÑV’AHóÖ©âo¢2NŽ~æ™¶þ(y·wàûÆÝ>IpcœÛV ¢1°.•5X»žT2KÍxþ,­S,XNZyAŽó,4MØ4WpyL½ÞÀÆd°fÄ4T¯;zªœCò|VˆÍ,pì[Ø-ˆ±»‚™Âh¹ºÏF½ÎÓ¥t®?™­ œŸÜQuyÙ%@smÅŠ®S‡XûÑMx xí—óS ]åÌ}9œšêž>l’CºŽuÐ^KŽqP\!égëO²S)½žS;Oí#Ïa3ÁädlÈK³ä§XSO÷ÅyûÝ ^¦ëáë9÷·n¤‡_O“ìÅOš„-/î¿ôÕÑ‹°ïã¨TîT5ž@WZÒ=S±Uõo%! ¥óÇꬾ†!‚d’Ü’ú•¶ÁnsYl?cXÁDÔV8_“c ’É;>ÿ—QžÌ‡úÜê”À-Ìβmù™Åó:hŠöÁÕSû/s;Ø<ºÏZˆbsîþñÁÇn‰LS[2[/3j7²¥¦©¬OÔ¬Nñ0×S#Zßô,¿`{™~eF«v‡ï“›VäNLñ”Mƒ¸ãNþ² GY’ìcŠÆÆ‚²ï,u9»¬ hJÒÞ©ßw®¬°YÄ»¬ª©‰×,1Ý.*‹Lp¶GÕwuÈ–1Àeã3mQû1Õ‡7ínœþ2'ÜHZü3Uêò¦r£þL®èŸš7Þý“åŸ'¤-’Öw²[Nw4[?hFæ<ê4*Ó°hS×h—ð-à2ÅS’‹Ä,$VÕË^ÜYåFðmU[d„äžâF,Ö˜9uåÙÚiTøûâ‡ô*ézÀÊR jÊ&¯¡ƒš)÷3Gx¤ïWÎiœ£{Jà åß>tŠ`Ï«ãÔ!°‡JÄöÊô¨…œÙ1ßûº†E'^ìtïOì}¨–‘ó6>#2i„¨¯úö¤+dóþº0;€'’ã5á’2ˆF5Îé›F½ÈQuO.Ö¾™R­-`ÅɪìcÇNü™vt™×Pö‰å c Ã7þYª¨G¢>Ö²8î«õO·zôu:/ä¤kžªä‘øîrù\ÚÂ}*^§š»ã8¡5b‘éw`'ßO蹩{’58øz‰,ÌÍI:Š´— ¤wè#ŽW¯°'—á$SâôN^„o(ʼ áëO†:Ç… ,DFƹE¿Ç‰lLÏcŒú_x ÙA’<E…ï1Ÿ/0÷³ÕXegçN³_Ek.y¨>ÄRárJE©úv máÎ/ZÄ÷¾AÝÍ_  #oŸÚVý¡g^húÜ;­³åóôƒð£¾79¢ÌPA Ú‘ZÏn¯¦F’ÿ`èhó(üaòþKÉw攣ۧ„´›MR¡ÈÊõëg)R^ǧs!fꉋ#ŸN„AÃ|+÷›sïKƒìVÃ^ÊzÜ9Ìo JkçGÆÛFÑ‚ôA°INB¹µ™©»¶ºjþ_µ7S=âö£…;wávôwÈôa…jÓ^!ܺÜ_uy}’¸1Ö±;¾.ƒ) æoKµÍábÐÑ7»£^iïp(‡-RÀ)ã.th± *ŒÀå¢ïô­ã›’ z 3Ïab Kðà¾R˜Áƒ’lÅPòq{¸´#ëÍqˆgÁÛWçÅk޳cmƒýæJB&F»G‡-¬ñTušà'ò®qÛ÷¦¾T›Ó#~<Ÿ°s;û´²„\ò5;ƒ;>»º%Yº(öSpýEéFV‘ŽÙ¡øE)ñvÝk½ƒìe Ÿ"_¤ºV³DÄ]rË ®ßWéÞòýÈ.N3¼&Ǹ½æËSÂa¨:× pƒ 9ï=hë%ì¥÷Ç8%[’½<:ÎJøMzÃY]÷eñ­Õ(X½Ïä{|m¸ëŸÁWîaG qŠ¡~!¹‘¢T¸!¶ŒúÌùr¬Vã{E3Ôü¦»èÆ}àcEmë³ ÃÒhý@›'§ÄcÏaÇá†3Ÿ€Ìøcþå¹*Ò‹]’ÅÎÁ^åëî!µö$ /ó„ò;p¸¶áUÆ&_iÊÎuïcŠ_ÉúQ©šŸ)ƒ˜ Ö3E˃ŸÀØzˆ½Û\M@1ZóR× ¤N[ÁÛ¾“ceeYVÊ•)-¡Ø"‰(™KÕ}É;CÙ“ÏäÙS÷ZV—2ä–£éMÂÀù£*k –KÕZÝG#9¡æ8Ï^+P`xø+Ž%)VÑÂÄh9B*Ü®ÂÎ3Å¿ã9(ÔN¬¿'¤OaÃ]Á-¬³5a:ˆ×ßþ™3ÖÞ&äÔhý ¿8·ˆÙ•’öоéb`¦¾¼‚ߦۇûU‚CáT‹¾CFî†éÏÀ¤¨Ø-®mAH[þ9Rï*8,¦y"ðlxKW¦ByT‹1‰§m­Òõ³#æ¤í¶«, 5³‡of<_¼îø0^ì(¥ "¤ªs¡{èfxPÚý™æ˜®ô½ÄŸ øªs!n¶qš-À*‡Üïš8îrà‡”-†Ø‰5¿ŒBt:+›Ÿ,] ŒNr•yúHlÁá›ùÍÈ^“y˜C‡OÐ^„ñíÑ/¼¦Û wpTp7ut›yˆ_Nçðö£§X”Zä¤AA,ö†ÞKq×WÄU’ëÖÆR1ª/¿í3†.}ºch5K&OùhÆË²¼+®˜ûèlQSù²·=ÈŽXÃVŸÉ‚<60A³Ï…SÑQs³:pî•Èu/¨¶µŒ¥ a§¬ƒA!å´gª´Âô“ Îâá óuR€çiÿx¶õuLàhhØWâH*7CòU_|¯,Èz8 wªºÎ¬¾ô ³rùl¨UnÅE [+u½Š@~­-Á¡\ÖÆòÎxá1WBå• ´µÇ×(×Xúú?›° endstream endobj 188 0 obj << /Type /FontDescriptor /FontName /IXNPPI+CMEX10 /Flags 4 /FontBBox [-24 -2960 1454 772] /Ascent 40 /CapHeight 0 /Descent -600 /ItalicAngle 0 /StemV 47 /XHeight 431 /CharSet (/summationdisplay/summationtext) /FontFile 187 0 R >> endobj 189 0 obj << /Length1 1795 /Length2 11021 /Length3 0 /Length 12165 /Filter /FlateDecode >> stream xÚ·Pœë-Jpw×Aƒ»»»; 0Ø Á-¸ww – ‚Á-8w.Ùrö>罪{kª˜u¯¶¯»¿á§§ÖÔa“²‚X€ä!NP6.vNa€Œšš'€““‡““•ž^ uý-G¥×¹º!NÂÿbȸ‚€Ðg™,úLTƒ8”ß8¸x\üÂ\œœnNN¡¿‰Wa€,ÐlPc(Cœ@n¨ô2g/W°-ô9ÎßFK&—ëæ)G+ØèPBmAŽÏ-ˆ%õú/Œ¢¶P¨³0‡‡‡;ÐÑâj#ÎÄ ðCmÚ 7«;È ð»d€:ÐôWiì¨ô][°ÛŸ ˆ5Ôè < À– '·g“7NV WÀst€Ž’*@Ãäô'YõO+à¯Ãp±sýÇÝ_Ö¿þ0ZZBN^`'€5ØÐWe‡zBY@'«ßD ƒäÙè;-ž ¤ÈKi€ÏþUŸ›¥+ØêÆîvø]#Ço7ÏÇ,çd%qt9AÝPç' vY>Ÿ»Ç_͵w‚x8ùü¬ÁNVֿ˰zãÌ¡çvyR’ý‹ó,BýGf‚ø8xù ÈÓÒ–ãw]/gÐJ®ßâçü|œ!Îëç2@~`kÐóªÐ€º¾ùùü[ñß•‹ `¶„,@6`'Ô¼?‹AÖâçþ»‚=ÆœÏãÇàüýùÏ“éó„YAœ¼þ¡ÿÑbùWÊR,•ü¥´4ÄàÃÆÃ `ãæãpqò žüþÛÏNàïêÿjÁe÷/JNÖÀï¿«x>¾¿+qÿk4ÿÚ&À‡P‡<4ÀøÏü›pòqZ>ÿáúÞ‚?Lþÿ†ÿ·—ÿëüÿoFòoþÐ3þIøÿèŽ`¯¿Ïýú¼jçqú_ªèÏVYß8þ¯V |^)'›çAgãâeçäýSv“{‚¬4ÁPKÛ?‡éïn<Çp;4!nàßϳ'çÿèžwÏÒþùrq{îÙŸ* Ûó"Bÿhïo z^µÿÎCÎÉbõ{'¹ùø@WW êóH<#>€×óòZ<ÿ˜y»úlx®Ù` qEýÝh~>‡ÔoÑŸˆÀ!ýpÈüƒ²ÿA‚ÏLýÐ3ÓàôÌ4üz^ ƒ³-ð 7€ÃýGÀ'àx¾]ÿEy^ Ð?ð9KóóqâúGÈà°þ·Õ3ü/øœ¤Ý¿às–öÿÜÏY8¾ùWšœ§Ágµó¿à³g·lŸ=¹mþšÿ9_7 ›í?&ϧð<íÿ*“‹ë¹Nó×ð¿ZjùÆÕõ¹çìâs¿ÿÆܹ 'Èõû,ÄR$Ø®>¸ãºVŠÌƒmkLá8íÚ›m¬ð52´_nÊl-A'ëÂJ¹ü÷>.ù×vÝêÒ.×ÙËsg>› T^¼—lTò;6Tq³O—/f}®Èif±Zaò R¤)…K\ûa4)¢°{P$¬lúuè±|_Ö÷Î'z0à—Ê (‡t¨wõÔ–~P%$Ò?X׆¶Y énñ¿ÌYwŒ Úˆ6‰HUÏ QíºAMð¨Á^ZÄ飸¨ìþnë„.Š#'2D.Ë‹T£¿˜yŸS⾟ëc¡€'¹oÕ_±Â”r]¯~j»yºoJ͘Ô#`kždÍuà}C㼈/æš[°iõ#;Œ ®eP<ñÊM¿7¬øy¹jÂ^9,DÅka¦wrõþJª’ñø@0#«Z‚Øcåæ_}gŒ»u(lûËÚœM9ÂL{~ÖAùtY‹—Œ!3ÜÆ‚i¶ºâÅ‹BÁí†8<<îà´j=LަŸƒHEF—>Þ¼ùg]]Ò .5QN1¸ÑÞ« ‹¾…y·Ç\_-Óë¢e¼=×.}k<×LU!E~UÞŽ|‡«s8ï£!ª첽îÈàbööšª}ᔕ°qV0¥ê¹·ç„_ 0<¨î¥Ñ·ûÞû°uTçFo„rMý©nþÁü~4Xñï¬O¿ÄÛS5”y¥8G´yšgÛ˜ñ‡|ºXò Û7q…pÖBÀo¶ÆÕ’65$±lýØð~0¾Çx‡¯5´›Ý!µzÞ–Å4]G6sˆÞQ*ˆÌ.TöóÃþ9 éÙ1L*ã.3ª'‹'ˆÁ‰4¹~áÊíÀ»¤æSªCØÍæ¬ÌÏ«ÀÓ]È+y7x¦à¤Búc+îÓ6hõUÓŠâ²~'È?²âû’1;ë¸ì^UÙ”b"vsYtµ}P.úšwÙÆ”X¼eúäatliÌÀi—tRo#àumƒŠ—fK¢Ó’Ï€ðÖ×ù‘mjÏzö5x7k†ÚOæÀë­¿{¶ã¤}¶ÚMa’¬i`†õöM‰O6³·2½LÏ”Õy¿âÆ3kŸËú:Ú"!ãÄ{¤ ˆ6Âk&¸±‡‡€»x70vËuÌ2¹€3ýëÀ ©ž{ØòAöîCE\—§ø°õœbí1•©®Üå'» í¡H–;´ÍMÂ=@Fö’ƒà¦·áb‚sýyNf–"µþÕb U3us€ˆo~nÖw>aÖ[w|ZK•XæÅYïq$Ãè\o {Q¡ÖôŠG¿8ÐeÀ‚‹+Fé¶mL›!D4ñí*^,|Ϻ­YôÄNåþý4}«Ãå2½Ù¹#)vºÐ[_Pî‘=Puä-éâMšî¸&—ÏD )¾SnÄûoÙò >º£Öˆ¡ë‡¹U>ªSû á==¨Ã†YBÃÅ«·WGM+âx ›º¹óC#mŒé5aÔ0ÊLPÛ1*Ç)JDûù'bB¯»ÃVL¿àÜ0èö‚a~P;@À© 4xÕúÖ¯w{2‰©6T^G{Ú0Ù‹Wôƒ[#·]²Æë޵ vlúôX½¬öUñ™ŽÜÊš2GÈÊç}¥_žó"«Ÿ>¶„¼â‘¸‘H¯=d‹O$AZçV˜}p{@°•ÑäëUÉî& dgt0y} t›èîŽrðün’¦JÅrwÛ õ\üþ˽.dR¬™¯õËÈ­WaÀwZg:;¹é¡«é”g^²ÿÄ3bƒî¤§íÖVÕs{g}û\†*ªÃåjrè[2ÿh‘± “Ó£´O8IaÆ”õ*ýlÆ „-‡©Å(Ò³ä;ø*³&õÒχ=è©*ûµ[*-²ùíC¿z1Å„62@5êðƒõ€ç6·,cÊ»Q§Üú…Ù?À‹1åã“eÑn½ß;b‚ÖoÙ]—‘ká(ÏäŒËØà*Z.0w‚J½;S¶b]«°öV§èФËÑTa9"ã~ ·J^f—çȲ§Æ¸Þðsšº™¢&œ'ûf´'2Öò欔0îžH×?°áØw|lËH±/Z;¿û¨BYíµ$¹lV(õr{®çUût.2+6ÅqFÖ®*¦'ÆÙä¤ú$ Ñp1QêAÐQÊûûÅÏðV]ê"4›éþĈ“ ¥]Î+—©­$2 ؉ê9µïûV|E*HGüØ=R+W3ƒææ›]vÂh°D0¯bžõŠé™oùÉLæÏš¥·×âE‡÷¶4£éœáìªzv=z¡!,àÒepu¡rùLvËý  S¯¨äÄmǨ=Ë.Ä/Õä3TQféxø†2Uvm ðqÅ êÛ@O‡«Í«!ëÚðýÌî“jYæpÍù¾ œ±„pá­ rËÑWòVòï¯Zé ¿°%Xtrå òŠ1Ž0L+DË…<•Ðí-p¦'½§=õƒLºp€ÐîO³1¶~öþª“’?+?cŒ(ˆõ½®°ßc²¯Él£ZLÇ_Kº½&ºöTxbEÆÚ'Ö¸ ÍxudW³!¯»Ø1ÁJ<"ÕþQ{ëfÔXP8oâ`iÏ©cÙ~‹6º½ðIn/Ìâ8ŠU¦Ú嬗!ôÁo_© s`& ÞµÓäGóçw_žÖï´As÷„µvW+"g‰ƒñ™êšÖßdÆëÊfÛ .CgÎìóƒÆ†¤r©°¿›ªm’Ìá`¡`ã_.ƽ¬šü¦‘\ç°4>á%F~^úÚ›O.:Ä›îñ݈åá2爽N¤sl§Ô ¬m‰«ZHg¸9‚ò×ÄGû¨Ž¶Q9Û† ‚ @Þj5™yrÖ†¤PuÄDR5¨›jª E;Àòî®yIÊüéJO$”Mn’t+$òQ×b}©›o³¦¥û¾“;©K¼â@ÅÓ…§·hõ‹´„¢*s7nÂwÒ`Ž>œ³`Tl[.^²¦=‰ý˜ûõªkC‘p#…¢x%hgAst©aF¤æj~p./ØÏÑàÃ.Û¯&µ5©1o7s7 ¿¸ìèï½n­’øf‰n°©ÙòáÝÁX rŸ+RŽ¢–mMÌ-^\) 3Zè—O‡^ëñàÕ¸d4Î\oœÉ ÐT<¹wGµ^Ø=âÀÄH¤åÜ.ŽHQL·ló±—º w™’‰(rW‡tÖK8t7Ö[âãn>Âh]Sƒ ~ì±A¹ÞÏsr Æ[ˆ†&'.>Øßqlù¬ îN&A2Çrñ‚c¿Àm *ÐãD8u|ÙhQû%<|ëôð™ÎR'`ŸŒº,ºq»8=Jd³Ï©4ß^Šø\\è¶ñ¾ÃíÉù[¢ž<ƒ½ŠØe¿¿ÚgµêùIÉVNl0¨$¼È4ÁÔ ›Ðã‡Ñ~¤ôîî0“{‰¤š£( >ýq¯ß¥6õ[‚囯6=í@ûU¸¸çÿHš†#È*¾v‡ûvjÎäêwö3îz/Oî9ú¸w¾ïU‡2çŒþʰĆ‘M¯%M@3ÚÏ,³efíñRЗ”4#È—Þ§“ _/Ö“¾€“ÒÈa¬uûb]Gϸxç<&ûC‘†›!Í9MåØ¿6Âb㜇ZìÜ™ÖnR*2㾬¨Hƒ]mßpËíÊw¥­n7|Šüæ•;©F›P…įê:ƒ‘–Ü3÷ís®¸ì¡KßdÞ¿–‘Î]‹Ú©Å[r›4O9ÅÿààRÅÈmºÔ®"ËRÙIâl 8(™ræJ¹ú…ö:&íŸÇ\Ó_ç‰JLeéIBîf[…,3“¡å,¢ÀÕ„Ž…Îx.šÃsÖ™§ fÝH/¯Ò%¡‰Ö<×Pv%…V•¨'80؉cvvC'¿Á+ºt°/±tÒb9ÑŽvÊNˆàö­! þÞìGùqGew^E_7ˆ¶Bt-:;ÙYN¸Ëc8+{’PÎ-1§·²WLéb7¢DyÐüäK’!“¶çñrÂn\Ÿ' ß$û‚m)-r»¬"É^ÎwÎ!XË&ÿOm„ÊEè¡­ÇEÂ.ð„C¶^*Kò"¢FO9!÷þ½¾§-+(38x纮ÝÅT5ÇR}{ƒw›•ôÞçœ@·Ÿ‰²š2ê¼*&ÍK§Ûr´¿´¦®’iöÖìi—rÎ$uro}•јžÎMàÉñýX“¦Üõ$dE™FRŽM 3 ’?ž$T®/ï*L â|JD€iÉÐ¥ÛQR»\óŠ‚É$äåP£ð­mé¦Í3ç'@€Eˆ‡bà ÚS‚ówE-n’?ä´½@ÝÈ!g¡ÃÈ„Wøñö­· ¶€Ž«3Ch=]„ýÅæWÉ ä¦â´( Z@øç"|Úázï]Ú¹EÍ:e::T5Lp²Ž3u8Üw|z¯Kƒ’iÅeb [>Š’¢‘[ æY_ÔÞµ€1_l¶Ý/ö”ˆýÀ’Z3¥!´*å7Jœg‚¶æõ‹UÌÓ,úS…ÂÇØž•<~ ä0;é… A‰‰àŸ[²c`âÉߟ{É&}ïFr4(6£M°ˆ>¥øz0á(™¯bUõ‚@_à€['»r–®3 Ï”$ö—dç!áúô;DÄØžÇe,t’Í-ùì‚e”Y ùXqÜìZKôœ˜ËÝM# -H÷EÃûo|©V†n·)Šïë‚¬ì œ¶\¼´§D)×<ÑÄÎÙ>¸‡Ãß+ŒãûÕµy[¦Ïœ×Œ³1a9êÏ®0Vªf¤lØD•½xtã¨Ãêfà’×õ“3ýÕÁ“·R¢COΠÖêS`$S˜„bq³ÑZÂ"åA R€zÕ ¯Šÿ€R Ç¿Iá`à&ŠÈûx­6lFjªžîÿ2ͽ†âNBË Õn5d"»p-éí'´4_¶ZKUløàóF]xœœ#oÿ!ØOdª·¤¡3EU ,¯zFr¤£ëV"»÷ÄZ‘™Fu*ý߆ÅѦM­t;$¤"h¦ªïïlµU¾k)þ”KžÏhód±ÅL(æ &cµœJäÄíçth9®müê&ªßîS9È5•t•GÅL+OtšÊVÚû£áç­7„/h¨h±¢Áª[îmâÝ0C/þ»yÄ’Âë·ªmìœKlß6tÌeÐaÞ ¸€t3 KD-ŠÐœ¡õ-ËSµP] óPò©^v O:ÏÏŸ8¿Þ_¶’äVŽØª(à›q6PÎBν‹ ‚NFGÀƒˆ,§ð©* Ý÷³ºð?ËÜ\Ât+»lßñ».ìª&2Eöu¤Ç6lÊ ›T­Ä£#Â`U21$ïx¾™é¨ æ¾´ß-^AÖ“XfڜѶ Ÿ¼[€D·¤íˆGòclô ú3¥¡h$ V” zð}å YóµO/e‘Ðq/+Wt) µ®&R^|Ê&çT»€ÐÚ:OêîÒ÷n½`ÓÎe/b»E™*=âæ ·íØ9n÷Ubç{óÉ\K³àjö“ù¯²T-­Áæ]Æ{¤+ÞD>âä†×%AËÁïðÕVj áÈ| Ìæ_µåÕJ1V{¿Úl¼ßsî±^Xu‚{„éâಪ,l‹?TéÛÇ5VEõjuAi”îi¦ë•|I>Ì¿Km°¿Š:w+GÐ< ÔvÌÍz§¤û‰.,æqÌ+ó{ØQâ ÅgpÛö“¾¥m¶)±Õ<ùÞ%á¶ÏØ…»t´C‘ÈԲ¥0Q80!ôL°Hø@âL5Ïć¡A3ÕÔ[ òÏV¸Ì·Âa³œÇܦžŒí¼ÎhÕš‚Ìäìðî|Ùn#¢ïLUµB9™¯›U“çXZ$ÅAìl òéØG’j,ø”¼‡aìãIm:÷^HŠlQú‚Mè ò£WàÍ^îSN"“8WJ^-eY’Ù¯­{”,_= &”öåièVW[û …|¹#dåqƒ‘äÑrRu )øWë“®!7ëÔ_ ‡­„…49A†òS½l×§L¹ðt¯0×ê|Á±í²)x¾'1 ›½¯2N@AoæJîqÐ#á"’éÌ;ÊÎg–/uL”¾õ¬sÓ.SNªðo¯£ªºêÙ+ØŠWª/¸ut3Œ¿‘_™£Èârð[ðɸƒÅ•ŸO7U׋õÄ#)„1úOnãqÕÐj´,´Uóý÷Bè%t¹¹€-c±8A 9Své݇õ\Ò ünbt–ö,CÁoo¾8~ Øh×Ýa%}8Ÿc#ôµµdŠW›{¯€ØøVÞ˜_&Ž{ú1¬GQÝ‹¯ Ì†vPNµ*`€6·ˆí è¢ýë,|½CB@/ð…K_ÿ¨®æx¹…6 Î‘˜ªgcŠÖxÝf†&ªz1Nh¢çÍ ¹ÏJˆ,+Èn¼„PrÞ&‚¸í.v½Êœ±£ŒŽ +ÒÝ+•Ç Ø–S<ê²a¥z]§MÕ 0}ó£O”Ö¹$å2újyÎÖM#@\^òs·.¤ÏÉñ'Nƒ[À½_úiM³ !‰MÙqýà[û#vÜ©ÌcÕ8¯…~(ŸîÜö÷[h R‚¨Ìþî€{vÚø+:Eyø•µ/‘u]fko¡ÊÐz„ßcæÇõ¼ËÌ äo ?¥.3g„¸¾zvC­•~á &× e³†ÅÚã..!¬Æ¼ €Á0°Ç?QÒϘhvT'°3<ÇÑ=pò­öQRÔZé|¾'C· 5ñŸ&YuX`ðê¾ìšc5Dž¯Þ›nÂj‹±ƒsÅä‡#X|y+“D #‚V ÷Ë@póÂ;éêì–ðLvç½QÌÜ×êÚ±?Òâ÷„Zî¶.Š[°,èë—T;"~’ôm÷ÉÔë, Á¾/hoª£·Éò cË-Y'“3üw­Oe"Úä¨=¯ãÝ:ÔzNýWÃòxÑdnáeŽèƒŽÀ°¸“åEÊœ¯©ô<¸)Y'æýÊ’–d 8ŠNÜÙ°ëƒMIú¶w›V“R ½ ¶Ö°RH³¦‡ü%³DèaYµt~Q–Œë‰¯„ÍÎôLð ë´øüñŒpªŒÌ4\TŽc;FT±¶ÒÉIÄúUDÈ/8%ò>©f¿ M¦ÁÖ0ó:¸»ÍÍÃBÀŽº«˜^ïK>îx›4Ri? ~ö#ÂIÏ:ÖÇ<õõ¿|<‡25ÝøjØóp¹ýÔ¸fÈQÅdª`JÖ>g %±)·õ0Ádþ)+Y³><+âcÍÊäÍe¥itÔ±@KoèA•yïc_0ÓÛåj®DÜYöâ_Šk´nÔ& ¢`¾GÏÛòb–Üm_)I['vO9ƒ¢çò¯ /ÓLË¢`¿$7+ ³öª6š¿Ú^9å¨]P]yز ŽÁj0u­Ñ2í59ŒeNÂÅÊZãÌã/Ì„ÌT€dáy0êߟ dЂ÷;ÃÄ·e];Ká7¼%eëüX½ÃŒ…ÆÃ"E4hÛ̉·fÕhìCÕ,ä/–àÙ³|÷ÜÌ0ìæeƒ_™#\‘ÔîsŒõ¥ËkŒôêÈÛÎÚוÐ7~$äï/•UáÃ.„ŠúªJ£úkø¢ùbê3¦ñëÍ$¯^E?™¨Ý~50vf09)IFÑ.ý)’fÄö"/Rï¹*â**´¸˜U×ÒèÞìRWÂw3%w.¬M1b8gõÿ±Ær´w0¢—VóÞ1–» ‚RLó•M*Oòõ„oœP.Ÿ#<Î:¨,Ã5Šœ‰ÚTå´GîîGEAZ·œ³§ÍlnPóÇŒñÃàb}"©¸<›æ ÁG¡tTÎöÔÆ0ˆ4\@¨tâ~+?à;1Ox'ây í¸sð}:¡àÓù*CÒðû½qˆ¤ ý„úÕ7ðú™H;+wð]ÚéOªSk¬wœ¹§ì¹ÇØÍýH÷H€”ÔÞAÎ0¼7Os¬ŸÉ›T•3">p«)J•»°ˆVÚ︡|%—¾õ±’Iü$éE‰ß¼|ó)¾Þ.\µu¨"1ÜÉ,÷1ë©Y;g®•wøidÉÉUC%na#ÅW%`êå©õG?ßü‘Ð3 šPS2r ;F€Ô çÙiCÆÞõ3Gzp²çæ’Zƒ¦ã¬¸iÆ‹þðÊ™Æû{íS¡%«Aít~çoûKV¾Ï&A__X"”§nþš™@jYÊOµI,Ï·#¤œh†¨‹Æz›-’¢~-kVÁí.wA‘†øBMé_êœO„˜ jWŸ<]xï4ÓŠ£«»|åÐÚI"³Ñ_-QÕÜ%YðÞ¦ ¹–_!>S õ¡KEîgÈØ¥ÏæØl,Ýó‰àq+=¼&²´/I~wÃÅ¡DVJŠÙ:4Š5¡±ï²â}ŒÞû³¾nN#æ,}l)¢Ý|«›t#ºý±ÿC°™xâùýþ=£Æ$ ÊSÇ׸(j©àÑ­É´h Þ°K§€Fvgô ÈuŠ#½9 ºÁ:ü@–‹çpadÝÝÏ…9£ƒÕ…ä!ÀÇ0”½í¾Uî¹tŒo Çx!RÀ¯º‰äG! Ãða]Z•Ô‹¶ƒXgGl écÖÇÂJc™ §6ÌþÆ3†Èp®³0D(¢¡þÆm%SŸXžž)ÝÆhœó#ã%£oiVü8Þ´KX×Ê_Q·Þn :øL\ßò¤¼aÁsý‚0Ø *ØblAj¯Â=X.±9@Æ â}•ÅóÊB+á:Á±"á'Ê ôêH(‘gû6zPȺÏÁaO(Üö×!xhÈy– Âb}Ì1öÛ(wAGÐÙR/'ððP ƒF’ f²…E°¿Rß.×è°LJHä—c„—Ÿå°uu.íï‘Étrú+á ˆ@âšXm¾_V»²#&ý}Ïoè7QKÒ»¨]]8Õ>’ù£=âØK»_%®:ý€À­˜®§ì Ï£ž›ò¶¦þàä&g‹_W¼ê¤U4ÉàâÚ3R(Â'lkš¤ ÁgÑ3?œ|òu­ÒbvùéEä#2Dùö%4[;Ïw½ûöpŽþnõé”4ÓX„c•rºA—»œîä;·76¢ÛÐŽiëTTÓŠ7\x?t­âµ ŸÔø\«¡Æƒˆ°(œ9g颀óÕAÕm·?͵$¿Ì¯YÄǵqGNJGÃ`Rf‘ûOw a_>Õã^M[–öÕ‡çeǨKU©¬qÍföª¢ ã˦k¸;kÖT\ŒyKâáK±OânYoO_¦ ©…¡tºÑ}`õ¯C´÷œÛ7ÔS ^“=d­Êa[{åeÀ#À×l§×³ƒ=ªR²û^Ú¢–ÎW¥OH$îE芶ªɬÇÿšlŒz.Ðd¿Üù1B¶»Ä/¤QÜlwÉ2¾è\JÑ­k^gN™¢„p5Íf$:}­–ØœIÑ|g#š_ž*ÑAÿ”üŽj5!Û'çÖÝR&=^$'Ä! ^p¨°Q¬2®ûgÈí;¯Žûñ„%ö\3…KŸ#Ü ‹†´ö¥q]‹ro`äåôs´5ºÐ_…p\û¥j…FŬ‹vÒŠínV#¢©7`ÑÝWò’8ÜÅ õo{ÁÌŸ5~zÀœ^šï0°N¢þÓ ;„[¶Ú/ª+Ú½S13=Æ4i„ßàž]Õ‹¸ë@8œv Âü%Mr¨Õ¯>ÏÏåñÛ-Es$óaŠè‰ÙŸ\ÁÔŸ¹]¨ÅÖeyhí €Á°jÐ[I-O’‚3{íéÒ04#»¥4ŒÙIä‚üú¦¸Iz¹kœsúa¶ÈCïjrú O…¿Å?G9ŠÈìÕÿwⳕ/¡ÞÆ©î4Ú»Ã&÷Çó¥ãiáõõ»J=f‹ê™ÛjÑU7+§¡öI¡ƒÞ_¢[JÚ©H³½Sëå˜ýr/fv4ÃW, áó¾W“Lí,.ÇèÑÇ$&7ˆÞ’ïØ|ºðzÅž£1¢BöŽÿÉBtÙZ,$Báù+¤“…NÄ0—¡3v».gš“Hü-ó‚}×nÀ’ܬ"û§î†0®„³y U¢ç6a´õÖç¿5€©{Ч®k¤'íP€5|5û2ù'Ý6Ï©ŒðAÆØ‡f›§!¾TÝ÷8îæ}iGhÙT<¯ñ0Ò±K K®eÁúgýéÎLvE‹SÚ÷šZ˜âjŸè~„äÄt˜qPƒýB‡Þ&NB”™&*ØæþËÉ57FçŠ ‰>¹A²D¥wç8ÒNDòH°Í?Œ9+XµŠZ•,ý¢€7¿nw°g¹„3Aý +þ(ôÁ·r«wR½Ãò‹2&êXX§¯t0 Íÿ®ÎÏÝÍ/•Uå‚ˆŽ¿ÊÖ®Ùõm+Mâ`æá•nD³rší >9>Ã^모ñçÀV²Îºãfå¶ùáþ[˜ÊÜ´O“uÙè¡MuøÝgõzBŽ_Ւ₟t©©yüÊÁ韰-¬¬>~*(îŠÏÊÃ×½Ù–ŸûÉ4²¿ß¤ºÝd•e]ŸŒÿ"pˆðui„—’«U™ûT±O•­ïÇyÈžû‰øcv½d¹mž²œÏŸ»/¿nvÚâM• ’`ÚY1S0U˜49aÜòÐN¿­ ×çúëRO!ÏXq†œ z‰lC ?+å Ýtkµð ë„ZŽ¿ÌÔR¡x÷™{†•PªENdX!¡ê© ÿc­Y·>TMµï‹+¨¸rU?ðµî÷$Ï  Æ¤™²Æ¬¦ŠÁèËkÒËAªŸµ@CªO¦%¯Þû^=Ê”[Õj©á¥¾«ÑB%‡àðBÍ÷k²7¿’i‰xx1ÕyŒ{Óˆ‡bD ÖâbýµmXÈæï?WrèöŠÄv踴Ç2eA`w—éƒRÅf!ÇeåJ÷oÆkU=t ×R¨{ýyOüf²ÓVy‚¹w s4¾»¥Qœ©“éÛ¿IIÌÎDsK#’ã¦&›À¨ÿaØdè²pqìýã…Ãôq»˜;Ô —Ù;¬Ž‰xiƒoô(@ƒ¸FöÊí Ö…³ —ûàZ‚,Ö4èW†cbÿ«ó¦¥ïÝ<ÁÇ€Ùà½ððçz!MÕfOk^¡!ÓÖÚSŸwj.OöŽe¤ú"RU;$pÚ^îÚzóaë”×ë¤gYˆ}$ƱZ6ùÃø/]`Øi<ý#STÀÅ*öÑŸ ²‹Pè¸hêáYV~¦¬féâXwë]2N¶‡®©¡¢µ¾CãÄÁ]€™ EF¡œW*“‚;zŽ>«%­Ô"´T>¹È´gÌ&b®wÿF4É9bàH¨5EƒißY‡_‰Ã‚%3N¥a_`½Y>Ì2¹ÚwÈ”»þùþ×TeÌù›½ßk<ؾPféýp÷ûTÇ 7ëÓ÷ÖÁ:Š¢ñ@­¥ ½}7èå…UAßõáżÌ+ai˜.JМCGU¬à±TÕÝ¥Q™¿¦i4Í`Ü*’ëâš„ß}äÕtª/ ™,¤ÇΛ4ä“mÆ’ÜxÉÎþ-¤rѬ«£a\4{úAz&MŸNkúÉ ›z$BÑúÈ´º3F¬¸ü[ãÎÁu´rß»ôVÀˆ˜ŠG@áæ²òÕ;ƒý<„HfâÞØbþ_–ƒÉ[Æ6,6¯{©p¿pc Ì¡¾(‘Î<„ðúÞšA ,Î,À¸˜«ÓŠ&PÁ Â) *Q®x}æ‹ôïI6ìžIGÂ)--;Nå7F_5Ç}ð­SÊ7lÓƒ~}2ëf‘ lÖ „%RÞ&&?!¼ÂºçÍþE½S0 ׬j„Çè¼¾)í‰{1ëMPaRqkˆq観qsª¢Z+ýœc×¹ñ¦PrL÷ºå×Ää7ZǧADNj®ùZTT“s'â¡óå›@å½ü> endobj 191 0 obj << /Length1 1467 /Length2 7111 /Length3 0 /Length 8101 /Filter /FlateDecode >> stream xÚtT”íÖ6)%%]24HÍÐ% ÒÒ1À3ÄÐÒ’Ò Ò%)HHHwJƒ€¤Hó¡¾ï9ç=ÿ¿Ö÷­Yë™{÷¾î}훉NC›SÊf –‡Aᜠ. @FUUQòr<ØLL:¸#ø/56“ØÕ ƒŠü‡ƒŒ+Ø~¯“µ€ßû©Â %wGˆ Š PøoG˜«@ÖÂb På(Á `7l&˜³·+ÄÖ~_æï#€ÕŠ äør»B¬, U ¸Øé¾¢•…#@fýÿ‘‚UÌwáæöôôä²prスڊ³qÖÃj6mjùÇ­¬…ÁØ[¨×l–ú>ôn×ÏO„«˜jb¼'¡dF¹Ý÷ >¿æ6KæAñ½¢æ] ,ÛþÜNÈÅÒmžŠÅ Ùï¸3f;Z{ý¢œ÷XM„o]益ۓqÉ%G#×ͪ±kg''¢$—I®´Â–ZýÅw×Ï4š³Ÿ¤»­.mÓ§ž¾Nº£üjü(ÎÖp7F-Çw‚ôL˜|‹'sy…NêÓâY=X1IPٓߎz˜]×\m…òªì(A챋ïüFßEàqI\Ð>wj$õ#´„Pâå«„P÷Ðî<ýbŸnÞ-{VÊ¢He[h@¾±Ò5aö‹A'Q±UîÅY[‹Ä½\˜]6v†ˆ¾ÇHýà2ýÝÛ:|6ûô¼)ÍÖ—×eÓž ™ytàæ¨ÑwóòÄ uª/ž=7¸Öô@±v¹Ý”1*ãÈ~­oBŸo™ ŠÎ¶R»ŽV¼áfâüþšzéJï]sóðÙûÖ–l£Ñä+T•’sÔzÃÑÁtø*\íxrk`³|™×®V'Šô‹ üÎŽáŒx­ ú×ݤˆ›Ó¹Þª|½'D”Ù¦œÏìL.n"U»­Ç™kéHq<”ÞÒ©‘—·LGþ_Å*+½Fù̇¤`ÝcyŽÕ)ZójærÈ(¾5t+ܰ“v2q'‡§}8ÓË™rÅ‹)ËÓb-ƒgÏT®mQ’ËÚ‡ViP³Ú®·äK¥O¡¸µ•Ð .Â2Õ–VdÌ”jÆ8%팲5»üµëjÜ>ë…þL”´³Ž(nF¢xZÚCò¶‡ãÂòüc=LTR›Wƒ¿Dt–´ ®N7Ö:ãmJæ­UDÀïpاãJâ¢*ü;Nð¾šòá~à K£eH‡Ò5´ý(ÖqQl—a|R+„'xãzN;ÜLÙH*@¦W(Ùä§zíCÐ쪔Á›,%J¿˜J%^ õTõ×Ò¼0’œ¾]}K—;v~<¯Ï(Þº¤ nâRÄ+ê\(–¤é¬UIºÛ”•çPóèêµf/Œó 8Ï„¤Y¢4aeÈýšØøžÍÁ‘*LöÕbk6¨SNpJŽô9QêCé`§CÅÏF¦ù¤€_£xŸgè¡ÎœKì=[¶&ó@]dýHm9íXwYoú’(Zø¼ ¬ºÇÉp»_ù¨kcúx—½ÂÉmK¤|+˜©«K†ÚÖFÍÕœýbIÊ´J†Ì}—8Üãª`±bØ—€íÜCW.œ ëÝcVF‚ ›5ÝÔ”-Æm´’Ót5>Ýïq¢U[ЮÄiÒG랉Æ]&EϪ¦¿¹‚°Hÿàm€È‹ùd¾ÚxíðDÂTÛòiJiþzÑ7Bª¢·lBùh?õM=Ü®÷4“iD§P‹™Ú2ôb² ±HŸáŸ„/nfÞ…œT hÕ|’ÈÞ›ñpqÇ!~!Õ8×ìÓÒ¯¶%[CÌOBeJ\zu6ªØŒòìMæö"x³»~5Ä<µz.}œ<§r,RDsÚ¶ä#€Íßñj+¶ s´|¢QìÅ7wN àPdÿCò7 %û§ac9ó2„N“TÖY# ˜Óï¬BŠõ~Þh~= … —Cì8z\ àÙ­K+b:Bl;£©ÈÕgnâoÆ’;ÏJý­¨c6Àç{ó ,3b.k])lyCí«¥=f "ëMÕÉY\ïI¦ yÍ9iP ¿ ˜•§‹ kGZÄ–ÀÎ7â¡íócçÔÀ¡½ú±³§²$,¿õ¸uÝFïsÜÏÂv¾¾Ác>€A@GB Û»‰#v [N´áòá…Ú'QNk~¬Iºx ÚÇ {uM§űÙ?)=–·N&gj]A3²-òtà›­œjÌR­ûf’³^©3³ ‘°Ë¡&LñûÍuƒ^*Z¼*‰EOü “‰¶òz-ðæE­Í÷º|¼kùæ+|-=ëDÓÓ´Ã*,䳑=eœ¯œç½žíß Và¿ÌÁ`ÁØŽ±íð™'u¬+MŽ8?Üåx³I5öŽ¡©8³Y꽌|eFª¡Óë0Sœ=ÉX.¢ây·Ù–„q*:êù9%Â7SŸdžÝÔ¸“·ìÌh’ÆMyËÄ·Vé»-~Åí®YgŽª RÔ¡"” TÚoŸà{ÉÌYfÔ{3îÀDV‡Õ³LºŸêáÈpÆ"p”…óNè<9Wa¥]*x^0«À¤2IÈ 6Ä\ôÙØŒäö¦°19ÄÞ?Gv1Ý4O:º¬ëB"Üògy—ã‡j~Â{‹Ö¹s<ͺµª˜]¢õïÚñ™Ö²—ò†Ñðƒþ±÷ÌO)°Æuê~.q oÆN>í*­È|$“Cjš¿n{µµ*¿n[wÔäk8táØžõàö\qî ÷ýq8†0ÿà÷!+·V¾³®›—uÃê$™J‘~¬B"·à©Å¡ärx½ußµ_ÖK(Í'ZO禭Þ^w..àv)FÌ?äLèÉ Ü?ј¡G‡ÓwŠÍå¦(5{§l÷q™ª¦c_˜/UŸNKÆa‡X¾£tùcãà W©Ú³t3¨Åφ™* °Ç=N ˜QÚˆßÏD¢óåÅåcGÏ¢Üð;QÒcwN¦Ñ‰\tRG*zM[GýÙGº·o‹¾ e/a>¼QÈŒn>Ñ)|MCüðpö{£ìÐúº²H/ûÓkÖÓùÈÝPƒŸ¸õµ¼_ç9!üôŽÅ5=sE±Õ®,‰}Ì ‡^c ›ê£4PϘ…ái9 ‰ó!ßø¬'ŸÃº£ përЉÓ^mQ‚‚9V”ºŽË"Õ/µêßž¼l,j} ,&œ9¦Æ#?Ák0/Üy`¬Çû5。Óƒ;Cs´Šùr£:r‰T¹ø)X›fTÊáNmˆlÿ}™Ú(é!y‹ƒ•ºËy,}t°U 3›âân’dÒÛ7±EØN¬OKøø\\ž?vÚj˜q'.” $éÝ“›÷ÃÞ·ŠJÆÖªÇfæ·r£S£è-XÕâîü¬õ˜!gTk”LO˜ø+ˆ 8¸6·bJ‡õ’`6gaV\¢…ß›¢q¨-.¸cª™¶KßÜ-a=q§'W±»HçØ¸.¦Š"èýR¤)nosªEXòƒR§ó»Êö~oÉ"^=Ñ´/¦m/J‰}<kçVYE2Ù{¦`o0E¢9ì¯Z0ÛøÐÝ–èý7Òødi–u²KKºP6±ÔÐ:É'€ËÂŽ4l|NþK1ŒjßP×)Ûf䡬ÌvÈž£ t±5[©åïý•ƒKBÌô“ß’Ÿì2œýÔ8t®´äTH6‹ ò:®o¿% Ž<ä`È2>~V52âÇŽØ\~ÊÀ‰·]ÜÍÆ³ð¬}§ × ’ )ø9*f¶äCiÕè¶‘’yËFŸ3Y\+*J²yF”ü‚÷¶\#”Ë>°~ë'È÷ûµâkáYœ3u2¾•8DcIÍP%•ÐÔ¹\UøöÁ¶´×T½¤7ßÓ'­†&_„/ʉmo¹y3dVô‘Nž*½™ —‚š®|ú|rÄÑxdOOdÊ2P-C…Û±ùÑWÍá½J—vâ9캃,ÏÓÉQS}„gÏõa¹¦¬ yV·¿¤?ë+úÛçS7º9$ü™ÊôÈSü²:·'Ø´twJWºpGyûC±êrM/™¯­)"8'ÙLŸS?¸ 7-ÜNîA󒱩vÛ›:,ŽÅ¬;zLÇ÷\1(ð[šì(ŒzãÒÓS^`^"‘6Å1æ[\+Bx? ØÙ©‹È ;ÚÚö—’³ÆŸm‰O—Ò”"/ÄgÉ2Å©PŸã^ [È&¤Ì×6LÇIúÌ£e¹LóLÌ_ÔÆ¦vL§ ûêýtèä1ç<zCÅÿP_†îóþìÜ .±t‰§ÖuÅ-Y'óU5G5ÿ.Óý7É`•ïJcµ N;¸ú¾)BlYÕŒºD>‡svs­¸¾ŸÞ!%šhpî;4·äH¾Î~­ý}?hÜ™>0¬Wá޶n³¦¦{nÍM„%Ž– ’ÛË îfVÀ¹ê`ÚÈ_ÏFîëwžÒÚßÉløƒ¡×ô\b$9“x$¹£RcÓìúz<{ì›q œ¦¦äÎÎq‰Ž“¤­f¬#¼rÀˆCDƒKFPuÜVQnM`ÆÓà†ØÔ#§«å1ÃÄ]Ü„åâ Eaô}Ï‘v¤¸eÒ\pÞ¦,CdŠŠÎ5?nƒ „Ïý ¾Êg‡ýkh„(WíY#0c¡ç8ÌÓk©™(m—Ìf¦`kXšcfâ[·ýÓçQV0ÿ|wËK¶½å˜ /kÖKq°ŽíÓØ[…Å*Á`V¿’$iÞÖ­M‚ºÉ×X ‰ÓÔ(ÚᲺӹ=} t_©qNzw¬. ôyãWú<ˆfIµúþÛqƒçüؘ£ Ë\³Hta¡^û-ÓÊ|(¢’™êß¾}Ãi«£éîì|@Õžé0y®³4Œ4Zdä½ÃßÎw,Ô‡nï~=¤¸NÎùÁšõÀhÃõSõš¤‚7 sœJs匾“K‚&|S„‡”jxtë/ãšWñ¨˜Ré‡@ NþVH3g&òõ9õÜgO® <¾—ÄH}ä% ‹yM«ç$õ‡¹íUµ•_Qʈ£LýkÀàñc_ ¤òËq±˜J¸Ÿ8ê?`4Ötx%@%D´€cþÄræ™6úü®z;3íj % 2¢’ z®ûº@çqÁ Ap V¹IŒ¾ã;))œÑç#ì*ü“:þ5[ÚÏt(V…åZ.s ¸Æ¢„&¿H~9¶—/Ó(ô­¯R¡‹çЇ;¡£ëÌ Ì™ÞÂAW# ˆWtu ™ùÏ^é¸'Ï úR3yÂ8Ë×7"¤~RÂW@Qì³ú2\C‰‰¥€«wÁÐîZjæ¹]£HyE`Ûı¦©FV;û‰¾!' *’l3ÏËeàä‡ñ˜Ú¸é¯z…,àÜÁ«NFóu°¿¥P<d}¬Ûº‚æIeq2­ºÐ>ª—!#ˈ>‡‡pzhÂ@¥Ê~œƒEå±€­Zè}­ã`È>Ò,ŒóÀÜH)TÁBã‘­Ñ%+xT˜øphnªú¹{ü±sS$ê™7ôådiÈÀ—̰AUQõWÁýâ¡)?/c„~p ˜[S Agªn%Ý œÙjŽ/ÀàgÃëÈ^\ÖÑ5Ö|œF˜ún¢4ÉŒ»n·1¯­¢W„–ÅIß” nì&Ãy!üüË#,³Â=žŠô™'âEªß¨¿F8bÆ¿ýô©÷æâ‹Œm`^}Y¹po\ÄPá›Ò«I¹Œ…1v"ßÆÃ¾SQ)1ÆÇÅs<>H>§ÓÀªý£ÝͶºÃϯì‚2¶±«ÆëÞµ•¯rÉ)Äf•}@»kýúÆý³mn”©¿½Õ«`ÛÒ§êuo*BˆœÔ¾çŒ"*¢Kw&C7/éÞ†­¦áì·-„ʯßÕ3æíé=’Édç,DrÀUùtwK‡ùyZþS1<ÏQVR…€±àñîÝy(Õ€R`ädÄã»êÃÃ}ÿnî­¹H’¾c'1h.ÏþݤÁ¨ã¢§x,K°0Õ/`FbZÖA„¨Éÿ€´¼G endstream endobj 192 0 obj << /Type /FontDescriptor /FontName /GYJBEK+CMMI7 /Flags 4 /FontBBox [-1 -250 1171 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 81 /XHeight 431 /CharSet (/f/i/j/k/m) /FontFile 191 0 R >> endobj 193 0 obj << /Length1 2831 /Length2 24168 /Length3 0 /Length 25749 /Filter /FlateDecode >> stream xÚŒ÷P]YÓ   œƒ»»kpw ~°ÜÝ=¸·àÜÝ]ƒ» ®AîÉ̼“Ì÷ÿU÷U°Ÿ^Ýý´®½!'VT¡6±1ŠÛX;Ò330ñDå”™™LL¬ LL,ä䪎 à?bru ½ƒ…5Ï ¢ö@CG°LÌЬ'gc v˜YÌ<Ìœ}—‰5Èí·ú_ýe”Ò’Ó—¢ý;ãÏDDl\ôlLzv&ó¯!ã?xý×Í¿ø_òI -þ îRÖ¦6î¿sïy8ÿ3Tÿ¬ 5à¿ ò6àY¨~¾.;“1øóÿçøËäÿßÜÿòòÿ6úÿ7 q'è¯cª¿ÎÿŽ ­,@nÿ(€GÙɼr6àå°þ¿ªÀ¿WYhbádõO¥ Áë!lmú·Œâ®@E Gcó¿gè]»YXm,~]6zpÃþÏxáŒ?‚/p¯þ:‚÷é¿”ï­mL~- ;ÀÐÞÞÐ Üz0bx0ƒ7Ôèú×h¬mÁ&pz^S{„_å`0 ÿý8Œ"¿'€Qô7â0ŠýFÜÆ÷ÿ"N&£øoÄ `”øXŒ’¿+xz#6£ôoŽEæ7Ç"ûc‘ûÀ±ÈÿFàXþE\àX#0»òofWùÀ쪿˜]í7³«ÿF`vßÌ®ùÙµþEÜ`MØÝÐãßœƒ±…½±“•)Üéÿ‰ÙÁÆ6 ðTýÊ/Eð-ú;¸_ãÆhòGüí\àˆ™YÀ.€V&†æÈÀa‚‡òOÇ/?vNàUþŸ„õ—’«1ÈÐê6piLC°éí´øƒŒCvÖ_Ðùw°Ì¿¿ùØ©Û8ÙÿÁV0û‚ýÿ˜ Üys7[s õ`ÙüLàjXþÁ]þøWôwèLÁW4ãoÏì`Skðjÿ.˜ÉÚÉÊè×jöG¿Jbó;F°O›?¬˜•Äö÷1˜Ãüz·þÏ ±1ÿ#ýﱂC°Úƒ_ã¨rü%³°ù=làšÙ‚œþàKì~÷ùr:üuyý;,¿„6Ž@#Ðbaeû}ðšãŸ“ÿêsÿ#ý¯2ó¯Ñø£±ÌàêýŽlä´²øïè³ÿÒ:ÿÑ^v°‹ß뮈è?ƒÍ Žê7-øÅÅèhnüc?Àwt±ùÃìÃéž ç? 82—?ælíú»wû‚‹èþ;8°'w ýßTÿ¹üìÁÍuüëõ ^Âÿá¿>Á€@W 1Ââœ1o eu`ëÝWa<úÝqþò]djzEû6§ØDêÊtÿuûáÄ¡î·+Ûï©®…–ˆž<ŽšjaCšã•Z~z>êÇ*Oí¶ ,LbõOä ×ôÀãÓ« íy>Ùyªû}„j‚è&϶sâBQÌE¿sé•p­é+Y žÛUÚ«äA|,™¦Tû¤ëW8Kžc”ñ ›Æ‘žŽíÌõÍìõÍ ZÖÄ ‘t,-‚×q$k¾‡öKÔý7÷Õ2U‡N2ml¨k´Ñ) ‘ƒ$éwóEù+ý ®M|ùDYÈtŸWèß2°¤UZ(GX7ôT9.¶3ïd')ñúÑw⫊0ôíI0+[ô#ЫX? ÚMEV[oÔ»L-?ã/qO×¼f‘µÌ|»<~ÖÚ­ ÷Óßn¾jÞîòÒ(ìÄ7sa¦yo®¾²Ì“Fðùu‰ãd§P ã-Ý’s"×ãkà >ÿs‘\æ­<&&m®×=£ø?س=Ï£¼ÊëÎäÛ7fQçA.h^8ä_Œ:>Ÿåᘳ¾7H¦ÊI{ß–³M©Ä[ ¬› (a<Û(Çb+v#’Ûb_8 Ëg“’èÙ¯ ×õw³¼çþÂðC½\­%†ý‹ñÎqýØAß H@P/÷ÉÁÖMi©ˆæwõû³r—P‘¡¨MUÎÀœ°ve߬N… áÈ‚Ûío=ðF¤'ª"ÎÄV Ño4Tù¶Ç: ]èJ¤ÄÈ)óåúd¾ó…x.~XËïÁùê+„vÝàËRݦpGõ )ýíjyúÞ2©~ÛPƒúù3®žŠê].©ûÆ«žùé±mâ‘©m2P¹n![o#€—ýS (–‚x~Û7õrŸêSø³ixãšš‹pí~UÚl?pýxpZ„¶• C`üXWL™¾&›O‹ñ2Ÿi¹åž!ô@ÝÈ_á [½†qÍTʯ۩A¶.&ªv?¹÷È‘˜5í*‘£d=PŠ—޳cQI>—IËn(•„‡ÿ*!CuZK†aEûpˆº‹îİŒ‡a¨¨¶ˆDf!Û2J¸ ep‹ÓŒúç )E22ÐÏïeôñï6t:±fcCw¸p82£ó,äf F•î!·Ò£8)tN6Þre,½ØîkNq)Ù!³4©-4È}ÝÈ¥S/ÜãE낽_d°Œ©±G&n7uÏ̲Ë)‹·£&z¯~Zè¹´Åïµ’e›ÈëŠ6¦å/)ÜÌMåk°¸pÙËšLWlãÙyï0«3~᪺z8!fŠëÒʱq¿';¹Ÿ¼ð%ï-ï˜ÂtÙ\Ûdù`SÒ³¨Ð”2yãt#bõCæO3 ÜB’ \ñ Ç­çÒ€@¹([Öš]åÂ…¢˜þhæke¦„û]÷!6ÿ eÜÕèS«Ô£¹üCíœÇŽ%™JÖÙø›æk‹º‚NŠA¹ãC«^¡oÁåØyåV+FäL‹É¯i R`{sâ×ãM¯{2@mäŠïYrxÕ…©UDd÷øJ°~°£—ˆf Y¿ÍñVxŒt"R‘6/h¾¶‡‰#‹x•ü*ËCyÁ&µ«WõÕŽ¾Æ¤‘𳌧¢>úÜÌg ÔõgüØ6d·¹ƒßÒì*½¶[CÇL"8!æ£ÆŒWâçD õ¬n„¤)ÛÆoääæ'%ú´ŸVu ¬Ê^šÝ'>‰ûÀÀ£JîKIº¥*€Ð ê"Ñ"ø^ûêÔ1Ð+*ƒË8t9§~k…§ÊhXXùm-â‘P%mŠ m²ÐS¾®wÐØú:ãšê¡¨ï.¯”²+‘U_®²ï€Ãtq¶ÏK¸ö>æññNXç1Ÿ hA¸p·@¥Û¹}!Ów¬¸’늆ÎSî8jc˜ú_³Æ0úµK™ iJv"Ñ*£åhŒl}ƒy=VKFáýÊ•X±ÔÕyrZÇBgPÑ*27,èZ¹¸JçŽ{‚ƒÌ²øuù7„HÄ7dÄïTsŒ~&Ƕ«ûE¨@f]KFÓå‘«Ä%ß’¾èn>ݲ)1¿û:ê (åÞ²SÏo,ÍÄ9è}<Éu0‰J³Fq킃-ÿ²ŸÇ3‡/›éŽó! õ¬Ä1Óû˜f´Öm}èub [ùåܲažZDSŸÇc(šóÖ©ìúJó^.[üs2™º½•ðˇDŒîþË kíu(š”þâÛa‡ë3›4 #!X·9D8bQQ¢wÆp >Úõǧ„{Lï¬7ŒlƒÌ“MÈè§to*ÇgÓ(dùl; Ñ߀Б<›¼Ój¹†z“êiMÇÜÝŠœˆ6õ«EÜ+†C²‚¯Xg[á` /[¯çCz4! ¿sá|˳BHZÁ6sY$†E€»ã܇×rSùà}”™R~²™û^O””áLÌtÐ.žà´ºþð£øýº¡N¨¿é¢+›¯dP6¦ç!¬Æc-ï²áÆ[-tV‘+öÅËǽ»MI]’™R˜;æ¤ñ”cvù;î[Né‘§Ë:F¨áõfTWÅ®˜Jt(Ž:[\cñ}~ ¾Ö_ÃÒÓZ6È«óÎÄêæ4 ü:yR$#²vÆì­ïZ!ªŒmDH8u(ÙÆã–æúÌPw×gÜ×å_0FòªàP"é5]óì8BKWY b¸–Ö¼§b’æoÆ\V²ƒŒ*Hø¨JÙt–ù–7“/ÆÏzaÇÉÏ$+ʯ٠`ÃýŒ`;ßk7ï'¸1éÎ,ªBÛ‰ÿE‘¹Ç›8©Â2†ÈZ*$·4˜¢:Ÿ©#ƒ#l)í2ZÙʳËpBh<Ã=©{–Ö Ã%“Ê7´›f*Ùœ"Õ¼:úz÷{®Š`0ÔSÄ#IZ‰Ç‡¯î‰g!¤àfµv‹f²pdÈŒóßW6þLãY•ú€ç«Ã| ½œiF5GÕQ –5/Ñ¢ßõ÷V±v3dÈ)jI›ä%䆎Äÿ]<õNëVD»oÜêú.Â]z¬bFO@ؤeHîÛmL{Lו$„=†n¥É¹ÊÊœ‰Ÿ+–@½¼I•¤|ûK©_/€1Ô¦S;âîi  ‚¹ÛRƯ„T$)’ø^^·Æý€:[¿âB÷Ë÷Ç×ÝV¯*aí»4,&vskÝæ9Ÿ¡ÅÈ4&þâzö:ÉßhBîy.l“ÑÔ‹u=)íh¤``›D¢8 µ|ŸÒTÎa v–HSCíÉëñ¦®¡Q«·.RÑwvžÜrl€X²ý4BAònh,ŠHÿ¾>‚÷ ¤züÂ'vKºÑ9¥Úïà )Ù"lÉ›eJQsA?ö¾@ì'‚–“‘¯]çBñåØð©†eµ¾ô)Â>ÆáÁßA6µrTÑ0ö¯ I— æ'­µ<,— X=AÎÍ”R ì'Ÿ*âÝÚÇœëÅîác„\˜÷•ɧü㶆zˆ~ æG ¡ 2~¤mÛÞ= •s9¹­Ù_$­^&:!˜zÛõвw¹y?­~ø–ñ€w×yŒ¢FWÑî˜M½gÁ#y‘ݮԻLU¡TðûN ®Þþl7 ƒ%Pæt°ÑK/ÁºyÞë”&©­K­vâ¼ÐùŠyÒ}[{cD$ÒÜW^u«±ž•»BóhC°Õ C:î‹~†5ð–Àb{^Rh%ÆÏt"àéc£2ÃQÚõ“3¥ï€å˜Êv·XËè"Èí‘›3+IëzN´¦¼Ïê{^}¥„»¾Dì]Ý"sÁÏ7ŽŒŸfŸ7"G·Î6ØÂª˜Ë­CõŠ xÙÂÐî™–˜q›“<õA|:•»7XЛn’¹áe/…És8jÞ‘²·;.b5ö_×Bµp*óí^Ýé¹h›:=žFÓ²û@ìú†':rÉ„V9j/숊tD_C‡A½ÕlX’7Ôl¾5Á­3[èô§²Í-‡ˆÚ«*Sl¨I¶ãb6_¯ ³ég7ðÅ ZŠ*é¥Õò-»la‰T§q—§9a'Y¬»ØºÚDwŒK‹V$mÛS™6Ïøé~ïD^_:sÇEÈg؉7aàt'‰ë ]vL„9·zP›Ú¯·Ä÷ƒ1Ómê§áYZÁ r¸Nåxø[ƒéöÑ÷™_º]p»^â!å¸ïY\ȾCó²þº?$ôóKø®WŸë›½Sú×°)»Ö!QÉLÖ4((• Aíb÷ˈÄa´Æ}®"[zÙ)ŠÁ/?¡Ne µEäÝI¹?V;†J›GZúõtÃhâ0çž”†7‹äLƒh—[Û×3mHà# Õà[ݧ.ÍÍÆ w¢bœjų§RøzÐ5ÜVKÊ&!hZ!Ín^Ø5Y>tǰI¦Žå¦Í_¤êuMÚÉmªÓ“ÕN.½‘nóãâ&9Ž©ûó.S$­c2!›‹Ê…9I¾{ˆ+ó1²8>Éõ \Ý;ìøþüÈ-¥ygú¥8} jëeâé'-úbæû㤷ƒ ‡›Ä“=$4ÒË*œ(KZ„•pø¯O-—‘ (¦…¤‘hK÷B;šZàÐ–Ðø¯“äsvÉ8œ«UpUµPÃH—±+d?¿°þØL{5Ays|Ûsï#þÎD]BvŽŽv˳Lâ9oC±±Ø®¶zèÂüSß›²û{mÂ2÷@±bG!$Ö[ ZjZÖÜ‚€%5Ÿ†¹ÁŽ\k¨ÀË|îЋ÷&pãD]Lú›ççæfÍ7^S…¢öáƒïúU…M±Ÿ “¿Ä%(zñ¾'™i•¹™!UÍn@¿}ÐÝÇ}ºÕ›‡"À…BäMïô^Âö}¼ã 3âØnÉ<ÕŸ&¼oÿŽYÑ9UñŒ3*íÜM'Cä Q4‘¨¾“Žü˜¦X«³²Æ§Ö¥Éƒí¿´,hL{C¾Q"ß²"¢ÂÎ|ÐUY’IÒ3×›^cv ú½uuGϨX£f™ªš† ðɦìî€3üSüv†<±}y–{>_~0Å;ûϼÂ&R¢xŒ¡~^ô–wÝÐśѧðt6\š1?zœùU|•]ň± á Ê€^¬Þ•‡w5“Ó£ïOY&%9»ÞUžhíh ÑW‹¡½—‹ÿ:(¶•E†öêÃ9 9ŸRÓÞ–÷”¹Þ&áö÷Ñã¯>_H—Áò «S´*©Ú*åË+ë†ß*Øä=i(p”0˜ôo–ã ïÏ>Öíx·/ƒX±"ÚÀKî¸2:ÔÂøzO…¶Q£ Y§=€|„ôq\R„Ôh† È[âñ=oT á` ´üçiñVÌΫ›»{ó>±7ÑIV%ë­]„QߺQs,Q døú¾¬WYžÏÏ—À﵎ëa¤lô¤¡›„•¡[%s"‘ú?Ò¥[âýD’>‘áKZžæžý¨û6:uóff©& /Bu[Ȳ1Þ¤ôI‘K£ƒFxÀùSC2¤v Íh[[]Ëç¯?Ð+ú÷Eµ€ÜÐS‡xÚ-ÏWd‹u.¨Tþ ~BŸb[—_¡H7\»µ ÉäZ³ÓuddS¬¸ÏdF›³ooî#‹ÇvVEDlÏ"Žšô¸I‘ÂU'2:F“ê0u’çæQ1¦ 7YzñTÔx! ¼\“¦ ß"§Æ~ ‰>tga+6¾½e#;gY¯‚)=rá[0Ø*Úà¤F)+ÕïYDbÊÆš¼<]Ðh™6%W®²·Ÿnèœ8þðVçGn¥XÁ‹þòŒ±Uͪžö‚9§±íü~Ûø;§ëúOð—íé¾[ÜÛu¤Z¯ÌÞ`Û§¶Þò}й볇:`k»#îì ÙAÛ;äèM7.„pÐÍÉå§ÉHZ“øTÍí¥ë+z*†ç“í¼ûxÛÏV€7k”7¢-¥#¸èß(ämúIéòZ%WD Ò8mu\äBRª*pG¼£©LW¥ðlª\ûçïŠ*&®70‡>.7ܢǗmEmuìýpÛ¤„ø’k`:0FIîXµŒ©U›&lc'xÃ-lt…„Ÿ1 Üe3}:µ–|]»mfœK³®!7¦º0¥~%–q1*ÃQ­'õCáMŽÚO&­ EKéM±bç+™Ò8S…°ò;=þÅ “ƒ»æ¸t-Ïñî”´õ&¾Ú–-“1ý ÂdûW£íAéÈоSòXÂab| ´  teòí8A”“Ÿ[ŠSbëºñȲNïÂ]·s),ÏQ5”q8]s‰S/{1’å{zQý8ßf¸óy!V-îôïPˆjŸë^ŸŽž 5!A‚Ʊõ*U–*ñÆÏ¬œ£Rón`¼jr{–ÕÕ¢"X£Ýè¤zÔ–»ˆXÐrÜ©á1ý¢bµë¢³ç:w¢ `4yZu|*ƒwñ>ÍT9º´ó¼’C /f…]¾¯îå2™I À= My~fG ¸¡A¬ˆ!dÇ¥˜Í@»EñïWúä¬:@ÂÍ1éÚ)ÿˆ˜2àuØ”-äÅH©ID{m7Iq [³HܬØ&´ø†ÔÔ,ñ\g>&`÷qÕ;8%Hwfuîâ¼/ ÀÚBöÃÏE4–1úXíK|zŠîŨZÙÙ|·4׸ØÊ ¿änº¯ª¹ïéíH*!ç&yShk®ûU¡¥u®;Vwróœ&…|CÉ2® Á8•îæýhriöBÌú”÷®‘ÕÚ‡y‰ÔåQçÆ(Œ5_ u1Õ|+iU!•¢lÒãvgï$qå|ùëO¾é³@ øbC<<ˆ¶2£·Àº•{ À¼>‰^E}Ô[sôZ f–ò¯¼‚^æû؃}ª›„{%º¿†Øuå} бêPÉ•ðµheŸ¬þ¥þñ5’ ņ҃ª«ØÕ›é‰³ -P7.)Åœdà† ¸ÒÇPÿðf`ÃÊ rWô|vgÎ÷N&€ÝnòêÁåÀk¼¶¶Âª`l‚°»C£í×psy{¶w1ó*ûìv—?ñ[.c¬Plé³b’ÃZôY`¤÷¼ Ì«¨ŠIšÐ6øÛ*YLØœLÚÝr²ÄüØJ¹êjÚ†ªèe•¯ý²Ï¶ƒd¨â£¾ŸMOŒ]íª…½ùˆ ÍCØyxÔè#ù>¿HU vãƒ0&y'¶goÇH2}Ážñ­â›u)¡îþ¯¶66Ï3xåu`u²~Ã;—à'Ø;aú§ê¦º1‰dÕX¿²ÁÁˆX½‹‹J޽ròT¥ñ¬M¯ï˜Éñ߀{GN Qaãêy„µ)Djp]±Ö¯%®¨,ÎãrCG;…s]‘ÚØ‡´ñ1äs^“f¬€ÿᆼPjëq;€úN}PÑ;©D¾öóDTÐÆÑV£Q*õñÂ-ñõÎŒ_Dí$s€¹3­ŽÁÄØÆå*{<ÏJ÷“]–rˆžzb?†¯¨Ü\) õÈ„Ñ{ã)”Ho~ăê×ÝíÃrùìáªdÎýe2éb†¢Ü…®“‡27å1¶áLgØÌŸêámèY(¯üV}Y䇸Ô2ñÍlïñ—õ¿èÃ×3_>PUõWïN u0&·õ4/³•Ì`YS/ÊQŸjjÀߟ†rˆØ ¬s[¥¹•”û"¹•äÓ®å=ˆÚÇ &·ç|:.à†)ä#Ыr*CGð–ÎÍÌxòèù;«ö˜×Šè(yD Q­`ÒZ²È_~>O÷¶Tûˆv…]Ñ…›íÈu‚©w7d?çb»WêõÉÄ+“Åg3•øÎÍuV>²ÝìIï]Ý;”h0Èà ý™ë$ãÃÖ@ä9i~&ù¢øMh}lgïÏŸ‡ë5¬Ù”4l¤vhYZJÖóþî³´Ì'º}ÛÑ~H‚œCR}«_i<˜jâö` ^ÖnÌ9?wé¾­Ü–»\8'ï3µ]ÉL:W7:jžnÑS"MšJ×EsN=›‹W3÷DÝÏá–dÞÐ*öˆIGaÇR#ôXÇûÉ©>íûVÆa÷d°ÙB©¯_#2è Wü;zSÙ+âõýn—àƒEt±qëí@<·$r#ýèÙ@´ÄWÎÛè_fâ9eð}Þ·µ;}ªÛySN;iIâg<œ0ƒÀLOG­ ÒËBÖ¹Xš¶W¥ö%Ëf0ú„ý¦FÕwìƒäAøÙDN`$êÏÍ†î ¼´Ð~­F»aêõÊ»}1/Ð[ïSG¡`=·ôUÌ¥0›ìZutâ–O&S l½0™úÎð,dôøxéÔ0$_>Ì¡.KOjŽIÜÃJªqwb æ…ÿ SÝÆ¾]Q÷ð‹¸šÇtø˜¸öÚþ*f-ăQáÓƒ:ÔåTîë\¶]A!N!öÄ"Æ3R¢¬Ãì È;U¬Ü6”¹ÃŒoZ&;«÷…ºÚS=5]Q²ß ÞªžcS Zº¤& LÒQ˜Õn·tpût‹£ÏÓ'ð廘¢ˆ³†D~ú0’ç›#oüƤLúj;ÄÊí9¤Úv[EÛ¹°~ä£k„LimÍ”m·S“Ýh’Ów¹ŸqÚ©Šz—Ù{=²»Ý}%aÞNÃj—¾$¢žõaü¤~þ‘Båû¦NHÜ`]w›*-¿˜ÙÏ&G•=9!5½¡Ìp*Aƒ G –Ç ¾Ç¡c:[uz›µÛ­e£6A;J5Zòµ,RìWŽ'#qúMFº£ºÊ“#>mÒ×ïßø1ÜÚõ¯5Ú¶ŠÉ#©`ˆÒLAoî†æÕfŠL?¸63bÎâ§Í*ÅíT gù›ÁõO‘/ñ ¾ÌðJZ’º§T^ @·: {ê ¾;D"Œ‚DKøy;=(*~ÔÙ?‹‹#üÃ+ew|±bƒ<`€]v}¦Aà$Œ¥À Ô¢¤-;Ž@LEPÅ<(ǯêøÌgÅóݪ—ÝŒŸíååÝÎu#l²ÎB|ù¨hœ¡:¥YRo—vJ}EmE²?[˜$ñMT%+þ-ʶ֡ Ö"~\¶3>° ¹¦)¶d~Yd8ØPk·Á奲î}B^p¦Ít%„à–Qº#|ú krÄ®+ yœÇ 66áµÂ'$±jd<<‡HÊ‹Ÿ·f¼¥í2D‘»·(ÑEÇdXû©s¤Î¸Ó8*‡«óRT}óE4J›L õÛ>ïÎiî5…šÉ Im‘'ûí’œ³JÌùßÒÙ•zЯ2ƒl×ELÈ'p¾mÕ ÍA´Ñ}ÛÝí_‚¹ÁÀ”ôÒi’LŸÌv…@ï ›=> ŽØé~²¤LŒ3¨¥4ž3Í·FVl+—“ŸžVp:îëøÑ~º5¶tÔñôC@|USa8/²ÆàÅÁ멲 ë“¢Ï‡`¦ò2!Ÿ½˜J•×~_`[Åì³Ö³6Ήås}3vTU+”Šªê©Ä%CtÄ¢™üz6£‡Å6ßëÔÎ̦lÝ4 !!·át!7h;€ÅO7^RʙˌL»Im j©ìlÂ8õ„÷ß =õU(U#AVÉÀQq£G§åé>´N±ðü{ä7Á8\ ×ßèf–_MB¿b·ò ^ì¡¿.¤Á L~H~ORS—HñÁ8ÏEüB»B×u„÷DÏ}1±p§‚"g‚6·Ìœ,Ï _×õ ÁˆÌ~«Ÿd8>Þ†¬}„ÿ4Kä8€>˜&jù‰bgÈþèÙqœF!ûÆé[61Ÿ,žŸ“±ØÂÝ!†—ÉM“ £Ýæ¢IBÀ'Tæi!&Fj=b2.›x|¢¨A<ˆxi÷•xI<ËY–­ Õ0ŠöÊ›FÝÉ1$+õ¹¹“xo[a«ùöh¼cÚÂòÀÞõ°½–eŒ²BkÌ.:Ç ÓQ1ñzäJÁ’4óJþ\Žc;‘]Ó±N\bƒ¯Ø˜…¢yÐ^6Íž§<½íÓ­²usõ˜ã—o–ËÂRæ0Ń]Ì.’à˜µÉ Í¿€Î÷ìbë_ÕgZãs üy&ÃØU¤Þãh©$fF©&#Æ5ë™”ë¨F/’b¤x4§ÿ©yø±øk·¬Rùskj Ð™ áJ¿2‘eÍ0RhœÔ¡þˆ¿Ô½b&‚§yyÛ†¾‰ýAr[ІªèN;ܦºÐg›eíJOkíÀ5ɆGÄ–„¾1GÏ«-^A¦ŽE—ô·ê,<]–2JBC—Ì®ˆ·/Z×ßO¸aYKe°÷;.x3t´µªÌ+>^ô‘¿&3Z`r˜•ºo»³¤-€ˆ¤ÁÔ‘äûy ej`É0Ýä€BSÒ+ºqEïü&ÙÛâåiÖN­´€7âvÉ+²Þr™}7+£@l¿žoŒÜ ãžUL¶âXÏçzb¨D°8éÃ]‹‘̨0ã%qæÐgך•r÷€8`Z°„„¡s8qöµð'»/ÝÑÏ÷™TM ]ö *ÈI $‡0a—V8­«wŒ1þ>gL’äþ•”Œ8½P3!‰Ò/HÝgÚj;ë5 Òè4Íô× ¹†Djî[‰»®4,˯vDË~ÖvQРؽU²ÚæÓ2aæêå§ç¨DHGƒËÙ7±0ÇnaK‰uó%Ö·~-ŒA5L“ÂÕ^EŒí6µý›3 Q‚*{VçÈŠÐWA¹’&KUÌ%“§i´¦rš;»90Î ÐôF¯~ðñ˜CʰòQÙ×¥±•”FLã *ë·òù¢E£ÛÄH@CŽ®*À,QrÓW$Qp{vm6»ÝŠ›y™ˬ"lí»*ÍÍR(Daý*ø>„-XÙ­ HïBþ–è0 i„Fax}ãÑ{ m!¶Èu¬­V?¹[bk>ð‚ר$]Åç‘ØoŒ”­CÛªÐÁ[ÀþÔ"cÚRj©‘ —.­Ú¨€®{ÌÛ#5žÓ©úÚ?ú\¹iª"·ñ‡)Ÿa}çÈ–~3WGÆûÊløgþk ohë% îÓ’[ÍrM®âËÇ#|ô@Å—å68)¸+zò÷cUÚK¨‹7ï`?¿*´1o„ìô«nø"ÒÜù¬œ40õNaà­@tU ±w NüÓg!“³á»mx@AÆÃJB¡ÙVìȘ§IÃO/”ç„¯Ž»mƒºa×T4zwÇùžQâ—²‚N;xûÆ”ïMv€i=Ø1†ïø!÷‡;^вS²9gëÕûÏ~VÜú˜”¨HÓ\£™n—OWj'ž¡I™äj QÁáÍ}œ}s¡ahr‡»¼£o½ÐC¬®aP¾é®Ö`ÍFÉКµÇeŒ¿!<œa¦á5ßHrŸ(pO»±{õTLjöÌM¶iŒ×Ó^©Æ¹ˆP¡%¢«ãâKò'ql²…¸ôàE[ ÎÜf(A‚Ôè}é…:®îœ®+/,\”Óæqø”ßîäuä:¢'k>$bDW:–NV´,‘ZÂöJÙ}²ü–ø%)Ο_±(&Å{–NRAöS³¤$C_–çdÒ"Ù᳆ C=WêWÃjjòœ ¸léºph浦Ô@‡§Ñ iieÁ­ÅejÏŠ¯Î=Rï»~X}´²ü  ÕZŠŠýB b©µGÝÝ1Hÿ iq=Áä¶À²ÓÕ~ò:pqXk>|¶ÂJX.ÃrÀó‚Æ6ÝÄ7ê« ç†23KH¦…ª}KÃKt™\¿mKK¿ÿ•¾j ËFj@þò²b®\@‰’•¶Î„¥ÕªM;Ù Sц9­ö4p¤p\ 2¥ÌýSø DÝâGEíóx•“ȉ/þa“˜.JÙDFéë¼T噆Q…• —Ç$Ji³ŽíI:ò7Q ùqËz|!Ʀ¯ÜTiâdv‚âD´Çִ̈́ò?0÷7„ùW*7559o_½XJˆ¯ãXã§MY# óY$?™ß=5šÉ“–O¿Æ½SX ©]3i •øÈ‹²ák|Ïâ|;aƒµ29‹ðnC.Qhi$ÞFù-ɹýP…~ràÃXä$*r…8&\££á{Lʅܤr"1Uz~ jY;77¬|¼Hó“ÕmP¹/öÛ /6¾—ýpÑú´QàÒ$[º–V^×5yß’CóW¤îÆÅZ©§vK½×—›º ¶×=ItNI£ánn\‹|½£ÉÁ oŒŽëß“m‹Ý³Røi±ßÂ5V Äæµb<¯Çc¹›ÀÎ?m†d…ýx ƒüvž´¨˜‚[ó¬±Y¨wXIÞó|Úy„UÎzŽàÇ­‹¸PPlNä ¼“K§É¼GFèC¬ÙëÁžíÈC’ÜeÙ&ÛUáïr¶Ãi,quLlä ‚Óe|«öa.߉½/‰¥½uùÀŽ›ÛþK÷,[ •(g[-F®¨À×ÃêÂ-ôàj¿w3ç¯fÆaºç\“öäHâ9¹'‘ÐÊMµ+*ô!ß5¥Á|IÖšàzÂ|Ã_ŠJ(‘] —‰Ý} ­ðø5d'»ê}r¨vSdËÇPr½ðÍr鹺3+¨ÀÂA!r˜8šÀ`ˆÁÀDaÞõ†”ÏÅ×fÝ;üPlW)eÎéP£ML»E ¸vb=ƒOpÉR¾Eš?'x>Îͤ²Å±4ov3ÁšÇ¨o‹lãê–ãß~>æ‹&„²gZ¼ùÚþ4éÙz“h­Ð¯Wß]Â…îè]©ÉJ,þi¸ùSPÆš”.ãE>9žHžPeNñÐ×ʾûóë÷Ed9R‚Ѻ]þæE¼è†?KŒ 4…@¶„+”$ûú&õþÞY¡f2Š4IGr¢Êg°œEã* 9± ~̈H‰xH%,íÙä7l)§ F¶©‘$½ph÷Å~´m‰\¸ F]!ßC9%‹¨¢˜°Þ“ï®ßô â,¼8U×ÌÃz‹!ÝÒíaЇ 謗ž“šþxòíôEöÍ’AiÈë‰Ôb‘5ø"ä#g÷TíoEo_9@‰~>îRŒŸô-fï Y±¡Z÷±íp5МÂMEò:Ü‹²$%wî÷®4T÷2Þ¥;Q^7Òm@áïM‘\–¹ï~û¼#öZäÑ›]訹¦DYU2BHQà® —ö‡ÞË(±oe˜´Ÿ>­©Níd&­áü-Sebµböóââ´dHL‹ ÷°4ÅîØöK¨Blª%5h#ôuãm ë·Z}ï}8¸W‚£à¯Õ÷IÄ † œÖò3&<=×Y^9Þéï•X·2c¬è&ì2Šð-ÃøâJPQ;CýÍWtS ]‘WSÙuÝ‘#&ã2òÓ-G©Óº…þFÚ=—˜É~f~çq¤QãúOävw«³j«Õag]¡Põ:%q;M×]|Ëw\בðõA¸yD[ÞQy<ª®äŒäÙ‡©žzóûÎÏß><'k)1I@จb<›å&HÊà…Uj ¿y›'‹¢,Ýö5ûØ|í¶ñj©ßªþ= mŒD•Ãw/¬Kò¶1x,+hç(N‚Y=›H‚¤»çPŽ,CpZgØVK¹X=¤¾0ÓÎskj¥¨W2'+Tâ“âðßž®½¦ÌǾ ÎYFÀ<ßXÌNöÒ5úxu…û ©*ús¡I¬ÊÛgMÖÙL*Þ®=vãkx´Ý*Öi5¡ÃÁ°‡NհסÍXŠ"³&—\Â;>…úˆ;Ÿù¹™¦dM2Q©7nußY–­ÓF›]‡¬žò Ž?f} M½Ú£ŸGŽ 'Y‡N~ÐE·,jȉy‡tý¶¶S¶ÝËìpðÎÛˆ!Cì;7^.=Ú1/& ’Z„¤8QíUì˜bv‚â¢pö±ÞtQŽ3³Ô³rÞ¦îЇG¦[ ¾Rˆž1ð¢`G¥7OÁ£°R×™þR K‡Ý|oÑŠú?ø90{nävAlzÈeó–šúžQ’\ãÜI?LÀo[ÒªÎ;©ÇɹökÛ¹u\zÝüëH‘¸.—ŠÔ&þ벎áòT‰ù[5NÊÁŒ1ÚѶÔä>÷›SÏ”FþPwJ~¸btcdoäQ´àNÌ~}n4fåEpCÞuKhòè̘ UçJ± }ëJ*4 ãh ”4Œ!žÃâÀ"lÇoOÀÐ^k÷r­`™'š‹_“jæc«­Kú’ˆ¬m¨dJS_{0É ÿDK?Œ—zý“w-éšÞbènÍާÐJ{Âqn(m] cJ<¼ßÿÔ8§Èê8:Íç;º‹vNbe·¾^®î7Û„©Žåeâ«ót¿,”žLa}QŸhâÀÝå^÷®·SÙõðŸÍ¡Û¡ ;êc®ö6¾à~ÅGâkìýD& #x¥'¾áS5º l|«ëذC¦Óa¢<ÁN8ÍÇEÇnœ“€·Nõi§lÝï'>çѺ@ÊÚ%g†82Ä™v…ËPk÷7 ï“)Zˆ|¦°Ž ‹¤m»bõ´­¥ß©÷"³#Gl–Kg^¼_þÒú±ZoNný»sÇH®P 3*,Õiëf(ó’äé•Çü]ígUÑ®t&i…ÑFT|Ñó€9ãÐ*غ‹Î.ãÏçšMŠÜx‡&…«£…7ªjw¬1j0®Y³ÒOÚw¨Š3<¶ÅW°¶ ——™qg$}¾ eÏúM}uMOC¦]˨9%?ÚybÂ+8Rk öZ€™ˆï *lr#è(™dWØÛ‹+‰4ô¢OWfp4 òˆ—ݼЕ¢ÖŠÙ¸•³?¹Í÷¦>Y6?í=×øE bÀR„¸šeѰ /²Ç-T0!*µ‘†êÆ‹ JnjϤ—ó½níä‹X6‹Í¬oÚ‹?}¼Ý¾¹%Æ;@anÁå*zŸ ã(Sá!¥Ãz°:5 _ÍvØH³¢éõ@ª~ø9ü WÎ\ßsŒ'T™Û§Ç!%³Z¼ÛFy#It¥ N½Ræƒh¶ú´Ó}ÅËDÐ-±nGV,c‚prir¤Iƒw¹™ GkCÿÚ]ÃiãàãäÛg¤)¹±À~Õµ‰v|B&U÷6¤òû‚Nm©ÄNÂMM¤ÛfÇóÄô&x°éïò Ðvû wbý¸ÜŽà g¶™fT_ûØ´áx+Nd§îÑ÷ºèpA$Ÿ§(3¾‚ ®  ×"%Ž[wæÙ¶¾Û TñYÊîŠâÇr!^•UtM0ì¿[P2"ᄜJhå8÷‡$Q¯=§Õ¡zÆÍí¬™<„À»:•£j5‘ûÓFRI¨Ô\f?tÈ Hµ= Òy\ãL0ÇÅÊ;º~zöÔ{ÇPé¹t彯Ý=o‰_™/)–:wjN‘nZ‹èâÆËoÊé;Kšu0¼S‹<^EïÖÖÒ|—Žsy]ß þ@Ú'"£«Ôp-O­:'fÞ¬Êg.Öì~ÒŽÓ¢¾®ëYqŸ¡Ê-Á"dl».[ý]\1~]‚SßG¢âù©Xÿé<+Y\Ä¥<¬{zq8î1%"b³ç‰žö©cQ—VˆßÀvì9gQŸ¢é³ÇåËÄ©wUŸüš,ná0nñLky@óÍeìXŸ¨ø­Ä?ˆRœºÝÏÇh Ð?²rÂhØ?›Ò| ºûjRfäjað”Ýå”ò\¢&ìOŒÔÃmÚ«ÊŠJz>€aØÖ(E‰^°j€â$µb[•AÃÐëÔÛ1<"‚cMQ äÆ¿°ÓÌ/)§îZá‚gZ…矗ïÝ`ðO—çH²Zç)ב"Ù„gTŠí N€fQ©@Â6ŠšEö\ЀSfÝcƒ|´|µá©”á|örÁ}÷ÿ›"dÝ™þ'ä{oÏÚ2 ÛÆNÎìdi¯ÃQ”ÕòÔÜZ,¾66÷úðÝH]~Ù P줧“þç‚ôï`ê6´toV‡éV•A •JùÒÝ"Ò§tÚd(Ãf‡ãÃ=·¾šœ½ž“U’ÅÝ"½Xô¸´ß­ÂÆ;@§,ãnž )»Wå!t¾!Å’¿¢è ã3ˆIPFüºïÌ,u¯‘Y²,Ê£ŸK‰ ¸+yÚu}_ÊÝ +±Õ®Æ)Âä­„ÝãOß8¤¡•Q©Bàµ¿ÇØ¾e?XôžÙ•æhøUvñŠÿc ×¢¤»ëºp: T/÷Ñ i\¯’¦„éHÇZÔ‚ähPzœç.öap¯yqi´QfˆÅáÁÙ‹¤*©`²¹bóO Rÿ#°{{Õ|³¡î% €û !pöóöXl5ý…?áû «à“¼þŠ5Ð>¶_xZä¡÷WÝ" G•H$eÿJÔnľÛ¿ õIeŽÔ¢ñSV[5Çž8*ŠÀáÀ ·R)·æ÷¸ÕÕJƒ8½3ÎkOa[¯èª²6±ÿïs¹Ýg¶žâ¾¥AAü€D Ñ€‹±Â¾N÷œOÑ‘š ^arÖ _¸ä)l‡Î¡Á&iœïGê)€Õº´Õp¶È(ë˜^y2éü²ëu;–ÇåXõUŒœB>žð“—…†"·§ƒ‰ÏÙ=5a‚L~ôü¼/A@b¦  ìƒð^4£í·ç­0h¾o- èä̸Ûa[ ¦@¸ÛµÕp® ê(ìSÒŽ6,W%ë°½ô±C@´[ŽyçL8ß'ñü5Ûœt@g#Àjኬ ¤³?è䥓H+.ñ;Éò¦s$“j™Žû;y$DÚÌyˆ+È÷1CÂå:iNèiq¼³mÐJª¿î§UûH‰Ž„¨L°xÃÝÏ:ôÄÃ\üK6˜ôÅ“˜Ë¶e Hj9öÀÏÑS¹ü¸D0 <Á븅ŠF£quÁr™jÞ„Û:†Ý£û®ž|ôÁÁ®µ;çPâ÷½/vˆÀ¦/¯¥V N>óÙ›ëá´6(iÆI¤OƯ‘¡80 Î6ׂºÙ–maÚ–Ã ly•ŽÓ§ß fxó×öäKBηa„;#ݰô¼üû€Ÿ£+5ü€ÖEàæÑàoýO[º;uGS¢¡QVPegit†¥÷ì‚ë ‘!º„Û¨ï™*B^®rWz”Ι›Æ-Êäî9Ÿù³s6<½Ø ›Ëô=!ªfw]`ExØú&š@Ÿþ‹Ï~¥Dq­føm øôˆÄ¨Í+Ћ„ÚŠéãÓ‹”ûÄE ¶F¥8³(g¼bÐ;îõÏš·LÍK‰p×—fsý%¤zÄnK &:5ß(žü›@öäÏ0ºÆò¡¤äÕþç÷½õ­ | PpFk²4ž'Бtî“_ºÞ3Ú ^ t ·H‘gÝ×çMëâªëzjJ7²3íc2æÇyå|?)§ÐÉq-¼á,.þ\éIÓPU&sô£¬e×$/ÎOS7òí¸Æ8aã°Å·Ù¢E`Ûcˆ³ãùë«9CÙ V]S?“gÁ4J£l”‹÷OãìoY;¯Xå§ÖoÀ½X5Jõ ld1@Xô®:»‚¦8Æã—±¥‰›uXdQ˜™éòà[=€‚¿¯Wi¦W ä*ñ$t¾8ùÞ`&'¬¶×)8{£š9]HJßå_-{ Æ&¬eßÝÇ’ùåä R,¤KˆçXaG<ü¼DŠ'1™Sò…[#¼Î}YÝTÓÚ ñTÑàt"ë‡Ý΃hêNHmsœ©(jì/µOþ¡ MÔF=JRèªÊ‹¸^–8¸¥ŠêÐ ëÚ‹YSçQ³#ßšQÄî)õý+ c›BÜb¾ôYàEÙÁ`_ç§zô¹ Âûæ>Â,Ù2ôsÒ$¶EŽzü¡2×ú16éãþ׳\мÿú&ö<Œj>E¸w¾]ÿWÆm(º~€2ÐûÉ0à¿1 6LD]Ÿ¸ŠºotB¬ÑÓÃæNk¯®¼¤Ý»ëÚéN|*ËÔý6Æ“Ä0Iªk‹ (Ö„©CzʘŽŠbÛ0 »qGÇ’™k¯ä\g#´½ÿ[c‡¯A‚ÂE 2¦mŠM eû´°«m§\RgóúßUø}­˜|ñåSЊ`Û,>ש†t è›P/Tz‹²VÓ®S:Q±G•PÒvË!'§‚"ן²«m8 ?Ï£HÚ᪣V°Cu£-»1Ònd'ƒ^ÒÍ4·a¡˜ÚR4y&YâñÖŠ=Š‘\§MÁ^yZ»„Üøõ^¶&êF«0Š”tn¥Bl8²¾H<ÖèŠJØUÅŒn™ÏY$­ZARè$}ðDu”|˜£FÁ¢ ÞUÚ 3”ë4·OÙóäêôuSð9g‡FàAV g4¬«‚ΚÄù q”W&ÞZ‹+4ü[’)ë|„¼Óë3%rTÂÁÌïÁ0ÞàýÕi´‚ˆúØ×hVó_Þß›<ö,üø´èÔkÑÿ™>;I'—ßCf¸(6"ØçN´ïì7ÇÀ®PëDº ž•=Ì$lZ‚OÇo¡~&­á¹‹µ9¡ù1kÿ»–W¢ùäQ¹ÏVê‹2-àJµ¢i Cèî¡ ëJ÷¸m}û­‰=nJ,œí½`¯”’LV:=Þ'Õ‚GŽ¢Â[·—»Sn€DÝžµPØó¹ 9â+Ô©U ,z8áe¢°ý,J¢ÝïÄA'Jg 0É<Š¢ŒÙÓüAóh‹ç>÷iãQûé§ønòº×<IVð1@£Ù~a̸wYD®Æ¼Åÿîªì~/u,×NØ +ú¹Œ—ðíªÞäæÞùo`´ÒSA…!³QœKÓt/9އòÆå …©«à³­:35ÜàÇG ”wã‰Íú$ÜÔU­7ùHsIMþ™EÍy Ý&72ç@bÜ"å…Ì÷q·+ã]]¸¹MÃÒAZ¯‰EíUEÒs*=çã\z%&™$a@ Sižo¼) =ÝZ·tFÀÏQU³=øP5ÁÑ™~kò"Ó”57 ó°¢NIÄ„vîtº|H¨{±ËOÄZx72ÙQ­-€áÀeª$kß2«¸ßÇâäNµÀ•¾Í=ÒÀš•­ÛàqŽdÉJCUqÛ)K°Æ\5è&„<=E½B¸cKjÙ™7e;‹4—æ e”ÂÆö`s’áò2á㮊aß0DÅâéÓt‰'“:âÅ8’©-#;Bh‘lpÜ…’±"„\§ž¡ ÞX È:{'´6nñÌu„¾Fp™ …ßÃüÔFCn¢b‡Ú²^ÿÙíÃðø>“ûzÁ8ýϾXZWé×\(]cýë+à_eþºªB± ý˜×UÓÙŒ´eÏÇܯÆL&hî[<}d ¹”¸5fgñ•Jˆ®ƒ?~‰iJÈ&Vk@J´ÿ(ªàûÑI³¬ùú6ÛóW§ù}–÷yZ'"ô+'²Ë¬‡u„»Þ*Þ]‚ÒÛïÿÈ~'ia©zÐÒ+Åkâe¦Òæ7{”ª¬% üŸºY"(ö¤Þ@Ã[¹*îF²ç`½ÁæüÕ¿= èû25@|ô¢Nw÷ŠN¹¢s¸f¥p¤ZÏÙ IŽfrxâH×Ö?5ÄäägùÒÇ®wéìMù€eÚþ]=» .x— Ô“MtI{À~Åöé»8ü .h‡ Æ6[€žán±¬N$¦~§Ð7­ ïb›ÅÁòpŒ|¯±%#dFÑ%®>ðƒ«Ï5³dý÷*p8kšbâuë¤ÞÛ¸ï£ï„sêt4D 2D'ôì1 Ó {•Ç mP¶ ã,¯q ìST6,%ˆå[³+€;¯ƒööëªÆÈz™ç"Ô„B—8'xÓÊ\k íø*««'F’Ӱù™Çå#Æ—òâÍQo‰+/¬fŒÙkޤj}ø=&mÕ=$0ëRô ¾_ ç{eu’ h¨pC'-U2ñ^º‡ˆÄz”À­í·øM€Ó&]l#Nɼ^m~“œ;“é¹…œŸ¦ç¥G¥Â’ˆÆ(FC@OÂßPÇ^H®÷à øfP^ P½mS¢|³«™ÊÊÊ‘äŒZO`Œ+ÉÓé³±P0\æk¸³1iÃxck»I³ÑOŠÖSͺhº˜À"·ß±GoºlÂáÃÿŠÄõyÝwƒèN"\"€¹bî͇{D©7‰—uøúŸ~‹‘›VºÜ”-ûK~—ÿW ßÑ–G¶U]7%°ò߉̶àEþêî…±G>÷Ø»‹8,V•üÆ™S„ ˆŠ–1@Ü× °'—t£•¢ø £¦î®ÇbhÉá•nñ`Ïw1:Â/>ºÎçlãPõð‡/<õ^¡R”q&3¨„ô`Rf+*ÿ\/èaw a[›!_=w¬dž§ ÊÀ=ÁEœ­â$¹KN@7R XÜRkQx88H§ð…½+å {±7ϑÌ »f]gÞÔsºÛ.×'ü„×dþéKHV¥-`BcŠ(“û:Â6žÔμ:êÀûc¿:S78@^›z¶:$ÙP&Ök<¬«YÔ°18R›ý‹Ñjø…Ø+dã„öœ [ËX£mo«X[*yob®Ëà¥Y4ûéè3~BËãå&[yspê=mìåï„ðˆ}àð1Só/Jotçº ÍB’ùDb61NØÈ \|šÞŒg¶¢‹€\ƒ¨'µÖwV_PBcÝ‘vZg~ú: u÷µèkJyš¹ŠèVPÝAØ@B{ÔE-qOCÍ{Û|¤¡ü:é‰;Rm¨Iù;Æ}_3½›9˜ ¼RSë\$Ý(¼ßßzY§¶:¶ÃëÆ3ÀiáÑ¡Ä÷CG$á–±„!”¿¹I„ƒ…{{iOTD—m”—¡e©KÍ«^a]Õ¦«âýòЋ63G¡.T úÍZ#¹Ý¯pßÖj$wáÐUm zÞØ|™`‘ub&åB q¥cÌ N‘žƒÿµ‰Œ$£ÖØ@ÐHÝ*gà­Ï¢¯±Ð: ‘?±'‚J#_·m­xp*jÕÓl>€´h¨ÑšÝF×y¹¼ª?…0m÷× ?¨¾ìLÁ.×ß@«ʈÿ¥ßoWi ¬÷ùáY\¬dÑKê\×hJÍçŽ?H!Ò<|}EÀ¸Ö@®Ú>;!ˆÌ¾Š—,¸ÝïaC¥}øÞ[ìÜÓ:ó i0VðÆY3­Ï$- ºã9aÈp屢—Zµ!*¤ØÞÞkÜ÷jˆÏ·5ƒ{™ÆÔ:ô9Ù¶)Rµá{/oê gâÆŽJp2&yù_7'à–tÆò¾_4Ù·'§X©„œ.¨…•în {Ã<É›øööI¿OK›*©9—ñÂáÔ ÷¨”Lîç d›´ƒ€[`âUð¿­ÚÀ‡£Ë®ú±ò.œƒ“dÞp{°q™Œ.m °Æ„ѦFçWð(©s#Ó‡ú¿±+Ê ÅGÒaqŽ® Îüý31L2~ð€F¶VïíbÞfþwA½Fvå*ŸŽ•0~ Œ\C@¸“ü ŠlŸVxÎ%N9µÝ!§ÔþÊå”ÙIý®uüÞÿ?¨\ 7&ê<ùK_¸?°E±õþgÚø=_-Ìü-2†£Ÿk0ð“YÒ•øø8ðGëIåˬ6Áµð&;4ΣÙÚŸˆðlüïîúÒ†ª6ëO¥ì Ü+_`lDóøèžïû­ž]¾ïäX~,û‰¦–oU߯iÚf:uýÖsæ Ü(¯ÇûÜy³õ’9ŒÐ`¹¤5 OÛ⮆c•xÚ9å`¹Çnu>qÙÐ WϰsˆØJZ G&å4J, -…ìZ6ú%!ÏbQ¥h™gQ*ÈàhÀïãˆMðGÁ—"FðÂ÷âk Kú$BIz£•v¹A7<˜' °Y’/ÿ~ÛH…BúûŸ2ä£>ý5¦ça"ƒŠ‡*ÿŠí©ýªVж´UbKû»¢ËôôO}ïV¸fàIo×;‰‘Els¥x¥Î¢Œ…WÕ^%¾šš·‰‚Õ^hñ½s%@ñ7qQÐòµeLZ®îkÃÑÉPTʵ;½Ÿ¿ñRйŽ; ’Ft¦Á$d×:†±•¯IÑÑusÔŽ?Ï,ã æ8r/¼š¿çg‰Ÿ‡£–yþ_Ðn É„üfúÊq(˜dǯ!°K¤³“ýùÑŽ™zãÝ·•pg+õ O¯$Ä'‹èó¢^ÍcëñôüHöã®j^'›Á±<ñÚ‰žŠ.ê&@'¨¤?ÙHÒ ztf㢑8¢ìô. 8"¨O‡7»åhöÙïÏÂå«âç*¹Trãß^ÐûuJ=ÌýÄ#œq"¤ Òï"tm|†òè¹lÝM¼ç©éÛ-°;„­ñ’ÖÔZª¥.Âc¿êX0‘ýêe³ùKy³jÇj†ùe•7éñèo£ ™SXéïºOu#P(­å}É× æ~‹•=iºÜ*FïyýÅÏ[“½½çÏ®MÒa¹üYZOÊóv*FÏKzRŠ$‹Òe“æá6¡X$9¶ CãÁ¢E’‘_t&ÝZÍ léù2²Ñ"id=i¨çƒÇ³rßàÖîù¤_ŒÚ4üÖ(õâaîp] IGÉ¿ò9 MÀøƒìud>4Úª¼Lw3ùÉx(šØˆY•°Á67ÊI m+6àì!÷ÍYmB×v•ƒ¿°g\—oÛ÷Eö F¼e/†ˆ{qœþÞ*:i9¾«»‹sUõÁáÂÂÊLÝÔûÿo~`0Tuá¿ &4¼òËÐWpIôW›+ຠ¨vçGÒ+#ÊÈ;&_eÜ[Wq€&¦„pþóû¥€±ùøðÒ2ãÏ)~]dïÒXÙü3}5Ô²’ê1²±´üŽ2¾hØÂ‹À9çW÷w¼~8X>çÏ®„%g½W«†j–&à »Ñ|ûHeNüÔ —k>;â©0<ÂHv§JbÕ¯6B#¼´F@Ì®­L„ÌenS.Gû¬ìE‚ʇº||þÇósZú£â~/.NÉb¼É=ƒJ¿nT^” Ýj=‹_¯„¤{1?  añþg;|gJ³#Ú\–o×"»ù2’_ø 7J-˜„8é #½VÅ1-½Á柊’çç)'r"䎱ø6Zž`ã±Àioq×hB÷Úlý×g]EÞùñ£©HÔhþغ•v½v”½y sGµ=0ù¬&Î%N0‡dpdÖ —no&ÿçÉõVZ—ÿ %&i3ÖËOB¸Á`½àð=F·Oñ ¢­FÕT ((!/&8s–‘ØâLù¿‡jptõ­EºåȾ³C…“9É}v“ýÕÇ…^k!‡ut­ðvœHåArü V‘ðVZ©áIƒ P‚ŸŸÏL¹ÎK¢5Ç?q$ÛQY|ªßÅ›)ZþNTý˜€M½r`Áš“ ®3 ¥@2BØ÷¾]‰ÿŸ‹f .fÔˆÎUÈÄb‡+‘è£0¨¶ñý%§ ÿ¢s8gŠ u·²á£Ð/q6’i]‘Ò þðyÊ÷Á/<|È£Pl¬baˆCËz §X/s¿Iãm¬oh¦oóU¾PšËcïDTfïä(OÖ ˆ·œüˆí‘Iáû:'AGI S%-≶?‡—fÚ=<;˜‹Š‘Vb¦ÿö¥vÏ´žs½=ªOžãJ¹ ˆáˆ g&x=•ã VŒçL}Í\×µƒl€Ë4Ö½ jl»ö{ÙÅKht´ÁKv«:q¹ÒmzdÉ}›ô—v8BI†Wɽ<¥Í:T;&ÈB q^<¶’Êm?é¿çÉ»e—lÝ™Mds‹îYÀt–ŒÎ쌆ºmd(5 î‹é^°3­Ý‹ÉÛÂ6ޝæ‡Ë8õY¾Áì©íÄ®ŒŒ:jÄò¿A® Z6ñL\-²ã2 ÚUHvå›”57½ÌxØPÇKÅC†¼ ‚ˆ}R(½ï¸<úo/{ú±‹9¿–N•œYM-10iZ±ƒbUT3c,”Hv}±Ý+LL>W+ž¾J-)kC)5°•º m™…òb^ µ¶w„«YºÍØÙnvA4J”3ɹ< ”ò“—òï—ÈõC7ÂIñŽf¤ýÜŸem²ˆ>’óN?ŸãkÂLœ7JGJr_úÂ‰ÖØu÷m{}Ê•7õw&u´Ò){Í¡Œ²,îeúî4„tí€i‰¦ ¬©8 »þÛ`ðˆè"O+'*.Lh:K µSð`í&%,,“l–BáÜ:§·3…3%YV! úWHÒžuÛ§kÂ[U}MFo’i¥wáöÞ±ü¸Ãb¼ ZûŽ^H›ƒâÌ– žSÀ»¡°é“)dʪ7פWÒaàTdÔ¶›'ÛÃày¯T;›À\Ú/néB O‰a,?Û4úEÓ=·r ,:-H$n=¿?bm endstream endobj 194 0 obj << /Type /FontDescriptor /FontName /IYMWNI+CMR10 /Flags 4 /FontBBox [-40 -250 1009 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/X/Y/a/asterisk/b/bracketleft/bracketright/c/circumflex/colon/comma/d/e/eight/emdash/endash/equal/exclam/f/ff/ffi/fi/five/fl/four/g/h/hyphen/i/j/k/l/m/n/nine/numbersign/o/one/p/parenleft/parenright/percent/period/plus/q/question/quotedblleft/quotedblright/quoteleft/quoteright/r/s/semicolon/seven/six/slash/t/three/two/u/v/w/x/y/z/zero) /FontFile 193 0 R >> endobj 195 0 obj << /Length1 1600 /Length2 8335 /Length3 0 /Length 9383 /Filter /FlateDecode >> stream xÚ´Tl-L#!Ý9€t ÝÝ 5¤È  Cww H‹ Ýtˆ Ò)!!(H§ßü¾ïÿ׺wÍZ3sÎ>ñìóìó°2éð*Ø8?‡¨:Ѽ|@I€’6H@ ñ‚¸¬¬†P$ ò——Õ‚pƒ:Ã%ÿ#@ #ï}Ê`ä}œ¶3 éD%Ä$@€ (ñw 3B  ö€Ú´ùšÎpˆ.«’³‹7jg¼oó÷_‡5'@@BBŒçt€‚µÃÚ`¤=Äé¾£50p¶†BÞÿU‚CÚ‰t‘äç÷ôôä;¹ñ9#ìd9yžP¤=qƒ < 6€ß„:`'ÈŸÌøpY†öP·?ýζHO0¸wÀ Ö¸Û}†;Ü‚Ü7h<èº@à?þ3€ð×l|ÿ”û+ûw!(üd°µµ³“ î …Ûl¡0@Wõ1Ò ÉÃm~‚anÎ÷ù`0~~ðÇÉÁU}øžà_ôܬP¤Ÿö›"ÿï2÷SVÛ(9;9AàH7ÜßçS†" Ö÷c÷æÿófáΞpß¿ [(ÜÆö7 w~#8ÔÕ¢¡üWȽ ÷_Ÿ bˆ+âemÏÿ»¼¡· äPà·ûž¿¯‹³ ÀöžÄj ¹ÿÁõu{@H„;Äß÷?ÿ¶p6Pk$à9Ä Çý·ú½bû§}ù¨à)ð^{àïÏ?ÿ,îåeã ‡yÿþÇýò«è)ªsÿÉøLQÑÙ àË+$ àHˆ‹ÄD€ÿÿ®òÿ¿¹ÿáÕCÿ:ðß‚p[g€ÄŸîg÷7 ¿TÁñׯpþ»ƒŽó½”!Ž•oZß ü?ëÿ”ÿ?Ùÿ®òSþÿHÕûæøÿÿÀ`'(Ìû¯€{%»#ï·BÛù~7àÿjùs“µ!6Pw§ÿE5àûíP€ÛÁþ#ÔMê±Ñƒ"­íÿ”Ðß·p_…CôœÝ ¿ß¯ø?Øý¾Y;Þ¿'n÷wõ¹_§ÿn©·v¶ù½w‚"¢0öÆÞËKPDà+p¿ 6¯?” àçƒ;#ïS÷ôü¶ÎÜß7*& à×üíúÓðkÿc‰ßc†ÿX÷øKø»_z§=÷šå‡ücŠømÝÿß§Øÿk üðëIøï_Îÿ€ï£ÿM¾§Ïôtþøþ4îÿš‚÷½½ÿ-&à÷ þ ÿ¯qY»#÷ÏÈ‚¾Ÿåßöoâ±Æ]˜u¶– s¨ 븬Q õäÝú(3źeò’“×wÑé~M€ÆYý*dq®ö¾—hyC…ãL~‘ñ—ï÷ÖìȶTýöŸ~7Ï’A[í¸óŸ(Ç_W¨ Ç¡ã5”ßöûåêgìˆÞŠÚ¥Éšïê.N WHzéÙ¯æU?P¶41»¥¿]-ª…wS6Éog\2ÍZð“5¶HX©Ð·v}±{Uç¼ûÙéý²×°Æô‘¦Ïd”ÇîŒìðÔ:Ûy°k{ÌÍÆ‰Ú5µ±1Df§¦--O›6–¢>‡Þý\¢•“&ž%íUV~«P£ÞÐ3‹º­ïxœÙÕ;ힸ—Qß6ÈÊŒÊîª+óÅ_¿ÆQÇNL¸jF‹\s§Pû´.©¼B¹®•pËQxbRÙ{2öîäÀ¢ˆ(ÍWfg Hˆ¯{Aj–«›ôø`ª A„ÖR¢¡ìV²D« Óï‡*nHØo_4`12¨lV…g•:÷§k¥l§Ð2Ãë{zþÀ-»ißî~ànxt”ÿ½µ·Ù{½3d ÆF!…ì]íü²ËW`ãTÿÄ!É7Ý+eà }ÿœo` ´ÖŒ çþh^úuy¸È`zHúð îU(­„Zˆ}P\ÀøþÉ4§´ÁÕÃp›®r4Í>”YÊÇ ®\±g]¬´áÒžìùnÁ'–:ÊEMq¹D¯øÔú à^f?^§PøLeÿäË1ˆMÕ>eäŒX’~ß÷Ãã—Þ”}‹´€‹î³-·Ï¯Ûû‡U/ìÜkú6ö)ž¯9,q#±".ïRS >ÌsÒ+çôb¿ÞHdõµr±µ'Œ¦¼¿!ÂŽ‡bü²;¢×.7o×Á®8!8b¨•3Î*¤ôšÌ6…ü°¦u¾ÑÂïÉ$ÜÍ[î•ÓÉF‘-ŒÖoÖ?Í™qûš›&ÚI¿ŸTBt}^C «,¾Å®ü m‚™ÑXt4Ò’uÅýmÜæ³…ân:ÙäC¹¡»°wÓ›º ËÍæ2+¬Ä3 Š,¾]hwhÜ;ML¯j|Éž¢íåñƒ'þ ¯ãvC[ÕŸv‘»0£kr¦2 öH„ÜO9.[ÆÕK¿¤™ó ŽB•SµžÁ.yÌv|b¸cv€Ïd1f H÷\¶oeC37®^!3÷ãËòȧý8XídYôFÑ}2¿0½â©DÎÈ]^¶€òŒ.ZŽIÙ†€m¥¤I!ìé¼kÙoëÄIÓ&w ^\£EÖ™–íAèTêA(tåR c”}£µ =9&Ø›xí…Š A;RÝ%>²pÃ~±Tªë&ÏñÔ@N¹Vôb¥«ùéÆÏÉÄ,¿8fç¾=Ó”ª°~ˆ«Óý‚ëäáB¼]÷›×k ~Ù)Ó} QF¯ï¬ÇªV wޗ¦×SE'í³D1Ÿâ.¬6~ÊKb`4[ó0:ÍúëÐócå4j!p:l›+Ï¡'!‘aëã~­ 8ÕLès{öŒ¾h´.%Ó;!pÆÏR/Úß;’¡˜‘(æ qAƒL4üR0ƒæW=˜,ú¦„ÿ˜0žü ù7aŽº>Ô€1F«ÜI{v—ŠÉ n¯41Sÿˆ:¹ØQbµY!bezÉŒË¦ÄÆ‚©¼$.¶Vá#—yįø›u:C~¢¥=a¶£ü‘Á³Ñ„-F%˜¥%Ö¨ÿb¯«„|ÛÄ*änG¾¶ýö v~³_Œ§v "ÕšLbUœc3WÚQ¼»Z*­LlH?µ¨Y8´¨NÕ.ò®r*kv˨‘|ŽG•ÎoŒk94. ´"̸åM@ªc€ÿé)[%&iÝÖÀ£@¿™ 'V4YÃÎqÇšõ»÷ðš'òÚð˜f÷&V¬r4„úâô§žjBvôA·Rx6ÅX-˰gœ1šVÁ_ø©Fë'gîÝ¢_^*ÍÆ²Ò <1ÚêIÐá¨TZcëj»ö+TÔ5Ú›ë¥ 7ß¹Ì,Á`¤Mü('$)XŒ\8Zðf£UÍdò”>we< دiWåÓž"ð¥z».•¥„_?O©’óè'}¢ó‘[3cp£št@”-ÿÑ^öÏ$iÃÍ4<”³Hª¶râHñ­é<ŸÚ5ç(‰îÑifKÊÊ« ÑkR¯H?3&ËÂwž*à9ÛÚÉNw¯â……iùŸWéÜí±Ódž£k-õ muïÖ—ëÚk* efÕwÈZ–HxäM%ysÑb³k8![¦ª$mtX2BŠ^<ž¢Ýƒ¼òû˜Âol˜:Ax¨/²£²¹Žò±‚»6%¶ó) ª”mHçûhRž?ª¹6>Š(³D¦ ûÛ‹@’WÔu¢ýê•Å<ºÍØ¢ìkÅÔëãİÂzƈlܰ»ÝoT‹,^`œ]ÃÜÆ[¼íÍLšÍfï¼MWq:K™,ª}æ–åçøš‚Þ^‘ã‹ìG£Œó&¦*?ny†XPßÚ­tµ )©æg@|- !Ú±«ÖcMõTØ|ëJïöÊŸVøeý}àåHÛxAáÍ›Ïa\’¹—Îñ6VQ…… Ú×zÏÃâ"xᯓ#w«‘),Åу0;¶÷SÒŒJÂôç"6¤\º*8"Ik í¯©?Ã<º$ÚiŸq¢^MS>rQÊÎüNOÄ=ÊÑ¢€3Ó±¨÷Ó86E×¥`di­dÕ6“ÿ˜Ð_T%.RñDc€}7%J@3 Ÿ¦šôÅ”Ì\NÅ%!aìJ\c^}õóÃ3áúwþZO ª¹mfe-­WŒcEI€*fƒHžá_d¤ÔœÐstH @—±¾r*ONü†*®(r˵=–áµï”gìQù‰¦¬w'Û–yD¦q¶´gÙ_èã=)“%¿,(tdY«ò”ëqé[o¸KíûµŽlÌ¡ _êfz&è˜ê·AÔùߨà§lð¤NÊ[pÏ7%wÆ(-ú´žÁ‰}1v =£ª.­£8:¶™àÅ]ZÆsšÁʤåÍO…kÊÇIX47ëP»OnûŽZè]()äc2”¦áš$ÄÉZbf•™ÁEi§¶Û¥trÓÈ>ö÷â’üq¹jy‹ØX(#¢1CÔ‘/J‡rÔ½Eœ._yåÎ;‰j¬n—èÚòéÓxÇ„ñf° A QÓé2ÕqQˆNÆ2r³x.e—ŒÊÏûXòkÜ?yÅbÕ¨ )x>ý¡äÆ'¯«¡ÇÛVÉXÆÝiGl**hyÁrMÖDT³—døJKC™bbu¼VC 0ª+µ=V±¿Ñ£ð«gsëûˆ_%jÊÔoÇ·|šêI¼ ç³YHÈpžvf¼(y¾÷ÂY`Cús{ZT-ÝÐÃB4†H/í$.KÜÎÓʧl” ¿™Í]áOö9ô7¯…¤Býtù¾ªHx>7@ksPÄöIZŸÍn`jÌ´;D{={C&ZJ´¶4öÛñ’±õx)Ù„F€ PynZ8z$ЈÚ.OÖ¢ïÑUâ¥ÐQx».#Ai'"³obé56ÊéÜз˜«ÈPÓ³ˆ§$ò×É;ÕHP {‘ò2º«<«˜±‹)8‰ê=Ú f³…?j“*Y×@wò‚Š!©à°*ó¦!¦}`b°ý’2´ƒÙcðŠÍ„Üטv¥ kéÙÝÃ2‚µþ’FþŒLkÜà‡[©ó"yÞÉâõ´üøm³XÆmÕ%§ %­}ÇÁ!9D\–ªþ4Œ,røz´Û -A¼X7é4N}‡/^¥ÔÀSîâ¯\ ÜǾþ~ê}¶ ¶}TúJAHNå<D”§H€ºŠ¹œi=nä§{\ÊÝjDÿ¨1!³TE OúÕðUÄj4­ˆgmúÐ!%"G#12H(«ÿJgNÍ ŠZ±zñ*Ù.#ÂEÆ7bêáp&pZ}L–ãCƒ»IçT±_¶áhƱ†öFµ-×jQ˜h/9ö¨õתEKéŒW ‘1^Ï*®-mÂùĨ«“tãÂ7øÐH¹ÍÂMEÛð|êœïô 7hØPßMu–a{<ŽpÔ|Z»€\ñw¼³ sßÂ;ÇÈä/9ü÷²©n¢·) _aâig¼ Ó«¬ ±:p™Ž*°ò‰ó½eÏ~å…}@Ε‚ûRú‡4r.EB'k¡gt¦¡NŸÿÙ-§OæÀ BX3úeƒò<ðµ€æÇ²·\ñs5]o?Ílîwã²¶;“Ÿpr´õ(Uÿ<2Dñð¡„¡‹™|¢%qèè zIX>TÌ¥¹\°)-Dÿqy½XÝk—î‡Í6ò_9A=wör‹OÂ]äXö¼Š2€<žÛrÎ>õÇÙÍË4¾¸ë(ª²ï¡Ö&P›”‘Ç1™ŠNC²LÛOøýÝ.½Çr²ö9–ü%¢÷;Ý›n /£ú±.Ü1£·O)¿Ö¸ ©=ôŽ2M©t¬‰’Ï̶Úí¤ÍJ‹±‘?Ú…eŽ¡ÐÕóiôXÌE©"¿èq I±¦b+ðìœø,pUät'*šP‰ã¡÷…“T­úfcKŠ•°ÎÖ‚5Q˜ØºµA³íPpÄþR@"û~6/|½‘Ñ¿I>êÙxsÝÆæÛ2¶¯¥œ˜,Wç‚j²âfrP>zŸ$¸ }–ùV1ÇÇãÀŠÎBiwÈš{'(x"®-¬“+t䪱jK›ØÚqQ0g>6|‹å<ȸt’pâÔfŒû–§ØðiÇ VÑÂ,8ì€}‘°øn¡ù£ w>ß.òYã${Л^=ÎÅ“O%¹®)âua“p—¹GùxtF¾ô¼qM¥!ŠÑ´'€¼¸×ÅüÌB\°•ëF´ÍKÌ‚•õB»4èS}mÖ¿ñŸøMjƒ®›y­âhתñßJ‰nk_û äõÙ]<¸—=­…s8w,ÜaMÛÑdÂT÷É ÉIªríô·“ŸŽ—né…ö²MYVáÉyàø·z5¬zU-Ãïe qÕL`iƒ'äÐ2s"7¯Þœc|N~ËÖcï~†ÂÖÉ €ñˆ(.$~šõ:AÂÚ\ŸYƒyàKÙÕ¯³Æˆõ=Ì÷Ý=di“D(>átqyÜÌ©›A´-d‹-¡eÆ_Ôc2SΩãÔó.Ô½b¾Â‚Sf::!Ê´ô½_í©ÈãŠüIµ¾ÊŠLÆò‰ph­_“OÉrcG„r ·{ÏÈ—’¯`æ$|Rœùñô cKÇ‹3œ z^«⸴èÉGcÉLÅ%¼~oÏ@ÆÚQ›GÄñåžUš¼¶Êø}V>+¾óã‡ÈîT\+ª£áÀ¨Üó†D¸À–=€î3±å¬±À¯œ6ÉVtkÐn"¨<{=uݹt†. Q¼¬cr2¦{$*Ô{]Åkß¿':*üx|<8“}ZÊl…Å=L)ÏFØ“lÞ?aÑóÜdµ€©Pg¥ØeÜ÷˜b›ØKü oŸÂUQŽÇopÁÞQBHÕœÐoMïéaÈm¢$ï}Í1i¤E§÷eHvR2šo–jÖGÞÒnä<­Š1[-#!vÌjð{‚®/Ì8¼­$MnŸÿAé¼¹u­Äðˆ;;¥4‹L«Aµ«c·ô¬î]Ó\-Çþ^ì†ïÀ­8O±t»‰o™hÛ!}TÒ¯–ýl§]VŠæ ¼Ò½Î@þòx#é7-Ì,ŸH­Dwc¼ͬ«ˆòÇ6Ÿ‡µR¤ÑóÉ ¯OaÍ%äòÞ¤œˆu턈¤tcÄyc E Ü~ÖMŠm½‘£–øÆ!Ï_:N­àôÎå¯k´¡â¬ú1ŸÏE§*>O–G³÷ G¯£;\‹BÛ×úᬿÄgt«@žÄ-²†=åý¦5¬FùõoðsŸ¹˜rŒ˜›ú_°Ž¢d ‹O¹9x-<òú·•²«Y42VÖQJû!QËΗñùæB½ò="R„ã)á“Dõè¢'†¦¥FOuˆÈOf;`é½C/Ç<‡Ÿt×á@†Ì{Z°ŽJó"š5ÁgÆÎ‚1ŠÌßíŠêxO©Ê†d¿ ŸZAãf¥Öy–YöilQ>çÐtÁníeÌã D3íJÈ`šYïölÓDc`êíø mÖFåøÈ¿6÷U¦«¥Î«_ãà óS‘ýRÔ‚”ê™t™Ð=58$7ó4ú}ôž°ñ¯3Ã<ïjIŽÀaƒ¶Ìn—ÙÏ$3‰ û V)JaÃK­ŽÚÌQ]þlèÍ¢u>oLY4z³Å<ï Åd`ÅV²û¬ k‹ FݰS%³WÙ›9 ë&¾ÔÆÖs\¾ÔÞNën}Ýöó½Ö>M¡Èm»T¨ÿ@Éù#žJ¥Ï:|ÀY‘ T‘ßDTtשB'‡¿4SnÅ–¾„̉|+¢”hð^ŒeÜÏ$T0ÒØýô!Ôb¨ÔåeqE1"HÔ0ÿ1às\·h…w^ƒôÛÜÖO¢2ë#ºGð&%;₉ΨY‘§7¨ºŸí©Ü'd£ß…âL3WLÛE&a‘£Maœê¤˜Uv?^}›d†Ô]¿–ï ÒÈloÜ׈õ³{ö+¹|+h¸{3½IÔV?¾½>Ï7ë 2“µ¼Vñ–Y°üÍå‹g5˜ÊEø t€¦·Y)¬ƒdX×a2$]­Køïðúh¾Ýxíá„Æm톂d¿§aT¯’äÈF\ ¬“Àaž2_e wR™ü_9E«±þ G«ZBx£5»Ö¸èÉåK¥Ésg„¸*™t=jN”Ýq•~¾)¹¿‚¨\ž>>X¹[¥UÒ?ŸfFéœãºÐM+rRtR—CѸÍÅ5Ô¾Û4‡•Ú†¤ UÞ)%†ÓÒ>;¸½KÆÎcŸÒc‰,U»‰TûÆìD(G m›®qI¤ª!ÒVŸ:†8‡8?¯—‹dÒõZ2¥§ŽBÞ›* -ô×Ðs/nñåÚÕú¾Í\9² Êâ 3'.rx¦ÕÕÿ.Žr‘ý¦‚®©8ý:^*ÅžRº!Ŭ¿NÛ-5ÙÔÚyLB¨Ãòá^ojanÖtß1ß7+~x¯—+ßHÝó‘ŸâÛÈÀO!}Ú§ \>‘颶Ú^ɨ5Ô8¢Œöµ²TQϨ zÇ0¥ÌïN9j²/Ç«‡ Fáëú,šÑì}ï—tôÔ&³nV<Œƒæêàê”u¤ÄHh%v“–Ì0¦¾ª£ø%ãÑ¢S¡ e¹ÕeSÕ{Ñf- ×̧'—޵/ÁØñ& ~…¨µøy?$  ™ô¾¯H]W|Ñ"••|ëúÄÁ EäÑ•0ùHå}•uËàvà ‘Ýštª3SÉñn´Á_›l½V É3.wö ¶ÖY.N6YÃìÞ-‘~¢úSèB1xIb²H°"IŽ¡h`ÞqÚdp^ž†UGÅj~âÈ^»fñãµ>™|nåÛçjqÚ %wŒ>ÍXÉ5û.¢ˆ¡KŠ®÷›¾+Äîd&?nÉO˜^зvÆ~Q`±ƒë£v5> %*Öœ9¡Õ ƒ/­úB R}Sq!¸ ¯SSm›Ñºà­ÊF –?/oÖ‡®xŸ £{mý"ñ8åg€Z—˜p웂Ž|â»e‡ª™4Ýó÷±ï)–ÓJ½q¾Úó2gËw†Ýb“ÙË–}ë—z¤wuâq¿6¾Í·~,>6.^½„€ аŸ]Û²Þ‚~¦p†»ú5!ózfNè>¥“mg•„ÓËÏŒõú—äÕ‡i¢«ÛҬ³’1s$­Û^ͧ×ò=6Sz æ÷n_p]÷ýR endstream endobj 196 0 obj << /Type /FontDescriptor /FontName /EOVUBH+CMR12 /Flags 4 /FontBBox [-34 -251 988 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/J/M/T/a/comma/e/four/h/n/one/r/two/u/y/zero) /FontFile 195 0 R >> endobj 197 0 obj << /Length1 1628 /Length2 8864 /Length3 0 /Length 9917 /Filter /FlateDecode >> stream xÚ·T”ß-L·´„ÔPCwww7Âà Ý݄҂Ò!Ý Hw7*)HçEýÿ¾µî]³ÖÌ»Ÿ<ûœýœ5/=µº«„ì%Hueå`cH©hrðØÙ¹ØØÙ91èéµÁ®Пf z]³ üW€”3ÈÂõÑ&máú§ƒÝ .¯ Ÿ ;;€“]à¯@˜³ @ÚÂlPa(   z)˜£—3ØÆÖõ±Í_FK&‡€Ëït€„Èli¨X¸Ú‚;ZZ@Z0K0ÈÕë?%…m]]@6 6˜³( Àìj й€œÝAV€_„ª ?˜±aдmÁ.ص`֮ΠÀ£¶A]3Ü V gÀcs€–‚2@Íý#XùÀŸ{à`ãø»ÜŸÙ¿ ¡¿“-,-aŽP/0Ô` †€j²Êl®ž®, ¨Õ¯@ ˆ ì1ßÂÝ ±xùð{åY €Å#Á?é¹X:ƒ]]Ø\À_¿Ê<î² ÔJ æà‚ºº`üZŸ4Ødù¸í^À?NÖ ó€úü ¬ÁP+ë_$¬Ü:P°“HAúÏGÆ?6+€‡O€r€<-m¿Êk{9‚~;9~™øù8ÂÖ$@~`kÐㆋ…;àêìòóù·ã¿ƒƒ`¶t¼Ù€¡ÿT4ƒ¬ÿÀ‡ï ö±?jÀþëó÷“É£¼¬`Pˆ×?á¿Ï(-¯®*%ÿâÆû$%ažV..+';@€›ÀÇ-ðûo•¿ùÿÅý·UÝüçÚØÿ)¨µ†þ ð¸wÑpÿSŒN à¿TaRÿQ¾1;»åãÇÿ³þ§üÿÉþW•ÿ›òÿwA²nÈo7ãoÿÿÇmá†xýð¨d7×Ç©P=ÎôCõ@L² È ìæð¿^W‹Çé€Ú@þÞF°‹,Ød¥vµ´ýCBÂcy R‡¹€Ý5Vvöÿñ=Λ¥ýã}âòxV¿] ÇqúoK¨%Ìê×Üqòð,œ-¼0ØåÅÉÃðáxP+çoe€lP˜ëc à‘žÀæŒñëDyù@©_¦ßˆ Tø <ú,þF¿V´úäAÿ‚ü ä_Ptør<æBÿsaÿ‚œ ã?m‘“ÌdõY»þíàâþÇñ‡¬þ©Àºü ò€ÿòr>v÷ü|ìîõþg+-Ýœ¯˜ßbÜç¿ðïû òYbÌÏÀ,…BíªC[.+%Èv#J¨ÒûçkÑÏ=Aá­C;~(h?¼e[¤jÑbvô ä<;Eš4Èa)ŸñØ,p ÏÛ}/§ÝÇ‹3ˆÀ/Ÿ|ao[ùÿÔ9•ƒQP×0§ô•‹›§Ö\QgÛ›™Þ(çnþ:I<ìÝUõI±×r y¸È‹êé|m8Ë™;©¢æ1fh'-ͤøqBØÁ—±3²Ú*7£ºoKTäÖi·fǽ åZS,c©µ+õ×S/ülì²åñ‰÷Ÿ%žù”ß%|"/E/Ã5îßt=ßÔ›Þ=ãúvÎì¹a;ѲÊQG¡àñÆñÉ`’pŽ4ÿÌ.]âoîýãï(ÙnÃnacË‘:Õ&*²Ýõ,·«»ýMzm±!Ç,Ú5ÓT/ûÑÌWص­QÈx¯ñ­®É4àÄ…™Jgn ïYBÉ;´b“/k_äÚXŒ,hÒ$ ÿp Ìf Ÿ\¯ÁyVÖe&‡JÐëY!¦0f“±Ù?™¨=üš9¥îòUÑÁ¦ª¢%«ïpÁSF+!=å´Ã¯€Î數õ'Uèvæ†Å;À'ƒ®,NXe}‹iç†_Õ@žÎG aBËåŽÍWÊVõýç0—јFÿ “hï÷&TåˆËÓŸ‰Æ}˜wo“}¢å.£¯pDÜçYE?? Äï¿Å÷oD±ÄM76Q|¶J2ßZ+‚Αw<çþ1K)ÿ¤ø,ƒ“Hµ3ÂâLÆÊú("&ºÀ…${Zzw”ÕÇËôµFaʦ9U Ç+9l™€5,ÁÖoÙ¾Ï;L—žžÉz›)xä ÎYŠß쬔ßÒ §&èUȶš„+TŽžö’]ñâÇŒ¸xP¦È“à«1 ¨ NÐ Tå»KÄž}ì]e².~5ñ³Oˆ’\¨y¾o…ær¥ÌÈÛ ¥Äºº‘K¨†jù=Ý x_@bZߌïßjA?Zf¦Ti6Ï%f\(-”e²i×I,j_¯Sã+rZ”3Kè_vóö>¢Fk%ÅÞÈÌ h þ²ÿÊœœóú­tW汸¯«|ò³ ò1WBûNñœ>k.GcéC4ìQ*£û`œÒ*VÇ=)yq2Y5QLÌŸÚ &U ‡ìo†ê4g°6Ìf;c§å$Zϱq ß~n~]âQ¬g ÝµÒ²xèJ}â;5b;ð•™eünNGßÖ‹çC€%ý[<ÛŒ²>;5ÏɈ†³¥4m·ÈÆ…6¥n ×~ ?õtÞÂ%8ú—< LšyÝùþ®o¢ Ö|î¸4J¦²äžr-]ê›Þ׋ˆ°jq"ªEfŠ-[ ÞÀqó íÏ, J d¡ ‹-Q¨¤8¬è’µºФà™Y/ûfìûê†t…z±KÓݸÍ\Т—Å®4$®þ³f!Tnlèç’ötÈQê–ý% ßl÷kþ»ûÄû:5ëLI¦*Dq)k~¶š' zì>+ýrSïÃR¾¡×HV]D‡Ih’:ÒÚ6/£àaï¶o(™­Fœµ«œžÏûêHG¯¤˜Ža>`îÿÑ9¡îéЖSéL¹ût=†¨?¨Mú”¯U3TèFˆåq©Ïtá¯7¨Sh 1½°•ïžÔv¶ƒ²¨´…JŒ¾r´QNoJ(´)½%Ðà8®¼AZ ~Ù¬{†84Ö\?ªë»÷/ú²…+ð@Ë@†b\Üð>{Óqd·,Q‘‡çC%Š7"ß« 9ùòÈQ)Æ øùÉ›…Ú06Ö|yá5R´aRœ(þfiÅ•y×s5rSžÄjÏ›ƒÃ>÷ômЬáõÝÎJì>ñBm$-êšÊ:,E‰†R]__¢ÄgØa;?ºÙ–~ÇÈ^B²Ì-®/8ÎeyÒü°Ì_=T»fOÓui#;“×lIHàáÝÊÚøðÚ˜±9q N—N³}ƒë&ïÌá»RœÆ^ïnøƒ‰JM–ÆË/é­UðnÉQ.Ú·¶ …k”a&VË]±¸ ñ ÊÇÎJÏbDî ?ç¸}ÒÑ„ýœ2/Fýº’ýQ÷júÙ[s: ¨wýK¾ùœ;»¯ ¤(,QtàmØ7î›ñÍ®6¶…É/œELâzå… ª:6Ãè…£.$…½`‘a*efRO7*´Ô2Ïh-Ãý¼ê÷hÉ2H"J‚hèMy1ߘ™pœàŽLeDóceÅãV˜¿”’íÁ²zSÖÄ«5bÇAÙiõSsÕ¾Wó•HeAx/ö9% ±ï°ü%úÜCà€½£*©€tS ‰Fªð‡ÝÏb XŠÎœ0Õ´åÖ~QÝ•>E+Pø²Õ³~GÿA*#·Qå0B_y“¦Cô}Úr>"Püe UŃÇÌ`<Ø©(¥•êÊF¼Òf÷²Is¼yÔÈÑdK Ñuä— ”º"ï3ÖiL¼ÅÇHšà©_Ñþð³Ãzôªñ4Ãò‹t„€B3’$ÚdÁ…P*ñÂ_MŒŽ:FPWÑääÃr¿œ)Äôª"’sl⧦kî(°æœˆÙ~º`øÒKˆšÎK¡_o G³1§oŠ7æ"Äì|z¦mƒóµè—» ø¼5Ù™[g%x>_‚ÙÃΚ³Mž×¾IÑ õ/™è0°Z"U•OiDw’æ.Ê8Z®CHŸÿ‚<¥s»Ë¨·}ˆ?Fúë6T‡C®>Wó8ztà½ìÒªØnÿgK1 3Äz£i÷'W–ÚBÃÞvÃú‘õ`f9"ªÃ§ ß 1M(‘খiöå:µâ† ATHýøàÜ&Φ¤ƒø Çæ†Ǻ¥²ô)óÌDÊùò=¤q¥ÍõFIüŸIåP•žÉŒÃ·Vè3=¼¦û/‰¶Aßô+K¼®h³àÇ¿9D¡U—É(̪‹ó¤Êݹ¬Œp ’K+ñx°lø7n´3|.·®JÝ…/R¯ú˜d˜‘)oÞäˆÏGãzV†¾¦OûÜëa?LñµçéûUü”âˆK¤åõ(§ˆhµ¢=Ó©šO B2üZÂ¥´šU:ªšÎ¾ „.`CFV”'L%~&§¦ÃmgUÞRcÅÿYš|ÛX}ÜÙðkC0U½>u@5Ÿ/õÓæCio¹f5OÄéͳ&ªž³Ø£P±é©Ù©uØÄ:åÆ=šà§%‡ˆçèsiacn»ŸP;š‰åtZºë² ûÛEWò¨Þö ¿‹œ!`!¦29ÖñM?•,Á=Ð’ ñX YD¦³{XÑ9d`÷ºÜ’Fî·ġؙç›Paë{j×c|i¾€Üv"Á?Š‚Ï‰UE‡á=²|àb9&O-Þ¼ qS—ùóì¾V~EçÛyÅu³ñÆKdõt 5!úÖÝ0YF ¥)ê³Í:¼ÉwëØï?õÇ97>êíkת÷AdŒVUÌb–á¤-~ntbi=‰$f?UÍ*G‘«û´¦êÄ(CSg%+,ܧ’¸þíÌ·“OÛmÐú¥^I´•åfñCoPtñÁbôþõF¶”Á©‹Še9©¼"Ha ŸÆ'»ŠnÄ-F”ú%1.ãlÝ]Ú5¡Ë!õ2k£#DCùçd«YéO€±2cuä¥$ÏEB´ä:.Xm¼ V*\ö#àØWW‚¦ }Oþ' íét´²æð]q†]"ÛrÝQèõ ¦cwf‚çê†ç­8œ»ƒ’Íç,Ó¸¶uu°”Q¯†ZÃK0¢2Ëný{,œaû •.ôª¹ ^¤[ {¼0¬åÔÏ·;ñ¹ âCçŠîg,€[鎚 :³iÏOñZÞÀ¾-:ÞT™¸ÒhBƒulˆ\ßÞeAzªÿ†mMÌפêvÝJ!FÓ::Bg¥ê¼蛟 £IÝ¿® 6p§ Rµ9Ò¸)1¢Bm}‚@¸g/ Ìò¥hD 6/sE³ßà“mkÿ,åa(!ù‘誥ÊÎÐÍàZ‚¦MÚW£Ù˜ŸÚ¹|8±Ý"£WVÓp}…Fªi€yž¶­«E"Ï.Zs#·AQç6ÖLQ¡-¤÷ß ýÞƒ†°§öã ¸Pò}·á³¦ø ÓþÓ#LóU0¥äBâ9ìh“/:„R›²¤/i5Îi@«oå†%‡é¥Å$Ã)Il5tÈ!†0¦©ùóÃ÷Í]Z ‡Rʳ%ÛDä—·éíöZ{l™[Þ p@‘7ͦÎÞõEæØo(ïxó>ð&’OA¥ŽzV;ˆÌºRú^׈\hÖÝ¡:·ä®áVÿL∞•—½ü2é—›m– OPp¹Û=p+«À+#Ú@‡ôfÔ¥ˆ–UÝW³‹ ®^ð’‚$ªð âöThñ€1ž’_äIþÜÏ¡žPŒ&oc¿œÍ„5£­ÚÙÁ™éOzL]ÜõÂb ¤ß–{åGÂUH“tÞ³X2±oE¾Èí•~ÚµzJšŸáÿt­"ýD8<üyÛSÚ¼ÖIÃúÄñM«lébãU)-£bœ8¢ßX—È¡$%µùí1ÓAa›õCæðÎ=ê'Ž]Tm5Tp ô=çí¤ÃÂay=‚WèdTTfŶ×vŒUŸ-öxz –`l¡?x¯HÞnT7®—2Ÿ±úäº"Aõ¢K×^ðv˜•/£1¥3OÈ »(yn.T™Ùpiî°^â.BfᘾuÞ_,ƒY®R={Õ”'I§óÊ™Cå%V¨ÄáEŒ, ?ÛårìsK±pÚLbêè%I”ªÓû¾yâ»ÙÁAd9~èu­´SÊÆÊ­J!A锯¾âKÜ‘Œ¦Ú™“uXÝvÖ'c º³âVŽCeZ€ \AC&$E¢´šõ|2j8'{bð+E°gþ ±|Û3äò.’h¦¢zÆÝ\# ½ …’v ‡Z`Å ç”t’£ùHŒù¨Ã=o‘É\Ýõ˜‡_çÇŠäO¢ð*nœÜék÷__‡+ÕW×£¶V§â+¥ç熀à)Lm)¼ç‘y©ïcËB÷ê}Ò7c$ZP´ôjvRMxhbîœeÜç·#i¯Éló³z´; Ú¸ŠúõMé­ŠQþ©×Ü’‘ÇNï_¤yÙZ“,0øçT8Qk<=ruâVoîp;Æ×™âËH )À…¨L­D˜ÌË¿¢ûés’®ÜLÁìË‘B%e®·ðšòÆI“\IS58*§~dEÕê4Á4*dKP¿¨¡ñ!\ÛÚÀo¤Ýþ¨ÖzâdÒœ²>Œo.0P/qJ¥,Nö–m$tÍb·© Ë’º¾)ÿ{é,}ª'"Qv¥ãÏÛ$šƒ;D-E'’‡½Ê´,qÚñ¹Ä{Ã0ouB‰R4¤ðÜí>“úZ€@—h#XËIÌq—æÁ§zïU/ïm£ Ê…ƒÑ,eœ)Æôpäým¸°¦I±5µ¼ø‹âhû°TÏy;U÷ÛÅûd·ü+™)·3…qʹ™…§TJá÷Gá#I0Û‰†B»ŠÀÉ_$¶ÐU^ã° “ê¥LvÐЩ ¡3R¢ï×øÑ5ê”>ö†µž “Ñ×8l5.aƒMv?ý© #9µ c(Ѧ¢QeTðªÓÎW_qv AF²eK™œ°*ü/úÛŽ)‘“)0 §ÝU,õkÑ>^w¾“+º£µñsU³9²Iü,LGãBCNmøFmÑ=N^QZÁ4ú•ݳ’DÛWªýòZV¼6"­ÊÓ6 \“¬Sç.W¨ï¸ÍõÕ=yÅÇŸ5î¹7ÝÞk*»ò">/ÞI…O™xÂ$Ùïèiı¾è›íÆ×«"ñ€]A‡§ Ü|èÓ›¼WH'sý ‹.;¶Aža¾†…Ð㛪‡þªò.~Ãw½7ݦŠ?ê…‚¶—¾¤ÖNR:/ßGbe³>§ý6îU'Y H»ÇÖBc¨¯mÛS“ÂÏzFïT×y¯–[Ǜīæž\ß-·Ë{g ´B î|¡‘©QK­òCæ£&¬½Ò_ºY,ÏòÜFŒw]Ö¤áTÁªcx7%ßÊ-ãWˆÃ¤\ϲ÷@J¸ÉÍë^&z î.Rã~Ìm³ï-¸LÒ(âÒŒ=ðpr‡Å|tè-Ñ~®|oà±I8#ÇqÇÃ2–lTk7›Ñå6ñ+¬Ù•°]§ÆM®ˆ<=R´˜#^ "åÞûÇ'TwÄ—Ò¯Ü/iÔÐÀà?uK “ sO—™Æg+XZ‹\ÏÞ dã57.— B.ü#%žˆ†_²DOÜÇànhÛÅF1ë8-b¡&2æä|¯•QxýAI0B`bA>°^?½;ìƒBMOpþ»ÈŠdÊN¢zw¸Ý hoGº»âU®Íw¥šÄÄÈ@æ`.°„Q;³Q¸Úö}è·Q±ùÈñþÈ»ÜwexŽiŒÒÏÍ‹@*Úç5,Î%aím¥y3ãØ-›Œi˸ˆ–5NEò”Ç›¶ÄÃÁñµ˜/‚Sš¥$L:rŸ•ÐÓ•‡PnšæcéK &’Ì–6 ‡þR« ìîï‘(–|g1˜ï‚+2Mñùíh¢.)úǵYžN8%ÀŒÍT°hhà‚’¾ÆA±qªèê”ÙÔíðõî¹™í6#¯¯l _8HWÉ–‰!aEÜ¥Lï.ϼww¸8gÛý*«1ò=C„JgÓs‚äu¥¬}¬Lž› “ôÝÇŒ‰”Kñ]i(ùŸ7Ÿ|è]•¹“›‘(Ð=Bœ"qBøHùÞ;Ð¥_¿Qeibý#Ý>RWºy»´±›ëJ‚,œ¸#†rˆéX?9Î+nDC9Z¶Ï>ÙYOW?®ÓíR3ìÀ>PÝf­QÔZÔc¾Ý®ê](x¥ šúÚ*äò*¦û«Ë‚ò³âU®É<ùéÊœs¯Æ“YÄl´}é>ñ£çµ6u‚ßEÄb©+ŽaÇ—oô?·\Q› ä~ã1?AtЀÃáC/¶__6Ý•aº2—CmˆíÝùÖm„ÁÑW³¨ÃÝœÎo?Yƒ’VðR>£3žŒ±e‘yL!å’új5‹õZ•Ö@ô«ä$rèË:¢~ktÔeê>}®±ÔÑùP·«SîžÑR±[’Ô@¢DR^ø£A0jpˆΊ䳞̖ýw~n: Tõ›\ð6‚ՅqC뾈‚EèzY®Üõº+ÅÊ™\%ºy46ÛFä8… ŒÂg: ÍayÜ«¨Øæ1– ò¸>K޾CNç¸l²Öµ²7)|ûf½É8SjÃ775-…-ÌÕû¬\\Î_Ô¯N0óªOxžùmî•ÁoÞ7õ«_'¹zløw®²ˆœ6æ¾ðÆbÎ&.¯ˆŽø!ʆ ,tHûÛj®ºg‡:$Y!ä‰`º»î+¡†TŸiocK]åÌ€@‰ÒÞ#ù/ÝõŸ,¸…«âŸ[¯œ|Ú˜ àj†(¼ÆÃBðöšKD¦ d¸ÙõãCø…‚ÚÓ§áçFñ/ý½´DœìñÅ*Úœð NÛÌ´<ËŒ[÷–9dÒ¾+/Dá°IST÷Ôg7±’^Z.©#ð*w£Ýß~ã|À/ÈTÌ3›˜ÍâmI(ðšÏ)(û^¸æ‹hÈ\kŸŸeÞ-Þ«5ª%ÌÛV…"¯Íâ gô¯DsêÖŠ\Oˇr'ÓKaB€dD•ŠH¾_Úùr=Ä€a*"*Y‡eY5[÷µ«Ô'zË_£è)‡ÃW£8ß:Ä˵%°MW ¹€Ú°ÈîDè9Ê^‹?)L¼Êo[I¥'{J:ŠL—g6ì ãsÒs§WEÕÄvR2xSš Ftáåè­á)<Äïz’}e6}#€Æø„‚爬32ú¶1³ sÀüÙS§…oR,sÁ`h®ZÛM6!—½U)ï"‚“Odÿø$gÖ¹¸"Ã3)cj%°©ÃSíœÎ;æê\ûû埩 %Àg<¬™Ä<"‹B{gN‹í‚’¾ÈfˆµâœC…ëðû°Îq7Rd'„Á^Ìâ·éüåLù“ d-¡8l§(AÜßÂò7¬“JbYPÇW+pt÷>HæÕ”œŸÞàc!-ëì¨Ìu3ñåmûÐy› ~‚cë“zÙåEÐc\SŠÅ‚Bc+e 7JRrä·éèwHÍü€‘*Ï àY¦õ“æ‘°OÚ?.ÁGW¡xÚò™wŒ®Ë:FDá^£<'}¸Äpó‚Çw»\|Ûg'„WgÙÇG|)®—’àüi\¢Žgðæ>ü x{’½Ú2•XB°æX0¬»Ñ®ó€ˆðyßà©™ÅVá)Äö;=;£áp\H-Ü1h£)˜<èú—DòŽ =ªƒtÿr;•ÐK`µ£wì݉æ™+yW©ã rv6R*ÙÊÇSp ¸¡ÓÕ¨…6çéÁœµíc¿¹s åò¹[“ouÏ䨗äYýÜ«£j’G‹äoÑVU^øþ>Ux}½À)äÓêý\£GX¦ÏÞB¿g³aãz¡)僚¼æCÙ€YŸ.&˜0w0TïTÆ|QOÔ¥O–µ™ŒÀ@X×&ÇçÚß0×ǃ¹´»uÞÊ1 M“#ª%•ÕiýÙpxÊJœ†]XXö-Q•1ŸW`4n$Õ¨ÝX¬„®{½9S îÇÞ³‚)«-s#þ¹MÉø¦pGH NãÿÉÑV! endstream endobj 198 0 obj << /Type /FontDescriptor /FontName /DHPNCH+CMR17 /Flags 4 /FontBBox [-33 -250 945 749] /Ascent 694 /CapHeight 683 /Descent -195 /ItalicAngle 0 /StemV 53 /XHeight 430 /CharSet (/C/I/a/d/e/l/m/n/o/p/quotedblleft/quotedblright/s/t/x/y) /FontFile 197 0 R >> endobj 199 0 obj << /Length1 1395 /Length2 6096 /Length3 0 /Length 7041 /Filter /FlateDecode >> stream xÚWTì»§SºQaÄèÝ]Ò JL`ƒ1`t—„4‚ !ˆtJ‰„J7H§Ò! !q§_Ýïï9÷ž³½O?¿÷ù=ï9²ó+9Àí êp’_H$ PÑ5€@" 0hEºBþÐÍ O(&ýßì*‰Ö©‚‘h7]8  åå ‰K IHƒ@aHê/G8B  ö†:tZpÄ“¨w÷E@œ‘è*\öÜ!)) ¾ßá%7j†tÁHgˆº¢=Ø` ·‡B¾ÿJÁ%ëŒDºK úøø€Ý<à'yn>€é 0‚xBÞÀ/¸=°ä70" ÀÄêù‡Úîˆô# ´Âjy¢¼`]`¬©Ðw‡ÀþpÖùÃðçÕ„„þN÷gô¯DPØï`°½=ÜÍ 󅜎PW@_]G‰BòÀ0‡_Ž`WO8:ì †º‚íпԕ `4¾?ÑyÚ# îHOO¨ë/„‚¿Ò /Y æ wsƒÀžD¿úS…" öè[÷ü=VÜæÿÇÙ spüÁÁË]Ðõð‚hªþéVý£s‚ b HBR ñ@Pö΂¿’›øºC~…~©Ñýú»ÃÝŽh@¨#ýCäï ö†/H ÿ7ü["8@í‘;ˆFôOv´âø‡Œž<ŠX‚ÐÄ€~}þ>Y£¹å‡¹úþãþ{¸‚÷M´,ÌLyþÛ¤¬ Güù…A~a1@HHJ >þ;ËßøÿÂþ[k†þÙ蟌š0G8@êè»û †÷Ÿœàús]¸ÿ® Góàú‡öV 1=úKèÿMþß!ÿçeù?hÿŸý¨{¹ºþ¶rý2ÿ+Ø êêû§Íb/$z#táè½€ý§«9ä%Ö…8@½ÜþÓª‰£7C æäú÷%B=Õ¡(ˆƒiïüþš:½+1€{B=3~!è?lè]³wA?%žèIý6AЫôï’j0{¸Ã¯€°/zðhI à/„^Nê7¯‚08@à 8ÂD¿æ)*D?V¿”¿etA¤ü·ü¯Bö^zù~ÝÅ_òïM‡@P{¢¹i¸½LÄ£ºˆ¶³¥Û>ük#r“À5ó§Üüþsˆ·^¤øéÜÕ9a+ˆJéýïÈ¿¨q(Î3_ùo·4àG·¦¾ùpi“l4¾ö†hvŒ¶g´h[©¾û.á~Åõ€+³PìÌ-`¾‡—$©A!Õ™Ï T}wÙÂPÔôšázµ¸6ñeÙ‚i¼UhÉG`]î=+’ÿ.åŠìãÉIʼÑf­d^¢À‘b‹UáÄó)¿¥ aÏNv ú»Ø'”CãþÊZt3þ¯ŠWC™S´o‡?¹¥ ¹npù­é!6¿?äŽJs1Ð bSkÆÅ¯´ÞKq+aIÁÍ=XÔZAi~—h±óäÓOÞè»JÔáTL¾dY·£¾³Gûp{e}¼a„KMžT¤)£/»&ãz(ýžð¬Xß8¼ð“1¾Â{©¶üÑ•¹O«™Ç5”ygñÌãwø¯£q–âù|è%1t< §›ÕÒˆ=îÕ¸ƒŠä£I{׈6ø›ÒëõF2QÈÊìYúœT^k§äš-*‹Ôý‘×$WpOŸ²Ô CÓPîœ&ɸª>ðãÏJÁ½Þò¨ž„ƒ÷ÂÚl`sA¡Yq ûÌ7‹ÁqÆÈìÜÇ·&´Ûè%b„Ûs+UžÏBA4nB^ aátS¢±ÖÛßæŸV; ߨ‡,º»mQá7›RV“97çOÖåu1°û[Uk9àKòvç«É•tÞ½5 š%'&ª§ó4,EÃãß«Žr/ìN<ÁKÜ —Mxͽt¿IRz \Æáß#îsqà%·÷6Úã<¦I’}ø±U?\F]»¨ ÉH%ë›ö?–ãÉ£¶“½ÌE¿ü7MãcL‹€œíKç/ñž¼«<© ¦ü9ÕÌ+dV®¸îtÉ©Z:p+^.q!'Ül¯æRbuç2•äÎÅôØ_Ñ fºT’9—¯  ¸Sü–Û¢Ï~‘f¦-N.0)}T¼ó!ÖO'Äë£#î½jw”Àq'>«'Ëù´ñ+÷Ù:o= ‚¾L_Éô ÀìçÑ‘c´Ô6»nU%{›c›5ýõÎq>æ^6]_¦ÄßYÒ6¦È5%šõZßyPÞ,¬l#ªlíÞâ~,¨m”Ö‘Û[Æ-Ã.ˆµÃ´‰¸ioD dˆµ>ŽšípëG­ËgÜšzÚ Ÿ{AASÓÉtŸÅòKØÜl>N¢íy¿7Žã÷€ÀOFI„¢¬q´xAÜx^4»Þ·VÔØM˳ڭâ^›ËlÇ?gœÐUÞÃ>]\²—Tià¢Ð=ìûÆ÷&F4²•J÷ÇÒòÁ`ЇœŠ;à€.£YÑa®«·)è¨_IÈP2L‰?`%ÖNÈÖ¯²ö !)cá奅y¡@/b¿ôV~Ð×^ÏŽ,Ö×v[tÖF¾YYYˆ>U¹³N¶ñ÷V…Ÿ¸îºÜçLªkVÎ}ýŒëôýú 󦳓OÖÈά¾Iù>`nû£îüã{Â~¡:9΃¤¾é%çÒ÷ßÃ]zžÌm«8ªå„Š]¨[?‹óÍ€9Ür  ÃÇäêâ¸þÖiPS¬,õZå/Et¾¼EøHÿé”O*“bTŸ@{grW‡þé"Ž÷ê{|ñÔò‰‘ÇñwøÄÒ°XyU{šÎ:²ÖøJ¼âëZï´^K}[[èHÚ£ >}$Ë"è*\þ"óÝ×­1ÆžôÚN§3Ì”^Bº5BêåIÍçÚ£öVÇ9;úÌ—¹%Q“I&[§4K?©¤rï¨NpmÚcMJí<õ„Ì0DæúìEKJ,±ÔÔÀ“=SZèíi·‚” õŠ ˜ÏºîÝwêÆgS®ŽÐ0%KžG¥C?祵¤í_:/h¤¥%‹§I\“ eʱN'p:Â*ù…sL ÜM½ë/”Ì{BEdOð=Oo´òàs²Þ›j{¯‘Ä7¥f¦µ™æ«•ª(+ã½=VÍÄ*¼uoÒà Í¡2Œ… ņØ6\g™¿%cކãÝ´‰L.ÛžóCÁ/mšuþ>¢Ð§ú`ÖŸ7ö­¨òV[€þüg¼¶å’KŸeÞ;X2ö1aÝ^¾Ê;2ç¤_=pRÂL^eÇöîôbQ¥ÊÑ*– |©m|JÆ6KÚCüW´¸w‰ç¬Œï\“ê`êf\¹%é²]En>xÜЖS>Î>–¿S²uŒs»'à¥xKVóZVRß'Ôš™M¶]5ôx¢óK~DÌêtµÃ. …ŸàVÑÅŠHÑê#šä"žN®»Z˜ϺÙ9«‹*•¾šœ56Ý,C±6vÛ= µ¾O:ÕºžÒ~z÷©T•”‰ìÛyÏ´·°_DöåIÑZjú?5¸g #5ò²çàÚ+£ý1 Z,óÎ¥¨;ÌÏ“9ðß¹Bá¾± ´ãØåAÌó÷(Ê …!ƨUÌ0I¦å·á;YŸüÞtn6mäàuøÀøÌ ò©«üžaeÄçÈLóÅ #͆ï~‘&¶šðzÙªœŽß½{dÊ¥â݃í£po†ðò&C5¯ˆ…ܽ˜ o½x¬fbÙ‡"Ã(ŸL¨‹(n ã®ç]mhÊ"Ë#¨íGE‰&5–’&‰kÞsª«MsFÎÂêìÖo°r­ÒIq¶ÇÚ¾´$-ÓtÙ2˾^V%ôÊ'gã]ؤ—‚ããV콆ÖÓRr9ùйÇF7ÿôoïÅ'¶x;ÂlKßÊ}ípâgîį“dWœç~ú“Á×jÁËɨDœ`²ß;ÒY¡ðúZƒî¥œ”©ðRÉú§pÚú•š«—LGIS÷ˆ?wÁÝœçó8êÆÛý¼$¦oûÙÏ{GZ©ˆ[œeæÇ41 ‚ðCG2ŠÂ¤™àªg}¦o+éÕÊÏÕ›}á2 ùë» Ë  ncòŒ¬ƒl½é=5$Ô‰&bZ,<ŒgÁktçÆtŠ%ºël’Ó;ü/KÎó}Ca¤ž-Ÿ§Nˆ5ÕhDÔš,O}ì0 Æ?¦$:-ÏÜå5Ǩ5¶dÔßr¡I6psˆÝä£(çM3£ïº*94Ù)ˆr9ó=!7’e'¦þºBøIøLÀ1ñ£™6/tV®XåcþýšOz#$R´leuŸƒztãNNrMj;”ýh¾Ï·äR×ù•—ÎXSRyÆ•™lO(Dd‘Fjð÷.Œ¤t;BÖü*׎BÖ¸EÈ’²÷tÛ~àß«|ŽºýîÆŒ?¥X€kÒ³æBfu0`ÅOß$oê9þýí )[& ܈[—ìæsEûᇠãrŽjÀEúŒ ‰îªÅKnÇ~}¸¥Ó¬?µÐDÕ½ž.ÆõëŒÖNãÅAiÒ˜¹ùà×Jë¶âç»Ïˆ^–=0kg+8ÿÜڜݢ{Yx`ýòŒ§·pæ…ÔŠä9½Âmþ3§Ú „Î>’]X’¾4Áë' ”S€=¯§>ÎU‰?óa‹6û¥~¨°ñ¦¬x:Ì>_ˆeM©Åï¶Ù˜Ñí ššYo¶fëxM\:átRUO¤ÉVúÍ­Îc¼“ȱ|C”ÄhÒÖ{Þ9}Çp´Vx$Î}ÓƒzVæ»À¢÷D¬0ΉoRZ87.;fO=¡øÍkJÍv¯jcRyìsJÀµTÝ•ÍÑ@ú0ûh8,7Œ:Nïå‰ÙèFíÂó¢Q¥>e^¬wŠýœ£ãO£<ß…GµFÙÈ´âgU4Q?ö8á²)½jΕÞm˜“æÞ £e²'dTÀ±»Fv è¼Ä èüh0çÖø®S0Æ«z•MB‰Õ´ü=wc„‰ÕŒjû ^¸Ÿ7þa,xî}ø6TUÄÅ4ýزsb†—‘o»¼nú===ß 6>ñ®(p%š—êçew­ … eÃuc\2έøË®©¾Bo¹–ýÀͨf•˜²œ_[ñ¤<ÍëÇO°SË’ø@j¸¨}šÐz«¾ñ¡r#‹ƒ>øv¥µ9ЩÓ~Í$ÿ{Îr^c©μnŒpWËC½GÁ{¤]–zSŠéù<¯Ü]—asv^Ô–øÆ&,S­²ÔXö³V˜ÄG…òIub2ë$seƒ¯j¹VÛ°]ð»X‹ˆ3 Šbå©öW™çq‰ci¾ƒÞ!éRâšÜš¬„ì,ɦ_¿–l?§púmu5P„›¿°%%“e>§fñgxœ«ñr¬ ÒÆ¾Î¥Vï¥Tó·aÌuÃÄÞË2ƒø,ýѴܵl¼Ã©<á3QààQCpE 0¯Âp¯u‚¶ZP¦+9?i>ùíq„±È"tmRk]UÆçž}# aìÇ¥™Ñ#c{Ù›”X/Jš&ïÍÇ«»|(´õ­ÓÝ=ÖæKuâN%èjr=œž¾ÖVqÔìTÜn!óD:$2hÊ•âÿø‹œ‹G¸ºâ@ SˆìkÎì2§´ ÷ô²µ(óß¶8Êþ›ÎœR-8|î!Ké±)F]l k¾ísægŸ‰ús‚äŠGUÆD",ÛB’W˜‹4Ï/Lôg Iˆ Ãoh˜Ÿ§ù.r«Ñðtþ”ï¨à\‰^ ‹!ar& Ž0 É\²åÛ8ñFˆ˜ÜM4™ô_¹y+B£ß¾pµŸkÓ˜(»=1©ºÃKXrƒ¹ìL³Ì['ÂD5F%ûi *°uàsQºfr„½@X•+´éê¥\yå^ù$“6¼"×…=·²¤ƒG&Vol8Àf®NÌGÍXzÊ6ñ³~ƒ‚[44°Ða¡ÐO×ÏvÄfx’Oy8úŒ¹°† ^[O‰w? ŠsË>öK~½£ÍUG¯9F9ίù8œ{djµç†Þ*…D§R]êÃUÞ…ì_ò ‘IP öøÀé0ÖV§úÏ4«ˆk£e³êÔ Êx˜gV8Öýœ×_5e«¶iÅ,Ñ$ý·g`Tíµ8üLÑrc%Ùª=]IívÎþ™o)ËdÒ© DÌ'˜p°†â*m½ý$dΣ±€$6Ûµb²Î{‘ž‹Ù^¬ð&W÷Î*8†üéÌkmHß+²J*–a>ÿëææeù÷ë Éñ- ΄G ? ÷®{pžÉ¹_“›±¥vyIË¿u´%eµQÎ…ÃÒX|ôÚ3‰G}UÄ^Œ"ìæ1žHüQ|¡Ài&7Å4º}{¶ª²€H9>R¼uàÇ.üÁûCà+ÅÒ,ÜM¾E庇Ÿ¥±õºµp¨;ž߀Ž$”F¯” ’§JÕDóûý”*7–IÍŸ †¾m§ï͹[´žºËõûçÁƒß túcã,;©÷Ò¥ØH4©]ýþ>½Ç2ÌéHÓÿ½ƒŽ’^JO0a öÈN” º‰R³µWî´wWhy‘ÇRj’¥ˆì¨¨®²I;¸i¡÷Ö²¹r©B%jµP„µQ¥ ïiú’­^AüäFîÕÂ|Ê g7¾C Õ¦—™Ä%Ïw±QZ~Ö8U^SèÉ&Ó6ïÓ÷c8S¸xœ€2áð&2î,`>G9µK2­ýÙ"kö÷Ý G™2&üx ÅÚ¢ÔŽ1ÜŸó§÷¼8Üæ²eªõf4°(yž1’ô™ìœÅËmY’ÓZÖwY"¶ýïÃöYAõ¯—gofÓø\¿Ñ-žæ¥¶éaU._Cö @¨¥¼¹ÑÖ£x-©ùÞ fúîQR7Ìûü7ß5ðÞ͆äÄR¥ÄôTn HV@#ˆ8·ú¦:嘨ø@fwI ð#Pd±X3»ä’×E.J’TÅ\á;Í>Ë Ê83‘îr÷Eí0ÄáJg øj?Ë„èUzF›¤Q[ gm[_™Ü. §ëì ÄMž›³Ùù®U ]„ }&Om»Å©¿Õ²6ôfzÀ]zoÓ§&•¬›þøš½eÓ]ªÿýÛlÙ쨵~ì(rz«Ñ– ‘dòˆòË’eRfÒJ=[×xZ#ŠÃô®Š{ FõS¡2µ”{ΕE-‹9!ïoÑI—W ÁÈ‘\[lŸo/'eNj“$ž¬ÜÇÆíæÓÀ&:Í›ê‚\3ŸÌüü&H÷_(å”Ê endstream endobj 200 0 obj << /Type /FontDescriptor /FontName /XTJZVU+CMR6 /Flags 4 /FontBBox [-20 -250 1193 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 83 /XHeight 431 /CharSet (/one/two) /FontFile 199 0 R >> endobj 201 0 obj << /Length1 1532 /Length2 7365 /Length3 0 /Length 8385 /Filter /FlateDecode >> stream xÚvTìÛ>%1:¤•I(½”îî”cÀˆîFé”RAB¤ Aº) é.i)i¾é[¿÷÷ÿŸó}gçlÏsÝõ\÷sÝÏÛ=M)+”%\…tãð‚E2jÚÂ@0˜Ÿ æ°±é"Üà 6}¸‹+…ý»Œ ê†Æd¡nh75¨ìî„ð!B¢aQ0È‹üåˆrÊB=V@5^ 2 w°É œ¼]6¶nè*-ì0 DDD˜ûw8PÊî‚€A‘@5¨›-Ü]uê `¸›÷¿R°?¶uss<==y¡Ž®¼(qn 'Âͨ w…»xÀ­€¿èÕ¡ŽðßÄxl@][„ë°ÊÚÍê¢ ŽtE¸#­à.@tm Ž’*Pà ŽüÃYõnàŸ­Bx!§û3úW"òw0C9:A‘Þ¤ ÐájÈ«òºy¹q¡H«_ŽPW:êE8@-Ñ¿ÊKi¡h~²s…¹ œÜ\y]¿‚~¥A7Yi%ƒrt„#Ý\¿Î'‹pÃÐ]÷ý¾V{$ÊéûÇÚ´²þEÁÊÝ ¤‡D8»Ã•dÿô@C€0¸P  ‹€pg Ü f ú•\×Û þÛù£Ïïïë„rZ£)ÀýÖpôÀ×꺹¸Ãý}ÿÓðïZ!`n@K¸  ø';†[ÿ±Gß¼  øŒþõù{eŠÖ– éàýûïËiêKëËÊqý&ü·IZåôåáòð ‚P½ðÿw–¿ùÿÅý7ª Eüy6ð?•Ö( Èнû‹†ÇŸš`ÿs\8€ÿ® ŽBëdÿGö&`A0 ýù?‹ÿwÈÿOó¿²ü/²ÿïóÈ»;8ü¶²ÿ2ÿ?V¨#ÂÁûO;ZÅînè‰PC¡çùß®ð?†X n…pwüo«’=RH‡¿›ˆp•GxÁ­4n0Û?ô× Ó; pM”+â×3ä€ÁÿeCÏÌý”¸¢oê· Ž¥—”CÂPV¿fŽOPuqzÐÞ }!èá´‚{ýÖ5Ä‹D¹¡C€hzþ@k” à×} A€ ¸³;ºëhø7"ÈY#ÐÒþàC(w—a ‰>Ý߀€„úÏ=:…“ƒ»ë?@+ZâïÑUÝl]àÿQŒFm<-—bðäYa[5xÁÁã;éÒä~N‚—Âñ>#dÞåD*¥·lfYŽýXrŠéÊw«î^x}’VÅߥy¢öðj`bˆúÓàÛ-©ª®;Œ<º’k~WÎ~úÁöØu˜-ÊlÙÎîI4ßPžzv*xUuO _ÕZ{/¤BxYü•'V/Æ$¸`”-Çòõ-3®Ï|NŠ}/ÒÑã“ЬÁ&åD.€ÿv,ž¯ñ_ÜÙ˜Ïl©.Ÿk++1íìcŠ/Ã÷}¥7R•i¾ùæÍ厚¸çGòÏ´b˜*Œ/?öF$>¬èÁ¾·f³øs»…°¶É­Q6•úv튻$°Ì Kpmý|œÕH¶ë;~§˜¢¦’¹åò­°Ì釗·—„"ƒ”YîÑ‹‰?HfÚw‰žò`ŸbR8¢K-»"fÒ"–'QûÐe r¼ËÀ™ƒˆfÏd¾‡(j˨ RŠuå^X%q+›•T?c ÃáÞ4 1{ðY§¡¡ÿÊÉ@pPÍao[4‚e§á¹Ñ4ã¼E°oŸ;iÍ\"èå—ëÞØ]æ$¤ÄIþÀ˜ADGfRêX4e+ýÀì|‚XûŽÔµ¨‹Xãw“;@Gñ:Ä„©œý)Õ¸0?¼•äUƒ.TsânâÕýç²JË6ÄC[¸ëis¹)âüio½‡|Nâ¥Gíç“WAšDú»«…Ô ­NûÄZ »½±ý‹Öôê6¹=þîfµÁ>¡´ºutÛtkm¨f¯nÌn}þW¨9ëÞw²wĽî²VTaüqZø'iÒtÆ:ÖÞîD™…^í ùõ‹óÃêg¯³b  _—r íS„iF”ÒëÄÙ.7üG¦Wu_ÞpÜfUb¸q^x®©ÄRÅ£F‘4¸¡ïe?@ÒîÕµ-9×8:Ai<¯,d´÷niJÌVjª|~à ®(Y KÊrÜ£~Ž o6¹b:"ÍÙÁlÏéºNêݸu Ó|/íãÛEÿÆClþ´Æ µ9«ðêoä[«¤Õ€l€·¡KsŠl™†qB¡\/ï`ÂŒØV;›YaˆO¿µ–†£¶™þõæ×®îöùýǽz:ëz:¼[ŒÚq|`Z‹¹ÈºªŽG Ì“-Ê8ÕçŸCˆ}T&Ôî8V0õçUäeì_Np™}¯÷ªj äú®¼˜Š=·w ?*yIaõ|Èz‹×s>&î5%Ó^ܲ%8Œš|´wÏ3gÄì{ÑÕDgÞ„G2;öѰ7On¼ýGãHC.¾H;ry;M"N¶ÊîÜ–ÚNþ:¶„¿Š''»ßKngÈz<ó"–:á '?ªq±ìEˆÑ(Ø—K÷üª:¨K|0"âXvðÇn%å Æ€µé—pfW'dHy6_„À—ÿ\LîrÊ®l KàxÔXý3ãý±J§gp½Ä5æõÛ]–ÔÙa8"ÅôŽp¤nq¼Òô&!ŽðŸ1«vtgß͘èæ;ÊI.-÷ pjÇ}¬o¦â€Í4à£ïý³ì-³\ÞCR²Óœµ®•ÎÍÒvM$ëQ:/,LÌHéo^]på™f²B» hÊØ%O)àIÁ¹"F¬t–Å5߆R^ì‘f}ÛbT\³ùf}IÚÁ%VLî½wì¶Ú÷%Ã4‰ÿû5áK=ÿ!ÔEŽd Áá…YS¯ÜA‘ÊW5þ§èÞEöióçà¥U¹¹iæ0<Å÷nŠyÄ´õ#½ùÀ~b¾ÐýVCú=—åÈŠ”Sñ•R&ûø ].y&~Bé…$/{T9àžíù´‰3/¤¹\F¥`ëÓ™ÙüÏÚ<éi ÷>”Š‚}ÝéTw;Þ IÝÅ›¶ó÷uæ70“Æ(zðz–ýŠ’Ö(£Ç 7èÔÞˆ×Y”Àp§8Øê$ºÂÚN3îb*¯I‰ˆG$"?,}›lªÊî~Á±•ä[íú^lÃÑ$$8$¥ÅÜÁLÁV½‡iWòbk1-Á•Ø §á\èvÒ$cŽå¹Zxð ÎMüšØÅù]B«+«[È©ì:ߌÌò—LÜ /!¾ér'Û¼ãÚ^ŽêtõöókìTž”éuü`µ3²bì–¬éµE9Œ(º*ÀÍÖ‡yü—ÇNW;ýn;Þ³ôó¨Rñ3¦oÁ5Ô<íýG“Ö¶bÀÙ—%¼©»nÃJä/håFšv1û#Mƒc­»Î×õ7ËÆ’Jæì„õ¡æÐÞÖÃcf_–‘šµžàóÛ€ÑuFK´é'?8Èwß5âJbMÉm5$wÞüÔ³Ézl_í\€¡J×Q%]²6þ™Ó®t¤žÜ–d\)æë­fÉ)QG^Þ0s[±“P:Ä@lbý}Õ]v7­‰D%kuÿ•mr¬‡—©#V² ÑÎ:'³ËîiêÇ–˜G&÷ÝvWŸˆ2q)ȉUÊs1«“†Fè·Â_8Ò¥I¹Iê úmŸ f9Ns‰•ëwR*âdk-ðø]`e;9¾37ä5ëY ¯×|k¦ëy¢o˜¹—›ïÖô^þs³¿ËXwQ@vîZë©ê¦¡1¶Û=¡§>LÇÏÔ´FÅâ4ûöd0VŽTÉuº>9)/ŸÑE˜Ãæ´^‹îÎcØ%}_.œ;”dfG’mô™ŠŠê í¢°´ÓçmXL÷° œ«3öŒk —‚^µõ!GF²e°_oìy3gFâoUÚ±pu/u÷˜¼÷MêOôNY/N1j"Õ8ͧŸö”ƒ?wÂ׿8¼ð¾÷»T25¶*]ÏWW£š×¬ô•Y%Ëüö¢ï6…ÑÄrnÒ7§{{îS_‘‘©d‘Þ;x3F.ÛØâ?ÅvöÀIã•/3¿c(•š#ï-h ím†Eæc >:Â磑⼆SPè\šÃÀœ |ví¢ÔÐ;ÃÄZ 7·sœ‹{ \n$YxVßS(x^´AöÑW©)nKœò‹÷­õJÔ̇ÙíP&)>±Vé3‰ÝÜÆ6fíòr@›y/w@ÍÅOg^9? õe0MWèBÂ0Êò‹@èì‘¿ÛOxfë56-ÖèÔÍGÕAHÀÖý$U+ã~ÿ#¾0ƒÃtrÞ-‚¸PÞÝ3¶~μ¡;UÔ}²“~{ÆU;O…ŸÆ@ö1ßqË>Ö\†ôÙ™žE.ú(7Sž¦dÏân>¿óƒJ–>KBÓüfÏm•Ó¨•’ õVuüñÆñÁ ã|xv´#-•®8UÏë˜ ¿Ä8¢GKO´!Ø«So¢S,ŽÕ’’¨šä©-ã~#ïh—þø¬? #™+Y,—H=±U}3aaòAêï00íð¤ŠÉÖŠMt«;a<ãcø¦;… ØåÝ) >mécHñ+6ïºK¹O;ŸP{m?ÈþNþÆ€\~È™yÉh„ÁÆÌkƒð_Gz¢ô^ÚA¿ëÜÃF®åÙ0âÔÄ‹ÚÉï²Âu½Ô²— ge‡,«ï§[Qrjšà°S²øK´œIpçdÙ×ÄáÔÏæ„ Z?ñ}Bµ;#‰i²(éçb~ÙÙHVl>ËÛúéÍLG{ÕTÚûîû¯Ì¶ëL?󱄽k ß/x S­~Ô‘£n,ÏMÑÈœÚÓû,*zçLTEf`BzýùöU¦,ç(¬|ÍyŒÏnoÛb.W·w÷/js{¼Ž&•³ÄéZ«7¤£?ïH?KÃ{¹ß5žAušËr»ÁV‡B[ªj[œ¯s7_cL”ÙyŽtXvS#,üØÝþ[ÀÜŸiº;“¥ˆ#ÏB½%â¬^‚BÖ`.³Z:)ýxI¬ÄfKEƒ:‡6ÝÛ¹>šÄn¡Ü÷îox·vn_¡7Ï/ÿ‡2Mµê§Å¹õÙ uPqí»ñ€þb÷†(å ;OÙAZˆÈ~Š™°ê &{õ×{Ň.]4Û2 ên\süg%߇—ïQ5= ƒØtØX?~µüq«Æ=• æbIß ¥[g^"ÇV¦P5–Ù ¶Ü$Y ˆO å(`q¿†çnÌ.àmp>~CæˆÛåÏ€{s×?2úq ñ‡’Ò£ÓSáš´e䯳«”µ12¡È“-XÀ]‹w8(5‹Z¥…•ç 2Qt°®¥XívvkrÌDR‰¥”ïâ\xF*x 2ÆTÏØŠ“]©8œ¾þœóÚ?¹QÔ ‘ÕþfûTõ+2&|š|©¨H Ͻy"9ý1áUw‡Ï› eµÁ‚ûú'U¬VÝ´ìÔahv¿ `u˜®ç:ÒRl u:G][‹Íˆ„^Ö\4œk>Þ¡l·f¸5Á¯ÏÏÔ²{ŽçN¶y¯š81ß-pÕH•›EnóÚ#´oüªö¡D©äÐãïä7ŽE{O_-µ×^´í¦Ñ´ ™éû¨Y4OrOöž °|ò_M«›†^Ï\à’Èèì¿q²ïié¹1éô8ë¢åã†ÌçêÞWÖÞ“q¿Op’e)‡7$ùõ]øßU¾xú}i„õš6ÝGcÀH7UÆt 1Ú :ÿ´yT¡3«Î×Â…öÈÜEäøÆà>Â\|[D÷Ô¢ |ç@²Ê@f¶ï§}$Ÿ‘âYr‚ë–òdçñhRšFµ¸ W01#—üô!/!›ÊÌΛ›oS¤$Sßç Œo¥¸ÃµÈÞ\ŒiÇQå'¬ë¾…dV¿Ίï¹l„ž¤§îDÅ<’º«0^ðãÁUóÑÊ®¢\«ÛÛÔ†áƒH?¥ÆcÓþÂ\/gÐ:-?ü²Þ‘¯Îjé”ôÕéãc=Ëc0Kob‘¢üÖþYÕƒîL#šø÷=CÜ}9¹ÔŸCÚuó—±4á‰ä_G"ï³Úw•@(ç\‡cד½8&î’;QÕ@Çî™ì´2 Ù6cÖõ§é¸PaÏÞF¸O«5ãxÈTš¿¹醡†¨y ø}ŸÞ¤.Õˆuµ{žðŸvµk/ò¤Þ‰ð†´•ÏÍZ?îãð(°*dJ˜ki“Ç™LÛÞ²³ßl1 Xàóh=y꛺Í@Àür 1ús6·ÕO«ho³øâÇ´¨oQ–eé‹ÁzßÕŒÓ<îl£ m;m2K½ÇJãxߨV=ï^U Ë)!i‰¦®nÅ ÜìÕý|ìË#®Hó¢íÁ4’I©&Ì6Åü¶]Ý@Ò Y§|•ÅAH}J™pʉ’än¬ÈG7nhlºÀoâyêXé›);ÏeÀå]^ò‹É~Á5Â/n‹oû§¶úÖÝõ anTQ< ®>iAWBF~îÔ ØÄÚ(ª±Ãš.ìJPjƒ1Þ‡–«œk*w›¨' Òƒ½p²'!#µoY}›ÀËðþEh)/hDDKu=ç–TSÞB6Î4Ï?óö’ñÏÄJŽÒø‡N!ùOÂI<¿×ös²—07<¹_âþF´—ûµË+÷]ž~‚(±…ÕÌ.2ÒHW›1†“§ûý6#§ƒÈÊ¢b9Ÿ©Ç–•%PÂCoŸÉð%.ŠJôœŸÁ×£Ó y¤„Ý0±:¡RTEa)ÍÁÙÛ1’²;Ö£ýæI F[m`CÅ"6r.µiEl7ÏZàPL[ô>»ÿ™CÐaçT#4@:÷ÊÌ –Èôå*ô}a9x˜î(|U ‹W¢„¬Øå/›P“Q`ÛÖè Ûä)böuÅ'+©†h_ÆæØrlª NS/«ˆ‚«ÝòÍ—‰9-4 ðE #Õ¶3_-û'ú®«7èuÿŒÛºÇ2O¬õµ‰T¦<5S©P°†bøIôËĉZbUP"»ý¼D2ê#vÆDÞ.âøB5ª-oѨЀ¬É‡qi¹Áñ—Ö"N…Žx„|Èôzhm°6É^ð®+X½Ù ‰b¢—R^¿Í&@ðxz( ÐadœÒœ¯o'Ù Ú®¸ÁJM££…i#jUgÚ^ÄÐÎÜÑ4O8(öƳX$) vhÝké÷,\bžh5¥`tG W²5Ë4ýø&Ÿmè›ÁV‡áé–$#@ï%öÁ$WkÒ#¤JƼH­jpeL'U‰E=O,„(ˆ«»í -}¶Ì®kèË´âÁ¡›IÌÏÝOC ­Ê¡ÖtÛ«Í[R/¬¬Å¡‚²2d¬EBuK6 ÍW)5œ{ Nʌˬj %ù׎KV¬xUI…¬àøÚ¸ƒ0:sYAÌΰëÉaòý¥‰aæ²TOKz @ºÅÓ÷;©~IaË¡S|ŽxÂÌ«gYVMB8¼Âòõö2k  È„² Uú-Ô9¤,µ.ˆiÃ#D—a¾u>S½{pÃOÒ¤‰ û^\Æ|[¼ƒ’Õðø!Lú öµ/Q^2Kën¥±ú'íªxdV¾¿vSdOÚ‡xíûK󡌘o¯ÖÛ×yHGðårííÖ·f‘öÌϾ Ø€øbJ—-£ãåÊž‰F°´É§:M­ø©Ë:½KÓeÔ2fûq1¤H#»ìr³+>ðáÏʘ2¹ äL&«ëóD´ïSLt¯ºõ9™u6K¾dq÷z,°lIÆ}ˑӿØé]û3õDßë£l¹ Ikõì’Þ;VÌ]Õ¡´…¥.„K«äô®.õ‚t1:<zT½d4æ^¯°n,¾È³Ì¯¶$ø`Ä?Ö›+ÔËs…r2 ¡*T:†§óÙí-ʃÎ+>:`—‹ž.‡‚»n9ÌûÆ%/öó ñ„S:”ŒJÐïO†šÆbav}8¼9¬ëWâÕQ{i¢‘¯Ø£q$D%Wѯìl°|ÖÎN—>ØÊºWé²VühØû§xêÝ b6Nö§©„ÌšˆW ò =ÜŒæ/¶¸Eéb?›¿á®ëe§½À.ˆ4¶XnŒk™”-^Å¿§È¸NžõYCÑ>©Ðx ÛËq¤S,“Ô¬Ûæ' Ñh&…­VbiºÉ|{RÔM›¦½šheO0R»€êºÂøáDmz1iŠ+Fòg6ÅÌ_Œßy =d˜ÑÝ]·“ƒˆðœØÊݪaøèиeiÎ_l“®Ù•‘hqÀõ$äÞ&GSù5ùï×®€ >9ÓЀåÛŽcÛTäp¿˜0v{`£|{§ *÷_y¿ÅÙ$.­‚6µè»I³S«<**[àj”ŸOW6,Ù}à­zÔM¥åÇ,¢¿È P_|Öa|¯Íœñr‡rvß+WÝ?  —&_>¨ô/Æ–WM]1ùø9G6Ä÷ΚÊé¼2„3Ë/–‡kôPgÊÒÒ¸I»Z\KAíMGH\=çüœ|½ö«Ö…lPS÷O%<²Ô3­¨cÈf[EÕ+µU Ò:wÓÞN›ã=€=a[ûÖE@ sÐôZxY ßÀ$ê+«X,í=¶&ÙÀäê>8÷åÀù»Ì†˜Ã֕ךoñÞ¹>Kéó“úy¸Î´ÓVób§b¶í|5ŸC}ñ &p²y-sR^œ?³”‘Sg”G>k³‚}üÝv£Ì6m€Þ!…ÒBÿ y4v¢4jÁ^ƒi=0§Š¥Õ(›P¹ºòzÝöžÏôøw1›wÑÙZœð%ƒ·0i—2:ýÚ4ë—SÏß–QgíšËQ²±v ,—ŸKÙf ¥°õq†FX6Æ;ñ<ñy«Mµ°šùš,…DzXª¥ÔiŠDè›Toé_;ÒûGkÛÙÝ}·0ó#ÿà ãÇî’½ÝLOžg߈]œhbêTPµ¾^´í“‰¿(«U]Þè[ÕLðY´¶<¹{7Úã‚°bŽ<ÏI4×o6¹†óÛ<&µ6ÝfËKãêÛ[Ç Òɇ y×D<âXTxLôU€ïXqâë?¢AID ÅÕfÃyŸV£Š›Áb_ãÛ>‹C.G×^õ ±3U6\S5áwíêÏ*ïÉ­ItbP dJò‹½qÑ2›+Tj’åÌçj GÌp)¯Ý<3ûš:3o„Ûç_E®m¾w„9ýüKG»áfpG±8íqå þÍÀ 2š¥Ñ1ÍýÖ6eß%‘±a{nM£jï0S“nȼóè…¤ I*ûRM³vWt uu|[ê‹P0çhÜÇ!#•Õ¶.¦zŠ"@ÑÉý² y¹Ùú‡‰¥ÀµÅ»1Å –=Û7¶e=õ úàìKaæ¢M;n¤Ú³/°øº¡Ù9KlÉFqÄÌŠØf£„:5#kY­B«i-7‰M#ËÅ £-ò@Öà­í8†ïÉŸ,ë[éN*¹® ôfNÇêãžå._Q$[Ü’^[—àÖxžÛìó¹`Ó`«d×Ê%Aq^–WÕçcµßæç‰Üÿ!aJQ endstream endobj 202 0 obj << /Type /FontDescriptor /FontName /PVBVDE+CMR7 /Flags 4 /FontBBox [-27 -250 1122 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 79 /XHeight 431 /CharSet (/equal/five/four/nine/one/plus/six/three/two/zero) /FontFile 201 0 R >> endobj 203 0 obj << /Length1 1962 /Length2 13473 /Length3 0 /Length 14668 /Filter /FlateDecode >> stream xÚõPØÖ ã!¸»†ÁÝ îCãî îÁÝÝÝÝÝ=@ ¸?fæÞ™¹ßÿW½W]Õ}Ö¶³×–Ó¤ Ê BÆ C ÈÆ‘…‘™ ,«Ä `ffcdffE  P1w´þ%E PÚ;˜ƒlxÿ¥¶8¾ËD ßÍdA6)'+ €…“—…‹—™ÀÊÌÌó_C=/@ÄÀÙÜ ËÙ(„A¶nöæ¦fŽï·ü÷ 6¢°ððpÑÿé²Ú›Ød Í€Öï7X”AFæ@G·ÿ AýÉÌÑÑ–—‰ÉÅÅ…ÑÀÚdoú™†àbîhP:íÆ€?èä ¬cD ¨˜™;ü%V™8ºØï+s# Ã»ƒ“1Ðð~7@YR o ´ùËXæ/zÀJ`adù;ܼÿdn󧳑ÈÚÖÀÆÍÜÆ`bnÈ‹É0:º:Ò lŒÿ04°r½û8˜[¾ü™¸@LH`ðÎï?ìŒìÍmÌ­þ`ÈôG˜÷"‹Ú ƒ¬­6Žä'bn4z¯ºÓŸmµ´¹Øxüu61·16ùƒ‚±“-“ª¹PRä?ï"„d¦@G333 hº™1ý\ÅÍø§òOñ{þ^¶ [€É; —¹ ðýÁÃÁÀp´wzyü[ñ¿…`lnä0ššÛ üý] 4ù ¿wÞÞÜ Åü>x,æ?>ŸtÞgËdcåöùŸÍeS•Ó”’¤û“ðߪ/_@®6N+3€…™‹Àõ~ðúß(óÿ/÷?¥ æÿÉùŸˆ’6& Ï_Þk÷_Îÿ™ êÿ¬ ào½Ï1@ýÏØk3s0½±üþ?]þÿÍüQþ_Æþÿæ#ædeõ§–úõÿÖÀÚÜÊí?ú÷)vr|ßYÐû^Øü_Ó¯À¿–Xhlîdýµ’Žï›!dcjõwÍÄÌ]Æ æŽFf Ð{ðÞÊܨr0ÿã™0°03ÿÝû®Y¾?%ïúS|_¥ÿ½RÔÆdüÇαrp ìí ÜÞÿŽ8,ïËi týs®LŒ6 ÇwÀ;=/€ Èá~rr˜„þý…¸L£÷áaû±˜$þAl&É;€IêoÄýn©ôzשüƒÞoøú7âyGÿ n“á?ˆÀdô7âx׬ÞËô_ ;ûkëüÿ¨“ñ¿ € ø/øž–É?ðÝÝÄÄüü‡ö_ù é¿à»¹Ù¿à{ÙþmüÎÃò_ð=Y«Áw&Öÿ@–÷,mþß³ý ¾çaûÉw[Û÷ÛÆ hâø”å?Ò¿Vëo1ç»ø}¡@ÿªÁ4íÿßóvø|÷pü|§áô/øNÃù_ð†Ë¿êõžšë¿à{NnÂÿ™O#'û÷<ÿ|?Þ‡÷¿øÏ? Ðh„°¼2âûfQó­í¾JˆÐ…a‚–bÿk2 ƒÇ²}»Ó# lMeºÿ¦ý­PÂpÚÚ®(õà É‹ÇÏæ:Øà–8ÅÖ'Ïg½¥éýV„¥)œÉ¼ŸBµýÄðD *‚ž/vžj~–ÍàRÙvNÜ( 9˜÷.}⮵ý%«cA ûŠ•œÒˆÏ%3 ªáÚ~…s? 3æñÈ`ˆáh1.\Qçnng1²&ßH¤bè¼N#Øò=4·X#æÝ×ËTXºðÉñ5ñˆ!o0Ʀ)=¾%Já.zåoÚ%Íã´o[dzXQ»ïË)ÝÛÿÖ¥¤˜ä¥ÆÇc‚Ä’ü¾Ù"k]H Þq±&µé*ù›«ÙÐ^>ÖüMÞŠ«E¯ïÊtº6¹Ý“ï ¡G!É7#©®©ÜËÃµŽ¾KÒY*Œ­O,ót¤Tæ7ÂÿÚ™wII öa†Ä޽Ÿ<ïµkŒ“ÂðSü›L áïÁñå{I*à ÂÖÜEoŸ$BO…NHÛ9#y즊r¡ñ››ê/Uj»½d4*f1“ºÂ訮‰xÔJ»n ô]4t›ßùv­Ázhq?K¤·“QÈE´òqS^­À‰Ã`Fhö&tÅo!뚟’—7]´\G› oã²û6¶Äh¬x½>¼U²í©#Ä@#Ë:ßCQˆË]t,öãÒÏ´3yëO…Þ‘¥BJA£E˳²q¯D›ÃÂt$ÅýöÚM¸öæ| Æ~³.ŽĬäz©P^‹{¯à)]±±ˆq6k1¸Í¾a/{˜ÔqmÊøλPyCñË7_Ëà™Þ+ìTŸ8ÇðT‹¦¹?bS ù—Ü£z¾„È'1ÍžTâw,=œ¨Á—úI#ïÄê67õqÏ·~¢‘-ï Úýa½ QÄ7v˜C‹Zî%oÌ¢£©B%·E‡;¾äìê±p¨uö¹42UÞ†›ð·’éÇD>‘¶ÄQÂÌ)4Öj)º€Ñ+Ïåén8ñô¸Â£ù³ôŸX[–<+5 XW@·ô—"¦!:zC6—fž¯Ñ÷\^‹'«ô³ŸîóÛ¹ÍDMù¯ã³Åªn/*¶]Ž‹OM‘¡—zÏ ¬ìE‡œ3E±Á‡8¤0sòi€cæ‹áäµÚ[BW¶öäÑ.ñEÚ¨£¶V!Ù!6,Ny¶ÆZç£gV–ÝФVJ§{ο}¿³‡ë¹b´é} '€QÓúõ'¡ù’y']ùd¯író£-Öljâ\¯&U Y±’?w,æ+a.c(H8Ȥ=™‚aqµ±³VésÛN˜"$Ī£àõè`ß§æ`aûºg¼­s÷܃½8‘éÀdjÌ[ Wå /œè$˜€¨o`Ç)?úU÷ʱá-3YàT•Š<¸Ž Œ¶o–ÐXÚýtÌLŸìxÜldB ¨”$ËU¦¥ã{茷Óð€V½éé•Cdp,ž)ÆáÁÙÆ©„ß™@÷à™’ä„Z9kôAaùý’+ŸYS—‘h~f?·Wàvæ×õ{»w çì,𱎠ÄU¿S ‹¿•w• zD°³.øfFƒ¯>Üùƒh~*ø;wCÀ ñ÷•ãD]'Ø^äïF¹´û|E£@ÃýÍA0+µ²WÏ» tÁ¼¾iô"‹ŸB&;<õjφ×?já1¸!TžVk,ðØIÕÚZ’÷€57öašÎsšô@µ‚™ (fMˆõ³¯ýây0Îo«Vu˜ÞÇçË!UZö2Á^vp*ÎÖ û¥†²}¼¦™ÛgݽÁ·ð}jò?±Ì'ãVJP?”ôœv³¾c`g ½LG4 »uýúˆÑ^Ú^aëФNÁiÇõM•êóåGÔÊ&ËàýU‹ƒëp½¤rnTZ_ú=†Ú™î™×>[ºèˆ³LJ 5TŽŠî¹ô-CŽ¥@øåð¯ÔÙXÆm>cšùm[¸/f¸ptìeGQNªðˆ´5¥GÛ¼Öqù|Ÿˆ)ü«Iòw†¹ÕÓÆél)Ùo-R°÷ðnåuÛXªóUl#Du“¢±úú`IÂSW‘¯]É“ëÏèL¬®÷\ccðpuWòïà³(s~&¼°Ç~”% v°om2ë¼!'厫§ lŒ®‘`žtóâû@´è9¼q8‰”é>R ìn¿Xípî`»o ¡‘ªÚ¨1qáÚfã–EL(\{ލ­ÉàÀÁ¿ RÚÛiØá;ëL”J›.÷áåÙreÇå”óVË-+ aƒ·ÍÏk$\úýR´¤öÄžêÑ»óQÎe½ã6ˆS{¢ ­8“©²F’–Z›q( D]ý(¡9K0¥”úA~NRˆ…î;7J¿5¸j¡¬ƒM9Âr*f75F;tB»:¬žJe^bü[ÙD.3ÉÃN“¾’ RppËêÞÆŠ¸Éã…LºOä:ü­?~ÝqUE# —'õMÝ‹Ý ¨ˆdÕ­Ç%®I¤ÚWÜÁ”/dÔB;… V,Ô­ÍNÌ'7ëQCÂþvöãŠã¦l¯K¦²{™ŸTƒ±#ÃË\zû‰'ßÎO9’–Jé‘?Å—·cØQ \ÏËO^ïßwí%U,†ÿr'’˜V3«5âÛFwvš8(x‡ ¹(B/D~ ˜¼Jž{89C}oMo?þjOo*Jœ¤/Ï/Iv¥Ødh#…>½5Ni­yæ)ÚòÖŽ X’ìg««ñõƒèÜGÍù,˜S=G©ŒRl»Á”nX©ëÌñ–NC_Üj>Ò•T³HœÊü4‘‰Ä¤^Üì ~5$©Ò¡QŒ@_´0±µ5óCÛw,Oá›ÐŽ^ ¿åæ=¡÷©©á”B `ÕúZ!Òâ!ÒϵÖJÌÓ}KH%廑y7µÿô‘åz’Å"‰wÚ†îZ<‡~±’>{ÓÇÊá•­mÝ_LòMEb+J‚(P?ì6Õ9½#ágñ>?Å,£Á¸tPTh¹›ì—Òve'K7g2ŽêUw„…Â5B*v‚á»Í °oŠžÈ” E-C]³-JxFl–”³mËRÙÙHìÖÈWZK]ZqCfž:Äé˜{›cuÖf7m%öÊ5 l!Èf !!SUè50¤ªPBY k;Ûnß—p4T¦è-àK"£¿1: ÉâöD±WL; >å;¥æèklÎá µŽ½mû^ÙäöÙm—uEUˆýÊ㚤/³®Ø-¯tÌÜIh\õöú·˜1”œi œøDËÅ-d,Øø¢_Q|ýéêäÆ^ÿj‹ÛN-îÆ>L)VȘŸK»°ôÙAIYu昋X·¢I6 ÔVë÷í„_'‚=mi‡$+ûÔý!D ºá©D¢ÄPSµ/MÕÔH&Rî¡c»ºÓê¨jkà .‘•u¬ãQAßÚprÎ50P‚4›~\¿hÌN›÷«òÌ2ízþ¸žU›lWÑÃÀY§$ ×K+à ägIyrÇœ_ßvZ‘úzù_E—"n¿d6ƒ‡?Z,¥‡àRÑ•ÌöP#?˜añE˜ÁÈæƒ–ÊŒ*£P'oû]©I.Ì»ðÂ\›°äÆšœv–o?¨œßÀEó·pêÔR’_óÈk`Â/´ˆbM¢÷&ÎNµ,Á|îØ-¥Z/™*”åK&m4¤´É¬‡öÏÝ=X~ÔBFÄ׿B§ïÓBB‡H=KŸ/ÇzBQwäØt¸c.4†Ø‡)!,ô:ÚÅËÐ7+5"ËŸ µ.𥏠ð.¸hÉ(IÁ|'&2Ê0î#(É/=ÄÎ ¢ô­ÚѲzKhÂù(=ƒdQðZ`ï»z3µo3Q”•áDsQd@–GŒ/!}Ór™„”‚úàh3Ê©á<7ÀÜÑ›ºÄ˪ ¡éÉï8I Féi>ëæí™ˆƒ6H×aààíçdÄ´7¯EîXÔrÔ™½O%)úç©Ôè0­%3‰Ÿ…Ã’Xh…‡S‹6%12¢á° Ÿìƒ- Œ’¾ÚuÜ9ú hIš“|²3ÞžÍÕp9¿EK­«[Ãf ,Ù Ð÷*˜±¡³ìk†?•NCž¢{vhq £~-Ob¡ ’;󮢨§•F1z (Å"ÓÎPˆ”ãÓOÔv¨žìa,+ tXÀÄ‹ñŽÕ®G›@ÁkYþòÐø:ú¼Ø²LÈi@9ùçØÄñÕ™L Gû—'V,¤»·œ_Ç*ÿŸPYô;“kØ»ÏOÛ¯ÁáœÄ›¥>B+©’Rß©¢<„¬jÈÍø~Y,WlúÀAblÌLàÄFWB² läWr£9‹2ý}Γ¥óKŸßjÃv6²Jȇª–i¯Žïë~m'W´×ÑY ¤°òºÃÇÈ|]œ›s}’£1á)Ö ®‚W³«#Q3Z¬`m¡ðárDQˆ‰Ét¹æ>­i9tÃá÷¥+6èN^[YááçVmXññ"õüÃz™p^¡ËÍk´,al;<ÅÃö3•qŸ”Ýêµ U‡µ OÍ:4»8Ý#•³g$ýŽÌ¿o¶ç1_»VxF«ÜöáÏ~œZ _V!ªÐ8Iì ÿ.hâ´¾ÐÿÍá8 ŒzÄÔŽ"$m謺k{½nƒW xÃÆ—·* Ùï3Ì“”ªÄœZ§Y²ZX2 qXýBãò`Zø†8E”k“¾¦ði¡·Û*§üú;™òÑ­.k„´K°ó܃ŸäÆÌ2÷^ x‘×bß*|Àò©ÁŒLâ$%†@LÀ(ƒ#’ìÞK:#Lyr ÛÊÄùl'eû yt:ÔQg¹Vmyû?Çç=í‘üê !ð/9oD¡›¬ìÃd¿Ä>æmH§—˼‰Ò~9¶.&ZsAÌY7¢®2£ÏúôѤՕâ•îæ {v‚ÛÓq§\ÄÇȤ+e‡¦È@º)Øk‹Šö¡í…§Å£^{»ý,©ª ¿Îèÿ*Ôn¿=”‘;ü}Ø;‰Ó¤ ?ý5teÏ„*lR.­ÛMJ_Æ/ÎÒ<ìÞã•T¢ñ¸V{·›ë_x8M{Âl”Q)½ÎÆÄdÒ8ìY¼Ô2Zø&%+7‰äiEÙ)ôfÇ¡üÝB1~t,íà#^~7|ãÚÊÉVÒ¢‚e#¸0ýyŠds°{Wgj"WÅ¡eß#[Ò°ƒfšÝÎHCø˜q -ô‹IN¨xjÖvžáI ã™ù¢¢™´Àû¾_}þhÚ1ŽÔÉÿÜÃïÎ@SúVÚ`L|_`úÕÊÓÆNf¾þrW,JTb&MÛÛŠŠð eæ[ì(Vóö寉ýh§§]NÕb`Aÿ³Ï¹xÅ—›Æ¨iٱЌgyâ§ðTàõó:t¦ï¬_ÌÏ^53‡Û7õçì¾&ÍWAªºsº.k·dŽ=Á¼¶™3ØýÇpv­ªúnã¬[p?^½ñ)Çëäù³_ïù!'ª/¢Vn@?»;5èJ¤VÓü¢ÂÄzûÝû˜Ý•,}}tÜé3­zyØz(ëu#‘J±"ÞÜžú(›Ê´~×9Óå:«Ÿ`¶ütf}„”¬ÈF9…ñκ&0 H‰uà¿'£¶ÝWl+¼Í&SRì:.T¶cq + ?p¡ßƒõ¬ŸÏì—,#)Émöç&‚ mÊ—;õŸ°¾O¶K‹È™f“Tîùp2ø²l¥äŒ»©eçÙ¬›}½ßÂØU¯W}S®T à)ΤJ¥ ÿx¡:¹-¨~ÝÞmõ”£Ùp,LQ/C»Îìó 6ÜŽ¸9°©%ΘØŠk\%ñÄߦ’7|Ñ”ºÂ´%/i|Ùá aýŽîrÀÉŶ?¾ îãä÷±ø…´d|TÊ¿«)©Ì€ÝÆéAG®u”04mœVUL1|üô)Zûô™–»¿±x%&”÷«ƒWµ ülºvÈÕñ¢gTÎÙ€[ ªï&Ê*/½«Éð]—·ºóµ<¢`A:XòK­«Œ‘Iߟ< T\EÉ·©lBÈÜ–'c¬ÔlZ,•*”« >-9”°—êo{ØÃµÐË}êî} _‘ú.T)b Þ”7µ)ÉX*‡ésº[Ƚ@~QÈ~êK-àî+ïN¨ÔŽ!?ã6B¦OÆT Éé€hͶ}@«%Ç­MK ØG7³ÒÔB¶` :ìÏs¸ºœvÄÇ7Fëeð‚‘$h}Ø<¸áï+ø.÷›Ãäú|¸êèC0O³>¨ôé5áפ ¤)ÒŽ¸¯?É' ùéS@ÙE´›s¦~«¤ÿÇÆ‚=üÒgÕÐ8å»Èž ª(ÊúyÔôï탵óÓ"AiûYˆ»Ó}qn‰¤F9u_ûC'øjvšZŠý”fÇ<GH¬ Å‘U´š–ÉMçb–®3:Ôò?÷¡§íq@¼2(Ëtdj>]$!éQ€ÿ2ð=ÒͶ\¥éûÇhι¢UÞÞ&Z×#cqÁ˜Øªºæg/^yʽ“=¾÷>KYŒþiYk0ç-¨û¨ßSXfWEì·hUTÍ™ô ÏçohüdñĆkPpÄí„+@yj×1<³FÌV^‹£“Tt#ë‡ø')ÆÚ||lß×®`•³Œ™ºYù§Ãýò™‹¸$¡6¬¨=òl¾Ä”6•Hbú§¡HÀEÁTçyX‡rƒ[¹b÷;pp«³æ×/#œ®È¿ð&Ùõ±‰å‰¸Kú¸‘B}¢Fâ}& ™SNõ6?Ð’ÚÏG6hXЕČÅ(N^÷;·Ö46  t‚!ÑìÒYÝËŽ"LjmŸlÑ”ÎùT‚ou'gIYŒï†ý "àhá\ÙŒ>‰Ž>¨Òd¤ÄÒ÷ÒÁ“¹ÑÅ®k6b‘‹Ü2í#ÜGi 1Õ8|Ý¥Ïï&´jþ*cÝ^ú½.*•»úÈOÊøiò:X6Òo–ÀãØûy¤þeò¢í´´hv$‚M‚G¾t£;fnSüiÝnn*ÝÆHa x½ïAÙ§­K¡Ø}òëd)…eΔ£ëCá9Áf¿×q0õDs5öµøº!—K¾P5yŠ·þÝïœÇòOk´š´í«×°Xɹ†CjÓ/È{ôKWjKßì9Pɼ'~zÀ˜ÚÖÏÁóB^IµâáŒêÙ÷ùq]9¤ea§ þú–Íûâ»S‰ `9aR‘Ï5®1І"äÅÄ\ò1wuU'£ÅOƒ© ÿ[Wãab)áïǣ˩¦ûÐ|Æ„SÈ2!«µ¬¬Ê"¢[¥ôn½=E}Vfà$OY-á ö{ !}J¾’ë=îÔb-°%î5 VŸñ/I Ó|–wÜ-Þ¹íb™æî5§«:t>ŠËvçqy¼ê†3³ìƒ¸|c³e_4FUÀ9>‚ÅËú2†°«õq& .çå öঘ¹9 6U6 Þí—ÇÆÔ Æ>i[¼Æ0’6ë­MðïÔ‘oº¦‚/?Ü̼ÜTÆø]1=µ£eAÞÚ‘óÍöùq]èe[ÓN¼n´$L¯¤úÊãn¹õìC“·ï®Mó>,æ¡æÞ.>9Ô·0àÇ’Ñpa×ôaoÄ®¹Ü•Gru÷†’G†ÅèÊ)‹g„¸}ë,ÏRXrâÙjyÚÄK¨ej¾“¨j”f,©ÆrîÓé™S’èÑ*ý ê¼¶@®Lý6¾ž•ã"éª@ÑTá¹u5ÁŠ[î³ðý '˜ç9¨„QÍlJ‚b˜2Ö ž]pß1™àö@ÇÑÇ{azÍì) ‘‘©aÈÑâz£Ïdo”RÌSs«æãÆÿ!–‘oi–êPâ-¶j†½§$ñ+ºã´3oE|×i½¶±k§á8Z5ý׋LÓoPE®EÅqXßó ƒ@¸KÃÁ·£âWYžÀ½«fuô”¼÷½wVD^ÈÅYÁ“}^´ÜR{ƒJÓ©ø¥ûÕ‰§ol#²Ae8™n0M¡5‡ej6/4RÎãc½ãp(tü“½ß>%»wY´4kïcëÁy=ÚN}ί&h¿l2r›¼5dRí£Ï,#‰Ÿæ±>±K‹!‰VaýŸ±ÙêóYAAFSˆüÔB†e’‚u&ŸÓ¹ƒZU^ï)šgªæœ —mù‘‰aö M¢nцp¹[ÿƒn‹Ã¼¢Š>ŇÄê×5o” +ìÆLU&ÚªR¡»üÒ(àyT˜EG|øŽN@ÒŒ¬&ÉÖ©?&"“ÂK’‰¥NèÕpöÄ1„zAÍ£”•LàÈŠ¸u3dÚÎ+b“Xüîr¦óËʸð¸cñÂ3šÛ¦é›Tú#ÞXÞÁýÈ„ 7Xµ­2G'ï{°‡1Ò9Ïfäk+=¼T‚X¾tz\n¤uò›þ›"‘Gý•,D”êu`›µ¥* óve"uwbHÐ:Ûípz©bH,HTy^•ïŽI«¢v««Ÿ–ø6ý‘)F¸Ûyí·dÝ S2y×5’êã/“Z¡üÄ/nK\oÇÀu0HÇSb䂵W›ÍSü3â ó³—ÆÜŠbÖוIIº« ¢aô‚WßOá¹bMP˜¶£«ÔxTö…îPãÀ¤Ý0 ”–BqØ„™ÖÑóð/òéÚ"I*“?¬m\9wÖx!+©ÞÒÍ4šÃ1|É[Óø ËÞ‚ÎpËÖ(1k›ÚЂKå,•ËËM™Y׿ôQ3ͧR+¢vÎØòð%Óq »q{„1’#~{¨öÔõZwœé7p”ôvÒ¢j¿ÖÏQK 1ôº¥¤‘øW~œTœ`»R¢§WíûíSƒ)ï‡h¥S;a=Þ×V(Ö“)»åoªéK'6Ú—÷Ä¢Ë;.ú²–ƽ¬¾Q%@ºõp¨èÕ-Ñb.ÝÞˆðbt3œ~^â^UAéýø%õ LNÚÖÛyÔÐ ã%-Z›ÅüàgWàˆÒ”€¤Z/XNÅì÷ÉöTyk!Ã/NøÙŠÁŠî´tÀ[·Ë 5Bnǧ;ƒX…ÛLæåÝaÇ© S‰iª¸ÕHþžfÅj”S#Ë&¹±SÏ\Ž:,Ì“ÊX|F€»\ú­i=Ž.K«AaëÐ~azÏ2;ÍœG/Ú̽Lqí,©ÝSNEM d¥àÖåÍlÍì§š>ä0©çˆ]6˜ŸÇAÐ2Ô*v_¯ÌÖE3ì.'á >ú¼TÃhñJ Ò4ûç)s—)ž¯¯®Ópùûkãa‚LwBÊ2¡’²Ôˆ³fIµU­p`6Ô 'ü'ýÊĺí Iá‚?iû®\~’ܹ¶Z k#ŠÆn7{Ð ?Î’;Š¿m› ÚåÂß#“B;jä¤gv欶16Ò¹ƒ‘s ñº€L’Ž,-˜³G¢^§"Ô¨9É@AüPHÀFÍ7¬ªt°‚:ØO†›ÔÓ‹GoZÆ$ô•ïâ´ ­ñ\( NÊ5¿í¥1·«·¸ûÊ,µoz³©\¤ò—…i›¶Ek2·X: •sF EMýÕ’l RŸ‚Dˆ¹} çœ$! ¥6/œâÂT…Ççyê²öªH½”=/\=øò3ê=桦²æÝv´ xq¬)9æ)È*áFEH•©qÕÌfó cÀR´ä-¿¢·¹ØÐáÇû†FÈ#N<}(åêtoR(¯à¶LŠ>r”0oêQÂèàYÆË¼Í;à*»ô/ë¸+}©S?åò®«Í)N“&ë;oŠ(÷ª£&&<[A*NSùjS/à¸/äµy$õÚðGéŠÕ~ná(tLæX ÒçÖ—£ªK—1†ßÐë¸QZø®Ý¤èRŸ‹óY¶NBU×™eNß½ÃÜÑT5&²Ûdؾ7÷“‹EÍñ‘¯cú×Çt횯qã<¥­ÌqR5qPßýç©ù3Wìæ€âaŽj~òcR>_/ *Ý}CO&ÕݘةxbÂ’šMU9æ-5²ên3x´,8{ç’gï\4º¸sÈçÜkÊGðˆæÏòž€Â5©Â(Ø5z1¦æC9rØ»Þô(½ÞNå_÷"¹ƒ™Z:îé) C”v¡ëw‚n² ¶FV‰¦ó¡£¬1n°2ãM*¤^§(÷Ô ß>v¨SÀ¼"ò~Ž?×9çmøxÁ¿ÆmN޼øCmÄT0,1¼U‚ÞÀD}BE½‘†kV‹öëQÀ_Èt©i§Ü  ºk£Ù,êƒ.6ç'ۈߟ}ß OˆÛ\è.µ£Xë¶H6Ö£ðiw!ÀÌû nïblM7‹ÇÛXãªxý JRF¥QË–NykL°¤~Wnɧ³ŸüÝn…FºNKÅlŒ¶a ºÆ¨>svÓ_uL?,¯œÝÖ½GÉø@Z·ß^±(ÎÆ·þ"DdE~9äyä(wWõTù(5náúh×n© áyœ¹P‡úzY4½êÉ#(} i"SƆp%¦‚ä4º‰2¡<…ÎN@NÕÎî]”Ž97c"Ãeèƒñ£p†>R’÷¦Ù“Ð[Ê}½nþœÓº×úèRHI.Úf°ÔdYî‘„lÉnfíäÆ÷¶d›'¡”Cõ"‚¼ñå.$o½óWÞŽ0¶!-âHZ¬nŸô·ÏSÐøÑL_?érmòFN ÿލØRŽ…ÀÇì+rƒß;u -î¡—#UÈÕ¨‡§rmxJ*†\¾m3å³I[)2Ýt¤a»Þ@…nFZæ¢r«ÛùÈÉ÷$ü„õ çi5ù¤°dŒfˆ$žæƒ‘Ô¸ß*r>Ž6Od|dpDÅoµ¼u ŸéÈØ›3)ýq/>ŽähÕ}’N¸\¬Œ+s›ÄƒÎL™ôäµFLØÛÆRü#ˆ_M·ÒxÌ@‘4®nÃiù>Za sn;»{Jªž¶ókÕfîϦð Á²0ÉI¤äᩈô4.kòøÏUÒøœŽbz¥¼f‹©±C{ô7i‰üPZ*L |=s}ìØ™¿y€†ü¬Ñ­ÿ8´r”•éº\/Ÿ¡⺗R•Lí„¶Cµ?CõäxÖ?¸rxÛ‚ Y±×ªÿr>xùy‰1åµe|7¦½:_¦Ä¢Ôy*'5¾ô1ÚXåúšðåæã¾sÅÞÍ^X¯Jj„²iœˆÙ‡ôP‚ªH¢øQÜ5B•ü‘‚ÇÒ=ĄȠŒ8kÞßm֛Ųq­Œ‰sØpªü‰¾#* ‰Ãùm‚P¦â¿C²GÜžµ—à¥Z”3cÕ³“ïÅÔ‰ìÀÑM°ˆ6ÓXmóË-¡ûzÑÚ ’]ž], È?b|š—FM+©æ,-–TPÑßlЭ}Í3΋î¤fS|Yvƒ#%<Ò¨Ó@Ÿ(ÒSè“å+²Fn!ySÀ4œ(xkO ô°Þ9gÉÀx5s6ª+CîñžÙ°ÿ ¡ô‰ô9vŠ`þ`•µˆ^ ²ê¶VV9æ7eë¥vÿRc[ŸÁK—£µ·Ø}%3Ï5‡IbFšáKÕ&[lg+݆‰"ö¦ õÖìí{0úak2í¾šoÿªÄqØÛèp'jÈdM"ƒÒéSÒõ:¬¨yퟗ˜¶å/™EÛ3‚A ØÉæ}{XÀœ<~ÝÔ=Bvž·*ÁDP“þúÙäѧMVã1T@„Hœ̌al‹Bz)šãüJ¶L‘Ú¢ipÄä¢ÛËëzEŽôI¦¾«ê‘I„” {˜Ÿyž;j_?3°²ƒP Õ9Ï¢#Ó:Ä(õ[]'—FeÍ ܆v®E]ŽtQØkö±iÜ«–æ¹w2ºTõé0²×zå¶ì‰ö –]¦ “לS¿mãMŒÂÊêfâu.(ägcb—W{æT =ÖS?¡¢V~pÑîìˆIçb‹h1œ*èÛœg/83•§D©¨žUQ±Š 0f}ð'¬U²ïuÚy-îKD÷WOÓü™óÏF¸7ra†GN´IR)ãü;í»4wc,Âg¬WdDd!a7#r‘;Œ¹/WX"jw_¹÷éšó£lVœ,â¡ÜÂFíÙóÒtÛófLû•]Ú}‚¼•ÏÙv>Nq©˜¾ü²„ÎMP™CüŒ_øM‚¡†U[’~&)-d˜Ö¶Ï$1Y*8‘‡gøÅ'ÌüƒTã@½|~™&=3רvç­éÌÄi]‘Št¥)‚h8¿§K?îØÇ• ¸‰½YkñÏsÍ`BÁÃÔfГž±¨!©h2 -þr•ןÅÈÄ„Lö„$P¸Ñz¶h1²ý+Ä“VhûH7ôŸ°:ó ½}å~FŽë(¼$›ù**]#hÌìc÷X¥_€²nbøf\‘üµ^Ž=EÁ{0’ë ……WÇÕ)7x+U¤s]›%–Ävþ)`NÂgÀóAv¥§êjdqÛà£neÕ\Øtœœkµµž6ØãOY–~ÞX/ÔŸ_üŸÃj«ÏK‰•Ê gŒ°îøTÀ;½Â‚ÓxÍ4v=ørâO²”J_lgåSŸ½ìäUÚÔ27…ƒœœù¡ª²Ü2®àå_­Ê×>Ïþ^:á t+_b\s•£ŽY=+™äV· ¢ž1„ƒMØ?˜EËMÕ‰1º¿ÏÌHB¢5Ijî÷q·ÜÓšïÏ\ÏR œŠ.Z+æjùE"˜9+ij.:xpé°ôá}êãë*ŸEƒ×)2¤kAN­¨Bß‘ˆìNsBOÜ µF_¸ºôXpµïq^ ÆÈ ¢Êµ-QxYä!Läû˜._ÑAꯤ¢òe¢T²/‡£4/œx‹ã`¾§Èyð`Éz…¨² |íÐEp§7ÕúI‚K‘Ü8•ÎIuöQw[ÇHÝ"× ‘رhp‰Ø•4AÈJø5¢·Kˆ-ñÅ–ür¼º¶‹|R/R«*¢º_\õàM0‰>íy~ù}2ÒYtlí,=Ž7†ªŽ@6.yZçUÜù WÜgï­yÛ8ñ1ÂPpEpÓ7x„Hk¤m ŒÜ†òg+X)Åkë·² @¼¨ªŠ¡bÇ×–š©¸ð"éçÑcêK,ou±’¿I.{¾úaÑÔðÈRÎ=DÈ¡”Ö§‘írštaqûëö)Qpœ„°Îóˆ.Êî4p[X©-èR½ûÜNs2öÐO3vL FÙl³{©ÿ©ÀžmäðTãh›qó€EgÈ{?Û Nÿgø²ª|£.HÏ/¾ [²ÎDŒ>ôE¦JˢƂém¨Ä­/9Ÿºëo¹z+ø,´íê«™Œàð¢NMÁ¼Å6†€Ô²f-–âñ IÄø’0g³“¶+jÆx9û:@$²Ù"‚ñr¹×”„ë†C.{P*š]Pj`Ï-¸"lu#¯MViRЀ¶ªÆJTCß®¾Q?ö4oÊŸþ tÿ… üléþuøÜÜ’-Ý]v}¡™9 ÜëCóÛèåo!‚KIp½ åahQƒâSŠíJ> endobj 205 0 obj << /Length1 1474 /Length2 6427 /Length3 0 /Length 7427 /Filter /FlateDecode >> stream xÚxT“ÛÒ6ÒAªH5 ½.½÷Þk!A:H¯‚ôŽ HG¤w¥JoÒAš ]@@¤|Ñã¹÷žûÿk}ßÊZÉ»gž™ÙÏžgv²ÂʤkÀ+g°ƒ(#à(^> @AËÀL…ø€@ABVVC( ùÛNÈj qGBp‰ÿ@(¸C@(´M„Bµp€º ‘•‚@ øß@„»@ä µhñÔp’UáæãutB¡ëüýàsÄÅEy~‡ä\!îP0Сœ ®èŠ` `€C!(Ÿ¤àxä„B¹Iðó{yyñ\‘|wGiN€åЇ !îž{À/Êm+ä5>BV€¡ù—Ãá€ò¹Ch †À‘è¸=Ä€®0PÓè¸Aà5ÿðþ@€Oà_éþDÿJ…ÿÁW7Ü w8@a€Ž²&ÊÅÁíA0$òAa ;4à÷ÖAe9=Íð?$Øê†Bò!¡°_ù¥A³Ü^áê £„¿ö§u‡€ÑçîÃÿ§¹.p„Üïï•nïð‹†½‡¿úØ¢¦øƒ6þÛæA„â""ÂÈcÄìÄÿ«€¡ä·ó·Í!ÀÏ áp@Ó€@ èB?$È@¹{@üþÓñÏ¡€À Fì ŽP8ῳ£Í‡¿Öèþ»C½@´üÀ_¯=Y¡f€Ã|þ ÿÝb~s%SUEyî?”ÿå”—Gxüxżâ"@€€€€@TTðÏ<ÿ:¿Ùÿ¶ê‚ v÷Õà€ø_$Ч÷7Ï?Êàø36œ€VÐF õ pü[þ–@a ý&ð‚ß!ÿ?íÿÊò¿Êÿ¿w¤ìƒýösüøü W(Ìç­gz6´è ÿ7Ôò×@kAì¡®ÿíUCÐ3"wDëœWà!ðá_v(Rê ±×…¢ÀNiéïf kÀ pˆ. ýuï £€Àÿò¡G삾[è–ývAГõϺJp0Âþ× ‹@îî B´Ð+a€ŸzVí!Þ¿%àçƒ#PèšcÀáNø«±‚~Ç_ÄòØÝ´÷·àw…Â=ÿ2?ðÃ!Ž¿ïH$ „tú·GÀï‡þÇŸÿØ"ØÃÝ=Å¿µ„ÞÿßëßWâ ÎÏ À’aÎoÂÚΫåè¼x7Fp—W:¢Ìz£„Ql³/üœ4ñ²T&ËÛÚWÞJ×+‹˜˜ñ§ãÚ?õ¶|—¼”¦š‡ÂPê]“?äÍøqüÎÂh uM^#?HÔc µµÀ¶`O6™¹ íÚ|ý¥ðª¹i.¾pŸ’1¥Ñ¡âär;v0Ÿš1±¬ Í,ÉžÝq·Èð0T3»Â| }v&ßKóÃgÍâYæà§OïsúzÓ…Ž 4º«D*#(hîúª3å%õÓP&æ¨7"1Øä…OÊR˜iŠ\#Ø–°lE—~Nôµ&ö yÔ;j+ßÖy2ÜàQ‹ž‘ÊíZ:¢·YÏ6üÁO|¯))Ú‰§:EžµÊãt0ã J–×MÅÀ­íX¸ÑšB””ž™ib~lˆÅ{*dýeüÞ¹m\V¢€ UªL¬ÿóKy]£ÛƒÉÇËG© ZV ]5,m&ç¡<|ß_öB+Lï'ÃO¶šÞ· vE"Xö('ƒLÛ³vz¶Õ„O?s)‰ j4f6œñ¹ñSúy¹Øº­*’æ²âsãÌñÆB¤ù†ä³†š›ÚfárASd$.ûe ¯?¾~!Ò$•*|²0~xKQo7ž¬fí¶^×ë;÷C~A|k¼s'ÛmvuÔÃhÃNÂå–¼Ùdð¡èÌRžüµQ  EéË<‡¸ŸÏ¾ožÔä™ÊÕF™Ã¢S:'×l^3´›÷=£Ïx;¾ÛÝΞºé­ZqŠ}Ha7¨"ÑÏV«hˆnQøÔGmdÑÒl;iÂwïvh8ùA$`q&ùp=ØÍz«^ûÀígùcyEÀRö¹pq¡µJ­ 6q?l¢(ã@EâïbwˆAãõ!‚3p> '‡Âu˜ŒÆGª‚ –§M1äµ*n‡§ÝôŸ(ZjèùÕû}ÁgXE!Êb?=u…?ó›êˆ¼÷‘CtÖì?ÙÙ´2yL§¢ÕŒeöp¹ä8¢‰¼À,~z¸ÀTWéPóJpÍF°ùvesB5ÕP€Ú{’æîÀ6{g›+‚øüôÂDû>ƒ~–RÊQñ^fsüæÉO¶”µ Ø}å*Ë@MrL}'׌ʹvߊ+Ǹ#aÄ çV€â¢….ü0zO‡iD(·Ãؽ­½ûµg0z0×Ró~¥u þ«/Vå®ëd %aå:“ϘÔnǾ™zósóÞw}òkÔ”‰dfçð·Œ~YŽå(®áŠ©ÛF/rüü×¾× m(—°R;ŽÅ¼±_ÑáN¢’TMäJ»*W%k™>/_+´ Þ 5FÔ¦/x¶äî&ÉtզܗLÉ©‘Z”æ ë[+©è°d®øÑšE=¡¿‡ã©¯:W„£§èDHC2%kÓÛO5”CÚîr‡*Îζ)§v®kY^›é5ŸEQl¯6 êëÂ> õþ™À3¼k0h¤«Vëà§1Z6‚¤ 'Ú1«jËßãßõ|?f‘ßüsޱI“U'_v'S54"ùΣ%]ögê/‡=§yúXꘌJ´dNjwdV’ݸfÂD=If©¥tk*¤É²…ÚIÂÖ‡B©Ñ†µb-Z½âÈÐfΰ:âW@Ñ©/“¬$áa*D…Iú¾/)޾úEŽ[“+:-ž2áîž]4ŽÎmMY"ZC¬gYÙb7ެÈÅ`©ñëÈf¶°°wü ««ÖœYL†=A âcÌ•Wûóãµ+TÁíÌù’ñ[©—ÖÑ„rÂG™"òRä žð…LÃ5üÊÌøš±6æð‰³2 +~ÜÞÀ¿¨‰¾Ù¼©4î§ôYP’[We`Ш|`a­nêó´_9±vYÆ+òGù×Ã\FóìŠv!UÈúÆ+ãë£ý¡ ²,«“-™i"̽#;T>,9ÉL$ñF'ʳ˦Wÿëp­x‚ÀKwIÏíŒà]ÝY³»ÈYÛ;É¢Zó´­Î¾uÏ9Fq"ògTõªI>n’´Š³k€dgš=œq‰Cý0«WŸ²í|Ud˜YCü!ŸŠ¼˜¶jÒFD↊ôu·X¾46KÜ´àh¦ô`n«ÈžýU÷F'osÑ{A ~º^ë·g‘ót±s‹ÔD®CáUæ—´=š$bcoOæãÀCÇõcˆ»ó˜¯b²5U‹>´h,ž7ärf|Ç{œË=»6óIíi-Ê˾EHa£5{eË+[‹¼cŒ{EÇ~’3V3~Z†2(($µ—ùTcJ‰MÁjÞsæ¢mRoövOyîÑ–|@mÚW—Ú…n¼eý=ŽÓcÖ‚s¬d@L¹Ë«]×°VŒØQÒ¯0×PÄÔûݲ‡4z-”•aù>Ï)ü“ã?zÞ¿sÀý$¡0±'E©üìÛy¬$­¾YþÊSªÔ\8Ö¥*$+b^W¡î«§öþ&³ŠHQñ.ñ>^^®U½@¾uÂÛØnÿÍjŽõfãéoË1*¥¯`¢!t&w}—Üólö¤~ª0û±—?Š0ÕstÞëN­‰8 ñå_¬m˜÷Ôì6óoŽV¼ÅØ÷—ôÇ PiÏ­!†ÖÜà¢éX®%ò~Tíûš¹&¹õ”æwí(XGͨêU¾†a°7rT«€!\7š«îR_ìPÜáåò1ò㹪§(~i<”9n¼û „È0w\WÑm,í¼s'Ú÷xS¬¯×¿³HÚþÆÙÇ0+.¸»ÞصÿKú Íã’aG…AšÄãă¹·-Y·Ä}qZ7 £–ù{POZ{3"pJ \{éâ±}îcÓjOóÎUF{§ÞÎù-|<¸#çÜvÕ3o¾u«eÃ5ô̱„‚Ïtyሓ¶£vöGãfí˸Þ]þs’Ø<ÑàX.%áéö‘ß ÏÒü¬Ê¥Y®±” |™Æ£¸^"Z0¦pœc>ðjÿ Þ)©D‰Å÷jxé9~ŠsËá°¦ ᛉ‰z>ÚµSC¤iýääýÍå¹+ñ]h”ØŠõî.s±mBk™Ík½F(} íºÛÛÓÞgŒƒxxÈ$La>ÓÐx,úɑל߾ÐæïaŸÚ hä¸TT Ç8 ¬(À§ƒ}©ËU^3¬ÜÝ¿*3ÑûÊê6uOýMóœi!mA—JÍØÓñ’{êAt¯EòƒB†PÅJB’Üܪ”¹*J¿×,ex¸ëLÙÂEá· É'±ÄC¹ªèvM%¾wlJ÷·eIp,i28`ŽÄQv‹'±’œ%¹ü([‘œãå’»«5¸¶ƒM5º0ŒØ}ç͇å>rÀ÷OÇn×N¶¥wg&,hŽ.“¨ï}µV„–^YJ =_lìbúvwÉ(òÂ?#íîaã°‡ £˜íǺÁg—“þR7±Yèß3]Â:þºÝ¸[È,ño%ŒÏÖ7’¹¸Ýä‚xªyÞIù;W “+ „ˆfŸ&J:H«ªOŸ£' äûʯ\JG7Ð<,HCé笴Ä`ò1Ó{Aˆœhi:Itƒ^@Ög\ÝŽöÕ#u²Õ5«iÁ76‡Ûr“B%«z”_;åOž°Š+´P%8K>µ’Tl=÷ó©²!:+RÞwœê¬}ø\>sk={W®´âÎJûã7c‡C¤÷—ß.M<¬Ç‹aŒ,Lßx­ëpïÁ«cžƒÞ<‘“µ6úî…%‰ŸÞyÚ~&j«¯ùG}Òè}¦Âr“GV´=Æß¿Õn'fˆó{LmgÆ!Í·* "j§K Ü±á§”D9XÔýÔ+xžf%“œ…ÒxeÓ‰•sêëÂââÂbõp§ŠûìДQEÖª€m’&{4tüSèùiºÛ}˜^Õ‹d½/™ÑØv+¥”ünÇ·ê_Ð&?îPžö¹ž–#Oê„ïPè}À»)pÕxæÇæ+ùhº37ØõhÍ*:O¶†ªÁ3…å !mŒMsd­—¡®‡_"²­e¬ú\7÷)7ïóʲ|£§é5ÊßÎu™[5F#"¸+Ú&Í: ¢2À ŽÔS|¨=]–f¤£ žø»;fj¼ ±0Û×ß÷%m§)7¿Èã«JÔ½~±b¦Ê`'\¿ÚªÚï×äÚ¯om6‘ECÂCø‚E¹ôCšªâü‘1­ŒÛžÏDzó]Ý%Ve©Ö®þ>ùHÜÓùÓ|9]§Ú'ÚuMØjƒ6ÛQA ø‡†T¾K“›¦ÒRb/ƒoÙ>D++ ̨³·]­|b± Ð'À% ÁûhYD¾ª-èâP:Fx¨‹ =$Û®;ò\Ùî< ÔX0ñËÑšZ’™+Ó:²ú!aB#y—Üó~B8YŽéª$N˜üý$‚èSŠx>Ý5I™<&ÃÂ(ßíF$Õ.Ö©‘ÕúëÐ$© Ó˜ëÛWIÂuoc‚܃´PÒ>RU\kÁv XO¬‰ÛQ½trî5ù0ö†óÞâÔËã[–'gsyôšÁ˜;¡ùºÉl¢()æ©‡Š¯¤†ãÃÇqŒ’œÌ_k%/ RÓº<Û‡/¿+<©•éTmåORf1â«Joâbžp/jèM…i˜§*&¤v‚¿!¿.í…z#Ô­VfË™†½.Et>ñ<Í Bí  “¯•Õr¿"/j|Uùö’A4¦Ö’õz¦¬Ïgsc°'Ï0/VAøRÅÝqÕ·‡Lx˜%>2=–Í¿:¾¾3ÿIê'•òõ9±Üômâü*\-ÏegjTIèÚ2€øÛXüÛ^¶Õ¨U¯æ°É½p¹DÚ(W¾Ø—Ï* ô-:¨Ç3Úœ|Á¿fÙìi¨¤˜#y+pŸô0ÜR+ð9x†Cb_#s±FažùQ#Ê1»¬w«°«l“”B66ÇðU `štÊÌÚ§áo«§ð¹àýÚ‘‡bDNr4IÀ1[ÐU˜8ßÕLI릭§<˜;P©“[†h@¸8Š &~bÚ¬+=wWèˆJ»˜\¸”µc™V±‡¾Ùg(¦Ê!¥ìzdTòfV{ALaï¼€œ%"‹”&Ê|@Gû-mÅnšjO)έ$Zs¨½Ž‹Ÿi+æ×kuëÚüœ?’ævß7²ÜÖÙg”Eö´ž4OÍ0#pÍÒN¯ï{!Ü(N¾f2e*õè>U–AÜëqÖ%_=ªdÎ~ç˜,ó’í›<\ȵíÂû,o—mCxÅ)õø{Š6´j!A¹2sïú¶'«ëo1’í:­cYÅÛv\}mÝ®°Ù|4q>’ÖÇM¶‹¢ï*¯¶Ë©‰¢QÏ¿.Ó‘-dÕJT YúJŒ*®ŸóÄ ˜¶¤mæ·[›è>Ò2V¦ ߌr»¨mšˆK;¤”5ÈÆÏ{N„P‘ 7-ùÎåÅÝþÌ%u_Nöfóú,(§4cœò0Ÿ™Ý¡¬åœC‹ºP._'?` ÄSM²Äàyå=ꂬBzï©æ>RÖ _[œÃÙs*¹Ýl.2~/ÕgiÂÉ€×ÄüN< Ö¨ú=öÆê³A©ÒõE/íçµ X¹D4˹Žð²îz˜W·Íx´0†IcI(z|ˆÙzcâ‡ããkq`ƒR‡¤³Ôõ x–/ÛE¹7­0´¼C óãÛŽíAü·¤ ¿¦åR5j…4+,~¯êç®wñ* >°¼ÖûÉ8¡ yRpœØDåáE𹣘!\¹i)‡ø sغR²ôH„ƒ¤-6i/‘çOÖóû« -öÀ3¸V!Ìf•t#Zç¸å Ü0Ÿ˜C”§÷´„‡½^"•‡¹ÍÝ7†öÌÉå/í¸7ßéDXÍÁª¼?³‹x­‰˜¾Q ëTÔ`ÔÁ£yéÍá(ëeåPlœ9Ôe±ød'V@ùÇWFkR9!ÏWý«:Ùž“Uô ‚·<‰}/6 ›–.†€óŸîÚ=8;e‘íë3–4Í‚ xµà2-œn¯/·kËÑ.ë— …ãc"Ýyµ.}‘Xµé#û¥÷¦Ùhåÿ÷_ ݪ’ý`¿´ÃG>òv¢e0&6ïø–Cٲȩø¼öùØ íëÛ–]#˜_˜3ÏØ=öý)™¤„~ë⨻Û^ZO¿N¹Ç9Éëרß\­3s!H¦_ÚUGêý~kÿ~”^/þ‰—¼ãxâjÛ•ÁUkn6ól9,ÛîðÔW²¹&CÍgÚRiçÝÐv´›{©‹Q£,®l„íí ¡Ô X÷`4ÊàìK+Cðç¿›~ÿùÒüÛræ{‚õ„J$ásîžùjd‰ù;-þÝšæ’ïŸ7í¢ôÞОVÀîä9÷žhh}ñpÓ±38¥ÂŒíryqnnŒ"~w[jGôNŠÙ½ÌºÓó÷‡Û'#d`áÎãa²™h{¹¤îË.´W{4W½x­‘¸0ÆQß,R™¬´P Õ,ÄSlŽY˜‚5çÑ;ÆÑnÁà/÷Y^G®hw8ª8QôÜ6Ñ€’¸HÅq«Ã%1+BY Ö‡DØ nºN)¢P’šãßh.·OÔ'ÞñmÒs ¹ÓS2õÃè ºŸ¾‹mÝþY,²È¹ÙQ@†õ,ñ[ÞjlBq‰?¯÷^î2B±¦I×ß0tá‰xèS0ïì>¬ÆÚ`^õ±(¸àþó&P¼;Qs8àΡnœ›°?Ï{ uo®â28‹$ÉFÇøÇ”-Ge×kxïêëÓRh½wËåiHrRÜdâ:FíÀŽéÊK±oOpˆ‚†b‹z"|å¼–(þ쨥~  Vuýªñ"¥!¹¾‡º‹Õ޽Îp²ÛòöfëA)›‡SàP0ƒ’ÒÕóŒöãC†ôi'Ô¹oþ™œ± Ãlt¬˜P¾ækõV1Øÿ{9l endstream endobj 206 0 obj << /Type /FontDescriptor /FontName /ZEXHDB+CMSY10 /Flags 4 /FontBBox [-29 -960 1116 775] /Ascent 750 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 40 /XHeight 431 /CharSet (/greaterequal/minus/negationslash/universal) /FontFile 205 0 R >> endobj 207 0 obj << /Length1 1393 /Length2 5926 /Length3 0 /Length 6879 /Filter /FlateDecode >> stream xÚvTSkÓ.H ¤D6RŒ!ô"J©Aé%„¡$”Ð{SšT©" Ho¢ô*E¤HW.E@¤ƒòG=ç;ÿùî]ëÞ•µvö;óÌÌû¼óÌÞ›—K~]ÁkRÅbp×…¡0@I n,À`¢PLÄËk€Æ9¡þ2ƒxï¡ÜÜÑXŒÌÿ(¹¡8¼MÃã´°@Ãà „%d„%e`0@“þˆu“”žh@ h`1(w¯ÖÅÇ mg×ùûàG ÂÒÒ’ßဂ3Ê D`-Î匯ˆD8p,Âùü+¿¬=ç"#$äååE8»C±nv· €gè£ÜQnž(àa@áŒúà â ìÑîìp¬-Î á†ð'4…qÇGx`lPn¾8W¿踠0Àwþ À_gC…ÿ“î¯è_‰Ð˜ßÁ$ëì‚Àø 1v€-Ú è¨Þâ¼q±ùD8¹cññOÚ aüÞ9PUÐx‚ÑsGº¡]pîPw´Ó/ŠB¿ÒàOYc£„uvFapî _ûSF»¡øc÷úÓYG Ö ã÷×±±ýEÂÆÃEè.íêRWþ ‚7þ±Ù¡p€8LZBBL@¹(o¤½Ð¯ô>.¨ßNá_f<ƒ?¬ `‹' @Û¢ð ?w„' À¹y üþ·ãß+°0`ƒFâk”ú';ÞŒ²ý³Æ7ß í ˜ÂðÚ`¿~ÿ¹3ÇËË‹qòùþ»¿B*Fºê×þ0þOQë ø‰×¥ÅÄa11)@RZøw–ÿðÿ›ûo«.ý×Þ`ÿ$TÇØbé?ðg÷7 Ï¿TÁÿ×Äÿ® ÅKðÿ£|3˜8 ‰¿ÿëÿwÈÿMö¿²ü¿”ÿßRõprúíæÿíÿ?Üg´“Ï_¼’=pø©ÐÂâgóßPCÔŸIÖBÙ =œÿÛ«ŽCà§Cc‡Wøua1(Lìí®ŠöFÙè¢qHû?:ú»øNh JëŽþõÀÁGÁ`ÿåÃÒÿPqÇ7ì· …Ÿ©×UÁ ±6¿†OD\@¸¹!|@0¼ÆDÄÅ?aü”Ú ¼Ë‚b°8|€çØbÝ@¿ÚŠ×‰‹Ooý+5ÒÃÍ ?w¿€¯û÷ú÷£PÞ($èÃ$y#Ü¡&¼ù¨JÝëúÊ éübkT‚qw¤8Žo*×ÏþY¦Ú¨«¢•Mù¥·iºï‹ïLú³ ~=ò6ëÈ ™K½ƒ#Pé^VܾþôÍñ÷;Ôe,›Ý°dZÔ2Ý·D=0•)±éÕdÃɳÉNѵŠÕg?ZÝ×L¤7g ð€–+•÷P!»uóBŒ1Ï"®ßØŒ6ŽÞÍ4ÝÃ@ýîð 1è¸CÅæXÖcŸeÓ¸ŒþÙÙ¾¬žî4ÑÝ<Í®J‰òû ¬Œ¾\Ùo“zY™³4^¹ð)Š(§$\a-p¾Ï7Gd%9w:–×Ó”Ø+êQg§­B©8ðÒã ½~É—˜Îfl¼*-HÓÎÆOx#iIѼ—àª|v[”—UB)·Þ âC+!¬}¦PR@Ð[I£"Rb|”œWNû-Zê›—!\e1wiDzT3ÆS‰÷žRŽíýý­W[z<àJ“µ˜Ø6‹× þßèÒ¼iγ§A¥ ±«—êY°^)øXyì8tzÔ»³%m%†D¯;&FÔ»Féf¶‹3^uV¡räYæj<ÖTéáƒH½©êµ\Šû&—z&ÖoŸØ_@(ÏfÁ;Œ|t6Ñx7Ó`2ô¡n ôò¬™ »yݦ몭ÍÛËHÖÅp‘û Lde]¹áÇëß5‰ó¾¸d&R.…²ø×cNTP¤·[­‡ƒ9=‚ !¢.„‰Æ¥:Y‹OÒu2—S8øî¹jÁ`žj¢JwòT¯ ¾„®ü˜‰l¤©\¼wÓÊ_J¥ÓìñÅ‘^k¸m®ÂH”î“óVŽ>)­"+Jær+d¡p„§­ÔÐ6ä…¿]•i#㎯8ç÷ÔÊ–FQ‹YJ ?íííü7?-ü 0©èÞæ¬ ãzÝ}¼–ÿ>²ßYOõ2‹îÐ[‰Jyuæ­U1º“tO£ªõïK}ŒJfÛ·EvùmОåãk-_à‡ eˆÚÛåÄåŒ|$‹Ä*wºhü´Ì/–¿T9K_ÞüÞ4ÏO%X€z×ãAŸ\·©äóÞJ\ª7¤™ç\!Üã0l•í!–~ha Æ^ý¤œñøÈ>Ws¤hý•Tw¹`€®·½ünÅŽ ›FÿÜ$ ×ÝžYÏuÓþ™Ûß;&7¦]]×#¹WÌèºw(z¶uÙô¥šÀñm…Wû±»w˜–&UÜhA½a¨£‚_œ>àø —c¼ÃDÎhì‰e°!D2ûWÈuÔFIÄïtzL·ÉV|­6t¹òBʚ̛Ø#Ûè©?óás€Ì΀{²J»6ßÏíµÕ¹;c ž‹¨%¹WÔ•mé‹‹…Ï­>âhµ[ʼnÙ^Ÿ×ˆ®¦°ì®F÷qÍZ?ÆC®T›Ü®T ½Ñ«¡Fãà,Ùm‘z#ŽJ;3£Ü.qô舭mSÛ©¹m˜[Cý «ïlÙÇÐ"…éê(ùøvС¹˜HÍ®úƒ®%!PŒP’S> m~©¨?LÇê’%{w‚Ý‹z„­NºzÚ@éΛf÷H E'ÁL3NýÇ#/ôÜœæ5©è×2ùûܧcå­¤©îTP¨ª•9õ]Jz‘7fžýˆæü.áyÃðR!X€{Æ@œo|ZŽá1{ò‚2â4 qüµâ½ ªçKu’ öðAû'uÉ"‚Vw£øD>$ÏÅÀ† ÆRm±ÊŠ2Éß ‹úAFо©ªnL†m™IFÐ¥#ˆ„¯ñójÑ€~áUég›‚Îxî W§R¥hX‹~Ú’4·ý‡kï5{|˜§"Ù!"ZT)P‹cÁm0ù^ÿýþœVr ûׄtd Ls‡7$òÏEM¬jT³Ì”åL¤ÇdÐõÖb¢CV\U8üìíŸ÷V>I;^èïÛ}~¢X³¬ŸÝÉâ½²qÀ8Ðý|}4$Iá¹Í,IÙæ$”qÄÆ×ÅÖÓÓÐŒÁ3OYŽKN<¹¢`XÖáÿ¸[/ìãžÃzéR´Ü"zú³ÙêM 2êÑ˔ΊýÍõÝï Á_ouU(îr1Lr^SO> "=J#x4;¯`ø©M¥††¶Tÿ©BÄTOpÕa•ü­…Ùfùܘ÷õtî¹Ç˪ £³´HX&¥•ÐóNÊð‹£\*»úVLÀ†\±Ç‹SЉ3M‹ÕT°nàp{:ï®åO<¿þˆÛçíÕPÂ}Å7.ls_½ÃpüêìÑuï:ûV¨2ôȃS¸ŽÏ¹ä¤žç²ÊÆsb’Æ{Å{Æ÷ÐÌLþ¶Ò複ŸçN¢Ø%@¸— ¢º 1“5‘×ß%[éª?ÉÖ‹s¬ ŸŽ ‘Óß»g¢í~’š…Ë[ ±éÏzwξ1÷dçÐ"vÎ!3=ó¡Ý&ÿš‹ê°z˜ùÃ+‚âÐ;¡MÓóW4µ#ïUf ¯l `‹€r+²§Õ¥yU”œ íD¹ }е_´ ŠVäëQVÃת5æj´;ßÔ¶ÐE¸ÓövD¤‡° ÇGŸ^›SíïŒÓÖÕ2Øi\˜wäÑ#¬•tët~òê„ÏŒi¾Ót¼o"¹o7lŸ•ôêÙßÇsR‘ÊÈeÂqQ}[u3Æ®ú̇„/“^„X^:f~l.¢Ýðqv`TçhçR< &–ñå´ï£R0ñÎ2ÍТ@ÀQ±‰.ðÚ¸rM±ê^ÇÇŒWïÔéšÈ—š‘´œó˜Ü»õªŠ,Ï)ÖçI„ã²3BI†åN1}ò¾šEZš;³õሠk!H=Á1ZPbI.HSò™¶#Ò]ÏO³“ ÎNõùÃí¯zcôÅ/kÔ2MæŠ]–&GNCü“üÀ–OYò&É̶ rï0."ê›NEÀ-àuå‰ÎêÁ†È¨¶Âê×퉞jKMXãGï\>YÁ’Âö™‡¼È†ÎËd ð®ž!ÿŒâ ¥×z–ŸÃ…ió&ËuLè(/ÙmzõÎÙkçaÆïòĨs÷]ÛÝÀ=zöúÐyHd[‡%ˆÃ…rw7_½iHã<ø˜"¦BâFvÀÔvœËÓOgK¹br=W,0^ñdkïw\k[cð¶ÁŒ¼Ÿqs³íVóÔ)Ë7õ°Cµ1Bˆ÷w‚Á•R;\îõä 7Ù#ú’tï?iú¢¬lVr³ÉGù‡VØ58Á~O[>‡cûÄ Dó¶t2Ýji_Óók¥ÃÕ¾à|õ[·ü_oùÙZÝ¿³ûx SµJqRXmEyÝÍÎÄënËè®_‰g4àØ‹sÈc¿œ3 ¨ÝJDm-k®@tF&¢)-åÅp3©!Œ¤V Møø1j9çµ™Þ¨¨5ò4­(ã8ð<6tÜ[p(4°¾5!bù8ÈüŠ"z~é•¡Ra9Ê?DH©%*Ãf¨¨EºI/®¦µ]zO—<{LVµ$e-¤ÉX\:™àü¬¯ïØ´CÕJps‡rEePž¸ØViÓì€Êrã„J÷K!Özî²khâƒçtÁªÔ晈úVLµg o-Û0ràm_ñ¦ÿQý¤¢ÿît¥ý¢`é‘• y$'Üñ~”ê§ñŸ:w¸o­U\R=Óº\™êŽÝxlØŠ¦NÕRBÍ«2<1ôñô°lb´›[jmÙ½ðß¼ÈÈ6› Ù}¡ 5æT,Ip½<÷óºi²hôó":1ë+hBÖÉ7Jç÷Ó›'ò­sŒÅów3ß­~¿…z5DH—çj°QéL q Gèe˜’¹³:ièŽìö£î‹z'R±jír¹ï‚ÒìÝ—z“<¥®Å&®À.HXB£üÃ&Dȉ3]ºÍÎ>àI›Ò:…ÁbžÅ{±‹ƒãõìà ôݰÇþÝC› 2Kß>Ýy§BF°8MÓB¥kPïR¢R1h/a1ÉÏ`é@_»Þ´¡w話ÆU¯Ôú4àÚú™ë¢öÅè™óˆ•Ÿì9$¨×=€F#íd±æº:mDgWåN/k”÷¼™ùgúü+=SC`Ó–6çÀÚwnàÁÚÍo=<(=Nb$ÅICéÃæg»g¤Ý+ ÞðÞ:NƧ”n+Ù¾>-Vw†¬ÌfüÏ#—ûUýFuJéÈkŠÅ¨³K'<0,Ƨǻïìí4å¬JǦ"£ÌÀ0†Ÿs®Ro^ÄK“]o:˜Ü2ã’up•1ËŸð×5§:½¦éUf.è‘w"ë´êÆ«¸¼ºt¥½çËêC§ºÝDãä\&³t!3…„îmäz--¿ßýL~YiÔù šŽ³¼»à,“HÓ¢m»ÍW–ÑFRpªÐOÑgÄ­³eˆ =Íòöí’£¼Bu`úìÑ-û:Yµ–ævb·ò%” vgç\|ó¶ŸÁ¨ ¯Ð+?ìvuZ^þ¬tñäÐ:ѵd‚<Ó®óúhÄOP)½ú–°±ã•NÉ©þ2ûʸšÍ¹[ƒâ3Í1£;Õæ¶ÁÆû>#×ÄŸ 3L*NľӤŠúäf´qÔoÔ[¡$tïãE£lôfáàœV³^ðÃÓûU„] 1KÐ'»Waµ¢.á‘ïß¼«ëRý2âÕº|¿l‚4²r+äï0 ÐtФh.š ÂX\I =a’6zßÄÍ—KOÞ£Ž<râàëQ`Úª‹¤y{¡9WúOª†5"žÍô:àã:4.½X±Ä¦ùfêzЂáIrŽøÓ‹Žº %òÌú¦!´ Üí§ uéÇgž×}Luº*R<‡Î¶ÌŒŠmòo—½áÔÖǃÏÞ¼`]‹UyÍí)ÿ‘fxö%¸Ó¤ª0¨2¬¤œÒU÷)‹5O=c2eþ>x§l}µ¯ñŒx‚0«<´›¦¢:ž ±Qø)Ò¼ÊTG-Úv!”‡v@û%‹Ÿ¥Üs¾ôºi&«¡oF:Ž&½Øä¿Þ¯#9R«æS ïæ¦sW0¿áò›ŠÃlÝrÉ”K}O3ýÇ/V{®ÄøPîÚIKë ¬Þ-Kî.ÛÐ\…6ݘ€ J䌒ãÅèÏG¾O–{欵<TQ¼÷xv°w¢,9D¦ ’u—§Â‡èµÂ4‰Ršž)ÐÈ|ž˜8œi7+.Î÷T7P™¾Ý<ìâjÊÆäIj„óÕò–ú ö¬Ts³‹‘†ŸM|¥î¬ÏFkíç±:7¾6·ËX:éÎŒ[åÕ5Æåz±·^¾ìÉHÒ­âæLm¼¸Î_:SÔí«Î¶8P~íQò+-'Ÿ—.q”o¯r¶ÕGx¾)rè¿åÞô‘£ˆÜÂJ4*’iίÙhœÕ…†CY+ʎɧëù”ÈöŠÔMÅj)kQR=¯$nȦ׌,ó´§°; xã|ý -êïi¨Í¸û=C"³t9‡@½`JZ¾ #ÂCÉW¬;ÛM…Øe‡¨1}ÏKck­5•nN¶Ü5¡”mmö5Ý8Â.¸f|Ì¥]vD½˜–¿âgÙ˜×'w§™'2É›ô&}ïWÎÂÏŸj>í÷«šÔ‰-¿‹þN¨L"ðLwxep«Å/jfØ¥)š£îñŽ=úëŽ6R;«ù»hΪJÔl½Uf0gQJð9¯ýr‡|ÁŠ8ûÑ 4ƒ”¡Q¨oªÇû‰ˆØÕH¦ºF¯¸È§¸PzÍŽqÑ'c×¥Ìì‹‚öYŸF> endobj 209 0 obj << /Length1 1411 /Length2 5990 /Length3 0 /Length 6951 /Filter /FlateDecode >> stream xÚtT”kÛ.Ý(¤ƒÂ0´HHw#]Ã0À30 Ý”„t‰”JH "ÝÝÒ)Ý!‚ ÿ¨{ûßß9k³f­wÞçºë¹îûº_6-]ik„TGñ€xùIJêºF">>^>>~"66=ÊúLĦEºÂp±ÿå ‹„‚QhLŒBû©#à7GH‰ˆññøùøýíˆ@ŠäÀî0k€:/@‡º±É"œ½0[;ºÌ߯'ôè‘ÈÃßái'(Ãê`”Ô ]vè" 0(Êë_)8ÄíP(g1 ÐÃÃìäÊ‹@ÚJr>xÀPv¨+éµü" Ð;Aÿ0ã%bèÙÁ\ÿດ  G wEG¸Á­¡Hº8@WY  é …ÿqVûãððWo ^ÐÒýý+ þ; œœÁp/Ü`s„4ÔxQž¨‡0Üú—#ØÑŽ»ƒaŽ`+´Ã ÒÚ0šà_ô\!H˜3Ê•×æø‹"ðWt—åáÖ²''(åJôë~r0$‚n»ðÏdà¸Ï_ÜÚæ k7gàS8ÌÅ ª,÷— "ú³…¢B|„…EPÔbü•^ÏËúÛú£øù8#œ6hP?˜ ýGäã v‡PH7¨ŸÏÿ6üûD¬aÀ j ƒý“ CmþœÑÃGÂ<&|hí|¿~ÿy3CËËwôúÇý÷|ÆÚjz2ÜÿÇ&#ƒðøð€„<„@?ú!"Êðûwšÿ4àoò¿Q-0ì¯Ëñý“Qnƒ<úÃݼ¿y¸ÿ% Ž¿V†ðï ´–¡Ž¤oÊ'ÄA?@ÿß ð;äÿ¦û_Yþ_Òÿï )¸9:þ6sü¶ÿf°ÌÑë/´”ÝPèµPG —þß®Ð?«¬µ†¹9ý·UF¯‡4Ü-q /Ÿàæªó„ZkÁP»?Bú{èŽ08T á ûõÅAGññý— ½uôWÅ=°ß&(z©þ]WAXÿÚ>~!a‰{ñ¡EÆ/$ð¡×Ôêù[ß /B‡Ðý6$ѯ±ò€N0¸›ë/ô7€Ð C÷ãò¯Z7$½‰¿%¾Èßçßk…zB!D3SÈãPûªÐÆoÒ <_†ð–VšŸÅuE ¡Ø§_úØ©ág(Ž»ÈXZ—ÝHÕúü&|lÊ—ëàÛ°§i[VÐbŠR. C¾kMæˆ'¯ïò´ÍÊl ·I}¶F~˜ ÍtÛÒÇäA’ÁÔ0‘vÍò‚ŸÍ®›ÆvN€¢¯d,) ¨Xéœæ]¬h#ÖT¿‘)YÒ$ÍMOùéÈO¬hXÜ…Lc ݥךI\zÿÂBoVwWªÀÉ+ÕŽwÂeá”tTÞ*,9‰=tÔ Y*u®ì2B_eß$Çߣ+t g_Ävªš12²ÆuÒñ9Ší¤a‘˜‰HÍÛ*#5 cƒüì½â,?¼½ð^²I ÝjDê%k‚±À½"°2ȶWqBóFóñ3Åš/KÓÉîû`#Öì(Ýž£;ûí²¹‹†Ñ.GJ·44¯¢–7ÛÒã$`ÃfwµË…äÆŒguçÔªH|µ… 1ŸìN7LeéžSPÜ‘½çxl¸1¡x¼»‰4%ã ϸk‰ûî†ü¦ÉŠºÅ•’úIä@‡ðnåŠÕ¬sÎ’±U­ü(yK@6îá€9b^p½f{¸ÿ%IŒb…î2ß¼éµ9pþtôDþ•Z–?ˆþ˜ŸòQ2R„wc_ƪY'«ÒgñËÛ@yÌ*b]ªNÞšG´8ý ÀX|' ‘Šcâô÷k·s€&邟Ší½›¼]–ǘÒ(ã%ÖÏæÓxï¼ó\¹&Ä´Jãù®¡ôœ‚6‰¦ÿ\,E.ËUM¶€ñcê5 «f*ùáõƒ ·´“Ì©bŽÝ|/ Ê„ÕK—@Vç½°l×®yäHä]]ÙKûê‰î¡ ãæî8¼¨e•Æ5ýÂóÛœJ}ÕßÎ]ÀÉ iR­Øí§ ïÆÅÙÀªzUÆ"ú,¼½î‡7R’åOñKFdügNMY£dE? ·ä¨|ÀÐ]bª!{Å•!¨ëd&?îY]Á«i¾~e÷p©,,}Ä+¡›í¶Õ«Ëz•o£V@þ"iÔ±Pþ—u§ûšb*öx ‰ÙsãÑá€ÚÙ3VA¥F-÷|ž#}º-°HÏ¢ 4Em2v®²ßÂÓvnþZí“ˆ d¯)”·ÔùÀé2îÎdp×'Âr&¢¼j ÐJU«åÍœM?³´æ|‚¥´'¿÷Ä€#IÛ¼ðËùPO?ùÊžœÝÙÁˆ»É¦yøqïÉ=¬ËkŽ;äëâýô›Ì©ÃÇ`rV«¦óbßX ÁTÏåó¥&’›Œ·DÅ¡äo8ŠbÓ^€Ÿ@öuçàÂÎvŸ3Œél¼½O¤¢Tûˆ©fè®X#.kUÀ(—“þA²–‡á81C'¼§ ›ã–‹¡¤Ù‰*T2ä?¼’úIæ'wLg í5–ÐOMI.Zz»&R' õñ5ù‚v\zW5Ç´W‹Þ›¾ ÇKÊO«VìœÜâ¦ÄúTLͤ:ÃÔ…þ¼LégyßK3tˆU!EGéš‚¹¤=ÛO?:áÆ×âº%Bࢠì|û˜ø'‡œ#‡*\T@ SX\Ú™Þnt7çòg“X-Nõ®ü\%v·?¼ëQ}6{k.½Ì˜XŸ ‘^~}”AÜ>}7î›K|y!µeûÕ «ñ—æ¾k0)›±m¶,e ‰õoKFŽä hî&ÐIM®Þªz/×è Çÿ~ãÊá( °ŽïYgh#Ÿ]V ¹;äL5„ æôɪDg¢œ²—ZyMüÄ/ÖD~’Î6ÄÊáq©-Šøë¸ææ6H*_VôÅÆ¼ó \ìÏ¢ýúYîö³¾ýܯ›¸¨ †›õ ž·»saÛ-ƒ{,S†„åˆo3'ï´;°sÄ©4“ ézв ×ìí—® }d,YΩÆ© OÕ¯ßQIùâò0$îi™qGè‚I¦Ê§&mU:˜.µTÑw«aÕùtOøb+Rz©¿_ÏÎÙâûöV(TZê­|q8L¦|žÂŸ–=žÙ0ÛqTv?êî svß¶§U—eˆQÐÂ’¾8Â'gr‚¦{|áþÝ_æÀšÝKQÃÇ•À ûbå;Ž–ü¾ëílvÉûꃆÂeòƒ,ä JgBÛì2îo¼Œ® Cމô•‘:H´Œ_ë.)ÇŒIGã4(QrFøx=[¯Ê¸3k»öQZyC"cæÄë7ã[/ƒÓ¶Ž0&âõh(Ë\sqÙ!\³“ôÁ÷W¿ƒ©`dÓ=¬ñ×É´ØlDP—Öû\LS,ü× ‚%ºé_î•Rzꪟ)X3䟷qGN7ÞzñÁšž7–™©®GfÖNÛ{´ë±ÈùÆ>†á0Ýö{+Åg=PAÄ•çù‘«Ù"Ñ2èÔÓP!÷’\ÉSxF¤iuE‹„ð‘aÈ íJ¼Â>[À¬õÝ­ÌêR–‘'K‡ôø~~¯£\äin1$—zY„ƒ –Y`Wޮͪ_»e€ï8µh¯{i²8 =ª¯FÞ þLbJ1Dñøé³n Ô©yÌÚ}š0Ì¿Änš \˜A*n˜DÏ®ú÷O’Ðc X‹w•GÈåÃhQ¦á…7þ!-À7¹Q ƒEq·r‹2øÁ¹ø‡úü³B’rgj߬iÜ24DÂpÄüÙzžû ^Kè?-.r²bn)J]å!FÐ':øg³É“&ˆ}’&£x‚U´>ÂÆÂ¾—;ö.%,YÀF4wÊñjÛ:䇺N&ÏöC¾7 —p,&ê,ŒF_=ÆvÝ:ð,¸bo¬Ö™« qË=Ê$¤\$š>–ÉŸé$«‰'åÑrÝ»Ø!lK©k.ñrˆß|ihYŒÓeÈÔXUÀé“êbåf}‰È¼Á·¦§Yé ã4–eÙ5$]7óÕïwúŠkUê2å—¸¿UZÒî’0J_òälêΆ "\B¾ñ®³þ]¡y6ÙJƒŒ–ŽÑ[Çdzoà‘5§\.$ü‚ jì‰~éBúƒ€Ÿ¬X n¾Ì/Џ˜ÌÔgæ»Æ“)×kнâÝ.wž~-œ”U+üq«âˆé©áM˜£6µÇmÏÌSÝ1åÑ"¹©iyïAWä=çK‰\âXʵõz/o–—y˜$’Œ[‡¯zPé!SžƒÃ§q´x}ÔwÜÈe…Ó¬’«êWî:¶Þ_`âF8¤{GÚ²œJÌÄReužV ü«wØqišzÿ^8’·ÿ¡¥ÓåC/Eä»hÅ×ÁéŠÍBd¸âÒõç»ÓÊ%N‹þUkÁ¯LCî uî1Iç•_o˜‘Ò”šþ€/4ðCÉYØOz·("wkŸ±šÂä~žF|Íô™@²nÄžÜ.›‹Î Š”˜Ú¢W1J…K`K<çòbǯ‰YÁQ}dÅcô~}ôs¨çùz§’”FXÒÆ ¼Î¯+”&ÜÄx“CêИ°.w÷Døó« ¤³ÌÂFÄÞŠ4¬ÍþÛ¶¨I×UÔMíIm”í®žÏ¸PŒ³ÿs”"ÕœÇd$å ¿f‰á ]á–ÍDCº÷ïÕÏ—–¾ã%Èk`–’ǽ®&ŽXŒÑšÃM* ŽV´zü@ˆéÓÑù»”û“$BíÒê×÷;–F±ÞêbêÚµ¯¤åW%–Ü£\xäà#ŒÆù¿TÏÖ®}y«þ ‡9°ñ¥¡ÅO²*屪BMçŒB¡Ö<ðkÒp™]¶îÏ^Ï7Û1fY¤þ<ûàþ3àe9NEj´ –¾Õ8Ö( Û\Q—'¡kMêªK½Ò‹²sìè¼Ç!ö/ÜÇîôù\ì-ùÌmñD8p+i’âV,ý4*º‰:ÑSä§9ôŠ‘,w)åÀ]Xgÿ\Ç”;Ž4)ÿýÏŸ¬Þß-ÂÒZâËü(D–f]GT‹£'!ìS“p£9#ÜP^:çkN® ú±-{·;kÝ{¶§e«dJdä$ f¶ƒÏ}M‡ÞIJ¾†9æÇÅlg,wƒ˜ïÕó7pÆ Aƒkœ×6¨ØßÈW7'ï™Q/Ìr{Æ©Ðác¯(on ýV$ˆ£ÀÖ/^}|f’FŸ§ê×·KkªáJ“¨óÒÈéH²õF àŒ-mgéܽÄJX…¸Ñk8Ð|–Ár¨–Q.ôÍ.woû¡²gÄÕ絤ÄgÍ1š‡K¬ØqÒá†*‚z›F™oï±ó2†0ù|uA†Û7½“½do¡_½UöQ ±«\ÊÐ(§žu¤S÷0åù@„¹xSðŽWm[6ƒ!gßÀ&f.(5͘ØÇT F‚ôr 1^2¦ võC8j²%ôÙ4<äµHTlsôÞ‹ÛEÌœ4Þ™aw¾·I¾nªûᕨFÛ*¿§_P¸ñtÖ>O~X S×x}¼y y™Au2À`kP½F©š(Î|MvÜôêfçig™&’ië OÏ·ÃW(¢H7Ûó l)-mŠÆ/‚?ÓßëàFª_ 4Í0Ozc„Ý ©ž4Çáj[}¯A§£ô?üñ.nø^wã|iÝ7›àdšìu9ѹÿFÂùƒ\*ßåºd ¡{”‡þ$½~:êÄ÷'JAáÔ\3—ykq_€$þÀ«n‰v`½=HÒŸ OÎvŒcàÙAóBKè‘»+ 3 +êXB~<ûÕùÂÅchèÜ$o·éž~ŒJÅ¡c‡V.l!w²­Óª3-”Z]ÆUª?Ì=°¿Bp +2u,W—3Ô‹,DÑt†ƒì#aõö²Ñš°¶#P`¹7o{ûU´å¹ìUîu»ºƒö#:²z+?5vÉ‚`\¿˜Ã ÏsÌÆê « p\ßgì±t¾=}M%±è:ó{•¼¶(’‡1„”pýà]*9‰©Ë⻤˜íÊo}»†C;Éêú¦Ce:}/#>~ïÂ,|A–DÚqVô.º£2¿YÏM›½K'ìoœ§>~Z8[-"-ئ—¤•å\‘•£>üæ©NkEJ'~ Í^$þwCrBs èKrKWƒÇpIð€×­!i›û8ÅUÃáœ+$~zð´òV5õ­Ìf£$ìÑ»!|Nf£{Óæyñ²ÄïÙ‘â&U¸é{OH=N8;E;‚ŽY-ó䄳-œûJœ¶[m>K߯ÞçÖ›IÉûëÔ–rœ_ÏFR<¨‰²Ô»jY]éO}¯ƒ°Wú X4P—Uws…gíiAcÑî3ËzëU¾Vˆ¾Wª1ù6®ëe¢¹ÎJk”ßÏÃËJ&TüGº"©”H˜ÅÖ<˜®úoThñ'»ZÚ°9ŸÙúòs•[§U<Ÿ«÷,“<+õå~”²c¥[:3rŸNouV®ÒÛkòh•^âbêW*(6¯e7%·ì]'Gq¨Î}ïÌ0íqXç­Ø?']ar,0¬Ö…¬ù"¯Ÿ›˜‘ ¥|×f(f™¿ê5,G•e7› 3Tu‚ê-kgºtƉ}ò“X P,ÐðÒ†ø-MóÈôs‡v,¦ß¬½øÞ ›ýÄÐáÿ)¤^\]ä}àLx¯ã‹öýÉY×u W±A¿¿¦NAN/8Þs½·¢‚ ”Ø¥ëþ]zÂd¯‹‹o;~Íš¸Å¨­gÉå~GÔmáÃNÞQ§If›9ÔÕ6¶­QCxÍÈ@@’Ë,£_šÕöhÙ>‘æÖUR L„þ;³h U&Rf½3ÙxNÜ«¦¦a;"™B2ùÚnp z²Éõð+ЮºZË~£ÙgÝ’>„¸ENöÌÂҎöì°ÂYªTÎ’~ÛÇ ;jw¸ÿýÃSb3lË2vÄ#ŽA&I<ð¤cc nóÞ·1‰gÁª8MDKÀ'µÒ£¾ÕXŠÜ‹z2ÑÛÙ:GÓ!¤šSÇÒk2ÛÇ|6\ïQƒ.DkÃýãô Ðõ1Š›xípRíÌÀOt˜™D/RŽb¹`ÍÛuX!ó ¢{\UyTËlêe NXá­&ÅCyfX"uJÁ!Àí‰^¼Fè‹2`r$!I~ ‰e*ˆ’—œ¦Væo]¨Ö#µù0P\;7„ž¥ŒãÄøpì»=©Ç½^»·¦ÐVo¼ìõš+Ai—On<-ZŸobÍäô¹»¨Z¬f·^Šó,—Í9|ð ÞÌȳۉ]ôÆf6>Ü¢4˜Â91CÚ®Ã5^>—ZSbvwŒ0‚Û¦ˆ—»Ý£Xt`;§?¡—S¾`µ=÷íôB1»FÈ;(gªÐ*f ({G× ­¥yßH×È€hgJúì+æO±,}õÚÛd¾.“ðÏníðÚ> endobj 211 0 obj << /Length1 1933 /Length2 14924 /Length3 0 /Length 16111 /Filter /FlateDecode >> stream xÚõPÛ²€‹âÜu’à®ÁÝÝÝ™LÜÝ!xÐÁƒ»»»»» .ÁË’½×Ú罪{‹*ø¿îm£{@Nª¨B/dbg ·³u¦gf`âˆÈ©J13˜˜X˜˜XÈÉU-œ­Aÿ‘#«ƒ,ìl¹ÿe!â2r~—‰9¿ÊÙÙ¤]¬̬æÏÜÌÜLL&&®ÿÚ9rD\-Lr i;[¹ˆ½‡£…™¹ó{œÿ|¨€Ôf..º?„l@Ž@#[€œ‘³9Èæ="ÐÈ b´9{ü *^sgg{nFF777#';G3~j:€›…³9@ärt™þ( odú»4r€ª¹…Ó_ ;Sg7#Gà]`mÙ:½q±59Þ£T¤d ö Û¿Œeÿ2 üÝ3óÝý}úG¶6ílìl=,lͦÖ €‚¸,ƒ³»3ÀÈÖäC#k'»÷óF®FÖFÆï¦nR½Wøw}N@G {g'' ë?jdüÃÍ{›ÅlMDìll@¶ÎNä'já¾÷݃ñï˵²µs³õú™ZØš˜þQ†‰‹=£š­…ƒ HJôo›wÂ?233€‰‰‰“…r€ÜæŒPõ°ý©dþCü^ƒ—½=Àô½ …)èý‚—“‘+àìèòñú·â ™`btƒÌ,lþñþ.™þÅï÷ïháÐaz?fÓ?ÿýÒ{Ÿ0;[kÌÿ¼bFe)au iÚ¿Kþ¯RXØÎàEÏÊ gag03³°8Þ?|þ×Ï;ðŸêÿ”*YüÝ¿Ï.Îï»!g÷¾!¶ÿ×Tô×BËL,\lþ¯VÊÙè}G„lÍÞ眞™‰í/¹…“¸…;ÈDÑÂhþ×,ýç2ÞcX[Ø‚íœ,þxwÞO11ýÝûê­Þß§÷+ûSz߬ÿ+f ´3ùcYØ?Œ<Þ'àØ^Ìï»jrÿsÄŒ ¶vÎïGï5úLíþ¸ØÏìF¡?D€Qäâ0ŠþC\F±ÿ€Qúú `”ý‡Þ½ÈýCï^äÿKœLFňå}¦ÿ!V£Ê‰ëÝ‹Ñ?ôø_b÷ ´³~oÚ$ôŽÑä_È `ý ß™þƒïÉ›šZüÃhÿ…Lý ßÍÍÿ…ï-û·ñ{žVÿÂ÷Ô¬ÿ…ïyÛüƒï[Ëø¯¤ßß F»á{öÿÂ÷¸ŽÿÂ÷¸NÿÂ÷ž;ÿÓ‘wOÎæŽ ÕÌüž˜Ë¿ð=1×á{bnÿêÀ{bîÿÂwwâÿLÐÅÑñýAþóYxÅÿðŸ¯?ä",/Øy‚,k‚Úî«„Üè÷&XØ> \†_ÃiìŠá¹î+ˆð>\±æF, uÍýŠxØD?f)zk´ÒÄf²ÒÿéÁ½\×mj¼Cç=…Î÷xì$ëÂòK¦³SÛÕÖÄ û¼IyÈíZp–‡Îá÷ÞüC ^ЦлrósXʆ$ˆ‰¨X\NNV$ˆ v¡íÂÕB³sRdN—‚§ñDâ‡)ý£,ìÛ+%tà[)GGìe®ñ'ô|Æ—1œÌ’ïöˆá>}£ ¸n úBeì4¦"ð‰']jwêRòr7JJÙ¬Irp²? RdóÛÇ‹Mx¡LwcÊm}šNÑ¢–ðåÕ|OVvÊ’žÒR >qxľ%xñé“ †L4oÙêáé8}U§„ôÙ”|ºÑ4ŒE•+¯Eæi ühD c´p;ÑŽŸr XF¬å¢µÁzÀ¤sµZ^[/Š$"9)Jøï'âãOêy„ÞŸ'ÏÆ$¸,²±’ÆžÛ(›‡ÐãÁªÏð{M³ì˜¯ú4F# $Âúz¾fT!¹Ê~´7‚TyL¤/*ÄÍ1Ûoõq¾lÝô£H(žÒš½I7ü*…轚ã„6ma:ûÒ¼C8ª÷TË †ëù\}bñ––h~¡‘ôL¤V=fŽXê3™í¥¤ ,Kð «ýÜã{þS \Z¥³¦¤¯Öõ†ì{íµEíG²ß5 ‘9©$™êËJ±Ç`ëp,`—¥e¬ŸK\òÀ‹F' }Ðk\|skÚÀ¶‰Ëwr¹n:÷z«?ËñÁš2£_Εîàûµ~ žEj<.>Ùý’=÷Q†$—}å1³$`$•¢+_KÓqp¡”µzJ‰ÉÓ'Á†ƒŠ‰ŽÇ¤ME6q8¯éŠO£éu¬õºl[o®ùªÆƒŸÏÐoD¡98Ãáå +—â¹/9€Ø©º…’pcY àÓ÷D´• £0/k^^Qð$åŒíƒJš†ÝÁ¤èاRl¸GQ¾¹8‘÷àøsÉmíL툘¢†+¹òFƯüô•7/'g:7\ -ßÛ¤ v8û½b‹ÄËøûV³>«è‡X ’›¶I•ëyzDʯ´dTìóÈÞ ß•ï΢ —$tJ±Ü'—帜(9pÈáhø®Éã_2Qà<ãr¥YÅ…È¿YeEÏl^͘0úC”êe˜]õ} `½,àÕ}úJþ3ÞvRƒ*“ÝE û'Å̆I®|ž©FU›s©^ÒƒtÇ+ É „ñåaq´:2Dý´Š¯¿ÂMqEý‡Šï†/‡æ›šNBkwÈ÷QbÆ“>N›Ÿµò¾ÕG«sp W˜ÊJøD«:9žíŒ%+Nl–>×¢¬üš³ê#ô1ì¹LŒÍ{ù’"Q\©Ëh>m먷à^Ëõ <ÝÇÒ'vªŸì!s·ñÃ`ç­Iñ”ú–^ECq®VÿMadÛDĨ¹!·’YjÞ¾¬³üfâ×ÇæOùà¢4¿ÉKÚ~ o{xèfЏÀòÄP½<>~KWr»fü=]`‘…O·Ô’š Öðù3;w´€Š?ªã'–Æ0ð`x´hÚ+½ÓŽþW첚ȟÇK}ݯê|zHjÈ8œ¾c»[Q˜€ÕË{¶ÐÐþìûþ.¿Ãi›¯þàËžÙòìÏaðèøyHÈ3Wt£d,ŒOÁP0¯Lý 3?g“S+“¯s.[g~†#±9ÇJ«w€S¢!ù0î”(Ó8÷&ú¥ü²^·,€O™gëÑ„ŸTku"ú˜«U.L©f"Q}Þ¤v«n½‡öUx «òA"Pê÷yÀ¡Ô}ºÐM!†9Ms1 —Nºª÷àòÖ%¯ MͪHƒeA‚b/ÊÙª€Ö\—¬Ø@Õ¬Pöx©ÁåêèÉ%p®_7ëñ\MÅS–ÍR½vzt=F¿tïËQŽÓ¯‡zóeüȱ¼B)a‘I§#mZHN/Ãt^ó—@ƒ»q„Eó}ʯ [5þÇó/9kä#M/TÓ]ª±x)ã ˜Œ˜e¡êÜÆ,ŒB‚7$ËK_ï>‰DÑšñáãÀV˜®S#¨Æ×ˆI„ø=…â€Ò¤\Ä0íÄ ÌgÙSº¸JbcêIý¯§$´{ȲÎ3¯dw»úï1Û9ã͹-‰,àˆî C9­îϬO+{P¼­½ÑÐb‘ŠkKï×Ry(S¨Xõxá·lïf«çî¬uûDž—ü7¹s¶"PzÓÏ:xc-°ƒƒvFE ¿“€ÐžÄ¾NŽ×°®$!çä&Ü÷1å°'Ø’´û»–óÇК>À€?Û7в@ŒùnžOv:SóHó4§N‡mJ³ÔÍxè10?Àí€Q‚r")™ö÷Át‹ŽÐåÚ¹ c¾˜uý8§µ 8rüκ€]SLƒéì¬)Cࢠ)K’½€z0Z”ß/<Ǿ=¦hƒšÞgþd½ûÚ©SnÌ5Ò´ñ ¯\ìÔ GÎ$ƒ¿y>ȰÓ}bÌÙ§š“"âN§ˆårÊ…Eþ¡c }¼o©íZ?@F MjÕ³¹(sy×ôa«Æi¬“²8EÜÂM‚‚eÄ8O”W3åfJrâ®Òun6à‘_3‰-ä— Žb룳žk‡ëå°CvsÏ7Õ¦vœ11˃ßE³¤åWf‡—ÖRElïu#Γüaß°Ñ1«Å­[6»‡ƒãýPÔÂm>¾=4¬(ø«”|×´¹ØÐ«(Ô«Ò៫ãœ÷jì:ͳÈGˆÝÓÔ‡× >›‘­Ç‘î·—&æ¹(TãFˆ¢\/8>£â†¡ åLwÀýÆ]ÛåµÀ.©Û0û: 1OvP|­Š‰ÃåèÚ"üíƒRº´úçè­¼~;çgv –ß¿s°Ûµ5&É^;唸'ÛÆºtϺ&Ü n[¯\-›ø&Þ6 dCòïJÜzågš`‚|Ä×L4yàšcGÂÏÜ"O·É{³üŽsÎûÉÐb¥¥±8l”šš¢)D¡vBC}D°=À”EY´c ¡t‹ÚG„+Ó§ÑÀÈùnTS”ÿ#ì«]Ãï§ð-"ä„ï(Ög,xÔu ŒG¬@Ú¥ºà»³×Ü´0Ä—· £Ò³ºþ”¦½µn­_ÈähÏ?9ßÝP@OCdÑñ~{¡ÞÖJ¦óL~è÷Œ˜êŒ‚†ýUPIÎLš6˜ÕPU¢ñÑÞeòðÝæÚHÙ‘¹èçŽãós† H(¢~zã熭7e}¦‚ˆqgôs¯ùN3áÚ§ó? ïÎEMïI7òyGÄ+-"@îp?ÿާê„× ïõ-’@‹rr%¶ôK‰·*UD4#Üa¼À­åƒY@¹ºýf §FœÕÐàyD¤zNG¦^<Í…f9~¶ªý³þ:æ •è̓}»ãgc¡sÐü¨’ÃXÅérÊŒ„pâvëÌ+/Þ»P¹åâEñg@ÓUDÈü€l…Š=Ûƒ‹ŸóXˆ“Óî…yô>¹ªdèë×l•…!$!Wˆ¤ïY?[ç!všcÕ­œø¬]7&sÁ!8‡½k†zuÛ È½.fŠjù)(< ¥`±~ÜT!k<ª·«ñMÒ´%å×|0}ßÍÇWس¶'’’,Çñ9Ærë¥0À~,[o*%6n¡ã^²÷äÉOˆüð¤‰Í9’ ˆÖ- )°Uåjw’ÒkM3›51u¬lwð•˜ó!ªòY Õ⥮gå÷ÏšàÙ¯Ÿ}ÅâT÷Is`„º¤‡¡*Wvélï¢Ûr³OñJ¼÷w¶±n4z¥°5Qg9&Õ|ÛËo º¡•Ï)‡ /!ÖÄÊ\$r$Ïe&MÞ Wªíqv ^»–³KÇ+¿CÚC;m»\0 VO²Þɕ؈êT1ÕÇ yÏ7Üýñ!h­032þ5GXÔ¡ã{á`O•Fp‹£µ¤`›@h5xí¾, tÈé2ÙÁ³·ýÅß0ÖŠ6•_Ð`ÎWKìmé<üzÙ°Ç ÁG¸ûÝåÓêÓqe4X>="ÀECº8»Q5¯Õ·l>\!tœå7¨‘*‹Sf³CÚ¸ÞV.º¸Ë»­}ÝrLš›…üÊ2ÈIlÕüÊ"Š«šuF÷¨T µ/ÕütT+,v-ÝAáØ¦m =R¥ 2À3çë Îút_P &áµ,¤t˜Èæ3 $Žv¢E¤n˜÷k/^Ô(bJøiæ$JÅc–ñv¼xD(AÖR@MÝ¥ÐÏ9 )Û9b6IW¶xPQ Ê;oãB! š’ °Áþ¼C– "ož¤jØâi@Å~H÷ouO¤X9уH寅nRæx*ï–Ã}ßvX?tä0²¬Æ„9QSëc­AÝZÜ'nDü`ÆRî_ºPMâö'T ÆÄ6˜±‘L×°Y3v÷k*CÒNyK™ye›O ‰e‡è±êØÒ¥ysêWŠdÑᴠ󫤑ÈמkN2û^¹AcX'ð¼ú 6=_1$\Q$¨5ãòŠZv^Ltµgmæ_EeÌßYÁø+|‰n*¬*ãòÓõ“¿ÓÐtÿMIÄmƒs©€HA­¢©8Námê(üƒÑi"•éÒOpQãî8±4±bwüeKòÓ¦i­Óþžs—8æË´¨ÄýlF-+gÁŽ,.?öË7Þ^%"=PÒÏû5%À‡ ¬ÒEÍ f XÔ×[Ž÷‰œV²ûЧŒûè\ÄF2¯¡žU´µ,‡ Ç&þ y’ê zNÔ«o¥ï ®þ4Øn†?²äì‘x°oE^Käbc‚äÐ)~úb'¨!·& b²RSèó÷ï2Úræ‰6bwöšsY·;Y<­ø».D8ŒÎˆm5º;IYéü?Þ:pÓâ_MKÜŒõø½ ßž SdžÅö%îDWæÒ½v=§²°Ûxícæ ¸/üØq¦í€úøö‘í$k·ÛõX–òH7†ÆÛöDoP–á¿Y5~u)ã@=ñ_¿Še!›"ëR{¶Ö«šb÷¯ûÝ~¡²†Ê€ Θüê(Œu&P{4(Ü9ÛûlÕúøøí¦\J!ñ*¯@À)ebÛ™%’G¯)AŠYoÚ`Èw %¢®b\@wâÙ^6[Ô`S™ëðŽ:ÁÏûØÏœK)¿ARô.₲ÞX•m)ÉüyÆ«=éOEÈœI!Yçõ‡R_Žãô^™³Ð!“ÑŽºì5šÑ¢žù&Î[Ëì<ÃmfÕ&>Ýy=|X q<Åßé1Αûå?ÓBïç"ê1þ9 Ú[(õ4KŒú².U|m^ô¶‚4Ó å2o=uQð`B…šª #·3\IÅ÷‘>ñÊY‚V׫ÜøV$?Y¶—±ò}¶•œ$ ‡j‹î£6¨3˜7»“Pµ&†=¶»J{’O6ÝŸ~àšN¶WeSÌ÷ÀøcîYp`­ÿ%`¾\ZjfD’N˜ÝÕ×EÓ{*ôC%+fœB=Æ=™@å´5Ž×²MëtàÊ.¬0»ö ñÙ’ žÉ0lŠ0¥¼_:_½<ʪ{+q뵎sd¡Ý «ƒ<ãLûW¢ƒ`ô7õßqÔ‹áH8ýOô´yß‚ 6J&¼­ø¤Éä¹Åæý›¾Þóð–ƒi%0¥;ZPvèíma Ô´…¥‘Â;²Ø*B‘95™*sgœwØÝ’ò#Ä[FØ—…™\Œ²F)ç·RÓ ]“ØŸB4 …å oÆS{ˆ¨QìcÔ‹X¼u»÷,¤®ˆÝ¢û€”ÝÆîÇ+"ÍÙˆS_ lѧr+ÆEUd.˜"ªk@ªBŸfc¸%€ÌKjBŠfüPHؤË"‰ô“N¹Ì'QÎñi_ra| ßøc³f¾5$n3|¯m¨m^>¢'7§MAEú¯Æ&é;YV2O2cìAX9ß³LÒu%ŸE7›F¼±3<ª%†ÃìyÍeF·%ùÚqó,C/´y4Å;÷öóšQzÉÙ…_ÛZœ­ÛC–ªŽ‰]¦K'¿Wx$´Üa¦$…¬r »!۷ɨŽÐ¯›ÞfhÎ%Zz»dGú‚ÛˆÄl{ /woµvk+xW7Ý×ÖØ35¸Ü+WB?´ãôáÔ5ó-|:e×bF›%•M bÃì{L)Z6ì+G ûь¶=æ?~$Ÿym‹ÐßvL…ûb¾ÎDnTb?Ä…c›éÅ=f²Zqõ2ÎíßU7Ý¿wˆ±­ð]îbŸ„Û0Ãk‡¸ÍØŸ¶ëó®u‡“Ro¶žÖéµ¾Óg`ê&DfØk 2²âð8èÇãïuí ƒ¯Ø°’Ãu£%/^Vàתü¥)Ÿ-Ý‘M&Ei7j³-ãnýºa461†¥ðT§5íVŠö³6;8Çùp&cÖa0ŠÒ6±v 0T¶ˆ”Ú‘Ÿ/õ`¶‹6iFƒë®-HµOÒRâ#D¾ºG“@—‡ÛæÊ–Værûé–v{Pe‘#,Yµlpg6«Š/†VâŒÊÚuMñ% 5Cº ¼Áaë,¢×å¬jÓ†ŒWÚM¥é)upÛ?’œ–‰ˆ.ù}B» ÓåüÕaí³J ÿÀ§»Õ‚ «ÀdÄý’cþág$çQÇjùAl?,×åj]¸á&uÚR~ÆP§ßž-Å\sþš™qnò}AM{ ðÔ iÉúòk@ž‚ƒRDÚœs?wÊ©EÈZ™Ç*à›¼PVÚê5Ùdµ?˜Æî¸0îPTÅVÛXö‡ÁIݲ3„¤zL÷âoAhÛÃòf¨Cô"Œ›#„ìq ƒ3‰«ËyçZ;ˆã#I~?®ð{ºXÁ>wùhÞ–³×Š5ÂÒ¨TÁèêMÛ¯­Á„  µªò.CmˆW+¡J¯„¿^‘Tðûiâìןó7S"¯[—Ôy„ä®\ð *gŽT ì0×㈀=ÔC1hˆý¦¥7°·%3Îú´/š3=ù eãCäÄU¿œGc Y%b¦S~¹{!¶È£˜Vµ¿ 1Ñ}.’VøF1ÂŒõi_M‰RÆqýç‘Et}¶` ¥äÇ®¢±ï?ˆ+%«Á×û›—¸ßÀL4Éæp-­FO2ßö¤ƒ¡7¡‡³J[½¾‡â²‰”$5Ò ¶®b„øö×"ÁF鎗ÞCò]9:ä”ciUëŽæXÏyr:¹G)–”8PM6æ˜å™½q`àV¥Y–ìÉäÜ“Lç:ÅÃ>IÖ¦™­îè ÉÜQdÇÃsô8žØdňG쳦šp÷f1“bö8¢zhìëpW·„Ò}î+Sµ¬4_[‹Z¡ôs¯'¤†×¥*Ùi$ •ÈH|+²o.•vSEç[˜ä†}c"6?§ìµï¾f!‰®ÏPªBMKáNô*êh­ðí*™‰¹! K(N¨±T0T{Û¹)k/×o‚]Â(i\¿dØ~vƒ}¢Q¡Ø~–K\„¤Lû¶U/¢ôà7-&cà}ì¢ùÄŸ*Ö ÑlƒB˜äß9'owΘfÞ"̤â}ø>ñv\Û¿Ž DÑån¾ÈúÜÙ׃ÁÉ1ñ`ºÓÝ›zðÉ·ƒáz(λ¢#¼ƒåBð‘¼òÙ3q$Ùæ‹õ]1„<¥w«eÒ{™9gÍÊÇ©n =U´x‡Ã’;eíš9l‚7ßœ#ÚççžêßöüHÂ¥³t|TÙÉÒÁÜÙ‚ö OE#þtÕ´/õjB»àÉ_–胃›€§ eb’J%¿Há ½ÜÐxLÒxxýý GËp’› ßæwDƒåq\Ô¥J|°w$™ç™•0ó=¼¬¦·÷ITà.G%ûô­:=i† ‚ÊÝœ2¾Gb¶8°)ôÙ©™)6çdÛP§®{)gÉ–n …ï/u§…õÈ-œÂ½ ñŽîR^×a§O¤H*üT§ÄýÔ`…B]­AiOTY»cŽ$› úFú8jU_Å%÷äùGEn~ˆ|‘³Uf5cWìù2µaëðÌ‹FCaVš«ýsI Öøö7•W„äúÖe% »vˆ–‹™D\tæ~9‡ÞqÏ!K˜•OkÆ:ø}{~1üŒ#ðøæ’äŽÀŽ[½›Y§n¯ôêà^wÆë¹®jÓ®ºZIâý\¸b²KHºK´éÜwE+"÷ë7¥+c& ÆíàˆùaÐuFá-¾àëL±É*±å•ŵ÷"¯ÜCýøÒÆr”;C蛥Pÿ*‘I¾qv[™6Ðæ.ȤW1cÉÒYl´G7ò¿ïšéå’N@‡Ô:i_›ˆéËæˆ•cå¸ELÛ±…/gÍ—òÂvÌ2ý‚/!´Ù~’ lá>V•‚¢ªÏó÷·Y ];HòÒPBŒ&÷D}i›Ëm€H¬{ƒu!úv_¤F` ÁÒŒ;€Q—£®Ès&x>æ?½†ö;;Û“ε½q) wošø’%ä‹$,ya„^w<ö:Q b^_Y3 $7_$àyêFÝ™Õñ×ñÓ)ð:v|SÄ0>¼CJû´'+ ­®œ¶*$×êÈ`ÊwÈ;À‡þ¶4%íærN&4ºƒ¶NFT *h³Tàõ´kºÞ®í Y1 ãÇs#³t»ðÈW_š(®E:‡—öE}Îa"ãÞõçñ Û± 1w±è¦Š½5ŽO.ÿ%Œ9b¾©d¦O Kº»Ò®í&g‘ÞD4 cs-oÐꩯŠÙ'¼xòeP>h+fÑä@{ á³Wäü'‘4#"F™¬(S„,Ñti´ÔռϬ®8Y¹ÂébËÐý:ÜzÅdPVi•3ÏclÅ}²z/mSÎtlR¹úÃiÀ ÉVq¬Ež¼Ãº‹µQ^¨:³ršÕguæ£ák„¿Õø õÖ܃–&¡ó.Â:ÃðìÜ X SYcà[áËeES«’$ãe`´H¦#tLõxXõ8Ò]ÌuÞ£§BèÚhIûnFA5ùèëﳌ&&ûд~ƒâ-æÌU>e“éTÉB¿átÛèÄU"Ÿ¢+2ÒÌЖ†©ÒIÊKkçÙï¥å%]x¸†9˜é!øˆ¡­î›Û+vÛ<‚ ‚}½í_³ËèÆÂ9F8DéN!ò*ËäBlØÉAG53§»¿›îÒÎÂ&Ápù#å/pT»'åäÑc¤TG 'Sg3ç/§†|g®«³¹ô¦­ôG?¹Ìë2’¸ , R<ÃÓgËÊfïž,T}'C~ÆL´ÉlÖ‰™­œY¥&f‡nÐÄú_éì5Êy*·W/x 7#^ì{9°·§Ýƒý˜ÜkÒáP¸ã@3pÐ[úõ±8R£Zµ)ø‹ŽÛ% !™ðù™:û^,›°’ ÖŒW”¬ó¡Þ€¾?m5çêg ðzŽjìㆉWÜc©ë8<ÂŒü)Ó@kË6!–A£MÅGÚ+Hl×O›?~ ð„ì=…„%¤×vƒËʘ³j² ƒÓ¼ÎÐîæ—2¸¶†Æ“Ò¤Ã+–Çw… ) ¢eõ;ûUA!]C^ì~Ç3Âx_ˆŒ.I¥JÍÒ] ø¼ÿª¨£Ö;*¸²ý²ðþßvŽÿcˆƒÔiàMc|,´Œëé Q)+&²j’=ý¶·#Û÷µáÛeó:ùÞ­›äíÝœ+-ä¾²ždütvÊo_Khª&ht¥n[ÍiÕ¶½pê±—ö¥—;¼ ”›×-7^ŽÕ£¼rß.×ÅȨ±auÊP°ÖöÍrŒ+> ‚bÙº¶³hvó‘²ë4ÃÈ–÷ ܺôGËÛǶáàŠœ±àÞö¦ˆÔc<w‡Rž4BKvF†¾9¨•v´ÁË’w¿÷ÛÑÚ_^n’¸Ì0=ë…&Ì¥éÔŠo¸Àï-‘WÊÎÇfìÊàëü½‘Sš4.ÖÖNHÂç˜_ÈŽ_¢wxUêBRœSò¯36’f–©lƒ5±ì§ÛºØd½¡ªh•Î!/íP¦U —é8éãQÄ#úæÂ !{Ò7‚ŸßñÂÔ ›—«á§\t:0 =ýŠn7ÁÒ¯g,‚ …>j%‡á0ìDýµwDëÖϦý÷Âõ~ý¥Þ¹A̯Sü­èòçÀ“×`ÇÛ\†Y?;¯6¢—È€-©3Èb2–2 È+îBð«º|–f•,l‹NS—_A)^4½Y¯¢ ¼)GYêÉŒYǃ‘S{IÚº¸øÑeò†»H ëîö ˆ] f’f) T|ô8$JJq…©ö•¸{ýd]NxX=¿(é;½r’Ôå+}ïOØÆ–/è'¡Ñ™#2˜NŸs^Þ†¡Qº'¬!VéÛˆr©•È®q§7ÒfÖæùc›å>›tÏ*)ÄtÓ:ñ†@•ídàÍêUûi|KFàPésÊ'Yý[ ªÚŒ/\µ»B¾Ð?±ˆ¸ó‹vIØ>”ð —³Ÿ+ùªNFtɟŶ ýZd11nèÌ«oaí…Ø7ÙpéÀE­3Ct`òS Åý¬C¨3©(®jõär.!>ËÖŠY÷S&Ê:šƒ6߯6*-±¦-‡i Ä)£?âë{u¨:n:”MPí¡/ßû2¢§Á6îœ>¤$oSÓ;é»~¶gwÜÎË8gÅ›ÇFÉ* õÎP-.[¬_u/úˆ‡Þm»»ùò S.)ˆ”N®0ìÿÂ6Ðwm ¬>èp_jçòhÜ„UM­“Ëå>ÑÐ>¦{}õLj xj¯ß\ãöÓþ­~ѧÎß7KæÈ¿¦¾ªËØîJ|ªBB(ÒØ¡JoøªT»‘XÚ–·WÓ½šaàÓ¨¼ùaLt°â¬ˆ9HÞ9„¨žo‰¯cUe[0ÉU ¡wí×®Q\Ab@%oýÕŠv/1XèPp;Q;Ÿ¤‡Ü0¸M)ÇîÒ4dPtK£d2®ï.¬ž3Ȧ±T)Uõ ø“˜À&w#¥1¡Õzd„‡d•œ½5'tÙd‚wDa¾W›Ç‹C¨fÜ~Y yoIÙ±´Ê\~aõ$ׇoÅvâ·ž<«äb=ÄR¥›°n?`êW>~ ÔXë0~7+ë‹p¤ÅŽâ-A΂ì‘÷ I¹©å®æL¾®|„8úôã[’ g"O&nþó!ø[—™ÏV¤Èc/ü¸‚,¹÷Ú˜pù™‘][–ß ¬4½&®gÏôŒ0±šS6¯GãtÃi"w&c|ÛOo=8Ÿìæ/s±øã£êåRæôý3»vÍËÃØ1ÎøÛC+Û½Eœ#P¾³¿u9±N¨ñ5ò#j–_DºNášs*F`”àuáóv ²e¯±iͶ÷å#$:à.ÚdÜŽëÌû#96²¯¯b²ãN¢pÔÃ~dZG`6}Y8Ç“èŽz8õ’ò@w~®·uk•ÅÍVÓq~rÃþ&€|^¨¨‹Ù~:-çÒÿ˜É×瑪¥@V©Ô$²pX ôL~RK«Á¶KLNE¢Z…2y,E*¯&Ù>å‡(ºÚ‘ 9ÏþÊàüˆ.B¬,ëïX´Œ—aš­é¼ÛJvÄB)¼†½¯ÆüÈ ¢]”‘ñ+R¬—–D î JtÚ0ñìmOWYô³:Ðz¾Ù;ÇŸÓwGXT)De¨_û}U"“ë·rÍ*½âéÃcÑ´Ž}ýÍTÿ‘².'>di_×È_§³Ïz’Š"ž÷ÖlâCø(Õ«TïšHšCÔÆ­UäÙ‘±±c475ùÝTâ/ËÂs®_XÊc›z^dk´8ª…Žñª[Mc#QòSGœtƒ8–—®p8vÂ9¬š("½ø†íe¿Ž”Z¼÷JyFt}tE 7®ño¼A:'‰šAÏK—¤ÝblaÆ^ë‹ oPÜ6ÉÁ7‘#“ôï<Í@|•|¿HeVu*Ë&á5#;¯áÍïáÇ»~Í&j-–Ÿ–¼*Å«Á§3òÜæuáO¦a*àåC&#^Ö+h †+Ž’°Âñ!(¾(òó‹µ®YÊò"í¯jÅÙ'í8=Îã©üiŸÊCûpÆæõ#w\dzÂüt8gïgk¯7ÙåckYÄ'¿=—*±nª¯üiÐG¿¤“‰ÙZOÁt#ÑÎúIEi‘¶Xo$Á…>¨ÕU\Ü*e·I¶i¬&9i¨{‚“¬[àÖq5mŠlybª7$kcØ\¬1Ìoz‘NŸ¹Û08ÆPÙ‘Ú.’?$Ü~ÀÚ®Uº9ÆÿL²;*# 7H?à9èò 6I’x0[*úÃq¨šªå6XÀ3ýÍÈZ/‘r­Ï‹À‘Îí»1ºZÿ¢( †·Ì@*ìñ#^'ã¢C d“ó‡^çvÈå6p§ÀÝ;»WˆÈQ_¾Y¡¹üs{¤ Kzn4ÌmC·'ò"ÌÐLâ{•êæ/üê:!=ø?|/ = £1e÷Œ§IiÐÀµÁ¼µôHéùxyÇW±•^h,TÅ ²íg•‡¹í/û8 f7Á£.¸5ÜÁDZŒXv¡œˆWCÖ ¼MdéìObG¨sÌr%ÛAeƲ&i”èÑÛ/˜ß‹ ?{ñß‹9 ©Ýð5‰Å¶X¶Óˆž?u \ÔÕi =IJÆ€=KMAÇ?Ñ:eŠÿ† ü«Y,•z’GôµŸrчPD¤ãF~RÍê“>%à0¦¾žüUÜœ%zT½¨¾ŽéCÑáY$ùÁ\1¹N"dšÊ_€‘~Ç£3ÙLWiC›˜¸Í‘‹›bD.[™‘I}-÷Ɨϳ„Õ©ð2©„Ü©5ÚöÑ<âtÛõI@ò–]•gB²<¨…ƒí§]ÂTs]§ïnqŒ‰pHÅ¥i%?jÊCë«QŠúé• :Ø ¶gµ’™…Nw³™TÄ\N9ñý Ôñj–ÛŠ®Ïé/žÄ5·at˜bð„CÎZx‰1g+/tûžŽ-„VørŠ×Auô¬¾ —êºfó>³Í³_UÊŽ­B¤ÆCvÁ=¿£uÆÉmÂÔ±bÃiÎ,¬«A·ßÇKOôñXȰÕ_1ä¿%ÕûY»•ôÜë5Ño{ybk½å·mvr'ïà¯5×ËkdTv»´Ž‚Úíôžäi¤c ¿¨»øÛS®_‘0r,q‰t£¹·0üÜy&4–§¦µ¹ÇdV0ŸkùU‘ïjRÏÐæÛRRbáÿþ˜Ð$Þ-MÑK£Š¬ññ§æÖ4Í0@HäO‡x™( ðø¥¼{Ò ˜ÿÃ}r+Ï`¥Vž ª€¯-¢f÷‰Y?ÛB8NÝYÏ ­{ã§µ}øò ®ÜwÍ·]H«ºrb‚E^35:_wl-‰7´ÅÀ´|´}™n5O‡¶~l…ˆm&u—q€n%Ú›ÂèG(ÉA-º'¶Êw]HÅ£0‡ˆÞPÕbJšâ‡û*”y §?Cmü[×;´(ÆÛ%"×ø…É¡½ðŒ„¸AèëU®«w 쎊G¦!šºñg˜õÝ„$ÛΗç]Ç5àÏZ'»v>ôN>TèÍb'.*œËÇ.úr¦R&~;+fµK”@MXñÓÀ™l„y­%×Þ]‹¢O+ƒÔÛ—Ü®š º$ùÊã2Yãµ ¼¾= Kž/‹1ŸZ+ÛO¼Ìœé|fvص›”P*y‰«¤|ìR\$Q‚—ư*´Ïù„„–ú¶„2Ü•^°Øn f`â·U7µà«, ÿô¢d¼ýŒxOG]ü1ÝoDóúÊ6]ÆØX£;`ùð.* ¶cP7ɾ^]¾°OV?3ø5:ŠEm¼ÚóC-·Ä_ Ú‰Œõ\–♋…BØ™7ÝÇòÃÒÅÌ`*•ë]ç„¶Vp¡—f†X‹wÓPÐ;kº^êøCŽí^‘tà>{&«.Êp®}a“ŸªdýP×Lì¸3Âhò5¤*CŒ5ÑÓ£¸éÔ¤¶æ%I(/Þ©_zJÑ}Å>¨xc?é @(.ÒÂæÔSnžºð-z9Ь ¶N3>Ó“%¶ØIòá3¥æØ¡zõõ–jÙ>ª}$e}¦Â¹1+Ç¶Þør·&‡†KoÖ7Š_9µØSvJ,Wߤ¢ŸR¶.xf6ýâá¯DѲ|8"¡áY¸)ÿx/ˆèßQ«wíRɨ_#¥,geáê~ÕL}~írÔ³§Õ£Õmê’ÄÕήaÅkõ,¡ U"ŸË,ƒ9xd0{­¥'QiÚWx¤¹¥tÕ>"~áH­ ä¹óôÃcèË1ÕIµÙ;tcÒäDSü¨P;çFWPwR\´¿"E°òÄT ŠÝÊL»Ä¡²ä¿À6=:Œ"êa›Áª#p]6ùâ¢SS}„­âºÔJìBl©‘\p‡Œêd°°ó3õ"¬ï9ñ~Χ3‚Ç"Hvëô«²åaHÉB¥ë¯—„ÚÞ°(¨òa³±˜Œ2zQˆkÒ¤6­* £¿+rű‡ÅÔÀSüH. %â[çi¤®ÚxŽàÜ\ÞèªûtWÊݹ¶?èÞ»y ì«x”³'zÍå잪+Ǫ9tÑÓ”e´ºn -s3¥î´$’bµw ™´=€ºd¯R¸µã æ«c*áèÜ^ƘÁû­Í´¥MU«ÉËB?Q7¡×[b©Bzßâ` k¦€vÿÚ®xTý«¤×Ìq(·%÷³¥:Ô!åˆ×k,5 «ÿ Ø}WÔöM¾^Š%x¢áœ³˜ f%u@…gOKl‘zñ FÛ´ûÕý8lŒ M dõqjeÛ+`Au®b‘Ã;®<ÿÜÕ0w>/’Ëö} 7a^˜A‚>ÓÐ!âòR*©¸i%I.:š4†A.ród¦1Ÿ˜Ðo\WßL ÙÚjžÀx˜àìá½Nºq²XX¶9¬Á]¼/¼ùÜ9P×­ï"ß|s—(ˆÙà'r!v’ü [Éz³jý¤¿³{¹H™¼Ê]Ÿ·cˆhDlý^‹ðL¿wä~¼&ßgsGJÖ,“üškÌ!´9ÓæØƒKæV_O:W¤£Ññ#î-Ì¡c”p=„AÔF ¼pzYÇ—˜gÁkß­ÌG.QÚX!F/²}yÄØ¥û ê÷PrþwÑ>[ðEF‹ÉÞ¥$-W»ÌÞÏÄ9[A‡ÓÔrºJ׿’FUe † ÍM³"”K ,i¶ÖÀÈUIþuº×ƒ»£á”ówl%\EÜ··‘f²ªËÚ¬”¼D·^ ;2â rE¾W@z™ó!¦v9¬Ö§9UAÒéƒ-t3s{„',‡j§r|mTù‰H·Ð´c½Å1>çù èï ‰WÅ^ˆýž„Ê/Gñ˜M¾éšäÜøÊðs^ Ã*ÖðlÖðá3¥Zò“R&ŒÉ:%óD%YÑn!œsªý]Â)&ŽßY¾ýá§¡KÊ{o7ßD 1 ‡i¢2á,oåY”(¥Þ~lçKä÷Ä… P±Ó?4&o“röî6‡'ãùsWÈø‘˜å*X·È`É„!Lá‘÷Äpòöã&‚VËÀËl@³‚oék? ÿEš‡2Á…CóI.‘dþºèªº>¬@[{X²#Ž£½j(äáÕ”.bœV> endobj 213 0 obj << /Length1 1515 /Length2 7537 /Length3 0 /Length 8542 /Filter /FlateDecode >> stream xÚuT”m»5 ]ÒHô3t#ÝÝ 1 tw+(Ò¢„€ t(!-ÝÝ(- }ë{¿ÿ_ëœ5kÍ<ûÊ{ß×¾žaz¬©Ã)e ·†ÈÃaœ`.@FMW Ìx¹@ l&&]¨‡3ä/;6“>Ä…ÃDþ#BÆbåqo“µò¸TƒÃÊžÎ0/, < ð_pw€¬•Ô ÆP†Ã l&¸«¯;ÔÞÁã¾Ï_V ,,,Èñ; åq‡ÚXÁjV—ûŽ6Vθ âáû¯¬b®"ÜÜÞÞÞ\V..¸»½à õphCw/ˆ-àe€º• äOj\ØL](â‡ÜÎÃÛʸ78Cm 0Ä}Š'Ìâ¸ïÐQRh¸B`«þÀøór`.ðßåþÌþU ûlecwqµ‚ùBaö;¨3 !¯ÊåáãÁ°‚Ùþ ´rFÀï󭼬 ÎVÖ÷¿n—ÒXÝ3ü“ÂÆêêàB@qäþUæþšå`¶2pÌýë|²PwˆÍý½ûrÿ9\'Üæÿ²ƒÂlí~ѰõtåÖƒAݼ®£ØLƒ59 ¯M­P±‹cÞ¸)©¶±¸‹%¢]žÒ»z'C2“ùâÓ¬8²éÚ&4;ëUާÃDâ—»UOž •ÖVcK^˜­=ÙþGíï“'£@r·Ãõñìm1ægåû,u{\¸(ƒ q„„xqQ›¥²›+¤ßK޵(1"Žž ~O£‘ß¾ÈúÒÇÿÒ5SÆ ]΢ÚÙÁsU9ÉÞ‘ÈÜê T±Œ2­uÈ=ºJf =i aµFôëˆ}ÔÖNâRM ²mÜñ\SJuUäbß|~˜zn6k%³2˜×¬äw=» bñM«þV`¬öxçø¥ýÒ[•‰*ô¬ìúÝÄ6GG1›âÌÇpu²—ÍágÜêŸ$'œ{Æ’DÚ¥î<ç÷ë]¶Y±ž¯Æìµ~ ±) û)û]GˆU)r(Ôjò*"P`×ú­äóãÙÁ›q/LDž¡·$Ì¢é:sä­?”Np+’_Z‹%tÊ”Á(T*×ù&é‰@Ízû,ã"dËap{F« VW±yOCŸ/vÎÔåÉã×S…ÊŒ;Rtzm YÑUä­z˜¯GÒ‚ˆ>УÓU‰<»Â°¡Òz§Fí&¢öMcXÿ”“2æåãøn)AOtÖîÆr¥ð…§J(1µÆ’öh’Ê:Ås0s „é—:¾ACçÀtçÍÒ éù×Ü4’‡>(© JB|ŠÛî[(¯ç_ÎùÈÇp!!'ëHÞÚCV êÏV­w†YÔY²„ÌáÁ ”ßñSrÃtçà éÏ,P§(kq<«xÉtJMJsÖ+y+Ìâý›_5cÄ=jJx}p W¹‡Ö»FJgðãý…S-ƒ’Öi¤pδ-Õ›95>K®¥½F¸ÊiÊ äÈDWEhu}?Y7w1õÔHƒ­Td']ëJˆ41ÄŸ2ØMoà·©®é‹ÝP(3À€Æ;§\mHŒze¡¬¥†EâQ”Ÿ8ÅÆTÍ®â¹á5ÉUw¨¯!å(YÇ mb¡ùS¶×ÂAœ£OÚE2Tž¯Y—$‡ç”žï½ÿ ‹n5œ fÊåKe¦íclúÓæÎ§#úB>-UHí`æ|óÎ~Žö ûà!Z°E‰éÁ˜d§Ee}ÊÛ̼àfg÷ßÉ^93dj°(Ø,•â9ñHd½šÃºyÞ×¢6Ê\ü¹¬Y¤†Í+”ZIJv*›Õ'áv ø(ë'‘ÛÔÚjmMX3A®Iëû o"”õÐ ®$« Boì„Iä!‚ÔLŒqXsM„(ÃßC{b`Ö8"ÏVÞÊîž U¨áÈÉ®ó!›ƒ®ùù0 ¨øêÝŠKV‹”h»ÃÍÊjEsMâÚ3ëŠæ7”\p«ý §ÇL¨›ƒ¾:»ˆ±)~Aº˜ ·«$U¶ñ¼³Ä{ùNˆ{s$$ûnôQh¯¹³kWéBìj#¹4Íú€ E6–5 L¼î9YJaâÝAP,@XÜ{%î“hþPŽu“kRä «üZ|Ÿæs\ e§Íªu& ÅR…#5:<¦U¾ÈÅÚ%JìÙx-Ç£ÙQp§xQÅ‹•è°¯%ŠÆÅI_Ðû_R{kô„Ê¢f­N‡ fɤ=Š3Û©³ç°y$5ÝA _’Lúñ-§±Å±ýBR4¤Véyž”BiòŠ‘f«Š ioÉôݧÎ-é#„ÅZðˆp«TT¥,’ÜâÞÁOõÜ÷l¼P)&ÐPü78¨8o?urÁ}p—;z˜‘ud‘èßòûGÀ(»â~–Æ0‰ús‰‹ÄLW˜I¥%…o_Ö—ëAqÏÅ£~Þq‰„¬Lx{¡íß à ˆ…ÄÂ.VI%õG‡Ùƒwz£ãŸ¿›J9©ÒÆYuG© qA¸CŸ%ñõ# Óì“•Wц(ë¯î2ãÓ… Þ)VÇËúyu¥†xmÄDè–¦×ô/»‚H±«é…#óÆQQ ¤ËüŒ=Ã%>˜u‰g8ÌÖ…~xEQÉÐ:7ù!µo_½ô¤[|PˆÂÞéÓ‘Žù–ñ`è€-a^µOêf0f¢ñ1íÁ.N{¾¦ô(7ÌþE­âF0‹<*Óc1¯æ`—>xõ‡šùÁ\Þ¥é\‹bg³iëmÒÚ@¬Š’GkÁU:t pÊ$[Ús/û´àÂë€v즉¹Öù×è–ý_wò&Ã÷°jñ7nwcžt4榋=×k­ºEq3% Õ‰©.‡¢„À†(íô¡‘Ï{oq Ë“ÃëL(i?|ózS0É}™®§ÄÁKŠû2ÚùcÈXœ¿Ó¶;klp¢ÔÁ¥v’PaË »Áâ3ßQž2t›õ?ýRê²[¢/éöþrNíÔÑ¡™˜‰8N<¾#UZøvü7ØïÉíÞ,E¤vݧb©Õò‰µf†Üô²~¢”¼ûË{„q|MäiU1ctH)Z§Xøòm™x—ôn†I»™–ÞÕ^!N³¨ìq8ŒOUnÈ —‘(‡&ÍìáÚÞ)ÈJ½P×Ò&C> ìŸR»ÀÏÁïSˆÖ‘祙]ªõõN«gÅ•K^Ä òsòÀŒGçÏïT\µúm>÷ò8‚îë»» G‘7ó9šL¸’2Ãý?I3©±„çƒÚ¥ôO\ýr—{ˆ:•‚™Œ m*”±wËÝi|ºˆ\Ù©ç_»ÛÕÚxS®>/o“.“Ä”Î/Egfö)ž‚™|›çúír·–¸Héá<³ÒXÿ‘Ï äòÓž é”tu{%â-ÿjXúØYVGB H†¸ò”åųCL¢È¶gŦ½òo'òÑ[n×ü»Lf´ß.ãÍò¡™EЊW„EbÌ·ä, 2ûr6J”+ŸÛÁDšyî4Sbèˆs¤ßޕޔö ñšžénò”?SPå$"sîW ΀²"F êà൯ª~ëݯž®è°ûX£…®"(Ù ¼y"ý“Hòâ äÕñ›»bôŠ ê"1\°kîN+IdX(öHÌ®çz™G-³b£ BqºõSqŽŽûÈÞ¹0/Ån×K¯Æ?É z9À{ñul~²U:‹Ë«’f®ý€ÞaÚËU£÷E۳φP39¡Ò×—±é§lì»¶-ËÁ!†äÚá}ÔJxƘG¡ñ%_yååKÔ·n]Cd€`¶‹=mý’jlGèŸ5J4~¼̢ƒ^ꔺ1„½ß ®´S¸n“dvQú)›Ö£:‰—ä,•êˆWÝö„ã%#Eú*]ëÈXDiŽíIÈH_:åÎg"¦2ó2<?rŽîtÿPI³c< ®kÌùYધÀÌ„ö£ÆÈûÙûÊœ§økxß᪚Lß©/È7«™Aä"îÍ•7 )¿ájãuº+$£ Æb"½´e\ùŒ›:‡â¥:ŽòSîrH+~C î¡ÒgðîcõøÝ¨x¾æ–GSl¼«jéèë,´NŸ¼B{éð!WBÜä'.x8$çÍ㳡¢¢©k(žÛëå N’ ê&-7ÞFIúî¾J„æi¯âÃÙEHn’µùåixàÄ[`Ö³\cÈìÅ3Ž¾Ô “$l_¶J4É¡ùšT¹o9¸-zÕ7ëlÓ^ËÙÐÇeoû¿iXFñäER†í쮥hSòǨì-Œ½¡»Ã l¦i‹ s“.HÌFŠŸ,¯-j§d•¡e¾ÄÖ¨ûzz3´—²Áu¥o˜öDÃfbÖ2¯ ”9¥ËB½œÒã:'N#É^û–ÂyhŠØr°÷úoé¹Ì„°dÂ^Ëc‚œ—8>W2?z§›û GS¥àÀ-+SU¯EÙYÀCÄ¡Á¬­)VJâ•ö'“‘Pr¡¾Ö¦9uÿýT1­¼bÌæ)¤A|lÖOíU@É Áçxï5kÙqÂÙÃ9"½5üõ7âSXGpgƒÑ§¨Vd0H’>Ë·£Gc)_RN À±Ìê,)d ‚®ˆF{¥k¨{¶øˆZ Ó† “÷D\ ~¹åzû“×^ ©ÝÓÑÓ2«‰$)v3ðT¯®u2ínsͲÔðnió~é®Ì¯×¼PKœz‚×moów=oÜ¿ÝLT)°¼®O;ÔÊff¸.o–ýìÙŠ©&¹Ò®5Xu>Ƥª{nS†~í#vl,© ½ÞŠqj¾Ð0Äù 5~h¤¸†¹­pÉùj:ªá¶†pñMа¹è léWñùØÝõHâ"ÝN¿wE NntȽsîýcê-Cwýþè¦÷ÞY°hbqâA75é«8†€–³‚Ÿ'8ËuÕ¤5×fŸqÏ­,As æK\o âBxo<ö=€ñÈ~Yó[ÌàÁKëç´pöñä[ùø$„çèê“S¾Ù»ruM ¦áfÂÏ*ÊÅù‚Ö Æ € ">¸ƒ<žpšŒ™!K´k0ßSÊž¾©#Ì2+iAÁؾjBØòÙNý®PMpO87g+jŽÝ?O}õàˆìY…¨‡-^ ›}ü¾ßà $G+5Ò[•÷@tiU†ܸþ賎Һ‰4¼ÕÂz‰Ù»å xÓ‹´­?Ò Y r=“Àu1è1ë)dÙ9T„ºcK>=¹ÕÙMÈÃ|§ÖcÉ¢fXß³E¦ÎW5\è…z{ÿËBüMUXóRfïór,:°XØŸJT‰HY0v:ö^ž-Y{K\!Dž ¼hOÕ™N?a–¡)a_˜Oã(P>Ôé¬ñçypx«H09c€ï× äj°Åå)HŒ1ì*ÜÀ£•‘5_Vœ¢¹JTýŒ§¹€æ!j“¹Ôà®·ûÀ@¡zþÁ‹±S*¹øÞ…$ß±ó©Éç4+³GönE.z}ÅŸÏÙpí¸TUЩPÌðxã$"Ôàz§shˆZB< åUAÁ®Ûk”ùÓ!BŽâãô TdƳ±Ë¹¾$KÛD8ì'x‘¡‘5”iIECÏš[’ÝüÆw<QeS2äñö=nµð“öRkíJ;?dmúÊ—¶.± æ2ïUîvÙ~¦´ÐEÕ&Ëv-hP:»ÆâW¢P8s„x3uèv·Žij(èåRèòàPÝ)÷!R•âåé j¿È¥®éI½< 5!l¹XèÁÅx×Rôn+~<þãè°î3*åpl uã¼hlì+¡wYô[üÈ0–ñìô°²ícÔ唥٭îkëxKñî±DZìÞ‹™£g*@_»ûâ‡Ùâ3M©‡¡ó³6,M:tz䜨)OŸ+Ô´ õ¤=åmlS£Q)OpjW ¤gQ¶¹C̓GüédÅæE]Ckë":ýn¥zR|JªDw¶ž–<ý (-åÜñýø‰ ôyÉ+Zß88’ôk»®•O¦;ÉBäÏtæð¦¶g—÷%ÅÇüT_ø`kÈQëOÅ÷$ŒYï ×›n0©3sŽf³ ÎìÄ;-—I–ë(›sÔÐJŠe&O¥;9±ÀPCÕñcÒÜ‚Ðq=/l®mÎ'q4‡Õr¶n fÈú¯Ÿ;h—sÙÙοO„Û»óúP8ÏÆ_Ç]Ö'!¾Ô-Í1Xùn#g\–A¿Oña¾wñV• -g6Bîã{²NìÜ÷fû¢q;÷­õ ‡x{Á\‹ç×=â¥é ³ÂX¯8Â@1[»"ElF%³–9Ì1u&„y7¾—ч.Åw=ô(tÐî¦L±bA—B’¶níëˆÔhJG`Ñ'§Ÿ #~c<=b_—=QíïãßJ{*,:ÛDÉñUw;ǺüÄP¤ž¯=ñÆ=³6žFƒài5ÁËFÓŸ¬Ã8Jð÷ãÎkÌ…^¹.L•‡ÇAÛþº¶(««n LÝ@²k½Oјä§"t ç•Á~’馬®Ä>±*†áO&3¯ÞÍD/ö›«tû+˜ìŸ¾0'b³í¯Ã gœ¯µP¾bsq=mÍíSòó3d½c~ª;ÚgšYÉøÆòMÈãÀÓI-ObHcÆD<—ÂÌ„òºÏ¢¤ŽíÆ\P·IH›O©ÈꟴEÖdÔ}'zË¥`$¡šæ$OÄÎ&ªßÒ °[Ùµ´—s²Ô%vbÚŒ¯æ­fKÍŽYz›”¢Lj¦d:Z/8Jª}m%?ÑÞx“ã˜Oý.5­™ÙÙ×/3¤ßšˆÙ{SrÜ,ºb¥ÅuÁóúTjÁÈcþ¢8½kký}­‘²ÕGòÔOÌé"mkË“¨´[ˆ4*OºR»›X>RL‚C}ï“™bPš©mÓW—ký*qåŸû.,*“#¥'i&×{×Äýh‡|wÔ%~uÎÙyój±†-@cqÓO…l$;{ªÊ+Éõfò²ë‹Ù5Îrï“»{çY±7¹xWzìÂìŠO~¸zQĨjc?øCFeøúÈøðWÐdRuè“ïP´ú†èêGÈ„B•>­ˆpbEâmÉ#šAáþ¥|7pœ"Þ²MèWì=ÂÎ%ú×6¾1çÌØ'¹ÆL£ŠÃYÅP åêËpèZYÅ€!ö÷“¨Îl{õƒ$ђƯt=8V¬š oqøò¡`=͹Rûµ­‡úx}],[Má;ÜuSéÄ»|¨~}GZ2ö“,ðàÚÚîöì¹³´;‚ i>¸ÌiöÑU!h€¯›©Vf}éA¾Ÿ°nøCÐøc,v‘A5Á —)ü¬Z²ñ€3ZƒÙ¤6iÝ4p’ƒâÒ[®v –½[A™éฟÓ<¹øVÆ'nšÆóž˜0Gz¯95_ögÈ4º›«¹‡À9t ±ø'+}îä…ÉÄ[ÄÀí 7f¬Ò°ã!…ÚŽ‹¡*ÛYO®Äw˜¢ô×õdBAÃ0›LñÉÅ-[„âä²6’»}Ÿ ÃoÆ85ØOçèž´SÛò-h±P™ØÙ¨…kíÇH.Pç?v¿Ã8iß.ÓªÚÄê¯ñÙ²|²Ÿ)aýð«aTaA4æNq%ZÙ½p“¸VšáÁ9ù!Y$eZ“ň¼²½ˆD÷ÃÐ(¿e§N<ýþÒãËÎmhoY ÏmŒHÝfaCÞP’ú™:–Zƒo{ÞÚƒQIœG›Ìèq»Ç?ª/™¿O4}ûøYó¦Jic­ÀÃl:Òx$7  –UìJs Ïn,ûnÁAõ“©7P†æS‘½“6*j2 "ù˜+qÛŸB<ÿ*îTq¸~¡u™ª+ù米чf¶nö›¸çôv«î¦ 㦬úQMÓÏq&TTLï^‘»ÃŽCg/y¶›2”pG†u˜"w•ƒ'˜‡GIÛÔ ¥„lÁ±gZ!$OH¸ü¯°ÈOHo·«’Y^,½ òQê40Œz͉Z> endobj 215 0 obj << /Length1 2773 /Length2 19686 /Length3 0 /Length 21266 /Filter /FlateDecode >> stream xÚŒ÷PÚÒ cÁ%xðÁÝÝÝ5¸ûàîn!¸»[pwww žàw‚àÍ9÷Ü“Üïÿ«Þ+ª`Vwïî^-{äÄJ*ô¦öÆ@ {;zf&€¨¼ª*3€‰‰•‰‰žœ\ÕÒÅø_9<¹:ÐÉÙÒÞŽç Q' ‘ H&fä2”··ȸژYÌ<Ìœldbboë`dçiig0³´%ä\<\èFv¦Ù8ۃιYÚƒ þNÝ !ü`bø?g'KggK›¿82þåTfq;SQ{[[ ‹3ü_ù‰Y:M@u÷dü§¹ÖvöîvÞÿEf–v¦fÑ0uu`T³³ttJ‹ýcÁÿ–™]ìLLL\¬, #èabÁøWUOàßJæ¿Ä ¾Þö3  ¯¥ôÞÛÙÈ pqrúzÿ©ø_ÏÌ 0µ4qÍ-íà{‰fÿÁ þ;Yzt˜@ãÇ `úëçßOz  3µ·³ñümþw‹ÅÅÄTÔ>ÒþCù_¥ˆˆ½À›ž @ÏÂÊ `gåpps|ÿ×Ë¿üÿËýo©’‘å?¹ýáOÚÎÌÀý  Úý—†Û?sAõÏÒPþ7‚‚=hšªßïËÄÎdúÅüÿyþ>òÿoòÿòòÿ:üÿ7# W›¿õTÿ1øÿÑÙZÚxþcšfWÐfÈÛƒöÃîÿšjÿ³Îò@SKWÛÿ«•v1mˆ°¹Í¿…´t–°ôš*Yº˜Xü=1ÿmÈ»¥PÉÞÙò¯û@ÏÌÄôt •3±Ý)Πfý­‚6ê#ŠÛ™Ø›þµz,ì#''#Ox&Ð|±°³¼™A;j ôø{´Œ vö. #;_€™½ü_-å`0 ÿ%úâ0ŠüFœFÑ߈ À(öqƒ¦ð_ÄÉ`”ø˜Œ’¿+€Qú7Eû@ä#P…ȧÒoÄ`Tþ@>U~#6£êob¤öâ©ÿF x¿(žæob¤õ/âYý‹XA–F¶ ¹ÿëJû××ÈÙÄÒÒÄÒÉÄÕö_93 Ç? KSà¿r6–¿Ä Ñ²t¶þíäÚø£ ŸÆFN@TŒL€6@3—?Äìÿˆÿ³`ÿzcþØèò?öܬÿÊÿÏk“;({Ð0þ›3Û_[ÛßµøkJÄÕÔÞÆæÏœA×ãoÚ ¹dþOPŽ¿ôŽ® mÿ× (?ДÚýQE&P¹Ì~{Y˜Yºýáö/µ½ëŸaA&濃€ôæ=ÑÀ?M@t,~“ÑÂÓÁh÷‡Hfù%oõ…õT¯ß$8@…±ùkYëAÕýƒè®füŠäË´ä¿‹ mçjkü×õjþGJ W„ÑþwÒ Ÿöœbfuø­Åp=õvÿÓ6æ¤ÿÛ}Ð ÁšjГþ‡)Çß2Kûß=fÖÁÆõb ¯CŒŽ¿Ý€ªêèjï45þ£¥Üÿÿ7$33ÈøŽ0ƒHÿvÌ:ä ´µüß!dÿËèöG›ØANœAÏæ¿‚ˆ8Û9[üáÄãwXÐÓÃèbáüc~@…rq·ÿãȇëÔ[·? (3÷?ötÚãrïùµÄëwr O^@§ÿ„úŸÛÛÄÕ Ô—¿XÐÕþ_ü÷·( Ðh¿ºdoÂlUÜùP+ŒçN¿7Í?O¾§‘FMï½êÔåú„ “L]“´ét'œ<Öÿ~mWœêVèÑ‹÷I[#Lh{âÇŽgŸ_ñÊs{ð+³XÃ3…' CpøôªBû>/Ž>êÖmà=2äyŽ®\ÈJè Cåß'C–ö>î×pÈ"ü*ÿJ­¥X²@žoœ½øÚ…ž–íÒeáön-wæH&žÞ÷4šµÈ[{‹%æqÑk½R•ʇ Gûä-Úä…·ÈaŠ ö²wiqÔ&ÿr5Øæä‘ÏDñŽœ46“Ó*·ä$™oGc æ"\ÖžŠ¡M½Ã òòZ3ww ÉÅÖâAýýÑP¸û0'ZSy·XOïýíU¨[­“[Ù“³ú¯q³8ø̵‘u±—PG_ yhü›}®^ŸB«Ì2²:ï«™S‡y}•®á ñsWdx˜Âät”÷è…Íœäcñ·uèlºp5ÜÆ`pº}Ô:c8ß$Ô¾38^í¿²åOj§qÉ>{¹»ã7yÚ$ÍK³£µY™ÄŸicVB §GÐ%ræ.•ËÖñ< É|7­šë8Ÿ’=¸ï3(Ï6E%5§­:áo98‰€ZÐÎ5òomIÕÀP¸Åˆb×bü¶Ë§]?\xX˜:”Ž…'>U¤31M‘-ÐÏv¸x‡õ:僅ƒµYK˜‚NU9–ȯ±ñë‰~AsåtÙ²½ð©8>•y¥ ÖÞ7”ØÊ"þÛòIüÄU½ZR¿´Iíù>íÏqÑš¨úк‘@ 1øù#°L ´¦½öE^nüŽÏJ¾¾Ýñ›=sF·KV /ÓÑyß&¤ˆšÖíö£õ†ÝcÇæå[æiŠJ>6¡Ê6놫¶6+qTwׯœä">ôµe½@i® ›gàK½„¾²` }vröu±#V0Œ~ñs ³¹ûýKo>cq^n+kPÅŽn-§×w#¯ã9fü#êð†­ôËŸ‘âAZ”í£å÷Çìa&þüvVÝ,;]‹ÐK&‡qî̈ѿ&YŒs¥õB³"ú<[ëyb& ™-å—­G&î_?—š™Ÿ’÷8ä?óY^)RQz—Å.ÖO »W¼ªì«3)¹ÄÞ®&æðvXf¦{÷} ï%ªDKíç£ÛãÏÐõ¡>õ¥žkçB#œ¬¾Q&ÇU… ƒ+zÏI¤…mgjŒ>?Ìð²¯g*Ù /ŒÒæ©/{­IÈ4Á" ý`Ȫ¯Š Ÿ«äO[[»Ûw\¯w¯¬œY.Z$ ¥_ÃþÂMz#|¶M+8"rBv°6B},”PÏSB¥A¹O ö*2$YŽˆCï”0©š’¼ˆ¥e…,Bg Yz@ñÞºBœ$ÓõªcUkë©ÌðBuN߬‘*¹jžÚ6ý‰A–Evg‰R 5K|KIŽGþÐ;B…U’EYˆC7wKþrQK3š2àûá­¿ƒ£EÚÀ»{-¼Üëg› £òR÷ÉU…j5‡©ꪛ yî:è2æ_݉wR';ÇU¿&U‰õBñh8ëù[ç»w$¾–AÁDQîõnYèC÷#ªªÆJWØI…m~4 vM%\ÇÜ䢭ß-í¦Ü-¯(K Â6‘©ø¡*´˜Ûöï*ÂóÔzæ*KOŸÞ©Â“Rœâ{S}âa=µœ’å.èñ¢GwÛÿµÀæaÀN¶›·Úþ+"cî&§ÄtdžÒxÂxÝ‘.Eꎠ˜X{È5´ § `w¯=(yýÆÑuаe¤nI> ¢û¦ÏüùhÁ”‚ÆþÌf°+m»½e¼ˆáð0ÑÏ|^ïk vJ•rá-Œ;ë,¿K`(@EÌišðÅyïƒv…†Vªÿõ[ Õó7æ·\ypÍ_+ÂVqÄêP??Y³óSdjåŸZ®ºÿ ™ðÁ.ýâ&Z©ôÚ•€ªÛˆ>2”ø´#£HÜ[ñê5œ?2ðEœšë‹p–‹!mê´ýñêqluRÀ'/ Ã}bŸWÿ*#šê)Ó5„8(ji| Çøå×0B&È<Çó€öº€ƒ`Ì5¸!Öa¢ÑØ-N”ÁnE—fVŸèKv'&ÈŸmÃ+¯Ï+\0›ÉiøŽbrC]1Þkg†õ‰£¦îIx>ËÁH’2o^Œ-Y‡R”ÝÚdÁá«`é+òÓ…\Ñ…[1±ÃÚï'ÃbÀ aù87½kä6PîÕ©ÉÑѶ­Ç×X?Ÿ¦«ÚþµóehÑ~s­õîpÂîSÓ~ã/Ï]Z¬Þvgãþ&°ehãØ=ÅT¸íw„챓«òÙ'ËŒ›h¹R°WóŠÁuTÄÃLÒXüƒ»ïóçt{º^8ì"9kkÙ&on3Xsó_tà6G>x_? ËÑ|Y » 'èq#]k8åT;59òŸh†©£lÀµkU@™MŸfŽÊ8(ÖØ®x…)]}S_C,KSp…¦å~û†ÂƉé)‰B5×ÿº¹‰TˆÔßARå5¾ƒl¯ØoäSi¢ýŠï%R¸ÿI¨E;@˜h½ûqKÈè Ð#eÏX0î@€d3üm F«÷óÅyÖvø‘j±¹H£ új4·Ú‹Ä±L šŽƒ^?·wãÓQ+}yÓ½ ¥W!j\3‹‰^ùÝr!‚ O‰Ø¿xe#y«oŸò5ÞÈ'5“‚o¡ÈVBy°Ç¸v%ôM3D¦ —d”©À9tèUiÎØˆ³¢ç<µÀ )å›^¨ ª`kÎÆåÑ+”„I‡ÍâTIÌð£H ÷©¯š% Ê݃â#'z¥,rÇ!ƒ`PˆW‚Ô\“˜Œ"FïÍ>Ý¥$c·3…5]º¼o‘犄Ôd÷êbÞ$ã Ãlñ}ÔàÛd¶Ú³Üáä8x!ëf«‚×66ÊäöèܦóU]?Ú·ñ¬_ó_ù4‰7N”RíªŒOL11$öÔÄ0oP#˜>cE~"ý9. =ÅÛ ¤‡Ö5ÖtÕ†¥ Þóšüë0¹]’.‰dT03;1ðn×X$wfzô×2—ÏÚwÉ™œõ ]Þv)Dx»ámh–°Í"ÍihŒm#ŒwqÖ¹L~Q=5’ºü!-ågßL¹Ì•–úÕD&Wãi/sß ´)©Œ3– º|㨠:ÉP¦qÉäÇ>dü‹î63“–Ùù\§Æ®>s¿è‹Ôxv­Ùþ@•½+½Sx¡°ÂöE)ç­ çÛ5ÌácÆëöÈIkuüu×}óþI/ù‘Kçï})Ùl’g“ö„kz ¥7Û8q2g½ãô¡¼<éM¦>x ™áåwM=¡qÊlÎ-]=/Ï÷Þ7ªd—íRæââyyã´7Í›X+Ãú ‚­À3å×õ<OyáíJÏW#©~jT.'›§+" *=eÌ;+<Ý ¤OƒæêkHù%ç®vŸuÊ–ºòm.k˲8TËp³¸¢§Eíx#_HÓ’í׎×ëµÖηᨶ/:+’ªõ%/WL¯}bÓÖ5;dšãÙWñGœAÕ¸Iu±Í/Õ€5B½ ñ'ºMùˆ$–«°~¶éør©Ì>D&5F£¢³ÍGC›ê1øxVJnLh?tšÓTqàËþx°£FdˆQü5NÍZv369Œ! ‰<ß$4ašçÑòŽ·‚´î»´aöh‹ÅuzÝĈÇr„Æ ˜}t5æŠv”\˜c¿FË«ª‰±qÅB(y ^?3cBwC²Æý)q~ilðKç+ï8Iò§T¿ ¥|ÄKrw˜¶ÊÄL\´Ðd¾oॼ-}ר_ìˆÂ7CuñÓÿ©]²!ÈõÞ ÎhZÈÎ4•Ö¦B•ěВ£ÖÀÍI]ñ;VA,xœtÊAnP¹Å§MsÆtŽüZ…¹³áy5ÁksÑsŒ¤ð¾ZÒ0²:ACatÝó÷ÂiÊJ“D0JÖ–|÷ªà{‰…qH['†a.ÓŠa JÃ6“±wªÞ4ºLªS„ä£"ßöòòëß1%¥:༽Ê]6&i6Ö!}ÛxK2R€Þ0 Dsêd[N\Ây4í.OíK:p«aÇh€8nÏbbŠ™)Ó¶˜ð+YB¼9W|׌ç"xÍX˜µµ ÈøÎ+^U#w<¨—%åS¥’Ø_[Ú ½íé)¹|˜ h,Ù;¨ííF)·9@¾­Ç{Lߌޗ^«p c=Fì_ ÏûzˆYÁ`E´TÍß§AAƒ®óÅRÍW5J› Ë­˜0ÃÌ\0Ï-îXx½Ô,6 uIbÎg¡^BöÞ,}¸Ø5ù´\›_Qê¥Dóq¢,UeYyÏ”†èÀFá {%ÖÝj,´ ½ËÕ`¨ò>ÓæÖ"ƒÛ~HÆÃMÿW7 ®f7;ðW”Òp P;‚cèŽVåWéÔðã1'óõ´9ÍùÂh#s³N;eR³I¢ÜK¶Nï|8êÑ~J>’ó„^Ë8½6ómPU˜Kê÷66øÕx(AëÈîl,à`÷mi=i}›H$yhM"Ã4ká$Lý–±é‹Ú– 9ñÃþ0ì€õWå­êg ç­_®Ç·DwÂôx" Ã~ò"-ÉrÖ ž[Á‡ á3wP‡«¥É¾óÔ™wxmŸæ>Œwd¢£:s„–ËÀËO_IîÁžë·º‡yqY}„ã½$¶µØî4`VTð¥ÆÓd¶KrލýÞ0ȳJŒuzP®†x1s•ÝC7ÛFīؿ’ähìùð.VKsœGC$iBPêšFÊ>Þ8û²Dáx¦vÇ•9vÑÜŠÁ´duRFc…PÍtd7ö!ô;yJà;byîåÄ1öý˜›Ž[$§¹ ÈqðÌøž‡hf᪠¢±§1¾”°óŠËÍ0S# ,’¾ßÈVK-1r÷Ÿ­d›[´§9·@I# !óQñ™npºRºQÅuLDZµ%jqÁímxØ”O§ÜaífCæSeyÊäèpÙÿÑlÎÉ~WêécXCº›×ÕAæÐ§K`Øê[¬aéÈ$°Ìø>­]°B²ÆÈ㓱Ÿf{ n$¼Ã/R~OTô¦ ¼:é–é+‰Sžsæ´Šhõ>ÿWÏqÄg…ç}>búbf²Zv¹¤ yTTizW¬Å$és0æPSÒ,4îsŠtéXÈϤu€™!ó˜ÍfšTpÚÒ*Ì5 ;Óyße-×tc%È– *·ŒAsykvmûAûuŒø¥¹ Ÿ¾šå…@úaožIö ,üZi:™ £Ë}ŸW™¶kn=¦!Î…Þ"™–»bh¦Àhè]‚r0½sÄÂb Yúä2GŨ3(´ëÃ+Z¼ ¦gäı»¨y‹¬ÑJÑ)¦ˆuþñ4\˰ôÀPÆ@¤f‹Ð¢dÁñê ‘˜wŒázf¯‡f°GNþ¾räâ Ó¸'©X^'ÕÈÛØ^6SzßnN-ؾÏ}Ñœàš5¡o1Ú'^¹Û‘@õ²‚ò© e\åiÉ^zI]w滞咪ùhd´ŽÁ¦v“Á©U~õ—×$öšRJ.wù0rZq·(øˆq’`ÈÖùò‹2ÿíD£b,Þ-ÄÃ[Äûºéa`ôõÅE‰±ó–¥£Ý ®¶Ý8Á@i&ë~pv’ª¨Î|xÅþ¹³ÀOvªüØò–ÛôºVùô®&—rG†ÇĪœµ8ÈŒ^!¡‰‡UT4ŽWñý¸ Ÿ?Öhƒ° 7ÏB¨QÂü‡QoŒ§'ù‰Žˆæ; _¹};×ìbÿElßsÕu&·h >—’¹ÜUÄ134ûŽ-Ì÷™ÌýªñþQÁÇ—évz¿Öº‰5éµtÊ÷„0v•2:ûeŒ{Ò zãCS I–qKsúx™çÑlùR¾ú)@O#åCÿÒ×/ë»L9¨·þDJ…" -4Ú¢cÙŠ9Ç*p'L G‹F±ØíAÓK½íÐ{*ÁuìÓÉ÷ô¾œáA° ÃX«ô}™4Ø­Ò¢Õ±ÞÌ£m!Âi›ÚC ?`ªqœã©$apíÒÐ8v‰0:c ¸-wÙ7QÅ^îë‰)Ýåú‘À÷èÐê­H’À4Ü<å§ÍÜ2Û ñ)èC¤`ªC>½Ÿkî”Ô 2û|6ˆI‘X¦ÔëÑÚH!ö!#ýí¤0Ö’Ÿ e"5ïЋ'HÇAvü$°5§×˜ mãVí©t³úË4j^‡2ȵÝkÎýIwJÍ‘&¢ ×)šwv<òb¶V¥ ›5¦sÛ%%™m¦KÆKè>'u0õ¦-E¤œÆäǤ]9ÎDêª󻀖ÀåŸñSñÍ$ a½of€°÷â™/4;ð(µØòãwA<œø5·V¸¶™iˆåÄM”ÅP=¬mƒx|:N€óPçáy8'vqëúéÎíc<¹ú©òÞÜâ‰C-sø“\së"».|ß4HO4œ¿Ã±&øö¿Ü÷Ó›Q~™ó»ˆ}–èèµ~›››du #Ÿgòn8 >]£6íù‰}”ÀiÉkË1MTï¬U$ý£¤75îþðé}2M}’ÝtïK,Œ¦IY:4Ú/ÁÉ'9ÀOTfˆ?É%ñeà‹fûhÕN‰ÛV)ÅSyóÅ4DŠ{ÃdQ¦îÓ™–2» Áï«UNZ œú¹ÌO°æxóUç.k2æÕ¥e°UN*Žœ ¥.^ËMÖY0"Ínº¬Ž+«d¿VE¨±Ô1qŽ$ óºôÛVàÃa(.f7–·ªX·"ÜxU)}›{º.ÝøØCÄÞ+qㄽÔP¤~ó‡Ij«I¬È`I<Ö¨åç{&ÅËÈ¢ý2¸&ï³Øþ´ª¸^5ª¶ö.»;Ð?î([rhšamÍ'æ‘ÕQoõ°úi7T ­r˜ üǪÛÍ£eЏõ*xÒbΡ×zèç3ÕͤÕÝÝö·–€8ôÄ×ÐJÒ\õIžP¼ G3=à`•)Äjɶ:u&ÙŸ>½¹â™R%…ç)ꬥåP³¦cã³r+–qûûàòï¶J±$ÁˆÅv¬ê¯›i)X7y¨@‰²Uã~ DG)SIf|12géø0¦k‘-S_a–ðÆr%S J¤»+ÙvžÅÉ×ÒÒU˜®#Q¢5/÷…íW>WOýKÙÇ\TÑx¬ (}x{Ç0‰Ø:§àÊ>ãÃO™/ü,PYF™®üÖŠñú±i¼ì³ã®üF%WCi™…Fó=FNÕt纮3[“ ÑGò‹€Ù· èug:Ú}³r X\ô”‘Xð2ã—{w¦¢©ÜDï¹,SêŒ-×*]œøûTŸœŠ­å5Þ“¥ÕUg–1§Z1Œ9WA³3žÌ¸œ ?xÍï;Î' ‹ä³ 8rœ¯’hÚ©aÝùk°v¼Df?„gpû=˜¨2sJ"ÎÛ¬šk;Ù'ƾ÷ˆ)©eà/X9n;âl1-Óº¥)}[¥ûdî$ýø´vB2|çŽ7.)Ž?Ÿý–f9Éð sr©ã]}+9D†K²ª/[x#ƒLTöe§ýƾ)߀•M\ô)±íǼëTÀ½‰£ˆM´÷—Ê{”ƒ4Üш¤ïšÞ±ºN;.ê¸C¯»ÖÖ[G1àÜ—t-I„~¬MLZOÜØx†§ÅQãi´àd -õ>$eFZÄ&~ßìÄ­C"ž8húÐÒÃqšC€mómœw0«j+â”jñ+D³¢´…ãøÜ½+—õÙ¨áÇ%%úáêZf¼bÊŦáÄ{ŽùÙ ¹…Ï–‹Jï*’vµ tF؉ÌVuÌ¿DŒE2 ,}|Šöæïè²z¶ÌHÅIÛÐt8¢É=$·|žñªÚÏM¼N>:»r<¯õzÈŸÐê1=ÍQq,C œ ƒP œõ²üï†_~–Rómã½NþÍtñµ€/„2[ËÀ:£f±¿¦¸üZ‹“_µ¾©‘‡ú±9ü6׊‹ôøqd⌔$ »¦†ê[øqèÔkRj“{ÑcÜUçŒØ¹Rßñ#AÉÁcÁŸmÊÇ’Iøm|=D—I,€=>ãP-†j”ŽTÁ,¾‡+éŒtÉžöÑ <ðöÇvY‘­žýr;¥­’g›¤f¨6±É*‰g›QÔ5t1JTgåD§²&Š“;â“ d’Ä=\MZïØ‚Ï$%¶û§¿u|þ*¦¼·ާž“fF6¬À½£äi›z¦(O£,BHúÌÿñÛT€ËZѤ-!jû+üˆÛêÔ ´ ‚Émôpñ„Ôò·§â•_Á‘PþëBxE¹Ç‚B~ð“j\µmÕa?júÞ‘4IÊmå¼Þ!c±°Ê²Å× +§Äˆå1ÊZKn‹W=Å#æÂœ¿¸¢‚‡&Œëc5m“ a~J¨š·ö8ŠÄãoºÃNâ9ÍÈþ`ü´áÎýHÒ¶Ø|Å÷†¢W-[3ˆ<˜*ýv¹/¸Ô%þ SY´Ä|—øfpymdâš“^`Í& 6][ét+tîÉÓ~}~rS¿ŽŠ­î¼—o™ì­MÀhº#Ùô9‰²ÀTOeå}Þn öĦ¼!žGä  Ž®|ÇíoÁëéw¨ª^íÒ‘9qLÔà•¯ûN¸¨ ó[HAâ”ÒÕÇpal¬ÁØé·9ÑY÷Òô¤ú÷÷½#ÄW?´ 2¾þhÇ«f(Wñ_pä÷á'øz&hê¬1ÿ±¥’hxU"`)Sf“Ù:qÁÆ—«ñM7´‚  /¢Þ_Lþ‡"‘þÍ2úË;“näzQû-¢öïú?¨k¾˜tÆ%E\Cd>ê *Àk²¬Öõ|·=u•ÙÉÑ·²ò7®Ôe“éOÄØ_Çå5Žçã0ƒ0ìË*m?‘ê—²´S«4§AMc5 Z®…ôko\˜Æ\B´7MÔ^,ëäÒ>îv_–Bê0zÆ„|âô›™Õ´aU΂`£ŠÙQ!ÄÆÌ|f¡šxGWؼªN+?2 L0äŠû‹=IU™Noª'/'úpL8{[5§£¶„:jž‡¡†®Í727o8–WYÿN>*Ãñ@_M£ Îñµ´óÒYX£ð—3b„  @| &LÍÞRe짬ËÔâ¾-¡@;ž~˜Õ<åš×¬9x—Zb1TÛÖáú@·—ˆàÔ©$g+;Vi¶U¯î®¥×8ìiœ¾ÏÑ•ûý¯èÕ±ëgzv'Çî;öè‡Æ4,¤‡jöŒõ·ÍPlp€ísF’’5}„ž['§µâÇp™e³×ºñqKÚlíÓ¿Í&ú…Ñ'¹mnUEb =™ÑàjìkAEù=Ÿ-x>88"oº ÀZó-3Ùâe ´ÇˆÄ—qÄ¢mmo2ÂbÍÙeÜÑÞí¥ÑÙZd²Gé)œè37¹ax”É·8ýæ)H‰(3qØoËx‹­_|(DãÆ'è"Å·|¦qqCº>Ô¬‡Ï`Óç›ÞŠÍaÞ=¨Ø¤›_}=p@ÙHÛ-iI¹äýym¡sßÍóQÕác‘‚²ÎQ®ùÎëÖ˜ŒsÕ[.RÓÞ‡$–hÂË"cšòB(?Ñð„®°H9 Råív'ûx›ÁOð´¾#×Â0“J[XŒï+‹±Lu­úËKÖRhB$î;þöÏ)À¬ŸóºÓmv´ø&'%Ù·nÒù•:¦Zì§`°¤C,¯†Î{ªf©üîÖHÓ¯C­²f†7ç¸( XÇטhÁ+²ÎI¤¼bF ÌJuQƒÈ• óìTÑÂ3Ö¶Ê;áæšw<§tD) 1’ ²«fõ•Jdà'lSˆxÄwz¤g$ÚŒ×^ƒÖEù<Œ¹|xgÉ4±ÎÑ÷3ò7‚”(³ëvñMWþŽ8 wꉉ:›]Ø,¿JŽÒOÊ ÞfYÛŸ¢ Åw)éò1‰ã ›©x›ýòFcì\eŠ¿tÓSy®Q¯ÕI’/Xf VÑÑŒÄ çQ‰º’k®~¨*:ƒ‡ª«_ÂU¬‚Þ³·ÞþŠûA|ñŒÂ­ÁþÍ®*šûy ­i8üûnö’fוÐë#˸Q¾ ‡x»4 ³;J¾³l7!~Ù¸2@„±‡Èµ›‚T…ÎÞÉÒ¾Bsÿ²¿b[7tN«ÙÜWá5E»$ì™?\39”4æ&"Á&¸hŸ 8CØTY¿p£9·>EBanÂÅ9Ýp˜{DwU9µIx§Á×g­ µ"¯·?ÁgPÚ«Ë¥TÞIàœj8Š&5w•'„1VþÓ‚tFßÌ"`x`ªÂ‹÷ÝgÅóÚY¼µ×¾x°Š^ó×§Gg'+¦!'è Á¬S™+{‹Eÿ°8Ú~öÌ›šòÝqP'a†Û¼ò1|îQÐ…z½Ñ„«÷´VîñxcÓ@ÓI‡ ³&Ø` *:âB€¸‹mæ1Ưó:öX9zÛßÄ{Fþ|‰Ì|ã½\³äú¡ù¯°•¨ˆ9/j0«vÄq»ðUk¤½ÏÏÖ݇Ÿ>Ã@;ME$(†F©!çk4S®wÂ÷¼ƒºª KÊÔŸxèa‰EÖDµºú²#¸ÎMÄŽÇ e8ÑÃð‹h¾4¼…lφΆß(ì$ä^lfª©„¡åÓŠqg®A&ræ’ÜžxWˆuax‘µWÅ06jG@úç£Æ£’þænwÎ:ì0´œM–þ•À4, û󵓺ڔ€ßñÒª9ÒjJ¹I0߇ ÷´jðãɺÄ~P(k“gÇ¢&$—dìysH9ô®æ¸þ1æ¶‘b?XD œ‹>äe­8æéMÕlïD"ÉÒƒ©v‚ûdguU½ªáŽŸÐqØVn³çÉ ÊÔ*±Ÿ7 ¼ÖæcÁcÀxÁ–Û_*C¤¸n Uß™GŒ”¿ Dà¶eÛÜM¥ÄŽ»1&#ù\/“^ãžÝ ièÛÞXQŽ‘Ñ4"\¿óüÚZµR’Ûÿ‹¬ãþ(96Y‡ ×,iѪ3¹|eÊtC¬´•µ,q`æWÝX<³gyÎ;ŠÀq Õ=cùÈq—“0ùÍÑÏ“¥‚ÝñóÏ—nPçM¤øÄâ­Ë« J²‡}†ö°ÌI3ec³Ï«Ê¨UF) RXc³Ñ––œLßBÈËùF•:.vŒrǦ½ÔLjCì”/øÙ/Twæ;¬Ðfe'<A?ŸÐä± É ÄšÞÀÇ:ZÕz` ¼bÛÌ&’ø®à—óÓ+ ¿ÀS®˜š}jÓ­me4„Õ+ÿúâ6B;þt»Ò NçÿVJ×mîR³ßñr§}-(ˆÔøË4|;úŽĊÖñûŠGÝp‚=áÞx•ù³»­:Âþ^ÊX×IJ°l/j[S™J&Û^0<ãºð²æ§‰å&íS…ƒx2.8q®SÚ5ø;pã(î¤Á,UÏ7B_Ù´…š ±̸§wî¶/4-gM‰èÝå*Ÿ3 »Ÿ\ Uû† ÷ „ʧÅ$ér…ä­„y] ÒÈÓÝP]Ú"L€Hc\ËÎAšMÒ¯ÇEŸ[Ïé!Û´¤9% uÆžý–EX*’Mˆks©%¹ßzb Z* û‰ÑŽ”È˺n¶pÈÉ¢¡´f}̀ѫÀZv!4Ž.N!ý¢„ž¼xÕ¢äýäq'=íÄ×I¬<£'AÛ*ýIQõHòH1h=X»’èçy6=úœªýbíé€b>¹h¬徆=$Ö‹) ªú;¡4y‹&ÆC)fuße°C9o0Nòˆæ„mkLQeÒ®nÓ(Õ_‡ xDiÛµŠ^’–FâCàԕ­h)‰ß&|…Imº:¹gsÊߟDºKRN¥ôA6mÚ¹"Kš .±²Ó„^c?=ªŒØSû_cž0±€›ã²‹Ã:k Ž(pï—Hݳz¯*Âyé¬g,¯l »^»Îü’tù3¥¯0$OÒWM¬=ÔÊÛl}òs~Ê•—¶X+‡Äô´ÙÇ‘I„"5Dß2ËŒ(¦e§8…ãò &Ú´î‘ü¶Ÿ¸nÅÕsß_ZdTº•Ä,Ö*ËOòßu¨)›•¸ÒiÈmlçy’LSë~óí»/þbZ4ÔÇxy„4WǬ>¡ÞôüÎØk |Z/_û£@¼h!'peÅñë]Éuî{Ý:Çù&ïXŒZü˜:E”}ì燑Ï)ú^ÇKO¼Âv5‡å=CÌÆ`¬×ù3‰X†GpDSíN)Øâ(sÇ U#71´ùïvØqUò”O·–£®¶`DZôŽ­(”Ÿ–c¢'êêÖø”;Õ k]©ÓOô©>Üò~_?›Ó:xu9Æï Zjˆ±" äì'Ý2æ”Ð ß#pLëÆC,Å óŸ94;Q¤@•ùÑâæ6©/åÀQþóu¼~Ä×Þ@´u<IÆéòg¾vw¨Ãù0-$«?â³3§Ámñ;Ê×¾ËVvÅÇ¡LHæ_üÓÛ;bÝ„¥ù»ëÄkþ'×®" NÖ½Éb;]è<Í?'ÈÙÎwÞ;¸®MëîÏjoV‹X³rDb&o¥”ÒcsJªÜúqÞ Lrpªûˆ‘ßòFo|Ä;þé! ³(v¦®³u·ß_§Å”}HJH<g›K¢s®<âœç‹”|$4€VÆStcꉞøa—ŸÔ˜îÓm>z÷äyë#qóáÙ®†1‚É£N) ¹¿ƒëxÞÂ4kÿ#{‘©È‰\&J‰"í„°*t\øQ¢øTçî^×ôrÔkœýÏqƒüÆ0÷ HªŒA­3:'ð´ìöi\¨ó¸Ø±+é;ÑSC?ËëøA—ȸèOO[%35ûÄ›¯=ƒ%ó)3CÞrƒ2ŸKî›B‘d AõÕ|ˆ5=Lݪ‡{5q+ i׌þ%ÞÑÏZ7¾ E ×bhyÃÊuUþCwò í•¬¾MoîIÔinÉÀ£Ñí ò(«R³BÛЧqѤX_ß „Ùutñºð%ÚgºG;DšªÐt·åŒ•EžFÈÏ" Ш÷¼Ì²¢ÙÌ ¨kh¡¹"àÜ™Iб»^×±^Þ¨ï쬌%­ËºIk~ÅÛ}ËÕ rˆ/‡¯PÆLêr¥Ží˺Ðh¨ ÆØÓca 2zþ޹¬Žá´#ˆ»é1%… UÞnv~°bäNø}÷'듈%Ä—aN–¼m¥¥¢GQöœÅÊs„êæSóMNä´¾V¶¤k§ V )[ÍîU¥G{•Ö°â:¸X©lZ>Þ- $Àœ›{ä-dÈ„8[¯5{Ÿ<ªƒ ÎkÍš…] “«ïl¸—Hö¿«ëËuýÂûÔþê.§CØDÜ ‹KžØŠG’³ºiÍ÷x‰PWÐâ Ž¤»šµ/íú³Or| VÒ @qHìñô°Þ¼Ê¸–kÓ¤ éû'ìGÿ¬Sú*#²®¹geï‚0î®ËOO}}4ö§++ù°l®aSŸ»œXM*e%“ÁœÙ¢6x7–ŒËi( ÈSÏÍw3ÔÅÃFsMFI¨§P%¸Ö~<.йVÕá,R¾îÄì7mÍ „ðp ‡9iŽ/lo®jz°D™AeŠà_6ì[#ÕžNh'´Oü»±õò>êÆN?X¯@…`Í |a±Îùé#žä5‹AAe‰³“­Ö&ÐQMûŽ=¥0󸆫Ã0Ù¯†’#Ž£(®m“ÖÕø½Mš}ˆ‚$‰OõËùç¡í74q'çò5»W犋¬è¹UUGúïÐæš™ÐB!fÀtã¨rÓèeÞ° ¨¨¸kAâ©Ö´STæRœê­IvQè‰/ò)þ‰ÏæV]z¹UaJaÓ•´¬óïqÕÍU0¾3eodb›ÞÌíp"›&ÉmÆ ¬›ÁÕgÞ‚-r°ìÔû=Ó{Ä,0ö·3 âžP’ÜŸäwó Ô’ÖŠ[J]©KPLÈa¥­ïdïaäU^—,x~Íe”„›¸+zäÚýY¤ô–óêA $8\â=Œº'ˆ¹/CJJѹŠÇtÍáåÐ~‹¾°´š¶¸ôÊVŸtñ=€€»Â…äá­·‚<³iH_ïì â4!®ä/Þj‰då®ÈO+g/ MTæhD,ÐõeÊkN#‘ w{!îc·¯|b‹õé_QÓÖjh3à\ƒ…Ÿ9öÕD`Sà{?X§3sd}¤Æº¬n¤ž0èûNÒ8¬ØÏTúŒ·ýµòu¿Ê:v7‰búcr³¼NLMÀ(y(z²ÇÇÛo«îyþøqí½I$ ‹¦L³îJháÅÑ/¬Š ª[y&qí[òÅÂNdÅÙJ\;ÐÎ… 5PKr6ݤŚ#÷ü k)¤©™´ÄGtç*S^o¬1_Žê¡¤®»‰vPi‹ÁáÏDÞí|â?ƒj•LdsMô@½ñÔó6ª£ÂJ>3íq„ÛÆB"Ĉ—èÛOô¢—%´wRjŸfŠëy4¬‰Ï‚®ô ñ@_¹‰.qós÷ìM0nºlòS’Ë?E¿Nr%¿§t×kÌR ~¬ú´ú‹ph‡êz²G]Rˆ§r°m(âYYtøPPÌ×¾Röb!j—Ü@Å×\¥äÁ¼7–V†ñ•¼‘ˆ%ÏöGö…¥ŽìžIe•‘š9F¸€¢á²yË”fRj:ˆ˜¿¶•7?G2rAóKï±Ö‘„½J‹¢p¤äûDþHÂÕéÎ˵%„TXMvé¯å¾| ¯V™UxéÁâý8oð.’­¤3f¾A=•;Ÿvc cXqG×…zJ;œ˜ƒÃÿ¬²-öS/Ä«î0ØMj+ÁÎÔUºE ¶•Áy²ážÉØ™-¾õ—Þ¼Ë}–ä]5Ê­ŽqèÃò®ml”°®ù¬³6©=Ú”:L‘7í›ŒÚ n/Á /Ý—å=0 ½2©ÉxbB1d³¶èÐÍûDÝ—Ô/6V5%KX£,vvYpeã7;àõˆ§Á\õw+T‘~Ïèy~Yøºå®|ƒpùå>¤eVDŒ[ñzGE‰¶·fá%˜ØôÇ»&¥ŽXÅ&·Ïí­~ç1^Œ,RÀv ¸1;–,HªÏ؇D`A‘Èø)þý²Y’»5(“ä{$œ‰Ñ E–d=eç[½§Ÿ’Ò±üC£,ÀäJP¥ÌRÏÜËá°o’©D.梴H².`Ò2m ý^¿î¬M) »r‰‹óДà<ÕiÜúŠÙjÓµ¦ì[ŸïªokIP™P$[\ªc³cvy³å»‹ð±Ôzqàa(™u±³&í6?_g ÃF¡€‘™v6I8u@å=~5‡/n¨Aé0Ñh)CqŸÈˆ:˜˜&¿IEVò/ýÔõ3­HHMÂóu›Xh†ö%áʸ²Á^5˜ôGO_hjå5‹%å’,‘#FèÊı7`w&& [*¤Ší%£W‹ö¼ºú%Úî­¦¬ŽÔ_ܹBÐËm×íL•¼âQS.s¼&z_Ö´k¦ Èë²JyýàrÝ;QVO^ŒϨP¸_ò”*V'Ø?Óe.“É¡Å0ç–s‘9cG „1ɲ…G@eLrûÎr+Õ 7Ž6™íAœ&qi˜cY•’º£ýP9è"@iRˆp#~¿Æ¼y<‹0c¶«M®3 [÷ ÔÚd¥+_Ø“–p½Û»g¹Q~-=Ú Zº•F³û•^ÕÂR¿À´¿Êv¶ß& ‹yòÝ'µ®±’µ¸hª%$x”ÐÎÿVࢊÚÐÞ)è4‰ÛŽ¹Çž½ºÞ´àªQóö³Y¨Et[ÄHåUo •´§@·éóhX„1tÍ|zqqcì™ ÓŒ·æ—YÓ…¡“3±Þ&’GºÊþ˜à ÕFÉ…@@µžÚÅVfnÝ«·©jônSÁ£‰FDbÎÖÏy  šu¿ OöhÓ=]’‡³y#EÚB©Á&¬¾qh#í><1…ÿÂ`PLõƒÄœMÝ,è)<¾àSQ^‡Ö`â/ìéPUáP “•Œ?vñ—e$-}3•ZýÖŸ)Ž ½à Ë#¿N[Œ|1ïKü 4äÚiÌ´-ÕÏI4ñáZéz Çlg‚^+ññ¦ÓkXUZ朤h½ósOÅÉë¤to}ßÏa+ØH(vlÙZÔoösÀ-…ÂO9A¦sy>0hñ…Îé– ºÑŒ†^A‚-‡M§Ï8ÊÏ?L"“ &EN‰dˆÇwõ]öÚ*8IÓT);ç51ÑÝ#Þxb¬³d@o¤¼r÷ÖmuìÆyY*Ž‘l¶P¦BØoy6êä ü"†:·r.u!nP“«Ë¯[–rA^R#QWrld}Fb0S‘‚¬r÷2ß &z²ÀnxRÆI—‚¯â™™^4|4¸Úç ™¹ÍœÈß²ª+P‚èxü^$Š(âЂÈç•vUfRHB>m@ûn…S@ó>¨·@ün8cþ½,ñöâø¨0­ÙÀºI»¥ž‘ŽìÕKæ·ü®îŸ?š…m•9˜QáìµØµ OÈh$VLÛU翚ñáä\v'ƒgè`/¥«/[ ŒëN tWº$6!a¬øO–¨¡:_è6Qe=ààÈhé ¨ÇãØ;s´ˆ³¯ŽUfkXM4?ZxâòKTéÊÁ<íiºÈ)#ÖzˆÚ€\Þùt®k:¾ETyŠ¥‡žšóS鸟”@œš("Ç%Ñ⃠;j¤äÚ7¤äÏf^jzo¡Ù &ÝOä½ë=}¡Fb~Î÷ä=üÁ£cû?e3BSšv¦‡m ýÃ< W¸D†71q…ŠBí5· Ê Ê:1¢?g$6ƒÇ7in>TÖb¨;'H€,~€!›) ù!ZäJÿ•ã-üˆ‹JQ…›púõ-t É´ˆÐßÏ6n±Þž—M0”³Cð¤ã¯§L›¾"Ù{Üü®¸{°\ O«ù¸i³6~ ólx¢Ä’qDPú+¾³¾w^1Î&ØóNŒVs\¤Á‡b—üÇ¿®¤[¹`J•%»‹Á‡¹ûpZâdäê< ¼÷Âç‹ÔÖ#Çjí¸¿Ä´—‹0T°Ç«×åKEî ùúf0Ëú𻸊öÈჶ%(wqÞñYÂ`@'_\ÕÌ"“`õ™!÷£#ñ¢WVÀáe¼pºüé-»X:[>°2Ô}9‚ÝÅdÁÁF|Ç·‹5Ç|-Z‚Û —"ñ Dsë^-Y9!ocJ£(åä´¨ž0/߬˗zª"ÊÍ¢{¢nI³ ±†Í†V­±œh:¯;v~Ü|¢%j’ôÉmY•ËGL±y‚ìÏä FRZ}Ý_7¬¦½ð$Áë #®¢z#ïä-_vDdCSF­‘^@ÆvHæó¥Ôåõ¬Z16wë‡qî{@7Ê~^„¾·l9Uüéöe·¾ýê¸5å>6¦ eÛ‚A¶Ä?ÖäÕ’G•:ê[GBÝ–nîÕޜÖl’B\-ÁE<"M‹0ÌØFÅJ¶ÏÇJŽ-¤0Oqš5óî¸Ó*Ÿví‰ß«`Ybz!` Eæ`®QpèµdÞÈÉoÖ(”8“ѱmóáµ-ÔüXùyz— ç{úA$‹å`…8¦’¦wïñImæŸ&o¹áø(ò‡±{ðÑ1¶&—nçe7Ó±cö騞Ժká‹Òþ“<£\‚bÔt»õÄìÞ3ÝF>›/$ÇaHq7c|µœ¥Š©³ï‹Oä¡ò<4‡‚V˜…¹ò_¶–mn R¼G_ã†ÿ+icŠ·i}ʬD‘  ïç¼(„ MžVd]îÚDÉÆ‰wO<$Yd¿½Æ¨’º±ù”ÅHR9yŸß|{°ºÎÛŤG6ÍZܺ„G nÊJ÷„FÍî*'Š¡~y§”°A D¼Öé…´cÀÊs&ªòÎiƒŠC(Aƒ§¡¶CƒwßQêæ¤eõŒ—âÊÑçhZèV€bü±ø¦«'¿L{î@‘:Ÿù]¬wÍýX᪰jI>š²^—õáå¾™ý{TÉæƒþ•¨¦ÿž¦í­èváú’§€¦…“UôŽæRÁç‹YòeOŒß¡öó’Ã~‡àèG¤É\AÖiµ369Ñ©C/«Ò”ÃþC#%s˜ï䨪ÖÓ‡Ù¨x‰¹¡Ä]Ýc†|hG¨Ë^*gšÿ=À EA4JŠÎy§‘€uq[—¤cwÙDؽI­ŸÉ_Í!ŸPG!⥬ƒ––K½¥x¥Þ¸°šhPCúw´ªi"R5Õõ1‚…$¢-(jÙî2é®|éîV2jUjgo0\êbªÓTÙÛfE?‰®§ã¤ ‡¦Tá–×[Ó'):GÐŒunálWv¬0(4ÞÎýãñü:G_bùh—êYŒÜ+Eš!²X Gq~0CæÐ“›4>G,ŽëìýMDͯ1ªcÕ¹Æ[Žt$’0X{4ËŒçµ (q.›¤Ì•jààP}äuà ¤·qŸí7 ±ôXkïÍØò«¸WOßjö<–YhvmåÃÅŠÂáÈOÈdñÚâº¦Îø.ƪË8‘GA墡ðNÓlÉ*"gÓÕÑžøख†WY¼P»¦ãt?Ê:…$ÎP#`IqWE“?{ª Íî$Diô»¢w˜«¡Q)š—уó|ð'èǧ£Us¯U®l™æ4>¾ÜE±{%|9^µ{òâö¢œÀˆü¹€¿%¡6Ä-Õd:g0瘨žg2£¸9•*¾Ë^LwQ&}ËcðD-:9ìüCëS¹\-u-xŠûm;l 5¤/Ë moÚÍß8ô»c_Éd"vß2®Ù­+‚.¤MGs ÞäH+Çjï(ªé\Þñ›§êÞU>H «ÛÌ©ctÍf›Jƒ3``ùUÉËdQ‰W¶y®ÓÔë·r‹9}kàUâßrsMÅ®9Î XꂲOßw¬Ð(JÒê(ÿÁÌ*/†úÞ…ýÚ:†n/Þðt}ªY᫱µÿ/Õó1#¢àÁdâê,aJ­Cm¶’YE"GTV;H•ÏŽ™YÒ_Ý'“TR¼ÜÐìÙXáÐãÕÏñ&2,å`ÈÆy×å(–¯ëÜφŠ¡ ÛŠlÇÞ"ïíiñ{ïNK­àÛf«´2LܵºÝŸE뺵œ”w³þïìÙÂ3 SÎñnÚÂi…È¢Ê L¬)‡¢°nˆdáæùì3Œ£gæ$¼"ˆ½VD zX4ªÑIÅd0ùN§jØÑ½¡-Ò}:òÇ$«ÎÙ¿HâÇÂ[ÜžOd¨ù×rÔt§[ª¤Q›fƒºqµ¯™ÎË.¤W–%~›¿í‘s[Ö~X7ƒ”<¦ý©ñܘõC…ª_õÊÂïhñU±Ðu¨HÚ‚[Ôùc¬aôŒ%ãÝZØÇþµÖPéNƒ ªJaÜžíÃÿkèž<«¸¶‚ûÂö‚èBÊ(XL}“r䌨ÿç0-;/©‘Ô";r¡l‚Õm47Œí˜™³X¦Ò×Q§)ùˆ6&_e‡*>ÉEdvö8Õ O«è‘½Öߎm˜æê†VÔÅóÔ¨¥Ã[Aîk3èÝ* µé•Ñ!ä¨Äæ´³RkrÔñfHÂÏiSøÍ®›‹ÿßýBKÖR½-"ó÷€ËZ¦ìhÙ d„ê]6 ¬}Ãé¤3yPÁDeÅ)¨ƒHGD Y'ÅrúhžM%¬7{°>wz|£!Uø•vPÆ â nÏú¡‹7’·®Ã…Xë(¯YE1xéXF‡eæªýVʌ裳oÿÓX¨DXyKÄEºS(ìÊØ¹GHg³ëB3Rç5ÿ Sˆïe–ƒv4Û&SIYhßÎòÁÏnòD§y‹Ø,µëöxt÷Y?,ÈÏ¥³$¿Zš•£C(PmׂˆÐx+Ó Ý†/²I'å0b#ÿ¡´3žÙ¢«ÒN8å/°F„mœÃ[¼Þ]T JK»ùJ¢Ïyм®j° £“»w?¶Ì`=ÀèÖtt¯-C<Õ|­•ƒÈ‘ˆ&ep¾qù^ìÕGlPü«Îr‚à©É|w0çÉrCíeéÒŽA ƒÔg‡—KéÞž ÄH±tœµqH4æOt“$ÁSIY,®A/òýŸk‚Ú𬽄J†@ ³þ†)œmE¨&(!L‚×Ù<Ççü)~qMv3ÃÖöÑízGõÎÞ¤ ŽÕÜH[¸4‹iw6¡4;º8ßx‰§6 ü%ó4Q¢jXeL=—ŠwÐgæ~KüQÓðQcQè>ÑX¥û ¤}vÌ™ÎV¨ö¤ˆD—›÷{U/¿„}1îéÖ5 œ ;‘ofÒ\ОÏz*øŸ»³ÝËiXFÄl£liÓì0õzŠÉ‹§ã12c 3ÎùÎ@)Ë5Р>Û JM²ÄÝ ±„LÃ/×0ò)'ËIîLÌ7TWÞ‹Ó?Ö±s8……qpdw° ·Îz8µ>ð94%‰[=¿Uhn+Rh>_¿z­ \°®Qí•ÙÜZ _8·R[ªjB?ünÄ«o¤/‘Ñ¢U<¿ij×Z`ƒß-btEÍb)Í8[ù&S¹©Üššª –%¶ØQ|i‡ñ°iž*Ö®è`&$%ƒ8Pá•’ŒÚ\˜ÚfU0«ó<'%,̧Àr·‚7&¸ið§ç8/1†®©ú' ˜zfÂdÑd endstream endobj 216 0 obj << /Type /FontDescriptor /FontName /EDDSUQ+CMTT10 /Flags 4 /FontBBox [-4 -233 537 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/I/L/M/N/P/R/S/T/U/V/W/X/Y/a/ampersand/asciicircum/asciitilde/asterisk/b/bar/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/exclam/f/five/four/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/numbersign/o/one/p/parenleft/parenright/percent/period/plus/q/quotedbl/quoteright/r/s/semicolon/seven/six/slash/t/three/two/u/v/w/x/y/z/zero) /FontFile 215 0 R >> endobj 217 0 obj << /Length1 2400 /Length2 15308 /Length3 0 /Length 16700 /Filter /FlateDecode >> stream xÚõTækû gÛ˜êζ5M¶mÞÙ¶›\“›l{&×d7Ù¶mμ÷Þf?ÿï[ë}WkUÇéãÄõ£$URe6s0J8Ø»2²2±ðDåÕÔx,,ìL,,l””jV®¶À‹(5€Î.Vö|ÿ0u»‚dbÆ® ;y{€Œ›-€•ÀÊÅÇÊÍÇÂ`caáý¡ƒ3@ÌØÝÊ Ïq°º PŠ:8z9[YXº‚Òüç_)-€•——›áow€°ÐÙÊÔØ oìj ´e45¶¨:˜Z]½þ'€¥««#3³‡‡“± “ƒ³ÅGZ€‡•«%@ètvšþ" P0¶þ‹%@ÍÒÊå_rUsWcg $°µ2Ú»€<ÜìÍ€ÎPr€ª´@Ñhÿ/c¹0þÝ+ëÃýÛû¯@Vö;›š:Ø9Û{YÙ[Ì­lE 9&WOW€±½Ù_†Æ¶. cwc+[cÁß•$„•Æ ‚ÿ¦çbêlåèêÂäbeûEæ¿Â€º,no&ê`g´wuAø«>1+g )¨í^Ìÿš¬½ƒ‡½Ï¿¹•½™ù_$ÌÜ™Õí­œÜ€Òbÿ6‰þÈ,€®NvVÐ ô4µdþ+¼š—#ðoåßb?GG€9ˆÐÏÊúƒàãbì¸:»ý|þ©ø_„ÀÊ 0³2u˜-¬ìþD‰æÿ á;[ytY@»Ç `ùëç¿ÿéƒÖËÌÁÞÖëùßóeVSW”¦ÿãÿêDD<>Œ\F6vv'€‹—à÷¿AþKÿ?Ôÿ–*[ý»4–?ñ¤íͼÿbjÝX¸ÿ{)hþ}0´€ÿÍ àÚd €æÏâë±p²˜‚~±þ^ÿ¿]þÿmý_Qþßÿÿ$áfkû·šæoýÿÚØÎÊÖëß Evs…¼è4ìÿ¯©&ð_‡,4³r³û¿ZiWcÐqÛ[Øþ·V.Vž@3%+WSË¿×å?CE·µ²*9¸XýõÒYYXþtm¦6 ×Ä4ª¿U@Ð1ýoFq{S³¿®Ž“ `ììlì…ÀZ.6NN€+è<Í€žï5€™ÉÞÁä±ó˜;8#ü5P.N³ð_¢!.³ÈÄ `ýƒxÌb/€Yü¿ˆ›À,ñ±˜%ÿ 6³ÔÄ`–þƒ@ùäþ P>ù?”OáåSü/âåSúƒ@Tþ PÕ?ˆt*ˆ­úÊ®ñ²kþA |ÚÿE¼ ñ誘]@+båbóÇT®É+(¯‰±ó5(žé'ÈØÔÁ4ôÿ:€fÏlöê!ð=¨ÒíÝûÿ—ÞÉ t.\@e™ÿqµÁÜÊý1þR;¸9ÿÃdbñ'"Hoñ×Ç øO Ë?ÄAí³ôr´þ³nÌêÔ)›@Ñ?%r8ÚþµÍô ¶Øý¬ ƒ?±9A±ìAWð=ˆµÃŸr@Îÿ£Qpü£s}ïìmæÇÁúo©óÿô“ÔaGÐDþÌ€ÔG[·T úü3;ý‚šó^±‚:ñǘó/tÿG«8Aæ. wþ(çŸ @O#³«¥3ðpõpø‡¨!nÿ€ æºÿcå@æÿˆÎŠçõê÷n Wo ó¿bÿσbêæ jŽëß/>èµùþû›zM–LùC­B;žê„ =÷'g)÷5Ói}–;Ý^P`Shk³‚7„SFzÑÖvÅiî?­¼ûœ¶~‡ oKRnõ}3LP™ÞoGXšÂœ,:þ6@ÿQíÓﻓ¯F d+x— ež“ŠRæ“G¿¤ç·ŠÕñÏ ûʵ\²ˆo3Œ±ê1zA¥s”ù&Ùóxd0®ŒDptWž¨s÷³¹“¿IdèüÎbÙ‹}t¶Øâžç½×«ÔØ\ºñ)ðuðˆ ï1Ƨ©|DŽRep}ÊJb6sXh™À–ì{ ®DÌ ˜‹IÙ%éýoJL¦Á¸¿ž¨lC~™¹@ܧoS:p6_±+´¼þœ‚Rª7å½PgHÖ>­fÁ†–kèz8¬¥Wî1hUʶp:? &µÒ˱Üô,â¡kÔj¥ZË¥ phøŠðZýÃXúÚ¼¸Dø’i ³'ÌÁp0\i–ýUù¬ü“K¤#ißêb×sýÛÖÀ´L>3€V@gWœÓ3“PÀAï@QA¢þ=DÜ4Yœ®úÍR!á{ÖŒ©ª]½p–wòéa¥˜<]ÿ€‡9MÕÙ8­´½§ò˜lød†ƒG\CùãWþ,‚¦YØœµý‡N]Þ1Â$Òb²"ÃèÙÏ`*Ó³&¸óéÓ·pH#nqže³ò–gsrìJé«çX3Ë^í(œYUX ]dSÜÔ‡mt0çâE¡Põ:à¿gKMÛ¯+~šðÄ:SItïÁm”2×g¿8?Üw„­?õê&ñ‰ÜßBîKëQø§ Î%|? œŒi.ˆKÇYÃzÎî"Ý;Imè©Wîþ®Je(7áµ§5jA×IJ.Â/a†åõ‹ì.ÁÔæÙK¥¹ˆ;y8c)«;sü£úÅú®!dí¹aS-‹ÑÒº%}ª;Žo¡ádÜÄt`¶À“ðÙʂ؊% àP'U¢ì;U ;»EÌ5ûÁ‰‡Û#Twœ£HL–ôx 4J$Ÿ¼S•ÊÖqp¤›ÀºØ•´¸à$Ý´ÌSµŽÇçÓ (ö ôÂ3íú&V4kYa—XþÖâ«þö¸G£ ƒ9/Qe8¯öˆ¸a”}¤¦!*|·ø+e „)übwÛ¥üË–òº‚ñžn„Qàa¿ ¤—­‚§¾{QzL!ÕKº¯yóŠ•r‡ã÷Þi/X;å9g+8ë/c«z?»Õa1DÀÜ*àù\Ž‰Â«¿†yqŸîÀvÄg«Pï«uÂF¶‡MALù˜9g1_™œEy›»{Ý·l Ââ1ʾ[®øç\p «Zf«?Ó¤y§¤F›{“’¿—„¹¯ë¸ul‚éiô©‹ä¾xT?½3ÞûÔ³ 8†ÀiZ¶ì½KÓ§#ªœ wÕ+¥þ.ùÁ¯Õ! àvževÓ_XGGu»¹¯q ¬Á vt/±Vð,"ãêx£Ñ"Ù«‘–úÂqÅÊ{Ÿ#"áM)‘ê[–¾®zÕʈ –{CŸ$Ÿã¢ÏèºÜ¿~M-ÿ¬q0À^f÷õw /nOðU¶ ¦cIý®íB|ýb8 »E^9÷ ߨr^ϧF%ÿÆ3·O³õb—z„.ªå‰ü¿<ùBdjª&‘k¨ãÓÀoÚ¼„ÆÅˆŽÜcÜS…É„]‰q>[_ûQ†Åò‹_0Ç–¿n¯/0O~Zú£@ô¸‘ Þnpã[|û]…tŠß(¶¢o—“Áδú¡Û-A–‡‰ÑÙ4oçdž¢§ 83™0¤ºþ+–ó»[­/%W#D޹Pº®·ë[˜ÄÐ#nG$”K%7FDÔ÷,jùHPÒ>ð$a\Ö‚ùø/ãQKð#Å]+‘pícÜŸñŸ†ÓßÀL®ža<¯ðù¼”`•£Þç¶… ÙJ}ïøJ{“vȯXc^T`§eÏõ8}l3 Y)¢ÓÊê×Òˆ¾Jʹȫ§A:'ÑP•ùñ5?Ä]·½xíǼòEˆú™»®ôð{1P¿F±Qò) >yR½û_ö—qHùs`\ÄÈp—‰oedNõVb‰Ö(Lgõø¹yõúf?Zô¡ƒ;3âd óä¹íßæãßméö‰éñ´î׌<fYâ‰#G¤-õg!êô½v)¾l«ÛÍo¿±·©ðDˆ~8’D¯‘ÏKʘž€ÁKd?kç8ÄúÁu §—L`¾În—Žўƿ[ˆ?a˜ª˜¥Y€µÞ>ç2J e:øbºíéVí`=Ì)K3šbS¸Ô¦nA©\ƾ–£%ýd:v?½iÕÈÎxž P-GÕ`Lg²Tò”@AHùàJq\T„9yt‘£r!ŸC°ËÂÆ~´aPhS#÷ÂWYŠ(GB³2G&×7‡ô›8X0ê1GÕÙú-åñÝ’Ïî·O.øò&®ƒ’ö¶ujp$À*Û€Ó:°¼jª=ñ+ù»d£Róújˆ‡®|ªÞyKÐz)ø}uD¡— WpQï—¡Ý©bOhËùtÄ)€5o“·Å0Ó×áÞæ¶ \’½Œ¢¨‚¢âÕM”daîWl(U¿/4x‹‡¾½-èTžêD€OßÜí¿ƒ™À¶&6§ƒÓÊsËÁ‰† kßwê"X‰f…'¿Íú&;µÌAeá½óq’\tJ€7ºÜÄ>aÊ\ ßm|'” #ù…âh„ Ž)ð–>¨"–ç[ðʱáb=t$MÐïÊ õ¨Sp= Š}ÈZlÿ·ûñpjõí+Âà©ñŒŠý°Xé8a |0ëdÏïî6„Ê(™CW}ÿVÌ1‰5·oàýùŸ1-e¤ÜÀý ú‡¡ÊÚΓJ’c÷f ”órηaë¨á'V²¦$óX¡+©`YH;¯€.g>|RŒšA‡¬õ÷mo¸À Éæ¶íhÈ9è eßÞpZq^^ ®²óâÒ!@¨N·¬ÎIa‘ûpnmõvLÈuøÈyµ+ -ðA®kKlé2ÃÈ ¼Ù=¢Bs€tR5Çü±&·… |¸yÂôs¬'"¯ùÛëü2{EuwÒ[C™Õ×í÷óíT×_ˆ®3_º›ƒ ­D qqðo넞<{VJ¥p|Û/ð»ˆÌ–µú¨LSp¨­U­¹ ÎåcÚ‰ë·Qv?^0s(ÖN“­ý6 Ê –½„Ä0·œ¡ ¥Ù¤"úõIÙC–‚'OøR0}‚È#݉>¡²ï«ñ&£5Æ©HM›K¼?àt}1‚°ôÚü4õ÷ÒÇòüù•¤¹`Ñ5ƒ‡Á:µ:¥(T‹…È­Þ×Uï,kÛ«œ!–¾«|ÅØÁÔ¥¾È²@Qê¨FX!aëˆEN¹Yy¹w~òtìñL›ˆ‚ˆ˜5(† GeÐeù½ñ¼Gy¥`-t½¹(Œ¬sü)À·L¶[éC˜9í&°žQs{";%ûø:ä}„vƒš¢ŠcyoÝlOæ~®aaÕט€`3-{*ÊŠûf”‘÷9I´_†5ƒ9wZ®Vórº¶©ÍHCQQä4ü}ŸŸi)Ï ¸œ¨oYý€Ee‡v% /SLÂM£Pæ-^x;0²aŠ>0x¥Oi&èáRšƒÁ<Ï L|)üëƒ>¥ÚøÇñ÷« ?†Uø"Òº€¦Û"$ø¤t÷t×ý)îÏ·D¸ºøŠÍ…½$õ*PO•ÚMᘟG`ÎîSU³Tç*8çslé?¢üŒë«o±EåªÝW¯Ñn»,§®.{6,p¤„‚½¬{Ó7à³a à™tA³Ï4¸»Aèý ‰O³!Íø\shŸýrÏ6òI9( Ó}ÚoŽÓ›Ýnk)ã†yð¾¬ö[U.þwCÔÈ[ÿ®ã)Ió+0\ɳЄ$Žä`†âêèÁÎ×'Êü•Vý=ñl©(sû‘Õ@ÏèA•ßo^rå˜I¨[ÜpLYÍ»×@èÇÉÎÒÐ/µáá„Æ3’~ûaxG½¨Î ùþ´H•ú)ÐWµlnE„ïî7‹ J˜¾ÂÃo’6EãˆL°JÚՃӳĊüeí"*Yh«ËªŽ5Nêú®Tô§ó(³Æ¸y³DÈöS©Œ¸ƒÛ[ð'øÔ¸ßÛT^Líù/EÚ„ÁFvó|Úh¯Ð~hžo¡Y"¨ñ¼ZN¡q"¡ÒÒ¾al¯æ¦«$¼a¹ôL¢¿píòà·0&cåì××5ÿfË¿u¤{P4.mgóeÞÅcK-–ª²¼Dg¼åV,Lªÿ³k©iœ« Ù¿—óq±I(‹`©&ïûäôëvO/ì¦MÄQØg&Ú¦Ûïù)Þ† ¸ÄBÊÕšÓìla°4¶e»§ÈDQÓ¾AŠ‹&Œ©‡ÓúL©jT²•İ“æêwÅ^·Ä [2õÅzkzå I¡˜÷¿t£Ü÷È^  ÝW×-lH„X(ŽJ#ì`CÛ¿:)Õ¶·5WÒ¤[,IÊRÙõ·¹¶x÷¿U‚W8 .q”zs1ÆrñÚ\š¡º¤|ñ(ÓóDÖÉMäüŽ|ì¥÷5C¥ ‚°`sæìjÒlüÓqàjfØíÚAoãw ¨²Ú«ŸäÑ#„½ÆÔÍ>sÁ_¬¾aúËÚZOïkˆ\\_$y«`ÖbERÍßslùeIÅív[ %y§Qv'l8×ÃÞ/ÿö¼³íßk–ézÁÞ!I%04ü:·˜â7ƒwõd¹Ñؽ÷Â:Rdº½*ðÙï˸DÛáú”&ÅPŽïÙk$Ü’p„´®;uº[‘Ó ù?–~ù)”„§ÆÌ!A¸EU¾¹M‡Û¡" DhåY¶”½§}tÆ©ïâ ᲪÞ)ˆžmQ˜,=Q"E¢ŽcÝSô–0¨åËðEMŠ*®¿iäsSž†T!¸·Ý ƒR ãCQ|<³SV(ÎøÈun¬~°Ž†WØf!z!÷5ø*¿æä×ÉMF˜vQáOIÙ'Ò®ÁÁO–>ûZñúðÖ‘»ý®Q2¥ŸÚä'ïà †R4ç¯èPéuªN7Ì6*¼ÌóËìÜç2õ]áñC­ 9|_Â×OŽÒ”ªÂ¨;ßÒ†\÷Ã¥VR0jSu1Ç¡`ȾœO™•{˜Û»m|ñ@µûÆbG¨‡6·Ÿjô1BMÑÞ¿kQžLk,d÷ÃCSǾXœ9˨ ¯QN†aFü½”Ñ®p˜ð"ºÝLF>ÂÂZu’qâeA*ØQÌ…µ¹ý¸úÒêט>ÑœÌVãB×f昵ÃþƒN°÷ÕµÅÍ%§â J†ËaÁfÏGîõ-¥d¨j¹`¢º€_]¾e(%3A¬¾Üwi"”³¿›ŽÌƒI q5«cÉ̺·¹à”a¥;g²?£ ˆ3m üPͶÊzîIÜÿJ‹9Oߘƒ8N95¥mÄŸUÃI.ë §Úž¦0Oœø`©d¹'vµÒ¤’ðñGhM+êÍñAtèa»|ÐMÉþ|‘*Ï+IiEÃè$bh¥û¤î‡]Ȁљ¬ñAb/çI/y¾™Gì±&¥¶mä\>æïÁktÊøs=> äy>3ç~£BÜ^O˜é–øªÍaH[F®:%dHtø8GÊ¢T².0n¶£s2;h\‹VÎâ Z?6©ÜG‡¥ ¥+Kh¿ ­Ë©àmÓÅÕ6C+÷ZŒhÕ‚¹eh0L%’UP~)'ú"7ZDÆá¾ÖZÜ»\îØ×®3tO °??~ñº©ýéI.*Ë'`Ü}³->6zBN'iŒÞÉJÿ î‚Ù@Žv—8ê{Q"¡×&+àmD¸ìI#fò×Z«FWŸû!êÏál f {™èSή ›ßF“;$ÖªK0¢Š`"$lñåà½"!Í$„ä ‚×éŒ{ÐScˆ [— ú{8çÛöf;SzcHÛ«" ÍJ‘ÙP¢w'2Q¬^Ê<˜É&ùÌ5oÈâÒ àjvY(Ð-B/k5oóÝOì˜Þ~ˆ¬v3›~Êñáë2# ~iÆsŸ|ÒWò…½¢£‚µñå¿Ë· äZû<ƒâ9AÙ6l Å6-c¡ŸŸøDx6®aWÛ\ ^"oéù¸—«DuI3å“KxplñZ0e°Pˆ;üß_4—8æ{^ßFsff3¼OÐuÆœ?±Ö+8— é4)CíQ%rQèZÓIX˜c¡¸n¤XŸW¼i:wך„T£—%KwËœþýõ;ZM Ü׋/ ¼:,î{" ÍwÄš²‚i{Ê úƼh“ÝŒÕò@ßÀB'ÂÂn²~ƒÉñE*[Ì<ßãx— «ßÓÊ‚M$ÝèÇ÷γPû;]0"ü>pg9šÙ–Û°Pc­Þ¬Œ>iÛÆJ`ÔÓì{ Ç`'Î4¤N‚]°¨zÀçï/KÈo ñ)ü¶Ý¦Pü‚¥Ì`£âAä§[aNªŽó„ð„jݰW¸$f&'YañŸˆÄ\©ñ¨×Õ%c'}F?•Åp…'+¦ˆ¨ìK¸ `ËÞ%gv)¶áÄ~&Þ‘è*·ò¸(ˆq¥[ðÕ*¤”ùÅóÄÿìtKò+4†ƒÛÓnÑ:5ýEšŸŠDrãÊûÜ…¾âÖII¦Ô׿†áÍ#²‡'S‡£~·_i—QÄžuc/üužê˜ÁAk‰pWG¿(\¼úóxr¦ƒcs«o%É>³±R§o¯ù]¥3­Fû—w{¯§T=¯†Ï”ÊÞT²i¾†UË4c&Ä-€ÑIèTk4*~l©¯¶½tx|ñ´—ÿ=odÇ‘5±“y‚óíìô5ópñT{Qí\ñ£œ¦0¼† jVªh*4“¦ÇÑà„4g¾¬½Èº3c÷…X{A¯Ê;£.!Œ—F°òú¨xá…C L•+èˆñR*¯ë •%!¤DCéÄ Î2Ú%´µ©ýû€Ôú"š“=ïöì·L4Æý2%~ÙʢΊ—ié©Í;zàu°ë®rO¶±Gj=³aIr½Î` 2?¿!9$COL­^ûe™u_µÒ3u¸ùHÿ†ö¼2WëóÙ2ÊÏu0yh1Îùätz­Žz|~ˆ”º{t$©ƒ9w2çÛ¦LmmîÞ=4Éݶ¥;/A* K~äùØ#±›©t=ý’Rø ÇðÌ[Ssí¿ÛÁ©,Ôvµy›¼ïZÞÝ nš9šì¿h×2]âiÒ×õîê22©ã¿_$Fyqß>’òhW_væÛÿ¬Ö™o˜qôؘ>ÓtÒ•IˆÍLÚü);íé£ëe{ü$uÐËCŽ8  ›½Üq„Cdx+(ŒÁc-â•!#õáøý:p•m~±ŒÃÈ¿åÞyÑÄA¯^lWXm;ëy¹Ì4‡(wÃp¬ÌĨËÓ)@•ÌÉÚß—W¨¹Ô㬭®ñŒÐdfMÛÍr ¢ýðªGÑO«kAל,¤Q6(éJ/ù`Ó®Ûðs—êÀc]ÇŸ=À¹%!lz1ûßűæµáD%I㼸ö¹>|ãflœâ#-½Ïe¸¢Ñù;y ¦<.õ$z}¡‚è<²©*/]ø§ÃTu%—×¶¡T(ÇfUÊ­YÔèœýécò=µŠYé;ìhTæmJ IRß”?àûFþÀk„ë+8ÍÁâEðA Q!!j¤³¿LÃ|ƒÿë…‡š7ŸWzÎC-NJ‚!18 Ø“Câ‘GæIszë÷ÁH>®NYŽÒ&R‹¬ö:E·tÖ‰|KkÓ„D)×±;§âYX]Ó;Åjà¸jI-[;›¼;4¢-ó¯´}L_j‡ wKÄi+Bµ]Šç@-[ª¯Wö”.ŠK~–jo»×PªƒHoÍÈÓ*Ú0E#â¼Ñ§*Åùpɰ »L¥\ƽ#>\QP~8[»ªÐÍ€Ëi¯wg’ÈŸÿ0ÄÊ¿‰5>23˜àæ]BH£›¯Â’ Õ·Ý1­ƒi‹&¤<'CÔ»ÁWìaZg#Ç‘ž‡i³FKžx«Î2ç€sqd SejÀ²*º1·†‹ÿ¾w¦©¢­šžm?;§ñ‚a’4‘· '³%wL);ªn¸O@—{ ‹ ¯°*ENƒñù÷m'{Í'@ÁÈó (E]ü5Û‚'­úí ZXø4hTÌ îÒíd‘ ó®$BÓ¹BÔÅÖü…Ô÷«M(Jša;ùy¤|cp€MñDH/§ùÄmÕ_’ò—í«óO÷4ºÔ—Lá_ÓÖäw–e2x„JoÕp“‡l}‘ê› ¢ÂS~"†àSP-=A4U6+SúôëaHEØv·JNUÍßÙGÀÚlâÁ©¯fxÚHFÓ›Ÿpõ"½Ëïf_a†ã7šR½³o†ñÈHh–Ç®qWWôÏ0YòUÂ@ÆûÆ»5ÅL ý:í9ôeÑO¡³wxÖ*ÃdÁK Îh¢0œUêßÝ©øœøJlÁ8Þ DçÝî—SAüò‰Â#Ò€þ€rtÆS›G-KRÙk„i˜8ùe~ÿD÷3^ÄÖÊûÖÚë0ÃÃòË9]f7@Ëa¸gzôõ4Þ»èè|Ylö&nÅëJ¾ŸɶêR¡çjU²qå,•Óœ{ÏkyâŸ*¼kã|?è&ÐôUik§‹Q˜ž¤X²¯®lÇŒ§ÓåÖ½o„¡ø‹FF‘è^üÄ‹¹8B÷©×Í_>è¬ü½åù•Î ¾cHòÄ(ã‹÷tšmHáí6Ƀãc(l‡?†QS”æà÷Vs„Çañ Ý\¿RÚR· <“޾-óŒ¤/&ÎÙφõW×½L07$šÂÉSLüßïš×µh¦™”ç Í’oÂÔ~^²šn±—C|#¿|/ˆˆ`ÑFןJhÊ{ªn?3šÒº\©‹ÀË/eîógpjõ¨R „1ã()æ•Ôß…õø “â—îõÀ]P~/9^™J³…*ÐÿXCìj‹`j§D¸b@6c¯¥ÓOÀ¶é;$}žC’iáÞh˜T;²—<eò"ï0U©S4Ukò£ÊÀAÛÓZ>Ç[Î\Pzr™“ôù,ì]?Ój[œaЃ¯ÑÅ&,³4(Bð÷£ÍÃQeq5^qh2 Tr(?Dpƒ|g+¶ÜZAk>™ú2ÿöƒxݱ.@¬9«qí…"AÇŽz3"¼RÚóHãìŽImnžX £øu¢® ÂX‡‰˜‘„âZªýãÒ˜j£ -ºg&tÍÍ‘-'DË¥ý9Ë fsªo+± e¤u Å@Yâíã7{LðüÁ¨ª¢³~9®9­Ëþ†žÄ"°Yr|ZF‡Þ8”ŽEÛÛô¼‘â/öVt—}cwË£¹Á8Û­B €ob°‘mj=Ÿ%Ž*Zž¦PÇŽ××–éÇ|¡*­gzc«M†<naãzšæ1óǦÖÉÝ\• l¡–7¯ÏB¡YyH"š88“Ú:¥­¨{ l·œ^xœÖF¼Ã¬ví©!lé>,ÙÌo]§× y0*ØD–è'¤‘ ž15=Évž¥íį±œ;0™~Â’¾Êû"¤jªÝIð–®Yf§Ÿ:¦33}‚|‰œÇöá‘»Õ(Ÿµ½Áâ‰7äQ÷ƒò­K_K„l«Å‘H‹Ô>æŽ 8ÕÊ"u¬s”ö¢ìgáH rŽÎáh<¶æ>Ú¢¡Õàùy-CP²Ãü(ßBBxç9A@êçî–æz–mFavÇúSNG F"ó}Ñ È˜ro&¿ø±Œ$ý¬‰è<Áöü1UˆŠ­³2ìÉQ4 A~Þ]Ô`¹5ñ7‹áÌ£˜……ü>'Ø›ÑÊŽ˜ —Á;çÅZgÂ'Ø‚êÉý/é0Ôé=Ÿ£õÀÕŠ€ëÎu½Ø1¹‘ì¹NòŠ}Tºª·ð-ž9ä™çE? ä¦x7ÊFªCÜs[›‹.÷í«¤w åK5S‘µWþi¤Sµ; Ûå*X·ñSF"Š`×¢N©ìïÃ[FlÙ5—°;Þßé ¦Ï0š+Ç­Ÿ Í*‰áÝôäÔaƒP6Ù›˜¾˜u|ÖQ™ ;Q°2“³,ñC%Pî/À;ý^e£^¥Â˜ÈWn¸ªMæG7$ìh|žŠ¨Ro“ç§…-,O†æ†Ë×õånÁ«E‹<¾Ño„#·oµŸ?ÉŽ4Ô®uÛü ÃUÞX­ V¦`ÁÝvøhã&-.¯D CÉÝÒÛ ¼é!´ƒKê÷e‘â†òž8xÝLam6t ø’V4¸yÀÊ#xU.î…9ð¾î­„¢¼¡!WHÛªÂÕj(nû²¸?; Æ9fI!>ÅîÏL5H?í,ôy›p¼ûùì°ÊÏIš­6'êüj_\~Šº›8|p|‹· Òsdœùe×£UkVÑ9¾P£¨“¢òõ‚)V0 ¨ùÜB-"/ZÈÂô»•/9Z t®Þò"„¦vˆ3×;÷ƒªqLy¶É¸«8{A7lή¬YÜãÑN»ŒÚ48¯ÄŒ³×CŠÑþ:o¨Ïƒ%ei£–“r2kÙþìBNÞ&iå ¬¯²…š{Tø“=@«S7œÿÆópôòQ ~5ó±…«ž8Ö½å¤ÈÊèËÖF¦C<ôÜù¤­òZ¯™ÍúâTýgê&°u¨xë_ ¯ÄV;Ú?ý›®Ccy©ŽpÙ>úßš ¡`aDR,«™86ŽºaçÝâ}3Ç"ÐrÒx—¢ðÞu„¥,ë~碰_]Ö—.¦‚F8š8qðyrË·eœÉà¢ÑåÊ?E7a(5&g^“47q „ÛmŸŸ)½\¨§‘a˜&ê×ÉNÎ6€®y°g¨ÖpN¿‹H•ãªG%-W «ùúà—TRÏÈ$ü“[E¡)sVkÑ º:ܤú§ßEG~†Q^ ï=a9i2Ä&üœöõ0ÑX¹G#¨öu*º‹É#úo–’ßêÅÔ6/û.¶j$HcŸ=2ÜŒµ/ÙzΞ˜â£ŠIt Œð£ÜȈ,½ùÙ.í±™™;ŒÎ»;’ÐzL´0’ Âke~èò9iw½ú š­ïàµRìF;NŠèH21×^]4Ãö—bñ)Hå‘eî5²} Æ$ˆÛ ÿhiž‹ší¤JÇtÞy\êÙ…€`IÚÊNò(ÈŽÑ£ƒ>[ùˆó‘1ÐänQ²3×Ï8EBL½2P£J¹÷KqŠ× çÂV8L×`¼„.¯0ÌψÇßÃði£˜.çW˜X5L(ÃçF,g5"ß—Çü$C´uÃ|çV‘ÓpDå1#›u›Õ< €Õ…×öR^ §•Ò’\Ï;Û®ßûÎvkÀ7G¨]ƒCû½>*îÅÀŠüîqÉÙºl&Ô Nºh´Šÿ‚ÄeÇѰ*ýf?˜è¤'‡ªœ©Ü({þ.Zíħ‘O'Ô¯.ƒeðsʨM Ò]Mrõ,ômŒ#†‹Çc‹«×ÜóêX•P£l*©52«¡±Y=¿yÁøhKG­²]É!ø¢¤dq‘ŠYqàä’çÍõÂÿµƒ¹Hý·DóèS¾¶×+øO’-UþÛÕbþ{‘íVyE:7Áèžòi¥²ÀÈŽ’/ <Ê„ LG©dÜ{1§¢ã²K«X¥viéUFÇGjÈ~‹Ô,ÙéwB¦±ÁiæfcM{¿ñ©)ýr«‹‰~ž¯ê(½±wxï\ùwެOR\<àeÖOåìiÙÒLtUªŒª‚IC¶%v!]Í¥&‹òîÖ™&Ž{þA<âª<¬'Q«¸±1°lT"ÌÓâ¬gd¢OP(Ãx‚\s®a˺!Ðt¼’(Þô007òø!ÊÅüWÔ($¸%´‡°‹ã¢,þÕßßçè«ãÖ! ˆ³ÍpLá(H‹ ÓU ¸©vVHɰúaLWHzT©Ñô+PeD´`÷F1¨~ ') 2{R,Ê(ÅU‡­`Ø.®`v/D¥5Ø o¯ ]-•èÙÉæ¤üi–…„ft”ù‹^qÝŸaÞOCo,ÜU|//ú{ñtÜxx´·ÙglWùÙÁ´£GÁï•×*½)ª…=™{ë¤"f×R…\¼EP§©¹ˆjÃÞÖÊ< \¹2¯’fSƒaÜR‚Ì3ö˜«ñÝ#Ì´wK6yÑãÉû3‘±6B6 œ/Ÿë½Ì¥ª†– ãóëjÚÝ 81º Ô)Ê1õ¢=çx¥·¼‹\T1â7žq™ÖÏ=?´û—˜Þ$×z9å%ŒÔ}FíçÈJÍÜzUŠqtAu=ÒÝV&«ÓΧF¤aOíc¼¨¦ ±ÿµ3+ ¡7Ê=ÿó ÏyM´qh0í£÷¯N êÍ´¶TÓ+¥uü4›p`\l á˩۸ùƒBwS\ÇKN¹¦(5³®g8S1Wiù+9ÀLÙZà´™f¢Ù“·,"K½èfÕì^ŠýÇ7 =¾=Úò#ö?È=lÍ3<ª:w˜€¨Fíö˜‡²½š´0à+1.DŸŸ+´KÍQ*ñp wÁ¡ð¥²Ýâ:ØRpgyŒê9ê‘#ºh7 Ÿ‰Y6ûlíœ]σ²5îV–ò¶s5qß–p}ÕYLUUí`#(e˜(òÁ–‘´}'l…‡¸‰¾?3hçK¥®9\;‹“ ö’ˆ9Ë(P%nï”­»OÆ?Ã×)‡ F‹7£—C«ÐGpÞ5¥¶¾ŒßœÖ~Â÷ƒf —+È¢´ÕA+‘µ*ê€×‹zH¥Øû`æ=²™ =¥­I$nßú.öÔK&¦KŠ4ß”ûšjdv»jÿqš 7ý·ʺÜÆK*»!—öÛ'Ý%6Qj¾´$ôêc/®xßåtRc™‚d=çSI=(Ó¹â#poÓÀ‚ί˯Ya†Oâç° ÐôU?øÀ”Z·ßgLù”‘F^b•"Bfô$Å{ºv–|ªÓìûdÄÍ6},BÈß×òGXM¸O?ÁZ%ÜO»/É– Ƹs#…'³õ7¹¦©zkªuÊ dÞ… ÈÁêEdEóЊ©GzÝé]åf2b†·¶&uŸ~¨QˆJû%È}`˜3†P1MºUM™8hÑEïYƒý|̦{“αBò n0Ìdô)·ˆpl½ù—cÇb°ŠäLÿÌ+g8^;®¼úTÜÑÃô;3àA8ÅÛk0l¬+IûµoiTrÁ'~Ð#i²«—|D&´ž+þ/¥[±†ÇgÞm4Ç¥è[ì2–ß½:Š&‘üJ†s0yb¶ªàªíöæ¾ÞŠ;L¤êÍ 9§ßrQ+é£|³‘Ð5Ódc !¾ BSk]ÇŠÍÌñ&+-fÄ"@>;9(OBH¿»ìÃñ^8h«}z÷ ¤&ÏáPÒ•,`$ü½bïg¸XøCv ý,Gɽ‹œ{/²NÀïí;MOU—À¿ù»¬Ôà¨,|¦z¯xí è°×ïÆÝeõfÁå(å–º±¬.oÒö2LvýØ5…ÏãÓ›O«¤ømx^/uQ’»­Ð6û¤š¦&ˆ“ؽE4ÄX’5úáu–È?wjA–Lôx‰£ØÝ[lÇ‰øÅv«J甚˜ßš ;­qñþ,eÒ2š¨uל1þ„ån!Û)^Èî&æî'ÆguÛ"ðEVîqäcçn›zSµ°0‡Ð‘á&òŸ1°<ó+CÔéH.®Êõ“Ä„‹J=±4·¯\Ÿx¹×À?B™Þ²— wk‡}ôDµC ^=¤³ô4á?FO!¢k>7©sÝ–çmãÕÈ\ÒÌ㞟ÏOüFœ‘-²oÑõü PYµ0‹ý­x”=æc©^µH¥oíp¿JÒMÅšþ:‚žÑòh3¡NT)"$ $¨}™mÎE@¹ÀÙ–qÁÜyukPŠi™xvnaåûìE\ˆ©JÙc¹¾2.¨˜XCeà{¢1­Ý@üÁиÝdV™bþ<¦¶a±.c3·2 0 7yA›“BM!²”u¢ì–þWØÜÝÁ®’PkýQ³ˆß,²ÏYXǘQÞ~d_ЙTòå7&’öWc¨žÅa’G'D½9À(”÷IìeÔŠÖ?Ò»~Òi8N°@µèÔXo…åÎÝ« ƒu(,Я[”+RôDghU&ëï›’Iá(¥àzÚ1€ ‚Hüv’ÆxŸí'°ù؃Š$t3ŒN6ÀÅû W™Bø•ÿ:a¾'.ìg9}‘…ŸÕÂ$ØïÒÍþ.R³ŠgêUŒTµ$ÿÚ3âFÈ1È~¼…°™-°é[H ?sÍ\É Š=¶ S‰r^Vô‘gV{6eYC’5jâÉãÊ& ØáS½Vá½-ïÌkÆú {ˆì^¢41°²Þ· ž1´÷·L2F–Dî66Õ¹g½Åà%Áîå­]Œ×“ݧ„ww=¹/ÅYîÞvüÍÎSeÊ–W1ç¿beoû#gFùm¡Æ·t÷ÙY“E² ÞC©m÷ò•–Ý¿âgî¢A c…§ÂŽñëkeþ¼’¸Þïp'ÐQùÅ)ýK”9í¢¦cÏ×emN>Ò%>ÒçKQqEMnÝ[ï‡ô¨òU$Ì-øûRÓ‚ÝÑ)Èg¨ITÞ™.úž¹çŠªøÎ'åߘyþÚ5°ýˆøž…_VÏïZs8Â#1pÍ]5‚ðï¿|q î;¶ Úš53@äÑiã"eZNq~¬,qh#1Ÿ®¬’)¦Øx:r.Û°GàÏ­1eåü¡jã®ß¨QðSW+c‹kÎÓEJâ ¨ Ž‚·”E1JûCå7ï6ÒÀÅnƒ(–m™NÚœÚ4„7ˆà #\ìÎ#º¹ ¶)/áDè0«Í šl¹Úù¦/Ã7wùÀÚ+ßq³ÔÈ[éx‘¤Ð>‹6^¦0TåZ©Õ¶—ØA¾ÞE Æe¾ô~Lz®íøí½+AÏ7¾Ù½‘Á\W=‚RFk¤yÒ%|u9¾&ôPØW¯ŠÔS…ÿ!ÕJ1Ù:W}4¬ò…v7ÿ›¼´«ùL4Ï“é±}røg Œà:m,ƒ.ßB¤V ¦}Áê £ÏÚ‘þ*_gÎŒQÑ88À ƒ; Ð~f~È<'kBÛ/ˆÇ òÑò³Š®Ÿé7â£[DÆ‹¡¾™U€±–ÑØ]dû—}Bó‹¬gw=ñw>^Ü›ˆJ^™gù¿óò¨ó`§çÇKäv +ø"D:ë4t+h© (”¢óÛ¶±g7òÝS#5 åÞ xPYAã|¨wó^m€|ÛW„þ§¢rÿç„/­8ûT8¸ÚºwäÖ¦ø\¸È*c6¢*8”41Û."=ŽÎ‡…Õp?r˾à,Ï@èåêw–TBz=,K=1GÌZ-_}»¢31N°{Ët wÅ÷ü-ÅhŸ šÙ*´n+´±#ovà"‚¸+v§Ò,¶£òËhF^eSߘ jsÄÚ 1°©Ä8r*Gð*øÎzÕJtuåk×ùÏìúôNWí°~¡”ýpL0*³QYgü3ò›{óœæqÕEÊu?ê!“Ã%ÂÆKÅìãe³-F© Ço!#Þù‡òÆï´\Š*pldÛ¦?(YØ\Ë)i:.ñ?Ÿ c±ì?( ŒáQÙ©~›¿¬ÁÀBhŽpŒÅИ13ýŠY^·\¤ ÂW¹å6ÊúñÀЬå~ëf!ñ@1¸h\¼é¼gq•PW—ý¤@«¡›?ÄõÈÑŸO0ÄtéI£G0Žwæ§iÛRnVç.ôeljfIqvˆ ´GÞ»®¹­=IGÓ".ø€…%dJzB™8†3UB{suAæèxKKéá-q¦h…öA›ÔaÆ×<™š$W=Ó±âõ¼jÍGê1çÓÊ×ã  Å yet+Šh×|íuþsÃ[Àd¢Cüªêºv–ØAH&qyr-~µÍˆßØOôíÍ¡c‹‡Ñ·‡¶«c’ZYÍËÄj.¤ñôÛ“da{=“ðS4…$†Ç¹}ð:û_jh|U]YB$¿¥>W{brGlصgÓË bfÐ/ªÄ^A,‡<áCÅ®ò[›|CˆýB}9Äê‹Jn1qþ¥k0`¦*‚ÕÏ]À­µ-¨^z~QÓ£êih„Ü_&„¹GTWÞ¨¹”æ¦]àrŸ—ï(ÿG—ÒÕ3ܸ'Gø¶™29+¶¤ìDÃü`s\Mã ™}C«µ—"­y(w’ÖC>xb’RùÕóAuP¤*<) ä7.õ)O¼$ó ÝÀª È3 ¤ß´­»mã‰Ë{BËù°6ÒûtwûÈÆ -–àB­¤$ËióÊk]º¾¸ôôFù:T@Ï0’عÇ2™Ö§¤&2»²—™Mw¨«&©0 ¼¬à¢¶¹UERljÉu˜1$ÜËXúÉ´œ÷#aY¥|r¯KýÿåHŠÓq§ÃÞq1ìgXÃÒæÆÄlcÚ‚…ëŒ ǽ=Ú%ßQð=qÕUßb™òóKÓ­ÊE|Sáé–O„Xi"Ž€UÝîsÚ¿ûYjU<û&˜Ÿ6ÁÿÒø`À×ìòèßô9T¶ºãsáDL³¾ÎÓƒ{Ó+4¯*íärŒËаwÔÀ!ç!iû½™áC rTèåÜ7œ˜úŽ!*pù†6k$͈Âý¬I,ö|Ƙ+uÅǨIén,ŸÓo޾ÛÒÎÁ’ûìóLž·z?Ò)‘=³€õ|aª×Õÿˆ§í¦\#ÌJÑþ·½žÊFcÏ;Ž:%º£¬8O&CÖîs/ÄIr&|£›ÔJyÖåŒ~Ï9[Ü•*[»–Ü,†ãlöfmȧ)\k¼Çó´‰zv*×ÒÀœ}ãÂ|)ïß©ìöáçVù6 ÎieNëè/DžRY…B7?Ûš¦noww b{ѨÀ Îõ·Û–!c7ü…R ÁÄû{ îוÞ)kõ«vB7¼Rœ+)}æÝïGiõ°z˜7*I˜3Éä#ðhVgƒí%_ü꯻œ›×Üel9 ÊšGö33iyÈͤ9ÚtÃήPI|é9ÍšhƒØŠÐÀЉÍz•u]Pä¢8ñ“š’Òºø´AgU{ä€Y×”•%2~_ý¹½twî@¿ªO»*‰$=`çìâi"zGªh‡Nçtãá­øy•£;Ý©Î"5çKÏ“{¦ñOb¼Ã³û×ÎuÑBSo¯Ø 9ÞÈa´2èVÈa%‰¸ nбx«ý(QüKÓhö‹Æ;_ú¨h_&ø“Å–)‰°ÖÍ|·µiÆG†”£Þg¢Ö,oÀ•c{Ä:{Ãü³o‹ÆõáU³fâ&C‘C`X 4éõ÷u8Êõty~5ÁÍž»îu•³"G¿:x´Ž„‰bˆ\ ­Äy 4}?aYËÀ°X­ÑeüT=0Å–£ o…*ñ7yÓ™^€¢9õ³Ï2e§Ä»zbš|ßt´'ɺ“Æ2=éUÄ„û3Ã_E×ï~Œ»OÁÝJiÜ¿•=8¹7 wiºò_ÐB†B¡EÍ~Âÿݯ„vqºM‘åäÏwð{}|[e̵0dÀq µBת1Áö8Ó¹ÌoË!k…û¬@û»â©Ë—Ë–8a–ÁpyʺŽo®œ¹Š·iÊ#›UA¼‡?KÀ¹çO˜ë>~¨†w¶N 0úýë×þYùÏgÒ¢ùÔN!`le1jJ˜ÛÎåJjÙϺfÌtBH“ý2„:¹PÌd›Y®Ž^“d+²`É öY]‘òÇ b‹å„×c׉å<ƒÒÞ÷{˜j÷[.¹As8g<®ª¬>(r}Z6ADð'æ?g1!¾³G¹³oŒ]õ+U;Ѽ†° ðzwUWâ|„’·/9˿汜n$ÓÇ_~=p—æ_²E;Ñ">ñòm@9ÞL`Œ ð2o¨:ÃH.@ÉH endstream endobj 218 0 obj << /Type /FontDescriptor /FontName /TOEOFI+CMTT9 /Flags 4 /FontBBox [-6 -233 542 698] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 74 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/L/M/N/O/P/R/S/T/U/V/W/Y/a/asterisk/b/bar/c/colon/d/e/eight/equal/f/five/four/g/greater/h/hyphen/i/k/l/less/m/n/nine/o/one/p/parenleft/parenright/period/plus/q/r/s/seven/six/t/three/two/u/v/x/y/z/zero) /FontFile 217 0 R >> endobj 8 0 obj << /Type /Font /Subtype /Type1 /BaseFont /DESSQF+CMBX10 /FontDescriptor 184 0 R /FirstChar 48 /LastChar 123 /Widths 178 0 R >> endobj 7 0 obj << /Type /Font /Subtype /Type1 /BaseFont /RUAHCY+CMBX12 /FontDescriptor 186 0 R /FirstChar 11 /LastChar 121 /Widths 179 0 R >> endobj 59 0 obj << /Type /Font /Subtype /Type1 /BaseFont /IXNPPI+CMEX10 /FontDescriptor 188 0 R /FirstChar 80 /LastChar 88 /Widths 159 0 R >> endobj 20 0 obj << /Type /Font /Subtype /Type1 /BaseFont /GSFZJA+CMMI10 /FontDescriptor 190 0 R /FirstChar 11 /LastChar 121 /Widths 171 0 R >> endobj 51 0 obj << /Type /Font /Subtype /Type1 /BaseFont /GYJBEK+CMMI7 /FontDescriptor 192 0 R /FirstChar 102 /LastChar 109 /Widths 160 0 R >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /BaseFont /IYMWNI+CMR10 /FontDescriptor 194 0 R /FirstChar 11 /LastChar 124 /Widths 177 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /BaseFont /EOVUBH+CMR12 /FontDescriptor 196 0 R /FirstChar 44 /LastChar 121 /Widths 181 0 R >> endobj 4 0 obj << /Type /Font /Subtype /Type1 /BaseFont /DHPNCH+CMR17 /FontDescriptor 198 0 R /FirstChar 34 /LastChar 121 /Widths 182 0 R >> endobj 23 0 obj << /Type /Font /Subtype /Type1 /BaseFont /XTJZVU+CMR6 /FontDescriptor 200 0 R /FirstChar 49 /LastChar 50 /Widths 168 0 R >> endobj 21 0 obj << /Type /Font /Subtype /Type1 /BaseFont /PVBVDE+CMR7 /FontDescriptor 202 0 R /FirstChar 43 /LastChar 61 /Widths 170 0 R >> endobj 24 0 obj << /Type /Font /Subtype /Type1 /BaseFont /FUNZJI+CMR8 /FontDescriptor 204 0 R /FirstChar 12 /LastChar 121 /Widths 167 0 R >> endobj 50 0 obj << /Type /Font /Subtype /Type1 /BaseFont /ZEXHDB+CMSY10 /FontDescriptor 206 0 R /FirstChar 0 /LastChar 56 /Widths 161 0 R >> endobj 69 0 obj << /Type /Font /Subtype /Type1 /BaseFont /EXPITJ+CMSY5 /FontDescriptor 208 0 R /FirstChar 48 /LastChar 48 /Widths 158 0 R >> endobj 49 0 obj << /Type /Font /Subtype /Type1 /BaseFont /ZQLTBN+CMSY7 /FontDescriptor 210 0 R /FirstChar 0 /LastChar 48 /Widths 162 0 R >> endobj 14 0 obj << /Type /Font /Subtype /Type1 /BaseFont /RIBVWJ+CMTI10 /FontDescriptor 212 0 R /FirstChar 12 /LastChar 121 /Widths 176 0 R >> endobj 6 0 obj << /Type /Font /Subtype /Type1 /BaseFont /ZNPDQI+CMTI12 /FontDescriptor 214 0 R /FirstChar 67 /LastChar 121 /Widths 180 0 R >> endobj 22 0 obj << /Type /Font /Subtype /Type1 /BaseFont /EDDSUQ+CMTT10 /FontDescriptor 216 0 R /FirstChar 33 /LastChar 126 /Widths 169 0 R >> endobj 130 0 obj << /Type /Font /Subtype /Type1 /BaseFont /TOEOFI+CMTT9 /FontDescriptor 218 0 R /FirstChar 40 /LastChar 124 /Widths 157 0 R >> endobj 10 0 obj << /Type /Pages /Count 6 /Parent 219 0 R /Kids [2 0 R 12 0 R 18 0 R 26 0 R 35 0 R 39 0 R] >> endobj 52 0 obj << /Type /Pages /Count 6 /Parent 219 0 R /Kids [47 0 R 54 0 R 57 0 R 61 0 R 64 0 R 67 0 R] >> endobj 73 0 obj << /Type /Pages /Count 6 /Parent 219 0 R /Kids [71 0 R 75 0 R 78 0 R 81 0 R 84 0 R 87 0 R] >> endobj 92 0 obj << /Type /Pages /Count 6 /Parent 219 0 R /Kids [90 0 R 94 0 R 97 0 R 100 0 R 103 0 R 106 0 R] >> endobj 111 0 obj << /Type /Pages /Count 6 /Parent 219 0 R /Kids [109 0 R 113 0 R 116 0 R 119 0 R 122 0 R 125 0 R] >> endobj 131 0 obj << /Type /Pages /Count 6 /Parent 219 0 R /Kids [128 0 R 133 0 R 136 0 R 139 0 R 142 0 R 145 0 R] >> endobj 150 0 obj << /Type /Pages /Count 3 /Parent 220 0 R /Kids [148 0 R 152 0 R 155 0 R] >> endobj 219 0 obj << /Type /Pages /Count 36 /Parent 221 0 R /Kids [10 0 R 52 0 R 73 0 R 92 0 R 111 0 R 131 0 R] >> endobj 220 0 obj << /Type /Pages /Count 3 /Parent 221 0 R /Kids [150 0 R] >> endobj 221 0 obj << /Type /Pages /Count 39 /Kids [219 0 R 220 0 R] >> endobj 222 0 obj << /Type /Catalog /Pages 221 0 R >> endobj 223 0 obj << /Producer (pdfTeX-1.40.10) /Creator (TeX) /CreationDate (D:20140122074926-06'00') /ModDate (D:20140122074926-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.10-2.2 (TeX Live 2009/Debian) kpathsea version 5.0.0) >> endobj xref 0 224 0000000000 65535 f 0000001601 00000 n 0000001496 00000 n 0000000015 00000 n 0000340391 00000 n 0000340250 00000 n 0000341518 00000 n 0000339539 00000 n 0000339397 00000 n 0000340109 00000 n 0000341946 00000 n 0000005250 00000 n 0000005142 00000 n 0000001723 00000 n 0000341375 00000 n 0000110685 00000 n 0000010296 00000 n 0000009661 00000 n 0000009553 00000 n 0000005364 00000 n 0000339823 00000 n 0000340672 00000 n 0000341660 00000 n 0000340532 00000 n 0000340812 00000 n 0000014984 00000 n 0000010188 00000 n 0000009811 00000 n 0000011769 00000 n 0000011912 00000 n 0000012010 00000 n 0000012045 00000 n 0000012287 00000 n 0000019590 00000 n 0000017866 00000 n 0000017758 00000 n 0000015079 00000 n 0000108215 00000 n 0000024720 00000 n 0000019482 00000 n 0000017969 00000 n 0000021505 00000 n 0000021648 00000 n 0000021746 00000 n 0000021781 00000 n 0000022023 00000 n 0000028684 00000 n 0000028576 00000 n 0000024826 00000 n 0000341235 00000 n 0000340953 00000 n 0000339966 00000 n 0000342055 00000 n 0000032408 00000 n 0000032300 00000 n 0000028847 00000 n 0000035833 00000 n 0000035725 00000 n 0000032558 00000 n 0000339681 00000 n 0000038596 00000 n 0000038488 00000 n 0000036007 00000 n 0000041291 00000 n 0000041183 00000 n 0000038676 00000 n 0000044591 00000 n 0000044483 00000 n 0000041440 00000 n 0000341094 00000 n 0000047297 00000 n 0000047189 00000 n 0000044753 00000 n 0000342165 00000 n 0000050205 00000 n 0000050097 00000 n 0000047401 00000 n 0000053381 00000 n 0000053273 00000 n 0000050355 00000 n 0000057271 00000 n 0000057163 00000 n 0000053519 00000 n 0000061457 00000 n 0000061349 00000 n 0000057410 00000 n 0000064857 00000 n 0000064749 00000 n 0000061536 00000 n 0000067236 00000 n 0000067128 00000 n 0000064948 00000 n 0000342275 00000 n 0000068689 00000 n 0000068581 00000 n 0000067340 00000 n 0000071200 00000 n 0000071092 00000 n 0000068769 00000 n 0000073474 00000 n 0000073364 00000 n 0000071303 00000 n 0000077259 00000 n 0000077148 00000 n 0000073566 00000 n 0000080522 00000 n 0000080411 00000 n 0000077375 00000 n 0000083242 00000 n 0000083130 00000 n 0000080614 00000 n 0000342388 00000 n 0000084817 00000 n 0000084705 00000 n 0000083417 00000 n 0000086299 00000 n 0000086187 00000 n 0000084898 00000 n 0000088353 00000 n 0000088241 00000 n 0000086391 00000 n 0000092103 00000 n 0000091991 00000 n 0000088469 00000 n 0000094132 00000 n 0000094020 00000 n 0000092255 00000 n 0000095807 00000 n 0000095695 00000 n 0000094260 00000 n 0000341803 00000 n 0000342505 00000 n 0000096723 00000 n 0000096611 00000 n 0000095913 00000 n 0000098116 00000 n 0000098004 00000 n 0000096805 00000 n 0000099258 00000 n 0000099146 00000 n 0000098198 00000 n 0000100383 00000 n 0000100271 00000 n 0000099340 00000 n 0000101910 00000 n 0000101798 00000 n 0000100465 00000 n 0000103014 00000 n 0000102902 00000 n 0000101992 00000 n 0000342622 00000 n 0000105172 00000 n 0000105060 00000 n 0000103096 00000 n 0000106773 00000 n 0000106661 00000 n 0000105277 00000 n 0000106854 00000 n 0000107213 00000 n 0000107236 00000 n 0000107311 00000 n 0000107379 00000 n 0000107704 00000 n 0000108030 00000 n 0000108463 00000 n 0000108489 00000 n 0000108550 00000 n 0000108586 00000 n 0000109265 00000 n 0000109296 00000 n 0000109691 00000 n 0000109820 00000 n 0000110455 00000 n 0000110933 00000 n 0000110959 00000 n 0000111022 00000 n 0000111059 00000 n 0000111716 00000 n 0000112348 00000 n 0000112787 00000 n 0000113430 00000 n 0000113707 00000 n 0000114137 00000 n 0000114680 00000 n 0000129941 00000 n 0000130263 00000 n 0000145753 00000 n 0000146091 00000 n 0000153299 00000 n 0000153546 00000 n 0000165832 00000 n 0000166137 00000 n 0000174358 00000 n 0000174586 00000 n 0000200456 00000 n 0000201052 00000 n 0000210555 00000 n 0000210815 00000 n 0000220852 00000 n 0000221123 00000 n 0000228284 00000 n 0000228508 00000 n 0000237013 00000 n 0000237278 00000 n 0000252067 00000 n 0000252394 00000 n 0000259941 00000 n 0000260204 00000 n 0000267203 00000 n 0000267427 00000 n 0000274498 00000 n 0000274729 00000 n 0000290961 00000 n 0000291266 00000 n 0000299928 00000 n 0000300166 00000 n 0000321553 00000 n 0000322143 00000 n 0000338964 00000 n 0000342715 00000 n 0000342829 00000 n 0000342906 00000 n 0000342976 00000 n 0000343029 00000 n trailer << /Size 224 /Root 222 0 R /Info 223 0 R /ID [<0A3437CC4EB1C0FB995A83D36B4E9BF9> <0A3437CC4EB1C0FB995A83D36B4E9BF9>] >> startxref 343296 %%EOF survival/inst/doc/timedep.R0000644000176000001440000000617512267746150015474 0ustar ripleyusers### R code from vignette source 'timedep.Rnw' ################################################### ### code chunk number 1: preamble ################################################### options(width=60, continue=" ") makefig <- function(file, top=1, right=1, left=4) { pdf(file, width=9.5, height=7, pointsize=18) par(mar=c(4, left, top, right) +.1) } library(survival) ################################################### ### code chunk number 2: timedep.Rnw:75-77 (eval = FALSE) ################################################### ## fit <- coxph(Surv(time1, time2, status) ~ age + creatinine, ## data=mydata) ################################################### ### code chunk number 3: timedep.Rnw:155-158 ################################################### cgd[1:10, c("id", "tstart", "tstop", "status", "enum", "treat")] cfit <- coxph(Surv(tstart, tstop, status) ~ treat + sex + age + inherit + cluster(id), data=cgd) ################################################### ### code chunk number 4: timedep.Rnw:228-236 ################################################### load('raheart.rda') age2 <- tcut(raheart$agechf*365.25, 0:110* 365.25, labels=0:109) rowid <- 1:nrow(raheart) pfit <- pyears(Surv(startday, stopday, hospevt) ~ age2 + rowid, data=raheart, data.frame=TRUE, scale=1) print(pfit$offtable) pdata <- pfit$data print(pdata[1:6,]) ################################################### ### code chunk number 5: timedep.Rnw:265-282 ################################################### index <- as.integer(pdata$rowid) lagtime <- c(0, pdata$pyears[-nrow(pdata)]) lagtime[1+ which(diff(index)==0)] <- 0 #starts at 0 for each subject temp <- raheart$startday[index] + lagtime #start of each new interval data2 <- data.frame(raheart[index,], time1= temp, time2= temp + pdata$pyears, event= pdata$event, age2= 1+ as.numeric(pdata$age2) ) afit1 <- coxph(Surv(startday, stopday, hospevt) ~ male + pspline(agechf), data=raheart) afit2 <- coxph(Surv(time1, time2, event) ~ male + pspline(age2), data2) #termplot(afit1, terms=2, se=TRUE, xlab="Age at Diagnosis of CHF") #termplot(afit2, terms=2, se=TRUE, xlab="Current Age") table(with(raheart, tapply(hospevt, patid, sum))) ################################################### ### code chunk number 6: timedep.Rnw:298-302 ################################################### afit2b <- coxph(Surv(startday, stopday, hospevt) ~ male + tt(agechf), data=raheart, tt=function(x, t, ...) pspline(x + t/365.25)) afit2b ################################################### ### code chunk number 7: timedep.Rnw:328-335 ################################################### function(x, t, riskset, weights){ obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } ################################################### ### code chunk number 8: timedep.Rnw:345-347 ################################################### function(x, t, riskset, weights) unlist(tapply(x, riskset, rank)) survival/inst/doc/adjcurve.pdf0000644000176000001440000157033212267746150016222 0ustar ripleyusers%PDF-1.4 %ÐÔÅØ 4 0 obj << /Length 3128 /Filter /FlateDecode >> stream xÚZKãÆ¾ï¯P|¢€M²›¯Íi³ñ6²ÈÁs ¼>PõðJ¢ J3#?>õìnJÔØÈa†d?«ªëñUµþñôîûϦœ¥eœ¥¹=­g¼…™i›:›=­f¿DWó4ú þ®ð7\:ø¿š/L’D?KãùyÿŸç¹‰š=w}®3µfE„s†ù¯O?}ÿ9­gi×yžá†‹2‰m6[dU\Õ)ï÷4¯Ò¨Ã¹ø÷ ëeyôEô´Kß_!à=úôJY]à‡"] wþ,cpr?ÏÊèeÀ·£ŸþÃ^fü³–óRÎ+QÿOLÃGœŒÍßd8.1ôôB,Z;KmllÁ,Ú:¶eÏ,®ªšyLç‹4…%¤Y&¥õÎ=Ê.Z][üÚ+V³:®‹¬ÀõVWIÅ+Ñœàß è-£™ê`:‰^Pþ½Œ‘ÍÂT5íØsçNÅöŒ£è°.ÂÛ¦¹øu Ì~Ù6²ÿ}ÎtáCèømò$¦ú3·ÐŽ_“4Gêq…c‹Ó™y•ÃW½*P¯èœl:609ÀS€Û7”Ážˆ™¡˜HÏ Ó s¶06pän³URmµýEØœ…WËìl;î¦ X¾HëyGÔh߯ù¹R­[ºñ$Ë–—:5*ÙÎ)êÀ3_¶"^›(!³S=Ûp?²@ª¹&¡œ&ÒŒg:x\‚$99ý°¤û¡¤r–­ƒæÞµzª`î6 tÝû-±ÏŸjxÝŽŽÚN*³Éø[Y™Î(’È¡cDË¢îCOòCq6ûQL½Î+ÅóEQV/è<}Bèžoïž…Ö‹=ÚnLmsáï)±N ‰&¡\QñaI? °¿žø\‚‡=Pyô=Izqæµ*áæ¼˜dH =Û†y ÷•ÔѾð§½l.Ä1ˆ›=ƃ·V\\¸iÉ)ÿHÄq% €c–x>¯÷;¨}OІ‘«?¼ªã#@4öÌ®‡š÷wíxˆS.ל˜š4ú0_äyí{yðIUk¨–Û´?ò¨7 z_vrûp’ «9gIÔld[ üñŠf9nx$5Óù­x©­®UÝ8®PÓplÁ‘¬È¹òž0jE}܃µQÚ×êýJ¹Õ¼Ž:»CuªQˆkƒö‹Úpdzõyœ~÷CÇ Þsm¸ÞqÓ«;ݘ}ú×ÔØÿÌ+áÖìæ`‡“Öœpí"¡½76vñ&£¶^dþ,¦’€Þcáƒ1¬*ç ã×W™£°jÏ­ýrP}ä0Å‘ÇD+ðÀ(=‰–ÚŒኼàž8P‹¡Y‰à ­Iô”Ɉplˆr¿ž¼’ò^¶¼JÃ+°u«-"õP‡ÓpÈ^ 䡤锓‹,.JßÓcPuhÑ^Cú Œ“<…Z,d\Ð"ˆ-Ÿœ·:ZÒ¬¥œùQ“xÓÂ÷ö£ÿ‡;'û^vð¬oÆÙ5$Y~ã–çþ•úRœqüÀi­v/¨tÕ©ÊÝÐE€úª0KˆY“mf‚~Z¤dË -éÓ:ðÇg¿ðÎ ëÆ,H¨FQ™ÇŽÝ¸üC£ƒõG‡ÉÉák`:±bfØ­Fwqð¢',#þ‹Ü1ŽM´ÿRe8‡®5û'‘túŸA):vë—aÄÔÈ,Ô;|ØxHt Zø¼§$æÜ² LÍ!/„™uÖ‹£è¨–žD:8ê!Ÿ Ï­Ë6ðÛzÔ ‘–)¾øå¶št³ ãòŠ„©«åÌËa|3î‡ÆÅ„Z CDíš½‘0Œ°,?!QCBGUo§‰Æ;XÃ&3øï •K¡í›È•¥£itxSTbºá}ÍŠô^¥›¤mÌ­CÄ&ñ3@Ï„CÎ>“2&õBðÐôû¨=ÚÔˆ1"“€dŒ€gj#'˜Ô>ͺ8³cgΉq$yiUÇ$‹ øû}XÇeQi¿ŠŒ(áÇÀÀ&  zà9y|ˆûŽ‚•Õ5b?ë¹ï‡)ÒkÆ‘ÞÞ“¹qši?Ÿ  ï Î#› ”êSrgy¡d€•!¯8µ@-§aœcFÝ´8r+žGŠÒ¸Õo¬Dìé>%C™VÎÖqâSUøË£}Þ£j2®‚ì×Ù¢Û¾Œ¾…:Ï«ˆóPЦ,AOJ‰3§yžÁqà¹4tw’]è´{¿Öì_%]ØiÎ4ð;Ö\«^£4#D Ÿ£èß\ÂaÐÌø¾Ìn§Ni—D±{ ʲ*6 ÇTÅIæ•ÿì÷¡à²—üHÜ47-’z¤{Ön*¥8p`dâ†NsÖaÊh™)bSÖcéOØnµUò©¨QÅNð¼»æLßê²ÅvÊ"t½hÞ¹•È¡`ý¤øï5š9XIb~vx:ˆ6w%…‰c+ÁðKû¦Ï*§Òãä`›2Á)"d¸u¨üpíUò=ûpšq]¦÷%ͱ?%z5S…j`M9üÓuóÜCwL–ƒ"º^Â:œA0 Iþ6ð(è§±-\æ>7ÄîðýÉPë ýwѶ›æ§1y„0ßsêj–‹Šñ“z[ŽƒõHsy-èv­D%¼£±ªìÜ$©+àØ~­ SnöV7ËM¹Õ¢ŠSë= 8ÔþH®p^l&½*Ï;UòýdŒ‚õ¬ª"—R´7¨xð½qøXê¦ÍA‡Š™Iuv+³TÇ`F”þ()#m9i¶‚ ëhã±ûqÒlÁ›¦æ ³­â¼Lo Æd‰ë´ü“°Ÿú°OºõS~ây¾9O ˜«jzJ3,{ÅUzƒ¦13k±!ts…lái?ú¬Ý£r%éš±cœßKMÅÓÖpncÏWh½Gh=­“ò¸aâÞƒŠ"{׎vÖ¿†G•R!ôR챆½,Á_?.¹—Â#ŽÑ:oñNWšqâãvOxEøºÓ† €JíPb°ÃËÖeRlUãmá3sð¯bGÊÕ™®u¼p‘²ã>¨Ú7#ãxa9_6¯žÒdg-å‘ S4Ã×Xàx,äG)›Ñ”í¦T¤Ž8ŃRƒ¡¬Œ‘Õ¿wõDã´%Øæ^ù0×,ŒTýo7/â"37Ö >/0ß".Ó\G|M’džeô· CÏâ"w_ «Äì#„aÆù¬¤uRož 7,®ÌßðYX>Œ«ì|šr&$µx!W×ÿµ>Ù\òÅÁeçyõ&6J|RôØÉÖ€ŒË·Ž)-â¬(ÿÊ1z%Iá¶œp‹ÈR\äú“éo à÷”VeœÛ·0| çì_Ë"æ³›7í&x–ul9o Gw#QÞ‚["`ÆU‚ i{‚’K·w.ÁH¶ŒÏ±?Å„)Í\'!Å«49‚Þ)ŸAKyw-…ëF/Øúó ,¬ø%¸ýê\©|ó¸&Ú»¸©hÕ¦6ú¸G„`±×°;rØBÒix9Üyî¿—(6‡€¿¹’!µzAžØ®™6¼îþ†Z¯½îC OŠøÉ85s”ºk$âFɾ ½£œúÁ%”h×U“_¬þ¥Êt襨N­guÌuŽÒ-øæ¬p,-\ÉÖT$ÖâÝŽo!Ðõt/üþ Ú"‘áö'À®Éâ:ËÈäÇŸçµeÂ(ËÍ£ÑÅ7m$SÏé—ÛÆÝt¾ùcƒ³3&Ëû[wh­FÑ¿¬Aáp½}ÂÆ›26µd| JÍT†yW§yEɋ֑»«—›u¹Oj„²†1€¸\ÊÁÐC”ÒµÀAè£,Ùå—Ç~C°j9º¢òT±âÖœJ €Ïhº3…/2}x2Z9 « 6ú§\ ÂëG¾®Úk}%§Î] V¸ù;ÍÎv<ÍUKá}«—x%ãU·Ól®§4±´ã"ˆ¾ˆÈVa˧}˜ž´ÜøKö+ÃÔ$ú£°·ÔƒëÖd`":ÑŠ>dߨöšª˜ ?‚÷Ыôîb¹÷#œJyü<ù* jäU=íŽÔ 2eÒó×Ïÿï¬yÎ; ”º¸8 žb‘˰ÁÓL3t"a½$M‘cJ'E¥¿‚®w?<½û„’1 endstream endobj 3 0 obj << /Type /Page /Contents 4 0 R /Resources 2 0 R /MediaBox [0 0 612 792] /Parent 12 0 R >> endobj 2 0 obj << /Font << /F37 5 0 R /F19 6 0 R /F44 7 0 R /F8 8 0 R /F11 9 0 R /F51 10 0 R /F14 11 0 R >> /ProcSet [ /PDF /Text ] >> endobj 15 0 obj << /Length 2043 /Filter /FlateDecode >> stream xÚ}XYã6~ï_aX@ÆQ¢®`_’ž 7YÉö[&lY>6–éHöôôþúÔISÝžA£-©X,V}¬‹4‹ þÌ¢­ÓºjE›¥™µ‹n¸ûë.KÛ*/,qÄï4hd¢Þ? fñÁßý :´¡«Hêwï?6‹ÅU‹ÇMX¸jR“׋Çõâ÷äãÒ${øß^Føí—«¼-óýres›üHDÿ,\Ÿ—e™¸rÙÄoøY7µåyc<2®QØq™7ÉyйËä9Àÿ0ÁÏÙÖË.›±Î»þúîñw hÅm¯þ]3Ýi è}ph:á‡h=#5'”úEÝ ¦V"í;#´ÏîzÙ.YñÄ‹ ¤º³xBˆ ¼-ôz$܇HßS`ïãÝ›Ò媲mòȶ"º+S¦%@4Û‡¹À¢)Á ðˆ QŽL!/f‹zÝs¿gŸ𛉟ý¤¦2 =C†2Ä£ðµóâÀ"¦!™ üLî8²8#»_/ª´­‹77/³Ô698AeÄ„æ­ 4i‘¡"{ÄÕþb—c½RÖ¥a¿Å]ñè—ƒ€zD“0bÚš7É­Gß2¶yÙ¤uÓ¸%/êp™š\jôލMwÜöü…>‰<Ú@Ð9ÐzR7#(»È10dVUV%Š`}µä ›„¼§ÃUÜÀ9@|’ŒÜ;óÀ ƒÓ™•ì<åeÿÀßlCÅK9lp³˜8bÇ/ê¸åíq)áÕ…üÔfœÏ)ø]4—Ö¬Û™ÚðÙ‰Õc§›ÂvŠ¥„¡¹ÉÏû¹rO»ô¡ßiO45pÈvçX©†ö”™Ø»a‘C?³Ib4©r «ƒîsÝš6ùS@›‡­ëÉÈ;P¥íEàžs²2qƒB0O-­á”|ß µe.uÒoÅËuíQ\«ÿ"{…ô§=ï+ \U|2…EõO8Äué»›Ðx;d­¤OJÏ‘¾E Îáå© cž*%Ä(\Äu€iðI¢ÆB_æyòOvGÏéò…¿mq™¤ö"ÈóÚ4ì„Íñc-J¸íÑkáÞw¢ RµC¢É\‡n”TÍ¥EÁÑ{Ük®ã€á8hà³ót"JÎŽü–Q5žzŠr¡’/Ps2òlõËž|h˜Õ%.ôƦ-4T³m}ÜiƒaCÞ£ î)5ÐH$ÇŸbƒ:š©·ÁÜñÄåJ¼ Y9¹vø»cœ©ºÙ£dz(ªÓI,e7Œ»#’uäôÇ][Aê^Ëp¨nÒ¥í8+Ò»¨Õ_E9àpß2²='X.Ü7àbxz²šz x‡-f•ìƒ}ñÌCﲂ7~þÅ „œé™xbZ›°ëÉpr+ÒyûÂÜ£øÆk}¶”¤.'þú>Ê?¸€Õy™<Y€iÛ’ß>õÄü›Šû¢ý¯/«7²Cì&4²5vº«¼¡ÜŒo6]È Ý,w0H˜Î»~A—= ,9 åÐ*h·ˆã.ÖÅý9ÊT=¡ß 7œ4MLULûˆyeð³+ ÁŸ¹E®²hoÁÃñê8!9Û°MÖT·O8pO¹BÂ9:QØ‚½ˆüå¨^çÏÔ^ÐêoUôô´¹;ËÄ#~äçàåÜ„lè.VÜ¥jÅ]€)ÏLÆoFµä:ûkU 8û¿&§Á ¸iš© ½Ã$4ù‰Ijß:ís¹EÏåh‘GG‹7Õ’‚åÀÕÑ Õ2ílêF£©g B×°càùÁ!†]´hA&CçÏŸïéÜCI ‹)Ñ9jÛ°àWzS¸QZÒ&ÿ (V3›%ÏR¢ Ë^H}.ÐÒ˧ÌTÈ'FÃa)d-ÜÖ\ãÂñ÷F;gŸµ(Á{¨nÛýQ1²¢)—v¤"phr”Ôݸσ ¡áÉ¿R ¿ÕnüÂ÷0ppi’5aG§µ6™z9qÀ»övM+‡áY Èé¶eýr}§(”«¡0ˆgŠ(>@Í*ÉU>uÊܵn´ãCÒÄ€ÒlDˆ˜:öj)ó.jËq”®–¾ÚV*6»z›F²D‰~ŠÌ–‘k[G&>¢È$—Dc¨~Hô=HnØ_ÅÓD´çpÑ’µŽF¾¢k¸^Ó[&:qæXþ$òV¦¸é­˜Κ€èÕómCi£ë†W~¾‘Ó .œÞ\TUZÚB/«ð¸Ñ6oïé2„oI¦]¸u’K—ÙÁ½|@|¿X4mÆn&ž#ú™8½ï 2±p…NN¦Zq]{¯±Q;<¿’‚ÿïÑ‹®í§Ÿdʳ~Q¸VMÚäù";­ÃØä8t÷¯Ç»¿oÓF endstream endobj 14 0 obj << /Type /Page /Contents 15 0 R /Resources 13 0 R /MediaBox [0 0 612 792] /Parent 12 0 R >> endobj 1 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 18 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 19 0 R>> /ExtGState << >>/ColorSpace << /sRGB 20 0 R >>>> /Length 12056 /Filter /FlateDecode >> stream xœ¥ÝK-ÉuàùýgØ=`1ÞÀЀ„(€° H}Á4 (0Á¦%6,ÿ}Ÿ½×ŠSU±W7Ûð@?VVÝs2#㑱"?~ûÈ?=þãË?>ÿï—?üÓ?üêñëᄂ·”Òãã~÷ëÿþü_güŸ/ÿò¯ôø·/ùñÛçÿýéK¶ÿíKÝou<ðŸß?ÿÿ~ë›üóã»ðcW{ëøéNo«¼~J½~š[y+ëõãÃ÷ŸïjíõsòõóÒú[ɯŸ¾ÿ|·1ßN¾~^ÛzËõýÓï?ÿøeß¿ûëç¿úÊSûûÄ©ýá÷ùòËß”çuøúÇÇzãÿŽÿpÖù–Û£”·´_¿|“¾}|ýÓ—¿ÿê÷§~q­·‘>übù¹¿˜Ûó¿¿Ù~öoîüÖˇß?÷7Ëóªîõá7×ÏþÍý,ÿÍü³ÏPmõm|üGóÏ>Gu÷·Ü?þêë$¡ Ü ¯{1Þú,Â{¾~ ½ÿ4?ÿ_[¯“~¾º}Ä×ÏÁ÷Ÿ—šÞz~ýœüðs|Ø×Ïß?ûdzò~.~ñ~‚Ê|[ía×2¡°¾É‹ñ¿û,µ-ówåÕø‰ßÍõy¦ YÚŸúåù<¿,ËíOür)ímwþ²,º?õË3Ùå÷Rô~¾>U™_ZÉöéX£–ç¥ÍÏKs.Ügžƒ¿óêýÿ³ÊÏjqÖGy[^Þÿå›ÿñ­Uoþð»¿þðøã_ÿ×÷ï~÷ý¿ÿùßþëãëoÖ·ÖOÏÓÞüð?ùÝÿþë·_ÔçýÏÿùŸß>J|ó»?¿þÞóK<>~±ºüæ³ú|ŽÇ_ÿðøçÇ_þV#ö¬žÒßjÄNñ7>KÓ)þ/v«¨À­¸¶] ôV»d[QœœI²’Sqø?ô,A]²ƒeHfÐjÃÈ>Á=%ýc”·ºÛÛlà˜’ÉXíô âF¨oy(––*éÿP{+[1ûŸêÞî ôbª`‘ÍŠÈ“%Ò/ʳ½Ï’,]qMÐO{d{UœÜ]Ò?Ƴӓ$3hÍ~äðS·ß¦¦ºžìâöÖ.ÙÀV­55Ž*éÿP¶jC°.Ћw¤ÿCå-/ɶ¡X:ÈÓ~ÓN]¯v’³]ÐÞ¼Ö¬ OìÅ´Á]%ýcx§X1“+²ÚŸpzñ\ ôÓÙ@¯¾"èUnàô :ì‹*°-Åác¾¥&ÙÀ‘»ÿCËnkÅ –¦Ø&X—d×T¬ÜMÒ/Ù¶‹£˜ÁÖË×´1ØW ÌÌM²%K&puÅ4@^îO,hp[Òÿ¡l·¦¢ÿC _à`­’ìMÑëñ¼t]²‚}+zc=x³GÚ _d[SôÆúÉÑ%ýcðfôÆúÉÑ$8—¤ŸXÞtµ€£(zcý䪒þÍsQn&°%EoÊDzêS±€¥)¦ ö*i§nf8ßÌhè' a¤]Pû¥.™ÁÞ½¡·*(zSnœ-ÙÀ>%íÔ=;¿EÒ›ò'ÛVôÆúÉÕ$ýš¸é"¸Šbó“³P]Ö z—)²‚µ(þ){h"˜ÁÙ½9~ k’,`/Ši»IÚÉYÉNƒ¢œ•Qå^|VˆôáCd9½èõ*¸q"9½˜­Š“ÙAï^FÚ‰]¬ÜÇ$·d½I ìþ1º;8š¤ŸØ†/л—Oæ&YÀ²½{ùdí’ ä%»éc¢¢,ôŠ12ƒÞé ô¼xãDV°Eï^·dÇ”ÌàZcûS°/˯*ÐnœH/À;y§WÐNìÎV©+&КÅHï|>iCÁΩèÏ›N°‚;+zÝÅMA;u»y×4Ò;ŸOÚ N°‚½(z1{’'ö¢3>,`Šy³H6rK&ô¢³V0ƒSp¡˜=i]SA?9Ó›ÅHøó¤5ô‚´›N0ƒ{*¢˜á–ŒDAZ^! 6КTÁDnÅî—l{·6iû“BA;99e¯Ý„}XcnE»Ó£igwñ^¦°nrò‘Št¡Ëö™Só¡r£ëÒN4ÏÖmæ˜ûÖÆçéÖŸŠžå4P3 WÚžr ¯M{ÙÆùd ž“öúKÿÞ²òhôú'zéŽóµQË ûù²§½Eº-ÚúmÊþyrFmòš½Ï*ÝéÑ´3=—4Êköñƒ´ŸÏ\PûDçMצÝè>¤QŸžIç³yO x°<š·v£íy™r¢W–^8ŸlO„3ݳ4Êkæý$\ioë¢Î'ï'áN¦ïã'V™åu¢¾Œfy¨/…ñ÷x¿E³<.ԇ™.CšåqyS¹ÒmJ³<ò~>Ÿg'm|žíÏÄ…Y^7ú“Â~> ï÷Û|ÑãžÚööNØÏwa}í›Ì6>WÎôÌÒ(¯O¯®]i{Ž&ŒòZ Ú áN{}.ŒÏÃö2åõéZ¥Q^KEyntoÚ‰ÞSºâ|ú›i|ÞŽö å¹ø¤+Ý·4ÊóÓ+iã|ôi…ñy¦?eN“ÞYç{aŒp»ò¼ìÂKã|o&¢œhé £ÞUÆùðÿ"è2…&˜­?¢ìçËÞë6i”G{£œµ]·´O40Ûóeÿ>6{£igÚú³Â(õr¥m<%ܽ’6¾Oõñ’r¢Ë’ö‰æ9µq¾}~¨rtIÚ•nKºà|wŸ «Üéµµ3½‡tÆ÷A{­Œïã/>”Ó¢[ÓÆùæý&œè’…'&n™m¼ªœi¯¯£×¤½¾®´g…YÞ7®—p£kÓN´µ×Â>É+/ޯ…ÎYÚ'šíy°r¥½=‰öÉ^æÞ´3=²4ž7,ÞÏÂ…n]Ú§š{‘Æó„…þ€0žÇ.Ÿw(]龄¦ šm<¤ŒÏÃö\8Ñ^ž£ñ¼ëé>µq>ØžGc<¶üÁ±4¾OÇõŽÆó‚Åú@¸Ó{hãzž,ŒñØòWÊx^`s•†6ÎçF}*ìçs'o c<¶½c.íŸwûÀGã±Ï÷ ®tÒèÏîŒöP¸ÑkiãûÔ§Ñ=]“6¾OõþnpguWô§¢1ÞzÚûSÂéxJ£?º+êÛhŒ—¶¯­QFr³¼ wº%m|ßú0íõh/… ½´Ñß´ùES»Ñ­I£½ÞÞ1“Æ÷ÙèO gzTi´×6(i—ã)ÌåRf{ߨlŸ§$¶™öëíõ{jº7é¹Üí¡p£m>„ðèt¯Ú™IºÚÆÃÊø¼ÕÇ£ÂmÑ»jWwC'ÚŸG™GÕN4¯çí‚ÏÓ1^ˆöñLIãœÏàJó|ÞNûxk7z6íDûýv»b¼SÒD@×k¡>‹^ø>ýýh–§ñžp£ý~Nô¨Ò,o¼Ÿ„3½—´÷çJNF£<å„þ‚p£W•öö²äŒúP8Ñ#Iûxºd_!]hÏE£¼å‚þœ°—·Ìû)åíé¾´ñ}Û¹Áø>ãµÛ…å-ó~δ=¯FyËõ¡p¥½?òh^Úø¼ý™h”·§ûÖÎôJÒ¨ÏòÄó h–7Ÿ8)]éR¥QŸ=íýma|^Þ¯Ñ,oãÁh–§þŠp¥W—öñl)锇àF—)ÌeIf›¯ Üi//Â~= Û»h´§%£½.´½OFy*ãa?¥`¼=6=†v£½½öòZ°]ím©èO gÚï÷hdžE»ÐkH×E{{]ð}úËÂÞE;oéŒïÛQŸG§I¯ª]齄Ó)X/¯Ühï ãz±¾‰^öç™öþXôœôZÚ¸^¬O¢Ç¢½¿.\i{_*Ü7½«6¾ïÆóîè6虵 ½ºt´—aÿ¼•õQ´/ô4·¥ÝèÕ´½³´ÏG*•í}´WÍuG7¾O1ÛxZØÇ£¥¢>PÆçõ޳t¢í~žƒ¶ë!ìÏ£Í{kûõª>qQ¹/zTíFÏ$Ýð}‡·”;½Š6¾/Öâ ×A×¢]Ž·t©ôHÒyѳi7ÚÞ' '|Ÿåír¦gæû’R·Ï7F¬úº)éJÛó a\l>ÙÔn´ç”Óñ’Fi6ÊùxK£½dÞ²_Ï–½?*Œþ\CB¹ÒÖŸFÎ’m’6ÎGAyNt^ÒhO™~#Œþ^C"ˆr¡Ç”FÏæÃ5íJ¯%<Ù^Ú|·q¢m<+Œö²yJˆt¦½>‹F{ióÙšv¡m¾0ÚËÖ('\§4ÚËÖQ…q>S œŽ·4ê;›6¤Ñ^2µG¹ÐmH£½Ä…•®ôҨϬâHÚéxJ£¾CÅ,éž…ë;k˜ºv¡ýzG£>쬯„+íõQ4ÆÖ1Ú¶çUʉ¶þˆ0êCë¸/íL[Xõag}#\豤1žèž£ŒñBGf‰r£ÇÆx¢W”a|߆Ø6áD·&ñŒJgšåávÂù`}p›ëy Ó„ÑŸëÈúRn´——èÙiïO gz&iô׺Ÿå^éÞ¥ÑÚ‹¿©Ï‹´a<Ï0OíD{{ç}¢< ãû²¾ŠF{Ø‘=¦\èÖ¥Ñv¤“)Wz%a¾o(LeRÆ÷Ý>^F{Èü$åLÛûXaô÷™¡¤\èѤ1°‰ƒKûoã9aŒ˜´¤ìçËæÓ%i”'›ØšµííitʹׇÑ(OLsR.ôXÒ(O˜ø/]é^¤QžF?×ó³+ËË`C¸Ó]›å¡ã|Gózï ózûÂ[i|¤ ózOß.Œñ“”;=’6®7ò…QßXþÊ”Æõž,ÏÂ…æùºëÍÔ&e?Ó'Þ+ãz#ƒKÇWô×n–KŽ«Ú~¿X®àÔN´×WѨo,•2k'ÚǓѨo&Rq”3íç3zàxä(ºi´Ws =®ôœÒÏMdà(7ÚæÃ £?Ã<)åN—®h^ÏÛè¯LÏúPFenßÒìõ½°ŸÏ…<aWE8ºwzþˆý|/¯ø•ñr­s¾‚³ðy¿XÞ…Ïñ^Þ…ííA4ê+¦E)ãxä}£¾Zí¹p>žÒãïí™ð9~Vi¼·ù`M»Ð=Kc¼Æ\*aŒ×6ò@„ñ<`û‹CéF—$íëÍÌcK£¼l„ê+ûõb •r¢ëж€mß=ïM9ÑSï™û$<ËÒÎtÛÒèOYrT–æõögÒåxJóz#oC¹ÒÖž ³< /GÇo¯Ï„Y^¸¦lå¥&äa{y1[yW>Ç÷%Îñkhãø|®çg/ÔGf¿žÂ¶ñ¼r¢í}–ðÂñ¸Ÿ”mãáyŽßIÇWÏköúÈlãmåìFΛpt¯Úçx«o…Û9~-ísüîÒÇó~.t©ÒÞ_7שãÇ)·Ó¤ûø¿ºðDËlõ­2ŽŸ^Ÿ {Êlí±°?4ÛxNùoã9áãY_Wzkw¿ýy´r¥Ûnçx/OÂçø•¥ë9~-m¿ßsBy‰öþº9é|\“6þž/,UF}”}a¬ô9¾laÎç¯Ì S>ÇÛxWxãm¼«|Žß[zâøâã]áqlëE„û±”Ûñ–n8y?Ê^[ºâxŸ¸)Ý躥Ë9~$ís¼×WÑ,/¬¯„½’t:ǯ)ÜOy(OÂöòÍò€¼åFûõˆžçxß5Høoï;„Œ<1a–ÖGÂçøÞ¤Y^XE×c¯o„½–4ÊCa}"Üè<¤ó9ÞûS•ÞMÚŸ'ÕâÑÒ•æõþlæ9Uæ…)Ÿã½¾ˆF{T úCÑh ïwás¼—§hï/›gÒ.ô^ÒÇWž \è\¤Û9¾-ís|ïÒÇ#¯PØŸGÖ‚¼åL÷"q<ïwáL×!íã-3ËCp¢Gf^R-ÈKF}Q7(Œú¢xÇBú¿šô8Ç{Gå y)Âè¯äA ·cïo —ã)Íëí¤Ëñ–fyØèO gzmi”‡Š¼(åDç)òÀ¼5ås¼½ï æóh³=ïF{cóõ¦4ê‹Êþ”°_ÏŠ¼(aôg+ëár¼¥Q_Tä*Ÿãç”ÆxǾxÑÎÇ[ºâ|"ÏEíIõ`,e´'V0³ö9~Ui´'yRÊ8߬¯nóysEÇEºÐ5I/œ/ä­(gÚÏg4ÆËy*¨/*ò–„QÔ…ó!Œï»ÑŸŒF{Á¼7åL¯-ñ®=X-Ú‰ÞUåykÂþ<¸2oM¹Ð]ãa¼Ø‘öïÓXo'>Oi ý½hÔ y"Ê~¾›w¬”礽½δ÷ç£>Ëk4®wcyŒÆõn,Âø÷ÆSÑÿÞF$ýMæq £¾·‰ÉCÛËKGžŸ0Æ£=ãyÉ弙ʼ,eÿ>y7ÂxÖQž„Qß3ÏJ¹Ð«Iãz1ïJ㉎¼=ázlåQ¹Ò{J£½f–0êc›ï3µ+=›t:oeáó< ë¥ñ÷g#ŒúÁ Êè¯1ïJ¹ÐVÞ…ñ<Òæãli´§Ì³nžSσò(”3]‹4ž"øJÚï—úXÏò"‚™R¶-^‹Î]ÿò„ÑȃÆý0|â„2Ú;æ=)Ÿo/i<¯³à×"]æñÖNt[Òh†ü”Q_ ŸÍù¤f¿_£ÑÞXðsÑÎtÒ<ßÈ£æùF^0ž·3OJã‘៕Q_1ïI9Ó£J—B¯&ó‰ý­¢Ïó¦É=À£×±ßhô×lw¼-çEØwQ¹ï-ç…Ì;F}>;6Æù˜|¡Œñöçû~6ç º·4îwÛëlHó| /H÷ãÜø>Ñ.äqã~[ÕŸG £¿¿*êóÛg¼¿üÄ+c¼µx¾¢ùy†?F}Ë<“àŒú°1OàÇüÝ—,·†þ¹›?cg]¬Y‹ô&ï}·ç‹gçdîº|Ñ'´Œ]Ô ž#²¡+vödô…´\éÙ¸ $Òa®ñˆô&¶½v©½èTZɽÈÝb¹ú#Ò;˜$+èvZÇ~¿^1¶×N³ý¶>».ú ¨aÍÚÍ‚[²yt’ väÆzŒHoNVƒFzci‹Â$3ÙS$ƒxÛ>;7^\<ØwÄþ·ÜÓ5Ї8\AYy°ïÀƒçTL<Øú7.w÷!¨ _r _n‹èŠ~¹Þ è—Ñ‚^áYpJ<{Êq×åH/ \+‰Ý­ûÙùí"vÆ<þHŸ†Ñ±Š(2ó`Ïh½¸PT8C?Ò‹JŸgg°‹Øs³#ÏŽ(ú£ ãVLÿM¾î²4Í®8y°gìIÄ^MV؇–{$b'áŒç‹ÜS{çFz%Ã=l#½™XéÕˆe;.Eìù‰™÷7¹±Áâ.—^,u0+bOWox½û±* a wÈ97ÒWr?Ø›|͹º‘þ(qa&|¤wdŸ´qZ¤?äž®‘þˆ»¶FbçU^Ð@ïšr~îMÆKpvn¤w>977ÒMrO×Hì%»>ån¿Ó‡=œU{±o ºw>™Å±Ë%fœFú£]NþðE\¾qÃFúË2›‹šž=ráAænÈy Äޛا4Ò'ÙqŽi¤?ÂÚXÁ‰½Uò—/šÒù—n#ž6a“Û`.϶í3OœìeÄ¿¦ò9ö݈7Lñ-ш¿Lõßzñ©âûD¿¶Ç,Mx0^—Ó …›°}—0·—ì'žòv;Ç{üJt=Ç÷,Ïñ~¾£/œ°ý_ð‰·äô>aÄ÷&LŸFí³3ãß9}Exã¿uñÒÓÓ„^&â#£¯kÏá»tItÒˆ¿çôàô¾½ÝÒˆ—¯ ñÒѸ9½A˜ÛÃaú¨p9Ç×!Ïñ}EÛ[Aí…¯yDÊܾ¬øžÛ¸1X÷cX^Íí҉Ϲû‘Û—óõVÆ: eÜoÜÞLÛó`”2âÁ±ŽK9Ÿãç–~m6”Oü;·ßÆöÈ1PnÇS÷3_/ ã~æöMÁ§½í Ë·¢¿Ü±ýŠ0â»;Ïg4îgn%Œö”Û# £=åëÝàÓžvL/æöQíÄÜÆö h˜”¹}^ß £=åë[aÄwϹˆnïÛõ%xväÐ+cû ¾Þæö=ñbшϷ}–4âŸ;ËS4·oÚgùýgŸíG:Ë¥o£>åëKal_4*ê›hl0X¢QŸòõ£0·ÿáõ¼ÍåÛg{aôw^äö.ÂÜ^¯ç„¹½¶ÎïÛ¯¬-xt¾ÞF¼>·Gnçø^¤±ýÍÄëmaŒgìIy–æöõ,?þìt¶‡áõŽF{5ÿ/ÌíWÆYŽxí‘=‹Ò¯íEÒŽÆ %˜Ëãn£¿8ñzWí_ÿ ó|cûal/Àí3„ÏnË¿‹4Î7·¿æò7Ûž¢5inïPð}¢±½ÝBü¿0Î÷B|¿0Î÷ª˜¾~›Ë¯lû‡Ý¥¹}ÅÄòÃhno²0ý-ç{!Þ^˜Û;$L‹FyçöÂ8ßÛ;–Ñ\ÞcÛ7Ô-óÍí„û9~Lin/Ïò—ÛÜ~Û›cûÛb w^ÍòýÚ¾Á—ßE£>Úíµüä2êû×û¨öx-¹Ìí1æYþñÙ¯í &¦?G£¾ßˆF{¼×Yžq›ñýؾ@¸žøÿ^¥?Áí„Ïë}››K*˜~ø™T°¼)šÛð~ŽFüKâýåé ñLj_I ËSnÆ_¤v¦‡ßÆòon_ Œx@N/æöÓ7£ï`Ï{¦4â?ÒÀòÇÛ'~;MLïFüFB|±0â}âÕ…±¼Óo?ùLo5¯-xn Œø¬\ÎôÚÛˆÉõLϽû9WLŸŠ~m/`Ï“‚¹ýž97iÜÏO—%û97LÏŠf|~óöPñ&ñĈºeáy¶7˜~ø½¼0ý)ñVñÚˆ¿Îˆ×.'þŸÓ3o#£xÎtô`¼4ãñ…ç‰Ï·÷µÂ¯xzÿ>ш_+¼žÑ¨ ¶wÎ'þÓ?»Ÿí¦G3¾¿czg4âŸìiÆ“Lf¼ý|M×»ŒøÌÃnŒ-¾Ï 2âe¿.Ìíß,Œú´zN¹2âíP1*3~:cúúíÊúÔ*æ*ú»2â•*¶_f¼·ç\)3~ÛQñ³k‚OüYÅöÂŒ·î˜ÞÍøsÌìF{P)Œö N|Ÿh´ÖñŸÒŒ÷ž˜ž;ŸøwÌF|qEü¿p?ñá>½4ñxœ×(Œx¨†xüà¯ÔXÞ¢¯Ìú(šñ܈Æç±¹„[ñBÈiTFügýÝΧ½µwSí-*óóbûázâ›G‘æçE|½0?/ÊCð:Ÿ³¢„ùyPŸ×¿lçKŸ/”‹xöà¯Ý(ÌøaÏS®'þØÏWt>oéô19xœø]ï8+óób{áW¼±=ïN'žØÚÓà~â¥1?Px|Œ/f¼1Ëóí³ý\G<¹0㥮G4Úì#©Œö„³ƒ+ã;¶/^'þÖ¿o4ÆØ\¹xÛѤў3Vñ¿öR÷ËöoÊŒ?,Þ_Æù܈Æö›×û6çó˜m¼#Œó¹Y¢û‰·¬YÏk6æ £¼2žQ˜ñ˜ˆ' .\žÈù€ÂŒwCü0–Ç%^¯è‚xBÄ §¿gãå`Æ ›—6â¯'Œåmœï&Œåi¡>‹füâU‚—GgÌ>ÆòÎŒùŠÂŒ§Â|áWü˜½Ïö÷=f?ŸŸm»cù0:ŽÊþ<È⿞¿¨Üë®ÇÏ«ŒåÑè¸G/ÆdŸï£ŸGŸñXÑ'žñXÊóÄO•%ó…ø+åzüì+çãgÇ-šói,>êY_)Ï㑤QÞ0ßN¹Ï*Íø1ß§=ºŸx0ŸX«ŒåÿÅVeć–—èzÜŠt>ñSm 7.ß.,oѯø¨Õ¤ÿ´í~U.'Þ)/étâ›z®Œ¿À|>e,oFN2–×#~H¹œx¡Õ¥ßÔ¬`D¿â—<þGå½²[׫yމ2®r°•Ñ^ÙÄ–"å͈׉æöŸŒÇQF¼&þ(cy³ícѤÏÔ*êƒË‹óE,ç9°RæùðG¹x«/„äñLÊŒ÷™^Ÿ/–—æ”{§í|׳—4â©0_1zžx™dVñÇÝã?”Ñž`ŸWe\^ð}nÆãuß'B™ñ'>_M¹x›¶¥ÑžuÏŒ>õq÷‰ʈGëþbNý¾ÏßûìO0|¾¬òxÅ£lézâ%¬> æûŠ:|b“2®×ô}ž•ý}¡Å?X{Ì÷ŒPnÇÖ^£>˜Þ0Dçóy†ý@íýô }â©lû“.x¡çx½çè¹σùbʸŸ–O|f_èGýÝ—A ùÿ9N¡1!! ÅŒò¤+|"÷ÇjØž/²“£FV4&«Ñi3…"+ékÕ/r×›–ObÀEï¤`²dàI¬À´ÈNÖÉåíµ þâ íÙSd%="0‘+îÒÛ Vþ^dFTó—{‚ô5˜ùÀˆï{" YG$³³™&éU]ÛèÈJÎ¥˜H{Ë“/±¹åhäI¢ÈMÑ+ðÆL€‹I#xúÙI+ü‘…œ3’9HUGú ¦1‹ 0‘cGrBöáÌäž‘9%zW®acÀ›ÌlØ0r½(ú ©cËäÈD¶hï5H_ÿØHßÌ<0“¾öïâIfÀ“ëÈNÚi,LÏX%’“b{=k0/ÒÞHFVÒ×szCбyÙÍj“[wFzÓÓ}‡HA¯T¹­æÍŽJµcS²H¯Tùì&‡Ü03Ò;ø…0²|ÈÖ¸Y_ÉÖD"•8Ò¬u¼×¹YðØ¢c¾H©Æ-2#ý¦ë¾ÓJ oºŽ÷9‘ôÕ´³¹ ‘ÈÖÀÆâ‘ÞÑÞ!ºÙ˜Žr6¼¸ðŸy ‘ä†à}=^Û}"§— nVè îÀ»‡ÈJ®­è îÙ†ò"§m×&¸+³DzRôÆël0y‘ßWF6Ò7—ºÈæià]s¤?*`†Id!÷Ь˜†5¸)m W×|GYInXy1}H8¹Éî?ßnFf¦” ÁŒ‚4‘žé/N'·A½˜P&7Ñ ¬ä^Š^T&‹ÙgVæ›2Ã$Ò_7Ïöió¥Cæg?[ã\l$7ʹèn y“Ëç@hs •É-·½¨Ø†Œ+’y)‘^T&.w¤•ç kE/*Üñ&_¼·¢$n‚™™Ž’Z$§|¬vV\ô!Ïjgû€‹^}-Üì7¹Ønõ3—þ¢W_k 8:лâ )79o ¬‚ ô¦[FÖù'‘‰¬5’Ë×ÖDz /þàVˆ‘ùpGraÙ“œ7~±“«*zwk-¬ÉùÌÂGzLV‰¤Ç‹V殤ªèUÁÂÖm7¹³Øò„A¯(ìcSôF„ooNeL3NÇžJ|›ÁÌsI3f16 1(ØÕêvf긹Li,ãO~^¢™šm[ºŸ˜Ÿæ]½ŠðdŒw½ð<Ó(oó|##xœóáQEÑýœÄ”#&!a×Ha,#å®pÁËD3v…Æ2ÄŒ]}„Ë1§-~6sFÍ#K3†»’ c™fn˜¦e˜xÍ]£Ä]¹„±ÌÕæ»ViÆÐ`Wà|bfx=¢± 5ûkJå|Ìi€ŸÎõÀ4 a^i€ÑXÊšÛé,ƒ.¸^Â8ß»¶ ã|ã5xôYfÌa,cµõ0UËTËÄç½=¹ •14ÂXfZ°+£0–‘Nc¹=¸L”» ûà"s×aÄ0TÄdwÆ,X¿-I3¦ÆoŒèCQy=¢ãS“!Œ˜lŸ¦ŒêÓ¢™r˜¹«Œp+tÏÒˆ9©Øõ.¸0ÆëÕ•Ös"œS“1Íë6w½911Âh/Z>Ó¤n£¾ã®/ÁéÄà`W áqbhv’Æý†q¹2î7îÊrÙ¦ á~k>RÆýÖ|½˜2î7{2…™¿gnU÷[ó륌û­-¼v¿Í]Y-ÆÆ¿O4î7ÄØ(3Å+Öèqbh2¦ÑD3f¦Ø33å‚¿žÑ1\ˆÁQf ÷U•ë‰Ññi"Ñè¯!'šdóÒè¯õóþH÷û5úĬYž`‘F{‡¼CeÄ,tß5*º0FÁ–14i\o_*ãzcבè|bn ¦©E£¾>G×ÛbW«pâõ¶8Ø$=NŒÎœÒ14œ¦ë=î‡Ë‹»¦›mš¢p}Åä$iôw£Íi„ÑÏÊŒùá4‡hÆøøzéès¿›§4b’ìMè’FÌÜôõ ÑÓ(2ÞÑ*÷Iï!]NÌNªÂÜ•ƒ1=ÊõÄøøùŽfÌNÆù¾ÝNŒŽ¯wT®ø¼œ†¨é¿ÍiÖ›(·Óª4ÚóÉòvû´çsbšSt;1>­IçÓ³«0_“0¦G1OÓc>”ˉùÙEøÄN±UF{aó=š4ê ÄON3ö˜ž-=N M#fÌ¿…VfŒ£c@1ßIýÁå1ÑÜÉo¬,˜nÖ7Ûóf”330&1ªˆ‘‰îŒÉÜáŒò¸ýɹ2ÆsÛc:¢Û‰ Z~¿ £=Û(OÂŒ‘ñ‚]¹ÌË<¥±L"ùzdårbdlšipAygÇ\ËÜRÁùˆfŒLóivÁù=&ÆÚ aÆÀ ëX(c™bZ¢Ù÷õLKzdzVé‚•åýÛƒ÷« ¼íz#f!×süízbDjæ4>XQ¯˜‘)e¨ÙßHDOÆdáQ'fÄú+ÂõCŒˆ2–Ñ`½nôY&ü´•Wa,3Ì>°WÆ2¨â1ÑËÐó¡\ȮMÓNˆ±ð9VÑìosû)e,CB ‡2bbНg‹®çï ¯ï„±Œ¬øz>e,µ%\3S6>ot=1Ö_Æ2Åê3Ô¢3ÚO7¥± ¶ÎsümÄÐTp¸L¬ù¼eü={ÿ¼£;w½,˜%§Œï‹åtb¬¿¼x½šç]+£M¹ž†”¤±Œ3Û¢c<š/sWÆýÜPž‚;ë äñ*£¾i çó6Ÿg™­¾Æ2v›[’¤± yÅÑýqÆ4(co÷ùÊhOs]¸L1Êh»Ï>Q.'Æ Na.ãcÌ€r?1þy¢Cáëu£Ó‰qð‚§ÜOÌ€žèŒeè åõrÛŒ)ÀÌå†ã}œ2–‘Ï“^Œ™¡ÜNŒ€µ‡Â\Fï³Þ¢¹MCÁ&?ʈ±þî5šSe}™–F{†_ý ë¸la¾zµ¹Ï6^Fy›þ`FÙŸ—ø2ù%Ì÷Eó:”>Ïöþžp>ËÐm¼|–ùÚÀ+Ksºo/}bŒ°-2úsËç*ã~ÃLhŽ'Ëò «Ìeèå5:eÞÖßæó^[fíïò‰±å2ke,ãßþ>G1\Û7œŠ^g™õÂß‹F{²=Æ?ú캛üÅ“2–±%ÏVÆ2äË€£9Þ«öâ`K×c»ß‚;—¡Úztm,ƒM>'VË€l<1„Ûù<^q(×ãZ…ëù<>pPæ2b_E Œó•y½o\OóìÒØ•5ûû¸è³Lði{"Œe€È;RN¶çÝÁ|b¶þ¾0võ.>!Øv-Ç2]”a.sõ÷eÑgWnë¯wiì*m.¢Oyç2Ua,£ç2Uaìúk1tM˜Ï#+æ_)cWÜŠçýÁ1Õó&”± ÛDDó}âY&*œÏ2P{ß\Ï2I¼OÆõl¾ýnt9Çc™¤0Çû¨à³Œ•Ë …_Ëüü߻ήҾ«s°½†Çr%ßHðGýÝ—_}ýòËþé~õøýŸ–xá?øý_¾üò7ÏêñõßZ*½þÃi9 ÓˆŸ´¯ß?¾ùÍýõã¿¿xØPöߎëÒþöŸÎžraµò³Õ=úï>ýåüò¥â] endstream endobj 18 0 obj << /CreationDate (D:20140122074914) /ModDate (D:20140122074914) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 19 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 21 0 R >> endobj 20 0 obj [/ICCBased 22 0 R] endobj 21 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 22 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 13 0 obj << /Font << /F8 8 0 R /F11 9 0 R /F7 16 0 R /F54 17 0 R >> /XObject << /Im1 1 0 R >> /ProcSet [ /PDF /Text ] >> endobj 26 0 obj << /Length 2497 /Filter /FlateDecode >> stream xÚÕZY¹~Ÿ_! ²Øž¬Õn²É>ŒxƒÄÈ »Ø xòØ~è‘Z#eu­Zš#òÛ·.²I©5Àû ¤æQ,V}u‘­ùõB2øS#­‹´Êí¨°6Õ&MV>e£)Lþ8ÊÒ¼®FDºBr•ÖÖŽ–£÷ÿ¼øëÍÅëëjT§u¡‹ÑÍl¤M–VºV<ëÑÍtô!±Ùg[_u•ÕI‘}.\»Ì>—ÐÎU™%UöÝÕ§›/þvsñ«L•:­LE‚eÆ<'˜.ljmí3’©JC{T˜"5eÁ‚]_©ä§w Až'Kho®t™<œÊá2 OU@9°P:–CÛZ³3› ¦„†º+U׉*ê<šÍ3™-`¶.ã¥Ê--³,hƒÉ±ú‚¦AÅÑØæ©ÉëÑX$>dÕBgú y–Ö¹ù:8Ê´¬ °2©ÕŠe0ÆD*é:Ðטê™ImãÉ*C«"FÊPT ’ƒbÀ;æÐ^ÜÍŸÁB‡²þ]°Ð:µ…ØCi ]êªê L‚dÃ@¹r)ÂB©"­µ5ˆ«5ËqsUåIs ¤(-/VoÀ§Lž¼Û¬¶0Úì¥iÍ›>u²‡±y¿®¹“ÆÀ§C‚tnðµ—ÎfÝ1 t ‰£HZ$œ ·õ•®ˆ²cÕn¶Ùq·™`DÏy€…É…qÝ]ÛÝá›*Õ¥ŒŠÎS•©ÑâÀcPp鿚%¬ËòdòÉ8© Û˜0¢–,Ö<‚᫉0F˜0 l®¹I’ gÄhëñ E*û†çHQx6K2µï¯lÁ‡Ö17$ïY­§Ã»õª é!`؉‘hç«Ê$¯p¢öë6]û OÄ4‹S”ƒªf 0B•„Ön‰@çü‚¼wÌë¤YSž¢E‘q+6ƪa€»»¼ÖÖÉ Ñízb‡:4~Lh›†<ªL:Djw/8D‰ù~ÌTÞNܣȒ¿Ü£íiWqúŠùJ) ÑOJòØ+ð’=ÄKòS³bÓ9X@t“U>Œ~ì?,D¤9÷AÀÍ´s©w(!ˉki²Lš=’— tÓIOl‰|¶î{îܲ­PûæÐ1¤8¾èI½ˆ­SyEüš=- â4 »s®y7F…í/²~ŠFmŸˆó€GyÇÉÉÖ¨E2;ˆGLúDÃtä"'àÚK‰}­œ—]f„9ÅnîO¤á²/0оE¢'Ž=eaÌ`WŸ1âz‘eÿÖs'DÅE‹l9Ç@„ÑÛN}^×µ¡¢ëÜ ˆcR(îvd”-䜲h *Ð{;Î97ªdÆý@@ìR@ëX“ü§uÆèx®ÙõtîWf²™ðß,ÉÀÆD0 *Q;å±ýFˆ×¢åëüž§Ää5€–¸ypV„Uµ7ª®+Q\'¾œÂÈ‚:ù{Èn…(&ø-|Ø uŒ_M®qØQ.ò9ÉRNBI\q¥¼´ãzIrÐì¢ã'UÞCˆ $TdÜ!l%ÚE¡H†2¹f/䲞á6£“%¶TÆûú¼JßQfØö"á`#' I:¬Ù¬át•wt•ü™ÄP&­áÞÉrã´éÖp¿k™ºÂdÃÇ _<:¦É…±ߥ |÷Á×?¤t‡&Æ“¿§=“Æ«*ôˆI#¬6·û¾8Ÿ&_&ÚÈ!DÉ$} d‹>6)Ñ‘òs9âDhI‘ùѵ¹¯ îί“ÀÃyQkʽ=«‹ÔŽpâÿ"Ä3~6LÒEàÈæV¬Üø$<•™u¿Ã¼_>n|~·yí„pê:ù¨r³uõ—Äl’ïî’É(¥xñ˜ç…Í®‡Â&ÚA§sÕŽÏCÍÚ§v9t.Üö“œQf¦w0&ñ„#Þ™³dëì°ˆRË·®bÕ1*&kï’21øøOSõî&ÍÔ'&{tHÂÍ]$ .ØûL2CyŽ…ŒìC¨EY¥*’õ†Ÿ³ÍÒ‡汫@0'ù oð‹ƒaTTœÂ|A_PÖ!²{W^ò•¥3N<¸ÊéÒ“gÚr»éº0Ò`D’åÄedï`ˆ#Èà(ÎÁçWŒNwN?Ùeí,õDGªî…%É]X)É%páJôèÎ6ç¿S&?—ÍpUtî‘7%äÆ]|r)ºìïv‚°êïƒÁ2°(n¿%´@Å××Ö„on  -¼Ž–¹hý=ˆªùRÂûHüððŸ 9î)–r_œ ¥ àt09?ÿ™ï£+v+d-2””!TòiÈ:gådîwâ)Ùe;(#òí…rGE_Àç;¦Äæû™s[† §[§”"ø`‡#¿;ûÚ±GܨJk›ê£÷PÎÉîåé2Í[Qú ¾´ð²ÓÅœ–Oz.áCG\ø¼sÈÓ#éñY å+žº”á~š†Å\FfJóháÑnߟ_$oe@ú‚w5‚?B Oo%‰Y`#%W%ΦåiNn)üŸ‚´L=ˆÎo=T6/RkòXãGÑk" ,aó Sádû…Üe‰·âXÿ ¶ë³Æ,0ÑŠ‡Þ ÕJ,æ6¿'5îq vdg‹ üßþܨÓÈ®ýË*/\Œƒ—@GgWŸwÝ•ãÒ´þåû­àx[-®Z½œ«ƒW^ªéúhþK"ã§g¸MùVy´z’3}AÊ™¿ýPW˜,¸'¯p]{#xLå–§è~ÖÜÏìÕñXþ=\×iU¹Øp?ùþ¼ú[? endstream endobj 25 0 obj << /Type /Page /Contents 26 0 R /Resources 24 0 R /MediaBox [0 0 612 792] /Parent 12 0 R >> endobj 24 0 obj << /Font << /F8 8 0 R /F54 17 0 R /F56 27 0 R /F44 7 0 R >> /ProcSet [ /PDF /Text ] >> endobj 30 0 obj << /Length 893 /Filter /FlateDecode >> stream xÚÅW[oÚ0~çWDÕ´‰¸±ÕÚ‡iCÚÞ¦ò2±>P …6!)”nÚ~ûα›Zm•&äøv.ßùα¸Â{ý”¥IæÉ~ÈÂ(ò&Eç{'dýDÈHIØcµÉI‘Ž?Â{_v>ÃÏld4°¬¾vŽ™×Gs‰7œÕŽ“Œq‘zÃ+oäºÜ_@»^¯à9í"M}qÒ "žøç°¤Ö7$µéƱ?ÎQ*ñ'kXYmº"ó§•Vœá ´²Àyæuw K å½\ié Íã^5…Ç^×82%0/»"õïa´$›U£]戊Ìår‰Öª,fì×jnyuÅŒSŠ\Ǥ"Õa] ?Áç¬'š2 ²\u)%€„0N× ¦Â‹êŠØ9Î‚Šr ®õÜ ¥ð¿†qˆ1âxVj‹µâBó åxtmà’ʦ qâÈÊ~Ì™ˆ°B“if…¢L±Ê5ÌnôŒ|ámž(º  hДK%õS±%B–e‚(‹ù¹}–yÈwý,j¶¸¿ÕÂoaèá=% ¥&4&(cU Hœ6€¼”³•¥Bâ3ò1ViÓý+L¶©2ñÍàæþ)µ…ÆòZÅJf‰[^/eLp¦”ª†>ƒäÆFºD¾ˆŠT¶­nÍ*.†ÑÏ©Ÿèc²“W H»÷{Z²"låÆˆ‘¶[>Žný é‘"·u M–›pÚÊó—µ%žÞJœ-2¸×¥3o—yñˆ¡¶üŒÒ…QµÔÅYÃÈŒX¹kõXQј·‡-MlŸïˆXµ´&É…Uv½&Ø©ÊÜ)­ßºk;‡½}dYYkÖTJéâLBí¤ ã+ªÖž€A£2!9mYEÍ)#‚ú¨©7RÎÉþ)ïlÝSúOk#¬LXI7â-Å5¡r ,^Ä ´˜4&G[GµKR9‚öÅJØJ¿rMIšzé|Ïé<ª!ïäçaËÝÊZPo":rNªÃCâd>·.…)Q³'ûD9£ô¿§_ìO?¯¹Œ8| ¾@ú"Û,ZDN­7’¹e)D£ðz®Öƺ¦ªz ?}^þ6È@–±4J].Wú³,±>Ëè=jé7mnLˆ¾X¶˜@ç[8p/˜Tº’q ï$ÉïkJu> ;e6Í endstream endobj 29 0 obj << /Type /Page /Contents 30 0 R /Resources 28 0 R /MediaBox [0 0 612 792] /Parent 12 0 R >> endobj 23 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 31 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 32 0 R>> /ExtGState << >>/ColorSpace << /sRGB 33 0 R >>>> /Length 19037 /Filter /FlateDecode >> stream xœ¥ÝÍŽ-ËqàùyŠ’5óÿ0<  lÒ½€a”˜ e›„¥×wE¬•»»3Ö¹º‚"õñìî®]••™•™ßþö-¿ýþíÿ|û»çÿ~õç¿ÿ›_¿ýåßÒ{Jéíóþð—ÿíù_gû·o¿ùí[zûÇoùíoŸÿûý·lxû¯ßê~¯ã ÿùÇç¿÷{ßäÞ~ÿìjïÿºÓû*¯¥^ÿš[y/ëõχÿ¾«ÚëßÉ׿—ÖßK~ýûáÇ¿ïñ>æÇ¿“¯¯m½çúqðäÇ¿þ²ßýõï¿þ‘§öw§öÏ¿û—o¿úëò\‡ÿùm½óÇ8ë|Ïí­”÷´Þ~üãÛ/Ò/ß~üý·¿úÑïOýàZï#}úÁòs0·çÿŸ~²ýìŸÜù½—O?9~îO–çªîõé'×ÏþÉý´‡Ï3ÿì3T[}ŸÿhþÙç¨îþžûç}$4„§•´¶^æxOåÓ­ðúgo&ÐÇ¿>MxÏ׿BÿšŸÿjëõÏä§_ÝñõïàÇ¿—šÞ{~ý;ùéßq°¯ÿ8öÏgåã\üÅÇ *ó}µ7»– õ]^ŒŸøÙ§Õ¶ÌŸ•Wã'~6×çLþ°l´?õÃó9?,ÛíOüp)í}wþ°lº?õÃ3Ùå÷Vôq¾¾t™ßZÉvtìQËsiósiÎ…ûÊóá¼{ÿÿì†òÓ-ÎúVÞ—·÷ßüâüÒ:Š·_üÓ?üéÏoÿü§ÿõÇ·þáÿûÿôËß¾ýø·?ëÛ?ýÓsÚ›ÿþ+ø¿úåÛ_Ôç—þëÿü×_¾•þö‹øÃë÷=_âíó«Ëo>ëÏçxûÓ?½ý÷·ù÷±§{JÿÞ všÿ·§låÕü_|þ\2>ת+ÖmìÞkG¦ ÖÙì‹<œïEò¹âÎçW ú•ΦuÀ7ëûzîðo=[O"Øì {yÏKñù¯‡O_9"ŸaÙ}Pì\Š¥‚}D>—Á9‡ö>l0, l+2½o?ȧåUÅÑÞ¡µ‚¹)&;ÈѬÉÜMeø¥¬ |þ `²ƒÏ×_‘˦<Ÿ©KQl\U1ûANû*Oåù4$Iy¾=—Îd¶ƒ´Æ8"‡õ}ŸÆ°{ûT,vÏ­Ùvd_Ö€çsã Ån7Ý|.w‹|úq?Œçô'Åa·Õz¦˜M±ÚÉYÏåÞ‘ÏØd‡±†7¤È1A»5"k­£ˆLœ)²¼O;9kâ¢6?H¿ì‚iÖÉÜÌè ®¥èÔÚv ³ä3a´ŽâfBµ›w_‘ÞA=S°:³ºg¼Z=°oû¯‡ÓVÐ;¨¯Y ø< .›ô<|¦]±/ÐFÑÈb§.§ö^šð´Ù…yø%<ª áj'0ÛHW„cÎÙgµÂÞs.ïµI{ƒ4[ßütSÅÝl¦£ìÍ.g\Caoxæç¼Es¨Ìyú“‹°7>³Ý1ÂÞür^6nFsÀtoé¶iëc„3Î×ö{#¸ ægZg½Ÿ°wùyÞ°ûCØ›b.Õ{íàŒÆ˜1MUöæ˜ËÓgli´Ç²ý™28¡›4[O(ìe¶G-í]¥y¥è¶ÙkñqVíñ±Í„ÑŸkÂÞeæ:lÄŽ^è4ÝKºâx¦@ dzýzO Øþä­íCv~f™=Kû mk#þ0}Û/#=¥›Ïó@ló'áÜéÞ…»M%ÌÍGáŽãé6«QÎ8žasÀèföï]*ýt,Ñ“G{ØhYºozli´÷§a´)\ØÞ­á-i´÷îOzÊhïÏe÷[p¶Åx é1h]…«OçõŒN…ÞY8aªšmæÞ¥+ŽgÚ©œp<ÛŸ8nWï&?3 _ ˆn~<6§ªÒÙç™cZ¼lš ûï‹n~<6¯ÕÎ~<ÏŒÞfÁÓ¦°ÍŒ„»Ïóôdó9a¨2[<8ßN8žíãÅmÆ mó%aïÌv¿ûýnöUÞÛ˦ÁŸù¨=“ ûxYl>º„9^–g¾ióiaï/J®>ž §M÷%<0Ÿ,ç[¸áx»M¬”½?*ù™8ga_Ô —´ç噯Ú|)¸¡?+™×+Úç»f[ÃæïÛ~?Wþ¾’ü9I¿ï™¯ö&ß÷xmár~Ïwtë´çÂü}ÍÇ›à|~ßðùˆ0ßôu a_N³†góàt~ß¶heü>›Ï6iü¾Ç;Gç}>_|< æxæ«6?ÿôgSšÏ,£çù}~c*ó÷m^Æõx&6ö<<øûž‰•Í…ÑžlbV¤ùûšÏ—‚ÏýÔüUˆ2î׿+²Ê¸_ŸùàRæó¦?xtiô76_«Òþb+h6Ÿöç[ôßíó[CÝCxb>e+ÎÖ_ ûóŒÙÖ‹…‹_¯Y|< ˜Ú{›ïw|¾ã|E¿Þ¶B[„;æ³fkOÂý|Þæ3ŸÇJ]pòµÙúsáv>¿²på|bae[÷Û3ŸµûU8áóþ‡£ ï‡åëÍÊŸß¶p¤œmýqpf{Ýí)ºøõ´wéI˜ë9å™/Ûz„°¯•g¾lkÝÂþÊ Ç3ìÄEO<›{’.8^qÍñ¦2TC¸ãû<o‘ÎÇÏFw^¬G+×ãY…›uæjó9eôW¶°‘¥3Ìóy»b<¨XÏUÆùzæ«~½nó}Bmæ²ÏG+Ö+£3æ+ë…Ê8ßÏ|ÊúkaŸ¯Õg¾ä×ãvâùþà<9«x©ìëuÕÞ¥+/¬÷Öó!ìãiÅz_ôÄ|»Îl㭲ϧÍÏ|4z`¾l¶û5˜A$uú‹§è†õÞjó¡"íëåõùâüüWWŽË;þh>WÜÑ ¯î[òŽé»þá[–a71°Æ£4>kœ‘46'ŽD$ ž#IÓð‡.6L×ìµARôÎìáêŠ~+>w’­ôܬ˜H6¬#Dz<ÄÃZ# "ÚQd÷“3ý A¤wà׊Ìèí5–¤/Þ6¬íDúÒmó%¾À„‹þІ¹82èÑ?þRÃ^®À±1$#Y)ŠÞ€¿ÂżûéM”±P7;šèC;푃qT++z]þš2°¡‰ÚCÈTôGÃËéÓ]qQ.2æìyüò¨£ÀÁH©”}JdÆ’˜HÞ£ufÞU)#L+‰G·3&Ò+àå6&°2£Œ€‰pu;1`"1 )ýûD#`äÁÏðŠ€‰„€"a¼0N¸Æ ãì+/Ñ q¹ÐU¶to´½°F@QF+ ž (ÊHãF@ÑóÀn/|„P‘»/˜¾0fÀ–ð8Ypq»cAÀ¦<à%ztÚ‚&…¦*n7tïPeóQኀ©îw¸_we.ˆ˜-ìZ÷‹½ùœÒ¸_ÊB@Î퀋‚€5a\Ø -í|¶êæE®>Ò)7d! MyÕçßÑŒ5ÛÜK¸€¬Õ¥3züÍ\pÝtÌcHû°c¶Ýà…M÷’f@SF@At9_s ŸûÍ2š´q¿1àH÷›ÍÆ»ð¹ßº¯l)ã~ë¨öåÜܰÑÛ ¹€Þð€ ‹,mÂ6ë_Ò|f¹K3`jž€•Û ˜ò•ßh¿ Ïw´dd„v+'Dù‚F4_ØåÁïþÀÂì§4ú ðÂùd-O4²^¢þÞFÀÒíÄ€Üç©ÐÆጀ*_p .›ãñ㺤1?OʹK3 «" âö:]ÑèOle'K#à+?ќԚ­?F2=2E“Ï|{(ö7Ë“k•1Þ¯‚€ŠÛ' l! J˜aÃû á‚ß瑳Ñ\0µ•除¹“χ„}Aë„WdnOcVF@æF@–0ú+ó.'à¬xr‹0Ί÷ç 8k¹OÀYÇ÷‰fÀÙ8+·ý…ßl)c>³y=nŸêÉŸ'•_mþ÷¢ÐÆóu9ïÐV|¾-ÌßWýx…ñÂ3¡=¯s¼Õû3ázæjž H¹¡Œª ¸F@@ò Íè]{3îç#z4Úž …+¾ïô²ÁOùf_i"`"ö¼Ò„^HYäÜÒe GÑåôÕ"\ÐÀ€>a4ä‚ã‰.ô5ºà…€ýaK(î“f@Ìm¼ÐÎíÄ|5—`íÂ0 åvÇñ,O4.' /7á„ç¹p'Ü mÂùÜÕ8ßõÈÀ&€ ëx³t´Ý¯Á|áè‘‘EÚÇk÷–öçø’ðÄ|Àlã‘0þ|íI_mÁ' ´b5[_iÂÂøz¼Špg@¬=uiÜÚÄR'+æÁ Ï“>1.ÒȲ‰y–Nø>xóÌÅ$ŒÏÒèo+Þ`ö‡ÏƒOÒè+ÖÏ…ÐÂ7QÁ™ýUCÀ¥ðHÇKýIÃýœð<ÆÌeÜï–ð2¤0ÕÒ{Ùfðù‰€hÜÍÛ«rnt) ˜±…1ȈF@f÷se4fïíÉöŒ€Håz"ë–F{ë0=N@ 'å*c<îþf>úŒ—ÝÓ±£¯§e.né~"ý|Ý®XïóUæ)Ýð}ýÍ“2vñ–'º°?žŒ¬Œ€µá‘uÊèþà}6®Ì€Hð‰N¼ßX®Œñof”K¡= çòÚ‘’¯Ì€Â„€•hŒ'ö>4 /O¦Œóù_õ€Ì-0Ù= 4˜ã‰\®.]O@dÞÂëæÙ¥Pé™ÇÊù°˜„9Ÿ«HˆW®…îU˜ãMÍþ>@¹! Ñ (3 yÁœ¯YÀã¨ÒåDZÌà Hô€­è†€C/îÍ„W³´ w6˜”Q© 48¡?±€ÆY¥ñ}9l/îËñ–®Ÿƒ× èD@£0Ú;Þ•\ý}Q4 B¸·4~«ÇdE¶G{1’¤pèï{¢„Rí}E‘öõn h´€áàPÙ<óR¹á󬌀C$¤GW¶—æoê•q?<óik¯ÁëfO…ѵ‰ã½Í€üÚ½a)çA[Àd0×ãj/ø{Ñ®h—;íj÷„{eôWVôd³ž‰tÚ|,xž€Ííó}a\[äaæór}: x f€…D¦*ÌJ=f‚+Ï÷ò…íèŒñÜóOøkݱü½ÈŠ´ÀyxbQ~11¯hÉ/<ÅŠg¢XX:AŒ3ã0½´ÖEÖ:iHUŒl<Ƚ"Y¬a•"Òo²æqU,øe¯š‡¢_àæ‘ü‚ÞýœèЋ /ÿ®¬èC¿õ,]1«>¼iÑ]¬K´ylÒÍÅK†˜ÕH\2ĬFâ’5”Ǻ8yÉŠ…6Æ®Š™%ê¼LÕÅÁ Šòv‘> by»H¿Å-D½Dv^n$Fv–Õ³&Ygë%®.2žªaå0r0 ·wE_–jŒ- ôA¥-ù…C>j³ú—M‘ Çhž·+ˆˆeÆŽfFáZ¤ËÍ̸S7Œôe†Žn$Ò¡Ž®àf¯c-Ò'0q§¾¼m«C;°o,žwD–FúÒ|ÇÊZ¤OÜX¾ðæÂ´ži±‘ƒqÅ£*"ž)›7'&¬XÏD<óðh¢H_ èóÄC~á@'ØäHïd¬"XVLŒ+öÈËñÌ '6ЛYG#ŒD3Ûþ~ú&ó/;Êêݬl*ˆ†ô¦bb)"bÙ3¬ùÚføªM`ÆK%²ô)Ý@Jv¤/¸Øíµ#9ÄXqUD‰Éⱑ•‘Ò9)úÄ2‘Û)1é«x‚(1ÙxJLî¹0´ó§훬0Ɖ ¼èSwˆ’¢N"Ö>pూiÑ‘ˆuGt÷ÍŽFwGúäd ¡ÿfÃðôL4ZVôáifÄ^d­<Ò ú4ÑT"£»ÇŒ,xˆ¼Üþ gòr"朗ûbfÌù8å£."æå8#s¾<~ûfbÌùòI`ä‰9_Kѧ=+!fõ+-dÏc°=4IéÙ2éH÷¾¹^éÖD""e@#‘ŽÒ–7'#ÒQö4Ò3,VGŒV âÕ½SäðB‚}$âÕQB4ñêã§úÂŽ¥ ÆØGúÂÃC»5"ýµÀò´æ@í·"J¦NŸnE¢d*J—F¢d*âóo2ØvùZ§`eô¾M0"½Û\q¢9‘cQÔHïT±ÈGÎ^z_y ªvÁSP5ŸòPQPµâäzãߨ±0ðÕÖ•%½y[Y€É ØÝQT'лÜíµË=àb{ âÀ‰y£1Džb¬6±‰ôPؽ±µÁE.o\²H„‘¥„0°h„‘1M"ø„©£N2ÂÔ“ÇS+×B¯.0¯T°ãÃíÆžæ/Ì4v>aêLÃFÀT†:¨£}ÂÔQA¹áï!Ì=˜ËÀæ‘… ÷’fšÇF˜g4Ó<i$^gí²E7.ÚÚ›0ÓX<ÞY9®3Ì,JsMÒmÑ=K£¿aâàS§´¢Î­0ú›–N˜Üm„±·Œ0³Û§N)ÓT„™&ƒ:¶Â¬Œ:ÆÁý¤ÑTŸ? #ŒÝžª’4ÒØl v7ög×+aî iÂèÏZÇùºýªC<}V.Ì:Äa’ѬCÌëuûU‡x!Œ-ši: ß'uV™æœOšNF˜dô8iBsK³ÎqA°ÛéÔ9æõŒFÉ4"aÌw¬à{ ¶0·}Ò<Œ*ši@~?+ד†´‡4úëŽ:+Á‹ýuÓŠF÷aʘouOc‹ž§NóB^4ÒŒ°Ó2ÓŒ¼ã‹'ͯ!…™f„:-†üŒf„½oIû ¯“¬Ì4&¼Æn'É“»•1Þ OÃQN¯4ª$\9Þ ÍJãÍðxdeÖ±Fš`†1JiTæ)ñløzGôIÓ´:‚Uã™ÅK$i¦i%Ü·ÓGšVªÒ¨Ã4®àÅEóJÒ¯4/†ùÝ~¥y¥$Ì0t‹‡ñ0¯hŒ·o3¥1Þò5tð«Nø8a|·™F6=LUiª¨ÓÍPó®Ò¬C¾^a—ùû< (úÔù·x­"Íßç«ÇÊLƒÛ“¼Ýøû¬ ”6~ŸÅÛmiü¾U±1Þm¾Z°(Sš¿¯#L3:Ÿ4·¬\Îç=ÞXùõù•…3g{¼¾2~ ú)ãzY_Nlo蘕ÑÞöD°h´ç=q¿]ž›÷‹yJã~Ùu°¢q?ÚÀ–…Ï|x£= 7¤9y¼½2¤“¿‘‰>uŽ“×WFk*§î×m¤‰<öóq{°Ž¨yJ7¤‰y¼ž2ê 'ìôÜOöñ +¼\OWªÒ¬#ïñöÑaži"L.uJ“׋PFš^æõ¸]ælùZEaäÙÓ”¢Y’ùbÊã¤i¥)4·ìiLÑ™uPsC˜c4Óмζ2ÓмãŒN' ­£=Fwœ‰:yу/ž/Í4+_XPF˜8ÞÏE7Þ/öfp דæ„4áñ)MIaæÍoÌèÂ4ÇÖN˜ämï ☢3Æ£‚H&eôçˆGRfv¤á'ÖQolÑÓoHS¹Ýù<è>-iôGm!Œñö:çÛ.eô(ݧŒ4S¦iOÞÏÝΔ;Òœ|⯌:ÚL³ ' ¬ L2uô»× WÆxÅ4¨àþQ'Þ'iàÝã•£¹ÞZ°·§2ÒûÆñD£?¶ø¤$\ñB¶ ÎCçs4„ÑFã|b¯Èè³ÆðWeô7(g§Ì4-¢ˆÎl¯Ãl”‘F46ŽçvbÍô:øÊH#š^A÷»Å 7–ñð¨Ó%ï‹øe¤NØ¢Ç{Û§hH£?[žo=™F³|C/eôG i6ÂéØúÓàÁþoü• ìcÑinËße*c<ÜHƒFšð.ç÷}5«ÏYRÒ.'M©+3˜Øê¼gm¤Éí…ßw›û0™- ]Ø×c+ Î+#ŒžuâƒYæ¦&/°ªŒ4œTý~N' uÊ…‘†“üÁT™uæ=ª/¸r «óž†tAš“¿ïŒ>u¾“×»PFšJò÷YÑ“u ³sUîHcÂõftßP!šíÝÒZ•ö÷‘/£;ækût*£Žwö|Ìè†ûÅlóma¦)¡Îz0ËÌXuÿ{Ñ i@þ>Ii*ا3šû€ÖÂëÍ:ì>1fí_³Íw„q=*êÌ'¦Y ^”2Ò¬*ÖÃoÛö¡þ}ª?x*£N;Ê´Es>d¶ñF84¤çÆžü¾Íß7(ã|5/Í÷UVGÝÚ{pgš Þ×(·“Æcãm0÷É«/iRîhÎ×›õíûþš¶òQ·Û‹#ýÛ·ß¼y†ݓ¿}Koÿø³ÓY£çÏJ‚‹™"É"ØÁV™}ão©ëÛGþJ /Q4ÞìoŸ‹ŽßÌ ½ÝD!íìQÛ‚~ر+YÌn‰dʘ’~Q+6ôGÆ“°ˆÜˆêñ4‚Ì2)[1Êöd>/èE_Hb>ÇMFö2ê‘~Qÿ.˜ÁÒý衟öÈ öªè“φ’1‚~ˆÌo¯œŒHÖN‘õHÏ3@„{dgNFí’̺hE±1c㤅]dNÆŠ(”Îæé¨xœ`ÛPDNF9§ý¦g c#Ò °Á·byb/úàÖ‘ù$è‡ÑQÌ>2“+’Õª¸[Z¤?4ö-.6ðdã]”£8bKSLÌ›éUÒNÝÌÈi¾Èª–“0Ò.èDÖ…`{SôÞºü¡èC¹Mp¶$s_¸AÊMf·IÊ™ûéƒõÃÕ$ý!sB0«(úBÎÄV‘þ˜ÀÝëÛ+ç&²ðWLë‹<‰×_éÃ1ª¿(°Eä !²^Ð3'¶ô‰d®On‘ ‹ ùX‚\M97Nd#§¢7³UOVúÍ2ïü¦ç °s Dî rŒ+X—¢?B[&ÍŽ&ɽd’ ó“Æ”dÒZcã%73ËÛ+Ç(Òðƶ‚žÝ’‘;™@#}ò¹‘o'XÞ^H‘>ùܸé™Û´³"ò„|E^Ñ3ïé“χž…YÁ^½™ívNìEdqžÈÖ©è/Ù·s(6rK2ãŠôbbNUJ’œ‚ Íl{ˆ·"ó±ÊTôÅŸ=‘ýÙÁ9$™Ëµ§"šnÉH4$¯&«ØÀU$¹‘÷¶Q¡! »ó "‰*ŸýËn¿öÆiEû$¦$¨â³La$Éà%†t¡ËF÷ÎQnt]Ú‰æÙºÍ$°†MÇÓ=Q2˜µrBê r¥½ôJ4’Û¶0Î'[h4‚tÓDÿ%Œ¿çÑhʨŸÖÙg.ø$©qã¹ÛHÂJ½œ0’œ¼˜€2‚ôð’GI\½Y4ÚkÎ(^#ÜéÑ´3Í6·™ä…Í­•‘ä†$Fa$™dì-¥Üè>¤Ñ3’¼”q>›Ï‚Yûݽµmëeʉö=ߢ‘„“9žgºgi´×ÌûI¸ÒÜžðö8I‚uhwz4m|?±Êý$ žºC—Ù^ç©<ŒßÇû-šíIlÊ™.CšíÑ_²JWºMé|’WÑ>dz“6ŽgcÇÀh¶×ù¤°ŸÏÂûýv?IŽ íI¸Ñ³jûù.ì/¢‘ÄZ°w™r¦g–F{-H‚V®ô.Òh¯{S)wÚûsaÇËh´×‚$ia´×Rфݛv¢÷”f’hÃ>—Â8^ì]&Œö\:öö®tßÒh϶ÉLÒÆù˜Ó Ÿ$զͽϰ÷ž2Î÷Â3ÂíWï:e¿‚q¾±7Ÿr¢íI_í¹úó¤t¡û–F{­Ø{LíµC¥;=“v>žÒh¯LÂn'Iw~Çfµ`$Ábo7a´×Ú±;°0ŽI¶Âh¯Õ7a>IºuJ£½>nMûü½Ñ¥ÑßZÉ–¥]è¶…+Ûc]˜Ï7Ú‹Ú 'ÚÛ{4Ûã:îgz'iô·EP¥Ù7ž¥„‘Dœ0_Î4kéÝÆ|×b ²v¡í½‚0Ú+÷îSF’mÆ|IIÔHbF{mØ›Rí›0JWz.éWõêÚ8ŸÕß*'šû/ßF{mϓ…f{ûj¾¨Ê¨Í+Ýè–´=²4“ÐÚ“0ÚK?ÅoÏ“ä]³v=^Òã$‘{/Œãñ‰Ÿ2Û+’ü•Ëñ’f{X1Æùœ¢ëIB/[»Ó=iŸ$÷¹¤Ùž½–t¥[–f{^gð`|Ÿ}ÚKp:žÒl¯¾O{Ý„‘¤½…±žÐÙ_wÚÇ‹h´G&Ù+Ÿ$|î6~›{kf<¯ Ÿ$ýÜ¥Ñ{A{.´·‡h$éb“hi/çÑhý•p§wÖF’¾Çð(£=ZtÇw\躥±Ö=LºÑ+k§ã%þ¶ÌÇ…O‚:…YÒ¼›ö)20´Ù^y? wzomÏÂõŠF}_Xo.ô¨Ò,²°0_Æùæý.œèÞ¤±wïcŸïçã)Í" í%ºž" cj'zei (⢌"ãM4ÚëÈxÞnô¬ÒéU"kwÚ c gºŽèÎ^^„¿iWÚÚ£ðÂ÷ñM²¥ݶ6Î7ö.fˆæóeœïŽ¿Ñã±h]»ÒkJ£ˆÌð½ ¤;]¶v¦y¾osï_©F‘·ù€r¢w•f{õÒ™®]Iö(¢¡Ìö¸üyWçÃÿéD—)¼X$g`o^åS$ÃK G¯S„ÃÛƒp£ë–f‘ ︤Q¤"£Ð³p¦m>+ŒöˆlgéJ³èömìMŽ"ÒŸŠtH'º,iñOiœoUF‘‹=MÚ•nKE-&ú;îôÚÚ™ÞCšE:0^+ãûø‹eQC5iœoÞo§ˆHÉ“Eö¦ŸXéL{"_U´´O{žf{ÇÞãÊ®Mû1ayöÛØ{yñ~.4ë¹ßæÞÙ>0KŸ"(>žD£ФHgzdi¬7,ÞÏÂ…n]š{{ûÄ^ë óa¬Ç.ì­\龄‹x­‚šèÂ8Žç‰ööõ.«3µq>8žGãylù±4¾OÇõŽÆzÁb Üé=´q½½H2žÇö®ÆzÁZï…q>±÷³2Š´`ïpaß'¸ÒmHc>˽ߕ½–6¾OAç1K¢MÚø>^ä$ºs¾ŠjaÊxÞÚó)át<¥1ÝØ;]ÏKÛsk”1ŸÜl¯ÂnIßw ?ŒÆx½ÆKáSÄhi×Sd¨NíF·&ñzûÄLßgc>)œéQ¥Y¤ic¾)\ާ0Ó¥|à¦"</„3í×#IäÉ«KŸ"J½I¿Š(¥ï¸Ñ!<:Ý«v¦G’F‘+‚µq¼žm«Œ½wSÅóˆ0Š$aïsaI ×[8Ѽž·‘DŸ:ž¢QDÁ6oÚ•æù¼öñÖnôlÚ‰öûí6w¸ðj²E×k¡?‹F“´1ßf{ÚxÞntÚ‰Uší÷“p¦÷’î(B•ð<ö”æ Â^UE¶rF(œè‘¤QD"{v†t¡ýy.í-Ìç„Qd‹÷S4Ú› XڧȯG0¾OÇóÚíÂö–y¿gÚÖë„ÑÞò@(\é‘¥ÑÍKÇ;1Ÿ‰F{³jê[;Ó+I£?ËëAÑlo8)]éR¥ÑŸYö®ãåýÍö¶ñ<Íö´1_®ôêÒØ»¸¤Ó‚]¦0Ó’ÌgŸ¨Ûöö"ì×£ä³uÔmŒ§(Â&]h{Ÿ$Œö„"mÒ(âVð¼"~ÇÐn´—Â(¢† taŒ·¥b>%œi¿ß£±7uñŒUéB¯!]O‘:¯£Qä¨`sEåN4ö/ýy4Š`•Žþ\¸Ò{ §Ó‘/¯|Šèù|\×kž-Æn£ÈQ™XδÏÇ¢±7z™˜ãz±?‰ÆÞïea¾.\i{_*Œ"jeáz ãûn¬wG£ˆSÙØTN¸Ð«K×I{{öã­ì¢Q„Ò6æYÚ^M;Ñ;K{<’1LUšE Q»âvãûß°hH£`E Œãõ‰³t¢¹Ými¬^eAEΰ”´_¯ê‹Ê}Ñ£j7z&i¹´x±ªÝéU´ñ}‘‹/Ì"‘›¦ —ã-"‚Õ”Qä³ú¨t£}ë¼h«Ø*R9Ó³ ó}‰oÃÖ¥1«ž7%]i[ÏF‘9TÛ’n´=Ï)§ã%ù«Ù(çã-ñ’õn”Q$3cËÄhÌçæÊ•¶ùŒ0‹`fŸÏ(ã|`kLåDç%ñ”Õo„Y$A” =¦4æ{ÜZ¹Òk OŽ—ÜÖY9Ñö<+Œñ²y•éL{ñ²5´WáS$Õâ}„1^rgåz<¥Y„´£= ã| Nr:ÞÒèïÚ@{‹Æxɪ=Ê…nCã%.¬t¥ÇF†"­ÒéxJ£¿CÇ,éž…û»ÆÍG… í×;šE`Ù_ WÚû£h"Œþ°ûvÓÒ™¶ù°0úÃÎþF¸ÐcIãy¢{ eÞFc½£O´Ga|_öWѹ·r¡[—ÆxØQL¹Ò+ ó}CaU&e|_/²¬Œñõ“”3mïc…1ßg %åB&Í"ÈÉã ”Ïç}«äh<°Ò’²Ÿ/n;.Œö4^ÛG'ÚÇÓhì£ÑžXÍI¹ÐcI£=q råJ÷"ö4ú¹ž_]Ù^çÂîÚlܬ:š×Û‹d+óz×Ü·ñ}PíL˜×›ÛŽGãy“”;=’6®7ê £¿±ú+S×{²= šçë6‹t£j“²Ÿé÷ʸިÁ%ÏWÌ×nŸ"ÏV9®jûý2úáD{þfb[båDûód4ú›‰ª8Ê™æÞê·Qä{¢r¡[‘Æx5±™·r¥ç”ÆóÜD åF[<¼0æ3¬'¥ÜéÒµÍëyó•‰í¹…_EÞSÎÜfn<¯ ûçY=JEþû{a?ŸÜZ^ë ¬0¥ìç“ÛË c=~ñ~îôøŽý|rƒzaég%*e?ߨMKùs‘{éóù•¤ñ<·P+G¸À¨Z£Œó*kÂX¯â†õÊø<6‘ÆûȵÎù ntÎÂg=~±½ ŸÏ{{N´Ñ܄բ”ñyÔûFµ6Æsá|<¥Çù¼gÂçó³Jã}øÆ&ØÊ…îYÏk¬K%Œçµz ÂXØþâPºÑ%I{¾™yli´—]1ŸöëÅ*Tʉ®+ºn·l“¸­è©÷¬û$<ËÒÎtÛÒ˜OmßÄ@™×ÛΤËñ”æõF½ åJÛx&Ìö€z9Êø<6yf{AÅ5ek/¶ EÒÞ^ÌÖÞ•Ïçû’Nçókhãóù\ϯ^,Rÿد§p§íy^9Ñö>Kxá󸟔mÏ;Âó|~'m|¾z½al"‘PC9¿qŽ$ÝÝ«öù¼õ·Âí|~-íóùÝ¥+>ÏûY¸Ð¥Jû|Ý\§6>?N{¸ýÚ„¤Ççó« OÌ·ÌÖß*ãóÓûSaŸO™m<öõH³=Ï)ŸÏÛóœðÀçÙ_Wzkw|~ûz´r¥ÛnçóÞž„ÏçW–~mÒ²–¶ßï9¡½Dû|Ýœ‡t>®I¿ÏK•¹É‹'ÆJŸÏ—-ÌxþÊzaÊçóö¼+¼ÎçíyWù|~oé‰ÏÞÇ–/"Üíy@¹oil”QïG¹ÑkKW|Þ7¥]·t9ŸIû|Þû«h¶öWÂ^I:ϯ)|6YÉíI¸ÑÞ^¢ÙPoE¹Ñ~=¢çù¼=o+ŸÏÛûᣞ˜0Û û#áóùÞ¤Ù^ØE×cïo„½–4ÚCa"Üè<¤óù¼Ï§„+½›46ù)^#ZºÒ¼Þ_ÍzN•õ”Ï罿ˆÆxT æCÑ ïwáóyoOÑ>_6Ϥ]轤¹ÉSõõåBç"ÝÎçÛÒ>Ÿï]›Ô+öõÈZPoE9Ó½Hc·Âû]8ÓuHs“¬qÚCp¢Gf½¤ZP/EýEA½AaôÅ'Òçó«IóyŸï£=¡^Š0æ+õ „۱Ϸ…Ëñ”æõöÀ#ér¼¥Ù6æÓ™^[í¡¢^”r¢ó”F{`½5åóy{ßÌõh³­wc¼±x½)þ¢r>%ì×›°)c>[Ùß—ã-þ¢¢Þ©òùüœÒxÞ±/^´óñ–®8Ÿ¨ç"Œñ¤za,eŒ'Ö0³öùüªÒO*êI)ã|³¿ºÍõ抉‹t¡k’Æ&„õV”3íç3ÏËõT„Ñ_TÔ[FP·0¾ïÆ|2ãë½)gzmi<ïÚÂjÑNô®Òh¬·&ìëÁ•õÖ” ݵñ<Œ;Òþ}ÛãíÄõ”Ö0ß‹FÐPODÙÏwó‰•òœ´·Â™öù|46ml¯Ñ¸Þí1×»±= ãï-Ô³F‹Â ʘ¯±Þ•r¡­½ c=Òâq¶4ÆSÖ³nžSëAõ(”3]‹4Ö QøJÚï—þXëõ"‚Y¤X•×¢sׯßC½ȧêÁã~8¡ŒñŽõž”ÏßÛKëuVøµH—y¼µÝ–4Æ£á~Ê识FE3žÔì÷k4Æ+ü\´3݆4Ï7êQó|£^0ÖÛYOJÏ#ß•Ñ_±Þ“r¦G•.…^Mçû[EŸõ¦‰z(ÂëØ¿o4æk¶;Þ–Æzö]TîÇ{Kc½õŽ„ÑŸO/ü Œó1½ð…2ž·ç8ß÷«/èÞÒ¸ßm¯³!ÍózA¸çÆ÷‰ÆóèB=aÜo«úz´0æû¶WW>ÏûËO¼2ž·ÏW4gøzœ0ú[Ö3 Îèë |Ï?|ËrS蟻ù3vÖEÎZ¤y»=_<;'s×勾œÐ2vQ ,üð‘ S±³'s 'Ò2$Ò—Ù˜éƒ0s<"}ˆm¯]j/z€Jk8±¹[,³?"}ò‡ YA_ÚiûýzÇØ^;Í^ôÛúìºèE 9k7 nÉæ¥“±#7ò1"}8mÈôÁÒ’Â$3ÙS$ ñ¶}vn¼¸øaß 8ûßrO×@ÄaEd函y~xNÅÄÛÜáfÂåîþ*è—ûì«è—ÛÊ tE¿Ü(Þ è—¥7½Ã³Â)9ðì)Ç]—#½10W »[÷³óÛEìŒ8þHÃèÈ"ŠÌü°×h½¸ÐT¡éM¥Ï³3ØEì¹èßȳGq/о4aÜŠ‰Þ-’ii(Ï)è%(^,èSîÙøaß!Ð_rv›ºˆÝ+ö ô©Ò@¦ÍMN4GGè@_è±ØlH°ñÃ;+úã»#±có:»ã|!“cÆ:{§\ô¦2°Ët¤w2y]‘æ®'+?ì5½½“±ÛZ{«"žÿ&_wY5Í®8ùa¯E8øa¯Dè]ÐdWˆ}h¹Gb v¨ñ|‘{ªsïÜHïd¸‡m¤w#Ù)‘ÞXmÇ¥ˆ=?y“,îrèÁªfEìéꯠO?VE# ô 9ãq#}¹’ûÁÞäb4cu#})q!>Ò'²í9-Ò—¹§k¤¿â®­‘Øy•4Ч¦ŒÏ½ÉòŒÎôÉ'cs#}i’{ºFb/Ùõ¥îöý±‡QµûÆC÷ΧfñEìr‰ˆÓH_0ÚåÔ¾èËå7l¤¿,³XÔ¤˜øáÙ#2wC§@콉}J#=ÈŽ1¦‘¾„µ‘Á‰½Uê/¢¼hJç/ÝFyÚ„Mnƒ™žmÛgžr²—Qþ5•¯åa?Œò†© |K4Ê_¦ú*ßzåSÅ÷‰~mYšð`y]† £ümÂö]ÂÜ^²Ÿò”·Ûù¼—_‰®çó=Kçóy?ßÑ(/œ°ý_ð)oÉð>a”ïMŸFyÊ„í¹„Q¾”áuÂÞåÛö—}I{§Ÿ¾|¶ËFùâŒðXa”ßäö•Âý|~/i”¿dx˜0·Døª0ÊCçŽò^·+Ë—sûEan9_å÷.£ŸŸ[úµ=ØP>åß¹ý–0¶'@åv<µq?óõ²0îgnß|ÆÛž¾òËÛ¯£|wçùŒÆýÌí¡„1žr{$aŒ§|½|ÆÓŽðanÕNyƒÛؾ“2·oÂë[aŒ§|}+ŒòÇÝë\D·í‹ú’FyvÔ¡WÆö|½+Ìí{&Ê‹E£|¾íÓ°¤Qþ¹³=Esû¦}Òï¿úlÏ8ÒI—¾þ”¯/…±}Ѩèo¢±}À`{ˆFÊ×ÂÜþ‡×ó6Ó·Ïö4Â˜ï ¼ÞFÉí]„¹½ ^Ï s{#lÿœ?¶_Y[åÑùzOåõ¹=Šp;ŸïEÛßL¼ÞÆóŒ­”gin¿QOúñW§³= ¯w4Æ«‰òÿÂÜ~eœtÄÛl-fH¿¶I;/”`¦ÇÝÆ|qâõ®0Æ+¾þæùÆö;ÂØ^€Ûg£<»¥iœonÌô7Ûž¢5inïPð}¢±½ÝBùaœï…òýÂ8ß«"|ý6Ó¯lû‡Ý¥¹}ÅDúa4·7Y‹Æù^(o/ÌíÂߢÑÞ¹=„0Î÷ö‰e4Ó{lû†º¥q¾¹ýƒp?ŸSšÛ ä“þr›ÛO`{albÛCLáÎë±Ù¢_Û7xú]4ú£Ý^é'—Ñßo¼ÞF´Ç+=ä2·Ç˜'ýã«_ÛL„?G£¿ß(ÿ.Œñx¯“žq›åû±}p=åÿ{•Fù n Ìò÷¼Þ·¹Ø\RAøe4ÊϤ‚ô¦hnOÀû9å_ïçh¤§'”?Fù•Ôžr»°üEj'<ü6Ò¿¹}0Ê2¼@˜Û#t„oF£¼ƒ­÷Li”ÿHé·Oùí4Þò å‹…QÞ'¡¼º0ÒËÊ« sû†‰ô¤h”L ÷ëíÄòji#ü>šÛk`ûa”_È é=Ñ(¿Èí„QÞ%£¼¹0˯c{a”/Ìù„ß~ñ o5¯-ò&Ü>@å³r9áµ·Q>$מ{÷s®ŸŠ~m/`ëIÁÜ~Ïœ›4îçÇeIã~Î áYÑ,Ÿß|<Fy“ŒòÄÂ(þ¸eáy¶7?ŠFù½¼þòVåµ…Qþ:£¼¶p9åÿžyå1Š×™Ž,/ÍòøÂó”Ï·÷µÂ¯òôþ}¢Q~­ðzF£?*ØÞE8Ÿòï Oüê~¶hŽfùþŽðÎh”²_\¤Yž| |4šåíç+\ï2Êß 7º±ühñ}•Q^†å×…¹}Ê7 £?­^§\åíÐ1*³ütFøúíÊþÔ:æ*þ»2Ê+Ul¿ ÌòÞ^çJ™å·ý•Q¾³"º&ø”?«Ø~@˜å­;Âû£Yþ‘]Â*Ê_ c<¨ß'ãMü§4Ë{O„çßΧü;"À„Q¾¸¢ü¿p?åÃ=¼4åñ×(ŒòP åñƒOy¥ÆöÍòÊì¢Yžåc…q<K¸¥Q^u•QþŒQ·óománJc¼Å¡2ÛG×S¾yi/Ê× óxÑ‚×9^DE óxП×S~ÙΗ0Ž/”YåÙƒOyíŽòˆÂ,?ìuÆ”ë)ìç+:Ÿß7‡tú\9xœò»>qVæñb{áWyc[ïN§<±§Áý”—F| ðø\¾X˜åÙžoŸíç:Ê“ ³¼ôÀõˆÆx‚}$•1ž00¸²¼`ÇöÂ딿õïç ì®ÜNyÛѤ1ž³<¬0ÊÿÚz®r9åU}8eÌG,-Ic>5PþRÏ{ýÖ¥Yžå'…1(?|¶WbùUa”WþâIåÇÊï ³ü*"þ„Y>1Â(ï6üÅ]tbyv–wFùôéVÊxz\Š4Ëâü°0ú“‰èOaÜÏ‹=£-L¢Òv=„q¿MÄ ãy™Q‚Âh¯‘?„·G`¤ 0Ú#ËŸ ãy…åM…±ž2}Ÿel3QÞ0x²<ºmÿÜ¥Y^÷³0®çByCa¬g-_¸PfùËâ÷“p:åAm<æöÆVžÓÖK„1ŸgŒ 0æóŒ¸FÅò”Âù”ôó}»Ÿò­>1QfyÕã‰ÆóøFy>a–DùIa¬'lÄ c¾Àò“Áã1ËG ã~Ù¾ð¦Ìò‡ÅçëÂ8Ÿå_…±}Åæõ¾Íx³=ïã|n¶‡è~Ê[Ö,õšx"a´W–gfyL”' .LOd< 0Ë»¡ü0Òã¯WtAyB”N§üž=/³¼°yi£<Ëë #½ñnÂHoL ýY4Ëÿ¡¼JpbztFô©0Ò;3â…Yž ñ2¯òcö>[Øß÷˜ý|~µízŒôaL•}=ÈÊ=?¨Üë®ÇωUFz4&îÑ‹å²Çû(Ï㙤ûËSéÝÅãy”q<(}Ê3¢<–ò<å§Ê’ÆùBù+åzüÌÇ•óñ3q‹f<•zú+åy<’4Úâí”ëñ¬Ò,?æû´G÷SÌk•‘þ_|`UFùÐÂö][‘ΧüTÛÂéÛ…í-úU>j5i–Úv¿*—SÞ)/étÊ7õ*\Yþñ|ÊHoFe¤×£ür9å…V—fù¦f #úU~ÉËÿ(£½W¶§h”/A?e´§êñjÑ|žñò>[׫ye\/ÔÁVÆxe-EéÍ(¯Íí?YGåEø£ŒôfÛÇ¢I£¯Ê¸½àûÜ,×}Ÿe–?ñx5åvÊÛ´-ñ¬{ÁèÓw¼PFy´î/æ”1ßèûü¾¯>å †ÇË*Wy”-]Oy ëÏ‚ù¾¢lRÆõš¾Ï³²¿/´ò6Þó}ËG(·c/„ÑL¢ó9žaÿ Œñ~ú…‹>å©lû“.òBÏózÏÑs³<âÅ”q?-|fyî–<^è»þáÛçB ù?\N¡±BBŠòTWøBîÕ°=_d'G¬L³Ñi‘B‘•ô\õ‹Üõ¦åS1à¢OR,x*Và Zd'k‰dúA{eÁ_¤­=EVÒ+B&råÀÁ]z[AæïEÖˆjþrO°‘žƒy‘ F|ßYÈ:"Y;›Õ$"½«kxYɹioùoò%6·<•(rSô¼±&ÀÅÆJ#Xýì¤5þÈBÎÉ…{VÀˆ¤=UGúCMc-‚ÀDŽÉ€*ìÃ)˜É=#3s$%úT®acÀ›¬;ذ-`ä {Qô‡¤Ž-“#ÙJ ½× =ÿ+°‘¾™y`&=÷ïâ©Ì€•ëÈNÚi,¬ž±J$ƒb{=9˜io$#+éù\>tl^vs ÛäÖ‘>ôtß!RÐ;Un«y³£SíØ”,Ò;U¾»ÉGHn˜éüŽFY>ÕÖ¸Y_•7l ˆDU4àH_Xëx¯s³`Ù¢c¾H©Æ-2#ý¦ë¾ÓJ oºŽ÷9‘ôlÚ‹ ³u"Q[‹GúDkø„èfcu”³éäÅ…E|Ö‰ì$7¿èÐãµÝ÷2¼lp³²@pÞ=DVrmEpÏ6”¶=^›à^¬¬%Ò“¢^gƒÉ‹¼ø¾2²‘¾¹ÔEOïš#}©€5L" ¹WdEÖ঴Þ]óid%¹aåÅô©ÂÉMNÿùv32³JÉÌhHÕ3"ýÅéä6¨Òä&z•ÜKÑ›Êd3ûÊÊú¦¬a鯛gû²ùÒ!æg?[ã\l$7ʹèn y“iŽs hs 7•É-·½©Ø†Œ+’õ'ªXDzS™¸Ü‘ÞTž‡¬]½©p#Ä›|ñfÜŠÞ¸ bdfu”Ô"ò±ÚÉ8¸è<«í.z÷µp³ßd²Ýê'–þ¢w_k pt OŪXÜdßÈ‚ ô¡[FÖOõO"Yk$Ó×ÖD1ô@OþàVˆ‘ùpG2±ì!ãÆ/vrUEŸn­…œœ¯,\Òce•ÈAzyÑÀʺ+©*zW°°uÛMî,¶¼ÂŠ w¶àØ}á[à›‹Œ[¶Ý¨8¼ó)Xzѧu„"}yrWœº‹\üâV„‘>5åFƒ‘¾°¹±Mî͆©)^_úãðÆ·‘ީ独y¸ÑT"½SÝëDë^ôNuckÊ›…'‘‘8±¼ å”™ñ0èÛõØNa¤É§Œ0óètìU‰osÌ<—4ËÌ ŒpBìju;³ê¸¹Li¤ñ'?/Ѭšm[ºŸ27æ]½Šðdîz'<àyÂ(oó|£ Fð8çÃKE÷s>P¦DevF)w… nLÍØRiˆ»ú—c†-~5댚G–fìJ*Œ4Íܦ4L¼f.,£Ä]¹„‘æjñ®Ušeh°«Np>efx=¢‘†šý5¥r>fàW§s=&!Ìë±4P–¡¹NtÁõÆù.صMç¯Á£Oš1ËØ#Õòaª4ÒTËÄñÞžLCea¤™ìÊ(Œ4ÒÂ0–Ûƒi¢Ü•HØ.2wíF†Š2ÁelÞ–¤Y¦ÆoŒèS†¢òzD£ŒOE™ a”éÁöiÊ(ãQ= !šU3w•n…îYeN*v½ .,c‚|ue” k(s"œQ¦&#Ìë6w½9eb„1^´|¤n£¿ã®/Áé”ÁÁ®@Â㔡ÙI÷žË•q¿qW–Ë&„û­ùs2î·æùbʸßld ³þž¹UiÜoͯ—2î·¶ðÚý6weµ26þ}¢q¿¡Œ2Ë xÇ=NšŒ0šh–™)¶f¦\PÆÅ¯gtg.”ÁQfŸ«*×SFÇÃD¢1_CœhNÍ{Hc¾ÖÎW4æ#Ýï×èSfÍê iŒw¨w¨Œ2 ÝwŠ.,£`i M×…/•q½±ëHt>en ÂÔ¢ÑßÇQÆõ¶²«U8ñz[9Ø$=N9¥+ÊÐ0L'×{ Ü—wM7[˜¢p}•ÉIҘN4Ã3J?+³ÌâYÆÇó¥£ÏýnžÒ(“doB—4ÊÌMÏWˆ£ÈxG«Ü'½‡t9evRæ®,Ó£\O?ßÑ,³“q¾o·SFÇó•+Ž—aÑ(5ý£f±Ér;exR•Æx>ÙÞnŸñ|N„9E·SƧ5é|Êôì*Ì×$,Ó£Œ2OÓË|(—SægáS†pz[eŒïѤÑ_  Pðd˜±—éÙÒã”á±0ba–ò·ÐÊ,#äŽÑ‹e@奈ùàò2ÑÜÉo¬,2y6puiŒ7»ã|Üìo¶×›Qf™™0šh”QE™èÎ2™ÛËp(£=n_9WÆóÜö2Ñí” Z~¿ c<ÛhOÂ,#ã /º2ÍË<¥‘&‘<Y¹œ22f\ÐÞ91WFš[*8Ñ,#Ó<Ì.8”‰±ñB˜e`†M,”‘æ‡2-Ñœ{>Ó’™žUº ŒÊòùÎíÁûÕ¼íz£ÌB®çó·ë)#R“0Ãü¹°¢<^eF¦4ÒP³¿‘ˆž,½ ò8eFl¾"\?•QF òu£Ošðck¯ÂH3Ìþ`¯Œ4¨âe¢;ÓÐQæC¹ž2¦'œPÆÂc¬¢9ßæöSÊHCBe”‰)žÏ]ÏïÞß #¬x>Ÿ2ÒD­ŒÆ.,3S6Ž7ºž26_FšbõµèŒñÀßÓMi¤ÁÖy>ehª/G'¦‰5PÆï³÷Ï;ºs×Ë‚(9e|_”QPN§Ì‚Íw‚¯Wóz×ÊhOˆ¥‹ž§Œ‚Ç )×S†!%i¤ñ#²-z°ŒGó4weÜÏ í)¸³¿@=^eô7má|Þæz–Ùú[a¤±[lI’F"êGWÌÇY¦Ai¼Ýã”1ž ÌAtaš8Ê(c<ì}¢\Nƒ:…™ÆÇ2Êý”ðã‰f Ï×N§Œƒ7<å~Ê øñDg¤¡'´×Ëm³L"w”>ï1pÊH#^O>z±ÌÔð2Êí”°ñP˜iôõÍm 6ùQF‹áï^£*ëiþYã5~eÌ7lâ²…ùêÕbŸíyUímúÂŒ²¯—xšüæû¢‚¸å†ãÙ>ßÎ' ÝžW‚Oš¯=xei¦¡ûöòѧŒ¶¥QÆ|nyü 2î7DjDóy²,¿°ÊLCßh¯Ñé¤yÛ|?˜ë½–fí¿ïò)cË4ke¤ñoŸ£Œ2\Û7œŠ^'Ízá÷Ec<Ù^Æ?ú캛üÅ“2ÒØ’×VFšFò4àh>ïU{q°¥ë±ÝoÁi¨–®4Øä1±ÊH²ç‰!ÜÎñxÇ¡\k®çxüÁA™iÄžE Œó•y½o\OóìÒØ•5ûû¸è“&øØÖC„‘ˆzGʩӶÞÌ÷!f›ï cWïâñÁ¶k9ÒtÑ„™æêïˢϮÜ6_ïÒØUÛ\DŸöÎ4Ua¤Ñ3MU»þZº&ÌõÈŠø+eìŠ[±ÞÜY† z½ e¤¡a›ˆh¾OE׳ùö»Ñå|i’Âü<ÞGŸ4V¦ ¿ÒüüïÝNgWißÕ9Ø^Ã#]É7ü®¿¦u}ì’ëYGÿöí7¿}KoÿháF¶è_|³Ë?¾ÙÞ;íå?¼}o«Ýóc¾6ñéǰVñö½”2þXöJs?ÛýúÇo¿úóßÿͯß~÷gqøþÝ¿|ûÕ_??ðöã?¿ùnXéõNa(hÓχþøö‹¿þ/ùöŸÞìÉê—o?þþÛ_ýèâçüŽìë†ö;ü¹ì/Þì9û?úK’—‚;òŸ¿üŽ¿ûöÿ` î endstream endobj 31 0 obj << /CreationDate (D:20140122074915) /ModDate (D:20140122074915) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 32 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 34 0 R >> endobj 33 0 obj [/ICCBased 35 0 R] endobj 34 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 35 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 28 0 obj << /Font << /F8 8 0 R /F54 17 0 R /F56 27 0 R >> /XObject << /Im2 23 0 R >> /ProcSet [ /PDF /Text ] >> endobj 38 0 obj << /Length 2433 /Filter /FlateDecode >> stream xÚXYãÈ ~ï_a #c­ê””·Ý$ƒ`±AL¿íìƒÚ–…^Ë=3þóáY*ÙîÁ¢6Ū"Y,ò#«~z|øác3kË6Ú8{\ÏLcJ?‹¡)ÛÎW³_‹óÆýanŠnßÃÿaþÛãÏ3ãCÙ¸f¶0¦lCà©?nz\˜¦-ƒóÓѰø—Ìιbs†ÓËóf´mª·à¶UU„ðZ¡cõ•Ã[T~]½ÕʯÃ[­ü¦zk”n«¿¡1ÿz|øãÁÌ*ø33ãLYÃV#üçfËÃï¿U³ þ<«J×6³¯4õ0s¾.ë6½Ÿ}zøßÃO7¾ ¶¬EkËe“¿œæ¶.¾Â.ë*µkæ KÖ»Z(ßVJy+”«£PýÀ”Ŷu]A^­J_»©OÿnìW  ެ0%׸w/D£úM¥r ‰—FmP]Fu5ÎNuý{Ê6ÛùÂWu(œN•ú „S¢V"&•NÁzTä|‰î\XW¶fÜS·Çq¨AÀ”Κ©1S?Ç Þ Á©w­òœ3ɧuò‚Úf=nýÖËñ®—MòZ’f“w]•4¤ÓP":Qÿ¤“mT'«K]«²’PÕÿµœ4ê©K âR;HR?ÎWtO ‹ÍIiÿj½+þ‰¬ žÂN'àæ-ºLíŽÀ]1=à„o¡å¸Ù¡§í3="xŽ‘õI¶ø4°›yù=‰/â¾fÝ"YíË`뙯ÛÒ[û=$³Ñ–æ»HÖTe¨<È‚ˆ ž÷ªarlðà|ô`gaüÈp¶­å·_tZ5uW ‚tede{-ª½ÕÞ«ET« E>¬à\†%ÆßpÌȹ'.,¢Z6.öº8Üp²9wÄÕÕ¢NÖ%ÍñFÜ=Î=qa¥ÍÓµº+èZ§kô0‘&(ÖT‹F¥‘f®µ²6q¬9( Š]=5+,N‰E%GçäèìÕwLß”RM€p‹„H­uï ’‡lu€Hr b¬vÔ|_p˜¦~®B_…_ƒœª8­y„@GžÎ²tƒÿŽ˜|8uE@ÓñÍh¤©0‘š 2, ¬g£•Dv—;Çm yþ›âp]Å ˜Dô÷‚FÎ$(aæÝ¶ t”Ò§@B#ýNcYÈq£h‰Gë;ü÷ÊØ!À$ò‰Àˆ~)Ó/º ^)£—¼/ÎpÞNŽa*pè÷búRæeK'؉³Éw0‡5_„PüŽË—rú"Ÿ†—¸ƒ­Ø˜@?ú\ÐÄLi0ÔIy¶Lw‘Wò)eq rm0ØñGöŒä°MeG8 ‡~¡Nš§;®¤®ÒðUü@ÛÿƬ?QIqÚzN1LtedEVL¡ ‘ý¦xÌfÜìQ^žë(D Ý@)Íù°Gº¡–yhSèô°uæFË­M ?®ZS̘Ÿ‚6çÓ y‹…1üsN>Ô¥è«îðœµ4ÀÄ ÊM#‰æé˜ÆÒÔ°_ïa¸ç‚ œk‹l±Ín5øeÈb?öJÖ‰&]„XËdSñ eä°ÙžìFÜ܈ä¹ê5¿aG.š -Ý–'+4"­ã êeOç„®dÕ@‘ ðwÇK/ËSº× ¼$tuõô’{•wÄItVCàËðÅJ©”³¢k¢kø²+:±-Ýîòû}=Fõ;:¥^8îÛA`*ôh5#æÝ&S½¥¤_¡–×{^"uqÏNõpxTãPv0EFvüÃ~%ÿgEi°”­)@€¿'n9§*𠇵˜¢E3L+OÐÛÅE2ìþëER^a¾Xã¡3%/©²ö‚¹Ö6ysž+ïyÞ\ùtª¼‚/êƒÜÔtg¦hÌ£š`žñ|æRlkªBý0°@‰­Š÷¼û^™ÉÞ[‹H~ÊJ©«ôMÈ$ü™:ð%³ætüÀk¨N2F©öõ¸Ý1ªÂ¼×lHUëí$3VÙãR//Wã(µŽé!K‰µMí$|¿âÜÓKr`ºÉ yÚóà¦Ç« ì›ëË^:™ 3Гæ.u Àלòp¢Ðÿ´¾0jÏñD¸ž^éP¤¬ëð%ÒŸóËŽri±ä0¶ ¤Wþgz~#¯qœ¬Å]°cµÍM@Ö>m'ݾÎ9Þ©Ä×õ¥ ÜNiï.)Í`( dÄbì+£ôŽqÚ;ÆÉæ¤ÆtÆî3Ðíˆgí.–;],kå ¡ã¯s—Ù’‚½'Œ.ÝAø6M†ÙÉy·ŸÒ÷ùnW˜’Á¶^í¹ºç½s¦ë·­Ã{$­?h‹«†Ì¬> DCÞ}Rô þ¦É¡‘«ˆ¡Þ@š®µt…D¸Ü­ÎlN&f´]ŠûQÞ=Iî¦Ï.Âþ½‹02²‡à+¿}ÕÒ‡ï9mU¨LÏmþNÓÊ; 2õ}£•V AˆtrŒ8š¿è´ÒËÒ3Æþ*Çq”Rž÷mªHFž6e›!Ïë2UÝŠ!gî’§éS8_Ò{9%£•­Béb˜AÛS6V^„‚>/ÿB¼‚ž endstream endobj 37 0 obj << /Type /Page /Contents 38 0 R /Resources 36 0 R /MediaBox [0 0 612 792] /Parent 12 0 R >> endobj 36 0 obj << /Font << /F8 8 0 R >> /ProcSet [ /PDF /Text ] >> endobj 41 0 obj << /Length 3357 /Filter /FlateDecode >> stream xÚÍÛ²Û¶ñý|…©‹‡À[[g&ñØ3i“zZŸÖI:Ã#Q—ZQ:ÇNgúíÝ+J”÷%}‹Åbw±7𛇻û7夊«Ü䓇å¤*â"/'yVÄÆf“‡Åä‡èÛýÔ”ÑišFÍþø×àkøµûéÌ%YÔ.ñé¢ÓA¸oÍ3NyB,MǽKœuä6b &¼æw¯°G ]¥æ±MÇ ì¦¦ˆÎsĸæ‘-"èàO˜SG ÿz\=Óú<º®ÁSгªq#{œ´àžZ6u¦~€|Dˆºkà1ýéá“d2KӸʄOóv‡ì¡5´kÝ‹éÌZ="š·—¸slÔø°BNûÄý‡é ÈÃ…æ8 ·²©ýXµ`! p%€Ï‡§³,‹þ‰{šÓê@SL”§.®œ’ÿ5l·È£Ž`Û=r¡È¢Rñc’:ìÝœ¸“ä °$¹†Û;¢…E¢¬\áPÕä üŽmíeS6".Ä´æ­ôhE!àu޲Â÷'Ì¥Wihq§G¡˜áቌ• Q©x=ÞˆZL2f6Æ™ŽÛ<{ hÇ‘L<ÁõSîù4-mOg…I¢÷Ønüiªå QNk¹¹«?¨&ÊÀZÚ"F Ž\ǽ(Üš¡„öĆÕ:@Á”ºÛª 4´™Uª]£™?¬e[ÚÛˆÒ“\víª¡£CTb›ØèY¹-ê@õªáÆêH°9!Iè‘'Þ*Cžð·gÜ!¾vÌ= ¶ –õN}×VÄ»ÛÈ¡“aQ*!Q dJý;24#\ç6óˆªÈ(\áè¬,â›rfÓ›iéÈàÙHýtdÖö¬ÑÌ„’©^2© R["¼^pÿbCÆ”ayI wˆpj8q¬c›Md–¶bm`l£N9},'hdÉ¿rÇ󞦞G)3†ÎÌý›ÔĦyìÒ@ÿ11C…nXã2«0y&»ìÀOlïT4л:’&òБµ¦ˆË¼ê%q¯U#‰ÆÌ¦ÄõYÛ-ö%$úœÎ¼üŒ’ôV‚ûÖMh5.5Ñ>«XóŒ£ú¢ÀŽŸxHO½M©ûã%¸€ìz¿É?MA k¤ÚTÀÖ,©°HßSOP•ð)ôøÖzN$ä‚FN3©‚r©Þ£¶7°T œ¯,kë‚Û¡¨*GŽz£Z­ÖU|^#àD:YY‚Ž[׆â¿Î‡§ŽÜ+ªp<¸Ûö¼í‰$Aìê­8ó‚¬]½íw‰»ƒ!|àuGØÃ‚U¥:.Æ:;Vð½£ç̵.â(é0 ÁNQÆfÏÙ ®ôÌá)q¼´8Ù>tA$âÜðôSËX)BátB˜ô~ºQτӅ/¨‘áþæ:å$øè¥ŽÑ‡Úèí~Œcê̬«¢V^X|YÂ, Bâ3m– éMŸ-¸A¦Kj~ ƒ'W‘w ÀT3ŸØÉs¬ÄìÊudòcÐf(T É\o>.Á*k–|NM`Ô)%3c4–d]‚-š²7ÞLä³Ú.|ñ¶ ¡Ž„ì¬eÁ½bp°Ibݵ`ú…$ÑBtlªÒ³-Å;é#?Ï>kÕ\¡V1^ª6QH$I&îL›£@F ¡„˺ázwØ^Cñ¦Âþ" ÏÏ&ln%÷èúAlîjbÂ[ ‡g™Í£oEÂy/K N±kŒänxÒq‰FâŒÜöº ý×g<*‹ ?‹+8«çb'á9t÷Ad“½®oû‰ƒpðÆ‘l9ñ  ¸©ÅÙQF2'kˆ¼9ÕAœck ƒ¯B=;䍿;¸Éw.Y 3‚&v )­±¿¦¼•È׿9Úò‹9…ÖEäÕ™š˜„yºX!ËÑuÖÁÀFžJx}ê'°g\¨J*&‚ ¢ÄtÔ?¢)ÞgY©×à|¨ 9§€’@³÷“9¹ßÌYæíQ¦ù˜NºMÓÞ$'‰½eŸ!Q­¤j¤%¨º¤wʵ&ÐåOÜq5*Ä;þ„íƒ÷%³ïɆ)ð묎õŽ»öM°Ò^#ú”øC§càCÇQ¬PAìmºÎ›[tL Sï1ôuçóZ²fâ@'‡âÌ Ñk®´Ï¤.´9L°NsÝ¿µÞMv§^ÙÃÃç=)æ© ¨"Xë]œrK®ñé‚ K}BTϪÍþšxV"1CZ¸“…‘{ MhÍà™g³è+°†#†^ SOÙR~ŽÂãݘt/¥[™´Ƽ`ä y­§}ÀA'Žþ›+¯“Œë0œ¯sñùR ûŒâT5°qY¦¼ÇW£yîïÆtåWr`)$e›¾Jä¾äÇÿŸBz>Ë­4q±KÊÉÌØ¸J…gæ‰oµ<¡¡lHyíÓ€ÈöÙ ~¯uõ4ú‡sOÝ_üw±ŒJ{(Ê1¡ÎPá~¯x¡?ðÃRbÒ³œ"Æ"*d%Ì‹RˆŒ±]Á/—wGc8ŽgZÑ\ÅcèÇý9éÇMecšw‹Ü ÂÖ?eÁ$b×%ÅVV¶Á{¼›¹ `b¢a¿€Ò Æ~5Jå(cyÉh' ,>¤ g’*£v"}:–ÉYlÌP•_ ¢“”jr.M%äµ&âžIÝz£6Ÿ‡[.ç`sy±FíúzèWNØ>ƒWg4Ð3“Å© m‹Ø9Ãä[V*„qÑ_›ç©”6+Ú¼$û¸ªÂ øÊتüš#±µxhñ%¥;Áæèð¯X¿È3¾°(væ°ÈSñ£d_¹h­õB¿æXØ&ŽpRµáˆUÂ8è‚/m}NŽ‹Mi°“eqQ¹¾ØdÓëmæqb‹$KF;(<š"¥4/´¼5(\¹âîYúbÈ,멪¯ÑTqYy’^2+(pEV®1之ãëkÝrˆ˜.w\mþs…‹g…OX ó+”Y*á4ç=(Þ4“ L{PÏ6¼JsÚXà®ùÈÿ½(„ÓèF¾šmâݬ_`(WhjDò*N«R7}¸fJCõ?)=ñ²â §1`LÊÐóMï/pOV9[p?߈P!Šjï[CA6‹'I@šµMºúÈ dnþ6%3¾¢~ïe "Ï(¯Ò¢¬¡Ü2Ÿ|cÓahKÏ`bÈ×Ö’EѰâƒòNæq•‚Sn|ï¸ÒmcwJˆ­TÜR.78âlZNÜŽ>%ʼn„û²¸µ}ânM˜’®6^VûÁMݼÖÌ€£mµY¥"ŽŒ˜ƒÂÆà®À~çqQh}šá0OUaK„+âÔ‚sJcWÉ&ën3jƒ@!'ØË±EÁW˜ °¶úí¬#Âܽ~¸ûù-R2I'B²ök¬‰‹¬˜Ìww?ü”L02Ž-œâgÝM,äµeÍíäÝÝ_î¾ÁËê!]Š ü¹³ö·>ü-çYœ§%°µ´.Xb3s‰‰« Nµ)bkÊa©”o®=bÓßcÀ ¿'›ò‘ß]õ!ÙÐÚ„d覃l“ aQG¨ O5†?k1O:BÃ'¯R¾>Ý"ôQs¡òZ0.’f_àãcár \ÎÌÐl¼WSµçj™¿«9oÃP¯aßù“ƒ°¦{—†( :©a#˜êc¤ùnûâ-¾„ßÐ]–ÑŠdX ²Ùæl¡7ƒ‚¾TÞ¼ÜGT=KcSÙÏs‹$”<®Ú.OZhÈ}½X‚„;VЮIü¢M®,|¼\æàt´2A ,ýw\ %[¹¸H¼Q¢àë8EGŠs¡¾ª vïw­2ìO×JPš8©|,¹Ó2éš nrgV%æDvKÕA*WûRè¾Y¨ÅÝñ)‹Ë21Í;èGmíË·”-exïÏ9~><áÍoq¸Üœ=7ü®ÂŸ^ª¢ûriOT n†EaÛhM-‚z+TëoTr% Òj(ß]ø 9Ì ú…IM)> endobj 39 0 obj << /Font << /F8 8 0 R /F14 11 0 R /F54 17 0 R /F44 7 0 R /F11 9 0 R /F10 42 0 R /F51 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 46 0 obj << /Length 2560 /Filter /FlateDecode >> stream xÚÝZ[oã¸~Ÿ_‘ΨŒÆŠH],Íí¢l±Ý;)ú03²c;Þµ-¯dçÒ‡þöòÜx‘e'AgZ´Ž$òðððãááwÈüñæÍÕûò¢Š«B7‹‹jOŠò¢È'±Nó‹›Û‹Ñz¤¢zoþÌÛÑ8ÍuÔÂ;”ÎëþvTÜ,à™F zåô "hro~+|æET¯©vÊg#=‰~Æâ圔à–D~Œ©è;S´çZî²Þò³…jPó䣣Ys@M¦ìâv+Ôvb·lÚfÂ`ñªÙ:qX§¢Kø˜D¼?^Ž>ßüù"¹+W9#VCÛ[#–TѬF¤°¤“ÒØhÌæ5˜m†—¥Eô÷Q™!f¦Q³…FO$ýÒ5KŒ .è™'ô¬·Ümâ÷#]¬‘Í*uÕþ™ÏÝhlĘ €kÓ €4[¸¨AQ‚“:ßSè©ÙžY†£ÇìPæv´_W)Ú¯+©$—ÌB‡•þ°„¼Â€) · ªŽêT´\Ó¸ pF~»lZ„ÓŒ`'lB&I*a•ûzʃ™Ã(®Þç™·TtQÄI:1cÃ18*‚&Êüüa3¥Y¬³BÑðÍH¡:TKãu ¬®ÉG¶F~° tˆ¯Á>‰u™†0;/—Õ¤ŠhÙ¢ógG øné½9àKNÐ?p7ùèFUtÀ‚`“Ä^|ɼwõÆ}vÔ‘.(z(YâЈ}°…Ñvð†Îs‹S4‰~˜?úÿ†°¼sÃ&]mOrˆ9PtÂIPÊ›…ž?~JReÑõîxÆT§Y)3v=à FU’[‰/˜`uÅñ)t\d¹(‹ºOÒXéÜ ÁX¦R|7ç:¥Ðl~ „ÖÂU¿7¯cz³œ„Š´ù}d;6ƨBYËÏeÎeŸ’F’óˆ~Œ«ÆjÉÒoÙDP²aÅkþ~Ká ì|{¢Ú*µRÚëR:ø<z§ãI«$›ø CIsÙq³Ò)q´õ´!5."jêpëOØ¢~‚¿òà\³ysW½ÀhBÄ ÍOê;y×›:†w èy…ý9’Ù»ïYyýœëœFnx=õ‘{`x$@œäòXï:rx²lKýÑ-y¢v˜C†W$¸õÎÛù .o?e:åÚ;×ÑPÔâ1¤GÆž€»ù†·á9voç`Îú—<Ä¡zJT§¿.=G>‹èi($fmC¿L¼1:”zÀ¦ñ¤bmy˜ŸIkÂÍ&üË̯0¿ãÙ²¹êçï(ÀCØ®ÌëX«X劺¸¹#~ͬ™™!¿ãîý)QÐÑveã/Ö=•”ý‘yî¯Ì&Z•¤w%L6x"烦³ú@ôËú®¢¿} 'mâÍî ü. ˆFà9`žrOæôØêõš_€2¡Î£éA>”vhj‰Œ 5ú- 5Þ6v@Õn®º“ä€ÉÖ"íØÉRèæ–RÙ‘ÝB}¢@‡¥iíõáñ4³NÞ›?ßK²ËÖÒ-ó…ümš§B¢<(ûdÖIC¯0‰ï˜¶©°)› A ˜›*knÊ¡cjH6¯cì&¾Ÿ3â©ÝÓ”ó;&mõÞi¯H7|†É<šæ3ar뢊#æThÒä_é)ÿjx YõjuÄö¡ðIæ¤nxM4Cî„Ö@û °yhöWóâQåŽ$œÓà‡õû•Èu’¶UþJ3üv?Á2mæ ÐIô™â%6XºwNØcЕê¹[¹£ºSdÙ(Ypæ@©i…Îw“Î¥cîeÆè¨˜¿CÂÙZnˆÉ÷;Nòx¢´0ÚãÀ{!u«ÒæH½9téëÜOMkúèÄ£Á´ÎOnqiÀpºî\cq~g®… ¦!x §<’uoÐ9[ã‘»F½ 6“šÝÞí¤f[0a²¦LXVe;…à…dàà¿´5JT4¾æ¥†?oÉÓLÉb.ëæ 1#¥jÊ%d/ÂTBñ+áçÇ)„Ÿ&l=6<÷€ñÿÌäÙŒ÷y¯1ì{•«É¹Èûôj‹°¶k'aí$¬-ÃOåYÆó·<ä¼Çã‚ñÉLCù8 •ÚñȳY…G«W¬Ôƒ6œ:ÊëÈåÙ”èN0 [÷²Æ!ýïåKê‹§Q>#Õÿ¹$@ÿÿ_’ûë¯È½³#îé…âv²6%6¤H­Í)‹UÌËE¼¬ö8>[-´âÖÎæ¿ïK3FË×íùÒ+¢hßõÂEöJe¾ÃZE€ŒIJbÃzG¶¯Sþ¼ëÛ ö÷îüIƒ¸Ð°9ØÇÞ ÈÐÏu<±2ß)€»Þ\“ _œ±øÐñHŠ3C²¦<â&ü¹£Ûd[X|kïíÝ3¸Ü5Ña¤{ëë;Ê Ü †Yµåîæ‹/B”wy¡‰OÏärkÆyÍPj›ð Qo|ÁÕ“.éþá’}Þ€•e¡ÓѠƺšÈPᵓÛ#Ly¦örcâî@&ÌN]ñ¿{æ‚§Ô4.SUPÁ!Då ¬ó©íÔwP@•.¼Ž\¿]½Ù¹GF±ïOnUó¸8÷š0‘XÎ÷dZ#¬¦]q=x¦¼ìPÿøxÝ¿³1)˜ÉL¢ïŒi™ÖBÿñ}Ö y’c(`åÝY %ÇøMý>h±*“8c†íUI¬3k𽜺„ ±†9;!£†§©wtbr×–™õB×_aF72,¾Í3ÙBeÏ}¿=rw“vdçV¥©eL)iNswìeÞaüV{W& èf%êZnØ9;ÊŠäø#w'!yÄÇh˃×QŠÇ!Uôž±؉÷¹ ¯µÜ$^’¬]ñæ]Æ:„ø@†PƒÏüt°èrfžöïÌÝ…9œ®¸­–uçźó44ÛÞiK7—ÍWÊ I" {Ðd£uzÖƒ8 ÝÚ[ìõ•ô"$]ã^|:ûôOBO÷ÿÛ„þ+³ö'.1´ I„âL¹|¯<Ãèûg÷!‡Üy·~×ÞEÝÆ{¾Î ¯C¨ù_žÊ{t3×±Nz±äQ<‡ SþÞX ÑϺ§ZÞ\g®XÍ–š6´a $’…> endobj 44 0 obj << /Font << /F8 8 0 R /F54 17 0 R /F11 9 0 R /F56 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 51 0 obj << /Length 848 /Filter /FlateDecode >> stream xÚÍVKsÓ0¾çWx {¨UËzØbh<2æáÀ”RÇi I’”¶~;+íÊ–·Ìpb2²¬}|»þ´Z…Güxd Vè2&c™”QµýeÌè\Hg¾;%'G½_Šèíjô~^•h ¾žŒŽÆed,œŽ&óˆg’•¥Š„.Ï‹h2‹ÎâqÂãk—·xÖI*„ˆÅË$•RÄŸ’¼ŒWë[Ð,`Lwd¼ºA;»^ÙÇÔª·(œ[á¦5¸jq¿œÚ9](kW»·xT5ª¾e*ƒå¦†Ç ÅSk3ëÈ1¹®.¶ò—M¼ž¡|æòž¢³3Ùub]¸o«¬Ë‘Ç,9Ÿ|8+Ð' *Šs& ƒì]ÚTm:0,Kkë&š))¢”sf”BÓ©%ÙQÁã° €Í_€y¬H&;Àu±ÈXpÑæÄ&sŒd¬ƒŒõ@ÆX5¼îCÀEq1±$`9Ì©€UÜÏXpûÙ¨÷œ›!Ð2ȶ @ó¶: šôò©M3ú•¦iœóXÑ †`©/\ÁŒ¤6FE>w]‚»Ã¶£ù9Ñ;'£ƒÆýùi5<>£övC(ö¨ÞÃ8O ¤,âgè2%õ —k²ÜàrK­àÆwRUmè;]S;¸¢Ø[T»ŽÚ¾Rï´Ëîg5¡j'ظ“ÖfNñvX¶=|ÂØ7»ÖÔ!O{&$ž“Ø_ KÊç°Í¸²¾BOêR¿qÚï ÿp#)d_~ø4³Çý§ˆ0ÁáFäÂÖtÙ­ºìóØ^R6ȪÔ>%6‰qëRQ€©ª6wVXó‡ $º•ÈyAøäÜSÝEÇ ˆýØ¡+éž¾«¢XÉ j{ª9šøNîý_ªtërãk°ç›¶¬çÁ./QtJVKÚtü I¹WЄìç5Íþ‹Â=¼šOZòüñ¯‰š'vŸJÏu†ÿ¸xçäðQt;ñ¿”€'³÷ïR ¦ ÆËÜß`7z7ý]ÅN( endstream endobj 50 0 obj << /Type /Page /Contents 51 0 R /Resources 49 0 R /MediaBox [0 0 612 792] /Parent 47 0 R >> endobj 43 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc3a.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 52 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 53 0 R>> /ExtGState << >>/ColorSpace << /sRGB 54 0 R >>>> /Length 813 /Filter /FlateDecode >> stream xœµVMO1½ï¯ð1¨ÚÁ3þ>T*!µR›H= ˆ*"„¢þý޽özS"´ê!–f_ž?ç½§Å­x쾉G¡([FO ½ mÀYñt%~ˆûîhÕ>ÿ|$.Ÿ;)¥“ñùò¾;«ÛîÓ*Mü%AЂ0€qT£@{ÞÆ¨‰JRƒdÜ!hÝH5Œh-ØÐFUÒÆ}ó4žUVóª¬m£ji½°>^Ö“3#¿úñ²›¾÷0.¿òWgÄŸîì\Hñ³CqÊ¿ÛÓì_º!¡4Å­­sz‘—à¸ËátoCTQNFUÑ!ª(_•áNp‹1‰G|+N’¸â9œà]Ňp‚‡ñz¶©`^_Ý–`êSôõ}È×qZoңĻ^ô ²K{Êdj$#j Wغ•ÍÒ #Û¶²ƒë Û7²I)P…­—=J†ÂomjëNSò…!¼+!y–/q\rc+,^&Y5¤ÇN“AL®~8èÇ›+qó´yy˜}ZŸì‚xŠ3œ-NžØlÅââò÷¯Í½Ø\‹‡ÍÃËÝEŒÎÅê4;Âÿ¯2ÚYο´µÅz~­`;"V±§©Ø b…’mÔh~¨6F5RMò3ÔÉF›¨J¦ÇGô7¬b]dœsH6nXKÖ5›t÷š¹Gç¾ÀR{qÏ}âÔ~}Ap +té ¼/Êkî œ‰7¸W_ Ùš»‘ÒðâØxÖܘPt8›™ÌÅÒ4fuQ0ªÜSÁ>€û)ØQÔÅ~ æ nÜpQ0»U«åd,…®YÀn3ßÝìEÿÃR"y!JÕã†hÎQ’DD1 ËŒp +Õ*žÃ§(5â%¬xÔ«xG\q²SÝ^ +nl<üˆçpÄ·Ž[O?âï¬÷œ^ÄŠJÅ6¾š‘½ÙÙ“í"ŠE~B6½ ³eŦ›™‘meog/;9.O¶éíìµIëÔWl'{7{m ÂôÒœéÝìµ·4fzk^ö~6[³™é¹ƒü0 ­û 2j"d endstream endobj 52 0 obj << /CreationDate (D:20140122074915) /ModDate (D:20140122074915) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 53 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 55 0 R >> endobj 54 0 obj [/ICCBased 56 0 R] endobj 55 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 56 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 49 0 obj << /Font << /F8 8 0 R /F54 17 0 R >> /XObject << /Im3 43 0 R >> /ProcSet [ /PDF /Text ] >> endobj 59 0 obj << /Length 1824 /Filter /FlateDecode >> stream xÚ¥XIãD¾÷¯È G{ìryÁaZ„„`‚80Çd:¶{줗Ï[ír'#¡V:µ¼½^½÷U¢EѢȂ,Íq¡µ‹ª¹ùrEjbKî˜6#a”…·»ø¹»ùþtË¡¾#õ§ÕÍÛÛ|Q ¸t±º§y™l±Ú,þön—‘·‡ÏöÔÃÿzéǦðìwKßZã}„%ZªÇe’z婪¬ôK“_ä ¼z×õ<8ÂÚn’yÄ1é…-NºÓÃÄzDM»å…å>-MæÕdãu¡Üz׸PÂ<½R€1 ÛuÈü„"™á å°e4ºƒè‰ÒRÿÍòŸÕ/`?Š‚"I9dÄŽJ’ÜëzñQh`ùDBÀØ«ÆQ‰jÊà ¤ ²,ßäÛ°sÔÔ–Â,ýÄ„ÞJc »šB*éÀjŠ8íÌýTYíÄZ¢ºÏh÷p”IØÜ‡óã„éo0DÍ #ÝX%«‡¥oR¯{8 9Ö¾ÃÓˆ G Šã™|˜ª¹¶Œˆ7°Ùµ¡šx.âϬmÈÀLf4ƒm@6 Ùooë\”†0òã(È ;ò#F{2«ƒÐûOaÊðN¶QCDùãG¡Í¼†Î…óÿž”2 Ò6"êøÜ2jªÈ/ŽnU“&–yF¾-oEóA俳™o=QØy+ÓÜFPây®?‹c•8ppŒá“Â'‡ŒŒÉèÏ$&gDA[ùnÅ$qQ] Ľ7s®Gù>ÌàN„”â>~#Jz‰'¦ÀÃ,úÿÈó ³Ù<ë™*N¾ÔI>yŽu¨¿½žI`L¡íHðõ®$†qŽrÞGü(“ ߀_QÎbþZ毞r:“šÆ|wwpçh‚'„ bÜàëŠ<Š3•kšã]øõ“nûŽÏmb¤r *´ì«ê®©Ÿ\­Tyf[‹n®Ëg5f+¯˜HEã£bÊ->l?²A­wvÚO;&‡XØMÇþã觉zll6uGÚ!þ/’½û~,>D:àâZ+wI}縧ÞÂÜ×Å]rv´‹E±/(§;µ6®òDVâŒF\‰˜ú FF…u¼WV¨q'úk šÅšl¦¦PÕtùý$-¦—YFƒv“£–bÄ YÂ#^™À 0V”!õD¿—NûÔh9ýZ^ÙË÷§0²$ápÍ^0m³wŽ€< å5uÀú8¡ZàlŽPÆåæ³ðp½ŸV“‡r¦h˜®„…§(ªÙS·ÃžfcŸ ‹I+ðõ uNZE ÞÔ¾kx2¥8Bâ*¿ø¯šÚ)T’82œóû =Þ½²Nà ¬Ï|§Å“jGa>:ÑVa`áPv ßPVòº*S–;"7BCÀµTÒ{Z¨œNL°¶µHÅ6šbã¡ld„¡Ø—ŒaÁÒ‰ïî¿JSñD»V´NÁ{­¶ly­c0'»/$’HΡ•`ÚÝ0¢dåý^Žïä@ŸÉ=(“`nC8‰OQ«Mfà§ lÃïºõR²¿,ó¯°5î •,ºœ¿È]kÞSæ–G©C°3Vräwkì]Ì^fÂâèËÓðlXÀ®t"J¤©TPÄîiY(êÝ«¥pÔZª/…¦.%Ë/$\wÇðóè@R­ð¸®=màiÕµú@(Gß©Ãfýš³26(Ö¦EÀwq©g½?? 7g¨Ljž6´/=zÚÙ‹Íʫdž:­º¦yž(U/ž´äæÏϹ£(ºÁ²0¾ä¶˜„i Úë´š®ªÆ­lýë]œ¬î7ø*–‡HÏ—•!ƒsy­%©•jã´ž‰FÌb͸’zȽ±L‘ÓôÆ¢ejNïC 8îÆdÞÌm#{ž«}ì”éG…*t@üƒÀ޾ÔË/ÕX¾[Øv¹÷¬Ç'qÊéY<½®©utGºµ?Na Î…ýž¤2óÌÒÌûÐ2Ñ,GîÙ9Ø5‘ l˜+ܼÈ[¬9¸om‘(#±ãìå÷Ú«ÊÓ40iáêv1 'î¹þ$È¢T™ÎƒÀêéÛ†˜»v#x?䯑wΖcÒ“-þT¢ïÐ=,X¬¨¿ÉõkÓõIÇ7 Wžy(Ç%m©¤aê#Íx†qê­èÑ ?9 %V)«¿©žóD¶LºA«}Ø×—šÚts°×‡†êN(ý¢>ÿÁaÃÛï´U?ã|;¦oÐïø¸u:äkÝ­Ñß ýͨœÀ¡Sî§Û{R,¬¹¥^Èî ÞbÆh²èkõYž¹»óì2E¯Ã™ùu Ѿ’WÚ>HãHñnJ~P1胗oà ˜U¸só~uó/eˆöÚ endstream endobj 58 0 obj << /Type /Page /Contents 59 0 R /Resources 57 0 R /MediaBox [0 0 612 792] /Parent 47 0 R >> endobj 48 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 60 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 61 0 R>> /ExtGState << >>/ColorSpace << /sRGB 62 0 R >>>> /Length 35041 /Filter /FlateDecode >> stream xœ¤ÝËŽ4Ëuàùÿ=$jÅý2•` `ö!`‚„.€R¶IXz}WìµvvWìu¨#x`YŸþ<ÕU™‘‘‘™kçß|äúø??þëëÿýåŸþÛú«¿þéGúL)}|ÿŸ?ýõyý_gÿø×ó·éãïäß¼þß?ýÈgƒÿü£îÏ:>ð?ÿðúÿ÷gßäï?~ ÿljŸÿºÓç*Ï¿RÏ¿æV>ËzþÙùõﻞ¯öü;ùü{iý³äçß_ÿ¾Çç˜_ÿN>ÿ^ÛúÌõëË“_ÿþýÇ~ýöçßÿê·Üµ÷'±kÿôwÿüã/ÿcy‡ßþãÇúäÿÿÃXçgn¥|¦õñÛ?|ü*ýúã·ÿôã?üÖ>÷Ïý‡k}Žôí?,¿ô?Ìíõ¿oÿeûÅÿåΟ½|û/Ç/ý/Ëë¨îõí¿\¿ø¿Ü¯öðýoæ_¼‡j«ŸãûÍ¿xÕÝ?sÿþŸ>; áÕJÚW[/s|¦òíTxþÙš ôõ¯¯&¼çó¯Ð׿æ×ÿ×ÖóÏä·_ý|ÅçßÁ¯/5}öüü;ùíßñeŸÿúîß÷Ê×¾ø‹¯TæçjçX&4ÖOy0þÌûjµ-ó¿•GãÏü·¹¾öTá,íŸûçk76þDzÝþ™ÿ¸”ö¹;ÿcÙtÿÜ<Ó9üÖŠ¾ö×[—ù£•|¾{TgyÚü:4~àÞéÿdÝûÿg7”_Ýâ¬åsY{ÿ›_ý_ŸŽâãWÿð»?þéãÿø¿þðñÓïþð¿ÿ¿þÛßþæýúWÿôÚíÍþö‘?ýß?þúã/êëCÿåþ˯?JÿøÕï~ÿ|ÞëG||ÿauÙÉwúó9>þøÿýãŸÿ­‹Ø«{JÿÖEÌ›ÿá«5yóØ?÷ ·â²”>k—,`+Н=lœIqlrJöÃW êŠ,C2§7ŒlÜSÒ~Bù¬[±N° In<¦âë2ÿb=»_±y(f²TIûí³lÅd»Ýþ£Àv.SF; 8Üg¤ý¡ƒ8mã×õ>Kf°tEî‰ÝØùQ½JpwÅfÍl¤ØÁsÙDgµ?§æùù=+XÈ{³€­(æŽ*i(Ÿ,˜hÍ;Ò6.ŸyE¾®>´æ¸:h»=Ò6~H†â´›õú‚´8&¸«¤mlƒbÁ^É¥h]Agó´“ýÅQ%ù‡¬û ,üC»(æÓû8qŶ¥˜ìkÌÏÔ$8rdAWß×é Xšâš`]’\Sq.p7Iû’û3eɶ¦8¸†äù ƒc•@k /æ¦hÅ‹%K6puÉÚá¬Î­XÎŽù³6Ål,¸ðEV°VÅ´ÀÞ$í'ÔÓ*&°ïÈ|ºZ£ì‘¶Û.|Ö vsƒ£KÚGñd M’Ï¥Ømcžt‘ E±epUÅj?pâ – ¶$i¯sØ3Xš"šÊBwyšÊëÿOC1m°6ÉsÒFÑ#­Y{“]Ñͱ1 xñ Š"×Og.x~ÂJç´Óyeër;8“dWS´A²®W±’SòüüUmçDvò /#­1,tn‚‰ÜŠ•ŸKª mÜíž1Ò. › ýÀa¾Hë ^än¿ÉËR´ËÄ‹µGÚÞh‡,КʚÖQðtŒ‘“ŸA¯ }Iœ8‘h 8q ¹íÖcÙ¤˜Áµ›ý!{¼ªXA;qëáN6è´Ã½ó *&°dE; /¶¢h]ý‹sJvpµÈ‰®þÅ%ÏŽÝ6(´Æ°› M xnâ"'7îEѺúw“´Ÿ€‡£‚¬S±qãY$¹+7ÞUÒ~ OØ@{°°yZE6puE»ˆìi—EÁÖ¦˜¸±t‘ÜxOIûù<%/¾¾Ü­CŽ,๤FÚc‡Ã­hƒÀ½mX+XÀó¤0ÒNöœ2z7áB·"ÝÜÖ+GW|^±Q¦2¶·ûEeŸ‘ˆr27 çN×¥íÛsoÝNƒî[»šûMGw<ŠÊi g®ôyÊ©œhkÛÑ6¼È‰-T¸ÓÖ gó:©•G¡—vŸôÚø=½\´Ý‚æó´·hWÚÆmÑÛgôf•îI;Ñ£IÛ#®ã¹´ }ît…mà‘sAï#\èÚ¤“»á†GÇÖ3 ã÷6Œ¢Ñ^Ž·¶o߆ô˜ôÊÚÖž2¯'ÑÝݳt›î¥]i»ÖE³=ð|nôhÚø>Óî…íârlý¥p§[‘æñäùv»²¿8ÞÚ•¶þ0zùö6Æn´]‡¢Ùx¾ wz'éí·=Wî´'£í!E.<ß…«{J£½”„ë0¶göRì©…t¢g–Æõªdô×ÑÙ?oml_p½ˆN›¶þ\ÛWoï.¸}9¶ö½6míAØ?ï<ûPÎôžÒh/xU«^ÒèÏ_>OŒ”­?l˜P)Œëõ™S±µ}ûs?'Ìö2Ñ…ñ}í ¢2ÏW›'è±¥Ñß·öÍã½m<%ŒëñËc OöçÍN\iû{Ý:.eÜvôÂè¯_>× åBŸñ0Ž÷ËkHã|?s9š4Ž×™Íѵ3]¶4ŽW/h¾ýÌÒã åF[}û¥ÜÎ…Oû³ÛýRððãi>”q¿×íÁ‹t£Ïýº0w·ë2ö§ÍÇ“.ô¯ßÞŽ·°O§áhÛÃìã¹´3½·4ÛÓÂñ®ôyÞ"Œñ$:.éNÏ©ßÃó=šíiÛý”²oÆ;¸ÞOiÜžÇÓÔδµ—h›lw|îç”±}Æõ&÷ /÷­]èY¥ñ<êܸdíJŸùê¸ޜ³¡íÛ[{ŒF{ Ûñã-áD·-þì<˜ªÒÅÝ»6öW··ÂxÞpìwíL¯)°¿­c“ÎtÙ ӹŽmG£?:¶ooý}4®GÃ.ŒÒ8 ã‘h\¯ÎÛË®é>¤1Þ8ïs“4Æ£ç-t×®ô¹ßÆó‚óÆkÛ÷9ó#š4®WgîE–NýóF®¯œ™=M»Ò6ž^¾½õÂ…>÷SÂÓ·_IÛWÜ/E£½œÙKÛ··þ>ïÛÎ젪钤›»-i\oÎ|jmôgÖûÖNôÒ¸žL^¯…±ýDç/·&\x½™<ߢñ<òåó 'ºuiŒ‡Ö¸g>Ï^Dc<²ìÁ¨t¡í~6z.Úíx.^Ï£Ñ_¬Šö,Üè>¥1Þ]¼ž 'z/iïŽãñìb Üé=´ñ÷†=O.n{žñÆZ¸Þ cûþ4ãp¿-\豄ß·íŒç1ÂÍ=¥—oo÷ÛÂI;ÓkIco=>÷ÃÊÍ\í~TxmúÜ(ãûØÀ]yzTi{_zlÇ3ºãûØÊFiü½ýÝ:mûS8»·4÷°çÕʾ½oÑö<¾¤iãe´››ªœ±ýÆ‚øèä>÷{Ê•¶óñöôöÀóQ¸Ñv> 'ú\Ï…íy^ÉÉî…m<{|Æ Ê‰^Uºcûlý¡°Íç:¶óAß§Øû4áºés?§ÜéY¥ ¶çù$\辤í~¦äæÇãvÂçu»_SîôØÚ…ÞIxàyGÉý¡p¡ÏxZØî‡ÍKzÂÓÆ3Ê…¶ý=|û•¤í~Å<µq¼—=/VNôÏ£?ÉÖq)³½ð|ÆõàåV¤³»Oéä^]Û~OIh·;Ï÷ÂóQ¸Òg¾‚0ŽçËÖ^„±=¯wÑsÓ]{¸Ïû$eÿ¼s? Üáb÷kÂv?z<†¶oo×ËèŠí±]¹Ó­igº/i\/Š=ø‘öí×ξý®Ò/”fãeåBï"Ìç¡æ-ñBéèÏ…mýy4®¥ãz"Œß‹õòÂO¼|ÆãÊØžýMtôy¨\è^¥›o¿–6¶g]'mãuáJŸ÷¥Â¸Þ¼¼«t†·=ïVnôÌÚ‰^]:ùöl/Á¶}et»²=U[/(íÛÛx$z¹Ïýš0ÚKåõ>דŠì aïŠõüÂèO*ûaÛµa¼ëEåù(<虥q=©<…­½ÔŽþ>×›ŠúÊžI×£3_¬j7záÂëQÅZ|åN×"½–{KOÿ< Wz6éáÛŸ÷‰ÂoÔ…ëp¥m¼ëMÝ6ß@¸ºK‘æñÞö¢¿R®tNÒè¯;Æ[Ê…>×+aܯwöwÑO1•IíÁNleÜ3?I¹Ò¹Ic¼Å %åN&<8ž> –v£Ïýœr¦Ïý„0ÚÃÈhѸž˜(ãz>,KHÏ{ûCa;žLsnÑŠö$œé^¤ñ¼f°?‰ÆýÔÀxC¹Ñ]ٟ׎ýç-ÃŒtq/i\ÒΔ+}Þ· |“„q?4©£ŒÏC> 0žçŸ´¡)çq“íY¸ÐÜ_·q=ej“0Ž×ÉÛÚ•æþº÷5ÈÉ“.ôï7ïÙПDc<†\Ii|žM|TÆóøi3¥+mýI4Î×Éö(Œ¿‡<a×Ò¶í™%ŒñîbñîB‡r£g’Æù¸l¦\i;Ÿ¢ñ'>oÜÈfSN´oѸŸ=ÉQYç붉ÊxßÀŒ'e|_ämã~i#oC¹Ð{Hã~ioôg‰î[ÚîwkB†r¢­½GÛzãã¾´}û5¤3¶Ï~ý­r¦Ïóda»Ÿ:Þ]ûç³°õ×Ç¥J§Nשïƒó=˜óᎻöZô)Wúô·Âö¾©&{0 ès=•>÷sÂ}¸—6~/ú á6éý3ÆöÛžG ×N·¡hkOÑÅ·_Y:o÷Ò¶íOž×ÖNtÒhÌû ž,ô³Ý/)gÚêÑDÛû(óÖ®tOÒ64OmßþÜï Ûx°2/LÙη\Pý'í…yaÂÍÝŠ4®Ù²À¥q<÷#\*½¶tÆçÙÄéL×-*=’ðÀxìØú+alÏþ*zuz%iôy.ÂÇ{ = º'éŽï‹¼åB·-Ý}î·•3mq¢ ¶Gž˜r¦ËΕîM:á÷°?ºí…Z2ûáD[ãUØŸ'Úú“èéÛŸñ”r¦Ïý ðÀöÙÞ—('ÚŽwt÷ígÖöíç’¶ç)µŒ‡¢Ñ_žïÂɽ¥³ÞLÒ8ž…•„­½ ‹n<_ ÇK•>ïã„y¼‘碌߃¼Ba\Ï òV„G¦{‘ÆùZx¾ 'ºéÖ鞤m¾ÑñèÒ8_ Ò ºé<éó¾K9Ó¬¨uý1óÌ‚™WX10‘.´¯èå¶ñv4ÆãÇSß×®Ê<ÙEó|ÜOG·M¯­mŸW‘%ŒñóÖ”3Ý·4®·yQÂáÆVڿϚ…ǫr<%Œ¿‡¼(aŒ§*ûáâÞÒÓ··ë™°o?§´Í78ÞE;¹·4ÆÛy.Ê….Sã©ZÑÞ…½ª4'ò¤„3Žû+a|Ÿëa4úë:0žF{CÞJpöã=±?£q¿]‘§¢œi»ßŠÆx¸.ìaÏñdtßt­Ú¾½¯Ñ¸Ÿn¶0TºÒ»Jã~šykÂe¹§tvwíä¶ñ‚°ïÆöx›óÉ*&K'ÚöW4½˜SÆùÚ:®·Â™¶ñ|4ž—4¶×莿Çöñpc{ŒÆõ´-ÜO cmŒG¢q>2KçÓYØ9´í÷bapðk˜‹ãÑ­á(ÛûŠÊ¼,eû¾y7¸^v´'aœo̳R.ôjÒxÞÁ¼+aœOy{Âö¾þø´GåLï)ñ*ó°„Ó ÇæzÍãó>J¹ÐçyˆðÂßC¡Naœ&“NtŸÒxÞļ+aŒW:Ú»0®gg>ΖÆýó¬„Ñ1ÏJÙŽÇ@…0Æ‹ÃN¬èÉñ<‚;•ñ¼e ?F{È‹PÆ÷AÙRaŒçòæ”±=ò„1žȃF?là'íŸgÇ#ã5ƒ+sÚ‹ïh–¡0oiôy2ÂÃ=Št_ô™O«œh;_£¹?;ÚCt­tÒxÞ8G!Œëå@^MpçófæI ãz7,øPÏû˜÷$ÜÝ£Jã~p,ô§ÑxÞŽÚgÊhy(Áœ¯rl¿7çÛ´…ʯâ÷D£=œº›[ýóŽ„>¯ÛõTÇ{Záåâæï½Íý1ì~J×ãSëls½Se^0®‡sã÷Dc¼¸Ç!Œëݲ‰ÊϯŠþü6ËaÖÕíyœ0Ž×âþŠnîón¤ N¼l jØb®n¤”…™ð‘¨5j!‚öÅkºZ#ôª­°æSqë6ãüÜH{<íU[;7fm¬‹•[å¶@ԿżôH»-à¬ÚH{(°Yóñbyª˜ž'ò‘öÀ~³ž]  ä6OØ@ëTwõZEmP´­¤˜ =ˆÚ u¼QÕ“uJíöÁk^̬ˊ ‘vÒ텪ˑçæ”ð—¢Qþ.±Èm4â9˃E#¾9±<`4Ë[/_tñº‰å½nsyø±ýžh”oóòšÂ‰fyšÛˆL,ßxóÔQÞ-ñ²œ>(ŒxÇÔŸò7ß}Rï7mñÞшçL(ÿ'ŒxhNïF|bÂôaÄ÷&”çFy:N¯F¼{Æô[a”Ÿáô5a–'ÄôXaÄ£æâåwÞ½¼ü Îoá§ü¤ÅËF#ž”ÓÄŸò‘cJ#Þ6wÄëF£<Ë/ #>Ó£„Qž%//·òn/RX>)ñš…å“¢YžÓg„¯ÌòxÂ,ïÖP¾'ñÉ,'Ìò˜¾<¼ü_G<þ6ËOM”¯ŠFÎ×»ÂèÏûDyªh–‡Zèo'ÆÓw¶§hôG}{üùmŒWFòøòÛø½|})Ìò4ýM4Ë˰=\n|–ùúQ˜å…p<…Ñß°<0Æã¯w„+þÊ»c<Ê×s”^¼žœ'•[šå)ðzO˜åIP>Ax¸|›åEðz[ãñó<;Kã~ä,Ÿ/Ò,S=~ú6Î׉øÿ`/ow¼¤Ñžç@œR4Úó´œeôW“ñìÑü½x½+Œþ˜¯ÿ„QÞunÿ½øx–Ï^ž"!ž/ãi–¿fyˆ‚øÓhôÇ«à÷Dc<¼ÿ/ŒòO ñýÂü=Õ¦§szÿ)ÿ°»4î·ÖôxÖÛ(_°â£ù{oòÛê(£|ËCc<±­Ž­2Ê#íŒø0áD$ܾÊGX¼\4Ë?dì¯h\¯6Ê›cœòSº¹­=Dã~eW½òb»¡?ŒÆxsãõ¾°=š:åïúnÆ3œò v>G£|ËžˆwŒF°—ÇÞF°—Ç{ÞF|‚—/ˆF¼…—ˆF|œ—ˆF¼Aâñ¾íñ© 7Ë—Ïó $ø€Äó9ñ—©z|åm–_`üq4ãõ®—шOJ퉧|³/¿÷òÑË?ÏÊD#ž#Ù2–o§áñ·o“â§£O”&âý¢Ÿò¥I#¾$1^=šå¯~;10YeÄ?¥…ó5ñ_gyè–fù–ÿˆfü~Âx-ñ^~ :{yÆ/Þf<>Ës\®,Ÿbå–ôrŸñ”0â9X>@¸»w“Füg®X^ÍýQ=ñ6â‰rÃòøhÄÇ冸±Ûïwæ9-iÄ—äæñw·”›ÇÛÝfyÄ £?8óÔ²4â¹ò@ü\4âÓ³­CVF|GF¼vðôòˆ×F€yÀÊèÎ<ì!ÍxòüÄç]FP2⥢?X*~O4âOJóïs׃Ò<^î6úƒ‚øêàáåšÇ™ÝFP:â/£¹?†õ—Âãñ–f|ú|sû2ãóß,Œx ³N|H'wÏÂOyÄ7 #^ 9ʈ/­ÉãÙnãx׌ø¤hüÞó<°JÛý¾å´LéäÛŸñ~pc<`-ouí9TÊ8ž³k„q¾W”fýÉíÄñxC<¼0ú›ÎxÑhÄ?õäñF·Qž 31ãÍóà°JãzÒïëIÇ×ÛÅã§,Ìxàbï+„?ØQÞA˜ñ½ˆ?fünÃòÅÛ|_É:ÌÊkУKc¼ÛÑž…ØO<=žyx|Çm´W¼¸Rfü5f ã~³£|0ã13Oדޙ¨ÁƒÇ“ñµÂ(ÃxXaÆ6,ŸŒÆõr4ç¸]=^•ñ·ñ{F÷ïóîoñ¬«KãxÄO ó÷ ~R÷Œ_F{ Ë»£ù}—Ç_Üfüìòø‹Û89ç/¸q¼36♢g£íxGãz7–G£?93^‹4ãW?,œÜµ 3àÌknSåC&f ã|Á seÄÓq– 0âgóåõï.ìÏ8SPíñ§ÂŒÏe{ŠÆýâ´Ù¹ÊŒGE¼¡0ʬäßçÝÙã1Ó³¼û2ÆS+ûòäÛÃãGG•f|iy[~ýÍŒÅÌCáäñœ¥ §÷xOaœ¯œq'ŒöÌxJáâ¶ýݽHc<°¶Ÿ7ûòÛ/Y§4ã?)Œø×ù@ÂŒwD¼”pþ)Œóq,ß»½<>±`ù^ôðøI.ÿ¼øÐã-Œý¹íÁ­2î÷6ÚCðäxkcþ©0ú»ùDÂÜŸˆ_ÆýÜF<©0ãñ0P8{|áÌÒŒÇãñº=¸üŒñ€ÂŒ/ìv¿,ÌxÁŽåmÑÍã÷ÎõRñ1œï&Œå§çycöø¦„xaƧaö©0–—fÌWÆ÷͘/#\6݆4–7gîÏh,Ϙ/Ü<>l`ùp4âG2â„ï…x aÄ?q¾›0ã÷0ßG8ùö3 WÆ«dÌçfü æócù3㱄³»'i´÷R°|úva¼㯄±ü›ñVÂÝã¯,ž ñ;ñuˆ·+ˆ§Æþä|»àìñUñш—;9jYºy<”-Ïf<˜½XV~âlÝfy{F{.ˆ§¾½µ·èþ=^Jñ9eã|.ßtÖ&s#^îvbyôÊù|ÂÝãƒÎý¸puŸóA8y<Òé/ƒ=ž´ÚÄ7eÆ× þGýAE{f¼Ý˜(gÿIE˜ÏÓ-ÞgKc7IýqÃ|KaÆãd» cy1ãu‚¹@Èãq„/„:†ÊX^ßlu…rÚô邹`çÄãœç™ÂÃãoj–æßCü0ãÏ$Ìx™iýipóøÌ7ÆùØx<£Ñ6{p¢üÌçµ'Þæ<¯ÆþèˆÿÆòþn/.•±|¿c¾R°Ç“u[S«ŒöÚ1_MýQGü†0ú£n+§•Ocg”ÑtÄCgÆ ž‰ýÚ8_æË ã|˜ÏìñLc¡?‹F<Á°sʸÞM«Ãx;o–¯;ñ¯ë2®ÇˆPN/1ªðb|Ô´ù€Ê¸^OxFsA¥ÅGLiô÷Ó:eÄëMËáaóÅ”í~÷Ä3¼nL¢Ÿð›/ô³þéÇ÷ …üïŽSÀJv¼óÌßÓ.Zƒo(ÏiÓ ù2©q5z`&WSD~ת_äc¢–=1à"v"ÞÑFÚ¦á Zä`nC-Š…3màbæÆ#E²Òˆ'BÚƒÿ†2è‘6ìA5ÞÀŒNóL.ŠØOÔo&f à}O¤u‡ž&ˆ”¦IDrã>ÏZâ žy‚‚ ´Ut8((ù‰Ô{”*X¹±­…ŒLOÆE¤Ý¼7”¼É$1¾ù´ñ^4r1ã"oÅÉ{WÄiõ¬F¿hú™XZ#™®Þð66r1[#gE»UoËz_DFYÀH›fÛ˜ThƒŒŽ’É‘È"@Aћ̛b9ÑHÿ¨ÓÉÜä⟎w³‘öê¦3Ç Ð^<öŒÝèù–êi3Ç ixci].˃ÞäãúŽâe‚´UÿÙmv›ò*hšXV3Ònc;Š’EZ¦*ßÝ,Üíl„“ùÖ#óÇW¶F`czÆÈŠØ9lÀÉ9%+XZdÆ ‹%2#ír|–fnE›°Ðñ>'ÒWöÕ´È]anC  µ ‹ßd²ÊHÈÇ´K ‹NFÚÎñâ³ùœÚX†Å˜a,JÓT£“o?«pýŠY)EËx2Gô#Âíoc™LFŒ„0b$Ny¢*̪@6ßJO÷yF*\=†dTéòĈLiÄ80F$Ø—‘¡¼–r÷˜‘=¥Ñ^páNü=1ÂXÆÈ˜Ë61Ñ6M/˸‹Í±RÆ2¢bå·¤ñyÓ£ñ{Š]Ø•s¦G–fLÆ<;.z1&¢ØÀJ19¸±ž\f[mn›´ÇTì.eXx𥌘‘:}ûÛ1ûŒÇ•±L»Ù¼h>´¼­-m÷ ÌûR.î¾¥“{ a!9î—4–Ác.2bTðFB™¯cîíæÏÞÂ(ã|l¶Ì]ù‰Y°öt›,r ÜØ³%Í¿·0ÍøvfLB³™rÊ 1ûó¶Çhá=¢òô˜…–¥q¾"æ@¹x ‚MãÎî%¼ø<¿`¦–2b:3Íé+ó¢”C0Ïõ^™ß×ÊwF3¦ÓæØLi.óOÖ^•maæŽ2Æ#(í£Œ˜<ÌY‹ö£a1ʈ)vbDwöÃòÈ•Ñ^QäG™Ëì§õ×ÂõY查q½Ä Ôh>²ùº[17Ó.üÊÕ—É7mü½iE_¢Y±`^‡òôeìkJc/[樓•OÇ]óöú_F‘Æx ei”ùy60ŒÎŒAÂL eÄT,{0©œ°ýF{½ÍégwÊÒXæ¿ >ïò|–‘ÛeŒw·½ÏQF Î딵q<öòÏ»ëé¶Ž!Ú«'ËTÆ2¶”íz$ŒeºÉfº+c™H²òÑ^ëh_öØgåŽ÷IgôëÆOËÌ’ ,” ~½ïn诎kæû¦³LúŒw„± ,Û‹ãhÆxÖÌãe\ÙNLåäË[æûøãWǨŒeªyáxDcW¶Ñ^5>Û\e.µùÁ¾` ´a,³ÃûLe.Sn¶¿ƒù¼¢¢Ì…ò÷eªÑŒ‰æ2ÕhÆèÔj³¾”ló•ñ{ªÝ+£*rµóh_¦2ʨJŽe¢Ê¨ê|Öú4áÆó±ÙûeTõmVO"šóY¸LRU—ñ>J9ù2Ås½ .^•ïvæ27TuVNXD5ð{Æï˺¾ªäÚãøýñ7û‘>þþ—×ÌíäV\\]å5s/rÍW+ŠXÙaó}5™­êŠ<;¶!.1뉞â¼7>ï´¹1Ëï^¬¾nkK–¯u[Å×mMIûÕÞÄruUŠv›Þl¸#˜¸ªlI®E:3¸n6n®cŠœ\åd«ö"¹Ú(uE¬®Â Á–®ˆµH»=k‘ìžQ°rµÑî’\Otæç –g=Q$J³8o$ו¥h½ündÿxÖ"Ýä$•ž¼DòM®šC2Ö¼±6Ç¦Ñ ÚíÏ*Å‹vJž¹ØUÒ6f±éÀÎCç­L¤]ô½8odw•´?„ÕF‘…ë‰Ê’Ì`Љs·ßlàœ‘¾©£Ë D1bÌ¢ä*§ó†2Òn;b+ÓdzR)rpµQªŠ(댵H‚ ¬K2k*Ú %ƒíkX¢µ`å*§Ö$ûdzRIÐÖ¹<å³/Úé<°)ØA¯µýN2N(€Éy¸ßÈÒÛ#á‚ÉRçý_¤—9.C²<ë˜Ø›¢=؈ƒ,`ߊ^@y I®JEk Øb ÖO ÚOàÉX¸j4In<—¢=f<é½pó(‘éY?uÞPD¢p3ÖA–gýT¤­ ad¤`í„Ì`¯Š¾Ž) É Ö&yvš¹ (³™ZW.žCÑ^fÍŽM ÊIw_6~ÑEkEËdzRéâàKœWS´îÚË:b•ÓS–ýæi “E±cY8°sýT-’é㫜t =Ö:Wš¤mÌÕ öHbn/³‚^þv»ºìi®¢­TʾâþfgRĨì妭ú)(^{‘“$ñ°O‘«ºlçb-REiõ@/cmEm#ódz",rpc+ÉaI²sEØh’¾",)6®ËM²‚e)¾•ÏÌü¨™$¹"ŒÉWuÕÉ׈\Õ%h?pyþÀEër½|vdùxÖ|EÚヵPh>ÒW„-E¬Ī.Áúñ¬ÛŠ´Óy³Xt  ‰wö܃‹öJpg¬Ç,\·å! ùQsJrEØjŠ™ï¬h'ì¶çðж1VyÜx‰´VÜGV°E;(»aÇÚ°g#´W°‚–Šعñ,’™ÜŠï*ik¾xÂÚ h󴊬àêŠÖ™ï‰ø‘¬M1sã9$¹ñžŠ6dÚ<%/vP¬ž‹\ܘ™7 ¹í‘ÔFho¤’‘É‚Xz…¥oÂÝ—¾µ"Ý|éÜhÒ˜ºžl†2+¾W„½gº iT<öŠí™®KS¿Só½\èï#ÛWÅõ³øT¿Ë1•]‡4*"2‘V¹[¨p¦­ÿŠþªè^¤»/½[?ãJï!Í¥{X¬lû;'Œ&¢Q‘¯v¤±t/£7‹æÒ=$®*ûö£igz.iL½ÎH,VÆÒ;,í~*Ò×&ÌDÁc‹ð‰ÆÔøŒ¥mÂ\:×0ö¥‡uKwß¾ íB¯,ÍŠõ¼žD×B÷,ÍãÅóI¸Ñ»ici#ϧhô/¦ïc¯6£ Ïw&+wÚúËhL}Ï<ߢ¹4Kó”+]†ôX´1…ݦ47ÏwáNï$ó=Û>éNÛx2šK'y¾ g÷”FÅ鳯£jc{öÑ8Ÿ‹•ÆQÆÒŠ‚DsåD¯.œy>ŸÒEÛ\/¢±´ååÕ¤íaÚYÚZ†4úû‚¥áʾ4ÖÚCt÷ÏëM»Ó{jã÷4ÜkFcê|é¸DãzP8«ìÛ÷-]|û•´}iîÜÒè/˜­\饱4¾,Ü#ûÒܱ…“/ýÝx&Í¥¿wúÑ`§2–¶qi¯0—Þ"]×c&J si/¯WÑØŸLœ¾}ò³¾/-æÒÜê[Á‰^UÑ(-'mÇ¥÷”Ñßré°rv/iŒ§PZP¹ù給h‹‰Š®¾ô¸,íL·-]°?–Ç›Wºwi.F{Wîî­és½æÒêí1hï^\:xJ§né…¥»VLºÐžœvyúö§?RöíÏ{a´—†Äce,=¶p%åþ}i¶0öG+Vº=ñ áØ‚¦¢MÒ°4T¹ÑŒt ÆÒëŠð­h\˜X®\é¶´ýóz—ÆÒN&š+gÚÂߢ±ô°!±^¹ÒkKW_šž“¶/m¯YšKÓmê’2Î.}WÆþ@bw0sóŽ­=E¯ì^ÒsÑ牑2ö‡=ISÆýÊ™S±µ Ý“4–>¿<—6~¯ÍQSnnYK;¹´_Ï3ÚöðÀàêžÒ<váˆæc¤c» Ûçu+ý¤¼|é¿Ïh\ïzöÔÁÛ8ŒPîôÒÝ}îׄ1Þcâ½põh‚²¥±¿{A{öígÖÆþàx"ã‘Îþ*ã¹ŽŠ Áœª”1µN×›nk•y<ºÝ¯+'ºWéáÛ¯¬]ÜKדޥùÊ­`ã•èæÛÛñÆß›v?.Œó­ó|®ôÞÚߣ„1žaÅåB*ñ̹°Om|žïÑé{ôƒ²o¿“pe€±òz¢!¶ôt3²3¸ÒÖ^¢Ñž¢i”ízqn¬ª4£+ìÆRºÐ³Jãz<  \è³ôT÷“xð íÛ[{Œ.ߣ3”=ú"Mi,ͨȡŒèæ«·q¿8Æ;· ïñ`\Ú·ak”×÷h eü=Tlfô¯ç‰¶ýûèeÿ<ëo¿«6ö'*†óx.{Þ'œ¿G('z&é„ÏÛ ?Ñ!S8ûñÜ#š!yÜëmωhaœï“ýEôø-¢lçû´+ÊxßÀèeß¾oéæÑ#chÆóFF‡(gº,iF{ ÚFçól¸Þ7º$éäÑ%m siçYƒ“µ1Þ›÷#ÑÓ·ßCã½Éëµ°G—”*ÍhD›ã}âäùóqZ£´oo÷«ÑŒ¦A4вG§Ì%}{»ŸÆïE´0¢!¢Üè=£_Ã|œÏ ç«r£sÖNtÒO®„èÐhœÏŒnÆxðTÜÍÚØç³r¡ÏõF÷c+#X6ãÁ…ñ€2~oA´l4úó—ûÒ.ôèÒ8Ÿ®çÊ•ÎM;Ñ} s"—­qíÚ‰>ш~ZÇ[8ÑkK³=t„öè›<¥ÑߟÙUYã½3Wihãó6"š£1ÀuéF¥h[£§Œö´³ÿžàD·!ö´-#IºÒkI3º§ šW¸Ñ5Iã~b#z%Ø£i_>ã)åJŸñ”0ÚÓf{.ôéo…Ôì~YÏë6Û«p¦[’Æxà,ýÍÚÕ½¤1^D#º‚Ò‰¶²шöÈã¹hD¯džO™îKÑ ŒþFôÑ)þ3®ôØÚ‰ÞI:ãï ô‡Â™YÑÇK˜óÉNt˜g¢×¦m {ôØJÒŒVC4 2öDzçňÞÊ ãáN.þ<ó|nnEººû”Æùxæ+ui»<Ñk¹jWºLiD‹”„R/·9ßÌ2p“6¢Óx½.t×f´[FiáäÞÒèKÁýšp¦ÇF4aA)Peü=¬@FtX©O Wº/iô×¥¢´ˆp¡×F\x½ŽÆùXP6T9Ó»s¾£õ”­SúS:ä2úë‚èAåJÛõDû{x©Ûo•ñx4¢y ûáF[YáD÷*ëu™D#º¨,/mÜi¯ gÚŠñD3ZqáxG³=l{Þ­Ü虵½ºtª4ÛK°m_ÙÝf´ö± ŠÆõ5”mˆ2¢Âˆ^«¼Þ ÚÆƒÑÍ··ûialÏþ ãõÚ0Þn´Â™žY×ûÊó1Ç5L¤ =ª4¢YkÇýš0þÞÀýÖåº=ºÒ2¸¥ñ{±_9ѵH#®"õBxúçYé”hÜÔ‰Ò)ÂþyVú"šÑ˜(7*Œh´jъʸÔÒ:Ñèïñ¿(ãz_­Æ…´}^Cy_aφ5úÁ|Þg^Ú™¶Ò=Ѹ´„Ò#¾½•ž‰ftf¶ñ¨r¥Yé6£-‘ô¡Üé´­½!ÚTÑu¸ð*ã~€é7ÂèA”+m¥‰¢‹ÿ½Ù„§ÿÞb×#a\Y°\ãÕf/¾¥±?J×Dóû¢?ÆxçÜx5íA[é˜hôg,O®œÜS÷£ˆ^æó({°S´«{Kãzu, m´wöWшžlí%ÚæcÚƒÕ*û‘f¤ÊÍ}î§”ýóÎý”pÅùˆ-åJ[i¢ho”™Uöíç–¶÷Ýöâ,kš¥Ån'ß¾íJÏ)Üy=c‘se;žÝjÜ)ÛóL{ñ]¥Ñßuö7•KíáLÉÒ¸^ud–c¼ÃL"åD[{‰Æx¶[ô²t¢[“f4.ÒK” mí!ç{góéFÁ׫ެ/åJ[{‰Æxƒ HÊþ}¼tÜeŒGÏÄMmœ¯(1-Ýèó>Wכ޴aÜO`â±2Æ,/ŒçÁ}¢=Þ®mÌþJ¸Òç~M˜ç Ç[Â…¶ëUôôÏ[IzøçYþÑÌÒÖÞ™Ÿ¤œéó>Vç3””+=š4úãa¹7Ò¾ýêÒˆ¾fÒ’pÆïÉ^Zï6úËRàʉf)¾ws>ž)ãx3ÍI×ËQ¼4ßmŒ‡XŠ^9Ó½HãyÓ`óqp¼!Üè®þEé…q½C4¶tv/i¼ÏH;S®ô™×3&& ¯EÛý–0>ù€Âxt2¦4Ž×d{N´í¯hœoLmÆù†¤3éDÛþжùšŒþVÆxé~ÒÖfCëÙË+IãxÍî¥%ß8^™÷“¶þ$×ÃÉö(Œ¿‡<aŒgæÀx,šÇ ¥×…»žÇ¢q>Mdà('ú̇Æó\æI)'ºti/d† 'ÿ¼•£‹—>™¥é„+}îׄq>0=J9ÑV:0ÏCò8”=“4î’Í„íŽóIÙ·Ú,Ë’Tfô<’¨„1Y¬ èš…¹žïØJûE£¿[ÈÊÆñ\H­Q¶þb!eM˜Çí]¿¥³•ñ{¦&Ìãö®ìÛŸö.Œþr¡½+ûö#I£¿dZ”0Æ# yÊÎI;¹§töíYú5Ø·ŸUíi£ôw0ç;[éOaû½Ì¥^îÓß ã}æ.(ý)\é3^Æxe—§´ìeœg>Õ’ÆùÈ*aŒW6òr”ñyÝKÏÞÆý:3¡”ñ{û<°^ôøÜï ã}Õæù&\èó<^˜¥!&J W÷”æþFÞ†r£ÏõL¸úö{hãû¢´½0ΧÄ5åó÷Né‰:¥íyܱµwaß¾/i;žÇkh×§´E´µ§Œã½6}îç…g£Ïû,åôÒv>E³´DñÒÅÁ¾ýNÒßׂa¤3m¥{£Qš"!çM¸nºWíL[ÍãÝìy²pöÏÛ]¿‡çs4Jcœ†U˜yUÇÖÞ„ËJ‹X{ˆæñEEÛxH¸ÒÖßFwl?ÑŸ 'Ú®ÇÑ(=‘ç!\›{iãóØ_D?¥SöÏÇÛfÊ<^Ûîg”}û^¥QZåÌ7ËÚ¾ýZÂ×ËSšÅKkß.´•&¶û–vQ¶ûÍš­¦„t£Yš;8¹·ôtOÚÅ=¥Ñž˜¦\é½¥Qš'ÛÂ/å:è³^DØ®çÇ­hW÷–Fi–Œ¼aô÷Ù&†I[{È ãÕÛÅÛòƄפm¼)œh믢Q%³¿Š“^I;¹§4Kû ´'áJ÷$þ<#oE¹ÒmK£´Mž(5.ìÛ¯&ÍÒIÈS.tÂÙÏ×…ëY4û£è¹hëo„+mýI4úûÂþD¸Ñyh'ÚÆSѸž—„ûÁhï3ŸniwÚŽ·p¦g–Æõ¢°¿ˆÆx¬Œ‡¢“ÛÎwáäÞ ó=ŽíyA4J#•‚ë™0~OÅó„hœ…ã%aß¾-i\Ï ò\„;Žò …y¼·"\ݽhã÷ò|fi-ä *7º'éìÛ.ñVA^Šr¡[‰Î\/Xqc)éÓ_ãzÌ<3aœÏy)Ê•>ÇK˜ç+òœ„»Þ¹SÆçm›$lï[*lIzLéâÛ¯-ëeE^”r¡ó”fi2ä­3æýø¼ïUnôyÞ!¼Üçz&ŒãQ1žF‹Ò•¶ö󱢿QntÒÍ·ŸS;Ó»Hã|­6qZçcEž‹0î—ª ¬¤}û–¥q½eÞ\ðôã‰<)e|ú+aÜ/câ„t£k’Æxº"oE9Ѷ?£y¼‘§"Œóµ"oI¥1ÏijªóÅ +ã|fÞ›r¥×–ÆùÜ,xQºÐ»Jã|gÞš0úkæ­OLœWFÛW$ÌÒ€lÂv¼šÓ(Û|»cÛ_Ñ8^Í,Hgú\o…q<›=X‘Æöl¯Ñ¸ž6¶GáD[{ŒÆýð™5¤q>6똣™·U™Ç%Œóå,¬Úv<;òü„ÑŸž`‰©]é3Æxµ#ïFýeg{Æç±¿‹Fyæ5íDï,ó¥#oO8¹­=ÞnÜß½áz/lí…yXÂ8_zÇõ<çKG^ž0ò²”ñ}®·ÑŸ‡<åD÷)Íã¼+a¶÷hœ/}ázûuæYW>¯ež•0JãäQ('ÚÆcÑ äÅ(Ûïì£q¿5!Œç%ê)£=äÍ £¿ÈkÆx ÁåÒ…®]˜ëµ*óž„Ñ^‡ÕSTF{Eð¼2ú‹Áó)º-º-iÜ kØÊÅ}æÓ*ÚÎ×èŒïÓÑ¢S§ÛμßÈ£F;W#Œë󤄛û̇ÆxƒyOÂ(ýE³=,ô§·9_£NäMãyÖDŠ0~Ïäõ"ã©SuqKã~è̇ÒŽ·4Ž'óŽ„ñuØ”q=çë]áé¶x±h”ÿë¶ÎN™å“О„«›ñç·Qžs¤'¾ü2Ë—àõeðôò#Õã§oãx ¶‡hœO|ý(Œö8x<£YÞåi„q<^ï³¼ÊòßónÆe¾žfù$”F8â3£Yþ‚ñòÑ(ÿÇò(Â,ÂòÑø=¯·ƒ}<3 ⠣џ̊øÔh–w©o|Çk2þ?º>^Ò,Ÿ2xûië£}¼3ϽÜÿñ&_ÿ ãz?·ÇÿÞÆùèå3¢Yž"!~5åç¼üÅm/ÿµ âO£Qžsüžh”ßYŒÿFy÷Åøþh~_{Ò£Œò)ËêL*ãx­‰þô¶—W_ ýa4Ž×b¼}4Ž×Nv¿&Œãåå!¢ñ{·½ÃPFù _ý^þ!åA¶½×QNîÝ…¹<ã”°ëUôr3Þô6Ƴ›í!å3wõøÑÛ¸ŸÙ ýa4Êïl¼ÞF{ÞÃã]oc<»y>ßf<Æñ¬Ò,O±<þó6ïòxÏÛˆ÷òÑŒgù€è§<ÀHÒˆL<ÞÑŒ÷/ˆÇ½\·Ç÷ÄD#>)á|f|~õøÊÛˆHˆ?fyƒ†x®h,O ñ"шÿbù‚`–göòˆoHÝÆ;Âü½Ãão#* ÄD³<ÄDñð¸^tÄ‹ Å#oááñ·ˆGžÎUãŽxOaÄ£wÌq®þy«J£¿èñdÑŒÿEy‡àÎòB¨Ã­ŒþuÜ•ïÏù¯1¾8¸y<4Ûs4ÚsG<¹0âó΋Ã!ÍxÞaã©àêñÕ˜ (ÌýòÂïrfž0¿/f¢ W·Mí•ñ°Â8ž£!ñ6Ë›·4ÚóèŸqñÍñ—ÂŒç툊Æõ` ~Rýå@ü¤pòí÷æó›©8¥ù}×q÷#œñ'Œû1Îùf<íFNÌþf·߈óY˜ñ‹Ù—÷ßF<êÊX¾t›ËÓOQpõý‰ø5aô'ñ¤ÂŒÄ|@a,_MˆÿÆò÷Äã廌Æòºó¼ssñÌñÒÆò9Æë w§ãòÑÛÍãíf—fz»ùö½J#ž)c¾”0–ÿ"g š×Óã:¤g§ÏxG˜ßóÝ„[£G•Æò|äx(§Ç3úY^Y0ŸGxx|UZÒØŸŒÇ®OU–4Ú3㯂=‡ñVÂü¾Åî·…/…ø:a~_ÄÓ 3>óí„ßeub”Ï5l¼ÌxáãóbJ#¾ç”?éÒ¯N{ðÍå`óÅ”²ìÅntæ’ûdó…~Ö?ýø¤ÿÝq öÒ¬ág$2žt…‹ùö>9Ò´„UÿÛóQs*Ú©ÐP¸/23Õa¯HV­oÙ.ÚIÔðŽ6‰xƒiÜ™ÈUíöœÅDoòáf³LaAëÚ<"°y"DVLüç©ßM®¤k–£È)Q,0i'ß÷DZwêiö0ÌÓ$Þ9˜<Š)‘‚Ÿy‚‘´Utv’³äh¤=â­+X«`mÉ’…‘ÖQ0ÿäæÂ¾…ù‘ø Ö V~Ô(Š™¹+¶rêâDÊß² î‚“\U±3;¥nE{dÂd•›'ÎÂûÀHBðm²`ûVDbÏÆJ¶@{úânŠÈ]Á[à›¼Áß(ÙipvFS ´Û‡¡› wvÅ® ´ËKÞd%pŒ´Ûð2¹‘y/]ÒÒF‰ÛH¤ÐL¬( ´ò›Må"«_ï…ÕÈ6 Ø(MiÃ陑ï¦ÈTµF _3û2ødåc”­¡fVݾý\ ?Õcl„± 4¡ª•0–!'ÄŒ3&Ææs#Ì>½ƒ0¿bp„±Œ:ašpó˜™R¥±ŒUㄳÇĤ.¼ðšíxda¾¦3/i,sN¨)Œ˜V… lx_¬\<ÆÅ¾o4–)fT= æ4•ã‘¥± 5£*©ð𘘕¥± “¯Ùƒ¹Œ$ó5º0ct,pOù‰‘±ejÑXÆÊ™`¾&˯)…ç {•Æù–1MBí-o,£ˆF{c MpaÌ@áñŠÆþÄ|VåêIËÔc#Œeêg¾qÎÜ_Ó„Ñ^C#üÄÔØ2ŽèŽß»¼ªümÄ|±*‘0ú+VíFŒB­^Õþ6b2ÎKÂÜ[±=G4bR*b2n#=çU=„ÑVLCFȪ2Á¬º}lÓ£§ÇÐx•íˈ)© U£›ÇÐØ4Øh\¸”Ÿ˜™¹…'c€ZFÕÛè—âUŽo#F¬¡*pñš„9Ì­yÕáÛÛóxEó÷ &C×ÓÖ±¿ns~nU¯£{¥Ïù*ŒöÞx¼¢±Œ»-,ƒ¹Íiø'ÆÆ~O4úKÆØ#Æ gT¼Íüc;ÞÑØŸ½<Óâ/#æ­óxÞö˜Æà#æ£ÛóZeÄtL ÎŒy` Žðpsšú페áUo#®ó|NsSŠpb‚<;åé16¶L%10çÉb“F|ò³4c\Puä¶W½Ë^$íiT]‰Æù8 ªBEw|^Å4»èì196í.1ˆÀfU³Œx]e\Æðªq·Ó““„¹LÊct„ã3Q5"º{LŽU¸ÍeL“ÌiÌæ)ñÈØ¨ZñôDL–0Æ«“Ugn7ÁI˜ñÒ̘FÍÄôgß~%a©›û;ףɪOÑŒ©©¨Jþp6L¿íýÕ|ª¶ÜFÌ ¦YD³j«Çôãz1'ªÒE3hÚýHpâxøå]¥q¾1¦çvò˜°‰˜a´§¹Pu#ºxÌÏÏ/o/ÓÌ¢£Ä aŒ'ª²á©C×£eáÍÑCºl½œ2bª–M“QFº£óxD3Æ¢úö·Ó#!ÜQ.SP§4–á"f ºã~´`^”2ÚÓñ’Æ2ÎnydѬªjõ¦4®ÃÊ7)£½bæŽ2btPÚ'š~­8I•F0,&BÇkX^h4c&ÏìB;ÞÑXÆ"?ʸ^ ËÛW®°²töeüö}oç¯eø§?F Ò´b&Ê\ænoR•± yZÑ—h.#)˜×¡<±½å9+c¼º¬hröeègç£0— g» c™L²eÀÑ^:Ù\,å1ès¾[F•}G²5K™ƒUI¥K²¢©™¢ßÂŒºÐÌ6Ìh,Ⱥ£R%+h¦è>¬YdU’7ÒNô—>蹨h`«’¬†b+ô‡~;3Kîd*¹Y ÕMÒÿ¡† _¢F`E“ ë†).V4Ùìà8Š~±ž<Ù3ïeä£`ÍýbÍJ*Aÿ5x²'úÅšQ‚Þ‚¾cyÒ%¢e5Bf3k¥v—ôhÅAyY¾>•T™~)gx¤ k¥š)ÖJ.é•6ˆ}Éå• e¼t¡ZF°‚Ã7+šXšþÐ/å÷çHx«eï®[¨ÍD}j–2Q³4‘5éÿ*^ xWŠgú‹Ô…öÀ™¨ïB8¡ «¡zSlüQž&YÁeŠ~9^¨ làhŠþêw¡2AÐkx "2½âU/¹(l£ÊN°ÛQiÓpâd¹}˜íŽ“9@¿½Ìôª3Nn‰ÑÐú®"dm“ú)¼jWà4Iß±hxœi¬þânÙÀ¶ýö’´íëSW&È*¬2ë»|b̬_Ÿú®LÀ ùì_ŸFÚ™hþê/ÁÎ%YÁ½'³áYß%Èú®cŠ>€O‰„‹—^;„PVÁze~"ša£NRÕ_k)NVm“ì੊>D¿‘W¼»î Þ#Óo>¡ö>³ƒ£)ú0»Ÿ”M±±r¬Éö¥XY“¶š¤‘G²€< Qu6#Áäe—àÆ0C²“"«ÝÚRô—?g!Ã"“µpkJVð,E 3œ’™H¨£4p7IÖàí£è ™â{31ž,ˆ"©a0¯{¹1&9Šä¦iGܽËfYÿľ¼nt›ÒXDÌÞíÊF÷­]hî­×X¤_ 3š0~ÊŽÞ …™Ê¾o9…YäDZ-ŒýÉš½¢HÏç/aü{Û³í„Y$È‘(\è3¥Ù›åÁÊ(BóÕêÊX$ˆ<Ò(¢«˜Í²1^+²W•=M»ÒkK³ ÙÅÊ(D‘§0©×†ùGØè1¥1±ZYûÓüN yF‘"Ѝ”£Hñ¾/S.ô]ä*Œ"šÊë‰p¥G•Æx­<Ÿ„;í׺lÁ1{XyÐÓ´ñ÷øŽUQDÙ‡4ÇëŠä¦dü<žoÙ(ÒS®t›Ò-Š4ï=¦r§mIs<ò|Žßç.òTÆïã«!•Kî­"Nžï¯c‘tC¶¼²Ñ~½öýÝ8_d£ˆ¶ùjXéJ¯*ñÚP$®ÜéÓ¤YÄÙp½4ã¼’ñûðz™ñŠj/eŒ×Ö1„¦]賤?E´ghã÷¸dc<7dÏ*wziŒç[íW´±?‘=­ŒßEœÂ(bºE¸Uû{ãáµÅxÞª–Œý}üˆr¡—Ic<÷‚P/áß‹|…YÄŠltaŒWfK+zí^Ò¯,2ÆxEµ¹´Ñ(ìû«[ÄÖ½îQD¼—6~_ c¼^oíN÷%]£ÙL;þ½ûvYóíMKØÚ¶#ÌÞ·H¹-m£=¸Q¸Ð>Þ³99Þ…+í×›lÌ·ý`>ËæxŽ3µq¼¢#<"$ç¾ÏÆû‚½q½Æþ<˜O…}ž‚ÿl<¿1—FHNES„l<Or§mJã~öT\…Þ[OÃ|šç±ãiUÒø{Â’Ì^2×~?•ç­[d[´KxI3D¨c¾ÍÆóÒ2”G„(ùxt´qx¿wb>ÌÆõúL\/…#dikã~óxoi£Í¤q½>áRÆßsp?)\éÙ¥k„,­¢ÝÂKøå&Ò âõB¸Ò~<²"t½´=L½×KÅõPØhoÖÞÜhR)]éY¤Ç¤ïó°2~ßîÏ£ÂÁ)9RލV¥Q¤_ Ç[¸Ð<ž¯Ñ;¼ ÏF\˜Ï…;}¶p‰ñ8£­T²Ñ~?.ŒãÅù&!qmá} p¥ý~,›!„ ÷Â8^œO²ç¦ý~]¸Ó÷{©ð8ôéÚø{ÞwgÛ¤WÕnôÒ}Ñl(–ì¿oç|”²oÛÖ6z›v¡O•þ„$–.·ŽìŠ×Æï)ìÖ¡Œ´Žù@¿¯ß8KúžÂ iô”e}}޶¯>Ð(!\úÊF³ÍÙk„ö‰feƒÞM/jñ…û¤{Óná#¿î…Ê‘ìþbTÚèû=Q!µG•+½º0¿—x7£!û±îuSÒ¾ï3„B‰F¿ÊF{c/áÞÒ¸_cšr i\/™w£ìÇ ã~Îp?¡Üioj—ÍËê÷3ÊØh–ª\躥q=eú0î÷ ‰ ÊžK÷{ly®Üé½…#Ä—­Ë• í-Ö²…¬VíJû|–ë¥Æ«p£ïza\/Ù¨\¹‡—4®—a•Æþ@Nr i†ÌÎhªø×K¦ö(7Ú¦4Cj‘G¢Üé9¥1Ÿ!äUº„—4æ;LÌÒ•Uxr¾34œUn´ïl̇ƒó•p§}>ÊÆó›™+íÍ… }ïG„1Þ÷­]ioŽ˜ùpp¾nôÜÒxžž£Œç…Ìe£ÙBó5ž'FÇxÆßë!ÌÒ…6“Æó^ŒJWšãá5Bnçƒ×¬çiL7ÆýÜ@Ö—²Ñlõùz Úï§„+½Š4C†}Ç(#Äþ~ØÒ¸²Õ»2~_¤¥ã}ÆXhÏ)\h¿Þfã}ÇXÂø{9_eãzÈ–ñʶ!ý Yöë•p§wæ÷†ÆT&eü½Ò¬Œë!ó“”+íMD³q¿Ï %åFO“ÆóÀ]8¸µc{o2šç&-)ûþb›zaŒ§‰¦àÊ…öëiv¯´Ï‡ÙOLsRn4ûç¾ÆxbSzåN&ñ4GÏŸf“JfIzhs< É¸0·‡d+óx£ ½2þ¤ óx£Õ¼0ž÷˜˜¤<èY´q¼‘(Œùææ¯,iïÅñ,Ühî¯×8ÞLmRöý±|á½2Ž72¸¤±}ÇýÚëÆñp“㺶Ÿ/Ë0ŸÚç«lÌ7‹MŸ… íϓ٘oRq”+íû3MG 7Úš4®W‹MØ…;½–4žç›© }×à ã~†yRʃnC»Ð<ž¯q¿²Ø=÷+7M½ ³IaC»´oÏô(a_oyíó½°ïÏ<a¼O`”²ïÏd3a¼ß<Ÿ„=ÿľ?wÇýp6Bú™D¥ìû{ûįŒ÷¡¹—Žíw‘ÆóÜFVŽ0Bè7Rk”±¿‘²&Œ÷U›ã]Û£‰¶0Cúwì¯d£kŽ÷ñ›ã]8¶÷ñ.\h¿dc¾bZ”2¶GÞ‡0æ«}p=®á%=c{¿ž Çö«Kã{øApåF*ç5æR ãyí DïŽ8”6ºi4y9<ß²1^NÇý”°/¦P)ºïì~x?t›ØíB/m|odî“ð ·­]i;Ò¸Ÿ:ÞÄ@™Ç{¡Éµp /ioäm(wú^Ï„9—£ŒíÙä>›ã‰kÊw¼Ü&}Iûx¹¾ã]9¶[ºÄö{jcûÇó§7æ£k?žÂƒ¾ÏóÊ…¾ß³„Ñ$¢à|R.ô}Þ^±ý)ÚØÞ»Í+špx“yáúÅ&EzLztíØþηÂÛï­ÛŸ!Í&<Ÿ…ݺ´ß¯_÷¥ígŒ‡×hâðíñ'Ží÷^Ñ$ÅfKcû…&ôÙhQp=ö÷‘×÷yN9¶¿ÏsÂÛs¾îôÑØþøûhåNÛ”¶ØÞÇ“pl¿«tí÷Öö󽌗l6i)¾Þ^¸†{ÑÆÏóÂReÌGÕ c¥cûv„¹ž¿3/L9¶¿Ï»Â;¶¿Ï»Ê±ý9Ò Û{7å¾õ"Â#|Ÿ”-|¤Ñ„¥"ïGÙè}¤ÙÄÆnJÝt‹ígÑŽí}¾Êæxá|%lô.Ò%¶ßKxÄx˜OÂFûxÉæx@ÞŠ²Ñ~<²WlŸ·•cûû½CMd˜'&ÌñÂùH8¶&ÍñÂù(»‡}¾6zoiŒ‡ÆùDØè:¥klï÷SÂ>&íï“n¦²µ;ÍãýÓÌsêÌ SŽí}¾ÈÆõ¨5ÜeãzÔx¾ Çö>ž²Ñäª!I¹ÑgK£‰Ò]7´]›´Åö¶µcû1¤Ñ©!¯PM¤òV”+=štÅö<ß…+ݧ´?o]s<$zaæ%õ†¼aÌ yƒÂ˜/šßXHÇöÛ¤glï÷;ÂOÈKÆýJC”°…ý~[¸…—4·/<’ná#Íñpp?-\é}¤1:ò¢” ]—4ÆóÖ”cûû½7™ï£¯ïûa\oîz½%ù¢ó~JØ'š°)ã~¶s¾ná#Í&lÈ;UŽí×’ÆóNox®á#ݱ?‘ç"ŒëI÷`,e\OîÀ¬Ú±ýîÒ¸žtäI)cs¾zÍ÷Í7.ÒîEzc!oE¹Ò¾?³ñ¼Ü‘§"Œù¢#oIóAߨÂø{î'³q½`Þ›r¥÷‘Æóî}±Ú´ }º4ÆóÖ„ý}pgÞšr£‡6ž‡ñaGÚÿãx|]ø>Å ÷{Ù˜ y"ʾ¿Ío¬”×¢ýz+\i¿ŸÏF“QãxÍÆñ6ŽÇloãxÆ¿·ñ<•ÝñïÜdã~“y\˜ïïÂä©íãe ÏOÏ££â}ÉãÆ¼™Î¼,eÿ{òn„ñ>l`< c¾gž•r£·Iãx1ïJÏy{Â=|Ç£r§Ï’ÆõšyX˜ïzŸ¥ÝéeÒ%~Þ®Âñ>…õÒøyȳÆ|‹`eܯ1ïJ¹Ñw¼ ã}ä]s¤q=ež•° z-i¼šÈ£P®toÒx_ˆà+i?_&æca¼œÈ‹HfHŸ~aUFà‰¼9eü{ÈkÆýÐDŒ0·é '”q½cÞ“rü{gKã}Ý ~mÒm…v¡mKãz4ýÁOóÕô…QÙ\Ozíçk6®77ø¹iWÚ¦4÷7ò(„¹¿‘W#Œ÷íÌ“ÆóÈô…Ïʘ¯˜÷¤\éÙ¥[£·Ic¢¿Uv¼oZÈCÞaÿ{³q¿v»ãi¼/BßEå>Gï ™w$Œù|yðƒ2öÇòà e®ƒ¿'Ï£yÂ8ßv÷÷Ѹ߿½ºšp<ïoßñÊxÞÚÜ_Ùü}¦¿Æ|Ë<“äŠùИ'ðgþû?ªl ýomþŒÎº¨YËôKÞ¯nÏ£s2».?ô× VÑE-±qã53 ·bÑ“9Ñ iY’é¯ÙX’éaÖxdú%Ö>]jú3ìØ‡ìËêL¿ùÃ"YAµcý~}b´O§Ù‡~ZG×åD(2Ô¬½l8%Í£“Ñ‘õ™~95TƒfúÅò…IVr”LñÚ‰Î77önÀ‰èËž®‰þˆÃ ŠÌÎ}x'6n¼–báÆ÷ÞáeÁáþ*è‡;ú*'úá¾ñCÑ7Âýp#zCÐ'¼œR£§».gú``­@&º[èüöÝ€±Ž?Ó—a TeVnì­7† WègúP+:ƒ=DÏm¬þ͌ţ)ú«‰Ë£X¸ñ±L–¥!žSÐJ^,è· ìœiÜØû1$úç Ù¢ÛÔCt?îè–è·J•6/y£9r ý5øœø%ý!͆Ÿªè/¸¾;›wtÇùAÇ̽SúP™è2é“ÌD]WæàÆìzò°scÏôNôIæžÖ’è­Šõü/ù¹ë¦iÅÅ=‹8qrcO"Nô)hq*HDZöHLD'ቌç‡ì©ÎÞ¹™>ɰ‡m¦O# Õ)™>ÜlÇ­ˆžŸXyÿ’ 6»\&ú`¸©ƒU=]ýÂ+è·»c&ú 9×ãfúëJöƒ}É—Ñ\«›é¯7VÂgúì7ïsZ¦¿dO×LÿÄ®­™è¼Êšè·¦\Ÿû’ñ\›é7Ÿ\››é¯&ÙÓ5½d÷Üí_ôÇ®ª}8ºOÌâ‡èr‰§™þÂè´È~è¯ËNØLÿXv×¢ÅÂ×ÈÜx‘y 9O‰è½‰>¥™¾ÈŽkL3ýÖAC&z«nä/%"^´”ø—^#ž¶ Ém2˳oû̈“}Œø×Ò~ÆÃþ2â KC|K6â/KÿÄ·>F|`éø{²?í1› OÆëry¡0âo Úw ³½äˆxÊ×Û{üJvíG•®±½ïïlÄ ´ÿKŽxK.ïF|oÁòaÄS´çF|)—× û”Û_Ž-í“~åòµähV±r}â÷#¹nÄ£e#¾½µˆÿ{Íömø|—Ìø¶Êå3ˆGf{²}Y2?oUÔ)ã|c{3a´çA”2âÁQÇ¥\cûu¤?íÁ¦rÄ¿³ý–0Ú Ç@ÙÂKç3?/ ã|fû¦ä¸ÞŽ‚ò­lÄ/´_F|÷àþÌÆùÌöP¸ž²=’0®§ü¼›×ÓåÂleoðípaRfû&|¾Æõ”Ÿo…<<ç"Û~µ/[ñìÈ¡WFû ~Þfûž…x±lÄçß> [ñσã)›í›N”ßÿt´gœ%Ê¥_c>åçKa´/šóM6ÚLއļüü(Ìö?<ž¯Y¾íi„q¿3ñyGó%Û»³½ >Ï ³½Ú?$×_íWö‘F<:?ï #^ŸíQ„-¶Mío>o ãyæ¾)¯Òl¿Ñ£üø§K´‡áñÎÆõj!þ_˜íWf”#¾Æõ辋™ÒŸö"ådãƒÌò¸×¸_\ø¼+Œë?ÿ s£ýŽ0Ú °}†0âÙoùw“Æþfû‹d–¿ÝöfÒlïÐð÷d£½ÝFü¿0ö÷F|¿0ö÷îX¾þšåW·ýÃÒl_±P~˜Íö&Ëß²±¿7âí…ÙÞ¡`ù[6Æ;ÛCc¿±ÌfyÏmßÐ4ö7Û?Ø~.i¶¨Qþòší'ÐÞDíOn{ˆ%:ö)?yŒùþàó¾0æ£3?å!ÙcEùÇOÚ,,ÎÆ|ÿ.ŒëñÙQžñšñýh_ Ü#þtiÄO°}€0ãïy¼_óes+ Ë/³?SÊ›²Ùž€çs6â_ Ïçl”§Ä #~¥ÊS^7Æ_‹åá¯QþÍöˆäòa¶GX¾™x‡û¾gI#þ£L”?¾Žøí²°¼?ññň÷)ˆWFyyA¼º0Û7,”'e#>°lœ¯¯ ãÕÊÁòûl¶×@ûaÄ/Ô‚òžlÄ/²ý€0â]*âÍ…¿Žöˆ/¬5–ßþp,o½ÞGñ&l Œø¬ÚbyíkćÔËs_ã|®˧²?íîû¤d¶ß»®&óùÛmKã|®†åYÙŒÏ7¿ #Þ¤"žXñáß¶*¼¢½ÁÄò£lÄïÕåOÙˆ·ªˆ×FüuE¼¶p‹ø.Ï|xŒæ9ÓÙ“ñÒŒÇ^Ÿ¿× âéýïÉFüZãñÌÆ|ÔÐÞE¸Fü;—'þôˆö†åÃÙŒïXÞ™ø§ûƒ›4ãÉ'–f3Þ~}–ë=Fü ÖáfãG›÷TF¼ ã×…Ù>ñ͘O»ç”+#Þ£2ã§+–¯¿îœOïÄÜ¥1ŸbbWF¼RGûaÆ{{Ε2ã·ý?TF|gÇêšäˆ?ëh? ÌxëåýÙŒ?ÇÊ.a\:â/…q=è O6®÷ÆI3Þ{ayþëñïX&ŒøâŽøáñá¾¼4ñx\×(Œx(C<~rÄ+Ç[6ã•9e3žñ±Âø}îZÂ#x!ä4*#þŒ«þ^׸ÞÞwK×[¼8Tæï‹öÂ=â›g“æï‹øzaþ¾É;~_¬ŠæïƒùD¸GüòÝ_Âø}ða@™ñ¸ˆgOŽxíxDaÆ{Θrøcß_Ù5~ÞšÒå÷xääñ»~ã¬Ìßí„?ñÆ÷}p‰xâ{=M/õÂó÷øbaÆs<¿ŽösñäÂŒ—ž8Ù¸ž ¤2®'\ ˜Ü/8о@xGü­ÿ½ÙxÞ@pe‹xÛiÒ¸ž3Vñ¿÷}®r‹xUï§Œû‘»­Hã~j"þRÏ{wõÛf<-â'…q?8?™í•¿*ŒxÅéž”?6¿'ÌøU¬øf|.Öü #Þmú‡»ìÂxvÆ» #>}ùƒ•2ž‡¾Ýš4ãa?,Œùdaõ§0Îç»{eße¾ÇCçÛÂ#aŒGet㿾ÿCåîSº‡¿w¬2Ê£qãž½P}½ò ¯"=>^Ò(ïn¾žG¿â±²#žñXÊ+â§Ú–ÆþBü•rß+×ð÷[6×ÓÜø¨ïùJy…g‘ÆxÃz;å^]šñcÞ§={D<˜/¬UFùó «2âCÇKv[“®?eGØX¾Ý8Þ²?ñQÛ¤ÿtîùªÜ"Þ©néñM£ wÆ_`=Ÿ2Ê›‘Ó£ŒòzÄ)·ˆÚCšñMvFö'~Éã”1Þ;ÇS6âKã§ŒñÔ}½Z6Ÿg<ÞçHãx™ç˜(ãx![׫»°¥I£¼ñ:ÙlÿÉxeÄ‹`á2Ê›o “F<“uÌ7׋Üxœï+eî?q”-âqî|!Ìø gRf¼Ïòù4ys¼˜/\Pƒ¾ûC¸G<ÎÙÒˆ§ÂzÅìñ2åXeÄÿPÆõ}^•qX~aÈ®ñûÌû(ãz¿üÀeG<Õm2¤/ôý¼>jö:ŒçÁz1eœOÛ¾f3žÛНúSÿý¿)Ôwœ‚1!¡LÅŠ2Ò~ý± íù29{fÇÅÄXž8É»R(³“^«þ]o¬FbÀC¿IÁbÉÄH¬À´ÌAö–ÉòûTÁ?œä}÷”ÙIO„H,䮉“]z­¡ò÷!3¢Ì?î é5˜ùˆß{2Ùg&³³™&‘éSáKtf'×V,äýÊÿ’±Ùr43’(ª)únÌxhLÁÛÿÌAÞÁŸÙȵ2ùâž ™“¼OÕ™þPcÌ"H,ä<™\P…>œ‚•<+³âbŽ¢A¿•34|ÉÜAC[ÀÌIަèI-“3 i-ñ~× ½þ+ÑHofžXI¯ý{É xs9È»Û3Ó3vËä¢ØÑ£óá$ïÉÌNz=W¢_š—½œ˜6Ùº3Ó/=Ã;D ú¤Ê¶š/&Õ¦d™>©òØK>B²af¦ßà ÂÌö[¶ÆËþIÞ¸‚L¤²`gú‹µï:/^[ 4áËôjl‘™é'ÝðN+‰<é¾çdÒ«i<Ìä6d"[Å3ýFkú ÑKc:J4|¸ñŸy ™ƒdCð‡þ=?í¾ËË&›•%úwâÛCf'÷Qô n´¡|ÈeÛóÓ÷ag–È(Š~ñŠ“yñâ÷ÊL#½¹ÔC^ž&¾5gú«f˜d6òìÌŽeX“Mi}ºæ7ÒÌN²aåÃò[ÂÉKÞþóëffeJɬH é™þát± ê´ØD/±“g+úPYf?Ù™oÊ “LÿܼìGó¥ æ×ˆÖ8d£œ‡~cö/Yæ¸&B›}¨,¶ÜJô¡r2îLæ=.¤XdúPY8Ü™>T¾²NSô¡ÂFˆ/ùáíò(ú@bÄÌÊt”b™\ò±-*ú#϶hðЧ¯“ý%‹íöˆµô}úÚÁщ~+¾‘bñ’ËøöDL¢_ÚØ²0³ÿ–’YÈÞ3Y¾¶Âнøƒ­3kðd²°ì›\7þp»+úíÖÞ¨ÉùÉÆWzLVÉœ¤Ç‹&væ®”®èSÁFë¶—ì,¶=aEÐ'ŠûÂÑý"¯À/^2´l{9‘8|j–>ô[ˆƒ¡L=y:vÝC¾üb+ÂL¿5e£ÁL±yÐ&÷¥áÖŸ/ýqø Åm¦OªgaÅóCf •LŸTÏŽÕº}R=hMù²qÇb¥@&v,hb‹˜_ýº"-bh„Q&_*–™g—°§¿æk°ëµ¥3ƒá‚tµz]™:~Ý–4Êø‹ï—l¦f_Ï#="æÆ—ye7£w^Œ1`×;á ¯XFùšû1É3ö‡Ge؈)FLBA×Ha”‘²+\²±L´¢+¤0Ê+ºú·0—-þ4sF¯g•f º’ £L³–éf£ ŸÙ³c”Ø•Ke®w½k—f ºê$׈™áñÈFjõÏ”Ê5Ìe€?]âx`™„0ÇÁ2Àl”2†æu‰2è†ã%ŒýÝеMûŸÁ³£Ì˜16Â(c½õ0]eªmá÷}½X†Êa”™6teFiã2–דe¢ìJ$ì•]{„ÃГ‘<³pïÛŠ4cjüÄÈŽŠÎã‘ŸŽ˜ aÄô }š2b<º/CÈfÊaeWakô¨Òˆ9éèz—Üc‚zueÄ„bN„+bj*–y½f×›ˆ‰ÆõÂj,“zùŽ]_’KÄà +ðŒšS¤q¾á¹\绲<¾Ë„p¾™?)ã|3¯SÆùv߃,aæï][—Æùf~¼”q¾ÙÆg÷×ìÊzclüïÉÆù†eÆ øÄš=#†¦bM6cfÚ}g¦ÜãâÇ3{0† 18ÊŒáñ{Uå1:¾L$÷kˆÁÉæ òõ™Ò¸_û+÷#ÃÏ×ìˆY»y‚M×;ä*#faxרìÆ…[Æ`Ò8Þ¾TÆñFבì17 ËÔ²1ßN_£Œã}cW»páñ¾q°EzFŒÎZÒ14\¦“ã='·Ǜ]Ó¯ï2Eáþ‰É)Ò¸ßAŒN6—VD?+3æ‡Ë²ããõÒÙq¾_/iÄ$Ý/¡[1sËë²'–QT|£U‹>SºEÌNéÂìÊÁ˜å1>¾¿³³S±¿_[Äèx½£rÇïËeÙˆZþfs™uE“e‹žÒ¥q=_o¯ãz¾–9e[Äø˜I׈é9]˜ŸIÓ£Œ˜§å1Ê-b~NŽÂå!¶Ê¸^Üõ&ù1@ɋˌ=¦çHψá¹Ëˆ…3ä_¡•#äŽÙ›1 X奈ûÁí1ÙìŠä'V•FLÞ½p i\oÎÀþx=9ßÏ›QfÌÌÄ2šlĨ"F&{0&óx ‡2Æãñ7çÊxž;Ó‘m´ý|Æõì`< 3FÆ^vg™×õ’F™Dñzdå12w™irÃxç¹2ÊÜJÃþÈfŒŒù2»äú+&æ^/„3ï…2ÊüÓ’Íûq¯gÚÒ³Ò«K7Ĩl¿ßy=y¾Þï{<„³P{lÿºGŒH/Â\æÏ+Êó3²¤Q†Zý‹Döb @õå1#÷~E¸ÿ#¢Œ2ÔëfG™ð·ïxF™aõ{e”A5yÈ,CĠr˜»LO¸ ÆÂ×Xeó~›í§”Q†„eÄÄ4¯gËîñó¦ÏwÂ(#k^ϧŒ2Ñ£±…cfÚÁï›Ý#†âÞ/ £L±û µìŠë§[Ò(ƒí+¶šî/޳ ËÄÌ× (ãçÝïÏ'{°ëeÃ*9eü½ˆQP.³pïw’7—yÞµ2ÆÖÒe¯ˆQð5hÊ=bJ‘F?V¶eOÆx˜—¹+ã|6Œ§äÁùy¼Ê˜olc¾æû¬ë;ß £Œý®-)Ò(CD^qvÇý8c”QÆ;|}€2®'ˆ9Èn,GÌ2®‡ÃWŸ(·ˆ1èK˜e|ŒP#à¿O6c(¼^7»DŒƒ<å1þûdW”¡Œ×ÇvS€•;ʆí} œ2ÊH§çÉgoÆLM‰P¶ˆ¸×Ca–Ñûª·l¶ihhò£Œ‹éß^³¹TÖËü«4®×¸ð+ã~ãÞ¸a~z½kŸïóª0ÆÛò3Êþ¾ÄËä·0¿5¬ëP6ü>Çï÷„k”¡ßç•ä(ó½^UšeèÞ^>;bŒÐ–F÷sÛ×*ã|ÃJl>O¶íV™eèã5»D™÷½ßOæûÞ[fí?ïqÄØ²ÌZeüÇ¿ç(#†ëxéìeÖ?/דã1þÙÑu·ø‡'e”±ÏVF™Fñ2àl>ïõûáàH÷ð=ß’ËPo=º6Ê`‹¯‰UFÐ}ž˜Â¿OÊ=Ü»pßÇ”YFìUÊØ_•ÇûuÃñ¼^C]Y«ËŽ2Áoß÷!Â(DÞ‘rô}ßÌï!×÷~_]½›¯GH¾]ËQ¦‹ñ Ì2Wÿ^–]¹ïýúFWy´¹ÈŽñÎ2Ua”ѳLU]o ó}dÇú+etÅíxߟ<CÐ=oBehh‘Íï‰Q&*\£ ô~oJîQ&‰ï)Â8žæíw³[l2IanïQÉQÆÊ2CáO™Ÿÿ{¯Kt•ö®ÎÉ÷3<Ê•¼‘àŸúgYׯ.¹^uô¯üÃ?~•¯¾ËîKÿæÍ.ÿåëöÞ±ÿïןµÚÿÌßMüöŸá]Åן•”ñ?«ž4÷ë?ƒïö·ùãoþú¿þûß~ýÓ_ůÿ×úüÍß}ÿ_ùß_Þ «|þÇékÆô÷FÿòõþîüׯÿüuŸ¬þã×_þÏÿí/þOü[~Fõ÷†÷gøsÙúºÏÙÿÞR< .~‘ÿòãgüÏ?þ?²°çÿ endstream endobj 60 0 obj << /CreationDate (D:20140122074915) /ModDate (D:20140122074915) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 61 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 63 0 R >> endobj 62 0 obj [/ICCBased 64 0 R] endobj 63 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 64 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 57 0 obj << /Font << /F8 8 0 R /F54 17 0 R /F56 27 0 R >> /XObject << /Im4 48 0 R >> /ProcSet [ /PDF /Text ] >> endobj 67 0 obj << /Length 2482 /Filter /FlateDecode >> stream xÚíZKãÆ¾Ï¯Ö"9£^²›O;ãÃ6â'ž ‡õ8’FC/%ʤ4³“ þí®W?HqÖ/u€(u³«««¾ª®®.éÕõÅ˯‹Y©ÊLg³ëÛY™«<+fYš+mÒÙõzözþç¶[Äóû>Žðü žåõ|¶»|ö›ýb™èh~¿H³y…´uµ‡ÏÕ†ßoz™Yïà£ÂÄóM_3òN=t÷ ]Ì7ò §Òz Æó-3y ÍøZ,ó(Ÿ_CçNÖíW$¸ôhÙþÈ[äO,Þ\ÿåå×i``ŠReQ9‹XýÒÁó\ÿާ„¨-í”e«2ÜPÎ~±4Y6ßü¸`mñà”Ϋ†DCMtÂYJ2¶<ã(Šàë¦Ý.Q`Bõ­'%ul玱¥ÉnåtÞÞåž{ðÑjMu³Xj³á!ÔùDV'ô€nšèù÷QÁËoöŒŒ0)‰ UhãCãß:Ƹ¨ú0ž hÔäúGR4žï€8asÈ¥Ž‚a‹"˜r^÷üÝîqGîtLηüíð„vè^2 AÛV+ñ-9òvÃï-˜0±jÈ¡ªµ_‹ôªÖÈg}‰€IÏCx’ÁöÀ•ö+?´"oX¡XÝ"NK'ÂP¬CgÅÑó~€³1lj[œF†—Ãù¤-¼XÛõ+î÷ì(xÀøñÄn‰¡ ­%}‹X_‚»hC묹ù' ÜŒ¡ù¹láNöÖóG纥I¸>*XÚ©Ÿ ÖYÉ4ŽPãõÎ÷¯[ë;Ù•ìéN6f‘òV½d†kéZ ffl4úmíN´2½þ£—©‘72C„¨â6d¨;<ù‡2èwÌ›2åFLÊ`qøÓ¹*²rœB`ZBàÈ®49¦'˜$æ6‰5N~uàvˆtähÎù:~דÉGfÜûL‘ÄÜ ñ‰Å^ÂuâfÁw™¦Åü:XÒ°ÛÊæQG~‹[¼¶r¶'?0H›óÀ+vS[›Ào-o„'Ö6»åŽ5£4½ã!N0N¾ÐKçp±fÍ%NÑ4²,¯ƒ¬”«a’(,[H{ʼn0gOLfÉu˜ø5Ã/TÝxLuܰ=§¬r©Ã÷x÷ð! É' ³ë¥/ѷܱÛجùKS¡ýÀÏ-ì°y³ë¤±â‰0ˆMutg ·”[lØûPºåHUÌwÝÂè"PÊ%©ó²?Ô"mÃ}otèìÚ@¬[Ú{u`§ª xíõqœÈúÛ‰ö±®‹pbÓv»Ø™ÆlP RüJ†V­sˆÍ;‘`˜ÌgaÔ±tªŠjëoFU6ôèS@ªí±`òÁnƒ.Åewßë\P†©ªÚÃðîÕ cÚ~&¸K[®LG›V’ì‹âÉYÛ£†¶Ât 6-AÇi¢t’Y ¾L|ŽS© œsQ’¬ÛT{n¸è îðªb¿ÍåÒGbã©lÜ’!¤|èjwL×ã§*^YÅ×Ô,W:J) 0™±‰6Œ\|u}ñãE D³x¦áØÏËbfÒ\ey9[í.^¿‰fk„-¢ =én*58¯™}wñ·‹WX¸€çx%A$1ÊÑ,Sen $ÌUl K%¥PU}=å z<fZò’+¾’À2d*—Ùßvb©\ ó‚©F²%ZicV}1eÕ¬tVía§>ÉJgª(]mªŸä B°íÚÓáin¦P:vÄ(•í=22"x%¿Êˆø‘‡V —Ó9HŸ˜¡?*Àç¬ÐrŒî}€2I ‘¨"I¬ÇÐ2¬€3E>¹nf”.ã‘)âä)[üp.˜V¹—ì½pi´TòQñÒy^“3ÿ0II²œ²Üó_×Ä¡ƒÍVö ½‘ `TO±Í‡•?©w=£D“h|‰W>f×> endobj 65 0 obj << /Font << /F8 8 0 R /F54 17 0 R /F64 68 0 R /F11 9 0 R /F10 42 0 R /F14 11 0 R /F51 10 0 R /F56 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 72 0 obj << /Length 1937 /Filter /FlateDecode >> stream xÚÙnÛFðÝ_!ôi…T ——ÈEÑ+hŠ¢HQ}hú°¢(‰±D:"ÇéÏwNr)ÉA`X\îÎÌÎ}ÐÎBø³³b,³|a&ɬ<Þ½¿ ƒ"‹â„ ü5ZA”—¯éìçöîOøÓ£…]xT\ݽ|•Ï $—ÍVÛáâ,l´œ­6³Ì«¹55üïÎ'ø­æ‹$MúÍ|‘å±Yíi#2§ óhipUïöó(7=blÂíwƒçüàé I¯áÿÜË=mÃðg©¼™ñx¸0ëÒ»yG¼uÝ„FlkÞó{ÉgÀ¤ÞÖ ›çö ËŽa€Ï¯a•Gf‹Ð§ù¿«ß@ƒ kƒ"ÍX'xRÝ.…@ˆ‹˜TõûO°Î…£öüÀ„qÇþóEšç¬µ8MïjW—4U¾rpCCÄZh"ä¾EIÚtrèæ‹(ÍÌ['/¾šÛ(5ÃýlIjé’ëp¼76¹y‡÷+G`L_)«ã ,Ç­‘µ86rÀ|Ë¡“¤åèOê¤ê@ˆŠ Ïsfàõ@AT2u%šCSTŒø¤·×"9¤ûÄxo_Ø,]Šï^À—ˆŽÁ:Ußî0^B÷‰c"ÅA€wlÁ6K¶:ð–j–MÅâ‹`g¸ ¬x㠬߆i(,Ãσˆ»–—ßñÃÞ2Ù΢¼AóÁ[… X"ƒê^$Idþh{ Îúý¸î*1{ïE+´[~6.@‹–žs¼Ä!ùì7K´ÑrS: ƪ“ËÔüúÀV„@!¼^ßøôFsE»à×D®oùi8¼æûÃ-â;ÒË }Ø @¦ºÓ¬ ºÃü¡nÇéÀ&A%mÂÀ †ØÒPÕ@°™ŸjQ´ÌÈKȳ ¾>ºx¶•TâŽÕ# Öžî™–°OX¦wrz¡‘à„VEÉ®s 1Œe{q”;k×ù%‰Fß…uÅý½TØ€Ž2%¡>ç]ŸkÝ®?9ØÜ¤üð&ÇŽw> endobj 69 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc4.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 73 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 74 0 R>> /ExtGState << >>/ColorSpace << /sRGB 75 0 R >>>> /Length 1007 /Filter /FlateDecode >> stream xœ¥WËn\7 Ý߯ঀb‘õX6A[À@ ¤3@IVÎÄ­»µÝ èß÷èJ÷ag\Õ À9>"%’‡¦ bº¦»á5Ý‘ËÆ…é3‰±‰Ä«‰îô†n‡—‡áÅÃo?¿¤Ë‡Ák-­?.o‡? <|¤dÚ÷õc4•d+†#nèŒÏép=üxþ“­5xR“¥“ê³Ñ@¬ÑD×IÍÉ„ ª7>õQÅG“œ#¾“šƒÉ‘˜‘î£:¸cÄ-Þ„ÐIÍZ"Åñ‰STFËú«ý‰¬ï_ýŠo£Ò?ÃÛ÷déÃÀt¿ëÇÓjAE¤!ÒM+/Qg²Ò'Ú?…}ÉVµ”Å•š™àf®ðJ™Îx5\‹[ðf®ðÎŒ/Ñu”üò˜»å…uà)Fãt|V=•o0™“‰­äm/7È\B½~Å¢Õ*WzýJi9[¹³ßµ¸Ü ^ØxßÌO“)èoØ-+ÍéŸ÷cI>S‹„Ùdx4©vöWGººÿóó_›ï mðc—ú±ÕÞž½9'géìøÇÕï?ÐÇûãÝçãíå¿ôîì»wççïépÑú©Oiù(-dwD›¤\ó°]iÕ8Ü+ºIi·S‹NÆQó‚u&0N°S±o§ª˜èG¯6õQå’~5I;©˜eVF¥õ±ê1ËX é_:]g™·å:°aFç9#õþns ƒ¢˜ª±´YUQ»Yº©b“QàÚÞ€CƒqB }Tg12¥`¼v2JèF§mmÙLõh&»@k÷•TŸhk–ÇV-†¶¨WqþþT,§¹l}‰†±_¤ØMÆHd$<Ä©W:ÈeåsxBÈ’ËÝd´$–^Ñö’š-Ø1yVºÉ˜cEZEí~0‡åÏìñæO¸—)Ì&4§ƒuz­ÒTVbqc¥Ýàë¸^m†òØÁD[ghè©æ §b—R‚Zƒ9‹êàªÿ:ÚH8ÂŒÍÅ– ]R˜È‹Qgð—S©_ƒbhö9(ö®Ôë”Ã|Šë |u:…*³º jcãÇTÖ…9*Àãö'ôs•ÍE–¨àœÓ:*ài•VQ!—(ß%*?î9ª"Á–¨š¿iayÖ]oж'jÚB„-õ1ܬq•-h»ïOæ‚×ûÏx3g¼½Ç„Oæ‚×÷™ñfÎx{¯ ŸÌ¯ï7ãÍœñG×]n?ãÏ\!ÏP6‘iP»S¿Uâ!¦P¶Ywš·ÿ6Õ"m ;Ø]Øìš³/Ú¶bë.lö-èIˆÛÂŽv7û ~¨ÛŠ­»¸Ù·+Ã+v²»´ŸªºNX¶³¶¾þôK\• endstream endobj 73 0 obj << /CreationDate (D:20140122074916) /ModDate (D:20140122074916) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 74 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 76 0 R >> endobj 75 0 obj [/ICCBased 77 0 R] endobj 76 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 77 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 70 0 obj << /Font << /F8 8 0 R /F54 17 0 R >> /XObject << /Im5 69 0 R >> /ProcSet [ /PDF /Text ] >> endobj 80 0 obj << /Length 2290 /Filter /FlateDecode >> stream xÚåZKsÛȾëW l§–ŒÅæ×îz«¼UV•S9$kUíÁñ"A‘ _HQÚC~{ºgz iË®$•`¦§§ûë'8úõæâê: 2–Å"n¦A–°$Nƒ8J˜Qp3 >Ê!Õþ.àÚÂ5‡ku7I öC‘ ¹› E óz8ŸÀÈ=\»Š-‹•7 ªúqW>)àïgÜ(ÇŽTþŠÿĵñÆ[<Àx¬YªÁ6ß G"vT;ÚxmȵdŽüðí'ÒÁ¦4D ÇiŠIKÅ)Η{” /'f³¼~ºùK#ÎYT¸Ýl½3`Œ¤f¤0Ï;ÔR+‰;.žì6HŽ’D¹Eœ‘liFg(težoŠ€¥f©až !¢¸jb(-Âð¨…@Zµ\£X©@±ýÜ.g¨ØÕu¤<·àðO#¸Gqftýe8Š„Ô>1%Mp×­™úGZ9ã:K¸þF!ÜÞ×wt½¡‹›)nxüËÜr"*Ìëks«§GcLBwuõPÉISF.»óœ¦ô‚„¨qÛô'îÔ~LÖ<²Ht.’ÇɳÝaéÕ•6”Äð±ÃÏ/û@lH¹&†oš)Ú¦=› T»GŠ¡jÊûH¼r2ílÞ6?ZºRý‹¦À]\~ïù>ð„©×F}&îùÁXǯ&#ÿTëämÿH[?º6æ°ÚŠ´Ï/¸«žŠ}~ͯ[=©2–ô|Iýáu·½‹uqº¥{Ew?¥ÈÕ/¬ÜçÛ±ÔÔ `ÞÒ 7€ÚdÍè۸+K™L¢àK;ÿúùý– 7¿䔋£fÿ¼õ¾³E³Ë犅‘:öý– 9éì‡wö‡M¢º'd«F(=§7¶T|/-Ô×r®È ù¡çIm…ç…¶!¨×ÍÚÜfl3¡ÍŒ<÷«ú7þò\¾ð"¥øâHéQü¤ïcÃÏÏ÷Ýõ³S×3‹ÍqÁ(FïLI6•Ïö€mam]á¡õ‹Æ×dËZЫëØidÖ’)®ŒÔ¿iGçZbb›)Å ˜›š‡¿àW†[ã˜D±4µˆ¿Õç™ýøjF {0B'ÞTY˜#ˆ‰ 1®V$ÎWæ^ØÚªOEækæx|Éö¶ÕŽày=5¤g4•Ÿ®KÚ"ãøÌ-Ó†6Z6ÌìŽ3²lp§»ŠÝ†ô‚‘9Ý“T… âqC:˜Y¡$FBx ÃŒÒÌiiñ~«?ãKíQLjã^+»c°VØæ?Éé7œÓl¶:íb%lø‰Ú׿É4¶XéÕà¾0'O=¿n„2Jk˜à-Áo+ÔHÁëzU˜-ëƒ>äZYo™™)½;Ðê¡|k^z7Ðn«Z7ËQ¥çtˆÐíÛu|‡òYö °_ÓÏ»8!ëùÊ<.-pc|˜™E‹w¹ÓÛúÏoW]@å6×h{¯œ­ìyŸäõIV}ž'MJ(0f\N×Ã}a'¹SJ‚ÛX –4§A–¡…Í$Yî7¡¡„F0±A¯Ï˶3Ãò ?È%±ëx<ÁúgLÛ”sªà»ÚÉ Y™;×.=Ñò•÷Rk½& §Gê‚Ú©X‰&ì§…0Ç£ÿú·ÿIë¤ÒB6Ž8K“PµÞY¤>;u^– \Ü\]sÞhäºØí‰D1Ë™"I Iªjd{õPv°%œ…w°…HäQ†bœË6;ß  ƒ4Œ<º7]â+(ŒðN”e&ù!³K¼O°ƒ•d)0!šü§áˆÇÉ £Á–ííï–‹w7Ÿ/Ç0àˆ€JÏ‘Œ—?…Á&!™ÌÒ`¯I—G)ÐqÁ‡‹¿_üŠÿÐËñJSÆ3Rss(WÄB.Ÿ¡#W½JÞw°oÒyG@2%åÁ×à áÃ2f©Tž¨ÐOxŸh » ¾Y[?P0£/%’Åÿ†ë1câ¿"$i§—¨ô–'„gš4†eYr̤äNSÙ´iÚeÒ8d±”¯V¤a¸†&÷‡š6̦kRß^ DÜp–ތř#¨ŠÇ#¼ÀÞ™k˜;‚J±89p.SJu8‹¬E…쑳€S@ÒÕdï0ºê˜„uIåƒ*3tX‡MÙJ`iIy>ñN­¨g¥›`þ†UO†™ËÈðÜ]ôw¸fÚ¬…ùjpéÔÐùµ^©œ¡XÚ¡Ú¿_™óú  Ý™ïÆm ¡ùš¥ûy+ìé2¡¢ôCÿáBÿÑRÔøÂ›_pE,¡Òd»lú*dù„ÆìÊž"×Û*œé#DÝ*Fú³¿{Ðø¢7ûwxm «“¸Tš`!Ë šÈó¸°9áßðŒo( endstream endobj 79 0 obj << /Type /Page /Contents 80 0 R /Resources 78 0 R /MediaBox [0 0 612 792] /Parent 47 0 R >> endobj 78 0 obj << /Font << /F8 8 0 R /F54 17 0 R /F56 27 0 R /F64 68 0 R /F51 10 0 R /F11 9 0 R /F13 81 0 R /F14 11 0 R >> /ProcSet [ /PDF /Text ] >> endobj 84 0 obj << /Length 2573 /Filter /FlateDecode >> stream xÚíËrã¸ñ>_áÚìÎŽd‚_©ì2W’J*‡uU“9Ð-q#‰ŠHÇ—|{ú €"eïLå˜Kx4~7 ?<¼»»ÏìMµ¬ò$¿yxº1¦X敽ɳb™¤ÙÍÃúæcôÓí"KÒè7ü³º5Qß¾#|gøøž>PÓDÏÜ}–n ß¾­@÷·Ÿþrß,ŒYVÙx£gch·¾ßá÷Ð\psÙGa¢ÆY ?Oð­eZÁ¾"Nr„³–ø¹#=ʇˆ_ÞF|¢CóØ{Æô54È’^†öJÖÛlJ&lY} µ´â·oqÞD¿’©ŸÞ>A@çw‚¡¹²ûÚ¯ø,à?zŽ­="Ï•@®ÌÏFp^…A|7eÒxss¹ó¯QŒ·)ú ,#î¦ËÊ–ÌÝ_ÍÇEjl:JDk⥵cÁ!…KøRørø°_ÀWÂ—ÑØÂd…‰ŒÀ%2ÂXø*Ú`¡;Īñ$~CTÏ*:êÜѹ­çãÏ¢Š'ZÀ^õXm ‘ú:ÊàžýÿLµ†ð4íd¦w¾‘W­WÖ8dFLÈ‹1»/áÇ+ òþug+–2Q!’Áܾ¯áñÿBøV!̸›·$žð0v7«qsj,Þo¨#è'ûþ5¿¾ÔqŒíüšú(óŸx'¸‹¥[F 2.ÕÝ}$% mh.`ì[ÎÒ’¹Ô¥õNÎrØàTÈžE†žG ‚›Ï·I5$¬ímRJø#´ª{õÀ õ©áÆל‰3ÐØòàN‰ÕŸo³– =µÏOhª^©òöBÐæÔ‘÷Ä…EV¥|ÀÖãë@Ó‚P%ï€pÊlÅcâùg°ï¤,£zÓðzBj*|a”•W‡¢ô¢<ø~ý/¶1Æ‚?¡J¡ŠÈ Z Ø–% 8Ðáºmdlw¢“35ʈﺋ½v¤¨´² Ýõ¾Vy祃ÃóœÄX .âþ¶´¯+±bA_Íü¢väHq€Ô»1mÅŒ)žØ8…ØBøVÓ” 1µé°õÇ‘ÈqT#åu¼¨@®Ï‘Ö;X)c5Y Û„¶ìàE{3.¢Ní8GåzØõ‘;È^ÐÊcýMÅÊg%Ö°”2'Áz ŸqHkö˜YÏÜÎ ƒýûì#·‡ùðw÷™ vj±–+ž9™øõ$†ÂÃA¹cörЕ¢Ê *¼ÒºL§ÖÏbVÈ„[É=±²‚CJœ0.}²AžŠí0Àã1ç2DBJ·ï6 ÝŸwg¿xä;‰ÔW³a¨Am™K¢ú.¸Œ'XÑùq™6#ÇY%•VW8H—3ʘҔÆaòâr‡é…õæQN’ùÛK2A½FÇž(’JË€Bš†èŸY~;Å ôÕ{¿AMçIëK@ D %%°®~Î!“}ÛLîIÒv&³Œýå„Ífœ·s%ä”x²v›>Ìã’Hw²N%±¹SH5$½”-ç‹?$FȦÄΉ`Ýs’î8³ãṄXé™Í“hKâ[\i5A‘ðVÃ4+f‘šXsj̇pæBt8Ö¸¼Æ•\0û¼uµÜÔ~:´¡?Öª‹;>ÐóÂ0$ø¥´AÔÖ]ÅôºÃQv¼4 KèÝÿõÇœpý½T-w?3÷4Ž÷‰­*Š»Ô‡yèö.‰Ñb¯´á5(Ù©8{1ªÅ¿WÂ\ÀË«Þb‰yÓ$T³*»JÕþ½]RÜ|Ñ…C?{#áânî,A¢±S/w» *ÀŽnö´ßp»/¬Û zȽfA»q{÷0R¥¶¿{"²zþaž»sOP:]ÿ"t©%ºé350×?u‹9Þ`4Aä ‹Cõ9}ÆÂ½žÏ*zåü‘!f%›‘>› ¹ž÷êý׼ݶQ22.㈹–=|;s,©õN.• ÛzÍõ9“P;çG ðXŸ‚JeÏí§"˜u{IÖÎð$çi$Ó¦g6K©ë(À|ÒW·ÒÌ –‡¡Zû‹}ùr2ßá¤òPÃþk6ÐÑšV~ù¾ëåìOR³Ñ€æ2‘›ùñ“Eí¢rø²pùhÔ_¼ …oßöxtƒ§¦ó,´î(¸7zžq]`Êì¯Âjpi«ŠÆ€ïþøðî¿4ï?x endstream endobj 83 0 obj << /Type /Page /Contents 84 0 R /Resources 82 0 R /MediaBox [0 0 612 792] /Parent 85 0 R >> endobj 82 0 obj << /Font << /F54 17 0 R /F8 8 0 R /F44 7 0 R /F51 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 89 0 obj << /Length 3015 /Filter /FlateDecode >> stream xÚÍkÛÆñ»Å!)Pʱh>WRÚHŒúCQ£zhQ8.À“(‰gITHÊw‡"ÿ=óÜ]>d»Eù@q¹;;;¯™Õ·Ï^¾É³›U¸2‰¹¹ÝÞ¤QšducòE˜¤ùÍíææ]ÐÌâ „g O ~oàigón÷„tžÅû*\ärWTœfÉZ0ÌË_qX½ó<(`:^iÜí™TË]Ö4ò\è ¦œÄå “@NŽzg"øª›$Æ}ðù·J¨²¦Ôz8±ýëHl¹YÈú:¹êš&CÑÄ*EcÂÔ¸nu¥‰q0z¤]oÝxêô‡íºqÙÏ“w¼ä.Cn*õ„ªò;UÍSÉ/‹ˆ¡Å%¼ì_Ï.ƒ½7U%xňGoQ‰¶\äÀrE¯Dñ…¨<’b†0â~=ãàmçÝÌ¿³5º˜sye‹àkô*^É¥a,géªz%T ùO^¡pà[[ˆõH¢fX³çÁ‘å•ãSI7’‚q{œ”ÈÉ+#= X÷@´z|ÔJ!¾v4]Ÿ+Ñ0%Y@Ê›ùˆMÝ\ͤ²=!X%M³OSjÒ¡Ý äIªâ…;xku¼ñ$Ô|†Ü3-6$óAHPó-l½5•¹~Þ‰ÈK7kX²›(ÍIº,¯—ž¯åOP0°÷ÚSTcuiõ©'æöZ ýjÒèe}•ø^Ý ßŽì럄9Ã2ªQÜ(Eãç‘à±Ì«*á<ºRLeNÿf@×@=Q>·ðqð^M?¾bÔS|‹¶"€ ÉM‹ìþªÈ”°¡Ø’ÎÞI߉´^.3-ºë «µž>–ê=I¦gÇýã9»±·S¦S-žv«ìMˆ«ìûw„’—xÿÏ1 ý¿¥ûÜ=·ß—Ào¤ßÃB}¿òyB?=Ahõ…„v"Üp°Ê?®Ý:ü,ߦúCS»ô‹ùO2Ú9+ `¤ÿ~\ô•ª5ÞºñÆ74 ÏŒŸaI¶ÈY‹ñ³–Ì„ñ"Öäÿ·‰M&ÉJ8àË1xĨ·I¼ 0ŒÚk'„Xì(‘wæ¼Ü —<1 D21ö'ò½q´ M6¨Jé…Γ`òzÔâ¹<þ ž¿Ò!ëRÕ‡Ú Ï¼5d~5æf¸È_>™³0Œ59À&Q6iÜ/TWç™°~<Þ}×úA6âÐ6õVÏÓ·/Éÿ”¾…ÒµÇ}é¥{zq –Ü“ÌÜó½ÑâçEm‘ÁÀ‹¯vO„c]³å{‚€¶­ÄÐù¡ó䌵ãháŸP”|~ÙðäµS®µZ:æfÁŸíé¬QÛ¨h–J Gî2°•é=ZmîÅÎZ{¤…á£-îlJ¡aò2ç¯x[Xrø¥“÷ºP¡l/®^°æK£bZ}×öZf.]5¢_ Æ|0Þ{g~7ÃZå²oxub„°u32c-÷QI£§iŸ¦¢ë,«{_»ÔSHnm7pÅMé×$*µi9Þ"ïT¹(‹”¡Ò¤ÿPž¾h¼àîίx<Éб¾¸r{ï ¼±Üž¸j E³áA’EÅ•*U|œ…«amäÖ¯ˆ%&cóÄF‡øH5w ®‰¡-â·MÏ‰Õ³ÜØõXÎù¨cïœëÞ-eÏüöØŽ7>ªj3¬Êp )áLm/8ô º•ÚtUº°¬VH¿-2wÎìL6Q­àh3!1®wR%Õ{RjÛ t WÔ¡ƒöožöö|ž²¦9¦ûTº PRs.~÷´ÕØÉVŒÚѲ® jQ4_Õ$yXå…Fr¥¨‡ [ Ž-UcŽ`-ÿ }ímån ·µn¹ºz÷a½ôE‹xÜí¹Ç^†Ø°ñ/Í[î!™j!Ö»ÏÍàbè„ùƒ¼Å±ÞQ¥¹¤…Ù}/ìÿFˆˆr­¥ ÷TnmbĹ()†É•¸u ØžåúY4Óµà•K rñÉÊUHëE£·e+¶€F#v(lu´· ÈM–PBÿòX Zß ás:òÀ€-¦öfIêÃBÅ–(8òÇFÏê÷þµå£ìb¾+\á.^#5Ö¸ú]; õiÒŽ”@“ظ½qèÒîwÛ?D`Û Û(ä +-# À^ S‚v"i ~{§«18)¼‡uâo.F”#³ª ÅB†ü-¢µþ>‰’p¹ÈñŠœnÈId1ýðÙnŸýÛšØ endstream endobj 88 0 obj << /Type /Page /Contents 89 0 R /Resources 87 0 R /MediaBox [0 0 612 792] /Parent 85 0 R >> endobj 87 0 obj << /Font << /F54 17 0 R /F8 8 0 R /F56 27 0 R >> /ProcSet [ /PDF /Text ] >> endobj 92 0 obj << /Length 1424 /Filter /FlateDecode >> stream xÚÕWI“£6¾ûWø•#v¦’Òé®L–žJâ[&©Rc°]cÀ»»gùíó6!è¶S¹¦\ééé-ß[$Ô2€ŸZ™Ÿ¥ù2*?ˆãeÙ,þ^~‘†QLÓ1-*Ù(„Õ»&]~ß-~…ŸYòD¨7‘úÝz±ºË—ŠK—ëzTœæ¾ ³åz³üùs•³‡g{îá¿r½(ˆô­ëÅaîÜ@;!GGÕY"§<ät«˜T£„®aš_F@O›Qч@Å9Mçzaælt€¿7H.ã®Ý²”§½ˆÙñ&vƒ5¸F¬ZV+Ÿ[˜”ZFþ•ä<Þ(Öœ˜[îŸëPO)¿HR†mÓÃÎ…ÎíAÉÚà›Maáç¹àúCç‚[Oø‡êÍ c.‘¼ä9UÎOúDô\·üÿR fUÏ|SЙ²!ÌqÛÀ2Ð¿Ž‡ŸI_gé; ¦(hÀ?š 'R‹Èè^ðrEÈu¢& çËÓ'æ0j`~É#Ä:uº}‹à•9 %Ì ¢îÀ`IVÁz° p‹qL| ¤©(¶ Çègæ‚¶¥XcR…![éØOÉ{ b*·™ä{}ÏÄAH¸;±Yó ™ 6hºµ©§4O3?ºI 0Ÿ¬ÑeñåQ×;”B™a—0vƶ°ˆÊ-I¬­¥ -™‚Ó-¥­„W*SM$Ì@¬8…~D^Ü×ø1°ù“Ø#Ä“dÒ80GÒѵœìuZuœ1ÖH­9!Á!Hlpø™ìï¬8 œw­e`¥ Óœo‚VÆÝÔ=£2ï`zˆ/•óU#§lÕº¤z±tðílúG>+2àÜwj^¦n 7$:c ˆ˜®¾(n‹Q;B!1©ùÞtGN>Ú;t5QC£¶·‚P„.‘ú‘rs[]KºR›¤A‹Sn´ÔM­Ð ¯Œµ“r×—¡d?†»²"Æ“âÅFê}ÂF\qžíb°n–9ÂÙµQV÷¬]òÑ’…öÊ11{½‡û éqc³+©O‚*ñg/%²7 º2’º0©EvÊE>’fs²øÔ@P¦ŠýôY#]»yDM Œ9™sèÄs ¯4Š(IœÆ­à_[ °‘+§²ùS™ãJ4î,/Ã<ëÛ@}2‡|¶Ð˜œÐ5¿Èø~Š;6sJ9dûµ a„SÅg+І¡èÍ`”ø˜8ÄlJœ‘)ç†I½xînœÍ‰SÛq_Û#²¥ž…‘n@žÜjÔx&½Òb7Ì>¥¨ö»ó‘‹8ñ¸“R¸D™øÚšN¤•”•L)ì·¥ø.ä.yq-(qÀ§i·õzsoøÈ7k±áM/CC[Ä\èfGW§–%IÑÁÿ4¶þ›]|ɬ&@Èx5ÅEm7]¿šÂ¦Ò÷Ì“ù=õ^”ït$q¡Ð·û±,˜0Í¥ˆOkÝȤ7FŸbÝ,WwI<¹Ä+ÂÈ£·èþÖõ’¥ÙZ´ ª–GŽ‹ß_° ¹û¢Üï$Ïß°ðLõ$iù’ƒ«ÿðkkz»È:2ù+kߘU¦j¬8ÜŠ–Ð*„ôlŽ+µøøB–ÃAÉç Ѭäy{1çÿ€µxØ J&èšÍú†_ÿ˜‰0€oõŽËÈÏQŸzý¯1És?‹3øP‚À(ÅJîyÞa¨¨ñýh¿ÕåVL9 ¹4ýÔ²L.Døuk ÿK¼]™O„ ðÓ0ŸûüZ®)úNþžVô5¿"*REï܉p>$06OŽÍKZ€WLhÑ ¾Xæ(3#~jÓx•‡Õ|é'~šElµJqq»^|þèÑs endstream endobj 91 0 obj << /Type /Page /Contents 92 0 R /Resources 90 0 R /MediaBox [0 0 612 792] /Parent 85 0 R >> endobj 86 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc5.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 93 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 94 0 R>> /ExtGState << >>/ColorSpace << /sRGB 95 0 R >>>> /Length 13325 /Filter /FlateDecode >> stream xœ­ÝK=ÉqðýÿSô’\¨ïÇV‚m€€ ÈCÀ0-YL¶EÂò×wfœ·ûVœ¡FÎoºúvݪ|UVFdþøÍGþøÝÇ?ýøëú¨û³ÿç*Ÿi}”Ö?çøøã?|ü×ÿùãßýé¿üÇ¿üø«Ÿ~¤Ï”ÒÇ÷þôWÿùGþìéãÿþø›¿ýHÿýGþøÍùßï~ä{ÀÇúÑëgÏeŽÏT>þð£ïÏUÛgm¿ÿ1Ægî‡õ³åÃY>Û8,Ÿ¥\®ÏyNf¦Ï]WÿÌɘÇáΟ­|”±?óýÝ=?çùä1?W:Ì©}¦óÑç/Œ{t>'Tçqÿ,Ù|~°ë粟—zO¸Œò¹—ù\ûñçëÝsɵŽöQÎØv|Ë÷_®Ó6¯Ïr>¿ÏÏ~O6÷öÙÏç÷s%ï7Íã|‹s!ºÿ½s¢åœo/÷׎Ï5è÷óÓçêæ},ÍNãxKuïŒ}Íã]îu/m|;~¯Ï•íÎÙå(éüËùüv®ô=¿’Ïå:×£Õû1×çƒÎùž¯1ïß/¥áÎ'_Óg;ŸË<>ç¹õüÚý{÷ƒÒùüóŸ{3ŸÏçŸË”ìóÎçók¹§u|.ä>×£æ[®×g=Ÿ.s±ß?EbœÏ/çþ™×¹^çz”ñ¹“ù\¯s=Jÿì÷ú•}®×ùüsÚ¹šÏõ:ŸoãýüšÆ½Ñ¥ä{ǹÜSÊùZ˼î*y߯q|>ø«{Yúý{õœè9°œbbçW«¬’Ûç´Ï?ö\è’Y^ê¹q­ší~Õ>î…*§ØÙù×SÐÎ…)ißšu}®×ùü´îe;ž§ œÏ?§ïõ¶šx®Ç¹8¿µn•)©¢|Ô}®×ùüTp=Z:è~~Fylé\¯ýåŸn]ÿ—ªrº§ü/Te4øàÿñÓãÇT³³;?e}ô;¿~Žúòú9ùú9˳ÿÜùõs”·×ÏÉ×ÏYüçίŸã~½~N¾~þöu¿¾ýëçù[^Ü¿ÿ“¸¸úûÓŒþ‡rZÝßþãÇúäÇ?Œ=ÛݲÖ÷·øøUúõÇo÷ãßÿÖ>÷Ïýb>7ø¶¨¯ß,¿ø7OÓs[Ä×o¶_ú›·Ðݶìõ›ãÿæ)·zýæú¥¿YÏ÷œãÛoæ_|‰êý¢éû¯þâkÔÎ7½­Äׯ¾.JÂiõ›•»9+Oï?¶r}ýô4a§ÊúO¡¯Ÿæó§ò“ß~~úÃsНŸƒ_?¿-ø©‚þsòÛÏÙ'ûÏ¿ÎýûUùºñuÐH·r›6+­Ÿòfü™ß=­Ùéññ»ònü™ßÍõ\©Â_–…öÏýòéW[ã/Ërûg~ùö6»ó—eÑýs¿|.çö[)úº^ßG_øÑNwuÎŽª³Ü‘u*¸qïôƒÑÂÿÛ¡|†Q·Ûÿ\VÞÿæWÿí×ùü‡_ýÃßýñOÿøÇÿõ‡?ýÝþ÷ïÿá×ûñÛßü¢o¿î¸éRÂGþôþøë¿85òWÿü?þù×§MøøÕßýþõyÿº!iþÿ7$­èh}HzJGú’މa‡¤Ã¯!éT¶ômHÚ0fð!i¹¿ómHzÊÎü6$='0Ó·!i_"ù´sˆåCÒÓµÕ·!éùØ·!iÁɽ†¤§oY߇¤gý}HzFnvö>$=CL ™9$=W~¿ I†T¯!iÁç5$Í2¾†¤ C\’ÖS"Ö·!éYÕoCÒóµlHåCÒSÝ߇¤ÖW~ IÏeÙûÛôV·òmHz†)}’žµëïCÒÓºÛÚ‡¤gHØæ·!é)öômHznSn߆¤¹ÞËø5$=C@|>‡¤çkÚýð!éÚ#ŠISù6$=C {Dð!éùµ>¿ IO1²!µIOÕÊ·!é –ú5$Í›(Óä=8DÅ4Ÿ‘¤ Ù9$ÍçkØ#‡¤÷¶Žú5$Íût$ýkHšÏÿÙ#‡¤ù^–ô5$ýf3½ü> ͯګëç)œu~ÕÏsîV¨X?oÚ_õóÜi»Ä¬Ÿ§Ø õó”‹ýí‘ñ”÷]¾ÕÏfùU?«ÝƯúY;ë+ëg­¸~^?kFyóúyÿsýV?OùÄï³~ž¬×Ïó±í{ý<,vý½~æ‰ûëõ3w<{ý<屌oõó”¯Ñ¿ÕÏó5ñHËú™üõóeÖÏs­|²~Þ.ÂQX?óîx$fý¼åDZY?óάߨŸ·üØ#ëg^›õóž6ê;êg^wžõó~Mûþ¬ŸùÜsœêg>Ç:DÖÏ|Š1Ú ÔO»lßó)Bù[ýÌ3³<£~æS-Æ·ú™Oó^¿ÕÏ|«QùªŸ¹{ýFýÌ}¡¨²~æó5QX?Ïm·òæõó”Ô7ÖÏckŸ¼~v¯¬ŸýQ?OißëçˬŸn¯Ÿ_FýtÿKO‰ÖnÖ#ô³ÏzkÝ’+_dãÞí¹]Ъڽ$K²ƒ½+Z1:\U²’[Ñšèskò”ì`]’œ[ÑïsoÓ”¬`ÛŠmƒ}H6pjÞBاõ ‘V„KW´ÃámÏíÙÌ… ÍÎJ—dëV´!ØáH‘ Ýüiï¨@ðÞ”Ófä"™ÁÛcGZ‡}Ø’dokiÏm«º¤F¹]°b­âÚ0ì´cIÞKwÇšU±/°&ÉFNEkކý’¢ý!«"‚u;Iú¬¯fëR´Fð°uI»tU#0Û ](À‘ì[ÑO‡+IÚil/„Of0÷ÈŠnûðJ"×"·dG•LàOGÚ äá^’6÷žpqmè~¸–ä=Ó¶ªh3•‡«Kò@’líå-YÁ±m8q8›dïXHÐN£¢Zb j_T±‚s)Ú cÚ\†b#·¤=›¶ÛÕÚãàåŠä|5š"EûC|Õih`V#Ð[&»¶ÈI<^Ot¸‘¬YÑ:ëË%ÙÁ;Ö´ºîì|è¯]²‚;)Zg=ñL Ø@¾ðzÒž^Š@{|;¼SÆ‘ÖY6Íî%i(£ÒZW~¸²d!—¢="*¿Â“ö‚¯¡â<˜ÑÑZÕˆ¼7tuþÈ{C»˜@ëèÏs‚u^Ö•/6õ‘vé6Šwdm0h]ùដÖYo6¹‘ ´ɉ¨²[›¤=fö!YÁ9­;Þl®#3˜·¢uÇ› rdwWLvq*f´#È¢ò¤]œ†Üƒ µçáÖ†j‘´Ž Ð:ëC¾¿~²«+Z1»ÙI²ƒÖôEr^Ãr6mwgx›dïœZd·Ó°i{Åî)ivûI>hÃËÃÖ% Ø·¢ /Ç´i”ÄIxáD×.i””0ª¶iÚdåJÙ òuÝÚ•îÚXY²ŸàNï¦ó)>£ýæaÍ |§•1-fcååÓÚü¼àF—­í+5îøPxz4mŸ¶»½—ðÀùtL» W:éÞéõ3Æõ´ùLå6ÝS»ÒcI³<.¼dˆfy\V“” ݵó¢ï´¡r£wÕÆù Ïfy´_”ÎôªÂËË#úEe»^Ùê½2§m“µ%Ê^S+…2¾O4Êc¶þLå-£Unô1*'÷”Æ4._#£¼Ý÷I×Ë–)ã5Nnx&Üé1µq½ºM; cåShO„ ]†4Ê+æÃ¥]§v¢o(Œ×jwIÐÒÆù,› ž\I–·=Å(WÚêk4Ë«½ÛÆk„•lÑsÒshÛß+评Q¹².8ÑkJ÷Aï¦m׫”÷膕x¶dMçcó*Ê(¯Åæë¥;ݶv¦G•Fy½ï›6®'û“è¼Ý[»ÑUå±tÔwa\ÏéïÝÃW:Nü=áF[}Nô}ÖF{Z–½ÆTÎô•fy]¨¯Â•žE¯Á˶w ÊnY;Ñ«HsehBòZê»p¢×Fy¬ ý­°]/¼oTFy¬ì¯„+]²4Êã]²Ùµ;=жŸÏžÒ(¯µØxW׳ú÷y7_e¼•n´­ÊN´7¢±R·Vœ¯0¾ûËh”×»¾ªjWz$i”×ÚО ãz³?Îô},üZÙlãåh–×öB¸¹·v¢G’®¸žÓ–M(gÚÆûÑ,Ïöþ^×sùù<Íò¼ì=2®çö•ãÁv>-Ù›Ma, hö¾[Ú®wËhžn,ÏÇ¥iÛõnãiáD—%òÜ Æ Â8[¢ŒòÚ*Æ+Ñ\†ÄþRØ®ç]²¾´3}ßJ £¼6öwÑ(¯w‰|Ñnî­ëÅþ.åõ.ãØÚ™nUåµ-ÔWáJÏ%}™×êÚø{å1šËÆ6ž7… ½¶peyìÉV¢+7Úê£proi”Çžq¾Â™¶çéh´·w=Ã’FyìõI¸ÓuigºuiŒw{ñël׳³?‹Fyíý±p£­¿öeE5K£¼öæßçi”ÇÞ0ÞF¤KGòxWQ4íN·¢èQ¥Q^»u¬Ò…^MØ#}ú@¤p£íyV8ÑKãÝ»æ¢kgÚžG¢Y^Ù WzTi–ç‰þ\ç³ð<Íòºl&^¹Ð÷ 0Ëë²¹ze\Ïíß÷i<¯÷¤Ý陵3míI4ÊóÀ²RåJ,ò|×ónm,ã˘/NôèÒ(¯oȃ3Ë+—±*ã| ÆãјO@Ã&Ýé¹¥QGÅóˆ0þ^C{ù„ÑÐ^'ÚÆ+Ñ(·cÎÚ…Eóa+Ä”q¾D£<ŽŽþB×k`>B8Ó«I³0’ekÒ…^CºNzWm|„ —Mï¤ë=&œé1¤3¾]XéBï,p½-ƒƒt£×Ï8¹§ðdØÚÆ qåL[{0½È~åJ[}ŠFyß¶ÂGºÑ{i#¬Î¾ÊÓÛ–â@ºÐ³I÷I¯¥]éû¼&Ü<¬Èê£p¦K•Æ|Ã]˵µq¾ö`¯\«4æîj0mÌÇîjk_•ñ}›Ÿw,D¼¶ï#Üè;^RN´¢1ßµ–¥ŒëÕŒÂxÛíp¥ïxMów…XÑîî­é¡Í04«8ʘ/ØõEØÂ0SÆx@8Ñ~üÃö+KO„™ôçÂîSztÚbŠ…3½š42åê×+çËþ"a²™í½p¥[’fæ'¬WTN´ÕÇè‚óFg„ c½£²‡õ·%6Ý»v£×ÖÆù.´OW†%ÛxU÷kÛzæùãøŠòøtayXöbDÚêËÂzPåD[öf±¿Æñˆ—F{³Ø gú®÷8~ >úÎ× £¿Zìï„+=´ñ<·Øß 7zTéâÇï¥ë¹0ÞN´w¢1^Y õ-㕵0Þ:c=pYX¯ªlÇï„þ2ÚÖ[^¥m×óf÷ªÒ˜OØ6±-Ýè;_+<üx«Âv=wA}Nô*ÒX±«ŸOp¦w•Æ|(ò—Kgºwi<Ïí†ù€h¬çÙlï…q½±ÞRóUÙ|•q<â9„ñ>ÒÓ” 7ú¾ï öùøx e¿P…“{K£½:¶ùNa?~&i´W×S;Ó«I?ÞÆëÂ8Ù……‘V?%Œ… ‡tóãg–¶çµ»sÍÐ.nëO…½Š4Ó–c{a¤ýOóÂE;Ñ{D×ñPMXϨŒãma“2¶9H¶0KyºïxP9 m{jÒØù+Ù^ʼßXϨ\Ü[ºùñ¶m…p¥W“fy@¼¥r¥o}fyA¶aåFóï=ÍòbÛ!HÛñÙ †2ÊSF¥ìÇóû¼{¡=º¾ï3•;}Ÿ—•­<åŒíŽ¢±SÚÍ·5µýøÛß O_ð}„Ý›´µG×{h[yÍèï„û ïó¸2ŽGf}al+-±€´_›tõão®\èQ¤m¼~=»6ŽG}alK’¡ŒãÑßOŒ·®mgBa?¾kÛxêúΧ Û|dÍí‰p¥k–~ü}_«Œã—½ý©²?§ôÛNˆÊ8ñÂh¯2rû+7ºné²ik¢³{$mû¼‚x a´GñÊ~|ŸÂ\Ï=Æ~¼]¯è…ã±^V¹Ñw>MxúñÖÞD·]èþòÔö¿7›tÃñöà(ão!\7ÍïìÇ,]üø;ÞQÆñˆÇFy)Øõ@Ù·I£Y^:ÚÓ§»—‡nóÊæ¶AO³< S¹ÑC{úñ¶3«0ŽŸØ¦(z¸¹sëÓ,/Ó¿O°Ïïó4Ë‹½V®î1´ñyöb^™åa£½öã­½ŒÎ~|+ÚÖÞÕ„ñd´Í']ç¥íÇ$Ì|N×ëgìÇß÷½Âè*öWFTï©ìÇ÷)ñrEŽoeë/+²| sÛ2ÄÓ(ûñ÷}«póã{Õöãy=Ÿ®8¾ú÷}Úæ#kÅÞCÊ™¶ñ\tÆñÈú­œé:¥ñ¼U;Æ{‰]˜ù’jÅzca´·aÎÒh/*âe”ýø¥=üøû¾Xå ;1c¼RO#ÜÜ6Þ.ô®Ò¼ß/ ºvi–‡å×#8Ó«Jg?ÞÆ‹Â¸_OE³Lëø”ÑßÍì猿g;€)c¾nÿ>Oc[ÚYüûûçÝþHýv‰SF{5¯Ìõ¤×EýÍÄzHåLßçQa^oÛ+R™×»£>Gc¾}ÚÂ?e<`[e´Wëý”³{I\O›¸TæõD>ê`ŸošˆWÆóಇ”1^[X&Œù¢…ý „1´Z¸¹í~G£=_å-×c±=ŽÆóöB¾é`®¼¶þ$õ}a½¹0¯Ç@yˆF}\XO.ŒçÑm‰ó”Qß6ò c¼¿±_L°?ïïŠö(Ï[Ûë•y>ØïEííF¼LpF{Ø2ò þœú‘å6Ó¿t;i[TÞñN+rò`îý öb~íãü M' ­ˆ`áÁkD6 Å|—ç@ ¤í;S¼§¢uÂ}úî´ZÛ¹»e -PA¢±@î?Ûöû ´Á_ÇÚŠH›ÚéÜ¿2ÐF$´jíû8ÚCÑM.9" wÅEF“Hkð‘ØU{"¿v¨|Ð:K$•Ì$?êLÄ{z7ÅŃm?ÖÀÁƒoi8*#±Û2wy,<Øvô L<ø>[<™p»±… Ýnß©9Ðn÷¾k݃¸ÝÓ?êAÜî‰}3­ÁÃÆTOúvtÜÇ9…kñ"Q¶õ‘Ø_8ùzЖaLÌòGfl9´\Ü+"­¨ÌŒü²Ö½ÎŒì²¾ëñ}wiSØiV0ñ`žä–6‘•*ÒJ°—» vˆÆþ‘[¾ì@{4‡ïvõ öSÈõhC¥9ý4ÞÈæÄ{êHìôšÅ9ÐbrHD6l;ÀÚÂÊØß"ЦïêåÉà˜U|ï”­¨,dŠ´Ffá½ldçÁÜåÁʃÛT,É×] Ùè"­ ZÜk1К e…BК µ|•­ Zx iÌN¾Ê¹K;wã´F†»âF6reEkF6Þ]EZ3²+2g?È vG^ë@+ {`Wš@ì‹9³H~l¬x‰,$óÙ?hÓ•ÜaöINFoìÄiS‰›;ílûÜÚ4 w‰D’In+ÌM\Yg£‘¤?eOÒþnOÎM`…‘„3elb$šÜ$V˜›€$aÆ&0w‘舾s‹8žIN¢‘$=uObü4’^Oi$ùLx‰ ÌMt™d$:ùñ–„øéÅ$®‰ID¢¹‰ìò$»O#I%7)F’ÓÄ$ÑH"1 $Œ$¤“ÂHb›Qwƒ§oRÚd,’ NLÂVdXIÂKz-"~I ÛÓh$iä&ÂHS°‰07(èo£‘ä°_Düf_{½»4Ú[n2 Œ$[óµÂH2R,›–2êsiX$ýÚ„ anÒg«†4êséX¤ú\l5Œ2“ìs\4ú‹‚Mz„Ñ_ÌOßaÚêáéIüK“F¬²}‘ãÓH’],Û„2“¬'«ÂHÂR‘D7x0 5“è ÏW’ý-Í$ö\„$mˆTF{t£ »tö$ñw¾!¸û&xŸ#Ì$ÿh…1žª\DÝ< ½-âf|¼¯æ& Ë1¾»1IiE{'Œ$4LÒ.ÌM¶/ª{íiKþyOc<ظˆ7šIªíÁ,º²=mÅá=öô-i$aj\ÄÍ$à\¤Í$Ý ‹ˆ£‘äÙ£=IZc{ñRÃda&IG†p÷$ä]ý²+£?hx_$Ì$à ‹ÈŸÎž$Þ&•‘äÙ•»'ÏIºz’r+OÑH"uƒ|º°'aê÷;šI˜‘„[˜I¼+ÊCtõ$Ò¶ˆ;Úæól7­$$i÷ÅØŠÎÞßv[í¬Œþ/þ”y¾x_$\=Éóm…y¾xŸ$ÌóµŽ-zùù"HA˜çcÙú•«'i¾ãYaœvóVf]lâìI¸ÞW 3Iq¶÷!ÂÕ“$ßþNåñ&INÒé{å`ÞRþyw¼+üJ‚|Ë›pò$Æw¼Ü= µu Êã{’ca&Aîø{Oû&u×SšI¨‘dQýÉÏ®ÒèO˜ä7¸2 áÀûáåIr­¾DãycØÄ—ró$¸Ký9“È #Ið´.ž„Õ&¦•1¹IZ“4ÆS³£¼DãyovÜÏh&±öPõyá}ÃÓi³>ßñ¢0êÛݼKãyy! »0ÊëB{¼¸‰ÂÂÚia”G&IÆó “  c>å&ÝÒØDgY¶»èÉ$êË^,+3 £EÓ*ã~n‹VÆ|ÖθÑL’ikê•Ó+‰èæ&È–4Ic<Ï$ ÂÏ3‰¦0Ú+&±ΞdòÎ÷û|èÆûÍõ<7IåÏ#‰IB)áîI0­ïi$!ZíÁÃs3‰Ï²xeÔ§ÛñTa&ñnÉv;ýYÿôã{º…ü¯NºÐÈ;'i¼_9ÞÈ]´:6Ùˆìä‘I·Aà ÷P´ Õ[ü$÷Æé¶œHÐ)s„O2EGZñÈN¶ÉðƒŽÕÉ‘ƒ[±’«*&ò¾·|pp/ßn‘ÏÌ$…à.ÁF6ANu$ÙŒ,äýúO2Ã6sNDZSwCòªb%ï:ÈDZDìƒ|‰Ý·ÇC?èù*òR´¼3:üÁÆ|$˜½‰ìäHŠ…\9’÷Ì“9HËgh5.LäÌ‘\P5ä<2“Œ<~cFg>ì¡]ІræÌ™p`7r·ùŠ´‡$Dk &òÎP=Ø7&ˆ†5E‚¼o/"3¹F$ó7ŒŽÈÅÀNŽ¢X˜câŠ䢨1³8H‹( ¬dŠÖ Û+9p Ùˆ•´®g`%n¤5ªcã4ìhT¶.‰´Fõæ)‘|„œÉ# ìäîŠå[Ž'ë+?G«ŠƒÜYÑ&Ö&°`Úb"7@¤½T›1w™\+’•nb½pdwîÈÄü±‚ÈÀAB¤ ´fCœæ;›çPAgýäÂ$>³†Dv²gE{€žÝ7e#——ÍŽ-Å­ÃÈÛYIFZ=˜ÈU#¹l{2ê °2ãc¢´Î뾑ë‘ì¼&’DG6rŒHvOk™#mª€™N" 9jdÅ2¬•}kË­¹^ÈYI‹p Lßò <Éá?ó Dfæ#±Ø»3 ÒªYó ½8]Í7Ã{cBAZÝ·Úz°’wÍG¤•Õ± ÷;+³ 2ÓI¤½n^Lqü æ×Æ´•¶6°YhŸd˜ã®¨Š(*Û7ÎyЊÊÎ~ð™rçצ+ï´¢²‘ò2ÒŠÊn¾aʃVTvóÈŠ7òÅÛF^…HdgéH…˜=‡JŽä’=qp =òlÆ+Zóµm¯«@ÛaR_pžŽÿ6?\3ÒÃàRBY‰F˜Â2Yáú=MŠpr*ìal)!7z4Óp$\‰èüòö0³”æÝÝ9K#Œ)!7òÓÅÃʆEx¸™[øéêiZ˜køi„q%„so²ë¥¦ußWni„a¥ê¹‰ß=fr“>=»øz.i¤!I¯eÌO\ïežOsšìÚ–yF3ÏÄ2Óè„ë‰0ŒàÆ0í„ÜðÂH“r׃4é„4"“f>Åë]¥œ‘;aê¹¼–é¾¹ðzc½“r÷44)Kw)ÂYß<0®÷]¶¥“»*sÍÒÜdi¦©i¾¬ôi^ïŽòøpÞ~½m½¹2¯'–1/¿žƒîž&§Vi”猽U‚'ËóýA’Hƒ‚Üî¸Þ%½–m¾™{[Ý44wœÌa¤yK£¾ß‚‘¥†Z>¸1ÌëÍ•ÑÞ.ŽÆõºI”‡0³™^ßg3a´·í…0ÚÛ2± 7ímY¾ òÝ…ímA˜0ÚÛ†²¥ÑÞ"ž):{š.ãFqEn`aÜlbÍeä×w´ ŒûQmqeô‡Lcótòþ›´)WOS“Š4®wEš©`Sfa„á×Ï‹Æx䯋OáÉñÓØ7OccËh¢™æ%aÙÈÓƒi–ù ÛÃÉM#sÇ#ÂHãÐ,}ct÷48Ë¢™æÆž6£=E³õÚÊHÔ&–ÁE3ÍÏÄß‹FfQ…™KñzféVè]¤‘&¥m_æõîÂ4(7ŸÐFš±ŽÜõÂÙÓÜì)̽u<ÍŒ0ú‹ë%ö®Ûzðèäit° ]˜it>/õ­c™¹0ê[·Mž¾ËŒPßî\ä’f!‹gPF}ë¶Þ6ÚÓøÝ¹ó&ú6lª2êÛÈX¦ó4÷~½irlK4êÒà(£¾ ë8¢‡§±©X&Í45ö&L¹ LÇ2®§;Óx!Ž2ÓøX¾<åêixF•Æx it¢}¼ŒT»Ê¯ ˇ¨ŒñÈXX†õ´§i¶L]ýÒ@+ãypÚ2ÙèÂçÁûþ®Iã~Ï‚òÍ4:åõéìir–iE£½–®[÷{6_FóîÄû=;–QEO£cË£+ÒÜL,Ó‹Æýžë¶WÁ‹{³_÷*]=ÍÎ]%ŒñÒðDsâ}>´QßWÂ2…hÔw¤Ù‰öú¾Ð#ÍÒ²xze¤©[–p;z`†­WHÒH{útñ4?¶LæiîýÁ4?ÊÕÓõ%<ÍÏèÂÍÓðT,³ˆÆ|ÏB{%Œ4RX/ÍeÚ¶ÞfK#MךXþi~¢½?_ ˬ¢ñ¼½6Êstö4?¶¬ãéìit,Í2ÒDmÛØ@¹xš ÛÞ{ðL(ýÅNø>Ñh/F(xr™²¥ù™ÒxÞÜ–¦[™iŠ, ‡2ÓÙ{’èÅùÄm{ +c﮿ÜÑ{k^ßeÆÂÕÓ,œ±rò4 ·=^¼_ËT…QžO5iÔ7ÄÓEóyò†©ßù4a†±Û~(ÊH³¸mS¾hÎ÷Þ0ðÛž>íip¦­Œ½¹“¥™UFYÂ|Sðò0m[;¤Œ0µdñžÑ¾·o²4Íʃ;Ï3·?F˜G¶4¯Ñ|Þ«ÙnœrußçÅàÎ0ÖŒùa„Ñf[{¨œÝ·¼7?‹‡R®îÛžW?> endobj 94 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 96 0 R >> endobj 95 0 obj [/ICCBased 97 0 R] endobj 96 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 97 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 90 0 obj << /Font << /F8 8 0 R /F54 17 0 R >> /XObject << /Im6 86 0 R >> /ProcSet [ /PDF /Text ] >> endobj 101 0 obj << /Length 3201 /Filter /FlateDecode >> stream xÚ­ÛŽãHõ}¾"šèxlWù†ØE0Ú¡]xØí ’Ûq§3“ØY;™îAˆoç\«Ê‰{$Ü)W:ununîßß½zs›ÙEUyš/îIRDyeyVD©Éw›ÅOËí*Yðôðœá9Âó <žH~ËÕ:KÍrÍ?VV xžJ`˜Á““¯Ö&±†Þsqï&xO4éêýÝŸñb$Q•ýÊnáùž·|ö·³T%YÁã, Éʺ¾§²^¬Öi\eDR)d+ï‘Vb1¥ï]œÅðxÖð|L!Žˆ(ÞÀóWÚ¿žCð• þ†.’æIEa ×bbèåWkÙÉK¡óÉ1ùÿAeÄQ*¢+e­t*È¢4]¬Sc‡½…¥GxvðŒðüL‡æT”ƒ!Ķ z:]¢Ÿ Ì´ð(Å­<#/ã†>\@l„¿<7 rô'ÇHë›[k,þ/Þ:Í¢Äæ‹µ±‘µ¢« ¿Ô.èQÄËM»G†º-c)ƒË‹’.#S ówDÎÚfñ²?¡$Z¢“&êãQQ7«´1Ñ<²Ò Lƒãn#ò;íèþÔ{^'aœdùPë`h™…Nà †¿p ñØj)´ä Úúèw#ì¹½ÀÀ¿†#âÏ8Ú´ÂÝÍÙ:‰¦?oQ¤åò Ðâ¸"s©ñýS0¹Å>œxɃ—”ë==º&Á€òMš0ƒ72€H‡xÆ3 •‘|öx…A|}'v`yâYjb–AýèÉêV|nÛÍâë;>Kᜳ G#ÛõŒ,ïWiIDC߉&%µ‘QÔ¼XwµžIÂÕ$6ªà.Lp~ß"À/DL°wnêAX„¹'”(³Eç©áøÕ"N˜ÉF"ãViD‚é¬G4Ë|¹ù5š¤Q’‰ÎAùØ‘´ÛŠÌàmrzöÈĺdñX`¶…a61̬¸ºF x'¬Z–»÷D}n#®åY\ç#kmáGñ¨Hï'?ý Ó-ßL½\½òvÊ&«ÿæŸZÜ`˯¿âŸQ¶>_Í:±©Ú<9sþ_bâ ÙCYF…½ƒ› \ß_›ë3¦sX¾õ†ršô%T¨ae^cñìùj„ýÛt";M+øbl?¸~úm<ÏHÎRJKC’9 ¨Ä1RÜ6Ô œÐxž{’üøÚ‚ÜoEŸó¶vîNÔ#Ù=i5L ÒÒ»£q–ûqÉÖáÝzË@ùNÕäŽ1÷;“o%ÌÒZÓHÒ2:yÜš…t´üÚr0m#·H¶Üá·Þ )u·áÁ(^’ :™sÚasÌrN¢¹¤ùΉÁd,ZTff1þÑ\=jq55ùT€¥Ž[bÍH‰|DEäÃn¢&ý .vï¼Ç|"gä_]ëȦ!Pƒ2B81Àx³S)ªu—;ë@Îì(×¢$&³!kó™³*ÍÆ Cü°ÀL™²NŒZ% ÆLL”¶4lC¢è¼Ùqå-ÔBp|OÉC¯Éž:xt;‰T‚b§^uè‚Ë‹ˆsT(½åñ–dp>ÊeÌr»¼Ó,¨­YüŒ˜Ø©Ü«7=p:þ¤JÆ’À–“ìßkÜv¼(léò}[M O—dȽ##­_lkÐVëæÄo´táÛx»«]Hž¢´¯Ûî=ÒGö¯D¼ÎZ‡¢—YÑå=ƒMÐkccKׯÆrmp[®éåóJì¨F†'Ä%RÎ3OƸÅf7ìOC1à¡¥ˆ1ò›žwÔô\³ ÑŠÝHXS T̵Úzí|¸b 戉\-nN( ›5òGž{$¶ÎótùG¢èIðIƒp©E oPNøî»»F)|Ki€dݾëfdŒ#wÎê.‚ ìl}ìggÈÞ%YO‚ðoâ$J² ¸&n›U–.ûGq‡WÉ‚I¢2qÀ*Og7Ùòƒ^Ç“ªS¹%HÒ(%°PPDUQNåM9u·•ëG˜ÂŠ~nÄñhEXØ©7±AÈAA8)xT´{½y—«U°R`à¯y‘"¶\béäýœ8Ç®?Í84»¼Æ)¤!Êi~»¢Ž›žÊ÷áôÅpÙr%ç¼× æ`%àÀ•Ì9ª½‘%ŸG!¦Hr‚й¹”ã)û¸Ôû¸Ty|äF­ÚKVËŒ•¿æåÆK‘2¾¹+Kê¨1…Br‡JÁ°Z%ËáÏ}¸øUòõ-IbÇ™>Ëçêv$qTÚD&©œweR’˜VœS#„&0¦Tè·ù[˜I–?H^¼×f•/ÑYEÚþdé÷ä.’à$ÅÌÃ!Žs't~Çç\ÐMÒªÎüËA–îiÉÖ†jÍ+iGD°Ì½µ¯Ò-€ßŸ°×ù^ºJ€áÏ; [=ïñW?¦ÎgÏ*~ôÛó÷<¦t~%€ŽÊ¢¬$1ã¡«§$Òíàüî,´Q:ƒ?àÖú€2¼IÌ3¶‡$HB‘YO&Ötg0—)¸_Îjébk¯åçs2öyÐ’Wqû1 æ&úN‚ª5Á¡ZFê“®Ì']|êôt.Ó}(öq˜ÐL2.ßfDäÓR“r&¦©¬IµØ¡¼e”N—k®É/z‡Í.¨ï]Ë—9t-š:¶„ÔmŒ¯öŽ$?W0ÂZè!1þ“‚÷fr\Z~Õ“3Œú–äïÛ¡×Ð\+P|ùßV¥%-ä’5w͆´0@Tê9G’Œ`{d›âê£ÐŠQzÐD¶R"G jõä>Kp?ЧŽœê¡?C¿=—‡åôÙà%§Ôª×ŸŠIjOàÿÎyÌ8ø€2p aä`û¨1õAƒ1·¾ae®ÂÄyçìã0ì *?ÍÝZ§? ÈšÞMÆÛ?À}ðú¤uûY#ð×äWîÆTÖµ!p\”6æÑ*\–Ї®yãðkJZIù¨ß˜â$l¤íÄOá6_䥕‘ÄiŠØõ$!Á9 wDî䈜NF(Àê'qÌóJõ¿*NeÑ‹z€žÅA;O’6c_0T¬õéNZ¾“ÞH¤:áàFǢ며kaD÷L¢¼©€uWP“ÈZÀYôµ ×ÌLñP°öíäD@ïwttM*Š=Ã’ Pï3yä~ÿ‚ÑIã*ÍÜÍ´€Àã¥Þêm¦þj-#ÐRǤM×,5˪ä_j%ì´§Ú2&PÍßèä‚®û02À®›I@Þªo8µ¦†fé›êC÷…úp(¯IÁ"Øz!÷þ¤gv_pcŠRbCÒ/ùÕð›Ú=ŽÃÞÑ—eb[ËA˜¼8oVÇŒ¡õÓDÍ0®52õ‰Ú¶@,ÞøÉ )æb{˜Õ¼>Ñè=¿ä8n‹%F?ßÒ"u%§ƒ/G%?5Â6ð×gmÔúh„íCmÈ}Mê`ÐZ('Òý¤ÌwÛi/ñMvkE /Ó4J”DEr~(ˆ¢Zþ~F`õG8¦l´u±S£SÂô#5¾ëõÆÍOú¡GÜËŒ´ô«‰±èûZ á=’(\»pWÓDÊXì=û,J(®õ_/xÃ^“€-£Ÿ|—|JûÔ˜™Q–í:jè s¸s©‚ÜjõÅYÈI]°õ^ɽ¹ž' “@Ùßq§ÿ sóò—¶0™6F$%AùŽÿoñ0œŠ-(TÂð¼j0£‚Ck·àÿ\p@BÓ8Ê"[@‚l˜Ü„þ{éÕww¯þŒ#0' endstream endobj 100 0 obj << /Type /Page /Contents 101 0 R /Resources 99 0 R /MediaBox [0 0 612 792] /Parent 85 0 R >> endobj 99 0 obj << /Font << /F54 17 0 R /F44 7 0 R /F8 8 0 R /F51 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 104 0 obj << /Length 392 /Filter /FlateDecode >> stream xÚuRMOÃ0 ½÷Wä˜H4kš¤i9¨7DoˆCµ~lÐh×ÁÏÇN2èP”Ö~¶Ÿ—Á$3Ü$)‰M̵d×Aij$–Êf¬m¾Ð›ûÞí<Â:‡BO®XoŠ`“§$Cº„ÍOcñø‹Š<Óœ z€Ý.|kÊDSsÍBeôvl:±8…ˆ 3FÚ€9N.óö¾^Ù–Å-:ãòŽ¥WIË œ×Å’ zDÖÊ%7gʲõååàC˜Z9ûäç-Ý,þ7yt~sYýÈ@ ŠÍê>ΣÝâ<8&îÚ³cü0 0³—âä …à™Nœ@ó‹°}B¾”î˜^+pw`ZíœL³CQ#{úÞù}‰^‹3e‡X¼Ö9{ääè&VJÑ'äèüéªÿ;ÛT;à ƟAg¤èñ2º_ðB8¨¹äØäZ­ž4†Û§iµÁIπݔ½[µ~wRpËs·*‡q¤¹IáÅ •q)¤ ƒÑா=6¼” endstream endobj 103 0 obj << /Type /Page /Contents 104 0 R /Resources 102 0 R /MediaBox [0 0 612 792] /Parent 85 0 R >> endobj 98 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc6.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 105 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 106 0 R>> /ExtGState << >>/ColorSpace << /sRGB 107 0 R >>>> /Length 23879 /Filter /FlateDecode >> stream xœ¤ÝËŽ&Ë’æù~в,úý2%! Òi@^lJê†È×Wš­eUº­Ý<„lâ;»*3ÂÃÃÃÃ}Yýñ/ÔÿñÇÿóÇÿúõÿþÙ?üoÿÓ?ÿñ/þòGùYJùñûÿýË¿ø_¾þ×=ü×?þÕ¿þQ~ü»?êùõÿþãÕøñ?ÿÑïϾ~àÿþÝQçÏÖÉÿôã/ÏSãçÄŸÞþ³üúSêó§u,û§ãƒŸ?o¥ü¿þ<øëÏçøYûsòóç½ìŸgüúáÈ_¾êÏùÛŸ“Ÿ?ÿöËþúÝ?þÏÿ–§ößþƒ8µÿðoÿóÿìl_×áoÿÃó“ÿ;þ³ïŸuühíg9?þöï~ü“ò7?þö?þñ?ü­ÿ½ÿØxËÏÓûÛ_ûÖñõ³ÿþ_Ž¿ú¿¼Ç~÷_ÿåúkÿË6ëÏÛ~û/Ï_û_öÒöûÛYÿê3ÔçþY¾ý§õ9_ ûO?' aœŸãW[o{ý,í·[áóÇÞL _úu ÜýùSèן֯ÿoœÏ“¿ýù™ö#~þüõç­—Ÿ³~þœüíÏñÃ~þü×ÏþûYùu.þé¯ÔüÞíç-h¬?åÅøGþÛóu**ÿ[y5þ‘ÿ¶önÿ±l´ÿؼ¿Nãà,Ûí?ò·6~ÞÉÿX6Ýì?ÞÅ.¿·¢_çë[—ùÇhÕ~:ö¨Áöuië×¥‰ ÷qð_¼{ÿÿÙ ÕûÕí~ÝÚ?·÷õOþ¿ùê(ÊòïÿÍßÿÃÿð÷ÿ×ßýøË¿ù»ÿû?ýû¿ù×?þö_þU¿ýù¹¾NûðÿÁÿÊ¿ü¿ÿ7?þiÿúKÿËÿù_þæ«OøñOþÍúü}_¿Äß±~üækcþÜëÇßÿûÿûÿüßzˆ}uÝå¿õ‹æoüº¦Ñü?œ?¯_‚bÿ³à™ uJ‚Kq]pkvкõÌyŒÕZ€bûPÜW²z“ó³Éi¥b!¯b›à©ŠÕýþ³Éö®X:8Jæðþô{ÌUÅã¿ÂÄ%ˬઊ»€~Q—ÿ §=qú/¸mø¢ØÁyÇ÷l๊ÝýƒS—YÁ¯F!ØhoAûõgùY·bàž’<˜§îaà-™_O;9“?ñØÉ™Í£bgSÜô›i'gvkn‚kµJú/øu’Žâô“3}¼’9.ØäWQì<øjvr+6?9ëg“¬ìC²‚ã*–®.YÀ33›uÓ_Üöã(Ð;™Äã'ç £HÜô§vâò†tí‡Ul`«Šsƒ»Iò`ïÇÏ–´»ŠÝ¸‚}‚{JðE﮿^‡ÊPôîzñ¦Ëà>Šå€¼ ßøõ¢@Þ.i'g}ý8Wñ؉]Ý~XÅ ö¦¸8‡¤pläVôÁÅ£<Ó_â®ÿÏ‚ÞÕqI|Š¢wõ÷ÄEùƯþ‚mHò`¿qýAp.Y¦ŸØkCTÁ}À>$y° Š2×Ï’´Ó^ Ÿ1Ùþ`ö{G¸ÒkI˜÷O¶öÍ£h—ð–npó7aÔ›ý¹íþZx7º6ቇ¿Ù¯…pwOó>‡ö§‹0®ÇÂùÊÞ¸¿¯p£íOØî£]éÑ¥'Žg;Æõ¸q¾^I·¥Çï#íC†j_Bºö O•®8¾ú¨QØ_ûÌghwúaNëÕÊö(ì×£v“>›îGÇœ¯lA4Û¬…r¥÷‘^q¼÷¼Â8~Z/«ì“Df{ Q.´Í{ 8~wé>ès¤Ù¶u\Òƒ^Cºz7m\ï×ë5ÛËÁÈS¸Ñ§ ÷h/cSaÏû%›íåb,/ì׫áS0ÚË—ýzeûPÒì×C¸Ð~¿eãz·Š7‚lŸ,0¯*íS…î«Çï%Ý}«¶_ÏÖÐf£=4>O„ãøÝ¤ýÕ£6ÞÏÂf{øîÆö`¾Ú8žýAöY´·áJÛûº0ÛÃÄÛ p¡½½d³½ð~ŽãO‘FÒž7ÙãÒ·J÷6Ú˶ §Ìö²1"îôÒl/ì„;½‡4ÛËÅû§p£{®Ñ^®8i?¾Œž³Ñ^zÅ»¤p¥ý~ËF{é s+•öþ:í¥wŒG… ½¶4ÚKþD¹Ð<¯Ñ^¾¼·¶·—¾ð‘çÑ—y>’;}º4Úƒ-ÐiÒh_>K»Ñ· ¶‡~0öãí˳6Ú×}¼)\ÃGzÇñóOÇû,I6®·}¡ÞÒ¸Þ£ú\µ0ú û=µýzÚ×ä%ö0ηpÏóýýÉèx wÚß'²k¿¶4ÚÃþõA¹Ñ£dÏËö`ÞÚq¼=…1ÓÛ‹r¥­=³=L{Û–Æñxc<ûe»ÞÂlË¿7)£=mŸ•ÆxõË}H³=øÌŠô Ï’F1¸€Mx„4ÛƒÏúIwú.iŒg‡ÿ‡Òf{øîíå¢=7Úž×Â'Ž¿WÛŸÅÇcÂh/ý0Úƒ}·_Ú•¶9 a´—éßµ¤ mã9áÇß­ãýÛ¦2æS&ž§Âh/ý²·[!0¥ñ¾<}`.ãÚC6ÚËD“¼9Ÿ2ÙŸwÚ¾® £=LöÂh ×#ó)“ýA6ÛÃò¹VåJï)=çIózûL¤t¡ýzg÷8~Tí8~ui^oö'Ù¼ÞÇ¿a(ÇñçHc¾ ·´_öb{°oÓî´…OþÄq¼?O²Ñlàtµm_&„Žo¸žÂÞGómx±“ööd/žCz,º]í8ÞÞç…Ñž0q ]è;¥Žçx@¸Ð޲ўlâ®K£=ÙÄ_ž˜Â7Ûû˜0ÛÇÂh ÏÓì}hûn¥ÇOíÇÛû¼2ÚûƒlÌ×Û”®ÇÛxUxÄñ»h£=°?Èî‹®C;ŽÚ-Ž?Gdz¿È®“¾GÛÛÓf]üøÍç­0ŽoèO_|ä3{š}.mó)ʃöû9{|¥þ¾Žþ8Û—r˜gÕîôîÒ#Ž¿SÇßîîMÚ?ìš×ÕŽão•®8~b¼'\é]¥ý¯ûjãxÞï¯;f›í{šrïãél¼/ÛŠ˜ª]h¿Ÿ³÷¤GÑŽãm>Có)ûø|›2Ž¿þ½DxzUi¼OoÞÂ~¼­™Òx_:Ï ãø×ã5Þ§ÇÛÂ=|¥ñ¾tx? ãøîóÂxßþòèÚÞžï—×1ß{Þ7„ãxßÍF{ú²W…+móMÂ;Ž÷÷aa?ñ>œñò—}¼&ìíéð~ÊÆûÔ—ý}D8Žo]zÄñ}K³=-Œ×²[xmíAï!ÍöÂûM¸Ó«I—ð.Â1_ûeoÙxß±Õ>KãÙÃû]¸†·4¯çõu,Ê5|¥gïíMدç-˜ÉÆõ¼ý­p¡ç•Æxö6¼ ºwi\ïÛp=³kx]iŒWïˆß7Ù¯÷]ñû|wáûÐåóDÇoü>Ùï~Ùá8Þæ»…Ñ^îÁ|žp£½?Ì^qü,ÚqüÙÒ3Ž÷ñº°··{Ñ_eûxÖöóÚ|º°gÝWÚßgÌmkºé û“Œi.³ßøÒƒ¶ùáÇÛxI9Ž·ñ¤°¿Ï´Òý{¦rwïo…ס{ÕÆñ¾‡Myâx±•ná+íï3fžÏä8~wé¶èSµÑ^¶g…ë¢m<¦ÇÛ|—p™´}/WF{Áý–|ð>b¶ñ’ð Ûûð¾ôšÚƒ>[ÚßGZÅý¤ìÇWÿp¥Œëýå¾´;í×#{„ï”ö÷‘Vy?dûûH«>p”n4Ï×ëÇÛ|ƒ2Ž÷ e1×¥]éÓ„7ÞGZõ‰ i¿p>³ý}Ãì÷C¶¿o˜ý| ãøí똅פ۔ž—¶ñ‚ò —öß#Ýñ÷ù…Un‡öë%Œöt±M8»z6m?¾ßö÷s[ÚžSxá}¡5xHãx¸*ŸMÛ|‹²·[Ï2¥ý}Áì÷ƒ0Ž8_ÙkÑ6ÞQ.á#=Ã~?dûx±µéã9a´[¯2¥[xuíAï-öÐ&ž·ÂhËß…Ë¡OæzÕÖ6®g6¯'ï'áF¯#½ãøû'Æõ<èï³y=y? ÇñûJÏIÛ÷,e\oÿ0«Ìë}ý}M9Ž÷çI¶Ï7X¼Å(ÒhÝ®Òq¼·‡ìÇß«íí¡W´‡l´‡/Ï£Çï.<Ø^zÅó\¸ÑÞßg£½Øzž.öòeo/Â~½{÷ù a´—Îçiö ß®í׳³¿ÉF{è¾s\:Žï[ºãø‰çY6ÛÃD{ôÖf{Xï zti¶‡…ö Üiï¿îѶÏW £?ù²_oáFß-ÍöÀþB¸…¯4ÛÃñù&åJûx(›íåâz Wº5i´‡Áþ íað~ÏÆõ¾STÚ¯çàýž]p¼ïA—á-Üx=ñ+ŸðøwÚÏg6Þ'ï'áFûùÌöùïXŽ6Žçý”=7½šv¥ý} Û¿§º¯4æ ìÁ_µ+ݧ4æÆÂx)»Â™R.t?Ò%Ž?M¸r>al´—lÌ'Ø‹Óд_ïìÇ{,Œöâ/¶Ê˜O¼…ãøÖ¤g?†¶·—Y0Ÿ’ù›jÚqüÒ=Ž÷÷á8þ iÌG`âOÚÛ“MLj×pŸÒh˜x•.á-ÌÍñ>qܤ1ß0拲ÑlbþhÚÛc6æìÃRÕ´}F{À‡3éNß&=pü@{î´··l¶öGÂ-|¥[¿—4æ£láGÓ®ô,Ò˜`Èr¡m=Ôë~± Öf]i¶Œ„ÙŽXéAÛû˜ðŠã÷ÑŽãíz ³=0ôN¸ÓóH8~wí8þNi´[¸Ûµ½®4ÚÃò éJ·#ö²üÁ ãýÞ2Úƒ­wšÂ1_‰/Ò8 GÂxÞ,ÜïÂh/Ë–Ò8÷«0ÚËòµ2Úƒm\[Ú^Úx^Øz¨.Íë=вñ<°‹M»ÒµHc¼€¡Ê%lÏ›ä× ý‰0Æ ¶ÞiIï°·'aœ¯íó¥ÂØ>ð¥ÇÏ&=ãxo¯Â¾Kã[/5´móMÂ/®ƒöšÝ·iãz°¿ÉÆxq±¿ŽãO‘ÆxÀÒY†0·Ð{¶ËÕ´­W>q¼·7áNÛ÷Ra´‡íe¼/ [Hy†ÇÕnôíÒxد(WÚÆÛ¸ޖ{¶´ýzXF`‘noi¼/î×ã»g\/¤ ã}o/ŸSî´ßÏÙxŸß¼ß„}®4Þ×-èHã}}ûÂ|iÏöžùžÃö–ÝÃ<É~¾Û[6æs2Ë„ñ¾¨CxÇñ·jã|!Só½–¥3µ =º4¾']$ô KûóTxÐwH{(V/HˆSîá+ÝâøU´››÷S¶÷æQµ«»á}'ÛÇûæ;…9hùùþ>!<Â[zÇñþ¾š½ðû"ÇR¿/’,…ç¦ÇÔÆï»|¾[ØÇsæÛ´q>x(Ü.=þăöçEv=´Íw ü>¾±SºÑ­¬1Ï?q oiôŠ\7åB¯"íϳ÷²ýyÐ+² •{xKûóÀì×KØÏGåó$ÛŸf=H®ôÒöçywmœäà £=T$. ×KŸ®óÁçQv94¯g2ÎÇDõ¸q¿¸Ù®§2Îò…Ï¢m<¯\èQ¥Ù^–Ï ³½ày§Üik/¼޸ߕñû N˜×©¦Ê…¶ç¹0¯·oLVæõ>¨Ó’ÍëéҞʇýAõ‰QéJÛxMýAó…¿Òþû6ÿ0¡ŒëÙ*ÚC6ž I¨Ê¶÷Aa<š?8¤}†4ž•g²;~_vQÆóàË6žVÆïëG”ñÈÆx®!ÿR¹†·4ÆshXÙœ¯3{5§ìƒŸY–ʶïmÂ{ÓkhWúviÏw<8•}½¨{KûxÞ¼þÄþóvöÙþ>g¶ñª°Ï×ö޼@åBÛ÷á:辤џwß%Ÿ·û|xòäóº³?®´}¯Æóº{°4~äq £¿îÈ3Tîô®Òè¯;ò•ñóúÆ^eÜϘ¸“.á-û¹#M÷sg"ÜÂGºâ|.×lï£Ê8ŸþàT>›¶ùjåFûõÎÞøy‘*¼í×;ãõÎû]Øÿ½áùðʯ Þï•CÏëQÐßgãy=7*Œþ G¤+=‡4®ç@ž¡r _áÎþz°?ÉF=Ø_7ÚöƒãzÚ­«Ÿ§ãy’ë=Øßdãzä)*7ÚŸGÙ¼žÈÒæõd‘Íë‰È«Æóâò~ÍæÏ{âïûn–]ynÂ>…ç#ÛÇ‹fû%Œ‚Ày>ÉÜ/ó—?ª,ýW{.þ—¢fmâÆ?Õú ù«ÊòCŽ ìÆÈôÅÃCÝ}¨ô«óC_jºn&§‘°LÐÑÀ³Lï‚l+àPD=c¬?ËDÝh¬ŽÎDehVµLôO#ç}cØŸbÀ¿³cXU–}RÛÞy%}JÑ‚QeÙëV&Fe¯-šˆZ׬.™è‘1‰ ¹“ǽF•åDo„“ǽ΂›ˆÊÁ¬ÁœˆÚÀX›é‡‰µ¹/YÃÕ"¨†¢7¨£œèÓ“•¿½NìÈD%ÝO•Ö‡ÞD§OÜ úëLTYNô&j¡§S1êÏ•Y>‹½"u¢7щU¸™>ž¬´šˆªÒ¨>˜‰ºÑŸj©ýó‡½=oEÿ¸1±v+Ó?]L¬Üz¸L??u:ú°ßâù¢?ÔÖ|dú”ÔúÔË|èVô醅J«™þ²´PŸ;mUÄüN/Ôa}y0»°J/Ó?²-¬!ÊD]a¬PÈDå`¬ßËô×ûíÛÌQÿõWIÈïôGïFÝèL1ßXWú’ŸQXЯ¢¿rlVKMôÊëa2=N`c5Z¦v7nöLŸjÚøÒ”é/Ê{¡ÎO"*Ú®ø!¿‘!-ûS×ð¡OÁ³Vn&ª‡þªø¾|åðÄ&úàô Æv&j¸âËe¦¿ø¬+xÉ!ÓÁª£LŸ´<¾ø]ÐOg¢âR¢?€ÎúÔ«ûNßNõ_ýt°V(Ó_õΧRß72hã°_"*˲öd"jDz_¢?ž«K&¢ÆgùÔwûNE•ÖD]|;ËD-UÖp}È!ÓÅw³LÔˬŸªgßé Û£fØCÝŠC‰þºõ\ýt§ÏdúèÎø!úè.4þ‡P]¬ÍôPÔ%MD ×5°úè^T¸LdFžÙlè(ËFsñ󨌀åÂ3øº2€½à‚ð§@¦ŸãlÐÚÜ"ã‚PÂ¸ŽšÙ£ÑÞGg³@)È£@B9èų\ØÛ¾æ[³Ÿïl„ÌfЊ^³€#>` # ¹b°O[K`z÷Ú¢Ók´×_‹³À¦¿»%O.µpž€ìŠ¨ÂØgJaÐVL€ ³@% Ä ÷N³@ÑkÜ/(…Pϋɇ¯ø¤Œ(­áçÉFjÃaä6|@f¼…÷×Q …ð„Y`ð `9ö,€'Œ€×†˜Â(p•¶Ê,І´Â¸„q=zE€ìë(Pb;%š4 èuTg#À½£À£° ¯ØI¦ŒëÙñ@˜ì&x³Àß'¢³ë¢½½d£€K_(=£Àà‰¯q¿²0î×Áóûuð|g³€›WZPÆýʲQ€bð|½ŽÀQÀ,Û_.*’è”wü{GýõàùÌf;L  wü<7 (¼F–‰{Â(€®^sƒ ˆ:Ú(š²Y`iFÀÿk˜,Ðçõd—l@Zñó¾Fˆ(€ôºábE¥3e˜ºè³Q€a²@Z6 tLHËfŸ‚ß7ýY8ÊF†J“ÊèÏlà´…c¼f¿%ç *Á*£?[,€’þl±ÀX6 ±€H6ú³Å!ÙèÏP)]™dž·Ù,^ï×Üeö뙽/í?O6ú³Íë‘þ, Ðd£?Û<_Ù(°\²Q m³€Äcë&m3²Â诶¯´VFµQàH˜BPEýÕÞÀÍFµQA¶ï¤Pf—‹€Ô×' ø\œlPÀý Œ÷‘ƒÂ(°tž²Y€¢GÀ÷kÀ9=²_£ÀÑAŸä¯±@ˆ0 „|¤_c¼ÆÂ¯(f¸Æóø0€<ýÙ9@ýÝ1;¿O6 ¤ @€0 0]¨F{¾<ßÙhÏw ;íùN,f£=ß…»l´ç‹”ÂhÏ,‘<Ùž/ ³ÀÃŽÚ×hÏ,ð Œ÷í{@—ö~@Ÿö~O¿F{¿ç3íý^È½Ž‹R—ô‚"Â,pÐàŸ’Â€ìll/¾[^e ?ÍF@H™`ÌF€xa@õëv”¾F€KÈFÀ{Èf‡²¯SP@Fåây‘«Êë•Ô/3àõ»[äWôe#@¬V ÈFAe{Èf€= dø÷î”FÀ´m0nÒŸÞ^²ùû2àø5 ÄûJŒ*Íßw À7=uàzdó÷xžg#`£N²ñ¼\%p^ãy¹JܼÆý´.ü 0.K–VýäüîöÖ ãy°²1ž[=h^3 ×“ö”Ñß1 8ù0àtyçíBáO€°o°{½º@.Œç z…wàz@K6x/6 fã~\ho¸P+Œû‘°ÂèO7Vw&/ö§›×#–{bƒ^6ÚÃF€Ÿ0Æ ë’…@º±~Xíeï°xö€Õ佨Æ|ÈF»0ƃûD@Ákè"ÀX¸#`•ÂHd€«0ž'+™“?§lÙxß9lÙ ¦Ùè¯(…18XI/Ü"Àuoipù÷ ÿ³À¸¸zÀK6žwÀÂ#LË‘FÊSáú ÝÒ_¬ MþH" NϺÂÞŠ€™l¼oÞ† üÙxߺí³!ü1ž…Âx^\žï×\ïžÂ HÅzLáO€%ÿ¾×Øàih«4j Ö> 3 ’8Ù%&Ûfá˜F€—ùHcƒ+&…ùûð|gó÷é±Á÷56 ¬Áæï3°ÿq½Ü õe[o#Œ Œe|ßðûËØ fóµUzŒð‘f€äòùLáú{£p‰Æ1…# ­" LŸÂØ ^ &Ì€< # ©b-³06Ö`¿;È 'Œ ¨õâzdcvãùÈf@XÅël¼!àHtÛŒ ª¯±IMÙ È7û¿—öÖ€(ŒöÖ|'­26è7¬EÆõhX‹,Ì€1„%O´‹ ÂÙ €»Ø@Ÿ½"@lil@l¼žÙ èB€ž0î`%”€%|" *6X>Æ[\ 3  4Â=ªbCåcv¶‡lôg¨ÔÝ#À ë…àÓÏgÃåãRC»ã÷E¥0Ð.6èg—ˆ²ñv2 ÔE@”0ú+T*RžðT§4 %ŒŠ8áO€ÓÞ <°žSxGÀ‘Í÷ Ï0òó‘ÍŸÂØ€=°[ç{xÇ–]"`ˆýq6 °ÞYíe`½¨0TÇÁï›Ô‰õ²Â ØAÀÉëÂTfû÷„P‡…}Ê4X¯,Ü#àÆÞW„ ƒõÈÉ\l¶€0á8Ö^„Ñ_Nl€`cãmáO@޽¯#à`"À-™ßúBÀš0R0"<# Çž7ÂèOlãC“FÈaŒ‡–W*Èæf*³­Ç^pcë)„1ž[¼ÞÙ-pì}C¸D€ÍUŽFÛ1Ö¤ñ¼Y¾ðGÏK[¯v¥q½7Ïçk®wµ€ë/…ð¶±Wãõ¸Âx¬‡KîXÏa¶ÞHíý,ÜïÙ¸€„Ñ_0 "™ë=Íþûf£¿=XO(ìëQ-bMáàºX*Œþðú‡oeŒØû®2 $šý|f7(<¶e6ØÞŽ…?õ_þø=J¡þw* 3 ø;G¦ßr¿òæ+Ø÷ÄÌοjÅÊäß­þSI¶¤ (¦/øîíD†£~¨ R‡_lA$4dz1ð}ä%—gc™Š ÒP,%Ó‡¦‘ ‘ØùWÙ}—é¯eü^ò£ÎàþûÄ̓í‹[æ`bÄèŠ>y‰>Ùy™­‡%a‚›‰ž èÝ –« ¢¢hR¦ñfè2‘Û‚}™å÷”‹‡“»ž2ýÑ6˜7ˆ$f`$Nf`x6C¢tÀâKAt)þèô„˜á•ì^.×r2ÑT6ö¤&úTç@é¥LŸhÜéžèÓH³Ø™Þ}M? ‰Ü?ÑQdúÙDG‘‰ôäÁdúÇ÷‰n$Ó—NäÁd"m‚)‰…£d2å}"Ó%Óo ÛzRó3<!ÑóQ&n«Lÿ˜61—šéC…‰L—ÌÈÏè#s1OeÃ2½Ûœh¢™ÈÀØÞmfv&søþÌDdœ ]#Ó?Þ`_âÄÒîÉý‰¾p×xýµe¢ÌR¦?í›ïQlÌÞ°B¦wA Ž^2z11"Ñ1‹™‰þc,æ:$ú±¼ëMd®ÔÂW€Ld`°ñ'úÉYx,fâÇ@ÒL¦_PÛ[~ý‚.ƒyÙÐ퇭ŠÞæ¥3ýdoSÑ›èB‘”L¤˜0m"Ño«ÅÆŸèÃÅîú!š ÅÇ2½+ˆ“DQYÜCŸèÛBM¦wnë —%ч %“^2‘52N'é ‰þr)&‰•)&Ü)ýÐî›I3ß9YGgcV>s’ý*"µ_L2ýË“—ƒÞ„L_L¹7ör'úb£4VæäÁ±¯ù;;æ.ê‡~³odØdúmµ1Cürã¶:(Ø–éËo¾Nfz=(ö”éãƒ(ôLäŸû®V»”¿Ó'-ŽwŸ‰ ƒ¢ƒ/.™þÂzð½ Ó·cž»vfœø^ÄDÏ7:>%$肃ÂF/¹ø‹{)â´£èQ¦oÑaJæ`zÊhŠþù÷`ö9³2[e×ÌÈtAU¦7þÃf–ˆ”ÌZgúƒïzµ2Áþ[¶J¦Oˆ^dödú@î" â%«\ÌUg"—Ñæ™ÞÉØ<ƒ¤¿\”=ÊôÆpQÔèeÃcâ¢äPfäÁØ€9s0ÓÅÓ}rë®Øûû•6ÈûÉôWóÞ™þÀ½LHô‡×EŽLï ,Ò¥é‘/} —ˆd©Ÿ-­O§Ï^ˆ4aäDö,´÷ ÙŒœáÕÍ®ˆ„A$ÍëÁ—:3·¤¾Æ–Ú‚k,<=®tŸô\ÒŒ|Á'9á‚¿5f’¹eÀܵYƒÈáþ{$Ž0ž[J_cK3ææ³7·DVÔH^Sº4~ߊjÉ|ฯôŠÈ™>¥±%¼¢F‰0Ú¾=*cË`]±Eò5¶L",9{2’aËʸêŽ-¯q?TžïlFÊ £]‘Ÿ<“ùIÚ"c|ËZ6" ZÁ–´lléd¤ŒðØôÒˆ\ÀÚ.elYmøä–ܹå¼á“›0¶Ô3’Fxá÷A†¹0#m1.ŒH«† ñä‘7ø$)ŒÈª^°%6‘5~„±%–‘4­ÓÞße#Ò¢7ôw¯#r«£F0"+°·AýeÇ'%aFîà“¢0#eP#!¹üŠ„±ñŒðŠH™S¥‰ÐQA‘Uƒ×#‘£ ?yÜ/#OF‰-m¯}ZÑ"kìmZý¹íM-Ò="c¸åî5ú«Œÿ䈌bdŒ0ÎçXØR‘ói³µKzàçÅ'CalY·™Ó!H´ë•¼ÙíÁ>¤©R°D?σY°%1ýéäõÈ®ˆ|A¤Pòb4¹!ÌÈ›Ž-Ù> `‘5E÷;#m„y0jòf#’iúƒ3›[¾êD a<¯ð­<"²Æž÷ÂýyS¤ÑŸÚ¼Ãæ¤_Dâïˆä¹G‘) ðˆ\XÈ€®yÓ‡tAdï×ב«cKL6#o<ú\ýÕB$’0î§… Âèïׯ–·×-"{¶,fc¼µ™"<"ÒÆk¼gãz¯ûÙ"õ×QÙÙ•‘a»bËX6#gZÔh=Ãö½PÏ#Fêã}i#Ò#™YÚ‰ã¿Oöþ=2Gx†}Kr6#o&j¸gã}h¯¨±þÍí²¿ÿr/Ò/í[’^¯Bï!È@Föc¼¿7j¤¾æ´ŸÙ·[šû–µzJÔ°~]Â6×’Ì-KõÔ¨ñûúéã5î²Ùuúg‹ÒãöxÙ%ìKÞ_/Þ¯Œì^ὤÑ_Ÿ%ïÙŸ‰-Ù%<”#R†‘@ÂŒ º±Eçõ¯*ÍHD~¸FÕïyÓгñ>v¹$ÜíJ׈Œ9ʱ%· ²@x‡½†Zö„ùïe÷°×ÌF$FQó»·4–¿Ù+|šô8ô-ÒØÒT¶,f3²fcËËëÊ-Mæ#½iƒHaFî\l)Ên¿GÎcKÏ—ïæB [»–4¶ìTDbcË[õTåú{dËëz郵åÊØRd‘ºC[òêŒp¯{Džtm´wÛÛ³…¹ÀÁO̔ƖÁ†ÈáOdˆ×XÊnYrŠ4¶œ5DR$G䊅*Ïß#E„{DŠŒ+]½†0·tøÞÅ#Íóq°¥${üù!Ü"òÃú£äÉ-½6ðÒØÒÚ™"ÌÈ5§^÷ˆäð%åÙ%"9öY1±%({áï[¸ÞÙ¸ŸúÁ–ƒllY%¶H|wç–üHáOd„oéÉÆõ°‰Ë-ÍÈ‹óm ÄÇY5=›H[ªí‹„6î‡Ù°%ì5+çD¤‚ðŽÈ…Ù¥±ey6ÔËÆ–Õ‰HŽäÂȕٱe){Æñ¶ºJ[‚éðº\¶ç‰Èaþ>¸ÂxžMl¹N>y€ue¼KƳ™2w,©ö0–ì¾ÞìïÙ ¼"aUiF* ò@¸z a.ŽòÚKýÕBA0aF r@¸âçáõx=¹ex¡—0úƒ…rGÂØR¿°zOýÑÆzãdΧ{‘©%Șµ°ÂØR½±¥[ã=°äüuçý‚ÂkÊh¯{aËG6#–”¿n °q?e#rb£¬“pÇïƒõbÂx¬qLŽHºƒÕÂÂÜrïÿʈ”:ØÒ›Ìï¡¶¥}]iŒÇ/¶T °½ï #’àbýöc["ñâõU`ʈܹ#–Ü¿Fp}ýpöáûÆõ½›ÊÜ2ïëc”¹åØ×ìeonI*¾‚U¹Ç–ë¯÷el)ÖëìÅ-oÅ‹0)£øWÇÔ®4j<ooÙ“5î±wK[R°·N_õÒFÙ¬×c[¢W•æ–hߣìïCæ«Ü¹eªúÄ­2j°Öƒó-EÕ×dÇ––zÑ^³{l™.Ú%¶Lï"\¹% /~Ê[’}­N6#‡Ìþûf¯Ø’<–4¶\5p'FþôîE±”¹e××ã(Wl‰õ57Ù‡5z»¯WPæ–Ù‰¿ïõŽ-ɾEyaK­oÙTn±%öëÆÏŽ-oزªŒû[V•KlY]E8¶t_O¡ŒãÃ_̲ù¼µ-¡­K£?˜þbžÝÙ^°eTٽٖÐÓ¤klùUÑÍÀJtÁßwd%VrIU±pg/Ù7r eìnJ<ÜsÅýx/¹ËÈO{âæ.#n“{ÉBó*.î2ÚCqò¯béä—~ÚN]âà.£±%çÏ.£LìÊà¾ÇÌî©Øx0OÝKî_âÎÆ‡>]2Ùø3ýj(D›ˆ]7lÀ™<˜'ö9 %}}’h~6¾ôƒ±Ë(å€YH:³ýøU´7Å‘§Ï- òà+égÆ­8¸C©IúÍ>?%ª_rÿÒ¸Šþ@Eí)Aaݸ¢ï¹ÂžLìPú”·~écÿÒKNsMì¸ä.#{‡ËD¹g„È vÐæ×3±› ë¶hïÖ‚¾ûo†™>ñÁýK‚ ¼EÑê(¹žˆ;¼é2¸dÏTìäíŠþ*ÍâÈ™•û—Ú”ì?>»›2±OÌ[Šþ+°èvf×Ìäºí…¢½‚~Úy³'z7²|Š[Ð?pW• ÿU¼%}Ò{ yðmо p±`w&wdªè/›ëDaô‡>†²Ï‚>À]U‚~0vVVeÓ¢©ð¦Ë´¦‚†,èŸ7w‹]Ü/¹÷iìLNýl„à ú~-¯ônd³cLD™i„Íôö»@3±‹ û—2}:oŸø^ŽŸrÏ™{Ÿ¸OûåwUôÇÄæEIôIbî›,?>e¦3ý¢D° úÁìú¾s±~èa)áDÿôxXì;Ów(}J½?ôÛù ˜PÐ÷¡ƒl }qÏÄnŸárÁ²üKÿõÑ3'y®"Š_³Àq&w‚ñÄ>ôÆ¥±3ý`ìôËôÇÄA`ìkŠ•{½ê–äÁ½)úc"Êj?deî1Ë<ÜÍU›$ws É̓¹Óþ¥ïâÑDo QV;³ýøìËÄž+¬óô]dØÅ‘‰=HØë%è?$vseú[›¿ÞŠØU…€=ÁŽ¥XùWù“è]=÷z N—ì9ivvùf6І=™Ø·" áe#·âæÁ·)Nî"ëKr‚óHVðEyŒä™lC±ó`¿q2Û_åË}bá^ìÒÏ CV¼$>K‹Ö ž1ʃžM»Ðk sÑFlªSn4³^³îyE»È榶†HáFûs!‹N¹)N96ÅÕ&= ÈxÍMiÈ¥TŽMqwIcQsYq¾’q¾wü¾¯¹éq#VD8ŽoG‹.ñõ[:6Í%̺+V—ÝÏ—p§ÛÒ.ô>ÒX´[±éDyÒ§jcSêb ¯Ø´w†4ê:buˆ46­µO‚ÈcÖï‘’Üé~¤Q÷µŽ8_É^]»Ð<Ÿ¯Y×~ çÆù˜ˆ®Èæ¦BlÚTŽãg•.a^Ïï\ô[‘ ¨Œß×W§)³½ n»roïÁÂÜÔx"¸%¹ÒkKÏðiÒ#þ¾sµcSd[ÒlcyaïÏ6M+Wz i,ºo%®Gò¤ý~ËÆõlØô—ÜÙ_4lúSîá+}âx¯ úVinªlè…cShŸÒ+ŽßMÇó~ÎÆ¦È†\MåØ4z®47¥²?î´·‡l´—†\WeljxÌÆóªñ~ÏÆ¦¢Æû]8Ž?EºÄ¦×±´'ÍëùÝQ×¼!7Tã•¶#0(yÒ­hWÚû“l¶öÙ+6åî¡ã/Þ?³±©®]¼ zNml:ŦAá›nÆ”\h¿ß²±©»§”±©ª¤q|Çx4››j{œÏ×Ü<ü ˆòï›~“£î»-ÊÝÒ¨ÜW0½ÆõìØT¯Üiûæ$ŒM+Üt,ŒûµoŒ÷…'}»66]ŒG³QW~Œg„;ݪtãÛÑŽMÅSï#¹°É\ôb>[›z+B³q=¹iYÇ7_Ô-Œç…}OþOúvmlšÆ¦JáµhŸ.ôÚÒxŸÿ>cÓÖx.á-Ýãx ãxlún±éÛÛƒp¥=V/÷;7m¿¶T±©Û®·0Ï÷B¤T6Ï76õ+7Úc–²ñ¾0°éO÷3ÒG¤ÑÞBo„KøH÷Øt>¯v¥ï’æý~$Üè±¥klj_W;Ž¿UÏû\îäÃÐnŠWžôÙÒh³F°Ûëö¸²lôç³"ÄG86ÝÛxN˜›â½@µ4ŽÇ¦_anJÇóT¹Ñ·K÷ØÔ_§v¡O÷ýýhÙ¸Þý0žÇýIòfnÑ`Mÿú a¼ÚŠmôדýp„¬#Íëít•q¿Ï…ëÍëµK'\i¿ÞÙ¼^Øô®ǯ.M¯“ý‰ðoéÇŸ#]"4a/m?Ÿ«ÄõúîÅëiž&÷½…MÏʃ>Ú¸Þ 9ïʪÀø¾äFÛ— ao…ÚÐ a„úì†þT8Ž·ù”äÁPÍû9›¡ ãaßÑgãy„²ÒƒÞ]Ï«ÍûY¿BA„1Þ°•—Mš¡ì„;}«4æ 6Bc”+ͰÒ× ™WúºD¨H9Ú•¶ïiÉ\Toöñ´p„~x0i6ÞG7ïgáEzÇñ6Ÿ¡ŒãOD¾f{Aèr£W•fè ïGa?_¶BfJp×îZRŽ4CG8Þ.á+çÉáý(ŒãJ!ÌЄž$7>oï—l†Š ¼oÇñþ¾+\i¯fï8>Re_Çñþ>œñÌ™xî´×²1ß}x? 7ÚßG²Gߺö û–îá1¥[xméÿ£t“q<ï7áB¯&ñðáóøuå|öÙhÙ±“nô)Òu3om\OŸ8PFa¾Úƒöö–ñîEh‘2Bi*úÛl\o«‹|¥{„âøû¨ð¤{×.ôœÒ-¼®4ÆwÄãWü>¯1Þ¸|žûõ¼;~Ÿï.üÞv7~áA{Üs6Þ·®¿¸KOÚûCáJÛ XaŒg.Û›p£}¼žþè^ôWÙØ4]¼ÀŽt_i„²X°­]é>¤;þ>„ºW„µ­Nît=Úªt«t™á«¡J»eËMñ¶{¿kÚúa„š”‰P_aœ¯…Pßl„V”…ÐællÊGú‚t§w—žñï*="”©7íB{(kvãm¾K¹Ñš›ÍP)ÜoÊîSšíáøûpYôšÂœoõœ[¡K¸Ÿ„úS½ã’.´=¯„ÊS:&ŒP¬êû”'~ÜÊø÷:B­³q¿[èöÖ®´‡Fgãz×ÐháJ×%Ý"ë4mo/¶žæH3TkÅù|]Â~?wšçó»¹ Ô |7íA·©]h/Ÿ8~i#¤"4MB‘„Zbëy†4B¬ÀüÑôlÒižŽ!=i[Ï!Üâø9µýz7„Z W„j!L¸D(Ø^Úøy:úáFÏ-ÌPaKôó%Üh%ÏFèM(š½Ã~?ãïó…sÊx^4„ ÏC¯®=è½µ mÏ[a†¾ùĬ2Û B¿„ñAÇO<ϲñ¾Ñ'Ú‹p£·6Æ›}a¼'ÜèÑ¥û¦çÑî´÷³ñ¼±õH[º†g×ôÝÚ¸^ì/²Ñßt„Â)Çñ£ ÷hOã!aq½³O¸5i´—Áþ Ï“Áû=×{ ôPýÉàý.ŒÐÅæï»Âx^ „*ûùç3Ï“ÐOåNó|¾ÆófŒ8ŸÉƒæù|]âøs´qüŒóýÝÏ£1Ñ OÚß²ê:ø¼ÎÆóf¬O‘”×öñRöŠã}¼”ñfÒöñPöŸ&Ý÷Hóz#tQyÐûhÚûãlŒ7íųh/ºNíJ·&\y¿‹¢SÂ~<ªs)c<2 Þ÷…ãø9¤}>Õ'¦®v§Ï^qü=Ú8¾â}5ý &6•Ǧ½HŒp oi¼ÌŠçÅë¡e>ao¯Â…öö˜Íó…ÐUåB{ѳl„vN„v #4¡¬Ê8Ÿí5›¡§eUÆùd”þxN´á8~/i†â.<³ ñ÷ÙóH¿/|Sæýä ï¤;½ôŠãíz*#4÷FÑ¢×Ͷ…ŸG;ŽgQ¥× ÝE.˜²o…q»4Æs ý‰²_UQ”'ýõB!ŒñÜBè²2BgŠÎdc<†Ù\¯é7¶6ŽG‘0ú‹…û]9Žß[ó‰ ÷«r£½¨L6BïQ¦[Ïc[¥=âxoÙ=~ž;¥ŒÒñÊ®Eã­…ì1a]E*žGÊ•ö¢¢Ù ÇûÆéB{ÑÁì‰ó…|EáqhÏ+WzTi¨¾ñMºÑ«K{mÞ[ºÄÏ{›6~¤Ó%s=œ±þPøÚžçÊö¢¡Ùþ½Éì×[×Ã7v+£(E½QTöõ\´}oW®ôíÒþ=ÁЦ¬­íÇ·Š¢»ÙèÏÍG»ÐmI·8žE{_£(E«(z+ÇŸ¡ÿÞmÒ, ãE_²7ŸV´hãøŽ¢²Ùg‡¯v§½Èf¶ÝW;Ž_Uz]ÚÛ›p£o‘F{iH¤oiåA^Ÿ2®‡WPÆó¾MµÍ®‹fÑädüÒxŸ²‰¯"Íë9Ñ^„[x Þ¯yhÊfí×¼ÞÈ;TÆï³ð¼ÉÆóÜ>\iŒçûFÑìlܯý h¶p¡½(vö˜ôÝÒ(ÊÖ‘*Ìûõâz 7újã} ®¥+Íëõýñ(q½¾›y…fïï…ýçÈ>a›ÏÆx| /Q¹Ò^4<÷£ùJã~ìO²}¾Û<‹v¡m?ˆp¿o_mü¼Ï“l=c“ñØ@ž¢r¡ýyôºÅõêQ>ÿû‹lŒ§òP•mï‹Â;Ž·<å8ÞæÓ„}½Ù‹® zwéÿÞ9Úø÷G,ŒñÔàû˜p¡W“þµ]ºÚû#aü<ìO²Ñ_$m+{{›¾p'»òzcc£2Þ·'ïgáÞÒO¾/ûõœdÏKûûºp‡4Þ§'ò•ñûN¼dã}zúƒSEù&Û{v {{Ì.ažïd¿Þ¹òÉ\OÖ§x—.ôÜÒx²à­&ûu"¯S¹Ò6_%Œù’y1_‘íß#ûªxŸËÆxx!SÏSË#ZÚ~¾V‹ß÷5îÇÅñ`6î'[O3µý÷]È|]/¯ÇBÞ´0ŠŽ.ôwÊ-|¤ñ¼\ÈãÆý†àyiü}Eé³1ß±Ð^„q?-_˜¢Ü6}–6Îòb…1^]¾°J¹,šçû»¹_Ó}´mï3¾߮[žN•Æý€ZFÒ…¶ùaÌ7mäA c¼²‘7+ŒçÙö`e¼/ v˜2ú£íVi¿Û7(c¼¸‘w—¼9žßÈ›Æ|ËöïÊh¯Û7IãçY>ß#ŒñÜæý Œã‘w,ŒñÜFÞ¥0úûþV9þ>{߯xm#ÏR˜çÓ®e³…ÙÞׄÑläa ¯°õçÂóÐçjãçåý˜Íó‰¼LáÞéÕ¤1ßxŠ?o…ñ¼<ȳLžœo>¾p\Ï»ƒ<,aÌ÷äÝ Ï°½ ã}ð oRóíg¢?ÍF{8ÈkKæz•~÷(Œûí ÏUE‡ò…ÑÆÂèl=Æ’öõ ý"ïP×ûz°…2žÇ—×3çãú‡KegWÌ÷ŽVð<øÿå*‹DÿÕÅ »ÿ£¨i›xȨþüþÂø« óCØ­‘‰:¼þR#èS)¿j4?,乙ܯ‰íX‚~¬AËÄ%쨈šèÌÀú´LŸ>X=éç`Õˇ]£½YEÔJþÔ´}ˆû©Kûp’KÒ_™‡zô ñ©-ûлûqP{ô!';Æú¡Qû+U2} ;Y‘<Ñ_3¢ sb#½"y¢±lÔQD-]Öh~Èí[«w3}rtbín¦¿:#‚JÐŽEåDï¶&+ƒ'VroETQô¹ ÄÞ§—â!½ s"ê,{è©à$çRôÜÜQ›ò!*ec•nfåÁk%"™Ó+³:áC M¬_ÌôÏó úB¢OnÌ5"úÐbbeWf'm^2Ó‡_Q¥kB^\2VÎô CD-]TbÍDµ\ÔïÎô©úÅŠ™‰þ"ºP§5Ó§qP=OUk±Æ(Ó·,¬`, ××zÈ‚Ûcüýåq³FdââÁ^¹!qò`·fú´Éƪ‚LÔ‡­Q­ï¡RÚ¬¦šè®õ2/w²±Z-ÓÃÆÍžé¯*_¢2} ºê%ú;~ÈDÄlÖ=LôO,¬¥›é/À¬iûr~*Ïú‰MDmYÔà´ãàËf¦¿x¬;ÈŒ¯EÒ'½ŒG±‘^‘é!?èõ¸úà$êÃ&¢¦-ÖeúE9¬ä—èéÃ:}‰þ%j¼&¢î0kô=dÂaõÉDŒ]|?Ëôéé¨âš8y°½;dv<¦¢¿Ø\|WËôׂ[£êÕCŸ¸=jŠ}cûT5eE¢‡>aê½$ú@îzl¶ wª—µ}PtWT"zèQëD3Qå“uKýõ!j>¬¬ÓzQ3Ó¥D äâf³lÀ+>ÆUF@gáÌF€sÁa¸ä9ÎfÓ…çÍknwip‹›Â…ö>:ÆeG¢×8/½x6f {Ûl_€bî'{^@)ø/Œ€Î‚6ˆ®øÀ%̈5 À¼F€oÅ`a8lðÌFÀ{E#a ±™’*ÞŠö"Œ€ÔЬɇ¨,`)Ì”˜ F@iE9až/|ÀFÀm=Ÿ0Q ‰… Ž/]Ê(Ðb_J»pHiø€"ì0³”f³@ÝBÀ{6 P¢@ž0 0g#@™ò„Y2“WÄ6aÔv|ÀFÀlÇaô¶S¢H#Àº7Ìf#à¼wXg£½w€f¼€âlc'_v¸è½Ùè/ûD€t6úËÎö’}!À<ýA?Q@ãuß%€÷ÁóÍS<߯£ƒ i´0Þa?_Ù(ÀÈgÂ(À2&³Y  2…Y ç3›ö0ÁšÜù¼ˆ\Ù Ÿ(À'Œï(€•ÍV˜ f"žìf€×, ů#`²ÀK6®gˆÊÆý’²q½ìÁÒ¥Y€é¢?ÌF@ødµlþ>, öš¸***ã÷‰HÙ¸^¨ä¨ŒûÑv[šZúÛlôçðQ¤ÑŸ/HÉf( {]P¿X`$ýÑ€ýã•5#ðú5߃çmö§@MÑÆxuñz>œó6Uþ»FÀökô7,P#ŒñøÆùö‰Í(ð"ŒñèF aŒG7쓟'ÛŒÊ'lÏ3a(Aáö€Ül¨AaŒÇm¶ãJ³ÀÌE€j6 È\œlܯ§ÅÏóÝQàî À€0 04@e£=ŸŽÈlÐèxÎÆï{PHý1 ˆ£ÀëaÀt6 ì²€FòŠ(` Œñ4 `c¼|Pžþø´çlŒ‡Ï€Û×(uP@@¿ÏE›d.ð¯—ç;ï[w ;› &³Y c!à.›0Vܾf pgcšÍ€lô ã÷±å•.0ît¯{ü>HÙh¯¨ä¡Œ€Z¼Ø(#à •F”`‰J-Ê=ìÏ›lþ¾ ¸ÌF?Ø^s¾•¼”?ؽI3€—×3{†Ç”F€ÓìàËÆõB¥ÚìÊ€¼É€ÖlÏ8z€ÙÉþ"{…W“F€áDaH/Te#àÌ>Ühãy<Æ ¯ ÇãðÂèoìÃÝ•F@ؼó VÁùÈÆxs±=dãy²ИçÉB€úëÔ Hf@pý¨ó›@¸°®P˜¾ Ù àíPóÝü^ɕʌ…1Þ].qü9Â;š'6àe£½.” ã~d€¯0Þ7Ú›0Žo¨¼Æód¡½%/^OØ £@ b…@ŠÕÂx^n^쫽Iã÷ÙøKþ- ui\ïõÃÂü}p¿ ã}€¬Âh/–ÂüyÐ.ÌZ¬Æý¸pœ<8ÞÙ°FH¼ ãyw°’YýÉa{Èf+ÛCv &Ì€ pWDVÒ ã~9loÙ€>=^#€ò 8¹±?;F{`ª0tÙ²ñ¾xnü{¯°‰5¡Â(@p —\# »ÂOYà%½"@´Né¤Ü üš¤0Æxâò|¿.ß>…q¿2 Sí™•ÂØ( Ùõã# D…9?p Öæ 3`”ÂØ@[*6¨f3à”Âõ÷Ial ,=6÷‰E¬Á^@Y–46pï”y>6ÐeckPñJnÙ› öc›m`ÒfÀÖl 3@ë2…‡3ᆵH3 cÉ‹Ð(ÌC¬efÀ VÊ à³ûI2õâzd3À‹çãu8Y’B‘f€„±Á´a·0~Þ†€aœÚÀ£HcƒsC@¢067_Ø•="@ kQ…@Ò°Y˜_F”ÍG5ið]l°Ï.qü>Â+×3¤;ö„Ñß0 K¸†m_‚0Ú;’ȳF€%Œ à ¸f@8„ÀÓٲѡ’ƒ2Î'¤’kXa½«0æ:ï·ìQ¾A7›aø³±A¿{¥ñl¸)a´çá•ЕÀƒñÂó÷€)aè N¸E€ÓÞÒ8ßë9_Hï¨d¨Œ€˜á Û”{ Ù÷,ada=vr”¢’±2l$Œþ``½³0†°^T˜`¿ïkΧ[À„q¾&P„ÑO 3 ‡ç3 ØIæ¡ÈfÀÖ# cƒýôJÄÊBX¯œÌ-;f»ß„WàØx[˜ÿ„„€7aÌ €-yp<€…÷ʸF„Ñ.OºRþ“ÌùZ À±ùJá9¶_ãÁ…õºÂØÀ¿x½_G@öV)£½Ú^3môGËfÊè¬ÀQ—f@oÅ2ÑQ¼dâÔDG‘‰¿ y0/¹ùg¢É\L×8KÑ?`>(|”‰,™ƒF˜YÀÓ‘Ë‚”ÌÎô”Ñ‘ƒÙ燃Õê¾MdÆ?´¯büUg)ú è`ÖúåÁ¦‚ë™_‚>H`¶J¦ßt·Æ~»—…<Šþ1ùb®:Ó?Õ_DŸ¿ä`ûzÖ‰b}—O"òQPôè%—ø^”$ÊôêŽØÏõÐ_¦îÄî©Dœ|{{91Ì»ÈûÉĩüw¦wP_U^rÓúE‘ŽLF~à“…0#]ðIB[öKÅï‘=.}†tGd >I{S6Ï#-ë¥Å–®×ØÌHšdÍͧk#²…×8[ "‚’nÔˆ´þ[ŒcËh™±¥è»k\/|òU.ôÒ?"q„WDâ¬&=ðï¡çÆõª%¶4½öO Sº0»P³ÿ{;—|¸¯¶ÿ>5„±åß>•TQ#$ùpËk]Xr*\i{º—8Þ—t¿æ¤CEX¶2îÇŠó-Œûkc²¦ZÌgJ£½4|2FdM+X²Ÿß—‘2Â%"gÖŽ-¯­£n6¶47|rnq¼/éÎfd "i’YcÜ"i¼j6Ú[;Qã;¹Ò½H#€‘6ÂØRok—«4¶£n6kE$ðôéÒ;"iʔƖÚÞ¢Fõë‘3ÜÒðš‘.ø¤$Ü/í5ܳў:j($3gÍ"af“æßwÐ^…ñ÷ݨQýÝ©1x=²q>¿<‹t½4·¼Fd‘uÌS¸Ä¿×Qƒ9ûD¤ kоÞ S®4"/#Œ-ý6ž©Ù-"ÇÆÂ’Äl´§O†ÂhO6s:„Oü}¸^ÂüûnÔà|í¯$YÓ§4"ý¡ÌH\äÍH©‰H!aþ{ˆÜF¤—eç,iDfM|Òfd "m„1²-!Uxq<5–Œ¿žlO5„ñ¼Aö˜2"—‰“‘J÷›ðŽãçq¼/©ÍfdÐÅ–ŽlÜo ñÉü¸æ‘7EzE¤×¸ÌF¸p¿ c¼³:¶$dã~[ž} ŒçéB$RrãõX¨¡ ŒñúÚ¨A”ÍH›ƒOÙx^­5Ì^ó罨‘õš[ÚÝ[Ïc‹ènÂÌÈ6³ÓkDÚí†`ٟȯњëÅHaŒ77"=„3ðû<®œÄÈœäÃþx#²HçÓæÔº4Ƴ{aIïkÖ 1÷"þj#²ExÄñ^#!ã1Fö$/^o›››Òˆì°-)]zÄßçKâ²ñ¼ßˆQF$ kH¼žìO‰'¯q¿Š@¯#ëÙ#Œûåà~®Ù3º0— ™ï”Æó€‘=ÉÜraÞKïs6x¤ùûzÇžï“gbÉn6#‰Øž²q½"[’cÿÞkDr0R&yã|øÚ¹#-Ñų•±¥§ ,yËnñ÷qIækFæx¶’2¶,/†ž½"2gcÉ[vÈ{ßKžq¾ïg‰ãcFæÜXÒøš‘9׿ÓcËtõ½½Ê¾ä̼»0§û¸v][²Ù"ŒöPý«2#k|Ö1;¶¤WlifäÌÁ’ßìO¤ÈÞÒ½ÓgJ#R¢!r'™5‚|ïÖ’Þa{3Ò‘Âí)r¥Ñ^)’[ÊPlWyFäÈÒh/Í÷nd—ø}Ž¿Ï cK##?û’ÆBŸ*ÍH ÏnTö÷q{q/S»ÐsI32®r­ôÒŒÌðÙ‡‘˜øRFdŽMìmáÍ-·¶rïj#ÒÁ#q”±%ux¤ˆ2"Gð-By"â`Éi6¶lOðes>п jûû‚ìÒ-ìí%»„gŽHûκ¥±%~v,)ÍÆóÂ|¤ùïù‹[öˆÏfʸ§G~("æf}'_ŸÐ…ÞGÌ~¾²ùïy¶OvÈÿF¦<yq°d÷uDj!²AyGäªҸ_y Ü"a 鑾¤úñá|¾¯±*Òˆì@ä@6—²øZ8mFx.eþ¼ž™ÍÈN®iTæ–_o,íçkûJ:eŒG¶?¸”™·}KwvDa ±2"˶o9Ξì¶ßØÊh¯ö¾w¥¹åÞ÷¾(÷Øò¿µñ¼Ü~a³9d[êíy"ŒÈ›ã«…•{l™_MÿÞñ-½Ù¬‘h[Úוæ–l_¬Œó}}bB‘××og7F¾]_¦ŒñÔõì$eþ}¾~8»2ézö„2"+îA{Î.Ø’íkö²¹tÃ|‹tÖg_Ë’¼?[Êq=„±¥¬ø‡keÔ`µ+›íM[b‹ÒËŽÇÕOœ2¶´UŸXSÆ–Ýêgel©¾·);jW\ïäØV}ïVöÄ÷$Ûíç;[Ϊ¯7PF¤@õu.ÙýUGv@6¿7Ù–iëï…±%¬ý•»nÂ@E{Å”¸Â/ˆÒ…HQšDÛ!*HB" … ~?ž{gh)iN±ƒ,äõâ³=©žíHÏ–g“DL¥«±ëõ\e%¹›lûñʺ^ Ø”UllGL¥«E?Žçœ!ߢç&b*¡-^\;Îò€*¿Z/`*w-:Q"6eÜ=Ûû UZu=ðµ²êù.+™˜x<Û‘:ª¬Ž ߈;2ú)"æõèÙÙ÷!3#¹Cä„ç¬ìϰß13Ê©ŒFÌùdåÏsg÷#³5"æ|£‘uÀÖÏbÊdÄÌ`föQÄœ/¨znl¾šc¿Ús•7¸‡Ciï ¼É¿¯Kf.£NÅj-•lÑ•¤OÄÕKÍfã½ÜJÞ=CÐòÕ8°Ž‹³<®†ÒuGÖq‹TL‡·§…l†à †Í¡˜.ÇŸYÒ‡ 3¢:ë†Ë¼'_¤^V“å˃쥌·ÙäT®%= ßó—BÌl ¡Nÿ¾-%}ÿ§@…nº\`÷õ¹Ë^‹ŠÎ;½ endstream endobj 105 0 obj << /CreationDate (D:20140122074917) /ModDate (D:20140122074917) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 106 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 108 0 R >> endobj 107 0 obj [/ICCBased 109 0 R] endobj 108 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 109 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 102 0 obj << /Font << /F8 8 0 R /F54 17 0 R >> /XObject << /Im7 98 0 R >> /ProcSet [ /PDF /Text ] >> endobj 113 0 obj << /Length 2799 /Filter /FlateDecode >> stream xÚÅÛnã¸õ}¾"˜í¢š"ÖH"u[4»˜&À]lÑ Ð³yPl9q#K†å¬í·—çFR'3³}pD‘‡‡çÆsSþtõêíeªÏʰ̒ììj}Çy˜•ú,Kó0QéÙÕêìSðý›Eš¨àð&*ó»1?cœþ£.hx4Ãùäùý¥‘y¬ÍoÅ›Éùgc~µÛÓ·<ÅÐ=¿>T,ë«?ŸEg‹8ËtHóÃј^Xœ¡ùµæÐ[>cϼ,E+žÚ2xå÷l*'Kí'þÁøš/pp˜oÌÅX´!‹|?"q"WÜ}1'(¢tæwü,Þ®QOÀHë°Ðå§;ÿXOº¯Íï’Ÿçüü‰Ÿžø–LTó…D¤+hX—€cJÓ3˜­ÚCv³´j¢Á9(QÈlç(‚£¿cšOègŒ‰ æ;¤üÐ"Žt|ã][9¶vò蘊5÷/±ØOý›×Þýn"‹5ïXòîŽw0ƒÏˆD9&kÉjök$fÅ„F­¢0‡ 7žyÔl“='Þì×ÑÚ3>q^@s7CË÷ÎE®=7<ï¨{ƾ÷|Jõ¿'ˆ9Ÿw:'Dé)åÈmó‚½ÁøR>ãRöÞYõè¶Šø/Ø ¦29}…‡Ý1¶Žw³|úH™Ù-¿÷ì”^üÚ.Ýß³] #ÜÖ„Ÿzr­ÆÿÄ›GKGVÍ…E|«,Lµ:®GæmÉ ø‚efæ—2C ù G\°÷þ'£yôumiꣲvÞá¯O¹ñ§G~ø†ŸÂÑëúrj¿áÍí4Î-€MÝéÿ[ýÉiõ;—¦ã0ÏFlú ç0z‚¬½£e’˜Ea-döÎOæ1¿÷§¸ó×nÓ ¤È|õ"äÝÈC½þ’«öµ:áE˜ë|(»›ÁQʤ뙗®'QX±¹ý{†ðúÔ¤ñ²ÞÎ`0ëÉ û“Ržq(bo/ o÷"Ö@€±ˆÄp„æRDü@Ñ|¡UäôèïP„I{𑬄ápKÿÀB> É,r•ï»-¸Œ ÷5èöoÈíÈ{7‹z'9·§ E ýÙÃŽ-™¯!ñÀX“Ò§»¥]ä5pøKkä Eî;®² 0ÿðr×{9Ó ê'ËÊl¯pZ딥‰ûÅgW;WÖD¾¼øšOjÚÉKò“}Ô㬦?¯Cý–i—¯/í8­µ•-¾2¢ ½q°†¡ß‰¥tfÿM½¦8T¦ÔœÜÛÚ¶{æºâ¾)}â1µ­Oôô§F㾺lìW—ñQCUD5îØ i¦¦íî|þBÎ_#îÂßšáÌïÛ±a¼øì?35y‡‰.†F¢z’WE©RÇ+§ùÄDóÌ)¤ds°‰`T›Á÷6E¿zShL ’(ø‘ ïÙ­säÅ9›\Ãv?ó˸‚DÙpý 0kŒ^[o·Û0H¼!þËžYo;–4æ’·’À3ä’é<ÎÜú‘ Æf<Õñ´þ0žEÙÊ ÓÄ" ârÂ"':¼ÖHä)eÉI H ûjˆîFwó¶à ß]$¯+(é^Uüµ&¼—Ü}[ÜÖ|òð„e׈×ie«8’jëuT9¦3¿s1}¡tÆe e¹Ä¥=6u6Ø€c´žf„íîZ^­ÏA2Ë®ÎÆö=Xp‘Rsù†K(ÆÔÞΘD’çaÛšòð|ò‘èP)§Æ†o™åèèDP7½£$ŒÒQ³Öe[Ë_ÍåI1ÊâÛ-Þ¹‡—Z?KžéRU¥' þÆ9dMÓ¢ç› vË]Ò4(Ë&ŽÉ‚ÙJØJVZ2Cþ9'Ù„ÿlþ‘a㿎wÜ‘PqI­¯šÆ®)Mþdà±³vD0¯P³ z ð\IÎ+kñú¸cÀˆ[z¯í\ØÒ¨¤3Žr[¨rÇ6"§ã-'‹Þ¥W>üE`I76ì6D§™¹„d›-gßžj>œZSy ŸGÍ\Âà‘óHy“žÇhUÝb3|ñƒÃLZD0¹õXCg¬;^ƒ„œÜu…q/m 0œŒš@8F3³q#&á¸<ŒEmH­x{3Ñ •º3Ü’YFZeü­”³f~ÂX6èû²í­+¯Ó†ô°ÆWK³š#¢YM‰tiµ1Bzú‚ã¥ÍÒÑD_?JFÂÌ5¦ ŒVJÎ,·fSMCËT×uÅgmZzµ…sbû]ML4yõ·ýBpÿíÁKˆh•ôT"®Äu¡AHÖ¶wÛŽ1+ ï ¾:lŸÈæ"0ô(C¡Á ¹8(7ò…óÆzäĖוW}ºÕŸD\(²¾óxZÙ þn ¶Ìû¢.õ=Ä•Ê~KïùèÒx@î?Qȇ²ç bðKIVb¦fñèþ7lµæÚ¤) W§Á®b¡‚D𦚘Võs‘6Óazºä÷ÿÑ!´ÿÊ5MÀ’0‰l‡þ®¼IÂ+«Vä@ÿ“ÀáHg£Ï&êÆY˜¤ŸAl+«|Žm(ÌJ$¨”§¯^¢Ÿ‹„FPçž%‹óÛÔgÃK¾¢`ƒÓO+“+À7ôE˜ê¸€¥W®^ýih5Ò endstream endobj 112 0 obj << /Type /Page /Contents 113 0 R /Resources 111 0 R /MediaBox [0 0 612 792] /Parent 85 0 R >> endobj 111 0 obj << /Font << /F54 17 0 R /F56 27 0 R /F8 8 0 R /F11 9 0 R /F14 11 0 R >> /ProcSet [ /PDF /Text ] >> endobj 116 0 obj << /Length 584 /Filter /FlateDecode >> stream xÚ}SK›0¾ó+8šJll{ì#R«öЊ[Ûƒ“8ÉvlÉcÛßyØ ‘ªyßÌ7Ÿ™–ðÈ´­‹Ú6©jtaÊ:]÷Éï¤,Z«*Mó3eÇâcߤïÇä+<1”‡¢ù¬êÛ.Y,›´År6í¶×ÆV¦iÓn“~ËLŠGxwç ¾>Ë+­DóåÚJñÙƒo{B§ÏpvzðR†k8Ž=…&,sD{à*ã–ïÆLÕâý˜å`m°Ù]+D±ð†£¿ÎXîŸs‡L5"0ùQš’!‘GLäØ ²@Ôžm:z>¯±ätÁJþx×{“ýì>¹”Ek KƒshÈíJ³Ãƒ;°ï5ŠGŠ8;r8G)Š,¯«Rt{–[«ö&uÃÁX#Öš¼LÞ ¦zRš°/(Ï ¸3 ?g°BÜQOW¡h‚Çó\´ˆåuˆ¼#d.“e™ÜοÁ)=Þp«i›‚àœ¨ý)l­äœ|§GÛ€/f æÐõ7k4*faÒo´¦û¸På™fða­iGÑC­ ö‹[€(šlµ¸{À$Ž}p‘3ÓºEiÍŸø°Þv¢€ ÇyñFÿ³U÷?$,–FÏ~RÕ¦nEÙë “ äÑÜ´Šù7 ç@±ª@–\Y1¢:gÒöî> á’+†ålšÓp`_U¬”ø‚ºjŒ'"IiSìào0· 7ã Eêªhj ÒTuQ™†Ù˃ɇ.ù±…8Õ endstream endobj 115 0 obj << /Type /Page /Contents 116 0 R /Resources 114 0 R /MediaBox [0 0 612 792] /Parent 117 0 R >> endobj 110 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc6b.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 118 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 119 0 R>> /ExtGState << >>/ColorSpace << /sRGB 120 0 R >>>> /Length 44345 /Filter /FlateDecode >> stream xœ¬ÝKÏ,]ræù÷+ÎPø(3÷}*ú°» Á R0R¶Iúû®½ÖŠz«ö -Øvóé·N]3÷="î_ùëþõ÷¿þï?þ—×ÿý»þ_ÿ§ÿë/þôÇõûº®_Ÿÿù§¿ø¯ÿu´_ÿõ¿þ›_ׯ¿ýãþõ—¯ÿûû?îý€_ÿóµýn÷¯²~—þë=×ó{Vñ~ýéø³T7þµßk½ÿ*½ÿº®ßµ¿ÿ*½ÿzßÏïUßþü½´ßõ祃?oã÷üyñàÏßçõ»ŒŸ¿‹ï¿}ÔŸOþþû¿ÿ+}±ÿ韓/öŸÿÓùãßýÏëWø«ÿükþÖÿÎÿkùý¬_Ïóûš¿þêý›ëßþú«¿ÿãø+<ï¿ö{û=úÇ?|þÜ8çï§~üÃúçþÃûu-Œûã_ö?û_–òûþü”óÏþ—­ü®Ÿïöþ³¿ {´ßëùü§öWt¯ù»|¾ßûý%ñ:¨s_¤ÿ¨«âéÏþböÕpüW õó×ûu ]ÏûÏâÇßÛëöY?'þþ\ë÷ÝÞ?þηóþûÏ»ûüÜ?Ÿö¿ûù ž±/îúºÅ.^¿Ó¯û_ù·«ïË{ÿ7þÛ»½PôÓë_ùÇÏUö×Ä\þ[ÿñ«Ux}‡üÇÇo­;ÿÕ´})ªÍ >³ý¾_¿^|÷ߌÿi7ÀWÙswü×Äù§¿ûõ¿ýú/ÿ_[’¹~××Sþž¸dÿúßüïÿö×ýúþÍßýÇúç_ÿùŸþÏüõÏÿñÿ¯ø»û7¿þê/ÿ¬ïfþ®ßmà«ùïÿî?þ?ÿÇ?Ç·³?Ñç§¼{ß·ËSÑ0é3ýÿÐçèfúƒÏ«›éGûÖ€–k6êÕa˜Ö”Æ©µÛÇ—úïûr½:ª¸ÚE=ÍÕ UªktªלTo‡öÍrS³¸n½ëÙ]ÞõJTñ®_·ÃíjE®±¨çr­‡êýÔ½ÿõKsßø¦rQw¢Ö©çqõEÕâšõjáL«IýÔ«‰Æ;[»©6=—4]¥POwñJ^û5ñJ^û0ý®ÙXšp•ï_uºÖ Ê}ªì«›ª.´aûj(®º¨•¨ãÝø–NJÝ·kê)§ên¨îº 5=x×Ïþd¦2©}õœj7µ¿¥S½Rµ¸Æú©†îþþª¦»Q¯oËôèõéªzg¯oÒ„;u_ ÅÕõM¬åÂ]üúžâÂ]¼ñyªó.Þ¿xwá.Þ¿x¢Z¨×]ijø&*®òS}JÝ5ojÿÒ§V¡žyjì í_ìÔ½¨×7i*z…ýkžª•Ú¿æ©6¨Ý—T\KßÄê§æn^j¸«N¡•jèaMh¥¶ª ­Ô¾RŠ«á:~•Sã¦ö7jV©¸V§ö¯ò­W »¨ý«œzô -QÑ+ÌËUµï€Sh…÷ÕÐ\l…ÇnMli_¿øs¨_jiÇþæMO¡Fq•&uWÅ7?÷³™ú%×(ÔkÄbšøæ1Ò3aô´¿­y -:ôj=LøD£=z™Ž§©ïgÙÿâr¡'Ùÿ¢¸ð®÷¿H´5LG€û_LF€¯ÿ~µ&ô†½… ½áþ_/×Ô³Ôrª°Ç{©%zõšÐ«q*hjz–×ÝeÂHu¿RsF=Å…‘jGpH½vG«oB¯ÍÿÕ„^»£e7ñU|»§ÐkoUW×+Ìåz…•ˆŸ½÷¡Æ‘øþïæÂH|ÿ÷pñ5|K§Ê¢öyªéætu½ÂkÖcâ'ê?ËIšK*§º>Qß=Ÿ‰Ÿ3Ó£WxµÐ¦¢WØWë©öP¯ÚÔõ s¹0êêèÙMüDh½ ŽÈ^ÿýz÷&~¢WëÝ\˜I½þûÕªšø‰0³1ñÍ݃™z£îîâ'b }j]T½NM}"̈L·^aÿ*§ªžåõJ&¾ëµ?™‰ïz¡Ç;Åw½ð-}kéÕÙ[œzôÈ}•Ÿâ;COkÂ;z¼Sxg[Ý…wöÒkV`·»Õ½þóÒ+¼F¦[¯ðjýM^áu•›ª^á5‚7ña–eâ'B/lâ' üЭw^Ô„;àõ߯VÊôèY^-’)ÞÙ«Õ1u=Ëœ.¾3Ì–L¸‹zÓCÞ5z<ßuÙ#dßuÙW² wñKõqñ•=7u½Âº]h…·ª‹Ÿ½á¡ÂVø¥×]lâ'ªø´§Ð ÌPME¯ðêñL|×è‰L|× ßÄ)¾kÌ&©·iK§=Ëþ–N¡·èÕLè Gß#3zû—^#3ß5VÌLèíz†C£™­éâ'B¯aÂhí¥×èÉTô ¯Q°©éö7 £Ê—êtaTùR«§ºÞ5zV··¦ #ã—^£.FÆ=‰ #ãY¡©ëöyjèv«xjêVwat?¾ùo ÎPVèLüDk÷ö¦ªgyÍÜM]ÏòêÕL˜…¼´¯äS˜ImÕSóýÎ^½š 3©‰™” 3©­îÂLq¢W3a¦8Ù«z…z¹°ùRŸ.Ì„'f“‡gÂ[Ëõì«`Þ{´fÂLxb6iÂl~k¹0›Ÿì¹N ½Â¾;Naµbk¸°Z1±ý­ýë^ŸÚ„ÕŠù쑇 +.[Ë…——^¿ŠièY^wªiªvV”&z›C7W”^Z +J3ESy¨×èÂTõºãLX{©/Vù'zCVù_º—kUªš®ú½ôê½M·^a%ªßDOiªæÄŒÏ„]Œ—^w¥i^Ôë1aårbvvß8´éS÷¤^ïÐTªWÓ³¼Z\SÒpñ]cWÈ„ä‰]¡C¯_±R¯;Ï„Õ剕/Ó³¨Wm ùK¯–Ö„UpîÍš° >Ñã™ÖM½z·CmÿÐëÎ3Ýz…×gÂ*ÿVwa俵\M¯°aä?®ºS˜½LÌÎuŽš'VöLUNìP™0jžèñLUNìzš0Z{éÕk˜0â\ט0Z[ؽ2a´¶pÈçÐàˆlaÖdˆl¡ç2=Ëþ5OaD¶Ðªš0šYØ5 ½ÂþÅNa4³03a4³Ðãš­½ôú–MÍ,ôx&Œ^ê—«êúra¤óÒH„QÂBklÂ(a±7<…QÐb÷-Z\F[Õ…‘ÀÂê« #…¦ ½è « #…8F/í»øK¯_½èBKmÂH`agÂ.ÍBOiB/úÒ«Ç45½Âë×4¡§\èaMKÏ2ú©›»ã »s&ô” =¬ #…SK&ô† »e&ìøm5zíyêao¸0Û5Ýz–×j®åBooBO¹°lBO¹ÐÛ›ÐS¾ôê Mèefɦ¥Wxõ6‡ {Ê…Yš ½Ìª­ =åÂÉzÊ…œ ½Ì>v¹º^á5ª4IõÇ…haæ}¨²]8bÂjÚ ڄè¥×fB´0ƒ6agawÖÄ«½&ö@͘¦^aSÚ9Xy˜Ø;a…ÖÄÞiâ×<Å£ÓÐ#ër±—™ûª5±—™øÅ¾Õ93}iT{ŒXLìeænYL˜™.œ°1afº0š1±—Y¸ N±—AÏ`ÂÌtathpæöÒ¾O±…ƌф]çûÂÔωyÝæ­ôæk8îÄù€û€À‰ÙÝænZŒhÇÁeœlÉ7KF´å›û‹1Öl [΄3>¾eŒ+>ÂhÆÅV}sf¼ã#¼&~N´Þ8Ÿ{%lU¼[ÂÞÅ'ã˜âþÉŒë_ÃŒƒ¸DŠüºÃ2ßM~Ýe™Ÿ!¿~üÌ…¿\Ùwkf ÄᑺWùé©G¯Ôsʯ»Ï}sArûõ‡Ì7'Ìþ3?M~žÔeÈe¤®K®Wê~ËíI=ªŒïÛ=ù}`w8óšá‘øábÙv¿R?EOêÒä™»òûÀH"s¿Â-õxä'÷¬r©©W¼^½6ÂpIýÜ2î'w‰×ë-µZã¾G[™Õ÷Ý|fñzk¥V›ŒÝèÌj•±«à®\lÛÆõà.ü\©Õ6c7 sá‘zÞr¿7.¤Á+u‰Çã~vW~sÿÃÌ­…Wê>åg¦Vÿ‚‹Ìë‘ëJÜ9ÐÞÆõàV/³ØžºŸ%?%u½åv§VO´ø{¹Õázfõ7‹¿Çé¡þæ¾x¿¸ÙßÜ7¯'7û›½{fö7÷ÍëÅ÷öX©ÙßÜ7Û+7û›½|æÉ×{Ø_œžˆo£½sßEÆõäfs?¼žÜX@Ú¹û#Ï+5û“[ý¹{Åç™=ñâ ^© ¿¯²Çn™ÙÞß…¿—›íýY`æÙä5R³½¿ÕŸ¾µ™²½¿ÏÄlïoöljÙÞo·ÔlïoÌÎ3³½¿qr+3Ûû'µ2³½¿1ÃÏÌö~{$ÖÂÉöþ¾³=¿ÙŸ'f{~cç=s_á™zÆçYwjŽÐoŽÌÚhÙÞãÄå’÷x 1Çé7V%2³?¸±ú¹yÍÔƒŸ+½™×-ã÷<­…˜íÝž&~¦ðòž&æ|àÁNDfΜËÌùÀƒ]‡ÌXDß.-5ûƒ‡ý}bÎ4 ™± ¾ïëôà¢ú6Ú{7ûƒ‡óéĥȻ?M\›¼žÔ-^×»{òóbe?3Ûû‡óas¬Ë<ì—x>ôGnö/£¿qsuæÁiðÌìžÂþÄÍþàan^jïŸÊûÁÍöþá|=1çOeàf{ÿT¶gnÎÜ3^oÔÔœ¼¼Çc§w3¯·Ç[‰9xæs‰9x8ÞHÌþn»¤æ|àáx$q×Ûã‰Ä#^¯—Ôìï®'˜oõwljï©õyqÂ!3çCÛ+5ûˇãÄ\{8^HÌþðAšûÑ|h{¦æ|èA¤næÏ·ZjÎwœ8ÌÌþþázAbö÷Nfæ|çáxÅ\Ôß?œï'fÿp<“øéòîo³¿˜Š!1ûû‡óýÄ½Èø=Ý<™²½ÛƒÄw<ß^J¬þ§;2«¿ÇÄ,s‹×Ãõàæ|ïÁîwfO÷ᑸi¾÷`Ñ:óÏ·ÛóÄ=ßÓ—»\¼ݜߗ›ã™ÂñŠ9Æ3åâ÷å.ñ|¸ŸÜ¯”›í­›ã•ÂñLbŽW ¢’3s¼Rp‚03Ç+;›ß§›ã•r³½ts¼R¸ž‘˜ó½í•š;J WfŽW ö:Ü1)ï'7wŽ^F{éæz`AÕ™ã‘ÂõÄìÏ_^35ûóÂýŒÄìÏKáï}:ö˜ ÷;³?¹<©ÙŸŽç×x½š›ýy)¼^Ü\ï{yÞ©G¼ÞÊÍþ¼p¼vºÄ~TÁŽ|föwÛ+5ç»/¿.ÜÌìï ÖÌ=ž¯Ü©Ùߎ³¿+ÜÏ1+Èe»ß©ÙŸœ2É\âóìõ´ÄìÏ ÞÌìÏ ÷{³?+ï%æ|÷å}½™õwÛ-õ¯·Û«Äìï Çc‰õy;úëÄìï Çk‰G<ß%fV¸d.ñy¸Ÿ“˜óùÂýœÄ%žo·‰¹XÆ^ÎÌþº þnö×Û+5÷_.-õŠ×«wâªþ¼p?&ñ¯·Çk‰K¼ÞnO×)ÏÜ=^o¯§$Öx€ëY‰õy9^K¬ñÀäï}:Æ3…ëQ‰Ÿx½=H¬Ï³ø{º¹Þ]¸Ÿ“XŸ‡ã­Äï,þÞî¯W[â÷x‡û=‰Ÿx=üÞî÷çÁïí~žÝ_$~¿ßÙRs½¾ ’Å=xp©9^«S˹ù~êÅþÂ=ãñe¤æû©\/3O}Ÿ•ãÍÄÜ/¨èX2×x¾=IÌñdE$LfŽ'ëÍëÍÍñdEDLf}îÇ™•H.©Ÿx=´7×÷x¾~¥~ž9S¿?®÷ûóàz9\c?¨r¼šXŸçÁõ’XŸ‡ãÙÄú=¹Ÿ—¸Åëíö(ñŒçÛûɉW<ß›o÷+2e~¿ß}=%æ~VÅ©ãÌz¿ï&æ~VÅéÐÌú<ÈÜà~â÷àx0±>Çs‰[<¾®Ôï×›¹9ߪ8ÑëŽó$•ëm‰õ~8^J¬ï“ëm‰[<ß^OK¬ï“ëU‰õy:?ïéï—ëQ‰Ÿx¾ž»Äóíùxb]ïñïg·‰k|ž=LÌþfðñŠ÷³Û³ßÌš™íõày¡Äl¯Ç“‰9<ï˜ç¡×Ës¾;8Þ4Í'vfÐ'õï×£»Åëázt÷x½Ý_%ñz{¼‘˜ýÍàzž¹j¾>x^<1çC;£èHÍõ¢Áó<‰y^dp=+±>OÃx<±>׫ëótÞ§c=bð¼NbµÇ÷›[¿ÏÛ$æx`tÞOnŽFçýàÖõ4Ðß™{\Oƒ×››ëyƒçY—x<®G·î—ÁëÅÍóòCUèܺߑe+óŠÇ÷Ì#Ú3î'%f<Õàx#1× ÷{·x<¾O÷ˆÇבX Åw!E´çn®‡O$žÈÌþrr?&1ï‡Éþ<1¯§‰À‚ÌlO'ã•ÌKß'3Lfæxkr?%1ÇóóáýâfÎŒ’™y^oª?ss¾?¸hŽd¢Û{<“˜óafñÌÌëar½#1ÇCY¦ÝJº½û›Äz=ö'‰k<ß¾_·x¾}¿&ñ|û~MÌön²=7ÇyƒÉõ‚Ä/0Khfއ&× ë÷æ~HbÎW'Ï#˜‹æk;ÃdK­ë±ñ÷ps¼9Ï“˜çIwfÈ•šã­—ç8æÃ“ýIb®î,‘35ÛÓÉxÜÄ\¯˜<Ϙçu'Ïkš£?›œ¯'ÖõÈùzbÝÏcÿÃÌú¾8_OÌý‚Éóšæ˜¯2“dföGÌ&™™íõd/î—Ó1eæÉÌ%>ïîs=tr¾Ÿx„q¿¸Wx·÷æï‡ù6s¼5yž2±¾¯…ùXbŽG&çËæ¥ñÄÂÄ(3×»™m13çC‹ç³¿ZÜ8‰!·wœ¸Æãw{š˜ýùÎÔù¤æx„2ÝÑž/žGKÌûyq¾“˜ó‰Åõzó£þd±?I\»½2Ç~)³ fæz÷Μ·R0¾ÓJ6x/¶w‰ÙÞï t™•Ìo{·ç‰u=p½ÐñL‹×³YëúóÊ«âÞã£CÚWQAÕSQT´$Â|¹b9Ö„¶°¢PÛ·šŠœ½‹Ÿ~ gxxVÈ„ö¿²PÛ·[ZÑF™ÐoWäŸ1¡Ï©ˆ}:¤x‡Š¼2&\ë[Ý&MEqŸC…kœ¹bLè?UàôöÎ*b 麬h6Mü´¸VLü´K9¿…¶€Eli¸b›ØÄO‹#^‡´¾«§§XœkT&·ÃøÖ„51?ý–òís5— cávEAÇ/-½³}E~KETÄôæÇ EîL,z«øâ§t7„ý™Ðf5Äæ˜X¸NO±°bn¾Õ/TeѸSX#kˆ6aþÛ0N5aîÞZwHç–ÂÚL,jˆ%§C*îÓ0n5a/½•(å÷%ì“7„¹™ƒ‡EEE±\›;…½«†Ð} ÆbÙÇ„9Ïvªœ/7¤ë1!×"™X”aô‡”ã¤(`÷%´Þ»˜ååBëÝXí‹­"mÜ!­É4Ä^˜XÌ’ÅÊN±ˆ0‹•BËÞ¦ŠÆ}Jg,¶xL,4‹–ÏÄb«Øú1±çRѸO)zgI°S,Ð‡ÖÆ„µºŽÖæîðŽó~&ÜáûJ„;œÇW¾5tw¤N3±p–%L¸‹Y\òÐÍõÚŽ"Â&ÁDªO û”r(t„šp~²WúúÆîÉÀMØ7í(–{( d"妉ìpÑ„µ„Ž5ÑC•ó¸þ.võ%Œº¸Ån¨‹ÅéNeE‹âadejz–]Hé[óaX4atÑYë ±âÎ3±@& *RÛYìêzØŽÂî&ÜñQ&Ü)©Å‡;ÈÄ;K¡‡âŽc1¨S¼ã–Jý| wï. S±Ò—öri¥êraMl ÷‰ ûMÜ3a.Ï­°CºS¹ŸcbA+ôè¦(R·‹L|ëáÙ‰QT¨æ[81pìÉ„5=Ì3a?â)V—w—) رÀÍ·°Ç5°e¨d`ùïövbXL• ¬?™°&9XÀç[*3°gBë6°&dBë6XÜçZ7P;EÜPÕÄo‰EzN¡ÕXÖ2ñ[B‘ºCÊGÁíS»ñÊÂHàÐÔ·Ä¢9§xe¡›‰w#Îà™0ú˜MZ*0Å"(§Þ…¾Ê¡½S©] á[:GÏÂ[&2ÃÝhÂ(ˆ…·L,àÃ"!ßRQ‹YTdâ[,,VTVâ[8oÀåòC*<9«ŠE|‹˜pW™XÌ GÜL,‡Qó¡Ê«u¢X²‰‘X(ãZE®Íšø‹a¹ûrÝLÌPM,P„ª‰…¢ÐRËBX&þÒáš°®<vfbñ)\ɇ†Š•aVnbQ<¤ò9¤»Š˜LE¯°çŸbÑœC5±z¼CŠ ZØ?2a”ÎbB¦(Äsz'»×Z¥“5Y”ÉÖÈ*>ÌcrRÇL£X¸üs”8£f 2Y!ˆûK'µˆ´ÞÙßbñt½s¿QG/´rédÕÆ¼ÊFÖ8aÖW'+í(gûAu”¬“U¤xÀ‰EÅhÓ“MU|”kÝȺH\)u²B•ò £6KmN%ñ^ƒ9¦¬¹¤ åFV"a~Š“Cu_˜}ËÉê<+r_DCº9éäÁ*VˆpG`âuEâéÓJ<®ÄÞnž] <0¯(¼ÀÄU‰¹1tqc<±Ë?,Üpø¾¢pƒkºy0€×}f•aâ'sÖ_ |O¬Â—øø‰UNëh :žÜïļHŒr:úkfͬû‘óýĺ¸lŽÀ¤2#ñÉi]Ll›X׃ãœo>'îñzk&ŽÂ0…É9^(ï&æÁq%ž5¿‡³°Òé®åwtœwjŽWëõN,ñåHÜP¹ž‘˜ã5%^5GaŽªÀ\·ûñàtbö—•µæ˜/+ñhb®G)±gbŽgªœ®ºžª¸9_­J¬áVâA&3kqKjö'•ã¹ÄœׯÀõÓ]cJœ™X‰qãeîñzLw+±`ãïqzèz¯ ¬LÌë½2°2±O21§yª?¬o&æx…ç¦3s<^iÖ±kdX,©o>©9ªÜã8=b½¬Ž ?Íû™ç›Ý·æ •í]b=ž‰Ìø¬Ä•‰¸¡Ä”‰W$†,#q‰ÄoL,˜Ï×pÆ&óûùæJãÉÆÂ"‰õ|lo¯H,‰Ïsºý<ß©õ| |w¿;Ž;qÎ*±ab= &^‘pÔÄïÄžLŒ“¸EbE|Ÿî‰ÿîš8 ¯*q`b%FcbÄJ ÉÄæH¥Ä‰{$î»gj%Žë¼Ï(ŒÑx˜ëeíEb%>ì <<}k?¦±½H¬Ä¥n¶§‰g̱_¥Äz‰ß‰÷ÖL…§˜A+³11lb%¦bbxsö+±[âwâµ~¥~'Ž[wâö“x ¿‡›‰#û‹§•ø‡û‘æ®Ä½Dàßi%†ãz}b%Þáý`~'žá|$±ÿp>bŽÂÉ]¥n%R`¨›óÝÎõsì'u†º9ÞWâ§ÄœOtŽŽã[ÈàSS÷wâ§‘ú˜i¯ç˜uÌ ‰Jꉋöû5?‘؉ëå‰õyßû+q‘¹Db5&&JÌö¦s=Æ\ã÷fâçÄ5ûìû5ñ;qOÍÜ´^=X™˜ó f É¼"±ÎUwÇý¼;¬Ä6wâ}{Dâ#¶'‰k$îÁ÷åæï¡Ä@æèÏ”(qÄ1{?Á¼4_\¯N¬Ä?L øØf·×‡ŸëúIìRr÷ð«½pß‘¸™k$^y½±ÌóížøùIÜ2s÷·Wâè˜A%s ¿.¬Ìú¾:_ïtŒGç÷éî‘Ø¤Ä-~ÏÁïÓÍõ &6ÉÌöp`=Øû•{`5Rs¿k`aÎ=Ô^ ìfn‘x䮩u¿bàå~'[ü>ÜJ<ƒõ÷Šëañûpó~šˆí1ïÂôC~µÇ™¹^ÁÄ&™ùy&Úw$¶œhO2Ïwb“šøØë½™ÙžM¬÷º‹ö“÷À­¦î‘Xd܉c¼5Q!=³`båŽÂÝŽ2¿W¼nw>˜¼Í:ЇÄ%5×+÷ÀãJ… 'ö2ó~Zˆ¯r/ÍwÖÍ÷{ø‰Ä­ üwGâö¥žñø9Ga•…Ä3î¢öv¡atG{Å3äî¦ýŠ…3é™ygÉÝ‘Xi±½4GáÆÿ‹þ³å×Ö*Â0MU¡ñ ›ÿÖPˆûU5%æã¾©+lþ.®¥Ðø»ŸR²»Š-Pö¹tèaÛ³Cñ/×Ô;㔊ÿVlyš†ÒÌ~JEi*ÂPLU¯¾ÃûO …Ô¿¾­C*ÔR±½jZJ pSa6ÇrLhs+r§Òz„ÒœZ‘2 Ÿšm-WÓ+¼~ÓTú‚UO-î}T¬AššÒ\Å…5q)ùV¿Þ)^W– káïÞ„CèÛ‡tlžé LU¯°ÃaO ½Bo§´/Íú;¦ªWãTa{Xî{ªêY^¿Ü¡Êuðº®ý-ôÁ[$&ÞýøilÖ¬ÛİräG3 ¥=¨×)Ùé Š«(}Á/>…qZÃ0åÐP¸ý…oâTQŠ‚W»jÂÚkØÒº@ÃüÖ„=͆°CŸÓ™CKÏ‚3‘&> ¶¡ML_ðì±Ê·ö´TϲÃhOų¼¾‰C·‰nÍT”a‡™žêJ{PÛ©çý,¯+ËÄo¾ì«áPy?òõíšÞì®xõW¯v¨ê*@ˆ¦‰WB4M¼²*Â}¿¥¤7 SµC]©0æ} w\ÃY­CC©E°eJÏðê-©€uC8¦©*ÍB}\C¯Pç©¥4 ?Uõêc¹0GiØÂÿÖŒ”Xç3¡…n û<…½¡ù!¥ÌièEMèI¶ë=\‹lèaM‘Fâõ š˜ÖSØCÚŸièEMMi+ÖíZJ#q]§ªÒ]Ì÷ýÒR‰WËpH¡¹L1aZJM±Ê)…Ô³6ñÀöÕ¡Á±jCŸièYö§ý–ÎÌ1Å„ =sGë}HgeöRx"¤°am¨„{ñߊDe¬cbbê´ú¦¥;Tö[:Ûq¶Ý„QsG }HE¯Y3ÃT”šâuW™0âìïPÙ©PdGA#¿yĸ˜°.ÅýõC:ÓÂÚ&Ü9=Y¿µô,;´ó[Mß¶±M])^­Ç¡ÎÞ‚ ÷ML¡™† ëöLMqHÉm™„ßÔ”î¢.×TÚŠfŠt,7EÚŠÞ\¸S;ÎÁÒÙÐŽÓÄ”X¿úbínqd¬Ê”ñ\yûŒw|ê'o6€ËÆ »^‘ F~8ž=©ŠëçœNeÔà)%'šì®èƃj`µÃàì‘s£8~ÑyºÈ‰®°óìýIÅkª¶%IJÃà®þÉ¡|,¾ìD#>PϨÊKƒç‰œX€7c=ÌñÀ½þ“ÊI9Þ‘”»rà'ûæ£\äÞeqåi o}±LõèÄ$sŽ$Œl%s9v•ƒ±Q'#ŽX%Ä%:×i\bmΪ%bbÂ5x¢ê¤*ÏÄ!'dö º°ü”°WÆ©Ü WwNÞtzÂ.¶î\ü*•º³ŠŠÏ;8ƒÕøèpÃÀÒCÂ.î“+'•š9{Vq7ªÎ)îf󤎼òèFBæAΣ“§œUܱžÎ\N]„“û˜N\„Ì:bT5 ‰’p)»ˆ"ྨ ÐÉBNt|ÌZbTa%w¢)˜,îÄÁ%ð>©e܉‰cB §&s-œTÃ8‘M,aW.’ÒEÛ9“e§œ®(iµ“_,KnŸÔòÖÄòŠQ“)æeNÈü0˜"‚¥TÏNÜs0¾ÆÈ,#¼aOVîÙ‡8FFL~'Oþœlï%{øáĶæÂb˜QAÌ)’°*ɾ¼KOUªs(²ì%Äc1ú¤2€.Eºqa˸ØP,våNl‚-våNæAvË“UK…˜Xü],sxòV&d IˆFf©¤òÁ‡7»ò8[dC©N-Q-Þ’NfÚ¨8™ÃƒùNV6_Ê•âÄ w±Ã=©KtaB•°ë©‡u0.Q¦‹v¢¡Xl(œ‘g¥OçàÒðêüøF4}‹ÑÇ'ü¿ØP8ùƒr préÅ”„Ì4ùƒ~“y~‘³ä¾3¢ ZŒèr.=¸N§¶Ãy,%áÔƒ+óÅu¹X>±Ra0”Ë\´Õ{Ýüî©PÚòíªP;¥ZIÌ£|"š›Ž¢\wÔì=Í­n¥RIÌ£S˜#TåRÍW·Rͨ&ëé©@T“Õ=Þ©\Vb5¨7ÏÜdå‰ã(îÅœò§ß5U/ä4ÈÌ£(g ‰W¤zQ¨Ë·ïHEÂv,±RµüÔý²¥ö<÷¹RÏHÅ5?¿¬ìl˜'·Ôj˜˜ãÙ£¢æHuQ°>–Y¡ÔG‘OõÇsÍÌ3BñÛ¸F*œpÇQÉÒyÔÝÝÃø>N÷x=\ïîï$Ötëºc>ÅrWîHUÜ)™y¿Uœ wkyt{æ8ÊÎÓ™{„:Ï™XúöšŽjŸÖá'ä©9ßk7¿¯ÓÚŒÜÆû=½t=7ìfæýÜtTüp¹"—¡æw¨*NK¸U‰`/ŒìP„Ä4¤bq¿Cµ±*—y}„âº#•WÃ|Ô¡¡8æw(4ÆÓÛ*“˜÷KÃé1w¤hè8ÍU›¾7ËÖ¸#ÕTg(KâÞGñÍ‘*£c½Ë㡎…7w„ vœÚt7ÍgûÃ×;íag¨Zb®—t†š™ß¡®eï»»§R…tÌÝ‹[vÈ™ÑÜMÕ@°pñ¤^ʺ¿oó­õ¶Žñ¨;Ö+;jŽº#T§c>莚­§ÐÝ-B¥±ì~‡R^¸ŸÌ#BÝsëžjOû;óŠPKöw§û¡zeÌÌT6ƒ×‹YÛÄ7Oɺ#•êÀxÕ]"Ô ë î% ¡8æöãݘ{<vÝC×3K縧æKÿ;j’*”îôˆTUó w„*+Í\t¿Nì>¹uX5[Ýq?+Ôç_òŸþ¸võ_ÿøë_˜ØìÑÉßüº~ýíŸW;³+ÐçõÝšHÁj™§VhœZïš×|Ãô(ðæ..Œ˜YÆÔ ¤êœ_ê ¼iÅ;½¹¦‹fq-Í~¨éø[ÅábWåÜ®ÊÙ;§¢ÊækŽhêRï.Œ©sŠUD§®>us.Ê`ÓguÎSUÁ5ër5=ruWWÉõ¸øÎfZzäÓO=ª0Š+Åt+ ¥Ý®>¹Š«)øäÕE›¢:g¹)Àäõm™¦Sjq-½ú2)˜§!dÜÄÃèØŠ3ñ?+wžbÅHÕ™º4ñ>ÖLSA+ÏãZzd¹Oi?A+¦¨Z»«êÚr =K\34Oio‘cST}µ ¦GÚ}§xÀ‡üM ^Àñ¿yü¦!D3Z¯,,]ŠÊ–¨Ø`ºвéS¹ïŽSE¯P»«*€¦W×#÷¯yjDÌãšzgër-½³UN©²WC`„ Ï‚å2EÐÚºhvÜS˜Cµ¦àËoEÐÊ•hI÷uJUŽkOÝzä3]üÅ𠘪Ù5=r^®A9Ë5@s5×’XQøS÷²’±©(`gó§XYß²©éYFw10lâÛ=5BÅ5xó4o–>чö¸½Q;Àò[I™Š‚]®+ѤXùø[øD½¾i)¦”S tíÈÜfb€OEpÍ®`lÂw<žâ‘ýGA·ßš „©×)­ssmbÀ‚kLE¯Î€ÜoUå( ÷K]Á<«»øÎ°¥`Z ¼yÊ©¢ê±èL·9º‹Ÿ¨â*0-©»X97*BÒ#w°î©¨VûjqMSϲaÆÐÑÓÒ>$ƒ‡Lª)›†žeÝ®©À§×·ìÂ;Coh¬€Y×i1°-ozB#‘^aW•?…Õ‘VÜÄP6àŸÂŒa0ÈþÔ’f;¥ ‰YÖ¹ìjâU‡œ £Êcݦª«Ù]hÝZ\M„й&Å ÷ßšÒSNUî;²²³‰Av8"nbxÓLñÎö7 #¦ê5­Ð<¥„)A¨¦û'X̄Ցd1¦¦gÙWä©.½Þ¡iH«»¦‰×Ä€GVœÿ–’· ÌÄL|×Xz7±r kľז°ÅSÕ™PqãÈÉåÁÑ®øÓ¹~"ú_˜ó¿o9c Þ-a >y’÷¦®sD€IÏ8ƒûû&.‘KÞAž‰Y_@Aþ‰KÙ+uÞiÖ§Pb¿˜²$1ƒ|.)&ž‘D ´ÔJ‚À ~³–öwþu¥V¦&JÌ —w|âw’€z¥Ö…u‚̬rU~ß§Ÿ¸oX?-1ƒt®ÆïÛýD‚~¥V<‚l2³~‚’ $V›ÀúЉW$!ØA”æAþ¬¿˜yÉHüç~"‰€ržV[ÉP‰k<~§ñJÜâñ½¥î‘$aq'ÖÝŠ ½Ìóí•ZI*“ž®q½²~yb}%·t·x¾çJÝÃHéèÖïÍú¾‰yHÿR’ËÓQi3ë÷RL·ÚÙÉ4Šný^˜‹fî‘$♩•¤A©4Ýódb%Žúß×äõàf}äKé6Ýêe”pÓ­ß]JæövMÝ?“X$fÁµø{œ~'I`¼ÄJ"Á$9™—Œ©náÜL¢“9?Vj%I`b%Á`žÄ B¼önqÝ òOÌ ì›ÉüÌQïVÞO·’x0!XbÖº™Ä'1ƒoõçîÏ7{j^ï7S~&fíÍ$;æ¨{þ^ný^LÞ™X¿W‰$ª§YçVîæèð®ï¼ª‡Y¿ñVì^‘¤¤5÷­ãHBr¥fØÍ$?‰y?ßJ1êÖçÅü>s{{¤f››ý}âß÷ƒùV{|³~}â'’°ìö8ñûó ᨛã›ã…Ä-’¸<-5ÛÛ›ãÄ+_Fb-ólï$F‰ïð®§—Xí‚ô2³½½O7Çú·ÒµºÙÞÞ8'å.Ñ0IEb©Þì¯s<³¾eâχïÃÍñÂù}æþöL=«¥ÖçeýJsþ†é_ëó.~_îž¹ëÛ3µ’a¯=3ÛÓ‡i­s~ú\ü½NG9“ïf¾ßIt®Ôl핛õ gñ|{¼’˜A¬“ä%^‘„ç)‰ûO’üžî'ž¿§›í…’ð$æïÁ4Á™9Þy(óˆ$==÷Œ$=³¤^áõ$J‚°ÝR—Hâ³ç{‰y=>œ'V’$¥Îv3‰ÀSعg<_«©WxÍSýáSØŸ¸™Dæaž¸F’"Ün®<œ¯'æxäaêRóÒ|ú©lÏÜw׃›IR&9K\ãñH¨îV,Ô7ͬû‘I˜ë÷ÐxÃÍ t%i:ýDýׇã‘Ä\ïx8žH\#ÉS/©Ù<\OHÌ$ljG|ž5Rëó2Éab}^&y3ßÑÞp¼‘¸Äó!E¸[¿'ëW'nñ|m¦V{Êúî‰W¼Þj‰&º“Xí$›‰9x¸^˜ã&ÿN½ä=^IüN²…ëÁ­ë•ã™Ä#ÞÏl©õ{2­mâõvO\âû˜ü=Ýú>8JÌùÔ£´ön&9z&Ó±»[<~ܩ՟0 _b%Y›¼ÜÏ>8æ®ñyO·’¼±~xbýž ó±Ä=¼ÛóÄ\¯z8ž2¿“d±¾xbþE‰ôÝÏÛ55ï×Â$Á‰ÙÞ–‹÷“›ã‚†!3Ç«…ã™ÄJâ…½íÌlÊͤû§{$ÉbÃÄLÂPn~ŸîF{鮑DîºR+Ië'æzuAÃ’y…ŸÌCë]åáýäæõX˜1±~/–3IÌõÈò.ypzÆë­™š×ká~†YGJ·ñ{»õ}s¿#1Ç« Ó™õy8žK¬ë‘ã¹ÄlO “À&žñøy§~Þ•yÅýÊñZbîG(É`býž*+áÖ÷lÆ™•D¯òzr¿“ª¸Äi%Iäxðt¹â~æ~Ž9’¤* bbîG”e$N¿“ ¢ì‚›ëLr˜™ímá~OâÞ×cbýÞLÀo~”¤¥ Ræ;’(¶šZ¿'Çc‰¹^Ï"™Ùߎ×0ŠZ¸u?s?ÈãÂýœÄw¼ßõ¤~¿ßÝ^$æ|« Pyf%©dÓÄ#’4>+õ —–Zý ޏ#‰}á~Lbõ§¯%.ñyv{’¸Æãgîï…EÜ®g%æzCáxÍI¤ “€'¾ãñ}¦.ñø=H¬ûmñ÷tëýr?'±î7Ž·s½ ,þÞ§c?©à fÝÜïIüÄãñ{»u½r¿'1÷C^Þý…yh?£p¼—øŽïkÕÔ%^oÔ<9RÏ’¹‡Ÿ;õ —‘8έT®—%~' ÝãÍÄJŠŽ#³’|"–3óŒ÷3{jöÇLBêŽþ¸²ø]bŽ+÷ãs>X9žMÌýˆÊõºÄÜO«(õ‘YŸ‡ëy‰W¼Ÿ9Ýü™i”µI¼Â#5ÛóÊñjb%E¬Df®·UŽg·x|¹Ss±’är½ÈIÐwë Ìm—™ý]ãzQb%YÆÆyf½ö—‰{í›ýaÃÄ/3×;bLÝ+’,ßü¾ÝÜoiê/ݼÞ’°fæxŠyî2·Wjî×7¼s+‰3×sN·Kóæ ̬$Û×kân#u‹ç[55ïçÆÂ—‰Ù6îW%æ~vãz†ùÖx¹q="1Ï“4žGMüÄóíñDbŽGϳ$nñzm¦îá~§V’r$ùÎ<ãýîö.±~o®g˜Ÿø¼ìoëzhü½Ý5žoææ|»q?*1Ç£¬ÆæŽý„Æó®‰u?±¿MÌùdCŸx…Û8ÎC4Î×ßá~¥VþÅßíëýqâŸgÝ©G¼ßUSó~íìoÍq´óÚ9ßMÌû©ó¼kbž—ììïs?²³¿OÜâñ{{z§Œ×C‘?÷ïw糿ì<“XE¸Ÿ“XIø9ÞHÌù(s!fæx¡³`â¯×KâHòÞyž61û#V“Ìü¼=Ss¼Ä" ™9ßëï$æx·ã`^fž§îÈÛy…Q¤òt¡ëï$ÖõÌõ€ÄO<¾ÍÔ%>Ïnoëz} ==ãñc¤^ñ}Ì+qÑy¤ÎýœÄï"{½%ñ»†Šžná^RðxR¯x½9×ø=8^J¬ï»ózp³?ß©Ù_uÆû$ñø=ÞM<û?H¬þŒû=æý÷{ó<*óIfÖýÂýžÄoôÁ"¥î®5qö€ã±Äjï/7ÇKÌ]™™ã¥Îó6‰ÕÞ©ˆ«[íÝÄ|(±Ú;ÆÛ˜G|žÉßÓ­".ŠÈ¹—®—Éx¦ÄìÏ™¿13Ç+“û1‰[<ŠÄ»ù~&òN™gÄcNÆ+%f{Êž™ÙLî§$ÖûAâ†ÌœoLws>8ÙŸ™#ŸÅ®¦ÞRs<8¹ŸŸXEÚž(ò~ºÅó­–8ŠxNT[ÍÌõ”Éþ&q‰Çïþ$1ûÓÉþ"1ÛæýÌÌóp“ý‰9Š€3?cf¹ãzAâ2Â+u‹çCw÷ïû91ÛƒÉóæÈçÀÜŒ™¹ß¸ó3Þ©9a>ÅÌ+ÜWâ÷#6®3ëó²?IÌþvbá:ó ïþÔ¬’ ðJÍý¬Éóš‰[<߯'æ|`r¾ž˜ó™‰À=wÌ''çë‰K<î7ÛÛÉó‰W¸]‰§Î£0/dfÎ7&dæ|ùU3ð©W¼ÞîÍ+^óýÄú=¸_“xÆãw{z©Ä^øI­×ãyÊÄO°ˆ¥ûŽö‚óåÄl¯²qeæzõBà¾;ŠÜ/žLÌû}q?"1ÛÃ…‰WfŽg²g¹‹®×…À´ÌœO0?ffî÷1¿af½ç;æªñÌâz}b}^ö'‰9_ažJwìò…3s½i5^§»ÖË×;s½±½KÌëu!×»{¨½ZŒ÷3«Úþ~o7Û‹¥ëùÛÏ¥óÏ…œÿ¢ÿôg_•^×° ûâ?åV?¤˜wùÓoa¾S±®hÂZgÅšâ·šâPYÕÜeÜN¡ý¬,ãö­(+Š3È&~È?cŠgש‡ýqe©¶SSϲîSå]Æôî.ÜC•¥Ú¾UU:tF‘Ê/U=²u_Íê!åØg‹š 㡺¢hä—ºÉrŸÒ:sÅ6² k<vHù‡Tþôæ épMïҨͅ1™J£~k¾_¡].–ÈD*$ÓÒ#{;¥>P%NOaý¢Ý*¼÷­©GîÒŒ_êš×°è¸ cþ}v¦¸ðí²üé¡›{Õ,+kªzä¸],•XP†è[:ÿÛ^ÐÄ’Ž8ckв¢µ¹¢th§ŠÊub»Ô4ôêsº–´îSJ=Ë’£&–žd)ºSü&°†tHëJ,×iz¤R\Uš‹W2Ë¿Zzä.“õ­®ò¼17ñDž.Æ6-Ê£}J%ÉÖOLhÝB†L,G¥Ì¾Å_:J™}jª§økb¹îÐPé;¼’‰WKÿœêzd\,3ˆ²©‡&÷VKøœBK;°ìejÒ.mtŠeYúç[‹£ T/&–fœQ¶ãKhQKêœÂþ%÷¾µtvp Ç€‰å’0›8t«4BM‘MÇ4á—žÈYxHë<,ËeBÏ5q7šX¾èQyŠOþb“%DN±|Â*L,ÅSTfâ[,UUfâS:K>SnÂLqâ®2a”71B6±DFȇGªeˆM,Æ2§pLô°‡oÍåpS”ó‰X~ ÿ„ޗkɇTNˆe²LQ*Љÿ¿Å«ai‡&×,çRýoaæÍL&Œ &bv©´-Ë3™x,¥ÕÿË0 ¡‰¥.%Íÿ*%à¡ÌËãD°”ØÈÚÌisR°V4h:—òݱÜÍJ%F³.ƺ:Y剙Lœ¬¢<¶•F•t²^‡rÄYÑI⪹Ö7¨ò&IÈZÌ {R“Ú¥ÌîF4©¬-“pŠÈÚ{0ê…0&ÕÉ/VÙØÐÐzêIUÙ^#²Yäe6x1Y}hD&ê/ê ßRs#«61‹…“u̘£Ëɯ}ñG9¨:‘kE~åƒJïÎíûÓ;ýq•÷w›˜Ûç,0’Y¥/ž`Ö"“ vdV©¥ÿts{ñz˜òô£ðŠKé7Ýz¾Âô‹nnªüEb¥¿gx¼9¶—/¿JÌãs·¿+==ÛÄ<žxÕHüíúSboo%ÖëµH¿{Zå7”Þút¤W¹߯»…÷Õ˜Xéõy<ÜÜ£¼‰Ò?»¹=u¦ßtóxˆÊ#˜ß…y¸}›XåA—ø]àÊ<ãùx<:1G]JÏìæöáÅðsóÒñG¶ ™õ}(}±[éáÙë&Vzû+ÒŸ~ù¹~Òûß#µÒ+£ˆPfn¿)ýâÏ×Kâ;ÒÏßL_æVzu¥¿s³½¸y|ÇÇ_n¥¿ss{ÿVú;·Òƒ3<*1ÛÛ›áOæ8zc-³^¥Q3+}5Ã{ëõØ^˜k¤¿çñ˜ÄO<¾ÏÔ-¿róøÉÍã‘æé×[¤—<Íã JŸø'}üH铘g:³®W¦K¼âñs%Žð‚{DºÁÓÜ>¾y¼11ßÞ<>bŽôE·Ò³ºK÷“›Çÿ•ž>±>ψô‚ß^‘~}DúÀÓ*OÁã‰U~BéU—﻾‘øþ~ŸNÌþìfúÔÄ<ž}cµÁ}+½ÒÍðÄú>‘')óˆÇÏ'qŸ»•ËÍã‡ÏõN§wXé±9^K¼âñJŸ÷í<˜ef{ù(½•ûýzH_åfø”ÒÛk¤§fxDb¥ßeøCb~ŸÏéë¾é_ßL¬ôÕo&Vzbö'æ®þöa‘Xé•9÷LÌã+ûƒÄJÌÙ©yÄ÷Å㉕¾›ãÉÄJOÍã÷æ(Oóðø|bŽ'΀«<Îñdæñ¥?7¯x=¥Çt+}<ûƒÄJ/Þ1H¬ôý,?rºF{ò°?I\ãñJ÷uúýz3s¤ÿxXÞ+1ûÓg0½[å%˜ÞÁüh>Å<¸™•þz0ýŽ[é½9^M¬ï‹3Uó»=Qú#÷;ý´ÒkVù –Ç2×HßÏò!‰Õ^¢œgæ÷ó!½ÎéßË‹$VúK¶§‰•†;Ò?†Ÿ%VúX¥rH]ïÄ#Ò_2¼+±Ò+=›ýaaù+³6Ôqe.‘Þù¹S+½±Ò ¹•^[é…N/_,Joçæï]xüüt»~Ò+=Ði¥gøQb¥7Å®rf†·ïŽéN|Çûáx8±>/ËG™£¼Qá|;1ÛãÂö01ÛãÂ5»Äïôº»=7Gz¼Ò™ÞÈÍö°0ü:1ÛÃò“îæË5®®Ï%îoÔJoÍñ°ù^^émÜ3¼Fâ×çû‰õ{2¼9±Ò«²<¡9ÊÇ(ýmbµJŸãîñx|ß§§ÂW ÇÉg¤o-™ßé¿9ÞM\íºû¥ã½…å—̑ޒyB3÷H¿é'¾é©+×3+}áéN+½Ç£æ(¿Uy¼:qô¤H¿q:ú+¥'M\Ãm¦‘~³—ÄïôˆJâÖ÷¡ôn}LOfîoVŽç³?©Ï%æz\m o?="ý.×#+=-:ÞÌ/Wîv˜g¤lü=Ü5Ò{Ž™zÆû]wâï—é;+=.Ç›§ßáå<=™á?Uá“n®wT–Ÿ1ß‘ž‘é%—pm©9Ÿ«#ÂÇ¿áY<åì~§We{—Xï—éÌ>¬ô–‰Ùß(}eb¥'ãxÍÜô}4¦HÌö|Ÿô©•>‹é§Ì‘Þ»q_3q —'õ;½d/‰#üµ)|ß­ôr ?ýN¯ùDøéi†)ý¡yé~RúÁÄ#ÒŽššímcúœÓïðͦð9·Ò/²¼¶ùV{­ô‚‰ÛÛ%5ÇJ/hŽðG¥L¬ôŠ ;]"½NòdVú:†g›c=¶±½HÜÃ=7ÇKí…Y‡“ឺGúÀ^ÄÜãûfú½Äœ¶ùç;¬ô©Ü 5GúÙÎô±‰ßéåöx,qôiû~KÌþ„÷ÔzqçzQb¥÷ázyi=±³¼`âwz1„7^‘yž2ÿ¤·š©•þ…÷ƒ9“;ç#‰•ž†ó‘Ä=ÒK!|Ë­ï“÷ƒY6ÈSt%Žý’ÎðÑÄœ)=T⯷žÄUíéÎCTS³½î 5¤Úë9‰õzÏ'^‘žï÷tìW(ýQb¥_Z|?§G¤czÄïôB÷HýNTZâé™:1û£ÁûÕ¼t½)=Pb¥×Qø¥{FzŸÝŸ~öÁ">â@3HßsgŽôz<›™¿'Ó¹¥—˜ød~¿Ÿz§f{ÎôAî¢ô°ç)2—Hßs­ÔJ¯‚ôÑîo ”ßʼ"}KÉÜÉô2î®ëq`b•™íõÀ|ÄåÉ80Ì\#½ËÌ­ôEo¸#<{ Ïmf}_8ïàŽùôè|=·Òût~Ÿ‡ßçuÖ;2+ýNຣ<ÓŸdÖõ†õ`w¤WÈsêŽòLç2·x¾6Ç~ôÀÂ_fއ˜Þ$ó ãû8å•Ö2Ï·kâ®ùèD„Of–`žw¤Çgúw„O¶'‰¾ÏöÄü¿ÇÀÖüÄxab½73Û{æÉÌþzâÔ²;ÎcLÌ'2s¿y<ÜQ¾}â$ræþNŸñ$Žýʉñ¼;ÒcOÞ‰û;ýEIÜ"=ÇBøµ¹ÿ¤'xÝøn@ܯ×À(3¯çuóýžŽõx¦pÇyŸ…ƒuæíÁÎc0ß/-Ds¹£¼ìÂÄÆ]ÔÞ.¤OsGù÷…“éîHϵE–yExþn/ÍÚ/Ý×ëÂøýg…ËëìCE0¦ ëv žÿÒÞs@ 4.ÓT0ûÕOÝ ºGŸw(‚Ë;‚¡¿¥”8ku&ü>ÇcL=ò/×ЫáZz–yªÜO¨ø9i¯­"åʦ*ÈÿTQÐýë›<¤ýïŠuCVl˜¦ôôC]bV©ü“˜†ùºzLK¯0Ö)•D®ØÂ=¤ ŠîÙTCÃ…uµŠóC‡TBhïí%Â|Ÿ‰ L#<§ïãŠm iöžªJŒ°CdOu½ëôû­Îq«ô˜Š9Æ)•Ÿ« ú=Åäö7-%F(å”RÂWl‘˜†ôjmLK‰ ^}Ü!•±çþä·†RŒ5dØ?tó<]C³CÏ;¡Â2>5¥W3}H%1v²Ë…OÔ°`ÂÚ0+ÝÒ¸n—)®¢gý”Î 7.Ÿz"ùA;5ÞÉ0û-Üá{¯ôqµHŒ0N©ïmHÉshéYЭ™˜¤èMX¯fb„oM¥®o ª<5õ ã:u¿1ŒâŠgy}»‡47m Ô<…qYc æ©Z.”§k8v¨¼“-¼zaÓz;U•,£"@ð[JwÖ°Ov¨ëaŒaº#IÃuJk& {¦¢g©ÓÕ¥×PüÐT" £7Er‡×~Hå–’ê˜x0øózí­~h]ºÃÑ‹º9žlØ®?ô(AzØCå¢\§TÒž¥=LLˆ^ÔÄ$"Øz2a_ _)(I(L8ÏÝ"(ï[Sz}²CZÞËØÅ…=VŒ1 %šèåT´ æûҎ׉ {Ýùä­x}äŽHØÅ•’ùÐyÈ÷ЧeÄtAÅOœŒÜgjN'µ€±°ÉîÜÇrâ ï8ŽŸ)ËN*’ n8™Ý DHÜÁ)âk?Ø8ï˜d&,âŽìpe›ØeÊjQ—ñ¾t©tFÐq¢#zÞyRàz¡½·ròaÇÐÑà&ÄÆ±öNª yWT“‘/Ä(F'–œ:wôOV.8ñ`EB4¢]ÑPF ™©Ç¨Ê]‘RUשóœ“s(ßG½2.eà¸oçähç Òƒ;@i’­fzª}ñŸ¼•QãŠX¢ƒÌKÀDÇN …ϜԀi°È³³Š¥dìân œKË©ê2JþïÄ”‡{ ‡ò‹ìŸì¤šÍ¡8'c[Be¤SJý“ƒ“æ.IXõ6ŸóÅÈq¡è*ãT&Ä&\òKB,Ü3ûIÂ*âG1òbà™¬ƒE[¶ùÁvñ.°Œ> Æj:ÑôñÈJBtmƒMýɦOãP6Æ 9™c†'ˆœürF”›ÿâÔÅ0ù6ŒÌŒÂRƒN4#c±Ðú7륛NçÖ¼øy*ò¤] –X9©#ûÌ=’™&tÞü`QNŒ‹Å‹EÞ·ÕIM¤ç…Ÿve=Y Û;GɾDOêÇÄaã„X˜š,¨ál"â'ŒX˜S²ñ“ªE8k”>X•wD'ݢØz5›*Rn|Äþd¬Ê#RzFLûfŸÿ&s—ô8ÿE¶š*íýÍÈ…:±0jTVŒ©sÖÆ"î(Þ“Ê:¥”ÒN,šÏ'п¨åa¥“>YÙÍÉb¸FÜtsÆÙñƒ¼x²ø¤:‘…å´„ÌÂSÃ'µi³®8Ã}pêÁ¥:§ Ùúbs1šú¤“.•¦4âbXJœÜC•1ewåΦœ(WψŽoïñ$Ԇł'6×KåÌÆ|DÆ¢0Œ=s2³o:çTÆ”Rš1÷Q5Lö²Àr6ª‹NÎw>•8oüÍ¥î\l(§ZÎÏl+‡®JKíäÅÀ†âä­‹ …s(ÛÊZq€c©\ËAMá '&€K¥TjkpMžŒ>¨ƒ/–šÌR‘ãPÆ”ú8ud~±³vòGáàdç¤uáÇIøD2•Ykx²½›%V2‡û] æ07ƒ/¶f Q#YKâòNÖ’››éƒÅNϨªd,æ¢Íæ‹É̱™~=ïê‡yXèbïonñ}hÜwëó°¯ùQ°Ï£Ã~îÉ.JM\"Ù‚3ó°ùƒ™¿; ?<Ìen‘Œ3=wï {´neÍÜÖá¹Ó+’MŒ™8’å<ŸÇÍ`&{pG0à3øzîÉðyÝJ¶‚•1s¹ÔŸ>ìO+™ κ¸µ'ÛóÄO$;Ø×KâÉpït´Gü‡™Ÿ¶¿2kú¿W÷aËÄ fçõ`nŒ\yñt$ƒb°~æ÷óá°âé&*5î/Oͯg™_¯°X•Qa 0 Á hS¢*~hn±ò"+~ÏRŽñïNäú÷?ÔPÛ=±jþhóo©¢¡¶uß_Ÿz®/á‚­ÜÕö¥¹C²n… ´ñ©^¾„ª¡±[¾•/á‘Ûí«A_MA û·ýÐüÔnCX2hªÅÄÚŽ1Ÿá¼‰‡ÝÿAA ŸZŸzž/!ÈìR@«†*k–ÞTC=Ó¢P„}èÈcì¸Åñ¬a|h–Oíßv¼ƒþ¶ôùv;u±‰ù©ù©uP…)”ëKåS¯ñì§æ§ž…Á8XPhJžÕšÕ´ZÆ …ÍçKóS«~iüˆá’šá7Œfš’q5†DÎwЃ`¿[á } nb­a‚Gé0âSýKë§z+GB Øññ¡»~i|ª\_B¨!f ‡“ºjŸ«âæv°ØÅ ðÿ·´·éù]I’ûöý)žåÌB0ë½j+Á6 ÀäiÀ A c,/„Û¬1à¯ï'3"ÉŒÂt£m-î9çwIÿ¬"ë=#踙heZXdÅò; ÞN²A§|äýÚDÅi2„.³>’Þ/˜]¢‹g¢–iÊ™«gÚrÝ–ëN"øo~Ô<”- ì ÃSR÷‚5ƒ‚ù’‡`¢Eð1F•Â:=íG­dr昙à¢ë£g„UdšùÀ8QEép‘©½£·H„gie²œ¨ôZôv3œyá šá§Áæ†Ë ¤ÓÛ¿pí®U=)=ŽÁÓä\/2 ?æó p ìšð¦‚1OáÞª½ä“űágz[þ¾¸S¢î>½ð„ôEÊDsfZpÞ?Ü‘ˆžÁN°>93 ÏÒLpn?æ‘Âx>ߦM¦ùH4«ÐÈ´ýLlé÷6 “ó1ïô¹?û“!‡Ðâ|:+“;#DÈ—JÙ÷Qßo.¼NÍ&t2-?6ø[àmü’§9„rŠßa3Øãñ àðËù‰^ d:?“=˜$²œg_á%™¦{"óýdB³ yHòàÝË*‚ƒ¶û,G ÈžB~‡pa=þËC,÷RÆóù85“{0W”•©>B-|ñì¾q>ÑôëúàñZ‹DfÀÆooh.>ÂÆ(Ÿ×L~÷ÃTZÉÔÝ­ù‰ ²®LÓʈB ð‡Md¥ò‘å< xà›¨”LõjB3SóûùºËô e“»tR’h>¯4¼c-§Æ3í{H´?iSZÊ_àI¢âä¿eùÓ®n êiX4w³¬"ú}ËÑšiZ4WA–Ï„, âCxt=ïoÙç#o¡¡¸A-‰Ì%˜;–Oܭ»û2b¢æ!ì•×ý¾Ÿái µ«UÞûÍ™iÁÓš×Áý:h{*q÷³> /ì V2!¸þ¥“i8!¯6ΰÈåmÜâŒZY~&:™N"ÇeÚ¯7‚U2­Lµejž&ÊÏ[áEyd„­dÚ™æÌ´ýÌÅßrüî8s\< |z@Nø(+ÓÉôÛIÔŠPÏÔ%Íîi"_¼M´<<»¯„,Š•CË+Ñt_ç#¢L2h î.äx>W$Ngó—Üi¼2HAÖ॓Ér—óÒË[ÃØÜ ±%a9‰J:™,w?jþ[tºŸ‰çóÑR"{“?Ú~ þÅÞ:½äã£E©HÒ.º·®E—u<‘·=™Ü=~ìëÿˆ.ë‹äÇÓì~‡¸ûpô‡gÎ)t2Y~&J×mJH•–‰‚iyK gô~ÐÞreò4ÿxù™×óÖi±µ_>"Z4ƒÓq¢ãîìÏž”Èr—!¼NÊ4_9‹åkeP‰‹@¥DNñ_˜Ò¢ð)Ü“÷x÷^%4Ñ,¯xÝY¯Süö‘ÔâØíHb¿2B™ÿûFw£­Úèó!ì)Q÷4½‡‹ §L'Óoj–W_ˆS¢íB…÷Ûî0À´U”sÚ…®õÞg‡Û:o`T÷;l^gï Íô¶À‹>Ò™š;Ì—/Ø*“§G_ Ÿzn쇿Åç*77ý#(ë—©º {<_HV¢ßQy¢ýÁí~‚~Ÿ,¤C¶ÀÂßþÓ™–ü™}^1“ÿE"ˆ+Ñôû-ÞÁr"È[’]^oêçd*UÈEFž/˜+ÓÈdNñ‰z¦î© ÌÉ=r7Fä•Èòì£ãÇ:ËñT\ ׉,—ÂùÛ·‡&jNpþ†‹×e¥ÈTöÚFƒ©Ø›Å„¡½ä#›MѲíõü¦”BÒ6ÃÈàÙÈÞ~k›MãìáH…ív7›á±d³rãuÇÉg<·GÃö‘ƦÙöÚ;¤µ·Ï|m Éo¯½7e)ážh9M¦²«Kâ ÒG!‰,—HðúNT<+ùÊV¢:„v¦æi†ÖYîRœïxÍÒÝÇëòÍÙóãuyˆçGlÎ_eµòþBî2#ø{ûeoÌÝÃ<‘åüG¿mÀ¦Bñ2¹<œ®½EØ}Ôú7Ôó7"d/“Û Ü~ïÛ |osŸÂõ2LÅÉ[û㣗}|諞û µ‡/ú>híä—ÉSAH#Z‹ƒ¶™úÏ¡½ÒñÕK+}ÿ-Þ>œ=ãõÌ¡ wÎ!0Q™LˆîÇå ×Ñ·!N~¼ÖA¹EøàK>Cw ZQ8·'2Ÿú~o¦ž©ûý|æò¸èìaË… ÂC£¶ãóu‡-Éñy»Ãïã£ÃùÖã=ëÃÖâxÛqh'‹PÄ—|.ïÐÊ .ð§bFþx?ûÔ7аÕL¿­Åa€ÅD¿ßL¦)t2m9ó·fHdbKlIŒ˜¨øuô1ÉaHúñ]&‡­ ä3¹`Ôd*ÝÓDà¨ÏжoL4j&+¶uL´J¦íbRÞ®ÀU>Óù2W‰ WÅÇú5#ûn‘DÍ™·•<Ü) çùDÀZLsúÂ…~zšÞ>À“>Ño­q"ä¢WŒÅ€?}¢ß>Î ­õžüá®{b&²2Jäw@]é¬DžÊa8çï×|(Ôw|†îÐTè@:k²þôÖÐÊtŽ_çû¥©uh¦…0ÏLËh3Órž+¶ÇUéMRz" ×[ÑDÃE½|dz¼ÝL´üºÎ@Qû:>ÚrlLVaÑù¸ÖòYTçûšý(¶ä=OHŽU¢½² ·=5¡·n'¬+=*¸íÅåÎñB¶÷ñ&Ί;I-w˜¾û2Ô‰mš·€Vr)ªT°)ºªÙ?ã÷-?1ñø&+ÌøV§îG„jþ9_xé3‹_»"8ô÷mô£AèiF×›z"2 5V8©j‘–W\-²ò › Fª #=Èh?î7¦|2#Ux+Ƚ½‘£™ú<_¤jmC-Ž‘š¾@æoÈC¶ÈU{'jðQî×ñQ”]%-±ë¢…íÎãC7fðT.CÙÕÀ #c~Ù";C¢Žêlþ¶4òÀù°éa$lf/ŸÄ^akõÀ6è©Ü©ü äged#c3› €ðP¶HÙÌ×Ã&èMJæ…ôzޤ>ÊçCvüñIÁĈ¤Í\p>"EØ=±sö-Ù6¯Œ´}ÚùÚ–²çؾ>Ôg㸑ÏÄ÷Ó¢ªƒJÁ;­Ÿ}¼Îȶ»öUr¡æ_'{ù†À³ð}$6¥™'l(ØL¾¶”Ñžõ%4îãr ¼íÌÚÂÐdêÃ;ØË/óP®HŸµ*ôÔžÕ*Ô„ÛÅ”œd/¯Ì×ñý(œH‚ E~\‹÷IܪòÀù¬»¡Ëö„m "—½k05 ã|S^ÈLÂWâ…—Ìéa§|yP_¼ e…Ìþ¾¬ˆœ-¨/û÷¶9Ê OD"–ÏóòÂõŒT-¡ÂˆÈˆRây>îODúïÓ¦MJMyæBuÅ<”ëÍÛÊ ênOìä/PjÈÜòÂùˆ\*lÃæ·°=<Œ(°õ}ÂF®@·í9Œ\,l_öe+åáŒH¦Âö)±çÿa}WØ^Úž!2]y\¼•í}*a›Qо®˜2R]Øò;³ëFd"×…d([`«²”®È¸•W¹¸_¼”÷£|$=ذg®8õ/"Ù…;®g$;tèJDN‚Úk‹ú¸ø‚Ž&ìÊ’…õmAûV ëÛ[ãRBij8…24Æò™ˆDC$½òQ¶ï¡TÖ׈œ¶ï¡DdOA{X¸Êy9£¾.h…qÿ‘õs(¯¥¼ò©ã÷!¦P4qÊm\¼]‘F6ò…ò¹ÎKy>·‹çÅÇ6NÅ#Ñü3äS2£ý²Ïj‘Ž¿‘üÖ>îwžÎTB@{•yle×m [IJ‘ÿ™q~‹ûù÷’x·‹òAz¬ßa[ø1Ô…¯ã¥+שÜp=ú÷强¬Á¡ÄºÉžßœ¥6öï'3Ž—P:ðïçUfðé<ååŒú¿BëÔ>óPBðï+qAúèWh¤½¶Iº…™;ÄaÑ߆²‚°×wa;\”gb/¯ÉÈk(¶ [{’ùàzôŸ+ÚóÂyãŠû£\¡µ&Œß³C‰¡ß¼•ýûJ<ñ¼'”ü{I¼ÆÅ[y׋¯ó÷uþ)™Ñž.¡‹þ|­¨{ý˜ØË“³$T‚¦BïË×£=ƒ2„ðÄñW9¿ÏÄþýŬHE óÁõ+îwp=f3jÃ÷¶¶P–öòäšu„…W+q½—g(kU(M®NOˆ £=ªèOd^CÙËëÒÆ§_lï#W£MéÂË+±_‡íQÅøøµõªÐ»+aZaÓ-ϯHÏË·süÕПøý‰Ì¥^ŒôN(GÕrñVöïuDû…þEñ|˜ÏÈìåŸØ¿GšÿPIJøàüéŸù ú/™ Ü5øûÐ?1{Œãïw¬?ô˜oî˜oèa;ÝÑ?é1¿ÜÑ?A6€'¸ÇùÖŸžÎ¼ú#=æŸ;ú½Äóc>!³}/ÈðlOe«Ï„Gf¬÷°½îô²¨ñ<ðˆÉìùJ}ý…Ìî+‘é½÷›[yÃ:„ù‰öþ—ù{0ÞÏlíEf÷Giñû°^ÙÞÇÊÒÝ·7+#ýéÍçâæ¼#½U/oe÷3ÉÜ3c¼ß[äÆ÷™[WîðVáócüÞc½¹Óª#Ö›û ·>/Ö2ûûù2Ö§{¬?w8(#}þ~¸|ev§”Ä Çùý.äψòö…ð¹¹gF{ÙG|ß; b^n8Ÿùö°øÞ1ŸŸÙlFpðbjdk{Œ;ý{¢}ê¾E–Åö÷+æoûAþD{Õ}!ѲáIÊyÂ^ÿQùÔñèEƒþÊð-²ží•ÜúSƒ>?‰ûQ¶ö(óÜÊëºÞß§PZðËlý‰¾?¥¾çbÿ¾WøÔ ÿ9ÐÞgô¯æÃ­˜wð‚íM!Ϧ¼ÆÅø=? ¶7Tq^™}`à¯Å!ûûFuºÓ(ÓYg­}ϼÀ˜¿‚O }4* ûûÊΣáý¢öYDN …3* »/Nì7p+1ž˜†ö¸âz*õ¡þ1¿:°jРª@ìÈ‹½í}ŒúqÞ°ŠûY~ IS ÑøU>\7/eû^­ØGðQ>;ó?¢‘æßÚ—ëÁãÇÌ–ßP}o0êŸúÔPŽDý?ÝJ¥FáS#Ô7ëÅ™ëÅ­\Ü•G½×£~ùåÙ•l“P¿@ÂHy^|œ1¾h?Fãø ~DÂö}Ž/Bz¨¼Ê³P–vϧp~h/Fçü„eüµÄïG}?být`¾utÎ_CBHxÀ̉ʣï_(™Ž×û ó1ã¡QÿWYãŸAÓy*Y ûó‡êÀxJH`ÏØ¯50šÙócÄû‰ö"”´ ýxC/˦Qh?'Ú‡ÌS_MŒW„iIÕÉ­(û÷ëã{­òc<åMaŸ2ã÷a¾‚5úH„ò¦°{U-Ö¯ã { ¹ƒQŸÒxÄ~)zØ51>¶÷‰æ±ÎÇõ$y•—3ꯉùÑó—¿öï5Öÿ uã¯á nãþèLŒ7ì5Œã6Þá01þ‡ß”E…O½x8ãûœ˜?ý¸…sØËé¡ýœhBuª@ÇxÇù–ÿ¡Cå¼”-¿g´GtEžÑMï˜ [û=cýobÿÔd¤ªûtuXŒ¡<ОÍ'”Z»·ß3Æsã(#­=›%”[ÑžÍp"šߨktÈׯ8ÂÄìÄñ¹•í{˜¡| e-⸕çŒõ·‰öH¸9£þš#|Ð^¶þQæ5´ÏØ)¡­d<в—­ÒœçÅGÙê§Is-ã½`¦VÈôZC{8Ѿe®8Žöpº¤°c÷üÏŒßwâü~”G½Øò£s>t¢½ËlõÏ«t=1ß)¼YŸ`~sF{bÜ/^Êå:¿àüéUÜÿÄñC9æ/Æ_™;üç0œØ?•ÙÚK+漜ù¾ºœN™±þ61?9cÿÌÄx ZH`k öüÏ ‹;~Ÿ˜D±=¿'×ç!_c<ã|«Ÿ&µÌ•Îó/±ç_ÌÏM¬gÎíÚßN Ó)sE}…õKáíŒõ„‰ùȹ¢þBûmÙv‚—2}øÐþOŒç Döú'xa¾Pç£=XhŸ3×®ìn„›ãUÈé”P*Ä^Eyãþø~ÚßI½gão@´§ ã5è¼ß‰ËÅ^?Åz$v„ÒGy/Œß2{þ3"´@xÇíÝÂzhèÏGÙÚèíý_×—è<½b=lÕ×ÏpÏ‹rAúÏ,´ï‹‘¡ÆV^™­¼,›Ùê¯Ð*ÇñÇŽô­¾Zá>é£=¥gõŠýÆñÛ>Áób8%öx~+ß±žê;Î[ÙÊc…ËÂúfX-:/7WD}Aêû5ÚïÌÖ^˜ŠN¤ïåרZ¯®ˆÇX>ð¿âzwŒú}aüº3Y Ù£3Êëo™'޳¼±þ¶fÔoï­˜/£ï¶ý¬¼2ÓÛsr|¸Ð~eöï1â9–û§ ûógÞÊ×—HÏ¿ÇØO±0>ü˜Ž +¾g´O™½ü£½hŽ?vïpÚ|‚Çŧ\ÜCøFØë«˜/Ûž³ÿ²Ñž#=´ÏãµÌþ=Äxò-îüYÈtE~AÄFØêÿÌ£_¼’S($YÊŠñ$SÜ)tOg´ûU„·²?oÄWlwõljd+ïÌVÞ™í{°lz‚3úWã§ýp>eûÆ5Ï–Ü•­ü3»³'u Çwaÿx£>ݱÿ26žMqþ‚Sê{ÿódFý¸c¿ÃÆxÆeNðqîq¾};œƒ`¡ê]ÈþüûQ I£<œYžùѸÿacü’ÙÊS{µ@dÆ’yâzkL‡å!Ÿžõah±ÑÛû°#Þn#~bÇ~9:ŸïèoôÿMk%Ò·úÏ~6ÒCÿ‡ó×F‡“ÍF~Çú8DF,ôO6úó;úÇ¿<gôÏ7êÏñiý{ûq?/ïÅþäFÿ~/·Ó÷Ü’ÁïA~Gÿ‚!~Z°;ßFÿt#ÞnG|–ÉÄ<ÊN³ü½ˆ·Û±y£?½c~{cÿßËéðÓyÀyã‘ãyáÆóô?Oô÷ Ÿ"lõ©Ý&ηüÍlß“%ÛÈ–ŸPoï•ý·S8ßxPogôwæ÷3Ó)÷ãåŒü:˜¿9ô›0ËÛzóQ¶÷éÄ|„Jì/ô¿¾ÿñ°gàúØ_YwÎÅïÇ÷s:ûŸÇÅbí4Ô¯¶ïûÄ~HV¸“.ÊÝÛùÿô×\jàh.5Ap©yÉ}bü¹èRsÐkû\jœ^—š ™ .5/É™E΄KÍK#\jàÛ.5Ap©ñò|]j^Òcîéâ9õºÔx½þºÔÁ¥æ¥&439vô˜ûÄÀ'\j^rç èRóQ)B+S}„f¦æ®*Þ³£KMxºÀ¥&ÑÌd^ œ£K ç»èRóÑÞ™œSøDôJ Zmz¥%w+ñõºÔ$r·xºlz¥ÁÅ¿ºÔ$‚ëÈøy]j>ZEheÚpi?¯KÍGGŽù\jùý»p©ù^)^›Ò¥æ£&ÇúÎ4J¦åŽ(¸Ô0bœ.59H—®–Ó¥†kt©ù¨ºóàRóœ0 ¯—šú#Ô2 ?æk-t©I4…ÜAãðWÏñ9SÀ¥æ£ó% ¸Ô|”}1àRÃ8fºÔ|Ôœà—š†;>Àï.5­&43mw‘ðyXºÔ|T!øTlPu/ Ò¥æ#+‡zš™†;0À3ÃÕ"Í*´3­ò9LTº:¼´2í–é8-:>„ ^Ú™àÿðÒÊÔÜe¾W‹þA½ ù|%.5‰úëÇ@—šVš™¶;)À7 .5Aðø¨(µLudê~&|…6|¾–.5ÑÁ¥&Ú¸Ô0‡.5ÑÁ¥&(¼Ð’À¥æ#{??%Ól™–\·N¦ó]G—š*œ žŸ×¥†­]jØæÐ¥†í ]j>:Ÿé£H,ú/ι`-6QSj™úÈ4ŠÐÊ4庥äÞ¿Åüƒ Ùÿ¼¾4­dêP’ë†û}'Âw.5™V¦3…ÜÀ[¬À&ªMžã'\j WÔ÷Öi†ö~ÐÚ;ÓI×A{?‘ûÀ…Ç[™DE¨¡žiœLð9€‹‹·á—šD–K¬õg¨íƒ\Ù2ÓÈT\ùßÛ¸Ô,¶XfOÔ\›>ülúÎ%~¸•x°X—c±<Ñ’c» íLÐå©äöLÐÉ??áR“édª5SsÕ|saQ}±?—šL'ÓšUhíLP£‡[Ф=I üÏqäc>.5/y›“Èœ)V°°žie¢n}P3‚Õ¢nýK;”êƒv:æ­E¦&t2•™ÉÊaÑo Êÿµ’©?BMhf~¿p·™®[ï3l¨©_‚ºÔÞ¾x‘Èr)êòCmú—\Óµ·¯þ&2׊ T4!¿.¼n–ЮB;“)ÿ‹KÍ—šÅq\jÕ*ä*ö>Ò€KM¢îz÷^ëÃ¥&‘)²´¡&”Rt¢‘©¡•©B{þ„KM¢¾3’iÎLKIÒÜ’ |@Ѐþ¨ù|÷³7÷JÁ¥&Ñš5Ó*B+\¼åZá tù8n³ƒGK¢R„V&SØf[—šD½ ¹‚¿·@p©Ùl°°hû™¯/MêÁ[à£üç'\j6µ àR“:ù¾®—šMß9¸ÔlÆ„`É;ÑpMûðžYEheÚ~æâ/;‰|D”IŽõ*4~°Ì.5™º+ÎûJ \j2L{d:E¨§Jò4}%+Ð{ÐeRm?¨ŸLcfšPƧŸÍž™~¿‹=ÑŸÀr¦©ôLÕ5ô½ç—šL®p’öñÑÇø|Ôw&Ëë¦_‡’ö1F¢S„úG.a«Eý'\jYý™hgj%Swmz”»·U‰ìL´2m¹nCÿü„KÍKÞŽ%²Üý¨>Br]—ë ¨4ü·à ?¡¯䩸ªå3u¡õ\j2ÍLÊøó'\j2Lme¢¾>iÈuÐ×2gƒ ¯´åî;]‡¶ê#{?É™}g]hešÏ«î—šXµƒKM¢S^í}¸Ô¼äJ÷™N&¨í¿´3u¿ÎW¥áR“hõL¿ï ÜÂ¥&Ñq%~øwÀ…à#Ón§?\jAC®?p(øhôLód²œ ¶.\j2Lºüç'\jU9eüp”iE:ùã'\jAý>h m×Ð÷ké™ÎG>'w½—šDIÅ.5‰ [4\'o–¹L›¾ÿ„K-{–Ÿp©9T“Ãæ€L®Tï½_¸Ô$²|ù¨7¡“iÊu« ­LПÇé­E¢Ò3ÙûÂñ\j™¬ùG« ɱ=„v¦S„úGÐóÿ¨îLmeê®…‡ßZu&}…¼žO´›Ð:™N¢W{ŸÔ«ÐÎ4J¦ù¹Ú>|¯|,TóáRsØæÀ¥æ°E€KM"Ë%îÄ…3ÉÙŸ/M:™ W_ÙJuø—V¦Q3M¹Îr÷#ËÝŽ\w¦Ðù:þ‰ü>N…¿I¢Ú2µ*t2uIe>BræšB~ >1ÿžè¬^5þ ÜÃÛ„Œ­(vÁ1}_ʇUàt%ñWQì‚;'…¨ÿ„¥ V=¹)v\ë5(\k2ÎGñ®)xzBh ™¶>bB:]¹ùs¡iæ‡=â@vÈÈ&5¦à¬ŠCq ®%¸›àѤN¾ï€»Á‡Û÷ÍTçÕÚ¤Ô~àè‚Bñ0 ¢Ž>Wÿág#•xß5w(¢ŸpCC¾]r;;p–ªxëlP÷^ÿ¡˜>ÅlµôNÅ#èÂìa3Qd · ¿üŒ‚ä&¡„ò?òœ„Ø1ô0"åP0ÿà ýúp¡qy÷„S°UÅ#èÎÄâË¡²þ‡óQœ‚2ò0•Â.ä)²Ÿ×Â/†ú `Õ£­+.AªëÃwçÓCpVÁÕ·^{òµNH•ý— 5÷›&Õ«¢¦<º g;åïa„#ñzvЮqR‰‘Ïpæ2="¿à‡#Ü›2•æ±Ó–8§f.¨{—rñR®P®ÍmêQn÷zñ¸x+Ï+ý e|ì GÅ.Leú—7˜Î0tx™Î™‘#è¸By;á“#ܺ²+Í&Gy^é­ëz*Ñ|¥wp:ÝÀ àc8åC‰‘@tʆò<"è”S"Ò‡N9ÂGÙ•ƒ3_ÇûuÜ• #RˆN9…Îpá”ó12ã|DjÒ)§¼Î.TNLeú—©Lÿò¸ÎŸ¯®ì呜fJ¿x)×G¹!}DFÑ)§´p^¡s@cär„¡ŒŽH:å‹¡Ô^ãþ»**¯£|°=s©åzqCzt¢3@âþ\Ü.žÊ£^|”©dÿ²?±ó—N9Âãâ“ÊÀÂ[¹@¹N.hù…‘y 4$¼”'®§óS™žŒFÜ”ßgð¼ø((¥ÓˆN‰ëVnE™ÊôC‰œí ‡Òù Æñ×Ég?ÊT.'£ Ï\›r»Î×ù£+Ïëúy”÷P>Wz®DÎ=-á”Sv8À)'ó‚’9"§é”ó*ŸÓ)'sƒò8S¨œŸØßPÚ¡SNáüd8ådÞUÙŸ'"Sé”ó1•uŸÏiæ9¨¬›y8ïp¶¡Ò7"[锓¹•‹¡þ:éô¬,N§œÌ®œ›¹]1ªÍ|Jf(Ý eÿ2oå:””ÌIC§œÊstÊAÀ¯SNæ ¥q:É ò5ó†²8ÐÞ ïÌ+”ÔÑžÐ)§†rê ç!D~eåâ%ñAžPê./·‹çÅPò¦óÑ åpDþÐ)§†rr2·ë8•»?že*w#òN9¸ß|y+û÷²ÃYˆJ÷¡DJ§œÌg\¼¡ÌÎ4ϸÇé|„HÝö:m!27sÊ®LΛtÊɼ†²}?þÒá”#¼•~ÀN(ƒé”#<¡Ì\ ÄMg(9enTƦÒ÷ÇMy åIåìàÕ/†R5V¨<[ÃIãåÑžg¦ò3A¨4Ë)¶pÊÉÜoÞÊÊÓ3x>SY:x‹¡ÄLgô„¡ä<^ÞÊÊΘ SN‹þ/r„svåèÄu+»rû뤀ÉlŽƒ­ýÞÊó:>‡²}ÂPZ~vN½xdÆ$wæz”Ûu~¿y++½Ù.žÎ3x!½×¹gWe*=×—Wf*í¯p–é¡ôü²3·®Üq=- D!|”GU^]y?KzPÎ…À8¸”¤M§á¦Ü·òXÊó:ß•Ó3_×o(WC©’N9Â+3•ò3åR•+”¨Ÿ—¡$Ý‚½<^§"*é'îP¦>Ác\¼•7”¡éôC%ÝÄgd†SŽð}|C‰:¸@‰z¿Ü•k»ø((EÓy ý‰Ìó(ïq1•¬ƒ®§“ÆËÂSÙ•Ãé˜N9™©$ý²+m×pJBÿ"óÊ«\Ü/^Ê»]ŒôWðÙ™Ñ^ÊTž¦³ÆÓ¯ò4rúë$„ypSrPbfý‚©ïÌTNÁ»^|?%1r„rÃý_'¥ãL%ä»ònʧ&ee:å|L¥ßĵ]Ê éѹJQ=”,锓Ùó/ñÆùèÑ)'óÁõt¡ÒïËÏ eßC™’N9ÂPN~m\‰~…ó•èw*)¿PB®ä±•×Röú*ót¦sM eæ×ÉæÊe)S™ùã©L¥æ¯ôúÅÊůó΀ò18¨\ŸxC)ùuÎ97¯Ìh¿…r-åvo]¹?_éÏëú eåÎ7®ä™xAi™NCT>NìJ©‰O½éÑIí¿p¿x)»ÒqâV/Ê£$eg:ådžPf¦ó ú¦´¼‚¡Ìü:ÛXyP¦¡SŽðQ®PB~t\‰:q.nÊÊËt†Âü@æU”÷s1”¡´B§áqñÎ %™Ìåæž”é”3 €N9ÂGÙË+q/Êépºq%ÜÌG™JÄPö¢SNæ}óV>PJ¦³úƒ»ãÂ)Gx(S©øu¡R1ßÿJÅ|?w(Ü\éJ}tÊŒ¡ §œÌk)Ÿëüe_:­Á)'s¹y)ףܻ ¤#<.Æù¯ÓÍ€ï‰ôæsñQveíÌãb(ëŽHÿ@É—ï#æ+„Wb:ådveÑÂùX:åã8žPâ}y\Ç©´ûñu|õ‹¯ô¨´‹ö‡N9Ã)Gx(×çâ¦ìÊ—•JftÊÞÊó¹¿g‡“Ž+7*yÑ)'3•v?^™ÑÉ\ÞëTãå‘ù:Þ®ãTæýø(ü>ôß蔓y·‹gfôG2×vñQîEÙ•Y{8gPY:”é”#<2c}\ø(W(£~¡SŽpOʽtʱXÒ|”çVÞ×ñS3c¼?_ç´ï™ýýÌ ¥]Œ_è”3C¹‰N9¯2/r2ûû¹¨4E§œÌžŸ™Çÿxrf(­Ó)g.ޝé”ó1Æû“»oÃ)gÆ|1rLɶ“©Œû2•q_žS)÷ãåʳ5îïï'cÔÃ)'3•mQ_Ò)'³åçâ^ÓpÊɼ®ã®|˜˜J¶èÿÓ)Ç¢{pÏŒö2s…R-¯ÇN³Ì®”šJ±ïõ®”™xe*;líãÇpJÈ\в+cÖpâòræ e[8/Ð)'óî_ÇÏJL§œÌe+·~1”gé<ååNRtÊÉlï×jßõk)»Rof(ɾéŸãçÊ…tÊÉ\›rƒî 'WöM<ÊÅKyBIö½¿¿Ÿ™·ò鯤Êý:>®ëwQ>r~¥Ù”k'¹åÖ/^ÊýQH+Ó&žå⮼ <ûþ¾å[¾ŸT2Î %ÛשçìÌhOVìÇ SNæ eX:Ù`ü¸Âi—N9™7”_éÜB¥ãÌrœJlj=¿O8]ÍPz¥ó œrv̯Ò)gS /œr^¥V:åoå %Ö÷[Û÷l±kqÿ ¥Ö÷ß'3ÚÌʪX¿ SNæù\<•WUÞ×õGõ½ð¼ø(S öåy¥·q>útÊÙ1?J§œÌe)÷ëø(_Ç=?2O(ÍNòªoåS.î‰é”c‚º…\¶r…íç×­Ü®ãýQž×ñusWÞóâ“íðRveÖè¯Ò)'s¿x”‹—òÄó`PNFƒN9c~SÊÍt ƒrö‰ý,tÊ91_L§œÌ®,œØê7á­Ü¯ë­¼2ïë~{e†SNæR/ʵ(w\ýætÊÉìJÒ±J§œó?tÊž™á”s‰ƒN9L؃ûÅËë“tÊÉìÊÒ±ßN9™íûî/åù\Ü”7®§“ÌJÔ·‹3à”“¹eÏïñ9ï¸R÷àz(r,¯‘÷sñTö÷=óÎ g„3OA§jÿñ:åÛï gW:åœ×9ã7‹D›dÏÿèÓ)Ç¢¾âþÖ_ÊìùŸØÚƒÌûºÞÚç±þ)~þ­ŸŒ÷Ëö{*÷SÂ)Gy)ÿ^¨ŒëçËö<¯3;åg§áú(¯­¼¯ëÏu½?o‹òóñ£rSnE¹_窼–²?o穉÷¥‡Ó‹·_Âu*ûûN¢ì1¦3ÓÂûØß‡Äþ¼¯“Oœ&ÞxþÄ^þÏ‚¼òrÆúœrêóÖO>4Æz œr„WQöòù ¼3ãzÖŸåŸÙòc³=…SŽð¿N:þ>Ä~`L Ô'œ“!¾#\†²?b{?ÊÃñœr„˜N&Þ~ã÷Ã)Gø·ýþ­ÿk‰ø 8åÓIÃëóZÂ)r:Âö}|ìûK•§²•¿……„“M±ë_ç–ŠçMüÛ?¶òFÇá”S-Ì"ŽÛ÷ |”ÏÈìN9ÊÝïdr„ÛP×ùó:eû~2ŸÇó1Ðî×ñ~”í{È<»ò¾Î?–þ'—Žüxy ?W+Ïp–‡Sް?_bk2Ûû_b?œr”-ýÅø*8å[{ |”ýy2Ëõ Ï“y)×£ìå›ùJo<_éͦ¼ªò¾Î÷üyÙûóÂc+ïGYŸßrj g`8åû÷¸ekß ÕÁè”#ì¿'±µÇåpþN9‰½ÿ)lï“…²Õ§5öëÀ)ÇxÅqûž2[~f¶ü¬5Ò÷þ›°Õ•z†tʶþEý(PP©up~N9–ÿûü¾1Öà”Sk8'Á)Gx^Çíûÿx\×<ïËø~2¯‹­þ«›ñPÁHŒþÀÇx?‚ÿŠSÎA´r>ÚîUã#£×)g‰SÎKë#ÿä½—ᔓÜbŠxÎ?ÓÛ*8å ®,Â)g0.˲‰Ì›#‘»°øˆN9‰Æó¹°¸SN¦™ÉÜ8>2Ç”†Y :åÐ=žN9‰ÜÝÄÛ:åt´¶tÊItŒ¼çC§Ê•Ð)'Ñþ ·u:å$rç“ð±1§œDî|î;­ LÓ]JÂãfÎLËýL6ï·Ü5$Üw–»†t>ƒ9ålôí锓ÈE Ó<î(â½J:åì¡€SΤ×*œr0­N96i]Â)'‘iÄS{ Í“ý8å`²8œrÍñ:g`ÁÓÀá”3©b§œLð„(?á”czå|8D€Ü)'ÓÚ™j’Tàá5)œr&´à”3©F§œDpzxi½§œDe wPX :„v¦V„܇!vº;/ø7 §œDCŽ ÷0ðwN9“pÊI4G¦å® pÕ€â?ãiP—¼äb)‰Ì›ã£*gZÎÔ”ŽœO¼Ãœiý„o3œr^·ƒB'„8s¼Û<7¯óÙ¹L-“}‰†9øhN9‰,¯fº±ð /Læ‘rè%§œà®ðRrûn™Ž»Ä™ç|äkk‰JZ™L+\œr2¹kϳÁ)'ü‹á”³ê{¦y4|4›ÐÌ´Üo RY®Îÿsýÿ¸ß®B®ø×™ªøG¦²ƒD3Óï[ÉUö‘Ÿ*û(1ÿ¿±ÇN9‰LÝý#¨ìºèŒ&t2Aeÿ%×ÀÇ›ìÑ…+¾8ßË‘IÍà„°øÝúV2›@¨ èê™ÿƦ{‹ëB'ê®4ú¾ÜO§œL® _y¿Ù2AÞÇÝpÊÉä:ð>&BK›i}4© T!9Vw¦>3Qù½€¨õN:Pb$?39å¼´¨üþÒrÝr8¢A:¼¢¼añ j®îëÏpÊIÝò—F¦Q„ºÐúrítÊÉ4]œ¿Ó4¸?:®Fî{á”c+ÍT”Z&Ó1þºåp6ó~Áf|>œr-Wù†Ût¡µLÐàö]æpÊIÔf¦¾3Y.MÌÞÀ)'Ô³ÑÿÙŒä„SN"h?{ 4Cß9¨ŽLMÎГ>?ᔓšØAÇÏ<¼º× B¥ë údj®° ÿø|Ô¡è<~Â)ç<˜™ÅBÿ¡.Ö eæ åäoœr™:jT9?j%Óo¹gjBPtž?á”s Ö fè4­"äºÐ>ú‚SN¦óQè4Õ&$göi”LÓU›á!âmN"Ë ªNÎPmö1Ð Õæ—šÐÌdÚÖ íÊ|•™ƒz¦eæýN9™F¦-gž)”Žù¸:“§‚7Ë·‚eZ™ª«/ÃáãUm&õ ªÍAS®3eØŽ½DpÊIdZ°ƒN$Þ"$:®Óìc,¡¿äöL-Sùá”s&ý ||{&KÓG´‰ xî4Ý•„ñ…Cšñ|pÊ1áÈýN9‡s×pÊ1ÆúN9‡:EpÊI´¡)t2(ôú»ämN¢âjÁðK‚Öt"èÉú´ù¤þ&£’'õ7?¤-œf$Ù˜MJj~Ùzh->wèœâÆòzÆ#X¦`­ŠC°APõ'E3št®Ãgœ‚ãÎ*èZ´Iè ¥Š Í!]ê-—ÛR«4°WÁTøya)=ã\Š›¢¨ó'œt2žõ!ÙŸ‰Wf:‚S°VÅ!H%SŸAâò{Â1©U¸Ŧ%Oo¯…6B¾)”ÝL¸ëlÍÑç;%4?EÐ37*}ìB®Ó§j0àÉx þyhzC­L8O`)<––¸ž”½^LøM¼2˜«(B”Ò‡ ‹š˜…‹%oS*+?a·ãÂaž9ÀL¸]^®aúzQý²½þ8.6÷¡k³}ho{F(7žÀ-HFÿ¬à¼“ÑUÙö„Ô¼ü°4Å#è~Ô8†`¤úâ‹MÚŠK“ZKpëÉ'£¸\ ¬ÿ„OÆ^‡à€¡74°ã\‚ö>›¬U äý|¹ –<)î÷bOˆÐÝ­ä°å¡ÀTøòdôlÿ°-Á®'[5R6š˜ódÜzô´„äȸK¤ºà‹šT=‚m*êÑ®7z£©×N¨"EG 5)Yùaâ`#Ö¡¸]îëÃþ(NÇE\Eq îG± žœe¹ »ÔVˆŽÀ)؇"ÑÔ>¤Þ` œ‚§(vÅõ!\|§`.b­ŠC°Au¯):HÍÁx ÁG¤â`à‚à^üŒ=OB´’ í}Ψ'÷-8ºâô|N¨)OM™"^çÀÜçÊœLx)ø"ôø‘rTûómxüP(L~ ½ŽÝ”ºüЕÿˆš°tÅ%XÅ)è9¹^_ JözæRÐ2!NöølWp•žó–?+Ä÷|¸ÓŸŒ”ú ‹žÖ)ì8ª Ëúôú6U,?ô¼ú°Ãå§AÏÉgS<‚+#”&2NÁº=¯>ìPáó-ÌâƒEŒi+˜ÁƒàtAµ@4Oó p¢jLXe´&æ}š¦@¤ó¦l-{ ¡;Ø a˜–ðÅþC±•ðÊX· Klu~ey%UpÁ­'»ºYÂã+%7 ú[›öª¸GtYÀ„Sp)nM™€/B¡Ï‡Ò›‚ŽÄó„Þ_ åý^„úŸGÀ3È5OZxƒ'7Háyåv¨ìø!…ÿçôlÿ*G¯=ИóWîAb –q èéù<í¡¼ã‡ jn>0‡PFjÑÎGQOö2Ú4ªÁ@,ᮂ*pð¼¡ã(Í„E« 2vAêɤ죚 %œCpAû­óW­.èÊM-„äK¬8Ù§wh&Ô Vlh&”qóQ<‚K“rý¬‚½%4Ê8ë -¸N„ô¬µ¨¤ôᘂºj>h¥™PÆ-è¢Xî&x4){½;,h&”°,AÊÁ6œìk„4JèË^Í„2B¹m1©u7tÖ “ÚU›¼ö”„3DË|I‡fB`‚­+.Á®)»:YB¤ìsP4J8/ÜPJ«ÀU÷\UñZ¡ ö¾h&4¸ûšfBa&”¹Œ‹¯ã.6•xåM±³Evñ°æ$hZ3S ›Ei&4"x‹fBƒ ­a&”¹]ìùšy\¼•C¬·‹§òÊûbk^.Æ…à@š Ï‹rƒ˜‚ki&4Ÿ0³A?`ò» 3¡Ì.–”˜b`s ™ðT.CÙÊ+s[ÊýJo\ç[ùÌf(ý÷dëy™bH™—2Å»h~4B¬ëã¡Ü!Ö…`š OåU/†˜ÍµÐÆg¶Ú1ܼfBcÈŠí?^3!á¡\/v±$nR 3¡9(–J3!ávñtæ÷‹K¬¼fB™'Ĥz\ïbk‰O½ø:ÿœÌOÞÊ^¾·„™ðQ¶–Cøº~^×Ïëú½3£žåR/†X‚óh&”¹å1.‡ÒLHø(zñuÜËgS܃fB£ Ïìbl‰ÎG0!Í„„»ò„¸ÖŠë=oŠcÅùbXb&ô2Í„2Ûóe^=3ÚÏÌ.f“¸徕çu¾‹'%^×õö}g–ç¡™ÐÇh…›r©åzóVnåâëþý(¯ëü}ý¾}ý>Ê|¥w„±"(<”ÄÏ &J3!á©lõ¯-Ù–`ˆ“Ñ<©…˜ØË #£}†xÍZ(þ”¸ew 3 š eЇ½ìùÝÂüŠâNõ+Í„lÙ1~Ÿ—Gs­bbdˆg®ÏÅãBŠfB™G¹¸_¼”½|ûûŸy\|ÝïÈý0G»F˜OA ØVƒ)Îõ1ų¹eŠs}¼”)ÎõñTžWzÛB°;Í„bm˜ Ù²Z Þ™Wˆk½ì周ÅÜ2_×{ùd¾Ò›ÏÅëzyº˜?Ú»Ìk(S¼‹¼Cœëåvwñ·ÌóbÜï­lý?áqñuþ‚ØÌRh&$| öìâ>™wf¬ZÚÂXÞÊ¥+WŠ·¡Ü·ò|”×u¾}?Â÷ñ+½Ó/^‰i&$<•ËP®[¹]éõçbˆõ`—I<«òê/å=•\Oñ«Äµ)·ëü6”;fg4Úãš e¦ÙÇGÙ˯1ø—fB™7ŹNð¸âR¯ÕWL‹Œþ€0Ä«Ð^ÐL(³Õ›Óua&”¹Qìi“CÌ)xÔ‹!ŽD3ŒŸ…GG¢™ðQ>õb¹“Ü™+Ä•0B3¡Ìýæ­<º²‹9ežÊëJoWås¥wVfÌŽg.C¹VåÖ•ûu}Ÿ#?ÜO3¡Ì«+»xVæ™+µ;Ì i&”¹>Clê5÷é[ÙÅÌÏëüU/†˜T‹ßcßGæS.^™1^>Ê¥*×›‡rë_÷sñšÄãº~àyh†ñð ñš e>#3‡…ïã[9Ä´^îÊ÷CûO3¡óš·¡?!¼”­¾;!îB3!á­|VfŒ—…§²—Of¤Oóô/2÷çâ©<¯ë×uýêSÌêw»x*Ÿ™â[™—r}.nÊ!Ælã£ÌãJoNåu]¿¯ë÷uü@<‹æè®N‡™Pfÿ÷ë|Šk}Ü•=?S\ëã‘kË™k»x^Œßûšµ¡Ü‹òèÊë:_çïëø¹®?+3Å´2åR/oåZ.«dŸËÊ^?%ö÷?ñ~.¾Ò;r=Ö¨ƒÚÃL(smOeCË|¥×/ýâë~ë:ßË3ñ¹Y®GûýгÑL(³—Gæ¡Ü®ãÞž$öú+óøZ%Oˆ•ø=s\¼•)޶"½12šñPœ+ñ8Äq`&”˜b]5ÌWÄ›j˜¡øüº°‰dnÓª/åA1®—!žÕƒçTÞãâ™b_™çÅG¹å¶”],sƒxW°‰dž»8ÖŒçO›ñ¼å‘øÔ‹‡‹c½÷÷òÙQÛÉ\Àóå~1Ä®j2R>Êm(÷¢<®ôæsñ•ž‹™e¾Òß7oå#÷£ØYâ‚ô!Ž3!áZ.ÞÊí:ÞŸ‹›‹y`Ëâ6fš »8Où̈θxg>OJ\n^Ê{¹]鹨Å4h&¤¼•)>ö²•§ðQÞWúûJ_éŸëüsÝï¬Ä0.Hó—0R¾Ž·¥<®ãâg4Ÿð(oïB}Ú)ö–y)ïç♹„ØÖÿa&$\Ÿ‹›r«_×·­ìåfÁ0^CÙË'±—Gæ•Ù£¹MEy$®åâëx»Ž÷çâ+}¿JÞ¶÷1s»Î·üÌìâe‰'ÄÌ  3!å¥lïçÇ ù™Ø¾oá­Ü‡²Õϵ…ÙÚÏbÉ0ÞEùÜLñ5¤ö2³½Ÿ™Ûu¾½ÂGÙÄD3{~%vñ´ÄGîïfÂ¥(S îå~?›òÚÊû:ãø >+1Ì„„ËVfþ||]߯ëÄê0¿3!aŸ÷sÀLHù([âã‚ï;±ßa>(˜ØßÇÌCÙúëÂKy^é-ˆá—·òé¯Ì.-ìï[æy±åG˜y Š ž0_x©ðÊ 1R›¶xÈö~eî×q{þÌö½Ù4C#Ûó} ±Qá¡\‹r»®·÷)³µŸ™Ç•žÕ_™ç•¾‰—bÚá0R^Êö½ e{ÿ~‡Ñ4ßA{"¼”=37å~]¿/¶úLXŽC¼±QðfBÊ[¹^líq s˜ [ýÖÍ.a&$<»òºØ¾gáyñÉŒö#sïÊ£(Ïë|ë¿Ø0µ‘­½Íìïoâ#Œú^x^l¿7ö+ÁL¨¶Øß3!a¾ÄGÎGýŸÙߟÄÇ!ž uåë¸çGæ©ìù‘Ù~O¬O@H¹'†™pÙʵ\|·÷­‡ù*T…çu|Ýüû{zÌ÷ÃL¨ö0'…™Pb´ÂËù[{ ¼•ûÅ–ÿÂWz–ÿÂíâ£|®ôޤ1ëÌ–Ÿ=Ì@¡")ìù™Ùîß¹¾ 3!ak3ÛxOøºÞó{°3!åq±¥ŸÌ<ÿÕLHØÞ÷®fBžÿj&$ìùùJßó…YÆ3Â[Ùêcëfú÷§Âõ:^·²µg™½|2åq]ïßCæëøºî¿®ûm¹Ú#áv±å׆ Í„ªu;ÙÆÂ[y\ǽ<2Ï‹²ÕO™MŒ9³ÕG£}Ë\¯ãu){þgnekÿÐíý#Ì„„-ÿGáøÚEÂö}ï̘ßî/år_®óm¼?bÌ„”·ókNdß[f+/ëæM²µ—Â+³« [ÿOx(עܯë-ÿ3ëzÏïÄûºÞê'ëÖò/±ç_æ~ñu~½Ò³ïAx+÷+ý~¥oâä&¹ÈÖ^7e«^†™P±_:GÊGÙ¾‡±8Ÿ 3!aÏïÄVÿd^×ùVŸOeß3Kz0È\.®ÏÅG¹Õ‹‡r/Êãæë~žÿ›ã˜ ûûŸØÚç+Ê#ó¼Ø~ÿa¼ Ì„”·²•× 1{(( [ý%<•­¾Ê¼®ëו¾µ™í{¶ôK˜ÁÀü"³•ïǧŸ1^¢™Pf+á~ñR¶öBø([{!|Ý_÷ÛWúGîñkf«Ÿ„§²µÏÖ­iÁKÙ¾ë6”àyñÉ 3¡ÌV_e®²õW2ûóÅøfBÂö¼3~ÆÂMÙß¿Äý:ßß·Äþ>%öçMìïËËh¿¬Ûd«o3ûûx^Çý}HìïCâs¥oßï|ÍÆ°¾–ÙË?±™¯ëÇu¾ÕŸ™çu½‰½üO˜«¡}îÊ^þ™§²µ/™-ÿ¬Úßd{„{bš Y5:ÉV_e¶çÏlï‡pW^Û÷ð1ÚƒÌe)[ýŸÙêÿÌV¼æê4ÊlßÇÇ0žÊVþÂ×õþ¼‰­’yvåu¿¯ûYùg>’Ì„„»²•?ªÁ?^3¡Ìž?‰çu¾}?™íûÉlf"£~Ìܯãý(Û÷yvå}®ô<Ì„2Ûø%³—b}>˜ e>ò{P 7岕û¼ø(ëó þûx]σþ~æz”µ|ÑŸÏ<ž‹¯ôfSÖòFÿ>³æúó™µ|a&”YŸfB™õù`&dj€›lý¹ÌÖ¾¿L3¡Ìþ{[{œy £ÿ™¹6å~ïù›Ø¿§Ä«*o¹ý·Ìc\¼•gQ^ýâ+ý-éc~_ø(·¡<¯ãG®×õãz^~?‰×Å{*¹ÿºÊãÈýþéOÿáçÿòáÐow¹y§Ùcs·O9ý±þëþù_þÏ¿ó¬ÿî_þ—ÿñßþü»ú“YU>?OúóŸþÝÿü§Ç^µÿçOÿñ?ý5ì™ð©½áŒ¾¹˜~Çë°Þh¶¦ˆ˜7ß3Ñc(hhÚ°FbMIÃù; ª}Ot³9×ê{À]ɰMwÖ-!†Ý8GñÐP¬Ùrû8¤¿:öøÌI·åºÙ¾çÆÏ·> Ù| ­mØš>Òß®åW±µßxcŸ1Âí¸?•¯Ùxþw~²9|djm†m±üë¦Ù9R˜U=-æ”<ýþ  ´¥*œ=`1íS|| s¦âêkÖ‡Fú…uÀ„”‰“ß·ôüÿù–lYaðSýËý‚ß^$🺺~’?þÈïqâ{¼YØ×z~LJk[¾Ç‰ßñíËïqâ{\~ð÷ûßãÿöÏÌŸþ—%þ埫¢ÿá÷ üùóÿñãïöóþቭÚª¯Õ-þËÏ?ü›ú?þ/úïÿì)ÿÍK­C4ò¥åï½´îˆKŸ¿ûJ|¡ß•ÿ=¡üú]ùw?¨½Å¾s"®lq%Û8ßü%š‚M¾=÷ ¾ØLÇwÝÞãÀtÜ÷ö=ß ä|†õök:œÎðý;ƒœÏÀïþÎøž#gÑ—1ÿæË-[Úî¡÷Û‡ùëïÑߺÖú/õo¼HëZß,û7^¥¿y­iÄ>ýeú[×Ún¢Qÿúëô7¯yý¯½PüÚÿÔ«Ƕ¨>öáù”K”ÛÅq:{4e~wÆ¿+$)ÙUùo¬AZu£·™ú}–ÿøù¯ÿøÛcøù‡ÿíÿþÏÿøŸ~þüïÿ¾<©>z³M¿-µ§óÏÿJ:ÿ;_»Áøñ –6«÷×šŽ’Ý%m&ì·•²m.ÖÖùDË2gA—K°yXïùlP]¾›cRĶbrSÌx•wcêö9¶Í„uéˆ~j”¦²é7:> ùm©q#ÈÈ™ØØ`΢JL¼¨±GG¹~ôÈžùïŠ{µçU%G„ª)•r÷ͼ—!Ýë-zûízl¨·.ôèÔMï‡ö/*¨_và ßlé=¤:¡>wØ£²¨° U.ôØŠGa†ªSk*6•÷kÐųŦΞ«Ž0*Ïzx=6ÜÏv5"J÷ëˆ ³N³ßϜމÑ`T#õIÛ8E‚ûqÕù¡|k›ŒR ‰d³UìŠFtµ°øõ]փ밀ÅýìMX°DE­{È‚¯:{l »d> endobj 119 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 121 0 R >> endobj 120 0 obj [/ICCBased 122 0 R] endobj 121 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 122 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 114 0 obj << /Font << /F8 8 0 R /F54 17 0 R >> /XObject << /Im8 110 0 R >> /ProcSet [ /PDF /Text ] >> endobj 125 0 obj << /Length 2391 /Filter /FlateDecode >> stream xÚÕZYÛF~÷¯ŒX9kÑdób/r À~ò¼,?P$uÀ”(ˆRF“ìú·§»ªº»H5%MŒE‡†ØWuõW'‹úîþÙ«»8ºÉ½<ÉÍýü&R/É£›$N=Æ7÷Õ͇ɛÓX„“í‹`Rȶ“í?öåÏZ¶9 µ²=ÈöZ¶Ò. d{)›À¡@ÿ|¼ÿùÆ¿™—ÇýsJ"º’m/[$Û §¾‘S»Jy”Mq¶´G¾—í@\ýj‡ç4¼'ÚŠù¸‚u Z²ÔœÂìgüQ“ Zø•l=qú_øÓ‰#WXF ±±Oм\òP $탣¸¯Né!S׎7–™ËpvÌj-±ýy„u†gî5=ÇC»…ãS³%3ÙÓêtzCæ–®ˆÁ%-ëØvÍð†æ.èà–8hírŸ(žadÎy­¨KëJ˜uå¹d™<Žú'­àö{BäzAÍd|Ÿ’‰øâj’Äè‘îRàl%ŸD¶X6 76ª9•w~L %HõH$´ì™[ÙþÃLjG˜´­­úd“[ÆÐ­÷qävÛÑœ50ñâ(tʺ!nˆP7.o¦»kv¯OÕг(ïdûV¶·ä˜~¼^]‚,õré„ÿ®úbÐU¸<ÒrÑ‹‘åñ—Ê%"¾®Ö—§úÙßXíÕ'°Aä˃3'°ÚÝ¢± #VÞŠð-èÒ,Š]ú?è. öHö»ËNw=™õ“¢”G‡+^?•ŽÆKò ;¡d‡¥4šÖQÞfüŸ$ÜGÝþx!:È–Vp•ý˜u!xjëzpÈu,„³ð]õš1²¡SëóiàEIpµ­¸Uë”nx¡Ÿj‚Ú9mÏpLÑãZÊ sù/Š®¿7‹^©ï%YÔºW+ÉšÍîHŽ}fbL9Fý š™Îí¿¦\ÿ#î|~Ö¤—Æ>{ 6ÆÓÉ,NÏ®¨¿ã$0ïyÂðJûí[{~M †YŽMÄ­fƒ'ÒÊFµ–ü @£ñs$• xAßÚFweü ¬ÕN ~fÌêÍ<¦¾<ˆ ”© ÕY‘ê´¬cêrpKÝuÏð>Ù]3–†/¿ŠTŽø6•´y) i–«3€Ì‰ÚBÒ[Yý"% ÈDO~¿eðQ¢O~í0@mZ+kRÌ¢Jt™H0y5&A\*¯ëÏ„ìòÉ<_¹ãÂêS9säÿG^Óõ›S'1ò®·w‹åù©¡·üÚð|uÀ òÌ Óä 甆Zð'b"Ï#'lü圻‚Ì·— οŒ 1{u—1f§|êE!õD’#W÷¦Q–¢OèDL{„ÍgKÈ}!2`Ôh±£ÍÊ-Û"…4hƒƒ+û¾‡Öê3ß«~2Ù€Bƒ½vŽ«~ñu™ÅagYÌèÔMÅX·%Ô°ãTO;”—¬Vì^-1¦“<8Œo R›Žå€H˜øvV¾Œ‡qމd…ÏêníŸKE øÚ,j²!(™tH˜³Úõòa’ |{±g}"ý=Èãˆ5ºs9P¡ã‡ÑÈd²É¼Ý9[êòж8uŸäAa8Y@«\0°êðW'ÚÑ2}ÓÔ­@—ƒÐdÆ¥}{œ j-Õ’åj¶3ï8ÕâTCMA Úá3»££Ó;ÊQ1¹{û}ï:ú.h®óˆ4úw©­V9P|Xâ]¥÷ è´£X¨±x²&9š+gE‡z½=B%@jžTü05.@íÚáí f5‚Êʈ[UÊxÔ/×ÙU¦»8˜÷ë–p¶rÛTìû@[$vsUy!½F×Ù!°r4¶°«…¤BRYȉ ½¸…%îÐö£h¾ÓÒ„+whÇ*fÁN­T2IzÒ2E[Çî,b¯ð|Dú 1E›ŸS,è¡ÖJ‚ò‚1­fòïŽ,D<À@ƒ:((n¶do©Rs ¯ÈÛá{íBÒ;išÚ@QrËL¥6£jÓ¾!¥¡ÃÙ¨m }ØÑfño©€2„½×ê]Ö¸ˆé{ËþŠ~Á¨É…Â@ôô‚T…–SŠz'àsi‘êàa¦gí‘ÕK]™4O& Þ·ýÄûBM¥à›ÕàFüÈÛh€úºyŠL¶“NÃàLþ$À¥"ˆ?}}P<€‚ì‡9@& Îi®O£º"L©¿zÜ6¾ÔêÿÒñ‹Z3EŠ­.Gq†ãªz+¨Cõ^Ëëû2cQAÝЏúéZü-68Ý’ˆè¦ ˆì‘ææøk’ 5†c}KíªpsùPÉ>$¨±6LÛ:[Ð ­ö3õ ùŽU#Oª_⌕T¬T¹aEöÁ×67`¼¶5(M9åQVVdþ`ŠËØXù€6Þ²"ÎÎÞõ¿;V¼3+Fha½ôè–qYR¬èS K^ÇþWaŒªcÕ;þY»÷•±Þñnð߇ê²XYÇœ`Ji¡'²Ðšxî^iÒ@<ø¨ÈמgÊÄ'ðŒÍ¼s”úHx1U¤¦ôÝ4’§8¦¾ÝåÔ¨ï_î _¾# êGƒ~ì’wL‡k&†‡Š L%§óp¨žÏýÄÅDÂHÎ á[¢W!˜›÷ûþ1cbìÐkÅ\`"t1‘2$Rc7?Ãäàæý¾c"fLŒéÄ™›×áþˆN8Ê©A&¼<Ê¥çȽ,Ë/r{öãý³?ŠWæä endstream endobj 124 0 obj << /Type /Page /Contents 125 0 R /Resources 123 0 R /MediaBox [0 0 612 792] /Parent 117 0 R >> endobj 123 0 obj << /Font << /F54 17 0 R /F56 27 0 R /F8 8 0 R >> /ProcSet [ /PDF /Text ] >> endobj 129 0 obj << /Length 2417 /Filter /FlateDecode >> stream xÚÕ]ã¶ñ}…p}‘“µN$õÙ´\®9EH‘E_’"D„¨ÑT#N¨Ú×Ù¯™3ÛÙwœPZûè2¦…v U‘ŽË$v:„$7hñ€\z£Mãš>EÅ]ËdøDFÀ©4ÊCE¸e¢Ý2ÜâôfË·ÐþÛæÝ ãî$Z†ÁM×3¥ª©…Vÿ–Œþ¸QV P‘ÐCXuF%‹4 +Ôí©&ïX qL ~)NŠ0Q65‚ÓÏ “1|[3þ›™>qÇ·ÒžAâlGî‰TD²éÅuª£1ˆ;›¬ªä4à„„éiÉ¡§žØSÖ™â: ý•83tÊpTi2§±ªeOâ,LSÒ{ç¾™ŠÞe–%á×Ⱦe7¡–ÝŽ• ×ÌÙ+ûžpˆIÂacÅkoºžu…°G¤Ê  ó&dž럨ĤÇQ”v*¨PXÇŠ;C-N};§ š¹³Î41"†ÑŒmä öãNb}ï9‰G€kOшq#p"‰W­ÈÇGÖ÷Ò3*Ûjô›‘›ï.V“Dü-Æ(BÉÝîqa£f 8eëG#NcÝøšËXs”P*”a ‚’#ZüˆÆ—µÝšq×µõù3Å–è†ôÅlN’ЄDÁk4hv¼?ÙÓl›e¿“_Ou* Ó£ê‘óõráöB¶¶qJ hW#§|¤2çn{™I;X…©±ïµé¢]3@<›EºÌiš JÄöžä{=2Þ˜³pS“×î)”Ðȱñiûd:g'á™pG‚­ì¦@öÁ Ǩðõ^ ]SŸOuicàþ€l‰fR3JjÑÀø—Õjô³äŒ Ù8 „TJ–‡Žµ¼1áv©ø³–5ì-" EN¯ÐX1<~däK­Ç›v9lÔ> ÍÉLŽ'~—x ÌZÛ’ 1; Ÿ«¦§M9WÑW4ö =ÛPVØÈÒMÊ©‡þDGQ‡Õá¾O[5 ómœâY·r#x#`— Åio™àÚn‰‚"þÄŸFÈvB 9ÿQ&5¬ DûTâ&„>RÐ@>uëU½Ç¼ÅžcIr9É7´E>›¬ˆãrŽåMßÿÎ5-,®*Ü'7£÷ì÷¨÷Õÿ¥Þ?ù5zÿŸû{'äÜf ×—aä>ˆ^pèQî…ƒ 7‚¾UÛ1+C/ý?Ãsák̇b­/&Êù¬æêq]üŽÂ˶ë¹-F–Uy¸Sež{Z"÷×RíÕáûëÃ+ß(.X#‘{ók‘³r÷ËQ·Ãh¡ 7ÿ"ʱg»ÊÕ¨°;ß AVRi=ÕÓI4í ]{rqr÷ñßC„©H«â$ÿOÇጉß=“•H¨QäŸF'˜$ĉ‡==ƒþ+8sˆ¾ Ÿ~&ß/Þ9c¹¯ëÕüb¹/íCgâOSâiÉ¿¹ŠO~ãU<н 6Ž5ï¥|÷fr‰Wá÷c~TñÕÈ÷ü~\L'ý8ÙT%É”»¬l¹àZa*_C5ĵëy|E ÖùÑXV䡌«;”8ôÆÅHz®¥ÜSyt&äÌUîD>vP¦JuTXŸ•dyÜP9é̬8¹ÌS ÝÌUYy<¡/Wjc)'Z#Îñ·‹|²»Ù*çkrIµ¤Ý û^z~L8Ó©ð²»ÓÁÛ„âT ? Τüg'£cþ1‰8>#\~w}øK¾”#^;› ÆVRÆ…¥ÝŠeE2Þ^î%h²ðt=Ïaïf`_^ ÈØUø­_ÒbW¸çß 8fôÁ±8Yñ+ËûI:^Ü%¹"èqç¶mêSêƸNÈ`®¦×ïÞ\ŠLåþÉýöRí¦·•iêí\¹H¨`Á0…ó Þ–ÓðŸRpÁWªëmµåa!/¿j`qÛ9Ojx%c-ƒ*øîaä‰Áš*^¶&W&áýIJÐ0T­mÉ¢mxÒ`‹öUo•‡ˆCýÄ•¼ˆþ°»óäåŠà}ð<ð¤ŽOâõŒ¹±ç5©Ï¸¼l1 ÖªÕX5>ëÎ1’eÓÁ{¶T­¹tåÑ?¾Ût–yåaËF{/7q´k- . mIKRPɃ,*sSP=Å$‘É“ÀD™r»ÚŒ¿ƒÃ'¾i”æöT¾4:¥RFŽÇ­w`£J¶¬žVBõlÑòü… W*/T8Ã{þàâ8A[¯ˆ}º‚1``*8 ìD’m-]¼f¬¾²y p˜ëhÓ[ߊWjí–Òš­d¡’ÛYºƒ]®öÞŸÈãµv—…CE¾#P©O­Æ €í!hê©BÅÖ¹r3Wä%­õD¬Y&±ËL#=‰ãë L¦reï½Ådü£õyÅ]D¶ïØö´oâ­IÛG¥æÔ_º•–R¤lG÷Ÿ˜Çú±jhic™’ŽƒUŽ‘í Ô]¿æ˜á×ôß`\€ØŠ+¿TñJJ®î=L"èæ‹»›ïoÈ*(ó(ÏŠ@%*Š V‡›o¾‹ƒ5ŒÁ #SÁ#a•e‘.4´÷Á×7¿ùßÒµ‚cm™ç\ÝŒ‹¨HŠÊDMÂQÇAx±B¼$‚`]ê¨PÆß{È£!wV\`¥6]{ûceÕ »àL†ö*I·•d]èÐ+êû…‰C!EIEÚ¨T|3.)óÐËÁqó8 DÁÀŒäö#¶‰ú [[—Í‘-àðx«2’ÿv<©þXõž„Cd0ht§#†ÇI„öÞP1Yi›4¤®,‘â:?ÁÕʆhšÐa({Ù÷(Q4= ½Ž;ÚEªÖÖ¥ý©c0F61š¼ûÊzËϘ:‰s endstream endobj 128 0 obj << /Type /Page /Contents 129 0 R /Resources 127 0 R /MediaBox [0 0 612 792] /Parent 117 0 R >> endobj 127 0 obj << /Font << /F54 17 0 R /F8 8 0 R /F7 16 0 R /F21 130 0 R /F20 131 0 R >> /ProcSet [ /PDF /Text ] >> endobj 134 0 obj << /Length 327 /Filter /FlateDecode >> stream xÚmPÁRƒ0½ç+r R’ Þ´µ3:^œá¦=`¡€CŠ‚­~¾»IZ98™Àæíî{ûVÐŽ &çyVP™K®µ {K>IÂM&Uê*–±KŠÐ€Õƒ5t3’g8—THãë]IVÛ‚¤Ëhy¸ ë„gÀ_Öô…m#Áz¸íi‚oÅ*QÌÜDq* v[¿x‚;a¶Æ´d3"Ó9tž#±jðÆÉÇØÒý‘*ÿCÁ§µÛiDªðÈ[5/„Æã‚©ñXo±‡#™ƒ:Ìy©_;èÇ7YW auað5)¼‘ƒI•² „NµÃ²:Ú•°ÒXntæ—4«Ç&Lª›»ËßXÚ…'šš#vîƒf–®¸,gÄþË`+L¶NØíWIfƒ#¬œW&’¹†¡SÕP~j)1IîKò n endstream endobj 133 0 obj << /Type /Page /Contents 134 0 R /Resources 132 0 R /MediaBox [0 0 612 792] /Parent 117 0 R >> endobj 126 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./adjcurve-flc7.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 135 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 136 0 R>> /ExtGState << >>/ColorSpace << /sRGB 137 0 R >>>> /Length 32656 /Filter /FlateDecode >> stream xœ¤ÝOÏôJr%öýýÏRZøæÿÌíÌØØ€Ý † …0£Á@¸ÛjóõÍ8'‚ÌdD7ZðB-ü.ë}ªŠE2“ÉÌéçï~ÒÏ?ÿü?¿ýo÷ÿý»?ýïÿó¿ÿùøíúu]×Ïþ¿øÿëý_Gûùï¿ýý?ü\?ÿù·ôów÷ÿýóoI^ðó¿üÖʯ–~ÊúUúÏ¿üÔëúU/åï?ølVÕ_[ÓU~]ãÙl|··ü«çw»òÙž¯ü+Íg»ñÝÞÒ¯QßíÊg{¹Ò¯¼žíÆw{»~ÍönW>Û¯û~ûgû¿ÿ£îÜÿô§`çþé?ý·ßþÝÿ”ï_âÿågþÒÿÎÿ>Nο®ùóÇùù›ëoþøÏ¿ýÄßýKÿ0ÝdÖí_æ¿ú_6|…÷_Ö¿ú_®õkõí_ö¿ö_æºä°xÿåü«ÿåêç÷Lõ.*µŸ_4ýÕû¨¬v~Óôì$ uþª8^ <î£~òx:7ã8¡Þ­«üªëÙJ½[S™²¯l³rÛ>ï7«ïvòÝžó”ÿnÛ•Ûv~ØgûûÙ÷½òî‹ÿáÝAyÈoQó¯uñhýþáßÎñký·éßøoS¹ß¸é?Ê¿ôÇýÎzŽý*ÿÆœsð‡§Ë_úÇýþ/Yÿq;#½¬üVsúUí*ö»1Ïö+åÛúôÿWøÿŸ×¡´Ε_ûèïÿæÿüÛŸtÿ‡¿ù§ü×?ýü—ý¿þåçOÿø/ÿ÷ïÿô·ÿðóÇ¿û«¾ýüÕïÝ.'þÀ—ÿÿôÿïý“}ÿû3ÿìߣLœk¹¶_£ÿüë?ýü?ÿí¯m¶îïkö­¿Ô€é9ù[«¿®fçä+9D÷vƒªÝën- V¾Z¿®BÍË+]ªh‰î_»z•I•@U_y阮oÛåPtº(¨¯¡j—×T@KŽÔ6~]õ£»ù¹•†¿íø•«WÆžŸ¿r÷ªø+KzNM•§×èT 4'µº×’Wöûÿ¯’Q·Ò¯”¼Ò ä}Uô•÷¯êT35V EÝ{Ù ¿tÏ¿Jñ¯٠¾íW¯¬rÔ:­ªZ_eþš·R÷JúWÊðÊø¶íWm^¥P=PÕWÎîÕñÊþ+¯Ñ¨|yM¼ràùŠßvbOœ*r6AåòJ‰jòEÝW'œá·î³Ë©áެ¯Æ¥šU²×”ìùSUÎ&¨w¯${pàŠë”u÷SœÐ†$'|£#Ú©_T4T÷/ç%Ÿzdü*_á( ¯Õ¨Z¿jrUƒî«¿~黕#Mª,/î üªNµ¨–WÃ'«8’¿êY5¼f¢J ´¨>¿ê< F“+‹Îð[÷™ç„3üÖ TðÉî–$yU•ìݯpe¿%W>'ìÝ=ÿÕÈTï^8ûoÝ-³ÎŽ1¥µùhèQ0eO:qOL9Šœ2Þaa/}Uu·RNüF -ÐW8æ…£õ+üÒ­¢ÓÂ+ZX§IÉUãÔd‹wë>+’|£YÑø W¾[%ÔZ^híïÞñÝ#óÂ'r5vB‹7'®˜_¡ÇrKZßSÚ[›wï¢{eU„£õ–쉯š¼r¡7ä„Ù­ûlvúÊŸúÖÌÝ=´N+IËå„^É­ûªè”+U‹®R·î£Á W¢…Ñ'\‰nÝW0§!¿æ}œJ EÝ¿œ®Þ«J«í´ UóWI÷D•Þ¡a/}Ž„+™zr·j ª¯lÙ ½5Ñòê“šÝ ½™ûŽîna&¾Ñ”Ö gø-î‰]Y÷Ƽu·¾N8Soî…;°…3È W°[÷UʉGù’£ÁKÞ]FÇR8µ;öV…="Îsá(s“ty<‹1‡\Êûó’Yþ¦g`‘CÎsLe¹®¬”Ýúa•ëÙ#¦ª”ÓÛ1“¸¹ö,FùQõ âFÙ³ñctébzö©Ì9à°ßÍé—mQºÐX{êŠ[QÏr)kÄj/¾÷¿gKÊ»ãÙwS_¬'Î|á(gUÞÏųä”ý²s,Cxÿvž©)ïwôÌöâ‘»N†nV@Ü¥ÁqìM9F@ôõ…³D+n·¿ìÃï¿é™ø§î³>ÌÝ8Ö¦¬ÿnš<{WÞÝ<ÏÉ]‡’€K¹VÀEâfùËÉ+<¸¦®,% î„ÛiÏbœ+ zv)áv;àRÞ'ÏÁ¯!³€C)²ãìÊûÖàK×KOU<“Qš_G^Fnö+"¾BNÒ]òä×ÏhÄòÅ—kG^FnÊåÚ_?c˜ÂýdangVÖˆ<­nr×í”Ñ‚‡+`懬ҤzòRpóÞÞH¹I§$àTÞ-‚ç´ÏfîrÖ™xß'¼;'žÙ^|_{=KR®‘?(na=ëPÞ×O6šÏb<;?䔋¹çœÊžb\œŽ™£¹)/é{fãÝ>z–a\ëTÞßųًû ÈËfÁñæÉÃûæÝßóœö⻡÷äá]0üeáX‰ðî|z&c+óTΰðc »íÉ&ææ}ÅðìE9#ãjÙ…(úôÔ¯_ä—ý²ê©qó¾íðÄs¯T0àYšq¬UÙR@v·„3 / žƒ/n8q'?FÇÊ‘Š›y86ûú].õžlDnŽˆ™=žìl ex²kzsDlüS ‡¨cÏJ9DÙàV<šñd÷£^úꨢpEäe¤&9Î=qW)¼ÏzOv+k=1Ú—j‘¦Ücÿ`wÔ‘;á}Åðdc]+¾¾ç4΀¼\W üzòr]1¼àɶbÁ“‡hÅ~ðd'°b@õKë W@ÞÖ!G£g1ÊEÆ‘'lr?îÙŠRkGž°|øp*Ó·‡Â7y;.{ñð\z³Ü.ðÄX8fé´€løz8žÕ^<"²á“G’= ~™‘4òPihñ=ùõåá\ûrêWá}=ñÔ?•e{êŸÂx‹çJÆáˆ±ò>f<ñ¼EØ#桼/}žÅ>Ƭy:Ëã¬]SyhÕòåã§€8­®ùžÞátÏi/nyˆ6Œ0|™õþæ}ÉõäéÌÇ1žl&nÞŸÖS¿BÇÏíÈ1y¸rdwK…Dä¹aæË¢ÃY WHÏd¼(Ov·ÚÄêX/å}-òÔŸ{Ê}„';Ÿòp`äŽ<¨yAnfù²jòæ}Âzò"Ó/éN{ò’+CÐ) ¿BÇ`ˆ'o;ŽFO~ˆn—ñnb¾lzÙìYzƒžüQdȹäe“ƒÎžÕ^Ü#6~ L ód·§£?ïÉÛ‡›3d—XÆ-‹c×A§Ž‡Èžì`ÈÈd Èg™œ«Q~2Gž°2~˜#NålÙˆtôÊžI‡†Â{ìž¼0N ”yò¶Eú™WÀn¼»Lž|<1`åɃabHêË¢;ç¦ìvG;LŒ˜yrðV&³\98/=œƒówàj¹s0¬äÉÁê‰a%O:I‹ïY9W-Iûزƒ!-`XìÅ5äTÊÎqdƒ­XÀ¡œ% þÜS®½žì^J;•òÖrb²'oˆ„ÓÑ褽h9\91•ÛSwZÏf¬9<ËÁ“ÍâÂTé€Sy·5ž¼]Z û²ë¥@®½yû°0}Æ“õ8iȓυižžÍx·Dž<5„#"?d–ãÍ“Ý97KÀežÃ¾>Ey&ãÝ9ñä…qa®‚'/Œr4®€<øåxËyó¸0çÉ.⚸|9²°0råÉ ÅZrÖ\Ji>ÄL#r\Ù¤.L\ (_0Ëdž]&¡ü ŽÕ( ½#N+pÄi•¯$×O<âΈè2 Wu\¼‰“EÒÐ;¦bœÑÁÈœÌãÙ†²×€h&„ÒsüUzìž³*¥C司!ñÜáC™,¥ß°É¾‹œÌw75ræßÃ$‹È%©ïËYäÚÔ³†î—únüCó ½øëcŽwâœ2ñ½·"§j^¡³ý½ût½Ô÷•)ráç]ü=¼Ñó×zuŸ¡ç¥Æï彪zµÀ™=ÜZENfìooŒlä„$‘1'Æþòîöúy…æÑž ¿¯7ïTåì­s 3gð„^jYé8™Çí‡x–иCÏ©É02ï„!¢ÈÍÕŒû¹À<nK 0ÛÛŠC‘yï^ÑqŽ<’º÷ÐÓ#K{8Ûëkìb¯o5tµ×K °~߯ãÙ›×[™M¶Bózq¿××:¶ ÐlOjG70Û“ŠŽOè©^9t{¼Bc,×!,òx¼BOs‰Íþ–ÌNu¥Œ¿·7û£uò÷öÎI-ýÁÀº¿0™-r5K#0Ûc™!·Bëù€Yp‘§9¯Ð¼ß¯L2rœ!€¸¨+ô´×ãxúzj{Þ0&™ý™/7C³¿Ç9q‘KSãxðfGÒ;Jèf¯o±Ùž7<ä‹<ù÷2Û+o^¯[áïõõÒëM+ü½¼y¿,)%´îܸG®ö÷¤¿˜÷‹ c‰‘9)) =4ïdÆÛ ½Ì¹{çKÛ£ÆñÄÀÉ^/×óÀxjŸ%é ….æTC³½j˜ÉY÷æ¿EæùÐ0&2Ç[BDæùÂÔȺ¿îœ“Þ/6ÜXEf™sá"ó*¡+ÿæ´Eæõ¦aQRäi¾;f‘Ù^õ‹¿××Ö_“•í34Ï®R½Ô2Þ˜çKGbPdŽ'É òؘÏ-–þ~ài¯—ëe`þž;Î[g:fÎÏ‹œíýä|Ìûžù{{³½å\ºÈ<^;&dFf{+Ë G`]¥,ÆñâÍ=…ÖÏ[x=ðnü¾÷ƒ9^Ü‘€Y¿#O{½ÜOÖß‹ã¹ÎÍŽG ,FÖï‹)‘9Þ% ~ghÝý¥ÈËÄïëÍöz +2ÇóR¼§Ž7 ŽNæÞBs<àÁBd¶7ƒãÁy¼ráTdý¾o <Í%¶~ßÎßûk]+"ÆþòæñÊùl‘Ù“ç«7Ï×ÁñÎÀú}ÛKoöGÇ3ó|œX‹Ìñ¦‰ýÎ2 :Ô=6Û«ÉñÈÀ|:±®?2ï'eYFìj¯—ñÈÀœ˜£™ÏÃ'\zk¨ŒXú3y°î üDÆxaჵÈl/ǃϤn±—¹×À•óÙÄóϘû3‘sVãxò®U-ýÝÀÝ\[hý¾˜¸yrŒ7æõPLÍÀšÕRÒäñà­ß–"óz‘8¸]jéoEæë‘€y4õH¡õ|à|Dg] R2ò6#³¿ FVl¾>ñ|öæõ>s¼)0fî‹¥?÷ƒâ>CóxÍH8õÚÞ³0LdžÏ+B#ë÷ABEdý¼…ç£7û{¹ð|òæñ*ã-ô4¯šý\y¾}=íûâÆ(2猴ÎÈ<ž3×f{¯ó!W{½ôGcukÉ¿—·þžíá׺ÞW,ã±õûp¼.0¯×™ãq‹YÆ3³½Ë|Þ˜×s¸½BËfõ¶ôWóx.¨‚Y¿/6DÖï›q?á¬ãub9_g~ßÂßÛ›×cïãÅb9Ÿ³¿V8˜í‘äÂõЋïÇõκj^¡y<,h\íõr¾Gæþjü½½Ù_/Ï <¯ÐÓŒãÅ›×kOé¬E;Är¿8uuî¡kRãxònf¹ß ÜíóH:°Ϙ˜y.µÜf‹Þú<´Ž—Îæ›ç³ÜÖм_«XØ™¿wEÊEd¶×•ë-ó|­‰×˯õyf©˜˜™¿'o¼"g{½Üæx;î‘9!ãºMµŒæýöݱ¼RèÕÕuö}¼™ý­Š|ÖÈ<žë`{èݲZîWwî/Î÷ ÌûÍŠ‰e‘y<ë|?ç©×«:¹?½ù{5Î÷ÌëUCJCd~IŒ›¡9^ÒÛoŽ'Jò[ ¬ë Ä2Þ˜ý%^8#³¿ÀÊD‘y½á…'2Û“†|ÏÈ<Þ&®Ff±q>û×]׳–†‰‘ٞȉ‘B—ª–ö.ð°¿'÷+y?&n ¬xâ›ç‹Îç Ìó¥áÁzdÞo7EæýfÃÀhd^ï#³?#;¾ÖùZEvllö×t>W`ÌGK{ó‹Î× Ìó•ÕA¼ çcùÃ)4ÛV¼ˆÜºZÚûÀïWÐ^æñÀBÞÕ>Ç›ó|ìÙÌþ,K Df¶7ޯ<íïÉõʹÙçåxP`ý½Ñ°Eæý–H¡ÙÓùJÙßì¨"å­Ùµb¯ÌûáŽÈ²È¼^wTëŒÌþ´ÎG ÌëUçx“³&¥‰q<{ózÔQ‰%r3š×+´{Ûxx…æxÀÀ¦Èï8±"³?(ó…F`-Ø$–ö.0ûs½Bó~[çæù68ßøë¡óYÄÒžÖW‘Ù^æÖý…‘9ž=Ðqð¶ö`à‹GfPæóäИï"–ñgM}/ ·ŒÌþò¬öú¯y¿3£ã­uyÊäzõÀìL®GwÖù¢bióz óœ;Ç[êÅõtÎøëJÖbì²á38±ëS¤vÓâ9ý=…ýÍÂNK–©ðù£¦én,(ë„kûòN¿b « íb Ô ç-û×%^ÛÔ"§§p¼5ìÉ4ÁŒQ¬N,˜‹Èµ´ o‹sÂüh-û‹•bê›~±~iÐ]:§¹cÈÉ íqÇs?'\«:ži}¤‰UÃ4N¸Æt9u}e^x6Òqê~ÔõScØÆ ç””ýŠŸ©`N é¸|¤ùë©^NüÔ, û?5ÚÙ¦~j¼“ÆÅ¤Y^^8‹¥m»¼p?¥EcOé\ÏŽ1k' Æýþ ã>Xä‘`§º¶=ƒ…l¾ÂY50¬áÄâ“I‹ííÒõÂ#Y±½CY_Éb{§pvŒ¬ÅöNáÍš Nh_†/>Òµ·SŸœXTýO'›m(9ö Êv”û sYžI}¤9.ã!N˜#3¦U‡;„û§yºNhû2=?Ò½ëßpÏ3QlÑ W¾‰Ü'ŒeL¤H:¡11è#íƒË×@¸¿Ÿ˜>äÔô¯ÌåÅb¥È·ù¨sÎûÄ’-'ì݉ygNü¶¸wúÊ>½Ð:Mä³}¤ÕÀ˜Éë„{Ÿ‰©%N,h‰eKéœx-Øùúƒ’åY½X\3k•«SXç¾p?úÑâ\¸tÂ/¶š–:ÅBŸ¸‡rÂsÉ…Çö§ÆÅ1W™2{ž…0?񱃯^XG»«ìÄOGøNèu± åG™­(‹V:ñS#ωi·Žy25+¿,V‡÷KžÍ^Ü{@&å^xÖîÉÌÃ+i ƒÕjü­›ó!s §ä‰«”ºc³*œM+Å|¨•%›Õ¾9Y‹r΀ÌüPØÅ“é댨ùRÇ͵Ң'ò/ñd.eº´B͇ÌáLY_ü!³»™Gö¥Î6HL#ódnpÂCÏ9”½8jŽô§€Z—oOý MkÁ|¨_3ô¿´Ú(²Ð¼dÞxÂ4 O&|&<;òd–5“É>œ—í:L°ðdµµ„Ž™§îØ%—WO¦‘'L½ôdZ¦ÌwiŽ–8™‚î¨ñ¬ÇSkÞ¡SâÉ$äŒîÅ—– ÑÁðdÎ9«øyje:DQx>•øò ¨1 _Z}ÞŒ¹ßžºs0EØS?Âá=™•šqT|Y­b&÷yjÝ«‚ŸÌ‘?÷M©oòáSo -=µú zêŸêZ‡âCH·L_jŠ„°§€Ìg.ã÷dM™ŠÝò2‰Ô_ZUN“ödB~ÅØ½'F1E·d¶sÅÕ—SsÝezì˜íÅ+"k)VÌhõÔRÏ÷d¢xŰԗV”Y-žÌ…f/ϧîUj™û]1‹ðÃ'™Ÿ“e‡Îª¾4ËúC6‹gî—[“•2·`"º'/æ ½'o²7?D43¾¡tÊShÿ,5Y‹º F~m× ]ÚXËÍÌ'ÚøcžaÒ]­5ÚCŠR ZÚ›>&—nÖ²œZX‹pjE`<š¸ãô.V!1ºÕ›Áú“S+óîo2ú00ïÿf³÷ûšwž“K—œ«–°™\º˜áý]‰Ìò““S#œ›•#éŒ>õf‘+–•ˆÌÃDO%2¯±,µàm÷|“S³¥dÉ„ÈÜŸ¬ã=ôL]¨Ï™×ˆ…z{‘Y Bê§Äæþ\ù‰^=¬Ú‰U%"¾_çûy³/ U JhöÉÖ|¢Q?fë©K/­0&/Z‘y·¿¯'Þ<ßÖ²hÓ¯5ØžÑa_'‹¸psY£ç/F[y3úK—vÖhuôÃ"k´<úZÞÉ¢ó3£G½¹´þÒh/o.¿P‹92£ñ®ÊÏóµÞ%Jt½B3šúbtV`F‡]¨ÔY߯[tæéb¥XËG0º>0£4º>0£{åÀHŸhrt™#3Z;]¥ø5£³Sb´¥·F£3ºÉYûjˆÆÍh”-ºðkFÏ2c42£ç4:ß¹[4?§ŽÖèùÂhLožЬÑêK#œÇ­¯Q_3:15F‹zkô{ãþöîæ{šej–óÔh„Ä©C¹ô>1z(°îïöÜyYé.= Ìã]£ïkô?—–æÒyfFf´IâÔ ¯ó¥ÑCi1šÇ[£×]˜ÇC¾ýæ­ÑòxÊè­23æ"?Ñ÷=6£©rb´7£å2ÖXxg‹žÏŒ¾ñfôŒ. Ìè…œíåÍã!£À wÑö*WFÿx3Z!7~o^uiU`îïŒòùºZ4¿Fykô:æXGÖèu&òÖèy&òfé€Âþ¸sÓèš‚>²F3'~ožNŒ^òÖèrÌaõ¶hØ’=çÍߣ`&Fäj–¥Á5Ñ<Îâߣ½5Ú¼1ÚÏ[£Ë95:0£? nß½§F×F fôjÁð]änNWhFûZ£Ä-…æñ.-ô`t9—–fôK½=øq¹,"k´ub´7£¹ÆÝ;éõ–£‘Ùߪ…ÑÞìVžñftW­ŒùZ£Ä=…æñZ1ë"2£‹*f^DÖhf®ùú‰&ï8kôø`t”7£ë*2î¼­ôŒF;fôX»Mæ]ÍiÖ'¡â±BózÔ0;#²FËò~ 0¯G-sm¥U¸/²F¿‹ÊùZ£]5ÚÅ›Ñ\­2ÚÊ›ÑÚ\ãå­K§%º·•ÐÛø{zó|ä,3ïiß§[´Í×<§æ~¢uk ¼´?Ê¢ó‘Ùi“Ç‹7ï‡téÆ×U—ö"šw†ÎöúÞB³?Õ£3¾ÖI™ãÛ‘YºA¢sc³?¯Ñ¹ÎYïGe{¶ÒV2#¬†ÖèQùºj¬g‹Žøš÷˜ýÎû‘ÀË¢U[ ¬ãU™k "ó~C—^{4©s·hâÅho^oûb4€÷í)íu`öwǽpzèñ:÷—7÷ dGÖ¿‡)ÞZªÜ¢?7{ýŒÍûµÁÒQÎOôfe´7û#,ÙíÕí9B³?¦K¾–¥ñS¥sÞ-ÊþºsÒþ rG.f]ÿ5£mÇ8–ªof4¤Œ·÷À:^Žèиh{2X:)°Fw^¶tûkŽ×Md¨{W‹Îdôfà'S—Íþ¤.=Ìã‘eœ½­4ÛÔ¥áÞŒ†Ÿx4ù‰®ÄÒQo¶'“¥qœ»Eƒ[JûµFGN.}ÿzèx¢<ŠÎ¡y? Ñ’ͮьÎ gш‡EêRÓ¯5Z±ÚÒÙÓëFì3´þ=–FùÚ&D[ôa`ö¦qDfi0>t¶ñ. Ìþ†Ôý-¡uŽgéäa+­)3¯ÐÝ^/×£À¼_^|^æ\´½—š·-´Fs¢Ed.­d WoµhÀÀŒ>’W±õï±tD`¶ãó(çÆï#®)te´£ék4!K«:w‹†Ò¥«Þ…ÑLº´Ô{2: GÞ¶4^j<•Ð\:ÍG‘¹¿’.üZK¯ ë ],ÚJ®§5Únò|ñæÒò„ŒHo-}WXc$²F'aväeÑU90IüþDWnM%Ïcsé_Æ|ï¤Ñ käñDW¥ÀÙ¢yØ ¬ÑBŒf Ìh3frÖ¹Åb9ŸW‹F’ó90—~j´’s}£•d¼9°FcaÕWä'ÚK¿ÖEN]X?/Æ#ëçÅJ/o;_™1¹šåzX£kx¿ã¬ãq]¸=¡§EÉý ³E¿j´Q`F·–ÌãÉ»›¥¿ëlÑZ’¡]C3@2šGèeÑ:2ûµÍʵèg‹>(øa"k´K7æõT£gœu<_¢g¤½ ÌèFñ­Ñ? ÷£Î PQƒ'2£Á*&†Dæõ¦bò«·µ§•¥o÷K-Ï“œµ4±E³æï¡¥ãœ»½G‘y¼ji8g»Uxã™K{™Qç=5ºP£W3Ú@VÐÎÐl*V¯x/¨‹ß×{X4‹ÜïæÒ솉KÎKÆX4‹³–n’èù½³½mèØy[ôWÃ…=²Fw°ô¨s±÷côr`aé­À¼6Ìpö®Úkœ˜í±Žgží!ÑJÎÍ¢?8ÞäÜ5Ú¦3š6°Fw``Ù{èÒùÁù&ν8ØÌó}~ž¯-ºZÖ¨¯ÐmÀñ†eʰh‚ûÂèmÑv3g½³þ2_/.}€‰I‘ ÆÒ%Þ=ÂE#ÞM£]dÙHdÏ.,ýà=Øž× ãÖÕR~}¶Ô0´ä„~¥.ìÿj¨úWíb¢!Âö#ehjúȾc<Ò s˜døðêªûòè„{ç†rNNhw¢^?Ò9Œsš ‹¿OU^«%;¡Ö‚Sí .…á§:£¼Ö\}4xì5¤l:Y8ÁÝ?úHËC6tI?ÒhP .øªk¨Aí^Cƒ Zù¨_gNCßaޝ’†àѺú} Ýf'ÜSqlÅi¼! eý¥qÍq*úʈ¡Xp¢p NÛí8K>*ë6tbÒK>ÒÒ»%š¾»,ôýjj ÃÊ_5u²X½{5Õ}„8¡ïÝ‹.œ>Åp ,ühpNgÇ”§®Á \ȼËB ¯í„çt½é¢ã]úŒ«cÔ ý‡ŽHA'ôý8Æá„~QÇeûÔÐòîeÎ>JìouTæö‚©és¨Žn¼Æh;úzN¸u,üHýw,üH, f^³˜Rà4ßІ´ìò@ŸÐ‰ ˜†ü‘®Ó8Ópÿ#Z^öWÖå…qË ßiy•2˜Nø5p”œÍé<Fÿ81xS>Ò@œ³ùԼطb¸„Æedüaz-Õ}•ûHçk ÜN9áª80UÛ GÝ@âåGZNK–`bx†?*ºwqï„–k`Ú¶Æl†|?Òñرtáä.½‚É£ ü•>Çd†æ È^¾¾<"åñPò «u›®ÞQÑé*=d8á~ž«ipUdÆ©uqœ|b…C)*}…+ØÄsª¯Ðsˆøî(ú‘^¥‚ñ‘ŽNLgp½âD|›æp†z%kœœ–¾R>õ©Ê£`¢Š‹î+nëœpd-ôxœÐÊ,Üî}¤eOªŽ81$óÁ¬²isaE±öà§®ámy ³Å~_áyï+?Ò²\ªñ‘Ž“, Ã;e}å}91XÓ‡pï*^]_ÙëWš°pv9áj³ð\ï²64‘c…äÒ¾‹ œµj8åÐ\®ªKE/{=–}­U¡5šÃ»X§bæR‹U3"Ûß“¡ À\ªsq*³sÕ¥hrOŸCsÁæ…9ÉÞ¶TT>øXS¥ñÆ3ô(ê›K鏿Ë[oݱæ+¶E”òÆ+´Æ°*C`Ý_ƒK­¼¹0üâT‰¯m©Ö4ÍÐtª«5 ƒUUs)XJ\ ñu²øN…Ì…À‰U käIÆP|àa±&ý lK-S±¥B_ >ɱ5ì£ ÜÙ–"28%ò´÷“¡@g­Š5?‘õâ-.=4Ïׄ1ÉÈ<_¿¹uµO°¬Ù{èRÉÄ©ÊÛT÷ÈÓ"J/oYŠÑÍ=4·¬U§¿ÖG¡X³‘BózšÑ[ñ.`Úš×#® ˆÌ¥Œ™©ôy¼fNõpÖG)2ç>Ð\Šš9Õù±³!–¡ZgMFùê+4—çÉ¥,_ë£D <‰Ìß»\VUü´Þ4aÎy Í(rqªü׋0'=‡æRbƦ8K1‰T«Úüµ†”p)s`.¡/:Ø›K‹Veü:i{Q«¢z³=•¥3ô¢™í.5pÎö}—UEþš…K•³¿R?¯wgØ ÆÜ#kÀž)z[¤2Uܹj{Pß™çSeªxàUÕ³nz=¨œ*˜¿ge*·óШÊTîÀÕâWäz˜ýéï¡§…¬X•ÖÿÕ2ÿž7ƒ°‡â½,j…ý±À¼ÞÈó®Öß`yšÈŒ‘'3pÒö´UVÕûz‹d©#4W–?‰Ì¥ÜM«vyó|ix&ì]4Z©±?æl×k†GÖý…Žad^O:§‚87‹;I¬êå]-ÂU½¾ÖÁ.”O˜¡Ùßdx©÷´@•©Ç_Ûñ˜ȹRù}¼—ÅÔâÝtª”†Áx' m©¸_Ìþ D¾äÐŒºèݪfÖª¦ˆ¿¿B3j V•ñ ƒª<_û¼¸1ˆÌþGx½õQ¶ÎI‹Ìþ6GW#óz7¸”40cºž x[#GL#ó÷–‘êZÿ«ö9[”Åhü¼ÞÕÂ¥ZÙݦ*Ÿž²¨™À•O«úx¬¶©È»û¥ÇƒFÉ8[”ÌÀœÆÈ ›“S-¿Öª±‰a¾‘y<VÕsÖª_2'*—ÐÕrYÕŽ¯‡EáhŽÓMÇQPï®ýíÉþ\àlQ7¹…®U“¯Ð<žeNS <íïaMž·E¯MVýùzXT‘FÙîESjhöGf·©Ÿ§m1¦ê}­ãb9ßœ5šM¢Vz Í÷Ó(g­Z ÷ÐÕ'h‘¹TN¼/ªÑªÞŸ¨™Êûõºt©TbÕ“ÀúúÆ©n_'ý=.Ì‘¹Ô(q*«³Eýd\Ø"g‹Ê¸®ÐåÀ©ìÎ…ãeâÑBW‹ÚÀT½¯+ûSˆÚˆ]͘ÊèÝ-Šc]›E‘ ¨Gd.EˈÇöîö~OrºM§º;O‹Ja†ó²¨.¥ Ì×ëTôÀ\ )kö‡³LäßcTEdj@y²È½¨g Í¥L¥rªà׌œ9™KXUÔÛ¢ æœGÖ¨dÚxý>#‘y=d´käaQ-¶ã­b¼.2—úñÆË['mdÞxyÛR@F Dîæ\ëTkqo§^Ï"™ÇפFæñаfÜ{éõ˜Q‘«E\)4—³ª¤s²öšU#½ £òÄ÷¹XÔ€LuÖ©ðð ­Q ñÖI2eà=4ꢡ?yÚRÿ2O]êɩґÙ^´ÅïóõÒã¹#³ÉYV`q)?–â{'½Þ³ zÈZ…öU¸?±¼i“.»,?¶¼I†G*%ûLŸh…ZîåžÊÄXúÔê³ ©°Nñúyª×¾’½«!\µI¼j­m>$7 Ä6ž¯Uo_屫¯¬Ç¶†o„«P=Bïj']ú”ÝÝ×]K”ßT›z>„Wré ÎØ¦}z.’ÚÕ_!ÒiSÁ+Y#õqíÉü@MˆÖöÅU›ú±mÛ&j;³¶,îSa2@ÓØâ9äÍ–}ü~:®Èz2Mà¹ÔêžMoʬûëá«Mò‹mš¢¥K¦®C©í*}W]»äìëpqUi÷:Ó\\µ)×]åØ&{~ÓÜ5° c¡²®‰¸ áÍÒêb/¡BNZé³#Úà3.ØjF?e!‰¡×-ØÚ$WèW¬kÍefKÞ´ðÊü.ßÚ”ŽmùئձU²uôÀÂå69sŠ6Iû§Î¬Z¼Iëh«*¶a~1s±w`7Íö 6e|.ÃhbÓ9©,¤(›ëÇ–v=B¿{“´¯ú¡™­WXÚµ©ôWMoK¤¡´—ô[Ò-ûÚ$íÑ«•á0 K»6és,§BmŽM©îjm¿…³¤i .ÛÔÆ®µ G˜ô¯Ú-Û…úâ[ç±Mw°IO›ð¹ëBK.“p¾ùóTW~ÕYëKŠ.­nŽ6ga¨ÚîŒntºö*úš¶LžKÉ%­YŽ+ŸVeÖš²ðŽÕÍÇ-%Û´°hwKZ±ùUâòúI5¼s±~³ Ù#=ñ~_ë7¿ju×@ÍrŒlqyÚ®¹+¿‹ôµîó+©ìž9þÈÅj›¸,Ϧöö¬Ëï°tmS¯»Fz…6D–ú«ÊÚUY¡½Q ïŽkÀu]ÆÊ¥o›f*´s9ܦÓèÖ‹ÞÄ íÆ8w½uÞ¹pn“ì3óÇ…s›î+|×ñ..vëºl–U§»>‹à¢ºGx° }îòc ç6U|œq\8·iàS/Óܵ^éÚ· ñœ¹Ê•m;åwÚx_dzµejfØÙ±U‰a4¾?E¤“˜×%v˜k¿3ck³ly,õ`M'>ó°Åq÷uç%ã®ëæuéÚK¬T;ˆ÷Õu\ø9-¿A(¿@³Uf˜°³ck6Žypœ¡wa—òV„L |èJÙík?8ñ©´î7Æ6v¶zp´ƒó|ñœ1o¨Û4zN’ɸƺÞmF·5M,Çý#½ëŒg®¨Û™±•óÉ¥&زc7Pb–}ï<ò…w£È¿[eïn%j¹og¿Ê!:Þªà\år!ç;€1»‚U"·5|;Þ·¥iÙ¸°õY¿'i&Ö³¡¢øNi^ôa Š!ª#'¶r*—úí”ÆV;gºÐog9ÍËü^bUßNÙWçN,áÛ™A.€I_èV*.aH¡O­Êå{Ï­Ò?Ä@ÂÎÔflÕjäX˜·³]{9¸IÂI“É¢M´„8žœÛI95šXkhñÆX‰­ÍVïlíFÙÏG=¸v¢:ÖÁy0Ÿ[3Y’Rvûƹž©KuáS-c¹Þ~XÍa.0ÜY˜ËR•[YH‘ÕwösëÀV]úȰ#W"ì+¶v£Dz\¶Š]Àa‹¾¸(ñ%T6¦v°œlà2Þ;m$]nÀåŠ/1M|§Äœ$»ÎBî;BlxÙÌÈÎVE93ê$±ç eÞwVlíÆ»AÜ9ð!9ç=crÒH¶±Jsªþ \ú¹³âC[Úð1¦qb«V¹ÇHò°±²œGÜÏõn-äH(¡-©*x¶>šž¬´3µƒ[ÙÁàrÔ²ë4§_V%¼/×vth‡¦ b©jzb’tåêè¶ÛñÕ†•”åºÕý:x;¨? Ž["Îê[Á4”u”ë••ª½ÙÓÁ­\ÍÃÕ®;Þˆ×:yV;Ê%hØJ_¬„ÝÙÛÁ­É–ÍÎvðn\^â~g:·VlÍF9lÁÄ>¬ˆ^ßY&ÕŒ C«bL`çÙJV/ÕuÊ;%Ôk£äxm,ØZŒ[yÔ0ž3“Þ5ÜwOîñ©¦ñ>°§N‡Hœ4mõW/œB®­dý˜ù,5Æ}÷K¬lÞ)?Š–,ÖuÍ;ïsÄâÕ°¼d3ÁIÀSã’'L}ȨK w6l]F‰”+ïzé…”56"\þ¼3çƒd3ÁÇ*³èH‚Ì èˆhëÊ»-›EOvÎØY°•íBÃm¸Œë*ê[—ñ>GfÕK}CYˆYõüå$€y.¸žZzK×WïÌ'e×éE¡ì:Ïi¸Ñž6b##ÐSÈ–+³wJœœ­{í¸qØy——Xµ}ðÜ* sMÏýŽ[éiÅê¹b{jíqaü]U.äß 2Ë™ºš$ñ±ýl.Þ×öÙm-9nÃb+OX¨ÄÖüp‹QŽÉÁ{u[þ²j,ßËu°ôƒ÷7ÝÙέ[›qîÄ5<rïÆÔ*(‰sÆvv|æe Åå:9lÝwÓ¤¿´-#?¸6â®ÜBuMùÁsëÀÖj”hÀ‡zÞYέÙ„ì|rÈhgÃgîÆžlƉOÅ›¸ŽÎÃÎŒ­Ë(?™u08`Z‚ÿ_¢åÖÁà ÷iÃJ7ø;ÈîGǽ<Ù1ÞWõk#íÏ©-Çvpå\XÚ´ ÜÑÏ¥?§ÉOU,«æï&`®w}A´c}ÖÔgaÛ–ØïœØÊc’Ïçm½ž,ܽwË\zrùýÔBºÚ~§DÚ]zLòaûK\óo&cšs;XÒÁ¶ÞíÑÒIñµ6VÙië²%ù˜ƒ±,¡a  ÒÎ:öup‚ì_qõþÎ{çì,ØÊ#v`îÛÒ•_‰Ço®‡CÂ*“­û¿É›Ù(»NéuUÿÎܤ`2â‰eT¸P™à0Þ ñÒYT¨™‚”ÌËx·G;+˜Œ¹ñ>UW~£æN¤õ/ßàÂ…¥%D„÷‡—FÙíÙRð0ý ¶²ïÍÚ¹,×ÁZ6lÆŽ­Ë(I‹åG)oöÀBú'—zó ü²ä-&ìÌçÖ²޲©K“gQhe9À>1çç<¹˜BJâ=ÙYZº<ë¨ñ¾Ó8w"\`g—ñîO.ª—%Íòõ«ŽQ°{°³¬ƒµe#nðmkâCûñ¥ÕXêÁ»‰9ˆ³‰™¸ßß¹v¢ à²ì¦‰¹ÅK§e k~bS5¹`éDp *8Øøˆ˜”kȘZðÎ;Y³± hU-˜+»Qâb›å9`ÊÇjz«ÅuØ«éȉI«Yøãd›ÞXX]›˜‰…eý«‰…‡ 3ÑV×#VjµT!Â…q†e®ÒYZ¹°úmY×e!ìf§îZOfaÒÙzl,Ì:ÛÙËAÙ±ÖWYvXÖý`ÃλeßY ˃aáqýζoÅ4É£È#ga„yYç„™;%×ú*\š½¬¯Â€ ž•…ײë¬ûÁx‡í:(;ç!¦qí\øË‹¥šøîññúšÏÙ"I2?O1KDæîÚOã÷Øýy}çë¹d•ÿÓ¥cE²>ÕÓŸgZÄÉÅ¿¿ÌÙqéxQÖÝKŒ,2ew/§%²äªz}H¬Î¾[#ª‹Y"V^7ï›%be·T#¿tÔIÜÒéÞNÏöylgËîB7s[§'?¯?|”/^æROKu»û2r=žp2÷ô1·óüO¬~x5=ßÓ`døcÂc6‘¿—>$·;#Áç1³¿‡N:—, \ù}™k=ý¿Y#Äy=É8À”%3Žw¬ãú»yðõÕ¼ênFܧ3ߟחœ¸ÿ7cÿïþlí4~Ýëô:^ŸÙ^îæë»¹ôÓµœü>ü®Ý…íãæÂïóDàÔvºqû²6OKäá¥S¯$+çÇnnOfDªk5=1~¿aCŒØÙ ß̸>½>åÆóep4[ܸ}™ñ{hõÔ̬æÍ¬†»["`o'3öïf‰à¹´>‚¸—Ó¸žO=ÿóàþÖºâÂí¼äÁëõî /so§Ñ_Yé4Ù>ZDCž<_´v“í£Ö>±¢Ë"òâþÞœéö˜‘øÝ<ùþŒdàÌ‹3'Ì7FØ_{„Ñnéïí|}2ËþL: Y|½F%DB¦‹C/bD¤k¤´¸~Üòéñõ‚1¤’9•a3#Óe‘DŒ`Jú O#–KƒÓù~G„’ôÿ’>]K/éÒB˜Û«¹´Ó5¼àfîKûù˜1h–ëqÒ'vá„)„4BÄËœÒé’?^ˆôgûT÷w~# ¤ÿ‘²F~id÷kVNYÛ'·8\Y‚ ›'K ³\OS¶Hªa% Ø1bê0ö¿E˜ÌD8,íaÒˆz±\OSÑH‚Õ|˜ Éã»ÓuçÃf¹¾îF‰†Ç‹û_#ñqáçåõšó)ÄËÜÖéU6W¬ÏÃlL³´o»çaF'ž$®,ÙÍr=LUÏGfk^|?^Ï+#%Sµ¬Ìý¡õ¦`-ù`Æõbóøl_y7fõcN¨ÇŸFjŠ¥ÿ{xÀ<_+Ö¿–öèv6£¤EÓ3ÎÂÐy¤êyºñßwsOÏÓÒ~%»-Y"éc¿:{^§«–¼XêÅùñ` š¾» KVTsK§·ã1AæÌv}¼Þ’U’¸}=^(aq™ Íöì6JŽìî»'Ÿ¡í]ü=†¶wZ-šÝjºiÉŒ¬ÆþÚ¾IÊA†É$3Eøy–YÚ·¤#Zbìo}Þ–™Z Îf´w:U[#àcÿëàSf~Àa\ou4J#àçz狎OiäÛá±v'^oµ:¶F¼æë—EÄIÿ"Ù#ßPbÄÜYr„÷¯\Ѿ™ãGÉFªÇ‹v÷GÛ]ø{Øà×tc.òPg~žan×éÉÏ3Í‹Ÿ‡ç #æ6W^o7Kâ‰DcäÜa”Ù¼7ìïlãaœmrš¯"ç´$K5×qº•Óý:-ý‘¬ñ²VïÎ6>Ö8>•m|Œ+„ÅŒ|j?,çOÖÈ¥Ìy)˜fm–óçð‚y~6Œ„§'®a‘†¸šË8-ýïÝrþæë›y¥ÝçÓî¤%jŠºðóŽÇóto§?ÏÜ"õËõ=ëCÆÌâÀ§œÌrž-‚¬_ü=ôÉ¢8s{5Ëõ|7~ÍŸu25¼NK{œõé£%ytéd %z™¥˜5â\,çSÖšY«­ïîõô`IZsÚéÉ×kDÖR.,Ùs=^§;Kôðxë…ç—Fæh$áéqºÒ<žzáï§%§ÄÒ>çjƒ,±’«Œ,O³´ÏYãÄ•%‚øûk ÞÖÒãcü>ÍŽ‡Ê’?Í~߯ó£ÙïÉñ¬ÝãcOÌ1ʬwŸ¯ævýýûSâÈÜøù—YúëVÒÙL,i¤ÇGçùÑí÷Û§–dzÌ¿ÏëË`É¿Ýøþi=°æñpÿx°DFD–þ¶ 45®S¯œ—r8Ó…%¡ØžŽÂó}sçûuóüûkjû:8Þ³í—NÖÊíœî×é9N¯º»qêldqO§gÞÍñ¼,²“èÄAÙy<é/1ö¯ÎIΜÙrççcŽÏd´,FûÿxZ ­aÎýtýßW'2gN<Á2Çã4Ú‹Í¥–ýQtêsž˜Àt8³¤V2W:›åz¿»s;Ç_'ÇgŠ–<–üb–‡SÑùÒ™S…ż?›˜R‰Õ'4,aùÉPKûYlüdr<¥èôdqå¿çøÈDí ,P1÷|zÒÿ˜,X,2ÓDPÂ+©;Kleó¸NËõö5ÇKv—Ïö¶NËñS4rR<ûîn%Ī9Óõ:ÝiŽLŽ—žo 1‰8ÍÜ>Ì…%ÍøŒë¥–K…ÃÂbL²ÃÊ»¤–þJÕö¿0»_\Šyœ–ó¯êóqçvÜ>è9œY²‘¯ +©°zoþ<É›±[–äa|S,íKÕ’™|¸r»FóþÓJ JD²UÇ`–Läñ®ó1v—ÏöÊí<t>ÆîUv#K »º±$â5Ô( ˜y}†Y‚1/µ´ç»ÿ½FJ£¡JUŸŸhÄóáÌíý1·k¤4çoTU,©±¢+Š ­Ѽ?­Ú^‹Íó5aí :.õÜJ>–„1Xù˜Ôø=Šž©sÿo.,áÈó-uî}!Æþ×ÒA]¯\‡ûóøx²%#KŠÊ°ý2ÏÓ…Ÿg^êš?^§åþ£êJ'ñÒ”ü¾¸ðˆSQ·q%@Ÿ—OQ›^O2ïgwK{P›^?òÅý»¹|¶–Èäõ…‘Ü›ç¦×—Œï0JX6‹¼æýoíážÍø=6÷Ïë¥Ru~ˆF€‹‹E~_ܮߗ%VwKÿ¤vû~˜K¿™÷˵ÛççüÅÚíós¾böyx\5ˆP,íSÕ,%WîÿaŸ÷¿»¥?[‡}¾Ê’¦Ã>ç#Öaû›óê°ÏÇŽUŸOˆQô1ç;T}^/–­êÄ×ëçáýqöyx¼[îÿêÔó!ãÁ˜Çæø°…GkDúæÁë‰ÆIÃ%IõórþÃîµvs>¢ÅJ‹Ó:ÝÊiì_}žP2ïŸ-^Zœ?níô ÛRÏ­Äjá´ó£ŠÎ‡°XèÂZ‡QÒssg V^O Çkw/¾ž×ׂµŽ›1ðŽUÉS]Ò[ž0¯÷Œ”?,ÇoÓ’âÅÏËþ\ÉV²•íSAC#fûÄËÃý³}p{¹Ô“ÛÙ3¢~3Ö§ DlVKûÔ’F¶r`½sSËïÕ’ö ²ŒÅì/Î_l:?f‰XF¬ËKÐ2’ž‘ø‡Q¢UÇÓÅrý}Íûûf‘î·‡‡–¨]fþ}^O ç6+)¡ó!ZÑó•7:§Y¢–ÇwÁ’Q¬´žjü>Ö¾Êÿ½–ÀGjO‰Î°(añh§¥¿Úªößù¸°d­þÞ“ûgóølÇöů›QÒ¶Úñ²¸?«Òq¬0Æ3´„Àf<¨Â’ïfž§3·óþªrþ_Óù—b” ÖõÁ¥f–¸µöµ"ǫĻz±Ä.÷-<7—uÇÃcÞÏ7-Ù*îãôäçY½Xòwòópþ\Óe0EŸÿ7-ª%£dr×þ±Îxl1ûóUKøn–þÅn|ÿǘˆÅíMøz-©€’ ›ù<¿éü†êpæv^_õù~Óœ8ñd c,¦Ô’ ‡g9½®Íú|}w¡Yb¢q¾šÿŠ¥¿u˜ïÇï#ª~zòýø}&ÆcÕ}WKÿ¦M½Ÿi™ßg3~ïÇ\?qxÁ¼?ÓçÙÍÚsÖRAIåeæßg ævžm7Kð6€ãûM½Ôç˯;çÍø¾Ö~7Þ/7]õRôùr[z=mXu…t€K=ÚnÎßÚý¡¶…µ[Ä‹ûŸÏ»ÝÏ6 <<%¢Å™%£ËRKÿãõbIâK¯/ !ÅZÂcáúÓual鼿íZb¸èóÜn÷«YµbŒ_Ãë´´_]³Á ÿ¡ÆÐr}}Œô”„éœ?Õ³žïµÈ&Àçï¼ÿÜ-íG׸q)§åzÔ5<£tÞ/vkß:ògÅOW-™mÛ¥ÿÓí~±óþ°Ž_—Îû¿®+@Å(A­Ë8Åø¾:?­èóÊ^õüí¨­–ø±hïèVR¨#rÉ]]Yb[??ï{Õþã‘uPÕø}t~}éœßÞízÎX>Í7ø%\ÒÇrÚ›¶¿,ñ"A¼Ÿ¼¿êZâ« Þ½Fízq3ËõªÛxá(<>6Ëõ©wý=Fåûi‰gñ8Ìçk}èï?¸þi÷àvö‡&¦!Ðçãàz¦×œßÑí~„ L§'K‚75Ž×Ç|~vxÁÜßcòø°ñ½±xþm.W¾û·óâçµñ·‰‰2È>À盨›‘øXXÌç?ãÒþÈäú +,“ë?†?éó•Ý•æýCL€íú|ahÜîþ\Üm=E|­],âƒq-âó–æù·ñy4v±ˆeE|L騯">øNO‹ø°<ñ1c›„¶ë/Á">íâ81‹øl*}W-»XÄÇÔmãØÆ">¸r/Ð">¯Æ¡‰Â+hµˆÏ«U_±ˆÏ+-:£bѬ÷Ó">¯¶±ä‹ø¼bÑ\'´ˆÏ«Ì‚-ýç)âóª]ã:4ÞR+,âójmÛXÄçU®»Jz ¯°ˆÏ+)âSxõÐ">¯Ö¶E|^•²k¢Ø ®!ZħòW‹øèó>-â£QŠZÄGÊ´ˆÏ+–"A…ñÙ„‚&ˆAÑ">¯X¦äÑØÕPþm“ñyÕë®ñ Ñ">Z(D‹ø¼*sWm»ú¡Ù_±ˆOçõL‹ø¼’R2ºæH‹ø¼š,ã1ž">&ñÙtl“bº(^‹ø˜XÄçU»[iž‚‚¸?Ö">¯Ú±mÛfݵP,£üZÄgÓÜUò!”ø@oM‹ø¼jyWï»Æûï´ˆÏ&¼wZÄGç×hŸÅÖK‹ø¼juWO¯’¶`ññy•!–LÁÌO뿳ˆÏ¦Öwõã•ýx¥¤m¿Z×!–¤óE|º–dŸ]CIJ6#ÚÔÒ®~lǶÙvÝ¿´•«`pЦ²vµ|èØ&™ý&L ØÄ²Žm¥îj‡zzJg°ˆO×y6,â³)áS³ÆF6Õµ«ÛzÙ57a bSf±ŒúcE|65¨@–E|8mÔŠølšm×ʯ†¶0õ¾kŽW‚ØÔç®ÑvÍ㕯Ä5‹ø<Âýñ¦tlËǶÊÒíÇŠøl}—ìO-Á">&ñé…w1,⳩ÛZÚŸfÎ壤)L¹ï*yW¿v-¼‹a&Vלñé:»†E|ºÎ¥aŸ®Å,âÓu]5‹øl*ý©ðÀ">›J:4wõ¶kåCë¦íoª›ÐFv1dPײ`,âÓuu5³ôºf³ˆÏ¦ZvIÁ °a«¬À">›Ê©¹«·]cíZù‹ø¼Ê‡*jB°L‹ø¨´ˆÏàè®ñy5±Ò£õŠE|^@I‹ø¼jcך¯XÄGWkŸWmí(l€gZÄçUF-ôº´ˆÏ«±©ji…GsW>TXÀ¡ýbŸW-:^9 ôÏ´ˆÐ">¯2"ûÑ#cŸMÛÐëbŸaEŸ¦fû?:¶åC5Z»ZßÕmÛÐwcÐ#L%ß5vU@o¡@ì·XŸ]s×z¥E|v¦|ò|qAò?“ˆXÄg$Íqe‚ŽL_ÊŽ$|¦ê±ˆÏˤU²jƒ¶˜tp,õ`ÝòùYÄg'K (ñ4~'Ë(&|p,çÖZ6ò³º c…vŽsëÚ‰A•),¨Àà)ñ–AÇ —ÛÕ* !Êlçho˜?‹øœHïç7“ù9d‡½œ #¼XÄg'«<ÌçÖz²ÍƒÔ2=C‹<\k#Ö]K«E|vväó3.˜IA;çØ¸´¦ÀC97JøùÆÑÎ|pm[YÄggÙŠ°ˆÏÎ1Î}+f­ï,ó`mûɹE|vr_1vŒ)>CêiŸùÃy°ž¼ßâ ¶2X›E|^b agBÅ-„gç;˹µ]{yk0çç%Æ v&$ÿ3HœE|†êÔÅÖ;å Ô5ZÄç๵œ[e??ž›2†Æœ²ˆÏKLº4G‹øŒ©¹—\¢<æQÄggG]抳ˆÏË©qý ‚ñ™m¨E|²ˆÏF9ê6Öskc ÿR2½ÿá8·ÄõkÑ“Kóù_öƒõÜ*—¾ýÜ*g÷äÙþ™íϤG-â³Þª=íäÌWߘ5꟩ò,ⳓÙþÌ dŸ—hvæv°àÅZ¶¦h!€‡ws<- —E|$UÕþ­D+?Ä$€©¬×ÈÏ">;××Ï<…xÔ±ˆÏξj¶¿q–˜’?“µéõoéà¬×¹•aþ<&YÄggíûIÙuWÙ85½ÿ¡ìºxx³ˆÏΉ­LfŸ5Ÿ\[?ØÏ­Lïg23tv¦s«”ŸØÈ0ÿ‡#œm#nÁw¦|°öƒ­œûVÝì¬éà<¹ö÷Ål¦ƒ,mЕ,‹Àk,‹øì”ƒÐаˆÏKÜ­Û¹µÍƒ 5%Í%+;ûup ð£•YÄç%f9L eÓ">;+аÇÈ">;; hÝ%Lpx‰ ¬ãÚ8µ–‹&pUÄÎv’ûZá·‚;ç¹u¡jqYÄggÂV‰sµÂÎVŽ,â35€L‹øìlíà`]€¡\;±X}êÚ^-â³óÞK;¨µup£4u­ñ™Ö”³ˆÏœZ„‹E|vÊÎÑ5(ZÄç`?8êA ·ˆÿ5<·òãÓuò|qÇF-â³±¶ƒíÜ:NÎþVÐ">Ëê˜0k÷²b:¸w^úÔX‹øì¬ØªÅƒpk/+—rÎHRÙ™Ú›±Ï">;˹µž[%ßû!ƒµì'G:9ÎóÅ‹Éÿøõ9és'“ÿ¶“½œ;1Öº³Ôƒulت•h°„|çj»îç‡Qÿ¼‡eŸLþ8úÁ…¸~–ºã\€åÜZÏ­mìçÖ•6b\qg+çþFˆÜÉ¢ ÞaŸ,šðp´ƒs¾dŸÔ0(ⳊâÁóùU¬ÆMÒô~Ö†fŸ 9ù¬eÀÙp;Ç<8Ï­+oÌõÿ0÷ƒõd¿Nî[‹%ÿ'ã8Ȩÿ‡3Ô0î«jéýÓ¸æóge-¶j-!tivθ³Þ)ÇäÆ26æó_J†ù³‹øìœçÖun]ógËÎ">;K9‰Œ}¶ì|ð°s1½ =‹øìd¶¿V)G¶?‹ø¬n¥vPÄggÏǹu®˜Ò¶¬5‹øì,ý`»NÄõ³§Ê'ü;ó¹•Qÿ쩲ˆÏÎÞŽupmä£ý Éÿ¬Æ">;k?دƒslLV&ÀXÚAV x¹ÎsëÚßSWw–sk»özùüì¨kŸ UXœB‹øl,é`CV*Ñ">Yž@Ëå°ˆÏÆ~mdX³">û:8w²ˆÏFÙ9 ¶j-!ñÙ8ÒÉqpÖƒkñÐâ3ʰ0ñÙØN²xÁ²»ÊFñÙ˜Y@€£{¬âs¸m´ŽÏáyxYAƒÇ¥®ù4ø7Ïòñ¾õ|PP ªµ Âc-ˆð¸2_ ñpØîÎílŸYÕýM­þ-ПN ðßœòéüÙ^Xp@ëæ$ ðg;Íê>‡5ÿqgà>røs‰~6^o.Ÿí½œž‡+È7—×Üݬ Áã”O~Võã³|<}ÊêÁ¬ÌÈr?‡-P©eËîòÙ^¯Åv:÷çæÁ@z­®ÄÀÛ׃%6ç|º~¬üOÙ äÝOÏÏë×ñzàîÖ€þÇÐÿXøµŒNÏÝ ÄÝÖéÜOWZ =1`÷`À=ïIx«v¿Ïf èç̓ʼN ßœ¸Ïëç'œþlo xgÅMÖ:¬î¯Çnêî΀ŸÔÈÿXùy¾³4žbÿh€Ín ä<W ØœÓéž?ž§5 _ݸ?7kþãvÆþZŠu‚8?ÔX¯ü>«¥‚𠳫5pþ±ʳ“À9›¯ïÖ/`½ ÂOu¯§Çg»ÈkA%ÄšµhPºôŽV ÂÐK]>F ÿ²‚) Œ¹´¢V:½Nk:Â8ì]ÝÇéùñª»5v÷Z¡Ý©Ö@ùן×k@<×´€ÐЮ„v—ëô˜§¨»y¥×sÁþî# ^ ¥§Ð´ÀøÇÚ>ÛóuºÔÓuœîü¼ ÓBIP¬€P²@T- ôX =îZ@h·È3ðIm^' Œ¬ñZP…ª|ÔþûS@(éâ+ ôš5» Ñ਄’ŽX¡Ãë´¨'û÷ ŽÀ+ ”t›zÍø»5°üqé§ëçõØŸÍ æpÖᎀñd¯Gýf <×ÏËB©Ûßç®Ý(°YЗý{lo g@§Jà 1€uwù¸1pœ|Z@èõ°€óÇ8ž‡lÐB‡çéÎ@ñdÿ¾ÏÓ3ÌíúùX@è ×B»›ŠÛëñ{mÖôÇ€®f`ë(®„vWxëïÇBü¿?„k¡Ý•áZP…„òejX@h÷ª»Y@è°r_êÛ;¿ ©„^30g·pkA âìžéôj»Y@èð<óÇ Àf«Ú½®í?ÉZØÖ e+(¦„²VœµBÙ €i¡l3´€ÐîL3Ð^ íÖêÇí³}•Íÿ_]÷’ì:å ´_£È!Xüs/jgþíw÷(Œ¨VÆ :ï±eYJX ¤x?,¨AP=…^,R·âf ôëÅ€éMg`ìkÌw¨ûsy¹GsORwzãý`ÿÇ!õî eÀÕ)úÌ@Þç¾ @HËâv×8azàõ\fÐ(Í¡Ï(ªå1ÀW€glÿ ¤Þ¿ËS¡¸lÓ ¼~Ý÷¼Æw¹¼Õ üU_ãõò@4 æ ŒÆöˆCêü> n0¤îÝ=–{5~ÅÏp—k¼^ãýçž—÷³@¨¶S°‚ù"3^í „Ô}¹GwO¼_lX ¤~ÊåëõµºûåñsoVãýcþH]pÕs¾È¡¸a/×ÕSXÁ!u©îŽ€h̰@H½ŸËS¡:8ÿÂ!u_î¹ÝÊ8Þ`ú©—¯×—ëõq<§î €~è\þ“ó,R¯©Æü”úiîÜ~­³~2Y<‡{!йŸÿm5 „ÔÏpÇþ±žý#¡pÇâß[ džn(³€ Buóü‰Rõ\²@ÈŒcÌg1@ªùE}Æ|•º7÷`€ñ:žîµÄ,R—k¼!09ï,9BêQ.ãõ˜fP+,4a@Õg©[s÷ße£àBíÌ—±@ȼÜË^ÏÀæSPÍ!óþ‚OÐg©Ëïòt·Ë ~=ü 1P˜n'0øõÓÝ ~Í€àׯþ‹BêýS3 YÜŒë ,j¼=ù}'0øó5ÇêÎ€à‡žÕ½~îmãó ¿f€ðëãx“BŸÈ,~®ñ>Ü{ª1¥®×xþžùEµÁù ©Ÿk|ý.O5 „Ú)TdšÊ,¸a@òÙ¾³@è3 „Ô£ºçOùžö1Y\wk_ ñ)jçü†B×ÇNÐgÌ÷´Åï—Bêv¹3PxÓ¹½d à)j›ûc}FÀYÛÜß²@¨ñ~“S ÔÏõ)©ëå~™¾¯'{q=ŽBýw ~0?£Î^ž!uAÀ- pX ¤f .ù3v±ÿbÐ Ä=BêUÄ,ê……O¼¿EÝ.wÎbϡϘŸQ×åî—çvÇúô¹œÀ\•xK×x‹õ‰BêÞÝã_f ‹ëÏ=š{bë/ïO‰{¡±¼0_¢®Çü! „Ô³¸zq~Æ!uAÀ,  ,—f1áϸ>¡®ÝÝ€Ë&Ü_¢ÎÀÎ× Œ£‡BŸ,®¸Å| „Ôc¸Œí/ „Ôãqï®~Nàîëiÿ „Ô}º÷R× Ë‚œzt_·áîåòvoêbûÆû5ÌÓý\¯g`í[Ô€ËBÌG˜ˆ‹BY}ÆüC?º,RWÌry @¨/îÿX ô™Äë¼_Ì'˜m|ž@Û×¹<7çKY tiOPß<¿`Ð8óU,§Bêö¸;bùýàþu¬_ãa! „ÆÃÂ:©çø| „ ÏNzt÷\î]Ô8¿Wg@ìk©{wǽÊå­Æù÷xNá „N¼Ó)úŒ!uÀŠ€ûzÛ8ίÕ0ZN!O?¸¯ÛpÏk|ýÔ8?……7,R7Þ"`”BêØÿ¨—óÏjì~žîÕÜÛþ> „Ô½¸3P·ž#}Æýyê2Üíwïï- êÕ=tœBƒQЧ@H=»{5•ß©ëÏÝ®ñÕÔ(2/wÔŠ+Æûqëî^Üß „Ô ,~=~—§{1Ðxл©Ûxüz¹Ë5^®ñVÔ(R×ÛÓÝ/æ^f©ŸÇ]0ÞŽãx@Ý®q4Ó ˆî øeº7÷¼¼–ú ”þŒ€fv³@HËs0œBãäóþ uì?ïý:—ï)°ay‰Y 4&þY ¤.GA „̘Fà= „>£@Hó/c1 œBêö\FÀ4 Z˜½¾Â¡Üÿläóþ‹Ï(2_ãåãõ4ã|Y]î\ŸÅ¹oû{(Rçö‘÷wž!õÂß[Xž¸qþX°ÁûÌ˽xÞï0 Hg:æ&ïO9Bê£P‹÷?¨3P[}½~ÙëQ džî÷Â$œOÆýˆêØ_Ír œP ¤ŽåûçÏóİ@hò|÷ÍÊÀ©ãxç5 „Ôqþ£.x=òy?Ĭ§çÓê\^íöàþÃÙXǡپŸØ^ÎÎý; „f—B¡åî×x¬¿ê\Þ¯Q ¤Ží©ºcœ5(šã¼©×5û¯9ο‡!uìŸÔ¹þ‹óûÇñÂgÜ¿hÞîR/_ãõú÷:ÞæY ¤ŽýÑœçóáüÞ¼ÝË^óýÉû OМçûFº w~?â~ýÿq<ñ÷G¨s}?…Ÿ,Âc[o:¶ê\>â‰q.²@hnîY „ǶþÞ!uS³@H½Í(2ãßÇñ: „Ì×xþ¾_£@H]§{Û¿‡¡u KX ´~§PBŸq>¯Žïg1^ø4¡S ô÷Ï©ãøb=,Œa:ÎGÔ±}YÏ)$B:~«œœ¯G6ÎÏøÖ¿·@Hý,wÌo|Æõ|u¬ïëd±@H¿ÿÅù¸S ôB«²0ƒB«‚#­SøÈëëêz9ö÷ê8ÞZg{Ë¡Ï(Zë „Ö)Tdz<îü<ãìày»5N žŸXƒ|,RÇþá3 „ÌËŸ‡óC§@hM¬°@HŸOó'kÏçéþ¹U:?¯8¿?ql¿Õq|§žÇñ „Ô¹<ÄËŒë¿æé.ÍÇ믱@Hû3ul^³@HÛõ*—ÿ}û”ðúìgœïªcûº<^b:¾_u|ŸŸqþ¹,de:ö÷ûaA „>ã|Qç;Ÿq~¨nÕݯñø}}ÆùŸºtw½Æc{¢Ží«:æ;>£@HÝ~înïç{êmÿ?îoWO}= „6ïÏ>Bæížfœír sP ¤Ží•:×süÉ¡Ï(RO˜;¸¾†iã¿·@hŸB%©c{õÏ3m&_ž!u.ŸÁ‚6©s}=篼~¶çy8ÞW—®FÐ^ÜŸ²@hoî¿X ôšBê8^ùŒ¡ÏíÇó'ŸñüÇ缾塀 Bæۃϸ¾ðúÿ(âÑ „D;‹yöoÐ~넚 BG#ëvrÆWšúß „TY†“×Q Ôù¤ „:‹²Q $ª¦‹ óF”œˆP2“w#¡@H…)G(úT²Ê%ŸêdK_X ô)Jyº,¦ˆ¤ÿŠ€žª*?Use‰@îQ ¤Bm@üVP 4øì „Æb R^ø!¸?ÒQ $z~ªêš¤Ÿ³Oˆ ÍËß&2„Dûù”O ¨V%OyÁ\µU(8겿žÒE3cõó•(R ÊŽš½òßÒš‹y!üid¬~λ¡@h>Øö @h²ä‰ù¢VL[Õ3%ÿü+Áï™û~J‰"éûÓFê;ÿ¿=>e¨þLSÕšªg<þz>¶0ÿ^ÍÎÏ^~´e,·V“^(õb²±‘aÝXÖ9{8ù  „T6V›ª·7MB“U(zÕ–{‰"8œ¿M†%¡@H!â|VB¯r;ƒºœS $ª9¶¾!ÕRM[]µË§Éî£1T+s¦sŽB¢‘9Ò(ÛÊÛÖ{m|NÕRmyeÞ&°X3‰e°x B«`¿2ßäâùß)Í¡Z6ª „DOæ,ç9"DQÁý¿S $B|1ÊpNzq>y!Q-ªñSýûïj8ÆDÐjØÛ£@H42!7¯%£@Hµ?!³xàXB¯òØOTS¦ìæÙ „Ÿ}CÐâÌ, „^åmû‹µÎz5šzô4UÏäVT"åäÇ«,!6©(mQNyˆâó±ÊÙ´¢‘Á©¯Œhn®óöÙ?œÇ @HTRyB¢ñ B¢Èçû4M«˜v¦¥Æ·‚¡Í*3‰šõŒ ÍÙ@½Ê!Ñcc÷i–O•á¤Gå§BiÎ6¢@èU^ŠßE „6ŸKF¨vBI"k¯bDЫLõ ÙÌcv‰"+î('UDÏø©ÙX/¦|eÎu£@H´Æ§É,Í<º@¨7Õ°±µ>åäËf- „D%•k+ „TG™[S‰†MÛ©Ü*¢@hwœM @hœñ¡@H4R9þ;B±øÿÍ/ B{2JB›;Nm–½³@hŸ´e)Û0v>:3¤©{(R>9ŠxVd3Xp²"±¯žÿ¹=î˜zõÐ!”2œP"”ÿ[£™Çê£záv=žîzg"–¸/÷¸Æ3•xlÊ—­4®Ø«3aNœ sb&̽^?5®Ø«3ñO²Uȼ¸†Hjô ‰ÇIŒ{Íĸ×L(cO®Ø«—‰ê\þ,Ÿe¿¹]ÎåÍùV ™cFO½·WôÕ‰aõGŸ› f¯×T㊾º6wC‚ª>Ð6dŽúß<߃^£pÈœ gↄ2´s¡sȼlüÁúÍ#kÖ™Ì=./ †¨ #¡ÝCù1ô2דð…wÔåǘÇËÝ.$jaSs„<‘¢|Ûø¼¸ÿ”ÓØ”ÓærWŒ#=ED™à4h&6½Î„š× aâ MXÑFdî0—_F‹qEÞ|×k|üܳ¹3qW(YKä^îr—k|÷Új$¨31LÜÍû$RÍB×ån×8©^3q =x()ro1jŠr±Í㑉Hø}!ªÇÜ›{\ãLdj0îxxG;£yÌõr¿¼Š{#A ;ST™3áN<§{/5î Pçò×ëõíïÛ=ËeÇꧺÛ5Þðþñ{FƒQ|È/g¢O¬]–;ÂNåZŒÌs¸WU¬¿â‰Nåx>îÕÜûßK=‘¸!΄‡PhdΙÓì€J#q>*gÎD“‡-!h5r¯ô<^Ox©[¹¼Ý}¸Ç5~£ò÷v~ÄÏ5^‘àÔ[sO$4áxG¹ÚÂH4V?H8B,jŽÌ½º—3‘GÜ÷º¼»ºžD¨ÏÛý\¯/×øDÒs¼ê†(õt÷k¼#áhgâÖk&ît&–¢ù(6Ç @Ïyý6ã u.?q[îÞÝãqOŸH,ÜŸ¢IŒ;0Ôu¹;Ìõwd”yÖ—,B2/Œ£lUHb$N–s¼„ès»Æ{uÏú%ú°Éœë›8——x^Þf<¯®HôA["z‘Ìóò6ã‰u½Ìġ׹¼^WlŸÔÉW¼ÃŽ I™ ”ûT$eBÏ ÛsùÏÄ×9©‘›‰EW$öà¬EIæ…„vAá‰uG »„Rı=©…¿ç/ÑæóVã’zŽ'јdΥ׸ƒ¤V&£4É\/Ï¡Æêçw™ 4?ºN÷T£<Éܺ»_ãóòÒ¿÷%ʼ.¿ËÓÍD¬?hQ2Ïæ^KÍDÎõ°I)6sìlÂüBíl¤C—R&Ä‘ 6w•±Éɼ†{ÛxC¢†xüÔ‰âX”÷w ˜oE£“‰Š½ðxNyØÑéŠq4` ÕÉÇæéÎ ñ¶×㉋“˜Ân's-î~y^ÞHdÁ| 2—Ÿ»]Žý_ç}q§á©7Îï±á©w?Ä1I^g¢„xl÷I$ÇHÔÀ÷Á†'uAb®G±á©Ÿ†6<©û5>°Ïˆ'õºÆ÷£Æ|HÜÓYh&\`ù°á©31ö4<©™pA#±ø$`œ†'u.ñº¼»óêzêŽå`»¿·áiüذÄuÿ~F±:ŸX>]ìlxRg¢ƒx"á‚ V˜ïP?͉âŠqÔ»±áÉ<ÿãaÎßÛð¤ÞLˆÀëÑð¤.ÅÝ.$(°A ó'£rÿÂõªî³ái0î4<©+ö¢Gwïry©‘X¬~¶;$Äù}uÜwžÔS͆'umîö¸‡ Oê²Ý­^¾Æûp¼ž FH86O5Ç8 ChxR×ån×x·q$ !ˆïïmxRO3æ÷Õ‰X_Ùðd^îLxY\Ùð¤Î'êÏØð4N+4ž>£áI $¯Ñðô OêÚÝóòj4<©ëÏ=š{^ãû¹Ô;І§Ï˜/1ãõý8¿/qCbÿ>îQ3Á€ó'êø½¨c¹Nb4žÌH0Èë÷§áé3î4_ãe¸óû{Í„ &b†'uíîv½¾_ãór~¯‘x¤Žëcj&(¼ŽãUõ¸Æ·½Ü/©®×x/——{0ÑaÓ³¨1Ÿ¢®Õݦ;O†'u¹½àðЫˆyÿ‡úîLÈw$>`ÿĆ'õœîý¨‘ ¬~–»tw»Ü‹{ÞÞî8üŒù3Þ/ö¿lxZ'¡š÷“|F"±º”Ë×xíîv½>=ÄFÃ$žÎ³§áI‰≄o±áIý\ã±ÿ3ow¿ÆÇpO$>°qkœÄ…×eº™Àðz=îÝÕó$2|F"¹0¿bÞî>ÜûwÙÆ1¢~~î:Ýýq¯®Æ|‰º\®Û݆; ÏØð´ Øð¤Žý›z™q¿‰:ÖGõ¨îuyÛßÃ|‡º?——;@˜(zžÔ1ÿô Oê\ÿÄqükžj$&«ŸæŽí¥ºÝ^î~ýÿãzý¸^Ÿ‰'Aœ OêR.ow»¼—§×#Ôu¹óûi§Á Oê\þê­F"³ù¯—ÇïòP#J]w»ÇêÁD’I¯¢F³úîr×k¼ÿÜ™2x<͆§=¸dÓúy.ÏL0Áöž O'Ñä4<©ãøaŸ†q6<}Æý8{³1€ Oûm¼AÓ:ĽfI^dÓùßñFL#áø÷ãä´S¡ÿíïÌãò¿õ_œ÷[šÿ-s©îþs¯æÞÏåHTáóElx2·Ë=Þo= \™^g|›ó@ÚüÄûm¸~Á†§˜FúUº w›iœï¢áɜ˟¹ lx2¯©ø>ÄOs·åîÝ=‡;jÔ[=ñý‰Ÿá®Óݪ{âóåýulx2ïG Oæç¯år|Þy¾Ï¼¾‘Ó`?zWõÆ÷Çç×ÙðdÎïC=Ýk‰q!Ì\®ñ¶Ýù}lžï¡áɽݫº÷P?ø>Ä­¹ó÷¤žîq½~>——{ÙëóAۜƫt-—·{ uÅïKüïx=¦éÐh‚†§p^ß`Ó9¾?õ¿ ¯yÚx>¨[Þφ's|_êÇ“æy9¾õþ©3A;§ 'Ý÷¼¼—:ç¯Ü×x‹÷sæ+˜fžÕ½~îmã9i®ÍÝ/ÇöþóÂò­l`@Ó9—§8¶ßŸs>*<ët¯îÞEŒ†§ržobÃSNCççWÇ¿ßÙ¨‹†'s~~q$|©Çå\¯ >ÿ`£žÂó8¶Ÿs¾ÇüÄû™çóäü9~ïêØþ©×å\^¯s¾Çû/uƒ÷ilŠý—:¶—ê5Ýq<ñ,®H 3çòÇþèsÎï˜ëå\ŸÞ†©å+Žý:Ÿ¯s~ÆûÿÏ ë¸ wƒÑ°ˆ†§œö< M±0Owì/ÔÿN$rš³Ò±<^£áÉÇOêv9¶÷êaã9?cŽý©º_žÛ½íýeÓyØßÏùs+îÞÝ㸞ƒ†'q;Ëãuý¹GsÏk|/uΗä´m¥syˆcûŠÇúþNÓy uΘcû¢nñ~*ç£Ððd^Ïå¥F¡:×qìÏÔ±ÿ*ó ¸¿Dœ ÐærÇþÿsÎo˜cÿoÞi4Ö£á)¦u±¿GÃÓg4<™cûPø|7žÄ>Ÿ8?ßë‚õá4ò1Qßÿë¼ÿÂü\ãm¸{¹¼Ý±ýÜðùÔÓ¿ŸÉÆ\Dušcÿ£·—;×>¿É†'÷vÇöUÝ®×ÇöósÎ'˜w¹lã9Ÿf£ÒÄòÇþE=/Çþ»ží%žÄ™(]*sÉØðdŽãuì¯ÕÛœoܽݱ¾³áÉÜš{tw,¿ÊûÏØð$Îó{ó¿ ‘8oœ7÷îŽõAþ§á)§­ûñVãü[=/Çïÿs6<™'þ}$t£áɼmç×êg»óóŠc}©)hx2çúñçÇêØ>ªsý÷k<ö?•÷‡±áIœóÏæ\~êXÇi°šX~ƒ (¸CœažæØ¾ÔÓØ‚†'s¯|ÞX~â2ܱ¿1OwüþÔCÇÑðdŽãuþžÄq¾ŠÇ@ÿNÓ9ö/êØ^Ÿh6<™sù½.XÿÔËû§ÎTM6<™Û5ËÓê§áIœqQæØž¨cÿmžîØŸ«·ýÿ+åþ÷~BÙð侯c{ÝN# žÌõöt÷Ëqü¤^æ¬ú0Ç÷¡.×x¨Û5Þíýg‚·{º;ÞéÐð”— :û¿Ï ËW}ÇöAËS½Ýqþ¡Žýãç|¾ÓœËW<ŸËú~Ððd~Š»\ãqüÕÚiÀùay‹ãø=.;äö Oæ˜QÇñ‡:¶—æéî×ëÇõú8>ùœ OqÙá׎—»`œIy?…9ö¿mâú)žÌ¹¾‹s}ÇþIû§Ï Ë_ÛGõîe¯cyŠsù©ãó®Óè”Ï_Š–z»Ÿëõ¹|Äýrœÿ©cÿn¾^çq™ß×ÄöD=Ýq|£Žý.ƒü†'ósÇòíŽÙð$Æù³º\Žý·z^Žã×hx2?Ã]®×Çþ]=ª{]Þ×ë·¾_šëíåîÇö Oæ½Õyâjn?w¿ÆcÿÕËiôɆ'óºÆcÿÕ™ʆ'sìŸÔ±þ«óûÇñÂç†ïG½Ýqü`Žq6.³áÉÛßÏ8¿ï hx2Çñ¬y»—½çûêØ¾š·»\¯ÏïGܯÿ?Ž'>çýæÙÝËÞ?Îïã1í£:—Ïäþ OnÏç+ͱ?R75žÌ¹þ,nïÑðä^i6þäóîk<߯3¯ÉÇ;êmÿ^ÅïQ\·;×>/Ά's~?â8þPÇöýsÇçÇñ…:¶ß(’ù; OæØ¾|Î sü>Ôq|¡ŽÏÿ9ƒµÌÏrÇüÆx¸ÿÅõ|s¬ïêrÇï_ËçsVÄe"6Tåó~æü¼ÇØq<&þwžÌ±¿WÇñ–y©³áÉÛ»Ïyã¿y<îµÜñ}Îç'xÙèï4<™cÿð9óƒÜË=¯ñØ}ÎçëÌùùÄËþ^>OgÎÏ+n»w÷XîiãyÿV\æÂù¯«—×ÍÓ]š;Ž?>o|~ñ¬î­ÿ?žÌ±}Q¯ry»cÿõç»ê®ï Oæ¾ÜK?žÌe¸ë5>ìïµëód8±ç‡jû~Ððd¶¼†_hx2×k¼o÷,îeŸ/óyÌíçîö~p¾§öï'ïo7O}=žÌ½\Ž÷?¿F¨iÆùÐçlx2çöJÜ/çöéu»þ^»þ®¯©sùˆç5¾ìßø}¾ž×û›X>êåÎõõ5®Ÿ™·»Øë7~âz¹éßCÓyêçEÓ¸]ãëãëíák\_Q·ËKÿ>¯/ÿïÿü¿ÿùÿ©ÇáË endstream endobj 135 0 obj << /CreationDate (D:20140122074921) /ModDate (D:20140122074921) /Title (R Graphics Output) /Producer (R 3.1.0) /Creator (R) >> endobj 136 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 138 0 R >> endobj 137 0 obj [/ICCBased 139 0 R] endobj 138 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi/grave/acute/circumflex/tilde/macron/breve/dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut/ogonek/caron/space] >> endobj 139 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 132 0 obj << /Font << /F8 8 0 R >> /XObject << /Im9 126 0 R >> /ProcSet [ /PDF /Text ] >> endobj 142 0 obj << /Length 2902 /Filter /FlateDecode >> stream xÚÕYKãÆ¾ï¯|±„Œ8dó dˆ7ÞÄ <@8>p(ŽD[RÚ™¹ä·§žÝMŠòlrË ûU¯®úªºùÍûûOi²(ƒ23ÙâáiEy•É"KóÀÄéâa³øyùaµNM¼<­¢eOÏžžŠ‡þŸkþ|†Ïž3<;xþ¦!¼ždQ%Cø¾ãÚ<ɳ‡çÕ­œ²EâµP‘)µ0P¾é5ƒW¡„TÞ¯~yø(žyŠ›< ’,Z„¬ò×2Å·MSê¤óâÑT‰XÊkúIäYòÅäA±ˆ€y‹µI JóÅ:Š‚2•]Ù‹ÂÃØ¨÷V1΃t½¸®­¶ƒç"ªX¾vŽÜ½H¨"R|$“xŠ2ª…é ϼÇ<·èE©§Š÷(îgüa²ÙGO«gÚìhYXSFad¦K­^…‚…ÚÁý½çy·æˆ°·4¿²Þ¬ b>SŽÂû ú#ŒxÅQœâ L çc‰·„(nlÇíí¹!Dê qË'~GóYKxBN¶gFˆÂ³Dñ;LÞò‰)ÓÛ–™¢!þ“³¨¼iìí(™„â­mððëƒKPãÄÀšä~vц úÙCГÕ ,M“áP›Ö-ïå{Ú;ƛò(õM#dÞ¨\žeªNž6xËýLqöq?œM.Zauã²ajIO—'Á\éT¾dùU9éF°Ì3ÕXD¡ùb’"è‹èQ‹}CÇ‚\©õRþ¾× ¸o¿É”³—ò•Ì'xþÏ÷ðüÏ·ŽÄ^–¼ÊTãê7´P‘Œ·ãET¯À%_Áóá¦Ò nÔ?γµ 9yê~ådz½ÁäÏ-Ôs5JœiÓѧl+8)†—þRO*ƒ¨(þO=Iívÿ©ð¨Ö¥A–Ãæ°b”3›QâfµŽãëÙÎÃ{ŸÝ Ún—dÑ¡”djhu!…jh6Ü¢M±\ÝÒvà·R„1jÓìŠêͪçÂŽõêy½,|¢Æ¬X5!íç•)Ä+hRÕë A¬ƒu×2âLÙƒÁu®´ú­zÆÄ QíY¦‡Ôe÷ăž0ØÝzåsûYLKµç(Ì…Jý†»U4¬)e3Ð;c¸FÍÞØùÙ5Ó˜t‰S³<ï\ß × µhùõÀÓêÎʶÎjT¢9®H|šÀÖ “G2D‘×R˜ òü°aWøðån%@§0^~û,òÁÈM>šžÈ¯|5Á‰%4±Ñ{"<¬Ä²î4ò›½%±avz×p”ÃlQ ÈÈέz[ß00áJÊ#¿IVéC‰à#»2)ŠÂà½gžÌ»4&0ECèzÆ%Ýe/@=}¥·%­;ºoŒAšÅ¥¬%Mï1óV sPŽPŸ9îÄ«EažJ3;æ:ãKÁþ5ñÜ6Íìû>Ñk5ÙøÖŒ Ý 7òŸ ˜–Ø‹”ΔHòy…&é[Mµp÷¥õ£äBžÃC¡¶;õ$vÐÇXPòÇ­¬ÜYS%€BpX6¼á3¶BŸ¦Õ­ÅŒÿ,ƒ•@ý•¿ÿ‚[vlK¡ïo^qaÕsëgLæ¿ 怂 Yf7œ Ú*'~;š”’À¬qsä!J¶”ܰ÷àùnäËÛ­l NPê±F,Ìò[Y&ž07P®JsßÍ¥Ò£Í×r3§ÒE. ñèx’ -èæM¥óÇxSa¬®È¯Á«’$&¯‚ÅlÈîìÝOöÕ‰—9—&±­í†;«“`>øFÕ_ «›`ûUòC7œù ݶ!Y[[f µI²ˆ’ N2ƒ` †‹MPšLïÀŽ&]~”ºûXï/D…Ã5X‡Tå¡Rÿ®(˜g°âÒ(鸃µêNª1— „KÏ ˆÏa‘.vŠC£Â­üÓ8×[¡þßñà»uL¨n¹P¹ËµN Çù=¹Ú–šdÙêè5„NgýµçPŠá%ŠZí=(‘ òixSéB½ î[i8~@ß¹{G€ãøÃG*›ö.àŸ™I–ß UU¼”ì>H÷dã‚Gɹ•rëú}å Yw6oR]hÉñp%³8V8±Ú}·çÙT|£6¯«"YÞÍh”ãjΫ¨ bÉÀ½voà»WÐ.¤mßñå [×Ào~‘gžL@‡(aÍ®q+|5ÐŽ{dhô´T[°€î§žKd'¤˜š¼U[Í@Y.žŠù*É–8›·mÆ,s^‚¢jf´Ø¬6œà¬üœŽt"ˆŒgI@«‘ƒâчkLŽ5»õ ¸Z OÀn`Î"\ºâëÙ“=‰üF’«¼RÌ€>£&§wý©ÂÜ)ÛñN£Á²¿õÐ{! ŠË|7Bœùš«ù.kµVÜpÄ%öõ )—û…¿RQCã÷¶9*–Ð) Ä¼Ë„ËøT…¢œùMNG08ð²³S°â׸.ªgÏUƒ-ezM2t³Ù¤ë¯óÍ3û¸åW§zÆFiåÞ  ´ÏpŠVúJ¼RJÓìuÎÚeP4NW„Â<º³ÿIÐm&—œjOä‹…¯ž½3Ò,¯gsH‘e2¹¿z°õ_x%âh“pvõ¡T£º§1o½s«ÎB^>áX*Ðb÷£bÍל`b%Œ©ß´ö·² R5Š‘¤#•P¢q©‘‡Wÿ†ÖÄðIás~ŽÚµ†fŒ¥ö°HP£s'óEäzÄÒ¢»ÔKð»Ò3¹÷Ç6 ù“Œ›d‡AýGh´ŽÛÆÆ¯þÈsé¼QÛÛ°¤ø£¼÷E’S¦EÝÚaVì;Ys·¸ÇLL²\ÝJjÍYEi·>G° ?Ї–¡‘“lð¯«+!àª)hHŸVÉEi믒= ^¶ÌØ + 'þkN×AT¸ö¼œR*ró "½üØòò§Jw/ÜfýQÎ q.ÕØr •¶ØÖ†ó`c¦èa™öÐUeÇCW',êõ³gN8R¸AnÿG`²NKº±?ú1ä‘+:r Oäu¾)r)¡r¦^µnÙ•‘‚ò olŽ"Ë¢O‡‘õý$²])É{¹~äÛµ°xr³e¡=,:š5^xpé™”\À4<¢÷ƒ[8ßép¹‘I©öv7>söÛ‰TT‚ÌÜ7iéaByºX'IP”†›ÇÞ}ûðî?%î] endstream endobj 141 0 obj << /Type /Page /Contents 142 0 R /Resources 140 0 R /MediaBox [0 0 612 792] /Parent 117 0 R >> endobj 140 0 obj << /Font << /F54 17 0 R /F56 27 0 R /F8 8 0 R /F11 9 0 R /F44 7 0 R >> /ProcSet [ /PDF /Text ] >> endobj 145 0 obj << /Length 2540 /Filter /FlateDecode >> stream xÚ­YIsÛ8¾çW¸æ2TUÌ&A ûf;ËÄÝÎt9š®šêô–(Y‰¶!¥x›ÊoŸ·‚”L§/s°HbyÞû¾·ÀçãW?½+NʸtÆŒg'ijbŸšg}l2{2žžüoGiTNMé¢^wð×Tø»€¿ÏIšcÿØhUËˆÛ 4øHšqdË"&𺄿M[ãã4(¿I°JÃ÷ O£ðw7©5ʛߎLíðuŸ<îsbiÙìXJ{Kb`ÞݺSøŠG§y–DdÄ”7[w»ìÏŸv»àÕñËî`³n³¬ª?Ç—'§i—yÏ4.­¨²­V0`»d…fYF Eôm¢EËÏvU-EQ¯¹å–O€g®¿ÑoCÁņֺ&…ƒæ 6 ¼»h%ÇãÐIz Ìs¯¦Â‘?ºÕXØÜâÔ{{#Û¬Ez­zPÐ rŸG7{Ý„¥sâ³Z¶<—î4H¢6ëîýŽÚ›®aѨ·cÜUÕbCÝvvº„‹æ›—­s‡â7kÔCjà\°û~Ç·}=¥YT­¹š+Ë£K²Xî=úãŠØ´Ö16ºÔ#Éì7:ûת¡ôf-cìø>fÖŠľjß­{AÓ.ˆ,’€¹vò‚D¤FTÊ §ïáý½nâŠø:E‡Yê§þÉö+’%]¿b{8ù•çz9—EHoÈ9|xÍmìeðÝDŸpêï1\C,ƒxó嫤E«J@_diô¯¶æQ¤P !”rŸ%y%3ô·DšÏ):¢ø 5F~p3§\áFf.CÈ£q¹æŠ*RHp‹ XŸæ´Üªá?±Ì¿zª~Z¦IxÕDY’wš€Ø7”áðÎ÷¤··³LÁûœ\¯Ê¢&¡üV³º¾3•Bà˜™ÞŦìB‹V’kß/‚®èl§]ô[3Â`d±å9Ë8)\G`"fᑬ65OÖd¯¹Ò1Iªd‡a]!duY3!ëð1:x½¯8ÌÀ‡`Ã÷@³ß$17ž? iJŒß1å大’,FNÔN‚È¡:[3Ãì7AA,?ጔ6ƒ(ø²×p[w[c?ж>08Jšô\l+å·Ç~ˆÑljг g™U_ëö(¦`‡fÍø¾>ßÔ ¬U—p‚AkLEÃ釰fÛÜýE˜ ”H ‘˶}D98²ñGˆ2!ªðO¶,QiY8A”) éé™ÿÏR×ñ3Om!RŽ ?ãí­éü{ê-‚¯$‡VúàÐÄ÷vÞEÑãS)&q¥\˜öJÀƒt‡ûOÑñ¦™v“Ϩ+„®^Zö¸P±øa8 eäˆe{™+zŒJ#€¬»±¥½¿È0C"ÅK FyW Á„„‹‡uà:ä “¥Â–YЬV¶s ÷À=›~‘t(Ü(á]NèÂvtá VžV-Oจ݄•T´%ò¤¸™Ÿ±v Ûœ@»¡`¨¬J áRâ¹0ô^k.«I+%ÿmw¥4 DÉŒZçld,¦ŽqèÁ÷"ÀêíB·¼Òxµ$0̉@Ïì^ºØþÇ N,”(‰+º%0Ø›Ø' öŽFW1¶ãpå©e×»Á_ÛHŸÞ¤÷ZuS.Œùo2Ú!]¥@£2s}‘Âeå‚0R@áp„ñÐó†K·©Þöîñò@Âu×ðN½ç÷ãUŸéÝ@y¤a—ñ@™(xÁ½m¼ èG( $e’Ÿ Cƒ‡÷ÓÕhWXIÖš$Qbb½s.ùm>aëmV­z\ŒçÄä<—]LÃ6¥3TR0?$·ï…ÁÐv¦Á8–Qà¦Î°'ü»ƒ¯«`$Õk¾w? ïœïN†Êž3ã'݈J¢ÁN°C ö|›ð}—þ'cOÙhÓÿ/šÿFcJqð/ü|É1Bb² U_i ©³Ý†ÀÍ7rÔ¿í+@2ÝöŠ˜"}ª¨O»Šs`8žÃ`OÏ«£€sÉçÃÅIçšDEi‚ÃgÙ“à”ȇjöYÏ£¤òoŸÂÇY‰öÈ ¼èM‰É±óÕÛñ«ÿyšÕ endstream endobj 144 0 obj << /Type /Page /Contents 145 0 R /Resources 143 0 R /MediaBox [0 0 612 792] /Parent 117 0 R >> endobj 143 0 obj << /Font << /F8 8 0 R /F44 7 0 R /F51 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 146 0 obj [619.8 590.3 590.3 885.4 885.4 295.1 324.7 531.3 531.3 531.3 531.3 531.3 795.8 472.2 531.3 767.4 826.4 531.3 958.7 1076.8 826.4 295.1 295.1 531.3 885.4 531.3 885.4 826.4 295.1 413.2 413.2 531.3 826.4 295.1 354.2 295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 295.1 295.1 826.4 501.7 501.7 826.4 795.8 752.1 767.4 811.1 722.6 693.1 833.5 795.8 382.6 545.5 825.4 663.6 972.9 795.8 826.4 722.6 826.4 781.6 590.3 767.4 795.8 795.8 1091 795.8 795.8 649.3 295.1 531.3 295.1 531.3 295.1 295.1 531.3 590.3 472.2 590.3 472.2 324.7 531.3 590.3 295.1 324.7 560.8 295.1 885.4 590.3 531.3 590.3 560.8 414.1 419.1 413.2 590.3 560.8 767.4 560.8 560.8] endobj 147 0 obj [611.1] endobj 148 0 obj [585.3] endobj 149 0 obj [436.1 594.4 901.4 691.7 1091.7 900 863.9 786.1 863.9 862.5 638.9 800 884.7 869.4 1188.9 869.4 869.4 702.8 319.4 602.8 319.4 575 319.4 319.4 559 638.9 511.1 638.9 527.1 351.4 575 638.9 319.4 351.4 606.9 319.4 958.3 638.9 575 638.9 606.9 473.6 453.6 447.2 638.9 606.9 830.6 606.9 606.9] endobj 150 0 obj [619.7 502.4 510.5 594.7 542 557.1 557.3 668.8 404.2 472.7 607.3 361.3 1013.7 706.2 563.9 588.9 523.6 530.4 539.2] endobj 151 0 obj << /Length 104 /Filter /FlateDecode >> stream xÚ31Ö3µT0P04W0#S#…C®B. ‚‘)T&9—ËÉ“K?\Á’Kß(Ì¥ïé«PRTšÊ¥ïà¬`È¥ï¢m¨`Ëåé¢`ÇP„ÿþ7Ô3`‡v(P†ËÕ“+ L5* endstream endobj 27 0 obj << /Type /Font /Subtype /Type3 /Name /F56 /FontMatrix [0.01204 0 0 0.01204 0 0] /FontBBox [ 17 27 27 52 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 39 /LastChar 39 /Widths 152 0 R /Encoding 153 0 R /CharProcs 154 0 R >> endobj 152 0 obj [43.59 ] endobj 153 0 obj << /Type /Encoding /Differences [39/a39] >> endobj 154 0 obj << /a39 151 0 R >> endobj 155 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 156 0 obj [569.5 569.5 569.5 569.5 569.5 569.5 569.5 569.5] endobj 157 0 obj [777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 1000 777.8 777.8 1000 1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9 820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7 666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8] endobj 158 0 obj [306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7 306.7 766.7 511.1 511.1 766.7 743.3 703.9 715.6 755 678.3 652.8 773.6 743.3 385.6 525 768.9 627.2 896.7 743.3 766.7 678.3 766.7 729.4 562.2 715.6 743.3 743.3 998.9 743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7 460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7 460 664.4 463.9 485.6] endobj 159 0 obj [565.6 517.7 444.4 405.9 437.5 496.5 469.4 353.9 576.2 583.3 602.6 494 437.5 570 517 571.4 437.2 540.3 595.8 625.7 651.4 622.5 466.3 591.4 828.1 517 362.8 654.2 1000 1000 1000 1000 277.8 277.8 500 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 777.8 500 777.8 500 530.9 750 758.5 714.7 827.9 738.2 643.1 786.3 831.3 439.6 554.5 849.3 680.6 970.1 803.5 762.8 642 790.6 759.3 613.2 584.4 682.8 583.3 944.4 828.5 580.6 682.6 388.9 388.9 388.9 1000 1000 416.7 528.6 429.2 432.8 520.5 465.6 489.6 477 576.2 344.5 411.8 520.6 298.4 878 600.2 484.7 503.1 446.4 451.2 468.8 361.1 572.5 484.7 715.9 571.5] endobj 160 0 obj [583.3 555.6 555.6 833.3 833.3 277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 277.8 277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000 500 500] endobj 161 0 obj [625 625 937.5 937.5 312.5 343.7 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1 812.5 875 562.5 1018.5 1143.5 875 312.5 342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5 343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5] endobj 162 0 obj [272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2] endobj 163 0 obj [693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 510.9 484.7] endobj 164 0 obj << /Length1 1672 /Length2 11333 /Length3 0 /Length 12397 /Filter /FlateDecode >> stream xÚ´Pœ[-Š„àîÁ:¸»»;wk qw—ÁÝ]ƒwîîî\‚ûåÈÌœ™÷ªî­®ú{¯O÷úd“}VP¦2¶5‰ÛÚ8Ñ1Ñ3rDä„5˜ŒŒ,ôŒŒÌpdd*æNV ÉáÈÔ@Žæ¶6Üÿ°qÞe¢@§wC9[€´³€‰ÀÄÎÍÄÁÍÈ`fdäú—¡­7@èbn £HÛÚ€áÈDlíÜÌMÍœÞóüë 4¢0qqqÐþé²9˜mr@'3õ{F# @ÙÖÈääþ_!(yÍœœì¸\]]éÖŽô¶¦üT´Ws'3€Èäà2üA ´ýMŽ  bfîø—BÙÖÄÉè¼ ¬Ì@6Žï.Î6Æ À{v€²”,à‹Èæ/cÙ¿ hÀDÏôïp{ÿÈÜæOg ‘‘­µÐÆÝÜÆ`bn|—¥wrs¢mŒÿ0Z9Ú¾û]€æV@Ãwƒ?¯ˆ )€ï ÿæçhä`nçäHïhnõG†?¼—YÌÆXÄÖÚdãä÷ÇýDÍ@Fïuwgø»¹–6¶®6žÿB&æ6Æ&Ð0v¶cPµ1·wI‰þmó.‚ûÌä`cddä`ç€ì 7#3†?¨¸ÛþT2ý!~çàíigk0y§ò67½ÿÁy:]@'g·ç?ÿà˜˜ÆæFNC©¹ Ü¢¿‹A&á÷þ;˜»´ßÇ ÀøÇïß'Ý÷ 3¶µ±rÿùŸ-fД——T¢ù›ò¿•¶nO:6v3#€‰‰Àñ~ðþï8ÿ®À¿Øÿ)Ušÿ}»D”²1±pýEâ½zÿ"âò÷dPþ½6T€ÿÎ oû>Ï åÆ_‡‘ÑèýÃôÿ¼ºüÿÍþQþ¯ãÿ¿7w¶²úSOù—ÁÿG´6·rÿÛâ}žÞwCÎö}Clþ×Tô×B ÛZÿ¯NÊ ø¾!B6¦Vÿ.£¹£¸¹ÈXÁÜÉÈì¯!úWÞƒ[™Û€lÍÿxptLŒŒÿ£{ß9#Ë÷GÅñ½Wª@ï+õß)ÅlŒlÿØ=æ÷¾€îpï­GlO¦÷%5¹ý9Ûz[§wÀ;9o€‰­Üå`0Hý!úq2”þ¸8 Àÿ Nƒá€Áèßè›3ÿ2@ÿ€ïILÿY fÿ€lóÀ÷H’Æ^ð,.ŒØà[Èâ\웓QÃ%öQÀq,¡ãK÷“í@'íÌv5Jw°R3šSÕÂx‘K˜ÄW ëgâ›û>¼(Çi€Óüì"ì<9Sí öŠ‹ÆáfŠü5nMxˇ¾ÝžéÃþüð‘¡ 8%! •h¶N²,ÿkzL9×[LiÈ1²®ÀS»ï-—¾ðŽÎÒ"Ø«ÐÉZg»Þ[aüÉP¡î þüôå{GŒÙv}Æ fÀ$Š~;WÈΤó+K|Çe ­3¶0ÒiY&ç tÊㆵ#¾*„ú¤â£±ÆÉgü©>¤™—ÌöÓRÅ3´ÖSR¸d$¼îL}ª¯þä¾@†ÿ.çY·í!w£ê'çÑx-mëT=†A`ýÌê¾ïˆfêú¼³cxœÜ1-þ¿­TË>A7Jå] h»–A|Ú5‚%×úeP„;U’ݾ^…àh, /L¦Àj¢vÜ?@œžôW1æšn„£| ZÖŽÆ’&™Ö0µ>› Cë$B3Ârœ•&ôP)Óže±-PIF>[»®3·’´ÚŒ8l‘z…¿M© ÊB'ÄëNz–i¼=²öÑK$º¢7”ï®x)Ü3 ™®Ö¹^ZvŠWeÁÃûË—™XðD ÄXÓ°Ÿ”t›BìG{>Ü R?¬Ÿ&ãNÁ£Ó*+î"1¶æ=•“SÛüÀÕ1¨ÑU  à>@Ú^kîf·Âµa4äúf­ÛvqI{̰\ü]G“”ý“6¿ªXIS„\î—JĉzÑç-ÙÊíRê-Á{Š¢BòÉDöÂÀ æäÕadP4”‰×i–~58¢¯ 5ƒ‰–”hCqQÑ–)(v•HN·z‡Â=Á8ÛsÕ:’þ>Gšèú·%#qu¯˜0OèFdÈ>”Ÿ—á¤]‘½S¸ìç]÷'7=wrØ¿¡UŒ;ŽÇ£Ê¦ÂÞ“+ÒõØ}ýEJ–*G^ÃQ‡ÚŒšä¤µñôAÇÀ׋-Q®¨‰¸ö+u{%rÁÉòoUÄx¢hTD-m«ì•‰MBìÉpûÏŽðÛãì¡Lb7Æî;3Ȳ gmÁeï­ƒ%âù¸!c©X1jXZ€EǾî~Ÿ }—“[3 f ìyœ¥X—¦U^e¡·q0=HþWíÀHL"´o!Q‰ÌV½(¢…M¥±;†F0ªhƒ×=y[nHÏ%ÿyf[÷Ò º[Uıa³s·^á·©ê¸Amê¹Z³c¦Ggâóž¢o+¢á B^?¯‘UIÿùD¡‡²ˆd£1dµld1û‡Ì¤Q§¾N"ˆUÝIœA+ÓYÈ៖qºšTó–n 8)Î[ø769$³sZ À{£ Û|)z¨PàZ¶¦£j³%†æ+!¾çAjù¤‹üJ† W¥ÿ€(.ҺŒ å=o²Iê-ÚC-ÿüà/ò¬í6:æVaÓ-bORO¢bÞBrm~¯¾Àpi¾G c°<”•Û‹²ô‚÷æ}hÊ3Þ[ƒ\/Xð3‚^²Ò¯¼ëøéá¼dÅÚ†k”)õ‘.øn/ç ³D%¼ü´±á—“< KŸÜšû¶Gaà>í–€ÖE£àþ£†‚°9ÿÕîäñ÷ó“—5ñ9!3ËjÛ”† ¨M” ÎD!R?œŸSìè'•—ú¤èRÄÅ áÑúʺpgí °á¤"Í<Ú0ÔXÊ‚~ã=S¥4Ý»Y|X§,0øÂœÞüR€³âaÈŸ?rC‡£¢VåÙV {¯/y®¬ÝB·ØÞFLŽ"xf¿ ìv>†`5óówð²‹Xã'éÒ(ݧ6NKp²£Hn¤aÔŒ0k!x:OAhNl«¸,‘ |DQ=ãm¸‹-°‹‘»ç½´•Ò¶ªùÙü¥"ÑK3oÜPÌ*ÌÜ?ïXª(VpKÁß«˜ Uâo0Öl‡üï£(+ÔU¥îùÎugRQä¼f Òb¥ïu4K•Ê$ÜýY)Q6ä£wð›<‰±¬tº–ƒœjp©÷àçBç||÷7µ]=ß[ê=k·JÐ]9þo>þáªÏ¯9= Y†œ~“ÍSˆó©r%U?ë"~ -m£™ÃÙEm¦„S 8œ— äøì®1]¥Áw/D§AóòøÓVêͰß3ɤUè´/öº¨°lSâlᨿ&ä7‡ùÒP èuÖfdÊOçá ¶V™¡dTj ‹·¯ÓÊ’ÍZ«âg´ × ƒüÚ¨I«ˆllݶXd(7ÝWj¤íÚyÚ]/A)&ª<¸¬¯á‘5Y¸Š-š¯âkcÃ>š¶™&oØ®¯"~&#Pý„ÑÙfú½¤u•r6À|sм]ÛQWD تÛLýùG{2$n\_G JÝi„w0ˆ§9¡žx_ ÿ‡õZwEv:UÅm FºX”ŽÃ :B×ÌTœmÂ÷It0÷ùÐ%*áѰ vÁeSÿÈ ik€˜½ýRBà5'«ÞüÔð6rÇ”hv>ð™‹a§ ©sÒóÇPQ:Z™Öç:}:‡e«¥hêóV{ð¯é8Y»øK-‹a¹NdEÀM§á¸m ¥aCe[zí£?% 8ü²`Óëå‚,•WR«•Fþõƒ„¹ù;Ʀ†ìdk¢ ]³?ÑyÐiÞ7‰påC6kSø¯=±º“°O®Pñ=”îs~>aÍ ž Ϋ»»—$F®çÑ7U,^«ŽQà«Ü%T X»ê™ãÊBóâ&²þT[ïÓø¿øxxor˜Kœbðrö+ê'ˆ¸ÇŠLvL²,#?H’‚Ÿúøä°‘/ûPˆ ˆéÐØ` à’2SÚï P0`¿[ÞÑQÏœçð(ȽÎ5†6¡>ÀVäâ{œÏ¶RœA-Þ‹qÍÒ`¹Œe$¢"vhưT@©ÅȳطKCª3äJäâÈoµüõ®‡k.Oµ[^¤Øô¬GñÔ‚3Ž+pæ÷!v`u†}Û:°‘\HBe=›Z¼.4¥Ã+eEv[ÇiŠ V8!¢1’ðÜÃéÝD¦—ú³É¿v¨'z/éHí} q Ê~Æ–6ÅCÈìÜâÞ_ÀùT2 ˆƒ¦Lÿý µ‹>é„€-RC Á€aåñg±'4—Aç&&rtøvï²8š(¹ì×Q/ý¹Wú¡òœ8àѦò^2‡*Ù¨%äŽ,‚°°Á™“e7¬X÷r½ŸNˆ¤bÿ±xêÑ©JU°×ªûĹ³Ïž"ªY™e‡ «ôLA8æ!šŒzËx&çeq‚o7 zøêœæ³Þb,Ý©ü¥w 7ü\<ýU¬ºy&°`:Ü5 H¿ì“Ïh†$k9àì¬þ\eŒßgi®È'$È!Gò`¢Œ†0j”LØú°Žc+K9ùüåõeŸX€­=!OGÈ\ëÃ>jT û‘v1‚,ÊüŠmS^£ ÂïU˜’\ñЄ~¾6”ËE΋†0Ò˜¬lã½prF¢)Ûû'gíºűÑ'1ÕÏø8}#:Dë1Žè®boW÷å•K'ì-eê ‘ðßÐ9aOkyÈܬÈýñŠà毠œù›mómŠ×åm3ë4ëÒîúÎT :€(‹‘¬ÄQ÷…iràqÈñ=dLs`;MÚÔú:‰Ò0UêÊÌºŽ²ÔiÌ`x&ê£MUùmÊZ”Ërð²&AÆ`'ÐM†œH°Äó£Í)~<™<Çîàáã¡ÛÛU. •ÌöûD¹_>#½aIòŽÅg­(AÞð‚}į·¯îóV³To/Ä5€•‹™\ô‰€Î5UkÛéÔ3˜%æ0#ˆdo*¿Ì_ñ›Ü¸¼¨Õwç7+âD°9¶Ý}(%Y»²ÈîÃ*Ë¿yÅVη_;íCÕ}Dêò¬5q¯ø~vèÉöùß y6Ð;¢Iw/õÆ!røi53è ÄŸV ÀÓ²ÉÀ$z°[0,ÚiÉÁΰTÉÇ•ËK‘Rñ"ÊR”Œ™¶ëì4u?…¥¯M} 1ã¤Æø²kæG†èP’-…ýúê'³(Hêµ$ªþ#5|æšAA¾ö£Þd" 5£ÌÍ®ÿaïËj#•÷ d…ô¡œ)ñ4)Û#ç¥~»i™ˆ#³H=­Lf6ò\–ÌxëøUÎ~bë:Â#Ò* x·mKYRs#6¦‘†Q¦ÂÝ¢Oh# ÿøûë®Þ÷>ÖÌ!v‚™* ‚/…Ë@L@/QÏÖý%R/§lšœ }#9ôæ×@Y^/¯ëv1Ÿ¥@Â8äÊ«…`¹‚¾å-–/k¾øëÉ7Goj—žE™B‹¢Ô+#;]_ŸTNÞNÁ˜®–†|‹æ=æÌà¯d‰à\òã¤>1zÝ]aüÖ²=²ò;\wî¡Çµ]¸ßN`ÀÀªDªÏT¢ôcó`ó\m™•&¬J·Ì¥çQSÍÍ£ˆ0®$„ÈúJx0Z£ÎTö[›ž€Gô[¤³å“ô_ ˜›¨¢Ã}qn©8afNzaâÉæ“»÷buygm{GM&Ã}æMÒùì3~6bH÷–•‹~ÖZiŸ“Åš6êº;¢ÜãÍÓÀˆÁ¡Ï< š”°m| >tÔ%O®\ÙÖͰ¼:íV®“=w?Y×µ¸IQZhà=ßümžƒq`h,ëÂN7…îZu'ØY—ɧŌé¶Å`S–D$‘ÉFÆÖ&GX(ÇÙ¿6êCÈÁ…úÍÛnÜL„ò¡§fc»_h‰âŸSÐÝ]QùØyõ‘j +«¶€ÄQ5_uc÷µ6iä˜Ú©ËÕcÆã©{xå–V3å5™æÝHª&L(?B¿…ÇÒO¡‰õVM†[ŽxU¯žàÇÜRžuäe»×¹Y„ð¼”Ø ÍuÓ"H~®’»É1ʪØÉçîüL×M$¢eäæDÀ¡ Ð£ lš€iT÷ùXûoGÉXÁj8Q¨z£U¾Áöu¢­§()7OÈ q[²æ_a¬*Ã$y/ñ°ð&­ ×ó%”Uõ ÆÃ£mí®QêÞLˆÙ…Âaóö/ í1ŽÀuñoÛÕç©Õ¾DÊýpZž§U¾0Õ‡Ñ×­Ïa «8¢“Ö˜»÷¨= ‘ðŠƒÉ5ÑsГˆ]ÙÚ¯dD™ÆYÃÎéÖËÙä¿%øPV‰Ö0Ô]/Ë–¡ú†/oŸ/)ýàY‘HJ÷¨© o½ºë¬üxk4Í·öÙL3¨ÑbŽ8Øš ñ ‡šôÜ’6JVTº/@°·1¦\G^ÉpOýÝxk+:f R*-ýaõJ2ØC ¸z=0C ð\ó’¿€²p:ìÖŸ!"Øú/g7ΫÉ8!PüàÐR9ºŽ¦ *QÒγ¼7í›(Š|ÃÀ ˜ÂNBu—Ú#éUÎ_Tµo, ÂRï<û⾞8Ü,]zUps7¢¨AÉÇéRõ@Z•4¼JTŠJ"Už’²“²:ɶգTJ‚×õIÉKáˆÌgØ×éeRQiû ðû‰Ä¹ÃY%ÂpPdY›ÄÓ×Ù3õm•p훿N• î9Ô Zw­ä'üÀ³S!™xÂÂO'˜gÞZ”¹³Øx è,àü&¡»0¥×Ö®Oî‹å5›ºñÞ²Œ0ö¶[Ò §€Ôë¥óM\ÖÝ55aaÿÙ_OncLŽú%帔:ÌÃ;Z»íZô3«pwkÛxþG O™uÎ œ‡ˆÈ,›vIÏœ¨¢ö´ñýíä÷kÈÚ,r×[Ž{æÐ'J»šTx~Å=5 ‹ð`&芊V;3®A@ç#Ì(>kóyø½WÈ¥–Qµ³ÌKØ!™ÀøeÙ\H%{yú$¯DX5 .…HD¬¤ÉqQ¤þÚº: 6s4ß_uzžºÃH#8^;§²&¯2 pQ°ræl•.ss÷iæÄt¶«ÏóBl`;¯Â}#Õ¦r|‘7æÍ$‰ªœÜS½qj=—6ž¹ç¸»Ž§è3òÕ]-ºãVG{M:.’D›À²(ÔÛÉ¥ ¯ÏÝ?ÕQÒ+%ˆ¨9w›Šf±„mö[-šÿ™cp¿öá>æ›Í/¾öÍ &¹µ³tü–Û/nü[|:ô¤rƒªj·&§þ¡‚¡-Ž^O5Bj•‰gg&/ó ž'‘˜¬•nôÝ™ ¥­'¾O–9ÞSê÷†|®²Ûe›CCˆó§½°®ÚD…wkD÷-‚D|Í.ý™…ð¢/Â'ü0Œ ê¼aª_‚Lr¾Ì'Œ‚#4‚èÄ“R@dDëäÂ}€ã·kÔÉ×b+€ nàI-À+Bä4±\ˆ€~=mP´µ—Û—y@GcgO’3°dRsâ]YðéÏ€aÞª£5mcñ§IêíËF€ÕM²m+àŒè¹m}Û•÷C¹™]ÌtFŽÏ/þ4=fŒܴàì:cÉû¤÷€±a_?•’bá&h.êá;i°ŸZ¬níâ™È3¦ á”·…Þ‘¸}&ËJHŸƒVË:–µlÎMùe^kg0ùijPÔDíwEaÿŠ€)«çP|âJèW#Tã°¼ MùŠvNR•XE}Âè+ð†ܥΟ_ÑY¸ìPiJ3FW*”ÆN#Ò.:ÒDU Ù‚.èˆó]¯V¡g]F²ÝvŒÕÚ §Œõp oA ÚЋMW1Tùµ©«³Înu£9˜ÿÍ©`ÄmŸZK¯DáØá[­×o÷>ƒµ5y„Œ9BmúÌè-‘±¼pjc}-fGqùjÝÑm&!_¶>h.5èÕÊ«¶á¼&¤ÒÙ?èËx¥Þ܃<­ºÕÌ™OËÒí…üÓ6®ùg.±}Û8<'&šÈRÒà¶5M穪¬“i:™&2t&a]Ïôÿ6B¨Ž·è@¿Dø¾¸Õ«ïìÁæ€#õóS“Ó”´¢ü£Ÿù}7|í,jí"P-2L˜NÅLa&?` ¹QŸ¯Iw>ÕjÜ{ûßy»Ðo#ú7rZ4ruSÞïLÅ\_ÇÁí ¿Æ¦ûV/æõ´@Z(Së‘ÄŒ#:»p÷ÄQ»‹‰®îŸ¡²?Sj £ÆÖÖOË7­2hPâ}ƒ8!Ã#YèÓ}Ö#+ ñˆù2~ E¿á‰R}7FxIÊ'ç¿ÓZöÈ'„6lj’¸>ÔH×ç&L4“VLUØ qõ×ݵ+ÁºA«"662QŒÄÎè^X-r6sXSHÞöñ#örú“éð:¿ÇH¦Á™¢7•ç‹TIд~.úZ/#Õ½|YAÙˆUCò;Wlm{‹)ùÊ—ÌE¾iŒíÞ-tq…ú£6’ó‚rSçëµ/‰Î¬¸*1ØqáSŸTД*¸p}ã]rÛû^;06Dœ†õߊ” ¶¢ý\W{bƒp‹âÆ*û¯Š…©ôZ,Oá“3Ä£Ž0º5û[{R+¼kv–†WËŒ—áýQNb”4}Qݳz½}ò8O!_”s„pKÖM„»p&>ò-Ç@žÏ_D]/®5ËR–ÔWT ON€×skÏÌÀ¬‹‘:_{à¬]î AjØ.R°ÄY%`ð\©À;•c8d” ¯]OâöSf?© ßòòؼ8áðË(÷4¥þäµy CÓÍÑñÿYÛxsߤ֧pmØ€+íP£È˜å&šbP8Õ.îY¹ ™ñ‚”ü÷€7›ßDA(+ EZTE²uïZÝã*uÙ,#4f¤-BŒTÂTEg4j“¿@ÈGÅr‹ã GØÌøJ›:ôQü‚éW¹K1- TØþ`$Ð;Ëó MƒÎ®I¸x„»ìcíOÇÛvâ—;zLN;OtY;w'¨§œÑØü;Kë¼C+v¹õ,yi¨%\+Öµüh}ÜÃê±;K“¾¸Ð§p¢;cºßeZkÊÑU¿œ·çÓ¬,i3œ¦þ9|±B£{ç¤&ƒT[gÝ Å©ÆYÀLࢋ晄2æBßéþÕ£±N†ðÖü¡ŽŒ?ž*tñøiQiÑ™ZDöã.ˆ~dO®¥&çŽ8fªtº öÐoû0…‰b™|—Ö–DšüU^mÏE¾Üî:yħ/ÛßÝw—iT²ÊKúÒÐAafˆä'¢™æÌÑBpüóŸ©$”–œ!…°íýhÜ€ÖÕ‘ôŸÇOšu¸üùñlÅïàA®Œß¤ƒ|¾ühºô‹wU½À~™4pq×øù{ç&ìµ5S×›ÆkjŒñ±QLÍ–tœ’rõ.:l<Àꛇý°„NQÏ61ÈBxÚWàæˆá×ÄßÐìB¤üÌÇ£Ö}]—SÜúѳÖþÙO†1bŽDY!D=áéþGpãЬ×J´qyLù@pEQ"EÇ38Ï—)4߉Ð"¢¶ŒOÀ„_…&ª&·¹š(¨àS³ÕnoßùfeûW"榟ÒÙGu_'øRɱÑ“¨gl™â±™;Ø!,êq¦Ú¹2ÁŽ TƒÙ¯ãú‘8Ʀ çóá–Ø]X¦|‘©êÞLnGny8øì)îÖ>ˆy#ÅÀÜ£fàn;ø$Ï’c+³ýz·Ï#íßw=s×ÙÁ?ÁÁ#qæžÎ‘lª ò¯¸€>VÓÙ¿1ü¡Øù <Á “›)’(6|Lç·~óí}@p2¼éïÐßüîÌS‡ÜdÉ#pW¦h”/Ù(qô4“û°bâ±›|òªìj oä]#ge¢BŸ‰1·q ô:²¹h0;Ð~Háªj^v®KZ ˆg­¶E t¶¸A ˜©×Šý%ŽËüÆÜû}-Àl2î©Õ7àû)‰ó*7 æxæ“’[w OqŠ™Þ¨} G9¥³/rëi•e.[pì…Æ¼XZo‘ý ÿœ@#¢™‘fPA®¬©ZçM“±2ºp@ܵ£çdJe‚¾×MÓ¾UTÒ„ú•Z»ò(dÉÙ{INǯ±Dlv°CÃø Ú?ûÛÉéÃîxõÞ€àÕ la-oªy@õkþÃÌ“pÊ×È(˜*²e A Ó~—»ÑœHÙlü+«¼aü\k¼n#8‹¾Ñ!Q6ðN4;¤o„ܼ&×^ƒi,XJžzë=ÑW¨ð9t'"ϧó`õ"¥ùH Ú^odFj³¢´vÝí%¥pg.œ;„yEÐŽHr¾X @@Ðr|~¤üåªô–ƒ'  Lk†¼ÿµÕfýð|ц®½‰Ðaò›ƒ¼)9õ¥Wñ»x2FãöÀ[$âP%ÏÝ3Âêñ‚ ENOƒ)=Rœ#&'µqKõo‚HGQþ)ÞJZ$ ‚¯>·Yýve ãýmS=,ˆÍµÞº“¶¦»㹆>C¸ž‘è–ã²oWö”Dª}sò%³kmhüN?”òClÕR”¤ë˜×Ÿåðë;ív^32ìl #òȲCûRSéN&&Ê8kž wKÓ”-ÁžL@»Í©kŽN 8’¿#(¶¨¢Ê»0àES©mD7¸zoH"yb ©´?[îºMÍÆ GוßÁe~â®î¢Š¼Œ¡ò ñq5ætS¢œâ¶[Ô%Uª>²Wű,3,¾-ç€Íä#hþÎÉjY‹n[ÀÝ`OƒFíú½ÖLœX¨ËË[º&±C”_=ie&‰Fug݈×墋´õ5ƒ™‡yŸ¶|³P*2 ¸…ÈÊ0\ý!"¬jö™{–Á ®, Ý eÇl¦,²ŽõdŽ ΢FòdçSÌ49êMr!z¯ C|ee£ ˜N}FK(|@©ÛY[Ý5† ¨Ðü(dÑuHŽf‡^5é6’#bçŽJßôõsꨉLRiŲzEÞ»‘WT 'zŒæïŽCùCÛõçr<‚¼—©×>4.ÓEÿ‹Ë~u¾góÆVK‚@Ĺ•\ëK¢ë¹A(#.ÄÅ®œÃ¼ŒƒÝ‹ôoÑt×¥se=ç+m5VQ…[¯»Û?á?}‚ìGXl®…Wȶóªjzl×xfÖŠ0’÷}{¬±¥ùl‰-z¿N¬êÃùÐê†{ô¿½âr=4=„SŠ8v ÷ Š`Ú‡äÏ6a­…p^! ÓXê;³LÏH´Õ/&ª¦…FöXžgd7?Ä •ëÛóÒ gÝ©{©9Ø›¨1›uØ”¢IY5­WÈôäZeånƒ¤Àdñù`3½KêïÀoÛφëÐâÓá0& ‚mѵ‚#+ÈdUOQ¾õë[£Ú°OÂ+œÇ- ^23G¨™¨iqÖYþ²ãD/«V—ÓjÚˆûà@»æ¿¾F÷½>6æf ö‘Š£† sDý&ª5|×y{€nlü †¢‹°J´g&oLR•:ºÖ˜¡Û‘íA/×j Î1é{àu¬W#ó¾aÓ¦BD§ÜS’]½|'+ŽájhõxYrϳù-,žª~T¹0,ZÒzÂùSpk9xýÒD“Ø[Û€ ¥7Æ”R¬r—Òt½Ú+y$z×—sÎzæDÈ×’p8*XÉ%Òú$*-Õé8óÌ+>¾±–~SWCb ¹à¶`º&Ú;…³n´x*÷‡Æ)K#^;K¿Î($0³‹PØ p$RO} ‡ëîóÚm)ɱív£Q\šÐÅÐà¿Z.¶.àZ­Ù#s`ÆZš8õPî>áf®Ý8‚ Û¸±+`ÌÀ°P(AM4/Y€ŒC ·¦ÑÈ Œy¦ˆWÔÀº‚ûÂd0Ϭ®ÂÌuùîóSèv2¼éA¡_kLÓÁ­8ÌÞÅ‚8˜©1Zæ‡Ã7K®Cß@°Ò&K eå¶8Gžm §´aIdàºm¬bèÿùÑ:²â“N Ž0‡XÊz/ö3†ç,iL‘êºwÐÑu„ÙL¹ÿ¾©Öe£íåªÇ‘‘ÕòËTÅõáV›—=‹œ_&Pƒ„&ãÞú3ãäPŸÆÜÈÅT$c&4ÛÌ¿ä^‚é{þäF,VÑU¶zXkô슡vh}éübn§·î8Á|V‡óÅQ €ŽH®#ê£6YRÿ ó;¥Ê šAáðcøKí<‰4> ÓÞÆ@#yl=˜`–DVÈTrlÆÒ–v"&–¥ìˆiùÙl\¢,[#ïÛÿó¦ endstream endobj 165 0 obj << /Type /FontDescriptor /FontName /YHFNHR+CMBX10 /Flags 4 /FontBBox [-56 -250 1164 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 114 /XHeight 444 /CharSet (/I/R/a/b/c/d/e/g/h/i/l/n/o/p/r/s/t/v/w/y) /FontFile 164 0 R >> endobj 166 0 obj << /Length1 1846 /Length2 11387 /Length3 0 /Length 12538 /Filter /FlateDecode >> stream xÚ´TØ-ŒCqw E‚[qwwm€Á‚»[¡P Å¡xq+îÖâîPŠk)îPìÑ™¹3sïÿ¯õÞÊZIöçûœýzju-6 K¨9XêèÆÆÉÎ!R‘Ôçäppp³spp¡ÒÓkCÜìÁÿ±£Òë‚]\!PG¡EH¹€AnÏ6iÛs  Ô ènàäpò qò qp¸88ÿuHƒ< –v€"ÔìŠJ/uòvXÛ¸=÷ùÏ_“3€SPŸõt€„Øbr¨€ÜlÀÏ-@ö-¨ìæý_%˜„mÜÜœ„€@OOOvƒ+;ÔÅZ”™à q³h‚]Á.`KÀoÊUø/jì¨ômˆëŸ-¨•›'È x6ØC,ÀŽ®Ï)`Àsw€–‚2@Í ìøg°òŸ¬€¿ÀÉÎùw¹¿²‚8þ‘ ²°€:8½!ŽÖ+ˆ= &«ÌîæåÆ 9ZþÙ»BŸóA ˆ=Èü9àÑAY è™á_ü\-\ Nn®ì®ûß¿Ë<³Œ£¥ÔÁìèæŠú{>iˆ Øâùܽ]®#ÔÓÑ÷?È âhiõ›†¥»PÇâìVþ+æÙ„úÍìàåàààç€`/ àïÚÞNà?œœ¿ÍÏü} N«g`ˆøùÕ×丹¸ƒý}ÿíøo„ÊÉ °„X¸ÌÁÖGÔª?›ÁVâçûwxŒ8žåÇ àøýùûŸÉ³Â,¡ŽöÞÿ„ÿqÅ@=-5e–¿(ÿí””„z|Ùx¹l\¼œNNnA?/Àÿ¿ëü}ÿaÿ‡Uùk:Ž**8ZA‚’x>½ÿñøKL­ 3à¿;¨BŸõ 0ý#c^‹ç/Îÿç%ø#åÿOû¿«ü_åÿ¿ɺÛÛÿágú3àÿã9@ì½ÿŠxÖ³»Ûón¨@Ÿ7ÄñCõÀ.´$ÔÞò} n ç ‘p´¶ÿû!®²/°¥:ÄÍÂæOýçž‹ÛCÁêPWÈïÀÆÉÁñ?¾ç³°{~T\Ÿïêøy¥þ»¥Œ£Ôò÷îqñò@.. oTŽgqñò|9Ÿ—Ôìõ‡¶@vG¨Ûs à™œ?À ê‚úûFùø@©ß¦??(ûâþA| ò?è9Oåo$Àjþƒžó´þF‚Ï‘  hñ7úÍhù/È ‚ÿŸËZý#ÈßðYæÏÐãŸpÞß~¨»Ë¿òŸC¬ÿy@›A^ò/(Úÿ >êðä|Ôñ_ðyPèßç9öùíÿ?•Ó³¶¡ÿ¢ÆùÜü_£q>7wý|Îpû‡Ésu7ð¿¸=·wó„þ+áùTÝÿŸ'ðüþ—:,Ü]\ž_Î?ö÷Y:ÿÁ<Ó`°ØõÛÔâU˜mMXÛÍg 2O¶í1‘iúm½Tf6ßo.íî¿0‘“˜«>†¬º\I$ ~Á^Ú”aº_¤zðÝo®C~Ó’ Ñzçwoö^sr»ua‚°oüÓ¾Dm/Å r6mñ¿g?Ý`;øfØNEúgwLõ<¼Ï9¯ÚÞÒï#sÛ;U|Jh÷¥SlïtbŒƒ‹fèsÍ3g‰iÜØ(P^âžxaÍ\^Mãf?Q)¾gAõ?xÇ]àk¸Æ{;ë³\®ÍåÚEBGbHL‰;2Éà+ù#Y‘hÞ·¸0N1"ºÐŠÂt®Q´ äÌSMÝùM¸tx|}˜xÏ,Xªks2"ÎBcƒ^rpÏ^+»ƒ7§–¿hêÓ,ÕU£c÷Ð'ºbæ£K¨XŸÛ¡:×›´¯ì)Ã.™Ä:~¼ù‘<Ï·@’××+0ÅX÷á)Püý—y®›Q·/È ã°ŽÿæÔ|\Î%ËèBÛàPT{†|4ÄiCý éõa–Þ@_%î“(,YÉ»I8%Û‘êUÅҝªYû¡b‹¦Â;·âèpkóÎÚÛîa –¥FàÉØt[!ÅnG„a¥»·´\ZyŸ÷{3%ÍqÅFÊU`C a5üUŠЧä¨ÛBp³ƒÈ­T˜së£ì‰“^-¥„ùÄ)¥¤Lé!¸Â†ÂoùÒy•¾Ï¤×ÂN³øÜãȵçrÀ2wº”'¼š¯Â´Èƒ%”Ä(ÉåWÐ ~@œÛÎÑ{jÎÐ4Á¨ÿ(؃hh˜AáàgA {S<¢`ì¡ à˜–øsûý*‡„ØäÁJ=Ãaa!©-X­ç)eqyô06£¢ þlÓãâUpJ·Uu(Æ=°ÀB/%T:µÿ¤X6tè—f“1VqXË^BÏ·©Îô{:§¼ê Š¥sÁÚM€¿á™ÉÇ¥x–}p8±.²QÚÐ R$‡z¶Ž—«›]k<…øtßu¥ Ùª’»+Ófô•’ê«Ðòšr´Ý¯ NæÔök9 Þ—Sß“€2øy>…î"Æì-Muö"³Š´° —êÊYìp÷r&é°ëE³90C`8EâCÄ[;taQVù€JÓ²XѪÜ•fA¢d¹l6|³0–ñ™7H)\7mñéÛ±LN—ꤒƒ‹^Qò£‘±ñØQ uCX‡ñH´`iõ‹ÉôâH¾²÷‰·‚…"62]fúL}Þñª7©ÈL‚¤E»D–¼sÂy+ú<¥ˆ­¼xÔq'èúRHŸe(¯bË:±fLôsñ‰[’)ë*3î¿Ù¿lš!2 ¯g%wä¿JjRn¹«ë_0Ìê— ¨í·¿¼½,‹Ûj™ÆùiTü `MÍŠßÚ¾äÿ.ScŒåY[×Б¤ñÎ~n_®²¾aƒ†ú¬·3ËúNÙ)Æ”b]R Ä>"Ò‹k[ ËÄìâÇPC ulfžÏVs,jNúf‘nÞd£8MC:a›©ÏÔvªÓ;u ¼DOóÎ@ù[nˆŒXH½VÃÏu’&Á Åô=¼‘L/^x“&Pïv“íEkp1ÈLq§>ÁÁ&¡luÆØÖ´käœÑX„ž9'ÅáN®“wMqÐÎPºýUbò…' O-ÝJèTó§TÚJ°¸ÒK=¸6™¨*7³A6ÅöÄ~4sбü7ù熖q'%6o’ãk¢ãzD½TKòVœ6ã\á 3›å”ƒ¾©؈žgOCß]Lïçg’vÁ,*¾:Qd1v@£"W$¹ã#úbG‚;ç,Hƒ¤Šx-=ÕmÔ~øaÃçé+e!,²RéáŸ1‚¥#U°Š2õò­Ÿ«Ä|Ê•RËE'upÅ»¢-ÇÛO½›´ïÍp^F˜PdÕCN¨ nG!‡œ‡SJµ«öœHï—Z·°˜þWQ9]>OP#,Ñ:CM„‡0¶¡™©òì.‡êOMçô+êï/ùÝ•ÕÚÆDÌGŽîÍ–_íÿØ'TùUœL8 “1/ë8p æeŒ59 ¬3ìR¥t€Ÿo(t©P… b)'0²Á“õ¢Ž[à”F/]sËùhÃ’ì2¦/æÆ9vјŠÂÅMåÌ1æ°e4!­-ÉÞtxª¨iÇWI»*¦kµÔýêõE~qÜ®½ÒÑxÁU©Kò¾RÕuu*öî +°ƒ^2tÑ&æì;ù<ëú¹höÎÒsèžRÊ"|æxæ V ©ŒkL»Xg”ŸQ±š©á¸•¢?cò¬Â‚S]a9~ýšÝ>GcÖvP–Þ6»X½•ó¨ÕÇœk°²Z/hE…ÅA©1¬¹¯ßŠ•f ÈßSõêî*™?Èß]!2 eÛÕ¤z»³æ˜L®(Ù@.î¸ûÄ'Á±÷Ŧ _SVðs¶öºo þôZÇú\¨ÀOº_´4`” ÜY; 4ŠS««°Ü丘ìa´JÜ’:tuO2™zÁ¢Ëq:ÕÖ°Eἇâ§H[}ÄV}WøÒ…Ÿ2Uu™³Ê÷4?¨^Z³dPÃêHD½‚CgãÆíÚôâO>å£%ë|QŸ¿‰Ü¤À»{@Lt/ Š6Ïk&¬ÊuÖ.ÑäÕ¯KŒ_›¯oÎÒ]¹ˆt0ŠÅ I¯c…3 x’:Ø?÷¿ñW²çð–lK6lj*Òj A4ĺÔx› ^8œÖ;EûåΩvI"É1lCζˆwUmËòFÇ•é[² ø-ñ©|È^ƒçî”7íƒeúÜ—áãlzסՀ cxðmÔÍ´ Sìñ"ªÐöˆ«å“Ø$ÞÒ’oxÎö¦\ö\ŠxP_®}ù¯^WÐŽÀor-Sºo­Z/qÚr—:ö F`…_7Ų‰]š¼b;ß'D’ó×¢£ù¡_¯CÑçìÜ=3°ªR¼ƒad¦†­8}­ã¢ÄoNèñWx¹RG$)5.ê-–®f6‹ØÆ“‚{/´‘Tm.³›£kÆÙ0¥{rkÎJóF *Ëai"m9 yÉ^±â‘3)·ûÀä»ûuTh %­þqÅ„ ¬Ø¸`Nš4l<+FP}?b3xíÊ‚;–øöWŸY½kFVŸV Qæ V[±7¶útrÄå±™¾îL–›äÞ» »`%š!OÅá{ñw¶´Ý€ÍëwÆÙ.î–¢«§¯®!ÍdfGQ¨PY³É4 »KÕŒ™è*Ç×y¿<æ f™¹Ò“¾§}Ø¢£=Äà»ô} ·å (À•B›!X¢ùðÁÔÎ^ªæØ«e‰žü‘Šy‚Þ±AoVö£_;Í»"pf7àÜйý°d‘ ¢LW˜-5¬ñÒ+´´×ä®t7™ù‚ ’ ëÆc˜‘¬ 3câ°¬; ó~Qí.!8¨ò²ÙòØŒzFϧ¨Ó—cdõY[ŸÈNnñ†0:E!’õÚ†ÿX@%gü'ù Ÿ‚B›#µë¶.—ê±´¢rP̃¼ÎZ7Í®[ ‡•¿6õd£y—E”&„~¾çÅšÔúZíkHú—Yu¡ Ì_,lºÔîQWÁó´>dOÆ_¶ÆX©çCƒ:U¦YLYS1øÌ€ßõ|mFQ“é?Glwkµü§ßø MºF¼mØz»>gKô¢x¥6À'CÙ×YÂFsʆŽ9ZÈGUKQyÙ›ÜÖ4«'±ÿE=l|9%ó”öDÀ„’!¼Á/uĸ$EuÂ&ÑÁ †¯+ݦO4(¡ˆÌíoôywÉDlàU§B@ªØ 5%ôï87æ<8—¬=Ävƒxøjùƒå¯ÞîS?ž×«^IR—ö©Š)¼=Þeœ—`¿²ëòVø’"¶M4ÏÛ¤·Ð¬ ŽXwl£Fxºy–ž+ˆ/ð–jIËÝL;óg:g:ÃÑKDð'US†"w¿ËÛ0–§9Ž’z4!4ØxK"-䓊²/|•:ž—j42ów'gû"²q_…û¨r°&h½8ðap6ÐÒ. }}CÞ}½X¡b#F?îgl0|Q×=j¢·¶Äh Œ7ßü¡¤7S¶¯“ãq{•=¤š‘wŪ˜A^ìÂÙ‹6ÜïV¬[læGt!²í%s&ðá}¯ÙvrÐ:T?êàéY´ºÄMàí…Gň~Ñeµ ‚5¦{UXîF®­ÙE¯"Ð-}Ø4¡œíjà%]G˃v*í *1¶}ÕHçX€m9”Í8:ª$ƒžÌè”°š¦¼Z2“Â!‚圳ÄļºÉÈ`.ñÐt ý,÷Gäâ§_hIÛ ²r)4ØE1Vy› H&á^ùõ¿2ØxVÙiß%ë»PÊJpõq§@‘U4Ô~Ÿ<ßÐÙYüókÂ(b|©èÏG¬˜|$‹~g:$?jŒ¸úK|ošF¶w|/ÌjÉß>‹Û>³Í¨‹é2uI¦|3<þ#C5;‡ÛsyA<¶ÕÉåìÌ9R¬ý¤cºŠç¶¾ðG4¿AŒÎ›Ü¦“Ob.ÚÖ!!¿á‰6¾•ÜyùÛÏ3v.§ a02±3§éQUæ¬_ŒÒ½JC‚×° ÂÅS×\È•‰»Qq ½.à—Š Ðg1ÛIíФ•Û’Ðíq3y+½b‰ÑQGýbŽ#hãe°û*âwŸ ó-¢Ï!©ŸÉöË\ & kTß~În ?Ÿ$±F9 ÕÑg°ä‹_PëØ=ÿµ6£7ÆUmºH|‹é#Wux€¨æL•=²>¢’\A mÏÿä.÷,› !6ö{GŒ1‰dÅóo¸dHIëT¯Ø`㤕fa‡— !†…¯ò=ͽÎÛö C©ïþè’¾ uö‘¥È¬µqºâKy˜ rG«Ìž°˜ò]/Œ_ÛdõvP×i*¬)k7…üâòa³AÁC.©b¯Eˆ41¯ôpyÕ¾ÎuQ½ÑâOÖ²§¶õ±¾Ù»mbŸ;Û™‰E‚ ­ø"&,mþ‚y?Ãÿ.Ê#9š7‹YÙÜ>8]ÅÔÈž )hôCøWÐaR~?pç»>ò ç­ý&F2ªÒ)±AËÃm'é¬×TW¡ôh›¾òؤª™ÍD5|î¸!COÐÉú«‰ƒrÃCyÝ!LÁdÐÏ×ù¦Ùü:Œ™RQNoä‚®om¹9¯OŸ0húaÒÀ¿ê~Úñ›¤:-r§êqÆC6¬ “P .šò!q‘&ˆß§¿øöd¨ g²]’KE§ŸCŸ¬ma L'þPñ²V360œÜݪ%˜PØæm`˜Ááqœ¿võ'Îf¥yuvŒAQ|‡ýÉT/„6âÓêëÛî0_ú“w3’l§šY# lÔú6Þü€×Üûœ¢N«‡ ý Û;K¨öXÿÏ4†“µNE£ÇÏËF?‚Äû;he ›/L3„b`Ã<'‘Á,¹lEöí’¹–3<ðŽE·$K㹜Ö)hˆωmçA}U©5‹ã`W»ÐG$¼ ±¬‹Š×óóЬ|ÜÉ÷ʦ³à¨4œ4µÐ‰o ª~ë]8ÅMdsW#û‹ËHo…H*Ÿûñ¯žoêåj†„›ª2Dî·ÖøH÷H1kn)&ä³»¢Ç'4"Íå…Èm¯Â>*KÞVsœZ¶#[…,·[9Ö$a’Ýà’I$èu§Žr ?)N™Í7øt ªcˆXl Ø?Èuû#´¸4¿’hY·ŸzÄD¡föÿ,Þö¹sB)žú2­ÈQ¼Ç©çtMs#'éjK¬÷WÀlXb}N_ ¥ß7ò¨<ø‘ÊÒ ÙWà ])eƒaeQ”Aœ¬‰ŽK¿8˜‚o†±Èí©œ',:\1Fßb—s[’K‡gî«g}•‡¢ýbýfDJÌ…Íåé Ïáôíži,Šœ‹7De.M)TüP!†@ÎV—&×IñXÔEµú§d\¸¥úè]»s‹åÚ‰„ïŽê *×=§)ÚNjẀËlÅLZ*tåwYÍGQ­ÝÄQÊþŠêü¹$á5±e©:LM‰µx¬8ÒJlQtŠ—*oQÃÃ]¨uuçú:¹×ï~d·AÝ• ’Çã‰&ƒˆ%6NÞ™4Dd&ߨŽÃÎ;úOAK¦w÷rtCŸd V§TSEÝîÙEz@îlybµŒs“Å+ÝÏàü5gíHJWý,­Íûã-5Ò[Zêû§Ðk}çéú-‹/À‹ hW˜o,‹Ÿø£Ì¯”÷¾å=u&uÁ¾y Ü[ºƒ+Ÿ·¶è~.£4i²L?& nÌÔ±³êý|<`s¿•1#¿’o.I>¸•yЯQå¡zoyˆ¯ ¢ÊW»Q29p³?½”vþò¦ªvÓ嬡¥¯ "žvòqÒ;秉¹Ãç<¬¹ù`½vw<°xrÛR³ÄŸÃl¥7ʛގÐ@-¥®z® •ßg kåfNVÂ6¶ Ê1ja]‚†!Æß&á >î®;}šW²ˆÙKÎ3!MÅÅ“HÎÕ‹t¶ø)²ˆ^’¡!­çXnufˆëëé„úêUÅ2ÊÃÓêÊçK š®R7ྱE«>ìŸ'©ÿ~tüõcauÈ%÷ß¡¢ ×WvàA­Â42ž>ïaòÒ94µŒG„zžŠ}G=ª!XöS’B$©½™ˆ/»fe›„§8Ùw½ 6?§y‡IÌ2kÃñ30 ½ÍUÌ´æ…(úãëMä=üŽãÙUqèàÁwÃ1ýGÅø'ðÖéT~võ„p’"Äß['œ G³ÞNjž¯OÚÕ¯`íÐ1°ZYžúIwE³ëE²-ªuñUÇu¦ÙÅ# ö®Æ;ˆJu|Ž#7¤é6-6+íUmü+µA_Œ ožrXܾzÕ„3:kæ$t¥ ^Q…ÖÒTˆ5ñ‡ßæT_Å·wj©]«an±©^å{Ô˜# Ë Ÿ ÍiþLr±©„JOŽÇN)ÌœT‚NcLß7Œš+„\2½Ë+;lØÒýø=Û÷Xte{Šâ`)i~ãÎ0„©™éx_–´xÙz£\âcÛñ1ñRÿa¾à{ÜÌ21™ÍƒN}ÊVb@zk6ê\PÆæ=©±^×e‡eo ûÑÒõÈ€YÑÙÍ勯xÊ–0sà}I3õ¸q N]=GÒŠM43)åÑŸdä=è`¹õF]ó.”ðíÈé’”ƒdŽÂ3GqåI*qµJ•Èèn/šŸäý€‘æ‘1˜‘¼Ìêþl1ßcƒU bñ çToü>ÿÃÀ\i‚ cý\ÙæN1C\úbØ' NÛ«ªCÁô7ußÓ´pÊùVdX‚iðõ<ø}¾²Õ“´Y*CÏú¬;½Èiæ_rÊ^'àË!ß™õX`T¶Ñ?¼}ü¹$l©5xuë­Ú‰‡÷bÇ$£°•Øæ¥;ÀyÒPœ!%¯Kг3.3 2£6ERh¸ððήÒ=x³ú^™œrÈlš]uZû2’t6H\Wšåð^ÈÏ][ =˜Â^I!S'¸˜¼¶›¸.è3›øl Ð¦ßÈáÁSþ—Ÿ¶Ÿ^aÙ½¤è ²¹àþLzO–þ3öþµ°ZÑ+¯˜ÁËæz]v$ewË+ý åÊðuÖèØè:¢ïô*9ñÛŸ›LÒj|¥d½Y^ÝxÕžiq™Å9AS ŸÐí¨û’ÙÍJb±¦zŸ­i˜¡­bÏȤ@$šÅÇRÎz®Õm\Àï»Sø æ†h‘²`Ñ3Õ±47:6>LÿêÃè¢é4JôS>e“$=6&ê…DÚ©imÞ™ýDÂŽ_NjËIŒ¤Tˆ‘å.Êx‰ñ½ ¼Õ‘ï†+[å íïv•’ùÆe)ËÌ[ª°g…ÎŽM%›ŸLìŸû§8…Fzpí5%_a%CªH‡àIg|ËnYøbT”cU>MvCö©•;ŒŒ7ĦÉÎ:}Y¨ƒTLªÿBß]½U['­$yu8‹>Uš½V´h­MSäòYM¨Óå‘q´àØ/9û:fáD.¬ð¢Ñä@ 6ªmpAŸ•¶žJEJ!žxù̶ª»fò•¹SÓ6‹³b«µ ö¼ÜÁÉ-ö+ Iæ± ¾ƒ§$Åd~zÛöëŒøÁÊCÓa¥˜@.êà QxyEzç6­ÂÚA¦×÷³“‰s.Ë!(Öw¬‚:æO¼±Žï굑z½Î3œ‡HZo˜)¦c0´›>>–¿¨º§{!--4¶mѧ8u²<@{OÙTñ–™,DCG² ~çñ.,Ì;$¤¦­ƒþFЪ“ÖÊóbRÇ&ÎBTŽEÙŠ>/­)ÚëØ‰[AAÝêö‘ ¥-î+F?mè&—}à0Ò¬..3Kù5úÃÖµD.5¡Å‹ ‘ÖÓæ‰í n*é7×½ø²#qr/14b–[îÚ°uÆÅ›âJºà¸Nö˜Ñv‹hògöøôcEQ1Vz§?£±N‚D¡_K‘{1£ÅUÄöw^ÎBcVG¯ð·;Rxk¼â³Nø£Ç&fßä„QÔƪg¼­ïë;L>¶–øòC Jú}“AÙ-/M%×åðAkÕmº}ö—TؘٚÊÁ1`“3q8ISunë¸>}lNt‹ÝtÔ×·n5ª;ihÝ6ÚG®&Ý?àÔYîöËð›ê^ûí’| ¶&¹Ùgü9Ðq3êV×ï*JŽc±ØFØÐ̦ø†OÜ5ð[Ué6²qg\z¯.Î%€sW·û Ã`¤ª—« ËÛȱ.ö„#oÄe15ÉÄÐúŠpŒ„Y]¯wø ¿ÿ»í«ñ8Ç~±O°ÅàÏ„Õz:ÌL]ªAŸ²Qp oï¨ß$oCjðíô|Ä‘ÍO÷`§C ¯E®?õë“'<)TÄEÛ³;Ð2gõY}8šï3O%?èµ2M{¡Ô=®«D ׆‚ÃÆ»Þ~•_÷Ô—&ÊÍ”JU<ÛòÙô¯’ˆ?ì]»'6{42_ãKÇf›¯·aR͇ò\X ó„½AìDZSÝ/Ø,Äñß+}ä1ŠHŠºUÒШšJÉ̈~Ǽp ZçŽÜÒÊã3(/ïHÙ­M‘±Õ(3¢¡ÜÝzøÀ´ÿ"'è;þYÃÕ×bÝVå©dÏ¼Š«,öÑ/&$ ŠY°8¬ð a ,Á Æ•´}b«1¬Gòœ‚ÓŽ‘z¯êf \à ƒÇbЍ²Ÿ|’µå]Ö5ÛZéä ºª{pÁýWÃÈ÷_aœÈÁ±Ù¦-Fèötñ)wú®Ÿ–ô),4³CÛÇæ5¥‰ýÉ •¸-g9¶R˯ ­êŒÉΨæXÇÚhöñ a¬ÚñcÃøÚ¦ÚÓ3¬úòíÏl08§tx‘ ïðK]SF]ÖÞKëïÀÇaÝs/M°šA_VÌàÕ¿@ûFEÃÎ:ó”ºô5ãË;0B4;»¾E©fÄ/óðU¢\ªú 1CͶ";”›.°ñõfyúEf ø‚í‡5ãÈþ£—ëteÞŽ™,j ÞþeAT+Ñá¸8*;S$í £1”z¬&ÖÆ%Òâ«5€:ÞåȦk¸T<ÁE³åÖhß«iñ(ܰ$ %§ÚkkÑ««(êð÷½n¸?þüé×-ácš‘Б}Ÿøq¹òƒqý;HÒ†·È4ü‘·–Z³³ú3&‚`F÷æ%H•o²Î#Üß%\jÂG*e™u^1µ½ê–çÚŽp¢TõÉP›% WÿR¸ÍQ[–ÑëÕ@Ç·ïÿ©¤o3-ã–îWÎâ„󇋔×}jß‹¿_a:g—FøY>ãÃt2.½ŠËV9]îGs»v]œ”NqÏrKôØ 0Ã@Ö¿{¹¦öåÀx‡¸qÚì•n‘;2½9Hh£/£Šƒ©õånq6ž‘©ÁÐH&Öï#¢Ö—_"§Ë–7›±ß…¿{UΊ¥–RJ( Õ5.µ'_f”h±ßöX‰wÙb•k ;̺´w· Åö™ Ee$_­4û!…’Øm%)Çî³9¡Ž«qkO>Bb«Ø ;ÑÆ-8 v¥µ»Eº'÷t™Z>QŠd‰AH ý ~»öGrõj7DkW«®â/Zà~"uÍkb¶ˆLLöÊSýĨWµ :ÌyD0^¹·H) ZýÔ[ãßЧA@Ôéx!ã(|½N·8VØ[÷–ýôŒ¤äõ·œ'ý*cxáÓ áõ8cú¥åÔµmÉŠ0»£TÁ&ƒ{~ÚÀÏM ê\¤ô=7èjkûÉ`@¤Í A©-:1zOLiäMþGÑÚi޽à^·ÄH‡ýa>›ÊG…8Õeâï*}§ÕÜFõÉnj¥G Á"+OÓ—Î l5çÙÔëh0†øÏ÷)ý®½þñâý‡~STõ`]%«D#/º()g±¾û%) mŒÓ3yƒ’Æ¥¿:)·§oœ˜L•² øüHé!£RaŽk&yÅÊa¦2Sò™ºyÓÒ—ƒW [‹ŒÀ†L/û«špúð#À‹h‡C‹2¬¡+‡Ê#!^Øî0ìŽ_´xVÂA­hþ&gÌ{Ô±Ê\o>¯.Ó3£J&ÆŸ>lÏV™ýŠ90 ÓÎÙ!ϽµÔ¬s%»×X Š*þÄ)¯™Å£\ìÌúEÿ×À¦vwÁÞÂóÛ%˜û!MfXì8m5ª#,w|š ´håZËU ýô½Œ ºÀ$cÆS2k©®ü+>©}Ûx§ ±Ñ$ÆH tjøÎÆ8)XÇÚðÌn!‚¿Þ¢ž¤ýAtIF5ý-wõ™êlñϾÊ7¶tø[W¯Sʰ8ÛÅtêÕðƒ·¡ÄŠZ¯=BÀ€bI¹[K÷‡ÀàÈñ#ÝΚIóȉIÙüž¾4‡A«—÷XïüXÊ%ƒöpùQ,‹I‹Èea’º…§~®#/¨^\1™ ×¯É¹™åU« µhôÓ›hÁDö½‚<Ò3†Tï»*ÞDò×çë?ör a:¶2Ó û±|Òõƒ8Îvq©lAŸV ç ”|ï¢|[ƒôûȆY­/ftµ:&MEQJ¯ÝÎVú#’ñ¬;X¥z4RºÅøaÜAÖ•"–KtŽ|âð‚Lq²Z•ök2.Ðô°"/n¼V™}Ö¸sèØÏ½ý×–‚°û?Òs׺£ñ•sÒ‹£ V½»¶bƒ#ÍÌ\¢¼ódãÎÁƒ%f0ÞÐÌ.Ÿa"¿ùdþ4§¿½¤RfÈwš¥sk]Ü3{3ÕéÕ'àÑâðÐö^çÛòÔ±­Z?õ„ºº»¡‚ˆñ³]º”%µçmÝåR¦£ü¿]týôº“jœ#‰h> endobj 168 0 obj << /Length1 1632 /Length2 8988 /Length3 0 /Length 10056 /Filter /FlateDecode >> stream xÚ·TTm6Œ”t‹ÒÒÝÝÒH£ä 53t·twJK‡¤¤¤¤„ ÝHJw}øÔû¼ïÿ¯õ}kÖš9×Þ×Î{ïsæÐQ¿Ñd•4‡˜‚ä öpVN6!€´ŠŠ'€ƒƒ›ƒƒ ƒŽN ·ý-Ç Ó9ÂÀ{¡1¤A@ø£L$ª@ìŠN¶Nn'Ÿ'¿€‹ƒCðo"ÄQ t›TØŠ{ ƒNus[ZÁãü} `0cp ò³üa´9‚Í€ö Ü d÷Ñ h Є˜Ap·ÿrÁ b‡C…ØÙ]\\Ø€v06ˆ£¥# À ·h€` Gg9àwÉU è¯ÒØ0èZV`ØŸ MˆÜè< lÁf {Ø£‰“½9Èð ©  Pƒ‚ìÿ$+ÿI`üÕ'ç?îþ²þílÿ‡1ÐÌ bÚ»í-`[@MN™ î gíͶ0È£=жš>þH“T+ü«>˜™# ‡±ÁÀ¶¿kdÿíæ±Í²öæÒ;;=†ñ;?°#Èì±ïnì®=ÄÅÞãod¶7·ø]†¹”]ÛìàRù‹ó(ÂøÌðrðs ð@«™ûïZnPÐJÎßâǼ< (Àâ± Øôøƒá:ƒpG'—Ç¿ÿ089æ`38Àd ¶Çø÷G1ÈâOüxþŽ`W€>Çãøq8~þ¹2|œ0sˆ½­Ûè1»š–¦ž”ó_%ÿ£”’‚¸è&IQ 9ö ¼¡Çë@7·ìѤÃõ|UÓõ#Þ…ž¨XŽ_1¨Eµ­£ª8C™˜\PgoUÞdÚ¯µÁ{úâUöª]tÀZ„Ah²j’HÛFœK%Þrß@ÿ<~7Eg¸Ÿ¢³ÿÆ!m0_V¸Ÿ\†çi¥Î|.Îmv‘ón‡ékB‰]óžÒ%ƤËÕc«õã]Cj†„~+“‹Î=÷+ |è<‘TŠcNÞf˜ù\VRCŸXüL§+,ÿe±|•ÂF1$HÉmv²klùÖI)YA´7E%Nô¾l}Ï«Ž®5ÒÙ"±ùUUþº,3q㎗E@n/­mæü9CФ.—¾@ŠU‹–Xá¼``³¯>77¶38¥B‡½îgßÓ‚·çî<÷¹'mmRô³•áö‘î˵óžiù®8Ù¿~2K­Žvw±[9÷¬t]1Tx•»·Øñî/OãGE@„TYwÚÃ#_°5‡Ò”Ï­u¿?£,CŒ1G(VÍ)½>õ#î…´ pc8ûE\ïºßí"¦T1 ŸÜQJÞ<Öo·äëËíÁD›ay8kNVóU䱓äºÓடjb"ê÷hcÎ%n^'Ä_ ;mŒª$¬«IàZy±Î1Daû©÷lÇEG´H.Ÿ6e‡3NT“Mîcµ‹ú¡± ~ü™±{ÊmIFz’!ŠC¥ßfLõ`ú1~v(E®“¿tÝë?ø´þX—†jŸq½>3ýË2ðxòN¦Ë˜Ow`ÎuÜä¡ú¹|B^ìLÆëìm.3¶çm"NËþ§jNëw–Å8¨íœ¦mMŠ%@O“6«È"SÆN—·fúôÖ ‡5zün—–„)V$š A¹ô(>^Ð{Öñ‹)#ðfÊ£‡Ì–Ç]gûdË^ãd¹Â8$QYË„èî™›¨ fkbŒêKM— ÖŒZ‚qFGÛä°E˜Æ¥º6¡1ƒxŒ¥P×vQæozG®9˜Çfñ'žàîéÖÕp @!27¥¡Hm®bÓòµ×úT†Z²çÖiýaÞìÌ7˜ëëÄ;€´¼[uw½ù8hÍivz¦<µÎżŸy=u½¯°9OnžVî ¯ËÚµ3ÑK3¥h¦ù)af÷ÑgOõ"* ܱmÏóÕ'–\zÄ€½¦|œ‘ ×M#JxôAâ oß/bEßïX4Õ‹Z+ÝFMÐÚ4Úž/ÒŸÚÑ⥠®±väl<·*úÎ_¥h¾áôøæGHJdŸõ=KnÖÃT«u¨Å5xu?§Ü#Ty|—þ}GÆ€^¦àÚ@áòõůº%1q?ÂÙõOZ9?ú!¿4\Ò&V„0B(ÓAMìÇè¡Í[ä/ˆÝnöq¼sBà›³z¹Í4ü¾ÇðÀe‹k¯‚ͱƪ`dM ½D·ç"°O\Ö‰jF-+ÍxtXÑÚ™ÍAËb“‘ì9e•¥í K#te^ sÏÍzXóˆ…„=5r‘)<”©Ÿšãt#íÁæoÇŒ–%ÚëÄÑ X`naò?©ž&I ÐÍ eßéÒM¹’Ùö¦1Æ©Øí×[-Șh>9aã×Ák·|ß™—PBTÚTír`¡oo&¯:×;n¡™ dý"o_yp^>˜é(T!ñ1;ªÐ\†ÂƒÌ}}JTwƒ¹ ÍÀÀ•sž“ÑŠaÇÔÏÎns•VFLòJ3Õž§?Þ†ºÖ‘ªìæq³0Õu‡9óz±•>¯Ê¦á¶|ÂǽÝNóŠAâûÈå¥ÀñËX§ŠxäsÄÓ¹!ö"¾ïÁPŽc©¸÷½÷¶¿Ä\âõvDVåßFVõ"»:´zù®Ë±Ò¦Ó¤›Q3Ô¹ÛȨk˜Â…kûp¶­ó»3m0×UIÎyÊ'Py®RO—jç¬%™ÒM,ÇCÔKªkÐ  úU©ckSJCM·†%„/»¤AÛôrú á¹·AW1W…â#/"ÂöSZšO+‚žâ[¨¡é.~C\+Î.vºâX¸ˆ´a« ¯ä=Ãú:^|U÷ýº_5ë’ò[w%¦{8gm÷‚ÉgÓ´Í0„ìf…]â1 cÆÌw©'“Æ §fv*c<Y2:ö1†Ý5Ó°zÍæ¸ˆV…Dy"«ÿ‘©ì®aï g+ ØÏ½5i#Ú±wgyœ¶@ªS‘=,æ§P£ñ`jqšÞ÷5YÖø§‡!ÌÄ#î4Ñ3­9ž¡š˜'{©ˆaûPªæŽߦåsSVo’MÁÊéÍg%Ê »ð‰Eã|ÉW›Óïš':ÐXh5@èv“2úHå‘‘PïÁÊÃPLT½ùxÉ;;I÷™³ŸÈæmªÂ4ë©Þ/PÇâŠÛ K-çÉÏI¤_âøÆ«~Ë®Šê^ò(=ýŇ×!¹t1Ùgb²Þf-ÄŽ‰øá]m´ïýv!Ó5™Á“z©Í•øÙX‘7´P$ërߎÞm—.x3¸x\‘¯X2™Õp; hÕ.è<„m½mδòÊÅ0ø——Þyz0pE™ÊŽ!³²ø<€îu¯a¥"•‰|¨$kÛ½óüÂæ‘lVb{É•÷ž¡ˆxÖG-…ù×0y#ùÌ»Æ{(-€þX„û‰V¶$NN>Òqéùb>7J|IcœnKËAçjC}'*ä+¸ýÓx„õ³—·ò˜ÄÏý²/؃¯E»J­~ì0ÚT¦7ÑL'b/%`FÏ/]_?°Å£áî¾P»N{þ˺rMŽHk¾å6 -ð €Tc®êf‘ð)/ÿ‡¯™ '¤šyÓ-dhs Ù·Sv'Äô œEºÂᤋ>øNpW!/½w2Ù±Õ`®þ‹ÿׇÕ ÄÄ9n¥ÙÑü9T|ot²¢2Ãâ»ôÈ3ÔêSMº(çÐàÉÔÜ€‘~É*<†C•u’i|\t<¢óù#¿ò±ïj‰Õ¶ £ßÜDÉO‹Üye#üHÜiïýÍö9m4àѭ’‡ˆVEŽ0Ì Ö÷&(ŠÃñ÷6á-MC¯e­&é·ÄŸò—+ÈL3×$éS Êñ@­dC 8æ®{{å+R¦Î má`VÙ1Ò xÈg-ÓÕ…vÞõʆöÛV®„6±Ò=%Wî®‚å¯Æð"Šòôí˜ožcºÓtï9ò†D7ec%*›Ø¸Œ–k „²(äÅÊ@[³o†j'…+/~ôMô²ÓÍØf=ªSY‘q‡™ÀL½b²"fîº`DÆñ°vÄä¬5¹÷í¸jq²_J“m…/Z¼61}r¤ÈOk eX<î7Òæ&¬tHû4yv°v"BSúàÜÞxf})ž’}=?(I1ѰÉËV j3ì#–çªj­·mÿTcFD°~ð¦à┄–7·Ã çŒúÁNÊÞk*œ?gsþ᱄º=–IÉ! ŒîEZÛ+xM‡ iùºÛÛ r$4‘xm÷…ÖLÓw—Œ—º$.«™#1luV"ˆ:©Þ{]}⥀0–χãO'0dŠl£*QKéÃÜØO~ âW[»ÓîO…# ã[½ßaåã+CÙá·˜]'[|Òù_[F5¥\}%½’¤={zÔ·û‚6©/öìºßÊ÷Œ: T&¼5ˆã;®ÛÃVlî}ñúžC6ee!Q‚s½¾ Ò\¦Sâ€;ÔXYšPŽ7ýi™¯úÄÅÍpiÊ cÆå`÷ë^<‹íGRýõ¹°ÇÙ™V?^pGö—è"Õ܃I¼eÔ6›Ýånóe×N+YѾ€¢÷†q†Ž­¸/ìæ_ þ7ûé\ $/± BSïwzôÑ«’1¾Ç™9ݹ5ikøÙ,#Å<þ#©%+ökôlÑ{3™£ÓÚðí¾8¶cçáÜÕ¥ gÊ:J3ÃCI­"Ã4†ÛL.²¦gîðPÐÕ£È_¤’`].ì×>A’TËf¨†}µ¨¦c˜¿ŽÈÌÉÓpÑ£¤°BÃ0•¼«BM×N¹©EdOÔ·’ÑveD„k­«º®—f6®¸`D¹õK7’Ÿ,ƒ_Ç«jö…™õrMÞ6O;°/¬ñ—Ž2’–ÊY ߪ"]pŒ3I:&ʰu(gà2\hOU‘e*m%pÔRì‰C9“.Ž0"SŽqˆžá›¼ñÖ| UZx—½ÚT"KO§¯e> Ís4 åB§ÕŸŽ`w‚r·!쮾ÕþPæ€RÇ„h’ãøx!‰Y¯-ÐÛ׉a‚°ȯ°e ÎmmŠL%ìÕ™O†„5b#ì³âB¹ÜFƒ+‰gê½(?o)mÿPÒÑ xY*@º‘••jsÈÌ#–5#ÀŒÏî*ëU8Û-Rì39üš Ç¨áz°·ƒÔíŠÎ;Æ6kUü­YFžd'{†£Ѭ볉X±k-¸ñÀ¯@È™¸·ßÊMiáÓ½œ°ÈÛ‡ìoA·Þ]žÇ¥ Kè“ø„§ZìŽíw…T•’ݦ;-}yŸnÖmËèlÝO9Ò€Þ°Ÿñ2o¤Uy” êŽ7Åe_iØ_$Òì¬Ø¼\È>“Ð̹öTÄd|8•7@&C%òbIwÖ—aôL:0ÌO¿Ëÿ•øù0®luqûõ·>üÎx„†4-Ú-•ó·p„4bv Ϫ†ö—Ù¢&|¤½(ˆ(±pl›JpéUbFvÓŒµìï™)…E±Ó‘_Ïùø¸ àñk:BéƒkhCmÎÖ‡%ÖÐê SÂ*¾ï¿$='z9Pò¼I95­\¥LÅÄ‚+‡ŒUs$¼÷ØiS£d\rø¶'—GORËFÌu­)hîA ŸÅþQh¼Ù#úwÇœ\9®&¸,é5ôâƒ抛.‹¨«qDg©6Êç莥|jh!ÖR³kâAâ?7dP>G"Ä’ëGºÉ$Ì´?µÓ-4~g|HòtaÄW0YÆ-ïžÀ^X++›b¦”†»_R‚~ÓM¢uŸxuŸ5±# Â~ #ÅtÅL<9c"fâ¯?5¾T9}Áé Sóm ÐzR;gó7Ù\v$U`n£ åßppÓé£\qÅ=eÍp~|ûz”È«êmÓ/w³ÔÉÓÊQVF0â‘ÎÔC™rZÒš®eøÇ'÷Ž#¢ìÕ¸íôœrZ^²†G-Ü–Š4éÈéUÝ"óÞJç' ›^­5F2£Kºìµî>oÆtµ8ŒÒ}z.¼Ãì4ƒ+ž6©Å Zö‹Š¥m¯1—ã)ûÎ:³È9TÎ /­ cZÛtÝÇOX5rÄ ˜F®ÑÇ‹÷ú¹xß[µl4{*°ñ:uš¨¿É»˜òg49ú˜¬®ÞW¿Ípûô‚'ž÷Eb­QQÀb ?‘ÊR%ä=ïk&ña 9•bìå.ßûïC–kQ;ЋÙ%D{¤{„6Þ^N\ó²ü¦Ø}¥î]}e ·FôORõ´]¯HÞðmSëî.cŒÄ\Ë>«ïUh:à»d¹QÐê¤ ‰¼qKŸ ùÿD> nÚ|Ð1³Ê2|aK?·ôA®kA¨é žZþ6íËþ04j¡b„p|„ :FħDÀké*®ñwý}4ÆÊÉ×âä_Ì ˜®…B¦8¸ ù]öšy ˜oZ˜ÈÙy)²`ƒ¦"gQµ†ÊêÁL—õJû‰ÓÌ b 6ÖYHÉDôÖ½4I .rÒ‡^_Û¼ƒÞ1o æg´Î]$™‚ÔYËà%´{7¿«œ- ᜧ}v<£gÒ‡*ÊyO¯<­œÃexkhž½¿|u¼ÑÖÊöäu®ì/4MÅQÝÁÄ¡RUlIäw«cŽAW«kÔ_!ûÄ{ù4Ùzwrã]¬—ÇŒ9È´FoqVª=Áѽ’ȼ¢øj–;ÃÒö@w¦2®QÐ=_þüSÃIÊ è‰Ù+M€g Ëô„Ãø3{edlŸËð :ùZîdaí·!SÏuê`Éɹˆlƒ[­gÐáç˜_Œì¥ÝoÏ "TP$Fý™E¨Øæ ¿ºà;~a }°Jt“šÓŸÉ‹+~•zÓvGðÅÆ[À?—çCW¡Á$×ßÀ"ËkÙ\`D½ð`ÚLv[û“•5y:š(‘¼XÄr~‰(úþ†oq|ˆß†ñ­%¥¢Zsmk6±úö¿µ]§Õ¥ž0.¶Æ¤Šp€2 Ÿ/[ TÛ8÷Ú+§¹ír¨¿P]>µØ¯b¯ñl¯VÿyR.6Ö’iº/uoÂq€½"ôŒ®¸9è#ŸxÁ¦\©™V`˰ޛ¾Æã¶äŽë Ð!´ÒML­¿v~Uf"çñZ"c 0Φ SúÒ·N}_n&’9…2¶hOÌÔbò`’ÇûÑ ÓÉÚýp9o@Ú¢]1êy%¸Sí”(Ä'þÙÎ#¿]ÆE~Omè*uՄǦ•ƒæUô¾×‡É3Ähõ2)CûöÿǧP‚ø@^ðÆBâŰœa–Sã!QŸ¹·T“Á} Ž¥ùõ¯«§këîË¡ÃFV+G3é7z¸2~ƒvîüßÙ]¹:ÒpŸŽÌÖ ÇË!„KwÝZ—&4µÆD³\~FÄ‹~µQðK‚w "·ö€@SË31¼–¾7« oüá#–6 ç}+Š{rñnÃö¼¢)E‡†¨üµ‰Së´™s\N!ã xÖt|y¢ 5Pþ-üTDÀÝÅÆÙgàU¾pìªõñ‰t‹\VøQ8ü‡z÷Þ€ ó/~'ˆž^F«ºÓ”‰‘ZµÓX/@7¶=UVeщQŠ)”þË´‘ËÖ”hô‚Õ”ª¸ù‘Ékß§.œ°º܈TC¬ª"z{Ž£¤Ð|Ðj#W^bQ¿¿"cÆî»µÙÔ•ÝÇEU‘'0L|Ún]{ZGÞ'/)j+‚ Š_í¤ÝjˆÀ)¤™7c^·ä~e¢=½¸h%Iê\kc#¶ÎhHÎÍòw“vé^âZ|ø¼Vb)›~‚¿02tòuÞøÎÛÒÆúìê›øñK­žÔ5ÃôŽt÷O¡6›ê˜ºwªGr­4ý—¶”¦åCeÄA÷΢s÷ZgQ«eCúj<2GQ P¢.gCÀzW4ŸÒ®Ü§æ½EpÞßK ÜEé?>ÚëÞ_îYüBÖUt2ô%=­8þ¼HEÊÁ¨-ÛÌÆµ‚ºñ±™µ à j¾QñÛj™ó«65¤waæ’ÛðX%½†°Q}çJŽRvI)-‚ ŸÝWØFZB3>äÂOJ¢R¶ëGx×:Fžb]Gr7‡êžnM3ˆ|óĦ§Ã{fGÀ©…Jø†Ì“L]Iv i1 Š`„¦é}Pî}`ý-®½”Ò[› yF–¯p›{(SU#ò\û©jwIgÇ)9àï‹\¨y -/¿93ÇŸTÎÌm$þêHŸMx°—±vÕî—¡f8'ÛhÔJvâ·+R;ÆÙûúZ}iŒâI”^Ð`ÿgտ䧍/9$Uq,&¼mç ÷„úÆUZµÛ;°n­ÓŽÆ-£ .^³#L޼¢JA²¹ØÒÇ«E">5Hpcñ ò¿àe[ÊvH‰Ü‚·ÿ «F±rG®>âü<{KbKtÏäwÜl,ºŒIÝØ»õZcóŒŠfÐóLÂ!8ŽZÉŽºÂ Âzz«÷5Þàò&âÌ ‘¿!0õCÕ‘][Ç—WŒ!Fô!}õ©î1SáLÖêªPíÃ0´€KãfDú@‹5ˆY†“R–uÕáòøõî±»ÚÄW)÷…ÆØl4¼ˆ©RyDB\xJˆ&ùü"DÂ"vd˜c?@LˆÎºûÂpg†I¼BÆ©ûiz]ÿëZÁr^ —{û½,?Q°®ŠÚ™ý“íÕý‰‘çx„rÜ ß~Vê²H[;>»ñ§É¶é*È¢ñ° ‰‘Ù—} ‚ iï¡ÞU6yyQ4‘Abs‡(dXïë«a¸ßkЯ*Hß¡ïI¬'F{«»?LñÎÄÚÑ>”H}z‡¿l;Ÿ>üàPï³Ü”‰læ Rtn.ñ겺¥ˆºQhÈ .Šu6šëËz·?œGX<ßTœàhÁ¢>'±!}Šâ1vq,þl8Gk–jȪ6*.ËüIk~ÕX¿oéaçÏÃ[ÛdL…döÄŠ$J­(h‰äÄ¥çóC[›Õ 3žjþ k1ªE¡0ÖVŽ¢ûýÜó…:£âg(ï@²,6EJñ. ‚/T«Úû:¦X÷ƒºë/Ä€ZýlÆ”F­ç |Lk06ùyþÙãÒV¨Òð[ÈFdg9ÏCæä7®µ‚Ú«®ìñ˜kßQ§y©÷ØÃBØC é}V¤ú§ìÈÕßp¢”Pس}•Qž¤ ù‡h‡ð>W ¼§Ÿ µ"°“Ê_RIQù<·+†O“$:oR„ñOZã¦CqJìiX56â:ˆÆ7q¾üœs9΀ÒJfMqp·¾ÎãCï´êÚo@‘¸sFAª¤6%ÀVäÙ?;ôú¡Ú6÷Uët3}cáÙ̯j‡ íÜFM䤯lãU†' Ü+zo¨÷T囌BrÓz éê;E¡‡¤ Õ¯´¼ý}ôBµŸ´¯ þ"îÆßëXçàÄàíH®2Îäf ªÙ´+œØ)%Ñ]G¤=iÏ“²Äè㬘6›Oåù §~ù°o„h®w[Íü–/|w0°ÓöÙü+Pì½±ú3K‹üÐ,'“hHÔ܆béºÊeqÊ]S«ê¦Tlà„‚×ñݵ·£u ¦s&ÊéÝËéÂØÍ×’:µÊ‰xJ ”œÍ³}ø a«9Ò+ê†Ì(R—ž¥ŽÀ/?·pïÔev‘Ðg·?tÒ,…e•®'«˜$­ÎZË#¶.÷墸=QæîñÅ™æ Æ(UH‹Mw_ç×Àm8£Ëî9Z¡“e‰±.{âˆmúó è¨9/¹”þÇ«Jð<ýv$è.-„S -j™ ÁWÈÞKË;ƒØÈ•N—•ãemš¯xÜb/¼g¿Ž–Û4•èRÇÒÕ}…“M]P=Å ] S‰_Ý|Wó……[»;TÌçxºoÔ ½ªŠ3¥xX®Ê‘ùý¸þ0Óxûg…o$É2ÇÄØôòåcƒîˤ¹›ºOcwÝŽ*éÈo ?‹ÇfÙ[oqÓž½¸ #5À}%1ŽñRVoj~ìATs:¤²'J`Bx-p‡¨¢ó&MûíºJ,nÛ·èïñ7•Nfouçš‘ƒ¾£‚ŠÁÜ—Uúq|„dɺF=¯~È­;È;Ù'/T神¸ùåEèæ²…ÀdØð¤TóïìF[Ž-el]œoШ)E›?ãYr°ü²GqbÑ-ÃÍ™ú9ٗ쫃©¦øVxÕôýG¨UO´1Ù4Ó“¯-·­Éµ"dOE`.ŠqÏy¿Rõd/»þd•¬½á£^«FgØ DäŽ]+Ó~~{ùJ O}ýfwîCCäí“lSyAÀ)¡GåÂñ u+®gf0ŒtœZŠ»RÂ4’dßC)`,0/œD>LÃm>lû¹Ÿ©n’Â2q¼Þ_µGýPm¦=vŸ)QËÕ Èp¦¬ÊÒ(q']êúød•áÔ~Óå’¬WÝa|³Rþ\‘ðºÐ àծ΢kM¼Çõ”k –êˆëÖàµO&‰¨w£2q,=ÿrÍ;áxõ×þ˜†ÓeþX‘ üÂÅÇ{_@¦ð1§'È8¤D9£· #ɈHIjŸë±ŒÞâs;µÞ£Ìæ_.¼ÑÝ':÷‘Kû*Å­ÜOLó3Á`$¹¿NL+â &ˆ¬eÒT]Iu‹~rºØ´…?C%IEQ…Ù•$õ4ç%—Ý´ÊšF¶urÍ& E{ÄËÖÔë´ÂÕÃÈ·ZEö³Ö_àðÁ ®VrµTž§ô‚“úœ¯ÛŒ,–5ßu£>¤Yˆ×¬@•:‹?½ý:sø†ÇQåbżd²ÛÓx¶kð×׃ m§¥0†•ûÿ9¨Ô endstream endobj 169 0 obj << /Type /FontDescriptor /FontName /OTSXBF+CMMI10 /Flags 4 /FontBBox [-32 -250 1048 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 72 /XHeight 431 /CharSet (/E/X/a/beta/c/comma/f/i/less/p/pi/s/slash/w/x) /FontFile 168 0 R >> endobj 170 0 obj << /Length1 1436 /Length2 6534 /Length3 0 /Length 7510 /Filter /FlateDecode >> stream xÚt4ÜkׯND‰èAŒ2¢›Ñ[t¢÷‚Á`”et¢÷Þ{D'¢“è¢E'D'Z"ºo’œóžï¼÷®uïšµþóì¾ÏþíÈ ©Ã%m…°€* àH.07H «¦¦$ø¸A ^| P†t€þ¥ÆêC]\a¸èÿruB(‰òSCÀÊn0,( ¼ ÈߎQ€ÄfPã(#àPW| ,ÂÉËfc‹D•ùû`µd€ED„8‡¤¡.0K AÚBQ-!„% ŠôúW Vq[$ÒI”‡ÇÃÃâèÊp±‘`ãxÀ¶m¨+ÔÅjø q„þAÆèÚÂ\ÿèuÖHˆ €R8À,¡pWT„Ü ê@è(©4œ ð?Ϊ8Ý Ì þOº¿¢%‚ÁC,-ŽN¸ n°†9@ ªÜHO$'·úåqpE â!î˜Äåð»s@AZ Aü ž«¥ Ì éÊí sø‘çWÔ-ËídŽŽP8ÒÿWr0¨%êÚ½xþLÖŽð€ûü%XÃàVÖ¿@X¹9ñèÁaÎnP%¹¿\P*üt6P$@$,Ä'Ì €: ž–¶<¿Òëz9AÁ¿Ô(~>N'€5 Ôf Eýáû¸BÜ¡¤‹ÔÏçþ-áƒÁ+˜%`µÁñÿÉŽRC­ÿȨá»À<Æ ÷ÀЯßNÏPô²BÀ¼þqÿ=_]%EEŽ?ˆÿc“‘Ax|¸À.^ „P¿gùþ¿±ÿÖjB`õú'¡Üƒþ`@]Þß8Üÿ¢ë_+Ãøw uŠËPë?Ô7 €,Qðÿ÷üù¿ñþW–ÿõÿ»!7‡ßfÖßöÿà q„9xý倢²µjÔrÀÿÛÕúg•Õ V07Çÿ¶*!!¨õ†Û (ÎæçñÿÑÃ\`žP+MÒÒö‘þžª† ÕD¸Â~½8¨(è¿l¨­³´G½*®¨‰ý1A\Q+ˆü=Ü_2µdÿîCn‰°úµ¼‚ˆ‹ Ä E”$ð£ÖÖ êù›ïn8‰  0û¬.ø¿Æ,"àüRý–À ìŒ]‹ÿ*jéæâ‚êê7WPý-ÿ~ PO¨%þÜ4ÂR,Ä®.¤í¬FšÆƒkcLû ãÌ—k¬ÈÙ'?a¶’¤“›3¯òJa®¬`jש.ã|öâË̱Ïz=}ƒÿ)½ÂWz‹„éÛSôÉdŸŸ´ŒÓÄMhùi2EK]úÐ4é¢ï½»#ieÓ§$ö}T×3›ìÁBV¦ ¤Ú¦Þñ®¦,G•‚VDoUÙl1 »!pBõ(oÕ1>x-Æ$2]=‹QE¼ã?É£úÞrÿÐÀ"I/]Wt ²{ÐÆ!s’D^l€VŽ·Z±€è*¯Ô}7ë¾ÅRE6㠶䲄ì>ƒ],ÿðê!ÇÍØM·B±î»ÝWW9ÒŸCè‰r̵FÞo|«¯=\T>¡¿¢Â Äi‹¯â;”zñp¯è»bˆ¶Ú¡·‚ ·JûXç=ɺ3Cï­ÇÇðzf¨c¤™®½xDpñ€eßÁ*ÅøÕóè›äÏ5çÅQé6»Oot­(%üØ©"e®ì?• %>Ê[†ŽpEH¨©Í¶ ã˜Å’5óˆˆhbçj¿¥¿ëpd]XËubõ,ˆèÎëë¥Jy½>šë^³”Ï­?Óçî²_Øý$«ÑUê++^V‚‘⛯å>Ûåï\'gËŠòDê¿üO×z”ì.2¹;^Þù¨òþ¦ó ]ò;“ª?d¡5¸°#òƒv1Î÷Eªâ½šfŠÉÇÄQ«ÃFÏ_€D`á¾}å_» …è5µ‹D}ê%Ý#_êŽLzœÖI¤`qD´òš?/[½ßGéÍ oL1ôMÛ„€ŸÒ(¦Ji1š£–Ì—p À –‰ÖÒfA¼n ñ·zýÊ$3¸qÉG®ÉÕ€^X@øÅ²àÁuëvõ‚ïm¬EA…Ã"x›˜WlÞŒ®WOEª„X~já¾!À‚q³9îN{vÅc–Ì‹ásIË7P¾?üùmd ÷£ó$„pø(að~ç­ ›øÑÊý(ßW|ßå°DùWõ/kz<˜œs5ó\-ßvoo熗æåË*lh5|¿yóº|¦Óš^ÿ$Ócya“1ñøEÒ-µÔšÉý8SÀí­<ÿ1ÚªMÞ¬yô%éOó§ P¥44!=t[Úa=sõ¥—åG â}f×ߟ|/ ÜçI‹ ½OŽ•B–ªry½+Üë5´3Ë8ÿ^/ÿæGvê¼he{ˆ1™$ÚIŽï £˜ø’Ïü´ $qï€a›ƒŸ)jà>Ò0¸ÈxûºŽ˜Í.#B«m;öª|Ò£1+ŸÚ-V;« I&¨X§†ëøä©á­ˆ–;†•óÍ–¬q9ÿ@Î ƒgŒÉà¨Kõ«(¥k ×·´Kh—DõÍÙ,çoÚZrŒG“/1UKÏ0ŒFß1t«rwɯ@Í d_ ¸X+1Î3 89„1µ­w…3\õP„ï^ŸÌôU賓>È1åzªhû,áü:B­Çjœ¥ÆÃ¼Þø´ÞÌ3óFAã§³'ýä lFØÛü™xX[©Î2eÿ¡«Ý8·Š¶QÌÎ+r&·°o©ÍÝk)%épí±©é”ˆ^UèÏÝΩ­¼¼ü{ô4í¼êÝw›)n>«ÁF¼.;#N :節K 0~L²•V— Xð‡Šñ¶ø1ÑRRu“àcÊ’;S›~2G›ÂÖoð4ãZ ÂZJw2é›/¾»ýph-80eß„EüI¾6Ö`e~£´<æ¹w?‡gaöÚE’HÖXÊ,¼^y™ñ£å“ê_Ý#ŽªmEÉÏ噢¡âËý [Y18š)Èm÷3T†õêú0_ÂÁæËÍœGMÉADè¤o˜€¬ [ALzPqàÅ÷ˆÑÁLw¿²~^™ "Œ¾²‰‘cç×À£çkâ••ž£üæCÒˆž±|‡êÎTíYuœ™\Jê¯=Š×]@®’ä°ôÖSýÜ ¢èò|v+,x92gªreó•œ](x™3»}×å†j¡ì1œ°¶2þ›¤\­¥ /µš9NY'³KŽ&T\êšÊ.|V›‰ áƒáÍ{¬oDðxQ[?;Äß‘8Cw6Ý0OúxQ×F²ùüQ}®¦ù1ß V×ö÷IÖÍupÅôýóîmïIm;i3·*ˆ0R}¨Æ9ÿû#QiPó=ô/©Ád‰:94È v¤+;£Ö½Hè|Àû }#¸i=ÁlQ¦ *~ÊÜg¤è†ø½‰—æÁ)kr|ÌöÔœ Ãò®ìF%È´0V~uÔy5-mb˜“æg-—FÙnØëÌYûgÎ2ÏéYŠƒÉ"ª®_¤˜¼ÕÔ50ñ{Ô"@ô~ç ^6Ï;7*~ÀÚü™ü6­«}AÑWÄnƒCÈÙ¬$™gÈÇôUùÆ”Æ{•Æè=«I/N›”%X–#e‚ŽîPéXfÍDP?òó Üp”ÓKk³ÜVñ«±Ù¿?œÅcÓ<Årñ8ø"w±›2n,Û/)ý“Wt Ìlß-ÙÖ¢ÅÚOïl[L¤{>(ÛXë8Y†À°XìÚ2Ó÷âjÜ"ö",C³|§õdU¼³†ýÂ.W£þÛÏ·Àìò”i˜…á†ö!‰ ýV8æ\®k ‰æÛX&ÑÞßlï·3¬*4L}Ì´®–iš¶ž í],eeC«¯ÎdÔŠ]Z|”¢êsæH2Õ|+(ýaÝþU¯ß2Vˆ¦èV,l»àyEve?£¹öü¤Y^#’h°¯å Ú mN Þ®Ú’0½{6çÙ:«â¦ŠD{úË´¿Ùx¦wŸÖˆýÆ–3Τ›>RÐaºE±ó“°ÎÄA%>/£2)Äôl}·àÕ}OõTi}9M;d¸V£tM<‰îœð$ä0"k ð• •üts膙e¶vܽl^wõûï¾dëÑ?jZ÷òÝ’G+<%㣹¢«5R@¼4ï~æäŠE™ l;Üð^#ìD/úôz0co9å)Æ;Ÿº–]9.'Añ¸-¡¡Ÿý2?¨ÐÞh±è­ Pàð4O‰y¥^÷~„>ðVPÍð¦œlŨœÛT©Ïç¶S^±©È±JÚU¨N™v:*ÎO¦Í:EI#ˆž˜Ö²a¯êÜhzÊTÞ mËV»#þ Êdš2šzÓ¤%i>MǽåôH£’®µµú°Yè_‹{ý€_$–¹}*–\OndäeËÆ:´%vd,–V–Ñ\óñj’dË‹S~ùè|yJÿ²ïÀ²$ÑèϾcÜ‹u ®E‹ò! Ï<[7vz‡†*Ÿb’3Âoó¨N|ùÂx|Ù‹®?o¾œ#š5 ÛÓ¤òc=p»÷zñãL;²2ò%2;9¡¤ñ2„G-0¹rúþ°Gëüs|è ‡­ý󂬂ãý’s–fcvøÏÚõ§ls±^™õ›¾Š¡5÷•,¹•éÔ»ÄÁeÉoAÇÙX<9¼¹3'¢Øë¬Çûýœk œnYÐfu(÷ænµìÆ;í3w•Mù ˜þ†‹¦­óæ†Z1çT⤇Äx›È„+  wòqú¾ÝóÚî=#ç¶ý­ø8.Ú´†¥CƒQ2që©-˜FÛȾD±¡Jœê/cŸ„H5sd.èçÃJ±5œL€y‚=¾¼¡BM:-•ŒC6‰¯\àÌ…ø+·†•yšê=ÆÇWèÂÂÜ|”×­-¦³$Ü»ü~RšçPo¦Èz'=ÿ¹Šó jòìõ_7¦ó ©^Ëó˲LØÆ7?ÓhØAÿØ–ÇîŒëÖý\àÄÞ:Œùøx´»¬"ë¾l.…iÁªáåæ²ÂªMÝQ“ÑйC#tÚÇcÉ©/ÌçÇáØ®ùx«_kv?_#½BW]ë$§åq2ãX…d^ácÈ¡ÔbXƒÕû!yZ¿ìXÍH-vmvæ™IË×W]ós„$ÝJá³\ ½ÙûÇšG±‘Œ]â3y©ÊÍ^©[ï¹MÕ2ðÏͪO&¥â¿pÀ,Šê8·F[Û{!U«ö,\ k‰óA¡fEŠäGq¨2ËÞ÷ÉU£¿ø^ÄO¹ÿ¦\}”âªÅÞRÃù,†1*H˜¦”…Mi~'I*éõ˘b|GÖÇeÆüüÎoýŸ>tÚišñ$ΕîJÎ3º%7i/“ŠiTMÍnæE¥E2Z²ªÇÝúYé³ÀNiVÙd…œÜ[þÑeÃúIëÓPKn±¢®ßš¢îÒBÎy¢«€[þe/oî°»1R©Øž fp®_•ÐD’ ö})Ö’°³>Ñ&)ýñ@·ë›êÖ~_éYæÑ*å…C›xZH8ƒÔ»à¢hŽ3Ÿ˜KàB·Ú'ÄÛå]ê–U+Ë€-z€Ç([|ÅFzñ[åà‚p«™¾PòkŠ!(ûÓÉÑOÍC§J .Åd³˜@Ïïà 7dÂA‡œLÙ&ߟTÌ‚ðÃ73qmUõ°ñÎ=éÅÞn"4ƒå‚ ŽŠ›-x?ˆ°|뺞šuÃÆ˜û±¤VLŒ|ã”4Ù—ïæ•f·]@ÃæO°Ï·+¥’Ó8'&ÚdbK ˜æ‚–‘j‰©S´ªè5ΖŒçDƒ”'ÿ;{›¦ïW«¹™Uc§^«6³º'gÌgÆ•i÷ “}äÀÛHòCI•*÷k@í°ÏMÁL˄ݗœÌ›mòpÆA~ ì®ƱMß+MªfØ´Ø}Ý|5F3q nEu=…ŒÙäð£ñˆÞÞˆÔEz¦*Cóý5­á½JçC²üºƒl“£¦»½W‡¯´äžQe÷<—~ΚÂxótâZ/—\ +K…}B@N÷æ–žáöÀ…!ÌAÓîP¼ÚßJËÚSv­-ÕPôîqð“C@ê`«ópÓÜÍÇ=xþ½d|šŽ¦NÈwq«Î^Óñ=gf\jâ–&[j㾸Œ ¡T_¼ 4Ц8 QÁ×¹€•â]/‚c«þ}RŒ±ïAàý9Ìg"~…—áØGþwÃxO)&+t¥I+ ‹ÛƆΠæaÁ½%UÓpµ$žG¼ÓQÛ^í„|;;î£íc´Ï´‘UŒÇÿ4{ÉX6žü2þá¸SÎN®E²L€š]»aà;ÿ¾‰ÊùšÓ]¸Û -¤+G\HLSfIÐ`„=%¼†È%dÌÖ6NÆIyÏbe;Oò~˜=¯IëœLñÑÿißÅkÎu:ô&šF€À@–áóþôÌ/¡@‰L¹‡öUÅ eËe5g5P`¸ÇøU*Hõ›òXm‚ã6¡A¦Oªðy[v5³ž$©÷áŒíŒa¡Ï§z´Ägš\ûöÍ-¹’$/r^è|Ûwb íàSÄÁ½«£Nج¥å–WsnqWÛÍ5öO3+àLm°œ ëlD¬ïG'¿¶Í“¯¼rÊ|‹n5òœœIÌ„%g‘$wVjn˜]¥`Çsļ§¾ÛÔ”ÜÕ5.Ùyœ´9ÅBƒËÌYH/ÚZÎw)‚á{¸6ügÒ#l±Œ{¥æIø+LJv'ÅW hñª,FŒ ³a±ŠwhêI›ž’pgJ@²Eúœ´ïSÑ}“½{¾¢zþ%@'û“‰ž2í…ÇÑÑO¢pLS-Å‚YœÂûÖÑ™2ÁÎt©-¶’,âž.Ø´ý£è|/ŸR‡f\Xi Ï~ôJxhès8©]“K’ÁIMì½ix²”}¯(ÄVlmÉølB=î¦Ø¬Û j½û’¤¾s¶Ûvcä¡}¤=·–0eíòµ¤o! ˆÕíÅì–%\”,Ûœú‡Ò'ì»x‘7{­>r•Ãz)O‚× Ó·[_NújŒ—^ÆÆN¿û&”„fç lœ±É9–;?¸F·½Ž“ðu¥ñ”öÇ2d,à|q•iCMƒ†#&G?ežhƈ w!? ó^c‰·Â_i›¼ËkWM ‘Û² b¬ ?ä3×m ]õðZ(Ñ›yöó<Þ‰½“6ïÎÙñ¬)¢­p¤?à¢Íô2ÕFL—çaÁ·µÈëý€ç7;ß~¦æ›CsêÞ=$¶ÁÄÑû2A]å½+`ð>ÇðÃ-»ÙjËQ0ZÝÙóÖEÒä£NcLF`¡ä²QbvOW0m3z· ~ÇÒšöå´76ÃÌâá4@ЦUÍ…ôæÓlY°;ªkÕVÖ팇‡´µ±ù&–JÝ‹!MkX×ù%,„[TÔ]E–Á°M55òå|Ëx2ÖµÛ¡ô¼éP="‹,cGñ‹åGø'Khn´N6:øck讪—‰ÜôÂõ]`GxÏ*B`qéN”r¯! ¤tÙ3»þg qÍwvL¢{W¸Ÿæ|lGöÐòi[0¨]×°,W•A9ÅcµGŽ_¯SM•[˜ìÈרFÎâe`g€tò»}‹Æp×;\}ËO'q¦äU8I¤;ªnV³Õ´³µª‰~BxdCJsž6AmŽ tš~˜k ´dçÿ(y'¶‚׊!žÕ'»ÿðÉ\Ikb}«ÿ¿öŒz endstream endobj 171 0 obj << /Type /FontDescriptor /FontName /WTIHHF+CMMI7 /Flags 4 /FontBBox [-1 -250 1171 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 81 /XHeight 431 /CharSet (/a/i/s) /FontFile 170 0 R >> endobj 172 0 obj << /Length1 2768 /Length2 23529 /Length3 0 /Length 25080 /Filter /FlateDecode >> stream xÚŒ÷P]YÓ ãCpwww®Iààî„` î\îîîîîîÉ̼“Ì÷ÿU÷U°Ÿî^ý´îµ¡&WÕ`³°7JÛƒ\˜Ø˜YùJêl¬VVfVVv$jjM[à?b$jm “³=ˆÿ ' © X&iê¶S²ä]ml6n~6~VV;++ßÿ íø’¦n6%f€¼=èŒD-aïàédceí¦ùß#€ÎœÀÆÇÇÃø×q€˜ÐÉÆÜP2u±ÚÍMmöæ6@Ïÿ¸ ´vqqàgaqwwg6µsf¶w²¦g¸Û¸XÔÎ@'7 àWÂeS;àß™1#Q4­mœÿ–kØ[º¸›:`­9ä >á ²:Àä 9E€Šô·±âߌ€j`cfû×Ý?§9²ýuØÔÜÜÞÎÁäi²XÚØ*ÒŠÌ..ŒSÅ/CS[g{ðyS7S3°Á_‘›¤ÅÔ¦àÿIÏÙÜÉÆÁÅ™ÙÙÆöWŠ,¿Ü€«,²°·³‚\œ‘~Å'iã4—Ý“åïξÙ»ƒ¼ÿ–6 Ë_IX¸:°hl]r’ÿ˜€EH¿eV@+++èz˜[³ür¯ééüKÉöK ÎÀ×ÛÁÞ` Nèkc ÿAòv6u\œ\¾Þ*þ‹ØØ6æ.3 • é·w°hù77ßÉÆ Ï ž=6믟Ÿ Áãea²õümþWYTu¤utÕþÎø_¸¸½À›‰“ÀÄÎÅ `û5d<àßÿºù·ÿKþ/©ª©Í?ÁýáQdiàû;pñþ—‡Û?cA÷ÏÊÐþË lže €î÷è°r±šƒ±ý^€¿Žüÿ›û_^þßFÿÿ$íjkû—šî/ýÿÚÔÎÆÖóð(»º€×Bɼ ÿkªü{••€6®vÿW+çb ^1•í¿e´q–¶ñZ¨Ú¸˜[ÿ=Cÿëؽ­ ¨jïlóëe`7ìÿèÀ gþüBq÷ê/¼Oÿ¥”™Û[üZ°Îô_Ä æ3uÏó»ß&àpÍ~#pyÌœLÍßÁ×¥Ëo9Ç¿ò¿—æ_˜Ïü_Ävfno ˜99Iìì~Gñk’X,þ€`JàoàÜ€ÿa`c»ÚY˜:[ÿ!Çž·?eÜ¿ü8º‚·ôŽ_F润v°k`ù‚ÏXþ9A›?hÀø7äâøÝ~ËöKð›ë—¹½«Ól`«? Øÿï€9ÁMµöt°‚þ°ËþàgWãíÜÎw@pµmÿ€àVü‘)øíËòÛ3ø(¼µèÁ¹Ûÿ|Øþ?jp2¿Õ`gà+ôŸ©àdûGúß™às9ÀWñ¦ÜÉlìwž\[Wç?8ÁÇß ý…\ν€þ7ö_B{ …™íbáàü­ø?áðý£ù¯˜íW·ÿè¸ô¿cárÚÙüwš¹~ÙÝþè؉3øŽü7)pîζÿ™U6pê¿iÁ× ‹‹µðR³ÿ2°±µøc Àåvq·ÿÃØ­ëÜy·? 8X÷?üO{üÁŒž@p½~Ç öätú›ê?oosW'pg]þº_Á«ö?ü×7è4GšŸ±7yû-¤é®RŒÈi{Dh’z['‰žÉ{Þ©Ùõ þ }EZÐªÓØ—þŒ¥M)ºkѲgïÆø°ñj>OƱêãÛHscx=£y‡bÕÝ$ˆÄLš¢;>ÏŽ>Úï  [婳]yÑTs°ïÜ»d<ª»‹‡ÞÏl«íTp+ ?O0Ei}4ü:Em–>OçÂD‚ðëÌ}êúf+sô…L>–É÷(Š#ß[oýÓý´×r©&»s> ô5ÖÐ8·ø^‚ü«YïÂü¥ž9Á|²LTÆÄ%& æ=öÔ õHP]g•ÛÐ| ÛVÖ@-QöV|UQޱ… nE£q$¶KÇ; É^‹¥ørÓv»åÛD⾉êÀª®õa@}»÷cãrÿ@ÓíûÄwýu›í¾:_EºEˆ­ÜÙ^KYëG,-ò§’$» Cµéåp0ܾð>Áš† z‹?²mä±²êñÂvBŸpeùœò-«=SnY›ÂœµuÇ2 ~ æV~1kM<;Ë#°æ2I{O—*Õþ!{%šVMà°v*¸˜ål­ Y²È“L1nƒkî¼—*ŸSN¦s{¶¼? Èóí=_.ó‰v™Vc W®ùÖQ$Óð^m`ŸxphßÅÞÆMI‰¸î¾½öýY™{¸xÿ§uMžì-ê™mÎ*É2b‘P·›Óˆf”ÇšânävuÑè:šB›ÃmOîŒÅr’Ô´ùóJÝ û‚a>ó†s’ù•¢x®ëØ¿5«ÜÑA ¤a,¢NÛY„¦4nî¯Ó>ÿI(N¤¡y—CéµÑ9;1¼I>8¾Iåm[f𕳫 Àõ1Ú6–†|v3 årUˆîcÄOˈú-w±šâªÔ©àêQߌ8%|3+ŽðÈ‘, ¯ˆ6mE1Ÿçe&>ãí†WºèYt½P¹³Á·œkÁÐ!ƒ6]HªUI‘p­ı'î/™2Ùj Þ¢”‚-› ê™Ïä³ãHŠì¯ªô3R0¯6óýéÉ?Z†¾ B0ßÃŒD€Øœ¦Åéûp®Ž­Ê!•MÂÄ_…I‹¹ösL M½‚v¾ë›„ü„¼K1M§7\ we öXçXÛáôŒì4Qüe$KÑšô¬•;…4×çh÷sp*ŸŠ—@{5Á‘Ý‘Ddäq¿ï‚é¤l¬E>É/‚ûv§5u÷si+ýÖg+Y!«eûµµ••©"ý&"—< ‡xÈÆCY°ú_Z.y=T9Ù¦I.…\Fïd!ÐQ¸“ê}\Ùö9S´$ `mRðjd]ʾOúÞxâ“Îüô3'¥6Xu< 0øñc‡S…Ó\?ÕøVîGNåiuÅnÏŽy$!ë*IÉ…’ü½R¦.kéP´›7÷*þ烻N”S¦c Ð-ôçtÍ ]æ%üƒ~úvÆW2 Þ¦ázâ2ÍH¤$ž‹th ´ï;ÙUX'µ˹åT©¨l÷Jë™â_­é·áN‡û#ïz †fiØ©­>›Ux…ÝÊ$3ºÚû)•²wá{­¸Æ%g…Mq¿Ni|]€ÚÝZ2þÂ×:R¸*Ò•«ðÏœpôvÝàÌ*Ó¥ŒF¤hóÓh×Õ#Nóн9~§‰*ËBÙ@¢>5odAåffT4_‡Ýƒlב\Ñb¢|“ÈþÐo‹M›åcŸ¸hÕÕÃ19k\»n¶½×=ÕñýØmouWYëx?®ûúÊ:»¡}qç* ÜøYDÎzÝu/[ÜîDî-Â\‚BQŸ'÷mPÛ €Dµ0_Ä¥qáNSÄt8YY‘!ãuWÈw€/ÔG·E7ôÜ$÷d­üP3ã½¥‚@KbƒVt3Ÿ¶Ã…µ©-h£é£P::°ë­Ó™~_†ŸWf·dFÍ:ŸûúÁ$å¾+;~5žÅòº3ݶ™ZUŠ=›ŸT[Œ^C\‘eG°ï„ »X"C,wõ6ÝV Ü{° ™ŽòÇÜX4\B$DD¯·úœ}f{—æ+º-c3(3±Ÿþ >öJÈÆØ3“‰:˜«?‰c›Q=·”ö^¸J²ªŒšoM]2ÈDUسYÒ!¤ÏÉ>çð$¥LÞ4GWRš“éÖ{^Ö‡¶+}ùá5úQÚ˶ø¾„¢C^¸3§-­#N컫M³¤Ñ·hCÀ˜}¸òõT ¯/¿¹Q:ªº¸Y5y¯Yf<Àã¦ßXäv8æ«ÞË+µ¬ TMÕ—k·à¬{$àcœÃÏÂ`'ëø‡úxW¼ó˜& ¶Þ„·@µÛ™cQËWÜ„²«ª¦nã^Zøƕ™Ã8=z%l¤¯‹·z£°*¢•zÍÞ x/!–©qàíik Ìe7 ‡O¢¡b•«0«d¬Ù06ñò–Ìu¾µÊ2Z¥^{P¾ÓÌ6{LŠmÑüdKgkUÞž¾`6QµL^¿W<0=h°þ|oÊ©ÆöªrÈP·á¨_ÿu(çlôî8ÇÙâS*Í+¶¾,w7†X1ËÀðæY±rD~Nq°›²dK¤’ •œ¢ÍOšx±9+¢u-·'d˜ÁZ™hT )“Píýëµæþ.j\µøé|{Õæ®qÌ`ªâ˜fŠqަ[U¾Y¾#½(g¾0HZ“Í2RÔ#§{~åÏùG}Γ׽ŸëÈDá,ƒQÒŒHt–CiØ9ݱŠl½w¨¦ØuN±¿¹/‡ö©ð™½änS¨db ët¾–Æ2\f)0ñ,þ¨V…ÞÿÙ@íK‘ôëâ%M¼ó¨=#eÀ…q®’IpÞ{ jÍjå <Ñ êÉ3GúNù©O}º×ÝØÇºŽ@ߦª9b”üÈÛ9Ý0Õ‡+¤iH-©œ£ËŸÏ&‚Û¦Ñe?Ò~«†ÔSA—›_s¡ÎÝzIHkÓ/¤çé¢iyʲ¥£TìëÒN-šv|×ì<§}ãä?µšÌ2}–WÌÆCF KEú¶›58–‚TV«Lâ­ ]»ºxfô.Õl¥tà‡wl¢X‘kˆ°hš§• ÙÐíýŽå¶qª¸ºôc'‡3þŠ-‰ÊÛÉNìåÄù NGÏåHoúur£PÑí€óõ™}*Ž™¨w¬ç 2¹„Y¤÷+sf½ïG§¤;¬¯@Èkf¡VΪITLã7#S©4Š‚­0Xõè¶Ø(> ~©5¼{Ìý] ß,Gz½< Ý‚ÉÖ¿‰{•„e¾¿bq›jB€ƒ:¸lºž ë|išKÎK0g‡”°†oå>O„pdz-¨+ê©aèwš •\vok/>³_H–îFÎz¿W!ý9eyõá¤HjÕT?<ÈòNÕƒ3@64 ×ç^ç©F`Q†tC›‚CüŠkþòiçn]Ö€b²DîŽ-a$ùØœKùޝØA˜G¾Qüù²Ö™ú$â»ÝU‘®#š‹°~ùïp¼Œsw} ?™:Ÿ!7Møƒg9½M-A„[ÿþÛŽÂHÅ.uq#uqSÛÖCjã¬YÝtþo\J_+`VwNqN#à±?5–¡×ù>²¼Í ]ëžÏ&÷]1ù|r(I£CÐW¼5£ö¦ Nvõë.ú‹\^Y¢ß4ó¼.ñ¹è·Ä)Ãøê´Ø€Ú¢ò´é"¦ ˤˆ JˆL5^Á32]´Â‰«õËÀ뉈2!­;.T[9ãv}o_"«ˆ­Gþ¼gÛªæûž°$Ç’¾íý÷ôûÚü –(x Z£†kþ-ùª·¢8%ÕÁRt¬2#?pÕ¡>õ~~§IÛp–!!ãHšÛr t±U”`‹Óà&LDrŒírœÈÙŠób“Ð`h#ÎUeëô#öCi°#s”È'(- „|±¥;Ÿ¬¥B ýìWÛf±sPæRàÔyFøÐw.έ˜FÈ&”­é5LVpºFiù¶vwív^ÂáhÆÉt¿@Ü“OAÊ!LénNf(Pï™çKUÔ‘>¦ ‰ÏÉhÀ±Ý(/'`Z£ 髽W´.ÖeÚòÓpúéiÊPRÕ•)š 僉"6„)¥ *Ê·¼:NGˆt—+ŒœÞ\×/)û6,cÓ× 7Èc)i‡¹Cxal¦¢"{ô]bù‚m—MB¥àîBJå0†Þr|KÚ+Õ¤®·N$gSÎBTC–&Að¶)îè‚àÅL—"6ØÔ®*æè¾4-#÷ôlÚä?ŸdÀÉ0'Ïõ8ƒM2Uú9óaÅÒ—c5!õp° w“B¦(³l—ÖRÉy~ŠìŽÖ³ïÓMm]½nWm”rÀÔ,õÛá^rÙ–ÓHÙ„þáOdÆ÷ß#ö¾\øÇnÈ×»e£} 4\¢D¢š‡/F_¤•° äJ ÑÀ&i<¬l?/ÃOGL1-­ `ÂIó7x¿ok¯Y£Dw çQ÷•rÑdv ¤ëývÑ„ÃÇʤÜä­œmÖ³ÿZùvÍSöõ¤jÇÀ‘÷ç8©Š¤S¡Ó=#äÀ9ëC•wÐ&éu'©›w(e¼®žKTN Ë—_\‘,}Í;¸Ú=ýÈŸ— §ÓˆîڎдË [\²èwløe/²ZTB»éÊ*û$ÒÚ-?Çàð„K]÷Öº˜døÃ×Ï»¼‚3BSeõ ¨£µŽÝæÚ HQǼ6ð×Å£<©”57ê¿sá—¿9\i²Ã‘»Ãcšä¹%±Ùœ•]Š ´ ~~W¯Î|˜zýìFÐkÇŒE;¬±Ù!Ù84oëùD†Ï—ƒ¢{=#Q]Öm·_kô½BÆ•ËX&þ®vž­àÝ…åãòϵ¨¡3¤5ÎUle pãGIa_8†Ëb+>k*’‡ÂnHCÑS¥{“9£‰…®¸<÷ÞÃF˜-9'ÇS±BK± U]L×Ò€Žå­Î‹æñÓ£ ,]'Œ}Éëþè¨ Rxõ|èe@¼˜ &Ê!Sq #ýÆÓâ¼þÖ£|úS_]_4vñùâB0»4ŠLßPm¹[õÇW Ö߀òˆ$rì Îõ„‘£Kxiz‹Á¥øµX®Í¼Ö×Çš´*ÖKr[k´#ƽQ7Š¡ù¹Tät·k4¯;­õ¢ÖÖØFÔ iâz' EèSzD†;³¾W“Òc´ÀMtÂ’á9þhbz–UЇ¡_1a2Ñ2$•‘ÛáNØ{dJJ„’íµcs¡hò Ë÷í@ån¿ècnĶo·¿úΩÎwXøämP˜ó§$VÐk4o´ [½"¯ËÈ/X‘Âõ»¼ÇdLŠã4}¹Ð§ &“šBê“„œ“åÖ~çb‘nƒ=FO^ÇáÎ<« ¬*›Y†2,6µ¬„dØS FÍÕBlò¿´:°6ÝúãZ#5ž,؉ýæÁs¹¾¸t êáuTŸÕÍ §ÈvÃŽÎBÙ”áœÔÙ‹£ö1GE ý·´$­ãK?”Ûü¸¸1á#úž¼ËdYPLÔÂ21Š}oÉ÷ê‚,ì.ÏJݽW÷ÎÛïøäÞ\ÅYæ¥Co¼Œ>?2`ϼ‘:úš€ÑÇ|°NÞ6ÖIñZ~Qƒ­mA—´xöôí"* Íļ؞< CÉNxkC#Ö–Ðu‚rö6·Û7 BM]Ì”‹øåЉ/œ#_OvER!FioŽn;ïý¥_YhË(Î02ìâ9ã–ÊüÌ[3b©/r¬é„é¿´þØ^z¯GZê"Yä"ŠÂq ÄJIÍÜSš~K/¨cm²¥Ô.ü2›Óÿâ·\;Ö–”ŸöIüñã ºïøW §ˆ¾W=š}b}{È–øÏPI¹qŸU}`#(&›n&)Gb5³êФo v Ÿo¦â¡I¡‘’Û|Ô’]A¨²®SÜ/jÝÏcI´éj}f”õŸÈ8.É4†ø‹ßša/R×»Èdzd«¼œ¤‘8i¯vxV6À5 Óoœf¶×ئßCsÙ·`èïfI `0*ÓÒbÛET)«µË]ÈN _‘µ‰hò‹ÎIŸ¾ÚU~A†×xÓ¾ÌZ%XJßh½¦3ØÌiÙ -Yg½È¡A¾¹]ŠÓ5Øùü–ÅÓvM_;Ä8N£gÎ4Ù»„bgô«-êæâŸäÓ –ªñHˈ/ðÌðžîÑ}à]ZÞ²÷¤Ší:ýŒÀ-o/ÿI0$ïÖÁ¨@æ‰xQ:úE{%&& )é)U-¤FiEP«ý ?1LТˆ9à õZâ±rã’¸ßû»àöjȨ⠊Ι®´j«=Íý¦å-#³"n¸Eºo¯©ÝáJïöèq#>Æo†á(“;•uêzå æ¿§yå”( f!'AdÂè‹ÄôÉíe0h{>ô‘¦ÀIøz8P‰`vY'_c[5r¸\¬X†6¸ ¯kéáUõØÄÔ)ûܘ¬*Oû« ÒcÝ-~¦oÒýXRJ±³†)}â62©° ÏÙ©Õv6üv ­ÖI7÷‡Ž*ýs{)z½- ÜÇCH llÈìøœâ‡µ¼A^ƒ¾Ü†—BªÆ›Çxj5MjšjùÊêú_#nUìóžuT¸‹™-zÖËEÉwg÷ÄŒË_í* —/IÔ P», Í„6²Àîh0Ôë´£ê×cgPQÞÈŠSšM²"‘ùÉÜ#K |*&íK†QNœnÂm»Ú²°¿»·î–œó„”¨“åPml# l1¡YëãIР"~ï΄°Éôùùó¸_ã²ü’“)’²<|´"|£xF<Êø$M¾1>Pb$á#±ìÛÓœ³“Úé¡ñôÉ…N¸¢HÍMÑ·õyL&¶jUyuZIàÄzÝ>Ö%AéU¿jn®-`O¬<Á.ïÙ•ÐòÁŒ¥ë5þ¼¢š×©¥qǤ ª ýÛ´&_wíÙ"ªâblMÏ¢Yòš( ýÈD½½¹*ÞZw8sŽ>l0â£Dù€úEs4½u(¡×À5ifgÜt½‹HCKªÒ·×=$aü+jJ¬áëè/vÎ"óÛ›^ENªsöEé*¸’CwÁ9“Â5z´ÒãÎyÖ,¹±ËÓ9½àF[ˆ¤Še®–Ó5ƒ½c—?m!Ô&š%¢èÜŸ8ß8´S_pgt¡"7ݤvøÌ÷y”Ý ͺ[l±˜¸¸›«©«°}®o›kQÍRß-O4¹û—¦ëó.Þ‹–á»E€ÞÛÆ±˜ž:1ªÝ¤«¡–àÐ4T˜€qe<±’‚‘ŸÖlÓݱÕI¨7ãDÐŽÃ7TÇ%×V âQ]_ExlæÐ¼=ÇÔQ'àñfÉ!SM¹ìÂIRîì äÁH÷<ôE6­šßêÙ¢‘Ð}np}:tŒÚ€e;‚oT¡9·PA4rfçö)%ï^د·:§sQ[ëS$G´'£\§ÖâA;;ö•l/zRÜÀO±zßÍ¢³fÚ¶¢IàÞð7éûW¼ß&ú8YåâÞ¡„QÄ¿xÿ­‹×b25˜ð0ü³­O"òá›×Èå1¤\„4³áéX·hA=jÝ4{)ø¸Ç<Ú„óŸpã&ÎëŠ_p’«¿`Á:ŽÑœÂWÏ“×Ë7Im¦Q~Èü¬µ¶Bx·È… a<³Û‹pwÛ–ÿÌÑHubAä.Ëýø-€üôÛ—E³¢íÇ Ü‡¸…™úù&Ä/Ë]Í7ˆ>~.”2Jž²7_¬ ž ËuuÏ †ko~¦Ê¡Þв¼d™ÈLóô{²¸´z!g¶ý˜÷ªžÃ Æ‹ŸmÒýIÿÆìG¾$æ|ŠõF²0R MéX ÎíÖÎñ—¥{ðËßx ½û­0öSp®=ÓûQd¬¥Á£9Žœ#qÈõqô2æ“Ѱ§ˆïÊ{6¥þ Š+˜EÁwø§:„ „W»+È­Ÿ®üî÷„[—¿FñfW.íR}ùþ‹bA³¦ö é!y…>1z6ªkÛA@HI3#‚Îɇ»ïl³ÍAýse'ÎW1½³»\Ž—Ä—1vh{¨L™1IÙáäw|!­«èŠ(°Ö„š+Ø-8]-Z<³³$9Kxk«›û«˜Õ¯³Î6Cè⣙÷Ï&F‡¯¶µ> ¿C’ç'm;8¬÷—•Êß-ÔThÝø# ËÞInÆ9™Ä±PL\p¥?Ãhd^Êh{UÕÔÄæù¼_‚ ù–äH\÷Êýý3üÓó·†-Æa™$ÍØÀÒ¾¾ÈX£‹‹ î²×Ô)j#™ë¾û¸IPñÓÀ5“CW•OF´óHk’É´ÚcA°2W{t6çq9áCmb9î,(Í\ýzÄ8HÊÙ{°”éKà¸û.Ôš%;=OG¡÷é÷Ê»ÆÔ¨ç²?<KˆØ»8ÁëÔË¥<½@z&!_cbÞY ‰‹agô²µ¥¶!0[˜Û»_eäÙ|tÌT3rÔþÒƒ ¡4“GIA?xi&e>Ž…ç÷ZyïÛ¤ÇöæA™rÖ@1]ϱñ"•|saÎ\{±ÅC©§ú0ç@†|Æ£vD3v&DP}ðr»r?¯V±•Ã=ñ¢q®1âw¶ËºªžoÛãý­,IÍu䋜œx úy%úÓ7:ˆ÷§áÜÒg.PN“<ŸšzwŸšrêµ²7YËˆÉØæŒëÂr$vUvEXß Ñ¹•“PrÕÛÑJ!#­³Ä¦\Úã[våËÄó”¿·Zï°®ðËÛ‘o³\xïlá¾{™ró²ß«uùg•*sZÊìó±|:+\þáÃä÷=º«ÿ‹I?L"ïqºž¢›pG¶ þdÛ·¥Äk4hy]-{®PÖ9ŸµT|¸cÓK´îÂêÊàŸùUž=yÂ$)ånBxã53Ǫz°qðvœ·xw :K|ø5»>§DË¢W=á´< /=VÄëéwª†h-J†;úô§ÂS­ìÜçµ4µy£üêõ°<³3y.óŸ[{BL*ý¶3E0È)ºZ« Ë^T1¤¥H¶š¨²n”èú=×+óý5ÉÜ ÓñòLédÌý›™I² §¼'i’t"‡UUe(fNÑJ†PÞɰ%ÕT´Î)h(¸'Ò[§Ÿò{h&j –.#ZÛ¼!dõ{kÒ¬Œ:§wC%0ÿZîrzã;Ö'ÛXÁp\ÕJu|¥Ï‚á‚Ij¨P÷§ŽF‰ØÆu?S½±­>TÌHÕÍé8ÍP wÇ,z%` 0‹A0 ±Ž4 #'Û;z8PŽQùºE•-œÓmmroÚzüD:{‹,Ìï _™¡ ÀlŠŒ™Œc© ÊÉ{•&óta%ÝŽ¹o¤—¾hŸPbÓ´fŸÝ2ý!†d2‘B)Fõ0¼œ 2*$Û —ªð\þQD‰"ÀHƒµÞvÞlÛ)ÚøWŠl¸˜!X¿ǃJsN“ "hݼ¨›µeb¡`{[#Ç ø·è3˜lÜ0ÓBô£l™·îY‰¥sŠÅ ɧ™‚þB¶©ú䕉C¸šzÙ…ôæ¥è 3§éªÏÍÈ¥ÊV›G¡Déz¾û ØúaO©!'ö)¸S*{±ƒ0 ö¾~õ`©â‡³†Z­¾Q¨X‰—v·Ž³ ¶»ýÐ9A7ç•ûåDa…0]s‘°Kõæ(»mKéeT^Â4KÍ7­`ªauÍ2vpþÞÃc÷ì™UÃìØ¨ÂÛ`拽‚ëÍWœÁ|ùîƒ^Ûç½)%UÙ+QC+NèýTnoJVNš_ð"lû)o€¨çÑ‚ š­ÉÔ™ÌRê¥ÂDØYÝ/Ì(÷Ñ”›©$(8ñ¥lq.SÇÓöãìOñš—ò'‰#¶[܃a¬Ë$ÍPm“ÅK0t¶±mß`Y³É>óe5‰‹~lë@C/j¯ý¬‚»;MTj<ü$Ñ6+ÑoÂá¾Æ¥jОÀ¹Ÿ­‚A‘l¡9v¨¡Ñ"3-T9·~Ñ´˜‘Ý‹îãn]àýžä‰OR·¸Ïá5_ÁΠ×Iæ§ã \+(Êàµ@È·gÉy=»t3ÇÞq°üæe´¯9¬´EäõÕŸ8ÌQ ùâ8K ô”g¹¦´¦Ÿ^ Œ)‘Wæo|±6]šÀvµcÂjª-ˆPMcðc@¬’RýiŠ9Tï`föEWÅwN[CEë¨õŽ9åå$ä§IêÏßZÛŸ4éû$G¥ï;Ý…=ò¼Ú5%óˆó1ž‚úlsÛü¯M”}—©¹-aÝ!‹ sðȶv '*`ìÒ)lÏv?¡Rpœ>ä,¿ûÞ ’ôJüû0íÄW–L¼™N© EGî8WXž}Xë5“2ï rV'ßó±WL °þÊ‘¤ÒßuŽÔCA?IÖ2wGŠW4/VÌz&“Òªû!PˆÎ\®Z§Üã[Ñí«T·k"y7¢'½Glå~n g4˜¢zÓIܸ|€>”µ¨hù6ù¬^DÔoyN@Þé‘H4‰"šèMDŠg½wl<~ûõÈÍ#=‚á¤A:fÙ‚7ä lÏR€Kñ›àh©ò:þÓZ­=©cŒÊ˾ƒ»+eC‚jëÎØ²·g+t*[ýÒ×;jõÈ2 MîóIuÔ(dêØj‡ÇÛ³èÝíÊnîjjžú¾ÐAÇŸÉ:n ‘›d¥« Ç÷†ÊôJ” %"{Ü’Ÿ2„›ø¯Ñ,†ÔÜŠýÀp:.Çm^q½¬VÎ|²í„9ËmwD~ÏΕüŠñí¶°–ó…‘ùxמ»˜н :Yêü<Áž k“\t,TjºÕˆxlB_´6l÷<¬+¢XôþæŒÔt;Ö¾|ZºxÙy±àoIs!±9³‡úÅÌ„"giS©ö“wP\2²P6鈰`Rêû;泯lp0¡R :Zür§̲èœ1Nßd–Ëa½ûXb¯='?Ch@Dåå|mÚ2¼Cœ<=4°9i³¿t‚àd¶`ÃT€zý9uÏÉ$b&ÒåµË8ÞN[õax®óë‹Õ"ûÂyŒ´w¯h¶4Þ5|÷‚Ä6ôˆ#í½£±Þ-ªO‰œûÊ(i\2¡5¯ózNixÃD=µ(‹T£UYdb=Ä< ¤¿~ÅèÁŽpÞk][Aé’§Lû@xí¬"ñ‰ÊéOµQÚ#j“nK(¼œ!ˆ^œÐ_fÍw±™È_(—dj·7e¢XŽÑó‡,ÎÿD¼ÑØc¬f¤li`5ŒB{Ïì=NkÚÐB{7ñI}4×ôÌí$@:Ö±Ä+ñ¤N±õ³ŠÞ^Ãy'ŸóÏL­ÿ2ßmš5[šõî8ß }]=fŒãÖ<Ôåï}ô dUxòe· ¬×r–0!Œ u‡±kH¬±`D]\ñÓÆe„îùpŸêùñm±(d„wò8éu,ûm‡»Q†?#_Cù(ê$Eµ/_cÇ*2G?HÜ*ãv±Uñd6৉Ý$òuÖëÙàîUZ`èyQ´ mUlqÖ±ïLg/ÓÔÝQæù/uŠýOý‘±º¦-Î#bdé–V?ëƒvÃod&ˆ cGŒü®“·í—¾ y~ÔvHbö*?‹¦KãÂf—ñØH«ž(1IÒ¡ŒbR»:¬—†Þ/ð< Ö0æVPs¢Šô„Plˆ§ô“¯ÏK¶T èG ,(¢€š;ý/ ˜ÃŽ\¸kUÐ(eí96¡T vö"8£Œ7ï—žx­Nö`Ê:¡ZǶ§L*É|é>í/ÔÝCc‘ƾNžf!b¹ÈI²ÐåÐê§=ñÑäq¨|v{ äù>c‹Ö«Ðô‚ˆæ”²ÙãáeñâLMhW‹K+¹Rqy˜4ÚK•Ï•¿ c_zw uríÖ¶E¶‡‰6¥%QìiXíjO,'d$v0}#ÜÒ¨ÄcKÞ*j­OþÍãë1N¢Öã¬4‹ÒþÕ"L¢DÃk Þûàñ2¥Â"—zC¢Þ>ÃILúÂàP¶SÓ‡1xLé»”±nß/Óæ-ªwSÀV2©˜[©oœ|m¢Éu<0Xôe;|õ‚Œƒ#Ç|bÒuäá¤mê±X3£Ÿö_M?… Õ Nv= ÍÖW:ÿÔ`«-EBRžð€ ÈÜÀ,1çë3 3«ëxüðJë¬ÙøÉûŠ5ÇåK †¦qhÙOè‘æ>_=W^• ¤\Óœ¤,?yß…‰-â–Ä\Øx%si>’ï\T„ ¢HñÞ̠õ7T;ræü°øo8Ñ'TœÜ¦ÞÌ‘yŽ…•Á‚bÒ± ß Rå[µPù¼*Æ_–ÂTJ·Oád1*ÊÛ×¾hé[pÁŽCm] ߘkLóG0Zð†°S}°ò0å›9߆üI¨$ÂÅóCn†”N÷Ð#æ±ëîC™EbÂÙÀ„ ÎþX³H­]9-¯¶=ÜëÌߢ,xV÷%{zÖY,!96++<íÉWõšK«)©i™ókEÒ3 wT«÷èøú ¡8í¼HUq¨Á³ñ’KxÐÕ8«jØ ¬Ñ9xj-ƒj!(#Q±ÓÚtß@I–’ü®I])¥xÔ£]„]kûA*óÖkN6VDƒ•tñý> Oŵš(ä¿Iû0ަ¨tûmØíwˆ„+@ß?s;üŠ3rÂ%†QSú5—T³×æK>ÊK‹¸ÛÀJLÀÓH¹âã€÷¥”Ím¡@48‹„«V8c¨tBòÇ„Þ|ØI¼ 'à`yCÑÖ3-v“¨¾ý5±·É°Ãsdýú±Ð3WÍ[wÙtg‡¤ñEâ\uSž×Óårì`»R±Ö½3E&ð±˜àj.¥!Ú!²s¨_h¹¥žs ëá²ZНG×C×<Á¤vÌÛ|[BòõŸaf>ŽÞD(¶TN6-ý––:¼¬n­S+«Ößv…ƒ‡4B ñ3åú$ÚOº»ö"Aî³×øÀDäã »@ìþ­¹†>Mˆäæw}ЦAÏß…Å-ë”ý󘋎ا1iUÒ·‘[¤v]i›_V“›D™Tm“g5×|(Ë*†«&òïŸLõÄ ¦›‡ôf­!rä[´uj,œÄngTrY•Öv£Ì”wʾ4¬Õ¸°$lCK`›<ª,sº×’_i.Üeáºa2<’‚ìætzõ”È·TG™ñ‰›ƒaÛ-¦®wÈo˜˜žpšà¡~OÓH€ ïÒcLºdÐ6—ÿãÛGÐ7T\\^ǸðNþuNç=|TÖõ;¦£¶¾ m1Þ)8ÍôWr¢=øºXn*eÒ25Ð3ï,pˆ’º–Maúíòëzº zK8m Ó‡Ütx­á˜&´P¨n–±Èø®¥Ued²(ü«ðA4–}JÂAÙ;Q£¬ân«G>üÄ%yjšwaÖ" 2UL;(#mnR„×Õ„¾>IêÁù:E cÎ1 0½·NzÛé'B (#Úš²1Qw–•°"´ƒú)Å:äÐ ìÝPüçÓñÔ»û±+–Å­tóûžžNºé´ZT¿™øË3xŠê`©3T8Òá¿kOô '¿d›™†|³ŒîRá9í2Îà§x-d‚áŸzÒ$ZM«Œgåöζó©m~fcøt¢¿ä–ŸRæÇé„àŒÖ÷ àB=v£4RL²‡ÊYbewΫ£;´è¨È=+u"Rˆž´1í§Z5Œ¡ Û¤Ðî蜲¡‘Á`ä!Jt\舤‡Z­«1~L¢D±¶ˆg²ñã&Öm«¾Šñä!e¨Äi×`Ú­ó<*¤4|¼îlY ë *†;(|ÓÞBç#d‰ŸNG^Ëf¶WRñéS¿UDý¬`ész.y±ÌŒ>ä§¢ã胙Ɯ4¯ S[…‘LFtÓ1¶GlÆj2ònMl¿‡\Wf#utê.·ÈfÝf~s8®+iÖIg[&+R‚rݨæŠwÏ?ŸhÈ,"BÔ‘båÛä2ÐVÛ5ˆr™œÔF¨nã´(êõ?–\ºtyÅ\ÖŠqõ9“`€tØ«føÍ‡ñî…cCºOÉ/|µ‡ŠßÜÃdž]’-Nƒ:º\>¿ßrðs7ÚPÆ @ô‘) ÏBž!ZkƇTÒ Q æÁ>æû$[¿oí?ªyÙ±ëïf:tè‘’j³û#±XO:ˆ[ƒ“eÎ)Ï&ßè®m\ôcÌú²A_žšª#±Éž©ÕÏÀõÏ£ÈóLºJ,újèpаƪâ‹Tf¼ƒ˜_`"P«Ùv±xòÖ^a%>˜X»Ô÷¬vëÙ¹uêéæã‰ƒo+«Ô—×¢6úDðæàZ¡)æ–û•ˆfïÉÓÛ뀳Ï*×5)‡hBA‰±_b'C«*p3@‡SøÔÑA¸Óò-Çt_ÄÃ?u].¦>z4 ~+DFÀ»&ƒ—) PK1ò¾WdO<×»~Ã|Knð¾\…Zý–!rA?¹~® +Óê›TÆ| G”¢5Y%ãMèiut7¿f£ehú´MØ+Eƒ8g6èÊ®Ôa¸<Ï,æ¢ Ö8~Ÿ.(Vx~n¬\«ÈR‹z¯ê6Z‚ó­`‹Æ'q¯+¾Ì’qOj£×R-ØM†øk¨„¤fè ?:%½Æë*ˆ ý¬’¿rú¡} á+ã~Ò0"N9®Éœ6â5}w­Ž…—–8ôİmLÜ?Û™k?éøœ”ÃîþBú¸ ƒT Û(TEÇÈ]ÑÁ$v¶Vv‹ìÉ/ÅûíŒw€0½­0IÕhíò]ãz‹†h,ôÊÓ÷.ý7hµßŸÕÐ0Ò¯Ýç–$˜Gòä2a£‡eRš¥Ö³ŒO^ñHv-ï¿*Veæ*Þ×N V-ˆ¢ñ<÷§ùpå¶Ž`æø~ÿ õ2ÞEõÇÂø£>È•¢n =–¶C’ ~·§dS°¸>õ–™Ô‡6 5 FE–6e³¡¾ «´×®SÅÓ¯‘¨†7ë½ßÉGÇRØïH@L³@+·Ê‹µ ¥¡‚?*Óß©$Á1 }¿²x?c"ä}®ú±ýâK˜—§¾D'WÎUÒõ÷¡£~£wADZ¸ùWü/g÷ÏG}¹X–ïZ#[›S„ØåBm†CJ]öG¤¥­Õ›)òëiú6í@èk%±jY­ ‰ßù Ök—„Ù:uóbØä +ŒöôçâBaÌ!]EÖ¶9a·+NR^Hf]œ œò=ϯò$âÎ`íÕÎhâ- J vÊÎȳ”jÈâÞEjàñøûà ŒÛÂzÈ)ZªàU|kž?©~üF¿31âÓ¤o%:â.ŽôµPÀ^áI€ÏËÔïÕ{m ¤£ÛCÚmÜÑ•O@Š_BÕ½d,>LZäV3¸"çWM/çV5ä»aÚ3Ñ6,¿&Gw´ÿÖ'}ÅœïðÂÚÛ:jµ’üU´âÆU”Fñ C€ÁOlì²ÅùbŒì‰¶ültC"ÙÓéTx%ó'ç´OA\ÝÌ2ê«Åa ®õ‘:9Þ)3ËS„íÍ’+yFY­zkט¬ævL{73üÎÒo?®ÇdXOÍþtœîu‘gèÉÍÈO&h/ñ· Jô³>!˲kl›|gPY1›«ü5Òý »h|[­”]ÍHfÅÞ÷OÆ•E°L'„‹þ- g„^ÃNEr™_?P»G—\fÚ‘Çã0Š»}·´•L2@¦Á ­Å¼*yµM¬¨cœØ´%nðѸ#Ãô˜-ºôØ{0·Y[Míã}0mÇ2×eÎ`®Ž©útМɳnü5çÖ‡¡ÇåÑЬ·vG±-O¼û`Ëp^Ç#ÉkÜß–7q¨'õÌ0)o=¯$œCD82:Eõ[.Ÿ W9Š6þíËʹ¢~y¾–‚÷åuO‡úár›ñð†±{¼Æu9WNÂvúˆ² €Ýù‚–¶Ïdmö `èÄèîÚ××ÌúïLŽföZ…ê+G+lІŠà­IŒr×Ö‹ù¬žœ7»ÑÑM pÁˆ'ò¦òæ!z¬@þöh MV¤–.—U¤&ŒÌ©Qÿs}B¢Z^/LƒWòžÆÅé»î [¬åxŽcø®Ð¹SýÏa£Kêød˶o]¼¨´j~HI|:g¡±áî/¬õ”9{ŠÀpâ5E†çç8iÎ’Hœ† A[¬S‘œ= ˼¼¿Fü:YŒyÉ\Rû¡~ô¥OâxKÑKé:©ª5caF’Cíaì,—’‡¢v…³þu+î6^rË%6œšU2yŠœ6™~FdŽ•–_GÚëíŽÎFò»ˆÐ+”'ðh‹F•ͦ7¬¢d0:²˜Ð,šPáUSÞÊtiÔ,[¿®Ë鳨²…‡<‰aûãÈ=ÛÑ|*œ@ 'FL†Ê8¯›ÔúP ZέÁ]›’5”8žÜ¨M-©½Â…ºÀÜ (òàJ÷Ëq˜;Ã/c¨dR'´IMPˆޚ#â'(’ÂÂT~!m“7ÒºŸD;¿HP,®RsÔr¤ÅeLƒ–:¯y¤ûÝžnðÌ‘Š[äó¦è ΃Íì}bôuÜG!èìyøÒ>ˆ<™vë |až×Ì>Nß6„q¿¨0£he—lÂ÷ÛÍ›%ƒ×šÈ: ›i|ºöúð“Éq¬'´ùx~EŒq3˜GÎ10µ›|½ƒ:‰®…¦7Š™5\™ŽÛ „x•«zÏLï=ҮȞ*<ß"Q_{‰ãíKþÐ!e«&h‘[1_㕈©B]B€Âjzúrm†µp‘\Ç£r1ºª“w¾Rɪ-€h~x6Y¦ÿåg‹¬öOèîß–A¦—ùQ•þ&lájÁ¦Ï¸ßrQhÕ¸Q§ª'îQ©XUœ«ç1n\¥ôW õåë.¥• 0äQeLÚD1#¶1ìBƒÂ¾E5f^|–ãôòrô,7¿`z€XDÎVºÎhº7m«‹ý2Œô‚BAXë™ÀRÍñn°l„èå/¾_]RŒFû§J}©ÓFÃz^ª¿ ÜÂ0*ušr±+Mª¡|Æd©![q…²‹!Èç^ü—÷ý4è9-!¦i½iÛmôÑ/ˆ{­+ £9Ï&"… ¡3fT.û g»qü0ƒ‚ÌW 1?}^M¤ww] oGnDp–©…~§Ñª°ûжÑf<µm”jæ$5ݧ}Æ£àv|(aÈUžåµ*¦Ç¤^ƒ `èòÅlhvœ45íŒú­ÌË?²F(þÇÑi…–7 5†bþàlxZ©W`NöųlN2¹‰-^uøÇ's¾¯6ŽÔ1Ââ1+'Ç‘wÞÎ|ã_¬í6‹Î;î>=À‚Ú| íçáŸ`>?élvðÖ/·û:£eÖGánpF‰ûäÝ-¼‹°'œ4µÒš¯AìÕO?b‘ЙdŸ›Hpù>tr?oxš_ÏÀä–[Õ·ÙŠas”àc|¡Têµ|8ùž™82qåá^–¼'âpõ§œ…²T®nü y*ƒLf”êÁ«¨ÍŽÛïUjw8S0©_¸}aK D+‘ôs;ÖZÐ玧åüÆVœ%œá{ß^GÃ!@[åƒ",;ÿŸ öß“ÙЀ¯<Ù´µT³v9aºðk8±o%|é¬^çaZÇC;e™íƒ4tÌY6SÓî,‹À֎ܼAš,8"/0=Kð…T¥ø­×ƒd„=XfýÀ0— e u…èò¯É"÷|Ô­PÏF)¾÷"T;ïþ[é•kÞ6]lf±¥ãجû’îy¿S.½g¥Û‹3Jââ>"ðt¡‘ï?D:2]ƒ¨i-â)'¥oÊWBp7ÿ<ýˆyÑ©T޳a™äúù\yý…aðgM<2Hû›®Ú [ÏrQRÊ,21øŸ%N.×ý<¹Æyù>ìŸ*¥k¡!ê?LZÏDYB’Ýo óãa I…KÖ æ…ÿÍ·ÉR¢-¨¦îÕUˆ†¡‡y/…U>zñ߈ļPnÃg!«Jׯ’ϽK+ÞÖâÏ©_¦¬í$ÞqB‹Ži ÿù¯ø.§? DL¡%Öl¤2z¬ÆØ—IÂ)læ÷%Öõ¹‡rO#g)QƒMG—ð]Z Øøén;9覠 tbÂü6 «¡ƒÜ'“Ãó|¨ y¸\mv{ö2½é*ŸPLa.ªÆÄv®Ù^¡sˆ ÿ«×@à7‘¦7 ú°q[ÏØbÇøÚûy‹ °X°ˆMø”§cõñÏNÙñ@<_â’±L‰–ësLæ<²XžÖÁ™†Pk’EѧÖ/w·G)XàÇz§o}þ©]æ €þK®|§ù~0#ƽ¡Òú¾‰¤7ÌÔZ’'ÅÛk8!˜’Ì#>½ønŒžya³â•X½#Mý DPÎé«gø®”‰ó°Ì:Ï®6Ë~¡FpÁQåKO‰Ð €/ü¦þµúï>ZÜþmж×.Ö­ˆ²Ö!©Œ‰Ð.nŠZø¦ ‹iZe‚&µ¢©Æ_šy,ý½6¬$—ï *;qÕ”ýlL29.d5 æß†#ˆàÕ“û§È<˜«öÛJg ” ž+ÀÛk#¡&5JdPh‰,ý_£ U>Í'³(ê„:|/Š~©:ÕY$-Å6¨<žòUc Ž é&Í£ÕõÐ袂‡\Û.ôyS/¸ó'ŸLÎgG;ƒÀúŸí;ÄÝ2úWóä†ÑÊ£dFH[˜|ÿÛNÁÑB€£Ú0c€·rÐæ¿——Ÿf½J…eÜMíh“Q››‡ ±暈ÒÐÿF³²OÛp'à1¾o6÷V=± ëß°a½7¢ÇtEîUßð?©&ôX–  0~.¿`bl&ÉNDz˜°•a2nõÍ«»@þÐÒ>ÚÀÜ‚ žŸ‰–S¿R&ÉRìñ·>d9´ük™ûŠèöoºãq9-ÐBÚÄþl¼qÁFdÛ­–“ÜÈ)6`¿Ð LÖLÞT]-¥&ªí‰å{¸%üdÇ”uó«FëË6EfeóË/WL,ËWKåÜß8}©X€˜!”W×{†2³'¸Alem4Å*&•ݬ,ï c¾!k\óewðu¦^¦ñÝÀ&HJ,8É—dËú/]U Êšè/ðå d£B4Ó]µÏ®SÓ|{ßu©Ú_0.}UžÛ”“¥ThóçÅØëEÚq¨¨;Õâ2½ Ú¬yGܳöS}úy¸èKñêT_®ß[w feß»G…²;Å¥|R)óö|„sû*@£MܳЩp‚ï|pØ}KŒ=¿cP% ˜®L7‡ç©3øðƒFÙÊ[t“#§èXˆÞEìlœÊVú‚ Гr æ[è|5!YпþãÓÆù+$ø'F–Äx)íî®2\B)–ª›_P.w…÷1ˆñ2×l½¨Äů8âòÿ—êe¹!.,Km¾.îÒ4bwÉø5mñŽËÈŒä&žþ×Bȱß%Dmu*×o¨Ç‹›DÙWõIñ;!‡/[¿„æó?Ü€~nŸ÷Îý ¦íKÖX. €i¯zkX àanÊŽâAòÜlñÓ鵚îC TÎgÖŒ,Ÿåuq9{´§ƒQFy…Ç£T ê=›E{4ÖH=$+Î(F[ê[0¾r(aÀÌåÞd²ßÙ䜦'àY ŸôŽ:`nªEá²¼‡¦×Rd›d¨e«Ý}"Â;ó†¯îT·Êb%ÍyÙ$VÊf4ï^Ñ4‘  SËápêŠêVÓoâ:öékVIZï´Ì1>ix´_:ûê!@f|šBUÕ•T¥øŽ5  L3S3zbÍ”°Ãh¤ Ȧ@iÃÔ­Œ(jèòK„»sø¹Tõøº}Åâ=Rø“€SNýÛ0giе6=®È*½QßûÍc &Ù¡à§ÓfýFCÂq4Œh(—É=GÌCŒ–®¸”:Äìw¯/xȆWPVÔØg½ ¨šˆqFE{?·SJÉU¼“ =h›´r¶ÃÔ'|¹DHçeÀÛ2žXlýè ÈØRC¹ñpaÕ¼/¢M.k—3&¶)0úÙoÈq7´âŒ3xKÜÈV(ö`HXÉÙŸñ„zi›ÐÇ!m©³’“¤{êTKÂÏçÛ ›Ì5.îIhD¦~]c~.Œèß$È'‹`|<µ_av³Ì:¯ŒO«Â¯Ò‘ðes8uùŠd1Žsžz-> ŽŽîuÒò˜²îËÙ**k"‡äÂý'+¡.®†&шÞbìN^qAàt[éÓ_õ¹šì *<Õª*L½Y2a÷m}î}`1¡Ú}‰Áíëî\yû%”2ô'ºäxsT,ÙWuij$Ž› $Ë´F&Á¡ø¼ÇÝTYYAÌà ¯+{/z:²´‹Áä>ß83Ã=Û#¡ÇDhMUðìAÛIZø.åàjYïKAÅœŒã˜ $¯ÖP¶…dQ5ð8åÍ•~·—]Þ'Ð"ä~k¹>Ðy,¦;™£ý('á]52¦ Ñ‘B^·¦Ïö¼:b(ª¼BkÐ'‰«úPõM:$zf š4… …ÕEÃ=6ap3m|€ŠìŸÆÎ³t‰=<È1˜Œ&1ò–*°þd‡›håí¯¿|cz×(Ý2/Ø$ŠpŒÁ&¶yE ¹Â&„´3¥!ëÿ9GûV§¤™Ð9†Ñ‡– À«ùK:ñ8&.Pû&÷=Ž^X8@] ¡ä–?£ÐÐ )i7Z±3wm«I [X!¹R¸ÆIàŠÒj1?'Ì×eY„¿{G‘{Ç$ऴtF[š Øœ…*'×b!üÒj(ƒJ{xžàï'é¶©uA&ñúéóK,Ûy_̼I€›‡`$­1´«qн$]GµCc„t?CmN¿¿´é–0PL’DÈuÐ0Î7'îo®­×u ‡Ä(Žï WŠk„ŸËtˆ‹Â€·Ç½ÿx57¶L©ôŠ&EQr3ÏB©fŽdŽñ!J¬ÎMbý  Ï[›‰øë.زW¶DYÐ-ç{¿åccŠ…Ø‚Î¦Rä}fÖö5ªnx´H•Ü4Fé ¼VÁ[¹üàÎ àcMižlÕdW-‚¿ã%HۊؘŸ§£8ñ帲: ñ0˲é;ëSºC<—ha›WŒ£iËzgγ(F2é,ký­-Q,!²k bIô• $,!–º׉¯`à n6}w+öçLWöüZçúԴѳU¢â–Cù(êkJ‡ËÎ<ÞRöp¿¯¤$¬· \—JE|Š¢%ËeɦÐ~Ùy¿ü_X“Ìó0N߇ˆX^<üê :„0·œÀUÏV…TNìÓ¯$bnÉט+I7æv'kŠd¶R p2ïÙÓÆ*ßÒXDýâöúû¿w¾Õâálh6õ?Ó§&â!è/!±•ÃS\ÎyqÒ¿ë\³¬÷óÆwˆd˜­õ[v•8¤´‹¢ŽuÏrÆÆ·c“IXÖCSTé Ô>ˆÖàk"–"D°x @H/³_øC;ÔÜãUFÀZ¤&9ašárŠòCvΘ5ië™­„¡Šý»’ùGL¦²–´F´_§Zi¼ë;KE4¹©¶<êÍT-%€0²B…ÒÊЈQ–Ýã3…-zŒÓ*Ê<2&îöGëÏÔA`{KÇüæÀEæÊdUŒå_C²¤œc¥D¦ÌÁ Âü}ƒÍ“½¤n‰®;ì0ú­ùë‹ë0KqÀ$„xö.Ø.žÀŠ{¨Û/½CÉ`Ô©,ðƒF÷U˜¦AŽT@†±Î:§VGjÖç… ìúHÅŽ†0ÖK‚˜ƒÔí8ã[Põ5?±û]®f«ÔË"Of¶S‰ß›‘2¾ÄÚj Ÿwðœ ú1rýŒE{u¡¬ƒ»º†cH3ÏxÇsÒä(J[§Ë‰ôíOXtè¾Íîàµâ±Ìp¿i¤Ž¡T,H§Æö·Nv¶bý#HÐVJ¿AÕ&:EÈ©w²ê(Ê#2ѤÜ÷$Áe~›Žðùö/n¾­SÓ…ž©|*Å$Ôñ%çùÁLÉî°¢«]±•ŸÓô—#!r£¿kê~À1dË—ëÀN2£=éK9(  ïä€ý;¶ ¥h}³‘ËA>Ë#CheXã.Ýh¬Šf»z¢ìím\ ³ü›X ņŒ1iµ$ìôTózÔµ®8Ì¡·ü´¡à` ¥^ò”˜ ÍÁµrÎÚ];gàßð¥틾D²ZİT\#ª«5jGÅ•lùl+º7Xâõr°œ×És(ÝË 'ÊÄgດiù•ïƒDÃRT"á³^†ç®Ð2½Sáp‡ä/œHTuÿö }ïÆ±KðPb¥–Ž4I¬µ Óë%›9b›õZ…£g§´,Q…åH I“yMoê¦s÷%#5ب‹×ãR¶ÌÞ¦pžž…6 à‚CôU€áó0"P[Ññ[ò3B*ÝA¹æ¾Dëgêzÿô¹ö®VŠÔp„FH)HS–wcµR+îÒ›˜TUò5Юû©BQÓ ×Xf/“ý݈³ÌuÓHÝ*ïJñ––´ÞÍ¿41ÙD×KAŠóÿ¢zا¾=‚Å¥@3"L‡‚¦´PïS–›8Ãì-Ô™(=ÿß’íÿU ²äÀÍ·c#Ÿ{·D#ó1aæEü_ÒºœéÓé•7.è/|cÑÎ ÷^€Á‡•)bƒ|ßþ ÏáÏŸ3.…ßJ·w‡*V 2…ôN= Óÿý ’ažS«Ò6žÖM»ô¡&J©>¢Ò &r–Cý4cT>A0­PWã©ÿ{=½ ƒµàmßÈFž=ÏRéк-±ã–J¿ ïÌis”Ÿu!êp“^J]FÖs1}áîo—·‚À¶a:*<<–:ŠH;Guš…L[´‰:eƒ»j~²éÜÁÜÍ,P"0üÙ³ýç¢\NÎ]ÜVò`·—¯ÊàÁYe¦œ£wzÿû†ðw’"‡0ví1ÉOݼãäÚv¡@ügcW€X¿gëQóâ´6íö!éx%6Õ~®£•Ä¢ƒûH3ÜEy ÅU¶×V£H|@t©'þxi]3ùë©b°ì»ßåtuBËTÉ7›¹™àÓ©/‚ÁΌм[ðPöüȑӴÎkÞø$ÊCE«Ñ˜íDoo(‰°<Ú̬ØÙ'€\‘øù*Z½ßd >„ˆãÏ~x÷C†^¸‰1…Ïy_÷*-!²ø+#…ÌøòG[ 3âtSÕ[§LRFRPÐXFáôˆüÃYÌóœ45òÄ’J¦Êcìf…F´ 6Œ‘tº"ÿ1¤Š àtú­ûËçó¨ç½WvÔÞ[CØ7¡«þõ£ô‘ÌYA¡?M»6 ÁΨà×Á±9Ù£¸¥)1“ßC°ÀˆXh1œ+?öE!T]ÙµgÕèÊñô…7rM©¤¡=çiŠÐ¥g z–\UœX5;Nϧ:Ô¶þkÿ“¼Ø7hK²á˜šÄ·°£ì«¦EÃ+”"&‡QÄk*ø×s3ŒAþ»ëÆÿø©6ùùZ>e„ç(4vùD<Ž"weg{Éêüw]éµ’¨Ñü»ék­—H½r÷[ pýËZœÒ•”˜W+>ìpž ³Oâ)@2ù9ÊàXNWño×È)wSœQâÝ]ºnªë<ôF»5é‡î¤Öv;Çï ¸ÓÅ¿œERZVÝՌ· ‘>&ké2eÚA("–®íJ¡Úf,gÝYeÉŸˆK¤ÞYb±¹Üâ(ÁÿW¡µRd0Vˆ¯g%re(,F?"uušç7£59*b$ ¹Ä#È$JMn*þ ç#é;ã!}ø üoîßòˆˆ¹øþ¯äüfÒöúUfΚNù®P¶¿$<‰×åNø÷]&ïüFÞïteDù0 )¤˜'^–Q‹`ÔâÂA-qèy)ˆc`çh!SÖYñS!ਜ.4wÐÔÅGR×ËÍÁ×—nš.òÊ}çÛ=â©t!yÛµþ [M)LÙ…G -«<|C"S¦¼@Û4&XSaß\£…ùê8ìÞÛ×¥?…ˆŒÿMÃæ¤Tp¡¬QÄì%P‘²*¥€ùþ%°{¶pûp½…ÞÛÙ7•…~Ä+Y;Ú=9ã&xXü!qXkMïâ·„ô'®"D¡ØÁÝ4µ³5>‘‡'’¹÷ôè[ÀNrãž“»ìôAñI.µ¤¶¬ TÖŽòà7d¬GãËhÛg ·;`¶×çŒDÞ®ð«ÄUpky“ÆL-ŸO8‘"07ø€Ðɳ@zÜÚ ‡tzZâб„pÖ$Äs3ú1PTî,wr´TG?%î »**^Bïù}Áø%ö ·n ®VNËê:¦`sGª1ÑBZlÌ⪣ìtÿs¶œ&þ*d!~IËE))îÔV<È Õ)Öšñ…'Ab®úÉÅļœ„6ÑPMoªv¿(´ƒwfĈãq£´Øé‹K»Xœ©ç=;ŸÓWHè]Ä¥‘5R¾j­;“Rù ‚2Xy誚úwg#Ñ£M£4°•H¥ìK®²Éh›¸—(v qÊÞ!”³ž,èÞ$¤0°åYq)ß7 ÒÖ}‹Þ…>:œzÐl>/dO8Ãø™r'ªy¿Ö¶ë0> Ô8# _ oŠ÷R™Sæš)˜Æ ª¨TÞæà–qyžö×ÏRª9üܪì+&óÆ«!gN‚æ´6 =ï•3ó”d¹ææþ¥Å£àF–Xá í‹jF;ð¢97“Jy˜,æi×mA51n¬ShÕpüKõ.)Ø ÂfG)iU|NÒIš"u¹³ö¦ñy¤D€Y4Uø-]oÄW…8øíååòÉ/VµaóÆÝ„ð»~vô¹³Åø‡Ü)ÁÁ'W[ Euç¶ÒZÀé‡w¦±†ÈýŸ´ôOØÍ§t°1‰×¿G¬µžÌ¡ã?\µc¤·Óu]±›Ñ÷'›5ajâ;kQ#)HLidubê÷¬‚Gè•¥\”.&«Bç;2ûarx¥÷|ÖÜÍnz¥1ö¦ ËÖÒ‹ãN/|1Œ b£ç•¼ÀïG&³ãHôX ™[ÉÞæ W¾¹ÝsÕšÎO»ýÊ4cM*»ªš™òñ~Öõ®#@¾vÊ%u—¶È·0£R<Ò¿•g©AÚâ.é) €Ù<ïí‡hÚ¿êW<Á([·Ø‘|ÓtÈ㊒Ùù‘uÛXÃGîI—^Nömt:û"S˜ãaüë=þ…Sâ˜n¯ðG/Íû­´å"ØÑãÃôxsèˆEÎ퇩ڃít¸âµ³Öç²PÌ>crLoVyXœƒ¥»àû¿®Ø12§BZ¬áçn 0üÄÀŠ$I‚`Á} »ËýÈÉ =7$Z{|ô‰éú¥ÐÖŠŠg÷¹)­Ò£Þ Vî¤0"7Y€®–ÅËÕ%i =XǶ~Ý'Ø.SÏêbÅ!…iñ;Ïï¼åÈ—ΟGÕY!e–E„zâ ¥Çð€ƒŠPgÇâŸÔBÈ¢ïL©>o^ÏÒNì5o¬{@âð£Œä!¢ jX-lN<'©¢ÃØ_d#ɲŒÔ§¤GW+1p µæÂ ×žUÝ!©¼‰S¦•*¼Ç£'᪓ëçK­é†28c EE a™`À¦¸¦œQvùÕñ®)-‹Õ$Û—#]w¢G>Žìªà†ÜE…f¸Žt Ìs+³'dY%|(z5…,òïôÅŽµØ{YKcÉò±":IªE÷B¶òš¡ Øel˜ö ‹”¤ÕµÑ9ÌUV·–ú™Á î¡0ªø»|ØlpS²À®¤%–Úçä¿…#2w­hÝ¥×0—,UsÑOŠÓ ›†`ÑyÌϹhŠ;.jQáÏx€yø¼¯ò7V€“ŒŽÍ=.;^•tñÒ€bM¡7}.‡¹ò¡gÝ﬛‰yO•K*à æ6îV±âo`õÇŠût§ã»h§ÊétI>§ã¨urAÒ8Ma2Un@êHþ•áêìtl¢g–êüGóä¿ÙP'ù„‡êÌ^ºßì—¢P@=n*íÙ0Gš5íä|²Wþ6Ë:̇Ú[Œ©© «ªu¿BÎ]wZšCU?‰//ó9«­Ë®_ÊÒ‘6žSBÏþk•ž¨ºoˆmÊÈ„¦g¿œyÉÑWKû¶.9uöŸ†pV6ȇéþž©âë}¯i6dÅõùÑ¥FŸ—ë£vJ{&§lÙ¹×k]ñOÕèéW¥làí1Fœ‰Õn{n?…!)æ3ê‡ âô—~5Ž JøyOá°¾ ùių¿E7Àðçë©ÃÙY4&w.Yäb¡GêÞ#£G K¥¬ký`¬w)]UŒä¶º¨Lñ‘m°gñ•6q.#/©æÜrŸrg™7”8Ô¼0R{÷€d£ÉðËNíwk›¢ñ­xŽ'ÎA®ú « E.·{ž¶ ]Í5àÆhÈ÷ðÊeˆš“ÚºZ@¬:úz×â¾jže Ï=(Ù|€°¦¶Â ­·†k¾‹8- —ß\ ðÊÙkOMçãž¹ZXâÜL?Í7Ë÷3‘†æû²¤WÅKµé‹‘ú¹ÈÙ‘  šúÚWRÒüŸp†–N™Ö—µÓ¤•”²˜2ot(Ì0MƘ뗘×7†ùø‘`À!Ÿ.V¾ endstream endobj 173 0 obj << /Type /FontDescriptor /FontName /PWFWYR+CMR10 /Flags 4 /FontBBox [-40 -250 1009 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/V/W/Y/a/asterisk/b/bracketleft/bracketright/c/colon/comma/d/e/eight/emdash/endash/equal/exclam/f/ff/ffi/fi/five/fl/four/g/h/hyphen/i/j/k/l/m/n/nine/o/one/p/parenleft/parenright/percent/period/plus/q/question/quotedblleft/quotedblright/quoteright/r/s/semicolon/seven/six/slash/t/three/tilde/two/u/v/w/x/y/z/zero) /FontFile 172 0 R >> endobj 174 0 obj << /Length1 1724 /Length2 9982 /Length3 0 /Length 11079 /Filter /FlateDecode >> stream xÚ·PØ-Š܃Cã q—ÆÝ„` 4Ò@ãîÜ]C w n \ƒ‚KGfæÎ̽ÿW½W]E÷Ú{uÎ>{íS†6;ÈÒÑ,çueçâ ¤Uµ¸¸@ ÈÎÀ qµÿFgÐÃ\ ŽPá¤a`3×§˜Œ™ëOÕ Pr³pñ¸ø…¹„@7(ô¢#L c汨r”¡`tiG'/ÄÚÆõi›ÿü0[°¸„„^ü±rà fP€ª™« ØáiG 3{€¶£ìêõ_Ì¢6®®Nœœf.Ž0kq–ˆ« @ 솹ƒ-¿ ¨™9€ÿ¬Œ cqù3®íhåêažö 0Ôåi…Ô M…ªãÓl@ÿ—ªþs’UÁ–7‡ÿÍ*ºš=Mjmÿ÷5B\ä ž`K ˆ«…ÍŸúOžäí!P°†£ ä÷[`çÿ'÷4ovOï‰ËS¯þHŸÆé¿·”…Z8Zþž;n>~€ fæ…|²7À‡ëi@-Áž8ÀÉut}Zx*Ï`åCÿÝQ~>'èwèO$à”þ 8eÿF¼N¥ÐSõo$ÈàÔþ=1uþFBOL³ €ÓüoÄûÄ|z:þÉs=9Ÿü/øÄ°ù|:.ä_ðIÛî_ðIÜþÈpBÿŸ”ÿŸ”aÿ‚OÊ.ÿ‚üN×Á§ÜþŸnÆãÈý¤ìõ/È àôþþW«,Ü`°§'ìazêãðï%ì ¶@_œs´ µ­ í¸®‘{°o‹M3lëg°°û,Â:Ýn±QSYªs‚×`— Ô‘^Ü•MYæ É%ê{ŸƒÖÔˆ¶dÍö_¾w¯µ&·ÛѾ<œx{ª D£`בÜñ½wöÕ ²Cl…ïRb(pvÄÖ("¸öè—÷¬(_ ŸÛÖÜ©æWƸ+ŸbÕyT:ÃPhž;KB‹âÊNùŒÿ§'ÎÌÅå4~þÄ#µR"ºßa,O‰Ñ:wÜͬ÷× n—nRzR#JÄ üÑIF©½4%âyŸ²’5Øhúìóα ‡.û=fïm5­kØþ© #Ä03) '"¡â›˜µ6…$‡Rš$ÞÜŸ+JkžŠ§­æ./Ô“ êöõ|ZBÛ=·ùõÞ{¨ÌDu¬Z6D©õÔÐ>¾JøüzFìÈâmë¡»XâÕ—C_?}%llÂ6•¥lí üfSç´ÿU‡fdÅsXqæDÉ{*Ò}“Õžðç¹E¶ã`×Θ‹¥© |*Ccc°Ø^M[j¾ ù›çõ¹”n—B­äÈd±t©9Y­<C¯_Õm`°dWïµx _G|ß$,×-UWæà½ES@»iFˆØs{.ÿeCXf?bC)2î9¼èL¿²÷lìãÙñ«bv (G¹µ¶¦š} Qžz‚Êñta¹‰PCáƒp©r+²ï9ôàÐGŸ¾(ÀRD`ùœì‹5Ò¼_ÎÄâ¶@“tσ´:Í&ƒ¾ý£€ý°¨)戩—шƅk ÒfÂsñÇÚ…§]*® m½x¿ø!áwÝ«åfg–@›þyŸ€Q”Yn£Ñü´Ûp¢0k¾AÄà´ác8ô› r!ù`›Àÿ‰£³QíI¬0Ë®J}psÄ*Tάo.ºÈÃ6E=˜¸ \‚ÎLÔdÜ‹›bòps8äû´¡žFÇ?Þ&=÷žÎþÅ‘«ý&Yõœš%|Yt¤9æ‡û½Æ´M (—"úëm—¯oÛû‡å®¬Ýjú6ž›¯Û.³¹¢„_?&'þü…•ï ñÅ“év3ž‘›ßÇÔÉjÎ'Šøjâ5‚to}B©úaâe»jÅö U­„^VÙ±çT¶ø‡¹äÝ'eÌžLœýt•^ Í ÆçÙ¼ýFý3,éoÙÈ¢4û™„ø7PŠÌ·™dr&i© €Å'ŸZ²nؾOX~}%µŸF8…%1”d]jæÕt zW7i²Õ\nŠ!ô<‹c’ÊóQ Ù³S¸§xgeâØÐOkwÂzh[È¿ú˾뾽î-‘7Mù+¦˜Ä/ V+êµkß„ÙËIæ"ÙsùžÁ.IävL<¨]¶¿÷øh)z XýR¼ouS)/¦”Ï’7žñ!¸ ¥½‚0‹R7ªOìÙë8–„ï‚È)åg‹V¾îUË)ã°£­Œ !˜)}=û} A꤫â#È“u´˜~ƒfÅšZ ‘D!PŽâƒˆVÜ‘îzà¡ý»XÕÅŠInkõ½eÂ0~d’Û&‰ä‰VÄégkizæ„&ßì²óÞ_(‰TX`¡«u§°ža-ÆÊSt¿{»¾è›4ÓG©ûöÑb¬j­h{¤Ì~&`#™Ê&‹Ù{q­ñK~µÑº»îyÖ7û _½¡l‡Ÿmór)ññÅ;ÌÐw+žŸ+Åõ¹d„¾¦,­KÊDöŠ X$óõÑ .ŠåïoÈû”.•/`«xE†D8œÁNv_oFuWÊ€ù˜!)À‹!ùGô—9‰¢ƒC þ`ŒÚ4oʆɩbj“Í3Õ}ÌÀ/¼NâÍ(žüž ¥pz°IS|cát~+c+ï‰Óì›gìÝ‘ª ÞÄ'ÛNòDûõhÜ6µ´½‰ ʨßR»³dÛäøqM²¶ýájA³o´‡j4,Ù‚PhMƒˆy+OÔN°µZ$µ\`H3¹¸™7]kI¤ïcåt Êܶn#Ñü 9 ß1Ö•˜PD‚Šh3êm§(l’5mÌ/Æ4Œ•È Ûô¾³W â:v5Ïöana5†’ªÐèf·q}S 2MAÊsykÊÀ‘ Ë”–ûOŽhcd­Ü÷˜ÉºgnÝüß2¤çÞ0 ê\0iÇ ‘ÙNÁå;ÎqQª–CýTâÙà~& «?4rŽš^I†ìNçOÇmÁð¶Ä5|PBÇ•Â|3:LÿÁÐl¶F ”` |®¨™Bz&º*‚’þËÝWôˆuF~qKÒ5ÖÙ Í×ìŠ`l%Oò¬Ú>mõ†f`wE†ÛI—ÕX9ë³/¦Þ‡ð;G9¢²f8±q\ZÛÚÀ¨l\ÉãÇ%x„¹K\O½Éå2i†«©'Y¢ó4ƒCû¤®“÷Lo›½¹™F©±Ù裗ÁZgÍ«jïùÉyަÀ÷7D˜|GQpìñÉ2* |¯a‹ Ûû•ÎÖÁ¥ÕœT°ÝÒ`Ü=ë±j †ä7ž€ Ëï]iÝž3 {‹ƒŒOm…Ew†–_™CY…ó®c-M#‹Š@ª·æ¡1áìз‰ûÕ®HI¯èK¢í­G¦Áeé•8{iæ|–“¬ê²h| Xµº:6·¤_íÝ»„ÚÉ_³ÀßÌŽÒ;Igg Pâ²2·¨Æ¡Ív,iüÒ{“¤îTøiÈÕBÚ´m¶à0;®¿.°J¯ÂÄ<À´ŸÉ¥”…Á‚IVM2-ö *!ë·aæŒWý²úæ;Ëç×¼‹”ý” «Ù-çÄM,VõÞðâe]_ ß²T@.ÁuêúÊé|>(Þ;rˆ ßëÎ`hºç:´S’ºGö‚ŒÆ£x[˜žPñbùФºØm†aX.Nt]XdG·^å!ÑãÔ·Ñð8–Üw¿áÚ˜ûœr¹›æ5 cºßVçSrg‰™´ù"yJòôÛBSbg´ô2ŽwëÏi¨u¨[Õ¥|Cñ‚q6hiŸœºæ%Ù`eÂÊÖ—".©šøtJ[uð?»ÏúNZ(ˆ‰DcB¸qƒ0%|¼De#Z³âÔs«E®2 ‰[×>¦AaNæÅ<ùÂü%T¸OüÑCH¤X¢!l…uïa—€ëϼÛ Ïb‘ ÕíB]ÛÞ}ŠiÞ 6ÁðÀòj]jN ¨4^]—Wæ"Ö‰ðT±ì*»1WœDKU£Nf iÏp„7¿pyÞ ¥œo™&¢èu§ž0ÊÊ"äI4Yà’`Ï]bJ/§e Ô±›-Ò#UWªº¯¡~§üþÜ·>ŒÑ¥?f³Šß€¦ßšj9aœì·eµ\ŒKwœq¤¾*}v˜âȽ)úµ½ !²–b«*ÂS5A±Ë½ó¼Ò˜ÞRFç»Ñî æTŸmózp2ÄWcWVÈÃ\¡Íe@ Õ;ac.k¸¦1‹Ûú'ÂÛ¹;Bþ2Üõå1sT Xuëér¢>vˆv jP4zÂÕßÎM R¦ìQ—f®z¿!&DlÍ'v¤oâ96ÊŒìÔÐÿ¸”'@UÓ³ä*HŒë§–>§'ó)4%)#ªëCV uMPÉÂ*r í+?ø&9®îÄEYîa-ˆ(Ú»^ÙsàÐÁ •Õ·¤¡=äöhíF}"=ò9¸*”å×XåØëý¥œé™úèAXÛ\É |ù^‰‚õ䜘ms(zm›Õ¥ç‹¥­}§AÁ¹¸¬&r~dÔt˜ä;q-ì(wÇþid}þ¶?Sr’žÉ¹Sè ¨£”.pࢾd2,ºŒ;7 ŽÎ'ˆ¥ŒŠœóÝÁbDÍéÀ^µ‚ àl4jvøC›Ù*|QšøÛGœÆÑ$ÆÉÁêZnàRâ;ñmùþ Œo¸Ûj[ÏÕ/lõwƒRžk-U¹ 48c¶_Û:Ø£‡GgñäÓ¬ü$‚%…ÅBÐöqMÝúiêøèÉê-Êntu3ïÔ?‰øû-—á´à][ЇF“=û„=švƒEmÝöÞ^÷Îѽä>:Ÿ ¯žV“Á[¬Ÿ¾LÞM´™H‰_K>ýòSÃÊh„»ÃêV=1ÃÅM_{~ýá« 1 i¿Ð»•×Ü+C3v÷„Œƒû"àZyù$äÅ´ë˜N ¦Ug[â%Zô/jÒµãì<0ö7_î¸d¹/"±s P¢@á yÛ„ˆ+»Ô¬ÑEU&ЛÒe-qiж5U¿ÛWá–*Rn-ÌÃŒ€Yy%Vœã™Ú±@_Â=iÏAÇ®ˆZL ²¤šdFÌaÆ•UuÿÖ×›îÕš·½9X¡À$r8Egôäo‰À›#ÁÏÍG¡µÃE|vþ³Â¹2N´DlOj@H·•hã¦ÚZ/› ‘°k9¦<ÔÖ‰ï¥kí¶½>ø¯º)Ðí3 bO¨ ÔÜqÖ8‰©0¬Eö’ªVd> I¿äx(Ñ’cC´= N~2µÀ#ÔÛƒs¯‹-3«·!e9  ÙË8-Ü|)lø5äí td‹ ]_õÓ2¶V]JúؤØbDTB94á¾a—Ït4µøÅúçÌO˜Ÿ™Ð§…Ÿ8âš9jóòFÔŠµ«œDëôp'1Ÿðé×8ÙÀ…1qæÏ núÓ%Þ¾Ù:£ ›zŠª›ÕV¬kÅ¡ü½D¨£»UK&¢é9Z|cîìU¬Ûª8 ñ‘7gi\ÁzEï0![EÁJRVa¤¹”ZïP!>[ t ¼6ÌaðäÖþè‚Ùçâæ¿‡uŽJ^3ûf“ÜEí<×ÉAÑÁPMÏ Õ¨¬ 6=vš‰,4õŽñy`ÊΉôÄŒ:&bËJBÿL,úCÔu>IH-k±gtÍ^Q²à«KnŸØ± §fôÛ(ñeÀ[.¥ñò÷¬±ó5]ïUŒ3›ûc]X-¬/$üì¬Üˤ¿~" ÇÂÒq2’Œ7Á D, -€85ànJ ÖTùP/P÷Ö©«ù¹¥ä.‹Ö«žG‰%c‡0' ºCÏâtà $ GïúÓìæ•gŠßÜÔ¤p˜áëÆèé—ÅÐðÏ€³ ÚÏ8ü\®½Ær³Ž˜—ý„¸¢Ž:Ý[.‹‘ý(WnÈQ;çÄ»5.CÅòX^‘/ßKŸ*Á°1®u;¨F1#mŒv¡f½Duõ|=p’®((V)Å/Q’j^\â]dkùß;<ò‹„ÄU¢¹k|c!¯¾ÛÜÖ aÀ©³zůîߺ½IboÕ²CýVˆ/>2—¶ÑHí×$ùz¢¹nóùý™>!ãn 2ÝÍø|`MVÌÜ/¶Bbú‘îÈëÌ÷R¹ÞîHǦ¯¤÷‡^Y°íMÆ´…6 ³†|ºi¬ÚV%¶v„_ο~@q¤^>‹;shÓCÿ¢DǸ㠥xqÎ,ô˜i·ôq±y\Œ­€cßõuãÔ ¦Àw½,Kg_Jó`¬Óx¼úaNóôº>”ì1Me“ÁRQäg€ü˜p2祂Ì"t3SõQ_çÍ(Ë äÂÕqž}2Äé¾6úïœg¾SªZ·Íì¦1äëÕ˜ïEøwTo}òû¬ýO¯ n寵ö§ÌŽ‹(3AÖd™ö²8‡ÉÍ-=s¡l1Nç–Kõö„ñ2nÔ„Eyò­TæÜªàJ¬í(VðüüõDkÙÀS°´—. ÕÆO}©ETˆRà•.;½”Ý‹˜ÙBn;q§#ÄEr¬‘\ «nZ<¥ãÛ?éÌô^×WÖÞ«IHF<ƒ’Ã% ™²Ë¾É~è}ž‰}±Û?{M *ž“Ë]°kà4y±¹Wç®øõjg¡±Pÿ,^¦væûÙ/»k—´"ñ¦,Ó°Ä|³Ø÷5Ìþ¶ Uá-Ã#â8èòúö©*A“™¹[?oÞ]"}M|ÏØmãvÇØI‚§Ç Ža¸²x©I+ÏL»Š9ð­üæþ¢1|ãy¤»‡0u Î; ‰"&?6y+¼…p©%¤\ï›BtfÒÅic,—üRþ•‚gô7CœŽ}º±©#ð. ì}NÚ1(z¤ëë œ…у…„<Á(¯´¦}¼¥k#Ú$¼ÔÛ´ç8vØÖuèLïLiAhƒv‰9vÜ lñmFŠ“º¯{¤ZÞ“bVxQûi,×Ö¶ ¯ÉLžæR–¢Õ›%&Sq/¦ipú Ýg·0”hkYE«j9µë†{ÄTG…ü (—µx6nAÜlj!–´ßÜáäøÑd/’Œ9p ǧÔÔ‚eÈ)7{w©mHˆbŠ}©ñ*ïŠóM½áàcVÞ¸%šgC aãm÷š•,#ZEÎû"5ûÃØº¥#å­‚’Ýô/&5*%ñd,‘¦¤”Ý÷ý…–ž*ŒÍ’Ï6öêƒG˜,¿­2öˆ™Ã”ãò˵;Ý”äd8 2oï²!ʵmÀzO.ƒµr×é 7[„«ê5‹á$½ên¬jCרvpžѹ™zÅ3=B ½Î‚5Ü#o'ðxNŠÆOOçf³Ï‹B8‚´³P؆‰%q:£_öO¾êÎ5×_+¤)R[-qZ$2ëûL²Šï°ÿ mŸF—•‰ÅlpBÝ“† ŸÔœQâmÏjâ"‰oÁ%î~ÍÕo$G|.èC•è ­»Ð,Ò¬éú@¾™k\m´VŽg;˜Õàkˆ¨ÉK=¼#-JdžXøA층}+HEÏ–T–EBiëê˜C/»¨ûC3_Ë¼Ž†yøfÓgàAðE‰h“¾O9ÛedÂ}ËÀQ¶Cð>3Ãóæ@Œ²ÃÎ*৛ïZh龘òïG{šx×&aT,¿+'?K¥äCܘF>™Ëc¿K:è:<ÑâÁ©G ²G‡#¯h¾)ý’Ýù·ýò=ãU·ð¨h’ÈÃ߃Ë*:Wl+{ ’åÛ”*ì¥KSÖ4}…ÂÍã@`dŒd¼Ù)lagR{x.T¥€«Q´©¹pü­B`UÅ`Ám¾8’2 aíIÙî08+gÏžµ´¹áˆ›ª[EÈt}·c½{‰y’íÚºO "¯@oÞ¨¥a[am­±òã‹à&yÚÎB(²·¸y¢fµ%JâY;ªO’ñÖ¾;‘¡çÊ3SCîjIÔ4ÏcÆøjOJqÝNœÇ‘ŸI;?å°´Ê/åÕ>/e"YÕ_ºlÙev,ŸŽƒöÖÃÙé,²ÈÒ ÜEÚÉú|öq2³»/ì ˆ¼¹›[xuTjY{Õýqø¼›%Så {¬‚ ‡c Æg”d#¤ñIla©Ý*P¥óO÷ÃbmÏŠºc:èŒâà’ä¡Z}jbG>ªÖìYׇ F*õs¯Û+X|q3¡‹ñX:‹Âõ–l áÂ$¸¬‘i*ÚÏÙü,·ŸeÕÇ¡0]Q{4{¢ý‹©ögÜ`eƒzx“/ íË}Àj)}t©…šŒJƃ5w=(_ (c¬§ 2Œ©Ýò´±3[2 ðûØÛY ú!QýH–J·9ßÔ¢«FjdΠعÔ×´'‡#åÃÎcÝù:—¹.”xú˜zçAâ6•oqÏh:{óº¼JÏ !-YË4ûYKã[ý‹gsvXŽê—~ ÎÂq¡¶ùòÔSSÓ±WÞ¢A&ï‘Å î>jR W ¡$—N^˜ÒÏɃèVz`è‘E‡š#—·¶Vèâb­Gò?ˆW`2_ñŽ˜ºýÇÆ²ÏŠM/ÍC˜kåûT"Ö/–Ëz3ŸÇpˆH º5xáÊ-þ¢7™h˜·ä*­>¢E)º¹Ÿñ®ÚµÎ §{«Ë°dHeV ˆöžD/™sÒ;rGC’èP¦l[~`ñYJeóW4'®?8…)ÚÉÏ]µKœ+¦ûìRk¦>”>kvo9íRýÕõÚ·‘€Î|ònÈ/ʈ.¤”G9uàxLô`lß¿§00i”ç?ˆÔ§›¡‡£æü:í`!ÞöÎ; !-#~ýÖA…æÍxwz4pL&T<%˾°M¼}_fT ïûhuÓ$^8úɼ^ÒI¢íäÍè ¥Ø™KV7ßgÒŸ$Õ_MêÌ^…*2§V’eæØŸ©t!hÑbs- ÎD‹ÒPpþˆu5ŸÁ1A ¦ 5bkßAaøEŒ¾sæü¤{D ¶R÷E1(Î÷[֌ٟêõÆ‚[»‡DƒIb9+ÛDe6úKæc½ŸaJ¢ë`’}3…I4íë(gø4,$ÄÇUÙÁ³·ì?ðª Ù Gtá Ãù`¢Ø:àh>x!ý¸ÌöW¸Ãˆ5f½"Ø ‡ƒïzÓoì:ڌɔóeŸ;¾wp™vÆgíÊ zá‰2¸>hM¾±ÎT¤Ãᆼ©´’ìÀê´äm ‰Ó¼2Qþ:YÅÊߣ›ÆÜ:7qå¥eéSã®W¸”xºØÀWp¿@«7.äM²u U‘ß°×Ìk­ócž`{#œ,Õ\²À3W™á“‹Â¨¶?ÆŽùyÙ­!÷Ùù¢†HẊݰÜÜdv$ÿ3!e7qâˆ@ ‡‚îÞJ z†³l üYAíÃܹàWt¸«·j õ¯ÂXÒsÔYZ¹vaÉÔþ»4Ñe… ßÕŒ‘ÉÚ½Ìe8ô19|cÕšNUuÌMP+ŽpTY ‹`ã¸QÙà×÷ˆÓ¥Ü¸™qZ¼^B[‹9Dáåé éš!7íÉÀÝuæÐ:Ö0$YÖêhñíÐÚÝÒ5y½0¾±êIÍ÷C¿ŒXìËå‚¶£Kxív“ö '±‘µ®oTxœœ³€Z6.âÐtKibX®džÀrk;ž²È“^Š„å@ɲy•ì [ÀƒÝ¨ÝUõií•o M1 }e® ) ;eïì;DÐ^¤âQe+4÷eâ“v®â æ²k©§~›@ÕTf±:j7ëÃÜzAžp# [Û8¥\kæÅߣ’ªaqñi%c/¶ÖÙhhñ°Œ¿ÏrgYñUŒ;¯_úª}éøÜÝ?ðVkçÁsƒg¼q¨¯åšº®yÞcM«›|ìÎà" ‘+=•âÆAè ¢Øt¼`€'Ô*Ów vâøÎÜK—MNC>æt['÷±¯~ÒË/®üº-bô“ÇÁšûËjj@RxAÕÌ Ëµ=®Çv~å¾¹¤ÆÌÚƒ¼˜è¡S˜^ˆb¹¡‹aÈç7c5–)ó»ÌÐü/foðŠ üq†g°&7nw7Wõ­|€´v’Ûí+´òT‡ˆ›:8{¼1 e¥V›¨!(ùÞ@g’ïÝ´‘¿TØUO—a.˜³Ñ†cá©jGj³)v#Ô‡ƒ]™be8žÁßÛiã=d Š^¹´¨šÍâ¾¹–ìÎdUwý€_±gußùoí°],RߦÛ~dÈš X³~뛳·²ùÁÿ] É|Ÿm »²ò"\Xù $¬ô“v-™(œ ª>mÄC½ó¾:÷ ΤI®ÆY•…¬Í÷ºŽa±ØÁ96Gbäàd?ÃÒWÝ™Lày4åŸç›ïˆõq@!®¼’HÝœádT±tƒºwoHÆÕ*¤ ÉÐ[»>§6méöµÍÅH2Ó©màx‰C×V»E‹I¤—®1Ó1ø–ì•ê©=ÛÜî·€zÖ_W÷øgNÞ(a‚˅½Sg$«çf_¶ "ßã;'0EV] d ò,µ‘ÛsàZŒ>&Ôi2Îwµjû–x0(¢û’M=tĉt_ Dï!Vt`n Ô]2Ç€Lp‹DöÐg}ZL§±jü¯xHÉ †ÝˆÍˆ® ê\Ú<ïXA °Þƒ*c\ðt54IŸð¸`§?ã/…¿m‹hÂà"xïOûðAÜŸØ=n)Æ+WâD»JSΔa3ɪŽÄ Ý£*rg /ü„¨¯7¿–ÇŸAa‰ô¯;æo^ufD)œˆ.÷Ô¡âµzÛ‹8,½ Ò]ƒ½ÿÕÎ9 "®¼œ{‘½™?~›²u3}EÌ­¿:Ñ£¤1¨)øc;ä"”2˹È2.ÿD”ϳÉV­{§²¹Æx¯rý.ÚØÞ˜r…Ýó²g¤ñè¨;Á.Õ”ZfÜ/à&Ó®UE¦|¬É:•õ±GÛ¶ëoÁatáîXscÀ è³*IWS˜ÎäŒÑõÄ@ØnMŒÀnÝû™šÀåÿðöËвeÛ)‚gü´1ØÝgét÷U„²¶ï%áB¸t&* k¼Br}%Ÿ´‰c¿Í•Pñ¤Ì×:ëS’Ma€m n·ý¤k "åbÝŒlË=éØÊØÕL`> endobj 176 0 obj << /Length1 1576 /Length2 8124 /Length3 0 /Length 9150 /Filter /FlateDecode >> stream xÚ¶P[ß-ŒCq+.Á‚Kqww ÅB‚»»¶Xq—"ÅÝ‹CÑâR\*-N¡<ÚŸÿ¿oæ½¹3¹wm;gí³ö™0ÐhêpHYÃ,Aò0¨7'P £¦Í-y9@t]°ô§Aäâ †AEþ ã²p{´ÉZ¸=Æ©Á ew€›À- Â-(x€@á¿a."Y °5@  ƒ‚\Ñd`NÞ.`[;·Çeþú0[±¸……Ù§¤A.`+ (@ÍÂÍäø¸¢• ³ƒÜ¼ÿS‚YÔÎÍÍI„‹ËÓÓ“ÓÂÑ•æb+ÎÂð»Ù´A® 5àa€º…#èfœè ];°ëv˜›§… ðh€€­@P×Ç w¨5Èð¸8@GI á‚þ¬úG;àÏÞ¸9¹ÿ.÷gö¯B`èïd ++˜£“Ô µØ€! €†¼*§›—;Àjý+Ðâ {Ì·ð°C,,~ïÜ /¥°x$ø'=W+°“›+§+ò‹"ׯ2]–ƒZËÀAP7Wô_û“»€¬ÛîÍõÇÉ:@ažPß? jmó‹„µ»—ììR’ý3äÑ„þÍäà‚Âü3äeeÇõ«¼®·è·“û—ù‘¿¯Ì `óHä¶=¾Ð}]-<@7w¿ï¿ÿEèÜÜk°•Àd †¢ÿSýÑ ²ù?¾ Ø `|Ô7øëùûËôQ^Ö0(ÄûŸðßçË%«¡¥§/Ïöã¿}ÒÒ0/€///€ƒ‡æãò üÿ[åoþqÿmÕ´ÿ¹7à?• 60€ð{÷ ?UÁüçİþ»‚:ìQÊ ó?ÊäZ=þpÿ?ëÿwÊÿŸìUù¿)ÿ7$ïüv3ÿöÿÜŽ`ˆ÷ŸJvw{œ 5Øãl@ÿ7ÔôÇ$«¬ÁîŽÿëUr³xœ)¨-äï6‚]åÁ^ kM°›•ÝúëËCÀP&Ìüë®ppÿã{œ7+‡ÇûÄõñ¬~»@ãôß%å V0ë_sÇÃ/°pq±ðF>Ê‹‡ŸàËý8 Ö ¯ßÊpqBan)€Gzþ˜ ú¯àpIý2ý\2#!^—ÎßHøÑgñ7úµW.ëAnè_ð±,ø_PÀeÿ/(à‚ü¹ù\.ÿ‚¹®ÿ‚¹nÿ‚Ûpÿ|,åñþ§-Vî..×Åoá>öì/üûn¼@VèË 0«gaöõa×µRäž{“b³ {é,¾Ë.]î·Ø¨¯Yj²C6\.¥^¿ïÃ]Ý‘c¾\¡¾÷ýÖÖˆÙž¬ÕñÃïîE¢öô^úÒ¢¡©âoR ƒ”O(8t%?ùÝ;ûé; ¶Á¿SfÈwvÂÖ,$¸öPðj¬ø8±°§õ©F@ã®b†#^/îypéCeÎ< -Š%+þ‰ÎÜÅå,~ÞÔµr"ºÿAuI#DgÑ7έHðgw÷ÒY*îí>±-”Œvéj’6Â3ÂÞßМ•x­°R˜‹üQ3C°g-«÷Sš¸yì ´ï¤øñϰCD¯ãäuÕ¶Lé—”©)"lÑí.N{+t¥XÆÑèÖn¥]ùÛ:8 ç(â`%^øVÝsIùF]‹_Gh‡Þ¦ö1îÌï_ð¹dõÚ¶›éÜà‹l¢TòLuÂMÍ•Z81âÕ'þâ‘9<]}¯DÅy~û°¥Woª&ßßÌ~·±?ÜnÐzÊ®Û0Om9Œf¾Î9ªkƒB.p‹Çl}K¡¤- ')ÊR±pWô“=Œ¢G'.ù*¨‘-ÏÖbrEûˆ6YôÄQ!(‡%bv«‡¬²ï…*Á W˜ò9§œíÁ÷™Æ£ÏY£Ñš®ŸŸ!:ÚÖÕtf­xÉé¼ÊH9ïñ/¤·M´iS‡.agm[¼!´±õeóÀjƒá:Íz'é•¶ýëFòõª¹ :¯?Ù~¦êÒ<`„¹NŶó)7¥®B\›‡œ%>¸/INôQ¹¹ÁóXæ%Lˆ?|‡ ÙŠk…›a:aªL¶A2ö²«Qì zþé’'ød‘J«ô"“‡H½7ÒâBÎÚæ826¦Ð•$g^vwŠÃ×ÛìµV;aÊŽ#ug‚¶\à&¦H×—t?2‘³Õ§ò>/”<óG—l‚$|Ú ¬ºcM{eP#ße¡T;u>H~#€7;éêI3•¢H‚¯Á*¬6:C‹PWà!MwQ=¸%ÎbSš 5õ·ž~-½Ò@þÙÍãMY P´–çæN!¥¦ãÿt7<°¼Ä¬¾ßW(Í‚aªò…Jí‹e^)4 ä"ÙgÙ¦;fñQÄâ…/õüÄ΋ `/^ ¯¹ûøÓ .u‘boçŠäv…Œ$˜SPâñ¼y¦y'Û›u*é禎L6CñÁ͔СWO27WІ×鹚ìö”µÉƒCNE‡ñ¤ã7EnIry q Œ3]&Óº–£`êØÊJ“°öæö‹ÅÞØÄy©®Ë#lœÄ¢’÷¯ËìÒ“ær'Äô¼6ä ¾ 0Õ­´‡š]ÙÉ‚÷¿7ö¾eSë>+3ùRÄÝM5¿#¥Ô­RB Å}Zûi=IJCÿql¬½uÜ4ô3 hl|1NøŽ‰åyiKy.ö †Óä~e¢2?ÿÛZ[DÁ„`[Ū¨)æà—˳?VÃ99 E7IÑ&Hq¢…:d•×—-—漈5;ŽCÂß íˆmâ Ý-Jícy£¶R€>ê›É;®F‹…QßÞ^£Ä•f:Œs^ÿØ“}à ,#Yã“4 šæµúÞñ°&T?Ö¸‡æ@Ûwm+¿ßaEHàéÓÅÑúðú9bkâ&œ> œö»mÞùÆL_Ý‘âµvñ÷#THÔ²­Ñ-Ç3ºz…ëà[Ý“£]uî씊6©ÃM­×úD«1ùñ ª>\T\¼ŠûYÔv™ëÞf8)¦ ;›3/Eý¼žS­3OVbNOÀ%îÓl)¸œ{ÏdÿY‰…=š¼ûÂ÷cz§¯›sevœ§˜EÒ ªˆI]ïíN8óј³•¤p6 ˜K+‹fÚ²I‘­¤‘uAg îìfس3Û(‰( ¢e0çÍzbdÁñ€pg©"˜Ÿª*ÿxÞ ±W±;\ ÈhÏžIØt$v•Ÿ×<7WJX®•Bª Æc;à’*Â¾Ç ò…ãœRKkd˜šq‘h ¨‹NìÏJÑa)z+K¢ÔóV»ÅM7†”]Ü\¢×]^Í{8†2™y­jG‘†ª;´=âåékˆ\òàñ‘fT5OþFÓ!ÎÅ)]Ô7V0âõwáö–íÚÓSæùioi'ýMI¨ñ’Âb¼Š{t˜–y¼óŽ Oc +<{nöÈAßµJuO&•ëdæú×¾+ù«ö¼ŠÖ1鮺µSÉÜø’\ÆÇ¬:@y”²_›FÇYZIK,̃¤ÙëOEµÏÔƒ”~°{öª öÔO÷úŠ³Öš’¾<ⲦŽSgs@’ŠjnoÊ žH¼Ÿ½Ñú›¬ fÍPÖl=okô•¼>óäÖÍßÒÛâQ @š QúL­á|aúz¹jÕ<ãúöt&„,;C°Dàš˜1£J ½ß‡E&ŽŽ‰åŠ#q¸lí:˜›Þ“0½2ÛnË;N¤vѺÜn2­oèKÀ¾ó(m±~¥ü&mzŽ<»eWq\7‰&†i1_3”<´’3ð9 Íš>sö°t&‹=·ÕÌ.®Li9õf9hÂ%~ÒÌŠ%aÒmûŽáCòÇXÚèÌÈäÇ*U‚ôI‘®¥V]Çr({ibƒÞè~pƤl›Õ㻬2 ÂÌt¹âîþéH«Âv[åÂZéø¹wøW4¤:32£)A'Tݾ óÂò ?^<=»QœfIÖWµ}Ò XHƇÀCÊ-W!H3`/Ò?ÉYžòd;€"Y¿û <1[NJâñQ/Ró~Èá*qÚÍO oν^Ü92ý¢y2”ÖMîRtÄàÂe†-ª<ƒD§(|_ ºõ<½d&íKÖAWÀ¯Ê •²ä–¾^õ-r‡Í·û†yhAöK#o‰œÍ²±ånµŠ;BR޳%PÉ 9*bpKš„D£>f<ä­‚ m΄Ì3úžÀ‚2” 7äæ&­™|ô¤þæˆuÝ·g=6S7­ç™V㲑ÂJHÒh³…W&\2‰Wöøô4Y0‚¦š$g_öŸk¹" ï:"ÙQíB4ô=…6<3±{OWŒ-½ŸÑἕ† Vq´[ãq†æøqc¯B_\Î/toó¼¿=YÁhÈÉÚ½(CÀó†_tä˜26¦¦è‡TNÎôY¯’ª+¦´=ñÀJ÷gžªÒ#d(Àg£HéÝë3|7&+›À±ÕãVhÎSÅ8™)—_½W—Ø~Ïd%Aù±ÙdÞëÆÊS÷Ù„ý„aT3Ø–Uˆú(ôiËhl;J¸½ó$Ý¡J¯QÒ¸%˜iœ‚ÛÎÓžtø²Æ©£¥Å©iµ2cÎ<+‘j¹ê›Ò´ÊÎV«4þYREXm`öSæQ‰õ“…³K¢=ÐÃÚ2oáºløé/ŽÑ(äõ•r* õ¥ù2•€þ<Žf¸@&éÕõ—x°ãøTwºA×;7•þ"6Ä‘´›!ùCdª©¹’Ë1¸^µa¯Òßz:LP~®ÇyZ¾ŸR™b…T]ÕŒrŽˆ&Õ(>0Ÿ†®ý´043`D¸ëU„ŒN‡ZO]ûÅgá°ì/ÈÈÊŠ„i„#Ó¢d z|öÖU ÖBïe)öžkn{[Þòn‹¤i6§¨¦]!ðØ¾­¬Ò®ç¯ƒ8§’µS\ćIÌÏ-Îm!øÂf¶¨¶¢‰´­:F2>YJÿà¾_EãôB"·×ÊÃ0ˆýÉD€}4x=ŸºdXôMÔ;1å˜é©ž_ƹ¸tU(\¨çFˆØGdzû‡u½#& ÷Ï ]YäþH<нy)%¶¡—n3úxÇä® þÁX|I4ʬ.Æ<ï™í Ç={nñÆèM¨»&¸2€ÿµj½_ï ïíTo±ó‘®WówÆÉrˆ(íÑïm·à•H¾âØÄ}=3œæÙ®ærnvhܬ?‘3[{Ö±JhYE¼•m ²`:ÛîÅÔÁŠ"ž«g—M£ÈH4µmª`3ËQÆ6YË‹Š©%n}¹ðëÄÔuµ±4(‹±¶Ú)} Ž)=üs€¥ÙÊ™2:wU³¦ “?@)JÔjc‡Õô#ïУ5Ǩˆñp™›îÓo ]hÖ¸à1·{BµTÏÆ‘­eÛ¹•Ï5‘W“¼>"ê¡…"7ñÂ_ªÁa¦Áå|cœúéKÑ6!=ù¦ÆNw>£ª½Éõ¦4Ý>‘s­é8ìvé?ë•ׯ¶×[xGOœIûòÆ@öy\»¦&XÊ€¸wK£©ñ5Q}·¹gÂ!TJ­ïIÝRð Ò–^8f °jÚû»OR/óZ$Ç.•=.Øw²= 3ô/æ½Ú^êøp íÒ{¦ÉÅWÄmaCà†¾]f¤lÛÅÓÆ~Nª§_­j2¯§÷ì¢BS€ûÉN[Q ©ÇçÍѾTên'ZwfT¨o0÷"“ÀR©Ðü¸@†vD<¨pç:O<'Ÿ|gBçò¬‚Ÿ©Œhò$Ð×H“©ŸÉ» MŸu¨8E³5?·w}{4i·KΠª¡å–€Fªm„q™þÚÔˆD‘S¼éNa‹¢É÷\;E®ˆ!`›îë`,Â7“Ã"éò~c²ö—™fÃç=&æ`*é•ÄKØñŽ`L(•.UÙPÒÆ+zç9Ì¡”ì¹,–Ï,f™.HIâê…º¡cޱ„±í-¬ï¾îìÓ¡;®“R]¬Ú%"[Þe¼sÐùÆ™µë£÷À%–ÚafáâÓ\lŽJu/ÿV ‘b*s<°ÑCô¢/eˆ¢AìJ»éÕ‘¸3o·þ,‰;fTUiY:럗íx¥äzÿIüн²¯Šh 3XД!ZS÷ØÈ)†¸yÃK‹¨Ã¿’t€¤AKGžã©øG}/X:c 󺪹‚¢·û<÷ÏÝyU¨a²Ûø]~ta¾Í€¥¯YT"èé—µAÅÉÀ5Ò$½rv+àn[Þ ìÓ¡èsÒ‚Ì€§›5ßEƒÁï÷¼d͵¶ÞTÐ1+ÇK2!úè;’¦¢1¿;e9,ê¶yÖà‚9¾ñˆ>ñn¬‡Š|}Í-™u\9ªjFxÁ6,“U3‰í½+A=¤C‡=Ýò$HÇH$®(ü­XÑ~J?~ª€¹þûm!D>’š­OßAän‚C0³5¥7ÿ™QÎ0—ô¥ù³ú¨¬–ksÇ­21r §ŒÝËáR9ŒpÝ3uYB{¾4½áalBÀ>2ºš%N˜ÔÑU¬<‰çõZ#·•D]1M̪´JÝùÏ¡íeSâûÅH‘Qd!èm£¬sÊö7”;µ"‚Š9­eKÜÉÌj3ݬÙ&Ì~{›ï@ëFô¥]LÜGªtS¸Â–,HŠTE=ÇålôDnÎÌègʯ‚ÄŠÝdìÈU}$1,ÅÍÌûy&ZÁJe魯,~ðÌÉ&9™?€$X{<ò?²˜kºò é¬KŸEÔq ÷ãäÍßzâøù9¾]¯¿¹²³>—\¯¸¾º4„ÌaèÊà1Få§•‹ÄE” ‡%~köÍØ‰•êDÑq4hø”dÊO{ï"ç±¼EwËL±bwZ= ÛÑÅU6lnÎè¢TŽH»å“Ž:u)gK÷v(²!Ya 9 È­q¦Ñzzìæ,¢ÙÑã~Šq¡¼æ=±_“4`Ï8˜ á,?º[ôWÌJÅD‹}›ÃbË ™/€ iÁW yk"÷NÜžâÐ;í"cص¹%Ó/õæ3“B q!js둦ˊ ôm!gÙÚŒ¡\TBPÖV§€™ÀDQ¼,É,u‹“J1qZ5+(ºQ¯¦U‹ _†:®zxüÁDáÖÎ~;ýî¤^Ë7Ø´#ekß\x¤YêœZU’ü-çdØšÅ~{a¶M)ü;¤‚`Å"Cš—P"QN:•ÓÙ]’íá=¢Ž23ÉwǃÚôlIºé¥ÄŸÆá>š„RhHy{C¦Íá>ñV°Ž³„+6â>íƒoý·#ƒ|6ºV9”+G“Eªx3ôù‰¨†»QmÓREÉCWå©w2—層‘øJ>þLv/¸‘›s¿Pš¦ZZXyJ­ñý8âp2é-FDÑXX_1˜+é\uÜíã —чF#|¸‡ÌO<Þez|hk!ã,çAn‘ß+_Ó ÕY²á› Ë¹|–·•|¨­TdÜ——]ŠÁØL5¯S§Þ†ã|õ ӓްziñDüµ™Ê“óÍ\• |QTjåÊUhù›mõEÊ>µqƒX-GÜÎÒYƒ[ºÐBèDþ˜½¶ãñ…ãûOjòÏáÆ_kÍ1êàd5#2ˆcœô §º?Ä´ Bç2­F8£{¯Oíg?ÇÅ´÷lxïãîüëb%ºW$—O#|ÁiÍÙ`f¦Øçþ³.³»‘™æ°µƒoSå ¿|qˆ2mIVi}òÅi£Ð§;W'Œ3àxTœ¼"YÛ¹H~©ƒ5©Ç g û$Îßðî%—‘ã=Bui8KÎçîð·!"?]{;_gÌS©˜; vÑÁŽãx©ƒ6Õz1²&fV§É;á\,O>¶ò _]ìúÆÒ¯ëù µÈ×FãRº)ÛEåô‚oò¸Ôîµ×8ìcĤ)³=´tpch—Ìä9zø°§}¡ 1Ó/ämwšZ¢œ%ZáHM+ÏA¸e0ç¦õ6ÒžÍ5lµ;ž}ÅÊ Ã¥æ”/’^óÅñVMFÅH«Ÿ­¡·®”$S¼—yûû‹ ãEþ‹Æ(wƒ~ð{¸ó¨ã¤h<Œ6O˜)C±–÷–u)èÛïtŽ‹Y Òƒ—)&‚xrbv}c’ذbÞªK¯“Ó_¯±«ó&F}âãq p®rëgw«›ñc°S}–vÄ·ùíÉÃÉŠ YrŸ­ÅnV¾Pû5¿ m›#¼ôÕœ×ó3ª*LzœTõ‰Ê¥b‚±²23¸—y—õ¡òN©8Ž˜±®?©"m˜EÄg‹dtÒÞå·¿ÄQ¦´6 hÉá2›_8ŠÅfŽ÷¯Tto†,RŽ È•lt¯ÖÏ‚>²GoE(È@²ò|Fƒkθì'.*H«!‚·pom1{Å ó‰ß2«T‘j-§ÆIRúÄ™–b’¦/Ÿ˜Ö\çQnø¬š•`=Qs&Ž%þ F’k¦ÐÆ`pCþ´vàY}|¬ì%c¼Nò©á†Ó{m‹uÒÙü­™/gÏ6u`Áò‡®lIÙbŒ1[iH§±Òïf°dy­—$¦¤ \KfQ«‹ºÖïBhjݸ‚¦°mõ|]…!{¬º+ÄK7K"ñö]äu&Ò¤ùSëè'Çè_k©ÂÜŠ®¶»­b¬çè[4_U{6íÅÈȯÍOX9LÊ«åôÐ\¸—ñ¿27JöœÈUØÉ~ŸÃù5V+§­ðŒj%˜“97¾ªEÁGÜoˆeÃGøetGö+âÁoFVûq¦±å„ÈE½Ôž3nÞ¡[gcÜìih['…ÒcpE¼y`SC­yA)ýö {¶4‘GÀ ßȽ˜Øö ‡ÆÉÓØVYî/KòšZN~üt¨¤ë›ÙJ¸á( )Js¡~_…\¯ÒQ!îP笫wfusëÎqjÐðÆŒ3¾ùŸªÀ˜›òÊÈd{fLf»Ì»êšµ¼íË Ã@9õê9Sm™ š*u%y_ê´(úAÚN1èžO.ÒÜá¾6ȰQŸ2L´ qq·3­F†}m_žÖ"ÊC^b™Ý$Ô)ˆòp0ú›3âãÃ*m¹hʱz㢪OøÍ™.ú­¸ë X$`ã†þ¹,tø=Î@ Š„±°uM¼L‰qäíqÖb65n]x‰Y|ðÕù¦éNÏZPjÀPF=q•*©‘qü<ÿÃÓÅàµÅ»(õøb¦ŸB—öâ›cnß:¤ª½$¹Æ¼Æ²[+c$óÙ¯†ïñtÁ šýXMþOAÕ&Rh·$ãmb‚¤Ô†ÁãYá<43Á/ˆ£ëŽ2nÅæÞ+½JVB­ó™¾í—Åã ;ýÊsC¦ÞðqX\~ig†Ù!Ð*ÉP|ôÔºd…f›Úâ0æÉjÔK$Ö}i+Z¯ 9ãýjÀ÷”e ïgüyöÇí:ØÇdl¼ïcõŸøwè˜Þk±æ„™¹0ƒ˜\ àÜUîŽöÉsvéîÒ•šmª¾hYírù¯êþ|7¶yþ?š$W…Ø¥ƒ4ÔPY`¤â(õÂסêêÌM EƒEÑß-.=Z¥Ä^Õ¡1ͬÈ5©¬Î­,8B+XD+ó¸T9ï®9æÄ&Ÿ¬z+MÎqñÙ³0=Š?¯ñpA“ÜU™AÉïu·¬_ì¹-T*ÞõÆ™ —Çø™¤¦Î¸éš‚% ë¹G¹&¾$ó R*ødå¶èU.ªcµ!”¯7äÖøÏ½[™¸9TùCÉ(æs+Â<æå¢?Úç쨞9$Nd‰ÝmޤzpfkömQù¨LGæbæk6éÞÓà×ûuò1çºÒï/!å~Ž’ð™Kªf\ƒYÆÇ)ЬÏ>ç´Z-ú"pB~Öì´›Éh-=£;4šz3ù0slwUBß;<|PÑ[úðó¤“ÂmàÀIeBˆñÍ,ñæpÔ¦i«Åÿn§ÐÙ endstream endobj 177 0 obj << /Type /FontDescriptor /FontName /DOQUVF+CMR17 /Flags 4 /FontBBox [-33 -250 945 749] /Ascent 694 /CapHeight 683 /Descent -195 /ItalicAngle 0 /StemV 53 /XHeight 430 /CharSet (/A/C/S/a/d/e/i/j/l/r/s/t/u/v) /FontFile 176 0 R >> endobj 178 0 obj << /Length1 1379 /Length2 5945 /Length3 0 /Length 6881 /Filter /FlateDecode >> stream xÚWTì»§S@¤QaÄèØèFº»”Æ0 Æ€nAB@B–‘ ƒé–4èP@âN¿ºßÿÞsî=;g{ß§Ïó{Þsä06VqB:Â4‘´0X$P30•€@â" hG»ÃþR-a(o8!÷ßôj(“©CÐ83$ ëã‹ÀRr`i9 ÉþeˆDÉÔ!¾p'€@‰€ySÕžXÜÅËò×Àå€ee¥…~»T<`(8‚@Ю0\F(Ä`†„Âahì¿Bð)¸¢Ñžr¢¢~~~"o$ÊE‰_àG»LaÞ0”/Ì ð .Àâû L„0w…{ÿ!6C:£ý ('p‡Caoœƒ †àrÌtôFž0ÄÆúþl ,þ;ÜŸÞ¿Á¿!P(ÒÂÀÂ.g¸; `¤©/‚Æ …„Ó/Cˆ»7çñ…ÀÝ!Ž8ƒß…Cš*&ߟ輡(¸'Ú[Äîþ ¡è¯0¸&k œÔ0Ú›âW}êp Šë:Vô÷XÝH?DÀgg8ÂÉù'OQ Ü˦£þ§NDñ̆H‚@ iYÌ Ã@]E7ÇzÂ~+Á¿Ä¸úƒ<‘žgX܆û¡ð†øÂh”,(à¿+þ}£ƒNp(às#(þ‰ŽÜÿ¸ã&‚c6 ñÀЯÏß';·œwì?濇+j¥cª®¦/øðß*UU$ ,‹I‚`°¬8@wúw”¿ñÿ…ý·Ôÿ³6Ð?uÎH€ìp½û †ïŸœàûs]øÿÎ`ˆÄñàû‡ö¶ I÷þ“ÿ·ËÿÆù_QþÚÿg=š>î|¿ÔÿC ñ€»cÿÔãXìƒÆm„·ˆÿ4µ‚ý±Ä0'¸ÇjuÐÜf¨ \Üÿn"Ü[Ž9ÃÑP×?ô× páÝá˜1Òþ뙃A ÿÐáv ê†{J¼q“ú­‚áVéß)5P¤Ó¯“”@P(–7xÜMÆ-§ ó›×Qsààœ‘(Š_ó”ˆâ«_BІú P¸eû=x\Ö¿î¿7ÃÀ 3“H¨|ä½úȶãZ•ë~Â˃ŠcÀe«ÇüÂ3¨W>§Ô¤iü5Ùየï*i}¯¯Î}Ñà;ºõ‘ý<`³¥ô~ë#“—?Ïì“MG–_RL3vmª<w“ü†°ù­•Às¯@Ë07Âü]`¾— µq!ݱß[-Ìówå³¢'—MVj¤ô(ÏÊG…,âmÃJÇŽ9Ìœ$há›d×ö04ãGßÇ®å ]²ë& Rm%ˆX/‰%žLøÏWš‹yw²p³X3ß$<ºöa„'@u-]—i*àYñ"êCÆã«O©`÷5>ÿeCÓcÔú·»<À!9>fQBz¸øÅVíRމœ½9ÝEŒÎ7éGo!£ø¥‘»t=QåX ÇŠ#ýÆ»›‹+# ƒÂJÔâ¥hy-Òx…ey÷}¹7äÇÅFfiW ?™ )¿‘mËZœù´”qX{-ï8ž}ä†ðÅ}âŸe$Ç~¬ ³ ž¾÷ôd³F*¥—v­'¨H©ÿ>uÏ2Åš×ÒÆìƒ–T¯¤ÚhzòJZku;é÷­-FnÂZöó¶ŸÍúéj±ZÙGú¹‡ç©YÑI†¬2§.O¶ÄLH‚äÖß]] âó4K/Õ‰Éh&ÔzÊ$Ù^d.{èGX°¸1{hW\Ñôš5w~oͽv¸W5˜9·Ò,öãþ±Úè¾Ï¦=ÅEkM4ŸDn‹Ç²Ç­Û§a²²‹=[]ˆ¸<W*óÄò~eqy>/2{6ÆÚSr›¨_6øÁ—ÁG¥ÏJŽ£¼f¹ Ÿ±æ‚À)zu3` Vñ"ÚÁaf~øqnm¹üYLô÷•ªgIÚBÑ«i‡£ô„{k…}:—œ}ëŽóÍk åa$‹yy!!yá^i1¢Á$÷xm4Àóä×ûü\„zõªBS©‘“J2 òµ¨2ÀµÛô„7Ù’î[Òº1лL ‹FVn˜ÞeŸ tßwÄS mò¯Õ+`³'*¯&€ ñN‚‡Lö3¥ï>oÕh9+ßÝ ‰»)ËMØiýn kçŽfKD]ͧUÌcÎÊz¯OG¯ ü0 ¹ ~e»Ã‡¦ùÂ(¢ÁæÿЊ/†+ÜÀðCr£ÔÇ`) ùÉŽËaµn–ÂÈ]ð¬dé|¯k Ö™¢Î›öêG™°¡ZÉêN(œV‹[²ß´«gî~Aèy6ukFÉŽåÒùó Õèj䬴ÉC-ËÍÔ¥JDÑÕàþ8·¸“ƒyoÑé0ί*½SbbÇêð"¹Œ¨ÛÀc˜äãQ×§Û~ër{+ÏMå£ÑUYÓÌÙí\’k7è¬Çéû¢.¨Î‘Þ~åÖL,Âø³›dâª{!>«Ü…ôø*aºÞök‡·Ù#ÞÏã…eƱì²_Î…Ä™¡³Þkå<®¼2ª×Æ,#ÖîœS¥–; i1x€}”Ã#˜&$byÒí6W?>®q¸Ô óôØ #m¶¸VCãÚœ?VŸ×ÅÂíWl[£ëD*#Øi–¯¡XÚy;öÑÔo™ ›U­™ÌÓzo#ÿF}ˆv{ô!IrÐF„B þ- çe’:Ð å6‚üy›‡$¹½§Jô€!Iáîx«Q„¼¦aQA“©ZæªÞ©0óѽ¶£Œ9ÿAÒ—M#Ãls€ìÍ­3×/ñÞ‚KX,„³kØilßžóÝèRT·qâ¿u¶$B‡¥ós=›I‰5˜ÉPQ<‘4ä~Æ 6Ép«¢q­Xy{-ðFMÈ+~ë^èîÃT[œbPRÚTç]‚~E¼0Ÿqgbí*OŒÈa')§7ÇɤÙ3Ïéz_C<²Þ ¬LZðw`Vîý¨aFzûmqu™žæÔzmßs×8?+û®/R¯mS)-{ìnÜ©hS¶QTµ¾Ûà ªgšÚSÜ™ .',ˆuÄ·¼l™­E¾O—l}%žîðèì(¥_™xÜ`”sJËPÛÉv›ÃæKøÌt>Q¢ÃIŸ/‘ó·À O¦§IäœqŒ$Áü´$> Û¾W5¸-*2Ûmã^XÉoÆç²Žêª®H½äž,.]‰Kª2vS~7€}‰½Œ‘ˆj¥S þ>¿°×Ÿâ¥¨¦Å ØcJo¾å4ÓUGÜ|Ч6‘ W\Œu;øWÕÝÃ4$¥Ï–œYÛ^-éAí–]ÉþÚãÝ‘ÉùÂqƒÉΛ™™ÉƒêU]uÕÏ2›àߨô—2XQüœAwÁÉÛbd´–~Ñë?y€˜`÷ձàZ…©¥—)ßÞ[9|¯?CÞ®WäÝKÊšœw-{ó-­ûá̦š³Fv˜ä©¦Ýƒá8l:Â5ðÆ'2&R’aQ¾Ž`ž‹ÕNãÚbUÙj—˜ÐxYŠ“… ò‡@æO?„dóHñi‡ŒÈô¶Æ¶õ™ÏùÞ ×ЧWMŒ:Œ¿!$ÕJÀ)¨ÞÝ|€rÕW°#U”ZÑ}­ûBvuy¶#i‡!DìÇ=Qw±Š§¯¿ntH²v§Õuº\Zâ§ô3- Ó/dËèäê Am³·ŒØÏrJ£Ç’‚‚ÌÓ7~0Ìÿ¤“͹¡>Ê·Þ%“Ý-xì ›b‰ÊñÛ6½/#=ÏQ?X‹LöNiavD§^ V-4,2f?îÚÓ¾íÒ;@Ê¥ú8ÈÀ–,s]”ÿœ—Ú’ºuxæRÀoOþØÂùóòm®-]ÞR 0@øX°àÔ¡BfþÓ-ù7NÖ!û¬½l×®cò¬x™—ö\Tð“—¸ };½†toUPŒ±ôö~¥Ãë¥í¡*[<»¤²G¶.¨õ ÒÏ=’ ¸Î)L)¢Öï< ihË®áÎߪ Ý>$ºÞX"Õ’Ⱦœ™ÔûPë!½NF“Ã[g7¯ë [èfbkžÞä׊_ÉÄ‹#ljtJ]nXäJ’EÀB«z»ÏËT^Õàͺ&tVú•QÎBÖ Ýsµ–sïX¯ ¿¢ ™%=N$*(sPÓa[°Ùe)ò<û!ÒÖív) ¿-ÿM5‘൧ݬR~Ūpµ.O£'”u×h4ßwebÔíòؘ^ ’ß±Mc3oönÝ·±ž O-ýÕžé©||àØ$%›¦úCó™³V¢4d‡©Ë’äÎä\ÊÏMô ª×„1ß B|¡JbŒV\ÏÄ+A«›(î*ù%•£‡ï“áo§FíœÏ„(è"äøòj›­ »eð¦[»¶G96u$‡sG ±è´Ñ%ŵ ƒ}„ª=C¯Xº=aõ-„ÏceýQ!u+ úñã˜f<EŸ 4.Æ4©›cª›˜»Ä&Ö?ôä7c˜†L4¡¦Úä6w°­ exOâH|~ÝXº¬;ÙëéËæVjþñÔ¹© ð4ÞÎ{ýGlÝGfçãM€‹ÖÂ^Žqgœ˜².°ÑXûåâ<£pËÝ-§Ä¬aôþŽ®î®.ñeQŠuâ£òõKUma¼`lÛ(‹ç㣕ø_ò#c–&kœ¶©hýE7ŠNÅ‹–î1$ tòÝÔÅ7~òŽ›·¦¨Jå«ùqcÓõþr gã»CÇÇÁv·©'ZWRÚÜ|,[-k®ðj<ïý½ §Q½y²Œ6:O•"X#$©M} <|;åŒßÇ@så¾9´õûùyò{ëâ碠—ö@‘v"Ç<˜Uþmy¡Ì ³¥Ž.Ãö´â:r+síSÀìËÎõ¦µì 2’?„•ñ^>}µÿ‚ôølùIAÓt”åÀíý/Š”¶£>%­ªi¤ï¶,øÔ|» ý”µ§Èï¡/ƒñÔóŠ˜1èíÓ±ˆÖÓÆ)6½¼Š1Ñ„úȱ¦pþêÁ¥†¦Lš<ê‘÷u}˜¨IM?ʨ“¤t´]j‘“¼÷ §õŽ+×ßÚºW}ÐOq…lž9ŠR—ë¹mXf],¨“ûäSKq ή3Ë"I‰+w^ÀŸ3^ãsÁJº›ÅíßoþÐÞCJiýjÝ$–*¾ ”óÂéÈ3ÎÊEX?ɱ8ÏóÇO¬í¬? Ÿ‹i©Ùl·g°³R/áÅ…S‰¢¬…Ø|éʧÆç-jµç%lIÚ”Ÿ»ž‰(Þ“Dšf›}‚T¯úúç¸{[éX([\ågȇuð ‚IÃÓ‹ÂåØêǽ¯ª˜5*N4›±HyÐNjЛ{Ê ³£³ÆÃJ¬œý\=iݧµTô‰æ’º¬Ç!ËL'fL·J V¤¹dx&·„KJOò±aˆÓ·²OOJ6ÕjEÖ™/LŒ÷EZ†^£øQ‘±-h…WgfÃj´á!Îlìá».D[!˜j:ÌÜu^ºo¾UívŒ=ºjªÀMÉ0ðu>”ü“Ø%„Œgô{3c^Ø´b±Úxþ÷ÝÚO†ƒT²ŒÒ\åõŸƒßwÄeÏ™×u*7¨ú3|›2hÉ/4¡¯÷¯(›²»FçWn¾¹w8f|Ë82“š;ÕÛxcªk˜¿d|ó5}ÑY< Ôw³ÂsÂéã KŽ,‡Öêfs‹†TzU©Üy^ßêãyíý:"º5Ú^¾•4³²‰þן}ÙysŽÜv›ÈŒÿN8#›Í9«2‘ãúˆá^ I`ç¸ñŒGwÐëNÑŸš%.iN‹Š7ü‘æ¶SÖ˜Mm*2)6{;oäm?DôÄwÿU˜º¸›EÚ¡Mçè” «ÐfEýä6ff¡~B2#Êm àâ}nb:mÞ³wuj$´¢×.ã’‰®ÄŸvM ú*¶ì­Gg³«Å”ggc¤îP 4¯>$|„Zè”!Ò % ©à•V#³}ÕF'R2©Í*;+ K'tÙ<ÿ[öB^c™Ñ¥’AŒXWË]Ã{!;Ô]6†·Òò¬_|¿¹"Ïåê:§'½Ê%&_£6ßXþ³NŒÊOíÚÚÄdÎ1ön›¬z…n¯×€cÈëXëÈKi†vñ±ÞWùܸÄáTl¿ohš¬”¿'97GòÛ Ñg'/dÚ)|Æ…XÓ®Ú ³§Ô4 ì'ô,r´J†»`m‚á+|jáÏ}Tj_{± »¯™C}lÒ)ÓîM*>ÔÈ"ÙŸÈc;V“ö4„TÖ2ˆ :¡LvZG éEå»’ó“>&Ÿ©ýþz+$ð’ù®c7üS§—à†QP+¾ä§ªp”ý£Ú}wµ‘™'«4¡¬}Ä S†4\%=I‰Ï%¨S•|… öÁ«žž±ö_j·ª@{pãЋ´´Ýøð¶ÊýûIÍ.ÅíÖà˜‡r¡QÁ+p¾÷ø_ݼª!5•{"`š¯ÙÓ ¼ròü“ vì{B›RL>èªþŒJ$bæ.GÙ¡>5^}l g¾c.û“Ï}ÙÁŠÅCjÃâ‘6í°Ì9þÜ=“Ss£i* “ˆKöÜTì_±ƒ@çO¥ŽJÞÅû‹’1Tl®T!‘–¡óBkG¾(q󛉿c‹—¯ÄŒÚgÏwsì6#ÇÔ·ÉK/ñ\XcëÅÙèÞ‡Ó)|Z†‹lìùi³ÊÕŽ r·‘‰©ó…5—(VTíTŒ±é!+sܸsz¯•vÈÇ<pYiRòг–ýàýù|–™P":¨Ðe­ÜÇÔÇuÀÝ?Ê¿¶?ô„½°L Y^I‰÷üç‘uèŸübK¯žYvŒvž1[ös:ñ ÌÐmÏ »R»ÿˆîÌ©ö:t÷Ld‚N‚ãqÇM†srº¼5z¢SM!Zw_!³^ø\€}j‘gÅßuå)MS–z›nÌ<ƒHÒ÷÷PVõëýÏ‘-—Öð«ƒu?½sÍú™o£ÀfÞ «D~L0çä #VÙx5ý l% µˆ¦´Ü¶e³Ë{š–ƒß^¬ü2ÇàÆ$æê Û±Ïò#Ÿ¨jÙX–ù_××Ï*¾]¬ÉŒlèó&Ü›ý>[¸sÑMôD©ÈÓì<äª%×£.9¥WÎCÔœöª9HD*‡Ÿa{åVTMòéÊQù#ÞC韃·ž* FYJÆM° m^Ÿ®®* P’j}ÿ}yç;WÈÛ»U’©Öž€&”Мj ÓÝÏr„†ït‰è;_‚¤U†,–¢’'Jƒ4$òûüUªÖ¨­¢>|:LjÏxZ·þðTì ÈC†¼é Xåâ-?zîc@»–h^·ôíMÚ;"›p—€7Nú*†)Ý!äAŽ„7`[Ñ¢šÊT*ÍvŽ>9“¾}]aE^ó’lĆ$ TÍ‹)¦å˜)¨™±»´ù) q¿ú‰Yg3Þ Ïï­ ®Ç#§M9óè» 0¹ãôëÎæ¦@ž[«àŒÊ3Š3Îò”sè!ëV” #íP§[†ðíÕû/-LÒžuU\Açjiq_¥!³`zTùbjpBº\²/açt80nÏ>¼B«„šÚAyIDó „AÀË—ó|´„1&«ª&¼h‘.÷ÊI²µ˜I]ÒH“B €‚^BÔõ„Krž½ÖX¡íˆÈ™ˆMLhù¼¢ég0/L|°›¢X1n®¨aîÉmý0.õñœXSþšV§z5íÉÛ* u¬ÒG‘õ+[w{šfØoþ–Ó?¿ endstream endobj 179 0 obj << /Type /FontDescriptor /FontName /WIRDCL+CMR6 /Flags 4 /FontBBox [-20 -250 1193 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 83 /XHeight 431 /CharSet (/one) /FontFile 178 0 R >> endobj 180 0 obj << /Length1 1397 /Length2 6127 /Length3 0 /Length 7073 /Filter /FlateDecode >> stream xÚvTlû7%1º[&¡ô6Rî–”cÀ€m0FŽ$EiARZ¥ADJBBI)I”ÿÔçyÞÿó~ß9ßwvÎv_}ýîëwÝgWŒÍÄTÑNp-4 +ËÕ Me`°¤8,0G`=á´[pŒ’ÿ_vu ŠÅë4 X¼›!ÔóõB$yˆ¬< ”ƒåþvDcäP?„3ÐP¨‡FÁ}êh¯@ ÂÕ ‹¯ò÷(BäädE‡U‘p E ¡X78_õš¡a86ð_)ܰX/yÈßß_ŠôGc\•„Dþ¬ÐîÇøÁ¿à Høo`â ¹ÂçÚ í‚õ‡bà@¼Âƒ£|ð¾(g8ˆ¯ 4Ó5Þô‚£þ8üqþu5@ˆ8äŸtEÿJ„@ý†Â`h¤ˆ@¹]žpàM-qlVE9ÿr„zú ññP?(Âê„wøÝ8¨¥j„âñý…ΆAxa}Ä}ž¿‚~¥Á_²&ÊYDÂQXÀ¯þ48 ë ßcõ@¡ýQ¸?gÊÙåg_/ áí ×ÕøË¯üGç Ç¥Á`°¬÷Â`n _Éͽà¿_j|ÿ!8/´Ð‚pã8¨ˆÅøÂCpÿÛðo 0,Ð îŠ@þ“¯†»ü‘ñ“Ç €·ÁxâA€à_ŸNvxn9£Qžÿqÿ=\¾¶‰ÈoÀÿ˜ÔÔÐ@œ˜„,PLB „@$$€²øCÈ¿³üƒÿo쿵ÆPÄ_½ÿ“Qå‚Êý€¿»¿aøýÅ Á¿ÖEøï Fh<á@ÁÿÐÞ, †á¿ ÿßäÿòãü¯,ÿÚÿw?Z¾žž¿­‚¿Ìÿ‡ŠDxþedzØ‹ßC4~/Pÿíj ÿ³Ä†pg„/ò¿­ºX(~3TQ®žÿ\"ÂG w6F`anô÷ ðé=(¸1Úñ뙊AÀàÿ²áw æJ|ð“úm‚ãWéß%5Q0´ó¯“–B1h ?x¼$ ÄAðËé øÍk H…ÆâC€xx!@4ðkžø ÐHxõo”„¾~Ëÿ*óÅ`ðë÷› ø>þ–ï:‡¦'ѰwÝ_Ý}}T¥Êé/¶2¤8&°b™!$†›Æ´øžÐ¥ ½ÈŽ˜Çª¦öwÒ}\Ö÷¾uǃ¸‘°MO ÏÛ÷:qã‘·v@uOùì»èÉ“Õ2ú”gåïÅî[$ØÞ)Èwz2ÁÆKŠã&fØ  ?8cȾàÑK„lÝ—,ÂÙ,H<8žúôÌ\§ŸÝ†›ø€áÝèUœÚzšë\iÑ\ḭoqœäÇv;íÐÉ% Y…@DÒõ—Ê}ÄWV]lµQ6  Dµc+gÒž®ž‹V„UzI¯®rûÂèvp“Üå u¯xÛΞʪÕd2/ÉÄ…ëñ]áPT<¸–³‡¹7ãÇ£4ã½ÏžVy%DÍcB­EcXÚãB^æÎGÜÌὂ(ëÈè‡K3*QõžQ8'‹êÙWÔFq²“ˆî ÛEØ‚ÖXY9Þ sR|«‰õp+#r¿é¿ÞòÑ{‹ˆbÏãªhòªƒrx滟ý±°Ë¼É(åÃâ¡ ËØd¡œä´‰{<ŒíCÜÄÅ÷=ºÒVãS·ïÛ<¯Oéí?4c ¦LTN­% ƒ“}NY±ìqE·&í$Op¼­|åÔ¸î÷9j­2¡EœÜío’ÒÊO:fôkx{ø8ܘêÖÎJ)ËTb»Â#©ÁÑ}wbï³c{Vm‡f……š|çK­å¥»š‘˽ŽÙö†Hã~ó„)Ò¦â÷PþÝ ºçÔý¾ÎLÑS’LÈÓÕØmÌ\}¥¨ÖsJ:Š›çGŽ~æ&@¦8ß/å[-z¤Ê²Žéf5* pž­‡Œ…¦®Í®˜g^•…2óë ]x/<2Öå«3dH^¿à1DÓг¥2÷z|6›Ñf^OÆ-|÷ùÒŒ¢›êLÕüÐ;Ryº6¾D´Ó¤_ÓÞj{γO›¿MØ™ßà Nî_¿t3~¡„ëá(p!Pœ?ªs†Äù¤ýø® ò¡]ÅyH#4Ð ÓšªQyÓ&±T³_|8ñ£âf² €}i HâV{«PC+Ç“/ï{z? Îïm#w›Ø]šØÉ.1p™>³9ÎÅÕ› ÷A„‡ŸMfÜgI,–D¿^¬Ìˆ°ãDŒÄOÎkÃ{”†cc¯)æÝ©ïÕÕ;åê¸Ø½‹QçõñBETåID@(p’'Ššg3î•›DRã6Fo%/ôC…ýï4)ÿ$Ügyº¾Ã—V“M"WÎqcPC¢zIè±q ¥llÈGûZ¤/§ÖNöT¯ÄI|~ʳª€P¤L'©Â-{}Obž¡ [T>åÕ,ºN«Mw”¿Úó¹»¾»U-Ö½…fíu|—Y†c¢­=-ÇÅãS‘"»~hÕ5cu÷”m2U¸@ΚŸÝé´¼îÃÐHjÆ. mî‡M.U×.g´]"Šåô»w°+ï²í’%7~RfZ„Œ OóU(¾ß¦ÑþdPØ'-÷êq]«ºOvšwÊû¶ 8ÃèÜCAï`—3 Oا:Äκ qq8 í%Ë\m·ãØÅ,ǽJ=Rú\AË#u•\»GSd,“UJ“Ùg ÷ï,fKúØ•¡&‚WK„­ÍæäIFuø²Ò®Ô<“ã|Ù —» FT/“ͺ‡à¼%-íÕÊ®=ù$xÎÈf]DÐç†OZv›®?4[T&ðe8&˜é¦:'ÚJ·éᩪK}ˆHBÕ,O¼Uœni˜ÉëÍÚLÆÕú¼P\GÚF܉Hmó¥÷´×v3êã™"U9Ý\äJOô¡ i>‘aNžæzIâtbsçƒðòºkÄåÅ=2+ÊŸW6Qmªy¸ìœªLÑæLH,.Kó0vK|Ò4i$ÅÞä1¿*ÈDàϘÕè) 6<¦+'nË]]´Õ$ˆg¯Æ.Ö‰jæÉ3¼Î·±ÛŸ(8æÑÛ´JÇB\ÉO¨Cú‹z³ÃöŽrÀmÌ ñ´ì¨.}›æXËáeœÝû.='k·¾TN$W̹ËÞ‚:@ûÛ¿ðŠáø¶Ç¶YWK8Åîœ0å׸œn¦ÏÞþ*D¿£óü5Ù¸ªÑŒæfsJ÷EÉ ×\Zïö®jµŠÕÉ·ÂîÏÆšèÝh&u®Qñ_jU™‘GŠ‹Gƒ¼Óʽ0ØÕö$ø¼o@oîÕkýÆKoùŠ=Ö6gòD~gžÀ=yc¹t^~â8T‘“G·>`+-/ge1 t'2Íšwå³Û%²ô®ÍÞµi(MZnÜ1€ËS'~²¾È›G¾ùÊO¤w©·Ï6s—<˜˜ºVžj7ÒB{ó¨˜cÖ_þÈ‹üÖé÷Ó`à‹à3];çgkÙàÚZtëªó-=~•ÊàÝ{—[¢Y(…¿”r´fúﱜÓÑSéçÒ_ùV0A®\ß”<"öö#Iתtà¶RMË× 9¼'m©hOD’`©4>&t3Õ{•¤¤$Ì»*²0“7õ£ÛÚÿ‘‡¿DÉg•lnû ô¸ÊZ¥ô¸©¯Tú¤l®§Ûò`ŠH‰ñ]ॵˆWèõšO[‘<ªŠíjÇÊ;…¯;xMcé«®ý¢¡u§?¼Å5ƒ(ô»áts™e«x§wR‘ŸöC°?à9í?‰ÙˆÆg.ê †!¡›W“ œmCö%¢-¿gÑ‹oJ•<ˆßi¶.á®fИÞµQ®Þ¾+{÷%dð9•0µ†‚ñ2dÀÝî8n2H¯•ñ(5ïé—GJÜ_™48r•.v±#èüÁïúñ©‰ñ×`åñõÜs¹æcòî!Ù˜ÌH•˜:Äž$Lñ'= º6´tÛB¼2Sp/ÕqP«¢‚®B¹qí½ï¹5ùIKdÀ_’ñSnúg!S+Z>î†âã¹"Ÿ ©¯Vq¼¯øœ–hý‰ p90‚h­p£ç‹îäײÞ$ä™Ä'a¹Ž%8?˜Ï BwÄ·+"wÛ8SƒËz.3î±Í'6üô|®u –¯ çœqYH󊻄nHš©M=»2˜þmÐgîúk ‘¡åOÑÔi©ˆŒ†é ÙÆ~³æãÊï|+/fÛÑš§†Æà1°WªüÝ=MÛ;ÝÓ•§"Sܲio(›M~EšvÇQ³!4Ðj²ƒóòPüÄNÌ·º²Z-yöwk™L÷|÷Ûo5ÚÕÈJðE?o‹Ù{eZ©7Ódi–®*L½™35²kñV^ýÜ›ªšÎÒ–öç[æ¯+<¹ÞñDŬ¬Æóo± Ìn„˵½ƒ‹¦¢~/dïÑj:Dô¬6ÙH3)r(ue§“eîõLf3ò17»™1˜ªVo)ItÏ‘F’ßœPö¤åõž¤Õør3:æÀ×ã€XÊ!„g¶7‡¯ŒŠ ÈѨ-ölTAA×ì ¾òlZMaI±ÂuSÿ& tm¹²}%fXÎÐÒÌlÌYÚ\¢Jõ…q™ÐœN˜>`*N\3 É©} ü¤´‹Y<ÌJÛŽO¸¡5rY{²äëµóVnùW=e…ÎÌ[,V1è`Ý×vƒ¥…Þ 56yÌY“¢ØˆßÉ+-ü½W½‚…Ó˜¯?©LGksï¸úZïGBkÖ‡/úFDKò »YÞFtš_»ÞÜï•úÔè“Z"¸#×­HªzN"G>~mRÝÉD&Wü3u•ߣ§Â8ç3z-9z1@hê2½StâŠív;ψ[+aãþ`º†‰ø3šš‚Â×fÖ°•ÄOý•CÁOy4z„EÌRw÷"m±¬N±§cÒÿP|$Á§§ÓtQ,;6Ò>R5÷ÉEa@HʯĹ”'q®­C‹4a:}kïöö^«ã4`Ar¯ý(áF$.m‹“-”7s1þc6·9ȦãẘñuV4°¨AvÂð_õ±vxp¼^ ºç6kû‰e—ŸyÕÆÍèÙ ²ê:¾Um5å:žž^ÃÜþ ÓÕbâ³}‘8‡²­átšiÕÂâŽó0Úo@ºn­jÇoM©•^À/FšË÷åê±¢Ð2ØlI ÙÔ£´‰g3îþË€³Ëâô§ÓƒÒ«”ï°‹ÈÁ™-Ï5_‹R–)¾K Ô3 &íCÉ%)š6ôR6µ:Ή~Ý…ea>—V%àzÄ&R%²Õd¦êK†ô/î*««î9Õ2SX]ƒÀßÉ,…É™¬å_ò„k9j<°‹% Éa^²ù‘ôJèÙÃë^Å·chü7…+x›o_­ð-ï&~‚yì»#6H¯˜QZË‹QWCù¸NpÞÝËt;F½*+× šQpz5T¥ü4³Ä)Âð ÿç"høÉø,HK*9q}'Z±Qæúeé3ÖoÇO'h*¹]Æ’­7;ÀV:eRU"†³:ÄXÿm6àHBǽ rÁcÏðïÝ3¯¡¡j…çö°$IN¤—á4ü=ÜUú¸ýP—òÙ½xÙ–…ŽØ­‘ÂbÔ¢H‡p »ìaŠ®A„ÉäÙý|7¡õ0£¡¡ÒY–år}%Jp-¶Øa™ZØñf ¹¼ôkÊ8íœÇË!IÁG+6Fͽ?l^á›§6yßB«^•–£Ûh ]Esþ çÄ/ñëCQ½ÁrÙM±ÛrOÉ¾á Æ‰µN—XõYA.ôÈQR6QðCå39¯RäõD1™ :‹¡>6W¢/tâkÚÎë4÷Ây8TõÖ˜¤(fGBK=Ç&$¶S,kÝË› ovµñ|&ˆ_1›EÂË8;y»Zæ)‡ „årÉñ°ï.ýNÁQ1ÊóT+©uknR•öH"»¬ƒvc ·"ÐËÍ!«¯~³mÉÖ€þ3âoÓ"íÉ7PúÙór w:*…™*›ÄîC¨ÂE^w|KÏÚe«tïy7«óí»%Ö6áÇΛ‘oÚíz‘.žì[+­›ª™ß\ö]” Òêtüe2Kž®‰­ç©uÂR» |aÆ ®e~ÃΊâŸÈ%g~²êäR~p |uÒS ýxVK-ȹã/k»‘ik•³¬Ú×–&•åøÎîÅvZp²_ôr䌤Mè!eÎyT®s‹ ‰¸¬V“‡ú*h2¥'휵ÊÏÖîzwÂéQ™ÖγHàaÎ9ß>ŸcÔ;¼¬bÛ"@ü†,®î°¥ÔÅÈoup¦ö­áš Žª(•krù•Ñ …iõCTnqˆiK"dŽL-ˆzu#“Õa$;áÃãµÎ51Ú1rÍÂ÷ÕáÍH”ï#ÎÒ%î‡ ‰„ÐgËN÷hVFÉ}åëÐJCZÏ–­…ix=O7ç2—±øz:¢C£;ëÁº— ’ÌÍž±e §ÐUƒÀM\Er¦Ü·³ÞHvM€`RÓ“åÛIúsg/ì«Ã(%vÔ8TøË ë¶ø¯ nú$ß3~k +¶¾Ø“—H5ºúÍ›ždð£TÆA"> ô–µ_uç:ÒFV3`»6†RDùaE™Lÿg¥%ÜÞÕúÊ2j« zªÏ§¯ø>0èèˆh$øÙ„ZÞ¼¯|‹\²G’؈R+jìN¶Ü!Yà6/os-ù ž›¾™1€›ÿ)iÀÃ!ûpÍ5ûIouúëMSGýë/ylövfRÃ]Àny/á •×™ò£¨#§Þäbl_ÏoiD7Ú?ï…ÌAÞݵâ' «RoÕrÚýîihBt_œ§i`)OwöAÕõ?ª ±é¡"™œ¢›wÆÔÌo="aÕ)›µfi÷Ò 1Ì÷¿Bzµê±KF—ö[GC |¨>åv’Ô ›™X4©;܎б$Qcè6quY:îµr…rÒ—>غðn–ø!ˆ„(Ðkä—‡ lPÊ bxË0Õ»â;2àeßݪ’Éçë?¢ µìD'z )Rîõ¼3Ê( ×첟§«âb”·àJ“/ÎíèÌÛSÉÀVú C¹´B?Åáƒi’’fO0ë²`ê§cuxL´páøN‹f~¥-7DðPÁb®Ô¢È&Ì3‚~©ß5:[,èáX~ò²J\%´ î¹ä9{²8()#ÃèY1®Ìzgo:Òî>ÕaOÍ÷«ñ±ïƒºâf†™¶7“à/wY‘”è”jŽÏÛë|ßÞϚ楄”y‰ßþ¼cñ’Ï=”Vd-(Ol791/Íò1Žo`§Ê/sck/ôËÝ:Ïû"¬ôöä¶©,W.Þ£){ ­R•bðóHCìe´ìDâò\–NXkÛÀ•!› †Üïû3ÉùûG$±ÙnéLË…1,-¬~+$-a§Ù{—ÀRâÐjHÄ2Är•øb.í»¥»DDª‹˜lSö´?Ø1K¡´úÖýEx„/¤­D‘ýn;øÑA|Ò®qïƒ7V~$–fÂÖ÷Ã’±!Ë•¶ÎéäR Ga,ðùÆE¾SÊYâ7’åÖŒ=µ_hj0 Ï' {kU¼˜"TïºÔ&îm,ÖŽð÷HÉ/‰u½y¯ÓÀñôYmÍ|Àâ£.æ» O.8µî—¾|iŒ¶‹râÚÈ»1rÖüC53Ò"*×x#D.™$ž·HèýiP=áFü<ÿsV‹Ãtw‘ÉŽ _Ñ.U¬ÿf²N‡!sÝÛ¬:q;¤Âs ¢qX[ Šã̇ã¡åm¥z“J¥Ã}„JXÁ“œ€ÒÏ1ªœ‰a² uÞ§-”)_ë«ì…ï¼<‘þè» å»÷4°gœtdâÒç(¦>!zºÚC¯0Sºd¦$«¹4Ÿ6¬}E¢+Œ±Ý¢ªïJüº› endstream endobj 181 0 obj << /Type /FontDescriptor /FontName /ZKZGQL+CMR7 /Flags 4 /FontBBox [-27 -250 1122 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 79 /XHeight 431 /CharSet (/eight/one) /FontFile 180 0 R >> endobj 182 0 obj << /Length1 1744 /Length2 10582 /Length3 0 /Length 11687 /Filter /FlateDecode >> stream xÚ·PÚ- A‚»KÜÝÝÝ5 n înÁÝÝÝ‚w'¸  ¸Ë#9çž“{ÿ¯z¯¦ŠÙ«uõîî=%©Š:£¨©­1PÊÖÆ‰‘•‰… ®¨Æ`aagbaaC ¤Ô9I(µ€Ž [¾?ôâ@#§™„‘Ó‹™¢­ @Î `e°rñ±ró±°ØXXxÿchëÀ0r™™r¶6@GJq[;w¹…ÓK–ÿ4&´V^^n†ßîQk ÈÄÈ häd´~Éhb¨Ûš€€Nîÿ‚FÀÂÉÉŽ™ÙÕÕ•ÉÈÚ‘ÉÖÁ\ˆ–à r²¨.@SÀ¯rJFÖÀß…1!P4,@މÕmÍœ\€€d´q|qp¶1:^rÔeÊv@›¿Œþ2`ü}5V&ÖÂýíý+Èæ·³‘‰‰­µ‘;ÈÆ`ÊR LNnN #Ó_†F`GÛ##ØÈøÅà7q#€”¨*À襾¿«s4qÙ9929‚À¿*dþæå’%mLÅm­­6NŽ¿øI€€&/·îÎü»­V6¶®6žÍ@6¦f¿J0u¶cÖ´Ù;e%þ¶x!ü+3:8YXX¸yY@{ÐÍÄ‚ùWp w;àoåoñ oO;[;€ÙK @oðå ÁÓÑÈprpz{þ©øo„ÀÊ 0™8Œæ „£¿ˆfá—Î;€Ü:,/ƒÇ `ùõùç¤÷2[¦¶6`÷Í7—Y^V]CQ‚þwÁÿ¨ÄÄlÝžŒì\F6N+ 7 €ûåàýßQþ©ÿ?µÿ–ªþæÆòoDY3[ï_%¼ÜÝÊpù{&hþ^ZÀgP²}™c €æß±×eád1yùÃúÿ<ü¿]þÿfþW”ÿËØÿ/)g0ø·–æ—úÿ£5²ÝÿÖ¿L±³ÓËF(Ú¾ì…Íÿš¾þµÄŠ@S³õÿjeŒ^6CÔÆüÏ%‚¥@n@S“‰Å_ôŸ¼„ƒl€*¶Ž _Ï €‘•…åt/»fbõò”8¾tê· ø²JÿRÒÆÄÖô×αqrŒŒÜ^ÿ‚8ž¬/Ëi tû=×f&[§ÀKyÞ3[„_ýäá0küý…¸ÌZÿ ^n³Ñ¿ˆÀlü/â0›üƒ~1g6ý²˜ÿÂdfö‡–Àlþ|¡`ñä0ƒþ€/”,ÿ€/œ¬þ€/4¬ÿHôBÃæø’ØöÈ`¶ûr¼¶{?Û?x³¾Pqø¾Pqür¾ärZƒLlÁ¶&y‰ãô|!èü|qrý²½0rÿ ÿ«‹&Î//Ûï-{iñðïgtš ,-Øšð°¬ûÐ~S#Jèʸ;!8K¹û6•–ÑsÉ¡ÃùåumufÀºÃ•hÒH/Ú×mIšK‘e’GÏ- ¯CZTÛî½ âÔ¦wÛ¾Lá Nþ­ †'bÔùæõhï¥åoÕÙ%G™kï̃¢’yãÚ/íV?P¾2¼°«ú­šKñ¡|†1J3R׿dŽ2Ï8k Ö‰‘ŽãÄ uîòj#gò™D.ŽÁû0нÈS{ƒ-úvÞcµRƒÍ±Ÿ_êclšÊSl/Ywѳ´hÝa,e§c|Ó:‘¼G㱫¤vã°¦OE9ÉGƒÇ …%¹Þ*o]BË‘uòUnÝMöŒ»ÅØ‘A9ô¬ æ®C1è?7Ÿ®Oípäâÿ–Ô«’â—•ÒÐ\åí„áÖÀÐ-ë"ÎÞÿ"ûðs…ì½à×#ŸòF’4ìïY2[`~x¾1·8f•‘ûÄg…4³¡ñ(õYjGã5¶‚EßBX/•.(»$%eìæU¢ã%——µb5ZƒÛ}d´qÅ“úâè¨n¯’ñhÔ¶Ý“ºiéeÖ#ø·­!zép…¿ Édv…ŒQ*EµñóPŸ/ÃIÃbFi÷%u'™n ëƒ)ªšOZ/bAFhÀ«DÇܦþµÍ@)Z0Ÿ÷›çjöwq0ÈÄŠ.7P¥”ÒJ'‹¸ 3ÅÌ>†Sa×d‡Pr0h±Êlì<˱ X@$£ž¬t€ÉN‡÷Μ_ñØÛâ8AÜr·åéû rYŸÈ9<•61Îz=Âì%Os£N¢u¿¡yWjhAå– <ó•­Ú—8ÞZ©Ñ ;lJ´€òô@¯ÇPåæYããÀjüÎ/÷ZðþòÈ[ñú-ÍýÁÏ …ñ.C»“Èâðj•3þ'7ä†O Þë=ílˆWDeËI“GŨ…ŒšA=ÓÖ¯Ø'Ë>PÃÞâ‡v´l•bj¡MÒ«-úJ?Úe»KàÉLº¸yÚùa˜(à@ç_³º¶ïõv®Î`ôc‡Á7Kí+*™Ó¨C†oB„çh¡[…ùÛE1Ç ŽÄ”Ö+¥;ß]ÆH€Pl‘¡lU>.©·÷ª¿[‘€Ñ±úqc>¤sì”ÙÓwŽY«©/wòydÚŒ-¼9{ô”ûú*ŒÜÏíHb¯¯Ãº5ºãÒвÈdĪ™¯V­k)($ù]³­m>o-Gà°}«qžIÿ=UmêJ0Q¬í!¯£P!òíh_[g\ë.B5e§¾ììʾx ¥mÛìCEtº² ᙚ9y2¿D{ò(aö[}àè¹×ÒtœtfBÉÞüQæ¬ +Þ庅@¬s {>úc)ó0/=£1»k ïÛØîWÞY‹+ô£ó›-DÍEOã³ešîvwÝN‹÷ÍÑa§Il¥ß¸fKãC¾ãÂÎ)gÈÇ@‹‘kõº¢çv±®œ‰¥º¨£vàÐÜÐ÷6¬Î…v¦:Ç£G`«R°ÚáŽË™_G¤[FûžÁ X-Ÿ÷° 2ÚÙ×òÕ÷º®—yíñ¾Î”ÇuéRÈúˆ­P‚;q{XIsYÃÁâÁf©”Œ‹+M]õjBí[áªP¯&PD.F‡úZBÄð6Ž= ¾í$HL¥Ò`^½«øðà$'!„%ý‚:/ÍqÑÏ{–÷ˆ¯XÈ‚¦jì5”!õ`uý:°DÇ2n¦+agúÇ.£“‚l+HrÜZ;#Âf|œGÞè¶LO/G†Äâb)™mz“N1Äl{9˜-KA¨“ÿõ=ƒLp8FQç€ì²[úí܇ֲ¸]E >n‘\]Å¾Ö A8¯ß]Ii…'^‰K*»Éß!XJY° Å7Ò•G4?ÁÓ8D±¼Ÿì¹íüº9"Ȥ€n—¿t(¼l¼»>Öª|òºž@)ìŸfDÏ'²ü!j¶Åû©SëÁø"¯ƒç•ÆýŠi%é¾V{kê°îÒ!\ÛeN›¨U< -Ì‚ ýjõèí€t!ì­Ëó ¸Ógÿxp)´F‡ÓA!ÄÛNãÄÅÚR|a·ÂX±ƒÏ<{ó¨§/ä ¾_KùhâÛ÷„årÔ7Uä^ÓîÖ׌㌠£§™ˆfARWnoïP¢:*:>EÙ96¿#â²gŒù ˆJ}Œù˜7³¼NÆ:4ÈpÞêè6òIV½ :£?óCë™LÿÈ’{—=Sò³‹lZ t¾†þ±üc¾•päéÈÏôÙx¦M~SOÚùM;81 \8zŽÊ½gMxDººŠ½W›|wÖ EüĔ޵¤ŒE[#<ï2Æéí¨8®,Ó°wð¯”õÛYk‹4ì\¢$‚ôSb±úû_“D¦¯ _¸Q¤~:¢7_ì¸ÅÇáç}ãî©ÜÂgUç"ñAÕ ™j¡´u¸{¶©U τ݊j¶}I.7‰Ãzù\çK·N°…ׄq&&çÎú¯\ãpTË›áËù…Y–*”ùíó³ü"W›Í.ÏývUÑ&¨’²ióY™äH½×’È·5(çq¶¾ZYÏM»~í|4!p£ºÛ…ïI^; tÕç6o$÷)µo (æ #!ïS×|6hdL× ‚¶×u±Û$¾)çl¬N3XÀ—EFfrUÅíáø8í$ò°W䜞ÿÍðýúÎpÛgÑçM¿s›‚~ûÍÊî˜Òc? ¹'*­ë^mK–4sñ %Í>”rˈ¦Ìãu§/ª<·§>æF kÍŽ*0Ø©\i$¬'rÍ̳ùeŸ:Ö{’„óÉÒVÄff%ܧê…$W8LŠz¼ö¼ãPBQ`vï¾×`5Ž»a˳=¿j¿×ß=Ö{ ­)ªÅýÑMÕˆM~,)7fÆÌ ©ÆV‚d™±6„Ò0g#òJ u.]– ÛÔ«5‰þåA3ÖiU*¥ÉR,[¡_¦û‚%°ˆþ!¹Ò¯5Pi?Í ƒÖ„¿Æ.¼3˜îÓõf³Ð1¶&«?FÝ×[+“›>þåîÜßeŽg'dÕjókÙ)ép^Îç#o7€ ·ö™w ÆPfÃ~¶žIrñÒKŸò(ao*,4ãw…©Íö‹ Év\(L·8ëlj˜Û{m®ùbÉ îüzñ]z>ù¸¹ƒ°„ÚÍÛU)Sh%órV8é‰Öo”WPñã‹þ¥‰ŸW&×vVYÝ·êq×va+°BÇü];ÄÁ0GßÊ+k³ÇìY¥zTÍrY¡7Ú"’xu“~ˆô¶g|'yµ¼K3JÔ¨™N$I =UÿHÙ\Kƒd&ç6¶­ÿ1£:©¾îÕI² m<&ØèC;ÎP`þñ{ ”…`íæ¼‹Gm¢ÀÙió Ó>xMÞYæm¯¼‹Y­É  œU* ƒŒJœ AÖ´{Ì éEéM·¡=$æWaduÅÕR×—¶0¥õ tqQÕ¸_®P—ÈߟÚ.ò­QÅZНâùW9á]Êw–׌:÷FÃ,O ˜¯2ï\$¢²Ûä`R?ï€óØ ÄÍÇìÈȇ Ë/!Á™¡8%Ôt@5‹]FÔ(¦7X¥üQ°ŠE¶ƒ_*MªcP'¯ÜîhHN@Ýxá®ˆÍØ·JcÍÎ[I_¯Þh_ÂÅ –B¶ré´ÒRŸ )ê`#OtˆâÍbw&Ž“ïDt¬ |¯9¬äÚND˜?ª+—OÚ¼—Ó%³&Ø=öðdÍ«‡!ŒJüô“¹K*÷ ¼ïMÓ™oÓé*Ž¹Ð æ¡zeiÐÙ!]‰¾ÆTý>ºêÁXç¤EîOIÞ 7)„ßÄDV%ÆMÅ©§ôíqqŒ°!¸-§¯œ60’ŸÊË%X¯õõMw_¶îU6Šº:œdŠ‚í‰ÕÓchÿ´R6a•ˆ!$ÚŒzz$ï%°`ô²!ù´&xxz2'¥1É$3ÃwÔ‘8dƒtÙ ÙÙqLFLwùT åE£D“=Ñw_•fxœNƒÛV>c™,$žÂJ'>’^º.‹‘ ‡eìtïbùÊ$å­}絓Ÿ°Ž,ˆDÀÞts¶à½ëñZzCÃWlÖÁ@z‘ò@Cïâz«þøÃYù ä)úÇVGzš{Hɪ¤aVú`Å„#ŸÊ]jÛŠ˜1&ÏAµxdºJ‰*|†‰úN̓Œ%•ÁžÂbKØD)¾±úÕX3hx«Ÿž†oG[w‘ ¹Œ¨&#pqöÍœž\ȤpTx~zaÅÓCyø(ùw®Ð Šù†)â _»š]¼¾â¼ß| ‰ä"^¯ð]N—•‹ Žñd×QXðÿ´&¯Rm~ÃIbjÊBàÌN_N² nâ_~©=‹21çÅÚ%Ö¯Çÿ µq3Y#ôMMë´wgĪûÁ¹'ÝElN#ékeýÎ}dþân®õÁ¹~ÙѸÈ4kÆA7‘óW³+ŸcgtºØ ÚÃà#•ˆbÄ—Œ“Sé @ß|Û2òéG"o*–mн7²r"?žD[‚Û±%> Ž@eÃy‡-µ|¥c gÞâ-qàœ9©NPwÿ¤k¬9¢uRéÔîVáòˆnRÏ‘ùXï(d¹pûè«qÕ?K>1¼¹¤ú™¨ZØà,W¼-~VÜÌe}bxÆé4 Œ¹ÃÔ!$m쪹nºh‡W |ÆÆWW††îöÊ*WcN­Ò~±ZZ±ˆr€¢q{2/|@œ"JJxm“ùUE`¡¯œ_uA¦¾w¥Ï%ïâ2w+Ê/»6³$Øø¡àPºÔ{±>péÐhF!y’ C8.p”Ñ Iqç1“ ¶*5Ð6óB>ÚJۣȂ ÕƒÉÄ€ÞëªÒ©¯êØäÚÑý\T< )–ÿL¶ÎÆ1BöSмpM>³JáY’NlߺŒè«+bþª ÃHC޹Y›åý›uNŽÜ$÷ûý.5¸(òè”suÇæè ú©×–唃Û ÷‹{}ö»9r5Yþ]±u5¨=þ;(Ÿ¯ñw__˦|ô7ü ‹®î•tIm„MÊ­sµ MåÇ$æ"ÏÈáé3^M-™ˆ Þ¹*^_½ãEâ2ï ·QG¥ò>“RÈàt`õ~·—Õ&Ì?)3T½N¬¢L'ÉAi0;í¯ê†Éð§gí€ <ùì½æÉ?>¡«ž –—©üL‰ ;P¨J6÷zgíüˆRKâ¼,¬2"º5;xæ[‹ûi(? N‰¥!SISÒÍ-oÝ×­SxÒ’Dþ˜˜dfÈþˆs!r{Û-Óh½,e¡nXAFÚŠçŠFSâ›bó·`/?8…ù:øÓm©I™™ ]05á3Ê̇øQ¬–ÍÓŸ»±Î÷Û\šeÀâßcéb6M1½òŠcaYÊÄ÷‘éÀ‹‡U˜l¿Yÿ¸}Z¶jœî„WÓ\rû›µŸD¨Žé»­ÝS9wDÞðÙeÏ`œìÃÙ·iº#°mÀå=ùàS‰Œ7(9ñFæ>ÝBMÔ žÄ,_ÚþèézO_.?¸’á.Õ7àäÑÏÜä¡fåç{«çÁ îãeï¥j@ÔFªÀŠzv¿ï§j®ÔEÈ ip¡/pyw€ÙúÃYœíJöc.Ê!¬OÎy`Z¼£à Ý®j{ÉU.™šj÷~‰º=«[ØX1Ã÷}V³‘Pé€N=7*’ñ$t_«œÔVNɇRj¤h)ë”»4½ª°“¯Ö}ž“i¬¾ýÚáq©4ƒoª1]2”» ÞðåYMåãágpøÚâŸô¨<ûÌå#UìÕæ€ù·"®WëWŸFY‡ ë/ÜeEÒãIÍNš‚/J$¹ Ñ'èW·]3sÓ™ ü‹èß)kM(ìwkÈ ¿þ–‰ïlÅE2è°a^Új”ãd/x‹ö]Q°úIøÎù;‡·‘¥ôs™+äBrpáhÁ|ZÍ£1Ï/îý>ß½Ì$Œ~Hѳ¡OlŽB"G_¬¢©(lvç&Bmª–º ï±"&ÛMå%”Ì‚rIªw|¹Xý8ÈÛ¨¸.ë9x×?ŽÍ>]Žo`l¿“þ¨¬ù¬^­È[–MN%I~¢9¹)¢yÑÑã} T¢]s*Iÿü®|| í"» “Øx3êò›M=qÖìàFâXÓ ‰þ¦8µ²ñ£þ¤Ü9¦EyÓã_([º·­#N¶Ã~ððq§¨ŸýÀ?´5‹\­èº®ü“HÖëMœ> t$à×ÎrÆâæµÃšSŒä±º‡Œ¯yšÊ¶QâÂøÞ:z׺Âϣ놞ï/zËå º—£ú­£¬ð1¸™\wû¼óe¹PF)΄H}¬wS01ëÏûÁ«bIÍmTšz•Î. ¿p^á 壒©WX¦A®ýöä2­Î =,ÌFŽ˜X†;¬3)X˜»£¡ÄÞõYÎ_1@iç³zàà°Iƒ$Of†ÙŒk+飣qmŠm©ÕÒæÆÖuÖúÄ<Õ{u×°*óµ4£@÷ lýëèQ°Ð«3^"å»*qŽnÎ¥…–--ûÛÊ÷é"}ž¼Ý¶ë+"Ù|p\ÕʵÀ'¸Sc¬«å‘ ^ÓøS\|š™6$¾LLÑ^GqMN ÖÇâ ÁN0 34ú§Šk3sÒ³ˆðŒØ]oè€j~©bÛètü€B0†ô»ü±V3h¥mÐkûÖ4œm¹Ëãcè.²Õ‚ûn—>æU‹,fPpS¬ !‹¶±øì+\¥ˆ·FÄ’|Þ–2¥MB}·ýß’¾<Ípd©r&NXÝ`cH›eekïÓ&_¯ù‰ ª2¾*Pû(¸»h?8¦®¹¤@v¡_ÿÉÉ‹ÿÚyغðó-ó¢;o@5|]ÍšÔGbJE)žWôM‘ï[8ÿ* SaXDCó\ðYüFkþMSNhcT 2Ñ?xP%(Äây†ßëÔÀ50è@È­´#m¼C–Š¿ŒÊ*E.d’Jnqlò5Ñü+‘p˜)¼|3• šÁ˜$î'‰’‹ ¯KZ#N1`ŸšžÈ†1ƒy'ú›t[Œf‡Ô’ Ý›M˜4®»Óeí».q¯Ô®‚W°¼:[p1=µÕÏýòÑý÷0.¸ö¢¨8S„Ü糜X›A3Çñú'¹¥áê];*$.œfnÂMâÌ ŸêÙtˆ–‹Àí{çªÔ@ˆîló/_kfût ?ûÁNtP«=ôÑ“2.µÒ© ®ÓI•}c«RN˜®ë®*ú‚7a¯û†sï–‹Eu9ï|“;@³hÛ0…œD¦¡Ÿ™gÚeŒo\ßÇ Ú¥,ÿ£:ÔVAÿörÿQ)+@Š©ëþ4Ö©‰Dd>Õ™úäMò¬¿ef[šS¾%êe¨mˆ¤÷ðË¿C9'Qx¡ÞƉ-­WÌÁ¼s›†…ChÊ3ktUÏÇNî%Ðê®Ék›RáÍù‘– ¨JJF4ë,NjsçÅ‚,+Þ»ý¤áª*mÊ#œð!ƒÙñfrÉÌüq¹V‹Càƒ23îŠ7^{±µ?²ßǰºÆ¬Hð‰XÊ{˜¹ãb•çðW¸Š­7=•Qƒ5;!:tÐ: S=!vÊÑêïÜ t"±CÅdzO|³’<êî}Œ³:’Ë :܆ÍUZúa%vjð¨¶7'‚Ï&˜•Uî<Áh¯¯ù´wCîoMºö‘ëÜC½p£P.•E®/r«¢oõÞ–x—M,Còt¾œ^ÒÌâ<+|ÖtJ°ë¹i»Nš_W¾’OðìÜ–„°w™d°ê˜YG¼ÕA?ˆO@tH‰»k>ß³o'~ÓÑâ*¤ˆ‘á%Yž' 4”@ñ㢱à 1!*ig~©ë6Þ»)"?ð"!þQz–~Zéà¬ÿÄšúb:´»¼…Ç!R5àòÛ°HÒm{,·ÝBß—wg'ܾŽOSV„6Ð*eQñe§œê5æû]±ßÊüÀ_ËbŸ5Íc‹¸â.ÙÑi2µo<:¾Uã,5¸ê7¨$|®œlÃc[G•ø ¹x|¨nȼnÒ"ï'/‚qI,²úcM_¥¦;ÞÕ : ÝÊFë”3nÛ[1÷ĵ×U ·zÏ_«h¬Ïëƒ^¼± ér÷ÖËŠ¢r%³’‰Mö!ÓûÝ×H‰œ´yß i²»lÇìÏ"Hã1¼kÁiªHŸÀ­Wè;+|-ew¡Ýç²00:Ƹ*£¸Ö-¢´¨mœäø„cPê;-|9ÛÃÑŠ…·N¤Â#y¸ã_¤gö[ÂéÈû^«:û|šfn\“ävªÌïM?Ê^qG—Ê^9Ü5BX-¸òh¡®(zc≄}Õr¤Œv9 ¿8?"äs.9mŠÎ €ÂÒÞ ÖY5:Чc˱V\¦1퉫w­›¹ m·†N”‘ª½îô> »d*ts|3xJp™@óŽdüìÊ'f¶[•«ÍÁ´k‰ñ k–0{S¯?Râ[ú{ܹÔáô”—Ÿ0E Àôt1÷Ï´¡3êZàð†ÔƒÆiÝÀ jž˜03‚î¡L£.R²ð=ÏFö䤼Ju“™‘••TC÷ÏäÃŸÑøOx´‚l`öJó‚š²¥„Úྵ÷Üsï¹ÏA)ÓdïÒ‡˜ë:<›Â‚oìN^”Xõ¶C&|å0êCž34•ýbe#så4½·…ä¯ŸŽ¥en¦›©êA€þȈË`L僗Q kGíÞ`xC.Âq5~Fsb7s¯!…­ŸÜ¤|ŽŒ.]C±(ÀíUvwCKM^㲦zkªäIyåÒ›wQ˜èl(}Ïi…ð´íUË=• ·&´£âz{Å#\£×ê'R õþGâ†ðõêçKs-†]kµ¤\AsÈæÁË”;Qä5Ôãôö nj¬ÆÍö)oÇj=—w²~õ¤gƒ^þ¸ü™"•й1C…“Ûd?Ž77õŽV¾4$]îv6àMœ,gÝÔžÈñ÷ð‹r|Gu÷lġٮ$B©¤Vöóo\LáÓcÏé¦l³{i â55ÇôñW¹5²=°u(dhÂŽG…-ڋݸĻB¥Dùº”õ`Øg‹ÐøPH_ Ó»§;|jò]f5$%divÄÍÖ¨pvB&OÜG5à-¿]¾Úë“ú* äcˆ†4Ø€ e ÷Ü.W¯)ül–A9ùÿÉ÷#Q”=ÌYÎ4 ‰˜’LjY9Ær‹çãÂfÞíq†ÊÀÎ{L« #!×BÌ~±Fç, àeç½Vûû3ÚùY•Éo:¨ËÛ„Óí²†t.!6P\:/&~èaû÷ÃÓé#–™˜)vpH`ŒIiéOQø„Ç _snX¯Þ±B–“@m‘™ 5 ¡î?§ÕewWV»Ã(‰:h³ƒ°9Db4G£3Ž®?CJŒ]°IWÙ<$±U‹šfr2¡ú0D%^P()Ä^ìHÅ?Žç>}ºΚLxíwÃh+ ÚFñ|˜•c/kØj ±üÈ}Å“:ÇÖÞì„‹ü…y…ë ±ÜÓÐ]iÌE@k`D~ÃÒ±Ÿ²b‘¹wÈØ#3_S=šã?ÞsWµ´jH;eÅ¿wo2¹ëvŒÜ©ãõƒWW¥WËn]ÐZÕj“|ˆéŒd*áøÔÕ9„šô€¨}ð‘â(?ŧâbqý^w.4—«Cë²OIVÚ gìm"š¾0Á¥+!ÿYin:÷ÛÀðýå,U*¹ÙpGɳ]œ—D¥™«—ƒøÛsËÚ\t±¦w³ŽÃÚ‘©b¸¦Yi†dO"JmÚ¥ *càlü~Š ?_„ y{reýg׉ڠÞÐÑã FãA8 E&)ï`9ǰÃãv?ª¶é]!;‹U•^åáítg!ûš]S98ëuòÒ<û«t¬•…•ûÍTA›ÈÃÌBOÑžÅ-0LWJS[×=%ú²&* *¼PE)’4î>æù›î•86 &[Nr&ÜC? `ƒìÞí˜.–šƒ¥ÁѾ6›@)¿Y†B!U['ÇHô~~k!£dôÔÙœ¶NÀT‘ù̘vÚ[ß„±.!ÏÖgµæ‹?®–f>.K¤?‹N2ν6ôq ËZ—Õï ŒÑ©-²ñõy.ï]É](…)Ë—Pô©š+¸œ6ˆ`*†ÏÙW6VʧȮT’÷Ò"‚Œ|å0¨»Ïx®A&u+óp_G;¬_Olí­‰̵p[eJ¥uðëx¤hýÈ>ýL<6×IèY$—äm~>©dd뀮ô)Þ6È®ÀL‰uàÙWyw1ºÐ"âH2Ù®žák‚àxaD´_ƒïÒ’[:@«@Ï®¡!Eÿu>ø“%@ZJ"r2 ò{](³¹ø I€ËSt“!ºw^ÊÚ|T×[&y5yÕ{:¥S[ 7[;\DÄAp)ÏWù÷ˆ¼#W’¡ÓV­dJ³Š©%ñžvƺܻ†­d¥ÝuO÷*ìÚOß92Ó, yÌ`PB{…²0ÙÁN³%Âó{äI/*­.'W8æÌ¦¼pÄz#k/)|X¹ZÝû~V£B´}Ä´ÖuU¦j«úéVp±w#4L4ŠêQG<ý9Ãué.Ãsw;k(Qžþ„¦’oBŒ„óLbþ[:“q׸Ähö7¯nf.ûG2¦û—¬æÇodºì$†=qu²¨´"ïK~ ¨>Ù\'>{ãÍæ@¹5ßß”×'›Žß¬9ÇÅåkŠTqŒéAè·ÊçîmB¬¤Væ|™™I•÷ [>s©¹>:{®FWÞô8§¥:Æ\&ðÐGOå}4Ý7  5Mú4nè”5Ô²YÓ3JiQKÉJz_úaZ+ª­‰†–åZ^BñzÞþÓ€NÈ«)ø`²„œ»Ó¸–¶ªï¯D¯¾28—Ezô^‡^ôAH€ð9poE¥‘{,ôXH²=Ygïõr8®ÖÆNȼn¡°cÑü[bÎáýûK‚ܦ¼‘ÇJß"O\¬ÑnÉ"¶V6!½û Ÿ¦ Gù:烇Â~ÍÄŒì·ÍBv½b¡$ßDËý˜ÖoE©´±o0q9HN¤–%®únR¢ÁŒî¦dò™CKŸ¶ù,ïzÀq5}"¾:$zÉ+¼&û1ªõä¤@lq°IQÔRþIU-é„x5l$x¶Íº»Mž‰;WÇÛ3ž ÷ŽßÌ)[üJ­÷:©@ëéhë¹àÃ'͇ï…)¸b'Ž· ¢æþºó'cvç IH^'4ãT¸¾=êL&²#vSaÕaD;Œ,ÞcÛ­YäG±@ue҇זÒÖņ\ü2™A–‡E3ÔkÞ-±”zˆd‘]•ö’M¼)"êcdF¸ü]+.øD›Eޱ™‡o&ÆœaS˜ê«D¡T!³ùŒ˜Æw(#ê"‘ôÂ?ký̽…hÁ€6¿2Õ6)å×-ì}=«@úƒ„aèÖ?À6&¸mܼ1l‚”K×åàÈJjM.)QF”HYÀÒËé7ÿ°î9hô#.¶g>M±hVö{Zfüì!š¹ãa1&µuqL•¡÷ØžQ÷Beho «ÜJXhØÚTÆØ,²»~nxÔX¶Ô’¯#"8™°–X)=vq6‘&rXý0á(‰k×=‚.ŒìhRtÇ—4¢Ã] ˆ2ÞøÁIXix,½þ¶lÖ%Ï9¬¡ôNu)ºš©%ärÝ=Ýw5æR36I m‚w³dV²5WÚG˜«$t©ï¯7¶<"³|ñ?RDF »‰!D²±TÞR(# 7tÕÅŸ¢i}R]®eÖfr Ç(nñK…ðÕpãÞœ½ä|u7x(BÄ×÷t³³=Ó§i»üPª~J-ñ¼—Œm;,ý¼õê•Ôéq¢oÐ"ÃóåféŹÓ`÷Ìõ`WŽ™”dåsÄÄ«»R3‘E•Ó@Øù»1K~ÏzÎaÏíYX½Sd7´è[kzKÇ4ŽWZÖâ輋›bG‰Q£J;ر·›‡vgƒV­PMWIÁ¯BfBg8ì Ý«½¯Ä[¬„¶R¢p NÊš²Q~‚ÑÓìç8€NVr•qZ݈%!²çà½MFï7´©äÖƒ¬Ôšw¡ï±²‰@]fM”æ6`¦ê–E÷&ôAËH†©.©{?ÍæÔR^ä%uñ¤•e$êÔ5ëBÔ›³bŒû5I÷Ѳ3ç(ñ¼fþjéØsœö¬”Â'Á¬O‚×d&prɉO4<ªö“ÜñHqZ=<Ð+<ùÒ{ï#mçiéC©…÷d;–>d^±­Bïtª> endobj 184 0 obj << /Length1 1492 /Length2 6499 /Length3 0 /Length 7514 /Filter /FlateDecode >> stream xÚxT“[Ó.ÒEªÒ H¯ ½Hï½w)!„Hè Ò‹ôÞAzÞ‘*½ R¤(HPÿèñœï?ß½kÝ»²Vòî™gfö³ç™¬°1ëòÉÛ#í *HšÄ”(jšƒ€ Pˆ$bc3‚¡áпíDl&P ‰ü_E(±)Ñ 6Ðð„@B¨$HL‘’%°Ì ÍÐ@" ("6E¤›¯ÌÑ ©ó÷#€ÂIHˆñþÈ»B=`0  F;A]1!`8À AѾÿJÁùÀ v“ðöö滢ø‘Ž2\¼oÚ `EA=¼ ö€_”:`WèjüDl#'ê/‡!Òí ö€08 E 0!ž{¨S`¨®Ðuƒ"þkýàü9ˆôOº?Ñ¿Á¿ƒÁÒÕ Œð…!08 «¢ÅöAóÀû_@0…Äă½À08Øø½u0@E^Æ0üÃñ€¹¡Qü(üG_i0ǬŒ°WDººBhѯý)Á< ̹û üi® éðÿ{åCØ;ü¢aïé&`Œ€¹{BÕ•þ`0&¢ÿØ¡h€PBTT€º >'_Œ|Ý ¿¿ÍþnH7€†4æÅ|ù£À^PÚÃèÿ¿ÿ^@{ °ƒ:ÂDÿÉŽ1CþZcúïóX1ò€¿^ÿ Q ‰ÄÄDÿÎóÏ üÍþ·U û³»ÿ•Qá€HüEszñú£ Î?cÃøw$FÏPçäÿ(„`Þ@ÿßCð;äÿ¦ý_YþŸòÿï©xÂá¿ýœþ?Ø÷ýƒÀèÙ™ m$fBÿ 5…þ5ÐÚP{˜§ë{ÕÑ`ÌŒÈ#1:ç ó…ÿ²ÃP*0¨½ qúKK7SC@õ(د{þ—3zÌÝ‚Â´ì· Š™¬×UF@ö¿FPPDöðûa€Y‰üA˜Yµ‡úü–8@€DcBŽ¤Ñ¯Æ 0QHï¿Ú…ñý6ƒ€¢;°Ç?A@Àñ×Åõ€º{bºõ·p…!«4»—‚8ÝnyÝ1Òy„d=`¤š N4ëÌÞíßIjV9{Ca­,Š®Ó|‹ì¶áJÈK˜ 2ÈÏÃÕkïR•²“X˜bI0"+0¢xk¤µ…•©sÓ\2\þñ,9)¥ËA9ã‹¥*ѱgÒ!-Òiâ–§Žn(éï%×mÜÒïý†ghçq$ Hh­™ßeád[ªÃ¡N„5í&^n+˜Ï‰Í¯ä+\ÙP–=z˜ï÷#þëÖiãa¾™|}”<:µ{&hÃæùc§Å`¸UôE3èd5Sù²Þêu©zæ%“•©kŶ‘;¡&ÈúŒe¯¶¼½dÙÞúÔ{R©¹uÒ£ïdxÃ7J+»²T~kJ˾;m°çe ˜¶PŒ›«¯äDDK:+gÛ7D=šKÖér›:Îξ%¯~¡g]QŸå½˜MYb¯>¬æç 9 õù‘È3¼g8b¬§^ïà¯9Q>Ž¢ '>7¯é(ØØóz•0iYÐúc©E‹M·@n7K-4"åöƒ=Žxç£ËA^Is¼ƒ¬ ,NÆ¥Ú²§õ»²k)nÜóab^¤oïJ/ëPªd)rE:É"ÖGBiÑFëÅÚ"t¾ú%‘¡­º\a $U@±ÙO3l¤á7ÃT‰‹¾'ø=§<9qøì9eM¡äôîôÁf¡VÖºBÚèÎ|à÷žÁÅ<” ‡â‰ïÊz­ÍЋÙrV&ñ”:˜;G(í§šQ—Â.ºÒw÷¯+åæÉeïà¼ïõÊOVî~rÁ~“ÅM*FèŽc¹ÄŒ¿wþ½yba{ö!²=Äú-k3{ìÇ“c+ qxZÂf3ª•=,ì•@âúº5W6³ÑÇþÇ`’쵪ƒÅ©ú5êàNC–©„í´KOk,Ãh"y‘ã,QiŠåB/Är–ÑauVBÝdKøôy9¥•þ8_P Ôôà°\þl:φlé«rx 1¼¼Ñ0ûaο‚D§<ëЉ õ­âóQ«õíšNuÈæÇ*“¥Í‰¡Ðnpy¶Õé¶ì/1öþ±ºž’éD.šôS7ʫצßàóX½D¢!ÀGoŸYßíüæ«DúóVÑóŽWRÅõéÛ݃›^ L.ľñÔjɾnRtJÃo7)δû Ü)É#ƒ0«ª÷9v~ªŠ²,l!Ð÷ÅÞÌÛuéã¢q£ÅzÛ¬Ÿš[%v¾áîŒW¾¿°]lÏQÕ÷±›ž¯µ‰øµ –ý€íK|`äb7}컻Į£á5—tý…Z¤â“=§‹qÑ“ÆIäE쪘-µâ7mšïNOšò¸2¿¸çñ¼]†˜û¦ Œ·ççÜ ¢´Ñ‹½²å“«'Þ6Á¿¢ç8ͬ›:+G– ‘Ù˾¯3£Â¥ä 5 ï?wÑ1m4ïÙWYx°­XŸþÙ¥~¹`Õ`ŸsinÒZpˆ-yµçÖŽ;AöàŠœ}½W.L«ÿ±ª:¬À÷)e@JÂ’×½Û‡<‹ò™úS•!ño^.â$k>c¤ÞE/„ã\ªA³#õ>{él±¨Š—ì‘äçY5‚ äï&öĦòlÕrn¶šÌ}YQ-«‚‹…h:ЛÞñ[ñÈ·Ù—þ¡ÊâÏQ!<a¦ (áì¦éK«‹8¤õxWß´è7£ÕgЭtƒiP˜ìÛPyß­)†ÎÂð{ˉüÐZdaTýë5Ú…ùÍÔÖWhxWÝ„ÚU%–Q°jB»1\/š»áZžPâPÒ…åí²IÃt¡â#,K€±ÄMõ†°®ƒ*ûLdaÝ·oGûl‰tËØÿtö5ÊŽ îk4qú”±Fë^:æ¨8B›t’t¸ÐÓ–}C¯ý£Q”âJ@?úQ[Ò@f^)’‘{?C"vÐcrNýIÒ¹Æx_óŒÒǹ ÿ&/þø¨vþåâ>õ¸’Ö¡¾ŽPðy“yÚqÜÉñ`ʼsÊ·¸ Í ŽåV¹Ÿaù¥Ÿîo¥X!Ãz£rÓÏ‘y*Šû9² kÏ9æ ŸÎàýñâñjä±x€¦·¾ãû8·\n5%iÿ|LÔÓ‰ÞÝ:b-“èG§¯^^¸’܃'H¬Øîìñ³”Ø&¶—Û¼Ðo†1Ñmºõœ Ä3 ’±E|ùÍBpfÆ_p}ùÄPhT°UrfÒÌ/t©¬‹q~TYHHúÝ­P}Á¸vÏ=º9a\nªÿ™Í/l–Fãeë‚Y]a¯ZÝØßõœwö~ô€eÊý"ÆP¥ûÊoB’ÝÜjT¸+˾֭dzzèÎÚO Ä·Š(fp$B¹kè÷Ì$¿vmÉ udKr¯h1:`ÇQõI$³ƒ“¥xý©Ú‘7¹¦–ä“ûj5¹w‚Í4{±—Mš8ü-NÆä—¸n"Î&oÕÏu¤Rôe%.kM¬’jì¶V‚•]Y–I¢<}×"ØËüåΊqä÷€¬ôûøßDLÂv¦cvÜõ‚Ï/g¤Æfc~ÏôŠèèõáo£²%¾”2Ån~Lá&bäqt“Ì[ËûJ:À¹RP„Bq8D,çëqòazMcÆyÿg•2zúáÖQ`a:Ú w­-›Ÿ…ÁJìDGÛMª÷øtsÞÕíø@#Ù W[·žüÓæhG~&H¨t]Ÿês·“Éé#Ö# åÂ6êDgi¢'V²€Êí§þÞx56d"BçÅ*޳ÝõÂO²¶7söäË*o¯uº¿œ<%»·Ú³2-ÜHÃY”8uz¡ç@óæfÕ ï¼á@¾èéFÃ3¢Rˤ÷¯¼l?w4Öýˆ»{Úäs®Êú3Ÿ>¬xg’?° uâÖXjsÙÝw“]*ãY©Úºì¤išêWÌwoÜãí¬àÇØòÆï6oã”[\|’íGié”ëÓaWwÍÈ{ÿ\ÆŒùµkôˈÜœšÔô'ËŒ‰¢ÚöÅSñ7.wç’ðø^äêx’€S vŠË:øK±Ñ: ÅýQpÁ—ä-.òêV‘\wµ/È‚š ?ý4O_D4Ò…Äáãg%̱—q[Ç3%q\Bä°ÈÖi.Ù›‡¬N eœw1MÓí×Þþ¹³XÁ“ !­~Üô à‘/‡ëêA–ñç` 7f›.ìRýŽ¥¯›%:9ª ‡kx™2¤Øeã=ÎV ·'Bf2~²‹Jû¥u.ÂotÚ!HãüÝïÚ™sʰ,Šso?éw)óº@®Ç\`½<>‰VÛè%IPò^o½°*zLÜIŸHµkÿÌ_9™j¤¸ï‰wð"íZ?+•ÉÚ–:÷ÌÏ…ÕÅ…ÕJx·† ÷âÐR𽆼]×4]îxôä‡ÐÓ³ ·{pýšg)úŸ²¢qíÖʨÜNn4žLosã­æ:ÿε¹—MQÈU7ÇÙú=§¸ñ–¶vQc}‰û {SÍȹâêG!¬&- T½·‘ž§5ª£m²öB/ï ßÓêòã'u*_/ôXÚ5'""x*;fÌ» b”²ÀJδ3B˜==}¶Vƒ”£ īۜæê|‰±pÛ_¤l稶>ÉOªI6¼x¶f®ÆhJi\oWòoñ2°6ŸÎ¦%å%zƪRö&]MiñØ„NÖí˜Àw:£õŽÞ ›Št{HïРB$þÙâYªæ‚žSý#Ë\õ›¨ÇŠ„GFÔ~+37·n>˜MO½ ¾a+ŒùVVÍkpt\­½gµ 4¸‰OB°ô°ì1ÅºŽ ‹C!øé©!&ô4ˆ|§áØkm§û4HsÙÔ?W{vEHömB\¹ö±Õ7ISZ©;^÷ÃÉ3ñÌÖ¥ðÂî%ߌ.5£Là×[S—’Íg6*ŠðßjFQïáœ[m¾M–ž6‹¹¾u•,ÒÐóØã±6ZÆWº&‚{#ØN§ë‘5I'z€^Þ£®ÎÑt1P’vyrãáéùBþ0ƒV0önh^ »M†}æ©ê'¥é(¼t2Ç$ÕìÉÅò¹^êû;ôô^¯Îѣ˯Šêe»5BÛ’UXDùk2[øØ§<ï4õgÀ´,#³•ÓÒ»Á_PŸWöC}Vko+˜Ç¼/Eußó>É{ŒÞ ¡8*4Y-¯ç©¢(n®ªî¹d‹©7F…d¿˜/ôÝú8ÒŸB`”«(r©êá¸nŒßO.2Æš™ËP›ÐØCø(í½jÅæ‚x^ÆIA ¾¶×ÇUNç»èÒÐUÉ—ÉBÄ—ý« «}ì1SšpÝ…$º(WRþØçñÕG7 ,»îNe"u8ßÿDxͲÕߪ¦\ í‘ ¼GvþP;è)džSršP'{±Ai‘%̤å‰[>°]Ô[¾EF)›kT• ˜ãŸ±° jØêk~(|½qì©‘›MxÂþøª_\‚ÿj¾´}ËŽÎK¤ÜÍ#K<,RÅ—85kÕ“™B8žÞTWÙ’”íE§.$âëN@I]-‹?TêŠÉ»˜~w).,ïÄ5«á}yÀXBKFÕûÀ¸ôå[eq-¤½ó2ê-©y¤ qÖ}zº/éÓh³4{* e±º#M|Â,ûXqÿ«ãX×Ö§‘´·¿çµ¿§*¶§ó¢}bŽož~v}ÏéFyú9‹9K¹_縉Š,’f²ßYLbý¸š%ç•cŠBÌÓØ‰E½ƒøS)kýÝò¡oÝÜ ·„êC=í8¬Í«êƒ¤;?ómtñ¡×¶oˆîe²ö¬Ú†òIPé ôÔ®‡>Γ]x54¼3SÛxƒ‰|ÏiÇ*¦Äî¨ûæÕçöJ›ÁÓãéƒ<¸ä{h†ÞŠZËÉܺ(Z‚ër]¹"6í$õ•Ï$è’Æ/üЈ¹‡t­vÓ}ÇÚ&*T#@‘Ÿ<.êM%dÒË›äSýM§BèȦʟmÎ%},¥ ŸNç‰ò‡†-©fµbœò±ãÍoSÕs- EÄ\¨V¯S%?Äâ­ò™8EÕ |ö‹Õò¨hRllF.àï;•Þjµ¢ Çrå]™v2ä3µ¸@Š3¡AÃÑ\{>"]¶ùÎ[çãÓz0¼B2šõBWdUo3Ì»Ïf*Zì¹"=5Êbýqú›£ûµ°ÎAySÊEúzÄò–?ÇEµ?§8º¼sS÷Û—]ÛÛ#„¥nÉ™þ-«eê¢wÓ5¯q¼kŸºÞ!¨|7bø†õ…þ¦iE­Ó“¤jŸLJÃUZVrðØI±„m*§ÈŒG4IÙâ’ {ý`»¸·Tcd¹™Ç·: bǰ¨fÓ9Ç­Vâ‡ùÆ¡½|æ$=íõ“¨=-|mî¼4²gI©xndzõJ7Âj^ãóCÔûxCÔì¥"y·’&“.í«H‡NG9o+‡“¬Ñ^Ë G»± •oŸ™¬Éä…¼ªn­ëæxÍÔ04 Þð"&òûþѨeåû(pñý»ûg97,sü|'“çXq¡ ªe—9‘ {ù=[Îp9ÿDi<_S™î£¨M™ïI5[¾rŸ~¶¯}'üý—BŸšÔÄ?ý诂X9œ™Ý'¡íO®<òÍa!Ÿ}îr§çæÎC¬ÞqìO,™Açž#TÌ2ËB?€ qwû:ž[ϽH¥ášËâóoÖMh­Õÿ.HnPÖÛ@æóz{—ð^”þá©·‚ãTÒzÇ•áU{^ËÛ xŽÝÑ™ŸTk]¦ºïÜCå·x¯Fw¢Ý<Ê\´‰›åðåz¡ì=Ï„Ò2á}#ÑhÃóOýlŒÁû\ÛnC+‹=,4‚žD™ÊÐd‘ žþÅZT©Å1áºÖÒ¯™¶ì¢ô_ÒÕÂoç;œiéü¼h±ÈW¯?bã§Ôô{¨s§ &lërãœZy‡€wj"8C!­}IÉu‡/X2dò¡Hr†ÎxQpºEfõöu Y·¾iÛ³PÝ«¯ÓIÂܺ~?Úø!-'ÎÔJsöËÕw “” {;Ò»b·SÍi²Î.^íðÊ‹ FÔWUbÒre/Çb²ÖH¬À(þkŹvlRôÝwWjáª"@Ÿ@(£a†!-û·Ü*ÂÏÁÀ]*5J™Ô'áŸbëT?ì–µæ8Èݶ+nŸ¼×Ã!©9cëí™4¢LO`~·ló“øL-“¾ö"¦5î}LDÒÉ5£úõRàµZ·«™ú!qeGl¤²k5)_?o¨¹kÑ&ó.×B·¨”éYXLŠ}›½Ê\7BÄÊR™y+àˆÒ‰ICß‹PƒîáSœúñ;lc¢½›/…¶k4¸äCï¾ä1ê=Ž®è9(½Àꈉó@¬’mhí¥èf½ÒIL•kTöÛRó`-·ç h;ÕÈïõ SéÂ!&˜‹Êic¯œ¿®ŒõŸñ0²¬åbT<'‘FG<(DƒŸP6<Æ=ú˜QoWIëzÓ—èžRã^í-¾ÝCrîö-¶Rò0Äõh;½+=<5øt½æŽlü86p𓦊 ÈšU]ÔÏÙyå«$êïÕÄ 'ím«dj1ýBy fAÎ×ÎxŠÒ6Y^‰4'ý¯öOö3·Þð¿’<‰}FYºž¼”šÏ½ccM(ŠeËðtØ›…â ™MЂ±Ñ¾ZyOÌš‡GÑDF¥±®ÃŽTÌå›ÿ²`ܘ#1<† ey®À¸¤RLõDYÉâ[ãë4œx“Ò¡4êþºOxâ=øT´Eû —xí/®VÍžµWd)æ×"ÕÿvL£›Œ×={-²íÑ(¸¯’=\&Û†Í; n·0'X«’jŽFÓ—ç—zØ}!HÚ¯í-—Ü’òÎð9ÏVz ¬å¸5Åìû²LæÖ8*zót.‹AÜÁŠ.š ,UÌڬަ빆ò¼xÆè\È×wÉíÞY0S×ë™ H>šu­˜ËÂöæZÛ£HâúÒˆäELóUè½ÛþL»¹Þm5ÑÙÛåé¾÷Ժɘ‰hGÝ7.öj/`|¹bZÿÁ–ÿ1=‘`þìûa6ºµÝDZifƒ¿À éñ±¡i•°ûÅÙ竇ËÖãú¥L– ³¡zõÞ%QÑiœrVý”'é¤D…Lxrxó¯Ò¢ß»›öžšŸ ÷ƒ„(×çÒuÂrL‘J•~ÇÓI”BtV¦CQùŸ·Go\+$òâ E‹x÷6…Õøà’'îLé´¼béÇ{Ýõò9ýP Yín66fì2_þB*¹"p¨´b×;’pé$FÕ6Eôë…ú endstream endobj 185 0 obj << /Type /FontDescriptor /FontName /CNOMQG+CMSY10 /Flags 4 /FontBBox [-29 -960 1116 775] /Ascent 750 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 40 /XHeight 431 /CharSet (/arrowright/bar/greaterequal/minus/negationslash) /FontFile 184 0 R >> endobj 186 0 obj << /Length1 1400 /Length2 6059 /Length3 0 /Length 7015 /Filter /FlateDecode >> stream xÚtT”kÛ.Ý(Ý1( !ÌÐ!!ÝH ÃCÌÀ0tw#!%%’*(%ˆ¤´¤„ ÝÝ-(ðº÷·ÿý³Ö9kÖzç}î|®û¾®—ƒM×€OÎa UFÀQ|ü I€‚–‰â‰88 a('è_f"#(Ò †€Kþ¯$ŒBÛÁ(tœPwwD%Ä$A € $ñw ) P{ÀlZüuêFÄ¡€pñFÂììQè6¿¸ Ü ±û¿ÓrÎP$ †´À({¨3º#ì0@@`P”÷¿JpIÙ£P.’@ §§'?ØÙ´“á¾ð„¡ìúP7(Òjø  v†þAÆOÄ0´‡¹ý± lQž`$€68Á P¸:ÃnEÐÍjš(üO°æŸ€û€¿fàøO¹¿²‚Á'ƒ!„³ î ƒÛlaNP€Ž²&?Ê u†Ûü ;¹!Ðù`0Ì lø}s0@YNFü ž sA¹ñ»Áœ~Aþ*ƒž²ÜFáì …£Üˆ~ÝO†„BÐc÷þÙ¬#á ÷ýë` ƒÛØþaãî|‡¹ºCÕÿ A›ˆþ±ÙAQ„¨¨°8ê €zAì¿Êz»@;~™Ñü}].[4¨?ÌŠþ#òu{@(¤;Ôß÷;þ}"ØÀ (€5Ô'ú§:Ú µýsF/ ó˜ÐÜ€~ýþóöM/ÜÉûŸðßû()ÈòþAüŸ¼< àË' à“¢bâ‚ÿ—ùÏþÿÛª †ýu9Ð?Õà¶€Ä èáýÃã/Zpý%nÀ¿;h#Ð\†¸þ¡¾9HA?þ¿ð;åÿÆû_Uþ_Ôÿï )»;9ývsýöÿn°3ÌÉû¯4•ÝQhYh!Ðâ€ÿwècè)kAm`îÎÿíUCÑòƒÛ¡)Î' Ìþc‡¹)ü 6º0Äþ‘þ^º‡ ÕE¸Á~}qÐY ÐùЪƒ8¢¿*nè…ývAÑ¢úw_%8aóK}‚"¢0 ö&¡I&("ð@ËÔêõ›ß ?B§Ðý¶$ѯµ €`74f˜›#z ö¿œDÿjqG"ÑòûÍt÷¿Ï¿µ…zA!D“ãȃ0‡ª°ÆïrŒž|«xó‹Íщ&Q"(Ή¾öšøÏUF\å­lÊéúÒu¿½Š÷cäÙû>èeþ);x.M5…¡Ô¹,À—ÿùâø“”ÅÁ`7$–½L¾Ÿ¤Ç|ÛÊ Çì^ÊãñŸábmBëo× ¯šÝÖM%¶΀â32¶4FT¼\nó6V¬ û"ª×Äœ,i–án¨öhè +–p.ßGá½l–Ù;;Û“ÝÕ™.tôR£ýhy%=•:[n_r7=uR¶z§¼È™Â«ÔÄ;ôEΜsØÎUcLLì ô g@ “CŸ, 3©s[}¨¦¡q¸_³GŠí§7Þ é[HÃT0¸G VÎÙô.éMj^k>ŒV©YŸHõ Ú›°çÄtÐõí¶q)äÍǺ¨ÞÒÖ¹ŒYXÿ”™èÒ |ª÷VDqØtÊ`Z³ŠÄOOtWøÕþxÍ\þ)§C㵉ç*‡Ûë˜Áãò^ògøLÛ³pßÝÃPZ7[Ô²¼TÕ:Šêk}Å ¡\´žrÉ7µ®UúBÞ˜ƒ»ßg˜^©Ùì}A§Ra°š1¿¶Î9Rfdx©™€âG<d„|”‰ã_Û•·nÖêô[}¤„YEl@ÕÁ_#A‹HÑ; ŒÇ÷üpÄ¥2,Åp·v3h6š)ü­¡ÄÁ§ÉÇua˜å>^jQm_ÈTÏÖ;¯ÅkBLë ¾ÚªO)hShz÷)À%²ä ͈¾˜ óòמ©ìÎÝžêOƒx˜­[D†óÝÁº¸†àx@>°ÏÝͼÉßðLÎ.tÙtZâO!œîµp:ßDrÓ‡ñš¨$ŒüWq|Æ3ðCÈ®~ÿ4\ÔÅþÛsSz[Ÿ#Ù^FbªIúKö(“‹Zu0Æõ¨·Ÿ¬åÙ~NÜÚÁÑÿ±€íaËùÇ0Òœdu*yòQÏ{ÂÞË^‘ù+39IÂzL¥ÒÓR‹—^/‹Õ)JA}ýÌ> @Û/=KA:ÃzKsÅïÍ_GEà¥dT«ŠwL oðRâ}+Æ'Ó]`š€¢~æÌ“üïNeÏõ‰5 Å™:Â\y¤Ý›>:ã&Öå¹%Fàªìxÿ€ø'—œ+‰*B\HSTJ Ö‘Ùfš{qÕ$YE‹S½­?UFIÞÅí蔨ÏálÍc–üìIBdXPó8a—¡ ÷Õ¾’ˆ˜æ‚ÃÒsë‘~Ë0YÛáMŽglå£+ßçMî(Ò°&ÑËŽ-ݪy¯Ø‹èúÿãÆËIH/&pß«ÎØV >µ 2Ä:àB5€ ˜6"«ŸŒqΙoåŸ3ó—:_»"jˆWÄãÑœ 0*tËËkT¾¨ø÷Î?h®7›öì›âíèÏ»yg븨sÆ›•àî×ÛÓá›-ý;lãÆ¢J÷¤6YR·Úœ 8¹÷Ô›É 2½YÈ­ÄéªH7ªßRO[u½šð¨Ü´=lÖ,Kýk“ž=a\.fºø»¥ðêÑú‡ øŠ´ê×SÓvø~=Ê•V†‹«Žû©”OÓ3rF²&â»"ÊïÆ°ö³ä|Þô²î´ 5 ~Høæs.á›;6JÓµ>÷øa K¬ wdÏ顨€áãJãßSx¶øGWi×ív'ÌݵçZýÆ¢åJýläIª'"›œòÞïüLnû\“*£ô%HtMK æÕâ†å¢ˆqT©÷¹#}½ï¯T=§›¹µY+‘ñ¶!™)k´ôÕÈÆ‹ŒŒÑ„ ÃYÊr·< {„+SNŠøîÒ0Œl¢›=ñ:•›ƒêÚz—‡yœMðzVø †Aæê2J/­£b•>Æ‚“O¼Q·ž}°aà!³´Œèä§ìõ|¾4c=;]ÛÅ0¤ßÁ~o­ÝF\z¸³?™Ã‰»W&Bâñ&Fò.ø<ʼº¢EZôÀ8´Ÿv1Qy—#pʆu#«ºL™mèáü>¾¿iŒ«ÍíÆÔ2oëÂðã6Ø¥[³ÆY—<ð·.íuSOM6´[ãåлþ«Œæ4cŸ¿û†P¦wá”]ñ×Qã‚ ì¦QjáÙñ!¤ÊšYìÔþòqÀãÃÞ1L!©v²·‘Š0Z”¹eDEÑM@h ðU^LRqÂÞ­¼âç‚`®<ü}#Á©FmÅÍï6´}îϵÅÂq$8ºŸú _Kè¿ÎÏq³cn¨}M_â#FК&;äp(‘&Iþ#£xˆU¼2ÄÁƹ“7ü.-±Ø6K»¿RSâè~Þ˜¼õè¬hLAY±h5òVÄ Ó/JÛ‡0Ws|‡%Ö…¯º}ܳEf]ÇêνΨ;.ÒyÄñ”Ë+õÞ>l/Fó1IdÚ™6ŽgކP¹s¾½ýG ´xŸ©éÜÉD3¬S«êY÷ú[éÀ瘸‘.éß‘¶,¤3³U=‰9ͨþ„Õ;n¹¶=J¿\)ÊßýÐÒáú¡‡"ê]¬JiH¦J³®”\ýéö„Úmç¹€ÇUË!/ÍCéúw˜åòß^¯=!¥)3ÿ Ÿm„’³qõlPDm×Fs|1‡)6\ÇöeùŽ"Ù×ân—OÇf‹GÉöo0¨›¤Ãå ±e žòŠxsâ×Ä-⨊ |dÇcòy{ ô‘t¬ç;£«$¥•±} P[4É mbºÉ%ul JZQd=ýöò¹4 RI@õ¹mktj©‰}[8“‡Œ÷šY/RNoo Ä(ˆí7–ÐÀøºö‰ñbÈô›õ¯±$sÙ<„Ï:-qôç£ L8°j´E>/EŠîŒZî4Û¦b—E"Íè] Tf¶yû‡ ÜÞ½ ê(l=/ß ÑvzC]BÇ¢xG¦3‰"ñ Óº…±7G¼bjL_*‘ñ¨©dË$Œ®š<Ÿ#´ö[‡L¥Ú$å¹)”‹Ã¤íŽc ³,eê7L•›Ä$švL Ú:WZ[æ‚Õ9ô„Kv,}¼RÉþ²Ë~Å–²u|X™Zk,žÙwv-µÆf% }k`ÍQ°“µ¤?»ô=9u·ÿæÅ1"œ´äÔ‚Ï"?»y‚·(ûäða”COܬó2æ¦v@Œ¤6ÆnÛÐwD$Î%à©#J…jÚs,ŠòHPçá}ц-]²1ýû÷Z§óó?ð’”t 1Ë‚ÈJ«‰#çât§qSބĪbZ?¸'ÂüõàôÝÇQÊÝ1‘69­ë»íó_°Þ}1À4°o[Ì(¨J.xÄ6¸ò)‡˜L ¬VOÕ-z­õ‡%¨ñ…±åY•ÚpU‘ŽËó"‘Ö|p)i„ü6G×7‰ÒO¶LÙæ¨¿M=x\¾È%ǩֈ¦×uÆ·ÁúBÃ1]Üé‹ÇÍLèV“¾äZ¯ú¬ü;6ÿA¨Ã3aºÏ¾{ç;ó¾Ó|‘޼ª:dû¸óWŠobŽtú%Uiö½ãdÞº–qáÎÎH0ãáŽ0s96ãÊ_ÆXÔ!ôGÎvçúÍ€•L ‚³$UGØ»Ž„Zµ¡ ¾ µ.¡ß0è˜Âʾ®‹<„zÖÅ1É^07žgMêø}¨z°ÜœÖÚ±à­<½³%pðšô@8Áxd_lì²ídï™Â`¨U»T×fAÍœ“ÙkÑ}|ä ÅR}Ñšµ ÿöÐéÑ!6Óo=Žía2|4ÒŒø/Ô>Sª¯ñéËñè>¬cso‰>¨Ýåîn÷ÀyM)xuÅîóÃ2<£%ñíƒÇ?‹eÙבÕRß©û”H;%5¥Ýiö ×ÔæOAÍ©•Á?7X»²W|¦º[6ÞŒ‹ ÆMµƒ<–õ̬êkXâ~žOurÇó6Hú]>}g NCT1º%xa ”¸ùäæG›ôÀ¬6'}Êí¾*JUc_‹sÚù'jLŽÑñU½ãù~aãJ5Xi¶Ón1D5E¶Òˆœô¦¥íH"¾g˜\ «2)…-¦­j™Ã^móö´í«yE^~[NIŽnŽãÒÙŸgÇN‹0V6\7Éz}‡“Ÿ)”ÙÄ÷ÌáÐônXaê.’³…aéVIøGMĶZc£¢Vö ^ËÓœïæÜ)LÙ'QãÓ‚ 9ù6{âŠÒÔ ‹@%ÀD°•ùVZ’ŸŒùœSkŽ…k ‹ž€‡–ŠÅÄ7Çþä?¿]ÌÂAãc™N÷ã“LiSµäOïdMrØTí=ìò—‹ÞiêýZ˜–véáú5äÅsª£>F»ÇÕË”ÉR,×d‡M/o¶u”ë ™7Vùbø¾ï¿DåBº8ž?ÆÖ—ÓÕ£m\¾Ê|¯K¨u!RØ4É2æƒNZ=fÃ%ûié½6½:ŒÒ3bÿ组à{ƒµÓù[Ü‚£ ²Ò·D;äkI§÷ò¨üêRµEîPîôé©“ß©GPóL^ä/'¬I€7Ö]ÒmÀb™*m‘² \L£Je•æåœ¦Ô–ë’Ôž@é‘æÝŽ+ü»§¤‹ÌN…ÆÕe?äõS³'d{?ô8#ËbÙ¦À/{Œß¢Ê³O›ÍÏ5˜ôƒë-…k';õGˆ} RØX¿pQÌÒðÓ†úÏMðÉ÷ò†õ·ÏeÞ,?ûÑ›º f løZ/¥%ö>h2¢ÇéYÛîØ‚Û †›d¿®S‡P?·7ï©ákqáJ첕¡NCQ²Ò’’ÛNgÙ£·µõly¼ïˆº,]ã8ÉÛëtÈì²:? oêFÖ^31ä±È•e’XpH¦¹u™cxµ+Â"D•…”_éH5–ò®©iØŒL¥I½¶îi­óÜ?ÚWWë:¬5û®X1„·(*œxZRÚÓž|V¸AUjÙr¯?sÃÚïþøðˆø ¶U9'‚ßQ¨I<æÔ‡›Á²ó}X::D§‰h¸'ô°Vî‹_5– |ìfŽþÚÁD(©Îø¡Ü²ü§¶aß57§;”ƒ‡çb€åAÇÞË$èÊ0ÅM¢^„v™²^VÐWzÌ,¢g{iñ<°æéÍ:¬Ðeñžª|ªi­rFg¬ˆV³’ü'Xbuª!¡ÀÍѼ7LÐgåÀÔ:HRŠÒ2Ë\¥$3A­&Ø >[mHjûmü8R“ø\!åî°ýs"Oùc‚Ûol2‘Cßü¾×øæ`ô®Šäë!f›w›·sduKÖ¡Q_Âr§ùùú†ÊVŸ8Uuµ|>*Ï¿~ŽAMu-5¨ŽµÍ§R2ÜñЇ å°q°¯ìàÔ"É}¸‚!7=ª©©™ßñFn~Ú°„N.´•Y²æ.¡Ì-+ÒkŸÎaÑgˆ]Ý?îQ´Q0É"ªQîÜRõxEU¸·@0P°ŒxjUÉ¡«®G^6Ê”ò”­Ût3ú‚”ÄÐé3#gÉpH#ô<Ƹý™è1¹ÜÝ|›±õJó ™Bˆd{c’ÁÉA™>׿õ!ÎîfÜ{ÊÿPŠ…H÷U<ˆç]g"cËŸvÐM–|øJ¿{)¼Œê#«Ã+Bÿ×Ô¼d‰ºo”ø ‚Š«Kƾ QÖg'®¡Be¹ªf Gœø?ýÉ#üÄ«y§ãõ:æ§jÂíI!çÃ&Ñ—çä†C~ý@ƺ»Çk'ÍÇžELºÚ®9«*sñî‚'„×Ïön\Ì&út¨UÛJ卑ªW3ÍëÿÌnÍ^3Æ¥å­e¤ÁÈyËO®Ü1®/pâSF„G0¢Ø#‰E»dW{ä[arä/rC!s¹'º?»NBÜ¥‘~ gêDRò­ó&¥˜%Ǭ¤¡#‚>z#ßÂâOÍÄïVò¦ˆyÁb<[EæFö¼òz¯ï±zÿò©1ô„x8m'ΗçhÞåE=â³WêÑšF[9¸öR¸Ç{ú J¸ptãeµ×â(ütk2÷³‡«†åRNë…ßBù´ãßµ ‚A|ÛØÅ¯l§2' »ÄÿS*žS]'ERŠ¿˜øèƒÄ”K &}QŠÛ>áTPDÍá7ï IÚ;“²s½ïWSèÈ}É™S[ øˆˆY¨lš 8‹,óJòLCí‘IèxDàôLœ4$F¨ùV.±f™Ó»Mönwz«¥&œíõ4¢oc÷(näß¶oñÙíÝ>ß/_é ‘X—p)º¹åc Ø’„[¨x•&IŸdfK„¨Éfµxpéåר[É‚Î7Cýe²Rº£…€"J|Øœ8,K™µ<ŒRP ¡¼'úY•Éý"M‰®§x†ã¢(Xþq áôwÀh¸`|Uë¶dú{¸äµ&i Væ-‚8)w¥tC÷®Ì¢½¨¸;lú,¥Öd%¼ŒÏêôƒ£µ™P8ÊëcŠ(ÉÙQù¬´s¶H” ¹µ ¹ÎšÞé¥8²?Á¹²1.ù‰.Çuÿx+œD§¢0Káïošê endstream endobj 187 0 obj << /Type /FontDescriptor /FontName /SDVCAT+CMSY7 /Flags 4 /FontBBox [-15 -951 1251 782] /Ascent 750 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 49 /XHeight 431 /CharSet (/asteriskmath) /FontFile 186 0 R >> endobj 188 0 obj << /Length1 1918 /Length2 14153 /Length3 0 /Length 15337 /Filter /FlateDecode >> stream xÚöPœÛÒ€ ãîn ƒkpww .Áa€Áep— ‚;Aƒ[ðàÜÝ%¸»sÙrÎÞçûÿª{‹*xŸ–Õ²ºWAEöQ탨™½ PÊÞü•‰… ®¨.ËÊ`aagbaaC¢¢Rm€ÿ‘#QiœAöv|ÿ²wƒßdÆà7CE{;€œ‹ €•ÀÊÅÇÊÍÇÂ`caáý¡½@ÂØdPdÈÙÛ‘¨Äí<œ@–à·8ÿùКÒXyy¹ÿtˆÚ@¦ÆvEc°%Ðö-¢©± @ÍÞ{üÏ´–`°3³››“±­3“½“…#À ¶¨N®@3À%”Œm—Æ„DP·9ÿ¥P³7»;o)ÐÎùÍÅÅÎ èx‹P“U(;íþ2VøË€ðws¬L¬ÿ=îoï?Ùýélljjoë`lç²³˜ƒl€e)&°;˜`lgö‡¡±³ý›¿±«1ÈÆØäÍàÏÔR¢*ã· ÿ®ÏÙÔ ävfrÙüQ#óǼµYÒÎLÜÞÖhvFú#? Ðô­ïÌ_®µ½›×ÈdgfþGf.Ìv G ¬Äß6o"¤d@0€“………‡tÝM-™ÿ îáüSÉú‡ø­/{€ù[@9ðí’—³±+vrúxý[ñ¿„ÄÊ 0™‚&@ Ò?§¿‰æñÛý;ÜŸXÞÆÀòÇÏ¿ôß&ÌÌÞÎÆãó?¯˜Y]UURF‘áï’ÿ«³wx}`ç|`ãd°²²q¸ß>|þ÷œÿvà?Õÿ)ýh ú;»(kgnàý«ˆ·îý§׿'ƒöﵡüo%û·yhÿ=NÓ·_¬ÿŸ—àO—ÿ³ÿÇ)ÿ¯ãÿ3’r±±ùSOû—ÁÿÞØdãñ·ÅÛ<»€ßvCÑþmCìþ¯©ð¯…Vš\lÿ¯Vlü¶#¢vosþ•ƒ‰…ã/9ÈY ä4û›Zþ5Kÿ¹Œ·6 ;àG{gÐïΛ Ëÿѽ­ž©õÛÛâüveª€o›õ¿q%íLíÍþXA6N.€±““±ÒÛ¼'À‹õmWÍ€îŽ8€™ÉÎüæx«Ñ`nï„ôÇÅrq˜EÿýE\f±ˆÀ,þñ˜%þ!^³ä‰›À,÷½ù)þCo~Jÿ%óLjÀ¬ö_â}ó3þ‡ÞüLþ¡·x¦ÿ%Î7©½Í[Óþ#ù£wÌfÿBV3ð_È`6ÿ¾Åµø¾¥où/|ë è_øÖ«á[–Öÿ·Tlþ…oyÚþƒo[Êü¯$ßÞfûá[VÿEŽ·8o‹aÿ¯2Xß2sú¾eæü/|óÿ ß2sù¾eæú/|ËÌíd{ËÌý_ø–™ÇŸø?ãeêâäôöÿù¼ÍÞøÏçtš"-ÌÚ›ò[ýn¹«%vûð{”µï"â Ak[’ÐuW%P\àþ’=/r^´cz'ò~ë­èµÁZÅÚ`Í;5’o¡¶ÖÜd‹Ñ{KðáÐYÁ…mG¾½]׈ÝÎÌï´Qõ—Û•È>£ãù}iêÆŠÛrËSxšú#&¨Ñ¨Hxv¨àVÑŒÖ ±jÑ©é6YJç ‘ÑãøwRû÷©½Clœ›}‹%Œ TâƒTù«Œ¡”½.."y£qÀÕv—$ÁãWÚÀ«–àZça5a þLÙíñ ™‹í(YU‹F™þuèÞdhñõ¯äg눢ßÜMh6 øéÛ%Š~F,$ªx²sÒ”t•–Jc J!"÷Ì#JMÿ`ú†)ï­P=0g îœ˜9•ZÀ8”Ž]ÿQíÒkŽuÂq(2È)Ä(ÖúnËO5"+ ÞjÎÆp%p \­‘ßÒ.ƒLE†qþøþ"P3ŸÄ›kìdXš”ƒ›<üÈÜBÃÜô +Žù¢ú„°¿Ûì!Û~–õ²¯Gk(ÒP:¬g©+<«ÚÅUÜÁZí!éCQ!A®Ån}¨ø¢yCÄ‹:±x\gê:Ó(\)È{)×sd>õÜ´E2ªÿ\#FàùT}zMO²É<ÓJ~ýüN£zØ<6¹Ôg,Ç1ÊÀ”ñ³HY¢WXÍW—ïéšp„œZû’ž×kÊ„š+P 9åùå/H¹i¤ß4Tb…!VöØ .JËØ¹J\ò!‹†F|°~¸øæýhØ|_¾•—Ä{Ýþ»»šbDQ°ÞœÉëbêWé‘_3ªôû)”†Ãâ£í€œiryұ㽔÷ß¶{QûÛoÌŠÇ57ô+ê‹ótŠ„Îè ¿ÄqŒ¦C YñY«X¤åïÕ֓~ñ’7Q@JПSö—´d`mzxèåŠx•!ò%1¼<È¿fªˆº]1ŸO|e1Î&ÿL˃¨çââä‹VóÇp¢`k¸†€üŒˆÍp©ÜÖ;èŠWòãËÚá|O狦 >Š>ïðèöF`éâŽ#”ÖŸs—ÿÝ%^{¿Õü–\Ð ÃÝ|“}&YänI!G“6ÂÄÁ·×i %M¾óƒ`äåÚ|œÒ +J¦¯÷±ØâKøB“wfNÛ˜:9ž]ì #D䤴+%qÅÂ%•KÎ¥!ÎÁà Ž÷œ$ðò$wwÓOަ¹…š) ‡>«ý=—†di^T%-—öC?¾'iö‡´#s8Éó5·±q”¡ÉŠ€b{¸FKjGø±(ªŸ^U %ú7'éV²Ä&oõŒS·%¤iæ^­q…gIÅš=áX ¥H˜>rnÙ7ÕÝzÉ«WµçZ–µ=ó#­žúR¸²ó9ížK5{; £Þäâ’Un>b;½­û,ìÔ—®Ÿ9Tø\úåSÜZ¯ìħ}]ÛofÁöY5|ÉÆ5Œ¨¤zð„:<'­ çß?:ÏÆÆ*ñ|ñ͆:°ƒZb»¾ Ú ÃIО£Än uøíO؆ûC.xæ(q>…!b壠M^2Q²1“C ã\šû~ãÊ!¥¢S¥4YáY°*Îâ‚#µ=ÅM¯sD’Tù NŠ:âœ$ß0ý*P~Q§W(¨ÊŽ?€û`&D¦³4}ÈÛ¬¦òn4‘YsƬf£a¥‹áElw ·ò^‹:Höü4p™DöÚ!SôºÛ’¾©Ðͨ[Õ½‡I|qcˆž_…©a]¤Å6+Mý; lýÁRS€²ØPÝ¢Páp¾ÞåæÊÔ“WøÔ vÊ㩚–¿,‡­zùøàjøÃü/w9~¯>ÆuÀÈSy!µJâ˧¶ô QEý,óíázwý÷‘ ¦»Ô3; ¡‡Ó€ÜeªÁÆgÚ‰uáX Ô&TcV¦Z·úaqÈçU™òÒ—ý[ ñ¨F‚Døðæ+tHêñ?$¥CüCñé².’8AöÂRÄÈSœ©Î¼%±1µhdþWãÒ:NÝ”³9;€Óo— Û½w8­<ñ–|‡Vï@ˆ¿MIBy¬I˜îNlŽ+»Ð½m¼11cQŠk˜Kï–ÓøiRiÙ>ê nØÝNUOß!Ùèõˆ?Íû¯óå%n|É ñþ0åèñw–¸5$Q˜@ Ä|” ùÁ¾˜ŒVð=—$ñ®‡%—3ÑŽôg±¿k¹P =™òÉ¡ž jØwýt¬Ýi€Ž_Ž¿)m"l]Ž­î`ÒCŸ‰õa ‚˜û…†ewB¯èK±ÌG`ѱÖ×·'Å`xà”À>‹÷£˜ Ö–'vQ…V ͆Å8 **è›æ€ü =üÑ#³Ç2h³ýÒþ©Ü„w°qõ^IµØ)¸ŠEžhý´Ÿi«%úÈ„§G=7UÜ+‚ñ#®Ë1/2 9R[_:+ÖHÏüOÌ+ƒ@y LÙ%Ϧ¢o Ûæ÷?œwñ ÚiŠS¥@nÒÔlƒ&„Ú1è×ã2£·íЮÓSÈBÚÉ!ĽÓÔä`}×6 ö‹Çœ¦®¯@ëuÝ8“÷l÷~gM¶2Vá¬>ŽÏÍ¥†Ùð¼WŒyŽ |Ɔ­|ܸ᰿ÿnx¸ŠqD²)(ø7 ñ2µÀ5}:6ô2 ã²t`mi„çNƒóS“áÚrçÝþNÐvpãa0ïõ¹‘u: ä Uâ;ï3¾Ï”Q(ôl{9Ë­énö]®êrP‡ìM˜C­HMxØ“Ó_£fæxñ ¼E¼¢ªdÊirEoä§ ÙƒŸ8©ÙÎÏsñZtµÆ(_ÚUø>޵ wètŒº}¿if¾t±j}]7TH )¸-qëVšl„ ö‘Z6ÓæGhŠŒ8q‹ìß9¥úi¬XdÚíwÈœ{BrnbòÞOž7=ÍqµÔÜS%0:£Ó†ÉnG}Ξ9"„Æ-j¡Ì€^ ;7ÁøGQAFX¸}ýùcÄÆ;´Ät›6BºZj önÃ|íçÛ6‹—¼ô0äç×àƒ6²µ¨þ4æÝÂŽ5nÍá๠ù\Ý™Gðí55ìT6£Ä3ݦN £gÊ}¯gäx{,üÎ÷J*V²Ä|ˆþìúªš-r—±'@‚핱ªkÑÚ–ÓÓS¶ˆx(-²Af*¸~ãUÕ€å{Häˆ<ëÔk¦ÝB¬æ‘|f­ðöTÂüŽl}MÐ;2®Xe z‹ïé<ž¶ñSD·o‘4f”³ë{+¿ÔÁxëÒÈ$[Ìg5‚p³è—7_ õ5 Þg×w&zÆ£¨Ÿ2RjOðbZœ,é®Õ]żb¼{õÃæÜl[k(Ï ©8W/¤NJ[›ŽÞlœxåg"zªþ¼‡zV€Ä@ÞÃïÓÇqµÜ£ìC§åÌñàâ9åá±?@gºËG«*ùž£6¨ü EÔUX829!{­yj«)VÓÚYÐÆÕdu,ŠgÀûǯn½VC*¯³É¢!jjOYxÜŒë*4­ÍVµ†hÔ©fà ÄTå/ Ÿ8”–kéë§½L  ¹‚7z€á˜nÝ#2Ó@Ò覡¤aYÖ5k›ø„ûÔßS¾¥†Á¹9GÂ3›Íù¼¶è¥þ€ƒ¡s߯­-ü7Ÿ¨ŸÃƒ:óìB#µökôô@ÁJÎ’z4£ˆzÐg~·Rä—ÛâiÂo'U%ž¿Z¦ ×ñÆ<3·Ð+Öq¦‚žýgׯÛ÷2F3F”øI7=˜èHc‘ëX2 ÒÌ4`­W­ç‰Á§ÝQNz“^hxÞ'¥Íè¨ZêéJŸÅŠLz„e¤Yî‡ÁÝPfï‡:ñm¶ ÿé!-¼27Ñä#bë_4êŠ"jÁQ­ÖyÌ K›„„K÷.Ë?~«C°ùË3×mì¶Ë·ë¡ ­½‹¢Lž^ˆ˜›?®VPSBåì’\¥ ï#£˜ãzÌÄO[T'Â*U̪@5b_/óåeÂfÄ/éiˆ>µGÚ ˆâÖ®Tœ!mhó+f¯Žrz‚_ mO“ê@}/­rasóÕú‡n Ûνn…¡Âœ› ÓïŠ ÙÖBq2²åèBgÃÊjÃÇ3æ|œe™3*™1óðx}?C,òϳœ_x%Ç'±ØÔ{à‡íˆ×žE+7} ©™Á®˜ºC½˜„°¸ 8Y¯aSàè3h‡n›)´ƒ2ˆâYÇaÿÜqVš²yó]À£ÁýÐì÷“zCh­û³³@ɪqßl#úŽfÅnÎ;t];k®%uä¨Ü9˜Ô&(,µµN–>ϤúRaà»þðÒòTQQà><Å^h¾8,Aäè ÇÆÍ¶ÝÉt=ú‰Rí5r€¿p˜bv kKnT¹Ú¥vÛÐOeöEªÚ繪|’ÅݳÕv-ž¯ýø<Îå+e§¾K– 'Úé(7S¹¸ÍhwKÝ’—sLX⽻ݷ‰{­Õ-‹§1Å=¦áÛZ~mØ «zJóËèjY²ÌE¦/WæT¡oÌìv Þgì¶ÿyráté÷Óˆaß^×¾‹Bڇݓ²{l16²:MRýaUÉó• Õ`ä—0¬N˜¥Ð²‡’X‰ ÂEÇ–}ÜSß¡¬éWayAt“p×pÜDå4ó²Íò'›êŒ]"¬pUß-71²¼«¸ÛG;ý>YN7}Wìå­üäý)¤WAë_” :—a±šÎ8.ÒCÆVèWàz®½t34¸bì¨FVŸ«îYÔÍ5®A˜.>¥ŽÎUEŒ*›UR•ªmҶưíwË u¢ßYÂ(O‡&Aîãæø _c´0UnóEÐC4–?pU—öš~2ÈâÕô%‚ÏÈ´Ì ÝúNlE•†[ü6®¶š Ÿugt&–”Ï¿çßzÈ•©ÄÓ‘t|„„fƒ Ðîo±¤GT~_3Nˆ–qBúZƒ'j÷ n"„¯#6†pšohm·cçøþ06¬ÉRŒë´ÆÀªi‘ÄýË”‰pàÙ²8åÏö(«W›ÊrEg·ù75/»QNÉÓSÐá|!ý<ï­›^Ø„C ÔSaNT¾ëì"Ê6=î׈IîÃʵQ;µèš â V)«õñOû:Jñšþ¢¸û^jjšLøs6µÍL¡?ß„¥/i¨32mÕ²Wwîì‡jŽ\a?@ˆ~ZºY*fpË‹_œh#kªm Àd̘åÊM¥ÞÌ•´M¾´#„‰bR•Þz þ( †èïÍßgKÕzç$ÏŸ\ _<¨@‚vÿZûHv›Ý‚Ь8"z:Í_y;ßáƒfòºÅŽÚ–Ë̶æLGg€]´ sº)NZÌ`ÅUí¿ÐŽô&õUô“ÄÄ6î‘ZpNüà°aîìÕV…f÷–57 öʱE‘Ì Ôç údǘîÍ£ÿ¾R<›¿ElRs€œ^)°@wº¡ Ù"¡r•Þ¨Vøié+|fÁÇqdñàæ¬‹K:…I‰EŒ®åÉS"5µQ{"°²I8b‰^¼º óÂãÕ£¿ó¯‰ÞëÞÒÈ›zp©°ø÷šæRø…7iCˆËLÆÇI´âdók&×$Ãép’ÅîD VTÇ:ǽ]§òZÏq¬éQ«I»9Ì:Ö`‘¶l&^?΋{7nòS5h?ï—Ô@6ˆJ ØaÓ¢žîrB *:x™ÎKþ2¾ƒSq[™TÂú:v‰æ²\â.ÛøW´1ÚGØi ¯žÅjƒ ˆí,?L!4™©©6ÓžE% \ñ³ÕY(é¾süÄÙVp}"Á0¨±J],Q®„y]EKâ$[É[ií¬éì›­lCþf¢m—wøÌ`Cêvä–z[ÉÙ™B¯méñ/æ%nÄ&úBÞF¯O$iÃRλҷõ‹Ó™^ÛžãÙx-13Ä|g~œøö¦D_ZI—#o6ëp­”P®L6Þ½ÂôYE³kít¨âÃ< ]½Hf£™|6GУó2j®S7Ç…ì]ñ»  µÉ‚ÿœ5Ã=®9èkŸÈ)€²n~xøJ£˜Zø~IÀ ìœ:º fû¯ߘ(˪?aøËw=ðTmň°ÞèWÊß9Qýe®[šÄkw±\<óA©ç@Ù.R" ޸ĕ-©£)Bù&K]™Eh<É!Ù§uû²‡qú/¬ÙXÐ)˜ZM˜QO‚£§Íeöž¶S£·^÷¨ó!NÇD[]&¹pŠ;þ“ü©ü\$D#_‚¥ô¼ê!!L_ ƒå ÆÊ~g-&L5S‘¦ãÓn0’ë«q> ä´“¨ÿˆáŒí¬Ò”JdÉç¥2M?•‡!šs¢Æ«u~Q–ë{¼Áœ|Æ£ s–be\ì´É6/•Í[]5‚ý¦›éÿ¡ïŠQ¡[m]ÒwÏä{úI°gc@„Ê8S.';9(Ã(ÆéjOàb°î=žÌPËŽ¡ÖŒqO!–Aß#nŒþÜdpÞs åSî‡_ÞA~²¢E|‡b6N’Ú Ù+[ ù2ʺs7iã¥áÎàl«ndÁê‰îN²£HôWÍó8º¹ü¶ÞÇ ù÷_ƒ¡VïKF½æ¬å(•øú%güÃïøÊ!t’¾³¤™¶ýDßúà`g¨¡+ú ‡Ñ–ÍQŠÆ£ÍR™7 ÞâtK.pŠ”ú9ȹ ºÏâbœ=D3³‘–IâšÌù¢m$¦Tx=’ÖõŽ.Ý!F³ˆÍ«áA¯ó7HöòÝG·ÙèSšN÷ÃEqr‹Ž÷iφvXãy•f€r"È#Ö€Ìòà‚ü™ 6àýÁîi;gö¯Ä!TûZwD3šf§¤ö|1"OE”W]Ò·#üߣŸ¹Çëñg…¯–^z2ägióÊôsúÝoØ!¯ä+°å!éX¡ýDÄ¡!£9i•h;+Q´éB"Ñnô›ž&À‘Ë%]+ì󑕯ÂU[qÖ&êD_½QTÜÝç¤`œ|!“ /Èó»I¬²ßª>Õ8öQöA _ði>>¾€/…|6#r[†QÏ©­‡v` %( pïNȺ‚M=(Ù»×O¼æHÏ={ßU¯ÚÏi$ƒfÛˆ•€b#v-ÕÇ&‡°¦-ÈH¢ðTv—œÜµ3 _˜æØ£–¿Qéi‚ÂÎ…N„‹Â3¤S“ kd%ü°2¸qÙdà“÷u”†Xô£þ^É‹‡<_¼3ú*©ÝQ°A ô 1Ì?äK-=ÃÑ·¤ÁlÃðæAsÿâ8²4È KKÈ‹Å%SÕg`È,)œ×uÿ)^vQAH´v½„îç2ìÕþçzPº¶”‰oã ùAZ!#<ÙÆ-P:Ñ«Ùè £³oø‚•Òÿòœ%z…kí!e†Î0û™FÓ›¼CÛ=&ñ.äe†Ýõ™‡Öd‡¯J³›ýàÒ!Ó³k*.T¬…°Ê†c+ò$òöj–ô~ [x~#ƒj8d¸™¹9fÁ÷ÃËR F”ÑÃJ˜Ó`µ×ptÏ C¿Ìl]ô¬jÍ/J? “ÖÍ1EJ¾¢_/Z}ÍJÝ ïÞ°i' ÿ€©¥QèŒH ;À¦N;þw=6¡¬Œ ÿVÔ·Z8sfDí‡/dèéþ +^øÉ‰;ô ‚/k›ønÛPÕªé{ŒEÕBÙ(Ü«ú°Ý\ÀôˆÔ°D’”ØÓEïe«åí{‹¸s„ÅKöÌ‘›Á¡Käx=bÞï¤:¯Tsh´ð†Òž3Q3š<è~+Ãm‡pø8’?éáàÈQVãif5¼oq<ÃÿMw;ßrS.$´hp•l½ '<Æñ2ÂwµpVˆ%Ûžª|ëˆ6‚ºB–âüæ¥ëFÓi[áÜ71±úAŠƒôºpDìæ{ˆpòEE:¬“¨¹Ø+µgü¶pÔš™!æó-_\x§ˆP€`÷ º¬ìp½”1ÔZ§@FM +ìvÒ˜/ìêêÈÃMøCwzŠ+BÖ‹†­ðÏÉó€èÙ3­¸Ì\éç\¶;ÅxéÖN<Ö¥]Lx#âà®ïXg/SÚqL;Dyº Ékæ&{#æ§a¼ó}¥ È Z×à‚ek•ÙÇêäžûÃ/ÉŠ*©õs‚bÞ;Öñúž…ßó(5YŸ¥SôgM°2‡¢WŠA`Ũ¥ðSÙ)3h ¡8Ìë2íÒ›@Ç.‘–ÄÕ*ÎHP>»~W8Ù_àzÎ[bf9ìß©Ùz—5Lf_8‹æ -“$}"sÐ÷ÐùX“Ò~Ã(r ;OUž­Î¾ˆÑ2¹ëáR#£Z¹ÕŠ"`P,[¶Òpç5?úÚàIÛEç)_8&Åw¨sq–’ê_Æ+—ÁM½ÆOµ·ÝÇB mäu›Š&£WWnhØAGÌJ÷²¤—¿ÊGÖ÷¿¿Š¹JFÿÍ€i÷J²£›iÒø |«[ÕÆ7ñÈF-’žo>V…]’·¶l>Êï[“UT»‚þ=†–h0þ|4Ǻ5hiVðN±’g4 ÷»é´oÜ{à2NòJ Î¥f»p Œ•ßÅúÖ×F¹PáîŒl=ÅŸÛJàóÆRdIè‰ýœB4ËS9M›afóMÂ|zI“©()Gn­ [ZÜe±¥ùCÙJ_gµ¡/wáX«­G«¼…kzÑɵôK [ ._e\@ YçÉ;ÜM‰ºUÖÚÛ:uÚ—²ŸXg FL\Õ®¿VŸ¢ï²G§TnºO ³èm4 ¼¢ÇÀ`B/ÿ@õ£jÚK#Nõeöïç#l;/és‹¿p>Ãù¥  ¢µ-V¸iڲߎñ _‡]åßÉ­«øT~—¼QGÊ`’&c²ï Äguq:=¡òø-U$„¢k”,â~¸Ñ:ÏN`Ï«²èM!áÜ ñyšvC ¢ºÓÖlWV"KÇç¼™ùuÓ•a]@à}€g›qâ¼B£TqœN ©ZÀØv` µ4ÑšŸêƒ]¡xfžœW¨l0ªÝR¿‚¯|ïzGŒsf´Ù€›‰«ÖE½Aþ©yH¸ 2BƒƒhòJý&¥±oJ—[–[½Þ!D;—¥ÆEjn\QÞ¥Ñè¥ïñΨ(¤>à îN~±<ü‚r^A­œcõ¦°)k D NûÝõ¥Š1t°4áN¹Îí@›Â0õ4h’7÷¤ §µØ ]{xðŒ€’DƒZ±Ô©¢·$‰Ž€œ¤¬~l7¿j"æŒÞí³ß•”ënXú¦¾¨=¡Ä“òDh9Á[#Öo¢®|®Ò”†òÃ(3ÝÇŒæ`Z%œÖ=ûCŸB½³Ï ßR·˜¥Ô -Õ(”a ¯ó<©¿õku“À­ e$Y?oìôpˆg¸¹K0Î £i~.„fDî&éh“‚;‹¹ µ¨?’ósó7·çè î)Îâz‡?2Tm¡Ó¯¼, ¹tEâ¥F*Þ¿“‹[ب\É¡›7 vÆ~–®L@MÈÖÔº¹5;O™‰FÄÆÃ:¿?eA³ÚÉt¾˜ ø¼JϕҥØçš¹":¹AxØUþpþi®ÖúqgÌ·M½'•·Ñ%t®sj™3ÎíOý)S±¦ìäÚ3¢ßühU$!ôeƒ|8mÖEL'­¢5bß›ÒD/YZy^´·uU¶òz,zoÇ[Üî µG5,sÅí€còvú[É-‡ÑÀ·Êîaqá˜WZ¦AÚ_I)Z€_¸a‹e?!ƒýG÷"¿ßð ×”Òç‡w,õDƒµ±®Ar±\¨íÕI‹ÐÄð³É/ "c}_É—CßÑ+òQè=ljô°o"<òþš`7!q æL‹ï €"Ç5-œöD‰=pÁãVë¶ÞîRuµŸq1£c—WWyžÙ½ÎñϤ3}Ð2 ‰…ÌÐ@Ì("jâjjÞŸ\þiͳò2«0º[ë×±Ôª«´»ØØ Ü”þL1ísÄX Í»Ùê"MŽª…¶'²ù.Òži÷¨‘ÈàùOajiªàÈm›«_þ­>é–jß!﯀IXƒXJ3ø=ñœð¢b «ò_§FÈKæw_ a¤ð¸eÒ¾ U'¹a£~=8h~ä•Ý1ÁqñÔÓþjmïŒÜ•ñ¤y ^‘¸ø$Ïp[¸å”»ý(…›5¬6ÆrLS;&n¬½ˆ7&ŽíˆÜ‡áhJI‘å-ô|(ûÈ6vÕr5P.Q-§ÿY!4\×å¼Ï /Þ‰eZÆqgŸE§àcÖ¦²•Öç:‚ 6V£›Ø…„Y”Ü@6–ì•NÎü§‡dÓ\Kgnõ!åVëýk†ü‚9E¾£Š~&“U½Š øzH¥ïoñ(´ÇøÎ‰Óƶƒ"L}oX ϼoÄ åå‚´ÐV®» høpò £¼xi$~»gÁÖ!Û“²¹AJÂÞdÇ«J;·ÉØ6äIžçf»–f7Úu.Wªæ»]ªùÒ¬ë„iéq’0ï÷ª2aÃ)à ÙÊÆåf…$í°ã„ìçUï(ëjØ:þ¯qk¥ÏCÞödŒ›že¸a­ÄCV²~l°ÉE”œ¹ ŠLaz)ÒQ:Ä£ûáÖº£OüBÞW­-õûÅMJý#WX¦PЬÆ'%ºé³âsBõó• ×à *+‡œñ×û9tÊ2wè+ô.Òàü«8v:LŠÇ£ƒË~L“sÒ(ãPibLKSàyû}}y/ 7ïýÂ^WŽTF¦[›¿åÔ.êŸÇÆØ°˜`~Ÿ´ ¬OG™ÕtáWêèL™¿ã¨d”†Òs;5ðÎWž!íº‡Ô?€‹ë;‡ íW¹!ê—¥Óõ.ýFN]výH0Î^„Vñôл1pç¢3M¹ÍøôEhò|ʱ ´Äãð}þg&§AµvG";…žÑÚwáfÓO–—Uˆ®¼OUH^Æ·5™ä¹ï„ì亸¶4±(¸—Æ/±áÀWäX?ñB&Uøúu’*DÄ_o¿·#Rù_k>EŒký ðF•´¬Üf˜¨€ Sš úÕ³qÙfñAsñ6‰0s&l/Ý#Ù> r»RgÊCõSM~¥ 9žKk Y'“}p·!yŽK gl¡G¿O]ð.JÀà å„Ü[JŠö(X¿ÐÍcÇÆý+‰÷Tz+/< VQÉ;ÖùÚËy¶bÜÏ»ž2ã"L=2«ßRGÛÞ‹H°i°;¢XڡĨJ%dc_w~¶‚ú‚`÷€åQÆÓ•¤*J«Ÿ_! ÷]r|‡o.!&<.+ƒ(x»-9‹ ¾`<Å!ô[¾^©›†éVV"›È$¡2ýYRgóXñQð×X;׀̇¹sñ,–‘¿š Y²„øàyX’™6ª´\K¼\»]½Gê'ž%T¸l?U"¨Æ>ûƒÍ²åO#šzh´Ÿ¾å<@³ N¼ß)È¡\õ=d=8›é„Bî£A“aèWÁG–°—«O¥È¿0Oå#4˜b‡ ÞÁÔ`2Lj²UÆ(YGd€.©ð|¦Ž“3õ•pøØ©¼ž3†¡,»á~ Y„,\Ú·þÆÒÌ‘‡ŒÅÞ¡Ù±°†¿B`Ð?{Œ ,CÃé ö´†ËÜ,Éû€Yªo#÷O€rŠE»²ƒ ピõ^͆L—b§k:I£µ»e„(Fäñ±N—Ì*às7b–Uë:mÎãÀ®$@ ÎkkÅ%²ÝÏ焺ë{hm”6”LX/ÍØŒ.ï#“[‘êð°r|üмÁæôq,ŽèîäÕ‚jZì7O Ý)O{ãì®@.WïÒe‘í?‘t„¨ÈÑ V‘Ì™›áÈäǦ"ÖG!~Ö(DÖQ¸OØlbp{ÔZN¾•†qÀÓ9OÞ™®/¦ÿ®[#ƒ¤ØåD,±%逳äÃ7]Öœ}~Ù,ösÌÜ Åjmš2’]œÉ¸ÈzÑ].ÿŠ{Mù@K¯“è;Ú%¹V+úÞ‡1óy7T·‹´Sêk «€À$×8§˜üœ¼µì’£‡Ð²«„1.²²spÚA0ÝMJæ4KÜéªÙž Od&Šã2óTìåŠ^0ªi²¹ŠnJ «ý•*àï÷ùÓȸ *é¸É~_K[H½˜É ¯ÏðåÓµ¬›® ˆ):úîò:úô£PìT,S;“>üóEÝ\E@”áyQR ” v‚Oœš&³«ÍEÈ/ÓŠfs›Œ€ú÷u/E°uÃ.­–rŸ´œÚž|®”š˜&rÏ‹8…¯çýz©¾oOµ§¤\Õåç&ÂSܬÛRÑaCÂrI:µ¡ÉÂo(hÓ@‹Vn% íÜ9ë¿kåæ_eû4ceýÛ„ã ž[Šð÷Çd¼ÖˆÄ—•ó…Äl¬¯BÄÏÐç¿>“ˆBmño8á¶ââ]ú«ËmT.èØ§ñT1£Y®[ñ5zæQqT)¸nS5¶À“,+†Èe0`Æ~Öí¡ì³¿$£Mªf ô –Åd†œæ*²oÇÏ÷Nú?¦7'drl.TÂ$]ª>TˆRŸsוm²ŸSŽ&ÆlUô“5ªò„dì ¸'OCJÊ™‰ëˆ€ìò^§ZSô|€»MÚz>Š|s_¬7Q­êÛèÿ{†× å†_°Àµ»VU ®„™ÿS¹ó—œô àáRIºJë\1òÓÇðŽ9uØC&†‹ÍžfJˆøÒŽr‚r•ê½´(Ú°nI'¥ôF¬«0ËZÄ‹QkÇŒ©CTÇ*8ioèÇ«4š­°ß"Èla²µ×Ÿ¦£^7Y‹}z‘ng÷b6tFµ;âÚŸæp yczMk(ð'O5òDYWhøb „¶OÝŸÙ÷ÑKÀÏÞí…Ķ=ø]ö¤šÖ¯m!g="±—‡u÷˜7—&7üènnŠ“Ÿ-wßÒ¬ O§ODw§¿.ž·7¯®šœC.zĬ~ŒëJêï¾M×n0ÒA(}r:1Î^›GCkc÷)‡ †ÖØ&3.jÝu½TxDzJÉcp“ðR\Õêó„g#’@ ¤„Xc~ÃROÜRðý^W,]ÁóÓd*@"AR-7ÿ>Ÿ¡,]çµh9lùýëƒû¡½y”D[Ód ¶ž'%¹ÀX™›¾áÞ^t¹@ Ñֆkˆö’cë’¡|öÂX…ÆI!VFÐ_;¦E³¢â#ï8åò ƒd÷¹$¢ yc‰¸‘Nº t¼‡$CÝ»¶cØ›mÔß7¾Ðë3‹¢ IœƒsÖ7= #L5UYuëâJŸp¢d^Âå¶OÆ2DÖõ*¯ƒâ$y‡Ê‡½^ȑ܎Ç@¾è¼-`Nq%ÉaO6¡CôØfgr~CÙ¦_+ji°ÔXÁÁææÝu‚šb'zÊÍÅ» —´ÆM©[\‡0A^4©þÎOT`œìÜÚsêâqÐ\b@þËÕg/5Ó‡íÜKÇDÇ2‹|‘l“m±-ÓrÝmœº¤"¿‰—4¦âϱ *¹VWŠç|°%К9S¬m)ÌU:Dj—{&Ë«ñ¯Ù‹ i<°8 >кŸÑ”çù/Ø„ÅijB¨hÿäZ–H:›–‘¸[E/ÂCeâ<€CÖΙKªMêÆA !}0RY3= Õf@9£™®*îAD.j7&þÃêðå†ðÑ2ï‡{¡Ö¿ïƑԔîÝŽß‚ Ç'ë‚WõA#¶Ž_±—ãÉt¡°L‘Gcm½¿BŒÁ×^Š'L1ëÝQ.”–¬lß?~ƒI'jV£çן«Ïê)±„ÙÌcÈuFÖ¸.q)JÏ‘b!R›gv÷òž:¹ÝšëÓ"‘….W·µ]øÝÝöÛ±˜ÎRç¯ê£²,ïi(I1[\µN2ÑrLë6sµ´½­¶ñ{Å#s‹‡Ú¸š{+SdgrÔZÒ é®/†°üQrL«‹[4(å;¿TüGJŸZyH§tQO;Cµm‰µ·—–º(©å"f½ÐÏ2Êo4KP´Í€`ÑÞ™_wò• ¹Yý³}ºqìŒlü®m%³/ìè묯íÄá¡ a5Ãr‰Ù¾rŸñ×sp¼—ºç¸ËòÏ ùÏ7-"¨㣨~>E“õ¶öSxÞé»à~Î"¡f2~m1$†@‰æÝYŒz²É}Õ“Qüæ‹@±¾6‚ ,ç"+5бtŸ£UJ˜tþ"ªÓåÞhWÑÇ4¿Dªģ&Gþy^ endstream endobj 189 0 obj << /Type /FontDescriptor /FontName /TRREHM+CMTI10 /Flags 4 /FontBBox [-35 -250 1124 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 68 /XHeight 431 /CharSet (/A/B/C/D/E/J/M/N/P/S/a/b/c/colon/d/e/f/g/h/i/j/k/l/m/n/o/p/period/r/s/t/u/v/w/x/y) /FontFile 188 0 R >> endobj 190 0 obj << /Length1 2695 /Length2 19143 /Length3 0 /Length 20694 /Filter /FlateDecode >> stream xÚŒ÷PØÖ ãîÁµ!¸»»wwi qwww— Á‚»;‚{à \_Ïܹ“Üïÿ«Þ+ª ×öµÏÞç4Tä*êLbŽf@iG7&6fV~€„¢†+€••ƒ™••‰ŠJäfü¯‰J èâ rtàÿÃBÂhê–Išº rîv67??++€••ᅥŽ.üIS@‘ çètE¢’ptòvYY»óü÷#€ÖœÀÆÇÇÃø·;@Ìè27u(šºYíÁÍMíêŽæ  ›÷ÿ„ ´vssâgañôôd6µwevt±¦cx‚ܬj@W ‹Ððe€’©=ðjÌHT këꎖnž¦.@X`2:¸‚]Ü,€.pv€º¬@Ù èðc…ÿ0þi€™íßpÿxÿä𷳩¹¹£½“©ƒ7ÈÁ ` ²”¥˜Ý¼Ü¦šÚ¹:‚ýM=LAv¦f`ƒ¿K7H‹©LÁ ÿáçjîrrsevÙýÅ‘å¯0à6K9XH8ÚÛÜ\‘þªOä4÷Ý›åŸÃµupôtðý/²9XXþEÃÂ݉EÓä씕üÇ,Bú-³º¸XYYy9Ø@gÐËÜšå¯ÞNÀ¿•l‰Áü}–`@%üÉ×ÕÔpsqúûþ©ø_„ÄÆ°™»Ì€V ¤ßÑÁb å0øü]@^}Vðø±Xÿúù÷“!xÂ,ì¼›ÿ}Ä,ïÔßÉ©«3üCù_¥¸¸£À—‰ÀÄÎÁàâàpóqüÿ7Ê¿üÿËýo©Š)èŸÚþˆ'ë`éàûpïþKÃ㟹 ýgièÿ›AÉ<Í@íïá7`åb5ÿbûÿ¼»üÿ›ü¿¢ü¿ÿÿ­HÚÝÎîo=í þô¦ö ;ï,ÀÓìîÞ EGð~8ü_SmàÖYhr·ÿ¿ZY7Sð†ˆ9XÙýÛH«4È h¡r3·þ{bþ{ àèv  Š£+è¯ûÀÄÆÊútà•3·ß)®àÃú[oÔÿf”r0w´økõع¸¦..¦ÞH¬àùbçâø²wÔèõ÷hX˜ÝÀ.0;€¥£ Ò_GÊÍ`ûKôÄ`‘øx,’¿€Eê_Äà `‘þØÁ3ùqXd#n‹ÂoΠø3(ýFà Êÿ"^p•ßœAí7gPÿ8,¿˜‘æoήõ³kÿFà|ºÿ">°Îô_Ä®ÌÔÞ <é]bÿÚ€3™ºšƒ@æ swûålìÜÿ(Ü@vÀåœì‰ÁÃrµýÚìWpL3S—?`rf.¦æ@; ¥Ûb®ÄÿY©£±ýGl tû{>ŽåÿÇÌÚü_Ä.ÆÜÑ<~ÿÖÌù—ÄÞþw/þšK–ßMàsµp´³û³fð…Åò›6xY€ÿ“”û/½³;x¿»€{cùÛ\®%Èã©ÝÿÌ6±ú¬·úëþi®Ýú7pǬ½¬X€e ? ¸R›? xlÿ€àæü®˜Ü»¿vñ·ÜÊ?†|³üNÅŽåÞáß}§vp·7ûëö´ú£$ð#Áâø»hpLÇ?¼ØØÀD~«Á9œÀ/¹Ãÿ6'Û?Òÿ=jðÀað‹ý‡)÷ß2ãïå7ÖÉÎýbào;,οÀ»êìîè´0ûãüØÀÒ?ZÏf÷;×_èñGç¹Àæ®à‡îߤàÚ\íL]­ÿ.íw¡àÇ‚ÅÍÚøÇH€¹»y:þáŽáþ—ÇÜIÏ?öìíõ‡÷þ‚»ìó»8p$ ËRýÏ}kîîn³ÛßO"ø2þ/þû{è4Gú¶èh.fÓÖ}W/FäÉ´7)4Gµ§EÇäûÍ¥Çý >®./dÃåF,ýË ÆÚŽíµè Ù³ïIG3|dgªjףߓq²ÚÌ^Òò4îÈTɉXÓ0 "1“†è¾ß³³ŸV°-tdŸU¡³;/šJñ›;ÏO2^MÕ«ã‹{ªûuÜòÈO•³LñšqÁåóTEfù øpnL$ôXç^èó×7sXS¯drÉ Hþ§ñ¥¾z›ì ÷ >ëÕì®ý”zø$Ð×Xã3Ô¾â‡rxK¾eqBKïYé˜!6ƇÉü¾ö‘Ÿñë+Èbá±Ú¹|ã“§ôïjb ÖBAÌÛS7q¢ot:A[Âg°ôô”–)Vn/ûd´?‰xåÂ`¡è‘¯äí»¿õ æZ÷äZþä¬qJßgLßrig­M|]ò9ÒÙ[ŽøjŸ·ß¯Ä&÷#eƒïÍԩӜ׾—zÏH•Ôw4$ø’ôltŒ7%9­Óé†BËŽaLå)(YüR)ßÀ÷VTnÕ¢Vt¦KúrB1òàvÀ¸²èÑó­CãÉPÛ¡ðI ̼^~¤i`{[¦6qŒÒ5vÌ;.]–•A½Æ‘’Ã’¢ÈáTH\"©‰Rý¯“Ô…ñ²Èƒœ‡ ·7¨q»pèøÖN¶–mQJú5yT¸âO_Æ.ë¤E¬Ô²å?6FO$ ªÏ©„´÷¿¢'V— ]Wnë¥~3¬5®77 ·ì=æ5Z×Ùð9X›ZR?yî"—«e¯sA€‚¸+\ÅÿÞ¿7y£ohÆôzÑ†Ùøy2¾påë;²–u‡ýx£ã»ÏÄ/sŠmsô^öí ¸ûºµ™Øã§k¨Ì.{oª“œ,}Y%ûý¸E« Žò Yêz­ý¦¦™ïÊÕÄ`¾©—Ÿ‡¶Ï³»1Z£Ö^ ‹]ÿìKÚV|þl/ý‰pýgI~sfÑÊBöŽ$iùY܈RQ\ ±5ÅGe´f„õ¤¸wc  †÷þ)wï±÷m†uu®¥–ܫȺ?p}îrZM—í.Û*ŠQà>},äqRí‰çd5‡|—=¿Àyê©Û3”‘ó~/Ÿ½[ßmzöËXÆÊ‡¸æ<ë«ì˜v³¼­úo$P”AH#¥&1”•p”ðÜhþ` ŠÂ‹t ý4g~Ž|<‰³Äƒ»¯z#ÙRâv‡1o‘9X^(T›Ç5ñ«;¨µä‡ ÏÕ Hô5wûÍ(&äLÔW ˆiç(B͵i飆ۤ¶47©©Ù¶õbQÔ™â <6‚¡ÒFj"Lùéù—ƒeθaðFyäqPôlVž·ìýEœ,e…í}¢UÛõ<>«¦>Ç3lÄGtÑmÌ›Ùç¿‚c¥¼Bti:G+o¹¢¤Í…lzÙ·{àͱ“<ÙPâŸîÆ9‚Ì d #ób¼ÛùÆwQ-‹>®Ǧî_”=VXZRõ9= ‚.È”Iii|?&.4~Eó¬zQßWæÒðJ¾^|!ÚnbŸšìß÷'½•® _¨pœ‹ïL>{c:ùC¯¬ùäÛ+MzRM¤²ïŒtVôéV®öhðãÝ”×z^‰Š½Øü(C¡ÖÒ˜Ïú؇”\s\²H|# 4¤$jÂúúãêdÃ[5µÜJ‰R £:®g¾·Wbg[ "ŸÅO(Ö>Ó‹¦4ò—ÓjÓì3BGB¼ˆËT¢0¹¤ŒkE¤/àê‚‚`ÐÃÄmó¡+¨1'«¤(rÝ/º¾én>|4ù)Œ9cdB ÑL›^3GgŸý@‚,Oƒ.¿=‡J#\€™'µ©¢Äȯxè£Î!î†&ÊmP°)Ât¾`„«O´zx(Ëìl5{«KTpùhbZYá9þM©VÓi¢Ü¤¦æj;G‘¯n×[ÎjÖÌ“|;e¼ÛõSð˜ÆlDd?´YÈ~mgrÃ@ÐH‘gWªÉëaÉGø8š½A“Mk#¸A DÙ*‡wÑ@»ÝÖbÌž‰”˄ۡB¬õ›Åଠ›¥uM©SÔ­L•.[ÇþMUt¡fßLuË©ò¬• õ)±o-¾ü0?³Ä)hBž¯¸ÏëÝ0Óm©§yN/c.Ò¨½ÄÂoO19Ÿ¯Þ—[lÛqј}5[wfÌxwà PN­?äÞBTRr¸Õû$s ïì>AÚö¹aQ1 ª÷jÀêñhÞ‚ŠÞñ,€þSOÖVg/úXÛéîk ÛFGô yˆSÚŒŸ¾b„Ó®Š;$&"L”÷-_ý 0ü°.ó° °*ŒfWÊiWØú< !už–Ål’ȵ`~…Úr Pçê‚H¿yþŠøê‡WŸá!Q«ôÙ‘†iød"º-¯LÞ_õâ3Rôyèƒ3ï±<7†ÌIÇãoÇiµ5¨A¡>Ø&ûä~/5¦ôµšÈI0ðtÌn²ÄÖÎÉK/Q¤ô¬Ð…Î?‚:‚ê„”p>k"sŒ&nò  âSvkÕçð‹?çra…þÕá4²üò¸Ì ¿‘®Eì,©0ÜÓà»vfÒˆ:já™Fä·†*#÷êÃÒ–wøŽ¦W2,úDö²âd o|ÉfBâˆÆxTd ‚ φo‚ÓwÌ¡[-:ª7X[‡¶ck¡a§ÙŽ%OþœÂmz¯.£õ¾].xšz¯|R•‹ó2µ[îÉœ|+›&Žν,!%[Gh^Û‰êá~y–|dKÕ"ý:Ìî£â^–2fROÌžÚáÙŽŒýˆx¥â ¶¶ò-¾ð|–VVOŒvG~UÔÝDA³øhŠ£¦ôæ)o¢Iú<Þ®µ ŸòhžšN µÂWAдAaG:´+¡OgO²Åå”i©z¯øöªµ†ò1KÉŽïu“3Ö[vfðecµ"u°?†¢ÆglÍQyÐ8ͯÚ\ï…ØG¼d?T´M/HŒl½÷~SÔôÐ+cÈL$é@˜b'òõ ¼nøÏy‹xÑGeVâÍv0o¾Åói>KËÕ‰P`é;"¯ÀŽ9MZÇ-Nö§T\DhBñM-¤ú|ïUˆi z€JÅ{â'•¨½~(Ò~¥×I »†¡\ŽäÇ3ûÂç´Ó,md‘#>Iº(§F ɭϤAÆIž?ã­ aB£ØòL \ƒPw6¦ø¦JEìíˆer…%qŒð6óE§œ:E­÷“Ôçdà v… ãˆOÜ0("Öt¼Ôã8,⦖¡7©äx¬Q-çnmŠ‚Ã±Ð:¬>=l”Ü”8mþÁÚ‚l6{ mîƒgÊ^Î d}sàà£Â£Çd‘†»ê¡cÿú¥Ð…?I‹Tó× Úõ±¯¬Ì©}u lßé-qcCßþ“…›è R1ÄÃêùÒrÑ«Ù÷’þt˜Þ) ͘F1*’›Ÿ|³c&^059ú´Äë·¶*3õþûúOÎw(H#[pæìQu^d:“pØ…lä"ü›8[˜{¸noI‡6qE¨:fnÓ­ÂbÔû€ú>9À ˆpÀ؆5]æƒä) ´ ÓC8BاSå0nk÷’$Q³PÄØaDW³ùȺ‰Ë*µKÿ1*šìé1V"AâJ‡±0&B0*›ú±ºìþž.åpº’Ášë™OøKü°1¸?úÒ1 ‘ïÔ° §¥ek5l½Îsm¬ÌÞ¿Kµ@`¦åGØþY•GÌ7 •IUâäÜWy%ŒX-ltäãŸâk”2anè’»ÍíXÛÑÒq]4ú½Úí]ªÆšÄóÔ ]Y`Úy;Ø÷žÛ»½M<ÊQÁ5ÈWȲ¿µš’ }7ìOJuO‹†õPùàfáZŒ›+©äcÞÚ•SþÂ%0¸<Øþ8f%™·¨"Æ‚ŒÙ14sõ¡éåß›2Õk®ÌæÄg@z†*ãrß’#Õ¸|¨I}…É[¡»Õ†ëÐþfzÊ÷©)½ûîá½Û묿ÊÓišÛ'œâr9¯¦tÞ¥Ñ95âÕ-f<ß1÷õW}œ("²–ò+ª£ލħpžAƒ‡%9²–ã—Ø©ËìçBéÛêFä&ØË^e›¾ÌÂÚ•}†fxm á´ëGÅ­ÌXºÊ»¬Œ_›ð•rºZ_sy›OûÙžá,ÞÊ)°áмQlyC1œkV>®:€Fü³·ÃÒ¼mz®À¥¹§YÐÊ. þgf2—nü”P°úޅቒhTI1<×Â;×ÍÇë5œ‘c–ËíÎØq[-âu÷}«ÝÀ´ç¢ØÅþ4œvéÓi{¢÷u}ÆÊ²<¹S,¾IF0>ÞL.ø^¨–DE=ãdXéÞ”E¸±T@:¶;ÒøÏ¬4Ђ5Ÿ’&IJ8_H—;È|ßubW.ÈÉ\ϯu–RbT†³<Ež¥¸…xlÜì äðKö‘ÞÒå¼Ñ†_V'~7–%·Uþþˆ.à›*¯ÜL¿SYdèbX§@Í3r£ã³T ׊÷Ú{~A µ²Ü?â¡Òt h ,båï¯\ýÙã|UÅè< åŽÝàu6p@îqjXP¹Î\Éf~¤')‚Gìý<fbþáÁÙ„¥ :óÊÜ,4P&üdSó=PÍ}Íɤ8¼Vq²”×2Œé¯ãŠ&Þþ2Çeyxc"tæ)k°ßeä¼òlÉ#“óŠõ$ØA~a^Cr¼&ÂmYpò@’o S™`Õ¬$é¾T4zï(µµø3 UP'ÊÂ(jðy³-ˆ‘­wSÐ^¦Ã#ÞÛŠ•O¸¼™‚”í¨ìÌ 8Y-ÛŠ¢îŠùE\V£-naÞãë𰥈 Q­ËÖÃŽÒ¯t{ÊêìtÞƒ¤ê1ãâ¸óîA5ª)ÛÃçâ w8ôõí‚3Ѥâó8ð£ÙmV§H•M©×9)Ê ýÖ.âç"È®€XÅ= ‰«âèÚ´kÖY —"×ÜIu‰Ú}(¡ÁYï1”GýùÇy#Ar¦26Êz.…´ïŠ˜˜²LÂ/¸ i²? Ø"-ÞæaÉñý Î–M„Û˜¶JØh5§ïÇ„d¨¨ÁY“Öv°ˆPôŸRÓuÏ6Sn ©ñÈ901¶R´åÒsü与½K\QÐ:kY€·q&3(<ÿ´Ür2ÅX€QXµceûÅJŠ÷M›tVÁ²‰i”‹‰\9úÁäö;;ºâÁí+"-‹þ'Ñ?‰² CSîkÔ0ívF¨n‰ØeÜ›hÕÓh]“Š9cñºMRëòyç‹£7¼(ä_˜/§>õÑêSP¼­þüó ׬/­LQž ÓÔ×ÌQ>WvßaF3̱ÈsÁŠä’#e`!Þ/Y­×™Dó¼Šæá#ú>¤úâ£ì¢–Á'øUCТ†Õhl¼¾ñ†^‹ñ©Mq퇗4®’º %^OtÅ(*x)~8¤˜1Š0èö¹ÊŸ·RM˼p¦tQLšìQn&G€ñ—?~¤0sÝ9 3~"Ôs#ªÈåØŒNÓ–6X,;>–át„(OÕîÛ^ Z^Öª`ë h ·åøÍm*9ÊB,Ù‘”RZø9$$’”1Æ<(qG›ÄDø„úæ#MSæðG}±¿vÅ´ÞPû+ì;¸ç—â—r®héo20‡›WPºÝT%±3·úYü<7`>óTç»[%(˜ëqz»Ö¾;î³x)ø€<q‘1:ýa‚oÜî;~K0EžYˆ[köX¥÷Ñtåb‘Ö)ÀP;pqv^øÃú+ô{Ìë@2•ñ”6mz=‰/#¹1ÊïÕƒƒOX›Ž‚Lñ:C&û;áöÔø&Óo™üy¢CæGp¿1 äÒãµËJÔ&ú²vDˆÅdmè 7íÂ׸('ÓÊ :daqïaw'óv¸6Ì0%Ÿ•nÉHi<QQ!÷±m(Ò ´=š¼'Í,=r;J"ÞÁ×F„bÌ´vËè‡X†Ÿ}¡Ný¨ÒïÕÞL-‹…Ÿ“ýzR’¢EÿšYxèâïÈ¡<~^„™1l.:µó¨õV¹úöd7§O â†Ùé3ã¹+0c a^Ê—Qw¤ƒ¢Î{Šå›ŸŒ¶¯[-Çi‹ãÚqNCéÂë–ó¹ÏCF·aO« =®:º£À“JWÓduÔ±ô+y"¹•‚9ª¿ûÕ…!•ûL¿„^§8vÂÏC\wmChŸ›RIÞBSÓ‡ÍÑá…ý‰HPßðc· æGt!Á‰CÒºQ¶kçþ£LEß!>©Ôá6ìb¨qÞ™uñ7Áí·'MÚ®«ˆ)þƒÁû†SJbÏ3?F¥»úm_gfÆ9œ‡£¨æX}ß]E.1[ö$U¥ Ú ;Þ[¤ju×+“ƒÿQ2œó¼ ÅH§/%cJs˜ìNd”Ó1ÿØõëI¤NæAIA‰^?8”Öå• Ñ¡R)òôƒæ)yÇ7©$Ùþœ%=š…9­ï+½=ŠNpŦûW³J±øëš‘3-d?¼KÅxÃL¾"èn±Æ<2ëºÁÎz¦|ªñió‚¾åâtI:`ŠR…¹Íø½`ŠXžW!ÁDñàÅaÊ«Ë\j¨L›FteÆÆC‘ÁU¿ 0ÀwD556Äœ•¬¨Ep.E¯§œ‚’†s#˜-öèºIŽB¨Ñ, (K6:äaµ‘h;ÅÙ:èîTáY åðå"ßÑÎø³Ÿ¡¿åÆ.›4 §â_àrðñpøVux¥sMíμ”:ع£YÝú*N?ärxÕØ÷¢Ç¶tŽúH Ž^·&çú‡ë×¢Y–‹BœGïPOì]è3c” 6¾Ó¬“¯†„% ÷ÒÊÚ£tã2u9Ó* MFŠÍ]˜ˆÕšt´x\ú-'EúÌ}¡ª|v0q.Òö #¹*méiXSH±œ¢ ¸Pf:Ø/l—ùŠE“”àç\З´µ¨É é[VónåÞÞ`PƒÚ‰ñMΤvÒ7ø÷3HSˆ!öªç/¢}êPÜyãÀÈûrU” ñ;€øŠ¬¨mìž„`mñ¥õ²­@tOÈuSî-YöÏTb(^-›¬5ÚpœouˆÑ_ÄÚ/c(‹s9ªDæ üOïŽÜ$ÝEÈûކ.çg»› 0зm• 'Qz×âlu¶ü8µ+,ûáÁÈ7ñ{±[~nakp÷ÖÄ^úªùðǨ-¼Š´‹`Í}-¶¸*Ý™¥Udë6Û¢ÈSáôõBn3SeG ±€ºyå²^ nì ºK²€ W,Vì&·—O÷R$lR…]Ã욪´† 7‹0ó8U^÷ñèU}ÌÎŽL7^®Ð­/ñøÓyi‚ŒF¨‹|ÿ>sžrò4òc²‡Tþz“bÊüµv D.6ysðqy:;©ñuô W­Ùùó„h+TµÑÐr ¹ ¨Ì¹ Yú˜PŽÕàá–‰êHçY­u\—@°d]Ÿä´‘éÒ£—õC®(Ž‘§9Þ»•õ#O•ÐAtʧo—ã³1¢Û¿ûÆ Bb÷­ÌÞ•3V„ËXS)Á•D»O| }; õž'‚f;pySOׄªX™hp“ÉÒ&.=¦¿ÛàIyÐBí%u¤—î[/#C`wâŇ²·y«åJøÚ-Hä²4åÛ·»½Uýu!³UÞG6g!"—°ô5‰öÛaz&ŸòÍÀBu—6µÓ·;œËXãH²¡!eŸ ¤)©!BØÒgìZeϬ]i|ÐA’½buß gÕáUK•ÊŽ·º[µLÙ•ŠNþ´))`æ=n;|hª{.E—4kÈ›—¹¸Y§éÑt˨_‡#Û„uûH Dk G ¸íqa›¶|ž+5D—ç~ŧTàx+9Šì§j8#qµ xïöl&Ô­` çU7•þ±µB'˜šZøÐDõú6îÜB-ÆcÁ’׫.ÔdP—M•v—µQLi‹²r,s ¡Z$'Ëf¤\$ûûtòæÏöä¹ ,Ôcu+½ qGóLùœÕÙOª5þ_z?7’Ŭ²ÌH}Ò^x¿ñÙ£ zå¨ñ߮ťí“öç…ú·ý2ê!!Ž?=Êm ]Cǵ'ç*Æ|E(XzS-›(’"ÔMQuº”ó5Io㇣ÖËÇæ[Ú9M®Ó‘0@ÔÑ{ÁY&¦› ô—÷ÑeKL뤊Üan»Á\úãúQ’th9 ›{N뤖jf2ºŸì˜W¸î§ä­¨û¸‚GšP¤f3–Zή•ßf€™˜ëŸY)‰|a/ô¶løÚ=øÜýK@Z‹™²Óúíi¦4õ îwïcÄŸ²äêúH –4÷øÝãüÛ…¬§‰ìú«mİ`¬ã/ÊþÔ. q–34ó{äø›ïë1q]鈴mbë»–L}ÜŽÊÏ€÷V5/¯HºAµEWWT#%Í3î—ì’'ßpz·keœ%7>1 3±Å•¶ 2"0DiTèû^9‹ ¼“à¾ÜA³“U¹9›¢ÄªÿÈûá›xúA!…_¬>Z€Ïfý bçÒKÊœ„ÐåÃäB] i˜äròå`vŽD3<›xM7ˆ'šÍÎuשùUUêè9g©Ö‡Só±|­/l^\Ç-u•uÜV€´W³uÕ@öT+N3’àHµ^aØ·¤Šôö~ïÐ׊—Omdñ]E{]ˆ -¥We쉜dôm¶ïw7š«æË 0;åi‘ï, ½à× ½Jâ¹\ !#GîÜtñƒ+ײå–$±óYÜÈûÉ-"C —¶|UDÐð ´G•Ó=ÞººC¥$î.î¸Íĺµ·Û~€p2ËW]kǽrí‘ “<‹k t IGàî-yÆäGÛ¹{H£Ë‰FˆÝÑC‡¶uC¬¨ÚëË;IVŒÈNÀSïroz°gˆo¸[qtí@tÒrÒ‚@ëYÉîÎ÷•0+T–%0ÚBzí¾¢ ` &Ò 0áÙö]_Iuo[{#×]+˜g.GZ”Tï–Z?vV"ˆžˆTϲ[_„‘$Á”û£Õèì„5ëéá´ 8SQi-eÎMy R8dÙoÛðçn&’7ƒX¾÷EyØ”1/¸°°…üð+• Eø×]YÄø{ó«¸0•s&W/i»Õ·y:™x°JdÕå/•—Þñ âo¯‘dÍA<ÉRVl_¯5‰ÖY¯™¢9>WöCãg‰©mjó)¿®ùïB“JiáQº%ï -rÚ×ðÑeøÆ> þHŽéO Æpá™ ™”k=°";Ð@%þNr0óä¨>ó¥åø”RžºC ªÅÄZI“—Ak$ÉsÕægU Øç3K:Nn-ùéµ²Å]gåÞ{ã‘Í+§~R k)G-é’7¤ñÙvÞg®¥ kìãßʹ¸?;R'¬Þõû¹ÅÝ.ƒœÜ¤ãú9æ©Þ§ÝÜ_¾àÂÇ÷—ãõ³1Õ$IJvt‚ Sº ¾~²¼&¯°&üèÄ*ôFP6tŒú1ßôÖ wR(ìzí“õ"âOF*jëE„ó×j»µÕtL}š©QžK“œö¬ßdx¦nI^8ÇTÎ)Ïg£ˆŧ."ý‡leuË;u½W£¸$ÂÆóäxFÇúï¼é»å½&ÝI¯ŒK7—_½Z‘÷o#Ø ë¤ÔTÐl%1—#S DäÖ-iµù%#“ŸöŠ'Œ2ýΘ8ú”hK.Ï~ÜÒ‹bLÌÀo)[¿aE±ÏÊî‰ô{d ÛÙÿ˜“(ŸRZG•©î õÆXæºb†ýpËlÛÑìló32¯ª1DvqXž‰Bt-0‡Ã`@‚Ž«>½>}ÑÉ:¥G+ÉŠŸ:Œ1‹Ý“±þ⇠W6B® î~dl[ö`0ÕÌÚe8sâûþvÓÉÉ8WÇ"­HÌœ Ïøi]eq¡õt£»îü*æ3†A6‡e%X®VatE÷“™ŸN ñU9Ÿ“`mÖ†ÍÆã•Å>Š°Ð¦k¾Ó9“õ‡~Ö•¾M[§° ËoÇ„ºþLëľd*ßt¿~¨,.}Kú4UГs—h|0fÉt@àF‰!öaþM½)Ñ€ zQô£¢Dé3Cj¬QËcŒåXÈ,ûþý®*±ÕüË ‚öC^·i½Ýx˜»7í])ȲnÂ5µç$š×dÔwjmoìÇ54¦b6FÆEŒ©ª„¶ØGT×¶ãú®Û|¨í÷tWm–€Y Û-=8FôØŽ`± šd™©ØÉr°çÑxgIå[_Æ€fÖLhI«ðЇ^<Óh쇹MâΤJ%T„QÅ &_«^´¶ý>ÎxlÛ¿«Ð¼>Kê<©ÑÞøöh óîÓy èÛ}3¸‘.¸BƬÐeFTâ¾}JÍcCg|}ž}®A0ÌÁÏëÂf0Ù¬¥îײ)Ÿ¨_]Àár \xt“ ‰ª&äúŠËMٶؼ#‡Ÿ¥òÏÖ†Íx!«ßwŠóÁU5vj1?£ó¤oŸöz³ÍÞ_ë¡Ô·–­öÁU©<úšy÷ˆœƒÀ#T¶`8}‡HmG7ø ëÑùtÎùÎ@C>»Òá^Åÿ¸¡Å±ò‘Ài|¢'•™°ïînaÜûû ÔvXðû± ÜÏÌÔ NŸƒ1‰Ð2¸†³~1 ®äëlÒØEMãÛuÓª”è{5 Xc±¬Ž(AÇùî ſčâ–ȼßLñÌgvx…?˜aZÀˆñ9SðëÖ’pR\sSD—Ê-KǨª Ú²únµ¤x1!a¥·Å¶éŠŽðãñÇvt´:A`qx¶ ‘M°)º\ód0<ºÓî̆6QÑ9ÜÎÇ[çÙéò :¿‰àaÝ0 ¢‹Í7Ó)Ž‚]£_ÎRGÚ¯îór\Úˈ¡m+‚9 ŠªÓ/¶o”FPÈ ¸Y@Æh9Ðði |ˆ"£Åߥ¸Éý¸Bè{Ý:‘Þ]KaÆâÿº’¡z ÞÙ>-ðªISÓj÷Pœž z±_x‹%ÅrÚ­‚ô:—K÷Tû”~yùv].UwD¸d†d¥èþ¦ÊÀvQO\©ÏŸO/Ú‡ÂÈw &F^Ò»Jj@§èñgµSL8ç…BÝJ™µç›žÙ9}F-]Õ_oie¾"»¯7c~7Ïq|ÃN…@ž”¢ÔÒÎm¨­g;è‰W˜^=ÔTï ZúðYçÕõèÄŽ¿øÃö@&«3"a˜@ ^6^tÒæá/•‹¶¹æ"n=¸LUâ;ŒöóæÊ1¿U’Ò­Áh¥€_t1åú'’Cml·oÛ± Ÿ "¨øWy|•Åk(`§m¿¾A“JžßQÔ,ШeQÌ;Àì#¡R¯gt&‚CÀå­ ò¶w›Óó¥ê“™°ïê]›eÒ…¹ˆFêtÖ!|ƒJF[Ì?¾ _½ŽY‡ÕBi踱HC%í¦¦¶bÛ9Lül ¤áx/ÒÐÊy‰@IµCA#t¥Ôî‡"Ÿ x¨{\¿~p¯(â­VpQ ‹dí4rõÉKŠÍ©–Qq¾æË&í»@`Œ¢%‚7¦³Ù[â8’FÅé¯$ù$醢 “™ê'ôÛ&ë‹’Ý:B8h+Þ™)9ñ­3Úì¯52 d¦š’²JÛd<ŠóÛ£Ô{×[»5Ýc’Ã^tÌA‚&ûÇü•ò$þ…ç Ÿ­ Ÿ¢ Z½ §ö¥É·Tlp¬°¯“{‘;¾›\ÌVg¹$ »ò]J "Ú1dž N““2Í‘ ¸”u¿ÓÞÿ:ý~¤· ß”íåD±c×}h3ð˜›LåL Ýf¬-ÂN¿Ös×à£÷s) Ä`_Ý–]òœS¬^,yÙÆ…Ò’íöÏ9ž2U#úÚ«bo\ÍÒú}œüƒMïà´1.n–üý’ôbÔñ Z‹µ×ò€£ác3’I·2_ÖïøÛ åç$ìc=Œc£knõ(DQ-H[RX³½qÄÅΊR æŽD\Ñ‘Å?tal”§‘>‰¬t‡¨xSòw2Qu¡z÷õõÑJôÐÄ©§ñ˜íàÁÖNñ*4ýAN'¡‡ßý({˜Yþζõ[e]ž Pg8C<®8ò¡Z¼!C¥ŽÑyÍdÌ»i/ð±¨%“4¬iï ‡/ðíà{úúÅWd£Œ†&€lô¾º¦üùå5D;rÞ Ûse síäÚ+üeÀ7å36Ø®Œ Ðk :?fAAgòÉ1ÏLOZœñµÿôáë†7=Yêü~–…çµµEqÉdYŒ4æl/OCM½?T¿Z–#ÔÚX<ÅŠ(, %õ‘¸ù…‹-Ï»Û$É%Ú³Àúù€”ÖYì»AÄ’&AºÑñ¤09Ç©.¨Z¹*ÌIþž‰HéÙ(&È¥L‡DåðÍò Û³ÉaM±úžlh[QRÁùë(oÇk¾ovúÐï}¿Vî=Ò0?k$Ql¤“½²¶f˜å\v€iI´ßÕxØÚ{Î)£Ö¶&'œZÙÂ`Ôx¡@x“¾ ùZ³tÒ®’ô¦^à‡QéÕÖ'j¡îò”‹ûo{Ä"ÖgWRç˜:Iª¡TCEú6€fR@ÛØ¾"gt»ÞƒÂ´sÏÄSH7{d‰‹ª¯Õ†/£§U¬"³˜ û—·Ö üÏ~9mé7rƒ_Áç,}¡3Lˆ( kïûÃçé¹_Æp‘€×PZ#ÛN1O.Æ!sÏù¨*]¼MKîép¨·lP‹ÇñpL]l8ájaz|,J;L‰Öª•ð°Zó!¥æBÏX²ƒÐ‡ UdM€®âSïä]TÌ`U$ - —‡Sr¬ôA®[Ù±ó±÷Kw>Bç½Û—É šÔn*b°»Žb”»üim*^í6Ù“Q¢B:䧤¨n¬À.Ṃ2;‚.{ûK®b‹^*6qPÁ»| o'‘$£zzÜEšçÉ„X’Á†þ~ÍCª`»îažFå“p2)X‰€Þ½D LÙbž0ã·$6QFyÑpÖ\Lí¡Ì8x~bL”¯¢+P°*0'˜>Û1œáåÐÆN:Û‹D'02µåN?¦ÝëÉ$ à“–J¾‹úà;ňիþš•m°!,mf­`ÐyCqÞˆr=ùþØî{?–ëQ3IhÑŒ»™l QÇ^(MßÛÖy¢£¢ÅTušóÇ3ã˜c>Wr¡1¥ñ°ŽE‚]º{ÕêLß2Ìš>®ðvj…GƒvRC[£µûßáºï.&'L{*V¾Ëí¬‡ñ¨J¥ü(ÎGLt †¸ÇòèËiµ¡töàÆ.ú­jeëM &ž÷PT¬¨‡lšóD~öÅêp‡RÆ[ºË\øÖóç½Xx£WdÉ‘sŠæ¬_2é ‘ ³É-X¦÷?ÔžÁ¼ŠÀаlrûyÒÆ{ÿlœªh/fôÏÆÏC«¿â %£e¹ú¢Ø+kó9n´0s1rBW;vh³Á¼Àä‹]~~±ì=?\Üê Óh‘^¢k¶¢Î2v!½Ç2Èø³åk¾Ñ1 ö.¬™•ßK)úB3ÎGx]­•+pW/“»Äõ›!¨;ýFænÖÂß ¸x,W„%Ù§ð-?æÒr” —½9«Ü•̈Ñüè+”¶Ôå rqŠòPÞÆ›@.Àig±~Ê–lÁ +mð½#ê^ÜIÉ‹YÀÏÜŸ]èµ’µý‹?´ÒЬó|‰ãÛSEÈæÖ,½åÀâÚÖœíÌWÐDè+þÞ3¿4Ë­³u%ƒÒLoùÁ•6ÃçNK¾0; œ²Ã•Z+0…>,²#‰§~6!¡‰§šB[¯p±rÇ{„RÕÂÐü²æõLH˜u³ä a —™ÚÔÒÚîˆed¿êAó*,°)tÞ§Ùð1}ƒìÜŸòX’Ÿç¨Œç}w‡öÙ·í~Û\Z…å3úŸ*‚É­L¶8–ýªZߎÑÒlD" ôÂßÎà‘“.#Œ¢Ô>#Ut¾¹/†~ö^iX~w?y!¢íØ7ª©&³÷z©ÅÍr9©ÞvÕö~2JÞ¾VÊ{/m}ûõÇø|rÀ!7¥áCcly’ˆ¯ûJú%¾_~ÄäYl»¢U|Ì]ÔךŸìfÎÓ«¶©ó¸}ã‘-ÀCóåו*d*øòÂ~xÄ÷¨¡ÐNz¼¤LÁT?+Ž=!/哈"ªùeq®u·“ú K»3 ¡»öÇgdÈ«„3–áÝißÕ9ISú¦ëK\~¸_ÿªTZéðWã¥7|'ÌÄŒÄòù¢¦¡”&7Øû P¢Å Xèð$vŽâ?j½¨«®Þ/·`ÔyŽ×b»ºè'¢mmŸŽ2j2Œ1¿ê;NÏј¶¬0¦™¾ÝŒ›·<Ãn¾~_í;ƒÞ«HûjJÁ:K˜ñÑI8s†¢¦}-Ñ×ë­Î޲ÃèdŠc4v"ž¹#µöÓÛ­™ ÜE )«Õ–ñò (’*›BoãGV§s–oP¥û{œ²×׉5·¯ÎÌ~ÖxÆKR÷Ñ*ïhû¨mâÊ(%HHÈïÒ:êæòµÛ¾n¸†~£Ü‹\å¿yË7ª¸;lñ–±ÙCܦ\¬æfþ}ÿƽÈFÈ[H:†[šèY…XÜøM FdJ)|ÓÅgGów°#ƒ«ó( ·EŸàÀ÷DÏ5´N×wÝÑ'v"Ø+ó8dÐZï¼*k@ïv :@Ä+¼-RS^½Íºµ ÿ§sÇ!Ë•O¿‰-°œÑ'dË7Zl¼>+¸Øu‰Sf¼1Ú”±S–úæa[¶Q©jµz¡œ×¼ Ú¿èÌ.–{BÈ> ž¡xÂP5QÛ½›:‰@pX!`ï­¶¡Í#­=»Aˆàì[?£¸”,`FâJ[ÿlµõ1ï3Ô[s Kñ2i‘üƾ,ÉTdb‘7-Ïw¯£:ñÉŒV$ÒGó¢“þŒý猯έy˘»¥q_TF™nŸ'¬47ÙâZ ÒŸ’ìcÑ<î Íj_h5Qã—%}·²1·Èº7V$U!šºAVbÄœGÀûG€Ú$.9kÄàWÜ#›TªÇ½ US%uÑ’è°;üýXúLØS«¬;yf²Ç_ Lrà„û¦?;§Î>nB5é<îýÜÊd-×YdÃi’„îü=ʶÈO8»à†è™' ÚÞA9pÄÕSB¸œ 1+ý˜‰õ#Ö¸ÀųóœoW_Šþ‚«º¹Ó )$Ö¶TË”ˆònTŒÁÞ°Ëz“|/fGÏe¾¬z„î*à…© €>ÝI£Ç ýœJJ„fl¼NUؾ.Á¾‡¡¬ Áæ{E·ê€Lµc€m}¯™‘s @ô\ru™a,ŽMzO'Y@Ìø¡™Wicn%A¡ÌLlJ:ÕvLT’`WÁ+cÀ‘‘¹OU?ù‡Kï5c1Ç5†TòK8yØI±‘-an.íP<«¾öUv†Fâ@F tÂ[>oúðÄlLž ÙBˆøS8Mf?òŸ?UñG›\ˆöRE¸šƒ?Œ³””^k²~ÚerA‡Û³Ìâ"»–úPÏÈ ýpW¯Â\ø¾I–'†=Þ –šçfæ¶4|çõYe—!2þ}T¨~S¿CJ¹[ˆô„•ܨÁ×nß²ð¨ûþüüÅWÁy¿DäøÑïilJ Qq”¼tFlüDºškT)½1k½…â<Ÿ§DkÚ½’Šl?` m¹ÒODMј†‰å&sܤ Q%_ç%É› *u>¥ƒqŽ×BóщZF„Òµïx{Í!+õñ^ŒÎ#DQÎFõN¸“J÷3UW³B$AЖèÚŸ±Ë ‚{ªa:·Ä ÷Ô´[b#õŸwxMK¨ñ/–›û׆•ɼQEŽ0lk„ ôÎý^L< ¦õ¢+¿l‚ª¾Þ´ ›Ë|¾;ÑYWö@¼rU*Â9½‰ÙKêì‰g?‹cØzÈêêæmç[=e#æ®yýh\87”LX>ŒÁPD ;ó±#O}…¥Bî{wÔ€Bmí½ó¦·ŠxéšPçzUó½Õ`R+¢ÛÛ«G»%’úz’¾:Åܦ°û'g´Öl,RöA…$_~aÊ×U¥Õfâ¹ÇÀ‹Ë£“È«ðù¦Û“ç4}¶*\d*ÍÅÍ»‰¥Æ™ž®_Ù@fÌM\2;äʳíLªñòŠ#΄x*ögŠ.œºÅ˜¢+‡v±J¥TµãâÇD>=ŠÝÀô¯·Èù9P×~Ë[Jî/Û*E$z nkMÚ!DóXµ§™ÖúY£~¼€¼î¢ÜÛÝ]Lˆšš3 îï) Ê88MuV{ä³ ~¨x®Ý7¬ô6r:Ek(½U—÷eèq!ÌñËÂÙq¼ž0ìQOPGÎÄÏ7®ëŽxêœZÖ/2YZ.Ïò( «÷äpýbù°ú™¾Ðõ´kÍ|²B1•Odæëüá}Õ¢â5g꤆æïzüÕ¿w [‡wJÜ8G“–ÆÊ}Eeb$T¶ú¯>Ê!4= A ¯6ä6,ªIdÔÒh-O#—Ãsˆç1s Ý+~ÇøÔÀBv5W ™‚kEq&Ÿ½D¿Æ+J(›ìã#“@Ú“‡¶Ñ6_Ë´E›x7§Ú‹Páú¡ñµÙÉjyb‰mn&Ë[ˆ51$Çsrð{Š–5®ƒÙ̶°¯·:ãêˆQEä6Ö$÷#±M%g¶+K,çèʤD›L‡ &× Û‘b[1†[™3/`§3fw¶õ¼Ágw´¨—S-D†Þý~·Fè|¼³áôÙÓØ&ŠnsžÊO´üE¡qSÎÇV~Ã#ÉȆg?B@X–õ!}Õ…DøÝè½-NNÑ}z[ugE¨’%QAò#̺ƒÜTT}E¼Ž˜CZ;™×0;7<=ï óñܬo½Ð»š›Æ– œVÛ¼<Üå ç½/^ò¹q„ž¿Ö¤}#~|¢¯Kô×sÞ <6Ö{ÿÌÒŠÀ 43T|%ª+žúШ>i8®³q÷“Ÿ €‹ÎJ‚Jî:ûÖbK'[œ9–!Z"_Ã<8?^sè&ȷß’‰Œ[KwĈ"‰¯›¡—¢U½¨üϯ ì!ù3µi¡émíÒ5¯´˜«žO;ÃÆ¦<ÙÉD°â"I2–°_îÓ/4®©šåE6û`²×oúq à ýŽ"­þJÇ´Z-x§_>¼™zòæ¢-šbÔ­ëlzœùf*ôÒãn@£ù•k4¡ÈÈü%g¯Š1ž( ¢Ÿ×¥¯À¦¼ÖôùDœh}_wÖáÏ^xmä¶Ã®{®)“ÇíéÊǪ̃^ëçj×;YYLžV¶‚¥Ô) Rj†ù¡\´_äÎ0ËHD`åÎ\ùånR6F-4òieYc]V‡j¿aMTc¤äQÌöŽQV"ܘ¢¦s8;éž™ãÓMàKužëþà®pÞé3µ.‹ì2Rƒ|ÄTl-ZþŸîñ÷D™ÉÅþmææ°6p7X Ê=“2ÑÏ|ÊÃþCÕ¡BÓ™Mòw,8|nHïÃd¹ËBy 4ggƒÁ¦˜ÄàãS÷ª‰™;]©ý*¸Hñ0)ÿx ÆÜ'ªL“XE ˆ"/4ìk7ñ¾bÃþFUÍŸBa ©Ž4»Tư=üZ©;šNe k6È s´¯H1ÔEàì »Œ9ª£˜Ó‹M”è­Å+¼ùL¹ îˆM(Aûdó %'Í—¼/ËTã|h0*4ºÖ<ß™#”æHIéUÈ‚«R$,ôãþüìOUd”+¯Éô$›Tæ9’¨ñD›ŸˆÂ{Y÷Ád UHÂþù‚h—p<ìúš ‚+ÜÙ(vÒ(ö¤îÑ ×䃣õZl^ 醹þ•½@ÿÌš´ŠæX“@xˆÕ+ö9{®\á]Ç‘éT¤Äu¦—ý º+ë`N;è ŒSZe·/£xmÊ0UB€ÒÆ(à°H_½›‰f4ÿ‰s˜-5òv“ïæôÐì]a-V=Bèý0FiP*ОPí0în?ªL²b t&£¹rÒz"Æ‹¼r§r›à´‚ˆHA–1s#²å½†ZVÀBpȦ4z#öÑ-•Á¶Ì¦ÖCC#ù½1ÔÖc¢½h"‹X‰µlßÔñæšH𙦺nûÃç[ˆ[Ð㦠ãˆÊ/'x ’HQ¸ÜNcýžö¤ž1gsã ­¬Õ¿{_ÔMyD”3+iˆ£&È"¬L;`˜ë!…)“dvÁjæéй©—oT7œl`‘_[m0»¡ÕÿÈ#$5S©#…;kq`³F•,Üð°ç3Ž'ýÉËkœè„D ååÐt¶ëÖ äv«2AI¢ÆÎ]-!í%jþL¿Ñ †¾ÀÂ=¾,"SönIËÔÔë1h’¥˜WEã®X<—8h%îþú < ž‹ÏºÚt:1 ÚsJ¸LÓã|½1·NFªÕ§úcù„ú²T·ÛÈÛÊåÞ’;n®åøl{nV%„kù?…€hÐZÏ[ˆÊLw÷ÚWîdøeox·ªz9¯zù qB×16—z¹. Zz'ÈÄÜ™µ«&J‚ä{2÷aâÏò¸×Y0;$ø@ª6<Œ¶3Cºùö‡#»Ÿ´END2†ü]ZÁ‘d8¨ÊÖà“&PºßñçktÎYÀGâšîÀ¿ü5©Ø%{‚v¯©d­]&5)xoœú2üô7¬E„­ Z¨H4±gtÚ¦L΂åo»ðLV½§:ðYk3˲-œîcó oXÊNv¶ÿ" WóÂÌ¥æH¢fÏ«šr÷vòb³Ãk)LÆá7•ñˆâú^ÃåˆÍúßÐêÒ¬|m´XHÁ—à"¢çD²FêÍrœ¾Dì•·(ÆUÉZò,X\WýVkñŠ38ê?-¸ÑÇ î̉.ï nßQF¯è†öÁ¢gc%ýƒÂfÊ«•CPHXW0…0áRaZÞˆ{¼x{ŒÛ„Å-ÔôP,+áßàÇhXVp,ž®ÖÎâ ?2,éi® _ŠÒ¤ ½†Áå*Åã ­Ítëx§Dß0lb9\abL›7¬ê÷ï”û+pXÁ9œì(wÏXבwT+Wäp8·“öµM~EÔTMœ‹+ *[`{ÞÎt7V!Yïå ŽòI”¦¤’vÌ|^¼hY¼Æ~”îùÞ» KuÞ‡R`˲X|¡­ìÑêßM¦ãBi‰åÛP«#Ç:3­/VX¢þIÖ´‘R¨ÛœÒ0²©jû;ð~§iÊsƒOÚ¥ÛŸc<—%ðñé…KBËùhÉwïÞñ¸Ô‘9r îVx_« ·âµø®|¸Š,”™ï`¨:·›ŠXËÚÆÆÏ˜É/s¢÷hð9â'˜’œøLˆò'% ¤re–¤âWÏÊ{–œví§¦­ ¸óü`¨u ?=ÔL‚"b‡¯¥|eÌèË}iñŠÌÈX<®È7C Ñj;§ŠyâŠPç0׿lmqŠåˆÉ)T8Á¡/\Ê‹¤ù‰!ÿ·¨ä‚Ë*×ORå Ã=毶H ”!nžzUñ[w"8 å³; „Ë€ÒyüG®5!GC%Y ¾.tî4WÏA8éJv¬0ÍÈ„ž ªy |ôƒÖÿN~Lÿ˜ká F[’4‡È›c-sŒ*™´W—!®ü,Ópµˆx{ 鿥ãëfŒ»`FJÅß®DMäov—Âm6;‚|ÝÆ\NÆ“jvâq‹+@vœKêóÕ7\ã6ÕRá:NÙæÜ-¯b#0K~XµxlB ʉ¬úœÒS¼Ë¡ öÇuØ16%šÒV‡i˜,&°•ÆÅ«À)rÍ—_ï(Cÿ`ø*Ƭ½˜ÅvñY³ÐQ…Zÿº,ÒãMg'˜˜@³iµáÎ='~k×ë~§_jBJ¦ËêŒxp{è­—dØN}PUÉ’ ‹(AËÅÉ‘1´6ãÆryðVëuçÐsNmvéyÜVß%ô«/<Ãk÷³W3<.ñ%@¶ãgQ­ykžë¯oçÜÙìq£(È›„´…ùqãeaxz?†·÷÷%‚UXílž2ÊÞÔ¬P“M¤ºÀ:)zÿr>s9óß}) Ò ˜RŸ'1¤=øR*;&äAÏ\¹Wk±_sìÈóÔ!6OП# kEø|P”X.eÑEGq`w0ÚrZŠÏ;ÛËïDlÃÄk¬oœ¢×¸ð@¡ea¬¦ÞÈuƒÔdSˆ ­uÄÙ7I"¦:ÀÏF¦Õ:NÅñm¬ÛK‘MÅi ¿ ï}YCŒBûÿË 7mذän™4îUÍc„ ÷F}”¾÷« Q’ÓShWH=»XFÆXc×f[üÈ)0c¹q òª05ºƒv(Si_0#»nwnÛrˆKÀ–žƒ³/è1M&š.¬\X¥MÊJHA)˜ÉÕ·Vº¬ HÅØc§õ V‹QN¨¢'÷'bg¶95ü3yÁ ¥jt¿È|eh )7RŒw¸¯›ìnñxwx‚g@4ëÀ_ÚÜ®†×8± (dI.“œ~Çä¨gTñò2sÃÖŸÛ«Ö5l¡&'ÒËü@ƒ;ˆîR .cÔýØG2Ç~颴º¥á‹g1âÌ)Ù КäaRíA0Ⱥ}”çÃÓ• s¾ŸÖ8ñHÑ‹-»JùTI.|·$â^HîÕé_} Kƒ¡ëwXaÉA¾f §‰2ÅL^†%›Ü¤§½°t\BÍ0a #Лo¸Zo|Æ âH¡T½Ý }6HŠÇ$R>[LVa`Îß*/¡ëá,NÖÍkës-WÿèH©iÉ‹’ mªI#ïxâ|¦DB®QË‚N 踜“>zô”nõ`×/»)dtTOŒË¸]ÑX¿~ö(W¥ tÁú×…s ^Ø»õÿÜ5€šMT‰ºæaR¡Z….zíR ®í^WˆÇ7l°™áŽÑŠôÁ¥Ñ’býàZxB³VÌ¿ôGûHˆŽúõ@£–ÒbÛíü\–WAÖ2´-þÙ\4èEâÊ‹±þ¤nuUª”°Ïéöµñ†pñ !ÌC~ŸͰ6=Å7ê¢Öµ1}:Ðj¹í|ŠXñ¡øõÐlëÇö°Ÿÿ^®œU鬕ì7g8yuâ"Y¤‹!±«I¬foN@ÔÛwb«W.ê›’gTzÍ4“˜] endstream endobj 191 0 obj << /Type /FontDescriptor /FontName /HSHJSS+CMTT10 /Flags 4 /FontBBox [-4 -233 537 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/C/D/E/F/H/I/L/M/N/O/P/R/S/T/U/V/W/Y/a/ampersand/asciicircum/asciitilde/asterisk/b/bar/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/f/five/four/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/numbersign/o/one/p/parenleft/parenright/percent/period/plus/q/quotedbl/r/s/seven/six/slash/t/three/two/u/v/w/x/y/z/zero) /FontFile 190 0 R >> endobj 68 0 obj << /Type /Font /Subtype /Type1 /BaseFont /YHFNHR+CMBX10 /FontDescriptor 165 0 R /FirstChar 73 /LastChar 121 /Widths 149 0 R >> endobj 7 0 obj << /Type /Font /Subtype /Type1 /BaseFont /WMESOL+CMBX12 /FontDescriptor 167 0 R /FirstChar 12 /LastChar 119 /Widths 161 0 R >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /BaseFont /OTSXBF+CMMI10 /FontDescriptor 169 0 R /FirstChar 12 /LastChar 120 /Widths 159 0 R >> endobj 42 0 obj << /Type /Font /Subtype /Type1 /BaseFont /WTIHHF+CMMI7 /FontDescriptor 171 0 R /FirstChar 97 /LastChar 115 /Widths 150 0 R >> endobj 8 0 obj << /Type /Font /Subtype /Type1 /BaseFont /PWFWYR+CMR10 /FontDescriptor 173 0 R /FirstChar 11 /LastChar 126 /Widths 160 0 R >> endobj 6 0 obj << /Type /Font /Subtype /Type1 /BaseFont /NHJSYP+CMR12 /FontDescriptor 175 0 R /FirstChar 44 /LastChar 122 /Widths 162 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /BaseFont /DOQUVF+CMR17 /FontDescriptor 177 0 R /FirstChar 65 /LastChar 118 /Widths 163 0 R >> endobj 130 0 obj << /Type /Font /Subtype /Type1 /BaseFont /WIRDCL+CMR6 /FontDescriptor 179 0 R /FirstChar 49 /LastChar 49 /Widths 147 0 R >> endobj 16 0 obj << /Type /Font /Subtype /Type1 /BaseFont /ZKZGQL+CMR7 /FontDescriptor 181 0 R /FirstChar 49 /LastChar 56 /Widths 156 0 R >> endobj 131 0 obj << /Type /Font /Subtype /Type1 /BaseFont /KISTMD+CMR8 /FontDescriptor 183 0 R /FirstChar 11 /LastChar 121 /Widths 146 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /BaseFont /CNOMQG+CMSY10 /FontDescriptor 185 0 R /FirstChar 0 /LastChar 106 /Widths 157 0 R >> endobj 81 0 obj << /Type /Font /Subtype /Type1 /BaseFont /SDVCAT+CMSY7 /FontDescriptor 187 0 R /FirstChar 3 /LastChar 3 /Widths 148 0 R >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /BaseFont /TRREHM+CMTI10 /FontDescriptor 189 0 R /FirstChar 46 /LastChar 121 /Widths 158 0 R >> endobj 17 0 obj << /Type /Font /Subtype /Type1 /BaseFont /HSHJSS+CMTT10 /FontDescriptor 191 0 R /FirstChar 34 /LastChar 126 /Widths 155 0 R >> endobj 12 0 obj << /Type /Pages /Count 6 /Parent 192 0 R /Kids [3 0 R 14 0 R 25 0 R 29 0 R 37 0 R 40 0 R] >> endobj 47 0 obj << /Type /Pages /Count 6 /Parent 192 0 R /Kids [45 0 R 50 0 R 58 0 R 66 0 R 71 0 R 79 0 R] >> endobj 85 0 obj << /Type /Pages /Count 6 /Parent 192 0 R /Kids [83 0 R 88 0 R 91 0 R 100 0 R 103 0 R 112 0 R] >> endobj 117 0 obj << /Type /Pages /Count 6 /Parent 192 0 R /Kids [115 0 R 124 0 R 128 0 R 133 0 R 141 0 R 144 0 R] >> endobj 192 0 obj << /Type /Pages /Count 24 /Kids [12 0 R 47 0 R 85 0 R 117 0 R] >> endobj 193 0 obj << /Type /Catalog /Pages 192 0 R >> endobj 194 0 obj << /Producer (pdfTeX-1.40.10) /Creator (TeX) /CreationDate (D:20140122074923-06'00') /ModDate (D:20140122074923-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.10-2.2 (TeX Live 2009/Debian) kpathsea version 5.0.0) >> endobj xref 0 195 0000000000 65535 f 0000005693 00000 n 0000003327 00000 n 0000003222 00000 n 0000000015 00000 n 0000448829 00000 n 0000448688 00000 n 0000448121 00000 n 0000448547 00000 n 0000448263 00000 n 0000449674 00000 n 0000449393 00000 n 0000449960 00000 n 0000021287 00000 n 0000005585 00000 n 0000003462 00000 n 0000449111 00000 n 0000449817 00000 n 0000018072 00000 n 0000018215 00000 n 0000018313 00000 n 0000018348 00000 n 0000018590 00000 n 0000025284 00000 n 0000024100 00000 n 0000023992 00000 n 0000021415 00000 n 0000273498 00000 n 0000047860 00000 n 0000025176 00000 n 0000024203 00000 n 0000044645 00000 n 0000044788 00000 n 0000044886 00000 n 0000044921 00000 n 0000045163 00000 n 0000050600 00000 n 0000050492 00000 n 0000047979 00000 n 0000054213 00000 n 0000054105 00000 n 0000050668 00000 n 0000448405 00000 n 0000058238 00000 n 0000057099 00000 n 0000056991 00000 n 0000054351 00000 n 0000450069 00000 n 0000064708 00000 n 0000062589 00000 n 0000058130 00000 n 0000057202 00000 n 0000059374 00000 n 0000059517 00000 n 0000059615 00000 n 0000059650 00000 n 0000059892 00000 n 0000103288 00000 n 0000064600 00000 n 0000062696 00000 n 0000100073 00000 n 0000100216 00000 n 0000100314 00000 n 0000100349 00000 n 0000100591 00000 n 0000106077 00000 n 0000105969 00000 n 0000103407 00000 n 0000447978 00000 n 0000108353 00000 n 0000112898 00000 n 0000108245 00000 n 0000106228 00000 n 0000109683 00000 n 0000109826 00000 n 0000109924 00000 n 0000109959 00000 n 0000110201 00000 n 0000115483 00000 n 0000115375 00000 n 0000113005 00000 n 0000449535 00000 n 0000118395 00000 n 0000118287 00000 n 0000115634 00000 n 0000450179 00000 n 0000123405 00000 n 0000121701 00000 n 0000121593 00000 n 0000118498 00000 n 0000140269 00000 n 0000123297 00000 n 0000121793 00000 n 0000137054 00000 n 0000137197 00000 n 0000137295 00000 n 0000137330 00000 n 0000137572 00000 n 0000144455 00000 n 0000143768 00000 n 0000143658 00000 n 0000140376 00000 n 0000171883 00000 n 0000144344 00000 n 0000143871 00000 n 0000168661 00000 n 0000168805 00000 n 0000168905 00000 n 0000168942 00000 n 0000169185 00000 n 0000175875 00000 n 0000174982 00000 n 0000174871 00000 n 0000171991 00000 n 0000223771 00000 n 0000175763 00000 n 0000175098 00000 n 0000450292 00000 n 0000220549 00000 n 0000220693 00000 n 0000220793 00000 n 0000220830 00000 n 0000221073 00000 n 0000226464 00000 n 0000226352 00000 n 0000223880 00000 n 0000229805 00000 n 0000229167 00000 n 0000229055 00000 n 0000226557 00000 n 0000448970 00000 n 0000449251 00000 n 0000266011 00000 n 0000229693 00000 n 0000229285 00000 n 0000262789 00000 n 0000262933 00000 n 0000263033 00000 n 0000263070 00000 n 0000263313 00000 n 0000269203 00000 n 0000269091 00000 n 0000266108 00000 n 0000272051 00000 n 0000271939 00000 n 0000269318 00000 n 0000272143 00000 n 0000272828 00000 n 0000272853 00000 n 0000272878 00000 n 0000273181 00000 n 0000273313 00000 n 0000273746 00000 n 0000273772 00000 n 0000273833 00000 n 0000273869 00000 n 0000274260 00000 n 0000274327 00000 n 0000274945 00000 n 0000275402 00000 n 0000276025 00000 n 0000276665 00000 n 0000277290 00000 n 0000277726 00000 n 0000278065 00000 n 0000290583 00000 n 0000290842 00000 n 0000303501 00000 n 0000303802 00000 n 0000313978 00000 n 0000314243 00000 n 0000321873 00000 n 0000322097 00000 n 0000347298 00000 n 0000347866 00000 n 0000359065 00000 n 0000359333 00000 n 0000368603 00000 n 0000368847 00000 n 0000375848 00000 n 0000376068 00000 n 0000383261 00000 n 0000383487 00000 n 0000395295 00000 n 0000395575 00000 n 0000403209 00000 n 0000403477 00000 n 0000410612 00000 n 0000410844 00000 n 0000426302 00000 n 0000426603 00000 n 0000447418 00000 n 0000450409 00000 n 0000450492 00000 n 0000450545 00000 n trailer << /Size 195 /Root 193 0 R /Info 194 0 R /ID [<95AFD9D43D552F02F1725492E5C410CE> <95AFD9D43D552F02F1725492E5C410CE>] >> startxref 450812 %%EOF survival/inst/doc/validate.pdf0000644000176000001440000067153212267746072016216 0ustar ripleyusers%PDF-1.4 %ÐÔÅØ 3 0 obj << /Length 1857 /Filter /FlateDecode >> stream xÚÍYmoÛ6þž_¡ V³|ÙPèÐV C}i;@µ•X«l¥’¼¤ûõ»#)[regI3¤_¢y<ÞŸ{xr^ÌÏž¾â&ã– ®U6¿È“Ôq›f©"›/³wäsëH^•˼+ëÍùL2A.ê& ݪ@“ŸësaÈM}SŸÏàmYTçæ¿À.6ãœz­î¢eÊe I%O›ÌÏ EÓ|Â’7Ÿ†ÌWE³)ò-šÉ¨g3.©W6®z“ŸƒòüSǯÐN½Ý$gq™àÔ•Í„¢Bû¸ð·Eõã,ù¨3Ψgž£°§’Á2騑..{ÝÅøÊ6>·mq±­R&Ð&É |räoüSÄ™<>Ú¢‹õEZQ´Éx›”®!àb”ZAš¶ãd{ÎIÕµÇvù)‡—"Ð5NÕÍ'ÌM± ‰˜qC½´!…Z¥LÔÛÏŠ‘rƒO‡Öåeõ^¬F!·Ý*ÎuuÒ­ªíºÜä]߃«¨°¨×WÛ.ä¾Sùf™tê¨ÐY§©4ÃKn,ò6EŒ¡Ûlìp[_t[0É2’\5õe“¯[À–qÇSfA‚ô·QŠAU¹¹Æ1±7ôy[vIlËõUU@&¤eä#æ G2÷NC`u3åó'àæYJ9+á@ÛøÒ—y³¤‰ª°®L¨0%¡*ަ8äŠ ã‰‚sJa‚ħÐÌú¥NÅö]P]h£”Öƒ„(^¸¡k)‹ëo¦ö‘‰^£·›Œ²§<íØy·†$A¾º8´HÉÓ2RTq‚y׌\—¾ ‡¸ÑTƒ˜6ÜL¹ä©º×x†uÁˆIanÚ¿ŠE‡ QN²)b¥#€Íø1(á©7Eº²XFi a­úÁ5bFø‘â:I!œ å_­Œ¥²ŸZ›¶n/œ\ZÜÛ©7Õ—)Ì…Ô'ûOÒià8Ì ÍÄ¡êK”ÒÂ~÷KÌŽµä=Ólž£HÿÌÓ³]çU5êHÐR‰Ñt>Y%‰Á`;.¢¯ŠCv%ZƱ*Q‹“&öAá¢Þ6q²HKÁeÀá×iTsÏ)W;ˆ4Ó 2^@¤8#ÅͦcÊd¨Õþ{ÆÕ”QC­2{%td@îÃjÊöS”Q.êfoÊ@žP«8U*|â‹ÐE!iáæÓöhaI¥8YéžZæ†eÅáH¼ð„{\’ücUÄ…’ j´Ëöóç“4¢©Õ»²nWáȯRÚ¥+„*m¨4v(õæ2Š ÕÚ|“ô6ým¨4åRÔøfÑ‚B¢®#qG[o€€¬£œ'¥"_à’U½ çX—ÑÌ€Ö÷MR²ƒDö´N{b×=\M’‡« H¾\çxKavD¨R.bB}Y•ŸB¥T媎þ„¿Ë¨°Â2EÉÆCõø·³ç\(ìC oý5‡‘ý„œªGØÖô&Ê´E7ð* ØÝ~¦ÁžaH )/¨¨d_ã”6Á_ö𗼟 ìY=µ8}ñãô*_ÆÄ‘KúÓÆ¡Å4‡[o×I'9|iãdêVÎ^ÎÏ>Ÿ!~ù™–:€˜†h‚ë³wX¶„I”Jï²ë ºFuªìíÙïg/Bs>:j {¨LŸ Ũq¼ça¦ªxƆ´u3ÍABêMÒôÌjÇÝ”lÇGLöU¤r”Ad÷Ì¿z Us…厅–E¤îýÏT÷”ÁÅ>ϘL\f©·,¶}p×|8çmÆ÷/t4K™ endstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 612 792] /Parent 11 0 R >> endobj 1 0 obj << /Font << /F16 4 0 R /F17 5 0 R /F15 6 0 R /F27 7 0 R /F28 8 0 R /F30 9 0 R /F18 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 14 0 obj << /Length 2749 /Filter /FlateDecode >> stream xÚí[[o#·~÷¯ÐãÙá’<¼‚è 6;/MS`V[JmÉ‘FuQÿù^f43æŒ.Ö¢n±~ð\D’ßwxn¤¾»¹zÿÉ £ÄRË&7·Æ%ÑÖL”d„K3¹™O~ͪÅz[NsÈžkw#²ùrÞ¬Ö™þvóÃûÜt$¥Õ$ç”å|üv»ä‚Æ&4´ù&ʲY†aê&·©î$RÔ-þF™Hɱ„i¶oDij<á¶nu¿¾›æL`kI!Õ1¢M3¶MJ¢&j?ú¯¦9ç<ÈRcDÀÕuë»´<i#/Xgƒ€Éc;¯¤Z‚ês.{\ê \öt¸ºB:úESB:Ý\,øßKËÓa%9ŸТQ0“œ)"ÁÔV&· 2>° -åÿ¦pæ'’ã•>¨™jK“ÎÒL3¬™_»&Șaè,r( ÇOýg¿$ç`ˆêy†YÅUË0A¸5œ§GíV\ÞnÊNXí½Y1"¬u2M ¨«?ß\ýqåx¡6aÖ*'ç &³‡«_£“9~öÄ@_üä[>8GI™³÷“ë«¿\}ç¼wÏ^DYš&áDnX7M¤´nZé7HI´DKÓÅí«„À kÿ"Ì8Qã‚_†‰FØYTÀ›§‚~V*@"0J¸°·B…—ë +4Ú§ÙlZ[U ·C ðÆeÌHL׬m›†CÛidßÒ;­¦Ñ s.'è5”èC’à2©Ñ”ï›uîY2å‰?Õ¿¨„}EÚ- —Òe$rL—” ÖÊ®.õp¯… Ôb%kàÒ>Ip²7gŽÌA·‹¹Ò~Òp»è`1ÖÑH1´\o_WrF9‘hÎr0„Ù8ï©ˆ¦æ_¬ ×0 óê(=·ÄXv …£ÊK8 öJZ £€ã;σöÂeˆà¶ n-êcíq¨„h¾ÃþŒkBù…pi„½—ãmhÛºhŸ/æ-©êš—–8A4 ³%Zì×$0œØ$ok_$Oª*3ü‚ª ¸Œ˜d—¡¤v%ð¦T„Er)\ja¯Àåm«ê犴!Òºt “1Æ»±CbÌþ„:×DW) 'F™1N§Ǹ]¡9QÒ|6·›à4–ãÀ/µáèÆ»ୈۥɠÛA–:XŠKZrtûhˆ.e#ërPŽD/¡T (ûhX\¶-(¿NÖuŠ“š»—hæÍÂשMV̪]qïîu¶]ßïªåzžfÓœeëÍ”e›ÒÝnqÔ:[¯æÛðÕjHÑ´«†¥_ÒJ  UÔ:Ó}u©+ §$TKÃ1éÊVîBß…‘>-–³)7Ù"<ÞnÖaŽU ûb¾)*lV8UD ÉÈÑÎÊh~n×›'dw_„‚þr›d…ê!|¯Ân˜Úx†¢NÎx?F® ò:$† `ɲ$ ÙE½±„Ò¨]‰•$Áúj_$–T³’39¼”ja€ª¡£wƒÁj\Œ&R!mõ]ZÖÌ\4ÉÅÑv 97ì]àvíÉÃô…À}¾î[ý=ÕQŽcñ¹ä¾ÝÂb¢«Uÿƒ5D„MŒ—;CjIû޲_vpò$\ÙëqZâZ$Ó\áìÎ*‰ ÇÎJaÿT탱Nnç}|\ùˆe:…ï¤æCþÞ5T(©“4mèRš ;É D[}œ>Ê£ô1e@‡`Ä…Ù*»ÁØ€¯‡ÑpÔ šž¦DšP7r5š‡!ÁTÒÎò.Ô¨ Œ 1ûcÊ^ab:öSùT­WÏ?‹­‹…¦Ù²ÂPÐG‚(áí²þ`Qlc‹ÕlS> Ç(©rï”ÍÖ·IzÜé *Ú¦$rÄE+fÒé­JhËæ´f…V@º¬L¶‹ª‡×2º,#!»®ŠMµ\Ý…9>-«E˜™‹c)™ƒß÷Á¢ˆâw[V qâjY-ë‡rë¬–àƒ»+ª2|°N>p+˜ÛCQ0ãxëdH.óÁ¯¤&ĸB‹ì§çŸã€ª),·á©ØÄ„/Ø,©J C!³/4spë_Æî“t0ÛvG„\s@‰oÀL_èâ}©@Œ7‡´§I6J$aÇØ_TëÉRš]#˜°ÌÖ«ír^n¶á1P‡7ÅýÝzƒš÷à•˼üëEá–Ú?Ý¿²0Å$-¼ÚÜ•ó®qcl±âÕ`êÐÄ~6¥K„˜‰ºk{ë"aŽ#ûÓuhÔ´Çj½‹ßtvs·õ«#Šbæåm±C¿¯Â³—Ùk5‹ g×ã²ðã¤Ý.W!/‹™›Ô"<=>—ûÇT".w¥3©þ\•«¨[Мͧ¹ÎÕ<„5\ÜÇçM‰8ã ݆Çbl›¿—íòá±n}»[ÍBbìžp¥úkU ŸíêİZÖd¸÷‹âßÅfþn tÙ¶žï±%k›@LÞ1*E‡£ çeÚÍÆ&­VÉzT7¸Gs¢]†È3ÑcÿH‰¡²ÝãоX·Ž¶Iž£ëá~pïuݨb¡P¸ß|ƒÁÚ²;јï*15´ÿG`  ëάÖ1_Dq…N ÐXw¹Þ}Â.³ßËY•H¥Ñ‹I!&\qÌkGk¶Ô…ýŧÒZ‰!W™ØŸ®²Jw°°5D‰Z ¿_…œ×Õ€Ù@Àc˜p”Õ»y?dºcÖ‘äËê.#–ùra-ïõýòd4g>oºô²ž«xT·Ãl ­ÑkI˜£]c”&] ÐvvZ& ÆL‖£3RûDD8Ot:êaƒ'º,&ÄúÌjnŒV™|¯Ð£J‹žUs£}èùP‚2§ÀGÐÈYy!ôóeñöÑDï™yø(Â÷L¸fhŽ_âWÏFĹ3¸€˜%ð·_¨³âeà”$Xœ½8m”—ÞbÈAi™±÷ÐP,¤\G'‹ñ´;ŠÐáXŒpLÑÀ¡»¾ Çh¹U½Íñ…åK±ìí rc$Ëa’Ñ-a"£/C²;nÉè—¥|’’üÌ[küßÍj„fC17¢Ù`0YüBó«hn ’¹Í!ÉGHWî<¼«ó ùm'õ5Ùv¶ÞÄÛ:ëMž^4h/n>&’'M?'«Ðý'¿Ç2+îg.c.çá9lʺ»&¯.}-£Ú,˘¦/£ ›©¬øt_†þvOÈ#{v¾ýv _hm©¹Í)®²NlÜùËÜÏ!z5“­ÏôTö{] UñÇ]¾àËn–®È>€wág`·ëøb¹ÚVÅjVÆÆ§i€ÄÝwÊ9ém#žËAÝn_›¨^â'¸ì[L õüeÍ u |]Ü·úk¢K÷ðiZeÇøQàXœ9r?>r$Úb‚7ÁTGûkvþ¯epÆíÓ?> endobj 12 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F29 15 0 R /F1 16 0 R /F18 10 0 R /F24 17 0 R /F21 18 0 R /F30 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 21 0 obj << /Length 3260 /Filter /FlateDecode >> stream xÚÍ[K“ÛÆ¾ï¯à‘[Gó~D¥CœŠ«ìr¹’Ò^Û©Â’X-R$¸&@kmåǧ{fbÀÒ*ÎA‹Á Ù˜îéÇ×Ñ×w7¯¿ajÆ(qÔ±ÙÝÃŒ9J„P3- QBÎîV³çoo¾û(gŽ8͵§³DJ;c’p©~¢œG„¥†r¶’²@Ç]JgÑŽ¥‘ȉ8#Ò9äiá©nþzwóË ƒÓ›q¡ ›iE ×l¶ÜÜüø3­àÑw3ÎÙÙO¸™qI(0\ÏÞÝüýækTÇèu•¤„*6x᱌Zºní_Ý.8ç‰Ö@©Ê¡F›^k"+('R»ÙBÃŒœÕ0¢•ºHX M*l*DÏl(nvqŠH £W*ij #Î ð7>>V”çôâæå.2/{Ú¼„ä°Nû2Ö3û$—›Ø‚Y1©C¦a7ô§+qÄÍcØ@‰|ʆdbC©š%• ±z5÷̾´š3‚:ÂOuû§Ü›‚ ©Hl¢î¾/ÛSð"%u·Î"ÇvÁõoAca*k÷L£ìÕÍ€þ£YÁA AÅõa™Þ.À«çE}Ëæ«o™„ û–uÐŒÂÔ®lªÕ¾X7á¶Ø•QEqâa»^oo¹hˆ³ ÆÑ¼š ÂÀöý ÞíïoJÍÿ].Û\æÄX>S€¨4§|ŽbpVÌÈÆÎ%0“„±èsßÃÛ9¼ÿû¬Š9aÆ‹¢ô àÑþKØÖ‘æ¹Éå™W l4HÁ}óOþ•c¿`àÞ Tw û‰2™{&æàˆÝrSµ2 o…PÖ{Z­\€Û2w2MSã7GYJ˜Fë‰Í4šPÀL§7S@S`áÀØgJ BõKÉ ÂšŒ½ô‰']BÂwêåcž2SåØÈ·Bá²Ïro³©ˆ›a¶6¯¹ìw‹qÍ¥ç”Ë? —\Jò››pà¾5Ø-a™¶ìØ·ºÍR'6 °¢úÏÛ,â Ì@QóiŽ“ÙP-F¾˜Õàq­¡ÖkLJZΘ°î„)ëÚ¡˜_Ä i‡AñÌìÿ¯v8¥ 5 }° Mc|‡PòÿüÝqÜãÖ¿¥¬Ã6_¯ð¹BA$÷PçW%b”º\Åù6L·ßöqWFÒ}]ý²Ó«²h#iµ)›W0V°÷*n¥&N˜$‡<¸Â_ñÂPÆa¬ô¼XïË&ÜoðÊ&ªHÄLì‚"¹é<»‹ rû„éa aP/„@âK‡XAäS "nµF6Ú ÊÝS‹Ÿ¶ÈWÙD˜ƒöŠ~˜ZWo¯5¿pî’ÍîÕ°ƒð›eFjâG7 úe;ê÷M$7Pk.ë |8»Ã4¯Iù¢F™"¯7¨Óš4'5‰ÐK&ž.EfÒ\0 Þ v3Î.Âö*|ÁÎZÚÛ³VíóÄWY| —_‰)_ÅŠâ­¯èi¼oc/crxÒ‘êô'bî^È O¦æPÝWža°þíÖÊ9¹]H©æßàx» ÄËm}ˆâuUÖËØj¨ê°mP±p*Óm{ZoÛ¶ªß¥bq0ØCŽj0G•¸¨ïC/Âóîò…°¹'б±?}Úmßã|±A ”TQ¤Ýïê@°­#e—÷Â݃—eòe¼‹òà_ßáU'ì Û•øSIaEFá%–ôVëu¹Ç)wÿÜT¯V!ƒ{¾¨z/ü6L@zT}z”|˜©ñ.ˆ‚¿^«Î-=6}D¾)¶§õÿ( ]ÞµsG]»³10W~Ѽ?!M×G°¦|wü€âN³ùåºÙÖÿ\¬ËhIe»X´ñ¹ÇAÞÒâÄcñ{±‹û^5an¹Þ6è¨þfW®áב¢ÝF#ë,ëë]éýlqŒÍ:+‰m@0IáæÅøÞ?ã¢*py˜¶Áâðy[• X¯Ñ4È„s÷¬¦ªË@Ú-Ÿà‚ñÚD÷ŽÜŠ8Ýv–Ûõ~SçLö\d¦PÔ0Àw$Ðt«œOäªâÞ›ÇöÈ@­D†ŠÃò)l > :€A.Ͱ5êg>TŒq´Œo@»«EÎ-~\è-ò9Ò°œQ…Jä¬&Z×P; ©š°Žƒú¶ÌáKÑ3|°|È÷"¯ió¬\ÚY'ú„/Ã;’­/ŸŸ¦^Ç“nÁUŠ}rÀ =pºk;ì4³ ÃdŒX˜8k™¡•¡fÅ9Í 7RíôŸšýî×*^áÑ ö`o²ÈIŠáÞe•­­»ÌšØ“yPs¥–“d‘ôš§¾HŽû9:AŸ/ôu.4È9Üb­H($k#š€8 Ìø4cm´ ,÷Ä û5"« †G}‚±Ï@‡ßAd‡ß¥{· m¹Û`ÊÐÔÍïn­˜Ãýt2‚”O}ü‚k.uðVòØÛxn˺ 鉇¬‰t!¡À M³8MÝÇp¤ÜŽ~±„$Fî•Ã\sxëçÄ`%{ÀZ½ôÏgF®çß¶,Haƒf¾Û×µ‡ÂxŠd+Ƭlëø»z¹+7=jô,"ËxŻЊɤÍ FÕä➨ÞgžÕY¸¤ÀhÅUxé²Èÿ2eÕñ7öÀr!Zø[6žñpd@÷lL ÇDþ8÷¾&Ë–Äqþdžâ‰oÜ!¦^ÿ‰|J¥¨¥(u.éˆÀp&øŽz¦N 0&!jý" ¥Pµ>VÂJ0†QH°x^ËþQ´Þàz÷ë¶zZWe¬Óï1 ÿÆ?žÀCîÇC?gQ:7ü¢-£-…¸ªÌå4gçM¹Üz„ã\§ag' ŒÃ³‰}ðÈVšë‡ ¿2Q ‘‰ù°ƒMèÔáÁ„M|•y_XЀ( T81N%¼0©0uHbd¦òm6ð3‚#z(%Pµ!僶ûªÐÄÇ‘›€ÔjwÕsÜGÔ¿%z„êЩšÿ%”áf³õm•U¹ö*Ý}]8r`êmí¸"•^P„K¨— |ÇËEû‚'½}á»/*Þ̰c±\n÷5:g¡%3”ç¡'f@l(·ðŒF &|¿Žvzp4Âažn ºëŒs£¯)0SVÃmx“?®(!Þ‰3ê¢R&êÂe€ºu®Ê]¬"8‘Ú ¤áÔàvT=5Ó™½ªËtqD}cƒA°ÃžHŒ¾\@Œ>5ÆN¨7†ØGÝfO!Ò´~ÈGGo•ýjû¶ë²ˆ§´î»¦a4M±^Ç0ÿaWµm8Í%°Q‚K–†h !®9»¨:î þyrœ8ËŽÇQiB5~E5.~:þg&µ ¹ßLÉt{†qq! àX ‡ƒ¼4o ÎJ@ V²E,´Ä“ú,(zÎg+.ÔUÖä1(c"Ñ\ú®AWõ²ãg¶¹È™+N¬&RºÀ“nx°ñpÒ —@ñPàaþDO.]1N÷éŠÏ#æÉý8 ™½ ÓSçh¹ÔP<£Y"°D R I Ásõ<ôËp³ƒñ¾®~pÍDw=þ@…ýuUÏ…„2.|åÝ7ø–îr»ë×Ñè€;làâ"—eÓ„uÅäp³0iç2¿PG_Ü<–Î…} f–çm×úÿ92 ò}a%±{œ÷õ6\“Ï+Í  OÕ†‡›²hö»î·ëH»+Þ—aÆ7 k¸<»¶Zî×Å.¨DR0ÔQ–ØÞ7å®Ë}[ÿ½ÉÍ»küBå†]5|ü0Uy$ÇM/8,Š•g¾»€Œ½}â5ˆ¿¯|:Æé—SDÂ"\Ì2qm†½í;Pº·ƒˆTþƒ3tp¸‚  –Z ˰%€xwÔúŽôþä13ó5$¸u&«$Wûø-Ù×Y“Sb N¤]æzŠ ¡ªjº÷EiâʽJBM "ÇݨbµêJ±[ÅS×Ý7תy•G§jxŽï$Zè…{ìNh÷zŒõÔáPü`æÃRìÜnëþxÚØ]w~Cq…8BÔ ÄX7:éù_ñ,z endstream endobj 20 0 obj << /Type /Page /Contents 21 0 R /Resources 19 0 R /MediaBox [0 0 612 792] /Parent 11 0 R >> endobj 19 0 obj << /Font << /F15 6 0 R /F1 16 0 R /F29 15 0 R /F28 8 0 R /F18 10 0 R /F21 18 0 R /F24 17 0 R >> /ProcSet [ /PDF /Text ] >> endobj 24 0 obj << /Length 2236 /Filter /FlateDecode >> stream xÚíZKÛȾϯ râ VO¿ A ¬ì-È`/^h‰c1I%Å럯º›”(SÙ‘³Ù`lÀl‹õüººŠò›û›»·Â‚³Àƒ(î a4³ÞÖHæ”,îgÅ»ò¾YÔ·ïïºùñþæ_7¢àø+ á 3BV{f­/¦‹›wïy1Ãß ÎTðŗȺ vÅŒÅcñ›¿ß¼ÑÃó¡Ú[¯Êº]ÜN”R¥±šÑ}Ú%$óJc}Ü«™òª° R½I6ˆ~+Íœ¼ŽÛߨ¼{+ý>£aÚõ‘ãuâŠ"Óqü Wcr³Áu\í˜Ç,,ʾH)KyÙ,áÁ¼’3Ëm¡X0>½ ÇDNœaù™Ç ÏœöDd¥`‰ë„V&Õ:´áDhÆ“=¶,WŽ™(,SV=Í×19šI-ÿÛ®N„rLë!ŠÂ q!¯„"!bY|AÑEG]×pṵ„Œóèö‚kaš`&^pòÏ™‘ê©?p1!Üx͌ϻjvü¬%Jê+µÆ!kúìQ‹¸0ãÌU¶ò¾Ê ‘9‘~<÷XâXû.0óÔeØA:&Ú)îJÉ¡Xïü2¿-Zæ÷/Z?jº’Žj|Lâ¹ÁŸ´×„q,R^ñ¿ˆ¸Œu4„h˜Q0ß„¨+'D^)!ßá¬-&RYÆ•îÐÝ—Qi箳C5ñÉ—ú²C_vè¹|ð1_µ`^øK| ð¡Å¥ÚR‰þ0ä=ø–¾Ì¬ÚÑŽ9 S³;MBi Ìí˜^ÃpçKþjLžT̪žõ×qaÒšCa?$óq¶ ªZ’šk²©v8T…Š)ñÌÂ%À¥$„!z>GígŠZÕ6Õr:¦Ÿrä£z!NË’UQì¯á·ÁÔ¡½bZh°;§]À žY­1BX+”Þ){;qÒ*hÿ!ïØ"{üÿ0–g´|ývµc(à÷"Ófg«ãÑMÝüB™J…Á¼)ÏO¥¨r8–¾NÑrwÂó|[èÔ4É]RÁïå•rjÐiö¢óJÆ´êRÞ ›Š‘âšÿ'{¯àùF"/“¹ûp`OHœ‚4ªÒßHÞ…ð 'àc$Hq%üË”²gð³GP©›ºì šžŠ¦L~[ hQáìç{a‡\œü[Bôàò<žÂtÐZ®¿c›pì;Ý.>g ‘^‡Ñ~Ckæw]ÖåýF ƒöŒ‡pI»!¥gª5ñ•g¶}´`ÝÇ­3íFLHtvœÒ.Ñmp~²Ûè|P¡öh·Ñù¬B:Ÿç³ÒXÛ¡RN¦"~X7@Õ\R11 fð¯ó®›oÑ(òƒâ(O¸à çêJ.`f¶Öõ.hnµÏÆö8®­êêaŽ» O¸`Vs-œŒmkJý\{.`/:”s”€#~ÇæÜSyA‰ï¥£b !MùãC»ZBŒ3eõùs»ºU¢üµYT›ä‘Ë!ˆcŠÉmÌý¼ÆËÚõr°Lr0ªör"ù]§ø èÀ*ß×ñ¿ŒWå ûRñ>Éš5(wªn×éºiµéìyÓÖëÇhÅ—DX-¿fû6YHE3ѾÂÕðò˼nëüA•~œ¦z¼†M‰VxÁCÊ­(¡S@ìËu¢®¨¤•Óé¶e·€¼ü+Ñm¹]×ÛÇ´ŽRz@جòuÞ,?¥eõ!ý«í¦{Tç#A¹Y÷"Öi|ãCû«õz» .€)†«æ¡£$oh=«6UZÍ«YZ$cêz™nuµÞ¶u|ˆ 4x;ñ7Å´®(Õôë¡FrdļY0’Vç(ogév¹Ú¤Å<ÆìßôO(ûvávÓÔ3J§B›,u˜@¦ÕºÎÏfM•­²¨Fpc³¶˜ cðáë¾yOÌÂy¶˜‹òsDCÝ6ëy"D£À‘҉źŠIÁ£f¹ÞTKÒšy¢)‘·Êâ:£p6]à>¢6²Um„l€k»Îog·#4£ÆúsÕV›Ñ,Ô)¸É Ð(d†–{¡ ýN8êR³m›¨kÚ[ y1¶üg=MBrJ£©$²zlº,ÒÃj9Ë‹Mº"^ŸÒêa•EǀтÚvW»§¸#(lFx„­­)ZÆ—ëíÀX"팥»|\“Q´ŠFÑ"e‘„ÔÓ9AëRB£5e-R·û ;BõjÌz+“HáQÚGâµë rm“k¢Œ¯É‘×óƒcpFTÔé!U³UZ&ôbñi¹«£¸Ì›)ÝÎ zÞ—[f3V‹,c]/×£y€óËWXs车TtéP€{îSmM*¥ßÿÑj¢üB¥Úü)½‡ºø¡úÐ<6›¨"#s¥h–ðóc"E´ášÑ&:´t€§¼¿»,k!†YN¤*_7Ô³ÆM'Nã ëºeš:w]¼;5Ó²ÿöHGŠs1òQQ.Ú´ž®Ÿ·›x ÄHó>»Z ´uoÝ<¿1¨‡DÈ%8˜šׇGåYÑ›nWIAèK îtô?sÒœ7,@ôzÝ.Ö‰µYfR:½Uù¸úøØ|¢‘‹Àªmw¸’ƒ ’JR2Â!‡.äŒÀ1ã¨Y*àýt‰»gBºKEZW‘CúïRÜÉDH• äòD‹¾`]'¨&ŒPîpwß1â ]f½«kì š86õNöø^JÍ_¯IéC4©É=‰ŠÆÅ–® VY™ØÈ 冿“\2Ñ<`:óÅŽq8±~pÇÐd­}ú÷ßöã‚~ªe}7F4ÿh 0uЈ'ÿ¿‡Ð¬v8–|5Ñ’íc™RÜ<+ɣɑô›ú­Ùé÷š}…óÌ98i¯RcØ‚CôÛÂÞïEÃX*§™ÇdvA,á&’S¡ì… CyáT&dÑÖÐ7JÉ”Ñóéþõû¬ endstream endobj 23 0 obj << /Type /Page /Contents 24 0 R /Resources 22 0 R /MediaBox [0 0 612 792] /Parent 11 0 R >> endobj 22 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F18 10 0 R /F29 15 0 R /F27 7 0 R /F30 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 27 0 obj << /Length 2989 /Filter /FlateDecode >> stream xÚíÙŽã¸ñ½¿ÂÈ“Œmsy Á.°“ì‘A‚é<3@c«§•Ør¯$ϵ?Ÿ*R’%7嫽ӓ /U¢‹Åº«Èïn®¾~ÆÔ„Qâ¨c“›Û ãŠg'Z1•Ü,&/“´XLgBˆ¤¾Ëp “UšôË&-¦Ü&u^çY`i™M_ßüøõ3nû¸édÆáV¬?ÿ& à’XÆ`®ŸóMƒÇ h´DJÛN¹-¥ˆT²ñŠ2Ãã3l;‰Ò=aØÎZ®ßNgLÂlEEla.ˆ±me £!Zv¿šÎ8牄,F#§DSÝÎ~ÇgM_Œaƒ=<Ãbë‚,Acþø5D‚üRí C‚ËØß€YrˬØÝ7#hõv<ð¬aŠª­$\ò«Û³c>ÆG´3Ÿ‡ýò ûÝiìâl;º¡™šXeÀ»i¢„my8sLïãNÂQþ?áž¡â·Uò/•Dq¤ÚË›¡Œ™áÑŒƒN*ë@9áàýô¿Gi´D﮺ç4×½`Ëä6p¿¢œÇÅ‚‚›õ§²<ã+‘Î!NÛÓ„«ïo®~¹B« 6aNaäDYNà|uõò5,àãJä1ïýÔr–2ÙròâêoWßaæ³#Ô™áÄHs¢ú±ç QÊáFŒ6çD £#r­羊 JúEŠ‚kG”Ö—E‡ì,Qˆ/^ô7…Üïá"¢è% uyQx¼è˜é…œ=m}(8MÍï:ãÆX»§œ&{rxO«vƒ™…?:Cιš@BLñ“Dœ¹LipæÛi '¸QËÎó4âc …BO”ìrŸ69ÊɇڴÃù™9µ;‹² O¯ Šs %—òÌôg/Nw2N5ºã„IÐBA‰RØÿ뇨"+¢™<"x ßÏmLûÌëøxÄ5P;€¥©QŒ¸-2 ,Ôò¼ˆ»S:ÀÞ­€ùrë–;'p¬ÿÞ¥’8.&3 9ÿ¸"B^ˆ1²Ç0f×éêàsíŸÛ÷FÆ'¶3ôù¦ÍZ`“İaˆªÓ)6âhaʬ¯~{béÅ””;pUP_]F-²³d!F•T>’ î׈Ë0¦CöÆŒe‡µT^LKgœ‚›„RI1ð»zŸž H.¼žŠãõTŒ;Sk¡Fci™W±Ç9Ó„XçØy‰Ú¨3Ÿ×™BѪՅÓ!{ cFœ©9Ö™êsÔt¸Ð%L úê÷û¨:30Lêí²Æfæ 6î¹Iµ^nê|]à›Læë²Ìª{x1ɺXTZ¯ÃÜ:üI§æß÷¾Õ±®ò:‡Mÿ\®¼¯ëÛxž$Aº†V´f#Ì6}?"/Ü6φ˜40T÷01Ü#viüƒ^ãÓ$ïïò9îã.>O‹¦ÅSžÛžMžúÆo@¨HÞ—y]gExI«Z©{4/r”Øfpžº´œÏ×UÌ"A²½öêáÆ4²PF;M˜b'4|{ýµ1<t¼ÑßûX@æD+¤D±ì­!ºÊe´†è CŒSƒ¢éᙆ:¡™&7£ßdÔuTˆ¤ûKÈ„û´z=ˆx ŽаýìPÆ*ØÅEØÝ!ë³;^uYuX§ÄtÆ´'TÖVš0Îú&o³2¨‹;9Žv‚¡®2¼×bläGí,uð°,ꄱ ÑÑ ©¼áì:¸Á9$vèZÖ^'0‚:?ºðþ¯!QRXºycnÐcôŽZênsw°  M ú `í4´0Ÿ?‰Ûì r» !yT–fkëy<à5„Â"j£"±ÀòÖcûŽ¨Ù â÷½¨~„‰µ¥m ±¾”õA3I>žÜ€ŸÔÑ .´ÛÀ±›ô,ÅÛæ’:¨ãÿ½Ó«}lìù˜G³Q(댋oSKHºCR1w ³±£*ã*š1 [ïT¥ ÒŒí±øqž*où8yû„,ÚÔ1ð™š.ó=ý°]ܘl+Áän“Ñ[( …ëlæ8?³U…ôwôìQïg§ÆD™‰aÖìE4ÃbÄj†µ§“¾F‚Í “òÍ2Ý–¿K?¥%ÞD’:)Öøá}û¡ ƒ4|ü×fuPŠxH•j°ø±8÷yÕÑV¶¯6ázÁ=É`‘)X“±øasÚŠ§"24¬›ë6—)5Œ¯u¾Â²ÐêD“éLr—|[ú‚ÓšäeXMÐÁj”täü1¾+Ç;Û{/òE@Yø²ÓCªù¦ª4«€Ž´©tá#*>CMkãJ†ð dX:•¼ÙÔš7;6˜îÔ…·ëå2h£¯ŸRfózù1¼ÁæWaÔÔÓ.©ÒU3JË·›U.Ð5ªœ6Í”%dI†;Ö,wBJ·Ìÿíw±ÌïšjÜÿ.šמ~(o²ø÷­mq™”ÙmV†!–ÿø„=û§7.„wÍôWLH/Öß…÷†ÝÍWouøvz`*ªƒdÉE¾Àvòª?«Y¼Ú¢èQÞò|‘ݦ›%hïÑeA†e€„…aШÓûûÒ‹éC§öÌôÿ ×aä×¶ÆÿHgj‹··ßð‡A10pÊMònªt’æËôÍ2 `¼A‰JöâÛ$@žM­H¼pá¥ÊW÷íÔjS¾-U*I—2ˆßq ­ç$#ר‘àfÀ¼b=›¯·ë—¹'ÚcH« Mú:F{Ø(l”¹À„~¸_®KÔG|{ƒø?†ñ³e¶Ê‹·á%Ü…ÁŸÓ²hí™ïQ7ÀÕàZÔQžÀ¯RâÒyº¬³²èÇÖ릳£ ºá:¶[!’ŸÒûeZüú—,ÏÊPB`Á-ÌÀlBœ¢4 –óÊÔz•uû§7Àöe^ø7°'P±ôêXZÂp ·›^æ®sy¶ܳpdê¬XxöÛ¿‰Û,á÷ا¹Ýbp9Â(´z ”@åÇ©• * øÅ *øì×0­ªà(=Ä[µ ªÖ™*0-/æeæ˜Iê^—¨ß Å«!¤ô°£—%B7´ÎÝÐW—HÔ+64æYCõ¾Þ5ߪø…(aˆ0;u÷bìÚA—¾TÙ}Zý7=edoÛ ]X°Ò:ø6ø¸ #y­K„Ag <~½oŽ"Ht!7 ¸‚±D‡G°RÖË‘ç=†Æ>SÚôèe ÒP1¦,‚ìAUÑD¶{%ÑÊ‘~§5æ©vªµS “†—?@#ï|¬)C¢P„ikpÆŽ/msãÒ"~è 0…¦qÁ¨ê}#ÜöîµÙõðë¨R@%E;‘/â¼7Ûf‚ÏȬêR\…‡Ügã-5M‰ÐîÔ £çë &ʱ¾(¸ê.±Ä/Éb¿wòBE­ÝvcÙZîç+ÛèÃÐCô(~¡¥öä‹ô—%W]X ü‹ˆß¡/­Çüj2Ÿ§K¨ Ó½noÝ"…äX>åP—T>Ï—*Ôp BæëÕý¦n²yü>(̉0vBÎ!åEhs‚W‡°ˆÃ¬ˆºõžgËj]üúmº ]âÝĸ¶ávùÌI¶)þTfÁ#ù5vª1áÜNâˆÙTYó ³¹¶~Nzeˆî[âŒxù‘‘ô,€â´LccIù6›kŽÏÇ.ž q’Ÿªã %'Üî9ÂîoN(ì‰ J¸Û›•3"¼?¿€ØbƒDms|ÿòá9[8¿1ÄІ›‰þ"JoÞ?šy¬ìt¸aI4­®<Î aa¿ÛYGãñ|=ƦtƒÀûQtócé>¨}WÄ^¿½†óÙ<±lbQKû“yzÄe¡£Ä§âk]Ñ€૤¼´ÏbÄ8–1½“_6ÙcjÇŸÖ\^\=àV÷¯ªÜ‚‰þ™D·vª:ÿ;nâ; endstream endobj 26 0 obj << /Type /Page /Contents 27 0 R /Resources 25 0 R /MediaBox [0 0 612 792] /Parent 11 0 R >> endobj 25 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F29 15 0 R /F1 16 0 R /F18 10 0 R /F30 9 0 R /F21 18 0 R >> /ProcSet [ /PDF /Text ] >> endobj 30 0 obj << /Length 2639 /Filter /FlateDecode >> stream xÚíZKsãÈ ¾ûW°öD׌Z ô;©9d«2[Im©qå2;©¢%y­D–6’<³›Éú%‘r“”cy“C."Õlh |@óÛ›«é{Ppæ¸ƒêæ®TÌ8[i •­næÕÇúæ~q=RÕóÅzó°\7ûÍÖÈú.Þ¨zŸ§|·],Ö×hë/þgs=9üί<\£©W×P7ñ¥åî„Êîñ!ÎÞø©Ÿ=©Eb¹¿ßìÒ¬f¯Ûåîïo¯?Ýü±âÕSÒEÁ÷ˇ…'-½f hÓÜé{í•ŬqD!¼ùeI|÷qbWEÂ1…y^”˜èÏÍþ~Ç®'’úxŸ“ ‘±Î’,“L«f¿Ë¢‡y #K´«ÉŒ2™é»’XŠI¥òŒ?pÅK” C#ò¬m‰ŽaZÔð†,‡X "žd¸ùÄüoÐ÷©Ûé¨v_zmE½ÙBº3:Sÿƒ,‰à˜9NzG"[ó·%z(˜‡©?—‰¡VO‰E,ö%ªdaád~çs‰ªeNÌ®³R` |ÿ¦HR¯3<ÌÐÌHU æ”ËêàÉf`;ó”=˜Ê&3ZT“©´N²¨5C®nÏ÷&+X´6HÅ+²£4&Eïàôøê÷7Wÿ¸òZáTÈ%íC $œ3 ¦š=\}üÄ«9=¤mJúµÕ—0õÁO{vU}¸úóÕ·O£’àH÷šˆI¦-F¾ñnÖl—ÍzVàÚýzþ’ô9ÀýîÒ~K÷ ¤ ®RŽ3#dËåU+«™Öîe«FºW¨O˜N…àk|![&…"Z†U9”v33Ü'ŠìuÜîŠC‰ŽcڷÆÌñçd§€b@¡¹µ°D 8å8òÿ“ c) ¸):k“»;`–t×É)CÚW>¼Á…¬®cl;ªÎ[>„­71eÀÚ¢–STY5=JÍ8^ÊAgÜêÿE‰i+e¯"I<æ!zU_ˆæQNû2GDͨS?öžÎé©FTŽìÜD QÆ 9²  &Ìs9>J0âÖ`™Cq!·FJ6Öþß­ÿs·îÐä=N.Èmåx°¦DJð§àã– Öòq$ŸU„ &Þ¸yE(ZTÉyÔÑoŠ»•ñòÖF[eÞŽƒÏó!m‚hÒ´`) !4”TI Œ€Ýeš´Š!œЬeÀ‘Þ *ÃìQHÆ¥hÈYÊTÒPݪ± åE<÷BXŠ‚3kE—)åDŽFim:1ŽF8ai¿w:;±Ÿ­œâÙ‰I*®»qV¡#H{¡U(BÌîó*U²Bð“U§Ñ"PíE€ÜÖУX‚$VÎ]h R2Ði ðœ%@g Þ5¥M¡$œï–± ±¦”N…¿Rõì1µ3š}šÇï›6Û¹/45ÒìkˆtýÐl÷ËõÍ*ýoÖóøÆn¶Ù¦±íb·œ?6«]ü{GooV«Ð ù’R:ÅJªO™/·‹Ù~õ ½dTý¸#.þVÖDê%y7¡ó²³f›‡Ÿ÷$ûfí»J»úÃã-ݨúoD,N~V¥v ,×»½ßÖi|ñóO¡Å³Ø.4º‹“švK&yÂ~³oVôØeù{]oîâX1´R|ŠåÙ™ù'4*Fóí¶\Ö‡vóCËØüˆâ…’ËÆ§Ÿ6¶»4Z@qÜ7}H7 '[Hëóót_?G2”xÙ%ÑFHËú&ohÚ¢pêkq±´gêÍ:^çwÿ_âí—*z·èEA@d‡óuÑ*ÿNz.Èt[eÙ N"áà+Åv[Ç›^Ù6V¶mc Ž\P™·¿Û’mv‹Ùf=ÿ&©<[A÷X!^þ•c† ðصãz³_ÎBƒr3êYZ¬‚û.®©ËïMˆ›•žÁÓÀúäý`BÐÙÇ©ûÅö!ôFe'ºìât/1ÒŽ/D•bƒ×s$0Tß=®Vñ.‡ï%õ×rX±Liû¼°Ògæá–ªöZ?ZÙê¼)tÆÿE7$ÔãÐü~øTÀä…A‰ëx=8–ÿ£½5 Üßd|¾ö©lõèƒ[õÉB­´2aôGE`‘»®IÛ©Oxü˜ºçM¸‹‰ÐÖ_vòUËÖ'k*-xê’uRØSìa ,ÒŠU|ްö0öÌLmcJ$!t¬€)n‰rLÈcV²Â„JpŠ;¿S2üS±à¡lwlÑ{›¶ ¨kIÂSTnÑ{9_<õ¥*a8 OþÚÃD‘#NZóú**ßön•]Ų^WÊÞ>fØ> ¨ÎQƒ•"¤d‰˜¯Úú+ƒìÜR±¡_H#"Øeª¦:NbD¦KG(×0Žù“|è$“/®\ü± mt>¦Êå+Lsuò•¡å]”PPMÉMljCAg/$ Õ“0+0Àö( VHx*`V¡Š?/Îe$¤âOæš#Im,€[Ó/ ê:+Ý…¤ºÎA Œ_ÅTT(-IÑ/¡Ê6q!ù¨h94õÊÎs\·»ó}ùøÎwvŽ!¦é9¾súôüÎ>9¿Ó£'¥öä¤úŽ)©úÏSo{ÎðÇ%RÏ?»}›òçš(:aÖ#zéÔoó¡x(¬…<ž¨çr˜Æ¶±z†ÚC-#:D÷ ´ádÒJ< ør\ ¹O^0Š 93¹§Ô´/¸bRËàCXA©%UkïËÊ’({PÀóI£ÄT1µ›_9µƒ–LS´ôJjð„!äTÃDzŠR¬üù†Ö¶?·'Sƒ%Åsù¸EKÂt™Ž×‘·ïÊg‘ Äã‹Q*M¡‘NvÔf´‘n¨Ê6ºÓHog+ªÂÑäsOc™¶g@’¬V#WÏî w‹wÔ¾z¯ ·vïzÊ<žÙá¨Ð·¡eد"ô@tÐç =+ mp\h¤@Ê»ŸD( òÆ€£CÞcÇwv`I5˜zvMu¢(Ńö ÏgLÛ²b7Ý]âôõ²~Þ}O]¦/ò]ÐÕ嘫ã«Éý_÷v`”³:‚íz»äÆÊ'Þ®)l›þê-{»ˆ‹ööH«®Ûë@c ÕYè «è,˜ÒÊ)ìîj„¿ ›Á˜7hK´m«Æˆ;…P¤B’£;%âÈtÎ¥ˆžÌ‡XäDû< Î<ëÍ¡» ÝOe¸RcìL›8“]‰gŸÅLžÅ¬§–@˜Ðêƒ!‡·¼ß£´—¢wæo(ŘG5Å5ÊÐDí†ü2­ñ0ë¶@J0âù¤feRº$Õ NT U@Q"ûžKû> `Dn•-$9ÕßÉ» /mjëi€ÿ SÇf×øïÇ•VØ/«ÿ>BPöFÆFœˆúoH’•P endstream endobj 29 0 obj << /Type /Page /Contents 30 0 R /Resources 28 0 R /MediaBox [0 0 612 792] /Parent 11 0 R >> endobj 28 0 obj << /Font << /F15 6 0 R /F32 31 0 R /F28 8 0 R /F29 15 0 R /F24 17 0 R /F18 10 0 R /F1 16 0 R /F21 18 0 R /F19 32 0 R >> /ProcSet [ /PDF /Text ] >> endobj 35 0 obj << /Length 3213 /Filter /FlateDecode >> stream xÚÕZYä¶~Ÿ_ÑÈ“vsyé ?xã5bÃìäÉvM·zZ^u«-©=»ÎŸO¤ŽαñÚI^¦©b‘,V«¾"çõÍÕ«¯UºRR8éÔêf·RV‹Ü¤«,UB§Åêf»ú>ùúº0IÛ]¯1I¾½^§iòSµbó9÷ ûʳl®× ¨¤b–®êëí¹l¸ÿþZIÙsצ=œÎCµå. þxó-HµrÂe:C™l!¬Ó«µ²Âæ)‹ôƒÔÒs.äO…K„wžS1›vs¶\¹[É0—ôsi=.—¬Š\¤0¹¦êëêÍÍÕÏW Ë•ZiàRÙ*Ó…ÐÀ¼9\}ÿ£\m¡ïÛ•Æ«{â<€faÍšÍêíÕ߯^£îëS)‘ãÆÇaÅŒÏ ™æAöÏÔC})-$L¤Rb êR`0ãcŠSFä°ÌBuò#T·Q9‘Z3WЍ.Ë„3öEºsB)µÔÝbÁi®™òLĨ x·|Z»Ù¨]óríÆt Þ¨ÌR§ŸEf„ÍJ³šsý¯¸·1 ñIÜ{œê£ÜÛüçî½pH –°«uþ¨7šöxÁVчìÎ8M5Ûª~ÄN©]ÁÉËôÓç)&zú<ËbèþÆçú½¬qîµ’’˜I;¡uñÿ|``n]èOr`@)¹3/5Aú‡˜ç·úâ3ßêx`>…±Â\¿›µ"Î Y¶È–ÞýgäÃ$…rЧ3Ь?¿ŒÏœMúúx×øö¶*‡=6MR÷LÚ´ç#"4e@(}‡z¥¹Qý‚ýs1iGøûÊ ’÷üÕîøw\{ÀN€­ Äü‘EæïíIÂFHý>¿<¶0%.©³¤úù\ÿrfIÙL2½<ºvG§¼EèZϱ•6¸öpðt&ôÕ¦=n™´-‡’[}5øÙŽL¸ß×~‘™ Ö±¤Œ—³ä'FÃ*Ù „Îàú)qlXøÉeRzÜŒíI™ÈÐU'ҸŜƒÄ[¯>l忍\$´·}Õ±j†º=ö€ÔÁÓ“öèç/?°>TÜÊ&¡"›!3‚³%^ûÚe<ü@9”ÍBä†@>ÇDÚÙ,Öª<æÚõaœgÂúBš¹2`‘ûzØóÂ%6eï…# TõÝÞû ¼c.ðaq½¶F%7{Ð$ï€Y¸!Eñ)R2…(/UpÆÓƒJR^Ðxví‚û¦e;P9!~¿¯<7‘ïë¦Á–Nîjöö0gÝs«ß´]Å,SùD3öË/÷[mãnxà ‹N¤±ójÖÁfXÇ—f»Pó¼®4ž^ œúsµm×ÁÏRö3ÐDšà“«›ç‹ã{CÊ,yË&EwÅ¿«š-wÌEOE‚ßï}U mpÛõsÐ1ÂFSÒF`œŸ¨ìüÊõÖÇŠzCu©ôQA:v€™äA‘¯A²ÑÀŽJÕhÙ —ÉaÂ=žì©IEO‚É ä‹‘/âðŦv:+©ŒMYŠ­‹š&]¦M'§¤º†Ó©`:År²ê !IÞ•b‹lï#-,ý•7E¤ÉJð‰VbÅ¥Vå.‚k4ü![`#ŠÉ2IÓF@ÙR‹J`âô\›xš´fÔí׌·FŠ¢0Ÿ`M °YÍâ—MáÜ@Ȭ¢”"3ú™=¤ÖN®²¶V“?D=K!¥}Ö±F×Óä u8‘¹Ñov±¥Ú‘ÏD׃fV¼Ä‘õ“Ž\“esG.ŠÄ°#c3šqà˜I÷ß1}LÁP^=úÛݳ–òžäƒ 5@Â:³ãÃ|WŒ›ªÇ²i ˆÂF’…ÈÓl‘}ú.– è|˜ït–'«š¾=þëK„¶ÞÑ#äþjw¼3 ºV9ì,Oç;íH¬&:D6CXPø™šÅÙvåfàVÀ"9[Š(~É[N{v²:Ä}-ThbU›Zû–2´NŒéÞt¸«ÀkÖ@½Ê¡4s¨…ÔSï˜à“ó«¯!¦ÏO¯ƒò|ª¬†ºê¿¨È)"Ë´Ðj [퉽„—ã_KlÏW…¦Näp ;¤Âœ*•ä˜ /*“"•ctøî»h‚ZÓΰolˆ ãVÿB™Yàge¦ƒ Vždúæ‘Шƨç ¨œZ&ýžý÷È=õ1pPÁ… ˆ$Ú£— ¦fœÄ7öå¯e·õþª±`¾ˆŒRL>Ú€= íñj†g’Ëd!&å— ãàË©«ïfAZ,R›|ÙÀNÏw{fó{2¾¥h q{Õí`2¬0t@9Ù×ýà!)ÓH@( ÁÑó¡ê‘b_!ÇÐC 2“ÎGÌàÒÉy|¨mçSňwê!RFo=ð&¯µ´h¤C±@„’«cCcð¡Q ¢î«ºãŽóP7õÀµ(EkÒä­ïìà ÞÜPl•ÍŒAU)w‘AhÒÚS¼bÊ U/&žmð‡:ù–aW Àµ½=‡*…ªyLfƒººÄüB/XwpíƒJþþK‹Ö{ÏÖà¶j˜‡o€ÙâHW(8´5«„ž0îWžÇÎî‹]+NÝòQf9‘ÈñžsÆöUôc‚3ãQo ª@ž@Á1= QÌ«y©ãE¿(¦ä½ü5©*»°×vç ݽ¤:¤×Õï£1à‰Í/TùàKc#KAh¿-)?áìxÀLêÝtª¡‰:X A²z3]1!ßX¦ÆgæÖ‚ŸÙó²NUÝxóƒbS V]¹ 1Žû‘ülEn€}Ô©ä'Ÿtßë]…qBfÓÀ-ÄŸpcô ],ð 2àXiÍðÉ=Ÿ,Ã'÷4|‚rJª1Yñ½Jâ«Ð<áxŠBð[²H¬öòx7îÙçh‚~]T3Ößá…çå=ÒÆ{ÌÅ;w´|‡׎F¬c;3„¸<xK¦S¿8?߶‚eÝ5bw§¼Û€Eª JûŽI>F:®£Xú Õºó"£ ¡ \ÄüŽb ¨àgi…Qô ò1Ó}ä]%Â),٪ȣf\Ÿ=R™§Ú~Ôåâc¥Y.¿à&`¶ÞoS’ùíJ‚ʦX(i¶¹ÇòEuêk¼[”I.[ ~|‘6b…¶vª wõ)ß^Q¾ªÀד›Ï ~#$À߇)`ÐlS/àÖ áK@ÞA±C% «Åž)<© «JÊçæs¤R>Ï9Ÿã7‡#dóüjY@ÇeAÚŽ· a<J ŠnÜ“¡¤˜ÿãÂïìFøÊVÌ݈.«9ébÉŠôŒ­ùÛZ“(üñwÇø}hÈÂ/~EA†¾ztO‹yž2#oª%òäÞòu*Ž`‰ŠýW‹²ûÙ.5h¿DÝÇ cSõ½/ˆ6›sGU´Qˆ;Ë#Ó9U@ã-ÿlÆ#T[$mÇwÅÜQaS@õDö³»žœ‘µÂmWÇPŽ ýÕûòpjªPù}~1Ê1™ 8PºÀ ®jz™‰8‡3BfæiÐÙz ”U¨Ð`jÄ̽_nË›*Žø ®/B¶ÅËmñRɧÿ/©›²» Z;ú2È”\•›L•‡ 5mÑb‘3O]¹ —qÕÏç 6O ÐÉä-Ô?Íç!;WÌwQÑ!©<–ÍÒb¡¹N†ßñ+X¦ÚU]ÏD’GŒ¾ÔÖѧr[ƒ·+0¸o6þ,¯Á„WoŽQØ¥©F½Iþg å_¬•0àY `Ê›÷t dàhžÊn¨I~øhêw×pSïIƒ ÿÝÆŒ‚“K‘:ëßlÌÊ| kð«&𠤱Œãiê;.f×xNH, MbÅ¢gŠÚ¿%ù0νü؆ƒæ&JÉ,ã›8®VuÓ4—FÖ.¾±«äT>3ŸPÅõmÈ;Øèêþ¥2£„m|@®èåØŒI‰V;ò ‹óÏ#•>ßž28§„pvlõÑï´ƒ‚R&þð‹aÁ “ #:…¯ùé x¨(çˌӄé/nŽqAŸ]Tž‰ á¬÷™<üÛÆ¿ ñJ endstream endobj 34 0 obj << /Type /Page /Contents 35 0 R /Resources 33 0 R /MediaBox [0 0 612 792] /Parent 37 0 R >> endobj 33 0 obj << /Font << /F15 6 0 R /F1 16 0 R /F29 15 0 R /F21 18 0 R /F18 10 0 R /F28 8 0 R /F33 36 0 R /F24 17 0 R /F27 7 0 R >> /ProcSet [ /PDF /Text ] >> endobj 40 0 obj << /Length 2693 /Filter /FlateDecode >> stream xÚåZÝã¶ß¿ÂyÓ"k†Ÿ¢ÔbÜ-pE Ým_ÒÐÙÚµYr%9»—üóáŒdÉ+Û·×K /&E†Ãß|p8ôÛû«¯þ¬ÜBI‘ÊT-îJ;áÓd;%´K÷ëÅ÷Ñîz©“¨nÛâ}™_/N£Õ5Œlêb•·0`dT?Ћ_<áOM/Úýûë¥sÑùªcÚ‡¦Þ2õ†ù=Ôû†zOþ00É&È:j›¢ý‰Þ÷#®Øæâú‡û¿,äb©Œp6%ùÿ!|‡òÔ¥‰q OJ2A‘¯©·Î³nÓRŸEºŒú-éUÍsÄÌ*Ãü|í࣢̻OXbø Ýo‰’Û—<óûÀ6Öâ„U¬‹šxh€8QQV–Hš\¤"uŒz4©p4 ZLã-™0Yx‘z4î…²n±Œ…ú@Ë~âDÄÒР’/'IEÛH'{K9ÓMÍJ %cXÉH0Œ6ïZÄ$5VXL×ìËÔ}¨›m±ÎÈäàyUowû.늺ú4ªÀª½«è-Ù’emÎ<»M“ˆËÖçIÏH¢¶¼fm@‡mzd³ñ`³0¬ Z¶¿Ñšõbj6éˆI¿mWuÃïz1òçÚ)ì“1|F:¡Œ•ÉŸç Ž…6®§ |ŒÕÑ-6&R,Hµ&< hÂÄÉÔOê*Ø%)ÃØÁ×Ì /tAÞ “T$>í§oætBëAÀž¨ZÓTÝæZ´ Ï^aÈ–GŠgéòfÛòüéÄÀL,Ì¡Y]0ñADPϯ—*ösýùu",¸ ¯.Î0ËÄŠÄ&¿ô$ÇyeXg{ 1'ÇR;Ž ­N²óÍ,2 ‘¹Õ€wú¤zìÁ€•ã“ åÕ¨w—Ѻ=UY?‚jmØÌÜÄÚŸ$gm׋ø ý—µŽLp²µ„°éÏÂïÁ[Fü曬á²=ŸìƒWú*¼â‹x¥¯Çë¥ÍxÉ9&µ|ZòÓü¼JÂdp,œIz×Y¦ÊDz%]ýÿkg–úÚÓ0wu 5°ÕHÎ2þ6»>HlŽÂÕ8¯á`¥¬Ð‰=¿.Üu–cRuʲҗ°ᨄM17ëí!@yõ§û«]aГ µ@»QF/œ‚w±Ú^}ÿƒ\¬á$lÂÀ×Op‹AY*ÜËÅÝÕwWo1×?š®g%!YL_©<5›‡œ3ÅUøØ°™9Ž©ð.™Âöå C2Ãߥ $NFÛÏ¡‡ÕïDï8=ŽCÒ¼2FöŽ3% XCüƒÅh3rA̯R­G¨ëëWˆæÂ¦¢˜ÿÍŸy% óŸû”#ï…MÌ(2#¸ŒU ƒÄ\¤†a7 c,¼L&‘ja´HUr Ó…\÷$Î mí9 Páx”ý1+ëÁ0ÌáÄ='Ø™5¯Î´Ôa£˜]9Ñ2B9}‹T{˜Ú5ÑÊÑŽ¬Àýàˆh•–7ûp4´>jërÏ9ö1lÌé°Ìî7°Ý˜Q^qýr÷>>åyëNyR…Sž”‘$iá°Öä-W(ªuK£]=k³RƒÚÎoÞ Üùôc=:“¼ j|üs2z*àÜ„˨T£,~ u™²ÀBô¨Æ²æElàØ"‰6ux?=Áfí‡í®«»P•Òæ°æé& aAé¥I@2¬ZÓép’ !üâzi­bC ¿ÍŸººúõ¯ÙnÓÖpj e |´žtÃÁúEµjòm^ᡳc™é€½Xzˆ‡©}YÉú4¿‚,ópx¿RÊýêÈ(R‡¸ÓœÐg|ØJA¡:Uà'Ê`:l¶áý?g˜*©–#ºSv®éG)X„Š$Oª¹…8À=€#ôtäDÿ6”t"QÆðy]¡òÀÀÞÐóàãŠÍ ƒ›þmWâ“H9¡Óh©»ÉšuùM·;OMa]À &oØxHê‚¥N” N”œßR1{¡ö:Íž{Ûì¹ØâÇûm@NFÀBs‰2çÊã1¦Ûºe vMýØdT¤9®Ã>e‰ ÖQÛÕ;ê±sTübS7Vµö9q¼É³J±AˆzânS´ÔãXWA¯–œ2ÌQa-‘] ßÏ7c¹öù´)¨´ „qmó¬Ý7Mð‰Ð‚0°Ú7?_;F²oxËxšÓq ÉöÕ å¹!ÔšlW¬Ã²áÝ#QÒ¬!n‡á_ò¦žC5kg]rÊÔ^ÚN k’!p<6¡ºüÔ .šŠä(þ¼­CÀ£¸{s‡õÖ”Kx8B;ͩCuUè|›— }“•yE#yÛ ƒœ8„ (ÚYö =õYõØEÙ»`!”AÆ4‡}äëM”?g«Žº[}—¸×$&¸=¾àr¯ õå`çeÆ#})öþèCá9@fäôpª…5C(ýúëY\!çPÃæ‘ív [à)°ª¬£7è8!XV±ÞgeKs,-þ¼áºö` ¡&l©tY(З‚3´k6Ü€QKOÅšÃM±ÊJ&¨{ºåoYêdÔ¼…u–dZ<¾Û‘©=ä–ŒODbP`¤‰S„ä#AH.€ Àžõù< HÔù<Æ È ÐšEøTÚI0Ùf Úm†7Ö©±ºñ‘0†4¼-Ç(ÊöOë×RåkÄ'õÑÝô. I5A аv;iY†$+L8>V|£„á¬)È)9ža‹[ªñ¯'(*5E^­˜(£fp\ún.%${{ÈPÕíå´âdÉ)qê/$’ÔÖqÅ)\)ÜR3›þXH‰2Ü^¬ŸF££–/„fyࣨÙWE7“©‚ÌHi|%éú=:eÖògnC‚~ÅÊrÓ}Ù4yϧþø4_«u–êçëAJN—¯½>Îå” ^ Íì±_ÇBÅê"ËaR¥É|EN4öP’þï-ó†w'±l?1Ö×Ô7ÏUçüçQžcnç¡{ÕIÛ^¼üHUšS+_Y½dfÔÚþÎÚ /†Z ìʹ¥{ü>¤Cáöz“ÝgOþhÀY7l•26S]ÿ=d¤å>l²g)û?/H¼¡ÇHÃt.û»uèÜÑɉâ¼zÈK~1v{x\…° þï'áa ;>-Š¿j‹mQfMÇ8M{:/çC‚o:†oö¸â’™ ÆTo@qÐð|p>uQ°'úSÎü‡R¿³²€EEí]¾:Ôù¦‰¿ÒþBÒ¯Æó¬M,°Âiaéc÷µÞ¤¯Çþ¢œÛZ endstream endobj 39 0 obj << /Type /Page /Contents 40 0 R /Resources 38 0 R /MediaBox [0 0 612 792] /Parent 37 0 R >> endobj 38 0 obj << /Font << /F15 6 0 R /F1 16 0 R /F18 10 0 R /F28 8 0 R /F29 15 0 R /F30 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 43 0 obj << /Length 2174 /Filter /FlateDecode >> stream xÚíZmoÛ6þž_¡2q¼ãû†b@Ø0 Øš}j;@MÔÆXg¶³lûõ;Š”,+’,Ûr—CŠV¨»ãóðŽw'ý~ § ÖŒ£I´´Lk›\Þž½yÇ“+úã÷ gÂÙ䱜zë§ ¦¤Kn’×g?½¼8ûò¨8sÜArñ!AƒŒs•h…ÌL.®’7é·3´éûYFÿËÙ»‹ï“ÌY†ˆI²TQN¼˜ß³ À¸ôõ:_?¬üÔ/_¡mª°œq’ÌÃ#ú)gß^œýþtAB2ÔnÇ‚‚úIRG – !ƒÒ|=Ë„éÏóÕo4RÂ¥o9ê.k ¡õÆÚL:„ô*LÝVEfkeNE<~ Pã’¬ñ‡·œ‹§ ’`]X87CëF£™$a¼á`Ó„5•^Åáß“ÒÚèŠFеŸ$ÍÄóq»ÊZ¦< M[° náH´ªà^–;îEØ4ÔÆUýººÄÑ’b#­CŽaä7ÕŒ/<˜‰#hÀJ y"V3põSö)âG1wšç:Í+wÒ®–´ÂÌ3 6Êð\´9æsÍŒqL÷¬ˆ‹gË1>oޱ‡cšXkSçz’•°'"Y9ÃhlQ¤\LNv§<Ç4EÈÃàÌ€»¶ cz'Ûò¤öº%00OÙÆs³GØV† 1r"¶­ d Ú"Ÿ?ÛðÌÙ†ÝlùÝÇ·é ¨&bÛpŠ|ÿ“ýéÈ6çnצÔ\=ÙŠ’V Ÿe ÇÏ'7R3±Ù»¿EvU (t47¶È-|„-HÈ™£mAfé`R ˜sbc‹=é¡t§6f(ä0‡v"/hƒTãYɽJ€ F4Gû2®í½d¸ÙÃpI…³0n"Ã9Rn«Zè6\ å}´™ŽeúÌŠ4S„*¿¢¥ ·‹U¬¯òuîG²ö3SÛR£·€`àLt±VÖÐC$ÉÉ(ɨJ°Ë¸w&TÜ—×ó¡HÂs~´*Öa߬atÇYÕRÎgÞ}ôëB§ÒË…ïZü1S:Í—ó|]œ“Ó÷QÚü.\×µÊË|Ul‰õ¯ÖùrŸ]­÷ï¢Æõ Mú× é,J¤ùöÞX| X¹×rïJ.R¯Æß*nïoJãþò"Š+6Ë´R ^J˜ßrÉ)å®#Ò7ßtÆ^ÍPÕÅÐêºTòµ®¯‹0ÀzƒJÔKZÂÚ7nÒ«pû}°mû©âî*Þ)»<~-1ø"R·–_>'hº—>/ù^‹Gá΋_K¢FyJiù’öÙEõÄåâæáönf ó2¡Mo‡4bt[ ¥6.>îÕ‡BîâE_ççË« 3_áfmwØ87Å*ÎX·&øua5c(æ«­ ïáZ}œÊ?bªGVáÞ¢OÈ„*Û"ͼBvB(hˆ›öT³Ü6‘`6s8ïiÄøÄ7Q‹ˆï}Oþý¨8¼½Õ¶ÖÁ< Å û™(6~RYÚÝ. /}îM`*žÖÔ&óO‚¯«­¯b¢|Q_ºòxþÒ¹[öªZ ¼¦÷ù×afT¦cÊWþ[{'¸t¸ûÜvJͤs^¦8µ³–‚Ñ¥‡òcrø(Œ®²ŠlÿfÿT ß$=ûSÁOK…5Œ“¨i¨¨„Dþ§¨h§–-*F½íŒ€23Š« AÕ¤jÂìS™!M€òë*ð¤QîP>ÕŸUè§Øð‡%cŠ—(Ë*¦ª“Ÿ.£þ7¼SŒôN7ŠM{4›©ŽÓ°YÉŦ|löº½e`ñPRá8R¹†ò(…“ZË:©ÇÅÜ %ýpM%ÕV;k°íd[3zg¶-˜ ÂsÃî\²Öùlü"¼O:Ã#&@Ù™¦ê¯.:qßlL«ÀáÝY¸¡Swé•M½b/½`åDz±O¯îÒ+mOJèûŸMµ­ Æ5ó¯6üG¶\ö3*"0Æ*iJ1+bCÓí ®Cp@õTÂQO«Š[Ý ‡ÝK­ØK­4#YèÙìµ<Ütmµ(ǯ¶%Q‰ö7 ²ï]‘òÑUZѨ`Û!"* \‰dNÄ©ßõ¼”5›ªüEg ®(ê©á‚Æ+4Z•»øà—‚|P ~^É¢ZÝ:{Ò¯”[ v<µ0°lùE€¤s›yT¢ NxÈÑçÏã_–L€d-ëtHâi¤ì…›æéuXjH ¥# ”È´•ùaÖÆòhÌÃR2…Œ[˜ÌZØ Á<ÒÇ3ŠBÚ¿ŸñÈÊDWáò€X—ö endstream endobj 42 0 obj << /Type /Page /Contents 43 0 R /Resources 41 0 R /MediaBox [0 0 612 792] /Parent 37 0 R >> endobj 41 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F27 7 0 R /F30 9 0 R /F1 16 0 R /F29 15 0 R /F18 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 46 0 obj << /Length 2627 /Filter /FlateDecode >> stream xÚÕZY¹~Ÿ_¡ÇÄ¢y1 ð"Yl$ž<ë ÐÖhÆZèpÔÒÚ›ùóùxt‹-±%ÍZãã©Ùìj²øUÕÇâñòæêùL%Ž:6º¹q*ˆÑf¤•"ÌêÑÍíèçJ\ÿróãó¸Í%‘Jh”X{‰«W7Wÿ½b¨£#6bÖ %…–(QBŽ&‹«Ÿ¡£[|üqD‰pvô!ˆ.F’m%ŠóÑë«\½tr=VœU?MCv?‚ðs’Pf“>•sUX·ÀºZöP@ÛˆJ/¥jVÀCLJi/J#-és&!øùLÍû~©fDLU™Ô[pgà¡\µ k*e«fö1ÖÌ–“õtÜB›&I­zÒ®*ÐTtma÷>rx ÝÌgÍfÊ=ź›k$ÞõÛù4ª/hßg@Ö»uê÷ß©ˆåY"\nìÐQPÛ÷Ô6ÕöšUIs2QÉ&ÊÕˤnÆàq|°¢kǧRìíXDQÝšQ ,Ô4[@®TõëtÅ·@ýþ[*îVs¯ÔÊkô¡‰ë¤;~KËnpqìëuÖTa3©¬,µ"Ç#[ ÔçÕ†ò#[ XÏ ‰•ºvðµ‹í‚#ô¦{ŽXbdnBòš§i0“ÜÀ‚Æ‚0ºýÛ€Éá‡YÒAÇ~'‚Y{ŸÞ¯ø‰ÏáNœ€+¼½ÅQ{#eD8ŠS;qÞÐ d29–} »Vü¤“ùL7ës/]i,ïs`I¯Á†'á͸Ó>’;YyƒÂü—‹=ú\Sð¼rº¢sc.‘ƒX±˜áç›`e…& ‰Å#< SOR‚%¾ô¼¢ì‹bž&’ªQ&Çx­Œd¬N›)‹at8Úe—B«XÕK\.‰Ž8ÆstŒuƘ#èÈat¨Á¤(/} 4¨ôˆ µHy»|Æž™‰ÙGfb¼¼)Í”ÎC2îÇcþ÷§TG|]꧃<5-"ö Mî€\"§·É)Éw©AÿŽcÎW—‰NáíE'2šÉcóÀh_\è³\ús«#¾.uäc%žf=¥³8`vM´µ}bw‰Ø)âê!„q'Ž0»Ž,c Uê2ÌŽ…=aüÈ¡Qï€/Ëî÷ð÷Ü4Ìþ—C_žFÿËù¦>N·:§[…ÔŧŠ.§[¡]êk4¶°2ÝÛ°7ÃN¡±ÚD—q ,Ñ5eßœW|Ú$üT›EòëRG'Pó¹Ôœˆq˜¢0¤ˆ­{TJµ5Z'*ŊɆ³Ñ]Žb‡ƒF:B™¹PЀũeß*•~+Óü—QG}]Ylj ÑACûAƃ¦jÜpÔ¬[¹Pf/‘’}Nœ ënúÀeS$§Rv oMøþLÌè0>ÌA%{!|¸&ŽóÏI¾9>æ|œ çZc¿CE~‹Ûª™¬Ö©X/¯Yu˯'þHàÝ*4,ï¦óô!ß*禚ÔËX¿;’Àc^Ïnã÷Õv«fI®Žõ›úív^¯cÝ]ݼ›­–¤=€ N˜Þþü«:ªqæªt°±þ=¾†–±6Ž›õ¨Ø„ƒˆP.–1·ûöÛµÒU=ߦ×Õ]ùvˆÀ”ÑmÝÞ¼ ñ±xæÈ…êyûÀa¨¿wÑc…ò зÙn9×ަݾ^ûÛÒ^1úˆÎMaxFr½áýZ&½öhR¿ÌÕëðþ$â·‡§¬÷)‡½ááeeÉ|CGÆú4 ü òâ|9žZÁéãa•îN˜öUÑœPÑ!9+O|'áÒâ%8•Ó¸þÑà4ƘôÛTˆ¶ÙbZ´ ‚Óð yUo*%×c£iº¶ Ö+¯ÎÿâñX4±áj6­\¢ _¯r·û˜¨Ñ̯}ˆuÛP€Fþžåsd:;€VÑ«&›ø¦ÓLet²šoËxo1ªékãÑ"ª:¹2C"§cÿç&VOw„‰Úi<%mM䫼‰"ßÒ¾Ò/§ó;¦<ƒîM,¦“cÓñ+ŠwåK,Œ"hFVƒ—G9cùíQfÒíQ‰'ïFïƒqe Û]HXŸ[×ëÅÆ;ÐþbÓðš0Møãìô¬ã£™ÏîßÐæ¿G-q²ôß6ëÙò¾Å4N\~Éûpn¦M@œ¾0U†Ò4–Éxˆ¸Ó@jÙÒgþ>2üj¶œ¤ÃT‰Þ6qÄ6œ¡o¦ëXžÔM’«ããýzu¿®éëjŽ…¹Þt÷âÙv>]/f :……‰¾ñsüd åUqFu‚hÆZËA­{Äs|?xÑXô§ºó/u£ÝÔ> endobj 44 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F18 10 0 R /F29 15 0 R /F21 18 0 R /F1 16 0 R /F30 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 49 0 obj << /Length 2686 /Filter /FlateDecode >> stream xÚÍ[Moã8½çW訠Ç\’ÅÏã6Ð Ì`.»“9MÏÞÄéx‘Äݶ³=ûï÷Q¢¾l‰’c;ht¬Hr±êUÕcÉ|»Ç?Qï™ò¶0J0穸¹ùíw^<àáOgä]ñ½zõÿ%nHU<¿ÜüýæãÝÍ_þ&t!8óÜ‹âî±Æ0¥„Yæ}q÷PüV~úÏ­tåæ5ü<Þ®ˆTy·}ÙÜþ~÷Óͧ»›o­&ä<3"“&x›9«šür¿ÛWã+)4sŸµ˜êñç:µèHÁ´ñW¢##'!Ì2cL=ª¼…2Ö—„OiUið©Œ+->µ±¥‹Ÿ>Xå` ”ûÇæ°CÅfˆªÉ¦Æ…êÌ;ƒëɅӌȆãU}!®àœ9e/¶ÖˆË£' “¤ Hò“c¶ïq mEjLU½Èç‡äÄ‚ 2åÔ f*AÌ*š5³}ïz3;Q§fžúᎈãºXmd““Ž×Ž3-/æé9HšY„!„㘟9çQþ)Àùƒ}Ì ¥Axâ<#å® V”dŸÕn:@²À¡¸bÜÐR8fÐhœŸNÔ)3q$&µkãÈp†ë+ãÈóRBÒB!§cŒ1%fxçÇÀ å`-ä%©%™¦8&ÉD$åDqúÖ‹sˆ(–‘&"¨3DF¢ ú;7d%•ˆ&ò(4L&VxK—'´¤³YHII†ò¥‡Æ© "8AÈÚ/,p›1 ‰á9'Cßaª*ω§™:P䲘Њ:3a‚ŠÞ—L§T¤™ö!´53ÊÏOâI ;FFšI´ù @­?RtÔÈê¡"P;L ÀÄ£û’™&$åCþº+1 ؓЕ¤¾p¢•‰¨â!(KTñ°Aý¨*Pßh@›æ.²šqAKt™ã®NTO—D3õNçŒW™¡‹Žñ@”˜@çÍ\>…öí$/—O¡6±ÖáË*O£¤<ÂÅÒˆ5³¥¡r–YésL+Ê Ö¬Öµá™’L.–—™Nº8…d0¡Õ™0;]ê…oä0¡ujÂe´±@•¥´ÑW%Å9¤©Ð'È ºD¢B_Èb‚é#rQ‰îü¢ÓNd⣘±._멌­–•rð‹¾Â,$yie” ˜ëmèDõl¸²Ü½¨2ÉaC+jÞÍ”º¼dOÓ¼‹‰©oAŠ™r¤VËL RkdIO$˜i‘åÌÔ‡ä"jò j"Ǥ¾n÷¥õ™r]¿Cca"sïYÆÓ>› ôVG«%û„3'ìl–êçìlêã vv¢Îìq½‡N¶™Oø^` ¢<¾}iÓ§¥|/ ú:›Å÷2,θ¾Ï`gëû;[‡]og'jÆÎf—:ØiI]²M}ämµF™c9Qq‹²€fw7Œ“αœ¨\«þÎÝÙú}xN|K÷rXE ,£S7¯¦¼w¬¶šYá³E Pu{#Y?×Þ„eŸËFÔ@›uårŒo”`Zë,DQç Æ«Âda«˜A•(ê<.ÇÙö2¾Éª818ó²<õ:ÁËó€,åå .±sJàç°Îº‘T¯Ñê¡MµvvµÃ1(DÈ`"щÅ+àl0¤ÑŒ\r¹Q(æ¼¥èE¡ÒwÍ ·ýH¨*#xý³] ŠI7ØXêBj0$pª&Én¬ë(tO*y¬%öµJ}cöaäzܾ¨`_ ÐÂ$p¿ü”€FÖe– Ìæ3{…Þ0%–E£gB¤6OZY}m—A8¯a¿Q¬ÓýÆ ½6OœUYìme-±WÏÙkNí•({š#y{‰Òvõó(µ÷\×Çíḽ¹Á: r]‹”_ÇÚT´Îäš7>sÍÇ|EÝKbt­ –2=I‚Ý®™ò¯‡úè3‘bB)ôÄy:ºúa{¸;6@CIY>¾íaå>üBåú_€Í–»[ü¨Ïrÿ€J—_÷»/û[Q®(õW¿oŸŸë«ýæø¶­eÃ÷¾‡»úaðˆ­=b[„7{è‡÷ÖÇJk>T÷Ã*íõ‘òÝk¼ñ¸Û×›u=DýÛá Vh]þ{s¡ƒ‡GOë‡úbýZ?ÙœžX§ Fõèø´Žw‚ ,:ɆM6È?T '5DŒFÉ$ÐAœ–Ÿ÷»0‚Õåú+°»%Qþ±}Aààöˆ#yu<]7åÛÝÓöâ——›?Ö/_Ÿ7õ/Oëxw÷úüßæªz& cph¸õ°Y‡¤—Aq€&=.åîôëU|W›ýKÅCˆ¢úV…îà¥,dȘ¯ú€Õ úúF“ë×/VÇÓÝSôáËzûZ_}{[×nØÂ–CýõVàÓ¹è¯U†ï¶ßí£Øuð¸{~ÞUy`#³¢DWÆ%J: ~²Wù'0£1†7Ñ“ãQÄ$è6†ÆH¥ VUȸôéÄœ>iX†ì!Ñ<(k :©ØÖýüó4‹j v§Ž=úƒ†Œ0¶|Þ}‰qfŇޡî<ùñpbÝ·çäX5*ª4+;]Ža63ÜBGÎÒžœ¯o¢(áÁž.ïü8¾æ^ÒýrUŠ1† xÕÁçX£ B¾“Tuå“ÔFÔŸ ÔpH 1ýþ6GNÄ+Pè’ZʰÐFQ}håõåé¥ÐhM ÎY‘èŽ!üš` +ª²«Zs­˜B%Æ´Óf"öD0Äq´‹ê:¶hdYbV輑]Xй¥®°“ Xr˜ÓÊÊbÎy4 I îR¢NåÃØr½\>*Dy¤} Y} òeÔpo%´GàŸìWþ˜H”ùAêÕÅŠ•¸¥-š&Á·LAáÓeßKK”‚a8Ìéâ/ œLå[# ÕCw¼Ió± µLK{AÎUÕoý–/Â)zkbœ iIã§¡Ò¡?•hÊxÃÂ:“ªNÔŸªAü!úò`iIÓ‰€wŽú±§%á3d´u¨œÔ]@—z:ß:BñmªרÛÃĪ¡Ñ¨Woý³^-­˜ðwÒ݃ϜS‚ˆˆC’Ì3c+Á„Tó36…Óé&ÏŒM‹íÿuÆÎ`N'+‡9Ëgl¹hÆÖó3v ZY= 2ÖÀÃc&ý7*Õ•âP«)IZ ÿ`¹— endstream endobj 48 0 obj << /Type /Page /Contents 49 0 R /Resources 47 0 R /MediaBox [0 0 612 792] /Parent 37 0 R >> endobj 47 0 obj << /Font << /F15 6 0 R /F18 10 0 R /F29 15 0 R /F21 18 0 R /F24 17 0 R /F28 8 0 R /F27 7 0 R /F1 16 0 R /F19 32 0 R >> /ProcSet [ /PDF /Text ] >> endobj 52 0 obj << /Length 2647 /Filter /FlateDecode >> stream xÚÅZëoܸÿî¿Bý&£Y†ïG‹àz ‡¢œ‹>.W@Þ•½Êí®|’|Nú×w†¤´’Lí:ŽƒûbQ93þæ¹~{uñúS£ÄQDz«›ŒIC ™VŒX+²«MöC~UíËË£NçßwEwß^þxõÝëwÜŽwGl¤a˿’)q4¥ë—ü³Ã5¼ºøù‚Á$ÍXÆ *&Ó †e.[ï/~ø‘føø]F‰p6{ðK÷¸\ú‰]öýÅß/Þ>>‹`ŠXç¦gyO¹N‰¿¢D»Aü)ñ5áBõ+ÞSESt$ár Ó¥Èâ„‘aImZÝô«6iq ÐáÄ(VýWe+F¨fÙjôá=¥"R°™!ÎÐÀƒ(£q½:,¤)>øðl´ê…>E“Œ©=ôi*Ð0\DS†Hžiaµ&°e—+Á¸Æ'—’çm”ÉÙ 4 A(ç_†Fn4aTM…AUò”. q¸þ&qyŠp®P¡Ê…E<¥pC˜‚+-û-›óœ%Q‡ \fl'ß3èE$ð'‚×,×<¼æxÁ›i‘V½ë—lÑ 0FSs70f¼À˜1K1fšh¸åÇ˦ü‘j`÷&­p©ägy%¸È'Áż(\Àˆ?3=làž­$` NA”tS ¥ÑBi´P~ÂB™#Òˆ3xœõÔgm¯¦©·`QqBªˆe‘,Â)·3aÒ·†Ç[¥¦‘CmÇHZ §ì³oUù[]qcÏÙ˜˜08ccú\¹%ÆŠqhbô¼†­L}eÝÄE”•SÄ/¡L.£L9N„‘/‚xe9diQèyÀ+LV (¼ˆ(ÚÀÎT:SË G 4x: /"‹RÄ8d NéDÚ  ï4ð|Y$÷1ÕË"àrJ/Âfì:%‹¹ ™ ך|ŽKzz2tÖèØWuH"™ß¢¤“\ù¼vžæŽ^\/Ñ:ÄÔ©gK¢¹ûBp)Mµ™¢šP'cåyiE^\ï üBäâw—+)e˜.Û.ÌnŠ®À‘ì/DÂl\jî+;&($uÖ€Hœ æÌW@ÉÉHɨžŒ’×KAc@WEä_m«ä¡2\ÐËæSxk«}µ+šðÒÕøyç™áL`†#ö žœå×÷ñÓCÕmã¶mÅfSuU}Tê›0».ÚøýÁ³®n·—Üä]KüÓéÕ^mË–smò¢¸ð¨¯Û²ùåR©¼@.í«dôƒ„ORs²Hv„‡zñ܃¾f¯y®k”j¥*ºò: š‡MXð€ßÃy,œ'L6Åá6Ê}ÓÔû0bá Þ6=xr&A‹ü[¤ch~¼¼©›À—绲[*Ù8ib–ðqïýMùñn)SÜù(Ÿgr¡<’fReÁ—¨‡ ”áã âgÆš€«*‹nûj¶¿öìã‘aNs&JRÔ¯£CJ¦- ªXH*VrÚØô‹ ç?®ˆ©qãŠ8¶,9$[°Èè`‡Nû¸ÏYTf• ÷¤1ê‹z³ž…KÍ|×C@±JÝɼÐBżµ5RÈ‘M¹þ-!ÃЇvF‰Ô1ö}Hi 2Ø}—Ýþ Ì„˜¤AÒCaŸÝ1œi†c†Uº¯(,›1dg>$bÛ9uÀ9™ÙOLõ=°Ù¨ÈF‹Fqc„ 4…]i"$~“>¢5“ÛCR0jL ùSÍCF …Ô—‚bÚ¶+‹MÕ;ßà@eð#à„êÛ•wDÖ;¢„:fQc§]ÉÏ÷>AIE”;„Š>œÌúüÌl‰ pñbviLM"0=Ûç<Ëõ,–›¡š\ ¦L‚»ƒÄ>¬?<¾å&Û/ÐÙ™ëÓ‡"%¬bÄ1½ÁqeÃýO#}g)ß |8¤ç0Ùý'²“#:¸A`ëõIKpÙ%Ç8鈴|Ú·ó„"žOH&é¸Ìô -P¢/„“žLÃ¥€z?¡pÁÂ>ϳ|Íß}'™æØ†QºPZš^`uI5ãȸ_Æ\Íð“–f@ƒÂðeµÂÅ©ê>,µä(,䙿jÀyæ-}0Ò$HIâ8aðs*50N 1Æ KáæÛnÆó"µX¥„µµLLùIÊ®’iá\A›¿¤ò%pPRüÊ~aÅ%Õ¡ =êÕ8C8D·¹b*÷ -L³¥´yÊ–ò¶Œ£žÖÐØe0P|„¶|¿­B¨õ¯XPB†_†q[ì˰*û]wíˆr}¿Û„ס.Å—úº+ªC¹‰•d8˜ŒªñkÜŒÑs ~·«ÖÒ}¶ÀY¨Œ¯àmÖ–“¡X€Íí]à»®ÐS–›ðÙWX÷{dåj"±›° *§Ò+\æÛj¨Mà“?_ªCª‰rSøâÇòXèÀ`_wUheD!a.?0ÒÂ`S¢”ßÅ:Y9+³Ù·v‰@¬îqîmÝÕM s3‰ÿ‘ ‚h5$8¾–šÂ™±‹çÀ 7ÕÇTb Â@âOI.P¦»mµ¿Û} tñâ‹u^B— ¹ù’GƒDáö›ª8ô«û®œR*°C7=îõˆ iUÔ”ÓyÓâáXÞ†¾•Ï  úp?Ö¹üÏ鮳á·ú飘û•ùïAH­{O7Ó'¶|íÔY ÌG´òxú=?N²qÑö<„UÅn= u?«©6#úô`Šå¥ØG >ǽ;9„ Ex¬ëý¾ŽS¡]‰£i»2r¸IþÈŒ¿Âp>‹¶ó£ƒ"A’õFªU”´,ÚOaÆ$ð¼k|›#"#¨@ ÿSÖØ]uÛ"‰.A.ý" àŸ‚YÄÀ®ø›¤”Øo<*›P»KUF> endobj 50 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F18 10 0 R /F27 7 0 R /F30 9 0 R /F1 16 0 R /F21 18 0 R /F22 53 0 R /F24 17 0 R /F29 15 0 R >> /ProcSet [ /PDF /Text ] >> endobj 56 0 obj << /Length 2317 /Filter /FlateDecode >> stream xÚí[K“Û¸¾Ï¯Ð‘ªµ0h¼‘ÊÔVœ¬§6‡ÔN*¯S%k43¬ÒH^=Öq~}JŠÔŠãرO¤HèþúÝ€^Þ^]¿9J,µ0º½“D[3R“ft{7zSlçã c¬ø0fº˜—cfŠí&<œ®çã··½~ÅL}&Í3¢aŠß‡!Å€H|‡À œOÈâÃc9só?†é7«§ù¶|šûÕx±Â‹)f³Ý:._.ã¸ÝúW÷’ ÅÇølúô~Q."¡ïñÇlº-WË qôŒ&†ÍùhœHa?SIoKœžs^̦Kw#Šw8‰v³»Óðò]ùnpñ÷ërßz¼ÜãŸ)ˆõf~8&ÂûÕ2¾Ÿ/g«ÝÒƒ9_ooÊíÎK"ÈA ‚‹Ô3A$²úñÇÒ8ÂTHßÄÉl2™!BèjÈ}nI„Ü‹‹å(JF8îs+Yú0†Ò¬jøÛjÔb…8ƒð¢Éa"V^Ç ÍH«i$Œ19r8‰„ütUM@êѤ6ì» :ÅŸ¢jšË6fTbÏFœL×ä™Ã(QTU£òóÝœgÅ©W¼!ÎO.¬Ü,a‚Ÿ›¼· Kðs4uE$Æò]–etVt"'ú Ïû¤Ð§r¢ÓƒìGÐÜ$Éj_´ÂQF,2›*û|.ëÐHs¾‹ƒKj‰U änÆ ¼h•/—ú[Üù­q‡ÊÏC(£tÛ€` hzçÓÊŽIÍê:B\¤ë&u4?¦s„j¾úG–`CÔ!;óš^'3A€S"U·‹44vÅT–D4G»‡óßV„qägã:Š>·œÀ<šj£<(Ÿ*d8†².ŸKTèņ!‘0ÄÚâ'^ç/dèY$Ä.P;Cì‹cˆ !¡gQ9Þ_å|Ê ½T§C¢m83mÎÌ|˜›(Ñʪ¨'Ÿx‹ïj£*Wzzù4î] :n}•YŸ\>Íoû-ÏûknNµ€cU®M*÷×YIJ¢@4bÈ'QÑë@Ëa25hæÖ¥§Iñ¦³WÑ–¿‰\1õš¾ ꜛˆàM˜Ò‘"0\ jýÛÄYít?<éžeÿÍ"³á> ÔX/ÔòQî´ßÄE4ÿMŽë7õÙáÆûãæƒ)gX™Ž‹ ¿ˆiù­ïq[[lV‹ëº†_³Õz=ß¼÷MçÕònžnWÙø€Y…8”˜ÙDßxìz¸%~\ͦ3)¢…Jüä„iã<¿»Ðã §U3]ûf:^V ä¹|–¡%ž­îŸxø@cEgBÏ\†åãw‹ËÕS9]¸_¢PY™+¤›ÛnŸË‰•±!ßÂ>5ey†æLXpemU‰Ê³ÖÍšÀñºm6`‰ûLkèN)zQŤ ˜Ô½#TsEi:+‚d1n䑊2+Š•Ÿ$j•A‹uý?ÿÁ¿ò)jºªÚ¸ö~Ö5[ãнuf?ìw¹ëј+XhÔÍ3¸ Šþ TºñD;›ôëi¥Ô‚Œ'BçÓ–-[s`† ýÕ©m#(À¤<  VŽrÌWìÒ 7h¯õ< ´»…þ|+­³fϵ ô<.ƒB±ã"}ìé±ó»q5=;…£ìÆñPáuIP™çSSŒ– o0ƒíˆq¦Uiü%ßC÷Å»I=x/ª…Ì© ?ÓÈ瓹n‰Ò:¿‚Q Ó–Яû(ÔÐú" «ƒlØ‘Ë=ŠýhüĶå/ù2,I³ºQPJ*Û15ü¹7æ¹~À?[¼-V-†ë®tC%5µòI—Õ‘w³žÇÛݲüeïKYL»1„Ó›ðø#ë„[ÓÞÐ’ØfÞ¤k?`ºÍ§½„šƒÛ|9K)4˜ƒÈóWUL—wáw¬Äß¿û"/ÜV™Hã&À5(Çi5‰E½¿æ8¯VìÓ÷ùl[†"‹cËø>~¢"Êøm¹œ­çOóeuÈÅ=ÃŒ¿>H³Ý“Ë«w‹i5kxþ8ýÏt}WU)u2=ChIx~0Bstažt÷ô&\䵉ïpª51FùtéЃC@€¢¼oÝ©võÃíÕ/WNÉQ(ƒ*/1 hötõæ-ÝáKÔ ‚F9úà‡>¹áÁÏ/F?]ýýê¥;“ÕÜÝ”Xàd–úm`OÀßZ¤ª5;ŽÙ¼@`ͰÛ>ÿ_É#@Á…ôðP8‰'³HµÓœž ¶°×ÐXÄÐXÿÿUŒª*Z„‰y³À„ù´0ƒÅ·.îÌÆšÆâ0ÐIè¬ n:Oe€MC§ÉÆ´¤ní7©Ì”)ylij(ºÉ—NÆžºƒ®gA(wNC{$eXAäê¬F»GuM²N“1`Š LÚ˜¡5ù“ò^,¤ -‚’pÌÁ†¤°DTÇ ‡²¨ú¢Iã“:kè\­g+[N±(«úÏiŽò\a³Æšlvö U²ñDk­¸ŠBVË– ùOÞmÂI!»­H+22cª×7!?‹A™TÈ?àÂ@ùI!ã­y !c¦Åᛌ‡”±’°»(cZ5cæþʉôIcÆèØFÄÔêDýÚDœ‹çÉVt¯~Zd÷–B4Ã) 1Ý0ü6j‰¢´L=ÁŸ»—¶Fòj˜ƒHMKÔËozò™é FÙƒžÓØÊøK¬¦Ä =Á²Z"ÜÃè‰SVž¢‘híožqH†?ƒêå·ÏU=×åÝwb@]£ÖŸØMT﵃Dñs‹ê)A¨0©ž2€E.ê‹P=|xÕ³†š¨zÒík·àψúÁ?ùî¨ïQ&PÑÒ 5:ÿ¬³;¡Z¡Y`e&]BWGûý_uøÑM endstream endobj 55 0 obj << /Type /Page /Contents 56 0 R /Resources 54 0 R /MediaBox [0 0 612 792] /Parent 57 0 R >> endobj 54 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F29 15 0 R /F18 10 0 R /F30 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 60 0 obj << /Length 2597 /Filter /FlateDecode >> stream xÚí[mÛÆþ~¿‚È' ±6ûþÒÂì6n E‹;´â %žÅT']HÉ—ä×wfg©#u”Nò)ö!Œ3©ÝÙ×gf–¢^_]|õF˜LpxÙÕu&¬g‰ÌÉœ’ÙÕ4û>ÿv: l~UÝ”£®¾»øæêâ§ ‘qø'2)a½‘™ÕžYë³ÉÍÅ÷?ðl “ßeœ©à³»HzƒäвyvyñÏ‹×ÐÂ2l_€Ëɲ`,¬d"¨ÈXïg,½aÞ¸ßÉYØÀ¸Ï¬òÌyCŒ_Æ’[Ÿ‹=Z+Íœ|šÒ xjmú¼ßrÃ%òýê =AAk‰b$2ΉjKxÛR •vò»i^mc˜6f³K¡ &†“ŽI0Åq‚ ÉÕcºS,Ý ɲ±4ŽY)³1Ú¾ƒ ®öbÀsf¤:¼fÆûCÊùb€Ÿ1p<œÓ} ¼A ·ÂÖN0®Â¹ü¾ëÆ­[ø öBFäj ¬“æD€3‰>Càw^ž3×½M§ô¨À¼³'B€V PxFÀ¹|rìoˆL%ŸÞJã& °‚+1þrwOø>’G µ¿SÌ "©ô‘Rµ)J0áU¿J‹oÃ' ìp݉r”°ÌkyNRç$õ\’”IéO”¤¸b2¨N’âÏ2Iñ皤|` çg°P²ãå«ËÑX©×åj]/ú°š•t³^Œ¤Ïïð¿²z?I—¯Êi»¢©¦ëbžÖéú¾úÉiø`ÊçK£‰?„–yµ"‚j›çr!n>r‹ÒCr ÊõšÀf}3kaóå5];i’ÎF"/VéÃr•&lþkY/_$Óe u4~j™46sÌñ”Ãÿ1ˆ]É”‚~´Cw—è,ŽG2y™Ué‹”ê!KÃD0™fž§â;b8Æà†Š ›tÿÛCXabzȲ °B±Cõ’ÌÂ_ÀU¹|^ý/:ê®jJš¹^Öt„ælâÓq¬X$Iî™ô²_/'¸×l£ \\—smúÎ2àð#,æë"R€ëp_üf^z›IhçÓ¦ÿÝa%¡1îнåBYÀ2§7)‚Æ^¨ü’ä–­€ ø¡ „ÑXäðÜÒ†¢ÕÁñÛ¹¾)ÞáŠ_^åÓòºXÏWhq/ó» b5Ž º.oWÕ2ÞK]#èž7lnÄQ iu{ z\åÿž•Qú:m<‹ï€!zrnm‰ p[DqMWâ.òC+ÌAÐÜ9BGn(f`dÝ”×ë9ÝOËÛÓD¿g,(ó,¦)lI\ÜÞΫI&‹*góE &-A\e¥¸çÆ·Biˆàºœ¬¾ ¹Õ Ms”ˆ`h‰;€ùŒ¶87Å8†`mÒÇ "Lµl"JÚ:R&ÈN¯)–«Ƞͨq%ðJ ]š´×Î*}$¹ä&vh“¨Î.éÚ Î=Ȥ‘¢ZÙ€nZ‹üÍÈ«œ˜îŒ‰Õ¬ªcÞùò]SÖ°‰É ŠQ¬â—S>•Ѝ'Œ5%Æ9Þ‘j‘¼Y‹Iù¢]UÒÍ®x¹¾ýp“†&ÀqÃ1QǪósu“•ÊF;Ieˆ%‰‹Åû’&*ÚMèÀüi³N`Jl²ÄÛŠÞUó9‰BIr2Y×I”ë$ó,É6)š$ußD4†öˆTèv g‘¿O襤„¯è­¤t]/¥*h7àB s“y„Isã~¹˜V‹÷}ºi9/SÀ',Åñº(‰¬ Ç›ºLsˆÂf ^…Xú Ø|‘¶Ég)û?ŒCô:äÌ6 í& =$¶ò6¡ªŒ‘´Š  *©¸ŒäÒpÀ(%-$ìÇO™¸DÖ š‡@',´€U:¹ ‡ú%ÀOë–´L½ Ï+Yºí¢m難4ì‹¥N¼·ÌÄRI½o¦ZË^Å ÄŸÔåMÚª¡1ä„WŠDðâßK¨“‹ñ«bŽN•Í*Šæ·h0Ö¯fœ,ê4ØÌ¢…ï4ž 7t„Ì^·.»Y6hA¿œ¯o4mc«âݼ$*ÞëÞð¹ûùë¯q踴ïtÆ ²òhuA>÷jã %8.e,ùTß°œ¬ JÍ[%á Ä·žlþc[©'¨bh;¼›¤V=ZWÈy¨E…{¨ú­ÿI4ºÓ-Bz :SpNK¼2„gFì<7dÉ\ 5¡ ïoBñ ÑmBñè4¤ŠfRožW¬†· úþd…gy4ýË䟟owî NVúclô@B+{6:¨ï¤óbkDèÈ;F¤Ób׈ƒçEß=Јê1#ª°eÅ SÞ mÞ„›f]¨¨üÏi!0NGíâù´Ô XК!áô÷v¶Ë ²Ì²†;(¤Üo` é9Æ”ta+¦zç|ÀÅó!yÓ!Rƒ§GãÌa:ËCu–Ç錱Eô)õaÛ´éÏR‘Z¥…Èoˆ‚Š’¡"žVm²UÛòQ—;”¸vIúé‰ËÅmº |I>ä/Hð‚^¬É™æ[¯Ú\aO\Ö7‚ ë—ƒ&µLÝgžé€¨†Y磨¾‡âþ>’¹`HÔDö/z9,Mši»I" ŒbÞj<‚3eR$ ¿³.œd<¨LjÐÚ?ñe9á<ãNÀfmßtd¹§ƒB8Ї(‚Ü/‚<Ùø`s· îAw©83!t ïP\Z¨iúDŠ?`úÄçuÁ·(`Riº¡&‡Q!Œí…Zzä=ü”:>µ Ûl·vÄgм·™k:nɘÍ>&äXp(l[#È‚¼KºÃ¥B²à͉\ L¹~^. ‡¹4|V—~œ|§þ8ïøžÅgq´ºæiꎅ—m¾Ázw‹˜VöDÌð¿çø}’ºnHÝÁ¯¤à¸®¬>ü×îï»|ÿ™ îh]ű* Yàã‡5OxUêèïí·[]‚«púOÙé"‡Û%d*”?Q»„?!DŸ<Ö. ãáˆN“™zL ƒíÄ¢?>ˆ÷$¿7ú(¡uO…¥Åg‘]Ok„ß »Ž…‘é·‹‡5|ÎþD-<> Üœcò“¶%Ã%¿÷NŸø¾ÜñއuáÀÊ/?yç*µˆ¿{;¸s…ª)ƒ8¡Ô)cÏX> endobj 58 0 obj << /Font << /F15 6 0 R /F29 15 0 R /F28 8 0 R /F1 16 0 R /F21 18 0 R /F30 9 0 R /F24 17 0 R /F18 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 63 0 obj << /Length 2487 /Filter /FlateDecode >> stream xÚí]o7îÝ¿bÞnõÊúI-î!½K€‡‡I Œweï\öÙ뤨™]Ëv®—´z/–†¢HФ(’ëï/Ï.^ SÎ<÷¢¸¼.„–Ì*STF0i\q¹,Þ•¯fN•»vöáò‡‹WÒá{æ¬*8!¾çBÖ UΤÕÖ_gs%U¹ÞÝÌæBÃ&Ã%ü®DYo—9F•aÚU‰Š.,ó–G ÄëB1oœ:cTˆ1Ü~†U­ƒÆhUý„U-\]®¿U­c®òOZ•"\É iÈÌ‚ûêÏdæ#².GT¡°òó‰&M>tA„žu¥Àz`÷¹T$Ô›æS³½!kmgÒ•ûMh›Y‘ÞØõ~x·à…ˆœq.¤åÕùø ¾æœIߘ’Ä Æx®ÚÐÝ‚J\}ó Ù…õ=>=,iȽã€ÄDu ª Q“àGBšòåu»ÛEkÊúö¶ÝÍ”(i6uß8st$ÎðÆé^&J(¤ãåË™(‰.~]p¤{Œ½ØmpõªÙNVQ?¸Ø7a™ðá9ïÅm‚-ê.¹‹hnV8ö]L 8eé]^ÔxN©Ë+R}DáêîZ!'„5 ±îi\‡ºKÓ#¯⼞I )Ÿ(A>˜kÄÿØ&1o‘1U¡± eJÁ`B NB’hH‰Úp»nƒÒ€åb·ßÛH¡Ê˘Tº„¬$"ðM[§¥¤g€,AºUGs”“V7i§$@³ ¥]u_'&¨_ ú?ä—ç9áɱK:0vtE€e\ÁM<]$º[íŽVð8.È<˜ô€a»Û w¡£"§>´›Ôc„+ß„>RN¥ÍÝÁÖå²²´Ù`j!ZŒñ©ÍÑrŒ ;``¬ƒp¡ðª{›4ätÙí74‰Ñƶé>¦¥Å®Ê€ùu<§Ó‡*m»êBK‘•šÐïš~E³xC` ¤Û-š°OK=åæjñù:NÍ£w(£Ñ;px¤Ž2qÞž«GÔàÌT¥B–ú•*­žT)–nªRU•UjüàtƒJMR©QƒJÍD¥fP©Ñ‡;˜µ pycÊC(Nøñ‚›d ¨8ɆöG)"A(Oúƒ /cìЇ°—#Ëò'÷ѧÁëüJÜuó-ÖÍ bÓ.†=ú»$œ¦Ë© -+Ìz¡¸HqþÍ›œ†%$Dâ4I8.KÓ£®Ÿš³Ž3Í4¥åi|¸@ï9生ø\'¬i ëcÅ«>6Í “@jHÍé‚…¤®Ì-%3Bdõ/@«î×®Å~"f9ͱbb><¶/nòô°réeˆ@¶à¡`Ål¹bP«®=íÖžu>þ/Nág™ bšUNNRì¬U*VU_õ|ßæ*ÆGÿ¬i¾®ŠÄ¯TÑS̾U–†jPÁID:*~Í‹_¯ùßÄ75“‡·õрដÑJUŸ0ÌïýdùBygÝŠÅ£¡xê_Ðõô1÷Z<´†~ÒÙ²ò%/€µ‡’.`5…3È^nÚzƒ‚ê3„Rý‹¥XšÄÈ]îiUãmÝÆ‚?!SÛ¯1ûÂMPHl¯XŸøÓú¦ª%Sœt!J(£Ö=MO“gjÆà vq$f²¤*,ÇRŽIÜð '˜1ž$¸š W–ù2öÇ5÷±ÞÔ"cšhËAúúcÊð#æ W\zûâ-YâÙQ¾]1yˆÆ·«6dƒRL\|ßEE–«£«ó~t¦ë6üœM4!Û·£Sv=¨o“J<Ș+«Ê×ý_ºôë3Ìê“òmI†£Š¦¾A;UT™ãدb¡[¥ô'Qg·mœ@FóX D¬õš&±]1ÝŸ1>@Ñi÷}*¾2FŒ¦ƒj+uvÚk¨(Ö÷[`M¿u ™¾‘ÉÛpaÙt“ó¹t>íÌHŽÎ‡¨€È}Z&ôpƒ…Ld»¸ô  Àš~œ:é«tû[w×Â9ÑÉ…_ sUàÖ‹Öú8ÏØÁä±Õ 'Ì^Ó°lâFSnwiaB¢…·GŠ8·HX¤Ê,×rXß„«¶¦–œ*—¡m7‹`×CѵIW"þÆB»}Ó6„Î^6¯NŠáXø‰ñÔ8?-Ó€å¾ i16›`|{ž×ëØù¸ëè;UžT°Y 'vÂòÑÛx‡±Ž~›çD]Õ5ˆ úWúCb–|áðØ„ Ý9õ“®ö=-¼¦ã·òŽL„€ëzÓ¬›ºM´©»@mŒ&Á»b’lRå,FÁ[6Mjô€V»,Gê³ÔTƒñÐÔƒ•ÖšzL§±;þÞª¦=(8w 9<¸óX9»X9Êf[&l*î-Õí/„‹kòž¡"§VL¨÷K]ø|*Èé¨G…í€ËUê`êÓΈÇGV=„çp,ÆnFdúÅT3…¿iM_hõ.÷ÞC ïþLåÚº22!ëóWýä9SÕ‰‚0ZyˆêÏ)AUŒ›¯šÿv•Ó‡!ËäáR¾ËçÆ >ª“›· éÍß.)§Õ¶¤¶~ü·j6"0uÜݤIÝ¢¼D?ˆwüÛ9Qø{ÂI_Òg½è÷ðöÜpUßò„e.2"$_h™UËêñ1Á…$Ò*…(;6=aÖÅ̦^§ H›]›ÖÂ/5f@¨îïð阀TˆT…ñ¹†ü¬ä:=þªøÿAF3ç’{ 3ü¾û¾Ÿ¯Ó endstream endobj 62 0 obj << /Type /Page /Contents 63 0 R /Resources 61 0 R /MediaBox [0 0 612 792] /Parent 57 0 R >> endobj 61 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F24 17 0 R /F29 15 0 R /F18 10 0 R /F27 7 0 R /F33 36 0 R >> /ProcSet [ /PDF /Text ] >> endobj 66 0 obj << /Length 2242 /Filter /FlateDecode >> stream xÚíZKÛF¾ûWèHÁV»ßA°ñØEŽ“ÓlàH‹‰Fœ8»¿~«¤ØTS¤ÆòÀ|"Ù,«¾ª®ª®îŸo^½ýHÄ‚`d°!‹›û¡)£RD…^Ül·Ùá~¹bŒeì½òŒûÇC†ýhYûÇf[ø›u^þÕç%ÕYQ~ÚÚkƒ–+ÎEvÓÒÕÅú°ß„‹ê!fwØ2/Ϥ|\®€Ù¡®Ë»]Ù”E½üíæ_ ?FXêÅŠ‚ü„zùù­}÷ö#Õ}U5âZ,°'ù7&<™>‘ADi0ö4ÌÜmKµ;|Z®jyê¿”!¥uK^¥8*$yÇð5(J©EÙ^^'Y$M'ç]Š%GRÓ£&‚ü–bD¢¬åÝr¥hö~¬²)¦+B’0¶" Ü…}‡û àþ°\  §á†i†pã”@Â$>˜lLõÍ‚©5iÉÞ»ð`!%£¾ûÌ‹ÀôžùîoÔ~ù@`n}w$0‚Àmó±!l$ÝQ ~Ç}wŸïÒnNw©Y(/ˆÿÌ2Ü`jU7þamkí¡\‡—ëCUu¨Zö›Ú6Í÷þZüéJ¥½+”üСÚU¸½×»º¨þ\ ™åMyŸ¾ ·Ep®º· ø¶Pàúé4•ÙïK’t$[Vu¦U¶ÍkÿìK9‰Ä‚*cœ}.›­ûÞS箈ӶVpϵeÝÀ?ÊÝοÈ­Êúk“À©hÖPJ̳KêJËÏÇÅc±Iiõá¾r0@òþøX–`Ŀʇ lz沪xÜåÎ6ðPäÞZžÎ× vüÎŽþ×ß—M~`=Uþ©°:P“ýþä8Ãçy +ƒ@ÄžÈÂKüä°ì馜nPÚbW8»"™µErϷ샕°ö·Î~{PyãHöôè_äuûáØ¼„‰ÉY71L9¼@\tÓƒY“¥8E³q<²`cf„ÍzTœœ·A.¢¥ŠâÕHlÑÇ`”§XC$%½p•’/Òc^€zãí׺ wÙ÷m²e>Ù›Ó<ÄŒh“0;Æ/m¤Õƒýêi×”»²¨âöJ×¾ñ’ÀMøwÿÝàß©.k[G¿eÈwhÀ©˜ŠåéZAÖ÷ùÎ ¬våŽë®Ü\]vpÔÆSä.ñùû ¬¶¡Ô@Ö¯›r¨ª"`Á÷‰~ù%emÊ‘&Ã\3Xš†w³é~Ò¿“*¢ø:õyrnj˜ Ës 5¹Q8F©§XDâkx"”õ¶Ž,ò$wM._¨^<‹€¡¸ >.R•RñªéuŠ[´F¶§³'ŸcOr™A¯\ÝN9È qŽD“õPOƒyAµ]ÿ¹Ëdzç¤ß¡™™ F˜0)zkÖQyÉ,y“ Š> /$nr=lâ)G;?‰¨Ô®@Ž'M†E† Ì¢—™#“îò̦¹(ü B5RØÊa(âé¯Ie ¦Â½‰ìÚ:}]¢3 l§—Vxö<€Ê¤ ‡é<à¯D6®c²n,¨@Òþ¦]ô¨N¦u,©PÇÎ*Äf)Ä/Sˆ)ÄNr–Iå`F¨kõ‘'â=½p}w»\I> ¡HQ=à:Sô¨Z«Ë9Õ€­ñ~Fªš="hæÏo:pS¨\M2paÄ0{–Ài†ÏØt¡Ü7'ÅÐCð é‰õ~FùqÖ…8¢œ^!‚ŒyÐø| áKׯ“êØ$vlåÌÓgþŒÐrüÇìg§¢-j£…éQñ~‹;Y€»p8²¹ždCHÆ%[§ƒ.‘ò|9k6ÌÕÞþM\§¾î:­NO*BxT OE…é¹9V7GlÆ@à³@WA¹;w±jÝ’¼dÅv ‰Ý€rÓ‰"Ž-¨k:ªi S!Žé â9˜Ìui¡2š%:ö0/ŠÌÃUÏ 2¡³,r'Q‹ù,l“y…òʰ}<È+/³6™‡ë¤.'™¾øü7¼/x±Aæ¤ìÀÆÃ†FäXõ^T|qcæ3LEbAÛ–PHtäëÃî)lCôeæMòd>måÄbç’ƒVº@%HWübү鴢s*Þ¹ö›ôÞVW®Ûþv¦ÛOxû×ú3]étóŸ4í’ñãV,›±K6ªzç¹ÔP¢“¥btªe®žÎìé_~¢Up„ÿ¤[YHXéÑY\‚OÉA›t ɸyÉãNŠù$[N¤Òi=Fà^p“ŽžéØizÔkÜ%½+­.§mN8¤äiB¡;â2Oȯgr•29\T–<_¹"Ôvð8sfÕ4ô§ ÕÝjˆN‹Â øWK7OÆžZî’^ÈØõ›‚4œ'7·w%Æ9F+Ê¥ƒ ò4¢&N,"ÛæÿË+·w+³r¿®Š‡îÔ›}í÷±áÝC‘ïÃPãGšòÁí¬Ãóðìw‚ñ&0-×~WY¸wŽËvI²ƒ;£6ÊS;Ó÷v£Þ:•?­¸þ\õîào¹7ù£;m¦»Ófö ‡öçÀìûzë΢}ÞûÇ2\›ünö¥ŽK Bs‡íO?Tšw^h‹Q™ý#àçØH!î8yôQ‡È“;pç—EåPÀÔ&Iƒ´åq•Ê«7¯þ~'U endstream endobj 65 0 obj << /Type /Page /Contents 66 0 R /Resources 64 0 R /MediaBox [0 0 612 792] /Parent 57 0 R >> endobj 64 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F29 15 0 R /F18 10 0 R /F21 18 0 R /F30 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 69 0 obj << /Length 2911 /Filter /FlateDecode >> stream xÚí[ݓ۶¿¿‚ÔÄ‹LÜÄm2éC'7mf?Ð:žO©î”J<;iþùî DR %ÅOÆÓ'BàÀ.öóèåíÕõ+¡ Á™ç^·÷…ͬw…Ñ‚vÅí]ñº¬šÙ\]n–ÛSK•÷ëMìjêØø‰ µÙ6/ð—…r[/ÖOwñMÕ6š‡™(—›ôë—Ù\¹Þ4ËõÓ6Žº¾ úPý·Šôª\>-6õcý4[6±«ÚÔ³7·ß]¿×ås!™V>®þ)ÒWXæ-$_;$cFÚH%U_œ)E‡ìf6× J!r£ì¸“8 ÝäFtÌ h)¾@6€—úEv0ƒƒÙ–ô4&à,&~âšCvjÉœíÔ7¹A5SZµG4šÍ&<“^•ŠH% ŠMáÛ•]ÓN-sˆ"’€( “^SJœ=¼€°úœl- Î-Z”&XQf8i˜yž–ÈQ-é+ Rs©96Z”ŽoHZYÞ<3ÞeM_PmÌž‚$/Ü^m\Û3ª6àÏÔFØ 6ø‚ð#j#åÙ£ûQ¥Á}Ñâ ɲÙÜY]þðüWjÊŸëEƒ>VY[¾úýÛØ¨¸Þ,ë§E;ƒç¥Æýój@8•—}ŸºsÌ^Çè€ÏfùXÇÐÃDwîuÏî±PŒs÷<8®279k€ÊhfÂó[f¸):T¸E`d™Ÿ×0·÷_§Î cóê³æ=_èÍ›5Ŭ„î¼$ht=Jˆr´H·ZD[úò÷¯cc¨EAeSRõUfB 4þ”J ô`¸€‘ÍÀœä Íú.ŸG¼ù´ m3+£+—Ÿ~壊(‡ŠˆîL)UÞ>Pò÷¼¥$SJr<¹… °;_IiinϬ5{–ç`]Éã°1ûÄÆc…ÉéÓ»j~«rSo—wÏÕj›¦ß$uÞ2ç<5‚›c~‹ÞQpô‚·ä‘îê›Û«ÿ\ÑÂxÙ˜Ó ¬-´•L*],¯^¿ážü®à¨Á®øH‰…‚F¼*~¸úÇÕË´#Þ€ ÁÁ¡p…vœi›Bô"'”½C)Ì%&Ñý=› ŽÜKPsÞ¦˜£jÜdbB(3ńԖ êrÑŸVJ¦ÐùiƒOqö¯pk¸q¥˜¡&‹·GD=ÑøäžêÁä"nô9»‘ÅK`€ß]fñ2:Ќ䃯 PçIöüZ¹ø>õ¿Æ„¢C¤ˆÈ©˜*®xy£¬¼ܨߨÇ÷×AãÄ$ßs~}!¶‚U~b¶ÖwÝœþäZp9É5Ç'úò˰Í=óÉÙ–ÐßìWÄ6fòl+“ï‹°­¼ÆjÑä,ôD¶±Gbëq ®Ë5æcB^cá ‰oǸX÷_IËÑÈ Æ­cÃÎeÇ*Bû‰Ǹ¬û|ÿ-Å5Á·QhòB|,ô„û=á»÷\§²7d7èç•ïÊ• ð-%„XXè A`âŹº pÜøË+À¤ ”W¢#å°êyšSÉoCÅëaWÒR»Þb1[5éÍýL”„wR»JÄ3¬y~K&&ŒÍrQ­â«nµ{>,›‡ØZ¬é»÷3|]m–4AÒÁtÏí+‰êäÒ¸~,q$ó: ô·|ŽkÀRº·#[n[PG +„aÆÛÌ^t沘Uš^Þ¾ÌM†i¬ƒ¼=[í)j—\6ù¡¼ôôSÄô½Ë£…7CŸ^vž$ŠM†5ôf »›ù­éz›Ž>EH7†õSsFåè‚Ú4–Ým‚Y°;Dýô`H”OR8ˆ[W"Æ}.X5‚nxí†èúû¼,&æb Ù6¡‰ê ƒÄ]lÃP¦²ÃQŒ}YVº£vA0 D±VcÀ[¬äðDºª&²±\êØÑ~SÅŸ«eÓ¬êÔ®6ïêM‚B(´×׆æ¥3Ç=A+Øx¹©q@Q®B@ü;~~ü%¶"rl˼PqÆ;Z}7b¹s Ä<îZŒö˜ÀD‡.ÊͶ‰¿›zóØŸ»iI1\›®JN¯>,W«Øz¨Hx ¢ƒÓaMIü+®û>’º"HN¯^§¸6æåÇšSÜÜiÁÍÜ4“nZèîÌ0Ž1÷gþHLX_Ö Ât˜üøäQõ0kaot–CöûSÝ?¾’±ÃwÖBÌ)‘az!§ •´UZ<-¢gò0h@¶ix°Íx|`±^iH‚–CÙ³ോçGzý¼ªšå{²ËÔ·Ü6Éxñ×ýfý˜Ø}˜Æ­7ùS}‹åÓîê.ŸjËýALr8ðÛx6’¾è`¶è&0É·Xœ¢¸ÕNH ò“nḇ,§Ž™?Ö®\õÍß÷Úà¶Ï;d˜f3=LyÒÙ–¯yE Í^Dê—“`RØB*Zë$Ô)óS ñn0iƒŽœ·°ŒÁ(ß•± îï¦Ú}ÖpôÖ¾r°€F‹Î‚*O@›²Ÿ-‰ÏÏ–ÀÓ])w[Ç´øðÿmi`KòL[-1UÃ'FDcÚ#' ¾Í/ÊìkÄ1‘GVÒxÓƒŽ«t&þ~ìîžB†÷WÇo*8ãÛ0¼EÅ ï@}’¦5ù-#!ï•\Æõ}ˆõ+¶]ù®nbç ›N~õ ‰ãÕ^Ù´SšíÚÔ7ø,ù:𨬃‹Aÿ¢ J™8ÕÓ®SOˆ e|ìN h}L\ZìHê ä­ÑN|Ñ«Så¤e”íU´'ØI¸íKÛêâ‘ p×àç@—ÿ$™´ò<< AÍ¡¤‚íOÐ7,ñ£žH¨x€ïŠºúf䊨–ê8V~<ï^ àØp…iì†$ìç&û¶sZÄ—€…žÌ“»ö²ƒ„1gý @Žq#}OâYA¡fÊi(î¨âOÅŒ?£­;\# •®nfäf)y’ávÏ=Å ÇÈaÍI‡£R¡*4¿Û™WtHfÐå]ÕT±•uÐÇÂq5´Š+EØ>ú§ù8QþÚÌDlb@Ðå:,?hÂÔÔŠSSk[§.º®œ.ß>§Žt¼ˆßËØqpʸ¥ëÀÜ—ß×ÙsR¢RÃpz1ÖåGŽÓÅÇoÆ&Žñ W¸ÿ˜YŽGS uªµv:z¢‡¦œºp;Üú "D„?"d]ûìÚ.Ö›ô6þۅΫ‰ö!QtNz_ä æX€Ç¦ÛßE|~Ú¦µ‹%}QßáæiÇQ')$¼E¥Y%g!y/O +绤úË/³Sé7$šíC Îí¡0F¯°ûšäI!ü·§‰jµ~zGM™t:w<Ö¤÷޲j @¼@¾Ž„ÿÕ±ÝfáÛD·—<ýJïË8RL.•Qý?*|'Ê'·VÛS.‰Úü%Ñ}ʤŽ&-渃d-a¦t[$%4ФK’ÒäöœÍ¶¡êw÷ endstream endobj 68 0 obj << /Type /Page /Contents 69 0 R /Resources 67 0 R /MediaBox [0 0 612 792] /Parent 57 0 R >> endobj 67 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F18 10 0 R /F1 16 0 R /F24 17 0 R /F21 18 0 R /F29 15 0 R /F27 7 0 R /F30 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 72 0 obj << /Length 852 /Filter /FlateDecode >> stream xÚíXMOÛ@½çWì1Våaggö«Ô"•[E¤€ChR ‰€ ©ÚŸßql·Ø¬qh‘g½óv>Þ›ÉÉbvtŠV¡†¨#ªÅ7…„à½Sì4ëÔb¥.æŸVYŽ:ºùâf³®nÏ·ËíÇìjqvtjBc  }Pº|ùW¹ƒò½Þ-q`ˆUŽà¨2ɸ Oþ.ëÚÌ663›ùÃ7£j•íGöe[¬›}\̾ÏPή*2Ú’bëåů›ÙÅ•V+ùñLi ÔÏÝÒM±œÀrT·ê|öyvò<2d C32Öw÷››»åöþ!Ëcˆz~©K?‚Õî°¨˜çgBcÁ p¶b4}gâÀM”ûÎC!1h95³Ò¡Î…#Óu–›à}ñÀ°œM¾£Ó(°Ê«•kоLž׳Ã|¨ë›¾#ASä*á@ Nò>‘ÖÍC{ðŽžæÎq2`VÞ«âõ0Wx× 1‡’.OV½wÓY%äø0«f Õ$W·µ¹a>í4ç_Å\wý7ì]j«“࢟(Œ>Fê #f•Iž*yøMRÖ½‰Õ²ÊàÉ´2)©†,DfjƒÇ©äÊ@¢ý©”³òvQV"D¤º®Z´«[´û”~ Ú5=´k‚¤=S¼?†ÖIZ‚4mmÀ \}¥ $õ€D+ŠjGjƒ4L6Pä({¦ ¹ñ¡³Ê÷S +rP‘ÓDEþª„f•[aÕï<ôuþˆøŸNÿy:5i:µ24qhÒ)e*W1÷0•ŒT6º‘„“#¡S-\ä°gT² Ýý@^ñ{2 ¬p?¸)Ûúj#ߟp~ªÐ÷ÔrU öUØMM:ao«(ï( AÐO£¢äXgêpµP¶µ¾-£=ZOžÒ4(¥3Ñu ù %µQbË—¸$›#O…R ž…®**QòЖ¤Ï—,)ãÈ–Äðž›(G ;]=I‘åx"É9Ì\LNtÅ6û‘—scR“ÛòÓÒ©¡”æ"Ö ©)A±ÊL;EýA°ãÊÇØò’Æ[>%ÈEh¾¼¾]g¹Ø˜óû,gæòñúq[>]-·ËâŽKg*¦];Xô»¾¡œuB ÿ7âèx© endstream endobj 71 0 obj << /Type /Page /Contents 72 0 R /Resources 70 0 R /MediaBox [0 0 612 792] /Parent 57 0 R >> endobj 70 0 obj << /Font << /F15 6 0 R /F28 8 0 R /F18 10 0 R >> /ProcSet [ /PDF /Text ] >> endobj 73 0 obj [445.6 511.6] endobj 74 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 75 0 obj [611.1 611.1 611.1] endobj 76 0 obj [511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7 460 664.4] endobj 77 0 obj [596.2 547.3 470.1 429.5 467 533.2 495.7 376.2 612.3 619.8 639.2 522.3 467 610.1 544.1 607.2 471.5 576.4 631.6 659.7 694.5 660.7 490.6 632.1 882.1 544.1 388.9 692.4 1062.5 1062.5 1062.5 1062.5 295.1 295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 295.1 826.4 531.3 826.4 531.3 559.7 795.8 801.4 757.3 871.7 778.7 672.4 827.9 872.8 460.7 580.4 896 722.6 1020.4 843.3 806.2 673.6 835.7 800.2 646.2 618.6 718.8 618.8 1002.4 873.9 615.8 720 413.2 413.2 413.2 1062.5 1062.5 434 564.4 454.5 460.2 546.7 492.9 510.4 505.6 612.3 361.7 429.7 553.2 317.1 939.8 644.7 513.5 534.8 474.4 479.5 491.3 383.7 615.2 517.4 762.5] endobj 78 0 obj [826.4 295.1 826.4 531.3 826.4 531.3 826.4 826.4 826.4 826.4 826.4 826.4 826.4 1062.5 531.3 531.3 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 826.4 1062.5 1062.5 826.4 826.4 1062.5 1062.5 531.3 531.3 1062.5 1062.5 1062.5 826.4 1062.5 1062.5 649.3 649.3 1062.5 1062.5 1062.5 826.4 288.2 1062.5 708.3 708.3 944.5 944.5 0 0 590.3 590.3 708.3 531.3 767.4 767.4 826.4 826.4 649.3 849.5 694.7 562.6 821.7 560.8 758.3 631 904.2 585.5 720.1 807.4 730.7 1264.5 869.1 841.6 743.3 867.7 906.9 643.4 586.3 662.8 656.2 1054.6 756.4 705.8 763.6 708.3 708.3 708.3 708.3 708.3 649.3 649.3 472.2 472.2 472.2 472.2 531.3 531.3 413.2 413.2 295.1 531.3 531.3 649.3 531.3 295.1 885.4 795.8 885.4 443.6 708.3 708.3 826.4 826.4 472.2 472.2] endobj 79 0 obj [597.2 597.2 736.1 736.1 527.8 527.8 583.3 583.3 583.3 583.3 750 750 750 750 1044.4 1044.4 791.7 791.7 583.3 583.3 638.9 638.9 638.9 638.9 805.6 805.6 805.6 805.6 1277.8 1277.8 811.1 811.1 875 875 666.7 666.7 666.7 666.7 666.7 666.7 888.9 888.9 888.9 888.9 888.9 888.9 888.9 666.7 875 875 875 875 611.1 611.1 833.3 1111.1 472.2 555.6 1111.1 1511.1 1111.1 1511.1 1111.1 1511.1 1055.6 944.5 472.2 833.3 833.3 833.3 833.3 833.3 1444.5 1277.8 555.6 1111.1 1111.1 1111.1 1111.1 1111.1 944.5 1277.8 555.6 1000 1444.5 555.6 1000 1444.5 472.2 472.2 527.8 527.8 527.8 527.8 666.7 666.7 1000] endobj 80 0 obj [777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 1000 777.8 777.8 1000 1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9 820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7 666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8 500 500 611.1 500 277.8 833.3] endobj 81 0 obj [413.2 413.2 531.3 826.4 295.1 354.2 295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 295.1 295.1 826.4] endobj 82 0 obj [543.1] endobj 83 0 obj [565.6 517.7 444.4 405.9 437.5 496.5 469.4 353.9 576.2 583.3 602.5 494 437.5 570 517 571.4 437.2 540.3 595.8 625.7 651.4 622.5 466.3 591.4 828.1 517 362.8 654.2 1000 1000 1000 1000 277.8 277.8 500 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 777.8 500 777.8 500 530.9 750 758.5 714.7 827.9 738.2 643.1 786.2 831.3 439.6 554.5 849.3 680.6 970.1 803.5 762.8 642 790.6 759.3 613.2 584.4 682.8 583.3 944.4 828.5 580.6 682.6 388.9 388.9 388.9 1000 1000 416.7 528.6 429.2 432.8 520.5 465.6 489.6 477 576.2 344.5 411.8 520.6 298.4 878 600.2 484.7 503.1 446.4 451.2 468.7 361.1 572.5 484.7 715.9 571.5] endobj 84 0 obj [312.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5 343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5 593.7] endobj 85 0 obj [694.4 666.7 750 722.2 777.8 722.2 777.8 722.2 583.3 555.6 555.6 833.3 833.3 277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 277.8 277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000] endobj 86 0 obj [272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8] endobj 87 0 obj [667.6 706.6 628.2 602.1 726.3 693.3 327.6 471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 510.9 484.7 667.6 484.7] endobj 88 0 obj << /Length1 1398 /Length2 7685 /Length3 0 /Length 8636 /Filter /FlateDecode >> stream xÚwPœÛÒ-Ü=Øàîw÷à|€˜ÜCNp Ü%X°àÁÝÝ!H‚[~’sνÿ½ïU½WS5óíîÕÝ{u÷úª†FS‡CÚb R€8Ã9x8¹E²ê2†<Ünn>Nnn^t]0ÜôA…!Î"ÿ ! á69 ü¨q¨¸9xø<"<‚"ÜÜ^nnဨ@趨sT Î :ƒ,ÄÅ ¶µƒ?ÖùçÀlÅàdÿvAÁV@g€:nrz¬htè@¬À ¸×¤`³ƒÃ]D¸¸<<<8N0NÔV‚…à†Û´A0Ôd øM týM k†ýåÐØÀ=€PàÑà¶9ÃCÜœ­APÀcu€Ž²ॠÈù/°Ú_vÀßÍðpòü+ÝßÑ¿ÿ­¬ N.@g/°³-Àì¼TPã„{ÂÙ@gëß@ # òt‚–€?W¤µÀG†óƒYAÁ.p' ìø›#×ï4m–w¶–…89œá0ôß÷“CAV}÷âú{¸ÎgŸN6`gk›ß4¬Ý\¸ôœÁ®n e¹¿1&ôÛlApÀ nnnA!Èò´²ãú]@×ËôÇÉóÛüÈÁÏÇâ°y¤òÛ€Ð}`@wuùùüoÇžÐyxÖ`+8Àd vFÿwöG3Èæ¯óãü¡`O€1÷ãúñ¸þõdú¸aÖgG¯ÃÿŒ˜Ë𥎖žÛß”ÿ唑x|8^8x_pxxø‚~ÿ™ç_ø‡ý«&ü÷íþWFeg@ø/Ýû‡ˆûß›Áü·lXÿYAò¸Ï ó¿×ß„û·ÕãÏÿ·þ„üßvÿw–ÿçúÿ÷Üÿø™ÿü~ ØÑëoÄã>»Áµ¡yTˆóC @ Zâhýß>e8ðQ!ÒζŽÿj#¦öYk‚áVv-Ñ?SxLîviB`àß/7÷ù5gåðøR=Îê ô(©ÿ,)ïl±þ­=Þǹ¡P úãèO/><"µyþÙm§3þx$ç°@ÑOT€Àõ¸ °?7xô ÿGv+7(ôQyæÿXúŸó™ƒ@ž +ô¹iˆ•èûê7-W•Òä[Ãâ [©,>sÐ/n7Ø(I,ï_¯@/¤“ú;q7ä™Ï¥æ©ï}kQB›´šo}ïÌã´Ç¶šÑgG‰{Fò¤kº)Ñ(8t¥¶}ï]}õƒž4"¶©0为 akæ\yt)zÖt/ ¾ÞÒÚ®PŸ+çˆÖ‹2 *˜dȵ̜"¥}ç DeÅ?ñÄ™<¿˜ÀÏùE­džîwÍ÷ÑÇh•7æzÊ{©T—ÖNFOfDJùäpŒÑGf7Y…dƧðSÔŠøL–`ø»¾ù7]ñSªúd´þš¤Ð7EâjmôíÙVPG}« #u ªOC¡¢MB9]¡y&8àúžŽR'ÞÑšíKUûá‘^«oü;Ržèa'ª q‚õÖL»ëg\%À1E5ä$„eºy—ÄãC:¹~òÚý°èÚ|ãî_¹œŸ.9ìŸØ‡ú~‚;™,‹tax ‘hßZjÖî&¿ÿØk×o\WIxN<ŠkÞ*¶1 ç}àK¨<}îÌK"ƒý½$S¨O%u…{ŠÐ F¡‡d0ªucmxHC1Ö-‰=qŸÙú½XrAëÿÿ;H;R)Ãt"‚3Í%À|tˆBò}ЦÐQ–dOä³Þs·|¹#c§43®>`ÝÄâvÀ4 jã_üñ\MÌŸ‘Ú =¤ÔC (l‹¯‰Úáj·¦˜>œCÜnï^>Ærl «rÕ¦½­è ¡»‹µS~Nº¾G6R ÐT:‰ƒ*dˆ]Ê«äUߦ‹’¯ŽqjøêOTº¢ª©°™¡ÚOÔ®£Ã^¹«ÎåQ™¸¡¦©h¹ÆˆéÇ+KO‡<ß¿¶ ˜/31î+È}V¤Óoþx-åîÑoà”§ðõ.i3ÊgˆfiTa¾T¥æº!£=AÃ-R’žl–” -ÉúI?Lî÷eÛ s|ц¡ €%c°yâCEóДÏËZwHþlrÈ‚ nÂ9áä ?èòM s9¦5LOùJüØôf" WÝw9=ÎZåÊäU±6v‰¢W Îg~kfÜw >´ÄŽ×&S‡¾r!}ô´+Äãécqñ‘+è9@Ó,à‚uËÉóœtYJñCܤg ’æú!ç«L}–¥Pàhã˜!ÖtšzQå—Ú¨2üÙ‚u|0ºKÌjj$K/ô¸3Çs‰çg:FçÌ»t1Ñkö ³ [6™ìší.Ã…¾'å-ÚBM‚ugT`Œ°gaõU €YÛ›š÷™ãyRÍ•vø»™Æ2 ¡­Ëìj “Nzï[v je@-¬ô•ÔÎÏ5>UîyçO}úVã<㎨ûT=Q2þ‡Èèê,2­gö?ãoÞÔÄE<³m¥¶MY,/bÑ0Pê='lo± ÿXÔ¼È<™ à=ßmœÉ®i« Î+`¬Õ®¦}yIj<?ln"cÿ&ÖÂ%ÚYG»­MQæ´ÔYžÁR~QD˜!cí3àÁ옋‡$~%@ðÚ˜Ÿc‘Œ81i•š· Ú‹Q‘tÈ»ºÎ%¾9â7›XÇi“Ë®§Þ bnä7´ú”õdà—ÑÔš[p@ççÞ±7»"¾Î ÍÚ¤˜kšÈ…c>U“E´Gq¶TA »Qkêr}÷<±ºcÿ¬KøI±†¶~ ÎN™ ˆhõG¬s5ÃáÚH%Á«ž$·>øt@2ÕÂÓ0þž†È 1WZ¸Œ‰h®tá²é݇ÈTÕçä6¤ý^^¾J„¹>ûoõü‰ÅÛ꧔ȩ˜­xG°…™ÆÙUó±–®Ûá) …áÈ®”÷x­Ð~{œì¼çHñ7å™D YVOèò{ýëb1R"¾½ÜFÆzB eÎéð¤ÿ…¶;0ܰ`f`ZÒ½ý¯ZXöĺ`4Ù“ñþëÚ=ñ-ìä÷ö´Áls}¥ªÑXZ/HÂß(Û»“{j©Ër„S“Cý¶F¢ÎcoÉý¶fÍ—ž„“?Uj&¹€¾ qA¨µì^7¢E cK—|]5»vg+xV¡&»Ùœ4ÌVH¹ „ôŽ0™âÚ+’ÓSv|®'›ñu›^a’ßœ‰òÖó0(uæÀ͉Š-9ffûšÈö‚œ$éó¢@< sÆçxœÉ‡”/¢ µ1-¸n¾ú [” ­Ἃ\ïšWÀ—cT{=èk>õÀÙ_šïÜ_ÕÙJÔct}²¡†)#cqwÈ÷C“ïÜ© 4 SÒÆê¢UHÛÿnˆ[ê»è5rìæ¿¥…gWâÐæÎ¯2‘ŸƒH´‡¯jÐ4œ)tZ˜ÐÉGƒx‹7õêÎl6Žã»Æ³_*¥ÆTçÏ8p 0ü ¹8¢Gp$EÉsÿÁ÷FOøKGGuǸCž¢ËØýèþaï­¸r”vGJبbdœöê9G1‰³tÒyïß²žvË'öB\©DÛ¦šG¸¶ñbšö 1Õp§p! äŸu1,¢å*„'VKˆ·àžÎ ÔGÐÇfe[oE2ÒqSA®ánƵZCƒ·òz½4¤ÝßL¨—caò¿~^•VÌ 4•ÌDc¼%ÐBÃú^#†ÉàéÈD^€>}V†{ä/c·.¾ªP›·BËkÒhʾ0Q%1b;*ì°vG¼¼›‹žŸµÈǨrÑ‘dhû~‹¼†û"£^[Š]“ ª‹_¿$õ:×==Š[?VìÁË¿Œ;ÒnÍey$çoÌRqbË_Ë·{¿¤ÈˆÀå¢ÜÉ€“D9'ZÖOØÆBLAŒ"uÙÝÇÜ'¼îôóPO'ÂãBðAû8Rø›Ó²(eÞÆh#FJ,2ëõŃ·×´ã$˯{ÚjÀÂɹj.ÁÈFpû’žd<íuŽ7Á )Å%0scÇ;aU„L ¯êòø|áÂ55Z¤ó¤;·(ksWQ Çk@w^ð‡˜üÂñúC»k¸¿lmÞµÓ+²Ÿâ;  Nk†Ìmn‰_ŸDWÚÞ}þL¿yj6Œ”#Áþê='¥Âíbb>bz6b¢âW’&BûVvF„#b=ÆaÒbnœý4ò¨’T²!ÛV“†ÎÛˆ´ƒ¥±§lvBœ¡„4ýµ’q¿øýÙºûÏrS­e§sE/¨»Z+?æ÷tÑIׯ“æÕã‚\å%pÚ´ÕŠÑ^?ªÎJÑûÎÉ”¥ENœqijÔ<3MâcåV=ß Úëº_ìùÌâ7ñ¤\eOÝ–vœþÅЩy«m‰,ŒW¶N]53g*Ku¸yx„%g;)Œó{‘‡±ÒT’Üø™„H™ÚÐ*SórÖ?ü3àÃ*ðÇëM³Ýü÷Dý”‰,ö”/?͉]@,3ˆ×}´YNÉ8£0ÁJJø9êNo C^›˜˜Çz¡¸ƒdâð“…{©RM_ ‡ âþ ‡oa~¬†÷_gU?Ù¤ý´r1 ðOk—ÚˆíHå«ÿ`߸śúš! QXPcø„ÞÛ?Ö¬³#IÂIí«šÆ†ð¥WøAMÙÛCTp†åÙµÞ‹§äÐ4´pKf… ¿öoñq̘acã ª޹¶79ªÑ ‹ëÚªà†àû•ÏnCçp%cG“hOn ;Þó‹êÄajÃtJçV¬–©Ø$¤kÐf4ÒÚ&CÜõý—Ï„*]%¥r4F ­SªräýãV—ûÌ[by†¤½±¤œ™»Ô£J{X|JÄa½!E*ïÎ;Ÿh ^Å'Ñ}£z§ÍÖ`¥·VB©«»†ÈœÅB]'¯jf½ÀPÛNûãA'’Sµ»8›ÑWÐ5ÔcJñžl6ã&‹~U?|L#·uöÁÑi\À•×DùmÀjJTÓ"ÂPÛa>m˜¥ =QCpWE°†úéä`ÑÖ´j­7«¼(éÊõÀ)ž„FEЯ-ÉÈ@LâÕAVlh¢®?Wé'[4tM=ô-Ó¶m·È†‘½Ïdvúøçª˜ W×aàB­aQ™¤@]FÍxü³ ”Ä™šþÞ&}Eæ€Uð&‰ñ¦r´˜TÃîF†x¥À…dÁž-^=–î€bÑ~n·LíÅùÂð^œõO·ŽDi[s÷$tµmÈGùІž<e–ZU>ÃÓa/øjZ—[ø>—©ðaP"'ù…U jt¶tjŸ:N?ïRõÆ(¿Èå¬ FD`&¤Ê“zëÅjË•xÜU8/Xº¯ÀÛ÷%Zuݸ«~D#ë[(ó44ì¡CR†„FbÄ´_,âM­aªX­‹ô³éPµ7?c¤ìº VžÒöÁLS*ÖMß;üüÞ©S«vìu¸lþ`õ-U{¦^ìxðc°q Êõ¹¤ƒ$Ã¥cÑ‹rcYõ;Ql'„ð…Žj6‰1#æL)éö™U7fòQ± ëFjܧ_«WÖ{¤ç˜öØ(„¤¼¼´tÜðŽG ½²œöæøˆ"Ê>µŒ—‡©IÌjļԸòW˶O$„‹.G‡¸‹Ð!š`‘3D«ÎØÔó¢8I€=)éU´tIۘΧq®o÷Sžò#T á²t½Óý8„Öm…ÐŽ¿T˜ª­Ó8¢:0$ràÀÿá'á¢j²ßœ(ŸXòÂþ@Ø~ @GÏ i8òÄå ·ö— í )éH´¼íSKWÂ}DSŠ‹VƒiVý—ï¨ÔËàóÓì:'¶æ¨æ¦u9Ü!åûІSWÞ5»lоñ¨¹6æñPSyŸ… ëÂûÛØ'´)Ó:uç¿RPÝ™+媹jÏæÕ,Kðö"g¬×ç´ËD3$%*_õuqÖ¼ÌvÊ~}¶ýà俚nQmĵ»6æ‰<ê³)­b•¢¥}•éêlͼŒ³ðÞ+íÇç ˆÜ…n±Šì»§‹?•B½µ‹g½”šwÕ÷fqgöÃ<{ÞËJ5?D%¨» ‹¿‹æ‘,¼õŠ"éc )Ò6Îs¸²í)ˆþEH©l]™ëCcݸ {8„^Îú–‹ˆ|ÆÕGÖˆ•yÙ¡çÝ¿¨dyT¬S®øN/@ÏWk©Ã­P±D¬CoQ>ÒP&•~ïZäTMÃcï)Ô”÷BwLBdÊr²IÀ`¬… ðt¯‰„lƒÆCŠð¶Ü(«±œ:–@#ˆÙiHR<¢™ÛC¢#?#æÜIrM¾vD ›ðMT‹â3'[¯'³¥Õ«m¦ ~jܨ®5•™ï½€´³¹ãU2þÍ%}Y™ "µ[Ï!˜yQ)³ ïÀ†Ñf«çÄ"º¢äåÒ:yÐ>èyfT­[}½ÐߪKòžœ+{BO+ãÕŽ1Ÿ:æÙìY|š‹`¤¸£AStç(þ¶GV”(ÑTN®Ê{ åæT¾Ö±¸wàÃÀGÍ\VUY=×x‡„Äà]69F–Sëëp¦ØþB}C­ŠuþŒ¹„ƒN7LGBk"¤zPT?ÒØ7 ŠÅÄŸë4ɹ*êëïƒùRCÛ®óNZé‰\;+DXÊórêÞD9ÈUF„Ï+ ìܧm7V—T̳vPƒïwž&üªušùªýstZ@YÊcš·Œ+@ýn¿ÏuÒÞóÝ®UÈÈ–3O¾/+áØ³sÝX¾&¿¯e”Ü¥u?òÞb*'hŽMóúçõÃÔ_LXeµÓÕ·×›à'?™„P™Yã\‘fF2œ£Ùà ·¢§èÇ`y;© Y¶Jï]—_cÙâÉA™¹mÓC1§§–J¡7îiuäæzŠWWriÃØb]îìÙ¢‘KÆÍqp«G¤î­5¹i&t;”îßþÅèªGšü£mþ›ÉôØôW:og’š]F¥ ~Aè—ÓÝÏ«¾tôá6BCs÷v¨KeÄ©«0GžP‘þ9ç¹ìKø(~K M“÷ ÕÝLŸü¸oœ5&4ìNîWÖx’ªwæùˆ“’,Ư< ›Þ!&†PØŒâòx}4-œ_†ìkE¹AmH›ÕºíW¼®(VžѶYßÕ Ò°P:WÁî\w@¬¶®k¾é!¡4·rH>[ÇÓ˜È}C_㪲#c=R¹Hþ¾¥¶ღÈs>V‰#&½ÍTµê~ŠÒ,a*ñV$o !LÛª «ÖK. ›ÑÁÌXÈ‹å/©¯>ÈN Tcðì^¬»ƒü%€§HÙ÷ü× Biù™%”¯ŽzM¹ñ(¿I‘«~6WµìeyÁ¹š2K†Øx*3IÆ!ËIDh##Õt§„̾©ÃnªÈú ö^¹³§ÑaR_“içÍu"i=dåâV\—ýû¸ÛÁ2ÑW¦DåaJaL뵌ƒHÂÜ¥ñg%ÐéY°Òñ43êáÈK)™ŽtÐà)’SÌK½§JfÛ“¸i5&Û ‚N¶ ذŒE0±/¡q8%  -i¼ËSŒ­Ð'ñä`ÿ“ÔÝl&ÎM•bغ'pÓæØ³„è¸ ¾}Òÿ·~,B1sH™„Šd`ç›=U¾1•‚U¶3_} Ã9ŸÕP²W¸0²¯%“œ•?}ï{SèÝWÕÚôÀEMð˃ZÂ^i·l»Î~6Í쯗éˆ_Šù'äÓ=B)Ô—î´o-,“ãx*K?«ùðýÄÍ0ûõ,~ȘãçŽÖûÊ·Lw–NójêÁO¥~´£{ø¦‹Œ%øtã˜T‰ª‚êaÁ®åKuDÀ×@ö½áƒllR,Ò½Ž*– /ÁÊMQÒÝ£8øu¥ 5bñÑ{¹~NßpìXž ŤY’Ó¡Õd{U¥ïÃÄO¦“ ²7~¯Üoüä&¯úzµ+9Âæ¾J†RÚL"§lþÀ,Ãì¤dÁ{Å 8_Ú|üOºk¯¡Ü¥˜÷ÔO xšrr1pFN.âp`DLFSÛifjQC 1 ë–"ÓÄZôŠ4¨Ÿ°H(ßJ¶TöñLJN2?_LÑØ½"ÖKZnœ@.›¸Rž,´m¢¯ ÞRO¨£á7ö:–Å+$GÜ c¦m ühöëÞ¯·ÛáÄf3…¦œ¯Þ»)Ðno䓸(÷R1“Å“gÛ™íç+ضÁ¼0ŠîH–-ɧ{V¯ŒŽh´ MÏ,xüøë[H mé®êM?êá"êãÝíë#%V[çÁ‡`Ùöéá€Îƒô(*£†CAK;5ц\Oë¯j,WgA]7û©\HV8!Ÿ(è1-ñ\–S–S›´ÓÉdð¹?Mís;TdTE£‹þòºÜ-Ÿ0kȸ:XÃâûŽuDÚŒ1¦³>h…Œ—ïVï¡&Â=Ô.†.ÖºM‰µ÷La§†m¼‡¬ìë;:Bb¬Cv9rBtî;ygË>†@ÿ“ç:…à`Råm%gWB6 m¦Š¢×;S"¶ç½~6NcѪG+¦@–AÉ‘ˆë^Õ£ëÿ´ÁÏ´ÿ|ƒö¬´€(é)ujEwÑ–éGé”ñàkéïÖoús™Žå¨ÓmZ+E«¢ù/Ñ¡CŸèE{O‡:¼K{𚄘i—Ãè¿\Hgï¨gûù1?[θº*Õ¸àƒdÝLK*® ²@gî¿L¯*±ÖäSOÚ>¸³Šr8¥ò…™öRD<5ÆÏfp }FUR|OÆ1êÃÄ)åY@ßß§Uß)òê׉½­çi¶¨Jd>±G»Ì¥÷|ñ]œP[cN0ºÚ7 Í\Ü&2Šþã—~ùrÆBX”ÅJ·sÝ'øüë´7šWR 1ë3t)ˆ MbG…˜Œ×l¶ ˜/i 7dªÍN¯xýyÉeßô³²Ù8L·¡íïƒÇè·m Ó›(<ãÔGYÇfN¹>fø9­Ú“ÏSüWCÛ endstream endobj 89 0 obj << /Type /FontDescriptor /FontName /XOSQUH+CMBX10 /Flags 4 /FontBBox [-56 -250 1164 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 114 /XHeight 444 /CharSet (/question) /FontFile 88 0 R >> endobj 90 0 obj << /Length1 1773 /Length2 10432 /Length3 0 /Length 11548 /Filter /FlateDecode >> stream xÚ´Pè. ¥¸×Üݽ¸» H€ÜÝ¥¥P¤xq-îR¤¸{‘-Z¤¸séîžÝ=çÿgîÌ$y^^ùè¨4´Ù$­œ,@rN;§0@ZUÊ€‹ÀÉÉÃÎÉÉFG§†9€þ#G£ÓA]ÁNáYHCA@Ø“L{2Tu‚”Ü\<.~a.aNN7'§Ð  Â ;Ø  ÊPr‚€\Ñ褜½ `[ØSžÿü0Z2¸„„XÿpH:‚ `K   „Ù‚Ÿ2ZÚN–`Ìë¿B0ŠÚÂ`ÎÂì@GWv'¨8+À ³h\APwà7e€Ðô5v4:€Ž-ØõO…¶“5Ìž`KÄõÉÅ b‚ž²´UêÎ ÈŸÆ*°þj€‹ëïpyÿ†üá ´´trtB¼À€5ØP—Sa‡yÂX@ˆÕoC ƒ«Ó“?ÐvZ<üQ: '© >1ü‹Ÿ«%ì sew;üæÈñ;ÌS›e!VÒNŽŽ Ìíw}2`(Èò©ï^ ×âäñù²C¬¬Ó°rsæÐ…€]Ü@Š2Ù<‰Ðþ‘Ù€`>NNN~!Èò´´åø@ÇËô‡’ë·ø‰ƒŸ³“3Àú‰Èl zúAóqºƒ0¨ÈÏçߊÿFh\\+°% `²CÐþ‰þ$Yÿ‰Ÿæ{Œ8ŸÖ Àùûó÷?“§ ³r‚8xýcþLj9´”´U4”Yþ¢ü·RJÊÉàÃÆÇ`ãæãpqñø8~ÿçïü‡ýR ø¯ê8ÿ‰¨±výIâ©{ÿ!âþ×f0þu6L€ÿΠæô´Ï ã?ëoÌÉÇiùôÅõÿ|¸üÿíþï(ÿ×õÿߊäÜþÐ3þiðÿÑÁ^Y<í³ìé6Tž.ò¿¦ú ?ZÊÉÁêuŠ0àÓ…HBlþn#ØUì ²ÒÃ,mÿ\¢ÿLá)¸Òprÿ~pl\œœÿ£{º9Kû§GÅõiV¨@O'õß)e!–NV¿o›„B^hœO ÆÍÇðáz:R+ç» à`‡8Áž\OäüÖNP´ßåçpHýý‰„²#A^‡ÎßHHÀü=YZþ~WÎaõ/Èàý r8¬ÿ†|¿‘“ô_ú§D¶ÿ‚|ð¿àSbûAA‡Ã¿àS!Žÿ@®§B ÿ‚O…8ý yŸlŸÞ詟JqþGýÔ ç§•tú®§ÒþU)×Si®ÿ‚O°ˆ=%ƒÙBAÿ$xšÌÃé_Oxü¹ŸôžÀÿª¥úôàýqvOÿþãu¯A/$“?ã,oÊ2ž¿Z¢¼÷Ùo®CŽhIÒl½õ½3{£5ù£ma‚°üã¾dm*9›Î«-ß{_½ {„føN%º7A,<¼+^yÏÚ¾Ò¯#ás?4·ªø•ÑïJ§ØâtcƒŠfèr-2g‰©‘`l(̸ǞØ3çÓ¸Ùã”JoXÐü~Æñø~㎿žõ^)×áví"¡%1$¦@8Ç™¤÷‘ÚIQ"š÷).LP )´¦0koǺð~¢ê\-_&Þ5 ’.ÅÞœ O°ÔÜ “ÜuÐÎî ÆÍ©(šºç2ËGsÕìØ¾'ôŽ©˜ù ‘è·‡hpG¤õ¼uxzÎ(Ô±±“2Ï¿@’×ß'ä?ÅP÷ö1àÕ›n‹\˜Q·Ðó ã™ÀÕ/¿ñqyJ–Ñ™Îëq 8òAà—-U¶’ùA–þ@%8tÛŸfˆH­Û’”Ä5`úúàÆ µ®/˜3ÂǹEFi´£ÙVÂ`K‚¹4»{é[Uîïæ#|ÐJ•„Sá|âïµn¾UtŒú{°ÌÁW5G-þ…Ge-d&®±Wå‡"÷±ä¢Bqa+/¹!ù oR… 7è™. ‹ñâ5‰ý  QqVÿJÓ²x]ñ*ÿ¸«þLÏ…ˆRä³ÙðÍBYÆg"Þs_µ%:¦ƒ·®Ç2¹à Ÿ’K~žõ‰–ެJŒÇ nhÂ;î$"Ñ8‚d4Î&Ó‹#ù[ÈÞ¼»*t³•í23`ì÷J W»JEf"-Ú&²â›Í[5à-ElåãJ8Æ0Î@ª–}©t_Öшc¼0cb‹OÜ’ò²®2ãnѹif„Lø5y=›8¹ó ÀEr“JËmÝ—ì/Òþµ_ίÏË£q[­Ò¸>Ž sÝl¨Xñ¿ µ/ûÅåbiޱ# ñèù:’5ãæöå+ë60à¨D(ŸÁ{¹°¬o•ýœRªKÜGDBÝr¿´ã€NÌ.}1¤ÐÀaâ­¶žcQw60‹„ùøRŒ´ iEms¤W=RÛ)ÝòjHâ½ó°µè P¸æËú…×a8þô¾LÖ"¸¢¥˜¾C0’ÍáõÁ ëuöÖâпÞÅbCm *š)"nÕ'9Ú&•‚¬OÚš·\2‹PØ3ç¤9ÝÈuó.)~¶Ó—þøÊ*9‰êÁFÍÂ[K»Z >Õü1UŒ¦ôJ™YÿY›lTì¹Ù ›Rû»/ècùù§†V Ç%¶)‰51 ½âžj%y«Î› ®…™Íò*‹ê¶â§ÙÓNqgÓû9Å™¤]pKJ"ÇJ,ÆŽhc”äJ$·üÄCŸíIðâ烄¨‘Ô0æ2SÝFíÇ€[~IlKQ±ÕJw¿Œl 8é‚5”)æh_WÉù÷?­•ûYÎ*¸¨‚*⊒´!×û6ýiâÌ^0‡›PdÕƒ©®•FÁ†\†S•ʵëöœH/fíkx,¿‹(°¼¿°žhÖ±&Ü]ÇÛP“ÌTev›SmOË%ý‚ê+³À ›ŠzÛ˜˜EÀ¨ÿáÙŠê½t°¢„(߯Dt o×¢º?7óÕ…ÀÒj,åŽit„ÃËíÖ“ïá+‚^ꀟ““ľ9îæL/?³Ë„““óä.n%+Ó&“àçï ¦µXyjÒS¦V\{2eˆZ¿Mk=F%|ÖÁl±ü„\ÆýóM]ЗŒ±jÝ m!……c͸¶ÙL¨õ™|‘é1_D2Íæ¢;QØëñ:&‚mBåïÚ¦äuþæ´ URƒ[VAú| f¿íÃû•dtS‡>nЂ×xg@g/qÊi9o“¦²Ó¢Ø(\˜¾L›•x«)hoÉ0Ãy1™ÊÂ~¥ñVåÑ"Á·ü‚Æ‘š¿S9K…RÃ`xÍÛ«0Û0ÜrêÒï1耉ŽHeAÙZ{¥2hã€Qm¦N7±Š­ôØ ÈŽ=qÃÐ*köŠÕ±w oaøV£p0±*4ÌöŽéºóÖíZ— ¾CÕùwÞúÝ&ïK׈$Â+%$#aÄr÷1Ò»°­X ý(µ«UæÌj5DðÑ¡Šõ©µÜ G‘z>ÜÈ;'œ±3à(UÎ2æ†ÔÌäÜ;ظ(±|õG”÷ãþÎ>¡êMq á,\ƼœGÀÀˆ!Þä$ Î°Kcô¥ó|üü|C!´Jb@#:ˆ=¦’ÄÀ†@Ö‡6nIð¢4fù’GÞ¯@žd›!})7ÒE3`*þ,a*gŽ!‡-£éyàjà²ÜU‡‡ªºNb•Œ«Rê°&YKÝMwˆ2êmP»ÎjGãw¥É›J5×µ©øÛì€:©%ÛØ“¯´äó¬ë§âÙ[¤§N»Êï—¨2Ç«°f°sMeÜcR8ź£ JŸŽZ)¾dLžTXri(®$®_²;ähÎÀÛ ÊÑÙekÔ¡q¶z[pV~Ò\UeqTn mîÿbÍJ½ÌÁãŸß[%r{‘"Ç!Ð]!6ìĶ­E½õ ’B®$Õ@þ ²ÿÈ/ɹûÙ¶ _KN¨:[gÃ'‘1>õ˜v-,1@xøÌ¶“ôòñWà–àÎb‡|Ë”^´uë™Ò‹¶ÜåŽý‚ExQóæÃx6‰Ãs¶Ó}B$y?mÚ—@_ŒËu'Œù{7†# œûª÷^Apr{©¡«Î=uÜ/ñ›“zý™W눤¤ÇŽ$ÒÕÍáÛxßãÞ o$²ÝÎÑ3 åj˜Ò;¾¶` ¡ŽPv’ã´²H’¶ü$yÉ^µæ•7)·Ëè³Ý3*¼Œ†’Vÿ°jÂRj\° M¶ š• ø”}7b;xéÊ‚;–}ÓoVկ]C”¹CÁ „{á?ýš>4ÓÕÈñÜÙàd¬ÆÐç©ú-|-àÉ–±°53ΆºY‰¯ý¹7K’™uF 9É™M¦YÚŸ«eÌÄ\QBÌónÜç f™¸Ó“¿¦½ýNKs€É=éóp„rW¶½QÙ`,ç~®ûSŸ½3ÐáÎÑȦnç ÌŽß¿W}†`™úí[S{éš#/ì–e:òJ¦ :Hƒþ¬Üu8|Uœ4¯Š€Aü™mÿSC—öƒ’%J°b^Xma¶ô°N³gHiŸÉmév Ó%8Æk˜‘¢7câø#*HoîÍ’úmRP`åy“ ø¡턎홒nŽ‘uµŽÀ ;i˜eaLŠîóHÖK[#AÕ<Þñ=rTï!áÍ‘Úu»G¨ûy†ÆY< ¦øÛ‹@Ï“ÖM³ËÖÂa•ž¦Þlt¯²ðÒ¤ê³q>ìI­W>ÖûšÒ¿üʬ†ºPæ/ü6¡µ»TU¼­÷Ù“‰ç­±ÖùNªÓ,¦ ¬©X‡üf_õ}lF9¢&Ó÷Fì¶kµý¦”"¼Ñ']ãg¾G¯ÏÙ¡¯Öú{g¨ø¸HÃiMÙÒ2Å{«i+©¬x‘Û™fõ¾ûò–¢>±Ÿü%Ӕ΄ÿ„²!‚$Á'bB0’’¡?£¸¿Ð}OÁª{÷†é#5JbS{„ß6™˜-‚ÚT0P g¡¦„.Ž qcΉkÙÆ]b;—¿V Háâ á>ÕÃi½ÚÙ}·]Þ†:/Eq;þb‡ÅÊãÍqð°\¹¯“­Úç¿è|N=4X £•Þæ¹4¡±4¯¿B?Út„°®Ù©Bd­1Ñ‹µä)ªtŸWԽƪüœ~¥FTœÿ˜©Œ-LfÒûQŠª´HM"P‰ úh›a^’ý¾ËGTcàó{‰´y›t–ZuAáë6ªçÌ!›'é¹Bøø‚Ñ”ËjØnf:™{é\ ”ô‡Ìˆ j¦ôEnоçס,sœ%õÔèÂèð‰VDÚÈÇeŸù+u=ÎÕ©eço(&ŽOöÅäzDû)s°'¨Ã<9ñá^lÞ£§úøÇõœ­R²‡cah0D­ë5ÒÙXaú·$Zlî(ëÏ”íëæx‡ŸÀ_äÅ ©e†ç]°*&@‡`Ôígâ wÛë–›ùá]ˆ,R9“þøÞa—l[9èjˆô ðô-[¡ x»aQD±ŸõX­áiE Ëaä:Z]tøª‚Ý2?š&T²]_ûDÉÔÑð¢_…ÈøKŒíDi!8VCÙ ££Ê²) ÎI?0€Ó//–ͤ_ÁsÍYaaÝ Ýee±–y©; EöËýèZÒ¶í9¸ì£*Š<,DG¤’q/|¿ˆ¼Þxƒ^ÙéÐ%ç³PÊJpña«@ U<ÄaŸ<ßÐÅåUµ9a1¾tLõ!+?É’ï‰.ÉN÷—Ÿ«¦‘[>gfµäÑOËíÙfÔÅxžº,[¾–ø¾N™Š¶ËT^ˆc}|>;s*Œï0 IWõøa úÝw³ó*·éxÕƒ˜›¦uHØwx¢5wžWẺ`ÆúË_1N6¾ÀñlæWº{ET•ëg£tÏÒà õœ×a¯S¿AÉUˆ»n(y†…Í $¤ü X̶R;´hä¿KêõÂL¢eV­0;ê¨Pç87˜ƒÜÖ¿zŸY|'ªN­&Û/ƒ¾ž<(¬Q‹®În ;$±A; Õ5 ·äO\PïØ>½ù6£?ÆýÉt‰ø*Ë[¾êàVË™+»¿÷²n7Ó~¤^¿e·1¿ •â—ßF»Ø—J~y7`ep˜Xßl ë÷éÃAXØH·Õl'ÛÁA³ÿ ìTôVN´6‘”g&íÎáaeCŽpUÉÔcŒx%$¦Ç'ƒ^¶"V8Ï^ €µKö+\ªøS£¢oA2Z¶ÿìRF•µr ØÞ³pèÝíXß@Ÿæ¹Y¬õw<°GÓÊg+hÜ„¶*|ÚwMYŠZº3,úQ^ÊþÜä¡Û„(O”ªÀ–iÐã›am¤@Pê°Îó5hÈh-»«€Ttòú¾¨5…uÇj2Âø´“ß).õ jf¡k§™Tö³ œü¬Î–u]‘׫@£ œxä]+\}þV%Éâ[ùs%Ž#tZiŠxªº ¿ÌÍÀçªÊµè’†Â9$ݘoÞ8ùáTÊiæ® ÇhÇ&5jØj#Žm-¹7ß§ëæƒkáˈ—ŽêøML/ß+Žô´•'…¸a‡1§k‰v¯l4P ³#ìû¥]¡ÐW܆/Öë ¾ƒS!Sª•÷c޵s9næÃ[ëÐÑ:†¦¡B¥¶Mã[ùö):teÑåaÏÔ 7/ Í/MK"Á È5mŠ‘Yað犖ð(]£nU«íƒ}ÍŽ´‡Uëº(ä‰zᕚa,z“Õ‘ æFþ7çw¦ªŸ§¼nå­šÏUÈ‹ø©jè^*¯:{Ú¾ qî&|©â¯/Ãâë:d¥/Ï_YãÅ…lQ†lÀ‹¨,_PCÓ{(0¹Í3Ë%ÄÁyÃK Á“LQ:]Ä%CJ^§$a÷‡OQž…^v 6,œÉ÷°ð‡ÇfR±pJW55r h }ÖüNØñœ)¿×cë«ò ÇµÃ&µTT¥":ã»mwØVòIŸ©ž¤céð]å‘IU3›‰ZØþÜQC"¦¾³M‰£Jý}yÝ\Ádàžy¾i¶€.C¦t”s„|ÿåµm×Þðúô1½–/5‚H÷ã–ï$å¯"7Ê^üPdà ZIµ ¢)o¨ Aâ>ÝÙ⣡Þ3“嘂à\JZƒºÕëpcŽtâ·̵ZñaänÖ-A„ŠÄ¶Ñ¡&Brm]2§õqLYŽN'=%°œ±‘r=cÂzQ_SR‡¶e«óC#‡øØùu¦ý4ßÃx®}¸úœNª ÅÓzcù'HkJN!:xöAäSZ°ëžéÕ!;’àÅòw’xŸ›¾ô嵚Ê÷t,Z8dN<¢VÄ­{íÅ šåtxgÄ$™á^¼Rñ÷2ì`ÝÍZ <ü®½9¬)!Ø2žüˆÉCŸd…à‰ Ì~3Ðkã :kJNR=NNZ(`!¨s9q{L¹ðú¨R×’R”Êú:Ô's–¾*K‚=†§é`eJ%ÿqe¯°|ÉZ'‹½:£­½ažvŸ÷š‘ø4+¡ã`rR¯‹Š6?KëÊ &Æ/šìc¶?ïm¿Q¯yûâY¨ãõ ¡Ih)‰R–~æFg£ ™U^쬢¿êžÖq¬FãÁ=nü˜k¯Ý²Ê~¼­É3CO®9^D™!žZY¾f3"¤-•ÊFƶѾ“½¢ ÖÒ[ª*u% À祻xZò Ãk8ú–‚ˆƒáÔaë1~òÝ„c²â}Úá ¡|ò79½óó½sž¸ð7Áç,×d‰\œ¾¦"h1gÛÙ[õ"±úrb$;)L…aÏZ¦›½Ú?”Óð›H?诿ªUlliy?ÓÍz¥ŒôÆS†LN™À"±ðÌùõ<®îI»¢b[–‘¡¡j°Ž¦­ñTÎ:îíO o×TI·Žç'§è»v‘ïLÒB8I·l²}2Ÿo§+‡W;œ«ÈÑEAßV/_OrŒ_…yo2! k*(”è3¬ãò:» ãCo‹Ã߬/ž.Å"£n†öœrô‰M±æ~1„޼‰ Ÿ¿i#ã/¬ú@ÉÝGO—ÝßöæÔðq³pë½ûët.ßœuj醸µ4A±2˜Kô­ÂÓñ©hx4Ì’w‡Là³8çÛÔžƒÕ·¬\[IòÜ€ö«oè¶ ‘ìJÚ}å¼Û.5¶°ÓŽ&yî êæŸ-îdæíµ—¡Áúël7dJ´Óܨ—¬œÝЧ’:ù3\åý¨V1%˜ýÑn°f6b$&jht*>¹Nò©éxÛ—µÃu"›ùýÃÏ»Rÿ3vØ4ä«_÷eÍ\•*v*JþžŠ²ãlj²ü…ê<Õ×È »_ÖáEBµï„Qªûˆr;HÚ^d¡¯² &JVpù Å$ÂËG¯¥¦óˆ‡¥× h…¶7’ž\ëz‚Uº0„ý‡Ž°Õ2Ç‹R`Ý‚-ôú|h+à@–ÌjØ;üÞ·Õ8®"UǬ_yÅtÎÒ5Š¢³"+X꫸F$f ÉQ h‘\]³¥íwêÑó·¦ubìµ÷³þαüϘfõ¢Æ,&hRÛ;ìññëûêÞ½Ý]#µöö†e$ðw⤄"±ÞS³(pyYt:Ì:Áà!ш¥¬IÌ^Õ aíå &õ Ð (ö¤‘?~ÚøaÌötÿþÙs«˜p8¢¼Ëßø×™Â—¸lÛ©{êÏoLHí‰vA_`Z’Iß[„öDX¨â°¬ßY‰Éc«–cFÆÙ°!2:ÆLd骮ÊpéßnƒBéÂÑ–‰ÑÈ:²GÙð82ôžsDt2Y“žvý…ñ1±<7²íæP4›ÿ™“H¶ 0^lzO¿9´Q¿K@KŠtL¨Íuf`·$ËøøUȯƒåÅzÂBÃíÎ[ ¹’Åê{»œ$<•„Úk²ÔizÝ yÊŽ¬<#’h%ß]Ùc7Ì Òq¸Ýæy޽ˆ__’95£¯hTž/±@±h§!Õ&þ}‹”ŸwBy?V]3Diã™Z¸`´dí ´íºÜ”ÌZ>å/§ä2f•…mϳ7 ?çDêxx­‡»¥0a÷ÑjÓʬ æ¸vþË IüÄ ·<'Ââ hH”°¬°H”ñL;‚Œu^!Ú‹¯ÿ,ÂÒZ¸F,=Îø(afP¸êCÎÏ` Ø|s×2ˆ…8t¥»Þ}ùÖTÓ¡÷y…+`ªÛCŸå…ýø$ªb“öÒÎ’:-jd$F!éˆ/°© øÍßo¥“¿DMò¦±h"|4|tûþ˜¿ŸˆºxxL^â:†^Å`µýNÏ:þµŠ~:_&òÛDúÛ;yPá%ûG„£Þ*θjÜSžO2M‘#3)”Øà"Œâ_¾TcÜò,r\Çè“­ì¾ iT;õŒßˆæŠÙ©Ù‘"FóiÆà{ ¦é«gX7C{Žp­­6ÔSÐεęÓÔÍO–Ñe6Ð’iÝ $U“fێ^©jq™îh¬Ï N²vŠLREc_ßüz7ø-¸UÏäg|‘¤Š+ªÿîý‹ˆÁV;Z}tÏYtw8Õ–@ý‘J¢³ëòãyö¯œp†ñôÂ?Õljærfe$\ºÔaè¶Þ‰V–µ]“¼T6(À÷em_sàY3À•z"qƒ6.å®9ýlCÍÓŒ{"£ÊZâo–v¦ÎÄ ÑüB—¾ ÕÙ‡’“ÒI¼x_0*œ¦Ÿˆ;YXTgþ·OL¦ZwŽpŸÃ«Ž\€lÁ±RiGgW´X2pÞ@¹ùé|¿÷©îàrÙ˜©|ÌŸˆÿî!è 'Z@U!wQªžÓkÔåòÄȾ›ÅÃ>ô3e†kÕo5H›¸o¿6®æ]¼ž'+@cí_%Rź: ]`~8û™³/`ú¿êðy0 ùU4µóÇéÌbº=è©>CÂÝÎψ1Í`âÆ \õŠÈP|ú‘í)Gjª8 –œ"¢ xßg‰úX¯]6°Û¥2 .|'4ú5_ùO r=lD{F0$ceïÌJÏ}û¡ò¬é{dŒî– ÕÄ•Üvÿ‡Ù3ljR.ZÓ+yw±Ñ±Еð{;橆ú´ãÏDl%$si7ïé%ùV†Ý"”?9¿„U-œMEä;w]‡M×¼"mè"ÅXKÖ¿ölVH™=.ߤvî­ŸmGÎ$”däõ/*yYWOi1!¬}Nb¢ò]ÚÁ¤dÃ3IAÊÕüüc¥XeùB«#ÛèÔ×—íd|—¼3A+Z^vƒ­¬©Û—õ£2‚þîMv“61ifåL©¯é$c!ï°âc<®ÐÃú03Þ9è…w1»¤x$t‡··«°ÞZ¿~îPQ’W-™o`_£gþž=ëèÓ29 N¹cœbÀ—“7DÏ=ô¶ÝPõÊ<±÷‚67ºó¯B°Â¤;è“òg}!’¬½nqK¡°a¦q£¸7â…û¨Žöb’éíÞâ!,bNgÞÜŒöYÜ“äãdé[õ7c¦ËÅ£¸,Sø{ãð²áJ^¾j Ú Áç—½1Æ Sž™0/\MyìkúììjäzŸÀR‡.¶›Æb—ž›ž* ^ßéýK yWåê©RæÞÖäfTZÙsÉ•Cæ¼à¾ ©—‹ $óápòa¦Ïý /ÙyÞÇQ"â,žp¤&¼ÃŽ'Þÿ‘ι˺ Á‰|îÒsAõ•€¯–Z+ כ竴—c7ý0üi4Ÿ­-±ö+"žÅá&]~¾Ê씲€·MTŽÒÆÍ‚×Göݶ3 1büÒÝp4À˜¦»6ŸW̼¥sßvkv"Ò‚7ÁÐÝñ†Žõô4ߦËÑXu²‡ ©Zjä"±6t¢Ø‚Š ±D-,Óß ã8¯Ï— ­ a½H>CþõLm€ôr‡ñEÓj¿\žÀˆ@ETí-¯6ë§¹¦’Ý·6÷®£XVþø++:ØÔ— «,‘*Czâd(­Eì¶! ˆÖ±8_°È±7¿d¿$&%7-è“Õ*Í^œ ò <ÐÌIÅ.õKþ¼'Ý €jš8´Þ?z¦C£×Àxþ<‡^Ô¡³§~a`‚/›­Œ%#ýÒ|vÔ&ȱϲø|®6Hj!SžŒ%ð·©£‘ìplýüÜÂbÌåñ¯¡i¾iPî•që”n8ЂðM–Y4®G†g¿ap¡+NWËú¬FTЫ»Žn^T`~½­øâªË‰ácØÌÄQ !j’a‘ðC%:7§ûÞ—¡”êåêpø¼éqä–{Bpé#¬ýæ¿bWzË^EP©.ú=)¾þ\³)ÈàêBT3Î"Ýr¾'f üvò¢‹ï1ÕáÚ ›e¡§»L²‹¤Ó¦>ÅKÛ£6Žl+Ò7ø³‡qËVQGÿ@Þ3ªJ·ÙÓññg’~öš‰»­BæØée^¸.Q¦ÕàÅ\(²ŸGÊ.£M€ìa¬l8.,{¥w]3kÉÙûdFkˆ ÌS‰úè¦iê¦øÑsǸ ï}Å ZBúµÕö‰ã¦ô=g¥ÊX¿òƒïÑÜ~t?AO*!Gö Án/V+íj7\9é³´°ÁœÊ7Ë6"ð›Ã¸Á¸jŒú2oiÍDpˆN¶Òh'«CÈ™‡eƒO%éíx÷¿Æ£àÕkÎÖ ï1(† ’°ê¥9W•oÔÁ¹…TϸhÛŒ=ˆ¹Žu^§6JĉÖr4¤Ÿ…nûZ™¯Òš¤,®Zù†r·KjïÏâiOÀøq2'.{¡úSlWšL 5ùTsã¨5†c´¸˜6Ý ¢€É ¢|Û<§y +pm³ï"쾤IîŽÉ?’šÎñ¬±Ò­ˆ,©Í–mÝ çPuÀ~d¡'MÉ cH’äˆËíHÊÆå.-`Š’·:æ 0¾Ú©•±'Ö¬œB©êz‰{†566ç©çDb¸3Ôö@öîÿ§sll endstream endobj 91 0 obj << /Type /FontDescriptor /FontName /RJSLPK+CMBX12 /Flags 4 /FontBBox [-53 -251 1139 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 109 /XHeight 444 /CharSet (/B/E/T/a/c/d/e/f/four/h/i/k/l/m/n/o/one/p/period/r/s/t/three/two/w/x) /FontFile 90 0 R >> endobj 92 0 obj << /Length1 2004 /Length2 9123 /Length3 0 /Length 10288 /Filter /FlateDecode >> stream xÚ¶T”k.L§t£ÀÒ9twJwÇÀ 0ÔÀ0´t·ÒŠtJƒ€Aƒ€€ ÝH7( ôn÷Þîïük³f­™÷¹¯»®;žw˜èµõ¸dÁ0ˆÌÁäæÈk(y¼¼üܼ¼|8LLúP„3äo9“!î…¹Šý¡!‡€w2âNQæ xäé ò€Bb@a1^^/¯èߊ0¸@ä4¸`®&y˜›/j‹ó÷#€Õ– æüeuÀ¡¶ W€áq¹‹h rèÁl¡„ï\°J8 nb<<ÞÞÞÜ nÜ^Šà E8t!¸ øI  rü¦ÆÃÐw€züèÁìÞ 8p'p†ÚB\=îL<]Á8à.:@OU åqýKYý/NÀïâ€ÜÀÜý¶þéêúËdk sq¹úB]ívPg@KIáƒà€\Á?Aΰ;{ê ²¹Sø•: $«Ý1üÍÏÃuCxp{@räùéæ®ÌŠ®`y˜‹ Äáó3?(b{Ww_žßÍur…y»úÿ}²ƒº‚í~Ò{ºñ¸BÝ=!ª ¿uîD8ÿÊì!€ ¯(Ÿ°â€øØ:ðü  ïëùŠï8ø»ÁÜvw4 P;ÈÝŽ¿È @À=!þÿ=á0Ô°ØC]qþõ~'†Øýu¾ë?ê0ã½? €÷ççŸ'‹» Ã\}ÿUÿÕbe5c Žß”ÿåä`>.>Ÿ¨/( (æü×Ñ?%ø›þ/©6ú;½?\ªºÚÁ¢±¸+ßßL¼~ëï½aü7‚&ìn !ÖçßœW×öî øÿ¼¿Lþÿ†ÿ§—ÿëüÿoFJžÎοpÖ¿þäuöý­q7Оˆ»åЀݭˆëÿªAþÚh êéò¿¨*t·$²®öÎÿê¡õ€µ¡[‡¿æèï>ܹw†ºB´aПw€ ÈËû?ØÝÚÙ:ÝÝ+wÝúAî¶ê¿!]maàŸëÇ'(Áá _œ»æßþÀ»=C|~7€‡Û†¸3ÜÑ ØÁà8?{*À ృl!Î;„ÔÞþ'üüüêá ¾ßFNÄO3›?1A¾ÿbˆ‘ÿZ!Üþõüùì¿ùÿüÃãÿØýáRTÀãBxCÞsÿï2¸›sˆ=ä †z¸9ƒ|ÿÁDøþÅŸƒ…¼åG­ì}o®õaÉÏLëF™l\þ3ðVÏ |Ì4¶š¡Kð3Ù´þ.ÂùUEÖS™YºkÿÝ· ˜QïRtš/_Y=Õ]oÆ™!ïýT´+ûª‡û—¾ÌÆãk÷dž!N¨o‘Û1å¹{Šàküð~¯ìóª§|îcääºÎFîUùW‚A¼yHé8S¾Mö%‚‹‹øÈ‡`üôì3qî§[ºGO9pöø‹ýM—ùÏ'ü*õù<:¨R™RÒ žeö—ÛJD1å_V¼X8NŸhçv«,mv¦‚pò|Á"H®uOü:dÆ]-×/—¶'ãMÂûhÃ:R)üê»{ÿ´R^¬†ù5’ÙÜDߟѫÏ¥Ђ¡((üN9p)ÿG(¿YOqÄsáxþžlr1fOÍ| ¹5ìG"Ü¢á¯Ë.Vâ/Ñ(ÂTñ•´xÐLÙäQJœBRü*ž± {zy?_:ùÞy2®ÒàꀔC¡ÊH¶¸gyiüí>ÍZß„v¶x!“<›H¦hó61—(_3­z9x=Ðîâ‘@ø®Èô¹¿Wª’ÆIÁ _^3dVn¢'ïx?÷ªüÒ7uClܽy¿«Š„tÏ呱5¶Z"éÄv L!'!z‘²×lÐææ¼jɺ(N6æº"at­eŽC"üY„˜§s+Ra~RÔ­¢ß5G_xqÍ~õ*\f»Ò×/T`§iVUÈmrPû¥lÎÆgJêû'~@ë“jæm±á]Ig‹ Ú½g£0±×¯¢vŠS⪠s¥ûfI²–韮Ïð¢ûÌ2xÖu‡Ä?ën'ˆ§â3ô ±ö¼|¥v_Zž~HJÜÞ­mâž2èí!¶¨«ÎKº…‰PŠ£ÈlV:‰Yä脬û9"Ù&´{£Hù˜_ÖiÓÝ]l¯–WUñê›¶º×•Î ª—\Ñz¯Ðhrfî…Ó¹®m~|ì_lKmçë• À[}Ùµká¥%}¼gJü)f@“Qõ šÙ\tÞ»ÿ²;B»Õ-éÛ ú;ëVhÕëß &:²Ÿ]qÁךxÙ–§fÒOƒÎn2‚> kαõp!NÙŠ,+UY-ç“5Ì–c­ovõíÊÌÚvÛïú-lûçÍã å'ùªÛM¾Ù~‘ï)êC/­B9·[¿¦8÷t­Ò?°×—³Ÿ±´{®EZdT‰AØÆ¯¶`¿ù êy´5‘ºv®ù6âÉTÚâʺïîeÀi=îÁÉޤÞ1A+ßK-š>zåTOº`š~?(Îë¿—UCw)Ùjdè`BÀ¬{ã_EÏ47߲Ų« ¢é¯K²IÈs*² £œ}9ºŠµ]{CžKÑñ’zhe—¥C&š ØK¶Âß褡¶ð$ØêìÒjæ½2hA¿]Õy vˆ×´Lέ(<¹ÞŠÁ÷è,½zMê ¬û+fX­R8~-s*é Öè4E§>¡ø‡Ú­½*3'rߨ‘¤µc¹ Š ç½ºû¯‡a$¢÷½™yŠ?­ltñØL}}ÿ¼âìÈ’Å?þJ›ÍðcC`¾g×Ô‚Fÿ2aBž".)óYxÑõ¢Fç1Uîéí<§"QH^ãE(Ç@3SÍ7+|9¼áw¬l¸‘—>djBÏR¯Ü»ºu®HœÄ(ª±Kú­Ý÷Ç}¡¹ß¬´ ÛЄ·I¿h¨Ñ· Ö²zìPÚI (òb5«x/šîJÙ7”¾RÁ(&×ÒiƉү‹‹àÊÌ.= þTɼÕĪÆËûú¨ìÈÎIž“Ô,$·:}Þ‡*~EÒ'²Ó(HåëK\h Ž~i,1Ùu¥wÔyBBá+­¢Ö`ÃêèhÖø£HõeÊÏLÉiTþ¾ ™(JHTW b8ÕÓ@³ù›îÃl3<×IHΊ—Â:wú×̶f«tùž‡9«Ùª Ó™½å,IáO‡Ï”£ô0Þë< vC¾_>ÞŽ)$q»ù£6óˆAa»Ý~"HºLGãáùV²"5o’ÝŠBmü‚£úÓÈNmÕÙXD[L[§˜E…1‘Fçü~~(+qi #Ð'þýÖ‰mG¹µŠíÓ5/R†#¨ôö«‰¨4΄”âLN[ÃoñCãŸ{í1`‡¾ašÓxÙ…&›,4©éñé]šE¥Âe½µø†”ênË«ÂÞuû&úùòzЭéîL˜ÝHŸ=E¬3¥§Œ?Ï7Æàh¡`êÈ”‹NÞ)Ž¾Ç’²cW!³’õÌkúKeìéu#®¦\½EX1é·ïè©÷%¶ tü‡‡ H$â÷·§L®,*­óè¡Àcÿ«ú:ÓðZW‚Çß*à õ8½j„æ{¾p÷\>^e"‘û²Ï¦$ß¾™>îÄPø”ŸŽtV/îk0Å™8)½&qŸQ KË:ÞG¡÷è=2LLq1Gë¯.Ä(•YýÜÂ{s1ç4K^¶<'ÅÑ"_òòRM ý„æ@Q¶[²¨nXlPCkÔ;ÆahÜo¶Zbù@ãšaK™<$$ša[k1PÔÜö¸Æšvà“4)yÂëXi«À{zÎÇÖ;BCC;É³ÆµŠªåU'ˆÚCÔ)ãô2.T`ñŽqäyjôÃù7dŸÀH¤CzìÁB¿~ S¤SX"7¦OÎîõ‘NÓr`Î@WA-ÓX¥nôcó{rP5vM¦£À]ü «1f›™;¸Äƒ58JèÃû ;Ý')}ï/êgqb1òsÚE8¸Œt‰oÞžÀGœvƒÉ[ÞñR¡_‹×^æ¼’VIФxí¿Ü·¿êp?·W5cžÑÚp¸åû*…bëá-œdI¢A• 5Fuçí"ÅàË•¸~•ž é›{<“¤º1Š÷ryŠ,>~݃f–²¶“UéÛw±Z•üéäIg<¥t½ 2èƒO©c;¨ÄÒ”IMVO®Ãß}U~…ì·ãodФ4[{ß„mÌPF®?;@Öx!nSGy«‘:µ_3P㥎¦[BEœÖnN´ü„Ê—i{þÛŽ¡û$ÌÈÏÔöK `ýÖ3}òwo_i6bc)&—'Nàº={²;ìòí„k {e0/-*áþ…bTÃx|•è“ ò:ÞÕDZâNž†Ô:£ùg›–{E¹ÄvºT"Ù"T†ñÒdúæâVëêA={¸Ž°™{š‚÷pŒƒOcìE´·8b?·O½"ž å`õµ[&9p0U@º‡ty›þŽ÷ˆa£ùžga6˜ó©‡öl™›ýLT(в–šßiNðÚFÇ[l½Ë£ÔÓ±dN:Ý »'{M7Š]æYÕ·ùPäZ¯—ƒâbë‡f:ǺŸ×E§8!Û"Ͻ;Ò,6¡Þ$“T_„µ[¯ëÁ™šàÙÆÁéJáÐÂZ¹ÇW;é‡ãý¡Þ-²žž¤üõ{,„ßÝîöWöüSΫ°Æ¨Vd_Ã4ÜH"ó ³!¬$ùß9Ì9)ðÜL-D^·w¼­ò¶u¶R¤Þ›¾êx3¬ŒÂxÿ|jüs]gWñNÕsI abö‰“ð0½‘ÎüçpxÏiù™=ò2XC”¶ã³+5{³v= ¡íA"Ê‹åX›%þðŠm¹w>hÂ{g2@]-GôäXçæß3‡ä|m½ñ3ýȳñ{„ÆÆÏŸU¦¤Ÿôl7`§¤a’ºmT }@°µVBÆ]éÔ§šR½l+`/1¹ÝL±6'·óîÜt×¼EŽŒ¶"BÐ!4ÞI@¥X˜N¶$éñ.ïŠE™6¾vˆcžòÝ£dîÙÁ±°¶ª#i  ÄѦE6ß>ñÎ|Áò L”I4ˆâ[8\O(hœÊ8A: 2žc5G½ß¤ìÑ'K_àùÀ>`—ÕÁß žújROåR±Ï©Ä^ˤ‰§aP¦–îr¼÷Â0 ô,gÃG«ÁÙ†UÉDdH™èb©n_ –»¢‡…ToQ&QWŸLj#ãÿ±¿H–™[/¯ßN*Öq¦^Ø›/”Á³°ÙžÚÝC¢¥R ‘])ŠBë;f$s#_ ºŽ’’ÃÅ îuj%KÉÌ9ž¢Û—hCîYà bK€Æš8¢u›Vnþ–ãÛ pÛµt¦Y‹Š©q´êªÎ÷¨÷Ž(Z×AûM™º¾‘¹xs¦³b ÝÎOÛÎ,CÎ]§üñéyàWñ%(%l=Z¯“505Àï‡ßn$ÝLÞÛ œ6ð_ƼöÕRò2 ÉVìV6öBàÏVš’Qå4 bóà¹"Ù£ µ&›p_Ñ8‡¸é[‡™œtú‹p:[R´Íø­xÂÖ¹ Û"âÓùw‚6AôÜŒtó¦‹tÖw¾ôäI×%–_fvQYÕK›p‚ü3Ž^Q~'±c&¶E·_§VÇndÜž$1=•79Ã@^Oxüö£Vçr¹'ýëäkÒù‡ì³fÊ!]LÈ [Z‘'mŒE¾)éB #Rºº\DbŒýÆêLí&9dOúbÀUœf‹W•ÕÕQJú;yE!ÑöƒÆ¶¡#uí­bET0Ѿ¨4sÿƒðª£Û&/ÑS9æ‚­iqC±NOsØ…Ò­[ÏxñÜ8§ˆQÜúnFÓÙ®ÒÛOJ¹!™)\:EŠF-# Šõ~£‚9ŒÜú @B]Þð…ØÊ:±Ë‡ apöí*£Ô œ¬3ôàÅj›öæŠe^˜»¥Õ`õE‰ZÕEã7Ð>¥„˜XŸ´!V‘?àÊ98¬ûBÄ›;›úÈ&˜áE-“–%T0¢[´Sþñw šG›k(ùnÇžØî§ò©™¢RCâ†pÞWQ+ÓA¶bÖy´h!Œ_I±—dèAdt‘6_ëx«:³PÆ0 ¤kÌ+6&EŸ[w£¾«†¹ dœr÷YûP}å˜& Más7Cs\­+ÙFiP¶Öª•‹÷ŠÔô–Ⱦ¸ç±Çì~es/{—h舮`‚Vó;…$#=t=ývJÉBÚ-¯ÈÈÞcdhx¯5OuY[Gd—2ødõUj|9zoB€ÒÆ»‹¨Èz´þ| m”[ÛºÞˆwh”…ï[$ïÆä<Ò°×¥·3·$ÎùÙHhÐ>ÍùM}µIF†_Ö$Ãàu˜Ò’“î㦉áuΪçÖN+Lq™ªž6 +WóÝÙ(OJ0Õ":Þb^úuížI‰^âÅe>‘±3¹Öv~µE§™ãœŽ:»Œ´h«·Ç©ë;’¦ZY}¬‡å×Ö»*Ø8ïñŸ¿¥;`}@iŸ¬°0œ6LŒ‡ï½à+ Q`62ëæ!E(ãRYñöüòrÕ~ ÕL&lu•ó›ÒÇÑH$ª—Æ-Mð•JÅ«C½ x×lÛ_mÑȦצ·î ͫن4+‚ÄWkïIÀ§õ,Ñ🡽ęŸqZ¿z‚óž(3R´È|¯©«œd#‹z%ïmœ¤WÐ0×W–m%B{Igª—Z6°½üÄ“$ÔöKŒ-qFñ¿0'™¨œóô= ­ ¿‰½éõTú´W¾Ú…ü >ÈŒn¨‡ W5á“\Š,³M¢¿œG÷6úü¢QTw—¿Jö¢/_ aËÄAiÕ§ÎyîÉs·'mM·ÈgŸxRÞweòÑ@­¸€òÇò{ÝJŠq^}ý  §ñ¯…ú ‰‡wΰɷ„Œë7¥ Â.'g3 bŸ…”ŒB=*N³bD@«Ö¯ÅœeG5û>iá@D™‡’ƒ4A®ãLØâ9òE'6TÌÕå½6U·"¸}Úöba”ñ5]så']³¨³lª³¹Ç± ­£¶n.žØåÌS ê4Ï #QP6:ú—û*òì2ÊŒ.äÁˆ#/ÕÈQ ²÷Ëyß(ß>‹jˆËFh€¾;â"ÛÞrHwÚR9ã¯h =k ±¦»ý$ÑAbÊùðæ<Ízz¤¹¯ÇPš[Ogïø¨‰.Š©l#µVÉö¹„}äΣ‰/U†”ðI£cßgW–KÚüßaÖ¥×B…‹üIÈ\ëå­x?^Ññ¶ND- ´¨ßhf,SÙ¥ØC”ƒUǘ{=Þ<¥ôþÀ~ü##?¹kpMüþΚkU£¶ÜLÀ¦…`Š}”ÔÜÝMé9Št†¿È-vu|’=†wË Y]÷ õ¨Q,ê]ç}Lcv£½“å•Ê^ìd%x†¤p)´‘ ]é³Á¿ì?Çôz¤Fñ[Y#Ôð¶#ïÖ±÷sYÍÛÒTíÂ0ZM³çg¸‡#/]O‚ˆ´§f4ŒF˜#^ÅY²"‹íBù`¿”7ÙêûÇåAí«loNîìÖ$FûfŒŠˆø›%±™ŽÔ#k1O9Ãï2 Zëi|Å~Ï]é;q­Ýšíõ½AáÊóÂ7© ’x6Û~;ã#E­Eé&2 M¨¼±þ¢WrB2ÆK%èc÷›V—û$SÅ—Ã(õm³‡µd׌—ª.•µ:އ2 ÑJßI!9yIÄIU » H’3>.s¸<_Løª‹a%Y3¶þ›J“OÌþhØÝŸ½à”(ˆW±½Q°ï\ çÕØ¡Îzò8ãSc`q{´Nž¼Zg©ågeþýÍ%£æÀ 9®ÓZVoOUéÞݵæÀÀÒ#1s¡üklº ™¯„šq\1z‹Ü`œ×Bz›ö½rÅî+Ñm´J™ Ö£š£,ü@™e‰µFí­V2Z¶×ò˜â(J<)$&ï’ž–“ŠŸa{ýÑõÇ:Ú^.ÿ~åÞžUÝ{$Ó{ÇEù§Æ´«ï¶,˜¾÷çtáq²ì{ Íó9ç})ȸ@(Ð>º»)µ0.ÔV_Ô&‘5±ÛØU–‰8gy!h’RϩĔ |þáÍÇV~:]•‡Æ‰ò—ÛxiŸÄ9ÑHÆÌØøôT¸‘ØJGKRŒ3¯pÂ)á1sD¾LŲ¹˜äeÀê§/'>–O;᳉;¿“¢ÀÕöZÅ::‘tœˆyÔfb/Jö´×’Aû*`Ùç5?ÜÊSÞø6ÎÌûbu·zañ×D´|¤<—;ó¹o~˜òXª=þœ7åÑÝ>ˆc¨d†Ú•Üž5Œ¤’ïß–'Ý)ù¡¡@ .%ßË—•Ëd]O"^ìq‚D¦¥râò œþî0ªð¢ø“ ÂàŠ{šÇÊÔÛçFkçÏfv‘g ‚•²\'YÝbBäN^~vò#¨Žª¯ZWüzßL\n 5 ©³èB8¡¤“JyhŸj6âãÍjmˆ‡õÁ”E„ÝœS¼ YÊDÛoŒ¦2•Õläìó×¶|‰Ç¯5`›G7 Á“³¬5s™™Ó¶¾Zîæ¸qW Ýò)'.Ï~áqØÈû‰ØFNDôY‘4«a¥‚MãçDÕ¢¤Øò U²7𫝸°í®~0‹âÊ»4|%ëžo“Õf,‚?¦|ê_ëbÐÜŸ“Ì÷aÇ^`ÙWè§ë´~yÍÿ`W{2ö"=Š•šA;‚Ú¾×¶Ùj†dã°Wy )ˆä$oÔ×™›ÄKR#¶€û¹«\õÛ²~jŽ) Çí6´û…©˜lzº•9^*¥ êPÐó^[¦yržÙ"ëT­XyÔPµ0pÜðükZsÎ)Ê—`÷ÌŠü=Ý@5³ Iw ¬ÈR,;–¢0ó~Á@2KªË µGí°ÆõxÔœoÎfŽ˜•®v«¬6j?“ų̯^„"våà¿i±•"«lÙÓºÌ#ÕR…é ƒÓÛ-(Ú˜K¹ïíLËqk-”ЭpËÄÎÙÅŒ0 “Djl–2WwÄÇ‚Hd4Ä×ò0s3ÍúñÈ1)«ÌFb¾eÄæfI'b)N¼9¹{¾VW3úÛJqž¤¦ÅTᢆ%òòŸú=­ µf©â?2ÖÖõ'+³2¦®»ì;CNg¨G8 R›mj„×~^žƒGY¬ù¸¾±H+›åkg%e)¾PÌŽ]½5æ¯cH™…m$Z> l Õ|©?²A-§‘µÕC9T`Xä_<]Eã/ yáì0;ÝñlÑ6òˆ@YÂ<÷ø¼)ìÝ“2ÀÙk¾z*{ž‡À6†–ˆfžÇöùV ³ânD[  íB•(¾JÙ{WEYº;gUóXôr˜AøÍ2ø~hŸº¾3èŒäW½ï÷=/÷í' ^OzÈk¯"»ÅZr÷e8¿ÈÎÎZè"€yz• ïj5n¤–/”øLÃÞºÔ5©Ø{FuÖ0 Î/D23‡w”ú߈>ë™çZñÇ$Ýü0ìä‡v…BË­ èýôjy2— ±ñ¾žÏÈpÁé ?7N£æ QI¹a­Žî5^Á~L?>Ù[ª ðþ-¤ûs’Ìá,©ß‘ô›ævGèÌì’îíÌÙ ŠX% + õC途Ëe‚Aµ^@Aâæ"ò> ðJJrPb ‹^)j¿l×vµ°¨í9]A•-Å"ÅTbi †¾EµÜ»üEÐŽQ#ð.Úˆ;è|•¾Wãc}Žé›oW̤‘³/°ëÌŒ­ ~þF“É-ð‹7ͯä«_Þð4S¨Rå2u#ahfìâ¡§ÚžU s½ü‘qÛ¾7’"OÙð6zG"J:›#3vж<#½p;’FV͹zl“ÃHg Ž.S™ó¤ÉÑ—Kàq£d6¦Vð𨔙®˜#â~‚{¸£4óûÒ ~ãA1;&™9,B#²¯ÄT,:-•aÇ+3àkæÐ»Ú¸Ë¢„à7rx A…&¥ú×ášØ³á#×Äâ™;½Ê¸†jZmÌé^3 †=õׇG}a"2í(1îvjþAAó–±zZÔ5à<âJñ˹ž Í+«©G2ëoA[,ï©Dªßâ }x8w˜ÃÍŸÇÂô¥øù{Ôž¨z£'õòãl}cNBÁÆ5U£ý‰Tá“ í­‰½kVMUÅ®/MÔ<:mÅœÄjžMØg* Èì2}M,'.-Ñf5Á•ØÓ*e¦:€ÆÓ’¬\.v¶Ó¦!Þ† P±4$å`…¿&QÞ×Á¢¸×¼øœ£ž¼n ý¡a ÍÃ7…~Ü  ð QŽ~íJ0€Œ2DŸ7™²O-W‚_§;©ØÐª©wÈ$©ÏûHoÅæì{‡a2^A&ýhd{S}a‚³ÖáåGü–€^–-Çí¾Íï>6[¾i›ç¯%_fŸq³×¼¡:›€ªæå4‹”Ÿã‘tÿ˜J´®òR¯®õpvðÃZjÃÛ'Ù㥹>…ᕦʎP‚i#ôˆ/GÉŸ¿ ÓVŸŸéèSÞžÓ õöÍ1?é·Õ2¡4‘¸ k¾•›z\Ž-EwEQ*L>ÅäÙú¦¢±°4¾ÉØ®DÁ>˜1•|²~4ô¢YFÈ-ŸtX!½K°2G(jœœJ¡nW´¨£à›lm\ ‚ã!b¼[º3ÇáË(]¶o«1¬QÕäý˜Üj71¯{wäÝ™…¬ã Jžå&²ˆc@—ö¶]oOG*Œ:6W®¹žS’¯]x”Q‘עƋá?[Ù<&ƒ{è)ÅæºÏ½Z·¸ÃfΠ!º"é—ÛhªX¬¨ONP[“ ?´-}løÅfÀLÍ[ör³LTºq;?³ ÃñGówäóóg]•º‹¼/Kö£Öh>Hj—¼áજÅGF»NIlKÂq•³¿Av8 ‚B bJ&Ì8‚é8Ž/{ES`M[†buÎ#[çáÅŸP¿´óq(ëß:œ“£’ÖBÉõ~jì¸\þT é3›º¬ÝüHÒlÒUPiÐç9þгóaÊI'ú–=½üg¶/+Ë5ȧ½&ë EÁzª"ýÏÝ„*D.U8@Ã=M’d}„Œž –î·iýp ) “$öe­ÇåÙdÁ†»l`¥_ÎÕøä†ºÀhF3¦  rP;ú7.~Ê#ŒieÂZí€Þ<ë±#ã—¼ïû˜ ‹—øôéà[xl{#‡ìj‘Ñûá4Jȃ!KÛ¾ ù¦óâÔÁ“>1í‡.t~s\^…÷‰Ìu%êø,9L£_ùÉÂf²qù)%½ ’df°$7”×`üËqcúS>Dß—*WdB,™¯|pâu=ÀO„±Ê­nCÈZ'FŽvB™Ñ£ ´U§I„§TùH'¦‡>iG’õæ·&Èk’&šŒË>èhb5[‚Ÿ’ž¬éXÅ7$„¡â‡®cã{×~ˆ×Ê- ª,´àm5·ÏòK„œÖÚe!„ç=b‚ÈÅl3q†BqòˆÆä<àôúéï<½Í^ß÷ø³Ö' U+ˆ Åg¸w?§äYNûœ ééBwÆ]âˋ̊üœ6U$ñ%Õï•-Ú}¤QqY]õ£ï÷B{¾"A»Ìn?°LéŸË‹x m–o…7m¶$Ro]YzèùÜ6æŽ8ÅÛ‚ŸìoÖ`º›²†¸‰…ž,K^HødÏÑF®.»ŽUÆ$&séÊqü­çD‚?¦²,fÇ0·¿Œ%ë‰l¹-à³,áv š<ç×sÏô–ÔU]s‰~Iå^ÂÁ7Yr§–÷êýNõ†·bö­p ®w!¿ +XOó[W·eÌÔè£è5­mPe‡Í®›e©h='öÀ]ßåì§Þ”[j™B9ñlT猥¾¬˜uªÎÆ:ô\øËPJBÈJËÖÃôÕŠÏF‰×={X¬êaLÑTeÕxÃçÓª\`ðSw$—:éÃBž‹||šNÖ*‡zÓÙ…˜³8ßÄAcÐõfÁ[“yv*ö®¬7ªmç$(yšeˆ¥]ª–Ø;Y’\43 g©Âò÷©'h„1T÷—ü*éŒK¿J•ÝNíÝ7—Y|þÐ ‡üÕðn7!&ý ÎD®€×ÐÂîÁ&¹u“Õ3†Ú"¼9ÎÕ²yL)EUÃS§½Z÷‹”˜ÆÅ!{Ó/Õ7’ÍT|¦Ò÷ï­äŠžèèsÒÓ~B".7ˆZ§´ÒÏE%‘;hÆ£÷Uw, ª{nCëå|Ÿß ½U"4õ6'“mIx“âÓ&Éæ)"#>óŽ]ùÿz-ñ endstream endobj 93 0 obj << /Type /FontDescriptor /FontName /DGKQXM+CMEX10 /Flags 4 /FontBBox [-24 -2960 1454 772] /Ascent 40 /CapHeight 0 /Descent -600 /ItalicAngle 0 /StemV 47 /XHeight 431 /CharSet (/braceleftBigg/bracerightBigg/bracketleftbigg/bracketleftbt/bracketlefttp/bracketrightbigg/bracketrightbt/bracketrighttp/hatwider/integraldisplay/integraltext/parenleftBig/parenleftBigg/parenleftbigg/parenleftbt/parenlefttp/parenrightBig/parenrightBigg/parenrightbigg/parenrightbt/parenrighttp/radicalbig/summationdisplay/summationtext) /FontFile 92 0 R >> endobj 94 0 obj << /Length1 2028 /Length2 13934 /Length3 0 /Length 15174 /Filter /FlateDecode >> stream xÚ÷PÛëö S\ŠKq‚wwwwŠKp'8www(ZÜÝÝ­@q+Öân—î³Ïî>ÿw2“üžåë]Ïz“+ªÐ ™ØÅílAtLôŒÜ99)&F## =##3<9¹ªÈø_9<¹:ÐÑÉÂΖû_"Ž@CЛLÔôf(gg v¶0±˜Ø¹™8¸ÌŒŒ\ÿ5´s䈺X˜äèÒv¶@'xr;{wG 3sÐ[žÿ>(©L\\´¹„l€ŽƆ¶9C9Ðæ-£±¡5@ÅÎØrÿŸ”¼æ =7ƒ««+½¡½£?-ÀÕdP:]€&€ß-ä m€·FOP5·púBÅÎäjè¼ ¬-Œ¶No.ζ&@GÀ[v€Š”,@ÁhûcÙÿÐþ>=Ó?áþöþÈÂö/gCcc;{C[w [3€©…5  .KrÑ mM~Z;Ù½ùºZX½üUº!@\H `øÖáßý9;Z؃œè,¬÷Èð;ÌÛ1‹ÙšˆØÙØmANð¿ëµp¿»;Ãßõ²µsµõü/2µ°51ý݆‰³=ƒš­…ƒ3PJôo›7ü™`cää`ád@7cs†ß TÝí)™~‹ßzðö´·³˜¾µô¶0¾}À{:º Gg ·ç¿ÿ‹à™˜&Æ €ÐÌÂþOô71Ðô?ømþŽnmÆ7ú1¿þyÒ}c˜‰­µûó¿FÌ )¤¨!­FówËÿ(……íÜžt,Ì:f6F#+'€ãíÁûãüsÿíþ/©¢¡ÅßÕý+¢”­©àwŠß]¼ß;qù›”ï àSÈÛ½ üÃF6Fã·7¦ÿÏ[ð—Ëÿ?òÿŽòÿÊÿÿ[‘¸³µõ_zÊÿüÿè m,¬Ýÿ¶x#´3èm9äìÞVÄöÿšjÿ³Ñr@ g›ÿ«•¾-‰­ÙÑé˜XéYÿ#·p·pš(Z€ŒÍÿC¦ÿNã-‡µ…-PÑÎÉâ÷ÅóæÅÈøto»glõv¹8½Íì?*C§·Eý5Þßø¶jÿ[‡˜­±Éïdfc::ºÃ¿Qâ ±<™Þ–×èöç ô¶v 7À[ÏÞS;Gøßƒfç0ˆüýqDÿ .ƒØ?ˆƒÀ õ±dÿ ·(rÐ[ù?è-ŠÂ?ˆó-ŠÊÄ`PûƒÞbªÿAoQ4ÿ ·(Zÿ ®·|†Л¥Ñ?ˆ‰ù AÿR¿¹ÿƒØ~£·‹æþ÷Lþ@Ö7´ýÛ€ ÀüߊÚ¿]_v¶Lÿ²yKkú/øfdñ/øV°Õ¿à[ÅÖÿ@æ·ðÖ†6F&R²¿•dý›ÿ¸¼m'ƒí¿à›Ý¿à[vû?=¾…·[9»?]±¼¹Û›ÿ©ˆù­>ûø»kÇÁ7õŸäìoÉœ¬ Ìÿeð6+пà[F—Á·Cvý×DÞ’»ýÿ‡»ÆÎŽŽoäþëÒy#öñ__.@ Ð~yÑΘ'в6°ý®ZÏ•no’ê4õN“™n²P4 6«¿¯’•¹"S&¾ÜÏ$®gÙ%/ìp—½þíÒs·Ž¨Þõ†ŽHüÀŒÈ(vñõæÝ|‚ç->É"r3XžF²0!w±ã˜"AJ7œ€‰Ù€ 9²×ÇÚ¾¥W Œqé vùÎîê’LY,|.õ“meP‹Ñ°êÛöÇœm›˜€H°ùtÞÎ{øx×*”Í¡ÑáUÔ~‚ž?iÿ½3²`ªÏ0¾(+L•új>ÒSN±Ëq:š§‘ºà±É@ùUò]­ü…ùîű.1eb7‡¹A¢i$Ó‰Ç=ªý*†pªcnÁ~¸É÷ì"ˆ¦!þ„['õ¾4 ÉÞõ¯ÛVÒ!A2î+ó}3›OÎ2)RÚSƒ”´rñ|/»'Þ äQ.¦Áà­«“QwÅh°2©Ž¼Mòɬ³Vo(ƒæ5˜µ9SÍÛUù¿¬r¶új¢²° ºX¤Vª!14ü‚)Òºñô`}É¿ìì¦Xq¨Š°B‹ôج[õJ/Ì{8eb©7N«‰ñpµÙºñªrÛÒ•²±+òþêÑnÃösójt¤7€(»ô¨+<0 ›¾5Œäë÷þÐk ðX°ùÜò‡+?¬‰A»v0x—¿È‡cçcðt€<¼}½T™"&úl—ûPþ8ÿ2íë9kŠ‚¯4«ãø³2Kãb 5ưg'M>Vë.êV…óÞ”\⮂ ²¹7úwÊhD ¥á€Ãø˜Èv¡Í«–œª¹¼ùŸïÛKøü`é¹Jd_±˜áá^fò!iwê½½Úécž ã«n< úÁ4^hýÄßmÌÊèÝ4¼8´û$î¤G˜XH~jÂ|Ñâ)ßöuN’ÿZÔûú ö{VÜ€VRûÏú&ËO•f%HÐ]LF-™Òe†^æQÅF>T=®Z§ÆÚŒ–‰gµš`îwfðè©æ8*MAùP>Þhö/t³G¦‹zÃÇE}ø¸«÷©ªSŠLžÓ~踶¹aÑ Ùâ+žFªãí¦ÐÁÛ?s¿z†ÉÎS„vwÃjfqíŒ~Ù|¸ýÕ°Á/à‡¾²[¯š»4l÷KÙ5}n‹>„0Ør ÏpÖz@€ßƒåþø³É;07´¿¢™ÐJÂá{á Ü4}ðîFÛŸI¤ªæ„TQžÓLrÿ€Æ›éTÏl™¤ ×¾ЊBÞý>F-«5hÓ“>Š!·¢ªTÄÆncq’¼Â;Ïþû“žæX¬üáhá0z®¢_ÎJW&HýG†&Z3z›‚] °öï-Xxðký„Z„€„CW×ï!fH¾ÊîëÃÃ_ñ?<©ÚÍðRã£7Œ=¸ú.“Ú£C“¥©Mâ~ñ­õÍbSbþÄÂÕ„7Ì«%1ãÉt÷j¬.…S ÁN©ï(Gr 2ñõ X+“?fÖ5¶0ܺa½|å;%˜pLksqÿ^e®GÝ#)³\ã¥sµ¤æŠÞ€+w\ÀBKÝÐîÂæM_VÄõåCu »a{=*Pë0Ý;‚½”Ù[&€ñ—¾z5Öd[$Ì÷q†böîÏcaŒVÂñ¡ƒ/Ö¿ø]ã×5x·%µ¢ª!Ý\Ð:н}wÅéÈ2H2Œ0ˆ)<¬D•”@ ¾S’Sâ|ϸveÅ_IQÅvý~d¶ä¾aa ί†nCVKýS™Ñ «f¶ö8£ó¸%¿Ø¼U­o-±æ@·llgã]ÞPœZJõMÆ@.ÄúAUØvöÅ=£¨68øúä$¹šnÄB4é¥K¨ÒMÛÝÇóhñ[“¯¤HÂM”XPcl¦gàçš‘zw4%î‘Hö¥ÓWm‰AÂú›)»›Ãf.œ;|­«w¿¤$C5ùÃw£$«„ª'­w;·éFËÊ_)nµ*©:î T¶Z³Õü¥qï¡iˆ†ñ¬ ƒrµ±–¤ÂwTº‰m Pb»)ðQÅ6’õfàŸd³B;Á¾åSrÍWxáÀb{ %ÅãNúF›¯¦%«(×04úA^¤r_EîfÁâtq…? upê6tïýÞ9 õ7KR¾,Ñ#΃²‹9¯‹lâ&ñðÑñðæÜÃÙ}x¥di)²ÆÖä>­aÊ%l,e‡ôÛimìøÏ¦‹(\´ÉåìuÛô™ æ>»ÚŽKñUh¡˜b`.…æ6Ü­)ýwdßµLÚr‰ NÕbÑ~Àuã”ÛÎRc=ƪbpÅ~k/ÒP0£[I^ì‰D®–<´ßÇF2”„&$Õñ(|îEa˜# ³T‡òÌb »dP­IR—}žes×ñòð½ÜI9óZiÁZ ›©óUz,³¬t«.Jnß×®ílxY`1xvÉ}±·u P{/§®Q–qCÿ]‹t–zXýµ–Ù#ká<.°,žW…ÄÔ`Ý¿fÐf”¾–Ó &uŒ5C O•õ)ír^ˆ"†¤B,R3f;™ÙŒð·`Cr“èJ oôyÿB0­ ø™i:è¶Ï,J™ì?n›[»²˜ùÝb5ªlj¦4Ò ±o¹=*`ûÞq¶‚ðRL»”¢â¹éäé  ÄÏ£#y/Ʊ ùhs–¬H¸ Aœ!<öw³0Ö5`qý…¯^öì$“3;£®“|üU’Wzke kÎF1åá™pí3ªU{[Kö`²UÑÖÕc› a¥MÄšàº~¡ÐÇýoÝŸZçºÑ`iÉ”p6ó¢Ú_£º£ì?Už…!@k®&=sÚy,_ÿÈ„4é”ç!ÙMûŒ =_Òi¿Ñ~“‚ÙŒ#"ñÉ7A~:§:ºË ó‹¥[hãv~ÈÀ`·Ó’›üاºß×µ/äÔìx:K—Âû[ +q¼£G{Š‘dö–_}»]û@A4%ë•…ÒeóÙMOó€µ¢±3§­Ö,Ë ï|x^¤ÈÌéè=a¼èÖ mÎÓØ¿ó> ¢‚7¯ ¯óhêÙ«—Þ3Ÿ:ÄúŽ1º ”²kÅG6•æ×~3þò§æ{2Å9Ša1r=™XY¼¸d” ÕÆ‡õB¨ ІòžE†5#¹›ñ³H·/×áýIº6o«Ï²3‚?~Vô"ŽIðõë•›/QYUe´XÀqÍÅÝ :é}¸s“x¥ †E>ÆV¸ Nÿñ˲jGCuµ}‘–Ìð4Wù{õƒ“ib}Aá’Ž¯±“] ;lÈøþ¤oØQˆÑi­H¥ÃeEð³&ú±TAÆà|*¤c‡Î÷Æ^ÿ‘×íGe KüV«£É{“©ùʪLÓ‘ILèšÒÅ ¨ûàùK+èü€Éa¡\"Êe]¹]œo¨Èp(7«±z~_g’j¬×¦¦Ýùð¯Jô<ØÄ"ýp<È^üÇŒ®3ŽY©„ÛÇt›;:!u„@IO$¼XE´·ŒKˆ™ÏS` Ð7+ñ ’²v¹"ˆSíte USt•A'È]Uq©{nÕx‚éÄfp÷‚ìÚT¶×ºØv«šºž:˜;ùËOdÜXúŠ6GôAÅ_3c§½f4¾‘‡2Œóí‹Å Vµ&ÒŸ2ëm:ÖqçPHòWVÇ×êæyªn—†¾åzÛhdÒ7Èm Mz88yÇfG.?÷95 bè'8µ3€§dv"+Ä‹õ–§XÿŠX7ב00zwcHÈY˜ÞDF¹~1¬§Æ‚^å^?}ºs)ERþêÒÑ|mù‚ %šó°:&D0×´ÏF_âÄÝ©;„Ç#É\ÔQ+`ÝU_kŒ¶û¦Xt{E „-ø~DbŠ^bÀeŠ3â NJX}¶zdØóÜ€>œI´Ë˜ÌEŒ™„Ø9)â” G ³Ÿl9l’;çžKz°}î%3Vñ=Æc#.‹ÏneL ß^ "Nnü¼+ 7GÊÉóÞ'ï¢þõÒ ’ G祥ÏLä,?®ÞoMàþàø› O”¾nB»ãg )@2¡*Œô„ÐwyÀ.RÊ!aÝ’z?‚Ç|/ÌÇEv s>tŒM–AÝÄwý0lîˆ|MG¬à9CòÕ /1ù|+ñÂ(–º5 V¸.È´ÛXåfQ®^æð>n¼¹ª<ñ+Ê¢ý³Bùw®îº‹:™«NÌ6¿^²é—Šdnx<¯¯U[XýQ‚»szcŠåóOçQ6¡;­Ž7ûM6Ýz¤ÌÅø†ŠC‹tãuªñÝÞˆ­¿¤üf0¯áT’"…@¦½ hÃU§À/Ä;?»·¨)ûYmBľý"i Ã+Ÿðë ôj×TœÏUï <ôXŸ9²ñtéˆî“Q猟§£€‰¦ÕŒãÆ#è󀬿×é2²ŽX È‹‹¡ÄKîOÓpÞß­ý¬Å}!¤CYì4bZCN¹úh?)ú]’„™*•Î>Aæôsu˜ÑÎ 1Ÿ³Ø¥Òab ,å±(/OeuÿhÓÃÆ²ÔÞ=³A~ãÆ£P½Y°D„¼ÊP¸ñ óüSë7G4úൎ‘h=áÜ­ˆƒj ¾5ÇØƒä ŒLk‡¯”̺k]iò@¼,™ƒDÆ:‚âY{¦äÛs½¨Ô $ LTÅÏ*¯D|2k¯b÷û2xu4—aŽ:dÌpdÚß"ÜíY:ÁŽ·µÔò* ¨Á r¥·B_Ô8‡ìb©íÞãß#ŠÝX[ Ú*Ñ\Žó(ÇEÚfLJ1»OWa.7z¶È.ɨ«–sânEf'Ù‹qwºŽfeÏ`‰£!$äôUôñI]†Kœ$jR)»®ÇÆBô»Á±ÍЯ˜—¶ŠJâå,3ƒ7|îiÁ’.z¿Ü|êWÄí‰58lî.³Vÿ"Îëõš3ôô¹Ï뢼inýJ•Á±ëù QÕ©P¿ÑQûPAýã®u¹µÇcºág§ ¢Š"ò¬2:kûb¤çʶ³·I$G[V¤k9Wñ‚*¹^ÒT¯W’:xÐÞ´‰³.j¢¼T¾cɧº…Ï…¿’ÚÎâ+¶×%¦‡P{ ÀšÒUɤän¶Ü#ÀÒ9±X伪›ºHsø Øq¡À¡â@ˆè“œV£„ùмF÷I™9-ïàwr°Ciyø3 %¾ûøxp¢p¨8ÚS×’…Y]ïNîÀ6|I0”ó íMþ€A:Z ôzL½2ªÚ&LCx’ ᜩaL õšš;êT ¤Úp˜ÞCOÁ%+ä€ð¹Õµ@E¬ .}Ñßà{M@y¦I©šUàÚ òÇÎÓAØr×C¦åsÓì)Wƒj‹éÞÈcW€ ±^Ùáü±' Õ‡¯}å.š¸Üc£ñEŸ4Þ(Âð5ÙË• UÊ`ùkŸ…¡¡—á S½t–ª= ˰ ž»`ÇO¬í9hè ðîd;†›Ð .‚BÒå5Í85Gã©ä”þï6“‹“‚oK€ê»ºïV l)&šNÉ’Ñ5&Vö{îʳ¼C„[n|Wt™.¡OSÞÕZ-¿<ŒÓ毪¦è¨,ÀÏmÔ7(+dÓ“w4Ì"Jß½8Nò1Ô wQ0‰«z‹éž·³äm«ãSÈ5»Gh‰&ÂÝï4‰¢rÅ”)€¿íàË„+cß%°Öp á…f}¹“ÕÇÕU Mûü1Õ¥ŠàQ@ÉÞr3h:»p+ѧ!Õ‹®ÚX2ðª^5ç—ÇçaTTðÌW<ÙÜ`Žù¢¯4ŸºÇr„#k6Â»Žøša©)ÆýT9Ê9?û„Ä’¦ÎnvY'õra6Õt4›K?6}éÉÅϧ´Œz5Ú£ÆâóEâÑÏ&0¢ 0Z7V×O8ñª·º‚U 1Í&ÞæQňã\¤Ð•ô}¯»Gõñ°c .Z-¯3©€@óIx¥èÃð_‚,.¼ó‘m¡`¬_£[ØYQ1yæÏáTM/Ä*æ5*B°·Õ6­ÏVƒT5 ‚ñgÏXéÜÈÜâÝ~ žGßi6ãäVŒ™qÊH`èÿb¬#ö[´»òø¢p6>fÁ=­ÑNs™"S×Þõ´¨ éú£ÔÉ!Dµ¢ÓÜŸÝqåèB6‚[C+¼¿=-°cVVØ kÂ.“(øÈ² óKEž›3¯ë£äá— X5uªÝye#ò™Ç»È&ßÔþpvÄþ¡ÏT©p ñðå¥Cš®l $c[^Vi%”@2ìuéòN „æÍ¡ëžl|F¹k;RsûÕCòþ‹½wtʹ”üEÔ“p³%'ÃÌl¡æí§­^RôlÎ=JŠ·‹þTç¥)JJC‡”O0·¬ lØIuzÅëþrUv¡°lÔÊâr%ˆ›}¾/ ãf;ÑGöݦ+à¶/`lƒLÈ&…-q?eúÑ´eáÝ›àê…»Éú?ℎ²koÂOÆ>ˆa6Jµœ²ßÑ>J©ö…D½Lºg,‡üJx'™loѲÿªnlž­‹mMñ}#O¼o»¥E¡ðŒt8–X”»,,ˆœ Ã{'CÎ-áyxˆD_6åA¿×ú;d‘ñ”Y—Ãò¤•Õ¡R‘³ŸÒ… Ûï÷:ºNWV)˜ñ”ú®QægÒ7š&A~ =ÝŠ]Ù\ÌÁ‹N%2drÞ ¯õ(ÊéàŒÎgeL2—>»dÑ¢´³à Øw¿û£ÜCôï^¶9 TüLÉyÕ„¥0ú÷^æ.¢lµ$˜Š ÒÁ{-aôï$òÅ~ÁªHOiŒ%—áÊ# A~Úžq ºßÞ!±ûÙŒuRH’ ù,>ÛGwwA• I¦§…´UãeP.‚d{åCU0;š±5äô ®`ž¾°®ÂèÎûfÚ_S$E¾“’¶åë`È—ñÀœy4‚¯gYüè/øä©>ªLaf‡Ô$eX–Êóýyw¦oiäǶ­T§þLzZÂû ¯÷dn¦~ùD½‚ ³yUË&WÇ‹×n–j7œUï•Eæº …’|à4¹z£žÖ:Ia;Ú”ÞXÖ7÷Í«±{±Z'R>æÛ{&ݾBؘG_Öy,å4I²P«Ÿ t~NÝn¢²+%Z¦ÎIɨŠWß.@|,dÅ^…Bª :l…nÊÞ7hÅb…uJ6O…¾lâøp1âijNaþÖwõœ›¶ŽÕ]\Ñ︸SçÖZØU$ÎÜÓ p «õwÅÒ F2yyÅÍ!+[JH1µÜž¾+qþf,<æ>iò•ÑK»ÌkLˆdÎÎ:²tP÷yg+&…}?•3 û/øEmƶ5axPD€'ë¤ÍLÅ$µ°:WmÍ6‹s@»lÆsEïKŽ·OžLõM„â¦è¢"v<âÁ%¢Áüœ¹’ŠÊ¶W¤&cZºðu‹ë äÌŒ`ÚöýÅ$ ›iKõgJ¸^JRVÑ猦ºð©s›–.ó4,kî¿Øäãõ8æ7L¼>å(x]OW\úà¤_S‘Þ-8pãl’»´ t{ðaóÅù±ñ]Ç‘¾|9æ€I/Q †´Ã%@7dΟ¼æŸ˜!ä|iÏ•‘¦ãòF`ÌÂô~ª£,ó¯v¯Pê²g(ÁÜûÄûÞõ¼'EϧŽê ìµjEÀ×[Ï„[4pÒôÛ—7@t¾`({€­ôÄ6‚VI¾éé|5¤¢¼óëˆ'ûzâ(µGVqfùú0`YBÈ0ã°Íé¡F¼³êpÖœ‚î8k™¡Ý¦S Ÿ¤·'rld¾KÜ6]>C ×ñ¤—o¢òNÂÒ®Ùi-3²YÃ/¿-§¥¾³§mÜ>†m#Þ4ÙK| i³KÐP#å]ò¨‹›škWc™ ?\­ò­>€Âþ¸ö|îâ1iÊÖÉC”œ öšiÙ9uG‡©¿Yj¯Ýg{¬ç«¿€¶W‹IinQºÿˆŽ|YL€¨§Ÿï¡_”x4'OøHƒk¦ÃÌÄbì³|SøÎ²ýû'C%XâM Ê ¬Š¯"ˆ#¥%¹< O–ˆCÁlVV›¸á°\n2(Xs”9|Þß˪O«¼PdþsŠmÔðc¸ä)’Vè<Æ’÷¤±\ܲúVÐGîaª©,½®ã”àW¿EÜ‹“ÄS½x!Ó8-%V¿: ùÔ[”TTÛð vOB;Ž¢ôûMâV<¾bç÷¡V>N)"…/ÀY] ­7Ü/÷¨¯ÎŠëÝž‘Zç( ¢róv"=®ÃÛ9¤0Lúc!£~¸ã}›<ÈX9ø”‘MKŹ]'yîÍhRÆÑ·S>ß³!¥žD¶¦l ”™ˆ™¾ìàÉýšÕÂ77ãD{U•‘Rj@Ð>(¸1A³¹5ÜsŒaÝÍ/øñš3s<ú}`'®hªŽ …ßx"4û^qæÂœMl>‰Nf0õ,§ £žGŸÂ2Z‚Rˆ®,˱ -ˆËý8ªTYTu? Dìc稶m;èñs„mÆC•zØo5Þo‡³£]ýì8Éù[”I6î47}ü­ñ…Dñ)c&š#èǦñt Ž-€1Hvp¤#M7f$=£¯'¶L¹NÄŠº.‚a¹»©Plÿ•ŽÐÕk ‘/˜Œ¡Ò¬ýzåÆJ†Ç‚ïå§½'øÖ $#Ît6.ÕŽ¶µ‡®I<Úá&9uÇ{-–ó*šÌ‚ÐSÙhD9»P:yܘv§ pšî}ø%¢’ûKÏy½{˜uÑ!¬í„Ñú·ÉÔYï–‘.‰"Ðïôv§J`oï¬à¢„NÃI¥xAJuCâ#t¤ Æi+i¾—q]Êmx°¾ÈÁn2ž‚e¡}I9ù»!l©_…œPö߈¬ű6r;ÝÙ/ð˜¶_§§øµ/o0M–ßáÎW+d|•“b†Îû¾™ Õ+ÉÁ,ö„µ‰E“?tdò­Hð‹áƒ>mççñ“IÐã¶Ä+>ec¦É;ï¨üz]céÇ80¸hl «á²næ¼xÁ„F9ú8¼RfÿE-÷&³—fv']ámsvð½£öÜ€ Ñf™î§8ˆÙ@—gÐTÃáý^M B7E©Ëåzáþ•™\D?§­×þ¼ DÖ‡/3‘å‘2€åý±?‰Ü^atís +o›ùõx˜¢hthЧõ…çv…³!($|[G”hÑ}2lÅ(–%žËT‘+ÈLÝÀ×Hé‘ÙÍ“¼P@Ó‹!èHÊCöìü‹jØ&2<ÂTc=ÈêCú)8 ÃvHEºÞ7;eBs‹ä€o›öØ4NÚ¼_úsgjß¹­ô,œ)“ðrÕ?²¥>’OÒ°%]Ø;0Ë †A‡SàAeœv“–7ËŽ °‘}a„¾ˆßEŒ38ž'“~6ƒF‡rò ݱàò?pH4iŸ,˜¾_ÇÏKàØÏµßs…ÈgÞßå ô~þµ¤žv“B>¶Pó² õ‘³Ê˜êƒÐØl‹>îÉŒªK*¦š¥WV`Q­C:CCºÃ«ALÎć¦ï_uGö´¬‹é\Ù´bÎ8Ø@ë(€›ÖI3KÎp³Åj·œ|38ô¾2-–XµßUÏO™»âödƒ^3X°m¶(E Äü?ô²—½£˜C~2YÃmc§·…[m_¨Ã@c4oa™T@ýˆ~½yºÞg:§KÉuó5WÓ~`èY¯:OØîÊ?Ùÿö3„¾¢úV£–¬Ö‘ßýFUö:^¼µóÞ]Bù‘#EJ:…G}1³†Ï—ñdÏ+˜öC6š›ôVDiƒªâ”ñ1‚›®)ŽÓ g˜ÙÏ–H>yûÍçõ…Æèôy…èRhG5ëÝ©q%iÈõ/–ÊÔ b??oûîëcÔÕMÇîQMüb½(>ù!<pØ’=yPxA§Àõ#΂ÔsL* ’~ [Õ9€hG‹G›Ë‹¢ÒÝßß¹õÝ’MæŽêÖ:•â$’):IµÕ7ü9³«òNªœå†b½[eçå$½×é“©mö¯šH*S¼×ÕBµ…Ts-"¼Hký47ÇåÖÛ’,’tX›tšQ4F*DC!Ràzm]Žk¤È}Vµˆî›Ab `Ë Oš::)HÌËrv´Ê΄±º4áÎú5*EO‘¿"oÆ£¿]*+„¢Øl':)!eÙç}[.€>òÌâ½NåIF˜)&:Ÿ(™'.:ˆ´¤{5Orþ®½Џ£E•µOÅ]ö]!O×­HAÕ|LÐÔ™..Öß³b q`dœžÜNÆ †©Žý‡Á W ¬'ªæ» tÓÛ‰@êÇ>L0Í–vIȱ+º©é–1ÿƒÃ[öháu^ôª¦ûœåƒm~¢<¡MŒ=“5WþÇ* PaUN¯Ù3$4 TT£–gœ"þ—æ)mú6yè\¦ ,dI„ýÁùÒ6ùøSÙJr¥TQæ*ÅIæòí, ÌB2è2ŠP‰ûs_?ù)ËöçÐ!!ÜU>S¶ë^“`Ö”gÿ®Y }ÿ0 /|³"ÃN“ÃËÖ{òÏ#l*(ˆ'sûkKJ·òÒwBGïºù÷HË¿…Ø]š”N啕(dâ뿸[å|ή„Ε=1‡Q§’@¹µ°1lÌË”¢YÀ½S×…é$àÊX«·¦K²£®­_OG[š4–`è%F“:ùCKÏc{„ËgåÚŒÒNûXu&™Å/2+ô RúŠ2ñ×å?{¨’¬'óÍüT`©ð½mä ØØŒ8E–?Têˆ`‘gLÏiÄúéR‘]yˆãFÝyÇ¢NeÜwë0+4žm0`+ §ñ­QHãÀ?Íóoºüð{zdæ Ý…GÜåÀpûÕ”xA«F[pÚÔj6ðisOF5Ýõ©¯ò%>2³ÑØIwNˆâ0«7‚ÿ'¥{d‚à ¤ßXÇi<nD¥ØòˆÍ;¥)M@…ñ©ŒáªËHŽr™šóVÕîüŽc—¯lŸk®9gf¿T¸*gjg2öÍÀòC~-ñe+¨CÅ•’,@aÄ@w+ÿª²f?8ºU=[½EJ‰CÒFí÷£5ËY¸ó¼Îe¿è(¦ŸkNö€ïZ¢Ùz‡¾K†GpêæºŠŸB²²±h¼¥JI:í/Ä wÜP}~W$5Œ-`þ…ÆmYFß§ØN¬z³¿Ù™Ù~tUIÂeŒ`¥Y:xá]^üúÞÁÞ A6­DÌE P‚«Ø£a$»›šS©'9˜´seÈ͈¶dšöBz\J5Ú¢‡¨ú²xhàºM3Š·+ضL!‡§1ÒûU&r(7i1,ëÜëKÔtƒðxþEèË'¼—·]ˆÔYèoYñ‰çOžf¥†*eŽ¥’Æ$Ç.³Ÿž˜“ ég°–õÏäF ‘• Bü ¸³%YzSå•KÙ(Å lfgur×ËÄž%+.p¸„©‡°ø-œ”Î ]ÎÉ,Vý¸–Ó ûÖòßÛ°Þý‚ê%Úö_ÓQ¶U³µît©P?[èü¨îønÝS$À‡jêÈŽPõõ5ó©HW4‚9ìE(‚3ã¤`ŠZ‡›½O›¤¿¥‘_¯§ýî>]¢™ÄKk¨$åí */J¤I!èêõw {ôìE„Í£šÚD·’Y¶1W‡;L £syi4;.¨æE¹eê™"®z3.>%‘ÍRNˆrQÍ?ÖÞž|Ñu'R@ à £ÊÙ=å¢ðm*’«ÚÙ_~ê,åßÑßôjËÕ(ݤ~‡ò³${Q¢'êXH¶ËØÆëbÊ(Q¦G V„0?¤¯†0)H(èB3Øh"Šñz85éh+Ž®|gøâcs"3‰ÊÌ:¤ê|–ºVÊPR@ØmŽ”‚ö¢íÅH{O.šñÄ÷âêàö§:Â÷ò¿6\)¤’·dq}8”?ì}*ÎÖ¬T‡ü# ‹'&<¸ç J ËŒv ÑvÊæi çgᇊµ†ï—(Ê«ãdÖr*vÖn NƒÒ\ünJKðˆ6Äï0?r鎢¢Ï•ZŸù ‡®º6&¡ú¿g®Ÿ@«O}¸J˜9òî—Æc¹BÛÍSú,Ó8»®È'KšP3vÀW•ûô%>)ýá Ø ÿEú×§Y Ÿi(ñ]m‹B»ùh1¶‹ï¤ƒLúáOìížûòæ9úЛÑ#ƒn 1Y¾`ÍUµvÛ°º²B^ŠË›ÙO¸Ñ¥ÂtÝIüsG¨6 ÏÍc…´‹®¡\¥Eð{àÑ;ôç5õ» Z°ÊœÂ|`¸bYRl¦~§jÝÏ¢…÷êE Sª]äÍ¥±{ô'Ø-Ž̼ìkny#OŸ¦Mj§ý×Yà O4"({u¹ÜÕgÝ©¤MçÕòÈ Ú”‹WPÍâ0¨ç°,Ñ´XË¥¿5ºm~ÃÍšÉ×%¯è˜%ãP¦~ÅjÌɳ‰Ùwêg{Г-U\¿æá~»³ŸÅWJ~ÙïÎsC†z u›nÆè¢d@|RÇç0 ‰ʸx‡„èSÙ‰ü2¤/e6TÚ™œ°6ÎGm¨KºbA8çOf`'Æ:A³¹4Hㆾ¼B ,A¶¾z@/vãN+^²ßctâ2EÌ]”Mâ/ÔË6ÿ(÷PH÷Íf·{ùHDÄùMgü‹Þ@Õ‡é‹ÈˆÎ;h¥D,Ìgï†ÀA›dÒŽAíÍ[ÆbÝ"È ¨É_L¢ +xÜ=(K„0—T <¬õTvšÆÈMÍP¦ë´ÅÀ6Ñ®q¿ª Ü,€XQÝÈÅñ:‰õ&t€¢*Ƕø0\s‚±™íó”rû·UE›»µ bØ&l ‚fûa&bOïÙüªt \ O=ëdv\0G´EIð5ê-¨eš;M_™Tü¤®¯Ù~O{ß?ôPÒL' ÃGŸ%i/æ)œÍñ Eˆ3‹³‚’jD£¶!FÖjRå‚I†>FÐ×õëòm‹ÅúõŒèyóà‹ïaŃêæ-L˜”¼b {ü2ùvÙRO+åi!:Ë^Ñ?ð¢m¨ºÃžX:ª—þð§çÞ2ÕyT (ϹȪÊD”ãâ¨Sò±ª=ÖóÔ‹i˜ûÂv«Æ¡ê/Ah¡#9é ÒCä¦ûÉEK¬ swV2ÇŸìLýÄra”îßüÔ©ÚК5‰ˆƒbzú.Åéu=ÒN* dÇòåÈFÌ;Ì/—ˆOA!¤ÓGoÌ;1rðI¡BZ÷Ø‹…³î { Àm¸ª #]æ[ßÓƒSïê¤%6Ó2Ç}Ž·—ršûÒüÕyã‰(¯iúÑ3¹!üéâçXÛ¯JO ¹Î/.Xam»²B”'̓0u>Û”1í,PÈ|h‘•'‰ÈÞ™!]J¢DÑ({3h]ä‡Y8dS®´ Œá1hˆñsÒ(iŠ·Ë€å‘^få‹ñË©Ë …Ô [¿>d´^•ª…åeþ¤°Þ²©|Zxi½[db+Ò˜"(lê ¨¬mÌÒ"[q² µ¢"ÎFË ×Š–6<õ²Ô›LÿœAûù¬œîi ‰…&š­ÊaÈ«fƒŸÊIš°å† tÀýÛ#`èÐØ%¨öÝØfJGï½cL,ô¡ÕÜ@ðS‡ªÈHJkq~€èCXeUÒîZ9Ýé”ðYÔ‡ûK¿»\©ù*qz·òê$ÓFöOÒœ`ì'*èIáþ-YIÓUŸ>Q3ç£gö5¬à 0b°½“äš!xºeÐ5ÊfÊfÌ7t:SU&•ÛþÉŸÁ“Ü|7`ò@–PT)Në]ÆžØã‰Øº:®ÏÁ7væâʨ怾”÷®¤qáÌÅs’?bóçØÎcž–6¦†µÙ ¶nxM•Vy™+©À¯Ö:¢«´ïÑ÷M{}`ÃÆb©œÊ±3¸øªÛÔ˜½ž³» f@øªcUEeØhŸ-®Žé’ßûÔ‘*$âCö†ã‰IævÜ sEW÷“‘o|6 €æôƒaÌ¥³gçÒ€ÉUý¸ö=¦Ý´ŠcY o" »¯³Ê…Öº×ës[‹å„F¼óe`®±6ž|ðW´Û¡ŠÜÎn(“TODÜþ¨²­® TåÉ’ÚÕt—€2ï‘GänѶ©¼Ö)[9 µ[l´µ‘I×|E‚@?çŒ|»V²Î9Üd³p«æå®3«OÄ{(߇6™öNªMxý„eFœqó5åž ŸIFI×ó# Á;7,¼vßEYUöz´‰’qÌóŸ ºòÓ žé¾W&÷ ðêÞÜpýÔ¹¥—›:O„ò<¨Æû„§¬€á1Dˆ±Ý¬=‡´ZÔœ>!®oøR !”Žo½ÈÚ Œè劉S”P¢Éâ%ß0½ê·]´¦gc»ÛÄrÞlÉo¥„ÃÖÏûA†a‚1έEMu‘2Z’°¶\অ44°­Xù‡æBFP ~dñ­\\Ðg  ëò%ÔĆåŽäÇÄÌÈ Gc`̧ᤢOh—ÜOæà`Ü'á;SUÌ6³2B³‡Ð n²_¶Ç–çЫ€‹ê4ó9PÚ¨…Ù•T5_ŒCK@n7nõ3°Ô¸Úhbq7Š$¿ü~SÇ9—@ o^Ô¾‰gcIsš­õ^[&9?¿¡Û©— )·Ö”øÜbÂP¦29ÿ1æÁÇmó¨ó¦ÖU+š¥¼0ä"¥x} rÀc4ÿ¹¢@sjhƒnÐ6c¥š ,Ú.[wÞÐIæ(LxZþ<µÚ#¹“žî·9<šíJ^¼Íƒ‚—M€§)A`yQi‡Là1úÆÿ ¼7 endstream endobj 95 0 obj << /Type /FontDescriptor /FontName /XAPWJU+CMMI10 /Flags 4 /FontBBox [-32 -250 1048 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 72 /XHeight 431 /CharSet (/C/D/E/I/L/M/N/O/S/U/V/X/Y/a/b/beta/c/comma/d/delta/e/epsilon1/f/i/k/l/lambda/less/n/o/p/period/phi/pi/r/s/slash/t/v/w/x) /FontFile 94 0 R >> endobj 96 0 obj << /Length1 1422 /Length2 6329 /Length3 0 /Length 7290 /Filter /FlateDecode >> stream xÚtTÔk×/¥¤‚t3HÍ’’ƒ¤ ) 0Ì 0Ä C‡R*ÒÝ-4H#Ò%)¡” (Ý~£žóžï¼÷®uïšµþóìÞ¿gÿöÃÅ®£' CYÁÁ($F$”(ii©‰€@A P˜„‹Kq€ÿ¥&á2„£](¤ÔÿrPBÃ!¬N‚Áúi¡uWH—IHa PòoGZ   qCÀZ‚uîBÂ¥„ròD#ll1Ø2Éøøaßûs5[§è‘xÓ†Í*júçîd¬÷1óíiòzœl£EV©t7ŽK(Å;âû0›n=.rîªÎ™X÷;Ô…` õàfíÖw…iš´Ì’†;«0 V}úkbôÜ™«Ž‘ŸÂÌBµSnkÈ´ž’ĸ—S,÷ô-ÜêbiõWw XûÎùsKEºYY”°Üp!çæEfÛv ¥·•*•­žV6û#z’>¥œ¸†]z³ Bc»´ÛX’mzò–œ”<[Ô³ÄS±ŽÀ{‰™“·_ؼò†É,‚=kmøðb`œîxöÚòÀgÒw£M¶¥…{OýÞ+è…Ú%•AM²àÓTÙ]”wÝ¡@ÒãUP¢ŒGF÷뽤Ö`)[n³Ÿ™Ål Ô,,s(+²¨)SžÀžÇi4a ¾ò”H"ư¹¿øië4$ï’áfë^=«=+¾<ô›ü=‹}‘²ëg4Î#™¤¦£›xO—ÐÛ-ʼEwñ¶t÷Fšæ‰8U~ÐË[Ì+ övxÜ&öFž¤8u> ©Nµú˜Úa^2N‹ÒÝH!Lª ä0©+>©¹=ÅJ¨€Ñ*ƹKÅ#ñÌž,ç¹ÛÖÔ]76½P/ÃŒ’÷„¥ï¥sïû‚ÌæBï‘(<è£hMôä!¨¸HÞ06g`vÂH 1–µX*W~ßå"^à „öí?1Ëe;ò³±Ý.§‘ðž>œçÉaÖ/Ú:“…DZȼÉk\Ì%{C HRIø©‘IX¢¯;ái syÒéÍŒÑä]¼þ±öá2fü£7ŒiaG6W*\Д3Øœ÷y¢×K^¾Æ8üH"µá2Ž”kFºòÂýñLª¸òŒs¸s"{V{îêÛ½o/ÓÓ…î@Zʼð—n5‡‡·Ùe%4ž ĸñ†Ç°·šºÝ¦] J£ìñî=®a@®UN (¼èØìênD¶EÞÿn9»a“Ú„™ù… ÷•‹V~“L| ÌÁÌ6z?"Š8¼*6üÅÔ c™:s{ºèѳC­a†oã».ʲs 1oôàGܲ ØFë#L¤ƒiwûy9¨„}=¥%éºvœº®] O•pÍnçõb5½É¢ìà,~O+«ÔäÐfŬ!­OÌõ%7Gû?ø¤‹9%Ȭ(Q#°^©ê›=v׎«]—|€ €ÎàRÓ$]H†ö”q~_³,[s„4?ÒîA¹hu-…r.LêÆEëÖß¾'•fqâÖF"í?Èž} ?ómLØ`µ‚æ­Â‰íÏ—:îšÙ^›aÏÛ¯º8“†~¹XÁ“7˜¡*ß!p6¬:9 …Ú¹ }Ë ÀÕ11¾/¶FpûKÈe³^Ðe›Ğ;Z7õˆ  ±ÌÔûw+ƒþåè­Ë—àp:eçIŸ¸ ÿˆÐƒ÷Y)ìÖ-€UµÚ‹¬á¨³SÐj®1¤ú8®¨Ìó…5óW.lŒenèJþ°­Mª'“ ˜!HkAšUe†Œ¦i¼³Uk“ŠÔVEµÉ<<Ü—I¯?üílϘ_88}?¯vàáu¬S ˜ŸYKƒk„oPɽ0ÙÖŠÀ•þ¸¡‹nõ©Ï¼e/?øæ²™að.—§&S¡¶šÄëÏruFÓštë˜ÜC»õ¤ç?UÇÈx'?e0:ˆ‘u¥Ðˆno‰gÛXëü¤k®?<×MUŽÑ”jßU'9á­Öç-p6ܹȳî~° 7Xû±P¬:PÌr¯6r!ô˜éçWAýèü5~þ-Fö›=ÄÑÌ-AÕo "1{YZI,e{ξ,â-sö÷ò­/tIÓÜQ¿P9íÒ³´‡¡CVO‡ëׯíÌèK¯h–EíAS¶{šðw§¢ð>áï¢ÂÎ’‚¸ÒiC_Ê\gKÖô¿düÚÀäú´*¼îJ9cpµÍm¯±7\¬.ðx™0xƒµi)™Úk¸˜,q6%¦ŽÂ­‹§Iå´8=øÊ˜7lT¹§eâo{ÎU¥*Ÿ§é'¤*ÜŸöÖh#–Áx¨íŠtÌöR±3ܰ¼HÜÖÉ6XüH§0O{‘Ùcß(ù½ê<ú'øF§°|Ÿ»ýOœ`X0ƒòÊL-x™'ô<`áÚ$àÛ³Åüñ—w`YI»wΨŒ3‹'~Y'¹h¯]Š`¹Ó=XÖë½C¿?¦`%è?ó‚ã ry$®ñrLN5¨Xo„¾¶„4uµQW¾üñnW%~’í\‹ç Tó£}ªÏµŸWò˜ l`1ÔŒúóÒSM ÞOГՇ?UßþT>eÕ-eMWb|K«½‡æ@Eî"vVÛÂ_R(1¤‡§œ:ñáòÞÛÉZ߈Ÿ!kÕÆö¥™rîIò›¬dÜxU:×LNsC!?2@9êu˜2†[-¥µSªv1Å_z<Þ7¸ü±-næuÊjawõÃFf¿xüf#¶¥ËØvÅâqÊb¾úQE³Þl<ƒ†¸N)3óµéÖä{ÉL§SŒÞGo\ßËT¿] E³8Ñú¯³yB+{3ˆ”_ynTÑÍ12NL~Í{ËöLè~ìPàB´.ÌË5£ªsCsPu—ÿšLÔ._ˆAaáÑ W’˜žã³¾2/h’¢Ÿ]¼ˆ;eËàíºÁÝÒjTY³ü^•ïL{9“£<õèìÐ>,טd°fØU%æÐÚûÅ5=.%ÝRo§±}ÜajXöþ¢v¦É’2U(¾’¨(&yuã%ícVÝÕ…ãSܰê6Ó¨‡;àˆNÁ0ÕõÑž9¡¼š0‘NÔ-J„I'l¤A¯ãCd…Ø>¯8FåOýÈrä–` Ú´ÊÞ€né‰ !²³IIÞ†½èéþ€ÛÐOuj—ŽØªPÖ°jÆ8`xŒïÞDN&ùóçÛÅñýU¢ýt„e¥T±…ŒR¨…Œ,Ъ ¶½[Ã^Âx‘¦} ɲ_ZŠs©w<ôŠ6W™•¤ 1S¦ŸX·é>9²éµ"|Ï¿ö½ÂT—X3–4v¿"\kg-št´˜÷œ÷ﬦ¹Zì¬Ó¯ˆBd‰ÐRÅÄ‹H„è%q.Ý|~N£5+Y»k¡ÉÁBøò£ØÏñjË<»¥·5-^о6æF"O鶇U=óŽ-¤‹—ûø…B«÷‰äiÀg ž»Zè‘»¼b%“*¨‘"îþî5•ZòÄMö]œâu·—Ö¥½¥ÒÕîÖ:!‰’[®‚_ .ðì–‹sÖ¼qlþùÚ1ï ¶A—ÑÄ<Xl_kÃðݯ@$¬ æÃ¿š÷ø8ŒqŸjýM|ÊËÑ3ávË„”OK8œ¸'ÍF Z\Ž‘Dj²ÌÈ×Ãö‡Bôèp3¾+ «(£%vÒŸ9—LF|ZinoööÙí˜Iôæ3 ’áÔKòkƒTþ\9!Z³0z¿ë}$}‚n ò§ƒGñÚL²øÏ8Ó=ŽW84Om§¶Uè_Õt˜Šjˆ%nt±6'µfxâEÒ`‘˳Ý5éÌËØpj>.6ej˜h±÷{¿QùønÀðõ7¤Íßgǵ Š#h߇¬#}×s8b<îïU|7 —{ßóT ?™l÷Ù"aц6À”–3 ™ª Ñxú¸ÝA»Ñ¾ï§-”P/+Ã3>þ q± ÒÏÙFC)ŸèÕµ³Ki‚¯x¼‡i¿ÍÚè|qÊ΀}—ãí¹Žž 2Hs ¯¾ÀÉàù:cB¼ªó(>-ÇýBX“ \DÑ––;Û;ôÇ„h„Š^N‘•$e(ÄO#_‰îöõÐÀe]Þx©ó„Xµ¾ð ¨CÉ,h²Q:®jÞ^ïšÞ„Óy’ä(çήÃÞè~^üB°ƒ³Ë-Ç’ô´R’UpÓvhXb¥òåôÝcJÏ;Þ›ÞÝ’LÙgôÜŽ?ÉÒJÄ‘¹wô“ zÀ9ã<4ï½Éhk¢ÞÁi×(«}:ÒI¼ÃQ/–b­[zŠãã–'÷4’F&=^—ãÇžà ºñyžƒ å¬þJ›d0íºÀó‹8–EõºcªïV±¡’ÈÓê¥iºfX&ÎÜsÄAŽ.H“ÒQŠ&ëõ…ð¶üg>RO¿9)çÉU®7ë"Ühµ¡:œ/é¬p%î„ ‘ïãÑT‰|*všÐ…´½É3ö_ìØ ̺]—ʘêáéë%|úþ†— žÓ7ŽÍ¯t\m!dvÚÙÁ#¶õèˆhqñ¥Õ’A ZBzVñð}.‹WìÎ÷ªï¨Ö–à&]ž_kîîm×lÊÛ XM¶´Ü5´eþ¤—¦ñm¦;V$3àôùÜ Ž°ÜYuÚ–kjÙ¦}²ÇËlѬ»¨’[èS”õc.uò¬¾×L ÊÿÍÌ¢©½¨ož®Ú®@œ¿ë°x­Èt³cY`c®W"™EäS¤8OüüŽ«#mg 7ŸÀøIصè[{vÜÌú6ô9ùkZ¶õ½Á0²—ŸHJt§¥q<ʹPKç?¹÷rgæ‚¥Iû÷H:Ä¿üˆµŽ¨Zµqð”®‹ì\S»ßB«âŽ™„PòIˆˆáÄ«y9åÎð.Ä3;—¸æoeÛ:hJö…ÜÃ×pDÉ}\ÞüøIlt ¥î¡Ai¯xH”ÍB]ûAû njB×5«Gøo³U¯|á¤f) 7@£SV ,Äû¬«ƒqnþ WYÞ6Ö¬®äGõ]á§ù¦EH;_hëØbÅ卸£ûGÍc,&öDMËø+!ÉCÓ—q™Þ¦{3¥'‡á³8fÙŒƒRrZ&$n‹I‘¯ãkf‡ðÀªŸ›ß“àòUIš" \1«˜î¨¹­‚D•¬øû¦ê¡îÚž¹NYK¯PO›oã=*³Ü`°»’úxgÔпù ¾øÄÚõ¨ YÔlLJÆ?Π-:yÞÆÇ”Ÿ¥ ·;l+`EhnâÍÑ×U, kÙù^<¼«_›Ç†g5ž£l¨šÚÝg³?ƒ|4Àíb.@úrKÁDSùZÛªQSñò¼¯^DÔ)Ýöžêø4ݳåuµL=Ï'#@ˆ¯é‡+z­¬§ë’Õ¸ú}?°x÷à"ÁM¨£Æé´jå eaã\ÛÄÃrýS°±}DŒš—[gê ßîQ 4=ê"7Iìg4¯^JCäÞK#TGÓ­‰÷i[åÓiá•mR3Çåz‡$ŽUŸ´¬ž”:n^¼V°žö…¯¬«vS¬X~öa+¿ZÚ–QUg{¶5S£äšt.†P|dß¶Þ–‡yz°¶50ÍoVhnÇ.n/ ˆè„HwŸÀ)=üîñøDçsá&. ¹e’ˈÊsŠŠo†»[FØC*ênæD_¤n™³©ø®DJ ªÉ ËÔß 'ÆÌHsγªèk³Ò5 jšA+ïehÀj£0ùZ6´”6½Þ¥¼R£¶BAîåÏ•ÉÒ¯grilšV<(²ÈK›N¬WªwÑ¿¢¿û¨ÜÔ=y©œìÃm>”Òr8¡öYðû "“~›)°¥µ µYuÁ”Í6¤ŒëÄez.o}ÉûvP‹X™Koòjl¡%˜!êJ¢nèU:ŒˆÓ³„Ʀ<–DNË&Ÿ<]OˆVjÄÅ×ç-¸™7ô"_—ÕHúž€iÕ f÷Þ´èpß[.ŠÙ´xçHœêÍ‹oÉÕ‡*þ-ªÝ{/@*ÊÇ\÷ßÔ+ˆ*çRž]LäÈ©O¿¾eíÆ@‰µçÂ,ƒ Ž’ŠÅ‘G H’!pǸY¢Êò)õq»- “íÛþY‘ý²* äûŠý‹EÐ{vðrZMäÀnY¢ +Ãï­Ý»dŒƒ[ŒžhÁh‚¯hÅÁ¶”Ðí<ŸåûLo ŒËõá™w|-8Â?)‡lLÉ)Ú̽ÎÍØRPÊÒÖmö5JÙªJ Ô ×(8S¾ÆÏójš²ñ $†®¾fåà ˜‹O¸Š–±œeWËíL}?¸C ;/ú!˜ÿþC‘²>+¸ìAø#zÊvJ~“OqûÒ¢È9~ùÝW·z„y¢:'ýé£ûˆ¾²kN’åÒTΙ=´ñw|^Þ ÉÃM¼AõÄÃX쫳½ÂbC¢Þ4€LDh§¬d²jf$5Nò:„?ß—PTÿÛó¹ú¬Ø§L.tÊ{mʦõî^viáYx1{û-ð›j‚‰_áñ‹4ˆQ»Þ¼ÈøŒ0Î j*YX‘M½7Òô¤麲 0’püX¼ÚûñÉ;š=õ~NÙR_ª­²V÷*ýDvá5Ÿ•®£öÀÐË«Æôù‹Y<±fšûd+µ¦B¦øæˆè6û“ËNxcs:+PËﺮŽtMŒÙ5¬Ô&ë/ÝèÊ‚ô—Ýïå|J·ëWÌd‹ÍœfZë~1sÕp×jê˜ÿXÎtŸÚÖò»R­äócm‰–wïÜBDŸ·¶pÝo±ïåTFˆlÒ¦s;ÐÈ`âI {(p“¶æ,t-ã+°º‚^?±:c‚<÷µÄmUb† .Vv"?°ÃMëããí¶ÏÄ䯴ãªË׉ÑÙóꌜKòm´Iªª`¡·º£/m;=½áIÃðƒ'>2ÍÄNKD‡@dœ‡ö\A´¨®ÏR÷êÛ6ISÁ±·Å…S}‚wéâëÆ¾ì‰¡Ë,ЬGÜ9ç<ÙŒŽ.É7„Èùù†NåÞ%Ì7ö窬¼NÕ>Ùµú;ÿ¾-5•}¥rËkä)QFeëÙQ‘\ˆ[†£ªyü;aétç—Þí83þºtð2Y:qå€ÆÌ£[ÆÁê• ðôv  bðõ$HÛî3~"H‘\÷þáòÍ/±€re¦ò1MïÎp>L¦òûQ+¹àÔÁT=ŸÇ¾4$³khvKþ!~›ýüqÙ5Gb¢eàUrβ¥þ-é‹™óŠB³‹QõÃÆÙx9÷U9WóÀg’•¶®w´bÞµp«Áp}~hÔÉ"1Òwm*æ[gdw.å@uH“ˆ\´Ò™·º8ÌŽúqÎܧ¹Ÿ"³´·çXl3êVvy™+¦au· Ït»4òóo°U¿Æßyÿ™Q)ok'üg·ü¢Í%¨à'ÔýðkO9i™¡/Ù úïo?MzªXÝ!'”nu>>Ö ½•xja˜Ïû‚˜ÌZ²Hhì·J-š endstream endobj 97 0 obj << /Type /FontDescriptor /FontName /VPXKNP+CMMI6 /Flags 4 /FontBBox [11 -250 1241 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 85 /XHeight 431 /CharSet (/i/j) /FontFile 96 0 R >> endobj 98 0 obj << /Length1 1571 /Length2 8489 /Length3 0 /Length 9528 /Filter /FlateDecode >> stream xÚ´T”í6Lˆ”RJ×ÀÐ9C—Hwwç Í 1twww·„   Ý! ÒŠ”4ȇ¾ï9ï9çÿ×ú¾5k=ó\»îûÚûÚ=š&»8n•Ãì`@RYY^qs€@\XôôZ¶èßf,z¨‹«-&ô’.PsăMÊñ§ ‡Ü`n˜OÌ/¸@ ÁÂ]„Ræî¶€2@ƒºbÑK¼\l­mÇüëÀdÉ ò³ýIˆ;B]l-Íaes„ ÔñáDKs€&ÜÒŠðú¯L"6„“'§‡‡‡¹£+ÜÅZ”™ àa‹°h@]¡.îPà7a€Š¹#ô/fXô-[׿ìšp+„‡¹ ð`p°µ„Â\2Ü`¨ àáp€¦¼@Õ û+Xé¯6Àß½€9Àÿ.÷wöïB¶°?Éæ––pG's˜—-Ì`eë¨Ê(q <lsäw ¹ƒ+ü!ßÜÝÜÖÁÜâ!àÏÍÍ2âêó‚Ósµt±uB¸r¸Ú:ü¦Èù»ÌC—¥aI¸£#†pÅú}?)[¨åCÛ½8ÿš¬= îóùXÙ V¿I@Üœ8µa¶ÎnPy©¿CLXÿج¡/H€Ÿ[€u@=-m8—×òr‚þq‚›øù8ÁV$ ~¶VЇ?,Wsw(áâõóùOÇ#,0±µD, Ö¶0¬ª?˜¡Vá‡á»Øz AÚ@¿ÿ~3~sðú'üÏ|9e4%5XÿbüoŸ„ÜàÃÎÅ`çâÀ`0Àÿðâ÷ßeþÝ€‘ÿcU3·ýûr *ÊÃ¬à€‡*Hì âÏpcèÖý÷=¤a–pÈïuäâ嘻¸˜{a=âñ|À{ zþ<€“G<¤8û¬à.X¿Ç, àÔûmúƒùœæÿ ŸÅ¿˜ëAÿápZþãñ8mÿò8íþÒâ„ýr=Ä:ýG0˜Àéòð!ñðá ?ð¿¨[º¹¸<ôæbúò/üç³…zB-±çà–¡v¡.ÄÉ=Ø·ÇEÐ3/õ¸ØÇKM0ýÒS¦ëÉšy¹KŠÕ2‹}`»N çËüÕùSŸ­&ê7^<çìÔ2»ÖÔ‰s÷çÈ3)>´s¸ïŠtÓ%¨„*\ú‘Ô(cðº0_B¬û5éq}{R<žWÊð+„}Péèj¨ÌU"¢Ôù¾¡xo1¤µÍû“„±`Ã1!d3Ö(*C%›VQ¤ã +Ù£ompdh¿²;&HÁ=xûˆ./-KöÅ{Yp†ˆg~éIfG˜¶ àBà…ú ŸRƉ—•Eåã\vr7yû|q÷‚î8·8ÍØõ¶áE|j•:61„›?« ¨¢æ6I…¤ççÄ™*"–*}êU¢“üûŸÌ ŸÕR=¤vÅy!—¡tö±Ø£Þ$Ð,@º@×R¤1.©éX¼a³ì¯zÛ\Øñ`ÀrQ•ù°¼Ý(×HÆA hz§m”Hø$?o?£44žs·ef¼ãìì4{-‰ŸÈÍÿSÇv$pi/ñüÊ­z–XªF)¦Ø†®c™¯* e# Xýíæ¬¸ÐÉ{³0[é0G&/Àxv+óÃGCrýÛó¢Ý«Ù7ƽ©€ÓóhÓ³yyðÂùÖÝÇÅêr‘>§÷—OŒ(Úd;3Œ/÷örE¥˜¤ˆØÚåÀ_‡‰CØê–n íÅ»²ìæ9°ä=pWpc¶YÂ?£:uW*FÞã×ÙcSl>¶øÂË1p¶I•3yå\»DÓ[w8Ò6ý¾MQź-2à}¯žÈê@õ+‡P¶yHhæè9~ëêaòó 4óä÷7jB9on,ÄòQHŒ—Ä›§ËVobji¡[g¼4Ì'¶$ÏÒÉ„r¸=èðV)¯Ëp\#Òvvö¿âÐû–þÌÿô6k¶šþþiŽ*mýwFBÖ¯<# Ó¥éëäÍ?¬NBpÕð1÷€#êç®7QK+݈eÐÁ,pŒ[ƒÕÆÙ ™›÷uÝÝ—bhUsÈ›sÇíý]oòbëm»8ñGdE¾Óîñ‚PüGÎç£+^2†Î=‹¸=(vaX{çÛH)¹; ÌvSY宨¢ ä•é\ÕÖ_?e¢9iítŠa(sú¶YüP«èæßµS’_›Ì#žJUPÓ}>^ï‹ec» «Ýo–ÐWçåÎ|ì×¥Îßáªhõå¡4ï{sCUùB`¾ œV¨üÀx"ì0Ç ¤tRŒ"ËAýD?‹JpQút« ¼œ[¶¿¹‹{‹§èÖ§M²DXÐÆ+f:!ažÉrˆ6ã£ü!!'„€}ðÝ Šlqx ¸[‰<ŠW»K´w3*º¯¬AüywÌ qο0g™¦ÖHO›ê‘¨ÐX4-jL/ly?s .Ö©Ö%¼f1Ö«zyóôå-’¢Á»Èp$;1uÆèjbC¯ímÐî;‘e"œ…«Öoiö;x>çîì(EŽÎÎa.}òŽ+3ÎHNAó‚p•ç1­- ‰fd"¬ê(¥|*÷•õ¯º%ì.¬k¯Ãr*üÌê‚7sl舳wè²´äúÙ Ez­Meô¼…·.Æ.n: †y¤B-þX/Œ*¥Ï·Î¦k,ÑÑpÑ¿-V¯{®¼‰÷:-º£ŸÌ¢ñ±ªöbò ÓöSå»Åx&ABY*>øÖ¿ÚÀP UnI#y ¿ò”‹7%¡ç|Ù2×cÉûhØóDáõÓGùI­;aÿTa|£ë$&LåÇÞËöšL‘ÈWï¢J>M´í¶,v¡!|\Á”¬õB/ß>­âf¸ßb?’n×;á4üpWâÞãÝ"¦xÜkÜo» @ÿ¹Ìê*“(<æªTT/¨7"é\.6ÀË%§“ôßå¡¿üüåbMïþF¶öžÊ-×>™vtP²`°|âŒÄ×@J^¾àæÍ«U Á*/-cøùR½~X·õ+ï_ýq‚Ö›Ú6äP™ý4§CæfȽXŠ”"ݚÓC¾Ìfý²ëz WÃ[ç'o 8üº9}ÈŒKçHêš1‰?UàÓÑ©»KOMë´S¬ èˆô |õ£`¥¼š¾ÓÆ|Y½W¶ÄìÝèk m›ÜÕ?™ÇŸÔPè“ø2†¤\…ÔˆÜþÔÇ/ ’ÆS-g§{Ô˜È8¼Û§jDTyÕ!!/ùh+8 Á×#V`½I;gº«ð´TC쵇D_売X¾â `®‘­PÕÊþ_äÁ¤-ÇOw’uTÅ·ägƸ4À§7 ØqK+b•]裤´óß%“Mƒs‰­ WÜ$Cu“õläú£_)qlÐkYºøS¸JfËkŒ‘´D¿aœÓ[€ŒóÕ1¦›œˆÆ $'i¬u¹éÌ{OrE½cZçrÖŸy¶>.8ŒIEKÌ¥ú‰áUnÕÜq?cï)7ÅÏmóm!jö­ ¨È 8Qs‚~%}©æE†ÝcO^=]}©Üâ]tšÈ³w"LAWÐ9›^¾¸¨’·6-…ÍóÍ7b脤…;\ªûÄL4{$ŠÏY–ë©âï2ߥ"zGL¾¢/àÐ Ó€XÈG°#!d›n°:î‰êôq}“—¨±ZkxcB(g –OsÑõ§«Ç`Ï2C¢ì/™›i‡*·ê¤>¦˜f)ó°{:ólÔúrt)4=ž«´ÝM¯ïb £Þ~i~RÛWE”>ieÔy©õmÄÙÜh$Ó-R:7µ½A%6ffäjÎ~OcÁ¤­© уWI¤ëˆƒøÌH7K䊘§=›Нg×Ö2gaèâ§é‘ôyfÕ9ñ°R|½Ÿ:³:±„ÂÂŒízx4ì ®q=ƒœóKöîðXçCTÉ?\¿”IÕïB1×ýøCÎ1$o¿¨ÑÈ!“_Ô²ŠåF *]Få‹iuÛPˆ,ëŽÃ÷Ì-4b§[[àm{_Þ$•#ø,À|tgóš Þb%94ËŠ’{XœÈ»ö}t½¾×«Ò‘îAðÑ$Æ>÷ƒÐ³/²OoD45rEî|ƒX£ƒè­oàŒ ìØÃq²ØÇÐàÇàolyêÓ±¤_3õ|Ýh$ýTwºó(Oó;,Â{ s·ìk®†üF„½%ÀºAF\­5-Ü]P]?so®°âˆªéA‡}·±|5z_Y ;•æ3àIÒ¡ßúq3v•·Ôö)(÷?)A±ž9·ÌËTß­|³gȱž(ÄAKú*´­©Ì‹"ÚÞ ãçëµzz¤g¦2N j/ªQß9ÔàF,­}c\ …$á³~1l «¸«>Eê}©ÚêÍ»óüOu’ÙUŽdà‰ú¤Ñöã_&}-°q¥&¤²"I·7…H*7uOü‚%ÈQÇWz,IMèãÅ©Ô7Ì“˜.þ®W´ÞZ‚¾v¯•F›¿:_k,½ž )’UZ}Í#0éhrdz!ÞâÇî½|ò4a r(,ìù°òYNƒ'Âÿ¹L‘©‰ïôá.ž ‚å¬+ZA5÷•ßË—|ÄxH/¼ã˜ ,ÓÌË•vôB­¨l—•HpöùL4yØ0µ—­¾3lŽöãËäåe ¹Ôä\Úe›²ú¬·ˆû;ŽøôëÜs±Ü´$?õ£_ƒ¬Ž2Ô‚³R³E£UGu[˜OãЊ;‰hª–¶õ5›îÂa*¨e[Á±;é@°ßyÏ|Ô1 êÀ1¡Q©á…O¡U/>ì3Þ«|·Ä˜cÑ2µàú‚ØoX‚6ÐûØÉ…–Òz%AAlI¼Ÿt+ž^pŒž^iå]'äFˆÄá”+òìöËŸçŽë+íº¨-‰”t£ïñW ìjfRߥõ¦¹¶Z?ß({ï Õ%ßA:•¶—¥sâW/ŽL»ÎJbAÏ€ï¯<§ ÈV•'7;R8B„[RXý1íŸàyÕ{o«öãŽv Ú[]̲ËLšª­)–E +)Ä‚é´{˾W YÉWFíºˆÛyRŠSA¼VqæÆØ:îX}ƒ¼m¢ÿ†‚cÏm¸D™ÌÒ ¶ü{™ÕƒÊÍòH¨lӥШÞòK©›cÿ’è¶SÅmmú0nçGï‚Ç ×hôBH á•xÜšþÐÖˆ­m}zfü ·P§0bÊESúõÇ'¬Hulo @é_•§Kéþ’i¤ ¼ÿ(f»¼c8“)†zà/”Jvî‰pO̯æˆ~f¥ÝD÷ÛijÏÇq©É,<>úš¸dðy›íãñúÍ/ÆÂÚ‰¥æGO£#qëyôAT¡šC– õ6Ùâ⎥éáÏ/.~¤î7œ»z}ëlf<50Æ÷lñ0˜Û·#—}›¯*?Î]Î6Æ» ß9¯úÒùºGdÊ^¬œÞUÞÈÌL\>ãµ {šÜ7”Ígf¯Ö¿Á?] €:ÊŽé?«¿3qÊ™ès v5NmÒäÉál"'^Lpë”Dßk:åayû\Ó ÐùÈÉìSiÉQP´ƒTÝZêTˆ‡]Ãc™”&tG°°ßC8õ 8á}ÔÍF"«ôQ Ãývª([ÑdNe2þ¾Úâ8y­3aW=ž6ÂÛøsS; ?xgóo4’eB\¶’§ì’è¿wÿôàcî ³ÉÏ!ò"§x,:µ/˜FŠ/¬—¬Û^ü{/a/'é¥Ä]ËdkW3…¹ó ×ñ¢š°Ø åÊ}»ÒŽ£#Á¨ú93ñxcœ°v+ñ4€3‹ Ô³´ œ±b©ªÏžËf§HP}¸ºœ¢#ÎXôCó¬âÖy?í‰ûöews•¢÷"ùv%ö© Æ^ÓPV×·¡Éóz±§yƧe|.®LÿÈ„¸Wõ‡Mh™tÕÛØ‚=#|R Ï(ɹÉ,`Õ“ÿðÅ@7ÙDÒÓ³”Þ=£Š¡9¯5õñfÞ½ïÕ¦wN ¼=Qš s&€ìñ­™—Ÿiz;nó¤ÑÅñ«Os“7óŠ™ó RÁ¯Ø$*øàʆ¾V•Ä•lÛwŒ5©† Uœè“ÆŠ]ÚÀ2Ó„XŽ+vÞD‹©¿ÌN y«&M"¨yjTs]µXY(Ü*(k­—l"¹> ;U¶QWO)˜òTžÈÈ’r_0Þ‹m+œ?¿®›*¯YW¨fy¯µQ \¦=²ùL6l«kÊûl$+ŒÄ\ñ£Ve5Ù)Ý<0)â=Úþ@Ð@ƶ>ª9šã×ÀÞ(‰V'ºÀ>¢g {ˆ;o‡0ù5=1RDNPÿ—wkÍ©dA ,ׇ?ÚQEÍ\z8õ¨(³ñÞê0 ºÂ«QÃdC{4ÊÂŽ»0f¡Œoz6® KÙò3ùâ¡BØD¼k7¿>©ýhïÃaHãºâ$¬Ë%mÌ>ÿŽ%âÉ¢ŸC€~qXI·°ÝÓ¿RÞµ7]\^xú# :üœÊ{?D’k$JX>}nÓÜ’‹3Ê7¯µGÔ|i÷Nn#}AˆUó‰T‹1«\™V?/ñóž+Â$#!£ëÚ3ÐÐa]Õ U~ªá‡Õû.Õk{âz/Ê:3LDÕ'µp'°|ÍûÅ/Ía=ö X“Mì°Øˆ£û\¯pueh_hoB˜ 2»ù#öªÓ;CòòÅîž‹žnNñ€š[66Wß䚺¿ªp{£®¯¤Xë-FÚºe}ãiå8MEi¾Ë³5ö:oæÿñˆIè¿°PÓ×Z0™qò iáþ0ÛàÚ(6pµêè¾9æÍ¶ïìD%§Òo¡±äAÞbËEIÿðäñ¯¶ÎÈú¾1M–išètzn†—£ÍåFXB9GÚÉx–Û`îàúÊñ)¾h^R ¼}v’TÉQ+¹+îpLä)~ýi]÷ȱ.2Úué*GŠ?*B–kóôv‡C™ím÷%³AZ¡N‰M7Y¶¼´&?‡æ uýYŒH–b|‚yæ~“‹Âò-‹{‘›î{ËS‰;­–§‹”Áê¦OÜô d³P6ïo­ˆ·Nó`þú v_ ½å¾W~ùke·ËÇÜoá¯Ê ­St/êè½.R‚SmÎMÜÆ•u˜<».µ(GšsíKâêM›ï73‰µÆU“!=ؔ֎ò¤À§6¢x6Zž•ÕDu9ZP• V*Ã@¡óaj‰Ï’22ÄÂ'-<™ ïÉÐïI<±J­ö-qm¯2{¢,'ëØ`U×d^å’|9h. i<9¦aJ8.qØ96tMãK¶ r®ïÞ~NX+””¬‡ amAãõ‹âñ;‡Ž¬f=ûLc¨¸d¿Sv¥6ò·†çmCòK^)'òW6Ÿë¡â£f±!XlXÒéè{Ís‘+.‹+§2¶nZ4Ý5ž7èØ˜UØÙÀL¤3Ÿ&M·Û>·’ø®ñªêg­¤xºpø;ã° ó•x8hÂï+Ç¡q‚-õ½Ü¯‡#r®BúB¿»v¨'ľÆÑ>«JÄz«?jIEí;Ez]lA»á¢'« ¢{ëÄââúqÐ )(É â5T 1 ˜uqjäÌ}\Ò7Ü· ‹Î*r: KlÅUþe´<ŸâŽõÚ´%lbA{›þµÂ-®U¿âsø+}=ú„›{ôv†%Ì+=Ú€…Y…]Õ«šï£2´~œ©´váÉq3%›œ–»¦é8{-ký³¿¶úªµCªê ­+ꃌMN ÓIÅw…$möÃC­¸\›bƒ_ÂE-â•~‘ê9ºäVó¥’ÞZ pHѸ <0#ðKMz³D¯úùTá¨`5”¬žbÓ}åTxðhXxCÔ3u–òÄÀ7pŒ>Ÿ ®n?rì±jkŽõì.Û˜ÜêÎ9» #Ÿ²…ÞÅWX¡¡—¼|_2Ž%î´Fs6Äòy'4Åé`Eó;ƒk{NÞO†¬ÝHð2£}¡Ë6Ƙ³®a8¸QR”ÒV.@Â_4Ô{3½ºƒ{PB$ôÆväÀï7¾¥®Úskù¾è2Ï×t\I'…búG^d°Œõ:ׇyYq;Pÿ•ͳ¨‹*Ëy¬°ÑE6­5¥1êŠú ½ªmg°ÀŒ¾dÞ§vѶ­„~A8™ •=˜Ïø64rëãŸï?¹?:.Âgø«‹Òd<³Ç±¡¿ÄäçÎS•ãu_±<†ÁO…å_û5°{¡+H2XÓãr­°0læ„_½µ¼á¿³’zQ~&ûÌøøgìPXfæ£çÎç½¥+ YúuC9“›ˆóErüõü˜’ûÈqá¤:÷   Õ:äLÍÿ…äÚW'r¶¥µÑRÆo…;ެs"×€¹K19‰‹üóÑ7ΊC¿A̱DŽg´×b3/9etˆ.Rsî}z_°é™åÙC^ÙHP¿c•JÎÆ6[ãúô¾i¿õ5ÔÝÖP¶e#¶g%‘Üó¶’ƒœovc¯š`’íó\9ô2 _djCU|Î0¦‚¸:¼ß³X¸`Ú-³§ë›ñÑ :­°Œ+¬‹”µ¼T‘D]w>~…†Cƒá¶÷©B=³;g¾ÃÒ-ãðÍÓ†þÍÝΤ“_i°·X×ë;3x$æK›‘óÐ/u_ïZoq¦/‚ŒE–lùee™¬]d[~">Ü©B‡Gh²O í(Ð7ë¶§%¨h *Óq™­nЉ²6ÃVðcŽÙ­¬QwŠ‹6.k×v9„†îؤíMË8J(©M0ȹša ™$£“AÖ²&„Àº$3_ÞŽŠÇŒ±áZÑ ÈN5E¤Ç\¤òèÙ÷ŽxðƒP:,n>·½·¥iÑ,×¥ÃÆi.–æt pÀ’UaGæüRúJ7•7¨»_–Ón:´rÎZôaÊšÛÖ•84ò8ÛŸ -¾¦”^㛊jJ¤ ŒÐ•°Ö¢ÀI`§b!Z*q æKþòxr<]²ZpÚ†¿µ8Ûg¬ýªé…•»ÝÈ RÄ®íìTÐháq¢J»xKÛÈ…Ìb‘zåø_&óò¢Á°»g*.8šéóTùÌ+À¥^s𩇕ŒÏÑà7ìÕ4EÒŸ[¶–EN¦0¥ j¦„VðÜ7—ní6Úƒó»_ïQj¨¾ÄÌ+F†ŸGîéð4i—#y$®¿³Ä,œ|¬FÙèoÂw9Gú¬-§^…r°èx­Øhl¡Sþ '«®-¹çÃÓÀëò%î½2;ä°vÕ*'¥­"Ë’Pò¸íN²Ïk#`®f^ÏAÓob²rV5­RÉ~S[²ý˜œðžKd µcPVtÍæÖ²Î€³ßkÕk'à› É ¯-€Ñ°d©=OÙ ¸ ®õÒÚgÇmãƒÑi‚b”¥3ñÉ-ú­GHì¢ñoß{ BJ‡î4#¨žqàýàèòÃQsW_¼(ZHOá5½VÍ¢Îî¡¶-lŠ?ŒÄ<'¬yÚ$Í9ÐÓ7¢Ú/hdÝDb+[v’øE§üzQÈmcÉY?m|‘?zé¡åÈ“×ÜîÞh»“I„jKzHL:Öë)Q>§{, ÚþþrÎÄ7mƒ0ø³°)L;PÜòúDœw÷‹ÈA)|„RÛÖ@ƒê\Œ+q“} 4f$C§<ܧ]9s §Kª‹héé—¼‰> endobj 100 0 obj << /Length1 2691 /Length2 22303 /Length3 0 /Length 23830 /Filter /FlateDecode >> stream xÚŒötœë÷ ÇlÐØ™Ø¶mÛÎĶ;McÛv“6hØØVc5F£ïôœó;íùßZï»f­™çÚ{ßûÚ¼Ÿ¡ QVc1w4J::¸1°02óÄTY˜ÌÌlŒÌ̬êÖnvÀÄš@WkGÞ? Ä\€&n ™¸‰ÈNÁÑ ën`a°pò²pñ23X™™yþgèè 7ñ°6(0d€®bŽNÞ.Ö–Vn šÿ=¨Íh,<<\ôˆØ]¬ÍL &nV@{£™‰@ÍÑÌèæýÔüVnnN¼LLžžžŒ&ö®ŒŽ.–‚4ôOk7+€*Ðèâ4üJ hbü;3F €º•µëßr5G 7O $°³6:¸‚N¸;˜] r€šŒ<@É èð·±üßô€j`adù×Ý?§9²vøë°‰™™£½“‰ƒ·µƒ%ÀÂÚP’”gtór£˜8˜ÿ24±su7ñ0±¶31ü¹ @RD`JðŸô\Í\¬Ü\]­í~¥ÈôË ¨ÊæbŽöö@7W„_ñ‰[»Í@e÷fú»³¶Žž¾ÿ ks‹_I˜»;1i8X;»eÄÿ1‰~Ë,nfff.6Ðô2³búå^ÝÛ ø—’å—”¿¯“£À”ÐßÚúAðu5ñÜ\Üþ¾*þ‹XXæÖfnS ¥µÂoï 1Ðâo j¾‹µ@4{,æ_ŸŸ @ãeîè`çýÛü¯þ2éHH¨jèÒýñ¿:QQG/€/;3€•ƒÀòkȸ@þÿuóoþ—ü_Reë‚û㌃…#€çï@Åû_ÿŒõ?+Cø/ƒ¢#h–êߣ¯ÏÌÁlúbùÿ¼ùÿ7÷¿¼ü¿þÿ HÒÝÎî/5õ_úÿµ‰½µ÷? Qvw­…‚#h9þ¯©ðïUVš[»Ûÿ_­Œ› h=D,íþ-£µ«¤µÐ\ÙÚÍÌêïú_@îí¬€ÊŽ®Ö¿.¨aÿGZ83[Ð…â êÕ_* hŸþK)á`æhþkñX98&..&Þ ÖƒÀ—´¡æ@¯¿FÀÄèàè:¥ç°ptAøÕQN“È/Ñ߈À$úq˜Ä~#n“øoÄ`’øq1˜$#“ÔoÄ `’þØL2¿ˆ]î7±Ëÿ‹@†ò&ö¦æ&¿õ x~#P<Š¿(¥7ˆSõ7¹RûØL꿈Só71hý‹x@è7;ˆÏô7åhêbbf ½K,Ü~ËÙþ•ÿ=ùÿ*@šýF  ̬]ÌÜí-ì@ úŸ˜Äaæh†ÿIØ‚.¿ßqüš&ó? (ào |€ÿ!fa¹Ú››¸Zý!… š¥?eœ¿ü8»ƒ6ðßü2ò2³3±ÿƒ TY‹ßtÆâÈþ ZÿA¿!Û/èñ;X–_‚ß|¿ÌÝ]þ`XþAþÌ+o'+ Ã ÙüÌ jØüA µý‚ªm÷uèw¦¬ `ìMÌ\þè è²eú 9@Þ@Kú‡TÇßñü9þG réô[ ræz#;üg~ØYþ‘þwzØA‰8nKÇßgÕÆÉÎÝõÿ ‰óï±9»;ºÍMíþCÁÆþ[ñ_6ž4ÿ³üêë]aù7-è+ÐÞú¿sËñËèñGo8@N\­Ï:;¨|®vÿ™JP–¿iA/ &7+àà *™›§ã@>Üÿ€ †züA‘yþ1Œ Ó^@{ï? ¨\>¿ƒyòºüMõŸ ×ÌÝÔ·¿^‰  úþëoè4CX^p4ã µi í¸¯Á÷dØ›˜¥ØÓJ§að]vétD†M¡©ËÞp¹IîE]Û‘ þ!¼Büì{ü©6âs’JûO¿'£Õé½v„¥)¬¯“ÅÇ"M„ð êÂû~ÏÎ~šA¶ŸÀ¿ÈRä;»s#+¢ß{öKy5 T®Ž…/ì©ì×qÊ!>UÎ0ÄiÄê•ÍQ˜æÌã¸1ÂÑ¢]x¡Ìý¸EË›|%–M Cð?‰c+ñÕÝd}ÿ0ï³^­ÎêÚKŽ«‹CùmlšÒWô0U{Ñ·¼díë’×'þâ<$ú´5TÆCÖ¬:kÕ‡Ö¾±å.–Ýü@(þWôݤ†ŠV #R%̺v£t·6[ áa—…èzÇ­f…MÁ ÏLÓ+`IÇê8°­Ç÷g³óúðÈW†»ð´Ï÷í#;=þZeBB–ž,´VzÑk«¼Y„iЕnãÝZ@ Túî'h“0~ßàKÑG<–íbff]nè>ð1‚3Ž|¿Ë÷þ5-Š]›soí<Ñ B^C8_M¿¤]\ãZ±Ig‡SdIôD|‹§Rák¶Ì…T2]lÖ`1ŠWxË'ns,]’—°ËHõí-ÖGë{Û<ð1žiÖh´à(R!Ù=‰a?l  ëç¹5?ܾ­ª5ÄõR]™M¢€$”·á-ÕÛÍ—)dY”:FèåþF1Ù 0Y·J0Ê>_.˜œ dAšS}SÝÇó ÒóøI×1L#È’‹–ž¤’Éñž—j‘ä~u¯AŽ*üiˆˆÓÆùsˆX˜+üà2^ùÛìÏ›[–²¿ []|Ëݨ9 „ki©¯ÏÆ5ºæJ=ÆB4ˇÖKéºæöRægg™'¼p›¼—[AAâãÌøÔæï"çÎrÄö3SC Ú:«YÚ­¦qzÖÿÖ‡há%ÀŒˆBÃùËÙ'¡¶¦è ˜w@>××àýÛ‹JÄè’ÂÊEñ®).ryëÊ$‘%Kü-;NoðYøxI¥–+~9ø½cåñb¥÷""8#áIï¾ÍØR´Üëì-6S-O€i­Lí…Pv2É^p13™¬á­—gÜáMsñzŸû}D¤KæóØÀ¼¯ôò½>m¯»±ˆ¸×Tæ¼q™dÔc/R[b5õL¦3¸UŸ)ñp¬ÄÇ×H3Hˆv«øè¸œô‹=½pÑt¶¥ ×9$jÇד0ÑòŒÖ>¥JµÜm]R‰¼±kEŸ>c1^ãvg¼v§;ÛY&}¼ä» ç3Üù«Ö9z£çzØ×%Ó×¢=R¥Ò<ô‘q­>ZI4ƒu¦RcïÊX•øÈád}•”^|IÚÊ5ku¬Ë¸CCEÀ­¹Q‘‚qHq¸…z“âg9®ø:8:ÕŒ…=—’¬§!è§:Î@ÿކ%‚7%1wK:Ê7’à…'×/±³r!Ýó(Ò±T-‚àº*Â(2Ë›nE»¯©ÙÝzå4\ý”]OùV9opt¨æVMz?ª÷]Ri»¼›ÛÈ`r0rH”•/ÀB„£NFh<ÈÊD¨iQ$ô•“lÙX½0´Í2ýÖëð=ëÔX¾®ÈnÕ¤X£üÓ€ïS$šÇö¹üÆÚçýBö¤–tòwè.ö"¯g®)½_¯¯t7 i3Ú*îF\\8fa˜ û&x/ ‘ˆ‰Çøb›Á1j½ÓýxrN´ÏŒí€¸iêf骜nNÎ0­[71—E)Ïïô ­ Åýß§€¬fîÃGÆáþÔtƒ>Þå!Ä[F¢>µ#yá7¬Bsp0߯;~,Fôiƒ›‘pãÎÛ#¤®FàXz.“À"ÀÝsíIÂë{«\†åAdÔ<Ø9Š.U'Á§æx0?¶FK&¿Yßx<«Ø0Ñ‹ ¶¸Wöb”ËÇôû«õÔÌ·*E´€ªƒNÊ&zñ|ý´¿%­O:[¥sÏ’:‘qjÆ¡xÏSé$ÈÊ%Û.ú|ÝâÊyýÑ’ú¦Â S…ÙMP¯v›{AÖ ¯ïr˧ٷ敾ÊïR ë_¥®5*Jjv½8OÁ` V»nö3HñFn]öû„ä†eIëêSÄkœz,uƒ!MùìâlŽŠÆyS*ªo·}dÀ©Õ>Þê°ÇM¼Çb˜e ½#´ÞY”^ûd1òlÛ¦ÊxœõãÙƒ*pОj\m§W¼}lÙÎû‰‡+ «ðα¦šû£ÃuRîFRY°÷-Ë,¥?Qܘbç_6ãÆ¶/6Ù£Xj"~Š ú;ÁÐí[TZòX‘>–€Ÿ+</Î|’’»å㨂)ö)g³ ÞÐykí^Ø»¾ÛwÕ9}~2ƒ¦ã‚zD(þã–7>nÅœVµr$âööÍ1Cåz šíÏ&•Åß­¶'yôæÊÜ_áÔpxäqCßö«ËU˜h“ïzZ'}T ÑÛ†ðŠÁw )ò†’¡N}í°Aå/«”é6kñ÷³"ê&OðßFטìýàÙ®G×ù\­Ë;q~Ð?Y<ÍòåªÅîÝ2°ÜØý^Ϫú„sa-ò°9ó«á 'þS®÷ôOc“‹´Ò!¤h½º‰hTã™®1‰Ü¢^O¼è"ü7>ûÖWò&¡Øhþ6#õÃÂ?‹¢÷üÞy¡ìŸk}„†ÍØsˆp}ŸÎì@‹ì‹\g'¤[ás“2‚#ØvÀ}JìÄ ?M9Tôò\ÎX`Ü\NÑkœZx¶þeصRè³ÇhûWCý§(ÚDÌ…g•‘­rES‹0ºÕŽ®o¡¹Ž¤ðqËeð>Ó×–ß-ÇMvßpo–ÌŸÎàïC×~ô^o«¬ž‚x¤í€²¼}eÒf5èýÀ^.9^˜µx•iØ3å,tlÌN×8½xsW’˜8Å%xBóµø:CÚáC.Äçò.Ò#_ñpU~&V·g…Á›×½ÒÀŸ¶<2Ú7‰EÙÓÛ¯“Ï?éЗKµ%NÊRQ‡¿o‘tOõ‘ÒÊ®ªq!w¯èÕÁBŸÛ¬"RÎ,‹ʾ¡«Úüò©mMàGªbÁ9§G£žºÎÛ(²UœZù´Wö‰²³¡,°IªÛ“»¾‡w’ØæšRò ôtX®˜ÕR/Å›†LmÎÍ}P÷àV±(ÕºDÕ>¡ânÂoØî€h™Yy‡ K‚64üZVÆ» ‘‚¯‹…ï[ÀÍSMqÙy¿´ÏŸµQü§ËÄ\¢‡°¿ª‰ "ZàÂÇ%·Ó—-ãxlÉ£,¯ž¸H\¿*íÄ–ÁˆP)aTND}âŒÐƒµ[Á'ÞaM£ŸÂó¥<´2ÌþX³-ú¤¾K˜pçl+>_/‡Ýw%³- Ç–‹Ã~(o”ÐH|ˆäF ~Ò(É~ô¤©½°DÅtžãÝ4·!+ùT·†ië<ˆX’ÝáêˆÄðI8ARŠ+~‡´ÆOe*b¿òq {åãêì_Ô/?߬†]ÂhQ9oßQÖ+Âv¿p¡†ÈÚ/€›° ×dÞº”ô$›­¿Ö„ETCp…ev²‚øô€â3êÖeÃ2ý5KäÀå%³¶{ºöwLÖ£—^ŽØþª9l2EóÛ‡ÙéOY*¡Ízkßø5z´y  ‚WV…Ìèn)6àOÛ×DÕ8xÂïCzšÀã*sIûú³›,Õ:Öw M+´à`V©iɱž0Õ÷‡4˜Ñ±I;a†Š$.5}:>%ü%á”Ø.i|"æ2bøÆL‘Aþ 6pNýQ»+”±çèl9v<Úñ 9ÜÅu­µ=å˜ñZ‘J)ª~¬þµG즩™1‰sÖ¥)ie®ì:¢S]­a†FÉa4 …„EƒÌ!Ѩís¹±ÏyHw·qã»ë¢¢N®q‚ÇŸ yÈÞD!¥¨Oæ|KmÁÔwO_X|‹1m²ÅÚ¯¦ÁÑ î?èš:]†Š”™`@ÿ݇•½ÂìîvPžü’uU²¦êØ“Éx»|“‹¹ºÊ¨où s>†ÌÔõù’nH»Å§ôºuŽ®óMýÃS·³M¤‘Ê5üø¢ŒíF6ͬẄ˜‰}³#.¯Ÿ ¶çÞ‰¨ošýsû[±ý5” k-ÀN¶.·7”xs§ä‡Ïc·½xà"a·§×£¸\æ£YŸ$§K﮽À¨õZ_NwŠBàÒì(ߨnÅÚ«FñÐCç)¿’ÑwH¯‰– fq9¹éy*Dd4ÔâÄÓ„X¬Ëà;6x}]h»/¯ü±‰A4l»Úz‡6‘T½ý~ûËA½ÁÝ'Ä×Bc‹Áq* ·†ULæ„,G8¡[Ó›79sÀ=v‹çsY!èFbÕ¨ ,$†3Æ1a ;Ž©,A'wv%óš_sóùZ1!›oÆB±5äôžÑÃç"Ö8–­Ü$­cc>¤l'h´÷!7¹ÜüÄ4n0P\h#²o'¼<´‚ȠƼv/sÒ1,76t>è=§¾<}¡IƒÊ«,‹ÿˆ8ºTô˜Dññ¥r¸4Ä9Y™¤‹VIa—‚{so ‘K<݇{ÊÛfu$ï'ðY»‹7ž-7ÜùC$ÿ§Ë•>ž=ÒÂÎImÁŸ[¯Üša»þä²…P[1æaÚ @gHïÇqv©_R†Hª×~¦ëðÃeªý´yߪÄo Yh õqÉxÃÍQ~hC~2øH´ôZ4 Ö“ÖDÝ ÕöHTêJeµþÎñë0>Ñù«Ú^.öeŽš@5Mo]®kõ4sÒcB¥0 Ù–{ö" @Ùç†ÎJžáíXO‡GæJÉ£ûâ[;ÙÜz÷¢zRl>;qg#Íìê/Ž-e?,U^Î>f@…‰HȪL¬—ÂY¬î>׫™#k.:_ãj !1? ¯‘ ?‡í†äçw)HˆXT2Ÿ+‘;’Ô°¯*ÕŸ —_ªC<ó’ÚÜ!±˜õL,¹Nv$YFÜËÄ+‚9ã»jèÈa ‘¶³®GNn힣&¾‡ýlU+oˆX²ò¬0b¥Ìhàïìæw¤šÒ”–¶Åä] asÉv—©;}¦ HÝaNÑ7ÅØÈ¶‹ÞèÎI°òÄYÒõ³?©°–‡ç¡f5ã‚·¦W4åëýjTèø›”-†Ø…Ò¯E»*ïéÆ/2Vie qÛÊï ƒk,ü§+¨,ôn&mqÀT9?ØÚÊTlÏEròæËì°ùiÞÉ„8>mm‹(ÿ*•yÒYÃ¥ö3²x CvR‡¿EP;• 9ÙÓcQ©õ¸Ë9ƒí›-¡8탃uÿR# Êó 7&Ô Irõø²?£¸Ÿ1=5 ÏþÄUÉ㢇݀WÏ!Äö¯µ¶žd½èA.2VÕ ¿vG·Úì'z˜µ ­û—nö§Ý ÃÚ‘!¢p½éE *’º:ϵq;9¶ óØY="È`7Ç$Y¡_ø?E ÒÃGc`Ìõ v¼+ì”Dι^å®8§¶’ªg“u˜‹«2çËËL¤H"‚Cy/”ʇM¿ñeòu¡¡ ?WƒÝÉ¡Èu}øØ•As;ìÞ€S8àÈQ¥X´ðˆ=èü&³4Ûu7¼7GýõXY¼ð)‹®PRÁ2ÇêFqmŠÖ•ŠqxÚñ²«‹‡,sUê]ˆ’Rã΂º4»{dĈ'÷¢IÅwœù*XŽyG-Ÿ58)ÓîÆRòG šn¡·:aJ+’ÃP‹I9;ª]òÝårñ´NXê×Õ9Îõ1ä=íÚ=¶ü¬°’ÑIþÐÞ‡ŒBC;Tš˜w%þog6¦Qªè—ßj9NR‹ëlx4°ÀŒ*˜¨]ß6â0Dú% è3³¾»–Ï?TáBýШPlœ~ûzÊ&ú¦¢SäK"ö@A.bS?%“V» ™>ó‘Wç~–¤\N thcº3A+¶Çê©ùc’d¶“Pà\€j§kÊI´ög¦þ•ÀbŠg°¯ ˆ$öCÕOÎö_ÄÞ”ÆBöà–¾õ·dß+Óèj;À Šè€i€g Ê’§@b׃IwMá¯[©e/iÛçx~5Ê6fl~—Rž×ÁÔ›ÃA;XÀ—J®¯šyoÛ®ÎÍí²–Û}@#¤òpA¢Ëº? å{¦Êc±Ý¢eô„GsaYª«i]ÞÆ0Xé [0ìõîZ\—ïPH&÷Òï]‡ŒÑÍ„ÌnáçYÙø>ÙÄ©¨]$¤´£öü9ÏNýo|b^7!Õ“òšDÉYfUúŒ‡êUá…Ž·D$;µIéÚÁOjZ¨;w 8ÚØÞŠð–:>ý˜œ²nˆl¥VžÂut+fc8v@d×2Ò;öVê¤jßšƒÓ¤¾np†aR[ß-Þ(¥œ‡IƒØÇÿ‡ë'"õ å! ùÊŽöÚ@öFZ:Cò„ÁJ™-˜ f§¸9¿ ‘a܃mÞQÀ6[–ˆAlÏ› exH!”¼Ô~¿Ò™˜ú êh6 ›Ü@ȵItŠ[4¡”&…ÎÑZ1œúˆƒ¹ñîÆšXüç¶4bÛ%^¶^g ³Ül”Õ'0"›•ªpYor¾'bèŒô…~"H‘3æoìr½ŠD¾ˆ”¤{|íK.Øñ¤ÈÎ$dî8t‹g€;rv/ˆ“Ô í™›ØÇ ¹%gCìÝf†tbymù6ìÅ×2—>¢v7c®9Åï¾l)³aøOáÃ&A“‰$S¦´Üö’ŠrŶža _A·‰Mo.:ĨF¨ênä¤ÌÏÈËÙR¢²Ÿ-–¾È «Ü}òœ®…þ¾‘œáùã9¤|)ð*XôVÒ¸¡¨G1 Ï©g„|ìæ¹©çÎÇráôýÕ·húÛ½f]l¢k‰>]ø ´·˜µ™Ì´t€«3 -Þî|†â€8w­ªç¼—ñpè*ä„LÖ)÷EsñÔGZΔT»;ñYÆì‰ VbϨDù[¼(ãb°«œâ9(Ë{¸¦øå;òýŸ¹'ƒÊµoì8zžëʺ²4Tšåg‡äiÅql6“l7ƒ©Ó¡lälÝÑÒëÒC|‹§Ä’Šù o)ûÉÊÉÊc\‰Í#i7Řr´±=Ïë…<øó^£Kñ?LišÜFéfè4 /Âl2L¡õ XâŒÑØä!û¿ž fë(<’™àûrÈîPrR†˜ÒŸyæþ¢(W¹fïP—üþ>cÏÈSÛ‹C ƒiG}Î:Æ ǪR=†\FêG0ìE’%÷þki“˜.KüxÜóDÒ„?Ü–WÀ°±R¯ès JéBí~‚Ûä÷´˳>FꮊGCÕhî¸H€ˆQZVôP“^ão†ÏúßÏeû˜ÑäJ_u‹&â¯Æ¿WÐ:/L0mLUÞ“¶'(êq1@õe6̘fÀ¯7µoC§?!Ïl0>Ë©"ýG×OŠÔº#¼fütâ>n‰°ÅÍìnZpÁ].?<×|æ«Ãø¦DüÌSw½zÀæ)jÆ|éRÊhÐÉœ\È  #á,]sú}6§‡rÊOÊewº§ë7¶“VK–£ïÆÛ#€Buy´ñ6ÐV6n´¸ˆk-‘© Ú(H1œ‹oð˜ Ò`Áds1{[B« í ¶–åíÏmòØœQ…5F4´ Ö%“u•Í©j&j¾÷ô˜“ø`Y’HÆ6 ±ÞtOÛÉ{#Θ(óuÙ­Â_÷{¤ºê[Éb¥!ð»8"Ûß>„Ñ?­Îô õ—–/˜”𡬘K:òB %¸¨Õ`ïçt£à´á»:I„{·øï !îíEѾ/sPQTßqûé¬-÷5§|½*À*Ä’“²˜u”¼ý@×FD1‡5«Ç¤pP·(ýya»5ä™™š~"í{‚¦¸¹€äw§BêAؾ;ÊÄ…ùBÞôw¼·6¶£|#‡jc~ð.Îàpeó¼Â$JvV| ¾õö)²Â‘ïæt}SHu¦Î*ú6‹1B{ÖpìÕº4Í»¨»Bæ…ˆdÆÌw5W˜TJ¸yš&§} ù%à€50Úïàû7¢ÊªOûÐ4Q÷Þx:"_¨¼™éTŽU¶'̽Á-lsþ¦éZó.˜“dhôdê6>‚–Å›à,±ŠïE¶ñ«ŽÍgÇ#×êÉcó˜%ßÈh$§/,Á•?%þl⋬[Uþ*öc3?f½©Ô´ÖJ‚†Eµ’1·0ø ÙQìÔ­v-$VØô“ü$<ÛBß:zäÃ@ÎÑðw×&tÄKÞîÄ&³8¡€Ä÷;ù­‚'ò˜JE(&H*çìáhÐ\ËÅò#x;[W©E]—…‘êõds“ñVÙué*•rÅzž8E%b¤«ËLjàä)Maˆ…¤z°§<ÙJŽeNª‡ÊG<×КXo¶ k%,W¸ÂWp’†fªÚÃecöæ'Œ $æÚá{'™âÃn"€G¥m}Ž}6”x¶f¹¹L¥¡^^û+mk„‰ípÀ%Ô†ë5é>ª¸Øêk­{·ÄÄ`F%`[rBΧ©·ˆÕ[‹œC° $"rÒ«Ÿ›ìWX1g÷vR–„¥Pç‡Æ 9â†ÆÜN´45çû状J¼C„ñ¨¢ƒq.Qò WÏQEù¸ic;~›VÄlˆÜíQ]¸Õª{×íl`§¶°„(áY<¡¬13í\â­†ö^é¹ë8FâmnTÌv× „Åïiî43¬¥Åü'±êþ3"v+‹i½Þ£>mª ¡àñß 8ÈTú—kÏ1šnY?¹\³ÅóÒ…´y$/…ElNà›ß…ºð1M{«L¬ê:alhÊåAùéׇÚ#b¨=rf%‰«;9¨À`‰ÐùšÉ”ùñ!à˜ÒÔ.¢TÜ^Cp}^ÙÕɆÿ<ùL;‘ª˜Ü ‰áò½!Îð 0w3Á«²Q–·p¼s™5D»;õ¡s7A3ØfSÌÔÅØ¥ˆ$Ž1$×Zš½ñ{çøGˆŒ:ƒ”¹œ#.ÿ)[.tL犒™éÊ­½žWX”~p„ûo²wÞÜfAO;ûÂÍR–YC»I:…bK/.^c­#ÖEê“u“`ïn Û"’¡ Vôn.Wß  :튃ýÈT·r»TØqÊ!uÁ3ÍWU¦È™³ñC1X°ö…¢çŸç…Rib ˜`5À>›,®§g:¤²xÇÌD›ñ\IÍ7¯È/ågÐ5‘Ÿ® ÓLS ã”R¥"kͽUìÖO Í(ðÖ"†Rz='ôôKÅ÷Ü´\SL‡-üž‘§ãã’âšæñ=ÜÂsâ’¾hÏíE|'&2¥«xúÔo•’ -˜{ºëôæøÇÌ;lRìlËó¦o¼¯Ò‡d=98ú‚-ôÔ¤&xZŽ`‡<Ãü¤éŒ/ò…ÊcåÙÊsNð˜äøÈ&ëopâ:wÒQׂâ“Qûa–ùãUFåk[Æ£ 쌒°4Hë’Íx╊ñ¹ø}Á¡G4]žˆöèA5bïB1R¨—íÍyÄGk¿¹Ÿ@Ö3{¬÷Û"h®î— XÑ.;ÝÝ'ŸæÃª¾uS`>E$ÑHŸgzÙº§Ë}Ù³ý.“©ž Ñ dZæN£“и #WHC«HTÌ–ãHFÚƒ´ y>³á|ï_›,›gøþù›s† ܘ3ù˜M—OüU™ÍmõÆlåäÀëK1 T­NSñHÛçKÛHWJÃÌC+½2‰T—;éhq®—Eãy÷Ô¹]—|B#®‡]d¤ê©Ü¥ Ü+ÁJÍœgWŽ+@ ñ‹†šßšruÁÝ8îÒE–>˜"¼aÚìUŽV"ÂÎ]gbQÖò x¤eÏæðzì~¹äö’aæèm¶rŽfs’É÷‚T$ ¼dœo ÖŠ8à”‡jt~¬Öf± r÷ÝŸ:ÅüáÕÁaµ¾×ûIœ B6™K¾ÙSÆã®õ®î,gß?£Ú>É::rVkKí2ÿsüPÓd H$Ò^¶4ýõ‹~DÅðéƒkuLsÍòø‘ÓèOŸÎ;— š{~6¥Y8Q…Ö÷Cc&› Zf2Ë[}¹ð#APgá°SÌÉ;QmßÝ2aVEñ±n–Î]YÈÊl«ÂròìT±ö…ãûÉ7…’()%®éŒõñÅbÎÛ\8,L%å«ìÖÄÙoÐ~|6{ ³LOˆ T;ìÆ 5k€žÒrÀÜ †[^ÅÙ@$jñ>ЍxüQ„A5Û ³¡çå9šÑF‡yªïwÏdxVmw”c¾Ð6üUýƒLuƈ¿„"Ç©5<š:OJc:-[ù-üh ELTÖ©VRh¬ØZŠñ®-üÞz«UÑ Y½Ö¦jýõš]*^X½…R'¤ %ùБ…™†šOà¶"ωy>còå¼4VtJNjíÐú@Ò¨Žcí¸ Y8g™Éó3Ž.Ê[ižk±:‚ÛBl—i«íÙ'voÊÎíêµ(¦Ù±‚~+[l•*‘v—še˜Çhg¾èŸ¸ƒÊÙðZChò0ì ‹pLöŸL£W­&ðöÙá%gnñ­:`CÎø0My4(U¯*(0 ïW¿!ÙÃy"d±±™ ­pIAŠkÅ<¦G¶¼P鿉[n¹¤ ô—¼'>ÝȹÞ’kØ¥zR*7gÿ™¶öPä^0íáL瓹äß뀡槩xj.µIBàS`0¢ë5LrÄ>9&‰—cÜÛ;“¦èÚû@u¡Lm›0)ÒÐòÁsÙ†ÆéxúùMë+ó'‡[{èëû/®c{Wœóf{Ô?íåóü`‹:ÄV YÏŒÁÛD:Z¿Ü…gÆÄÚ¾K4@-ˆÕœ$ÍjwÓ%$.â͉kɺXDüÔgiYLéT;! Ååb(_ëˆZ£(wl¬çÆWæ(£z‹3¸4Úq³Sӣߒ¾u—«AÕ ×‡¦¯€ÞÆ+U›GˇZâ mÛ¨AÂ(§ÿ™á-Rn朂v€ßC/-÷M—ЀPó‡;ü—kWNòŠÑG˜9?S†‹}´çÄX:g7’·w½¶£[d¼Ež¦GñRz® ­—!í¾ô“Ô°QË‘¹jlò3]JàdÍzŒÉèxYØÃtyOGå™7eN‚’#~ÐäQ ÷’<)ùÛ’¢ªh‚ œL7|Çêý*<=‹@!ûjZp 8à€¤°+ȆÍ#I¬‹m¸Kï=–‹ßrj \ð^ä‹Wœôè6©HV”ÿì„wn)´42á yn@Ö¯KˆŽMÂ…R¸fº>g}Ðò™ëýNfsSÒ5*c0±µ¬ jŽ¥-ÿINÈB{4ó„Û3ò Z厖"²ª¦—8_$ôí¬nzrÚá ?µ>“ËsªXY{Ø5Y< Ü="¶Xñ„¿g-`ûEZÝžð*öEvãT4ÅϤŒø 9ò1IiüÊh™Wë£yN÷ÞaMj]Ô‚nþ‰ˆmC…Á‘|½ÓÑ " ¢Œ¥š°#Ú!÷°Yo>C*™™ÉfZIabÍj5ÏÆÞJS·“?7*%%‚Þ™E£ÏB<~$8ŸÂ¡°óiï !@A]¥V¸6ç> al^3Î…wüö êÙšÁ×8õâËx=• äO¨·Q3lvò×´—¥äBû”4CZäcørfÞ•Ñ_ÆäÉÚß_@TéNžeÚ³}6dò=—@…û˜«3¸}SBÁýpˆ9Èï~£»sÎÓG¿úS€òc ªÐ?)J6wʇÑFÏÄÙÕßûûŇâÓ“ð)ö¢öLÙMuŽÅk"ŽLEÔ³íùp# Œ®bÓ¢¥€”¨YY/3ýÇÛlKAxA+µQRŸ]„úQ£Ÿ0E ŒGPòÐXÀ‘¢Š¹7Nk\£Q‚} ó@šòŒCœ²z6ÄZ¨µS‹N¹3&RñÌ|–ZózçN‘+0[a®^åññ—j.mZ›3¼þ˜(­Âªu°|ë @©KåIÔsR*ìüØ)¿ #þ÷;þaýh8* Ë áFq =îÔ2Î…'¢Ž9HqÁ9 hR0i©1”°å¨0!JòAáØòó8Ø’®0°é½-S%9ñ•“Qz`¡B¨ž°¨ÑšyfC[p‰æí_T-L!ìÞ¹|ô‹^àr3ž²Z;îIVæÔ*#ëÿXŒ]j›KЛóuúˆJ;q¥½V‰U·tmicå´ózö2Pæ¸w«·ØxXÑØm£‚áÂà ¯õjÆæµ·ÈÅ C÷s{↢h÷ÂÁ8˜PžÜáù²+·øÉzo÷û\RBcíòÃež)ý³åQ½ÂjŒU©ÁçR_Þõ“Ìhj o ¶k',n?«3¹Æ;;‰ãí×qÕbÏWŠê-úcñ2‰çʹ›T´½4i„M½k*Gyu­ÙÆø´lmf;3¦84 'Ø:Ïö#ÑQµW¸’nßÀ)H’£&\Šå%Jh«ê»eÖ1¶Òú2ôý—Ôˆ‘é]ޤ*Aú× VÉ‚ì.:Ï«þ¤p5µ·² Ø0Ûía-bVf@ð1‚Ïñ:Íç@Óv­Z7Â.Î|OŸüÉ4Ògc)(ì2£pH9¢Œ£ùs—牊N, ÃJðÀItËõݳc§²ç\žo° —¨œî>гâJ1ß¾É-ƒ#WÕâGN\èÓ÷ ,©.»#ã&W½ïJÊR—=xˆ-ëFZ-—)ü°Ý›P ·QÈ–ý$uù¦b©Å½ÙæÈZDÇ m$ß\©’à~:"DJì¾åæh¨ƒ_i~˜ŒãÜÁ‰O‚?<#BËmb×ÅÇb’%ú~ȯ_ó`÷™¦˜sPïzY7¾Ã§ƒ•@§c©Î—šq冲!X ^0 Ýhü¼S™hFo· #TÎÚ‚P[•øe;0ü»˜„8à¹;u÷уa$ã¸pŠ^_Ðtñíå§œgƒ$˜µŠX ¼³|i”ߤœ~3ÐÆ^Cݧù¼ÄŽ6´¦aÛ¾L¿Ðݯ ÙKðÐÎ7»¥œ=­1à žLŠä³ùörHkÐ9¶tjz çøz.3ìsøm,†':ç«Ìà®fе\ÆéLq¿OŸîU ÐÖ›V–ýŽEÞJ-w«Úñ'z‰6å¸'¼Ðùñ1˜_Sk?±mË 3/ý°ì^Ž÷}¤[F_+ô»YPÀÈrüCh)ÂÊê_•.Ÿ¡¡mêŸå`ˆµ³,8iðô–°+1ôq¹ì\…öF¥¢ Iø›e§Þ|‚T©Æš›@yË V¿Ç7f=û$!xZlJ6Ú†ÕÒŸþSè·»Žz挪®œúËäOíò q¶çõƒ Ae! .=/¡êoê9 òù.e¹û3«ß¼aYçki>oªL£YVĽ{@zˆZ˜(Þ|ÿ2ü«üÑAгÃoZHìãÁg†ŽéÞHö±r´ïOn¯‰Â/… zlÓcH.×IË^ (,²Â n mó¢]ȶ£Bæ.÷Åë:ðmßán¾¼šÍdÌuÆ´ÖmÀ}‹r!Ù»yzò—ÿAÚbŸþ^Ê.ckûµ—_:(oA¾âY,srÀìí¢m~Œ~ÜU±€^v!Uv _ÝœyÓÒ3Ñ›žAÓAñG$5ùC<$÷¯—1)GínÃ÷t.‘üêÒkö6„» ö$èµ$àAŠLç½DŸXƒ=:_›JªÊcBLÃEZä­¿8¡®aÄ™lŒŸ¾‡I_ wÇm²ñà™?ç7È Ó¦‚÷T÷lä}ûž:Û9ì[Êk Û•–x¬¹±V(míŠë1 ¬mv’€ï[âQÿ ¿9ž²õHö÷äçÁÕDñÇê[\±ïèÛ¹V¾$¨Ï~ŸQȾ@±è >ÎëÅ‹WaÓÏüàDƒ®w5rÒÌAÒ¯–~•Ç”¤'“ùœÉÑj6ãÃÍ—d»å´3'5ÉÃûQ7Ê–qÉë±Á†îŠêgÙ¶oìÇi¤NnEq®GÀHÚAnÍ­ÈnÓŠ}‰àó{Ö<h :²POmtf·˜MykäŠsŽfîd¡ò¼ ïsá4E¶µ ÉS‡8±ö‰ä\6ʵîK_vEž€S{Å)ôSŸù½ðV† ,ª~ÍÒÊ/ᄄža¦‡/³wE¦¼2Fýй¾:äer”ÏKˆMÌ*mJvµ\$p9:49¤pcr!I$hÙ=`U´þ¨R–‚kÝf‹t7ˆëÙ/c¶¾ÃŸ¢7w6ãO^\ äGøñ–‡ËÚc3 Ié¿ó*2:oHÖ.Ω.Ù*•¯°ÂËkžKa£nV0¾j%)ž$¶D»ï› «c¾ÚÙ/4xí´ûr:öN¢ØÔu¶–¯I{‹¸as !Ø/*È¥nSŸ ìs–K÷aoùg¶s“Ë_Ü&pš~‚UW¦ñ ±ñoÖž{B$Òä”é¿xµåÌ„÷.œ¾«?bUM“@ƒYðDê—ѤaÄökG mÿÆñPÒÜ)YR@ ˆmÿq`‹ÔžÞ´¯ÉÕÔìSŸ{ÕÀéJ¶ävƒrm z¶9Áž•ù Uò'Ø)@œ méêQ ¡$Zã,e‡¬§ÄL||9"£•ìÇgÔœƒ›ÀIŒhcB×A¡39*Íêžg+樗è`gïvÙÀ‘ƒemWT{¨·2Jmí³G ­=j‰fI‚»CÚŠHŸN‘ò'ɰšNÁšúš&/ÿŸ<Ãä¢! öƒúáÊæ G†ò&…ä§cƒ'žè6Éj3Ö¶‚‘åäëDÍ?Üvu“Õ)~—°]ÜÑâN´ü/Ñs…IÃy1°M.½F"Crèìñ™âÑú‘ÆÂ/¹ÅEư°sYwÞÉ6p!D]ã°–Ú-©ñ/4̘óÇmÌ-†ñì<:©ùŸ­{škùsŸãuxa¨¥AójèD ´%¬Ë†ì­†ÂOyj°ˆ[“÷™°a'ýQc /99ãão²”‡î‘)ýù‹UŒ%»Ñôu•á÷ç×páÙ¾íâ&œ¶}ˆ›\Ö,(¶'é]±ˆ¥ós7(eZš 3,™I†|ß• ¯Gïql–>ª¤Ôj}»Â¯>WhISKx{½]ðËAƒÑî_â“1•œþþÚ\÷Ñm ºÓS ðZ‰æTæÕÄé¤pâ/8sï7½±ÑDœä«"ýâB’Ý¢]rõ (üªB¥°ØF4˜NgŸh˜’áÙ›Tõ«lžtL¯äÇ2#«6Ë*F·©'jýSFV£[ˆš¶‹GöÉøì«SéKyŽ¡tnÉZ­lé&l‡™ ý°÷‰»a„™Ñ3{[§ï¥ìº Z_³+ gFº­pŠ %èži”Á]#8¡ ~YŽYì1¼Žiä'5üi^”ø¶å cü'ŸyÌ¥E9'ìÂë›æ>"×Þ’?¸ _úÎÁ@uÔFÔà üŽ˜–mWõú$öx!ÍÀ7õGm³ DZ¢ & ÝgäS V$ñ[~§;7ß Þ+’‰jˆ¬½£ò,±ªæwËûz ¦XJ D1ã/yS›ûïâéÕe#œ¿@`×èu&Ƴ؅R`êaß{Æ÷ w ‹Ÿ²ø$V`U-Ó£,;¤v§ JªœîÚü¹YÞŒ»rÓW`ÿ 6~‚jäGÝš®6·%\ÆÒÜÒ#–[°B“¦Š=øhDÉ%% [Crep¨h} …j|8Öÿt‚â@5«øFªƒ­8÷ÂzɃ–ú ©qÁ<=§Þœ+æ ^tÆY(]VÚ7lÊKA/·â ùÙ~¹{ÞHÒ¬²õà Žmbûü  › ÉÌw½4K/…Åò…«¬'ÄÓ‹™nYw­ì¢¢£8§w+°ä@t—1‰8sD“ï6!Ö²2°-ÝG+‰ètíh²¼ç&Xv±óOpO“;™DŠSbªð$Ÿ>ÔÑJñtV¯'Ñâ }¼Ñ’ÀÐçtüá%.—ß~š„Ž×•iXæãaûoQJ·¬‡ÙÅZMâjðM‰Þ¥lë…å±EÎ~m`UI[¸*Jë7™V?¿»jr°›i†žÆ±.O~òm=‡¨ E±Š°œïcúŒY_3&½I“Ê'p#¯·zýê$Lº\B¡·÷2@æþ U›Y'xnÍ3^¨ ž½íhëÏóBý²~äZZÀFÆT³ÜEùòƒBô}÷òpÀÊñÛô}Ü„UãœB(¾Ý×Îâ ”¬õîs émcAqËžØê8‡N0Q_8¹Ó›¬à“ṿp‚¢ã».áÓš¨(.×Rr$µÏH2ºdʽ‡&-¢0?@Ogƒ¸Å5àñU“Êq=„?4‡YK% rÝ>{â‹å§šµ’ìÜU7öÞÑgxg`Îìþˆ‚AŒ¸;æÖ{–£buy«‡T3â¿ë$ˆ-¥zߎ'Ø­8 †"#jò&KÎSÜk„š7ï­úò,Ðú¨GÐÆUë\.Ç«hMž™!Ò«…mZ7Õbñ4/TVª4Pô¤VFΕËþáU¾½¤¾Ž±ÊZÉ^mãm™?Q˜ÞØ—n4 / ›\0³ÈðÁÿ$Üÿžd L-Œµ>€åˆ¿•9Ò~ãnxíA¥²ÌL9á-7)›Æ«uÕ:à³]Àýઋ¸õYônWo|ìx©Û© D oÜèB÷àÛ³úïòqeß i4þ¦ˆä5mºëg~›j[\¶ëM.KÞOV zÜCÐU›U™PèŸ[³5þP¹Œ®nɼ¸þ’6úú$)÷-™wNŒ¶“ ¬úáGòükò|‡ÛcA¢“Ôª^ 0?ªX­0@w!²˜Ì˜»×¶Šsl–è¼$DÅú‹à‡IC_Aœ‰8þ„qOy èQºLtƒ€R ž\ml’¡±"̘=íõŸøÕ}ÑüÃá¯+Êêh‘4eÙî»/ @(sä:Í›ŽÆnµV¹a–ZcY ª`·ÎÉÈÐw£w9uÀ°pì*ߣx0xžØ¥šló\]î=kHvAß¹Kì–~dö†’À„˜<ŸAÁ—[½—®Ù˜ÛœxV‡2Uãžag²ú{$rÄ}øZ‡Hsß «&¡šK ·¬TZDò50ãaÁTxW’(›z_/mÙÁ/$Þ ÖCµ¦ Èæ8‹¼nù³í“ÙÆ©nniz³·¢ïráyYâAAxvÕê­ÓPLíÜãIwUomÂ à ˜ˆ»Âí.O‘7ž€h‚#n-‹V®?Œ¸¤©šˆPîöRÅ|öx1†e2{!ê”—BYAì:+ékÌ$ fL ^FKîg"©¿<]'T*`3 tÒÞÐ 1CÑ*°ýipO™ù—âdÔ;MÔŠŒ„€Ù]‚Ú v@Ošwzí7=ÈÐøÚ=Ü;Ž\º¤%Ê'ʘVÝòéoÊ…Ÿ¦áRö"ö8ö›\@‘]¥§bKˆÔ>ßïíÔäR¸çêš>¹uZ<­­_4ÙÐ[ƒxb›Ð™^ìeý]׬Ä(ÒýÆ%W1öãj£‘±MÉ,»”ßJ–+L„ŠºUÝsúìù ðBÙ~–LÁðD4¾&º•20¡7Þfâ¶òhÁüáÈ5Nágúålˆ „Ýa´Ó®¿» ô•u—ž˜G˜ÀÇwlŠ'QeÙv½dIa÷¶ ]ÆZÃiø›Ô7š×.M·{‹=öniÚ»¢»Î\=ž¨Ûµ~â ÐóªKÈT 8s±Íû ®t͏ ¢é€•0šÂ˜…r‡‡uÝGËKˆÓ’!-á¬_zÌò£Èö @ëY€‘"BüúÍÇ/¤S¬¦¨ã,öÐýxü“ýß³ïÃU‡Á¥ÃSïXˆ&¡€…˜Í ‚ã¤Ñ+Ïrü•äxÇ87ƒ!ýqËÉpñâÜðE6Ù~=òì×øTàLiãe€j‡s*¡œñ"ki—_bvýËK–†³U½«ï‘¦Í“R¤Vª(E(¿Ÿ”3½Û¦4èÏþã^pvì3ËK-w±OZïÇ`KvPŸ{Ûe~üŽõÊ-RÂîH¢ ]Ž~õíóÉ/é_ Ve‰åñs¹‰Ô˜:ìÔ‚½Ã …p1Lïbá=5(óIo4)˜Ñ9/CùpÌ>ow c•m?ÔÇxS<Vc /¡b88”‚G9ÒµGБc‘¼ö‰z÷3®$ë¿q­±)…À>ìü˜rY® À]I»}3[[<ár‘£;‰Â6¾olS5{¿T…È&K/ë1xk27ÄUâÉêæûБ­öý3cIfXp!ˆHy½Wz!Yc” €^ þÝ0+4dÄíé†Ð ?h`°tÏÂý‰®q‹/ÕìØ±a‰1ã—cÿ ÝÝ n~@jhn¾w$1ÊI¶c)ÊRZÑÍ'†ì@µó&a²‰.:^‚†¯óq¶/3>ZØO„cœI{\;§Ö‘ˆ{¨õAÒ dœba‘ñ7Îò%·«#xïÌw3"q\(Í=Bü•G©1 b¾]R)0o09öþ4aÁ£ ¹Bÿ¼×[ù_Â:‚…#û ól£·¥ä«{h¹¸èP‘£”@žD½…<½rƒ¡Š ²[˜À<-ô¤ŸdZ“tã$§UX»wâ¾5³»¦ØQ6²'õ\qô Å9Ó g¸w v–µêÍZ-¥ÕÊÚÁ/–D{†´+ØÕÍ]œÕóñ•„6{ ä<…µ\¶°®é}r™„æuË GÀš;"ÁR­ 3 vë>í1E'¨'ÐŒ˜¬4opxíD+þÑJÅÇæ/hž4`&¸ë¡-òÂa‡S¸Ö`Ö«Ðq¯ÉîqM·¢Ä†ëèÝ‘·`áÙ,VcnÄu2Î*"G9û[–»Zî¶ØÐ¢ÒË%8‚[2r¦W3Tüv‰ø¶recñ"`us×ÚÜrß²ÿ®¸…Œ³þ=kEt´ìO#•—·9"eƒ0g—ÁÄmcÖø©·1ÑtÞ±¬«CeÊ_SèÝxáor0I)S’Ô¼¤3…ÕyT\7µf` þ\T|-Á/kŸŠÙF¾±3â(¿ô§b£"°7mA @¡Ðí%*8õÉbuz _±ËStÐU3hG‹}hòç8b^^}÷æêþÕ|2bß³;§Ì±ßÁ'‰ñ±K¨òlH?ªÔåF¶Ü"å®Áî\üŽâǯ:Ã+r;Äó×$ô62-?ˆ/žEßíê±kUB?dû›nŸs\±8ŠÄaÐÞXΚçNê¥k9CÖ·­ïOÞ(I2¦ŽcT¨·É»,/µ¯RÁ1u`¦ÎÁ]'0©†4~sÅÇ(¬Zä †’0GdGüŽ(¬ë‚G‡!Y#³Î_ o(˨ƒ0I9sôAEáE¬!P1å™oÒS®×ôMœkàG;è´yêå/™H4º½ºRÏÞÀašN›s?»®~Õb0ûÆ#B ¬±ðª/$É~®“ÜýO=PcÒʤ¦. = ³¶̦<à#9eê*0QÍ£®¾rжî:—Ϊ†>J -â"óFÉw윑NŠEÈÊ¡Ù&°‰Ö aÙÙ sç!ä‘ß%tŠkŠÄ5¹1z—s­¨•çŸ%«íO=ãTqUPØ7Ç &rÊD›üøŠëHž_$u„¹=ð;Ø®†6šS³¼rËžªYA®Âí<4›‚½û‚úÔ­(YÚÙ:°®à–µc¦àw˜¤§}¡Žmêr±¬gFýÏ;÷‘ØoÈûù…tø i¦ ×HkG‚‰û ·U|¤Ò7h/Üú‹8üÛ}‹˜‚¬ü®—Å'¼ŠŠ©f…}å²°¤È ÐÓ^ÜÿFFz÷À_€3G‚Uôsƒ1ZEIx­¯ç¾’  ˜”|cBjìÜý”`Ôè 7fy±íŸ4*_Pv¸4ab<¶æ'Z^VØ`žýj‰¼w(xï'5èèbÌò„I9MØ“Æôî(òZÖj¤ËÎG “mõëFyxzÉ^0`µT&®#TÝKŒV}ÚY×F›-î† —BÊÑ$Œ¨} ÿ†À‹A`ͧJŸZ¯Þ½~.Ô¸}»K@Ä LTR–YÿÈjÍç'Wº¤ å§ñåßû`vo ²E±´FqÒÈ@y8cçÃ^Ñ/Á)vaûšqþM#Ò l^—Y®½‰ü­ìƒÓ®ŠÂ¥ ?üh–œÁ]m™c#t’åÛ´ÃW È­!/RmÌú;äÇu÷ˆWHà ŠÅþöÄ}Å®—ŠúïpY(P‚?{íM¶Úwô’H°£ÂPM ëBc.„ÎXgºF×¼§!Øjöãšú­€-ôïlfÈ—£R…p× H?غ¹ÈŒöÀËÖ0¹ð3…–`~ÓÜáKËmжåšV{Ü·$ÞwÊ©òò<Ëš¬ó :û®&Ê_Âs(§¨Ìô¬rXõáF•ež°éPЩdBå‚9T¬ -ËU¨¨{Ìmጴ¿¥À·M‚{Î/rÛŠC ;£³³Öôñô  K{¯¦ÿ+otŸE{µ$¾³W¡n¿=(÷…y7êȈ@ìe|Š€-fÅú; € ÑÕû¹?vu·=F”åbkþÍOÓá åæÌÐx×î ¼¼Î "#¬X¨ÃndIúþ7†:+ò¸lùöÐcy—Ÿ5ºåa—k¶Àù°x‘‘çiAp8Ö¿½­Åãw!ÉIë‰Sø’"Òù4ÉdªX&SíH-ÑfDÆáû‹¼~”øÓʧ;f3–·fgÈþ»_TÊÏô‘)N?5È•ºgW¢…˜TcѦo§ò=®k‰Š»ÇØôÅoLÓ‡>NL âDM~îNºÉçöÖ-¥Ì¶{‹È?x­ƒáÌó_¤ñíLîá‘ÜZrNS69‰6 ºa€g»7lÜÜ‚LêÜ›œ:,KâþÔ£…ÀÖ"Gñ¥Î†ÊCy—h𨰼´|tU¿Œä36U™BPåä§)B ïc ù.àÒd1Ø>Ÿ·’Ÿ¦üîj.D5Ü`úš¤õ„ö“GXq°ßd±DT}÷Ù·ùêˆq‡¡Ú…ŒJØ(0g 5¥*.ž¶²3yÑ!NÈO…#nvÆc \Nh]×ÇKÔ§1&\ï/ãËWž;h‚ózÁîs¸ó(¬2>UûÖž¾ííeîÃÅ|) :š{?ᣮ©Vü¹+hÿ¦“f­ä ^?þƒ:d¦,G¢ÖB°Ý´õñ‰ø&;MïïB!ž•©Tƒ3‰ðj8ÍI@ ¬ÌwG÷¢SÖ¹1B´Ž¶ çÐ俉ò£RÜÓ¿B)Ç’¯Àé¹›uåÂÝO±ï¯”ÑúªØošÌ”ÀÈòà*e¾ßè¾%X­QžÀ¹ l»«ÞŒNòt#Û& þÃÙeäj ŽvBQ|Ý.Ý‚TɧrÉMü¨ñÖ”éGÃÂ.(»10e‘xÆR% uÀɀɔš‘ä êk–$ÔQM 5Ñ?ؤ¿?FÓZ©Ä½/¯ëmB‡øÒ89ÍÞ,#|Yœ]ÌYQ%‘/Ô­7-Xjþá æ,ð¹Ýâè~t*LÖP/iÈ,z %h„»ú-JÚ—WÍ»µYIsd5"ÓuÊ­çž|›šç=F +ØÒN;ƒ®!y}Ðó {hS¼ßÊ“Îj[¨«9BÙ&î/k$U÷ükh:vM퓚…j\­uþê•Tãf†ét#Åì(D4]½Ë .Q.¦É‰Û 8Œ[µÑ¦£ÖB endstream endobj 101 0 obj << /Type /FontDescriptor /FontName /YEERUZ+CMR10 /Flags 4 /FontBBox [-40 -250 1009 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/K/L/Lambda/M/N/O/R/S/T/V/W/a/b/bracketleft/bracketright/c/circumflex/colon/comma/d/e/eight/emdash/endash/equal/exclam/f/ff/ffi/fi/five/fl/four/g/h/hyphen/i/j/k/l/m/macron/n/nine/o/one/p/parenleft/parenright/period/plus/q/quotedblleft/quotedblright/quoteright/r/s/semicolon/seven/six/slash/t/three/two/u/v/w/x/y/z/zero) /FontFile 100 0 R >> endobj 102 0 obj << /Length1 1672 /Length2 9095 /Length3 0 /Length 10176 /Filter /FlateDecode >> stream xÚ´TÚ.\¼¸»…RÜ‚»»» !@ Á¡Å­8EŠK)w§”â”–âVŠ—+PäÑsÎ=çÜûÿk½·²V’oæ›™ýÍžÙ,Lz†<òönv78’‡Ÿ(PÔ6à‚¼@  ‹ ƒüeÆa1 <¡np‰òÞ¦BÞó´Ýà /€_À/"Á/*€@ñÿÝ%7Ô Í ÐpƒCP¤Àâ AxCì¿t@®?•ñâ°Œœ žÚ Ý> po€AÁ¸ç}„܂ܪktÝ!ð?ÉZ¸õÀÏËÿwº¿¢'‚ÂÿÁn®î ¸îp€Â ]-^¤/’‚Ûÿ&‚`žn÷ñ o²»'üqr@E^ºø—ê °ÞÏ?øûó÷?«ûñ²wƒÃüþ¡ÿq¿|êÊ*Êšæ\*þÛ§ àæ àðóÄÅÄ¢Â@@Ðgù[ÿ´ÿaÕAÿ:ðŸ„êp7€øŸî{÷ÞMû_Ãøï :n÷£ °ÿ3ùO€Â@ðýÿÿóüÿòÿ7ö¿³üß&ÿ¤âƒýáfÿÃÿÿqƒ\¡0¿¿÷“ì…¼ß m·ûÝ€ÿ/Õòç&kCì¡^®ÿëUG‚î·Cîû»PO¨/Ä^Š;ý9Bÿ¹…ûô0(¢çæ ýýÖxøÀÿñÝïØåþ=ñ¼¿«?\ûuúï’Êp°›ýï½€ð~¼„…ü÷ jñýc²|¼p7ä}à^^ÀÁ óûFE>•ߦ?‘(€Oû$àÓý‰ øŒþFâ÷LÐ?èž þýÖÁgÿ/Èàƒü Þ'rúðAÿü÷±ðÁûX·¿¡Ð}û÷õ,às¿"·Uã¿Oø¼§ ÿ†÷mäCú¸ýË}¯Ãë(p_ÎïŸôb>âOúµì…@Ü?G,ÆýüÿñöA ¾0ÎüŒX2ܹ>¼ó¢VžÖ‡gë“ô$Ë–i&OÀ<¢ËëŠ+£&'tq.Ÿ6üžèˆ2û™ÜãMÀ~[#VT{ª~ǯÀk›dƒñ­œ¹Ïc¯öåúé±éxŒä¾Þxš„¸ µ¡tk°xx‰è‘^øô©ú6ô—/ŽFÎlé­ÑĽ.Ÿà‰7Ž{R:ÅRh—;MõÉCÿ“ä»/áÔÙù$IþØ£F2NÐA¼`I€Åª@Âå´ÿR¥‘€ç;êÇÔTôhg$£ã¬ ;锳e%+ˆÑŒiŠ®k®/øa;ìþ[:ˆÝckV–1 vj*>42õçq+íj)®¥L)˜B¹ß¿h¬øª‹¶Ùyrë¦@ïta¢ ¸â[=Wù þ;XìäõfœQNäi Œð^á(z”üV‚èâ-ÇÁëxÊå'ƒà¥‘%²¦Vq[eú¶®àuÇœzŸÝ%#¦á/¾CêS?4ü'¢½w78adßOÁÙnÝ_?zÚ»R[£¤±45…JïÔ¶§å+árÑ>§hÈ¥÷:o£Å ‰gNËÉ*hlÒô±ªßÚÇåÈ®Ùéè÷Á¹ˆîßÛ +7.¿“¯©*Ë!~…­†•˜pÙ‚µöÑ‹Bõóš„Ò2IÔšFtÂ-{dщiÕû“oOެŠy€R¼åކ „x:°¤yºIZG“… ´Öâ½d·¥šíœßTpBÃïzc QÁå3ÊÜ+Ôy¿<:Q)eºœÖ¾ûéõúý·lf½»‡Ïv#b:¡ÔxÃ’Ô~ÃzgÈVô"T ™»º¹/îÛ ü!†&µ(A‰ƒ¯ß-—ƒNìN}³ÏžI¹bN øŽæ§_E’G8 ’]?n½ÙRn‹™x&N‘%Ì» Mã ‹{«á[ƒ'ÑSüõËØ‘yÁö˜ãà–øÓšÏ»È]˜ñ¹?S¹[Bö—,§ãÊE`Òôù8{‘ò©jÏ@·F1Ü%û©ÿäp!¶¿X÷\¦wyC#/®A>Ÿ#ïSfE”e6fG%Y½qL¯ô †ßQ<•ð¹û‹ï­ùÆ?[IYíe¤I¡lé<«ÙoêÅHÓÆ‘êwò¾œ£Åט¾82 Q©> «4è1yph¼| Ë{¯=_9.àHª»³ÈKaÔ'šJuÕì3–úŒC¶ ­DñáJAº‰™¨õºKvÞ›3 ÉJ0>ŽÎ»œ'øóñªtï^¿ZÌN™êeˆ6~uþX½R´C0\›z¶–*2á”%‚a‰-0¿Òô9?‰ÑbÕÛø4kÖ©ÈÂa2ØJàú½}¶"—ž„D𵄳]Iqª‘Ðë™nC_[2±Va&Ñmõ?~8ýÓ•UƨkÌ¥víá.Â+¢Ö\NÛâõÉÔ–E–†P_ŒþÔGUБ>øV²×¾³õ lÄ û#M›À ^ªñÚÉ™×;‘õLÅ™ç,4ýæFgl§qƒ4ÎòÝføéµËáAZ·‰\¾§JèÞ6ñÚþ” ۞̟LØ"@>,ÔšÐX¡C®€÷|tèq…9hºV[>ù™#B]ÿõ‰Ô²$fÆ/ï@©C¬)ÕùM9d¼‡YdœÌÚp¢»:eK-;ƒÙ©wÚÈWÑ þFqX…|æBu0 £H ñÃôt«Ô"®¬«Õ:Xò©ù [:õþgÁ/¶.œFxÍìÕo¬òz E„ æx,{Ø•«ä5˜=%0 œòE{_ŠGñ0,nˇ”=uÆã\ÁŸËðò.^ÊàE½ž<ΑÑïŽbm£Mô­ÞÚmó‡gtGGº(–Õ:x˜ò̧݄‰xĸaqfºsñž;:Ã,  NHÚÄO²‚%Èùó~¬´*/™|¤Î=k;Txµ' ¨Þ¬IfÉáWv)Õ²Þ}¤æ:Ÿ¸426jHûEX dÿJ’Âõ#Ùcv'ü9V‹§ ;u®å5ÚLÃ}pEµÃZA%¶5•ï_ן«ê-þntê‘5eÕe°Ñ+Rߨ@ &ë~·>Ê Y‡º‰oÃ-P×»œx!!Z>»j»6š—çhš‹ï·ºˆïÖ…Tè:iȾÌjè”±.%÷ΟLòã¤ÅbSwE¶NVKØë0e„¿Ðš¤ý 2ð-èeЏ¶gê2ÀEy‘ý,:«‰óGfH÷¦ø×JÃê~%{R—¹^š»ÇµW&?#Ë­‘éBANÂäe5hDŸZ•z ·n –Ûj õÚ1¬¨12'ü.RGwjÙô{D×(ï¡ÉO{ “FS‹Å[?³ì®2&«ÿÙ/r³¼ÍÁo.Éñ„cŒñ$¦*i5 Û æÕ¶v«<CKkøÛ¥¡D;ŽkôXRŸû*í÷ºÓßùLÉ߀÷û3GÚÇ ‹®Íí—ØÃ9%ò.Üâím£‹Šäµ¯ôìÂã"y௒£vkè)VÌM%10GÖáIHYFáNº°=é8§®2¶p~±‘ÓõÌ»[¼ƒÖ†årŠzô±»bvÖÀ>=×({«vötç‚Þ/“ç)ºî…#ƒH°¢mûtÁ:0;¡¯>¸ZL¸Ò\ž½Ÿm7%š_# —¦†ôŤô\VÙ=!a äA\û¤ærãƒÐ<ýÛ Mó®&ûkð²És‘ ²Å’{膌”š£zŽyÐel¨šÌ†¿¦…Š)ßr~Ïð]…wÉ1ö(ÿBUÒ»“i/€<&S?[<°n…ϿᚗË_¹0¯VûÈö¸÷®5Þ}Lí½YC6åRÐ/¾c²átNöÙ#êJ®íñR6¸S'䎭¸æš“»b ýÛÎàÄè»@ƒãênÍqtܬÓ! »´ŒµOhª’¾l~.â×R¨­#aÖØ¬Giúþîä¶÷G+½;%%ü#€ìÁ'³ âdMQ -¥G â´S‡¯êüet²SÎÈ^¶a1 >ö8õ<ÕÂü,Ì#M"±ƒèÔQ™øRa\…õo瀋ß¼9çÒÑÏj:Ä»·ü{Õß2¡¿hFCTuºÍtÜåcÒ…0=­ì$“Qây´$¶ã~ò‘W.Tº“‚æÒJl|æ÷½|q<´i›Œiò.í«²2j~ˆl3˜ˆŠ`æ‚ Oq1cð¥¨h=íàücôš*mï¬=ú=ŠÀ†VϾ¸OxÕ"fL}ŽÌpû±(ËTâÍð8{¸ý|B†Û”ãÏR›ˆƒnRK娍Ñutƒø=„¨ Q¾ÚIêÝÖ8]§U–핌ö,fˆ.ñ&zûZVCS¡º¼ÛÊâ>v†¨ížý XþIk3YCLMYŽßQ_Í\“‰”­.~´Ã#2ÛŽ“Miø žÉ?Z›þàoB銀'‡hÒ÷è*òPèÈ¿Y“§t–>4µöý8ÊŽáÒØw·§üŒ¡¶g)FI¤“:£ž 4þ"%3¦»"«„±›)$‰ju#ø‘UJ³ Ywÿ»äye#R!W¨öë÷App¿Ÿ‰Áa=ep£#Ö0‡Õ”<À„væA5æ¢Í~9Áj_i_ÆKS0Nþêœp¾_²X-^û ¦IûFMéé|i[ïqHh.§µJ #³,žíׄÖ`Ì룧é4®½O¿¿ÈIy¨âMg2`ŒÑü>ÇK„õ„ͼè| áÔ"46Ÿ4ž>&z&ð+‰8+VNW?Á²B”p­9X¿ó)¼… %£O²uÈg‹ÚEGe™¬kà)¥¼–ÙRíÃ-ñpUã¬÷¡†ÛÙt;ä…ÁBµ—h£þAÇ…³+ '26K0ŸéËwjqDJø>M<{—ÈÖ«OŒ©^ø1M½ìÒØøåµîˆäÓ Å2ÂVâ {™ðØ!š‡#£é—øŒŽío±0P`Æ×nÞ%7±ù\Ä ôYü¥û—?@ñ’j!×1PÍ8iü2åíº¼Ù@ÉrvÙÛ‘ß0AfU)­§~ýÅFàËà”ËÍ)ëþ*î®$¤NUt6£D=ý"® ¨ïÐÃמ|Žû‹‘zå(;Âd¸(ªòY2~& N,(q¦êœõ“ã©KZÖè¼6›üóÒEEºömë +«H{-¯VvŸÌ¡~VÀ´ª'áÑÔ[Ãx` ÙŽ¢ï€[w T'.XSNG.3nŸ,ó§CMßæÒe˜Àrí«÷ÐD¡è8F$ ]©oìøG¡Ñç‡bZÃƒë¢†Š„]žNKÜvå*ù¸?ªtþQ+~U…ýÉÖÐàI³9:Aï„Î*åb]²Ë–iÅÓe/5æ]v1‚1Ñ€7á Ÿ:%®£äN*PÛ&`.å—Š =vj|˜¡Ü=H©xˆuµêw¶ rx\–#/(«|žÀk@”¯@€²‚±’3Ô=.ãj3¦܈—žŠIª¦…'Ý4n ÛŽ¦s¯®ñM}·FH ËÒˆÌ}'”ÑÏÑ™Uµ€b…U®üÌIv̈t—ˆœ´!z œRû(Ãþ¡ÑË´k²Ä?0Ûh´qÃD]{£Æs¥8\ä=9Ö(x»zÁZ*#Ç@ø£7O5ç–6á\bôåI:¨IÑk½ÁkT,hÀ¦s£.{J­cÿÓN±·<3 ³{]Éä.؃²©®c¾Rå`ájgä„ëUÕ…Ú¹OEÚúÇܲeçDûâÅ‘se¥à| ”ú&…œM×Éšï]©«Ñ,yæöJyBkG×GÑ)ÏŸ½â×øTþ†3~¶¶û–åË–¾xON°ã™ÜÜSWï2E±¥‘AÒðH||q#w ¹Dkâ°Ñ´Òð¨¨{K…@sZ¨¾VEƒhý+÷wø-örÛV=wN² –®î²Ì¾Å@ntŸ¯²nþ ÇÙ-_ª¯{é(¨² 4|O ì71-'c2™‚d™uœð= ò¼ðû˜›uȾ$ÎsØ|·é9Ÿ݇ùÓ #æë)åv­ç`±*¾_ô“W”ŠÇ 8BXWÞ¹jǰТoŒvce=A—ïîùË6xzYìz'"–P…í­·ÎAªZs½±¥GÅBXï`Å’¨‹ y–ضµAsè”wÁZ/$‘žÉXkb j–‹¶k©ß¸ÃxsbJƺ]ÆÁ|ùi6¸6+næW!åãá$¯P›—orý½Ñlé¬w­À\;Á!ãqíáœa#—MÕ[Ú´À¶ÎÈŸ…³O>Ýbº 0.ž$œ¸¶›à¼á.1²ì<Á,žŸ…±õ#Þη|’æ*àÝEÚ4Mp³¿~¯Ç±pò¹4Á9I¼&dá>û¸—Î8€ž'®¹l©-­=3á\ÁqÏÜOíÌ`d‰Jf^ŒdEyª¸m vÚ¨*ü­NÈììÅ Ô`ÑÌW¬M~'CnH’öÄ€¼³À/Cyr0$û=ÚË÷a´Îc×FâüTGz©¥ˆšæùS+£À¾q/àKÿUSíXÃméÚ¤T´8-ÊMØ„Köeöm_üCÈT<÷N|ßô£|ñŒJîœK#ŸÝ“³zoõ¥Ÿ_‡Q[pÑ õI–INrQ”ê¦öN~¹\x¦9É4gÙF$çƒâßèÕ²?ufÑ«Žl–!ÄiR5…¥i…ŒË¢¾ÌÚlú~ùú})ù kO¬“×ÙÖ.y”ÈÇDq¡ñS,W âà'zxTÙ-ãõ¯—_Þœ5E®` ¿ë!K› zàN—ŸÁõ(u3˜¶•l¡5¬Üd]-öeÊÙuS<¿êBþO5ߨusÂÎ]£úÃ(žI<½î†q˜=Š õ8¡hââ¾0¦•Ád€¿bZT»¬Ÿn»á ïW®U#fÛkÛGs€ì—äùl™-Vº0ëú¥jÿqiâ˜ÝtŽ Ggù¥T6ß(;={©šë‰îI&ÂÞBïé-×9\ ¦ä:N©ê:>ÃzÔ¡÷¨ÒÚ£âAfô–‹‚kWò\:aöûÖ½¨ˆ`+Ÿ¥Xñ~š´ÐÑ U¢¥ßx¿ÍèDEWÈHò]s[Fxâ9¯0»æÚù¤ Vd—P‡ß´\ù2FnÂg…éo–挭/ΰ+éyl¯‰ãÒb^$ÿø˜ÌTRÊøæÌÀD!‚mÿ˜Ø9þg…O5„&¿½*þ…×–÷üù.Ç–êÇгè¼óÆD8ÿ–€î?¾1È] f†_ºn’-ëÖ¢ÞÎGRù¼÷ÑõâÔ¼ pyà ŽÍ}ygR<Õ#^©öÞC¬V`øÕ±à¢OÇdzϦ³O‹ÂxC ³0¹†(åX »b“Ÿô[½Ëµ3])d*ÒY.qŸ'õ~¦8$v—à“8ÊJñxîX;Љµ'ôÄ[SúDèÒÅ›’wÈÖGsM›hÑ(Ä’]çZ$[ô‘·´¹–Õ±+å$ÄÎYæhúBŒC_¥È- csß(Ý6·®”"¡9æb“ûk¥w µ&ôªa?hm¨b¨£ßhì^ŸQâzÓ&ŒoS©=§,¤–0÷qøŒ@QZÓåüJBÐ5›â9|‘¸ÂŠX±;Gkñ2»·}htB¡-θ}ýj£m2.Ëi]D¤Ð¦•{x擲p<%ýrwœîZPK»Ÿ Z/í•ǸÆ9D·u5”Ò=MÈ•¨ÌÈ,}ˆ‹+UPûóuöFNotNìk¹N¦)­©dj¾ftߨöL™¹‰íxfÖ§SGnTzíVgÓ›ƒ–Lúæ+YJE<\Ô@{òOz±mHÑÖ]/;æã;Kó-ëï:¥LTL{ûÃðýÜBP-±“\' ¯„Ì&ŸÅMìè¿ð[5ì%©Ç8ëã¦VžÀù‚¢;œö¡ÇÆ/ž)5Ì(0®!‚¥*ào$ømï4÷€B-%ÙÕgŽÕ 5Š&qq3‡R‚5YÞç` Ñì)œöÕ"x|ýM¹;C\(%CRŒ9¸õY Ìo9š6Ž­¶ÑÔe#TÄ\@IÒ~ÉÇ£;k®}š¨e̼ÇîL¯xéÉ™z……ÆY¸ÆÞóD6ò]2zD'ޱ6ÚY‡oèêgœS“o‘®TzDâÆŽ~^´Ì; Ñ‹ù U"¶â÷’§Ý—&éñy@í…¥Ì1GE`j‰;$ÊŒ|h‰ü ã:¼lõCRŒòU õòÕ»ƒuæì`*¶·„·Š·K2w¬…m²xÁS:O<Þ?·‰ë­>-«<“/™VÛsµ{se'„çƒû f¼¦ 5J¨6üËÀ@!¿wî{(GÝ‘›{¾‚S—«5Ëy¾³lAýKf´&x¶ôî!¶‘­CFEÞ‰¾æ/ζ¹ÁWIOèVsgŸþ´ÎÏ•î%ÓÂÛt³Ú•ìƒ Ùy›Ú[vDi¿˜Þî¬8«g/_L$Ü¿(Ðîÿù­Un¨Dû2!$GíYúó ²)'ŠS}&–€·ŠÐkƒ×EŠ`’Üë ª¤tý®dºÉÜQDuQÛlŽéT#,-óT¦™@0[>Ÿt]ô”ʘµ½õÔãáCäcüîòõ ôqáØ~åDߎFŒÊª0"œÊ¤^S´á "ŠWà¦l¨¨ã>}ºªwC~g8oFÁ¶†mªíÖ¾pd¼“[´ŸË) ‰¨‰¦$•Â_¿ ô?/œ±®©=Ϙs®6ˆ,Ì! Æ¿GD—Ic¥œY}Y=SK š¹Ò|µSç|[CpÎÝìÜ)NÔ¬Òð͘·e+i_cF­Þ7¸’‡ B C¾±K¯â±°Ìþ\×òxfÉœPKSµ , o ñÅK¢™¤äÇP:í˜6¤ûš÷ðtw°-Œ£7,,é 9a ÍÇEá§È½a+èZ<@ט—àyB¼O’¯7ºÒÇB“©˜x›Ï5w‹Ó^»à¡`ÍÿJ*ô*ùÂ>oãõ;©_ÀœÄÓO~ôõ,šÊùG5’ª6¶~Ÿi­ÛKQ¢³¥˜L4n1ët<Á8u¬eP2/´Ô¯úµüóYÏ#Åïm2¶ðCB–Àïí›4ãèG<´3×МÄ85åY 9Á¡*Ýï½{>Ör,Þü¦4.ʶñ©š5º±_¯z°»J¨™ù5Ÿê]9±P:ˆ/D™òtlŒ¢S›Ø:m0'SÏàŠÏU ³Þ-"çÓ/Åúd­Õº2‚{:ZÙ™Ê~)ú²NóFò j’æ^V´ý¦okÝÄÔXýl Œã©ZÞkÏ»“ìÓÅuW­U‚ǢկÈÉß\«Òb&¥]¾P{¨px—œÝáº"å¢öÐüyǧÞ"¾-s_Âݪ8ó9SØ{<<¶F’è€G°Ö`ÖÄÍU%<\V¸õ„¼x*†>fq†÷ô ¿’{%Ÿ÷2ÎXʨYIÇí@Ëf±ÓÅ`ß:N¼ÚôgÉ…Ý›Ö ¸QéÁ;(%“2s¡Æ7RC´w‰T¦ÖšJÁoAÃÊñªWÕŽxÍ{tëmÓÑN9–={D3zrsþf;šŽI¶Žv¬G›£€L¥”Ö›ñÅwâù‰Õ†Ø¹/³ZC’Ð1ËššÛëøÆum?ÚÚ¢7˜eÉTÞ)Í8àdaÙµU‡v$ íYµ²â•qNqùá£ÀY@%ÍÑ´ _Ó3šŠ,4;æ-oõUÆ•q "™aYðS(ç€ ¶úcœŠ€ S’1:F¥ t3²Œ¶b¯0Š”"¿|Lg^æ‘®eÁÎÃ1ĶŸ&¶_ßîùöÉésy4w»šø°ÒÒ‡pv­•šTm™×¸Ã$©Ÿ)ÞÖQÕ3XOÎ*¼ÉÈ`Ë޵ÀW¬m·a}ôDž$?ê]IÏЩVWeb((?ŽüC»Ôžãi›|‰Š`ÑÖ"Fî¤Ô²Ë׬—hm¿RÐlžå&Ó6qÆÍÉBŸ‹™*?¥»µ`PÕk¾µÊ~êz4ÝEëu5•¼ó¥×`ˆ>¿ô$,µÁ§Ã=”*Ô˜/±ìÖðC¾T ƒÿeþÎsôR¡%a/.v™BV]»A%£¯—Ò'—1]SðežpI³·9I¸Ž?~@L¡ÚÿÅ Û Ü9ÝîØâú‚ÞÅPÝŒ62ó4µ€ßÍ&c¡É<Î Käø¹Õ3´"7üXEÂ%ôgÇÛm _Ÿºwžiy-H½µûý¬¤¹–s¨D·[9aÝÚºåmÖ&ùn)AWù†a¾±vH\r›¬~ ŒŠÊˆ‹3ï±Tžþ†À¯_P’k þ:mâSÙtƒþ#ØŒÂoÿƒä`OÝžzù“¼k–ƒK©OèÑ‚€”™>›ÍtŒ]¸H {a+‹"¬ÈÇvQò«§œg”˜•ýÛÈ}*tøµVŽ`Ë”«§ó¨¨›û™Ô× ˆÑXf>ý˜¦sQàpKkœËµq#‚P0ì½D›´›K8ýß¶¥[eV¡Ñ’(k‚/ý:öÓ/@ðü“t±G$‰”ˆžcaÂV]¿Ú"ã ›ÒTE¦5ñÛoÄu|±Ÿ_Ѭ--ù¯Åý(ªê/Í¥­£=tÒÃP%M5È<•Ž·•KÜ _š^ÄìmQ¦L^Y$´W‘Í”¤´Þ&û˜‹ñ\PÊÉÄ,?õ"yõ9èqÛ ÝhT³¦CÛâD‹òM…ÚeÍì÷Õ.Ÿ».!^ÇØùEËÅ׌ïgʆ“CB„-õÔòdSßvc™qÐÈö Ëþ4ûueñ°w÷!®ÍûCJöx톣7èTìz” †âiR‡Ðƒþ=K‚œLƒ툚¤Òü ³ÛrZža ƒϬý¤ªMvãøÙ¯q—ÔïÓššpžWîëcK×AwÎÄÕÏvÑV°xï¡1zâ2¦+nœœWœ[ŸÓfퟦf¼Ùâa}JéØ0úVÄ‹{=ÄÿŽZDfÍQ6ŒÛ[òéÍó¬3Å̯¹+,ùz<wÇ=ººûÕ œŸŒ" Ì3MxJ•Vì­ù7ê`†ü/—“ Ÿ…`‰Ìz<(R3ªÙh´ ßǀƘf€]¨_ÀË€qè€_¿–À.{ËRë(½ ß =ÖÄÀÞÇjЪ¬3§Å¶eÞ¢á2$1>i¬Òcòñ +Ú¼µÐ–¨Ý"/#ÖÛÌý %·Úd7•ÕñÙ>2 /À¶In*úH§šŒ•Í:¬JÀ‘v­ÿÛ^,37kÉ—NÔ ²nB$¿×u—³ø%cQb%ó7ŠçôeXÅÖe™kÞS}v‹ghޱΚ&ƒŸg%|E–"cƒWš•0½‡cê$?`@4ÖÔ§Ï ¾Ï¦óy›RSI®ß¤èب’WD÷˜PìyêAx$´.ü_«}žuÔršødjý“9'}+9¸6]çIèdX0–°K)ŒWÜk ë=+Ë#9Ád/>m‹î}ŠŸ—,6fu:&o›ö“¶$鎩MØÛì‡C#ŽÆÊ;ùB`îOWÈÍb.:IJ]ZϔݼNÞM/ì ƒB69/Ç_ŽZÝ€þT endstream endobj 103 0 obj << /Type /FontDescriptor /FontName /IEFEKY+CMR12 /Flags 4 /FontBBox [-34 -251 988 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 65 /XHeight 431 /CharSet (/F/M/O/T/a/c/d/e/h/i/n/o/one/period/r/t/two/u/y/zero) /FontFile 102 0 R >> endobj 104 0 obj << /Length1 1591 /Length2 8568 /Length3 0 /Length 9602 /Filter /FlateDecode >> stream xÚ¶TTß.Lwƒ„ÔÒ5”„tww×Ì Ò!¢t£´twª¤tH§ÒÝqÑ_ÿ¿o­{׬uæüÞ¹@VB`ñHðOz®V.`'7WW°ã/Šœ¿Ê_NM-mym Ö?ÿí“”„y|ØyxìÜ|@€ /€ŸWà÷ß*óÿ‹ûo«ºøÏ½ÿ)¨µÿ ðØ»¿hxü© ¦?'†ðßTaR˜þQ¾1hõøàúÖÿï”ÿ?ÙÿªòSþÿnHÖÝÑñ·›é·ÿÿã¶€€½ÿ xT²»ÛãT¨Àgú¿¡z ?&Yd v‡ü¯WÁÍâq:$ ¶Ž·ì* öY«ƒÝ¬ìþÐ_§ðXÞ ©Ã\Á¿î;ø?¾Çy³rx¼O\Ïê· ô8Nÿ]Rj³þ5wÜ|Ï..ÞÀGyqóñ|¸Ôäõ[ÙN(Ìí1ðHÏ`sÁøu¢ÏùœR¿L¿ÿ#Rù <pêþ}£_{å´þäp‚þ¹œ6ÿ‚¼N»A>'ø_PÀéøäz¬ ý|¬ û|,åò/ø¸G· ÷c®×oøŸ.Y¹»¸<Þ¿uüØÂ¿ðï« òYaÌNÁ¬^„ÚW…¶\VH{²o ‹ŒÓoè%3³û̺´º_ã ¾c.O^r9—x÷µ o~M†éL|ŽúÎg§±5¼é­Fóï­Y¼æèF3ÆÌ7⾑ü‰ê^Jt vmñMß;g_Ý ÄFøvEúlgwõ\ÂKÏ9¯êÞâïƒaS›åÏ•0o‹ÇØcubŒƒ &ès,3&IiQÜØ)ÑX½p'ÎÎÇ ²F¨ãY1üvcy>ø.s¿¾š|¹PªÍíÚAöŒÌ”ñŒ`p”ÁGòÇ{E’iŸÂÑx ܹwŠ&»‘3Š4L¦Ý>öÃJ¨Ò»çËQ ^ °ÖÍ‹@?´Ã—²-R5hÑ›z¯ ä¼:Eš °Ä¯øVx†çí¾—“î{Š£©Ä`Ë@ìA`ÛbcÔë'.IDLBº†™Åq~lî^Z3ùm‡¶¹2½‘.ݵ’ø8ÛKêãbïäær³ñ¿«§ð·á.¤un&‰šG›¡·4“ľÀ _ÆLÉj«¬ÞŒè~(T‘GX¡[Ÿõ6”kM´:Š¡Ñ®Ð_Iºð³upÌ' ÙÅ&Ž?ó)»ã”ð‰¸½ Ó|µwEô¾‹aMorûŒ7èÇ9‹×ªÝXËox-¥‚ç{'ìþáLi©C]’©ŸG?Ý)Pqܾº…}[ˆÐ©2Q‘í®c»]Úþܤ×rĦ]=ImùÍ|‘£_Û…üù5>“õ5…‚¦ œ¸0sñÔmÞ=[(E‡VÌÛ‹ÀÖ,[‹á9Í}ڷ‡¹À æŠñ•jܧ¥]fp¨„½^å2`JcÛÝ㱚ý­´þHu×­ˆÛÊò–ô¾ý9/­7)‰§~¹ÏlãÄmU¡38i«Il]éܰР8úÓÎág «~•_²u>qå"´\nÚnQµªï2À\G¢üƒŽ£D^™P—!.L:žÄ÷aÞ}xï%÷å¢?ê WÄc–]ô+¶ Áç[ñÔh+¼“!ŧK¤¯[kDÐy1²f<Á‡ÓTòØg©ÜĪág2Ö6áÑQ¹®¤“Ò‹h„x#ì>Þ¦ï4šˆ× ¸Ôžqr82ËXB­?20|Ÿ u˜Î?9“}i¦à™Ý?c(~³¹PvK/œôF¯\¶Õ$L¡bä´—üê9þhô°«'ÍH¢<)‹ Jÿ-Beއ$aÌÙ§ÞQf›‚÷P?ëÑ7‘’sÕOÁ÷­Ð,žÄ)Byû‰1nZ~OÖ_å’šæÃ7ø$YДš)U˜ÍòH Y çI¿H7Y3í‰ uÈ}­Sí+ršŸ3{óyÁýåËÔ™V2œÕL¡¬€ÖàÁÝ8s J|î/Ôo¥ëyÒŽÄ}Ýä_!?£øæfBäЩ#ž™ÉoÃãd¬"½†3"CmôàŒ[\Én8 Ù‘’ç'—UÅÄ<Ñf4©¬ß¾˜›«Ôœ"ÄZ5›îŒŽŸ”“h=ßÇÁÏûðµù]¡gžv×b_ÈZà¾ͱïİÝVT¶Ñ»A\};o¾’+úøv©{ä‹üölj^ãáõgóÉÚî smJÝïüOôt>À½qò')ÄL˜z×Yt×7Ök>wš!WÙòH¼Ï÷Mîê…‡[·8× ³OĔΑ¬âº{‡~N+ xÛÈFõ*¦P¡‚r¿¼KÖáÖ…&%ßÔœ|éc߸=ÒêÅ6m÷çÀ –ܾ½t Ò€t˜vJ fõ\¨Ü·“yíɃ¤u‡Kþéî öœ÷ˆ÷µj6i’Ì•ˆ:£R62ÕØ z@ŸÅÕÏr÷_%þ@¯%”¬¼ˆz%I¨IæDg×¼€‚³Ý¾ªd¶~Ö®rz>ë«#µ˜R2Í2´ÇÒ;{Ø9¦îiˬp¡Ú~²-0©߯Mö„¿U3T’ÓËóRŸ;èÂ_¯_7ºÐbza' Þ>®él¥Sk¿(4ú‘ÇÕF5¹&¡Ð¦ôPƒë¨âi1زY÷ q`¬¹rPÛwïŸ70¸Ž#ø@ÇHŽb\P_”‰3‡é4¼]¯ÈÇWRbû‘?.ÈVN¾,bDŠ)èõìøÍ\Í+öyáe2´!2ÜHfiÅÅYCË™ê¹ /5†æ}ÄàW_{ úÖD–ñûn§%¶±½Q(@ßuMe!ó‘"yû¡ÔA××—(1©ƒç7Ò™€…¤ ¼âú"£e+§ðe«WÝ®þƒTjVƒÊ~¸¾òm‡hQòB"§,xðKªŠ'Ÿ™Áh°s~b+õ•Œd±ý•½e“æhóˆyvR í°Ÿ i5~Bh”W~‡ã,·wÖÑá4CttŽ{íÅ9ðX£@kjo¯æˆ~ø@±Rj¢{áXÁO¹ãM¤–Q[ÙµRêÒ·…¼LÊ=”û‰ÛeÑI„Y¥´$üÀ,Ç${Ý‘ˆ¦±* ›W§*@÷wÝd¯Ÿ¸ ‰q¯¦‚¾¸,¨âVÚÃ$"êšjS¨Çb_G„¯4~F üiã9å+Æ5ž ‚žw'ž<£ÚÙ+:+Ür„Hã_¶¨ÕœÏ BÞÍ–Í›¿Â¼|3šêø4=…ÿÃs3n=¥€g¾ß¦Ù›‡f‹÷EáÒ5+anøè‡`{'dÖõúv¤&áÊ̶§;3À®ÓM‘n…o|ÅF:]îõ Ϋx#ý¤¨°Ÿ) oSØsMk·8:˜[ÞŠÛª§ç—&Öy3ïÖâ‘ ×±`EˆµÙ¶Ó{û=š6ò0çå8ü½ì¥2aò°ÐkUë ÊF’H¯7†/œáƒëò§Áu)Pnª]¦¨»_2’༠ÝJ‘ F2Aæãþ ©Òô©Á?³ªv×’ynÑ/¾ŽÇm?nÝsq--–7]’ hÇ”oÁ{”+®Žu€p¿gYÊÃÕ,8ŠxÕÁúƒàÐx©ÇwpõÁ{ó$IW÷˜Þx6Ouó&Ÿ¢4,s` çÎÒ¯PeéÅ;Eø0¬'Ÿ‰§Ò¾béU{ü©š+|[ÜÕ©š¡Aî°\²¦Ÿ…èØtnà-–±\80Û¦R|KDæÁ¾6gZ®ú0ÆNŽŠTŸ$&V£‹ëX"gD›1$õâYG@N!J±ò.S­ÆØŒ„1¾º°Eí’“›‘«†ÓT«AépA…f$I´ñÜ #N©ø {5±g4i0ÂÚò$g¶û…LÇ€ñš¸›ö^—;5××;ÕΗ¦L˜§ÅSÍ–íˆ *­­4Hœ$”AQUzÆ7S÷?X£Oõ<7ݵ$ÞýЯ(ô¼¢K‡ý‰D!¯*•Q™UdK•º³ØË™à%ç_ãÃ2 cß»ÓMñ»Þº)uç±"~Iºêc–ÝcB¦ºyŸ)>…çUúŽ>ùk¯§ÃåVî“¢%‚Ä‚ðD+¤Oeu(§ˆh5¢=“IšOrCRý¿¶¾ “ÒjVé¨l:Û ÃùŒ¬(O”DôeTø©œš¯½uYKµµÀWiŠ cõpg} ϪP’z]ÒÕþ¤ nÛ’âÞ2Í*¾JGç÷O›¨{ÎbBÅ&'¦'V|`c+T«÷hBópô™äWßÜ·?aÓ8™‰evZy財ùÛG‚³©?|þ1EÈFB9`r¤ã›r**Y‚·§%â¹,òù™ýâÎ>#Ðû>p]¹;Ç1ÅÞ<Ç„’GßK»c°ùÂñ¶ þÁP|NÜϤ*Â4ï™îÃ5~jñÑàcˆ»:¸ÔŸoûrÜ3ßÎ+ž›Õ÷Þ"K§_ZßäLÞz¾•QCDiŠüj»¯@ú×&æç‰þ(÷ê'NgÁ:‡šåª]9“µg%‹˜†UX‰tC ãÉj'–v ðT5½pEJ¬¶qYÕ+ˆI†2ºÖZVX¸O%~åÇ™o &¿¶{¿¥^a”µÕZÁCoPTÁÞ÷¨]lõŽÄþ‰‹ò9©ìbǼD~F6G Šnø-F¤ú >Ótí]ò5‘ë>Í'<ÖjGˆ†òÉ ²õ´t# S¬ÔXy>Áë;‘Zr-¬æµ V\ÆàÈWW‚¶ }Gþ„ît2JYs™ócA8†}<ÇBíAèõ¦SwÚ¯¥U¯­Xˆ'î°ý^áCÛ$ž]m-,±GÔ»¾ÆÄðŒ¨ŒÏ¶ŒWW„…;ä"¡Ò…^9Ô‹t«á€ÿ +@P9éëí¦Äë¬zñsE36À­tGõØ3³I¯Æ×Z/9ûÖŸyö&ÉÄG¬à8ÊÁõí\æ¦$ù¯ÚÅÒFo%Tµë~R 1šÔÑyqV¬þœ }­1/ŠÌck¹¿ž7•ºÍ‰Ö]‰ jçÂ;K%´TÈ5?È‘¢ý"˜»v™%šñž€|mHëü¤˜±xø0ÐUC‘ª›Ê3Mw¨:B³5?µw-Ù¶['§WVÓp‹C#Ó4À_,>¼87O`jKá3Dd' Å„†ÆïÔù¤¬EK´ hAôª7“Møh£ï\dÂ}æ´ŽŒi×Ôçž÷–n|®3ÁŸš’‹ç¨2±n2+÷¬Ñ±ÏYºb-³/S •”¶ÒòÜôùP^¬4é•4u½“R>IÒ'PdNL£A¶uP uïà›?µ-üjòía•¶OIsâʹà—:‰Sjeqò:ŽáÐ]4‹í¦Üt+šøv¤œC`ñ4}’—@“º€`—hXËYÌq›öÁ§jgŸ]/›•®Aåb4MkŠ191F&¬iR`C#/¾çª8Ò>$ÕsÞN݆Äûáûý[÷œ+™ ÷3…Qª™©¹'ÔJa÷a{à %˜aÍÄ¡]ù`>ì„SåA·ïcœjÄßj àR7¹½ uxцiν\B¿?+ßÑ U[mZƒpó0d\¶dí@~ôT”Ê3lËJÏDa.¿7¯T¥^…ãxó Õ‘Œ0n†.úÎT ýt¹G+S)…@„Z:wRôqUuš²K¥GT/Zâ×R0®wMœ+J#°×„LPØ1|ÝT‘5†|§1ÁÔ«…›V}€H/ŠyØñù½ëÁCT?t"Õê G$¤ñòÈ~|+&ª©cÉ{oíF¦•…øNž\6‰ÈŒï܇£ÚÔT¾Ëý¾2µ­†‰f¯!“wYå‚ hº—˜2iFZicøÙi)÷e s¢R·²ŸÿvN&¼¢ešü\. {X‡ ˺(ÊWÝþšÓÀÈþáSÁ+æŒcwøëàoá›—Þ—Ÿ²”Š'Ž‚\´pbx{^k¡4œ}Y1­Tçr.’%˜{C *ryå@éÛjÜKm#´Ë¹T3“lÂzV::åóvPb]å.Û ™^âx-œÚÚ9y†ìIWˆ\Ô¨™¬-ÿºCm}„³X™Ié)¯æ\»ØHÖ±œ¨‚ìr˽-_:¤?S—øCÜk2?ÖªÖ i~ËúzíJI:ÂÓ|žµ½=Ý25¨—ç7ÍnˆrÛëï ¿7‰º;H†ÆÍ`ƒÎD‚=»1«Mñ¬éVë Ÿ%.'Y>h–b(;#jÝ'*;ªDUr‘üÙåÜ> ÉN¥710b“—ÛáYs™[³Ø+6·Ê1_z;åI'¼Ë;è‡èK~Òä/W¦ÛXxCì|—4möñ“ç3ÞMŽ)+90ŠépPyTõÄ+ˆòGKKáQœgW…È:½Ç…`E»ÞS…Û„2 ‰"ŽçIi%µg7½Æ•7ƤÙKôi`Èö ¡)µýIdËå ëÌŸÓ lµ]Z<À+5.HX FÈŸ¢øùm†.zÖ»ÉÐNŠóªÔ uoÛ“…5:²€ä­‘F⃹×ÛßÑéûêuDÇ´Óv$›ÑpGuKaÜVpQ×Ô}Ô×Ù#XÑÃ0òö9§;PÌY¯ËÍ9“£­´ÀÇ«‡<â‚ù˜Ï{ߎðæú’ÕRë•LŒNhÑŸT¡…_½™/‹ñ âEþ õÉ¢Ôf¦ ‡%(ñªØÖBê¡ÁÄ+ÐДßj{ù ¶÷Vˆ¬ù€ƒ QÔéêw¶}&HžoÄg ×éúZø?/ì]C§;ìôlÆ·Y[›œ¡8ÄGTÉaÕëS5u^ê.½¬4Ý™²6.÷ëÜ$M¸ú"ì‰ãàd9$ë6Ò¬ôw Uz‹B 8:zGñåÜ~)´kåCÇ!•;ûžÐ[ø¤)¡ºÇO–4óçÊ SüµŒžN‹1SjÙwrQu[à 6»¬XŒI½5tþì&t¸¹n,ýO-ÓBDÅ É)Ÿn&‡m³ †þ‡Êr| 07M+QPŽeqfß3ýÆüuö¡h§Ž©rÑS.°[‡ÃÅæÝ4æ9ž,à3<õLv£‚Ž amWÆAâÑ€jŒîŽÓp\äÜð—¨äÂÚH]ÆÜäT†\×\O;¶ÀUnƒ¢6Û€òÉö­‡Ã¢ “umšPc‘ù“:¸3ø|Ü3S$˜ò³¨¦A &Ý´¦Ÿ¯¼¨…(Òp“È¥·®wÍïÁ'wI3!ìl8ë±ÕOðúœ$DÎá­õÃÞ¦¤·3îäz ¢™>e…cãwXt*!N¶Û¿¶. ÒŸ\ —¬î¦dœÁmèøàó³ß.³´’òdgzd¹ÄļømNèËëÈÍ&jÜ}CGVQ÷¦‘o¥íKŸ[¨6„E¡‹E©áíóÞ®Í5µ?-­Ç=Ä_Os¿¨iííJ½'÷HÜšŽ%’¬»Ïù2Þ$V¼×O…%~¿åMrûÁu‘χ˜(a¦ž#¢/=ÙžrV>æ0ºò£Çðóc°$å‚Ú‡´”5Âù\±Ü¨±nøt¾üp&ÏÊÂ=#ïS¦µ|rŠ2õÒcܼSºKÎW‰!B¡åQø@aã¡Mv9ÄU»g@“0_È0ÈZ9ü3¹Uô‘¸¸üI¦l Á‹&W™bŽÞ[Á N¼”óù%Œ4B:KýñMA+gh. #­~¡‰H:Š/_pGýK‚›Ó¯=ï?„ åÑGFJíäʵ¢Ö¡p{AéÀM×Ä+¡íýÖunEÊBÂe$q±ä‚U+ â¶±#¤Œóâ`äÒÚ'*u?RÎKi‡w®ÞC³¹ÂIæ>û[ŸH y‹°–ŸíšâÔ’DÜV¢n¾T>ì{úñ~àÛ³ñLˆ¸yÞ *Ç\‡#*XM;·ppŒY8·” ?¤ñûoZ@öV914{ɘÂEm´* Í ¨Ï‚iÇ$îN0‡ÙTtÐFÅùIÃ׉^r¾çœ]6®}ì²?¸YX͘|ºÃY”g¨ºlùvJùɤ°J!„·µp¬¢ô­Z'æÀƒºÃúsñQy$¾wO0ÝöL¿üÿz<ÓÛrÁ LSòäéâ®;ËóX |„îÁq¶ï¯…¦åIk7Dµ´ÃÕÍ?*MâøIn‚îqfb?¼PhOìÄ2³t˜÷¯Yœ—›n0«3ås¤š!"]¼µ:LÓíûæó3+l¸*Å…ŸŸzç³+áÔv‡Y4/H°ú3àYÙäûÖ»2£}ǘ;„M.sçn9q¶bǶRzþ˜šUl)ËOÝÛõeáq 2„飰Þ8&‹-{ÙG(@(OðÄ•`üþ·e¼Ê0O6äôéSEþÉË–‹ƒC<œnhwú8Fbo󧻣l-ßWUýp¬xSB:ª‡=F´µ¶Ï9¿%} s© «nXtA’}ÍJ,-àøÉúæè,äø®§Jz,»eVœ"€·&T£” é.:Ô®^ùkFê>'\ã*b÷Èq{YµN6AØ€-&Þ•›¯ÎùIC'™á—z2æÇäåÑÆ6¨“!±VIîÛcƒ8Âße'{7‚ôFâ>ߨ‹Jî¼[9¯½íŽ ©PŽ¿™`uÞV{M ´¥‚/©t)û³±Ú endstream endobj 105 0 obj << /Type /FontDescriptor /FontName /RSTHTQ+CMR17 /Flags 4 /FontBBox [-33 -250 945 749] /Ascent 694 /CapHeight 683 /Descent -195 /ItalicAngle 0 /StemV 53 /XHeight 430 /CharSet (/C/M/V/a/d/e/f/h/i/l/n/o/r/t/x) /FontFile 104 0 R >> endobj 106 0 obj << /Length1 1414 /Length2 6307 /Length3 0 /Length 7269 /Filter /FlateDecode >> stream xÚw4›íÿ·­¨½µ%Fì±÷¦ö¦5JD"!‚ÄÞµ‹R£vÚ£jUVÚU³ƒ*j5jüÓöy~Ïÿù½ï9ï{îsr_×ç;?ßqŸ §‰¹ˆš3Ò ¦D EÄEAò C3i$! É@ 8Úö%ZÁP>p$BþÉ5P0‡iBÐ85C$ çë—ˆKË‹Ëȃ@0$÷·"%ЄøÁ†¢=$æCÔ@zaQpW74.ÊßG?T .''#üÛ æ CÁ¡À‚vƒyâ"B!s$Ccÿå‚_Ñ ö’ó÷÷…xúˆ"Q®ÊÂ8Ú `ó¡ü`΀_tFOØob¢ä@€…ÜçlŽtAûCP0ð€Caœ/†àbÌu Æ^0Äeƒ? €¿Jÿ»¿¬9‚#~C P¤§…#\.pÀXÛ@A  ç_Š$Îâ{@œp ¿‡´ÕL¿¿Øù@Qp/´¨ÜãC±_npEÖB8k ==a´ù¯ü4á(Wu¬Øï¶º#þˆÀ?g8ÂÙåg_/1KÜÛ¦«ù—"ÿs…¡R HFVóÀ0P7±_Î-°^°ßBñ_0.ÿà@/¤ÀG wá^ä>?ò…þoÁ¿oäââg8 p‚¹ÂäÿxÇÁ0—?w\çQp À„šÑ×cur òÎÓsbRŒØdO]mMI‚忾*¡Y :Õ»,,,hfûùv0ÕãêăÞ$ÝE°cwX²¯ÄÈ"õÊs&ÍQâ+‚ÔÓýRì/&²W}ÞNDZ²º³xÞ¬ºªí=oáòƆgý`·f2({a­<Œñx_k|Ïwә檳.„O"¿Åk„ÝåÑÔ2]ÛÁž}YŠ”¼Ü«\á…åûÌ.‘yy¾(:6ÅÖ_v‹hH.$þÓ興Âw-ÏIA»R–ßDû6AÐ,ƒ¦90 «tãŠà4 ·yxo<+¿¾Òþ$6æÇZÍ“”›Â1_ 2އ“Öl÷è]óölºÎ7GFèš*³`$Ë¡¡ÓÞ±b!$wùlµÄÉ® ú» èׄ¥P!=g” e›êQ€x[ „7šÙSîYѺ32¸¾‹ª>Ø0Sä˜ òØsÂÓë ˆ¨×/bw ª¬%€ ó͈™îeËÜy Ñ®ÕvDpVKa¦ër\£µ¸rGü+U¾ØÅçÖ†u!oð¡¥y/*>V/UÛ …ÓêðH ¹‚vô-<.½ÎfUç”íY/]>ÎXO~‰š—1½¯cµ™¾R(¡ *P²'þj“â˜H[¼ý Fp D†b+ŸºðÊý÷‰ÐµwGþ7@­Eåñç–·ó¢o0º]&…5å·ËLíÙŸ¥VõqŽ“<`:ìùpËÿ«üîÚS3…tMÎ;–ÜBö®©õô6o£/(Ï‘>þ•ÖM-Ãr[dj ñÕî@úý”1}I½C7#:oæBð³‚Yw8.BÌÑ9otòâeª¯Nêw°ÈÄ‚;]òj4òßÁA:Œžâ¾*‘ÌÓ’q¼í7¿¼Ïªs¹Ô[ðòÜ 'mµ¤«£vk-œj,èaåñ/µ«Ós&•ê6/ÔR*ï¾w‰h²JNÍ«LÖÍè¼±•ŒL|¥9&0ÿmò>IjðF¤bÒ3- ×eŠ&Ðå>üu‹Ÿ—$µ³¿JϘ¢xçm»q¤‚¶.aIQ‹™FöýS—û‡Û™ £¤Ï[Š&ÆÙ¹›[gnŸ}„V°ZŠäÖq,SÛõžó_ïQÒ´uP=[¡Ã p?™K‹3œËTS:‘2âyÂ"nšé^CíVµÖKt½.ô…€Ítgq¶#A)8%cLºûÁ° Ì÷­ ñÍ:J/NŒèA7)—çÉŒù¯w~FxW2±²!?€9ù÷¢Ç™¾y¾Õ”íoE}­|ê–àoíëÐóiZú¥-SsšR3y²U¿ýõÛU­``yMûë x1}³ô¶Ð ˜Òöüq%aQœ¾CÔe3È|=êÍC©öøh ñw]žƒ˜5å‡W§³šŒóNië»ÙoqÚ~Š˜{WH”ìx2èGäò=(øƒÙi ™$WIˆ-‰/ã7¿«ËZ<–UÙv Ϭ6óÙ&õA5W¥ŸóÌ”–¯%¤Ô˜¸«¼Á>Ç^ÆJF·Ó+ÿX\ÚJóVÒÐáì2?lUužëi n ÙT7•P ZŽsw ¨i¸‹hJy8_vfcGS,ÚÚ©¸Zò¹ß§+›ë™Ó³½6;;›5  ¢q3È1Ÿب6\Sú˜IÁÅ×fl¼þð¢W²@°PÍÔAp½âìÊó´ïo¬4ž¼}E6(ިķ›’+<³èVñê{¤{ßý¹M ­Üp©SmûøñìC„[Ðõaç+̤$ãbü]!¼_ºMêKÕåži\bÂåÈO–6ÈîY> ËâÓŽ_ÑßšúfÀ’µ@äwá¦p"ƒòdrôAâuaé¦t.!;Ö}”›¢=©šôšÞK½gr_Vç»R¶CÁGw9Å<ÀU3_~Þè’bëËhèv½´ÂOë'c^$cXÊ•ÕÍ׃Úänsœå•ÇL¥[<Ü8b\üI/—w]s’ÿë”`Jn§(Ë6ËçÿÍ재Ì"gãh=2Õ'­Å ~5D½Ø¨Ä„ã¸g÷æ-×Rnõ§ÀQFöTÙ“˜’ øÇ‚ô¶ô­ƒ3×ÒyJôôTét™ ñLE3®™$>D8×&ÐÒ¿öXͺ/(\Bñè¶p~Fó‰¦Ó¹m\èX8tiµ½0 l°©Í¡PºÁV}¡;Ý_ä~ªqömG¶>BUÙ4˜Ý)Z»È–hƒ~¿"`ŸÏ«×üž eûÓwÙã%G@Í&t•¦ó¿ù¥;p¼³cŸ·Î«8R_i?lp !Õ\þa›½·ÌûÝrã¼ù¼f÷cªÑó:¨ïhj×N7ÓÞJ÷ÉrmŒùö6—nr-ÉšUhIš÷m¯\’1ûK© K ”ñû8ü0|(ô«:ˆq?Iß*h¶p3Fòh ¤¹ëõ±lÓgPV­oýy^æªO#Ï.‹nHŠlMm4­~¹út¤®w—N±³¸­mÕìÃ^Ó"v¸Z“+è8n`üÊrkŸ¼?]¿«FçÍà Ÿ ÐJO½Ç/R¬‹uic;eÎj~ôЬwWj;#‰E¬‰ò¿É/S +1ªßÞ¨¾ð,ª\ÉÚ‚q¡¤ÐT5ÔµÅaƒßN_—7]ßR^ñŸÃè:aO}âZh? Ïaš¡ñŠ›JMaqÄn —[¶\—é“QøüŽE‚'{bŸ:týw%áYÆ®Ÿ—½I;vô+mÀ@‘c¡¢SÇ*ÙŪ ¯œmŠB÷ØØ ®-]Ãì[ó±¬ìºªá§®ðúu{ è(1©VQL° þåã_Ë;Ãã«Û¼z¤s—'¶.¨ Š ž{¦rŸ“›‘G½ý(´©#·j‚g¼p«&l'æ€èZ_P™t[vÇjvÊÀ}û º™-޽.îÞ× ÁªèVbÞ<¾Ô—JŸ¯H”F½u"Ò-w½n™/u%V3Ðw^¡ö¢ÿsa0ðYùw/LòpÖ+}Ð]7y®¯u“WµsdÞ‰ Éî×uÙmöX‰>ͽ´s¿UB Ãï(|UK$D÷¸o„MÚ¿T½®Ñãeüˆ¢ŽZûMO¦FÓ~¤@‘ù¥ÙmÐ;Ìhö ¢{¶6!3é埣;³½TŽ÷Z¤åRÂÕ´Ÿ³è$Ë@¶™{¬HnÏ,¤ýÜD_§|IûÃ0Ôª f²æ~"Q ú²‰2ä©]Rê2yú=ÿ~j¼ÑÉõD˜œ>Rž¿¨±Ù¾´SaoQݱ;̳m 9 _8LŠCgL®0*­'Yî!lÕÀ“¨T¾Y*“ÂŒšÖ– Éo1­x¬J¾ÁÜžÍÒ7¦0j”70wˆMm~ ÈîoÆ 2ÅO· f7Éloc3ÛA«ðþĉøüš‰LÅ v¦3ÎËݽÜâý𬅙ðµ ÞöÙŽÆθ†÷,.ÇMÚÔW¥¼<“î°Š9>¨Ù Xÿéâ<³xˈÝ'¯Ì¢eüæ¶žÞŽñeIšMòƒÊ¯—ê7E8ñB°“¬^ÓÃñ“ÕøŸ £bWfꜿQÒˆm”œ.K”¬ÜeL-ìæ¿¡‡oòè5_]IÚg‹ãæ–kC•®æ×NY’!’ö·¨¦Û×Ò:ndÉÕÊY(¾x[ðæ‘þáãè9&[ÝÀ,“SåH¶H)*3_(/ÿv%Ó)ÐB¥_mã^aÂnàW‰s Qðs h'‘S̺p›¶² 3ÇliâGȲ?®º†ÜÊ^ÿ8ÿ¼ûkËznð’.„°µÉn!CmÀ#‚‡‰¹ 3Bf±èh«‘[{Ÿ”F(ì&}ËÚÕ3H_Û·ä×ðë#ôW¹9Kv}‚§YP‚A;Šl?×2I³ÀPãUM‰%5F["j'„VšZ²© ¨&Þ4 b¢‡%SZŽ*¨R¤uoºÖ#µføî¿C4:­]ëµó¨6Hsƒlž9‰QUê»oXå\,i’ùRIs Íe‘C’Wo¿?e¢ãwÅJy˜'ìÝkýØÙOJaób”Ã4Ž2±”÷ÌùÐ+ÁÚUÄ Å©´Àëè'+Ön>€„ßÕ¬\úÊ l§´»Z?éÙ…s™’œ%x±|íC$ÓÓ6úó2öý”é›{^É(¾“÷DÚæ›ƒB”–/‡xŽ›ûGÛéY)ÚÜæÈÆuñ‹BHÃG–Dȳ#5,_Ô°hUh·b‘  ÷a7vU–æ'ç=Mƕٸ†¸û3úNë)’-¤ô8ÙŽCW™OÌ™UË ×d¸eyg¶DÊÊO ±áˆÓ^¹GK'&¥Zêu¢,–¦ßFY…’БUe~²Æk0·e3Þð”`L5ñtŽû*L[%”n6ÎÒs^¾g±Uã~Œ=¤1Sä¡`ù¼Fö| ¹Â;ù£•© üR©ÆÛÂ;õŒF)å˜dš¹+?†¼é3L8<Ì]°hèViR`ü>k61ÒVXlÊÐPU1kOGï“Pi±¹{0e¢j•ME­#Ò¿0“3ì [ ¨YÝ[ NÉÙ6ìøAZz³&Ÿsíå¥iZ©(ÿ”Oý©ÂÊP≱EÁt>é­ÍI9Gv⨫g<&Ös%°Û;‘{óJ.ZÀ·%Æl¬É^Κ¥‹žÄ3½öÚcŸÍ”tßÓO"Âè2Z¹“û“6ȶ“zNÌJUÞ¶êä.:ùØÞšÓfxV¼k_v,Ø_<ûXîm,ú„EŠåùþ#ŸÖ,Œ É3šS\ž±8) ‹SRAÜxÊ’?Á_C:Û;Ä/Ì”Sfö§øª(]¤€Šs®ªµ\³7»vÊØ«›ý|ã]£…{7’Y®6k^žzyÐÚî$Ö/E”†¦&Ř¾Ö÷Òõ;ž‹½Ê]iË>Ì£Jì<§Ñ}©âWá)yp^BNì¶vR-ð‹ï´–ãví7¼)õuL¨ÿÑþźÁ˜Þ&ª;9û#y Fe‡Vcë óù%cjê”îB¼/UùÆ&²b|^FÆ´Ç8(´“fW·0Ä{ò;Tœ·æÉë“ØŽ`b· cS!rº@¿5Ú-# ê~k2çÙü²[,Ö·n…[F˲ê•@s”…ݬ fó&% ŒÏß*˜è‚ˆøí½×”p·Ì8°ížœbÞ¬jœyÅÎÂ"y™%{IŽ]áMif_ ô‹ÁœZ$rîgÅ^c\W¡/S>ǣ䃹!J¥cãQ¶QqÙsü…»º'§ÆïL)ÉM#/9òÓ± ü¥ZŒ‚Ý?•»ªù–ï-GJÅR²»Q†FY…e.: ¯ú¡$,n$[L._¾`4îœ?ßÉshNJVÜšÒÜ"+¿Ä_rc\b‹k”`§A¯øa.º±ë“M¾~j”§ã X“?¼å¼L©ªf»jŠ]YçΓ7@WÞ%¨g4>òÀm­MÁKÂÀVqÄ=ùóé:- ¡dUpqÊFey{ŸºwXH·7öˆc°J Y]KKô: IðÌ9H}¶¥ÏßÈ¢;Ƹ̙¯ú;Ÿøeêuæ…_­€Ý{@fŒÔx¶s& 2E§Àñxƒg"¸‚¸\{éÖ’‹5ÜSÌnÔ2©ä˜]æ] p[{LÝ’£Ù¡»È(šòãM$”•M³ßfï#yTÛ¥ œft£áhùÁk·œŸ…¶Šì}°Æ @Ôû$ Q®pbµï>ˆ[ ꬡ)¬¾Ù±Û<ÎÈÃï,Uyžgx}KsHÂ~ì»:lì]+Çú¾ðóׯgUß/Öe'6 Bø’îÎÿ˜/Þ¾è#z¤\âe~JcÅý ÇW^ù…‹ã—ƒz‘ÎéoÔ™I1†Óz<†rRyw_æç¨êc¡h+©„iö±ÍkïjkŠÈÕ£¥Ûßüø†¼ýjÏ;´÷NTº %¼ žÆ|ç£<¡Ñk="†î¦¬ÒKоŒÚXür9*uºjø3Ðqææœ—Mû‘—Ò``2ô•hwàn¾Ê羆´ëÉ +ß_e¼&²pÝ× |ål f”ÖJìDx¶#¦­B©Öjïä›7ã7Ø^Uâ½ø ÅVBqLÒPÝ¢„Ñ Ò²‚2za[Š^>3£—´›/!X¯‹QGöµÊÑ®¦¸ÿ„/ï|~W9mˆï5©s-Óa”™Â §)twP[zÔ<ý4²¾Ø‡[¡ã½ÿÀ‘T||pé M|7ó“¼´Ærû^$ô˼bFGç{Øô»zaÔ‹²·¦}¶³U×Jç§7Íå‹»Ÿ€N箹ï{߉«§! ¦6gbûÜ@`Ñ層ßÓZ@Ý Þ½ ’‚C?›’ˆö¾ªe½šžh*¦l*AdÄOú²ÙÚi™Òü^d™Îî¤f 5ñqT‹ú¾sÃÄÛ‚åÀ¨{Ü®“ÎIZYæ0Ý3©Á¦Ü=ËÉ?›mü`‚Zè%[¢UÅ£ÍD»³à "Är¤Ø"Ü“Õ:;jÊL>„R(têŸï0ó\örnl ~Ìy(D+5>úÖ;°atý¢@5Çɽ¯Ùˆø€<5)üÁÜ‘ðÜû¢$lóA.éÙIýÈîÁTA['–xŒ zÒá pr§«ñ1“òðúÖ”Œ„D;G‰ ;h¨Òƒõ®¦>p&˜¼skú‰¥c–`®/5ÙúrÕ¹W?¯ÔñÆ©fô÷1V›€#sG çsv}b¡ØGBn~fØg–×+yô|ËŸ€3Ž[ÕyÓókékWÒ‘×íÔ샓òßÔøºØ ‘Þûä5áôé8í‰È¾upÖÔHÀÕA8Ø–án¨ÖÃçX"(“ßg6€4•éí’‡PnÕ®n˜}9&è„®fÔ/J9óKeÔ”/FÌNJ|%U2NÕÍòyÍ Þ>œs‡J_7è##Ã_T…ÝÚ ·¾óóç×+qÌ)Ôwéžß_V¨Juü"2½z'u°U­¦¤ßÛØ?š¿€¾cJâ±ÄoÝšM wŽÒ?Õrä„&GÚJê/‡¿h&ùÌÜù¾ endstream endobj 107 0 obj << /Type /FontDescriptor /FontName /HAJAQX+CMR6 /Flags 4 /FontBBox [-20 -250 1193 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 83 /XHeight 431 /CharSet (/four/three/two) /FontFile 106 0 R >> endobj 108 0 obj << /Length1 1613 /Length2 7937 /Length3 0 /Length 8998 /Filter /FlateDecode >> stream xÚwP\Û6]Ò‚¬tÃ"t#]"] ,,»°,ÝRÒ-”€tI§„t "¢tÉ·úÔû¼ÿ?ó}³3»ç\w^wœ™e~¤¥Ë-c³) n Ÿ@N]GÀÇ÷˜‡™YŒ€€þ@ñ˜ @pW0 *ör98ÈÄä-H5u ê€Bb@a1>>?Ÿè_Š0¸@ÞÒlPç¨Â  W²;¯T©æ|JÞ,ÃGR?R¶®:%!;lÞ›:ðÝf,Ìãbl4Ô¼èä*QÑË-ʉNű²>«.{ªün¶råÒLßiB„k Í{í&ëÒÚ]…Ä·RÞk¥f§Ö7Uø!H=빺TÜU#÷>GÉÙ*3Åúw-ñùÀ¿´>b;[y WÆaóLÐâÕ¼N¾SKðãÃhŒî… ««Õ—­sþ©°|µ:ÑS(5¬5)š*+dF‹OOkd« ú×{ØõìŠÆÍäHˆ<Ñ^Q³é¬{¥pu¹²s*/G‰¯;¡¼ç ’Ú–TÎjgaÖˆiaµ:^ÀQÂ"‹1êIéJ²ú`³B`Þgªh:j9‰ß·$%»æ6ö~Y Vd‡ˆù=¼«z¼aˆ—€I@§î~^¬¤qÔ1×GÅ5UÔÎëo1qι®ŠI¯ÉÿXd!Œˆæ6UQza½Ñn+¼1X4òƒnô~ÂBŸ€ðçv?ÁÛéc\O r:Êå:R{¼Šy;ËzAÚeµÀ=Xý1$4›OÔ¨­í.´ÖjöÜDk‡3½¯(˜‰_”^„€|o_j¦òN[WÑ„w|ºÞÛ3À- zJ°–hÖÜÔ&2Þú„]½¢+4:lý šÓ2FL‰øÈö«ÚD¢ ?M ©‘îùöC'­`ÛQê™vº4?õˆL­¢Á;þ‰ZÐ.fdMñtl7ƒðÛ—|g‚T”F¿Ñ> ÅOŒI(hÁªšÏK%G? ¢“F’uÐ2íŸ} &~F]ño¦ÆÞ1ÊAA£}»2~PDTÈ­*ß=é$…öx¬~ÿm+Îþ%ÍËŽ‚æµ2âqNùJ·Î9^òT´Êãîž>ΤÖj”ùç@¶÷KS¤÷{)"p›wÕ5ìØtQ#×áR3ìû-RâmÒêd#²ËåJ†§qò`¢=:Ÿ@«r^·í½®á¢<¦±ã׳è8»Ƈˆ¬îžc²}3©„£¡ÁI[þȦœáïÂçgŒžú(;=íN-±í§o¬ë™ÜÄš°tJÉçC#Á Ûú-Ä­óƈ_?Ùo[køÈcöœ¥&m1Œ6ö娫d!ÁåpOkGBË&^•ˆC‡7Êôâ®\*3¬uú¦,6C*òà‡Žã+qù¶WÃr&ˆùØT9ƒ‡}ç'»q”²’Šw>d}%_q]¨ &?yåß'¹-áåäâ¶zìÑ,ú,þBÍ/{no@HrðÕûãjA3mÓ›Ÿ£Óoïë{Ýê9_u!æ®›b#¾›ß¤ð ”l[ M¹–$†oS>šÑÌ0Ž€ç¢™¾Ô™¬È;Ùâ=“KLˆ†!/s_>‡Ý mŒ‡ ŽÝ˜ :ûî?£¢Í=CIÛvÌ2ÝÇ20þv•¤lt›sþ´ênâqš×–àÆ|h^›¡H`v¯]¢`%a‡štª› +£í©ÖÒ1åï6øÐ4¸Õ|rra›•\t‚g°Tzºñaƃ¨¼° Ôþ¦ÆùŸŸs)‡E’¾éèSYäϘÇgÿš{Óò¶’ªóM}Ÿ¿w”g´PgQ€SR(%¶á™¢Adò™œ‚¦§jØžƒ¢SQˆ=;á`;zíljð(‘†àtQ »¯|Öݰ{¢B­ 86ÅK†AR V›ËP å?}ÏÇH¤ {'¹Iòi¾ÊØ®‰¾ë0¸±:É«Ã%AÓ»^´©u x´kÐÖ’¶ª=…G¹Ïq ЦÂ0¤øðŒÐ–žõ)b]ºß-BêÉüwûç_V ÂÕÂý\pôŽÜäf7ˬÔ{IÅìrVº{ÂÏp{ 4¿’ƒÇ¶¶“J‰V0úNz9s Œrs ϺgªxæùìŠ0¦½¬ý]Œ³k“á£!î¸u"ÖC²Û¼¾¸…eà‡~®ãWÏÁw*º©™½Y¤w f›³†Ü °ÒÓÙ0òõÌŸžqç;JEü–1ȳ*nãÃþqÕGÖž ‡S |'ÎM÷GmÙڪؕSÒñ'tÌ®/jqã½Y1Ìåtf8sH§Ø i8Ó4kÖ¼Ñsv‘5K'ïíŦÎX$8ñdJ{wÀi 9ÙðLL ÉÛî®’X£ê I>8‚S\©?÷¬,ó™Þ¤Œ¦‡Ê}þLO¶×ËO€Ùßbîz'è&_nvÅ*µ¾Œ{ër¡¼ØÁî¾:-ÆÄ¯nc#£Âi¿œNš×Vp³eö|¿ÃæÄ€ƒŠ*{Í îòÜ…Æ Õt¬L™ÎîÃ|/ u¡³pnR~…XƼ¶ … jÛAØÇÏS¾}Óvdó¥˜xo~ [À;0|.b™dp9ÀÌ [pgÐç}T¾_ìHg/¨-wœWʾ™bÇ¢šÇtH_LN83̵òaÑA×”‚e¸¯è21Â1°Ç±8h˜Á.…„ÿеÕH&Kõq1¢Å­bE—þ°bƒq…Ð5ùÜ2<í•?ÉG½ëËÀ@,ê=#¢͸3ô°iãCºÍ…¥“IŒhõ{ßv𾑱nᘠCy+Óm"@'®1íSE/pwwƒ!xZ¾Ñ¥VÕ=/ñÈ@ç^G¶õéê5å—ºéè¬:W9„bƒETs¿ MnêCšÀyâÛ Å‰ïk±tâF¯[cB¾tçF+Á¢Açx ±sò\2Lû€ñ㴙˽"dkzúhÖˆÞ÷d㨊~£Ï­Rh¼ÏËlÁåDYVÎÙ'ÞÒ]Ys¢¤ªKBŽG—¶â ®ŒÖ>¾¦ÄÚ7G¨f—Q¸|HïÆV=ÉÉKvtõªeä,­~ TÞW³üj5¤ HÞŒHÏø|ºÙï™}µ)»v Éœƒ-;nØÙ>ˆxQ‘.>fÿ9úLDlËçem­Ä-º*‘B0¿ñ³Jùù>áÏ­t¢ÝgXU¿äœOl^3OÆ©b“PÎSL¥|®¹¾q®ŠM²ˆëÏÇmK/Uîô”Wâ”iC-QÎ2ܳ:R¾¾Ý”`žæ±ÜòB}Qá¥.{ }Ô®ëæèåÎ X³(ï7[üù«ÀýÁóå1”m_–Ù’–®éÆjëÇŽ,Óm󪹹øNcÇÆŸºŒ“ì}ÇLé²È7–GðDUbšœ~œÆã« ü¸þÚîÇM·9­tµÓg·M[¦Š^ü¶YÉ.IEùU´)¶Áe5áq, Ï û®q3°M@Œ-gØd]¯ð9=¶ë“κܦ•W=ÍR+xê¯ðvY«‡Ì¸3ôX0œäLÜWé.JªÒÍgiTHîxÜd4†©ÞÇ TN"¤ovÞ¸eäoY<_ž¡h’¹[ <†ôº¬–wÅU*|+ç*wªE[W(Þk•L™¾)V»/“ú‘º4yRá³>Q™#e0=¬QÀå¬u¦—ô2öúž­]ޏÊÏöåî©|†ôEÙéÙiy¯‰Z|µ}uI<…%®>ë¢Ùnß]¼û~ „/ 17%®¶«ÉF=)¬žòߢµE^›mš=;ÇЗ1®ôÔöQ0*¨ŽØò ¢êðã;d~ù@X?•FS$šÉPa¡°ñmIáD>hVfaƒ-%lÙº€G’ÓŒ­OäOæh"C‚ Ê[2å.“¼˜Ä”‰_KÍÅõgøwbcÎ’‘>p¯ÎîÓ ð3ÈæL¼&¼:rÇÙ_r\ýüöû£Nê×C~ž a£~Á¤²êwsL­_}}4ëà_#åÇBNleX˜Öä2VˆzL…Næ™àt;wym$ô±HáD8¿Nn“SìiÂÌ^DRÍêå’¿¢ ††])Gi¬e‹ù =et.¨$ùÝþâø—¾Å` ×ZÕ—M¬2ò—#Aír̃­Òòšœ b·¶m.c¥¯5*EÔ$åÛžôû¶Ìmz´…M¶¾—´ fÑ´ tu·ÌM5lø¶ªÞ#ëfïeÖ³¦ÔÕâ 5èêùGãÂ,CÚ(?ç>'%œ 3jÊ;¹5¢ žž´ µéÁÕæ]÷Í;™6o×3'¥\b¹ÏdžYN*L¿ö&SšSZõü°ƒÏ‹ÁPÛPT¥x~ Ã,©{ÂÅ‘SEõéŒhžqîùw؜ز%K¼ƒÜuÐ@Uß·êÓ§í¥ÕÃnïc1&è¼gYnW– ˆ˜œ6#äQ ß‹ãø²{«·9ͨÑ7¡ŸÂò^R³r€tì7¹‰bxÚ“—ˆÇØc©¿õ*·®Š#?ëó¼b£?wQGzÜk¢¸Ôir[KùDpöPïð'^¢µEÈ `žö³©+úȘ6Ñ6~cì`vÿÕ•´±ë¬#JÀ¹€£jë‘4o¥®fé8ô¹ª ƒÓÀýÍCo`^惘äw?1³69Ð1_ªÞ<=œOôÅ`ëȇvxÈ‘Í6YÐÌ;Ú•ÊI¾ðT=­¸±2>jVÝ)N¡>æ``y„86–]NzÃÂôÝGéò°(NÊÒNüº§”=8ZœÅ×=Lºû¢«'Çä,‡PWG¡€P vä¸Ãsû²wR#çA ‹´*ñ”nF´è)¨`ø´þÕ÷ê°Éñ(ÊÔ†ë¬Ì€%p{νPü“HÔÔŽöC:ŽÓŸ%èÞäll9c=×¥èé‡l$X­¥S¯$å"Srƒ%Ë*¤Ùñ8äVˆkx¸šuê3—ŽsD ”± ˜þ‰‹ÍêtÁsÃ3âŒúúÏÀþ`NéÒ` ¿¢)(§co3îþôÓL‚ Î×WN¶kT…Š” g˜zÒ5ó&+¬,n„ǧ_'‘€cŠY¾‚†k¬®Coƒt^«¿;üA‘V²¢ØHÝR¼í} \cÇo>ÁφoæZ6 Y²ŒGQQîÚ"~º3(Rj‰|ó%OäD÷ö×êXä” ˆP§$9÷°=Á>—¼^ý-D·\ ³¡¢ÅçÃ-©e²ÿæÄX¡ÝôPÞÆ†ï¾ÛcÎRúY9ë ÒS£iÂɨ_`§l¯©øQÃj.ÞˇÕ-“~QKAm{Ç>'ñ¯akš îˆu -÷Ïôª 'D§;q÷{J£M/ŹNwò£´EàFkÐÆÉÍ[½Jã,o´fæsF_”-@IÜüV²_GWE:@ÚÈ““åßI š£çàøEÌ7æF>–Z};œ:ªJz¢ëõÎÄJÐ}¬ÕÑoÔ¥%äÛ¨›;¥¼´ŽZn/ä;ñ¬ô×;륙fXŒž×¢­’2¸©­Ëý(jr:²ø!ˆ˜Å]‘™Ä=xÔÐY}Þöó¤ W;øŽ‚FRþòåf¯U¡Šæ@ÙÄû'Gƒ#ŸŒð}È7baÞÙ{´)IØÐ¬ÏZOf{º!ù'Q º;gfü1O=ÂÝg.eÄU¾LÍK4„ôÜG)•øÍõ.âÏï[N©½g!•JæFà«oÜfñ`U¤åº!¶¾k髲LÙ(즘Y¤;Æuí;‚’&CojÂPeóïh#–ù¾)2~yšU¡v§À!»ëô–ö³Ç½ü%k®Áj{®×Om[=™r>\VÈMñºÞíÔAÁ‰aŒM=ÖumŠ åœÀ>q(enïX½žÛé»l¾V­Îꌯ}QMÔ´A8tN³‰}®¼ŸZdñ‹D×7å”Õ’â‘°ñÙ¬K ¬ûSÑ`ÿÑ*V…d*ÈÆYÑòÒ¥¬(¾ÝûH¨.‹ßÁˆ¢Z¦ èg¸“Ý*%>®ü¡j™NK“CA€Ù|z#HÛ+‚ŒÄ lG >òût*>:f¢›yª ]>ÄL…ÕW¨Í0ƒ½ñåø€Ù@þømDyTlK&EØÔV³×Á£—â|”Å*Næ‹{ÅkŒÚu,Éè[³‰5ÍÖ”ìÂ’ðæf/»+k°¡»(²{ñ…â¨}¬Åý¾®§ <•iâa}pG8’8LÞ¼úýÛØf¼Ûõºþ[PQßMÀ¡R¥l´1îýSõ‘ˆìMºëè ÐÉÍfNàtPÂ×){˜Ž WˆÔRº{no“ÑOiÖúCÎ.'¯4Á é‡bÎ9S}G»8.­ú^£xü+8y?ýiX¤Gë5âÁѹ?/$ÐǪïÅ-œÂ¾vw>ç,}Ú¿˜©ØÓ‡õîåmôÖq ¸4õæÊôˆ>~ÏRÏ,¿Œ<æÎ뺗¥©Ü//¼Þ³ÀÝp¬å«›ÿºJe.á>–ÿë“ûvÁ鉮 lΛÚmÅg¹ :Ú]»Åº.@ψ‘"®í] íàKc¥¦ž,ô£)$ޝÓZnJXño¼cR¯ÒM+"Ž>;éõøŒ¿°OôE&¤±õ?¬"½uÏBhvÝ(–ç8‘OM“)£9êÖºóŸÉÇ/Û©y _‹:_ª[ú9 °¨;ñR‘ΈŒ}d{Ô¨vR¬ T0Gò$xŒsiÝ#+7ƒ×<è §¡Æq˜Á˜Ún—žŠÔó­,7G!ú~øŠ]I‹er8.%ÂEâ’x[]¢ê§Ô•Û¶€¿½°¥ƒÒÝ[ÔÙWa…ÃÓ«o­D>ù ïöì왓¥ö¢ÊüøðŽßURúþÉ1–… º93þZ1ßiqM5ÞfóT^Ã64—¾j#@ˆ¯?P€±•E(é´N@t¹rdúçéè 麡R¥¦þn•A°èÛÖ ÅhÆ#ýñUiƒè“ön8Æ%Hƒý ¢8cȰtt„ø$§ŇÎj5æt ZG—=Ý¿’<Ò¸HïK³*Ǫiuk6®zLæÌTÚx»&ö’?ŠÄæJY@ß ÝÞÛ¤|Óûx/èeK6Ë·èBŒºt÷ýº^ò¢—xÅÁ‚ãUÍ«e"%\Šo°[ÎiS‰‡è€š†ªgí©R G#„µ Ø`4×éÍV&h…š,”èkv6Ä_ÑõüÑxD¶c¶·]ú¤á;èq`2ímJNYäµöIÙ/½qâàg–ŸrPÃÍÌðjçX°lÙÓûÝz¥eûýÒ;ãg*šÍs¸Üº˜i®Î²»’mÎKOÉE–½{ ö¨»#ÓÎÒ^¸½ZÉÒ û­G ´§+ lÞÑ =y™ß™N#Ç©õ"ûÌ¿ÌJR[òâ©Vå¥O|‚±^»3 q?Ængá¹x,Ê3[¿´Ðž2]L‡×ÏÛ{^IÉnˆ<’ЦB1÷KÒÎR/-qͦä*Á­§ùr[LH‡Tpø½Çß a›æJ‘gGt¤ šÍrk2šå_¿pØe:åüð¤­.¯¾µO‹aËOO ¥õq‡2–×­ØÝNËšCn»yòãþ‡!'íjdEO¶ÊWR¢âˆ=Ý*#Ê_å®*w€€õªq ~-œ |ëÁVÔmöŽ¢†½g(7¯º•*'Çë—hÙJÕ ¾Ÿ˜³/A‹ø¯¢ð#ôª³Nsõ•^˜~k)iþŒ²æ¾Qœ¹«ñÞE(üUÃ[†8nŸÁ8¥z°ÝD¶g^£M×2 ´tpÝz¨ß¬ %D38ê©ÉÇüTS®°ÌR»;Wbv=‰µ 9äŸC æÜŒ@ÿzåD<Šî-¢‡+mÍ÷ÍÚ`Lþ"¢©öÕܾ™+v«Ðt {à€y÷^½‚ëbˆqu½÷#"Q~ù'ÂF"G;ó¤8M‡³Á¶‰roÛÍãæêªAúbxòecðtb†õÔ—.Ÿp?f[§7aQ2B™ëÙ´f•í ˜¶Ò‰@CàAÔ·5áádÆìý}<þg¦Jèt5=(?\³^̯eÆÈ—b¶=¢²ßL«3x|ƾÚßyj¥á0XÂ?A9ž,½«¹_M6“ø©º|ÅBXÈ uy¾ý®ä´{¬‹R ßø0ÓKl´‘\úˆùp#ªUAn¸½µ íNª ½ì@MAþXÖuP a  ‚ÿ‹ÚºëRÜD¼ò°ÆÎ©³°ä¡‘d¬Ñ¼öú‚Ùæ@LÓǼ!J8Xì–$†v/³üŒÇS”ª»©›¥ë|ølÎÅÑ6µ8D³B1fçwìåQžëA®‚Ùs9žøÂû<E°i§ ¬ô¤˜®QÖ'Rh–‘qBð¬”E0Ù«†>à²ÞLä¥|Øø×ÎÚGtr]šxdÚ£ƒ^ŸûúÅHf¾ß*¿#!YÚ ÛXüéŽñ'Ïè^˜‡Fë#ÝûTvyÊeœäxñ5ËÎS¶ÍŒWÝgl^†ùGÓÑ—¸(«yñìª|Äj/Ãò´ð¬œ÷8Ôë±H×oWÙsw<-È|ä¯ÇÚ \¢iZ$Ã?e}7=…ÃtµèQñ¾^´MÊdÒ€Z¾ ±®ÓsT¢wš‚Ƚ©»û~Ù¯ú¶y×Và¡6‹ïõœ0¡ÔÚ„M‘œË\nÈØWö…á':F©Ü<&ZCyŸõŸÎ]_ÃBí^(¬E*zÛ×÷0æp½t£OÝ%6<ôܾ¸£ŠÂ\p+YÆ;$TJÓ©''cg[¼Œ°¤ïðå‘ßmebß§|½ø®ñž7gUžÚZÇ?Œ¡_A’»4‹)¶Ö¨dDN~†*FÌ v’>f˃+ ‡ÎíÿZåÿn#àZôG4k3g€Â{nJÌ —½ð“BÂWLzaÅ4——š}CÚ2·²ÔNýW¯³ŠM÷*X§îm tæ’|*`^2ìm¯áÑ$aSìÙÛwѨ…œ.{©q?{–›®F ßùÖª9K—‰ü‡¿üÎQ3O¹R‹ œRP¿1ë=I®P¶ÏŠïí¹Öù¤ŒäLJy™XaÂÈ ƒÚH^4à„šL/Á-"½²6FœõJò6í"N!‡÷Ÿ­¿±^—.|þ‚ƒ.Ò:2‘÷ÆÿΤg”7˜ÁT?Ȉ£ß •£òÙ;ñ€Û0ï=rs n©-—dŒÒ“Öw ’•ç°ÓšJ2CPoYlõ;})¯Ø€¹lŒžæ/Ÿð?TE»‘S®E7²öŸ6~š¾5ë Î3ú1µ2(0\Œ¦&¤-Œ:íxéø8Êv† «[­'Œ;à ð1×õ|Bõ^ß·Ï;Œ…Ι v=¹Ã .©?>ÐõÉ¥ÆM²¡=´]ç±)+Á<K-”4D¶_T™SÙü¨\0¬?xSõ)¶ÇÐÊjHú=ß¾fºòƒîq£=ù×D‹a’¹—ze|Ó Òêà^í]Í}î:Éïl´a[/ Ð5’ÍxÊ=_SRü ÇIPR Vz™ågœ÷p²Ðy¥äkX˜À˜ có2¾°È°Ôr»øSC‡ËC·W¯Œ¼!ÅQs“ó²ãýÖ8"T< çÛVKw˜ZO¯ë•DoÐÉsòNŸe>Y‡vJaß§ð„D§–KîäÁ‡–c-Éø·*Q1b ¨àœ{µšÑðyÒ?«ËÎûŠÆ4mµe‘ Ç·Jv÷°+.ÅZuøº´¢eÕ4?ë"z¥²¡³Ótw("ûyoÔåžê*¿¿;È-µl»ú-Õ¹ò€eì×Ùç Ò.œ¨Û†±Ú,šo˜@å«y›ÄÇeo Òó¾°Ñl¿m‘×ú€mHçw#O†«¹Omé#ìxÕÔ­RkÙ—“éLüÐ}°‡?K@Ü Œq˜‰¿úÔß¡÷êµW [­<õ[Û+>“¼¡áˆÇ†׫:N¦iAˆBç5ætn¢ËF7ëpuýó.tÍi‰1»ßcˆÌª혻ˆüðyÏ’ƒ¾~¡ ?U/ÑÆ2²ÝìÍÁ™Rthö3ðì(ö؇py7/›Ì 7äì‡â?¡VzÌTzzlqBéÈ,ÅÈxx.:,¨õ5N©½Z}¨¯n2Ú¥ .l6ds™•g†u¡c4³L”I —¼XX×míÓ£L7Qãq.AUB†6ÀNð¨êßàÆÂýÚË+?¥—|úùÝKœe endstream endobj 109 0 obj << /Type /FontDescriptor /FontName /FFGBUJ+CMR8 /Flags 4 /FontBBox [-36 -250 1070 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 76 /XHeight 431 /CharSet (/eight/equal/five/four/nine/one/parenleft/parenright/plus/seven/six/three/two/zero) /FontFile 108 0 R >> endobj 110 0 obj << /Length1 1619 /Length2 7680 /Length3 0 /Length 8764 /Filter /FlateDecode >> stream xÚ¸T”k6LI H#= ´€twwI Ãà 14HKK7‚ ݈¤„´t Ò"ñÏyßóþÿZß·f­™g_»î½÷µï™5Ì Úz\26pk°"†àâãæÈiè™ðñxy¸yyùq™™õ!(øo—ÙìêÃDÿËBÎ D 1y i¨‡TÝ¡>Ÿ(Ÿ°(//€Ÿ—WäoC¸«(@è±hpTá0°.³ÜÙÛbg@æùûÀbð‰ˆ?þíq»B@@@ˆ°;!3‚€P€#¼ÿ‚MÜpåáñôôä:¹qÃ]í$Ù>>!€°° ÀÿßqþéÀßÕÿFµ?§û¯ˆ*0[8@ä¯"Ýû»?Ì`û³6ì€gЄ#ù °ý‡þÏxyAÈ7¾ÿç%øíòÿÇý_Qþ¯ôÿß)ºC¡¿õlüô@'Ôû’ÏîänhÀ‘û_S#ð_ ­¶¸;ý¯VDîˆ ÌÉs.¾'ܼOþÂ!nŠ/°6²ÿ‹K™ µán_÷Ò‹—÷tÈÕ9"ï7äÈ~«ÀÈÍúw^nókù…@WW 7.’HIàˇÜU°×oŠx¸apÒ€¬Ñ` wÅý5XaÊ/è·Ä/à:;»Â½À.îÈ‘ü ­±áž õ‰º!qsDÑþœ—Àcí ¡`[ÄÁà‡áð óA<€P0 IŸ¿ñ'" ¹Ø$+þyJÓž-}11ãGÍqx9êõ¬3;h)U9¢Ð»&{Ì•7ðã´ÓLg§²N‹\#:JС}`e†aÆšd4s&Ü%°UµYpÓî¶e*²p2¤R#berÚ÷ТM˜Vƒ&Ï_»š¥»ë«ŒÝ EC^^ȶÆPþð^3{™1¸¸ø1»¯7Mà$_­»Z¨ò %©*CÎPb?%YB¶j£ ‹¬à¹\iJ<#e¡Ó –%t+ᥟSù}ïúÜëí4å‚îk=np¯ƒ ÎHät-ÐX®géÿàÁØ”iÿ¸&I–¹Úå|0ý¨ZšÛANÀ¬k_¸Ó˜‚—\˜¨£Í7Ä`=°Øxi›™ÀÇož"}Úÿõ¬6”ÎyÈÖhþZ<@BÅL¢­‚®Éà°â>ôè1÷÷7½rcú$ØÙvÓÇÖÁ®ðc8Ó!-ÙdP¼q[æ^ÏnB£Šàù'"C!D­Úgx‡%{\NÜT€nn†öûv%1Si‘ÙqÆ8CyúDŸõÕ·PÒ5qLDÃd§ HKi«æ+„†_K7I¤< ä}¾0~Œ*¯³GX»v_§ëÇ=‹xk×c~l µÜvS{«bMVUÄ“xHÃ^üõ¶¬ÉdбðÌR®ì­A€%IÉóg¹¶±?_~ß:«?Ê5–©‹0…F&wL¬Y¾¦m3í{I“þa|¿»5eËK¹þêã˜ÄzPI´Ÿ1´ZÞ'Ø"·ØGi`ÖTo=kÂví¶m8ûÇgv!öd=ÈÙb»^óÈùg™‹¬<€øël˜ˆÀZ¥F ‹ˆ/^„a€<þ÷§ÄøÀñú`þ7нmî:TJmž<ÏŒ)º)ЍîJÉùø¼›f‘¤¥–†Gµßt^¬øô§‡¶À—¯<ÆZB½eേÏ÷¶Ì\¨åƒ5š1#Lž,Ÿ¾h"Ê7‰›Î7ÖV8V¿á_³äo¾_Ù\ WNñÅå£ðš¤$Øeíhu§ô{Ç¿<¿2Ò¤§ÕÍTH>):ÈhŽ›B;ûÉ’¼–¥W¼# N„¦kÏWE§˜cý­¨rÌŸ3Š/wi(*\èbÃ¥ñ°†‡pÚŽ=ÌÖØ; ¯ó¿€JÑ€8–"+-t+6ÍËœ^¬~‚‡ª•i L¾dP¹óvêíÏ­‡ßu‰n-SFbÃßÒûÝ¥Ù•!8†‹I¦î¼Îöõ[ûþ]Ç(°¡XEOi?}ê…QAU0‰HT6’)éª\«c˜7\¿Å—k$ 1„×¥-x´äì'JuÕ%Ó‹%g×J }‘|Ú·V\ÞþŒ±üGCJ&Å„îÁ=]¹”ÙBŒly{\J‚)iËÇ9ýäCÙÚ‰Éc­m¡[2*—Úheužs™$E6*Ê>Žl  ¯ŸñtQAûzƒÚ*u¶¾j£¥#nTax‡#&Õ­y<ûqcfyÍ?géšÔ™µò¤÷2”C^$‹/i³¾T}3´à‘0ý¸é£½A±†ÔYÝžÔJ’3ÇL¨°Ág ‰m>7ÿ5¥IÒš‰‚Ç)‘úuOm[^¨¼uŠÂCšµØCßáWð OmN2„á„*á\%êú¼!9=µÝñ · ’·ÿr&¾žï›‘±*›2´;ãõ¡o.Çß–UîÔ{iµÆ²¿jªJÚD÷4©F%ìÂB¹‰ªqýÄQK‚âà¶\zÆXòúxQ®½D±éˆö)ƒƒ@ÛÝlžsÿâªqtv{êü}°Åg¦F–˜Ós¢§Ð”¸õF·f–ÐÐNžøÕU öLýž@ þ)ÚJÅáÜxÝ yP›cžXÜvʵ»Š^$®ŒàI†¬ÑB¾l!C »2#®v¬•1l⢔Ĝs„+Àß7b¢o@:w*•3š&B€zS Ž:ÃÖÞM}ö-Ã×, F9²gvûQ¶sœ@iþ¼¢Y@¼¾Qa8¿>ÚÒ,Í4?Û–š~Œ‡vpbȃ&¥Û %ÜiExtYcêî ׉Äë,еtœ/p:ã©/š]….Z;Å ëLS·;úÖ=féDñ¼‰^’×+'z;‹QÉ|^$9Pðe‹놚W,fYû(ÉI12û =¶kSG„b‡ uµ·™6›EïÚ>±´½Tx4»]hÃZѽÑAÍÕÜ€÷‘…‡ºÀüí¥ø\uÌì <§¡°jÓkªž|u‚§cÎæbAC§õcpÒ9´Š¨,uåÂO-j_ÎNrØÓ¿c¹äp~^™x§ô޼/ÌÍBÅ%±Ô޹±â’®Ãâ%6ļ¡f=Ë«?/Eè• <°‘Z¬5&à a 1 ë¹pÔ4ª7ùp 8+¾-ë_—ºãX·Ðµ¬{À6?=fÁ?ËLÈ‹&s}³ïú%fôÁÔÏ)>õq¿ô ¥ÎF Yehž÷+¿¤¸yzâ#Îçñ¹t=É õ —ŸÞΡ'jôí}æ©<§%ßC̆¡_+ƒ3_Ìi˽ÛñÐ<ÜbTòÇ+ÚÇ?ÄÊÍ1¯çË“¡ˆÿ“Ìé·UöÞl8ým9J©¤*¬fKmDê³äšky ñS‰Ñ—µìÉÐ c @[ÇÃî”ÚG”><_êæ|&Õ»MCýš#åQéúžp=ø±Â«pàÜEeªwÕt*Ó¿^Q÷q…r¶If=¹¹³ m¯U¾É3CÑòrÕȧ ÓŽäx÷ .+²-jGñtœHw©ÌÇ.Œ]aŒï> f⥽ zWÞm(é &Žô9ÝzÚ×ë×Q(isçà­ŸÔ]oèÔ¿™¶BéRÏ%AL®pP ‡‚à£4›ðoð—©¾ære’L·èŠ8>v ãoà-(S÷¢>qiþ :)©„Ÿ<ëUóÔ±[ŒuÎæà³ !枉Šx5ÚµW‹§nùüìãÝõ¥>)8ŠoÎLºÏÍXdÿ¾Ô²J§B@µîüá¼÷%Ý –["š 7·qH:ÍäHû·Mš|ý¼”¢s>µÜ|Çòòá(‡Å€ò|lj¯E™Rí ½KdcܰÔHg‡Ù'tê¡êÛæYãªü.„Š7oOûnŒ©G‘½fI hCä)| Ntv®Vä(/ù^»”îqäª5e3 †Ý/ šD· ᨦÞ7ýÞ¾%Ùßš)Ê1²¤Nk‹6KÖ-’ÈLtã¤õ%{ÏŽÃ>>/“h×]£Æ±d¬Ö…¶`ØÀê3gz:,C;ÏŽ;<»_7­ßšLÔ¿ >ºL ºwt²c!)¹1+:uõ¥‰¿‹áé’Aø•_Jê#Ì‚†¡{¶Q».ÚAþד~w1™Èß3]‚Z~ÚݘÛn™"ߊé^ú¯o$qàÒrÚ9Ë>®yÜ)áçPÎ/H$7,œõ}/ñ(µº>m–†0€{‡G±„šz yˆ7?¡›½Ò…ÆÍHã Æ³§¢ì Ð| ^Ÿqr>9T ‡¿“®©]M º³<Þ•™ (^Õ!Ûé¥3<{Ît,¢ßBï m.(ß~åëy¯Úò ÀE¡â¡ÝTGÝ“W²ÛëYû2%åÄ+m.oÇŽ‡Ð/XšxRE^?~ÈW¥mûðNÅéã½Þ\¡³µÖ{4¯] ŠÍ;=¬¾âµÖ×þŒ¥8ëðºPbºË¥-ÜãöÏk½?œÜXBñe¬]q$#TS›™,ñ°²Ó–•žc¨­Œ“g˳'R÷i ›ôÜ\t¦>¨©Mº[“EÅ)-gñ¤1ÃG§ð·AéQ(9Ñ㤡œòöå«§Ÿ)¦î‰{_fkºã“±v KÚz¹‹úŽÐšï {" üo ›eTÌÃÙ)4.4èåoÞ™¤ÎÁê©‚c113â¦YJ8,^Òö'°^ƒ¤Q¬>¼fið_í-H»h§› :¨!¾Û+ãLT6ˆç=÷fuÚwÏ0Ø qf°lG+Öiÿ¾ÎZ¤™¥ôîhå^º$ZoÉÈówİScIÕ<©9ùƒ@ ÍË0Ô6k>m¬¯ …µ ›$ãÜSŽíèöÇoKøjÔ%Ê@ài¤òZ~œ¼çjó¥yA ^u<ÙžÍk_…D²ÁÂîhÏ 9Ê• "n&2Õ-{*Dö¹#“£#“ù“½j2ŒcmSÞU5á{9 £Té“¡ÓŸ¯ÎÓœé¡:Õ¯“t63"1¬WJÈxœOQëO_Óè'¹´+N<Ű¼–!Jì€í‘è|ºËwR{éËâ#&>Ý‘ƒät²f#·—ýæ+ù‹q >*ì!N=ãxƒ-UÊïDÉž34f{Ö\}²²šéýˆm­ÚŠyÞ·Œš°˜¡U‡.›‡—ÅmÙ«ùÌvK¶œ³bÚ5úHaùÈ 11o§¥F«ó†éŠé­)Õ×àÏÙR»6Ò vBs2ªT‚Ýišif ešnªŒÂ19›7+é÷\Û(køHnr‰¨;"@an´ˆ”%Ö‹U¹g©-Îì•ì瘷ٖô™DùìµÓlÍWY…õ÷54ZpëëBñ]újUõýPÌjšlkSf[Yô]ÕëeZk¾¤úÕ÷Êý¾Mž!ýº&™”q_3)–|JU–Ÿ;1¤’r>ÁòžHk&Õ^bV”xÜÕß'Žy>wž§¤6«m_÷\óY†Ê ånD ö±>¹ÏÒ¤-ÎŽøTjrÌuªÕä·²ߌ*këÍÊ"“•¿.æƒ`¬ù€g%D«šü޶ùÀS¸»ª°À«ÂÝw'+»gj F¾ÙSKRŸãbK5N̈QŠ‘yÐLJ¦ß3^»*KŸˆYlLÇ­½¢"&•Ë _à¾ßèF¾~n`¾^’(1au{ÿ&Qð݇¨@×@ „¤·Dõ ޵ k9ôöçømˆ^j×Ú<(kÃeoQÊõ)ê³³‹ÙÜõ ´½<í$aâÚ¹»’˜šÝ“ùÓ‰X:±FwvÆ:±«/z)©]mCÇ×ßåž×Iu¨†¼çITd2à®á•ÜÂD;ãü¢¦3ÊKÉ88U>!±ôÍmgé Ä ®j¾ò¹ŒaØóZHk‘Û?:'±7 Htœo¸:TZÇYATØXQùášV8ªÎÀ-8³j¦´Ï{kc°' K?7FNðZÉÕnÕ³‡Pp˜).<-†Å¯&®¾# ûyÊ¢RÙúìÓœ´]ü¼jL e6 DqÈÚ2ÿÛX>ìÛA–ù¨y¯Ú°ÑÃ0­Ùª'î˜7/+qtÍÚ)ÆÓášâ6±oYƒ·zZù*If >ˆùÓ?8{¦ð 4Ã&: Ž«•:{±Fbšñ„N-Â.£´w» «të‰tL¶~E2`šxÎÈܧæg¥£æÿ5ÿãÚ‰»ü‹ì¤HÿS–À›ž§"Ü73Åï·¬©†Kâe<¢¦ú–:`5N±!áT®=Ö\ÇÄΰ‰yêÛk~ãÔüŠ'œò~ß7œ÷Ÿ_’ÚPyPF› ½À4I=¿¥÷„;“œíd0d(ôh¿V”‚?ëqÐ~ ²zRɘÕi—$õ*f´wNûð噘¬…NœVi’ÀÙûu!î°÷èLË*}»w¹–Z˜à[«O¸ôéL–­‚ý¹DÈtxz 74êÀ9R³ý»“5õ¨t„ûöëèæQEÖÇ87;ïwË-wùÅ'.GRû81÷4]e5fcÙµ”ªy·¥ZÒÌ *ÁK;øˆ¢úYÌÓϨšy¬×&ºO4 ÉyïF9U6øD$mSýK„ã—= gˆð†ò»–<‡²EÝ~ŒÅï6ÏãgpsûÌȦԣìsÑ^š“Õ±ÏÂ…É–o“1`)'>Cy\á5êwæVíæuP¨œ#®¨F´¶>{oäÀ¾ø~³©ÐøÃ0§ÇKöz\F¦Äq裪Yk.%JÖ¿xjn¼ªBËD#™.µ—µ×C=»-Ç#x£Ô–"LJ-6&~ع܊ðÖÚ*ô±‰93JÜÚ‚>sg9*¹LË í­Eáhýø¶gE<ˆ]윘îÛ´\¢"D!—ªv#‡ÎãYóʉ«üË Þ'¦*Ÿtrêgù§ Mä^éž8_Û‹hÛ–²î±à?g ]WH’yá× f…ñ Ïã'ó%ý|µ¾ÙhÓü(ŒŨ”f@å»\ŽêuŒððšu·ÑI w7õ¶$}«oØTöÆšs«Së…ù,´Úë+«çÉšñ[9Ây5:-,ÊÎpÛ,6;iOsÛ"ÃŒ¡.³Ý€ç{1|Š?vè,ÈxTàô¯jeyLVÓ4ð£zàáú\mè7-] ñÎ-’Z?:ÏB5ËòñKœfÂóU,8N ¦ÙèÊì[±õ†IûÆKÜó6’ì8ŽX—¼J¨Þò–Þì½k6X¹Âþý—B·²X?È7õXÜ[ÖZ¸ÊÀâ×r|Oº4üÓQ 6—MÆB›ûúî3”®´MÆô€ V÷ÃA?2ÉŸ¼ïb)º[ßXLW%?dŸÎàòmÔŠk®Ñš¹â'Ô-éz÷Àëãö6}„N/ö™§¬ÝxÂjëÞÍûœ,ÆÏeÐ,ëãs±æÚtïég ŸïuíF:»–8jà5JcJwY>¼HI‡vF"ô.6{˜iƒØ·yœuû/—æ>”1>ä¯wÇMW' ^röÌÕ¸›ž°Ra“Ö6Oÿºe¡ó–êì¸FJœëÐ{ˆ§¤òÁò D!\ \}ÎÌM¢æóL“4/*tëzí‚\aëñØ’HBƒNÂNʤ ê7üZ :Ie0Ç?Ñ$9Àñùcャ–×!Z7ß'žphùülá5:€’ËMX®—¿ÌÎŽ‘ÄíïJì '›<Ìxw~ùñx÷±Œ lPeY1*…'[êz8*cßèÆýN“cë­~K`B$þn¤AJBŸn’ê+ã¶Ó2€®ÂõµkÙ‰‡Í¢¦¢gÍþ±üÒ«,Ò.Ë’®mÜïo4$+éVœ;sFRp ±Àò*š–”å2¯Tº­‰j/Ï`Þž^Y”‡!½­‚=±ES\Ÿ& $è5Þ¯nÓ¯ð.õˆïQšþØIœãø¾§Q+ŸW½³$-^üÖ+Ã0ûœFà…ðL$”ï-@r®#—tÕ>ûDIý“ÂÃeôPöçg§Á_|N+·éwz:7ä¡\‰M‰ô}‘”4ÏÏbà°§ö‘ç²Áp²}Û2¢-½q}OO²wýøq-ÞÇžž·Ši[Ò¶,ˆ•‰·åÓtÂô×^·HÁqüJü¹õ~š* ¼~—Ü,z·ý& Íª¥´Ûkªó ä숚{ÅòSÞÉß‚÷£×þ%Bø€’íCÅz¶^óu ¶­JO‡RãQ¦$ÇJÌÛ”`á^{™P0]O~Ÿ¿«6ÀY´»&+m³/Yã­uû#| <¦‰ÏXÍ7rÿ¥íŸsWÀEuhÀ¹feŠ&u²uÃBZ+Y¨Ñd¨óŒ@‘çÒ¥ SÓÓ*ï¾ê´7²‡0TÚož^ÁËW»æä«ùW4 T¾ŠÚûœ¯såoxw³¦ï›ž8ݧ¬Ô¸òÿ \PŸÏˆ”¹w®^ÆŸhÒ)Cˆ¨U.Hœv¨î>f‹à56‰µ]ÛQ‘¸l+Ûa”\ä”a)×Uén{ÞŒtæt~%}6<+ª[Í#o¥¯¤dlWFýX:V@w6UŽò!¸à£¥W— ßX·ØR20 OH¬Æ=&Gáñu0%ø\O›,å–íK:£¼¾zU&ÿe,ô%3çî*¦K]ðͬ“¨§AµvWú5Ö}3’jÖÜñŸ‹Mƒ.\ãYá´Þ´mŽ–8?<^™‘O1¶~9OMȺPÅ—…pÚq’?Æ/æÔjÓ¾øˆÉ6îE/ÓAø%"ÞiZºÌKÐÒ–tU0ß@ÓblÿmÆ$ÙòÇ õñæ§PñøS2¢}€»„@;÷%Æ”6‹í™N‰Ó½K¨å¿.Ñ,ÈŽ1åÀüL¥…¸Õtr™é ‚ ¤ê›ˆhžO>7~ÚVÓ¢ñüþÅ $(ô#­tw;mò{±¯Qñù¦÷L¾sÏŽr¿¿Ä ÁP™AçÄ”„HÄÞ Œz@z•11{U·Ë1Þe× o뀛”;"÷ÛîÐO÷&¢lS¦¾VŽ|ôÚiÎä£qt’°¥Ã;ÍCÏIŠçMÜ(ÁÄ>•Ò…³2‹ 8Ö™ÞÄ=„SËœ™ýy)ÏÄq`—¤ Ä&8JÃsU‹‡€ª«F^ 9šN ¦r5æ¼6ö1ýÒ%"}™éÊzqŽÑny޾k9×–î+­úáѱÀ¦Dhcâ÷öiéŠX¾¦Ð½ðm¶wûÐïÆp’¾ó Ì”¾ä±ò©\ßcJPÅc¯èN½ødzST~Ë7/HÛú§ãöy¾™£Òl¶0]¼¢±x©Ë]òÓË_g|ä“üüDLî=¦¾½>*PÌG:›bñ™ÜHÚŒþ?× ”&:á+íƒÉkrE±ju…‡ÕÔ¼ë±òÚù‹ ¨CÊ8¯ÃÄ-”\!Î_ï%>£°[IODu"à \¨aá°:. }ÄÝ¿@xá`Ø·þÚR<Úì*Ó% ¥ís.e_Ô^^ÆK¸õõÛ΄œ ˜ £ ž©“-íNõJ ýc+Ì6‘*Ù.* OésŸœ¤Ê}l>Þ´OúôÔ"åÚxf:4HÏÖ œ¹zàNŸ …Ù½Ú%{Æ1öÆzÜÀ´ S™Í2ƇV›CDhWÀ1ëoú‰Þß<ímóp>Ãmj0£^‹aµ_‡–"ºcœ^ÿ’Í¢µÀö´¿v>Ùí\ŽiÆÅßÜc²K)ãm«ê· * ەŨÙQÞ”W‹ùlœ¿j/á`ÕÑi‹¦ºxÝt¤½ ",…Ú³6Yct¢‡øyEˆîö¶eƒ”Wyh¹œ¹®fŽÏ6Ü@\B6³A¢˜‚ØÝÑ"aÙø1oŽû2ZE+Ž¢,°÷þ#Þ~ endstream endobj 111 0 obj << /Type /FontDescriptor /FontName /UHBOYQ+CMSY10 /Flags 4 /FontBBox [-29 -960 1116 775] /Ascent 750 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 40 /XHeight 431 /CharSet (/I/approxequal/arrowright/asteriskmath/braceleft/braceright/equivalence/infinity/minus/multiply/radical) /FontFile 110 0 R >> endobj 112 0 obj << /Length1 1452 /Length2 6412 /Length3 0 /Length 7402 /Filter /FlateDecode >> stream xÚuP“[Û-] ¤(¡w½ŠôŽéMC!@HBï‘¢é ˆH“Ò‹D@ŠT¥Wÿ¨ç|ç?ß½3÷Nf’w¯§ì½ö³Önv£»Â*P”L…Ä ‹‰€äjw­d „$àæ6…c]aÁnsG!åÿW‚Æâ0u0—g€Bu=\b@1iy1y(ÉýˆBËÕÁžp(Ð@¨‹BÂ0n5”›îè„Åmó÷#“““ú]TAÀÐp 4c`ÜŽ°+ð. ‡a}þÕ‚OÑ ‹u“õòò#0"(´£¿Ð ŽušÀ00´' üExŒ€ýa&àš:Á1ð»¨X/0Ä®p ‰ÁUx ¡04·9ð®Ž>ÐÐ †ü“¬ÿ'Aø×ÝÅDÄþÓî¯ê_àÈßÅ`…p#}àHGà¸+ h¨©/‚õÆ ÁHè¯D°+…«{‚á®`\Âš*Æ@0Žà_ô04Ü ‹ÁÀ]QýÕwËH¨ €!±À¯ó©ÃÑ0îÚ}DÿLÖ‰òBúýµxGBü"õp5CÂÝ=`:ê¥à À?˜# ”ÉIKKÊaî@˜7ÄIôW{S7Øï Ø/Ç ÀÏ å|€# €?€á~~°' ˆE{Àüþwàß+€˜ ‡`0G8ðOw {ðg>î ´á´'ýúüçÉ'/( éêóOúïùŠêš››š› þaüŸ˜ª*Êè', ËIIÅÄd¥€22rÀ€·ùÏüMþ7j†ÿu8Ð?uP@¹?p—÷7Ï¿dÁ÷—eøÿÞá §eïéÛ‚¤@Ü—Øÿ·~—üßtÿ«ËÿKúÿ} MW×ßa¾ßñÿ# FÀ]}þJÀIÙ‹³… gä§ZÀþXÙ…{ þ;ªƒãì¡‚tÄI\XLR$ù‡c4áÞ0¨ qú#¤¿GÛÃŽ„¡0ð_o\ô_1œë .¸· 7°ß!ÎTÿÞW AA¹O\JF£Á>Ndâ8ø‰ál …yÿÖ7PT‰ÂâJ€8ŽÀ(4à×XÅÄÅ€¢P°£#Ž6.ðÃéBŽÄ¹ Ž›Åß (Š€#=0ÿdÉEÝÐpÜÅýBþu(ˆ³ìoíàNü÷ú÷ûó†A3“(ˆB¸sMxÓq• ‹—ð×A’Ï_Zb­º¢¥° Ö"wö½ëJ©SÍ£ôÝܬ¯¸µ˜1‘ÇbLÇiŸÄÆ,ÞJ<‘a€’ón°m»CüîKWuç~f±°Ã¢²¶¤îµfžç_»‹loÅ5xÎ9g½ˆ¯ÿu™êßî'K½Õ-úeœÃº–?/Eê2áæÇ&€FûÁ…á Ûß|G:¦ÉŸü@ûVnì¸ãß…Ì*R4L οˆ£¼ç ¾T¶Š]ø(.´nö&˜¸£Ú'ȱ]…¦¨%ŠO•$ûÖ÷AÍã¢Ã‚nÐ(Ðw1¨uš³©}¶Š‰8¡¯;ëHÑ¢\UƒŸ¥öÒû)CŸt"&2—ýóË¢eÖ{ÝÁ~>PØøˆ½Ó‘ÔR ©å4-z-ò„©Ðφ)Õhn/lµÑ\k©Ÿ&4O÷#uµ¢×jÈw¤\¶€³A0†ÈFñÚõëvvØuL>a®±Ç‰ßSÝ€’'¤¹4e3OÙ‹WÝJWà JH¤Ì=„ð”bàø6Ž!fÊNR0Û†Àc½<ã"i4™õ§‡œç=ý¾Ý§¦ûìŠQ> vªÓ¹¯½ÏúAÅ–7›ݹ¬[Ùr û¤³Eŵ _^z^ÕÎH hKD½ˆšç ýBhß,=9lÑ?ÔšB³Eak…ønerû…Oc&»P Ê›D½©7{à0ù³è ®Æ†P›@~H‹¹6hwÞIÜ„W®Ï”I¶_ɹ3^·JaRà;B.fs¤ ¹âf¿VwgÇí¬Ä]UHCÉ;s" ë#2P—e=[.`ö©Be¼‘ωbŠ£æP_*Ð"8ìe¶óâ5fX¨m}0<7F\¬K‚T´ö–bœ?„,o./D¦™†°UVì¾Aìò$ÔÔtÛmD"-ÂB¯÷@ò—_Hñ4]“æ¸ø9õxýP}ªâð Tx4=Zmõý W÷tßlEÎu%¯“óž`ë(ðÛº¯²KmF˜âYyþã8ŽçÒƒÒœo¼Ú‹›s¸f¥Ïu0,ň.YÓwzá\$üI cía|—dV»Ä^Ê‹-N6fÉÝ ÍW9#[÷ÃÉ õþv‘…ÌkF-"êïyH "éKS™oå"ô*º}}»*†A…Ïuú²,žºÜ°¤Ny¢4–¨!~mvR'ËîµÉrO«`ob‡~úù«yb˜«,†-Rp  þ\áÝEkÊäÓLÍd"X¶v$ï¡1Õug9Ûv/÷©gÏæ¨Ÿ.ºÃ¼’"XWÀ;qª"347—8ÈùM:¸ÄÞå,I~‰yVñ¢"M¾ÝÒãbl¹´jåÝß:MÖÙF†¼£æÂßÜàwZ……2F.…¾¿² eIä["Ró4ºÉ#îZÀúð‡ƒ¸à ½‹\UÞY/­°næ¨ûõèd”•}º„›³í’=}ç|kÛ>$ô°ŠT£öQD7ßNMcš¬é©V6{…ÝŒ+j=º ŒRcð? CGÞv–jvBˆËzŒÔAKžÕ÷Ò¾3΋u¿~ÖȨ¡s˜"«ÆÕAd’#}¦˜i§3À– -Æ©†ÏønÆö_Ræzƺ´¹CYŒeN žßÅ÷IíšüÞ$•+® Søßp\cÚг¹‰*v‹Øšz˜_4ñÍšñ£é° !·‘jRÄž¢›·ê&pƒˆåAžªvšëš³g‘š–·¯¸†uFX½.¤Ò! >‹v}ýÍG FüêøëQÝO°HhÓ†´ÚÈ<_R…õÑé}¹ñ{ÊÔLVîJσ˜¼;‰nˆæ¤¬å¥~’Í®,¹I¡”¹xº\Vr÷pa0/íuF«,“ó÷P‹óŠWì,9›#ʇ¢Û4ìÑÝîœÅ–]Â-ZOa??Û'jƒóà¡,kå¾ ‚•0¶b‡Æ‘À¸ÜÄñ;s[ß$;#†`) íºÅclVïÂflRë}ºUmQ¡BåðýŸÙåe‘ö³4ª²Ï¥¨7fé 8+re™3‡-Úе­ïh=<Ô4 ÃÛ¦|#Jé§"ÒËNWâæ%æÊôQœ6¼ tKmn­áßU*q›ÕX*xx“Z2éãDÓ=N…§‹«»ÚƒÒsçŽåç…¦§7–G·¢|’\XQ±/’cë›ñtògoe£††¢^úC‹5NÛ7yã–’Êìï÷(?7'—˜†]!O)/–uL¼ Ä,×MÖ«ÏÉäŒ TÏèñ^cÿ6yÿGpë‰AZ”íj}¾,j=ü³hÛeÓ­§©¥–èÄêãàÜx š"úËO¾Jçý¯‡Âµ[“2 m¡$O -^õÍ–çbÔDÆ2”«ÌN›ª \h>>wÜûuèüjÅÑO ¯Î i=eû¹Ø·ÊE0\/5ªhÖ²È8Z>ªx“ÂÄ>Ï ÷‡wÑß+§ÐÓ:©K~ï—ͱn3¢q•lïD ´u®Ëã¡aG2r…\ì™+Ùyí¶\±ç(_âéÈS÷Í{8íZ2yÁ…puòº?‡”µ|¬Tn¹G¿´$Í‘Ñ3¾ý…ß~¦ÔßðˆoYRœm ié"çö]£æ–!|A´ÎGJPv5[ZÏÂ>ZÚ³dW³¸Â<9’*ZÚÑÐ[”^ËbâÝa䢼­.øA˜õP:G?63‘@iL‘«êÛÇ¥ýÒ=@Ëìašã²÷ð¥þlíೆé–âN¿çÙ-ÕgÈé}tQ€ rÅH‘ôí|Æ—£lÛás}{üFô‡výk…Yo*š‘_¢¿2Þx?v€Ïòyª««dŸÁTÕm| ‚Âø˜ÈH1©SèÊžVpoØ:tϯ5}ìjʬ?†­‘±{x–bRýJh1Gl©±3V–Ým/µV‚ñò©ÔÓ†¸ë^©hâ%=çø ºQG—MÖr®”Q0uLj²º¬Hé5Öô̟óÏäÂtkpù3qÙx…QóJÚ³†Á†Jm–óÉ£¬WhÔÕ?½êºý&½¨ö¹'[ãa'ãMÑôògí1«f[_£Ÿ‘"ðú°$¾ú”³Ð§‰à¦LºjË®ÍÅÏ?Ï$ªs©Ð˜N‚¯UÚû¤É?@ù˜ z½W¥LX)$‹lCGš†Úœ6fHÒѲÞc䄟^xZ©Þ°T˜Ü¼ãœãÙåB.aº4Û_@pí'ÃCycÛ^ÿYŠ¥èfa•yÆp|ŠÈÝè¼% ž:0Á¼caÄ(˜¿•š†{Ctoå«úµ·†­‰¯Ö*u¥zäÞ m’~ã(tu©¡ÁÀÌ­«ŸY¸ZäcQ"_‘_s).'Þö¯. Ú÷Þ±ÒέZˆ¨M OÍM”à”jÔGѹ˜qZÄCh“é›C• s Ÿ‘|ª~ZÙÚ'Ìé¶Ó=°Y‘¦[B¤YÕ`'}u&8ýSÒ*ýã0¯°¤­ýmü¹©qëGΤœ“]½üR^ ÓZ ê|³sßÂx”»…ò)8Ú/bÈ©h†Ñ[fè[´Z¯ñ+Sr÷w ѳ¡ÇÅ6¼qV¸pRnw<æ tŽD3®·æ½8}~qh‹±´3{/?u-A˜.C%ò0²£*uãKŽ s ¥QÒâ»°!ÃuÝÓPåôõ°2þ…€ZO{¿ÌëD€ü®öÖœ§õ÷Á£Þ«”J0˜UÄFv$…_·¡¹ÆÑRdâšÛŠ)ݯÔrm—*€˜¨”Þ~Ͻ…ÚÍüõ…+€¦çj|Oï]‘~|ô;ÒíowQ„ä‘R™º]ûüø©$zÇ2± r:ÂÝu®ç\y¦/ã.Á¯†±.œß÷©¸÷¤ªPº¡™”Ó¹2iošùº‚ðÏò‰ž”a8ƒ¢}ûª•¡vOUèsbþ›žá»+ÅÖ‹ÑÌÊH—hþ Í·;ÏY$ñZR¦rä¿“'*ÅPoߪºÌÜD,ä±åô'm—Gô K—Ê0Aç«ÏxêõÀÙ6]†ÜRk‘NC‘­“&[‚ºò"³vG ±P’…èÐÞÚ$ jÑl5ÇC?æ„Û.Øã²ÇsI±;$_±mûOš>rI¿ùxd½«Ú,gŸ˜Ú#Óº†á™WѲ¬å3ñ>ÎŽ•é[$ïU™ƒ^ašwžn†WŒ8¶`ŸÒC[=vkOTËÒ4c.˜T—«ZÞÞ³øð0OÒžkcþúKŽê­¬rÕ&Uöqc:$tuF˽?÷È3?ŒñŠÝDà«Î'Úr€ÔV»µ˜®É<á´O7'^š 9Û|¸îâH_Æž,ÊA¼>‘tŒ/íÆBw±ót·Ïœÿu)àdªåž¡ÉòÁH[@ý1ébÑþ{iJ_NŒ³ÀÈ,;_ïX@y\p§vÓ™g|èžo@|%1Íx~•öÓóÁýËàU¼bl×÷£B"ì‚®ÓÙ&£½Ÿ€"(QSÙà´õ(ãŸg0%_vÛ'÷Ó—d]LÕ “‚7í_ˆt6½Ê=Ü<*B‹TA¢¸ÖRb–tr¹{ÏŸN;_¨tÄeší¦4rå³+ ˜p„PVøµÎÑû ¹tGèwˆ7ÖîèšXˆSàë.«$<ð¿!_¨ÓI£J? p}šX«CœË¤>6'DÈf(ò#DnJýy¥M'-S*ä5×;VbA“=žI` ×€é=}ëw•øc:ãB¹cê= %ôÙ›MÑáŠó€°©¬ºvâœø˜eaîÈJTe»¨ÝÉB¿ÿ”1f«ž?•±œk(øÉËŽªž‘v†Ì£²ìyq­h@Q9„Àº¬wnKEuxGs°vƒe+XU eèýÖ’,W d%ãùÖm7éïÞº$}¸í•Ll4·³~ÅA¥i¯®ˆ/ƒL9̲™åW][óî¬[⮑ÅÂôœ¹sû•Í‚Æ>kú+ÊŠ °ì;«ÓŽ'FÉ ¯ËÒÕé*~÷k?½Þ-‘{sÁô‚Cj3B5½«òöÁ5‹ºÎ+#Ÿ¼¤¢6‡9ê‘üqUG~JÖ$½!‘PyÕQ;㸠Þ°¯˜1Ž|Ϊ —]ïRÅ×Ïëf§ ï}ü 0çùZ»µò~{°§`=d±g;†I€K $Cx'@ãþ‰*ž2—ô¤Åáø›ð׋+ßÑš Ö_åM4¨ËozBÅJótÞE’zû÷æ9ž`5íë ]=&fŸÌÞÕ½óÑ'-¬<¢ŸÈ•²V}rýÁÁŠæ¾¨iÔ·: .N½9èUU·¸øÂWuC°´-s×Â1—×rܧ pŠ+Lóéyª©)¤L=•åqƒ?sL*ªsn)ÃåtRè¡NEoìŠã ™Ï<ìGpÝpï'£'ä!'ᚣÚú g¶*Ì”¥»‰¤Š ¶»ÂYç¾üÐòhß±*Òr-~oï9ãÌl:„è}bCFÂ+XxmšÏ–]ý ³U„ÕþŸ-4¢üŠPÆÞaï’zæ¬Õnç­þ ÿqKÚñuÀÍa<Í@;4×;¢Êÿ‡n¹sãñµø­9«Äk6•'eä{¥¬öcì«” Ÿå)î€ö/­©vEoô’ Ò§lÝ0|„JëTt6 #Fw+4› µlT’ [ %÷~zsYÄ –5#KnSuL]ÙãØç5\bÄF'À[ØH:älз'}UŒ×3{Lû!á%_6ÇÛúÃX¥û‘£iËîçF©‘JVú O-A‘‚㥓µF§¸—µ­Æþ!¤³~xm»!Ê+Ÿß?T7 ÑÅ~D÷Ó 6oÉÜ*-û&RÍ'Ê„ãSsv^ ZóŒÈŒ‘„½a8Qóm?Ä[ïÑžÚ¸ÎÚ#=Fu3Ì~Ú–c9¿'ªôl_-·æ v. A\äAo“±²vÕyyZKÖëT•­!8©!‰z­ÙAüÈY5]¾' °Râk/÷åÖ¸Ã+Dõ…ùÞ·ÞÕAùwH¬PfÙw“>ä3»-[dlècMoçñÍXzv†ù:O¬]¬Áâõ„7µl*»%ã¼R»‚zX´Õ£Ò½,¦r:n)hAó)O i¨SBtÅý Ý•j]„àmdàÏœy UÑ`æš]F<y÷—{•3È.¬Y;åÐëUÉ\ZDš¡³àª¤é°HMê½DC8ÓÚÙ‘FP&õ´ÂiìN Âã+jæÆ†tÌO“ÇY<ÍIŠQ[¯yèÚY8Ÿ7Zi05-mNq[[qHõΚ£Ë2½ÊßO*(Ëûi¥ú\Æ *ž+Î Æ®¿ ÂÓ8ÁH>ÿàà9ijý4Kõù³–~}â™èi"Ë“âRoÂß ±¨³Ûl%zí\›×Üo8\Ö~“^Z×ëê¡ØÔËæ¹#•…×lÚ ÅÎ¾Ž®~ŒžTæývENWJ‘û‚hÚžm¡ªéÚUé ¥‚Ô Wy}OÙªÔë\T £(üqÞ`Ë]%\ŽWt¥÷{¥‘àNò—¦iêóæÇÐ¥œÀë·ÂXSǾj^!zëñq¬ÉzešS[]ÊÅ”è¬Þ¨a‹ש1ð²Í-Ö >fõÂVNjÓ‡O>…%æ»ïãõŠtôHN9aÉŠ‘³¾¥\µÊ¶ev[“—'Rž¾vAh’Å|zÌ_iI¿`>ÿèŽ"ÆGÕæ’‹Ê¦* Âþ¦?]½ endstream endobj 113 0 obj << /Type /FontDescriptor /FontName /JVVTVV+CMSY8 /Flags 4 /FontBBox [-30 -955 1185 779] /Ascent 750 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 46 /XHeight 431 /CharSet (/dagger/infinity/minus/prime) /FontFile 112 0 R >> endobj 114 0 obj << /Length1 1474 /Length2 7815 /Length3 0 /Length 8798 /Filter /FlateDecode >> stream xÚ´4œk6¬† º¨aˆN £Dï½w"Ú`0Ê fô½„(AD ¢Kô½½ у¢÷þINÎûžóþÿZß·f­gîÝ÷uïkßLôš:O¤¬ày8 ù„‡‹[ £¦«ÄÃ àææåâæá01éB‘¿õ8Lúþ‡‡Œ Œ¼ÓÉ‚‘wŽjp@ÙÕÀà àæy*ÌÍ qs ýíwȂݠV5.€2Aà0ÉÀ<] 6¶È»:¬–l!¡§œ¿ÃRލ%P#m!Žw-Á¸%‚ôüW VQ[$ÒItwwç;"¸à.6âlœw(Ò  A@\Ü V€_ê`GÈh\8L][(â/ƒÜévîPK qâ ³‚¸îªt”TNØ_Ϊ9pþ\€‡‹ç?éþDÿJ…ý[ZÂÀ0O(Ì` u€4äU¹HNfõË쀀ßŃÝÀP°ÅÃïÖÁy)-øá|K¨Á…€:üÂü•æîšå`V2pGG ‰ÀùÕŸ,ÔbywïžÀ?õ‡ÁÝaÞKÖP˜•õ/V®N@=ÔÙ¢$ûÇçN…ó_  àçææ  Έ‡¥-ðW]O'Èo#Ï/õ_o'¸ÀúÄj ¹ûÃñF€Ý ¤‹+Ä×ûŸ†K8<<+¨%`±Âpþ›ýN ±þK¾›¿ ÔðœûŽ~<î_¿ÿœLîf‡9xþ×ý÷ˆ*êúrÒª ÿÇ(- ÷x?áå<ñsxx@|€§wßçùÏ üþ·V ýÓÝ?2*Á¬á¡¿@ÜÝÞß@Üþ0ƒõÏÚ°þ]A~Çg€õ¿ô7ææç¶¼ûðü?/Áïÿ?îÿÊò¥ÿÿv$ïêàðÛÎú—ÃÿÇv„:xþñ¸ã³+òn7Ôàwû_WÈ_ ­±‚º:þ¯U ¾Û)˜ÍÏŸððqqóý¥‡"ä¡+M(ÒÒö/.ý=Œ»PDŽ€þzw¹ÿÇv·z–öwo ând¿M»Íúw]9˜%Üê× ‚ø`°'Îî$~€7ÏÝ®ZA<~Sä‚Á‘w!€;Œ¾k¸ ίÁòÜõ ´ý¥û#ò€ÐÿŠwDÂÿ! €ÈˆO@׈B ûoñ_-Zºº¸Ümño.Ýõÿ·üûÉ€@< –83SpK‘`»ŠàƳ2)j÷'kC ¾Ý‘GØ«r”nëZ2¢ç‡¼ï£¦¥Z'¾G/o nkí rÛ›.ú¤D ?œ©jÄ´¶Xáô!»ØB¨º‚¾«´´™ó¬lî~Òþì~$9ÎFÎ鼿6™¶¡ Êü©äô£í.KÍO.<´¡è(, AA^<´à&©´¦ér©ñ‰f%FÄäÐvÂ#ùó”®~ÿ·î¯Eœ¨ÐåêÍÍN*Gi›âo~´ P©˜Æ™VÛå(.cYƒ_°Z t$‹¤+­Ž(¬F+iÛ|RìYBïJF—YŠeØ[º/õÎÂ囩{‹lA}äL¢n®/?KQ{q±‰˜ü}ÜÎéûò£?ƒ+¸Þ©ø¨–÷ŽÆ›ê"ÓÇSr9ûSIj4u½¿ðŒZÞï r‰rJ7=Zñ×BɈƲûâ`68Œ,×Ëiì PÄe¢'ˆÜ¿¤Ýz¨ŸCã#0¼3  Í"K¸6²ë>Ç·PÊw({:¬.2áS<‡ÝýQf áS8íå`<7U'0ºÎEÒ“‚|Šl›õš0_äAò¤7%sbáȳñãtó%œ ŸÙlÑ(Ôzüºn…¦?Ìä6¸R-œÂëªü'ô65É!}Ï ù6ä‘^ù€u\$n±ïp–s´©%gˆä‡DïðÊ~v¿ÝE‰He–Š¢ÎJ·cÆ×•GÐJÆý —8ÙoéÞéÏhÅIl¡ÌÿÀ¡à(rÍA-è2÷%®põ{_шòöãÊû$¡ã–µŽòǃjbXÖ\Ä㟋W¨ü(ÐŽãÕnþ\}‘5Á B÷žšøëÅ»¢X)ÅX½’½ùÇžVæì6;:©H§Õ=BRbJn#VÆ¡IC7*vƒ—ˆè-MŒ›XÉ}[Ã=ª\®.0ÝSÞ1~4o?,µ¯uÅnÜÝe‚Äc»¼D‰òÎËGËoï™âLªÚ~,É»TB>ô%|ÅZ!en^ç”Ò¬9#Ð>Þû©î) R[^Yÿ!cM©åÁ`)ú2á뢟ºíÇH&î]ó¯a²×–8Âbœwö¿ÂðDâ€û'†Õ™ij(õ(xîFVePÞÝvý¨”ï Œ¬ü“ø>\¯µOwb̧ž“y OÓ¨ !˜kzžR83a³‹}©9bJ¸~G€íÿ^™W^ŠiK2Ö>3fŒnépÌ €Vl’asØù"ÔÒ“'j|Á´˜6` "åwUz¸È<¶`õ^é~޵AY#²Ø$ùܳy“DwŒfq°Q˜©V=ªã q\XRýàókóë Û%C„‚Cå Ó:A\÷`2èíNƒèmuŒþÓ§Ä%¶3S§`éGf!ñ0TePimÒ'êµµ¯y³g}Õ,}ÍÛ’âr®_¤(–mGa.&S•BQÓ¡äv¾q#]ŒçïV;qô´œXŽè/›”Ô¾V ¾Çžÿ2žo(­ßÖ\؆ZËæmÎ: ©¾”ôYˆ¡îq.ª,û>cOQcñ7OOã,@JŽ¡·'Clº–”ûp4šIÅ9•\ÿö=J€¿pŒ„N¡ËcPí1 jÈ}¢ŽC“íæ®>·‡B+^.nMw¶Ýè‹™àéá“ ú ­.G“fÎøÂ0ø×E>l©±›^Qºá8›®ƒ§ÓG­å³yÆs™Š’`n¾»0µQwÐÞß VÄ»`Í!½ µcäŠ=#‘™%ï;³rY%j}–åÕÎûzP–Ê”Žõr¾È3¾P¢¨töQŒŠ ¦@–ðÑòÓ`©ÐœM\9[æfçë義Ýò]èéÔœíWb¹Ñ–³«ïA¿¤¥i@…Ñ;í¼÷…6´¼tpVdɉD]ã'µ`W|•ÒvHJs'\ÜÃ{Þ@ÝÿÑJÏÆ»R)‹<¸Ü¯ª< òOö!lªÍ˜Xo7Ü3œq°>xÿäB~ÈgÐñ €+Ås@ªÕHPÝtÈ6Þ®5nM“Ç­ô¥ñ°Ÿƒ{‰r”½*?)¾æ~åš¾JP>¢S;  |fŽÅbÃÆOÚW´!l\hKðîÙk…&úÄ:O€Pù¤K‡-ªeú*pµWQÉ"œrø £d¸‰ nö‡wÚë5rGšGUû¶U(ÓƒM^&ò„dJÓY-^³•?¾«ù0ÈÈ•¹ûJOëjÊÝ(á.áev:t áÓvíQyãÞtÄ“™ðsk9™BÂQ2*…“Á•œ<錱(ŸQî4©km{ÃÃ¥ýÈ­ú[I‚ãÚòÄ`}÷dY÷ñâVÅÄ[ý7F#Pg¼²Ôù¯ÂïSåàárö3‚€ Û(¤‡Öþùï²è˜Ø´™ú,ægì 3ƒ°âéwÉR«±ûå´žÈÐ=D$©ÔNÜʾøxPmü!PL›—¼—ìÂJœþÙìPÌ–PƒZ¸VŽ¡D þ¤Uår *ö|;ÇôúYé¹%sÒþnàÒ±SºÔq>‰-{]! ƒÓ³¬ãõÁ‰AN‘ž}hJy-iŸÇa«/ÊXh¦k“¯º5]ãzqdé%$±kZ5îyUÎ*ò! T>·½y4ðdúÌïéGò.Âホ.󙵿p?oN•R3ɰž4ü.QãaB­;Kù¾Ó¿Ø}‘=ÇÔ÷éšu´UW"Ž2(e‹ô˜Gƒ«Ê½f  YPüX|³qúX&ú‰¹9V‰õ<ŽnB…œB¨ÿe9$UÉUŽ4.!Omƒ;Ο҆*Š{U…Op4¢ðÌ¥#q*ë;`÷Ý¡êjk×i“`‚­ð–Ý#èý4Ù5Kš0A{®³‡íÒv"¢8¼ÂJ`ñÙÜ[–V¦‰èýeØéxùÄŽƒq§ÌÕtÀ’ðûÄå—i,>OÆž!dSü¨•~Ùü×t¢K¹ˆáÁ Þ¯Éø¹yÙ4‰gÜÙü‰0ºúÂ·â¯Øé­î¡^9Õp€Ðü–v‡[\zÙD”EêÞŽ†/)ƒª7Çჟç™m­‡þ¤ù&&¶FD}ÿ0%×-u".ì0šð°¸wqvPðLÿyÙ8þ&nÛ(ÛÆ䞘cßòE_ ðíõ'ž‰hB‹Z´²yB×ä¾ýòæaèS-¹O-×kWaÙÚsA­J'áNUžP‰/~gHB¥Ž•óÁ-äyû@+]Y_ f9'E޼âgíïoe?l¬52f¼iQÓÖnh5ÞirÏ;iºIÚ}º]2SM” Í=-rïPût/ØW~ÎÊP».®/rÇ=ªçûîS=X­À²#Ó ˜½C³oaAë¯ÂA–š r^(¶¶&Ò Œ &l3ÇÄ`Àý U%øF†²¸G¯ãb0e7 É~ ®(ÈM €×ì_F.?ÂO|Mà°¢d«b†\qLW…œ6ÛܼO ǽ¾ Þl¦¯°©zÀbÝ!á\éÞü’¦’m4y‰<=fÆEËä}ŒrÍöíÙN¯7ç]^Q#-јXßóJ™xèsPz2kÊ*C œ\‡¯¯ÀÚ.<‹+.WWe$’2a¬¸¦éµ5Ë·Ú¦Üy¡Qƒ*Hâ]ïÉéÊK†ÉÅüÓ]Yë3ú¥E1Ÿ¨øB­/8è+ÂWû ¬-÷ŸGvø(E#ÜhíüSúì‹5qmhV€{•b÷¦ObÍLôPh3kÚ½6éðtw9õ G…ˆìwf«^Ý>ºõ'áÿÖ¼X› žì×r(ÙžIS°·:YÞñÎI¿ï“¯]Žv­ŠJˆûƒ¼Û„ÔMFÊöc7+–§¸à–”  |“€§ÿ,¿¬èsDD–NŸÆg<)7 ‰¨ä×™‹ “h+uqúö17‹…á÷¨h‚½>Ÿ;Œ›Ì˜¼÷Æ *Å™™½h”°ÈÒŽËð .ô›t. zRÑ»úï9æQÆã?ËúÆã5+_ýH‡ˆY«út8¶Ù–à„Qé¦ræ'µEµsJnñÄ«Ô;Ow¬‰T+9 Y²^™ Ä~fÁMÍ&GÛ†ssÄš°¸ÌßéB85ó‰Ùð6f¢7w>kV7†SR7(DĽ÷æ´p‚òÝNY‘×çÆñü¥‡Ã›^ÉSlôyûxK1¯ž½cðê¹¢ù¤9#yÒ _'ÑÎpԱ⌂i‰mpkp=Úwµ>äJÃÏnÑ…ŽE!t¥þ­=ºŠy¢Ô÷kíãtvì9œ©§¡bëa@Ÿ‹j™\CPZÀD¿ÁÃVzw©äŸÔöŸ{YtÕD%uFƒ£Kšì5­)‹ëÄ%Š~ ¬é¢€T€ÕËë-*-ÆÄE3&OÌôF~™Þ.WÕQÀß./¶ÀÑMÿø‹ *ħwz0a¦<ñž™zÉ”Ú'’ã9aª¬‚ô|Ì´„Yc=©«–L+QI3ò¾ªù’=œeý`µÌ…!~/ä ššãnR5´û¦I9üËt¹É–;Ô±íG‡j~ÖɲežZíh¦½x¼¢ÒGz>‚Ƭ´ÜìróÙ 0‡tNqIqÛ:"ÁÄߌ!duŠ?–CHndŒ¤Û‰5ðéów™ª½ºç¡•“$%ãgÆPlÎÅÂD÷$—*Aª|ݦ-èÍ“ù04ÓhÁ%RÞÖ½â7ßNòD=k=¶¬Ö®tkòX=®.u»OVË1g,ó–÷¾ø„Mf|iLÜ„h´} Lj“_Y¢O~Š£}“‹bê·tqƒµÓx ÑÒR}ºµK2Óp pšEÉ2É%ˆ‹Ÿj>Sìøyé/Å´ñóò%Ÿ%Q›„¡\àr™ügJ‡ûxæPwô–6üG­àyté•!ôTÕþu±"d›µajï²|6?@›“ûàªØ­¸«Ú=lu‹ù Û‡tÀëw\ýëÍ96àFðvŠ{( ¾¼^ŒÃ_ã¢ÊßÊé^,¨{ÝR¤˜~–À|nÃ(>ç‚E(µu&â¥S‹ ÝœKñ<ÂÔÓ¸oÔ™© ‘îˆ>úAµgçvýËþ=MÇÒD5÷vg‹œ$aœžþí4|Sù¨}Â]ê©ÕéäA*†`Ðã ìtW¤;kÍÕ4 åiXIEÕÊ@î/ßðź¿†’œqÊ/À=M¬Í®MEÔñ=õâ1óØh'o‘Ÿîírö¶Ò§BÝ#<2^S>òößÄó”9šÇ“±ð‰i¦øˆKXÛ"R¾’ø”ľ-áuÎjú­Ê–ÏAÓ›Ue°Pµ×¼A+â}ÿëa+Ù2LlCÅ â4c«Ùôx»f6^9&Ø5‹¥™Ì_E#ÿ¢ÔQ›Ôx^‰ß J¦áÇ/>b#ùl–5‘ƒj´]èúÛ§/µ ܽU•ö‚’øW¥½x!'eœøÎIR½í sh²[u|êÒE®Ø­+žH‚/§uŸó_3äÆ$qI´Ä–Nçæž;Ì3§­“RGhû½2p—¦z 3éäPâwf¢èF2WÑ$¢ÇÐó†î(hé¥:%EÛ&qÝßAjèð<ûü½Îc1o£ôŸz¯àªLƒób×eg€ æ†J·Þ "WßbgDY`k§Ö·2ùR ífGpfËÙt‰j-CÂÏójË"ÈcÄZ\5ö•‘ÖiŽ$A¨ÞÜÈìÆL]=‡ÒÃÊîDä½5¥{÷N­£”ú@c€êòÑJúµÑä³QÕYý¼œSOåZ l4­š¨è FQÞF[™û´e#”øi;t·•¥`Ïï† ·Æ½z ØÍ±O´!}‡9Ón%c†ãØJ ìVšÚÕm|¥ñx9.n!X¡ô!^#„Ž·pôMC¹`ï4ç¤òf=Ú%yb\=B8´GÖ¾î$F¡›‚±Ãy¡•÷lý¾RÝåFp¥´Ü¦r3³K£‘Åý‡}e:Ý"~ÎòB–ŸŸå[Z&SÖO¥4[©öäXpw'õ·E½]°í2ú²W¡DªœßgŸP(•5C¹â-"ÃqP²4tq¦M‡ dO¥0Ë–sL>„QbDsi+¬ÜJ…B*Š‚Qzºr6@)|pTD’˱ G%ÄÑ=b«.éÏɲczðઠJ§Lˆ”žN÷Dúâ[Ü®ð>h΂f_…#ØØLI æ0N '…I QivwµÒEÔ ‹%dò*5­åÉóOÞöߟão'±ÊÐO/¢ÊZ´cÓ ¤Þ“+ô š±cÚþ4úl»«}WÅà:žç 5z!i= øÌ)ÙœÉ%äÏpî.Ú¡@Á}b©ƒîïs“è ÂC)uÕ3{5`YÐÙñ‘ò1–bÛ¡ÈáÍ]GÅÊšj^Ù†ÙÔíŽ ·øÃ¬—˜²Þ_Ë)_P˜Ž¢¬fø‰ã+ŽoÊ7[v~U—%“Ù[˜BƒÒm F÷V‚k)*ÂцKˆ¥^¿V1R³¥Nr”;Up2̘ȌµßY•â)§æ ]ÉïPï÷j#±µ=Ê•Ý3ÙÅ;É!ßñ3P er;ÞT2ÓZ®,0ÝÅ¥t Þ }©ÆÀn¼ç “;m.³“s2A´¾%í²EÌ­"¥ªH’ñgTûÜ}ÆËüã¶?è½e `ÃV›v˜«ŠŸ¼È˳­043¿g bØó.ßs²2´Ùä“?º ‡“R»^h¤ë*¼êДܢY¼®C=ÅP «L,…Šz©î¯yQüÌjõ—îã-03!×a&¨ç7Lý°PtÓ½tHaÁ'ŸÙbf,h)Ä{®§]ë¼ðám”¡u©çï*~SŒ;±¶-”«ŒQNQJè&\¡Ù¶PÁà®_Œ;d÷®.³vé›\BŒâó<}vS fhXbƧòªÌûåª>ÿJ[}…Þ)²’üƒÈLÄuƒ«XÅGüeºwEE¿’¢ƒ¡tQ®dŠÏ?d–D®¶ö"Ü¢N‘ÞH²ÀçN“íª†ÑüP$#IÃÆ¢é  gˆ°.ƒ¶ÔCòÝTÊž°ü2«ÀsÒ²é©U¹ALDÏ Ièÿ˜W}ýœe`Ýw³y«)@/¿X„˜”‚ËWÄÃå9p,%‹¢¤÷ Ø&Ä›¬¼²Û2ƒ¤Ô5*™”ü¥§Z:ìt9{F¦Íf^õ†Cñ‰J®!eäl‡2‰éåxœ ^)ý¥x b8št ª6å¼Ï€ªÎÜMÚ› êjPŸüåY½:ºP ‰y•Äùf*cÞ&/%3ë ôúc…‡ó:Qíu$šä‡·¾äo0sØ÷žÔº¬ùn-á­ž')Ìóú™SÙ9T»½/¶J‰”ûÄ$oÓŸ_“`1øidá8”þé¬ßzÙQ'=ŠG.£ò>ré%·Ûá#CóÀ¢lÙRÏ‘$»QD#w°µïlèúV¥kǧnK²S ¯Qïm4g’¾´‚”ø6hT1Y,ž¼ŽÀÏê~Í£#€úq"%ŠiÙfPLÄÂ4ÁâQòýûsjþgËé±Y%ƒ¼ä«™A#æ5œ¦kè‹÷¥mÀ)f“ÔÙc¥.=Êc½ A!]ž8ëý¬2‘·«-gƒ6,¡¼r'DÏH¾0«±cV·±)(WàL1¾NН¨*¹~•ï5í•õ¹‡]’¼XçU1 Á+-›JË·®½õå¥pŸÇF±ˆ E¤ÃøøÍŒ€TµO¤]^/£š`ç7ÞåÑ ˆ”´< ®$Æ»L”§tæ‹j»#Œï—‘oE§˜ÞäGT‚ÍU Hô44jZ/7ó³t¶»hÅTÇ))Þ+¸ ˆE|¯”q! =ê»Ö[Ÿh2USÎÞ°~㙼Šêìñ#ƒ™5"ˆxÁ£×c ¢È‚ “&Eß‚gƒNz쿵·sꞆq= #u¦Žy@cFê–jÏÒ«<÷Ũø½ º4/ =•1KnIê 5# ®H+&EŽJüóœEOçû´|·[¼¦áƒÆy­ú6ö9³Ï.±oÞ y¾(¦RP K0±ƒûÑYzÞÃÐiGƒ|{Kk§_†W %mÉŸj‰Iš&ËpjâÕŸØ dŸ?QÙ!sWê ¶®œ³YÀÓµJÌ´â2‰âz¡¦ì¯u„A3ùëôBÎjŽÎDź²#‚¢ #›K˜&òªº!jÇ¡Ne•-$œ‹Ê#á*l쓇,>Ç´u5pc¹XœMñ‹ŒÛ³ƒñ-b«7X£m`•YåÞVQÝê<¾WžŽgë³JÛjàø6´æcNÊ[OÚR¦*dª¦å1à„!ö%ÿѧ͢ˆ±Z¶VáIõ:…Xœ"tµôƒ¾ËÀˆ×ò1§1 ÊŒžý󕊱Ctö2ì52Á7¥ëžìœÝ‘å#ô«^+ñób½P´·ºªÄ„,€´1ÑÅÓæ"œx¹±ú¥XòÛØGœ¯Õ˜Œ%UáÀ—Faªdæñé:[Æ‚«V›ÉlÚ™†Uíä+ß …Uyj Š„7¦j¤^/1æxáææi¦+ÝúSŒœr3| ¶ûŸ¾º.úF÷·k·]™Ð·æšÙÝùÒÞ÷¼©;ÖÎÁ¯ßL¬tmíz« ñtŒÀ³Ž¯è=‘Ï6‰<Ê7XÍ“úL Š™H!ÙcÛátKÆã…Tïû’~®> endobj 116 0 obj << /Length1 1574 /Length2 9226 /Length3 0 /Length 10263 /Filter /FlateDecode >> stream xÚ¶Pœ[-Œ\‚»;Á]ƒ;4Ð@c4î îî4Hp îÁ\‚; ô‘̽3wæÿ«Þ«®êþÖ–uÎÚgïó5 ¥š‹¸Ä $q€²p°² $•559Øìì\¬ì율44š`¨èo;*6ÈÙ qüG„¤3}¶I¡ÏÊ€‚«€ƒ ÀÁ+ÈÁ'ÈÎàdgø;â,º-ʬˆÈ•Fâèé ¶²†>¯ó÷#€ÞœÀ! ÀÇü' nr›Ê@¨5ÈþyEs @bA=ÿ‹‚^Ø udcswwgÚ»°Bœ­Þ00ÜÁPk€:Èäì²ü– PÚƒþ’ÆŠJд»üË¡±„ºA€gƒØäàòœâê`r<¯ÐW¨:‚þ¬ô¯fÀ_Åp°rü›î¯ìßD`‡?É@ssˆ½#ÐÁì`°Ûª2J¬P(3è`ñ;hçyκÁv@³ç€?[dÄß€Ï ÿÒçbî v„º°º€í~kdûMó\fi Iˆ½=Èê‚ú{R`gùsÝ=Ùþ:\[ˆ»ƒ÷ßÈì`aù[†…«#›–ØÉ$/õW̳ õ?6+ÀÃÎÎÎÏÅ 9@æÖl¿Ðôtýqrü6?kðõv„8,Ÿe€|Á– çTo uvùzÿÓñß•ƒ`6‡Ì@V`Ôÿ°?›A–ÿÂÏçï ö°?·€ý÷çßOFÏfq°óüOøŸ#fWTÔ}+Çô—ä;%$ on '€‡‹À+À ðýo–ëÿ[û«ü×ÞþÁ'ï` üKÂsíþ–áöW_Ðÿ54 €ÿ^AòÜÍ ýšß‡Ýüù‹ãÿyþ¤üÿuþo–ÿkóÿïŽd\íìþøéÿðÿñíÁvžE§žÕù,!Ψ¿”ã¹ÕØ@¿m ïoääú|[8Ø9l–ÿ€\6«@n›õ? € üøÜœlÿ€ÏìÀgfÇÀgf§ÀgfçÀgf—@^ôü¯r˜»:;?ß:ö¹Vã?×ä2Gý61 ¶© þ|S#Nâβ=!2C³­“ÆÀâý͹Ýõ9™¡:+hÍùJ!ü%ÎØ4­·Ä^ŠÁ‚wiqÔšÈB;+ÌÚX?…Ïh'å± ’<»ó7Ù1jß¶:¶@Ý^4”¬m SGÆZÇCŒB&KwwÙÕæâ>ã¡0”ëpg& e·XdOïo—z‡—Š‡Çµ“^#–›(¨›xËM+RaN¾¸ÊH¤?wø»|Šl2˨?y÷ÚL9Îxìxh´THŸ¸b "%§cb½*Êh䣎¿üôŠÛ¥Z Í Ű›Á`˜hQFk‰Õé|ç‘û8L?_ñÎËÝ´ÁÓ.i²XžÇ §‰ÂÆ<þXï#Fzs"_nÑüp¹â'Á›×b KUbÓm2G°ãÊa»×Ý&åùwد­˜joEšöÞF Ìêg‡ý››RuH#T.q#äxôØ·„õkŠöŠòÃúañI¤Ç?ŒNÐæEË¿ìáÞ›»¾BúŽ”‚IhíhkÙ®bP™Eƒ/q?¸pžQnšaô°ožÃßÑ«JÅ{s´ŒÎê¼ýêcœ£¥7»T—¯XÅnî~¶Ñ[u‡µÏäëM‰º8Âêpâ,¼}–Ý•ñ2­ÎrAäÊ 7ySÁÙƒ½LñÊiYv}j'Éâ\ú0WœŒ¢Ÿ<~è>1|M>ñeå;U5ŒV¡˜•¸(¹&p¨î§!ßÚ„›Ü›~=ÝKé× ŠÏ…<ƒmŽKqòŸ‹7ò#4ø÷ey|ŽoÛ£¹ÙÍaåÒgç¸Ï\ ŽÐÝõÚ{S2r¶³9?@§¾ ¤,FÕg‰ZÿLh6ËÚxdüFG€j1ðÁ4‚ ‚’ù^0‹*(,!¦ÌGkút ì0Ê’éWÅ+©†"è Ö¬EjOIžÈÇÌ,žñŸý™H‹NløºiÁbO©ø›¯†°ˆ`§ÃG5Ù`¦œÂ‰µ–§dö?]ǵp$A¥'ƒ¾4­ˆ¡OpõÖÊ«‹¦°d'g_ô;á#gQÞEÁ1rX¹_ïrvås³çå6suŠUlÖðy-½¦9H÷Þ7±®§ŸýŒ”öÒ£k*¿>à —1÷q°éàÜlŸCš7ÇÝ‹sç@‹¾¿Ûã 0Ë•7 ËŠèöl®ŒûŽn9Ÿ_¶|™¸}p^|WjiuDÓé˜' >§P%§§ó.‹«Åp¯xÔØÑeÒñK=N“lÖqNNtíø’_ËTHÌ•Bf¢[ã_#¼ëN=Ñ/ÎEzyøí‰.9®2VÕ{Z&í}/p#Sg(ðîfRˆg%«HÍ^|vˆ)O{aÄke¤0!ÓŸ"ŒÐ”ËX5WÍ •–¸¦f«ûàc¼Ñµºzf¹äIãjž×?Å7˜D%©w—ÄjKèuèv˜áÃ`%úeËшXœÆ4óC“çðõÀ˜Á̶Ù𥻴XþÒT™®çmßôÖoËLOß`O›’ÃÔÓ'WÎÐ!Ù§ß’½T¤ÃTÜœA§{“‹%½®¦Â,¨¼ç¡Á%Ë©Ž!Æk˜».Êr6gŒ¯M°´wé/ƒÏêdÖ‹x­G’{qg,/uû¦R¥å8^bZYùs3CYàÒw\«/fî”›©hcŸ]úG4¿$ÁTJuÁ› ê8QùƒòÝÛMŸöŠÊ£è¶{L×­‘zÐ45cå+äÞƒì¾7`·'\Ä\÷æ™â¬\Ío¦\-¬èJÉÃ×0èE*ô8Zv®*ÞçiuN,e;R½EÔD¥1¥="õ¦'Tìd•<+ tzÈõ³¼rÛ”¾Ÿåö0á!ߎÍûÖz‘ÑÇü3§ÄbÓŽ‡ÎlÔlʼn9EšX³Çß¿¢¢âp­ß'{ˆìä:NÞ4øi^9 ®ãg·ÕÝþ¬<+2䨱¯=g£µs¤„ëx3Ú€ÊqRë Á P„9¢O9õ'žrQÞ"3`£å4Œúaùà\dáÀà”Y,¡¿[äètËU†Õ½ÿ*nG©ðã-ÈÁm¦^þ˜ü›ûÐQ‚RÂìP7ÉêH5×– §Õè}S™w› Ȫ”]^ùƒ½…Ò¬ ü…âYPS¦Ô ÈÁ·ƒ¤U•èï¼pMw(}ý+ŒUã»Z/ãX¡ò¤ÖNñ áäŒìðyN'­Ÿªßì«à j¡ôs P Å®óaö¨B ¸|¢ÏxœÙá´8|}¼ûʼ–¬“Fê$¥Ôßþ9Æ{ùØ´7qÈÂ=‰Äg!]VáÉ‹­)kOŽ®CŸ:øý7˜ô¯ÊEüÑEë1±úXcá1°E/„ùÖ¼«•W±{¯µh^álìÙŽ,s½ >JׄÝK:ør¿iÒrªñns&èÖÒ.ÏŸ•­ÚpçX|³n !rêg *ÚðÛÇðØL‰Õñɲ Xø(Ú¥{Îê:$áa)k&}Ïê®#t’aîB!ø ¡dk«Øà,`ùÂÊêžÖnß§‚ö3IÀB å! cá,õÕ{²N·×ËoŽø´ŽÌ÷ýÇ{‘+`èšàpÚU0§Ò'8¢2v‹uV*‘K¿=i/£•¥©¸"1 <-bróaGzÊbÒO÷<®­¡—¢÷tEPUzlb@T{L’|>šë?’zIí¼kÒ§Xéøµ.,y¤l“˜‰Æí¾¡šÀK†}FÖë 9=Éš'x¿¯Yl%Qo‡ðê[´€ÖƒÌBµ(Ž£QÏËEÄÇ ë¨¯Ýy] ¥ç¡Zpü“s‰^ù»«J¡¢u·p‰÷‚䊑BU—·ù:O4cºIÁ—Ô_à ̆·êeŒ-2$&ÈçÔéay X4¹)³¢§=õ`Lé”èá_V¾¨>Q~U¡&þzÀ2>@“Ê’4Š Atú¨[B› ÞÑ'=xøÒ¨”S)à ´†í\ÔšŸv Mˆeùî*%‘’ •=¼á ŠÕ¤,Ü ¯ËëÕαFÍK×ä{¨#¼Æa³ ÞäãÝ} îàþ‚­©¯ì–)m3»Mäkº¾Ýƒ´®\ˆœû’5H×–ÒoiŒŒŽ³³&vVÇp¬2¼´¸Ã|÷úLj<Ò¸P[€šNûpÃy ¾:lçcòý^r«<ô5yï:¾(MËôu²Up„F'ÈÀ+#4â Y³fH½•:Bƒ·a¹ yÜw¤ÌëvéåZ'fö%²ìQo>°b꼄CëܵKŠŽ!t€„K»ØbòûE :‡Æ†âOÂm=ê“S†¢žÊËé>ÂAÄü“Îdl£—7ê8FS2òUš¶g™6Vf9r‰/XéQ»7O+²HY£¦àRiŠ:˾Á÷ÿøÆxß˃yÑÛ8aÜÜÈ9s“RÕÚÐr™?´ú*—¨¹,ù0¹HVšrÚ 4âÿEëÙÜ$QrFð±ìjüHM¹é÷e¼|Gó‹1ç¶üjáR€Ÿ) «âeÞØ–QrÄ#ë7îÿµ§98àŒ$›µ¨ ÅØ22sñ¢ëÜžêˆ×—§¿á&dB}€+æq]Q ×¼¸­L” ǃå/ÕÛhÂwh~55é}ÿ‰%óóÍí‹èÓ_µû£$h^A‰‚G]2ÿÂÐŒ:éÒ+¡÷ˆ©ëÊ“^8 ECÉOšý®îðØû¾Ã9g‡ PІƒÇÈÉ‹ô‡<™JÛµ/ë/:Tm:SÛ‰«Öw˜ê‘u@ÄsS.eÊsÚ©‘ å7i)?º×‘ËÎõ´ÏG3ùëº8º,^+(qà‹¾R®}EÕŸiV2ö¶ƒô´£ÅÒ¼ij&×¹¾½ú¥°•_ôij<^µâ¤H Æö¹Ñ¡ªXxQ€ 2ÏœœËzÐÝå2ÞÀÛÅfk䘭6éŠëŽÕwÿ¤‡üÈù,_:n»ä©¤m±_Õ&ªòk-|D™“lÞqÆ^ž,Îã„è–$ùíc·8| kÓóç7Á 3]×õÙe[t¹Ä$^ÞD-‡f fÌmÕÌ^ø Â|EeÏÿÔÓ{S<îE²%?SIŒ®ù®9R½œz†ùyPé[ÞžLÑÑf ­tw]úà½2Š»ÖuÖwê×Å>æ¬upq˜žéZ #è«‘S´ÓOåø"Ʀl¿V’.¯åVáUÏ@­É)±ÐT½ÂP’\)£ÖÑ5{×ìÐ Þ;_Õ}"iVM³}칿 l®í‚ú¢<¤znõ}ªX2ü¢Ú©†ƒ³ ô2H¨BjŒN7m'^‹Ž>ý¯àƒ)9%”a±° > ÕÞ‘`'ÈP`üQõr%AŽ   ²9#•²ðyšçþ¦€Š¼!bÚO´õÜ &‹abįïJäf³xÝÌÕVªtüxÃ÷Cå•U”ÄÒ³¡tBd!ø€°­Ð¬:¢@ý€Ý.iéÌÇ+¾_Tùfš_ÄR¨Þ’$¹;NØdâ%ÎYër\× Ñ]–N!Ö;a OÒŸþð¿íæ‘íz âÇ2‰N¿$¡0A±He²«Ð¤ò&óÖ˜¸9k«.ᄾ€³DJÙÍ *·~·fÅ–îÑ–_£2}<0£Å)za%y‚û6°÷µ#ª¯ž<²¢AЯþp掙kñ´Suµ1 d5[°ðµŽ&ìvbQúú¡i8tB5£,9ŸJÄžšOaM€×—CÈ%g7£dõ%Û»5]m˜åv»—µ$¿Ò·C×¥Á¼ø¿"vÎ@E'Ý”\°/$ô4­°Ò‘>ùâkækÓ&ƒÂs+&á,ñ2g­r‹ÛfÏt‹M˜ Iùœ âóÞk¥7§[æïjòâ+J½Ôߎ–¥j,¨o[0RìÚ©|5{e3V† çÞîjÒ_OHʾFÈõÁ¤Ó¾WžmoÍÿíùÏ:WËŸ›¨çtò(*m›¢Ã¯œlÊÏÓPGb3fj™róÅq§É¦œ 6ÛÊxi妒$æí}zùœkq~Èþ¢ »Pp~l^¥¯°’5î髯ó«öPÛG2PÜ\%"è^×»Õ ‘M¤ºiN¢Æµlâ#O]ÌXóÅnIÐýÙ ßåºÏ¢ÛdÒ ùð]úåzÜÈt$Ì#$’q]QÇNÓ’À[/¬aPT ØDd !Am®`ó—ñï î¨æú>ݸˆÔ’CÓäàˆÐÙ»—_¨®aîj×;„ˆ¹|Äã½d6ô¸¯t¿jʤ)l”äì3ø=áÒd•˜tb«Šöž÷ á媻‡­µ JWòŠRåèlûÍUÉóžDÃ%éÂÑZDì)þúéâËEäýVœÁXኬ»ƒærRÇá‚ÓÌtâ‰7ó!÷;¼MÞç¼ëâ#2÷ ÌM'þ ¤;«Ê»{džEg*H19{ÞWßY_JÞ ‹wÎo%K})Ëœü4¦lêé+{PœE0"Ê`ž°Œ¸ú#%ã‰oCñ%%¿ÄH{Œì0ë2ä’|¿aÎ5Ü U±)XCtœ]_¸œìó…²qDncþ4 ]X7ÜRD7ö\o `B¡ÄèX¶—mq‹ö´bxSROEα_|lX šø(߈¦á‚=,!¯Ù57ëvó ´×O¢ÞfëfGíS ¾>bwrjtæ¬xNG‡|ß¶)UX:ÿñ…ÇkSwÓæY_°H冒ˆÈ´§î—½i§—^#n>Æä¤&ÊÌ2Ù§[7†!ɺ0_“Qß66ú0_e¤x»hc’ŸÇOMÌÀõðd’eÊZïG™µ"÷nÿ…ƒ‰ÈÍŒ¥ýÚš÷Í@ëãíZmH©î€m)mwv­êärjK «vQ}rµêVçq]äý¯ˆ½h—Å`SWÁûÅ.’íU—ûȮԡƒ÷¤³¤‚cÅÌ®<€,MûXZâÄ‹†Æº„|~â”k™ž8”ïå¥Eª³5O,©kÅs«‡¥ö‡s¬½:&ï µÕ!ÎP­ë”‘à]”Gi…» ëȰɗ 3„´˜Ÿ9äC©Dsú– 0.NõˆONˆ?omsF‹bÑë˜CŸ Ùm1ýê²™äoU…6 ] ÙXþ?ºÜ/y¾øj.´“$E’Œ©Øœo0%Û´«7èp " )H Œ§å“^nY|žÈ_1 ,H?ÐB Žå2€EÅåoe¦áÏPxŸd`×­JÝê%¶MÃŒÝ0¶ND- }ƒ¤ ñ!dè¡ã/ä²×Q–YEèì)ð@©âuF†$wÇM5š©™[TãgBkEÖ}©>q½/!êV…ñr†å!¥za‚ÍM•®€[›GL&-§jÑûÍ%ܲžì$冤ôxäyÿë¡´¬·,y–óKí ;H}P½çÿJu܇îß›Mzša0õgœÇU0‚8G%/™lƒû×Z9¥¢>¦ °|ž¤¶7˜*`Æ’~ðÃÔµëdIñ“‰dqãÆ›¹Ô½P‘TèrÛ,ÓÊÌ S?ŒÑéGÅŒ% ßfåŸ3ƘtšŽ8ͤh¶.e¯iÍ;„ ]I}åy24)S£éË„‘Ѐ“üMgiž“èൿÙÿÚždklÏâ-ÒVFŸ°K4kÝÁ߸5gD½#$9 ö*¥ê®uïsÈ Œ!Ò€#îÙ~›êü­ãx)¯ÑÙV¼H7¦Tfð‘Æ^¯1}‘êÏÚúS}úƒŠÚÐñÒG£ôLQ{³ ¡iÈÜþ½ù‡!7iÜzcÜÏž—aXw9U?(LÓ0‘`‰y}‚œðÛY,·®Çôoáó8«ž˱AGO—% ?‘`=º¾Ø:ûòfÐå1ÄÜÌPWÃH=7^();8J¥Ã6låÆz·a”^îQÝf4”ª%6S»+BÒ‘üª*©L|§üõUxz¯ç:¶c{#¾rVÓYþ·dÞ/L¨‘÷„'ñ²Ð(}¢]«+CQë\TKìÚ›tÊÎàÿìÖ*‘®¶¼±o$a° ¬Ö6¿DÖÑD˜”᯿ÇÞ¹l¾Ž¯$C?ʞѷk—æ¯À!È•A¤=DÑ á«›vQ£6h4ã©/´yÅ̹üF%¹u>šËn.«+¨Ñ›P©Îj=¢iI…¼Þ‘ åž=¤¾N‘h)NÐT˜ÚùÕúÀDZÁ¿+6\‚‹ o[è.Åý…'— Ѩ’Ê7âï}¨.Y0zˆÁ ó:QŒW¤†¹áx'öú¤‘¾ElÓÐ"fµOÚ'º¥ÎTìou]³EC8H]4‰0²ãRœRô‡‚3… |Ë+—h“zõyC7¤>ê˜'Œ~`Ûð$A«¼Õˆ†{íz¶fGùeˆd©;ÚW=?ric/µåͬ­èd7C@ϾÄrØ-’àq²¤g·‚ ÿ¾û 2>ÃC*ã%Ó­è–-V,×ËÃûÄO5¾fyrG¿Àï°ûç5Pˆ‰Óyq„m7:n¥_‡ êì‹DfbîxJ+â7Ìéójò½ÐJ?ñÉ~;[ú>ü¡Ó®¾ ýò.ý,;kŽ|-c}Èèå,©WŽŽ"±úº¥›ã£tä"¢¯G✭ö¥ ñùY!®Òg?Ȇø—'33Ȧ7Â] ÎÇZ¾s_žRð½qƒñ!_gý‘T¬|¬µ)ÅzfÞ;có­ž«IXE0«TAÕñ 5ÇjÛ]_ÕçwŸê’£B; SxGüüü¯‘ñÝæf/ 5hA&Oè¶#}攊…ÖÙ7¸uk¸‰Enâ³#~•ĺþ¬ø©<í~rhÜÊ–‚— JªÀËS³;8Ç•#êÉ­5bÒ)Üm—ðPZ¸kù`««š˜ZèmÖÕqnÔ/X"›|@PÇý¾¢±ö0—!rˆÐ}%þ3?ÄŒVâz}¾Ì¤ù)¢ÞÏÏFrjd\¥ÚCW„‚0þá ç²5ÒÓ‰BÁtü™U§þIžk‹ ªóž›´_R¤|êHÈ>Bªºß‹<øôËE¢!4€RlÊØ-h•“ç'¤¬löÆ“ƒl{úÁY­#y~øµÏ6DG›Q·²ˆÊ}Ä™ª¹ÝÝ4ùN±ŽG&-¨&qèáã‰%n#Ø)­­ƒ”×1Ê©üºÊZ|W¼9‘x+w“Ö·ã‰vø"Âè³Ý 'ºM°`QÕÙS‘€»Æ’¾ãÛ;ê ÌåtŒ¤÷XP¦ŸÔÎøÊQù¨WoeCœlÖÉËUÑeñcüTu˜›¿8Gç$=H¸Æ4¨'ÎýÞ†Ë`"º§üšV¢ÎpŸá)¢–V .ÁgìbÕ£°|¼Ók²ڞηç}£vÙEϽƒ&y¨cˆ.Âzš•@œÙ+Ëà1{œ÷ᇿ›RãcÞ4>LD•*ºØ«zOö§¡ãP仞Ëx¥]š´Äâ¥챂#«8 þáÄú\h­êh8Œ*fÚÏ­ :8ë,7¯„m ±VyØ2#é ãÊî á`ñL'ÊÇrø½¡±<ǹAKê¬JVœGÙ£™ã5øL‹'Y.ü‹[ v.ÅA>uRèô§&ލ*ú@–­ö:ÛF2ŠÜÕ¯𡤤ê] n;îˆ)ý\ÎT¾š­Ã¼éV6{=´IÖÖnžy¢fsü%f€É¤òS}•,„ÙÄ]ÀêîçRßÞþëãp¢üŸA©L<ýUê2z¸“ñØ\&5°·Dl«y<Ó¸oøúHŠ</|ôøÆÎ@¥”±–YîÚ³0Ú” 4ÂÊ/ø™æ¿])VvºøP‰&-–ºë¯ÝJ=5ô¾öVØò}ÑñG=N·ùì'rǯ³Î'™½R¡euCX~ãä·Wéorw2e¹8 ³ÂWoæhÔ+­>¹@ì0õGo2¥ͤÃC˜NmPa˜Q•à÷IU5à{Q¦µ š*¤YûFâNŠÔ+ Gõþ°^Ó"´×TŒ@ Ä‹Þ>)*E@––z=}3Ô·¥ƒÉžÝ¦-*'t6>!àeGmÖH‡ |rî± fëÿO„ó` endstream endobj 117 0 obj << /Type /FontDescriptor /FontName /AKKXQH+CMTT10 /Flags 4 /FontBBox [-4 -233 537 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/e/equal/f/g/h/i/n/o/p/q/r/s/t) /FontFile 116 0 R >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /BaseFont /XOSQUH+CMBX10 /FontDescriptor 89 0 R /FirstChar 63 /LastChar 63 /Widths 82 0 R >> endobj 7 0 obj << /Type /Font /Subtype /Type1 /BaseFont /RJSLPK+CMBX12 /FontDescriptor 91 0 R /FirstChar 46 /LastChar 120 /Widths 84 0 R >> endobj 16 0 obj << /Type /Font /Subtype /Type1 /BaseFont /DGKQXM+CMEX10 /FontDescriptor 93 0 R /FirstChar 16 /LastChar 112 /Widths 79 0 R >> endobj 8 0 obj << /Type /Font /Subtype /Type1 /BaseFont /XAPWJU+CMMI10 /FontDescriptor 95 0 R /FirstChar 12 /LastChar 120 /Widths 83 0 R >> endobj 53 0 obj << /Type /Font /Subtype /Type1 /BaseFont /VPXKNP+CMMI6 /FontDescriptor 97 0 R /FirstChar 105 /LastChar 106 /Widths 73 0 R >> endobj 18 0 obj << /Type /Font /Subtype /Type1 /BaseFont /FJSCRJ+CMMI8 /FontDescriptor 99 0 R /FirstChar 12 /LastChar 119 /Widths 77 0 R >> endobj 6 0 obj << /Type /Font /Subtype /Type1 /BaseFont /YEERUZ+CMR10 /FontDescriptor 101 0 R /FirstChar 3 /LastChar 124 /Widths 85 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /BaseFont /IEFEKY+CMR12 /FontDescriptor 103 0 R /FirstChar 46 /LastChar 121 /Widths 86 0 R >> endobj 4 0 obj << /Type /Font /Subtype /Type1 /BaseFont /RSTHTQ+CMR17 /FontDescriptor 105 0 R /FirstChar 67 /LastChar 120 /Widths 87 0 R >> endobj 32 0 obj << /Type /Font /Subtype /Type1 /BaseFont /HAJAQX+CMR6 /FontDescriptor 107 0 R /FirstChar 50 /LastChar 52 /Widths 75 0 R >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /BaseFont /FFGBUJ+CMR8 /FontDescriptor 109 0 R /FirstChar 40 /LastChar 61 /Widths 81 0 R >> endobj 15 0 obj << /Type /Font /Subtype /Type1 /BaseFont /UHBOYQ+CMSY10 /FontDescriptor 111 0 R /FirstChar 0 /LastChar 112 /Widths 80 0 R >> endobj 17 0 obj << /Type /Font /Subtype /Type1 /BaseFont /JVVTVV+CMSY8 /FontDescriptor 113 0 R /FirstChar 0 /LastChar 121 /Widths 78 0 R >> endobj 31 0 obj << /Type /Font /Subtype /Type1 /BaseFont /KNVEBL+CMTI10 /FontDescriptor 115 0 R /FirstChar 104 /LastChar 119 /Widths 76 0 R >> endobj 36 0 obj << /Type /Font /Subtype /Type1 /BaseFont /AKKXQH+CMTT10 /FontDescriptor 117 0 R /FirstChar 61 /LastChar 116 /Widths 74 0 R >> endobj 11 0 obj << /Type /Pages /Count 6 /Parent 118 0 R /Kids [2 0 R 13 0 R 20 0 R 23 0 R 26 0 R 29 0 R] >> endobj 37 0 obj << /Type /Pages /Count 6 /Parent 118 0 R /Kids [34 0 R 39 0 R 42 0 R 45 0 R 48 0 R 51 0 R] >> endobj 57 0 obj << /Type /Pages /Count 6 /Parent 118 0 R /Kids [55 0 R 59 0 R 62 0 R 65 0 R 68 0 R 71 0 R] >> endobj 118 0 obj << /Type /Pages /Count 18 /Kids [11 0 R 37 0 R 57 0 R] >> endobj 119 0 obj << /Type /Catalog /Pages 118 0 R >> endobj 120 0 obj << /Producer (pdfTeX-1.40.10) /Creator (TeX) /CreationDate (D:20120411141846-05'00') /ModDate (D:20120411141846-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.10-2.2 (TeX Live 2009/Debian) kpathsea version 5.0.0) >> endobj xref 0 121 0000000000 65535 f 0000002056 00000 n 0000001951 00000 n 0000000015 00000 n 0000221848 00000 n 0000221708 00000 n 0000221569 00000 n 0000220867 00000 n 0000221148 00000 n 0000220728 00000 n 0000222127 00000 n 0000222832 00000 n 0000005128 00000 n 0000005020 00000 n 0000002191 00000 n 0000222266 00000 n 0000221007 00000 n 0000222407 00000 n 0000221429 00000 n 0000008726 00000 n 0000008618 00000 n 0000005278 00000 n 0000011289 00000 n 0000011181 00000 n 0000008865 00000 n 0000014592 00000 n 0000014484 00000 n 0000011415 00000 n 0000017557 00000 n 0000017449 00000 n 0000014730 00000 n 0000222547 00000 n 0000221988 00000 n 0000021121 00000 n 0000021013 00000 n 0000017720 00000 n 0000222690 00000 n 0000222941 00000 n 0000024164 00000 n 0000024056 00000 n 0000021283 00000 n 0000026652 00000 n 0000026544 00000 n 0000024290 00000 n 0000029604 00000 n 0000029496 00000 n 0000026789 00000 n 0000032616 00000 n 0000032508 00000 n 0000029742 00000 n 0000035613 00000 n 0000035505 00000 n 0000032778 00000 n 0000221288 00000 n 0000038291 00000 n 0000038183 00000 n 0000035786 00000 n 0000223051 00000 n 0000041191 00000 n 0000041083 00000 n 0000038406 00000 n 0000044016 00000 n 0000043908 00000 n 0000041341 00000 n 0000046585 00000 n 0000046477 00000 n 0000044155 00000 n 0000049811 00000 n 0000049703 00000 n 0000046712 00000 n 0000051012 00000 n 0000050904 00000 n 0000049972 00000 n 0000051104 00000 n 0000051134 00000 n 0000051376 00000 n 0000051412 00000 n 0000051520 00000 n 0000052184 00000 n 0000052940 00000 n 0000053539 00000 n 0000054186 00000 n 0000054336 00000 n 0000054360 00000 n 0000054982 00000 n 0000055424 00000 n 0000056101 00000 n 0000056520 00000 n 0000056858 00000 n 0000065613 00000 n 0000065839 00000 n 0000077507 00000 n 0000077792 00000 n 0000088199 00000 n 0000088748 00000 n 0000104042 00000 n 0000104380 00000 n 0000111789 00000 n 0000112009 00000 n 0000121656 00000 n 0000121901 00000 n 0000145852 00000 n 0000146405 00000 n 0000156701 00000 n 0000156969 00000 n 0000166691 00000 n 0000166937 00000 n 0000174326 00000 n 0000174557 00000 n 0000183675 00000 n 0000183973 00000 n 0000192857 00000 n 0000193180 00000 n 0000200702 00000 n 0000200949 00000 n 0000209867 00000 n 0000210099 00000 n 0000220482 00000 n 0000223161 00000 n 0000223236 00000 n 0000223289 00000 n trailer << /Size 121 /Root 119 0 R /Info 120 0 R /ID [ ] >> startxref 223556 %%EOF survival/inst/doc/tests.Rnw0000644000176000001440000025271412267746150015556 0ustar ripleyusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Cox models and ``type 3'' Tests} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{width=6,height=4} \setkeys{Gin}{width=\textwidth} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default @ \title{Cox models and ``type III'' tests} \author{Terry M Therneau \\ \emph{Mayo Clinic}} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {tests-#1.pdf}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\ybar}{\overline{y}} \begin{document} \maketitle \tableofcontents \section{Introduction} This note started with an interchange on the R-help list that became a bit adversarial. A user asked ``how do I do a type III test using the Cox model'', and I replied that, in essence, this was not a well defined question. If he/she could define exactly what it was that they were after, then I would look into it. The inevitable response was that ``SAS does it''. So what exactly is it that SAS does? A look in the phreg documentation turned up no leads. Several grant deadlines were looming and I got testy at this point, so the discussion didn't get any further. The present note tries to clarify the issues. What SAS calls a \emph{type 3} test is rooted in linear models, and is based on a moderately complex argument. How exactly does that argument play out in a Cox model, what exactly are the calculations used, and how do they relate to the usual likelihood ratio and score tests? For the impatient readers among you I'll list the main outline and conclusions of this report at the start. \begin{itemize} \item SAS type 3 is a particular algorithm for computing a linear models estimate known as ``Yates' weighted squares of means'', which traces back to a 1934 paper by F. Yates \cite{Yates34}. \begin{itemize} \item The utility of the Yates approach for selected designs is unquestioned, but whether it is always applicable is far more controversial. Scholarly papers discussing fundamental issues with using the Yates approach as a default analysis method have appeared almost yearly in the statistics literature, with little apparent effect on the usage of the method. \item My own view is that for balanced or near balanced experiments the Yates' hypothesis is very sensible, but for most biological data it corresponds to a valid test of a completely irrelevant question. \end{itemize} \item I have a natural antipathy for grafting linear models ideas onto the Cox model, since I've found that some things do indeed transfer over but many (most) do not. \begin{itemize} \item For a linear model there are multiple ways to compute and/or understand any particular estimate, including the Yates approach. \item These different approaches will \emph{not} be identical when copied over to the Cox model case, thus it is important to carefully understand what computation is being done. \end{itemize} \item A good portion of this note is focused on linear models and computations, in order to set the necessary groundwork for the Cox case. \item If one is going to use the Yates approach it should at least be computed correctly. The SAS type 3 computation for linear models is sophisticated and reliable; that used in phreg is neither. I would describe this recent addition as a black eye for the SAS package, seriously undermining their reputation for reliable computation. The calculated phreg results depend on which particular coding is chosen for the factors, the default coding leads to an unexpected result, and labeling that output as ``type 3'' is deceptive. Documentation of the actual procedure is completely lacking. (This is true for SAS version 9.3; I will update this note if things change.) \end{itemize} \section{Linear approximations and the Cox model} \label{sect:transfer} One foundation of my concern has to do with the relationship between linear models and coxph. The solution to the Cox model equations can be represented as an iteratively reweighted least-squares problem, with an updated weight matrix and adjusted dependent variable at each iteration, rather like a GLM model. This fact has been rediscovered multiple times, and leads to the notion that since the last iteration of the fit \emph{looks} just like a set of least-squares equations, then various least squares ideas could be carried over to the proportional hazards model by simply writing them out using these final terms. In practice, sometimes this works and sometimes it doesn't. The Wald statistic is one example of the former type, which is completely reliable as long as the coefficients $\beta$ are not too large\footnote{ In practice failure only occurs in the rare case that one of the coefficients is tending to infinity. However, in that case the failure is complete: the likelihood ratio and score tests behave perfectly well but the Wald test is worthless.}. A counter example is found in two ideas used to examine model adequacy: adjusted variable plots and constructed variable plots, each of which was carried over to the Cox model case by reprising the linear-model equations. After a fair bit of exploring I found neither is worth doing \cite{Therneau00}. Copying over a linear models formula simply did not work in this case. Thus I am naturally suspicious whenever a linear model idea is grafted onto a Cox model computation. Has the necessary legwork been done to ensure that the procedure actually works in the case at hand? I have not found any such for the SAS computation of type 3 results in their phreg procedure. This doesn't mean it won't work, all might well be OK. Addition of a new method to a package without reporting such an investigation is irresponsible, however. \begin{figure} \myfig{data} \caption{Average free light chain for males and females. The figure shows both a smooth and the means within deciles of age.} \label{fig:data} \end{figure} \section{Data set} We will motivate our discussion with the simple case of a two-way analysis. The \code{flchain} data frame contains the results of a small number of laboratory tests done on a large fraction of the 1995 population of Olmsted County, Minnesota aged 50 or older \cite{Kyle06, Dispenzieri12}. The R data set contains a 50\% random sample of this larger study and is included as a part of the survival package. The primary purpose of the study was to measure the amounts of plasma immunoglobulins and their components. Intact immunoglobulins are composed of a heavy chain and light chain portion. In normal subjects there is overproduction of the light chain component by the immune cells leading to a small amount of \emph{free light chain} in the circulation. Excessive amounts of free light chain (FLC) are thought to be a marker of disregulation in the immune system. Free light chains have two major forms denoted as kappa and lambda, we will use the sum of the two. An important medical question is whether high levels of FLC have an impact on survival, which will be explored using a Cox model. To explore linear models we will compare FLC values between males and females. A confounding factor is that free light chain values rise with age, in part because it is eliminated by the kidneys and renal function declines with age. The age distribution of males and females differs, so we will need to adjust our simple comparison between the sexes for age effects. The impact of age on mortality is of course even greater and so correction for the age imbalance is is critical when exploring the impact of FLC on survival. Figure \ref{fig:data} shows the trend in free light chain values as a function of age. For illustration of linear models using factors, we have also created a categorical age value using deciles of age. The table of counts shows that the sex distribution becomes increasingly unbalanced at the older ages, from about 1/2 females in the youngest group to a 4:1 ratio in the oldest. <>= library(survival) age2 <- cut(flchain$age, c(49, 59, 69, 79, 89, 120), labels=c("50-59", "60-69", "70-79", "80-89", "90+")) counts <- with(flchain, table(sex, age2)) counts # flchain$flc <- flchain$kappa + flchain$lambda male <- (flchain$sex=='M') mlow <- with(flchain[male,], smooth.spline(age, flc)) flow <- with(flchain[!male,], smooth.spline(age, flc)) plot(flow, type='l', ylim=range(flow$y, mlow$y), xlab="Age", ylab="FLC") lines(mlow, col=2) cellmean <- with(flchain, tapply(flc, list(sex, age2), mean, na.rm=T)) matpoints(c(55,65,75, 85, 95), t(cellmean), pch='fm', col=1:2) round(cellmean, 2) @ Notice that the male/female difference in FLC varies with age, \Sexpr{round(cellmean[1,1],1)} versus \Sexpr{round(cellmean[2,1],1)} at age 50--59 and \Sexpr{round(cellmean[1,5],1)} versus \Sexpr{round(cellmean[2,5],1)} at age 90. The data does not fit a simple additive model; there are ``interactions'' to use statistical parlance. An excess of free light chain is thought to be at least partly a reflection of immune senescence, and due to our hormonal backgrounds men and women simply do not age in quite the same way. Real data always has interactions. The treatment effect of a drug will not be exactly the same for old and young, thin and obese, physically active and sedentary, high vs low metabolism, etc. Explicit recognition of this is an underlying rationale of the current drive towards ``personalized medicine'', though that buzzword often focuses only on genetic differences. Any given data set will often be too small to chart these variations, and our statistical models will will ignore complex confounding, but interactions are nevertheless still present. Any estimate of an overall main effect is in truth an averaged effect over some population of confounders. \section{Linear models and populations} If we ignore the age effect, then everyone agrees on the best estimate of mean FLC: the simple average of FLC values within each sex. The male-female difference is estimated as the difference of these means. This is what is obtained from a simple linear regression of FLC on sex. Once we step beyond this and adjust for age, the relevant linear models can be looked at in several ways; we will explore three of them below: contrasts, case weights, and nesting. This ``all roads lead to Rome'' property of linear models is one of their fascinating aspects, at least mathematically. \subsection{Case weights} \begin{figure} \myfig{pop} \caption{Three possible adjusting populations for the FLC data set, a empirical reference in black, least squares based one in red, and the US 2000 reference population as `u'.} \label{fig:pop} \end{figure} How do we form a single number summary of ``the effect of sex on FLC''? Here are four common choices. \begin{enumerate} \item Unadjusted. The mean for males minus the mean for females. The major problem with this is that a difference in age distributions will bias the result. Looking at figure \ref{fig:data} imagine that this were two treatments A and B rather than male/female, and that the upper one had been given to predominantly 50-65 year olds and the lower predominantly to subjects over 80. An unadjusted difference would actually reverse the true ordering of the curves. \item Population adjusted. An average difference between the curves, weighted by age. Three common weightings are \begin{enumerate} \item External reference. It is common practice in epidemiology to use an external population as the reference age distribution, for instance the US 2000 census distribution. This aids in comparing results between studies. \item Empirical population. The overall population structure of the observed data. \item Least squares. The population structure that minimizes the variance of the estimated female-male difference. \end{enumerate} \end{enumerate} The principle idea behind case weights is to reweight the data such that confounders become balanced, i.e., ages are balanced when examining the sex effect and sex is balanced when examining age. Any fitted least squares estimate can be rewritten as a weighted sum of the data points with weight matrix $W= (X'X)^{-1}X'$. $W$ has $p$ rows, one per coefficient, each row is the weight vector for the corresponding element of $\hat\beta$. So we can backtrack and see what population assumption was underneath any given fit by looking at the weights for the relevant coefficient(s). Consider the two fits below. In both the second coefficient is an estimate of the overall difference in FLC values between the sexes. (The relationship in figure \ref{fig:data} is clearly curved so we have foregone the use of a simple linear term for age; there is no point in fitting an obviously incorrect model.) Since $\beta_2$ is a contrast the underlying weight vectors have negative values for the females and positive for the males. <<>>= us2000 <- rowSums(uspop2[51:101,,'2000']) fit1 <- lm(flc ~ sex, flchain, x=TRUE) fit2 <- lm(flc ~ sex + ns(age,4), flchain, x=TRUE) c(fit1$coef[2], fit2$coef[2]) wt1 <- solve(t(fit1$x)%*%fit1$x, t(fit1$x))[2,] # unadjusted wt2 <- solve(t(fit2$x)%*%fit2$x, t(fit2$x))[2,] # age-adjusted table(wt1, flchain$sex) @ To reconstruct the implied population density, one can use the density function with \code{wt1} or \code{wt2} as the case weights. Examination of \code{wt1} immediately shows that the values are $-1/n_f$ for females and $1/n_m$ for males where $n_f$ and $n_m$ are number of males and females, respectively. The linear model \code{fit1} is the simple difference in male and female means; the implied population structure for males and females is the unweighted density of each. Because this data set is very large and age is coded in years we can get a density estimate for fit2 by simple counting. The result is coded below and shown in figure \ref{fig:pop}. The empirical reference and least squares reference are nearly identical. This is not a surprise. Least squares fits produce minimum variance unbiased estimates (MVUE), and the variance of a weighted average is minimized by using weights proportional to the sample size, thus the MVUE estimate will give highest weights to those ages with a lot of people. The weights are not \emph{exactly} proportional to sample size for each age. As we all know, for a given sample size $n$ a study comparing two groups will have the most power with equal allocation between the groups. Because the M/F ratio is more unbalanced at the right edge of the age distribution the MVUE estimate gives just a little less weight there, but the difference between it and the overall data set population will be slight for all but those pathological cases where there is minimal overlap between M/F age distributions. (And in that case the entire discussion about what ``adjustment'' can or should mean is much more difficult.) <>= us2000 <- rowSums(uspop2[51:101,,'2000']) tab0 <- table(flchain$age) tab2 <- tapply(abs(wt2), flchain$age, sum) matplot(50:100, cbind(tab0/sum(tab0), tab2/sum(tab2)), type='l', lty=1, xlab="Age", ylab="Density") us2000 <- rowSums(uspop2[51:101,,'2000']) matpoints(50:100, us2000/sum(us2000), pch='u') legend(60, .02, c("Empirical reference", "LS reference"), lty=1, col=1:2, bty='n') @ The LS calculation does a population adjustment automatically for us behind the scenes via the matrix algebra of linear models. If we try to apply population reference adjustment directly a problem immediately arises: in the US reference \Sexpr{round(100*us2000[46]/sum(us2000),2)}\% of the population is aged 95 years, and our sample has no 95 year old males; it is not possible to re weight the sample so as to exactly match the US population reference. This occurs in any data set that is divided into small strata. The traditional epidemiology approach to this is to use wider age intervals of 5 or 10 years. Weights are chosen for each age/sex strata such that the sum of weights for females = sum of weights for males within each age group (balance), and the total sum of weights in an age group is equal to the reference population. The next section goes into this further. An increasingly popular approach for producing results that are standardized to the empirical reference population (i.e. the data distribution) is to use a smoothed age effect, obtained through inverse probability weights which are based on logistic regression, e.g. in the causal models literature and propensity score literature. This approach is illustrated in a vignette on adjusted survival curves which is also in the survival package. \subsection{Categorical predictors and contrasts} When the adjusting variable or variables are categorical --- a factor in R or a class variable in SAS --- then two more aspects come into play. The first is that any estimate of interest can be written in terms of the cell means. Formally, the cell means are a \emph{sufficient statistic} for the data. For our data set and using the categorized variable \code{age2} let $\theta_{ij}$ parametrize these means. $$ \begin{tabular}{cccccc} &50--59 & 60--69 & 70-79 & 80-89 & 90+ \\ \hline Female & $\theta_{11}$ & $\theta_{12}$ & $\theta_{13}$& $\theta_{14}$& $\theta_{15}$ \\ Male & $\theta_{21}$ & $\theta_{22}$ & $\theta_{23}$& $\theta_{24}$ & $\theta_{25}$ \\ \end{tabular} $$ For a design with three factors we will have $\theta_{ijk}$, etc. Because it is a sufficient statistic, any estimate or contrast of interest can be written as a weighted sum of the $\theta$s. Formulas for the resulting estimates along with their variances and tests were worked out by Yates in 1934 \cite{Yates34} and are often referred to as a Yates weighted means estimates. For higher order designs the computations can be rearranged in a form that is manageable on a desk calculator, and this is in fact the primary point of that paper. (Interestingly, his computational process turns out to be closely related to the fast Fourier transform.) The second facet of categorical variables is that another adjustment is added to the list of common estimates: \begin{enumerate} \item Unadjusted \item Population adjusted \begin{enumerate} \item External reference \item Empirical (data set) reference \item Least squares \item Uniform. A population in which each combination of the factors has the same frequency of occurrence. \end{enumerate} \end{enumerate} The uniform population plays a special role in the case of designed experiments, where equal allocation corresponds to the optimal study design. The Yates estimates are particularly simple in this case. For a hypothetical population with equal numbers in each age category the estimated average FLC for females turns out to be $\mu_f = \sum_j \theta_{1j} /5$ and the male - female contrast is $\sum_j(\theta_{2j}-\theta_{1j})/5$. We will refer to these as the ``Yates'' estimates and contrast for an effect. Conversely, the estimated age effects, treating sex as a confounding effect and assuming an equal distribution of females and males as the reference population, gives an estimated average FLC for the 60-69 year olds of $\mu_{60-69}= (\theta_{12} + \theta_{22})/2$, and etc for the other age groups. We can obtain the building blocks for Yates estimates by using the interaction function and omitting the intercept. <>= yatesfit <- lm(flc ~ interaction(sex, age2) -1, data=flchain) theta <- matrix(coef(yatesfit), nrow=2) dimnames(theta) <- dimnames(counts) round(theta,2) @ For a linear model fit, any particular weighted average of the coefficients along with its variance and the corresponding sums of squares can be computed using the \code{contrast} function given below. Let $C$ be a contrast matrix with $k$ rows, each containing one column per coefficient. Then $C\theta$ is a vector of length $k$ containing the weighted averages and $V = \hat\sigma^2 C (X'X)^{-1}C'$ is its variance matrix. The sums of squares is the increase in the sum of squared residuals if the fit were restricted to the subspace $C\theta =0$. Formulas are from chapter 5 of Searle \cite{Searle71}. Some authors reserve the word \emph{contrast} for the case where each row of $C$ sums to zero and use \emph{estimate} for all others; I am being less restrictive since the same computation serves for both. <<>>= qform <- function(beta, var) # quadratic form b' (V-inverse) b sum(beta * solve(var, beta)) contrast <- function(cmat, fit) { varmat <- vcov(fit) if (class(fit) == "lm") sigma2 <- summary(fit)$sigma^2 else sigma2 <- 1 # for the Cox model case beta <- coef(fit) if (!is.matrix(cmat)) cmat <- matrix(cmat, nrow=1) if (ncol(cmat) != length(beta)) stop("wrong dimension for contrast") estimate <- drop(cmat %*% beta) #vector of contrasts ss <- qform(estimate, cmat %*% varmat %*% t(cmat)) *sigma2 list(estimate=estimate, ss=ss, var=drop(cmat %*% varmat %*% t(cmat))) } yates.sex <- matrix(0, 2, 10) yates.sex[1, c(1,3,5,7,9)] <- 1/5 #females yates.sex[2, c(2,4,6,8,10)] <- 1/5 #males contrast(yates.sex, yatesfit)$estimate # the estimated "average" FLC for F/M contrast(yates.sex[2,]-yates.sex[,1], yatesfit) # male - female contrast @ <>= # Create the estimates table -- lots of fits emat <- matrix(0., 6, 3) dimnames(emat) <- list(c("Unadjusted", "MVUE: continuous age", "MVUE: categorical age", "Empirical (data) reference", "US200 reference", "Uniform (Yates)"), c("est", "se", "SS")) #unadjusted emat[1,] <- c(summary(fit1)$coef[2,1:2], anova(fit1)["sex", "Sum Sq"]) # MVUE -- do the two fits fit2 <- lm(flc ~ ns(age,4) + sex, flchain) emat[2,] <- c(summary(fit2)$coef[6, 1:2], anova(fit2)["sex", "Sum Sq"]) fit2 <- lm(flc ~ age2 + sex, flchain) emat[3,] <- c(summary(fit2)$coef[6, 1:2], anova(fit2)["sex", "Sum Sq"]) #Remainder, use contrasts tfun <- function(wt) { cvec <- c(matrix(c(-wt, wt), nrow=2, byrow=TRUE)) temp <- contrast(cvec, yatesfit) c(temp$est, sqrt(temp$var), temp$ss) } emat[4,] <- tfun(colSums(counts)/sum(counts)) usgroup <- tapply(us2000, rep(1:5, c(10,10,10,10,11)), sum)/sum(us2000) emat[5,]<- tfun(usgroup) emat[6,] <- tfun(rep(1/5,5)) @ \begin{table} \centering \begin{tabular}{l|ccc} & estimate & sd & SS \\ \hline <>= temp <- dimnames(emat)[[1]] for (i in 1:nrow(emat)) cat(temp[i], sprintf(" &%5.3f", emat[i,1]),sprintf(" &%6.5f", emat[i,2]), sprintf(" & %6.1f", emat[i,3]), "\\\\ \n") @ \end{tabular} \caption{Estimates of the male-female difference along with their standard errors. The last 4 rows are based on categorized age.} \label{tab:allest} \end{table} Table \ref{tab:est} shows all of the estimates of the male/female difference we have considered so far along with their standard errors. Because it gives a much larger weight to the 90+ age group than any of the other estimates, and that group has the largest M-F difference, the projected difference for a uniform population (Yates estimate) yields the largest contrast. It pays a large price for this in terms of standard error, however, and is over twice the value of the other approaches. As stated earlier, any least squares parameter estimate can be written as a weighted sum of the y values. Weighted averages have minimal variance when all of the weights are close to 1. The unadjusted estimate adheres to this precisely and the data-reference and MVUE stay as close as possible to constant weights, subject to balancing the population. The Yates estimate, by treating every cell equally, implicitly gives much larger weights to the oldest ages. Table \ref{tab:est} shows the effective observation weights used for each of the age categories. <>= casewt <- array(1, dim=c(2,5,4)) # case weights by sex, age group, estimator csum <- colSums(counts) casewt[,,2] <- counts[2:1,] / rep(csum, each=2) casewt[,,3] <- rep(csum, each=2)/counts casewt[,,4] <- 1/counts #renorm each so that the mean weight is 1 for (i in 1:4) { for (j in 1:2) { meanwt <- sum(casewt[j,,i]*counts[j,])/ sum(counts[j,]) casewt[j,,i] <- casewt[j,,i]/ meanwt } } @ \begin{table} \centering \begin{tabular}{rlrrrrr} &&50--59& 60--69 & 70--79 & 80--89 & 90+ \\ \hline <>= tname <- c("Unadjusted", "Min var", "Empirical", "Yates") for (i in 1:2) { for (j in 1:4) { cat("&",tname[j], " & ", paste(sprintf("%4.2f", casewt[i,,j]), collapse= " & "), "\\\\\n") if (j==1) cat(c("Female", "Male")[i]) } if (i==1) cat("\\hline ") } @ \end{tabular} \caption{Observation weights for each data point corresponding to four basic approaches. All weights are normed so as to have an average value of 1.} \label{tab:est} \end{table} Looking at table \ref{tab:est} notice the per observation weights for the $\ge 90$ age group, which is the one with the greatest female/male imbalance in the population. For all but the unbalanced estimate (which ignores age) the males are given a weight that is approximately 3 times that for females in order to re balance the shortage of males in that category. However, the absolute values of the weights differ considerably. \subsection{Different codings} Because the cell means are a sufficient statistic, all of the estimates based on categorical age can be written in terms of the cell means $\hat\theta$. The Yates contrast is the simplest to write down: $$ \begin{tabular} {rrrrrr} & 50--59 & 60--69 & 70--79 & 80--89 & 90+ \\ \hline Female & -1/5 & -1/5 & -1/5 & -1/5 & -1/5 \\ Male & 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{tabular} $$ %(Note that for calculating a sum of squares we will get the exact same %result from a matrix using $\pm 1$ rather than $\pm 1/5$; %the Yates contrast is often written this way.) For the data set weighting the values of 1/5 are replaced by $n_{+j}/n_{++}$, the overall frequency of each age group, where a $+$ in the subscript stands for addition over that subscript in the table of counts. The US population weights use the population frequency of each age group. The MVUE contrast has weights of $w_j/\sum w_j$ where $w_j = 1/(1/n_{1j} + 1/n_{2j})$, which are admittedly not very intuitive. $$ \begin{tabular}{rrrrrr} & 50--59 & 60--69 & 70--79 & 80--89 & 90+ \\ \hline <>= temp <- 1/colSums(1/counts) temp <- temp/sum(temp) cat("Female", sprintf(" & %5.3f", -temp), "\\\\ \n") cat("Male", sprintf(" & %5.3f", temp), "\\\\ \n") @ \end{tabular} $$ In the alternate model \code{y \textasciitilde sex + age2} the MVUE contrast is much simpler, namely (0, 1, 0,0,0,0,0), and can be read directly off the printout as $\beta/se(\beta)$. The computer's calculation of $(X'X)^{-1}$ has derived the ``complex'' MVUE weights for us without needing to lift a pencil. The Yates contrast, however, cannot be created from the coefficients of the simpler model at all. This observation holds in general: a contrast that is simple to write down in one coding may appear complicated in another, or not even be possible. The usual and more familiar coding for a two way model is \begin{equation} y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} \label{std} \end{equation} What do the Yates' estimates look like in this form? Let $e_i$ be the Yates estimate for row $i$ and $k$ the number of columns in the two way table of $\theta$ values. Then \begin{align*} e_i &= (1/k)\sum_{j=1}^k \theta_{ij} \\ &= \mu + \alpha_i + \sum_j \left(\beta_j + \gamma_{ij}\right)/k \end{align*} and the Yates test for row effect is \begin{align} 0 &= e_i - e_{i'} \quad \forall i,i' \nonumber \\ &= (\alpha_i - \alpha_{i'}) + (1/k)\sum_j(\gamma_{ij} - \gamma_{i'j}) \label{ycont} \end{align} Equation \eqref{std} is overdetermined and all computer programs add constraints in order to guarantee a unique solution. However those constraints are applied, however, equation \eqref{ycont} holds. The default in R is treatment contrasts, which use the first level of any factor as a reference level. Under this constraint the reference coefficients are set to zero, i.e., all coefficients of equations \eqref{std} and \eqref{ycont} above where $i=1$ or $j=1$. We have been computing the male - female contrast, corresponding to $i=2$ and $i'=1$ in equation \eqref{ycont}, and the Yates contrast for sex becomes $\alpha_2 + 1/5(\gamma_{22} +\gamma_{23} +\gamma_{24} +\gamma_{25})$. The code below verifies that this contrast plus the usual R fit replicates the results in table \ref{tab:allest}. <>= fit3 <- lm(flc ~ sex * age2, flchain) coef(fit3) contrast(c(0,1, 0,0,0,0, .2,.2,.2,.2), fit3) #Yates @ The usual constraint is SAS is to use the last level of any class variable as the reference group, i.e., all coefficients with $i=2$ or $j=5$ in equations \eqref{std} and \eqref{ycont} are set to zero. <>= options(contrasts=c("contr.SAS", "contr.poly")) sfit1 <- lm(flc ~ sex, flchain) sfit2 <- lm(flc ~ sex + age2, flchain) sfit3 <- lm(flc ~ sex * age2, flchain) contrast(c(0,-1, 0,0,0,0, -.2,-.2,-.2,-.2), sfit3) # Yates for SAS coding @ The appendix contains SAS code and output for the three models \code{sfit1, sfit2} and \code{sfit3} above. The \code{E3} option was added to the SAS model statements, which causes a symbolic form of the contrasts that were used for ``type III'' results to be included in the printout. Look down the column labeled ``SEX'' and you will see exactly the coefficients used just above, after a bit of SAS to English translation. \begin{itemize} \item The SAS printout is labeled per equation \eqref{std}, so L1= column 1 of the full $X$ matrix = intercept. L2 = column 2 = females, L3 = column 3 = males, L4= column 4 = age 50--59, etc. \item In the symbolic printout they act as though sum constraints were in force: the last column of age is labeled with a symbolic value that would cause the age coefficients to sum to zero. However, in actuality these coefficients are set to zero. The table of parameter estimates at the end of the printout reveals this; forced zeros have a blank for their standard error. \item When calculating the contrast one can of course skip over the zero coefficients, and the R functions do not include them in the coefficient vector. Remove all of these aliased rows from the SAS symbolic printout to get the actual contrast that is used; this will agree with my notation. \item The SAS printout corresponds to a female-male contrast and I have been using male-female for illustration. This changes the signs of the contrast coefficients but not the result. \end{itemize} The \code{estimate} statement in the SAS code required that all of the coefficients be listed, even the aliased ones (someone more proficient in SAS may know a way to avoid this and enter only the non-aliased values.) %A general principle is that a given hypothesis may be represented as %a simple contrast in one coding but be complex in another. %The unadjusted test is a trivial contrast in the sfit1 coding, but a %complex one in the sfit3 coding. %The Yates test cannot be expressed as a contrast using the sfit1 or sfit2 %coding, is simple and obvious in the cell means coding, and has %simple but non obvious coefficients in the sfit3 coding. %Que sera sera. So, how do we actually compute the Yates contrast in a computer program? We will take it as a give that no one wants to memorize contrast formulas. Appendix \ref{sect:coding} describes three algorithms for the computation. One of these three (NSTT) is completely unreliable, but is included because it is so often found in code. If one uses the sum constraints commonly found in textbooks, which corresponds to the \code{contr.sum} constraint in R and to \code{effect} constraints in SAS, and there are no missing cells, then the last term in equation \eqref{ycont} is zero and the simple contrast $\alpha_i =0$ will be equal to the Yates contrast for sex. I often see this method recommended on R help in response to the question of ``how to obtain type III'', computed either by use of the \code{drop1} command or the \code{Anova} function found within the car package, but said advice almost never mentions the need for this particular non-default setting of the contrasts option\footnote{The Companion to Applied Regression (car) package is designed to be used with the book of the same name by John Fox, and the book does clarify the need for sum constraints.}. When applied to other codings the results of this procedure can be surprising. <>= options(contrasts = c("contr.treatment", "contr.poly")) #R default fit3a <- lm(flc ~ sex * age2, flchain) options(contrasts = c("contr.SAS", "contr.poly")) fit3b <- lm(flc~ sex * age2, flchain) options(contrasts=c("contr.sum", "contr.poly")) fit3c <- lm(flc ~ sex * age2, flchain) # nstt <- c(0,1, rep(0,8)) #test only the sex coef = the NSTT method temp <- rbind(unlist(contrast(nstt, fit3a)), unlist(contrast(nstt, fit3b)), unlist(contrast(nstt, fit3c)))[,1:2] dimnames(temp) <- list(c("R", "SAS", "sum"), c("effect", "SS")) print(temp) # drop1(fit3a, .~.) @ For the case of a two level effect such as sex, the NSTT contrast under the default R coding is a comparison of males to females in the first age group \textbf{only}, and under the default SAS coding it is a comparison of males to females within the \textbf{last} age group. Due to this easy creation of a test statistic which has no relation to the global comparison one expects from the ``type 3'' label the acronym \emph{not safe type three}(NSTT) was chosen, ``not SAS'' and ``nonsense'' are alternate mnemonics. \subsection{Sums of squares and projections} \label{sect:anova} The most classic exposition of least squares is as a set of projections, each on to a smaller space. Computationally we represent this as a series of model fits, each fit summarized by the change from the prior fit in terms of residual sum of squares. <>= options(show.signif.stars = FALSE) #exhibit intelligence sfit0 <- lm(flc ~ 1, flchain) sfit1b <- lm(flc ~ age2, flchain) anova(sfit0, sfit1b, sfit2, sfit3) @ The second row is a test for the age effect. The third row of the above table summarizes the improvement in fit for the model with sex + age2 over the model with just age2, a test of ``sex, adjusted for age''. This test is completely identical to the minimum variance contrast, and is in fact the way in which that SS is normally obtained. The test for a sex effect, unadjusted for age, is identical to an anova table that compares the intercept-only fit to one with sex, i.e., the second line from a call to \code{anova(sfit0, sfit1)}. The anova table for a nested sequence of models $A$, $A+B$, $A + B +C$, \ldots has a simple interpretation, outside of contrasts or populations, as an improvement in fit. Did the variable(s) $B$ add significantly to the goodness of fit for a model with just $A$, was $C$ an important addition to a model that already includes $A$ and $B$? The assessment of improvement is based on the likelihood ratio test (LRT), and extends naturally to all other models based on likelihoods. The tests based on a target population (external, data population, or Yates) do not fit naturally into this approach, however. %Obtaining the Yates contrast using a sequential sums of squares approach %is possible but a bit contrived. %Our final fit in the table will be \code{sfit3}, but %the one prior to it needs to be from a constrained version of \code{sfit3}, %whose solution lies in the space spanned by the Yates contrast %$\beta_2 + \beta_7/5 + \beta_8/5 + \beta_9/5 + \beta_{10}/5 = 0$. %There is no simple way to write down an ordinary LS model equation that %will do this, and instead one must use one a program for constrained %linear regression; these are far less familiar. %There are many algorithms to fit a constrained linear regression, one is %to transform the problem as $X\beta = (XQ)(Q'\beta) = Z \phi$ %where $Q$ is an orthogonal transformation matrix. %If the first column of $Q$ is chosen as a scaled version of the Yates %contrast, then setting that contrast equal to zero is the same as %the constraint $\phi_1 =0$; it suffices to fit a model using all but the %first column of $Z$. \subsection{What is SAS type 3?} We are now in a position to fully describe the SAS sums of squares. \begin{itemize} \item Type 1 is the output of the ANOVA table, where terms are entered in the order specified in the model. \item Type 2 is the result of a two stage process \begin{enumerate} \item Order the terms by level: 0= intercept, 1= main effects, 2= 2 way interactions, \ldots. \item For terms of level k, print the MVUE contrast from a model that includes all terms of levels $0-k$. Each of these will be equivalent to the corresponding line of a sequential ANOVA table where the term in question was entered as the last one of its level. \end{enumerate} \item Type 3 and 4 are also a 2 stage process \begin{enumerate} \item Segregate the terms into those for which a Yates contrast can be formed versus those for which it can not. The second group includes the intercept, any continuous variables, and any factor (class) variables that do not participate in interactions with other class variables. \item For variables in the first group compute Yates contrasts. For those in the second group compute the type 2 results. \end{enumerate} \end{itemize} SAS has two different algorithms for computing the Yates contrast, which correspond to the \code{ATT} and \code{STT} options of the \code{yates} function. SAS describes the two contrast algorithms in their document ``The four types of estimable functions'' \cite{SASguide}, one of which defines type 3 and the other type 4. I found it very challenging to recreate their algorithm from this document. Historical knowledge of the underlying linear model algorithms used by SAS is a useful and almost necessary adjunct, as many of the steps in the document are side effects of their calculation. When there are missing cells, then it is not possible to compute a contrast that corresponds to a uniform distribution over the cells, and thus the standard Yates contrast is also not defined. The SAS type 3 and 4 algorithms still produce a value, however. What exactly this result ``means'' and whether it is a good idea has been the subject of lengthy debates which I will not explore here. Sometimes the type 3 and type 4 algorithms will agree but often do not when there are missing cells, which further muddies the waters. Thus we have 3 different tests: the MVUE comparison which will be close but not exactly equal to the data set population, Yates comparisons which correspond to a uniform reference population, and the SAS type 3 (STT) which prints out a chimeric blend of uniform population weighting for those factor variables that participate in interactions and the MVUE weighting for all the other terms. \subsection{Which estimate is best?} Deciding which estimate is the best is complicated. Unfortunately a lot of statistical textbooks emphasize the peculiar situation of balanced data with exactly the same number of subjects in each cell. Such data is \emph{extremely} peculiar if you work in medicine; in 30 years work and several hundred studies I have seen 2 instances. In this peculiar case the unadjusted, MVUE, empirical reference and Yates populations are all correspond to a uniform population and so give identical results. No thinking about which estimate is best is required. This has led many to avoid the above question, instead pining for that distant Eden where the meaning of ``row effect'' is perfectly unambiguous. But we are faced with real data and need to make a choice. The question has long been debated in depth by wiser heads than mine. In a companion paper to his presentation at the joint statistical meetings in 1992, Macnaughton \cite{Macnaughton92} lists 54 references to the topic between 1952 and 1991. Several discussion points recur: \begin{enumerate} \item Many take the sequential ANOVA table as primary, i.e., a set of nested models along with likelihood ratio tests (LRT), and decry all comparisons of ``main effects in the presence of interaction.'' Population weightings other than the LS one do not fit nicely into the nested framework. \item Others are distressed by the fact that the MVUE adjusting population is data dependent, so that one is ``never sure exactly what hypothesis being tested''. \item A few look at the contrast coefficients themselves, with a preference for simple patterns since they ``are interpretable''. \item No one approach works for all problems. Any author who proposes a uniform rule is quickly presented with counterexamples. \end{enumerate} Those in group 1 argue strongly against the Yates weighting and those in group 2 argue for the Yates contrast. Group 3 is somewhat inexplicable to me since any change in the choice of constraint type will change all the patterns. I fear that an opening phrase from the 1986 overview/review of Herr \cite{Herr86} is still apropos, ``In an attempt to understand how we have arrived at our present state of ignorance \ldots''. There are some cases where the Yates approach is clearly sensible, for instance a designed experiment which has become unbalanced due to a failed assay or other misadventure that has caused a few data points to be missing. There are cases such as the FLC data where the Yates contrast makes little sense at all --- the hypothetical population with equal numbers of 50 and 90 year olds is one that will never be seen--- so it is rather like speculating on the the potential covariate effect in dryads and centaurs. The most raucous debate has circled around the case of testing for a treatment effect in the presence of multiple enrolling centers. Do we give each patient equal weight (MVUE) or each center equal weight (Yates). A tongue-in-cheek but nevertheless excellent commentary on the subject is given by the old curmudgeon, aka Guernsey McPearson \cite{Senn1, Senn2}. A modern summary with focus on the clinical trials arena is found in chapter 14 of the textbook by Senn \cite{Senn07} I have found two papers particularly useful in thinking about this. Senn \ref{Senn00} points out the strong parallels beween tests for main effects when there may be interactions and meta analyses, cross connecting these two approaches is illuminating. A classic reference is the 1978 paper by Aitkin \cite{Aitkin78}. This was read before the Royal Statistical Society and includes remarks by 10 discussants forming a who's who of statistical theory (F Yates, J Nelder, DR Cox, DF Andrews, KR Gabriel, \ldots). The summary of the paper states that ``It is shown that a standard method of analysis used in many ANOVA programs, equivalent to Yates method of weighted squares of means, may lead to inappropriate models''; the paper goes on to carefully show why no one method can work in all cases. Despite the long tradition among RSS discussants of first congratulating the speaker and then skewering every one their conclusions, not one defense of the always-Yates approach is raised! This includes the discussion by Yates himself, who protests that his original paper advocated the proposed approach with reservations, it's primary advantage being that the computations could be performed on a desk calculator. I have two primary problems with the SAS type 3 approach. The first and greatest is that their documentation recommends the method with no reference to this substantial and sophisticated literature discussing strengths and weaknesses of the Yates contrast. This represents a level of narcissism which is completely unprofessional. %Recommending the type III approach as best for all cases, as they do, has %caused actual harm. The second is that their documentation explains the method is a way that is almost impenetrably opaque. If this is the only documentation one has, there will not be 1 statistician in 20 who would be able to explain the actual biological hypothesis which is being addressed by a type 3 test. \section{Cox models} \subsection{Tests and contrasts} Adapting the Yates test to a Cox model is problematic from the start. First, what do we mean by a ``balanced population''? In survival data, the variance of the hazard ratio for each particular sex/age combination is proportional to the number of deaths in that cell rather than the number of subjects. Carrying this forward to the canonical problem of adjusting a treatment effect for enrolling center, does this lead to equal numbers of subjects or equal numbers of events? Two centers might have equal numbers of patients but different number of events because one initiated the study at a later time (less follow up per subject), or it might have the same follow up time but a lower death rate. Should we reweight in one case (which one), both, or neither? The second issue is that the per-cell hazard ratio estimates are no longer a minimally sufficient statistic, so underlying arguments about a reference population no longer directly translate into a contrast of the parameters. A third but more minor issue is that the three common forms of the test statistic --- Wald, score, and LRT --- are identical in a linear model but not for the Cox model, so which should we choose? To start, take a look at the overall data and compute the relative death rates for each age/sex cell. <>= options(contrasts= c("contr.treatment", "contr.poly")) # R default cfit0 <- coxph(Surv(futime, death) ~ interaction(sex, age2), flchain) cmean <- matrix(c(0, coef(cfit0)), nrow=2) cmean <- rbind(cmean, cmean[2,] - cmean[1,]) dimnames(cmean) <- list(c("F", "M", "M/F ratio"), dimnames(counts)[[2]]) signif(exp(cmean),3) @ Since the Cox model is a relative risk model all of the death rates are relative to one of the cells, in this case the 50--59 year old females has been arbitrarily chosen as the reference cell and so has a defined rate of 1.00. Death rates rise dramatically with age for both males and females (no surprise), with males always slightly ahead in the race to a coffin. The size of the disadvantage for males decreases in the last 2 decades, however. The possible ways to adjust for age in comparing the two sexes are \begin{enumerate} \item The likelihood ratio test. This is analogous to the sequential ANOVA table in a linear model, and has the strongest theoretical justification. \item A stratified Cox model, with age group as the stratification factor. This gives a more general and rigorous adjustment for age. Stratification on institution is a common approach in clinical trials. \item The Wald or score test for the sex coefficient, in a model that adjusts for age. This is analogous to Wald tests in the linear model, and is asymptotically equivalent the the LRT. \item The test from a reweighted model, using case weights. Results using this approach have been central to causal model literature, particularly adjustment for covariate imbalances in observational studies. (Also known as \emph{marginal structural models}). Adjustment to a unform population is also possible. \item A Yates-like contrast in the Cox model coefficients. \begin{itemize} \item A reliable algorithm such as cell means coding. \item Unreliable approach such as the NSTT \end{itemize} \end{enumerate} I have listed these in order from the most to the least available justification, both in terms of practical experience and available theory. The two standard models are for sex alone, and sex after age. Likelihood ratio tests for these models are the natural analog to anova tables for the linear model, and are produced by the same R command. Here are results for the first three, along with the unadjusted model that contains sex only. <>= options(contrasts=c("contr.SAS", "contr.poly")) cfit1 <- coxph(Surv(futime, death) ~ sex, flchain) cfit2 <- coxph(Surv(futime, death) ~ age2 + sex, flchain) cfit3 <- coxph(Surv(futime, death) ~ sex + strata(age2), flchain) # Unadjusted summary(cfit1) # # LRT anova(cfit2) # # Stratified anova(cfit3) summary(cfit3) # # Wald test signif(summary(cfit2)$coefficients, 3) # anova(cfit1) anova(cfit2) @ Without adjustment for age the LRT for sex is only \Sexpr{round(2*diff(cfit1$loglik),1)}, and after adjustment for %$ a it increases to \Sexpr{round(anova(cfit2)[3,2],2)}. Since females are older, not adjusting for age almost completely erases the evidence of their actual survival advantage. Results of the LRT are unchanged if we change to any of the other possible codings for the factor variables (not shown). Adjusting for age group using a stratified model gives almost identical results to the sequential LRT, in this case. The Wald tests for sex are equal to $[\beta/ se(\beta)]^2$ using the sex coefficient from the fits, \Sexpr{round(summary(cfit1)$coef[1,4]^2,2)} and \Sexpr{round(summary(cfit2)$coef[5,4]^2,2)} for the unadjusted and adjusted models, respectively. Unlike a linear model they are not exactly equal to the anova table results based on the log-likelihood, but tell the same story. Now consider weighted models, with both empirical and uniform distributions as the target age distribution. The fits require use of a robust variance, since we are approaching it via a survey sampling computation. The tapply function creates a per-subject index into the case weight table created earlier. <>= wtindx <- with(flchain, tapply(death, list(sex, age2))) cfitpop <- coxph(Surv(futime, death) ~ sex, flchain, robust=TRUE, weight = (casewt[,,3])[wtindx]) cfityates <- coxph(Surv(futime, death) ~ sex, flchain, robust=TRUE, weight = (casewt[,,4])[wtindx]) # # Glue it into a table for viewing # tfun <- function(fit, indx=1) { c(fit$coef[indx], sqrt(fit$var[indx,indx])) } coxp <- rbind(tfun(cfit1), tfun(cfit2,5), tfun(cfitpop), tfun(cfityates)) dimnames(coxp) <- list(c("Unadjusted", "Additive", "Emprical Population", "Uniform Population"), c("Effect", "se(effect)")) signif(coxp,3) @ The population estimates based on reweighting lie somewhere between the unadjusted and the sequential results. We expect that balancing to the emprical population will give a solution that is similar to the age + sex model, in the same way that the close but not idential to the MVUE estimate in a linear model. Balancing to a hypothetical population with equal numbers in each age group yields a substantially smaller estimate of effect. since it gives large weights to the oldest age group, where in this data set the male/female difference is smallest. Last, look at constructed contrasts from a cell means model. We can either fit this using the interaction, or apply the previous contrast matrix to the coefficients found above. Since the ``intercept'' of a Cox model is absorbed into the baseline hazard our contrast matrix will have one less column. <<>>= cfit4 <- coxph(Surv(futime, death) ~ sex * age2, flchain) # Uniform population contrast ysex <- c(0,-1, 0,0,0,0, -.2,-.2,-.2,-.2) #Yates for sex, SAS coding contrast(ysex[-1], cfit4) # Verify using cell means coding cfit4b <- coxph(Surv(futime, death) ~ interaction(sex, age2), flchain) temp <- matrix(c(0, coef(cfit4b)),2) # the female 50-59 is reference diff(rowMeans(temp)) #direct estimate of the Yates # temp2 <- rbind(temp, temp[2,] - temp[1,]) dimnames(temp2) <- list(c('female', 'male', 'difference'), levels(age2)) round(temp2, 3) # # # NSTT contrast contrast(c(1,0,0,0,0,0,0,0,0), cfit4) @ In the case of a two level covariate such as sex, the NSTT algorithm plus the SAS coding yields an estimate and test for a difference in sex for the \emph{first} age group; the proper contrast is an average. Since it gives more weight to the larger ages, where the sex effect is smallest, the Yates-like contrast is smaller than the result from an additive model \code{cfit2}. Nevertheless, this contrast and the sequential test are more similar for the survival outcome than for the linear models. This is due to the fact that the variances of the individual hazards for each sex/age combination are proportional to the number of deaths in that cell rather than the number of subjects per cell. A table of the number of deaths is not as imbalanced as the table of subject counts, and so the Yates and MLE ``populations'' are not as far apart as they were for the linear regression. There are fewer subjects at the higher ages but they die more frequently. Why is the Yates-like contrast so different than the result of creating a uniform age distribution using case weights followed by an MLE estimate? Again, the MLE estimate has death counts as the effective weights; the case-weighted uniform population has smaller weights for the youngest age group and that group also has the lowest death rate, resulting in lower inflence for that group and an estimate shrunken towards the 90+ difference of \Sexpr{round(temp2[3,5], 3)}. All told, for survival models adjustment to a uniform population is a slippery target. \subsection{SAS phreg results} Now for the main event: what does SAS do? First, for the simple case of an additive model the SAS results are identical to those shown above. The coefficients, variances and log-likelihoods for cfit2 are identical to the phreg output for an additive model, as found in the appendix. As would be expected from the linear models case, the ``type III'' results for the additive model are simply the Wald tests for the fit, repackaged with a new label. Now look at the model that contains interactions. We originally surmised that a contrast calculation would be the most likely way in which the phreg code would implement type 3, as it is the easiest to integrate with existing code. Results are shown in the last SAS fit of the appendix. Comparing these results of the SAS printout labeled as ``Type III Wald'' to the contrasts calculated above shows that phreg is using the NSTT method. This is a bit of a shock. All of the SAS literature on type III emphasizes the care with which they form the calculation so as to always produce a Yates contrast (or in the case of missing cells a Yates-like one), and there was no hint in the documentation that phreg does anything different. As a double check direct contrast statements corresponding to the Yates and NSTT contrasts were added to the SAS code, and give confirmatory results. A further run which forced sum constraints by adding \code{'/ effect'} to the SAS class statement (not shown) restored the correct Yates contrast, as expected. As a final check, look at the NSTT version of the LRT, which corresponds to simply dropping the sex column from the $X$ matrix. <>= xmat4 <- model.matrix(cfit4) cfit4b <- coxph(Surv(futime, death) ~ xmat4[,-1], flchain) anova(cfit4b, cfit4) @ This agrees with the LR ``type 3'' test of the phreg printout. \subsection{Conclusion} Overall, both rebalanced estimates and coefficient contrasts are interesting exercises for the Cox model, but their actual utility is unclear. It is difficult to make a global optimality argument for either one, particularly in comparison to the sequential tests which have the entire weight of likelihood theory as a justification. Case reweighted estimates do play a key role when attempting to adjust for non-random treatment assignment, as found in the literature for causal analysis and marginal structural models; a topic and literature far too extensive and nuanced for discussion in this note. No special role is apparent, at least to this author, for regular or even sporadic use of a Yates contrast in survival models. The addition of such a feature and label to the SAS phreg package is a statistical calamaty, one that knowledgeable and conscientious statistical practitioners will likely have to fight for the rest of their careers. In the common case of a treatment comparison, adjusted for enrolling center, the default ``type III'' printout from phreg corresponds to a comparison of treatments within the last center; the only contribution of the remainder of the data set is to help define the baseline hazard function and the effect of any continuous adjusters that happen to be in the model. The quadruple whammy of a third rate implementation (the NSTT), defaults that lead to a useless and misleading result, no documentation of the actual computation that is being done, and irrational reverence for the type III label conspire to make this a particularly unfortunate event. \appendix \section{Computing the Yates estimate} \label{sect:coding} We will take it as a given that no one wants to memorize contrast formulas, and so we need a way to compute Yates contrasts automatically in a computer program. The most direct method is to encode the original fit in terms of the cell means, as has been done throughout this report. The Yates contrast is then simply an average of estimates across the appropriate margin. However, we normally will want to solve the linear or Cox model fit in a more standard coding and then compute the Yates contrast after the fact. Note that any population re norming requires estimates of the cell means, whether they were explicit parameters or not, i.e., the model fit must include interaction terms. Here are three algorithms for this post-hoc computation. All of them depend, directly or indirectly, on the breakdown found earlier in equation \eqref{std}. \begin{align} y_{ij} &= \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon \label{a1} \\ &= \theta_{ij} + \epsilon \label{a2}\\ \theta_{ij} &= \mu + \alpha_i + \beta_j + \gamma_{ij} \label{a3} \\ \end{align} Equation \eqref{a1} is the standard form from our linear models textbooks, equation \eqref{a2} is the cell means form, and \eqref{a3} is the result of matching them together. Using this equivalence a Yates test for row effects will be \begin{align} 0 &= e_i - e_{i'} \quad \forall i,i' \nonumber \\ &= (\alpha_i - \alpha_{i'}) + (1/k)\sum_j(\gamma_{ij} - \gamma_{i'j}) \label{ycont2} \end{align} where the subscripts $i$ and $i'$ range over the rows and $k$ is the number of columns. To illustrate the methods we will use 3 small data sets defined below. All are unbalanced. The second data set removes the aD observation and so has a zero cell, the third removes the diagonal and has 3 missing cells. <>= data1 <- data.frame(y = rep(1:6, length=20), x1 = factor(letters[rep(1:3, length=20)]), x2 = factor(LETTERS[rep(1:4, length=10)]), x3 = 1:20) data1$x1[19] <- 'c' data1 <- data1[order(data1$x1, data1$x2),] row.names(data1) <- NULL with(data1, table(x1,x2)) # data2 -- single missing cell indx <- with(data1, x1=='a' & x2=='D') data2 <- data1[!indx,] #data3 -- missing the diagonal data3 <- data1[as.numeric(data1$x1) != as.numeric(data1$x2),] @ \subsection{NSTT method} The first calculation method is based on a simple observation. If we impose the standard sums constraint on equation \eqref{a1} which is often found in textbooks (but nowhere else) of $\sum_i \alpha_i = \sum_j \beta_j = 0$, $\sum_i\gamma_{ij} =0 \; \forall j$ and $\sum_j \gamma_{ij} = 0 \; \forall i$, then the last term in equation \eqref{ycont2} is identically 0. Thus the Yates contrast corresponds exactly to a test of $\alpha=0$. In R we can choose this coding by using the \code{contr.sum} option. This approach has the appearance of simplicity: we can do an ordinary test for row effects within an interaction model. Here is R code that is often proposed for ``type III'' computation, which is based on the same process. <<>>= options(contrasts=c("contr.sum", "contr.poly")) fit1 <- lm(y ~ x1*x2, data1) drop1(fit1, .~.) @ The problem with this approach is that it depends critically on use of the sum constraints. If we apply the same code after fitting the data set under the more usual constraints a completely different value ensues. <<>>= options(contrasts=c("contr.SAS", "contr.poly")) fit2 <- lm(y ~ x1*x2, data1) drop1(fit2, .~.) options(contrasts=c("contr.treatment", "contr.poly")) fit3 <- lm(y ~ x1*x2, data1) drop1(fit3, .~.) @ Both common choices of contrasts give a different answer than contr.sum, and both are useless. I thus refer to this as the Not Safe Type Three (NSTT) algorithm, ``not SAS type three'' and ``nonsense type three'' are two other sensible expansions. This approach should NEVER be used in practice. \subsection{ATT} The key idea of the averaging approach (Averaged Type Three) is to directly evaluate equation \eqref{ycont2}. The first step of the computation is shown below <>= X <- model.matrix(fit2) ux <- unique(X) ux indx <- rep(1:3, c(4,4,4)) effects <- t(rowsum(ux, indx)/4) # turn sideways to fit the paper better effects yates <- effects[,-1] - effects[,1] yates @ The data set ux has 12 rows, one for each of the 12 unique x*x2 combinations. Because data1 was sorted, the first 4 rows correspond to x=1, the next 4 to x=2 and the next to x=3 which is useful for illustration but has no impact on the computation. The average of rows 1-4 (column 1 of \code{effects} above) is the estimated average response for subjects with x1=a, assuming a uniform distribution over the 12 cells. Any two differences between the three effects is an equivalent basis for computing the Yates contrast. We can verify that the resulting estimates correspond to a uniform target population by directly examing the case weights for the estimate. Each of them gives a total weight of 1/4 to each level of x2. Each element of $\beta\beta$ is a weighted average of the data, revealed by the rows of the matrix $(X'X)^{-1}X'$. The estimate are a wieghted sum of the coefficients, so are also a weighted average of the $y$ values. <<>>= wt <- solve(t(X) %*% X, t(X)) # twelve rows (one per coef), n columns casewt <- t(effects) %*% wt # case weights for the three "row efffects" for (i in 1:3) print(tapply(casewt[i,], data1$x2, sum)) @ \subsection{STT} The SAS type III method takes a different approach, based on a a dependency matrix $D$. Start by writing the $X$ matrix for the problem using all of the parameters in equation \eqref{a1}. For our flc example this will have columns for intercept (1), sex (2), age group (5) and the age group by sex interaction (10) = 18 columns. Now define the lower triangular square matrix $D$ such that \begin{itemize} \item If the $i$th column of $X$ can be written as a linear combination of columns 1 through $i-1$, then row $i$ of $D$ contains that linear combination and $D_{ii}=0$. \item If the $i$th column is not linearly dependent on earlier ones then $D_{ii}=1$ and $D_{ij}=0$ for all $j \ne i$. \end{itemize} Columns of $D$ that correspond to linearly dependent columns of $X$ will be identically zero and can be discarded (or not) at this point. The result of this operation replicates table 12.2 in the SAS reference \cite{SASguide} labeled ``the form of estimable functions''. To obtain the Yates contrasts for an effect replace the appropriate columns of $D$ with the residuals from a regression on all columns to the right of it. Simple inspection shows that the columns of $D$ corresponding to any given effect will already be orthogonal to other effects in $D$ \emph{except} those for interactions that contain it; so the regression does not have to include all columns to the right. It is easy to demonstrate that this gives the uniform population contrast (Yates) for a large number of data sets, but I have not yet constructed a proof. (I suspect it could be approached using the Rao-Blackwell theorem.) \subsection{Bystanders} What about a model that has a extra predictor, such as \code{x3} in our example data and in the fit below? <<>>= fit4 <- lm(y ~ x1*x2 + x3, data=data1) @ The standard approach is to ignore this variable when setting up ``type III'' tests: the contast for \code{x1} will be the same as it was in the prior model, with a 0 row in the middle for the x3 coefficient. \subsection{Missing cells} When there are combinations of factors with 0 subjects in that group, it is not possible to create a uniform population via reweighting of either subjects or parameters. There is thus no Yates contrast corresponding to the hypothetical population of interest. For that matter, adjustment to any fixed population is no longer possible, such as the US 2000 reference, unless groups are pooled so as to remove any counts of zero, and even then the estimate could be problematic due to extreme weights. This fact does not stop each of the above 3 algorithms from executing and producing a number. This raises two further issues. First, what does that number \emph{mean}? Much ink has been spilled on this subject, but I personally have never been able to come to grips with a satisfactory explanation and so have nothing to offer on the topic. I am reluctant to use such estimates. The second issue is that the computational algorithms become more fragile. \begin{itemize} \item The NSTT algorithm is a disaster in waiting, so no more needs to be said about situations where its behavior may be even worse. \item When fitting the original model, there will be one or more NA coefficients due to the linear dependencies that arise. A natural extension of the ATT method is to leave these out of the sums when computing each average. However, there are data sets for which the particular set of coefficients returned as missing will depend on the order in which variables were listed in the model statement, which in turn will change the ATT result. \item For the STT method, our statement that certain other columns in $D$ will be orthogonal to the chosen effect is no longer true. To match SAS, the orthogonalization step above should include only those effects further to the right that contain the chosen effect (the one we are constructing a contrast vector for). As a side effect, this makes the STT result invariant to the order of the variables in the model statement. \end{itemize} \section{SAS computations} The following code was executed in version 9.3 of SAS. \begin{verbatim} options ls=70; libname save "sasdata"; title "Sex only"; proc glm data=save.flc; class sex; model flc = sex; title "Sex only"; proc glm data=save.flc; class sex age2; model flc = age2 sex /solution E1 E2 E3; title "Second fit, no interaction"; proc glm data=save.flc; class sex age2; model flc = sex age2 sex*age2/solution E1 E2 E3; estimate 'yates' sex 1 -1 sex*age2 .2 .2 .2 .2 .2 -.2 -.2 -.2 -.2 -.2; title "Third fit, interaction"; proc phreg data=save.flc; class sex age2; model futime * death(0) = sex age2/ ties=efron; title "Phreg fit, sex and age, additive"; proc phreg data=save.flc; class sex age2; model futime * death(0) = sex age2 sex*age2 / ties=efron type3(all); estimate 'Yates sex' sex 1 sex*age2 .2 .2 .2 .2; contrast 'NSTT sex ' sex 1 ; contrast 'NSTT age' age2 1 0 0 0 , age2 0 1 0 0 , age2 0 0 1 0 , age2 0 0 0 1; title "Phreg fit, sex and age with interaction"; proc phreg data=save.flc; class sex age2/ param=effect; model futime * death(0) = sex age2 sex*age2 / ties=efron; title "Phreg, using effect coding"; \end{verbatim} The SAS output is voluminous, covering over a dozen pages. A subset is extracted below, leaving out portions that are unimportant to our comparison. First the GLM model for sex only. There are no differences between type 1 and type 3 output for this model. \small \begin{verbatim} ... Number of Observations Read 7874 Number of Observations Used 7874 ... Dependent Variable: flc Sum of Source DF Squares Mean Square F Value Model 1 142.19306 142.19306 42.27 Error 7872 26481.86345 3.36406 Corrected Total 7873 26624.05652 \end{verbatim} \normalsize The second fit with sex and then age. \small \begin{verbatim} Type I Estimable Functions -----------------Coefficients------------------ Effect age2 sex Intercept 0 0 age2 1 L2 0 age2 2 L3 0 age2 3 L4 0 age2 4 L5 0 age2 5 -L2-L3-L4-L5 0 sex F -0.2571*L2-0.2576*L3-0.1941*L4-0.0844*L5 L7 sex M 0.2571*L2+0.2576*L3+0.1941*L4+0.0844*L5 -L7 Type II Estimable Functions ---Coefficients---- Effect age2 sex Intercept 0 0 age2 1 L2 0 age2 2 L3 0 age2 3 L4 0 age2 4 L5 0 age2 5 -L2-L3-L4-L5 0 sex F 0 L7 sex M 0 -L7 Type III Estimable Functions ---Coefficients---- Effect age2 sex Intercept 0 0 age2 1 L2 0 age2 2 L3 0 age2 3 L4 0 age2 4 L5 0 age2 5 -L2-L3-L4-L5 0 sex F 0 L7 sex M 0 -L7 Dependent Variable: flc Sum of Source DF Squares Mean Square F Value Model 5 2212.13649 442.42730 142.60 Error 7868 24411.92003 3.10268 Corrected Total 7873 26624.05652 Source DF Type I SS Mean Square F Value age2 4 1929.642183 482.410546 155.48 sex 1 282.494304 282.494304 91.05 Source DF Type II SS Mean Square F Value age2 4 2069.943424 517.485856 166.79 sex 1 282.494304 282.494304 91.05 Source DF Type III SS Mean Square F Value age2 4 2069.943424 517.485856 166.79 sex 1 282.494304 282.494304 91.05 Standard Parameter Estimate Error t Value Pr > |t| Intercept 5.503757546 B 0.17553667 31.35 <.0001 age2 1 -2.587424744 B 0.17584961 -14.71 <.0001 age2 2 -2.249164537 B 0.17684133 -12.72 <.0001 age2 3 -1.770342603 B 0.17834253 -9.93 <.0001 age2 4 -1.082104827 B 0.18584656 -5.82 <.0001 age2 5 0.000000000 B sex F -0.383454133 B 0.04018624 -9.54 <.0001 sex M 0.000000000 B \end{verbatim} \normalsize The third linear models fit, containing interactions. For first portion I have trimmed off long printout on the right, i.e. the estimable functions for the age2*sex effect since they are not of interest. \small \begin{verbatim} Type I Estimable Functions --------------------Coefficients-------- Effect sex age2 Intercept 0 0 sex F L2 0 sex M -L2 0 age2 1 -0.0499*L2 L4 age2 2 -0.0373*L2 L5 age2 3 0.0269*L2 L6 age2 4 0.0482*L2 L7 age2 5 0.0121*L2 -L4-L5-L6-L7 sex*age2 F 1 0.3786*L2 0.6271*L4+0.1056*L5+0.0796*L6+0.0346*L7 sex*age2 F 2 0.2791*L2 0.0778*L4+0.5992*L5+0.0587*L6+0.0255*L7 sex*age2 F 3 0.2182*L2 0.0527*L4+0.0528*L5+0.6245*L6+0.0173*L7 sex*age2 F 4 0.1055*L2 0.0188*L4+0.0188*L5+0.0142*L6+0.7006*L7 sex*age2 F 5 0.0186*L2 -0.7764*L4-0.7764*L5-0.777*L6-0.7781*L7 sex*age2 M 1 -0.4285*L2 0.3729*L4-0.1056*L5-0.0796*L6-0.0346*L7 sex*age2 M 2 -0.3164*L2 -0.0778*L4+0.4008*L5-0.0587*L6-0.0255*L7 sex*age2 M 3 -0.1913*L2 -0.0527*L4-0.0528*L5+0.3755*L6-0.0173*L7 sex*age2 M 4 -0.0573*L2 -0.0188*L4-0.0188*L5-0.0142*L6+0.2994*L7 sex*age2 M 5 -0.0065*L2 -0.2236*L4-0.2236*L5-0.223*L6-0.2219*L7 Type II Estimable Functions --------------------Coefficients--------------------- Effect sex age2 Intercept 0 0 sex F L2 0 sex M -L2 0 age2 1 0 L4 age2 2 0 L5 age2 3 0 L6 age2 4 0 L7 age2 5 0 -L4-L5-L6-L7 sex*age2 F 1 0.41*L2 0.6271*L4+0.1056*L5+0.0796*L6+0.0346*L7 sex*age2 F 2 0.3025*L2 0.0778*L4+0.5992*L5+0.0587*L6+0.0255*L7 sex*age2 F 3 0.2051*L2 0.0527*L4+0.0528*L5+0.6245*L6+0.0173*L7 sex*age2 F 4 0.073*L2 0.0188*L4+0.0188*L5+0.0142*L6+0.7006*L7 sex*age2 F 5 0.0093*L2 -0.7764*L4-0.7764*L5-0.777*L6-0.7781*L7 sex*age2 M 1 -0.41*L2 0.3729*L4-0.1056*L5-0.0796*L6-0.0346*L7 sex*age2 M 2 -0.3025*L2 -0.0778*L4+0.4008*L5-0.0587*L6-0.0255*L7 sex*age2 M 3 -0.2051*L2 -0.0527*L4-0.0528*L5+0.3755*L6-0.0173*L7 sex*age2 M 4 -0.073*L2 -0.0188*L4-0.0188*L5-0.0142*L6+0.2994*L7 sex*age2 M 5 -0.0093*L2 -0.2236*L4-0.2236*L5-0.223*L6-0.2219*L7 Type III Estimable Functions ---------------------Coefficients--------------------- Effect sex age2 sex*age2 Intercept 0 0 0 sex F L2 0 0 sex M -L2 0 0 age2 1 0 L4 0 age2 2 0 L5 0 age2 3 0 L6 0 age2 4 0 L7 0 age2 5 0 -L4-L5-L6-L7 0 sex*age2 F 1 0.2*L2 0.5*L4 L9 sex*age2 F 2 0.2*L2 0.5*L5 L10 sex*age2 F 3 0.2*L2 0.5*L6 L11 sex*age2 F 4 0.2*L2 0.5*L7 L12 sex*age2 F 5 0.2*L2 -0.5*L4-0.5*L5-0.5*L6-0.5*L7 -L9-L10-L11-L12 sex*age2 M 1 -0.2*L2 0.5*L4 -L9 sex*age2 M 2 -0.2*L2 0.5*L5 -L10 sex*age2 M 3 -0.2*L2 0.5*L6 -L11 sex*age2 M 4 -0.2*L2 0.5*L7 -L12 sex*age2 M 5 -0.2*L2 -0.5*L4-0.5*L5-0.5*L6-0.5*L7 L9+L10+L11+L12 Source DF Type I SS Mean Square F Value sex 1 142.193063 142.193063 45.97 age2 4 2069.943424 517.485856 167.30 sex*age2 4 87.218363 21.804591 7.05 Source DF Type II SS Mean Square F Value sex 1 282.494304 282.494304 91.33 age2 4 2069.943424 517.485856 167.30 sex*age2 4 87.218363 21.804591 7.05 Source DF Type III SS Mean Square F Value sex 1 126.961986 126.961986 41.05 age2 4 1999.446491 499.861623 161.60 sex*age2 4 87.218363 21.804591 7.05 Standard Parameter Estimate Error t Value Pr > |t| yates -0.58972607 0.09204824 -6.41 <.0001 Standard Parameter Estimate Error t Value Pr > |t| Intercept 6.003043478 B 0.36672295 16.37 <.0001 sex F -1.024512614 B 0.41553944 -2.47 0.0137 sex M 0.000000000 B age2 1 -3.176876326 B 0.36950532 -8.60 <.0001 age2 2 -2.787597918 B 0.37048599 -7.52 <.0001 age2 3 -2.088127335 B 0.37292760 -5.60 <.0001 age2 4 -1.353746449 B 0.38703805 -3.50 0.0005 age2 5 0.000000000 B sex*age2 F 1 0.813889663 B 0.42023749 1.94 0.0528 sex*age2 F 2 0.716160958 B 0.42189464 1.70 0.0896 sex*age2 F 3 0.330651265 B 0.42487846 0.78 0.4365 sex*age2 F 4 0.313230835 B 0.44127621 0.71 0.4778 sex*age2 F 5 0.000000000 B sex*age2 M 1 0.000000000 B sex*age2 M 2 0.000000000 B sex*age2 M 3 0.000000000 B sex*age2 M 4 0.000000000 B sex*age2 M 5 0.000000000 B \end{verbatim} \normalsize The phreg printout for the additive model with age and sex. \small \begin{verbatim} Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 2357.5239 5 <.0001 Score 3823.3905 5 <.0001 Wald 2374.5250 5 <.0001 Type 3 Tests Wald Effect DF Chi-Square Pr > ChiSq sex 1 69.9646 <.0001 age2 4 2374.5211 <.0001 Analysis of Maximum Likelihood Estimates Parameter Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq sex F 1 -0.36617 0.04378 69.9646 <.0001 age2 1 1 -4.18209 0.12180 1179.0289 <.0001 age2 2 1 -3.23859 0.11418 804.5068 <.0001 age2 3 1 -2.17521 0.10963 393.6524 <.0001 age2 4 1 -1.15226 0.11072 108.3077 <.0001 \end{verbatim} \normalsize The model with age*sex interaction. \small \begin{verbatim} Model Fit Statistics Without With Criterion Covariates Covariates -2 LOG L 37736.900 35374.050 AIC 37736.900 35392.050 SBC 37736.900 35443.188 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 2362.8497 9 <.0001 Score 3873.5113 9 <.0001 Wald 2357.9498 9 <.0001 Type 3 Tests LR Statistics Effect DF Chi-Square Pr > ChiSq sex 1 0.4607 0.4973 age2 4 932.1371 <.0001 sex*age2 4 5.3258 0.2555 Score Statistics Effect DF Chi-Square Pr > ChiSq sex 1 0.4757 0.4904 age2 4 1506.8699 <.0001 sex*age2 4 5.2516 0.2624 Wald Statistics Effect DF Chi-Square Pr > ChiSq sex 1 0.4833 0.4869 age2 4 964.6007 <.0001 sex*age2 4 5.2322 0.2643 Analysis of Maximum Likelihood Estimates Parameter Standard Parameter DF Estimate Error Chi-Square sex F 1 -0.16537 0.23789 0.4833 age2 1 1 -4.02699 0.22585 317.9171 age2 2 1 -3.04796 0.21843 194.7187 age2 3 1 -1.99577 0.21577 85.5504 age2 4 1 -1.10659 0.22256 24.7216 sex*age2 F 1 1 -0.21121 0.26896 0.6167 sex*age2 F 2 1 -0.29334 0.25518 1.3214 sex*age2 F 3 1 -0.25663 0.24829 1.0684 sex*age2 F 4 1 -0.04339 0.25527 0.0289 Contrast DF Chi-Square Pr > ChiSq NSTT sex 1 0.4833 0.4869 NSTT age 4 964.6007 <.0001 Likelihood Ratio Statistics for Type 1 Analysis LR Source -2 Log L DF Chi-Square Pr > ChiSq (Without Covariates) 37736.8997 sex 37733.0932 1 3.8066 0.0511 age2 35379.3758 4 2353.7173 <.0001 sex*age2 35374.0501 4 5.3258 0.2555 Standard Label Estimate Error z Value Pr > |z| Yates -0.3263 0.06149 -5.31 <.0001 \end{verbatim} \normalsize \begin{thebibliography}{9} \bibitem{Aitkin78} M. Aitkin (1978). The analysis of unbalanced cross classifications (with discussion). \emph{J Royal Stat Soc A} 141:195-223. \bibitem{Dispenzieri12} A. Dispenzieri, J. Katzmann, R. Kyle, D. Larson, T. Therneau, C. Colby, R. Clark, .G Mead, S. Kumar, L..J Melton III and S.V. Rajkumar (2012). Use of monoclonal serum immunoglobulin free light chains to predict overall survival in the general population, \emph{Mayo Clinic Proc} 87:512--523. \bibitem{Herr86} D. G. Herr (1986). On the History of ANOVA in Unbalanced, Factorial Designs: The First 30 Years. \emph{Amer Statistician} 40:265-270. \bibitem{Kyle06} R. Kyle, T. Therneau, S.V. Rajkumar, D. Larson, M. Plevak, J. Offord, A. Dispenzieri, J. Katzmann, and L.J. Melton, III (2006), Prevalence of monoclonal gammopathy of undetermined significance, \emph{New England J Medicine} 354:1362--1369. \bibitem{Macnaughton92} D. B. Macnaughton (1992). Which sum of squares are best in an unbalanced analysis of variance. www.matstat.com/ss. \bibitem{Nelder77} J. Nelder (1977). A reformulation of linear models (with discussion). \emph{J Royal Stat Soc A} 140:48--76. \bibitem{SASguide} SAS Institute Inc. (2008), The four types of estimable functions. SAS/STAT 9.2 User's Guide, chapter 15. \bibitem{Searle71} S. R. Searle, \emph{Linear Models}, Wiley, New York, 1971. \bibitem{Senn1} S. Senn. Multi-centre trials and the finally decisive argument. www.senns.demon.co.uk/wprose.html\#FDA. \bibitem{Senn2} S. Senn. Good mixed centre practice. www.senns.demon.co.uk/wprose.html\#Mixed. \bibitem{Senn07} S. Senn. Statistical Issues in Drug Development, Wiley, New York, 2007. \bibitem{Senn00} S. Senn. The many modes of meta. Drug Information J 34:535-549, 2000. \bibitem{Therneau00} T. M. Therneau and P. M. Grambsch, \emph{Modeling Survival Data: Extending the Cox Model}, Springer-Verlag, New York, 2000. \bibitem{Yates34} F. Yates (1934). The analysis of multiple classifications with unequal numbers in the different classes. \emph{J Am Stat Assoc}, 29:51--66. \end{thebibliography} \end{document} survival/inst/doc/adjcurve.R0000644000176000001440000004047412267746150015650 0ustar ripleyusers### R code from vignette source 'adjcurve.Rnw' ################################################### ### code chunk number 1: adjcurve.Rnw:20-24 ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text if (!exists('coxph')) library(survival) ################################################### ### code chunk number 2: adjcurve.Rnw:133-147 ################################################### group3 <- factor(1+ 1*(flchain$flc.grp >7) + 1*(flchain$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) age1 <- cut(flchain$age, c(49,59,69,79, 110)) levels(age1) <- c(paste(c(50,60,70), c(59,69,79), sep='-'), '80+') temp1 <- table(group3, age1) temp2 <- round(100* temp1/rowSums(temp1)) pfun <- function(x,y) { paste(ifelse(x<1000, "\\phantom{0}", ""), x, " (", ifelse(y<10, "\\phantom{0}", ""), y, ") ", sep="") } cat(paste(c("FLC low", pfun(temp1[1,], temp2[1,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC med", pfun(temp1[2,], temp2[2,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC high", pfun(temp1[3,], temp2[3,])), collapse=" & "), "\n") ################################################### ### code chunk number 3: flc1 ################################################### getOption("SweaveHooks")[["fig"]]() fdata <- flchain[flchain$futime > 7,] fdata$group <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) fdata$age2 <- cut(fdata$age, c(49,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) sfit1 <- survfit(Surv(futime, death) ~ group, fdata) plot(sfit1, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") text(c(11.1, 10.5, 7.5), c(.88, .57, .4), c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71"), col=c(1,2,4)) ################################################### ### code chunk number 4: flc2 ################################################### getOption("SweaveHooks")[["fig"]]() temp <- with(fdata, table(group, age2, sex)) size <- apply(temp, 2:3, min) set.seed(1978) select <- NULL dd <- dim(temp) for (i in 1:dd[1]) { for (j in 1:dd[2]) { for (k in 1:dd[3]) { indx <- which(as.numeric(fdata$group)==i & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select <- c(select, sample(indx, size[j,k])) } } } data2 <- fdata[select,] sfit2 <- survfit(Surv(futime, death) ~ group, data2) plot(sfit2, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) ################################################### ### code chunk number 5: adjcurve.Rnw:244-249 ################################################### tab1 <- with(fdata, table(group, age2, sex)) cat("Low&", paste(tab1[1,,1], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,1], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,1], collapse=" &"), "\\\\\n") ################################################### ### code chunk number 6: adjcurve.Rnw:254-257 ################################################### cat("Low&", paste(tab1[1,,2], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,2], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,2], collapse=" &"), "\n") ################################################### ### code chunk number 7: adjcurve.Rnw:281-292 ################################################### tab3 <- with(fdata, table(age2, group)) tab3 <- round(100*scale(tab3, center=F, scale=colSums(tab3))) tab4 <- with(data2, table(age2, group)) tab4 <- round(100*scale(tab4, center=F, scale=colSums(tab4))) tab5 <- cbind(tab3[,1], tab4[,1], tab3[,2], tab4[,2], tab3[,3], tab4[,3]) pfun <- function(x) paste(ifelse(x<10, paste("\\phantom{0}", x), x), collapse=" &") dtemp <- dimnames(tab5)[[1]] for (j in 1:7) cat(dtemp[j], " &", pfun(tab5[j,]), "\\\\\n") cat(dtemp[8], " & ", pfun(tab5[8,]), "\n") ################################################### ### code chunk number 8: adjcurve.Rnw:323-330 ################################################### # I can't seem to put this all into an Sexpr z1 <- with(fdata,table(age, sex, group)) z2<- apply(z1, 1:2, min) ztemp <- 3*sum(z2) z1b <- with(fdata, table(age>64, sex, group)) ztemp2 <- sum(apply(z1b, 1:2, min)) ################################################### ### code chunk number 9: adjcurve.Rnw:359-360 ################################################### survdiff(Surv(futime, death) ~ group, data=data2) ################################################### ### code chunk number 10: adjcurve.Rnw:393-399 ################################################### refpop <- uspop2[as.character(50:100),c("female", "male"), "2000"] pi.us <- refpop/sum(refpop) age100 <- factor(ifelse(fdata$age >100, 100, fdata$age), levels=50:100) tab100 <- with(fdata, table(age100, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab100 #new weights by age,sex, group range(us.wt) ################################################### ### code chunk number 11: adjcurve.Rnw:410-419 ################################################### temp <- as.numeric(cut(50:100, c(49, 54, 59, 64, 69, 74, 79, 89, 110)+.5)) pi.us<- tapply(refpop, list(temp[row(refpop)], col(refpop)), sum)/sum(refpop) tab2 <- with(fdata, table(age2, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab2 range(us.wt) index <- with(fdata, cbind(as.numeric(age2), as.numeric(sex), as.numeric(group))) fdata$uswt <- us.wt[index] sfit3a <-survfit(Surv(futime, death) ~ group, data=fdata, weight=uswt) ################################################### ### code chunk number 12: flc3a ################################################### getOption("SweaveHooks")[["fig"]]() tab1 <- with(fdata, table(age2, sex))/ nrow(fdata) matplot(1:8, cbind(pi.us, tab1), pch="fmfm", col=c(2,2,1,1), xlab="Age group", ylab="Fraction of population", xaxt='n') axis(1, 1:8, levels(fdata$age2)) tab2 <- with(fdata, table(age2, sex, group))/nrow(fdata) tab3 <- with(fdata, table(group)) / nrow(fdata) rwt <- rep(tab1,3)/tab2 round(rwt[,1,], 1) #show female data fdata$rwt <- rwt[index] # add per subject weights to the data set sfit3 <- survfit(Surv(futime, death) ~ group, data=fdata, weight=rwt) ################################################### ### code chunk number 13: flc3 ################################################### getOption("SweaveHooks")[["fig"]]() plot(sfit3, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3a, mark.time=F, col=c(1,2,4), lty=1, lwd=1, xscale=365.25) lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) ################################################### ### code chunk number 14: adjcurve.Rnw:498-507 ################################################### id <- 1:nrow(fdata) cfit <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=rwt) summary(cfit)$robscore if (exists("svykm")) { #true if the survey package is loaded sdes <- svydesign(id = ~0, weights=~rwt, data=fdata) dfit <- svykm(Surv(futime, death) ~ group, design=sdes, se=TRUE) } ################################################### ### code chunk number 15: ipw ################################################### options(na.action="na.exclude") gg <- as.numeric(fdata$group) lfit1 <- glm(I(gg==1) ~ factor(age2) * sex, data=fdata, family="binomial") lfit2 <- glm(I(gg==2) ~ factor(age2) * sex, data=fdata, family="binomial") lfit3 <- glm(I(gg==3) ~ factor(age2) * sex, data=fdata, family="binomial") temp <- ifelse(gg==1, predict(lfit1, type='response'), ifelse(gg==2, predict(lfit2, type='response'), predict(lfit3, type='response'))) all.equal(1/temp, fdata$rwt) ################################################### ### code chunk number 16: flc4 ################################################### getOption("SweaveHooks")[["fig"]]() lfit1b <-glm(I(gg==1) ~ age + sex, data=fdata, family="binomial") lfit2b <- glm(I(gg==2) ~ age +sex, data=fdata, family="binomial") lfit3b <- glm(I(gg==3) ~ age + sex, data=fdata, family="binomial") # weights for each group using simple logistic twt <- ifelse(gg==1, 1/predict(lfit1b, type="response"), ifelse(gg==2, 1/predict(lfit2b, type="response"), 1/predict(lfit3b, type="response"))) tdata <- data.frame(fdata, lwt=twt) #grouped plot for the females temp <- tdata[tdata$sex=='F',] temp$gg <- as.numeric(temp$group) c1 <- with(temp[temp$gg==1,], tapply(lwt, age2, sum)) c2 <- with(temp[temp$gg==2,], tapply(lwt, age2, sum)) c3 <- with(temp[temp$gg==3,], tapply(lwt, age2, sum)) xtemp <- outer(1:8, c(-.1, 0, .1), "+") #avoid overplotting ytemp <- 100* cbind(c1/sum(c1), c2/sum(c2), c3/sum(c3)) matplot(xtemp, ytemp, col=c(1,2,4), xlab="Age group", ylab="Weighted frequency (%)", xaxt='n') ztab <- table(fdata$age2) points(1:8, 100*ztab/sum(ztab), pch='+', cex=1.5, lty=2) # Add the unadjusted temp <- tab2[,1,] temp <- scale(temp, center=F, scale=colSums(temp)) matlines(1:8, 100*temp, pch='o', col=c(1,2,4), lty=2) axis(1, 1:8, levels(fdata$age2)) ################################################### ### code chunk number 17: adjcurve.Rnw:638-648 ################################################### # compute new weights wtscale <- table(fdata$group)/ tapply(fdata$rwt, fdata$group, sum) wt2 <- c(fdata$rwt * wtscale[fdata$group]) c("rescaled cv"= sd(wt2)/mean(wt2), "rwt cv"=sd(fdata$rwt)/mean(fdata$rwt)) cfit2a <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight= rwt) cfit2b <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=wt2) round(c(cfit2a$rscore, cfit2b$rscore),1) ################################################### ### code chunk number 18: strata ################################################### allfit <- survfit(Surv(futime/365.25, death) ~ group + age2 + sex, fdata) temp <- summary(allfit)$table temp[1:6, c(1,4)] #abbrev printout to fit page ################################################### ### code chunk number 19: flc5 ################################################### getOption("SweaveHooks")[["fig"]]() xtime <- seq(0, 14, length=57) #four points/year for 14 years smat <- matrix(0, nrow=57, ncol=3) # survival curves serr <- smat #matrix of standard errors pi <- with(fdata, table(age2, sex))/nrow(fdata) #overall dist for (i in 1:3) { temp <- allfit[1:16 + (i-1)*16] #curves for group i for (j in 1:16) { stemp <- summary(temp[j], times=xtime, extend=T) smat[,i] <- smat[,i] + pi[j]*stemp$surv serr[,i] <- serr[,i] + pi[i]*stemp$std.err^2 } } serr <- sqrt(serr) matplot(xtime, smat, type='l', lwd=2, col=c(1,2,4), ylim=c(0,1), lty=1, xlab="Years from sample", ylab="Survival") lines(sfit1, mark.time=F, lty=2, col=c(1,2,4), xscale=365.25) ################################################### ### code chunk number 20: adjcurve.Rnw:773-774 ################################################### survdiff(Surv(futime, death) ~ group + strata(age2, sex), fdata) ################################################### ### code chunk number 21: flc8 ################################################### getOption("SweaveHooks")[["fig"]]() cfit4a <- coxph(Surv(futime, death) ~ age + sex + strata(group), data=fdata) surv4a <- survfit(cfit4a) plot(surv4a, col=c(1,2,4), mark.time=F, xscale=365.25, xlab="Years post sample", ylab="Survival") ################################################### ### code chunk number 22: flc6 ################################################### getOption("SweaveHooks")[["fig"]]() tab4a <- with(fdata, table(age, sex)) uage <- as.numeric(dimnames(tab4a)[[1]]) tdata <- data.frame(age = uage[row(tab4a)], sex = c("F","M")[col(tab4a)], count= c(tab4a)) tdata3 <- tdata[rep(1:nrow(tdata), 3),] #three copies tdata3$group <- factor(rep(1:3, each=nrow(tdata)), labels=levels(fdata$group)) sfit4a <- survexp(~group, data=tdata3, weight = count, ratetable=cfit4a) plot(sfit4a, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, c("FLC low", "FLC med", "FLC high"), lty=1, col=c(1,2,4), bty='n', lwd=2) ################################################### ### code chunk number 23: adjcurve.Rnw:885-892 ################################################### tfit <- survfit(cfit4a, newdata=tdata, se.fit=FALSE) curves <- vector('list', 3) twt <- c(tab4a)/sum(tab4a) for (i in 1:3) { temp <- tfit[i,] curves[[i]] <- list(time=temp$time, surv= c(temp$surv %*% twt)) } ################################################### ### code chunk number 24: flc6b ################################################### getOption("SweaveHooks")[["fig"]]() par(mfrow=c(1,2)) cfit4b <- coxph(Surv(futime, death) ~ age*sex + strata(group), fdata) sfit4b <- survexp(~group, data=tdata3, ratetable=cfit4b, weights=count) plot(sfit4b, fun='event', xscale=365.25, xlab="Years from sample", ylab="Deaths") lines(sfit3, mark.time=FALSE, fun='event', xscale=365.25, lty=2) lines(sfit4a, fun='event', xscale=365.25, col=2) temp <- median(fdata$sample.yr) mrate <- survexp.mn[as.character(uage),, as.character(temp)] crate <- predict(cfit4b, newdata=tdata, reference='sample', type='lp') crate <- matrix(crate, ncol=2)[,2:1] # mrate has males then females, match it # crate contains estimated log(hazards) relative to a baseline, # and mrate absolute hazards, make both relative to a 70 year old for (i in 1:2) { mrate[,i] <- log(mrate[,i]/ mrate[21,2]) crate[,i] <- crate[,i] - crate[21,2] } matplot(mrate, crate, col=2:1, type='l') abline(0, 1, lty=2, col=4) ################################################### ### code chunk number 25: adjcurve.Rnw:963-971 ################################################### getOption("SweaveHooks")[["fig"]]() obs <- with(fdata, tapply(death, list(age2, sex, group), sum)) pred<- with(fdata, tapply(predict(cfit4b, type='expected'), list(age2, sex, group), sum)) excess <- matrix(obs/pred, nrow=8) #collapse 3 way array to 2 dimnames(excess) <- list(dimnames(obs)[[1]], c("low F", "low M", "med F", "med M", "high F", "high M")) round(excess, 1) ################################################### ### code chunk number 26: adjcurve.Rnw:987-999 ################################################### cfit5a <- coxph(Surv(futime, death) ~ group:age +sex + strata(group), fdata) cfit5b <- coxph(Surv(futime, death) ~ group:(age +sex) + strata(group), fdata) cfit5c <- coxph(Surv(futime, death) ~ group:(age *sex) + strata(group), fdata) options(show.signif.stars=FALSE) # see footnote anova(cfit4a, cfit5a, cfit5b, cfit5c) temp <- coef(cfit5a) names(temp) <- c("sex", "ageL", "ageM", "ageH") round(temp,3) ################################################### ### code chunk number 27: flc7 ################################################### getOption("SweaveHooks")[["fig"]]() pred5a <- with(fdata, tapply(predict(cfit5a, type='expected'), list(age2, sex, group), sum)) excess5a <- matrix(obs/pred5a, nrow=8, dimnames=dimnames(excess)) round(excess5a, 1) sfit5 <- survexp(~group, data=tdata3, ratetable=cfit5a, weights=count) plot(sfit3, fun='event', xscale=365.25, mark.time=FALSE, lty=2, xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25) survival/inst/doc/timedep.Rnw0000644000176000001440000004163712267746150016043 0ustar ripleyusers\documentclass{article} \usepackage{amsmath} \usepackage{Sweave} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Using Time Dependent Covariates} \title{Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model} \author{Terry Therneau \and Cindy Crowson\\ Mayo Clinic} \begin{document} \maketitle \SweaveOpts{keep.source=TRUE} <>= options(width=60, continue=" ") makefig <- function(file, top=1, right=1, left=4) { pdf(file, width=9.5, height=7, pointsize=18) par(mar=c(4, left, top, right) +.1) } library(survival) @ \section{Introduction} One of the strengths of the Cox model is its ability to encompass covariates that change over time, due to the theoretical foundation in martigales. A \emph{martingale} (original definition) is a betting strategy in games of chance. One of the simplest and best known is doubling the bet each time you lose. For instance consider the following game of roulette: \begin{equation*} \begin{tabular}{rcc|c} Bet & Outcome & Win & Running total \\ \hline R \$1 & Red & 2 & 1 \\ &&&\\ R \$1 & Black & 0 & 0 \\ R \$2 & Black & 0 & -2 \\ B \$4 & Red & 0 & -6 \\ R \$8 & Black & 0 & -14 \\ B \$16& Black & 32 & 2 \\ &&&\\ B \$1 & Red & 0 & 1 \\ B \$2 & Black & 4 & 3 \\&&&\\ \vdots & \vdots & \vdots &\vdots \end{tabular} \end{equation*} At the end of each cycle of bets the player is another \$1 ahead. The problem is that a modest sequence of losses will exhaust their stake. The rule for time dependent covariates in a Cox model is simple and essentially the same as that for gambling: you cannot look into the future. A covariate may change in any way based on past data or outcomes, but it may not reach ``forward'' in time. One of the more well known examples of this error is analysis by response: at the end of a trial a survival curve is made comparing those who had an early response to treatment (shrinkage of tumor, lowering of cholesterol, or whatever), and it discovered that response predicts survival. The problem arises because subjects are classified as responders or non-responders from the beginning of the study, i.e., they are placed into group A or B before the response has occurred. As a consequence, any early deaths that occur before response can be assessed will be assigned to the non-responder group, even deaths that have nothing to do with the condition under study. There are many variations on the error: interpolation of the values of a laboratory test linearly between observation times, removing subjects who do not finish the treatment plan, imputing the date of an adverse event midway between observation times, etc. All of these are similar to running a red light in your car: disaster is not guarranteed --- but it is likely. The most common way to encode time-dependent covariates is to use the (start, stop] form of the model. <>= fit <- coxph(Surv(time1, time2, status) ~ age + creatinine, data=mydata) @ In this data set a patient might have the following observations \begin{center} \begin{tabular}{ccccccc} subject & time1 & time2 & status & age & creatinine & \ldots \\ \hline 1 & 0 & 15 & 0 & 25 & 1.3 \\ 1 & 15& 46 & 0 & 25 & 1.5 \\ 1 & 46& 73 & 0 & 25 & 1.4 \\ 1 & 73& 100& 1 & 25 & 1.6 \\ \end{tabular} \end{center} In this case the variable \emph{age} = age at entry to the study stays the same from line to line, while the value of creatinine varies and is treated as 1.3 over the interval $(0, 15]$, 1.5 over $(15, 46]$, etc. The intervals are open on the left and closed on the right, which means that the creatinine is taken to be 1.3 on day 15. The status variable describes whether or not each interval ended in an event. One commmon question with this data setup is whether we need to worry about correlated data, since a given subject has multiple observations. The answer is no, we do not. The reason is that this representation is simply a bookkeeping trick; the likelihood equations at any time point use only one copy of any subject, the program picks out the correct row of data at any given time. There are two exceptions to this rule, in which case the cluster variance is necessary: \begin{itemize} \item When subjects have multiple events. \item When a subject appears in overlapping intervals. This however is almost always a data error, since it corresponds to two copies of the subject being present at the same time, e.g., they could meet themselves on the sidewalk. \end{itemize} \section{Examples} \subsection{Multiple events} Chronic granulomatous disease (CGD) is a heterogenous group of uncommon inherited disorders characterized by recurrent pyogenic infections that usually begin early in life and may lead to death in childhood. Interferon gamma is a principal macrophage-activating factor shown to partially correct the metabolic defect in phagocytes. It was hypothesized that treatment with interferon might reduce the frequency of serious infections in patients with CGD. In 1986, Genentech, Inc. conducted a randomized, double-blind, placebo-controlled trial in 128 CGD patients who received Genentech's humanized interferon gamma (rIFN-g) or placebo three %' times daily for a year. The primary endpoint of the study was the time to the first serious infection. However, data were collected on all serious infections until the end of followup, which occurred before day 400 for most patients. Thirty of the 65 patients in the placebo group and 14 of the 63 patients in the rIFN-g group had at least one serious infection. The total number of infections was 56 and 20 in the placebo and treatment groups, respectively. One patient was taken off on the day of his last infection; all others have some followup after their last episode. Below are the first 10 observations, but with the listing truncatated beyond the fourth infection. Subject 2 has 7 infections, no one in the study has more. \small\begin{verbatim} 1 204 082888 1 2 12 147.0 62.0 2 2 2 2 414 219 373 2 204 082888 0 1 15 159.0 47.5 2 2 1 2 439 8 26 152 241 249 322 350 3 204 082988 1 1 19 171.0 72.7 1 2 1 2 382 4 204 091388 1 1 12 142.0 34.0 1 2 1 2 388 5 238 092888 0 1 17 162.5 52.7 1 2 1 1 383 246 253 6 245 093088 1 2 44 153.3 45.0 2 2 2 2 364 7 245 093088 0 1 22 175.0 59.7 1 2 1 2 364 292 8 245 093088 1 1 7 111.0 17.4 1 2 1 2 363 9 238 100488 0 1 27 176.0 82.8 2 2 1 1 349 294 10 238 100488 1 1 5 113.0 19.5 1 2 1 1 371 \end{verbatim} \normalsize The data set \texttt{cgd} is included in the survival package. Below we list the first few observations of that data set: <<>>= cgd[1:10, c("id", "tstart", "tstop", "status", "enum", "treat")] cfit <- coxph(Surv(tstart, tstop, status) ~ treat + sex + age + inherit + cluster(id), data=cgd) @ The logic for creating the time variables is \begin{itemize} \item If a subject has no events there is a single interval from 0 to last follow-up, with a status of 0. \item If there are events \begin{itemize} \item There is an interval for each event (0, event1], (event1, event2], etc. each with status =1. \item If the follow-up time exceeds the last event there will be a final interval with status =0. \end{itemize} \item The enum variable is simply 1,2,\ldots for each subject. It often proves useful in analysis, for instance \texttt{subset=(enum==1)} within a model restricts analysis to the first event for each subject. \end{itemize} \subsection{Changing lab tests} To be filled in. \subsection{Predictable time-dependent covariates} Occasionaly one has a time-dependent covariate whose values in the future are predictable. The most obvious of these is patient age, occasionally this may also be true for the cumulative dose of a drug. If age is entered as a linear term in the model, then the effect of changing age can be ignored in a Cox model, due to the structure of the partial likelihood. Assume that subject $i$ has an event at time $t_i$, with other subject $j \in R_i$ at risk at that time, with $a$ denoting age. The partial likelihood term is \begin{equation*} \frac{e^{\beta * a_i}}{\sum_{j \in R_i} e^{\beta* a_j}} = \frac{e^{\beta * (a_i + t_i)}}{\sum_{j \in R_i} e^{\beta* (a_j + t_i)}} \end{equation*} We see that using time-dependent age (the right hand version) or age at baseline (left hand), the partial likelihood term is identical since $\exp(\beta t_i)$ cancels out of the fraction. Howevever, if the effect of age on risk is \emph{non-linear}, this cancellation does not occur. Since age changes continuously, we would in theory need a very large (start, stop] data set to completely capture the effect --- an interval per day to match the usual resolution for death times. In practice this level of resolution is not necessary; though we all grow older, risk does not increase so rapidly that we need to know out age to the day! For most medical applications year is sufficient, but this still leads to a large data set. One useful way to generate this data set is through use of the \texttt{pyears} function. The following example uses data on rehospitalization for cohort of rheumatoid arthritis patients who also have conjestive heart failure (CHF)\cite{Nicola05}. The variables are \begin{itemize} \item patid: patient identifier \item agechf: age at onset of CHF \item yearchf calendar year of CHF, relative to the start of the study \item startday, stopday: an interval of risk \item hospevt: =1 if the interval ends with a hospitalization \item prevhosp: number of prior hosptializations \item duration: duration of RA prior to CHF \item male sex: 1 for male, 0 for female \end{itemize} The age and duration variables have been rounded to .1 year to maintain patient privacy. <<>>= load('raheart.rda') age2 <- tcut(raheart$agechf*365.25, 0:110* 365.25, labels=0:109) rowid <- 1:nrow(raheart) pfit <- pyears(Surv(startday, stopday, hospevt) ~ age2 + rowid, data=raheart, data.frame=TRUE, scale=1) print(pfit$offtable) pdata <- pfit$data print(pdata[1:6,]) @ The \texttt{tcut} function attaches a set of cutpoints to the starting age for each subject, it's primary job is to mark the variable as time-increasing%' for the \texttt{pyears} function. In the \texttt{pyears} call we set scale=1 to prevent the age intervals from being rescaled to years, this is not critical. Printing out the value of offtable is important, however. One of them most common mistakes in using \texttt{pyears} is mismatched scales, for instance if the age were in years and the follow-up time in days, and a common result of that error is to have follow-up time that fits into none of the categories. This will give a large amount of time that is outside the boundaries of the table. In the resulting data frame the first observation has 7 days of follow-up, exactly as in the starting data. The second observation has been broken into 4 rows, 109.6 days at age 92, then a year each at age 93 and 94, and a final 234.9 days at age 95 ending with a hospitalization. (The odd fractions of a day like .575 are a consequence of rounding the age values to 1 digit.) Now we combine this with the original data set using the same indexing trick found in the first example. We also need a variable containing the end time for the prior row of each subject and zero for the first row of each subject, which is \texttt{lagtime} below. We then fit two models. The first looks at the effect of age at diagnosis of CHF, the second at the effect of current age. <<>>= index <- as.integer(pdata$rowid) lagtime <- c(0, pdata$pyears[-nrow(pdata)]) lagtime[1+ which(diff(index)==0)] <- 0 #starts at 0 for each subject temp <- raheart$startday[index] + lagtime #start of each new interval data2 <- data.frame(raheart[index,], time1= temp, time2= temp + pdata$pyears, event= pdata$event, age2= 1+ as.numeric(pdata$age2) ) afit1 <- coxph(Surv(startday, stopday, hospevt) ~ male + pspline(agechf), data=raheart) afit2 <- coxph(Surv(time1, time2, event) ~ male + pspline(age2), data2) #termplot(afit1, terms=2, se=TRUE, xlab="Age at Diagnosis of CHF") #termplot(afit2, terms=2, se=TRUE, xlab="Current Age") table(with(raheart, tapply(hospevt, patid, sum))) @ In this particular case the two fits are quite similar. In retrospect this perhaps should have been expected: the mean age for onset of CHF in this group is 75 years, which does leave a lot of time for aging. (This analysis is very preliminary, however. As shown by the last line above there are a few patients with a very large number of admissions, sometimes referred to as ``entering a revolving door'' near the end of their disease. These have an untoward influence on the fit.) \subsection{Predictable covariates, method 2} Another method to create a time-changing covariate is to use the \emph{time-transform} feature of coxph. <<>>= afit2b <- coxph(Surv(startday, stopday, hospevt) ~ male + tt(agechf), data=raheart, tt=function(x, t, ...) pspline(x + t/365.25)) afit2b @ If there are one or more terms on the right hand side of the equation marked with the tt() operator, the program will pre-compute the values of that variable for each unique event time and strata combination. A user-defined function is called with arguments of \begin{itemize} \item the covariate: whatever is inside the tt() call \item the event time \item the event number: if there are multiple strata and the same event time occurs in two of them, they are treated separately \item the weight for the observation, if the call used weights \end{itemize} There is a single call to the function with a very large $x$ vector, it contains an element for each subject at risk at each event time. If there are multiple tt() terms in the formula, then the tt argument should be a list of functions with the requisite number of elements. There are other interesting uses for the time-transform capability. One example is O'Brien's logit-rank test procedure \cite{obrien78}. He proposed replacing the covariate at each event time with a logit transform of its ranks. This removes the influence of any outliers in the predictor $x$. For this case we ingore the event time argument and concentrate on the groupings. <<>>= function(x, t, riskset, weights){ obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } @ This relies on the fact that the input argments to tt() are ordered by the event number or riskset. This function is used as a default if no tt argument is present in the coxph call, but there are tt terms in the model formula. (Doing so allowed me to depreciate the survobrien function). Another interesting useage is to replace the data by simple ranks, not rescaled to 0--1. <<>>= function(x, t, riskset, weights) unlist(tapply(x, riskset, rank)) @ The score statistic for this model is $(C-D)/2$, where $C$ and $D$ are the number of concordant and discordant pairs, see the survConcordance function. The score statistic from this fit is then a test for significance of the concordance statistics, and is in fact the basis for the standard error reported by survConcordance. The O'Brien test can be viewed as concordance statistic that gives equal %' weight to each event time, whereas the standard concordance weights each event proportionally to the size of the risk set. (The Cox score statistic depends on the mean $x$ at each event time; since ranks go from 1 to number at risk the mean also scales.) Although handy, the computational impact of the tt argument should be considered before using it. The Cox model requires computation of a weighted mean and variance of the covariates at each event time, a process that is inherently $O(ndp^2)$ where $n$ = the sample size, $d$ = the number of events and $p$= the number of covariates. Much of the algorithmic effort in coxph() is to use updating methods for the mean and variance matrices, reducing the compute time to $O((n+d) p^2)$. When a tt term appears updating is not possible; for even moderate size data sets the impact of $nd$ versus $n+d$ can be surprising. The time-transform is a new addition and still has some rough edges. At this moment the $x=T$ argment is needed to get proper residuals and predicted values, and termplot is unable to properly reconstruct the data to plot the spline fit. Please communicate any concerns or interesting examples to the author. \begin{thebibliography}{9} \bibitem{Nicola05} Nicola PJ, Maradit-Kremers H, Roger VL, Jacobsen SJ, Crowson CS, Ballman KV, Gabriel SE. ``The risk of Congestive Heart Failure in Rheumatoid Arthritis: a Population-Based Study Over 46 Years.'' \emph{Arthritis Rheum} 52: 412--20, 2005. \bibitem{obrien78} O'Brien, Peter, ``A non-parametric test for %' association with censored data'', \emph{Biometrics} 34:243--250, 1978. \end{thebibliography} \end{document} survival/inst/doc/timedep.pdf0000644000176000001440000064155512267746150016053 0ustar ripleyusers%PDF-1.4 %ÐÔÅØ 3 0 obj << /Length 2269 /Filter /FlateDecode >> stream xÚ­YKoãF¾ûW‹(`Ű_d3·±³l€ Ȭ{Èä@K´­µ(9¢4“ù÷ûÕ£IÊ#;ر6ûY]ýÕ£«J—×ß¿wÕÌT¹5ÁÏ®ogƘ<„rVš»ÚήW³ß²÷s“­·øw7_¸¢È®×hw­t~lÑyœ/l™Q‹–­ð×nç¶Ê´ÆdWØÍ±âÓ<¸¬Ao¿¦ÿ‡¶"lêtZG$dóÔ¤=¥þûõO³ÚäÑV³…5ym¢°,&ž>¦Äg¹wöB{Íó±‡ûñHå·Êþ”þÏ;>žOÞС߿75ÀÊë,áfs Xˆy¬°p=X½§»âï Â5²WœZÂàˆ©«õ=]~µOŒ|&ì¶|acë¼®ãla\^{½ñÏÍÜFìÿm.³«Í<]P¾KÞ½¨\ f]î*/»jx6Ñh&[‹ößµfaðÏ ÞÏŒÏ/ƒ…)}nÑ^x›ÇX e3_ƒ½ÿädNˆ‹E¶:.©·Þñ“Œ3Ü­´%,X¦±ÐþB«H@µËv·ò¥íInèö…›åŽgûw\ bF§#1WI̲ÙZ·~´U»Í ñ>ôý4™‰å®{$H{ݹL…)AšH4´¯íOyliÖó_‹Y÷‰ ŽnùÖ$\@&Z)”z×B‚>D¾Úû½Ã);úú)"'Ý™H,›l»¥ “¢6"À­Ì©9™Žõ(í¾k6r?“åóEå«ìÈV3 ܆˜(P!ÜwIL÷Žº›ök= &·pºëc b‘‘½KúŸ¸_©?ðÛAvÂ?3^£—k4b3®¨ó *}‚î8˜C¢"L²lzÛ‹\ ÕõV¾wM×&}òƒvžJzÙ,\RT?)­?Õå¤ú,gRµiÕžf»’†òÛëøƒÿ¢l%}_±”o”Üàükj@~aª~¥Ô6KRÏ{¬tn¢ŒÔ·ê«Ž2I§ìúVôÃ{—½ŸGGBä¥IŠlßÍv©Ç;5§m¯¤Wb Ãq÷ãBV[:e#÷ÞÊ©8ø,#ìzÉnZ&‹òuÁUKyt¬ÞöRÖºÎ~9êØ¿0a,™ÿ .T.þq}ñÇ…jÅÌÌÞÜðyxU–ÝÅo¿³&,^ã8ûÌK;Z.j¸™ýëâ׋KzǧáœÏK@*äÞ©ûü@m·SEU”v1¯X²Ðú2zf©|™%C¯pU£ý OÖbCégP®¼ˆjA„‰ï`wÖ.ûÐJ`ëhñÚ<‹‘‹uîqúk0*mŽ(ç”ó‘U•ï^säAYç&½¼ '»$»y Ór!+^ઠyˆoÄ”«BÜžÁKn)°™º½Ä±ý6ŽƒËK÷:õ. ö1.PàªqÆÂ&–A̸S–/•eNÏ^bÖCñ«êM˜õžBá]”#³aöY|ã·á‹à°²¯Ãϰ/¡b‘ð5~Ô‰X<0âlešçÈ´‹!s/4rª¬ÞDá’]P _:Î1ûZƒ.ál]åx³ž@ñêš…#ŠáM 8áÇ$±akeϋ͞—©šãR…yŽ#^ª¨/•{áH8©Ú—¯š‹ðDÊæµUò¾ £JÁóc;ËrVÐoÙ£þ›·? ‚`Wþ0¯ãó¢ppåkpÆ@%O4Þ¥Bò!b Z-XÉ8]:ÖhÌË/Cm4ŽÃ Y8v’–ar$²Gv›DŠÍv/Ãëqu³Ý A¢Î’ÕòÔ=s²B0ŒEÚžˆrTx“¢ÂNV¯ŸpR7"$Ÿif)¡ù™lÃß?$C4“(WbR‹Ø•6÷)qÀÌ絆èYÑþ™8¦` ¯S|l5–~`lD|Èåk¤ô'!üuÊ $Ö£_d·žScÙS•JBU²Ô]"ñC –).5Ò¤^ŽJ‰$Ö622$ê4ö$Q§¡õ¸¹O¤ÇMb¾,ˆ­@¨ìhöÍ~o3¹5-§ä@½è"[CÇz=É:·’‚r¹ñ~šLý€Ì®2cD —œõ‘V¢(S¡[îdvJ4Zbð¾:á]:õxP1qúNÙvô°Ažÿ ÷¡ò óÚ‹pùÛPrYà¥ÍV‹4þ™¶éÞ3Š}ÖmÝR‹¿R9Hg¨%°ÁhæG‹ù:œåu,9*Eó¨{תèhv£ÍsŸ±¤ƒ1¤£+>ço¹J ÜSkõ7™KeÁp’µrnð¤OÓñ Ö‰3¦'†;VVæø "±ÙœCˆsñ!1%ˆ‘,²-7’Ó'ÛÀ0G_>n=޵FÖ»b4‰BË ¬åäOûÉ®›$q´÷É=I9Wòjd¼‹PEöhñ­©.|ÊV£Ëö£mMÇ{VÍO:)ª¨+–Ik? X“Kœ¬kVе©TAX£ö©Xp'SÌ/ûM]ûù^KtFK-+i7$qƒ7ˆUa£%P ìüLFÒ»±):vàwaâðˆ¥hãý~R“}à —óŒ>lJ‰€èX7IÝM=-ä!›¤ðØ€gà*I»±Ô&ÙY1[™÷€dpÀŸ†3¸&ø8Vè} ;Iëžëc9r¯´tùÉ›ˆþ‰šUßúVè={¹è˜ÞvÌœU*UõðJõG®/'gÛv2:¸;}<ÏT«´’µlމϧb’ú/‘[N[ÙVÚ¥4}²/*2&he/O•i•~Pz,¬Ú2(‹sH=ÝrË÷ídßð#†-Ò}†èvjV –¾S·…nŸP~‡ˆpF¿Öìù…Ñ߆z¤þv@¶ØJãQó ,_Ɉ>f£ aìnÏõ¶Gé½£Dн”Ïö‰ïÖ†ÀϪ'YZzœ{iÈ»º$~ŽÉi¶«T{,²wº®Æc;Fg\žÕ{§·`²H+’ç…+ó¢ŒOêJÿP6 endstream endobj 2 0 obj << /Type /Page /Contents 3 0 R /Resources 1 0 R /MediaBox [0 0 612 792] /Parent 9 0 R >> endobj 1 0 obj << /Font << /F37 4 0 R /F19 5 0 R /F44 6 0 R /F8 7 0 R /F51 8 0 R >> /ProcSet [ /PDF /Text ] >> endobj 12 0 obj << /Length 3115 /Filter /FlateDecode >> stream xÚ¥ËnäÆñ®¯˜[(d‡&›l>ì8@¼ö.6@ƒwÜ!ça ÉYrÆŠA¾=õìnJ#Á@’ÝÕÕÕõ®jýpwóÍ»jUÇuaŠÕÝvU—qYT«Â–±Éìê®]ýuÍt›FGø{¼]guµ¼7gøÙÏ«VOLèBbUé$ؓـ®åIB,êzÒ Ô¡P]`ÉŒ…]­~EÀxæé‡½¨SU‘šŽ<<Œ¨›U}LÒh k˜BV±Ø&ç úŽD/ËOG¶c2 $ö€„ž.6»k&åU¸$ºš³| ¬ðIÎ!«¢gÙp&æM;Z`¨?ˆßÉàyFõL.°G Ú x¹MŠfV7P Jðf1œÞVÑ_ÔC!·Ù©ëÃMúÒ#”êÛšI–Œ –Ì2\vTXÇhø1©÷¯pDÝÞqLjmà#ïÈ£æyF$mhf2vµl¬?ð²»ÐÚ‰Õ€¶K™·-/ú?×€”àufµ³{ìñ÷º'Xl“¨gĘ×àû^ÅfI*¯ Öǘ뇎d­Çå%½Vçyr 4 S;ß°e¡TcA„0zL›úý“è¢JaÓÐáÔÇÄ&¸æÌZÁó¨t šêÂÇÓ'Þªë_öK¬F´‘9Î>…N߉·¿ygÃtÕ¾Œ`ú3ø“Ѧ"HüüFU~e†¤Ñ¿‰q|,9ÏÏâ˜ÙÌܰã¸è[ʇEdO§ŒŸR>4ÒÄ…Ò”!þˆL…ŽŸôdN‚µ ýUðìh7dj™ÅIU,yÚ+ñù½Ðù(~(œ#¢ˆ·!k×-2XìüÃDùÀ@ZÕ*±÷¹óv$C'ç¶ÏhØÁ,¼ÁþY>*`Æâ¥°{¤¨ó€h—#SÜå"’Íį*‹«¢¤ƒxÒÁ\¨Ê£_‘ö “¦uX.5I² „FÙ¼¨y´Ùuòæ$꨼ ütZXÿRo~º»ùr“‚š'«t•–6.@ý󺊋zµéo~ù”¬Z˜guµz È~e,È,3ð~\ý|óÏ›ž¦ÙiÇ%7¯“85†y’—J£쮪M”Zx©«„òÊD† A tg×b'â0yÊk‹ÜDyñ*ûZ‹HÊìU$ùkHhm†ÇIpu™%8uKÁ *$­H;rÕV{ûDím´i8æÛ gp9çS9v^8¯4BRÆ6ºifçÁ¢ªâ,S ïyÒ«,+¸äÁ|5ÌN%aT²F )œUQ[-—EIÎX,Áš^>¶š%÷üä£O·?ª•voxîay 76®Êe^áˆgð$æAŠðܼl\~-‰¤“£™š“Ö!Tª’&ø¤²€FfE÷ywñT¥KEd¹Ò,UCå«=McŒIXäi¨YbₚHý»çZ‘ǹ©t>µŸÞð‰Ä¦ÄQvê¶Kí•ýŠ:®ªê÷n—º]c’³*£©_È… Í?\g†”µÏ?v 2‘§¯*V ­Døv2…÷ NŽ®TƒfE„JMfòÄP`!%ÝàÄž¡)Ø7ƒ'Yí£9¨ý)^SLdÈüRÒÜ»2ÞúÊâ“o/À¸ÓF˜à¼2—ø®i%ÀXˆ)6)£;=5 > X¸òºçrH©R ¤–œUr;ùÄ££<9!‡—®Ùà™öŒñ5Û@`×hCø+Üj†'ÁùrzþõQ–»=—‡‰ùäJ§9î!LÙÃn‡¦ÆA½Èƒ¬!oÙ)“O ãÀEÃÔˆöêC¬”‰B i y!,Æ`œoo}ãà¢é?h­îìÅDœ©oиó„h'žoÔû×t,˜Ú\á;ð_$ò¥>M‘qÌüÞ#ÙÈ‹£rö¨ŒŸç¥6œ}Ç ÙÂx‚ôPߎ¹5q ëÂs Š'Gqì„Aí4Ð<«É3´ìýçq¸Vëêµ]Ú~ð€ùŸT ó"P/ yÖ)÷{bÐ#7¡ž1s{ðžý„nã2a!‡¬•ÌîÞ¾ƒ³šeL¯mXÞ²¿¥½+Á´ %:²ŽgÍ4ÄÃlÈ©ÚfïAº|Åv¥‰vp%$j®ö¬3FïZ¿ò-sd¹'·•ádžÁþf¡™’Ù‹‡ZIw¢D†Ú©MÏœ„tòÿ÷zÎŒûB¬+Z• gr˜´=ö «·ü\ø ønÎKê¯5{vg$Ú0wQabÙÅ€8u ªý¥‘:¬‚7ÔCxÖ•À6ú]ÔÍá÷tQ«}ƒtZGÏB&R gîTŸ8^ÔÏŠûÉ0 L$p«2êídŽ'âá®[7› È-o¨40Þ­=Ö…ˆkÞ»Ìhx•) Åw &Æ‹ÁÖ¡Ö fëп Š^ÍB«¤£jŒå¢ S¡ë2å:LÊAåß Õ $ U&‹>È–fþ žö£ G Å™¯bEŽÌFv}á>ó s–÷îÕ“ûiD³u.@®{úGßj¯ÜC{‘À‡ƒ ¿\E[ú¢m7 ‘r7)׈³3fu3XD©ü·.ë^Ô uƒèy k¡ 'âÙ§'}ûÞdæg¬êôLëªxsUï•nºs–„•¸÷ƒ\•–´Ýÿ\\HŸÔCå% <&ÍLÛ±êÐQ‘yq-”µ¾±ÀQJHöÓ‰V®qsmBÒEÇQ…Ä[Ÿû$«„1UÖ¼ˆRSñ˜°é ?Nî?Õ(E‡ÂÝÊ›ŠÉI¶/> endobj 10 0 obj << /Font << /F8 7 0 R /F58 13 0 R /F51 8 0 R /F11 14 0 R /F55 15 0 R /F44 6 0 R >> /ProcSet [ /PDF /Text ] >> endobj 18 0 obj << /Length 2125 /Filter /FlateDecode >> stream xÚYÉŽÛF½û+„œ8°E³›l.Îr0#Î!9X7ÛŽD-¶F(É#@¾=µõ&Qã™9HìµÖ×ÕÅâÛÙ‹×ïêI“6¥.'³å¤©Òª¬'¥©R›Él1ù˜,nTÒn¶ðÿýfš›*Yö7Z|Ô0¬ë¤kX‘ÞLj’ÙÚÏî¡9làïŽVníÅþfªË¤ÇÙÝ®’#OöKÞz„ñ€ÒšÇî³têäy·‡`}çÛĵcšØï±Ùœ“ý”©e$ò¼øÐ ²½G~BžÄ\âÆ9.¥é)ýyöç$›LU–6¦a«ýÑ£B÷ø×Ášo¶1¼Bb[%A#µ_9ˆdE•Ì{´ú–8iu§)`LÏ–WP`ÁÔ0z&µÕk'Ó'o{žb¡‘ ë/á½ä'e EW•œÐÛ¢áýÉÍÑAkÙî­PŽÓ`U]DÖ«Ùz·ŒŽ8 ‚®k¶2úÎý"˸AxÔu•Üõ‡#·ö­U׌†€³€6§†#N}稳Âviø9J§º;÷â·vŽ>»%½{žZ ä=÷Z±+¶†ðlDpØŸDÉÇ@¶'mÎ!^G ßáß¿ƒ¿¿¦+Y ì{ÀÕí‚ µG~[wNj@‘=š=åþÀ4"€J–8;÷ÐÃ(¡3pDpV{: [ MÐ6 ƒð\ŽžF‚ýŽxŠN…‰¢HLÉÏÖaºHtÆÏ «Ü‡ œÉ¢ôvÿÂ/:{ ï,HhQ`؃œ 8 ƒ¸ìÀ°sÆùF±”ƒm]`<-ª*ùu ¤¹À#ÍJ‚LíW"%€é].Íݘ‘œÎM¶¼)Øê0NgçÀm² ž8ì\óõÏxèrðì–×õŠƒ¨¯-7VŸÑ\ýt|¬¡8Žáæ´gŠíRüOiœïäóþHVœÛoˆ½’ ´èøö‚{0yÛy&¼»e=d3¸5ð"„ª• hoqœÉ·SzbfT”E‚‹N~3Ô ›Ë]a–×vã)­JVþ,¡'›ó sä8K9u0'xqI|IxE*Ga}í¡û¾N>œ8Ê“|ñ‹FÌ¥\Î(" B»âÇõkŠÍKvr…C“Nzìäfæ kís² C®“5óÕpYSéò~ý®¬&5dAeAYPš7#ZW²r_%ü îb³†Ÿ–'ÿhÊmž ›˜oT8$‚P  6>„ò’hé6ÜÍ…A~Å OÓ%‹TB6&l"×X—P?3&½ºÐ%gá•©ˆ-‘AQʘS ;[ºÚuíµ_œËÞlÌùÑŒ:60F㛕¸!4F8¶GØËëi‹«Ò6Â9ÿ‘´g0ÔgÒæ2Àð1ÒÖcÒ/m¢‰¥}Ð*ß ˆiÍ#m«bióE¥ïšk‡¦Œ·˜X—\r5Þ[ʱa¹óàИÇ€\LRŒåÏÕS¥=wu„“*–ÌY¾yªË8\5×@^?ÓÔÊ8'¹9*NÅã%EE3Šp%"f¢Áƒv®b;—gÒÖÂëBi€ð Z;3H¦EZ6u¬ ÑöX-Î nbƒç#oâÛàG‡”ã(ÝÌay×…`HKyÂÕ”Š_ª•d\G¹á›€©ÓL3‰Âœ²'Ü}ɰN+°”,ÜHƪ”Kwç[ÉÙöåÜMB3ói´'Îÿl¦yà–§ö-½'¥±U‡iމh”ð2q)ж ¼àæ²Q™£ÜêžÛý­«H:êŠüú4mTZ©,­*%«Oï9Ñ{)½B'29æ\vÞ°)MhË,öÛoìmo|•|½‘gƹŸ]ö)38ò“p!mYñ“${6ékm ûð²ž^y/–„TŽââÃå²N`À画Œì«^Èš ~ŸG©LZ–z2Õ`xU{Ü-˜ê¸†S¬ kBS±ôœ{]ŠLx°bŒË‰i‹BPÛ¨ä¢4ó:kŒ T}€ à7%Øè0ОÓ¸ÏrcFú©Œò3Fa’m«©¬{"£Â™È*UƒqõÜTè Wy B;å–ÜÒ.]¶Ñ®«•—z<}ã2 KŸdºb8—žG|ògð©>l GÛÁKrÿˆWñ ^õ¯€vÄëÊæ¼š+¼B4ë–ÏूëW ÖýkQ̯z¿ËÐÆ« ´/%XKŒú…‡›Å0õàµð$&ñý䆯E÷W×⟛ºÍ)ÓŠÿ<8úÑðKO¦#‘ÃÑVn°ÎŽ¢?ê<5ºŠbs†µbÛ¼ôvÙ2ƒÕb{ûÉ5"J.ñù«8n®¾Èp¦eš:8 Š(”¬¸”O\”çÛNÆrÕ¬Ýj´}‹]œsP¹¸EHm;I¬¤šsˆ™bi–é8ƒø¤Uv©¶\j÷ž>U4ü‘¥!{ž°NU$_¤NI_¸( l‰ š×"Â?GåËŽÇ6~ºåogm¼ÌÕèƒZà–…XR¥øŽ×fž[Ï$¹‚)¹L|}™R™™>¿èä~#XXÇ&pÁÓaì±I^–Ž8aÊÆ}–0q´…ÙA€ÐÚÆ¥±‰b•…™‘Jµªcæÿ޾#T–ñ,ò”6ÎSšªÿnÈñµ)±a¯è£Úfé{ß|]¾]¨Ñ ½€•}WÓgê³Ô3aN–^,yÅ‚ÛD[)Éžsɺ(KÆßÙ`ç½ ,"iàóèI›0X(þ©àåÈ𲘥uQÙ f^ü>{ñ?6“û endstream endobj 17 0 obj << /Type /Page /Contents 18 0 R /Resources 16 0 R /MediaBox [0 0 612 792] /Parent 9 0 R >> endobj 16 0 obj << /Font << /F8 7 0 R /F67 19 0 R /F69 20 0 R /F58 13 0 R /F55 15 0 R /F70 21 0 R >> /ProcSet [ /PDF /Text ] >> endobj 24 0 obj << /Length 2988 /Filter /FlateDecode >> stream xÚÍÉ’Û¸õÞ_¡Ü¨ŠÅ!’ “šÃŒ+.;—Lfº*ÛZRKjk )uÛ“||Þ €ÛîdœT-’Àðv¼¥¼½ùî•Ë&MÚTy5¹½›kÓº±“ªtinËÉíbò6ùÇôý퟿{UÇpYê&O¿¹›ÎlU%§õÔ$K|wɼ¶ðƒ‡iî’ÇÙ^<}‚× üí| ïŸào¾Ä·E/ÂûZ pŸ¶‡ŸSXñ0Íëd¹ÇßSØ—°è*AcË»~˜Îr§“-?Þe¦ˆ}+0¸„÷Ås::«,¦-ù,ZÞËg‹?çÙÌ™“6¥ðð{˜ÉRf$ŒNάIk×t“¿ËMvÍs|3Êô[e¶­„ç¦UÒvÂáöÃ6â@ϯ=±%‚óŸyм€÷ÒéÌTåàQ±P;9÷ž£`ײ!’À^àÔ=:G¶ÀÚ¢´É”-“Ã݉ðAþÒº#2˜4„ÅP<ã–K<ô¼åÅ›=?[bm˜|SNqŒ% L%™zIíç„1¹j".Û&­²JÙ¨âS–²Åù.+3O ƒíd ÿ ƒ˜kAÖ.­o>‘2¢°05ê%>vRÖ³Å!—tÄ¡“¨åf.‹{YwÅ>‘ÂkL„gPó;Þ‘¶_ ATìø‹y<3¹Kmf‡ÊÞ«"É=®˜ŸH¥ˆE1aМ´?/Ò&sðž8^§¨… r&/’—ëù»"é­@Æ®d_À'àçÉs¤¿æ5*AÚÚˆÙLk‹œ°Ö’#¨Ø4¬zòäƒxx#ÂE>´M„·¼"´Øé„ìOrErbÇ7[,ÅÜ~·ìÜd~À‡iei) _˜Ò¯ùdùœ&žuP˜Ù¬†/Ä#kH Úžß[~œÔ)vø{dí‰&rµ;›8›“ø˜Äý½|1¢qV ‡Q²ç¬ŽÆÈÞObO]دíäå¨ã 9•YüA%‡¼Ç-ï9âŠw½G ÀðÒô€[΂ßñÓ[K/˜Æ{Qx=¶z“ÞYÒ®–èŽ R5àÊbN·×æ€Ìlõfü<«qI´Ýñ)ˆ§dlW{’‰]J¦F^’1}â±;k$m‘–²&ÚÎKŽK=I0쯅³š‘Ì}¸X•Þd»ª ßÀ(‰á#éÅV¦Ö)A Åž•É=9û]„غ= :ˆ€\œØusá»"öm®½›KMiõ¶ô^ËY=/î,ëò„Pp64¯n ¸‡ýΊ\6©ÒÆÙš‚´lj@0-š§ñ³©5nÁ¼`=zij5J\QtJHöcñÒž&Í*ç½@qD‘ø€|d ˆ×³Úoñó©.-«âk¤º4³R[áwGÖþñšùk¾.…a<“Bô3‚µ)ÓÊ6Šv;J¥Míƒ5¹£@QO±Ý¢¦À“ýNÊa‹Åü¦pCÝ 1µ¥[¦í†aóD­áã4ç„®lƒ®ËªC¡²´iQBgié$Z]Žˆ¨ fØ´2‚0- gpµóLy—evt¯¬Î/ÛÀhSÃV4os3™eiÓT‘:Üüéöæï7˜…d3 T¡˜y™æ4Ïw7oßg“L‚_L-ØÎ#î&@cF’ÜN~¹ùë͘yÆL[9¹Ó‘? š\š —ùté~„À¥¦¹´ˆxŸ2µUsa1ª4Ërf€ØÃ@v° ž…Uå×å–áçÿ@nC´ïǬÆÀ&Eê«Ùé5iÚE G»â¿¦’î)Ê(·óÇÆØçQ_ „憛@NÁü~ä¤ Nª.®†ø$fÖüÛ'i>84#›`>î9fäLZîi3 [‚¦z¦™/Ù‘û­VdÆØteEåó­Èý¿¨Ú²û1p ¿]Õ̬iCÃ‡Û ðv%åÝe)ŒüÛctŒ˜]Ò/ålÜðþn8oèã›až›2,GÏ–#Ëãìæ4…\­ñj=1á þxÐ;·S4{¢’f)é§œáé*ù@y—c÷ [ÉEî.Ž“º Æ(#~¨JæcQB5ˆâú2D¨.B„*äL0…¯ ®-å¡`:×3z¥g®•Nˆƒ?#eørÆåš ò`93 ׯձI])1oñŒ˜·ˆô°˜‡òÚVÉà÷¬µÛœ¡^9‰‰k×j5‹ÓdL1 nzÍõcbæCôÛIY5ÉæŽÃº.­¬,žÄd”ôI.B„ NY¨æ4÷nŽ<éh'í3ѤõA/bËå0©j>¬É’0JjáœI .\m-…³¸OcdÝí")ÃjöEüNÍî¸=ÉT¯"*–T“ß yJnl…ãHÓ¼õÆÇY8a¯‚/±k53¢BÝÙÓ`y° x¥H•Ï{ÑèY‹Ý¹˜™B>Ñ23Y µ.ŽbTKé|tãM [P"‹ˆ{-[гáb>¨Ô­×·,j-‹ºÊíµb„µ•ÜîŽÚùD’ˆåBõBùØ {'cã¶ÅQ8iµ~ók¬šrIäi•]\¦Þ5š†¯Êõ¡Ö›š¹ ÏN¯º3;æÃFì[xZ‘]wäaöèÑĆ2û(¥(<=4 Œ4{¢&+ãG,¾×öÆiÐ €ÝC¼Aé )kÕFÎz«Á6Ò} ¯_Iäü ïµÓ|¡#¤ïá0:”uË‘Ž9]ε¼BºóõŽyàÊÿ¨Xv´cŸ ¾¥G¸ìÆÚø|wñͳ‘ÏÊAÖ]Àɇ¢­sä Õ‚­õAëËׯ¾†Ê³1ñnÕ„È¢[­¬.ÈïÂXä…£(’V¼Môîi5ÙàÞ¬„EVœq«Víòt^«ùfÒˆO6q8ÎU‚t2”Ç]@%·êã5‡bíèÑ¢ù7Ã_}…B†àö½ Uè~Q–@3 Ì³üû‹å&<Æ<'¾]zÎo¢®GnljÝ®)È8 ¥úß0@̇G|?ªc=È„¬òx~ù5J¹úo'¦…:Ðh{Á}ljhó?ÿ]LDdPßÒ/ìZÿD ýËOA£D¡Âqë²Ýj{d£H"ðR·ÄÛÀÔYZ`½!oÒº–úx¡5ÒÑ&9 endstream endobj 23 0 obj << /Type /Page /Contents 24 0 R /Resources 22 0 R /MediaBox [0 0 612 792] /Parent 9 0 R >> endobj 22 0 obj << /Font << /F70 21 0 R /F8 7 0 R /F55 15 0 R /F69 20 0 R /F44 6 0 R /F11 14 0 R /F10 25 0 R /F14 26 0 R /F13 27 0 R /F9 28 0 R /F1 29 0 R /F7 30 0 R /F51 8 0 R >> /ProcSet [ /PDF /Text ] >> endobj 33 0 obj << /Length 2498 /Filter /FlateDecode >> stream xÚ¥ËrãÆñ¾_¡ª¸Ê ³Äƒ÷V6‡¤¼•䤥rXï"A^’PÒZùàoO?g @ÉåÄyôôkº{zzô§û7ï>–wUXå&¿»ßÜUEXäå]ž¡I²»ûõݧà~·ˆƒf±L’$¨·Ô0A}\sc}Ù|õþ´Ý‘‡ZdyPãx[?Àß=âèynW/L¦T´‹¥Éƒ¦ #àÊQX)ÄDÇ!4cn>#:\ ôL`8ÖR€8»A=2Ljþˆ¼œeø$£,ÂêyQ¦@íóýßÞ}Ì|]EwK‡U\°šþ¸Xf&!A;¤²þC”E¼¸H½ÅIfi8hí·è³Ð˜JN‚‘·‚Û8†„Ò^Óø5)ØËÔd¯& Çs·Œ£VæÐ1³| &2°f ýšKn"[+ø.Â")!¾)Å7ÒW¤+ÛÀ÷| |9|™Hl¤ý–)"ú÷düE´Œ¦^X¹ÂBû=|Ë{cŲ°~"QL6PÌIöÿI¬h}¥œXEz…~…’^ ý(új |LgŸGH{G÷ß²_'2};Ü iŸµôŸ …yœÙÉt/ ²‚Ô/³öõû9#TJ™„™)†šQ>T„/hXx/ E³ºô KÝ=|ÿ‚ï?ð}?ÔÈJÀ÷xìïãrŠgo75‡Ž4ÜhvžNÆ6Ûm¥ùîc^MD±’i?«[ÍǽòŠÛ¡Ö¦ìoÌôpÅm˾¡‹ñv©ïÅõß’D³:ˆ£0Mã¡X8ãÚÓ~ESGþQKo,÷_™¬//xAœqP.ðƒS1®ìX!†Ñ'±„A¢)ÝYW±h\ ŠLÆÅÄ—Q&Êdˆr:ÌÞ@)Jê¡L#Já2óPfC”Æ;JfPNFØ|e2Ôe:¿=bt7¼H’¬kÛ4Q˜W¹ÎÃõ ©;1 ŒÎvA{[i¢CÙf5gu–fF;MÎpŠ0z5gnwüÍ‚•ç Vt’Y•4&Ë5CË8ßÒÔ1ž9Ccí‘ü‹IndÓ˜Rƒ|•°šW^(”-aâGÄ·r±:É'ß:.(\àø>³¿¥Y›r¸¯ˆ°Ü Ôöü«2@“×q㻆Û^~‹b=ìEP˜ª=4-K [+\ÐÔ½F²-n íÐO˜€© /t[§ãÍ•-$i˜•ùM[@{]¦© þzôX˜1Ä„¦Š«zOÑzÒüÚ}#!1)¢ptötˆ’~?HÎ_Ævʈ7›C,b´¹J1âýÅ«—àÛ?DqrX6ÌZ†¹yx$µtêÓµU)šF@ª[ØæÍ9±ÍåQü9‘ÀüŠÆ]æ™U‡žt †ª>¢û…p{œ  Ö»M›L~|U½Þ¨cw¡¥ØîC+}¨9Pkl]ó¼g+Z 4 „2Û‹>¾q3nz»ˆ]²jl<é=øDšýÌ××<¥1 ‰‘½¤Œ¼uË‹„{!KÛÞø¼–5ÝèŸY(vdÖÑà¤'yÐIbCÇ ü¬ÈÉx[cÏ£.{1Z$ãˆEìZIÌ“FÏØ9SìªÐÜÑNrµ¡ 3ŽUNOH$øèˆ¨ŠkÇÕ š¿ÀsþÜ;ªÖê…æQƒ« ð/,¬È@šm§>NR‡Sþ{ï… 4Ê>%Žš* ¶­ }íN3€^o^‚Û7ÉŠãe!õ¬=1¯ï<¢\+jäd2LcÀ±•ÜŠ~t38×èWóÝ ŒÏ6Îãæžì—†:d¨oN¶ä§Rãð¸ÇFÁ?ž+†#>au,ã’,úk­¹ÍþWEboÜ?{ìŽ2*Ö0ASiÓ,¨™RMOe–N2/n ‹$,6F;Ýv‰Ýè•ÀXŠ?¥Ü¦Pz4yGUHÙ9At‰ä…¹fŒ0PZ˜‰^Ž2ÍlØ£A/§´˜ Â4¡›*ÁÄ$—2§É‚*}+ÙêË0øA³9r’B°‚_ÅSk?*„É™4€±0PeüÛj?É Ó¶€í”W1쮣2Šæ¾t¨`çgoÏ(¹³÷d[ÆÅ#›üsí$±µ /=ì™ ØïÄ­­æ «'õ•/^q74+2) Ÿ¼b2ÿ¬„Œÿ}‚ÌgåÀ(~&¬ËÆ_GIâ"+¦·²Ìet„±w RŽí¶õŠ©¶:Ã>¦éÐ2þ.9 XÑ—Ú|”áÀƒÞodfœïáB¥·‚ÈŠŽ./[“ †×Zf¯¹ßÓ ­ˆ½Dg;‰¯× ‡ÖVÕ¿zZÈúÑ`Mù˦°qÊ÷°Œ‰qYcBkrlž$²&XAêÄ×#eDd­Qð_,·7 Âù8]ÅR¢Mg-“<<{K(¶IzÌuÿk¥Þ}ŽK4GÁ<È ï.iÉ`½eê¤ iÜ'ËEäzͦ\xMýëìD²¡&*ƒŸ[-†~åxм{)À©¢9‡¤éW‘$Û‡iÇ \1¦—lHbžv¾QìsÛOÝVã*LÜsÂÞ«ë[ź+æ ¯®Â<¶o"rĸ $ÉœDÞ}æÈ ¡ôgU l=ùgǰô­ñ J= —&+ÁvÍmÛ… ³g\pÜI`1ÕñíÉ{-ã²kœ4|ï¦yf6NéB jõ–²Ç¾uKüù/e;ä!L#Þè÷PúQÙA^œÅyìp¾œÄr¼÷0~ò‹çÀ`¯+3|jmœà,ýëU!¸¶Út¯äzº]àýfôvҺ׶[$óÆ8æqåèG®¦?ÇÊÜÓÊ'B8ûÔ3…Ž$V«µ0®.o&OÞ ¤kÂÃz¡wKþdøz-k¼Ç1ËíXRýÝÌ Rï,á> endobj 31 0 obj << /Font << /F8 7 0 R /F58 13 0 R /F74 34 0 R /F69 20 0 R >> /ProcSet [ /PDF /Text ] >> endobj 37 0 obj << /Length 2045 /Filter /FlateDecode >> stream xÚÝÉnÛFôž¯Ò …Z g¸u7‰‘EQ¤ê©é–¨‘D•¤bçÒoï›÷ÞlíÈ4‡1G³¼yûæŸçOž]§Å¤ ËLf“ùjRæaž“,ÍC§“ùròWðÓt–Ê8¨¦"XÁØÂèaZþ¦3š.`ÚÀ¸ƒq„±ñ6J#øü㣅ñÞ.w «â-5_òï0.°>Ö0à‘#ÞîøHÍõô#û/}ö|‡qé{ú;&öÀàguqÍK ¦r¥_Qøü=ÿeRÄa*óÉLˆ°L™kMð%]1zÀ¨€ÍÆ Ý#ù¤Ò3¼=#%,›‡[ÒniŽ×̲/Ëyér Ù+]F£ÌûŽ×̃½ó~cIÐoûÚïñąбl¥¯À5/Ïa¼ñ'Œ—öÈ¿«ºá£Oa\¢¼{š¾`t4[Ž lñ‹ÇħÏaú Æ5Ãþrì‘_‹=Ïn=íÃkWŽÊŒRœiŠïgCï<»ó5òÖ!Ù±«‡¬úÂztxúÁBxÈ]Xƒ©k]úü<1»ÙHÜúì:+·Ÿ†R ¾ YñÑt&¢$Wn¿’¿1þ¦üÍø›ó·àoI(©Ç#;vÛib§©vÊÀ¤&Q“ÐKj" J{]Zç8šXL= róQâïcޏg_ží£,Üùbx}˜ÎâÈjvIR­V[åæO;Z‚í(XT]íß5?eš+sÐ0ô6 ƒéèHÕòÙX“¶Æà íbö[m–m8%±4ø¢-ö¬÷MwœÎdÔ‹žpCŒ¶ö=ÞVg7ÕÑ®wh Ý’nn*…ø{E£xCwëØ ×õèqMƒ²”])]ÖÈ2¢°V ²(ƒj]ÓdÕ´jRÍ¡#²p¹YÑ÷ù«kÚ¦…k½#+õ{Ý"Gúålä)½ü)Bqvj)n7$WØØÐá% ¨¯íõ¹‡% XÅ›ŠydM¯ÇØ¥\¸"6NWk¤g ‚Í’ÓÜQž¶B×åµãL ±ý.µ«Þ¹Zt¨èH‘(/–ˆ,Ø4Š.TTrb”Wü) ž=ÐÊ: ¯Å%¼©i5µëiÃ$5ý®n¹ËÌDëªB—ÂËת–-#.ëÕG1²¾¥9Ú©æ;¨)€Ö¦»·6~Àï\ð¸¦ÖwøÊšŸA(äâÝm>xR‰QYjÞ*átjB |¡öK\möµ£)$h¥‰nÉh8¥á_é ˆƒ·"N(ìÊÜF{¿­5_F¢.FJ%÷ÞÊèHã›ö)|£‚2Bôp±4¢Uóú€!ïãÞ"¸¶D~ Õà_å¶@»ç ·ÆfhWjQyäd„hUÅÃh:À±¦':Ô Œis C®W†ŸŽ½@$R6ÉáAæa*8¾…¿„L‚ßINÛ…IXv vž‹f+Ê(luÖØ×ZàiÂc’§YÏãSÆcp…YgÏ2K²T2Â[ªåLkN’åX’ ²Çµ_Ñž§Ž³…b-ÊõbËÚ¡Î/ØRS¸J9À´ÿñß=±€õòF[4TÁ¡B\˜Å9Њ4önÅ3S|k§)qíIÅuàŒWyJYçJcÂÊx€²böç2,ŠÂ7¢ÑTn!ãz.™&) 1P~{{^‡|¼8/Â<ùÄâüb,hd.ùÕû…“¦7Æ7 Âw~IÀÓ½@è1ã%òÝsžaŠ- ?WI5”<“ÙgÔ¨óRb¿>w$·Ã¼k„oè኷tõx2u buIŸoY[e~Aú~Á×V—,={ïÒÿQWsBQÑ0Ká«QMX$¶µÀoúG\„;ÓX‚\J”¨¸6‰W•iº\“±”e(ŒÃfMˆ¾ˆ‹8ˆJ¨ P[•\üê#o—<×%ép_Ÿáz8ãíÔ¹"œ+ÑCÎ걺ˆ/ EIê…[3~Ì>J#3ãŒÔ³âJ6Bê`x]~”ÔìH=8`Éž H$„ḋFì¬eˆÆ˜†­ºå,‘ôY3w¯M$<*Kvqܳƒò‚!¬–f=ÚÏ] N,ýÝn¬dDZ†#¡mª%F$#òÿ•YÿŽÁiqêÙPä#+-‘ÎI—ó%DçHÕX%I3Hm¿å·C/.H°ëvÛÁR¬CLqžµ‹$,¡èòÛp*ž¸Uƒ.ùUáâÌ›ƒ3oé»oœ½¾¼W¥6TKXjÈ|¨e~­7Tgâ"UAKº…Õü²f«!ˆ4¨±sgÚút1í;ªi©^…U¯áÕFæ§¶x›+69ºÑ8<|»iUuY:µz!L¨Y·Õž–°‘N9"üŽ‚#²LYá¢Ùµ)×´ÙkÜ ÁõŸºyÒý XE޶óYõîiÍÞêfgéÖ—š×•_˜m§¶Ê7¨s¡:æ=[,ŽµŠœ6EG•$sª¢ELP¨©£´#DìV¨ÿjàY*g„™2†š[Ó®‘Á ‘÷rºƒíQtöMdá®¶Ø¡DL_J×Ö§½íauÜÏXqšš† xàÒJ¬c‘\ ƒO^ΟüŒ Ç( endstream endobj 36 0 obj << /Type /Page /Contents 37 0 R /Resources 35 0 R /MediaBox [0 0 612 792] /Parent 9 0 R >> endobj 35 0 obj << /Font << /F58 13 0 R /F69 20 0 R /F8 7 0 R /F44 6 0 R /F51 8 0 R >> /ProcSet [ /PDF /Text ] >> endobj 40 0 obj << /Length 2237 /Filter /FlateDecode >> stream xÚíË®ÛÆuﯸ»P¨Es†ï"-Ð$5Únº¹»8 ^RÒU-‘*IùÚòï=ÏᢒÖ@ÈB"gæÌ™óšóâ7¯Þ¼MÓ‡2,3›=<an’‡,ÍC§ÍÃ÷Á;k¢Íÿxó¶ð@ñͽۣà@J[cÂ2MÒ:¿öL'>ñ¸ê="°E6<; ½—ʱºC!|úÕÌèe#ê:žU<@žëÔ3x÷„cדLñV©»öõtsö²×¿‰tH§´v<ž™Ü)D $Ù­MÂ2ʉÅ4ƒ}$¤j: œ>ðm"ù Aíá4ÁÔîè„Í«c`Ÿ;XÙ£êÛZMØâ•?ÓI“Ã@õОQõ¹zÆx*°1°`U×t•…®3f¥£ëQ´ {¢QbÚèâál¦ì²€­J¨F½žvl垟@N ¯@U5ž÷¬2/ÂÌs£P0OxŸƒ!ªÑ䪞e ¾uxÏãJÖjš]zé¢BÀ^Øàï{†+7D°öòBžæzòôt9M`£ÌÏ]²,ʳˆ 掭¢æD8F¼©UPF“Á´™Ë£}¯ VK÷ùp=óV½g1Yë3Û£qþOn…ºRö âÀdt'W I¾¶¬g¹.„±õÒQ7³¡üûª:T``ç®Òðü;ãb âu[l!‰ÃÀMN’¹QÍo²5S@°€ÖIϱ*ʲšxËài¿=0v*œ‰[3i×ßó›`ë …ø½¨ë cPõtµ°\€ˆOg`¯I\ÿÄã3"üˆ[ÎÍj*¯üü¾¡ûBrúŠVéæ­ÉÏítòÖQ —Ì,^/=Æ1ÄÝ\§ëc‹"ø^íð‡¤“y$¶ï.0È‚ŽÂOà ´WãpU«“9ðªÊ¾É³ªQÏÍÉà“œAŽ6H#Ëù,…Q¶42ãØ7^<·â‡'™{axM¯°“,+Þ§þÞ,£,*ØFs Ý™äL £?“¥Y’£½¢ï1)ÞÌÆ•Ýœ„ªe{âÉ«¤ÆF†.Ø]"’OƬ:'•õò«·ñ'β0‡Pz?¥aVƺ.Ü¿Ý`fÔ{Ç'ss.¬µ®†›ÌÂ%í¡ë§Õe6»f ‹„V²§Ãõ& ÅvJ1õ&ßWïœÇè%Ég‡Õ®Rp Ûƒ¸/ÎÐÙyAÞå *šç#†¸ecvÀ²o–@Èœ#t¯yÇ8½ºð‰Ö'Ï ™¢$I(”"œ ~$½Ø,4‘륣èmÜ9,<Âû5:Áÿ™Ž©¸I¢XÚß@jdïW®ÄMé ÞJ¤Ço&$ºòW6¨³2NÓ2A°õ‡œþ¬pòÓšƒQI<ÝyYÇ(¼^äÇYüšüÊ_ןãbA½Y¡þÍÛ¬ôk‡4´ଠã2a¸/Ç‚WTðhÁéïü¹lçNà§Ûh‰íÆ^*)aÚæ‡iFq2+ÉñãS³_|ßWµ$P™$ó•?@À¨1árà9©?OqFN5‹Ök·WpS\l\fÛ0Ä“¤K’UNµÚ=q)zFy3q-O¯D3ÜdÉèV c–ôH&}S\pR>]mÃK•ÌWhÄYšP„Y3>ë{‹‹÷ Oç¯Úkâ Ž©ë[&q65ÿ!W¡ úÆé¾ÆQ‡-‰SÍ^h‹û¬C£yA¢°GJ7Á>’Ìøn®’s=íâP´K—¾WekîD±F)‘råúÍHÒœJŽÁi ¼R á­`ùä¸ô꯯þ믤³ endstream endobj 39 0 obj << /Type /Page /Contents 40 0 R /Resources 38 0 R /MediaBox [0 0 612 792] /Parent 41 0 R >> endobj 38 0 obj << /Font << /F55 15 0 R /F8 7 0 R /F11 14 0 R /F58 13 0 R /F69 20 0 R /F14 26 0 R >> /ProcSet [ /PDF /Text ] >> endobj 44 0 obj << /Length 1995 /Filter /FlateDecode >> stream xÚXKoÛF¾çW¹TB-†»$—Ë=ØAÒ i› 1RI4EKB$R%­ØNþ|çµ»”ÄE–÷1»3;ofxqùèÉ ;)¢Âh3¹¼žy”;1Yé$›\.&§»™švín6×fÚv0¹¿uÛÀo¹ü»‡]›ÒN†+ø«yÚ¯aü-ÌÛëQ2¼)û/8O¦}-ü¢Ù<ÕùôSœÅ0»\Õ¼ÿ¬ÁêWȾ“­•7îB7¨˜Ñyò›j|É¢çSð¬1¹¶(GÙÌ>_¾zòB©Æ’ÜD©Ö“˜•uÇ$CÚ(Ó©ÛˆO]V3mOæ‰M£"5“¹RQ‘‰Þë¯HŒ|$L=uï ‰~Á5xª¬5KŒk üŸÎ Ë–ÿ_£9QQ[ž+þ'¦Ãaƒ|÷[ü½is’¡ã½RÄʉµªyì”ÅÐ=ú6ZÑJÝ“QZT‘ª =TÁùFÌ¿j÷ð»\Á5ÆLW%™ì~–9ƒ¥< üa»j·è³xâÆ;€óW¢Xoa²++ºVГíî¦BQâ“—{R=iHÖ{$'ñ6 ^¹b·âÈ'²ù\G—ƒô¼-´×ä¹´E1¦ dAaÔ,чàB"Â9«Û’ ‰÷†—ˆÏ?¢!¼°«ÙM´Õ,/ëï €80”.l0ùíLüc Æ!¥ÀÝ aíü€èYý:ËD™k2cU^ì,‰ãŠ^28á$÷A=ŇBçLã<Ï8ŽœÍp)Ñ«¯äõ]'–£X “>ЯÜíkV ç.¤ÓÆi`s?‚ŒšëÜ!Á›S¤È#›·OP7‚7@ãѤYì˜$Ÿ˜¨È‹ÊD*·@h”èEŸ²J£4Ü 4‡ð(;½ Å»(5™àôfGqš8‚_ ¬yÜ—}vXZ¡ä€ ?áhM¤c¯¶Å)Ç"Òi1Îѵ‘l!¾bœär>álÌH`9H<‡‘T\ùTÌ¢ˆbã­·;3‹b¥b"3[V‰Dè•N¨€¼xä$&8 P<À‚ÌÚéÚ®_Æ€†ËÖE­oCŽ$ |ŠUBÀtÃ|x`‚`f'!€þêÁ|®â4ŠÁ âS"'1!ÝÀpß;¼MHì,>ˆx¸½­}>ðDr¡ ¨¿|. ù&œ:x|,>}ââí¶ (ÕÄ ŸÈy_‰wÄò>g/2×Hø@§þt„mÿ.~PÓ…øhÆîI­Ûþy̳‡ñµsle³ê°•Ç´88þfaþKÔô/ökòO]䔞 Ÿ¿ÝÂi‹s°ûNÊ?r€ž‰ð?Ü^Jt£V®–Ú¸§,%%qÅÀ©sL$–t´0ÌÎOn¼G·} s/½ÍÒ~ͰD!—Å‘-ŽjÈaYFN‡ÑZVRÄ(œZʨÈhFì y,µáùI¤Ã½æ8óÁ°Èð@©"}Ø “<à‚PcÇ[+®=õ ÃÚs/½óµ+ãTu‘€–‚‚Üu BWY%9'ª빃“ž¼e*s0,ñ_ALê[YB;.æºÒŠv4ÁØ÷+ÜaÑ Rö|cOešˆEUËžªãœÝk±ô ˆÏ]ÿ OÀ‹Ö"á–/òí€d,ýV¦w£9Y…\wzסŒ¸-#ŠÜ_ÁÅ÷PÌ|¨fÒ/½»*t)†ËZêøÜÕx»óa Üp{Þ¢º•ιByÁ)RùZw!•dÜëì]wƒé«‚ jñŠÃM{ü jS®6¡HT”úÖЄ°†§Á:‹å^$ƒtäišM]»QQÿÓ;¯ÝKëƒ$ƒ¬…açžWÆ5[KÇ ãòg²i¿O¥ˆ’E¨ÒнçP4¼Ýˆ4e/4œ"©à¡—“j"AI¿wÔKÆ]#U8,ºŽ4ëÐ8 ð×Ãï÷Œ õŠÄ&©CÃ<與‰{Ú½/C:zy/DG’-é;ÑQ¡Åbï¨Å“6ˉSŸ‡3ZE6¶|æ#P©ÏðÆ¢˜þ¹¦ŠkÃvI@'oaøJÜ ^‰EEIé±eþZ¬]oßõLüR½k—®Â„Ù‡ßeù% äwÕs_CËï9>ë\ xÛ;Ãå÷ä‚znzK˜ !÷úÃ~#GwX ½)}È µèCCâ}ÏÁƒ’ ŠL•¤S Ü5rÿÂs,sÓÜ@ Lö­½¹%ñÑKNù7Lú¿"”kº]¸\Ê]¾#žTœ“w¶Œ´w­†Å4ÅôSð{ÈC%¾EZª7‡­õüB‚Bqr;öå÷ré~Á‘Éí¯%äÓLjøÿß3ü¾Dîà>²1DbldŒWÝ…ãt,õ(d€q(¿Ê¾$}ŠªL“ï:sÊWEnYùÊ‘…RKB:cqïÑóËGÿv`> endobj 42 0 obj << /Font << /F8 7 0 R /F11 14 0 R /F7 30 0 R /F44 6 0 R /F51 8 0 R >> /ProcSet [ /PDF /Text ] >> endobj 45 0 obj << /Length 119 /Filter /FlateDecode >> stream xÚ31Ö3µT0P02Q02W06U05RH1ä*ä24PA#S¨Tr.—“'—~¸‚¡—¾PœKßÓW¡¤¨4•Kß)ÀYÁKßE!ÚPÁ –ËÓEŸÁ¾Ô¨o€B¬Â@ø €a—«'W $o&| endstream endobj 34 0 obj << /Type /Font /Subtype /Type3 /Name /F74 /FontMatrix [0.01204 0 0 0.01204 0 0] /FontBBox [ 24 27 35 52 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 39 /LastChar 39 /Widths 46 0 R /Encoding 47 0 R /CharProcs 48 0 R >> endobj 46 0 obj [43.59 ] endobj 47 0 obj << /Type /Encoding /Differences [39/a39] >> endobj 48 0 obj << /a39 45 0 R >> endobj 49 0 obj [446.4 446.4 569.5 877 323.4 384.9 323.4 569.5 569.5 569.5 569.5] endobj 50 0 obj [1055.6] endobj 51 0 obj [533.6 588.2] endobj 52 0 obj [585.3 892.9 585.3 892.9 892.9 892.9 892.9 892.9 892.9 892.9 1138.9 585.3 585.3 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 892.9 1138.9 1138.9 892.9 892.9 1138.9 1138.9 585.3 585.3 1138.9 1138.9 1138.9 892.9 1138.9 1138.9 708.3 708.3 1138.9 1138.9 1138.9 892.9 329.4 1138.9 769.8] endobj 53 0 obj [777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 1000 1000 777.8 777.8 1000 1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 275 1000 666.7] endobj 54 0 obj [647.8 600.1 519.3 476.1 519.8 588.6 544.1 422.8 668.8 677.6 694.6 572.8 519.8 668 592.7 662 526.8 632.9 686.9 713.8 756 719.7 539.7 689.9 950 592.7 439.2 751.4 1138.9 1138.9 1138.9 1138.9 339.3 339.3 585.3 585.3 585.3 585.3 585.3 585.3 585.3 585.3 585.3 585.3 585.3 585.3 339.3 339.3 892.9 585.3 892.9 585.3 610.1 859.1 863.2 819.4 934.1 838.7 724.5 889.4 935.6 506.3 632 959.9 783.7 1089.4 904.9 868.9 727.3 899.7 860.6 701.5 674.8 778.2 674.6 1074.4 936.9 671.5 778.4 462.3 462.3 462.3 1138.9 1138.9 478.2 619.7 502.4 510.5 594.7 542 557.1 557.3 668.8 404.2 472.7 607.3 361.3 1013.7 706.2 563.9 588.9 523.6 530.4 539.2 431.6] endobj 55 0 obj [575] endobj 56 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 57 0 obj [525 525 525 525 525 525 525 525 525 525 525 525] endobj 58 0 obj << /Length 149 /Filter /FlateDecode >> stream xÚ31Ô35R0P0Bc3cs…C®B.c46K$çr9yré‡+pé{E¹ô=}JŠJS¹ôœ ¹ô]¢  b¹<]ä00üÿÃÀøÿûÿÿ üÿÿÿÿÿýÿÿ@¸þÿÿ0üÿÿÿ?Ä`d=0s@f‚ÌÙ² d'Èn.WO®@.Æsud endstream endobj 15 0 obj << /Type /Font /Subtype /Type3 /Name /F55 /FontMatrix [0.01204 0 0 0.01204 0 0] /FontBBox [ 5 5 36 37 ] /Resources << /ProcSet [ /PDF /ImageB ] >> /FirstChar 136 /LastChar 136 /Widths 59 0 R /Encoding 60 0 R /CharProcs 61 0 R >> endobj 59 0 obj [41.52 ] endobj 60 0 obj << /Type /Encoding /Differences [136/a136] >> endobj 61 0 obj << /a136 58 0 R >> endobj 62 0 obj [565.6 517.7 444.4 405.9 437.5 496.5 469.4 353.9 576.2 583.3 602.6 494 437.5 570 517 571.4 437.2 540.3 595.8 625.7 651.4 622.5 466.3 591.4 828.1 517 362.8 654.2 1000 1000 1000 1000 277.8 277.8 500 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 777.8 500 777.8 500 530.9 750 758.5 714.7 827.9 738.2 643.1 786.3 831.3 439.6 554.5 849.3 680.6 970.1 803.5 762.8 642 790.6 759.3 613.2 584.4 682.8 583.3 944.4 828.5 580.6 682.6 388.9 388.9 388.9 1000 1000 416.7 528.6 429.2 432.8 520.5 465.6 489.6 477 576.2 344.5 411.8 520.6 298.4 878 600.2 484.7 503.1 446.4 451.2 468.8 361.1 572.5 484.7 715.9 571.5] endobj 63 0 obj [525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525] endobj 64 0 obj [357.8 306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7 306.7 766.7 511.1 511.1 766.7 743.3 703.9 715.6 755 678.3 652.8 773.6 743.3 385.6 525 768.9 627.2 896.7 743.3 766.7 678.3 766.7 729.4 562.2 715.6 743.3 743.3 998.9 743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7 460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7] endobj 65 0 obj [583.3 555.6 555.6 833.3 833.3 277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 277.8 277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000] endobj 66 0 obj [312.5 375 312.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 875 531.2 531.2 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.7 562.5 625 312.5 343.7 593.7 312.5 937.5 625 562.5 625 593.7 459.5 443.8 437.5 625 593.7 812.5 593.7] endobj 67 0 obj [272 326.4 272 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8] endobj 68 0 obj [748.9 748.9 249.6 275.8 458.6 458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6 249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9 249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 510.9 484.7 667.6 484.7] endobj 69 0 obj << /Length1 1397 /Length2 5860 /Length3 0 /Length 6802 /Filter /FlateDecode >> stream xÚtT”íÖ6aЀÔÒ ÝÝ) Ò 0Ä Ì Ý"Ò *)HJ‡„”´4RÒˆ€J—ßèë{ÎyÏÿ¯õ}kÖzæ¹÷¾öÞ÷µ÷¾V&]y{¸-DCñðó‚$EmS~ ò‚@x¬¬†P”+äo;«1„ÂaÿPD@À(´M ŒBµá0@ÃÓàøE$øE%@ @ÿGHJ`/¨= Í hÀa$«"ÜÝutB¡ëüý °Ûqüââ¢Ü¿Ãy7j†Ú`”Ä ]Ñì Àí ”ï?R°K9¡Pî||ÞÞÞ¼`7$/á(ÃÁ xCQN€> AxAì_”°ä5^(n ³ÿ»"áèx°ê ¶E~_ ¨Èë`4Ã?üv¨; É‹„ºþâÈ÷+ ºÍÊ0{E¸›†BâýºŸ±C÷Ý—ïÏp]`po˜ÿß'(ÌÞá {Ow>#Ôâ®ôƒ6áýÛæA HTD €x;'¾_ }Ý!¿ü¿ÌhþîpwÀMu€ ÿðü‘`/€BxBýÿÓñÏ??`µC¶G( ïßÙÑfˆÃ_gôüPÀ„^?~ôë÷¯7Kô†ÙÃa®¾ÿ†ÿ1Ÿ‰™©‚¢×Êÿr*(À}a€G@ðó‹¢è—ÀæùWþfÿÛª †þ¹ÝdT‡9Àñ¿H »÷7¯?›ÁþG6À?+èÀÑû Øÿ½þ aúÁÿÁïÿßîÿÊò¿®ÿßHÅÓÕõ·Ÿý/Àÿã»A]}ÿ Ðûì‰BkCŽVì¿¡&¿­wµÿoŸ: ŒVˆ<ÌÑõ_m„"U >{](ÊÎé¯%ú{ èä®PDŽ„þúà<ü ÐùК³sATèYývAÐ’úgIe˜Üþ—öÐs#`_<ôèÑ'aÀŸ-R{ˆÏïÝøxap:@“ à¼_åøÐYÁH§_¼$·óD ÐÂû=~4æïóo•C >;¼Ùi¸äcçšÇ­§Uò´Þ<#Ò“¬&<þ³ˆ·žçD·Ó8*_"góWØzªA5ã_ü*vIz&[4*¡îqwò”¦1 s.5âq ôó­vò{9ÞvÏ®Æv£:Û}ÆZÿpÖbU‡” –bë,:hðÙ ½A²)¦=×ÛN†ŽÝ=£v΀äj þ¸Ï#n ÇÒä«mYA"—g·øÊÀãªZ7Ó0>±Ìé<¸31l¨¬?€Œ«+ð7ïù™Çûê„ÇÛ9"àÊÍâ“D7¾•îÈ…­nÝVÊþ׫ÂöD§óú*Š#ʰ1ë6ñȵ1”Àµ`Jƒè·ÇÜêT D_˲Äú52–@SnH:#,“1½s{Ó]&ºñY¢É«¬¶¯¥²óz{d»B_!ú1jqø–“Ѽ™îÁÖcÃt²/B×Åö²%àÛFw= ”RÌÌÝ2­øúÁõ“ ›ÁÓBé8õ®‡BýÉSw6PZRAlŒ&ÏÂ˽µÀâŽdº8N+z!ÏFrït8{UŒs„ï["«=ô™¯Æ*ûÂY.!{ôigW7Í4ƒuÕ’*Ï¥N”5òk.žIÒ.óê}) 1ž¬òÀÑÒà²Çqž¬[ÅC]?ôÒœÍg| ±ðÄÉÔ:Ðóˆ—2NV—Ÿ¿»s&n½mýé>ÛŽŠR£¸*‹qKᙜ—Kôê ¯2]€_Y»Y>ô¹d¶N5ÁMF>±sæœq’5ù9ѶiYæ²ì—YT¨Ý§Þ’œã‘®Âøíø**„ &ëçüá L×=Xœõ»´·> ÛÐÆŠI˜&6‡~w5*»{ûÍcõüCYsï2¬»«Cv¸lfŸmŠhÆKrÚ>U íÕ *¯ÒïßyÉÜÜ"œ 5´ÿ ^.ˆ!y>g?Nº÷Ô±†¿åÒø¶ÅVÚmÐ6®èW°þ¨)û³K-*gR–÷LnÞŸZXZ`ï+÷b~Ž’}Õºšb9æ_fZdóó\¨‡W5Í›¼¡|}>@÷T@aÇq¡Îû‡­K‡JU6>~¨Ny‘ƒ³d¼½,K¢+3—Èn}—#Öf‚ÿÙ)çÙ§½¯é4ãøäÜzëD¯Zò/ÊÙîÃ^ÓXØÔXêÅ<“Ø"Z]lêq¥lÅŸ¸Y¶|ãþÂ7W\hñðžÈ]s®P#åh–Þ7±ÚyvÙ Gkx•.W´*WK©-Ž8WäNýï½bKyõø@ }áVt;ëM.ö´Ãg.!65ÔJK×|5ýXi.ìdÉñ .$î•D(›c«m…wçÔ«SÕj¡A;É­KÞ'×]Sâ\Û±v±S0ÍáixÍ ‰ˆ3úÄ=¦½7Ç–ý×rEžUŒ GRHµgâž²éñ¼sôù~[t¦6[hiéS”ÙÒÅ }p€pšvÑaæÚGœm•Äíô»s;RU±#iJñ±µÜ-Z?œ¹R“vÛÞ¶¿Ç<þ’3Åìê:qbÁ.[ò4—› \ÙšežÃ°WORæÄåœÛ7-7{¼x;Q>M8”%¸ûÉ.Ê]ó+_ÚGðò@4ð?×ö)&¦Ý~%ÍX¢¹v§^‰ÐV©ÎìKaAK° ÔpÊÖšùîÈEf šÕÚ5»K‚AAîSûŶɳK–öÕ“ñêä~€;s߸ ™åבv¹!oGÜB¨Ê0Iß+eçZÒ»?ÚÀàg ¨Öh]­W,r#ë骧ƒÑkÁrÌ4·ßÕñöà[—dˇÓ7³G7Åîï7Ë,-‹ªåä¶Ø`vÇßn ¾ßÝÀAŠÀk^m˜ˆ¯ÍQ˜®Ä*ÌÇ6 z®ø9/ƈ÷¡rŒbËŠ`ÎÍÀi'ìiwѪ2yR9ÓY¨â¥¹ÏаO¬Kу¥žÅÚÌKr=5™áûÝà “Õ´™ÈÎë&™½¢ý¸í(9ÒžTC\ž"Wð6VfZ­2¤¼óËÅÙ~ɼL|ˆ?óœ'âd#÷‚²Äœ$ ³üká;‚Ï(gQ|ÁíEßU¿W7¹WdÍå6Ïõ)t 2?ÖǾîïÎ{E«LYÈ;¹TÃ3*n.“¼»Áx +óÆþ>ç­ö^ú(õ»z^EâBX~-?£„fNÜB‰˜½RÖÎ’­eßlöíŸRûÃFìŽGÏ>±Ø<Hiº* ž÷³¼ ZÃÄCmh\åßZ‰{j­¶ŸcaÞ!wUè[]%L§¿ŠÕù¬wœGÞi’‘i—†ä ꥌñ<»ò_úZBÏr¤c€p–#iE-.ÂÉP 4‚q©ÒŒñïFZi>6ß *&îš0×¶R-#ªGþ¸4 ÑxDàCâTáäË´æbüÞ ¿B4BÿÔЩl˜rD±ÿ2zò8ž½‚ÀÄi¤~*½oy>™I¢0yóY’½Æ©ÅÃR}¢2UßâF!{v’%„5º7þÌw\Ï,¢K—þ 1c¼ÌSÌýù}iéÑSÄ`¼n|̹áæsÄ9)§û.mÑ;XÅtvûN¡!ÛV,d¬iÜ”p:S»¤êm]ìk²E«dP<÷øåŒŽ>Ä~ AnÐú"ÿgø]3 ÏnKIÛsWZMŠn8dqëv¸T¸´ê‹5‹Ö2È@ñ#oE6TC«öǵ/²t&òéäZªœÈ¶²l*ÍT"Ú>qk±~p3¢{ѺE^§ iå¼WŃû¬j$G]?Œïµ™ç›wÆ^…g8IÒ]ÇÄÕdÓèÝrnú‘|þ¸6)ú–cK£cúüÓ!+½Ñ]ŠŽV§¨Â’–öY€ÀÑVÓLNm{uX~7°R·œùöµùXdòˆµ…l¼ ê½T8ŸdSA=ó¦>Ýk·Å®ŠœçÇ%Ï•ã-ý&ü“ãÉðÔÂ1r ßµé¨Y…¡è‹6¹9ÇÐíØQ Y7@ÙÃc6õñ¡˜Õôøà*qû¸RNøR\”`­àMǘÿë¢çdefLuÖ6<ˆ9×ÙÎýÌGÏ©³×éf›?Fç¡nh)b:NàIÀl5p#ϵš»=î¦ö!>; [u‹c—êè×j~- ¡\þž«aÝ]­"Ø›æÙš~Ê0#’J¨÷MÌš”³ JÁB2O¾øô¦ååË—7jŽh¨¼}}Ô(òüwžÝ‘rm_k£¿™A€ÑBº‡œŸiú¸Ll=ÞÚ}12%£2Ó핬1àLœsMz+ù¼"K„’5Û.›¥ /¨>?=úýƒÍ›„ج‰¨¤ˆûàYþgßG!Àf— ¾'!Ò ÊL½½î[çÈZ„«xP˜´ªß›lÓÊM{åÌÆ5Û_®éG¨'LõbP=¬Ôùý¥ò“o¶†{ĕĹÌqOjeê½·½.jWîQñ í¤pÊM"eçñ §‘£îu¶=«Ü8q"ù²wËfRg^\¥ƒ·*µ×[ÒF¸ŠéçŰ(žÒùÆðú(NÌöæ°=j7*N œµP߸‰`Ì<¤Òp¤%ÈêX‘ØœW’¥¾[2$ßfþý.i'ïÓ]zá8S}¾ùó·Åþ·Åm*Ä–)‰bV»çTȔش XO]ó”ç&{w– 6Ò%EX‡\$±×´löP.¸Ê]Äõ!‘jú„½ÃÌ*™;_MIª"|G÷=ƒ6ôHÊ\Ú½„ŒoOäbRn“iš4d‰}+N î$Ǽ zxiõ1‰ç«Î,{`} þT ï$h%¸`â1­4¦wX‘,]ÙÝ ¡fØBåÀÞ^ý¾ɰŒä'¢¼¢ Èv|¹j[£e\ ñC¬ nÛ <¢cw² ž ì_=áüÖ£œÚ÷`lœjåÛ$oÙ1/&Ð"™Þ#¿é¤m4$ø¾€S’§•Z##ÝJòí£ØACô½Äìû6ã8ü4åi^7©7w°.Vâ4úYÉ×­¨”MBÌt ÌXj÷­‚г®@oíg”¤|þ¸…£å!/A¼¶%ékÎLfkñrR1›„ޝý|§]?pü¼b®æŽ4óÈG×Â:Üà™{8³vXé!YkŸýR–%h¤H«Oö櫜1âæÂ»zÂHJ²×·Tµˆ} çD¿K)Ïï¯^wxD™)Ö培=¤ù!ý²ÆkÏzN° ’ùùJr‰¼=¡±ñÞú7«¬\î‡/xéU.R 0Ÿå°b¦ª¾£j¦pnãfÃØ»cÄ6bP^ "Þɤ-Ë0x=ìØf±ö¦ë":óËâø .'1Þ ¦¢:Ù¤ŸB7¹z†ó2ö퇦ó$¿0¨v·U½ )èí1c‘¯K¦Î+©ÝŸ x(7Écµëk•â>ºÑü(w/`VÉäufÌä!Ÿ®Ní-«±4ANæÑzèv÷ÕBo#Gà$v…ƶ¶#óÄ=ás±oÖmŽeŠHÅzQnͬâ©lYœ‘–‘QŽÜÍ´H¡OçD ü,˜]ðæ²§MT”ꌦvYº'ƒ¢ù—Û8àïÖ­ {„®(Dè'S9œé¼šSÝ`B+¸ïUœUnÙ›8ùRzÔÎç¾2Öüv))ïÕbiÙÔìùkg¹rÝ:—ã;ÁB/U®wŸ 9M¯Þ}Ô|å\”ùÃÎÝ28(SLªCn-±3C°á¥sÓ†@VÄ#Ö4LqQ‘ƒ{~A‰V]ÑX2nZï´tÖÄO|£¾ÔvÒ<ÙÅÁÀ3·F.9”xe‡§1¦Å[³*„ôJ÷ãÇM›š†q¼Yˆ­õýhq̆<9i¾ä¦Lì‚S¨²hæS™³Ì”SoÚõäÒÜü.)õܾ‰‘䯻š¥Õ^ùÙûÛ\tbr¾¾z_<I÷SGMý®³Ý¶g}f£ šLq¯‘ž1cÉö1µ³ÒjÅjSÙ®­aiCÆÁ&ö¾‹óÂĉµã[. _@_ÆOñ š[œ 5›Öã8ÞPÞ a™9/½•VïúÆvy@[uíùEBݿΆ 0p¿žú@Pƒ™Ÿ‘Tñð“c¶ŒxÉÉØ0@²€v` “x9Cé½ #bœ“$nJ¶åäÏ5qŸÉ:ÆwÝÐIòx²“~C£FŒ„£;Á°p·Ç£ƒl±8Cß iTspXâ‹‹ÐË 8Og%¥žÎï ÖKí¤FVX#1 p÷C’ºŸÌÂrò1¸ù›ßl=(v0-éŽÛL¦9$0h¿FÍMs8ZãX[Öç‚£+vxTM§Nýj·¸T’qò¬“–ʪIóK`ùñމEn¸S–õÚ°—?Óq¼Ø«”jøêç´lËHƒ·cfìW÷gõ_KΫ>—•k¼36$^¹öµÚšý³Ññ¥[Ðò3›3Ø­•±È€˜›cþëòvézú§0{öOÄó/|3¿7Õ†m K5n,üP‹ðÓ/öMÒë^Ö\½œI%™Ù‰ôé}¡(×r›¢í>"ež•-¾‚ôIb™î&p…—è›ç»œ:öŒÅý¤  §Jß og.õ ²ª¶>¨j[šíÇå\» ¦¹ÞEœìÎ~ ¨h$1¾©“¨ð ÓÈh`AÍö¬Z©¤FTùõžÈ=!”Vk=I¥†-f=^«úžŽ:µâô z0¯f&)wïk™Åd_<×4ÑûÙn)øluðAþž•‰ðMèõDx é†'} ¡[ç"Dg43'KŽ_PP¸Ø¥Ü 4cÏû@E«K.Ø)㵎cSzèæ}á‹ý±¼f¹Ý2%P „ã_јùÚdÎî/Ó­/+*(„–h}¾ðæGZ—”Ó°[ ®™­·™ñN.à©Êž,®Ò†î@îfÅÖy64ˆm .»?½#UòàNémc;]$6Ô&8\AÞêFMó‘–v¾1$ü¼—|Ñ@¬(I™j©¤Tí Zĺý’`ª@ïÒ\Ú/äz°P7SSÑÈ#Ù%#5¡xØ;äãOPX #FãÉУFg±=>@‡ï0—;œ‰FÚ–oË¡Ür7ḇ¦êNPBÈIS'Òhá§\É}NÃ{q™$†o¡O¨¸ Ò‰ýÂ\¯MqÌÓ—0özdâg€„ŒB 9vaI:c‘1ì1R[µUžõ¡ W·²üS Ö 1¾ì. ’ÖyÙe šð-j (‡GÒİ:z³þªI–pÃøZÇúùE#s3ý=eö¤³”Y3ÔÔ!÷h«®”õFºéM% Ùß㌯}KuhV¡c1Í]öæ1ƒ”k¥û„ì©RaæAä÷šÝ2õþR;Þ·BaQJÄ;R^õ=ó»’RaÙ™8óÑߨÏbS%KpíYÑá¤Â.öž6eÈ}¿Îic8ÙÖ`ë5m*ÆÿxÒà endstream endobj 70 0 obj << /Type /FontDescriptor /FontName /WZXBCH+CMBX10 /Flags 4 /FontBBox [-56 -250 1164 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 114 /XHeight 444 /CharSet (/endash) /FontFile 69 0 R >> endobj 71 0 obj << /Length1 1881 /Length2 11404 /Length3 0 /Length 12569 /Filter /FlateDecode >> stream xÚ·T\.LwIƒ C7CwHw§ôC ÒÝÝ*- "!]*ÝÝÒˆ”4È7¾×÷ûþ­{kÁ<{?;žsö>³`¤ÕÒå”¶q±+¸@Ý9y¸¸E²ê2F<¼nn>.nn^,FF=wø?v,F0ÌÍÁ*ú/†, r‡Ûä@îp¢º  âððxEy„D¹¹¼ÜÜ"ÿ!ºÀDr O€:@Å vÃb”uqõ9ØÙ»Ãëüç#€ÅšÀ#""Äñg8@Ú s°Aê w{°3¼¢5Ðu±v»ûüW q{wwWQ ÐËË‹ äìÆå³“dåx9¸ÛtÀn`˜'Øð‡d€Èü·4.,F€ž½ƒÛ_][w/ € Ö`¨<Äj†àÕºÊjMW0ô/²Ú_À߇àáâù'ÝßÑ$r€þ ²¶vqvA} v[ © ÆåîíÎAmþ ‚ n.ðx'Ȳ‚þlPÖ€à ÿÖçf spuwãrs€ü¡øGø1ËCmd]œÁPw7¬?ú“s€­áçîüûr .^P¿ÿ [¨í2l<\úP‡—`e¹¿9pÖo›Ø ÀÍÍ-$(¿€½­íÐóqÿéäùà ×àïçêâ °…Ëû;Ø‚á°üÜ@ž`€;Ììï÷oÇ#,€ƒµ;À lçÅúnÛþ…á÷sð˜pÃÇÀýÇÏ?ŸÌàfã…øü¦ÿyÅ@ie9=%Mö¿%ÿ㔑qñøq ð8yx<<|"!n€ÿçùçþ£þO«Èáïî¸gT†ÚºDþ?½ÿñü{2Xþ^VÀWÐpÏ3Àò{üM¹¸­á¿xþŸ—àÏÿ¿Ùÿ#Ëÿuüÿ·#äO?Ë_„ÿäìñù›Ÿgwøn¨»À7ú¿TCð_ -ã±ù_Ÿ²;¾!ÒP;È?Çèà¦àà ¶Ñrp·¶ÿkˆþs ðä(XËÅÍáÀÉÃÍý?>øÎY;Á7ø]ýéÃWê¿KÊC­]lþØ=^Aù`qÃŒW@àÇ_R°÷Ÿ³ rA]Üá!¸8€­ ëeÿ0ý…D@ù¨üÁ™êÿ anPë7âuþA"p&è7­~#xë??Á·û7û3Úü ò€àAx!Û ÀÈÅö/?¼e»Ax~ûßÕàÈÇÕþÒýfÀmÿ‚ðf!ÿ‚ðnCxoÿŠ…¯7Ðåwv8þð/7¼;×ßnA8‚ϻ˿ÄñÀÛûWó<ð^Üþá‹¹ÛÃÀ¿ ÀGèîåò¯ø¹{ü µxþ†¼pº÷Ÿð¿ÈÚƒ?®®8|ºþƒÿ|ÉÁ`o°5Ö✋µX˜ã‡°ö›÷ÒO½8wÆ$¦w ³X9ýa?ñÐÓYk_‡|…]I§ö¬lɳ\>_¢yð;hi@lMÕn»{uo‘¬3¹Ó†µ0AÚ7^| ]ÿ…“ŠSïù—¯ ‚[»Tó_zãiÝx}Vô®ÿR±<1·£½[+¨Š}_1ůg\:ÃX`õf–œÍ“ƒð‡7þÌåÕ4aÞø#J2;–ÿa<_‰Ÿñ:oÂí¬ïj•¯[7…195ò%áÈ$“ŸÌ· ²y¿²w‰*±ïl©Íç>Jvàƒ^ò×Ñv-ŠW o “ï[ËVàoMF$Zko2Ê îCtó:É óë…J§x,аܴ;÷H}c«g^ÃB¥úœÜ´x#³?¥@ž…]²H¡u~‹ü–1/¸@QØ÷E$`й!å1ðyò¯U»IÈ÷¨IèæÔ|\ŠñÖäBïÅ‘¤ÞÕ =hˆÇž6O Íòè­á@_ ᣓ$âÓòøI$UÇ‘º¯*]¾xŸ4ÞX‡J-™‹ïÞ>ÇAZŸ©·ã¶`SažLÈqUé¢ «ÞÅÐóê¾7I;øòFÆŠPj¤J1Ä%ìƒPmTœ]ÈLÙiwQz­E-:Ö0Y>…½oS+c“òjR¹bâ8\ÉÜ+J¿¦rL/'wÂó¦’Ï0µ¨;škdâ¼K…‹Tp¾f†ZWò£±cÏ•}á`#{–þ/¯ÚÇÓ-¬û†¤íO›¦†\²%,S¦'»»Tù½Í|OðPg¤¥Î n=åêZ¯+°;|lu}Ê6溬֟Œ~²ñ vMè»ÒÚHz¯á›cU“ð°/O˜ ™[,híÑš‰5/õ'ÿØLƒÚÝ=ƒµÍY6æ«Ï6ºüŒ¯j/àjK©Ä‹,ÔwG[iv½onc”+m’ÄÚ»µ‚´È“<³‚’%'„PÜX/NuåÜ3¸þ J¥ £^9©ÓHŸù—¿^I2c?ð‡“ ›daR¢97rv²}Ýê^çG̰˜f gÌY›ÑS“=c¸¤šáÚX‹s\ØÜT çq]òcN󠞇$¹Šö6˜*”Ë$Ä_º‡·¿2ÕõC¢•}¸Â@Ìz—ï ßûaŠ~a§/Øö‡¨Gh6’=i(FÒWPÎNcÈÇ+î~Ü™.Ñ¥&Ù £y6¢Ö$sÙŽ²wê¼Û–#°µÄsÑ"òíúâŸëÕ£뿬ó çÕ-1ËÖ£‰hmE,$µ¾×úc(—_UK¢.ìf¥7e¡ï`ð§¶S û‚‘ô1ØUÈPo)œžPàˆKr(Ô˜W êKÖ@EÃÜõ¼vÂ&f—^‡Sk°ò¿·c×t5²ˆrd˜$ê3ˆÛçË®yeuМÞñkI¥yÙ[u*Ýò9Èû‡…4šà—8ú^§ëÜ0POß#›Èçóû…võÕÞîãqb¶—,”QwSíS+À¶gÌíÍA{&/s?–bp½™“åö Ò/¼¦>ì`ªØYæžÄôâ¤cç¯gX+‘œj)Î’ ¯?We3Dj—®uG±äTéHëǶ¢+Š,:7¶IüQn™‘ô!6ñ³¤·ÆQyášëV¢ò»7-ŠjA‹š%ö’çyÓ.ñÓùeo(»–TÄ~¨°›:cÑP©PÜ ’õ:Q%Ì9‹Ð¡ià,å¦zL:~¾Ù zùIã[‹K¬ÕxúçŽàk!È–|Řb‹yå&=Ÿyh«ÚÇ~QÍC\_šª ½-þ²@hñ„-ÂŒúm£©ÃZ’[•Q‡×C/‡³œUªõÛŽü(6Ý[D<ÿ«hEA/ÐGD² çžâ¾ÆÚOÍÕf÷¸5¾ë¼Ì¹¢]fôPÓl“°  8¾·XUÁ| Q–8-AÅÖÃñu+m8ò÷P³ÌP_ªè¤z«Ú9||½×v¶±*ì£ ˆõ;;K*~•ïiÉú¬—K.‚ŠŠ¯`q7]•!‚¸èfv;€ƒ/ðCNÆÔªÛ§7rdmëÓ:Ñ©%½z¸MA#Öu蕼‡É¡ŒÁ÷>r¦ê OtE”~hǷϾÙ^(–šß› D¦Óo-z’˜„¿o`%Ù#UÝÖ-1§j€¶dW«SÝq3 pûl~e®¦c›» ƒ|Æ»»>“—bœWñ7k«ú±.JŒ"„ʵÛH¶¹P‚¿/çº.¦S:„q‚ñŸk¥¨=Z%¾ªº¢wE¥ìRÇS£Ñ2þêk…÷.Ï8ÂzêÚÿ1øˆ•‘LmAÕV“µ&xsÀ¢1Ó ŸTËÙ~ì€æÅyàèT¶øÄé9AH%[™×?(M㬉L†p¦±ÞvÝyÔau{°Cl.·ù÷›}Ë­ÕÜ"SIoôTÐLDQ«<Ç(ïÃw㤠£5nbÕIØZqßk :œ«ÙžÛ*ÌK¥°‹FÒ\ÆF,@£´ù+¸›2ßÝÍ.}CL;ÈrQ«ÖÒt€Ù0þâƒo¤ê?Ë2Hgrç¼NÀÌ fg ÆÝZ£Ï\æç›ÞÁj¥´’@aƒøcj©ÌœÈO¿`[“<©ˆ]¹æSô/ÑC¤ØcÎY*H„vÓ˜K"%NåÏ1çsæ6£­­(Ütz©kê%Õʹ©d k?mmøÙꇎyÜ¡·Öùñ‚·Æ€"¹FÃíëTÂÝ~`'£Lè’}ÜÙ2Õ<ÇÆ¹dÞn$å¹Ë¾jæÒ›ñZ¼ü|@s%ï˜ A™þ¨³JKÓIuîäYµ5–òjÒÆ5$_{ÑqPÑ1¯L«‹ç¸Í׊w°¦Î0hMÝYõcXK_¿-Ý / ès­ØÝU†P!P¨§ZbØ…sO‡1(fwšA¥"ÓDõº‹ø((ͽßkßM¬£ ò>OoÇ/‰¥)ëÃ×ð¤@Ñá û.ÊëÇËDõGÇî=ô²<œ…§‡ŒI HdaKQŠ›žCФ,uE×DUÀ®:}#Mƒø7›"¹•qùëâ/®M ™MÕýkH ÄÓës¡Âß~vÑÓ1&$g¨±©Om×là 2ãò†±kËCp´¼žÊ7Š”^Ž3h´…-‰>”=FÑ9¡¶¹!?¨Ã(¾Ë×6¾™U»§ûF{ÈfKΞK‹¨/<>„„Ã!ÅGؽå-”q*Hÿ´ëD{#µE?@t÷€=˜>èQBkUØ LýªØU¿BPÒº6-7µ´ÚØše¸‚It²ŽJ%ßQ^‹$ˆçºÉè|?XªáÊ(ß"—iÚÒQd×—ˆ€èÈ h‰¶˜¨½ŸðØí–T½ÌrJ—Ȉ8Œãó´GÄ×¶¯*™œÔäl+€[u=ŸO9ì7yíMùÐ?Øä<"õŸD0º } È5EßFßL›±$œ,a‰îœx[‹¥&‰VVüÂów¶óæÞb<ÿ ÚW©úùÅ ´+üm±S±uÊ Æ¶íBåI{ÁJçAɈ2¢¸eËq§Ôñ¥™çù)š¢¿.Ã3Ð+œë œù&'æ¯\‚‡ÚLŸ`…ïYak®ŸxŸ·¤~öWf[k “‘—ô‘ÊÑ´DDmçÏ$¼ÝL¯³’ßË70 ãiš2øqkÅJ©ê¢Àmc•¢l=¤xÉ[³åW4©rJañÛû4*º‚…‘ÝøkÍŒ¬òqÁŠ2}Ø:xVФ.ï~Ä~ðÚp¬00ægŸE£[îÛ>Ýdo¾Qs€ÜË|ëN'G`¿ZÎø(îíJòJÖb™ Õý–Ëøòäœì-ãMó`6’_OÅ®Z¤ŸZtG“`¹(XLf[;]jäÎÄÞÐ@- zΓ̲òæ¤/g§l3Ðá ÞNúý:Á¸¯ÜÛ¬i2Uð¼Ô?4¤Æî ‚c1z£šØ5Ì…; ”ÊbϬХ¤˜;Ad?œøà·®0Rý¢a`„6Î*¼Ö"«dûTÏ윿ì8*_¢qP. fx—';¬—ËæZñÅì®b/ƒõ‚Æ!Ñß87ÃaÆÌy':Ø`!yIó.58¨æ²ÕÁáW Ö#'’Š~_¾‰í{=#¡ e¸u$il0†>Jǵ½Ð‰°z!ÿøw*Lßo"¢[#õŽ¿œaž—¹Z ô¸’)ùVAÞgm[×mï†Õ>5ÎÃö©Œ¨H }1.€?©óèg{ -{ê_i3Ô10°°«ß§­Eæo{È›Lºl‹³Õ*rùxÔ¥>ÍnÎÌ‘…w,h\6ô³_<FOæ|qÜ«×õŸúu¤é‹=é3Û´³1çH†Y¶Và›«æ÷RÚAgÊž5VÔWCWEmÕ‡ÊÑüíç´þêFĤ>ªg¬SzªÆÈÒ$?µ¸QCÐT´HX$D6™>•¬yölš?Òa„¢v²vD ì=•°GÖ˜ i,|(gŒçAÝœóDãY±ó”Ú â¬ VºJ&= ýuÞ¨qñÐãX¸©ÉO]ÖA¼Øiµú¸SÜè^ pæs¶[¿syÊtâwî¥mÂn£’Rø²‹½eã9öÉ–3”ã«£:TÞVÇ»LG‘ºV¥ºá^­poÎF8YYÑãU‚ѧfŸ‹eh+¾iH©Äœì1ÏKs]9uû‰k ôfJí0­ ·­u‚#6 í´(l¡[g9"ÄÄÂ14+øzo¾çð4áÐ0³¡‚‹5Ì™J=”_]Þ†±?Îq—7Òa‹b#&Ùé¢ÿ¨®ì¬Ñ÷ºÔ¤“Ÿ¿ ¤žøqv ¡øI¼&Ò„.Ü››áÉÖvö¥±Ÿ_Hü§‹5®0rœ#áá~æ&c̆žQ £ n@[`’ÕÖ7UÙÊý|߈3Ä«ÂØ!7…WÊ€ ð±æD²é~¯zÃz«(¢•‘ÉŸ Fö ¿æÜÍÇîÔ@}mHBdhÝKœ Ú&‹“ ì5à° B4e{WåN¥§ÓÍH¬.Ü#wØ<¡–çöÂ/Z®žû&TÎTnê(ö‘ZB`3”Ç<:ª*“Á욺ƒš~vµb!û„ ‘gÎï~è$/·ÂO×õNÜäû`•?ªPãBkö^W¹É)š¹ºÔ ÙJ|D&ðêU¿Ø‹Ídìš.H·‚ßBÉÕëÝ,"fÉPÈU‘ñË—Ïß[’F“ËÆ¾?æÀ¤Xzu¦Oñíƒ o¹ßMóÈή߅E=U |¸!oÚMºY.³V䫶“^35¨Òrq»ï³V•$Øþ¸œ9JGK€LBsÔ½vŒÄ_c¿Äíº)hþ±æEÎKß6$újx¢]p­`ž_éö}ÉŒì4@9 A>¡Äùbæ4dz:ºÖŠ£×$Ç»"$xc€àEøóYë0*5²ÝÌ?iø†E-K¤…dŒØ-v³:uè·¥ >»›ÅÈ­Ùàv6ÐbÎqm²{|E]ö½°Ú&{’õþéA%ìÅäÑ»1ïóšÏ')ì0Î(õ˜ìG£“4;÷ήώñÖ™/‘ß$!âù*ÖÝ4ò§Æ*|l;,té%ï¸ì,¯(e÷°dÒŸÝØ'5_&´Éû#Ô½> ß¶Y|˃@´Ë‰Ð\Ê‚SÄë“(ùf²ï‘­nj0’®i£™{‘¯†Æ~òËe’¯Ž-t’àGï?=Í¡’)«û¨üª$+/`v)·ÖVµÜÁÉ»xìÛãÜØ Àžæû¹Xà|ä„¥SÄYøq Ö¦Twà–±½to\ºSUÁ…bö«ÇŒ¬Pœ¶‰ÄžuðéU®­‰Id%‚o9xÈäk¤oÞ ­ô$ôÅCi[Ç7›ÉHÓó.A—ø¬£Ú™…îo-”ò½Âг&SDx¶ ¥>σ„ŒLòqbÑ÷m ™ÛT¤Ëî/U€'Ø ²Ô ´ ›þù¸[A(êªõØÒE¯ò):{p““]ü‰Gj´ ÖDcuãHS?jÙ뢓Ží.y¶<äè9Ô# W’/4š™_§ýPùÔ^•êΖ£#Þóõl³‰îD” ù `,ûƒ©ú.b±Q3 Aí©†H½b€;h¬Tü9ÑÆÒ€õˆÕ…<4ý©°oØ¥Þ,‚vL1b«ˆ¯ {gmzø€4èOµ­É„' · &ïBz«[yEDë›ô¨ÛìhwfÿZ³mˆFŸhô]]¥Æc2û¦Þ*–ËöQ0ùò~Ó\½wÊçNѦåRªTöã3Õ5×õdŽœ-¨ké3µC9öWnC6†Š‚5|xЭ*‰ÑøQUK>Ð>šÜã›å„‘$óÓAqǤ3TÎ Ÿ¢¥oЈq &Ê©Î"¯¸„¿›+ò²ò>o? ¥½ë5:§÷uõ=Í”_oçq?!%–%ó4Ãâ‹UŸýÁn.x½0~mÿöK'mƒn òºš^ó;²Ÿ¼>!œöDè3µ\õ(QfV5ž0±Ž 苺ÍVßĤ§­ûšÛ¯[œ Ú'øò^²°kRób—]Ä…eÏ_°äšßE»áfÄ d¡ ⳪YA‚sÔÍM $ÍA£)áŸ@Û¤(4hEŸý»ËFdèƒ^·- Lt?*6KZ“®§ûnúÙsiçŠo Æš³ÚNN3ð⹓¦$\CW»OfÎjùLU G%“Aß-‹Ìó„ô™ßÈF»F*\ßÚòñ|Þ˜þÁ¤ó Y¬çq÷Õ$Íi©Íç—ÄaèÆÕ ÒÁ¥S¾09’¤Æ‹ÅGc$³•Ø’£|Æ õXÛS`yJ5[½NB`8•‡mk0©2¹}L`Ø‹£“D½·´Å¾›1+­NíGäÁ3erRƒµ1!Še°hà‰ÍÇø«§Eó2fmXxÙªÜ =þZè¦éxnÖ$ß9G3¹ÙâåQš[·™6ó:ŒŠGA#±ØgxÊ;OÌÛªÍK¥ˆ©ÅÖPYqxqÕËÁ<Ðûv€‚òe3¡|Uàúݶ¢9åÜ¥{T?eaœ·eû¦qªpñ’<˜íãÁP¦í¹6])ó»"Ns~^‰ÖBé±ÎâsJá]ÜÕ)Á·3šŠòÍì¾¹ò0æP*ßHtñ'›«ÍÏ‘˜äŒ/’×âÐëè-$Ý1ûz.B™$ ’Ñõçž"ØÐ »9’ó“bÏÎéÉ2#h|¶–˜-I]·ˆ:yMxÜ~@[–ð¤a}Eàý‡¨iŒ/m¡ZöÄuϧ(q>]ôë,®!öŽÔ|6ÆÓz›+ÄeÆå#ºRoãÍØ½§£ì¢ÖÄÞ®$‘¬Hð¾´“‹v_ÿsª^ì—Œ÷>»áìöÖ¶®,f¸D;+¦ áÎ ñë¥ÏÑݳ³éiM±¾rh'©âÙ¨ï{ôó6¹(¢Õ¾¥Ôñ—Ú!7»(Ñέ*€“bä«ÑQȃMË+Òˇûªînþ×Yu“‚OÌ_¶œiÆâMOÑR­_¿Ãûⱪ?GV/ḏ^[…÷ÌØ„p´?&—="0ÍTsÓ¿ü†‘%ÃÞäò.¹¥‘Ÿã§~“·/&¯ÛÖñæ´Ú…™âiŸŒ¬b&\ Ëjª‡¹º½>Vr™3 ¯V_ö,†a°€!»è•øC‰¬Ìì—eŒó¦ÜSô PŸ[€­Ën•µvVjyçMœÙ²vªìh˜Ê3¤»—ìñ'ȉ?KäRÖü h÷ËIH­‘¹è3Îâc–dd², gëÙZ“EoÔ(¹ˆ6È:A™c½Ðþó'í…Æšë÷Àíø0'½ùšç:_>[~:òZ*yèÚ´]™r"(Xl¼å—qÛ¥Ž®ˆ*lª7pãÞªAP*kä2}R0$c$Ḛ›êKBŒœÖ”ðv”ÃC{);ŽnˆÒŠà§Ña*À¯Pø¢W¬P¿·÷ªãÒYíœÍ°ØS'Mô×€´¢Hb‡ø¦ÞôŽ9åC%²îÆ€Ú:ý½ùÊ…›¨%:wÔÔ ý…åñuQ¡iF#1‰«Œy`•ÛŒÿ+õ™Ó•5­¢s¸—à¤ÂæLþ¾úGI†ŒØ6Ñ’¯ÐüO¼Uã)§óž8ž­î%ŒY·»Êñ˜°òMV’¹mqKŠ¥`Q©pë¼ýLÎBªo‘îô%Œ•;ºv%QÉ À…–ÒVµ²‘õ„7|ùÁ“J{¢™õ)£Kï<ÀI»&_°­y(„k“03̶¯u@®/¯î]p1ø ÊŒjæÖQYRÆ•öŽº©mÁs»·Ù[²H (ÐDórþ™Í‰’= !šFâhÏV¡™è¶JoñÄÉÉOÓ’’êëm`K¡ú­ÿšÅ’´¬`xÄÄI›µÅŒ~dZMÍbÅþÌn<ßô”õW:s-_Ž)e>QÔ’¼{bÒVañž9ÃZË5?_þI:k ¤‰Eïs4a·\ ²R »uò/ᢀðÏü¹J?ú95‘ŠZ3–Ê )Yo³—‘Çt§p1ö³iËò«UV£2«“×ùL†¿aé¹Å+Æ0«f®©²ÑåPÄ(EÆnFTy"& V¶+¿,¢ìX0w£Ûé_²ûyϘlö‘ôCùhÂéÏ“A»œ%5N™ÿ<ï‘1Ôä×®ƒ$ªñ@:†W“øJåW˜ë79DßBR2Ný‰a©ð7¾OˆöÒ {}ËkTªÄÅBrѲµ§(DÈ£‹ûž(²­°ï\d²xÕ,ï*L ”7"&˜2¼‘èðá=‚žµæ®™9š¸ÐU~½yµwö–¹-V•úì&Çãþ s¿©KÉ*2ÿø]ÆAñд Eˆo.\³´Ü„Q ‹ÈŠçôaU6“éëæ‡™Çt¾¦*–” }áÐæ:5ð+û–4ƒ:†»Ø˜=ÄjUD˜˜8Ϋ)'JÖ‰ ÏBÌÂÊ¥«¶ãtº$£nù$0JPן ¬|Õ “ç›7eAÕÕ?âð<lIXOU‰èƒ’[¶‹²Ç…:&÷ ú{†L¹²h¬ISê@U1ÞK°?YwjNçé²YƒÔš­-kÒWa îeˆO]vaÃñZQOi½$»)%±µ`óö~D£;"™œtÀÃ[] +—=…µe"Ìhk½¤(e²rN©ÄFA_¦T Ei(:ôØY•êRê‰÷gø¢ˆ¹ ÙòÒ¿ºÃÇìÓ–ü˜9äwI~ÐuQÞ\O=ñŸÌä+9¢×y|õìISmÝ¢©ˆó'¼!ö§TÊÕ©qŒ*ÇþÐÜ ÁK[`fG¯”Ï§ÅÆÁâi‘0~ÒET½{L-»!j‘æï¦ýáD:èwÃïÓ9ôSÙôJˆpŒ¼Š¾œž¶ß.ðОow`s´í¼ þò±<‹\¡þÕ×eÆÚœgàGNIK`êdùÚ“í¢=ÜO~[/„cп>Éäw~×Í襫²ø{câSºxZêBàý¹]E±G—à }Ü“*XÌÄø«ÌÉq¢u(Ú’6Ÿr«²~6R”yiEr¾²D]˜WõˆhK‚’Aख़ÌÆáØY¾šÎΔäPmua`@ þÌÈu;<¾ÕT•Ù¿¯ú_~ En½r­‹´:½Œê쬥[ËUU²wÜßxyõ!½at€ÃRÈJ°—° ¹Qà§%Œ#úHeL£ýųWë¶>]STô  ê¾¦›Ô&ê 0âÙšþbˆ$´ó¦«q«òr¢üXžBJÙaj"CvÐÒn%¬™Ü&,ÿ^ÞŸ4q½6ƶz*){ÞxŠÃžÙU¥õ¹çǤô[ˆŒ]Œc¿:ŒBаŒ¬jºbÓ#™E&E¦×çÛä΄Ç9“×ýüÐp UeP¿žž•9õË –\ÕÊaÌ™:EˆŸ`~ãeá!9ü-…lkõq6io K0Ù±™ÐÇ“ò£÷΀ÏÙÞ+¿œ&ËÄ(3Y6VéÓõìˆDÇ@¥ž.W£B[³†7úøÈ^ùÔFŽZ,]5³Ìj¹)yÉÑë·—%™A»«F£Î£cÍœ §ZÒˆVü/B(²Ôšsé‘Çžä<ÈUÉ'¿úžO@µ÷e]¤WÙ›ì*Ë÷-à…SU/Ì•‰†ª ܘÖ=`Q¼¬î#™uvûÆ•ñÍÏ…/yÔ²´’Ä×b?ì…$z•[Z f;ÏxÉLHL³»L÷ƒm€zÙÒRa)R½{íbgE[êìZrc‰Žw®ÁW.•À{³ìœ}ÝegS0x³ ¹%e^i.ø]Ã>õô¨Ós6ëŒá̧ô{v¯mY]›×”J¼øcÛ†AV˃¬sgº”weÅF-_‘(½Y{2²‘j¶×¬ô†iK #2]I\Áª·‡lâù([Ûm¤å ¡Ÿp±œí|“Ñ ‰0¹ ¸ž[i0“¼ë_­ÇEÜ~~fÇ-ï`Â&Š2~„x=;ÿp’1›Æó¦d½™ß?;ÖüíÐOaÑ9mo_¬e¸ÎâIÄ5SÕ×óã«yòzÞMÚwx»áD®9ÀøöŒ•„ÄØ¼Lu_&Ò_à ]ÔÁ¤ÖJdÛÜ“yQ¸÷¹‹]déwõ°çç•S²õM‘ÖÔa¬tkßeS ÑqÇtšäUÏ(•z¯ž iôòùèW×LÙñÇŠ½Æ{#`Sä&‰òÙØÞÒÈ•„Æn^GšZÝ‹FFµšÎ×Å1ÛøkP{”'ç¤ÚLiâ­l\ç?Ḿ5Ðx#ð‚É.~Qßê> …uàB52øŠ®Ù=eó\øýâ±76LûWÚÏÆ±ï2k)C’Ãå}Ãë>Ü$æOµïëgދ劉%‡Z>» ´åÝ­a«#¼¦»ÞáZñN\åYÄ»â6…‹lÌÖèÁ.ÍUÞàÞµ=)Õ« µ8LzÏO¤Š]™õL‘·ç(´Rð6SR £Dè–F0­m‘#ˆµX%5nÞ¯ÆQFs½øš^â–\˜µ•­[èEö¡f3Oh‚ñ^[ÒÒÅ™Qn ª5+¸’²ÂU ýð ¥Ô&¿¯ïu¤­VQZºP¡¹Ù KGȹá)`ûÃsRJ°Mâšìòã36íšPš Þ|¿¼>Ï´óŸü\ƽF{RÖÏyMÉT\í§¥à¦‚*ÙËË俦5°tÌóôŽÀ–”1Ÿèp€æ ‡¢*É !–}0rõ«´JBakÌÑÈ) l…Û†v,€À&ã6•rZ;ä)ĽÎ+˜^Hô™Õ-˜:¥†%õâ¸K$W¢a~wfkQÓ ƒ—` E¬±Eƒúµrí¬ŽÖ˜^§Ï­—^ߤ±6®4ðp8ˆ–ÐVƒ¾·ù#F¬±®mËruS…”=÷uvF8ŠÆNª·ÝÕ[ªiæWAåQYºèu*õ GË'çb ¶ÀöË;•΂5xÕ¸t ÆËý~÷w=`–#éó-ÃW:rçµ¶c”‚°»%"k‹4ºžAÑçqå3+sÜ_¬ø›B¶D^Qþüæ•¥"É&k[»qQ™<¤–œ Z¾·Í‚ܪjé1Ù§•s˜Å¬ñÙ˜¡ªÄ¸J¾ÿt?Çd¿â.ÖhºE ï7}À{*v 3£Ä‘éœòZ´O{ÏY™Uêp÷¹B£¨í‘mÒ%'ñtrûÆí ìû¼srлÊÌÛæ¨v"fài]¤ã)b©Õžqœ¿ºþ#ÿÄ%kCX üúócÍx–ì”c 7¶Y–ðî啘hã•U<ß¡Á íר%çÙÔô^²Q;Æ™3½áò¿ §ûq¬ðBÒ:w„÷ó…Ê,Ý„«#ñV¶É¬k–]ÃM“ÄÑx”®i®A|êo‹ÒŽÝ–>wïjEI–kަB#){·€wïä^µCÒÂÛeð‘;¿ÐÉñ¢CЖò2;ㆤÔ×Z}Ü7׫m…&Ô2ñj§@¿øÙ|*Õ“øG&üSrî¿ >$©£ˆÇ«O SN«‰è‚sZ×$t3oΟ“‰MöŠq›\¯ÀEd¼€Õ=º:›~øÕcV£÷~"÷sÆ`³KúÇ®‰‹S¶Ÿ‚nMõqûöŸÈg~Éo#PÐeD§á¨sTˆ¥É¢e4]ÅfvoŠˆ™Ñ|â2kj°]¾KÝã%vÂn;ɟܾ’ˆIû ;ºi#‘ˆÒ¦«ºí1Æa¤mó¸[|ÓÇDx뎜v¼‰ˆNh>Ó2çߜ甊VئߔNdV÷V¯ªü>Rƒµ;Âþ¾ é3ÚõIzµqÐìIñâÈ s䇎ÏÏòEßñëÐùÓÉîwéyœŒ¯¥v­>–%mÆ©ÓÖ_„òœ|çÑ5¦×Ùá<³é‘›|¯húÈrøÍ¦Çë³¶ù‡G}QÝ<Ԯ骜 Ø;ù¤[RzÉxô h!b´Ë ÞB$Q¹’<»Â®T….÷[†Ð‚KÂm³Y37w2´ÖkgÞ^惋‚¾U”Ô¾…1˜ÊmU¢ùýwQ5ŽI~ImZ‚¿°3“°›¸·“‹v¾šñáqôGêé?â8?¨r°D‘­ O»¨Í)i("È›’¥>±N){ÃÈiÌ +Vد;§!6¾‰2a*•xŽœ"}`^4^ŒWˆ.ÛHh:ðZ<¼SÍ•gÿ%»p¯Rý°Âo•’dÄŸSÆÀWþQ>ÿõE´dï¶dèx½jnYæÉ‰£Ò§iqÖé1c^ÛGÚœþå^„ú‡‡kØ—ïŸCŸ —à1 91øõûI-_‚®]¿÷äsbGÑz>,vÈFÍáÑÇD<}2·ŽgšÿsÎÞ¦ŽÞhåÊýâcº2U‹e<ªAmEg+4Ë]w¢uâ2C¤~ómréh”‚aíó¨BA¬ þûD¬‡¹®“Š€Ùû•“f4U±klÌŸ 44Ùùåré€r§«¶¥Ç·t‘Kv¬dé{N装à lÝ-\äûÃÈŽ§úr–®hª5ògO‡0Ê3CðUaIÌSýµ÷Å ô7I|¢Ï_D7“¼k“'Õ¦V,<•ÂV]Fœé`³}mB¼-³J?uH‹ßwŸŠ¤…æêrµS}¢­PÀpÄWhüfªå­ý¯þ›³ü$%¢áN­Œ-+Ñš—w§NÄÒQkÇB£V×·¯ÉËÙܦn{G›‰CSsÅž²ãà©`,Xwõ¯œ‘‰(>쉜{ñÅŒelÑóÚ¤ Ïv2Y6VÆNrÆ8ѬX?GnŸ^îMÙꋳÎda%·¶¾ü?­ÆhN endstream endobj 72 0 obj << /Type /FontDescriptor /FontName /AIDTHO+CMBX12 /Flags 4 /FontBBox [-53 -251 1139 750] /Ascent 694 /CapHeight 686 /Descent -194 /ItalicAngle 0 /StemV 109 /XHeight 444 /CharSet (/C/E/I/M/P/R/a/b/c/comma/d/e/f/four/g/h/hyphen/i/l/m/n/o/one/p/period/r/s/t/three/two/u/v/x) /FontFile 71 0 R >> endobj 73 0 obj << /Length1 1406 /Length2 5931 /Length3 0 /Length 6889 /Filter /FlateDecode >> stream xÚuT“ë²6U:Ò‹ éÐ{/"½×!%j轋HQé‚ô®té‚‚€€ T)Ò)‚´ÝîsÎ>ÿ¿Ö½+k%ß;óÌÌûÌÌó…‹ÝÀXPÙiÓ@"Ђ !  @UWÝ¢B@ )— íûÛNÊeCyÁ‘™ÿ@¨¢`4Ö¦AcºHàž·$ IÈ€$e€@€(ý7‰’¨A|à]!À=$æEÊ¥ŠôðGÁœÑØ:?x ¼´´¤Àïp€²; ‡B]Ú掭…¸Œ‘P8 íÿ¸Ä ø}u@CÙÁ2üÃÏ Š‚{ ½„¼àn¿8 ÿJƒm³:ÂAéîC ½HÝO Ž‚A±}÷þ3\WÒùûäG88þ¢áàí!lŠ€{zôÔþ`°&ÒÛœ`h€8PZDRBóÀü Î¿ ˜ø{À~;A¿ÌXA¤ÀKw„aH1^ò†aþÓñÏ)p€CÑ{˜AúïìX3Ìñ¯3vþ(¸Àˆ]?øëó¯'0vÃ7ÿÃXXGÅ\EÍœÿå9UT~Œ ˆ@PDZ‰‰‹$%EAÿLô¯üMÿ·Õÿs½ÿH©…pD¤ÿbmßßL|þ¬ÏÝðþYA‰]h€çßûoB±_ ÿ³ ~‡üÿ–ÿW–ÿuÿÿûFÞnn¿ý<þ?Äîæÿ]ho4VºH¬Dÿ 5‡ý¥h]˜ÜÛý¿½ZhV$Ê'·5î¥÷ƒ9ÀÑPç¿öèï9`Ó»Á0¤ü×; ÿˇ•Ôû^ñÂNë· †UÕ?Kª# H‡_ò—@P(ˆ?)vøØ“8ÂêÔæ÷{½ÂB$ÀÒ 8"Q¤¿f*{y»»ÿ~í¡a~è_nÒ”€z£PXþ^lý¿Ï¿åƒùÁ ¤3SH¨l¤K]dÛIòM_ÁÕù\«æy13¨vDé¼ÕÙá ¨cåôÁnªÙeuž#¥Ol˜­æ¢˜–G†­gç¶ÆV[I§Gúßm)×÷±Ü4QZ ¼ð 4 sÅoÆí¼Ç•ïé-EiPH{âÛ«éWßWöù]ôÔªáZµ„6ÙyÙ¸`’i¢MXÉW}Î$Ç5´ 1Ížßõ‰£ã4yï¯Øî=ä' ÚN-ÆX-Š$ŸNÌU˜ˆx½f¾ÍlÅÄ‚DónìFe=ããGLiñü³ ödG+MEëc“0´«w6·8ƒ>¹ô}ØZ¨JeP%}[ L¦xg†$ÞÓ” {öÝ7oëæQ…ª®ƒ6Ñ-üè;6–&NŸ ÷A@Û5uqÉÍà…rþpQë¾â¨§’‰¢}9 2w¼õ À*+$÷`ÔdE#—>gÝ<4_bñ$ïáhQjè ºZñªâ=w {Pþ„O²ØÂÛÇ÷i/EbÉLô‰Ó©„ Óó]:~µJsåâ¾Å…‰zÖ–•Iƒ?Ùg\`TµRÑ".ÑUru&QzÕbèÎj°ãÏ{b‘[RÓ§Ÿ4 ÝÓ“//9²‚+¾¦nú>õ©ø20sIjܺìÝÒÂÁ!w¿gázƒÄ• ™nr£OD¯–›;ÏÔoýÖéá¶|Ÿgç›,ý¸oø’œù…¾Å,I)ƒG¨åS@äµÏ ¾—”áC3_pkÑí¤ýì¤)ôVÛÇ;oç­õŒZ9}ŒÈ ¹ÍEt„ÈX}ÀÉuÎÄ«cP]%ÂûʾÄv› œ‰0˜øùƒöVD»‹õýݺ‰z³(ÝT{©âaýé`ô‘•ÊêSž“uøR±c¶`[X£µ‰foWè‰<-鷤ţ±Ž5î!6eJkS‡oµ~ÜzQã;³ð6Š¼áæŒp­ŸË°”hÑÑçÝ%…ˆ…kí×¥èeû~úîól‘÷ÜÄä™K«–NP^“ç­š/¥Ÿíý>*ü8fñ¦ jO©º³!3²%ïždÝ~2†”yù²!f³HýQB%üsÉŽõåûï/Ž)b¬3…¯¯ª ˾Ù7ÚH’M£äè—àé{Q¯}SQ•}XAÖÉ™·c’\ÒüDaø‚mîµ\¸ãÚ^t-›Ü'ÜØ¤¬›üѼA“ýocèDu`Íðt‡ž/p.kQ:×5­÷¬jôÎcë XrgÈ#Ù+_ßbŠ¡l±Žþ>IbÀª³î-°~Œâþ\‚Íû¸!=N­Ý*n\éYßÁ³ž(ƒ*|—„-v›íðÊmž‘·z„̸ŽÅ…ß«•Û†Z+> 9º Ê ù ©÷™·O}Ä[t¿\]‹çþlª®õõÀxû«-ÇR뎭Λoæ60ù³d(*Õ)‘ªNËèÕ¾¢Ââ¾ ÖJ¼SÇÕ ÆSŸ·ˆJ“]'§™ûŽ-‘útEædQT¢ÚsN_ëáÞ{ëÓ` 7Oõš£R>¦ŸÐT½[&Þ¨¹dÈc|ýâÆðÒ÷k¥XfP?ý’h#†rOW{.%ÔöøÌv¦W2gÒ©Œo;? ´*UÁ¬P8L­¶_¹wœQµ¢p4ú@7¢]!™¸Dðøãƒâ±iÆ.*Ù75ëÛ•üÖb)*|8·Ò;‰=Å‚e%óë±ÿÊøQæŠxÆ?Zï|M/›ß·ÖYÝ9-?Þ»ÏI<7à5{×\ "ZYLÎ’&UEè`²òJ$ç?«%H™óŽ&YgÔ©Ãò†óµrUØRªPŒ´Hòð’EŸEùÑkKhç¹3áÿ žw`«ÿ¬ƒ@rƒî‹®6{§x ×&“£Ü:¸õ®ï¼Õ–‚SCIïðÝkÅ † 6½iöUY)2¥O OdBßWÜÙ|À£¾Ü+ÝstUe!¢³˫ʘõcNœã–÷‹î2¹ûý<˜Ô‹²$ž†þ¢Â7æ4)éY½~Q{¨ÙfUlÛ$᯸>ë¾è&PN•˜ŠÖÄD½ájI'1©ÕÙÉ®)hmµÕ¯=ë_ujbÏ.P5†¯O÷1q|åSM—¾ÆÁ™š»Ó©Sn–wCvéá·Þ<¼ÿšY&]“Îrùð"²å»f=nÀNÆÜ Çd½ÒÛDbÁQJiòiˆ¾ñ§ŒCç«ZvX³nnøÇê¡j²çÌ4é6Ô+¡)ÌþÂ8³›fžSHó+è—`ñ öõ'& -Íõz$Äê©eÉ“dfOR¶FÜWH–Þæ§Ç$Ý\aTi˜H¬”N™d¨5.'³Ò r¤ÕšÏŽºÙ·‘åÑ81Kå I1›%*Ò›èÚÈšÚv­êd†ôm“¹€‘3QN,…½¨k»ïÇùŠO:Û\Hž:¥‘‡ÉæÁùyüiw­ÔpÈqöš3Z€{;k­äÞÏrz|*uäuÚUŠ ÇÓÔ×8J' ]Y{ÝLb\x/íhß²îx¼xãKw@¡,Ñ‘9‡bß&)ØÎ¶–á…€‰HÊ€×fcäÐ÷q6oØ­i.é|jƃ,‡Hc‰ f‹$Å èDþå\AËÒ{ïïû+N‡Ö)Ù[<ÎÓº磰:f÷ò a‡•Ç,ñ,w%o(v»g›…gˆ®¹‘ê7¸ÙóhXJ kRÿ\¨Ý«ꣀSãÔKåjëRéì•0ï‹”Ùp…Œc)‘¯užõHd Ï}íLëé£Õ¿[S^*Š!8ᤒqÙ]%m$+~-Ñxý–åÊëÑûF>,¨† EÂF½“)³q­±™Pãs¿û9Ê#“W Ák'¹Ú9l„ÞèT㫇vV‹šFv¬&éN¢Ûw»Ä–r>rÁ´(ìÊfÃ\sø_–Ï3/ÍSQ».5KÎ"[ïê\ó¤‰K¡¾ç4zMlÑܽoŸ¦…6öñGÙ4‘ÖÇþ´>µ…´rŒÛøS¤©è]FLtøc9z§µ½-î v7,¨udíñÒÜ×±åÝ4²YêU¨òqˆ“'x1ÂÜjz=}Ÿ ¶³5}þ½G*Z‰OŽO±qeýèAŠÐ¶ØÀ9™Qoj´| DûÎ3´çÛÊ’Öi·®F7¹Áhà‹p%Ífé¡­ÅàôÈJkÇÊ›[yÁÃFËÿö†%‘‚g4Àü»…f›„÷ØVT©û å”0ŠìUÚ˜+âð´£ýŸÙ&Í'…ƒ;ßlc¢º]î'®q[#ŠþôúVÏdôW.'M“ÓÊBJR:Dd5P¥2*‚’ a[Š,ÁÅQµÅM¨óLnûÏH6()%Á×Ä(ýDªöÏ?¡E4G³Až×;Ä ó23lš~fð´øO²3<¸x~ÿËÌ>NIH\tÆÅ'&àÐ9~üÖä†ôÆË´ªøµÌ›’S´VGª–Ç×pW“êC›ßéw-–ɰ¿L½0¥‹R½Í÷ÉÙZ3¬› W,i]?ú°ƒ“¿ÈÿQ†Ǩ‚‘‘ µ ç …W§e.}aÊ ZœCy¥€õüµóŠªªB“Íü¢°X§·ÐðÑÚÎv™"f¤ô@Lº f7²rïªÍ™ËGúˆÍ@4gʪBWÜPlØ—~'â§Æ•GßDñç )ó„խ̦ã-æ÷ya½4,R7oUS¯ ÷Êå2¹¦¢2FÎÅWÔʜݞ â@ñmTš§…äf†ÎW™ÚwfÛ€ÕK}¼ˆ{u\‘uEÉúUE—ð¤¸x¿ôa©¸ÐÒ)½CDÏO)_"¡œ{ö¡Ù5\ÚÄ÷áâQ=Ò]ª?À,÷¾®à1Šx ]úâ{ª¦=~“–0LÚ[ycB“ ¶·*Ì`%ãüNG² Ä¡×e‹¶ÿ®^ ܯìÊÂ'2U¬¶,Ù[}hߊù¡Qä>”y$D3`çÇüš6ü‘ˆ§• Ëríó ´¹.S{v™l¿Tuÿsålr¯í;žç6HÏÒ–d3BC¼JÔ5,ç6âèàˆ‰›®G>Q“¯‡ÔÜÌŒ¼=_kÑÀPj‹)ôpù_ab1N>)ÆdïNÒM]ä? Y}:Ô1&d`Wgã9ˆ®MÍâŒøœùº a nOFÃCvXNçXúØ«,33²¦8Þ^Dh,¸ ?išY¨|jçºÄ•ðXËÛrް¹4úãÍäÀƒ&'"·³E ©GÕxFÌ­{„éК¤æ€4žFŠí€ü<í‚ꩤõ.ê2Q+ö…Ãd’„óJÙªpßBàü ´³~E9£&m6|{xV‡Öª‘]®!—CMß' |Bð‚tv "`WŸ‚×Ký8ZºÈf»©»Œv-ëÆ^~s‚¼OȈàwî 5 *'{y7æ7gú·ÖH|‡dÈiï<·¸O:LùåÎË»§Â·XËÙ/ã/û½5Þo—-wã\¯ ±fîã%ÓJz¯ò@OùŽ}2FÅëµÐáì¼yLO7ænμ¿H0UÛänIåû®Y¡©S”ަ+Üã÷Âz»‹°ÀmAªûª]Û=ê >A#ý‡‰»/%ÍhF6IÖ$ƒÌÑå«—%I’î‡Ç3¦jñóOžýÊw³â¤ àe»à—2®·÷rbZýSÚøÑ16á =b‚‹D6W5Pzrí®ŽªÏW­õd×èÝ!¿Žíx$˜é6¥"OuÊ=[‡û«¯g7Î*~û×ùC(uîì qÃÖBF¦FL™¿ºð§ÒXð\5’&úL›¦|´˜ÀÔü$¦!!/­ ùáö– Çz%¸«Øev¥¡\2xÒ"eÇvõ^ fˆÃ•ûæÕiÁŠÝôhë@Ÿ™¢±áöþ^[ -NéZZô©œSôæ½É/•fL¨“cã`矖Р^¢?v%×%žÍ‹>À\-k§8©g¶OÅÌKеé\ê~Ë\dñ)ð…©i6Š‡Þ¥²¿Óïõê!“ï¾ý“Ì‚Ôî·+²77W¼x*“8 Tf:ÎH}4Wü½­=$=LÞc8Ç”óB2çû‡±Ÿ#"(®îÀ–W½X½ªÕ‹úWE!ïÒùž\lfù¤ñ»‚‰ÅqÔÎ$Ö’+üÖD1Ÿ¹^ŽV«”6ÂÍ®^ç_¹ô(­n.I3xÁªçgýô˜ìÛè ÄaµÁÇO Ns¢QŸâ,e©ùN‰‡€G¯rtvöÑš»öâç9¾B9í8Z¯•G%^ŽjÈ̼ÞÅß»ñ¦U1û¡¹¥¿š.RðÁÞEfçÑêdâ ‰Ôœ•¼L›“§°ßØôš-j/ʰT*Oj ÂÆc¤ÏUv%neN”ȱÇ'ï4-/ȧÉ.F0CsFô•Wæ,*Ï4õ_ï?2#(i‘§ÆqõQMP(b@ˆÉ3p–:_ŸÎ§‹}7ºf+_=¾úŽ„ÙzóB•³ô¤*§dªeɹ’âKyPŸIwYL¬3Ä)sqÕWSP-Éðè¾Î©¹é‘Gì'+ùÃå—­ßîqÄÊõâ÷Î`ú«…£@d/u/¾>¢àd_×Y@›œÛ4jà ÀãzP8㨵÷Av÷ý‡:ZG'É­š‹˜}£’Òel±©Ó>Ô+V#ùNï÷3ø 1æ;ÄÂÎ7/+½÷o¬£æÞÄÑI¶0ìsk9p»ÊŠK›mœ]ôcÕpZViqL9CI¥ßqG~„&o‹¯<¤ÿFú$ÌôÖÞ<·É+ºÏº2'‚ÂýK¾°Ó]}$!œ¯]M5Ž»¡š®55ñ¼—Ñþ´µ-ÀŸ;üOô›7ÔAu>ŠÚÿMP} endstream endobj 74 0 obj << /Type /FontDescriptor /FontName /LBWBDW+CMEX10 /Flags 4 /FontBBox [-24 -2960 1454 772] /Ascent 40 /CapHeight 0 /Descent -600 /ItalicAngle 0 /StemV 47 /XHeight 431 /CharSet (/summationtext) /FontFile 73 0 R >> endobj 75 0 obj << /Length1 1658 /Length2 9131 /Length3 0 /Length 10211 /Filter /FlateDecode >> stream xÚ·T”6L7J‰4 Ò»twwƒH.°ÀR»°+ ÒJwwIÒJ#!-Ý­‚¤‚À‹ÿzþÏó}ç¼ïÙsØûš¹fæwÍoæ> 3ƒ¶—Œ Ì ¢sArñpƒDr*< ÄÇ ñâ13ëC‘N¿íx̆7æ"ú/†œŒ¼·Éƒ‘÷D ˜ @õ…€‡À#(Ê#$ xA ‘¿‰07Q€<ØjÐà¨Â\ ì†:­î  P”Ñ€ïþ¥aí…#ܨÓoÀßiîÛ¬àb#sv†¸ x¿Ï'uƒXß÷Ý ø×å:ºÀ<\|þF¶PÛß2l^À.P×ù¿8÷&¼ÿØì H€HXˆOXq@<­í¿ è{Á!8y~›ï5øùÀap€í½ ˆÔrÿ…烻CH·?Ÿ;þáñðl ÖH€Äê‚÷Ÿì÷fˆíŸøþþÝ žÐýøñ@¿?ÿ<™ÝO˜ ÌÅÉë?ô?®¨§¯c ¨Æñ—䜲²0O€/€‹Wàñ „îüþ;Ï?ø[ýVm0ô¯Óý+£Š‹- ð»Äo÷íû[‰û_£Áú×Þ°þ»„&ì~ !ÖÿÌ¿)Hd}ÿ‡çÿy þùÿþßYþ¯óÿ¿'R|áäô‡ŸõOÂÿÇv†:yýŸèÈûåЀݯˆËÿR n´ÄúÂù½*Hðý’ȸØÝ:?7ˆÿO;¡õ„ØhC‘ÖöÓß·q_à êц! ¿_<÷Q ÐÿøîwÏÚñþ傸¿³?]`Äý""ÿ¸Þßr¿jÿ}k˜Íïä€ÝÜÀ^x÷#q><÷Ëkñücæ@nò>p¯Ù` sÃû}Ñ‚B ÜoÓŸH”ÿ ‰€Zÿ a^P÷?ˆÔÿ‰Ügÿƒxî™Vä ÷‰îßÎÿ¢ÜKÚü ò€Aú/(:üÞ*Ðå_ð¾ü?î3!œÀûîÑÿ:Ý}¸çð¿:iýÂÍí¾Õ¬À}›ÿƼê Oˆ5Þü,ÌZ,Ä¡6¤ýGµ µ×ö˜8æQÚg¼\cEæ8È>…I‹õ½ì¬µrÅù^Es‡.MY×9+s§>[uôõ^ü\ôŠ{vôVq³w¨Ó‰>—4Œ³›QòRdéDKÜúP´i#‰ºq¥lìúô˜ú>­íùœèÁBVª(¤Ú®ÙÙ]]š¥NN#bøeCÙb5¨¿-pFñ4wÃ96x3Ê4VJ¤Ò‡6}oWÙR~ÔjžØoš1°&u Ù[&ÙFñ|ñþIK _"“MsË+܉°YÌyEÞ4 ™x‰0ìI‡*X©Ü uT}ªæµ0Ý3±öë…ZªŠÉx+§F‚ÄmÅÖ¿æŽhwÛ0´Ö§Õ)Ä[ äYl~¶ÁýLNÙK¬¡ÓF¼&Âiöíú’o–DBZžóñºCÓÞ<6ì`_øxóßœvvʲ,¸VEºD“Dy¯Õ-ùfå_ñ‡ê­Ók¢ä¼=œ×/|«<×ÍÔœaÅ~•ÞíÎ_׿ˆc¢`¢úœ²ƒ®ˆh îÖpÆÊÅÍÞ×çthq6(¥šyo¯ÎÉGûaí(|xî¥QW‡Þ7‡hM|4Éyλ©ZªüÎ2 ‘]¾ÆÙv²AŸNŽòÖ-âõPè‹íq¤--é‡ö~\¤‹¬1„Ad:ƒÁû ±Qí2kg-¹‘lS5ÔÓ_ ÚK%q¸EÊv³Ïøì¨©N³$ЛtZÐßYÝÁ,ËÒ­^õ}Än<1b¤ÿJ‰¶Õ˜ùa |²{®ˆÐŠg I*b>²á=iñˆÒl«œR–<—÷;?ÆYÌŽï3N~Ðþµ¾†Çáù»`»ÒX]á꓇,¯»»ñ†Ÿe‹l¿Y»ºüÖ°*)Hº°U¯Ÿ÷yöM×#cj]ï]&¤åx‚ÞºGKóž‚Üëúkó¿¼WÈ…gÁ­ŒB'®È5Û+¿n’‰$¶ê0a =Ý©gÉ^Iijõ¼ÉZæíëÁ­DÌݱ٭¡k>’ÓÑÀ¼Šª29gØê6hŒ¹Â/¾øØf×Çžœ_2‚$ÛÜCþͱ4DçÌæA/újc¡m–æ–¾ø Z¾Œv&¼c©8'š,ýÙ0ó7°†kUÝØðy¹Õþg9&# #ä’ ÓŽµµ ÏúºÕã:äĤV_dn4^9]é+Ó ºLÞzeöB úûï~!Be0–²"`¡|ôc¾fô€*³ô­jï–ÀeÍw,ÉTIJ3<Ò aÜ@4± ÔƒqEï$¦7ŸjhèNs¶‚ž®ky´¸^xµ~5AÊÊÀ:væ«E«dÇĪ_Æ5^0ÏOï¾¥zÖêu¤¡›z5°¹<–jÍ1Ü Rm¤¤û‰ÅA?HíÍ3!÷^±M« I³Ua_6±¥”@Ó !ç›bcnÿ^öŽ(ѵü]£+f—)×s†(JºœCÕö9‡'F=ÙòÂ{‘L'S¾'9 MŠ«Ã#Í·Tû ê‰b/ñltRTU˜[SzŒY?S;ëºî‘^ªšP$øÛΡ‹p¦¼¬ÛxlÁsU8åïÀo;,£ÑãĔ≕ ÆÁ?•™î[õrb ÚTGmG¶åѣđ|û²‡ÛMùÖYz’ü:NŸL$nQ¡­ØHËŽk!eö}ÔÃjå}øÅ°2#Ž©wÑÍ"àä]ˆ‚ƒ!¦O6Oø)ÏH°~M²¡úͤ€—‘š¯wÀäéfê±ïB#»ÈAÖf?ÔPâ÷<ßB·þ¬ªûŽImgÃí Ÿå{Þ-ÜÅ-Ø€@ÃШ<ó‚{—Ô˜ ¹—ž¶_]YËë=ó=>¤åž¸ž ’§Á©wÙ²Í*c'%·Eå|‚Ö‚-ûyúé´„Há’°ØÀZà˨ܺtd¬O€hÀS]~´K&-¢ñåMŸæÚOº8õȯY¶ýž;¼ò¬)A#.yµ ³Y‹Ð¥èòñ‰²(aÏ|{tðÆ·Û N5:Ý©‚IzÅMÓ—ó{Á¥Þ)Û±nï0¬M2Ë–ã«£#âvE›eÉϳ+s,JÔ9“cj¦”Szó QóSnuL絛@ û› Q·Ìêåô€¥åV§ƒ(í1ÊóºØ€»[ƒ7ÌìW‚Ô¦ŸOewÖâҶµ£˜àè•Ýýû=ÈPhé ô]‘jùtNÓ¯i@‡AqßÇcÄžqk¶C¨_žé¤²ÜöÑðOºt žüú6 m× éÝ$HG¯ϯ¢î<¿ñýÀí“j]ýÊé(¦ð5k ùÂK9œ4Žo£4Í4óÏ›oáL–ïDà’‡õL å ŠÊÑÎ(l«WŠø0+«ºÛÐL'&³§#Ã\ºh€Èþ®ÅW›Ÿ£¿ú„ôî׊„•$zÍßÚ>`s¬Êlâ [MÅÿF˜?þá©tdžóðBë2,ãyä7‡ªME2ý¥öO„œLà£`*ÝÅê+„mR}aÑgSçkGX ÇÎKœW#;«ï^YErʽs=ía »yFz¨R˜Ù?†áÖaºØø!hènãZ³tOXou³y —ú2>ý®*ËvFnìVMÙl‹æ>˜4êã.µñ¿Tº)¤­á¢­Hól5G{B«# Ë] âGš«Þ&UÍÂwíŠ4Q=¼ÌVgM³–¼®Îßn¥r¸?«5^]ˆùœŸë·ð…uç~ˆ-Ñ,8š&ZÃêt<\ëµYó|¯b¯ 1\òºØ,ÁÌ  ŸÐíGØúM%èúk&ï2å»'„ů0ÒoúLp«Sñf¬_Üxµè:®¡ÇÝÿ"i§~;ØâÛþL{:ϰ£uß{eâÀÙǽ#¦GÉž;ò=ÚE>½f„*ßB é8½Â•™}ÀOË\RÒˆ©Xúó(’àÇò×Z*Tt­\Öwaˆ!ÛfÖ¥kø˜ü¢2#/ f<_íÈ¿:ÜjóŒAâ…©Î~R*롼¸XCuïpÓÕê¼ÊöO^mAãêµL½]˜R⨦Þ@„u?ïô¯Ö97î°åM¡¹s9Ù¼õȽj2‰e·¸ Ë”²,'×JV^³å®tMu¶Ú^¨Žö‹TÉ$œ'åò;¾ytÚɲGÄ–ÚþzwôjËwR ?wÔ¨33Yê8Nà ÝL™xq™L梀ž³p¾N”à cƒü ×`Ìv4Ë<7@Ù¥ ~e¢pÿ@,ŽŽ  ùI¨P|áäXb%í¢Ãq:"¦å’“Îë5VE2ßèG×¶§¶ÿYÍP?øÉ[aªõ¨œd¸‚h§Çpvι‚5 ~bnOE„Êù~x‰ê€åñPÒ36]Ï£•„ý8ô^O\ îûÒ'8­òÊ”¹ó A4ëÿ÷-äªÅ›aÍGÅ¢®äýƒö^jËõ·ŠbâÆw¹ŸBù÷øž¼mZÅ&&=Óºuݼ¡¯:’éµ:h(¬¿Þrª`vò>e€ý»‰òÚršüj¦Ë';R O¾ëºL^&3¬;>YÎ=KÖË»òUÅg»;S6Å Æ"óãLšt7’g ø˜rdV”ySô-¹í8¡bce_éÓñûDL”¦ }¦=‹u¯H” ar~ ­ouSד\ KAª~L4Ìx$!阰ã0´`KÜêgrVn *Þf.Åk:1 ÂL ¥Å—/½…‰„ôÜà,aµLáŽç[£Ò›8 oÒ"Á¯?¤<&{2\ ñ½N;³ªÚ KÇ'@ª¿ž¨¥¿öŸ:èÔ¢c[uý´M¤˜ŒÄMÑÊE+”ð¬-níÃŒ\ üüÆb§Oâ.‘è†#µjRKd;LÆo„"ßÝËü!§„§EÔû·˜m±Ý«ù‚Z8¯d6…¥B¥Bv·å1Û¢QâiLbÎ¼ä“æ»°ÞXœ‘oPFšeÇKºã+ùÆT +­;¼ˆENPá{â'ŸžsŒ³ 5)[üÐ?£àqGh´ë£Ö-:ΤÚ}V5ÎÅEûîl8»ÊZ¡ž‘²idY†zë6&¬yØÅ£¨ï§`ö½/µD™†E£Ù+ºÐX®( ×êçfó›h\Gj…x—šÊø,ÜBÁ-Z'#·WâXü·?4†-¨Ìô_§û?Ms¯¢½–ÒñÂsX ý”S´žôò=~š/Wµµ:FÈY½>qî7oÿAbb´¬;jõ+ª0¡éâJ%ŽçÝse£jV#º$šqØYFõ…Þ û¿|÷$mr­¿Ë)ùƒ0ý£FúÚ¾Žf{Õë¦7ïóh X¢ï¬¶ÙÉ%|‘QԜ֓‰ ’>SÓQuý(BܰÕ¥b€g2é2Ÿž>V‘2ø$•«´g±î'ñKo˜@ð`ñÒÛ:› t"…—‰×Ã,=dAŸ±úKŠ~¼Toá–Õ/sÍl.èYÊ  ¹Bô3ŠÈKÄ­ŠñápdmÓÊd5RßHË2Œfò˜Ÿ[Ë“É3Ás—ø{ÌgÍ”yí„Õ”È,¾êgagÞoŒ‚G>BE°ŒÚ9N0RÕêÚ»~Íêcxì–!\_éWtÚ º-œ¨'²ˆGô¶§Ç6íÊ‹Ôm$£Â_¡©agJ_ó͘~ÓÓÎ/$j‡±ÿfÇ@j…mkZ׊yâzÕ¶'!H¸Ù;àÏ–†«•€÷¶là™‡À(ñ㺯cz)+„’ H±¢ú¶S ¿y-‘nàü} HãöÄ>¡¿ÏÜ{²Ê¥›Ç*YÌ>v…;YúeWàµ}ûÞQ«¯ ·À‹÷–:Ú…—³Al–ßËRut÷Ya_ò' P$×™—¯„‘i¬VÁ^Óâ(±[Jê*j”®õÜÎŒØmÆÀ»mVÑ\ÐoQ:úyÚTµÄUë=$1QÇójvÅ­—índê‘~JùzXpŸÁèp o,îJáQc¿JË‘àÎký÷L¯¢oǼ2ç_}KDUNC[vî ­ísÌ(œXWó{–E[>ií3=ŒÀa-E‰$F efCÃ&Slfjx&Þ 0Z¨§^IÑ|°!a¿}5 :â5òdýÒÊǧ-ÜÎNÃá.@›ƒøh%~Sg¦®:bÿѨö5yŽ£IZÂ͵+ŸŠÝ»•£|Gù#%¿?Ài˜è¨ÂÔŸR—ã“{,E¾8}Á.lçÖ+ðçAÞ˜tÑ×%7‘M’'%¿š®¬Û⧯½{¤¼@-ã#mä“§'aÛ-áܨJ ßpôTÇ>&”SiÊ`<ߘp ý¹±É0ûÚLþ¥ˆ17øÙâd×¶< &sãë5¾ÐX€nY¿ †À±–ÝÁ¨œ XØ›½‚wr+X´„m6D—?µfIŽBUQu‘è¨y?š¸³Â©ç›}$ýËÇpX—Åö I\ž&¶x³5ÑóyhwÃE¥Ób;#ý=>Á¨/“§m`ý鎆ÉÎüª«yÚ3¥ÃÙs!O|ƒ á*]¹©.©"™ä—¸ÏD>DÿZî|‚ÓѬs?e=Ss¾Ý³Õ¦QFx±s¦Mf=E8±×üÓ@rÝte¦×Ž_‘¤î’ÂfÝôåg:œ<›cÊÑw"–€„8ŒŠí ­4iRœLj³Ôí9ïí­V­ž†„]ÜXEôIDx¥«Sßë½ú`á5—k·ê“.‘TÑ´©åA=eÀ ÑO ¸‰Kõ?ÈJT+€Vjùù%ͯÖõsUÅ.:~(líF"ž£ øIeFÊ;ê“ðêÚ=·moü@TeßÈÝò2ÈHÑ‚â‚I$+`Be*ʪ5û|[L|¨>^:Îýoës…ø!‚¨q02Fƒ–ײ™~p)ÐLïà‰b9t¯X,I§N‰Ú(ô pD8Ùš Æ­ZŸI³÷e‡áÏj:0ikÖ\~›ð²£2ÂNO©}a¶ÅÝ?I2æNž¸Ÿ€Á8! eUQ…ú%Õ“áH>â¹8xwÖú¥¤{÷¹JÓø‡Çç>²-‹P±Hu£æ¡ÝæÃÊ„6H|0Eþæm…&êŠHÂ×ýã¡ïѼ߆I㢯¿ïŒ½ ¯^ ô9¢¤Ëµ=‘Õè&óÔŠ¸;QÚ± =:ÎÆá A¼w[(±á¯E)÷u€¯Þ­ÉÐø’3:ƒÂD^ÓUŠ- zùʾž‘l3V3ùFÕ¿ª38 ÷—Ù‚}0_0¥ÝÆnðæfŠöÎØWãf¯—ñîW —˜·²¿Ï_ܶoÔè³b eeP[:y-ÓSx×ñU¶Xˆú‹_,ªç¶AÔ‚ƒ8ÒGAðô=™å(KÜ’r¡õ³míá—þÚìO<ÞpzGrÙ^W}ÄQý‰¢Ë#2õ&ò©Z%%©»«Ô¥04 ٪ɭe{J|¹ÚM§ÝÄpŠcI[ ”mH®@Ö8ag¹P‰Ú’’ngÿÛò‹”¥ˆfíè&6Þ°%…£>75;µ3±ö/þÖì‹<¹sróêN Þ-¯Îñ…4ùßhÜÚ&M”ß ÑÕUÌö÷ñÚc›¦Í¤–hî”z3ÛV_KóÍÙz| ê9qh¤w¦Ë’JÞ3<‡ºpž¶µŽš”–Ͱ? ##á”)ä‰^n ‹M¤íE%ª_ˆ‰#‰ÉÅ®…JIè»Ð6‘ùv޼ˆ*˜wí}é2ÆÊW&zªfÔzÜöx+ôÝ7øíS^_{¤€¹ëÛ½º9¢ù~*„Dÿa½òQÎp®ŸŠi+«íSm;H‰H¦¸Ç©Ëí ¹¢•ÝÔŒµð-¬cÜ8U3ÌN®›mí/OiF¿Št×VÃ|AM]Ñ•œA1$gòýŠ.>ÕØ7uQEqžÌ]—~¶?ñKî:ÜÞŸ¦4"¬wŠ9ÒÜ«§÷”l[âƒk Æ1}ýÎ+d›ý@)Ýu‘`‘QɶàÑ æœ”ÌûÓœùR¾_;roš_ðÅDZó—O\I QgmÏËiãØÌÎÍÉGùD3ytfŸ;g>Ï5¦9%ãiEÜ(^; ¢ÆånFˆÄFJã’¼Tý¢·×+Ñöö “±Ð±å{@â20øYy«) ôE=*åfT’–Î…­ñC·‹‚(ò»Ïby©"ÕV…ï§„lØB%ýiì™)v™Š,ýáÃçîx¤v«{­{åŒ ¾·Ioe_·1ðW Ų8 §–¤-­ø‡~1„–Å?“zödÚ}ƒcé±¢4Wõq³n®…»Ä—f±+­­™ì©b'ºýáçe¿½tˆÏG‹Q„4îšÈ‹Ø÷ÊÅ\¬œ¸R¯uk:WçÓÁÔf8>"›öÜÒnƒþRËrÉíq|Ñ_ßÖtUí‘™¡´ËÕ«(“ÙÛ$ÇŠVý}ÒGêôá“£Qsì"¹F­}DKn_Ê%´[Ö†'¾×øB³¾Ægå"x´v(æ×¡¦™NQ‘ ‹qÎ>Žâ^z~òÌöyNo…"Ÿ¯|í3[Ì£½÷ ›ËËòB'C½ÌL_F”ÄJã‘PGú’UG1Mñf¸ƒ™¿)lD5ú•ص®a¹¯MÜ a}m+-‘"­F’ï'MB„@ú—#Gm1ѱOˆ3ì/ÇYO‰ÕÏ8iñÉt°p)vÎ6ÚöxelÖ¬æižxZïbî>âŸËèhª{ÎÈù3+?\ž]ë13VWXñuÝ=ÂñËÏ&VÇnT¥²¿X~_K —ø¼Ö+üàsU.c?…G¶l'NAç»'þ?y­ ³Œç1 [WQÃö¾aã ªG …ã6K=]/±3•ÑúŠRɸc© e?@i"¨ÛPr;¿éAõ]’ó8¢²:­gALÆè8cÙݽ[Š‹ý¬ÎѨ›O¤h~D‰-CJè·1IoŽ¥ÑÀU.Ö~ëZÿñ|¥HÞ<¨šÞ̧W¹O·}€¥VRK#jô˜»`ÿªw1zÏn0û6©z8 ‚Y=ûÞÒ1*2€ÞƒÃjt«Qð ÂÆU^Ó¦]Ѧ½Û>RÌ]¼©ô!™YG¯§_Gâç]ýÊ'»5¹|Ü^íÚ7¢6_s–ûIðgUGûm«„fIÀyöŒâÛŸK‹iDc4nÕØl¼MÝÅnlÌîäXµúñ]?7°àÃQwù2Ÿêž`‹DWÍ\Öð,É['é3³±n*»KÖqŸ©^r¼xÀeJûM,­H íë"ó(ª'úÁiÛÊêvìÖ³%€ÐþüSÝþÖÃäw©WšRVŒ;; q£ŠËWŸ±vÈý{šp­èb°ÇΣÌ<}ª¹ÚLÑRu¾Š^D;ƒiFˆe•%øDº¤¢³è.|.¨õFm†0 ò%zª47ä6â)Žƒœöapɯ]%Ÿf^..c¾aòåˆào´ª9­…ÈÎDåI¡²cÖ£‰Çyß—š-$rLyÔK_x›£s¾ßìB%gm/U´Ã§Ô$Pa§’ô8~ M“×,oe0:ß]®kïœ1‡¶adUvL_›ÛË)6ÄãÙztdP­'ð§â¨½åõ]ƒIâH×3XÔö‰Àœ;®Êö^õ> endobj 77 0 obj << /Length1 1422 /Length2 6370 /Length3 0 /Length 7330 /Filter /FlateDecode >> stream xÚtT”kÛ.)][Jò¤»;¥»‘”b†éîD–F¥‘”éîRácûßß9k³f­wž»ï빯ûa¤ÓÖ㔵YaP8'/ðHCCEàááçâááÃfdÔ‡ÀÀÔØŒ†`7w *ö¿¹Ap„NGøiÀ €ª‡ÀËð ‰ñ ‹ñð|<<¢;ÂÜÄy'ÄÐàTaP°;6ã#˜‹ÄÎŽ(ó÷`±fxEE…9~…²Î`7ˆ5 h€àö`gDEk ³†€á>ÿJÁ"a‡»ˆqs{yyqœÝ¹`nvR¬€nè‚ÝÁnž`à'`@ä þŒ ›з‡¸ÿÖëÁlá^ 70€P8A¬ÁPwD„Ôì Šz*ꀖ úÛYý·ðçn^.Þÿ¤ûý3ú+dm svA} P;Àâ´Õ¹àÞpµùérr‡!âAž ˆÈ áð«s («€ÿÀs·vƒ¸ÀݹÜ!N?!rÿLƒ¸e¨Í#˜³3 wÇþÙŸ<Ä l¸vîß“u„¼ ~[ÔÆö'n(ÄÕ¬"ÿÇ¡ÂþGg†‚<"Âü"<Ø{[ÛsÿL¯ïãþeäý©F ðs¹¶àˆ-ñ‡íçòp7p€ßÿ6ü[Âæål ÖpÀ lbÿ“¡Ûþ–Ãwƒx¦<îñA]DaÄ!àßYþƒÿoì¿´Ú ÈŸÞxþI¨µ…¼<¿1 .ïožhÁògeX—Є!¸ Xþ¡¾ 5âÃûÿ½¿Bþo¼ÿ™åÿEýÿnHÑÃÉé—™å—ýÿ0ƒœ!N>Tö€#ÖB†X軯²ØâáüßV8±²P;Å9y¸x~ë!îŠo°6nmÿ›HÏQà kÃÜ!?_DÏÙ[gíˆxUÜûm¹#Vþk¸?e0bÉþ݇Ôfósù…›ÈA„$øñ"ÖÖìý‹ï7G„Ì€-Ì ûç˜yynÈOÝQàvø%þ«Œµ‡›¢_ì@ôð·ü냽ÁÖØ3“0kñP‡êЖ‹JYJ/Îõ! ôÃÌ‹Ç|œC¯-0á] £O–“õ^¾˜U{«8ÓÉ«háðQSÎõ"gaê›ßZ m­À'­â–­UâäÝòxŠß9ý$ARžQºX±[’6u á',i».=FæêŽé/&â7ŠÂªa-š>U¾y¡NJ%j¸·¢ o´êÕ_üNΜ»âœ²k•¡™E¯&ñá;Ù«‚p©§¯wލ“º-晪gðúÑÃp8‘‚x/•¼F…á\>þMn±çnÖ_~VJ÷evmºJYÓ/ª5Oì×NvÍéØ\;sêÉ;1÷ Õ•’ŸfåÅ÷%Ë &U~K2›,‹€.{ó}”† ÑŒ^ ˆmh <ÕñÁiû:».pxÞ6î‘wV:ur öÖp~|á^Thh|}°–Ò-‹s?QÆóš7ü¯+ NŸEg¸†£GE€÷¶7ßaºÍ–ޝ:I®9tI&˜ÎþÚ‰³ ä+N-ì¾ø]ÚÑñ^6Í’õó’ðõµÿ¨‹™‘ø#­¥w<¾ß€9¯jŒj¬ùIÝT–££×Ò|s•«1‘‘rMþcÂhçÓ¾èQ¼ í¾—Æ²oEUÌPÓ“$’?AGe8j|zUpÇÅ„SÚQ Þ#Ïìé ~€Qð½Ñ³¤òC/ª”Ö^,À¥q±Š›¿É¡eôãZFñ@̉)ö¶²S‘¿’šZfQò§$ÇÜM²K4S&B”ƒ!W&ž]™OÆß†*•PNz”b´&“Þ÷WËð‡­: I懚)>'ßyùìåPp\MÖÓ>I¦à!^æK)϶;Å8¨(ÜŠº–Öå5$[Љ¢Y¶Þ÷kuÑŽGq—X¹ŒhÊAãá§'oÏô‡°)[ä²ãcgÄðI¿(ì;Q OUôÖ$Œ« `c›Û;韉Ÿa.øÚ>w]½ð!/».”Á{ÍKôª+Ö”µ¡…´RÎ ƒ¦rö{ö"¥,Á™Ê0õñÉ™/â½­×ü>h²[ø á–ÁJžÌ÷²+ÿRøœ¹‘Þ·hw˜TàÐÆY×zaªÑžòDÝïæ »Å¸»ëñE‹¥Üry=ð‰¾^a“|eë†ËÀjÁJá9ÙÅêú°a ¹Öp %i$©CòãPEƃï·\êþÖÛ¾F… Y0bùÄܳ8ŸÌ„ãHŽâJûá)&v5·ß—×¾èU(WyMÓª~LÊ¢` ¼³ŒëN&&ô¬ÍåÝ”nÈÕee6ÑQ­£8‡¨4Åñ°a‰juvhª; 2°±fKy9•\;…ï}-¬ûÒ°Èjÿì=Ö(ºÔE+Î ÛóhÕV:דµ;¢튠<Ë÷ç›Û)¡¸T¯ñVfÛ‡6ÉA‚oiÑ88ë:Å›~P>,L|4ÛÕqÕ~P0íadîÊ¥„lWÄhhºŒDG‰Ü[Åø’Tßܶ „ÍZL¸z[8ŠÃ Å,n™Rü’·¬” %þÄM‰ÂÒ{T6£xA©æ‰‘Æ?ò'|:äÖ::¬ž4' üj_ŒÙ¶êªTàGp6=qøÜŠiT Û=¤6Œéµ‚Z#÷´œgZɃ{:9Eµ;]ùÞ­=¤¹dêŽóöøÒ2©…"Ô¿±ŠÜŸ’äGÇË‚(6aƸaQÇH/wJSYýÇWšä…âóL½Ž…Œ•>_‰3ðkm-ºÔ‚€“ý³\í>RË w/ÜÉ^nÈܰ ½ï&ÅÔ[©OÓØšré+ÛŒðñT>võ$º&mô}Õ@5ÄdHŽ ¹{“nMñÏÆ+•Ý€—¼>ôÃw¡$m*ÕD}Ÿ­_üúBaÐú"’w÷J«A)Ô¿1AÀ ßØèdéÕ©•Â×÷]†ê1DPæ 3©7~ªkÕÈ›×Ø!6·z§²ÅC !êj|,X5z…âM~ßêç(Âv\pF#Ú[¥{Yø*›ÓnROïÝL 9o¦´Wn( ê¶y1‘<¡Ç3À!3^6©n›H×íÅÄ Ú~)1€Ô~óqÆ9Ÿévßè°¶.PNÍÀ7ÂÝ'Ï´Oß›wtàRcÍËL*G¶Œ÷Fª…ȯ²6¦‰%¦D‡÷Ë: Y5& òh›Èx»Š·&­ë™NÄ Ò´Â_´k¨ŽåÆîMMöÞÏ0´ÇVG-Œá‡u?C¶,W¶.H‰Ž¢|ÿâJ³%åëêºè:êݰK ‰ÄìÛ ñ88ˆ”Š9—ðKbŽ[oBîÈuÛäB`ŽšÜ=Á|’ÍÀ}+tùn”}š08šæu`0y› WF7Vr@Á{×ëWS»FVþ÷-Äï£_zdL“çw Àø¢GMFh h´6„3qàðÉ ]òäk·Ì¬ÒÝ%6NüÛÈ¢3ßö\ó¸Åý·ßÁ¢™Ž¡"¹çEä­>ÔW|Pk•á¼ÿôvyA„ú¶Ë±b.ŽÕf¯–£âœ½Dâž7ÊHŸ¿@¹ÿœ¢·/>ƒzÌV ‹/LrUäj‚¯$/ÈØ`>–bSŠº§Ž7jÞæ3ð Šr…o5b˨'„oZÀ.)m™€Æ/¢>ݹ š!AodYz%Á`ß!¹X»‡7;i%#ÝŠæi ÌG<5û¬:Â$Ó™?H„íÎyù‚õHyÝÓf¦³l›F1´!ULŦÔÐh’PLýp|xd·(ô¡ –Dº_­'Y¥þJ'ím§Y[ÓÖ;ÃJ<>é~jfù#Ðé2(3B¶àA•¡&ZVºV.JSléšöˆm±õ)‹Š¾¡*Ux=X¾ë´lqiêñ×pª›ËÛØ‰ËŽêç±†Š œ–Ý)&’ô4å=®šâ<÷]{æ_UŠ=$eH`WjËïB¡Št>¥‚˜\öú†«)‹×ÜâZìëë¿Ïf|5×Ð?fØ®e3óÞ‚´ù>ø3 j‡xÁþ§ðˆÈ‰Sœ½/ô~CË„žÇ0ÑòÈžt\“—Ó~œûbÓvºQÆ ·®! u›±Æ ©Å}tN•“áÚW˜¬.+`¿©|àžJ 3ËVöA_ õjEö‘Kã'žƒ«Xlƒ^‘Ø·Üè$If™¯Òš3Óˆ+ç*J¬¸4¹ð?öØO£‡•-²L¶×po¾=ã¾N<…\¨b¡>w>j›pã·íZÃLbo¬ ̈Bgs6SIŒ£ž} vE<µ:5>ÅFB0y7Í#õr½Ä×µ³¡õ¤\ÆûÑÜWUþâ/žæ•ZÃ|º•s¶ã‹Û7c´ÑH&¦3â¹*Ãs’CìvXh–g|ÌT®F­íG¦íðÜ «{6ƒîH§þ¢w}¨XN»CÀÊ.iB„ Z{’i†ž§F.¼ÄHÌ‹Z ׯ×`ë<ÕŠòìå€ÀSÎÓ3à´kULý#Í“ùäbw¹yþCГo2“–õ÷?cz;'Ò£Së2é?f.`©4kÔmŒ‚j·*°øßÑ ÷4þ”²Ï-;Â=éJóç‡ê jöø˜–ªè3 ;Ï|ue¬ÖUG'÷™”>g=ÊÁÞÖ'AOò ÷Ÿ—&8×ùF|ë;>RQO{(ÿÚ™JËÄl‘¬×c|ôδ¿þ' 5*„pÛ]M™.ÇT¦#jØŒue &’UÉò¹¿¾`±8VHß½#@ý­^*î×z–s^¦CÇÊ©¢Ìæ`0èæz‹zÄUio33½G_Ë€™S~w$¹o:Ý!NsQ÷CÂtѤWóõ² Ï—~×¥ÄíáÆRŽŠ/?W8 ^œ«ÖÖ^ õÅ E;aˆrÅ¡¥«L­úîuÑÓ²MÂÜü96ž)ùWYzÅÊm# ïÓ¦5#ŽÛ®¹ùlWP™8l­|oÇ’«E@ë» 1µûCX³Ëݦm™ƒ#µærƒ—R¤ÍÁcO‚irTî=Mw¸ª.ÕMNˆ›|ŠAÛá[¤{¢ŠµÞš"vµ "ƇwëÑÈJ%4ßÈ}ÜzmSOS5ÝW"Î?ÕÒQ©Ôsp3¶}s»”§ži݈ózç¦óɱ9‹-'’¹ïèÄñÿ̰(‘Áü ›a@'ë*xmÖ˜ëM05ÍŠ÷'ÛRõPè=ër9ÑÍ tÐ+8Ëh¼Î{EclŠñú“ªÒXÓDú¶+ÔUé™ì‡I ‡¡ß߬‘0IxçFÝ“rý”„׎ª¤˜TC³1>4õ½´úLqSZ`†zéÝx­kÔAjt ¬­.h¶•r+aÀï–ýÚ‰¤enñ¢kì„6<ÐùHÿ/»…pò\ã¼F‚Ù–ÅœÖtäÁïyB®¬ét„Ý:3ÊTû_cÍ= ³öm¶Ÿ<ý"W^ÎýôY®L¼±d^_‡Àþöó _cÞÜHÚ$‰!Æ< ’_LW¢®Ûª…_>¾!\Ÿ-‘ c‚ ’BúÖaru±ÎÈË;¨åÖCžÓH?f†§sƒòewÏ÷¯d}4óÍ63ZµY58ÆMõBÔTcŽ7»÷Êö"ŸF$¾öM9³/Á²x’Gäð¾)|…Þ ¬ÁÑ=<äCŒÆ0+Õ¶ðÿà„W>Oë€[ºÍËÞƒ'vg,Ìuócd.ËS…Ô ŠK YÈx¾Ôf¢Ž.ÃbÄCtÍÙôSòœn­t5µó¹ìâO úÏ^× Å*<¦Û¼¦â¦“ûÇ‘2Ç?ä„ ¸~}L']¾V¼óRp?LOäuiôøšÃ_”ËãëËUÛ({ç¥Î¹U&!í¦ªV˜];u.U.Ò.ñV?pW'?¼Ót¬‰u¾î‹o!Ù(AÉ­¨Î°¦ÁË·9Ž 7®‘VÙUr[XŒŸÓ²ä#c®ÿÐ&ÁbŸUH­wLÛ’›Q>)ÐR(Q‰B±M;½mÁuñ*KìÔ°Ñ:W;Z†D®Òžîîår±ÂmVWß E<¡^±Ü IŸ¿ÅÇ•n²±„¼9~öÛïªë9kª”=ýI&’¢´Ó‚äp_£Ól8ÍÍèÜm—9Má ¯'òçÅíý‘E+»ô7¦1™Ï)w/Ž î›ec:Ë lðÍÎûÈ&ùE$‰.‘VÎï†*6!ö˜*ðOÚU†<1G hŸjs ªùbö™ Ü·äå–‹MR={57¦RsANÚmÀ´kF¸f6Ez xUüÃ?êÝú»d2YÈ,p ÚvrÏ{´˜®<Î9Q%Þx Gvr…G¯òizC¥cæÝÝ}~®üµÏƒBÓòR½GÌuT‡ÉÝEõœãeM¤k¬%§'/Hy…ðù.Ú>‹õÓ_68³BŠ• ”aVÊ1=êÇâì]Þ[ƒ<ŠZbëâ§xNÕ÷‘í,Ÿ;LÕoÅúnÚÇ'$uº¶‚ å¶mªvŽskavÆröBéRˆJ¿ªƒ¢ºO­ü!BIoœ¿žšñü¨9gx¶ôÂ2è‡R°'—6ò*n>éR=§&·8piþ-ö+'»é“·¶VLK=.¶.:š†e)©×̃ÜZ´±h4§bÑ5ÕGÕa‘˲26Ö#'ùVþ¸‘åŠÉæÍïÙI†Åt¬íèó5Ì«wÑz-ˇhšMÄO&6¹×êæY·Ò!äöÅ ²À»{eFÒ†˜ òÙ"›T¯vÍf¥Sïø¸Û¹\P÷ÆéÏ›&óI+^ð/>Í9cSоʫ‹ŸìXZÆä{e1&Ú;…#žiÝ4Èð6mûÇkIýn»'¯àK… ^aØX˜Baìz:ßÌc:ço ÌN^L¬.EÃiË4ö…B¹8œn1mSÝ8S…aúXÁiAðÍc ™tݳÏ/ r·qDèiàGÞOÃÆÌ ‹(‰G¢û2ïA1A²Åœ@a¼e)ŸØ\yØ„¾‰!¼o#É›)ˆ…©ÔZ޹ +ü(%æÞÁ0„%9@/Ò¾@ÃôYÃDf/s¯’û|m=ÿÕ||=â[ê›ÊËYîX”7.|b¶fßéó¥ fÙüSx!jjÜ!EÅ㛘=‰1Ë1 ³Ð¡Ç³ªSÐÍ}è‘y>؆RA`Ýô=Ù0RγDç&ß5î…ï[’7o2¯{EI†a¨=l“ŠS~Ö³=w÷Õt†ÂaJ=Ú%hˆÔŒÇn]Z0̪Xñ‡ÝMóè$$åìq É=âãÊqZK.>:Èø3¯Û çÒFÉSñ6e—Û¯,_"¢=ƒ*©ËñO½ ° êúUyí _³‘žB0p­öË’ï*ÉÕU`벓Æ}±U)4BoÃl¥·ê–wÜC‡®{ÉÏ]V0³œ¢>ÛÏD gñn4œZ|öq’3|üÎG¶œôcè¯&á0<¶5œÔÌ)Ç[pè¨IØs×ÀœK ‡»ªÉìBŠoU¶‰bSϳ¾²à›uÄ;Ýx¶PÒŽi>èW ·sÓžpý0\‡aÉQù¶Eò;™ÎÄj× |7Þ\ýí%#ƒ#%”<… < ;k^â@JƒÑ°rÆœWmK'Søç’̆LIÔŸŒ¿ÛÒKMkРíðPx=æëCž}v)§5ƒq. pN`e¢ð/1:A<ÀÜ7¦hr¼äWKËØèø¦pé¨ÜŽÝr÷žj˅а`/ ›o>OÁÉ”}ô ûj‘bÚV^Ú´´¤AÛbz'„÷ ¿æ\Û†õܧ/vþ@׬_Nümòò[œeþUì’J¾œ-©«ª–_­Gü|}¦ãp”AkÊbbäFQø`¶i¹{{9­•_ ¥Vª÷—þŒrÂÍ'¸—BM®7½éˉ8ÐðØû]’xÆXê ˜±e¨B‘&WÏÆ»ÐC®Yqu²R—xi…¹ Ï Ý þ)XIHŒâƒèÃ1I,kòóôd\‡å9Åyo)årÉÌ‘L/¤:[ƒF êP>bµôQ!ظGß³Å$Áž•ýŸ)d‹Õ+NI+ÜîvÛsËñæ„âÒ­rïÛE’Û×ÎõR w1ùsBI¦Ùa´÷P²]Mâ· F9ËÉB: X5Âë9âLküóN–¨“t9Äû½,e6ß@á-|åDÍ’ý Tbê‘–t励Ëúx+Ѐ 0 2¤¹OUbàùØðlX @­VÔþ®Š~‚1 ³Zí ‰É¼ukA¹Ô NæMÁ~ í+$pçˆ\²?>a^¹ˆùGƒ{NÀÿ><" endstream endobj 78 0 obj << /Type /FontDescriptor /FontName /RDLHZT+CMMI5 /Flags 4 /FontBBox [37 -250 1349 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 90 /XHeight 431 /CharSet (/i/j) /FontFile 77 0 R >> endobj 79 0 obj << /Length1 1482 /Length2 7291 /Length3 0 /Length 8290 /Filter /FlateDecode >> stream xÚ´T”k6L)ˆ„HJ1t ÒHw) ÃÃPCƒÒÝ‚t§4H ’‚H+‚t—4øzÎ{ÞóþÿZß·f­gžk×½¯{_ûÒkérÉX:X@H.7¯@N]]YÀËËÏÍˡ êÁpè_f\ ÔÙæ€û¯9g(‰²Éƒ‘¨8u@Åñ@Bb a1^^/¯èßÎby°Ì Î Pq@@]prŽžÎ0k$꘿_¬6HTT˜ów:@Æê ƒ€u0Òj:†t 0(Òó_%X%lHG1wwwn°½ ·ƒ³õc6N€; iк@Ý –€_„`{èfܸ@€ž Ìå]×Á év†P8 E¸ 2\–Pgêp€®²@ÓŠø¬ö'€ð×Ý@Ü ÿ”û+ûW!âw2q°w#®Ñ|SdŸÂ„ÙR¼nVæœj©âl/HÑÔ¶SCÖé<ûëô±÷J]½§À)â†5EìÔÏSôÉï3j†)Â&´\ÃdYZ±"ç>4-šˆïîIYZ÷é }Xj{fÜ™IŠ…U‚Ú4:ÞUgª‘Q‹ì,ë ›-ôVO(Xr–íc^}4 KÑHgP•è¸Àw¯zð­p`¨—¦+Â_Å-`õ€)I¤ >@-/€]e°GpSä¶þÐÛâ ±¬›ñ[BqìjFŸá6–_HÕ ýZÔšëñî—¶Û¥×™2_ëi„3͵‡ß¯îÕÕû/¨œÐý¤Àô¿ÛSÉ M»“¤ÔÆK]ï-#è/SKê^"@b'é÷¦é¼ôù¢é˧«pW‡›iúÑ vˆ„ö™wè-K_DôX'|©ž¸(O±Þ~v«gI.UïËN&{m÷©xøøå¸Ü$h˜+T&O]}¦%_ä®YI3¨¨Ö,FºûðC«75\'–Ïî•ß,V(è÷QÝôš“¿°úB—µÍ~i{FRq‡ÿ:ì…y «]œ‹ô+NzìS¥·% ¡Þ›%ß¹LÎççˆÖ}=KÑfIvç›FÞ+ic©x¸Šé”­GzoRí‡l0¨;vh'Ýoç|Ÿ¯&Ñ«e ›”$ §­ ¹Èæ……øô•lt Óié䋱|ê%Þ!•Xì‹—Lî$P´8$X*ÈÁÉÐè÷V¾Bƒ ŒÉ÷tLðÈŸFV*/DpÔøà/XA²Ú:ÌåM~–å¥&i¯½å›\¼èoòð¿Bòîáýаj×È;jcÍx3$г†yÍfaèÅàrýìX´j@8–ùLû-)%3ÆíÚ˜õù5Y†÷5ÿÜË’Ý¡/aÁDÜ,=æñ"!#ø¯v;š°I.= ÷)å?’ÇX6¸ªîqgšwÊÒÊq4vonf…åŠË¬©5}ö¼øœ¿ÐhO­|’í\Z§NHfÇÿ|$ýÝäa´µ)àç(µ‚À1ÚQŠ5¾ô9ôEz™Os§õPåd4a}twAê!}sEÊ«’ÃX Z'÷/Š¢ýwy’C©’bÅ’$©^Ýl‹ôznÍ0̽×Ͻ½Ç‘ÑŸ4'VÑè—gL"…vM”éóÁ^\bQgnÊ·³ï`“‰›&fè6\ÿaágy-!›mjî„vÛfÔuɤ{Cz.=´9,B¼{FQ‹DH©V;ÊþÉ3£Ÿ¢Ún–N·ëÂrÆ%™Ù†Ïò,@á™ëpå ×^6õ"ÚÕc‚ºæ æ¡Ó·m-™Æ# W˜jEç˜õOG>¼£ï$Tãî PX‚šåÉe8CŽ•æáÁLm+]!Œ†×=d!Û7'Ó}•yìÄ”™¦\Ï”lžÇ^Ü„ª÷XŽ1W»[9¼ZixVgæ‘öV3¯áÓùƒ„% lZÄË<›D¢?¸-˜X÷yÿ7«í·ªÎÓÈפŒ®Á{IÍÝß S:£Ÿ§C{Õ o=¶;?¯çÜâæ>0¤£jçÓ辿ÐdOöà½üê)ŸóÖ°£¢î»*«"<Œ³¼IV‚¢ªbA q¾_¦CjrŠn"\L9R'2RÓOæhŸïÔ{˜q-`-¦8šôÍüŒŠ¾ úx`%4ðÙ® ‹ð“BM”áÒÜ6FQ hÔcçqH;Ä4êcF$U ‘/_zú£e“â@@Ã=š¢mI)À周©êÃMÙ­¢”Iâ¶= R‚a•Þä>†[ï1ßκWî‡Mú ÊR±åE¦ø_…ŽL ¥¹ùž ðɆ>&Àè+ž>v*¾ø.QQá1"`>(ãÐ3š ¯êLҙѸ;Eþh£¡G醃¬ ÈU˜œÒzj5áLQ’kÈn‰…(Af~®XZ£¤· }£ÁÌhßv¾¥˜/–Dà×T¤!>r•¨·´¡ã$U1E«è¦•ÄjØä-]Wá¿·œíOÇH90’ã ãa"Ž¡£;°£hÇUíRɬ¾ûð5¤ÓO¸¨åÃ·ÉÆG‚UéÜ¥²äÏû“ÑEÑae/: ¾› à·r’§Ž22¦"èÚ é9)wÈ1±×ˆß8ŸÓ 5S6’ QäK7ùª_ÛóJlÓliT¡«,E° ߈}J~-ÍdÍlY~Ò¬÷[†N?9 <¾`xê“ͺ<–!YÔ䯰xÛ&Ko©NÚÓ®ª:™K_¯3ua’÷€ëTt›,Cœ&¨½_—н9 T h[%±d…9a¤äL§> Ð’,|2<) Ãû•(Œ_ùYš>1æçs©' –än˜s¬ï¨-&C^Ö^Ö›F‡‹ž7AÔwØBo¿ÅT<ì^™<Úâ(³wY+] ÄàM××'Çlï¢ænŽ÷™—1mA¡ "êâ†z]•À‹OßÇâzðnJ`©æOõí0«¢!ˆ‡ÌoªKæ¢WÚÈhº%w{íé4fu+°Åš ïHôLŠ…Š9\ƃO©§¾¾‚±ÈþàoB¶æF|2ÿÖxmÇ.eªk!Ù„O–·\°ADUÐzkÇÉ&’÷îSÿàÞz½»™\ãG1bkO_„-h,²§„§‚çV3‰Au¯„ö+ÏE‡uª?Ieî|vsr½Oâ#Ó8ÝìÕÒ¯±&_M"HJeJR|u:¢Ü€ñäuúúôNOý·WæÉUÓ©cYïa?ÃÄ hNÚ罄0Ã;×"KpFJ?6JcØáçLëˆí¶&l€Ul%ƒF³fäˆìÇ©,3†•´p&ßÚC^œÝh? ‡¡—Âl8{ 3Ûæ%ôDØ6G’ËЫN]¿Mè:-~¡ŽXÙæ}¶3ÃØj‘qéXãüÈš?ЖV#…–ÅŸD¢S2¨mWêÞPž1Ý{_.­ûtW?6wÔæE×hßc.[|‰>ËïxÿáH`ä×[ÍV÷ñÛš kh–bh¶†=Ì~É—5^Ÿ önÇØÓÞ8}Ó‰q9Þ¨Ð*Z&PŒ;êÂËh†×Å$6¬Ô#VÐj\jÇ;ø“92 ‹:Íi;(ïÝ\7$cŨó=÷Æ\ºXÑè*®—^ÞøÔXÍò,+Æ8—^à$ê¸]Ç™žcTÞC?öé-áJtœñx²{³YF•…í'Å‚½aÝé5C¯-N9?Øâ|½J5ZÇØT˜Þ,óVN±"-ù©}véýéHnâ—©–ØýÇTVôÏ©g¦Uˆ^O|’{ðä¦Ú•¢eó³6Yô„§\L[¥¡Ë,Ùwüžêeæ°Ze=*"Å‘—*»СcÂ(f®Z(“Áë1; yí½Þ²Ýd78ã)‹ÐaÆýˆ:‘ó„|¥Å™€áŒ7Ï«aÓ¡DüЧ8sCÃ+«¡<ž¬žàn=>Gw2]5?ò¿¬íF#Z{ÁR—å‹i~̋յy4ɺ¶*›š§{ѽé5©c+ã~îZ aDj V;åîß'( Ègz€þ5éIœ®fæGMÒ¼-鸊Έ†VªO"oЮb_Ù0vrÏ+¶pSEUÿ—¾*Üç¥i¼ç@‰ßåù™0ìqúó’ve4(ƒ§D°rË…_TQSÇ;j}Ñvn놕§ ÌØ=w’}AÇ\ðŠ$´ò&;ѤQKÏÐÄ—¥EàýÖ@ÿœ\ŽWV TbŸµù é»;Ô.vyù‡Øõ¢ôç3R$ã)Ë ‰ *Œ;Ñ{–ã³O›T3c“ 8¼G¡ IŸ?yD;èë'(ï¿j/¯ŸÜf3¹©êRg³{0ƒÃ¦uŠäâù ·ï4¥ÞBÚ¯Èý–ôðÌlÞ-ÚÔ FÙ¥„t¶-ÄѼ ù ×Pœ|ð˜íXxÛ÷SRvðbö«Ýž†:؉2ÎðŸÖ‘T òÍõ‹8_øm>Z±+c$c¾ 1² Ä‹›ï·¼kÎåbø½>Î|Ëd"‚åýíæÐn;ý²býçñ4«Ù¦)«Ù Þ…"V6´ºª4í¨o@‹qiŠ>'ŽxS­F!™+®t¥½¾ß°µÄž°bݱ}5§Ä®â f0×™›4Ëi@|èky‚vBYˆ³í­¾(B'Ï^«Ãy¾ä*»­$Ò™ú:åg6–§åÕ§=l·ºˆåtwRÍ)è0]'Û:ï5«ÆäDaT …Ÿ¯lç•>ôÐH’1ײE†h7ÈTÇéÍŠL‚BÓGqðKe)¦šƒVÍ •wt¢dð¹i<|Wüš¡OÇÒ´âé³6¨€öæ”x–Ÿê𦿩¢ÃkóîçŽ.¸áøaIÀ¶“«^óòøBè!ùŸÊ?¤î|K|†ñÎÄ»¶e[žËQóƒDôxKPÐß´ªÔ?´™õñòWÈîòà5÷ÌOzsÓ;¥ôRTKõ&ž¬Gªí_XWjÌeµ_!îPb¶«Rœ2nu”]œL™uЇ<1­a»³¬KôPd mðcI½Œ [Í–e¥ÉyÄ£5“7Ìñsɺn-§·@*Õí­ðeÀÚ¿ìJÑ(¦öÏQ¤J8òxŸzÚ°±®‹‹'§6W_O­{r*|;¼øöÙàªï《_ÁÈYß1öåŠ&׌~I CÆ0ÍÔŽÞÝ£¢È%›ä õ];¬•øvi<¶ÂäIÓŸ3WÂÁÆÇÉWõÇŠÿfïÍÂøt;²"ì52#!¶°á2GÝ?¡bêá{ëÜ \èaK,jCºy?,X…ÆúC¥f!f£¶y—¸ÏçÛ >ÛHrå°^›õ›–FÒ‰™{Hþ”íԿžÆfÎmA¿»ºpr:y{oVT©×IŸïè‚k ”)|Ùfy ÿö~þ#¹Õw:ç‚nªk —0ƒ¯ô—MëÍõ5âNI„ñ´„8kÈØkM °¡WÂqʮ틚î}}ë§Nm«»ë1Ѻ]ÔÉõ‹†#$VŸ×ašmû ŒT£Õöùú‹V1…eш}9¨ÿîw7 `k‡« ˆ¯XÝ…NM!k Ï ò‘÷Ÿ¾”(u­ïP£Ú´Ã y."ÂÁÍO~ÓÚb:CĽ-ðñŒÜ<óÑZ¢œWü‹ñ°å»”á“çåóüݘÞLˆõ[^\§ÁV?s 0Žï÷¾e–¤´½7¦W{6Ïygý r\r¤»¸,ý¡\™iÞ²-þÕÚ7ÅeëÚÃ&遼ðè”û¢c_°÷ƒÑmó±VßÖŒTþ:Å®Ú~ÖI,NÈq•2Ãh™TÎIðôBp½åûAjߌ(­0mvv¦éIHùu×Ü,>Q·rÈ WloÆËÝc­ña†;H†.‰éœ$•fϤõ÷ܦ꩸æóU'“Ò1_9`ùu”N­VvžHµÊ £Â\Þ ³|%ÒÃŽhÚX ¼´âFÂ~ ©ZÄWŸKZ'¸{ANðOq²#W.NàÈÇœ;dp*m6ÎúÓwôåå{oÐ2çïáÝ(¥G5k‹½ùMC‚·Á;µ×(ÿ´¼¬*Ö‡Í!yÍz2ºhtö¿¬¾†ÿû — L^XÝ ž.ˆ„±x©wgHíâ\Øõ™ðº¨?ô¡A¸GÌM*HI7ˆxÇd° ê 7¯Í*$II\£p.ªt•„j^êÔ—G5´•ó};¢& 8#èx 0Ïß¼k‹nÀÿ=÷íSûCFWÆæp5ó…FMô"™ÒÇ'P1\š»Ÿƒä»oK4FÈ(Zì šNç‘ á"TEÌlÊs[ñÒñå¯# píY%‹œýœžÑº®òj™ñÄÍmKÍ1¸&4ï½mÏ—ެT~žYË Oc°bÕˆþékiÀ ;¥Z¢²ËHÞpr¯®ûEÄ;XA¸Åó»>î5…ß§_ðDT9ÖýàůÎßcwe P¶¹Jå\¹.¤ #êûZ ýØÖêD‡¨è¥^מÚún_ÑA=ñ¤7Ž ]F‘m k×ZIYù[>àæ>o_÷£8s‡:o,¶ÓGÐWkâ·d1 ²,Ëä—ôlÉ!ôÒ좀ËüYÎ\B.ÁK ì*ï@/çwIëf¬Ì6è/ÝG@w$–¬eöú+>Ì‹´š'”“ BÙ·OÏ´+,¸”Ì"ý=ކê;nIDB83LŽžTÏ€qCV$¹Ö+zØøfŸôÞÙlÂ7A€ä_½9‘0›÷¢ …4º,Ç„$¥ß²1dÖˆ‹“®ž'øðß–jrÛ¾¬_;yï]+gˆN£©!aZóšXOÕ’‰Lk¡•ùåw×e=&ê¥=9FÑÙÙÛ´žòÝ+]ÎJ«x9zê¹l=£÷¸ìäœéܸ"ù¡Q‚·´: 5ÍÞŽï r$àRmu4u‚$,;{MÇvœ˜°¶4Ù<2î‹NMNòÁ¹D#kŠ>ÍÛ˜}¹T°í‰w¬yÝÿÒ€cô(Àb¢ ´;‹ù\Ô÷ÍUÈC¿ûÁ|§d“e±z2Äo ÚF/ðhs°^RjÉØÚƒñž½ }§«¾¹Ü Þ;¿é£îc°K³–S›ŒÁý4sÅP<–ð:†v N˜¹•‡-J– ûRݶÝÈÿßÿDÅ\õÀé6BáQ‹Ÿ¹Þ¶K±qÃ[⑹œÔ8µU‹ŸS ¶ËÜòC]‹ðïóijŽ‚åœØBtS-‹ë/ŒŸï2tlûÆ7ø÷ÄÝÛÚgß%#iðäÅßîôÝKÝÞ½{["ÿœ•Ùöý[Š©‚Ø®º½‘®0u?š>s%5ñêË¢ Ì¡›•ón«W±aí”Òö}u®Pãê‚0·Q•õj¨ôÁëõb;m¥ bƒ¶íËÎH°Þ …úªzS…Н#£_ÿƒÖmêrئîJ§®í¥´èTšÉk’cáù•ÐËýÇSäé©0‚Ÿá_ åcS÷gj&£¥½f°2œ&ù>Î\ÔD&wN¦ˆzœÙuñ™s¾ Ä3”£ÿ²;5½È‡/X(Mê®s]vKÞÅ|UÅYÜî0lH¨í©ŒÖÄÚoâ¦y'‰\t±eT1éK{LÛLµá{ªC‹{®Åµk×Ü’%E”™­»·ë?æÈð2¨ƒ_é.ö}] üfmmלê ±éç`|w?µ›½~ÆZŠq–wÖ2?ÚhAòÐFÊR?1ÊÀá×/¢÷"q²Åio½7…[ŸHœ½uŽàRúdÏg<ÁV¾+bDS}mÆtá„?A!»È—Ô¿Çìü‚Etp¶ŠÔ ùzb,m÷Þ:µŒGñmk"ŽXDìô‚ð«×J3NŒ¾”d…ã÷—“+î»d gí`÷*·Ÿ¨à%Vº§³ôöÑÌÖ’@[Oz¢¦¡Â4r¿ÞËòȼ£•Ýzpù©Pg=x÷ÝÖE¯á­\âq¯£sŒíQØ*…Åà¸{ƒhC-3Þú¢§ÿ@ÌÛd^¾åÆ}^Úd§Ì“£þù£†Û*7=3v!aÚþ\ פ±g×2à/@ò`Nú0V”²Çà%ßÑ]«Ù£t–>"ÊëÁÙ5¦ð"@Ô)|gËg yàZíËåMGTLûhI½4zìï+àY²# d|VV¿_C&>n]-­˜°XR`øJEœP)µ¨ÙÙ““íµ=7àk ToÒÔòCoäõåÇ]ŸÂ"œ.ÛϾyATñÚà ÌnÛ+Рżä}!~±o(M4‹,)Ô÷{îç;¡{ñ£F¦äþ%í‰Ü÷ŸØf*DžòVëñÚŽwºåw±—¬Tî÷¨ZÄ5H‡=ϼÈ÷³^bß+Í£ŠÛgí¬³W}Ó<’¡§Óº© R'¿gâTz²ÔFs?®—*øšŠöbígy¨W[9î¾ìé§E…¹¦‰/ñÃTÆ“•´Îz?©·j­i`@ÃÌÏRýO7Š.>ƒþÀœ'ä‘yŸ¬ÌØ û*ûâÐN÷…æ áW“΃•nJ²ì¤tÆFæåa”Æ­>­y_0­2ÇÐT ‚¸/n'WŸi伉T0Y×]Pá¿oÝOíÌ éŸÂ÷äÜZ›Vù¸¾i R¼u{Ü®z0œüPÁ3fô†ÿ^¶¾':tQôù„ÐëŠ#;×¶ÑfDÿY®}Xaÿxå`ÕŒJnɵž/UXÞDÛYBg²g¶™kÓ`¦õƒú¸{û÷”1|晇*Þ1–Í2Ô¤bϵûÖ>CïÊ +gþi6eŽ@h•œ[tcõ8T™nà;øŒà3ÉnýØ£²~êí¢Õ}S,äv~ZåjÇn%_™¤Õfcš;œ8k9œS&÷Ç‘x?Z—,»7å;K#@ƒy1.üëðY¡Õô#;àã†6¦Z¶gžl.€ìÁåj£˜*иxzòfk0g6ôƒ¹”ÙZð{´Ž2ŽüÁú•7}°ªoC»K‘R£Ž„ßúÜz]Ö'ëi—´û÷‰Œòt`¦Ë¨sDÒ’Û:ë}þ§w-BåËH+Ç#¥Qáç–? “k ù®BH¼žyoUOa<§„âcŠŒÄÅ*ÊK„þ»ýŒÝôÉS‡ aK3úî´üþðÑxõÙW¸¥ìú^9 ÎðDÇ øT¾kŒã UÆì×çah²þCÇ;ðÎ$¯ï¼IKuÞ9ÊpÀ­JšNT»FËÒ§ÕùÞ½²KC*Ð[Hö²éXp™ë{|!7ò\ÇÕ¹#Û¯É{?šß^H’±ù ®ÇÇ ·È‚ñ®¯i‘£ àEÅéÑÒ‚ë[F #Ž’ÌßGù¨ ›WZuÙ’y ‘ë9Zßv³ÉàëJtß;yu>ƒF3•”[\GçƒV6VÂöϧÌö2pÈêyÐ& ž­tÊ~VÀ)mÛaQ‚Ξ'\R];µ¦ô‹—ج4ÑgwŸ¹Û$Ùx#òkô+ëeúÉGÙªS…R–L Ä´\äbQ/êÃsÂ1V‹³Ï7Ö´qê·êñæw¹¦dÊóô‘Šiïk6@•Wñuc/¬HB.DH¿õ–á“cÐr‡üÇðÐð`1rEy¹ +aÀh¢¾e÷cƒ).žÜcvYo—Ç‚øÚò¯ë6€ûsÚ^W¡«VÎr#Y+™Øw—Ñ=²Žü˜R$·q·Ž· ®ˆ\sÀõº5ã»#í46»°ŒLA7!4ÿÿß endstream endobj 80 0 obj << /Type /FontDescriptor /FontName /PHAGZT+CMMI7 /Flags 4 /FontBBox [-1 -250 1171 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 81 /XHeight 431 /CharSet (/R/a/beta/i/j/t) /FontFile 79 0 R >> endobj 81 0 obj << /Length1 2674 /Length2 22758 /Length3 0 /Length 24253 /Filter /FlateDecode >> stream xÚŒ÷P\ ׊"Á%¸Kãî.ÁÝÝww· NpînÁ]w‚[ÐàÎíÌÌ7ÉüïUÝ[TA¯mkë9 ‰’*ƒ°™ƒ PÂÁÞ•…‘™ *¯Â `ffcdff…§ P³rµþ#†§Ð:»X9Øóþa ê 4vÉÄŒ]Avòö7[ €…“—…‹—™ÀÊÌÌó?Cg^€˜±»•@ž ã`t§upôr¶²°tÑüï#€Ú”ÀÂÃÃEÿ—;@Øèlejl7vµÚMmª¦V@W¯ÿ„ æ·tuuäebòðð`4¶satp¶ ¡xX¹ZT€.@gw àWÁc;àß•1ÂSÔ,­\þ–«:˜»z; ­•)ÐÞäáfot€ÈªÒrEG ý߯rÐþé €…‘åßpÿxÿ deÿ—³±©©ƒ£±½—•½ÀÜÊP”ctõt¥Û›ý24¶uqù»[Ù›€ þÊÜ !¬ 0øOy.¦ÎVŽ®.Œ.V¶¿JdúÔeq{3Q;; ½« ü¯üĬœ¦ ¶{1ý=Y{{Ÿ€¹•½™ù¯"ÌÜ™Ôí­œÜ€Òbÿ˜€Dð¿e@W333èzšZ2ý ¯æåüKÉòK ªÀÏÇÑÁ`*ègeý÷q1v\Ý€~>*þ‹àYXfV¦® …•=üïè 1Ðüo ¾³•'@—´{,æ_?ÿ~Ò­—™ƒ½­×oó¿æË$!!!%"G÷wÅÿêDD<> ìÌVf˯%ã}ðûo˜ð¿âÿ’*[ý“Ü¥íÍ<×jÞÿêpÿg-¨ÿ9À@» Pÿ^}=ffSÐ/–ÿÏð—Ëÿ¿½ÿåÿmõÿoBn¶¶©©ÿÒÿÿ¨í¬l½þ1­²›+è,ä@ÇaÿM5Ÿ²<ÐÌÊÍîÿj¥]Aç!loaûo­\$¬")2Ø >%…«ƒ‹ž­ü…Ä9Hô©« (Œ¬ÕV*ÑöÍ}µîcK,;¹É€P*üAôÄÚÒf CgREÌê6Ãht×Z6 áA§¹ÈZûF¹u*Á2Ïtý+`IÛò(°¥Çç±Áimdtá6<õËÝHóèvŸf±à€ … ­¸¥nÔê oa*T™ë8D·&P…~Ù=™û Ê8Œß'ø§ÈËV3³7TøÁ)G®ïÏ~•ç ³¨ ¶hú!¯!œ ¯&]©ç縖lâF™áÔyâ=ïó¾¤Ræ«6Ά”1oTb1Š•zË%lq,þ"/d—–ìÛ]¨‰Ò ö²¾çÉg<Õ¨To‹ãÈW&Ù9Žf?h  ëç¹1;غ)/1ÀPdî­@’vŒ4kü|ÁÁWU»ûLæ½Ö·0=¾Mòuj›ÜǶR¯˜½¿ÀÇ“iOI²°˜~¹þŽ:&êÅ<ªå»º‡pÃ2AmÆì pýxxìL3†Àı  ”*ó»\!Æë|b¶õ–w–ÐñÇ–wU.zuß1®ùÃÊßéukƒ“¯‹ Fªÿ€›Ü{âLΙö”ÌS¶*ÇOÂݱª¦˜OÊ&Y˜‚—cîÕÍNG½Ú.  !‰1Ó †5=@†Û柣®û˜òS]‰M<$”·• uãeRYæm5#ÔR¨Ì˜ŒkeŸtg-ºûp®ã$ÍëÝõ œsœFÒIÙpßÝB&e©MkË2®Êâü¡é¡Ç–•õ1ŽÕ‘Ìî€'"ôZ¡FŽ’¥ ïcUdžÑH­â”V"'·}<|¨haHÄÞÐíÆ9šŽDß áÁâÊŽ-P²RX$™T{GÜÊŒá¦Ñ»9øËW°öãxwKH˘å¤Mo£-BèE*Ÿzåéš(YìÏ—MÂ2¥ÁùúívSïÜ"ǵ’R°tû÷þ«G{hµ#ŽÄ½vò\3=Ñ–Œ‚‰eÅ›ùoB…š¬žÄÜN$rfÓUÛøGþ;,L1Ã"ï„j¯NH˜z´ó¼ïÉOî'o‡)ú+»¦F0=6¿o²ê;”õ­ª Ÿ¥-¿¾u;ȱ;•€ÆæmdA†]L1ƒ-öâ¼ î^þ ”@* Å‘³çP½ð ,e8š©©Î–ô¾+áùón˜*a‡zì¹]úÉRá¡aÞgG €ü‰RÎÝtÎʪ±¨›r˜Tþø‡]¿P³æ\x%NA¥Ýª óÒ'(Ú£ô#˜þ¼ÄõD&óë¾,Û %qÖ<^" aU9¦=þ2¬Sô2ÑláüõÛ,[¾*Ÿ¯ÝÔd_µ ì% Ha£Á>…rû¨,:$ öô«aSïjžC˜¿Èú:È#¢ÏϤj¢®¿Äw yíȼr–çÖtÜ»fà )²å1eIü$Njbó""KÛ6}+/¿0)9 ó¼¦ iWñúÅû[ŒD4šmÙ}9i¯Œ@ðÍ¢†ÈGM¿} š¸7«ªÃ+V¸ôygAß‹ÏTаZ° ;Ú$b‡ Ë:”²:äÞLzÞ½)Â1ÔÐÒˆDź¼RέFRSz½vɽ‡ŽÒ'8¾,ã…8X&>´$ºaýŒ 1¢³õÁƒ½*ßÎÇ ™cs²áI­+»OyãªcÖäŒc ꔳÑ–í Å¢U”§2q çóY+ƒ ªTfÃ:ÐÐà[ÌkœAFB«RdTÌÞ°¢oçæ.Ÿ' 9î ³Èy§÷nCˆTbãAVâN-ÏäñS|§FÐ[j[‹ªž¬e“éÊØ5’–ƒ²¹”¹¯z›Ï÷ÆìÊ,Ø5cþ€rž-'–â±B@‚‹ÍÉg³öÈÞñ=°0•ùû¼órÙÞ¸úPÏËœ¢ ?—…¸+ˆuFËKrñKËY½P& /ZàoÚÛrzGÈÀ}”Pl¼à—…Û=R/Pü ,Œ3êžð}Úö3å~ãöîBÕÒ˜æòäne÷gæ YÀ .f:“œÕÒ´œI6^¯(<÷P¿·°Tá\8¼ã…n®gëÖš+‹°[eY¢£ð7F]ö|ÕEV$:S€kiÁ©Ç’@l¬n a€4„ȧœŽËQ¯ÀÃM{KÞ`C¼j|õ  Çpµ5E²ñvóü0šHѶ}ê”Åh•ÛñÒît{‰ôáR€ïœ>À{¤aŠÞ¡­z=×r˜ù“K0êü0.š&‹„ç·ÓÙƒÔu€Å‹]|l£§†×uã2êT©>™·?Nj±£ûERax|ÚÍâ@ £³Ï{rLûmÑJQ–‡~×23!²Ûn°I…ˆÙhÙðܾü¶AÔЋ1 —QEà|›…f/½'à •(Oë´íQüƒEyÉÛè¡èe.ÝE<ü’‘DÅÂ4?[ntŒôS`*'NH:(uôoM¡†—ÅuN±±µß*ñ,ðëĺðD€SmW!;/kÞó*$»Ì\%5 A›‡ fj®…Q²²{ •Úz#ì‘ϲjž¡×y¬… +ò˜¼æï’*å ŽköÑJ é¯1y•Å(×ÂEŽ$é)'÷âKЖ­Z©aýŒ=0PܘæË…„«R¨Õ+|‘åúX K§’6¬ë\˜ñ4¬}=€~¢íôk¯]$@,Œ¾]ÔŽPz¸‚ŸWÿ||ùs>#Ò=÷V*†ª®Q\GYhâ­ôÒ†+EþÎkJf·n W?eçS®å„}b-î¡6ÕìŠqo“ZßO*-ç€Ùõ4&{CûdH¹<,Xê!øºýܯ“éð• „>²ë+ç6&ß{íøcÉUçëî¨ç·ørhÝ{£Y-ׯ"b@¨"blÛuäYo˜» Å[Ç!_\ýf}ïtã, ýC[åÛFü€’G&ë‚°¥<¿ïFI§Gb”šÃe;óÊZ­äÐRëÅûoÇ\¥ *Ûá†ç—´ ~ -Úc–;§ ^Û¯õÂ"u*>m» +@1È!Ù§D§ B~Ç20 [±ÀHhôÏÆüÈkDT3yR"+ñýœØßÔ³J\ß/t`Û¥ìŽWþ9`†¦;¼)ë¾±ð‚)–F— Ñ õšwÇõL­µÐ ÏòúqjfÉQ¾‰/˜+ÊNJ‡’lÔ¨ZϳQø²ùãœðíwÜ‚\måDYµúãx©ðNñ ýNÓ…A‚;Ñ“Þ,¢ªtÝùJ,}þDÀUÖq¶r™ùåÑÐd[êŸ3ä°D_€#Ê»LvŽ ²\àšÏÀ(_š¾•ÅïÆQR)•:­3Õìn±ê~]ýû}W%Ðê€)’¯)ÚÉÇ?ÀîIfÁ¥agµwKfrpe)L Å«[މ3Þ‰,IëãªB³ÜÈ.g¾ Z"é*‡ËY–i3ìû«:¿xsä•´%Kç&ùˆxÞÄè¿)ÂÖÊâLX[Ÿ¢Æƒ¿ËŒ@Èê i“²ŽøŒ²í‚éŒ칚¿ÇØ+°<9_]÷Í&µjÙ¶Ÿ2¥šŒ9½æGc>µ#áaÔ<Ô,øy[ÚLHUŠ2…ÿª=áô ÐÝŒ=(K"˜@o[£¶ŒmàÒ¸R˜ÄË«}›÷ç F¶)I¾ç9TJ°É7ù—ù÷›Læ~lë)G_‹†¶I%KSP+÷©Ìå]¦`f‰µ4ÕŸýžn›[´ûc g(¬Ç‡H¤:Ï¢¥^aGÆ?Þ7EóDÔM\ÄoÉ´¸ç!×鯒Á“/Á”½]¡µ âHãUÅy&l;ùZÓóS(±' .ݸ¢!#M8À4*üÐÖA¼Ažúâ#´3Xs1يѤ½¶õŠ›¯-„;a•Ñ*iÛÜç€Z’݆§¼ë¥ÞÑcŸ¤ÏÐâÕŸÎÞM8 -Z)Ú@e5Ÿfl;Þ= Vr»y­’;_¤¬]&»Á›û™:õÑqôxù“<¯éÏe=àßu#«ÓW‚wºæÒìYñJ]äv*†õ¯PWƒ %4:_œ&¡±*Ü6ú$y#7ö{‡d‡eHéèQ|T?q_ì#BšôÞ6ÀÙø*ëE¨ ¶ÕÒÄö§JëhC°ÝC&á‹a†-ô–Ðj{AJh5.Èü[ȳM‹ ãQÆõ³;Uà#Õ¸êv¯XÛØ’­×1W"ÖgDíëyÑúÊ»ÃFƒ¦jI7CÉ ˜»Æ%–¢Ç·®L1³/±c[çðìïkY*í# Åü¡éöÌË,x,É JÀõ…Îäï ¦[%eoø8Ê¡ <†ŽÚÞìH;; —°™ ¯k£Z¹Uö®íô]tLO£i;£Š]ßð~Œ]6#‚Q)„\$ »¢"1”ÅÑcÐl}1.+ùb¹õGw¶ØíVu‡G67µ_M¶ÔX‹|ÇÃb$±I1Dw Â3ßi($ßë4uÊk»5 ‡\q™t·i£Ÿ¯%Q7y¼·Øºú·Þ86íXºŽç Þ‰³ýþo™,]¶KÀnü!p#·;!<ß7ÇĘó«‘ éƒËœø§LÙ^SFÆçyhEÃHQºÕQ(FÓcâÙù½x=PÇÆDøˆyÞ{VrÆ¡Øh~Ö£5û#BùQ»~žo÷Î4› `Òví#\>|b¶§EöA®¶Ô)õ¾ŒNE‹hÙç>!vd›¢Î„<“55”Pô¥|>]ëq)üâþµmÐ@ïé=mæü³òèf‰‚‰yÝJ{ç÷ÐlR¸Ø¥bu¸vï©K‹ãÆ;âÜ$r§Òøûе¼ÖZÊ*&!hÛ!†-n^ÙµXõ{ãØK¤ÒÇ?g,\¤ôL:Éê2?©Ÿ\ú#Þ&$Lr Ó \¦IÙÇeC|)©æ"=ô Wágbu}–ººwÙ- |´á‘ÖºJ0Ï/Íœ‚ÜzýöüH‡¾T¤%~\œ‚2Ìøc“¤{²”VfE• ¹{Y›¨–àêÌz‰rzIø@‘®|/²«µ míÝuŠBÞ.9§{*žš6ê{²œ*¹ÔWö‰âÓ}Á °oT7Ç·}÷Øf’róôtûX.˜’/L-¥N }oFnÀ-cÞVÜßëUx‡Š•º !²ÝÑÒ3rä…¬iø5-väÛ#^>¼úo7N4Ädæ|S¿|Ñzë7U,ê5Œ=¨6,<|€`Žó ñ)?!IÉ*Št¦]öf†l"^-·YâöAoïùÖ`6’/ ®Û÷‡ @L¯?IÊm–óUyàyòU–2Û° Ÿ'YËb¶KbÕ1Þ2kÔ“ŠW™x&Ñ<Å×ÓLBgïA½¸žú5­Ðí4[g9=ú¶Y÷(ºûy“|(ô ”%TèV¥Qzµ Ê=ÒR³ãW“ÄÝ‚j¼'B‹gØû ¯0ªZ=k̵ü4m–šóÐAìæ­bÍ–WëÕ h T¡¦ˆÂì=üžé"uZÄ1'EÁ¯ªo´bU €Þ½³7çlíÓzðM‹®'//Ú›F±%ü 3<{bC Õ³}£©´‡"B%…ުϣpJ#è§…î¯Þ<ñŽh>BŒÌñÐJ3ûaÍ4ê‘ú,bž±©/{þqÛ‘È4‡[*»VZ/¥‹ä~ü¤^˜ùàASunõÓi–wÃÌš¬°µz3ÒÆi¡0³Ýʼn¡U(^R’ëã6i¥¯òdÄ^ÙÃ.@çÂÛÅ7,Ø/¿_n®A=ª7мlή½¸W˜íìãü¹*kÿ;ÜøyÝz³æÅÄ'™L½Õz,¢J‚ ,ÓãeœÀ§û·¾Ð_];­Y¦3„÷_¢0«º§ª^pÇdÜ{ée‰}Áá.¾%k|‹Ë„ÿô”¡Ú »ú_½G‹—àMðòŠ )Ý ÅF-܉BÛªˆ*Oø]HO=xlY6iß|f½ÅÚaûÚŽI©æ,ô u-9 ƺâî€3*&q;ÌCĹ²OÛ»¿0œÛ9•OØLZ߈)2ÈžÁÎé­÷ÕöâíØsT¦,;íx,îšf¡ê®Rôx•p™$UH?Vÿêvýäô˜øë⤔Wv5щöŽæCÄš¸|ü‚~ú°Èû­r40ýŸ¬üÊ­{[þ{–›DÛ‡cÇ5ùCdËC>fEŽS¡„`VV?ˆ`yœÇÕ}콿úqªê_¾S2Ü>Á zߨhWVsT.TPÑ-ŽºUt(xÖTä,c4ܬÄ"Ù_H=6À«ÂÞ—E¨Zmæ£p]›kc‚ÚS¥kÑìAÒmAÏ !ÚLH‰™Ì0ÃûKÞ#ˆó}(#N{£:-ÑŽÙ}µcæpwo9 ¶è.Ú,Ŧl¿µ ?¸C?†l©‹%J‰×4f•ãûòr ½ží¡<†øÄÍÝÜÊéÉ軯ßþýàk¡8 ?ž`‰ñÙ¡‹_’Ãb·@yãÆá›QXÙ…ö¥Ë]3¸ãgb¾âƒ¨o–Δðˆ59Ò«Û¬Pf8š­†z;¾6 ß°a¯¥o-U™ümÓ±<˜¼Œ ¹‡êW ã³Ñ,ZX†‚s’DãéæV-×ÝÚv~£nünï¶gLX9³¸ˆ¬­ Ájizmç<ðv[VÆ¥ÖSØËpH}£ä`÷¡$×h\Iî&T¬¦j¡Éò wß…Áͼ¾#Å»9•5Gíúþ.”h×q_¾Þ(ü!ÒLu-–y@Ø€¨ŒZ;ÍLJ0ó¥¢h¬g‡vÿé•Ï ñCpiUá»þ|;ÊëY“ºcE±ú5÷#½-‘ Žžgcp1·[h¶ž­›@ 6 CÔ2g2;ª&V“Ö3™ÐÇ0‡çKNz!È5Yþä kŒslðØ§ ”?ùÒyCí¦ü£]“Â<©³¼—v]cÇ›#¸ Ÿ&Ó”²ÜÞºGxIç8þ€$£\DnÞ„Šn­tÀÃŽ©; L-@ù×ôîzúàE¶Ÿ÷)–¼+ÄïV½6ÖûšàNå ݹ ZEÿ§`ð÷Þ&m –å C¯-ud[CTÄÀ÷x­Z®9 ¶Aò*"Ó©‹ï¡lÞ—–cq<:íl N…‚Ñx22…éæeäuÔ²yŽ8å#D¹Â"&KßLdʇÃö¼ºBzl:Œ™ä.DV85%üa‰ë”k±#Ÿé+WgmjØ^‡Åã©4Cx„‘»ä-h…ñ úS†Ê«”i¾¨…å°\ÄyÂÒ]™2î“*3*C:¿§m.mŽ¢úb¨âAø¤x5 ÊGúK]<Š~´`=S®ÁFÏ1rFÉo;mž¹QSš®˜é€³wò”éš°bøUÅ×(ÒoÞ&kÞ‹”u£Å…‡qî»äôp`zFi‡?,ÝÎÚB4ú[ÃL½îÖŸð<-Ûcâ ±A01ëù9Næ'mñXHí­ÉŸL w"»—ë_ýV<ÇðCÉ_º Ö’"ù%°VÜYMQTq°]$VÔ@iøÍJãûÆ’þ÷úÙ/¨Á›ÝûUn_Í÷tÅ7Am¾"åX—z¢»J“^íPšk0)ÄWFm>£|%p¼AO8б]*1!·Έi*<±` QÍ[Ñ ÷Cû¨Ç›ãÍ:3”r`ÄÛh6èRøÚÕÃì®2¡ó¨|þ€Å#JJÁÌÒXò®°€å X¶^³Ÿ14XaÊo•B%OyKqÎËtø$D÷½ú÷Åfð’>!œ úÝ•…ÁTFÌeWÄD÷¬íåÉt¿½òuPKC0(©Ýì/O ÿÔ–v #=_÷Ä=O1 >õ¿—Ä8Ôb“[ñÓ¡¸Ar£o(‰Bö–†ý“‘‹ÙœRX¼cÃ(¡“ /X¾¥ ¦¬Î‰'j ídº‹\ßO³àúpð¶L*ÂÔ Ý•ó<ÜoõeŠ!™fâ±G‚ Ó‡þ©Ãuè<³¾7ôZ©aó)æ gñÀì?lgktxeX'†…ÏD,©1Ó¿ÆÛ¶¡q•HäÍ$KZEi {,uOiT¸ô'õ´}™ó“8ÝW“rÇäzkC³Ñ‚œsŒÛ?Ûí=ö×öä/˜r[ó›÷mbbr®GË‹& 6W-%ùñò÷è[ªPc|´XµŸå$eh4…ýhßl¢·¾†¤­€(ª¥±ÄñS¤YiRqÄŽQ7܆'dº¦T'ôóØða¢VšRÈ[9ü¡ÊtCää;ãÐv(¸¶{¯ eÜ.úâfÉ&0Î_`òVérÑ?¯‘¨x|Ž2d`L³vSä69¾øŽ†¿'Õc  :Z#ì2žÑˆ¶LB@jÖ2X@T™À_Æ¿å„á|jØ áîR™Pšp¤ÞA‘é‚€pk˜¨cäƒhøÂèlë4©Š‹¸³P‹¦0C‡,§{ßܦCØÍ| ûž¬ÙMÆ•S)hLV³i ££ÈŸ4‘(òQ[޲߼§ãÛRE|$l,{LTm`pZ@e yFÕÜÃÄ!ù·Ý&´9´ 0{;‘Kµ䋆³~}{ŸG ><5ãÍÞc$6…u-<iF‰‘Ž?ÃúñÓò¡"’aR?cÅ@„O(_Ú‰™Zìt!‡è§Ó@!(SQ›ªÔO¼%ž%× Kè„2¢J®Û14ÆÂjç $v³‡DFj0ª¸“ëHöÉàtÐ,ç±Ä™úLŸd"º,…š0T ÛOý´Éø"»®vâR£í~¸v]¤s¡1ˆÂü!¨ù‡Åué`±SÛ¹ž¬nX8\„jª 4ŸÞv0ꃳ1–¡½ 0ÿZm\‚¼´8@€ÙVKgUîÓ[ö´bç-½A‚.WyKvÍ€¦ •¯D¥X’n[Ú'vcŸà+«ñÉ_rIIպׄ:¢Ò7«XmìâY5¶>M3 ü1Qs£Øª¦É¤\5X!5èMºÂ³°*”ü¢DÃôJæϱÿÄÂϰU…é“kkkÈkz@•…ö“Ñ9¢L¿÷E¢n¾„¸«}…|È;]U7ÚaärœŠÅ{—û›ßnQ5·Ð2"Œ:R*Èú»ÏUòÏ9Kj¾;!¢¢3jcãØ=SÚØÍ¢¸d–1O½¦/%/1Ù‰eÇòrD¤y4áQËÞS!QÁK¯ÚOï´Î¹Þ.4bâ`†L]m‹äg„¸JÑ(Òk·ü'*Âé)ŽU†÷2]–}+ËÚ¬'|ïÎÓSzÚŽXø)³±GʾÙÀFraEÜÏk_~¬šÒ8!ܦõ_ñ[Zŧ0¦Î¼€÷¼jñ¡¡¿ˆÔê†Z\ Ì÷5ôžI !ËüšžåŒ@W;L®UÁÑ!#™Lu묰ø fd-ÖJ«Â6Ù3lpv,½¤`{¨õèè^€þ2N_Aã{rQt!ƒ†w¤¬Ò=œoÿÝ«+IùëB† üYfNVç½Á }ßpkæ'â!´ZS·—ðÂI­ù¬¿e6ÚÕV®~§h>§?Ó/óÌ» ?Û«/Ú}ûÝ –·˜¥Xë8¾&¸)Å4ÕY—»]x|Ž5MXåÉ-Úâñc¼NMÎl¾‘¸˜là‚ì§Þ!¥wàËfõ»-‰µé}ê‚Iåûe“´¹+Ñïo{ú4€c•›®ûœÞùXVÀ=Ï´ÿHöW%¡¥N°!*gKófƒ[>‹ ½Òà¦V{Ò¦ãËùî1âéDw—Ä?1#Ÿ*®} ÷ 'èÎS ›ÙªøÖÿŽò1Ø¡UÔ0®ô“hNºBI$Cï`ùòeLqòg`OŸ­s™Ñ´›MÁÁC|â»+E¼(øYYmÀ<9Ý;UzÏVÓd¨@…ûE~»³>‹ÀƒïnÐÁ4篇ݡ‰{­=ò‹N¥5¡+°Y$_'zt Xä‘Ï"½‰)¡…ójìôL×âFQö¦ °üƒŒaL=¯=w ^Á™¿Et ÒOêz{ýï¿ \⋜SämRy“?ôC¢?pB5fiÎàÔøí÷·.Bö¼»¢©:ÑP»zÐ|™0©* €=Ë-ø~r@gÜíÀÍ;úa™a;Š_7¬X݃CìÍpãüÀ:ýZ¡°!>`k:­6ÆŒ ü↧ÀBûpigL@«ÈÓ ³vëÁÃ]f™R4ó¦Þ†G#½31ƒ–¨G‰ ƒ×I]!%‹(ØîköɆ÷yöc[bQ‘ý¸¶½ŸêFTA}asrGÝÖl¾z“›ý:GN”ZÈçÑ ZÛBa(üðÞÎü¸`“é÷¡¾ë¸s†üR:µÆæ5Ï–4Jè6elêˆÆ œ_ÉÞyžTÝR½=$>c•¥ôF¨¹æ7°éíqÎNDÞò¸Û¡…öAžH´O>ÚÎ4K=*™¨¤šòEÙ•…tÔäa7˜Fªÿ´®Ðáž#Ô€2Ü’û`òߨ<ü'?£Æk¾Ê‰üYU3x•óMÓ1 Ëðãqã:û¨Ø|$ †Øà‚¶ÚÄ'Ä€ ù¬bp™kÒD„çø¼84ÄsÕüøKpxYÌz Yä EÍô/¸$!9ïÐó²ª%) $K?æH€AÚ;¯1~cVºÏ(÷#Þ+z*ïÕ ÙƒâÞf |Ã@GªR#Õ¬(Ë }æÕ¼ZVµÆ¶Z°h8å—wýs-f™Œ¯É©u–dúúZ¢Ãù˜wŠêJõ!e#v‚°y¢HFJõlâ@µÙ¬V©à-¼·¦¸Aåµr“†:Z4¯Ägáž÷‹•Y©‡–JÇ¡¢øoÒ”†nIÒ33ëÜÀ9 –Ÿ8ït`lŒÖšˆK®b†ÃvÜò5É›»ß÷)•õ,ÖÀ°îGß~"&~€Ãs‹Çªa¸Üì/V+°ìÄzíñï½6QBŽiëgÖŠ 9ih‡€²FÁ;rc{ïïêz6×ì`¥ÁÏÀ{fmYÛ†1Þ&S‰Eô NÉÃIv®µ½zØô/ÔïtÞ{E;!çŸÐZnµk0‹“Zþ”#³ûLDQ«ë™hE¨/¾,¥!íÜ €r‡ýø¹¤âÙ,lúç›::,XCÞÈU¥+‰‡ ÷Ò‡ñ’ÐÍ\Ì?äã¹&OØ8¦ §§³c½z´ íìfa¢'÷h ñelйÐa䎊«{gŽ \`´DÀp ÆG‡œÔJäõÖÝW®|X5*E'T×h$DøIûÏGÝÒæc¸\—‘^Û”5ÎôXŒ¬Â•û¼?t&öO¿ª³RóJ1ûvÝÛ .] æ=SWÉÁf2»¦'QâÏú‹%-¸I ¬á >]£§Næ<è¨Vï[Éå k`AGi› …º¤—ljN}w$Ö^0ÔЯôó \a¼Å[ól¡R–õÆYê 7,a”F­×æH Lx LŒ ߉‡°(hÙ”v¦‚÷˱0Ìß©ݹ³jM‘VÙ€ÿ̽Àq•NUB‡˜pïÚuÞ3‚¿Þs€òrùèñ£mçÎZÆg}d.Üæ›­â|©÷i“5EðÐñçÌRß·+¸¸+sÙgÉ/9ãdåÚn^×Êçâo/&üò‘³ê0 NÓZVOîû  m(‡ôój$,ævû®»6‡ÌEîÎkh‘|±™TnW‚µå-ï">U$ƒÑ|bW*s{UmöQÎÁi†Ÿ>‡³´",X°ăÙ/R~".ÊZd‚’Ö¯ âgXq¶i“EO…óR•œÔRBÉ€51}ϯy´„®ÏF/ØHÄŠq+{šö–ä^2Òj£å«=²êöùJO½%eF`ÁAôMÈ1SÈ1áÔuÌ3)ˆ±ÇC®qžÿku8ï›/Ñn¼î…”•œ[ƒ÷:ä{]¤,€ÜBoŒ¬.Ϥ]R­níi{fîâòÚH¤89üy»îŠap WhÕyQ ¦+7¼Í9Ãw÷¶CŽìv¡ãïÉÑT,ƒ7v{êZ– dþ(ßv#jØ$«18Q ¿ú0l†÷&‘à+½P!«¬EŒuôXózä/Àä?ÏVöÊæ7ºj/œ0:DJ·†Z)NfžÇÒšRt$‰åû1ÐG3£)wøÆ]%*ÌÓA=§?8 æ†K¨Öä ,ØÇâ5+†…mòîJ)ìc¿*m»?Å;þ>z¯šB Oü2t¿|ß\Ÿ•|¨Œ‚ÏŽN›pD‡DX†µ€øÕGq9£,}¼Ö+ýj¬EîÔ³ªéÇLVìÂZaмÞF;Y‹ðA ?ºžFoØ«¼ ¿VúvŒX%ÒÒLfá¥Rª  ¯Þë“ôé”Bi³¼Ì)2|ª™ûBA0–e¢¨­D}-²²‹©…7 ‹såã¡ãŠÏíâÏQÂê?KyC¿ Ovš\ù@âJïšÔ”ç oX`š<œŒ!2ä†oNË‚#ˆiÁÞ OÁ^?bybnRòyÂb’éºfµ/ ÒÓ9_¶Dz$"ô/v¢ •K°v}zÞhåÇ ¥çldªê<>¿gÜì úz á³ÑÜòˆó]I§@éI‚!;¦|tÛeêçM¼ójS¶èi ”|³âŽEO§ B×â¸=YbŠt}ü'YÌêõõ+6<[mïÄ7‰ã""ÕZ”Ù<¹§šD'°ú/’L뛩Ć©ƒÏÅjƒåxÓ¡”átέdŽGYíÕC†D6{\9"DsýHüB ïˆÛäbãt5ÌŠX¸ÄYH›¿[¨6ª xƒ¡m8U¼ ´¯¯;,þ¤Z…É¡¾˜ÖÀÙçîz²µS­ÉäÝBÞý#eñ„ÏŽ(n,ý2§7´ÑºM^:ñ‹Ö½àrñwž·\uMøötG –“{» -¹¯äùÛ‰I¶h'ÜìÉ.Ág ®ŒÒáœðøk¾A†à>úH;ˆp‡¸ïkCÙjˆo„pbŽÁ²"›ëJ=Ü!—Þ,Dÿ˜ã2ÓÝ#_€Ï•¾ÖM¼lOfÝWw„© :½¿§¬þ" ¶¸IqHt“ñÇ{á@Å/5«™_ó‘Ú=qB­@. íÖ3 xÖ”‹;›=:õŒ‚Þ`¡òhHE·8÷7âR‰É›åc½k‰T4cO‚aØȦ26ŒšÃîh±`²HÔb=ExIŠØÏð¥,îcçœõòªw(g„épbÇÓ ¦Á†…¸‰f;¡‘TïñPeâ¼&“žÂÆ/Ûãr«n3ÑJRGÉâÉ}NÑ?u©GÁ›Ëºñ7ò4A¾ÚÝÆ´#R&Û±/“ÂîýDÊ¢27[Èi' K Ãÿ8¡4vÒbìÙ<ºò¯‡€Ú#øCS›‰síGám3"dó.¡êaz £õ( /{_”ÿ·ÂöRúè Ë鴛ʉCü©÷ŸFÏëÚ'ç2¼cØ òL¦¶òREŠT9–uf:ˆì^ßA…ž•Óy̺£†¾jRõê:1N¤C$÷©G#ZS‘&Bºí}ÈBy¨$'(ʘ¨ d*’‡ò(±®R6R·ß ‡­)ŸO…Äoò}Pœ./ñ ö€e)ŽËg©úˆœÝpÏqŒJ¢\/=A;Žúè¥è`BC²s8<5LݧJ÷´ÌK‹7lljK®À…ƺõp€÷`žÖÑ5² \•Ç…ôïñˆvVû¨É磚8Ÿô4´Ãçç+¢{¤Á¾˜p ¹¡î|‰¦}Ÿ¼[[ÙŒFüµj¸Î;d¥>ত«°…A<äÔzf x^ùùVÇÙ‚bÇŒOqN3)g©¼×¯²ë[1rXkèÙÎ7fSŽER}—ŒûÂÙn–ÊòúBÔjBèFmë4éÐr|oÔm¬®¥"ø%YÙM‘æxÒÀ4véX&$R(?~ë¾§C²NÌR– ê÷†º-—1”ìk†aË,²¨•Œ>u‡NQ »GÆ]zYcg•'E?hÔ $Û¶‹9{ p©~Zr|±--†0:”ø¯k¿ƒþ¬U†)x—c¨Øg;kCõª(ƒ[‰[™È„ŽCå|î0A]]­J:#üƒ0kpr‡è“B‚®]¥Ä"ýÙIIˆqë-?‡Fëp¦(‡œøV$äZ Ò «bÕ‘Ò].ÒZ Z«èÕ"Ú ¿µ¢Ó/eš·™ºR½×èîyj9*ÏÉy¢G¡ap;ÉÓuä:§ƒ0?ì;²ë;Ë;þcH{©KñŠ$ŃtŒ2§ÔsNà‘¼ÚXR­Q ÓÚOÇ…Ëý ùB &Â’ —±XK~ö¯H=~ôÚâú¡ƒEÿdŒÅ B5SA`È)ò$)) •þçcÈY¢¬Å_‘™8%Z3½U+¹Àkz"À¡K»kô„.Š(nÔõbÕòôø{ïy¥ãƒJÉ™®WUƒ&§P_& Ìk ©ÜÔÁjý-âTð(ªoÞ»ë‰I$߀ênVæÒG€|•GÛʰ £CCŽ>B½²ý¨/âsù… „—)+aó{ï]K ˆ&`ŒA¸ëKZ(”úš¤ËœÌæ.´]òM0®øtÎ6× ¾ˆÔª“£ËVR|ÃâLMë®þLO•¯±-M†m*Œ-½Wc®še÷·çjS%ÔïŽä4d”x¿.»-‚"vc)µf¦þ«°¢4¦m7ôö1‰± Ivª‹þ_¶€çtuFE¼D…²÷ÿá:ˆÃd>ÅT…’)ᨶÞÒà±xk#×Äœ©> ›?ƪ¶E1Ûä¢)hk§N%häe&Ë5Y‹¼"IÈîz˜GæHLé÷~û!Ó<ãz¢`€7gº²p'íz®‹x¥U4ùÚ(kÂSÎ9³­=ª¨-˜j³îà­•@.ºQ|Mñé=É˹Cq÷‘Ë/á³ ¶ñ‰9뤮_/ÆÕp·7G´ë21À{&¿ÔÌÕÏLŒ&wn×@×Ì!ŸAT2OSw˜4>nöþµX=AúÙé¶*â­„`È~¨éÐùLE¢¤L ¯Þ+Ëm€+žÆQ’ø„\}©ãÀÄrÀ† N9«Ø^ØY“õ´µ+šüxã›háÁ¢¸(›¶ú_×Xa6=l†xX5Ð_™†ÔŸ{YwÝ9æ½O2=Àé]Çåڠ½v,‰I„;Þy~öga®Š˜º©ê`Tº‘4íâ°.g`j~è¦~8m#Ç ;ðh}Eq@ ÀÛ5$„u³´§È]ðbP·`u]ó¬lKM7•' •ªü.àºsº`­s¶vÜ µ8öÖÞ¯,§X¨ÈÜ(ÔP¢6pQ(¼>‰Íž/€Ý`À4&¥Ž—ê;!u-„¤ÚÆdaï7Ùý¿?4¯ßØnptõßýɳÉå=øšu&¢IäE¶’ÂE%ÐplaZ,HúøKaULoÏŸ½)ßdóº©êÈ2p Á_ ²†â°ž”=‡3³ `敞¤?CkÂf8˜sþËÃç‹Ø`“ÝØWj9­r×HÈ…zÕ»ægš¥ÐC:„»ŽÜ$)du(O ![#¦r5Rô ›jFp™Eû`Ь³Y ITKjþf¿-–¥Êð“•áò„: %‹VVÖjX{´¬àƒ » Gi\‹‡¤¸(ˆÆBq^[:à×]¢FD®ÚÒåDʱÄÇó¸o+š©Žk&L3+}ï÷…BSâ:Äh,ïVLâáMóïE*–ùйñYøÕB뀭®Ÿ–5oëA×Á•¾óC]¹Ú3‡úÓ€üK˜S^p¦;þÿ Y€û®‹—»]3o•¶ ìO'¢­5iz l¨4Ó3…²ÒÿG|CBñ€f-4‰ÞiðU>5M»A¯~›PÑö+ìWÿÃIôëË^A(™ÄÁpª(v ©noz!ÄY̘«Þ¢@,+t‰»µè¹5ïÄâþÐëF*¢=þk¨vI8`'Î(ôk3Ñæ|ÀîµnÝ\ÄN»ÇÃÚ’‹Ë`þiw°L½Ñ…óÔUÈ;zFÞ]Áñ¤Û gÂÓšqBòˆ2ÃÂÞÞÊE"w abI»@µÇe VM-Faô'Zjþ™,ž2£þºBWœò&K¨¤ ã{.åíVÅžÎ4å’4Äúµ%Û&„Ž¢ÝVô"»Ÿ+ã:¼™hŒz |r1JÔkñ:á5å}SÈ$bSÖ«ì!ŠDÞ‘ÿÝ™y6]ïcFIhãqþÏä}ÔÉhd L6$HîªAºlŠ#ŠvÊ^ @˜nѪbú[âà§§IoÍÑ<ô…³Êàà$Ùèôˆ]Hú:UšOÓ=Aa._o{5Ù¹–—'¿†|Fûb^çå{¾tì85ìzBdІwÃÃÈB9²ç~m*“³÷F±#íˆjô£Ô¯ÊáGßbéÛW Htµnµ°¯ƒ™£Ì´×#±bJ [Ækì߀72cGN$kG1ïsàÍèLoBÂ~9ÑÛÅßÕ¢C|p¬Î‘g=%ßN¨Kh÷¿’Ì^1ƒ¯¾£@ßwB,ðóaNêSqÖ ú`_Žxt®ÿ~ Z¿+çò]o‘UÞ-〾•Fm1›a¤eÏ)å×0Ö )¾ÉC»n_ØDú`J®ßf5o¡±¿"w+Ó£RמD±“ =Qõ®º8¶†×ó‘Í‘¶Þ ï{>žÌ²QÌfEÐ~¿WÛÇO»ù1 ež\¨´ÆÅº*SÊvýâ£12—ÄDwèá´¯ñõDœ!i1X$,ÃX|NðýÏò\²‹™Ôû7 fè±Gh¼³6}ÍÍ3pnh ‡,6„­÷æøÏB nü$6ÇæÇ‚2fõ{*{†ÒãØT:\7×ú”»š ÚaÕÿÚ§ˆ“ýë0⦞ðYuL‚ Xá¶*l°jð±^ûÏv‚—Þ-•àÕè™ØÊïåè¸Æh ±«ÉYéREñð:?\\ ÛÏ}6ý©Ù‰ÀGóÒLäÅë9$±vb‹«lº¿@ò˜´Õ[˜_.$ÝípUòþ…?÷4á=µBÂ`^~ÿ¶ü;=#¢‘GëÓ£.‰À9µk IpúP*æ6‹j‰ÔL`eg_?O¤ë]A ÙÄ ÉO ^û’/ø5^$ʪ+MÛ’ N ‰n+%šKx´\JÎ&ÕZ>ï´©IŸ@HJÄV²Ï'„Á)®õÕ0áï#€/RÚ2ã;©£ßõ»Yý÷s…¶>Z¯~Aå2ÝZŽhM:L¼éY*Ù˜q'ʹÂó\+ÎþßÜd |ý2^q=™;ß*ò"qƒË¸Báã]îyžÅç˜ÈZý¥3.Î"—ºÏ%Ú¤<½nK[áu­Ôg=³„.Óž\@ °D킹ÆÖ˜äû2ñFx™ïðIihŒ™ÆÃJ ‹…Q?Þòs2„ Àó‡ë(ü‡¤â¿5Õ?0Ĭ–§,«mæÝÊ#«NÂÏ¿€È8}¸Ì;!»\3[Ã%¸˜.nMœBˆq €MPõgf\ÖÍéMRš%Eº{º¶ÿû4Ý(M­GóDD´;m w÷I:ÚP æ=¹Á ÎÆ^Å¢1²8Sk¼¬27Æð.É Prèß(Ɇ4²Dm™ždGyòreÙݹð$_Y6â4½ú¡‡ŠCt9@€CŒ à³AE==:Ò$ïu:‡X ÜÙŒ%z, ›…ÿq±ÐδÐm {)‹VØ/}“È¡±íÊ>­s~^Þ;ë½i˜xÓ\£.`NÉj2ÛÞšcW²1'ÑmfPNáîËV%Ýûû»ï») X=Cn£^ò^LºYæËh‡¤½?(¿{BÅ7ö¶ŒŽ¯„á­ã£ßéåŽév«*÷°L齦™-Ó²¹æò׿ÿçï…êª[üñ#Íø{vE·.¨îȪ¥A¹ƒŒµFa„êµ ÜÔy™a!’p´âÛe¤R”ݡֻgs-!dRj>bÖ釛a%“uÝ íö&aï¾w´*æ'óÎL²×·(þªGMg§x*ï¡¥ ^«F¶-ðê<ü08œdÌüÌ#½—§Ñé_á(ôƒZ6Öàl°Š[ª¢d\úØ …üJ¾d¸,øäÄ1¤¶Ã…jÖosåáaøÇ’Û~%X€s—•ôõ IºJ}QÝ÷ÏùVAV¤Æ‚â›J-«ˆh³ j´í`¹É€ÞVŒ˜gÏá2`NX*'„Øé»6‘›ø1W¼ñ®…Qzb…¯Ýp¯:¤%ŠË±ÀØi¯A.3Ú a«Péôi wÐÆI5’—ä@Î RD“OÒp%R®yzhE¥ÀÌBÇ * ;/ öÛ”¦ÙÊËKôZœ Q?¯Ü¹NÏò6<ˆ×A-n¹°2,äöXÑèE°õ¯rC÷Ÿy-ç÷áÃ'Võ º3Í۾Ȅ7•ê6NZGÞ,2%únžSe(fëäW\]'€LòÂÂ_a-†g)» 3•ó ·õŠéíº•L¤g›Û&'©Š&·¤,¬DqhWŒÅï'Kæ­×ïWCôN>LUÉ0Ì>·SÂxEFTã«z£‰Âz-¬ÅB4‹*¤W1ÚªoNKøòÖõVTqVLÀ/tÿ[X9=®{À½à@¥zZAúªË|5rr8ÙgêZðÙ@L M`n”GårnŒÖÖ*D‡÷5˜µ÷ªÒXv`jÍ®+ÒÝãòâ§g™÷ê‹q–&bޝfZ#ÊùÂ8zv²×‹¸Îù5ŽFºÐʨsQ;$¹ã“ñ!W%<‘« 2’î{î*ÄÍF ù máæàÜžéò:yUË@ö˜Gã}­\ Q%kc…ÎÛÒÕ :‘¿j!Y9LǓΜ¸ÅMýW°úU郒V:'’Ѓ§Ps8ï ÊÌÖ©ùu7ï¬)Ì$¼¥G"žMò xZoFç«¿†&¤jð3YZ×ܹZèÎÌ%!bYM¿3oÌ2„wž,½Õd-¾¦‘6IÌתå'¡Æ4íƒI…Þ$žKrO`súÚðMµÕu&ÎÏ,Ð^¹Ù'aA¸ðR1=ù¿-ìmh³’ßlt.¶ðv¥Ç›ÞçvvBl5·KbîenÉNë»™›ÙøÖU²Ø«2øAB ±q”9Ôí¼¨3NÖ`BŠªÊ[gEÀïî’ƒ>“Ê­ç´ 6ñ’¼mýÕíx KUáÙ#"RÐwÛ-røªqvŽÏQ1¤ò@)hâmÖòr‡MmÈsZÀ<Ñ íxœŸƒ“BèÞ[ m ï·o^{ÜÕU¹»*Fï´1”ùßZÕ}´9öÉxYdYCƒ¸­¦QÔ¸=dh–¹‹oaÎWó?Ä´0Kjæü’zÛûYÖ(ñ`~ŠÏÎ:â×[àîhe{a*Çô]¨«Å.±Fº£æ¨à¶´˜JGuy‹yö¬ƒ÷«hŠåu¢ ÂœÏ™)275:e/ÿÇïÕPKodžG¿&Þ×öª8ùHkˆÓZOU‹Ë¦Ÿ´šEÊcA³„©u þUæ‰NÚ"Ô9e»ý˜ ÊQKqNºt¿:-]ó&Ž¡Æ›2™qÜ|`µ!Ù°Z¢1Zòa÷1ÂSù$“¥†s£ôå£û°(:Á§jÄ“\Dc¤ÀPD¬€E,Gö;½¢*¬ra„æÈ[ïäêý¡Üp• vÑ Q–Þ^㵺ms˜µKGÓ ö“qDb„‰7¨®Î´…ÚÓ qR¨–kØÅ ÄÛê£SˆÈà1Ùk•“LŒo·˜ë@SÍN¦÷%LãÁèžxŽ™]ä{C¡CnùI3z%8”AHꪔ—.ž4Äǃ‚j'õL°V7j»¬òË€óe—ÿ1¡•yåhG€0ÙM y""?CÀ‚!ˆð£‡o¡¼€GŽþÙzÃjR(¤ˆg!žni3™ûž nÐŽ6å7›—RG-‚7þ¤Ê"bwUv¶à  r î¿_Z€¯ „*¬é€qû%¹‘O·yæ#ŒõËs©L¯˜¥ôªú]d‰µ¼£*8+T@*|q©÷Iv8 hRèÕ¯ YD¢„/§»…bÏP[î7[@Y1Î÷H4Ü4ÈzŒ‡ki9ec@¯µƒbÔ9¢nçßá«8RÔ|ÄÏ“’€¼†hÄ"®°¤ª_y»¯ÄÅèPܲ~i2«²».½ÒEáþ‘TÞî·Êc£ÞÊ—U–ÿ®’hÓ)㦖@Â11vtƒpÚöØ’)òái¥u20Ô<åœ+ôo\­!” è¢{\Æ^ HÙ#PH¶]þæÅ KÛ®%0â›Êá{Œ˜+ƒ•±T^úbç¤Tè‡$°/œŸ,fÑ·`bjíÌ—îªÉb÷î«8P–ŠÀ¢Ú¤Þ]ä–¼»âÑWð~k»Ze¯ˆ…K r¬©—„PRJ­e‚/øçM›úvѱÀúÈÚÆË,¹‡iéè,˜êM®âZ¢ËÁé¾Ü£»7*‰”©1€yï6Ü&ñ+8 9¥÷ú²{,%W˜RVNðÄ Û¸­Í v™àR1dœ€xAû.8Ú ¦;:q”ú††Ñô¥o/÷挻Ô9™¬Ÿª’…ÝCL¢xÂÚC©Zrð¬{ÆÌšÀöó8ôïFþ󳠼ʗ_Ì6fG°¥âDQ{Öo«'ÁICÙðë!úë¨hRÄ46 nHxÝwµù¥ïwð±ÓøYe‹ùS‰÷¯âîÍIȪvÂì>nãòÕuIX?l¤‡G¦lÉk„í]¨¾#`L–e]Û§•ŦÈòì¿ïø>çK=1ž€'Æ‹.ŸzwËdI"ª µm~sìe~þE6‰çeÕ1lW„ñÄÄVÕzOÆBš. ÅTùjq‘P\~/,Éäj¶Xz<›ñnhH‡¾=N6ú|C.\<JŽÎÜÀE=r*ä/Ómc¼%ºþÿÃy9~N¤w&âÕE;$Ñ`÷w—3à¬ß<ÎÛ9»þœ31ÏþÍOãd]a©÷¬è»Â¾ Ùõ=€ÆxíïÌD†Äþár®G) Bh{fnÞ y³—ÆÒl®®ˆÃMƒbR/u%% tãU+çdŸŸòRsØè€óÞƒ\g@H Xž‹àÀ ?ˆSž‰…ñ÷Q$‰Uè]“Å$rݰÙ5ʶ¨höh§OZ|<¯ ðf´jì•RXa6¼åšK­Iݱ{×V³O´ Í‘¤Tf“L¹Ðû.àöÝÊÖp¢˜68'Éà–Ë`lÚWVRŠ„4!Vù3•¢à€/ÈqÊ†× Z~Ä™¯©rJΪÁb»«§Ó=Ì-ÂxÊ~åè:€òçjçS¿“A®“ez…ÎìœpÊæ³×ÆOñR•OA Ó3ædÕçÙÜM_råyǯ,51­§ÎC§¿„ªE¼ŽÎ0ôÞ&´oûŒf),{ñØT æyÔo 5¬ðÛ ‰>ãV»´·)¶æ\ÀŸ8¤ƒmÉ—HQ@Ú#"•+DõŸß\WuÔ¯²©€´ª=aÿ¦I¯ü¿¤yZ†$veeÉ„uaTE QŒkÔIã¸fŠyÙj@Q[Ãó a«lso…å^ÿm£¶*§äa£YèɇU¾Î(ˆ¿îž›­7Vµ˜tBžÀ{#¸¦~pâI™Ó+ J ÿr€ÙKÈk¶~®Ù[jW)¢S|3?¯“ªãå\ƒHrgª`dßÀýľPÕ0Ù¯{‡à-ï)!â¿"õƒ£]ä}P^'dõ»Ê ¢÷Ï1?°0Ä*Ih2 /zKðÅtóKEÌ@9ž@)|L>ò-¼í Š{¯[A1Ekƒ¥øÆ¢Eüt#ë›ê…Å*mly{ œØC(Ðn¥ktðAó½)ƒt¥„qÕR9q,~Ÿ> câñÜXq!¡‰¢÷ñ ue¹ƒÞ»±¬Fq1ï1áʤÙä38U¼ã£=®ö->GÎÐÿ¶ßF-Œ±žÆO®ŸÚ@cþ·¾~wTkŸTÀ…ðÜHF~ø¥’Tþu=åOyq“ÃwºÁÁ‰¹'`›MŸ}è»[Äùü.:FF@oÐL`:Mùò(ºI{2’tï”'°¿ù¯»ñÔÈ>ŠUÈß Ó`Þ¨+y ïPâTMùþjZÿqíaÊŠçÀñ19¶2° %lohõ}¾ÄòI]—2÷MÝ¢yò­Âª»8¸æYevd4˜¢-€ý‡ô&ˆ‡ën‹ endstream endobj 82 0 obj << /Type /FontDescriptor /FontName /FFFHBL+CMR10 /Flags 4 /FontBBox [-40 -250 1009 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/V/W/Y/a/b/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/emdash/endash/equal/exclam/f/ff/ffi/fi/five/fl/four/g/h/hyphen/i/j/k/l/m/n/nine/o/one/p/parenleft/parenright/period/plus/q/quotedblleft/quotedblright/quoteright/r/s/semicolon/seven/six/t/three/two/u/v/w/x/y/z/zero) /FontFile 81 0 R >> endobj 83 0 obj << /Length1 1718 /Length2 9654 /Length3 0 /Length 10756 /Filter /FlateDecode >> stream xÚ¶PØ.Œ»»3wwwwA 2 îAƒ'¸C€àî\ƒ;·@p‡„„Gv÷îî½ÿ_õ^Q5Ì×ÝçëþNwŸzMv)+§× y'ˆ;ƒK £¦ äpqñppqq£ÑÓë‚Ý@™ÑèõA.®`'ˆð¿d\@nÏ6Y ·ç85'@ÙÝäù…Â\\n..¡ÿ:¹d-<ÀV5€²äŠF/ãõvÛØº=§ùÏW“%3($$ÀöÇq€”#Èli¨Y¸Ù‚Ÿ3ZZ8tœ,Á 7ïÿ¢`µusƒ srzzzrX8ºr8¹Øˆ3³<Án¶m+ÈÅdø- náúS=@×ìú§]ÇÉÚÍÓÂx68€-A×çî+ à99@GI Aþ Vý3€ ð×Ý€À¿éþ:ý› ùã°…¥¥“#Ô⠆جÁ €†¼*‡›—Àbõ;ÐÂÁÕéù¼…‡ØÁâõsÀ•[䥴Ïÿ’çj醺¹r¸‚~KäüMó|Ër+'GGÄÍíw}²`åóµ{sþÙY{ˆ“'Ä÷/` †XYÿaååÔƒ€ÝAJ²…<›Ðþ±Ù€Ü|\\\B¼3äeiËù›^× úà üm~Vàï u‚¬ŸE€üÁÖ çh¾® €›‹;Èß÷ߎÿFh@ À léx ²CÐþa6ƒ¬ÿÄÏÍw{^q=ÏÀõûïïo&Ïãeåqðþ'üþrê¾T5PÔ`ýSñß>ii'/€/;/€›ðqüÿ›åoýÿÑþ‡UÓüWm\ÿ*A¬BJx¾»ÿÈðøk*˜þÚfÀgPwze€éŸÉ7æâã²|þþ?ÏÿGþÿÆþ7Ëÿmòÿ· yw‡?ÜLøÿ?n G°ƒ÷_Ï“ìîö¼jNÏ»ùßPП›¬²»;þ¯WÉÍây;¤ 6_#ØUì²Ò»YÚþ9BÿéÂ3½Òtrÿ~kì@.®ÿñ=ýó{âúÜ«?\ çuúï”rK'«ß{ÇÍǰpq±ðFãz/n>>€/ðyA­@^L6€“âäö|ð,Ï`íä‚ö»£üN™ß¦?/€SùôìSû >ûtÿFBÏ>‹€ÓòoÄûùü 8þãÿ­ŒÓê_àý ù¸œÖNî.ÿò?3Øþ ò8Áÿ‚‚N‡ ð™ò/øÌíôO-Ï•=¿Èÿr?Sÿ+ð™ÚõŸJž©Ü<þå~–éþ/øÌæùä~NåýOªç²|@.žþ¯&Yº»¸3‡;,ç×–™Nƒ]ûã®Vޤ¦°ÉôÁb5mɹ²è¬äïˆê³)Ýo…ZÉÉbh“³2òZy5чÌLêöŽÐ™3«Ú<Ñî#¾í”é•=IUWæ fá~@UDŽ‹}h† ßw'R˜Ú–]Ç ßRŽˆýÅVpePÙ{5þéê̤K”£ÌFGCÝá=¾QŽF¼êÙl~,¹©PCÁ/á•6D¿Sy´àÐ'ß¾HÀJx`Ù‚ÛiÎç8bñN;.ÓT¯£”:­_Œ†}‡'‡o#;À¤#"¤ÞF#š7n-;pDâOµK«Ð¯TÀ ýXÿ¸!áâîõ2‹++.ÛþE߀QG¤ynÏ“±Ü”ïa„omøßÀ§ ŸÁ =„P )ÛF¿™<¹šcåÑ™&Á|kÕU§Ü³@¬JåÌòžü펨'#0Ï5èÊT]Ö£°):'‹C¡¿AÒáetvú!‘Èg6óG¶Î»$µkjæ°/¢#Íѧ?5gmiEJ´f{®kÚû‡åïlÜkúvNˆ^oÚ}auC »JJÌ?ÿ™ë¨YÎìÅø}'Ž›ß×j½`‹I|7ùˆƒFøisA©V>iÜ®Ž\q…uAU+¡Ÿñq†Øk&ÓtjIª`ô¤c¦ ¬öJh¥1eòÂõõÏ1§þúÀJé¨Õψ/Ä¿µ¤$€T`!¸Ç(›7ý‚Ú«ðb´%ãõÛ¤Õš‰ôa Á ¦ÄP¢M‰…wÓ™TqÝ´éns™9RÜQÇ!8™5$ú“2¢W5†pOáþêäÙKí¯“6C{Boª§Ýô¾úД™0†»Hü`±¦Þ¸÷‹Ÿ¿f*»Vèì’DlÇÀ…Øg¾ñ9¬D jÜŠ÷­ï(çD×Kå2çL¤•‡¿êGEj¯ È Ô‹ìû‰è}CÂwC}Þ¢«w×r‰Ï0ÄÕÑö?>˜1…}3³´N?yÚMéIÊ‹e¬n‹fÕ†ZžD1P†¢\D»GæDo3ðX‚Æ¡8Fm¹bšÛ_ãà Á[Ý~$’ïMž“IÌ­ðE2(y)ú¯ L·í3sJo”E*,1ÑԻ߳\a.Ç(PtØ\öËLœë£ŠÐûðd9^µQp€5òÑa.`+‰Æ6ƒñ*÷òFãTn<µÑ¦‡ÞuƶC‡¦=³þP –ãyÛby6%žC‡Ú× ¢kåØ>×´P3ʱºÄtDïØ€e2?_íà‚þþ†œÑTéÔ8;¥;2ä âðÀá4îT²Ÿõ‘%ôOi’¼è’O0„ßx™):8Ä`OãÔæ93¶ŒÐŠ™V¯dqCÿ°:‰wc¸ <¸²”©Á¦Mqù³¹ñ, ­¼Ð%—m¯˜Ç->Ã:©i—çP›Åò%)ÝÉâ‚|X%áÑÿR}‚U9up§€Ÿ!î8óG¼(º7Þ7Z(öÝd <„,äÚ®†Cw7æ&œä€¡7\po.×§v [Á)B¨{lî…)qåC 6Î|¯p?#ÓìOžr‹Öµ3§#Í`ǧ¬^^rÎ×UêOÇŒdé·ð*_zyö:q/.kƒÊ5l'•¥†Ò3ê;ÄMKð„‹«’‹M¥„|'‘0“ìqI²ª |f.ËŠ{‡•Î6Á%ÕœT._K‚qlÆ«5é“Þy*¬¾u¥t{åÍIý´<Hm›Ì/x|iµÆÊ"œsïceQP ¥ö]óuht;äCBøaµB¢ mcQä ƒ ÃÈ,ècj%öAÊk>+üi 9T¾xÌZ=]Ûï¤k]Bíäf̰s¤ctP™ÌŒÁ#JÖ1¦µXÔùŽÍúï5 ù£Cn–2æmóyÛ\™±ýuU‚|/¥˜#€ÊèÌdÕøïgÅF!rÐØØ- gÜ‚(ãê‡oŒÌŸÍx—)?ù«¼Ì¯fm´Z7µ\×Ç?ˆÇ%g4èÆ6ü“Ÿ”¹|  hP×WÎæòAp‹ÉÁ‚Ò|¿XöCS½6!’Ô=r?àd5ŸÄÛò@tJ7_ŽM[ ËÝè/ËÄ ïó ìi7«<%z }[ OãI}?·Ü³‰(¿tÓ˜³ýV.u¾EV‰;lI3’—&¬KM Q2_°}Zo ¸¾‡\ÚÇzU]*Ñl óA+‡äÔ5Ædƒ•ñ«»S@UéšòI}JŸhŠ›\pA ê]†êP©È^$=W“×"6 °T1ìªÂ_£ï8 +VªÆ øK)(ØÂ;S@¯‡¡÷—ûæ HúÝÉ rrp¹AM–8$X ÷2_R‡ÒêØÍ‡–éª+Õ<6¿Q~#ò«ËàÚ=QÅoHÓoC ±š •䉻a µZŽMušs¢¾+1{{üÞ‰kGt­½ .¢–b³Ž*ÜK-^©Ë­óºò•¬î7£œŒ™>»þæÍà$°ŸÇW9!Ï×:pm®ÒÈ>ñ[ à 4Ü6çp ø?âl~lé’FÝzù%Á€ ˆ õbbX0vl„mç} IR¡ìÑa'R—*Ý"¶á;10õcBô jèZÉ‘  ªéYq$ÆñWϽ^PŠ• }Ÿ˜ÙUžQDÝEO2·ŽøÂĶIž k ;aYNŸ{ØQ,ŠZÜëÂcAÄ5t4@Ce½8t€Ø¥“Å`@è«O¾S…ôÅì ³ k³¿¤‘35ÝÀ-s˜´Ä—ë XOΉѶ€¤ß¶S]r½\ÒÚwœÃb*ïOFM+¡I¾ÛÈŽôxö&…̱ïÝùû¬Dy ýAu¤Êù²1ãË‚ÛÁØk£à¨\üÊȈ¿}êÁÀº‹6*ók+¤ÞŽ6¬Ž…{8®ïÖÓß<ôµçÖϘTˆiÊø‡>®šq¯ÍÙÿ¼!Àg8„C?Õ*,&")¥ÜGwriY÷p¶%Ü¢Fý &Ý8ËÌÑèlûqÇ&ÉO‰Ä,ÄCy„oìâÃï˜ßØ'gŒ-«1J½+ù¢-.CѶ¡fêÿÝ$ÌJUÚ½…É3mx€0¯ Ì‚}6÷I'†Ëà@ÆkЩ«¬¨"©.™}Dvg]Ý¿»ö½^ó¡¼à’/0FOQ€ï5=Î[$ðîDðsóIh`møpŸý›yá_Ù²žÐå"v5Rß+Q'Ìu´›^"`ÕrÌxªoÿ”©M°ßóÆ/³î®H{È$ˆ5©.PðÀÞàT"¦B·9HâR³&ó]Jü!ÏC‰š¢ã©úËÖr ?ºö¾Ùµ°þø1KŠGBî6–C'W vq/(ÑrRÏOãò#k«%]ƒË´Ørxd|9$þgÃW>ó±äB¶Í-ιsS> 2¡Ñ¥slq­,õE#0rHÅÆ]V‚MjTÌ7lÖ {8kNq\œésƒ»Açl‘_¦îXÃŽ¾’ÚNµ5ËFa(/!ò˜åתSÑÔ,m¾qvÏ*–=5쥸ˆ‡«`°~A18\b· XYÚúmiö¥v12ØwW‘¶×é-l¹ÍÀ›4ÁOì ±‹ßÞvŽHÞ3ùg’NÃ-( ®uo‡ÄÁºCÊy;O|d!÷íV#µ“d„ÙdsÝÎbé•Ã×̈´‹5Ñ ?Xó‰éFâ¹÷Áfé¥ÒÙ>gæ&2‡C&–¬AÓÑm¡ ˆ,!£U{jä\­awù‹Æãÿœ©¿\Å^9¶é£•²é¾ê¸B*\^°=cp‰]ù´Ü›7—w/îe¯j.™œ:–Ÿæ‚lÈÒä°=“š[zBY£ ×V+õ†q²†îÔ9 è­T¯¹Õà@•˜{‘, ÅÅû °öC/ÁV©ƒT9ˆ^²±6a>RžwªÜìvPf/|zo¹Ý䣮äL3©Ä¥ºiùÚDׯÚ+ÝgÓ@-Jç«XM|ü„v,dÆ>ó!óW h.†í ¦þžZªpA>{ɾóµñÍÎA‡ÒÚÝþ\3:|¾Þ:ÞU6¬líÜ·«ö÷®)¶âMæor-bJ5k˜ÞØÑkV…µ ˆc£5*8$«MKÀ¥g‡ï6ž?ß"¬%”2ôDÙºßÀ0tRIÁ†ÑáDÇÌѲ4ÖÄx¡Àôbc`»ìáçMcØÖ1âHwAò ŒÏ[ŠèÜTÖI»ä-+-!eúÛŠQé‰7+¤1@…•Ü;E¯¨í—؇ºuã3å#°®ñì}Ph¤ò™úºë¦.­ù£ù‹%@ê }B–=·T¦øEˆiÝÚ©¶Ï´˜5näa ó½ÔZ£WøkiM+Ñê"Ó™X¶Yì¾|ù=Ç%teš„ZѪZN:¸á^81µ1!CÊW_´y¶¾Kq³ª‡X½Øö€‘çG•»I|uÆ?1k¤®,KN¹Óû•Ú–„0ºÐï\å«8ßÌ;>&•­ï„³â¬Èa!¬¼íÞó’ ׳c§¤çO_½¤néxƒZAÉnþˆù>áb<¦¨„ݯôF[_Í…ÕŠ×.æ®Ü³ D–ÛVsÂDÏaÎq{‰éÖ„fNr1‘spÛîÙ°!>Ó_@ÚÙ›´Ç]‚u¸_Ëa$ž½žî,êC÷Xö0^–QÙéOú…s=BŠ½Î‚5Ü#&qy. &./æ3¯ B8‚t2X‡‰%°;£Œû§Mº³_läÓ¨¯A— -úN¹­ã:âÖ í³hr²1 Päዚ+Jܽ¹c-±Â]˜„‚í±lƒFrx"A_ªG½¥f‘f-·_ä;Ù¯ª¢Œ6Êðpí3ü^ÂkñRïˈ&—N‰v÷¾ËRѱf&~Ì BjïêX@ûxS÷)šf±–iãøÝŽïÀ/A¶"Ñ6Fß2þ¶lʈøŸ-'™ŽÁ‡LôDÍè;¨8ËcôD‹[^ÐNá›óFyšéy7¦]ÊU­Ö†U’P’)9Äà·f/csدºŽ/´ypD¤4¢Ù£Â°vÏn_”.œ¹×~ÒæôÈ(*¿œ¾ysbbƒ!õ©Yl½)RēġHgáKÁX>MÃ⫟Fñ°_óâi ¨®H>zfbmOÍ•ºcùÄ7ÇPáÖ^7·Ó?i¢|‡#©˜Cz©{0îŽöÒº'8œ ÅKêW°ï¥¡¾trœ0[9˜ë{G|÷c‡,×H‚¨âà™ÜƒÝÖa2púF.ªÙ oÜÂ.ÙpÞ†4`(Ýνš Èau=Z§ëýRAàQ¥ä\À Ïr‡;iš6E„ë)S0µùƒîÆqÊçB÷[¸öØ7–ª¸÷_ßÿ͆ÕEyšŒg©×ùÓ6J!ÈÌÔJÚ½Šï¦èi»}¡ÜS ýÖüN”ƒ‹H#ÂJ«FÍ—økÐ(»$£›|žD1ï-(6QDøÍĆr:Êh lb[€ê¦öž;N-Ê3rR-Ø(éy÷CÜß–]Ší‹>¡•~I¹å¹•‘Ö+iWËõÞ]®RÄAt'‚nîrÑj§ÔWæb(¬ÅYÓcH*•RñуØ›(ÌàÅ­`›0tõxý£“ôÂsÆr½/ŽË[Ø-ý¯‹1táFm“³¦ÔÇ_ëéÜJ”l%D‡{xP}À Ü—?‹.š{c;Ö³*œF~~øäB\´W³×s‹’-nêfgc<æÜ¼ºîÄä}iùÅtã*µ_‡_©DL‚7ªš‹›*Pý׈Tw‡<)J¡’ä¯ÞÚƒ}a¾Á^ÞúxΆæ©ï·P'íkzí9Æýé$’Pwüà[Šƒt€˜|K뻩(ÄÑ¡\jNÏÏs+Ã…Ò¨^‹4Ù~!KaFÓ¡j5Mo`…ÏÈ©£‰±¸[Â+‘¶uK1dû~J¼™#`SY\eÕ¨Ÿ'JWçèO”§¥}옺´Ômô„Ó†‰^Ï—E:€{ËO¸}H·ý¤ÉŸ©¡Æk]Þ—U›GYm‰õc`Irм¤Ü0ÿiéH’^˜àä£ÎZ@Ëf‘¼4’Á…ªlî¢,@èDZë‰Ypœü+íúk‡éÊY¶˜6߉(8WI€5b‰Ä§Ž:r.³o*3ܺK{aAð¢Éô©鬇ÔÓ„‘0¡Uð]`êÞ ,A~âñ‰ò8zÙõY<_kæŸ!&ÍBnä«­™K6¾õUcÍz·~©¯µMKŒ:=C¼†÷N¿ ´ÖLÅÍÐÀàm¨¼¡ÔDtA§yÃæ¨ò¦”jÍ( wíÍ®¼/6®Mî)|¶Qwr™üM‰ `Fy¶ •aO°Xìpöã§„uÀ¯”pµ¯Æ|¿Mû[Y™m–—…|Å÷*Õ5€ÓÕ´¼<…/f(žsXzçÚºÏ4ªzy :7‡e}Ç>וrµ·;BIºŒ2\Œ³7©—äÝK .ؽƒàt¥‡r¶Oäq[ÿN~ø‚€®W\ö ~Êpí4rŒ¡‰Þ)Uøru VWøÊzÂ1/d¿$_.)j6Ë4æ#,Ìf RùCÑ÷iÜÕ¯¸SÚŒáyŸÔ‰„ìM¡3>öª<=;ì0¸»G(°—K’Úß«~.ˆ@‰qª¤õD‘ óAùàN²ô¼n5âªÝ¹ê Ü«”Ëü8¬¸ïÈ)G t¶,þ`Í ‡¼µ§¥Ý°:}ð÷͇p2§þ"ÄŠøëªƒiéøŽ.ö-b4Aw=Б¿¬€¼UÓý€HøðåSƒÀÚ¦[ðÑhÈžÚ­b‘ôÃóïM½Ã,=[Ó­éZ*˜7$£'ÓŽSí`²4´¥:!ló¹nÉS|µ¼wm BøtZŸó_X’¸F,UšàdN€P~O=Ò‰ ¹\cðfñcÎ02Æi¶ íoò3k`›3¹±­ §˜ílÕëžÏ€éË¿Þï”9Ó6ëWÉAY)IÂ,ëÚê\Æ[{ "î²'×J¦ÆëoUbJe÷€ZŠYlÚí?5 ÊâØT„mB*înVD,~оžé»à/^ðK ¹‡©|?mÉ¡3ˆÈPÓ>ϼÂûâS4WîÍÛÛ`Gf?_‹úÕ5[:œ»žž;”{)h3)Í—Ô7¯V&õ¤Eæ !C¨%Lº‹=åÐŽs#ü±˜Ž§2®å€Ý† Gƒ’mYvE¿÷ôâ =Oí2;ºŸ­ïº3á[Qh¯EK7Ãúï›N¹-`qWäKB®¬üø®Q´,ýÓeÚðí” ÐøƒO‹¿þRɧä,ÏÕ[*Éég‰¼¸t–í}£Iªœëhí2<:n‚üŒ:àrÓ×+P“¶Kz™ÛíJ†)ßlVLÈá9––¾‡Ž”2WvÓdCÅ-À"ø:ħÄMs©\iœ°{eëRKr£H¼w§›Â`í·'›™zG6Ç6‡ÊiÓÐŒöÍ—ƒ¾¤yl¸‰DÌ0=Åteާ–2¾Š+“Ëô;±Wf`>|}L ·Çh4J¯gr&ÜZF>1”_M,J¼Bçîó¬Zù·ÏcEx ò³î8óW/™û O¡Ì3•+Û_Ò·Ì f`J®ŠÇOÑJ`£&PÞÈáÂô¿—Ù¤SIÚ4NÀ·åìh«Ðž»ÆX9&¯®ž¥y çmÿÙ·o ŒÊl.ž¬“•(‹Á°‚‘›ÙÜ|lO,¨¥ ¸˜ÅºB }û]°s­ñŽo•Ûމ|©6òÒÉ­äŽãxAYÁeRJ/á~ÍÃ3©n_3%e‹pŸ¿¸ïc4ãiÉ&AÈ{ŇäÜÆ>¯aÒlCZ¼qãB º©±þŒ/Ùça€Þ’. ^ìïEuDÖiNŽc˼ îFülå.ܤ=pS k4ª¢÷¨Ï:H¸Ù½ rvnÄ šÇ İœŒ¸„Â`Íã±Eë)XÔM?‰ nÿhgÏW¦yËÑVË2D7Ì3œAtЧòÀâÄÍ;Z& ƒ+‰J•xNÄxõL§9Us¦B–ó à÷åÅ´/2gæM‹¿z 4Ž;½` ‡O¯¼žØLŽØ ! gÝ9Æý(YÜ-°Y62— àE™’7ç‡Ö ¦Ëäê<ÌŠí?ùfNpmæ¶Ë銥%®PWöÅG½‚CðÓy9ÌÝ ¥µy6âqÆYþr'MëÄç1cø‘ÈÓ®ÒØ¦ãFnüv5­Ž¾y@'í}nZêõéQßgÛì<Ùa>¥ÏUij›/_"Ù-ÿxWj|;"yjPß1 *•ȯö˜VuyÅ{ Sæ<õ¸„7Fk9ó3Øw^w]n@ß+J™ÓŸÂ‹|øP®{[ yL ~Ê4eÕFâ=˜Fvg%KÞ­Ý,¼´i{]Kx³Ø|˜+ -QùF¿niD¡m–*.¶ÌÞð!Œô‹åq )5 üNe—¶Ø§î­î9wu]ä[“œRlS? m†å ‡­C~…ÛGš\O»11O†åQ r”hþ5Íà ¯/ãJR¦íˆg˜ U‚èE´Ç/7K°cb·ÎÔæE#OÌY~P• þhk%yIJÿþ}¾M4ÿ°]*¶6—ˆøYÍÍAfÀ°§¡z¸ÓÝi7ÿëMFNÑî'c¥éÊt»!–ƒ¯±OŒLja3šFüZšýÝçÄAˉa÷Ñ7BÍßqÛu:ÞÕÀœrü…¥¡(¨Õ¨‘œÄK¼ [ÔÏ»>ÕÞ=ƒŸ+ö ß³ïÜ‚R}žÿÀÞ÷AÙÖpEç@}ãOž´Æóɰ¢ #ò'«æÙÂDD~þôÖWò ìÛù·÷ê´‰†¥÷K<³³¼¹—P u KVN¾<“qK>÷¹Ð wŠÅW*ïHÅ”‹©·1%ÁRÀ÷¿Æòëø `ýèãüÛæ®T!ÓFzÆÅɞ˳֘ h¤Ú‘Ç= „~QŒ> endobj 85 0 obj << /Length1 1709 /Length2 10341 /Length3 0 /Length 11429 /Filter /FlateDecode >> stream xÚ·TœÙ-ŒCÁ¥± ÁÝÝÝÝ¡Fºqw·$¸»w×àî–@pMÜ™™;3÷þÿZï­^«ûÛUûT}ªê¬¯©ÉUÔE- f@)Ø…‘•‰… ®¨ÆÊ `aagbaaC¦¦Ö¹Øÿ2#SkœA0ß¿âN@S—›„©Ë OȹÚXÙ¬\|¬Ü|,,6Þÿ!N| S7@‘ ‘©Å!žN +k——4ÿyКÓXyy¹þXµ:ÌMÁESk ýKFsS;€:Ätñü¯´Ö..|ÌÌîîîL¦öÎL'+!:€;ÈÅ t:¹-¿”Lí*cB¦hXƒœÿ´«C,]ÜM€€ƒÈv~Yá ¶:^’ÔeÊ@ðŸd…? €¿ÎÀÊÄúw¸¿Vÿÿ±ØÔÜbï` ö­– ; @YJÉÅÃ…` ¶øM4µs†¼¬7u3Ù™š½þع)@JT`ú"ð/yÎæN g&gÝo‰Ì¿Ã¼œ²$ØBbo»8#ÿÞŸÈ hþrìžÌVÖ q{ÿ,A` Ëß",\˜5Á GW ¬Ä_”ò?6+  €“………›—t=Ì­™‡×ðtþádým~QàëíqX¾ˆú‚,/?ÈÞΦn@€‹“+Ð×ûߎÿFȬ¬ ¹ À h#ÿýÅ ´ü¿ß äÐgyé=VËïÏßO†/íeÛyþCÿ£¾Ì’šZbâÊïþTü·OL âðfdg0²q²x98ܼßÿŽò·þÿhÿêb úko,ÿ”[B¼Jx9»ÿÈpû«+hÿš:ÀgP‚¼´2@ûOç°p²˜¿|±þ?÷ÿKþÿÚþw”ÿ[çÿ\íìþpÓþáÿÿ¸MíAvž^:ÙÕåe*!/³þ_ª6ðÏIVZ€\íÿ×+ëbú2¢`+»¿ä,òZ¨€\Ì­ÿl¡ÿTá%¼ T8ƒ~ß5FV–ÿñ½Ì›¹íË}âüR«?\À—qúï”’`sˆÅï¹cãä˜:9™z"³¼´''À›õe@-€t6€™ qyYx‘ç °„8!ÿ®(7€Yü·éOÄ`–øq¿øÿF<f'€YóoÄûÂ4ýñ˜ÍÿF¿U1[ü ²˜ÿÀ—¨–– ¹ÙÌVÿ‚/~ëÁ—´ÿ&¿ì×î_ð%±ý?õ%1ø_ð%1ä_ Àìð/ø’Èé_ð%‘ó¿ €Ùå_ð%¯Û?í%‘Çð¿jcîêäôrgý1=/…ûþã‚=€æÈK‹sþ›ºŽ›Q"wÆÝIÁ9ê]íT:Fï%§N×;4Ä$ºêÌ u§+Ѥ‘^Œ•mIÚK‘e²G ˆám ªí÷>Æqj3»íÈ_§q§ ŠÖ¼"fÔÙóytôÑ ´…m…þ,Gëèʃ¦’}ãÞ/íQ?PömÜ.x­Vh°9wPèá“À^bϼõûž,‡÷Å»äS4F Ó[þ£\–áa$òW9rZ£Ý€>o›IùD‰Ã«¨·À°Î±½ë_¤S/©ñ¤è=íP]iÁ6{UbHâ&“9 †ÞÕgŸ›×#¹™ât\Yê8K×ZkÔ‡7N)8È´|ZzÙe±¾ ®ê_ {ºN­ò%"úxÅt1uÑÖUæ„“¤—ós1à¿©¤qw¡¯fô쥙D#ýêh'ÀzÏf$p³(¥¡¸u?¥UT¢(³I¹óeÆSOº3Ñü,†\£Fg3åÚ×ÊÖ‘7K ï7îÒ»ò‘YÔ;âFè&L-ôè'¹÷í¶öÂÁ%Gà÷+z-ëÙŽuŽðFY÷dÔÑxl žÅS]v-¼ïnéC3U²¤L¡éÕÍ:CE©¾&†‡õƒ¡6í®˜à3ú2³!$“5¦Q K"®;LZ‹;bY5^(º²Å‡‚'†ânõ˜„뀆w9V¦“ËjÇ §öÒYtþÄs›õ脽ƢPˆØÕ’ &I«Ã_³ Çû£‘*Îûü°öVµÕ™ƒÇË’êÓ/º}ó©¬bE,[•À_Ñ2¶L?áZt{3Ù 5PÔF=“T²[¾µÃ¹šUÌ8ù07{Vû¤*‡o!ÎSÑ-~¿¢½J É*aWìÎã _?%ÄyGI_FÝ¢ º-1  òâ` =`ù‰´ F›c¤NÊ®ã}èl|Åœ{öÕtú…Tµø2 W©'ÜôRÒÂò$<:*ß?kAb cŠÑÛÓ(Iµ 'qÛž,À=VMÒ…¯ó{²!_·ÑÊ›K)/cY÷Üѯ–"÷{þ•Ô)µ«¥: Ãdk¦.ˆn¹0g¢'Ýɧeð±”éyGg)`jóÜİc.«6…è,‹“Á†¾3#Å–ë AOàöÄElþÄWbQ¥uß7;¡þ¥ùøF…ÐíXÞ<)¦ÔSÆò5ÆKì¢H¦ðü™†ÛFïû#ð„ló?hÖû^æAŒ?­ºzy#~í$@ÛÊæËñï ?Œ5!&Ádûįò ÑÌžq&âã" O8K<íbˆcÛ£)’ÍmÉî` (qŒ„6%I¦ÿl„^V˨7iÿS\†U„HJYèõës ÃÚæãY–ä±ååF^µEl”-ã/=Ñq Ò¢WÇhèqE#íI%îÅÚº½kƒÁÛÇ.ä¿|æ'­‡ß!Ò3Ì<~åE×±öä,÷7g§.´N?"Zã¶aPö˜ o¾\IÕphYî’ïSUMò¥9בÕ,‚úèà‡W‚¿˜ÔSú88Ûi¿rX™"R<tK¼—­ .j‡‡[t8â6À3ÎÇT,ãm¡»z† eTø%Œ0†Æ”ÈÖW÷JÙò£\«‘p..ËT|7ð‰=‚ÀÝ"^Pô ìÒçkg²ÈI„i¤•¿®_‘ž;_ÑX>IÙ±½AàþÒ7Ϙ÷é©ö©QÙ2CŒ®VsFÜR’‡©UV›Å{mkHzþÓqhâ÷WØbµ×Q¡bØj”Öí«˜hŸ·ä×Ã/?+^\-ùhJD­¥•/DÓOÑ,ö̪xØwe×8‘¼ÙŒæ™bÖÕ xÃÝ©"ÆìŠƒâ~£Ãxí§=ª] h 6º¶–üjèù Ì$Óà/Ñÿ^ÀÚEº°-*Û%_„­ÊzVs·dÖ®u ;6RÛÓÙl<­³‡·ºÅ5!ÒYC÷ÁZ¶`ßÔ>ÔÐbµW  … »rú²ìòc´àSAëU¶k«Î¤ ä|Þ¤q-«Jëv°È„ ›YȫɌ{)û‘Æf_–!’ ´ ùÎq?³ÝÛÅ´<7ÎVH'¢]Y@£¤Y¾JÍ?u¾úŽEP’®ŒžN%eI¿ÀJЮ~Q}êüvȽ#S77ÞNU{Þ“þHÈ€bݳf(Àú™œ)ÈÝtBüÄmä­VýÒÚ2gc7ìñF¥T.L”c—jDá*1ß²ˆ =¢ø‰ºC1L)¦´Òð ˜ApÚd§6çÅÈDÍå¯d æ;‡…·:$¬Ì7M»è:Ïâé9-ŠÇá: ÛÝB¥©«y°ÌR ñá&DEwNcÝ™ ÇÂÄN²[sÞÚçP³6µ™ö)“Ü”rŠI_CüX2Ìø(Ânuš%6ÏœœÓ/o£ûÁËl».6ð¿T‹ÕŽΨ'OäjÅçûVÉú*tŒT×謁³–O_ÿžPÂA«ÐOrœxP‚ÃT\AÇÍ’c—b£5Ñ6[”½gðíQâöïû¦•êñ}µ%16t1pØiU ½Öb 'ÑÔÖ˜F6 ™¸UcñÕ_åΘË#ö¯Þ4hmp÷'»³Ïhänjn²IcÃÍù Ëî“);^ê'-U®˜„¾¾áG›I·#ÌLã.â2fSÔÆ{+ïOå3ý…†±}b©ìX*S­âƒùêDnãÿn§ù3\›@mv¡êOä¯,½j‚}²Óœeú­šö‡l;%×n1Ì·qú:)Qa?ÒdÝTÒ°ó÷™ºé: ¬T2 +›Ï<é1ð^5Ñ£DëwY}¦žNøMù °ì‡e7ù­ÒK;u’ï޹ؼóDa7EpÀÙJïY™àÝFÕø½80?ݘ2[ÈÕ7Žw…×z³”W5+ûåÿWkD¨;ÅM瀨ѻn’_:áÃŽ©éö0ŠÞÄ%¢®Nÿ±¦W m—6äD²éÌcר ÷w”"9ÝÊ ˆÔ]bí<óNÌ•à»}Ó WáÇ :ZÁK¹}zíÉ´Ûƒ1oI¨U°@ˆÐ²ÁZŒ ”¿D½Iš£çåÍâ€l±@%’Nñ~@ù#Ë9àrIBsPoR–*‘íFùA˜NR€]Û•®§pÖFÉØR—bÙãö²Qµ,°h–‘6°9EX¸A å½]¹´>EÖ„8?U·^ B™ ü!m£êlrü,gSØšFùy·åÔmËEºù¸D8¯l;œÒ\þµ>³xܵ –²0y»±ºÎÑ›ái5Û®àµg-®Ä´[D9U{w¾%Ûlôî›e=3O~r(OÙ!ítµ–÷èƒóœÑ×ÁÆW ‹][lIBãÁ§ËX\õY;—%0˜ÞãA,¡—íY†oë ’µBü*&g»u-V”d›^¹¡¦º ÑNUjâPça½#NìÙíÕø<Æ-˸ Öd•nÊQx}55\*µò¨$|04Bc.Lb Û¤¿à†zkî®Á?áe3¡Ñ²¢—Æ%;~Óü݆jë8Mµ­ÔlÑk$ƒÂ%b´±µÅ}¨vhonvh\©H›7Ɉ#]ªü)7#¿½Ù"†u_ FàUìŸÛK?.²xµØÏeth†» ü®SSâÉ{K™ =óÝ>¨®BRh\Wœ+^èËa¬¦…ò§[Yû€ ÉÒ{ŸìJ¹Èíüà"ßWðv8åvNꈎžô>9[d) ã&$‰:udÀÝv‚d¿ýMé:Vbqx¢9\UeÂ,’hƒPÿB ²Ú›üàt¿aÞÎaâêíŠÝµm—û¼!ËhßááådpRp†g¥•59l,*;ê-xF$ˆw T6A=Íåì[|)*M)ÃJyÜ)×0lVåe•juœµvŽÉ„mdý—1'! ó_æ7a¼!³›¤[OH|­+öáo_}M v=¨B%w0Îî1wÓ `x5ág ZË%+ø±ˆÍ€G2fx¦é“v!$VŒq¤.ì¾$ø žÊæyMó˜†Åó)`G¾/Ïî=‚Iž! .šŽ‡FòxûµÝCô³žè w”VIvÚ=Ó*†uîÂô“î§`WP…çA’B,•OÏ-ûýV²§àúÅpçǼ…7½IeX„¶È«MhYüè–1?Îufضª˜y›l6êD´îµôªæaå-¦4ç[=(ê¨x,J™%3â­J~(´’$ÑRƒŠq›ß/}:^sk¸ŽZši—DY˜o?F}‹:DUiaJ¿®^•Ïíǵ+HäVme°cQÔ @ŽT#ÅÃÄ ýÒø˜z‡ã|L¾Ê ²Õ¬ªp>oñE¢-\a ¿ïñ G)¾‘ÒðA %*ë'-àÌGK”¢îÕOYèsÊ‹…(µ æOÅáÈ6qL«'!w‹¯ú2>z¬oy”«¿·wGŸ´9*Ù~ëϰ€aÝØIìòln0Ô»Á*`2l`4•¢ OØ‹*ö¾ªý8÷ j‹ŠâÏ«2ò°'ú!§YdìJÎí’ð Ñ]?Ke¼àÑúAÝ‹yp‡Ê} Eò}YŽî&š4ÔàÏ›ü´¿-ë÷ÑûñuŸµªäƒõ45ù/ËT¸X_m·D¸íoŒ6s$"’u9P¸ÊÓ"‚­½—éØf²ù&'yâÃBùÛ79BYÉXDÛêWçeœ4%¸“§é€Þ²¬t­töpêœmÍÄ’•É…sùñ¤õµ‚²ªK,šîë«ÔoàÆ8â¬Â Wb+µDEÊj¿-ÊÑH0?•O‚ ÄJûôÛ>¤ ]të¿6Y‘Š-Ç]AN¶¹£‚I5HKã×?R9K¢ Î"Ü3dÓ™ñ›ÎÑ\àÇÔñtÇì£q¢ÛšéGžlP"Û¯^®XÇÁ›=¤}¶UÿÉ”±ã% õÌ,˜ÜndêäÕTh‚–LúÈ•[ÎG<?é_ïÆ5îM|G\/x­Öøˆhב³QwÏõXYaV<盓n— û(ëü¸'täZQ €V€µi/ªˆã®*¹­gÚ¹xB‹ñá+A±µK`ÊûFüÊûzþ.ÄãºúŒÜæeà›½ý1_Y§á—ÔèâB«6]/G“€pÀG‚ï«2“þaŠñ𥠿t,;ïr$Þ F®_ä¥û½Ù¨Nû%šÙõ0ipTu·,qHî”*ûÖr[FI+÷^„ÖwºWðXŒ”ÜäáŒî¨ Ëò9P™bÿÉ-òÝ&²¡Ì7 ü‘]4g¿|\ÙcÌ2(žQ=‰æ¹-L6¨N‰6Óü*@]—/¦Àô³PÆfJëýimݯ»|;©p²w½Z¶|ŒÜé-‰=¹üºYC0ÌbW&üuÍ7&ö›%n‚D¦i;WCÅ’¯ëAµüJ@ÂØ¶\1*£èX¿xJdE3lõÑãëh)|¦›Õ˜·¬æÂa”xäQ+b‚µOƒ[K†x_ÂùFá¥yÀw މ[? °ËæUåÌ0&Ó«Œ42æQúl,M×t©.‹;iX(†PùÍv‰¢euŒWs‘ÙY³£û$Ay÷x2]„ ð•½øQt…M´9úªÚ²%ŸEí˜ëMïÙæ%âLžÂô'Ýn¹ßèLT\Î8y4O×ÄÎqÃjuYyûÐsîÜüÑ}|ìË×ên怜-.DÖÊ®x¯¯ôAó¯5Ä1ßF䦔òÅ„ó†ÄýlòNÛŽí@P·×®ßK 0䤈~t’t[Ú ¼£%^¶>ËËì×è¶ÓÀÓijãMë$‘‹ôK¹ã‹8s.}—êi[`I0¼Ltä—]íH®úæÄÅ‘'H¥½Ûõìõ¥ÜªçÄAuü0€!íp6ˆ©ôødÚW6')øsõ]VÐB˜GºŠÇS¾gâî ÊaþµuÛ kAå1èJsž;=>8ÃNq~-ÜpI&–ªÕnÐQ¢f;ñõ`¶8"0c³ƒËˆk¢à½þ­Y³ƒ|!^J=0²A³ ¢Z#U‚8®Œxt2­Ï sgm½•úpZ§ŽêhØž¸9eÂ;Ü$zA¦ BTNÉ4rˆdzЖŸiN^ ý.ì uŠOnV*©ÃùC¼"ÅÑ#¬º¶#þ/ûDíšÔLÊ™¯qOz¡^*8¢eHpa9»ƒ†M Þ^¡º£°3ìųwÝÏcFíÜw”-’è×öú_Hß!/LDÌR?„ ¨[’ˈ9ËM}žï¿úLÖÇQôí)Á5ïVrÞõRv†ôëâò2ù°'ä“°£Éøò×aí¸c!½… NÔø …q—o³ÌÊ¸Ó ºXPÏé{lž%šH«½ ÇV¾?^+“ÈájpÍ÷,€è…úÈ’NûRÖÀ¢ïý52o¤$¾F½ÞH6©U"Û‚búø,Þ ³r¥öJ(ÉHþÕÅF¿z¶|–"±bù:¸ôÓ–Ò’^Å~!íhU{7ŒŽâ9í;Êà |iðDÖ˜šýÉ<±õÛ‘=E)¨ñ$ÕyÚuôŒúXj¡×§ÝCÉÎ'ÏQ-Üàùtóa¦HûnØ›3›¹ý˜¨¶îuÏŒí{ÉNzÜG"©cÎ+S4¦z##™^×§Úô®Zò£–ü×<×X¥_pIR¾JHÁ-#O>Ó9¬ç{Õ²çkyÑûí –%Ãk:¾]IG¡NjÒ¤hBB~qÖþÀ¬kÊÂ8SUJ—uoà }4¾wãiër3ôëmŽ|ÙüY “:Z Gÿu¤©–ËáUA£Zö Çê@)¢±åXJ‚7·¶$>d–|‡Ìë _S ß]VÌ,z'Œ‹î¼RLBgÃ#ÐNœë¦ „RCº¢%ÊÒÄ‚¼é –Žš1–²âÞ±mlŽpn"0¬¸b”@×Z º7ÑèØd*&t¾6%~ñX(|oÞ¨[·²oq¾s&ÁŸbo¿Ê98øÒ±8®]àû…QáaÀÏzcñpœ‰í­å+Z’`Ô¥Ý% bª¶õ“BúؼT™À%≶¬¨ï¨øw¨QåJbkDT7ËÇôx?k=qY"ö8Øl©ú+]Ú…C\jg}¨­øSÎ86~¾z>}E¼î+Aäµù¥‹ž#ØfÆg]Íò3u%+iaVAÞ–FX“‰Ô­®?N®X—;ZB|ƒø*çª.XÊ!Ý%Úù‰4Ü2„–Ov®@\=åsnÛVѧÃÓëP†ý]·`cßl‘5VœCGëÚÏ,r¬Ã‚Þ]<Ÿl8F w•éFnŸje öNнSÞc×Y ™¾ã[Êg¦ðB¼-,«,¨Áç+.º!ˆœ\áãß—áË?uu½eº;ç|2%3ŠŽ9°»©g|f'µVÕ ÍoGñ)™ ʘYöz˜zûþÃO>Éë}Öt[æEVêÛÓïô û3ü²¨EǦ*Äd·Xí4b ç*ãé`¨?šq`ðsµ~)Ç`åò$ÙÐJˆB,W ¬¾Ç¢ÑeÂÞz3SìæAÙë5Æû›r׺°<ãÍê@-ô{zò¶ÑîÞw^~Ab~<\Y \Îî ¿²"èc>nv…¼7dA(ß"‹ËK9Î.XβM<ÚÑÔÃf–eãDÁI‰!kìN”TokCsÑNõùQJTí‚ò»íê?B´,ÃüÉXnýÜLÂßÛÂ&Å¿3³“¾_ìÐÌò—ò²¥Áû_?Ôa,‡“`º|o佌í¹}ºħÉUE¦·OÏs7i‘IF]´qm‚Ix©%ùUѸãµê'ZÏ^õÙÅ%Ïb' O} ¨è¡_SmØL”;&…Û3UUô[ • pV§î}ðžZ÷A$hÒÀ±f«¤E¯F¬œ¶¼'a4ÙÕ-™¼Å#zfx*·!@YNÅÖ"<Ü  µþHj¶HÜw}®åõjjœhÆ H‰ì³à²•EüüÈ“áAè2“ðØR\IOî Åõ›=±@Âaœ]̉8ÐÍ;_?¥s2ˆ_£\”€ŸkèO<ºËj·ªƒÌÅm¤‰¾Âom¨u- ª©–À'®v¯ª8%þñ ŠrŠ•NE~sÁöF?ŒO¦™F„VÎ4^hº{êt<­àQUêÑPpô¥ØR.–õÞÀý)eø!\ûÛ£U^YªD¬c¾ª0¢ë¯û$Ö·íd6™•8ÂÈ7‡cm…CP¯߃c½¤p\wxjU]ñ×[q…ùjB²0/š3ÅW˜˜Sµ?Ñ™&5ˆìhѯº•gz¢]B a-¨µ*Æ=Åk¬³Òè,]Ìòæ)Ü h¶-8ƱÔöl-nÁÚgA¶¶Õîá|ØoŒõ[?ÇÒUiXVé=³¿½IƒÐÆ|¤CàJYf´GMO›þ~Ä»%TÖ+b]Ή½L<"1Þ±ö†¥¬ÇMfݼò‚’,ÌUÑý9 8äNÖ§Qf€)9î·‡†ûóˆ×ö¦#Û©~­"?ý(¯›nžNT±°5eêêÝck\Èwà=Áå‰çX䢘³©éö—9"úÊ:R{;|iî„_çœq’¡9U6ĬÉò¹'5L¡«–5y‡ Ü>9íý씨õ65 þóÂgÔÊõÚ±½¬®ÕOÐþE’UØH?+^ÁGŸcM¶Å\Lkå˜×Ù˜—äòÖa4ÄŽÛž©ÍGV톻œ?Q÷XU½¡¼Â›Ê,=(iÍü¨àhY¬ëz|)Ø©$Ëcnv\^šþị¨Qòf¥™’U’’"{4š[Ý<" CäpE7=ÈñËKpØK›ºÿ݈I~ÐÉ\T{dOE¤5¡r4aÎñx]zH8ïÛ!Ñ–+¡’Òû‚»ìf¼”JÞÇ6 ¢tþ{Næ0“`¯h „•±–iª†"Ùb’™g7Œ€Œ¼ ŸVØ!å[ëG/1úôÒrÁ˜g7 4Ž­š KÍžßœ¥¹@ŽºŽ̳xâqƦ|‰uˆ‡Gw¥èØÅ›üSÆØ¸™Œ¸âdÞËqt¿·å弩¶ŒZ¶%Ü<í£×FSÖž¬ÎÖž¿î«Ù! „”+¿'i¡}! éißw“Qؽž›”Ž:ʵ!6í’P7'Ï$¨9ŒÌ³9p3ôZç$A›•k_M›B¶5QZ¤ÕK‰Þº&ÿ6ÁO„¤ƒ¦‚ŒJ‚Åú”¡ôÃØ™RCj\“‚_,W„úã¼9IáÎ÷Нð]í¦q, »X[±ƒ–24º§ˆ¤HÍöa›ÿî²¶nÕkû»`BæÌÚ’T}º‡œ =±,·…#Ÿø5X•GGŠr*IܶÀRöÝú,tAô{¥¾VCÞ¥Äwy+ݼOR¤‚oo¢6<ñÌï˜0-<޾$‡æïëÝ1L-Ï„v ªe×Ëh¼‚½(zË}fÕQ RˆlII¨% Å C* ©êe46+5ωòò^…xr‚úŸSi#÷ ø˜’Žé‘F §Æç}ÚÍ‘¶u+æú7 †Ýø¹žú;¹ 6ç±fúåúòþá’ °_‹$Á]án‰ÍQp£1‹šªƒ¥7 ^¬XŽðkK•å¬j#ä}~F-]nrªõ@YŒy‹K~w¥ÊI¢Gƒ¯£ò9®8Ì¢_ûâ¹°ò]#ÈV±¿%3·©bzùÁŽ,%¼)Çw‡_Þ?¿îr«¤•‚÷ç® &§)ºòxòâ¯ñÌQ]_ä ö'ÑÕ¨zƒèh´¡§t0Ös,×Ùç¼½ ¤N_Nt#0”A¶TAŽEviï(*R2ɉ?AV%ŠhØ6X)—„’Ç®¤ú3šCÓ3»â¥7“Š®áÜôH/g–,,¸h®:)ÇÛãYÅ¿‹ÄKï–¯“Ðóù|¶´ý¥¤[{°øÎbâµ³˜S?6Á™õ£ýüÁ@ii)^ŲÖm-aõîÈÄL1@`Ÿg"Ñ[xÏãѶÆ%š£×Âæ¥6&û¥ ¢ ˜Q‹ä<#J²¼¼+tëºß¶ØûŽÍ MÛHB8¡¼ƒù-GÓvõ)lòìQ«¶ÆaÃç%i(‰µ°¬Ê5UÊ+©¦ùÒ,¡ÄC ‡ XˆCp¸þT#¸Èé§™[ƽÑGI*]Ÿ9V6ö$Õ[ˆ1¶AÏbˆÌúŸùÊ:b˪ í¦øy-òßÇtà ¬Äb`á©)Ò(ÐÖ–V#Âwüðí6º¼ŽÒ¾C5‹Úôg†“”ÍGªB!‹¢í‘ÛÂî¬Ý;`¾åÖñ»é†FpMõs “Þ±GðÛ…¬Ššf‰©Ñ%ZaÒ/Ò™‹'ŒÒÉbªj±=ä7óàv$Á.êhm©ÃKm%k7ÝÓäYÞ{ÝA—e[æÔ/Pâwa>½ZßÓN~iXVÕÔäšQRé1Þ%÷¾Ã º½ÖQï{xÖq®Üµ€¶ýßGÜSX’-ÃÄõÙ6#Öl=ñæ\{Úm­äø\sYÌœu£º;;oLŽZ©Wå†Ò”¯TÚ¼+.mù†ÄÌ-ïÏ9¡öaŠðÕ¾Ï]Ãâúì^W“©=CÈÌGLúŒ•™œÛùõ§hˆîé~ESo(¿±Æ`ß4/^°'F’‰—¿1'NZÃhÈÈ¢w mf‘чÔÀ¤ÑÀsÕþñ‡ƒÃÖ`šDŽìà½M×*4U÷oˆL ÚÈkåbÙ†\QÞÀÓIɳõa‹!gÜ ˆÈz‰_!Ö‰{Ùw·Å› ã\ÅÙú¯=2•ó7Hdp%ý õÚyW»«‹ý,eø ì­Þ5ÀVPŠ£Ó~SG_jv[°@ª·ïØ„;®?© Alµ øs¢üJø•Á•0©;Ö%ε,6²ué Ö¡89¦ìk&¡nmvP3/B)q²Ùì ®9wI‚9B¬K>õƒOßâÍB~’³»†KûáýôØhVE5ó­­~pØO¢~‡¯fæzإᠯT5I§¾×©w3K>W9y܇p—Ö6À3J)Ô•­?0,±?=Õ+‘Âø¾-ΗRJCwŒ6 ÷Ó2ÄPÝB¥ þÒµ=AêÚEØRX©vçÅèºxâTˆ¦¦Z»;¯“ð ÛÕ—0Ëp5v4kL1 ”dó@K÷oü6Àyú$‘FΨë˜ô!ˆlûE'Û^ißH0–uÁx$†yÕI Õº› dú5Í¿¶Ï‚^ô팉º-éÑ+ð¤K§HÎm%MAˆ¼¸ÈÔÐõ/N3¨˜îªefZ‚õªíºÅ¼<á¦Í‹íõÈ7^GNWáL¾ê>»ÆïûiG öÁr¹­pîµ<e0c«óÐy8å=4s¢zØÓª«¦™iE{\|î‹æ¬Ÿ+|ZÂu¿|61ÿÂÌTíRËüSÏZ$”û‹2þÇhCѬɄc·îÍ7É”… ŽûŸ6ðSÇ2H1Ä×mƒ¾òzŒµnݬۓJž­bU!”o*Ösÿ<=µÁÒÎó»EâIôCnRm@2Ø>s0BÂÂgQò³V]H÷Jž1,¥Íc|úYÕ'¥–ÛÇz²g0írUjTaŸ€d€\ºì„­ó‰<*µ ÅÁú)².‹ñ3e XAâHÙ>£8tQЩ~›ò‡¨ÀŠc¸ø(¨‹iºV —L'£ÚEÈ–¤L˜çÆÐAñЈ,hƒê&]!ßZæžÕ OTàŽæ°Ëñ|4·"·>}´¸ <|¢uÛqÉVày-™"ï"eÌ’ë®=e&‡ '™ò®E =9Š‹å¼*Ÿ˜½ä°¼“g/v^¹Qb®Ïî%HDð©t¾`®XÙØƒú ŒpìuÂ}™¸ÈÙäâ×z1¹b$;XÅt$jO’¢êÄîd’€uºo?~²+%.r&¯þ•¿>ÅëFj—IâÔ÷$$ofçWõ~œ¯îm””(í6I²sñÒvo˜÷ÉØoÝ; c¬%Èv±K¼g6°þ0z™fð«w=sgŠH:×`À»©·×z.ÅØ‹P yÐÐ1¸\ /ä£ìºxwÜê\•fœÃ #²åÈå¶þíõ.ðåïëiÝbˆ¹ãôÄãèW8\ÒŠ¸èd© CÜÍRQù Ìö©'ØéÁyÕaÂí)Xºù°çd÷£zÕ,~§àI¶7RO«•‡u¤UÁ1ÉÀ!QF¼&ñÌ™ý`x “ÌIìLß!ºQæYwâ4§˶_F›C4µB@ªiüIÖÞÆ’À-šÆvÌÊàH…Dw,= ZØJeˈí‡êY„Öü‘”?ŽܦR5¯¾DµÚÕÁ ©¨Æ"ÂÏ»§ób…Ë(¶joŒÇ¦lhÌ]´ï|BÆ •­#%Ak»–úÙ£0à+ôƱjDÈ;K°jŠEpIU.&j‡éHs1|$ln2GHúŒwåîYë«>Þbú8¯ÃV?q¾‰K 0"nëæŠ‹ÞÇ¥¢RsîežIÀ’(…æÅVêðèUz@!J:î÷'Œ@/ô çG€„u=éèâ02RõÝZéåaþ<ÀèÉ\S#ºÌäãW²ŽÐ¹j—oÈ5†gåæ·gd.è]ÇøI² på>Ö]Dû€Ò°é-ɧ,xÏDÐÇed&.§ìÑ/Bí±Ø<-ìº"ó¶Ûì'ž¥ž-„] EúMóP¦½C¶?È/qnt.ÞXX-¼ëFuo%–‘·HÒþž„°!_nqØ–¤³…&2MN½ÓD¦–ÞuÛöÉ{›mÞµ›K î<úÝ£+ZPÃâ…[ÑŽÛ¡ë¶µÕ¼úSäb³Ûw"^üs^C™º.’x™m’&iÂBÄîµØá¬Êk¥/u:¸ JZÉ£E+N(º©!{ûÒ§pÄÌH ·ˆC¸«þ÷2žÁ@¡.ØÞìB¬?l°‘ˆJBÊðÁå‡AçÇw• H‘™ý$œÿª×<à endstream endobj 86 0 obj << /Type /FontDescriptor /FontName /EUVBCO+CMR17 /Flags 4 /FontBBox [-33 -250 945 749] /Ascent 694 /CapHeight 683 /Descent -195 /ItalicAngle 0 /StemV 53 /XHeight 430 /CharSet (/C/D/M/T/U/a/c/d/e/ffi/g/h/i/l/m/n/o/p/r/s/t/v/x) /FontFile 85 0 R >> endobj 87 0 obj << /Length1 1441 /Length2 6295 /Length3 0 /Length 7266 /Filter /FlateDecode >> stream xÚvTìû6£Ci™„ÒÛhPºSº¤ÆØ`À9@B)QAJIiDB‘’îRR$å?õ}ßßÿý}ß9ßwvÎö<×Ï}=÷u?güWLEUœ1NpM ' ËÕ Ld€`°„,àç7Câ<àP¿ÜˉAËÿ/»šŠ#`êPÁ̓êúx!@ˆ´X9éé×Qÿ˃þƒ¹Àq@)0,#Â=p˜+èWr³,ü·ò &ÔŒÇb°@<‰€~xo¨/ˆóòãÿ·áß;tFÂp@'¸  øOv GüÙ:ï…ôÞ„‚}þYÙ´åŒA{üÇýwsA–*†ÖÖ¿ ÿcRUÅøñ¢â2@Qq)0ÊÁÿÎòÿ¿¹ÿF È¿jÿ'£Êý¡@¸»¿iøþ¥ ¿ÆEøï 1Ãÿ‘½-X #|Aþ¿Åÿ;äÿ¦ù_Yþ²ÿïz4}<<~[~™ÿ+…ôøËNP±Ž0Â\ ÿÛÕþgˆ àÎHÔ[upPÂd¨ ]<þ¹D¤·&Òîl„ÄÁ\ÿèïÒ{ Ñp#Œ7ò×3…€Áÿe#ÌÌð”x:õÛ'ŒÒ¿Ô@Ã0οfN\Jõò‚'준xa8áþ¿u ‰¡18B@/ˆÀx~õS a OÚŽÀý2ýA!¡z÷,A€=|¼ÿUp~˜ßû•óñ"Dã~ˆPóßûßïî‡ÆG1°wÝ*ï¾=,Wáð]îSâ_¶|"(Š÷jô9¦%O|•>ëu ’ÜÝF?µ¨!°¯<Á}†_¯{MUŸhÜptê`2¸Ü¸ü¾ÿźJU%§¨™òJЙgE˜;IÝ…f]þ,OYZ£¦C¿wZþUÅ“#G—W^IëQ}`gV0ÌŸíô|„•‡ 'ÊE!ĸãO7¼0ĘÙέ› Þx ‘‡·™x48]j&îÝÂÆÇfÃÊE²Ïøqð^u-E—å3¾0o&wØÖ'?Fbª…ÈN+dtRæf2A¶B©‹äêŠËüfªÚ´ˆVtÙDÊ‹•3‘’;eXb©•ÕSð~f×ú-ü(W1cM%Oóé µÃ×O/-HÇ„êò^eWPØ¿žÄ½ãu—[q‚[k-¥ìj$ˆ†Û˜F“ÖàuH„ºÂ!”¼/ÁsYÔš Ð •bR¤îÈ=¥tNѵ/©¾ÇÁF*²ÓonŸ\eaaÿ$ÄA¹[-íîZ4DìvËo­qÊsƒ˜rÇýšH⊃RèÓ?»£aWxÑJù}#–щ‚‰)#÷¹™ZØû¸Hò)¸·§¬Ä&;n>°yù&©´÷È”‘†*E¨W)¹šì,ˆ|)iÙ²ÃÓ”°•p6Âþ¡¬Ò©)ë ÷>l*7¦Cßí®—ÔÌN8bò­ýpð,ÔˆÚbk¹ðòX| éžPëè¶=²³äØ’VݪQb.ˆ¡ØúZm¹Cå¦jˆ¸ß:ÙRaÔm7FVŸÿ êÀ·ý…þ%M·º3sä˜ÄCcŠƒTU6SD€$õZF¡Û\~ýüì áÑÍŸ™q1ŽO ÙVóîÉ2,C:iuŠü§kÁCwc×'—Ížž …\âÓáï;÷œ{l¤Ã[%jÀ˜Ø¿fáïÞGÛæß±¡<óvx2ÉfVWÚ5tûå„‚«ÊDùlßG2yúfÞxŒÓ¨oý 3Þd{ƽG—½y¡-»ƒ œØ½vqfôJ5ßÁžƒ R˜=¬q†Ä~ÖzvßùÜ¢ìܧ`åÕ”¬^vË&¾P£[¬?~Ja=Q€ß¾°$nÑRË"XÛÄþüë§ŽÎ%ÙMÔv=¢žü"#§ÉCq0«ãLÌ3}ÔèÂÁ’1ÓCýÇ8ÃiõÆ ¸Pܽyyé;§c”Âö_jG}UªÞ0=?µü¹‹}976­Þèø«w·|ù‚¼ëxDÑB­­¸y]j4"ioûª_öý—Dê#æ±wyc¾I${ƒ’"¢¹áð¶oo‡r)”@&1‹©JÕ«<áž­)m Ï”pRT‰fgRøklnùö§ž<¸Ÿ#$y;_ö$ÜzXŒ6;>«íP쎾®ö¦SG÷„³€°û¥ÆãE‡—g‰‡C(ñÇ §neëÄ’ûÃ6†ÄD¯öõB„üÂê•~^Ø»übm‹7åuV$©\1û=ÀkR•‹‚ÏŒh©d¢ƒ§ì«Q>š[écâDZÙI¥åþ!(é6²›öz$Ü}~”½àÑÈ“¥Ó¢?Ì^éXz÷æ]“j´[#íêÛØvÓ'Žñ¶ötìçÏN„óì2ø V×ÔÜ’&´ÈUàÂ9k>6§“âšÏ}ÉO¶ié2?¯sj¯¸|FœÒµ +3lŸ‡á–{>¦Û%J|ùIõÔéŒ÷”°´W%*ºþ|ZàŒ‰Õ:¨Ë µ|g²öÈt^‰È‡ñˆhâõñFªMwyMrô#dúõâÈ…ñÆÚ‰¬Î'‚ë‰øjïW k(Ûð°ðäf{-WÃ.î12å“õ9ÎÔxoÒ†céK‰ãœ¤NÇQa×…¾RÔ\')Îï^VZZ^G7«dÕáÓ3ÊŸr‹4<…DãÓ4¢7ÄFMüQ†’lõî³+ÌD~Liu`ƒ#úb’æÌÉ•y[ ¢X¶*/ÀùñëYЧûسÍ^ÜfÀ4%û,f“Nñp_ðêúêéAKk1à¶úÓ±”-Ü ÃV¡Æ­ =T1vaÇ«_ËFKfÜd, Ðî–ïû<¢xÞÍ¡M–•ѰãK€ùUN§[©“·¿ 2li¿|K>¬bE<¡±Þôî¼à‡¹KæM÷jÏ"}¶ö*Õ’•ÑBn¥Cõ ®´£:qשù.6)OÈ£ÄÄ"Až©üÅX j(ˆƒÆñeÙGv%µ‘V/syç™kÒ_;q’õæª×Öaʛ渶²ÛR>![Ë·å¹…µÔBå÷*5…y éCìwÖ£lž ØRUpʦýAý™¨Ia…òb‹wLÚd–YFs»A'ÄYXÔS0OC^“¹³ÌjÍç&¶®ÛVÛÉbù¸ÆWšš‚½Fjê¬C²r_³"&ªFø/uErïßÓ2˜3VxhÔ³­ÞïA´´§Ï`†í´~Õ]< f‹v€Í?—ßš%rKü²X8+?r ì+ÉÈŠ¡_뱕’—³2ºÅ›¤ÍºðÚm[zV§oÛÔ&,6„>kíA e©‘<_ÛàɈ¡X¯tãî\èì²}:ŠOìMº¼Zœl7ÐHwë0Ÿ}ÒOþKaqòý$ø*èTÇÎÆ¹t5\]iZq¶ÐåS. Ú¾¥1’%ŽJèk!{SZ€ßÎå3zj½Lºþ«»9#´à²µu‰CO_ÒT1Í2.+•”lÍàƒûR–ªöÄôÁq–ŠÃCâ·’=WH îx–GäÆqðdïýôÒééžâæ+Pô^!ŸÙÜÏ%».·V.<ªï*”:.Z£ƒ×i|8F¬Èô1àâjx%f@íõôF·Š¸B‹ê‘ÒVîÛV“h†r@«‹C·HHÍÉO1 ó±?ÕLúRÉ*Öé£dÄô^0î<£å' +ñðÄùý~HÈúµD}g›Þà=ñHËïi bë’#Ķìù{…ò¸ª.÷¨mÛ(UmÞ•¹ûвsá%µúM£EH›ÝQÌU nÓarÖ4Ù×ÇŠ\ߘÕÙ3•Œηq˜ìÞïz±Éñú±×aűûo¸ˆög(§8g£²î£X™MÉ™[EŸÇñ%<¤¾q§oá¶ „dy"ç~²ã ZYSÓ‡>tåÜy+6Üa1:­)Üã'Á4™º$hbEÇËU›”#—ç(ùÍ*†§’×iÎDŸ#ŠÔ 5|ID4ïFq=í}\–qìp®î€óHœã³Ù:dKl³$x·¹‡#9¨Ø¡ã Óël|íO÷~—šç(zQV(ã”ÓšHâˆGÌ…(ä‹„©êXéÕÞÔÝ^ïÙ·”Â}‹Ó‘4)ÉÈ'µã_Ôeêº/«Ÿ6•}ç]~µ?Ù‚Ñ810±Eèâ÷5lÃÞ—qɤ|p j0þAaò.†¦Ÿ©ŽQ}œ®”•…æ#wºdÑžÖdɽ·]Íl²ã³óÌ~£Î8oäËæ¨R€¿ óòSË Rå¹É·2ƶÍ?È+a^zRWÑ[ÚÒýüpéÛ2w¦g,q> ‹Ñ,ÑÜÍýK®«Û:{çMD|_ÉܧÓp" ïX©·‘bV`ßWlO;J%ºÓ1šÎ|˜Ë{©ÁÕ”ÑD¥jCQüÝ YÅ­%:ϺAõ¯·"£ö}Ü÷I$‚¹';3x‹¨‰ò ›£Á†%äáô jË¥ãª7J\ÖõnÑB@ÇÐÆ«›W£†u{^~f“‹ê4Éí) €»‘çó@§êWýp9}»Xã“BYs²`áŒ1«s(Ñà‹,ˆ2êÛ¨­‡9}¥£ï{Ï*XÀëóž»6=G¾&t3‡EÖÌAv~%8æþÍ;6¯ß@hK÷“ídjRÑk÷Î’Wšiè¥cÖa!Wx_’b kuæ–k©Å²Á:æt˜´ .¼¦†Ð)-$Q&·Ö#çP³a¾Ç_œäÍ,ˆýÔÿcÆçà\û‹ºÉg×»ú'Ä1qQ“ EEJM‘¯Ê“oâŸu¶{ˆ.ðûÓ2U[Îù¬¾×'n1KÍJ‰–fõJ–Ùº~Æ8),`^®-„=Hþ¬xY{Ö¼ábjCp\Ê“0‡çgK»=&÷¡ßйZM“»³l­/«ñõ§oDÏèY­¬R(òÀÍ/ ç(¥¢íö»ÏÚjφš­·RYZdFìÍÁQß ›Æ­DÆ»0ÄùÏ(©' í" NѪ™îä`F{†š»Îm»úñÑG¬â"Ù\³kº&Ûj>×(Ï@êxËáM}‰A='ÁWtOî~YÅ'lJè'ì››æNû`Þî„"mÍõ£ªëS¬Y½ê)èÉÎ}wùCx›YþuÙ†nlò _ wrˆ(Lî™Ê©ÅðõQ5'¹\þÏô5>÷ŽÓŒ÷àƒÕÄÈyÁ±+ XæèÈUÛÍîצ u{½©¦^Ì$Ó—04””>6“M¤¾j•9?Af‘˜Ë¢–ø»ç)óE5 ­£~bqÞm&ó¢)\Ñ–ò™iÄÍAIßçBîø™æVM²¸ñÔÛ›;MŽã€9‰ߖøø” Öž§ëÈáã°™õ^Vmw—ù'ß&@=óê4'<ß5o{!‡‡GkU û®“¶Ó—·ùXP×l\ ÃÈoWÕð¾VÑ’VUªáîè1žÃí¯2_Ë'9ÝŽq(ÚèO¥Wi¼Ðªßºev‡nHÿN³Êq7¼>¹ œÀ2Ñ^y ÷'-‚M=N)Í™pó[œ^c8ï•Z¡úˆ›ÏAõNlxô¬ú˜ÂpÌ±í¢ ŽU)o*N ‘”¾ -ØØÊ0æm;î2[ä™”Ê ç£@Váráy¨Æ%ê®DHÉÜÁ¶’šÊŽSõ%J«ëøGé…¼Ð!9cýÕì‹P#MGõ‡vÑäÁ—l~$T –>’ņçߎ¢õûRÛ+$PÂÓpûZ‰OŽ|·És¯g>[¢½”± O «y¼ÔTÑÞ.#wwÒ{]†ûÑ•EÅ7*ûJ TßÇ£8„+ ÿqÎûŸO‚4%ã×¶"ê¤K1…¥,»G/Fh˸ý‰ñÖë­`+í"~ÉraƒImœß&+p ®õþ…@ð‘Gè÷wo¡!ª¹göþ° 4^¸ÿÄ©ÿ{2¸½ðY4ò‘dÉ-Ñö2=#‰k¥ù ežö…žwE’tôÃGOd» ®Ý1ìë+œ¼¼X¬§H®Æå;,Ò9Þ* —zKc°‘ñl18!èpÙÆ°Á¼óÇÃõ«¼³4ÆŸéÔÊS2tšu!+ŽTÀ  ÒØ>=º3È_.½>zsDîÅ<ù.j_ít‘E„`@ ’±Š€)"ä°…(ÙxQé@zó¾.Vâ¯ôOÄVµœsÖhï‡r³«è®^â—¤¼99Rè14Êä Þ³™dYíVÜàlp«½™{‰(vÙt/âhãioœ¥êWÈA](–KŒ…}Gt;Ý‹Rš¥^N®Xs“)·DÛ¥í¿f3wÍ}¶\´úæ;Ùœh è>%ÙnI¼ÖKŸ•«ÕkeŠ+b.q¬}¡® iÝMMÛf-sëø8©½ûÝg÷cëýÀ®V‹nƒmc¹i]åé.b¡•RW£ç+’®[ðp‰o:K®’Üe 1=á\ä3˜ã(Éÿ‰Zpæ#¯J,äcÇ‘ÂWF=d Ð©Ó²hŽ-?‰hÛ/Om­2UºšÓîH¦9~´{µ™”è¹1!i|D•qv/Ó¹QšTLF³Þ]m4GÓ•rN[a…§kµWijGx†—¥Ô…rÏù†›q̶Ìfvö¯)Û6ò“¼'„«9l(¶3ñYíËÂTwk¯#ðÔy™èLã+•6†ï½(Mª¡3óƒMã!3äª4+_ž²8 ¤Ç}~¶Ú¶*J7D¡‘»ïî¶Ò¿>…B»ó<æø,Uàv )]tºÿh_£ìžÜ÷hÞVÍ”õdÑjH¡:öeª§™´ ÿ·“mJýiέx7P"3}ÂöP(‰¾ ®çÌ“3áºö>G¢}4û"9>Z¼™@¤7súʾêÕ¼„Ó6¿*»2_±sÍŸ¬Àºwâ}£–°|ëóyñäAÃk»ž ¤½S’Oöãù²…Ö¾UmïµkÈêXLálZ^TÂJJФ»—¼ñ;×Þ”)ÓX2P/Tò.ù3jk «óÇùÚ„XÞz dA!Ñ!AbH¥yo(,]nàyà65OCµªžºþ¤?6üSBŸ›]æÑªKúóΪԷë&¤ŽÆz²ܶ‡;[É¡°ë~V0ôfÙ¹,sö=š€ˆ±÷¹èÛ·F³Gê‘uö/;!ú3wmïñÑ—«5i:m÷00¾ø@Œ»¾g!{GgòQ¹l-—ºDt¼oŽ˜"#ïVت™ÅcRí¢Iká¬n°)`¶»…mÒe“ˆ,ì¶¾wÍñ¦žÎl#­25¶Ö¯W5r¸®mIªÊøÎرtÜiâ á`(|¸qÛÿã$É#)qvà›…¤ªUL dóÿÀ8Ö¹ì3Ѓµפü”×Çoà¦ä¢½ÈE”Pp1öeÛ=Ã|b/K#4Za˜5çB›-ÆåèÌÓQÁÈZXêEµ°Ì0ÆîíU/)Åg*ÚnÎÜMÏâàÿŒxîÜñ£&/íìrs<¾èÑMó™BóL%´Š+€Œ—^×ìÞ~ð†ŸÍ<ï}#ÏÔzÃBOµtH1¤z7 š—ÖûÒûÈØÓ¢„vŠßqsÇD@wG$^ÚqèÙsô÷‚»ÙàÓ½"ýra—îmž©ñeÝÇÖÚM ß™ïïÒ~“<øJƲ9|¦-û‘:ÎÀÔF—¯ŽÃW.™3å~ëSx°ÕXÖ[gÖ«³ž]™oVQm(‰÷ªwætxx‹4E«·Y#ÃrCŸå+!òNöb¯Ù¤¯_Šò·l\××(ˆšõž1¥\.4Ì`C0ðVd?1øÀ¬tƒaéõ /‡Ê¾Ö—¯#jÝ39í#FÊÖsÜ‘’Àm‰.’Î5ö+”¯ZÊž+ôéí°=׿!ÝaMrFÍÙÁs¤×È¥­¦SY7Ïþ¨èŠäÿ›bõ{ endstream endobj 88 0 obj << /Type /FontDescriptor /FontName /WAENYY+CMR7 /Flags 4 /FontBBox [-27 -250 1122 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle 0 /StemV 79 /XHeight 431 /CharSet (/parenleft/parenright/plus/two) /FontFile 87 0 R >> endobj 89 0 obj << /Length1 2424 /Length2 15144 /Length3 0 /Length 16569 /Filter /FlateDecode >> stream xÚ·ctœ‹úÛv&¶m5jcÛÛNc4¶ÑØfÃ6hl'4ÜÙ{Ÿ³Ûó¿÷Ã]Yk2¿Ç~ß¡"SRe3s0J9Ø»2±1³ò$äUåÔÔØX¬¬̬¬ìTTjV®¶Àß*  ³‹•ƒ=ÿ2Î@cWí±+HTÞÁðÞÍÀÆ`ãægãáge°³²òýWÐÁ™ðÎØÝÊ Ï xï`tA ’ppôr¶²°tyúïW­)€‡ñou€˜ÐÙÊÔØ oìj ´y45¶¨:˜Z]½þÇ­ ¥««#? ‹‡‡³± ³ƒ³…0#ÀÃÊÕ t:»Í¥ P0¶þ›3@ÍÒÊå–ªƒ¹«‡±3"ØZ™í]@Jnöf@gÈ?@UV è´ÿGXîFÀÊ`cfû×Ü´ÿ2deÿ·²±©©ƒ£±½—•½ÀÜÊP”’cvõteÛ›ý%hlëâÒ7v7¶²56 ü¼1@JL` Êñ?º˜:[9ºº0»XÙþ•%Ë_f@…–´7“p°³Ú»º üß;+g )¨ò^,ÿ¶ØÆÞÁÃÞç76·²73ÿ+37Gu{+'7 ì»ÿHH¿i@W+++/¨±@'ÐÓÔ’å/'j^ŽÀ¿™l‘Ayøù8:8ÌA©ý¬Ì >.Æî@€«³ÐÏçOÆÿ"66€™•©+ÀhaeðÛ:ˆ 4ÿƒ¦ÀÙÊ Ë B6ë_ÿ~ÓÍ™™ƒ½­×oñ¿Í"£®(©)ÅðoÒÿ²ÅÅ<>Lì¬&v7€›à÷¿†þ-ÁÓÿ›ªdlõŸðþ0(koîàû' Pùþ›‰ûƃö?ÛCø_  ±ho+«)èƒíÿ÷.ü­òÿµYùÿ±ÿ7&)7[Û¿%hÿ+òÿ’0¶³²õú h°Ý\AK"ïZûÿ+ª üg·åfVnvÿ—+ëj Z1{ ÐÀ3ñ1srÿC¶r‘²òš)Y¹šZþ=<ÿmȃ­•=PÉÁÅê¯`bûoSþå6ÐÔtd\@Mû›-Øÿz•´7u0ûkÙ¹¸ÆÎÎÆ^¬ Qcçâø°VÖ èù÷”X˜í\A*P†~sg„¿ZËÍ`û‹ôâ°HüF¼–w¿€Eò_Äà `‘úØAãù/â!•߈À¢úqXÔ~#wõÈ»ñ¿ˆ]L­@Õ±5þKçdÿ‹ j’•‹ÍoUP¨&¨‚|š8›m殹þCþg:ÿUfû‡ltýy>ŽéÿGT ÓÈ·©ƒ-¨ƒÿ†ÈùÅÎîd@­e1ûr€R3s°µ5vþCÅï,¹ÿBNn Åø-JÜü·WPpæVîÀ?ø ŠÅo i‹¿YÀ?}€³ü&¨–^Ž–@û?$@4«? (Pë? ¨C6@Pæ¿ä¥hû׬þæƒêd÷‚nËoW\ [ö ÿ]k{7;“¿®ŒÅ!î)‹Ãï A6þÐbc%êø› òázðÙÿO'9ÙþCýß>‚V”Å4 ¿;à *¢£­Ûï$8@%srspš™üÑ 6õº²Bÿ­Âbº€Îû¿6A™ºØ»Xþ¡òü;Ð}dqµtþÎ ´î,®(€l¸ýA•wÿ‚ŠâñÇœƒ´=ÿ€ ó^¿£©zÿ±ý?·ÄÔÍT"׿Ï>èÐüÿýˆ=¦Ë ¦!Ö !÷ub„L{߸ÕoßÜH9blÁw˜!¾*àÙ”rÜð¦ä¼Sµ®Ñ…”‡‹'”Œáñ°áïb†ÅÀ Å€‰$8enTàGúG;uÁú !/-ïHÂkP本òV›JXbC5Ì;€ø^çàÐI†¤²°^ñpŽç1è§¢Œ­¿2?ÌÜp÷;Vë ð4Ä÷=-Ó4ïu[Nï0«»0ŒæúÅ‘¹æÂ¤\~™j—óðw÷°?Zv}íïe,ŽÊ§9¸b,¾[–ƒLô§ ræQÆùpûš\òNjálœ½ãF6FQßÑCxrŽ>„)ÝÞÜ#ð¤ØRæg¬w.OùÉðGîYÚó<Œ™«™1#Š=¨<…O‚8a²”áKšQ“G2¡bí­§ø·o¶ {RÜ †MøðÚÏóÉC®›(ß?ª½×¨<@?2"B;C*¾ë›5ú`¬[HtæË0E›9zøakË_RJM—·“­ÝØ3y‡f¹pžß´Æ]_çW_Õ~WXã¤ü4CB¹–÷étS‰û$‡~X5þëJ¡D41ý©%ðü¹Ï$³ïé€Õ=d(hØV‡ÍÛßÔØNÎΑfeÀýÚuúÀÞ*ÄÆh½:¡„kMÓªDöf ÌVi¨M—t±ôÌÖ_"д‚Óx&&YµËWXçÑoc2–=œ6N˜)p|iÎVÁ‹¥j!Ï &qªàQš™ñ a÷g0‘½ŽÕ|Éêª<õÒ›H»‚™è‹ÉšiˆV#|›öÐøÐúPP†•ø¦ú#=Æ0£ÑÜX˜×âï%ˆ=FM5g*$¼ì§ðMD‰>rm¨-cœïìË4¬ÌŠ{øñ}ÒAØÂR´kjí^›‚Ö¸ÎVBy¨‘Õ?vJA3íU¿aÑŸûÎŒO…§Êl6gë2$G™ÞÝɉÂúzÎCFR9JqSÆ„±·éméÆÁuÞInÁIà(¨žHèüí£émÃUÀ^Z L©$|Mëé3‹ô@ ¿ŽÚ£²¾„<;J¾LvZ1”bV6£UA|…Ë(m ŒM› <3Šþ}_£Š¶Á,µõ†g Æ~êÓœ‚ĶûNç71]q—Òþ Åo­ô7ø„Ïëo ®iØéj'S¸¿YÜS¦¹½™Å‚çdÊÌêÁc"5ñºÜˆñÀ†§¦Š@ÊÛ‚Ââ¬&«û°Ã÷~•ß…^¥ÌúµÎ0I`¼Ÿkl«%ÐâÝ!3ÑÊCÝÉÌVq¥ˆªçû-Ög¥åoW ]íDÙ"-¯}\p%Ñ.éÎB,àzæ]vc–ŸPœuÇgÍÖíŸQÇ"0¯›ÔXcBøéÏBI ß+;žJ[ù ‡áB¥Åc~”ôñäV9ärú¼„À¡5¨‡ùâÀfK… Ö;®=ã˜ÍÿL|\ûz·!ªIA5™… ½ê9öêÐL– 5ö0ÚÂCÒpYIL¹]Q,CXƒÃ¼ë(£z(‰â^Š'¦tÃX–RD]ÂK(µ¯êR'…ÏTZŽMóšÜàs)> ì-űªn4„¶ÛñG÷éåŠÖ>ßëÆý`ÓVºâÚ—ŒROüŒlJ¦ÂN:¸Ñií»fo1z‚y,ˆˆ€øÁÇ%wS­Ã¸% õØIfw5ÝÞýóŠ˜MY¥Ï´…1J¤"+/eÛë–ï¥8Oš4 œüNÒ”oÐsÄ[ù³Ÿy>J^NöUG!ôb7¾/ý|ÃXÉZ4¿ÒÜï|¡¬¿¯Õì=í]¾¤8…—N:@Ÿ;Þ{%Lž¼!óN¨†½çЄOqI2l«W±F倈oí0³µsžî{IÀ%™K‡t¾¯.ëÆ3C*K˜‹P}äò±äV jšzÙÇQ’ÏIæë‘ÙQGK¹"ÑšÜY³e1gòý@Æàr(û‰Ð<F}ºí™aÏòuÄ^Næf_.J]#+¾R[flÄ è\Ì™ùž”ÄóQº˜Sÿ)¦œ»»àŽÝc†DCÎñÊ.È¡FË%<ÂQOIcœ·Oº–†zN4&•E=©íRÉ×ë„ñ»Ã“œñèïa¥ÉWœËw+•2LÊUØo‚Nr*ûÚrà9Is— ¢æ×uÑÙÂXð¬ï*•ìQ ·g–”µLå]Óò!E,Ùy8x49 ÒY-öFJO‘ï/#Íf…$ +3Ä9#“g'¸u,`΄ږ`)Ë WòS{åùÒˆïZð5ï]L™¹~H“}Ñž=â¦SgÚ€¼›êfImÕéAW /T<}o«†y#ÝûŠ¡OÍh:üjr[êJÜ…ˆÔßlúáC<ŽÔñéQ"ø.Ÿu ¨R´ Þ'“L:(îæ’°éäì>Ã\/pg’):h_7on²Â0mÑäm’f?ÂÀˆléáLfêôGbïÇ ê„ÈÖj3Ò>ûÍÉ ½ûR)CžtBð +e‡1D ÌÏuˆecÍýgŒ‹Œ;9¼’c­£¶W°é²ñú}³Nž‹MŽFx2¼æ[ÉW´ÝwáþàžX…[!PSA&epß×%3¾®÷1bøI"Ó—IŸ“{6í`FÜ©æ¾.ƒµ7üp¦QüùŠ£LÚeLüª0™ýttè³9ÛÓñL˜;CG„Q¨l"É(‹ÅÆáë˜Íȹ#¢VõÖ8:ÌyòF8½é³®N|Sãüá+@ý»eAŠ¿çKÒøú¹p’.Ê"×èd;d•ŒÀì¬)*/¼  Xžf¥Oí„™ørÞ3MH#Hü¯® «®Ï†}ž]²{ˆÉ¼Iß?–|L@TŽ öÈ€âétÛ­? ̧–ÝYÛ•ÝÈ÷9¥šeX5ý…p”É›ø*%åÊ™ð2ì…è]­'n5^ÁæC+5RÖ϶ÍÅêþY&éKHÐ/äc£8t\Ùí#‰…Ðà{þS=`ÑÒkŸAÏe’œå½–V+t®·Ïp÷餰´Z*klbü,ZÃâíB¾£YJHg°Ñ ñ†ã{q¸f®úü©ÎÍ“=ŒÚ E®‚?=ºŸn QÛ…ã©þ{1K\màRkR 0GD.îàq«†Òº\X»­ýÇrò‚Iü©è͆Z$*€»qe)Ivr±ÿ`=Pu˜r6…œjŸ4Ué"¹Š0}üEç‹0v‰@ŽA‰ÞN¼tì?RU™ùºÐ»–õ]@Ä AŒüç Œñõ«ÖÂÄ+êV‡Ž{7«•ÉÃÚV,ެ®Êyî(íŸ-à{‰@"èþ®0’ÊD¢MKÝâqløoìÜëm?’'ä. ´M¢™¯+™ôØÍ¶.f·K=Ò7é8`ÜV‚™žñuU _[x°=r¯t;®žr·0ló kÃx²ž³L‰ ±Ìš'† ;%ó)O_#â„M‘ÉPÜgFÕ^óqçšl_'$Ê%B{Yé»îÕ£g{Ù^þb¡%Ú8ŽéõFM#{Í=ü·T‰(·0ò“Ò•eAÚÍ É2s¤Å ZËmàQqì°Ûæž¿Jlj›(x»òéřϢÝUç*DÌ‚‹.mâFdàµwá"!Ø>ÚN¾½ÖŸÓU¸öÇ1…“Ø"±^ö’×8¶]íý¹~ÁIŸ‹84°C˜ËØ›þûF^Ja8|,°&|ç·ÆÆs§yÅ lÉx=h/nE,—îÄÓÍå=§_s‰ÎL:õî¹¼‡(I „ò·îbîíD®ÄlÝ2*6+Iê›cœhå•»Á¾v…rù¡¶]gáÃé™dc´Ë3l ª>AíQ¬^}k«¥Ç#š_ Ngz·4½1«(=&”¡Nµ4q†aÆ×Ö'øÍHÔUg+9ªµG;ú¿aÿ•'õá3Ø÷¬VŽ®³ÐiRñ¨l¨F\ ¥Ý>W!Sßü•]¸r§Èˆ¿¹šR}z hV)­ú¼|z„`á[§—ÚèµPê^³¾E«¾mµrBáÃx® ÕCÆ·¼ S•s$ìá#ݺŒž ]v¨ç4næö×6ˆ4®gПoâ¶\¥§Äà«‹ ßGuݜ޹R`³±ÍVQ›Ð»&ÌÀeÛÐz"È: ³õ[2þÚù5§ òòí9S^ìÛ{J…Ò]׈¾/*kŽ‹+M0Æóv7<¬ øä0ÛÅÆ’ì2¥3#»¥úuãžaO¸! î¼'õž6h>1G‰›–StõEâLu&2ôø:M%Ü­Ù“Ÿ&yט˶9_ü_yÓçg‰ûú¿2üxßÚì¾Êÿ¦Ÿc³Ìd¦€“ÇÔ5ác)&+T;úY@^æ•.“°íÅ{b÷Y™æ¼ºb± |°}(¥!Íy]VXß\cŒ—–:^v7Hš¨‹Öb¾œͰÿeme3a®>¶Ì|o&‘ˆËÖp®þÉÄ¡¬Ä ?>æ¹”ŒS¿Ùãr¸-gä¤>– z»¬ VÞÊ!òø¥ þq£†é /¶ÛÕˆ§Ùß“—î…ú”‚‹%× ‡D¤Ü°’˜Ü{SŒ²Ë¨V¶þzEc—ˆ•Äf’VÊ"í^:TY^Ñ¡ûÅ|O„¾$åþAJ@N_: šMIŸôñra ÙÚŽêÒ¾ H³Ìhf,G„U‹N$Ÿ|ä×±\]/Éð¥±ky¾4Â}€“¦`@ÅÍN•ª…«óeœƒ+•c56i:=üºÛ«N×QÜõP± =Öåpƒ•KÞf§û`Á1B<´«ëfáuÏv^¥Ê™øM×”õ¬Ü^ùýËÒw½y¯q*¸­mÚh¡Kn*_å¾®/oÅþö/#ñèìP€¡¾\•· œžˆê¢ONEBÁ,!}'¹Ó–ÖcÒ3›Qï¼#ºÅyºIó‘¤Äª«a>º]CÜ“í­Ø{lj±¾¬{¤HÉAÐ2™)ß²3æÄÍí|6cådzy' Ua»‡¿‡t¬–x,œ£IØ’f=Šîm¾æ=ùòœ´ýúÈ„cNëÂdõ |  oÍ|ªWˆ¬Ú'}pž)E/´×94K{êž÷AŽ/±î¸*'C„ö‰­.{ǧΠL¿S)(Èð’!–y‹¼â#Ù ì¥9\<˜÷pq/ü3ªðü:ò•ê.ob$Ä9G£r"ç8¾…I½D\¥ê£‚ËàÔ£<ÒS¹Ä]ÕÊå$¤ÂÃê»}þïÆêCwRkD +5ÏŽÇvÜ5ÉYãêçú?#¿·ÕvFgÅsžx%¯ðÛM PÆú»wî#9L5Lœt³á”©ˆZuJ³¨»ÕsŸZ| ™Ò”U“±z55ª övó«þ¢÷,;`èõ!Å„ñácÆä‘™õööFà¶'eJŽÙÎâ ÇhmDÿµ•4³û¾¤ Ë6ëåðÕÈŒdÒŠmSmÙ4Í–ˆœiØÛ å5 CÞùQéw`XWÈ¥‚¶ÈI:ÑSêæ?6É« å43O12²:ê ¼pU2¤`×+†°Ø6æ9!øc]ŒuØ pD—ŸSêú.æÈŠ©¨ywå¶ ré ¿•ãZ>³FÃa-l!>õaKÏ0“o¨?Pæ ù Çj™-}Û·CºÞ™ØS®Ž¨äõB § `èO}ù”{Œ¡”p¹6gᘂ‚ÎãJý–÷H%>et²t ¨ÝË!€ý6ô© }âé£X™Kd0û_IóL(ÂýþûH¬½"EÒÔš \ÁÂ4ýìÔÙ ¦(ò …s¶ŸÙ^»JkkÆŽz¬LÍi¼íL?|t’:•í9e~Qv5Ÿ¨¶1ÐE˜%¨éåv³d­ +—áµ(ÞzŒeÆ›»ÃÂ4)d’Ãö Y ;5¥×ï^€y‰ƒç3Ö‚nF[•=¯plNáÔˆƒZš|êW²±­Þ q»‡0Pûž­ÍçPö™û8þ΢Â×ã éµ³©qÿÔò¶óɆÚ;'¢pôîsæªë¦¾»ëÍö.ÙX^4˜Ê «ì—8«Rã´åíIÇÅÎfü72[»~ž…§rNq†ollÉ<¿`¶¡5K‚E\~‰“QEGgmBpVí»f«HŽhØ.mé?ãybˆIx8…«¿‹°j‹„u³Ä>,àBñÇøHÁ¥F5Íß°JŠb™Fþ"ü 6­ß+Êf»ñA`R+¢2ñŒœ9ŸÀca›]uÓÒZ”úG=AÊYO ˜ÖØæè9[‹K1D6*vŸ"suS¾`RÜÙÔz"ýEÎW\Ó.Â4ç¹®Ní2_«´.t! ì$*Ñ»Š‹€Zö…þÄ:«° kè;ÁËOÅ8NÉ*Ù$`›Œ!¡n _Òê¼þȃ­‘gÀ]|Ùcfž*Ärædú¸{(šÚCýå«$æåX^”A«iù5I00±e–xüÎHgUô ÁÏ‹L¤Ó.|Ó˜†sïÊ‚‚BÁ Ûzê>Á ýl>x->)¨¼&º§í°´$xžWj5_! P»õðØ;ÿŠìOKei²5hæcŸTµ‘¦ˆ—U’=þ™ꄎÆcùceÒö´}AyR{Uë&GV0΄uøz«g==í•]ÞŽöMUù « Ÿ+ÙºISÉå@¿’Κݵ2 GSM©½VZ”Â>Qµe’›…tx%JžZsØèbsÊ!”ÎE@æƒÂl­}Wëaþ¢ß%‡Ì¯Š³¶ æ­n$"Ÿ(j6=,ËÛðæ‹žá§ëiÄÒFj*<ª<¨ùøˆQL›ñû+GÞÒ­ÊD´f°ñƒs7s z{å^d†piÞ±¬òr‹šf.ßh©%iCîÆÑ'7"á’¹@Ä]à^Ê §Gks n[ݨ{2ŒmRâ°þ ñ‹ý:· áS¶6£%OxB¯qÒ¬«585AyF y¿“'&ýôc]rˆ¡Å!kA3u%®“MÏ‹wùÔ0ÓÕDl¿Î·¬°.—Br%N¢›­ÎÙ)µÑØ/ 2W\ÕÄSÈ;Žv¸7Æf×GŒS _'uG¡KƉ¬k'ZVJ¾Ï„H^ˆ>Ý’Òd’=Lø+Ñ[E0€ÇJìO4˜²g_{eÐQ;P=ß(ëï¡Pìè†ú cÿèìxoÅg3ïƒæüm0›òHK+2TKEÙ·:ª£N‹!w‰ãé±Ëþõý>5 Â>Ìnw¬‹"(_¦À„Ñ製Ý~bÀÔjÂcâ ¾ø†Ä7ÜÄñÏS]g«»x|o3ÒEÕ;(}¾hȨvl‘oà(ð·a”0‰¦Ä0eÔ‚‰þ †ÝkH:g–éÑ4wF%Òaá\i|˜ 6{N¥ƒßÙ -_¨ZrÁe™æª/ÑäÉ0ˆ÷¿¼aX˜3D©g‹§ ª[ÊUh÷ûN6›ÃêˆÍçRÏ‚Iìªr̯€õïZ ¤£ÞצKy_À[2¬å©[¶À˜¸£YnÅÆ$ÞZJÔªZ#Y¥B‡Á‡ÿÿ²J6€Oâ4Aaô$ Κ%ÓC)|™š¦ ¨×eë=‰Nx*ýÚ–\‰¡G\5ïC™# o¤_XwLëIM=sÀBè^²ý4ùBŽåL+ª³“5ú èhµª ^¦±6ß±-²Â3Ë4Ðuð±á^šÝÃè. 7d€žêbÏú-ï‹"ß×ukîöZ\ñÏÓCÓSx¿öd¿ë~5ÚÑPLň¬7Y ÇŽ‡…s(q9¨H0EtEÖÒ0 )©‡µTÉ·’L\OÚ×NòüÎMÈDÕC¤2fY©É7 Á¯ÑIz΃–LÕÙ ·¤n g&ähBž¡ED7ÖeÂÜàk›b@ô–Ž~åeÌIjOÉoì›àúÅoæ›¶,±âájƒƒ"­{rÙ¹sMŸˆjwT3ô¾zVÛ‘¹œÎ¶Q£ÝÊ@œäºûÏ”&¯U]ëYcTTU;kÌÖg2Cn~&÷L¬VÓâòd¸=>*‘» …ôÇ=)kƒCó­AEþ˨¾àƒîÝ€ôÈ,qÇàZä®—àSpö³ê¦œâx5çnEŒ±fžÑFÉå¬u½p:ÙÃlÇå|g·ûfµ}š‰ VPE¿ª6ï¬*—¹…û¾_¿×Í⺺†~òl$_ ¼d#þrbõKG³XB\©÷‡èö±Ó9ÕaªÍOÑ|¢•9¥gý樣ao—#Ñ^›ÓËEÉ:ü‘I÷µê")7_–­aJ„:l]køcÂ:[õ†ø’T¢´×mª“ëmΈ ¥©¤ÛP=­HF!ýÃüÒÊõTúx“‡±GaÈŒªŒŽÖ0›iù©*¹RÅ]±µ×‚z_$øH³x.”Û\˜iŧ*rKßaïï ÅÇapÆø9mNnÙoÿH¹1þž+ .”?ž€7ìÚlCÕ´Loo¿63úÑUO³­i¡ƒØ~¾€šƒ00w6ÈÄÏzoÍcc¾U9>™{ží‡­]}öDO¼=?sæ?__r¨¤þò ÙoHô®I­ûÙY ˜”«qdXÌö{´9b<»(Ø||•"nwßM¢üÔ5Ö6þ`Ó ÃŽ[.8äû aëŒJðÙBªrf÷u9FÿA¹ÆRÕ%6y&æµê@~%Ùqç¡eøœ‰@Uë·§à ›rœõ{qaÕZP´«@:1ísnÝm‡+–3ŽT–°”bnv†{ é„!³ã|å "eР¹ö0£ÔÓÒ­÷Ρ€$Á¾õ;‰q=[é 08Ê&ÕP’ ¦—ÕMúƒ"o&ÊL_? 5¿”™¢D>^Z­„%AçüÁ l’»žoï‡~¥1ú$›!Рˆ9 Ö}É]ìñÿ,áJCáu´“H®…ïÐcÌßo<­ò[ì:)%Qd8à ¤(è¯`Ó¯óî~;[rYµ²jÚøc ñò Î; î3˜7ßȺöîsp¬ 箃M땊æY­÷œ=6Ãw[1/•¼M›ç·eÆé;¤Ÿ"NÐ1ÖªÄ>x_õWûI[±u<úÉÑJÚãÕ¼kÉÖ2Qæ®*¨Ÿ˜Þ\j<á?ø@$çf¯õ$'ŒqƒÝì L‡6×> [Ò‹¾8 \Œ–Ðg,KŽëéC‚fE4WÅñCÜX1쵫À5ëžp¿H±Râ)CV»àäAŽ‹W—ìŦ†:)”§ù ­cm¦MÁD;Ì„0:ùALe“u®Êç‘éíG™MöùUr›IІ…3§ñ}г:Í%O·æ>Þ'×:Xã·Š£»LéèbBV6— ó°Ðc©)ÛÀJ¨ˆQqé÷¡ŸáéØ×)îî±)Ùêÿ üL9-ç(KËSÐÚW¡¿Èh>QïyˆÆÝÆmÅ,pø6/r^¶VPð~‡’»57ï0iF¤ÿãŒFa“´ŽE %'WÍÙ¼ƒBMÜìJHb‚à®%Y¤…0Z BBëþ,“~­ú‹®6‘âw³G82u²+È”BFþ^„žþ#'n3ƒÒš¹tÄ󠆢ÒôG "©BŠŒuŸÁ޹i¼V»æðž¬tþ[lôϘ<)‘V–êÔ–~R{} ¹EnãVé!Ÿíý¯¼Z[ÙŒâðÊteÛVSVxó^½6 Üû2Ý)UŠ»X-‰¤Z¾µ «•ÿÔ’No^á§ÐÇb†ŒUd ¤„ç-Ï*hèA¿AÉÕðÅ ;?jÍ[“£Gy®È(œ­h«AÊtâ%‚0”f՘Ŷw'étÛVH¸ËÿUòŠ„üÞš§»ÛijÈóƒ`&f­*Ã'_ÿ.¨ï[˜-tÍÒö?å>E:V2H­LÁTÊÐ!ÞÀ1=CeŽìy€ÝíUßurèžËS!  Í¿„—Q7¨q9)¯Å¯,‰,ˆN—®6­8UÚ.’@ÇO ÃPë'Gã¬Sa….jâcÁw;ívx¥QQÏÞAéÀÓ-íu@_1¹ W7œ`S>:¦mé£<ùôñ¼Vˆ)”/yÒ ³tïxÃüu§æ"²ÊÔqÉýh’8"2À¶KKY+Žc.ç:¥YՠƨiÙø²¨ýJÖ¹¨²/H¡ µr’íìØ5 ×ï/Ð$™°,Ç÷µNCn…gOGY1ݱ¹Àð¶ÒCñ¾‘lZ »wÙŒüâTâQÅh¾Ý ]ŒxuÖW Ê–¤ªÈƒ9îóå oöÚ§/÷AÆà'Í__³4´UÓû’°S—¹•ÊW–xqGrñó/´uºÕP2Š\Tâ̤5°“®èÌalùT×WîÙÒ)Éi¹†L\îFôBoÑ,<Ú›ûc’²Û QI¤³'F:É Åç”ìVQ8üTì’2hÁñ§) Æ­~öMþÈ'(Ùöw‰ßsÛœáIééÎèûTΣdѸš‰k”7Çöñ‡8Jƒ™‘+.NÙSŸDó”… í›‚®¡‹ñë>+¹QÖqa†£§‹óéºâÈÈ9âݶ«¸[u°ž"n¢¿sÊ–ä¼÷ø•ß׮˽`æ ³ýû`ϻØC á—Žm¢ñMZ*Ñq;Ùlü÷˜¼™SGbz[ãhUv­DŠò2Õ,Èn·Öï5Ê ´¾äh.n2MËpÔ©·vÝék¹¿­|–ódZƒgÕ&]îrH—ý\Ó_‡ož§ *a€üPe{…%¨ÕÎC'!‰ÝKó £A‘Dd‰VI%C»Óîɺ¾Æu§»L­qæ0³r|…Iõ=ù¯šÉpœåO]°6I6ö˜^>¨¾‚Ô’ùÄ ä=ÏE`¯p,›``fòYy¸”C3 *Ï>“‹rýXI£B ËBG¡ïsÎÆ=ð ¿~¾¿i´@$üöRwHÌ¥2Ù?ûagM«&åx·¡Ôî2vHëU·8¡þ ‰°ƒh´ ÏÁŸ·Ÿ§SæÔQR£oeOÜõ¶ºÇˆdêÜJZÄrdiì—Ú>G¹‰‚_ æù8ê¬çÖÃj(í¦ra™2Z‹*O’”[3Í“‚ãiXgåˆU#F"æ :àhÑJåŒÅtýç—ç‚dŒÆ• ûr¿mc€…í´®ÊÂ_?Œ÷²ï©fªÌé%&›Ð"½Rš¶õ w4x€ª¯ÉÅšA`Øÿ"á‚´^\Ûƒ Dg)¤hîi¥÷K /å™VU&‡vÿðXãB©Z ™Rõs'Zðî¨G¬Òb”5#Ó Ùz £&Ùµî™m á 7Gi¼Éa{ÍÏbflñœ+¶¯æSM{H¢—OÁî_'•Ûxµïb[òÓèO2f-öÉsq{ƒ›™mJæíTo8¹Ð%OKZ¸ïò†ï´%Ñ—X¶øú»]¤rˆ…àgüËú ‘õN™ÖLeac›øP ,¢`IJ¼±×ÉFö¦vEG‰øefg×YKãVnjã!©iÊ«û&v5€NF¯9ëäW~´töùF’ZÙÚYEÈåœa–vžþ²:1[Döüª[¿ñK¦'Y%k|! àæÕ¤ …!ZT]±ˆ5\V·˜¶tPß¡H”rårNºÂ.sÙð:×0‹pN-dŸ6'c§\Ãè^]ôÞüR¡?ÈãgàÞ5ÿóØl~~ùµ×na.’ì3ÂKfƒ|@3×Î")QföÑ  AnË:r¿§u‹2%*n‰•2n*_ËÏ*ìA²{Ëú©™Ô›]óuˆóÞ›qªMŽP ?ï*Þ,×÷tkV‹Ï-ôó¡3²Š|ªf‡i}=âìp”(=ß EÔo»³ÄÔbÈQñì0ßý#×£¹ïÀY®Öλ¿ï²VÒm¤.|ýñWF7d^e` ßJ'üè}*ïÑ‹š@Kù–5þ{â·üßXØF¼n­BŽmï¯}7‘z£ðÖxùÁ¥éa8ñµ»!³[–⥼ö¶ýªê'ñYÁ 0ΰQ„1^nñ!󤔗ë9|Cõ‹»©ÖÕ~ü 6ß…†#¢Ç©Ù¾G¸ìƒÏ¶ yPQ‚íZ Ö­ŸYÁìü•wE (G¤d ‰ÿK ½3’ç¼òõ{¸¹ãíã'þ‚¤Av[Ô©"”YH…"À·"_`ævßL|öËWÎPÄa‘"‡ hÐë°a,…‚žÃBÐɵ®ßœY1Z¯è8—ÛLzÚøÀ`)2;ŒÃÛÉÐýç8în=píGp8_ _¿ÉæÁ} e`…­O7‡f¢Ü\pJ”c£f^¯Oü³ÿ|%»H):š…°v÷s)—­DqP˜ü>vü†tj¢Ü}[ÿ‘R:¬Ÿ«c>;)“Žî¼8ù±îtñg;Ÿm<“V8B5ÐÆ^D4DkS¤˜ÛeÉ)Ý( A2Dª·ùÓø:8;I×€ ï°5Ÿ=I¬¬ -L‰Úæ§Lem»úlømúpE©‚˜gÏOAÂîé™§k}­íùáó²))²âQkå‚·ƒp^ßrâ°'àöð\¹q£œ Ü6=¹JÃÖ;- X¡äðìM›Â× âlžÐíåÊÕ­Oö–có£Ü÷íH/Õ¯»L¡ ¸¥ûÓ„Nèy²»{²±lâÂ…¡c†=Å‹Û;/Ž×ƒ¡ÇlåÆO~hÈ×vŽðŽ>ZÀ}Y½zš:7Øoà„*dmÇßíÓjúÜHܨhiÊQ¸Z3Eà¼r;í—g#÷ ú üpÄ‹¨Þu㬶o»Oœ™5ƒÔ|»‰’St‰"ü…Ä礒üÇ´‚à„?œòq¤&æ‡q ÊPV¶ó:¾[ T=Ùþ´®Ÿ&ߨä„~Ã/HØà;FUýÙž Þzè‹ñ›çKk:,Ž‚c#W”§cm;Þ1VýíÇá yv d4e}nV–½üûƒT“ý[dNܾF|Rg‚Âe¬|ªu6뻯ÈŸû²ºQxcÜ&‹XhšˆKŸ¯l^Íλo‹Ê¦Ž¯/1žaT #lÕ9½(µF¡m»¸¦úÛU‡©òsòüøå=ïh‚-‰ŒàQ­"¸ä,+ÓôÃhÕÓ_”<˜ÇJéyB€{}«I¨@ÎÕ–ö>ê§ÇÂ%çš‹àÖš¯Ùø=uS°LpŠ ºU4‹›Ëû'\ð›Ê"r´;J²:߸7¤ÚÃ]‘•ÈãˆÔè™Ï÷¬küåðŒuW–^†9>mNF5x®ÞMn žk úëd ²©C.TK¨A;£q˜„CKD®·<‰òC-“N¿’†=ÁÀ[²Sð£*=æC“ÓR/·¡ 7?Ÿ‹¾¢àyM嫯T|ãK Þs$L“‹ïZ+TÐ^€t*m:S„4ZðÁ0Íá†,¶ô®°‘©‰>ñ‘J  ìt\à­mÐê›å”4n6>_<Úº"Ÿù“l`YþÃòjç]ëÐe“ Š cÐÀ7cIéòq"E ,D…Q/«)ÌÜ7ílÚtSÝ»°~í÷3jüªÐŸMÿ­:Ž<ýÛ¨â"ÎNÙ#GÒë$Y£ýïD¤A—²õƒv”†r‰g>Bxb­¦kEšT¦¥—Lj˜Ì/?”êÚ³0ÔlníáãCMå ßp›wØèj–·¦:­9ðÇgg¯‘Á;Ù Ò¯,À –ß%² Ùmáp@DñÐø KÈ9”yÚÔZ`ÂÔ.ùRj1>íÊI_vl#|ÝjÝ]ïí;mPIC¾«AÚ•Gî=‘¬’Zr&bjÁ!*.ñ w–ZÔC¯ t†œ0IžíÇCÄD¤³´ÇÔƒ|ž\ª^}1jœ¹P6˜˜Ë:G”.¶88'Ù¥EqO`.:úµk57ø%øSúešB.C´ŒZÇOÚ¹)Y³{YϬG"±)îÀ>Ö²ë«lî÷92åEg­£«œn—³UN¹¿4•1a—º@ê¶û~_jwz"ϸGí†ù®M䎣9¦xéβ¥9XªŠxÖŠPÚèÊ0åCõ.ï®»ùJVdm¸Ã¦ß1h'§õQo'ŠáWòYV•èÌQM=Pv“æ>#1ocëe$Í>ÕÿŒ‘õ|t±þëÅËŒ–¸†°ÇŽÞÜ'æòSÿ¼>y-Ô :åhž’üñ±è“¬ÙQsŒ‚ƒ9-ü ±I’\ý^w×Aç? Îj”EÏŠf IWÜ90ˆ­ky–aÏ4¢å‰e>À%(ŽN÷Hr ‡yœö+ƒ=~‚nÈð‰Ç’°® $XûÎ|B#h%­Ð„™Â nœðL=%)ã&×¶e’–”É~¦é£2è%°‹ˆrÿñ8ÒšÿÚ@Ÿ7†i/å2Z§äOÈØÏMfÔ%ËecµÎí+tŸ1·âÏ×k€Õž9¿Ç¾«4x0¢È±ç9UDç08±±š!.{¿Ë7W@=CÚîri‚ÏPó±û–•ÀSy³ã}…ÙªMºîÍ(,åÛtç—Aü}±$¤M¦øÝ’Ÿ <ã_¯Æöƶ-žÝ­d^göZqT¢Gvi’l¯~¾Â>JžA?T-6pß‘àSµ~í`²ü ‡œòõòhwÌ{Aˆ:B0&Ï€ÿ½½C*Öˆ}œ p˜ZV•Ïv¦fmÄoÎ?Ù雬t{Ä_çK/Þ0®¤¹ÐV¦¿ømÞ”;%'‚+êÑ-½}-c:ÐFGÜÚÀÀ®Üyþ>¿jïØÓ³yÇ =»fœ"§Ö»Šu2ùŠb™Àa Ë®NúAdX2§üË&1dè ’¨ŠiÁjEøŽ™È—6¢òõ´· i©¯© 2+KúŒÈzôi:a„ƒìÔ—;º„¾ g‚.f§_& K*ËÔŠrùU á3¹“h‹( ñßUh˜8¼ûH:yðqÅîçyÂ7*d!Ñ=6ñyÄTßIŽÃ©»ö̽üáÍTJ€¶u‡üˆ7 µõ°XQ5-¢Û?ÃòƒÈÇjúù9í¤,xÝ<ÿèÔ;T$,)£¼ f¢^­·îd• ïüЯ¤Û÷ˆT<4pžd”4KŠaèòf`…±¬ŒÍi'|m­E{ªèÜ!ËÐŒ×îW€‹Ân~øA®(‰óEmÖìö±XGÀŽ=wS¼X£§­ÈÍ5›±tíîñcÿôÉK¤âr=n0šÜ¼K™‹·r‡;ˆC·ÊJˆÉåîÃN=Œ @jÄ©{ÒyõÕçæw^G>Ì?GZzk÷góFË×ÌÓ«'âu2(º³ï¦G]‹-² ͉éÌ ´…þªÄ )ýY%`©ü¯º22çÃ![-þÒ } ]^ P“­Þ9nnèE9Æ×76¸äþć'ÊŠ4&Åñ$è&1f;¾—Î4´aƒÞý´wtñŠØ´íÂПý>H¢+a:ã…Ø¶EaB#Úë(ÿꪷîÜ Ý0B_}÷­+æëS|——±V'ÇŒMç^eL»=>séNIrFN!ÆÝþéhfØ0«ä/íÒ]è÷ñ“ùg2Š"‹gÉ3×ÄÁÃòý¿¸_—…>å Wíù“X!²›º}…¶¦^k¼£sƒ±,4R²qw¿ú‘ôÑ–'ÛÎq'âòpâ8ÒÿBúh‚ ;x—ì|Zt/ñðÿMe5 endstream endobj 90 0 obj << /Type /FontDescriptor /FontName /HUOEWF+CMSLTT10 /Flags 4 /FontBBox [-20 -233 617 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle -9 /StemV 69 /XHeight 431 /CharSet (/A/C/D/E/F/H/R/S/T/U/a/asciitilde/asterisk/b/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/dollar/e/equal/f/five/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/numbersign/o/one/p/parenleft/parenright/period/plus/quotedbl/r/s/six/slash/t/three/two/u/v/w/x/y/zero) /FontFile 89 0 R >> endobj 91 0 obj << /Length1 1421 /Length2 6033 /Length3 0 /Length 6999 /Filter /FlateDecode >> stream xÚxTSëÒ6ÒE:Ò[@z ½÷Þ;H I€@H„R¥‰TA:‚ô" ½+Uz“& R”^DÐ/z<÷Þsÿ­ï[Ykg¿3Ï̼Ï;ÏìdmN6#SAeÒ ªD E„€2U}Sk E‰89Í`h8ôo;§Ô C"dþ¡ê¡165ÔG":Þp€ˆ@DBFDRˆÒ‘^25 Ðè P§*ÒÓß æâŠÆÔùûÀæˆHKK ü({@½`` B»B=0Á 8À †AÑþÿHÁ#çŠF{Ê ûúú Pàe€Èú‡š'À̆úËaŠtFû‚¼ ŒC(Lˆ7õ`ªLµõ†žPÄ_`½¿€?‡ùWº?Ñ¿Á¿ƒA`0ÒÄð‡!\Î08`¨¡'„öC @È/ ŽBbâA> ä„üÞ: ¡l aþá‡{Á<Ñ(! þ‹£ð¯4˜cVG@T‘PEôkj0/(sîþšëŽ@ú"ÿ^9Ãç_4 ÞžÂæØ}o¨¶Ú ÆDôo›  JKHˆ‹ ÷P?°«ð¯fþžÐßÎßf ‡à@O¤'ÀC s†b¾ˆQ (íå üOÇ?WD"" Œ8A]`¢gǘ¡Î­1ý÷‚ùlù‰€¿>ÿº³Ã( ‚DÀýÿ ÿÝbamS= ]3þ?”ÿåTQAúE¥‚Ò@€ˆˆˆ@RRüÏ<ÿ:¿Ùÿ¶`v÷µÎH€ô_$0§÷7Ÿ?Êàù36¼€V0@bô ðü[þ÷€â@0æ"ò‚ß!ÿ?íÿÊò¿Êÿ¿w¤á ‡ÿöóüøü Üÿ£go4f6ô‘˜ Aü7Ôú×@ëC!0oÿöj£A˜QF¸`t.(rWx÷/; ¥óƒBŒ`h°ë_Zú»˜pj„DÁ~=w0Q@àù0£vÇ<[P˜–ývA1“õϺê0òkEÅ% //?F˜•8 P3«¨ßo‰„…H4&€á pFzýj,&¯0ý5f¿¿m“ áúmøG5°·—ù[˜­ü½þ=ýP¨L´8‡ËFº½Œì¸¨Ufôü4†¿²Ú›dÝ#ŽæšèªG¥9}_ÅRM7òÔh¡¼Éè*v\¨Û[#QEE;@‡-o$ež:9G§…Å¥"~¦Zž–ÄN_ìŵŒã(¹ü}¦p =yPÌ»ÑÅ@5ì–áƒÑ&ïz¤øœ|^Ïò1“ÃF¶Ù7aº–”XWÚ§*œ5¬³áŒÃ1x~/. ¿¾ké§þ ²´ìÜZû]S<Áƒ1ûÏ“t޳’EDíÒäáRƒŸ«HÁYBr0SO‡%Yufíöí$7k‹Ÿ½¥°àS—@×éÎ#»xógBLòópÚ»4em”¤&Ù-ÄÈ Ì(æÍô6±2 nZËÇ)×úîc$öþ£°•¡ÄedwÝÁƒÝM;ËûŒjáú­ø1ÖwWJO¢Z( ­gG ­ŒÔô®E×D[oU·–#µÒ‰Dhý¦éoípwwxÓµ#I.Î.- X™M²ÔŸ—ìg¶&Î`Ÿ~çz²žgÕøIs/DÛÄUä‹FžÓ—’ê‰`þh8‰ê… ¤x©‡‡0’ÉÇyÁïRIÂû8¶ïØð÷Î/›Ç¶fî!ÛÃíç9š¹â?ÛQHÁÓ7šQ­\‘‘¯…“ÖÖìy³ØÌ>õ…‚HN°W«'ëWiÂ:MÙ d·Ò®¼í±Lc‰”Å3%Tä)– }K™fë„Õ™‰uì§ÎË©ì„ñÇC‚c¦†”ògÒù1eÁHo\—ƒA㞈¡¥õ†™³$åáX‡®œ¨oÛGy¬ÖùUƒ"šðOUï6Æ#ºAåYv§[гÄØûÇNèxj†+¹DòO߇R|“íÑzé$S€=ŽÑ>›±çùÍ×IŒç­^ç¯e‹ëmÒ·º6|X¤Ý‰ý)hµRü=eÔ†æ×©nôû"9“2G&‘vU²4UÙ9àŠ}Ù¶êÒÇ$›mq|nn•ùÙù–w¨3AýÎÂV1„»ª÷S7£`kñQ,aÆ~ç—„àèÅnÆø…÷´Ä#kl®ú õH¥&^.>œ4N o/bWÅeëi¿mÓ}zҔǛñ•à~ÿüØÚ?­¬½8?û•ƒþhüµ£ R=Òÿš‘û4g¢nò¬mZ6TDQüPgEKÅañ°ïÜÝÀ²ÑúվƂܖJp}ú¶{ýR/ÁŠÉ>ϻ٠{ÑNr ¶òÕõžGd;Vü8Ù6<È#9óf¯ü.½ñ§6êêÈÿ\ª ÔÄw>¬”‡ü’ŠòYúž¨7‚Þ¾\ÄIÑØ®>c¦ÙE/<Ĺ҂fE-©6lûl²kJ—ì‘äçÙ5Š(Ó&½ŠÂ´Y˳Ñj1ûe%N³¬ .®ëÌhy;`Ù+ßa_þ»&{ wÅÝ‘(+}@ O7]oZ]Ô!}€ðûú¦Å€i½^›È ÖXµ,wɾ­Õ÷=›âlL/[N”W£«cê߬Ò/´(où$ùpáU[Ö é¼öOf1ªË!Â}èmÉýQx¥Hf¾ý§Òñ^³Ú n5æûºgT~nmB7ðÇ.øDjç^~!îÕΆ«éÛàˆ…7 "§ÇÜr“Ö+øPÁ=á Òø|ɰx>uñ;O!Ñ_Š évª ?p4n¸°MÆð=G¶aÍà¹Å½4ø¶?V]`"ÚÖ(cdj¦£MrVÛâ°…Ø™|¡Ä® ôݤF¡Ï sžÇ:ÑÈ¥Úºµô°ŸG;ÊÓ!b¥kÆÔÛÝ*,§8Ž¤Õ Ûh’Üä‰Ù)*·r}ñjÈÄÅ΋5\fºëïæªdnmdï)—UR®vÞ9q4Bƺòjyên#AKtQÒäÈ #gº·7«NæLûó%N×;ð˜žy•Ú&xíãø‘¸£±îûcÚÓî¿sMŽŸùŒ‘Å;BÁ­ã·FŸ4—ѾŸèÒË|®­ËJ—§«~íÌF{ƒ•o¤³B_xÓ¿/ÖDªGiqñQV ¸¥S©×€KÛãiÞ‡ç Vlo<Ò _†•Æá4¤–?Ù§-Tµ¶.r¥ÞºÓÎ&ãÉù_äx“€žì—uö • b£ Šûbà¢/É[Ü•µí¢yiõ/ÈBšL ?ÿ´N_D42„?ÆÇÏLœå*ã³O`Læ¾+a‘­Ñ]q5É­Œ÷==ïb™bد¥ü¹³XÁÿLZÚ$WðÀŸÛc%—i¾&íÉæÐ…]jÜñîëw‰A¶fÃá*^†)vÙØ+7»Jĉ˜•‚NA€â¢Ú~¨¼ÁÅÃNæÇ÷i¬yØ¥ø¶u ¹—ù‹] ×â.°ÞBObµÖ{HÕ|×Z/ìŠB‰;“¨w!ÏÕS¨‡‹{ù†-Ò¯fRqP[¬nº2 sÎÜ9ÜÝ9ìîîÖPã[ .kÈÛUq-Ó•ŽGN¾‹åž=õd…׉`5éÙ ê}ÍŒ¼“iPmµFyøs«Ë Ì=­Óøj~aÄÞ®;Å_Ù1mÝ•¤RVò¤ ŒŒYz ².îÒ¯)y¬µ“âáŽ/¾È:ÎRo~Vž$Ô’ixñlÕZ‹ÙI$µq­]k0°Å7bÐÄÞz*‹žT€è‡FÙÛt-µÅc EÏcÿ©§­·–95äÛÃ{T¢ñÏÏ 4uŒ\ë4ضàj;ìÄ„ª™Ñ,O;ßܼ)7“þ$þ*ì†ã]̯²ºÈœwÇõêÇ`“›ødáïBî•…R¬ˆº;‚NÞ:’b¹!ä; Ç>«;ݧ!ºK–9ú3ËbŠó‰Ëõí¾ÉXÒËÞ¦ðaMzHžgµ&‹©Âšr3¶ÔŠ*QÈhU[V1ŸÍ¬( t«E³‡sfn·ñ""E~Ê*îÇ­ëñ†Wq¡^¡úhùš(¾õ0'Uœ®ö$è~Fe¯º8wÓEIÚÕÉ{§ç ùCLzaØ»F©\’h4ö™·f€¬®ËÝw'SYd›½yÙ·ëe/ß›¦¥÷øtŽ]}U}P¯Ø­Ñ.œ¢Á.a.T TØÄÇ>å¯k< ¤gž©œ’ß û‚Ú^ÞðCêØ­ÎW°ú^I~ ~”ŠÞ §8*´X)¯ç¯¢(n®ª~uÅ,WoŽ Ïz1W>à¿ùi¸/•À,?^UüJÓËeÍ¿\|”#1úi­ð¸Ñ¢K#ÖW$_& _ö³íÆíú±G-é.$3Äx Å?O¨>ºibÛE;™4s»ó™ðwøf_‡H5Õé+Ù`V²£‡÷ôCrÁs<2 ÐÄ:ų‡QëT6™wYtc\¢qËû·ŠzÊ7ɨ”âs̪žf¹Ag윺AŽÆºÁ ߬{«E夯’Ÿp…^÷II ]Ï•¶o:1ø¨€ùCÔ»ù‰‡ÄKb¸àÒ§V­F “—Ó›Ú›2Š=è' Iø¦æ†ãàR7QUÛ╆’ aî–—îÅ…åØ#V5Ü/˜KhrȨ{äÌK_Î,Ié!!nK¨yR1òhâÌ;Œ _Ò§ÐÜViji~uɺ#ƒ |ÂLH¼T`¿Ýq¼Gk®p4ý­/äyíó ÔÅúGÖØQøÖég?X}‘žT§Û™l™ê}F¹’ŠHº‰>7#2éµãjöì×.©*q¹ñãý‹F §²*öƉ†å©bߺùTn‰ÕGx#Úq8šW´Hw~æ;âC8¾%bÍàxµâ,(Mm,ÜWüI¿š§¸ðzphgº¶ñ ùžëŽ]\‰ÓQ÷ÍëíöJ‡Q¹©‹±ô~\ò=4SOE­íDN] ½NÁrC¥"NýdíðåmtIã‚~DÔì=†Va§õ©Þc} êa øÏq~wíO¢–Ò ÎéÁåÍòÉ‹¾¦S1ttSå϶·Š¨’Þ ö҆ϧIsDùƒC¶Ô3zq®ùØ Ö”Ôõ¼ HqIwê•©w8C´Rîa Tù¢jP~ûÅZyrºëÑ xcû®¥·Zm$&éby,O¹š ZÚP&’âŒëÐq7מË—m¼÷5ø”[‚WÈÄr\НmDúö:LƪãØt—Åb'GØí?M}s¹ÿCXç¬>À#ëÉ.ÿcØ~³2Þãdo‡Û/Í ì©Ïø7_FÙ-Àkü>rKø¯KX½T%ïVÓe1$ íœÍã¢äkç\b‘9Òc»ò`7^DãÛ6‹=™²˜OÕÍÁ5ÃlŸé¦&Ñ>ÄD—ŸÌZ–/G€‹n;Ý9˾a›à?‘2Ë ©ZrŸ 1QÞsä騘$ço©Ð}³¡p™\³é¯ô¹ÿg«ùê%áïW ½Z²ƒàÀô#9'Ér8—_bÛžRyôÛÃ4BAHîR§÷ÆÎ=¬ž1ìÏì!çÜÞÃAÔl Kbß i{;žÛϾxBÇ;›)Øl˜ØZk8w)JnRÖÓ@æ÷fk—5ƸŸðÔWÅe2y­ãÚôº=/›}¾žítt ÛZ—¡í?{O}ïõÈN¬§W™»>q³¾R”ëÕ3±´ xïp,Úôüs'sØ>ï–°§ÉàÅòâ« v:ÑFo¢ uhŠøßb-ªÔ昛ðv]ké׌›N1Æ/NjMá”ùnýg€$z†z,òåеœBTº÷ nÄEn^­ŸÓ¨ï¬C-D§)äõi‘T¼·ÃtÀƒ‹d¦ÌE§Z†Dbæß¤²“u[¶=‹0¼þ:•|—Ï0à{›¸åÄ ü¤ÒšëjåýÂÂUâÞŽü®$åkºÌ†³‹7G;Êâˆaí¸4áūѸÌU;J¨Á€oó¥Y[=`J:éçX“¢¼Ë4ÃGö-K•Ëg^Ç>~è¾ WµåÜìÛ=e=[>Dcþ_˜¨V3ù·-‘¸ÙÐÊLM\yXo*•sµ{Ý)ê.Nþ¾~ÙôýâÝ}KfßNÁ©pjýsd\_˜RâÑÛ|ÛNYJ/§cu,ÉPOßÀmɾ ] ÖO4á¨ZÖ^Lc»ºI8~ÂÊÈ{ÝþòôÞëÝ|bÑ’æÞJI.¼qàÃÄܾwu ›¶€è«êÂç\š$2ÔÂwJzuné¶ywTjÊAÅ?>äj–þªH >¾…“ïÜùÁ<7‰8AÙ@tÝd (Oê%åÕÍ8Ã8ˆïu=¹UÁ@ïð#l³¸‰a,‚"Ò†¡cÞ­’F+Áv®.r·y_“”Ë~Š‘½¶­‘"}eWQzêy\ B-LGN<”µƒ¦˜.fÔr WwYtƬúY€`›ïO×ëãÉ9:[žÞ÷iùñ·šˆ¤”lšpÕ¼gÑkdVÀ2 ,°;8H^æ¸ÿZ×¾Àê…„.^^.ä­„ÒÁ~S¨¹ùNQ¤ÎºdÏØLÙÍzõ›ã&åýyÇâZ†ƒ[í/ þ[u‘B endstream endobj 92 0 obj << /Type /FontDescriptor /FontName /ISLVKT+CMSY10 /Flags 4 /FontBBox [-29 -960 1116 775] /Ascent 750 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 40 /XHeight 431 /CharSet (/element/minus) /FontFile 91 0 R >> endobj 93 0 obj << /Length1 1420 /Length2 6193 /Length3 0 /Length 7158 /Filter /FlateDecode >> stream xÚtT”kÛ.Ý(¤ƒÂ04HHw#-8  1ÃÐÝ„t‰”( ‚€t·twI *(ðº÷·ÿý³Ö9kÖzç}ûº^6m=+„%TGñ€xùÄrzÆ">>^>>~"66}Êú—™ˆÍŠt!àâÿ+@ £Ð6y0 §€T] HX$"ÎÇàçãû;ȃÝ`V ^€*u!b“C8y"a6¶(t›¿_NHLLäáït€Œ# ƒ€á 0Êêˆî;ôåù¯¶(”“8èîîÎ vtáE m¤8Üa([€.ÔŠtƒZ~h‚¡ñ±ôma.ìzk”;   0î‚Îp…[A‘ts€žŠ:@Ë ÿ¬þ'à!௻€xAÿ)÷Wö¯B0øïd0‚ptÃ=ap€5Ì ÐRTçEy Àp«_`:ì†9€-Ñ¿'et`4À¿à¹@0'” ¯ ÌáDà¯2è[V€[É!¡p” ѯùäaH(}ížÀ?›µ‡#ÜáÞ¬ap+ë_ ¬\€Oà0gW¨Šü_!hÑ?6( Ä'&,,( €: [à¯òúžNÐßNÐ/3¯· `õ…YCÑDÞ.`7(…t…úzÿoÇ¿OD À A,¡608Ñ?ÕÑf¨õŸ3zùH˜À”Í=€ï×ï?oOÑô²BÀ<ÿ ÿ½_ ¾šš¬¾÷ÄÿñÉÊ"<Þ< !˜âG?DDù¾ÿ.óŸ øüo«6ö×p|ÿTT[#b0 /ïonÑ‚ã/ÉpþÝAæ2ÀñõÍø„ø èèÿ[¿Sþo¼ÿUåÿEýÿHÑÕÁá·›ã·ÿÿpƒaž ©ìŠBËBü¿C ¡¤¬µ‚¹:þ·WFËCnƒ¦8H—Oðæ¢ó€ZiÃPÛ?Dú{è08TáûõÅAgññý—­:ˆ=ú«â‚^Øo-ª÷U€CV¿ÔÇ/$ #‘`O">4Éø…„Þ ´L­ ¿ù òÂ(t Ñ`@ýZ«vAc†¹Ø£·`ûËùÛŽî„:@)ï·í_M!®H$Úñ›è‰þ>ÿÖ?ê…ÍN! BìªCš¿WÊ0¸ólá-¯¶DÆwE¡Ø§_zÛªãg(;Ë>³*»3ª=S66åÃÀuø}ØÃìcVàRŠr. C¡k]ö˜'¯ïâËG(³‚ÞfD$5rü(A‡éö3SÓI†S?CEÚ¶Ë· ®Z\¶MÄöŽ€¢¯d,) ¨X™œ–}¬hcÖUT¿±YÒ4ÍU_åÉÈV4,î›ls Ý…çºi\zÿâboVwWªÀé+µŽ á²0J:*/U–œÄ:ê„,Õz vY¡¯r%Éñ÷è ÃØ—°«'AŒŒ¬qt|Ž€bF»Xf"Rë¶êHmSóØ ?{¯ËO/O¼—l’C·š‘úÉZ`,p¯¬Œ²ëYܟвÕr©T»¹<ì6°6fÍŽÒë9¾3ð¹C.wÉ(ÚùXù–¦ÖeÔÊöÇôx§&IØðÓ»:åBòc&szóêÕ$>:‹И‚O¶_¶ÌäèžSPÜ‘»çpb´5¡t²¿8%ë ϸo˜‰[ñCaÛtUÃâRYã4b C¸„B¹j9申lbY§0JÞêŸ{4`ŽXܨÝîI£T©·Â·`vm\ø2zªÈ@ÿJ=ËÄ{ÄÏy/!»õYÖ²E7«Ê{ióM€f5±U'o­-Ž?Eÿ"0ß½á”!BiL‚þ~ÝnÐt"]p¦©ØÎ냗óÊóC¼äº ¹|¯½ ÕkBLË4žšÊÏ)h“hú(ÀÅÒär\…Ñd‹þ?§^ðj§’^?Ø«tM;ͼ‘.æØÏ÷¤ Lh¨Yž¸²:„f»t- G"îêÉ] ب'º‡*eM˜»ãð¢VT›× Ïos*÷Õ|?w'3¤I·a·?š&¼_d×€UýªŒE42¼½þ‡RŠåGþKVdü*§¶¬Yª²…ûö¸|ÀÈMrª){Å•!¨ïd&?éY[Å«m¹~eûp¹,4}Ä3¡›í¶å«‹F÷Õ~"Ô‰Pþ憳ã}-qU;¼ÅÄìðNȹÉè°ÝÜ« r³¶[>ϱ)ÝX¤gIÈš¢>;_ÕÄoáa³ 3­þÉgÉ‚PDrð!”·ÜùÀñ"îÎdP×'Âr&C¢¼ ÀRM»µdÞºŸYFk!ᙌ¿×Ä€ÉÇá— !¾š U=9ûsƒ)7Ómó°“PÞÓ{X×7HëÒýô›Ì©£G`rVËçÅ>±‚©+çËHn0Þ‡—pŦ½?†|Öœ‡ ;ÙÎd˜ÐY{yJG©õ3SÍÒ]²F_Ô©"€QΧýƒd­/ŽÂpb¶†Ny¿€¬OZ¿½!ÍNT¥’%Ÿp Øð.PúŠÌWþ˜ÎîOÒk"iš’\´6ôf]¤^Á_êícúí¸ô®hé¬-½3{†—”ŸV£,$Ø9'¸ÃM ˆõ®œšMu‚© ýx™ÒÏò¾;”fè«AŠ*Óµ9rI{vŸ¼wÄoüÄuK„ÀY Øù&öñ1N9GU˜¨€8¦°„0¤3½ÝønÎÅÕñjZœš}yø¹"Jü>nX—Xc6{[.½ì˜xŸ; ‘~~c”aÜgúnÜ’ |!õ»µ Ëñ—æ>ë0ië±]¶,e ‰ïËÆŽå hî&ÐIO®Ýªz'ßè ÃÿqãÂá  å¿ïQod-Ÿ[Q ¹;äD5„ æ ȪEg£³—Ûx—L}%¾­‹\‘Î5ÅÊãq©/‰ø¸äæ6Iª^VöÅÆTø,õgÑ~‘¿Ù÷9÷ë6.êÃÍF`Ï›ýy‚ÐÝÎÖÁ–)#1a…»ÌÉ{íŽ윇qª-dCzî4‚,õŸKW‡Þ3¾]ɩƩ K5hÜSMÙt~÷¤Ì¤#dÑ4SõÓ5:˜.õTÑŠµÐš‰|ºÇ|±•)½Ô?®çæmð}z+«žé¯nÚ%S>OáOËÏlšŽí?.»uw9»o×òëY°qàc·}9p„wÎäM÷ø›Û#X|U¨=kv/E% WÿÜ‹Õ8Ú Ÿ]ng³HÝßÊÐ4.Sd!OP>"Øe—…pçetq¼O¤¯ŠÐ#Ñ6y­·¬3&AŒÓ¤L}Äîíùpl£:ãέÝ:±´ò¦DÆÌ‰×%ã;/ƒÒvŽ1&âôi(Ë\rqÄlÎŒÙIàûk?ÀT0²éÖøëdZl6"¨sÛ}.¦)þëEÁ·zé›÷J)=ô4N‹”¬òÏ‚>rGL7ßzÑ`EÏˇÌÔ0¸#;g«ã5Ú‚õHä|ë3†Ñ0Ýö;K¥Èž¨ âÒãüØ•õéÑ2èÔ“!··¹0’'ðPþŒ³êÊVIác£àAÚÕxÅÏlþsVww2kJYF/Ñãûú¾ŽrV ¹=Ä\êiY6\a]z¹´¨}í–VpjÓ^71öÐdq@{Ô^T ^¥ 1¥¡x| XwêÕ= ælŠ>Må_`˜ \œA*m™FÏ­ñ3<éŸ$¡Ç°’è +—χѢÌ,Â* oü‚[%¹Q ƒEq‡·r‹2üùÁ¹øGüsÍšBRògêß­h\34EBqÄýØzžû^Kè?--q²bî¨|J]ã!FК$Úûe³)&ˆÿ’!£xŒU´1ÂÆÂ~;V‘š,`-š;åp¹küSC7“g÷!_‰â‹‰: ãñW%÷±}×Ã< ®ØË æ#Ür÷2Icg©+³G²ù³]ƒdµñ¤\#Ú.Ûâßö?¦Ô·¼õ´ß~iô¬§;5ʈ©¹º€Ó;ÕÙÒÕê‘yƒo#L0N³ÚÊi<,%<ʲoDºñÔÇ ßñ+>®e©'ÈŒ_òvüNéÛv§à„Qú·Ï¦îlÉ"Â$šï:ÜZ`“«2Ìhí½uB¦_¨ýÂåLÂ/ؤΞè[.d0¸bÅuóen*áb2SŸ™ï›L¦<ܨ-öŒwýÖœ¸÷äkᤜ¢|áfø­&ˆ¦O„¦aŽúÔs´3OMÇ”{«Ô¶Ö³{º"î9]HæÇR®o4zz±¼œÈÃ$‘ê`ÜAØµ×‡Ê ™ñ=¡ˆ£ÅóãJ.'œf™\ݸz÷Èa°íø&n¸Ó{º ÒÖ•Tb&–ê§QçiUÀŸ°Fû=çö'©7ü…#yŸZ;z)"*¢•^¥+µ‘áJÈ4žïO«¼Õt\ò3¬^ze|©{I&¯üzë))M©ÙOøb?”œ…ý´w‡"b¿.’mÔ &ßtð%údàk¦÷’u+öôvÙ|t–P`„ôÀÔ½ªq*\¦[šà9·';~mÌ*޲0è=+£×«èK —¸}#Ï×;U¤4ÂRÖ†• ~=¡œPáŒ79¤öÍ òwO…g^eHÒ @Ò¨¾ö½i¾s u¼ÈÛ‚Ù˜\dÜ×L:á2:‡{| üØ>ó)qM oꞪЭͿÝþM²”ÅEø¢ËGw92ߘ «VS¨o-\ø`Ââ ¥È:»4iJ礧 ZØç#4p©xÐYÐö­l‡FØå u žŒàž˜,Ä Åò™Ô¯‰¬¸ØãQczƒª…¦"æI,œ0ºks½N hm÷N_wj’”å$Q®Ž‘vØOÊ¥-2—ªÞ0Ví“ì¨Û0®hi]iì™ñ×4gÓ®Ù0pK$úvJ¯Ûù³ìâVøÞª ì£]Ã›Ž¨i×eÔMÝI]”;¾÷¸PŒ“ßs{”Õ¼ûdå)¿Ö[ÂSºÂë;‰FtïÞiœ//ÿÀKPÐ*À, {]C¾£=›ô6(ZÓòÑ!¦OÇçï'(?O’µËh\ßïXŪÕÃÔ³m_M˯N,¸E79óÈÃGMòmÖÌÕ¬y£ñ ‡9 ù¥‘ÅYµÊXu¡–SF¡P[ø5i˜ì>[÷ŒØëùO÷LX–¨gæÜ®ü_æãTªE Òi;â[ŽcÒ°Íuyãq2ºÔ¦®97*¿(;ÇŽÎ{l÷ÂmìNŸ÷á·ƒeïùžp{ne-²#ÜÊå+ᢛ¨S­Aq%~š#Ï©rçRÜÅ¥c1zA<Üq&û\Ù/—QæõÝñ¯Ÿ—M~UŒrþü‹$Õ§;ØŸÙì 5ê‚W¼ã꜂g0î0†”~òßz u¯a”¾`jþ–9«åÓPýh#°%¥­'lÅSqþ`tü†ôX8Ípj[dd´ï`ëžD¯¯Q·VßnNÍ”ÞoÞóåÔŠ¥ü²- k:óØáɽ“™^ûŽ)Iü—*}”ª[<º2\ÚëY\[#ë>söÏwL¹á<…&å¿»ºbõúašÖ_þÈðg!²4ë:¼Fâ;õ€ a—¸º¤+Í¡<á–Êò9_KrUàÏ]¹»ÝY^s=­;o§DFNýcæ:øÜÖuéMŸ5Ö2Çüü6×ÅËÝ$îsù¼Î˜‚"¨fp‰óÁû¹ùèåäE÷ÀžíÎz!;¼í”Ì •£ßˆrØøÆkŒÏNÒðTWp}¿°r¦®2Ý‹ê0!˜Ž ÛhÆÎzÒÒv&Î?ÐO¬‚UJ¿†Íçž Õ1ʇ”ìs÷¶©x„_ά'%F¶Äph-³bÇÉ„© êog¾¹ÇÎËÌdìýÕf÷¡bLnî>’½•~íVqè{uľJ)C³¼FÖNÃÝŒ§sé¦è¯öqÅ †œ}›>uF©kÇÄ>¢1쥗KŠó’1}c×8‚c¡&[C"§áÁ¯E¢b[¢ò~»]Ä̉Aãe‘zçÇG©×jÄz&ª“Ãö *ïèo<œtΓÖÁ44_Ÿl_C^fP0ØÖ¬Sª%J0_“|xu³÷¤³L É´³ÉÅóýèŠ(ÒÍö<Ð[WZD[‡"¸ySð*ý.n4¡Æ…pPÁ‡YæI/ŒÐ;Á5“æ8Ò×ÞiÒ©Â(ÝÃŽ~VÄßém/oXãfœN“½.': ÷ÛJ8Kå³RŸ¬)tòȤÀOGøîT90Œškö"o=n“Hâ¼±ì–lÑÛ¤ü¨ðämÆ8"ï š>ƒ»¹0Ó°¢N$Ƴ_/~{ ™Ÿäí6ûÉÓQ¥4tBbßÆÂ…-äF¶ó%‡€êýl+¥fAv—IµšýOswì¯\àâªìa=ËåÅ,õ$ ‘E4a/'&¬Ñ^6ZúñPîEÇÛÞ~ýì\î2÷º]ÃÞZGŒŽ¬ÑÒW]ª ×7æ(Ð#س¹&в×7ƒ=–Îw` ¥,]oc§š÷1ФUÄ~Ì=!%Ì hŸJ^rê¢ø.)æ·v•7>]Ã!dõ}Ó!²>'áïta¾ K"í8+ªH…î©.l7rÓfïÓ‰Ä9Ä›äiŒ)œ«‘ü¨Ÿ¤åT™•£1\òD·­2¥?Àú ž»)9¡%´™ÜÚÃÕä>ü6hÀóÖû´õ}œâêá0ÎU_}xZy«ºÑz¶?f‹qvŽèÝ`>ǧ£;³–‰²ÄÙ¦Õ¸éIÝO9;E;Y­ ä„s­œŸ•9m$w>z/{—ÛøTZÁOß¿®”ãüúdÖ(‚âAmÔ3ýËÖµÕþÔ×ù÷:{eÓEôXõ¶WyÖŸ4w°íGÂX6Ú.óµƒ æ½åâprøôM°>lß?No‘Ý㡸‰× Ó,UÔÉ øD‡™Iôâ0å8– ÖÒ)¹[¼ (zÀUGµÂ&©QÆàˆÖfZ<”÷K¤^9(¸;Ñ‹÷–ú¢ ˜\IHRXGb™ ¢¤¦©Uø›DkôI­g¦¾„«“Kº?f›Aä.û…àv×[«täÈŒÏ÷ZïlŒ^ýM¡<Ä"Ëç–ýliíâmGhÄhHÎïÆR°Æ¡|O$˜‰”q/EÃxžõÆRÖ¼)Ç=d‰'%º=k¡¥TïïÚ•ú¾¡æ&‹×.?±SàÍ(ª)žünÔ@÷²tÀFTM‰Ê⯆%p qæUdü“Kð©G;ÓAç›mÌ5„û³Ž'„_} wìò‡Ò¶]ÝÞH9¨º2jk:go*-źòŸ^¿8¼qz´ïÕI¢Rc[X y Ò¦ZCÌD´øE÷gV[Ö–.-w Fv9[,¹bç”.èÌ«”`\¾W‹vͦ:úÔ»ÒøÔW è†BêòPøhq›„¸[-õXÇöܤx¦ë&©ˆ9Û´¸©3Œ.r'—×ÜâKÍÈëRü¶iÅ|*KIêFú[Õõအêàú¹ôŒx,e'Æ›ëtÞíA=îuøÚ­-…¶jxë•`¯çü[”påôÆãÙa«½àóm¬Ùœ>7g5‹µì¶ ž•²yûï ­€üG<ûØE%ÖsiÄðáVåÁÈéS¤à:Lóåséuef7‡pc¸MŠøI¹!±ë=Š%{¶súS†Ÿ}VÜ4»¦ ÖïKΦêë(R¸²;øáJ´=V/Ã1gDNs‘Œ£ì‰Ôzí€ùâ1 “'š7™ÐÁâcQQ ‡s ÿÍ„ÞK«O3D—–†ÒtuBU V±wƒVcpÖy€P|“½“h¶ÆuapáQN)<Õ¨¸6>ÀÔ Á ÉÐÓ¸Î%~äÉ•º¬ìqaê¤\McÔ-‘Aµ‚A÷7Iü§^<¶¯ð;ÖÝ-ýþšËö¡eÐ…HMѰþòÅÖã’±²ì•î­^bÖ ±žqª‚+6Ï>•~ÜëIKŒ©B=Õ…vã!®þÚ"} áþ6W­÷ÊW—@\÷é²NFBÜU+6aëMGíFÎ Ïѧ$Å5÷W˜!¶v*£—ã Û ,ÿééÊÝåȵéÝΪžPÐzHÈÜ*fÒzgCVq톾tÇQ\C_xšÞÃGf¤y‡“ È›*ùrî2Ý—št )ÛÈûÎúD®¶qÜ”t·4¥RûjÚ5¾ªK-˜ Š- ÝJJz„›Ušsö?3ŸêB endstream endobj 94 0 obj << /Type /FontDescriptor /FontName /TKKBTO+CMSY7 /Flags 4 /FontBBox [-15 -951 1251 782] /Ascent 750 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 49 /XHeight 431 /CharSet (/asteriskmath/element) /FontFile 93 0 R >> endobj 95 0 obj << /Length1 1668 /Length2 10417 /Length3 0 /Length 11490 /Filter /FlateDecode >> stream xÚ¶P›m.Œww·àîîîn‚ ®Å)Š—ޏ-P(ÅÝ¢-îzødw¿ÝÿŸ9g2“¼×­ÏuËó†ŽZC›MÒÆÅ $ç²q²s¤Uu99Üì\¨tt:`¨è_rT:=»Ø"ô iw%ôE&c }1Tu”<œÜN>!N~!‡à¿ ]Ü…2–^`€*;@Éò@¥“vqõuÛÙC_òüëÀhÍàägýÓ é r[[Bª–P{óKFkK'€¶‹5õý¯Œ"öP¨«èííÍnéìÁîân'ÆÄ ðCíZ »Èðe€š¥3èojì¨t{°Ç_ m[¨·¥;ð"p[ƒ /.ž;à%;@[Q î ‚üe¬ò—+àïâ8Ù9ÿîoï?!:[Z[»8»ZB|Á;€-Ø P—Sa‡ú@Y–›? -<\^ü-½,ÁN–V/Ý '© °|aø7?kw°+ÔƒÝìôGàa^Ê, ±‘vqvA ¨œOì²~©»/ðïæ:B\¼!þÿB¶`ˆí4l<]º°›'HQæo›êdv (€—ƒƒC€Kr€|¬í$Ðñuý©äüCüÂ!ÐßÕÅ`ûB¶½ü ú{XzPwOP ÿ?ÿP996`k(À d† þ'ú‹dû~é¿;Ø`Ìñ2~œŽ?>ÿ~2}™0ˆ“ïÌÿl1PWIJSIåoÊÿVJI¹øüÙ¸yl\¼NN.ÿËCàÇùwþÅþO©†%øïÓý#¢"ÄÖ ø‰—êý‹ˆ×ß“Áø÷Ú0þ;ƒšËË<ƒŒÿ^ë—/Îÿç%øÓåÿoöÿˆòÿÿ=‘œ§“ÓŸzÆ¿ þ?zKg°“ïß/óì }Ù U—— ü¯©>诅VÙ€=ÿW«µ|ÙIˆÝËœ³qò°sðü%{È}@6`¨µý_³ô¯f¼äpC@.à?î/Žÿѽ¬žµãËÝâñÒ²?U —Íúï¼²k›?V‹—`éîné‹ú2/ˆàÏù²«6 Ÿ?Gd‡¸@_\/¶.î¨4–”üCôâ¥þ¸@­#A~Ðò?H´þ7â|\ èðÅÓö´ûäíÿ y^N`ïëjÿr ýÇâEþþ_r;ÿ¾lð¾/»tù|IæþøÙãð…0ôð…£çŸð¿Šlíéîþrý¹ /øþóÒ|@Ö¨ ³.ÖÂáuáí75’dÞl?G¹x0úÏÞ^ ëoË’xíj†J‹ÜžsÄÎKvOïÄÞ®ãr•>7;r8š­dÄ .4´#ØZm±ŒãŠÞz¨xrí(wuYpClì[´¾{_HL1±ºþœÉÚ—¡o©º®´?FbhúÅŽ7‹D, ÀÞ!™ÕQ%U+95Ý©Hëq&1ú;™Bnÿ6ãÛïfÿb9+,x#ƒìàÃUù"ë@ìÃ^©²Å8`Šn»G–øþ=cèE{øF+amñ×ÂÙŠÛãg gÛqŠZv- ëðßÒá¥×ßÓœ¬£HæøX1lš 3wÉ”~y»ªSäÇÍËPÞSQ!'*‡‚Ö7"7ñ+¼Ž=G9@¥vp"ÉLÇ#5{*£ˆu(¯ICûÜŽsÂe(6Ì=Ì*ÕA±¬ó)ÉaÎÉ|%t Z«[ØÞ‹¥€FGõöôžòðu¨^!yßØÑ°¼ 8 }øØÎlýŽ›<„©="èµ¹Ëu™å<ïïÓŠ5—î›Eí‰ùTk‰î¥Bãj ¯}—ÆVZBœo·Û=kÛð'¡O-7œºÌ¶ˆQD XÊ÷À™ÛN=¶n‘E™>‡×‹ÀEû=Ôþ?g¦9eŸè§?GPèÖÛ&¾E«Ës‹3³føœê]?Ä×t¼&þVI»«®¼¯Þë’6¥þ\OC{Z§þ5ÿ#UŽÞ‚f¢ø!ÌÊ2ÌYÅgn¾rÏBØÒ¡Q‹@Ü:Ï ‚ºv˜MÊÊ­‚4ÁË®Ÿ½µ¯GTEK‘lÙ­pϦ¾Wl‘·aÈSN¡7–ýÚ~“7M£LU@†»x—Sž°TÌ0Q«gîÜ;ÑÌ]úÍ /Ü'ÏCŠˆKÂaÄH;º?càEʬÿÎ#îPãÕÓ¤ ÅÞàIW˜´ˆý›%¿ÁÀ$/œ’j†ß®B?Z—ÎVê¥CqªxQß=ÅÆGD3Ôûʪâ{E(a 6hi Ÿ¾s—UR£éKëòä—š¯ DPuck|wOÚû­¦µÈ»äŵ 5ûÊ·tÇ‹Q2•?×Y¢âÝŽN!è‰ÀÓ+ƒÆÜÒ,U˜/0èÞF65`îã½ØŒZFÞÌö­ë£x‹yyã Ÿ±yrUAú¦~b7:dfѹ¦ ºäÇ,d¿¤%n9IºC‰÷޹ñ“Tëç“6À¸ ÓOvç}oB¹†®ŠELîcèÖ’!cúŒaø¼žŠ„kô“«6Š(…¶ú5íÐ Óô[S„În.ªK8«³ý²Oz˜pÚA!ê—eU{ô)ûöëò’4õ[t»X‰ý#é4öGm"Ïñzüü¸Uö¯sS_“e 錽̓¢¿R‘†¥´Ëžþ¢¥õÈ¿¨jhÑs––Xøø&C¾¬Úh?q7õ©| › &rLÿF{›³Ý‡†1ÐueS6®·aZÕTV`X*vÂ\ò.‰g4nÈÞBÈŽLÓîcá®%Tm=í» Mëë"XæSÚòö,ÜM__“<@© :L¡,¶¿/ÍûlMIï àéD18—”u6ýËǘ&>>^¡xqíl÷×\Í—0°(8ñ,禿;¿ýð"üY÷níp¾ï듞¨)º.&‘@ÐðèöF>`éì†'Š!„wW˜âœ°«UØa~K)ì‰åf¾Õ%›:v·¼„É7‰ÝLyâ çyÚÌNÍIOèô \mùޱÿŽj–ýým"žôÑ Øäû6N·až_wʈ © ãýJ¹oR™xyõÒGL¤‡L81´Š‡’—I™üæfúÁͺ(¿D¯èCóaàê@ŸÆÒ"Ó–¬ýò—ø{Jò¶XµëQA ¸­ë“›Ca’Ø[8®»KÌ´.äºEIõ1§äp® @uáëä;Dtã6²¡ÝT.ùè(0_îe g÷û–ÛÊ!£ÁéB Ø‚@ÕSÛßmˆ N¶glwr£ó€^Cš$çq¤f*V ëI M°ÿñg[ÙÐ,}ÊFO ÙØr§Pɯ¾E!…#Á3{› ¤v\»yÉåÐЉÁމÿGù¾IM¨=VŽaŠ»|uj«/@°vƽ×Ö:{¯Á²Ñί¼jÍ…dì­D´©Zþç­Ý&Ù ‹†S}û†>˜ù‘?S9lÅù¼.¿¥ú½•ÑiÙï@©¬oEûUUÜô®ç^<šBžÊ¼;.X ÒÓA^]W³P˜Oõ¡Bé–õ¬¾¡T&H$†ÄG*Ÿu_OÆÆª ƒˆl†ºñÂÚ{\‹E!?ÄeOÑ·Eźƒ÷'œcB`üòÔx¢QpI Ñ1'ÏY‡h¹€4¿a°ðÏmƒKrøò¨è˜´è~X­,8”å†ñ!%Q9d6º!Éj²ISaŒx¤)7O?˼©¾º°ö?6k˜ò}¨eþœÇU»üûàb˜mþ&ˆ¿’è›)ö囑÷ÊzÍÔ9ãÎÌ IUÓO¶3;âM>¦”±àÖ›Œˆ®ØÝñ›üeº-ŒÝ:â‰$a#ìø–œ*¯Ø¼›†Á–‘« •Oûׯ¥ãØ,ìDI‰ªlW˜Pu’ëdå#ƒï£ˆ@™Šž²øa.ârdvhS¼_=Ë0©C.Æå Ý{CigóvÇ9ç*ÛÝßnð;’í…(À(Y2?­É£ÉÙoŽœ~W÷`8àà$¢—Õ+n–? 3d0ri˜Š l@®§j§oPLú¤æCÖ… R7Þe1°My„úFÌò‚¶†dJR¨@8÷²1c#uÜ‹é˜EÅùä©7}ù¼©ª/e!^•b ÌÔ6 DØ×&.¸á õã±.÷A&a%áÖÑëJ\“¾¦ìœ·È[0  üw »»0&¥¸ªP!ò„7vÝkýý{r,Ρî)ܳ„ueÌøP¨2™§¼ U.Â,öaèPiÑ7©iØŸ¯â‡5œ±³ûìc@NÛO]Æ•V‚?ZVoÕ´ÊÜÃÛé8”Iר·ÚãY ôéägHû¿eÕ ðü-ˆöŠŽµ³?“w¤oþ Î…Y¨².Žâ’_kiζííFÇ.!LCY†Ø[žžë‡U‰ŒˆAÖå¸Âèu¼×ôT蚘A:Oä1Ù·iú ¨©W§.÷Ù [^kÏ{ãºQ’%×mðI«³‚C g Ûc[…¹aÀŠ¥À¯¢Á è¡aÇ:+—ÛbóÃÝ(ì_䛢¢?qâPÎ3м2§£Îã°Ï+×–Fnty[ͧ0оN0í_€ElÜýz~lᜎöj†Ã)|$ ’³ˆ‚Ÿíªä¸¶ÞmÞ†äk-‡u+^E»6ø‚µÅ‡ýxÝ@ÉõÚ6ngÏ  ðÛg Íl%=¾øÂ 1è/=×ééa>a{³‘þíS—ª¦ÆXûp·ÉQ÷¨wñUðÜK¡EtôyÝ\%U"²èºÜ»Wm²1Ü~ó‹ïŠC@Ú)®¦ã¤N-„Èmª©Ô§qõ{¤8_Xj¹s–®m¹?<ÔàIHG1¢™e7c@›6žµÌ8Š#cG”¡¸Çþ3]XvRõ÷43k%×Ç2¶7Ôëk¢±Iešs¨ð[B§ÉŒ](Æo{ƒJåqâ<¼(‚3~$;Vh Ù‘oOˆëEg±Î¯Þ››êÂPæ6}Mõ; JF×9f¥Õ+›Äq9Z2Zk¼HxƦxÆãÝì\k.†Ï iº Wý^Ș”w´½Ú8ò/ÌF (Ñúr ÷¨‹¶GÔoŠï%-i¿GÛÅÈ›ç+(&p() àr€Å9tSˆYSþ=&&Oû‡úwtI/qñØô”ܵ¶¸­ÖD=GQ'/«Õ±X8Á€ºï½&ætþ'“¥õbôô~äŠHY—5˜úwzÚw`]ɸc½–˜©$Úï2Ièí—ò—{Ù Q[•¬~Ëo¦uìØl3Y‹«æòæýeE¯$Üm²#þã[åöz¶<¿\.Óo¥OM<,_÷ƒ;;c~ ‰IB‚]ït€³ -ôÏñÓƒE+yK:ñ¬:aÂÞhO×eÓ$9G5å~ßÛ§JÖ Çü@3×Èð+ŽIÖ¢~'—–Û· 3´DiW<}8wX¨c±ë¸ òfY@(²þ³þãćÝQOr^f«oðHÄ‚j›ƒðq ôÓՋͯ³™‘—Qgùï"Ew£€wÒE\Y!ÓCú„ÝÔÞ’é¿È¿2訊HhO„†ÇUu8jØ’T´Š‰WìWF ~êÀp…(7v»”»L0ÄÖ(âhÓ§ßÎÍÿ®UÑVÃàí‘]eŠé§~=' œIž¶«ME4W«šÕ„kÁ»\"Í+Í.AÈJ^2Ñ•|èŠG°‘0'úѰRu‚º¡.¬š»:Êë}‚Su>Nk÷?u(EÏÍךzƒ¿îõª •ä]mX«6Oä:Š%)(VàK<ÈÍ«kÍï O`€…øË 't cȶ1ɦÁæ¸è4°³¼ïYeÇ'q¹tú†[¾ïH7œÄ«·GÖÏàUMÝ`œMÂØÝŠF‰œH¬×s©ðô›uÁwΔ@àÌâÖñ¹#ºO*>l^‹ø6ûÚü|ÐiŽÊcôyôp¨9´ìÛlÄß0¬X#ÎDÍ`|škÏ9© Më—ÛZ§ÎœçGÕz*‚1 Z¿{B:j¿ijªðã-´I\—`òLÇ‹°“f;ozÝKÒíÿjá¾ã±Æù*n ºQãåò+£×‰y*w´?îPËe/†Rà6®úA|ËÕгxºV1Ã$g™¤³K(ùÕMiðUõâ6+äš,¾½ ï7IyÀîvÿ&Á¥~¯"¡öÿ˜nPGå¥ùW­c†ïgp˲Ÿ=úóŽUúÇlž:I. ^—/GgîçÁ_,Xö]Œ\zˆaä¹ýh{Çck?ÊêÜ­ªù=g˜|G0Œ¶£[vG•<¼‘ŠðÓn†,§Gø^†!誣õåÊ‹g;ÃO|V8zÞ;EtÒp®~ƒÓ„x¼Tî*aõ î!ç™%ñ(ý!ôÍG-³1›h?LÙÀ’ëõ*r<¼'Ô›±éaÁõ ¯®ak¸honS¬­1ï†Unrîkj«`þh&¬†é« ›„\yMÃD9ó mA@÷•¾XA—¶ ˆï$®DÃnnË®ÝJåÇsüšœR¸ý¬|¨ÍyÖña[ÉR°ÑoE¿Û£`(eÌF¦Ù@á7ËÄf);É¡3˜‰Ûg™òÈà€é$VV/¹«vÖÂ7YQäu¨ñŠÛI.ñn§²Nô>n¶Ì5's 6Ô¿rÀ|ˆ©D¸ªaÅtK“ìI^†“9ŒiÝçQ“*÷D>ëÞò…bû™º~ný^’BSŸÆ.Þ3œ4Q= \vZ6vZ¡ÏÚÅ'ÅÑ JÐ÷–¢.¸Hº¾‡˜ö °(òzš*xá-×uëÒ | º[§FBüu·õ„ç,3rl…y±ïRÔß(û—._‚ ‹ ÝÈŠècÍ à}[½×`Žg`…›GMhw)«æf\µ¸V§¼³eB×Í2xôç'q_t߇C«0Ÿq[]"•÷ ú8š×…X‘ºËl|U ¥ý…Ö/,Š„õý©Ðj}[ïþ£fgIµáö•‹­VøG£à •%õÓâÂk_¥ÏšÉLäݰð\0´"íö Ò(ê”5¯ÆI0³Ž¨žë %!ƈ‘B݉ ü€ãBÇT;<ÈÄò0!ºÕ^Šï¸ÞÌ¡u‘ÜçÝ”˜•xhâç$õôÕ‹Mu¥Ò“ë«ú§Ý8÷ôé)ø¡ÈJÇÖ'.ñ(bŒWG¬wšÅ†»(Š­÷ûáõR²ûJôîíFV(„?jÔµû…§ƒÜä­¿¿¾)®°¶N'ù2›Ñi£2PhÅÑŸ6Ô…ûqÕþ›ÑÜIV¾RÉ@ŒyZ¾M.adË_Xšä¤hmà ÀaÍšâËŸÍ ßÌ—uN?‡¼Šc×’ßz‘ŒÕ•‡Ã |+ÜçÊЧ@UN¯E*›TaˆÁû¼o¸§¾%È@Ç@S‘¼Ì˜®¾žxˆiõ¼ÅÑ™äZJˆö`b2Ã+]~u¾*K[Íâ$Ðú6 `#þ–Ö_5@žØ²GeÇC5QÇãüúÍ@ že<@ÑÖ*Ü?Ï~]6/:Ô”7Ìš `JY-ËJÔ.5«7HìZd4Ý<0˜n—R½ÊlÑ þ°ô)»H#ò­4štxÛ§³s&•Y™EìžåÉcRmíQR¨ºU J¹ÉG$QàÂýÅ}ˆÇ÷‰o—ߺ©b¯š âÒÅõ¶rD%W‡P–Ù-§1JSϯÁÊX}½D&ÎD”-ó!]p ûÝ2aøû[ϱ²þcçYfÜjÚnÐÐ*Ñ™Ë.Ì{vë-Ò« €Ac³Ö†xÊ äB‡©öÔ5O¶.íë­$yMÇ„¤ðõ\ø³ÐÁ±´³BIS#·LÛç|²çägÌ1Æ{„iÿ¾ÅZ’7Äf0ÛŸ‚qÄ0¦ä:­ûÕd¤OVgáÀTûÉ'[áM©ÄuÑpcÕF¸’|))ÊFªödiβ×ò®Ÿ¦s¯¶rÍ…ÛH·=)ˆ€Psú.´öº*“­ÐôÜl±¬çNâÌä'Ûro2+S±‹çòÃr»ò×M2‹ÓÙþÛ~㹄í"® 3dB'Á¼D.Öf¤®ï:¨–c¯6 ÔÐ/-¬6])ž_õ;¼ ;åÖßéÖ"zu/vñ$›‹ia‹9hÂäoÑÖ¨cKûm%øê £Ó«OHŸÆb aRÇ›  þ¥Áfu“¦«Ä H”…¬hCnŽ6jÙJF¶R‡W'c þnìö¶M–ñy°bãÞ¹¿wëÏĆ#E•d˜‡ä›ßÎÐëÝŸvzǨ5Q.»^¡[ ©VötH‚ªV…. „ýÈ£tïž (Ycó|¼›'ÍÇ.¦¸?t!Z‡ŸÆ0©ñYÞñÒwÄŒ`ˆúU¨¿E dm¿(õw¢™JþœsJûþ手bñ•É3©zl®ñ#ÛxvFŒ†Ó:šX>oÇñÖ¦|½òkxPpÜÌÞ¬oÃb<Òѧ§X?†-œ*«'äΟ ,Ü•à7R%Œb7É¥ž# °9¸ês‚‰õ“Ѽ†Ü*wÇÒ׬>~Ü»ââòÅ mȸ ý—mRj2}ïF ’²ò{c{ÛæžŒñŸÒëÌkçìkuMà>7E·x á•ðç¢Ñ¸í5‰×í9àoc?¾’OâÛ!¥J`@{ qùü…U”sÕ Þ®ÆÅÓù¡qV{qB)ThÚ¥Fû°É?›•@4 N±pm‘@,B¨0ÙjÁYB'ÃóùQn{½×ªñȤÿ÷’îØôH”†û³ïEÅJB²™²Øâg*Æö´º2ê6D%r¤áu™‹±™Æ?éÂ'd‘= ãØX;î˯6|ñ Ök—u“r!(Ÿ+Ò¥¯B(}cºm˜=”?Ž:dk°T·Ñ~ؼ-‘"”w"ã$èU›ÙSêÐΖmº­q q‰m…r"}Úƒ½¿8³5«‡¾›å5êš+ ø%uÆ?ÇxÙZ&V¶Ü–˜vüjE£Ì M/1&&Z©±aÝ'×%^¬ÅFOü†Î<ÂLðkˆMcPT‹µHœ÷±êIï‹È üÊWÝèLic¸©ÊCëx)çßrÆà£a’9Bôºõ¸ œúkÇÚFSÌÚG!-¯«Ç’L/*°XÓõµã}ÂKHṵÄÄÄn$aƒ8‹Åæn&ðCs×ÊðŠK¤¶IÓ†+÷:¨¦}mÏ1פôûA¡A¡òˆœ¿º=¿c>" ÔU Înb8¯|Hú(ãQPú^ôNš_1nP´hG¤¶º¬Ì™—øgå§)Öµ“ð‰îíÖ¯R&ÉŒ½TO¸pÁ¾g¸§YÌzv¢R·j_—B?Ó/‹½“bŒOÆ:Ó4 šU%êmÔ³YµBûm¾ÌŸUľ~–D\7˸»îv[ؽ²à›Ö³œÉqØAª$ìa…½¡jXöÑñ¦èꎼs(±ìáàÎìPÏ'Ȝߢk@N¾Z™8‹‚sS fÖôÆîû¼º%ÿT[ûÌÑ¢ áI%®¬ùéFUgàÖÄà˜‰¯à™äv¦È°g¬Ù$ž6šå®+<™6“¦Ì‰‰ñH{·‚Ô?ÞÛ˜ÅÿY‘i=ƒÛ— 1 ]Tß hyÖRïç´îjDͪd)Ͱ!¦N”èOÉZ^YªPk̤ø)Gô–™ÀnP4›ç<@›z ËQ$ªsÕ‹Û°ÖæT0^E¿’ÞObßÉGWyvÕÑ`N}(ç·#fó¥mÿ¾±h![°pšú×%lï›Â:©–|N?}8§dW;ê*16ÝÅþ,µS=Ggs~YETåò¿)Þ 4âjÂÏâ3–ÀäRcƒE¤Ì-šYµ~è»`”Ø9ι)ë 4hØVâø™ðd§æ•buu¢ŠœÞ&ë/Ä’[þ+öf|w¦è(^`•ÊcŠŽëÚdñ‘Ú;QàmÓ¸˜&Ù‹‡r¸xÇ1|Š´>Jz-À… n]=¡@0äŒ5{…ûޱi—Ðzı%*ª°HYlWH—X.ÆÒðÔ©Üá#?v:Óû¶’±­àn1‚WÚêww³@×ùv-ÖAf ih|P¬ÁLÚpóÇšØkrj—Xê=G¤û»4¶Øüß7(“á”õU> ËÓO—ç&¶ú÷ ±Þ 1¬"$U,4Í1h"‹ b—âgWê·Ç§dA–æ%ä$âÏ‚Ý%py¡ÚÏ`¼Q>Dý…l€»óÎF¶îÏd‡âˆì9Ûý,Zª!c+÷»‚ÈÞnškaë¶F—A“+änš:Š7hé·Tö’"ªR’Æ7•{côtWy-èÒwØ»§ ¼2¼~³7ÛÙóÒ7dPéèÞ‚ñÃÅ@ÞdTFЏÆÜäâneóx,&I^¹ä¶¹[Éõ8‚ëslÁ»5“Çeæ@ä¬R}¿Ìn>d˜ÐºÌŸÐF˜ÞÙùä3GgÃðÂɇ×LŸ¨·1Gå¡Ñ¾[Ãí‹CÑ(ðü|Oí[³‰j˜3âÚë6‰ÙS¶¬OFBBï&ÖU1NïE +¶µEfH'ns½$Ø·%Ä4r/-kº•ùµ01š;}r:»ÐyôGCAãºÕ=Od¹¿—Äð£kD³bBÕP´Ï?Гôi9Û)›4‹º"Eâ$ H춺)nóje‡è: ê½üûpZ¯>×OOeI4þšÆÑÙ²°vsÝ•Èøœ-JaU&é=ìÕæ#CØÍ“ßét;ÞRîŽ{wx‰4¦gÌÞ?Êäí–ר¢=½¶!õ4g É]DæÇFÁ<¡ ÷„Ï7¶÷ÖYqd>ÐI”yªRzRåîÌ'Î2Ísu-•v&“ë«Pnáž¾ñá û êG¥p|eSÉÿ¡õMú”_uÐðçÎMRF Ê|‚í²k–Þo\ážáÅŠ±\™Œ[’‹c¶“I©Ü~§Þƒ-0°ûHªÁ°‡œ¾'a…Pm%}ªÆ@¨<óñbð˜‡õ¦ìþ~Rc}$úä¦tWùT”Õï}ÙCãrË'¦°Ð†wŒý¾¶dâ‰kI¼°ÖÐ"Œý² <.¡Ùðb pÜÃ:ù"-ç„­Y"ø»œfO¸nK#üݼs”t}`¶¢ªŽ†[QñC~äéK$,©Çî=áI…dÓý]´üÉ¡Pãè¾³8yç^\Ë#umãÓ`ÝŠ|ßÞôÃûwêþ,åÓZÞuÈêãC_~ý¸îüüœÀUéF(ˆïZA)ìóp<[5C€éÉY†Ü•éÛý™æ×ê÷Çeÿ2˜êç\ŠMæÑTÎÎz½ü)kô}ñ}y‘ XÆ»¶á&ä©B¼•”dZͤ ß§ùï õÓ¤·‚mXô’fåÞ«’2áËÞSü¿ÀÅ\\Ô>]¼VG¿–T'[>—y]E¬ZʔȞ®vÛ-‹œ7”º¦é0ÏŽ&·vÀö¬r©Ç wq‡ r†`ÇhÕÊ:¦£ùùè)ò² ê¾ã6ÉB¶-7ÐîtÏ™%úå3öØ+Rƒy¬‡â#á´‚­ÊÜtiÜ…y"Øù¦cÆAÃQ :¾ŠlG ¡eàžƒhkêØ¤<ÂN°Ü‚ ¾x%Õ½%“o‰âò.wœfe³é¥ ¿1Â,é),üZVWÊv¦§—÷Á¦×È:Õ3‹â³F‘±7Õ!$Жiœç7ðáç|z“å„ÊÖvø¾}Õ¢ýÈPÖ-Œ e~ç1›÷¶k ¸õ¾gs&­f•MäÝz÷PŠWŒuÄ:%'én²xÜ+Š Ã¸ËP¥Y[“ߣ`*Ng¾±·• ©¯HREÅÄNòß{¯—ð¸ En/ øPòlq¸ˆ¬fßK¥Bà·â?Òb —ïq{õ ‰]š¦™D­´Û²®Ÿ}Wr©É.[‰š1œˆª¬²H–bd¬o¶hEÅi›09L¼-ÁËüþMÅEÅéÄ@‹¶s‚`ô‹qP \2Ìàn͆Œ--%ëŒ×jÎ÷÷Åö2ˆD»àñ“ð8üŒm”·¶&¦n…tÔÀ÷гé[ÛsÑ-¥¹# Mâj±ZO-å+¢HÌàÎf券; š%#¨’˜]oŸ\Å(PåWžÝY”ÑŽ&'=‚C‡€lÚÿi”°™7wòWw¯4LUÉlœÄƈŸ? }b+÷ŽÒ9“$xoCÅ5A $ñ*ÈJ¼‚f %HŤb•ßMK÷3ehÖ˜n¢‡Ûá …›=‰e?eðgî ¿™þ¾ydÎòd¤KïKªÏ½8ÚTÝZ÷7)î_É.{Ööz¶’SUš¥ó‚Ö~o.ªx’¡`[gGÌup€ëRp¬ÍŒ~å_¢,QfsÃŽeú„ZÖùëÉ™×O i·a_-Ì›ŒÀY0¿kkL×$leÒãNúžÝ²‡Ìæ…:GB>NÁE“b˜û»vuWêîB`¬ˆfßCK^$ØÜÔ Kƒ` \þÊ@¸yþ&H-úàm¥>ò¡ëÔý& ?rpÝD K°µíÄqª´nýœúI^ôå}ñŽÉ3•ÃOBz½Ÿ:÷k@‹G0¯Îæd/³äí ¦ÏHƒy{Î9¿n}Ã~âæé```ßÁ+alqÔ±á±Æ)¿‡­ìÓæâÏEa N§aËúù¥ëÑ[.æ0 ˆBŠn²h33¬–ñ %iºR»øò‰Ø•GYíý¼3^ŽbÅòºò¯íºÃ{4½¯?x Òx”›îLýprAqòRš=›bÖ |KµòdÝs R£=çA¶:ŠÑ4j²¯%¨# s²ÃMåY²;\6x¿‹²:ÓnéÑ”‹ìà±–*üš+<"œÞ*Gýeú ¦֞ꈅü•ñtR¢j£ÜU5›(:ݲ _°Tážî)Fc¨ 3šé--B¥ëBx…yó{IÖSµ *Û-´ÿæ½m" endstream endobj 96 0 obj << /Type /FontDescriptor /FontName /UJBQJH+CMTI10 /Flags 4 /FontBBox [-35 -250 1124 750] /Ascent 694 /CapHeight 683 /Descent -194 /ItalicAngle -14 /StemV 68 /XHeight 431 /CharSet (/A/B/R/a/c/e/f/g/h/hyphen/i/l/m/n/o/r/s/t/u) /FontFile 95 0 R >> endobj 97 0 obj << /Length1 2338 /Length2 15732 /Length3 0 /Length 17119 /Filter /FlateDecode >> stream xÚŒ÷P›ëÚ ã(îÅÅÝÝÝR´X€àîîVœâZÜ]‹»Cq·âöÚ«ÝßÿÏœ3™IrÝrÝúíìAÖVÜXˆØõÞd¢úo†rÖViG  €‰›‰ƒ›‘ÀÌÈÈõ_Ck;n€¨¾È G¶¶ÚÓ‰XÛ¸ÚLLÞâü÷+€Ò ÀÄÅÅAû·;@Èh2Ô·Èé;˜-ß"ê[T¬ A@×ÿ¡ ä5up°áf`pvv¦×·´§·¶3á§¢8ƒLÊ@{ ÐðWÉy}Kà?¥ÑÓTMAöÿQ¨X;8ëÛo !ÐÊþÍÅÑÊhx‹P‘’(Ø­þc,ûZÀ?Í0Ñ3ýK÷÷_D «¿õ ­-mô­\AV&c  .Kïàâ@ з2úËPßÂÞúÍ_ßId¡oðfðwêúq!%€þ[…ÿÔgoh²q°§·YüU#Ã_4om³2±¶´Z9ØÃÿ•Ÿ(ÈhøÖwW††kneílåþ_d ²22þ« #G5+­#PJô›7üo™ ÐÀÆÈÈÈÉ Ú€.†¦ Puµþ­dúKüVƒ§»µ Àø­  'Èøöïn¯ï8Ø9=ÝÿTü/‚gb @üoö71Ðø?ømþv €ãÛú1ÿzýûMçmÃŒ¬­,\›ÿ=b y©ÏŠŠ4ÿ”ü¯RXØÚàNÇ  cfa°±pعØžÿËòoýÿ­ýo©¢>èŸÜþà“²2¶pý§„·Þý· §ö‚òŸCCøßòÖoÛ Pþ^~mF6F÷7¦ÿÏGào—ÿ›ÿËÿëòÿߌÄ-,þÖSþÇàÿG¯o ²pýÇâm›ÞN†œõÛù°ú¿¦êÀÿg9 ÈÑòÿj¥ôßNˆ•‰Å¿Ù‹ƒ\€FŠ CÓ¿7æ¿cxc·Y­íAÝ7:&FÆÿ£{;r†æowŠýÛ°þVßNÔÿF³2´6úëè1³±ôíìô]áßö‹™ àÎôvF€.¯6€ÞÊÚáÍðV'ÀØÚþ¯‘²sDþýqDÿEŒñ߈À õ±d£7?ù'3€Aù7zóSùX ªÿ"®·èúÿ"&æ7R}{CÐ[?,Œ€¿­ÞØ þ°z#4°Ó7Zþ³ý#þÏÊýëÌô±9Ðáì¹Xþ•ÿ.ƒá¿ˆí-¶¡µÅÛxþ+aeýKbiùGÞosc0ú¾…üýÛX€ÿý/½­ãÛ²ÿvyk™ño—·ÜŒANpü¥¶v´ûÃáÍÄäø–”éïßZaêjc ´úÃâMú¾uÞüøVæïtØßê±økë~ëßšbù¾]: ¿¹ÙÞ¸¬Þ¶õý[…Ö¿Óys¶þõ[96¿Õod6o'«ÿ™+Ó?Òÿë[7mÞFlý»ß¬o­°±pü#Û·‡5ƒíð­9´Žé­¿ÙþB@§?ZÅöfnÿv%ÿËÿVž½…¾½éoYüÎéíZcp0µþ1¯·’œ­ÿpxãpü¾µÛéøÖ ç?6ùÍÛåøFïú;›7W7 Ý¸ÿç*0t´{k—Ãß·õÛ=ñ_ü÷#tÂ/ÌZò˜Uü¸«Âs¦Ûã›"ÛVO¢¢s_°ku|@‚M ªHó[³»JìBYÞ£¼\$zv?lª… nŽSjyôxú£<¹Ý??Õ7ž{(TÓK‡O§*¸ãñlëñÉײ ¼]š,ËÖ‘I1ýιGÂ¥¦·xi$hv[i§‚]á©ø'ÝWµmß‚i²lƒô:‚wÔhg.ÈÓ×7Sh™ã¯DÒ14ðžG_YòÜ5×™#ïgÜVJU™í;pIq5q ¯ÑF&ÉÝ…÷¾IcϹæG¬ñÍe0Rу­ôy ·skÉJ¡a3ZØ-pIŒz¶Ô0ø~î~—¶­¢gC]msˆ4‡Ccìì,.‘£Ð˜ß£»3 wbGc$ç+ïê¾³±u­qx-sx\=®å6¤e¼ ¿‰¹Ü ¼"úlë‰!ƒµÃÙá‘k–ZDZåÞm6~d3å²ã¢ÒÚW"v∛›ŒŒ‚ž›RÏA6s]…Ϊ WÁÕb§ÝI¥5ˆ»(®¶Do{¾óÂzœ=¢™Ä)óèæìŒ_çj?ž/Åf€Ö@dfs¬‰Y ”FÇ‘™;;X,SÅ}÷QPzɨ\p²Eü|T.x÷¶óKqö£êGšê‡C¾†=þÃ0¨iÍô`}ïÆ†Duü0ùkŒ0I6 †Å-^Íê¾Ü½ÜìàÞ8p,<±Ñ<­á1ò¬¯R]¬{3·7ˆ¿`¾!ã˜Ú˜7„Èk•¥‘a ? ]Tˆw ˜('ËÕ脎FóªL)ú5v¼"G•æñ]ojàwÇ-èT~ôJÑœêÔœwr¨ˆ¨®ê÷U'ÕŠ™ÚK%G«Ûnžá!áÂo Tô¼÷l‹YkïžÔ¿ž5£ÿò<ö5kqX’¨nÅjç«îÁ]ŸsÔà”\õ‹eã ÖŽFy"ÆÿÑ2"½Ý6zi´±;£h‡»`Énæ~:ÎCE›©Çøý]²Ôê`¥Ì4¤ešÅî2¹ú²vøJ¿;aCÎÙ³¥xχ•Ó‚ôÚÄv¼Å™äA–hq/)¬ <A,U¡e¹GE¤0zžÈ•èÉ!PÐçª ÏêØ» Œ³^Ï×bsŽ%D?¾³õ·Ø,E KýÈßÈS`=eqØ(µ~ee4—Lžža=sÔ:BtÖhíþ–’±ÎüCËaâçàзÅïµi¦WÉai/Ô ¤>ðF}yza¤ÅÀ÷©¡Ü¾($~YçET‘Ej“§}E‡ÆØ0÷%è¢u¹w(ÓF‰]Y|¥©il£—?¼iðêsOÌ8:ÉA‚¯‰X›è¨T¸à“!ê `¶!Ô–'Ä÷«n£›˜âÄÆý~6¬ä"Næø`3áv¯×UøF—ž~Ñ•o‹«›FüAÍdâ|»ËÜ‘ÍÊŸ•ÙÈÒ.X²©]Éᶤïv0É„¿OÚ@¿ž|vé.æâ§AÑ^ oÐô ’î.÷SÆVsPªSìÐBƒ½÷J¿Ç¥³‹QÍJ˜ÁÒù@!Óš§Cî’£x•ˆ‘¤:ž·,h¬?éò£Nêê‚ÕR&”MQÀX&? ÈP ËlN!Rðg¢¦‰­+ÊÓrËí¹‡©°H0+# ²kg® ÐÍèb}þJá³´wí-ŽEokšÔ }«—yñhá§_\è<² _®f3Z WVvµ™"ÇUóë †´ÉOgâÍÄ÷#?ì{|‡Tƃ•‰v@ø r«Ûëxƒú²[âô^÷r‹ `#(¶»ôÖMuaºÞ«ªFI•XI†-~Õç ¶ŽÆ^DÞvgé¡­ÜÌnù&ùÜÌ­( mBÖ(ù J4˜švnJB³ÔÚ'K Ž UáÉôÈðÝ(qdz¹éEŽ@£2\9í.’½tèN›bOÓ¬._ØC¶£²šŸÂRzh¯2 Œ6-Ø( † Vli¿IÞÐâ*÷8{7àäå­n5{$. amG ú«fåâ!Ú®:M÷§ !èa­½¨{Z¿¡m4·!µ1lî†ëà™Nª=­‘}dÀŽ(¿º }˜°—Û"Р¾Ï¨öÄEñ@»HCC+Ôý¹X@ù¸ÈÔî”)þùi^È,šøÔ¥¿9ßAyªFöˆpÁù2hØ»'=ÈI¤"\è¶%Uµúu_OÜSV¸£äÅ­/»¿û»=çw¡4=šÄ1냅ƒøwåeˆ>þnz;Ä/ÞeúÔå£F»jÑP°TôRø¦¶1s/!„ÔŒY¶'>ÍU>ü»ò˜ýjp½,}DQëÈ=>\ õZ,_ÏØì!/›lúæ_ç9a×Ô“ðmEe{[Dº/ëUcÄ 9ÇãyÌ JH¿º14¤íIR´i’„.€%ÏËår~Í]ŒêÓD ‰Ï}Ç˱æ^!k³ŠÚ}û‰Š mcÏ|h™Å?à(YÕ:÷IÄÊ“•¿AóÕn Ò½Å»SMó•K¬8svZ¢|Ã1†•k‘]Ï×¶m”Á/wÃkÉeó[”J Gš1Ñ\©@ÇçszÇac ±'zgužÇÀdkÚ8ìÇ\C‘Îsc rÙlÕŠë¥ÎJ+S‚³kÑ©R³§}tÕÓ£«{¦„D({Wq<$‡^¢(ô±Ï8ÆG•Ä?‚Jx›øò¹€Š±ÿÍ·8bìfƺ3”9ÞÞpÈÏŒàn­Lk¤ì¤˜ ž¾ê¼kLfÛ MöÝgÒ6Ö* xem `·Hv›Öi,[ÕQiϺ‰{å‚ïÜ“ N¬v¸rKehx”‘>®½"’i• Áè+ÜÿãåÌ(O‹¢6Zë`Ýy–2xûKÂÓ^B³$m<É€@jzœïÍ–pæøØÀÓ§Çò’ÄxÆêÊ©6O³ä{x«¾ Cæµ ¢Ïc0YLÄÜ똨Mß¶Q°>v¯c 5MÞ&˜„©´µÜR2£`ž€¡5SªÄÑ£÷ftïzŽØ®Ýs£ üáÂ{á@.µ†}+zvKhäv»øˆHRG0hQ¸Q‹M_øQßù"2©¨A_álkžêQåv•]OöàÌqC‡a´' ê Ü)£éLˆK•«š»œ¥š™dHƽ£§ä†ïÜ<-I瘀H$˵±m/¾âÇò.å×Ýws¡]t×5Ô±KÝd·.oªkºÎX-uŒS]yŸ$(ðLØnúêpÞ“b¸66‡XËÚ!ú¸ówÔ—’RÄïz=©¯ýÉî©Ã‘ЊŒìs°REÀåÝ ë[R ýØ$¼F½ç»3€€æp‚i£|4ð°-{7Šöîíq}u¡Úâd~Vøgˆ|6Ç5>iBÕ‹‡²8ÉLpÎB,«Fô‰q÷§*:_äwï2^z*>Å;ô`æH»Ô$pÎ L)ã/mÐck»é9®¼ja†àÕ\‘í7±t†D=rtiÏØYùÉKÕ¼„_$?g‰—™—V#Ô@_´)˜µ'¶~(_[Ü¡©…U~˜™°/’›ù”NU|—ôí²s¶Xú\ãÓùp*gíQSç3ŒÑGiY&,t¹Út’ÞTƒ‚¥N$üÓ¶&cƉ©L»ÚÖ ^ ¯¯§‰1l2ã|¾*Ûç:‡Fð‚!¹>_`Ùf$í×ý¯—1û.6›ÃGÌ?á¯8î˜üòŽÎŸ=Añ¤`µH˜ˆß¼¯hÿ¢ µÖÄ›:Îà­ åæJgd7Šã‚hŒ—Ý:Bô€Æ!½69{~07Õq[«’^´E‘ùÏÍ·éР.oÊÐ\ÑàWŸ/Ø<®½ªA&êL“W ê–°O9µ'¸Y0µx¬Êû$QX¹ÕugHHˆEÖAÒ‰‘êäí˜Mêš”÷’²pƒ‚;ÁcF Ýßw†lÕÃôc.p+–˰3¸í±É`©IäxG`“\÷ç6͸䥴¡“úؾšÎ¬ ÓiÇ…Ýÿ’%4˜Æì¤­0Q°¢àÄ|(.+'Æþ 6DÁCðÈ„Þ Jò¦À½Ô×ìXìâN•ÞpÜ“dø¨þüF¢„ïl3f–Š7cú™é¶†‡âºpºV7ß™wœòôÒû¡“M¢!ȉò%ZLè œQ"E‰*‰;!ˆ½ò‹“Ý'…%¬œ wàÑÆ0ßv3ýŠMý×L’]Z²+å'û¦Ô˜.LDN0”|K0>ÚÀ{jHÁÊhùÝ÷†Ð¶MÝ %*+ŽÁ*šƒxoÕUÁ·ãr£×õBÆBbûR,F¢nTÝ©µUF É„·³ä³ÞW @3Æ'Úà¾¿ÈžÕÆ®­B\\½×—‡Ùæ×÷E³ûÁ:7#ˆ{oÔVœØ¿ëTÁ†QqМÆÄì5V¦i0äSA¼Ú—,}Žá$xI™ž°´ ÷IYâ+«=èÑI“ô(S‰ëª¬ n|¼h‡m/8»&¨-ØÞ­ìhéC.¶ØEº®Æ»OÞ Ü^¨°#a݇íœsO:Û‰YÀ}Þ k¨š $AÁ,ÂTyb©f«ê'…ø…d–ŒCc¦N›dæ·L¿œ}ÎÿBãÏ”ÍL%4‹ä¾Vxwºeè?W™SRè¦H­4\”¨2§¼mDM´k!Œ=e€n6\„áÜêø¥·Ÿq ‡%ïK»e7$ÃÞš·ÒùU£ñÕfü9…œŒ®Ìæê4.vçºÆƒF èpÉ]c<)†€qaâbÊš'jSìçá_Ö{!»,Oi›4ª@Žk¯L—;.ñ¶ØY˜¡8@†#üÈiR•×+YZV;ª‚@÷y/f¦²sðZS¿XÛw’ õmž™r)ö“¯ñŸ!(´Âödî¯ì=™#pÝ•„¨œ?H8À~^ı8F(£±@¨¦Ú²Åxz>Äòî3?vpàyúf&È“ý<­À¾ûÈ€B¡ÇM4>}Þ QÛ^SHØ ŽyÎi!Nz-A›ð:"§çê)qŸ†=$@e» ½zù-å•cC˜Sx¨5Ò|~ù=„õ5á8VÝŒcˆ¼LC€ŠÀ(£&o1Á 9Ý k1ˆÙÓxDÞÏ!Fú@D]¯þõ8b¤¶u^K‰&§¯®&Œ\üµ$„LûùÇÚeÀ±R©ú÷*ö¨ƒÂRª 3ÓNh À½ºl"8ås' R2Ðí£­ÍY+¼’ ؤõ–äƒRHM²“Ûùnj¯ÿ0dáœ5J¯°Xdp›Ô,Pò‰¢Bßå “ð}õÆ(\6x‹W¸Ü¶ˆÈUNhyü5ãO»<ûÔ1‘ò¾®Ÿ®Cﵦ§uy‰éò™H+ÙdãWåPQ¥èø_°fâ¥NÀ˜‚>¦¡Is'KEA~¬Œ÷šD®ÕR·£‚Ó–a.‹«[ÉyŽ+k8&(B6ø•9¥ì |1‘3gÓ´î±^Áø…_˜YãÿÓ8+Ò {íX¢‹úi¾îp4„6%«4iËÄ|PBŒ½A2)s^O?DžAϦywlsŸ™Yøà0 GÉ Õ#¸åÁ#’¿¦£oǾ5óù1@½‘â‡Hx˜ÖM¨ÒQ¨†^ᮞôáŠuBÓ‚iÛó}tÎ÷Ä<ƒôãýxíÔ=í²r·¥ý§»©íñùr2¸‰úîÖ2©R;V“jÖxÎ3&,±3_=b”Ûl PÏJ(ŠwÀUf­¥f?i÷À.é€fUM¿j}YÓ¬ûrd„_þý%ž-·¢BžÓY.„ –FŒÛ)>lˆ$²qªø´È{#N?ß‹g\ã}¤^åûÛª±>à׋ÓÓ"ûu-?mÏM«!‚îÂT–®àÄe^•Iß¼õc>æé‘ò}ÃkfÝËrétE&ä¦4·¡Y1K¾Ÿ13¼|l7‹ˆH4Ê ¯7Ö@_ût°~ì΀;ÆÃƒÜpKXý ¹§ìŽ•cz¾7NëRæ'­‘uúœ/…¤7%ÑLôõžƒ³ýS†“Oî¿JxySŽn—×°FÜf¯‚yFÁο L|_㱃YÅ©ó%I3ðs¨OJ"uÝŸ(žÍþtÐQÿ†Ó5ûsšÿûÊ#dêµ7‘b®plƒ:5¦È`_j˜BÆŠ¯Ü!c;ό~v³ßØlG3̶J@ÛXÂ-'G¨ß»é>¬ºÎTjìF)‘ò(w¦¦ ¡°¤5ÍÞš_°å¸v 1”ï>X%¡±oaüˆÊám±­ Š>ËßVR8Ëv!"‚oÓ¢U›‘$샩;Õ¸Ê;¥6åÞã“ÓÎI–ù£LÖÿÐò3<îÁ$+Rìpi¬%—BÃII~=ÌñQ"'fí¹qûiyRHøg¡&uj³w¥,œÊ]¯žŒ"¦´!ýP›Ý&ñLš‚æq}«Øÿü^…óÍ==i&]£TšÕӾ錂Ԏ&Õ!å9x‡ƒ*€jÍ’<\V}DiqK–#Žª¬ÆäƧÁ7hî2f4¦ž„>¤ãÇ«1 E,õ™z¹[nèÆ›¿âÚìƒejäûbâ:Š|¨v –&Œ<^-;Àɯ¨“Ð,ÜC«èÝdûæAîLÝD9÷n.±¸ÞŒI|ˆÎÉá-ÞEõ‡5êöKp,±ž](¾;^:ãòBÏ“.ÄùïãÏÈ^~&÷ôßU:w-à#ú…v×Ðη+ÍnEÔªw—†ƒgBG—ˆb–#aã9|Eb>톨‰2±Aƒ"çODs9RgÃà"3)¤·a‘„±CƒŽ*ëJ@ÿÐìõäwÐ,§•mnNŽš»IÒþmÜÎ ! 2xD>¡äéh.:drÿ`K$v=¾ÕkPä=/ƒ«Mý·Eub1’$Nk溰!8DJ¨%˜£}ÈVç(OéßøœR<ÂPǨ¿öøú P~($z‘²a$Ò»‹Ð+2{ã[ï÷õºpß@Pqzm‘ k¡Ôl@M¢_Aøð fž¼ÜÍh'니™Meg·P|-_%’X#¹7’>HäðI»c'‹©/l¿æ<ˆçõ”qký…ÉŸ…“¾à$` ä›AÆkYŒ}W1>Sg´p{Y/s­£î2æ.¿‘—N{ ü\]'HÃæuÓ€Ró…¨{1oVCËÉ(İi@/Ç[2|À‰”¬ƒÎÈ*‚´lÔk¶ÓûR ·€JSú¢‡µ‹+p»ñÀÞóu'§>èñˆ5ÿþ`ÖY"¼އœKì”Ä8¤H¿+4:¹Ûoyn‚·„3IJÇÜÍ‹=~N¶4åIjOWÂ%F€-.b )FqÏ¢f¹Jãa«´Éˆ µÂ øÀU¹»|Ô>-­ú ø/ôt_nzz»ˆò1èoRz'[ü¨ŠY¯âž¨«~Gvø®)–U½’çfé¾î‚sÁ¡†ÕÞæ×˜¸Ì"™D1É÷:Ülž[™åÆÚúÅÎ?9ʵ¡ÙêðØå“x›Íž¥G’¨!’¿Õú"o8÷©Ÿ Ô•ÛæThQ›+Ëîâ§Ãbݳ”½O.cª~ø{·hëËØ!ÑüM>ÝY™ ‘Q‚BF·T ‰$Þ)ó¹Ù0ë¾·_¸èŒIÞB‚“I+äÇ)I%Å¢VPð×ÅÈ'ßGøPó,Ó(9—ò ”æ…JpºÞ¶Öí:ˆ ràÀ3ŠtËapXÇ™r‰…hÔϵV!”w-[§ŸtúmK/éµS˜ +†îQ¨É¶ÏjÁß­@uvä2ô4Ê’< ÒI a9óíkg!‚÷Žû¼;m#îŽJ¦Pv“.å£éÊŽëo‚š2~…§™©Py˜Ñ‰D~ŒF\Ý6̃Z‰IÚmÚØ¾žo[ô¤0Ƕ²Qà'1µO]•yhþÄ>…ÎÖC4Æ6Û?ùrsÜÑ“›7Η®ÆLøhî©?-þN’mFÚNH¦Ú_1¥Òƒ„ÑF¨æµkH¹D¬Ÿ€Áq‰¯ƒÂ›½Ó½ÉކºQi”S—}HÛ8įú¡³¦½cþpÀ)ç g¥Ýž`ü¨EJï¶ZÄ÷ZÜDL4BïÓ³1ùš¶á]­Ç2÷LH…ÞÛÞ%'³„©ë”8_!ž*ïò¡µû׈èBt’„Ú=VX¦›ZX¤–b3Gè÷¨ÌdÜUßûÐâ V7sòeØý 6¼ñ-$‹£IÿCåVæÉC´Ô¨wu<†§¾xpàz€ tWåvOxºYùqô×´l"åŸ(‚àŽYBˤüªùæ5ë4‚÷µ{Ztn'繫§^1²ÎöZÏŒOÒ^ØsèÇcnŒÀÓK"D»–BEáîÏ™[­°!ìbÈp²¼ãσr=ŒßÞ„w˜âŽjæÛL÷©ÑB ”}<ó†YGÞ[ ÄD <˜Iøë|F2“b¡ñàþËú(Ãã=‹þªÒ®öÖ”‡\6îæ,'ží—ÄÑ XÒ–¨¸É؃ÉqRÔƒ[¾Îû †¢=1\mö®°à°½žÂ•Ù+Cå¦R Ô¥ÚMtP0©E l`a¹¨Ï©6’l²Á$Ë‘ 5mT†«÷·Í—6’{b £4[¤‘Ò(‚ïiì­ûõ.ŽHa?Tñ•qv•Mh"[cQÕBƒE†t†l èTEÁYÚ.ž%0§÷J]2* LýÒŽa_YuÁ‚˜ß˜’ÖÖF™® £ÎOÍ$„ý3£è¼ØÖÞrn=–Ó$<ã€æ{bª©éeïÒ(H¬;¥Å§–Èc 8œmѼ @þ™ ¦‘œa™g8o†I|#3ų6TvR©{¤aH$ÂàÙçMsÉGÊÒðï¹ÓL:HK…aXá¸üPÖñã+Ÿ6ZߣÂyÙ€] }#¥ª”ÐGÿˆŽA ‹Žô¾•±‡"žŠéðM÷æ'˜æ (Çâmv«*„ôÏùv èã}˜ q€- B"mžóQ÷ÔUÎÁäµYĺgû.¯¹©Ïî‚OEÙ»}«ŽÇqê_zJb¿^'›¥)犸˜BnKµ!¯QQRÒEÒDHRMúVUš>8‚žU,ZcD˜ñVR–gÐô‚ÆNÊ”)]ÐnÍ‚Ã-(&èîá(ΆÙAûuÔ=ÆI!Q„{‘òÆ6É?ì©Aø:¡cÙ]<­àT‡R°7pØâõ1‡^™`€ã+nÜU`±òÚÉ„¦Ýàh1¼êÞœ.[‰ãjÖ+„ð÷4U’F:|Ðö±‚ˆL4zOôK‡­Ä‹»‡ÇâUØ>¯¨&8ÇâÃP7Ýí'ÉŸ­WÞ•X´ËŸ †ý{{ ¥”/[néEšEöò# >ÎÜdA7›CjÛž³ÓDœwàÈ)t>ëåáÄÉÊëῚv¦¤6“Èu<^] XªQr| ó2ÅÒ¤[þ‘&7;‘’!æxiÖP´j}~Ƥ°¹ ¾W¿-@õÁ{Ú$=8Éžzy~ÄhÔÈ-† †°OdzûÁ¥‡¼X—Ê"gºàžuKYþ–NVW›Í¢²ŸËKЋÌEZäþç£Á8޾QáB ïÂש©ÂyZ½•#e†¨¥“At6Uqˆ­ ž: â»—ÑïµnŸ×UÚyo¹]ª¶/Ùqmp »±åqЀwÃÎôÑÓ44¨B]ö'1x™Q‰Àa0ÏK:XënE”¨öûfN¯!Cmår¶¦0$&#Žž*H+£Ôú©ëò*œˆ/¾»Ì\Q½hË4ßš÷$’Aî¡3}(`Áüs;'¾x;G¯‹Ía}휡^²£n påhØ”?ÑYØhºû8ˆ¶i*qT½ËŠ 6)|äè……ÀKqªšQJùQð äú<=}>Ì;Mž‡L#t,Ÿ—7œKöt„¢¾Žu!NÛš·;"yõ mþ:‹©ì¿°÷ÿæ,©”öð|ü)-è–Å}€¥Ÿ#H¸ŒÀ’¢IÂÔ¼ûpœ8[ |£E¾5Pr;d»oùw3TZ{©¨ÎË ØÏ`XÔ.Wxöþ¼Õ„Ý1¼ÚhD%2ò9àS 'ÙÌF†E¸´¸042Y9»nA®˜J‡vç­éKfìØÇŠ:WØv¼6€îB©d3!jU:ÒשīD¡`ƼC¼Íe |;I¶ ·ïüÌ!⪳;ÌýLñ~ÞZvbnø`xù=–ˆ×Eï%Æîžª'õ1‘áGWzk`lçCCy‰©ãÓï‹VZÓž8“ý¯…ºâO<‰*±kõ Uˆk=H~)g¹uc/ƒæ’zs‘˜U.¦}¥Œ#ôø?ˆHû.`ØLå5Ûì¥Fó–fN©Îå¼¥÷5xóè’™È_-‚÷¦÷GõþЭ'& Œ2þ.•˜M‘‚b"¬$nšçâ%ŒîÄB`öúpþl1D­(ê9ú¾Ã§ák±z ›[”iÚ…ëe8^¸C Š:¸èøû7<“­“åAΩ¿rE,0æØ¸ =þ=ÖÏÚ]ë*?«„áÔñhš¢“YV"ÅÖPñ»ßó~NCÁ”+- fÇåvyÚ@ÌzL޳&(ä2g*k_Çу۶³!ž×»Èf Ÿ¹ªR„UÂ…lØÏ Sß$3 ôT«h‚«ðî©iô*>ù]vÏç¢C3=²µ×•Œ‡Z¬µPŸšôHd×ì¯`~–¾ì,S¡?D%ЂË(=¥;–eÇÉ•¡…¬Ty{úïZ’GŒÓá§ Œ1UO’™yllv5Ç´à– [òuNƒï`ó•sá:—òvˆtœÉËÑ£üJt–GÈšë g{7ùl‘c‡Ñ,&ÞiùÒ£1È+íä»–¯S.ÂfšÏyDø¸ Û…Ø›ëK‡ÌÖ7dY8ègÛÀêjÍJg"<^úȧñçßÀ~%0À fûú+Ë\Õ«fÿŽáî-5/þk<ÓôgFày_8ýR<†~bÛë0^±‡@°ïÞ8gÍ–b©oùHÅú$\R‘iж·á©s&·i;ç–süm]Ç  ŠØÂòÚ{Õcûæ÷nÜ¡„ѨÄ2ÕhÈ^¤.Ñ‘Á~¶ŽÑo˜´®1&z÷ºŸ±Ê‹ÛvTe*ëCâc?)ƒG »Ãü ân¬ä»æÙb £Åw¶ÁvaØ8‰¢’MÊ-»>‚-¤ãd^Ò€Õi§Á£{·Ù8’±Úû×*ÕÂú>èˆP¯Ùx²Õ‰»/ö‡@t¼åíFa…—áóä!€—bŠ ‹Àå ¶$#Ëך»©ðž×V óû©«"ˆ¼¬^ÕOêûúaTœ*zÛìCú{âúš¯E~õ12yqdã.„BX¹ô}¨Ë‚ÒÃËÀ”Žç¢+Ü¢LÅ0íªçíÓÏXƒÏ°ë¶h5{Ñ /÷l ÒLˆ€ü°!Vk"m-`ƒß'voMÕÛÇe_Ä4ÑÑïÕœ=_Ñ·°à@WD^èMÉ´Tâ†ÕC”S+´ã¤<Õº¼ÞkÕÄPËÒ)p Èm¬&²Ú|’¤¬Ý3gÐhk¹Tw-Káu·…’$]¸9=g9eO…ÐÏc?Tì(é £)(Ÿ–šsÐX&iÀa*ÁʸW“_WÀ.<¤ådŽ|Ø=pXê™äÙwðî=ÀøÙë­2BÝÁ(}vyœÝE °‚ûü£Nû!Û®VLùª[تU~R…ÐÝê]è–N~aU4,aÕR+Ñsq¦Ÿ™ Žbè+UÑù¦÷Ûòxœ“ËSÁ¦í„G?Ì亡äú(iG,ÇåQnç„EÕ‰Úñg‹”܃»pÞævâ-1Ä¥Š|Ÿ§x®‡£Ý‡ª°{ÉÀAy/G^YîùØ 0™É4zQ<(pÞ…çùCÑýZÝ_<¯”€„W÷Ê7/@Æ1ñ?ä6‡œøÄk]`J0ÝeÈLÍ,ˆ»« =­âîÌàlA|2t»í¬¤úƒ¶¡8  ÖбüÔíܔВӻ8Ó쨌؊åÐ%]TœÈb4:Ô åbêYÍoÊTîòûº„ÇœáZ¹ôº‰î‡}¢ÓŸ01Ã%ø—'®¤YN-о>ýT#Ó‰k˜èßX!ô®ÚÄ¡Lü%ÊK|@ùŠƒƒµáÅköN‚ ú«´¿ÞT¯ Rk„44>XâsÎ=*–Çõ·ÑFïsLÍi‘%¾þC§’ =ãóŒÁ8¬E ã/ìäT*0‡§Oí¼¼ͤ–º¥È,—á>#cíŠ~æ‹j±–O[ÂH -.“ù×,`y@=X/8[/ˆ çåÂ@¹e¸ÊoSÄa–ÙŠþ"4æŸIÔõÎ`Üè–¤·Y>LOe¨Yk \J¯¹jx6zòb ¾ø£j^GˆÿªC„Å0n®ü>¹oí„ÂÅŠ¸²v§—3 ÖÆ6þ  Þ&kÿéšÆ-Ù€ÎÅÕ‚M{$7øýÒ°Ï)<ss>Û±ÀËÄb–ãŽg()ZgŽ.xú)Ìs˜ÏËu¹|uÏÅÅèøYkKëÙŒ@»©KÕŽ€Kß&á‹iXŠ¡ø.foE”Õe—Ïý›‰¨Ñ÷ptm3ï€éÉfÃÙP§·)è«ñá§Þ‘ÝVœ†=Xº¢ÃÖvul‹¦£Žì /. ?rxeÆç‚›Å©VèH?åH].1b—á¾Û_Ûg¹ú$93”Bf?‘ïOÂ艹Ä0K#ÿKh뤋ÆúÉy$Ž3YŒ·b²H›xŒ{¨5XÍz4›ÀÈľͥj&peálx ãÞ#¬!òs'üQ!˜ÒĶJ¬LŒ[èa¯T¦—Íg—Úº<]x5«eZ/(Ç#_¤Tkòt釋¼¦Ü†i¿î‡þÊÛ²¢û¬ñ°EãqŸfЭBwþª92`yÞWÒ´—hò-apF„åÚ@à C‡¬±'rk¤x–ÞÇ`VÞ¢D~Rj66̺‰6()’ù¾°¾=ù¾!ºÃ|ëÂ*)=4a“jiG€'E¨ÕG–Ðv‹×“°@3¸m›°\"5G=_½¸ª“9BدG—ö'¢¦9ós˲†Â¾¼‰I6imÂ1è—¨˜ßéT…¼ûâ¸Êb?-ú¼ã}t2ÿ ø|Ø¢FO/¹¸Pf¼qÀí‘™Âþœ"*·mÉÕœ ³©dµ*eJ, :‡jŽÃèÍÑ߬yßFC0fÝ‘}WÛiÅ’ÕòèáNÒvt¥Ž3áœ4˜Z‹˜WTåƒVeîk½iá¼CÚmlÑ ]=4’øð³¹h’÷Ó>S¬;P`Ü(ÄÇ}ú oçÁU©€H»w†Ŭ°Ç¸g,Ö$ÑÐûüëlQ¯$²ì!û^ðø»À3!:ˆD΄mOúçµ°+É ªçVí"4RWpxëªXKOÿ’Ê÷6L êØ Aœ˜(øTCÔ4š»ñŸ^Î º´‚P‹kEeÔŸ6=À4¸He¾,‹uŸMÞÛE¦í4¬~YÎê¡ÉË p½äù’¶åÄ~¸9^"½»xèÑt®þäïìä"tê­€» §¯íð>–2ŠîmÌ®KÎ ˆ¡(èï(Y-¨aŽÃ‚A$§Ÿ·ú°á{$\=ƒv ¾š†§ ç¼ ×Vi£õgB9mWÙª¯h›ÑØÄ$4I*\]dÇnϱ˰ŽFXM|÷í&Ïþqï(`ÒW ´xgeFÐèåÕÝTÓáhµ 5¶ ~6 ZœH ˶@-ë?‰e†·Sà§§E]ô÷ž$Ã%IHÈÒbƒT%öë ŽÌ= á.†C·;Mécæm-åç— Ìølù²)b–PÖòŠyã¿$§%#hˆòÄÓ—©%–(;+½K=;Þ'‰(”sq^”¥ïÀåÞ ‘!%Ù3Úúíw|4/ñ 8¸YY<¬û¢ c™•Üðõtï·l—•Œ ‡’½uHKÔhQÉp¤žÛ.¸TH·|ºóJÒ¡á“èÊ`¯ßyˆÕèW;1 ‚_â‘Í(ç|Æ/5gvôÚ! ™Ez6cM¿ã·HÁ!£s"¤w¾µh%m¿>¯Ãk‹Å•êÜx:ªn)L‡±XXŠå´4—Ø1ÉÖÖBØ„›°­dÄÈj •÷¯ýÜÇ/3¶D[!u r­íÂò5Êžðn̸àÍS2ÈW}œ8¥÷µYv?ÈÉÕ儨þ4”Ö±ü”Õ4IÔG•;9õ}îЇNù³È±-˜¦es”:98øâŒÖœ/•L‡‡þë€ýæi«ÊÔz‰Ä"‰%‡f XÛ¬Vw{TÿÞ'”ÌÉc“tä—#ÎTXp•®dLâëz£kDOpnz„ˆ™ 6÷ùꪓ¶gý¼ +U.’5ãØ&¦ô2˼`¹æÌÅ@"þ„_B hót‘Ëñ"ÉõĆø‚I.ìVåì»HóxeJÛS¦Þ{Ɉlê,³{ÃZE¡d> WmðæÏõ˜€~BÃ×DrØ„W;¤žéÈÞêä$¥J?†Òà©R`ÕÅaÜ\¿LªìÔ±ÂúÃ{37N’œ*°'#ÅÏÚ«»0ÒÚˆšú:Q¢Üˆ~=š–=d'mÜwÆçûjŠ9Òû×é\'löÛú ß´mÝÁ½LY({ù èïÒ¦ïÔ¼Mцœ!VBƒÉzáfIáü8ÍÌÞɹ™X,z?O¶ü87)'Ä“…IœŽýŽl9£!\¬Îb¢vŒ“¦v,ÓN[9˜:ö r¡7uÍW ‚ˆBÏ€¾˜>»Áÿ+>në]ŠGêÃ…„¦•ŸÁÈ¡È"SŠrô ÓNdu¶“ýxÔÔ½×§jo«BÕJêýû…®:Wa'zd•b™ý¶÷ÌNÕàÞU-µÏÈýx [RC³(°·3qGÕüÒX¿ôK¢ûJÒ-øÆdû`ŠnT«Â×/'¶Ü6Æ­2Bè‘K†é&ýÚ~7U“âmïý¯¥»cáíÕ‚öøÆ‹Ê ±åç,Ýóxß››lÜÆàš—• …Òë%7„ÌMlÆðœ?ñ–Û=/$ˆ  ÆGËñ&¯ÀÚò‰fû-æÞ_Þº@¾G'У{„M·¿­ÊŽcëó’ÆOíL¤['xô Ñ¢–ÔTk`ˆilžÞ„įYt‡ÑkH²™äv¨{Ö¿JÇðöN©v7“ó¸û1ñ³ºÆ‰97êÖ,_ÂóÃ÷ˆK@}×ÛÏÇdŽO UÕX(•éåW·˜øðÅq”V{msó:½D®“Éø™Ð•¼‚ŒÙát ˆU‰í¼©ù0$‹ìî µí@åp%‘„ Uò>#O5udx²—¬K 8B‹Ý~JÏ2+3¹obê ÷‰ ëe§‚D'ñæ‘·_,bW–JïùT±”F!<ûOp\a¸¾AŽ[9#äÔ<§xè)˜}Î9XOñ ¼ê^B9"6ZV¸DŸ³MöPY ½ÊK2`˜…´Z>-ïžPDOøñ áþ<ä“3Ð5<6’žšï¸FŽñ>%Zë;¯¬Ê =A¢ê7+i7ªF€”Ÿ#'—¡ù[-óžÐ}Q:Ã)Ö ®©V¾K¾Z€HÞÚçñ‚0æKU 'ø†g,+² xAm¯ ö¬¤T†•×ç¹ãÕqÔñpS¬·×× € Dq')´uëy õ‹ ÌHt ÕDÕ*Üf!eÿ4ÝV&42F2 ²_$ùQZjN)~RyÑ”`Έ°$ǫ̈Vþ°¼eÅ’ ;®tn™á½SÞ–c™sÒ¥è£nõ”Û7\d¬œ“ôZƒZWo‘®¯ð2¼#k¿¾«-±ùѬ#ƒˆ¡â.ØgVÿîKhí;©²5?Ùô *IO¥–ç,Êm™ s7†G_7mŒ³ßô…æ%SšÜqMÑÏ(¦Úøg6‹ÆÌž¹/KE½cWvMLw—4°óƒ_dQálCÓÌ7UO_*¢›á¬Ì¶†ý~‚ ukdMYO’Y埄²ÑwrÒcö5R9”0ªgt™^¼Z:æ::µSOÞÜq6ùýŸöl8Oúì…P^ èš™¸óJ!%óšJ¶Ò…¶Î‡& ¦[Ml½ÏikÆà<ÑL!ís= ø´ô¡,WðÐxõ4 ±TªÐPª,ø†™¤“É7¾“á¬×Ú¥É;ÛHQ¸DdÉxDÃ…Úõ?ðp=Ú‡šJ¡vmÈÔUÏôµÊäÔ©ÔìíÔ€†‘8;úâDï¬ë­Æöñðr]BöŽ;.n)¡*’;ûÆ|(¾âæòÙÚË@~½|{¨fXÿvd<}÷$ÿÓ±Ô²Ê1“ð¤ðtiUZ©«ÕËò$¦°LB‡~‹‹B(Ö‚’ÍtPÁšèùò v D¦¿9L¨/zø2哃 ›Ë´X†Ë½Ï^ú õd"Z¬ÕGĉm±&ÀÉ똤GîOʪÁ[IZƒª·¿`­ò>˜Ã ¦†S…–ë%«ú·&‘\Au4S#Á,ó°ƒü–-;Jò‘¡®€ºÙûCØ(;)Ýïâ²U†|†É"º1#?V¯nbV ·d¾gŸ—!Äfxî²ÿXÍEòFwÊä_†Œœƒ[ŸµÛïÛçÌ6¾YIÑ!¨MÈ£îkˆ\ùq“·#.ä^Âx)ó=¦.G^Êá= âjÕ/ÜvXŸZÂì÷K÷äë¡?=[Û#ά)aXöˆíAÙŽŠ*¡Ã Ê?›^ñ±ˆ@íy‰Üò›7¹„®¹ÿO5ÊþSOÚXsÕRùì‡#„ŒC;BHKzÁ ²SžøÜ…3ðG„¨, [¾˜Þh ö+)&;÷­V¢VVaõˆôû$%õ©JÊ[Ðà+g]–h—]·ì™¯‘i¥Ô(¼Þü+É̯7¤F½ÄÛ„#Œ£Fçö"SqgR !ì-úî½»*€Éf²À‹Žµx{T"„P®Êaì ÕJÒ¦˜ò~"ûó”('"÷ÖâI xÙiZSÀöáifÚ;ö°-±@ô„ðæ‹õ•b…èòd¾s-Õò &8•ø¹˜ØMUeœØôЏ1.V$Ée/( Nÿ•mÆù ®D @úR„i)ßö?£¦åÚ0™SY‚¸KÈÇÑ$\íü®DÆJÙÌ÷?ÿy×2*å^¢w endstream endobj 98 0 obj << /Type /FontDescriptor /FontName /GNIXPP+CMTT10 /Flags 4 /FontBBox [-4 -233 537 696] /Ascent 611 /CapHeight 611 /Descent -222 /ItalicAngle 0 /StemV 69 /XHeight 431 /CharSet (/C/D/F/I/L/N/R/S/T/a/asciitilde/b/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/e/eight/equal/f/five/four/g/h/hyphen/i/k/l/less/m/n/nine/o/one/p/parenleft/parenright/period/plus/q/r/s/seven/six/slash/t/three/two/u/v/w/x/y/zero) /FontFile 97 0 R >> endobj 99 0 obj << /Length1 1557 /Length2 7560 /Length3 0 /Length 8594 /Filter /FlateDecode >> stream xÚ¶T”]6L J ŒHçÐ-Ò’Ò] 02ÌÀ0 Ý ¡ˆ€¤twI‡´RÒJK#R"¡ß¨O¼ïûÿk}ߺךû>׎s®½¯}Ö°ßÑ5àWp@ØATp¿H¨¤mh(D@ a;»!ƒüØ!H(.ýJH…Á”Á(ŒŸ6Ôð„…D€BâÒBÒ P’úÛ”*ƒÑP ¶P‡xØ•n>H¨“3 ³Íߟ@.{n ””ßïp ‚+ µÃÚ`”3ij£=4@ØC!(ŸÿJÁ%ëŒB¹I zyy €]=H§{Ü|@/(ʨñ€ Ñà/Â@°+ä3;ÐÐêñ7@8¢¼ÀHÀ ö¸&ÂîA1› Ôµ€Ý ð?ÎZø€Õ($ ôOº¿¢%‚ƒíí®n`¸ît„ À‡ªZ(o wøå†y 0ñ`4 Ûa~Ÿ TUЂ1ÿ¢ça„º¡<< °_¥ÁTYî „pu…ÀQ€_çS†"!ö˜²ûþé¬ á÷ûká…;8þ"áàé&h‡º{BÔ•ÿrÁ@€1' ($E„€w ÄÛÞYðWzC7Èoãoà ÀÏ átÄ€@!˜ÀÏŒ†QHOH€ßþ{:@íQ@;ˆø7;†8þYcš„z-@í A¿ž¾¬0òr@Àa>ÿºÿ¦™’¹®&ïÆÿØÞ@?~q ¿°ˆPLT(.% øï$ÿÐÿ›úoT ýëh ó©Ã@©? 0¥û›ú/Qpý50ÜÀÿÞAQ2Èõ¯ð-Ab {ÌÐÿ³ü‡üÿ©þW–ÿ›ðÿ÷@ªž0Øo3×oûÿÇ v…Â|þrÀÙ… mf4àÿëjù3ÈÚ¨§ëÿZÕQ`Ìp(À`ÿ”ê¡ õ†8èBQöοåòw0ÙaP8DáýuÓù…@ ÿ±a¦ÍÞs›x`ZõÛÁ Ó嘆G8üš:a1q ‰û@q ‹‰ý„0ãéñþ­k  „1쀎$àWC1A‚aà?ˆPЊ‘ö?€0@x"ÿ$€‚pÌéþD¥€‚ˆÿ\c’ºaZ‹pø7F (èAc®—Q ‚‘ý?k!  Ê ùAÄ ñoZI  /ùø¯*Ø{"‘˜»á·L1%ú{ýû"‚@¼!ö€ïö2áêÂÛÏk½ø7F妨7LR¹ùý> ;5ïWýeó#ßoèmV‹k_•MòÇ=µ )žfϵ˜¡c½âg"ä¡:ô&Ÿ>=›¢ÊûÉ¢Ï Ø‹)ô3_~ö}Æw±ÂPØ£‹žÞœŽ ÷”jd‚ÃOq;YƒvÖ¯¤èé²Ülˆ[kÞw¨è`}&XxG˜_m–7ð¨ÈnKâPçœöÃËç4u•!Öt(¢Ó|ùnO·Ö^j߈ï…ÙçÚPÐ-|­ºÎ³­Ú!Þ‡ ݲ-º™Nî_vCï@-³œ—½ dy¯L[8²¹ƒuiT€ËÊ×`õ¯¶Ø…E ÃÔÝ›~àdh¹CfšÕ‡½Òû)¸nwzçgSd:¿wò^­ìíK´_qy\ ³º'ãóDyély8,Fõa*ö/Tx*¯lpÕñ§·†*ÚŒò§¤ÆÎÏ>ÞMµÚ”¼Cšb N)n+ )ßa8c™•T1–%½—¦#“ÁÐ8Eµ°qÖa!5̘x§µÀÅæÉÔc6,ý‰);Ú™Ô §þcB’AÏgÞ%SÆÚÎ{ÓZl"º8©ó_nN~ði#˨¸É׉`—àŒÚjå¹ñE¥ \¯ÖûçÔN±}Ûײwv’±H6[Õ®uÂ¥bÁÚÌ äÙÉ—öˆÅó«àDiÅÓcÜ uK¶À¹éø¼úÝ౨°¦¼g©4†ožd tÞYßM®ë®Õëª7àÁ³ÑõY7râé¸sWQFÕá¦Ï…)ZU Õ»‡Ãd!˜vlkÒ>ZÓbrçuåÅ£“J@ØÂWÒºeà ~çGÍ©Óx] „ÒïëvGììû§ò¼¿Ž;1»Ðá‚Ò­óÍ“­FKê9žŠˆ8=ý*²¹ëå*ü ¯ë™›âÓ õ‘`|²héÀ8÷ U²•ÐhOÙEk:¬Cu¹1ž qJs¯Ç“öûx"!”ï%÷Ìjß Q<ÒTðˆ•i)<ìk{öÍvTßzÚ‡EIO”Ч-êÙÒÙIã[?zϸC='UÀ8}!V§›{Ð\Z“7ÒÝ‚lõÉ©ùÀ¼ÞVè‚Vʘù”)ǦP½v·úžþ¥ W½i$”æÑóaUÜyËw]FTŠXžeDÒ;[L‘•iáo}$>¯ç´ÇeêsnvD·EŒãŒûÙ‡ 3íöb|=G|N›—ÞÐñÛh^; ÌzМÅçW4OUÞs¥ø&%?qô½s÷º(½hîÙ¾Œe¾ÉjÜk¤2˜}áUy~Í‚}ë~[Ð5àMã(pý¬Î›J¬¿K1ÒY«›ü³èµŒi»PÒñ™éeïþ£hÈìEC—ÄWÚ3~ëG ØyŸ,n~¤08E?«‘zB-RI2×ñ†V¹´›!á{T4‘=;Imó\Ú¼Oµ†’\©/þî‹/´”“( :-íÅPé½PãÍ~‘×´ŸUR´Ý¡‡™r&nEQ¼k°÷qÝðÙH§œ’»o¤‡ôBèºï7èNòïyÞŸªU>0¶dô0(Mùá-Ó¨ª#­ât‹KÁ>´úÈüˆ³V<¥:ú®NÚÈöüšYjÊ–4œ|ÇržV+ãûµcEÆ(®÷Û=ƒ/ >>Eî-.¼.¹ ú!#—“©Yï ÎÑžP¿‡*í4°ˆ\ß,½Šk;)SO²–ºõпÓSÀúÓ„å–ç1C†—íÞ„T«Ø½º‚ó%B ’š¾CЗ“cÓçE‡ƒLngÙx£¨ãÅjfüAÏmkö¹¢#[&ÎSÈ0(—O݈%Bü‘\.ýΈWÌÑ`GaçÇh¶á~‰Çôç©×¯oŒÍïQ÷ÿ(íwQt³”ü4»5Rö ¾=û(eK2îa•cAž«)œ/æsêðr ©n:NúcnÐÊ”ƒ,é‹â¥·CªÓÛ ÇÛ*¯£–ª^+3¢V¶|ßKÁ‡}r#˜ûû€/×P¼Dë¢O£ð~ Ý"çËq›eË»ïÍqíÏ|ÐW"ú P”jÿ©†D‰bèJºlÞËñžò›Jµƒº›ãØ!Ýž¾Û=þ™ßœz)±‘ü4é”Ò 9ÛžëØÇ¹ô'+½ÊÛ–2@YÓÓ[/†)Psô º³ÕNŽ•ÏÐ_x~µéê§Û­U:E&Àk7Ö ˜Â…»3jö»XDª™gÌfYˆØÂN…Ô¢QêË©Õb‚aîÏq×N*çTöú)NX­[Çß³ùlT)^æ#ü©=×-*>Ý<›ÖSç·¿ÅæQ¼‚§{YJ‘8üN`ýù¨ÅJ63ýL},È ”ܘ?•_)ÆÙð­·* é6ŠíshAõØö~’¤þ¾vÃ,HXdóeÈ,¶Æ:ߥJëBº¼’œX‹…ëã4«Vï4ÉOæP¹˜oYÈG—I_‰¯ýp¥]úecX¦Eèš­>Ê Bãnݲ{\Z1Þ–v÷Z­A·iq>ÌZÔB;ÙòKsÈ(e1öieTü–xhAÏó·kã…ÞøÎ3©ÄãÀGR¾Ni=G‚­ŸDUiYÖÓ bò ç—É^(H\ÞÂ3xÎE7»åßÓìÕAÉámļÿ íÚPbGВДŠÍ­-¡E¨€T_¯õ×D 1M)Œ½šòáÞ<Í„—Aw--Æòµ¿C»Áã(öœZÓúp;hàd)m„Q-âΰbZ ™›u"56µìUê}åÿ¼Ûnu—8‹áƒ)rnt‡äÛr‹1x"o)oüDï $W/Þ|ŸßЗ‡(©0K2… uÿìz/ (ÑØRdAY¶¸P«.x¾êÀîË}Lí¬ñÀ;0¯o¯¤õKbÑ‹ØõÉ<½œ¬/«5œDcA3ÆÕr„ðË9@w:ø!{~ÒøMB‚·„jO[¯h!KjM­«Op§ñËÌ?ø÷Dr«HI±‰—|),¾Ð‘†›wišïæ Ï Ó óÇÃò¨mä|gPŽpð™VÓÍ幃t[wì&tT™Iÿi\ƒ,7ìo•7²›Eª¤'ÁË»£rÊH_ Í|)«ìöM¼ª+¦­^?­&£šýq:÷Ìë¸üyŽ6CLØØTT°_-2zK®Cu‹ ¥;V/ˆÖˆ«­ÈÆ É[œ*Z²ù¥Ãf ‹Ç1®¯/¨³Ø€îc-}.|zuñÎ=ŒÌ7ŽÅÂã‹3ï(ZY×&f¾u–;Û=§p£WUŽt°«#Á/\óz>Înˆ­ œLÒ¸!YÊÉj׊½£@þ,¿逛íônu<Ø›/ œïÛ<Í—¼tÕp•æ¦tSfeÖïSdV9Ø×06Rª•Yt‡€Ù½€ªœZ;£Ku:¿´Aa‰r_qK'÷HT_º„/qж‚‘¸¬}A'ë¨ì/é|ùEô/Éc6?4™¿³HI‰Oä˜\tVþñÍ¿FAoYMéPÚ’3¦Ù;¶&Üræ'‡È¹‡ï‰7Îñ tݲÜöBò¸ $de ¡*Áì ­j“¤©fö.ƒuÑã„øLD§½öÅ’±µ”üKjûÂØÛÍÊY¤žÆ5È¿<¦KÇnƒD×ó‡ÎõêN†œ¨‹òÜÍñÁR™‹L;³b7¹7rvø‘*€¯Û€¨àNOP·Àq Qb*:µ1.ñøÛ1­ýæü–Z}¼ór³ÆHêǃ7öN“ 2 ¦ËÄf²`¼÷ÈÞ=kǪm†‘‹WoU™µ”rV–|·ÉscÇ#8«¹²²–vöÓÙuâ‹LÖ¡=q,„ÅÅ¥¸ÜI\µϼ8yv_/$ž‹–=0-æ+âº2—~$øæ´¤úUE6}½ yôq`çθšã!­Ú^Y|¢è‹P¾ÂÊ'»rEb—çì¹[¬ÖU2Ä8Â烽Ÿ¼Ñ¿]t‘­%ÈÂÙ” ÈhZû Áÿ6ÖQþ¼:2’<©°A·ÝCެË~ã&)·’eKÂ?¬öl(`”½FËÍêèRûç) \©1¸Œ èšU¾™˜b~(SÒÖ¡¨Ÿq›»²Q±c¼[Ó{hðcS¶/4UܯÇ,ôÔÓ¥ÙÇΤ?ˆÆ†;ÉÄûU¡O]Êû÷Ç×ç¢áÃÖÑ]’÷—ÚÊÌΚfš¹æª¼?$q¡Þ²p˜šñ·UJð”3¼¹GTöQJ^2N`V!±>+ ÇW0¢•móØÍ‚u»gN4Ïg<¼V c9ÊK‹ÌG𝹕#TÒ?F•AHGÄóšI{ľÍ6Êg0ÌUåԽſ\íî!Xv‰ZgЏànL‚ÕŸå& xÛÔÑ2ËGéUšLˆG¤sÁJÖ>“2ÅlNø‡<œµãWMÞš°H¾]¥Ÿ©«|ë…ìtíšòåÃeüæ—VÊ=U=Zø,rx‚iy]d§ÝšûoO+k l߯ ª†9éÙ ©>݇_ºëV·µ6•Ûp¥:Í©1jr¸öµ¢š}{v®*m°Ëij¶¢Å¾¢ü±„B.äIϽJ,½Iͳ$qëIw|,ÓÒõqó–'÷Ç`X#÷§™ƒç_F/lö4Ô³á•T¾»ûd±ÌÙä7úúŠ:PöhbÃXqÿë~¢¯Q} ©‰A\óg Ïãr<µã’mB›én‘>í«ïŸV{¬#^¢6q@‘u88j²o.§g“&éÏ—zŸ¬_€Â ì?LÖ|ŽKºGŽÕxêà^öÓS|QajqwI©O]äQØÈqB” N0nv«‘)%oÁgz¬÷¶‘Ûñ¬1øº–—+Xa­ë ¦­`h^ò ’ðJ—>†&â)yâxXkÊ|ûwçþ4`-YÑU,,î'!tÂýÜ%?J•ÉŠòarR’ô›yÝ‚é*{¼òdŒ¶ Ó¼=†LÓø©ƒQ‚yÙù yª§1Mê/Ÿ ª(M?° ubê!a‰DŠ“U®>=Ñ}6BïEQWý_¿ä|›†¥€¼’D4݆Ÿ¾/ŒÅRUŽôZV`Oµûr󔥧ˆÏ0Wû†p̘ÒÃÅ+ã\H¶\Òù[‰UÏü$›¸p2?ï Ò¤l{ÒwÍ ¯…†"Ë`Ä>¤½Öþz—Y¹5ZcQöôãà Ü „Dc%Cßü!t½t‹¤]_É^ªŸ·jæ½M2™9ä!çå7¯ø¼Ìç°Tæã˜[⊞~i…"ú!ƒÇÄhû‘2Q?Goõ"ÆäAUÍ—3ÜÅZN]ÛVOEG6¾Ìƒ™¤)­³éõã&¹ /r×W WFcBŠé ¢dXHq”áC8Š>_|V›Õt8líöYˆ{û†ò3GЫ‡”&ëWX•}m ÍøÞB=“ÆM=ÃÛE<Â>Þgf+C—S%v'R¡eЖ¢3Üpæ¬ë¼®|ø±Q?>ŽÿuxU ƒÁÑÎæ“ð­6y¢£¢™ÉK<–˜;e)|Cc4Äáåè1ÚÛu¸í@ÛAVEðfBØ{–ž»Ïè¼Z vLØÍ`ѯih¥ëCïU™—È@¦U»ýtîæøM~ ’—ð9wP§:Ó4E䑬آ̋XIxèi¶õ”84=nx†¦5šÒý)Ägq KlÈ(•÷ª¦NN£¯—9ÐClÔË‹¸_½]ÔÒ§[åyVËØ„¯×ã4hZå™nÌ7žÀZÆnó¼”é¹Öhx«(z¡¥°çC):¸·Íüíé|ÀÆÌÈþå²Ùýs­˜è›~A#èåÖxÞ‚'£:¬Í)\¶Ÿ>iI$©²ÌÐä9L}GyYOQÕL˜Öîô¼NÊüL„^WŒo:a6Ñ”K Z׋·KQÈŽuËòWjCì¬ý—‚óÝó»Xû¬ÇFf9`Ô9þ;q»NПzr,]T”;§È)¼  «ý¤46R‹kªù8"lÚ“‘Þ«k(‡ÄœO]{½é ™À•7¯Òq U2 z\1Gzÿ>.IÜe'c-W\ö­]kH%äîç•w6·F"FÃ.‚CZ ‰ €»¦‚Ê;bæMñä8ò¯•Eû½¶ïô”iÆÊÆ™8ßËÄñ–\«M®±­*¿K8a±ÐkÛ’ôÕQOu’®ÖI* ˆ“Œ{×á™&$ª[0PÌ‘$íæì.Œ‘-+y.u¤®)Ó½šq{!en9ó`—ÅjŠo“NZ+©UÙ°äúÓF4;좚WÚÙpŸëšQÐx…ö}!qâ%á ¥Þ½>SX±cqËM ¤œµ!)—Ò´†XÄŠ7ØbW Å]ßÐ52”oHS°´w_;¬oú&·îv%Âè|Ñq«´3Q5|þ«Ã‡ÀŽ"œ J.ímë–{®¯û¶ú¸®Ô¨Æ-Ñ»Ò䯪LŠÍ‚l5-åd‹4尶낌̺êFj¢C£Ò„»³¨b?Ì—_ðµ%GÈýܽ¾u•ªnøæUhKê‘íÍÌÿâj>XÏ™ádöÛDédRÂ$óù·¯»\à*]7¹Û,ŠÕ%=iþL¯%§OgFktY±yWê%ÐÕæLõ‰#<8É©FökYä:·ùúWÓ[ íMu,}Ú“Hô2"ƒ—ÍMíxÍyc6™ÕG,¢†ÌúÓ³¸)Ä õÔûçÏ#˜_í¤©ZÞ jÜz©ºZĺ3y!OeÚE`+@¹3M¼‹‰_6ü¨âv_Y.¥„s ¾ñzMZǼ^«}Í¿§qÒ Ç{óZ·^Å#Ô_o"xg+z÷ík¢t;AF2p›gnâ½>^m´ Ý’Nϳèú^©ˆÍ±›£ëw´Ë÷5TÇ;-x½Ì]ÊÍuóE®¥ ¾‡?o¯4±tqÛEíkÁ@:ZK8„*°„ŠeI›Ä|>ÏÆÎ:ŸÆe ãóaÎ¥l*GGQí†u—·DÙÕÐsŒ¹ò»pd³Ø9yÊ`^Çìñ’é=ÛX°ï·'Šäß²›tœ_âz¹OçÃÚ)õIüäÁMCßy³å ô¾G,ÌQUƒÒªQ¥ÖÍ'_“ À¤ÄGa÷Äææ?lÕl<¸n{®OØà÷¾ÒÛP²G>">‡ÏìŠi—/b¨(³w'¶D,h{åI²gþUÄ£m+_½ùÏŽÇ$o.]DÓ˜&´n†©¤?8íX‰?Ôš+¾ÇWÀ å@M÷±•9¿wŸ»Ü냆о`a:ïÊ%«”Æ¿Yø9èÌlWHK7ÅýSvBÕtR£hÎ3ÕNÏ=NƒRç»|©OP8þë·í"³¬¢½K-¾´¶ýp…û¨ŒrâÚZ›v¸5ÿD<“X©Èùœ‰—UÆBÜ®<(±™ÊÔHþŸ!¦`é^§í0o­j´ÑǶ¶ý2ÇË'qOšWew»s”µš•)¯±÷¬˜û¾ùŸfû·HĶâV²_qQ&ê …¥aÚö Ë‚ïG¦Y­oÖ¹>m.|&¨««í ¹ä{â¼F5Ó—¯<$±~û"*¸¢'ÌÒÒ¯S}®CAtxÇÀQÌa”Ù‘*§®[T×°°±–#u "£Sâ!ý¾çÍξù‚›eeåÉ3,Å{¡…—álK÷f+¼É†z¬)ØÉF0ÝìYñI˜:p!¿*z\Õø®·$·ðið}Ê"à$miK{i¥– Í´oK…ÈÕVý‹Rêj‘AûVÖÑ'«1‹÷c6Ù¤F(Ùä2í WéIü*[½fP?QÒòÂk³óý3¾œ$SíÜÞéÞþÑÇÏt?z6±ÍRw¤FÉò æÁoý„x(Å|¸«º©Âô§ +³û:€o‚à€¢ÎüSé=åvO£·ŒT»W[ý°) ¶d‹Ù¾ùw?WÎtk„®C‡@ô¨cQäÓ·…*VÊwؾ°IEƒ1’ :Í ´,‘‰‘ÁL׿gP/®óáJðûˆj$¾I1µé`ßP@ˆ›a!}Õgò3}ÊÄŸ=lž¦Ÿ<’l\&kê·iž*Ï ñÊ´£$2žZàú Ì÷1oq|ïŠ jZ<¢ ö Ö™¸*/‡ëéW£–ßÓP¦ª©4ºmþhÍ/FýH6Štö€xsM랯ÿÂΕ®©•´ÂsêöË{¤w‡/sˆp™ÊzM¡/jtÌÀGúÅ> endobj 21 0 obj << /Type /Font /Subtype /Type1 /BaseFont /WZXBCH+CMBX10 /FontDescriptor 70 0 R /FirstChar 123 /LastChar 123 /Widths 55 0 R >> endobj 6 0 obj << /Type /Font /Subtype /Type1 /BaseFont /AIDTHO+CMBX12 /FontDescriptor 72 0 R /FirstChar 44 /LastChar 120 /Widths 66 0 R >> endobj 29 0 obj << /Type /Font /Subtype /Type1 /BaseFont /LBWBDW+CMEX10 /FontDescriptor 74 0 R /FirstChar 80 /LastChar 80 /Widths 50 0 R >> endobj 14 0 obj << /Type /Font /Subtype /Type1 /BaseFont /STQUFK+CMMI10 /FontDescriptor 76 0 R /FirstChar 12 /LastChar 120 /Widths 62 0 R >> endobj 28 0 obj << /Type /Font /Subtype /Type1 /BaseFont /RDLHZT+CMMI5 /FontDescriptor 78 0 R /FirstChar 105 /LastChar 106 /Widths 51 0 R >> endobj 25 0 obj << /Type /Font /Subtype /Type1 /BaseFont /PHAGZT+CMMI7 /FontDescriptor 80 0 R /FirstChar 12 /LastChar 116 /Widths 54 0 R >> endobj 7 0 obj << /Type /Font /Subtype /Type1 /BaseFont /FFFHBL+CMR10 /FontDescriptor 82 0 R /FirstChar 11 /LastChar 124 /Widths 65 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /BaseFont /TYLWHO+CMR12 /FontDescriptor 84 0 R /FirstChar 44 /LastChar 121 /Widths 67 0 R >> endobj 4 0 obj << /Type /Font /Subtype /Type1 /BaseFont /EUVBCO+CMR17 /FontDescriptor 86 0 R /FirstChar 14 /LastChar 120 /Widths 68 0 R >> endobj 30 0 obj << /Type /Font /Subtype /Type1 /BaseFont /WAENYY+CMR7 /FontDescriptor 88 0 R /FirstChar 40 /LastChar 50 /Widths 49 0 R >> endobj 13 0 obj << /Type /Font /Subtype /Type1 /BaseFont /HUOEWF+CMSLTT10 /FontDescriptor 90 0 R /FirstChar 34 /LastChar 126 /Widths 63 0 R >> endobj 26 0 obj << /Type /Font /Subtype /Type1 /BaseFont /ISLVKT+CMSY10 /FontDescriptor 92 0 R /FirstChar 0 /LastChar 50 /Widths 53 0 R >> endobj 27 0 obj << /Type /Font /Subtype /Type1 /BaseFont /TKKBTO+CMSY7 /FontDescriptor 94 0 R /FirstChar 3 /LastChar 50 /Widths 52 0 R >> endobj 8 0 obj << /Type /Font /Subtype /Type1 /BaseFont /UJBQJH+CMTI10 /FontDescriptor 96 0 R /FirstChar 45 /LastChar 117 /Widths 64 0 R >> endobj 20 0 obj << /Type /Font /Subtype /Type1 /BaseFont /GNIXPP+CMTT10 /FontDescriptor 98 0 R /FirstChar 40 /LastChar 126 /Widths 56 0 R >> endobj 19 0 obj << /Type /Font /Subtype /Type1 /BaseFont /KYCZPK+CMTT9 /FontDescriptor 100 0 R /FirstChar 46 /LastChar 57 /Widths 57 0 R >> endobj 9 0 obj << /Type /Pages /Count 6 /Parent 101 0 R /Kids [2 0 R 11 0 R 17 0 R 23 0 R 32 0 R 36 0 R] >> endobj 41 0 obj << /Type /Pages /Count 2 /Parent 101 0 R /Kids [39 0 R 43 0 R] >> endobj 101 0 obj << /Type /Pages /Count 8 /Kids [9 0 R 41 0 R] >> endobj 102 0 obj << /Type /Catalog /Pages 101 0 R >> endobj 103 0 obj << /Producer (pdfTeX-1.40.10) /Creator (TeX) /CreationDate (D:20140122074928-06'00') /ModDate (D:20140122074928-06'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-1.40.10-2.2 (TeX Live 2009/Debian) kpathsea version 5.0.0) >> endobj xref 0 104 0000000000 65535 f 0000002467 00000 n 0000002363 00000 n 0000000015 00000 n 0000209933 00000 n 0000209794 00000 n 0000208953 00000 n 0000209655 00000 n 0000210630 00000 n 0000211051 00000 n 0000005880 00000 n 0000005773 00000 n 0000002578 00000 n 0000210210 00000 n 0000209233 00000 n 0000024456 00000 n 0000008318 00000 n 0000008211 00000 n 0000006006 00000 n 0000210911 00000 n 0000210770 00000 n 0000208811 00000 n 0000011621 00000 n 0000011514 00000 n 0000008446 00000 n 0000209515 00000 n 0000210353 00000 n 0000210492 00000 n 0000209374 00000 n 0000209093 00000 n 0000210072 00000 n 0000014513 00000 n 0000014406 00000 n 0000011828 00000 n 0000022011 00000 n 0000016849 00000 n 0000016742 00000 n 0000014617 00000 n 0000019388 00000 n 0000019280 00000 n 0000016963 00000 n 0000211159 00000 n 0000021699 00000 n 0000021591 00000 n 0000019516 00000 n 0000021812 00000 n 0000022256 00000 n 0000022281 00000 n 0000022341 00000 n 0000022375 00000 n 0000022457 00000 n 0000022482 00000 n 0000022512 00000 n 0000022832 00000 n 0000023128 00000 n 0000023773 00000 n 0000023795 00000 n 0000024161 00000 n 0000024227 00000 n 0000024701 00000 n 0000024726 00000 n 0000024788 00000 n 0000024823 00000 n 0000025445 00000 n 0000025835 00000 n 0000026275 00000 n 0000026906 00000 n 0000027358 00000 n 0000027787 00000 n 0000028443 00000 n 0000035364 00000 n 0000035588 00000 n 0000048277 00000 n 0000048585 00000 n 0000055593 00000 n 0000055821 00000 n 0000066151 00000 n 0000066414 00000 n 0000073863 00000 n 0000074083 00000 n 0000082492 00000 n 0000082723 00000 n 0000107096 00000 n 0000107629 00000 n 0000118504 00000 n 0000118778 00000 n 0000130327 00000 n 0000130589 00000 n 0000137974 00000 n 0000138218 00000 n 0000154907 00000 n 0000155396 00000 n 0000162514 00000 n 0000162746 00000 n 0000170023 00000 n 0000170261 00000 n 0000181871 00000 n 0000182132 00000 n 0000199371 00000 n 0000199827 00000 n 0000208540 00000 n 0000211241 00000 n 0000211307 00000 n 0000211360 00000 n trailer << /Size 104 /Root 102 0 R /Info 103 0 R /ID [ ] >> startxref 211627 %%EOF survival/inst/doc/sourcecode.pdf0000644000176000001440000163006112267773254016553 0ustar ripleyusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4676 /Filter /FlateDecode /N 95 /First 773 >> stream xœí\ûs7’þýþ ü¶vÝiïÇÕÖÖÚò*q,g[Nœ;§êFäHš5_áÃÝÚÿý¾0䈤,‰doÕ–- Óh4>t7 %ãL1) ÓL9Î 3Â0ˬ5Ì1/8ó,X΂†{!Å š;Ü0aŒgB1á8Í„×(ixh™š¢ rϤV¸& î%gÒi "&=Ý#nSíHH%<î SŠk&-SZ¢²cÊ€Hz¦¬]€ô¨§Ðz” 7’iÁq¯põ`ª™–•Ð_@d™våŽéàpõè?ÑfT±¨¯3BCTˉ™bV@X­™•tÀLYÜ9mÀÌA zϬ÷(Ìqi8sBÁ`F2gbcÌ3š9ÂÃ}OÂXŒ@K/­†Ì+ ÌkÆ0>ƒaóxC„ Ðt)HÜ JP誋BkY$<†€KtÀbì¸áà( †˜C8ŠL’b¼%ª€±Ê£/fÉ92g©0z:!$wà¬8;Ò €8kÀxM­c@¡5É“úÈ…•ôœ­ìUØÀ©Ð’ÔÇytʃ3P$àìÄ€ØÂ“²bH…è é^þÎAúΰ ¤›Ð ‚Œö?þøGV>Æóû_Xg/a ”š˜Ú˜º˜ú˜†˜¢½xé"Ó%Õ‰HDb!‘˜ˆÄE&.¿°òx<š×#]ù¼î7ÕãñGHEDÐ8€)‰ôE5%™C$|YÏÆ‹i¯FÕÄ´<û4©‰ì²fúSê £ô {0«{óf<*ÄCV¾bå7ã³1hXùx<í×ÓÜ–ˆáFÄ[Ü|ËʧÔRoŽÒ` çH­]A g ¥0ܪòW‹óy”á´½kå‰ ß(<€@ÎF(t ûÓ…‚±ÜS ÅùR¦½`Bƒ¯­(Œ!Öy ' o¹Lê0©PXø<©Da¡±Úð‚ÜÉÎ0©ÃÀ$!M B.W+_˜]aÒ€‰»nÚ5€;ÔÂF¸v†I&LL…Ó4³BÙáÑ5×…Å ±‡Xû˜ÞR,/ Ü˜£¥*î¤<íPd™Á:É8ÊONÐjýq¾Ràå‚ ËÈWlÒÝ´b[ ÕON_Ÿ¼¡¡:[S“-zâwÕ»]OÞüôÍëc2ÎW?_oœo¶m×Û¦wiÛloû»ož===EÛO×{ýØh]íª¤ºÛúv5êªËn*bvV%o]Ô÷Æ'Woß.FWç`ýöíûqÓ?ÿ3åÞÕÓ.ÿ3’¡òoßö€VÓ„QM?±ýóø7ŸV£ÙÅx:Üg¾• KAÚ]ã²°4‡„‚sÚ„Ã\§ï;© SÃê]½‡7{…A£« þ´Å† QÄŽÖÆ5ÒÇcVÏ“½zäi±@«D´Ý‹Ú†Í=üâ=šÔ£jp)^V=Ê=üâ=ꇓżÞOïla$-ÈþÃÁiã¶íãïÓE3jfW1%Dð\wL)wñ‹wié/°‘*<–Þ!nÊcM@ÃÒ×ÜwïäÚkëÅóÂ+±ê,Ì"ü¿W¯nŸ†wŒÚV;ý©†J³JÓ®Já˜Ê1ijK§æµhƒÑδnwžÖõÓúo‚ìþ^A뙤ÝE º ËÊ¥9tÐýȲOûlH·Õv*ÔÎêÑBLìåŽ5mÎQ„g %<½ÐÕ6Z\!Ý÷ÈoÐsNïoï:iµNV ýcö»Èí/ÞZÜ÷Ó§j0÷ö Šëáxúi¿0ßÇmÔ'µ.$–)÷Šk{o¶9ìpÇ16z}ŒÍ{}cÃ$ý5IŸlº³©e—w=¸i…»}kãÀ:4hf{r@Áb::ÄJÑÊPÐQ‡v©hµ(\¸ïK¶¥O;@0f”.D'3šv²ï¶:¦‘”÷7Sð¼Kf7ô\Þ90Ù¢çwØ’:{túÃ+Ú=|¾¶{¸mË6·ÐÙ˜‘wÛ˜Q¬³1óµ:Ò½^H,21î:À¡RÈ,=´š#x!ïýFþ+fŸ5D;ôÀ´3̽€ùíg›˜Ú͉FÞ9ÚÞ4@{§ ¿¯h"8ˆ 8]h¹2 WÝû0Ñ×…Ë~·R3.˽Ôß—¯"ølOçhYÀt– <„¢:ük«Ë!–½Â\„%,t¸#¸¯&"·©†Í'+SŒbÝïy×¥Øïé¿Ä^ÅÞ, V]nZ·Ãý{mZ޽¶­)Hg[8œ€¯t÷„£UR—4ßm›Ôw_=J.¶é%‚xÈnظÂÁ©Á‹1ÍM¦\A¥Ô”+£Pnœ-yU(ÄwÐèLmè ¿p¸Š"•RsPš` È kè©ÅÄKœm|J%S¯ˆõ••D ŸJ[hœ¯'’AåÔàþ>ݺnÉa•34ˆÌÑYyã :ˆ® :ÿî¨a!­152G!óJ*hÅrHƒÞë@ÈxŽ’à8(=WÄ'õ‰©zæL¤*¢I¸[O ÙG‚ª‘=¥cŽrtÓ*t@Ø£N:ÌJ'm#GÉ#Ò4ÎÚ“¤Ú¹<ŽJ“ÌZˆLGÍ<µì +çÄÃSÿ §>k¬E1®?úØÀôýƒ 1sq,#¥&j‰ˆÚCcO-ÀHפù÷ß=ÿ7w‹ÎºÎ“ϧQQZS¸{µ;0ÉöÒ¶½5+^'³‚t)¥[I%}ð)-izJ}´‚”’34&ú³˜&ŠØUxÙ¦!Sk.Yc£Çsу)…'.AS;Ñ^LLmâCºÀª\ü(…H¢¹9:€Èl 1|4L¯ÉEZÅÝ!‰@F|j*ºU˜–‚°zÙÉÓdÙyo¤-ú]§qÝu¦ú”û·‘þΆÎiŠ%J©i‚52*¬¢RM¢|Ô"IÓ §•4Õz Ë2…Kúë§¼“4‰M µ(cñé–Ø¨‹tÊ/H“Ú눷kìÓMè“ ™Ó AÇ“Š¥æÕduL³=èr Ðé' b9©,ÖÍÜ9ÇxæoœXI,›7­gZut=× 2Ë£ÑÉwF/–^S¹â‘‡Â\§N*ª¨Yy@:O³&Å|JW:qmú‹ê‰ˆX¨h´1 tb=§tš„âì8÷`²[ÿó1ÏF¢É+BÕGÑLœé"R¦ò–+ñºÏmuÊu©4½@Íil±Ë!KÊo“\{)E–6FÑ)M%©w^Ð* ÷Ë‹‹'=!÷8­ èËLt(Ö <®(â0 /éãͨ’žSÞ[ Tðž(¢§†…H‘D’"¦.â•$·üz¯ŒiG3MÎCDg4SiwŒ-\a[’Æ"×\R' ]¿61cÓ}š°Jù”f qiR!kŒ×h)U‚€P@ßE×knLi=c’;M@ÆšÞµÏáà(xB«\Þò¦õŠñ"·˜¨S~E•W™Š‡eîóÞ%Í;’Å(§Jé>õÕ…@!õµU\÷‘6D‹£:A×Q"Äz­Ú™¸£Ï 2…‹!ÎÑ&ç=–Š"‡Ã‚ŽMGº1¤ï‹c6¥Ö¯ÆŠÚé¢Ñí½# ‘i çèš&ïÎøRéµQ”¦’4*±Þ’6=׆äШáó(­ž%„R>¥¿¤ŒYö 0³ò¸š|[7—W¸õ·WÕ”öé”Êãò/åIù´|^¾(_•geUž—½²7«²_Öe¬VÖ£~5»*/Ê üoðÿ}]^ŒÓò²¼*›òoå»rPËQ9jFu9.ÇH'夞6ã~9-gå¬~_ÊY󱜗ó«i]—óãrQ¾/?”ËOåßëéø!+é…!I}D§éË“Au9c:íI>N;-GƲ#Is”°:ÎN¿¤ç'Í ÆŒÒnX¢äûjXo|Úñt^ šÞ£Ñ%¨é\ú¼þHfÓ}÷ØymY¾ÉÀa6YîÝÙo€í³ˆîËŒo¯ƒë4¯>M®U³¤ôŽX*ÂRÐýa –bËëßèlÇ’‡°¤ïl:XÆÛ%–ÇÀðEùº|“µ“𻸠¶-ˆÍoQ:ú1„­@Aœ#©hIûNï:0Éu˜Ö¿XèâtDª–²·¥ÄmJ§Ö•î ”î[ö]yZ~_þ5›õëòÇò'ø3AXÏ«Ž÷ëî¡‘“Y3DI/êå´®æõti߃z6´ÃЮÕtÞTƒ~—ÐÕÊæ\grs`‘¾›>*™m›k¿EÕ:ÐknÀÙÉÃãü8" <¡ý xŸVÃó~kOÀÿm¾ ~5¤Íìù|ZõÞÕóA}1oóÓè06Í´·^ ê& ʦCF‡œýrý뢔õÇÞ æKüa”ýut1Ù\[,æ&ïM›ØQ¸˜K¢å‘ž ³ò×ò×E=£üe&¶úëb<¯ûçƒX·½IÕãݪ<&g6lROWn­U¢ìÜšAcָǼ¡y«[|›¯Óëºuý«¼­®n¦–oV¬jtÙÕŠÕmBªUža5¿*Ïñ AD4õR2ªç ÀœT£y_ êQ¯n :iK3¢óøóOѬSѰaXGõeEc™xÓHÇò»¡,;¢ß ˜ž±Ì4k(›u”×>,»Á‚1v¶àÇËP'M&)ŽYÍ“ØMZœ_nÊüÓG2&!ó‹|é×¶êvþÞr¶õ´6ñµëƒ'ãÞÑ«9b‹‡ìÁSH[õ˜PïÖ dj:Ó=„Õ…nGIþ„8—M>žK$•¸n šË/޳x¹ç!ÿØ“o¯ùWŸòçè"|*òYÇ_nêWuyÑÌõ~oÊh¢x¸)b)d‘Bþ’:¥ÐùݵÉå7Š8ÁèFmi@fæó f‹éûÙb¸÷cýéøÃLw䀺ÒÏc];š”£ýû¯“zô(þ½äÎe‹ùÎaçXBú÷|܇&¾žÕËÇY-×tõ¸‚/—.v1¿‚µ<€ý“OBKOà™ÀK.4ÇrJXn•;âöœÿ¡¥£:§ÕYý†}hæW ^¬žNë 6{D³ {Vú0žhâ éncûâì/oŠÌôçÕhTƒýÙU3cø?é_ ÿb?’'ªZ˜ í‘(4‡mÑvéÛ$Ì)|,£Ÿr¶çM5zû½› ˜Õ{Ÿë›‚üa<âÓ_ô¨¥ÔBËîa<\ñ7:ˆA¢Ÿ5ðü)7­&“ºWS fñ°Ãÿ¬|endstream endobj 97 0 obj << /Filter /FlateDecode /Length 1165 >> stream xÚåXKoÜ6¾ûWèH–*>ES×.’4€Ñî­í˜]Á»ÒBÄù÷r(a•Ý">ØE_–\>f†ó ¿áèçÍÕOwT&´Ì•"Ù|L¥¹Ð:QTæÜ°dS'’?¦þSó)•ŒØ}šñ‚‘û”)b+ÿûJNìÖáÄ]Zj2µÕØtíþ½y TB”Ì+<× 2c:׆¢üMªq}ÿd°’lv®oüö$ã9ç ÖCK9®gÛÖMw(Bù5vXAje&¡"çB­U"gO2ÁrS”sÓµ)§dtØD{y‘˜Ü(¦üÆ4ƒñ´Ä4Í “ä-l`dì;¯•ÔS8n0W°WsØׇ3Ì£(KãCY7—õ’4'¢D·.‰ch¡>10ãFæ7pÄàä¸0KiÁ˜Ï4y<îÒLÑ’äi&‹â…aÌ£è%ª)½ … âɱ‘#ˆ·¶£íÇÄà]}óàvûf‡èFŒÓŒ•L0BËsTgU§˜òÓ7míú¡k³_›½WÂùË~ˆá bþêÚ— Ê=xåSÑ®àáì s9Æ+(è¥;¨ °Ó.±Àuß»º©FW#T°)@å U† 1úû¸Ï _@ éIví9=™}vDú?€ýMZj^¯)¾òšš½ÆÊo«®¯m[÷Œ(¿_.~þˆ+Å7¹!¦z93û1ð‹">‡·—xO]Θœò‹B÷ÿ=c£€/þ¹ál?„G yiw‰»ßT•Û»Þ.úïRÄÑì§ÞáÀ¦9¸sòYZ•„üiù¥\ëw74õd½ ]þhùýy¢Ï?Ï~;Ñh„rŽ‚T>øèð±PhQJéÓðÒ ^ïíqoÛìƒk\jõúÿ¿ƒ„Á×9F/9æ¦;C2qcÓn1ÃôÍð€Ã^íÛ}§‚ïÔLT¬Ó 80Ä8M(ÈÀð°ÙbʶmÎ<î»]ËýÁ\¼Ä/Ò/s-õ:§˜˜xÎïÁ,<bà+b`J‚C©à—J[løµT¨”ƕƕž–¨kbᬤÁJÍb9þ›ó-&È”$•/!w¶ E>üïzœ{[7^n0,kœê¸lìâ²ðŠƒNåÙù|oì¡ C¹qݱﶽ= s(Þ¶Ãèls°&”Ô—±9ØmÓb¨• gGßS¤›z:XÑ04Úá{Í—wñ?¨ë§jÄQ±å§llD^¦±$¨R Ç:§è÷ÌÃ‚ç Šk?/6¡:IêîÚÓOIö.ÎLÑ  Þq/–Ïþxnq¥J³¾Œ0½óÔϸòþ ­{„¤0{ƒ}ç'1¾»Ô6»é`ç¯6« Q¹dâ«#€ÈÏ>.œï—Ø÷ße4‰³v?U;™ímÝyx)ƒÒU¿øªqâ6Çö=~äw×q0ÚZAN €æa ÕE.ü¥ã2Lž|ƒ¹ºÝ\ý9)Cendstream endobj 98 0 obj << /Type /ObjStm /Length 2570 /Filter /FlateDecode /N 95 /First 838 >> stream xœÍZkoÇýÞ_1Mž÷‚Ä6Ô:qÃZ·‘€®©µD˜eI:r‚þ÷ž;»+-¹Ã˜.×€ ˆ;;sçÜ÷#L üK‹§dÊH<ÓÎã©™‘ OÃŒ¥wˬ wǬ¡wÏl¤÷ÀœxFæ‚–`^GJæ=ú”ÆS³à"ž†EiÏ舷# €LLhfBÛL䘫ˆ. [aXiêgEð­ðè_{–!0dãˆ/V1þ­%b Ûˆ dg0ƒDv¤Æ¿×4„™>Ð&×x `ȱaˆ†, ©‚™J8`Á² aIÅ”‚YI%¥ 4"Ék™Ò†f94HS˜Xâl€lX`‚²¤“²õÀ±”##Y ; dËK(©<1µ@ä7¼¨`È@ÄÔ9’Ë-c€*ð‡ÄÔI4™Ñ ;jéY‹iE.?­;¦51EØhM±âÓ†4…õ!Ma#m"pà!mɧÀÒ6 26Ž éì)4<} rH4žMA—›ä8™ „ ÓÀ·äɬ"Ŭ¦ø šY kIÄ%X)èœ>8æUšå™7d(< 02ðw0Žž¬A¢GIA‚H#÷SHoþòÕW¬8[-7,5R& äÕ+zq)­š„‚¶i#ê·m.³m›\š_ÍŠ—õjúºÚ°_Ð|vÆŠŸ«Û »ÀPbù¤\W‰mñýOgOÎ~üëÓ^!苳Y½Þ<½.k“'ÁžUëi=»Ù¬êdµÄéEÙQ²¯·o7o*°À§l­RÅ?g—›ëuò@#Ø>÷ç/Î~ú.qW}îí!÷°Ïù|w×çþ 61­ýÞüëßTx¤p \ÕËí|~o¨CÄÆqçG¬ 7æXd¥¸‰Ç"KÁ-êÊØ«±Üaöa9”°Cre÷Yj)†ÔH+nPIŽ$7œÊÃÜö¨£‡jXI2Ä!#‰öœÖ’ õçxÝíCˆ21ÿ Ah§5×*ç‡ÐÆ{Ez‡º3âO`a:ŽZËÀ­È)Ù“ÖØ6ˆ$FŒ„¬­sÄÒsërQJfŒiùh•>çuÉ}VGZöEqVÂíYQœR ËM8–Ú˳•%¶šÓ ™¡jR b缞%ÈH™•:dªƒ ®<š\)ä¤É%°–n ‹ŠG ª5ÖN³Q¥µË¸Þ+šõ)ê6¬°ýàÁå ¬îGa皥²Ô»¢8°±&òì²°CÝbcÇ‘ö9j“+ßAq ¡O‘wz¬ö»ä&p/iwç¸ËV«ò.#œç2æªU–š² ;øufá±\ç³Áõ\‹Ë‚ç¨%QgC+C'×1[Þ„ÉÄ JÉIB…i ¦³ž«üâm†ÁB«±Íz?K-#—ùºœ¡Æ¦•{ó¦·~@­!¿ÈEmŽXa}uÙ2áÝЂ‡—µ Ä焸ÏÕ|TqŸÝrìPw ³ØÙrèÒ(ëLŸ[¿5Í.…;ääX8MÖ™9b°€ðGR[’;»Zù(FA.;k˜ÙäáÀÃcv ý0 5’í3¨QiqÚ<–¾—Yj)ì0T¨(ʬÅóä’ë\ÙǺ0ÜÎ.žyrlô`gÓ;4"º3#Ê‰ŠŸ¼Û9gþg˧«–›5]ò´)þCu9+Ÿ¬n1ƒ$u8ìy„Óæ—5h‰´åúªZ¯¶õ´Z§}êjŽt/Ë«ŠX`?B‡…Xj/wÒ'¡tÿÞIêGV˜ö³é¡“¼‹šÞÊ6ʨçäIÇi£A…sD¢Òp—¦ÓLŒJì7Xˆi–îðš™-¶œ®Åî°‰Šn„pw/6†…w[÷oc´%îZ g³þxš‘ú¬Ä¾%½Ùν£jÆ4ŽôIâ6íû±FܦÝ|^À={= ¥ B&ÃÎõFõ’[æ±2a>r4à¤×ŒSŒ‰¥êÚàd‰¼JéâZÊæ3ZƒÑ~u¨ÖÑäTZr2í~OƒlQ¿­¼åa‡¦ÛôÃ}Ûã=iÙÎíc& 骊tmÚýÑ‹”'ß®§ú Yñ´¼ù{5»ºÆkÐx½.kJ°GÅwÅÏEYLW‹EYTÅ;¤Fq],‹Õ²*êbs]WU±ùmUl‹ÅïU½š ŽT îcIÀgóòjÍÚÛ”'M >F8=VV²H·VðÂE3|6›W”‰]ΣëÇrQíßÒ<ß”óÙôÛå¨+^oªÅ?P¤úW/½k›âM«˜Al+ÄQšŸ/‹×¤;ô¾*fÅûbNŠCíu±Âvuµ‡tÕ¤«`;Moâ¾®n ëÎ}XVW«?­«èt}1[ÌP ažc2V•I׊†¸îÓÅ, ÕöØIº¡íõ¸IºªíõøIº³íõ„Iº†íõÄIº¥ž‹©N6e2²a”®Òï!•˜¤›Ý^œ¤ Ý^Ír¾ß£'銷×CJ·÷E³l6'ÉïÈFFò}(2’ï’Q}’£]ñîxÑáüÏŸGåÕ»ÙÆœŸo—×ouççV³Ë·ßPë}U/ñøý|LéÒò?çç—3DLµ™­–eý‘ýñø¿௼¼ÜÞ¨Œn¤ˆêôÐ}û‘¯M_1ru{[8žläÚö;ªÂô-ÈÆFä¤Ù¦ªå®Æ”‘¾õ;ïfËÙú:ymÄPhP“ÛìØ¨ÉrlTJjcÆCmc€¾éû‚aK\TŠÚºº:Õ ·ƒÊ2¢ˆôç¨Æ¥0бÃAý.ÔØ I{9"èmSfU3É)‡ëz[ßGÓÕrºª/Ëå´’ƒ2×Ñ7Ê­pÔCЦµëÛ ¶£DÒ‘›¢°íº1…ùßÊÙ<$5ÛÀÙc+íÁ¡O©’À·ÓÕv¹Ù—v޾¢p:Í®¿­ê÷IÖð%Ó¦I Õ82»¡ÝG@N2ÛùÞ/ôSŽƒîlÉú¾CûlÄ”±;¸¡¦QküžŽ±9ú™VWÓêjZ]M«« q¨ã¨ †}Úí‰Xðõ¦ì”üª-endstream endobj 194 0 obj << /Filter /FlateDecode /Length 2441 >> stream xÚ}YKoÜ8¾çWÎaÔ€[iê­Ý5™ f°{ñxO™d‰Ý­±$öPRÚæÇO½¨–ÚÊ^L²HëñÕCíŸß}ø’Ýä~žÉÍãþF©ÀOUp“Ä©„ñÍcuóÕ{<Öýf$‰Çcì GÍ„j£<˜*ï÷Š`ÞÕCm:Þ3{>\ð²40f^UwpîÀ´~ØéµneÑ4ºÚ|{üõ×0œ‹•+_ÁÍŽjêAÛM¬¼bÀ›yìhiðÏwÚ¶îÌj®`–ûaš9Fþf÷ Š:X‰di‹J3yìõR¡ZŽÔÝÅoeF¹ü(Šn¶Jùy,¶,IΗV¿-Üùñ.¾èød ûºÙ†˜°«xr,Ð`ßñfÊYU—¦BCâíÁÊcÓ0­D_¦»v@Õ£Àû²É"ÏX>FnÅI?Úïõ÷M Ü„ÃBÓ52ëu£ËA‹t„‰ï õ"Œ%Eo¶¢ÜÂ#¢[M¢1Ÿ"Ãâ8ðpvÆ}ÒýõŸ@QWÈÎ/<´Åó&HÉ(°OÀ9õ*À‡c ¤ÄcÇ‚@HÈ]ò)ZûÆàkgR¯-­‡ØåÉÞŒ¶Ôî0C]û¤ün©ö#]‰¢ ÞpÑš-ž¦)‚¶'ÇD¡3Ü8¹†z3êXOð}]ôµ¶ ¦pUßá$™á¸d]ZMñ…s6J2½[³Ï`\Õò#Ù5æ 0Nê®èJzZíØê3X‹QÊ‘=†¨,žzî& ‹Nëjùâ L˜år±çcÚ=WðÐy£%êV.2<§¸Ÿ4OXóßUEæ ‘› X3~$0‚ŸLxåÈ«×Lzá¡©;ÝÿûÂ4L!Q!&‚8±Ð' Ìì’ƒMåQÝ™ñpt/_…¡œyr¿ã£ˆ“¿2Ä2ˆÆYÅ‚XÉ.4Ç»G·éH $Ëf $KÅÈ£ŒUB”L6 ¤ì¦´5=Ú‚w +ýalÍ¥ƒÉä#8w*(¼ŸéზWjáòpÇëóÑôzM7H¢Î.p2 ½FL‚:¤‹ äâ‰ÞîÛ¢ñ1ãAéø ““ÕÛΠ0”ºô“§,\æîƒ­BÂpx­x@ðùZÞHxÉþÅ‹<ð˜ÐXÒ5øÿ^„ÚÕqš›dÒŒ0yº²Ž¡suà”E*OÉl0ÿP> ‹Ãœb»ƒ¦—c˜)¥ÄâxÔÍIn“ú0RZâøAùõyÝ““0‘J)%D*¡<“Nå“vŽš·€käuýx†£ä²É@Hû‹°x‹Ô±A!å\cjÅGð¼©ÔfeV<Õ%^;.˜• @jЊŠNà…q¸ %7Ä!f¨XÏ¥´ÄSi‰ʱäó‘¾0 ’œ ¹Å£ÃœÕ`æ®3p¨Í€Õ”ipþrj åëêújŠéV3§n(†!7,ý°.5Vš–Y%à ¤"?¿î·$Yæ³úœ_kî3àÔ`Çr-×’z¿©‹\6¤qâg ¶4k9Cô¼éè‚ÄÒÜ’,k:É×\Xr×BÀãu{j\ú¦WJWéÄ@_Ëí 4;SùШï5lYÓm¹×RyæðîÂÌ="%wUš¿É0Ù²mȸAi8‹FP©Nšg^Z­‚ê‰z$<RÔS„ß³žm§ÒNdذˆ`î?tœ/a… ]ˆÂjT[”"17ö¹_‹Ž»‡^”䃌ÃOˆ…E·XL%ß6¸ëÆŽ ?L–Àð *Ú =P÷l|$Õ¦Mg1tî[…³¤:˜==! ¦ Ó¢XˆpWöc»ÂÙzUe=:‚ã’²žU±¶áÐÄ)N÷dK—Ü/.?gBI¨ÉŽÓ=“\ W¹ Á¤`zU³P[=Áe@éMGpL¯ ’ÿÀD–j=ÑOm(¾®”·»÷ÜaJâ’ò Lîþñ«“–G™\¥¥¨§Ñ/ƒ-JáQ0ÓCÍîèxù°|k;|Q5'1Ü#T¾ŒÜ$X‹ + ‘Q\í9óõCM™¦Vÿ9Ö–B3tm?¯«9ì鈀‚tJŸPPöôõÇ-0Ðè£' ¹W…ˆÂt 'Ì8–…­äÁÒX l%8»ûœÿ‚ó0|V˜AŸ0€¬,Þ ‘ > ?™M¨¨ÑMc￈J‘ÞôäbÇ"ýLEÂÂWK&§ãÛÄ‹fÌü0Ë/E€sx¼øQ`´s@Zåd ý”Â-tgÔ™âC2q-à‹EÛæ•¬‚kˆrw†RÒ ô N¦[-çUTŸ~ŽXÀ-—šq>e\\}b.!ž†Ç% ¨&D Çîª6Òç ªêÉáð³Èw=u2ì_mÛ~¥È&ó"‹e»`€FøÁbéG rK‹ø¢FhX´Q)Ó±n.b}ÁÃT$ö¶ Ï±Ð}›í’ÖtÕ»cÆ©p„L$,Í~§™4Z ¦$„Éü÷?K×à²à¤~–)wª^²‰Üûéב0¿*Øï°Z 8ÿ×–ÇYzÙ½H ä—õ´ˆâýð:zúÓ;Þ/d7=ëúpzYõãS¯Yt…_”üµˆFÊÏ¢àº%­Ýi@è`M#«¡Öý½làû·ÓÝÊîíd²Æœ§µ~—n9®dE¬À ½õ±Á ÷ÿû,—­yûáþËÇÿüöùnÍ4­¹}¶àbõê¸)ÔœB­ަºGM„âûü5³‚ÔvÓ¯ŒûlhÒd:Ln¹’¯²3úÜim1”G¿°´n»¯µúD‘÷ö*F$ÞߣåÉ÷âù­'æ‰4qÄ´BÑr>EÞÄ’PunçR»ß {Œ7^à]©_ÕÔy/æ§Ø&¡ºWž d™î¯ž±>Ø‹Nd1'Dk!J€ ñƒnèðœ0êxlšq²H-ëîêAÈ8'' g¤ÕµêeÅ5h±ÎŒÇi!9­9&§å•³pIC?®~kí@8ÏîB¹¨6$Ìý Ûµëõþâ;Ôç«ú&¡w?ÃA?˜iôqÅíÎbÊÞ¹Œpû ìƒnOKë¡_ÉrêeÁ›ß/âHþgÏZŸ®œvA‚¤<8üχ7?–€_AãoK9ŠÞï$~š…ÆOl¹8å±èú:&$_¢Íýëcñ™4÷BüH¹. ޽ûüøîo­i¹¤endstream endobj 195 0 obj << /Filter /FlateDecode /Length 1359 >> stream xÚWMsÛ6½ûWÈŠÅ3"R&EvªÎ¤™äÐisHÕi3©”IHH€C@þ÷] ˆ )Ç'’ ¸»o±ïíò·ÅÕÛÓd“<ÓÁb3ˆâ)ÉãAšÌH /ëÁ×7²¦+V”·ã$NÞü2¶×Õ“d2”ª)T1¼³kÃU¹—Š6þY©!l‹n¿&ƒq‘+étç½ÌmT—¬vâh§îlγÃ|š²q<~E¡émOâ&:u$ìŽjÚ§Sæ& D`“F6MQQýª7CéÓºà8ÂmÎ0æóÉùA*Q›d~­¯Ÿ)Š;ÅRÒæPè4Ë‹Ä_hÖ…h<1ü *'K¿`ÿ`Ù ŽlPÂá—h¶àö†‚+ÍV†» ýÈJpÕGõ¥#ªkSí©ìã#‹ ö7%óܽóêQËŠ€¥¨Í§¨¨àøð Ó1}k¨‡ê±m/vøn/ñFlÎ{NØGÅ€dU]>†I(ÊR|澄ÖrÑtxV&¬¿B2Úø8µDõQæíáϽ;î’IC!ýR‘´ ´¤|«vúÎÛ{F“" XœgÏjRž“élzÄR(žDËO¾K€.êÛ zÂÖôª¤[×+ÁXËF/N¾>…îêªP+ƒÖ;`ß¹úõáÞ¹¢5_Î'¼$©À}Ñþçø‰ÿÌHTÖ“-U â1-z1íµZ³?É{L> stream xÚ½XKÛ6¾çWI€õ1#ŠÔ mI‘Š  °ÙW¦laõ*IíãßwÈ¡eKÖn²IÑ“†äpžgH½[?{ýE‹Œdq/ÖÅ‚rNRNq”VÖ›ÅÅòÅù* £å'q#‘·â©»JÞÈJûéÂH…¤’u{S6[åU¯‡¥¯AÜzA›¶93HÞŠÆS¦Å¯ôõ‘²9¿\ÿ¾+JIL£ oylF[x9;á%ÞUŠ«J¾òªve¾ó¤×p[VR HR{RnÀZJæ4<ÿu…_²•æ .X7×RÕúbedÝå/\zê ¶r_ ü(«0 YHǺ¶È8ÊÔÄÐ(gÄ…1¡QÌŽ©˜‘³Š Ñ{}1òmTÛ9sÇÞÙé¼m&³|þøq.@eqÈw]j h°¤j¯ Ö{D‹›‹ýðöã§÷?øÿ2Ô!#Em”0õÂ5Õû\w2/E¥Ÿ[ý/Ý61r(> T%›­ÙY Õ q:5ŸœÄAòhnSFâ4{¨-Çæ÷Ͷ’doòÔ—3´þÌ“Ëù±+ ñ%BçΛ7G™G¹äZʉIuqqqØwy9§Íaþq1¸à X\¼:è=Ñ»V™J\ÉêÍú¯Ïïòk6çš4}-U™éB ÈWðm  ˆtpóx3e-AxótÈó„si&gÒ˜§óCÊ£0xféÀ‹UÆ åÈî|¬â£ÝŒ¤ ßïÍÛ»n·r ‹VÕ3ÊÒ€Ð4Úó—¨+å$ˆ²ïÉ –ÑQ^ ‚BmˆPÛ™Pa_z±é夫턒ßÛÍÐŒïH5ÌU¤F•wÄùõm,}g|jq-W_fÄÅœðŒO‚§„Åé)ÒÒôÝŒž(#a|¢‡Ê~LO'Qýzò¶îz3×_ãŒ$áTSÂH”¥ã"ÿšŠ²)õîgRäñ›ÃÖÃÀò%$c ùÞž‡éÎ8KB¸)•)(Ÿ0Ý–ÍÑê­¥%Ò ÷³+ vÐ¥®°'YÞ{‰pþ=µ?”šÀã`¹Þù•ºuÊî8.”ØoÚ›#ï:Ñlìqq¢Z¯ ?_)ã…¸vÖ=Ç€PN2ÎÇÙØ¶»âA°X"7CKí„Fb`éréG¶¨÷5À$¤È­ÎŽú¦ü§÷üòƃÁ[Ù¼ömß-ŒìÊUÙS¶ mNˆÛÆ›àöÝÏYWœ,ÎŒA1ÁËc| ©Â)V˜p2ÑW' Þ K§0â¹ÔZn œ§>ÌpÊ•½…Ù=Ð);œ.½|çJºøŒt–¤;œÃä¢uZHYl4”aƒûNË8IèÀeä²Ë²ŒÄ“ÖÐH"‹âåá~5ÑÉ3’t/ŒøF}ª”Sxù°ÀJDÇù%ËJ¸Ø€&œoï'¬»<À¬ÀÏÜdk˜Í…}fXv›O‡(;ÝB •—êâ ß^K›o ‹™;hî|Aæ¡æU÷¾YROñŽI‰€˜,7~¨Ëº«î‘V²«ÀÀŽb·ã4n4LIć’ã¯@§¹ŠHÀ®›s|mÙò Sâ®û hSÝ{4ƒ5†˜~[©¶Tx“„µÜœ¶áï;äPB¡ÐGɤ*: 9ÃÐGˆöJK…&Û©Ý‘ Ë¿ÏS¶ô,Úe> stream xÚµWMs›0¼çW§‡¤µe„- úÒLsèäè™N†ú€A8L°äAr›þûê l9;I{1‰÷žvß®ð×ÅÅøn‚¼Äaz‹Âƒ!³pâ…h1³È½äº¾¡]ék’§Ÿ>òŸÅ¼Y.¾{¾7‚ÄȬ—“õ 9?–€>U˜¬ù£š‘GuóòøN >ˆƒÀ¸Ö ­JrîHU2.ãót»­þ¨‡¦à’=1Ì͈®ê™¾·è(áh*<»º²Ð¹eU%ÅŽd¼¤D•ËÛRÔÎm´Ûmq½Šûë+V’u…õŠ&š­pF7˜éAºÑL@ UÙ™:À‰"ñ:T„±õQ8q<í %ŠKÖÅnllàaž‹ÆéV,± _Z¯wLÌh³cæ.£„§%q!Gë´ô“Â^Çm5ÎN8Üå¾áæäÌå\_ *bà q÷‚ !~u£ìÎ?Ÿw ý)ýYoÒhÂÙ99ÞlíŽý…3NkE‹„r0tmùX!Eƒ¾jFÓ †øùà]ͲHš$årigæ> stream xÚ•WKoÛ8¾÷W¸iÊň’¬G³¾lЊH€ÝÀõA±([]Y $ÚIþý9CKt”ts±)r8ó̓‡Þ~¸¸æ“”¥‘Mn‹ C–„|ÍcæÃÊm>Y:]ÓJÖɬ•¸SwîϦÍEûÓ›{l3ÙÍpÖ½[Îø ¦ùtuû}âM\ÎY:'-µxÔÒS—ÃFǨZ+5ü©È:VÖRlP{^Eoe©qˆ:×&>.<õg¬]\ópà‡ë{,õ¹`ƒ‚–Ã' Ëq Õ¦Í6‚íš\¨ï;mK/\àÿYÞìï+qÖ¯¼±Éxl6iÝìkÙÙòì*«*¥ëjÝã©?DzzLBþ2É ƒqƒA'$4N5±‡d¼_ ¡Ã©ŒD(ß ²˜rǨ?ͲҮ2§GpÄáßwЦª%ñ¨Ã“ã꽚y6ˆšN íqÇöÄ…K$™ŸÐ„ì‹,0æ!ЊదQ¹U¼àC§êâ´†þħ '˜án!× ¡ùp$½øröBù<“TE›e%•$£& T+åî¡"Ö­ÈdÙÔl„¿<Ûì–ª)VKâc‰ï?l] Óº+šv7¢1ñOB#_Ž\t–ÂѱÏb/°/Ž]aSñ®X"CÏVc¬gKßìÛƒ¢ÿV<¨?âq•‡™Åìšüð*Nãa{­ƒÏÂ6÷¥-7[ù…ZŠO8©“§¯Gü+é>Õ²dNÔp±‰œ¬‹ƒJ¤–%ïõ9ÓNEWßcÖ [¸JgÇÿa44ص؀).ük%êÜbôJDŽÓc…réÄ„ê<*FKÊÀ®xm¡¸ÀøTR(ük­ î¸×ºsŲ\ªäjÉχ¬]–«ÕÊÆ£tK¹T+Ô xãÛLS£šÈcl±½Tö94^äF ïëÚMCæ¿8ãúø¦ã”§ÂÄ~¯¸5c'ø©ƒ¤–âþÒáv#9×Ó$D^ªûéñ°Õ-|¬3ÍY´TÒ¬xzÀ9v?“­†¶5Èg™J‹‡÷ØS ÉU5jAœô·Vœêö]Ð|Ñ6;UM½|Q‚°6¬lÕ®Ny¤FqŠÉœÔi§•í4 z§A¸¹ïD‹—¦ŠJè uÏ‘ ùì-êŒþ?uê“4öH–xþ{IsÎYpÚ{~*ëuµÏ‰3Î:`Á¶íðo¾ýó—9áM‰~úÙt÷ý”‡ÿÊS‡§›ûG7Š7\û,òN@C·N„9àçºm/Çp¥K’üevØâщ8¦RæÂ»$¦¾87‹Ç' ØÅÁ‘”äÖ07êÀñùÅ›è4_¾4Tïw÷‚ôfÆ¢n‹ E-<²Úô´Nž¿áýeR<œEý¬G‚;Â:ì9É·c{Žž^þNq®_¾]^­z¯ÌãóToÈÚÚ ðž§^›Vyœ2_5ýªùO´)¹ßn?ü´ÙDÙendstream endobj 199 0 obj << /Filter /FlateDecode /Length 750 >> stream xÚÕVËnÛ0¼ç+t «¢DêÝD‡°‹EQ¾¥>¨¶Óµ©BRäïKŠ‘6e§è©‹2¹»³»³C}\\ùó0vr'(q¢äÈIâ º±X;Lº/FñdÚ4˜¬«—wêµíÊ½Y.¾8ã1cÈ?SðiêçöG¯ˆþBe!Èc¦Ã‡Ê0ºŸ}øzÁ†Ç7¬7.1miÓ”]iØ|þ¶˜}šÝ³`ý®PËÊŸÚPL§ÜÍÓ‚ðåï²mßóåª~’ì¶ZWwå^”æéð³jøºÞðçº*»íŽHÁkpû‹¿µUÇ* ÇAzzR’õßEf}â+LŽ,Iõ,ЩòQ Àß·ž°\Šàv {±˜oêfÈ+ |GäÊueêþF:ƒ$AJ=rOüˆAq/ A’%fH¼"r‚<à¥àHû`µjÀøþ„ëZ÷Ì(Œº'QNSÊs¦ç3J3Ñ&Víc¢ë“YcP,VÔ¾ ÷s¹©—«¦n[iY­5ª m™–äUˆ…±Ó»»Ptxw'èw}­Ü-‹BÃ.÷D)Ù.<Þé[ÉvD·P`ŒL;A§¡Ã²nží86*·óàj1/n¡y¾µtØC]döèQ`[Ðtýh‹·ÄH4Ç!ÈÒH2gU¿ôRä•û}½òÕ¡n^m#D½Æ‰"¶ÂD<§‰©ßKI$(²Áû½’˜ƒËrÉÉÿ¥ |R¶—Bß®gT"0º !@(þ%8W-5¶X®ô™R_ ®«záOIM¼þ¦kÏI„f+pBåAÒ·'÷¦Ý™2Q¢uMš§+™3ªQã:t¬^ýå|F¤,C?VС(§z‘\,m|å×VòHý€- Û¾•Ú'TCÆÌWdáñ‘»ô \,ÆÈØŪÒÉ3Phs¦«A˜ÒÛ—*Y–ñÈ);v5[\ýóÏ›endstream endobj 200 0 obj << /Type /ObjStm /Length 3048 /Filter /FlateDecode /N 95 /First 877 >> stream xœÍ[ksÛ6ý¾¿»³ïÇL§Ó<šÄ³M7kw»í4™YFfmmdÉ¥ä]·ýï{.É´LÅTÈÈAqqRB2Á”PLJ«fZI\ ³šž[ædÄÕ1o ®žEK×€öŽ>ˆLj¯˜’‚Iãð©”LÚhQAŸ.:T4“Þ£±4LOm,uA¼VÚ£‚­¨q`ÊXêd½-…q;Xtx¯Ó"Ò+ W zb˜6–:³L;†èK{‹^•g:PW!¨ŸÈŒÔx„FQ|`4G+flA¼6>¢±'‘ЖY‰;¥³Š†q[㩘µŽú‰ÌºpF0ëÆc$³‘˜`sÄ>e4s†à‚ŸÎd&M_9æ"A6žyᩘW*‘yM=[Á¼…˜”•Ì;ôªÀ,ïAPYÍ|DC A)kYÄüíèsÏ‚õT ,xêÙF"ÉË =#ñO9Å¢!Ètt$gX –[&… CM’R€R( îH¡#@:è‡pÄ?ÌIªÐ4¤g¤v’˜õ’0)À–Ò2b˜RZIÏÕ}áIñˆ³žT05膄þ¡—&žA˜èÚ hÆ%è”Þ‚ z  Q -dðTs¤v ¡5ñ$ž[êÚ!u$~GÐ0š)?¾S4L$¾@?1xb5˜ þ(õ§/¿dÅóÅ|ÅRE’j`òSú+r4Ó®ëôùº–¹N“$U¿úНëÅä¤Z±ŸQ}öœßW×+ö¯ÁljÚ3öÅdq}yþæÍÕüüÝâš½yóŸÅôôÝ×T{_Õs\~ÿÅ伬ٿ޼9.'uµš.æeýûãÑÿþÀß²Z]]Ê?³â„/ß/ù'‹ú´ªAH.žâF¦[ܼdÅ+Ž« 0:î!tí(w˜3:(.Á%´>¹z·úí²bÅ·Óù{@IõÇóùbõ)ð\Vór6LXžT8¤âdozjiD[ F…˜&‹‹Ë«U5‚ à˜xL¶«”ž7«x¿LçÓåù€ŒpÜù@F\ H:Ë16€¼ä6}@‡˜I.Ï$Ÿ¯¡kF…ž3Š‚¥;S*îšROWøÆ±â¯ÓÓ4Ù@¤«¹æA)™¯¡Ð%2Ó wh,ûóp¾µyðDªC˜™F‡ÕVFNñëzRZ#¸D\³ß¬¼XœV3~Q®êé5Oð† Mbl–gkxpÒ+®¡Ú9Tϱ`‚I“uy£³-% bˆ¹C(ÑEù¾ÖÃĬ§ÂFÍ#E$PE@Õ 8¾¾ÉTp ¬ ¢=ßšŽKÛÓ BCÖÀØ¥r€*q \Õå|ùË¢¾äa&ÝË‘ Óû ëÕtUñåtúéH£ÚrŒ fÕ[ìšàxJê‚ᔆî«@im ç_"­ä›vb¦ÓzÁÝ,MÑBÂ=êçÒCS÷ib€Zfj´æÑ¡–jˆZî ⟔Ë*1¬8>úþÙ‹çyúêÕ‘‚i½\=%%´¡aé³ š8½\-ê” §þ¾-s#¥–hˆŒ\Skzÿçôtu¾L¹uÖ-êGÏŸ=~ú¨ó#$Õ"¯Dy¹E½ö¢ž£¢;ÔŸŸ¼:úû7 ~| ºé¢m¶h;Ù“vè¦ýÓO^ƒöÉO·ˆwѶ[´m_ܾ›öñ˼üÛá¶·pÇÚúci»6íÁ¨®a‡™Áºš\Õƒ\)’xè’ ’[R~â‘+xVüïiÇ4Æb…”܈ÿ ‹ÂµÛפh˜“JÚÊÚ PËìô="Áæ=÷D+Ð͵ÓÌëf^ß¿VóYL;¨¥вV®%-$û&aÉklŸK˜¨]—€L_éxW@~—€îdþ:Ǩ&/G˜¦7Z@o®9‹rb=Èû3ÿ1µ -ÒÄvÂÑ>çèd”)Ñ2B;öM¥Ç@„°zUËÀ%§ØŽš Ú'ˆ¡tÜ@<8$åµCH¹$™…´Fø ˆ†<Ðî¡—\¦ÌÂqÃàáµn¤ —A>ÿÆÔä•L“í—É^Ðä•McºŒ­`l=„7l¬Æ”1rÚß0 t_îÖ|œ0}—°Üa…]Â+o3à#c¹6ؾ[j]`íý«D#hfyz:ÐC7Á·Óš¥7Á·3tý|¶>­êRÆÞ4]òчOrÎc¬¶ÚÀeËò[/’Ï>¸+K 7Ð:10:pkí&10Vp:%ò0ˆÆØò\Zoy> á`›woä÷s‹7lÞµ9²yçÔvmç†Þ[—]ÖbçvîØÖbŒÓ>@lîæ4AÛCM­1öÁè¤Q =ƒ¼FG¼Û÷¨Ñhskýƒ™ptrÒižÎTÃMPtNŽK÷ÉÉð3J8élf†¤¤âtÈqD°.g%.g%.g%®++‰½÷¨¿c-ÜάäÎ˦ËçAù¼äãóó¼%¤Âf‡]Á™¬¾‡¢+yãð‘•kßs¿o|Hf$˜#íå $ï8­û=0¤!sxí:šsZϡĞvöS8/˜º¼PêE×Ôí½¹ß1u½+GݵËLÇÒïáÍðÔ5öÞIîâÁÎÔèS+‹½wDº†{ÿPyVWgC§Øõ8káNÂþѪd^fu*ò°÷ªä(ˆÆÊÖÇ’ÖyÂâ@ºe¡Õø[´âÚî»_1šŒÆX:VnNÃ]qÝ3%8€aϧ×U>s«ò9S: |ïí¹kúøqa¶‡Þ{±»kè;íòvX©ó™bÜê|jRçSq:Ÿ-Ö7Ç>Vþ̦„Ëå[ÜL‰È´Ž\ç:…ÎzŸRRZ´þlß{u/»ß´iß~sëÓÛϼhÞ”øHÃÆ›Í7?ñЇÇMiñÔ²€‰¡à^“>Ô›wCÊÜg«$J4«`«×eЉÛ¥o~®¶ù—‚’Öõ 9÷¹låÚ»e€·p¥„À ò%HÉåºô6ý;cvOB¢Ñ£Ìís߉bS­“\ÓñŠÓBljóˆ~ÖF—݉ôA§lî¢éuW)Mjš¹Ð#953íÃóÍIA£¶‘JJÆÁ?R¼HÇ?Ñ 9)ê>„æ9õn‘¾“´‹´À<¤çÓ‚5¤†Á%Å…’ÁHlsd¼èÌ! Ìû‚T§•'ʌп#>{jD¯¡ëŽôVy{º˜¦I$,\t˜ ÅÑÐC@Œ‘JŒ⟃®o}ú%¸ä$õ,$ñ€‡ÏÀbSšé˜t&VP÷`(-FK2nÞÒ ÓCѤt& Á'¬±iÚ&ǵœ±¤³ƒOËË—Õôì|Å辜üÀÅ»ºœT³ê—Õ»éÙYº{_­¶ïkú.=˜ÂCœÕå AÀå¬ü­¸$kLÍŸÐÛt—7·õâôj²Ú´mnWð9Åòê⢤býró€^#Œ ã~4ôGNÐáÃYy¶d¦ñ}Oô~푊Ž~ Œ‡‚‡·MƒçÓYE>lîàÑwåEuç`çѪœM'çghNWÕÅOûè`ëÔañcæ„° šA:xúƒ`‹Å‹“¢,&ÅdˆÅiQg"®rUÕÅy1-þ]¼/fŬZ.‹YC­˜‹â²ª§‹Ó¢.–Ū¸*®‹ßÛl‘D²“-\!Û'‘"’ÜbŠßfÊí³¶mž´¼CM_Üÿñæendstream endobj 296 0 obj << /Filter /FlateDecode /Length 1181 >> stream xÚ•VKsÛ6¾ûWhÒ %[AðW‡tFî¤ÓI:‰q} $*BLƒ´âþúbñ H vÜÀ>¾ýv±àoë‹Å Ž'*Ò(¬÷œ&(KÉ$M2‘d²ÞMnƒoÓ»õ“yŒQ“ÉcT$ƒ£p¸y€ÍÅ I{Ž Ê³X)j…mócÛ´LÎk*äœW²åÌØ Á„)"$sVÔÀÀ#L"ŽÅMÞ³.P†m† BŒÖúPMç$*!K.çB6f½-…=¡Â|KóÙPi„‡†[ã4ʃ†ß£é<ŽIÏgeU›=|ó@´›éoÐL¤Ôÿ&¡ÏKl±s *òž ì&¥•jpîSsüÈáöåÁ¶âjXì8p²FµÖù$ í‹^°ÉxÀb¯8Gy †êè‚\-MJ‰ºÍfô eۺݩ’( Þ‰–?}E‡w¾Æûºúû/£æ EÀøiû9º2Âi‹Š†Kìß>×jTj§¾œÕØD‰*¬ÍiïIzNÂ%Å6eÒxg0ŠlLÆ›ãµ/ÉN›ZÍïW2¼7Îüu[—dZå™™®^“]ÓnjKþ ð9®ôÂ14S±e+†ÒQЙf¯üi˜xþIî’»ô•Ø)GxÜ &ÊUOfåC%ÜFsΜ G„[øršñZ¾‘^óéEäK……å©3ôõ³nD/.]¨Õ—Õ‡?ß`uFX)?—þf2 ‚ô<ŒRg-00úøi½ú}õÀ®—?"°õ’­¹È¯ÚF¯Úãöè_Ì|™ÌfÆÍ å–ó±â½@­+²~w´ÐȲ¶5l672¼ÓºíÍéx´Ì<ó¢éùSIѽ£ .ZÉvÿ/24”½Wld©˜4º®lðóã ¿ðíê‘¶ ¯O­ ßMÒÓËôu* Kò±¬ï-IJnØ·Ê^c<™ÊŽ»ž[ͪfÏÜ78 Qѽ9̾ïvðé¯ÌI——/<8ŒQzú#ð>Ng8Ôô§îÉ[zç§kßOî”Ò\.ñ)=;â½Öúìòò žáŠß´;‹Í†ð$ަù«‰ÃßRœz:ä,;óo>ž0Ðõù&‚?"õçyn|ä v±Z_üäE²‘endstream endobj 297 0 obj << /Filter /FlateDecode /Length 742 >> stream xÚÍVÁnœ0½ç+8EÉR¼Ø`ƒ•l•šCOUµ·íª¢ Û˜ìBDIûõÅx›5dÓ\zˆ`å—y3oÆoø´>[ÞÔáˆ3œõÎÁŒ¢ˆ£"ÍÉúÎÙ\ìŠòÒ£„^|÷©¥^EU'e­Þ¯…zžŸ«g-)ÞTEYãÂm·êäãJ=ï$ĈäºMp|¹]qX„8cÄ)¤—¢zð¼«àÙM’2½ „‹!~vwoÉò‡zÙ˜"ŸEޱÄPÆã!Â!3I³Ç¤ZY4Ùd[•¨o¢Ån±)º~ª62ÀvµÂÇ’î¬ÕÊ<¯ê2©“à÷ÊqB€”iʹ.(g ­t_AüŸeš<\Yôò˦O*Y2[ÉËâY!\@¶éžšÂ¨v|ÔäCı:¹‡¼™7@qv¿-^n‹§¼ö’ý¾¸õé¡([ç#:Ì‹°é!g* G‚$µ¬Ï9 "‡«´½üö£¥—ùè¸ø“;€JŒüƒ±^.Ôó”•z}¾/ºË¥ž ÄØË®!š@M(½K è¾&„#ÖNì÷0²÷é(s[§:£ÿr¶W§´½—¿,ȬEáF€¾ÞÇ¢Ñ"…ûWš÷tÚoaë74†Õ‰>3Ñ{È„Äq£!›õÖ´¨©¬°û‡8Å?Z `¬…LdÆ9 ¢yg‹bRj1ÜSDÊz‘ŽFO†j<2õße0sîöºÝ °Û©5àsñ¬XÐiƒI³è•îà-Ýë‹ð-ËtnŽJ üQ>[‰#Ä·Öˆb.ô%=Ñ_öÆ25m§«=q> stream xÚ¥VÛNã0}ç+"žzÙ¸±Ó8‰V<°( VP±+±…6´Yš¤r\oi›Ä …> ÏÌ™3ã3Óþ ç¶cøÀÇá³,` Øqb–pjÜwz„$Ù4~ë÷»¦ƒœÎ‰üø¿¤Džúðg÷!ümX† !𗑤xé÷…mp‡[yjž3éR¡b" øUãEËœO$Ž^‚†ÊKǤZœ¶¢QpzõÏr,B“4fxŸñÓC%tʯ´á—×apŒB¶+\tMßOî¬ï§¶YºÒ-M?›pè æ,œžu-t˜>ª Œ(g~Ÿ0Y”éu‘|µ†ÚƒUL5ì¹âŠ·€mà¹Ã²˜Iþ6ÉW5IAMÓÉ4d …m»eT"i@hë)ò†p† áv2NƒL´Xä3Óœ¼ëذ|Æ6µ©àž(ºp,Ï©Òôt}ëõº&dºìœr&US¶aÔènoG7ap®g¤¢lQä]<¡9á|˜Æo(Ù—#Åÿª²ÁMì¬ ˜Ù^¸ÎbÏ´â‘üuo¸‚FtUìÀûI­ÝJ©Û+DX[¢Uöf 4¬#ësx’÷«¯ Ùò€ç4…,*SÉęΕä8 yú\¨_½žî‚³Íû[Ÿl„Ì=¼=Wtk©O¹ü¿K€RÔßÀ@%Æùà}@ì¤&¥ÏÚœEi\´õz޾Òkæ~y}Qa(RÔž¾œÍ#,¾^†M`þ$ã¢&®x¦ƒí&°|ºãÖ[Äô”²ïõ§ºF×}üž>å‹R ë¤> stream xÚ•YYã¸~Ÿ_Ñé Ð2bkEÝB²’Å ²Á»H:À3û@Ël›;²äHrûëSuØêäaFd‘,ÖùUÑý÷ûwß}Ìo ¿HÃôæþá¦Èü,ÍoÒ$óÃ(¹¹ßÝ|ö¶g[íV›(+¼þ`V¿Þÿó»JMÅ‘Ÿ„áMÀÛ?ñŽ)WúyP¸ GÝ·öÙ_m’\y?´F÷¶©‘î5oÝ£‚Üóè[åó‹˜ãCÓòšç?4«0÷dñج60Û™Š÷´æ¿gÛšŽW;w=äìÖ®”'¤AâÖ–Èñ+þgÚ—Uy> x³QYæ§`ŸR~‘ˆQïAÃMgÞVw¦²µÌúwÝîxÌ"Ç,2ÌG‘a2æ§JãêKÇÓÞ±o›Ê0’(ºæ¯­ñ@oÚÒœú5ЮÍ`ÿoÈ<²L릗ó§/h­QópÙoÁ\õWü–%W’ÊûiýDf}d㢰˜ŒòÄ+1„PÉ<½‘ØTçcÝñT_ˆ¦.¿M£Tìàö ËžÇ©÷¸JRO·Vo+#—•«ò`]Aá°ì+ˆ†Ø©YÞZ³¹.ºª8jB•ûIÍMÇê¥)»?C÷ûC”¹mÎ=ÇRš ƒ‰Ø)2LÕL$18d˜Ðt/çz6EMl0.RgŒþ`ë¯ÝµÉ¢ÀWY<î2­¦ãk(úX8_¢± VÞ¼6CÓ‚eÜõ­îµX'Æ‹£¼Ú¾9Q‚˜v ° ?Éßv|fW0’¢8µ©AœsÙ“aAËBhÎûÓ=”xÝÍvQ0ÏA'¼ˆMXg´O˜z?»cÆ•=ž*2$ ý0pIYpçã }E~ºÞ!,„¦,ê„TþæÃ.ŠE¢Œ`3Dn@ÔfF­ÝÛZW<ƒ„9âåg€&"À­î{•pWZs¤4”ä˜p%óEDIÔøTvM}‡Œ"Ê*°X'Ëà§ÁÃËÀ"÷‹°` Í Í! aYò›öKðO!1$i •à öÀûtÍ6æ$ÓÂãŒ%+£eDvE"ÚB¡#‘Ò#ó î® ,óü‹ŠâIˆ Á0¶û[>6`î}:XIsÑ/»ÀMÑGöyDy)ÄÄ\h0®Ur®ðcH:ŠY~²\ÛžlgÖí(âT†:¶´ ´†ªÃÔ§:$°­æ•ƒž:)Î.OÑ(øåõ^[a€†µõ^è=Ë1ÌÒ(AØ™C2–8z^3F$Æ@¨ŠUîRÆÄ[c@nHçãqÂ{®äÆÈf‚™SÓ@Œ”Æ,˜bU*M×éö…é¶ÆD–& TCÂiNc/Aì N(à;­4Æ É+Íñtîe{ƒÆ]Êõ±¶ƒûk{Õ!NÞ@øÂ¢¡˜‰»óØò|Ž ±#}!¹¡ÏèÈW8A8€‚͘ó?zKvph–‘}€Îhƒsw&€„³Ð³ÕL´Â”,+Wxˆ­£‘\ã®uÁ†;Pù¡mŽBtN‚1âÉ=j„o—LÛ€øÐÑüfÊÅ&êf:˜u»BÈÂhH¤ ÍmBU« ¥k˜E×ѲfÏ5´Qï‘Ô¡vƒA[o]aƒq)Ö’fŒ"(‹¥3å>cH4܉†ß4™ `ÇB’ûJ]´ìh¨üÊAgí‘Gú.ÄA1EPä_·\¸áV+gö/ãVö@2µ)”ª!ru×Ù}½Ð†Å`úqW&ÞR^!gz¨l^:çª'ç }ö´P¹ë¤ïJ}•†W—Ô’Ž‡ÊøÝòc'¨ö3U ˜œOj ¼­KÙàl<Œ5Sl?çmëy–áàjYsqã±/Á÷%9ö%à£,ŽÆ,Çe󬡳Zl2ìQï¹½vý €ùA„Äÿ@¹‰ ÝÉR3_ª¨ðÃpxë½Á—xâÇ:6yæþc²Ú·ýRßûᘠOÒ¢°mÏj` ~ÊÂtxËÀøÉöEü©¤2V d˜F~\Äó"Â/Ù°pÁÈãIÈÁ”áG½Ûí¢ÌbLPS×0áÉbŠ£!Ž¢(ðÐ*Á¬Öá:dãলiéÙÎm4v¨Ü"ÐÍÍ…àƒKðÕ䌷QÍ>6ÆE%’¤Q¾Ç`y±À ª†a·ðøL ?K³·ß A¬®Þ Àõ@o x× ®^òS5ï=MDLwÞ‚ÅÑ[Ü÷äŠ~F™W†®·hzµŽÖ‘XT–üÅUŽ3ÌGé´ØÚ”–~Ø€!àtâͲ»v› £îÀ%-fIKíLìq¼ð£Jœ%Þ´•jˆÓé+)®Q…[4=¦>d÷ä ‰ðã—w¬zŽÓðΨiÍéÓ`ð‰?ÃOyZx?öLd€ëÄè úØÚöVWöw#–{ÐÒ¥jN‡•xœ4³W†,%Í$(±÷%´Ž&`‹ÔÑ•¸NpFCËAžD³øËñÅÏ;“–é P—NëÑô‡”²y>6GýÕl>-°KcÀ˜ág»œ3nßËû7óƒË‚aáz’¯7om-‰r;bê_6ü½ÿ×>Ìp@ N³ÿ§[ˆ`í½¤Ç Ñût '×­@uÃß­à;2;™ÝŸ…Ñ÷üäZ"ðÂñB€sÝëz_¿;™‚¤»ÔôŽ ÈL©»TÔDh<_™zߨæà|Ôm7šé¯"±ãtá8½Aõl±ä%°cø¥ø½»ZZ=2ƒ˜RO‹ C{ÐÛ»„ üââ' €F²ãÐìM-öño?ýûÃ’èAãL`;Ü¥3;,h :iþh}Äf ;Œ+ yHgh››'ÈÖ9À_®Šyt¾—à=È ®éŽOßó€ªi-ûÚæI8ý.> stream xÚŒõT%zû ‡i²krí8Ù¶mO֮ɶm×dÛ® “mÛ¶&óíœgžÿ÷­õ¾«µvûº}ÝømRBy%#k ¨µ• -='@HFP@OÏDKOÏCJªlê`ü†ThgojmÅù‡…PßáC&¬ïða(cmt´00X9Ø8ééŒôôÿ1´¶ãë;™dh’ÖV@{R!kW;S“ïyþó@nH`àà`£þÛ ` ´35Ô·Èè;|Z~d4Ô·(Yš\ÿ'9÷wN::gggZ}K{Zk;^ j€³©Ãw€"Ðhç4üE «o ü75ZR€òwSû)”¬œõ퀀…©!ÐÊþÃÅÑÊhøÈP’ÈÙ­þe,ý/jÀ¿›` eøo¸{ÿÈÔêog}CCkK}+WS+€±© '*Mëàâ@ з2úËPßÂÞúÃ_ßIßÔBßàÃàïÒõ¢ ý†ÿægohgjã`OkojñGº¿Â|´YÄÊHÈÚÒhå`óW}¦v@þ»Òý{¸æVÖÎVîÿAƦVFÆÑ0r´¡S±2µuJÿÛæCóÌè`¡§§gcem@Ãït%Pvµþ­døKüÁÁÓÝÆÚ`üAèij üøãn¯ï8Ø9=ÝÿTü/‚a`™: €&¦V0ÿDÿÿ…?æogêФÿX?ý_ÿý¦ý±aFÖV®ÿ˜ÿ=b:AEayIªSþ¯RPÐÚàNà ad¡00°2Ø>¾xþoœÿvà?ìÿ–Êë›þ»º?"JX[8þEâ£{ÿ!âôïÍ ÿ÷ÙPþ7ƒ¬õÇ>äÿ¬¿= ½áÇÃÿç#øÛåÿßîÿåÿuýÿoE¢ŽëÉÿeðÿ£×·4µpý·ÅÇ>;:|܆ŒõÇ…Xý_S5à¿ZÐÚÂèÿê$ô?.DÀÊÄâ¿m4µ5uÉ›:~ÿ×ýg Á-L­€òÖö¦=8zúÿ£û¸9CóGÅþcV«€'õ¿)E¬ ­þº=ƹëÛÙé»Â|Œþ±Ü>ŽÔèò÷nèh­¬>\ä<ÆÖv0M”•@'ð—è_ˆ @'ôâЉü±ÑèDÿAL:‰ЇŸÌû‡¥ü?èÃRéÄ  Sþ/âøðÓÿ±è þAÙ ÿ‹˜?ü>ˬÿêÑ@ü/ühÝ¿õ_ÆB>ú§oÿý'Fñ?ð#„ñð/¥é?!™þ‚NäøKoíh÷G¸“?àGÑ&ûèµéð£D³?àG/Ìÿ€Ͱø~tÃòB?¸[ýSȇ«ÕǺü¡ÿ`býOó>œ­ÿGýQ¹Í?êBl>NÑún2|”þ1†ÒíÿÉ÷:ÿ¨àÃÜþãûÇá#æ?½ÿ¸{:‡ïvÀ?z÷AÀÁÙú‡ŽÀúNÀÎ æÃûdŒá]ÿ¡óáê´ûWìÿ9CG;»’¿Ÿ³MøþûW tÂ,Í[r˜Õ´=T à8ÓìóÌî©%Sи/Ùýr|B€L¤¨J÷Û°»HêFZÝ!¿å_&xu?i®‡ n‰Wh}öxÑUœÚk…YœüÒ?‘"PׇK£Ì¿ïñjë¡êkÞ Ú!IšmëÈŽ Ÿ‹úàÜ+æR×Wº24¿§°_Å*ûR:M©¡å[4Kšc1‡IôÙŠåÒqöön%kâ@2– Æó4’©À]c“1êqÎm­\™Ñ¾‹KüetŠÌ]ðð‡$Æ‚{qaÄÏB&[hôàr@oÜœ”*‘—<¦]@ Ošt*Ig–³aš…ªá„,€ì+A”{ i±˜q|%ñP±n®©÷ã+1žRœ:¨Õ¯.üÎÓs•J¸hLN†ÈƒqKü;Ôíö /Ö—ÇÏteúSbÒ‰Æ ëÄ˲r_¦Ç”r°|FʆSœÏ³cz8ìœê1-¾×*eØ?$roø4ËÀ°·G ¡É4ôа¦J²Ú׫áìÄ¢…I_¿ü¤´ß?„ŸžôU6â˜ÔßÌGò \ÖŒÕ%ùaRËÐúbŒ©u˜IÍv†¯¯8¡ƒLžú"a†L¥Œr& ™¯=é^¦^¤÷þÄÜG+–èŒÚX¾»â!ÿÀ(xl²ZïüÛÀ¼S´:ÖW¶¼ÈØŒ+ʈ8Æ‚ˆŠõ´ ¯Ûl?Úýñ™òqýü, k •ZIa±°5÷¹œìk±U––^­¶Bx€?ç!ÂöZs7«–½G¥vÛåõ ÝrqÖ7VlM*_‘0âþŸ29r§äðµ´Â/[ÒUÛ¥˜Z·”[ünL_‹ É&Y .“V?‡uBP‘'Þ¤šûèÕb o¼ÑÕ‚%š“£ ÅEE›'#ÙT!8èÝé ö<cnÏÕh‰ûzCÕ½+‰«C‡zF5$íDô"G#\†‘tZ°G@ôLà°wÞŸÜtßÉf B©·G– H~ S é±ñ;øJ–"CVËVÜŒüÃAcãù“–ž·K¢LÑO¢:?Êö*ļÓåcîêˆñDᨈ:êVé߯fT ±§Ãí¿:F@ïN²†2ˆ\è»ï¿ƒ—m8jò/{n.Íûà IÄŠPBSÌ:öµ÷ûœh»\š¡ÐK /âÌEº¾YäVzÓÒ%aên…b!½ yJ¤v¾4ÛYUI¹¢©ãÀ­ 7z<µå„ôÜšóšf´u/" ¡ºTGœ4;vóáMÕÄ ¨S.T›í3Ü:_ö á½[áÅðgàrû¹ -Jú/&ñÝ”„Ä›ŒÀk¤#‹Y?eüuèë$Ð[ÕžTÏ´0™þe§ýbþ“ÝÒ-û׋ÞM6ñ¬ìV=ÐÞ(È6ﯽÈv0-ÛÓQuYbCóU`¹à^iBI0á*´ŸàEÂ…Z·˜² <ç¿­~ôm‹ Æ–>ú ½hºŒŽ¹TZu Ù7+›¶Ð"ݘ>¨-Ð]™îQúóIé-eæô"-½â¼{™pwÄÖ"–ÇóçÿŠà¯ò)ï:y~¼(Y±´âeHy¢ ¾ßË~F/ÑDŠ-?ëƒï;p0cƒ…bê“YsÝv+ اÞâÓ¸lâßRD“4åý½;yRpqºâ¢*:§%ðݼÆ:¹±b)ýÁg°”O”Ÿ;úñBe%°œŠ8˜ÁÜZßC™î-}VìxÂÇÚK™ïÜc*ä&{·‹ëäùzrŒIáͯù˜+nLô;°#·4˜ÊªÕîmUкâ1á:Áší@T Áímø¤(¼æÙ«@ÀnçSÈ—f^Þ`V“Bü$MêWzש³̬(â[I(5=ÔÆZ›Ös ŠÃ%Kå*SdATÏxÖbË'ŒbÄîyMÅÔ­^_‰HÔ€Ò »¦[8¤ï•ß] wÌUG”+Ù‚%`”¿ê+Çߢ­YŸ ùÞD‘W©Ù«H<ð\h?ͤ ÉxÌ@¤ÆI>h}+UD(sõAlb6"GÚÞÁýéNôÅâQ+  m>XÉ® “òzq)pÁÃ3ñ`w PÝÕñ¾£Ü³t¹%Þ—ã^óhõW>¾e÷6f°ûL6O©ÃϧȔTÿª¨@Y,ÚF1…±‰ÚL§°»(ËöÚ]cø Û½ ÉÍåmD]¥3ÃZ°gœA-ßi3^ìqYiÞ¦ÈÞÂÖpƒÏk ò9¤±Ðé¨KÏÎÅåo­þŽr˜¡W¥)(ܾN-M:k©‚›ÞvˆZ/ôi£$©&°²vÙb’ ÝvÿV%i×ÌÕìŠx L6VáÂb~ ¬ÍÄRølÖü;î) .6ì³Ik0IÒ†õú*·_Yh^ÜDÔjë}ŸãïM sŠS2CÌzCÆ‹{ªÌ`E'Í4ô'ÎðjˆM ‘Û‡€‚M‡ÆÕ_RbH½žö»EaáíuL‰0Ž]ëc¨ü½ …. â¼¶ûãôÚ¨q^͈ü©–Ë¥Ì#áX0BÓ‡%üKÍF^D‚® ”)Ϋ³‰"ƒêxœÖœžë¶Ü2l¯Ñt pærÀùyÃ…,Ò¯ ×:ÂL‘WHº!]¶øáD~Ô(© åQ# Û$Ü—L¥TÆ‹× Ê«>‘„k[|®Ž¹Ö º}ä¨ÖcÍb8i¤ùs$ëŸ]8MÊp׫P%9¢¡ µ¼Í†a?4iÕ€í7‰Ô8UêÌÈ¼Ž´ØiDgp.ì¥IQõiÂ\”Ãtøº&FBg#ëßMŠ˜ˆ·ÄUÑæ¿šÄ isx wŒöØíé,“ŠŽLâ]0Qî“GOkP’´cF¨±ÅÏž¿ïw÷ææ:o1KñþJT X¹¼•ÊAØñï\S±´žN9‡ZbÌ1Kò¤ðÉØ9p‹ßäÄâF®¹¿¸] }$€Î¶î¾ìóG*ÉÜ=“FtV^f»æY¹Ø~ë´ UóªÏ}´ü†õ›ç¸CkDú·OÏû^ȵÚÝÔD²{¥3–ÍKý-Oôy5!45‹4A¬£ͬš äü‹ Ù¸Ry)=âq NDY²RŘI»ÖÎÏîç°”“µ©OTßÙiƒÑ‡Šêùbß™=!¨úF‡nr’/Œ„Fçs¸îNðÅzÛ«ó|òûû4ˆêã0sJê.¦‘€¶"ͼˆ`ŠÒ¥Ð~o>R‹ü$KÂj)á37tò²uŸu&™(é¥nw}z_Wû›(O¨¼PÓò̓Ìs´eT3+Þ1–^DM©77ÂC9ã#ê*ºá@iŒ:RØnmºžPïn¡˜¾ï(n¤È£o" ÷Ź|¦`‡š9í…Š'OêÞ‹QÐæžµî5ž ÷š7Nã±MÿÕ„&Ù[V.L¨±Ò>'%Œ34mØuL¾Ç«Ž9ƒI›qH0)~Ô Ï$þ%d$°D2ú¶\ží!.‘x?Z‘ê§¡ÊVž²ò(y&A㋈”ŽÑ i}'Ñõ›R8­T_i™›m°óœØ+ÖbÚS&ɦjè”lNûâ›…å4«-£–D÷fRDË*ÈXÇi>Q¿>E/L6,¨,Û¡$[Á§Ù-¶’½y©z7J.ÌÇá1Ld=kR{|Ô!E>2Ò/®]!¥êjI2ªKÕžB%cc#&‡%ÆdÔƒZ‹ó¿7¹µèzO}VêÕsÑ+øXã¬'Î{¶ÄtßÖ}²_æ-/ãñîjZOe-Ég–2~\(>Ï ÏµejÓƒÞïÊÿ6¦øzêôÂ6QÖ%"©ê=®ÉÑaYÀrjƒ`F <;åªwÑ™>÷_•õOM9*5cS+<&N«›Žû<™°0\74Ð"¨*Fî½iº‹¡¹+Q¤&ÀÍÿóp'§šõޝ õÈ9‚^yX¬ä%Ç—^Ö^šåv dü(Všà·cM(뼉®ÓŒô¾uHÕÏþ\/ Šz)B&õ«qç_(° Ò ÷{(î÷]ÉãÀZœ;Ã~-¨",䮯 L2ˆC¨kµ;kÀü››{tTv)†ägWJº„‹Þâe¶òc%·)š¦Ù`‚a﫚“T4ÖàJ…‹ºz?1˜„u [8lTçÝ*òÜl±¤á6ç•~‡ëgr@Ò¡~ÑÆ'¢ÓA{m²¤ª•mítóßgÝJõÒ®§ëºof#ÉŠ Ü;€ëÑæ9(;º¦².Œ4È®UW¼u©¸l,ˆk.î4£f¤O=µÛýK_¨pÙù]]”N‡‘/&ÔÝÞ2-–˜\nBM¥#+ìÃ'ãŒÂë–xì0…jÔù~[´ù'Žªz«¹®­°H"ÆÔMš¯žÐŸL=À*µ´~WZ“jÞ¤ø‰áƒï³ðTŠšØ`ñÓ`Ëþ§úÍô„S½^  dó67 W š›[ùmݤœ—£ä~r €´j7fLèÏ™·€î¼i…@°Ì…Øœ8âx’‚Nå3‰êþ$ktœô‰¤–‰¢7Z¹` ºÏ¤e­8YQ©yBjxŒóÄœ9ï7ÚªÔÏ%.&î+Çà ÜÇI%°ñðhk›¤úwc"~pèÜý+[´cPmÜ»vµyJU¹h|™ ‡åyj¥K](]í†lúÀ°Êc±aõ¹·ºC*18¨cÝ8;m±Ø• }Û•ô(“˜"Kè9í«¼÷$('òjáZºú›eiƒ2dï£ð£í‹%Å ®±4>>}ÉUeÄ­7WÕŠ÷&“Bq®0‰Pl_3-ãaÉê­‡ú¶J8÷MߦK÷ñjá-»Ö€²> Y)`ü \AÁçSôsO òœY yT¦NP^ãÐ](½ÒKçgWðÅòÚÍíxOiz([ë-É…³@ÊÍÒÅ&ó  o‰ôÁ³Ëƒ½nI9¹ãðŽÆn»íÌ*ŒßýÚ6Žï1;#¢Þ±±‘ý‘i ;²°-u|;Ùâ&“ ÜÍ–ýç^‡y:Ô‰Ò®ŸÊp\çqψB\è ÚÂÂ5Žôk`ypsù /šoÃò9”RB*¶qæÙ þ;Äh|æÍÕ°ð2ÐWgÏb¸ŠøÕjðDŠßØ.‹ÔÞZW§AfŽçû«OB/Rvè©øÇëæ”×d•øn0"òWÎ}õ[%Ë\\½šÙ±mr=à[øX.ª±ÞI4)ì_e¸3ˆ£ª&7TÊdfÉÙ'áñS D:NÄQö>#9Ðv³`ŸÎçô¨ . dQîå¸ìxOdÉ™.Äè5ÙÑiZO„*qŽö½çá—ºØcÌBi*ÜÍ<‚«@0‘Æ·”[J.+Í6@à€’ÉndžüùL`Ý=8“8´0)‡fºÒ/QÜËž©¨¢Tìú…ñx‡Ê*’0>ž´òfý:\w :l YÛv†À3úõÕaH^°þ0<¥#f@oŽ­à´ &,ÔX¶ÖžZj&ŸððŠÓÖ‘}ßš¦þÇÐèÚBèL„ÆüÒzZæ•Ü’­¶ÄÅ=‘³òN7:BÍà§R8c›ÞÜ”öH£ý’õ~Xgm¹éíÆØs”†¶rž8‹^=(ÚTMúRòßÙ©Œ„‰*1S²ÞØ’‘Cû:-öÁÄ¿(ï±ED¢zqU]áÌQÈͧ[ÝéKW±RdQñÌVɱ`,%’†- 7u²Ô÷¹'`øÖP³¬û%ò%q ;ñ:—á¢Ä1‚ÍMÊæù±Š9¡3%ù£†'Ø~ „ÞÉ 3„w-„ÒÍìs‡ÀR_‘ŸJ"¥§AºÏá"íˆë:l…Ô‘¡Ä8#<¾\ržÝן3_<†ÎÞå$ ¼UD ÉÆëØWŸIÀ‡óµfµˆAQÏL*„Ñ}èž9àT%Û[€·N‡»aŽ¤Ô¶_¯³ Dˆ r䳎¯ØHR`cT ÜBg44.¹²Ó7 õf¸{|ïc#è*&ã·wÉYR)}h_ä¡—)GBÅT´_ײŽòÔ»wàr|ÚpÒü¶˜8åÚ\¢³ø–µgû êηvh¹)Ò‹ÜæjdâÛ+¿<®¤;Š*a!°–®á‘:½Âíêìü)ÊÓ?ÁÉß+ˆB¢-zì¨ÞY–Ûò×b»+{YLZç!–ò¦·ÎOÙ7õ¾ÀHQŽçÈöž!ûwO³:*ûr®ö©âœ™ôm{ñfQh²óò^M5ú$æHÆš…99êã‘p6ÂÕ"}šO(%Õ|G¹ŠÌ¦Ç#_<èïµÐHÆÞ:«ZBXŸÒ\oòÊÉ÷¿·(0 l\åõžÒià9ØK@غÝ(y<°öGÔÑÖ/›'ãÚ:ÏöJ ú!¹ÏZÓÖZÌÔjütCu‘]Ïyš_# `«ÄÊ6· ¦1E»ë3öÙ Ë"ªO@ñ}1|(›‰ÿâ° ¥p×lï$çÏ9.[{ò¢!ããËýfr\V͉ÇÄ©:±Í¼Æež1.4# ß‹»°9ê`Âõ€o£—Оÿ”O_ÇùÚ[˜Õ34ûÌ@Ö$-‰z~üçeÃ}D|{xÕÌè¢3ž”6'R§™ “×€"øXÐ6,þt'D}¿UçX¡ÙYY©ˆ'E÷óØ}ô?žòåc$ÜœÐL-½†æ“9¶.щ:èFÌÉû¾öÐäZäî%º#ì5Ã…ÐzdCà!UÊȪBè?ÿ耑ã½wXI`C+ ’a³Ÿ%…Áƒ$Œúuß &01£J篛3À\dGÊ+l¢Š]íûY¶Ó™xêWÌÓø&€¡ YÈOo¶h$hâl¿¿W§ÔfùCh¿“I"‹!… –ã9ÝÐ…¸àU¹=8\x-R默õ@p´±]žIáY_Aw¾p žõ Ñu-I0N­•nŠá5-õˆø¨Ú`mÒØIè„8­ï:‹oò¨ê—û„4íë¨5¾²ù JÈ‚Oð6‚kïL%ÊÚzÂ7ßN£ëkö­Á¾ŽÂLWf}¯U8sÏ©êíµDYë“ʦºæ¹¥’Av8di°Å¸b€ó¥Ã…îÉÀ˜û”«¥±rKÀó†;ïtÿË. ¯¹Iâ7³&ÆM;®ÜeqÎÈØôü(ÞkÁ®£T"e¶Kêž_#Œêqzm*a1oÿ8…MÇ)_¢ñ:gü /_ðr£¸|ÑLCC…‹>n©ßOknˆøïiæóÔâ!`‚• ŠX+1÷…+k?Í£M]ndµAÃjg%bðõÚz7) oS÷ú•éa[@ïÐhËoËëg.­ŸÈ“p9x%½FkšÈt2Ï•á©è$óô¸×|×C€RÏQÆòࢰ¤ŸŒýbwD…¤›æh=r  ¸#¦™¦ò™àf‡#K5å®pè=1ëÕºj ­MTD8h2Lìã°1}…©K´ªÐ£ä¬_iC"íÅõ™\ø‰XµÙ4¦M<<õ[w{0HnR—½«ã“ofX\z]Aub>q…î°½gXœï}†«ã“éÊûŽ™)XU!w—„ü4™R`? a©582Uöº¼+ñös¦ ¼úGöcôe¬]ÃV›m$‰e¦êLfg&Ù^Ó8ø;‡5k ál¨ ìüqÐvèBhb¬5AWååQ²(™äÕ¹VÐ+­ãÏ<îè!©ÉQIÄHR6qJI•M)½FVârnJ¹mY’» ±a¼[Ñ!`ô’ UÄÝñÔ"ø-]#wa, º+»Œ<›:@¶NkÇ–êY¶¼¡/è,ø$º!œV ž9?ƒ^ä¿k ÉÈ^Õ%Â}±ä†ÈrÕçØIߤT4q=Í¢4U¿úòù{6áù3;`’Nšj“oמs°v¨Ê£<òÈÛÊí¨ÆžÉR)YPÇÑ|KFß@ í/Gféà…åÑåG4+3Q×£Îḭ̀—/²r‚LÄÂ÷ì,£4jØàí‘âY˜ø£Ë^(¸¦$äsõ‰\m.=ÙŒ²”&õú껉-¸ORŸw¼h¬t|L̘Aù1ÅÇõb{É]-ѵÁ.m¥oÓ?g“·äJ¦}þd4ñ ¨?2’d2ô«;‡3þÝ7@ƒ/LœÍ¸­–¾ ø“–ÎÓ’ÆPލÌʵ™ÂóE߉‹ÏzéƒÃ{ï£ _Š9„Éá\ó1:ýú`¢ì/³ùOtÒ¿,ÍÕ4ƒ’ß[[_kýŒp!û¸ß0žØ»*9DEx0Bë!ÙúD²±¿áçÕVû!ÃYÁë´ä5ŒŒnœ¿€Ïî¤Wf>z09™úõ«X`7™Ø?¢A+:h’ð{¿[/_‘žô‚ò:ÆptxõrÉÈuÃtºðb6÷׬bŽ.ˆ¤s-;·æE©I|Ö2,'A¤ã ²DÛÙO™›JŒðp¢ÔV@b¸ÉÃ!GyW”1á ¡›âû¢™~)Ÿ~d$+ö F†þ·ù©Eýô®™~FÝ*”Uø Óèj—¾® n%‡Wn…'¦£-P&3ÉÎi#n ¯ýv@ª]󪱎G°Ñ…ÆD·œ%g¦Ñ…4Ú )$)?c#Ÿ€ ³9wP7âÉ@ëˆþýýˆW©9[pdi ëö! #®úGJ/HFŒîZØ¥Ü7óH3œŸon ST´D(ILνvOm*>ïkÆíõ¤~8 {ÉYÞô詘ïéÓ¸ì[¸?Øø)÷+=h[2ä¡e&þAËÊý÷`êv£7B˜LaßÍAŒš‡ Ï{ýwÇÔí—!›½rèWˆ'ªÆEöóbè¾Øðº_¢>zÐ}iAk!VBA ×èÐÔZ•ª2e‰k‹*/Áˆ+jüò¿sdµ·¿ÁúŠ]0(ù»{»öjY”¿b’  ê·zÏÃZCIÍ÷÷ÈùS‡Äæwe«XU8ÃUæ}xb—!×Ngl¾ëT!¤lq"©ßv¾ÃÉ–M4e(äÈroMüµÏg®ñÑ9“` Mp®¿šÓJ÷§ßäkÚXkíŸ6³´}fðs°æèW!õ•È1·›µqš&ȱ䨆àeƒ9]•ÅáWAfØE!Gä™»M;Ðp²ð{þ4ŽßC˜×~Kþ¦@/ªÏ‘Y-·ûÆ%²`vˆ7<¨½Q(oZ]À‰äÐmæÝ7ÛžÕÞ#y‰ŠÞ%—"…íâÇû¢œ¼Ó#ä²ð¨4ñ€öz~„\c»3_x€GBŸç~p•¡ÇéÞ˜‹©/|=å6%ÇÄëÿ¶Þs>ŽÚHúñùB¦—q½ÈÛ Bã3ŽÍ»ÇE3NJáâzé9墫U‡Q˜¸1QÜçpáúFÏò“DZ€i÷N7[N80JKœ\„M¹î£¼)䔲ü ü²€â+èNä­ ¨­ê¯½µ´±•qpŽ%ß$ÜY¯²·†ú€˜W>ƒ[ÉSÐì—뤄—ǺZˆŒùRòÎ*"ê¢DV¸Ÿ6¼K¢¼¶Œ¶øÕ nSG¼÷ñÚV¦Ó ÇÎmíþÝLèîŠçLz6AùèØ¢J=È»0ŸþcÿÙy¼(ø©vúDɃB›7c2[ËåhÆkLúÂH !¯ñï‘—Tஉ§ w5<éV>å þ‡-¿ùåû{ͼ³Ì)‹›£iôUjð@àäŒAò†I¬\ è•ìaǤöŽßÙ̃¶æ4Ý'Åž,ÙßM)›m¢U[Q‡Æ¬²¢æÎ¾ƒÅÁ~W)†ÁBû$mó6È»ïÕà z-'á4~ïK’r_àÎ=<7=ܱ¼Y0<]¬°ô\š {=ÃýŒ˜‰|Oh´ÄÓ¶)gùüɤíš+b`‹€°+©V¿r>îý+DoÃ.Ö«àDS 4dÞÃoÿ ‚ç¢9êH¾³£š;¿DâdæÒFOmrýQ¬¬Y¦¨sh¦k aA\k+bÅG´—àò¹ôÖßÇ”LkU‚Ùû‹Ü¹ÂYïÓOzFNÜ÷‰Ý ɹŒÎïø¿ ¿æ†*f¹ÚÎlo_VàcÁúG’—.ü’¢Qí =ëÉ$Zwäs·Öà·Q{Np(tÃàб$Ü^>Ä—ŽPá¬^´å´—W.à#ï1€öÌć)ÔÓÖŸ#0cŠ×P…´Û+çd²…k+lˆ!oó~ZÑþBgÌÕaÛÆƒZ‘e¤ÒõýKóœzTi”¥ÐA|™9Þ¹ëyé¨[âï“Õ“%bG8;úÅÁš7å§ß798˜Ö¼£¤OÐ?ï7…^OÙÞiˆg:j½¢%Ë¿0È5Rlœ”±*‹ÍÀ‡IçIg :?ö0ÄIØ~a>ëô»Ô©–{°•Í,÷™0 WAQˆ³õÈs$H‡C©9)/MÿÉ^L_TlbæÿdE}ƒ®™ÓÇáÅ{Š—¦øES{?Ts5{âÈžéD'®pN2Þ{žF*€Ð CTz@Hwsvb@º…þQB¸J益:ㄦ@Øžj¨ `UÖê; c÷SÆä 4삈Î;KhaÿÓ¬rD”“åz/2$v 9NÃUKlD’ñÚL¬ƒ¤ÔȆœPm©kn5‘­,ÍNô¸0Úhz"Möèˆñ`ÃuØö¥ AÁ~ÎöÊ'DÄËå¿¢ <ô© ›‰ÿýžnž•Þ"×wÌùfЇŽþ:Ló¼þf]jîÒ<¯Ñ…Õ(Öÿ¦É#êSÓö3G׉ ÎYü–*iY'#®Ñ=“dµ'.n/¿Ukžˆ­K¸ž }+ªUã– ¥UTBìg$jËbŸûE¸ôïlŒþÍhì.,)Z =g³’¾•÷é[—iI+‡"fuà1q8†hâÆO1,¹_ ëˆ6Üöxˆ`èwçXL¾ÏÇ] ÎNu…'î0¡V_|ŽÓß*Þ–8wѽÛ:—ms‰Î\fÀ½®èÒ«Èp}¶D÷¬:eG C¸“+²ç'4Ú.:ÒPõÛ ÛJ³e€tT²Šžì{Ð`õHÕ¢¸1æp‹Ô –LÍd&QtŸXÅÇ®´arÜ¡¨ ›‚‡šëÇýƒuÂSeIYßûèþJIßËC%u±E“Z@™±‹ÜÛ·³ˆ» FŒ÷Yɲ¾¶(û&¨ÊðÚ±C¹(MGWÞSi8M;¶%Gºo\ô‘°áöpØ ž5×oÙÓÅOܤB¯JV¤|éz¿9¸ªÄ)›NôüÈ€¸Ëƒnn’‹*büÅî->œ5æÄ`£Ù™  aîj´CrtæUÞÉ ÊgÜ!ýS)Ùû2 ;ˆ»—ÍOKP ±JZ˜:Q™Èäw5&î¨Ù[£mvâ½ÜÛ®Õ1ô©ÍI­gŒTP^qÓÚPB>Y!/ YóšBxïA‘TVÉèµ¶èP[3¦OÛES•r ˜&´[ Ð2údŠ ˜ð‡EÒ2ŸãœËd¿›¢á…aŽdlo.]Ú:Wo¼Ži“ò}¢ƒj á7¬èÖ.^J+Þój•»¢«€è3,=tÅkÆ„ILú¦xÖLÛ°„åÊ.Ì9F'+j3ÅK1IŽŸÕF·'k­~ˆ™*™±ÂßÃ]a{xœ¿áZeO†Ã°"»}#8äê,-ÄÃyù %ƒñißtÿ£œH”¸y¶S}.ɰ—mŽîi9%—äFíg- ¢µÜn¿i}²êO{ÏL%ggN¸¼‹ª<¡oÍ;ý©nŒ¡j g£èSW“ƒ¹ÿR½Ï{â²lÈ;Îqx|ß‹Ÿ%o:xŒ6m J¨f†ùý„ ‡“×”&K™¤ÚÞ­®‚ÚFjL‡äË2ÆhâD?±:|”hÊ@XÑÐÉXˆnq™Œ¯I_÷þg·~˜¬õÃÆÑ Ó´ëÆ¥{U¢[_¼¤¢³@’YÜÞ£ãUJ©0@½lœ·Õ„/bñ†Œ/² ÓìÍä˜t‡ Uh¨F«õØK‡A­¸½0!›G!¥§£•Ìv79gDyäèäÆì·3#[B?æã\¦XzŽõ¦ z4`wÀ}ŽwÔ¢›ÀB]•ÇzN æä‰æ,”° N ¼²~Á," ÕŒc: \#’ììG вҭ±à›á6´à›°Dû“ªa}E k­ÑÁæ·ÔL.ó²‰ËÒ2þà):?ÝTX *5Iì‰Ë¼ô7EòéÝã(Âøè‰\F R#ßj+¼ÏÞ„üô Š !)sB±_ć‰ö³=/EG࿚#`†„gÀÚËÓ…ð¡®]/S 0 >ž}‹ì•´sâºtx3Ô…¯ºŠhf`ÿvS(ã©÷ÀÝ”R Šßã–ƒ§½^{cïÊ|éƒoŽ2õÕ~ˆÏ‚èåöîàr»ôV¼EÑ>ù1ÏòöYÎéhôUš ñ£–‹ÒO¶¾Emã^Ä+rÎ]ö| @àªÍRÍûbÍd(ú’,jº–‰ê/Œ«ú¤ÝQä#ÈÚψs™ù¸z¥ÚMŒ*ã)P>¡››% n]—0çápÅxG`¹ÄüéC7ß×`N«›ýe„¼K«JÉQBb‹Ë¨T=^±ÓõÀö— Šv,|­¨Ös°ÕØ/噺ZÖ¢¸"~‚ ŽñnŽ™p«‘K#·ìÎ_œc­&J˜gìúE‰Ê±“my¢#µàënÜ0²l´äÍ5䯅Xw0&“¯Cs,ãÎx3’¯źÊk>KŽDÿ®exŸ$cÔRœÝoþÁ4k›³8Ä1”v€ Ii\X±}€H?(€ðÕ&cšëç³èõ7ÙVæïIââ ­q¥—•ªh±«æ²*BwZjœz4E¬W…5œ¹B ®ñþè_šŒgÕìõÈR÷œî–aw–¿&³óûÂÑ&™œçñH0¡‹Š_V"HT»•Í@(A_”,‘Y"%¸¼1Y°ÚÚY/ ¨˜¬"8µ[±1-+f;P4U÷VØÂ«µî[Ô¬ªª÷z²Ã¬,€YšOVÀû´xª¥%×cIpÙPò´ò¶I†‚Uy»ØÌÔ„âa2´HIQ$…^>¶,#ƒuÝ[>P…š#jîµÆV«Ó0Ç>ÂÚÕEž}*ÍSYûß@4/'¼<÷»AÇ©y()«Í9o4„a×¢CáVµxé¥EþÊI¸`6L\€ò›ê§BÛ]½&/uˆ%ð§Æ¥œ}§"S“eñaêÆ8¹¤Ò¥*3ŸÉØ©è_:¤~"û¨cÂdŸ+úñ{·‹]š°9ÕÕéÒ"ýÊžÉ%–yðt³$X€'ÿ%·³€Œ³Ibð&Ú@4ý±5±»mþçtÂ<®C@§ýMßïè܈m;¿‰ãR¯6†,Xß,–÷d•˜EtÏàr]žå¶¶-æö*§ùÒ 7›hðPÚ®âÁåˆ$¢Ðð&uüZqé¤ah§¨¯W/‚Âè’î§ñëÐý1$¬%.Æd&7K@¾£.¾–+¸•·TÓ;3ø$ðÛûlBÿï204ËsAŸùG³Èæ’ ÍððóÂú™hžI¦¾móüRwH§pÛÁçÊùBX‡Ñh%óßTªu¼Ú­FbËЇCÌ®B ?ç(˜t°«MY„í]0‰¬µ2ÍWH¬Z©–•.xV©µ\ a¨Ý!¾Õf)à©xKq³Ú¤­å¹óµML$õdwÑ­o¸?ŽõñšŒ#¸?Ñ¡~réÎþñö´ ‹ý•Uz}ªèVZSH;"’š7»cØÒ‚ÄøsÛŒøx]åU èwÑŠßq,'êò‰ç›\¨èmxe…Ë“w’rÎZ„‡ÏÔgØ¡mò’.‚¶µ½_€è?³ÆµmŒ² l#w[Ìò7xº"&ăÑ@µ7{µDîÔæI]8ÔïzÛ뚸2ÁRÉZbxo>´ÎäÒd-+ŠK€í˜R[58 $)óš¶Þi¼Õc##“5Õm͇wšÛqÜ‚yþ OæIÞH[¯?; áß®¬©ºýçšñB¥ÞÇÜë|ýÖþ± ¾xNVÒ’åM…ç–îÔ):8Š^—õäý;Ø,V÷M,2ã¬bAýÝãfˆÜ1óSºDÇÔü¼ä½OwLl¸ø÷Do+<Ƨ÷aリáÒãfÑz7Æù|,Súóþkª_PÀÊjB¡.kiBSL+tºvx®!q¡&$Á;t -÷+›Ü·Ó°øÕ#×·üÃ8x[Cˆ/7Áu~k»o¥+_뻨t‡p‹‰h~4™‡»4< ýz»9ì„7†®óS!£€ùÒìàšf¾”ËëëåÇÔ¯Q²¥ÀlºISÇ…m•ÐM·F_±ÑNæøp@ȇª¥Böø5–öÐØÒæÚ€è{Á¸ÓÑ¿<é«Â¢ˆ‘ %ä_¦½ÉQ•R†2 `%x˜UÒÆPÛt)©~âzVBæÓPðÒþÂR<+ÍôlO満¬ækì e£ïl-Ìð¯k¡ºì7 2bƒ¬õáÚ•`/™~Ú éº"ltŸè!o’i-KžýHŸX6eˆ:;íÏSiÏüL3‡Õ–Šv—>×Ü>' ²¼³¶Q¶ÛÖÞëÖµ Å÷1½3kRZDØbé©Ä§ Y+4óKàŸPÏ Õãе÷×Ë `kúÒ £LÜ^¦iˆB¹ªÂÌ0Û¯w{ñ¾©td†ÎáŽj?Æ1•^m0ÛQºÏ]–z—· Peé•K`!vq°qÈ ÷-X¼»ƒÔ‘;VgkxÍ¥M¦|j%·?ëcéí»1.2"_‡º%‰XM;Å”†ÏØ)jêóR7 RÒýЍÓSlws,9Üq'æ îEм»n¾ÅÓ)$NlZoIÓ YfÍ`ºw:K¨1êç«‚CJ–ÛXý8Î&$‚­;à EÌzkx-¿@ÊóãØ·Š5Vü=`!Ià¬Lr€™0òDgàÙ1ç N1ÓÆš=:ZÎnvQþCÀ¢öî¬É$<ÜXT²ÿ°‰ÍaýÚQSa‘šI¿ÒB‹ì.…±#NÕ…¾rg7œ˜e$:ÄÛhLÕ¤©åÿ •jü(?|qì‡ Ì»CÕqºšY+mÞ/)ÒôÓÏõjGW+1Ôù•y° t¥Ìô›»©¦ƒ\@û0M{Ò©|'ŸlžÐ¥(«\rE¦ 7[¶ßZUW³s,ŽóûæèEç’{šsìÖF”ýýͧÚw'!»ìõ’;@ÑîJBÔ÷4L<õtLþEð¹§–*LÇÂ}GL‹R¼L 9+­¶8Ri3O¶‹à#´g` (Ñõ”¹9ɾ¢æ4NŸÑä¥üX¼¿$•ѳ·t?1àS4üÊZãžf@ªùbdÖÈx¬²(èFL„A•©Ë( XÆ2ŒA4 ‘þd›SK­gí€|õtÕÊâdì %w" ØÖËÏp9F&|nbþ»ûÝÔ”îÒ=€{Ž~"¹²$C@jþxôOÌW®°~œbT£w*zòëŽ7€S@C 9¹×$¡¦~ìÎépÔô5†ñ³úø£¸ÅªÜy¾6ÜDûe!Ê¿‰¬ìW{s&éü û:g¿¦~VìãòÕÏÓÌSÍYœ…>­Ù)à•¥¿Ÿ8>„5Í­Ê€èÞë,u‘ŸŒZÃa œ1 ‚µÔÐ>2Ã8Èʾ8ñ+Æi0¢¬=p~“I¶ïÓkµž£^“Í-í[¦’t ]öÔAˆ×ø¨{?}‹¼×†qɱ™¥oO6ä¦qէÑ÷Þe:î“ ÏºÝd/”Ù€T„ÿsèshwõ¾MÉc’»]JÓç*|¡¼¿Ê\~‚‹ægCxjëj~–¾M„e7|Ãï“áÙ]¤ÜsB;ìâç’Uüf1úÔõŸ!0·1”RÑAñ0ˆÞn/òL¯\ª1)» ª[Z»cç&iJ!;ãxëXFAYÃÒcli,xoF(˜q«¡ipÞŸ£ÙA¶e*=é‘®óäjÖfãû3ù– ^?µ\?4œgƒc[åkùŒÄSÙꇔVEeŠÑ+BÄÒ±Šy×Q ÷Q+ÿ/ehãÈÀýJ¡OÑH‘©ÄR~“È„˜0žC5 8 Ð’r3(Uk¦/*”Ù5^ÌöÄÓ7V:- 0{¿SþÑ>ïo§Ô’.r¤Ž—óTFtO‹¥Û;½Õ uÇ{Tb˜Äþÿü}¼¿XˆÕ¬¾Îl²÷nà fB~óY&˜Æþlî]|Ç®!ª¹‘þ­zŽ‘Uiʳߚn2þ)R³’†D¢û_lÚAü½Ê‰–endstream endobj 301 0 obj << /Filter /FlateDecode /Length1 2064 /Length2 13999 /Length3 0 /Length 15243 >> stream xÚ÷PÚÒ ãnÁÁwwwwww×à Hîînàî ¸wäÜsOÎýþ¿ê½¢ fµ¬Ý«w÷ž‚’TI•^ØÄÞØTÂÞÎ…ž™‰ */¢ÅÌ`bbe`bbA ¤T³t±1ý¯RÃÔÉÙÒÞŽç_¢N¦@—7›Ðå-PÞÞ ãj`f0sð0sò01X˜˜¸ÿhïĺYšä2öv¦Î”¢öžN–æ.oçü÷#à=ˆÀÌÍÍùá¯t€°­©“%hºX˜Ú¾ÚTíA–¦.žÿCñžÏÂÅŇ‘ÑÝÝhëÌ`ïd.@óànébP1u6ur35ü– PÚšþ- faéü‡ª½™‹;ÐÉðf°±™Ú9¿¥¸Ú™˜:ÞN¨JËLíþ,÷Ÿ€€¿›`f`þ‡îïìßD–v%A {[ §¥9ÀÌÒÆ (!Çàâáò´3ù´q¶Ëº-m€Æo•H+€o ÿÖç r²tpqfp¶´ù­‘ñ7Í[›ÅíLDímmMí\œ~×'féd zë»'ãß—kmgïnçý_dfigbö[†‰«£º¥£«©´Øß1o&„?6sS;'7ÀÔ`ê²`ü}€š§ƒé_Næßæ7 ¾Þö³7¦¾–f¦o¼n¦'WS_ï;þ!03L,A.cSsK;„?ìofS³ÿà·ûw²ôè2½3€é÷Ï?Ÿôß&ÌÄÞÎÆóOø_WÌ(¢&£!"M÷·äœ""öozvV= ;3€™™•ÀÉÎðý_ž:ð_õY•€–WÇô‡QÚÎÌÀýoÝû¯·¿'ãýßkCøßìßæÙðþÏøë1±3Þ~1ÿ^‚¿RþÿÍþo–ÿ×ñÿ¿I¸ÚØüåÿŸ€ÿ?ÐÖÒÆóyvuyÛ yû· ±û¿¡š¦ÿYh{“ÿë“v¾mˆ°¹Í?m´t–°ô05Q²tYügˆþ{ oä6–v¦JöΖ¿=3Óÿñ½íÈúíQq~»«¿\¦o+õ¿GŠÛìM~ï ;èäôD`z0vv€7óÛ’š˜zü5ÛF;{—·À›8_€™½Âïå`0 ÿ6ýqEÿ n£ø?ˆ“ À(ñ1%ÿ V£ôôÆ)û½qÊÿƒ¸ÞX”þ £ÊôÆ¢ú±ÕþAÜo,À?è­2Ð?èwßMþßj3ý¾µ…ñ?Wö'àíX³?ð7²üÏúºý‹à·ßÞÕé_ùo!æÿ‚o•ZüÙÞÔ[x:X¼½§"Þl–ÿ‚ob¬ÿ¹Œ6ÿ‚oâlÿ@æ7q¨ØßRíÞ&ã_þ7µöNK¶ÿ÷[õÜoÍpxÛ:ûµ‹ù­ü‰c~«ÕùÏy¿‘©Û¿Ä°¿…;¿=YÞ8ÿ4÷mÅ],œLÿÕ¿7.îöÿJxÓàú/ø&ßí_·ñþ/v–7>Ï¿àÿÌ=ÈÕÉéí;ᯗém)þ‹ÿú25õ0!,ÍÛƒxC¬jCÚ徭 ÜéwÆùg(w4Siè½—œ:\P`“iª¾­;Ý'}C[Ý-´Lòì}ÔRÞúI¹íÑçÉ0Aej§ aq»"ÿH¸î;P›#"3[fñÂÕì¯Dµ'(‰™‚µ­Y—éòByíUøz \6àÛ½B‚ØXpTÛq Y4)Õ5ŠM·â‘鱃‘}Œ$gQÍ­ÖM:úž)bŒ.8Z.dRËYU æ§DäRã7‡›_Ý*ñŒ×O•LD<0©1Iô™’.< •2pÿ(ZY6aJ.&vÊœYƪù)¯;‚atò²K†›c¡r–ˆ/U O~èYƒ@ˆî{¼r… ¬¯)H›ÁäM:V=7¹C t©ê/îU¯ç[OõñÛ½“›z?5D ÞkLë*ìîfw|kf}‡=+,xacˆæÜS"¦Ôt[ŠØëi¦êYüs¾ËxãÝX¯·+‘ClÿÒæ`|µ‚«Ó<¿«EIì\Ðô ØøRNkÒl”A‘/nS3 tw÷,Â6}ñ¸—:íØ 1kùžßÍ–T;N°×Ž2ÄÜl ÊüÏ1†¤),Gk)vžîçRü÷éAè|:|‘‹éì²+³éuà3t^Oï$;r˜Àiºý´Ë?Eò,TarÁ±EKr8¥5柡çw²5_[2Tô‘¾p÷AëèdÙú€pìCÂk⇂¤õlÃÀÂüìÒ’wŽ‘n²ñ˜ôðžÍä2œ ç¡’Ûû^ýà–ŒÇfTt£‚Cò‚‡¼¦^Þ% üÜcVŒüÄXÒü,–:ðŒWÌ<ü Òÿ^µ8¤u#ªoiº+ý‰Âá ãé$Ñê%w]´ €ŸSç·äËj¼>Ý‘—i(®¬nÚ0<>Œm}'íúV÷[!&ÅR’†˜}UJOeÚ¬æ²lŠCCÒInscŽŸšëmÁÙ¼âQ3VB9é} ¡0ƒŠ“-?x:ú`uºë;ìþVº‘R Ð.ëwÖê¼.ë ¡alÚ°ö„íàâ×é; AM7 Ýȳ]­ðÕ¿6=eú‡so¦NÛÆŒÊkħ‚ojÈ£ Ø2–_ Á”OžbzòõïT¹¥Ï”cÚç2Ì®$‹ žôØÙÓɷ–ܰtCµ'êi°ö°e·U ëýìZÒ*äñµ?pQåq‘ûM(^>ÿHF4paÔD\ôœèòïêÃ-‚»,gkV–õ¦Yâ Õk7h³Ç7=\ÖÉpXJÆ· ¡7ERJ”{5Žó)¿!w€&ãè’A‘#QÒY÷2F)ÌÒ Mßú¾ÓPâÈ-Êš)² þ¨ ÜܼW˜­W¯¢¯7}ípòÏŠ¾pER)kñŒV³¶Áh¥Þ¨•:žAZãž ¢O¢¹ïzt­Aèv¥Ã´©7¹Þfk8hö*É9‡¾S“Ñå.wÇ ÝÔŒP¸‹’Ç¢mE®V€¶<=‘3»4“˜e,DÌM²G5Ž‘f¯"oŠºè_{éuàd@—¯%©0¦9±åíaË?§`Ïe,H¸ûžš²SÇê_ø×ët+; ‚Ç.,4:U *ÅC†PÇå>QÓC|G˜a½+Z½e•ô-PÇÛ£N_Ή³ë&4€ˆ›Îž§Î¦Ïh† X X•¸ët—WT‹¯s–IQ&h­è ö†… ìP[ëlºb©ÔÀK¨Tp^ŸŽ}¼@õï¤ ^¶ˆ¾X¡ \øðóR k7ÿÒþ@öó2™TæDÊ,j6 ¹Œe\­X}Œ“Z¦æ}ãiÑ@ÆÔEˆYIúGüÏ[›låYp«! J«¬b¥zæ“6/c–¡ÊÍ€5y:[Ù¦–þ³d«Œ¬~y}U¼7)œ¹Œœ=ü#öô{*”‘»v)„2"„Bv»à¯ÂLß,º1U$¸«³Ô摼ãßçR¥žQ¬‡ÆûóŒ\Ytáß¾^ÇÉ¿ZuïÁg!-ü¢Œ—€ÀÑy]þ(¹9èÖ#h¤Ê³qÄ#cê Ò?Ú8„zç¿ÉQ=òƒOûV×nðscÅÕÀDìæÌFçÏù`®CЇ.r2S¸I~ô9k"D¢s³5³œ”¸è¬ÄJô’ z$%wñî¢ë …¶e¾Üçâ×dVZÐmZÎÏòNø‹‡âUõ¿2çäžÈöIÑšáÒe‚« G$L C }dEïÞòàL9ç 'èz’^FòÜ"Äx|FJr-À‰2Îmfü´.ÙU·JRºÕ+Ñ32þ¹5GqãÄßI3&ÏXˆËË—a!¢Žvx´ÄYÉÍ^²…+Ò¸¥" H«+à’ájblQy¼c6ß-:*wLµNæO ûMÐan‹©jÿ!¥{Z™¾-„lUušÎ³ötgçÈÒš/8…±ºêš½³%™5ÿN¨–§?Ǧüá»3p—k©S²uZ#Ò¬íJæ]{ÎjçQÁ¨48ŸQËI,½àɵ>/ýå6Œ¤¯*1Ðéö§=ÒB£µ+õ©{ÚsÕgÏ@0‰ÃÔ5‡ÞzbÌ–O}¾Ò´kõ8"¢ž‚銆CàÐílŸÑŸx6“kŒÅ÷²5ôC˜§5Îî?“…ËÚK0™Çñ[὎f­™±IŒ–['¾÷ÞëãYE€KkxYÓ§7•iZ4ÆOÎ bÕd=Z Ý:Ó¡çúG>ô68g|íW­ÅÉÜ'út)ö´¯9Ÿuzi¡¬¿`Å{2G+È*X‹¢Ê•÷]\)dͳ´0ŠÑËrr5X?ç½µl&0ì<‰ÀB°—0œJY_+dÌFÝ‘Øå>¸-`ÍѰ¤'¯¤%nS#sÜOy¿œÂ=•ímV6êI¸]«ÿÒ$Bì °9A ô€Ö5¯ŸE;µâð+@EœÅZ%KL4°¶­=õDm]¥$|!¡™¤´kÔœ“ø¢È†)–æYá?„9»çw©ãØq\²Lb)HQ˜%:¢–Aë\ú]ÿ±t/…æŠÄ2 Ü…M'#ElVßv'"Pc,aYññS`@åu;9˜åK Â%=„Œz¶®Yµšç,#~((;*Nêã‡[ ÎS.ù\¶‰CBx¯}nž­ÑºŸV/¶Nn×JW±äȉÙpÆm[†·m…#r½Í}Yˆžea¥Ÿ‚«¯&ØQ§T„½ÍŽ”EÏ}ËL†»ánü·œêH« ÙÚž³¦â¯Û¢Í”ò웎ºägè ¨?¤¢œp2®hz[,Ž 1FL¥ŽZíÕ©úN¿Ë„{!N9‡EÎ5nGþœ·Â/^«óóÊóvÖS™¶  ‰âñRP•‘ûáIheðµ/i ‘¨<¾Ÿ˜fZmÒoRVRëA‰ :.FF Ûï½€÷&UoÁš[ϦÁ+\0t'MG¸û¿¤ÂtPm±¶„2†zsÞ †yÕÜMp/€£Ž3Pê&ûˆôå²Aáê¹Ç*wS‘¨¸s©ÓøÇëN~K ¸KŽÄ…çÅnÝÎõ9Õ©÷¥»².N¤Lb®c3]ËO!ÄÓ-[»ëVòvâfÒH¶ˆÅ*’DUêPõÚ(U\ßÒïBqŠó^3eÑ"yôûòEHK¿ã(È`EžîQ/3ÜXw{ó) ~û,¸CÁhœ»E R© ûi×N E¼u‘žÃ‰ÉI²ª€êj¨–y˜Î܈DBuB mš¯`@Uä*ís}B÷:ÏTÒ@†Èƒo‚£ {VQö£RÝýZ‘L|áÑŸhòìâˆ_"®—¯Ÿ$uJ—,Ôƒ ìÝÖ3bÚµŽ·wPLïÕ C.Ò1×Èu£|}Ϙ!ÒÜÙ¯Í?Þxk_Vs¶ìH=Û+ìü&7jX!3,÷æƒ4`ÒôÄ~ÂF ñi¯â'h+/¬šŽÑF${ÊÒ+ô–~7±Sú‹&†&¨Í)nã 4'ZÐÿ›Æ“p= ÞÂrB5•nJLy®±_þÍ“rYÎÚÞbõälˆwÁbÞÀ=+Þ& »4“á,ê±1Yq¤j‡O;HÀâ›UCÑw8àÌó&((OÃO@qq”U6²®B>Ýár_hÎNÊÅÖ´½kFéFëêŠ"wHc¾Q‘dôŸ^íÍÄÊ.›n ïÅÒX7_v ¸0¨?Ûæé8: UaGàbŠFUŸ|@áÀ[ö¹PÇÛ¯Õe(ñ¾kÝÙõ¾2¬#Œ|n›ÌvÝî÷ש«âå[¡ñ_¨êeI˜\hÊ âÑÌήçf/9“abm¦ìÒåÝw´ø¾ ú !wÝå4Ÿ­¹ã²· óøŒL¶s¬å,°IÝWÌZ;ûI‡€‰ÇØ^Íž§»UDTø¦›îQøsM;T¨)uÉP§©›ú„u„Ǩ@˜S4ÎO‹Îp7µS…\r[X£ÏE?Rl͹³ž~ž)`“6ÐuzÅëÊx§:(µšà¨ÌI{기V!²:«‘òr Ïìb_]‹Êbì#Gü¢bçÞåÃÆ¬æ8KÁ2î]<8Š—dÕñÀR!{z¼ìùÙÓ¬ÃPõ•lIà‘ÁÜè_„CráyðH$™øiÐDë$¾ó:¶EKܬæËqh让&z›á~–r Ç3Œ¥}qH`¢_]<>ëlÚ“äËMJì5e÷qÜÁQ½ÞTâÑ<¹ÖüÔˆ‚ótB‘âš&iŸ‚d„,¿¹åŒ*3ÙKk@܉WmC3q†õa©ÎÏöØA%¾À¿iË©MªæÈ9e9bùI§h§¼”Jÿ¥G'—´Ë‚fÐë“a¦+…Uj³ƺ8¬»îÕòSt¬ý\Ô–òaßd*\ﲋÃ>&õ¸jv±{¿_ü˜äœ.Ú4ŠY}‘§P§–n6Z8ì º&5G›Œpñ£äµ ã)"…Ÿ(Q,iý¦o6òV”¼l¢p“ÏM6^grB‚½/æh¥„rÎO”j4ö§&% UXìñÝe·–çtõ<Ë:p®2ÜåÓz}ƒÛ¤3éÑÞöòOÁ®¨¡´é*|=ë›d§< G~ãiwpTaK jðI`r Üu’~ütÀñ`ãÃBXÛûz„W„.Èá™W'îR‹æ‰Á]¢Í<»ŽiJDY?¾ÕÔMWO ù¹2‡kÒîž"E×°0è[Eë‹{X„ºn¼ÉÞñ‘rgÚËšY}ìdƒ;Ïä#(Túûò­¼´M ×O›òߦ=%MZ®å‹8Hk)‰e×6>¤oÙ9ô`ËùiŠÑù8›hJrTÖz2×aÂj±AËJÔ’÷pNí±ÎÑ;a£¡%°‘Ù! §È\.¡À$ÿ$Áâeð“YµÒ)œäÍs7ö¸l?Â&} ù¦Éh›üm¸«Ÿà³øF;³Ë)6¦(Ž›>k”üÜÇíâÄ­Å×ï¤õªþÒrjÍ…8A,žAôp°¥³U uPõ+Ýœx;~²G\Õl¶zÅÅ´(nih±EkŸÊ,L17±‚¶N%Ö?”ÐÕ¬5[×"Ò?Dûø4ÎWí+i>s#ì‚ò€<¦íÑTª“T;îùfÍí}Oˆ7åÙ/WC¼04‡Ú9(]"4„†v,ö~Ë>8•zc6œlü5d.ÑQ/ëÆ„ ì +Œ-©ÝÃ)‰h®ã^‘i%¹66ßnL¶$‹Lú©6S‚ I^êÄkøŒò¾u”N¥ø»cQoò5¦tŽ™º‘ Ó;%ä¾§®"›o¦1Vø´T ²Øƒ9r1ðN%›4XóU™?RbEcváɺâMRõ¹EG5ºlŒ‹íÑS=i|Úâù‡UþÝ=¨y Õ‹sš_Þ]I›X²°´EúÝF£,À²*é3ŒÚ“‹„ÞuB$eµgˆ S‚#w—|Y&c‚;ëzçÞðšóŒ“ŸréýȧësÔ•ð˜éj¾¶´‹óÍË’ðЪ~¸nü¨"äåQ «&:cƒW`Yígݪ"¥‘}9]‡zK랯ÿQh~kèðÕ€18ÙæË·ˆ)¿±©ÙÚ(  H­%qmÈE;ó‚¾ß¢­Å&¨vz¬>ëîtà¬þ¨gÔ§Ÿ¥…Î5µiùÚºÀD¤Ä@…/ß²a¨Qš‡g}ÏQQE@ñ’MFfª3šb)¢á6òÁûnN¸Cd}Î+ zëœ)}K®I&b‘4Kñõù>Ç:9)És_¥m™Š|`úûî»þjåŸ VT¯Ø_­Ì¹ÔÞŸ]–¡º™@ Î+¡JE×§Œ9añ-"¦X­Ub®ÎlöNdä0ÆŒÀû#ôìã^¢ôÄ&ÝÜ.†ˆò_×v¼©ó¸Žkõþ¼ù¬V›XKÆéEcB-KV¤Ôªlu9)íbò}ΰš¾yÁpòV ìþžYÃ,3ÑÆ­>fs ¬Z\Þ2“³qØ%žóKuBèiBô2.xÅ9M3Ÿšn’¨9þ¾¼ÅÃ|h$ciÒÇBª›pxnÙÿóûPì;œ‡¶Áö­EzPÆçbšÉp LƒqÎKÀÚv eKþ”¹íÌjWepŽ2‹g"q×¾°Ô‰{íþU0ŒÅ6ó‘ˆa¶<*ÅÞIõGhz¡4›’¯\rÀ–ÁûÍöØý¾@ô… {ôjæ'ÄEwð„3™L¶kïö9½HSœ‹‚×PÙOð-HÇV~\ äd5"kÃu£Æ®¯„xgIÆâÀ jËcé U­É“Ô•Š™o 7d¡i]­ï8\‹’ŠŒñ“ØdoìùÇò8G"‰§ƒP]»v[>¹.r7Ç@&{½¼æ@í¯\øpˆ¾dÍh'3g;¨1þªmWƒ•8¸jˆ5¤˜TÈwÕIc‹ ØYÄg^j§Ö¹êQ]×ÉÖÄJÅRš;AWC—Js_GoY1á».ŽÔ"wbËD[­ê¤W¢zÍDí_`Ï!—g˜Aìv ÅÖUô%Aû%v¢€ü o)IÈ//' W$셤ߢ #7GÑ\À¨>µÆG4-Œ8~ËMQ†Z”í™BH´Ý⬵F"™_}M‹ø”-U&u‹Íygúf%ÆG©›î#~pÊK× 6ÙŸ«‰Ÿ÷ÃÿZ¹$³*Cÿ, ‚ÎjFó‘µMB¤y'ûCÛCßlÞìâž/¬eÍHŒÒ”XE†I£1l©òO"ƒÇŒq¾ìfXò—Èq¨òò'{ýËóª}å+ŠÀÚ6$[ÎÛ~Vÿ‹O²ºXýi²â"ÐÚ…Ú¿ `"sÌÙ^¯÷“£s†y:€£ÖôÞÛÊž®bM’Íy ²œ© á]JÏâQ¬¢bEOêPï†(¾²(ßÔå '§ ©c§øÌ¯.擺Þdcƒ.ëò²«9¾ˆ"¬è³†qŠ^ã(6]¥¤·æ¢÷2÷z‘˜3)þêÃÌ‹Ósçš2ZíÍkÅþ°Ëcž}>þ¼¾_û¿(ßÝ¡+«êèç`¸}fVÓeÚ&Oì‰l6:êp¤cþucq*80:]®ØÊÛàî«P+F¥8ÚÇÊþ yÊÏ%Š1× 'Ánc·0.¤šFŸx‰šÉ‘ðµ\Å(eZhš9' Ï¡Æ~”Ãvƺ;”w&”×ÉšÙ*PµktÖUͦK!ˆxC³r>Uï Nr=?È¿:Bßoxí;¥°CiBŠñ«j¢®Ã« óÆ×«IˆÖOaùþ`^°îŒ%ȘJ|_ݪÉÙ€zr˜ :îŠ/¼µO´?6(¾sÞŽoD¥_š rèâô@—s=Ѭ¢ÜÕð'dpdç‚PIê†7Åžúã\œ¹ŸÑgÿ7üÆ¡ÄÍW¨ÞQðÔ¡Êuµ¹«ýŸ‚Ù”í©n}Ÿ?I£~7Í&„}™¥Á½œBÁY¶q4´DÅ7øBÀbWÃõB®N`>ñ(1<âÏüä3R`פ ÿYÿ;› qÖsÈž,”DôÕÀy¯ €˜äåÆù^ÙÖ*ÀäÊa»¹Žjv.âéj¿.oïB:‡ç“ Pq0Ô³•çH À¬´Ý½ÑÔ©´øŽíž˜ÐQ&ølaÿ˵i+/ «ù0øÎ›gÄNÄù¼c—‘úê²Upoý©=®á+‡BÁ"‘!… .5ųƒ¨çÊxa°“W·Ü!¾¯%]?Úõ؆ÞZLYÿA gÿPK7ܜ۫{œñ¢:A†~åAÕ¼å¤hÉYÐׯµû‹)üJ5õ`D R²Ì¤e鄾~D)ÇËF^¬Ï‹¦+'’H_RVØ ^Êò 2%©DA˜9S1 U5•@Œœ#|¡}aúNåC1pDuâ4A,Ǫó’‡õ\!Ú›GaœÞðöÎ}=MMÇ–ŠŠ|¾U¿ÄvÆÒ3¯1EG#~ ójZÊ¿âS߆ÜkªFÕª }YÚVC ™Ü×­Ñ‚4?e-éâ—Wó•%Z•¸>Í;РÜ.‹I˜Ô—U)vÉlK&•™J%®y¾­“`@µ¾ÉIh_ÂlÅtB¦G_ôA½L@¯±òøk‚õ¹ƒŠ5¿p,âªFªÝ²\ýgbWÜ!Œgà ²Î^•5ËE«ÃÂ|…=µ ŸÐ™e"sru<Ìi‰ˆØõ-L]—{ N‹²özw“[:ôHj-Üœ‡ beD©9Ø%5FžäÑFh±ãζesÖ+ëöð„q·…O[|Ô¸ÔT ÞNQÅmÎìSƒ;_W)/ÅúÛôì²ÞÅæ­ŠÒHzhäbÈ«°F77vyô©¤MÙV"n+Ö4¢ ûvùŒÚ¦U6Q˜•S#Z˜‹Jæž”º¶žet×@ß±ªÆøÁúPÛãÓ÷y¾û;ŠŽ^Ý=ØYDS^‰pgeßÄ%OtZüv H?õ®1©Äâùó¥>7SµYi9»‘¤‹º1¢KÒÙ!b›ô÷‰Ï è²ÒË]â‰5q÷>59xÛ”•Ћg‚ÑÔ –x—·òÒ5Î>5~ÅÞ`.œc>Áç†ÛgÇÙп>ÿg—i®1ˆ¨Føº‹ËnŽ®hÿéÑ¿_?Êîˆ\Â^KBϹü}FoÔˆŽòw8!-ÌUn é–„Z‡›4<æ$†{2ùXn¯lIï'. ª@gcÌñÏ¿š]Ô5rå<‘'9)x}á––¥æŽ8uïCSOj- ‹ŽöÔËÐòS@ÃLÜ µ‰€ÃŸ…íü¶ƒ¿†7qÈwm¦¦§*àEuB€9ñ›2ãô#EW…êýsoðaOe>†rRÃáh çf@Å’^Ì­‚s4Íš+b~}.òÔ2»l†I£—‹¬¯~>Æ ZI :1oúYœôÕ5pÄSµW{¼MÝuŽ Îí Í{éÑ«]#D5½’mÓ Ym( ‚ßì˜$À†.^Æ"Õ»ÕWT,?ÐH¶ÌƒVÕ¡‘ÜšN“]ri³TûB×_8­£cgxvêiŸTM“L«VØÁ">ùlЮ·­Në3‚áàªõAí®%`ëtÛÎǯYË>â Æ®þ n£åøý­Q Ä,†vEüŸ9±aŒy'Õb~!…~EAGt”'Ž|J£Å{Õõ±U‡[Œ>æÕtKXü¤Ü%Œ8׎^ìˆÊè˜âåªÿ¬›=Z­ìÇÞ¤w_yºRHMå8’ÅRB@¹K Ó^Δa‰9Y›ã^µéÃË\—A=A]gà Q Ë ,¥WIðB²Üqv67¶ È{Û‹’¿FöWJ%ñÁ9Iöäjh;7ZB2³Wk*¸e¼âÖ “†¯¹yvšÃ8±Œ|¾†a$åT{Бڪ€á¾öæØ,W/îñ¨ ½C« &Ý­ '÷úW¼xe·hÃ-*q 7ä()ôÏu`0K&Ê{1.G¥ñZbA7¹ÔøÊ…O}¬Ãu“ ô[ëv‰¾‚(„Û>ëÅùe½½ÕZîáùÓâ£T&üD!«¤Òa8þ|%}×ó9B¼gפ~Fô† ½«+&Ž–Øãþ}s$i¨¨­bñrž–ýYÒÅþ×Oú_:Ù6R¸1Ά…5ѱ¹}mÎHJ7¿wóñ0 êoDGX\o㕉ižU/Æ\"çŸÝ³Øi½Æ4×eîðöÞUdâÎëµ°-úém>±¨¤)7a-ŠJpÏ4ƒó*®k [h¨}ÚÀžë/k< úk³û‰1¬qçÁà7j”b†ÈÝ’Þò™¨_Î÷|è8¤L©ð5s«wæŸÄ Xçw`ÔÌÞ«‡ØeZ) !YÁ°r`ðnÏ)`A<ÃÝÕª\Ä¥ëãuö_/æqƬTƧ½„朂Õêým ðÄ_¿ Ûд8Œù¨NöRÏÑ ­•&vÔàŽô·¹Sw].cÁ@[O¬ùÅûùøi½‚›„]p†äò¦›ðµi`ݾŸ@“ i˜©o%•ó GC›¿H–à>õÙ+:ÈO²ú§‘Ë·‡P0I‚%C*ëòÁ5°Ëé7 Ö«ƒNÊ:L¹¸Ý•mXÆ”»«:æ ` ±/&t_e‹]Œ¨?vZgŒõwë„Á¹3¬¨/¡Bu·1dj™O7P×dÉiž@ËÊú˧oÛýPC;ºó^ßìËÅiÝ%§ü¡1âÁ¼[ÃtË”À$>Ô{…LÜЬÏGLóãØÇ¸§¨!“UqÍ“Š²ñ6é€_´×(g«küòAVí2ü£ÿXõ•Íwœ°e%7Èòü~Ÿn·©2aRZHÝÞcUDaT7)CÜ"ÛUú‚q|.qeRa7_Êp,þ<ÜKÁÊ’CK}ÖL¸Û¢1»‘t(Í ”.NÚ­ƒyrÑÔFÞz8LÄYZò÷æÛ¼³¿6ƒj0Mñâ‘W¹¡–#´ íóÜÍÈU©y‚À{ÒÍ(Ig[†b„É3uÅiïl|QwÌ'c–:ŠÀ¥N¥hw laV=ïˆÒÑ¿ø6¶Ù°‰ÊFSÅM‰Ûè9 ìàF¦æã"S}±åT·k®]ÐÊNÔkY÷@ÉÛóú•Àw€ð£ôzžHù©}æÍ ¢<§¸aóo[V÷Æ(µ-ÆýÝx³@©£ºé‹4ž¨`]Å—½ðsëå¹'t|ذû'IÆ Bqk‚“³íZAÛ÷„(#D*ÓílÌA¨z9wúxª2ñ»Œ½‡¥YæMk.{l©Êî`×xñÈä4Š$Vñ„دSx2s1[^Òb{\$áí˜éPPyRùøM3_]ƒ{$Ý0\#˱€+£âÐëªâCÛKþÍ•Uÿb·yªÔM³†i¤Nu#qØ/¢ðMù²7_è—2vâàDtóñgb,1èêÆð¢ldnÑÛí‰MaŽûï4·8òâÚO˜XvÃg!ÇQÍF ywòoð²|PRñ¿»ˆ@FŒEP‹>À£â¡1s¢´5þ’vÒm>\¨},‰Z»'À¡6ÉÖ¬ê°JO„ðV­ìËÅ7sl«=ÀHO£ëó¥³ð§vW!ˆ5&›´2à“ ZSìg‰5x¼M.T¼æèbÀT©´¸ªbA‚{gæ?!âÆ¦é,m–.\:UÀ*S¥‡ Û^‰Ecù”qTc™däåîÆq;™;pwCѯ%‡õsJjŠ“[a >î×/×ÔŒ…Á¤çÆù~^ÿDz›ˆˆ´-P_‘ù“P‰ÞH!X÷%†öJ¤O 1óTÞñ0¸ wÙÙ¦"YÙU³ÆcbCK±¨Œ".XÏÇ€çi꽘C"BêxõÀÇöêø-Q!¶æ.n8™›áq'Ð:þ^Ëu†dx½¤ôÆóµ•ý;÷b­†â ~™:Ÿ«5¬Y±Î˜§‹ùLQßhƒÊ”42pÊæõÕ¾&A¯á%ˆ·3×Äv>¥æÙTÍ +Lûøº"‚Îê^ÈTÃZ“WQÑG–MŽkIÔ>fÉaqõ¤°‹¼RÙâCט…ªl#z'Ì3m{öŽF Ü{üçâuøÝAz»Lè Ž SR‚"Çœï1-ñÏ‘wQ¯~|­[u#-$Nüyã9;¾#½9X¥\Í鬅s"# ñê&du¾bÜ’¹5l«Ñ Ä–­Sª¼jYAîáƒ$ÑÃI¨"xácd/­:Ô‹7잊³¢ ;Q¬©NC-EÚä! ÷óBwÜJ­“9\#ƒö ä·Ü[ªþ4g°;uuØ'Ü ïæˆbñ+Ç¿ApþKÅiPC¿#å.È.t3‚èNLâRøäÄÅíeî˲vœqCêeo~DªÃå(=;Ç xæ^öäñ¶§•à ڡaRgG!‰ãá&Ó³ žäK˜±¶Ïù“¹%b/âȉU{ŽZ쓆eA¶w/…’î²f¶5v î¤|óÅøâ0ØS¨OTÓdȺlW3÷ÛCøÐYlÌbH&†ˆÄƒ@ÅÈ3~ôMÇ»†>âHãÄB*>Y¾¬s8ûd){ÅÙ¹ƒÔNbI˜}ê³pŽhëÅ¡Z^ýÜwòùè@ùëZ™ñdDº<þµŒ4œfAð/‘³=]«.nüÙ6åâX"çNóÞ*qd@{Z´ËÈa‡µÍ£»É¢n~´ªeι¬a‚C˜õΤ]~ü“hÂÇ?yÀ*höê”Åh^±t¢m’ÑmÓ—wS0ö†íÇ!'€EZJŽ9ͨJâš>îf‡Æ/+ä¢GÕ„Ét¨ZÆú*¶4.ûÈËõ‚Kã&­_‡–Á/õtÐJ?åé©å%+^ –Õ¦Óö¥E_ v2zm¿Ü6 ‰™ ÀùÞzD_&"G‚9"ã_×>çÀŸ8%&ïÈ´£j¢å%åaœ¨ÈÀ•lŽÐ¿ýÞQÿ³&TU†f¹ ö0·í'Îo]Òó)6±ý½ˆ—€#Ù¶|£ >µS A3¦ðt&™/6á{þ ¤4.Aì’-6úrݶœÁ­tàF)]¨^^‘Yð«ùØS5)=·ù`Æ-˜Qx¼u%d;$ÀåªÀ2ÇbjÍ^ñ–l—æÞ´¤Ì *¸Œm,F*&Þ3…ôPͤšÂ ÏBÌÿ…7Ê ã(`×°ûû &¾ã{Âq‰Š 84B¿Ü0‘9të+æÉ}ÆVî…öï<ëõSuäé2Ž—·–T1Æû ºŸW¤fr!.Ézá¼ñ+09Ь̬ÉQt\„÷«@òA7èן†´‘¥±ÉpÒûÓB%Kp^ú L0㨠Ø<&Zô ƒ Ü”’t çÆøð†¦¶¦¯+öDn"Ï“j » ³©Ñ'¢ê’Êéð­7ÅQ¤L¾ôE1¸þáÊ6Ú ¶rJ„¨LÍ€H§9<Á¿òRÞ üÅóî2kðõ‡#côþÓñZä Þ Ö¨4î[7hŠä;ÒM õG€s†/ìÕ¡ºAéØŒÚ,³¢zîx®¤€yœw”‰âévcæó®Ç-gU/“kf2®*©¨ø^ ¸£n*»´§SðA1¶Ø0Ûlõw°Åá4t‡1Û僟PçFIµ0±>Ÿ|sLAGŠ$ÍžÚéÐs—fåÅX—hg¦YÙhû#ˆK]«ß’Võ±£v쾊¡š°ÂÇæ-~RªœÂ[ç’¯ÉL*è²Xÿè@âyºnÌqQû š¤"(’sÅ¥îyÙm0Õȃ:4öö”|àõ„‹07_ãmÀ¥†ÒŸ-Ò—ê‚[z—vhÈ¢ÿ‘?§) ŽEQ˜š°W ޹Û7r„z àX_1ÔYˆº@Õ÷5FIXPáI2†BÁ%.†Þ5¼úy7ÍMŠpE_9~’¦µq'DkV©•ÑLY5qúÂÒéÏ{»šVŸJâ%Vtê ä6©–û´ 1ª×%ŸŽÇºêÎHh²b’ôºjâ4ÕíffÂÔ_톜/Åtð?ßÄ~ÆYA黤ÚFÌ2LætûƒsÃhendstream endobj 302 0 obj << /Filter /FlateDecode /Length1 1922 /Length2 6964 /Length3 0 /Length 8127 >> stream xÚ·Tl6L7¢”´‹t-K7JJw—,Ë.,±K,± )¡”‚ÒR‚ ¤tÒ)’ÒÒ]ßêú¼ÿÎ÷νf®™¹æ¾gî=p°ê (Ø#í ªHJ@’(i« &áà0‚£\ ÿ:H8L žp$BúŠ’ŒÂØ”Á( S‰hx¹„DBâÒBÒ @’ú‡ˆô(ƒ½áöm @‰€z’p(!ÝÐpG¦Ð?Ü€””ÿ¯p€‚+Ô#Ú`”#ÔSv"!p( ýŸܲŽ(”›´  ìê Dz8Èóð|à(G€Ôêá µül v…þÓ„`ä÷üËcˆ„¡|ÀPÆà‡@ž˜/„=Ô€)0T×èºA‘µþ"ðþ>€PèßtGÿLGü C HW70 G8`p(@WU ˆòEñÀûŸD°‹'öÃ]ÀvÂ/í`€ª‚>Œiñï=!p7”'Ðîò³IÁŸi0笂°WBººB(O’Ÿú”áPæàÑ‚ÿܯ3éƒðÿÂà{ØÏFì½Üpw/¨ºòß$Œ‰ä·ÍŠˆ@ )Ôõ…8 þ,a„vƒþr ý4cºðwCº`˜F pó‡Äßì  <¼ þ:þ‹H„„öp `u€#H~gǘ¡°¿0f<à¾Kf… Ÿ?ÿ~²Æ ™=á‚þMÿuË‚÷4Õµ´øþéù_¯¢"Òà©* ,"—ˆK‰þ›æßø§ù_V=0üoqäSGÀ©¿zÀÞ?}xÿ=Ü/à¿t˜‰†¸/€H Áüú^ƒ_!ÿÓÿ3Ëÿ}þW’ª—‹Ë/÷ߌÿì wAÿMÁŒ´ ³ÚHÌ’ þ—j ýk©µ¡öp/×ÿõª£À˜5Q@8`F]@HýË÷T…ûBíõà(ˆã¯Éùç60%\à¨ÒþóéÁ@ÿãÃ,Äó¼xbîì— ŠÙ­ÿ–UA@ö?—PXLöð£I@˜9à f[í¡¾¿F D Q˜¦Å éAòófÅ%‚J?M¿„@Pý_$ êýFbAãßH hö/’ÂdÿFŸÝo$„ü‹~ö(hÿBÿ€ÂAØ¿P #÷þíûéFzyü€¡8üE‚ŽÿBQŒdG´›#æûÍÀØà@Œrç? FºË£Ýõ7Ĭœà©0û&ˆü] ÃÅ|üáÆˆuûíÇ ÌÜ#ÿh^£ö^„0Ò<ÿ€˜ÔïÖ1µQ>È?Üå^@Œrï? FÏo(Œ‰öýb”£KÄúA=þÊýŸé‚xyx`žà_ïfôþÁ¿Þ{(Ô !EBdœއÕ—*0ú,õ‰´Š^yÝ%‰uÁ^â´èÐ90ŠfH¾HSÖëv”/±ÄÕÆÅŽxʨ+áã,¥X$¤¤ §ÄQ{̰ ü «#M¶MÄ=°jeˆ¡KL_SB·«m±šsÈ+õRF i‚˜-VVÝu Y⋉uWGy¤hOC誹êKŒt6(ƒœB#I5+O¸4,H+7¨Šë)m¿Œ¶)’‹DÜ#A½ß¶c4/nèm>u¬×¼Û€ÝÄŸ•Áµ²ÇŸÛy4®…›ÈÆF¼ÎDŸëð½¡w3 ®½¼rg–œê.¹mQyÁ7ð%)°›bÏÒJ¤`UAÚt&Gä!w¿ØÄWž+l¯<-°oÕ{ü`Œ¬Ø,Ä‹ôâ.6Ü5`”t*ßø X{'#IŠ‘€²nZ*¨#¥öe,k½¤h†„)YÓ#þ¾ …‘?„‰j#KÌqUÍ2ߤ ¥¾ò}nmÍGYÞ[vCùx =¬ºÛ ]K«èäÝËæºÍ^ÙN(7yT´ýVxZfÑ÷KcöyŽ-”«{¯©æBý‚2šA&w9ø‡Å OV÷UÒÅÓåáì«ÒêLÑäêÞuó8þ!8{‹éÓä&ÍLJ¯›Ä÷Ë ymÅÉÈkÕØóÕ£§ÂêY¥¸ C“òi½´o¢ÑwÚ}OÕ€J]£á>¼ºT]Þzñ×õÕ ê9k¼V="…¥:”ã©Òö2n‚&2`‹Ë&ñÕ‚ÌëSÒ!ÙÏ<_úècÓ{ñiwîã†Ï.©·¦¾ø’‰÷¼+Ny޹ěެ¦·÷ ŽèÃÉ´ò}ŸëUFUKãdƒ:Ÿ7ràRž}óΉë¼û€à»ØÔ° ò¤‚ËOU|1n³ÖhüÕÀž•}6WÁõ™4f„%ý/§Í1ç*ËÔÒëߴʵ¾—+¾ŽxïrtÈ/ŒØtëi³sHÙœ­?ªŽÖ…†›Ñétα”)^*8Eœx¹Ùµ· ;%õj/yÉ"Èë?O•ίbÏÃßÉFºû°’²qÇ îH7<Ü{Üu·….0·ÂØc;õ/#p̓E{Ø—ì0þ8êÅV£… âhgü|Ô»·œ°ð8ûëZÏãîbÐga-‰¨Èþ=g‡£7gÇSÜŽ­…~ŽZ2²¢ÖyuSg;•ˆ—äøZXY«ä•ñ“”°*Wœò|SPùìÝtM¡à˜ÍŠÄþ£êÛ+¼Þ ºŠö=:ÃlO^ ¶¦Üá×i † &“„`^Æ9È ê¶é¢«cÈjjºò°¬¦ˆ~Ür¥•ª¢òv$ L¯¼¡NòÆSÕ}W‚wy%>n¼tO|©²¥î• e1ëŠÊPsõç«I5°¨ixfP>_ÉA²]~Œo• 帗Öùýh!òRÉö…µ+‡¨b±œ‰÷Þ þaž*"r‡âý´àcúþêÄUѱëh/üœÄ¨UM몵Åô_Ô ¦¢ÁWIS*SËêÍÑâÓ‚"Æ=æërl!΋1ê ~³ZdÙæ rzý‹Ÿg6±_¬‰,®ÅŸg ðÑYq¼¢‘lžp‹Þ²í‘«Ö}'ÖE²wÇy’òæÉKÃ4tê-¾¬ç©q¸„TÑrmÄ8/’®ØËhów¢Zj• Q~…W-† 2\ã‡Z @¡lâù“%ÑÂP×»–y»QÁÝs4Ç!ÚN H´—’ŒÏ3y"™EKp2² 螢™OÑ ªSŨëábåÏð¡—<ãl¦gÞˆç.ìë*ã¶Ç¹ÑKŠ9 rê=àzË ùxÖýå kB]ÜôšTLgîc||Â鸕CS¹I*ëtF{‘ð΄ÅïLËá©mÇë’`tƃé5š¼;VÊ­ƒ¥_p¼pîÕrœË_nFš›úí™Þ ܪèèSbißa8ˆSübø1oës3NFÆóã!·×ü}˜¨‚;ûÙ©yÿQÎ_Ô•ŽŸ¹{·Aàù¹ìÜ=æ#;£F†5£¶\")Ë´’O©³zG®e72Fù¹d>¦O‹r­ÆÕˆ÷Öe¦<¹xúVØÀdzfëä5‘¢ß‡nÌTÃ@>™i¤“›¼èíœú#)3°8߆ÍܦoB |ÛÙð^’g¾ž»q…÷¶jçÎ&æß‹^‹¶i…Çóqy‹cŠÜOýØ|æüŽÇlÚŽÞZ(tà,ÐéÙ¾Ÿ tbOðÁ• €2á¬ð½šÜ8æ ¬ð¼&ÐYÃí$Þ•Ê­R¡ÍF[T‹í q·ÛÐqç¼…Æö…ÐÑ·\Ê­Óž½å™»ãYdNhS@Ò7üú®C[YŠ+Ϙ·¢è!3>^tfV:3P\›êm‚Ë]²Ç/¿áèœß´ Šº.1<ÖžZSô EK#¹—Óøu†ë8‰R5¼îùùVBº€\EB4þ½z&ž‹£ŽÅ=¯Ù9öäÕbÆ"^‚§M´ éèV}B8¡è´ÓHwÞ™º fO¬ž[L@ðJ4r?H5G<±Ël®¡Ú•IÎ*œ°£fŒ³˜)í䕈w!Ÿi¹ž&×Áv ‡0…^(èX?ô6tí>t"Ñð5˜ 1óK©·S„›ÆHŽ Ø$ð Jr®¡RUwW1Úè‚ãþ½*‰2K去»ÒòåÉ«ädÐÅ*¿¬›ˆ¹&Qnê¶=£ðÁõýs¡ÞÊØÑ×À ɽŒ”×Ûf?ö9y#Í3óÃÄD?F“„·$ ÜéÍÛÖ-œéãQÂΑç„!’ퟜ}ßCàé¯s±åçÔ¾£Ø‡n¸ò>¾¹½‘6twï[|ܹ’8AmÇèX€¹ãê[ )­•Ëìâe³ŸÓµmò³Ã—±LÖSï–Õ¶ŒÎf°eõ±j3¾¹+<þΠ‚Ç-j®O½¾ZÈÁõž`Äáü£èìËÛžrñPË”G'rŠ6y!CŽ/LÅwìÊt¤TctU×tÌ™_|/‚ê’«äúÞ TòTÀs‘)å]1Ü5ÖDûºŽ¬¦Þ·kx¦VVêIÚÝ ˜ï°6`½‡•ÉY-A4Ôj»K±²îã¼ÿ¡U¾„mã¼ÐRÑž®”&ò.¤}^ùÙ€Ô„ÖL<¬YÅb0´G—ÙQ»åeØè^>ÅYdþBÖ{Š5”yW}¬ö‘ýƒþm¶¼†'Ï>ÕÁjfòÒfn Û²# ²† N£¤š#8œ6µ_ëßÀ{è_£Ð—¼ ,š‹ù&×:çøGº±Cºj7Z¶úÝ'ÞÔÛNªZoMyëm®_”Mk#÷\ž‘IÇ8B[‘ §JZyb—“à£ÇÆì†Ú¶Ä1ªÏ7ÌIòÏ9z'sg¥¸äZQ7%'Õ¨ÍÒ8#ˆÅp±¯…êúhH¿†¤&¤ð§ƒîíjðÎ=1ŽðNgp0“Ûç+ž)-Pÿh~‘žeH c&K¦ Î /TÞ†aOlG®d\jÓvœl’ ™–ÆÑÛéÔKW£‚Q°ëŸ¼ë´è·úÓWn m)à4D’JS¹òBîKº©øÐÇ'àj† Ù+"Ëêå6ŸzÁkˇû¯qÜj>ÑQÿJ0¡bY—/ßÛòÒzÆà4<Ðeݺð°LX ¢Ííå³4…ö›Ö…“ð™¼ë†Œ²Ä=Š¿"ŒžŽ×2µ÷T&*P6]ªÛØÞùgt5¤çb3šâjöD›)Bã윧ÛÊu- òµö=Ÿe˜Ë;U¥I,ìàã©ÁDy!­VóûßqßßÄ¢Q­ºÅךބZ»Ï–êô›Yž¿Á˜È¼ žIÙœšf{Û\™n/šr½›*Z6ä×ÃM(çøîÐ!QÄðfDħíqâ7ñÔ †ØNBÐn›"3o(Q5_ï'µ–õÞ˜»ZN­R u=¡1Ò¾ZÜ* ä¥òj:|§I)Êx9´úò Åéò´¶Ù¦#¤å£šQøfUÿR©ý^Ys ý‹½\¯r–keW<ÑUõ*Ü•q㎖Æ' ÷Žn—ÿ ç#ɉ‡S n Z¯Ë4WÙÙ1ÊMÅ]¾§ /[åÆ|Ä P˜0£¸jÖC§Þr‡Ñü~‡×ÇŒD[+ Âo?ìò Œ $ˆ[d|üHŠâ @³³EõçªËãËÏ^MÒÜ[1§,Zan䥓®Ô>oIéñð¾ N°ôJ¤wh¼›|˜•mÞÏsªp<^ Šçð&î÷âJÿÃV<_9UV‡ëx6ÓåÞ÷¨‰Œ{HJ §zW-³4‰áÒ¶•w݇°|¡ëõö¶zJn]bÆÙÖtöðLF,¹¦ÜpÛ7È'=¡;¤7lg‹eêßúèÌ÷Òå»myúºF5`Áã¼{Tøy6"})©wÌÃ-"ý^’Êy™švñ×ß&íé¹–' ý‘]Q¯SÕRDl+x¢ò& }?‰óAŽÖÃ6˜†…äÁvõÃ1ÕocOæx'Æø¥×_ÅÙ”(ÉER}ÅöeÎBØ’' ´}©–Od˜·ú¬gëÌw?bªvÛ©?l0y˜ XØNölœÖ#R¤Ég/R£5Á­MàçS6.ޱÖ_¸±ä—ÇJÆÙ*vñ(%ïGDm[rÃ#l^« Gݯ<7E•vFf“G¹SÛQÌ Í¿íº)ÌkñhºñUY¯¹¬"]+÷VÊ RÖbÄî˜cg7{Aõ£åð U—‰è#VìÜþŠîàÆ6V"ÝB±œH(ºß0ŒÇÅÀ\wanCXM¼V´Õ/Œæð×´ jÄ^Ø-Û |no?n° ¶dzn²\¶„ «­, ©|?O'ö´î²‡Iä¨2‚{'ŸbDª^3ÌçAÖŸê–Íœ\×Vµ¾õDlHü•²Sûâ‡X;-™k²œdØ|BV÷×ä_Lž8®Stš²›U”QwÁe6è³E?ÊkUs”š ˜6Žò•ó$q XÍ {çáfm«Ö‡Ã<ËÉMúÅñ«¾K*º±"—Jš¹TmhPÕr‡µfgx·mŸåº%åaÜi}0¸wQź²üöÁGüžÉ3aH=ê’ ”:E÷0(óéäA ƒÖ‰. Õ9ÖAÒг<ªm AÔ7³#ãjØÍÜg¬D‘^ýó‹×N¿$ÔV'³¥§_w ÿ–…÷7zžh¶_žh÷=û]HH•—xr³­*ÎóáÎ*àÛ¢aQù °‘{ãÚà|N Íæsᩪç4õsí×XÅ3/uëÀ‚9G³ÀÎókË3í#âs}I„¨t¬Wsßàz„eüã›ü@5ÖÕ=QGݳìnŸ*ûn¡$lö%[ÃôíOnRÏɤû/`)Çú«ãåßO; +s ¯ ŽžR4÷œ½”±3 ÞÈ‚t9±¬^ £‡9ô¯ÞòàÙM“ŠìÔѨ{,¾]cDegÑ6l‘ E™oO,Ÿ'>½1ÐIg™S!ª}KB–³¥º:«`3&Sì5áüé.­ñ+$~îÓk÷æÇÃm„$ù.Ù,Û‚·Ð¯”Ì*£Ûo½Éi–4ÏíéhNð«Ìõpª"¼6?ÒGÈǧµî\>NÃë`¿´Ë¡­°RÙT혾U»M†¾R/Üž :/+Ï%ÙDE÷ôæ¶c²OÎ'E~Ž@î&5ßEVõ.õèñïÆ<ÛP˜Éòü׎BÖ­ú·¿¹LÜò‚|+¶ÝG”V·4OŽr¦Á¶ðêåÍÕÞjù[Âç ¶ú–¶’Ÿ×ÜLWà1œÍŒˆø.¿¬ö~âuV€ê‹péëêß·‰,m ò±Šâ¾©?Ü5)(öžcô2FDËž— W)2‘8jÛqÞŒ?=\õy‚#ÇØ©/;xôø$õÉIŽÐSÑÖ£.ë(ίí+ã£9¢eXãÖÊÚ ]ÚŸë‹w÷°e BîÐ_}O¢.Ö L’bœÂ§ [±Ÿùx<øaQ­X%þQ8Z<ÇUÑ„ÕK^RÁ<Ì4 ÇÏû$ÕŒ‡Zë]TŒúèçá´òòÅÐÖÒú½§e†3`ÿÏÛoY±•’Ò2ÇšSŸ`w¡yÉc¼éÖ“Výmü¹ àƒGCž#?}P;ªUZ¿Jñ!…M{ðpºp&Ì*9‡rê|fèbI^}æ%ÒhIјÒÄñ½†ïá¸Å–/üÀˆgÇÀ3•ÿLƒàµü•‡ÿü–…)·"r}I‚ô±DwñL¸nn$pŸe$MüFåMH‹L{0ã“[¸’¿Obj8—DšŽÊW¹;IbHäVž¾.í»„í°BERy¼gÙÆ2UvOªâi›^ÉSú/"² p¯ ²[ų—™OvëŽS2íÁ"<þJ‚‰4ÊÜlÜ–>IPïÍ¥Æîï«y!™Êw5Èhê»ûGT¤wDƒJ*>€uw´Ù¬Ê£Ùfu­|žyˆЬkª“Lª¢Ã8ýz] í´íd«Xëq8Ýb î×,óµÞßLäÉ F~‹ŽÿØ"tÜ™ ™œöÓªîÌÈE)jǹBìjî´¤|y[FÈ+ħÅåF׺ ö.&3+5M—É!é Ès&<–ã½´çøÍNBצJÙB+ˆiÞód‡*€Wp©äµ;7DºÄãþÜiòõ§ÛξMSÔ×ã úD­–_˜¦¾0tQÏ+ÄÓŽýlÕÄB ~uM¿7–y—¤Ó2N]JÇ:&=~>¾ä%Ðþ¼PŸÖâ-:’m.?/P9#Šîª|ËDËtap¼]ì®Ý#r|(œ»ÂÃ?’ôÀv¯Vœy,`8å¥ô2›ªÜÀZƒèÇäÖdS3»Î0È£°r’ŠmÙ‰…fSÕð}“%nþ‘¸³—„ÕG%j¦î›À3(ý‚‡÷ŠáÓ p¬ŽoÁ»üzÚ¢S#E;ÙÛlZ#ƒ·P´Bêi˜ª•ߣ…SCÕ½” ¶S^Pëýœ*‹ïh+ö“ÈÒn~#íÀ ©áÎ 3 ìܳ–èl3ÚìWr"£•Ýw±ï;«Q:XmVrU¦u¦òÛt Žuª‚ºMfð‹Ç80`à=ä¸ß¦ÉùáY,5ìøyút¸6}pyQ?þ; HB¹´(rºô]豎‘O²Ÿr’Ë€Œ)QbG.?ß™. ½öç j‘ÍË¥áÈshZ,Îý-Ÿ0Úþƒ¡Ã!ºø{©þî÷—®†úÅðò'Û»ª”Vܯ5¹Žht¡Ü`hÎ7Qs‘†'”•l5Ž+ž±þx8G`\­MÙ£‹íðVZh²md%ªYy¬5rnZpôš Y°÷]S,¼.Þ{—°àÙdR„ÏgOô&M_ãµ…ˆãN¾l´{Ô0N_eã‚ók¤óÁ}?š#Ň»Ñ©GæÚ_cV"œh«„QŸ€‘C³Vá$¨tIQ±s’W¬æx+fÎïnØ•r¹¾°#û¿qNQkšú2œíŽÎ‹ø8ªI—nÞúä·%„ø_-úA]5¸îO*ð©Pê—Ñ~î_ãŸ1µ|ÔfpþÂÅDLQÈÆž&FAÓwÚvS·»¸ÄÒ]r<’‡ ¶Xû-Øü¤Mìn†Rá£78™(JNDm…o¬' +‰ÖßÁÍ‚ûõTÙµw+ØXÆ,£ò0ôMû=E¼ ¢ÁS+JÉç4Üê€%(ÓeÔqÿK—¥9[4XÓ™9äÈ‘ù8ð%ÙóiEE#*åP'¨´å’›×©UÂïtn52Ý&íóeýj öæ!3“Ñ0Õ“´>B&~‹Nnwü†à[Ì;¸ 7cǃ5o‘55dR Š¥HÚ*$WŸáùÑ#̸«ÕªžT}#}´¥"Ø·Q ›zžù¢‡GN9þº™s;?E¢ËüóÊOs€4ÓÒWF­ºvš © ‡jü6K¿ /}U¯æÚ¹o&p-Ã1¡zDô˜la¾‹þÅó~â;ÕxŠ÷±ûŸæ;Lņ_{ù”¸¿ÿ…ýªîËšˆ:S£¤ª=:Êò^]ŒFéYPGmy»Æ·DêE½Áû±fËëtåô`±Fê_ûy{²Ûî±v¼aÛЪÚvuLßSlŠ ¡~Ïd³Ä\·È/ZWóÎæÔÑ m( ŠÙ(|$ÏJ³½üѦV/GÒÿ¼Ûo˜y𼄷ˆÎ.µ*¹R­™h>§jª|þ™í¾4”†EN0ÒMúê1Kr &OIá‹_4CÕöy£xºÛ.¤×jAÇ:–Þ¨ôdâ°9‡iï›Óí7Ü_®¶ùˆ5 š%Ý)©T”ª™12œEô¾µúümãÿF¸Òendstream endobj 303 0 obj << /Filter /FlateDecode /Length1 2187 /Length2 16524 /Length3 0 /Length 17839 >> stream xÚŒ÷tk× Ç6Ûp…mÛ¶½bÛ¶ÛVãFÓXm›q²÷‹î÷ûÿ1ÎkŒ¬çš¾æ=çýd‘)(Ó šØÅìlié¸Â²²’Œ f:&822 gkàäpdj@G' ;[®X; ?d"†Î†²v¶)k#3€‘‹‘‹ÀÄÀÀùC;G.€ˆ¡«… @– eg t‚#¶³÷p´03wþÈóŸG…1%€‘““æow€  ÐÑÂØÐ kèl´ùÈhlh P¶3¶:{üO sgg{.zz777:C':;G3>J€›…³9@ èttšþ¢ 3´þ›@ÅÜÂé_ e;Sg7CG àC`ma ´uúpq±5:>²”%eòö@ÛËüË€ðïæéÿîßÞ²°ýÛÙÐØØÎÆÞÐÖÃÂÖ `ja È‹ÉÐ9»;Ó mMþ24´v²ûð7t5´°64ú0ø»tC€˜ "Àðƒá¿ù9;ZØ;;Ñ9YXÿÅ‘þ¯0mµ5¶³±Ú:;ÁýUŸˆ…#Ðø£ïôÿ>\+[;7[¯ÿ S [Ó¿h˜¸ØÓ«ÚZ8¸%Eþmó!‚û#3:X8Ø™9X@ÐÝØœþ¯*öÀ¿•Œ‰?8øxÙÛÙL?h},L_p^N†®@€³£ ÐÇ럊ÿEpŒŒ cg€ÐÌÂîOô1Ðô_øãü-ÜÚ ãÇ`øëóß'Ý 3±³µöøcþ÷Ó«Ê(*«Pÿ›ò•BBvî/Zf&-+€‘…Àþñàó¿qþÛÿ°ÿ[ª`hñïêþQÒÖÔðWŠ¿X|´ï?L\ÿ=ÿÞJÀÿ¦³ûh €âÏüë0°2üaüÿ¼»üÿþ¿¢ü¿Îÿÿ­HÌÅÚúo=Å¿ þô†6Öÿ¶øhçåµûXÛÿkªü×FËM,\lþ¯VÒÙðcImÍ>–‘…Žå_r '1 w ‰‚…³±ù¿†é?§ñ‘ÃÚ¨`çdñ×ÅóáÅÀðt»glõq¹8}œÙ¿T†N‹èü÷ñþ…«ö¿uˆÚÛ™üµ“L¬lCGGC¸‘ø@¬/Æå5ºÿ=óz:[;çÀg€©#Ü_ÍÆ  üKô/Ä þƒ8ô"ÿEì z±?ˆ @/ñ1è%ÿ ½ÔÄ —ùƒ>bÊýAœzùÿ"Ž ÐGLå?è#¦ÊôQµêô‘Aíúà þ}äÓøƒ>òiþq~Xþ1~02:ÿp~ÿ±þ…>.¨8|½ÉøQ¡ ÐÚùŸŒzàøQ4ÐþãÚ³³eü#ü¨ø?>e˜þ~tÁìω|(Íþz} 퓸ÿ€ݰüüH`õøÑë?ñ>Xÿ5nô4mþ ™>òÙ¸üÑ~\ô¶ÿ€jû?Á>`oèèlahmbaú‡ëGJû Àî½ú«Yÿ ðWkþÁôQ²“…Ù?ZÍöÑH'kC'ó¸|Ðtþüðùg¡4Üþq´u»ÿ~„óøü áù7üŸÕ2vqtüؽ¿ïĽûþûÝºá–æíŒ¹ƒ-ëƒÛjqÝh÷&x /Ò4˜h'Šô`œûE§õ·”³³–¥+Ä–~2ŠéYvÉ 9<ä¬/Üxí66z°ÜÑŠšÅÍ¿ßÎ&zÝãÏ#·€ä«§p•:öƒ(àG¡tÃò›˜õ+“!{©ï[Lt#Ç(c— i—ëì®-Ë’ÁÂãT;ÝVrn5RÙc½ýô%wÛækÐN´NDª\±4Oç#\‚[ ÊæàÈÐ*êOüž¨)×À½KÒPgTQî!<èµÕ¤—ÜRד 4/#qt“þÊ Ê”‡z¹kóÝë]"Фnvsƒ$ÓhÆSÏG|TûU ¡4ǼÂýH“•œ0BðæA¾Ä{'µ¾t ‰ÞõoÛøVRa!Ò˳}S›/.Ò©’Ú“Á4² ¼oU»§>ßÉ:b\MCÁÚ¾Ô¦ îŠRceQû˜ Zg¯ÞQ„̪3is¤™·«ð•¬r·ùk 23#ºZ¤U«"Ñ?„.Ö¼óòdy+¸éì"_v¨‰²A‹öÜlXõÎ(ʺ`¤n4N¯‹öt³Ùºó®qßÒ•´±+öùæÙnÃz¶¹€mÇ Ì)?îŠ ŽùD×Aümeçgøo‚*°82¹¼Ê§Û¬ñ»vf8ײ€è§Ï×° €œ}£'d…&·Út—Û`A?<ßÍû_[ª¼¿‹ ÃØ«sÓ|+ÆW'uVÛ.'êVˆ…ËÞ¤lÒ®¼²¹-ú E,b †âPÐQÂ×èvÁÍÛÖÜ(Ê™:ÜÙ3„ö2Þ:Îòƒ¬“[f3\œ›,^$BíN}Âw£w;}ÌK!<µ¢§ÀQè¦kub³Ï`»MÙ™½›†×GvZbNòñ”ÁIEd&L×­nÑr?¾ÍHðýñù} ³’߯™ŒÔ~ÖXÇh©UdV†ÕÅhÔÙš%UaèmÐiSjäGÙã¦ta¬MÎ`™tY¯Âîñ`‡žfþY¹9¤€ÒÏÍþvúØt^`ø<¯×kÍâ©vtsh«t³Ù…¯¨i óôN‰OV· k棌LÏ UŽÝpbžüúÕ*F/Ú(!ãÒs´Æ~4„E_jçmõy`â‰ñ‚zjuùTý{=Óˆ½]–ÈsVex§;߈é‚DÓ6¡®Šè]e†ÒP¤/=õ3üî.Ö1 # eÍšc×Sc5Á¾þ673[‚Hí~5À¤‰¨ÉŸÛ„¥ P¥y‰•‹fçɃÄXú+Õê<7µç$&´Ft š'¢»HqfíŸÏÐaÀˆm1Fò©uB…<„økî>ž7üØ´µ‰çÒRú%v†ÔªÅúnLÿÖ†T%s‡ögPÞ¶•¡Ì¨ÎêcšÊ¤£×¯t Û¼ˆØ¹±e/#•ޱvS¨Ðí³¼o^2Ó'äáÝÝp#Ùœ;#%›O÷çß7øøЗwUò‡ìΕÜ2f¶¸àÂ2­pô×°m‡øx=Ÿ°<žÏZ|‚óœ÷—5 ‚ÚˆÙý¯œƒ7MŸ|ºÑö§’(kC9 ”•f4’=°Ñx²œ™,“åõÚ·‚ÚPȺ¾ªf·…lzñÍÆÐçUÕ” ÛØmì1LUùäÛ¯`›x™c±ðE¢EB빉”\ oM~‚Z˜hNém t}燱G°`æÆ«êoÄ>? ÞþFŸ"þ&m|´¯wË÷2ü¢b7Å[D…‡Þ2<úäQä¿DbEš®:gXâ_ïŸÍªÈ¤ÅÌõ)»wˆGS|Ê‹ñáÝXMòs-8…¾£,ñC„sˆ‰¿ÐZ…ÜI(“®±…áÖËÍ;ïþ¸cúW•s=ª é¥:oÛEÍ7ôï8²'…Ì4TßFº²úÐUs–`׿³¶7¢"52|âÀÙÊ™|¤ƒÎõÕj±&~DC¯ŒÑ—²uûŽF0\[ %„¼YŸó¹%¬kólKhÆÔ@¸»¢u ûøïŠÑ’fgaQ|÷´QT2rænD:²,jù™m¿+÷ùŽåÛ ËcúíFÃ껥 U¦Ùt˜bE]=,EÉ÷h@­"¢*a°°½Ñá¸÷CŸ0'ðˆ\L›" ®à%ä1âSŒ#HäYZ{›þmu4ê´©<Œúú/°²Ü2—G†µûø+ú„jòÖßÃÓeßçaêh7d4Õ´*ŒNY4r´Ç\Æ,±øDg­êýë‰4ú»eâ:›òãUSkï2w²aÖO*xC¶Óo™?ªï/N!‚«Y‘v!̄޺„€ÝôÝ}\ÏÖ€5¹jòdœ$ñ9UFï¡tôœ`܃S’ Ç“bžI¤%þª‹ôÒ`àÖ ¦lî›yø°põn>uô TdO+FÉV‰5/šuv,«ÏSÝ ë•;ÒÀu<¾SÚbó·å¨J5}&x„¢&µ2 ÉÓÆò\3M«óGK]0•¤ZÓ6ýÌ &‹†ÅýtTàÙ‘²÷Õ±ùxsš´X¨^Œ>2Eë7`~}Ü_7gz‚Ñ…A×É .á6Ù;£-‘¢‹%w£”âèR¨þ•ÕªýGkÎ@ŠUñÖíói‚j›¨5uý"Á/û ÝZm3Ýh04¤J@X›Ymðo1Ý1ö¾£—Õ—ðP«‰‚¯6‚žK¿² L:帉wÓ}?AM%”uÚo´ß¥b¶|/AòO”û•[ûsÛ }ΆÒ-¸q?;h`°ÛiÉE† ¢ÕðÕÿýMµ„Œê‰ Wgñ¦Ih+q9žgäxO!šÔÜò›÷À‘[ŸsµEÙºEu‘TÅlNóË, Cµ¸ôÒéP³-Û2ħN§×YBøúbä‘ NdkðcÖËøs!¼Š'¿·óxòÕ»—Î+Õ¸6Ìú!¶0œ¢kÙO&ú|¯oI«åÍž@~…bXŠÜH*Z‘ &cB¹½^Ä Y弡´g‘iMÊ@ænEô*œÎåÏyt ?AûÃÇÊWfJàପqTœ÷§^¥ùâ1¥UMf«,‡ÑLüƒ€“öƒ»ø;]|( òÉ'ùûÐ ­¨sËš1 •Õö_ˆ4¤†A8J+µON¦I…E‹:6þÆVŒvuÔû~0acûþ=¢ÇaFQ4ÂÕ7}䡯è'’…™³iŽ:+M½ÃïÛÏJ@;ׄ­6Gl{þÓÉÙêš,Ó9á L¨ºòùVuÈ;ûÐÙ+¨‚ ‰!Á[gµRŽ´ÿÚ!x f^êèÒn)5žøfÕÞ:&.j>K~È(D߬Æ5HÎÞàŒ"J³ÓI4TIÕUr†?Eöìªù‚CÕs¯ÊJ+:…³’h÷CÅh{­‹u·¦¹ë¥ƒ)©“¯òTÚݹ¯xsXß¹ÿ[æQÜ/ï)õ²p†Â1Þ}Ñxš¶$º &½Mdžb®\ | ¾*àá²ÂØZÃ,wÍýâàB~°zÖíÕwÙ-Á O''#Ÿ¸œè¥×>§ ýD§vz°Ôœ±ð®`dùÑÞÊTëó¨usq#Ð;CŽ¢ŒfRŠõë!=Ufô‡ŒÆÙß;7ÂÄ•ï®]Q-¿-ßPAbøÓrŸVGñgš÷YéÊœ¸:uq¹%˜ªC:êù­»ë1Ðvß@Šïo‰€0…+Ç´ÎŒ±‹ô8ôƒñF<¡É‰«¯VÏô{^PGSIv™yèÁ_ÇÀwN‹9ÄÉP#ì'Ú‡Oše¯¸f’Ÿl_{I•ýOpY‰*rÚ’#·—BˆRš|wE`gH8¸üò¯ßoœ ðsõŽkyÍ„/ âÖøO<¡¹côuÛ}¦‰Äšzçø¾›C6árvq³ØÖ´Ça\.äG!^NÒßÐWƒ'ŸH3©šÙâ? ™;"ÿ& ‚%VqŽ"ùO«÷Ó•™øÞ‹¿1ˆ¦mMÀ‚­ 0î6Ǹ[ÔFªU8 ĵÔT&}C™·?0+’uóÐݘ×ÉZubr°9ãÏ¡[,–nzºãöúý[¥•%%´;·÷k©\ÁÅ,Ê&T§ÕÉæO“M÷IsQÞÁ ÒðbÝ]G€JB·bÛ¹dàóY&ÓÚçjÄâ0ˆô·ã~mØÚT¸¹c—WVU¥«Mð¸ÿH¾DàVŽt…{·k(Ìæ©uôSy®OÛx¹vÄöÉ9SåŽ]e£€ˆ¤×á$Àës;[Í®Óff³à“•–6AŠ•=^¤FxX;«Ç”Ï¥¨u6­#£X}¶ŸY‘ f"‡L£µ„—¾ð­0Ú¹e&âu½Q'«',”·uX‹Á»æ7er‘eíð‚Iw­+]ˆ›-}˜ÄЀÊ_:mϘr¯“v„‰j à«üNÈ+½öÎ/ú¸/›™IÞ@}Qè¨CÊKª½Mï>oÏÜ r²­©š_åù Ì ÏP~/ÿ-Q•c`°ß.ŽÊÞ ïQ´øÎÚªÔHÀV‘úfŒ[)>Ú6'!‚Éc2´+x©É‡àÇ¡ôÑ¢´šJI%ÎVtN²½(W§ÛHvΖ¨1|bn_U¯äR©AƒËá$ J%÷‹õ„£8ðŸî°¬StËæe$0m"Ÿs—†ÀŒ¿ûö´bI#ì„¶\s9@` ™{H¯5¾‰qóh¾çþ yñíó¾®lÞ€EE¿U¡wìz-!¬¹üitÜ>XØø¼k]EfíyËaèët(¢ ,Ç"­Ó´v½Ï/Jr¥d;}ŸL|¼eE²–{›  œ÷ä-Où~+¡ …áC“4íªÊ/ÂCé?šr¡[”ùZtžüã2¡j{ýHü× jO"$Hs† 顤ìÝ–GH ½,¾wmsI.¯Î$d¼3"ú‡ÕEÁ!ÑcrVn+(ÜNî§pjn^ÄLñ??OveG{òÐzÒ«ß»ã;0ßKÒ¢ eýÃ{S°1HFêÞÏi·F5ÛéðÎ2aSu ©#áÞ“3Çò”¿öPÄ’aSäsÁ yÝë‹Ûú!£–Kô÷ûyßQ^©Sk¦å9÷B}Æ>åëÀoyè!ÓðºëG÷TªBþøÚ½‘Ï&f)´¼ÃÁÂ|°'ù#$O;öÖC$i© ÚF½DŸ$Á(Êð=ÅÛUÒ`ù[Ÿ…¡¡·á€S-T¶Š=1ó ù¾‡@ÇÖöL =TXwŠýÝWç)xwøä›ßÔcXTìM“úŠ<·Ÿ]äý[ƒT@V¬æXSM4œžR$bë‚L¬ÔíÙ÷<”¦y ¶Üáyoi³\Ã!^Ä'1|j5[Ï=Ógok&i)-À®lÔæ7(ªd2RvÔÍ¢ÊAß'xéë»ÈÅT|Du¯Ú™ó7J•ÉðÈe[ Â^ÉáëG’6½9ÐeÜËAˆÙDXßßÑb.õÜ\Ò“‡W@aón´G…ÅëíKc<È€ÖÏ`Ý|QÛ8îÄ£ÖæR5È8tŸOHEøUìsÐu*mYßJÃ#ªŸ§kÐPñjeƒI8Ѝ_âóyFà"Ô@iуŸL+?CãíÜβ²0H »P%£«”ǨÞÞÞ¹¾y}ºÖYE]Þ oú’…NÞÔ=Áýõ*öA£ås^Õ¨‡´8†þ9CQÀ¼Ý­g‰zÐ娍× ”z;õ5DªtC{×˼ „ÛA¹“C˜JU§y ›ãòñµL"9—ºfäÏöôxÀŽYEÑw¾èˆ00ièLDgæ9se9.ŽüB¬/fG%0ªüë”»³JFdSÏËvÑÍþi‡|‘lˆ;?})Ó`åà*Ë5ÜXÇé‰G·¼­ÒË(€ŸIé?­KUvŠÃ·l& þîÉÁcýmGbn?¥rDöóz”V)‚¯˜jâ vºìtˆ‰5ܼýð¢Í[’ŽÕ¥Ç@Q¡ð~>Òઠ«8•ÿ¸’˜lâfŸÿÛܘÙNì±}·éò˜-øH'ë#²IUQkü™ôÏ4m8ØF¡î&Ò>/ŸÃGØŽˆÔO6á&âžD1›$[/Øhž%UzHÃbÞ&<2—ÂÎA%Rì-Z÷ßÕŒÍst?Y“¯lä‹õ­qµö¢È‘’ E‰p•D¡‚„Q‚Ac~ÚÉ”uO|$Ö—I}âÇë5A£zâ ›g¸`Òew§8mc±‡¯Vàh§Â£ƒpeÅÏq5âùÛ +£ÊpAõÐ$}–¼@Ý,À¤£]¶«˜ùzø&ü¹ú32DJþ€¿õÊÅÀ”Žïg%jLR×>»‘âôe³Ð ˜7€Çã¼CCôoÛÜDJ>Æ”üZ‚òBhýGos×(ÖzbLg’/ס{­t â¢ç0ÊR“ê£Éc8rˆ‚ZÛSŽ!Û;DÃvg-X§EĹA¯bÓ}´×”y¤zšH[uÞ_J催HòfÇ㶆žTUL“À7¶¢UhÝÙ@‚,ûcòähPI)[ÞúiOÌ©÷ #¸±Fæù//^j#JäfvHÍ’†iÜ+¯»S}‹ÃÛ¶’ú[Ðé=ðãޤ½ß§;ókž–LðoÅOæ³»Ã[ªÞqÔ ( Ïtñ &ûÁjpöƼ¬u’ÀtüRü˜²¾™ï¦îùZhu¸¯ :ͺ}E0_ŸýYfé±”Ò%HíΜÑ]ù8t» +niw:'$bªÞý§8 qU{Uòiè 0™¸äº©{ ž± ¥òë¬^ò}9D °_ňÀ§" ¬ûžƒ86mŸk¯»8cA9¹ÒfÖZÙ”%.\¿¾Ã&®6>`”JUÑIçç—¶„-o)è,± £3ód<|’æÄÙð@k]9•ñ£5_AœºXÄfÕ•sœ_L±t•’óëMǤŽ0ù…wtDß„T ZJÞ@ëcšÂ3~§’¨À.ˆìWéÅ5qŒœF±&:AVÚÙ›27%Åý0ôIÈN¹ŸXµ]ýeÏuÀ’¯þngkÅü”Ä^zfÔBŠøþžÔÁQ#kSÕ³q3}I¹K)m—ï}î·Ô:ž g†sß+42€(ËÚ€pe~¬èF¨§¡‹?üÙ®Âe÷„býq›Oª¤8~Øcøå÷ËʪÜÖ[Љä¦ŽjÖ¶þ+õ’|f ÏU²þIêÁd¾a-£mðEG'R~1‰[RÔƒª‰³è•oèÕõp]ç„™ˆ=â&èIfRºñlïR{ÚX…>í£qü!Î˜Šˆzh–ŽJ8¬Â{ô›Eøk¤“˜Ž·95oaTD6›è‹!•u‹ ½¿0ÏÝà,âÞ[ÛtÄÈgp2$¹Š$Hv´]ú¸)çB×!`Ù·z•‹ÁÐõqz6ɸ~„*=L%¨õ[zS-‚ÚfÐ)i“§Y¤£V¯7‚B_%Mšqm`±µ¦dÇÿåcArµÙzwŸ+9ÑÉwÙ‘fÂÔl¢æÛ¯B8ÓÒË}¨©³Ÿú$äX9‚Òùò«—Ö%yªÙ¹^KW'´AHþé!ùkEùÛIÙs¯ñÞD¢Æ.¿s>ùÓÀî‡sÖ§Læ¯`-d T\BŸÃ–šAó°Üí9¦ìAµ5í ¼N-z¹e£ ÈVXøW©Å_©À˜ Ñ(xî ë´ùM£Ë²’j Ý£þœÖl° dÎZ´“xŠPÕ¤ÒXlÚñTìR~2…(íܱu­ëhGŒ4ßWNßËKáRNUkòÞ/´Ã5WÙ»­r«“µiLô@lõAßúà”aMç—碣l°b[bE/;4»ÒÂÚô—R…ä™11L݃„—í*/ˆ©+®à^9¦@Lv¹4"]*#ÌT ¾{fÛ—ï¼'_+¢.kÄ·c~dà)Å´ƒ÷ǰå>!íá–Å㜂H‰žO;HFÔй¹¾ÓÓ‰JRãþLG`y».÷å¶ ]w”®ˆ³ˆÂ2Ø£Ž b¸5¹zÕ68/Žj¢@jWm±õéÊ¿mqR%-ñ:ǯ ƒª™bÙù«Hì­Ha †ÒùþÁ4ÍøEÈ7ø[¦hvqÉç%÷ÍÒ7‹[‚Rn8Ò«8¥qú"Žp^¼a¾X‘ýù&ï¼…/VÔ ÇH”KNrŸgïBEœ¾~ü6‘h/6såe/AOàUµC~ú±%ÅŸ§LÒü10|ÓFBËà .5ûOèVÍÇ\¼¦o* ksw@ÂÕ“]vpNÞá/Ç„6äQKíXµRü4$ÕªuTB£Î|ÝHÅŠ|tNƒð]uŸ#ª`Ƥ€-…q™gR’®]‚¨Ît>ƒ8™%S´ ‹Þq‹š-ŠÜ‰Ú¥écCU`1aµ ÙçY[Ý/RRܰ…íV\ƒg'rb±Ô‚.Ú´÷¦,,ÇG;ù}Ø8|P;¡û}†ÉbAnËJ¶ûé:0’œu3D˜ÝoÎ:¼½Â#Ë•lí«Îv Ç\—Îu1Ò6Õ>÷ÆËb•où†êÖãÚƒÑé(>!<Š&”ÆŽlP ,‹cq ¨ÚS¿ŠÄE¡UÅW›CPâíê4s짺&؇R³ºýz©h^Rp=“­«š°˜«ž !­{â¼ká¿gj  Geö3(ëÿ¬¬š~Ò²,S‰ %×sµÃá<Ü”¼°OÝØÊ½#7 P=~ Æ›ä…H'¦Ÿ¦~`]þöë[®+Š`¾bŽ*<(d¸i«.|69%åŒÐt'iÛTƒ'Î/hÐÑqÉ3so¦$„*ʘÜBCÍ(I×u\H0Û’€RÒÅïÇõ —Üg-¦uBM uk9ſ–ÝÊ}]•ÓíÂØ3ôã /Úëó×/GÌå2<; ÞŽšcÞñe`®"ëUb¯:/#8´¶îº€`äêdF”+Š8X‚¯2“P$AnNû±Ú¤YŠ• wÜr›y<5¼–t2=:¨Xjšš„D«bÐZÈɪ{ ç‹õo-–Mz'4žõ.ÉÏU”$˜sâ%”K‡2 Òö£° êîE(;mb]¼†“W„„hkföXiOÒd UK³ÈVY\ûÖU=Ž$*;€)ÞÚJs‡?ÞBÙAðΙÁ˃$›}œª üR"âË#P+ûTÂÓÓZ“©fœW€¶L*ÌÛPêBy’ëµiMå÷WžÈùõÙô²Òõýsk÷üT$¿rÍÓ1» p#OQ ¤>[ÿy¨Á w€*}™³ÿÂç»eгÖOšNU jBް>}ÙÚ”1MÞ¸,NùO€ÝjLZV¥–=4R·Ž$.S€¯ï‘J¹›Éf%î¿5o{nxó-ÔºÓéŽXÐŽ K4gx·Šêé=_¨µ~~MVDˆáv£Eÿ}üÈY34LˆÜöM×MM<±è޽ndXí0<&²;]̘¡ l[¯­‡µÁãv»è;/׌ÕCL ZºéÑBp:í!­YÕd[çÈ‘§±lÎ*bËv„æüùÚyŠœÔŒ"göKb¿o¹,´‘Ų°î•Yçg2»Vº þÓEÎm&Õ¬µÅ!÷_H½s‰üóK¨R9§r×°&Ž`ï''ñz]ò}S)¿Pu¤_·!T¼ÛFÃï‹ß7#“:t…z'‘+²8u0ÎãÒ“ß Â˜!;ÂÙºŽVÔ;¾Å¦-èÿ®òåÇWúz?«®Þb±õUQÈ/|wÓjò¦i5–díÀ·2-´÷¤›9Yîæßñn;•YÍ¢½“”ÙjãÊUò5[®ù”É3z+0\èüõÏcVÌçã\`§‘¹|lsw¤.CŸÉ Ç“O:F8C<öŽ¿üD˜±T´áëxÔù³n}ÁÚtÐiÐßê-t@ÛyAæ|:)©<[¤l»²!Fb¹þüÆ Ò?5.f‹¾‡ÅÝ¥º%›À¾Õ*à-˜zOÈ]nü‘[­nåv0Ì[©"d>0[2Vt8 ¯4³|àÓ¢·¸Ä±Xä»×&\„1ù³iš‘Ø^|YîïåË̱¬¦€˜€B3ùõ’õ­²&Qå[öu>ä•’­¢*ì_'­Z“Þ3si’¦@n·W¶#^éL8·Õ«ï!ßqÂuBP­6ÞÉ·Ðv‹)ÐW¥¢ká‡BÖ×FšC“4ÕEpH &Õk¦#,gkˆÕPo`v ÷úÅ$Þ¢ŸºQ/ìÏO9ò ŸÂ,DüEüGzüwÇ g¤‚á ´UQÀï½Áˆ¥›Û)º­d—,G:½Ìc‚N£á]?§qDDÝeúÃ`ß’/¥ûë ¼¶-ÝaП’Xo‚‡‡×Á&Øñ­ÈN¦g“V“l¡g&‰)¹öÄ¥<Œ^¼™MÛ £°U‰{5=x¸Œ<9½œ´’¢þþ.ü©¨Ié Ub±%fy÷,šñ5¡S•¶‚zΪ*Õ&=ò| öÙŒ³u:y Н§Wù'âE+Zm¡tÁT- œŸÙãk*T/}‡Û§û-E³ëÝíg ¯ÔŠ|'ÙÍ b& C-¢ì lßæ(\AéÓoï08WâŸ+Ø­ŸQÇénÉóS8vé¯Ï㟨àô± {DªH-/gDC×á:^˜Ü©ç( !ÀÙdÐnõ†MPeÌ|­@Õ;81£ ŸÆ{­î'I2 ºH=·$Y‡¡ >¡²k~Fìp*9ÚöyVA É»Û ˜Æé`¯ÈyͰðøsÙ]‚/½ígüº:E‡eðRH>£™€‹©9e”g¢Àx>Fë  Js•R:¼±}ñú2õJšÇ^UȪ鹙2qŽÚs(ï2YV³Ê| Öýù³ïôï6 SCÙüä<·<Á78øÔ+è²B+…䩯ÒxPWfš<q…/ ‘CñãnXvÉNˆ04ßãqò¡›Ü‘¯óœLíÅÚ*¦àϤy0FÏm6šA:æ2ýiu2¿Qs¡ƒU—³Ãê×CìÈ×ó-ï…o¥´ØÀª[‘V7¼tÚc úKæSú©“àÊÙÜ,ćø¼ºžÎ+ÈÐÙëÛEÉ·nר·Ò°|KƒWž·Ä/ޏ‰S=ßyPyŽ FŒà÷¸Iâ÷‚ƒ¯AÛãTå² # {ˆô#V®*²7:ÌwièánÛþz?À©}!ïrÒÖ þeV‘çݘVò°ÒØSñ`U-m@K;‹µç·á÷/áf¡K`ü+– —­ˆÌÃÅØ»±ÀIâ‚iañTvÇç¦ãÖµí…å¡wšVZUóºªé±%k”—âÝF„Aˆ©zmFI£J~æyM¡Ý¨³ß½„'ýùé$B/L ™? ¿wÝF2sæ9Þ^%}-)¹¶*¡|Ò|ëÀdÇ „(7-w»ã¯×# EÂÅ ÉHÇêáoYWÎ*þA×*™°Ü 3éŽâš?ˆ0Gr>€$Á0sl1–mÔJÒuñ5i`Àa¯ÁN2£;¢®7àÝŠA cφpý¹ûþNÚz}%kâ;" }O¾¾NN6$¨’–€†+ùM÷Hư|H±C©YCõ²Å¨Šv ³Œq®j|>ø8«ä—:ÑïÅ¥)JµI¨5Ëa<º½%0Û€í©G±²…&W¢ 2Ô4Æd12ɽMÅ#êU7ªE(¬ïã5`mÊøs¨»Uï6þʵ·ñ~Ÿ*Lf«í;2 &«•R˜Ê—¢|ô±£ÅLDù=ëH‰ÓPÔbæ šÑÀn ðpÒÄ èH÷Ú8ö(`ŠGqü¢7ËŽITÅk@ÏcÐ,@`kØ}á>Šb0_±m™ƒE‚¬-]]ÖŒ*Ù&®OÙ'1˜¢,±Y #ÕOžÛ]p„º‡ÇS›£¾ sðcâ<ÿºñO»_ÉÈ%”yz–¾Å?6à«ÖÄõZŸ/ |štÐy@.ŸD9 wJ õ?\˳ãAßðƒ`Ö̆LÂmJÄš, ÕIÍ!Âi G_ybMRƦŽ©/,¿âs†qòUZ±mó Iú )/W*TYšçLcã|7Uý{ÚA¿´Â!¡‰ çƒçzüØýKvã¾Òß8Y¶éG=I–‰f. l“Ú öíñË=³$´¸Ùg¢†Ý~Xm~B€èQƒ9Žìü1|ÌU2+㺲|r  ǨS>qŒk=¢%I‰Z1-pö â| $±ƒ«Q”×Q»“œ)ù‡‘öÓ&1bë.LÔ…ÂjM„‰2zÏ(^Êl|¿À<Ɉ;Í=î<Õ›³Tký7TTõÉz•ÛsFôD”IX‰šëX,°ªbožšfð_ŒÙuUæTiõI\ð๼d=?PN‚Ÿ¶P¯‹Lä¹XüÓ“j]žnL³ M$6‡VAÇšôIÈÛ»Ž+Kàî“ZGÎv/‘ô¹Œ!ÏÊ=×{›ôÚhŠt¨K†y+cÌcëZb­ H‡©Z‡B6@ÃIC0èG3…»{*Z"ƒØ}®U‚~Ò²¢¹,©Ý¯æ“-r!ïS¿’P‘§I3UrX#Kóq•#.cÙ ¼ãX«²)˜ªŠ)2>Í5ãbòˆæÝï~}¦ÀÁ¯LL½`Qdãòðð²ë¨D`RŒ.ó9ˆw ’Rp²J€Ô¨ö4+g¢¥ÏÑ¿)„Ýav† ûÜÕžèB˜LWHî6|ê ·­}$(ÙЄéæÁ…—…lUX*Ì1¶è~së?Þ¯k%%†LŠ^ZÖ¨¼D‹<<ðBfM\GƒŸíîDz}†Ç_pôËãPæ•» º …gÄüĺ §޹tâwÀùÐý€¬K¦‘@M׉½pt1¨ï2¾Ô€ÏŽ<*hŸÎ˜üU9á*#>ðŠÅ-=2C{¬Wâ5ûmMP£*ê»[Þ‚G‚àï2.²HlàÏ|EoyËVûlûsˆuYV#$Ž.÷O2HB#Ÿ£KÆ8@1VêHmX…îÔx²XU\˜0`Úê‹;ÜõÝ­(W„â2Áf ´[û›Wjq£Rº†esOytt|³Ò3Ç·=ˆ÷=à ªašqL3žŒ@CXv NÊŠ˜%/ü`|­t`"½J “bôI>È÷![W()aÊ)£›EU’]¤Y Zô-‹ås‰£¥¼Ùß>?rf#íL`†íI`@è‚€°Ê¯²™h¬œ!ãÆÕÐS.¶.A:qDÓí2Þá'øà.9ã8> ET_X·ì1«æt‚}¼^È»Ù^¦¹ë°â7¥;hO*DsßY–š Ø$h3(ëÃ5ᬩŠÔ”+¥]‚дy¦âºMa§%cඬÎu©Ç~u©”m@ŠÎÓ§ôUøž… Ée™ýÙ¤b×ÖnW­3êË¡aj_EÐþVÏæŠw™õØâ™ƒïÜT ÜÑï/= áÑ:¬0Üm4z\¯ïî念^Û§¶íxB %R½( ÕsiM…×Ö|¤ú±º‡šîó¹F0‹®âlåÞˆW0 ÓÃBñEÞçÂ@â;õàVao2¦ú¶ :÷±CuÊ_Iyˆ*eß75#u¬šQb¼ç©æƒ:t‹Cçe·¬N n˜M) Nda/±éðn¡FÞ†e:)Ù¦Ù›ÿÆ_ëæZ,ÝÔ‹{ ÂôöÊ¡aŃóWœÙ½íL?(!ÿrЦò2 ³“],d,/ÒëÂWÐ.¾Ñà»Ù9ihä*ýÛ§:ê3D#޵?³³SûÐTÐ~u6»æÝ~,}*‚úRÈôèDb¯060qõcUàøÇó =ºGw’ý/EH™5-pY _n*IûthB¥é´‘· Ó»žd.òPBè#eD…¸ñ¯Ïèg šóhÈ¿$Î"¶ÈY…â~QÇyRH–]Ö+´yKMž›|ñœÃƒ:Ó×sïv±`…]ö}Lu39u’ ×E\M¦ÃÙ}¥˜ûÅÝt+žoG‡JÄÛÿRS_. ÛÉ¥Ç$] ª‹óÚ‘¼ºÖ_ŸÃ†‘Kk“ýÊŽ…½¡ÊSÔdû²2xÖA²%+3Ub/;v{ɇT¨AžúR›4þÍŸJ }82sò=š "ÒT`ÃÆá¥×:1¾>y„ä¦G*&g}‡Ô™Î‰¦3QÆÄÊú3}y=6>®É7òp…xÔwÆA“À¢[Íhå‹óg"½»È%áž~Únc*¢+;…'ý´­D•Âú+ošÞÜÅ`ÀAº_€UÔñã­{/qhxvù"%«µðÙ/OÀé!ÔÑÝo5¢SÄþ‘PdˆÐq½j¯þÇ–+Z˜-Èš/Ærˆ¯‚ /_°p¸P—òঀ#ª B›ÞîË¿ÔAæð'È­A±Çx£Pàï«$j-q=¯Þ}þwj«Õ/n[ÇÒÃ4 n\}Ò¼ç_øe1TO­¡©[h‘Õß¼,õšå©SS®¥ºËe£iï'©ECTš¬±UëÒ"ù˜'}>+*ëdÈ‚FåEGûÈFHD0¹ÿVgw4¶vßȞǥ& ›ñÊöª\øÄ2í™~#âјÓD6tò&òJ‚÷ü®yœR3óvâ†õ PK(®Ð/Œô%ñ¼ýwøN^'¸Ôíu•¤ÃIK² WܹáèWubrÓBHðE&¨{´klxlÇé¢GBVÞ¦s ÌšÙv•<£I̽à„dŒ\®J•å¼Ï"ÔÝ𕯑è7j”Rï "ñæ¿ ŠÂQ@½¼ŸX’‚ô„CŽ û¥QLü4lãÊ A.º,fåa€t²ðàô…1‡ù-Xp^Ãg¦¥JA”£/Å]bðÚ…Ñ~ZA.LR<M p7_ÏoȺ¤ ÚȺE÷4%èsûíÛƒ¨2löÔ/¶–ÆÈQ@#2°3Ýiçà á§(hd¶‡mz‹âÛ`CÖƒ‡Óé9ø²dªdðúî¥ë¼`ƒ$8/”wóIñkF¿„NL´ÇÏôÅ„}ÞÑF£úléÒ«L/‡RüÍè—ý·SVN ’ðo?šï©ïݾk{¬Dkst;« ²ÇÙLvÅj?òÜ%X³w­ó®öm?©Í^6Š þvs‰l‡•¶ùµ¬³òúè fŽ+6Ýþ¢aé©T4æn2:á$q½'î•—‡Mx²³%|Ķ#¶ml­}ÃGŸMÓ¹uìð•›¡=Ceª’§læ6i!õ)8²½§ºG¬âF/KTn?Ø1õžÀ)ç³Àí>¤ÃŠ5´ßr¯h\̆*·±¥üeªà=Š—sM•ph™–5W×§ª`®UõÀ~>8©çV1P)Cf…}8ˆsëåç:Ž:äTr(±8É–OKÕ–ÞÈoÀôì¯PÒéÏ•åÃö¢+åË]ô é¡ýoD#ÌÉ¢œ§µ×•Öè8ÆÍthìù‰}zA¡ÌÓ«×8‘O:ŸÍç~íq°?Ýs@%öóRW²÷d{ÉÒ*5›„€/FC²×$²_kµ¡oø 2–z_dÙFÜF\­#Ï×03æåÙxšDÚ»Åæ§‹Ïµ˜ÐŠˆÌÎ8±õŒ NéF.оÍÜß"~½úbé"TÊæÛËjƒ¢uÚè“×ÉÄB€dðŒw4+ £˜$E¨ JzJ¸6:‘ÏÑ Ù>'¥F3p>—ôC’@ÐÇÛ š4,2›[õê‰za·%Ùw¼© ¨ ta¤î„Z’¬Q)çåqBÞ…»`QˆX®âjú¾Ù-‚K`éã{ ob¼ý´¡ˆ¡]ÚûXÊ5ÓXØUµë׿‹e½I…ÞOàì–²’À—ÍïEN e™Ã󊆲ðržh¼q“æ9%É+ÝAjc&Žõ¥ÿ¹É–‰YäôjNÿ CÃî·ÑBÔÙ¥^ìN/ØŒ•2ý©ý|¦&C…ðQ¹>r1¥Ü1ØÚ“Ë{+9˜/t°7=äÇo€G? ³Ÿ.f…uŒ‡O…Hp9ಅ=ü“¤'Euç|P*Év©@ìÔgm#,hÏôGãß÷“±5Oä€IÂ)ƒ€~P67?Ë †€Bi6“B¯ µè®áÛL‹Þû\ÎHìÒ‹q·—¯Ê†vª5dgƒ.g±‰Ë>˜Zª®² ,‡½ºI,{EÎZbÈ”ä Ð‰Ò}¡æå '”f\d%EhªÄòo³ÝðÑEéxc¨©ÐvÉ•`çn?Á6‡B6‰äi–¦dxé°;“1C=-£{öî—r´Ë“ð-’ÉæÅÙm»^—7{ƒ ìEL^…‘'ušQ[íi ª)I3êÖÏ O Bv¿›¥Þî^Så&°Ó‰ÕƒÁ)Å$"Ðêóë“£qj§bʰÏ㺠SÏÄwÎÅÞÈÝ1!”áæs¯e‡Uy c1fýÔâJ … ¥£Åœ† Ý:ß9juÕr¼¾C£ …éó8 Mû›àÌÖZÀAX„Q¿yL/ýpÐtr€ñíê{0„Ó™{ȳ¬¸P úõUn–"ýZK c³p‰çNw¨ !†À¤»õ#'+‰q­hÑå\9ªxcn‡eMyÛœüX*¼ß‚· € _Cá*E½ŒlKzÇ·âö£þÖf9~¬jÐ^ƒ¼tŽ‘Ûqó&]ñÎ^Óº]ÒïÎ~-‡=Mè.9Œ5?aENΙ-9òi™gkßøœqǸ sj|F_YµÎ̓Œ_rBÝ6› kògúe•6¸­Æ7ß! †üã\ŽF¥qî]0·Uï¥^†åkĶ8&ckUÍ%¹>ÛzP,–Ûy·Ž=_¦´–@î—Q&ÓLÀwøU¸&YàËᎎÉÅ úùeÓ5²w>Ñ \ä^©ÚP^Ú-ê,Œž ™Ý¥¥÷ú;ÔjГš©ÔˆÜ¤Õìà—AQjU «^FΛU8¤Ž@·ªŸÎ@àù®ÇŒ]ÒÔ¬ÞÍ,ǹÄ8^<© ßcÕ¦B’îç´lå©Ç)èœX·‰PE¸¼:hAöP]4~Ø”˜ö/˜C¥Sç'Ê{d:ißýžX¢¾Q³èE._Ûgüà¬Á§å/­NþUfdå|í¤ë9K©TìY÷#qüã^¥‰ï‘[˜ßZ-bË&ãAæÓ—…–ÏàV»ÑI‡'Ü>ÄÐÄgi*¤E('¹3{³XŠ\)—cÑ” æ—zMQt±‘Ê)uC^M±|ÉÆ£{ëÖú]DûV‚ÖÿO ßûýW²núZ†#e jG˜BI~áÒaéUÅ/- ñµ@ÒÚ’b½Px&®‰+ا;ÃePß_qlQ&]=›¯QÍ ÑE¨“ì;j¹Þ$ånQØïòß§ƒѪøÀ¡He=xMðfæÙ'¾¤Ä½úEA=¯&{œXõL¢jzµŸæ½.ÛVsïdŒo‚ØVœ‘W×N ôc|@&´_ÖdƒÂÉ —R˜Ú¡¤Rå´‡e.M«ýÔH=Ľ¤ÎNÂSŒ÷~àTǦØÑGÛ¦À:¡B¿áèfm­æb`|>NoÂh‰Û^-$|›y¤ˆoïk'2'Iø/–§vÈËaxþ}8£ÉÃH¬k]Œù+$/ü4q’‡òpDç_åæäc%2˜[|z\=œi&ó‡ã¬Î~6é¬7ßè\µ@(&Å)I*ÜDBÒ…¨ŸûjÀ"6eQ£ŽªÏædç =µ;B{ ô枦0:ÀêæØž–dž¡a›K%©; ŸÆ¢¦ÞÊîydL÷]zy!å|ì´Á,TàÚàÚXé+Ú»¥Óí÷(íiÝ×ìö~×ÂB :8Çc²Ö*Ï!…èCÓ9­ïÕf!ÅU•0¡ŽÞÛmþŽ…„^{É2IO¨´H ž¡—)=5»_Ž×™lô Khúzu‰WÝÒ: íf‚W˜G}ÚÐÆ7Södš»hs%œY~v¦ { ‚ ƒùñÜ•Ÿ,b4²S£m‚]eЦ… ÐîHŸ^Þ~¯F«Ôà¹ùLÀkÛ”ø9ÀK cüà} v‹é‡t·)š•à*€ÆŒ-І/uØJÈоJ{3ä\ÛÑ`:u曀™h¿%»8wIÿº¡àݘÜ)¢7ï÷X¨Ý1Îߣ?%Vô ÷¯újoËFò(åS²Î’UfŠ+ˆ-¿ušoÖíª6»G=¥Üf8œdÍ\2¥PJbIPŠ1²MôüÈ}åç}ˆõϱl°©å=Ùé#­¿lj Æí—ÆáA“ €ÿôR"1à T¤–RŒ<ñOˆøØLèàÈŠðÒf¤Î…Á‘‘a ¨iC‚XÔÇE©(¢|Ò¯heÓ¼Ê\µÛãžÑßËîþˆ|¢É£}°‘Èsendstream endobj 304 0 obj << /Filter /FlateDecode /Length1 2887 /Length2 24532 /Length3 0 /Length 26115 >> stream xÚŒùPXÓ Cpw0¸» îî\www Á!@p înÁ]ƒNp¿“Ý}—ì÷ÿU÷U0OëÓ§»Ï™*(HU„L쌀âv¶Î ,ŒÌ<9ef33#33+<…ª…³5ð1<…:ÐÑÉÂΖçG ¡3H&jè ²“³³H»XXØ,œ<,\<ÌÌVffîÿÚ9òD ]-LrŒi;[ <…ˆ½‡£…™¹3(Íÿ>¨i,ÜÜ\ô¹„l€ŽƆ¶9Cgs  (£±¡5@ÅÎØèìñŸÔ|æÎÎöãWªÁØÂÑØÅÆÔ4 ÿs€rÛYƒ¦î_*¿ A·ì+¹ßãÈdò1¾Fð?‰YXA!€6&†NæÈ@4ACû§ŒówЪÿÛÜßFîÆÖ†6¯FÌÿ™€nî?H€NÌô‚B™þÙC‹?²ƒð+ä`û ]_k`ù-x¥ÁñÛÜÎÅñl ³? (þkì 0÷°7þI$û#?3è,ÿ€ æ[ýAM°þ‚góGi xÌrµÝèAµÛ½’9ÛýG *ÆþU fzþmÿ3Cì,ÿHÿ;Aì Öö ™´{m>;è ì­]œþˆ’8¼¶ë7r:ýu‘ý+d}þ§‹Ü)ìœ&FÖÿ!ÄÆþªø?SÍùæ¿öÜÿHÿkÌò{þh# ¨+¯Ô9@NN@‹ÿÎ?Ço ëÍäq²xÝvP œ¬ÿ3Ý, V¯iA¯“³¹#ð.°þ6°°6ùco@pv³û#(¬Ë4®@Y·?â¼Ýÿ€ Œ@йz¾òEò:þê?†±‹#¨éÎ=ë åüþë«è4†_š·3æ ¶¬ n»­"pcø1þ~†â‡Æ'¯%Çv—{d˜dšªÌÀuÇk¡äáÔÕm1ê+Áeâ'¯Ãæ:˜°–D¥ÖïGýxå©­ð‹“Ø‡B_û áÞ2¨ îz?9x«XA4ƒwJSä:¸¼CVüŒqëÖ'áþµ¿te4tþ‡Òn§ Âcé4CŒZ´N@Ñ,EžQÖ.)´3!,-ú™;ÊìÕõ zÎÄ ±t<¼ÏQ [¡×‡ Öwsžk媬N]xäxp !®ÐG§(½„÷S¤q¼Š WÝ›ù ‰sèSWP÷Y3ª,”£l{k\G—:Xvr“ÁT;‰5%˜úޤ XU­úQÎ5lV@ÂýSáµ¶kõnSËÔ·ËÜÓ__³HZæ‡þMÝ^ukÃ# 7¡©-·Ã#ÛÝ>EýoÍÜXhÅ̵#WWx2S¡JÇÞti¥0Qé—]“ß=B†ðyž ßã³l03xÕ >úö„#×ûü£OEý™|ÇÆ,Ú‚µºnÐK§ü‹QgêÙYž9›˜Af(u^†XwDÞ÷X*%ÞZ`ýlP)ÓÙF6£h‰±lÂÇâù y!»”Dï…ÊáH@Ë;î|Æõ µÖ8Ž|%’£(†±ýú€!á >îk“ý­ë²2a=¬ŸvêwgnáÂÃ7U¹‚ó":”ýsºœÒ$„¢Þ|¹Ùžë…3";Vv%±iŒEÑP}¿=ÖõåѾTJ”‚ªpI®_æ'_˜÷’î¢ha/^µ¿ vÄU£?km»Â-5b&êÚGŠÌÝ2ýöáFõóg|aÕÛÏdž`½ ÓcÛ$ߦ¶É½¬+tŠØûš¼ÑiÖñ”$ Ûþéëï©£#ŸM#›¾«¹ Õ-¿­É˜® B “Á´³1còI J¨2¿ËÒa¾Ì'f[nyf ÞÇ6½¯tÒ©ýŽyÅRö^§K œ|]T \ínr÷‘39gÚ]"OÉv°Œ =oÇ¢Šb>)›da ^– §F;;ír»Ð†$Ú4D3Öx- l›oŽ s¨66å\C‘M,$˜§ mãyRY¥Šj©¯VDzLÚ¹Œ²×‹ :޳ž,@}²w²ëpn^rŽ ñ"Š©dY|ÁÌTœ#)Öí\%œÜ»ê%ÀN‰o|o<aÊÀ·/‹ˆ…¹Ä6í…¯õ§Íi]ãÝbæ÷aó³ï¹Áë?ýaëë««3†ñ .¸R±ôGs¡´“;.Þ¹+ò±³Ì^¼wž¸•[FAâåLknòq”qaùÉö®&e‘Ž]'é\Q;5ãsíK4ÿìkLD¡³îpê¯ÓҲˮÀîJ¢¡#Õò¹úôkÕ#ÖÀ®q>ó:aÙ/9é;¹-æòÑXW/ÎuܤyÛ^ÀLJátR6¼÷7IYªÓZ2Œ«2¸Ã4Ýô8#2^†á"„%²Ûá‰=V¨‘#e¨B{Y˜gÔS+9¥ÉÉ­~Þ—71$âlhwáÎdž£nñañdF(Y)Ì’Œª<Ãn¤GñÒè]ì|åÊYûp=¿»$¤å†ÍrÒ¦·Ò~AêïA*›záî/^èË—IÂ6¦Áý6q³©sf–ã\A)P²ýq¢ïòÁZõЭ=q·<×D^G¤)£`|Yáz~B°PƒÕxÿ‰¬Étå6Ý¡ï‹:Sôð{ÁšËûcæ„n­<;Ï;òã»É›AоŠÎ©a,·Íºv¥½ë€Jý')óo(.ûyÂ6'âÐ8<õ,Ȱ‹)&°%Cœ7]Ëß„âHÅÁ¸²¶*¿Ü(Kgª«²%µI=šËß×Í{í( ?±@ȺÏÙ`AYÔé¢"•;:°élÔ˜ ­À-¨°Y5¢`^úE{o~Ó——¸žÈdzÕ›eÝN¡(ÆšÇC¤.D£",Ë´ËWŠ}ÂQ*’-”¿~“eÍ[éõ­ š¬eQÊV:6 ìXð;/åE»´î>Uê}³7FBÏ~2Þvrúó3©hëÏoãÛ‘ Ž6 ³ö‡½*ÝÌÇé šâp²áK®+ºNyâ©aéWçŒa|(c!¢-ÝŒA¯Š•£4²÷åõZ+… ¨PbÃÞWWç]Ìk ŸAFB¯T`TÈÞ° o{÷®lž(è¨74Ä,ç½Îû ARñ{ñ[Õ<£‡Oñê­©­Í*»³–¦+bÖHšöKçRæ¾él>ݲ+±àTúʸ·Ô ›ŠF  NzVÇŸL>fØ"{ÆwÃÂTäïðÌ¿•ÍöÄÓýˆvVêˆYø¹4ÈU^´#JN‚‹›\JÖâ™2QhÑŒ`ÓÖšÓ ,¥ÄqñB;Åö¾­)´ ?òÒ¸vÒ)6¶¶Eîî£1NÜaàTÛDHGŽËw<òI…GCN3WƒIĂЦAˆ™z„k!”¬ìnè%Öž»ä³¬§µnk!G ÜF/ù?H¾ä`ŒŒiôÒŠ£ë®1}1ð(Vª NÒQJî!§-]µPÅ>Ùד\›èçË„ªP¨~•o‘ክ‚¥SN›?Òv,ÌxÒºêÇ8Örú´Õ,¾E,ŒºYÔ S¼¿„Wû|tñ}6#Ô5‡"MU[ÏþAIpEjiÙ"ç%%³K»˜†«²ã1×|Ü6 ±ï§ÕìŠaOƒjï9•¦£ßìz“­¾m2„´l6,uŠ |í^î·ÉtøŠzyB/ñúõ•3=« £ï=¶¾ØÇ²Uùº°+†jyàÍý^áè®[§²ë«-»ŸÙ/Y>‘ûa8Ú½œ8%cö \ü²ý°A›Öú¾äfÄéêÌ.ÓHÐ+Þc–DD„8Ê Ç–QÃïCÃÑ)Ñ.3Ž-†‘}ˆ™“â'r†)ëªñÙ JY>ûNHô&k Dïfߌºwû÷ŒÃ}) t¦ãƒžÅ®AÄ›úµÂž•#a9¡—¬®³m°Ðo.Ú®Âz5Á óIÞáÍØÀ§¬„áš¹-‘ÀÀÃÞrý‡ÓôPÑõ=Éy“Vqgm'<ÿ³<Ž8%Ë•„ùn¿1R<)qmýþ¤DlÝP;<ÐôVÑÝ_2$ËûF㱎wE‚hU ƒ”Mø’céâq÷vSR‡t¦Lú–%e<íØ˜Cþ–»ÔžŸ•KºUøé¢Þ‰ â$²ÁŒú²ÄK‰Ù™_»rëÝX¢„SS±29·.'&eø½G%E=^¤ëðOËžkâ(Ù>ea=BeaCëÎC÷¯ú¹ ZY<µrEUë»'+˜§‘0[+Pê üŠ˜, B6ú—òH|¾$ŠRj¼õ*Ý™WÒl&‡–\/ÚCu–*¨hƒóšc\Òz{.¸h‹U昂ªyd»Ð‹Ô¡ð¸í,$Å ‹d›•*¥ÿ[O?dÅ 3¡Þ7{ –7Æ€¨zò¸XF8ìû'°¯¡{•¸*¾ ž?iߺSÉ>>¿ì³ß MWhCÖ]}á/¦^<*D½æ+žgHéKÁL÷²¯AbÔÌ#¼ã-X+Jo>– &Y©R5Ÿe£òfóÅ9Ø.î¸8[ËŠ°$jö8ÆðSáâú¦ v¢&=YDTèºÞæ+²ôú‡ß¨°Ž!°•I§È-'[SŸÏԓõ‡•~0ÙØËsÈpk<#½izW¿FJ¦Tl|hž©bw‰QóéìïÛë½,†ÆTL‘|KÑJ>:»#™—‚ÕúQ<“ƒ'C±o\(VÕtDôñ^xiTJ—À_šå@v1Ó‚fŽ<ª­*k^ªÅð#ÐWÅñÙà §¨%Q27ÉKÄ óV²d G ;*DÃ?am}Šþ63ž!«7¨qXTÒ2ì3ê¶–#V ûj ü.cÿòä|UUÞ„Ujå²u/eJßÞrzõ/`éÔŽ¸g†Aã`£Àçm)c0AIʾ¨¶„H «-Ø;Œ€,ñÀ·:Ûê5¥lý†B$mÛ<ç3t˜ÙÆ$ùîgP)FrÏó›L¦>lë)‡ß¾ n“J”¤ UìQ™Ê9MÁÌkj¨=ù<^×76iõÕÇè!øÏ.PXŽ ’HvœF)H¾À}$Ö¿kˆâÝ«ÿå¿%Ý䚇\ »JO¾SвB%b.À‘Ƭ‚ûDØzü­ºû\0±7 .ݰ¼ÎŸ3MÈÏ82ô§µxõ¯XhG°Æ"²ƒ…I[-/Ë6oë7®„•-TRÖ¹O~5$?êó®f{F޼’>C‹U}:}?no¸¯‡°h~¨`aÕx’±m{XñÎÅc•ÜñWÊÚE² ¼©±C/G·‡/ÉÓšî\Ö=Ámײ}x‡s.Í®ä¯Ü…¾êJ} BÀOBqõŽg‡Ihlþr—ý> žðÍó>Ï ì É:±jÇ®‹]`DH“žÛz¸ß„c<(üåU·šØÞãVjn´Ù`J'Üb3̰ßZl/H ®Æ˜N=Y5)3f\=¹RùÚ0¢S©l÷ˆ¶Ž.Y{<ãr%bFÔºšùZÑoó³^¯¡JÂ…C_"æ¶~‰åËŠ3Sô,ÂóFÌèÖü{D K…m¸þƒ(¿=4Ý®i©·99á}q?¸®à©ÜÁ¢Þt³„Ì5/GtÛàa+䎔£Ã©P1›©Pບ…K¹ÏÚNï¯ö©Ó£it-GÔŸ„¢W×<±1Ë&D0Ê…k€D!g4ÄC†Ò8zLš­ÃÒ‚áó­ níÙ"—X•=\n™¼`´>U™CMò7³áÄ… í­7îQƒAùRÔ)/m–¨²E¥R]Æõ>ÞæD]äñž¢[j=qn­Z1tíOåxÆO÷ú& ú3Y:Õ[û-»Á \nßà{C–cͯ†ï×¥è-sœ0e{L=žå¡BŠÔ®D5˜îËÎïqÃï†:2$"@Ìóܵø%kŒƒîc9R½7,øùçßÏe÷T£ &í‡m˜ÓÇO̶´È^ÈUÖJŸ¬u;• ´¸~kÐÓyŒ MÀšRÙ,–72 ¡[iëøœmG ³T¤׿9uav`6f¸ó1Î¥N•{‹–8 "²ÝÑÓ3röåù-iø4Ì väÚÂù_>¿øn7ŽÕE¥ç¼S[Z4Q|¦ŠD#‡pT‡„†öLqŸÞ|ÊOHRôá…Š$i“¹ž!WÍmD¿¹×ÙúћM„ ć@àMƒëò>Pˆêô"IºÌr¾(õ?M~¢ÊRb2âu'kúHÌvA¬2ÊSji„v¼BÑä,ÃÄ?’§ðr’Iè¨þ= Ï]·ººŸfë4§»^×ß:ë‚îU{/oRœ•^ž²˜ â$R§F^©[ê—äìØå$q—€*Ï±à¢ø)Ξü ŒŠf÷s _9M«ù†ÆOôáä›Ä°&EÀ/«n´b”¡€õž=³×glmÓ:ð ‹ÎÇÏÏZ›±8â¾úîÝ1AjÙÞQTš õƒaÁ‚(jó¨œR:ÄiÁ{«×ü<Ãêúo†ùç¾pÓJ1û`ÏÔëz-bÁž²©-{œ»ìˆgšBŒ.„\)®ЈŅ¿C |T+̼w£©<3Èü†å0˳abIVØ\µŠnã0ˆP˜Ùæd‡ÄÐ,˜/!Á»MZá­4öf·ôþàÃ/O'ï@Ÿü>Ù¹:ŒÈBÓÒ9›¶¢!¶ÓØù3Ö¾÷xñóÚ_M¥3uV¿bU¼ý…m|´Œëÿx‡â ý͹Òej ChÏñ9«²kªòoTÚµ‡^†ØîW]ÈD²ú÷¸¸LøOJÁuÚ«ßùÔº5yÞB.¯Ó]SlÔÀË·® «pp‡Þu)Í&íïËüj¶¯ú³mmGϨD£z…º––í]~»Oƒ¸¢‡)OâXÑ«åYÈWJ‰ã˜Ê+d"%B`ÀàÏ` çôÔùfý eô)2S†Ÿv,@†oaM£På‡bÔX¥P©UPvßê=Î×ÉéQ±SÖÅIIE®nœ*¢c­a†Zñat1¹øÝô!ርrt0ÝsV >¥æÝ-ß]s½M¢íŸ£GÕ~ùƒd˃^&_ìݦ‚ Á,î-ˆí`¹ÇÔ¼l=¿ùpªè^¼WÔß>ƈ¨W´)©Ú+Ê+kEÞ(ØÁ¨ØÑrCNd}h}¾$_Ò¨§tC£l ŒŽo[C–n¼òè”ùlËAß™•K¹ê9 mÉAº¹¾‹)ÛY¶?sŠá?lÖã&CŒ@JVÈêM©ÇÒqù4¿€†9e¸ÉÚG ¢Æû¦ÜgÐ-8eª)=^—6öÀ“•½ÄøæzP–üœuE¼ºìÐoÑ`«xƒ‹¹¼L¿w ‘9SjòâtñCP«µió§ª5ŽŽÓ ýcç_õ÷H#m”«±ùϘ[µlê/XóZo¢¶]Åv¹r¹¯?€¾Ùžîy$ ®#Öñûd÷5Û£Ûû*ö(çWmÏîëílΈ”ø³ÇäûíOoF¯{ðÁ…B®/¾áq™|ËhŸúbwsáÆ@­Ýø|¼]pgŸj@ùNu-ÒZö #xŽRÞn€Œ¾ MrUø —½³¶›\XZM%þ7ßXš Ó5)»÷ù¦Ûâʉ« L¢a«•ÆôñÄò­[{Õº7ÍJ/Ÿ LǨ(œkV°´êâ3„ìa®¹…Œ.ßfͰ›>ÚJ @Õmd¦]×Ó _œR¿”ŒÈú5*ÃY«'‹}¢Æˆ’‚§öÀ¬•¥¨}!½)Zâz)S–`ªQq«÷~iÂÍd‡€ÉÀÙÍXIY%©©k±C1Wy¯2c†Ïà¶%!SËÛ*Ñ“Š®ÁÄÿƒeëdÜ@£ùÞøËÑŽ L$Hÿ)yl¡Q¾¨$º ë,7 eBŠíäã°‡-Å)ÑuD$YœH÷íÏ”–çhÊx\îALŸ‰Ó/ú0?É÷ö¡p¡fyòú Ö,í ìPŠh…žë\Žc„4#¾±ÇÕ«R]\®"?³qý˜^p Ãï;øõsÚÇ(¶Xz©^µ•ƒnbVŒd…kýINO1|˜T«ºZ®¡#–ç›–Úxá–=M÷T5·à¼}É$ä<$¯‹ìÍu!*µ´ÎuÆê¯Ÿ3¤®©XÇ5Á™¦s2=|M.Ì^H­£ pšØŒ =yX–Éܵ¯"Ø EÑ–ÒÍ·RÖøáÓ)Ë'0ovv“Wï@—¿þ$J¿%?ÆcP¾CèÈúê·8½E¶­ÏG€·ÁWDZkhzËc>ßCY䆫.!Wø¬zqO5ðSð/Eö¾#t~¼ô½Ûçï\s*Šy—T]¼ºGÞðÒð…hB¹¡t¯ê.z‰2=q6¡e݃‡OF9/ŒÂøÍ¶ìqßz`d3¸qu^ü¥Ê¾éóÈøƒà+Oë¼3¿{„íF@§“˜[Ôú¹;AÁS:§BÒâ—¹ï‡Å6‡ÂŸS|‰Ù'EÒlnkÓã}Z:;*ÆûtR¨³Ep¤d†|+þþ]r#fô‰žƒ}ɼ͓p4®Ï&¦§ð­nñ‹ÊT‘C?t] J„„Þáç–T—øÉvÒí4Ãxƒ·éÃ…¿ÉE,‚·B‹òÆ#À±I;Ãóš.á­H›ãÙ’]ž›«$dõœ339dIÑ´\·AÓ»†"Ÿªij5틞ÑÇ!œ¹•n+Ñ<Ÿê¼Á^ƒ7/rq%¤mxݾºõE¬ŸUD:î‚d¾ÇŽP«ª.„=Ãw£ªýê$_KïSéH$ce6¦óÊ#röEÂ~’•ÑæºÅBBûŽ3`Èì,ôBâö=)ŸÓ›íd8C¦[„EðŒž!Ø ø v€Ç·õ.rí99‘É|Q§Lk–³YŒfÅ«ûS Qµa™¦¹ô]ï@Pd7@r'\_Wï•ÓAðY™ùƒ*Îɉj]À™é¬ ä›Ô³ë‘[ ¨”…«‚ Ž(°n륕æu;z}/Ö˜5^¼å¯4W8®R~™ïP×Á‘„h•Úõë]Õj(Þ^ïûâ%¼PíxÑß Ôv½Ü{ìÑ–ß•÷ $é®â¹ß>Þ°jÓbà6}½fàôw0CJ”š–´%)á"­€¯áÄ2ÄH°"Á í®[UÎLÂùÒhÓçø´ÏP“è ;®eš}úðA+–s™¬ÛoÓ÷—±F;LR —„¬†Ñ¬âÕø™1 ª£…º¢^aÆ×l(øõRÄ›ÇÍð½5pÁ­ÓÈþAG†×!÷—KÞ.vH=ܤ)³æ¹éÄçcoûrÕå³<…ú<>ðÄj®äOCNlZçEÙãf»yV—XÎͺdkuD¾y­ØÝK!¯œ ý@Êæ4Êê—Þ’Cj¦3Ö²¶’S.âG²XÆRØbÄÔ>÷È%RÝ âŽt}Ö·<½ÅÊmaÜû>LÄfAÁ®žn³ã7—qù9Ì«wÑ‘L¨õý*ËãÛq¼s’vøð(Ó8²ùÄÌ-yÈl°ÀÕ‰à»j9ØŸ÷rr•.¹? ¹‹ÕÏ ,‚í¦±…K¢hé_íªèÞbögÈË}ú¤¥¯i§=±6¨Š-dù`¤yžÜ.%66é4 JéìcoÎ=$8|vP®%TAš(Jduôôé(2g§Î”Ž\iÄð¡˜Ìáq}ÚEgòîù‚b ’ß¿X;ïéÍ ±« %Qô¢sKõ´}‰zôŠ#‚ó|äwéÚ_umaÞ°ù§âé§ãG¥¸-h+½Õ#[2\Œ%Õ5–R"²‡¿¼eñ¤÷ç¦áÝ´ F]³,œÆùʨʈ ,׋ËVã ‡zJnJ9 ±ùÔ»´Ì (¶I³ïäÈNžgÝi'—s*‚òû‰2Ú€Ì&€>¯Û c¨Ï¿ðn]±P‹°*#o2¹ÄŸóÏÍÅj…ÇhBO  v¿Žßg¹5঎5!Ç—’áDì@•ç?W}],Xc¡þîÏôh…Q󳻩çÛáØ¦P´ ý1½Ý«cn­iu3æ‹ÑФ¹¥­üç3 ®¾{$AœL°¯ñÌp©¶Î\¡v“õÒ­ÉÚ·Ùb=0|âØ#Öþ\íab<Øà Œ‚UÇ©Á6n Þ'Ð-P!ì7#æ$Ïõøzmû¥XŠÄ}6ŠY[¸‘[ɲÝmT~;Jï…ô5lï´XìñÀ­Ñ¹”[ZU3;Ïäè}Ùbsz “š³ó?ôÑ® VvÞNèÅâ6¤uvUN&n홦!ï"™„ƒDF·ãb*œ ïî}‚z2 0ä(‚ïwç#Š÷”Ù°ç:c4ÇõØ›áwèdxí³ãß ?Êš{+óQ„Òdm‘XãjñZÙ<'°ò6M#×M&×ßßà¹ÅfQ¸[Ž)ÕCóYZz›kpO!†¯¸-Ñ_yJ8‹'èŽ2ʼ5&[íƒ+`:£ºeUˆY§Mm"‡8Æ8ó}(ç8ôª&å&Ò5~däÔfƒ/">‹úß‹ÀK7–V…á–éS^MôñÇO†¥ò<Ñ­ äd“.#Ôö^_¶Ë/#…–&Êp:ð'7þPÇ¢ÄR£åš““H”»QÎÂ<x7EqßwÁÑ4íñ° –C]ëxàîzF Ï*=_’v—i“EÌ!„'êè…›ª›½ª<ݰŠàÛÅB`Ö)K!­š[êš¼£^ÌPÄÈR¿ç86I\á}çÈ̼(ê•`¢\užƒ.$;8žqjñ8QfJpÌÓýÈlk ™=n;úL<Ë’Z3ˆå×”ó Ûn0ÍðgkË@ÃeŒ Bk†ƒ˜ø£m¬«%7í÷+=<¶PC«1ßc…\ôZ¡Ã!BG[×°™éé/?<µ8Û{¯M÷++de65)„SIL(N µJß_TíïZY ¥‰-ÊÖ^”Á*¤ ئ½Öñ2Yâùœ yìá͛ɵòã0×ÚÄ@°YÞ섚BébQ„} Ñ³Žø#*<ºWîéäq]Çœ_$*U&ߘrvlE äª:Ì}3oOÊÃ;H´A0â¾Yjf©>Ü"'Q EïZ]SÞ½2ßF¤™u”Ü o3‚9cóIÕï¨ðçØ÷äU¤gàƒš‡ÕZçV¡ìÎþ`Õ2Nñ‚LrÊ~¸\5*ý‹£]P¯Tsà|é´|]AA“Z„PwŸþázzJ—TÖêûQ&ÊÄ—¸(±cCªH[ùÑh^m,˾D•ˆ·{°ûr¾FZÊŒli!ŸMK„Üi’+œêÊ=”ÆI2ÃÎðÑ+‚Þ»-ßóBë>6ù?ÎzàÔ'ˆù Äê¶Ž¾oº»>C÷}cp^¯Ó‘Ïä TÕÍj¡ò–%ÄjŒÌV¶ü¹%ÿmyñáf{õ•ÊW¸}™#á‹Ã¯¢ÈŒ6_ž ü”*Ö}†;Y* Ÿ2üòd xˆIÔ5¯š˜ýÙ‡ItJƉoÉ®‡Ò…ŽNCƒ!#q.TŸ¬7ÅD­£‘2p,(/ 4-uVåܼ Sí‡ÙÃ8BÝ\â¬YñPI$sƒïG%î¬?Þକøù8½SðK#©n æ˜îv€ç;'ÓŽÄ>!Tcl]>ÔŒÜîåy}Ôz£®·£/â'ã´¾¢Œª¦µØˆEËê?ò{2 ?yý6xJæy)hÐ÷ëK¯RߥÝSaœJ¢Ewo+à”žÒÔì‹·1‰K…aÔ1i5ÇØ{^¸&õÕ,°Š¥x*‰ÚÁ¥Á”?­¦‰Í)Ÿ×²_e„D®¡[õT6°Åœu±%ëõÌ 2I8bÚÓÜäÙ¤'—mvˆýä]÷"“;Fi¢cå°°ÌEAiþ¡íœØí°íÔS„Ë<Ð;Î;¿go€µÙ‰éÚa¨ÚW¤~E¼•Ü8I7œëþà$;ÀBöѰžÏS(Ñã}„÷‹ 9^u«~îe)CÀL c›b¬ ¯„›€ ¸4%âL¨pMj\Ç3QMÿG18”|ŸØ+¶hxo¶¶–LlòþÊ©¶a˜ÐѺü6O°æ\]·lí¨d÷OþVœƒOéLº¹BŠiß«_*ûÝ4”Æøö?‹~æ‰yŠxß=X•cy&p¤æ×¯ðŽ]Ô´[Ôµ¾·Xx\Wz+(6ëò^W"mY˜²çW;Ùçdg‡föÝFùo w ¢OLsbÃÚ1saÏê™…jÇㆧîQê˜ü:Ci[x})ñmÔ›•Ó+S¹ ‹Ö`DÇDM¾÷EµIœc¥K%U²-ý4§T+UŸRæ»áüs™G¿=gK" áú9ÄÆ[|Š8Gn^ǵ›E¡D‘Œá_›ËÚ;=Ü¿ÙPwd®é))oÄ*ŒÜs”8z[¨p:9GŽæ”{˜IhxI5¤~RD ñ¤jYÔGäH/¸U»žáî®_zµõ3ªÜ|ujë>r6 ‹¥”­@weÇŠK9+èq‹Î4úå—0:ÿ@*ùÔµ /ý ¯åPÈŠé'à{t›VÏ‚s2ܪ¯QÎäq–TX7Ígr rç :ËðF< #Ö¾4žæ)Wüa* Ò‡ë9`IzG3!®|Ž91÷r3èn`˜³/„[•@oÎt¹ÌDZF¤ÙF™Q­sT¦‰\L·HEÍÕÞFkP‘õN´Ö˜‡q ‰+,e‹Øå_ƒž5ScË×=ÎՃΦÁQÁkP{6½7»’‡ÐÁ<ké™S!ˆwî.ôÔ®kè`΃‹@P­'ug¯„šfö£Øe™W+-Âe”—_Ò*“:Xgl]¯Éç=s]ÁOŒÊ~Ú .Áb9Rd‘ ÌñÌ vÖëų^HüiŠÄè5Ö[7äyãoçd‡uN™X<îir$¢´Ç”Š€Ç¯ÛqA?‹0’ê:‹Ç'û–ÍgªèàK*:ixmnÔMp§#·Ø`V³tkt‘œÉl>p´Õ„ü¸‡× Pqtñ¦S_fkŸŠÒ+_xø%ž«:w\Õ¢¡°[ÔÜSk!:œÌÅ 0„›¶G}*Ñ*vÚíIƲ¸Ø±ÎªŸm#Y™;2gƒ6@—{5CÊŽj¾ß¸º™#0 5ÝØ:q¹}m, iJþ‘±ú=P“ýÓÞŠ¸K“ò²ë3ê—®å”àç!«ÇìÌ¡o ™,4êyu€\ë;9Yˆ”#ÍÂøM’^¨NÂNä"B¸lùsHîïˆq>¢ÐÏN—š b…×f¶ Î|Ñ$ëP°øZ4òO¹ÆÕxX\QTŸP|¡"º}Îq0|a› jVU|å!&#º?³Uéb|ƒCµÊ&”¾”Ö4+O9„2½A’a%;Õœ} ìdêsAÚkW'D>ÚýÈ †DÓ¤‰¸{>&¨Ñg2À”„ß¿¾©J6‡˜ˆì-GX¸Ë„µ²AÑV¹$7>2o¶Ÿ’FÃÔ£Éõ*¦‰O2’b±æÀ2±â+Éa<Ù›qò`ûúŽ ÆæáÉ»©æ÷nç¡1¼yŒH×÷Õoá?Fô ´†!¼ jPfö+DÀ¬96@¦Ë…´Ò‰ùÕÕNŒZd¶š1ÑöbŶCG+“©à–à E#wŸ GAù =ÌÜ QÊós‘IS¬!ø^¯Šµ>ÉRqüјRðÄ[žŸB‚ü”A#²Â]³EkAaKµ”CüRÄr–Ž3õœ}í庩20åfîyßdJ9"¸¾}))†Ÿáé{®ë™{ ÷uO<"gŒ\pÒpáüB•(w‰)!” 9yYè"… ª–ÿÐO΃®X"´µø<ø¡ W¦¯½$k”·Ð÷\~/©áû$:ªvs7¼V›·[SV*¶Å‡F„‚ÚA檉6ì’Z¤ êm›@HêÀþ¯¸‰If2.ˆõzÊ1„â&òÀ޵„‰°¤eCä}…îÏíu[ºø®™xMúT³!—ù„¤fêªtu[f2K0¸Gj´ŸíPüˆ!Ƨ›ôTÐ^ûÆÑhÇC^É¢8.ú¯ûx±)0äõcª¦ E·1%Üï„G£H I£˜ÄiUMxçàð¹Mo¶Fa¼9Tˆ¨Kzó­íGã"#Ân╲E‡‹èº`÷á‡A–éùQ¬lü]~5%˪î|lèÄòÞf`æcsµŸF+Ï8lmâfÅöa|‡Ôc޹̾¡J<&®ãå®îP=Ìy'_øöÝÚõ#+2§çA3$‹®Åà”9Õ-‹­V7}úæ51Gê˜*h–kû†îÔ?×Pø|M£7b,/˜ÞøàК¬>æjf“’–ÄáùÉ×@õª@•–k b¤Ð‘&‚}à³¹Ûè#2ÎUbŠö£Åž¹­¢U‘7·¢BÊçwsª¥\Þ¦šcØALÐ×ôÝÙ£wÉC:çgôN›HÊ›—CR3;êøo˜`Þö¶Þ™ò©e$f̨. ˜e´¤Â(t]$\YòO°£Ã• 3¡Ûú±3FëRƒÄ^„Dç9¤;´_»?Šñm(1 OÚcï¶úbÖv‰ƒÏ+ü"³^˶q`ʉNÒÇÆ×=èÓ –êYi[)*ö³M@û¤u§êhn‹/Ñ%'ž¢)êzz¨çËý…&à;å/„”B#é£h*ZÎI?gšÐ“Ü ÁUÙ¯‹Ð§qGgùÖ—Y(ŠsÝüØA×ÎLTU[æÏßõžE2}épØ|Ùæ˜Q. ÓV™Ã¨ ôžÊëñ\bûW3¶f÷ÉŸ(t#d¼}‘æ~1sôß&0Êu¾2ÊVíVÈÙbž"<“"«]Î;—\6ø•@†H©%·‰»t¥Ÿùr¸ßO·¾½KØÍ×òѺRî1W96&àêÉL[Çtî¹A÷ƒÒxö“àµkRŒÍ·XÎ7F•|{˜ŒƒéÎGÞ­­ßÌÒ!; ³X(ÊêÙu‘³š“j• c°½¨´Í¦Ã…zÿf#çöÊ£>N"jõ‡I.m[ëD»¿|g-Þ{ÀŠSê¢$8I÷:)Þ%*wþØ»õ÷Yå„ÒRžÞ1·²i PÖ!EÅTÒšß-93¼…•½ÔãƒS8œZqjú°>šÍ3}é~ˆ‚ãfÊH> Ñì¶AØ",ÃB›üBÙUdÀc° .¼úM¥f3Lâ. Lf/¥oNR«¯ %Pl…®ÝýWó6¦j'9ÑÿþÕƒŸm‹4×N±2ƒƒVûlÚs· gY‰.KׯÀÇVJ/d5k½ýB##¥Zî•®a%*Ö¥mĉØpõÈ—)ãŽld®ËZs˜É¾dö.[“/ Bˆs£%ÌOŠ9… M÷¾!¯Í ]~b ™¿ #™êXó««ÄAæpoï(L¨Ùpëì7ó³¦\3/í–Ï®»ÜóäÚí@mÚÃa_;¸…‡q™UÛ»ìº V úí™<ŒºL²Æ‰p)ßmÚv —¾Òd¹ÖÄHnl\ùÙÛW4+ß륥«Ã°©yéò0ªÊs„ÍyÈ̼šŸLÊœªua U‰†Ÿå:¾È¢W<ÆajüzgÔÞQ< cô‘S»ƒŽx¼çÚ„«¹ þ$x±Ÿk?v¶z{âŸ^&úFü|0…†;@*#Û³)¯|G_à–Æ„…È1·…3xèh䯞Z²*yTg}Þ-µLׂ6ý+³Sƒ!†‘|ýRµÛ5Î4á§øˆ:Jçƒà h£Á€úì­„&õh:KE4lÄã}XÕîÌpµ åʭКÙtf©_Žª­ÏeaÌ¿ÊæšÚš:Dí)á§õï‰×åK3µlZÝàV-ÇA¾(p9‚Å+£ý6­JN}rÀyÌîÕÄèyßü©!$®>ãás¡F2 …H1$f-dNo]7¨D¢ðuá˜ÔFtËE×u¿}Iû`R›Ü«2꜂fFW‹gϱWR yèé׫xûvÔíi“—믻¨íýI×9i:ß¾¢à²âŸ/Ë.\n÷èv`æÜC{6ŽìþäòP½8õwh>ïˆ-MŠ‚æ5ªÖâÌuÁÇ Ç£¼¬…i"JÁáXxS†EØì×âÞ1X å™Ã)†¹Ø`‘|ìW7—Ã>2šiªÙ‡'m©F—o÷ó¬ab¼ßÌÓßíu5bÌ,x‹ƒ·@Eƒ©Ðs•ûž­‰q¢|qøÇ„ãAÉ »Çqû€(#Õ²¾Â‰¶¤—ÂTÓdò0Ýi¿D¢Ñõk»%ÿ†7·›€ûÜÔÎßLUÙ¦ôMÎ`Yxc;ÝÏuˆKƒéYŸ©I€j^f›‡q™ ñ7[CþH,<0áyÛ È}ÿãBÑv7‡pRL.Yª7‚åIJxÀŸr ꛪÎû‘oÇÛ+ifâ~j˜å"³¨¼)(Ë÷ µÛRšæÇ÷M#‘XÛ]šÖŽ•éó!Sª3AÓ…X_zçbZœð¼òPðœÜŒÎƒûöµ‹£–%q¿ ‘¿S(è«>Ú ù"6¢)Œ>D?kqþ Ðg¨…,ÇgKüX„aŽ"j— «ùœ$ ÜÙªe#‘±ˆIG»÷A€ª³ÃÊ+z*%"sæóÝ›–¼Ÿ›íËCåË·øQÕuƒT¼RÂq“S&l‡ŽÏ ±„aLŸµÍšÎixN²tš–>¦ð 0dŸ¸±Æ‰eDàÇtù3h,T(¡½Øiõ£ÜUfÿ½ÞD·“YäP}îéý^º”Ù‰r®wù,C!Ú -Q&Y2'óˆc´|Jh\2lzbs„vK*R †O‚Ä¿óãÇÔÏ4ïUØ#í/õÔùƒŸ• #‰“á{o™]F "ô´\ØñÍa4ïrº añ ®²KßÞ¨‘©ð±rXå,(ÜH$FÛ¼Oeu¹"P›OdDEª¹ºî@ð©ºMoP}»X}l1#A ‚:¸É-Ôfž¾Œkn¡­æ·nlU#&щòá€{ £“ÎèW3 PÍ£ð‚E(ÚÄaE¯–B˜Z%M²£_÷)[jèråYÙç^„9öÿ $÷ÛÝ.Jó4?=ݼ'ü€¬_ÜHž ´ÀÚËf¢©QîóΧÎwceÑxAq"™yEgñâËæk¼>å´DPÊÓäánvärÏLýTà×Ð÷šqͺŒžO_'Om8m–D*Œ—7MÓuGoxì¿/Ôï´éä‹>›9q›­1…³ôû"C­¤ã˜-¿bpP9÷͆e)Sù ÖÕ"Ã’ó« *1\÷(žð”[mÕï‚䟅ÛèË‹ñÅø­ÜFoçrîzåÙ…ð“Åín5vÄ›N—”-ñr¯—a›N`&öru—É)Ç‚¬f-i& oûÀ’…—Š{Áäß/¹™VçíÔ{ (Ú*ñam{ _f8ð½FŸ\ï´ä÷ÔKäX9ºáî1RÓB?õïFo¥2XDxµás@B2°Ö¹íÔ[IÚêŒní8›5E:ÚãW?g¥b6Ôœç®ôÀNµž°®x«ýe}î|Çî ôÉú, ‡ˆ€¥áïbù©DC!µ¨-›« %—]rEšÜ;¶},2ã†fåsÌDÛšLÓSxÝh´¸²Ãˆˆp°nðÁÚõg‘.,J‚+Òœ¤k£ØúùAiH*j/gUÔJáÌRJk^77ø3….œÓ8Ào˜Ô]!»IÎût·ÕñÌ¿JÊ›`£À3_Õ5³Dq?¥(@móñ(â¦+,ù‡¿{J{€cF-í{V)ÌnÐèâÂþOÑÁ4"NWÙ_ö‚mHÉÉA-¿<”mrÑqÍ6ÎÖ˜t„}R£ðyüÁã¶&Õ"1 âU4ð9è æÌâȳ: æ$¨ÞGb:ªaûo¡3]õ©Êcbéy½T…\1u&>N²aöqŽ®RÉÚi?Õ&ƒRÌ­Éêk ÄÍÚxDNV|ïfË|h¶,kIX\‹)èzU»´¥‡oz¡ßš«ú2ÇúW~ûgõÈßFýZø}]þ¹iåÏe ZZÝ/r¸Wb jÄǺ:uzülÊJŸî׫ûLy|úZíÝÎüvà¥k«OÒÐQZóºþ ›ßúD|ZC%nƒÙý87u’ýùzL´5Ú\¥6ÎgsÆE¾~Z{ªê,ߤgÂZüÁômæs†x•%ð•UŠì*’chƒ™‘B1ʾffD²^÷ìBDU)6KXý#mœ4ؾtJpƒŸ…˜¨ŠÑã·¦ØËß`kc:ŒØ\ 6ñoYv×xˆ§G€æ¾:—øÊÓeóî† ÓcÌË6‚Á>YE TlM9à67šRq©ÁÎ]¢ú‚j€ËT`D«rœ_U'Tn¹›YÐF@ƒŽŠ×ÂŒ¸Gìu°8†Ú6âØÙÚdÒ”RHeô¥žýxh;ÎèµÀ'ï™ÓÊ…ääq)kÁX#Ú—Ài›"BÜ™L #i¾t*+åà…àxaœ Ó!Êݘ´®"®'ì"E•TRÛ’’`rët˜#æ1&ëÒ†yóâǪMI&CIëÄë®W€«)¤Ä´&´5«þ_l)³ÖÔ%ØûÃ'#n‰l{’oY‰Ûf!%âiè Z˽’73‡º‰Áß3‰5QÄ]×Mܼˆ-”œÜ?¹-û ë20Ž}VuDÜ.–¯pzŽô¨Â{wÊ+vu伡_Ÿ2ÊúD•RÅûuPŒ‚ÔøJºù›¨åS“wÕ‘3O©2”ãl:NxÕ¤ˆø9,õYÄ5…îNúÁJÉánã©?å.™­£µÉUº=õðËv™KkbeªdZYÄèìCΊNYŸË²ñÓ«Ô)°ýýg½‘à}IÈ…«c¨/Î ×+ï ‹1ÔÕ¤?r·\S\Xd;0i¼]»Rˆ\Ú4Ô(Í®}:`}"Ä¡?EË±Ô Ã.¾búÜ36ñÙ‹Úö’ð‰u%»#RÉwFäTöÕJÞÝ2ҬłÖûDhqèŠo€·ê¶# ‰L‡zÆi3tù.‚ ‹¾«RU*×µþ'¼Aúòùœ%#{VdF©““ê#¯v˜‡@ ûº§¥­·³ßdÖ¨èU|®”/ESaŒÁÙÚHT¯íz(þ’÷k¤äGWDP:V?®3È4KÑø)¢,·àNÛës\yÜ‹{¹8FM›)³ç³çùÒñ–8\ùEÖ¯eLòKUü|ÂÒ×ë]`1PþÜ¿(eÅ„7V)†U­R]íŠhøâú0ñbŠ˜žù#0§ä»ð[ò,VŠÐžé «QòO•³¡ø"RP]Wß”¦UߪüÇMÕ&‹ÿ ž5 Ô'1fw“¶ÃŒÂÒý¸ÄP]º‚ÛÃGö™ÂiM2äɈ%òï0ÑxÛÑFR*ÚÃýšëµ,ç¬ß­zmƶ0¬—Ll áà/úigGÌ+›É¿ö1¿yf‹,Ûj§’¹0íK ÊÕ?5YP]&ÖÀ4Šk=Þ,ëÑõ=J¯¨Ö·* 4¶“=76.Y,%L}‘-’„ó OÖ¹„„H|¨Uš¶`a˜Ñ~ᤑ™«(ñ0FvQé~œ£àp:6„ièà gpC£ƒ‘¨aè|ešÄüc†³ë ï #ÛI'ÆQ*9¡FA Büª%0ÛMrWª›×º!¼-HÝ×-îáqö-›„ŸÜ(Š«uÉ" í¹Ð´Kìº%^hc4_=@ÿnØÜ7vžY¥¬Î“¡5:Ò×T˃§Ý>Ç<=§P…¸œÁ[$nŽÙleËt3nD/0=B™ÆëüöAûô·àœ€…(X/õiUÕªoù|2Lé/º‹ºCòºvÇ“÷•е„—°ßoЉ†‹æœAj1¾ÆqÊ·Õ[äвªÔš5ªØÓ@YiÔÇ:⨡J+¥,hØý„ÿ`¤hdûÈÁÈ1l/â 𤛋XPgæÝ‹j¾EÛ»”Ç$ž×³|}Ï#²«¯šå=w¬þ‚µ,zªíËœÉÚB¹nþb:*Zh¬Í9’QáëîW¢¥Ã´Á÷¦q¾å?Xˆ¢;®"Rò¹BGH;ÐoÐtØã²×uói±‚ôøüاµ`Ÿ~ ^¸©aC¿cVƒªðˆ~>ìxršuâÆS$b½ç"qÂŒ= aáI³Å™ß½!ŸíäDß1H«Ð.3ì° ,Ž€Ün¬VÐtt7زîÀ.Iùu¡BKCùW¶§ç?÷ ˜ÝÊV£&b3” æsê6ÿãRŠ—ØG¡ä\ n‡K6`øþC €Ýß›äçð¦ãd®nx¼N—‡‰ôƒ³úIq~.%!¥ýÁŒ øÈ;ÆÈ„‰è›À™›„/µÄõñ+Q#(šXu=³cP„‰y©÷u­Ù÷¿g¬&i9Pœ|Í_Ŧº3·HöÉHØÕê(46iH²¦î“Z~ˆ­Oñ¬‰søõŠ#hÁ§”Ö…nÚƒl¼DĉPö48|ðG×9® °è`£ë(‡°A윦¡Îjn”<bý;„m8Í"ÌUÃv‡Â`ž¤ôCioŽ–ÔQù2±]FÛú®šý_Ûž$¬Ýp3|fÚuÅ>O±è×:zoA7²Ølœ¡kê„Öhû×re‡µ:òp†ÆyhÅ8wO%ˆèEt¶ö¡Ó“ãà9õUzo°Ùôì5ˆOõ£ø#"›%ILhù:Ë9þCÛM‹ý‚Fòh-=ž†ðìi¿$áüçúdEŽ Ð|d…²9–¾Øñ½’×)b9!<Öó®¸M0"ÕžÚ„E$mZò¶­µaÎò#ÇÌÏ ]狃øMî4Üé^àŸé™6•ë^T÷¾ãý7sÔ.£^¦w¸ Âh…Ïü aŒ§´œ`Çu(Ò¹Æm%èþòâ’‘ŠàläƒüÇj\M¦èˆA›˜ÂRò:”iF Å,w°ö š\O!”J˜eyÅZ-¨WèÃGCø«­[/¶™HæðLr}ËÈY1Ä0*š'œ:BFMiwßœ"%¹”i£“¯:æ¨PÚpŽ’ÀäÓà79K7ÎŽÊÿÞ&¾”‹Ö?¢³*ÑÍ:d*ÖN»ÉñŸƒU·kXæ?çiÑç"€(<âµl˜ßU×—_UÊõŠ—Ä8á%ˆ˜ïGF¸ƒë7G÷jÈÙé X¼Ô®Qð\¹œe°ƒnÑ/OÚ|Üãô x·/ãn'–ˆ§ê‡^Ä LøºK¿ ÀÀ8q/¤r-!B*qLÄÔ+ÅÈGMK 8e:Dn;m¤’.aGÚ_—еþ¢¾v“Oå‚'V<Å3Õ»pÑ0Ÿs y¯H²1Îõ˜h¦R°æÄÛâÆvÞ|±­Ç"Ü“$­>6|?míÆö ¼J×Þ¥^:%k‰ bÀëø›­–u©•ôæ›i›mmEé5©öqJù*\=ç¤eéç drvºdò™—æ<•4ÎŽEE3 9ÐŒÊ,f›¥Hžäѡ޲Ë"µ«JöÙÎÃÃêm±‚oÄIx2”à°¨í_5êŒÛ¸ëá–NI\ ›ò– \;À;zG÷–ÝSÒU¥Ìñò‘ð… ‘ó‹Mw1G!LfîçHFñcuFzÕ³w¸ÂÉ'=_êXIv Ʊ¢=¥uP×V#uº—ÃuuÓŽŽÓcõ‚WàØ­qß;¯áiŒ+–+l%3¯€ßjK»Ò)°ð‘x×>­ôð#ÒÙH“°uÓmúÜfÒÄ»|˜ía¹dÿ!,ˆ1§8Ð<é¯í ¢ýŸ)Öý<ˆœˆ.²ê¡ãb‹çUœ²½_€ÚqèJ=j0Ú]Xôò ˆÃY4锎ÞÚž˜œ#çš7ÛNÑ鮿ô¼c£Zæ˜zÆôhç‰/Aú¨M1•“–"3yàéaKBÜŸm†?òÁLÌ+¹ø¥¬@ûQ¯z·m›bR„øØbEW »ÏN˜AŠÑ© 'JÏú÷s±óõ…²¶{9Bac«H¡áQ6ÚrÜm`üwŠ7x¸Ø›c &ÓCâîÆ¡dÊXÂ{ÈÃsG‹@­¡"ÌáqÄÇ1(Þ«5«Ÿ¯()3ùóhŸŒ¢gQ)ïÞå@ê‰ÿS1K¸£ð )@‰èH­)[ßÅó羃يü@1·r†h®ìÿJ ×Ú¯Æ!ªü(qî¢È3vÆî>°K /­ëÜ\& a’Ã>‚¬J*Í·uUØl4¼XžòbÖ,¢{ ëJ§ìJ‚8¢¯PþÀýߦ†^‘Ÿ©­½êfË€iÃ"ƒ6|±÷¡) *"­Î¼˜Y;ÂLö£WΜÉbŒ}“±\šn°¶œp.xÆ›}ÌèNCxG™Ã€z3¤ªˆFñ­§Ï¯AJ¬§{²>íè¶œ˜kÕ4O•¨×ÛŸ´å)óÇB…UUX^#)~üÄny²ÿ¡ÙSK‘|™Õh¡ Œ( <Áiѯ’Ò°¹lvK[&$ÚTšØõåÚt° ¿¹Î¾üÆLÞOµÐÏjjjtçõàp´q2%ìœÄSÚ݃ü*äÖ2ù *`®7 {ôÓíÏg¤ŽT(móoˆN.¼ÒÒõwÚo0TÍ•û‡ÊÕO+3¶P„ZQáÕ¿.‰k>ˆ“‰,;-Â}T«U#ú§z†Qï‡ IT1îê-¼Z(oÿ&AÝq~äOƒËÑg_½a?©îÎCZþ;ìÜoMù”+–Ð-NôÑ+Ž’€œ´l|ul㽺®K!2¤®ý¸M,žžòàmnÒ¸0G%§²ž€R”“‰ç‰{‡cUŒ]ßjÆÍ7Èý†öcQÑPNÓ’Uy`Å×Ù_PcÈD3ÌY«@ÂE &øn±A^»¤ÛXí063xøë´Y–ÃçlB¨Á'ŸEKÖ%kw€šË8àú$ÿ»+æøÊΉ*º ::·FG:Ê\ç=¥¬Z&Š\]RLð¥m|c²X2~ ¤8³%b,±1á¾”Ä­É zÂÓ®—4ã¿ÇxfFr‚:2h»¦ÊƒöÔôö´:D4ŒÆ|–ÕDV-Ë;UæoïaTåÒª¸K¡ÈLÕ\ƒºDê~ü°+Q*0¼ ¦¢UˆŽÿ^ w¾2G'ܨÅKoôç•bO«R3mÿÇä…д¥6ν î‚p°¥=´ˆÐ¢[NY6¶ó—r+8 C¢{Tl’œA\Æ‚Ýaè \“x¨W%þ iü™60ÐÇØ¶Åiø–·[øÕþt8€!_],SI¦ÝN³·ºÙ^ó†ÖÎûi ùD¯•ø8Kñ£Z‰^A†N1 ó¡µ˜T'j˜ýÑV£­Lœ_T—~¼?ƒF5r¶Äºvezœ‚ó4ü'¡Ø/š4‡(ž¯+ú#!`ïóÍxœ® „<ël¤˜¿çŠÙ𒞯EüØ<)ñç‰èHÜšÎ0÷ÔÍ߉)êbø¢|õœÙd-(¶q_½>Òéè Á}„Òäë;6çùâ‚°~vèt:æu¶¼ógæ¨v`úáPßÑxÓÃ5{‚«PÏ^OÆ0õűý’ûÊÛU³þÛõáÁ³û峌ùõNšÖv—f»¼˜Alìm}(Ø[(Ô ¾3I„;«g’ãò&å^N*nü8cU«ÞµUî^§ óoQKòVË­IDÆh(Iÿ/ß½yaÂÃcÇ+£PÃ¬Ä ÏÀ‹üâJ²ÑÜh8xp»¨S¥ãÙH©‡»4¥v–í2vüZn×$îAlæÿ^²þšÉbƒð ˜‚¤Ùfb¸ØDã·’-KnŠÏUŽÝ]ƒ»¼qXeåÑC…á¯ú‰žÂ7À„ö/à_e#—’ÅÃ]Ñžv¡`ªEMåt©ñå̱¹¡ÙÝùÙ œNt+mµcø»1 2>¤…¨-Ú5Dˆhiø‚½Í10%@™yKɼd"ܾ@×µí¿–öwŸ^⿦m/J×TH{ɾڥ‰hP~@%É[¿uw›ú€"š\¼v¢Ü â]\ɾ5/[ÌDŠضúTŠ֤ݟ½ü:ÛXyYÐ_aó¶P5ƒøBɯ\RtZ¿·¬æMÓdü@Å\ê ?«%Ø1ñ .3ЀÈc]QaDþÉŒô³n3vk,`Rú/~o[x-éIPÖHª™ÆâÉ ’ü1¸  Æ­‡5¢§ˆalí|<‚šì‰ÂÐy²•«‰QtYã=Wñºr_ÿ^Î\ŒÝ M¶ˆí|nSbtãýjPç0ŽëZqÅ‘e¬ŸZ2ôúGš ­çÖ\DÄ^n8ÛÄ?€.¥kö¨ ûlgrzL”½JÚ—‡ÜýQ(«‚.’Rç»trØ}Y*ï×tö•r|“Õn} À\ œoÛûáöól!ísß"ÏKâ§-ñëŸëfÚžmE:Ø} ˆÎ’‰W õl ¼ä38âzîéqECj¶œWoOúC²´øÇ¥[=´æßocÐ.’±¬nî±6!Ýy^®ã •Kr—Š.(ZÎcü°ˆ1ìLxJ±–q ðð˜™ÌÇL^‡¦[ž*$?J""€²ð†èމ^_"€ÅÀy)¢–Üê˜4‚m»­_ž—·ï‡ø;·þýöZf²0 —.sIg)P¸q®™!˜Åà§oüêéÛ—ÄãÌ*ñÖÅí:/6Å‚y-,ŽBŸ‘%òÉ(à?ÛÔ]ñ’õîìf‘ˆâ,ÍÄ䜖€”O3Þžï Yé3Ju±«ü¨¿æ_Z£ Ô+JÙñG÷ä>“rz›šÎÖ?V–g!äö$Ïv5óýpNn¹z5OjPC¾ÜN(yϸÒýC]ɬ¹mߦ¥*…6kÃ/äZåTœ«É0]it2‘ÛËîXË}{f¸XÀË; ¢´ôÚ3Ï»…ìOîÖ¾.T‹ßDtšôi §Í·ëªÊÈ3¼ìнXË:×Î…+îê‚è¢ ãFjÙÇúxjèe_6éµ°ûÏê/OÉÝ0ÄyÞ©Xy žic.äôã ?È:Nu¶knå ^Kð´MÌã=¼S­ ñòºÄ\Ñ„ÕqfÞî}ñJGýÆãènù?!&„²†[¶67&Kœ]b„Ð!QýÇœñkBNàŒÝ×ý\÷}aRÓ»’Í´âÏ8ä4ز#2qœðø$ªÀ¸¶ #$|޵oý6A$©$ÂéѲéXü<̘⌸šßç‰æÑ×®X¨q™2¿[ㆹ‹!ÕÇ)û“¡'áº7õ×fT@–Çm”1ŽÖ¿öÅòWÒv#Ù ZåÙ¥j¯möþJÒ@9ÕÔ ®`ùÉðÜUtZ¢Ô ¿˜ÿ8³y¸³SßÿSZ~\oíêl$1­K×è`Æl†uòåiÓƒ‰‚é«2Ê΃ýöqšèȿ܅DÊüRT@cÈŒ[½ß̸oŒr:LÇ 5s¾"¶¨öqJ£"š¡,Þ©²/¤>;㼜‹E{ÅZÆ)´94Ph¶@¼Š¼U4àu•fà@åsö!œ‰V/šÌ*(.‰¶u¿(ä"lðC’ƒ«“)މ›O„w|Zê&ðœ9w4±[Ó‘Í~ñ²âßĶL=ÐÔÀøÁ+Ã6~µÁÝ‚„¼¹—A]ìïzQ,ï»?6Øß÷ÚÐÔãD}ÕPbz@£IéPÇŸ‚â˜~CªJê ~¯HsÈYlóÒk²%ÞBl3ïöqœ’Ì8ï>È!ÕŽF3%’Êš«½ÚøÒŽk¬Ó†+iÂUoJÁ† ëˆ8òš…‡REMe¬u¼eh'Û¼4¥¼ˆØ·Û¯½âaýUªgNÆÃjN¤$id½1(ug0 `lSîž„ii‰ãÈ}‡‘Ë(b…KÈLxa_æ~j?)…ÇÄbÞ-l±¬Ûzo#RÕƒ§Rõ£{y“‘uïýÛÒÄÒ+?Ò‹È{ d®È¥ê'ªøµ"„¢wæß–€[ž9M7´Œm¯¹/ÁR¬ÅuC™ãÐV_TêÏT Œ@>‘uè—¶ç!Nùës¡ˆNsÇn%‹]èbFHùCÞóúm~¯ ¥æ48/Ç/ ¦¤.{¥I«}—ÿW–x~Þiᢲ7%¡.´b’é;O!/—ÀßÌsV½lÇÔ¹½d&Ym¾|}îä®0E£ÚÚk–é¢ùNäôùO¿q˜^‹ù37 Nèl‘{þ…©É)7óOº[“W>¡ƒÄW°x°ù£ñAODì½ÔÂMT­A uÆÞ¢‹Òâ„eùM€mºÕ£¦÷/\$õÚùj{žg0—ß1J6érˆ·ŸIöÏ9ŠãÕ`H™£mÂCò„óKøî ]‚[[päYš1Ìk·{b*lÄßÈóŽÜŽ-¢‚@Ñþ»OÐ-œƒ?AÚ@ÑvS.9¡óI'fjHÛóèÂ=nðæ°Ë‹BP˜ñº©)×ýÚ¥#Òdû/DLíU1©\‘cÎØ›2ƒ#m ËLP!ußLR´Rx¶óÛC«D ”à+¨ p¸ $ŸœBd11€5|gמ˩-ð)Ü+¬¦žžçظq7¯C€“ųï&"¥rJYNóïäPzN!d#PøB™jE¿!5 ·%Bß•:ˆȇ"èæpã‚ör<§ñz‰Ä®ƒs‚ý ÔØþ[`-¡èh÷˜VŒaq¦:\@ÚúÁSK–³ÙßÐ:ÎTIg+H{¶‹ÊÆßŒs®ÍXd;ú˜ùEŽ î þfÀ)@¥ës)È;sþöè¸C2¬ zw„–M·^kp²ÄϾm¶Û¨—05h¯ˆê>B h°Ö±»rCî‰ÖVÌ:§sQ‡™n {saêä@Ñ…4tÒ5ç‚¢‡•‡aõ°¼pÀ ¯tU•,ÿ=÷¨ˆ¢­Ãf®vøæ¦èä¼ðî$2/ žl¶À+]I÷Þg@6ÜQ–foþ°M3¨­Árf‹'T8iòUÀD„}ŒÈ-ü5¾ãÝÙ)MAn‹Ø]ã'æ>Wóp–*mÒ©÷`M]ðbß®%o¿Ý•yÉ”ÔûrÀjZ ®ƒZGð‘H97à0íúǵ¹Ž²ëd½¶m¼Ã>ÛmÍ€Za ÷û¨¾>éM4Ø-¶’ŠK£p¥)¦ û—äiÀýPþ4¸™ à†ꎷ‰0_áÒR§R†“ÛK™^ôœº½7~3êî#5¿L“¦€-¡ù¾?Jʨ82¾²¹XèßAm¤ŸÞÇ1,#“úOþ_ ò¶Ñ\úö4œãkéV«äIäÐ\Û'Güíéχ.e/Úw&D?7»jÓ‹|SE —/A4ÄÕr^çˆLeès/dᬤ]e¨cfK‘ö_Ûš¢}¯_y)GKWÈÏwL¿'×K¶;jÙ§ Ü7"q¾™öOèŒ5‹¬Ú3>ÐŒ×1ê^‚{1`!Óˆj]HhX{˜é“ðô0Íùõäß]U†‹š³w%õÎeì4—ÒØKö"Xoß>B*†‰ÓBÎKÍeì ådÀ:¥À&ª†×˜jàn[Í‹déàü% ]a¿>_Úm䊒d¶_Ùç¨À •dÿˆ6~w¬áB ¥vr'µšØ:o2¨"‡™®¬È{8a%çA;}‘š$áÓÙh–zGe{­›3%ËFÇ­hK{á3p‹µN‘¶ÌÏ=æw §å¯ðÄ"¨ñú‚â#1ˆVà$ §JeÈ“>‘ëÿÁ±ÖËŒïZ·cwP3G˜Qð0Vè5½ËÍA*}j“p~ÊÊ%^˜Îv_Úï0Ø­»Ê»;y­ Ó4Lv»Š¾ÿZ*äy _‹D"¯¡¿v42V2)sKaÿ RÖ¥¶§ú¤dWá„Ã'z-š.Áà­>é—Ùq5©9—Ó9 xb[ÞvÙñ›àVëÒž?áLQ§¶ Q%Í9nÙþc2‹·Í¤|ú|Ü‚®œ† ç†mNœZjȵCzù=»;7zendstream endobj 305 0 obj << /Filter /FlateDecode /Length1 1710 /Length2 7936 /Length3 0 /Length 9054 >> stream xÚ¸TÔ[6Žt§ˆ€à€t Ý Ò- 3È ÝÒ]‚t H#¡¤€t‡ ´´(ð^ï}ßûþÿk}ßšµfæ<ûÙ{Ÿ}ö³ÏoÖ0ÒiêpJÛÀ¬@ 0(‚“‡ (UÓ1ä€@>. —‘QŒ€€þÆqõA.p0 *ò_ Y%‰ÉY"D5ðÌàáðˆðŠ^ Pøo"ÌE g鶨qžÁ  8.£,ÌÙÓlg@æùû+€ÅšÀ#,,ÈñÛ ír[[Bj–{2£µ% ³ƒžÿ Á"f@8‹ps»»»sY:Á¹`.v¬w0  ‚ƒ\Ü@6€_%Ô-@JãÂeèÚƒát`¶wK @ÀÖ (éâ µ¹Ù:ʪ gô/²ê_ÀŸÃðpñüî÷¯@`èogKkk˜“³%Ô µØ‚! €†‚*ÂÁ°„Úü"ZBà0¤¿¥›%bi…$üÞº%@AZ `‰¬ðO}pk°3ÎC~ÕÈý+ ò˜å¡6²0''Çýµ?9° ÈyîžÜšë…¹C½ÿ^Ù‚¡6¶¿Ê°quæÖƒ‚_¸‚”åþpî0;Ààç€^@ÖöÜ¿èz:ƒ~ÃÈ|½aÎ[d _°-ùë ·t.® _ïÿ6ü{…Ëð[#V ;0÷?Ñ‘0Èö¯5²ÿ.`€1)?ð×ëŸo¦H…ÙÀ Ïÿз˜û¹¢ž¬2ûŸ’ÿ1ÊÈÀ<Þœ¼ÂNa €‡‡G (ÈðýwœNàï꣚–à?»û¯ˆÊP[@ø¯"§÷w!n”ÁòglXÿΠCê`ùüM€ü@käÏÿóüvùÿÓþ¯(ÿWùÿïŽ\!ßv–¿ÿ»¥âù‡Ô³+9j0ä„@ÿ—júk Õ@6`W§ÿµ*#,‘3" µC꜓ç)ðé_8®öÙh‚Ööiéïf s@ÀP& þuï ½€Àÿ±!GÏÚy·À‘-ûm!'ëßyå¡Ö0›_#ÈË/°tq±ôÄE*¹âxó gÕäñ[ân.( t kôØÂ\p5–¹OnK¨•‹¥µ#yGÚ"~þØøÿÛöWCÿ6ò!MpäaáŽÈÚÿÇ )Ln+¤b ÿ/È‹„‘@ÿ“‚ïüïè<ÈÌVÈÖþ pƒ^¸‚Ý,! (Rdã¼<n»_W2ÈiFêèoÃSa7мÀHQýÃFî‚<ÐS‘ ê ÿàGž d÷ûðïBÜÎWøèÿj‡µ«‹ òÆú=7È^ý½þ}=‚@ kÜù˜µhˆÃÛ¶«ijwÎÍa̕ՎÈxÃÞ~Óìko{U¬Lʼn26U‡Ò4çÊÂÆg|¨Ù¯Fd.§*å"Pä{×eŽ9ó¾Ÿ~°ÑÚÀ¨ìFÓ"×IŽ´hˆ,ŒÑ™“ f~† vñm¿Ù*¼é€o ïœÅÄt©Ôˆ霎=Ô—†t «ˆACâXRãtW]e½ÑÔ—àØK™¶hÊïžëƱƒŸ?ÌîëMã;ÉW鮨 #£¼ïõŒ.g(±Ÿ’×;uÙ@< ¿O®u0þñœ®å“GæYºß¹ 6'FÚsÔ¤1È0VÛ \ ¦UóAr»ÑÐ0ë:ïÔ&a%¥—†ª¨ ÑX~Á|f[c¯,b2xxMSÄ!Bý_ d4!´ÎC¶ ?ÅRdTŒdšÊhêt«®CO8¸Î zÁÏ'AÏvš?¶ v…ÃiÈ'㟷gîõì&4)ó_L‘è³É jUfaæ¬q9q“þÚ¹9èšï:E¤„çÆèãôùˆòtIfuU·QÒÕq EB¥&‰ ÉËhÞ,T |z-Ô,ž"ô[;¾'§µG\»Ž§ÕõÃ,ÞÊ嘛ÛL%·ÃÈÞ¢Dùâi<¸q/þ玌áDà±àÌr®Ì­ž¿9Y©ŸI®mÌØóí³†£ÜçÒuFÈäÎ ÿuó‚O4íF}±Òßíw·3§l{(5\_ “Y *ŠôÓ‡A*ãø[e?÷‘Gê÷Yª¶5c»t}²m<ûŽÏc|)út#ÐÙl§AýÈùGù 9)ó\¨0ßz•Z“°7:~„¾¿Á¹)åXCï ” ÅÞ¶w"©²ð ϘáesIݵ¢óñE÷£Ïd­µ¸Ÿõ{Y_¢)ýpÓä[úÂý\Cࣧ4¬³öÐooÛÔàµ\Z f„áÓ•’Ó°f’|øéOùÏ5åUox×Íy[ðªZÊ`J)Þ¸<”÷v™;Û\)}ÞÁ®.® ÔÓhgÊ'Ÿd´ÄM¢žý`J^O‡“¬ØFy@ÉË‘Åú’/ØãGuÔ§8¸­šÑ$–.A8>kÂä_.Sl9¢Ne° b¿@3^ ÃÜ¿¼n™Û™4½ 2›ehbŠÞ<=1%‚¤Äm4Á[˜BB>pǯ­™±fÒénöXœ¢®VÎÕ­>lסÏÛIùéj†¢‰+Í’! #N²˜ï]ÌÐ]Ǯʈ«m£¿,#3寿ô÷õŽïÊLeù(Lxï¦ÌÚrÄ:°¸^?ùeÚ»œ@½,åÈžþ½üëq¥evU½ðAÐÆf¥þÂÆHp§eY¦éÙŽä4>êÁ‰"’”nO,p§áÖe^‚©ýõSp¼À Mó€NËùçC<õe‹‹ÀeÛÑ¢:£Ôξ ·9ZaG|O’Ø J‰žÎ¢Tr³ë€$Êžì1‘cíÓÊÏYV^в’ôŒA> ÏEît;µ©Ã1CEÚš; [M-"wíS¬í±òOævŠl˜+»7;©9[ñ?ò¢pS÷¿Åú†ÏwRGÏ-Qà; …Vý¤êÉW%}6c=tÚ0 »?Z•¥ªT4Õª²tvژÚ~Žõ"‡}vÑÚÐ3¥wø]QnÖ=\2sµOÑ7œRuX@R}Ìjæ³ìÑÚ±‹2„Né@!‘äçÚçäèd,Á†Á¡=—Žê †ïæÄvd|ëR¿:Ö-vc­h°,LšñÎ1Q¥Þì;…¼C‰!ú ñq †M~Ü/{J©µÙJ^’çùŠÌ')nÁí1é»_|a.mO²|ƒuìÔÛy´Dµ¾½Yîª š{ˆ¹P´ŸJ Ì°yMÙú¯nê‡ÛôоøÅû‡X¹9¦ M¨f$[ýk¨,®Ø¶¸ÅÝq!ü!í•« vi˜>f¬û(ˆH3wX_Ñ­/ î$%ô:Ýêëõé,’°¹sðÔÍŒ ìnÐwêßJ[¥|QòÉNv2á4áhî}kæ=a/Œw›º²ËþÜ=¿Ö„Þô0Œ ÛAšptŸËè´òË<˜CµÞÊ™‡C^+æð»OÍÌÛoøÝÊY9Õ#-#4¾ÀËFMN(ì¬í¤Yl̰}ĹÏÃ}E+Í&Ïÿ$Í&ü[!,6ÕÛT¶\‚áMÇËŽn,‚­ÖŠ2‰á5Å©þ#ð`¸h¸ v"׫â®e÷9Æ9›ÇŒŒ0ˆk&*âÕH×^-¾ª~¤ßÙÇ»ŸWN÷!–#¦Œ÷÷¹è‹-âß•™¿Ñj?ò§Úp~ÑK;ˆ…ODå÷äz‡öhbø ë·­Gùºy(Å6<*¹ùŽŸ¢>ûWäcSC^åŠohV¿ˆlŠÛ³,3ÐúÊè2ùðÙÛ–¹ç…Tù]|eO`OGúä“È^ã¤'…4ÁrOä§‚«Ø*JÏk—ÓÝŽ\4&mF ‚P¼B’ 4[á`¶jêýç"çÛým™"lÃ˪4¶¨Ã1ä݉L–‰¢ì4Þäï€á8¬c Ò‰vÝ5*l»ÏUºPõ™½æN?IÓ,°â@/Fñê¦uÛ’Iº3âUGVŸí|5“—Þ‹ÀÅ^-5óvÑ}»¿¬~í“…’úó;¿~Èží¸^Ôî Í@ßËŸ>âwÑ™Èß3]ü>šÝ˜;ðLáo%´±¾›Il¸4ìvÎÒ5Ä}*xùId‚³Î§ñR«Òæûs}åV(¥¦hæ§"´³W[£P¹è¹ƒðí©(; 5^ƒ6fœœOŸ…Ãê¥jj×RïÌw¥'üùJÖ´È¿vÊÐêŸù1 Ëç·>ˆwÇ}i* ¨ØyåíŽQmNÄÏwY¤ph7ÙY÷ô•LÆÎFÖ¾tiéjû‹·£ÇCDWÞ/?mÀŠ¢ /Œ;äy£iûp §ò”cF§7Wàl½ ãÑk—Âã„ÏÜ,¾à·5Ôþˆ¡8ëô÷¸Td¸Ë¥)ÚåòÍkÁû”ÜTJ±4Ú¡0œ‘l]S›™$þ°êƒ-ŽÇlCíå\˜ÜÛî˜=‘ÚB­,Róó/3½¬›Û¥ºÕ™”Òr>H<§ûè”ú6(5y@hpG?¡/«´sõJhÊ‘b:CÌó*[Ý•À2k·¨´½—«¸ï¡^_Ôá}KÜì(­lÎJ¡vEäߨ“¿ug˜:m  ŠÁÄ̈›f*e3‹¥éO`þi-…B´öð'SÓ€ØÊHoaÚeí8ÕA éÝî|9{²5aU@£XžŸ'³Ó>\,Cïk °3yj‰VÛÂùs±z–býÑ*Fº!joéð{ÓzRè)ßs‰gy^’órâêW¡÷Ú­ 41Þ/(¬ Y$èç…Øv^v ;–zò]ÁÖ¢®P–§‘Jë]qrîk-W¦…øíÔñä{6¯½åÉ‹º_ºÎS®fp1ë¯nÛS!²/¼LŸîU“£[Û6ç]W¿“E7H•::ýÁ÷ê"Íù1D«úu’ÖVF$ºÕj)9·ó齆Ó×t“^t(Œ ¡›ßNK“$vB÷È´¦°îòTb½™¼DŦ;s0NÖÁ‚ŸFÔïe|cf{póây€î=è BŒz:Úñ„[²Œ×‰’5ghÔö¬¥ú eu-ÿÊó Ëzµã‚w95q ]›m67 ¾âÑrf»-SÁ^9íòòH~åÈ1¾`§¡ò(F«€ášá­ø}ª/A³Ù’»6R|֬Ħ|åT©„»Ó¦QÙÔ|•uSe|-Ê•µ)XMÇpqn§¬á¹ïp“«@BEÜa §A¤(2_®Éš¤¶:³¢W±^`Þf›?Î$Ég­fi¹Î*jÀSSkÅm¨ !xÑçÆÔX=x)»²É§ŽÒ¨j¯s×ÕtõNxok­¹ÒÌyÉÎùªª,OïeZ­Â¹Þ•&ý;•‘°0öж à ™$°‚%ålCM©Z/jçˆ%ü”ÅP™3>bñæüPÔbš|{Kz [I¤þÍëUC%+ž¤†µwJýÞÍîÁýÚf†ã™”„¸¯J§R•äæOô©$O°<ÇÓZîk.3*ˆ¿ êêï“ Ç¼˜¿ÈST™Ó´¯óS¯7nFW4ßÅ>Ö}àµÏíÍÁž$,ÝÜhYþŸŠ.vkz˜=ÄüŸâÂÓ¢™|jâ:£°ýR>+–oÌ å¤íäUcª¹m®°8P J‚×WßFó¡ß²LGL{µP?< Õ˜K Šp"äŠ.ˆ­:ÆÑ6î K‡©‹9<Ù¾eÚîiã©"›#|/êû˜è8ÔDÍÿ•õ ‹È(®Vò"4lÌ(ã)­J„]8zYïNaWÙ6™Tt¶ne2`šÙò‚ž±OÅÇBKÅ÷KþÇõW¹°ì¤HBßS¦€›!a®›™’wÛVTn2Öìþòì’øüÅLá³ç-šcP»3e…mÉ.Dò\<¦ŽžÆˆu¡¯¬“qÑ— A‰@GƒkÇ¢ü²vÔ¡çÕÌÁoiŠd‘w‰é•¼U_R…Ù8,Âg ùˆÃ%ð3žPS}KG0?O±!f—¬=VßÀÄΰ‰òî5=‰vjyÅN‰×÷8çÝl,y‘ •åKCÔ0LÃÔ‹ÛÇî0g²³¯tò=š¯$aG{4‰„×Nªè³>Ø%ÉD½Šé×<Œ=•1ÓŠÓ(KâûÞÉ&ƒÇWì }‡ÆÐ´¢ÜG¸{—k® ºµ˜Â}œÎð~Å"È—S˜\‹»§hS­#9÷¡`w¢¦á-ñ¾ýšiT±Õq'ÎÍ×w»滼bãWé}ìèÄûˆG]å5Æ£Ùµ”ÏònË4¤ Õ”ƒ–¿ ŠæÜ0ƒÃ¦M¨Z¸­ÖÇ»OÔôÈüw#ìŽÊ›¼Â¶©¾eMⱫžÆ3>DxcÅ]kžCyXq·}IýÖÙaü nnÿ€1ù¤j”}.j¬!)yëŒ_Б|å6é £?–R¢ G¥ÇˆÏ¼îqP¤”#¦ B²¾>‡1|`_‚×b$0ö0ʼncyÜ^‡ÓÀˆ4ŽmäÙC榚ËAñÒ%wõÍWu–r‘H†+ þÍ÷nó±Hy`Ê2_äØ½Ùæøw»·ÂÀZ[ù>QgzñÛA[ëY®,GEøÁ´ìÐ^àzŽÆ÷o{¤ƒØ%ΉéÞÍ+¥Ê²©*7²hÜî5¯œîcU, êL1¼ÑúA;.«z–šÐüÀ#ÝçKG1M¨Bór}Ȇ|’Äp˜O£¨:Q/¾ÛÆ«Ç ÕºÆÖ3˜¦GA Ô(zÅ4=*‡˜• ÌϨc„›Ç´ˆ«VÂW#Oóûoumè“Ê ¬Ø·?h„™ÎAª=¾0 ¸Ÿ¬ <+KÜ)§B«Eù!Ü6‹ÅNÊÝÔ¶X?c¨Ëx×ßo/šGáûWZ3"i>·Jœþ5,·‰êG¼÷Üðq½®7u›—¯‡€óŸï[=¹Èºgœåå9š8Í€â©\tœæO³Ñ–Þ·`é •òŽÇð4è<ŽØ¸N¨Þö”Úê½kÑ[½Æþý—B·’h¿µw걘§Œ•`„ŽÉ#®õCª,|ê(›Ó&}±Ýuc×¥ku‹>Ýÿ’ÙõpЇœNb‘ï°>†¢»­ÀlúMòCÖé Nï&¸–™k^bíÒ®z";{Ø#´z±ÏÜeìÆÖÚntnÞådÑÏ–C²¬Ž/¼D[jÓ•=§Mäg1> íF:»”:ªá7IaJu˜Þ¿æKI‡tF"t.·ziXw¸µû¯–çß—Ó?ämpÅM—%ò_±÷Ì×ÀKŒN˜©°ï×¶”œ§Ù¶ŠÐzKuv\£!Íuè½ÄSRya¹Q¢/¬ù1r‘©x™¨ßÏ‹ Ùþ¹~ù@~‹c¤Ï;A"®F#c½ÏøÌº_ÿK¡È•Þ<ïx³ÄOÄìÇ$z¢N-ƒÖ×Á7çã OÙ4¼~´rY7Ÿ:X'W2ý\Yš›%‹Ûßß$M6|˜Qqõñx—Cš:¨¼¢•Â-ùóSTÆ*©%œ«^ûVvú*!‚béF)T‘èá ¢±ÆNÓ¡dúž]‰ý5¸éÒñ¥âY ­R@Fàªz•I§¤ÙSæÃ쫲w£ß3‹¨LX¸;[ê’¥ÆÑ--šßá_(¥S×\EµÄ|Ž K8½¥ñNí}°à{«Ôéd„€%‰_Þ¬èXIÈÕÊéo꘷K,ei–о‰J²iµQ˜î´¶Æe ¯HÇó9&³§}¦å†-ÃLeò ­nø>ã'®·|;ÕÏX±¤ƒì(Þ²ëvD–¿?,¹Bi Œq®`3™Ít-µ!8TàìßÚ9¶Zý³Ž>ÇQ!Däã((¡TDç| ×ÐÎyvÁWF“SÅV§ëúhm› €n‚Ÿë€Óõ‹‹‰°€ߺÓÁšÎX©ÆÄ2‹$X9Å&ˆ¼Ö°æ@¡_6g=£È©¯Œ…õØ`` _Ïÿnb?f3îÎ-©Æ‚„ŠãíS®Š€Ö—÷%šZ <¼]Ú×$ƒe¡Š¶%£0˜S³B—7–ÙmÜù±n©ˆ£d±l^S$:¡;o»ÚHQDTâÛ×2Â%Mk ºólÑLìû¦À Ï(÷ᒀĀъ.ÉçùÌL\ºüሊV@¡Ò[2[ª|ÑÛkÊBÇp”' S9 Æ_W´<¼_Ã>ÎjHŸÞ× ‘Xd›<Æ2ÇVNäÄëÄ5ž -e¤…ç¢~Ìœ®]VÎJѹû l›jsÏÅ¿ÆI%çÓ:™–zuæX’^Éz8}Seu°{c.Þe‚š‰HÚFÛú^¶íõTº‹µ“Ôæ')š¸aqéª31½[Ú^ð-á¹ÈpI湞'ܸ“îL•)]} \<´ñh6!{ìÏ6ÛDÝSÉY0:Èé²À²ÞôsJUÏ].ÛJ”ßÁd;Ó *òŽ8«ùÁ~àÑ8apÌûðPµÔŠÒ$3åv,—SXµe>™µ7'D§à½Pç'³¢ü•_lN)¬ü± a/£ðýTô©ÈO•P£áœaZ™™2?ÐîGüT0]zf”“° “bᕃ^ÓÊÿøzþ]kãí'ZÌÎm^q^r%K_‹Ö»>]±óÉýe‚¡ÓrÜê&3³¼ï»(tO"BÀ›{±/Cï-íe$så¡ —Ž1ûó‡÷+ñ×Ã}ƒ¬_‘´O 4·åÙ6µÐ°ú?“ðy² Ø¿ü°£ëˆbk7­¬*W+‰ÕAõæyrÎøþ‹˜½ŒÑ3 y”ÔÆK·÷v{£äƒö³zÝ‹q{2¥}Mj\bš¶®ÃrÔSÔ1öÕÆÕ“Ulæìù1Å7¥v¼kÌŽòDl‡ùU†¯£jo")G]â%ICfyؘ£äw¦3¼ôû¾±wæ$•õýŽxSá3oq_l P­ˆE|ù¾-AQëu»¼s¹ç‹¿U÷%.ãªæjŽ¡?H;·{³²ÞQÀ€Ò¬áoYðJŸ™èÝ0ÖÎùY‹oGƒúR ßQï•s™É,¿N¤ êʤ SÀerñ+P:“LS¦«Š±7¨XQh‹ŽH Ã8¿:‘!L-¦ðMc[=>ãÿÂûêôu ¯ú·8¦ü¶dv™RÒ,‡ãÎ>% ™L3×inÙ¤Œ,ù¸£ËW²?'rɳíeB²8„ôC»ÊÌ›ÛÇ™ì®ëÑÎFÃÀÐŽÚ,±¼Ï0‹W»*Xx³¾¹Ã5Œñ&0sÑé£âkæBUI/hðFH(9q¬<†ý}áXYl…UÁ­A¼èG¾2ÛÞôp‹TSž~¿…š¶-¹ÐŸÂG>´uør.Ü-µ«gÉ)†yì.>¦~ÎÕUÄæ?ÏÜŒ¶pÓÁ&  oüµ{KFÓ®ŠÁBO‹ý×NÅ žC2ÔîBf%Ãsb߃v’qB|>*òóˆNÙþ?Ù~¢Bendstream endobj 306 0 obj << /Filter /FlateDecode /Length1 1754 /Length2 11981 /Length3 0 /Length 13085 >> stream xÚôPœ[Ö £Aƒwww î„àÐ@#ÝHãÜ,„ ÁÝÝ]ƒ»[ h‚»^Ι33™ïÿ«î­®z{?KŸµ×Z›–R]‹UÒb”ƒ€¡¬œlBimEN7*-­6jü·•Vèì‚€…þ°všA_d2fÐCðÖÕÀÉ àäâäâàpqpþÛâ,1sYTØo!`  *­4ÄÑÓdm}Éóï#€Á‚À)(ÈÏò·;@Òè ²0TÌ 6@‡—Œfö-ˆõüŸ "6P¨£;»»»;›™ƒ ÄÙZŒ‘à‚Ú4.@g7 %௒ªfÀJcC¥hÛ€\þ¥Ð‚XAÝÍœ€=Èvyqq[/ÙZŠÊ5G ø_ÆÊÿ2`üs9N6Îÿ„ûÇû¯@ ðßÎfG3°'l °ÙjrÊlP( À lù—¡™½ äÅßÌÍ dofþbð7u3€œ¤Àì¥Âês±p9B]Ø\@öÕÈþW˜—k–[JC€`¨ ê_üd@Î@‹—{÷dÿ§¹v`ˆ;ØûßÈ ¶´ú« KWGv0Èɨ(óÍ‹õ¿2k ÀËÁÁ!À%:€6ì%Ðötþ­äüKüRƒ¯·#Ä`õRÐd|ùCõv1s Î®@_ï?ÿ‹P99– (Àh £þ7ú‹hõ/üÒgà=ÇËøq8þúýçdô2a–°½çÍÿn1»’–ކ’6ó?%ÿG)%ñx³róX¹x9œœ\<þ—ƒïÿÆùÏ ü»ú¿¥êf ØýQlþ«ˆ—Ûûw!nÿLÃ?kÃøß ª—yþ;þ†¼/ÎÿÏKð·Ëÿ¿Ùÿ+Êÿëøÿ_Fr®ööëþeðÿ£7sÙ{þcñ2ϮЗÝP¼løÿšêÿµÐ*@K«ÃÿÕ*BÍ^vDlý2笜b%Ó À4ív·,áý'†À‹Öà æ.#ZâÔÂéŠÛg gÛ1ŠšÖ ð}ÉðÒŸ¨N6P$¿y˜Óÿ0fê)lŽ\LÒÎóâæ¥/î.)‘Ç•CAë]@‘›ü\Íö [ÉG¹jh2ÞXÛ%)}:%e8·^]ëÜ{žsÒe8*È9Ä"ÕF¶å¯“ƒd;oo²8­ÒÉmíÁT@£¥ÄŒ<½'?¤ÔÍ%õá?‘eá'ܳ·Ò³7 âijÂT ôXÞeBæ8Ïû{õ†£LäÃ{çP»#2ªÌÐÝ”©Íàµî>³f[ïÖ‡ùBÏZ6%¼‰è’Š&ÞM_¦›F(¢ù,g»`O‚¬¦›¶H‡ÃŒžƒkDà ½ª~žS?Û§Ÿè%?‡éTXÅE¢•øŽg9Å[°„H”&y‡× óuû¯‹G¾Õê¨.î­q»¤I¬¹ÕPÑœV«E£f¥ø¦»¨'~³º‡ÌsVRÊÍWìš [8îÖJÙ¡b¦aàÅðaKÔ¼>Š5]_‚ï1¾@ª"èBW?ÀOèD‹Ì$:_A›ðø Ù+>ç-·œ$í¡Ä'»ÌØ)Šó)Kö¸£ ëóÞ\ÃWù"†÷´ë àq=† <^WÅ7ëtSk–9Š(¹Vz•­Ð£ä[#Äön.ŠK8ó³ý¢ D] ¸ºI-¿µË¢òº×{t‰¦û6ú.ò’T5[´»˜qý£ÉT“6G-"Ïu±ºüü8å6Ô™IÔ$)HÚãã‘YPteiXrëô™fMÍGîìe_ _Óî³Ïq¹Rä‹* Ùm&ÁÎFs5‚Ô°é [߸‰>šÛoÛ½h¯:®,‹&t7Êë‹rÞŠ0DÇóŒ¥Â Û˜ Y“hXÍÝ5C‚ªn|¤j¢Îƒ•a:¥(nMÃùáéi˜(TƒÉ•Åòö¤ú”®!é~Á~:™Ê$f™KnþšSÏÇÇ++®€åLÍÕp ‚‚Ë|nô»½ï»Û›ÒÐêèõÃ…Þ®']Q#t ¿‘±íÍ<ÀòÙ Obï®0Ùù›Ž&aÛ…­·AOÌ7 MtʨÝâFÏx6c\äɃoÏ3ÆÖªöºB§Á h+w ¹xw“¶4lŸnãp¥— †Ä¦n,·±;ßeyus'ŽÊSQ0ܯ{ƉW,ß¹”À„ºÈBËyÈyI‘”Honfœ,ò² tó¾4ú® ôª/+Ò?iÊÚ¬4Àß““¶À‚)r|A-ÑöN ô¹ñb‘p\w—Ÿ;«—$ÕÆí‚¹J¹Ô w¯Ðß· u餀d££À4ßË@Ïî÷Ͷ•ÈÆü“…|±ÚÙU¬~·¼Ò_´·:Ëa½“óYô¼ Irž†jô'aV²s= ´ð÷¿þl):`7Nž¶Ô•BG~o6„ûÖ«¦Q!‘ã£kú6~@Õ„VÃ2$šý)½5#/Þ÷â}!ÃÊ@ÌoïåÛ(“š<‚U³Î=6°é{µfuÖ^Ååë¢ñ/4áFhÙ¥ß4wëe/Ô/jOõlj{aFÛ¼Œä°ð²:¼–köv”Ç|¨¤e+Ý}¥vÒúÚòöË9ʹéÏÝBx4„\”¾¸·]0ƒ¥güÜ:®æ ˜Œš@¡d³–מ†HDïŽÚ”.?«»NÆÇ+ÞøXwâµÆu;æ‹‚¿‹¿’a8EÛëôߟtˆ€]ôÊRå}GÁ!ÎEǘ:g¦áb§ú ƒ‰wnå_ð/‹‚–Q“ö»ùªÀ¢mQfR<…Ã1~jò°¬«4ÅëQ—ÏJ 3Ï2ÊÎê KE5¹ †ðï,Å(ß-Å ¶¨„kT¿Kb×µ¬Ù,‡E^íf~’Ú]ï¸Õ#¢ R<=\!U¼tL—¼,Àµaj*ô°è!Vöìa“œ]™`æVbëØêqÍÉÓýŒÚå3ÛèŠÐ™h[(.Ô»>"\Xx Š×N{>T1—fqU­ü>¸a]¸ñã/#è3ºü0zà\V@§‘4Ïñ¾=uRRÅ(ÃjVG¼ÞÈ< Ôt“²sÖ»;þ½Bû½ñ‘a²S[<Ž((e” ïµ§2[­{ýÈ,4dM¡¬äiÿšZ:†ÕÔZ”˜©Üj•U;¡ZV>Ôÿ>Œ˜ªè*‹—#±F›æMér,ŽûX‹Ap1!ÿι'f.kpüí\y»³ï¯M ÁFèЖ „’&óÓ‚4LÀŽ”íæÈþwE7¦½6vzQ {ÉÍÊWaú.u#”MðõtÕÌ ª½a¯ôÃBÀ†PNÒft½ë´K gþ/,pkX¦ ‘ˆ}/1>Zͽ”Œ‘—ŸMštÓˑ͛¦h. p+ûÈDi xý öÁ±ž™ nÄoãx¼ÃyˆQø­pÓ×Éð·\uSžFlœ·È[0ôÀìhzŽÝ]Õ6¨éÇÖëýý{rÌΉÜsoª‹˜ð P}%WMxeŠLÄ9¬ÃÀá¼>©ØŸ±#êXé½6@ûí§Ž÷eæ‚ß×nU5‹œƒ[i9”ˆ7ŽضZc™ ôjg§H{G²¨ã»þDC ¥BmïOåÄí]hƾ0TÒÁV\öj*ü¶¸mu»Yí²û¦ƒ¾(Eä.OÇõÝ"=57'÷WbÆOMårZ+±²ÂÖŒ Æê2ED Bïá)cÎCØ#CéÝcvÑK™ôp³ͪ óÒÂ# õ§÷‘›dI‰˜öG\DŒµt@Ü;ü æ…Úëvë§œÔp´ÇçàƒvÊjëÚ×ôV=âN5î-Ðù4¥lƒÙ{èõ%â$\&‹5Ì#ãw_X¼¾ÜöyEMtÄ "íäWÐrR&å dÖWÖ„êQ9ºŽ?.Ì49 ×·œ*q%¤ÃÐŒÓ^Cë7Ÿ59òC£F• 8ÇÞ³˜ÖR5÷T³ë×Ç2V7”ë¢>QñEó¨ð[B§ (ï#{ü å±c\ÜÈmýS¾'Ø•¨£Y“n±ŸÖˆ¾šÃ<¿údb¤CžYß•äu@‘€®}ÌB£[4)ˆm;z´l°^wññ‹ìÙ—÷GûzC4xvXÃi¤ü÷bÊ”¼ÅØÕæ‘wn:ŠOfó-Ü£2,ÚA¿ž›´¤ÍM?&o–§ ˜À¡¤€ä“sø&£²x0""Kë»Ú º¤›¸xTrbæzË,ÜVSœ®‹¨½›ùÚx,œÀOõ`a› ­÷ÉTa©"~Úe%†Þn›ÖHG2æX7‡yf:žfPÆ7½õRþòa/(j¥ìƒÙ`þ͸ÁŠJ7–5½j(nØ_Qt‹ÇÙ&9â?°ÂVj­aviÉ’ñÊär9íC,|ª?àaîÚ÷ooø)$& öw¼ÓfŸ[l¤ÓŽÊ[ÍZÖŽe‘Ð v/A{º.š!úvTYì5Ø:]°ñfüÀ 8{ ¿jo!ê5pri¶}«`:kJCðùЧûuWZÀ̰ޛNJwÉä_$vƒCôÚ*"Z“Á1åmvêVD%Mbâ%{çe!#€ŸÚ0\Jìu›»J†¯ÅÖÉbh’g‡"ç~W)k©¾æí–]cŒè§¤ž€ú -Œ&ÌXW%½2Q-ŸÓ€kĽ\"Î*L/@LKX6Ô‘|èˆE´‘0!ø^»Z~‚º©,¬’¹6Æë}‚Sq8þ\êj{>¿PetèrèÚëQ.ȺڴÈWi˜Ì´‹WP,À¸šTT™Ü¼;aÏÅ[Q8¡UG¶ŠH0ò7ÁA§ Ù„ãýÄ,(;1…å݋4Ò8¸#]{«Öô>´f·|úæõÙŒõ­h˜È‰ÄF —2O¿q|ûlÎ8F`;¤ó¤äË«|ÏCËŸÚ aY .ÎUÛÆ}ËÍØúU‹Wó>a³˜úó­)£@µ®ùÀÏí¢âr[”© ü¨šOy0Æ~wOHG­÷@ eþÃcÜÅ–3)€ã2L–ÑDf\ü\ûBϯ{IÚý_<Ðh ì.q}ÙÀÍJ7ȯ”{¦é̱þ˜CMÈ^¹ÀmLŃ"è–«¶{ét½:d:‚ÏOÎ,^{—2û•d—ÓÛ!„Š¥mð5IlkNÖo¢bŸÝíþø—z=Šoô±¦ùÇuüÚÊ.Mº5éMÏàVdK]ú³Ž•ûÇ-Ÿ—Úmñ`¤ùèÌùܿٔybé&|#ïËíEÓ3¾UõUVûnMÕë™0ÅxtPñ]¸5ØŠ3V äáTˆ—V,è`%9Äó2QG Å 7S^<Ý~²Tyàèywþô•½ºCÅìúWÇËÅŽ`OÿnRž¹7£.°ß…úÜêÚ­‘¼½ùb-ýK¡¸7,rkàsO#+“GcaU OxDöUj*FòÙghã«c¶¢á€¢NÊñT{„GF"™·ÿº§ôÅ*º´¹OÔD;aVCKŠpÕV?®]WBbîvú³Ò¡çYÛ—í·f‚u^«z.9Éã–2•ˆÈú w8i†–Ëéñ¶íþŒÜ+´àGz{L;¾¿’ZÁ]…ƒ&žáª"¯#_ÍWlÂZâÝ2ïv3ñd·àãÆù†Ž¡Ú; Œ‡ˆŠ!ô«J §Ï’CÝ +p2‡Mû<ªRÅ®Èg[žPÌ /#ÇÒ¦Á‚Dª¼ØÏlâÝ#ñ“3ì+ö+ïíWéÒvñˆq"4ý>ê¹KQæ\Ä_߃ú˜yÝß)¸á®T· ëP |¡¸ÚˆV%"ìZAÄi:á9K _eZ}Õ{)êmþK‡ï#„Y™vtUô±òA×Rã6„íê[âäRØYÈ¢ñ£R®B\³]ÞÁ, ±ãf´Aü3CÜÝóáÐ<ÈcÂJ‡@ùÓG=lë\ ÌPV¾ràòþbS3³â›šþ$è ¥ž‘{ÿQƒƒ¤êHk€òæÅVü£Áì»IåeµÓüÜkÏ·¥ Œ¤ê°ð\04"ú­6ôÒ(jä•DiGÏ5o$Áï_M† uÆ}äçÚ%Yã‚wÀNä‡Éˆá%¨6R|Ç5ƶMûK¤ÑÓbæâÕŠ¥ñj!<ôµ‹jo O®s¯jžvcœ“g¦eà#„BÈíšž¸ÄõSŽXî4òßí¢(6Ýï×HÉî#¾m§sn50Gyó½RM«_xÆÏINÐbú&¿ÄÂ"™¨y.¥ÝRy ל£ÿópvÔ×5›>ƒù“jÍ ¼·1¦ùb4¹‹D[ÞÂÒô@{E }6KÚB_ö\ ÝlY‡äs0B ›¦üÖó¨d(°º8f /wŸ+EÌUI8¹ ©hPþZ ÞãSí=å-~vìúk4•QÉË”áŠë…H_ óç-î×íÙì\ËÃ]q W®@WEŸ×¢Ò8ñ5û. ã„}ŸûËH?Æ5îQXóPLVóسwõékÂ3Oø(Z™{gÙŒ¡Ëf…ñ½³¤ú‘WHg²´JÍÂêQ1©æÌ4 %['V¬1™ÖŠ?,BJÏS”F“nÉ8;gTž••YÂê^™:&ÖÒƒCÕÌ#PŠ ¿"i‹²/Þ_ܸ Nö]öuRD]ÕCKÄ¥ókÔ­ä ®¾£¬°™ýþÌ M¹°+cÞu‰L:’úJ¶ÈƒxÑ–öwãä»ß}ÝÇJzñœg©1kŸw³ØßÙA%Ú3ÙýyÏnÝEz40h¬Zðþ>O)¾\è0®:&G, {{ʈ¨i‘ºÎ…K…Ž¥Rˆêë¸eZJ³Iºž1Æîgd¼{—ªˆ>OÂlgøc‹a(Lȵ[ô.©ÊàKŸ¬ÍÁ(ö]&O¶‚ë“«ÃáÆ+ p$ù• TlH>;È^Ë;êgÌd^meš·o»’°CMè:ÐZ«Ë ·“3ÓÅÒžÛ Sž¬ŠÝIÌÄ|LŸH¿Ž ɹìÊ_×Ë,ͤ{o{Md¾iqü8K"tâÏK0 ±0&vŒn£X‰ºúQ‡o«Š~ijþÑì¡ß62è”[o§S“á^ìâI6Ã<Ä cÈÑÛ´¥NÛ ¶oÕÿêƒ=BRHÆx4H ÿH¼æ`@ªcJ$+éÁ®åîî5žJJù²ˆ @Ü%eì”+Zب1I‘ÓhÒdÐoó f+\mù¨¸áØ'šŸY<1¥nC[º$ë7q| A)§@EVW9 e|’ŠÖ”±/b¹æËÝé÷…É¡™ÇuûŠãž83qà¿`t:ê5aÇ<ˆŽ·”B¼"¦uƨ¯½o_/„:ÿ&Þê6Ï~¥²0%œÂêï*ã9Ê—LÄèöFòëïLYÆ}RøÚ¯š°س2W}p”ß@Þ˜g¹«_ç%öÆ´„:qs:"5´üîXcÑΡò̆Þuh°°ÎÏÁoóÆKf,%N·ÐR¤0l²P«ðBD²:Hµ«?òÆuUŒ‹Ê%1+~̤µH=VB žw¦{Së>ò¤ö¶ÿîûe(öÔãjF1N–¥.ûL«Åœµ5SÄoªqé¬ý,Ê=Z²~{@\…•øú¹–¸ù¡øU ÀÂÏ:4µEêŒCz@âàiÛut»@[W¢~”eÉÆÐÛML°µ³ð«NŠo™a·¶ºò¬€-;q×ñtí±§wâºÉǸ `ŒØÂY|dµ«GˆfS/·}iŠXì4…N#ZYp‘z> (ª|«ï{÷j 7=æ×ÃøÂOvà䇸Ìl“¤÷Ò eë>ëXõ¿«ò -ž´óE’°JXzšãk²°J÷Ø-÷óbo(·Õñ‡êM5¢ÕÌdÔGöq…½¬0‰ê.‹x—Aidb@ªø„8Xz1ˆ‹(ÆÝ¢€ #Wþ÷É€O}JE1\CxÈO‚ŸôÖÌÞcq´Q¤nhÞ”=¢ûÉþi—-(ÎOŠÊgGXä£Ä„¹ì_dÙ 2½²av‰ëó2n²—’XȆ>ô.ïå0"Ø£AþìðÁ—Ç艢ˣ0s ¨(nŸ¤~6iɦ½åÓ†Þè'ø±=çPÐî‹d{ú;ǧJÓÝ&FN±âÆ&„/ð‹ %)ÅúÖ[Ú?ÐbL[ïã|jÞÝFzžšæ|x~7˜Å–}ì6Àõ îþ¹Íy×E47ÙéÎáèøÃVFb…^9*@}±èØ9{û^?c¤¢pn¹àLÕsÐÄ¢(¹ÿ|~ß‚{J¬Õ¼(,€­X+1ë›Õo .{î#ö0[,™ñZLáEL÷…ò“ —v.ÉBŒûDHEe’«?[‹·Ž›ˆÈVI®{wJF7wr%\(Ô‘VòÌÒo.ÑÇËS;æþ WЧ}ÜSÚúÒFvô^©Æk?|å5mŸu~"ã(¹ÿÈÉ7¬Ü%ý€Ë̃5Ë$ Í9ç“ó,ŒaM´—…Bþô‰€À³rÿ÷ö±š‘ä_Ø4±¥|P'UÉËÇ®/"Ú»„¯PôÕÑw.3Í{š‚¤k¬Lï9¹÷¶ÆN¦Dæ¾QwSÎÃö;ómDûn® ]ˆµßµŸ įdiT.lVIÒÑóërÊ'£äËÛw`Ì1Ár#7êªÛ³½7D"[ØðI÷a4 ÞO ©ûäZ©@íÎ}ïØƒ¥–ü߻ٯ¿f ÔõžÅ(gÜ&Û®åprôÀI9;-!ë—dÇÑvŸ$©@Æ _EäVðø3Í –w–ä>zdœIJ!•7a9•"Õ`û¡CVËo¡+ŽëÏ7ch%'æ*°vJ´ˆçL:Ñn¹µ™Q-6‹ k‘çk"÷íEfo}ºð™OÕW³ýzpÞÌÎ]š˜W J_ëkï ŠLà ՜»%´o»3“´f‚<-ŒrZ`O8ÖÒ²ÍOoŒ&2Ús³óˆôÎád Ê|&ŸÀÀÎÛû¡ (-à ‹M/ä¹½M®vF„>ƒ‰_v€±OÔÕØüŽo7JФ¯Æ¸†BL7;>Å›Bþ ÖDp оүö~ëD‹om­ñt©ÇY^˜aHdYÛøõðЋqÜ3ª=)B›UWuy¦{C×Ö\KøÙߪ¥s[w ¬"À%YB£XH.ü’}^Îc‘_–£³£x­È&…OÞ—à=Ù:;ŽÕn ²µùx3PÊýfÆÐ÷u®qƒyêå–Õøž–â]©wᮕ¿ÂuÔ}¿!dßcþ=FÓ§É#œµÍâÜT†„§a[,–[‘WÔ^Çw¼Àþ<ófJ¤ã—µZ´<¯ãé‹á°|¸]È×ïL—LÑi).ª*š=@DÄ‘×Iåô‘ …I|´Ï²Øýê¹$ÛŸ¨}à+ %xÃy¢2ä'z™†¹ 5ú +¾ oÃ3ħ¹â "ƒÑ¨ËÔ™–Py³(ÎckÙ0¨KI•? WÍõ$1 0“tÔ›¦f8hòÕø ¯**¾·”U°µy"=ŽïîwÀ­(EMwý|Ú-¢<Æ"jMe®ï]ÔÛʤ̲fB £R¹\ š¢÷±Å¬RâògwMZŠè¨ø­N~Þâ¹±Rá©þ{€kQw®·àØ´‘JÇmÖçíhf¶ÒØ™ÖÔhæ|0¾×í…Bðsn[ñ‡èWé¼×S-¯Ãê𱈟l)‰eu$BžiÏÈb„3úóR‘ºRnUE/n|ó¯×†‘YVKÆ·ÖRÂbÙê‚N Ì´1 •uw¸Ö]‡*ú9ópo%gܽZ=õü‚YÐh19o Ù·ìíèMÊz*uQ×€è½Cé´íÝÙæO¤‚?Væ{Zë™ÕòÞÅ8î_-xm\ñÇ"*ܽúh.Gù©ƒEî4jÖRŽfk±\iýdËkFûKý‘¸%¼EReøç *çëçrÇ/¢Þ ¢°vÂPyöÖÆ¯:£åÇA®:Y†»• Q¿ŒZÙ`~áf Eä(“¼·K÷Ô'ïilnqáŽdPÛ,æ7xIÌÇ ]˜ìáÖØ,jSÀ/béõV§Oc»Ú³ÄS›Óïþ-Sf¢Âã1§Î âÇeïý½Õ÷ŽÉË6½e“J;úïJ`Œ½€Õ#Ø€œVÉ•)èûèG†Œ›d%d[gíûÔ>‘fÖNâdq°z²™ñ¶ZÃtWZÑ©EäN8Q8ÿ}%U%ÌTGËqnÂ…Ñ@Ø•Ìâ0­,´¨GD-fÒ*ô¦ëáW‘Á[À&B±M‘ŸícŠ2Àpχªt›mï+—#äyÔÕ¯yŠÑT)¸m ÀO9k­‚Ë%Û gÊèÕ° iÔ›ƒáýàÝïs¥E’æ¨!Φ ƒæûqí†qz E“‡VÐÆ-Ñ¡ÑBßlékkjÒƒŒ¼Ðq, Âü0GƒØ´‡Ÿ0dŠ7¼ÈÍ#Ú<ûtÁÝÈNÔð¹Ê´‰2‡%Ы–ŒKÌ=¸Uýð\&íãJÐÒ¾^q.‡ a‡à`i8(sˆ[œðÖä+×Ðgšxdפp¤ËtžnÎ%øY gn±’fÉS~%¸R¡ôá:‹Æ –è —Y‰ÓDø{„~]ôC|D§ñ¸QÃÔÌM9é¹Í¥j¶?(|Ï®±aññWf—cï׳IÄFRâh¾²cq¿ºæ,¯9gËü`ßÕUý…¬a@vꪈé¶Ë6àY0A Ló¶Õ#ŒëØÄŸ[˶ý²ZK}¡*³„$>‚'àÿëlwÅMu…{»/øÀ*¢8ıþm]Í乃ëþ–vzÄÇ\gãñƒVæԈr–òåE—›2Ü"£€drÁ<8 ÈÜTîñu†0Ný¶à/D¹Aª¤ÍcÓ-¥ã¾ªš{xP’›à¶½jì·Wõ|vINÅÌæÎç¾ 1;zh®UíV‡´yidQÎîzöQ¾Ócêµ7å¸DÚ’R1ñu—E›¿HOb»ì˜u>~kÉú|ûõÚܸ'JäcöÞ-•X5RƒŽ’U©wA#ˆPtô:ËZ6‹Ø¶rGÁvXCת4ìô‡¢Šr` ¶W•×€£É;'+®ï ’*?©­Å´ß&"O m¤ûÅ’šJÀØ{mÍw©0ÿæ¬SÖ‡~Ýáûh§$~V^!qùbÆŠ´qqâ(-©Á»ÀŸ©3i`H›¹B06ßûÖ$Eõ7¬^yFtFígTL4FY¿,ì[ûÉ^‹C\pQ¾Z׺—רª=UËU_ïqð^¼»é+%©#:>Œb•Ðû׸âG]©Ø.To$F e:M£ãºb;¤×qsÞêpúoáÖÖ •  G Ôza"þâOJªÓ¾'´¥kdžæ“ŧTâÐ%WÛ$ùœŠ:"˜?RP:÷û[ô„^¥á3ßX™=ûõi“Õ@5£P~z¤ÝM¸Ö—W©ˆÄ’êo [„v“70L"•ï#ËŒÄÓý øÍV±§öç+´tÄ®ÏûoL N?ª,6<úˆ¡-á«Ö©vÙÕ½OÓÅS„w7éSvœÛ]¡xMÚ8ÅÆ çå_Ÿ`^‘b(Í¿Æøª®5²^ãdôe?*R÷öËÂŽÉ6ÿ“/,¥vZ±†ØæÕ5G ‡©öTö¶üò”íï¤ïÙÒ7íYnTè›VPDµan•¬¶¼ îÃ]°¯¾}‚Â)G•MÄÏ߯{µ¬ìL_ŠÛ÷äÈ[Õ³W{Ù]®fhêÞ¸˜Hmo¸ôúáÆ“šÒ’ɧ{Ä|¿×™£Õýt–Ç‚ye¦tªg-0j Âëú–·ö´úÒ æfxðÑ„ƒ®x‚ ù39¬RÛ½sðdàð[÷û-]‘ I?†1i2òÄ tÕ1¨ùϺ“‘ÔC¨¨÷=Ò¶—›·Ú¼æky¾Ÿ èúTº7¤D¦¤R|q—Ø<½t1¤ ¦HdlaW·¤‡džÑ ŠE©”.I/kÛ<'å­Ð˜L^²Et[©FœX÷ÍÀ&Ƥò“TFÌZ‹¢¢u‚•»‡rÚÖ;8“# ìmç6°»v ´ÞK¸²ïe8Üfæ™Þ¡ÑPh»Ò¬‰Ì`}Å­ PÍ«Vßñâ„u*O`E­î/&_xÅ$©è9;n¤õÁ1¼t@"ªíàX,/†T,l#³=áìD zÏL=SÈJ¦%dÏeÒ Eåb¯× vO»bK›žûÁqß|"=Ñm“'¾>ëSºc+Snh çÍšêº~óÜzJ'”±pz_¦\Ú^½¹êß‚qçv·„N­Û´S%#Z½þáYa¿ÎmÊ Úw¼«è„¬@/\¯p;ë{Ëe±]ÅOÏ¢ú1r°–¯J®bë :š<Å*Ë“’9¤èy’dë_žŠhhjIq1¸å·l jºÈ¸ïX|S×6yÓkó](ÒÖÉúhÕÕ*”vó 5D–$J*îÏgµ$(Ï­<œoк4™}DÐ#~@Ñ0'R]]+ \¢êÚ2†zìñ™”ýæ³›uÿrâä}þlPÆž?•S’«g¤ù@|i/n*E"BôÓÌGrëö˜ßæ e×'ŠÖÉà´{âå[`õÀt4y ûÙ“T6âM4]ˆ Å‚|ôøtšà öª›°€ÜnZÄ.Çýk~ãqW›éfåâ)†Š7‰•Îz– ;³oû#[°«½Åt`“ƒ Ifåâƒö -Ó7R8Z,g¹ê%x TvÕØqpøÍ‘Qû‘'B½ßšfõt¨*a^à»ãwÃóñ4T|Òä_õ,¨»×IÑ Q2yHֈч†E„ZGÊ;ž•íƒU3PîÞRƒ²úˆàå}>‰ÚmRÙ6¹žéYžBÇGNrI§Z¨˜jŒ»O‹+¶ãÉ@Ù‡pŸb§rê;]ì×ÙÕgØ»÷ä«ùí~Oci|íâðëT¤ÖL%[(ˆ#¨œ!ÿ®þ@φEž çÒÓƒ†é f~TŠ@C½Ž?6AàŽ‹‰•©¦¼9òøãÖœ‹ÓN³àx‘듇ùÔG^7Ag’°ZŸÏ Y„l¸^_Scc²¥èxaj’ø,:Ý+*ˆ7ñÛ}xøòbµüüYæe:ôv´'­mÔ`‡õ3«¼MíÐj»Ç5rÊuöïê# (WçpZ‡\.¿Ø"Šê×β Iž©ùñ\§à_Ý3¤K…dð’¬sCnn’ßÄ'M¯ÇG›1ñXºÕˆŽöÂjÚÕ&¾^EŒÐ_-ÜêÙú}‰ÃaÛoh­¹ÎnbUÏ@d­i¯ ú=÷½ …/[#QwýÕˆÂTU{¹²dшóV%ïÃØðÆÞa,^V)JsuìÄõd,¾©{³vÏi'É2ÿ݆˜õxV~~Õ^Å|µŠfì¥ItzT*Í]¸RŠ]òø‰ðŽlrüZéñÚ*È»™Âƒ¾/BýÀÄÄÞØZƒâ‡Ã>êAͬ¾²‹÷‰šöìå’Ö{6Ö U± "‚˽"]±ãO½BàÀ¹BX.K£÷¬ÄÉ %i…̘¬~’¢ƒ67¯¼ó!ùÞFC-BðÝ’èŽs PnNëéP|'k]?÷½rÊí`8QýeƒS-ˆ8ýPvÒÕ õWHľ¾<ÎÖyÏý0Æuú*I0^`Q"ŸnÞñ•Qy<›6ÌM̬´kZR[J¦Èé°O_†Ÿ: ’±j¡šÇbêämlIòcãSœ½á ½ÇY¥'M©!‘–Xêorî˜ù·Ã>þMõ®îFÃÆuÏŠ±6º€« CéQ^BµEfÈ%—äTnb°«æQIšÔ©‘ƒ÷°§Jx/ „e.ÀгOraé´À.^²}\¢†ù@Ø!‹…³õØžfû o=àõwÄ;]µ¦ ØÌx°T¤óP—Â× —a <*Ÿ°ÜŽ®®2M‚Uâµ~óˆrŸ‰(Ýà $ˆn~.'‘¥ïÏ»Ôùàs쌬Sdao‚‡"úÈÇ÷ib®ej›skàÇ1ôvÂbÁÙ†€|»/¶u÷ííO.²†ÓzËÏŠ08n>í,+ß=H†DôÐ-c®¼B á ·¹×‰¬¿þèåa´+Ò8ºïãAô\þYN’Lj@àÙ\âFJzZ aÏ š”̤ŸéCkÏä¢xŸ³P›Kƒ†½ÝÑ]30éF^°ó…SV@|T ñYLÆ`IXl|sx˜žøþÇr„q¼…½‚=哸áîTn6¸%XECôGM ¾"kÒDÎ6Ù˜ÕeµÕº$”’[ËõúJŸu»hÍÉm¡q5\Å)‡©Qp³~SöU˜¹’æ•8Ep™Òæ—¥Øyß?޲1£´[kU9U ö¦›ò¿§ý~È7îÌÉQÙR·)•Ò€Pgæ¡«bˆéÙ…=œÌÓ>¾ä$ïw¶KÇF/ogß± 2}Ò|eïûÿQ°—Öendstream endobj 307 0 obj << /Filter /FlateDecode /Length1 2848 /Length2 20256 /Length3 0 /Length 21875 >> stream xÚŒ÷PXÓ ã‚îîîÁÝÜÝ!@î$@p îÜ îî ¸ÞÉî¾›ì÷ÿU÷U0OwŸî~ZÎ(H•UDÌìM€’öv. ,ŒÌ¼155f33#33+"…ÈÅø?9"…ÐÉdoÇû‡…˜ÐØ,7v*ØÛd]m,lN^.^ff+33Ïÿ íxâÆn 3€#@ÖÞèŒH!fïàé²°tÇùßGµ) €…‡‡‹þ¯ã[ ÈÔØ `ìb ´G45¶¨Ú›‚€.žÿqAÍoéââÀËÄäîîÎhlëÌhïd!HCp¹XT€Î@'7 àe€¢±-ðjŒˆ5Kóß U{swc' ,°™íœÁG\íÌ€Npt€ªŒ<@Éh÷·±üßô€Š`adù×Ý?§9ÙýuØØÔÔÞÖÁØÎdg0ÙJ’òŒ..ôc;³_†Æ6ÎöàóÆnÆ c°Á_©$EÞŒÁ ÿáçlêrpqftÙüâÈôË ¸Ìvfbö¶¶@;gÄ_ù‰ƒœ€¦àº{2ýÓ\k;{w;ïÿ!s™ù/f®Lêv GW Œø?6`âo™ÐÀÁÌÌÌÍÆ :€¦–L¿¨y:ÿR²üƒ9øz;Ø;ÌÁ4€¾ s ø¢·³±àâä ôõþSñ_„ÈÂ0™ºL€ ;ÄßÞÁb ùßÜ'@—<~,æ_?ÿ~ÒO˜™½çoó¿Z̤)"¯.©E÷å•¢¢öov+€ƒ ÀÉà ðý¯—ùÿû_RecÐ?¹ýáOÆÎÜÀó7píþGÃퟹ þgihÿ hžf €ú÷ðë1s0›‚±ü^¿Žüÿ›ü_^þ_‡ÿÿf$éjcó—žúoƒÿ½±-ÈÆó ð4»º€7CÁ¼vÿ×Tø÷:+Í@®¶ÿW+ãb Þ; › r–yÍ”A.¦–MÌÿÚön²*Û;ƒ~Ý7fæÿ£¯œ©5øNq7ë/¼Qÿ(agjoökõX98ÆNNÆžˆÌàùbåàx³€wÔ èñ×h˜íì]ÀG`v¾s{'Ä_-åä0‰üý8L¢¿€Iì7â0‰ÿF<&‰3€Iò7b0IýF¬&é߈ À$ó±˜d#p.r¿8ùßœ‹ÂoÎEñ7ç¢ô/âç¢ü£«üFà調8ºÚoŽ®þ£küFàèš¿8ºÖoŽ®ý/â[ÿ‹ØÀ–ƶà}ùuþkŽkìl ™‚œL]mÿ•³°rþ£pÙ˜ÿ•³³þƒGälýÛ ØµÉGÁ>MŒ~«Á=0q26µ‚ß;s—ßr¶å¯æ¿ 0 ÓØ»©½ x*ÿM‚ý—ÄÖö7¹_ãÊô›8y3{›?’`ßcL¿y€” øŸ œ¿ôŽ®àµÿ× 8?ð¸ÚÿQf0óß^Àæ ·?ÜþRÛ»þlbñ;Xoñë­þi¦cù›¸÷–ž–@»?,À2М¼ÕÜgë? ¸^¿Ip‚ cókkëÁÕýƒøÒfúŠìË¼í¿‹mçjkòëžµø#%ðsÂdÿ;i°Oû?N±°€‰:üVƒc8€ß|»ÿôŸåé»~*˜Àc ~Ûÿ0åüK²ÿÝcvpal\ÿ þ^Ääø›ø/ä tþë>û×7û/¡½ ÐÌäw‰ÀïÒßÂÿdÇÆóô¿Ù±°€]üÑ<p}~çÀ>ä ´ýw^9~ÙÝþè(؉3ø©ý— ˜³³±³åŽÁYý ~®˜\,€Œ¸¦.îöûpýM ó¯oUΦöN6<n@pÂî¬.Ø©ÇÕónª×ïœÁž¼€NgðŸ‡ÀÔÕ ÜU—¿Þjð+ñ?ü×2 ÐhЏ0koÊbUÒz[%Bàΰ3&0E±£™JÃà½àÔæz ŸDS™´æt-’4ؾ¼%A}%¼Hòä}ÔT Öœð®åÁçÑ0Ner§q~§o<ÿHäk/Ñ+B5á]Ÿ'G@kè&ÈYŠGWnTåϯoÝ{¤<¾ö–,„Îî¼Û­ä”Cz,ùÎ¥©X8M‘kòiæ œ -æ™ÚôÕõföø ‰l¢ïq[·Î:kôÝŒ×J™«s'9žÎ"è+Ì‘IJoÑýdYÜ9ï¢/‘ksYÌ4Œk#½$>ä'¼ºò2˜¸Ì6N ùVÅäÕÞ߬Ʀ]TJv Y¨¤ÉÕÿ0˯:¥ÔØù‚SV pU²©;Bø-aA¿ê­_êˆÎT—μçÇ@edMXu &¥¸nÜÔD%fÝNó aË{eß;ßö¸µŽo“ÆW³VŒ†OcQ9‹ÃÒ$u+v»Q‡·}î1ƒS S´¶38»Ú)X#‚ÇË(ŒN;¯Ëb̽™Å;}8…K÷²>ñé2U¶[úŒO0ÞªˆÀ¬VÉMCÛfÚ\,Sj.à~\é÷&nø|öd+Ùƒ¿ò£”èSmJÁâLÚ [¬¤œŸ Nh—0Ž—Ȳƒ’2j#_ôJl¤ô(T«:‹Ï·&þ6 kתW[ëJb唤5£¿Åa)VT¦õËFn„*ç±8‡Ëá][;³)¤tÚô û™«î1Š»vÛ·äô¬O¬­º.߇’ó"k3…,/Ó"M27žiˆ ÈÍú Œ"ÈÊï‘ßg|à D' Ê9/¦‰.öQŸüÑW|iŽ wWúZ¼.ßå}Ú,¥»0G ,#“côg«?A}þ©WÅHø%góõ ädø°Ä„c8¾úò„äAõMlK¢‹ÄxÐ÷†•ÏÂ(“ŸpYð¾åÕH¨%3|JútÑýÅ'Þ “ô!Š–ÅÂýfµ3—éKNv#[‡pé¦^—×’±×á$ á͇Æõ´³Ÿ%<‚´©šJn9Â%Mýì¬ÚY7ÛfàfM±öcÝY£oGöÙL²eôÃ2#º<kx£G¶QÌgs‹—?&ìžy(2·8¦èpÈ}à“(SSyÇÌÔ £º—>«îª3¨¸Å_·' 6¿²ŽuîúßH–ˆÎÙOE5Ǽ6€ îJ9Õù’ ‡t´ðB•[Š ©ä=)™úá›ñF†æ@àÃí8ÇJf¾²­Èô]ŽÆÜ×ÊP^|†)IØ#65TÄle7DJüªª­®Ã²8ý•Œ±1ƒJŽ'ž·—"'tBý¢Gä{Ëý4‡Âñ5¼…ÔšT»ôÐaÏ¢½R%Èx Nñ#j¹¡I38Ú ´QzëOÐE{”èþc¥d®ç- Úë÷ÅF?1& Œˆ!j©“ʧ¨àlÓî‰ä¨Ðä6§P¨³12%Ö•éyö½#TÙ¤XUP…9õ²×…Îf p´¢¨–ö¯ü%q-S¿ÁÞhd_<Ø—¹,(V¨;Œ•—_n¦+ðTÃmbÉZ|7q'ÝLAiuî RûžQ.Þ m4È«éHªïêËuoI0zÙÏ/†¤Úé6Z·4€ëFVS‹‘)µ“þ´Ù®ÿŒÑ6}ó-Çsåzv+05àzn@UD쾆J-SªÍÒ´{]ú!G½c²¬ˆéXéV ‘ˆò˜Ð;„ú\//£Ø1hTŽçs‡‡t/Ãk·M‰ÇivCâ𘜅æÇˆôúˬB³M*“a“GúdékF€RBÕ>wïÆ+EE»© XxG×Qâ†þêY…D¨öË.‹‡ƒi3&h(Fxû?Úž¶dÌæv´¡ –Ãíp"Ëi¯=Z€Ä1uòoü g…-"#!rVݰ/ºæE&&f‘Á÷ÅBê‡E–·lH­Çy«XR ˜ŸÁÖ‡}”Ú¹Ç â÷Ÿ¡Ã>¸Eo>…º‰U~TzmIÂT¯FIoÊÂ+‘v–>{õåöË“`¤áÎÉt1¢K³?\8LD¨(G öÂ2Ú%õyö/7¦­5ÛSGŠ…§at‘!´tŒ›{'¦e†Îq< h®¨Ü QÄîWÕËÖG2³Î…ÖÀ£äR¯ËæuÆáÄ ý³É¡oþùaž~-I3•ÐQ\¾·­5Ú{ùĨ+aÀÌ=‘Àg.EJöÅ‹©!s_šª]‡<äÃDÚ¼ÂX>wTþztLŸúHx4d>?ךw¥¼Ã*Æ· Š×˜ûÖCËlÁ!Çijöùbv¾ì‚ :/NUÞ-N¸]ê:/<%Ù³ÓR®qì<‹‚ëFöxŽí£LAù~¨›É1ªï}2ÍyHæÊ„:µÎ]D=Ì¥L$Ý5ùÞ§ÙÓw¾Â-•·¶–«ó†ç1G°°x¤‡´9ð)¥l%øþUaÀ˜6ošüúQ‡ÛÛåzÁc.õcÓÿÑoõð¥T PXavŠhic,‘é{_4WûJŸá‹^4–‘‹S]áèx^ÑØ¹0>zJ¡QOv?¯­¡¢twF•{ m¢Ú+u&ú”™ê<z‰æï 7般´ß­ ç=’wL„b÷ÉÆ°“ _áµ;ßÿ8ÍœÅýp öÅB´ÖæõBú“ä¡l¥¦®ƒ~7Ò"ìØeä|WÎXg|Ñy¨:wÀøL‚WîÞj»|¨Ð×€{¨ÜG^b¹|W÷¹š/#Z‰!W0äóa¼¸&ƒ<[µ’fé¢cij²*Ôœº j´'줙Q“žÚFT uOÔÐHå•'C ¯K•EÞö™Ç¨‘™F’ÁoRžµ )ãUÚ{$úô‹XåC{ 8aÏ…,i¸)G°™DÑ̓¯“Hq›™ÃëÎ\Ðø{?Bk1Czµ±¬‘s’c7ø>jò¯±Xí€6¹8÷žÈÛÙ«Uµ_{Åò;ônc¹j®ïöí›xW.Î}‰ê$j‡‹¨·T‡†G™:*£YViÌp>¿ý9$7Ê× ¬‹Ù6XwÞ„£Ùñœô¸ŸÔ,MŸH6 ”ñ)!ðzËD4{|làqŽÛgyIjsô%LÛh­‰8¯¯Måx©—OÛðɯ™ Ók¹™Õ3P}WlB84E;/” [\¿yxÍÖõSè烯Òž£šIÆL“_:†![„ÆçÚS¼¸Zv•²"œüš‰ºÃ³ TT”bûPÙ”hÍ.Êì&Mê»Ã iùWƒÂ»ac\fJßòv‡B5?†Ç]àU.—ãfñ:ãRÀ»Ó’)ðÀ§zÌmZñ(ÊèÁ¦öqDYά 1è%DÜmË›LcwÑWZ(ÙQqc>””WââKL‡Rñ=¿gÁ„m…fùSáý4ÖéØìM•]sݑ厙¨}N&{Gèî0f•0c©Åró•êªh¶Öà‹#ÿ8õŸþ÷]RH!@ntÃXã1$ÃWf)t6¥jdÞÄ Î*C7' ¥%œÏ¡±æpÉ{ÙA%–ÁkLi-¹UŠ“'}Sê¬Bb§XïK±Þ: újËÀËéÝõ†Ó·O݈¤þPQ!W¶ñßhªAî$äÇ¢¬…»Œ)…Ç+÷¥ÛŒÄ\«yÓê1«!S ˆ.îä(æ ×Á2'¦8ཛྷ<ËŸÕ&jÕV£,®Þ‰'+Âíb:µ²Ï%ÌãÝ™µ—¤t%î¹Ur`}…:lÎäb÷ˆ›«Ð5˜ (ƒ ^œK—´â¸‰žÓ§'lm?¤/ñI”WÊöègJû”«&tWU‡5Þ^ tÀwžÝÕîìUu¶ô¡•Øì¡^ÕÜ¥mnŠ.BT9Qqî"vÏ€ù§]¤l¢Újè©0p‹pÕ¾8j¹jÆ©cáAáÙ¥ãPæØÓÙ_Z¦ŸÏ´¾Ò¹$²ä²ÒˆÌ¢z¯ÝþØ2 ž«Ê‰+-òR¦}7\œ¢:§²cFK²g£x‚;còÚj0¬ ʽÍÕ°·ú !óÚ¶ÃÛoÐLûkþïÎ/¿ºš_n~F<§’y¥ó¹eShðµ£UÉy âPôQúT ]V}®fÿ$Ñ„ÓçÍ–bNJé‰D1žY['XŸo\N5˜?¥î(xÃ.džëùW©K-¤ º{j¿úUz(ÀÈm®Nãáv­kßk¿N »mL$Ç2oà"NYL_óÅhŠ×Þ¶ßßc{̤ڤS{ôáºòËö¸å‘lŸ…J$a¹"ŽüHMm!XB ò(º`àÅ¿ç jq™î:n˸#šêøÔwaÁ’‹ èNƒ"æ€gÁHßÉn jÖÛûøðÙ|Dâ¼$7´Ù¯5áçU ¥‡Re7 ³hü^°(2 Mt;0”„¾÷òag«¸‡­5õK”sä ‘eiîøðÍTÈpžFA%jAQé™EìËÝ]:û²Fây¿¡qÇ—=t×ZƱ¹Fª`²A©e8rÄ™øûÝÇó°>trᙈø¾ÌNÃ/ךVâÜ{`B§‚2â%Ÿ>oƒªí¨+"n†Ä>綈”$¿’¢OzQ0òô•:ü’‰;$Dc¿ »ú39ý…kC‰”[t¨-ÚrqÊþŠx§nÆ5Ü Q®!DUh”Y‡¿„¨õBÁ Ë^jcöG" ¿V¸™1PÅÀ¯½!€î)jû:¿­T“[”§3`a-1ËÁ—½ràX™L=²ª3Æ ¨ŒZCäÌ´Ûæp¿.—ä•J‹µ› ¹O9èæ˜ÙÑᬠñĤ“ý–ôý»ð¯in^ç{½ÁgÀð…sö£¢þ`±ÉMj³P©U¥±Ç61r7íÆ(Ϋþ\È¿ ;bb—Ÿ?T$^1'sJ'pÎS«Ø…èþî9„ü ;ý0mÀOÊð……¼ŠC>qUC†Aðg&Qæ‚%Ììm&¦,Ï)ešL ôû·Õ€ñ^‹èµzSÚQ Hº¢rìeIM;³Pßqm×4e膠r·ô=S!C kûû¬m¢ì¯ÁßÍsB¡ýp×N¤º§çëŽFÃé³ÑsÊR·,¬õ¡$¸_7A§fχ+29À¢ím°²‚ ‹î]†_Q3éöoùð‰}YƒÐ7vâܚѺB Ñl¤‡jû¡„sýáÝñm£¢=#YCÑÊubËÂiÇóƒ×ÜȤ|ƒŒãý´=ò 7eý?ö2L:¿(Èá¥{›ØËeÈìÚMª‡Ø7¸ÏX]°ÅwÍDùÄ©´; aœ•RÝ£íBªÞÏÚËÌjèõÀ/éƒfÕ,>Fé®éÔ[…Vä='räWQ)r»£)„SÀÓIðºE"F ‘…@7N•ü(ößH0þâÃ7®môÕù¦z¬uñãG1™‰ó:ÈQ¾_Çnˆè[QÛnw$pb„º Ú¢oÞþá v+@€üXå®á%»îy¹ì¶2› zS–×Ôª„íK9+¢b|/›˜X,Ÿú¿?ÎÀW!Žé0ãø©7ÞX÷÷ Ã-õ×”¾ò»v®Ÿ¾ø¿)`_ÊÖÐY§cüløÞä°ˆÜåº4–å±Þwp¶ªËtò±Ò{»”Ÿ?Ãíøf¹q gÄkö2Œÿiâ!L÷á,0teÐâ6ʈUÄx³ 4…ŠD¤®éô~݆¯ÀsRŠ£–B@·KÅäÜ"ÁjùÌÚâX3ÁR¼©!!¦r—ïFAܡǬ±"K:€Ðtûê©0fbî–Ñ”GHI?* _Œ>Yß*¥dþþ¤›2¡X¹Ó£±–RóMzÚËQ~ H€m8%gß‹7H×N~x/8 3©_›»'cãVá©|¹ðh9¥K ä‚Ñì5é¾Í7i aZÀ“\y …¬Ê}Œéý)uæ“v™,»5¶sÓ¹]†KúSØ.MÍš-åGyÍ‘wÓ([ò\ 4å_-®Cç~ÆÆÕ“1†w¶¾˜ÂÑ%2žh7Ѫp†®ƒx¹+¯¬ðm3R¡‘KH먾Àt`±5y`õðë:N·KaN?äàÙÅ®¤97òf¤(xã‘HèmÀš$„áž\Ýrá_Ô|{ôUÓyé[¼o7zடþ¸¢ÈÓ¤ßèÉ–Në—ÉÉ6ÇÞpŠ)foળÐýFÝŽŸø;I¼†œ¦,³Ö*%Rð?Jú£Cî·ÁèI´$ ‰vcO1ô²Z¦Å-¯á0…*¥îåiuƒ©Í‘RHìË" MtÑ©“6-PI¤ðåŠkŠ~é —CC½IcžÍh7‚¼©P=j€rêæ¶8™äËqT›<«ÌPœ:Ô ”ÅU=(=p2’þñ\bºÂŠõÑü²Íê°¬\î{y„:k53×Q‚ŸK·m)á+,¥ÙüO&µ%ª  `o„Ÿ•Ï]}GÛ™?G¨8º2w^øÁS%eÊ¢?|bSeBi® kÂéƒf?$ÿÃ[|ˆôLú>±¼žeŸ™æû¥•ò­ðeØOíþ±Ÿ¤zçá——}¢ïØõö+î·ÂÔ1  ûh1!·Ü.ï@ÉÖ ¯ g²ö½VÂÞŸ¨­%.lmmr¼4ľNx+{›­1ÂFPä¬gì-0‡ZÍÚV¤Œ'ù3¤Õ—>°@«&óÞGž4 5ìkU¶¬¾W©öc£×¶$mF)Y²UŽ! ÑDþbǦñ¼–šŒs™ƒ”,^0é¦Dv”6“b!§%w–‰ g¾ðÈ]7ó5aýP[¢l†E…²}·5ÿÉÎóKÒ…Ì›45$æ‹hQZg»"öwóï+Æ^Á&ïbI­Ü©ê·Ìw4»°àìÂ:èT%®ˆ5é*d~››䇨µ´é|4=Cá01'Ïõ,…©“Þž»Œ`ÇGb¾-2ŽßíÁL‘UqÚdU_ÕÊ1<8cî,YÓb ‘bïdã·Ð{ŠË±Ç×ÛL„ŸÝÆ·‚ý´rR6­9 3ß”G4‰ê\»wX£ +gŸaúèÄ(~Bí&Ñ´Až™Äzná (?>9({{Ö°–ÒVl ‹¾î+–õêqº;ô+›þÈ‹¼9Zÿ eå ô†r9 r‘èÙž‡3úç«ý6<í£™üÞîA¬t®õ#‡ýbŸç«»]tãYæÚ¼Ñës#Ý‹”÷Y¤ë·±ï‰¿¤Iêñ.^3Öb£P µvéft_î>/3ÞcŸsœ•_¼‡†SãUÁa—Sí }yö9ç!§E¥Á\ïuVë6 ^Ðð-Ÿ‚|2œÚ­ÛðÈ‹ÌÛ+ÖMØþsgT{2û°öéá˜×]û-pRžýW¬’ F‹)S€Ø¸ù7Š _§jÞyÔ5Lµì³KUÝ®žÍ@NVD@5éÖ²úTy+X±êÇ8´\œëd&ñA®‹‰xž¡y‹g‚Â*YÄf£¶—Ñ(úÔûkÒw µ\™@i†+«%øÉ¾æÄ/µj…êP”(È— ß\Y gbŠˆ,/„Ò¸§I‡õZ‚8e¿8¨íe.áRî™ù™RâàŽÂ‹<…áJmÄò®¬}3Á-ôÜRÏ^ݿ磶VCž×gÊlg®Gœ;}ZXZ&xVŒî„álÙ™ò)eô@Ô- Õ¸–/>¢ÃVÐå:X½8TðÅ+vžó¤h$4˜·¯¹x×° îkuÌvÔc«fLíÂôÄú&Ü—ul« nDú¸LyB²wIexÌÞœ;è{÷rŠÊÕ‹sƬÄÚÅ»%`b ×ñ›ÚTNC£% ~N¸gø¶I˸Ýê-}²{j©è¡° ^ÿ¨¤6ßD &a ÁîUÀôÏ˯Uo EZ)ƒØß‡$¿íØjļ¨%QÀF—ƒÌ-¸Á@WÃ%ïçå«D‹†wãáõ¢~`¸K7 0"Cx`[ïfikN û106I=®|dõÙã3Q¥1ʤAóÿ°jÑå-ÐF÷4)sÿÁ#í'_¯ÔÖõe jÙ§RI1·Göª±æ‡ú6þÝ“$òêÝ™FêÈBxÜæGJR8”f†+%W國Ðndx±PYå)ßÕ/µAŒ,•aa#x+ÕŸ,ϵÞk§ma(Fd!ÚË3KU}ËŒAðr98\&¥Û½´B±?—+øViζ¯Â•³FôÙ>`zñJQÃ@¸î'pòÙúO߯Rp¼ý®ßãàé.¾A†¯“…dL¦fwåЧ¦þãIî'ìKþê#,´˜Ý›x‰c—ŒPoPâf»ë«Ì!AÕœFÊm‡}hô·ŸœriT ÑKºó»±å¥Ž ÚÛò¨Ô'…CIÄ-O1§=»hmÛ4Ë‹îbW DAÑ_iÃ×kŒâl*sõ<2¿PØE6%U î J•­ÈýúD_Lcýi\ÁHÉ™"yÊ$ÿ=ö9 º›_›YÏ‹–ˆ ?’'[‹fâ§Ê¢ºÓûcì¡ONDŠÖ!qµ"×2¤z=k|Šù¯•l5fˆ•Šf˜˜ ÂSÆ7¦ç`Œ3ÂÛp…¾¥ý4±¾ÚœûDõ’¿Íž9t8ǾÐíw;©}Ç‹(èŽzÕÝIvly 5޵Ps”øádƒ2и)G`)…í”D†g”º’4Åz$r6¼è ZyËwwfµÕõèh¨Ð-ƒË50ñÎDû6ÇÂ¥ÔÒ‰C/†èpäƒy“åíþã¡2âu`2”Ä=\ÆG¼ Եýˆ¬†vÜ-“œ{Ú¨ù?­*s_jª:9ù C1¥dRx9JhÄêL¨ð×&òù…¼rb£Õ¢ƒù9h‹gŽÕ^˜7[È÷ß¿È^7½ï^DË©´©‚$ÎÌ Ë–?°ˆ«édºG&“§jôu¹^ÇD¤ð1î ˆû8‹ÿý#a*Õ_n' [ç¥óý–ùv·S _”½i˘¶·^Px¢ÑkÐücS$ÏÇÒ‹© Àj Ê=ýþÒCÁ†Ï« yj“з eŽÛ=oëõ|>Û¸î O6ûG‰wôˆ°ÂH¤ÚÑ1‡3v®X–h5WOu;!„Šæ¾:]Ä4ÕôEqÍç³µà—û¸çÔ)]Jm·R²±2­k5%4>WÙ¢Ÿ±4NŠ2âÆ'\®´ÃÏèP°q°l„¥&÷ÍG ¥)Úöï¤DL¤HŽfÏ’ß]ÐHâÁ‚yžgõZzþ‘ÿ'Š .û€4ì[ñ- =ë4S­âÌ#tæ Ÿ–WïB2kRŽaRÔf¶x»í¨øíޝ™}f­í£“Ɖtõ^Îkìõ¸¿“HF<òÂyh@,¼°||ü`æøyˆÜ¶iÁnl|Â,“€ì)ÕÓ×#|&“Ÿ,–ø¾”„7ÁâqÀ0Üdü šºâ»z@Ï™_ËÖÕåKÇmá{#;Š·èW’aKÃŒüË;þesHò™³ˆàVÆ”.Äml¨xM¡{$1¬–-m>ø"ØPù¯¯R1ÄYÒV ÓÆ¯MJÆVn\r0ë;oÎà8·Ío_+tib¿QÓ†ƒY‰Áj)˜.%çu¿û€¦¶4T¢ú¿uk‡5J(°64¿[˜ŠÐ˪‰vžv˜À侕 ®Í•FnÌ—Jý£ˆ-vö»‘m³f Å4Gi<×Nöù4š”2CûT£zO î½½žŸœnjVѧÉâ\ýܲˆžÂ ½@m\„n(zžÑ-é—ä<{Þ“Ïœ„ã+c{âc)Ö<£ÚŒÜOøfa~~ø†$ ~«q6 °©”]±Ô†¬: ¨ƒö¬ƒ}üš¢XKtº ÞÑðËúy¶cƒ(;.¦t Ü„Â#kBu`7#Uäj¯möçÆ4iºB:ŽÇUZO»T\#À󋤘¥#e­:réd( tÆ¿¸‚2IòD©K¡±«Ây~¶Ž ï*Q·ær¯®IDOcà¾`©EÆsLÀH q˜éš/ûËûJÖÔ*\º&ØÐóȬ6[`]JOMëþmäCh<Ô×(—ÐB«¡§¢M›"¤Ÿ²Ò£N#eœøqsIŒ4Æ'(r2 dMÐò§1 ÷pÑÌwÃÅ%ªï‹ä¨F8ì‹kÉâ³Ö“O[³ãM' A×u>ÈM{ QOQ Ö«k/w1 9.@+¸ÇFìÍd¸Åsú‘»ÓÌ~&#£ãçÑ]ʼnÛãNŽY‘è‚°ÓL(qxwjŠýQî æþø.Ÿ&ìxzŒ.ûûÊè£ X©($órP-Mh–5Ÿ²°ÔVHðþAvù)Áö}ç3J÷,òÜsßËŠ>; ÝbÈ`I5Ar¿ò|0½4&`²]­\hÓ‚ÝÜ‹iÂDìû“l’_Pð=ÚR5¬0s8Éý¤gAAÿè±ë» ÌAÓ.#­!Aï!óÐsž 4í@n‹;©3R²£ßX O»öÀEÖùQ ÿåéÀÚ°n~L¨BÔghx¦xXW:æçVÿì8±ò؈©êºXdä„áñá1€³XqØîë•J¯Vƒ­ë}ÑŽî˃º½ŸØäÎ.*ùRsmœy¤6ù¬Ñ múËiÎ_E4ê‰ãÝ;¸5>d@—ZY÷’|%JK¤~· ñSÊ'˜^Ï¥²â¦¤¸ÚA¤åm ¢(‰P^máýké  2BËcãocv¿ tžÌËüöQ:¥·µÄ9Ôí{q$x^¥ö„Ò÷x‡©8gxr#EÉ–ñ¾úûÂ'1q-¦ó”µ.…Ø…š'méŽ_ ˆB3DËØÏOo?T¦úÃR|lë3W“ï” IÈ—AÙAlµ• SdþÞž9‰VaŒˆk¸wío3ÚØÝFi”'ï² |Ííʰ»1Ëž¿d†„ÿ9Ýd´[ÆSš)G[H«T†81Õ=Ò»TghÌ%´ê–¿vOIRÎŒbn:}švö†Þ_/ U_®ÈôÑsï ¾[Æ \/¾ºh!BDyÕp!ÌŽçX,F§o³q¤õ%'ÇúÔŒ%Ú€ÈÎô^H¬1£ì²’/¢œŽß·2r>h•I3çbX•¯ûÝœ.‹–£®øN°)u%ÞXÑ0”ž4ĵ 3]3 ŒlÜ'êje´æÑüa6›F]HîØK9:ç—7»Ê.IN¥Ò8‹ê2êbË2¡Ô ÃJ)°÷œyœâ›ÎÖ}ï}à;$×Ð4â¬eº¨>ÞKbo;ÈRMCç S?›–|}×î¯ûäA<“:]y0,)¹ô³ÓŒ­ðSñ0 ñ Ó®˜íef0FSœu'» ¹ÐD¯2Äð3°çzWË6ƒâ}ØOïÒNê> ñGê†'öoˆæ¼d&.ΟerΓš*؉ãÅíx¶gÏë5 ´9*?ãßZrC1/›‡¥¶0î q“Ò2°gЏg‘ß&:ˆZ»éʼ'Ó]º– Ð+)Ýé£.¾Ò® È?5Kœ’ÒÕ 2rÿ”rñ\FÌ\Ù ›} dz5ç×ö‚dqIH\mØ›`/ ï®Ln^‹S%¾sä–}f]+Õ`Qb’¹3ÍরŒÕ B‹Í9΃ÜÒ#«¶66ÿkGþÉJoÕãÕ ÄF¨³vž#§šYz㾂p%$óÜqYáÅk ,,ª{šGx½)MgÕ9« DltÕW7úÔí²J7’<Õ2Uµ.æ|󉙟A7X;[ê$¡W@×#XŒOÓŸå Ûéj>…ò/úÀï¾1¼Pd&w¡þåŽõ•l§Š»‹Êh'CÁhhG°ÎIί›Éž(Æ,TÛaùmŒ×bJ=Sù82^S*±ìÝþkÏ)/'y¿m"§âëD^M1~“˜ŸêçQÖ} Æ¡évîQâ-ª4ÅìT€Ó˜þ.ORéŸTµ¹ØT1øó©zq,ë„YªÆ™º©{ŠÈ5›¼¯‡³Š»¢…Ý ^§‡V0 8|Wéù¬‹!âÀÔ…·&eòHÊ‘#¼ˆpÜÉnîA¸xæsÄ®>ˆFĹI”6¼•µ²UÕ²ÌÌïø3‹ ô„;y#Ñ?Ðꮫ÷©÷æí´1.üØBVê!*¶›­H˜ïnŠŒôlQšÞÙç)”—Mê:^AMñ½îyÝé“GõéÐiBÇžrÇÅjò¥ûĵoÌ·kŠ:Ìcœ ç |Ï ~ÜÊPî~yÄJÜAÌçÔ«Õ eöÃäû>äëY}0zÃ<Äw4'¾—2ä8fþ¨¶ùü;òú§Ÿ¶ ‘Q§i&l»Ib^N+æüExÂÞ›’^³a3G A)at•.±:æ iC¾"ŒòŸt@ü1zR<$ºYþ䕽ÁSä3•è×£‡ÖëŠÝ 'bDœêOÇ¢:H+xÂVJ¼Ç÷ÐÁfy¨«d!‘‹L°:ÑCÂÕ¾—‘2ö¿yk\dƒhˆ(}3&gÈÑ„.#m ÿvÅ>Y6²%}Ñèó×ÌŒ1KDT*b·ÂLÿ—'R Â:ì¥ü·É”ô±|½­4#ñ‘È ØtÆL8VßxR}—õM aÑ ejÿ`ÒG Q¥F2KÄc=P@J_,nó|òÇ8Sˆ×@Yñ(Ù/-<;–l!¶ö®t‡¬é«£'}§ÛŽr>ŠbWJHe^ZOæ;*4æs;"Ò`‚7i‹CMš%;·N÷îûG¤Š:û Ö'³ÁQµwfªt©zU&£‚ïU mHÚ{­Ïxƒn§PPgÛˆµh¡†.aä˼}ÓL0ÃG¼¶w„‘t÷†ÜW5/VrR0?8ò0|9Vf¹=S z¡mß;N¦„¤Š2Äf ¨a©ÕMg`"ÝØÎrJŸ,MN ½ÜîÃRá—?Òbç"A”®Ðg’ n“ô{ôÔ°Ö‹zw£ÁpÈ—¾±fÇSØgá~¼˜ØËòj·å"\ôÝl“÷Îmn‰ç °È#v¶›wÕâuxR^Ÿ¹>EöZ¨Þ¶ÌU4#øÁèL£|Ö7Yœ´y9‘Güî0e1;ÉÝ ¹·(¸ Þ‡,”'¿õsÍP…|€+8J‚¯€ÔR1bWA3½@ùÔèï-2PøŸ¦à±è³œß'e©£twmV6# $g*'c'œ 2W‰»¹¤JÐäoÔàk®—÷%¦Er¯¥µzY²9Aþ–¯ÇU Ÿœ:Cö^ëyPcEöˆ% ­¹‡~¡náÌâ^©ÔÂ8Yì>Áà´$¢oéBQ?5D|ÝbeØ~ «ˆÐhßÈ%eaûì"üîûæa™ð»yŠ̾+/–¬¯L*¯LK–6]½vôçÑ•zHm(W—4b¬X^V„¿_É@¯.»ËPò0¡QAÑpÝÎÌð§ÊcÐñða_>èYôÁÔéòbU§µØKãÞÁÍl¼–üŒ]͵M颻:±mƒBݾˆÞŽ#Χg¿®*&úÛtJ[ÙlNŽÆ†e^çMýz`rI6š5 “aIIÃÔhÇéçgIŸE¤¶?ÏmN"¬+÷ä=‡hÙXüÊ>hy@­‡W†éά.æàY‹Øh'‡ŽOjK_YQ(¨[‹›ÎÌŽ'=0‡Å’€ Dðé(Zô•LS¶-Gqaüq"ÞØí}æÝ¹©˜iI¯&¹ gHu”ÓàêS#< ³ë uQ%gãúöa-‰ä+Ý]B¢/`Ãùþù4"c«eb Ûsˆ­y™œ­8Ø|ë»Uð—Ž„~)ΙÁ{¦P{å*ü¥+oÌ7"ó?úšì*™×gÈPŽ\‘’õl©zƺÍ.+]xðªº-Djº›Büéþ7£Ò›U7߯0ù²æc‡^s[“ÏkSáj‡ æÀg sÔø´Vžg”Êiˆ˜Ëbõ¾¨âtÄt?¿t¦Ë_2€®‘z{î+Œ[õå»pçÛÍ^ã« Lé ~¦0ê‹ ¹6 ‘ö™•e~Ó  |§Û$ån×4¶·lLÉÙV®ð Êî¿\Ê&¹ár&æ.M^ê~gCÙïÏÎ'–QÐ@µ¼m3³<øJ º+B*Z¶ap|Öh ʘ<ÿÒâE¼Z.ø&È{ÅAWò ÛšeÑöâ ¢!áÈžN¹÷²Ë5zÊçKù¯‰âæØd¶ì§Ì³,Füî„Ò¸Ÿâœ^eEvʼÒxk%.„Aí¯ }ó6‘»œ‘óÖ™¯q+:k'z’ÉârÊ¢Oo,ÊÿZGÂJ£wT+üÙÞ^¨æ»Ã&ëyÃ‚Í 0×;ˆŠ†>ð]­é%ýb ûÝÏËŠt;ûçL^2hb“VÔO™P3 Íà YFwÆrf÷ƒÇÕ\°í‰ò<ýíĵÛNyßG‡hºN6~m·6÷?I6UÜË„ÍÍæ7ŠƒÌÙÝÚÉm|¯{Å;ùL£îûyn‘º·yÛ+È¿Ý^`0_Á;¡Hooq¸Î¬Û‚ƒ~ú˜'ë”ÍYɯÙ*LÕd¹j$æ:…@”)õÝÊßE¢q0Sÿg/—Ì6«ÈèÑÀh¼^¡ æYòãú¹A÷h®%D¿í´s]äœ6V¶]Ý'J®ðuÑ<_°š‡$¼¢bnmhÛ›ãÉf=Zš&ˆ1仸/wN^¦Œ+°›tÍÌšsu'%ó‡.±ûM÷—¤œíÅuðï6í)×M:Ö¢¡»Ku—â·ÛÖöªØ÷YßÔ0ŸlÙs­±ª°òŠ’eåùÜ=rrâûæIK\8lŽÅÍ~ø5s^ýô4<•ö!ãäy°U¦^÷QTn`Ë¥n¾‹)C¦PL¤jJª.7x@þýIg R¿l„°ŒÂ³Üs<æ ¦Å»ö8³dÒ‘ã£ÃdðSÆïü¨¼rgDãËc=¢IK͉á¯ú•ÄH]Ûx¸Uá)gé¤å¸W‡²Œ`5|ð•ê›Ç÷û*ÜÎ\f”–D Ì”̤#wÌ{ ¢!|füê| ²þnh<½I‡)PI(ÌæO(ª¬y‹š{Gíyiš/L“ìχrÙ/ Š{bïsqs)¼·fÈïÿ¢Ø¢É@×òa·û–#d?OR%Sž4,7,u.™^îí5ÀíIeÛÅn¹<_øùSª&½>÷*v ÍóÁÖãÐ’ÖðáòŽÆ·Ú5¯ê:!;ºTÄl( í§û½üѺ NÛÆwd L’/èw e K!® „®U£óFÆ Þrà ˜R.Ö¸a Sg—²Ê@­b–B+Ñ"¶ªZ kã¿„Þ;”w@’mMÔÆ¤‰Ü‡ÝêÀÅsd†v³{ÅNû Ê‚åþœ?­—ºª‰ñÿrì—<™aß—soŒ¶©Q4ÓÈ\m?@XŒôÁ)U &5ÅwfÚ·xPP?‘S4"“¤|/¢€ÿåÁ/GÅ#ÁCõB¡J“¸Ïàß„y Pûi#ÔPQŽÑab¼b˜œc s’›U+2+ë…zÄå“Ö °qb¬ñù‹*ÄÔkßê/¤ìD~-cá½’ÍÄ©¼£mœ£2ÌÆOŒäòsF¡2èaòÎŽGbP/:ïǺI6B’÷!šß¸q”ÈÁ—P!y8Žé²5ÔG›Èx Ò‹–AŒ`2¬‹h¶É؉N´5ˆn£^Ó&vÀø^9™ !Ìü÷„¬fO…ãÜC›q¤øÁPv¶prk˜Ëz8ò)üiŽ8û+8¥†%uRYÿ… .ÒBL†ëœ–91z œË0è=ðtÈ¿ò~WÙY£èΟhî—ÄG&àv·À×Á—ô„=³ñŸÎ st‚ûMî0·Ë<~k‰CÎ.C½ 3.”áÝé·<ìåuÖƒïó:Ö~ÐÑ/ N¼2”B©Ñ„á¥À7É$×$ þ=Û–fWb.÷«æ«Ç>⼞ÿ 6=é09ƒ Ù‡wL ýóú)¨‰2 rí5aÎBá„bƒÿTlCý÷"¾lAödÅ6[œdšŽªw2c®ÕN›¢ÆÄH¥vÝ(ä8’¬ZpG3[·³¾K‘’LîÓ Ö¹OUñÔ dVë-A1‡ëý}þº‡wÕŸ.»FLA•Uam:•ÿzBâaƒ4:éªï€2³;_·E ùÜúöBÍz3Ê5.vZl|=4öܸjþÕˆÂÊ€¾8½v[MyœÁ·{PEB/Û›AˆôxT ;˜!mï‚V˜Dü¥ã“ÇõLrØfÊåÄ7Ç{Ê=Á?Æ-c9STþ9ÿ)o^JK‰„xèÖ á¦<[ ¶qv„4ùÜ4|‡çœi'%í×µ_GJ¢ŒaÜêNùé¤ò3,‹ÄNëxÒ>I­KW\CÕ(un?DÉB»ÊöÏïüªüª$/;†m㯦‹J)®õÝ/Æ>2žÞJ¬ŸëžˆNè‘xj7Ì7^Âøt˜‚–žî`鑘e%“ÓÓ“Ïç0ø a›)ñQÜ›ZˆH¹ÀiÖJÓÎó“x…‹§ <3Z¨ÞòQÄ»±¯™d•0à_jäÒ>Ÿ ”&{ËãÌÙƒ»°ä ¨–BI&œR›¾Fù|ÅâÛ›R‰÷Råä«T^¼±‰çŒRçù7¯¶)Žy5ÔHQ¢óÀÇ Èc-3^ÞØ\ñZpm+œ»{úM½#vˆ¥ù®7=qÍ2®Ò|RÖWÎq¯»â9þâï pœéÓdMÊóþƒy¿¥IÊÊb¹úýpeæl ùßu@Áþ3ãg¾FJHæÇÞ~G}‘'ºŠëŠôñôÞ;±6^ m¬ÄeZ›B‡TQñn¨gáöXU8ÚïÜíú¾góPi ~z{+ ¯G†ÆÐðÏwåŒá¯)8à÷]…£¶™Œ¬s,6…N> Æ\|2m½ –ÅnÚ+dš‚@ߥ•Ÿ$Áñî$xzpŒŸ{$s†wß­“@éuo¿ÜšN{Șdà–½ÿŸx (}˜­ ½r¹òÖy+@†jˆæ0‘ÃÈ"Da öüþ¿ W*) ‡àަÊAHÎü‹ŸP†ûJ|¯_¯ à} ÿ/ÑLÖÁ‚ïº@‹ÁU:‘ð$®"¨£”ißs6XlõÄÁ'ÿI¢=’¥4ãpáO•y’­H_Jp$0køðXî-‘Î1*Á5™ìýcÿ¦uõ¯ÐH$ä¨ÜÂIU3À΃áºÛ³µò, `|‰ºw ÀŸÍúBi‹wÉ5•ñØz€}ÉùRNîFññˆQ5à~F0#ÆOï•n"ß¡ã5yßø•’TiöùÖÖ“\bY­Ünt@Ì…ºà ‹ëú¸ÕMæ,7‰â2ž `!/\HÝL~CšÝ7 GéÄP˜ VÛú⋤ÑKïú”â xŸãíÍá Õç¨<—ªéR‹Á÷ƒ¡éÑ KG÷]múºi`j`˜È§¶ ±ƒé¦SÅÇÿÕlPCîN]R2}kãêIš;¡HíAmÙ[)¢•œŽÊª\éfÅ+ÆŸ&]ŸÓŽoÀCã¾ù´š´w#Ç'=ºRw‹‘SòX«3²¾÷5T‚ Ik@f_ .˜Ã}ŵâêAÐôÅÉAHØ1.—ïVlÄ©†lÐÄs…ûjŠQõ1ûašœ`Ss¼C ªÑ7€ùÉÈ Æµ<ö†›O2B€U†2¾š(_[éSÛrÔ·ç 퓉Ìt¦ˆ†°Aåtx‚,ò¹lBiØŒ:/¬G#粟f:êwDö™;ŽOdžÏ`JûÀ /üÅí,¼ézгž` Y•î@¯ CùuÃ1¥%$ÃÙæbü e2ÕÄÒ+dhF"aÃX%Å¡!àc§ýÐÀ‹÷ŽU×ÌR ‹´²*¢’¸6•! #›°ìIÆ’ ÐíèúcŸ3B•„ZÛpW å.sQ”‚ò¥-‚Ã,ðèìIioÉbm®iýæk⥴ä GŽaœÉÛ8ìΣÍè¦-‡XìUU9ÏëJü£i*ówýhôÀµþÉws…ÒÛË#2e+PC7,EŒr+[AÎø;ó3 !Âè · ˆí&êÃmÙÕŸxVÓz9ñ;$uUŒo¯ 0Ãr¡Ö×3ÃÓSÆÜ¬úŒÜÅ=™¢VÁ’_6ÑWÆ &ƒ×ü8µ—Ïà y>êneFUÛÙúP)ÒM Úšchó cHSø,EHyZÅ3cëZIHJANÝ»ùA-YÛÖÕé°&~RGI˜ã(ÝÕ×Ù«ë\T˜Ó3ºR`°Íà=Ù3/ €‘¿šv5Õ–;Ñ|¶ºUˆƒÛ‡üVs]ïðÕÒ?V KT&”ޤÉQgrÁ˲¸Ð%&ÑéðwW"4µä¡ –ÂC¡1¤8¶˜2‘ö/.|/ËñzÌ>æeÿ^{Ü “·äý4ËA‰ÎÖ­µ¬Ó‹q{èv^hƒa}R„Åimíc´ò*Å¥üü¹ÒŽp‚îH(ïéWV!x_RŸùç ()¿dZIÄUU¬lv\bb±n“gZÜÝqÑ´/ ¯€ Àbϰå2¾´ÁT—Œæ{'†¡I30˜£{Mžž)³Çš£åQGvãÔéØÐº¥¶à‹Ü×}¡nº”6ÔÕT˯Žhƒ})ÝE0¦îâ-Õ¢r0A»kèXOÖw«¸)¶`XÑ{ +\qÀI…ÿb5C]8™ïÚkh¿Ž1•«ËL]þi™(¾•Áù Zî6ÙÁNj…ó¸»?>†Ô_ð릮Í>?:}—­>9Â>vgèÜj³2åÉ-5oo¢ñÊ1“TiÜÙLgÌ¥ýÑ=Jv)|ù|ËÚ[yf®CY j˜~»à²*„ÀEq7ZàÊ@¥ö}ñ9'LÞóçÚlþ&'­q‚Jºorž~Ìé¹X9hðiÉVõ‹[ O—^¤·3ÝŒ=ÙCé†þ‘7"uèžÁVË(>~q6mF§Ô$Ÿ KToeHܶMÓÄÒ² žª ™wŒü˜]zŽFƒ8Â&Ÿ§p0ökÀr…‘‹F Tj‡aóßRS¿¸ÁT…ÁYGõíe®éƒ‰àÆùðã¹+)³gÔìcöC¤¶¿XÒQ)ñÍ?°õ½àN‘Nƒ'Q#–¸Î[|'ê—å °Òÿ¡(S ÏDÝïà`Q釭ƒ²Aß‚PÙ’ð«-×”ÕZïw°Lx|—P'QŲj ¥ S¢¢bÕ Õ“úæx6²‰¿¥¸Œs,WöDÜ %rå R1¼‚¹&mÛB2fþX‘´„ÄóLp”Ÿn¬núúš½‡ïBY¥lª#€?êÌY¢Ç½}‚˜3eÛzéLѰcn‘!‹!×ídA-M;"¥‰6¦°ƒéw°PGZ${×it”V× Ãîù pž I?¹ò–ŠpÁzEùÇrŽ1óz2 ¤3]L†ª-56G¶€Õƒýºâa§x6d²ù4¹Þy› Å9žV/¹j˜²Éô˜…€Ûø)Úív~ÜŽ6ïóbZ4zÈh…d¨‚ijX ÀÊžþ[fÍ‘Íõv# ,Çá8×jx˜ïi¦s¾Ú˺5L¹)^Q Û¸UÆ2>|Åàúsº7vNæ@^qIIp‡É7C¯ûõ{øîD_‹M”è¼Þ~,!%šÐ,ÛQ‹ ‹[ú7ó)'Çqaú7¸ªªÓÍ‘ïÅšûä"E;÷‹>dF¤>.ïîó×"£™@VŠà#h /S3]6-F lq«—Väy4nÁ6CL–oMÿ•b¸v8qŽ¥7ð0‡ã^dXåø²î5ŸaK²†®ÏæÕ„¨K8hÀÝw7— -ú‰'¤¨Â9IJSXLœ)U©ƒŸœ3f¸C¬­²•ã.¯* ulÂ÷#Ä-fWo`²s#½tƘÞ=¶„"Íþ2R©—̡͢úß-‡sÁÕ"$]Sx³G‘¾[2"È ¼»«>Á>ƒPy—Õl*p£D%ó¦K(l@; ^‹ÕqP) ¯¬kêå’¦ß[â$'ïšjŒÎàr;4\:)yWð>YuaB›…²æúWFËžjº?ðÛ¸€>BgƒG˯ ñXD˜2ÕçÅ“~ëŽüè aeeFéƒ.!§@xò`“ôJIsÝpg|›mW–¹Ò[øKcíA\"ÂHÓœ]ªÃK»&?²¨6ªÜ_7M6T+E"ú~KÄ`L{ lÏ}ª»±Ü‰WUR æå:±€Á±Ž—fšMçó¯0Ùm¼Õ¬~{̤X¦Ÿr£HÞìæˆNîG˜=øˆ ¸2|$9¦Ú:ÉóLok^?@í^‡ŽUô­¢ b7g„=v‹ v+0šp<ï"Ñžßú€Þ•×§ëg„Y»Î²¤ëŸHNmîcRŽô¨›û†upC³š4f0•.jÁªñœÐÇ.¥ m‡ õaÙ³ÒÂ{Z!âª*GeÉ‹jxA¶x4o±‡K¨}¾C7àõ´q 3Òë ­Õ;Ð|iÒÒå ¦M>KB¾–^m­n÷õîÌþÝÁc¬z]‚®ÐM‹ÑÃ~«×in˜}—äÕ+" ééæ½ûýd0Ä‹Ïæá)> stream xœÕ[[#µ~?¿Â‡<.»|“qçHˆÝ7f%fgÉ*Ép–ƒøï|Õ±“°ÓÑv;É ÕN;i_ês•?W•g²2Ê‘Q1âAŠ¢ÇÓ*ë-žN9/¯Yù Ojò}P)'<£"c…¤ˆl@!+²ò5ŠØI}z‡N­U¨È‚ ¯c°R'‰¤Ÿ¬bŠ@ µÄ,: ¤’Á€.X•²¸àTrâò2‡Á«³Ô *’:Qe]m¶]?YånzÑ{ö¯ GƒAñ:g+¯ AC2ä%#mì† {©Pò Š}$’ Äd±§ AL ” £Il„òB3(y™»„1( ÃlEQ}”Eå)ˆIÏ cX†9Ì/Y[uI¬0@ò“M"UÆ6Ëh E™cÀ˜ÑKư>i1 A)a èØ f I[Œ€ÓHbÄÔ%ŒÁZecÅü¡;˜JLö_}¤®¾X.6ª+ˆ˜Kï;”a¤6—2Ì»âÇ««oWËÛç³úÅÏ¿PW/fo7ê%^u=Cg³Åf-óIÛæÿÝÍo>[¾E é<`‚"à¾Dû›ê*ÌŶæw³õò~u;[+gÊØ/~3“Š?Íê'×6ˆKtLÜO;Y?Wÿ¾ùéÇù†¯¯ï¯_¡÷ëëß–ó»WŸHéçÙjÇÿ?ÁŸÛ×7+õÃõõÝ|}»šmæËÅÍêwõLJþóÍle?PWÏÕÕ—ËËàgËÕÝlU¤%‘ó>P÷¾RW_‹¨·2”‚60Ø«f/OÒ¹c3Ò Aýç÷¯6ˆÿÌ?W@Ÿ.ËÍIý8_Ìׯ›0å ½ðxŠt®¶º[lã LFFŰY°rù@ÊW ;fyBè4Þ ;QÖx)››4‘ÍMž/ÿn¡®ÅBý€5û#W·àˆgYi7ww÷ošÌ2x-.Šem±¡S$m°Â¼ š`c­ò,Æ—ûŒÎ7(Ëš³³xhמ]Ü8P\W×⡸|LÜgË{´ êê›ù]§Z»+žk÷tÛÞÄ—Ü>Ë{o« ”qÙ<˜“õÉ'%µLÊyøAvbj lZµÀ“ÓìÄsµ:Àç÷‰´øŒç߈ká;Ÿ5ÜÙ Ð_„«}9@ƒ·¨Htb`þž= ÑQÔ ž·÷p4âÅ 5))-¡ÓR Øâ!mý¿&5Y ¶‹÷uðÙ¤c–0XÝÅ 5©©¸´RuiÇ@: ç/6J‚£Å©(½º2’+=K~dû,¯ëõxsÃNàŽz¼O*&+;‹0Û´Û\6:Á…H¦Éó­ Öš}Þ/HÆ÷°¹dÉN'8I69Mj⬣d$³×&_Že¸“%>ó“µNKúr ¤!,ãð¢—rÐÂÕ2*ùSS‘‹…jª\¨‰Mõi >O:¨}§©n¨AT*)Èê†bã‘tíX8Ðn—ïÓô”+»>Í Í;öjîhLµÓÜú~õt§o—oß¼nSàz¶iãZk£Î†Ãí–¬³u %ÅâvóÀä×)­fëû_6MМВW,¾©œ¦¸Ü¹ãêÅ µï&;hpÃ9Æ=´õbÐ:{œ ¬Ým“…O·MN ¬…(­!½Ûo–Dv$ar2v¬Iž²ïqÙ÷¸ì{¾wßz ÒÇžþýûÞSbÏb­XrÚøÞpŠ´:N ¬Éµ+ÖZ‘Uk}È&pX,yíÙÝP‡ådÀüSíf ²3ø»{.ÏšE}Ä2ôôÊUÁ‰åhV÷AªÛ– %Ñ ûÅ’€ˆEȘªLuÓУ°¾I GOWž$)ÕX#'pí–n £=ö’Ë.Ý0ÁÒ­ÈêÒ}ÈZH©²mqrvÉ)”k=—§`Û‚¬ªl²l; ­ñ(æ %{ ‡ÂÀÁ÷1ïÐ#Ü^’ g'™–µX,–Q…îÎ×ÖbÉžô$wÑút6ô»WgG/OBg‹Ùÿîn67¶)"f§}–[ž 3>gÍr®ä/Æ4ÜA±#íÎz³}4zlMqqM"p5‰<Ûû«æ5‹3 oÆÞÄáàË=k.ž5q8Åš«Oˆ³ßûc1bzðˆêNµíÅÞÀbðu‘>µ½ÿºÈäYÑ ¸„mÐûÝO?ö°pr\mùµ sr˜%«“‡ë,Rg©7q6ø¬:¹f˜Ž&ÎÄ·©PX*qn.Ô–‹+˜KÖ/‰oŸæ@5ö40Ǥٌ«@™ëÍ ¤ÙšýÛxdÃIËo=v‰Ï:Hò¨Ö”¨&à¥à޼O¥¹fžùŸa§'¥¾8©ÞV}Ü >ëFÒ~mªîþÅáÞíþcîs(¬°Yê»›lŸôö(,½›|Ä©y\âÏ>féýè=åSØÚíò×7÷›YÛgÒ’›°Ö&ç,·âÅúHËÏÝžŠµå¾KhvpâºOUC~v1iJÙN)÷‰{V+–5…?Œ04w¿ì+.‚Í:>Ißë;õ¡øTïØÁÐ4×_¾í'6_²ï:xòÓ½­¾> stream xœµYMo$·½çWð˜9˜KYü ÃßløS> ãÕØ;È®´I‰#ÿ=ïqz¤áˆÒLýX`›ª~,¾zUüvtjœ‰.™ðȦT<ŠñAñ¬Æ1Ñ;#RðôF2ì^LðÀù`BB7[ŸèñNù7¼U¾ÏF#Ú¾­´W“"FgRÉxz“ì"&Úƒ)B{4%Ó®¦¢o”djÂxçHEñNáYÀÐ;@ƒCCá#x4*œ1^"za/Õ£V€?ÄæCa¯d<»ÆÏ1SxVá+xÖ0ûÄÈ"<§9"“†ñ…4"<Ò@ؾF„çJž+iÄjÄ‘pâHC¡«§À*h0r¨(ÂÐ5¢AUŠŒñ$PeÍhTZŠr‰ ϱÀ’àY©l‚gÍ´Àsb\ð%‰qAPÉžeViçE‚çiçÂÌ%x®äœá¹¨‘½ ÇŒbpj€w€âhD4-j‚°8 l¥%›-HKE£Â‚T=xŽ…xV¡ž5Óω•!±$ <êÃzre?cG%k †åæPçê'˜Ð“sØRaÁ ;z®jr+úšPœÈ^D³z‚‹É)ïk;—èþðõ׿ÝwæoF0…þdÞýù/EÚ Õ²S‹9uóðñ£ù»ùæ›'(Òô„E½ZùÀÛz(sí¼M¬¸êl…/ÑÒæò <ä`³Œœ£ü^¢k±âFh‘cçZÁ8AßlÓ Ò±&y†~]ŒgÁÞÍç#pnà Å¢±v½Pïu90cŸáêœÍ¨ý„ü'”ë¥p)¶"ü ášÅêyø)f”ur}ˆ³Ú–:Ž´ÓåJ£-nÇBù —`+÷g5 ¹ ÐXެEK²iæ£MÃÉÐÏkëîÄV¬wxÌLMÞêØ{Á*j¹ràê_‹H¶%}!ÜWy-Ô!LÙàªÅJu)\Š`­c¸*Îߣ•µ†9æ¨çä1ÎQ;Θ‰UçÐH3V:g-­iN€yN¡æ9Ìsh” Á?l?mïïÐã›_Ö÷ÛÛ¬¬ŽþŒÖ»:¼ûqýi3@òº…C›ÃªÝ¾œšãª]˜œšuÕ®ONÍiÕ.Szóž ¯9h+ ýqÅúðJ{(¯LNË«vírj.«v÷rj®«vÓ›1.UJ§rìùÄi;}+ ##y|ûxuõpóá§ÛGsuõ¯ÛíõOß²õÏÍîÿ~‹ÿÞXïÌ?®®®·wïwö_ïþc~ûê¿áßÏÛ›íÝyE†ý812ôûÇ[__?|¦´ÓRµ˜O*tYŸÌÆ´J.§u >-ì´E_^­›¥† ËÝö~³;-¹)òoYy9 ¢[Ì)ãw¬Y®`›O–,<}6šË•ë”zÞy¹bÝmÞ?ìü2µzw¿[߯ýâÕzàÈoK‰Û|¶XnÁn>9©Dóy·¹ßo–õÙb_nÁ~Ê=?}¹rÝÃ#ÖÍæßû?~ï¢õØ´X¸dŸxòóWÓøçí/»mG¥i?ÿt{½ùh?­ïwÛG‹!?· ÏëkoÛyqZ_– ¿qòËû%ß(¯UÃçõ/MŽ©áNΗ‡×qúˆp€­Ú§ÍcK;ÒÖÎÄ~Ó'“ƒ‰d´ïÈ©ªgø¹øÌ°Ž§ßZÏäÓeéÁÄó¸ö‘ðx¬©3ñh<]Ê Ê ³7I>«È3èKŽ­¬äØmÓQ;Ñ*u¢íÏÞhíØz_T`úMø:E}â(CŠÔ,ušyj–:Í<5Kfžš¥N3Oͦk¹ç1£?CQÜ3Eq$ æ.v¡h¹Ë¾p¬ÜE"í·J‰´ ]$”]ß&™žH7$IÕr> stream xœ•˜Ën7E÷ù .3‹Hd‹À0¼È.AYå¡‘-%Ä’ÉrFþ=÷R=cŽÑ#LA€šd×O]«›m1…,JÈ ­á’CRÁÕBª×DhUƒõMì÷ †>Ú9¢Ÿ¼°o} ¦ìÃucßBöK(•ýjb¿…ZØï¡aNÃ\ÍЗZg_BÏìkè}ðEåcåH )Q*d”’R:¤Ä’SäDŒI ªR&©Âs&*:‰îMáÙ«ð\H«ð\ˆ«ð\É ¶T œá¹’8Ãs#r†çFfÈ›:™1qêdÎP5’9CÖHæÜ‚$2玙áÊcÄd6AƒÌ¦A”Ì–Ñ 3~ ™ÌÏ™ÌÏTÝ žÌÏ…Ìè`-1R๹Às%sçJæÏ jà¤ÕŠÙ˜ï^cGn”îxÕè(Œ5:¤«Ñ!]MŽå®ž—“*Ž­âQÃSëª:ìÝÁÜ=‰Ô=¹‘btpÀÚ!^Šž‡,¬]$žÇ,¬]šx´8®º¸=¯Ž)zž[°v¤IŠž·GX»VÞ󲉥‹¤zVçÔçâ·Û›íûüâË?/¿>KZ7»fNØwysý™-¢ì†Úf¨ç¡¾Gëi(oÆg—y$nƱ{J›qçÐQÆ,Ÿë# xzŸëfœãç!-¢î†l3ÎöóPÙŒSþ> stream xœÍYkoÛ6ý¾_Áí‡(⛊¢E×C Ú Ø#¦Zê"Ô– YÎÒûï;—²K¦ ‘`ÅH‘Wçž{yIÅÚ[–2í“Ôx†&Mç -g\Q+˜0ÔJ&¬E«˜ä­fÒ¤h Z‡Ö2é©uLKš÷Lkàq‚Æûœ3£5ZÌYƒV2›R«˜Ôjæ$Ùæ,Ù[æ=;æ-üpÏx §F€`Jˆ 9§ކŒ ¼`„B‡XŽ¡Ža\‹ ‡¦Ô²r’¨À­AY êÙ°@¶)ÙÙJš²õx]ÙA%#ìÈ)¦¹×Ð ëáÞ‚¡J™H¡„Q @YÃ*tå‚FB‘FGÃ…2èe™´ åÐqP Ê© –$âh45Öm45y×@¦p dš'ý…!@ d ?vÂz ßú#fÂ9L!¸ÂCc€ì)d` S¨nŒDÇÀ…¡d l1Ènh é ÓRhšBzIÒ:J‰¥¨/%­Ýr&$1ÈÊѵ¤) k‡·,å™°!i$ d¡´DÃÙRîAPé(ðäÁr= î€b«?N¡c¨£™æA”Sîxç˜5ÁÆ3ë•þáÉvú#{´,&M9¯þ˜~d§¯ççsöôi˜}Ž4§íô¾/®›°ÂÓYVU„çó²™ìÑOUSÏóUÀ{L ý‘¡GóH›5`¾˜¯àℳÓWe½lÂ. o³í§51'vVW¡lÓ|1¿fïæy1]¶$·ž7WŸ7,ãÊPñè¹ì´¹q²¸Üà£;\½Œ£š=«çéöê»§võ\XýØËëlÒ°EV7e6eÓòk1-/çó¼åºw6¢ŒÜ§Œ(c{žWyQ/çÕÉër:e_Êf†ÈøP3õ‡ò»­™¼ÑÌlk&Ķf¨¢‡4³;3dÌloƨ=ºpÝ Ú@%ÞßKà‘—“¦ÈÙrU_•WÙ´uRˆo.îzˆ8…VƒN½5¡óË‚-ZçlV4—]ÆDÆ£„âù.øA ~†j2¯ó¬š]n†¹¢ãþzeC¸CI0ˆÈËëE„ÿØ Èîð‰‰3éUV¹§²¶Lºdír#ìö­ÈêuBöF†þmÔ¿ÜWge¯ÎÊž`òPÝÈÙmôɤ˜uFâ¼ÊÊéª.Øy9+z[é6£H.Ù=ûKÊ ì¾ŲÌWYçøæq¨—‹£÷+³Øè¥z•YÉm½”?¤×€`—@l‚N±¦9Œèáöéá{T†êôKÜ›l1ͪ“wEYÔ­çÞHÔm¼Æ(±'±T¯wOC>­4¨›?[MYýÅêrùuS…ûƒÛ{4÷è£G€VಠèY•³ÅtÞÐCW„cSÃ<òq¯kÎ *gkìM±ïåÆÞÙ5“?Ø:¯Ê†}Ú!C¾»GýúÛïø‰Ç¥wÜWqV­pºÝ\‰DàÂy«9OHcnl’âR1ç|×\[™h죈y°msܹºˆG̵ÜåÎn1&JƤ»è§‰‰ Ó³2¡¥¡Ë]¥LðqqWkÁ¤JÌ8¢ ²*‘QÖ6"8ÔK®s/"ñ‘>¡™;r9 xL»N®uÂyTØõìH"X¨3æ¸l›+•8l¥ÁÉßnÞRW2MR¨pÂÀItSĨËgæ"Úî )E’¦Ñ-5 ®¢ å ÷&Ñ{ÈøÿS-`SÅÈÆ„ái*vdÇÇ{¢T,yyÊ#û_#¸ÖÅÈÇí…UØqóíÅ Ò ú¨¤fH§=H}wŽn>g×çhwGþ¶(ØéÏ«fZVŲ{÷m9Ç>¢3U“òâbU]~ÆÌÅÅÕ¼Ì??£Þ×¢®Ðüó ÿ›\f5ûóâ"/—“º £,«¿±ï'ÿ~Ǻ«¦ÀÑ?2âý@fYS—“b‰“ÝûlVgÑf]ÓÔâϰj³®‡‹)f b¿ÅÒH,(&±­ F%~ŸŽ]dÆa> stream xœÕ[moÛÈþÞ_±YîûKq8\b×wA“^—â¥)Zf#‹>ŠJs=ô¿÷’R‹j(SrR—«%w^ž™™]¹(™`.*¦dÄU3íéÞ0èÞ2/®Žmpõ,J‰k`R™”£„`Ri†dèˆh(&­ ͤ3 ä7 Ëdpô”c2Zƒ†gJx…F%N¢™Rô)˜ÒÔƒ‰•ñ,A­¥ÁR3åÑh˜òsIËTŒº¡Z+¼ÞKÏ´QÀ´ÓÔˆL7£×C ÉŒ² ÅŒ¦÷(ÍŒ5˜Tfš§”e˜œÆ8f¢£Ϭô480«ˆ0™5„ÇÖL¯%³$¯$Š™=dd£¢ÈSâÃC|NÓ›5$mˆ홳|éÀœÔY1†´ux"NÐì†áqg4=€;ƒ—ZÒ…Á+œ¥¯ðºX#ýÐôIóE´:¦|LÀ@«X ГD롪 uo- ‘$f!èq@£zcüÇæ=V„Ð,hÆ;Åbó¸6„$”8€C(E}@‡Ð„ x+ˆ –kÆôˆ4ï€=IÜx·”‚D9H)I` ÈÔ‡9¤±$Ì!É ÂŰ@ã0‡ ha%Hk´T úõ>¬‰ª@7$È€9€LPaKof¤ $ÜIIX¦Ôhÿé»ïXò˜Ñç){°XV.‹šgåÇ›«óóåüê¢üÈÎÏ?”Åäâj½Ï«9.ÿþÙUZ±œŸOŠEVåuQÎÓêwöÇ£ÿü¿¬¼¾YÖ¹~È’W,ù±|]²ï¿gÉ“²šä{ ÃÍìKNp#›[ÜüÄ’§,y™g5z•T\A¡Fz!%‡ÌŒŠ<²þjyQÿ~“³äY1Ï’×Mûñ|^Ö˜¬aí¬œ× wg0PM°—Ô†ÙÂTº˜A\µa´j}c˜][“í®Ú0_ÙµAжáLÓ$F_Teö*'6’§g -ÿXƒäެ#J\xtœ°©‚æR–w°n-p\ûJü`RÞG²DË_ÒzAà )Ÿ£ï”õ<Ÿéˆº•Kãcƒ©i…±p¾Ýä/óE¹¬²|Ѭr‡ÕÞj×8ÐÞ¢GŽw΂,óÉA8g9EPû:ˆë|œÏÝ€’wÇÅŒwvãÙQ}ì¨1ìØ{gg“t=t º·H÷»H?)—xƱäoŤ•[ë,(Po¯í¼¾ïh÷Ýj¾)2u{’ÅP¦á8‚3#'Åï`IQòóöîÈ’ÃÒ–š¶üßÍ¢¬b^ԣŕBÞ!({G8ŒTLÑbŒM‹ðøkpµ(®of£"|…\Ê WÚsMÁŸn.&r…Ôöþ9ªóêz1Ž¡6ITÊrÌ¿K;þK8ˆÅÕ( ËÂÃ’QŽdé§+5bÜãýÄŒ›+à`|É.H¶»ºîê»ë*Ȉ}Aš±º­Ö¯svYÚ-vüvv†ÐÇXÚ€^ã7MɯE¯ñ†õ5LÇӘšô–;dk¦< û1uÏi\gо³¢[XZÕéÅâÎ$â[ ³Vå9+9í¬ËsN7Kà¾j;šªz½ßÐJíFÜV‘Þ™®låyé´_Ñ^ÛyiK¢½v.ܬq4 Ï;Jhz¯D†lZ#ADwÑÍxû±œDàM+^Ë5E/?05ºg·¤»2‚6=˜_My7Ìï,ËGq‡X$CàºÙùjáh…àT§øV“ö}JZ ìUÒÎô±vôÐR_¹f§=Bšz@)‰ÀDøO+¥«î¾·þŽ•M˜¾R®\íÓïÊô¾qwÄéàòd÷ãûšâÃ!R[%yp©­Ö<¨Ùª‡°=ðS>û›¥,ùë<+'Å|Úœkÿ{zMÔÿ<"°ñÊõ’7Åüñ|Q|ê8-./sHŠó–aõK®‹ùrgÌ’ß–eÏòËšÐÎ’I ê‹‚%Ó*ý€iÒl ¨²åõå,ÿÈ’º˜MÐufU9gÉE•Ó@<™f©#™˜mQ,X¡èI~É’ª!$ƒ&g³t£ÿj9Ÿ¦Õòz–.ñ`9-ç9`›¥Í›7i–“ž[Ž× ݶ¬‹ºÊGm[H¸ÌQHx=Ãu´t ùî¾›f°sªÉ­š®H[C""PmwÂ2ž]©ê€Ðó®'ÐÖ&îºÊˆë G—mzLÜ Gv,¯Ww>™´J•îÆø—ã×ü·eãä¸áa—Bô–G JË%8ž¿o}zƒ¨8jãÔp!dS˜Œ´o*`$vMãi’b QK3pa± ¥bIVŸ–Æ£d”;¶§Æ[ì*Îì¶›\_ÁÕ ®kôعP•ðöÕ$Å¢%G¹vÄæàQ›ÈÉKèǃNÃ÷N¡6i—Hý«¬ÞdŸ]FÞþ\ Ýh×’»¡í÷~ºèÂ|w*Ê÷¡5ƒKPÞm#kçÚ­ôÊw[>¾+ᇎ¨Ø¥]qu¿®½H¯Ž„•CTO5bÿ)å|8ýRâ[,{û¾Jª\ºêÃÅÎJj¯ÆQâ°‘“#^—8àydøvJ¡o×Ý .«õÈ8ô"xËœAôJ[e~ªm~5"wôë|…ô‰œ–~Kƒ€ƒ™ 8íÓ@|Í@çRé³}†D¼HbˆóÃ-YÏ‚qh¿kÙ\4™©ONÒ›Ÿòbz…[ˆ?¡£×$ŸI–Éûd–,¡l:¨MO<’ôÈÙ,.˜iõ𤕲ØGÊ Rlj3ïÚ¯Ï ¤{è\ÒèjS·Ïφ?­ÓY‘=žO1ú”š¼ªóë_œÍF>·q\<ùµ#Ú@ÍŸ¹0½Y"ê‚ëN>¶†ºè!t¥£°U"2Û§Œö_E¯0ÿendstream endobj 786 0 obj << /Type /ObjStm /Length 2133 /Filter /FlateDecode /N 95 /First 879 >> stream xœÕ[ÛŽ¹}ÏWð1yÅbñR‹½ÁI0ì}ˈ¬éÄ‚±Ò@Òlì,òï9ÕbKÊNÜšî‘Æ`Hµº›uªŠ§ŠE*K6Îdã) -&øbrq&2®2)&´Þdf´l„ m0Åë÷Ñ#A'¡ƒO¹dCTôV1äÛ+ÅP`1✡È2”bFÇÊQ¿bC‚Äã]Ò+Ñx/„N2>`šÑI&qÖ§2ôÄ‹I # ´›ô“¨zŽ¥ú$‹¡d@Eêk…g˜$eŒÅÐcNxœÕªV¹!¨f™õf< ¦\*XÀ‡ÛËF$ár€(%㉒èWÑ”;HH¦$(I!Å$t޵WÔÌB mr^´#:h=XÑ%ü—3ºœÛñÑ“¬×à"èj>—О:IÔQ¡Qôàf9‰2T¨‚ª L ŒÐ¦@äI¥Âˆä½ê#Ϫ9hß©K$Œá£Ó'0†Ï¤oQO”öZQŸÔ·@Fb§cÀLоbƒ´Ä¾½†1˜U³cpPsgŒÁIƒ«&$cŒàÔ+ S >é³êîA}P0üJu1B&ÿ›¯¾2³oþÿÁüv±^-Ö›ÛùjÑø››ûÕûwëæææçõòöÝ7ÚûÐlVhþó þ-ÞÏ7æ77·ËíbÓì–ëÕ|óÉüòûÿþ‚¿¯7üïÌì­™ýaýãÚ|ýµ™}‡W7ó7LoÈaþnfßãµñáfö'3{Ó,v¸ê)Û—àâlfyl¡Wø……Êp÷Ûûw»Ow™ýe¹ú`f?¶ýoW«õc='*ª$›Õ¦Rlõ` Á$ñŽ6ƒõj½ÚµÈ^Zà¢Î¼Ñ>Tåj_ÕÕ]‡Ÿ0Õ>H*´]ûõf½xÛ¨P³×?¼ÂHÍÇèt§#nñenÙøMËÇÚ*<Ьð-Ü0í_ý׿v9ÿZÝk!ë” qóëù÷*Uìï|Ól×÷›E³m™½½´Çøzþ¯¦â#°Î€r*n!n¡§‹ûD+œŠ.cDç‹kº ·ä‡âÆÇÄý~}g’™ýyyÛzgÙƒÕ@¾o}m÷êÒ »oKç½Ý¸ò`íâx·Û4͘ùް`•Ü™-N¼Xu$¸¿Ä _ú&ztcìyæDï;8l|œÌ-#=†æˆÀ88Ìö~ósóñn\Ù6»û»1±“f"4H‰m#_±¬á&Gƒ?3zN‚i±þéî~׌Ê\²EEBÐ$dÞbw ¯êŸëÍOóÝ8Ld³¦¨\¬fÕÞe›ÀUÆk€Z®–Û÷“€òÙfdÿP乤wJtÎx~ÒÓÕÞ>n„ÚÆÚ¦>2ôcX$_E&ÈUBXÀ ¤ËUËå*$ÒBâ1ĘÕEðSNVWWgaz¶lïÄKÍZ\Ÿ÷ñï£/%†uÞ’'Îç"ÛÀ…Ò3 S8_…ÔùÞ•!{à(3w±"¦`s(‡X¡ì&È/R+P/r8ëƒ?xMQ¹Jª3‘RF‘wÍj;­tYíYZ¹ySM%¨¦TS ªKUÊ}¤ƺ\Ô¯ËÝÌÀZ -“v3ƒÄj‰ûË£"K73ªV3ãÊZ3Û«¡Y"âÁÑÐ\²ézâ ÀSÍ®iŒëuiZd„o9æi)ß—­oéþYËÞj[K„uaù+^ŽyY÷Õ~ÍË~pSgi+D…¦»kû¶®B2<©Ž9e gŠ%åoyP£òqVív@%ɦ"OžÏæ÷¡Ï¿‡nàôùw'çsç»p‚å… Ç7¦bÝU=oTܯžw@U=ï,T—ð¼ºSߨ§ öm/ãÝ£ëõÈpQœ Á‰°™s'k<$%ÊõÊÙð»¶ÄG~÷%ZWøÅø#wÁ¶w%6t£µ×ÿ.´Ûé'0LC'„è“-yuüßîÝ”f ½ÕСÍ}æ Ÿ¯†Þ}jæ›íÕ7ôÈê)%ÎÝØIsôVOüœGS@šd?o_úc/¶¤ãÞWòò Æo}u+q&Dd:®Ä;Œ—Ç4Õ6çbYÏDvœá’gÇ©ÉJØ‘˜ƒ°ˆ2!çó]x{2Ôšb¨5ÅP—‡õü•„¾H–†žÙè¥Æ/«¦8Êê!XÕéÄ(–ÜË),Ǿø—†žh‘nßðÄÈñÑø÷ @Q÷¼¥¦GRÇÕ³¯û¶zd:œ:§@ñ"¢l—‘ç€ÕÔqϱËЯÄt£ˆ{¦; ªLweD¬šÚÓÀé¸jò-Ó8îžtªVž®åC‰}ÇHÒÐc$½S÷óÇH&Ìó&9GB¶=÷~8GÂVk®cL6éÙÀ4ô\EŸ9ºX{ÁÃÁ'ÞVú¼kèŽb/ÿt8OÔþàB{Ÿ¸Ÿ/ûL·>˜`.0ëo6ê\E,=îw‡J½t5¸TÜg¡Géj@á4«žvÊ®5fzéÑSÍ’§\·œrM–¤~–šDÕ_BHñg$OY‚œ*kpa¬GYùQB9ÌÐÍv3nzââ¨Ã¸Ýþl7»ýÙHÎz9wñ>Î|7ŸNG6ÎYd3œM³]ÞŽÃmrÀƒlVTHB6$9à»0ž ŠEuû&$ é°}Ó¼´¿aúLQQﱦz1±-×Ô<×Ô¼þ\J˨û¶ïç/ip•¹û G©¤o+,.àôŒ*½9ÑÿÔŤ·endstream endobj 882 0 obj << /Type /ObjStm /Length 2238 /Filter /FlateDecode /N 95 /First 873 >> stream xœÕ[ÛŽ¹}ÏWð1yE‹EX,v× 'FÀ°7O™‘5r,x-Mt1¼YäßsªÅÖL<-Lkºg¤À°È¾‘,žºñ“s0Îä̆œ Œ†JD)&:B™Lòú<›â Êb¼+lrqÆeT¼ñðI!ã#¾Ë%Ÿœ¾ÃÆVÐ"9PC>xT’! z' ÚC)†Ø¡ç ‰T¼¡2Á±Þ &à*lB}Mˆ¸*|ˆY%$T² )êWÅ„ñºa' oØ‹ŠD† c. ¨°aÖ.|4›;bXç ød8}9.MƒÅD/苜‰_ò&²Ž‡ÈĈŸBÁÄб‰EÇCÑ&1B }Q2ÂBÁ„JT¹¨I] ÎHÖñ`Ö’óZ!@¢ búe´ؤ€É.€!qѯĤ„™(ø%ÌzÁI…+(:^Ƥ+…3^f@%Ú;˜Ñ³B¹8ê*˜D»FM¡-@ÍcŒèCÐNß‹ª¯Šž ¨œ¶‚>ˆ›/Ð €)@ÓSÓ ‚ªBu ÆíÁDJBUê„>B‚fBRÔ2T³$ôTJBÜLSJjL¿ùæ3ùÞèïæ·ëÍúêj·üðnõÅ\]}^-®ß}§µóõÅ¿¿ÃÏìÃtmþquu½ØÌÖóíbµœ®1¿þþ?¿âßõt;õ¿3“·fò‡ÕO+óí·fòÃj}=_›¿Áž1tów3y ß\ââfòÊLÞÌg[Ü-b„‰%Ùf‚Yfˆ+Vm¯¿Ý½Ûþr37“?/–Í䧦þýr¹Ú¢³Fš—«å¶è%ô*h/oPêAÚ:ŒÒ×:윛ªõõz5{;×L^ÿø­Ï¿lÑimx¼iZÏ7‹ë扅lö|˜'NlT¥×<ÝŠ³Šú|½øLÄñ)Z_ Å[Ïï³· åg¬ƒ‹xfyxh@ÙÙ  ©X7ê³XALiè âÿ£úx0{ùk“˜¼,pyèØ7x¨žY?Ñh½/÷c׃Hó%Þ‚“ª]ÿe~½˜þ¨ö+ˆ. ±/¿ž®ñ.\~}óÍ|³Ú­góM÷›[ûY{=ýçü‰´z#¥­F¤ÖH‰“¥ôÜ:p î§`]\¶4ÛâŸÛ½….«ßÜ öHÕÃ\Uè‚*ô…ªÈ}¨øT/V;|#fò§Åõ¾óêÊ^Û4UÞ—RËzßûvµ_MU¾êdÓ?ÔŸ0Qw'…‡LʽñŽŸ@¼_,›#诶š±2-«Þõ´ˆ»Ù­?¿_l‡É´Ù½ÃÝÅÍvPà…\º¾¡èlŠºz$°:Dm“;53E®÷«õ§ÝÏÓaé„X'J²MXî`=auQÖJyN´FPB/ÁF$ ­j:™†8Q8¢'q¢¥ú+WK_Kêr®ññ~DY…#~äÉÜž n|öá¦!Ã}ØKiýc,Š“kœ@k%1“u>]¢•(·Õa y^Þ=»z•žÃUþêÞp©of¤¼Æ>óÙk¤5û²fFjÉ'dF_+ñ‹WƒâˬK—l³ã£f¹‚¨Šø“üÉ*xtùòºéc‡nf7léëK^¼æMf«O7»í|–ä°dä(÷|7°DJˆcϘ{_¬1RÑlâ;¤ŸD«|ý™I¿[½É]zÓ—ÅèÒ:êÓÆÖ›ÅõìÃ|öqÞ ÷ ô1[ ši«Â#g`º®·›íêfdêÕàÚµ;E¶RÂiDÍØ’íWxà ,!¸´–M>[¬²É{Ëîô´áˆ›×Äjr]¿nRíKî2½¾$S§éÍV@Îÿµ›*(6[?lIŠ Yâ-ðoXœ„Cç ÂA…dƒ ‡¥–FxÒ—?*0*†ºÛõÃÇ3Ê;g…E÷ЬèìJœî*{ĩӓŸA<îP¾¶P›eV¾­öRB›û’ƒ]&Žò¸G¼Ê©ÜõãÒúÜ—Ûë”éèšü‰"öì %›°¨8°+U/%¯ ùx_æDOÜCéh>~oñª9p4\]\Í"Öûr0G-¾FÊrFІ€´MÉVB›åÑyÿ…ÐØ>x¬äVÇ9X‘ž¾ùi¤+ß{«ò½'‰õ¦[­„+ʾ˔û²Š]¦ÌGy”ËK¸[]Xœïl º`9\fÂ͉u_^µ°‡ëq¹1¼GÍ/Þã.äÌŒ»ÎOä¾lj'JŸŸ¨(ÍOQ|šn׋/cì鵉K»§wR>º\óÙϘß1˜8axyåöL\˃]ŠöÅΕAor¼Cûbo§>¥ùR¡b3„iQª Eùpc·^ŽA ¤ËXæUr¨ò<&µwcœÊC÷t{ªàÐ]:—X{O1Êa`3Ý=¬qÿ¼b Js‘)Q¹#WlñD¹Žx@g*y8¶7¬»s±ž_б–Òá%Kï]¥./Yž-Fe‡uXåÈÚLê‘ٓŲºÜ•ý’®K{ñaÔä>C$ý7~¥å*çPÏB–zú¬Ôã%TëŒGâJo¶½kRz/ F øc%JÛ‡x{¶^ËG Iªa4Ñp J„môé`×”œUFµ=Áõÿ;;»›ëéÀD1²uñvŸ@7FuëÒ| T(­ì:«Sz3ÿæžzïk_ô­aœÙi<3õ“º,–Þ›#]°÷Þ¹Øÿ:Æ™ŽÑÎ è_d±ôÜ\¹FÍ"뙳R#•Ü™ŸôÞé)?Ÿ„»gökR7ÂÚ$µm¶T'á?üeAí™ï^m2”ÿ‰Dò'endstream endobj 978 0 obj << /Type /ObjStm /Length 2279 /Filter /FlateDecode /N 95 /First 959 >> stream xœå[[oc·~ï¯àcóŠœá‚ܰmÑ0vÓ§8@´¶6¶–\]’Mƒþ÷~C‘²²–`ÉçØ:F @gtt8œçBÎÉ1+£r2ŠbÄÕ*Gr%Ç•U2W§¬ÁWN^YòDPÖ… *ë³ü•”MFîdE†p'+9 À*r£2)òfÆ„–8EÉÊ_€àÉA‘<˜sTLFþJŠ1€¬Øc”5Æ(œ²Š“/÷HqÆt€X9 䔳›çPÑÄW *ÃðTÅg ˆ ÞŠmEÌc( f ±èQ”°jþôÙgjô¥’ïoÔŸ—ëÅÏ嶺«éååzöÓÛùuyùó|zýö ÞO3\þû¾®~/Ô——×ÓåÕb²šÎgãůê·Oÿ÷>Wó›ÛõjÒ É}¢FoÔè/óoçêóÏÕè«ùâz²PßÁÛ€;õ½}¶üÄ¿ªÑßÔèõäj…»DQgY¹4œ³Žƒã¤=ô‡§ß¬ß®~½¨Ñ?¦³÷jôm¿œÍæ+Ìõ{¡Lþ³ m:ië:Ðä‚ײÜ91¶µƒ-pöÚÀ/FÕTõ/ÛA,9@7pêÄšCqE:`Y{ÍðwGIåÕ|¶*‚y%~VâÑkbSaø#j÷á‘ØV8!¬PȾX̯ÞL„¨ÑÅ7¯0Óäà  Yô=ˆþ"ç­èÙÂPÓ‘¢¤TÖ·×ãÕ¤ÑXo!» ÑÄ!Y¥Ì¸Š‘iÉÉ´ä*ì€É ÿJÀÚ þçäz:þ rÝH! EdJxøb¼À³J"[yòõd9_/®&Ë’²•[/Æ?NžJû¸±^ÌzPœç k¶S‡x\œî£lúfÙ«åúæ?»4 ¾<²-&„0$„H5ƒ?vF»Hçâë-îNoWBµ Zl—-8D K×=/c}¸ÌÚ” ¯6ãÀïÉd×k (⣠òOâMbõ&©^7˜¥"Ûã]â±Þ%ó=ï’í!ïòõ|1Aþ>½.D׆_¯¢JáVW»¥³MãÇó,óŽ’^~^³ê#¥tâ î¹÷¬éÔÍ„^™êäÙRвý´å ž.SW]<@ÛLˆÙÿ]EK²å©h{ãªËÎQÓÕ–­ª«“ØzÇæ[öù<êäCò³û<>’Þ²¹`{t¦[Ž j"ÛDi[²K¶Üžqù„dw€Õm[¶œ5›eëá›ü€ìÛîÙZqµäx´Q·¹2Œ AȤ 8ŽI˹jô˜eÛèÈGgÑÓž4ØUçôh=L„ŸÌÛ»g·Ÿ`2Öí¿ç«nVµZŒgËwóEGã¼é˜÷GídOˆ“Ps9K€YrÔ(ŒN úÝEÒÃr²ZßÚ^*!xR#çâµ²N›S“»îü\Íonæ³n8Æ‹{© ¾ Ë´ ¤Êç¹%ònºX®>tÚÞæ„ 9á]þ^ù{¡FO½¨8M´-ÿ›„ž]ÇëÙ•Üêf¶Æêèe“×iа[u@&Øx|n¦®ã_:™mô:[tãÀÛdµ4Íáùí¶·øÕeƒ¡¥Uµx”Æ¡šWÔâÒDób…Ò%×lA½ ¥õ“d²?3×@O’wR+ÈêùL麪@+©ÕsÔJcÚ[{¤²?ùュæãz/kæ’ÒÎÚ¡¬ÓÉ[>ÑI·¥³ „M&5žK$›d§%_’œ­’+ƒçá¨í×-G5};G-YéCM>³Îqg-V&ÏÆT§ÅT3°ÆTËÀÎÅ”d`½()¡ô±q«¤Æß9øé´’jF¹å§f”çâg;"[%ãJÒ@Ý”ÌNK«ö‹J—c”–Q6¡ÔŒò\2®H³‡pÄ1líÄ夙틕I73ÙdOM&5{:—HQŒµNáœË.D; qÖžebIv¯GÍÉÿ#œSS;J­øË;Lh;·‚[Áέ`çÔ€†Ç5<®ÍºíÙlÃìf×0»†Ùí=¯:¶ypÿ€{¸qk8V×Å_×…è¬Ó›wÔªo*¯þ ÆäüÞž¯c;óÊËh÷TìOè'ðÍ}³¾Ðl64à ÍãÇͳ共C Ouþiíˆ; ‡ûg‡pSÍ7X¯wÞWurÏxYNa:fãÅûnIimºEò¥ãNÓ-'$§'7G&}¼ªåNáÎL8h@­­¾¹ß‚¥ß·»Ý:¡»´v~ ïHÓö v—H:¶¡-;-/u¿ÔCÞ>^4à¬C¼I{Qo0 !´D0Ð>û?¶ñq¿ý‡ƒÝÓX;ð–Ð#ãòñ]{‰¸ám ‡ïÛÐÌÍi'6#Tûóì”öÀŽEjiçÖº”†³tZè{CÇñí–{­ï`èØãøVÁH÷渟*ÿ>-§´> stream xÚe‘MkÂ0Çï~а1¯M²£07Ä]¤ì2àÖ\ïÚÚ hW­+ 6%+O@Á(ÖŒfôƒîP! oøúŠQÁ5/Ö7ó×u3~úv’m»ŸD|}Ÿümò‡à|©9Üøb ºÆ;TÄ(½N?kÛÔccƒïÚ!)º>[gjÉ£ûeW¤Q•X J±‘Ó´u×&:ô]qÎaÌGa…{ïRr.¦Ž“9öA²„¶ÉÖÆ;Çá—Ç+½³ñ윷ÊùŸµ²¸ï@rOKß]èýÉþ¿€Ð˜ò;8ÏyKý¤ÿVDÍsMj4½Õ‰³2‚e \`bDþH%Kö칚ýˆžendstream endobj 1075 0 obj << /Filter /FlateDecode /Length1 1604 /Length2 8280 /Length3 0 /Length 9333 >> stream xÚ´Tî5L#!!݋ҹtH7H· ±, ,, .KƒtJw7Jw‡€€„ Ò- "/úëÿ÷ó¾gÏÙÝ™¹3Ïsgî<ÌŒÚzܲÖNV%'8’›(×Ðåã<@ ?.3³> ƒüéÆe6„ \ NpñäòΧBÞá4œà5W€OÀ',Î'"ø@±¿€Nq€È j Ðà¨9Á!.¸ÌòNΞ¨­òþØÀì>11®ßéYG Á ¤ÄñîD0ÐsC!HÏÿ”`“°C"ÅyyÝÝÝy@Ž.QUWÒRãüƒñß199'€7·€ €›_ˆ &* |ÿ[åoþqÿíÕAÿ¼🂪p'€Øîz÷ ·?UÁöçÆ°þ{‚¦Ó”!¶”ÿ (ß}ñý?ëÿwÊÿŸìUù¿)ÿ/¤ä ƒý³ýŽÿ G(ÌóOÀ’]‘w[¡át·ðÿ…AþØd ˆ5ÔÕñ£ªHÐÝvÈÂma·ê¢õ€XkC‘`»?$ô×îÊàpˆ¶“ ô×[àæÿ'v·o`‡»÷ÄånV¿C»uúp°“õ¯½ã€'.ðN^üBBo¾»µ†xüV6€—KÜÑóØ8!pMTDÀ«öËõÛ½³ôÿ¶ÄD¼ ¿-Á»ØÝš;þãá»S)/äoSˆÀkãäŠøWü.Åî“à…ÿSO À{÷Vþ+|‡þ'ùN*¼H;ä_õïÒ‘îNÿJ¸»Ÿë?&ÿ]†ç?åE¼^Äðÿ´ ìŠ@Ü=%¿E}×Ï¿ìßïâãÎÏ8Û×w\ÔÈÒ¸so}œdÞ2JcçöžGtº^`'³Wg® Îd“‡Þ-m(²Ê,0üôÞkmÀkKÔiÿásm¯;¾ÕŽ;÷‘üÝXÑžl}?-·¾Ì¶ÏÏç>†è­¨]jÌyÏ]E ´ H.Üû”=êûËGBg¶t¶«…Ÿà]—MpGD= x=Åœo•=Mù ÉMwãÁ7©ӳɹc· jñœ¸¾ûÑÅÞ&«ü1—Ó^Ëúü.ÝTLT&”tè§FÆY¼åvRÔ(f½KŠW#©Óä£kŽI|°6¯-MÝ Äîwsæ1q6*J^tRÕ—Q+m* ޝ°³¿-©­x¨~iµráÒJ€ÞjÁDê…tñĶz®rë½v°ÙÈêŒ9ÂtíÈ’ëà½Bat¨¹õ,á…[¶×ÑŸž €—‡—I[Ä,éZ;ý×m³êÜv—õ‡–<U§ŽÔ¼&ÂÝv78`¤ßNÀ™NﺶG]¬©ÌQ“™%wjÚ’sð8i^’×gÓ¹ž‰µÒ`RG?JÎÊÈkhÔÆ°0«ÛÚÃcϬÞiïwǽïÿ²AZfPv+[]™'šE\„£‚sÙŒ¶6êJ®üqM\áÓƒ°5µð˜¶Ð‚c£Ê·Ç£oŽÍ ¹Z™¶ûUÑê¼OfÂT/}¸AÑ-x´j¥`‡`¨6å·–(uí^O“ŸyÉLÝÿTÿ”U÷$j€Ú~%×i†N£ î«~ˉò-Q\릑wÄò\&èódîdÌ Ù`KLC¹.A°þË‘A¦ò§ é2Ùx?[ ¹ªNձħÇX©?Ü|$„±§”ç7eÑÏC£¤Ö†bU)*™kØèOÜ’‡·E|ùÄPaå²ÕOªüQ„‹‰ï¥¤˜%öqf\­ÖÂâO,„ÉŽYS¨ö> ,Y:pèã7±U•šåô éÎq›ö°)Vî˪1 ¸ˆcB8d ¾,ŽàcšÜ” *º4hŽG96€?–ñð,^Jᇽ Ÿüž%¥ÓÆÒJ“2àQµµ7ÒêO#è u/©±ynÄ=Ÿü3Høy„6Gš3'Ï™­=Ì$Ao‡¤‰ý - Î_Œœ?š÷d¡QJgt—8{ÎpHpPӮģ1IàMYºö8C¿²J¨’vë#yªùS-õÝF5I¿0KÓ~æ8 <Ï_9žÕ Ã©ƒNìkxô7“ñPNÃ(wXʉÃD·¦r½jû³•ÂźG¦šST^úë‘x„ù˜0š÷¾qWÍÚÔN|j†:ÞfE ÒðZUiÞî³R§Ÿ¡?Y|+°ÕI|ô}·6 \ËnLMv =£¾CÊüõ1·ÜÉ8OlVUGdËd•¸µæ£ÃÔÀÂ$õIšm®G^/cȵ5c§.jR¦_xF#ÇQV@צØv…^U¿‚5‰Ã\/u‚SÍ•áÑ@h™92EÐ×NÿIE3ѧR©ZÌ¥ÕŒ-̺ZLµ6F +¨gÍÄ ¾ ÕÔúB¹ðÈ„‚3¬¥ŸsÏp‹»­™Q­±Ùä§ñ Ng £Yµ×ì’Ì,O“é%¾ÐAÊwl¢‚zƒb^ek·ò¹màëj^zÄç×D;¶£ÕÚ̉/=Ö_ºRº=ò¦d‚÷úÓ†ÛÆò ®ŸZ/³sˆç\8E[[†Èj\i[G…rËâÃv«‘ f‹#ÞÁlY†&!%©•„;)VBÖ$ãZŠ8Bq÷k ôí®¨–an]bí4쨗ST#LÎò™ïöèˆ8GØZ4bp¦;´¾LÐrÎ@‚å-Û¦óÖ™1}uþU¢BOeÙúYwÂùÔ2ðØñ©«I’&%‡áÒŠÎ11k çÄ‘Ϫ/¿°²¿·œ§{ãûäi~5g£õŒ”9ø“áKáw€Š&ï\ƒ?II¨Ø+ gè?€C}åd®œø TTNè†cû]pªÇ*¼S†¡Gñš‚ö­T[„‰Tõtqß¼>ß Â{Z&Ev‘_àðhµÊ]ºÇ¹w­áv4±÷ç²1›œn±›Ñ‚Ð1Ùg¨ó.¾¶ÆOØàJœùnÆ9×ß)¿HèÕz 'öÆØêîTu=9Š¢åb™XØ¥a¨yFý®2niócŸº\Mù؃Gj›u¨ßºozZèœ)(€d£R”Æ!jˆãŸˆ˜¨+<&ŸØl«ò•ÐJOÙ#{Y‡DÅyÙ¢Ts”ós°±P†…#0¨ÂÒîKqæ×•"ÎY9söï%ÃüªÛź¶¼zUß0b¼zׄ †(kvk:ËF¤b¸˜Y=¶G¥æVÿuÎKV±P5âLšK¹G(¾ñ‘Ïãr éûà¦e<–awò‹¢"Zn€t˜ˆ’`æ‚_~1u ]D¤ŽÛr`ž £ºRÃmû ÝrŸú—¾¨øUÂÆŒ}¶àÖca¦‰îÄ›Áp¶`ëù˜T§)'†ó×!ûINüËíe8háµ´÷{ÑèÃ<4âT»Ìq;O*M™¬ô¿˜Ì]âOôÚ÷5¯&B}´x>+й[页¹ôËa{Å­Íd 606fðÛ~C+š¹&.!Z]µÂ#ÒZ¿/ÆQóøÉ>\Œñ5¢¶ †ÀãžÐõhÉs“kÊ–®IŠQØ I™{ŒŽ°az4ôÝ.ä(úÑ×ô, E)ˆ|5sOfTc†ƒ“Ò"ºÊ3Šºâ(‡Ð>aú?4óEmR"íêWÔ'átÔ…Jà¼z‹‘öúémÖv0Û#õ²XŒÈ¼ ifPª°-nï—¬ö½näMM7ãÜßâKœÊõŒ­§áÅo›Á2lÛ¨~}2ÿºµ÷{@`6‡¹’/5Ã#i|mší˜n¬ëÃ)ÔŽ½/ì¿%e%ÜSr£5|`ˆxòmއûëÓ‚³w1'&‘¹$Ñtá3>ÛÄX°³:û >Ù Dךüu:^À›¹êB:¶xM#Ñ:i)Mýµt]!¯)®¥¶”ûÆðнP®ªíµßWsÙ}H"×]¨rix~¿ýÂÞ†™!˸ôJ ‘¼G ÅÙ%²tíe¬b¢®c”\¤_k ?~á»XBØB|a-9H}o˜`$åò>ƒmÛlLT˜Áµ“[ñÏÈ\Nâú‡:Ì^’}L%(¨®Ídjºʩgà K#anŽŸ6ë)˜O/{Ûsë'HÍ*$µå}ƒ¯—,ø—¦~ž’’°ì½CÃÛ} ©U™MÀ,VM¹ˆêêØôð¶ÅŸáDþ` Z9ÌÌ0ê­ûðÇ$*}|='ó?U¶ ;gáœ12¯Á*ûòõ¢®”™ú# †ªÕ6+…ÁÂoɰGÀŸ«Ì%R³t…Fݸݫ8¶4çbÃ/Sø ^áCä7 ÕälBò¨²÷èt_¡aC½7U5Úá±… æÑØö¿èÀ}Ã=3û%¤s”Tæ‚Íw?“ò:b›\? KO#5+X»²6ÐòÐy*<ßÒ+Êû†53+Ü?âŒ3#÷=…ÄW äl‚˜fÆ|ÏÈ LU….oÙ%»WòÐBX3²>‚AqæWħö¡¬”#z¶¦«TÝ4½¹/Ú…l{*3÷ÂÑÁÆ­D^tyx€$8ôþ}1}g™Xsâ ‘w诃ó "ÎÍåüMÉ:êåõ"uEÎÝ÷›É­e>³ëšõÜÚI/˜:†8K?Ú÷(Lra¸oK;yÕÏl^º§ºîª)§BȺZÿ-†¢ßШŒ,ŠÑXx ’aÜ~Ìëçërá9šqÀ¶è+ÆqÐ ìÞt™O ïÃ:wÅŒØ>¡ø\ã2P¨|ß3üY…üw5”<ö–•nGfŒ¼‘.ìŒg²]=G¾‹8ËW䪿~P¬&× <=#>ÍÔ}qYèx+ü8(¦ÇM{D¹úzcK›’™°ÎÆŒ9V àÛºµA ³éuÀ^Ï 54“²ÖÈàÛ$n1Ö\·q‹YzlDÊò¹„óÑå‡YÿšŒ¨™œùLCqüÛP‹ôR¹l/7ŒCKZ3ùÝ30çŽÀxT[p&GÐðecÕ– °µ#ô<öÙèà –Ó;†Åã˜cÇ6CÜR®b}ÓŽc¬ÂùPð!k?"fáÍ|óIÎ<ž]¤Eã«ÿ«·Úì Ç_ç 8&‰×Bœg™òðh ¼é¸£šJÆå"h޹Q¡ÔÏòÒ pA–Z#>Ï7"¬Ó0ó?­}Ø¥FŸìmcZûÂ{ì3¡¡{ÕÌmE³Z_úXx[ãʧ?·×öÅwÿó§×2ÓZØw6§Žù[¬©[êt˜"á¾{bsKÏL0§”Ÿó‰õB½1Œ4VÁØ•´ G¯•ÞŠ_ Ry+‚2;{±Õ]4öm•ÝIU„ë=H~¦K–•癪8¹Fù=ýmýص¾å¡vâkDuÓü‰™¾O߸+0ÝkÕH#Rï³dM\"ú1œu™:hÂ!ó2ó¦/úd*šk'ºoú‚A¶pF){Ρ×êÙéÆN›êòùöZ3z¾ÎƒO޳Qj§¾ÿp¸pI)°“jʰ ‰ÏE—j×°½°gÖ® m’"ÄmT6‚%«ŒK£¥g‡m6~»|u†±_ÊÒiçzŠÂÒI/‹ÊD=Å|#~¦ÿP™íá'üþõ²ËŸ§¡kû˜CÝ=¤ÉD(^!´Q¹©œ7ýiZHZ‚Ê ×U"ÓN¨£ù”rÏU<"ןvìê×N”¡ºÄq÷:ëEa•÷È××å=Ç Dó€€±Ìt'½½äkÑÃÚ¤=µÚôfx¶9WõY^[>œà¼sˆÏrà—Í”Úb¡ 2¯[Þ¡Òõ—´!ŽØMa¿°µ—]Ndõ³’Ó¶–¨Þ(6Ÿˆášd$ìÍw›ÞrœÃScŒ¯å¨ªåÕ«C|‹&©1"ækLgº¨+°v%ËÏ©d½÷pÝ EIGñ4Áô‡0ÿ䉦f  ÝÆÛÏ v”dQ…> ¾=ù,%4ñ’GˆíÉÚÙ¤'vh§`»ç´L Ù'Ìì˜rÓ_MŸ2´t$âTÐq[^G%G$ÅÆ3¿æö)=Õ5Ô@ãX3ÛGŸ—»WA¨sÛ*£ؘy,yξßGv'âZR ú…çìœ5ÄÂù¶ì„p¯ñEˆnöªÿ#ø¥ã&é'­´›ùPJ÷·îZ®š(àÈìô[é± •·ÏEkø‡ŠÆˆŽ >|ÿ>ë7yRÄ —Å9H!ÃBØÿ¬oܬ;ÛÊh%Ÿ±@óS±ó<¨÷+0Á&¶» oŸÄUTˆÆopÆÞ‘GˆÕÓoMíëaHn¢Äï®d5Ò “‹zÓÇ;ÊÌ5?nÖAÞÐld›VEš¬”= ¶—Ñàó]Gap[^‚Ì26÷•ÂisëJÁŸž‰33¡$ƒT«A©«c·ä´îMãl-Û*þþË ïþQ®b‰6V#ï2á¶SBºð¸Ÿ-ý™Ž»lÌäÍþx%û~ô¼åѯZ>úHb)¼é hf\G”«[/>I¼—LÇ#‰¾6‰y4“Ã}p,Òµ¤+@ôXV+R”;2D_8ßåGÝÔ;‘mÿWÒTb‚ÙdxKƨd_8¾q>Áëi¨8­Vçñ:ïTÂçÊpkö|ÇöÖÁ®ƒE.Ëé ¾?ã+¶ŒnéÇ»EÚ°¯pÐt¨ŒÕ(³ö~æ5YŽy]ÿÖQOnö1'/¿…KFç¦Rj%ƒZÒ’ .¾äÔxá÷Là­LÐcÂQLòøÂ{´Ð‹cƒ’#&;„dˆ‹'O2ì±´ß —cžÁ»ëp ÏzZ°ŽJrC›Õ@§†Nü‘r÷l ë¸Õ'•¤B^d&ÑM~Bãd¦Ò´H¯Nþ8º ųo:g;„r¹ÑŒ»bRéý§@»=ÛÔ˜Ú;>›õ#áÙ^2Eϼhkg¨sA*W88è¼”¤?åž@J´ºŒhMõ¾‘åN›F Eì ®r;ÑÏq¯¼ÎæûÖ !¹ÛeBú#ÎDÌÿÃAƒe‚|ðàb«ƒÆÃüð.ß~ôfáu^¯Œ©¾Íq¿-‘„[J0¿]]h0è†È›denfǬyS‚Ífù8¼©<ߟÔÝxs9Èã÷Xý8‰"½í\¡ò%ûC¤h"¥óà!{E"PQfQÑ]§\o*¦ØzY’™úRH!ÖØï¹-ÄpN(k ºûÅÿ}Ù@‰sZqE1Â_X?O°Õ-Ücæ™Û QšÓúQ¸SrmXëÞ$oK\C0Þß¾#%dzªùÑžÈyL:²'eœî÷ɸ]h6ÒÌ®B‚Yeû5ÍÿËÄCH=ÑU‘Ì[Õôö×Úò^]‡ãqôõ$KÆe<Õàâdº‰’/nQÓÄ<Çéš<ñt¤Ü$6´턱X(îëã|`37…0™R‰žoca¸k1 îRŒÔ‘ùÈ S›œ4¬H4Ã︷pñ ÓC¸t3IhaÖœŠÂÔä׺‹cÚ`懮{©‹êCñ. “˜ª)Ø¥G¤˜™—nè5¯VËá .ؤ­ëI$.[ªï÷ÂUTµô“ïU¬=O~76J&^;q&œ‚šù3LMÁ²}†IyÝ¢\1³„ fÚH‡”z¯QÂÏxi—Sº®UW[:¸ºQ¨d?2A%NjÑf¦XæÂ;-[Þ/+Õ±od‰Y0¬êu`ÿèÜSWS>d=utÃËñØ¥G¯çÓ›1ÙS:jM ­9©3],¯N ŠZZÕ;=Öh_Yø=¾ °¤By”»üökµl!EBþÑËêœþòüe±Â ? G‘ÍünäVQKT³7üí$ðÖ'±\)™ž\BÖIÕ¥èŸ\š' ÂŒ°Í2µ©#¡O |Œç¬½¥÷Œ‹xKÒºsjÈ0¸ýè“_„eš­_€…íèãîñš²ä:ʆ¥~¾Xq—uý½pÔܹ:ôµrlϬó0tì|ã(a{v×qUçÊG3>ã¦÷²ž—¼•*XÛ+츘×7²”ðõê®Åg±“ìÌ‚âé•“î?© msTòeë¹%ñ,9Í+`#õgŸ7jBß{äfªÄæäw\EWy-†ÿœD7i €›¨’{ÔÏž j.ÅU"³À&`$h¹ã 1w_5%Ð)[¸Íæñu¶^' &‹‡»Z }5T*ÙÉÕá2s&äÌÍó¡êó)fjMñWü:·kKdkáŪÆvø*OàËϑ賦x™íå+|g=+qèõ«ŠP‡”6óü´¡š÷·hµøKȨ¹›g¹“Z¬P%uüÜŸr‰¦|{{ý½Pò(,Ì~SÇ<èb!ìý®±‘"÷ÄS&?}óÝb¹óӸͅž<Þlk[yï‡ß®?ÄV­¹xÓ¯Ycb6.Mªf¤+X,5g¦Z¬’(Äxzº¾UÏ6zìk×…Ü®S…V¶´°ð˜j³ÚI.“ J¿ŽâÉ:¿ô”»}ºÛ¶vÂëB§4dF?õn`^†ïjò+Í ~šù K±aD8ÚašmgŽƒJù‡/µ³MÑ›v‚‰Ü@l²gFxkm¹iëEc4Ãï_W£MÔ_¶Œ»º|›ÕíØ^mŠtázœÀtÕ6ÑÃʹŸµ™W,×pðTM¬©Ë FˆY­V}Ê5Á;þzl~´Y™û&cæÕ´ýdÉãö½§NËÑ~+y«R¤CoÕóÁ7?eZ ëá]4!ºO›°KŽØìÁ~¢òñ)ŠNMÝzlÞCi_”žìPË ‡=Pc}—Mþž2=îÿ„ê·endstream endobj 1076 0 obj << /Filter /FlateDecode /Length1 1620 /Length2 8804 /Length3 0 /Length 9844 >> stream xÚ¶TÞ-Œt·„ÔÒÝCww0Ä ÒJJwHwwˆ¤tH‡"¤„<ô×ÿï[ë½5k1³OÞ}î>wAK©¦É"aµ¡7VvA€”²€‹••–V ìæúÓŒJ«rqC!‚ÿ r™»=Ù¤Íݞ┡€‚»€ƒ ÀÁ+ÈÁ'ÈÎàdgø+ê"6÷[”Y PÈ•V êäí¶±u{jó×O½%€C@€ùw:@Âä¶4‡”ÍÝlAŽO-ÍšPK0ÈÍû?%è…mÝÜœÙØ<==YÍ]Y¡.6¢ ÌO°›-@ä rñY~¨˜;‚þ`ÆŠJ в»þaׄZ»yš»€O°%âú”á±¹žš4啪N ÈÁJ0þœ €ƒ•ãïrfÿ*†üN6·´„::™C¼Á€5ØP*±ºy¹1Ì!V¿Í\¡Oùææ`s‹§€ß'7%ÔæOÿ¤çjévrseu;ü¢Èö«ÌÓ”e VRPGGÄÍõ×ù¤Á. ˧±{³ýq³ö¨'ÄçO` †XYÿ"aåîĦ ;»ƒä¥ÿ y2¡þc³¹xØÙÙùx gÈËÒ–íWy-o'Ðo'Ç/ó?'¨Àú‰Èl zúBõq5÷Ü\ÜA~>ÿvü¡rp¬À–n ‚úOõ'3Èúütù.`/€!û“ö8ì¿>ÿ2~’—âàýOøïûeSTJU˜þ`ü·ORêðaáâ°pò°¸y|Ü¿ÿVù›ÿ_Ü[ÕÌÁžýŸ‚òk(@à O³û‹†ÇŸª ÿscÿí }’2@ÿòØyØ-Ÿþpü?ëÿwÊÿŸìUù¿)ÿtwpøí¦ÿíÿÿ¸ÍÁÞ<)ÙÝíi+”¡O»ùßP]Л¬ ²»;þ¯WÞÍüi;$ 6ì {¬ÔÀn–¶Hè¯[x*Ԡ®à_o €…ƒý|Oûfiÿôž¸>ÝÕoèiþÛRb µúµwœ<¼ssoTö'yqòð|8žÔ äõ[Ù6VÔí)ðDÏ` uAýu£|ì6à/ÓoÄÿ„ÔþA\6Í¿‘€Íü$`³üq<é• ô/ø”ió/È`ÿ >U²ÿä°9ü9žÎù|ª ýä°¹ü >Uvýä°¹ý >5rÿ|jäñþg„–î..OOËo‘?Í÷/üû¼@–¨KóPK¡P»úÐΛZ O–Ý ‘Ú]Ý4Ÿ%—.÷[L¤· 5YÁë.Wo?öc¯lËÐ_Š/S<ø´5"E´'©wÜùÞ›&hLív .~"š,:h$C!eÑÿâûàì«d×ö¬G6ÏÙS­ïÆs@Ö«a°üóXøü®ú—^E´ûòi–×Ú±FA%³´ùÙsDTˆn,dÈŒ¸§^X³—W3¸¹“ L¨~‡¯¹Š} 68ßü˜{µZ©ÅéÚKLCl@Dw‰;6Eç#¹—¢@¸àSú.»•u”³àA!Ûø0 uQ’Þd7ð½Ý„b’ôáÕF4(¼kôËu "òé+`§T#rÌÝ0}Y¯>‘vGuRhòGVKXlƒ«ß›9÷#…©’ °E Æ{÷Z[ô›ç.©ø¨ô‚:9åñ~Ìî^š‹E}ݧ62ƒQ.ïù›$õqô1÷×ÕfÄÞÊ.äa#|VKçëÆZÍìû’*jcŠü½³ƒ÷µ¦c°ðMì—ážGƇ©êyrÖû°{è§ÕHízceàûfæûõýíºÝ±!gÌZ sÍÖXG´¬Ixoqè­nIå5`Ä…Êçï 2‡’öjÆ&]62åÚ˜O,kS% Ÿ:Êf3Îl6`½¨ì7•€AÂôª‘“±ÊØ~Ÿn<þš9¥æúUÎѦ®¦3kèxÙKF3.=ù¢×¯€Æ&^ܺM²ˆ™¹eþŽÐƬߟŠ­ ‚¡í4é› ‘ßò«ÎÓ®fÃ/€í¼ùbó•¼Kíê:Óêô=ZäU™1EÜêœÃy‚ÑÚCqR‚O´ìðõHô,%Ñø¸îqýÅ[‘b,±ÓÇ^¬¾éjAáFÍ;[ôŸ.Ëa”\fp¨ôE˜_ÊXYŸDÄD¸eÏI¯!ãaO²øx›¼UoÇOÞv$Å¢ôŒ—Å” Ø@ìÚËFõ}!Øk²òüøÊTÞ3odÑ:PüîËF`@Õ=­pjœn °Ë8\¾vòbä/ÎTÌ„«'åd²®*£€òÈ4l]¾‡$^ìeõà¦(ƒuI ÄØÏj*.Jr¹áøg$—+yOÎN(9ÖÍTB%TÓïùNX@Y‘Iѳ\þTsÚÉJSÅZÓ%. ds„Bi¡,ãm“ב„¢öo´|E.Šò¡¦qVÝ_½:¡DZì"ÆÜÊÌ è ;Œ7#%Ãá|'¤v/Ý•y&îë&†ðbšô“›1¾}Ÿ¶xNŸ5—“‘²ô12æ¤ …á£}0Vy‹Á„㔇8 PU í\ë¥q]Ëñ4{Êèòr“€Æ<ú–éB_Lœ¬D×Õ1&VBañÇŽ·¥ž%ºúZýkC!ÛÇn”ß}g'l‡™™§°ôl½y*,¹h‹ql3ŽHÖøì˜U½f"Z.WÒ´Ü#[—»ß««¿õ{y®'¯] çäOXŠ˜8ÿ¶¯ìahºÚqå´2I¢¼ä‘|)_š;Ôˆ°êt&hD`™­\&ÜÂr÷ýY0š4ÈL[*_Kv\Ó´B¿Ö ã™_–«Ü3ò?‚Âÿ@ºÞ§zÿ!p—±`(D7‹]qT:\+½­a9TöÓèùŠÖ\ÈIêŽý "ßÂûY–üw?{á~6©ZgJ2ÔÁiOIYËð³6`Èë²û¬m}}w–¼‡Ò„'Yw=&‰§AìDmÛ±Šˆƒ¹ß³¥hºqÙ£|qµä«-½–^1Ã8~Ä8¸tÚ7­æåØSëB¾ÿ|3†’MoD‹ø9_—F¨$›;>ºçgе¿îˆNL =ÄäÚV¼ÿ½±¯”E¡%Tj¸WÈÑM>·-!ß­XŒ§ÎqV{¿lÑ¡s 7: ÖØ ûK y„À° N*§¶Ò‰ŒMØÀðTº…§vç%¨ÐdíåEaŠ9Ëâ¦zd]lÂ7]^Í»XzR¹­ÊÇzJÛT½¢ei«ùpl@ðØp3’²'©þT°sQrÅK(áZO˜E»ÆTǤY^jÕ„Ÿ1Q<Nbh´WQ¯æË%NïÜüÓº˜È2ç®[§BàwõÍù££Æ3Ú‰…:©Ù÷«ßåý”zã¢4 »«nm3Ö÷’J¹é•ÈŽ“÷«bRñrYK*©ùØsRít&#Û§ëAòwÌ^#}*|ï?ë¤y}ÃZmMŽ›vYUÁª³ƒÚÃKD6·7¥SLÄ>N ÿÐ`÷3\åËœÉ' ¨Ù4jkô• ¼=÷äšÒÊÛÔÞä”ŃŸ –ÿJ¡ê|©òv©jÅ, íFs*ÃáEV:_1¯)§²ˆ.!bï§…—,ãKåÇ¢0YuP7~”S0¥ÓNK+|»p]N÷ õÔEöþ‹H ‘÷òŸxÊ Û´9wJ¯=bÙ~$ê¥F‡K—÷POJÇe)0iúÊÚËЙ$bd£–UT™ÜræÍpØ„MˆÒ̈)fØmÓCû)és UÔwÀ²?z´ÃÄçªWJxi‚w®%–]'2ˆ»©"ƒÞ¨¾0ªÄLÕc;ŒR ‚ SêQw¿4xÛÍ2õ4Üœ§7ü2|É ýI>'$­þu³‚²q_.mû¬f^qMMƸÚ~IPŒCú§à€#²MW~‡fÀn„_¢3ìt+€(^‰»ó(0>SFLäñY;BM7øh…0õÇO4oÖÝ>XìYë:…s/[78JPá‚‚ –h7Ésuœ"q}ØP­æhÄ3¨Þ2ªÆ±S-—&µ÷÷©d«“ØoTì‡ëå":´_é{‹eo”Ž.u+—ßã{°l/›ÔÈƒŠ§YHà‚ZRÅÄuÐ_;TÈReK Ñôä—"–»!Ò7©Oã¢&Nó4‡¯iUœ÷ZOþh½È°“ŽDž)¸6d“J¸¶ÃU£¡Ì„â5ÕôÂ;û0ÿ\Íq(Dó®#þäÙÎOIÓÑ[`Í9³û|ÙÀÂ[ˆ’Æ[þƒî –Fëk¬¡Yì˜ëÓ«¹ùî-η¢c!§Ë¸¼ Ù™;—¥°8>cÁìa—ÙÆt Ä)É:¡þ•Ó½úV+Ä*rÉ-(i¢ô“UÚø´ù¸L¤É}»ý†ƒ=£ü1Òñ,»mÙæ\%´³èÉá2àÊƒŠØþ‡/-ÅÈLáš ç<0~Xzj ¿²׋lÛ0ÊP‡X¥QÏSçàœò¢bà2ö$TlnvavÖ:½I¾õY°mÅ1‚e1-ì“û~5¥“©XNŸ¥‡^ 3ʸ¿]x-¢øƒð»Èy]“<'¯Óçx•;wë€åëëX±VÿãvÒÖêB|­üJàúÊ<‹¦%…C™—Z&^"špÐ쓾#щ¨é¨Ûð%5И‡*æÁEÆci7’ú–žtÙö,?k@«×A [A¯¹] ½‹L!Ê?õ–[2òÌy¸Œ)Í۾Кxx™1øÈ?§Æ™Rýù‰›3°ZG¯ûڥª÷ø~Mâ0€9ýp:˜µìølþ¾|F":Jä`ƒ);x.¯þ¬šß[ ¡oüö ‹ÆiͶ}Ƚ0‰ú|¥=Ë—‘R€í <»a¼$OÓæ0ä,]»Œ6”#…„ÊÜìä5á/|-MôCš¢ÅI±ˆ0µšÕ¨ÝU¯…–"©"|2䃽µµy¶•vZ¯‰ádÜ‘¼9Žk&0Ü,qA¡$NRAÍ:zˆl¾ß^eIYò¬>ÿ”½|6Õ‹? ;Üéü>Q™êèNSÏ™è»c²nmZ–8õÔbÂOƒ°WjøåÈðá¹»CÆÍ~ÑV°¦³˜+&Ü>Õ£OýÁ1‹nu« âµ£áùkÔ¹ñÈiÚûpa ãkJ9ñ#W…Éžq©«ŠnxîâÏ?“ÜóÈ̺_ÊO‘/Î/?§P ÿ‰z~4‘XÞA0Ú_æÁH¼Psû<ͦJð©Qæ1ã §w©67ò*€ß ÓyCð÷¿•o)ák ,‚¾X°Š Qe\¾mAÅ{µ•rtû@éÅh´³:Š-Ö¸G©Þ4Ø•+ƒpÑ·&Š(š9Šé¸ÂH ¤Êåë²w[* dýÊ¢º1êŽØ%3º·Ô!Á²ñLÜQ; Ç“YR[º_”F0coÕgé5±2NàhEÑN{?¤¸žÂV—„1dß¹?» þñåÆÛ>àäæÃwº\ÅòÙ³ MÌXî7šÈ“­—ë"&uj\ãÎ5A@’Ñå8\‘›öd¾]FƒÖ‚‡lë‹iÆL—•Só>Ic;(Êo±˜G ‰u“gz©¨aTG‘¯èI²µq¡ÏûCd£§L6|;öM-‘Îb­0ÄÆ• ìR¨sÓZqïF²2&ƒò=ç¾\å¸Þbsòž¸×\ÑkË&ý"ø•¯V'[W2¢I®Ž«Üýý…Îù1ÝB¿ÄûAßg»ØsH‡cÄÈœtÖ(ôd!K»KZ¤4í÷š'EŒñùirAK¤ãœÙÑ;>щLÑ*’k$47ËÇŒ„uÞì‘_¸9íiœ«Ü:ĘÝê¦}im•„RϹ7POQH×ý¤I^m.t3r‡Ø­Âú®kX㤭d¿›VR´)¦ÍJîQ? P""À#-5Mz•{UtJÁrDqýIaJ/( 7S(¥™Ú“×þ ø8ÜÂàtÉÞQ™ÿÑYȤ}4Î×XHçó#ëWOeVÞ–ò†•æû"Ÿ"Žt^B\ÉbÁžwA„^ ðù`žÁ;s±ÒïKÄd¸ ü#k‰ŠSèܪ¾ÚÅÇv~»×ÑaUeÄê«÷©ßçtqH«RöqÍœ ¶Gg WÈ<Øf‹Û;§ý(íoƒõ˜ë‚P†«ƒ€Â®¤ˆ•º)¼}2§¡Î†QL%®° ©HUÙo„»Z•ºaPõëèSY«#E¦°Ýgª—õFÂc÷ð›,|]ô ÛÇ<(Z0çÎÆzúü‚vCȘT6ËÌÄù]/P–÷±~®m6y{$zzÎâßN¨Ñnºðh(ŸÅ9%6.ÂÔ6>è{·W;°[~#0õt£0Oî\á66šp¦N¶¸®fòÅ-IhNv<÷IœŽ0é«U½%oç|h7lF”ßDÞ±Œ¦²Åº¾áÛÚ¶VdI´y•ökâ|VJn½†,‡FÁqôoK™`Ã3Üu!ØZt·² ú˜ð‘°ç"¾ëh)Ú‡bR^†þkæÍj¥‡ÇXƒóá ¼â`°æ³hý²p#Aä(C Ï’/ÌX˜_˜HI«Ý ~ëªnÖŠûâ¾5²©V¼ÄŒsò3?³ !ÜSéëºSÒ+ë6 «M¸éÚ>û¶fª6@ic¬SµæDFxÁ‹RéHý¥—êbê¾>‰­¯q fh˜¥™šñQ8ÌØñ—3£fºôL úóV_‘ÙÏRÊ4ø~^ò¶It "Dš‘fô¤ò-&Ž!<£«Æ‡—’Ž-£À¨¤µ¥qÕ­¢yì¡x#7hì‰Bû‹'"#¹‰ÆV“ñÔ)uÍGGÏm›_Ãí"é¶2ãaá{´È­¹¶!hb…³&úÀÁ»˜·L%W SWÓiŠWí^a8²àØù#‰g?—s¾•LÉy÷©|EÉòæ¥úâ£èo˜¡FÉb¦Ö¯RS¢ i^D´”ö=]u.íX¤¦‘ž›Ýìøù †ÔETéqA7ÜLXnbõkqS[\…o( žäˆhÅN¹¨¹øß«Ù _ln°L îŽPQN\5_¯ôƒÏ 6«¨„ä»BŒ«ýÜ{¨ð/¹—У‚oêû¸±ŒÌ$Óé<È BØG;º÷L™·ŒšôÝÞÀ·áò=Ô› "¨o(§Ï´{ŠÔ—Ü£[Ú¦.3¶kF—eaks“¢€­Ü âÔ>óaKÚˆÕø:Y8ImF‘’[ñæñ?Ÿ¹fØ®1èJ†.Dr}²´¢“<ÿhÒáðFÇPæxNAà!ôÒ¥åU¡Ï>äËqȃ¬=ò™ŒhI¿Ì²rµf¥uË`ï=Ð:DXIMí…Š`ƒ½^këæ¦†ÈOª£ŠT<œ°oÞUw—?˜Ê«Þ‹l*ú.^^”nÇgí£l‘'W«£¾˜“°ªð"²\†Û)‹›2Q£fÙ°k—ä]˺Ýug_à=$€ëàŒš¬BÉ›û.ò¨ÿ™!Ä`ˆð¬Kš‘vºë ØEìT|åë€<µ&¿üÚW¬”ê”CÅY…¼U'x0v8ÁâÆÑ¼N 3„mFD¼CÙ€a®Bƒ½±DŠ´Ø!#ÉÚiõ7“T݃>†‘žRûÇT÷äçW ÆïºQ|Ôß鄉ÞãÔ9Šðš„j’MœÅ­Es,]£²>§}ŸÇG÷áGî}‹: z‹Â-Hé‘$e®s¯ºÝ} Ìd^'+Óª˜‚ðY´{& K°rär§bôÉÀºO,õåÈ´h‰D¹‡i,6y!öÚÏSns~ö¼kh‘R)—€—K{NñÝš°o_7Œñ‚ãí4‚ȵíE£kÉIK5d›ë&[Yž|ô91eã±á.GK”ªð#uÀ•C‹&íЮ.`á¤&»ž÷¬¨¸Î UËÖwQxOã>ÜÄ#[Ô—~ ËÏÃÔ+msºSJj¨ø%k/þJy Ù¯` J(;áÔ ­ÌmLL¼ÖxwGO"ñŽ£í!šRŸhiµP²©¢›[+&Ÿå» `xK™©ó'%©Ã¯»çhf¾gXˆ5_üiGݪ&ŽHެ±?Z£÷@»’Ú‡ô¥½­¹ŠÈüÓµCt…é/]AõÜL=Kަ¾'–ëH=±ôêI>113„i£YŸ»n,^ áÓúFœû`/FSà#Y€n$8IÈóúý¦Ñ2Mý¯´¤Å-¬X[ñ ßžÕ·ôys½TÀ™ÏM± ¥‹Ô:<õÓšºÂºè]”ub¼ƒG'há‹ëHî&ã\RÐ Ž%1'_0mn¡FŸ?ÁPs4Ó[>HeŸ2‘þ´߯fc«B¨z,_øfª38â§s ?úC‘i¢ŠØàà~©”å–«œ¸'ŠJzÙ3±ø›%"ß}˜’¸‚ù e$¤÷£|PdíÝL ™¢MxÓÎÒ—uixMÀPÜÝ·;Å×ñÙݽãϬ‹ä¸ëu>®‹£#ÔâfÞÔüt:í,P¤àÏêµ]ŸCêlèÍ¿m¸I0?&–'Ø ÝgŒ£ÕÈŠP‹sæÜ ó™^ÏÊŠñl¾Ã§¬¹~þÿ"ÍA†4¦ëÒ&¶jÙI—²å´¥á£[À¤ºŠ¿„n ì Ù dN¥T÷‘^Éhþ™ŽP(ÿkìÅïðçÏ`´’²¸EŽ7êÉÚ4ÿ‘L \endstream endobj 1077 0 obj << /Filter /FlateDecode /Length 1226 >> stream xÚµW[oÛ6~ϯp“IP‹•dI–€¹ÀÖ5C0 ˜dpý@Ë”­U7PtûñãáEe*I1ì!Mžëw?ý¼¼x7 ' J"?š,³‰çÏPâO¢pŽ|þb¹¬n)›†’í­úáÍŽ|bÆèg7t¡e;•{— öÓö’¿ñn×Ë_'îÄñ<”„Jפ}S“Ø[ɵ³¥u#T®mÇóLŠá7y‹ªCQH'¤‹`V›~çFd! ý˜kš2)bïxn€"wnÚ¼’&ÛæMiÞ°¼Ú© ôÜ—Ëzó7I™\§JIÅŠ£ü q))$•´¼’OBiMmAëLËÜÙSm$TgcåÀ1ï]—S]KÕåG\—†÷ç©s|—ƒÂS^EÒ«%ÇL·ÊzK TbFó§³xÊL-ÒºjÅ-k|)VÓÝ TD=q¥òÏjù¬å†Pµ·':C]Í)¼¬i¾Ë+\ô¼VKáú3^ü¢mÖJgVÓêÏ+n>% S?îót¯–y¡lmˆ²o„Ö6Ãb½øºLc–î!Åi]T¸$Px×£ §¬V(‚¿©°’È "ÓÔ¨.®Êãës]]ÍC_dÂúA»‚Û6ßU<§ æ*11ˆ­¼wÏiY¿ˆåðÕX&E«*òT[@ý¦aîz˜ kÇ£°‘±3dC ”Q\©‘‹¶ê„c \zªV$%m‹éц´žéó ߘ„ÄÃY‡ª:?Œê“ ëY(¹ñ6¯Þ*¥RZêŠCîPV­ÙÐ'u‰Å#>¶cy›ƒ>¬TÊÞg§'C‹»Ÿîÿø´~n,¿Œß^¸+iÁªðª»áê( ýÁíºÉ¸z;˼ƌw+Û?aü?XxUª¾Oݰ…CÎM<ÑÉA¢,ìUG=¹Šç¡¾ïÓú©Ù;-a‡Æ¢2LÍ´ln ,Ð 9Õ"ÍãÁ(©³¬%Ì6"äHC™á²€½éŽªTý£ûº÷v± Äæ %˜¥H¢¢õãÉ£³y¤R¿SûÍ/÷û…]j–a NÔµø+±3É1t¼§2çnT;‘²*gf`Ç´öÛŸ÷÷²¾q¯¼ š{3R÷$½õã›/·Î,pá*— >|ø.á!ÿ¤öŸ€%Ð9±Ãe-pLa×sÞˆòÀ‚cRÍn½Rv d`ºÓùÙõ&™(ü¤õÿ Ê&™‚ã( 3q[¼f6›qªÁö° @k‰,M99ÂçßÕb dæm±¦ÇÞtU[Ü4ÅQB¹ãÕ{Bs¦ïâkáî±ãõk¥fð‰;|ZÄ1ï•ðÙ/‹hŽ’dP‹€o†QôÂX©ï ©å¶µºÞ=3õu„íÃê™Ï«+Ûý­è´Ã—3¦¼Õ¤Î4éP<*Ñ}¾m±È5؇AŸF] ;b¬:j+¢Žº›¨À~«]ëâ­_YrnðƒgN’–õiÇõïçáI¦‡«Žýoˆù…‡«=á<-¯«Q6œû 0®„5'f®g²o^fÉÑ LLÏnÿ5íQEVy«LOÓuÿ¦çÕ›GhîûÜt‚â8–¶=/>-/þßÍkÔendstream endobj 1078 0 obj << /Filter /FlateDecode /Length 1037 >> stream xÚ­VÛnÛ8}ÏWxÕE+R¢.ÝõË[`÷Ù $Èö±)‰ˆL"í$@?¾¤H*¢-«äŦx™9sfx†­¯>~Žñ¢EŠÒź\ ”Œ²EŠ3€ÔÊz»¸¿Þ´\vmsóáËúßE´!¶kO”Uµ+ûó!Ä_館ÛíÊüMžëÚ'ÀÉŽŠÿ#íJõ íÙý¦mœ=‘²³c"«¸Þ¨í}ü “î"¬€ç¾“ª÷b \„H­ÀÜ¬ÔÆFœŽlÄ Ï°Âic~Þ×á¦Ýí’N8L ¡ÄífÖ>17lX$(A>HÚˆ)(Cw¾œpÐÇåÛbšÈÈËÁ*xè¨hÚ§ÀLý:^6cµ‰–]˃ ì"”€"³`Pƒ"ONñ•|ÙÓÕÊ|/;]-ËÞ]Õâuɤ¤Yý34ÿ•ú`Ð稾¡šÒ‡a^¨Cs†HÕÑÊ3tZF(‚Utn4‘ÃÞÕ8b—%}&í¹OcE\1K.„Diþcä=¹Á“ÛÛæ×‹ï»¶Hunj–áô²Ýko{"$}e ø?òö‰«;ðäH#ˆTÁBK:“~D&Jm÷ÖÚ¸»qî;2è\[–‚JûÁ8sÃA1û¯3Ô² „ý Od³?{wŠÄYæÜY¾&ú. kVÖçÔEØ4ª pùV–=eË·–7k¯4ÿ¦x懦±¡ü¾iiY² £\Š×¸Þ¿·­—¿ØÜpréÄL–â8™j{spcXuÚG|$ðÖÞᧆòJÖsHîg±~™ê!;Q9_½´ô¢rk„ÈŽ=›ñ–ÒµS¶æÿÁiãÕ¡!ÝæSágä¡¡¹òy Òüä~®t¬ƒz4 Ù º²-;ð”+œ23έÚÇ×T>‘Ž«ù^DD5¯ói>’ÙÑî³7iñó5­3Âý´n‰$€Oe¥ßL*sþ qØitw÷7\ÑÕûÌ^ŠLÛQ’²;©§u?ua¿yqúìÜOKƒ¶gŸ\çígœ½®}8yò,Mf/RAžÄ$v¤@UÙ9.=y÷JD0І3~ã#ï,INT¥lÜÍà”<¾˜qM;úÉ^;µ!M£ÊÓ¶<*ØÖ]¬²í¬ ²Ý[dM/ø‡8ÃלÕAXë½ìíúÇZ;¶ÎIMŽƒáúþ‡$d\ÐNÒ¹pÅF´N.]؇^ÖÄ–°ë=Û– ¾”êkJGÕ+B½6»åÖ‰±…}gÒŸû!Æ T{uï JëW¯¯¾^íendstream endobj 1079 0 obj << /Filter /FlateDecode /Length 1024 >> stream xÚµWIsÛ6¾ûW¨Š²ÖDîÌT—Îć;êÄE„%LÁeHÈ–ÿ}\@C”œq’ ðáá{ß[ùçææóë/bN°Ød èy òà"ðCàð'›t±ýæ|´|Çÿð‡%“¶oóí[ù—’†‰Óú^í<­¿«Õ#&ûkÖê—‹Añù¸Ûüµ°„ öÕ=$“G„*Š‹=;ˆUÃj4:×JD«öÒIáë•'ôØ0\Q}¾ƒÞ˜;‘qu’ )¢‘fEˆa ßÇp^éØjÜôˆh’òT…Žâ‰=Uxý>Í~b†Þ«½¤¤U ^+˜·­aÐõAÅúu’^œ®7ÿóµ'ØÒe)ûFjßc¦HKÊ+bËZ.Š#¥r•—)¦—% 'ÚeA˜æeòrõ³­))0ªAUã”$¬¬/û—2µ†™”bÚàQ|\P߯ð½\¿ýôV.:ð&{…Gí—»´e÷’GmúѧC6Ôý»7ĨcƒØ¾ž+u}g6à}^^?ÜÍ1l¿näüN½ÊS¦€½è¨ ·yõ€jf[qü¡,öaÜzÃ`íQWªŠ> 5¨9b59u:m¡T™×YÞó§¬êQésL–ýiê9Úv­Ôû)X]Ò+)®Ar(EU+¡ÃÄ«)°M¼N¿ù†hÚ‘%5_×1„©I‰³Œ$²1I¹wïT j¡~äÅÀ¹&ãĈâx6çœc £I)/J6©Ü¤àu%Á•Ú/ ú4*äb¹—ÎF$(ø*8hQªÎ¦eMH$°îôßè,W-ª!mx¨Ârõ€Eæ*ü"Ëäò§¤e±Çê1; ¢[áNŒ¡Îàž…¶©Pݵ NXþ«nÈ7„©é[ÉÔÎtÍзžë1Ñ(ŸX­ªÐŽãëA!ðmá—ù˜Ý‰/ •¥éevÁ4ȵN³[U)¥óV©¾,SÍÎø´4ÉØ&= C>”9/Îú”0R“:Șí> stream xÚ­WKoã6¾çW8N°‘˜kêe h ´‹.°Å¶½¸(ŠlŠLYl%*);ù÷rH[RäM=‡ó~|¤Þ\|üD³”¤±Ï6ÅŒÆYÇÁ,ŽÖć“Ívvïñb±ŒüÈû¶ŠV;Uê/Åk¦ÚLHØPýC¦‚«k t•áþ‡%®†&›_g«Ù’R’FV=«$[,ýø-áŒüËØ“Öðñ3 {N/ýI}¨ugLá8>ò©ò wtðeèÛßg=rfãÙ¤ÏA–é‘ݰ}ÓAz™Xøkï7%ª’éÈ;,üÄc|WêòjNZ‚µ w¢QøAoa]ûžÌôùÞHŽÔµLv•’B ÖÞOÛ­U‘ÕL"‡j"¡W/–ÔcPÜæMýIJ¼F0aœ²V%Ïõ¾œª}¦õSßkŒlžgRòFdUõ¢é×IVtòh4MvíþÛŠ†Š,¨—k7màù©ÿÃ`åýN¶ÈÛ‡aèýÖYD5pbî€=ÞâgîŒã–Kä”%D²EÚ«ò(‡Ç¹ƒQ¤c*ØÿPus*1p5¡4ú"ïÅ©4!A:ÊÙ6Ó+P)¸Sp×é׆þ˜oáM1·€Ã]ç6PV+÷ÈŠÙµ¤ßÚëËZ¾g¶}M|vrt/‘©ž¯(Ì÷sËí|©’ÛyÞs Aܕٞ‹õÀrk(²9}ìԴɉ¼á­¹n,ƒú’¼µ¾Ajî~ÿóë×[£–Æ>¡áp ‘¬Ýݡ𠛬BˆCÌQ±i’¸>]1‹‰j/?%¥ã,N§Ö¼pÙ´)F·\å°œó繃ÎúI¿Z\ð-S]ëzÇ;Q1)eìp®ÎÑshŸ¯F]‘wÐ:â-œî]°ZÕëÛµc¤÷÷7Ï7G,צ^Àᤪ¾Ú6âÆ: í“—.ex7͇ëþUº9õ¦ë2èAhuoLH³d'³×ê½wêD.NÎÖÅèiŽ ~²uΊù÷ñº?ý˜ÐèûíißîïpY©sݶÓÜ„>w «å'íøLÆ{s{{zF¸¹ì?DN•ó§þ‡M%;Ù€×<лzA]k@2›†Ç7ÿ1}ÿši7 BU'Í5Üw×¥»Ÿ˜¹|b9Ï*Lùµ“{÷SÎ ôk5F´UJ’`=j™þk%ŽI’Äà?0& ²ÑHó]ü²¹øú‡ endstream endobj 1081 0 obj << /Filter /FlateDecode /Length 1205 >> stream xÚ•WËnÛ8Ýç+Ü4hÀbE½l“YÌ#@mP “-Ó')HTœþýð)Q ¤Ë"ïóÜ{.©ß¶Ÿnãt‘ƒ<‹²Åö°€I6 \déDbg»_Ü-9®›ë Òå/~ö”#z¬0è\Tuÿ†i¸ÅmÝ­´ÀeQõÇí¥Ø€×÷Û¿á"€䩱¹oYÃ¥ÂÔ°tu¥×…Ò§[˜8ÁQòN µà$‹™/\uX›?ãõÛ?_¾xü 3Q rµ™ÒxÊ‘lÖ‰T{jÊ F8øî1—% Éaâ‰;È6 Î6Óè¿ÿ$G.k © Hóµ–úL¯ƒ8Ž— jQUáJ¾%KÒéU^bý§f×A´Yîq-ªÍjËzN(^i¥SIŠk!TšM\0Úñ¶/x§<Öô»2 |‰ÁäI"ž¢ÿ/ŸZ,k&ã¬oÉPUð˜ÎSWÅÿÄæêÚ ÉtæºÓ9ho“n:ô´à„Qɉkë¾B†ˇYpQξæˆÂD0™ñˆñY3W¤ãÒµãlNŠÚãLKÚ¹¥Ô-äÏåqti M@*­a¥ëwæÃë “cÉ;Åø•ò Ãdázî»Æj\HZVé‡òÿ½Ý«ø^Ë}>è'e¼$ô¨_JdÒ)J1—ð^¿ jþ¨>TÛcµØî?\p«n5ôCØjÔ £˜ò•HL×é²#uSýÐ-æ}KõÂÁDÍ419H*L\®ª¢J¦6onBa]¬/?|Ð+ïHh_UNc]©P¥Ò¨¨ð ùrPÓÑÓ‘€iôbC¦âˆ€Þ"ýw=©æè³– EY1~Œs`7ãÆèÖw\ˆ%'Ós9FgK 6jÇ£Bèþiª1c‡10ôÿ„-– g¸2’idK8œMš,*‡-”©hnÂ!ã`¢Ÿ>o4™Ð`˜m®±a:ΕÒÖÓ9bÀ¯I× ÌC4ßMÎ{uxž»B¨Œî”p%cÓü×oÚˆQKªŒ›Y7 ¶ôµ ¦‰êd–Oˆr1<•1Ü î§ A*³ ä£Ó5>n8z¸Ì°Ó~Dkæ=½_=UøÑ߆rG0ñ\ÜWFnªl¡FÐ{DM‹÷¨5!.ÎÇ]Ïñ™I¦nBì´²Ãó‡g^"no-±©Ý³=2v {Ä-W¢ù, Ø5xf¶JðG7„¾:P€—Êo·¿ŽTR—«ÈÓ<ÝY/éƒUÑÑqoäf{V(hÑØ@¢Îχ¡Î^1?«Â¦¤eTÚ ÷®vêâG à‰Ø¢í¬Ï#e¢‡LKˆÞ1ˇ)çXMìÎÕPµn2)š–í*\¿Z(ç¬s2sO5;üápü+^}˜–I¦,-É¢šÜÄuX˜×xË­‰ÍÀgtüªxƒù×RxK³Ï,÷f iþ̇{Hý^¡®Ãú¢ö*t (qñðõÖ(ý´ƒ•…ÈSß,Üãáµ\&Ÿ–ö›SÙ¿âÜÍa~‰9ÈÆ´3×jÇ&öŽÃ? G8±,ä-¢ÌüùÇLR‹oç ÊÁfc¾]`&/þÜ^ükMendstream endobj 1082 0 obj << /Filter /FlateDecode /Length 2278 >> stream xÚ­Y[oÛÈ~÷¯‚KÑdî—M‹$}i£-¼~ %ÊbÌ‹JR¶·¿¾g.¤Hi$Û»ÎC8Ïõ;—9þeyõñ3ƒŒ¤r¶Ü̈ˆa:“B! o–ëÙuÒuó… "ùËÂ?³‡´ø ¼©›r_¤ïWiQ¼ï:Ø"ó›å¯3<[‚ŒŸÿgúuY¯³5Y»««6³tÊ͹OÛ®I»vú}Úuýj™5eûÁï½kwÙ*O‹ö¥ôÞ}–Ææÿ%PdÕ]·µ+ÏÆ~Ú òñác³`Ž$V@ÍQÙø#Ë-4CRËcù³r7_uiuWd¨ùX—Ÿ¼ô?…ŸäÄ6ò²*ÀñýCÚ8u>öŸ»ƒž.ºÏ²#‘ÊÍõõá»››˜á²¢Íž!ã_x‡^ š´ÛºéŠô6+>/ÿù¯¯¯òy‹ª}™5ùjp——àŒ¿#CÉ”ð]Ï2dˆßÛOÊÑÇ iÅ{W¯ê§Ýv «ÖÂ=ÂKcD´èÏçQhp„…™ºÏý ª¼£ŸÚ²iF’&¦ÙÓ#«–›W»`Áߨ™Ž—Ô)à £Èð ›Ãw Æ×§tɃ)‘ìÒ¦¸ûE~?g@•okØ!‰ÿíéë©” Mƒ¿þžuA2O¨\Єx&‘QLÛq#@xð‰£Æ¼$R†ÎFg>ƒTÜ$Ù“ÅŽ0f1Úóýw„/&xŒï” bDÿ† ÉG$é¹ù¸fJ&·óÕIætÛ°hòöÞ¯ÚUÝ„M€°_Ô·mÖ<Ì…„tš×U̦‚!Êq­'Róƒòp«hòm®Y20©Ûzs$\——aµsÂ×y5‡‡ {»™¶í¾J»€HÆ=F+tÊâOŠÂjN¬A`Á-ìf çNÕÔl?D{€àA=$þ.ÏÖžÙ:K»më×iiYI!Sjð[uÊ ¬‡÷íü ~ùÑ«°êz6ZÏ‚¹9S#sÃþªvF|˜S•dUÞoÅZÙE0Óã< Å®ó¢ðÖÉ«uöÔÛ1+½Å XG 6µxÚÆÐ:b~,j(6¬ NHŒŽD’èþà'[ªägûþ¡úÇ'¿ñ#.œzY*0vZŘÀê’o ”û÷Ö–Vð€ä*Yn3ÇûØê9¹E泟]BösÉÏ´ÉϺÈ'?XÕ.ÖP&9чσ?»&¿Ý» u_÷2tÛ¼ ^Â6Ëèiy ÆØQ„Ù=žäQrˆ/ Þ‚çC™Dp}ðåiÒ³UV€ àÖ˜Ô B)„52ڜϠ)N] ÄLà¥F§(Òð¶—‰œ m…²Eêq\Ôw!žœIí€DÅÙs5%ävq!Iö©]Œòöi)–ô!·c…¢z•ô_bi ÚŒI-9%€ÂHê:&ÙÛí¯.=9\\}]^ý÷ʦ.<#3è £ðÃf«òêúÏÖðÚ.ÄŒž=º£¥Cˆ²aW̾_ýãê{™°hAi×ÂŒ9jãt`c¥&îøSÛ–PÈùÔLñ;1hM†¤ðafÛ¦#×ÿˆ8Õ@g4õ=Ž: BmûÁÇŠ~‰˜2ÞÄÄ=­70ñ„0Ü Á8#ø6iŒ,þ8"„Ûf×2Òà‰(F ˜Í&?*†î-hqBÞB<ŒIœFˆADƒz£C1”ƒa´£Ô$¥¸ä舱—\0ЂùK= 'ýä¨Äz±[ÃùûXähÐÖzUUœ*íP´’ÄÔ¡ä9u aH`9Æ=e .‘psšeHVÐ ¸þÀµƒ Ã9Ê£èôµrtÒÉfS&c“ üà ²NE™aƒø›`¨§ôöR¯CŽ!hzS†ZHÆúÓù ¨›c_`ÈgóáÖkL©ž5¥B²%°ÇR?§ŽTB3ôu­ú’6©?ŒûÓ0.(…Øj§a» †A>–¹I ÁrzÒmÚ¬}'jÇ~Ï]áé[·r·–ºÜíáÓù{ê…îUB÷z˜Û<×ò|ð,·ùÊöÅÛ²ÛNý£µXîe´;â®u¶7bBå v¥†·Ë“¶)¿¹ç»à…WÎÍBú±ì÷X‚™`ÔŽI1—Jû ï§*’˜L?Ó‚ÔÀŠX$¼fì\gÓ¾Ñ6¥[ .#Ï×yp—3×Ä¿1·X—®8¸ý»ˆÆD Ì2¢v ½!Qnj6Ô¡G7Ë8•š=Aä~ †¤f·“sSÍu¸YG.¼¶%1ühÊ„ChÀÓÏp0GÖù¸ðLÝ,áÆÙ¶ùmÑÞßÂùvúA›ÿ/¦.ÔÅø‹ÏdÈR›¦Ž…'„%—oöø0ѯO‡.6C`“¤Õ:ÖE¤óŽö4†8T› ÈÙVat(¸%B¤5S\m`OéPNäÕhd²Îž²‘¿Ý˜IÆ)5­öM“ “‚E¶²©ÚM¨dò½öûù&zÑ"ˆuÁIz5šÙŽS^r ƒ¼8ÏS <=¢H=ÅÃd ûu½/ÖþÕ6µ#›‡þìø8€“Dø]š7mØ¢> stream xÚíZKsÛȾëW res O8á'a&R—.÷aFPJ¤|qô&Ç0#I f6ÍÑ»˜ù\‡ùÒª^‹¿m•Vÿ¯ÒŠ íäûÊœÅO’:î–ÀÕÃÇML&~4PĶ·*j#5,5šuöú¿[ IA@e¸ŠƒEL“jà-•¢©yUòݱ 9F“^_©“‘4ýŽÒúfýz^··:Ÿ‡ q°:S 4ÉüpN?KÉWGF¶äWòß&ÐÞBòf¯§škÃ;ÊÙļìAÍÔÁÊìDZ¢Z–5â[iÍàºÝRî㙳¶k»/^ ðŠ_ÁìZºÊ8L_T]/ôDÎ_ô$dOCŒRáì11'uª¾†¹ Cy+ÿ‘°Z>bhº Uò†X¡žAhÚö¶mH]s.¡lúýÏÇ»=è(7ùj3w9'°&œÆù6×U~1µo±+Ä€f®<"´Gáj}·(í«0He«MA­­«ºÃžâ=^‡ŽÚwŒ»lóUS†ŠeÖ¹˜4°WWGèÛî²Ì6£pE9tàR÷EçiJD²“¹¦RÔ \LÕ{ ºÇa«oquEû7‚§KHèµûúE\÷ðød‹g_ :xmÞm×­ç® Y;l&ƒ^æÌ‚&Æ.±çqV)lXÄõkßïë[¯Ð‡‰:}.á¼^Ï ë¢BTÊ!D{ÛÎåÖ±xw|úì4’r®íG5µÝåŽñ€nÀZ·—;H,æÌ«î&ps› ½Gòõpc—ÿµÞz|çÝÕîþßµûn̽ޙó{Àä;ÛÜ»øDS=Y|ÊŽ&¦Iȱ !e\—›ï|"³ 5æn°ëçeSAÙTqÖÁÕÒìw$×)[Ì¢eîWvé®®ý˜5]eWo°;_át(I:¯JL¼¶Ê$HVpy—zå@žap&K¥ SÁt¼ªóïî¡Z­¼/³Üîñ€­ÜÓ=«SSÊØíbà_†=¾6ôÅ®þ‡v0Œ&²OÎ\ ù‚­míD9På)KP«»ðŒÐNhK[Pƒ™½¡½7aP×z÷aI‡Wáàê=ÓøVVù;WòãH9´ýh‰â@$vË|r[Ç þÐ-·ÿ/þ‚3Í5pþa[ɾ]¦7¨W)k¼ÒèÛ󸨬{_BGOvüNo-G )…žlfÛÖNöÚfþŒÆ,°kK&Á‰H´aÀ„êñÓ¶•+PvÈ¡ÁÞà¡Aèû‡ÆŽT¦—ÊBÎ^ûXpr“åÝâ6h¿Tt/²%/9° "Aöp†ŽžzÐf—n+{A`Ã@U·Àžòs¬²Ü^ŸªÜÚö›yÖú%žzèÂýrˆX HPŸˆ&Ré=yh$F6QÖ'ÇIêIÑ>P]½¨)ä=û·.” ZK+×zÑU ßÓS¶SZl®ëºÌ˶uO5bª…ãÈP$ãq[aþ™ƒŠ©ö¦³·˜ERíÃÜpEý$¿E†Íe ÕdqƒCV×€G?1!ë•§®ßܾ]Ï˱Lÿeø×2_ÙûbàÂ2­ÊÖ[XÙÁzõ¢j»rËŽñàë˜pÙóÿ"ë²÷8hO ++ƒËŠ%ºª ‘eúÖh² Ódv~šègûÉódb¾úê΀°j&(œºÓƒ´š% 1‚ï¡ìU]l>i( L¸ÝKy0,Pn¦ÓÅ»³üºiÊ^›•¿áí²\Þõ¤¹`7©o·$y/d7VØÛcL9•„I})SÂÙ뙲DŠÝƒÌTȽtü^þLO¤ÎSÇü™½Œ?÷ãc,ïêé+E xr Æ¿íe¦oý_eiÁendstream endobj 1084 0 obj << /Filter /FlateDecode /Length 1210 >> stream xÚ­WYoã6~ϯ0¶/²×¢EênâZ`Ø>EãÒ %:VlKEeßá¡3´×iûdš3œ{¾ý¼ºY|qýIŒâ€“Õf‚=Ež~ˆPVÙäÁÊ7SÛ'¾õ—ã;Ù' ?X]dø!/²Ó£ú÷q©~«´dô¡°ñãlú¸úe¹(ˆ‚‰1Š}-2-O–òlA®ãÁKùbcˆªÇÈ Ã3¢Eænåýè ‚bYv• õ'ìÑÓÄÚBõcC@Eù޵˜ª™x©·M:kÆhcBÂXòªŽzXSÖ6N6/g chúíFú¶\:gB{{Á¥PaLŽÅ¬âù~?taÝäáXsªýÖFÚÐÆž; õȼ®ž÷ö¶®‚YZ»T.»ŒŒ!D”Æ™vòF¥Ý6½„÷®è¡1¡YÛÙõ8Õ6C×F¤]º ±ë£8Š níLè|ƒÁ÷Й\Fç&Àíë ¡nbð´¾" ½´‡kôSwœŸdþÑÙ"¸&î„°C#E]ÑSJš ÁKx¢^%ŒªKF“Ì.‹}SCžçX«­&–5×±¬¸|LéEh¡)—5*…CAi¥I¥•¨¿iy̯ZæÆ8Ä[ñÈÐQ‚l¨ɼÕIúÉDQئ@…ž’”Dy.òÃv®ç¦òIíµT¹ðäŒÊô‡¼H÷u¦w€;@§-Ú~2ù6äüPÕìåm?\Ézd%/¯b¿ûýozâ‹?`S©´)oãØßëÎűõª§<ٌŽfÚ7cH‰{)”và",– ©UñÝþó·úe–¦v· \ÌõöØQ^‰Ú4­ã}©0Äk8л/7›Šòf¢v÷ª+ˆqëî¸ò5”¦ ÓcePÅË=8pfõÓ¡­ý‹k: "N4Z\Ú=}þ<ßÝžýJ&ŠwyÃgˬÿe8›åPÃÝÎÎ’§§f§•ky5Øo ŸCˆm>5$®È©-1éJÉ*‰·o±‡ Ål'1Š¢H=ű`¼ù¼ºùÙCúžendstream endobj 1085 0 obj << /Filter /FlateDecode /Length 1143 >> stream xÚ½VKoã6¾çWøh¶¢‡%[0‚²ÛE±Øø°@wQÐm³‘Hƒ¤'¿¾CqhK²âd{èI9Ãožßð×ÕÍí§(¤^š„É`µaä¥á ‰ç^«|ð×q=š†ïÇJK¢ÉrôcõûÀLƒÀKã )¥4‘z9šñ<ÞŽGÓ8Œ‡õ&ã[û'Ö ûÍ*)©¹ÂÊ»ßö¡å¢Z%T&$]¾+&Š|Mß°Þ ~ì_/Å’1NŸ‹§;ÿýû4-÷Wb–€q;R 8K áí˜H4û¿¹8Oiº·+T³?£§w¨RŠBú˵8ž-à’©§nÒxU®©lgJUëh¦1Œw@[‰4w¢ÕïÚQ»©Ø+Œ¦QÒ0£¤¥/h¥9Ííz#œmÜ¡‹cæOÎë×NöòÃ%%yiÙúPûA'‘€­…ž`”œE¤•3¹×"R Õë;UIŽ9%z79%½&GŒ-s××rxÙ3Ó;}òѾáõ æ(ˆý«inB]TV+Éš•¸½§<"ü´7¦®Ìö²ãùùÆ)*\V`»ì§GR2Έf‚˜2LZ]Œë?W)õO¸´?ΠÚ1*1Z\–åG0-´;¬R¥óJå¹×ÏÍü“`Á²S²­ m˜T®ã¨dˆÞ¢{)Ês·×J·•I¿[VÛB¬IáX£ì¹=ó»·›ùØËO†‹=£q¡2Ré(h_i×lÛÊpžú ç™ècÞùÈÉ©ñdû}b§{5q%Q4j':^Hª+É]²E“CûÍ|¼ÿö,‰ÈŒ&·®Ü¢Û‚=…ï@£íê¼r «½¼nƒ,˜Ò“Æš“’ªåU.ç{)4¸¹Äp]£ÅŒ{blÜ ; L©ÊEÑîöS0kÁZ€¡§0Ÿª}Ïmqê…ÉI–YRK"/ˆm¯?Šc)ú(™y³ôháEÉ2ìÿœ>˜™çGQ^•©?oÃl­ò¢¡kÎCߘòp‰-Å:A@0>”|ý†zÎ8R\DCo4EÉð³$k+ôˆ2ð'Cì6³Cxn%ˆRlËíZÏJ…—<Ø=  Aó…‚g³ÅÂyöõo¨U‘]:¥^’&N¬&ws©™À>s0ÞXnÁ¹¡7³RŒgÔÆ Lõ‚°“ E‘@4R)(©'ˆÙ%•@Ì´Ï‹Ý2#Ñ öñúۥ淲ÿD»´ÓÞ‰_«„î°üo¾è<øy2ÞÙÏ÷~^ýö˜Dl6`@Ë — —#ç .ÏD¡Œj&à¬Góü« º‰KÔ ÿ-•FÞÆ†™Ð†&ê+%…Ñ…#ÔëLfÁTn©É½Ýƒ]}ÉÕ§c§ªÏT‹zër:½9²¨§—ëã¸ÇŒñÝ¿Úw^.’l·.•G7¾©ÚOª“Ò77еdÇÉe{éÜKfX˜z hÇÚ˜°&¼›ûÕÍ¿ÏÀÞUendstream endobj 1086 0 obj << /Filter /FlateDecode /Length 1793 >> stream xÚ•XYoÜ6~ϯð£ìxeÝGZ£HS§H´A²h ¤AAK\/c­´Ð᣿¾sqWÚ•]äÁ9œ¿¹ÈýyùââmŸänžÉÉruâ{›çùI§n+Ëòä‹svvº|ÏsT]ž.â v¶©{Ýv<ëùšæÑޱëU?t§_—¿x' ßwóØ*½˜£Íj/Y¶Ü¨¾5{±÷ñêõ{üÒr#ÿœyê¡Ó¥Ã.ý0§xo›h·*ƒ'eÄø±Ô^ÍKÚz*—X¹Võj"÷î÷åÕ¯WqÃÿX^½Yâ°¶•)T¯qÂRdý›µªY­:ÝÏž…—¦ B7÷YòâL¡7Û¦Uí#OïtÑ7Ö—ón銦ÂGæ7Ãu%ä3ÜT¬ùGUUS aô#>êÌ¿ºYí…Ÿ?iU^ë G–¼…Àô¸ûóΞ P´çq3ôÛA0cÓ¾#jG.Eƒƒ‰Å'\öÐG'¶Î%ÍÇbÉ‘ ÃtrÆŸäc›JŸþúp3Oš3ÌÚ2<4#C $ðwÚrö¿¡Ò)¾Çe‚6–*áÃÜEà³Ubd|ÕÜTæö;Ì÷fÓÜf+²ñ_ôºëe²ªÔÍùF=(¥óŲ³.ûž ˆzÛ6=˜:މõâm6*ù¹›ú!ÈBÁO2–]®!/¢ÐsJªcQ;[ÕAš1ë=~±6âÚZuL¸†>‘9Z×Lïš¶·2×§°òÈc®tB‡Ü*Úê;ä®"›s­Åѽéׯ*•âŠtÆ¡¾H ‚…¹yԮ̊çæ)ˆùQÛõ{ºH”ŒKw§1¸™ C5mAä&qX ý¤aì†Q`¹îMU±vÁ'™ã3Mõ<í­ ÐuZ¡5+&iU 4k¦ÖúÞrâör„Oz«Z*hû%%9 …4 "è¶›m¥{]=ò¼Û鈂Vh¦©»W°IX—À¢ï±»%ršZtîüXßÑÊE"îäTÝÀÉ[™XÃêSßiúù ÂÆÔ7•.áØ)„Ã2’ÄC ’JµD…D ÜË¡ µ[èD¯)·€ÊÎA)Š>hy£(ÍR7±Ñ÷Ëqxú›ùvÝô¬ÐH«’s Fzu£›¡›¦½mœÄ¡M‹\2|„u»Ñ¥A>ŠÁÀóÜÈŸöI@Áv†ä‡ã³D¾ëeé3‡É\(lv]5£$t³4²> stream xÚÕYÛnÛF}÷W°OÑ%ZsïK8 Š )Ú¢(ÐÖ@ 8FAKtDK"]’²ë"ßٛĕ(Yu.M.¹³³3gÎÎÌʯÎON¿£"aN¢Æ(áNùéÀ*ÿÁm²Lÿžfi3³o/ˆ}.²ô.³ÃfæuS¥MjÇé¢,Ü紱ϼyVÛÑdUUYá>ߥ‹•“,Ý–Ø>§Úfp °¯í|hÛKlhÙrqsi_Ç¡/g]ŠoÑüìØÍE•×sg´ÎÿÉ6f˜×Nìª³Ž¸ù-…Ýò]gàb”Ú‚1ŽÏú# f® ó.`y6uæiù: SZ8mÞ[—’ÌøªÊÒùÚnîMË♣ߤ*ë½${êI!ûjÃô2<¢'ü—q±IO`,ŽŸ!¡|Ò”I(J0kÅÏå½Oû‹r’6ÎÂe¶,+—M®Ëj»\L`¿‰3$­ªô¡6{`ŽD²•ÛÞ¤^ð6«Fwi•§Wþ°Õ‹|âU’ X7­~Ô¥¿ûDOÁ¦l Ó´šê7Ýf ò²ð“Ù-ê$!½ßûŠBN™[9ü¾Odo½Pdz¥µÈîí@—Zð–±D‡Ú©mfU¹z7³+ÿ5ók²Ú冯B²ßç:cR†an”Ìv;™P¦W¶“Æc=L׃¢OTïA¿Wôžëj÷Ö"“ÒÈ4U~µÒ8ÔN[¹Öj‹òÝ"Ÿç‹|3°Àþ?íãžÑÈ€ ˜ÁÄÏ}€Í1˜½ë ö™vRÊ„™Àp¦- Ôô„úi?J™k õ·[kBnMwòUæJ#n·7qŒ”`’ ètì–?uˆ3å{ ±Ó¨A‹õ†º°¼Ylk†€ 9’ˆKG¾?œ†8(‘T™ ¬„ÈŒ“®6:1Ú#Háu7F:ôpDÅZÀ52»~CWaŽ4ÒŠî7J!Â5ÝKxhS[ET;¿2±Þ .t}ÓÕpÆǺXÆqWP±¾Cÿ ‘c&çtÅYºká×»Êt¹ÜÏÛ<…%ã‰QÈZÍ1º&JÁÚ¦V.lßB"–E'oÎOþ:Á 7ŽÀux&žÐl1M–'—q4…Ià=¢‰ŠîèÒ4RÀpývòËÉ+}ùòº$F;·ÐoÇbͤ ‚yÓ…ƒ’B”¨£Ø.¿6¶“£ØÎœM7»Þƒ×Úy ÅGÒXnÓ8 %D«H3´Æ’Bú§BµXwžFŠ<$úz#d¯èP»„”ßa,IÐ29†±TBq=@XKÄ k>œ°ÛG›Œ}ÝA${¼ì̶c![b ¯ƒïbÆà’§=г7üiAa¢«™VÌ÷æ„Á:}€ OÄØƒ¹ãG xO‘À<> stream xÚ­WMoÛ8½çWø˜F-ê[pT`wѻNj=¤AÁXtÌÈ–\‘rÒ¢?¾¤HÚ¢D9›6'QôãÌpæÍùÏåÅüc:Ë@ûñl¹že HâtG ðƒh¶,f·— þÚbÊè;7‚˺ÏðÉ×?´[ÔÈ—{D ïî–ÿÌ?°gÖ›¹¿ùÊâFB‚¸ @šDØðóª~vQQ´{‹µ(~h,QÆ¢±Pr˜¹1I y d‘ d]óÈ#?ºüìEɽ…|#7UKq±8þ-Q@/ih/kKnš‚ Æ¦O²>¹¤¬A Ý’;¹õޛ𕅆ñ9WÐ>ô5b~% ®IC™\Ö÷T-”$~’ ‹\_ÍeÎÒ„üŠFü;ô\`Ä6yÿ¿Â¢;â)p,Áû½*|±Ã;ÏÄÚŠñx,Æã8Âj¦ß§Ë’ ´sà8Ê…ì¦)e¨Q‰È‰R5„–ÚÌÂR×÷8ƒz°”‚ö^w¨S@vØHØèæB~S^¬UÛ4¸RñµáývBÝUˆzyÚ->åUùVGtMÄîÍ$Qv–æ²RÓñ÷{ÌP®9·¦˜HòRá«jlUïLË¥£<¬j޽}¼;ÞMu€@òm+9éªnzÉü¼at.„GkÄf#ÖRn&Ïá/·¯›À÷ÃAuñÓ¶4¯Ù…õ6IlyZ&s¸˜f›ãLw‡ÿ¿º£_ƒ®í”ÉQ–§ö{Ù'ïóN«åÎQ2tU¢Á¨|“þ6¥ö?ÕdtP+>¾t\­ÒÀú€U•ØF¡z,ºðZ©r­TyßÔ+L•tfƒxœ–¾0LN•$a½~ªüQ¨k±zp™mý°%¥9CbþIf`á=LJ}áÂÖ9ÔPë®U)ã×½A¢Öz&M6ì§/mðªü—âæïŠá¦i÷L8œ<Ðë=7?^N)¦‰üñ´S]Ö«ï3§‹«‚’ïø4 zsêØÐÇìR¼ª«BÓ¦!uy¼«›oçÆÄk´Á2xcøYú _Ú-F«MObbæTëH”¦ƒoxT¨OàïðD¬…ÕëέMsµš6úü’;seP ]«~O6¤|'k¯¦çI¼5;»l½<ÊcõËuòQoL3FÀ‹Ï~êrDŽ0b,bä€ÏV}ôÁ(Šî¿]ѹeY4î[x[Þõø×æL4zX»²$[âK;~B«\[L/'ú òb<ÄÑü©Ÿkiv{´º*Dv^’> stream xÚµWË–â6Ý÷W°C·…mùÂ&'™s’EVì:³¶w‹cÉt“¯OI*cì6“I&Ù G•ªnU]•ÅO›‡åg?œe$‹ƒx¶ÙÍü8"ILgq”€F³M1{vöó/›ßfnà‘,f®ï“,šù“"?"q6%Z~No‡$L)hÛ8³Z?‹¹Kcê¨דÐùÃóÃF*»[*Þ0UŠÚÊÄn¤,EÕj1™» Í·)¥Ý.JТ¼áõ±¬Ü :%Q–XЫBãJÒ$E£Àßsñîj³Þ„µ(vÓN·DcÑÈXØ)¬-ibŸ$éè-S9],€ˆAäÂŽ†zŒ²t2‹žôz)? ŒÅhl9墿oÕ«=¸öVS;]K-×…+µ’õúc}fM·x|ÔŸH‘­$€tc v9r³ŒÐ$zmŸË/ßëå ëåÖKk6ÕÒÊ#SàçùåêÊŽ«‰@†=1þÛvyZáZ¬(ÚÓ¿¢–SâÓ¼S ÙèAgÆòìuñØÁÔRâGI¤™fiÂÎ|Ä*{Úίé±ëOÞ}ÈùB!ÿ}°ƒ`–õ£´£hÑyÞ6дQºågû–KT1ºNqLÚSÁÔ8ú-WLŽ€]Ûï@Û¯ÙÓ˜¦nîò{¯’Y,ðͱÓO…ÿ Ñu(;ÇÎĸ´­÷4*ç½ ð“ ¿¿‹h6VCê$!žÉ¢âòõ˜Øáâ!2úS‡¿â~5U½üO€3ïÏßœlí)7 ¼ž^­~ªXα¢Û ’¥‹²>óFòÎjŸû¾„c nz“›…7œs[2l"€ïäßÏ‘{¡|\w1CݦœSÕÃË]ïÿÈÞõý_¯½;í=¥$N£¯v÷8€èè¤Þd»BݷݾØÚÏà¾O|ÕÿyëÝÁWT&ÌÅðxÍÂAï…0RBãtòÝ;Œw*§÷?ï&ôß9p°»zÞwŸŠ•ØyÙV´ªhÒîy#•ºî|½Ý»²éÉÇOm wߨå高:Hqäæ}eÈÛõÕ¿H.ˆ‰Õ×VÓÃâ}1 5l^å‘“ÿ§þwoQúã0·úøçÇOb’è¿VAFÒ4µV‚P+>ü²yø [ mMendstream endobj 1090 0 obj << /Filter /FlateDecode /Length 1219 >> stream xÚ­WKs£8¾çWxç0‹“€‘„oâÚªÙÙTÍv.¾er F¶I0¸x$™¿Ýj‘ƒ=SS{HÔˆ¦_Ý’?-/fwBNæÞ<äád¹ž0.¼9Ÿ„2ò8¼X¦“{çQ5É}ö0u%—΂k6n¦Ëfw,Øô'.cÞ\sR‰øžûñÄå ÇbÒû·œòØyºÂçN³U$ì’¬ )/§.(”{oê"p–Û¬¦7ÛÄ+RIÍ·ë²êö ´ý‚ÿTµQÅÊh$EJBݨ}g,ÉŠqòÉ(®’J­ÛÜ|õH‘´Sæ4´UV©ª<Ì’ ¼yØ ÜMcáèp¬­VmU)šw›VÕ5½KÌV³/ŠäºÌÛ&+ Ò ( 0h¿Œ{,ŠÀ-àÌ[iHßwþ*wû¶Qôa æòr“gÏ×´ûÍgAU7所¡]†šgH3{™ÊâËÏZ{÷mÇÜ8þ²† È|¢@>IÖuCáPŸH×'½ÆÔ|§RM[¤ƒÙFŽŽ¦IhK‰P„aµw ¡ƒ{OmÝtÖwøÕtó‰æE–ÕOzüæK¿CÈà SÕ²<« ~ªYÁ÷Îç²øÝ”³Ýë<Ò¤1E°òêd\ @ÑAQƒÇÜNG:’^KÛ Ô;zß™( (¦Vé|-mÂÐæ†Ð±Ø Ut «¾QtÑ‘Lú˜qëŠL—yjhDnÆGòp)<—Iè°ŸNã+¯zÍjœ®@ÜW`ä˜Ç ôb€ÌšT[Rá@Qxq$;êmU¾¹Y£ª“2ð|Ñ—[òÈVÐ),ˆ2ô¤döP1£Ê jŸÖ›©BÄÎìÒì3Z_·0i´”™U÷$ »,Å^A±\Óú"ŠÆËzºœõí>ˆDw¾ÆcÞ vcœÁÃíb—¼¡0Ø»ºÂ*ÀÃâØãp$™ô×#ø¸,Œ<1» õš?wXÜü8JT¢pn‹—¤ít`܇Àâ³ÍçWd{mgéO„õÔ‡õ4 ëéÖ$`^ÛF£üÜ?Ù®Þ±yøi88Ÿà>̆c‚ z`=IShª¦Ï=ç˜î†Âc/p a¤×7ÙÑú…–´,ÔŸcð]‚>“ÜGöÔÓ·ñâRƒx\è—ª£{=LÑ—îf0æÃf½AŽÆá½°¯J«m™«úù;×,ƒº\Ó>VÓˆ hTXÏžƒü³õ ë䱯•¹‡Óèž=Ì4×ÑþÝÇjoýøÑêÜÅÂ?Ai†^Dç(Í€ô¬ïƾ6y~¨Š5\“ÊÇ’ñë#·ÒYŒòTÂmô—¨¸ÎŠ¬ÞŽ˜ /˜Û\<°oäºjÓ´k]¦‘:é‘×M9 6‘¯R $è2PìêçlDÏwcöˆªp8ž»'¨2·´ô ŸhÂ÷"yv q8h}q¨~fú&3LÓ·Aÿô üf“‚Á8fñ¹ã‹ý#{bM±ðôï4‡WŽ‘Ÿ5fïPÅ7Žf—òÚ>(ÁHwª®*µSE3Ìü˜×cCv”pc3^åµmbɳç%\—ÂùøÝáÄ‘ôã~-"Au¡¸R˜õ.þ^^üËú˜îendstream endobj 1091 0 obj << /Filter /FlateDecode /Length 872 >> stream xÚ¥UÛNã0}ç+"žZhÜØÎ¥ð°‹ÊŠÕ P¡•¡4uÛ”$FIÚ…¿_;ž¤Iza^êKÏŒçO¾{Gý+ji.rmbkÞLö…›j¶å "þñ¦ÚC'XdY² ÏJ<ŒjˆÂ,o4­VïF·ÞðÒ“×I%2ô£ˆ÷‚•Ëz÷ÃËñï;(²)/¸]e ½g÷nGÏÃ_^8kô6Ÿ²W©ÃÆùd¤·‘á³FåZ²ï›]©8‚Cý˜B9oiºÑŠE,fI)é¿)WcÞ-âØ}(bM¿¾ùѸ{¢¥dür¹(qp6;þÐðâmÞÕ—IÉ6©ÿ˼t›Wâ0sÆòo¹èü“¶«FÏ7’}üOx{› Û&—­’×”çBhÉWÎO÷[[5*x…k~Y±ë [~‡l9¾Ä–À£¡wô$áÔ_endstream endobj 1092 0 obj << /Filter /FlateDecode /Length 2224 >> stream xÚ­XK“ã¶¾ï¯Ð‘ªŒ°Àç&{°]ÞTåWeªr°çÀ¡½©ð1ÿzw£IafÖŽO$°ßèþº¿¿ýðñ‹Ê7RŠ<ŽÕæö°ÉS‘&Ù&‰S¡t¼¹-7?ZÈíNJß5¥éú¶Ùý³ªëíN§qðK(£¡ßÞÝþëã—l“‹Ò1EÒXahÇ€“}6‚¿‡úe›é…ˆ"—øX±Ç¯#=âÿê ô´UiÀï1å\"ÍÖàmíSócA„«¡2=]G+þÖ´V-s¢}kn‘§:Ãc©ZƒŠ"ÊÙ•‡˜Z&›Ù¡ÎC*²ÛRsK%B†zNééhà2\³T™Piälúð ³hÎï3ZÜò|Æ;îcœ‹Bço%½¼ó(}7Z-óŽ’\]4¥u g³o`ü µ=!ŠdvÏ^±Hrot¤³CJd2wT¤‡8je]“^zéNy­’ ½þæá—‰,×ï©ý!µ”_­$ÿ3z©¿B¯O"’” <®HB½Ì…Ìä2ѺÊÁi1šÒâ”Ôëª1'ÏsgÊj?´/=î(ëazÌCùÇÒ#§š1O¸z2EC’;+#x’jxWÔAhˆýµûW¶Î§ÄròTѸ.“¶‡A ­¦Àx'§FoçTºÑÛ9.ò‘ÊÞ¢äõ–¥ÿrwMÞh¶P±°l™Ýä§„vöj§bèªç©š{|—+Ð\~«ï¬š ˜Ò"†·¨Ó$vªVñNe¶öÁKÁ[}{â¿Ö`'e°ã‘nY˜M2×2ƒÙÃÄíÛû (¨S}†; CXW-1h¦& ?U`l‚2¦#;×]§ ;ÁB¡º8ûÊsÇù¢ƒa/õè†Ì² X4K+XÏv* Ùâ˧7‹sr†â¸Ð'÷6t€¦-þUŒ›`µkǦüØ&tÄî;‚‚_­:ÐØÕª¡çDÀrÛ1eö±Ñ·¬:±m70èü䃤$¥m­Fƒæ6&ÒyLä¯Å„D.“7CBBM'D¢á©Øqdä¨ÞÂôQûŠCŠIÃÑüû5OH%jò¥ ïˆÅc¹µé+h·ì½F)Zz¾E®_žÄo_€‰± ”+5ÑQ˜;:ˆëKÆÚªÐ¯n'ߪnßqð†¼ëšˆ *È¥±i‡ëf¯{‰,Ôßz8_AŠât)¿GlÆþPÙ6/‹ƒ˜ƒ¢ƒOô¿5@{ÙŒLM ìîMÓ·ìÅ(øÁªðL'R³45¥®¬wô–uBÏŒ®ºD{î¿^è]Gs®šRmê˜æ©KEµa'i¬¡%ÓÒ6tERÈ`ÿÁ”‡í:æ(b€KuÛ<˜~ U×ÖÓÁí2š…-­ÞcIƒ¯¶¼]ÙÓòpƒ?8p›!תÃÖÒ)åÒ–~¼ßî€Ý¯f?p{ío*VÞ*ú©?Î\üÐr¯ýûnë_û³ëÖ/!`I!»xÎnÞkCÞg槅ʸrÏ9Óž'•‰0?<ùÛjíI€œÓóµ ¸t]TТoðÓ%ÛŽ>ùÏ,¨Mq¹C´ÄÉ:·F²™_»ÌYÈÒ-Í… üX»)‡=Ò‹üˆR·¶mib sUÈ•F aL“\n;œ)ùÔ`&x°L±ŽÓ†]ÏhËñr •ô>Ñ+¹aÄ=Êû:A[2Eʾ5A2; £ŸgA£'¿,aÊk]ˆòÙG,‡±Ù_¦Dkž‡ñijÆÜ:œcKߤăÞ@‰ð’”Wpº‘%tœ þŠÑY@Ù—÷ØAÜ›Iíz<5× Š ã¢jlZ4J+÷pã`'5‹Hà *t<7K—s3‚¸‡/§\÷½-øP­'ÞÑžs’…Qžê •LønâjW<.8lç*ѹ ÏÍ*H˜úÂOËÑÜ<'ú$f9þj§Fð{-µ„fø‚J§kÄ?ðppìGˆnèÂ5#hiìW—#ÃßL×z‰YÍL ž÷ˆ@ší ÃÙÊ"taN/’ÉÆó+f“Ø¢˜z…a& +aDbŽîÚÚc(xÕ—™éÇzè—~ZõÎpÓ… r$I2SïöZÈ1§…hO(˜íQ@ÏL>}ÔÔí‹ÞÛHö7NâÁð•¼x3»xó2€\Þ Ÿ”ÌpæÍ“ŽXUPzäÓ"”ÊÉ7¥ƒÙ*iR£v¸ÐL?aéŽùù{°7&Ö@}þñÐùíǬöëZ4ÜSÍÇxq$=EÜØ/GêQPT‚M½r4ˆU•#öƒžSÝ))2hŽ,p²€­Y:!úâ¡3âàîÅ‚b”žlȳ hm^!õ™`b,…V+~᲋UücGOW’°x¾¡µ~Rbâöp ä€xCùÂCŽT±ˆmîœq~ÂX´qˆçmÈ”üѵä;¸õØS†`Ðp…å+¬@d³T²>¨à‹ã³Æ&Í#Nä¿@ ³6yí.Wó^~¾‘wþ³íù|uVyÏšGÓ\ÓÕwžò›&"Uõ PA–qãiçM~¼ýð;Mendstream endobj 1093 0 obj << /Filter /FlateDecode /Length 1081 >> stream xÚÍWQoÛ6~ϯðœK›‘”È‘Šz@gÄÀŠb«‹ h÷@K´MT" ‘J ?~¤x”HYv‚¶{ÌH§»ï¾ûxGþ¾º¸^ÞÄ£¥³h6ZmFatƒÒh4‹ïP¤^¬òÑç+ºy=£øêK¸(ôy LÎçZ‡úÏÉ÷úíxÙ¯Ò<ÛPX`ó³à³(yN ³|¤rgV|„iQWDŒßÿ®Þ‚ÑT# ¢Kcö‘Wà\îˆYäXâ-¯ÌºÂÊ š˜¶ÄGTP8$*”_’›5e9͈p„!Jã¸Eª@WKjÍm.š Ärû·ˆiIĤ‡‚NdT¼¤Ø"•ö­Ô£\nÍ Â¶r§WB*&°Îj§?½^†·ž¥‰rØ8ÚO$Ó4E7wwqf 5iˆèLBÞNÓ*'•Ž=Õ|ì!ãF?p¦á³¸ôpèÂÒˆ¥{a~2%¦!P›!<ê±aÀ# k½´Øs½/·CÌ)rÓ(ô I!È€»h†Â8:[‡XmÒp ã3e0€2’`°k*Á8ç'k»úëÓýË”Q§½ýÚ÷7õßg[8|4öƯöa‹®¶Ý;²¹…Ц½ÔP`‰s*Þ¸ñÙÑŠÏ“Úf™s"Ú#hA¿O1-áÿuŠŸ(ðò݇÷/–NÆ™¬xñJ¿AÊÂk‘ç{¤ÕF'‰ãòµSmÒuÐ—ÌµÓ ìùùiRü _:Úmš²½'8²µ×¼U—ŸW'ç8+ìóq«^û±Ngb¯#¶)Y u9:×Q©°‡/Šœ½.ʸ2­ má&!_h7ÂEóòvÒ|w— […ÉÃöÙ¬\àä7éÒòf~wèzÞÖ lròn NÊ“îÒg¶§üR&ÉÖuK"w<ŸÏÇDÝÎØ¸q½L¥ Šf‰QŠ’$1~¢DÛ]ܯ.þøÆ Jendstream endobj 1094 0 obj << /Filter /FlateDecode /Length 1469 >> stream xÚWÝÛ6 ï_íêtg5ò··]¶h†bÀÚÛSÛ]¢$B+°äËeýHQNŸ/m÷˜–È?D‘ô››'/ßÇé¤dee“›Õ$šG,ÎÓI–æ,‚›åäs Sµ•kÙ|™§ó­¸WÖ‘üjöõæÏÉ|rÎÊôĽÔím%‘y¡kÛèê©Ü™Ÿ°º’ [lt…røCÑ—ïyÒ³6Ì –Ì܆ã¬Ç³"O@/é[7r®Ô}»ÁLKeG^å ³˜ñ¸øŸzje6#в„%åPQÚ‹Ò+ÊhkMÂEO¶d9'a\<'®v³0*]ÏÂ8š´mãéý 6$ѵ”K¤x`g<ÐD.*)魴ʹå Y›­E¸ã)Ey ±’DP¶å”m¸áúî#àžv(£€0ºj­ry Ê ÖÚz>Y/»¸kõÖ_C\ÃÜšVTàÞh¡6ú…‚`Z”¼KŸÒ]ѸœCŠ¡ÍÞ ù´ïî2ž]n2¢a\¨C„É<õ¹[ú²sŠ(ŠƒŸT‚JÞÕ ”ß=:ë^´ßt΂˜ó×]bïd0R#þžî¿«qiðw‹jc¸lĉb#Õ¡à-Ê.7‹ô'šR|Ö+û¬ó\û®ÅY^ðsŸî âa¥Á!=·XwîñäÅz¥ìS W5°¹¿®ñC³ÐruŽCÒn}„_yU%ÖGuîm¿Q‹ 3î$ûj°¶"ˆg¾¾ž©“ÈK8Ü!Ìû×>½{àiC_åÞòzežÞš“-­={ñŒˆ 1ëÇÀQ´ðê±ù¦ˆYVSd5rìa±@A,ÛDx%#°øø(¹›K'å W‡€^r'›µœÕ†czÝá= F”1žFƒ‘ÂÌÊÏ{åÃãCðwÚyu4¯?«Òâ/ÎÎ$gó<Dù1y]aû…ϼý)vŽâõO­>t&ž ºpEÓNë¦èé½®Ô·ó°û㸕ÐÅä1[¡ÏUþmJãy³(¤Ôü·îÂ|F ¿^-tU‰‘×Ó«éiÌw©9Χ¿wFXÑeâ¡[ò UãÈl%óF]šÿyž³"ŽFæåñÔz|”vÅÚsÑøŽnº‰Pcßr‘ðCÈRÒ¾ë$°|GÓçÁ7 ·A4]ûx«·»Öz€Fµ„Vë©áÒN,ã›×ÞMå}õ ÝV8ôŒ¥›Š{.ýpÿ¹ô±òÝ”¤9¤k®pH¢S95ìN.¬v—÷ƒrzê3¿vege¤¯'À´Ûî–Ñ *z[ø¨9¿>ƒ9Ú,Ž¡gÌé[TÞ»Qí† ®?œâ6(0ì-J½k˜lÔ» ɃïÞÞgu}éû¸ÿù-íF/¯¯ŸËU£ë祲‘¯jHÄÆþظ±z·ûA[ä¬O°ç÷ŠÇ +à“9æøpÂQ‰lOÞÝ<ùlBM|endstream endobj 1095 0 obj << /Filter /FlateDecode /Length 1170 >> stream xÚ­VKoã6¾çWé+1×$õ2Ðh °ÚCë›×F¢,f%Ñé8î¯ïð!Yrä4 ô ˆ~óàÌ7Cýº¾ùô@£Ù ­bÏÖÅ ÇJb:‹£ØYç³MÀæ;Þ~]FËŠ7;]šUÃJ·LÛçn¾]ÿ>[ΣU4©³v¾ xÙÃA0ÉGÇõ‡Mp}È£q:*Ó\éI Í!"%nŒ|:°7; ¦é37bÛ¼û·é{Ú-êÚ5j"V~7M¥ ZôõéåÿÝØÃþ¾¶M¸J°AÁݧµ.!*šà çš “ó! ÷ÖÝîg÷Ê$&l÷ÙÌá› |m `1s’%«Ìµ 0 qœ{XÂEyÅ_Td½?J3-d£d"Jƒ/^Å^³®w8D«ðâæ: ]Î!‰Ñ¢8((´“å0PéÃ×%¦`=!aðÇÉíƒõ&gmî0öØ Œžf×)™sŸ*îÐ…lœ¹ïçy¼h{ìÿpoJK”ìbâc‘ÆEp"?9A›¼®&‰N:SÞ~É]NhšBµ/®N,>Fih‡¤[ÙC˜…+,þr/ùh2> stream xÚvT”].Ý *0€HÇÐÝÝÝÃÌCÌÀ0t Ò RŠ”€ ÝJƒ”‚ ]’Ò‚”H]ô«ÿûÿ»Ö½ë]kÞ÷ìçÙûœgÇYÃʤgÈ#AØAUp—_ ¨­läðó òòó °²ÁP.пì¬&P¤ —ø†" BÝÚ”@¨[¢6Ððt@  ¨??@€Ÿ_ü/")PyÁ m^€õ `UD¸ù"aލÛ}þú°ƒ9@qqQîßîyW(ÁÚ ”#ÔõvG0È`ˆÃ (ß…`—rD¡Ü$øø¼½½yA®¼¤ƒ 7À†r@= H/(ðK2@ä ýS/+ÀÈæñ`ˆ°GyƒPÀ­Á†Â=n]<á(p»;ÀP]  ë…ÿAÖúƒÀ ø39 /ðïpzÿ ƒÿvÁW7ÜwØÃ\ ]-^”Š‚C~A.ˆ[æ²»%ü>: "¯Ý*üSŸ sCyðzÀ\~iäûæ6ÍÊpˆ"ÂÕ Gyü:Ÿ ßæÝ—ïÏâ:ÃÞpÿ¿Vö08Äþ— ˆ§Ÿ1æî UWú“sk"øÇæE„ùÅDEDPwÔìÈ÷k#_7èoøË|«!Ðß á°¿• „ÙCo_þ /(…ô„úÿ'ðï€ÀÀ(€Ô'ø'ú­jÿÇú¶þH˜À’ÿ¶ý€þ_Ïß_Ö·AÀ]|ÿ¡ÿ.1ŸºŠ’¼¢ן’ÿ>!€¸?($,þ;Ðß)øKþo«öçñþ#¤:ÜÿCÅmúþRâõgk°ÿ97€ï ƒ¸mh(€ýŸþ·âæßþÿ¿§à·Ëÿ­ùEùöÿŸHÅÓÅå7Îþáp+ÌÅ÷OÆmC{¢n‡Cq;"ðÿ¦šBÿ˜hm(æéúߨ: t;$òp—¿ óPù@!z0Øñ>ú«·á]`p¨ÂöëÎðùùÿ »;°óí½âq[­ßôvªþ½¥2Œ€ü?a‰ùÜÿv% ðÞÎ)êó»½|¼pêÖp+/`@üª©€€Ï C] ö(;˜ƒÃ/ø„ÿÄŠú_ ø7ö»ÂÿÅoo» ꀹ@`n. ß¿1AŸÛíeÿRá?½ÿD~ü$&~ !O0ê¿ã‰ÿ†PPÔ?v1Ÿ‡§«ëïÛüœøÿüÛí_i{"o‚úÝú·9ÿkýûŠƒB} `‚Ù)X2Ì©6¬õGµü=ožõaéqÖuÓLÿYd›çOÜ4Žª¡KÈSù´ïHçW•ÙO保üwšêq#›Ÿê·\\Ú$Œ®·ÌŒP÷}*Ü‘¯ë¥Ç¿Ïc$·på`âŒÙ„Þ¡Ášçî)F¢÷’â‡wªO]oéçSëúU"š„—¥c<ñÆqV!ŬùvÙ“´Ì8(zW¨ eoQøsÑ8ÁÞlj‰‡ž:ùÖ køP2ÂÂák¯‹wìä_¢0D5ÐÔITtù°-81^9‡<õ+{Æ)Zdæéåý¼‡8®x6â‡ÃéØrãË}J.¥ Sù¢Þ奉:†=úµþI½lÉVkd6™\á2:îMB.Y¾*nZåòã½õ ûŸBa;b3çþ^©*ÚÇ/ÿøò†9+¨ü+vʶ÷s¯ò/ý‘×TÀ†ëžu44"W 3ç»øÎX ”“[½Â@*¥œø¨EÚ>ËAS„›Ëê#ö½o’TcÞ¡+R¦Wºfó¤ø%ÔnÍŸÂp>S{ç÷O¯È=Åg¼fS§ÝKýÙAþÒ÷MHM/Ç¢­§z™|Ú(®b—÷ž¾žÈÂzIË¡¥WU)@õÖ®Øf—Ö:nÂ=ñóŒâþ“6'Ë *µÚ‰:“pí';±¢!Ýà™ Ô‰…Âúsö›°•"û<­! –zøª…]HcÙ|‹_ö3mß``t’—!±RÁ™:T÷;S ]íû ãå$6Qý½Y^¾§!1Á,RÜ“Ïû+2Oüdîn´Ý?Ó}áÅ3÷Ý«`™ãÒȨ@‰“¾E]+0·Ñý~õ—’Ïv>Ó2g§ôž$mI•·$†w¤]¬'vŸ"$Þ¼©Ü.T~[û\¼g™(ÿ(ýÓÕ)qT¿eßueƒ!É÷‡[ñ’©$Ì}"콯ë4ïÉ*2 ÉH:8r´O©‚š¾á‹Ãõ_3.tJ…ÊÑlDd³S0JÍ¡GÅgÝ àŠàœÔ댤xøºÂîî ¾\bYU'q¬mÜì^W9…ª_ðDÖaÑçÌ…1Â×¾~ ð/3FÙûzÅ ñW^¼Û±öÒ”=\ˆµ ÿ= Ã¢¾_Ɇn%>ïýá¢;\¯Ó-ñè»Ùv» V±‹Å¾&0¨ƒM‡îg_ôò{Uœ|ë@²¥lrðùÀM`Fð¸¨ÎgŽ^Ô Gá£2euöGó)Ú–w–cmowŒìK,Ûw:î ú-lùçÍ"I§*;ÌÀ_{ û±‹zË*0ÎíׯhνáFûF ³ì›Ãt) MË ÃIÛ5¾ÖÁ<6gžBeîžë4…'M§ý /Åxæ^œ1äœzÉ•ØÊÿ>:Xj嬨ºñ£WNå”+®ÅÙ~QÞ¢¬*Æ é6SGó; ®ý+˜‚?Ï·n²íè Eè?Ô$ÚÅç9Ú<¡{=ºŠ·U}MKÓùúîÐÊ[§\°jE°ÁŸä@[s!é±Íé…Íl*hÁ¨CÓ} fˆß¢DÁ­0Ÿ2µÞ†# qš^¹&s5Ç‹Ö,[ÁÊœNL¡é2"•|_½¹[Áe)”¤pĉv?­Ï](HR4¯îöŸf¸©,†áYËÃiÁ´’ÑÅCK­õ½ó²ÓƒGlþq—z&ëƒò¸³€üÖôFñ“Š”PIi¹qÑEøÏ*‚ºÜ“I†yne²¼†Ÿ¡\-¬UG6$ ÄÃÍ¢ì„á>Tš"ÏR/Ýßuë_P¸,HÐTâ¿ú`ë¾7áû –{d£[ÐŽ%ºEùE[“©C¸šÝc›Ö^j@™¯EÍ{ÑbGÆ¡¾¸gH §ˆZȨ+δ.)F(7·ôLâñ§ò‡Û<‰ìJOøùß”Ø;+ÒãRZ†äV¦ÏûÐÅ-°IûDt™«}M "ð )Ž!§º*÷ŽåÍY±æQZçMÿžùŒzh“®Øû g5[ÝZi&³¯¬”íebXòð·S%ÕHCœýcÝÐï•N†uàŠHÝ|ýQ„{À¬´Õá0™¤\¦FL`ñq‰U†¬ÈÌ›g·…bÜ5{ÁUùid»ºât,¼=º½Kž¦ÌŒL»k~—$?”¼8…ä׳y .á*µU'¯yQ2¿àÁdÚpXMÀ¤w!¥•duÞn"f {îµËŒú–õ³öëwXò)"S:þÁáïY›Ó¬ãi•.jm%7dÔwZë6 úÖ™^ä+Â6gº3ö#ý41.´žÁ<ßtzヅ—ÓV \lê.Iì]¶§ËÑöer+Yϼf¾”Ç\[\U9ê(ÔZ?)¢<àõ} ;1ì¾ÀöŠ{ÿ€BòÞÖ´ù¥uY‚m xèY[cV ¿p„VfbÈíU%2ßû…·äú `••rVftìˇQ°bÇ×ô gæ‚dAFÊUD­§ñ4w”HÔšÔ=¡wBx¶q>J}=è å)Ôgí0‰ÈŒˆÊçÖÞ_sN²åKsÒØœ¬ó¥/.4…¢°é÷•廥 k†%µu'@}c\&f,W_Ùq/л‚f9›bhS†DÄ3,bª­ [Z£žTÙ2 |’¥¤ŽEyªl¾ôžF pôÐ3F3Lñ­ñ¬bêzÕcö’uÉù¿Ž X7³ŒÜ O¾??B÷ ŠðGûÆ„?Xà÷AÊí‘À‹²ëW°o¾{ ß¸”3ðîe5ëX¹AT€‘L“S‡õ h‡ž¤Ìßfì¡ÝlŽ=Rêþ#ôÁ=½AÒÓþžŸµs18ù9âBÆ„·MÇÈÓÇԭͦütØW’«/rêdÕâuhÞø/÷ïm`:ÞËíSϘgqÕÛô­{J3‹÷àI±$U¢ËŠ™¡ƒºóö>QâäJ]Õ¥§@û??}<¨¾>Jüzyš*.n݇~޶º‹SåèL¢Z-&eÊÅœX%]Í0xŸ vÿ}òݘN:‰4UJóÕã«°æïªuè~{hÑþ¦h†@˵žF|3æ²0£¹ª†ŸŽ·5LÐ&íœÐ齪*/-,#ÂWtäiVdk“è|ùжæ¶Mܧ¦~à/AÂL›ÏŒ¨››êtðñ”SJ& MÜž%í »ó¬á¯ æ¥EÆß[£QެŸˆ«Oš¤®Ñç_M` äæ{ÉœZc:?âb×JT˜Kno@'–= Fg'Ke¤m%ilÓµ®•Ü»Kèd˜ w ÙƒÄÙÿ4ÆYð££Õ ÿ¹C*Qˆd.Œ‹Ý×~™bßÑB íÒ”ÞÌÀ¼·ÑBäY áNöЛ+±çpØ—‹ ÅPÕÕô;I#x¼¶ÑÙ„oøòÑAêÉX 7£Á¤}Ònãµò;«¬Ê›|z5³×kãŒAI‰õo–ú‡ãëâ3÷Ñ íçÞiÖ_aÞSt_DïõÚ®jX ™:¹†ÁNÙrÑЂj…€ŒËíôoB½[å==ßËøõ*Y‹6ßì|8€¬ìú?=¯À£[5EQ}¢íF‘› a§È?ã²â¦!v³°{ÓÑý²©Âìb£|wwæ²óíðcU –{çÓã5]ïÉ·+žK[›‹’s¾H˜B>Ñ¿0™êχ!{OJOЗ!Úâ ãð»œ-zµ€úöû /–cì–Ãʶš}°î@I‰N倎ºNØ?©ñÂÏ­Î2‡|ÁÞ$™~ÔÙ$}NRhCÃø¸Ú´lRïy=~šq^¥ÛÖGåÐûw6×^Qñ–;÷«?­\ 9HMmµÐ¬}VØn>·Ø±êÀP b( v ÍF6FÜ¡S.È £‚<¢èõ.}ƒ1 kxã x)‰{"@DË,Û»M`mkSCýÚ@‹+¦Ç€nµ5|ìù‚#äþqVñ<2š£,H˜¡HðY¼l`D×jŽÖóO|å€ç›$Œ€vGãÚ»—#ÐZ:ײ=n>ÈZ&}Ì=³šè]ÙwND/LCOÓ6\të]ìØUÌņTÉ~.Õì UóöC IðÐj­K¤jjS(íäü?~(”gDç5Œ"þ`/‡è<Õ*èËÉà[øÚ‘ÚÝK¡«V •_)ŒÄê?f!•pÚ_'¨%,êi¸sß|­sä‘=²~K»žFçǔɘú謰á•Ï£l=ù­áÉ›¥ ò9šÙŒØž¨Ûd[‹'˪¶ Fi‚»j]B+ÙÓl£PMbÛÒùçl®7e‹t+‹¤dN+M¢óˆå5=wòè$2 ‡¡±à½­åÿs港:x‡¸ ßæfx·°1—GU–§¾^5ɼêÙ†­\Iýâ¤TNÃÆõZ®¨†§öž©­ƒE=A®úù5ö ݪ‡ÚÃv#Ûæ+=2•¾hi¬·O†éZŒï¤båC÷vf.¿7¡‰EÈqJqÊ6¬m0$&ñîúæZë9&ÐèL”)>º?îþ¶4§pد­ÖN¨7èÿÂKB¾ÝEplcöafx­¥}éÉ&¿äæ ¥à¼kkŽ+ã0ýn¦Ú*ùuÖnAšBÜqH]F%~±Nyƒšzrøó…QÓ—ö¾ÙD†¿sz˳1Êf /„ûRéZHè®]OÈ'¤–'µ úIª A+¥¤XÅI|6ÄY<Ë#J¹lˆZ¦ûºkúl±5Zçr™D¯gx™Œ}F¾Ý8IK)¹oÔh¾ZJy˜ã)¾u5äž5¬$%±h¨Š%[Ѳkãl=¼ ¯]c³ÎùX—MGKbUVtõ`д­ƒö3 |#r‰?[ÌILÆw»$'´Ÿ> 9‡Oû‘’0 ò!/ã^aL¾ÚâèuÔ}“¢« é"mÚH ¾ž"Ú Ôó™]D¿ñUÓò3ïcÉ—í”7ôŸ@‘ÏVS\0tîÄä!sŲGªÍ¿!}Åcc{e·Á޳9éL?ÃÁ”æX_ãÂuãHÛ>ÿ’ŸÌºßiÆÎÍH·jü™ÎÞì;ÉDxõêÑ—ÙLv­âFB °à¬“W¤ß±cÌØýÉ-ñ­7©•1÷D§(,NÍOqÐ×ãë7}ÔíZ.•àfz“reL®ø€sÎÑR5ä+ºPü¦nÄq; W¡ïÓtæ2 –fZ¬æ9T/“>(ECÊ*¸-q.Ë++#U^mç†D9 šCGj:Ú$ éâý‘iVþûa7­Ž¬^â'l(jÜcÊ¢ú"ýÞ´‡O~ªÜ¸õN}žà3]ßÉh<ÝQiú¤’’ù´“G¿PÙ´uDI¹ÖoTØ#‡…×G HjÀ¶S^#qñ`!ë ’s«Â458'ëûñb¥±]Ç +kå/Ü€nY-gDma‚neáÄ5¬_%>:Æ'mˆ],Ú¸rNyÒýSÌŸ7ûîÝcæÕ¬šx`ÂáÝâ]ŠgÖô_×0h„òÝPN½1ÝÉŠ©™ï#SCb‡z*îN¨2B7£×ù˜ X!,ß)ñ—ä˜@TÚŒvß•kø+º²0Æpe«¬+væ…ãm;‘gêO ]2NxÉûm}è¾sÍP„>p·ÀrZ­yµ…2Õ¦m«Ö,•ì«ê{%ÿ‚Èc÷¡û¥½¤9ÁÄ [À «tIA{?9:¡e£ì–ŽSfáì&051!jËS_ÖÓÛ¡}|¼z…)3± #š¢µsÅGVè »^>Ð>Ê«g[kÊ?4Ê&pÁ¿156ìuáíÂk uy6¼G¾@ßËTiž‘á—5ÅŸ©™ µîV"I¥u—‰SAg}FZ”M´[@êú¶´…nV?û7®Ò+Û5|‚faâ ç/F"E!Žxï1:¦Ê¬M>ë''Âv_¼$Qb6µìæ£D©˜RÙˆwýòr5`UMÅov‘• Z0ÅÒË'hÇ.™NƒHTŠ%+C½_ò/®;ê6éåÓ«SçCw‡æµÈÀ!-Ê ÉÕj")äŒá#,’gX¯ æ§@ܶuIÑ=d™â…V»ïJ)6²îN`ä5ÅJ{ó|gÛRR!u°“v¡{¡{ß{ÀO2QJsï•Ù#‚‘ ’/ÍÕÎùúï3”1]Ç\÷yª|Ú-]}‡~t§6Ø’q¨—ƒP=þ“B"†üC»NÞ-ìùEÓÈîwþjÙ‹¾A¤­“ûÅŸºæy§ÎÝ’ÚoÐO?ñ=íy—)@³á**vív«(Çzõ7ô‚“ãö߈|0!Þ>ŧެ 4E•­_Ç‹ºŸÎ+Å,> y5 ò(;ÞoÈŠY¯Ú½‘p~pÙâ›ÔÊ…Š´ ¥é€à¬ø’9Šâ“jVZŠ^_Õ7œ#öŸðú´ïÆ ¬ièÀs§\شؾjq¸Ç²¡­c¶}]<“åÌßÖo™ÅF£¡mpò/õUæÛa‘ ZÈ%CG\hRc@åï—óŽh›žEÖÇæF¡´Ag.ƒ„hfàž}Ù.039ÉŠžÈ³Ö`1[Æ›OBP}4Öœ÷oÏó×lgFZú{Mdy õw#)ÐJ6R«UÀÏ¥"¶5&¿T˜Ð"$ŽŽY;žÍ­,¡–<ô϶ÅWwD ÑyÖKÛˆÔ1ò·Í D.Š µj]kËX¦rÊp†(©6?V#5{Øçñ6™Öû=çáŒü”wƒk’÷¶×<Ø+âYôfÛŽ]kŒFbK7~7­ç(Ú)É"¯ÄåáqzÔç'OˆoBW×=<ª” ûÖAÓ8Ÿ]ëmgy¥r9[ã Ÿ¢)]ˆlÄË–ûl.ûf}3R¥|TÒ3¹éÌ»qê/©j*NÕ+x ãcùü”ðÛÈkøq0™ÞôžÅwÄ«(K^l±C$â÷ôm¶ÖÞ!JußNXï2Û››7»-‘Å¡§,<îzDEb¶só@èJ“BÁäLt_w=M Èï9œ©‹ÐÖ­ÅÁȦ:/zº Ml·å·í11RØV˜n.W߈Éã/~©°/ò` c¢XŠ)&a¯qu¹_:Urù ­a8{XW~mÁl©âBU·óp(3Ы¸Yš ÍÙKf$V¦l€.$MÍPâxt¾˜&ôÝÇFºjlý#þ]ÿ©gÓú7”¦Vk‚Ëjs„±ÒÕiÝ)¬Æãü›¶*•'ånµkµ>:ôy‰ûé†.ÍG\˜÷Kœêo(£wÃÞ¸ZcßÖU¦á Ê>¼3.™-_ÜsL¨ü—H«?©iÔwetˆ*ˆ²Ù6lWø”L›çº— ØCjFÄK4hØm|wb²¶2Äð5Ͷ¨;ö¶UµÆ R·6f¸úm¼––Lí£ÅxÜŽ))£ú–×™'ÕîS§+Æ7ÑÛ~N£ç¥tñ¼V!™”i,·Êðê8YŸÐl¬wóE‡×…hÈpŠ:a^¬õ¿Ò‚–Šâ˜ãöÎå¸àR2¬Q¹ªwÖví¿àXšd>{VxR¤÷Àâýa]Jfô/‘ÌëE˜V~Ͳš8 þN»FNÁ¤Œ—?§(fCoÁ)¯ŽôשÇt÷¼ Ð49—1äÎD€öLÍšS„§Ð*ܬ.Îòǰí#e½"V?ƒ‹¨æNÊåÀ¥3wžÖVl¿½2öIÚ»DB^©*Gù7Ã[bŒ;09sljǩ¥Ä.'pÃô±™fÃ9âòÞ/.¶A©_¿Ÿ‡íÜ´´CžZ(¿Õi$[NIËG—eç裂¸Æ¹šè¶t+éiV#¶”®$Ĺkza5Û³©"gc'vöª$Ø96›]³Þ¤Ýø|¡©í†nî5O“t¹vÈ'xÚv&0ãB­§–±HV6•~ê®Tô_.\*¦_^S¡®¯Ä©J¶ßÍØä­²`©c¡¬@òÅ’,ÔÒgŸÎŸ•–Øî…žeê+m Š¿ŒH›Ù›œàu^?£>6öN­]êI~pÒ¶úð½vï˜?·§?í)Vš³b‚Ó7 ‡€îÄ÷*çú]åg÷½6$®§ZUŽ3G>À-4ì$ syX(4j|­þDæ³LGvÎG" Ãöí%L¡ö}Ìç~lx½ï).{ Tßómü´V3fy'%“öxZ«öðµu+ÜõŽžþzjÈó]N¾3ùC»èïRq‹[)›l[]§"Ñp¢{b£k d9ÔÉ{mc²³¸íÞC–HR…“ègó[bRœM¦ëÖHDœÏ•™¹§Ä‚8º¦HÄ8XÙuñ‡/Uãq4QªÀu~\‘ö$´ì˜,È7×|á¶ÊÊ\r¿žž/o,ïám;•l‘m¸oš?¯X2CãÅÎã@“7skÔ^ÝÆݦ-"R)~Pµ¿,\6±QÞNæD4Šþö^ƒBƒŸ[Øè8KÃ|ŒG…踉߃á_£€Üâ5DÙ¨ÜñGŽ–N¯­º6ϳfAÍÓJ^ÃU„™Í÷VJD“¿Ï«Ý䨖ª<ê ’oϘOŽ\ Pà;±Ó{^ âÞ‹ˆ5ª!«âyû‰¹¦EÁˆŽ7‡ýG[=íÌÞZÓ¦©ÛUÞEKœÀÏt.r—Qº—O<ÃZ(pÛ}*Û "¶ž-o‘øÎÐ4wIïQƒ…ÆOx‡›*ú¯väSÔ¢–‹pÊz7gÐÓ,ßH¹ºß¢c%pË ÙƒzŒ+á\ù6´ÌC!z.r‚܆Ññ‘*›%Ü[Óý?hqê²Æ§?!8­|²Qþò]uï‹ÓùᮘæYê…?s´+ÕNbÿõúðè]Ÿz—H¯K=e´Êž·ZÚQËdÖ¼…go·ÏSŽFi<Ü£5Ï}häó¸žêOõY4v~KH¤>©sÉmÁ#t Ú޲0L*f°>æ¸Í|Ó³¯Œt¶øvi¸Ï\¢=:²ö/äZ0Œ‰6.4êKºb´ƒF1ò,EEýeš…'r…Չо‹ÅõLà¦Ú8Ã*!EÉ…:ÁTSr$:Ÿ˜Œ’]ïààsý/Ópwendstream endobj 1097 0 obj << /Filter /FlateDecode /Length1 1782 /Length2 10431 /Length3 0 /Length 11560 >> stream xÚ¶PœÙ-ŒBàwhÜ]ÜÝ¥Fw Á!¸Kpww î‚» Áy™¹3sïÿW½WT5ßÚ¾ÎÞûÔ¡&WVc3·7IÛC\˜ÙX€ü ÈÁ²£PS«ƒ]lA‰Q¨5ANÎ`{ÿ¿ $œ@&.P™¤‰ ÔNÁuµ°qظùÙxø@;È÷C{'~€¤‰Ø Àµ‡€œQ¨%ì<À–V.Ð4ÿùЙÑØøøx˜þpˆÙœÀf&€‚‰‹ÈšÑÌÄ fo¹xþW:A+~VVwww;g{'Kaz&€;ØÅ   r9¹Ì¿ Mì@2cA¡¨[ÿ”«Ù[¸¸›8P-Ø q†z¸BÌANhr€šŒ<@ÉùÓXþO&À_g`caû;Ü_Þ¿!8›˜™ÙÛ9˜@<ÁK€ØP’–gqñpa˜@ÌšØ:ÛCýMÜLÀ¶&¦Pƒ?*7H‹©L ÿ¢çlævpqfqÛþ¦Èú; ô”¥ æövv ˆ‹3Êïú$ÁN 3è±{²þÙYˆ½;Äû/`†˜[ü&aîêÀª;º‚d$ÿ2ŠPþ‘Y‚\\@^^vÈò0³bý^ÝÓô‡’í·ÊÀ×ÛÁÞ`%ò[€ ÿP¼MÜ@'W¯÷¿ÿPØØæ`3€)È Aù':T ²øC›ïö衳ÇþþûûË:^æö[ÏÌÿè/«ªŒºä[iÆ?ÿ­·÷x3³˜Ù¹€666ôÃ÷¿£üÍÿ?Üÿ*›€ÿª øO@ˆ…=€ ø'èáý‡‡Û_cA÷×ÊÐþ;…¢=t–AºF_È4ƒþ°ý?/À.ÿsÿ;Êÿmôÿ· iW[Û?Ôtèÿ?j;°­ç_ÐQvu®…‚=t9 ÿkªús•@æ`W»ÿÕʸ˜@×C b qf6N çŸr°³4Ød® v1³úsþÓ h[0¤lï þ}ã@½€ÀÿÑA·ÎÌz«8C;ö§Êĺ‚.4÷7A—ì¿ë‚˜Ù›ÿÞFv.n€‰““‰' t  ˆ àÍ][sÇó`eØ»@]Pξ {'”ßmææ°Šýýx9¬j#>«É?ˆÀjö7âú ›úþ7VóA6+è_ÚòoÈÍE¿oTèéÿc `µú„–þä°Zÿ B‹³ùä°ÚþZŠíïcü»x¨³íŸwÎ?>Ðqg…ü B ¶ÿ‡ 4 thíÿE‰ Zà¿êeƒèü/ÍñïèÐ]ÿìÐdÿ‚ÐðúþW;Í\œ ýþc ¡½þþã¦<@f(‹söfAÖuA75bÄîÌ;よ§©7ÚìÌã†È.}RÓFñjY™KreÒ‹½lÒ†ÖÝŠâŽ7ŸVç/½·ëÉ<9¯™É¤÷-ÉLc瞯ag¼‘PÌa´Àäj%‹¿á/vêƒQ&|ýù¥ˆ¹eŸ5†mÝ×…wœiÙàÅ®Ï5%™òx$|šÇ›ª.­¦ƒê;\W´Ù›v1¶¢ôÃSÓ)ä»nQâÝ«_¯ ®`ö’öD¾—u Ü9£ qÁ”$‘äDªÖ\ÉCÈ.v;JÇò6}‹-þŽ^oš>¡$v'£OëÁ?´zØn÷ã®k¾À—룲‡L±ïA ¤Ü™Æ*£ý;?êk/߯È^‘=À¿ÑSÅq&úéÍqÁÅ» Iµmo9:@c“DHíÂÆ•þržÌKƒ=š¼b~¸eg´•t¶ð“{唿D›Üâ´²òñ)#f©6“½²=·È¯e¾27DYñ¸V)¥ÑGüØk4…ïgñ,ëˆáÎúNåmZN¸ŸqMœ³è>rz¬Î»¦ýÒÆ°.ïƒRáÏÎ3 %Ù|õ«¿&RTh©¿F½š(m §­ÄÚwü¤ŽûrFþ§xup Rø\Ë÷´S€©¿@^°WÙ€7#„ñ¦:dìöêÓWºß£ÍC¦¬ZÀOû­ûWpíKx¼Pr7º´é9úFg6r†â€·Ì=Œ@Soø‡ª>*'¾NT•ÌJ$c-ŽÚ€ŽMä]øzS-/ çÝK¾êAžXš_*HM¸D4pO»n$7¬F ìpÞ÷$K¥'#ß›ÃC0Yh¿ÇÛ󆎡}8é~Ö§<ßÀŠð)ã¸DàçÜÔ¼¯ùêNµì˜¥œílÖüåà +´8›Zª¤Ü’DÉ燻ÓwR•¹íoâ_Íî,S§…>Å?ŠnécE[žÇI¤8/aÞòì²§/Á®‘‹}[ºnÉ$ÃðhÀºsY‘Œ0j+®Ý—žÇ ¾qô^Øî¿ ¸(Ž~šF‚…‹„“$wÿxÄÛë9|¸@±Ô¯‘ûô’1c i‰¿²3È?OGæ3ÓgÈN@pMuiÎÒ$îøÍÞ*%_Ëm´ah…â¹¢ƒÞ:5wZ¥ãàãCéŒ{cz.9¨5;—Ö+jò8êžÝË~BÊ}­EFÜÉ®øåÕJ‹Þ3À{óƒ»Óᨃ´Úçj‹bT¸_y3tèÅÕ%\¦œÁìm¾Tç$ø_0Qà%pñp ¿ÃÌ"j6x1¯"¬¥8è÷->Œ¾ ž<³àœµiAÀø&UûQkc鮸mÜãø r I;‡×È·Ç©1_®ØÈIýÙv OpÆ©èMбÁãÂÉ쑨$çÃBôEö] õX7‹õ¯àw`„²Ç³\a[Ë4O‹î5E§aÁ3>!\ZÄôyQ)…ïï.ÂÆæ¹ÓÜ|¯pŠ8ÙÅÄÑáúJ¦G/+¨Ïý¶++=Æ8‡Å쿎çÚVw'©.(¾˜ÏÂ'Üoüú‡š¹(!$¥ýZ3kÚ =²4W‹ÁRê’9[¹±KD i̶N ŸÑyäôD°\"A«­LƒL²`–*´uÀ"'USE˪¥•Æ*Zåm|ç@0 Kk|„ϲ˜a/– R7ÒëôÎdM§?Åx ˆ0!W0ÜwL#Á1j~¬)]ŠÞîÀ$ýÒ,tÒkG¦¸¨V‰Äߢ…(øu†?ƒßþ.žíoÄœBjÎ=˜Vü'G'·K{nä7ãõæC5S¡¸x¼¼ÍÂ}LâÂö'&zÞ<,²oÃÓ¨{ îF͈„Š1üÓ»:~áÔæZñkŒë×!K;™Ølõ¸O/«nøFUk¾‰dϺ9º¾ÂñkžoõjPÜ•¬ÁáÂ%6Ä)¹¿“i „{›“¾·"@þÚ°þÁ8¹z>u‚ «üÈ_HzÕ¹ìÅ ÁÕ¸UŠ1Oi¹<úÏI“GwÁ,¡ˆ¼ÉÓc'ë÷edV~EvÿóàX~™Oz÷M?ü¦…æ÷è_]œýCœmÿîØúúÉsF$Kf„‘E‚‘ÅZ†p» _ºx ôØ]:½q†ÓCÂ(ŒŸ eßH›'LPwÕG”“Žîñ î[J)DnÃÔº>«Ä;h¾Çs áÑãs\ÆT±—ùñøÐ¨™Œ£Àn`Òs 衃!«|Øxô©µXdÝ”Žq*»ENÄPÕt{ˆ3¼ºD8«z {=êÓ[Êœè°àñöäñ¾ãc’¿-Ò^¤e·×žm]IBèÍÙ!SÎñx=eKQz«X“„teZ²ŽÝ§`ÃWÇ¢Q,ØE Îsm±§ÂÄä$ ó²˜9Óß$^¿}¬q%h;˜UÁ‹žö”ˆé¨Òr^ÄÛBûZ³I^÷^FSz,@ö¤ 4r‰±ÿ‘†¹D¥™3aC_÷²wï$ÙÍ–òš–û<ãUd=ïMB$Ú»µ.±ÀžŒ|ƒð|&HyÉcdt{'ŒÕ“ÐÂà åPøÖÑpÇ8þâý]ÝÌ]?Úú,_xãKŽ'„žƒ‹ºÝm¶ò¹e2¿/^3ªÖbî7®U&¼”.ŠÃ5޹§ˆSèÅT¯aW“>àÄ©)eN*áæŠÆUvG6¶o{b’z³H÷•"%ý@a(-÷>ÀW–åfR”t˜Ó cm‰­+qK’ƒ Άé=ð¬·'£QÆdŽ!·œ0â¶š„$.ÄAù»ŠS£ÄpEÚà‚£¸MᜰªÇO‰úÍÊêZú¾´m\èý‡¯KÙ^Y1 ÁSºÖ︟Iœmò öíÏ‘øÈƒnDp<‚¦R6¥_WêuÃ~ÝŒÿtÝ"+L³N.xþ’@Í,}>âŠðͰ¯?—äû;Iä«™96z›þ³dzåkdjfV[L—#Ä–Ô'³Î{|ÿ„ uT#«ÏkVµ°çm.RB»;VâH›B‡$kmWë&`Z`çijcÊ1jÌi›N˜½ ÍðÇu=Nû‚ö¯ÓØÿ÷ƒ>\2|~¨¶MjÜò€ù cfg­­†8ãýéHÚþ§ƒ‘“NòMé†Ù©4‹Z^ñ–9‹ÅàÞ•b:z˜úê4 •ëÔ¦S¢}ŽŒñ†ÊÍÜb“Û®de½¾ëAÊüoé­?,½cõ5¡0V]š1ÊntAêk{ sE’Y„|ä­°ÆK&ÉP§Êt³MÍ\þT…©:·:ço4‘§ìÕ§2j³³†àøbF^Ó…Ðe¸‡wø ­NßV.&û#\e  ¥ÁöQ^–‡b’˜¦¤²µK¨J£XM ¦ú"ïŒÉYXú82Z™8Ô\kðŽ‘Y¢jôë v7E¬~[éÕ 2Ú–mOŸÝa)˜ükìEâÒZiûã/Î(háIÔWC;^Ë’h]ܰ¡ß*†R×uá>ë{×µI2;( FOµ÷M›”#yT¡Ñ@-ØÄ{ÁŠÚ:+àY”ÿØ;"ò’–Oõ¤N¼Ú‹’?½µ¬R\Êj/Ä¿‡ à"uÊ\Sv•ß^Íuóc‡¡¿5¬¥GÜTÃÄâìÖ¥,m³¢¯=$ªÒŸÃ$ÜÕϧ‰_JVsk»~¢&–KQ9ŒØ¤ìæû×"=qò}¤êœýˆûYr¨ãiEO7¼'p®'\’ÚZ3õ0ƒ¹çÉ$µ~~»>«yß79(ëŽ>ö«ïén[‰y…LcûÂå Ø%†j¡nü)ø%1A.Þ S˜ïîyàúÞÄ6•'é@öR)c$=]<¢‡#PîçöûƒÞÇ•©ùN—Ê𗌄آŠ×¬.A¬ ï*ç°FÜÛ—~Þ¢€†HyÍH´Èüò~šÒqO „‰,š[çÝ¡,wjÎZ 1çÒ= –E‘ñ{‰=‹wkÜ#Í#Ñä¶Á¾ØY¹ºžyz¹È÷®×Qƒýâ–ù†-Ŭ( ÃüL²éU¡ÄÎgÕ.7¹]©;°æ*ù]ËÞmkC­€cFü ä]—Ø%j-¯„Ë”k¿Ú/§–:ŽA;'{1Ñj=$É kgZc8‚³{`¥ŽÑáBm¹hùSvŠ>a¾jªð,Rþïg•[þ/ÒÆ±6(R\hÒ5=°$âÖ¶˜>’ïçïË\ºä–ˆO )„`yyY8ðÛÛ 0YŽ8'ágî&JxÅûM…o¾ Š˜¹©XæøïM5„­Ñæw_’Þ™eᤠ9o¢"²‹}9¡^÷k™ qï,jJhìKIy:–DžaÞ¦5Úýîºô¦eÝy‹·Îð­m#hÎÕ}Í¡/ÄûçÙø‘ñD»o{F*'G#™tOÝWº&³ËbŠñr‘ì|!“3Ñ•óþa)ߌÊá* ª Tó3f=K‹h˜_dBP™c{3N.•§F)](z糓d[=“öúY RQn—«¯fDcVÁ¦õDŽí‘6ž.òUǦÎÚµ¹À`£‚w¸çƒŒÑob PÓJš1¨qå#W}îÞ8Úºf‡< à]¸23QMf#âÙS¨ØÓ¿gj¸þL^QQø#&sù%&êã»ôè‘ÖKþü¡O¤8¨ûÀ¹Í’«l››rü}HŒBtW a‡AÚ¿^£•7Ôrl-0냹(l‹jzMæ £À´^ _2DNomúôÎ X>¤÷ÈÅ‘)‘›F^ï˜ †ïÁ_#´Ñ겊pRw‰Ø™Öd¿\”†)Ý©6T\~l.ì¨aNò_ \ð£wåŒ ^XÃjrlå6éØSºR¶Fȯ4+Á‹• _øQHÇÄlž‡9ñOšJÇðÎÚlÌ”o¢("y‰‹ièe–ãEã+r¢ Qìè„Jô89›ýu߸ï•Xã‹D–(\ZO‚›: D£Õã³ »ÙÉá¦ÜtŠÑϾæš4àkâ "jj®rœ|&–=ÿÈ’Íx{‹ë`3‚žÉ-¯HLnY#«¨÷ümKrž—_2¸R(ŒZÝr§2m?‡ãp÷­ª[[\©bÿ$Rïù!¿wÒW¼„Þ€=ãìŒNÖWlC׳[Zž€ßÄN}p ì d!Œ3¶¯÷V D ¿&¹Zb7íãÅ$ˆÓnâß™’Ñ &…’‹2ðî ™RP0˜¹î‘ª½ƒ¼œ>'íÑÑ ZÁ¸±! nXŠ­ü¨Zæm7ÒäI¨À1R^ÿR>s¨4e~—`õÞãb¤¡ë ‡70쌉2CÿâmÕèJèΊ%3ú^UàWzöÅ·½ˆ-hú6Éù¿Æ–½ˆÂÌš7cB“ÒŸè)²¦Šjpw®±|8žÊ”ƒX¬v±yÿxùÀ¼Žv $IÀ0+/+!èÈ'c:Ôª *^ì‰{L7ˆz2qŽÃP20t(ë°¿,ÛÌJ« ¿öÜ´\P.¿º¡ºÑ«LÆÒNð–d;pÁ=‘«r{ÔŽx?åÍ·M[¯f¦=à†R qR{KyÃ]Zö•)´‚ç°Ôs(ŒáXÞ)jH§.$„žO„õö†%­ÓäYm[±¶TFŽ+»´qæQêN3ܯ¦Æ µŽÜ{ÎÊT$ 2¾ú‰òúÑ%R<éN?jdárõ¤ËQÀNsIª?]¢€SR]‰œÈCl¥™¬Ï«ýµ T,<$¶:’´ù_]fR³ HjwiY|š:†ä¾N@!>ìjé6¹4ïî5œ8v¤B"Ähk±"Ôë‹NMåIòA¾ƒÁk‰¦ÖÉÛ_ Ø(<òD½TzÐĆ¿4.g;Y„7àóÍ¿E<÷Â~7S«.†]™_Ø1>|‹ú&â%"ŸŒ¤"‚ªû!쳚ÂÁf·É›[Þ>’> ›4K ù™”o ÷% 91o&lq(3óøðĬ;µßö?䘮\ª¼>‚H¶ù«9—è56a-eO’ ×)V¯Í¦€¬7Y$÷G°\‹Ñ^±+©›f_Y›©¥šS–4ÜÚëœPôœùÆ7¾ÿ‡È|Êp‚‡Óè D;êöý‘ztòâ©TÒ€ êÙ±µžb(Å¢`§­ÆC2£ASE‚½PœÌÝhµ}óÅâCløm'‘¨]_½+H¯æ+z8›?‹vµåN˜èYÎÞ~‰Ê»iElÍŽc•»î(õaS^Ø…–JY_Rÿ×íGŒŒ$…øàµín5ë;Q¾¹4ýï–8—<Ë)²aw§ÂsøéÂÄp!ºh÷#&’±©§ µ3Ñ¢^ Ž3ì“ ·µQÉÝ3)|Þš¿lzØ™¯‡›"‰¹Pµ$È¿ŸÌͯ±£q‰G㺫>”?á÷ÐÜW3USsRSì‹Êÿ¯µ;@ÓJóNâ½í¡Ï¨¦ÒÁö:›·š×î@óþVg Ì|bÓÚ–%‚ù)ó“Ú“÷Á]ï^ ½RSDkUQqÍ®y 5}¥êãüq’µ•p£0TJ‰ð̦ƒ¡éK*µuÀš+»qÍyùl?Ò®ã13—NHÇMè®TÞ1zHDŒaŒÊ™ |ÕÒ’ÐÓ3!Ò}¿;KCŒDÅ”OÆß^ÊqÏçs¶5â÷bÆ=d¥„e£æmè°3XTâ0Ñ–+på¡$J€¾a¥Š}xöm‡† oSb@‚iÊ¢˜.¦&ªÚÕñk~ ÿ"j›«é¯%ªËB‘‘o#^(gÛ ¹Ó™xO,"ÓÄ?8’š&µY‰Ðz8!’ ŒÁräè§Þ™S“ ÝüìEvWÒd:uPxÄýp~+‚ÁÖ·ñ"fM—õyÀذ²Âá° v}•h¹mÅ­òy5^ñðæ¨ãIÇ]õ\uq+vÖÂi¿¨o9 €œÎõÓÂè;§CÍjÞ~MþdÂdäj¤H4>žoõE´+˜•ÞðŽÜåÃDÖI5d¶º:!p»?3à;ýgæc®Û‹…À”0€²‡ÇœíÁöm'l ZiÕö!3@Š|wðî›ëƱÚ74þëø.„ÈÇsGç·ã>bûK"ň*Ï™VãX«ñC¿’1‡³¼[¥é.ùc÷kÇÞê¯?^¨è£U@œŸÚUh]Û`ц°kLÍp[{¹#2híôåؾ[ت²4¿™Ç´¬ªvÈ9”;®¢]öc)äã+%͵ËN¹›æ³ÇÎLê¾Ñš84L‚YÞBx×3ØX)Õ9§þJ’: O€1(ªÑ&(Ñ•Fm“€uÏM©°f¼†Í"¾^ôúlˆôD- ÷^.B¶°u6T†ÊàYR@Wu¡OñìÁZY-$64Ô¡''hŒÙ¨ŽðAÛ*xí%â+ 8Ë­ûuV<Ö²ô½'»{!¦yõäÊ}n?±Ò4;rý Ål¾wtZéé?u~CG¡´~¥t«pV°°œ‡±¹QfHw-Ee'¼c´ÁéI,¢X<;]ùÃõyÔoヂEBŽêIWš‡îCp_•ì·0ÎUöôÚW$–æÀ¾&$ ("nòKÌÕ é…[Ql`ÜÚôÙô¯Ë:‹ZN¬©}Âл7Õ)µçTÜù˜ÕIî¡ †‡ó[ÁwS žG9ìLaªê”e ¨Óp#)DNm‡Ì@Äk¤®yWJÏ ³$×.ÏÓw81ƒ Ð¥LÆÁRõ”«J{½‚‘- æénôL ££aÞtÊ1AXÚ(_{ÁpŒ,{ñTæUzø¶_w¤m£pËŽa˜eÊŠ¡þǦ¯üÆÓJê9ïÎéiñÂкШUø°ñ \äšÛr×H½q~¢âC{…‹·‰˜ÖVÖå÷A¿øM {ý:ð†‘½ˆÖ\ࢩ]Ó$æŒüö̓<ôu¼ÛâàèiV/Î$ñ£Bv|BX¡j5Á+ÂkO¬¢õ³³M&rUÑB«cþSD©7ëþá:köz7c.³BGÃÏÍ$]«0$^°òþ–û‡§¦’P}E-ï- #º£ žÝØRK}ðEá³P°ùë†I@ Y_]ØÄìÓãÁ,Æ›Pß™#*‹‚Á3Þ™ãV§bÔb‡½ûׇ+& ±ØB Ë 6Ýܿʴü¦j$e¦â;áæÓ˾_ÌëÛ"¹ÑÞÖ·¨˜É(zO‡Gj㼩á^¯ †[>ˆ£à0u ëb?f{hÇ&õGÍrˆO‡ x¶!@\ìJéö}׺ô;W÷ä;>¦ã¨ï3Ó:trV))ýª­˜Îíí2b°Yj¿U[ó'NðmìŠïáEÁ 3aM>‘ì= J1,„^û~c_µÂ‚µÎ<èet–“·"ËϪC[ÑÈJÏê*êu¼A$ë®qMÊĈæiHcvŒ`Pœ^tu73²ÙâLLH3úšPl­5‡_víq󅟪ó7¼‰ ´ì'–º"«53Þ§Ìf÷ãÒS¥ä›óñóufÞ¥h­}¡«O ŽšÒHR ûºè{s?ónSaŸ¨Ùñ‰ÊÖíËÃ1:£þ ýUxa33‡Æ¸®ê_h«†ÆiIcò½,Q C.TNõMCjM* ¡Ã²éû®¹—>ó§ IÞë¥Ø²fäœö›?ïƒSO iRI ±“׈¤:íA¦Î"×+³,Ù™¿‹S‹ª0;j‘èÜf?'ÛäRÎÒʬ ì¼’öl&E÷5𠨵™ÌRÏq)ª¦‰µc}E†ñãÐo³\B|Ä|´óå—]Lá¦ïس)ƒZÄÑðféýÂ/îñåÁèÊ–82"2\é¹sF¥‘²ý=ê^ƒÕ¤ÌÜ5"µª Dt~ |8¢nÇ É†ˆ†á\;bÐGPêY +¹ÐÎÒl­S2ÍØFhõÕs"”?ØÑC$y_KÒü,‚Ó¢a¾rÁJr@¤wžÄ?†^59 '[œŒ‘0Ñæu_Fvx´ÍpLû)á‹ë#ÊàŠà8°&›âµ¸Ñ÷ìøŠêÔdðÖž¶ 7'­ eŽ‚àècÒþç¼ üXt;¬Ô™¯!ßylÚfLzËô‘ŽaaVjM+»„ª¨¼«EÝ Ï…%ÜÔ%R—¤šœ>?èÊê“0³ßGçf‘Áe²l6ùvÎyHk¿¿ÉSÌ%é# H/=dϯÜ>Äâv)¹÷êlå—“^™}14 yÄ^–2r([ KìX´ïá9`TêÈ]ͲjÖ^ˇÉ5Zí%j$h¨¢ÒìYdB‡âÝ‘#ThEšÖñáÆ:Y¹‹¥U'(yòûK993'(í…'IF¢*—ì{ ŠY…J¢Ìïzµè±1Öº’½¶  èçËÅ~oÊu+œÌˆÿì|~#o§¬0r€Ñ¾Á>å Ênj7±ÊMéëý1ážÇµôå`Þá5íö3&­DÍ•Ÿiñ Y\uøÊ-ï½ ‘B/øÎmÊ$0À$²v(Sj2Õ#Q8–ò%¹/Ìp‡ þü ë‡MÀ¾µÐ~ &uï»;uGÄ…,ŸÂ¹öQÊ) ™DƒÍ’“åªür‰¨A’l\?€¶ôò¥Ãm¥s£‰ uÜj¸b{füÅî<£Œ<›÷âR¥?‰qÏ&üEîËÓ–!ÙƒÁ ·º_sNj$~¥G€•5ç>D~£Zîå"Ýdp£¤]ì¬iykÊ1Óýf+u}#µwH"ŽNo¥œv5' §RhW°1Å[©0ÕqÄYËËÌ3Ì;ª$˜ÅèÞ¨zÏã–žÔU¤{×9Ætáw^´C~&”Í|éÊŽz@8페eHÄðš–¡S³5Á.#üÌŽxÿëǺ{‰Ÿê³Ûõk3LW®»rÈ–‘þ‚…‘“œˆ…üü…Ô%5B­úÉ¡~^D‰â-lß7ÉóÆZr+ñíl.?y¬Ãt(ÃrvúPÙô³¯§Ä¡€¨@E;ÖÜ:·Ÿv?OG¨jC ¼®Ã‡Ný5ɹøF–cb<ÆÝ²>7‚ôŽŒ½ü…r[{´‰Á\؉U—÷LÓÂéR¹î½6ù8Æ¥‚¬²&7õðßp˜¤súmÄð¤RRÎÒä¼Ê OÏ£än¹ŒÆ³š{(Í’Ô›•'ü+B}ê…sȼ±Ø ®Öc‰yPj¾¬×ú³a_?‘Of—kéÆ;¾Vѯz­ušã—¼9˹ÉÍý©½5ùy˜öËDv?Ò—â1ƯîmxªÓЗéøÐ¼§…GmÕ‘¸bîáI-QŒ³DBDSó¨]NŸ»ÿ!—(ïäBqºëœ´&\ž³Ð’ȇpÂ+îéÂrœ]†5¾åÍ£"zëmfÜe #Ì:JÁ‹1ƒClþa¥ÎüTý¥Mæ¨4¡¶| þm æF¥³Q¯yú¸i‰cuçb}/ªO,³ÛôX»þ²±¾,¾ áA©dm§{ ˆYË´³€³>ÓQåìdbÁ ?Ž4¼ $}Ù5­‡°ñºM$"8A|º÷C¼·ä¹Úú-H¾‹Ýk!º½Óùý,ø#ɧ"q™ßP=›jH<‡è2n#þÊ+’£Ñ¨íÙ×õ³â}×à “Bm{ÆhuÂi<¼d/:µd° dn{ý¥~?’–³^¥áül+Kbß=Üpã•“-JòÓBYuÒ«íy3!º.#O‡Ô$a Ën¼Û† ¸¥,µ—û—‚”¥ðšìLô•0ÓO<ñÃ<$®—È» Ý[”ü„}öX˜xáUÞ}Ÿ@ú€bCKÕÂÓǃCþS`SÞ2]ÏŒNFñgôæô ú›wì.hœc;™škà;8èÛ‰XÛÉó§ðwÒ—ù¶9‡¤}òD÷Ú‹B¢‰6YNZ“-q)Ý )³ä¦±Ÿ/D{S³^ÓzÞyŒòÔ€Òƒ;Þ|¦ùõÈLêÆ0e ˆuÕœ_–>aë Æ]Òï6·Õa‘[b"·}£ƒM[ð¬ÓY¡¾(‚Èå_Ü4Ä\¯f•m²*|“QÆðÚa¡ZôÜ0sµœß£QpY­y] w­ßÔ ·GàNÒ)“żTõ7x¾*ã牨9"ó˜Æß£sÁ› f²dvÚ( ¦ª×*QK¶šßxÑÌ£“âQe1êõÝ‚·sÒœzfÎó 8hô$")Í~¹òÞŽ5#±uzñó|-$Î5B±@ƒº§©äãl„{ÃÏj[ xi,®Ã£‘fÕLcáàF¼ Ç×dãÞès‰u7N7(BC.šg…ow½ã·É!ÌÚ•2#º6“6zÕ÷Xòù¥¦§nH­(,Jö¦ï3 ¿7pU8þrŸØ¢É¨6½f@’#ꦡi·Àg$’gQ¬ÐE~> stream xÚVTì»'¤CJRp4H  éF¤ 6`°Ñ ©„tƒˆHƒ4Òt Ò!%J+]wúÕýþ÷žsïÙ9Ûûôó{Ÿßóž±3ëèóÉÛ"¬ÁÊ8ŠO( x¤¥'…ù@!Bvv(Ê ü‡–Ý슄"à’ÿÍþÈ B¡uŠ ÚM ¨»9…‚¢’‚b’@ @”øËá* P¹CmZüuŒ$d„pör…ÚCPè*\6ÜA 1ÞßáyØj‚´@(†®hrè#l `”׿RpICP(gI~ ÉpµÈÍ ð€¢ =0ìê¶ü‚ x ‚ã'd@ È?Ôú;”È @+œ 6`8à·»еújšmg0ügÍ?x^ @_ðïtFÿJ…ÿÙØ `Î ¸n°ƒ:ÚÊšü(O/·ýårB"Ðñ wÔ dvøÝ8 ,¯ ¡ñý‰iã uF!ù‘P§_~¥A_²ÜöÃQHÂ_ý)B]Á6è[÷ø=VG8ÂîóÇÙ ·µûÁÖÍYÀuq«)þéVþ£³£"@ PL\v€=m ¿’x9ƒ©Ñýûù8#œvh`?¨ýC胹ƒ(W7°ŸÏ7ü["ØBmPk°=NøOv´l÷‡Œž¼+Ô` DOüõùûdŽæ–-îäõûïá 詪j«ñüü·IAá ðáø„D€h®Äпgùÿ_Øku@Ð?{þ“Q n‡Hü}wÁpÿ“\® 7àß#Ð<¸þ¡½Phƒþü“ÿwÈÿÆù_YþÚÿg?ÊnNN¿­\¿Ìÿà ‚A¼þ´£Yì†Bo„½ðÿt}þc‰µÀ¶P7ØZÕP ôfÈÃíþ¾D(Rê ¶Õ¢l 诠Ó;Aá`úë™ Çüz×lÑO =©ß&0z•þ]R nƒ°ýµsB"¢«+È‹=x´$ðD/§-Øó7¯üp @ÃóØ!\ Íó@ýXýRþ–ÑuPˆßò¿ Ù¸¹º¢—ï7Ð]ü%ÿÞt0ØlC8;…°‘ q¨ i>«gðà[‘ùľþ$•›ÏgÖµÅí‚/‰»<#hÉõD>©¿“laM‰ëXnîÞ•ÏvÃ{¼ÐÆݦKߟ–qzcëM„3©{Fs·å«» îòÈ}õ½rñ5 tÄnÀlSgÏrq'Õɦ<óèRñ¬î.žz1µ®ûµ\Tƒègñ8_”a¤Y`Áû[ëד´,¸(>Füû?¶ÓãSrÈm¸•òvpöª¨/öbÜ4£¨¨0}*¬ªØù%Gt…ùá´QÏ7z1qÒV¢Ä¶§Ãö:Û¶i’~bÞüÌy% «OâR¹ENŸ«1¢êw7x31Ò‡ó »?ónònç¼’§êKHú;.%vü'bß)ž Ú›xz¤å¿½ˆ÷“—l^NC:bÄsTÜXö >Xû^plm.Ÿ- ×msp 4’æ›…ÐOáÖ?dgßq[(ÿ¤Ç°)rLoHöÊ”¼Hëêê}AS|°Æ)þ›'tâ1®8±Ï¬‹òôøùŠ “¦û¥°*QˆÏPª(ù¾•gy¶=åë?Ž÷Ýs±ª¢nwš“y× ¯Krô4vPÑ8êþòÙØEÕÌZ>¹l@90׳"f1®6Ý#ÃÏ,iŒvªHZ.à¶£g‡-×J´o{» †7Øçë§ÁlÞ7;‘×?Ô¦ØöÍkïi¤ÆŽFc™2ŠÛ׿’ƒ“·¥„â-&ñæ•,u2®«dŽ”¾ýȱv+™W;ªyäθx›ÆØUS#sбIÔWLð@ï`¿¥xR:æU„ÂÃq´à«²pY‹{°)ºÊÂJ˜½‡:(ÑÚê1Á2AH[»˜¥JàÙ¤®–íe­È0äêøß§B¾~iƘcõ £¸éêø¾C#cDáþ‚Åî„}ñm¯7öåØ)x£bÌV«ƒ…Ç"nkó,ãÍðpb¶¨<È¿÷Š/ÿ:¦¸­¹S<ŠÆ3«»Þ~Òó¹….§ðf﫟TçôÒgŠÏjË—Ä6–Œ;^“ÌXø±Õ™K|3ãÛƒt ÕºÍÛØ¥œŠÜtkÛįwãËÀYO/4õØh4±ÔA”:ÞfM?%/x¦HèVu’àôñ?¡9¾nÃ"\þ–ïÈ|ë&î@h °ú>ç‹(½`áÚåaÑWŠŽÎèá–½ÇøêVŽùƒ]»¿¢ÄüãzF3Ëlç#äyd…)Leua0…|vŽ7êÁó¯É ½]zÀ’%ÚO¸Qµ¹x}‘kÁÉÅ3ìßÎéí‡I•å[(sÓI¶6â5ýšÂ‚aÄ\æjÛL£w´Èlsß?¾p,à~Ù*·ÖVµo§_%òê&Iø‘ØÞºÔæ<7Îéd”àpI‹©Zkr•ç3Í+3ê;sŸq X?M_ÐÐݽ&åµu%scÖfxÃÙ–;T™®ŠÎ‹l9ðE^VØÓ@r’ÖUÚN“ɘûé8o»œDÈï=ÆrÁk“P$ƒ+;ëoB‰õ{f»†gwŒnÅ,Kl¢ÿ %óŸÛçvX©¦â¿Ž­jÁÛ$¼½fZƒ(uºÝ߈ð¼9s'^Œé ½ò4Ð7Ïdß¡eÕ|mÆúÂ2ÊñÑ„©gˆñmQ‡¤ 2w ¦A>HÔèÙðæ|Ùœ†#ñËü¤ÏÅ.î€ËÍt/LnjNƒäæd:gyû„ëËÕ 3óFÊDhgC\…4ðÛrWóëN,£Ž› µøádúXÁ>vÌÌøIwÞ–µ;ŠGõ‚cÙÌaoMhÀìÖâ¶sC]h‘Ú? çÜ Áw y¶¥vOöÉ^0ƒgãQÆq‰Æ#×WO²…üq^ت4¸®ƵÆ-‰Ôœ¿ÜsXx•9®¨^¥Ýë x?X.•«®ÖÍ!RñPAèM§ÖbˆT7꜓r™ÄŸã¦I_ȾAO$Âú¼¶ãº¨°ÐÖV\DöÑźÒU­2¥"£«ë½µ^Ü©~~L#šÇqT”é"y(–Ä[ïNQà ñˆ IÆþâM°pçÎiº“¤ ݽí’jóZ‡ò5e*ƒÅm’8}CV ­ ñ럷U…>]<öˆ;/yFŽ -ý‘9Qý¤A$’¬Ðß”¹É;'Vg®Žœ;Žœ{­Ã²™Ú1î:òÈ7½´”Ì&Ãâéã9<þ§göÚsÅ1 ä0&UómÉ£U±\%w»V5›«òétbZûfæËêÓš̱…šǧŠ×V4`OL‰F¬AX|ÄãÒq;·ìg9:Ód!çú\§ÐЭz¥‚8øi'-rÆ4*±bÔnü„Ê^Óîà¨({ñõùµóšÉ§ÐÉ;µ/HMÃ-0Í `û–ç˜`†DZ”uJ |ÄÛ”•Eæ•dH`h\vó%CñÙ’ð+^R)¹ÝÏ·GY=æs¶IΩ̊I·–zô$Pqêî Âz¿“8{…dp'¶3–[[侫Ûì-'¤ýYÒ Nºœ#§ Ð¶ÉùáX¦Ï*ƒ–%ÐïðÐÛ”Ù#ךÝÒ=1¢³+¤„cáÂ<ˇ@¡šk¨\û§4Nð‡‹ƒë0Á õû;]Üš‡3)LeùõÉRVäœÔaÂ]w&'o©Ý• yà;؆ϕEŸ9{²9ª7hÀû‚¸ÝYL?0‘‘‰1ª3CN€‰{Sß’¦7{»wWyÜ n°6&ÛLû‚²²¤ïªúß?lG~c!o+÷¹!ðN/§É¨×á)»õ !¥4Zq‡.Ù,¼mN….¡·[¬quãs©üƒC.Õ).Æõº*ÇŸ‘IDöóÎw®QÂt"Äw/g!ͪÝ=&oÉë¬ÓJ˜f‰/δ™03ÝíÝgܕþ_[Ö‹§ˆd{¥ˆ ‹)?tÞÙ»¡uÞÓŠÏz}d˜i#0¾+ÚÿÃiOã:ÆeççÌGµžc†ŠE:ØK¾TéÓí c¶ùKÜð UëÉ ÔwDÁT`Ú|VÖ³*—ÈpÖC¼š³•,Øü!\²œáçc6N½îßojæÇiŠ•r暦²Q¼úÝù X;&Se¤êW\ØÒ½Û;êÕøáOÆ·ÂsSKÔžPîíz~Q±ÄɼFPØ=·]2° 9´Ÿ¼ƒgGÿm3Ÿ(YvÀ/NîcxÌåÉàÙ’(GFºgÖ1éR/$’Pý¸Y=“XA;Ì‹a[[Ë_è:Áž©›¿…0Šèê|Y¹KU¿QÝ©æ ’—eUŽ”zúÄdõõ²,߀]ºnÜ`_„þ,¶ñí¶Ç4!Ž|Áb³¦Å6Ýõ\þôø|A°«N"ϲ%`oΉËÔcP™Hw‘.ƒóöÖ1>ÂéE}ý¦Ùžª~ ×°u7ªŠV’8tþV÷sO‚9ßðpBJŒÙÀ¢8ͤic©JFìva7g‰iÖ‹_ß‹»¤ôäL>¥v9—Õh…ËÒ™cðº¯äJug9nû›˜¿ˆÆåå;já–…gë×å5œŠñµ;6ÁªÉpˆ5nèy…ýŸµÛèÈž:Å,(¾%î4æ¤ Ò/=Û z“í³T1ì°&¦›Ø0é¯!³nÿjY©B†j_wÂì±uÅý@[æÝHÎÎTã£ì½K¥z‡^5£yv ñ¢Ñ8µNÙÈŠÙ)Söø ¾4ÞhÏ2†ÕÆnÍm¿óŠºýÌ¢)è°H–»m§¿Y„Ò)ðÒZXè¯{ž×8óÚa/(¿ê ÅÚ]er7ÓBÆù3)½ÎÚâ2­B­ˆ¯¢YŠøäÔú`‰Ã?TAý¤í>»xThå`Äììš~KdßTçG¤~Ä´îÝ£FˆÈɉ8¡<235#ß©pq9kɽ7§"¯)Œ½Ö©9¡?PÈ÷Œ¾Òtëâ9p±3“® >zAëH''ÎòÌe&ÂÁñÖèÇK1Gp¾ÂAn»ü9]©÷UgTÏú£|cepJ ƒ«ªý¸ýÌeqÞû+¶1–ÕÀòüúa…J6÷- ¯j{\– ãùÀS¼À€©èú¨!wC­‘ulb|»{Ûª‘ØòoNjR:ë?rHïÆ„Ô¶¿ Ácø@·‚3=¸?(ýªáKÁAÛ…õž.aÜý×}Ÿ[ÈI¶â,—¾äá©I–Yñá¦ÌR5‡ ±^ §ëä\ø5þpG¥GæZ£sðC’t™ d‘È—cñ,ÄdÏ…KøÜ9³R‚›“žH,8 fñ(\ÀqƒŒ?àÌŽ|)ŒOY¾VûQœžg¦û;ROÍ}Ô‰çîõÇ¢.=DÆj+˜Wí*jje­ô0»@ç¼Kmy–ýÛ¢iÌß^³´>h*û°-iÎon°L'|ôÎ;Ä~áúJ,_¾ÊèÃØ§Sbg¦C ÷û\†.IèPÍÈÀQ«‹Ìý*…cd!ÇýÙ ³¤•ðÒݤªo>½Où/oá¦ÉX¾ØÀ›¨®ª\{Ó„á1pm0Þ¿Š((¬,f¦9-:£m 'W{TçÛm{NåZé| ŠonKfWçÿ0ÍWƒó–¨‡CË©)»ò'­†%[Ü(“Ó.7Y=MlqÈì½{¾6å*³…l$zæ4œö*™×-D~I"Mß²‡Šænw¼kù²Øß´ÉC§D½¸“*²Ïž_?+ 3„©Ô^Ž¥Æ?Jþ\X/ÚS[ÇØ¤@4eù°±©¤û3ð*­7ït)3ßôag/ꛊéã£æÃUçÁu!vœ—%/v.RæÙÆW1úbm3’= ”¾~8¥Rß–ñOè}áþŠ4Ô^þZzº-Õý›µ{@½õS0<È»¾\ûWjÒ~zÕ>ZøR2qÞ4€ç·Õ\æ_­4÷†Ê™Œê¿F…ƒñ=—„Îú[·GZò§oçW×ÈÍqãæßlá^:eY´s"®sfž,¥JêIGôBéËʼ Ä޵¹˜c“¸á…ð’gWQ¾¾§Ùy£.9SµœˆòVå =ƒ­Ì‘. À~NµG¤gZ{ekªA«nõyëX CAD@ÙPËŠ3oéqàldöÕÉŸµñëTÝ*ý·`/ƒA1«à´QözŠÞž„?&Eˆ´nº,6^ÎëZ±Ž4;-–éBO5£\ˆ\~7êyÙ»ð ØÈ0?îhɬ¥í…4¦Ç¶'÷þáÞ}ð-Ç•t¾¦“,ªâ0j.Q›ê¢#I.oÇ4ö÷»Íq8^nˆ0¾-ÿ$nœ:©÷¤‚íÍÚ¤Ã=¸œ³âƒ­¯Ú`òÄíªÔÖ…ötŸ°«O¸ñDAµ çv›&G]—S?< i¬%b,iDW?¶‰q4ˆ‰>eò™©ýŒ¼ÁR÷Áiê]Ÿû} 6IØ|Ào²aë;v{²XÓ¾CoršãžncU?úñhsËÍ 7ΟL?£\-®oò±SI/yÖÔ% ¢ XÕ}êa~T.‹_ñ1ô°ñÞAî²Ý;ónË$§!“Bîsæ…ñz%Ò@‰”úö¯:ŸUì÷sC[p­ð²>êú| ¤¤§‚g…GOf*ÏùX´ 5Ûá¾XÝÍú* âîØgœn0”ûêxgšgõî¨R@ßÍ®åéž/%ײcþ¡ÜÕšAÕj’[»òXÑ]~jzê˜t‚Ë#Áàø1”åQô"U,,§éV‡ÛDü©:kЮÂÉò6Ž˜$õåG7¥%Ý*¥‘À‚ ³;M¼âóiRÊ‚‚»bëÑ:ƒ˜kéK ðØ±¡Ó®“ÈÞ"|úJµ‰Íç㟕¾ up‡-a˜Ìf2 EB¦ßáfÓ´:Ý`N±³ »•Màï³PÛrµ²ñ\æD–âš »CÌm#Gsà!ä7'|m{ªY>i¦Ü걉Q¯Šg¹Ì”‘èÙ{…;Á7šê‹Ô÷íyŒ©£VNSöŠâ(ñó `qAG¤Õf5âû°Îî?>\2‰þJŽ+Ê:„ÄJš?`hfjÄÖÍnuÜðŒ5EA1þ-÷&„yó¡£(Í£ hM%PŠ Œè›&Vºò)èÑúŒœ/R÷Š;ÕUF,:*|Àë·jJ)O~î{X^¾ëZ…yºÇ=²0µM"eð‘¶c–asb¤tÓñÛL5hQI§ñ-ë—ðï×»7ÊësSÊÂÌêÎê%ø5Éw3È^wãT*½?º±Vú ûËn¨8+ëmßl%ʧò˜1pg˜§Zªk"%“ˆÂyåªÉ:±‰“sût[Y¯ô ¤„ϸ”ÙÃðêÌòŠ?"åŒnÞ Ïø/&ZEZ+Zà‡Q ¾qã7˜Žþ/-óÅ—endstream endobj 1099 0 obj << /Filter /FlateDecode /Length1 1492 /Length2 6671 /Length3 0 /Length 7671 >> stream xÚvTnû6%1:”–I(½¤»»¥ÆØ`À6b£F£" ‚¤4"Š´4ˆ”„”¤”¤ H)ÿ©¿ø¿ï÷ó}gçlÏsÝñÜ×s_÷s&pÅÄ\LÕã× ±bq°ªRå [TX±~($†ŸòmÆÐQ¤ =ÏŠš÷=TMëë`˜]Ö!V‘ž¤ Ä­z¹>¸ët&ùÌG]ÚÕÝe3ïb&VLWŸËèSŸ•½K´L°,Èsy2ÎÆKŽã¦fÚ ¤;8eÊ:çÑK„n%Jâí$ðkcçg·cã&=`z7r¯¶ž®Çú_R8W0f+Š“œm#rЛX¢’UB¦\¡ÜKzeÕmñûV+u}?ZT;¶r:ýéêÑòðJoéÕµ3ðANo8Ã~‚»Œ©ö%oëÙSYõ£W..ÉÄEèñ]áPT<¸ö€gÏ÷î´?Ò4ö>{zå•-)­á«°nu™S8yW0›÷ ²´= !ͬDÓ]pFåš*ªçX^s›“LtoÈ!Ê1¼ÆÊÊñ^˜“êkH¬§{é(‰‡qÀzó¬Ï ÕžçUÑÔU'åˆGï~öÅÂ.󦢕‹Ç­cS…²SÓÇïò0·q r“Q%zv¦¯Æ§9o'Ú=«{Ð ÚO2g¢¥NPN«!‡…P|z°bÝí†iIÙIù1Îñ¶ò¥K;òº;Ü逸ʔyr«¯QJH+/å˜Ù¿þíáã«•’K“ÉmÞHÏ”zgÝñ½OÎm™5íšå–BÊÏ5Ö{ÔjFˆ»í3mõÑ&} “äEï¡Nü» Ïhûp®,1“’÷L)3ÔØíÌA8)šõì’ÀŽ…¢ÆÅù£c…Ÿ9 IÎ÷Ky6‹ži²¬£º™ Jœgë¡£á€Ék3+Î…JÃ.òë žû,Ü7Ñå«3dJZ· ô¤ëìÞR™{=6“Ål7¯'ã±ûliZÑ]uºj~ð¹”<«¸™*(àXÒ ’°j«gªoáxòù}wÏ'Áù½mÔn#;¢‘â—Ù= 0›ó\\…jD|øÉ”ùžÁý·\Q´Áú“†Ü¨<…/ ³öÎ&©D7ê'üU«_0šý?µyÊü¹¶¶mêtUIú¾Y¿ÊyJÑ{2®8­ÞQÖº)=Bý`÷J@Þ¨ãF*Í1ËdWá¤ÿAÒý)Q±‚(xÇ—×£M”Ê ³¸å­ å{Õ>pŸöôÆ'‰å\”Õby¹%”šÛ;@þƒÙ‡‰—’ó…%1¯+FÙŽ‰€ñ"Fâ'?j"º•†bc¯)æFÖõèêruïî¨óúy££ªr%¢ TxÉEͳiÊM©ƒ1;£·¢çúa‘Ê?‰÷/=]ßáK•C&WÆqcðŠLõ‚Ðc“ :jÙØÐYÇŽSk'k²Gâ$>ïAEU`J¦ƒ\ÁÊQß‹”g0Ø*)è{åS^ÍÂëôÚ Gy«ÝŸºêºZÔb=šéÖ^Çwš?tN¶w¤ç8|*RèÍí¶¹f¢îñ`Z›B.³ågw9-«ý08œöp—Ž>çÃ&—ΪÛÄ}§ˆbcÐîy$v¥ÿ]–CªäÆOêG–¡Ã˜Ó<•ªo7é´?:ôJ˽|\Šô.†îSœæ…ñ¾mN3»vS1:9dÀÓðùiN±3ˆA.§Á½”"™«m6b»¾Ëq/ÓŽ”>•ÓóH]¥ÔîVö-´‘É,¡{Ôk è(bK™í|¨&â;¦– [›ÉΕ¼ÝîÈÌX¸òªBŒÇ±.wæ«^¦˜ñÅûHZ;ª•^{òQð3›m!Q¯;²u8”ƒšQ¬*³êbÖ!·Î5^ürJ’ëzæm*l±t•]«ýÐÂÞ{ÓÊ&{7M¼Ûü\ëmK¨ïxmPƒmXnÁ+6ÄtMóð¸ÀÅÞè£`žƒÛÚ† ¦acŠ÷Lúw5†¼ˆ>í0Zx÷ؾñÖ[>¤au‚Í™>‘ß™'òHÝX.™—?–gçÆ1¬÷ÛKËËÙXŽ=âIÌ2çÝøvI¬}j²víêKR–›"·÷£GGsÕIŸ¬ïñfÇQn¾ôàéYêéµ4Ox”¶V–æ0ÜLo|TÄ1  ¿ïMiuúí4ø<äL×Áεb- \SƒiYuµÒãW© Ù½{¹9†5Zøs GKfPÀÞ¥ Œ4ú9ôCW¾æÓ+×7%H}üÉ2ĵ*¸mTÓó´BïJ[«9’0„&X+J§ù¬’‡ûTE$pòfoÿôÕí ë›åá/Vò[¥˜Û>( ¿®²U)9nì-‘>)]g¨Ãë6ß›$Qb~ta-ê%fXýÕÇ­hU Å6µcå‚×í¼f±ŒU€v7§>ѰÚÓï>âš!@4æÝP†…Ì ¤²M¼Ë;©èû¡Øïðì¶Ÿ¤l$cÓçuC°Í«©®v¡û1Öß2Å7¥ŠïE‹ï49 sW_êט ÙµS®Þ¾%{ëž5dø0­†‚É2¤ßÃá8n:X¯…ù(-÷#ùçûJÜ_X48r”MœÎw±Ã˜¼oúñiÉñ×`eñuÜDsT³\ówrï¢ØXÌÉ•XÚÅž$Lò…¤Ü£¹>¸tÓ Bº27ÍyP£¢‚©D¹sí½ë¶šø¨%Ò Éü1'ã“™ =w}Ñq¾\¡_°Ô›8Þ—|.Kô¤ølQŒV„Ñ3"¢EÊk™orMãÇR° ‡\Çœ,¦Ña;âÛåÑÀ[­ýœi!eNÝ—™÷Øæ“ëz >Ó:GÐË×…³Ï¸l‰$yÅ݈Â6$ÍÕ&+® d|ð›»þšJdpùc mzòaýÔ††lCß%³¦ãÊo|+ÏfÚ0š§†&àQ°w)ºìÝ]MûÈ®©ÊS‘InÙô·NÔM¦ß)ƒ£Íºâh‡ØµûYŠ!¹¹h~R —‹V™-Ö<û»5,f{¸½ÇŽ[ ¯d%øbžµÞÙ«ʲ¬Ô™k^j’®*H3ΞÞµ|+¯ŒyæCSÍ`mOÿóíÅ/+<9>ñ$E¬¬&óDo± ݉—k:zÍDýŸËÞ¥×t!Šê^m´“fQä8PêÌ<Πx´×=‘ÅrTÀw±ÉÝœÉLµzKI¢kŽ<šÒx\Ù‹ž×gN~Dã³q̜穔S(ÏLO6_) Q¡³Qkì Ø¨œ"Š¡ÉI}¥bJMaI±ÜmSߘ:6_Ù¾rg,UÐY¯ÿÙv9ñ;=fý%A Š¢/^è ƒêïÎ'ˆã¡KeQlÏ&ÂÊpMñz/<4†Ø r{½úŽÖ²çÄ‚5ï[=uÖ¯ûv‡³n©ƒ.õ;QÞ.ßY¾ÂLÓ|+âÖéæ ¬{ïòåB-.ªötÉÊcÑàT®ÉSa2°SߌtùL·À0˜”Ì&Ṫû /Xÿ¸@±.¬Ï€"ïå$?¿wW!ÜîU„®bÿ(ÍA¶6c½~ûGÚj+"ƒLÜá&,ì2Ÿó32Œ¡s½î§ûÚêñì°îÝD³A#ñ+½òRÚ†’…­>§ºËm²~,BÞÏîžë³j˜}p¿epJ—pg†q©´T %úùPe¦.ùqO§—Ø’@ sõníI›EFnz¬,4w@°2ÂÞû3ÎEq s4rïR} ,1+ú°êkbëS[ÇÍÜ༘3)i /Ê6•ñ¸Oc؉»RC›R„ _±5åÓüüÓ?ºâGýuåz•a… Æs”rénç­ÇKõ?F[mw2XÛdÇ-Áwz¾:·LÙˆNõbH‚‹SÑÌ9Ä”üœ=%§S7ßË÷v™èmí=·ïÂÇw³IˆBæ ,®ê™íªã®Rýi$òUÁ[SCúOC/ëÞÚXÃê³;ÖÝ1%‡öª_FæáÈo/>-e¢¸å\|gû@¥ÚZýcÿwÏ8 [†ÉÚü›zS]c©Æ5Jú"‘´\"Z3ßÄ©ôg·óÏ?XOÓÓMoÌYÛ] IÃÁ¸LòOÇÍî±%¯Y<…d×<~TÚõ]>ÌLߎO¸¡5|Y{¢øËµ-Üò/»K \/n]²¹3„Ñ}}à0PRèZcƒPÞ9kôCñ»x§G¼÷®S°t9óõ¥”êhmîW_ë™%¶eMzÞ;,ZÜŸWÐuémT‡EѵëM}ÞiOý~iÅ ¢H¹.ErÕdr”c×&Ô]ì@rE?ãÐWù=»Ë!Ìs~#‰k©1‹B“—½Yj¡ãWì·Ûx†Ý[ˆö2Ì}YH?^ÄÐRQáìf [ÈüÕ_:åÿYÄ`†/‰YKâo§/–Ö*v·OŠ'øuw˜-Š¥sÇAÚ†«æ>"ú…¤ü‹]Kx’çZ۵Ȧ2¶önnïµ8O$ÇýÛŽnDãÓ·8ÙÂxm"ǾOÁæ6Øt<Ý~™Qõ/jÐb\ðDüWý…î¯WƒîºÏؼ´ËÏŠºjçnIqƒ¢º–¶Œšr-Owˆéîx…åjéÙ¾HœSéÖPÝ”j3q»NQûŽE8ýW C—VµóרƴJoà´73ÝåD¹:¬(´6SD1y?}¼"Ú#`pvYœñtj@z•úv150½åÕ¿†³,aYâ;Å@ÝýjÒ~Ô\’¢éƒ/´a“«cœ˜×ØKì1?¤UGˆ¸’‚ÙDªD¡šizS!½¤ ‡»Êêª{.5©m®Aàïd– #FåL Öò.xAM´œ5î9ÄR„f_\²ûžòR¨"éºwTÑÍ;tõ‚å¼M7¯–ãòåû„IŸø>Æíˆ PÅ+>,©áõUWCû¹sÞÚËp=B¿,-Ó žVpy9X¥þB *­¡ÎÀ_*Ó°äå–Üò#­VXj”'Ìük™ßp³¼è'jÉ•Ÿ¢:µ„Ÿ œ@_ð’…BgÏ*ci9w$cí7ÙÛd/«ö¶f†Ke:¿sx¾’ê³=-iJ¢Îþq;ǵY†L\V«ÑS}´@™Ô“vÍ\eƒgiw¾ˆ;áˆö‰ªLoˆàY$ò²àœo›Ï6êZQ±o }CWwÚRêdæ·9¸SûZ §)ÌAç˜^~igôƗʬ: SjÖœ ™£P ¦]ÝxÄê4œ•ðáñZÇšý(¥fÁ§ÇêÐæ, íÉ{Ÿóƒt±Ç!H"!¬bÙånÒfåm¹o±|íZé(Û™Òµ°# ïg\2v_N‡u¨` gÝX²¯Á’9YÓöªAàF®B93î›™oò%;ÇA ° ©©‰²í"ý¹³çŽÕáÔ‹’.»j*üe†®µ[ü×7ýRïš¼µ†ÙžïÉK¤]ýêÃH60+õð ™?Pbeë_ÝñF§–¼ÕÅ®íK-¢œT^*Ó÷IiÉ¿wµ®²T…Ö&˜‘æÓéK¾OL::" þvaÖÆ‰ÊV”’Ý’¤FÔZ·G#³ä†‰)r7yix›j|Qð¬ØŒÍ‡ýøÉ±Ÿ’<²IknYOzª3^oš‘9›ê_Ác´·3»ä¾F(Tž_gÉ»M=ù ÛoÿÚdþxK#¦ÁñYÄ`òî–ým~"†*õ-—Ýo^†¦ÄÁ‰â<ýKy{º3ωª®×#üiÊŦH¦³ #GÕ,¬î“±ê”ÎØ²Š´yë…šæû^¢¼[ôØ%cJúloÿ€æûÑ|Ìé «67µ5hT3qº¥cM¦ÆÔeê†X:ïµp…q2–ÜÛºøn†4 DFä½ HñÏER×+e³¾ešìYÁ ÷{;vµ¨<âà +H-»0ˆ^@ ‡–y?ë¸m”‚oBìçjFĪ ŒrÜèòĹ]y»k¢™ØJ*|©—V'9ü|¥¤ÙÌÅ:-YúX“,œ;¿Ó⣛_iMÆ%)XΕXúÁÃ…y†1/ô;GfŠ=«"N^Ô¡ÂH«ä–£Áݼæñ÷,HʈÝaö*SfÜ›ŠvH$¡'î~õíj|,ä[À®¸¹á#{ãø‹]V5æA5ǧíu¾¯ïgÌr„Ÿ”z‹ßü´cù‚Ï#Œ^d+(Oê01>/Í2Ç׿Óå—9‚±µø‰=Ù:<Q¸ÕÔÌñ£Þ|0o4Ú"ëh;T'fƒxÂ-\: µXž¸^Œ¯Žáà〗޲¦lŽ “£|fµ3d@¥yjV½‹í&IeÉ 5tÛ‚xü\*dÚ². 6ïæ«=šÛá7BP­¦€4ŠåžuJÙÞ*Â{Õm|ã´¤aÑí?Ÿ×ô\;©-â?OÎSÚ÷ܥ꛽6¥fÞÞÖOMJÒ æxô¢k^gû‹FÐ0¥ïM»¯‘ĉéQá/..^¡ pe©ÿ$´ÖX—Ï*VP s;…#afTMM 8èSäŒä™ºÞä¥êZ9l„iÉÍ :»Víà¡Íp’f£ªÅ!¢c¦pŽšiï|Ó‘.Sž]lÊ‹Æe^±ZOx<ÒBŸÀ©çÚy[ÊöU‘-0ùĨÔQ,ûy}¸µjs[úð{Ôe[ò:œù:.…DñjÚS}¶n$M`ð…ZëÊ«QIƒ/žœ³2 °ÚmÀn(|xV:K>/L´†éÖŒôÉZ5ù4‹º~%bFJ̾léD'£¢è£}ö”$"³Ý D­"-ùÚSJºõˆí6“™l–ÇÕq˨÷Wï½Lj,ÝÅ» åpÀEœݛͻ¥õÞŠ)õ’ÝÛK ±ã×ö8âÚàe¢“φþ8ƒYÌes·Ûhî]•õ÷]%ýW¿ùS]ɹ‰úÞ¦úî–Éì|LÖR»ó¨wÜCµÁú i×°EÛÖŽœ¯±ÅJùD1‡'÷7Èñs)G¯>A’»>¡ßo®®óèZŠKZykÈnBç9´ìFG.]  pï†ZÈ]ZWëTšT÷(J£Õ6§œ +=™7mym/ú ÉøÑU_1m¹¬3©Nlð2Ödäæ8§/ài®…¥_Ÿ\]m¨R“Á¶s¾¡h•E .V̘½m?\©±Óƒ,Ú| ÙYz†Èê|xá ¢§vº5»ôÈUúþ@ÞÛ›]ÚÁ’¦pÏŽ ù–Ó­‘!Ó«%Õ ìXÅqIÚ›Ýd¿Åµ ­© 1Œó*Eò¾m¡‹!¥z=oc67ˆ.¹Ðœ‹WpRÁò¥' ͵S`u$ÎX§ÒŸ7úËтӟB Qù“¼ìyIûv÷™Èíw8³¿SÆÔÀ—èÉIX—Èn|H Ujrs«xLcüöU¥î©ÑˆAìÁÂñ6în?÷X‘pÝÒùºy–>2$×û8o1ÒíR7‡Ûç{7›”ø6`Åùg s€ÈÃ$ÍÏTj …ÄRcĹdôséî5mŒ+­¾d É\_NMÅ,ê+8á(|C™d_«°ëìYûÆåendstream endobj 1100 0 obj << /Filter /FlateDecode /Length1 1478 /Length2 6569 /Length3 0 /Length 7571 >> stream xÚt4\mÛ®ÞB¢w2¢ƨ‰–轋hÁƒQf#ŒÞ‰ÑEôÑB„½wÑ{ï%Q‚’¼ïûýïwÎZ笽ÖÞû¹îö\Ï}Ý'›®€œ ªŒ€£@‚B’- €ˆ 0 '§! åý &á4‚"Ý`¸äÿrP@BÁ( ¦Faü´p€º»$‰K‚$$…„ÂBB÷ÿvD %Šà§0€– @‡º‘p* \ÐH˜= Sæï_„º_âîïp€œ3 ƒ€á-0Êꌩ; …þW i{ÊEôðð;» "v²¼w0”=@êE>…Ú~hƒ¡˜ ’p íanp„-ÊŒ„0€ …»a"Üá6P$S` ¦ ÐqÂÿ8kþq¸ øël AÐ?éþŠþ•ÿ †@Î.`8·ØÂœ eMA”'ê. ·ùåvrC`âÁOÁ0'°5Æá÷ÎÁe9=Cð/zn$Ìå&èsúEø+ 攕à6 gg(åFòkŠ0$‚9v4ðOgá¸÷_ [ÜÆö wà#8ÌÕª¦ø— "ùfEĄ‹Þ@]POˆ=ðWzC´ ô·ô Æ0ðõvA¸l1$ ¾0[(æCâí~  îP_ïÿmø÷ŠØÀ (€5Ô'ùOv µý³Æ4 ó˜ a´ýzþù{‚‘— î„þûïþMŒäUÔôùÿ0þÇ&/ðx €Ä÷Å@0æ%qOàûï4ÿÀß䣺`Ø_›úOF5¸-pÿÌáýÍãé_²àùkdxÿ® Àh àùôÍ…Ä„ ˜èÿ{~‡üßtÿ+ËÿKúÿ½!ew'§ßfžßöÿà v†9¡ÿrÀHÙ… -f8àÿíúúg”µ 60wçÿ¶ª¡À˜ñƒÛa$.ýƒÃÜ”ažP] bÿGH·Sà ‡ê"Ü`¿nL”ÐÙ0SqÄÜ*n˜†ý6A1CõïºJpÂæ×ô ‹‰ÀH$M"„™°˜À„S¨ço}€‚p ÀpôØ"$¿ÚŠÉ „:AMØ/ÃoLÚýºÞ H¨«;¦/ÿ0ÎN˜ÝüÅ€Î0¸»Û?FW@$ s¤¿mâŽDbJýV†Ëßëß7ê …|G@¤B*CNËå˜<Vú æŸÅ™´Gˆ¡¸¾¾ò¶×$LSq•·²)¥ï}©;Q6<îÃÄ·{:àiÞœ8›¬šÂRj_’ßÈé>;j¶ƒ²Ú í%^>[¢Ø‹×c¹ee†gÆýâñøÏP‰‘µ²Õ¼ËF·5Óû[g@Áwr¶d&TŒ\VãN” ǪÇÄœ<–i–ân¨öhð' ûC¾!šá ½d›Ú33Ó•ÑÑþRäðµFë;ñÒ0*j/u¶¬Þ„Nšø õZ7,.y±ï ÅIqwòøfq+Ç@Ì̱m B΀Bf‡^9XvRç–ú`u}ÃpŸ0W—4ÛO/4Á+N™þ› HÃ$0¸KVÊÙ@öÄ7®62E¨ K3²×ldÍFSE'ê ¼>y¹Î³Þ¥U#HÊ¯é šÌ¥õÚ|ç¹pEŒm"p¡­úœ’îmÏ%¸ð…_~ùŒ?ÖÏñ"NõxÒÝ+îÍr÷”Ãôë…<[¹hJªøUs£g@—íÐL·öiä`Äm…3ךюþryÓ^ÖŽX‚Èyõ†%&£ü“[¼ªÝU§'®à$¦”Ÿq[¤¾ߎ+pø€Sùº”íÞ³TŠ–Zn/¤¬Ê1ü!޼ÄÈeVuiƒly ÿí~Y¯ñS™ñúÌ>_ „¨¶•â sq ºñêµýݹÒÐÔAt|ç-ë×gu §CÖa9ÔXîʲ«3»Ž¤ºÁLBfxäÄthÀ¿fò˜CTµA÷i.‘À¾‘Ã:X¢sVÌš¬93UQ/léi· ³(Òüâ3kI,!ÙþÊ™kãv>‹¥ jÿB\Æò˜$§ °ÖÐm*ž²ía•ә޷’ódÂöíu"mž5âé«=]Ñ™µ5Ù— yj¶fv*xxçì ‚÷òc–=õ:}|O* LÁ!rþé¤Ð'†Rô¥çüÉÜ'Òë^¬7$…!Å<1)‰à‡ý¾)¸¸‹ýDš)ƒ­—×áƒH¦ÔßÎ9"LÎjÔÀH×Þ>ò¦Ä½0¼èÕ~¢Ã]Á#íAÓ!d™ êÔò£Ü¢Þ>¸$÷U<¦rù“†t™Ê½LN*Xì³$Q«ä/ õö1û‚¶žºt†õg Þ›¿‰#x‘›R¥*&Ú6)ºÎOˆñ.ÿöÒ¦ È÷dI=Î9u*IÓ¿¡)(ßOÕåÉ&ëÜxôÑ?®î ßM "W `Û›©ûxY<ñÔa÷D$±Å¥¥!m©-&·³Î.?IVÒáUm)ÂO”Q’ìø=aí÷ë2¹>g3ÊKv{’æÖE>ŽÝaìÀ/>#T“МwXL³yeá³{`;¼Á™ÈV ]>3áÞWÌ£½Ïð`lñfØ{ÅDÇPáŵ“ˆ^¤ÿ2¡g­±­|r^%hðv¿ u?2š2"¯¼÷-Ò9sî³à¬™¯ô%‰K²ÉúE>ÍY ?£<·ììzY@Å«òî˜èw¾³=tß'o=ëÞÉþ¾†úÁt½ØùfkŠ(t£­©o›mÜø¾¸·ôkÒf‹3ïn¬z#y¿­(›È@õöNÉBÿGæ·óYUx}ƒU¡a/ê6Õ“W\ïÇ>*5m ™1KWÿòIOƒ8:‹Oóå½w‹¡U£¹ …bÊ“»h.®&§ì}ºÊ•+¬ V÷’¨ž' §dޤ×éß/e¼ÝÇšÙ½áiÝnløømwá56JÛ± þñôÂWêÈ‘ÙEY#Ä—!äVH\¸ÀÓUÚq»•ÉE$˾š¦Õg,^ªÔÇF¯z,F´Á%á?dvíñ|L`¬ˆÐ¿OªkZd0§=,q¯^•f7Ü}wx¹2~úæFÍý”²úæôÑ¢â‘õWA)ëûX£±†3´T¥nÙx÷í®Ì™/ŒÀì‹`jù×Nޏ«$:\N¨ëgv>–q6á«Ñ·X©+wJ¨< ´ Tzm˜rƒšù#¾6ÜLü`Ã(#„L×2¢—Ÿ´×ójÄ‘’8YÝÁ2`ØÆ}o­ò¬3*Š8÷<Ùwçx2‹Í] "Fúôm6ŒôðËœñ,/öºÚ——‹7t¦ Ž~™œJdñ’ýrä”q –9Ù¸¶³‡ß%‡&‰ØÞËw:ß° þ©¥Ÿ.°qW¨Xù ŽÃB“Åmò]ÅcxË}·•À’/æÚz™µÊ¿Ì£TFÎÄUöÒ\J>÷[{yuß ®ÛšäMâæäÚÆ·hǸµWÆV…x/#Y*óx½_ºZ»Ûœ!Ò¯ íÄiFhÚCyMdŇضŒÉ–Ÿøõ8'Ä·.AƒÌ…enÅ­—¼mq Žb|ûðxœ~U&£ÔpÛÅè¶Ø4§BÅã´¦Ö¡›ä†Åðˆê#>WRaÑzM®ß¼T1£>À%¨C(}E›•æØbËt,ùîru!:ÎýGCÂæ£ïùc ÊŠù+á7ë!NØ>Ú^ÄYšãÛ¬Q¬U­ãM²k:Vw¸Û#Éd߈¡ZZ®C{±½ÍÁ&•me^G8~w4„Êõ› ìî=¢Œ¥#ð說w§PO±Nª¬[¸½çÔ÷™ü?Üå#Ã;²¦ù—7XØ*ŸDž¤TÂê7][½¼^ÎÌÙùÐÔæú¡‹2â]”JQPªJ£9¾´\ÝÉÖWµ·Úγ~+—‚^›Ó#õï°Èå”]­>!£-1ÿ Ÿ©†R°qv­SFlÕ<ã2‡)Ö_Eô~O÷Er¬ÆÞ*ŠÊ ŒxÐ;¾Î¨nò.—‡û€è9¿š‹°:zOUô‘ƒ€ÙëuÔ9ÐKÒ±Nà;}­¸¬íc€Ú²°XV¨ø'æë,2dž€øeÅÛ‡â¯Ódh‘J ¨î–ͯB'–šÏn‰fbó‘ó_±è…Ëéín 1 ãúL%ÇÖ3½©y¢Fk¼4õvíKélqb»%žþܳ\Nœjm±îÅpñíQËíÆÛ$Ü’p¤ƒ‹*hz‹ o˜ØÈíÝÛ€¶¼Ï?J×iõ€íh¨KðXÿ(Àt:N,FÈ´v>èXbÞÍ‘ €ÛT)61™@jï‚ÕQíuHüÎ~󀹨M›´4ëÕÂ0Y«ã˜BÊ k‰ú5sÅÆ ÒuM;æyí~K­Ms᪆LâE;Ö^~éß¶K>DR‹:^·™?W[$Ú·w,~ŽJÍçO¹©ìg÷À’æÞ÷sïãwû OÎÑøEŸ€&BVù™Õðc‚9X³Ã‡QN½{fíç‘×5ý¤5‘v[†Þ#bÑ.~ÏQ*ÔScT‡Â:oEˆò×méŒÞ¿×:™›» ˆWÒÉÃ.  ˆ-ªº>­;…ÿâmP”*¶µ·Ë—ý“wG©vÆHÅZä´®Ø[ç†pÞ `Ø·,¤äV&”žFÕ» (™Ms¥Vª&k–Nßh}Ác hxelyI^©6\™¯ã’–/ö9\D&¿ÅÙ1q¿è"÷ɦ)Û,ÍĤàé¥ÿ«, ¼ò@(Q]gBëœ!ZΩ‚vo^b·ê—‹®uª‰¥'¸Q9RÁ‰O‡é»½wlÏyO­ „;ò«êïá—Ï]>î/¸Ž<Ôé“T¦ÝCGË–¹–ðàÏÌîßg%ÀaáqlÄ—?:´¨Eè|ß™í3úU0+ø ÏV®ãîp:kÕÏ{ÇÖ¸O`Ñ3‡”|ñ_{õ¨f~pÆÒð#ý›ŽÏ‡J©åÀÆäÏaóhå©íMÐþ²}màW¦Cûc‡ -'{Œ†Z5‹µ-4,™©=G‡ÎPÕWŸSpÖ±Á¡Ýd3èrl ‘ •a"|¥ÖM¥¾* /ǧû°–ͽéÙ~ÍoÏTëøS¼'йï//9¼.,CSšâʤÿÌG–d\…WIŸÒô*‘·KjʸÓî*¯ªÍ5&UþÜP¸Ý‘±ì5ÙÙ´þv\bðÐ?z²Uèé’>£™U]5kôÏ“í¼1üõ’>çÏ‹áÌÉ(¢J&·Xô .¨ÐÏÄÇ +ç™IÌjã›R¹ÕÛAEÉâ±jÔ‰@ž<;ß8­‘oc´F•ïøNÏl\©*Ì6#[-É"¾F/7`¿¡éèÚâɦ¸ *`åÒ&Ep Å$“U ³bHñWËžšgøùÄÒ‹„gÑ<:{s¸±raÆê¢†k&éoîp 2³˜xwE†9|z7¬0ÉŽäjb\¼YúQ±¥VÂÔ ¨•q dÐò0ø@‚={SöŠÓhž·ƒ!ǧ`³'®(Màè)j3Ñfj™Œ¤ 9Ë.­=8j¬)äÙWxp‘DdLcÔOÁ· Xy±h½,ÓCé/še‹>UIþD'hRÀ6¡jïg”¯=]ôN’îÖÀ´´‹Ö® ¯Ò¨{™ìW-Qi$H³^‘|z}½ù¨­Tɲ¾")pº÷E’éà|øWÿ„®epÊèeê{}ü(b­3ñ ¼OßXǼ°B郫Æ,ðx4/¾×fP‡Qy„íý|;|o°z2·l‹ŸItø•¼¨Œd›Âo5þ„;›Úg¾6I[ìÕži@˜&áý¡j` ß·³œ¥Ø" ©ðÚºC¦XÀè’õ£&P´æé}FßÛg‘oÝêFÊJË:QÉ|}2óC 25&ØaþS «B¥ÿ€Ôñ3®ØSòõ£,"êßš¨´óòtÛM+5Zxà~‡àgäwkÙÎϾÑÌB2$_Óî‹kµ”U‡6ïƒʼ[ZΣ¬Nγ¯Z´mõî3×YûjrÉæáûFïz[`7TZ—ƒc»'p‡S…¶tT%£j-¢Ôsš#I›$‡=â“ÃŒ‚¶¨eÆÏ o“aÿhQë}ãÓ>ÒF^Ûý5D¾Íçì üãE;v~"ù ²Öã‚w/¡›êÓkuüt™[ 1ANq¦9Z#Gù“Ur¢Í†/t3\Ê3²´Šé.On# °ÝŽ œâ¯OŠoŒ­$5uòÕ{ ¼ êEßì÷øjËŽWX9Æ»@êkO)ËâÐ4^êÔõÇn4y›uïv°ó“!H./4Ü@8Q˜^gâô:ÝÝÌ禞ƒyã´tiÂEf„´Y%>VêöC2CÞ¶{­ûˆŒ¦iŠâÉ&ÞU^;™õfï¹Óá÷ÙuO(ùú×”ðœ\|3Ž ä®Ž´22lÈ«çfOÈûSv/ô¸ÂK¢Ø&Á¯»ŒËP¥'ŸÌiÌúu–¢5ßÚõGnxç¾`»=Ä)B9C+Hì;GòU@¾‡?¤¯u6õz)ñ¢6yÈêßê÷%¸NZKâ}À·°.§Ä–±A·e,7É>ß,ßOm"}¼h8ÁsÃ7÷Dë©pK–ýDÚ ÅÉ‹ o9}Ͻ)Œ¨©cËæGÒaéÍEÑZ«Cn—ÞßÞ<¼¡^M|ÅÌDDšÍ*oT’Ñ|Þ!öæù‹˜cñŽë½êt¤ür[’é”4ººº~#<‰R6éʾà¿«q¸Æw÷;оªJ×aµÑ{ÙŠ1øF“¢Â±‡%•=Ýñ`¹‹T¨–!÷¦›¶ßâÈ~ñáÑ'¸V¥\ú}ž>G‘O²à1§†hüÖíÓa™gAxŸH总"kä†|ªpTøg å£62õW÷¿“‰èŒÈ-Épjö^usºC5pú!Xpìa´Œ‡. P^Çé…i—(ë¥|aÀN'IÜMÞáƒ5¶ÉlÔâO+ßÛæ«Ì¡žç”Ñ*erÆ ûlVØŸóG¢V5(¸1ÚEð–šX Lª…Ä¿PZB☋¢”d¿Ò¨ ×ß›©2$³? ×¼ñCáû°}‰‡üÑ­ö·6©ÈÁ ŸÓjïL¬.ñ=ÄŒpãNãVæÝÂ5ghÄPHÖ” @ï`ÉʧÊަîÃÒ{9×¢iX4ÔWÒê8[*…Ãm½ˆšzKöO,¬‡‹Aˆ ÓÃêêêiø4r£yÝnúm!·¥Äz”£›·R8«$_ïÓ½©LV}ƨ•½£.Eã‘t’jåöMU¯þbê¼Ýy¢þÜ%ÂpÿÛˆ N]u=Š’©`æÏÙ:M§°Ÿ‘1 1¶{MËY2’‰=ްnu3’<¦cϱ[«0_¶ÍƒH¶6Ä•èãðl\àílDïRrÄ¢|¤YITñÏèZY[ÁäýNò„ƒbýÎÅÐê·Љ}ßÐð“Çé–8( æTŽ`xUÒkwOC…ÚrW¨Š-pqìUð8ø'ŸèÏ–í¶7kØÍUÄ[ßDœ>‰¿þ@®;äÔõ§¬¹?}#ë¤ùØ#ŸYWÛ5sEe6Æ]ø˜ø*q÷ÚEj&ΫT­Ê>?Of[í³zÕ ’™#ýŸŸ3Vñéøk˜h±2Ë8c(”ÛÆõAÇ^%$D#Š]’8t‹v•Q‡Þå&‡¾"A×”²ç»â{3k¤7:4^îëÙŸ8 ¢I$šiSx‹.hÍÚzîjÚ%}W^®kf ê» Í©7Î*nèOŒE2DÊr ~x}Y-ùñÍ>¡Û°4ê,ÇMˆ5_ñh½ä컦TÄcn(e7_¿™2w/­{éóÁ8j|Î…|d«TýhÄ-ÑRãpºc”¶¤š_föÜ)cAfŠs~*¤8_™ç„h¾c]½ðÝdx ŒÐ$’Ì=ØðD×B }ù•~R¥r®œHçÞŠdäÏÄREùACnô¦ñë½à¤‘‡L‚Gò€¥œVAû³:ý©vÚ“FÒb´¥é¡Ý ÛLœÕmhØaè›D«»ûáØXG#ÆAlšy/€ ÎÑ>ÏœŒÎ¾ˆfÊæcß®êħéÛ•}ŒOËfhNVβ˜°o3îgPHîÇG8¥wæXØi³–¹*rZØï¾Óíáº(K,§ö £kO½ÀobùùÞÖ•CØÈ`,Ùã)+šñÖ¯üEÒi ½©Õó>«ÒâÙÖ]”h.ùiø¹Õ¢F 1©Én<;òv¥–¡Ÿ÷âå9´W)³ïÿ“%4‘õë¢XÚ“‹só²âÊ˜çÆ—~ëZ3b¹W¶‰?ëò«òâlBfû¸ü°¤”‚iÂ9ôJ”Å:xäe%…§£vø#5º_Eù <º§T°ý\*æÇDèRûcá÷ÛÚ]ø=)§ñ‡ˆ0޹Âó‚á°á*E³¤ª–iÛUñu¡AªÓÕæç6+‘ª°ò޶•LáÄzg xœf@ÛY’R­ùxÅhI¾íæÝ]–®"»Òb.ìîÓEüÜ'0îºyñŽ–JFÓèÿaO®Áendstream endobj 1101 0 obj << /Filter /FlateDecode /Length 893 >> stream xÚVK£8¾÷¯@9õ „€ $(j­´Ò´4sZis©w4rCñ˜€Ù&™_¿~ÒM‡=ÅEª>—«¾züyxX?lj—YŠRïPzQˆ‚,˼t“hç ïåñïÏßþú´JPòˆ«²›Â$¼~ã=;£å§U%áH5§gÌÔw…ãï\0,°üãûá«—¢`›n¼UY’¼½íMU ®@¢ðœ–%1Þ¼Â~„Ë)‘6N¥tûM€v jZÌ¡vøW#@?9J¶W;'>q -0Lr@2 ‘_?G›Q.PI´•Wê«J£r“®UÆAœz+YņåÏåqyÆ)ÙOyÕ$Å/å¢>ëYátßîÈñ¬*a ?ºsXÔ÷mIÏ¡pú’,ƒöø-í_[0J¾¯Iµ¤npÓ÷)ìm¼×>ÃU…%-cø_s<ËP4”p=åÙÍ]Ø!Ó¶P¤r¢L³÷óèÆQ4o1«ßV¡Eþ=rLÞZ4Üj¥SZÐ,¬:¢y\—öh,žÂÓ®+ Æí¹!ÕÞÖÙÚÇ \Á›ß‚Êÿ]»€“9Y3›SË!Q[“Žv@Ä6’ëù@ÐöG^ÓÖ>SVèü#;Àä"f i;]ün¸õÝ%£äÇÅQ¹p¼Q×)¡Ë˜¯}W¶§^ðÿóh­ÁfCÅpA£>œeðæ jòPº ߇¯›ír$ Ï3ýr2<#s=.f]3-úZÿ–<øÊQ76P˜;–]íKÊràn tð^³FÔòš&0=#®ÑןßOÓh‚©^1bw‚lúÜ»CK«¶9¢YŽùãÖ»ƒ±:›ºm?3:s|ð¯lq5L 5ûæ)df8£pWï9òÎ)Ö6@J Ëeß·ä5fŽÃ½ ¸þòýibGIªr{go‚l‡œÂ"§P.¬ç‹~8©œ‚ ú ê¨/ìn Mv›Ä… Ø ®BsÅ•±„Å”ÿ›4ØHHë_5÷D¹ÊÅA²EÍí£Búmµ‘¾{æ4»>Uvܶ¶ ¾¸ž~·tðÞÕËÝÒªÀ¢ñæ·«XLŠQŽ1¹_kzï°³Êm.ôÂÕVk–VµŽMÒIm)öÑÎ2§í”åúy7NÃ6 ¶(–ïÉ‚ÝÎnÕ±^ù>þkzendstream endobj 1102 0 obj << /Filter /FlateDecode /Length 809 >> stream xÚ•Vmo›0þÞ_ÁÇ6ÍNÉ˪Nê¶tê´uUЦIÛT9`Á‘1M»_?Ÿ &eŸx9ßsÏŸ;ûƒ6º›xÎb¸˜¢©ãGŽ‹&Ãr¦Þlˆ„Á_ç[Â74¼¹xÈ;Çù}ÆILØï±7V$^Ýë‹?þgì \w¸ðÀ“ìò‹ëͼóÊ{Ep*]…ÉîÇiúlhªœŽ|…™0œÄްŝ '¬P§®˜2y×U£žòJ²]Á€ÅÅ–dö2*û©½q@>ÙŽQ.·½»’èÐï-ù½—Y ÇÑ{U¿`ŒÃùd&àJ˜H-1î ƒù\|jMº.Æ›†ÊLÖÙ S¼¼¼náØX·qDcqOrÍ…e`ÍHì K^õ˜¼úµTÛëŽÈm6ó=F/¥àÕYÐ ®Yw€Ã|ªM¡>\èþ|4ïz¶h'ŸÌ#B!q Z¿ºß‰s¿xÁH®v|^×íl:œ¡‰'ô;Ÿ+äIy ž-ý³Wêàendstream endobj 1103 0 obj << /Filter /FlateDecode /Length 1113 >> stream xÚ­WÛnÛ8}ÏWèQNjF$uÝ4ÝÂ]lQ´EjtHƒ‚±è˜ˆ$"•.öë;¼È–\9ì>“gΜ™¡FÊïË“ów4 T¤$ –ëŠ ¤I†,Ëà:<=ŸÝ,ßQ0ljßý|õi¹x»ü%Q[ ¥gó„$á¥[êû¬æ¥9üºxûåïϯܾìt °ù»˜bn¶­Ô|¥ÏÎ&o¹fdíËbùÂ,?]}_|Ø+ò1#¿–ݶ+¦¹Ëò¨ ƒ˜Í1€û8W‹7ŒóÎwçgª†±óëö⎢'Ôa¿²ª’«¯µl Ąڗ­y`í£Z»Q=zÝ„H‡\ñ«¨™&GcVò®÷/é}N®Gš’ƒN·Å :–sÍY£^"7þ_ZcÃN vŠŽéU+Í•~‰àä9‚ñ£õuAw1­ê^®t4ÓuÅîÈ>S»>.8üçÇå“z1!T’íå‚÷âÅ•!²ŠŽú ÍÛ—éÍþ³^sÔÑZ«çèX9?â;=õ£»Õ-[ùÎé ÷sn˜³Ö­¬ÅÙj㬕„ËÛ§¤zWá­šÝsuÀxÁš?&ÅÖp%ëm§™ÒÇ®»>b-[Ϥ4»­¦y&_7kéëf+u]øõÚ<€ý³3S>ã~þÇ£×Z„H‘©#sÑ›o^ˆfÙ8ªæõÖÄšxRF‚¶¼U²Ù©r?_7âåhË tEng]úq-n®øfòíÝν›slöáèÆ‚‹'KüÂŒ Ô¸ dÌy˜’s_îD4j>"ñ¥¾›j—âƒ/‡’3í¯ÚaÛž¼GƒÔİOCÒ¾Sü7ÒšJa<Å7^{:@P”gqÙÝZèxnïdIHºÃ ›Ñ<¥Ó|œ×sã¬E#Ôf"RZ ŒF*b”àb²ùÀ\1TŽ’"s¨70:b‚Ã3’‡ÜØ‘³YuïNô¦•ÝÝÆÙ cv[¡îÝ–âÚsÈ[ÅÛ‡Y’†v¨(wÎZïr Zy(µ§beÉKo6¥gåµ4Á¬¿éF¢Åùˆ0ÀB®Ý¹v%À1*âx\ì¶kÑÀ‹‡š<¤f•BàÃËÇP4î@¶¥öãVæEd¡¥Û‚/R¦t+·±êw`ÂV• Ô13E4vÃy9&…A=8W]ë-½aº·ìg¿­ÕäÇ®­!wIEi_DkZ>0 "v…Rpi?̆ÿzˆ-¸1|lkù3wtÄšÖŽÈéñü Ý⦞4 ÿšå4ô Û·ÐìdaêL;f8܉w1ømê]Ð7þÅIs—þ·gS׺HiÿD¨. ¥Ô•Æ>1Ø$–Cb¯ÜqÉé=.½Š¡ŠQA†âŒø¨> stream xÚÝ[KsãÆ¾ëW°r‚ªDì¼|ˆSv9©’²bÇ¥Õ"!+’ÐÚý÷éžn€9¤Èµ$—sØå¼ÐÓÓÓýuÏLëÛë‹ßK3ÉâÌ)7¹¾ŸH©âDª‰³I¬´\Ï'7ÑG!“ËÛë|ø> Å’žÒVm¾l.§Zë辪±`¢"Ÿ]ª4ZPó¬ÂÊo—ÖFy]æmAÍùͧ[*}CsÈ!;ÚÆF'“$6‰¢™þÅ£FÃT,7™†=ó01qq–è‡%±Ôz2•±É *Ät¬e2 ª¤Œï>›Ôç)»]RŸxØpg¦2•±Õ ù[ó”—5¸œÊh•·7Ÿ®.eôxÚª4ƪ“¶*9i«Ôëm•}ó­ÒJb!ÝWÐz m»Ò.69Û¸‹FFM¾âR»¨ _ѯ›|{Þ–mY4¸»WØ¡¢»MKƒ«õò %¥ÁïËŽ%R9Ëk&Y|Îg-}ƒC‹9•žËvÑ}Ã#g›º.`ú$j©a^ä0ÖÌO¥Œ3Ëȃ3^‘ ®asVÞûºZãð‹ï®/~½ð•˜È‰€]ÊNœÙªl2[]ÜÜŠÉ:p¬³tò쇮&*ÎÒ JËÉÿ¾øap(Hؤd4kiËŒäêŠØ˜A¨ørjŒ‰®ESP3 nbx`v°Jñ¸ïü*ˆäÓSíMðs 4Ëj{aL3 f¬!gÈǵ—¢¶ýnj=Õð]ý…Úw·Û˜Ë{Ÿüæ£ÖUu9…Ú¼XR—àºá6ZVÓ%((Œ*–傯óW!kIœ:Ûéâ?÷uÕÅIÚu_íLÖÌªš‹¿¡–³¶ªCv–‚2•ÿìO25ȇÒc¥Ê×¼-<¡‰~(š¦Ìy3`êòsº@zóú!d~"“]Ä­¿ð"Óƒ’Ébk’ŽLhEl^²Ø8^Ѓð’¤ÎÏ¥dvö€˜2 žÄšW÷œS.ŒÈ* QŠÁÀðtHì&0#¼ëeuøAÖ‚có-Ä ð ¨i`¨!¹‚~›~ð|Ÿ˜eÚÛÇ":N“~L»OCÇ6K4$þ» õ;ÀIÁNfî(Wî®Ì \¥C®%’4¨ÉÀ x6ÔdsL“µÙÑäOaMNk²=I“íab¤DšlOÒ­H¥CR¿°V"•£ôjÐÀV+au ~­!ìˆs§b¨=îϘÄÎeC{ XS§¡š} Ts'¢Zz>ªØD;Ó;“$À÷ÙâG(‹ bÛh¾¸}Ê÷ZýÒ^à A!Fž¬¥£ÙHM_gÀåƒA€? ¤¦ZA\—žºX{Âbí{afktV`bç˜5äž­i ¿ÆÉÃèdãÔ¦Ÿa'Ç1ó¬ÃØqÌ4'a¦93Í›cæˆÆi&ûérjSR¬³Œw¦³ €¡7à#g™ÄÄ6ŸeÆ1’Ë JÒcSä;»þgðW @0:EÓ»ÒJåÚL•‰–ûó"Þ«Ww0ž¸ù8µŸ‚ËL¥:M¸‰GÓLȾèÉWzH2ãajˆä¯°Põ&Xñš`~ –§¯åéùw R,¿9©—À\óÝ[uZèNŒÂÔ…•ÕíMm#²¯ñ|Ë€°RøJ½™¬–¡5 û&zu{į pÊðÙ¿.›}ijù$Ö‰0ˆ?Àµ ÃØX…·úéa×+ý£’Ç9ýþAë9§ó€îÿî NÐjC8'G¦ë„2~ÁåakÑ©ð÷ñG¬%Í`±êXŒïShAü©;Åy¯‹¹Ì ‚O qªÏ8™¿3Ãiü^ßôµåû0ýžN‚pT 8pXé/hû;«¿ã‹„ɺ‡³,ÊïøÝÅ¿Öâ[L!¨¹|ýexcƧ*`ÔD’¸áwA`‹ù,ˆ'z}êºæTôSÁZêç²)®B‡*+¼iНxÞy[ÊF|—ÍŽ Ÿ¼ æ¿Ù€\­>3fûÙ?;• ¿|Ÿ²Ú¯%À´Öà{¦O‹nO<ø¼ŽUøu"èª÷¬w)pï}î଺kŠú·Kë"ÿÒ1åµTÙ»}˜ñsKù'ci¢ºl‡-Ö¿ó†Ì,EºX|ŠÕ)?JËràíÐâÛƒÛG†ñ"^ý5y#‘ÖHhxöÌv玡uUxÛ‚Ru¿óÁ^ÎS|A¤S%Ò8ujç=tVY¿°MS®€n"£œ~ÆüR[u~¤MœÛÚ4 Yh~¿ìOªÄ‘o q`ŽÐ ƒÔ¨‘í;oûhç©8dçBÇNö ùiâ4êõ±çÒ«KÒ¥P쉿ÀT™Dl5b=ã±ü }x‹¤“þ1ŽÓqÖN¢{CÌ[# z±x¸mÊFè¥VÅ.Ó§nç?]m’±ª^ûÌ•XÊi°lÈÏ`£—8½ÂwRzEÒ§Wpóœ¿Éé§YåË%uͪÕÓ²œõƒnµCõ d‹d7˱GÙèÇ÷ã AWWðB æ1f' Áç88Ý'r8Ó¥Í@c·8,{“†Þ¦Zñ'OyÝ–3˜·f„QEêÎúÔjý¼(Ö4á,_â$-¿ë2&<{ëjU®ó0¸Jgb!å{­W¬ïšäÓ)œRU6ޅ߇üçš²Ù¬7TÐ"°U´àÐ:›0ç ì=£-ñÉ©^ÐâµŒÛ j*׳%8ŸÈÔ¯i¹ ­D¼+Pï(}Ų=ÔZ X¡ê½†¥¸Éu¹pP÷Pá ™SqG6¨Œ"¨†@Ʀi:V¾M³É—œVF‰wÛd1Õ¥'m‹e—SÖ”A´¼¨—ÜÞæ‘Sµâ©¼fŠr4«ÞÎ 'S7í`6æT}ÐÄàþ7M1«Öó«P*g]©Hî|>Z(ZC=ß&Õñz`zJ+SRbËýˆˆêE¤8­åF©‹ÐJ®³æÑ5ðU­|Ú"Ôîêêчþk®3œcÜâàpiìòrN´$ÿ D•$WÕf{$ò>|Í“ÛHÄHŠð|?åAΗìó6ÙïW›%'Wnw*åºÎ Û„ ÝÐß>Ò1:Z䃓¤E{‹9š(†©Œ¶Ø´»§žeV( G¼›ÀýZwéŽ;zAÙŽkÎãdMÀôbG,Ðqœî qÏ£§O_}ì&j¤\‚~ÕCó¡0#äœIõ„ŠèÔ‡S«mçõ±ƒ3èð|´çwK[Ã-£|ÖѳG6t ý ¬aP¬ ôËýÖA‹·nÑ‚ohóåþ*ü1 «£Úý>lòºæÜÑ¢˜säHâÅÄP:YŒš6wmÏ(F0 o:öÐá› [QÉëu¯öƇZ{¹çØÌ[ï3A‘1ö…zt±CµMë#µ†:óî“'²Žw¬˜Ç! þù2Õ;Ç.“šV •ft·MmIÆ.6ë¦åý†š#øeL‡qzµLôÁ+©ACî þ;opüÒ,ú¶˜å›¦öèŸiqÕš©Ë|PµÕž–Å<λl”çòMH¯%„W½ÇE÷ϘÌwVÜÖ!ƒ\g&y‰ëmæ–¨:ŒLп—Ç.©6ãË«¢æó® ÑónýÂÑIõ–¼=‹ (wÞ*몥+>U ÊÞ<,0.·&ú+µbÿÄçÝÃa¥;hd/öa†ëÝ@1GëP•Q€yË%™ØƒA6,ªæ©ôе|N S£.â°Ñ-¥$þQjã»6+üÿ®¿hÃN”%§L8X”÷-;·óP4Ô€¨ÆüápW~è/`Î,„ç[¾õ¼¿’ÄvïÎ:Ðq :5ˆx;®¬ …Žõnš”A¦B¢èŒº?kðƒÌJã°¹›ßhýÉö0Àî¿À©lÖ~Â…®n’í…¤î(zY´Hø™½†Ä]¤kÀŽç»yò둆®@Ñb_st9çÞê¾õ¡ è*!¤¢¾Eµ©©e°ùØá7¿¡®À´ÈçTñ†Rª"´_4aÙACw]<Ôô,Ý1Äÿ=“_-^~ÏÊn÷ÚÒ[†–àÕ¨ù‹7é£b)9T‘S…²_ÚÔ|?€”àk9h,ŠGnFéuWøù¡M AcIÝ !¬¦êfÎÛHðˆ¤Ç•¢Íа-z$%mƒ³/wÆa¤”=æ.À9Í%»WÂÃ@Qú ¼LD™W™Üb‚¯å 5G€êL°Ï¥~Ò o©™¿[ğθäІ» xkÊ8¾çªÎø›à—ÊðžÛì{•ñaZ‰^¢t£ôjaˆøˆ3²h±ó@Ð0;Mÿ(~pŠ®¡“Ÿ6Ýëæÿ2»£Nendstream endobj 1105 0 obj << /Filter /FlateDecode /Length 1798 >> stream xÚXKsÛ6¾çWèVʱh¾)6q™ifÚC:Óz¦Çˆ„DØ¡ ùõ]`”(SR.°Xì~û¨/wn¾.g…_dQ6»[ÏŠÜϳå,Ks?ŠÓÙ]5»÷Z^r¥X÷6_Æž?_$Eäý#Ú’ÏqxBØÞ˰Ò(5µˆÛà®Äçö™unññãA¥â£ÀŠ!“×@EáÇy6ÖÚß‹”m4N\+ì$ÃîÇ÷ã!îÇ ¸——qY²ûÇŽ“ËwÌŸ& ,Ju­ ò©­#¬&»bÈ®pÂ7;ÞÁ38—Ÿ[¸Tª餯¢D/ã³¾ —±dG©õcÅÍ[ØšŽƒ‡ðô¾¹B ÝâÌ6;áŽdŽ_ý€Ö‘æhÊ3T¯3m (ìdfuus1G.çölÊÝF|¼Ýジ^•Ę£>š9A\#‡JÇA®×ÐòG"Ï&Lv9+\>á¢+DÞñ~A¿ ŠÖ<)˜Nö›ú8JnR1gÀº“8 ŠéÕfl¯OiŽ2ØV²Óá}@ŽÙÁ£F«±€A™mÃæ+Á,”–;Ú[~MD+,|8:ØòWM¾ïŸw„‘Fn„,T%\½%¹b/˜ýN5«Z6ø<{ D¹°âˆW)Y–ÂãD驸Ç#Úê5úÙ¸ÀÓ¦Ó{åÊ')ñE˜/ Ìb:a>2xçäLñÚ`ÁGì&¿’ëÃråƒÒg>¡Õ1ѱÁ­l.dÚ¯Ù3?Žìo·Ûsà-GQê†äì•Ë&xâkÁ‡f»¤ã ¾Ã€`]è8â…á¶8é‚ýÅ%ó‡¢ýdž³soÞ`ñ·¿îÈ`sô´Ÿ³Ú4̃(¼Ã5tVÎ\=5¸Øô¬ë¤7?4þDš“ËøÈ9ƒiløND.ÊM?_×_˜%‰l6²ƒG÷–²x+ëÇ]¬|Ïjð{_á-™0 [^HŸÉ9üëe¢VÕ·â¿ÞµbxÅ×ï:¢fO.¯xyu>?Ê2¹ruÒŸr»ê·jïgúÑq-¸«O}lÖ!LóŸÀÙ2wÌáä!7x"‘\—Ó)q3•‰ÂþQuâµi‹ÿì{´â­»þ†wÞ蛵Èá«6™Áû¾ýðLœ¾¿ß}øœ,|endstream endobj 1106 0 obj << /Filter /FlateDecode /Length 710 >> stream xÚÍVË’¢0Ý÷W°šêÖ"BèR­›©³vçXS(QcKbAÔž¿Ÿ@°kj^«„äp﹯Ÿ“y€†ØYl߃€â`¨n‰³|LiÌ©ŒŸ\ÑãÌ{yZ-¾:žãú> È`xÆò×a½‡[‘éûoòN4Ë/å‘~œòsN“uï&sÿ¹Na@|eU[ÓˆFx® @"Òô{2¬ô’‹LúKíoÕä‰5žmo4é…r¹<­f3¯‡UáAV‚£Ž„ŽÇ‰jdlx«Å£_«Á¾Jòå+%ïòx¤—+e»½Ìû¬%”‹´é»pp¿¤¬ª&›òKœÙ‡ñ¸¯ ÐDƒ¹#!n(^²Õ{‚£PNÕU_` ²‡Šìa:cv{£ê(núM ›4–…ƒÃ÷f¨¨´w»ŒïºÂ/°ÕÏeïöôÎÄ™ ¹g|§R‘QsLi’ë­z]›«Dp³«¥L°X›Íhr7ÜO‹,=æ´ÃÄÀGp°-’¯Vþ$KisÒ¥8õõ‚JSÇéÈ$/?¯eo¤‰ý,m:hu iRrÝ‹Ü^È8³àŠk%¼2“sØÉcÒ¥KþµÃÅ“78Í[5ë¬\Wõ«þÙ#Q0¬¦a¢všß«)\–®º]Ó2;ª"údzËÓM¢Ö_û¿@®{_0ÝÁÄX0ÝÿD0æכ`ºÿV0Ýß"˜uù-…Aññ؈ôt–´5µñ…fñŽZaTO¢Àä¾Ï¶Â¢å”À´…6¡±z±¥ Eþc¨÷Ÿ 7X%¾ÕÜ–}ùO é$©ÂH­>XA2ƒS‹ªYicGj‡À ì§Äb˜,˜€è˜Uým&ø÷«üY,Fúä/ÿ|ØYRr·2Œ&ó¨n1xQ¤ú‹¨%Ò踇/‹‡Ÿ†æaendstream endobj 1107 0 obj << /Filter /FlateDecode /Length 839 >> stream xÚÅVMs›0½çW09%vÀÂ×4î¡3ÍLzéÅ3=¸LGÁËØƒä$½ô·W2B6Xà2ÍIBZÞ>­Þ®öËâjöèVâ$¡Z‹ÜaàD¡o…Aäxbg±²–79­oíÀ n~º»™»Ÿš¯Íyuû1Š]p›.¾ÍÁý)¤ç:^[®kL:^í$qü(²lœ$P^³äÞ§ËM*]ž»]ûBšX¶ð–xÀ°Õ÷y0ôº†+ùš)wÚAhC9¯PÍ(QÇ/¯!‡K|Óvy8*IìD?ENì÷ÎR5Èóf`´æ`Y¦]ÂÊçG¾ŒÓjY¥ÍÂC3p¼Cz‡¯çÁÒˆScVv¼¢·Jb"qÞ*="LšáábÍ™Ø2¢­¡»Ærªð¤£-‘;Ó©ñ:vÁ ‹ÔPÒöžï$Àp{X‹ŸŠ¿»ˆ… Òó³N2*œJmÄh0ãæø<ß,“äeö4É3î^Í7šJïàÝ| /åV zA„ /ó9r‹Û GcFN’¦¤íé@93Få5%¿^¹!2£ÿIÅõÿº öÿ¤º°{?PÖÍœ÷þŠë÷{àÄ÷¾iËýW…ö*~Éà ê·ÒT=fSÔ&ªâ=)™óµ‚˜5,®IÍän÷jm •` Ê9%͜hÞZ‘Õ]3Íñ›R wƨüPv{Æ[.¯® •oé«B"=Ö¢¬+g{’qÜÒ’’ø®ÂP«O„£­VD/ü-Á_¥ $Чj+ãmm·êBB†¨%¹:úsB[ X"¢yŠÃýnãÇ Ów‚º¡ÖAÈ CvF×âam*(_zõÜî‹1ÎÚÓµ9C½«³«&«&ÅyX­Ö Ü#T¦=fÙ¾îÞâ5-¯›ÙJô!wm{ 8è€aåh ëÕÚ½–fæ¸Í.5ð™ÉA½ÊǦàóÑ„‰ ®´*|‘ç„®7ÞÀ ãó ­Óm~Œ¿X›‘ó.#¼T¤÷ ­zUZ·íÃnwýË+G»ÊÔAÙ'áºÔ,MÔ¯ë#ßšÁç"Áó4`;{ŒOÉQzƒD”àĉã¸ùݤáÕ×ÅÕ_Ï~4wendstream endobj 1108 0 obj << /Filter /FlateDecode /Length 690 >> stream xÚ½VÁ’¢0½ÏWpt°&J 5ãa·jç°go.5ÅqŒ£`AÔýüMè D¢SVÍî‰@:¯_^º_ø¾x_¦‘Ç£„z‹•‡Šh2óh#¢f¹·­Êê1ˆH4ú5‰&›ùä Þ6ÏÅ1«Ú—ñXÍâÇtñ3|Á³>$™ ÂobÀ ÄÊ0†¦1õŒ‹LÖ·]&—"]nR9$ßíŸôr…5% ‘ƒœʼnb£¼7Ð0…S¤[Bv<+¸Ì ¯Ö螬Ch2E CDè»öìûê[žÃ âõa+kx…,at€GV˜0¡´‚ÑùX³íüÈ‹¡’ka¾H±ã0Ú— ßI*´¾ö¤9¸ÐœLÎ3¹®§)ô©á`g U—¦÷¼ªËâù£ÎŽÜút½>)Ax†oÖ§šG3;½Í±.+‰—+uïkÕ±m”^îÓù_¡•$ªèMV4FŒEñÆã'×9 tm‚ý—ë25­¼<üÞò†Ñg§” *çE¹3§ÕõžÏWUY¼ž¤¢à§í VF'.ÞײVÒøª›ÔÃ`ökÈß–ï [¢™ž¡{-cU†8;–è;–ørÇÒ;¶UÑé3eLCa2íW:˜çaÎËÆ¬'Í[©ö¡ ooCƒJ~Cäó–é[ù\ ÜsY¡öå³v&u‡Þ ¨ÞŠéÌFГ¹¥é¹¹(h°p„(ÃÉ}y“­´ç•ç¹´bëüèð¸ónðåÉlz¯·÷=¼ÃÔOë*²ÊTˆæ™^«×ˆjÀ›6K˜½_@½4‹¶¿»†6·Ùe„¹ñ®Ì•¨?n®EþÇnPàóÂý÷mêz÷ÊþÓ¯Q|í×Èý£1ùÂâMú|cŠb¢âCI’@Ü4Ñ??TÐendstream endobj 1109 0 obj << /Filter /FlateDecode /Length 1861 >> stream xÚµXYã¸~Ÿ_á·U÷´Ù"ugÒ/»È yêE&›€#Ó3:}ä×§ŠU’%YÝÈ.&€ó(ÖñÕA–~|üpÿY†»Ld±ŠwÇô•ȲlG‰PA´{<ì¾x§›_ÿrÿ¦Bå‹8Q;Ÿ(îooö‘ŠŽ)Ia€1šxL1&jŽ˜’#Ζ3Ö*ª(A8ÖªÔ{±ÕÅG«ªì/ËaÁ ÏSU¤ÉdŠ>mî¡ü´Ü¢L¨8˜ÌÞ¨È,\¤ýnK‘¤«4–ý϶ÅÁ!ÊtvÜÑü¹°yAÃBw48Øãr¾î§KÃa‡ã¼EV//ˆ+0f:¼F¸ru8o°‹Cfá{hì!Œ‚8]fMÙœJûí‹ÿ+iú@µy.¿}‚ 'J¢ N?¹¬¡;OÓøØ´+èhúA—)á°¶œU›*0½ D&—Îú¥[kckÛ»LÅÉ“øëœ· &[ûÂô ÛcØqz¤Ø*v`cŽG›ÛɻۺOFÿì³þ'Öä5È'?®»<ñ¹‘©Uôܯ¦×_ìܳžÿn{ÇŒ"øÝ×îâA®Ÿ8I™¯ÃiÔOºÌñ岆«Ë›v\3Ýw3ÓMîo‡Ñ=?èæn7¾)V™lðïVAõ–Ö¬ï®Wˆ°°ÂkN{,õiq /šÒtß^Õ?k…Vߺ—ÿD²‹/VÐåE×”OæÂÂÖD¿•ïOŽb`øV<Ðìë+'ÏXKlýdÚÎ8~ÀW~ãì¾ír ö ^–@ÄXWDúV_Ã=Kc{¼ÈÆÌÃOØ?ø£ÄU‰KS8=]ÇÍ—À³?\0ãM@|ŸJ|„zÓ[¥8‰Z–âÝ> E$W·èVC²RƔ١b!á%ý4>Û×Ü/çÃT °ò¼•jµyY߆[at{Ë^ÿ«yΛ ‚Øò ¿6C?n`øžÌT™Çk¢/,ׇãåîzÃ5bº\ªs3V·»õ£B….ŸàJ<},4ó}̢֯©Œ{9Ýt=AqQÏ\ `k–×Fo+#6qù7ƺ¯…LRYú®ã3h,’d)µ)[w ¯mV‡wè9Û†‘ÁJÕÍ{Ú(¿ñ"Òu Ëå£ñѽؓÀû‰ž›4©èù~0%Ís¾ó¨U†&¢Õ­Á¾7O¦ïhd©‘ihæ&Cï¶\3Ÿ”X«÷^oÒÀÃ;üÑ‹Ýõ6ЗÐ$°8lfÜyÒ˰<Šgqhny*hÿK`êúí„»åÚ+§ ³©hÄyç~vKýV£bfeø„D•ìb‘%Aꪗ±„‚Ëh$‹üYINM¬ˆ³:û õÝfw­’àwH•¿Aê>„FÇô9a7õ48¡Îš½Lq½Á ÚzEÚÝæˆjA.mqƒ)2z.RÄPPËH ¤«Ç-<Ýç[p‡IŠ]ÄCSSYMñŸî”ˆUF‡ÿ±å^ŠPA]¨.€ÎA"@sAßV(w [ƒ#Ñ¥{ãvÖùcDwyj …)*šÚŽLLáÇ ]‚ãR/öú¾÷“Q ôÍ™ÅÖg0Vù½^6Ó ßÙ¼ \Ý×mO[ô±ÀIäÄ1ô¼ØRçCx¤àókK'xƒ‰4úñɼü] ¤ WæÍù€ýY*l…7 Q‹èvî“à>úÀ63p²Š€ê6î¸RÈÿRÕ¯EªÐEîøb©ù{]ªDä«e@O!’%—#ÆÕÃy UôµF­qåjúläBÈñÃßq(éØÌ’à K”ŠDvAï´ c‡àûÎÈ®(„äTGšÒVáÞ‡?=~ø/Mš»endstream endobj 1110 0 obj << /Filter /FlateDecode /Length 2213 >> stream xÚÍMÛºñž_áæð*'+®H}7ÙC[4hðz(¶§4(¸6m3+K.)­ôÏw†C}®²È+ ´‡] ‡Ãá|Ïиuû¡Ø”¬ÌD¶¹?lxp’n²4g"N7÷ûͧ@°m˜FQða[ÄAc¶¡HŠ =é-,-juõX£eE ²­>ËVÝÀ2KƒÝ6äAs¾tpªU=TÍ1¬ôãVäªô©làÿ"Øûó²Þ/ý=≱--†m«vMï•ÑOÛ4 d _2±íçûŸ7Ñ&ä ¨ð Æ^Á{TP!Ë8ã>Ð×]ˆÀ e1HYôRÅIZ@$£KQsj´G n?ÄñÔìEÁ¢$¹œ<¨Œ#šºFD,áqO2 %{y{ƒãJW¼º§n<ÍQÕÊ—÷‰¾lQ¸V]Bg!°OÊrQÀY™zCdõ¤ë#˜+‰Óàc '£ÌË¥ KÛ*CÈ´j¶ ^¨ŽÑíéLÔgI·¯˜£,Y¥ƒ9.—m úá?iž[&L¤|°LC·äÔN¤©SÌÑÐ]Û ºå=­mª®Õ×P[2Šˆ9\•ÍBÆãÀvF1'Suˆ˜B.£C¼ùsM\ìâÙ¢BqÕv¦&܃‹:ÕJZºèG€l Ä€|ȨëCc BP­çR†tyÈS¨¿ZH(–no*S”¢Ånh½ªÖÍâøº7 íåTSC¤ôHåñ¿¦³檭ò÷ï°¬µKÃ×ê«×øØ)ë3ˆ:ÕºmGÛæâ³"šÈCôÌDý×s9yÄr>õH£ é ŸŠ f9Tj@“|ta:U:gynmÏ«R Ui¸ñ,÷ŠxB<ÔGK°óGc¬ßêzÀBµ!ˆê –Èßy/ñ©RiÆò8ï/ÁºOTù&ceH”1žñMÌ2žödiä™Eº˜ñ±Š>>ç“°$Júý·¸ð3ÃmE± '×Ýy[Wû17]͈#0c2/o±§%NÄ:œÅko±ï&‚÷®ã½´¶;_¨,áS¿íI¶=äIw1Ê•»–úg‹ˆ\+oúl’®Ža½`côñDLú¶‰Zø¶×Fí&y¨[Šã/ݶo'´áî¤q¡>´x\¤a+R4‡<†Ï,æ‡Üô™$i¨˜Ô‡8ø‹º¶MþU^NÖUxÁÄù+XÊù¼ZD"È3}/Ò´z×UÒTØ`Oòâw» ùü\‘$¬ÈóÑ@Ke¯Ô¿±ÞqËyጢµú*ÄÀo¥$,/ËYEÄ @I¿tÖë! Qé¶­¡tKÈsƒÃS˜ÃØþ‹¬‡Éf®ÅÑ;% ìBrýu-¸EÆÒ ’}tI¬ì] #dù›„€çnµþ‡üµÌ½ƒ®µ=­9¬d¹˜;l– K“ÕqE¡hîÄ©¹]PÒòý,p¿c>ü¹ˆ•ùº‹rs÷#Ä4»Â²d\ßç÷™€CL|OÄ”iù’ˆ"ee"j_p’tÁÛxLOʇÒó›¹ðÞyòR©ZøYÑw‘¯ú=fM¿Ëþv\ŠEES~ÒŸgɈìðgˆéÖÛÑò€£G"n…¿èö ˆ|˜E`ÒWÐQgU·/E|ÂY‘Ä?‡Ó^­*«V3”ñT¼ä¾ÞiñªÕÑ”+öBff-Z«ô»“mª'5Ö4WͺYsõ¹s¯à]xÕ.žîæø‚{…o扛=_ýéþÕ¿±l‡Ûendstream endobj 1111 0 obj << /Filter /FlateDecode /Length 1788 >> stream xÚ¥XYoÜ6~ϯØ7kKÖ} q‹Ö°ô ’Í“´ÄµhëXP”×î¯ï ‡ÒJ»J›¢/9çøæXÿ¸yuqD«ÌÉb?^m¶+/8 Wq”8>œlŠÕ­ÕVÅWìV|YÛ‘Y—ô1´·ë/›ŸVîÊö<'‹Ì•à§Í›µí¹‘kõ_“ ¶Äøp™›ß¥fφgÞ‚ìËc¾ÅxÕqb\xŠïècë‹öÑ“7^8q®í»Næ{s5îµnt䛣øôhéÖQìŽìûøçUÉóÇÏ—ïÅ¥ìw -DÞï_¼Œ¡ï®­„2kÛ¦o! Z¨Òœô ’V¥P´È%+ûê{Ú½¾øOÖcÐu|Ïs4ÇÅkÉU/’¼mÍˬiA³%S¢mæÏ§Ó×]'ÌR­Dšø$ú[û©õ„À2?‹-MØã½z!ª6ÜÏ ^ذŠ6wBuçk;p+oë]¯ ÓÈ-#>±¸ì ±ÝšÃš)Z±¦ EA±^êš+)þd(ó„ägƒš×­|9\×0ñB' ù{ÉuÎB4,™ã¦)1–&ñ„%OECØýV¨ÐÞŠFt傼8s?¸ÅBXQÜÈpI:'¾ã‡G¨¯ÚûJ<ÞzóÔjø¾z\Ìã¼Í“ÈFŸžö'& è 7FéK—˜ EïðÖ°yóFç:^_îLÆÃ¥k®=¼ÃÊ DCÕ *Ü>Ì­Òä‡/c‰sÄœ r@?õù·ß\_mð©f'[ÅsõUã(äÈ*+Ñø.nül ÂØ× A‡—ßIbs7m=Pëª]žõ ÈKl-|=«€zy£ô @ÙÀ@"Ïù y!rÅ ÓõòI<­cß‚:IO4"u‚4#)È¡… ãB(0y*+È`‚d*AÈCL²(£¸ù± ®?`*>Ó¦6¬¼"fð5úœwÄ"šB<‰¢g†Å˜EÖ@É¢s¾sÖvè»ÖÔâ¾ÄEÛ;-š“Xþ¼£­v˜†B”B>ÇóàBmÑ5 N¬r^¼€RãºÏñoI¨@ú õ©nõ:¶öB™ÓV¢aºŽýÈ  9GÝ\S©·drx”5C¥D‘[b „ŽÕã$Õ:g†ßøz;LCklÄ}! ü\òF#LKkgX˜e§ˆªJ¦ˆÌˆ°; ©d—v›RíÑJ*øF°ä[(ÙÄ®ZÃgÔbR‰¼¯˜$rÇÍc`ûRuj)LèW)6‰ K ¡ê5Hâ ±Þ+l%­92Ù”¨‡çÔy[õuCë-]èrB]ò["h\`þ‡!šHy«_ƒµŽs! ã³`˜&ô]ŸŸ*Ý)4Ï2ø•ÕJcÝ¡È9Í‹åøÐÓ3E'sƉªQè$0¸RK»eÒ—pßîP‚eÏ.¸qaSŒÙC:"² ˜±)dÝ’²æqRÖôl…U! ¾àÚÄ™j,n#œS‚s:„ÿ î4×& ˜4‚E‡âƒ3wÂà‰Õî_ aÎÒÿ§êØ ‡.¢’Þ˜i—ó¦A§“lìÄÑ8ð ]Ó\kI$Hø9H¡~ɺÖa,Ë<öŽèÔop…äüNÓ;'âØðl(ÞðûÖµÚ^tUv¡* ÃI_ÏLÚ@¸£ÎûHQ)®LóÙq/­wPVîD%”Ñ_×êòXªbÈ|RRv‡6©Ç†y'5ó¼éŠI®ÅdN:üò õo¼W×›W1Êòendstream endobj 1112 0 obj << /Filter /FlateDecode /Length 1821 >> stream xÚ¥XKÛ6¾çW¸›ökFÔ[h÷ ÐÇ¡h7§dÐm³Ñ ½›ý÷áŒdË«M“æb‘Ãá ùÍ“~}óìå»À[d"‹ýxq³]d‰HâtG‰ðƒhqS,>¬Lqy{óÛËwé Ÿ Eäg 8:Ý–*ו®/ýte/×A®T]à Xé/V×½ijšn›ŽìþR®4M]˜;STILªÛFq }±fk™‰È㓽*™ÝîYN£î±ˆžÔiZË›ªÎc^<¬*m÷°ŠþŠHÞêáøÍû^—--µj§{A¨Éð6o±ö¥²Î¿'– >a DšD°ý¡»Û+òæK»Ÿ‘g"ñÃÛ°¸èLÜÈpMP&¾ðC ”"‹¢9MëÈV¿¬»ôDO™·‡:·`Ð^ä9«C©®hO­ï e‡Y¯ȼ¾ùëý[¦äM½¦¶× ŒIGÓ_¿{õÇßÀ‰Z#_^8UkZÍ›îTG3äõ˜-&6§W¯s<àEÙì.xŽ×§sð[S³º©õì‘S¹¬>/nºÓÛ˜b–±VB9|®aÔª¾gv! Ÿ±£ô#ðît°ÓvÆk'"H$xP 2IŒoœÓ²±Ü·R6ß‹èx÷AÝù q߇òövºYõ¢V•v¨±C88.×H«çµÉÑû‘µ9Øö`iì".ppèoÆ4ÍæÛ©Rv ˆ³fÏ—<_ÒêFç ¤1Þ¼u¯zV؜ܚ}ŽÎýDð¡{*öÂÙØ[÷ÚÚ9ËyRH/ž„ ÜÙ E–N1ÿN…î¥Õ‹ HÎ5B˜úRþÊ­©M¿ÿ1•»Çµ +däOSß ºŠÅà3Ê@WЬ4µžqþ4xcVz2´KZ5uoµâc7["¹RÜ °.ÅPÀGÁ.Cèe+ò/7tá„;,vp6ÆMLÏlÊW>дu…Jº·Qµ¸\lj\ýº=Å š&“*;^™¾7õŽ&÷ÈÀû1ç’ø{x–®)Ø_TZÕýcÓÄ‘HÃôhR¨œÒãb z ½UèÿŽzw «ò áVajxNdËñhûòqîAec™mƒ”Þ*kzkr×c äû¦³Ð À=]y—à PVLÙ§+Û2Ÿtr7ƒÍC’®}sކ×Q*nt‰¢ÓlµA÷ÂwtøŽ=Òø;´/0l•»ÛçKp+l'X_]L¶éLÎÛ[k‘ áŠ`ˆN€$αÙcfó4z`ä#ð ½;ò'΢€Z)d9z LFO±ËÚ8 ßÃ=mÛ¬ „œ²LkjæÚ:™Ý?m¿ˆ€(M8ÞPŒ1ûˆ8\;õ$x‰²sÅÏ8kg¡“3Ó1IáKñIçuê½> £ðÈTA1T ~êîŽvJ¥»ÖcÐfGѨÃ]´¸þôI¾a¹|¬.MD˜Žü΃RÆ•À\® #Ò a&`L5s&Âùþ˜ÃØÝyÓïªÜ€GGjÂúÏŽÓEÔYÈ3(²ÀÇ|ª,-Pï‡|< ¼†ZVºÝÓÊIJ×oÉÎÏO÷¾R¥®‰ænyÀœwgÈ1KZ8eÆÚ.b”SK×~»í¤Í@20n}d•®TNDDÔ¢»¥1§rØÄAìÑ¥á§!i»ï™sKÔRm(K^ =vš³‹Y]µrÖ3ýxìGèÅ#áq¸‡ ä çÎg0ÍýŒ(zcì"·©óòP¸‰s³ŠÈdZ m09%«ÏnꊞÈP\6¦4–k'n£ÔG’˜T4õ’‰`º¼êå#7»']i’¡ òŸ|¬_Î|_{sÿçÍõ]}ß7<½¤M€V(Í–ZWlh~2Ðܨ{WÖvøåBjuW O‰‹¾Õ¹QeïúóÖâgìö}OdþYcu¢uýÍФ2uáü¤ãgšâAÝðúƒæL®û~xίŪ)œûâøÞX¦*îÓy3^áb<æz8§kËåc0¸¶àßs§w<3G–ÁÛ(þêû)IE`L@yNºÞŒñãÃP§Ü{§æd„êŒÙ]}.÷PˆN^;ô$u‰~|vn\~¼ç³ÎÅSo74¢1óî;qª)WìpŽ'›ó•Ý~¡„6ÈŸF!X\ÏÉĆ_~Õ‘ðƒoë3¢m e(߯[¨CXƒF¬Ö‡3äø¨±ÁY¤,xñ×ëJÝ=‰?(æp½W<vvyf‰‹]§u}ß4ŸÕö»Ì㜡?w¨ÿ0(½è¡UÂàܨsFþ6§qøÊ+ÿ*¸:ùE† ·3ÿý%±H|ßå座 ô‘ñÙÛ›gÿ—(_kendstream endobj 1113 0 obj << /Filter /FlateDecode /Length 1589 >> stream xÚÍXKÛ6¾çWxÝEVbF$%J*º— "è¥[´ÀfŒMÙjeÉäõúÛ;CR’%ÑnŠôЃÁ‡†3Ãy}Cÿðêí;Ì’&féŒ2N6aDgëÙ£·Y<=üôö,{º%óŽÎ–”’$´„YºX†,ô>ú¡¿Ëê:+68}–UsÚ+˜RünC©4$¾ˆf¾á“º&¡ ´œÔï–f¬Õ³ÞÊñ‡Ç¿øb*¯]ì˜ 4¤WµÁŒ–—0dÚíÙPãZi¾©”*Že¹ž¿1Ûs)sUt+•Ve¿jêL6Y=o-:¾›Ó4;Ù¬¶Ú;8!²:÷å¬õC®ãµKʹÇ-›ûû@Së}»×Êg_é N:•|S+’fM/vU)™^^”…šî!Î|íèÀ`MÎñ™º ‰(8þïËÀ^¡ÔÚÌšÒŒ•jªL=/Xì)³#Ͱ*÷ y'\…^™Úc[KUVÙ&+dnVkÙH²X Á½ßqбÊÈC"÷S=QaÛÆ4=SžûŒø³6¨Ÿ^râÇ]ÔƒaªìÅÊ+ÖŽ!' f–þ4e9°ö;D]ÀïÓb J—ÍV{kÉ㘄T †FáQè·Ù ¯¸Å¥ô}Í7ÃG™EZ@C=Í 3jƒâMhf%œ …÷‡Z5`Ó0ò½÷鈸·>®V2Ï[®«ü°VV†Êà@e”ª› Àåx Ç?ú”תÑKô¥+µŽ:&²ÍǼGÑ6<Š‘~ÉE¢SG+gjù8!\tžzqE*:W—.”‘P°+΋ufÚï²RF%[ýQ_߃ºµ3Û]È Ò*;÷ã–Ǫ|Ùo§rXBbÞ Ò> ÑGh—ÆØ½ £H©`­r³N+¹SF­c–ÛM:ÎXº„#”Á\åTœÅ =¼)Åjž=,`¦Qk™€Ç˜†Ü o«²ÍqÜi9j—=¨ð í3¦ü„¡øx÷r÷45 ŠÎt(£äÚð.]x„Éó­#0À IÜÑ+W­æ[;ÉeÓèà†¹µ$Xe™yÚ¬+R ­©ƒ¨9¿œu!÷’«g¨ÎS9L9ï£f·7%£€ÀŒ1"tŽðà‚¨ºz-A êôQFmdôA›ˆç… ¾:nm“µJå!׸Eȸ¤¡€EØdÖ~67¸8·‰£°óô?€†D'ÒÊÌaïj¹|ðßYærp Z‚{ãRês"X0,Ä[YSà† y“Õ¤8ä9ÚÂ¥ÂÑÆÄή¶Æ]½W«LæõZâÖpú’ŽãŒ½e{ê{€ÏŸÍ8!zÔ©ô4 DA®Æïf*«ýí sSOxŒ”Åccã¼~}A¯³‹ÿß/5l™¦àÿ»–å…î›ù ¤ApµmiL f{°]:j’J¨³D—Ø^£ B¿ª7ÒFÒþõÃ( Øû kzÈÍ~Šx©-nÔ„¦Vª¸†RÖÂg<îÝé0ùt'`K¥‡ºÀºE˜jø–µYhp¨%4h€¸5¶9KA»Yʬ±£= ÍÕs&-{ 0n*ùÉa/DD„ñ°N»”·°Œ|·VéB'‘ºeÂK@ù3oô4€ %*‚ `:PAG vëÐ Jø|¤dÔ*©ÛŸ¾ùаë.-ò¶Úh‘5ö¥Y÷ø[fkó ^µ*je*UCnOmecÏUYKq4­|®Ë¡æúa Y‘ «¡)ù²Ø¨ºÇSïM 3ÈJó R¢°Wì$U ;Ï ½wØÍë~ñà]";Œë“@Œb5ÅX<301„À±Évê fÃᬒýe¹i„¨õ}~ÐoygIÆoCI¸óH¿¥¾ÿæÉuÂBêоÛ\ðg/¥Rñÿý®#Ò.VòÓÐD‹\6ú/ÿs8¹ê4ý³ W֥ƉýK½ó3{œXo‹eqÒVóŒÓÝÜ[ºÁΜÈ]7å^ÿ­òCyÈ׆MQÚŒ¨”mÜWvC§è™—žáŽe5¿™.ÇK9$B_@M‹™à€#á«^ý ñëendstream endobj 1114 0 obj << /Filter /FlateDecode /Length 931 >> stream xÚ½W[oÚ0~ï¯Z•N*n’@¤ñ²©•6U{˜èëƒKð–8È6¤þø9±[MK+m(‰}|.ßùÎ9æËüìænì÷BnЛÇ=è¸ Ã^àO€+wæQoqEâO#ßõ¯~9¾C8 Û$)^³§ßx)‹á~øø(`ñS’{õøp‚I›lÚêà…S:x”äè íÇH×c¡¢©ËB¨¾Š¼ЈìH´5è4æ?n_ïÍMµM< )kÍ k‘µkUƒ#(?®Î£mš”€Ìê¿áGGç‡û{Ëlhu‹NÐÆåÚ瑪Vb©†é¸¡ûj¿ƒÁŒ'ÇÆAÕéM’=7³'&Û"…þ É¡æ‘a5äD¬ _sKUt"ÙZƒ­Ý½Ñ¢H?Ú“æ> stream xÚÍËnäÆñ¾_!ll„²5\vó1¤ØÞ`#9D@Ø>PdÏ ->Ælr5 Œýv׫9CŠRö˜ÃŠ5ÕÕÕÕõ®Þ¿Þ½y÷!½Êü,ÑÉÕÝî*ÛúÛ$½Jâ­¯Ãøê®¼úÑûØ^o ô†kzø§cıΠc¾¿ÞÀ‚©;&"ц[cJa#»ÚKÚj'«ÓË–Üvèó!GXÃ9zë=1\tøãÓuœm•B^µÈw0}^ U×ÚDgÞã¡*páÀT½ùu¬zÿ绿_W¥ü,–Ã-ð6ÝCÕî: ¼|pß¡¯î¯•7ts@u;þ‚䘾qk îS þõ&Q‘wç¨v ]×ÛK¶ã kU]3tÈQäON‘HÊŸ~Ròêú… ¢²•»M꺯 h&ÍðîÈkè°'1%âB¯éÈ °:ò–¡®•ÅŸ‚8hÐc=T ”c-´“ÅpŸSGÇ‘ÔfŸ×À@¡btâ}Ü1ÏjàõCn!lªv†-ºzlÚµ{‚¸È) ¦;Ù¤miKn‚¨]c†ÐdMüö¥é™B; ÷½Wëoxñ|L%ŒsáëTbp ^Ešëò:¶ê¥ãÂTa‹êœ|×Ç›½û ¢‹Å{f~¨4ßóÀ$arAúé6B"°cÿiW ~ÑŽ‡5Ãx\áªå« q›*á/¸FŽà–t¾QAè':Õ'²të˜ÜÌè³*ÐÖ+§À „Ý­œ îI)Z˜×4G>åÏþb á‰wèo7Œ{k¦¨òÚ¾ÅÓ¿z9*¦hüŸ…’þˆRÜü¼Æò«v²å‚wû„¬ü#,‘ã7«g’3Ò‰Œø‹zA™ø™VsQöL8KóþV…s?¢øK4¹/|À9cŽWʈ ÉA-ƒ¥1 et íM9¶eÎi—Q˜ˆž[R%)¬œ±É#Ÿ §Aº8sD}7%`+‰ EbŒ5Yr~5X Lå[Ïü¨׋ÊÌäìøû÷r{ë´@î­UèGjáÞMÞ?й=¤®(RÞ¿¯Ó¤ÐTó¶ÞYZ |«}˹TcÖMRâЋ˜²ˆ“xßë0óL6œœ´äFØARjN5ðù¯é;^8¸.íd¡Ê•¼ŒG„\‹Pî÷m‡åvÕ}9]RðÀÞí–óVŽJÆ_”ì¶)I?[.BÚð…JSc’L3g,¾˜ŠÎ%Ÿ)½ÂZ×ÖO» J yKèZþò a¹¯ö§nÀC•*yÁV¥›Æ€ü(¬([¯\·à‹ÅŠí'pA™ža¼h¬½rl—Ì‘Â%òøœÈM&ÇMõ¹еˆ x(GCTnhI*c¬?” fÜyëÑ#¨°¯Ùáá÷Â`@_íÞ™Úí¾Ü…¤Wç$Iª˜ÁvbQ P‘µSî=às¶/ÿFYx‹ØcÞ»½»>¯êÁé,åöÍ’&8‘'täéÌe8¼´w5T¬œ½Úʸx6†][vK̳ÔO±ÖÈBÊñ•ŠÂ×y kW g ¦KSQV FnÄ;P­¥£î†Ç`®ÍtÖ  +è à¼s\õa¼I¤bf©Ã>0ÊB „¡d Gq½²í! ËØ¡*ÀcŸx•SkÿÄ¥Ù™ÖVÒ3† ‹D\„…ãzŸS—ý@îš÷¥ ‹®9BA€ƒò~v É­m×n&ïni®]è‘Jñi¶ ƒ Àó6^sG£Y@aƒF " §ˆ²LÖ«®\]4'séÞ:I\NQOW»¨ÈÏ¢EŸâjC„×\?±ÿ„ÙNe ‰Ø|°Ø˜¼µŒc¯AÈän†‰¨³¥î—`Ì$n?7겦†)´w©+ªÿy^u¡Ò…ÑÖ49 $'°Ô6 Ùב·´ïk]ËRÒèÁçV"­ûBââ"š$~˜es½œËwW•\ª(‹{*\®©G²4ü~<˜–!pÒb¬§²¨=s:b(¯\[m#? âóµ7P ˜£•ûǾʦþ#ýOÈ=‘‹‘$îX;yó£¸Z+åyÇt8RðŒ¤±Q)b}ÞÂÓ'wÓiæ'Zjj£³-¹Chi%ž ‚€1äÑðÊäš”Ñf{|¶Í{çÔ¸XÀ90 s/~ëÍ{‰áÈÀæ@—NB¤ŽñYTþ-tÉ¥«e´‡@kW|(Œc?ЯGNLýj‰m?ø¥ZÃv ¡ïu¶h#É ‘Ê$u‚ï[ Q{‘ÖÍÀ+L›Q›ó„åóqLo-¸öËh…š³"â°‹@ÌÞ ké!‚;&_'03$ç9±e¶RtP‡ÒŽñºþÀ ¸¤`&¢\»°qE]÷ÏÖ¸l!.b*¸=æ^­–ÝŽžš'«x*ü~>'¦Á&0^‘ú€ùEsŸÇCUž¹mešÃ]MOU¸¥—ñ~LÕç=çiök:v*ó0Ö­M ü¾bžòRžOqä‡ñ”¢?Ë ‰ o§ßßYszn¸mêGñdbÌq*mL¸eM°ü’B Mïe!wú¡t+[éVà7Md,j8‹ 9?t§a™~îI)LŸÉùÕ)LÏí0ŠAÑŽÐh噯uOá¼[Z{;Щöc•.òÏÞèÅ8¾7WAfJ }­'¥aE€Vç#f?pi˜<Àÿ©Íböäçi$àî¿<Zþ‘óTçÓ(ÌTm9üJšœŸŒn¦7ÏdJlô8©<–†Ž[=¹³(ªä3-Üç2Î:P/[Yày3ߤÛ‘µ6ŠÓ˜ŽÏñMν>©0¢·¸bxËËbs7vÂ’zr<åbø½ã5N¼%¾JƒÀDŠ\ûB½:àÁ:åû“šV¾ŠÿŸÔâçOj•õ[˜µ<ß„~û¿-4…ÓÒímðÂK‘Š?S¯=»©À×jª{8áOÓ‘³ ÈÃBŸE÷ÔE1ŠNèƒ<#„Ó¹\8J|½ìz伿UŸ„I5Ì$ÀAü‰Á“0ì–ÇÒ”MíKEW ´ïŒu‹=ïŠ÷€0 TJÚçp#&Trb‰>‘SÁPœî—SÎiž|¸ÙFæ/O~mß=Þ¶Ïö;oîÌnÎ"ðƒÕÇþ¼oòáåÓ‚u£^:…çÇË­½¡F[úín·×w\¡›9#‘%þ“ÛԦ݇ó}V^´Ÿ¿W.òøÊÃ&>o¬°Ó „ò«®½‰}ÎM²¦©îÿãæ+Xú2#T;”È…hNê`H»«ðÅb°z nf-©ÖN=Ÿ”Wå‰qíi`={È6š±ÅÖRE¤ d¯*T}t¶(³ 7·Ð ‘vNrm¾Ê­\éæ‚êöÃûþõý—;fqá–§¯¿ùÚE¹³Ð·.ìèáWýö¬‰ùˆû)Œ0Þøiš²0QŒ„o¾¿{ó;@’‰endstream endobj 1116 0 obj << /Filter /FlateDecode /Length 2832 >> stream xÚ•YYã¸~Ÿ_Ñ™ ktP’~˜ÓÈû”íÅèé¶DÛÊè0D¹—üöÔE¶fwóÐ-²X,‹Å¯ªè¿Ý¿ûx¨›ÜË“0¹¹ßßJy™ n’8õÂ(¾¹/o6‡íãý??ÞAwbÜ…‰ÄÁÍ.¼<FS[ü ¡Âê3Ó~MZ «-e}3æ´ÝÅa¼ù뎿¨¬×ê¯~ì7z(ŽØ(«¦Õ±Ø~…ÁÃCøøøùÇ‘¢3{t¨h³Xîu¹ÖëÃT@$•}wº½{¤y»(ñ’ \Îþa ä4Þ<ët[ŠbÚ‰ÃÛ]Jm~(º×Ó‘ytÝ]¾qç¨-7†¾jSr§hùÅê ¯ÞWöÛrMózÂwOÿ1ÅðǺjî½SoʪºþwÚÀº6dY1CaÚÁô·¯üý0㺽ûôãOŸÜ‹ã¿XåÀf b/Ƀ•¡wÙ•ŸÁ†ÃÀS*b¾û£Yq¢Ð÷|ð"f”+qaä¥Yâxž·a¶1h’í.̲n˹*ó¢tœóz-4óüèR¹]/GP¦]æ"_Y 6é±r“ÆJnÌ/Œ]{‡^?=¬rïAÜí‘Ï| zÁµô©1ntü%‡@ö¦£ˆ^šÚÛ÷º‘‰§žÉ…±ˆßèNaØŒ¯£”¦:YGp³Z&6M„B¬Tv~‡[N¸B߃WÑÁ%ä±hª”Ã+š÷¨OÂÚtts°Wã]?Èî`>€…LEÅVd7úÄÓyŽP÷š3jlÏñ\}b5Îd±É!v¼É,ÜD¡§D9Š#ÊàËG+#hÌêa<(¹g†È1„bÄù-´Ð!x×_dS4Î#8:ÒþBƒ¹²á¦&Xbµ]«¹.B¶Ç©ÞØO\àË7b™kˆ:€épðFˆaw»šk2´\! À˜¾¨°çñn¡Û µ•¯TK—;:ÙŠCÜñÓÍ?:”Àëe¥V\„!Üsð¿šÚ! -ž¶öÝ™J!hb2„_ S^݈«ÙóÈWWjB•z‰A´éÆkIn[u5>˜èV.¾v–µ‰ê˜]B÷f(pÙ£dªUñ碘ûQÛ÷}çk!d{¸p˜C é¸¯Ÿªº$øáÀ ” ÁÂ5´2€§‚âˈ~èú˜Þ²„ƒÁÿ"[˜Ì+cT¢.¨¾äN¡Ý "–=z¼+ïr02'JL˜l‰+BNpd¦J’©µ4ä®êÅ`°¨iºyð pÚÖ`òCYuˆPÄè€cò:æð I]ïÇrI©R îcÊ•,y›O’€¬¼iø±—&ãó\[ +_ûg‰a4úç¨ä<˜¦¢JÎ2ò ì{–6 qIM¿¬U=ü)M5ìµBqì%¡š?PÙ¨k;Õ¡í¢‚Œ%¦º¼˜=S^/³ø–zéeÞÎp¬Bª¿×PAš©TpJñÛ–,ᆨ•ŸÎRc¾Y)ÇÜ–‘XÒ,¶s€ â”»€sš/°XúýŒõý¤Æ"cLˆKøÓ_îeY&.– ã»Ï÷ïþÏendstream endobj 1117 0 obj << /Filter /FlateDecode /Length 1390 >> stream xÚ­WÝoã6 ï_‘˨ƒ5¾ÈŽãdØl»+ÐaØËòÖëƒjˉv¶”Yr?þû‘¢œÚ©“tÅZKEþø!’ùu}ñé:NF«pµˆ£u1bQ®¢Ñ"IÃÖùè6ØÕ"൙L“( ~œÒ—[[%3k¯ˆ0nùÆ@f“»õï£ÙhÊX¸J¼ ]æŠW¢#ˆ€ —•#£´WR/ žY]›KŠ··ìînHºµ}€ÖÞÊAF©rñÔ筸Ͷ¨÷XüakÜ1ãeA|(±jc>‡Å]q‡?ÏÚ럮ټ–„³Å„:a±ôB7]ÍC6O½ÖÅk­¤ US–¸ncÕZâG3ˆ}Ô‡}.Ì=7¶G·^aþ†³ñ{§†â1Rt iÎ-ÿ­äƈ÷€íÜÀÛ9½u(ï\?ˆv3ÇÈ^eå1‘¬ª!‘‡).ª]ß‚FY®6¥ÍNd’—.q×¢®L›³YÙ+êËÿ–—¨éãp‚è”õA™æÞ"õËÔImX'@&öR%‘jƒK%1`]Dƒ¯$=ÿJ}×WEtPÜLXJcQ«¾ÿ[döc%¸"ÔS–¤Ið]V n…g÷éÔTÕ3-=Ö!‡ïë h}’ûS¯7Ó¢(d&…²GKË|Ô5H몸\èF塱5ÂíI¹þ忾œÍÞäÍÙ+J#ÄE‹%ìdÌhFo«kÞk`¸,Ϧ®±z‡—Æúh9‘WJû^rïÜ‘Óêq+T/è•ÎEIË-÷Á©·>\¾O&¼{$1¤wuæÁ~€ª%dÞðÒç&6Ô!qRXÖÂì´2bÿ4¼¤YßÝ[•E‡%—é¼ ›iê‡BÚ0ÓO»íÔg4øDaºÚ72I>aà”E:\c—½ÔÃdA> Ežïz²Œ]O¦ÑŠ÷<›DËàÛ#þçunˆœéjˆîe)-ž<ã+<[7ÄñdA9?=‰Òà‘¨FWB+A«é»‘(ÄS¹¢¯®s©xýL;âÀyöRAæ¹g-ð¡NÜRò᪨¯Š >ÆR0Š—Vˆ÷¹ÝZd‹^œÒ¹ÿ44F<œLç, n¼»%¦’ßx)7D€–¢‰ ¾Ǯ錴ԲxnÅpK'vë¥@ÖU€ø¬‡±å¸{¸tN€;XùÂ!›×ÎÞ˜Åmj·šEG‘$[•‘܉W¯p¥üæ•v˜­nÊœh}hxzÐ`#T+NWÉÖËAŽ4©´)ô+X„Qú¬ÝݬiíçVjo‡.X…8ŽƒnžaN•Oº€`kšÌ\0¿äWžQã-—ü‡1Í“àæ²¢;[½¤´Þ‘8½+ ]o„%YÎE@kU.—K²ržâÙÅ—õÅ¿¸~‹¨endstream endobj 1118 0 obj << /Filter /FlateDecode /Length 2450 >> stream xÚ•ÙnäÆñ}¿b¼0, Ðм B`^ÀÆb$rü`û¡5Ó3ÓY6)iþ>u5µë<±Y]]wUW×ï¾ÿPlJ¿Ì¢lópØ”¹ŸgÅ&Ks?ŠÓÍÃ~ó»÷ù6*<­Ï·Û8O¼ç“êq•zÏgh£õþ–Eâín£Ü;©æ6ôŽš1û“ íTUé=¯C³ëMÛÜX!¡jÁê[þþÆI k`³×•èTýžwT#DôÓmšzªzÕËiÓû·Û4Ë‘ksûçÃ/›`³ C¿LE'w§ÞÏþ‚\¸€Ó–gÕõf7Tª«.¼¡gêsŠÉé9¥hL‹Á DÉ9<3"UH—'…÷O¯{6ù¨{9%dÔ#ðyìô“Íö ;´]½¦Q‹Z™×Ã45®ÛÎM£P­‚ ùa'eµ! q‚ß4G†:OƒÓå«é?fgà!³ÝÊ ðÞ$³]i1 Y¿@wS€· êVx½å?‚4`NðS)Û3‰ÚO„ÆtV°>ýúñ#C³àïÈò€¹Ijõ¸Ã Î=\A(ÍUÊÄC”ÀEá8 rJ{máç‚Î!óŠ HÿêÊTpÂ$ñóø;tOÓ£òðaƒ¯ô3ñ¾¾ÀG`»¶9ø¦éïýufÊóJ……™£Ž?*F»øqdò„*†7.1cðÛ`Í„05{þW›[Gi¡Íq¨%Ü;*§RŽ‘k5ÿ»ú… ôè/õËNŸå8×Dž•XSÛ[‚ ÒÄ PËJS¦?Í·ƒPT”ò‘¥ïÀðè2ÁøèŒz¬´e9¬–™“F2qÆ¥¼åõ^[Óé; „xæƒ,õ‹¨p.`šK/õ4Of!F^¢ŠâäH‚3Ì•!„ïXV##5z9jØAºãbkù•VÜæ¢ N.g%Y¥×”1Ù`˜Yœ%Ïý$ˆ–&«ô݃å[ºaÕæ¥èƒ/s„o'äÙÙñXâBîlسZöX*øö¼qP¦²êiÁ¡>ÛÛs …ágÈT}žÿ9M&/VʬÓEÈ·‡•Jp?œÁ+'°Œ] ž¯«QàÇeêP˜mZ®³Jˆª±paЕ}M2 ü°\p%’ì‚,ðÔQ™[¡(bkÂ&]<(HPFÉ€jåXã¶ç¹%ä9Õaeä…8üW-Ü+ìqãµ £Ô£|í2›qêíð?‘ö¥áðcAgd¤`ÏCgÚÁòG×P›Xµ¶Vå°8˜î5æqÒk&Ï ?IsgÌY±m÷,ð‹tLz×ùSµ³ü*p¸0D978Qž±v¨ÛiËšw1ÔwæÌ« j ™G?Ãù =ËÉìpãÄǘx*>bê‹îy!D †äœÚ…—zÓϽ“ ‡Ä½þ±)­¸‚=I– N1“„ž… ‘?ª“«&§ÎAge-½`Mu¾oË8‰=íQ’Ìå1⸅Õ­rP¹E2ÝþŠW1òrôÝ3hçÞn‹xº2V® ©ß؆…Ig{Ž«UÇö&ùa.wÞ2 ÆØÆ᎗RøiÄt…ïûÉtm3»™¯âÖ±t &j“¤Þo˜6JdäJ üÛpè†É¢Ûç(]AÅüu”—ó’†Q‘òÞi‡ Ë ÃB^óFe\ Æ¿±ÍäÖ?p=3,VõDZ(7"`»Â,µº¸gè רê À¶ŽšKª™ôÞ˜ýZW‹Î¥&9§ë—»IT?sö"äqèyþïèº&?XF!Šžìض“ãô^ƒ—‡…Ð`½¨x{as íÛ§VPñ…/´Æ°ÞÚ4c9ÄÞBâF"ÂiIÁ#ÕJjçä6B„çvÕßû+³åxøç7L4z—‡âX`­N€®@™Ã…2*ßȈœ·Àœe”`ò[%Ms `„Ð_Wð"”ž´VŸ/kv¦ù¥(cÄ,qÁɆ«y²Ñ VpƒŒ{;ºD½½üºy]jðωBåžGdH©¸à‡‰o:DØ#B¯Þó‰„úáê õ½k7 ²¹Ó2ð*BnrFÅþ‘ážÙ ˜l^¸pA<÷²!…-Í»àuøãàÈp5˜ž)‹¿MÛóþ#™H¤pÞGŽá{ëÇD‚¡Óo¦ïе5¯ÆhqüAü‰g}Ó6‰Åk„DŸe<ÀNê, ®P®Û£ÐÄ5²úEá€ß1€‘x'‹öójŒBóVмE WX°^'i³yÃïyz5³ðwíËù´•YE´vù†™Ÿ—c“iVúP$<¶–÷ÒpAÊÄaº´¶‘Q>…kèÍ~š#,˜f‘ŸgS·º6ïHB¿Hâ·éŸ”õÝc aß}ÇßoˆS÷H}Cˆ(ˆý²ˆ¿(EXÄ~]½?ëCļþ¾å/¼nHåå4f1[¡ÑŒ¸žõ›^_QY,ISÌûåþ{•½<ÈvxìüÊA[Õ÷Ý+è=ÓCÄÞ ¾'=áZç67ç7`Ïf¨*\¿öÚ¦¤ø—2N!hË«€¼ðìv®è’éïµêw'fUÍ÷h¿R€ú~ «r<ϯ#ž²ëZ¹ÁhKÌîiö'Gߥ¹¹*Ý{’oš?ÞßSð­©H]ùZÁ à6¿ž-~}’BÑúUf×NU þz`k­eühü«yïê„öª£Y9v\Ɖ_@ñ‰CüVR Ú»ŸÞýÏ6Äendstream endobj 1119 0 obj << /Filter /FlateDecode /Length 1152 >> stream xÚ­WKoã6¾çW¸N°v€˜Kê- *Ð Ð"È¡õž¼>Ðes¡‡!Q¶÷ß/)’²hKNŠíÁDÎ gæûf†þcy÷ù9“„žåM–é94ñ\X¶;Y&“Õ|û¸^þýù…ž¡…& „@è*A’ÕDÊF- ך@)”YsùiÆòÔz\¸–;ÿu!Ÿy™ ¤ÎÉWèÂ%©òÚz’{ f8*ÈQ<ÕRŽ-‹¨{{GOt€}ó´SFQ¹ùFbö Þy(üÔ*,5Ò²)P³Ši:ºÃu·Ž¸§óûcÙd‰Þ<ù–bšµZ²©Žt0}PëõÐÎÿÿz(Ó‹q–™ ø“¯¬bR`ä˜Å;±Ð®Îh2SÓœ©È·BȆÀwCóœ‚ã.0º”•8—­ñŠ5ñ[+ІŒ´Î>$W)ê´šù–*iYåMv¡%)h(ç"™&ÃF5W+´^›šœS…bþ¬W ³Ž¥ðò!,ÒÛÆ´>Fjñ}/?Åì[$zr!ð‘`]ÜЗRoå£Ìœ¶íÌ¿B䂆hþý1°çí²=''îp̤ ÷c€ÐÀ|Íù“u}:²¹D×¾8Ù*z’öÓªÌÏÆÛ¥oMÍqE0 B&0=²}à¶ñfë…ÒþN9éõ$mø®v nªCJˆËÓ~·¨HÝdlÀ:‚°¹¥Eb7ÌFºÕ àPÐTb)èsɃOŸæ=æhv]ºäùÀöoö…:‰û}£[ Op®•¦ÊUמwÁFò½Iܦ`¸ØfÔ{SÜöusx̤ף¥$·/Ê©‹òJ[‰c¸ª×Êf½++–á É¢å?_ž¯L{7L§œ³e%L«meS6¨›Nðœí1×ûÈáâ»xPÑHzƵzgb¨(kVî…ÎôÏW…JX×"ú¹é;­[5ë‘E¾Ò¢Xá[Ñ-åÅ<=Ïß!TïèÇ«E‹ëÿØu 2¡ًoµŠ´¹‚z@UåQñä*×üË!§ü\´Hè& ÎFÊ)°¸7§µgßsÆ)‘Óº¦ÅV¼ª øq&,5`zvÊ1Um›œ çœwCù¶QÂ{Þ°ºí㎚:ض\ÞÁ¾Â/m ÉHŽxÇ CçfÇqãtÝý~[áÍ!©b*/oŠ7‘~ñÔºÈ5«YKš7V5…ô½‡&Ó­¨Ö¦×PÙ*)*$h½}y}UÞªZÃ]fùÜ׎it¦#é‚?sŸ4’¥S jׂQÝÈ£œ¼WÝ[™Z=-ô!IUß_ÿ}^ë xQêlð¶“=jÆý¼g¤Ø²öÆzjÍGò~y‘ù¿:Úª >›éAm¦ûžÉ zúËÈk~Y#Ò \LDÑI>Ÿzb2ä‘”ò©Éûô`^åV•÷8yβzÎÌo½, i,j7.ÎÖÆ<8slÐ0¸¸ùðÅß+AH3N(ïž—w?ì»íøendstream endobj 1120 0 obj << /Filter /FlateDecode /Length 1455 >> stream xÚíXݲÚ6¾ÏSPÚä@ŠË˜NéL;“̤ÓÞ4ô*Í…  XÔxûîj×`s’è –Vû+}Ö~æ·Å‹7ïât0³,Ê‹Õ@F±˜Eƒ,IE”ËÁÇÑ9i”Ž~è¹3Kµêäê¢tÿ„i¸[EZz¨•ݛʪËñ§ÅïƒpH)fiJÎôŠ4Ñ®p®Æç9š<¸óžüòwsz¢øâ* !5ÙõgÙ£á‡Cý¤ŸŠíÕŽF†Vê¸,\A“¥Q–ÅÆqU…+7l¼aÛ•vN-[U/¹}ÉÜ)Ž„CÌiøe‰ÃÒ*§«õ°¿Ðì¦Ð÷ÕR?é塨Îýý–œh.ÇTÛ3`+4§¾25 šH4ÛצT– qo¾RÝ-ÎÑljü©)oY›ýüݧq !ÉÑ÷nS›#­Ç‚s²®pËÚ=4g žgx°°ß D¢¤Ðpxµ¶Ÿ»ñÕÉoH‰?'Îíåë—M©juÝë,¬¬rÑ=lx[× bVƒÒœö¤\Á‰ŸGךÍÀd'ܵf^WL|t™d"Ioà¬0ÈäA3iN´îβ“N ½œ4'Ô {)üÍ;™´Þù@¦Rdy7“5)æm½Ț¨Ï„´Þâã0ÁW¦V8$(¢¨24¿¼x(,êõa§ªq”°ÊXJzÛp­d¹ª=DÑv§ŠÊ6 GÂ#j©Æ9¾Ÿ~ÝÐs_«¥.YÕ#¥§hŠqÄéhñ<Æee$·û_š =Æ1''ðê[G¢Òìv¦"iYl·¬hn jspz,!;ѳÝag7¤g-XäÓô(%B ð £_z•a&bðÂVšÝ¦÷ÜÎyÂ\äiÚÚZÕ"Ê ¥q°ê‰‰âûwâN[ g‹CF"ò*%lR¨|.Ü,2™Þ¸)¬ ì“ìÕ«öû t`ƒ&¦MÕ½{£/›ÌÕéðOl|wµÛ´}ÒøñÜÜBðšêÂq?iÅãN£ê;ªÕ¿]«N³º½oÒ:Ý6æÂÕú„)†"l®¸†ç²™”f;Çe¶÷þö*䛲ë?ì»;úzÕºç¬n<±èÙ3—¡H2ù éO¡%¦)ßÂJ¶ªZ» ŽÚíÂ/ÿ^ǽ!;Â& ¸Ã®Þîeà÷ã¾ã°ÏæÔ[ð DWÓ¸ú“@v:ö¯|x{éÚxg_€Zª½ëk/·a-Ü„Šš0{†›ìç'zNZjï^êc}X¢[æ~ðu~p½@:Þ²o¿*WÀ—¼rï¦Î¦"ž>ßúŠi‡×¶\Úè°¾ç¹lGÿQ*Òè†ËÜë±Ic ‡@+}:ì{‚å¡yÚ鮃 OD˜Îzð:)ò$î]zæÆl³­™˜Ê¸C¹IÁ†É¤ÂO$ŒGÈ4ñcž€ºBV…k "غ"Å‹ ë5+nÌaËFþ› õÖÊqˆûŒ‹N}DÓ̧Oë¿åÆ)|;lIR‚ÄÓ>Ëókªž,¢L=11”£¶äŒÒéµTà‘í_s .\îÐþQW6hx¢¦GË ¸Ábq̯t@2{[(Ô.}ê èN!û rPHµ(ÑvC¦Âí” ™@í0ˆŠ=|¦í™C €© ìLŽÞ;R÷ç]Xš¬ ëü±€6RSŸ„Ùí p¾#1PXÎhcÐQëÖ>Nú**î9ðŒ™oŽ8`Á†ºõ•J:[³Ö%rðLŽ>Òª8ªŸìµß”Ï43ò˜,/Nµ³4º|4ã‚ðÀþd‘ªbç ±4Å3é¤ÙÂUO¡GÝPüGDìð|Ÿ>±´D’F%n}ýÀÞ´ ­ëÕÅÕ™F꤭LA#ÏÔƒh&òœÿ…I=xñvñâ?Ì0œcendstream endobj 1121 0 obj << /Filter /FlateDecode /Length 1456 >> stream xÚ•WK“œ6¾ûWLÊ®2ã,2âM*“ª¤Ê{Èãä½­÷À‚fQ-#hë_Ÿ–Z0ÀjfRÓϯ[­Öwï>ßÒp•‘,öãÕÝv•%$‰ÓU%Ä¢Õ]¹ºwªõÃÝŸŸoƒxÂ4‰V2vìe—ËÜÝòÓ¾Eö™ÚÔ#4 ~nF—nÃÊM}’xÁÊ¥”d‘qFtk7ò#çW¿¢kŽß¼ÈëX¿¯å‡~ß`K×.¢ó>G®+dc$ùÖH²c >ã¦ÊK\4¢~ÁÅè×Þxs?¸(OtîJßÖ\*_è/¢»1Ò¬EJÍÄ“¬¦žjÄ”¯#낮㰘ú¹eíÌ}ޱ߱ŽÊ êñ•’‡ Y±1(£b;ÀÂò¢ÂU²Á°ŒÒsÌþÜò^Ô¼×A+•Sä™6$ß1­ ïŸÇ ;0!Ç]ÁD2`æ.@Ø\HöĺEØøÛêˆ0¢Âd¥f1£=PZù€3~ýi:MÜg‹ŠrÏæ~ŽäŸq¯õºZîÓPÕïk.Xn6ýþ±/:ÞÊK@„?‹(¹:)¯P( 문K¶káLËõ^çåa&››ï˜rÆS*Î MP!#Ënë_*z8­sÁ!V“’ÍÌ+aºÑªbè#q¸Jq.£(ZÌ7bKtÅ.ìhÚu)]Ú›Q@o¯K`ùŸEpo•1 ›ú"¡à¶êW‰ŸG¡(Z{h÷¨Øïªü» gücdÇÔ¹6À‡¶«)#[Ý*éØŠ? Åg/2ýÏØ±öD͸¸Ø/štzÁ‘„ª+%!Y ì-y ]? è@~:ºOú¾ïÔy/q¥Ýnvp¢v¬rC}„OêÀ‘¢p Ÿ0 ßœ6ï G³Å免h´LÉÈÚ ½¬w½ÔvñjR`î•Õ››²kÚÍ-ÞnH²”Î#`uÏæ3¿RvÝ´ÚÍæL‚Yš²^9gí'Kð%Aê‘=Ù@§˜ Yø¬ÌÍQŸ¼Ìô€ôßð㽚˜lÂÕÛ ®­ïKé‹(§àµ²2üƨ¸ÍÕë mëçÐ8ðýð[ç’$%!„73W$u¿¹¬ò<–ØÄgìs·õ3 Zx͆ñ‹á f‹±¦Ý÷HæÓ·Ç—:oÛúåÒpàà¾}öµpÕ‘ÉsçÂfé)8á]í)”¤á¢§|?¨Ö<ò_Ñt;ýDž”;uánÙªg2ÿÙ7ñz7ßÄSǵ¬|iÙfó±­s.>^ªp?"‘ÿF‰{!‰—S’ªjŸTÇW•y婈?Ù†Y¤}z-ýjR£QDRχDe$MStz÷åîÝ‹ˆ¸õendstream endobj 1122 0 obj << /Filter /FlateDecode /Length 1527 >> stream xÚÍWKÛ6¾çWIˉ¥ˆÔ»¨/ `{è¡Ø[²Å¢m²$H”×[äÇw†CÚÒZÞl›6èÁÐpf8ÏoFòûÛï>Ñ,ó²˜Ç³ÛÍŒ…¡—†lG‰ÇAr[Ì>9Jì¾p#9?»ôlE×—êu×·bþŸ‡¼|3VQ…'Ú–xo.oßÝþ:óg.c^$;\ö#ŸK┲SÈì›F´«f/+Ȉ)¶÷ÇØ`ØcÙazzLj~wqã„o ³'7ɹ¯°·×ÆS³µÕ —×—ÀßËÛýž¼Ÿ³‰¾+o~Íå?Y"´<ž³6¢©µáþë«ãѲˆŸ±UxàelX‚×ë¼,Çuø€S³þ+’Þîìˆaf/m>û¦®De**;ó¬L+ì½,ŠÒЮq·ÏÕzGäê]·S³!«âÑ–Ð÷°;sD„­l•ØŸùì¾Oì'tzgá„}Ì•Â7”ÿ`˜säίsÕE%ºÂ»k! »ì¼ßñ9ž¯u™wò™ˆX—`#•·®¶–7¿æ'lá†Ü÷º,>|ËÑÈÇõÔèK‡à‹à‹A _æqFº¿Õ ž:÷jÈ|çbÞB8A†EÌ‹$CGÕÄ*jsÞ}ŽàBb¯Ï•¬+oáÆ`è½ØÔd õ‹dô ;P"¾þ°¶¹ÄE/``ÝïE…!)QÆN€Á‰”ûNV[P §‚Œ“ɪ²•¾ªÉ{T8Ô®†ü€Ðië^ÉJtÄì;í((ÈaR×} ™Z—ØyXD±ƒ¯XTÉ7J´$ÌmÖ‘{ʯ4ߌ{,IÆaPDxm:ù­c ä­„XáVè; ²rµ»Ädì{Qxº 9‡AêܘȤÉT·@ïÙ ¼”{O¹a'å^Pù Ñ@¡ÉUJEkvèTäPxGv¡IÔ‹²„ÌòQàµp6hrzt­sN5B%Û…óôaUë:žd™µÑeq¶úÙgáQ#o=ŽûäÍd¥ÚÕývgïF~§òV--¼trƒšÁzoî#E®4’SîàÜ4Ÿu ƒ§{’97Ú9bÉpŽà˜Ëª5SºC:˜”"^^D„$Zëù !²)¢9¡LT¹u´•TÁJçîkëO¼UôÄËÒ æÂ7°4ì‚0ÙÈT žfG¥÷$< (D›b6zgèÅL½3`Ô¨©¥¹5DNÄb@e¥z0õ„š¼ RäjCðÀ›m¾ç­44 bÂtCáQHèZm¦MŒLî6ì(ЕÄÌ:ê9€›óGaé &ß ' ieÓ‰[ï'8M‚ù¾‘öÐOHðÎZuˆŠÔ7˜K(¶SS9×ÃåĨ¾­°“<3áÔ}Yð> stream xÚµXKÛ6¾çWn•[‘¨wQÒ $m/éö´õ‘i›ˆ,¹eïæ×w†CÉ’VÞ¢zYrFÃyÏGzyxóö>en³xö°›ù>sŸÍâ(qYͶ³Gçc¹X±(p>5¥ ó|w¡£–õ—燪ÖDèKË‚%NEŒ 2„²²J¬.Jj-JR"ËVGä«Zϰó‰÷yI«,GO u§N.êš8ÕŽV¾ÝÊrOû]SæZV%/¤qêy±yø4[ù¡›…!¬¾›E6L^n« öÁ½—ʨ@²®Ž‚vcÄMh51Ð)\S¸É«ã©Ñ-}•ÓByû®ZXƒçE9\I^æÂ]¬"ÈÛG{^€Í@äz‰dÚ3„ ¼Ü ë ‡äbhÞ0¨ZeÁÈP– W›Cd(u°„qµÿµnÔ˪ým2‰â$¾¢ŸMl\ÕÄçûÊ5Måúý5O(ž¤àÿ¢¥} P\[jW¡ûIº)j+¤A„c^ÒÔÖ.I'eèôEq¦†gã®5N"[i²­ /±<ôÍì›#þýbN(úùºÙKZbϰ”9's¦’¤²&¦iæÔö 2”¨›BCíC¨ýƒéŽÆÊ^¬Ÿ¸Ïyy§­^%xQØ0¹B.'½G®•|2êRh¥Z ¾¥/f(í÷¢êz´¤UOvR YÈš¯ßY1…X0H!f©®,,¨,È…@˾tuj ÜO4}½H}À³©OÐ… z–4$ÉåК&/µ 2tÞa\º3FÑšïrû¦ÄF’²ÜʳÜ6 bˆpªÉíRtu ˆÆMA³Lt*  Ò Òš9Gq¬”•ÃÑŽs‰Áõ% Ðð1Óv‰ƒI:â;ÏÔ ÐÉZÙÑzÍ)h-65SXSõOr3([V @ÐD¤úÀµÅ BЙÃü͉gÛ­:iLÁZZXÙCKÚÓyU›ˆ&ÌhXã;{@ðZŠ&Õ¢Î\¸³²Ç¹F%ªpÒîÞÓ‡œüÚ‚øÎmܹ—Ê8ƲÈbµéþöZ–ýÂkQÈÒRØy1upúùFÚ n®Ècš1h'pGÌÎH‹K¸7½É­6ËÛñ\·z¯óßÊZtº >˜Ò,t 1ºŒæ,Èè6Ešª ›š›K>Uj+¤(ô2§‚ïê"ëV¨RíyÄ*x3´-žÑ@kº5AVU6iD¢‹ÑhV H§ý‰ßÁÿDƒ^¯ L¬I~ØŽ njþÕ†Ú!é}Nu¬‰s¢j}5 ²ÇM¢Ïô}iÒQ‘ «ßÄHqïâÇÜÁËã tccÏoäð)H¥ûg׿€ »•Èq°º{wøð1÷r¥FCû4˜½À@°·¦'ÁòÛ{?ì=ûР˜MòD‚¸'¸i ½*`vRçÕÓéàÂfBe¹¡ßVc4Ò¶kjç4q³ =aÆÆà9?¯hmߎÏKâ=Ùõ¢[³%ë¯v[âÛ§£ºkËíЭçG±›ù/=ÒÏ'aÅÏ\ )¸~-!·vó̆Ørª¹éjZ?|þóƒy¿Ìj ùɺ¤í&²ºb^àfi0ì,¹#ë˜%Y»„/H;hžÜ(Ô´ðÔÏs!΢¨‡G¦b!èÁ,KnèA A-M)ÿnÄ„ :Ëi‡Ê½>U¯{„Õ¢+¿ü,ÚÜáÇ»¶+^×ULR¬ÒkÖZÅmÔö4ƒjø¾­ÎiWÛ!%­þO#Ó£Êû^æ¦AòjéÓlÅCáeó4tðrùášøõzà÷£Üü["Af3ÔÉ÷ôcfð-.—[UÖ÷›vÇ\3Z,r#– \´Ýô¶eÜpéå$ÞHájÒàž‡y€þ°^·p0á k°iÕ>(&Š£8y Á'@̰õàåØ8ÜÂøÙ¿Ž ¡ï¦áZûú¯óD?FÐÒzíßjGÈËÒ×,ú á³Vâ²dn(3hUiŸÃÛË>k Û£4½í-Atשmõú˜Ga<>ú›ÍcŽgæåÜöÉŸuDéb—õH€ºR÷è\”[sêÀˆ¹7Êã¡;7ÇÿÖ‘µÞºB©9:»¡ð’Àe,œNÓóÿãSF'ïÏOº~OŒÏ¨ò£g‰ì¥:»~Ä^íÙÈe£Lk?Åzì> stream xÚ½WKoã6¾çWø,d 护(Y@S ]l€¶i/õžv{P$Úf!K†D屨ße[Ž’MœE†ÈáÇy|3CÒ¿.ÎÞ_I5IY‹x²XN$Lp1‰U¬,ŠÉç k5«²n/¯~¹þûã—Pñ‹é?‹ß'³¹dñ\Mfœ³TytÅô­®ìåt¦„ ºª4­…-a™m·åŽÝv¥½ À²«rkê îQ5‰ïϽž½µ1c¯u-×U[7—oñŠTü·bB·¶ÉlFY-"d©àÃbA^.Ç(&œsÅÂx>ô¬0›£¤{g†ô!ÿõéúÚ»–ØnëÞ^_ ˆÍ»Í:ûú?SKFO"W½ÜÛK³ïgJ óè›®`ºiÞÄS2g‘R¯*A²úR¢¢„…‰<¨£Vñ(fQ”5­F;6f\‰!P—­;ú\ÿ+¸Êø‹ºÿô{¡ï$¢Œ‡‹Ãd˜ñ‚}9 Ðßk£Ó}Ü÷ǘ—ê/_Zôê{Eÿª*Ÿ­òA?]Ücš¦L&ÉK täðÀàF”†#ê¼q¢¥Ó ñÑ3àà‚¦Æ¿OFÎzÚòº ùhÐóÁAÁ™ñx™ð¸ßªé,â<Èü·n SeÍÎD€ígn§*²’Ösln14êFÿêÜÒú±kZÚ Â0ÛRÓ ¥I0Ø’pÛÔÓ ‹.׉npçÃÏRÂ{+MûT wÐüù8V¸z 7iך“p Îy|tsÀ €2U»°• [ÎÐSà@Úæ4Èk(Kt¼®t…Û–²F{h–£|íÅôÁç[éDdnë†ævY2—× 2 lfª–$è»Qmx[Ë~ëÓµ„­*B˲F¥wÎ*†¥=Õ€wïe” ·+ ØtÆã˜>ÉÁ'JE°p.m< Å‘â¹! i ä±·èN?Ì륇My@ñë•nZðL˨ö5‡Æ=Æ18BÂÊ×-nM4+Öç8*ÉÜyƒ_]ê&wZ’x\YW+È&ÉlíÑ»¤ãÌ9×m0ah³ÑY ü8ˆñJ)ù;É@EFã;S–4Zgh… –ÐTæKÈ¥nöYá.âÄEâ©”±ûÞ´º¡òÇ{À%@¦A[Ó²/Sy+ô¨¢1Tä†F®Î°ËÍÚo¹5ÙM©½Fê*§RÓ « Ý”ŽVœ=ëΚ “)v0M32ƒ<Û¢%œHŠ „k°X’r˜áÕØÀ=Ý}Uà<÷‡’׺mt‘ÙÞ"y (ö!Ä ¬¿4i¶k«„D…γÂý…dc1Q3Ūg\!?A„=ÕÙÌ«A=v ñ(d‰::óú~»Æ÷Ãã#rž0É“_A6 :GA%jÁ#8´I`{ÿ4aª/(Æ;% ˜ž&»pC)ÆS¸–¥ds8–EáÚÙÇÅÙŸ‚“endstream endobj 1125 0 obj << /Filter /FlateDecode /Length 2384 >> stream xÚÅY[oܺ~÷¯X ='²ëåáE¤¤¢.ÐS$h‹ @·ul@ÑÊ^áè²Ñ%vòë;᮫µô }0–"‡Ã¹~œ¡¾>ûé]¸‰Xd¤Ù\ßo¢€&Ü0©ôæz·¹ñÚêüöúo?½ƒï‘PH&‚`ɤéê/÷YKtS~ †Jõd÷U]œo•R^Üà¯ïU]MyÜ´n)i³ª¤å®ÌÓ¦¡ùvŸÒ ‰ó<­‰ N?wiÓ:’ hêǬIJ²Ùª€ c6[!X¤6ïÎC ¬×T ˜ˆ^Ö¬Üe_²]çWïþôþÃÛcÝBÃtõôç2ô@B)oãÇ—ÉLŒ?ÒkÒ¤*w4µËŠ´l@ÕKžs¯Œ‹4ÿJkiœàæ=}U÷´ÛZÀâú!mi1©è,­½¸Îâ6íO£X#1.ü¹>rÍ3`«´e[§4Œi ¼™vy›À@,ØùVsá½Còjäиi™Ö EãÒOWfà'7(9’ö»1x2PÀxqîv¡p0¨U&)Š<%E©¬†|®š[†°@ÃúÒûÔá¾€Iäïs:~)¤`ÒÂrÑe߆L›G—àB×X §LGf- ƒùF{×{·ÿ#ø Œ{ºö@RYò.i»ÚíÎJ¢o÷Y³¦^£©}É!Ê€”¹›¤ KÚªv‹s4°ò٘ƇCJëfpvà}‚¸ ¼Ô£…ð7%~%R´ÍK»èªNw–ιÑ‘g·w6¦pC8lˆ["¨³æ—™²féKJðÞÊÆÜWµ›Jª¢ äPZvŽÜ£ä> †¬R6>p¿6EÁ ?Ü“”{šZ„ètÓ4Dið(+0.×üW•6B6Æ÷ç1ÉŽm ”bK’Љƒ]ìˤ¥å p…$É;à•b<7˜³"ðþêX|ä\Šâ@…ˆbR…ŒÃp+˜ù$#_; R› MÖ,ûçÆ6‘Ò‚Ø aõ¤Hér\oÁŠ0$ý>þ×;g‚º*°¤o ž™ÍE/8‰"¨š",ÎítyÜ ú¾[JRDˆÙÍåÃxÀyw>±‰jê™E²•«)L-²n_‰WX×ri]ÔjP;é$“ µ{âØ¥:íZQÜ™äã·¦’¯d¿Þî‰Y™>ÒÀ&©5 dùÊ !g×/YÖÿnËB ‚[,¥{= Y äî‰È@Ê(òZ4Ø#^E‡¸¶h¦¸éoÕÈ"tm«ÎÝyûl¼Š#0yiXG/ÕfZà^ÅŒp²ÊÓl9“PQm 8)œÙfvðòÍFB顈è/ÇçŸC9³²8¶2T;ZL­ühë€ãeuQ¯Ý‰ÓÄkN;Šp´hÂÝW¦;2;!ýÂxV¦… ‡Š2~@h^ !Ÿ)ã.û6+ÓË>z jä_že¦?Ôj8¹êvÉ53 ÔV ›ã¯÷†<ÃDs4Ñ|åPÅÂ`Ðk­à†Àûu["ÁzW«xÀÔP¾îš®™ H&„:‰\’•¢_Mðxü 4,Ú³ŠI!&¼NÉ£_'xAž-BjŠƒ$JÑÌ”SfhIý« 4ó켑:D3h¸ç,ý¿W7 èyjvê4xÁ³¾„ûKrè÷ôÉ0 Í3ðÍÁ,ÍÍZÂ@o9hðÍø3.rj&n:{{}öù ÝÉ7b½ 3Jl´àÌXJг›[¾ÙÁ"”ZÐáæÑ’`ta´ä›gÿ8û[ݹ8=+˜Ú›àiÍyÄçÕÑݬ¥·™ùîv…‡aÆ—‹||&ˆ¸:! X&ˆÔw³ÙR0&€¤ ˜æQŸrǹ&˜VcMÑ áÐÀM/eÕuK嵦‚eE~¦ËQBáŸ1}ÿ®@WÆô`ÜÕ¶öZÑÂû3–¥¶dt'•m\vi~I¥(âÿDr€øð§˜ï Ž×a6ÊxdÌ]·£­°Û ìÄÛ¤¡ë«ÆJ'MËq;ÕÕps*¡uõÐ@û”Œ.k׊ï:±HâE);¸Îõñ¦WÁxE—ÓÆf²TÕÙCF2|í …F×l¾Š"uŒºƒÛ=–ÿõ‚OFÍjZOžÌ" ÑWkž‚Z'úµ¾rÏL¾ô÷/,o›&µr›AŠ­ªé…„Á"/Œ™ ZÃ}ÀJ#]ÖÝ­Þ<ˈÝÕ©4 ùz¶ƳbúÉÑ÷h>£áx` »tçqoFèè³þQI—û¸v²í¨Ÿ¶~ÆöÓ—cÕ.À¸QÎÍtß•Ã{Ÿê£8¯(ŒmÖÆ¿P»¾¨ÏÆ~*ôygOŸN,彞 ¯ŒTÚùÓ—®¬?#sD•}£AM à…쫺`+—öûð%‚{WšSW½{;eIõtØo“ª8tCæù3X¨1/[)g|¯úç?ŸñPÏßUÒ§ƒ5€–ÚûÖ~{O ˆ<—4û$ÝàK\ƒöî£IL RA­ 9îW…r"‚m‘2ø ‰Üû—¾öë!½ºÃC¤ÆQÝnËÿ™Ð)êjçÔø- ¶k,Ò_Ô¬ZGÌÀPÈh‹œ€1tÛÓgG© eÏF‚O’ü‘~˺z\®ýQœ0§hxäsæj¡â7vç–i»G¸Å‘;¦Aææ¡»G¨u±H¦´šÇJoĹa 5ÒºwÔåÀ ßÜ×›»7§žhwY¯ÝÍ‘fG`²"Åßÿùþýå >v’õN1 ¦çÂÕ`Yú|´ú‚…¾Z<7Äõ~.ïèsÎ.GG_åiùÐî{]qEQO“TùÕ<"Nédx†(›;Rü~ÇŠhÆÇòoUݺ9ño“]{Âÿcf ˆq“]ÞöApñftl4°ãéS\¯>ø‚un.³Ûùaxœ…À±‰âwC||:¤Â¿^è.~˜‚n» ‰]ÛÛêb„˜ÅÃ’ ë›ìöN®Xt»¶çaôŽÁdž»ci]Ïun>×6úQÓ¾ä¯=Sg4¹ìµ>]döÅ›ÿV¢5^¹I 4²Ï"ßV3©ÖLzX8sçôøàÅ4œñŒµ“EOòü/NÞÐÎæwr­yTöÙê)¨\!«ußõÿbôžŽendstream endobj 1126 0 obj << /Type /ObjStm /Length 1832 /Filter /FlateDecode /N 95 /First 927 >> stream xœÍZMo7½÷WðXÊð›C rè­E=õêØr,Ä’ Inýï}jµDÕ"LF€hÌyóf8ärWk…ZÎåß$ˆðk1hM´Ð‘GŒ0&«X+LÔYpÂj¾ä… > A8Í—¢pž/‘ðŠ/%á}6è”ð)eA‹àBŒÉfÁŠè2@‰”ïr^PF ¡H ÃE‘ +“HG`Lé<äq¯b·>ߣxÌ]HùOöㆱ<'†x,ä€y,BŠ<†?GèáÃ…<àë<àóÑ>ñþ ŽÇà#0•™™hy >"Gàƒ8Œq>Çá#qàÙ(Ž#‚~ÅqšQGtÂhŽ#zH”³Ò”³Ob&.5™ˆ˜ eGš”0Nç«.DÂxÅcðá™D5%6$Ä—³BðR¶Gð-ÛƒH|/|Ç›àƒ(cIð‘Pjà#E_Ra£J($Y•¤™ñ qQ¥(¬a^ÃFвVÁ/Ø”Sf”Ö©œZe åÄPg=T Á‡Ïü”£õ0 >‚ã;àƒ#2H­%. ˜wJgËZ¡¬sÅí¬ËzÚ Âsegh^%'|4|‡Áç’2 8úÈW£ ø*J×¶—k×1|“ãçR2†§¡oÞ¾o¾¿ T™?‹7¿üúŠ^FÔKT^ÿòþöVü!Þ½ûªK§ë†»©zTÆô‘ Ëj#=&͉ÚJIê}NÛ9Ih¨]ÂéêNɈZ9UÝ~͉ÐQ>2Ùº¶i+-óô>Jƒ®XS§Cu¼L¾):ê:f±ThÔuWƒ²”„)VQGÃ<Än¼´¾Š½¦Ž>*IU­£qª{'£«Z‡úl1>á¥äK•ÌÓ·¦*¤'-É×§$N·(»åBƹy^¹eÞûØ Z -Æž±À4(·¤›LƒrjIJj²ÜÂsjà™TfR ˜I5¬L¤[,ë† b nP¶ UG¶¡ê¨¥Éä…ªA¹Ér:h¤K¤«6Òª¶5ÒU¯ª¶QÒ¥çmË…3XÔkÚã­ËóKWÞa®”$U7ä[ønÙqQh((<ÁTvQ&ÁÚV¤®ãžNV7ÉÊ`j»¨º:ÊxºõdÔ'‡j°Š ìTuƒ=Õ­?-E˜EÅÃŒ¬n^µ •}”£ «SS58¶A]!¯ºV¼u8xZ–ºZ½uû>EéN'Çꦺ¯;¢¹«›ÒºþñÉ·§?°¯ÌÑZ¨vŽèP™u6k»^¬º~¬êG‰çÄ“õoNµ7›Çp5I]}àØÇodÊOä$B>9^ë ­r¿~œ/æÛ núönúq&£š ’Ÿ@ëÍOÓÅìée>ÉÖwCzRŽ[FCfRiFCvRNkFCnRŽmFC~RÎoòÐQˆa€Hª1LÊÉÏÈlœ”# ÑMÊYÐh(MÊ¡Ð×!V2ãЈ Øí!$ýˆ0T3柘eÆü˜1bÆÂ˜1bÆÂ˜1bÆ‚1»Åò(Ä8@Lº‘ cƈÉcƈ cÆxÄŒãHÌX—Lbvëó1„É<"Œ„‰ O<1cqÌXbÆâ˜±ÄŒÅ1c‰‹ã’IL©ÿ‡Hâåêáîæââ~yóaõ ..þZͯ>¼ÏÒ§Ùz‰ŸÞã¿Ë›éZüyqq5ß\®gÛùj9]_¾û÷ þÍîf—ÛÙ•1µH™xzÓLC pfì sº,Ápé?î –KóGk ƒ¯ëùr¾¹ÑêƶûÓ¹'H>÷ïÆs1[HÖýÌ~œm¯¦ÛiÛßn)äØÝ.7/×qæíŠ_윱‚³nÕ·«íË,]®‹Õòe6¦ë›3Ì€]üº«[‚6óÅÝí¬¤Èö6[Ц~f·³õbSÀvìµlµ´€aÝ~MuįÀŽMžW´Ïô»ZOÿÞß¼¦ùEâ++nÚ‰^¬¼ë5êÕM(?)oe;ÁÊ[æhêi²”Z8ß´ÏNl—){}¿¼ÌC›îóv‡‘_§wâöz¾ÞlJÂB_£%e‘–ðu7£C® ÝzƸøkгÕí£§>Å»™mïï^fb1]:Øîu“¿,锩N”éR@ÝÚh/X¥þºÍ—N°ÊñÅ׫°Õ-‰'.u¶&Ò (ïy?ϦëÍ‹÷6w÷ÛY÷&Ò1Nþj­Sl×Óåæzµ^¼Únë¶ävÃUæU·­o7\åI¡[ꆋÈÓ°î:¡øÕc¤Ÿ§^€g¬Ýë]aòg¹ÝˆÊÆÐÛlAÛ±,ÊaR>aîkµ`­òæ/î½èûa~•ë‚¿Îøóà`Á‚„aÔßÂõ;¹9@qhJnµÝío!Ø Ên»ëíúe†Ö³Íœ_öp˜ÿ ÷sÅendstream endobj 1222 0 obj << /Type /ObjStm /Length 2082 /Filter /FlateDecode /N 95 /First 929 >> stream xœÍ[M#·½çWðh0—dñ0 ÎÅHàCNI<¬ÕÈÁ;4›uŒü÷¼ª–4’º4;ØÀbùXU¬z,V³{}dœñ!D#ÿN¦6þ'é(ÆWAT#½!4J@ƒœ!_¹á eS0Ñ3˜ÈÄ”¸MržɤX¸‘Mj2½˜L2½š\ez3…xzt¦î‰ÞÔÀÓc05³ÀH¦y鉦%Ñíq æ¹$0àšŒBƒ—¥E¬Ë7ž*QøÏÊrL"’Qˆ¢"£˜ÏåµÄ"£Ð‘dÕ¬<‰M f1*AGæ?C†Žâx4c ˆ¢ E¬ÊÐQ#ÛÌ~«ârÕˆ=œñ£U-&8qI†û]‘¹ð¿«ŠCK¬ÂÄ*D&ˆ¨PÈ 2ìi¸þg%8—u”Œ/5@(<Â:°è0©@Gj¬±‡Bgg#¼¦ Á»stÎÅÂrMQ‘íš-E³DCƒ‘UÐÅÓí«u^³»¤1:ÖdsÖÐÕi±)ÉLG\¼mª»+øzŽõm ZØU´OVõvsãØÄÀ‘ÔHÂ÷í‘l`ï9:o9Ç*è6v ød5ÉÞÑœJ³-©tc=–¨iâmha¶—­åÍhlÎvoDÇj›J¨S´ó6ã @.µ»OWް¸ ÑlW¤gMª¦Å3x° eRÊÕrmþFé ž)A=âBVl¯Í:õ°PᜦIÝÔõ4•"«£(L±Ù¬Ÿ·¤d»×¤DeMojÂRcUÑ’c*ÒUŠ©¹4d[£*½ºÝñè…„¤úQAÃj[õ­¤¡axÓ·’†ÎØIéó²÷>œ‹6 ®E¿cTCT•Åœ-?|¦,:H'TÚjZ?•¾K¼-Ú¤¼*¸›Õz¤6­ €%U­µ«š¥/’E+ÑPžY~RÐÚ½¼‹ZðãÄÛPUÍò•½?±%âÀÅcž_­ú˜ £/zñ>X8AªÉ¥‘RŽ\>aZ$ ŽÃ®©NŠÓ=ÈÕ²fŒ/ã¢ñrNÅ¿­îWÛ f|õôûr¾ÞÜÜ>®nßÇ­ß–ëüúÏwø±¸›¯Í/77·«Íb½Ü®æëßÍ_ÿ÷üÛ,·ÏOqf¾ZoÖ×Iúuõ°ÚÜù,}÷ãü~ÙÝD¹ß`]oëí|;÷³áv¤ŸÄ0îQ:I\m¶bci%6R'‰‡˜ËËThÚIK`’n¯µ^nV·áŒ¤ý ”+³>®KÏúž"+ÓNäµþ¼]®W+KO‘ƒ•­“ÈCÔåúòMûhašn– ³tƳnäÊU|³Sõg+«‹þ¬—±\)÷Ð@§"5ÄÓNš ¯.¸l‹Gkn§k>‚È+ˆñi6¼s8é̳áýÃIg™ ï"N:ëlxqÒÙfÃû‡K&?¿?¬˜qÜQìYb8ûýýéñíFÊh$îFš2"î&§ŒˆÏÉFÊ m÷„óúÒêniëËOO×qnñxÿô¼]ÒEÏÔ]ãõ×Ý*ëËÈÉànâÁ=ý¬ÁÙ÷, Ê©¿`‰zy%¶ýTÅ^ÔÂl´eº*ï¹ú9û¨^ÉÔ]î@ŽÒSîãú~>T9t—;ØÛÓ¿{FÈëÓ)©,ŠBW"_y4ßÏÙžî[a¿PyÑÜ9P’srí-vض=“¯ˆ•b¡twÂõaøÞóëÇGùÆ`òx½©´ÛÊ¿®¶vñøéén‚»ˆ/l½ò©ÇÇ™aó"r\˜¥2•xa|ªS‰—¨¥Ö]üQYãkÛµ«¾ÐwÏááôùÃV9{-_‡õÁÃòßr…7´?ÿ÷ò†ÆÉäMÝåÑ(Úß;îÈ7€Óo€A_çCg_¥LÄÿƒÍò cï¼Tî1L#|ˆnf¾”²±â)hcÿ´ÿRÖ¦W‹´žêò ç¿ÿ¡×™;ã÷Ëg¾“8_®Ó)á¿ÿA¶Aóg½Ãµë9¶_UÔh у՟+*®Uv(`z Ülçëífû¨]/õ´W¾:îéö£*¥µ $Óløº§äÕíân¹ømpGšBôàÚUô1Eä3òi)~PwT6/V½¶ÿ?68ŸU ×ß>àèù¬Rî"WìMåò[‡Åzõ´‹Ã’ÅæÓª¾9òùeê_W·ÌùÏ< ÿ×a×ÈûFÙ7ê¾ÑvR&zéùÝbHMrî,ïvŽØ} /ÿ·c× }cïPŸÆÎú’VHÓd!øìéìž’endstream endobj 1318 0 obj << /Filter /FlateDecode /Length 2837 >> stream xÚ¥ÙŽÜÆñÝ_±HŒˆ›h(6›§`9ˆƒPb YÄÒá’=;ÔrÈ•­O]Ík¸rà¼L7«»«ªë®žn¾yõV‡W©›F~tu³¿RQèÆ‘¾ŠÂØõa妸zïìËþÛ®/\Ó¶×»Ðïvg{:sÊÚ¬7ÕgfáLºç1ˆ!=CHç8ù4d+sþÜ7íq‹ë8t/úM\/iW«xÎö¿Aʾ?bÔ3ŒJ»>Ön¤d³·AŒ?r}/}VRLÒwÃ4à=¨>?un®w ô¥XH‘óÁSA ŸÂEL“ _í´ ÓÂ×N i4“bÈñˆ—89È&©Ã~cZÝ!xO ¬ª"ÆÒñW&xš:GO ´G4_\-k^eý 6‚ôoXÇÓ•‹‡#çǶ(ë¬ýÌÛ10ÖàÛÙ¹JGD5T}yªÊ,¤AÒZ7U%Þ‡÷+z‡HDã…†cÇ‹ ÉÈ'3 F•‚œÅK{CâPGtCsr‰U¸i°ò×0Õ—{=@¸ßˆ<:v#=ž²Ø ˜ŸZk CÊŠŸS–nœŽ›üçB_~àFIøU!Wì²Àò”—œ’æ@+£åÆxÚÆÊÔ ’U¦ ®¹^XXžQ‰ÆóWÈÜÄû"Øùt–Lj|Ù"MᎶäèQ’ ÅhÿTSÀÚ;ÌT€›A´.Tÿ•ÙḋÇf“ëH0HbëºM $ŽK/ÞÏR;|îÛ]5IÅrM•‡¡ßS6ôH\CS!›9@ÂLt(¤;FI¶”ŒWš±Ö.x²«¾ eä ñ °q{ÌBnó†ÚµE¡|[œ)ŸGJÊ0úÒº¨é¶\2c:ÀÙÅm…$o;È®‚BB …¨†ðÕîù®ø=ÄöÁ ÂÞ‚,Ì¿ RÐ!FñøHUÖÅÓFÝ¥Ý4Þ NŒù2…£~š;ÔÓð Êâ™Ý”Éâ´}iŽ^<)ƒh¶¦ÅÈ¢|ûܳñÙ¸¨¼˜Þƒ¢j§l0;q8ÙlLï¹¼XH›½‰$ˆ8˜$¹|9Ó© ¶oÅôýFà A~’#2¤_ Znr`2>,Þ~c¸€+äžü¯¤RØQÉu(ÞL Ÿ ƒpª¸ÇMŠvy‘¬¯7Ðéf\ BIùÁ&F€úž|™> stream xÚÍV[oÓ0~߯¨4&íÒxuºd©D^Ø„DßJ&yË"’¸8NWøõøšÄ‰]!x€‡ÖŽÏ9ß¹ûÍúìöaÍV`‡ñl½›Á$qr7‹£{rÊ:Ÿm.YQá¡/ˆæWAF—¯µN7jùnŠy˜©`p³«lýn¶˜‚U¤ñÏÇG¢Ö#öܨ=¡jÝâº!TµZÛSsÂ0= \p-.?‘¦)žJ|B[/Œ)%t®öO-S›šèM[oIU­éSöŒõ¥6u7"m[zÀ@˜pûïAôU±XyÂX…ÐfÄeƒpa `9ªdÚ¹Ð"žL÷9ÝlŠ,³3š»ÝÁ­øÓ)Ó¡iÊ¢a¯¤\QçÇŒs@ñSÔsA0ÉØR\áš5®ðwŠ70›V“M¹™–™ÑYž®2¬ÐQ¸ærÆ`‡K°‚ úý䨎8)yM–×5~¡EóóºŒ,tuHå¼0Ø=NÓAÅ¡W‘$J5S5Ò^mp ðGÞ dèËeg $º’—½4PÚýòªU%ÂXT“¼Â9ëm–ºIËûºÏ×¶­xÈ•¼®Ê£ÈqÖ‡ÑÒx|BJÛ|žS²OœZˆ>CoÄÕèTçƒL?†`܆@J^>·U#ü?ãíÅõ…Úp¹ 1á˵îFÖ;¦Æºc´¸‡‰ê„V ¨˜ÛŽð³¦­„m-‚$vªº¡ð§-0Q´§$·5 ¶~øÈ:9ÌœNÇûàÃÄ”x0I=:ñq/¤å¸g0X¾`°+XÇhb8tݘ^§¨¼eDV5CüŽ’Œ"†Ħa¸Úó (kz.—üN†át襮<‚‰ÎÜßáÊüÔÜq’8•­ñâ“ç'tªÖw*‚W²ÏOÚ'ÌÉ©ò•v…Ã?܈,üÊ·A¿SiŽ+ r<Ø—ÝÍØ Ùñ†§«„€?¢¢å¯ôþ®(,ìSÑ\±·(LzF“3pôäÓÌ3PYŠ¥Ð‘4-rž¹aaŒ4ÃÅ $Ëû“¸$áºbÛ8Š›¶döð2!$5–ÏO3/ÅywcÎÍóȼìd¡™/}ÃZ7Ü<Ö»³Éп(ÉBÜ*ÜÏ$Q|ѽ`<{»>ûòk¢endstream endobj 1320 0 obj << /Filter /FlateDecode /Length 3350 >> stream xÚí]ã¶ñ}…чF‹¬Q$E)ÈHÐ; I‘^{hq¹­Í]+'KŽ$ßÞ¶¾3œ¡,ÙÜ¯æš Š¾Xüs†Ãù&¿y}öÅK©E\di¶x}½©Œ‹t‘i§0ñz½xÙº·ço_ûÅK¡& i .º&ˆÙbK ‹ˆÅRˆ¸Ð¼Ø¾ZŸ/uª£¯–ôÝ7Õ/{ûS¢“j ¿×Egêl¿¯‡ùÿÞÛÕÐvø¿Ïêª>» áÚ67Ãæ’>8»§eï[úºíèŽjV }Å—÷.sÄ !“ØèâAfˆ¤ˆsiæè«fýa¾¯ÛMµÚ;./ë›êí íÙ”-oâí|¶±«}÷Þqµ‡2ˆùó!}ƒ8/.Ö]»»|ùõ_|ñöÂ-N{ÈçôÝÝ ~ÄÇ~èÊ¡$h€€Ýê$jìmWõïÆA$ ·ñu5ÜÃÇeˆ›;Ó56åÖö¸iâŒC26¾S¬I#sŽ3%ùŒd§ R c)/ñ½ýâ*‹,ªzú‹ ­ÚóešGkKãNþ<Àé6…Hâ „†«¼Áã<%BêXn/~ûf5TmWB8‰:”BT®†}Y×wÔ[9¶'ê˜Ì,ºÅ´Ý»ø|™É4zíÇm?TÛr°¼­öš˜%2àV’ÉÐZ½?×€³p¥£²³Ô <Ðø®¬¯~J„¶UOD._u¶ÁÖP­Oô»Wxš4ð œoÝ"Э1QÙ¬iêÅu×6@´2Eô¢÷ 3›iV `i jVÝ22¦¿Öÿ3 éd°h©µ-‡ 5-ÖáÍ¢—U×»…dTÒäU5Pøå¾M;”xD_²8Šé™ÀK%üiþƒA’EFæ¢c“+ +V…7$¡ˆ¥0‹ ò1€OƹQÛZG¹Ÿ'Â-TÌNß=o ¤Ù [ `Ìe,¤_1@yçzÄèñü$¤*™hUþÀ§ÉœFþ‡Pe±Ióvgâ$wÏb¤¢„ÄZ ÜZÍ áín«Þ·TÑËó\FN“Ô8|új»«-·÷hˆ*âIM£‡Ã˜+¼2q!FOÒ¬Ú!ïï——é)ý:e"ŽgBÈþ LŸŽ~wI#ŽŸÀ}ä%µö¬wL!é(6µ®åľ+ÛômW57<Üy“™Äéh”ÙfzѹÛ3(»"õ€ØÝ~‹ê¨ 6%Gì( â‘wí»c²{8-ŠÉ¡0Þ~(;t‚2Sp@€,ˆ¨Ý½%äkp^Ø !NãT™{ÎE>ñ\`}FãH˜Ÿ Œ^‘1^µ[g`0ßñÔrG_öÀô¬ˆ‚,>R•€·¨Aj""džÏ$qOpþ®§î°éÚýÍÆÏµ»8h¦DlÌÈûõ÷;%@Ñ ²Sê vJ=j§ô#vÊÛ©$º­êšZÌ]êðluÍ|™žÅ)î"“,{Ød¥#/6åÚ3˜¾öý9aÑÁÝøCIî³]…ŠMR<Õ2Ç$ µPG&‹Ü·”^2Àjõ«¶ãAŠA áÜžqzÄ’,úÅ‘î¤&À‚ÄAá±üïÒ œ+zD²8×6¹„S3À¼»{ä"-âLŒ¼ÿ{qÎFüñ‘|È¡P!Evdq(Ê Çðã…C‘•8Ž>»2¡î!Á5(ù€<Ì|ÝxJS‰)5àò”I èUO 8Èåì6ÀT><}>S;ñ¼xæ‘5.O™Å™J?-#Ÿ¥a'KeÓ¥ 1?éFG-rA@%œšì·¨?hÅMdÑd MîØÂ’:õS}Ò÷ëSëCœ ËS!Žã?ÄAè:²¥ƒ7¯a2%“2±¿’GîWö ›ñ ÃPYÙÆ+g¶f:#>ËÁ¤íÂ<΂ƒ?(ÛÚåj¿í÷[WŒ`k5Ì‹ ùLÚ!ø;qGÝ‚*VQiå²?ð.œ¢Ù@w‰WÐp™ áLPi91š¦êi©’º[wõPíêjù‡w¼2Ønò™ŽódÏžn­ˆµI6kzI"€=„´.í¡á–QÑ$wRóÙþ²Ÿ¦J3¦*w0KÔì|îáfpà65DE¬2õ$S£Ÿbjô“LÍs–úUÙlöÄlö™Q"†/€[ÿ:²ô‰œÌÅ}Š”ý‘5îùè §"N ÈõâgHËÙ‹×g¿œ¡¥Kb¶Bj³ß|±Úž½y›,Ö0÷í´vtë · …µ9TÉzñãÙgß`{¶¿¨¶òV'Tp„=ÙQIˆÙ®õ€uÐŽÉG–ÊSÒ)üæ3FÀÝ"’`²¤ ØSd÷JdA`ñ2T98¶lª,¡_£o2ä1.A„±¾Zó¬+_Á3\)´¤‹èz-ÿ!ì Üù=`Ohô8ž Ȧºˆ“${ªÄcôûš«ÃÅÔQ×o+ÃmQrƒ¿³’· Ô»ñ™¿ç”;³ä(,à’&ztËÅÈ“ d,1¢G[®¼"œ7&ú˵/‘ú¼«³óŠ[Û¸ê­r…~:`2шÀÏyïrT¥þªn{ËU/H·Ôò^,U@…EŠEL,1'¾üZˆè]C9•† _D‚ÆÁ/"œŒ½+Á\]1‹Ê@yîÈ64“Ї¥‘p˜ô™ˆÿµlüJÍ(»ë©Ù2ÉWUoWžŒÔ¹güÞØ!tÁRRQ|Jº‚½ ›ª¡a—9VÈÓ"úš§ËÂŒfy \åËë-í{;«·ëhY·7Ô"RÕajRí¦_ƒ§^Ék—ô7WàAöÎÿy§Ì,”Ák/·žš×%ð®Ã¶Š®ö5:¤ª³=õJ‚ܺ*ôínSˆºPžp¨‚EXô° [¬VÀ.# ‡€îÞ£U„À[+°¥*˜Â&.Ê%í臀OŒõ°²˜Ù‹™IÑÆç`M‹¼øÕ–ý?qÅÇ–]¡íú–}*fk .¬“(|¸j» EÍ!æÍŸW­ "”¦˜&€NÒ¥ô)‘šd<§§IæR{c‡£Â¨*§™F„j+inè·šÕÀÞªäá±ò‡÷•%Û²¦>*ûÒÇ9¡Ö¢u…Òéáf%œSdûf*ƒÍÁSVöàEv¤4Q\-R§U:và¹\ͼ§6Ý™AÌ-5:Ë÷wèãÆÿü‹>·Þì@ûg²°¸`Û|æšz4ÑS ¶[þæÜ9£,‘Ñ-ͺ2©ŸÙ# %}¦çÇ›¸Ý´!ƒ´v†?çˈ½Ä–GîÉ‹‰óôÁëu¨ºx‘ú20´6%;tãçÜ®:˽]¿·ëv9ŒÛtÑÓä5ÞtÁ<@ÄBäOQN—È@ÅÕƒå=!ÇùÏC4@žOÂYaNQqr¨!^°ÏjÖÁ¼¬É#äè9ËTë( Q¥!È4Ï  ¯pŠ$úÚ˜dÙ8«ÔI•R‹£Ûú(ì¡Àª›íÍŽÆ Ü¦ÝVà®ý ]¯L &÷UTA¸ ‹™ô 9ÿǤx>GÅŠ¢ñíêmÖ¼…2!üJ§äA¤Ñ­CŠƒ„¸"3Ý‚»ûRÌ8à`s»ï*pâ–À[ÆṫR“PÆ\À@öp•=îѹÉ™ó޼4Ø][6+;¢¸›âàSKB´Ì8ª•Œ¾d&¤ —:Ë·|Jûg 2£ÈÕU~\8#¬ï2óqËi(‘bŒçÿ¯‡E(¡‹ƒ°ü¯Ô»‡w•$«K<¿à‚œéÓrÿ#^«ý^%‹¼Èñ ½ØÆG1-uær*Ž-´l“[yˆm)š£H6÷Þ*¨üðrÛG¨rÿNAù«høËþÜU,N«˜>åÌ>¾ôüväì£Í§€ŒÌ¿öXÖõÑ ^Œå‡c¹‹pÃ7éIÊâá7K™ž¿Ê]ÎÎ ·A° áÝ\ØVív炈“]êã¾ôYQÁœè@ï•(DÆ)-¬¤É¡À@ÿèK÷Ð¨ÛæÆö;,ü Œíºöª¶¼‚ørp™xuG½ón^•ß@¹WC½[T£mR‘ÿëâ†R9¦Éþ½Xžø l+Ö\w <­Â‡Ñ";\°µóG»ã™|ÅOÀÿÈ/‰álþt9Üs)‹Ød§!ŽÒ%eF¼ éYn²çÔšP éäñ¤ñÁ?pÈ•(ÓÊw>[…•Õ 9^,SPgSœÄÌéú¨¤ÒÙmY5T‰…W¨Ùp=C¶7#jöL°|yÚRBÞ§ØÁêÜ_ÓüÕÂÍ endstream endobj 1321 0 obj << /Filter /FlateDecode /Length 1892 >> stream xÚ¥XKoÛF¾çW¸HP‰Dó-²­. âC{HQ¸è!ñWŠ«K=€þøÎ‹)Ѳ‹^¤årvæÛy|;Ë_ïßÜÞ¹ÁMb'‘Ýܯn\׳ç®w…sÛóÛûìæ‹õÕq瓇ûßnïâž(Žü‡EþªÕdæ‰eÖ8+Ëa™¯*U.å•^‰ÈÄ›[û‰[š'–ÍŸš"5ù_Ê‚ºÙÔSÔæ[ºµºÊ&. ¸V¥2–{ÄÕGYcÒʰ¨É7¢(-E²§´d€ ÕÀFaW3×µ“PP½'$ödø¡u¿ÎkœŒ,ø'ï¸nÏ=±c;AçŸÏ—þ›Ûñ$mÊÀ Æ`4€xƒƒš'Ÿ”áA‘VO Ò!p#k¿Î—¸›5¿Z¦%Ì;޵N·ŒQÉÄ… I ´¶D+°ò SNò¦á=gbuœÄ%fw,pdØiPªâÈ‹³|—g*³ÇòGRÅ÷Á“uƒúýÀj§6º6¨ÇÛJ-‹&£Ä‘.±áUÝ<š*]š¼|’u_¥¥¨A4UmØþÌ ìÄ™ HOPü=‰}J†$´–z³m =ô²ÆêÑe F)ƒÕ9,ä׊Åj“ˤ†§°¢r á7~ñ¼gA š®Å¼TvñèUQŸ|Ï·£à”á^xYàé(ž·2*=eFd5eþ½£™Ja§äßmß›K”"^)PܘÃT ýsòÀ€ã¿4œÖ·w@=>ôÁå]1ò‘juC;JÜV„Š/±î0,•Þ´¶(/`ÄÙÈãuŠ7¢œæÿ6-ø‰}íBmНI„#¬Oºæ²•ò]»piX|ä'ÅT¡a¥~;L’aVI…ajXi,\fâšK…àó ÛýA7æÒCžù:ôPhý©6ŠNÌÁ˜s°%·Tì#úSÏyîiw ÌÅb]ºÁÈÿpN~F›–ÐZñ*¯¿ ¤e[“=m‘0dH©B›G¶yC‡‰žÛnÈ NŽ7¾E8ÖçÆ@­ò4Ù]R¬’ž…P(lÍîL,ÌBH·_fü¿jJ8³t‰õyœòÜAþ÷F¸e¢sÜ*yÜA7OÔÚ\"÷bÏüŽsW#Ðg^äÚ¡;"-Aïg¹ÔbLk{“š*?àþ¸­í˦05M=Ôrü2mqÝÃØÂŒ‹áÚ:ž=³žÎ±Áz\Èx‹`8>ˆmï|ë/«uep)Ÿ’8"l×v]ª*ÍP ølGŇ*½‡ÊÁÑÞ¼'¨Ê—U/63PÿÎ+Tãߤõ½ÖÆž««tµÓIKMUp3!x.£§`Uj‡3¼‚ÐòD—C'Ñ·mª‹æþ8*ÒZ|‹|KïrhêF½u¹“ªgüäª^q½èžüµJÍ«5®N:’â‹…÷LmÇ1dntµ´£¹$g— £6[ï,‰Îœñþp~ øÂã†ó^žo·bwȈ(iÿO~rŸ!ë^b=2÷>ª¨ÕñE¶zWÂýÝ='ŽÂ¤ÃènrÊã,_­hc½hÞzcnQ—,²$ö¹ à4÷¡U&NÚ¤‡Á«‰ÓBö¶mØQˆïZTØÉŒæW™Î9›²C`Å´ûS¡Ê'b žïÁê‰m´ÎÙât9@¨¥y7%«1\Câhhºj µhÿbÞý‘¿ÌòtuA%/ìÀ‡­‹J-qT¦sT׫¿L½©~ÞÔAC_Щ¯ä‡|\ÛuÚæÆ Fé¦ðL%>WÚ+UÊ\üŸ¼‰·º‹d»Ž$;˵ç‘ôäy¨¥GI‹|§®pT!샠=‚oé,¦×iýNŸN³Jowÿ“´¨Ñ”iPNÞá6å‚»òßcCLÍ0 œTa£=rcDˆÜ»Ÿ:èNøõûøïCí¥Ô(~ªÔ÷&§ÖeRž¬×¿âÌGwå¥hÂ'3-ÏòÑÇ9$LŠ=ƒk^D­\î¡E÷)”¯‘(gZ”Ÿ (åÊØIœqnÞg¸x98]&ÉO~d‘8ÎÑÍ­C•Ë·»ö‹ÓéCP l¡íæ¯{ôå ?":Ïñà&èàöÇ1£ |÷æÓý›‰­Ðƒendstream endobj 1322 0 obj << /Filter /FlateDecode /Length 831 >> stream xÚ¥VÏo›0¾÷¯@êmlÀ€4÷°ª=l—rË2‰‚“ &PÒ¤ÓþøÙØL!¥Ú¡ubïóûñ½ç|[^-¡gE Â[Ë À¡…ý ×·–©µºÙÝ®—ß.îà\¾åH@¼-ìU¢ 6×B Ë?ÆCÀ²¡'â+‘¯|H«ì@Ë[ÛGþÍW[®§]–ì~9¾“ÓWšWróÎá;°&rLŠ\PÜÚ4{šo«šCŽYf‰8iõöBå!PõéèaÙf tèÏCqý#Þ?mö4+“ý“ñx²„Ê|„!À8è¹”§g3¹&#eWÇRy'þVK)Gu&W `-N×’â:¥qµ+`yßóÁ¼ Ü ®{Yyo^›  L?ãdyE·òî¼¾@Ü8Ê3§Åñi/ á°¬|^‰0×Óð§êct×]ð™sáÊ{(Ö•H”äÒ±ÓWŒHÄJØv@)6r@„ _]ÁqMâÊÍ¿åú3µ?âĈË~B¦’øaÊ\~Œ_^XqVëc.Õ^Dçòx@¦zXqâ›Âõºr"¿³F2;ÏU>/u&¦cÜÞw\r \·æeR0ÕÔÜ\MšX ';Š؆dPq«Þp1zÄ—âáù°wI˜íH’cM hЦy½§B?щ#ú‚Ò‹­b@ϲJHkBù!iÀO¥²UéÿñœŸbfðâŠegaí€yÿÙi Õ‘®áØÌ0„'ÌŒ®o»øÙ,å)«Ô‹¡fˆŒ‰?9Ľ÷³vuQ«a0ò‰€™¼Z4ÌQ¼¦·í¡[y:.x­Ü€ÓØð©‘±.5ÞGÀuÜþSO÷%m+sGT8²8ýÏö ì!ânr~£ééA—ÓÓªíƒä!ð¸‘a¬›kÑtøŒçz°u§@0t¢Û`„«m0ڟΓÆhyÜWf4û¬¬êjõâ$¾¿uZF u"þéÊ€Ú"i6…ã$kÅ9”‘$4/ Fr±*ShÌR2or<ð#Âõîðo豈‰\´3õô%¹z›êî »?C€Ä/>0 å5ظ«‡åÕ?Ø)endstream endobj 1323 0 obj << /Filter /FlateDecode /Length 1214 >> stream xÚWKsâ8¾çWP³s0 –ü®„ËÖÎTíw¸esp@-3~„™?ju0˜$;ÜÝjõãë–ôçüfúÕG)K#æ«‘ðóãp…1†3_ŽÏY5Ëv»üç^èYS©0údì†"tô¢Ìgú5« OQmQ·à7~šÿ3rã„a8r9giH¨ʃҺ­^›Ÿ;9›á"˨dÝæÍgà!áÁÅq[|Vza5{}¸8Ó¯<8qñLîE’ à /1cÈÒÅæk9v}á9YõÒREâ45¸Ó”ÈjÖªÆÙªÕ‹F•º[";‰+ìò¶€ÿç±kþe…å ÇV«ïm·J’vÒ…³_«ÅXÄÎ%ºm›ÎÈ\ê—†˜Æ86 <0ž‰]|sä¢)+£.ð„£—2-0‡Ô Z ̬ÁQf `Ò°ÛÂÁ|òÔYJ]4Ïô’dÀb˜T²i+=æŽs-—ƒE1Z„ßÛ‚Ý(ô0v™ª·dC§rß Á¡çœ'΢ÄfJ#Aé¥z5¨e›åHz‡‘“å­¤5+0Äc ´¡Ô­‰„ÚÕ5òöÊFÞ03‰›ƒc¸§ñ"4tã…"…‡„™e{•çH¥(#Y~'»bÜ€‹Xjf Ï® ÿˆê5JøÑ‰„ÏÓ<È^ æ‚E~Âü@trŠ…gŠ‚N`†¸ <–D}³ÿ0œ·K‰ý öûÆÖŸ†<ÝUeSžˆ Ÿ¥œSÎKµDQrÂóMiƒVÆ¡s‹¡šÐç²lŸsÒ} À2 Á=¯ÏØ7»W³4 úöꮡVq¾¼«‚Ë·E×$Ï"ímµ¸ðX*øYk‹@¿šl&[êËù}/ºÑ™¨¾7ö™P9Ó["´Å3Ô:ÌKêÕ]‡‚9õ ˜R³²M‡rxê³AlC&½˜"«in²|ßË'®ÔÈ‘öZßéß”7ȵÜ5 „pÇÝÍî{‹¼¸ôPÜÄgÑßÑåᆀ{TOdäÌ;žqÛâHçƒÆË¼¦À½©“_s@„,é[p S=$qHIÀȺËåEâ)ÛÆà€%<é[~ê»rÆs:Ç÷ÍãæÉ§¶HÌ ÂŸ»ÿð‘ÞO-1ÐKu"b<ïÆIœÇéYÕ Iç¾…w™·Ç¯C€Bg†Xô÷âÃÂ+5ºè‹‰ð}œçœç~ØMßzÊ?þ-ÿû„Pánt)iʸH.ΰæã¼mÈ›í|oîÅ€PAÞuOMgõcþfIó 2ÖkVÞͨUo ÀÛ§)B›0~ÚÚH »Ùjã×!ͯw›£™]°®°éX»Ow7»l¿ƒí§·Ê}gÕ9bÍ÷Tüf{ïuk×õ Š~¬>°Å¦š¼þ_âÞÌééË#e1÷{7´¿àmÁ=h½¾—: ¸D–Å®5Õ&£'†aãƒÀ^½áÓ>ÌXç%P÷DÕ¨ä_P2Á¹–r Ýøx½åÝ;Âp¿¬ªnóþ«¬²ª°›KlàÇÎßzgli’꽎.Ÿä:¼ˆ€ ÏM¸$ºÂ´œ$AfdKõæËüæcXª endstream endobj 1324 0 obj << /Filter /FlateDecode /Length 1084 >> stream xÚÍWËrã6¼û+T› å˜4ñ @Ƶ—Te¹ä`ݲÙ*Z¤-ÄååC«ì×gÀ$‚‚,ª’Tå"BÀ°§ÑÓxðçÅÍý'ϲ(TÌϳLFR¤3‘Ȉ²d¶(f¿Õüů÷ŸÒA!ãrÛšÝFÿ>ÍCø-ëyÈ ¶ÏúɃíSSÖ»y"‚¼UÛªÁÞÏqwsTêkWbWQæí ßmÕ¦l „`v‡ehò‡$‹dœ"‹âÓì³7Ø—·†Æ [¼'t‘‹´© vsÁƒ¼>¥EE$¡õ>-nh±`¹Õc _¢ÑH òä"Aãcc°eöÄ# Ä%i¾é ¥zYég[Hà¬`V’Z5¯c¹Ê ja^—½Ä¯N©\¦fÏ[£œaÁlE§òÐiN˜0ñC±6y[«½­ $ƒ6W•®Jõ2J¾Déº5˜~×óÅ€“É<\ ë®ôF'|=Ò1‘4õ1¶ á½æÎtUë¿.«éTççAèß*ƒÑµo]%+ÐÂLt0¡þ^K>¬42Î 2މ<—n1;­âcüÓ<äœ-‡4ìú­Í$ºj©µ_åÕ‹õµÞxà-3oU©Våkõ½tÍ7‡oˆ<œJL"ìÛÉb c£ׂ„‹Dî÷äŒCtTHØØNüB§BîŸìžæ@R‰ô©­9@u/ Sñë¤×(˜ž¯®?¹§ƒÃ%qwçøbçaB”½oýh;ô í ñ±§|î䂃•$‰Q”Ž‹4soS$Ö¯æ|c¬Û–µYØÐûµƒ5Pœãñ~eÓ³… Æ0”ÎŽ8Ò¬Ñix£îH×/ôܲ,ã}’«Ø¿é*6ÙU“ýÄ.GÑ[7ÙwìZß±ÿ‰ïØã;£pžz­ÇÐz ODI)úû_–$nf·8ðãì}‡CÆ4%W;¼l—ȘÂIK÷ ÔÎd|Së5¶Ìeÿàñ U-ërSö—ÂÖŒm}Ê~ÏënÚ ” Ã®…‘zR¼nZÄÔæÂîþú2ŒÃ F­òjYÞõsŒÝzäUí-vrAséo£K™Òñ›d4¾)óêp»Â¢‘¡3yeôpÛûj“ÄŽïÑÊ$zƒbÀÔÞ5#Ÿ/(,îŒÃ•„§ˆäˆ´2ËD —v”Êcª—¦«w‰¥ðECmœòÝè°™}Dwñ8JGËáxÝ%ÚûƒÎ÷­>ø*µÛªà /½DUÕbçmEÁRT@sعËkÝO vØ_wØ*¶ÝÓÚ¤¿Ýôˆµ2nÒ s 8=f"Ç½¸Úå^û9aú ñ½Žo{`Á²gv +X ðì©h_8ýwéBm¹y{ð±>è¨îþ4Ä^íóõáÒ<‹ÏÇœýnÒ v0³s‰þì¹ùeqó7tDpendstream endobj 1325 0 obj << /Filter /FlateDecode /Length 1088 >> stream xÚ­VË–›8Ý÷W°„î #xœ´7™3}ÎÌf6Þ9YÐFޱñáÑíüýTQó²{2ÉÆ–êqUª{%ñeõ°xq¥±È¾±Ú\¸,†/&À±JŒµ™ž*Ë–Bš§Oúÿ-.>[ßVŽac§À¹—:J¬o]ç,’ó‡¡`D7 u›ë௎tÒ¥ó™fé³ÎmçOOÀañ½þžœˆ…n¸„G!ƒmÛa úÃ2“AI²Nç·“n¯õ%Ë%¿Q†0'pïV!|Æ%¢W*; á‹ ¿UJYgèÄ#À­`1ü8Íðg¨8tTžûº Ó• C8 ©Ñ®.¯q±NŸtÞãaXÅJ[§4žÄ<ÎU:êµ=·æ÷Ù–c ªc©f@vÄ]%œš_ oÐß}×ßýsÒŽîˆÜc¾óÈ]æ‡þÒ™úpñËUF¶æµò¸_$XÀÇâ{ê j‘|¬¿§±o$ý/ Ž{¤‹(¼Û«(bn ×>št¶àFé‡Ãh›X}ÓgTz絯òhmÛ=/|ôè.68:¶ð]âç²/"2È*®€ˆ€…aD‘¤ÂŽV;eÙn Ís¡’tSÑ$SÕ.‡!‡‹¸Á G; ™Ûb!”D¨Ï‘QK³g›ürÞM‡…‘ì4QŸ6UšÃ‹&"©Pˆͤި’Lo–ô͸HóZ*Kæ8KðGAÂÌ·m~³´Jú¹ÇºÅÚyF 1þÈ-XíB“L¯­ŽÌ²=×i7 …þKoØÿ¸ø^gê„ùÀ»®¦¶9Ψƒ0Z#ù+ Sí¡ý“Þ¸’ùQ÷t]®kª¬-‚[E[L›øx$G•Ï0w0Ò€7ѯ¡b3{°¹ï0è´_ê=‰«xŠçùðÐáýsF~¡ÌV蚟®ý‡@РjF¥ªhÐ\@8xߥl󎦚cÒ ÌÓRC¨2rÊøkKÖj×úÛÿøµÔ´ñJ}Ú€e1a[SÑTÕ´»%'¼‚”F ».Q„èÿêp¯¢¡ÎñHjIm¦ÛÂc‘3êvejPö(žÆ'º•¡|z]œ^k |1”-ì"˜®Š£N®Ç3A/G :¦'ƒeóbÔM·÷[*©¥sß´²Í%‹¼ÿ\a‘–‡ù¯žr“·Ç>Œ{@œÉëW¥ºœ§kA1®×ÝløêÌà¸, º8ºÂ1g BÆCÞCâ¿Ú/.àÃÛ ~¶c¸O¼]ª]ëzZž iŽWáï+ù4ߤ>ÈyC_w{þ.~+Udpþ<ÏÃ*=Oâ=ƒ³,®ŠôB¦÷´Ú‘5?)À«'ä&ç®bœ•5ìÎö^ás‰–ø” Ò%\«Ç:;‘±aàãfÇZ°:JHup¥˜Ñ—Lÿ!B7—>¼¯† ¯ƒÇõyô]t=ü¹zørˆÁendstream endobj 1326 0 obj << /Filter /FlateDecode /Length 2095 >> stream xÚXKoä6¾Ï¯h,ÝŒHQ¯Ýø™Ãbo1›BKl·bµÔ¥±ýïSÅ*ª[mÍd&'‘Éz}õâO¾ÿ˜Ä›R”™Ê6ûM™‹<+6Y𠕤›‡zó¿ÈYñ{,õx÷ÿ‡ÿ|ÿ±¸Ø­ ‘§é&¦}¿ìx°ÃÝ.I’¨÷_uýH cOßÁŽÓÐÑØ¦«ÍPÓV; ýàøøžO,ý< ¶nª±é;'ˆ‘ß;fe'aM1ãÆyÏy ]Ê3çfÁ¥Žjæö¥4:6Î5Ýýþt—f‘i'똗äân©¥(Ò<\Þìß“—R¤: ;Pk–¨4ŽÕf_h¡6£Y8ND",$íptïÉ%‰ÐùLîÁë4y7 I02ž•TFõŒ`(#×€îÅÝN—Î6|¢?yÍúqX3í±wx„ïêì§;UD0œ­·8Ô‘ëiiríß·íÁhÄ™«f¼õrmv…H³ ¤–¢LYêCèl¾?'`ž8i`´£ågÏ=±AÝãºnµ(ãœU›‘ªo[srö½v5"WA»?2¶I?¦¥è!l5öÃßnz¼Û–þ´#°©m‡lŽ :Ü–xïqñ¬NXy9€hM…7–>æ¦#brîo¯Üj°njG·¦k¯Áîª]eW=*)䤃»‡ž^Õ“pö•Å݇@Q±Øv˜­sqÉg¹d² .«²Tô‘‘X‰[±Pi1[¬e#qŒ!~ŽÌ@ ÜzöI[/õ|0¨|2 ­ú é,_| ^ Oӥ̣ñß^æ£@Ð<_\Ô1 ð6å>@–i÷x]À°ä!©H¤^‚—\>‰#Ä fp#ÍGãža¤J¾?f¥ÃÂÐOcÓñ9ïá°H’ƒßZ°¤&¯-Xïle3ÃýƨE?lklY>ôâb`zœ)âÈ™3ÔkZ2ìüSë¥÷³ÊOf—šBI1é%N ¡gg­ú×Óaåe¼ôÉãŸÖѯwELôÒpÈ݃Ñ… ¬Éè)ÀÿxLQߥü‹ÈƒÅ.P+³\¢ØÈ߳У™SïL*‡kñî7"eïÿ°¯'dΫÑÖ·8Íѯšz2­£S8&‘ü]^ê‡æÉ4œ¸iøÔp¤•7T ªIeœ&pµ¡@ì\x ß!¿•nh ¢„A1õA‘ /MþèÅ•fiTÛ½à€N+°È¦•¾óé%óFBñkšy Ã÷‘tDÇöv¬ðêƒå]>%Á2+,š§CË”'oÁÉM†iUÆÙ°ß0G†÷:µ‘E¶JåÃ{½‚Ð+aßî?þøß_~^Éê0LfÛ7ÝUhŸÍ…«•i[±†4]B‘-£Å×"-IUdº` È×*Hʨ¥¿\>ÁÈ6\Â6_ÜPqÂWùe-[¨ä_=Ÿ[¢úÖ—/·t=I ”Ú{°AâÊK•éLh9»ÿo+•™iR† G3Íë–‚O¡£LåÒ:ä3€ òæm(l–,Aùà £›8;Ç’ƒíhƒÎ§ògN2¤Æ  ìkãÆL:IP]ù׊ð1Ø:I¿,|¢åRxºûœ¨€[ÓÝŽ¬¥„̯ʱɭÅ] …œñÓ?¢s÷ºRM¥Bf:샒»²؆|¼n[Çy˜]TB«±_&À®ÌÂ寭ýd[÷wžõ>h¯z’ÒJ‘oÚsÊàš_‡ìIRyüQæßÓïàr«¨-Ô©‡ÌýŸSŸLEœåWê+µ:[æïŒ¤ Wˆ±Åµ -âôJ§5‰Á1Ju•› ¶ÙB*2UWB¥B%òë,u-“k_8À4‰HËòŸQºxÞXÒB—É5ø ‘dÅŠê®”•}.÷àîðMÒ«ö»Lø_ÅÅ2pϽ†,°:òí }Ö—X3Oƒãß\gÁèѸ¦¢áÜo]ÔøxÐ=ùZ$Ʊ£=ƒ…”cçžVr€ƒcïÓ`m[šCËŒMÌN'¹5Ã6ã ݶ¯*Õ¾u.æÖYAµoèE»06ãÜ>nñîx.¢x ;ŠÜ<¬§übP>»ð"H­¾•—Õ =Ê„°Š™öMMª«Aa[»Â5-¡} ¦ 5TgQ ’PÅWnáë?GU;AÙç'e˜-¿·NC G;÷áôçƒ5#Õ’xêÀ;æ¢ÆIð³â·%4‚¿Ì­T˜4r¡z,EœÌµ¥ÐÑGÄp`jY¿ÏMi5ÎsJµeœ‹¼H®s£ µ˜Ç~^ò[,ðýØò ö®Ž†¾Íƒï¹Íƒ ½³œBI)©®ÊÃD^ž‹]ö^Þò°Öð>ã.÷ûšf¡dEê`ûwëw/\àÁä:‡µB`~;÷¯f ?š<¨Dé±GÅÊÇ(X…oBç2ÿ>üüðá/º·Éendstream endobj 1327 0 obj << /Filter /FlateDecode /Length 1451 >> stream xÚ¥ÛŠÛFô=_áuB­…xbÝ¥Ú’””>jh! t,m5²d4£Ýúñ=gÎŒ,ÉÒvKŒfΜûÝ?l^¼yï³”¥‘Í6ûY³8JfQ3Ïg›Ýì£s¼ÿ¼ùùÍ{?êàù,‰ÃÙŠÎYõõ|\æe®µÇ2L™ù77̳À"¬a¶Œ\'îléº, "ùþ~z¡ói®îòò(ê\I¼TÛ¿D¦^ÓëBk³¸‹?ÍÎ[±Ôp“ª:#ñü×:?ñúBÔ¼>4'Q*ºšìH§­0ïôÑ2èHÂç­¬¥æù,uIÖ¼(ûíÒpæ*;² à¨CK¼2:FD§.gaéˆôC|¸!2†•}I¤ß«r u#ꓼ¢»ÀÙâ+ýdh:¦ô‚pÊ¥ÌKÒñ»N¤»JYâÇ6Ìû‘ \–~ß’“ïèSˆò Ž× ~ÅÁ‡rÈl5Éç­ÛÚ¯ïmN(x‘ïÚ!°é=ŸðÙrLñØçÆJJÒ¤ëˆ1x:‘[Ï™ª-ùIÈQO Ú%nÈ¢tª ù•%ùƒ0U‘›¯:ŠIçòÊöUSî&¨OÕN“Îìi=Ù:{I>Ðç1· ¤¢¶G±è“TöÝÚóº“s-dk%¨/” šbcùöÒ4Ý,<ËúÖ}†Zí«z ^)w\ñNE÷uBGmM?Î óª,.O)‡R;Þ¨yxm¤kS¿ ñõ ‰&v‹1¶Ýü½V)WJ—ü¦“¸ lr^H=q^™<Ñ–`®2? ŸlKž° Ã@œÎýÖÞ”Š—‡B0«ÃrF…¹»S3à íÊÁàÐþ¸Détþ7qƒ+q1Ó*š¨d˜V ç6CÆ^Öï¿ÿå·w·¡÷ᘴª´ª~j30¥p÷µvpǦŒá‰ÜN§ø¬#ä:è?i“¹ÃÊ/<“L Ý4c) ãŸj¾ÝBÛ4¨ŠP-â•n纠 ý‚>UäÚA=ëô¬ê/tã’^‘¾óÇkúêDÀW¡Û@ŠÆ”ž-ÕœdĶpMádR£Ð¹ùHhd}§Î!sk'h}vc¨Ø(±ÿx“„ ŠB|{ñnóâši˜endstream endobj 1328 0 obj << /Filter /FlateDecode /Length 2018 >> stream xÚXm㸠þ¾¿bvnqñ åÙn›WÜ.Ðâ€í-0»<±»ëØìL2Åýø’"eçÅ“™ö“i‰¦ÈG)ÊzøðÓÝd"SºyXÝHˆD7*NDÆ7ÅÍ£÷Õ—ÉÝ·‡¿üô%=RE)¼ñIeÕš»y˜F^ÞÜ©÷B/˼®Q ½}Õ—4¦AÒ¬ÜõySä¦àcZÓÝÃK¦<£WÚèf©¦ÉûœçÜZ½]j{7‡‡^Ìzm6ÝŒ§Jþ°5Õºjòšü—ò(€0•"Q™ á_—!ÎÊ\J‘Å Ç&ïMu@_TìíÑ]­K|öŽî*„Œ3¯ ÃN÷ân¾÷ÏòNzà¦ôœO½%Ú(µ}|¯š5}EÐÂ4Å#úPu=cã튞9Ív9~ÿlý*¦ÂŽ2!ex%là€ò•S pQ ðP€‡<à €ÅCÜñfÖ£z»N“i Ñh;V"Ig»}ú·^öŸ—>D±*rz]EтپÌ{Zk_YvÁX^w-Ià,À—x¥SžòA† 0x¨õ³®»KBèe»!ªµ¶$‡}$tB›s™‰žïÍ Ú]ð¹Ñ{Н Q1ãà¥ZÑôØc,}:öçÞ¡ÑZî„CÚ¶ã«XJ‚@D´»A$2?±ž¾$·¾ÜAöZJÇ@™À6w¸0¿ñ–€BØdI9~ì|"ðFrò¸a¡ÑºÐÆÈ‘S0œ"5½ÜÖ Q†|®«FçFl.ªe•ebá§W6Ø‘>º§¤·ñ)€od3;J½7ø|+ˆ°ÊŸêI"ú±G >1‘ A&R™Œ©°†rÖ¹Õ+–`G4b—(o_VC(Øü;¾iVÜm¶$æõ¦íz’yçTzÙ²µ¨šì=íø“ª#|d‹3tÊMÛ0_bà®Ëך˜&hQtú‰Å,“Ó*HCD][òìi¬ÇꉼׯÐÔW?ö7à‚ûËÅ¢¡yD)•×·ô>–ȶ*hˆ² %ȧ^ºÈ©¼Y³“»¦ÀC •Ú¡±•Ö=gÒT€?ßÍ£4&žhIŽ™¥Ê{‚ ,h‘Ã'¹„’M\Ôú*Ãèp{g±5TêæÈ¤&Ù†¤` JJ½ÁÍ·ƒìÝãÓ¥V&ßð`ÅZ»ÈE…µOç1I|ŽU9’þG„uüȇ%ô¥·±Õ*oøµk7Ú².ƒ#€ èKžq# zbrZ743(oWkzg´QÇ¢ubY ú-ûªe+ÀüãXxߌîªb)Éf‰÷ׯÂ%•!{æí“%UÕî:Ä”$©ââ“kÑÿÖð’·Â¸n ïuþÞEå4ê‰Z¡R¸2¹ö{*î˜k³Å|¸¬-pXÉP[rÎèÈW"=E¡/ÛÝ]•Ì éÈf¦*›‚CÉë·cïwôx‡«2–B¥Î$l†J3ªèˎȪµè¸'\V¶Râüj×ðN[Ïm뀒ÑýÎ4̃Ài$OaxÎM·xÅå{$|ì{¶]TM¯×Úà¼ÿJ@i*‚lر?€C³3ÌBK]cË3¼t%¸Ž^sµ.Œ¥ ŸHj¬Œ.ÍÃ,àã> Gã^¶MÁÅŠý8Ûï¼z(ÃÝ=l°EêW®Ç° äћÓÃæV¦ÝÐìÐÞXt†æc·øõT#YHáùký)y‹Ô1åEšÄ¾í²=lËùZ÷¶`\L &ÇCGYM¥ØN’ˆ( N«[™?kÇ Òàsz~ùù׿žª+"ú—­¦·³h¦[hu1Irz# bÈë÷«)ªB…Ž=9]÷åÔ?jµg/³oßÞò³êD³«k_ЯW|ƒê¡Òøšk2Q8h…gmØ9c»?”l±$Äpû8½r½i¡Â {T¡›sò<°# l~ÒÇ\ü©c¸çÍ€Z¿m›NÏ.l]Ûú‡¿ýã3ÛþÁÞÖpNêv ý˜sz¬°Ã·SТv$>Aw³g7ògêJ@,Ú¶ŽVÞ·æût¢G»æ^ÞY '¦.Ê+Âñ‘ÉK&@KºÂzï¿ýÆ¡‹ã}ûx ?ù¸©:¸°­Q†ËLAU’ëý?Û¸uì¿5ÀF0Z,óN¸ºwl熟`™tNí¾ºò+üýTÄÙÕÔc•’PI‘÷'ݬHÖ˃=þtè»Ë‰vµ²íâ1–JÈ8x?–ž|;y®À‡‹ãøga¯Zãè¼5æºðgzàEð,‡†¿8cös*Ùnõ `?rÖŽ@þõD]š†‹_:Fã¹´7ƒËå3ü»¾Å®Á¿ýe€¿âÝ„ãõ,þÎöäV‚Κ«k»ìÜÍUô oÏæS®¦À¡#:\«0»ýÛ0²íÚq¢®ÒG"QÑ•­~‹ºŒH]Øá©#’?˜ŠF×îŸÖ)ï1½äU¿á†ž]‘z¿Ž×ß5CÿJ­+Fñ€UÖOäÚì=h׺Y÷¥-á¸Ò'ì\éNü&›ÕããøÑt·`¡¸bcìŽÁÚý‘5ZÓ×9{ ¬¯0U)9yÂ…R„iðö ÷?:n´MKÿ×û³,>¿Ä"õñÜÌDš¦d[)Tüðùáà -endstream endobj 1329 0 obj << /Filter /FlateDecode /Length 1445 >> stream xÚ¥ËnÛFðž¯Pl#¢‹áò)Í¡- ‘C« TÖäRbÃÈ¥åü}gv†”(Óv“^ÈåÌì¼_üuóêí/˜­íu膳M:¾o¯|1 ýÀvW³M2ÛZ•íöº],7°~^Ò»¨•ÛŒúÛ œ"…§XÜn>ÍœÙR{t?Ké Re­]vyŽÇã]anšIYªñ‚°k”O‰ªÒ´UzJSÂü¢ÃUÖSld>zQr}ûAø']ºŽ½vK IÒŽG®?SFå­š`熶\ 6DéŸ%DÎcfc—Twÿ¨Xo·ó‡ùííKžØËÖnu#µ<†©Êšb{EÄSlMÏ0à@;7/ÅùQš˜0 yrýøb8 "ˆþKØ‚“°=ƒúñˆŠ#:æuI&|䪩Ê9U*•ЉÃ`ÎYIo½ÏØi±ìC¡2½WÍwfÁc3Vž®ÂgÍ]; ƒq@Z­Šzœ]©e¹Ë•ÝÖ*ÎdnÚËF5EËi1'Eæü)žÊsÇ=«Qn—Fð•Æ¯É8<ÖîÃ/7¼gž—*dVfåŽó·êtVª>÷àÖ!(ìw]Ñ;¯ª¯ß•vÏçÖÿ¬§©¾éLÕO×*ûaÊ!ßgÊê„nmG²Û*ÁçsµpWÖa±ô‚ÐÚ5òŽN‰ žÒ¦*ð„­TªÃ9˜dƒŽÂµþ\¬|‹  7²d‰4A0&È«k™¤ qn¤,Z7ŽUÛBÈÁ§^(Li!¶j 7ó3}BøöÚ÷Lj«¦&™Vk×Rµ,:§2ÖUÓ⇰hÛŨê,ñ=–xh Ò$TöHEe§Rc{4bÉxްöìQÄÝ›gc0ÎQÐ 7C7¸!è"|ò«¹ÍнšÊ&ð#z"ľç]‚þ C¤.z0½’1%…/¤ðqà|ÇÚ3º–p–îº,O6„ež¨«ÏPd>¾±šYKß`¾kW˜)õ~²7êVå)úP .ÈLÀVPb`=!,r“ªMo@i°”S ²Ùu…"O›Güš)õ^2_Í ¡Å` öæãUIy©!êû$¤l2y—«v`[N™Ä¾+šl—•2§¯¾E+ÿ ô\GVY" ½´¡“MxÀÙom”…h†Âz |Þ’ß°†zP|­gÚ¨–pU o}ìYN謭¹WF.Qì%ó•SÍŒÚû5æ2ÇÐ]Çø¸+ÈF2]gp•fò>‘ˆ‹oEÝ!0* Sq*"²Ÿ*¤F†Ð‡ sĤÕUM&në®Éª®%4etc¦ÏD4 èRr¾{Ü™q·Ýóx OH<{ý0¯ã ª`¹S:áÅîŒa.ð{òlb\!¿àµÇ(²ýÈ}zåx]d¦Ñ♃2,áu0nÜõêÙd½¶½(zÔ¬Î'Úæ÷/Ä?ð4OxnwýÚ$y¥ú‹ÿ2¤n2æ“K=½PijP§²~È66këõÀ)Þ#À@/Øò Æ^ÄUžËºUè‡~®ÃŒ2[r;…W†Ù;§÷Ûä¦3Ü6ê!ÙÖ½k9GæÇ­§4C‘V®–Óå&ybÿ7®Òª)ºül­íj—°9µYÅ>À‚ÚÛÓï5maª¨IF)m˜¦‹^ÊøRæù7³¸ªR³ë ñbÕ/ͪác¿=³ò‰Je—ë'MÝnÅí™'a«Dç¡»çôgj6Œùɯ%ïö1´éÝQ:¤]y¢?Ê€ÖÃâ]jz¢ŒN~e¥ÖÍù6}ѯÙ&£®ÎõÞ¼¡÷ëÿ<±¶þd<dz¡ÑŒ]‹¸mºßÄÏ$¶Eøqšt1ßÛni—¿—M{îîÏ_nn¯œ"¶ãAëñ°/yÄ.ŒðÕûÍ«oàendstream endobj 1330 0 obj << /Filter /FlateDecode /Length 1150 >> stream xÚ­WÏâ6¾Ï_ÁNW$â‰ßR9´ÒÌ¡ZõÐRõ@çà%¤JâÈ6 TûÇ׎ˆƒvW{@qœçï½÷ù½Ïæ×ÕÃÓKM2Å(ž¬Š 2C8‰£ ùe•OÖ3±ÁUõñX‘ÃÜ‹P4ûÙÓOAê¨Ù×ÕoO/0àx0qå‚,28[mh9ômRqbÀo8¥Ÿÿ%Ñ}Æ qŒQÈ^B¸úÇür¡çZÌH#@ÁpMÔ7ùƒê×¢d’‡pC« ·}`=jMsRr o„‚~ øc¿âq9Œ±…Ø0úf0®¢Ð+ÊB[*«æ€K¿÷Æ#úÓÄi$º¥…ƒw/F ‰C;ª¡Š4[±S#®öùã3®¼-—š'6yëâ1S õú²êõÕÅÀe§Ý çü'ëÅÎÌw”‰ &ÕrõÇ_ÏWLÇ×9áæ¤%FÆbӥ؇` i•w¯}QXÅ|!d'ÃmÎãïäMCä2x=’›¥x˜˜Iš¬ ºor=,Ó;Ãeå¶lp5(»K]y®pîq[ÈŠ¥Ì‘¸nª¥~¨ïc&´ÙOÛò`”Zv–k—ß«(AXÍïR+#<ºOî+ m¥pÐÚ ö5Òµ¤BŽe£jßÐF°¥Ñ“îsÑ´^xp‘3Ú._~ùôç³®_/Me3ÆvuYLUœãÈ,ÔïŠl,½¦ùïJ¯‡b#Wé\ƒÓ÷%’ü¾½ûñœ¸wËÝ Œt½ëZ8µø†Äú_C°ªghɸ 'ÂÅ‹þâ8nµ”R²}U™N>/·ÚåÏ¿‡,N-Y.õû”[É:ɧ7¸€2Q”¥ï–G– I®öãäâÞÒ†“o` Ñ ÚÉìãTå0½PñÁ¤Ó›^Ûý0ÏË¢ ê‚a$Ïå¡Wpå®—x<{[ÞÇ­íŠëÝʳº©û%mÀž“Üæ½çär‡™žÍ§w: þÆ8š9¾iˆt€r} ¢,ÑëÿÞÉZÓÙÛ¥3¢ÆÙ,§z®;R»QIª¸É13o„1ʸw´«ÕZ·{Uºú -Œõ±{Ê‹ª=µÃÿÁJt˜£D"ŸŒÃ²n+¢u† G'/›t A ט‰²ÙâÊ|=Pæ{U3ê«ò£fó9T CYó0lú—\ac$ó{®ç<=¥ÓHt@F³UïÚ‚× {+’†é+_b§ƒPãJ*²«Oåmx_K^ƒ P¼êJ‚ƒMc€¤Vù8]W<[Âóé\AF©ô+ÿ·Ä™6Ü™ŠŒ†H“óŸÝÐc»ózys]¤}Ó°·/%n.ÍÙ#ïÖ~p[¬ê’ËØ½ÊÍ=ÞVŸQÓ´lܲ§õ¢‘ÌvJ¦–¾êiûoR_E|pY„·ûàŽL|ùbÔŒ€¢·Ž‚؇ÖQ þ By'±ýÞÚðÆî ×öD „‘µ=’ý  4sŠdjEƒD‰)Ê@š¦Ú.N•áÃóêáè–øvendstream endobj 1331 0 obj << /Filter /FlateDecode /Length 1876 >> stream xÚ•XKsÛ8¾çW¸6I™N,ŽÀ—È©Õe·&5»—9ÄUsH|€HÈDL´äýõÛnH¢L{f.îF¿¾nÈÿº{÷Ó—üª‹,Ê®î¶WBDáJDWYº £8½º«®¾wµºYDy´¦w«4xPêeCäRLnåãM´ Ô@Ûq`A³%‚õš¾É‡aìŸî‰Ü›Ñꎬ!b)›rl¤e²$*hÁx#‚þI?ݤi@F;¨swÓvkz’S²¼‰ò ¾¹¿ûïÕB$a‘$ða‘²{ƒí¥•áÍ"Íù¯â“Mñ* ô@ßJ}_ФSñèŽÈ¶f¾A•V›ŽN Ÿê®ÒOºÑRÜÿÛ Ab‚(€3g¾ ù’CU‘· N\pÀÚÖ ‚Ž-§.•Tó L1dMZ ¦ ¶–'©wh'wac:’…Ì(;ö˱#é¥õúX®RÒÖtfu«0UÃ- †¾{ç­;剚v»þ•ØÕÀŒWÊ]c-ÄqÁhw²ŠˆfuÜ\–sÎEEЙna6xÙ“6#Ù· 6XS–8JÙ«íØðÆ…Îè’Å])ÀË¿®Æcà¡(¥WƒË63ºJt5sîzUéÒ:ç~ +ên°JòçeÝfäÑL‡QRáEù*ØÀ€ÐÄÃŒŠ4Ø×YB#Ãì\-Ž!óLë„^·éõƒîd«  }P®„ÀÄ»ZDó_IÌ¥éõǨºrÒHùLzÙö2IqVxI¿ƒõp”.¡Ze\.O{~:ëÔžöd'®W3°¨å@Lê Këê;ñ9A>‰õŠçT¹Në@_ºŽÐ‰üŒ/¨„QâlŒS’ô,¤¸cSa¦ÞN•NàÛibY=`@—ÚzĺœþvPÕ^Üÿ]ÄI#û6àÚ¦bôf¼sqÈ¡ïiWÃnÕR³Ê î)@ô …åà°ß Ì…K©¢æwïúšÛjV@&‹]EW€Öªaž£9þâõüG4¨Xr…:m|é(‘çy6{vC-º–=÷{Ë'núGîó£=±ñ´[Ç.}9¥/w¸ŒóäÔxV 6æî;\:‰…Ϫv“ÒúkøP6=4VPi?¬l8çë¯dk 4tz´LœÑ*q&õ®¢D´Jvt€s„h’>•†ñCî:TÄâ²ö¾íà~¯›†¥zíš',õ–ŸQÐŒD$ìÂpÍ0–5Ñ(0°08@±nFblvS`rÓd=©ï`©H‚¯Vv%èªïM?к–hù“ŸY©‡fº:6 l{è0f0¨7®àX8Ý®ž‰Mö,‰õÔ0¦_ &Ðqt’¤“cæçýÑW7]ªðýÕ]Û§#ç Vþ]ã›k’_™ç4›A‚jh¹ÑëX”´¨’~ú"’³§#Xe"'Ëjb‰³3–8ÌW)0:†]iÀî…:ìÎÂhFež†‰8 hÖ˜^hL<Úfe¾ ‹8žÆi¤GD6Jƒ.è;vÆÓ÷eº4Må`-æÂ …ú8•³àæXÿ¡§“ìCìP>¯):Lµð–w½:׉8Ã׉»M–õºëÍϨÜ]°° ÞãŒ/-ñBÓmOR´*M3¶ÝœA<ä@Å-T2¼pɈ;Ý„<ïn5_ÓBHiµQôµýHs=Z†E$.ÙjêyeÆMãbßcµ˜2`U3¨™Òˆ²P¤Âg~;S‹~ÁLÀüLÍxÃ,Žv»ŽQ˜‰ê"§'ÊßK+ÊýÉM/˰DI®ÅÓÅ?}¤ßYµ=Wý¹“gö\0}j¢ .8§ð3Å>ï”7Fo1Y_mmªõúZáKàš½Žo£×|toe_ŽšµvŒV‚ð+>E¯²7ëa•‡ \4-ÿ®ºHß¾Öe}Þˆ¼^³5¯™.Èðšè'.ªzþ†÷ÜÞV½Ù­¿Üs—T÷Ó%Í ÀSÕ{¥j;8v/Œ¥à 3cΧ†¹ýöµ¹{Ð…°›:ѨîÁºxàé|罿ØJ^æNˆ4\f«7“W$¡H²é…ïé¾ÿ°ÉÖ=ó*¤Çõ^yPzäSã¸t„ð·C#wšK¿~ˆ‹¼â[ö0 «?SyËi>g ‡küaO{M©Ë`^u¹]/½’Fmíi×c)¬é çzÀ.&J¸ÊZþo¦]x]Îúrl 5}ó~~÷sax’}ý†6P4Œí1*ÈMzÿŠîÃFöSÝýb÷ÂZäc}ŸÅ9VŒŒ?C]¯£WÊ0Ã,»…dQ¸Ê.þ±P]Ào:EþÓë÷§aê_èùŒýƒ"t_Œ«?z|£,O¹øÌá2û¯<Ã?oÓå x¢ð±i•Î÷O/§wvzÿ°=/㶘›÷¯‘hÊøÖ|.’1ùOeT„YR\Á“?ÌùÍ™È÷î—»wÿÁ|Óendstream endobj 1332 0 obj << /Filter /FlateDecode /Length 780 >> stream xÚ½WKs›0¾çW0i2y-H6péLrè±uO)8ÚÆœ8ýõÕËæ%;ØI{ðÈÂâÛÝow?­¿Œ®ïlb¸È¥@ñÄÀ” !µ J†Ø/ãȸ?‚ “9¿1å,y¶úi+˜¤åI™ÎâüæOÐ\m_ïÓy´€¯ö³¸L²È; ³yQóòlpá¿ÎYCÛ01F.Q6'žµ™Æ“²ÚåécRzÒ sŸ¼ S&ÁŸ–ï!w{ &Ü—3vŒCݯ½Â¾µšpÏAžì‚cHÅr¶á…—À}ÀWAÞÏ}ùAx…ƒ(ÏÞ]’JȨlâq(N‰Ü]Êe%säsHùDæv´,à&*SEvabfâ<Ï^¾3*¸9þY»qzy*¿dOq(ø©Œ^F¥Øh F%èã€þ€6èF›PDÚ‘@¿P`[,E,¼ô›†‹ß9ÞzóY‹ )O‹_ê<ú¾ÃN­U[Ȳ ÀB.@³åÛF—1[mäby.ž±ÆP„ 0{²1u`„‰núó©Lâ<–q¤…\çñ‹üe £gYÄhÕäfüíÇ­î(§¥•¿—$ Î#³S”y êÎó”¤(~žðúÆìH‰ƒö¥–Ñ!r]ÒtU#{âõ½5N^5ô¹[ÜðåYäq$£h•eG+X¼›’-V:©Z”å’¹°&½UTØ=Cv•ƒÑȱ»|¸w •öî'½¸%½=zSÛ€°¾y˜MùúÊ-zl!rd#:¢;‰\;ïI”³w¢zÝ=¬žVªzÜ?´!¡°MCëבVÃûßFµÂ]ʺ=Ñ"P›èºZã‹å}rÝÄ:xÄ«I øšqŽ~¬b‚¨‹ßœò*÷Ͷÿ5YTOLM ŠTÇëŽÕëùr{PÅSl6EÛÙáîã辊ݚŒj:^/åZ.¦ü$âã4þ¸Ao¤ÿ˜í7Û¾‰ ’ôQý¯f¹$î†{aohñƒG·ã£¿õ¤ŽÝendstream endobj 1333 0 obj << /Filter /FlateDecode /Length 2707 >> stream xÚ•ko¹í»ÅíáÖ©WiÞÀùÃ]Ñׇ¶qѹ•g´^%³3›yxíüú’"5õ8M?,FФHНýåîêí»0Þä"OT²¹Ûod–ˆ$‹6Iœ ;wåæÃöQ]ïboÚÑ÷Q·^ú}Úæü~8v¿q€¿²çíÞü@ƒæþ“)ú?ÂIØ—´öÀÜìãÝ_7Áf'¥ÈcOR¾$9R”@â%Éï£øÁÎ|°uù¤>.év_Z<<ªÝ£Ä³oøÂ¶ûì¶·ïd4“âîGp§‘+ùú–â­äûN½}—ÍHâ¾ 2€—"–’àÞ]gá¶i¯wa¨¶ýÁtÆ[ÃÃæÔÛ¦îpnÏÝÓ²íèÛš~hkSÎWí&úa8·œ<ˆt{Ë­©toÍKnÃXÄò°§Ö”¶@>ˆÌù`‹k•mD­hŽ'ÝæÈèiØ¿ïL»cIE©Èât)ÅÇë8ÙjÆDÛ¾áïà]T P€Ò´úÁÐîÞ v,Ú–º×´|ÀÍzq½‹Âhû7<©Û¾zöx`d¯å–‡§VÃõ ]¹Cñö½ÆSÏ´lÝõº.ŒGätá8¤…Öèþhj<Ú¯™pÑà\8†¬î‘J’íÙqØá$E˜LKÔ(núõà¶hsÛT¼U—´'o{¸JkðÞx¥¶¿î Ú ¡LޏÕŒ Ó2Pk~dÔÓÖÐÙúiÒvmÎ4÷ì2@ºmök7—ܣТ[–ò@{7¸“Oš“ª¾£ ^ÚÅŸ4Ÿhâ/eû¦ª’¦÷n—š'P6™C8¡ëô‘{¶ýadàD' V5XçºbÈ,),Ë¿»¡×AúËá¥Þtã¶é ÔTmï+°Ô:ë;Ó¤²µÑ-ù‚=’K“³«bðCYîŸì¿¯wi¶E%¾|Ü2sˆ! Qà <¢Ø û£¹ aJ¯Z×þ¶.@ƒÎ6èy'¹ˆ—‚¹÷Ï¢ž‹£ ­:µÂr¸r¥$y>×ï’™ŒWY 2ý9ÿvͺÿ̤HÁ+픂 HOTI €Vž†‚F"RŠ(ç›Ú5Ö‚,ÞÌ`nWˆÊt‘LZ{I+*ŽÖh-ð„"43 I\‹È—‰0'‘ÁK¾qN q ׄž|Äs[¯Y€ÃeAÆ%7Q½~ÿX„Q즒9}Zd€¸Q‰ñÿ#Í5d‘y¶.ÍÅ#¸A,ç²JÇüe`Hd!Dü4#˜³­ÐEåàpú1ÈäÞåä‡ÀŽåí× ¸Ï’Æøä\¬„1E&”sÀ„ÈÅ7ù/ª9‘Éwæ¾svN{‚‹G„+[u ?ȱ|Ž) Šh ØÒ¸¨q¡®¦}ß5Õ€QÐÁ:¤n8¡¹ÁÆ‘Ž õ¿0êYr]´1å+ ©[ÞÑÕÏ4]Oó´½¶5Dƒ·î³-/8ð(CgØQ—Aèõg['Þ­ ‡Q¢§ˆ–hÿu0¨¿8c´1ù鞆^˜‚a éÓõ R‹Ð.フI“0YhÒÍ[&Ph?²Œº6’ °´Xf³<!¦4)wÝp4ž_M‰Íní^g6‘H'Jh”sî/ˆ+dŽ8¯Š“åÕpÅ<ß9U?Ñ„4‚,3ªSª•ȯ4‚ÄÓËw‹$㌳¹ÜÛ\în€üñÄ1åš´Ú3O9ùú{¸ÅÅI_Ú–!(¯dåÍVÌQW¦[¹ äð2‰¾q•BæxUÒ5 §Jd2ÊËu%Þ†"ýîLáèѡ̃ús¢ûªxîZ€ÔÒ Õ,£ƒ »BÇ‘OÏ`2ÔS¦Q®Hˆì/Í„ Ó¥Lû1‘Á"š“wÙV‰àÐÓÉ:’ÛÿÔM Ò¶_Mù#mìŽùBGstñk&¦b‘]HnvÓe0¤°{õ—»«/W¨­`#7€^ÄQº ³P$‘ÜÇ«ƒM ›à™Déì@£½V›÷W¿ú›ËdÀ£J.\ße÷³Îf(20 `I²”Wï/Rˆ”»ÔzÀ„qJ-Xÿ Õºa­L†«¬"åCb”ä`f–5á*”óÎgŸ±K ݦRÞÂh?Ô¥v]Ñ¢Çû+•7åŒÌ•—}KQgtÅjnùêÂò•ºŒ¢¸BOjϹЊϔ®£â¦ ‡©‹ºþ2hY F+½™•­©8vNw8¢ËK‚­(æ4JéÎ`•@ÂþÉU@¸rÒCú Ø(‚C`ÌEs\`Zd;Èઋj(ç‡>NÈ<ž|ïw4Âl“ŠIãMÞj±÷ í’m&d›Ix™ÀÆd”I¸Vú# ™: y“Ãw€ú KšNÏ“hžŠkÚ üpVîøÕ´ÈAžx+…q:káÎd’X‹ãýpÕ|,ɦâò„;#O89ê’Gã{Ký^Ϥ©té±Ù‡I¸dF3_XšÎŒ¬‰µ«ý³yôXÎ ›B”§ãP 8ópÉ'¶;$žÜ*¢mrBQ )—pyQÀ¾ ¥pQŠ–:k+Ú¬tχmM+*rFçòM\Ó´p¾~­\Á€‹_Ó>¯eóS&š@æéûZnFúN½åØÐÈS6Y'ú¦z³â$›À§<à÷msd"ÃØ:„uÔ®®<pQ¿5½ñXÏvìXf×»tX,m¹¦0Š9Ø+mmÇÙ=w~0áwï”›?·?š§±iÂoÆÎº øµ±ùê>ìHhâ‚F tÒx½6ø¹&¦xáK.ñ6c <OÁÙì plPñ«÷Û,[ì±¹xåŸ|Ië•ýìCI”õ̤©f ©éz¯L½gpéqÞ C‚lÇXÓ‚¡‰×‹Ê¡Æ«š§rĽ>a‰ÝØ‚¡ý:iQQŸÔ6Gz_E2ŠNRÚ-ƒwÆ)®&>Ò®¤ë=uÍпzÜÔ ƒaÙ¸^“òfèÁW Í«’KÅh¢Ò^Þh' wýšÊ›!`šbµÚí+j÷G(Ý£ï#ºì`ì;¥ØB<±aÖ|S×mð}”MœÄ Yg]fšc‘-þêðXs‘ÜI;pê’,šVÙÔŒ:ÍÓé°cü/±&¹H§†{`‹ÿÆ(U fͶÍ.UBEjyA|;ø&ó¶õPU8ä?¤ŠÆì÷Û¸=þy%džÎÚ=üÓ®† ¹µ" ¦þϨ¤Wendstream endobj 1334 0 obj << /Filter /FlateDecode /Length 1876 >> stream xÚÕ]Û6콿âÐm=§KTË߯ևX XÚC[`ÛƒÎVí;“í»°?R¤8É]ïa¶—H")~“¢óÃÕ³WoÃø"y$WË „".’8 ®Ê‹_½f¹lu7[ÄAì}¿ õÆ Võo~ì vröûÕÏþÅBJ‘ÇÌÌ,‰)תmgU§öâ­V/µÕu¡_¿~Nøç»Woet nàƒºYBó%‘L,ZÈ,~LÕøŠ$}Ò´ª¾dkú–a œ©;½ÒÖYU•N§ãy­i5u©wsÞ³•Ã-†¶ç<ªÈ8>D´TE×XÚß*kÔuÅ Ý™nÍ:ÖVo­n5èW¨Ò·ºj5gëš¾*½2·,C΃yÌŠ Z˜ºíDCLX$Äb‡ao§Éa›»¶ß ×v/ï´Y­»v>õzñU{Ú‡)Ê¥Zßí¦’w“Œ$Ý~ݨ®XÆpBE­6ºu::ªAÎü÷3iv$wu.Í GN !"zš(2Lìöyô%+ ÔNùë?tÑ}í”eiU¬_×`Œ3ãÐSÿ¤þgª.2–] ícš(纘þo$ÿ­üßC(  5ý— á :?1áñÞr>y‚ªøèÉÓ´êî·9—Õö’`ýE+íio..“T„éã5"£DDñÃY}Ô' á—SÏ•¶Ùž È7/¿Z¾^î¯~;y´ÏdÒ>>§R8•©µ²ñ_¨öKE Ú/ÍÁ{9Hø¶ÚŽ+àC¿qø€1¬¼†{n/ê¸8>ÈÇ–Gâñh¼ÒPÁQ¼NÝ¥w.&ˆxJëú¢—øürê´‘ýBÂigð.•e®Ô}5¼á­¶FãÁvk›Ý«û|=s5e“t–"ð3l“"‰ìj ÚG±ôºYy÷ÛÙýºÓvÓ†Söªâ£²î‚Þ¯MG›Mc™Õ²jì˜-Ò<õ~ª üa[õ-ÝíÖ†Ù“XòU(¨’õY³œÀ^?“ž©JAz9£e$ò(š½ìë¢3M Í(òA‘µ)P˜ÉÂ,E½R7âA·0›!²3ªªî˜‘PĨ…Ç¥m6´ãâÕ†nèôêÂÍxˆnúŽ6$&C/á±Õ[=]pPSœK½7x3ÂV€käý¢ìh€_ú„peÃz*=J7¤R´ÐEí–›)[2„ z1º<"}OçCçt ±Á$ÆýÄ=p¶€ÓÀ[TA«JŸrkàƉg6”€…2qÁAxê•æ7_†4(´V±Œ¼7t¥j:Ú8À–´À5±¢ß›§€ÞšzŲj¢g2ܸ¥µk=$3A•mzçÀ†÷„`½ÛָĿ{sÎTvžƒ’Âp ¢Ì0ÂRë«“ÞŠ œxaè" K‹Î4@P¯ú ¾=:ÌéûYyà–<î )¯U Ùï¶ð°Aº¾‚‹Š8;;v¢–22M©59©*ÑÓ¾ïý„žMüÁ³¹·A%ЈŒ®¹vüØÂÕiÚz‹ÃL˜$ȱíÇã5lЦê7LÃsJ¤ºX³<ºð™UR5;T8ˆ¼O³,ôô%åÜ`^N¡*«UyO^(›Z“_°5 î0|)QÑ¥€]ò%¸¤ÝÌ3h˜ Å‚Eݨç„^á(X² •iäŒHA¾u9‚®žæ ^UQ^aÕ¸¬9m'$¨ÏwÌ:׆y9é§Oé‡uÝé“"}%ã Å~ƒ7^æ’—*dǽ×0ÜB‡à·MðŠ}ûéÀëó©°\øáøþÏÏpH„Œà¼èxìp§\@í i>ž1žÑ$ÙË6ìb‰ÌbhœÖàÇ8A(1¹3ãdÚðJ‡¿¿†™Ó#H‡ †ü0?p¬#à8ÛÑ‘þ®8Ò?È‘ÁÔ0:r‘fxc¦±HÜHphú#Ls4'90'êìŒÔ<ûN’ù’3‡HÊâ“§aÆß§~ž^„"‘,Ô?ÕR0‡a(“Üã@›ý4…'m-½nïÆÜt#íŸý´ü*tttu—f{ÚÒ¨US«jDs?ˆ {޾.‡J ½Ju¶ÔEÆvÁ{y5’®9žë–E³Ùö0B̹ӷ¸ú€së¶ãðý™k ¦ÿ¨_¿kÜ€áË!¹|ê“§ÕH‘Eû2€WkUŸú?Œài,HÔ’¼VëñmYÎy¾›ñ½ p»íš  X 9„_„w®ð‡€>n™C;Õ^ÂÃ…p.^­‰n˜X|:y©˜-ºH‘‹òDò(µ±Û¹Og|5B¸îZo”Óh“½l-á¬î”“ {E‹s@¿‘½ ½5\™p>=áX4ä2àÃLy¨Êûagj|¨Õ0å%0ù²‚fXù~ÝÐgbàCµ§P&A.²ŒŸ©4@ܳ¯žý G‡Æÿendstream endobj 1335 0 obj << /Filter /FlateDecode /Length 1643 >> stream xÚ¥XKÛ6¾çW8@ƒ•[ÑûQÄ(P  ´‡¦H ä°Ù-Ñk&²¤Tv÷ßw†Cú)¯ô`ˆg¾y‘Cÿ¾|õ”~™EÙd¹ž”¹ŸgÅ$Ks?ŠÓɲžÜyLMçq’{œ)Ñ<ã8óÅk:OŠÔ[n8Ñ>a"•&æ£I? =&í¤[[¢äµ¨´ßli»h‰þ‘¦’¯ÑÔV·&%¹×šyëNn‰FA‚VÓûå_ïnùÞ¤8Mü4ˆ'³æ¡%®C»£ÄóÄñ|Ÿ¦lÕp™'ó8/ü"Ï'ó0ôËÔzæOÐÇ^Åzœxê«è‰¤7BѨ'ÃqU´'¢Ðö«h‰5’³ú™ˆu×’Öw·ar€1å0‹¬òµ5;´0¦ÎоêžúÍ\s¹U#â²ÄOÊ[Ęç¥-ÈYîatìÞ(°+RO¬éû9HýÜóÅâÆ¨¿B8‚!ŒR? §c=b‰Ÿ'ž7Q4ªÞÏéÛ­¾ðJÿ”`ã/Ü’Ñ–Ö y?oxû 7ˆ…8`;n«³óý|Ë´OÈÛV]³ ³Vv‹¿?~ødø#2„—ÕbÛ²-WÈ‹B ßrLi\©;N'uF,;ºƒ|IÛa÷×Bïõ¹ 9½ˆÆÉˆb¿ m:¹—!l\­³Ã_É—ÂiCõR8‹ØÏŠì84Z#C+ïîÄýý˜‰§ÌZß½ÊoâµYPu|½•à­VwZß#ÞQaO§ÒÐñw3­­ãkÙõ‹ÛûKr7÷Çûwß¼}s”˜ÑO9£ ?:öšâçêÕ7éréßÁÄ)ÀßETß™43ë"Zz ܇9väù ýa,Ô†1<÷Úy‚ÇMe]uúÏä7úç±)Ï´–®>-óMÕµJ³Vßœ¬¶rí­¥m9kÕ®v}¹],/xóäz8¿šp= ŠãÃ9-b¯ƒû"+ÌUÛ µÁYé =Q§\Ù4n9:WõÁºžÈŸzÖÖ´Ð –wZTxÏ4Ù 8VÛE<æ¦Fa+_r54vߊ)§¬kiÙò•è Viѵ3ºLÂÄ/“äädG$Ix]œ¬Á–# Kà†õd\52q@ºM\¼-ñ3"©aqH=ˆËtzº–<ˆ½O¦-æššö8§!½†¦¥£!‘õÍ^9ðc†ÔLÖc©Ê¥ì¤ÁzÞÒèЊÐÜÿøU½QÀ+áõo²ð>M‹„àDp&BÚÙmÚ‚@R[‹ï¢XCó^ðŠ[éLÕÔ¢y=bâlÅ¡óÇŽÜ ò ¦ÍŠ\wdJÐTBHô~À:€ô- ư'5´@æöÀæ2Â6zRÃ=(*4 _P„‘¥Å44 [1ÌZ¦.2rVB¾DÊ·Ahn¡t¨‰jn5Ú@†ã¸-gr¬Y°Íi'¡ˆã0÷¤P_qc]„^Mcj­hhªÅ:—Hb9Yèõ`L1Â×…%ǰpZ©$ßZ’r4 „>[è/¡4vªó$ν[s4ÈÑ”|ry¦9vÖQSEeB¶Ù$B’µÙL!€vJhà&cCk¹ªNJÞ0'ÎUg‘’ØœÑø}Õ±"Ã-_G…f™·PýƪÐûÐ: ¨¯kè`\:bæãÔ+u\¦Þj˜ŸÃWòõ Îhz-™ý:aç6ß`TÁA7Ãc ðVæÐ4«üd°Ìò»sǃè`sør‡ÏØlÄ^¬Fk5W‡Ï‰äÈp ï ‡ÉÐ~­]0Ç6,fQqI±#ùŸƒŽâÂ$v—Ç9ï:}bA'!ËQÆÑ’‰1,±ÆÀeFˆe7˜â™D,´ƒºppJ”˜Ù$Ƥ0}´sÐÞ7¶-OH‹kÌ“¶ÚeÊè•óÀµrNÚ°¾§‹ªè¥WXös¯°µ0WôÈ3¬ôó(¹ö KNžayäGIt¹7ÂÇÍ^/lCóòC,(ý"¾Ò¹Ð0e×Ú9첎Þ:ÿ³‹sò¿ÒAýH'jz¾ð„y@ Mcž^®IññOŽá0Ͱƒ|ñí§~Y”×|Ö2{GœëŸí›äñ&ر³ºM{çž¼™ñ!{-Vô¸Ï!£OwïÒ/£û‘(_÷ÀaüÛã0Ï €bˆ-dpQÒ> stream xÚ¥]ã¶ñý~…/r^t͈"¥$àº×Ú-иOM hmÙVN–QÞ½Eþ|f8”,ié]ïí‹I‘ÃáÌp¾ý—å›ï>q5KYª…ž-73.$KÅLdž Ï–ëÙçÛ«ÿ-ÿþÝ'ø<Á-DpF€çWl®±ˆç¿Dqôv_X[T[œ¯ê²Ì6‡9'ˆo¿¥ñmaYu,Ë)”ƒt—Žˆ*bqÏ"ºo¤‹§L5[pÎÒ8~LY™WÛv¦ëí{+qZ³m}@èon<8-ßå«¶nh^XÛß¼oêjKSºî›Ž# }DÙ¡É×øã‚Ʀ¾·Ç=Þˆ{×´8&•ÃæüOþîŠÆ_éÊhØgmS|ñpYyŸ=ØIú±°lÎ6E;F>&ÖþÖànt"Úæÿ¢Ïñ?¼¬}8äãwx׿ÍÞ¾;£Q©…2ómVTZ.`HæõáXfMÑ^Áü62ëG:´Ï3{l<âzC㶦Óîw]]ñ9𹵋z³ø%⪥ÃhjŽ csWÜ]ÅŒˆVöþ,È‹…är°Å:w!ÓNÁ1EóCV4–Ö-Þ|nAîzþ+xq_´;:†/éuŠÍAGLF½94$ši–™ ˆb Üç‚à¼ÖI&¹™ €~¢´ bór„ñ×Ç/­OGI3,,ñä\'.¸Ç»¿ßšÂ~Èt#÷ÙÔ^ y¶Â;úB©zäÕúi‰¥œõÑÄå¥ÍEâÒq…¦,J“KÄ•„Å…br®B¦ŠES_²áx[¨ÖÎ:¤”…•RÍÛbŸƒª.”Rdy¸¸Z L Ï¡©á¸ÎÑ *ôšwëíËmwÅé" Ïzd6oýi0€okZßÔdžַM}<½L»b©ÂK"îdÀÍcQáLv/Ø{w0Ç ™Ø÷W Í9é .f4ÜÔø…>N&ŒßXAîqç¾pö ³[’€7^±Ë›|„Úîê¦ÍýucñãJ‡ú†hȵN¯êšE€fôHÄ$AŒOtˆþ‘ªB¾ 1X'.–)É/VÖ…)+>e§¬Jù\˺÷ˆgŸÞ~—Ù¶È“ :kª`€ "í¥·,È%<¢¼ñ´gݤÝ5yçeêý¾®hy…¬íêb•û'ÑðÕ9Q2¦ê÷Ç$ñˆÞ‘ô¼ZC|}çeÑfGO úáD.ÍÈt'%<|za0ë\ò”ʽ]e „Ýu‰1ÕMЀTÕרÒ+ùºèªKØêÂÒÊgU]\jAY@B–&èŒb,ü2Mú€úòŸTŸHõÞ>ŠÉ/?fÖ—å\æcÕYÁBÝ­ù0øË™NÅË2½€d&„ÞåìÙEQþ€†ƒ™YmýêÎ!‹'§ð’IÂ=úþž}mÛP¢1ñȆ<2}SŽ L– &Kø1¨w¼£÷#…©² š!™áe6ø30Ñt¾üã÷dæÊÒ;÷"·£8¼6yÖvA)ëÐÉ+N£ŸäP¼ò‡¿¿ ð‚<´:…AÍ?]%=°Û˜”ŒZùügY餖¹øä×€äò¸Îí-M}ª)´ÏÎ Çôž VYUÕm¨ÏÓg³Bèy“UŸ‘”~Sò)€®UÞ´™Ïá)„_X:DÉ€G8RTP>ô•þ¤4UÌ$üµ.²X3òN„põ*¯lÝí É–VQ 4ãg²Kt+¼֭h¦b¢.«hÌïœut.aaÚɘè[1 ‘f̤ÄCÞTdÁ8ZDårtx-ôì”uåÊGî…€3먌]g#@žˆ"–@:=QkÓ› gýŸuë¥y ›P ¡Ð¯UR§“—¦ª<Ú=2÷Ú+§ÔÚ= Dëuˆ+¨œn'¬œQ ÊùZÝ4,QSÕ¤;‰š‰jâªêOL,%J¾ºŸ¢‘ßÌOèÅŹ"Í|Eû ´&V|þaíߤ>u(tWù£.õ!)äþ…ÑPLOR»¯EÓXü¯[›7äË1cÀcqÔ¡W©GÌp\©$…þíÞ¶MÖf“Yiëîì‰ ìÄP-®ßJ—ù}?†ýü®«ò!Us˜1Œ8J±uDõiK¡ Bîõj!O¤Qãf0î ;TÆw¨Œu¨Œ7Œgú~èd´ìê&˜…HÞü9\ÛÑׇKlxó.gMÆ)kÚ>1ø;€2Ò$î½Òû§§èy†)É£žcI>ËRïz?y‰¢ørË`–é'mQwMH÷’U½/ªÌý¹vzbyj}Š4…¸8ù‡Ïiÿq¿>¯ñ×XwÅâ)Uë;¤Œ}»q”Ñ#œàóCSo›lO+gÓ–> d¬M¨-Z“À,­ Ö Â¤í°†É… G.Þ4ée:Rdwö]‡í#-Vm$£K˜â d±Çì-_$1´î(xƒ:äÞ“²¯î径ª*Å{{¸=¶„Ô¥gw{ŽÙ£ˆý_>ûË›ìXzÀñÿ?^pã6³¹'•ùÒ>`øÂŠÐJ®k’¤Ri’Žåáhtιô]qEß>•>’S§.V“ûÞzÓ;öÛÌ=ôgïâê®ÝÕ‡Ú8Ú®w·Êªi“]»¯ÆöY-6´ …6‰I[E$œ¥ƒ¯‰{¯kî½ùëòÍô¢ñendstream endobj 1337 0 obj << /BBox [ 0 0 504 360 ] /FormType 1 /PTEX.FileName (./figures/balance.pdf) /PTEX.InfoDict 758 0 R /PTEX.PageNumber 1 /Resources << /ExtGState << >> /Font << /F2 759 0 R >> /ProcSet [ /PDF /Text ] >> /Subtype /Form /Type /XObject /Length 403 /Filter /FlateDecode >> stream xœ•T»n1 ìõ,ãÂŒøÐ«5`8ÀÅ% ¤ÒÅ pð°ÿ~HíÕÒ É!G"8Á ^Ãqý€P(aUК±0ˆ²ÿÞžà;¼„»%DŒ1¸¾ý ŸØ"-¿·}¸íëºAI€U`9çxË)Ü/ð\­(†ÛjLä1QOL[&¸d¿%a«]gØJ˜ò ™ò »–ÔUóZ9µ :G«Y=¹µÎÙÌ3l©>.1%¯ô4C/ÑÓ^•ËŒr‰ì#”ËLÛE´í’\e†3ÖÖG^ËJ׫ !—±v½Líß{óõ‹mÚßßáW 8Øw ÔC>Ÿƒd“”œ- £Và1x†o“%Ô+BrAâA±a¶~pó®ž!ÙhÝœê:;` ºÜyf÷±ÝbDæˆÚ+¾ ¼éCµÂæj1›=­Û ‰úñVÕ~\Šß×ëñ^Ó~NI]߰Ǫæ!~´g¸«Š€*n°‰Úî£6Žá/ïpsendstream endobj 1338 0 obj << /Filter /FlateDecode /Length 1650 >> stream xÚ•WKã6 ¾Ï¯z©l´’å— ôТ;@{)ºÍ­ÛƒÆÑÄê:vÖvv:ÿ¾¤H9Îc€-S$E‘ù‰Q+ jeJQÕJ—R¤y¾ª_¤¨Ò¬Ê‚Æ’BÅßb¼ÿõ V¿ô„¿(Üð9›ÅA?oÞ?V+#L‘«íó*M•(²r¥³Jh]®¶»Õ_ɣߟ·Þh­õÃz“eyò-Ÿlk»Úíh5 .¨eIÿÌêš¾]¿Þ¤U²s£Xÿ½ýmµQ²FçàJñAÛ·29þ`‡W\¨¤îÇ“|ß­Ub[b~9¹Y#mðümúuZ&/´˜zúîø;5¤¦÷Iª¢ö®[ƒSSûº®tòEeâ…L>Ïeâ¦É ´mjìM±§õ_шðÞ?*µHæFeÂd|•0ðã露Lz)ª²€; òO2—wliÐÉ£NG 媦ÔÊsa „D¡ø˜ôö˜Ld…„Ÿ•à,E÷cÛ}?ø©9Ðõq  héâúãÈŠõБnÛ;žªL‹ÔW¾. ¾þÿpU¶P¨„2úlDÊÛcšUTˆõö JTùìë÷’f*å)Å}¤”Œ£j¹-ŽÖPÚ¡5 Šc·ØûaÂyÁ=I>cºWZø³sc˜\¨¢¢il ¦s)“΃íö`5ÃÊm˜¨ûS‡'=²G¦IÆ>jáefÑGÒK=ËžPöJ4¸35¼Ù\·JÀƒ¶=®+èî„ÎÖxjs³ë|з³Ï¨JE©/[#tãé°Þ`ŠCß™’п°™Yã Tò<ùÇÕÓH,ˆ=|©7üø™µÝDÄKÓ,ë~`Ò³…ÆïáèþL…ÊŸ#‰¼žOŸ|€< l‰PŒO^Ææ jøöÉE¬‹~²-N…6ðX³ƒ¤¶\&cß2ÖÀ}Œ–ô ˆ—ø‹×·Ù9ªX×íñHX‡¿®!vðv:ƒ3ß²L¹ô¹·•ˆ FóÍs¸ ®¤&MÂu_ß# (¿¤‡ÄEž‰õšƒ9ÇŠ ðùâD}] ÈÂj¸Ð¡jÚŽ=Ž5Ïz~x«2C­Œwà#…WL™ˆkÈ0êxæ|2.…[”ÑBC«/tn*¢¶¿¸”QZìúŽ ÉCßww„G_™À¾åñiûý=T¯D&õ·ƒº:×;ø|U°;;Y3&Bdlj¹°å¸}GϱTËB¨ðÆ.à2,Y~²dl¨ÌFâZâžÇdÆ#¦Qu꞊ÜúÎw{6ªéK5ì‡ k«ÀõÇÐ$é,@²X B|LÃDëž'ŽèÎÐP£oÑQÅ xá±ì‘ØA>ÔÐî–\gYc©ß›q?}ÆÂæÃàA†O¬¯G)fáY#Ë1NEá=á^ ÅΞox~/aR¬Ïx…"³«céÓÚa^ gÿ±‡à2>Ìù×ò"ÿ¨Š Ø0f<äW±p$!£1×uØSX¾ø‰ÍRUKt–?C:reÀå;ÁöO£Èï8ÓÊ‚}Ëã0Ô…óœLÒpDp.Ì“çðhR S>ósYá}„HâØ3,ëÙŸý` ¶xH0üÇÓÁ-|]FXP„Üõfþ‰`.¬ÃrpGh G£ÂH<òzÎÌÙÌõó¬ÉGuÛú¹Hp9]펨d\ Vôäë”ÑÒ|Ìç“ÒÙŸ¸ïïî] û÷èÁ{üÝ %ßË> stream xÚµYKÛȾûW C8X«Íîæs“ ° b¬ƒEÙ¹ÙÀ¡Z1©”dzûçS¯¦HeA|Q¿ŠÕõꪯ[½õæmv“«<1ÉÍýî&OUšd7Iœ*cã›ûíÍû@›½Ëo76΃mÕ—m·-š[“ÎeÁ©¨º^Ýnb£ƒûCÕóìP<Þš4p2,øûº†ÚIßõžö y®Ýß~¼ÿÇ›·éM¢òÔf(”‰2’jcTä…2L6•=RQ’ßLh>„qÈdZOè¬ÊÒè&dšæ%ŸXå™_š%ëwq[¶@#|Â×{÷f“8(z^-Ûã©èÜ–GC‹ ‰Ua®o6Z«<AIû<¦Ì'ÛÝŠ‰QI˜JܽÔB‡ÐÕžÂ0¯]Ûqg8÷¦¨Xêàè†C{» ¶àÑDÇàQ¡ÜVBm]çšRˆK/÷±'œŸ®YØÄ±Jû³ç*KR¿NQÜê¢óvè«qãáp«‘„,jm®öº©kú¢†Ï²,8âøÜcØfiðj²Þ°´mÇÓl"踢DOdÄÌ8îÑ4aJñõ®áu6(p*[â»u³]ê?|â¹'ò0÷û¡èD b`¿«áðÇž'›9»¢Ù2Ñò+êG²A8Wÿ|R·¸¤#•GÑ|]ª“ ¬‹¾¯J0Güyæ Yjû¡í䃡ÃC_ó¹†ð GÁJá[nêªy$ƒmý¸G«E6ÃÝ=»ÂwzçQ-+õ¾íÀ GaË^ýŠí¶jöBÆ ˜)™°’ýù ˜: /–ìy¼ëÚ#÷ n†Î¡8¡†®(I…ÚûÚ‘;:E]pTÂÃÎûæ¡æÈy¼°í17@ÄüôÓË97”’eáyXóè“Q“'œXÇQÁÍåpJb¦µÓ©kQ–,8ñMð+"\òl:Џ£•òÌ„® :p÷Ê¢Ÿ}[í´[Ï“`(fqª£d'œ(x—[?6r4VÔ.j ‡0öƒ®ê¹‡uH&éàL©Úóлí«ÃËìîìÙÁ¢îVÙöܯ¤m»}ÑT=Å2N³[Ù\ö–àY‘FRÀ¾j(‚Öô¤Smíì´Ã°lÏ FZÇ|^p2¤_ìé8Ê÷$´¿¹ŽzŸK˜iz×}ºÁ CÕ6½¬z†;¶—â¹ÿZîx‡ˢхدš­ûŒ]ëÓ`4?m0&KO Ä`™ˆKš‡’€#OŠZЗy˜ß-O-‰`C÷yàµdŽßZ9µ5¯vdÂ&ú=½°y™A|!Ö‰%ÖøepŒt’Î ø†)ÇO°ò³ë6|þªz+$+µ ¦%H4ŘÅP•g¨€õ3ϸ¢¾©kÏî›1 ƒ1Ù:™FÓËz… iõöe=NUå“zü’Ç& sêEâ­VÀH¦"M±ˆæê)GÉí =h¨?”ô(.9Qûš§}…‡?˜´#Ãà ©¬Ó/ªlÂXeaô•ç#D‘â”z¨9ç¥U;+¯Á*«Hé iµ†G-tdý9Cšòy¼ýÿÆæ+}Æåáh08¡UÉ%ÛCF£i¦lš.²ÑÀ¥6”ŠËÂû£3b~H>£bo®xUG­c°WúE%A–©’YL á"À:çH«,Ó_aœ.›ãQ³ÙIÑMtí&‘g*ɓſèWÔú†áîó1’´n‹2•Åãa½[»û䙨i±»¶*Ø ŠR%*òɉ'¡Ã‘‘ƒèpšEFç†sGµÃøp0ñ$¸Œäyh ^ëÛn º Sˆ¹÷Ä ÖO€•üú¤®â—gNœ3vü‰:FZtЇ‚‘, àEX޲RPïj3V„~­£‚Éøb…S‚×±[ ¼8ꓚP µ6ˆd<¯—Qduð“:´Ùž—„IY¾È"ÌGZÀñ"Tç/8xªêš Ê–« Ø^ØD#Ý"£í¶¯×̱*;|ihèÐë×¹JlW4ø(Œ…Š`æg¿<Þ‡Î5•ËhÊBg^h¤ôׄg&hA‰ŽWÚÔgù”ÂÐcQì<|n¬>d‘Êì˜ šv@½’àÙIŠôó צ=ÜcD^/£…«n4i2nXÛòý‚"x(yÀ@R{¼ˆ'î0:®€ë)f¢ñj©ÎÚQfÊ¢ssæÇñÒ@”¸ÿYÎz~Ü°ï¹æ|é–ãK±V+©n#jC}R¹0p“'‹÷—1—=ÐÑzÉͤ+yÝÆ×žqîÄY¡²y>÷ï°‰áðÿyÃíîÜ”ˆ‚1­7“ŒÍÞOòi`ìV$Ød™Êu²È‘h³í:wÂÂ_^ó˜·Üh˜ þÀg§DÊö“ëž ü²<™jhÕ¶o¢\¥ÞºЙöuÛv(PÝîȯ J4¾„‹›4§¼)‹¢WUC‘€ß›Ó./¾09u퓪]³_Ê¢h6<²øëç9yïþƒjoɇç;ãûÌþN³=¯IF¾z?ô=nøñãbË‹ö?pþHÆóœCü wØè_®mtÅg—7´µÿÔXˆ+-W~‹@rÜl"Î_ô•Е°üRä&©Êóx.äWýLoÌ5%ÿ'wÏïášÿÿ¸d™èL NÏÉ~ÅÊkÚ|•_<ã7-+@dVK~²¹ë:BuƘ Øô ]zÈ1‚FG{ŸëqB¿^zv©Y”3Éuöc3¼™+“Éñ¹rõ¶—} W@‡1K9ð{±_ªU·ËL’a$m.­‘$Ê8–±OžZÆFƉŒ­Œ}›®ÓØDe‹Rqt…<òiã1£öõ¦&F®vÇÉmÁÜÂ/.oË0]5µ?(>[ôꊥÃyrÿ6ðlVY >û*zŽ—è¼ýŽàyö"ø>Lñp~Ædi‚t¯þ~ÿê¿R°Øendstream endobj 1340 0 obj << /Filter /FlateDecode /Length 2876 >> stream xÚåZmoã¸þž_áoUnc®ø.·{]ôŠýÐâ‚¶ÀݧØJ¬‹-ç$ù²ûï;Ã!eI¦gú%¦)ŠÎË3ÏŒóþæâíG©g9Ë0³›»ç3ùÌhË<¸YÎ~Lº»]}9×B'ïæô ‹®ÚÖ?¥:­¯h®ZúÁãö©là ¿üùæ¯o?r5ÜÞ)m|G+F̹âLðœåÚ‹PÝÑÞîÀëkî¶÷Çâ&°ãh}¹nKÿ|ü¦Ø¿¹À)ñ‰¾|Ó‹_-ƒìgo*6nçn’†oø§“gêMƵ8©7 ã~3Cëêuy×-7‘|`±oªq—s‹·ÞTÎàîáœûkÕs÷ý­8v#§t!w$JÔ+dªúÁNíáž½À¯}Âݦ©nwÎѽ÷@ʛƬ;Bæ¤`ë ß‚‚aH>˜&GÔa “ynû],#¦ÌÚ|¯4ªÕ”¥ioõ‡Jµ,“r¨Ô˜o±Ìê°æúpˆžŒ‡ç‚®G~Ù˺ls\ ŽI¼—¨¨—±[åLI1QÎd“<5ý&Μ ”G‘4qfÜmð¯wà†V8¼Ï"˜ûQ³„aQ£)½a ~hÓ fYôá û?UÓzïÈ%3z’_GŽ„¡" _¢Ë•{ÿÄï.nÒA N:Èß64]Ð\ï¿8÷SÊ•ß`×Võ}ØÕ¿ÿ t0ÙûøØÐûÕ¦ðä cK Ü„·¢®?IØ.ÜöÀ¥²ôÏaf‹Ú¼£qo!àp88îrHÄú&sÓ[÷1¨K…8uzÄ©{4é÷LçÙ(0æÂfÁýGòX X"IYAËÿñÈ”ingóÁªskü‚tf ËŒÂMå4ʓܧxSüð@P õîÆâÈí1¶ž^táYHÌûü+r‰1‡±ŠmÕƒŽG°R…Ó}Zh(‡ìÞ ›ÅOñ§5Uû€ X¦É_úì 󋢦Á¾ëwÛ‘¼Ë¢óÝÊå?µp­!¬¢›ø)Ýé›H.œlëâOxÖv¤+­™Vr¬ª¦Ü”H/ýM¥‚JÁ3³ªÃ/‡žçÌ4¸eîƒ÷_Q`b)"=d'ãЏÀ$¯gÜH2 p1 ßçÑâsä4bMÏ£hòy´€DÂR€•B,c>­C‹°¼Ú=Iúäó`¡!89W#°Ó!,‹b@Žmfóý¿Xyrœ…ã1—ü,?4ÊHÃL&GV4‘Gþ¯ÚEO5¹!ÔéSŽ>ÉÀ/uõú˜ [Sêõ1y 4Ë€Á'÷¤ÁN€´*q$D±&³:iËŽfÕ†O"‰ë} !f[¨Ðùžò}Že1%İjp{/<´— åœ"fDÓçÎXѤbOþŽ@O*0 ›|¼Ìd®LÉ/ô$J/d±‚´°,‘¥×^S”‹`€”`¬Â™P41mÌ8µmoÛ²¡¾€ï»@>ómHq˜¢iD ;¦×œe)Û|ˆn!ä0^ ª~À/ úœ#³ ŽDW ˆKr3FÄtäçj²Á¢w‘¨ù*Hµ©`¤K€HÈZ¸êWÃÏN¿ áP(V óŒe<{¦Bï£C Êüá&Òµ"(;Õ=Ö1N÷â„îMžÇ´oO)ÿ:r  2œôß3ø®¸SÈÌú…P(c·[æØ%jšÐtl‘¾Ú„:¥ðÌ•Èyè<Á`S-Ç\¾¥….þ‡ !˜ýþ.ÐsÏ’á³ÜDÓšíᙜ'´±rìÆ”%(Ѩ4ù¡¢Ëðñƹ ¹Ir ,¸Ž²' ?hš Æ4• úèSPPÖĨ6ø„í=óâžÉ±È ~’õégû¡ê%ýмo9Ì0ÔrŽ j|¬*0L&`Ѧ,ZOŠÜÔ-†ï—h"WÞãäy*xˆ6Uò”GŒw<›  “|*»èÏL ûËgzÕ/± Îê‘WùrÞã*ùü^}=—Ê…UÅzM3âÔÒìb×4ž0®¿ÐTå7ëÍÇ­ó©q;ãÖeþ÷ªÌ„Ã3› ±ÝîQ·¡çݪ¨£ÌÓ0Áí«ùØÞŠjßøê¡¤ªºrC’ô`–ß(‡ÇÅ-¥-û™ÿÙç—Ø¶R@ZÔù–ö‚íb˜—zK«©¥³Ð\†·4ŒÈ¾(¿³/È « w¢··˜&B †é„P“¹uï;ôswq×9»å¡yÐDzåQ}ˆ Hª~±>¢xªí¨£Ø ÑÆvڸž=?ÒÌ ³Ò¾XžhÃPê<*O]>EÃXb¯FÔž+È`\… Gk–ªÉïŒíî««ä×r…ÅŒ:•?IÊ4(¯“b™VÁäm^qH†±Ð€ÌØåÙšû%Öùõuœ„gù9$¼/€¾‚„] dÎbÙú,–-£½*~ªó|¢=Ü2³˜l…Ý£õÙYhËB¹}–ÛÀžÊ>[ÄÈŒüŒ"¶·¡=dž~Ñ»Ãj 2ËþçõWVZÙY> _ÉÇöe°ep,`¤ûšó:œÉLEÀÈS¥£ú(üõ•+þ#Î9•«>'¦ô b Ô¦,ÓØ[:—f^Œ¾ß¥ÒÌñ‰‡ô:N…ߘ=ëÁG”Vñá1þ˜}'ãUüGLø¨¯·ØrCHJLj*_ÂâìS…L'éßcŠú¾ O°»FWð[*0¾¾û…‹(£éõ$±QªT¢§¢š¨(f)‹ÿÙDÿ"“uY,[ZJÿ<…d7ü+“œü²¦F¿ùêð–_’5K®«ÚïC„ÏÕÞp^$@ßÿaãOs¿ÑE+K¡&êy~›Ý~Gû$Ñ}løf!@¡¤4£…ëP»‡Ö†–ùŠýÆendstream endobj 1341 0 obj << /Filter /FlateDecode /Length 2342 >> stream xÚí[[oã¸~Ÿ_á·ÊØ1W¼I°S -:@ûºZ`g€Ê–b«±%¯.“ýõ=‡‡²)[Nì‰3H¶y$‘‡äá¹ó£ó×›w?~4“„%‘ˆ&7·“$fqd&‘Ž™zr“M~ šUU·«´Ì¦3)ep[ÕÓÏ7ÿüñ#çÞÀH0›IHCzŠp±$–)S‰šÌ¸}Xªbl=ñˆ~šÎDlFgäš…|0ãQù;2LéO8‡ M¯«)<î?…𻩽A’3n™¦•ÿG8™ŠÓ+ã6õÓÝȶ€Um&œ³ÄH¢»™.f\Ê1ù’LòØßl!YR2«Ç¢G¢¼i€q9\-[ ßd¿Ú§PD# ‚nÃáö–ÇÛS,’ú`{NC±7íN1Î<ÅñThÃñdæ}8V5™æ4¨èû*Z\SÑúÛ<ïPÑüÙ4ýŸ±ý)¯£éˆE n_Ó?€— á‹ÌW.¿óz‡P­’oUÄ@õ@¥â3U/¾³“ëÕû<Í„4,Fí Á"ÈoÁú™\¸<ÞžfJ\äÂêœ`­Þ‚õëÖêœ`­Þ‚õ ÖOsr=¢úA°–  0á.X‹‡õéÔŸ©Nñ«Ÿ1VØ`dÔÀ…=îlð×ýžºŽ®®ÿ‡¨Ëò²=‘ŸˆÖŠÉä¥jü(XÿrBí®Î¸V¸Žþˆ~nNçšÇ]é‹ôyÝIÙ¼æÑ|F`@‡àh k³D‹‹êb„#e#Û¥=XŸ?³Ðb8’úu6ÂÏQù Ðøµ±‘nôø „xÍØˆ<‘>6rÕ‚«‰õ¼ÜpNj÷êäÔÆxµÌëGl ì\éK~Îóà|y¥ü~½fr­ftÑó÷QcF›ÕI¬<ý%þfÈ M›o‡KõlP …N` ‡;$ò*íÓ¸}æî‡àslúJí XsØa^@PÍ›¼þ2Õš@f—“è_Ìj7`‡º@µNhtÖù¦W_ Øy[Wê& šÚ:ϩɂt{…Ð-ººÎ{k±=ÅÆ œ[Aæ‹ xÐЀuÞ4ý©cg;i(?š†Ö•€QµÕö3¼šåŽ ÛéÝŽ×ÔcÕj°% G}v4 ãÐ+ìí‘P迵¾†#‡ÒsÝý|î÷î½(°«.š;êLk7ïÀ‰Ê©ù¤™(î©u½¦Æ¦¢gþk×ch𵿤!Ät‹6½.rëþ·kZ"´¾«xÿs}Øenña°»Î‘ Ho;Nvx+:µãcžNà6wš ©ÖÙ`s‘µìóÈÑÁË:µ¬aS^oè QH|z{䑇ÈÛϽDjhŠ%8ÃLIãK©Mbë-=WÅr•»!N…ðæ0I+œ ÄÚOGVœŽºúîß:œÏ«iAÛžóÇŸ€Ù! =9£ý³ÆŽ=OÂrP‘ÚÞ(ÑñLÖ/Ö:FXUŽrâ2x¯?\¬ãsuxò÷Oá°*믌8‹M44Œ¡e¢Þã0X¤.­•ZÀ=}d¹MNކì^þ6««®-öíiKoYEaµ90ïÖwôf-Üï²áªªïlVTÁÇ¢nZ¯ÇQõ¸ûÁ`àb9¹| D7«ËR Ta£ â7sŸÖAIMYÑ,:›BÞ ƒ-D|×V•®­Ï•®ö©¹Mnпô6²ÛuV”iý•š›®þRô¡vÄ¥!a¤ïû+ˆŒæ¾ jGöñÔ98†FçaU¹p€êbà«ik—”RÁ?Êmï`ÄB]¤óõîÊ£ÎÉìdèÙò_":y ö¥ÚÝ2íÊ›$» ÚÜ|ÀÕ’ÆEÛŒ¬?sÓNJ_G¹ÅÎó7)”;¿Á²Zîê¼´(­E-±ÙÕØO¥¾Y‰c$þ¶k@]TBý¨[Û]ն¶Þ8ìøf‘—Ù~˜ØÍAÙi²> stream xÚ•]oÛ6ð½¿Âè&'±"Qßëò° ÉÐaèŠÖÛ tÅ Èt¬F&]вãþúÝñ(Y²å{Òéxß_<þ<q}x“ÌÍbOæËI–¸IœNâ(qYMæ‹ÉG§nÖÓOóß®ïÒ!‹ÜÐ&ž%)T®‹)KÕtx¾Soò‚_!œ8;Äóòa…_]ÁR*<‡ç}>!§3ø[p:”KBëÕÔw¸…ç?Lg!DµF‘“W ¯é?WüH‰^ñžüä[Ûòª¢ƒŠ/5Ñ‚9‰ƒúÊj¡¸¸Bß'3ϼx2ó}7‹l\r±Ž °B‚ÐQ­“„'ÇH Epë ÝÌK@hæ²Ø'¡…lÄ4` â$äsã8kCN.Åu£_ †¿3œš¢-à8¸n@`|g‘ ôU_É¢¬ © 2íºl%KA˜§³'º\s{hc20ä)†ä”¹(8¹ç‡ýxXgÌsY”›+¸¸7M¢6…duÁý¡qè†YW§¥•“vCÙŽ×óÙ0Ýß•¢¨¬ÌˆEÎ˺QÛ÷îê¥að,iL¤ïo?¼%²¾uÿx‘w8Ù_Ñ÷€Ùi8¨zÈR,žØ ©À&` pÌåꊥ~ëÒrÄg(ôÀ Žê¹Úê´ú>ÛïãUg z5pø˜µÀr·äèC¡¿M/®z’.ds_Ù _Ø 3p­sÝÔ¯Æâ?äÙé–E@ìý¬Âm][†õ^å¢ ÄF¢ßƒY^|}sӀ؃”àš€{^ÉåÁ6²`~/·üâú9£ª5ÏÛ¸5=XV‹ÞŸà;üë\d›ù§Â ¥¹^Í~” ÑÖR×ûÛÐ4ë{®†¾6ëNn“©W¥Åld—áƒ?Æÿ´C ìùÔï¾Qݹ}­2æ® 7Ö%w5¶âÛgT¦)ÆS^¿š?p…Œ‡æ-¾°¾»ýéwä‚î>«-0½~3¿ýõöò™0à칆ý0ªí¼sÔ6¦ƒ”K£Qηïþ˜ßþ2Gñ”´aˆªJñBK$4äý‡·¶#4çlÄŒ´Q7H1Òdl+ÔœDÝÕy)ê¶ y;®àþ_纔¶VåÓqYö]ÔGÉCUhF.™ø¯ñ)Ø…) ëk]~åryàw½-µ#…—ÏÍE³Û´6–7ž;åôµ6µØË˃å ãcùɪõ\ïÿ‰ÆDšl€ÐSq6Å0Hoèäè²Öó¹Û>»íg;©GDfž‡ñ·®üYºhþóM¯¼Ïç‹–­ãÒÙe`‡É˜? ÂÃéN7‹`Ïö‡+Ï ˜e™óhç=ýÀmªK1bd£(äzÓh[èˆÀ1Œ_-éÛlh«Îµ•¬[[£›Ö²´Â{K;lˆµ 7¬uOÓб»ù;)¾×DŸ›µR7€„¾ØÉÿ_×½cQ-ëGàð™ƒ(Ê÷»-š­žâë÷â–.óºµN6qÓ”u5@+­$´9ƒ%] ÚO}7W?vJMTCür!›‡1,§fs6pïÝTò¾æŠÞ!”£È*¤èKkÅð¬3&Ç`m”ÜÀ~¬)J³Ôw½4:Qæn ’ôðV‚äDIFuƒ- Vé¤éhÎZ"zÀ·˜b®öH)…=Þ­dmAÜtKûÆ"Li…U¹zજ RÚ© {¡¢QøBS 6F* =«9Gß–·#–ÆN- ·–Âí á] ™‡ƒ½å䉉§üK“Wj+æ+WKFÖÝ4 L2 cÛž~6yiѦð;ÌîXAQè¦QÚUÞWqâ|>­LZ>îYNjÇ ý{M€—…ðDdÔsJ,I†‡/nç/þp Ìendstream endobj 1343 0 obj << /Filter /FlateDecode /Length 1746 >> stream xÚ­WKs›H¾çWè´Av30¼ÊëTe«6UÙÃ^â›ã‘=².[Ù¿ýÆrR•ƒDOOÓÓ¯{š¿®ß]|ιʓ0Y\oyªÒ$[$qªÂ(^\¯7^±^/o¯ÿ¹ø Œ£¤ÎUœ§‹€eîÆÞžÁÿö–e‡J­‚4ïD]½ô£8ñÜ}ÉDñøØÔÍR{¶pÂ[ÕOÕ2L=§–~¬Cï+캢q¶º“—ÜDË®hîʶãÚ½°¿qp¸·«e˜y÷̲-?Ûºqåº{»u ª? õ ? T’& _k•džª(vðBdàܦ~£îî»5EžkÊRq ´ÆË¨ÜP ¬PT~ tú2\HE]´¾lX­u|ë‚ë²pàóæ’©%³«’|DËj~B´—>¬Ê¶S¶ÛM¼ ½²ë,k0täÜÛ~oÏÞ‚Õ:ËÆîiL^xŸfP8ˆ‡±wÆWÀ”jéd&²¨ì¢P®ýºòä¶+v˜M݈'ì1£°M+éÒÃt%±ÊÒ¬;Ç^.}¤Þö¥AcÓ Ö›iÐÐ’–cQOU‚ ˆ šß%J×è‚I Ö›u¶®x…š$öÖHho ”ˆÕ°ìÁ¢[H}§ ‹B×if\XÀ,–óÐ`œç{[6ÏË8†|Í@/&êÚ§=Û:Ð=ª4š)>1ó‚& $ I.Y¢ì,!¸œT Ú‚’ ›m„·ªÙ.ª5ï²æÇ] .Þêª#Í<«J%dÂ#ÒÛIÞcO6Б¤ 7g(öýÐVëèh‰€ŒÌQl ß®{,ü¢™kÁ ‹G•¯vo¡ßíþƒðÍñ4&5u[2£ˆÌva.f×ò¤n)oqL‘K1¬ú)„ä3†c ¼HíÅ'Cv¸¯Úݺ)eëu,H×0©WqZƒ«¾Éb†>nìÊcªWÌKF6R=²qÑû† Á²É¦ñ`€ þººëÄ ÑØóy‰UG— nÕò»†PHØ‘U]Áë¢b°€2î#„ªôˆª¦É }‚ݵmj0µ&ÇPT,MäûVOüÝ!EʤžlI¯;Ÿ¸Üg@]ÝÅB´®|d O ¹,(ÖÈ# ÀÍuá æ‘ pï}U;fíË÷L|Ǿ¨VhÌ=&>Œèvýþœ¾Y±Fªü>–¬Tõ¶cšËgRSÍyJA†~ÿ‚ 4°×c‘¡€,l‰ø,øñX ¸åhX;JR¡Œ·§~ŒBÏ„"Ü¥ fF•D ¬¼Èþƒ¡ÔÈ5Xó,ÄíS{€±07ÔófÜ|¶«Òç04m17‡ø‘VY¦yù—¼;ÂH#ÞAk¦¥¬¡-µ¥c‚.Ad Á8%AÈaÈÚ–+·[yݲ—5¯ͨŸZ¢o MrŸxñ>óøV ø€÷(±)$–—¶›AB£à×ùXÜÌýž©$ëçn%Ããº&#RAŒ{E/¹:ú;¤¹¬“QjÜJiæ›3YCÞtÔ_4nÖäX%puˆÈ, tœCƒŽa$cuÊ’÷r^2 ŒAq§ªï|«Rû‡ºy˜QÃìlú7ì\Ô‡*¯ä¶‹”¦Éhtå6< bqÛ«Ê×—¼¶¯‚Ë~KÏMÛQIÐGi3c…ŸEØiºd FÕxÆL‰ÙÍѨÖî©…‹þêJ¿bIn”6É)Ct BÝìBÆ_˜Òy@Ç¡ +‘ê&tÚv²K¥Ho×¶æÙ…|ÓDÊDɉo¯¬u ñeê?ø)ŽnÑÑñ^£Ä'ÂÞv*|ÿ•€„y“R~25a ߟA6iáƒÜœ_ >æÓâ?$‘‚œÉ¦ÒÉL ú@<|Üv”øC ìÈî&º±¿º t¹KMª`¤# Y€rïþ¾~÷?9¦Lvendstream endobj 1344 0 obj << /Filter /FlateDecode /Length 1156 >> stream xÚ¥WKoã8 ¾÷Wd/'˯Øèv€Y`Ø=-°9,ÐÉÁ‰•Æ3‰Ýµå¦ý÷CJT,%NÚbO¦(>>ŠEÿ±¸™} ãQæeIŒ› B/ FI<÷ØX£g6»q;_ŠBbËqàåãV´j±©›ãvKõŠ6ËJÔ'Ê¢áDå\ó9oʼZóÉl¼\ü5òG.c^¦£³ï~ìß‘Ï?4åºÀg¨8ûÆ"#¾4õ2–€5eEIX'à&s/ËbÛÝ¡íöì @©wÅžç•ò|O±ă¿œƒ eUðK8/åÒ–N”t¦¤ÆRÉÞ’²—ƒöŇ50¼ÀBÔ{TXoË]a)#¬[‰`™cíìøF(ÊPNm¹é3kÿNÀ°ldrUL˜;L _êõб¨£Xa‹÷ ÔŸýÿY4‘ÈSÞðJX§tôè2ôu¡@0¥üî š‡öÛÑË'é¥?-?éÞíé«> ^æKI |è làVØÑõ|·OŒª)D¤Âp‡ìJ¡{eân '7äq(!ÒnpŽ7¸§JŒÀ ¬¯³@Á¶NØÔé6-1_ÕÏüZ­ïÎ:‡t}¡.ºaés gœ-Ú7²âÝtŸ85ÓÞþ0\ÐùX«Û¿6yõó=O PnŸÛöä  ú“D`ȈՅ]Ý“äùöõ?éSl…âZ6úê<‰fLxÌ­qkºH¨Mò.Yù4mDež·imrmóڋߺb'Ww]w•xˆNúÜç\l­@(3U:ï¿á©éö?…oêÅÉ-p¶“`ŒÝ u ZÊi‰‡Vä˜Âbž8­¨ŸT"p &\Qe«¾ÿu¥ m¹/wyãö(u¾@Y©¯Ðnódž?*²©;QV¼Õcæ€sEHé†1æÎa €krW7BµGyYÙ§í±\ó£ðµs?€ü³¨i.˜j¡Ò;ìÓ1k…Þ^ç öE¹çdvWW\Yµúò¼Ù•À%9·I=¡åëZ3WÕ«¢å±“-ðá 7&ï¼Ê È¢y¦ßÞ×óB€ôÇLï?ãÄÁÁq…o|FNUc¤\„Î6oWlåð‰¼u½ëöUë T¡džJ†“TyØÆÄ ½tkpëº)ptš%’È‹²P —[ÖîUÀxá³À.ƒ¾þû7½Ö½K|£ü~ç2$@ô¬ƒ¦ôôL@‘[¢rÖ6BÈ"E‰±^ Ëè̄ڀä_­X€Ý«£ü‡xaŸŽ4©”äò}Nñ— ã·9ä¸1l\”¯¦Æ±\-uŸ‘‹'Ñh”@¾sEÝ­ôX:Á+¦ÆB§ffE×ÒªÀ­A¶µƒ2©zR6êëAL0yG¸ÞômÔkó¦‚|줮 `ÐáqØ:³ôˆµâ»ú@:¢ä:ŸròbLïr> •ΠéAžG%\Ý76O¼9Ž™Ð)Ò”ZD* ýæëâæàlñJendstream endobj 1345 0 obj << /Filter /FlateDecode /Length1 1466 /Length2 6984 /Length3 0 /Length 7967 >> stream xÚ´T”k5Lw*%9€tw§t7’2ÀCÌ 0€” ]ÒJƒH·”H7( ’ÒJ#|£žóž÷¼ÿ¿Ö÷­Yë™çÊûÚ÷µ÷ÃD¯£Ï%g µ)A!p.>n^qÀMMU!/¯7//?“î úËÃdrsC!âÿ•ðÄ „#| @8"O ¨y8ø|Ââ|"â¼¼~^^±¿¡nâ 'Ø É PƒB@î8LO 0o7°½qÌ߯V6Ÿ˜˜çïr€œ È l„4p âD 3@jÁ½ÿÕ‚UÒ‡‰óðxyyq]ܹ¡nöÒlœ/0Ü r¹y‚l¿´€. ?ȸq˜`÷?~}¨Ü è Î`ÄQá±¹‡ôU5Ú0äO²ÆŸNÀ_wàãæûO»¿ª5C~ml .0 Ä ±ØAm% nøs8'±ý•tv‡"êž@°3Бð{r @INDü ž»wçv;ÿ‚Èó« â–!¶O .. Üç×| `7 âÚ½yþlÖ õ‚øþeØ!¶v¿@ØzÀx !`WªÂ_)Î?>{ Ä+*" Ê ¹@Ïmx~µ7ð†~ù~¹ü}aPÀä¶!þp|Ýž ÜÍäïûß[8||[° ` ²CpþéŽpƒìþ؈廟ÌxÜãðþúýçÍA/[(ÄÙûŸôßûåQ06’ÓPâøƒø?1yyès€¯€€‹_ˆAWA1€âÅÿß]þƒÿo쿽:@ð_³ñþÓPbðñþÁ€¸¼¿qxþE Ö¿$Ãø÷ZP—AÖ¨oÎ+Äkƒxðý? àwÉÿïuù¿QÿRòpvþfýÿÿ„.`gï¿Tö€#d¡ Eˆò¿©Æ ?RÖÙ‚=\þ7ª "ä!±GPœ‹O›Wðì®~²ÕÃmþéï] ÎpC@:Pwð¯/¢Š—÷bÕÙ8!¾*îˆý Ý„ÿ^î/„Ù¿çP„Ø@m©‘_Htszã °„¾|ÙÚ‚žÿæ;€‡…#JÌþ;¨ί5‹‰xl~¹~[|¼Bð™"§ÿ2E<Îÿ˜|ˆ¨Çoó_#Ùx¸¹!fþÍ$ļÛ¿¿ Ðs ÎÜ4ÔF"ı&¤õ²JŽÊ‹kcTý(ýò)?×h%¼GqüÙj¢þ›×óêï•æºù”,Ûµä]/ß.Í|÷]¯¥«ó<ç¢SÚ¶§³ŽŸ¾?GžLò½ f˜&ü€”kœ*O+^ìÖƒ¤CMô [ÆÖ¾GŸ‰Ð¥¦k6É‹™ä’ˆZh«ÖÇOUï^kQ‹íÓƒ7Y÷lý `Éþæ¼c™¦•É .ùñ 'Ñ«’h¥o°¸›¦#ú¥šgÐÆñã08±¢D?µ‚ f¥ÑBÁmv±ç^æ_k凲{¶=¥Ël©—5Z§ë§{ôì®Ýo)º±ö 5”_dæÆ&ÊŽ$T}O0Ÿ. ‡,‘<çm— £Ñ¿” ÞÔDy¡ëÛñuÚôâ;ÿô73niWhŸ"½G´‹äfþ&ÏB êOýÈR:qÿç¨(MËÕ<”ÍŽ­ãíëiÅÃѧf8;*εÄ~Êêê=XE‰Ÿœ²·È¯Ð̘‰PG]™y÷d?™üP­RF9íSŽÖž>I¨ª‘]s•Ê 1%WÊ Ø}óòÍhЫÚ̃RÌA£Œ|,WÒž÷J¯L!bpkš::X8KÈ™²E®ÑçkMÑ®Gqx…¬XÒaÓѧgïâFÎ Fq¨Zå³bcæÅ È>+8SŽÍTöׯMjâàX88œKœc-úØe¸®]zS”ÝJ‹âðçôʱ}h%«Ò wƤ­šÿ‘µL%GhøS¶*Tcrzî³¥DÛ€7šÜ6!b˜U²' FVåȃQÅáôÍÔ°Áeû£\@!.Ý+›:/,uº3Þȇ½üw˜÷÷}¢>h1TÛ°‚áO Š[ß¶oY± ­—¬3È/×6ÆŒ¢)´ÇZù©È"ÈŸ†(1þ¸ãÖð£´Ùñ1.|"bûÉ„íay17Á•'0’ñ!ÆWŠéié|¨ sÙ¢X¡!Z@Û¦qBƪh(·zÕ-’HB з±0QpS¾¥Ð“ÝBGµ‰ä¥Ö’ÀÇ~úˆ-¦ÝÝ¥¥áR(ÄÈqb2Á–%íå\rã¶ÿ#¤°áó‡e6ûØ—õØãèÒ—m¸#ìQjmô®§ë÷Äù:•¹Võ[;I–!xOT‘oð¿ÍwŽŒùoQ…ÞÓ¡qr4.uK4ÿ¤z\ÿd¾§ëºó0ÖÃØÂ•[-Ù¾ˆÉÈl‰ž>¹¿šé ™…݇­8ˆhí®p—‚UÜ:£ô¨`U%IBò‰‡ …µÿ¸lNé’JÝ3EàËܰÙà;›¨ÐF²·þ×âœÈvÕ×¥‚?ƒ²HÂÞ‰âU΢Z’Úí#u`ήç×»§¼}©8²¯û¶»¨n·‡é¬Ñ¬—鉩DäñnÑɇp¯@ŒPÎIô¼r6L{ï yý>ü”ÙL$×44ñ}òƒŠ í²ÓºbÜVÙ L«C2ÌQÌ«ŠSŸ-=UZPE´­MMœ–(kø‡¤tM†c™fOôaœZ„…=+¯½¼ýJ.Ĉžq¾qóŸÊe<ÏØo| ry~·Yëyr;ʲҼè>]ïÖÜR2sÏuwre•ÐJâ7ÈTMáGEú³ëM~$»Ó«1˜˜S„—;•™œÁÓk-ŠB‰Eæ~§BÞ{Q6šªwsú(‘ …Bت¥³´»½¯¶×Â-›òÈ_w÷õ®ô Sa±Ê ªÂó¤Ðck ¡‘ìéô²Á‘fÊa‰X&Hgk¼Š 8Lß jyç >RšËI9ë6‚¡• Åå"ÝÁØ0ڔÅ—ÆZhl>”»çSÌÓ"žZhu6GvX^–´¾ŒK¬m©-œ†-ÒwZ3r·T‡öŸá©d±N!=;ù‚ÍÁÂÜ´jxiÓZ,º=×{(ãÊg;ÐÀ}§}¯-ð÷‹\§NÅJÊçkæO å^Ë>þˆ]:Øp´Žé“Øìñ:¡~MÖ›,ùÝÞ„º³„K»eC[x](5TÑM5]™(‹¬[,¤èƒŠ¿¶(lQ×[q$~S¥£%ʸ!{{5c–®®ƒ]?ì‰÷‘ &ß)»h-Gl ˆ€nÞDöÖõÇé.OÂë¸Q†õí.ª‡‰ £jèv4LöP n¸ =sñ›W¾^çNw&н»´|ÅfUí•®î”òÂ]ªnÜÙ(aŽäIKµ$W‰UZ^šÀHMˆüåëÐââ'1o&ZºõÏS6Ȥ!”JOªÓ›j¨é¿]óÔUn]µp‰>°™ÈFo×ÏÝ&˜ÎÎóí90¥W0;Æí¼J«5šS;î¨J7üI- ½kp³£Ñº1ã1<÷xJE~¼âÂl[UMž—4#‰(£Ý™xS &SA‹³ðUd¹œçX³b_Ð:@äÄt·|z‰›ÊÕ}PDè%­Æ8ãõM0SQn%uò8&Õ kДu²uÎ:éôç®vŽmÊ?N”f|J0 ho/ÃꀀӃólÞÒ«ŠM÷¯ÝÉßlÊÞ²Ö÷b­5fií̸ Tl¿ðóV=uõøKöLÛúë?ùª‰j„ŘN{ÿ.Õ†ò¾­W2‡ ^Rpä‹= £"k.ÕB- È2(.¸T±¹ŒàÛ»Öþ â×'h8db|º’sf-¬øµ¾ÇH# šØ²iN(ýŽrÓWm½y«û'ØöNÿL®x4.XƒSŸ»V¿pS¢Ù÷{ãeè. w<¼³M¦Ÿ•¿ªE)å6)àìãvÖÔe+©³úhSU¯Ã‹™ô¾!.¹ÉªiMÇTj¬^?ÞxàÎÉa‚ÀΣèö9+ä<æ»w⣺†yuCŸpwï\³Aƒç„xãÃ9hHMµoÒ© Ù2a|©¦¸ÎÜœ%‘œy4$çŒÑÛ%¬>P©%TÑë)þ’H¬Ó‹‰$ÛRÔ} üq‹ïáG‘Tßø×·û‚ùgíRV i}ÃS]òkãô¿¬Ê|‹3sLéºÎ»b›3VU#5ê°FBÏYÙòÊÌÓ¯a¦Ô·Ww1SW]51FJqS\—‡V½I¦R ´}®Z¼]ûsªÄ“1Æq(7Oäõ PG¸œQƒM¯ú}ÂÔU$jïp…, 곘rfs? MujÛÎÕ[’uá!? ТzHä| ˜:ÃMÒÿÌà;ºúQ8#š™á“GÖ´Óº‚¼ÎÓì×[v³M²^x RPw˜jÍ‘†öYÝÇÔØ°o|DÈ2ýš+†1¼U“XX·³KhÖ*³ŽaMŸx¯cp ûEcÞó “&˜§o䤴¤§ú“T-T–Xskq´÷9Ì¢‡–-³Îv6òl½?繉?_ªa£f¸wL¹ Øu ¯cÅIs4Õ¤E¢³»Ž™«ÆÇ,ÐÌ?R¿‰$™Y›™œa'%œ¾Ÿå•~³QâãúëCÛi…”¯ÝÂGMáòoË·:£<úoìÑ&—wï&è¢LÍæ$²UǤ†G9ì±Ñ¬ÎùY¨]Û:Í:áÙSÖ·¬ì@G½/ žËÏCÄßv:úÛ#‹ WEëL0KÓWçÒ̆—‹{Ñfûön_$[S—+S ¾à:;œub¯‰k´Ó¾3Ý WH,v—_8>û.+2mÕøpë¹K<:U³ÁS–|ö/U ͆Íq`Ýv%¶@9áX€–ÒJ.ãĪ+Ì“¾4oñd´Á°vŸŸy¥š! ²›ç£'wl½¡öeyú€Yy óÉ[œRôï0¿E Ýï$± õu†¬Ÿ«¶NÍÉy=%@ïN9ô~ÖN¤Y)Œ×éú0 dÆ|5¡:~X˾d¢'gD8•¨F®˜Çíˆüõ5«å‰bêÞ=!êwHÍJqW˜öË·U¡ºôl\ª*TÑÑ2ßNº“4ä‡÷Ê}íFÒ¶0 Ýs0qJàrlðf¿F‘k’ÛD8ߺ|”Æž8üù#WØ•-•ž¨WwN…úàkŒ9“gaæíγŸå+*x^¼,Ó5‘êÂì<Ø9d™ãoŠCÃ_ø’2Mj„¹M#h ¢/ÑÐkÓ&(ÜmÌ—H’3C…ÈÀƒPù†äÕ]Ô CM›QÏY¤Ÿsc³Ùyr»G×rÞZyæ[im:¬Jšœ“fúÁêjGÑÇM[½ûKeû/Âã |’ÎJ°-Ÿå;>à$0ƒcpiò…÷ŽÍz“¡1ÎKw,½G!8ä‘éðrðàÙuÝjÈf}¡˜œFle‰+žÌ“ÞŠ×Õc\Œ®5?‡~æMq‹Û«ª«®~±UüÖS’aÀë¨TÏ|—Û\Ü|úðÁÅ+2¦âØÇ\pAׯOée£ÃÖ‹wß­„êK=#¯ŒŸÞpú‰q{¼f{3¼féà²Ò½°Æ¬ª*¬ÓüHÍ«g·V “ᄵ¯}ä©*N||¯5:âT+ã‚æC`)Õ$IÅ£¤Á¸®ÉÇ¿5‰‘0©þ"£º§ì¶´» mÅOÎ(Óø±C’Õ66³Fÿ„îCjpvZÅb„`k¡d åÝìŽ%÷eN2¶ø™Q“M¶N”,©|•ýý›ÕbŻ̞ÁËX"ýù[ÒA}Êöo½äq¹ w?Ô6À 6ÔIûÓ̤ÁE)gù‰a>ÆgYpÚÛñ…»¡ ÚÂS>Oäåƒ/»JÖD÷%èï.ͦ¢Ó3¨vŸ.90ÏÂr‘Þ䟟'ñ–Kð O[!«ZÜ QjFè?4R˜¶¯ ~fâß9ØáXûÙ|€ 4¸âå–CZ3¹0¡Z{IƒNÖkȼgN´n:Cv(t“YƒüÓ/²|£<Ñ”\<¸î8»ç>YNÕ<}{ªF8¶ùHŸüôŸAõÓì¦j×\ùýCî¼õáYéþc–ê£ÄÞ¢F®É²æa²u¶’ü³Ó×d|Âü—âC —D\ØÀÅ*„*PëK•èÃ> Nʉ&ŽžçÛ#¼‹ZcbgxÏ4í­ž;Î4nÇøl9ÄšÄ%t»¶ åw\l«wO²ëNŸ`uÇpõC蓈K¿j#{O‘­ýÀ ï\>œ™óþ¬½`|¹òÚ*ð§_B'·ò¡^ÙJ#­&—àÊâ{.ÝW.³gïíº­™§Vú`v‚i0]-#C²¤ä–Nž4mº©´|Ú3ñ¨Úç õQ‘5ëª &ög…6GÝx—J‰-õ¤câºqÖöôByšM5{GhýVcŒ´-¦g.ÃS[<ë ‹lÛ©` ‡â%9@9F™±ŒÖ…,Ñ-êœ=óy™äÇA»ÞîvİKšþW‹f‰ü2J—ËÅÆD/Þž³+ë\ç6ÄN u­¬b ñçXNˆõÏàJ¤ÛF50¾OÙùY eÐëhÿ,¾RøÁË_3+@8”C_÷»Et÷âm¾ùé멵%â(8]™æpH7§ó–]²W²Ô;(%¾u"*)›ªw>ð&?{W”Ö£•v(©ô¼ŠPÏH÷«\¨]©á‡Â€œIö"òñ30&žõ>Àªä‡*ác Uè†Ü´É`LuW­ðûP;™íÆÕ]÷àøÑ›~Š“ Ø7¬Lçȇ¹È±L¾Íg–ž¢ÎòF˽å*ÈŽ07‰4‹„⳯ã&§Ï8µÚBÆMC3\Þ^Q:ÞTKüh\|§ºC“|‘ù••À¼+ÖñøÖ³•Šnâ~ t»0ë 3Ås“Wèb«Dq/Û_ã˜'êÆ—m°³blx¬Œ’«x‰ioÃGÀHe8ºYÁô6§cåt†àBŠÅˆ9æ“É;éYMZ´]^J¯§üƒÈó/¯äµç0//­MâÇGp0Jøû€'”LOV|ëè˜ÚœÞ`]U;1Ûî~c3Ù1`ZVœU‹É­Œ$Ü´¹'Ÿp®—)ç ¥Í+št=Q(f÷Âø/Ñj/tŒ¡ØÞƒ1‹‡zæCòïûWß ~ä*ó«æ’w«'M×]N7›AÊ ¾Ó¥¡ttm’]¦r™0ÃCߌ¥ÆËÒŽ~é2~L¡ŸAÆpeA’Âï k/þÕ¬£Ã"@–²¯ë¢ã'»´]{oH¾~×h=ÕÄÈö@0x*œx€#zžüŸZÀ{ îãÕ Có’Ü4"n`Þ¼ •}Î…º¸ž Yå}9pínè›m†Áí~ZilrØö±nŠRˆ¹Ïg­õ!áæ"ÉCl ÔmâTÐÚ$DÑU–òîfó‹ØÜ9¾šÕ’PvðÜcŒðDs>mn7âd>³,1ô\ó#eޏ€i5u¥µõ·rÓÝÀ‹ñÂ(GÊÛ®äªÊ\·25U Ÿç-»¶•ÁòÉ¢N•Ы†rž=º/åQþÉ·e[¥`¯Á¸@†ënJF!ØÈd4-bÀ¶]3fóEèëO *$¶Wkº9g`ÏxfO.1¿Pô7í0AB}:¬hÉZ’ºjîE‹Fr£4[ù[ù=‚ø†¡ 5¹§¾âHHÙstÇ—buÎUÙêëÍ—º‚ ÅÖäœpušópÖ1ScqŹJ»CÀ+ùÉd˜Ì\-~‰ü㌸X¿!ZžÑFŒ/jŸ?Ëm÷Jºg ~€[0¼Z/¼cbøx"X@–—³v®ÊI|..ødû²aÐP=ª øe©ïjzAFÝP°ÔÌ0?ÞGÎK_é-ûÉx AQ=«jϬ¡^›¹Ço唌S¾â?’pã¶ÈÕ”q±ÕKiÊ@áÐl ¸œU\»öZÒùIêòDPíEólLåöw%¸Ü{·égÐÁ[ž˜cIg;`·”Ê_óŸ­üjj×Ë*R¿¶LÁ«,ƒ)ú?¦a|Zendstream endobj 1346 0 obj << /Filter /FlateDecode /Length 1388 >> stream xÚµËnÛFðž¯z)eWô.ßDêCZ8…‹" µ `-®,&ö®@®¬¦_ß™!MR”zÑ®æýÚ™áOËWgoÃx–ûy$³åz&ƒÐσY§~ˆe9»öJ³»½WóEÄž.Ua7¯çŸ–¿ÎÄl!¥ŸÇLöáâã{"Z™¶Á$Q_ÖÉÞNÒTÚÎÂ;©tùOGƒ¦II4šDœ³UµÙ77"_áGN Õ¶VjÀT4—Úª;U#£CG¹÷vÀzuñæ7äÚÛã,hú€éòÝòâ—‹+äCÜqÎÆÔ68ÆŠÈÆší³Üòyö~`mõ ä¤³Çc‹ePéÈÉÿv"Ep⪎Mkª•Y?q>k©)ì h‡‚'9צ~²±:¯é_õ#lS ==}²t\WŸX­ðÅËÄÇS"]XAèQqMÓ*tø³·2êu«õ†H¤GúY!'X¯L]z¥‚ÅÞÔ_&dæÂO¢¤å¨Xd¿G.òȃá³ùã]¯*ç­VvW뉊±´a9d¾#¬o¬ŸÊ¨0ÕrE†¡·­ ´ÑÌ[©¦©ô#o5ȦÐwª!ªJÓ~ø¾6GŽº¸îo„L§ŒÊ“° ™“DÞ=Yc¶¨8 ½;Cðumè&è°†Ëþ\±‰¸•ª'lËü0ïòv#„8´L _&Iú*ÝXU”ôǬ'”Ç‘Ÿ‡ÿ‡jË1>Ty{ͳÐãxi¥Ê>Uèí5Q™µ‚]÷Çgz`@LÒ®®§œVye¾Ñhª ÎüDÈVnáÊ*ó,Uaî5»ÛfUW[Kp×ÜõVè’`{¦~ÄBt­¼E‰pm…+]³êêÍm£jÈì¶2š•5eé^kŒíõˆ£õÓ‰ZOn˜Îê Ê ¹¹Gî7J+xU3¤uîJãqô-ÔU|Å%‘XäØ`B®f¶ççsnCn1«ž‚—J\¶¥èÀ6mЮ=óÞC]Bzfr]¡^†EƒqIƒV ý©U?sLÉ©4Å™)†p!m`€a@šÎQ¿oìvbVÂÑŠsïÒN.ö<9a™@Èh])RH¸F«Â®`C Ýö;ºž¸–rñmÈ*Z4_x³ùö’ر€.ã¾Ð&_ZsL¤p‚702žÝ™âïLñs;Ó@ä9õŠ<„‘8ž/œ‰Þn‹;$ 9áSób½ç³è•Ýð>ý$SÊ{äÉÙ‹¶VýºƒË©¹ŸA ;·&§h’úy>v{oßE÷ÅS{ìé¥f@­Uݰ.ÁOžÑ R¤êI¹§êÛùô¶]­Ÿ¢@_f×hê§ósy$Rä~¦ÏFÀ)jj\švÁß*³m?—ÌŽgØ ×ÜÅu·, l·- ËøGœ£P©ý@Œö°8ö3Û{(ýŒß@ Ý«‹å«ÿ˜VNÿendstream endobj 1347 0 obj << /Filter /FlateDecode /Length 864 >> stream xÚµVMs›0½çWЋ'# 0Œã:ÓÌ´§|£h,Ç`\ÀuÚ__! # všœÄ íÇ{»+½ÏË›é#rµÀ <èi˵Çò yîÌ‚dg¹ÒÂÛU•ìñéB÷vÁ–ú “CUDó»hùM³5+p¹Å:/ØÁ¶kÏÙgRVqQ±ï{¶dl™LZ¯ ,ó¢!;ElçÇ¥™Hþ ƒ„uÓGàHt,èC’ˈ‘ÀšÈFòäÔOåq8X[ .ß­ö8ÎdBNUhGS¨4H OÒi ¢lâ1“$[áɆüy ÓAÆ3’5⌙܌ü6ªÞbT¥ÔÚØJƒ§M²[IPð€>¹êìϯyŸ¦úTå;Y·}&nú«*0¦ýÁ`µ¥5„ºQ;uNd ·„¬ì¾ó}+ÞhÛy3+\È!.pVI,#š Ž5Ð\5f|MEÞ>Mh –°¦ _ÙïùÊ–"yÞ Ö ÚVáàhÆ>‚¶6¬­êŒ Så—Z0sEI:E}VÕ„úý|‘bÌ¥,k"°¶Õ`›v‡ý]ïþ *|TŸîÇëýAµGy¶2|bÇÃó[©õ¯2bsÝ…·ÿSÄÙö’”»x‰~—¥Ü'Ô\¯¹æÉp'Ò]l6· å·mc½­·6¹Ý`…d¿½‰’9­6üŽøÛ\ÕlÅ¿Žq•äÇÿÌã1ž•¨Ñ«¨¡~üo¼çÐ]¬‚/±ª&w\;ÔÇ6ÇæÑ}mÉœCD®SÀ6|/ò'Ü$¼Âqµ)Çh•ÄHºH¸~HùSÑ!äQ®Ž%U!0L£h±}•Å}Q”¤ÃzÄó,q=⸴áˆz }×ÄV JH§FŸ‚‹¥†§às{æs{Ÿ6_œö4äǬ Q¤ÎH' Î6PÔØK /êÓC¶0¡ æÏSÎËý2Ö1}ÅRC媥…Æ”‹;s?\¹0ìKHR4"4Ø¿SJà)‰cý!" ¸–ãœÕSŸS¼Û6Ï_çî®Ññùâ3}d9höN:M$W€8árKj£ŽÞ:ç8Ö^\/.TÍÎE5º^ˆ)âá]‰¯nØ+#O}±Ì€4’tË÷}–†êƒ7_–7ÿØ3Ð×endstream endobj 1348 0 obj << /Filter /FlateDecode /Length 1040 >> stream xÚ¥VKoã6¾çW¸iQøQÑz?šMíbƒ¶(ÐC}s}àJt¬D"'ÿ¾¤8²D™J¼íI9óÍ7ç×ÍÍúÁ f JB7œmö3'Qû³0ˆ+N6Ùl;ÏiF^Vàó{õ9âšP~·ØmþX?8þÀžYŽƒ’T¥ÈÌrm”¸Îô‘k813b‚Åè«Æ/_9-9IÇõPâ8J~½Tç³L-øôO$î T_à0§¼)óšÀ SN«òØpØ}ÆuŽi ËuGmèÊÙæ?v`ß©_»Õj%öCÀãX¸ 4…bŠ\¡$ ts'Ö”Ä̾3ªŠ¬$˜jqå'¾µwkרy­I³ªæî6ßéÒáTQ‰—­Ùá©°Ý*í”ø Ôäö¤ÿ/J26®F­·mTHy‘i îràŸ,FËi=×_Aöê¤W5×E¾ïËb üˆÉÒk+C¹Õgu5HY«gNÃI‘Þ€õ/öÿ¬8_wDõ -Jg‹–#mMÔ•ô@)K‡qûîlèÇÖP°.!¿Ãõ-á«>µì Sy2õ#Cü¥é ¬>7ª¬$£»é^Ù Ý¿ßuÃ÷ú§{É×3Üp¥ô`èX_jnO{ýâ¢u´nÌÒ—ö.v<‰¨ß-JNjÑRo¾dBçÊ^._kLŸ®¡<áò3c£b–êKk  Z¶ºîÒÆ·/ãeŸ)ж@o2CFÞ{VÝñi&ù€º ßÀ, °†Q.ß:¼vJ¹fÞH«†ò­?êCârb~Ð<Þ¬U]]ã¡uqîÚ±øÆ(H@î/*:µÇó3®V§:§OlçL}y¾pæbÏ™gr#}Œ=©#–V5a? ’/ç—Wµ- ,ŠB©0©N¸ú‘<=.,7žW9]ˆ0èÎÚa¨5KXѪ•ψB©ö#Iùv!Õô%¾¯‡å7Ò²ò<å˜çƒ¦Ø(±àЮêªá9U0†(‹)6ŒÜ’D<GA÷’±¦~þTQ¡¬Ö /Ÿ1ƒ|n¨ ð^ù»(²=½Æ¶Ô›×ißД畬^[Œ…eSàŸÔI†¹XJTÇ‘ï'£Ç\ ± Ìš/Œpø¡áÔô¨·xÁ›º SQ¬;ò©­˜!ûóô€R±/ù«žÐ6èï~&Ú+›VÇWh5{ý{°%8‚¡MdU*šåX:¥ÍúСßbE^ŽbRGYÅÙýÃÇ?ÿþÜEeÜÊíÖÙít(Ì5.qnË*#Ú×âÿvãH¢“ïÛ®•3–ÓG¹”ÉÕ§Nê’]VÁ-ãµ½íS9lN¢Èõæ&(Ž¡øc_ Þ|ÞÜü lë“>endstream endobj 1349 0 obj << /Filter /FlateDecode /Length 959 >> stream xÚ­WÛnã6}ÏW¸êb´6-É–lÕm<A 4Þ‡…«F¢ciôeÿ¾¼Y7KJì‹)Q3g8gæôŸë›Ùã<E ýp´Þ޼È‘·…ÁøòË:mnæènºœî­@¬àÿ¹»¥¬8`8¹›~pëpÁ €Ž}Íäs¬~¤¥w—¬ÿMÃ%ˆ¢ÅhêIüÀâÆú÷©Ñb]Xþƒ=dˆ5« J8· ´V«j‚A!Xl¬W>®#øs™ªøÖt.h†0@g™T*ê(C|O GÎÕRBƒ”o¥òú)';Är¡ ûvx>°£SÏfö( ¯•`€hI` ¸5&*ɈpÃU“…zèœr(dðTÇÖ¡ôÇÏŸÍ( Ž(”•ß'_Ût¨W0ü›Ñ5t¯LŒ¶ÂLí ÉìÇ<³fÔ.Uìì„m'¿8pëüb¿C3؜̋Y¿d ;~`¹ì&§‡â©ï‚È÷šI¼vÝÊ“4y!Œž®xÑ]eÛê$ÞÙWãÊ_w¢ÙŸõÈt»åH´›[÷ý¥¯Œ‰Ó‡PïŒÈ«Ø©'ã¤|¾¸U“”UüG¶µªDF¨ƒÓÊœYqŠ}“‚¼bø¥9Ä¼ÇØl%ãå¡#}:BƇ”å ðWÃÊr t—ý¢î‹Ç^@™C«ö›Må$oÉèÊßТ›f3©!]6ËeÄãõ¿_>°Sê©ÍÔ@ê"'?P2ƒ9ýýõé©K7ç.ÙP°üÜn—Beº™L½ËÑÃè>~üãéù!±›ÉÏ ôˆZNNdª)Ú‹·zŒ¤TŸJ窺_Ìàu †àïvG"6Òž¡,¯v*Y´¾`ô.¥Tê¥Õr3¾§rU,ƒ$E`›‹úñržÔضÏ'ñ1é#cÓÙÒyHHV$CBZÍA¸ ›:J«u7“RAu®/13¿šÁLΓ™¯–2㇢fúÛ<éKŒ‹ ÆšQŒ[̆ÿË…ÏÈž¼Ý·Û¿S'Z×p~¼Àd1·°Øõž*;ôù`®e:>RéW°möõ\I~ƒ/cÞUp Ú«,@Ô`¾¦)Žæp΅ᩤ"¾XΔ‚‚ÇšQ;Cb2ѹ†>X†‹Î–‹íh]R©ðøj]]®ÂÎy%È)¾Å:¥Ý». ÕYUúU7=}íÊŧžÐÕôõ¶Dqv!7rQá]œÇ­]jÜÕŽª8;hV*K.$ ¬sc· ”áÍÃúæìõb†endstream endobj 1350 0 obj << /Filter /FlateDecode /Length 1668 >> stream xÚÍËnã6ð¾_á"1Wõ\4‡6í[ôÖÜ’‹¶…µ)¯D%Î~}g8Ô3’³›S/æpDÎ{†3þãöÃÇÏ"X$, ½pq»Yp×cI’, b|¹Íwα̕fU]>Ýj]”YªÖr¹ ¼ÀùmEë¦VkêÞ ÜÓác°åˇۿ?~æ~‹ÇFþÂ%ú:2dÅ“˜E€³$°’ädðK^1Uï÷¯÷CAN¿®Só…Ïðæ>gÀÿ.½Øy!¸'ÄÒ‹œÓqGÛ²¨u®dÅll|hƒß÷zWÔ[¸ <ßyF¢’à´´À“A–/´[~Sïi£ ‹,¥Ñ á\áy-·²¬,%•},J‚³¢'Ù R€˜nëƒT¨…®ú<„ðòê -•Î3QÈžËrR ÊU‹! =ËâX‚ rò â*v:†4ªtY?}Z®|éž ÿ¾‚9öÚÞPU]!ÏÈ‘*Í/\ì[àbáØ ’+W[+HÑ Ô×Á¦™„»d'(‘µ®„²¾n‚!™nAßýšn ?8TkˆÜÐbÂn¤®Q}eo¶Ÿ–AžÈ©Ï@ F;®˜\6¯x/k„ﲈ‹&¿o&R/aA6î]wŠLÂü¤}5ÿ|œ1ƒ¢ÑÑhS| ‹»Îæú5 ,D-Ïš }ˆ¶|Ƹ“¶Eã¡7 ,c2…‡Ck. ,©,-3òr&Ÿr[𣱬3–ã~È?>o9?IÞ¶~Ær&:ç˦Ñ‹ B]„À†ðÂebe/´ª>çzG)3ûF9ÑB¡´¯¥%Ÿg’ÊCµìÊ–¥Êx - „Ô„¢Pñ½$™«¯)Ј‚özvÂèFçÌÅ=æû­ÍŸs£]â;&Á £µÝR¹„ÍwYbâùFµ&Y#X¸ k4¡©6dDø zÉ·ŠÍ”â<†pŒÎ wAêøHC"|S÷–Ê:U¯tø¦!N µ¶ºæ¶*Ù—*sFjÕyÔ¥”S<"wÏÔU°GÅC½§m>³b {FkèTÒ*YæÕ×Fß®ûÇŽßgÇdx¡bág¸nØJµ.ÇÜ/õËQRËMC‘.K4ýåœ8q u÷ qˆ‰h<ƒâ³Ø· d'Ôݰ‚­,Â{˜¸ëÓTU”f0¨Uþ­6}?šv0°Ž((oH¡uëÓ«;a3XdrÄØDÞRÞºƒæl½køß†NDõÁ*H ÿÇpÁ‰i(œéo‘ÊMo€ãmš qyõ@¯&„¡ˆG¾‡î•Úk¤±eDé†9÷Õi˜¬°MÇãFÍ<;6Û™¿{ð¿•@ø“s× |FVïfð÷ô…II¨ó³(¦ÍàlLÓŸ#GaܱJÇ™Èî"yà¼+1Ù–¢.Ï’äÿ—äÞ—oæÅ¨>Tíü@]މgâÁÝ~øÔ<`endstream endobj 1351 0 obj << /Filter /FlateDecode /Length 1225 >> stream xÚWKoã6¾çW.°[›+Rïź‡.ì½5·ÔE¢m"²èŠ´ûã;äP‘dËÙl ©á¼é?îo>ÞÑ$#YÌâÉýzBãˆ$q0‰Ãˆ°tr_N<ò%¯ªüÈÿRȺM™×góÙ"b‘§´Øñùluÿç$ $HÙdA)É¢esEJyx¬¸‘?i Enÿ‚QÔšoxc8E]òçwòV¼Þè­Ù¬È¥X<&¦d£‰Òr¿ ½Ó’ÉídÌŸûxGÃ^!1$ð᪠2²}fWŠ·Y•{cqú­>æ•(õÐ|ã—~Ù;îµlpÓ«ÏôšoÌ'£ïò$£YÄM¯vB)QolI¹Ølµµe¿ǵ+JDZ\ú­S“1/å?/pm¸Í%þü\ñs¿ãqA›|ÃÉN–¶_:G[SlÏi[}ó›!+Ýä:+䎣òYÍHœ„`ÒÚZT`A³”$Q0Œ©‡ú,I¥´D¡KÓ³[{õ™ˆ~„VÅ]ËHüð¡m*sÀVm,=b´ú¼ðÇæ¦ëä–qè1ûUýÛèÎl´ºpÑiªóW¯Œ—õ+옼6¾žÎÛº uNÒ‚—¤êiH16ÅñÏBBÃdèÁTéÒ:°0 ½:X”FÄÓÿ7õ# ±7û : ÃŠbë S ¶Î …³îÉöÁÅ+~‡²:w˜~> ¿ûPj Þ/Jî^á¬ój—¿àf›ݱk8ù¨Æ|iø]®aæß÷‰+eÝÈÓ²wX“ˆëx^Èj]‹ûAíåƒ[QãJ?©½Ò4ŒI½=Õ,";ë“'Î÷ÃO[QôЉË%®èǃX]›l+1_]GŠcs>/¹_Þ­ZܰÔÕ=ôæ}ÂÞŸôý›_DZ6sÑ!Äœ®~s; EÎÃv}Õ7¸Ϊ\ŠÝà¤Jw…ž»V~È‹4 ÎÒñà9+ßæ\/¤5 ~wp®~î…À2èp„a€F²ÐyAʠýÛgèç€z¼Ðž/AyÛçË,f̆ç…IÓõÁ›]Ey˜Q'™xyí”æýÄo8ž‚k;˜‡ Ë,ØõU©ÎùöñmÉÞ\æ;IÖå{ÇõVÚL—bß{´¼²=q2~ĉ÷xÐxª·ÖØáJ½Zº£¼:Ò‹;Ô[ˆšãþ$WŽƒ’¢àŸ ¸(–N¾æO‡ ÚµvJkç€L)´5ÎÔÃ„Ü ãì2Á†hn0{¾oyãX[ïðÞÀ‘Ï\.€ 9L‡Xή*VMãôîd»Sr‰Ò¢ÈmÿôÕcr Å4¦YKnúÂò0…?I“ÈF™f F—&æìæöþæ?¦6ÙMendstream endobj 1352 0 obj << /Filter /FlateDecode /Length 2092 >> stream xÚ¥XKä6¾Ï¯hô¥]À”bùíÅö!ô X,`»rÚ µ­j+ë²kýèžþ÷!EÊe»<™ììÉ–D“âë#éï¾û˜Ýä"O‚äæp¼ÉS‘&ÙM§"ã›Cyóo¯ÐMßv¦y»}*sïPéÝ> bÏ4¥y1å¨jZc÷² 2O÷´V–º{1tTÒŽ6C¥;z?ví‰Þλ=дç±VƒiÚìÔÀlõTï¤+鱈~,mÅyxï~=üãÆ¿ÙK)ò˜ùåq·eꩦÙ©7/¼z(3¯6GM‡(À]º™Ý­øø'{3÷ÙÝ øUÁÓcÛÑÁZÕCE›|Ó¦`®m·âY«îYó‡'ä7ÖƒÙ7NÒ†&E[׺ …a詟‘wj»AÕf@&o»,ôDÛ=¿'+žOthéÇÜÊ,èqîô‹iǾ~£õ'_FÀnCú-~ü™ŽN­uW©kæÐéÖ”ÂÞ_F"¢¥Gê'm}2ô´…†„ï¾ûAx‰Î,A¶°Ÿ÷múó™Èæ1Âk:2 BâäÏhö¨¤Lá%î!-H=íÂ쯮ÙF¡Òر¥ËGÉÒ QL<0ºjùeòBÚ™çʆ -+Õ”ôÖ›’Iжé!VzZµGâùܵã™<»/»8µŒ Ttn”{À€"ј óĺè‡vÔ{™‰2}á4é¢çk&µ÷FÇ5äñölCÑʽ•¢„écLg×Rb_„ùäßÒtâhJ0Ä2ŸduºgÀhz}Kû`Ä£ûu°C¼¢eôP¡ÃR¯ü]@F «à‚˜Ì“rX@¤×·Å·I+›øARðqàý¨þ3Ö¦·Øý †H¡s0³=0=­-IÝbpü0ð90Qæ¤{4 @Æ¡"^| pP1Xt^rØä‡VòÂBÉô”ù>„ÆÓnq÷».l̇oÅâÆkE8ä;ókÛ}#½ß^QÑv¬™G¥0iH{Úy²ÖÒº¹[]L+Æü =èš1^½=ç_ÑôøR]Š-¿“3÷Sa.ÿ7¯[¤#}#ÌßÒ R‹‚òÜõHmøZf ˜c?*ÓGHÅO~ì£ÅÀ{¨#c›ÒÉbäùšBÿ‡>¥+¸æ³+u6î"—6Z—I8!ü®ò­TƒB¡~½"kÄMpüÐó.x¹×/%•Â+åd?É'ÜêçfÞ* LO·áêNj«ÈH!³à‚ˆ\cÏSwà>–ƒ7Xb21µ5S™¤Ó+hG·k=wíPͦFm«ñ«ØR…ï·°«MUò0uª|oUɪä–lN‘9U'xº¤Î]ÿf¨õ´I˜CBm‚¯ø«–žE{:3à¸Ë—±„8—ÞGlhœð‰ò‚³ûTøá¦‚Äå&+79]ŠAO;ÄhÏ]ûÜ©펽-'°Íçé¦ñÀÚIóß‘y¼ÑƒJR=:æèd·ÃÒO¦ïm›½l3åà `<@gMy9C´(ÛŽ›‚U2¶Ã2Z7(€ŽÍO—ă”,7û#_Ëþ( ÖU71m]cʇ”kžª.xXr¤÷¡jMaÍ—†4Tàóé yLÃ9ÃÚÛ¢Cà]±'“½§hå¤/-=Ôªo¶Áo»œY­àÝÎ%‹4/Ú zrÎä±›®÷u›O­>2`¬såeÏõåÎsdS.ÿ\—µ§Û%&ŒrõÑFs§ÝP Ù‡ÖAJĉc3Ý7âë,‚èOÀ(i>Á5ÏGÉõXˆ›ŒŸðæðS&taxŽ=oXÈÇ‘?ÒGP³),¤„®uB‚B1_7™â;ã,³ºÈIl¹-re²(²À•Y,#ËÅ„";ÿÙ¨ÎG­h>düÅTí!6,d"ÎgáGK´¬ø€¼8~º±°€g¦ÁúñžÈ´xœ a‹ žG Ä×¥²]8W_®LøfCOuývBÐu õÀZjS¹4žMh†%Vn2}²¤µ»—àÏòK‘ÝþtÍùÙ>Q«ë$RD©t×™šÛóÄ=ð?3¸OÍè*Òþ®Àÿ+ L½vßAÚS™¦§¯d›¤9#çexѵž£oÝÂ__OpAÑ„óÉûKc⥙¼Î 4•Ÿ‘6-]ò¤ìØÿF«ù5­¥B™Cÿšr%ñk bn.eÓBϵmÿa’ŒÜ$éâ}(S†µêy®¶a—º,9E\ ûÿ—¸mã öîØZw¶q¿nQ_ù„Ø›ÃIt$ƒeÀT|Ÿdn‘]þP,þ,†ÐÑT©Í†bÈhÄï9j}‘%מ°ÁˆŠþ}OÏãØØv?CµÙÔ×#³HŠ,Z¡ã+¶ù¶Åí=nñq1µø¼Æ–œ_“6:&å½uÊ­¶Uÿ–?º­\ŸvfÍá´wé0Duˇþ2]5˜sºþÝÌÝÅ1•óûÿ~y1Ð|øó¾ôþã÷ÿ||ØTgª;÷lu1N¶B¿—n¥„Û’Ç„^\N†%þ¼X½Ñê©‹°ÁéHF ] }_²òå—‚sýón>·B4Nàò«ÏpoB5ȾQ’›3®ee>ŒJñJV ?οQ†½6D¥‘å¶R+ƒ¬þfQ¦1}õWEA?–®ÚÝç LÊS‘D¸A.²,#º,CÂw‡wèLNVendstream endobj 1353 0 obj << /Filter /FlateDecode /Length 2546 >> stream xÚYÉn䯾ÏS“ƒ¨dšæ¾ÀÑÁ<€“œb9ŒH‰¬V3Ã¥]Ej¹äÙóoÅ¥›rºÖ_¾¢þòðî»ÅMé—Y”Ý<oÂ0òó0ºÉÒÜâô桾ùä=œôÝ!ï× LŒyrÔ/EŠà@™§©Ó|Åò’Ñ­~¾K3O %¾1¸›Ì ޵ TœFR[`w²ÚÜ w²ô˜KÕ…¡Xª–÷€ /bÁ¥…é4M½CôZ^¢XÇ3ȇ|¾W;>j£ûŠÊ\æÍv‚‚Ÿ€Œ§ÆòN«U-C.qÖÍ8N½³2cS± /sqo¬ª¨jœÏÅ0s5ó¸rš™É=Œ_6½; ¥S¶Å20Bí÷RI'Šs 6 Ü×O<O !&¹Ô¬•OóÀûxWÄà_Þlzì…•ÜïüÒ7T.püó,l ÏÈX* ¸Xk5ž^BŠ,p]Ÿ/´“‚ïOö:fÓÔÏ¢¹5À©»2®\§Š¹­MNAˆ}MZž= ´=/?²)¯¥ (i²´¡®Sæ 3npI¬m£ ‹Ä/â‹NX$¿ÖG±c¢ž¤ ß³¬ó¼ik…Ö~mä2h5{5\¥ˆÐ/šAêÂ\>j· ®â)3L#<ÞQU¥Ï8!øòÆ“©o~›Ü©ÇG£ŸEo'á¸Â $ˆ*egÏXÝÛfl8¾ÿŸñÞˆ&—›„ƒc`Þ캄 {6Y<_z6Ÿ=»gÏ_0—Êì‚LǦå)™5*¡¼ BpÉèJó!7n,XDË ìLT![Å ‰Â5î©yiv Nz l-dO;u>^ÁÉ#gúÒp´F0Û/R~µòoª[ÉåÓœ®æ&Òq°`8§Î¶›ž‘$«²ÉÀes§”~’…[sKÁÈåÎý‡Ë^yð'þ™yâI¨÷ð÷Ç8Ký(ý0߸‡?†Kuü$Ýêÿtàμùõ¸ «CQš¹@F„º7üùp!Àý^ÝÛŠ,÷Ëò¢êý„–N±7SîÀHr'-İ)ä"°Ew Y±t#j¨ßoÒsTìôèÀÏ‹¹„U‚ "Q<—‡#,,ŠÃDœõŒZj#H#B‘¢b¾¡˜ Ó¼Îèw0µ6[úØ&ÎÊZž'h O§÷ræ$|»¤Ø¼«o¢Ã|·ÃSSµ³ õþÉ¡QäB몈ó‰±I-H ¢\Eª¢’¯çO)ðeK܇›Ñ‘í4UQ±–bøIBÆ•èQnÝŠyFzÜ#±žÉ÷úe/|(n©¨ pYˆÄEOà©zó@>(<éa(>Ê3à ¹_²8cY »YÄRZÆîáTd¨×|£qÄ%vO¤CÂI²%l,Þ”‡ úi/a*” yª0d,¿±4nÈÃ#dfsÍiÄ«°Þ@I½©"ËY¾#ä¿ 3.,0Z’‡NW­‚‡Ñ÷0‰ª…IH À2|( ÍÍkRÙ-O\@‘.ႹþÁsÉ2mzzw- ÊÊùWª‘ýš ÓjKñÔ) 87ÐÍé[Ð!§Ñ¼ÀÔ|Øð›ÂÈ2zájc8©³½–ÈŽzÌù&?vðÊcÛŒŒî¡MùÌ‹±„»K8úé–kÏTK%–Xrö¨Ûñò …(·˜†8ti(;Lˆh`BöG 'gîÁ(ØåB#´É3—…-Ö)†&d>€Y4[=þ/Ûæx§øãƒØ•,Ä‘Ê~±¾àˆŽZˆ¢ˆÊ bp0g­¹ñ¢ªkËçDüK4p( çaæ]7‘(öÃ8›ßEî›$ˆ ŽŒ’”Z.òЯª;·"k8µ5O]ƒÙ‘!Îý4ŒÖ2Ü·d1ò¹†ZWHjGp°`CGÙwýtNÊ­èÝ3>Í—Â" 5•ªºƒuÝHço 0¢¯Ø8àÐÊÃ4WPjì×6ˆâЗï¬_ñh“—‹„tUpH-r æ …v[ŠÉ îŒà_¤ ]ðaY®ˆÓ¯;1Kü È×Í+ññ½•ÍaD-Ý“³\Ь #°.A…Í> W0Åá§ö—Ì(ŸµÈÍ}«;C3}DLJÕ‡Ÿ›N+ÇÖ½´/ĜΖëV+h¤ˆýlþ˜î¦=Jg…]gdÌKçGÃRë§e3?…ëN Xýce'›J¿(?¡³4ßKh,ø)Å –œþBK3>ÄEt‰<a û:µFÚâÜi'x¿cÐ?ñ™füž‡Îôëù”©yIVÎg3œ©·KÖ~R^X@¿ŽF1ظ|W"TYL¼À”QwŒ#À< Êz= úȵçÌN7¸¯nIé^EÇ@{¹¿ÂmFÿ65F×+°… FADÿ+ùEQ°‚E‰{ï~|x÷_÷-5¨endstream endobj 1354 0 obj << /Filter /FlateDecode /Length 1360 >> stream xÚ¥XIÛ6¾Ï¯ð8 ,cJÖÖÖÚ Z=n/î86m+Ñ‘rf€üø>nÚL{šä2”žÈ·~ïãóüº¹{û>ž$( ½p²9L’Ea< ƒy~0Ùì'[§&œrò˜Ñ¹ë'¾sžCêTH˜ñ-ÔÓŽè‡Ç¹ëÅŽ>RS^§ô<’½ê2O+qX‰òRžÙÓÌl!9Es7ôVÎ6=lþxûœê¼õ— Š“p²TŽVÏ”ÔLíëåÈ7{ê²ái¡-6¬87qýU€0¨t1FI 3ÀÀØçN“J=‘úØä¶9üG!‚õ”2õìУü;\ ˃ZUÀð°3«Wsø˜ªLZÌ¥éb’·Úå¥Z…¡ !›2kCóR´uUÐ\¼€IÒ…ZÓ¼4|¥îïÀ\gýrÛï‰ží£ ¿6ÒŒ™hÿ'’Çã/x⛃ÅáG– ÓÚGÆSÞÈÆm Û 6p6íÀUëÝ7_¾è´Žàp¿¾‡[¶3=ý½RM÷=+Z±]øÕ»Â¦ûŠfIâŸø0ìŸ_FÜ¢;ù±Ñø.J~5“üþ½¢Õ¾;ÑÝ'PÂ[¨ÖÔ¨ F¿FX–Ñ#ÑDÞÙÓ¤ùE«GKá !žíHK£?ŠÑ¶¥¿´mÓš&²Xæü{}>´ Xºÿ‚{äœ& e‘Ƶ˜îÓ<í±õòz—J H3L­VU»ò©:Moµ,\ŸQàßnÙ(‚– 3¯tåÿê±Ô4+Sœ)kv'“X`su˜ú©ÎÊdžñQº”•‡kµÖÙMÕ¦®¤ž°Fmø ³?…(§¨¦¬* 6,¨bè‰ü~Òm'€!‘´£µôc‹Þõ}y{ç„ïäð#2 Ä­‹ttR:šÔeõþÁ]6ìÞ¶4-%\I¹e""ųn™‚¨+?oï;͆£ÉèŸa Sʦ儫=üÃtѹr™™• ×nNL–àîÅŸÎޤś^’.ŒÞ@”·[ñ ­û0ªŽZ“—ˆì÷C4h§¶_ïáƒõ—+d-T„ñn–ëÞ¤3m×÷^­Ö³µ¼fµdWf©]ϳkô×Ϻ(X3ºì;$[îÃá¼Ùú85Û‰ Ïp¨ÐØR¨.þç£~Kû€˜nâX¹š,ÅÆ»ß6wÿ4·³endstream endobj 1355 0 obj << /Filter /FlateDecode /Length 1964 >> stream xÚM“Û¶îž_±Ývºò4VD}k¦ÛCÛd&½ôð<óÞL^\‹¶ÕJ”KI»Ù_€eIÖ&i»A@|úçÝ«7ï¢ä¦ð‹4Lov‡F~Þ¤I懰±+o>xªîÔæãî·7ïD|?®(¿íhå݆O¬l½y—Oíûa[ú¸`ºÝIm¶q”z‡Ö4›0÷†Zâa³…¥ª[Ä>®êè;ÀÓl…WÒªÕõFxϸȼJ²?NŽ,h±íʃ…A႟´iKUû#u­C*ü<Ë)p³\•î£Ü½²wSÍò²àIvl³ü( çF#•[}‹€±° ìH]Ò“ž‘½êåCÍ'7IêIS!¦ó7Û4K½ÿnòÈãý²Õw=|BÎRoÂÌcŒU ˆø¶¬Ï‹ÛZS+-ë+ñ^¯ypWé=Œ‚œ.cx€êðí^®'<^ë½Q ãN.Å"lE"Üsüïú½DèÛìMõ‰øYâ%V%ÄÕ­º­î55¢Oï·säºÕÛöµy¬Ú¡#fN…öÀ* zlE>X±ˆÒD²L–}\x²,«¾j5­,;Äâ: ÀßèbÓê†àž¬éðkùåäiPƒ"´¬„@1¥ó`ƒ]Aê‡qähM;ô•f¹Ñ¿ITºÍÔõ`mi6¯äûE¾_°ê)§[°vâIŒäA²êEàméc _üŽ RŽ.­f{VýŒU¶âþ/D¿§tUR‹†˜ƒ¬êŽˆ0Hñ+ù^ð?ãy)ƒ-‹°®{¾nöoòÙ ¿´ð³0þR*‹©, m¢žg¹ßkÓ>¡[7_“0ôý}pIh{ÛÏÿj”b¯'Àa›Bè·t·WW¤×W|ÓT4kG„;åªþrá÷ß»[Fû 8W‚µnGÏ}t¢{…/lAªõpùDôµ ^òå¾jÔçʆ€0²Ï–Ô<¥/ßǶ²WýŒ—̓õ½†¨¸-AR.±-¨ë|ë¯AAÁ-¿*`/n<ªè^c$z9NWćYï0c÷¢*;¤à:–þAÍû,ü kÃgàN æö…WøÇ¿#L“<–ð(á¹cœær7ÍÁδ& M¾-ŽÕ#•f,}ir)}°G $B\“ÜX…}FæAS%’AaCŸ¶ûŽkõ€ÃxÞ‡ñ–6ì€ÈTûÖ¨À¯yJŒý"Žç&Ù·ÍyèíŒd‡­ÜIóì _žKhÃ>CÐY äëè‰V4_:`íBËJ_HWzh,¢p $bs=Â~* G´ªb~’8§R¯°AŸbQk›H@ÖŠ!iËQ±†]T ¿V1]ý50üLò ¨LñLÈø3n)]2„~e·`HÆÙ÷$ÔUKp4j ´ùµž.ãLÇb¼gÙåãØ‹üËfR±nfd<º?.ì3gÜ™‚m£À˲î"Bà$kŸE„®OµØ’úaM;ÖËу˜SÛ1ƒ‹Õi-{G¢Û[CäÞ;*†Ð’>Ügø·@ú¹¸ñ/aö€I]8¿…¤Ìêx¢@BîLç+åjû{•mMç>‹MkGÝ*æï ЬÏY7´!˜ØÏóœn)lò{õv÷êo92Õendstream endobj 1356 0 obj << /Filter /FlateDecode /Length 1691 >> stream xÚµXKÛ6¾çW8.Û@ÌHÔÈ^ZdöC»@$9p-Ú""SŽko}g8ÔË–¤i.&Eg¾y“þõáÅ›{ן%, y8{ØÎ’ˆEa< ƒˆq/˜=¤³Ëlõùá7÷^8 óX3‡ª¦|’§Ãº’us âÓ0a÷[jeÙgì:‚;$˜­#θÏgk×eI`¡|X­,ß®iܩ̙<Õ¥ØÔŸœÀÙ¿¦E)«C¡+¹€U×ðsÆœtÁΘ©Šé&ϑ͇k§Ô–h‘9´tg œyŽ×ê³Pxí¹Ì‹ùuî{UUJïpZ«½¬PÒi®ã³Ð‰nŠ‹=Æ¡^ŠåKQËZ<濇ÜwXÂÏ@WuqÀs©êL–ÄRÐ`Û•r×쥮é«ÓµÞjA£–2•éüŠÖë)0»)Ý ¡;&”y+MË#ÂÇ¿êüˆ¸Kvsýð¦¤Ècœ×#dý‰Þç‡ÙyõÊz²®K³Õf`ý| ì»»[”j—Õ‹þÐYæ}øøÚý<•n½—º(û=ÏåNäSqó$òF^ —ÿ깡„~6*¾u:Kwàzªù{X«'‹j[äyq¤ysèë:-÷—Õš»Žs­&èC¡t]qÔr[¶Ñêk#§KZ8D¶NüÀ™àSɯ@w¼¬Ÿ÷ât¾”K½«³»ľxœiù}ˆ¿§L^Ïíª(M¯@Ù×D1\ ºÍ£G»é ¼îñÞZuø>· ÿ‡PåK\÷Ò./†ÙË:+Ò±ehí¬›Šz“1(ÔãCWíó£õ¬tc¯ÌÚ8SO¥Ú´IžÊ­hòºí#Ú¢.ò´ë6¶·Tߊ–¡U6…NU­ -òËj6¹9e³ù€rþ½–âß´”{½ôw×ëØ }–²œß®¬“'3ñ¥É•–zþ“J騥ә^žoLBU`ÿ'•6"gÕÏBÛ_[l}м¼kí|yU:s_×Än^{JùµQ¥´z*}–Û¢Ü7¹h«e.«jh»¡Y a<Ôq'†Ö¸Õõ™{^ ÅîTã,¬ò@kˆ Ǻ q³âÑ2“0ÄË/´T4µ¥!Fɲ»?²ÕÚ’åý*öÍ­7`Q@L Ză–§©°˜¤Sl-°T ©7ÏÔI]Ÿ%¾?v¤jðFË/  ·:á˜ZÒ쩞iŽZ\FIâ°ØïÞ¢u„Æ_,Ä^à[³ |yÉÒ®ÕM©¯™c¸Þr EYÔÀ q$‚†ß du¢=GÁ»nBSîù,šÆ, º‡×Qå9q}4LåH¬‘I(xTYǬ¨,ñÆ€{Z!´î®ì͇•“ŒÍ$J‰ÆMðñNñ;6YŒëòÖÈŸéÃ$ N*±·3²³ E¢5Í:mÕ€Z~Kf'šêNil«øÕY?z«ƒŸ"Ç]þ½Š½¥œº/B_FƒÅ–1NzKÚ×#«tFç Yk€Ji©”T$øóc$KReN»íÒ˜‡«4 Šák×7ygË©>XÕàR¸;PdCvúÄI·9L&^k °Ø?¯ šáãg‘QWšÊM—7áÌíBw¿½Œ]wôŒ·—ŒøbahùÉYÝ¥E^ 5Žª²Êž¤DÀ™ñž}t„, £±9žÜ–&*¡`$! YBð`ðzžO÷0ÜÜ •Óì˜ImÔD´zQÓÒ'ÇõÛ#¶Kø¦šÀ£.ˆKÃ0oOÎ1SÔv¬¤Ö¹pJø `%¢[Èw¨äT;x_˜“ø6·¼ÄôTZômA :ìÙÎÛmg2<ì’NE™Ò²,Ë–¥éUIÐRÂÞÉÆ8NKnZ,дM×RiL¦zÎõgÞ(€Cyíû*ØÅ*€ë¤Î¬85MÆGQ™NƒåÙÐ{¦1Ág† š¥‡Zu …°ÀÎ=¦*‹»öHW[ðcPѧ``GDË[•ÝC—¸Ë=:o;SûŠ‚aÓ”%æ d"'ÀÑíÌÖ˜ *ïcŠ> ÅwæÖD‹æ&E‰ÀìeŽ›?(aFä'÷^¼{xñ/µ-„èendstream endobj 1357 0 obj << /Filter /FlateDecode /Length 1279 >> stream xÚÍWIoã6¾çWx<b6G”¬­hÓÁ˜¢è!õ‚4Z¦"’h´ãù÷妅ŠäzzêI\ßþ¾÷ôÛöæÓÜÌRF~4Ûæ³4q”Ì¢0~ζûÙó¢X¾lÿôD=º$q8ó ?²>Ö­G ¹Ã6ñL6 =± Ã)†÷Š`¶N|{Ál !HC« =!Æ—ëп®Í ÁþöBo‹YÅWæìNÈ (Ñ—üN^BÍÑsy}4´l2ËŒÖ‘Ú 6 )“ ]‰íy…DVúu@ÅÀB‘Éê iôV' g¨ÂJ{|B¥ú² •¥µ¢RšÛ5LŠäŸùÊeü~ûøýë”e$7CÂA«™ÐÛÀ†Á ^0„@¦ G>¯5 <‡©•Y¹\qwÍTzþ›Ž5Oª„>d\R%€ H|—û“«Ã%§Bgõ¤Â¼çÛzBö@ã×1á¾R‚-pupÐ93„J€Õ w¦"ú8°GI¸}¼ sô“:ËB±s’§.0#‚;‰ÓÔXFχâîBù^Òärð`/Do,>ÿñ×h"麸§QõVèK 'cVKð¡ç96SK]£ØBóœcÑ~^6¾äÍÕÉ7ÿ‚êš [ü•fõFDas„îeTAÂÁ$‹uökT˜¿¹fIÐ@â ¸œóÎ*¹æx«Ÿ¡ ›Þù«Äõ«(Ôʈû)ŸØÞaMí9¨@õ¾Ä-ö!Ar‚÷fÿ…žû›OKS‡cqïëꃯz^©üyÑ\5Õ‡ûåÊ›Öwƒüšj:Ž'üÀp签׺q˜ÐÓdX€Âo]Ïp©hi’SVK4Ÿ¨Åµ#ÿ¿£C«ò·Zv,²\O|ÒŸ+@ U'O@˜Æ†åŸté' i—Ÿ¤Jy³à´Âj•Èd(3i ´2koñ-74-$9\³%Üòù«°ÉOcÕ”ks*+FŠùѼT›Ó2”e [ºÀÜÈ¢–X÷rµ`äµP¤ÂÜ«d´ú‘½%QN ò3è7 Ýl\¯É"–Œƒg¸0¸¦Z¸×[Ä,a —XêYÝÅJ] o‘ëL¹ÅìG¦Fõ™³“z‡Õœ`ŽinÎu¥™+UK†T9£v?Ÿ]õ`®¬›Ëº6:|¶.©†›öù”KÛT8Ÿ;%Ú¹—¾nŽ™fPÖUóp0¬š¡°¥»ªœ»1°}7H3ݨ ò‘:´«Æ/—²»ó_ÇÌúáÚ¿·þTãľìGC—Šðæëöæµ}Ãendstream endobj 1358 0 obj << /Filter /FlateDecode /Length 1495 >> stream xÚ­XKoã6¾ï¯p7ÅFb­Þ’õ¡]4èöÐC‘Ãi\™²‰H¢KRqòï;áK‘“ØGäpÞœùì_nÞ}¼.kEÙâ¦Z„aäça´ÈÒÜâtq³]ÜzÈeTxÇå*‰Ö^%f¿ =Nt#•£JÙ4²­Ÿè«Ó|‹Tá•LóOËU§žâ¦S­hwÄÃhÑzË4óXíDÁ*æþr•Çw-”6Ž™;u¢"ñfÏ{ w7¿/Va⯓ÖÐ_§ÎÖ¢D°.Bo§dw°vàéV‚}«¹•Iœx7{އج»Úhâ”­ 5}¼†@„°Hü0Ki4egˆë4ÎQì¯Ã¢ç©º¶4B¶$°Jee¸Û£@"%ÜÎa¹Šr+-ÛÕÓI¦4݃ˆ†^ Ùaõ“úŠÂ…Ñ8ǽ(1"{–ežÐ¸¦ž– G!GÌ13t¨xÍ šF'DC IåptšIŒcy¿¹ BFÊ)JW$ÂFÈipQÆmC{ù¬š“D›?·K9GŠ¡·N=i±>cg¨'N"Š!¬ —Ø£p»ÜÓ‰­r<3¶`§”må²_@)ô-]«6ŠÖs7 ks©8N—cÐPwµ]±ÒôúD[JE¹• «sÆVÉãÞ<¨ÔIõÚ‚ ““ŠC ð…(aï*7;a‰ý"OûšÄ,BrWà ÄÏH,j½ç3Oa$pCeX@ƒ â±;øŠÓ(õþÒ æíÎì‘’PÑ@„›M€ ” ìz_‰÷§­Š9¼jOx.ZI§%~'•€èÏ„‘×zα(óÃ4çŒc«ºãX–ÜŠflÙŒ'sFØRë½Dbâ~B±ý͉™kè3Iöª™yìGQ:ÖgxsÚÜÞZ oÅÝÝÝÈDW,åË;eÍ4ºàÑ9×NóúƒÐ~ÛÕ5ÒåpÉøàdâöfs‰ árPµ“¶¥´Yÿ™Ù·áIAý©‡þAŒ£ eíÚ~Q»bõû3a^Ͱ›‹¶e ÇŒ“j¥¦7ó»3Z'xUŸ&Äw±u…oG©îßÊÐ`G<|«j\ƒð+aPÃô6\‰¿¾¢°+büÓ­¹µåG#Nci½öã<ëj¸ÙËífózîVà`„ì¸Ëh¨ÁœÖ®B°7Zçã€}ϧ}Þ÷òMçÕò= ù7uÈ}¹ØíÍÙná‚76 üÑnŸ/¤qážb<pàæÃóÅyÔTK·ÜÎ@ àz`nr¦0´wŽ­[ZˆbùönotÚ]TÒ…€·~¶ƒÍ^"t‰ô3øB!¬%â]íYS’e€X/£ÅÍÚ— ÐÕJÃŒÄk±]@Œ“v`”=tr ëý`!˜›ãƒð²‚h2Í"ïK5Dñ!²ùÔ\{Å)R;(«óŒSS1S+ºû¦¹q@ANЀ¤¨÷ᮢ,k:³6?ƒŠDœv€Tt†áC| Y¤ÿYÀàƒÈÏÌ!Gé›À"™‹<÷“<:ß䡱ìÌÂã ;Ó|à ñ³àõÑZÄ~VLFkë+¡ïgÞf;7U13¼vû¿¾ã·Ð÷l„gf†Ý»ç| +˜)÷C¸ÇÍÿ\{{ÍÚèMk'®_Ê›~RqXÀa‚JIÛ-Ÿå£3_nyí¬¶PÞ^3—îb-´%«¹ì^8(ê^3â¬ØØL&õ³DÅÿé¸J[NüõÑÛQâo™H:ç¿´†«ƒÄ_n! ß%¬ÿùéœÝ‰û£ø ž,=£Ð:<àÙ‰)Z£{#˜sõ xÉ·SÛ†$T6à¯i£?w+í‘©í³{¾c* ”½*1¤ñ¾G?ÙÔ“.ƒZvúžCøÃ>WØ/Ÿ;Àü{]¾êQŸŠGÙ™Íéóyªye6ÁÕË)¦©_ˆ×~Q¤u ã»_oÞý î©Ýendstream endobj 1359 0 obj << /Filter /FlateDecode /Length 1198 >> stream xÚ­WÝoÛ6Ï_áA-c1#‘¢>†ùa`C0 ¨ ´ÈúÀJtLD)%ö¿;‘Š-GvÒ®‰ŽäÝï¾xwôïË‹ëÆ')I#M–« ¥ŒÐ4žD<&N–ùäÎ+e³®óÅ4«+Óˆª™^Íæœroµð¥ÛB.è¿>.w³/Ë¿®o‚ðu'$äÑd$åõÞ2ÔÏ©ORÀ—‘4°|jeuº¯ )E£Õ,7—¦Õ¨ÿF4Œ“4I'¾ÅZé Nü(Z‡¸Vï¯ó½~ýUU9ÁÕ íwRn~®®r]o7¿Ý~xÿÕn‹YäŠhe†ØXu·)ÅÖ¢#‚¾@;òC–‚·Ä5"§CFY9éXÏElDëx¼²ó±ƇG|ÆbâÃ=$F>5ª”GšaÇü%üŒ·ym2Qȱ˜œ¬×®¿Ÿ’„Åg“™$PjGµ™«²àø¡Š¡É…2 žþýñöÖ5B>•ÂÍO‡&ûR·Í88_,ðŸÃCÅ KbÚâ8ìUYô§viÏQqÂH”DÃ$cœ.Þ'‚6È}k‚ÏUUp.ÿ+LÙéèdc¡‰¡ÍS>Ôø–ЌɹÐ$ƒž‘aK…=êB+ ¸Ä’ÄËkûmÖÒ8Vr¡ó~[U÷æð‚3Oäùs Ò@$F ôoÛ}©Wk˰³Ÿ¬.7g]Éj߯8¤cõëMëlÃRcI¼?lÔ]ÌæAHÒ0:/ U´D#£X3€„’ìëöf–0w棋ÆR¡•µ…p'ŒQ•´‹?í'Õ´éAUõ`wë•ý '(…©«^î,¿|ìÌÓ;{ð„«º-r²/é?êÍŒÆÞn¬XE¦kclxM[–p¡ªU­¡)T‰+]—–ê"‡„£ñµp$f¥m1àøÝhi\ž0Ÿ«r{$rk>@göUùádÌrfŒyY!ÐÆB›xز¹Â&žœèïwwí 6:`a$‰y_ÑX{r»™¯T¥Ìz0†ËÃÞ]4Ä{fXØ+Ç$ŒééaPÖPûT‚?—ÝÖ°u”cúîFÕÿÓ&m‡æl‡¦|zm¼í†â»¡øç8ï‡CÕ^V\¿{g¿?Á¤­Ú¢è~î S–Ï£íÙDÜZ¹ç~ÍÛª&ŸÒ×=¶‡xÓ÷¹ÔROO¦±ã:Ä…§z®°ÆDñøî3:Òûç0ÖµnFÅ» D«@øåK¢›OSW?ýO‹n½RÍôÜ+¢Ë3M'ЗYÑç)£Ðª]ž£Hæ?3ýPÛ&shx¸Ú¼œ_ Œ$¡î'Èûå‘gç‰ÃÀ]×]£[>7o\t‰¦-@ÖHw†~ªÇ²v'ëÇ›CÑò¥AOزkgŒg΄óKüÈàaƹ'îGŸ›ÍZt㚬°ãÍ®ZÓÔ5RWˆŒ+[BHa¿‡– «À3Wî~\Qïi­24~m—¶ƒÌÇJ5vŒ2ï i,C ×Jªóz·‡ï_åÃ1úÉQS&­}¢ø„3hd zC@­DÊ‘óâýòâ?Æç5endstream endobj 1360 0 obj << /Filter /FlateDecode /Length 1921 >> stream xÚXKÛ¶ÞçW º³¢¨'Ú¹E[4‹¢» ÐE’G¦Çº±%C”æñï{^”-[MrïÂEžç÷ù·‡w?¾/o*UåI~󰽩 UäåMž*1ÙÍÃææcdÛÍêóß?¾‡“¤®”)’›˜eüØ?»×£}ϲçJóX•YDmïVkcLä^íá¸wïÒ¨îÚURFƒmZ·a¦åGÃn¥#Ç룭QìË*Ë"ûäÔj¦iô°¶4ÑàykÛõ¼8â‹oøÈÙÞy'¾Åg¯ËX%Iq³'«DÂz+“DãÞ^»˜•“‹dNÖ:¸–ÑÆíñÞ°0t åZŸDûæiG`ÉFøf#""ßxô ïº-_Ÿún¾ýoï¾ö ¡6Ýàçð--‰ôÝ™RÜ`ÎRX yfºî™G§Û‰IÏH®J•Nó¹A-°–ÇÓ,Ç4Ü‘%÷ ü}–9ÎHa>~ÔŸ?Ïݲ^¡^TûQ)³ãçQ!º“¾\¸˜-š-ÙÔ˜â}Ö°þ¹â¯gÛi4¸ŽK¡ŒŠ‹‰ÆÑ°V¾­é¿6p0–”â(ˆ¯¢2Û¾Ñez¼’“As×o\{òå?zòíú/‚ªP9B»Á1|P•£à»?ÞýW“pendstream endobj 1361 0 obj << /Filter /FlateDecode /Length 1038 >> stream xÚ•VIoÛ8¾çW8 NˆµZ@U 3ÓŠ¢S´î!èäÀÈ´-@"5$eÇEüP"µÐ–çD-|Û÷¾·ü¹¼z{ï³Ä¡Ζëô}°ðá, "àÊ?ËÕìç-´ü× ëë#ÆßØܦˆ*Ôóí°zʈÀ ¥"£D}¯·¤4|ó¸ü4³}(õ»3Ûõ@ •z†„–~g« ÁjƒËZøN}³x‰Ó åJÙµ@O9nÔ:3BÚál­dj9&±­Ÿj‘Æ‘æß{G¿«óºÈ8ÏȦ¹Y ²¿9z£5__k£{{ý–žëw¥sSkuÅ€Ûöx¡éýqЇg³üöã£pØ|6Tut~Î\Ä.4­vIþ ‘ã¬R’´u ÃwzC)Êó–:“êXSVT9ð`Ì…aÚÎbÝÜêþB{§4ézäÖ¬3¼²&²ä\Üê$…Ã<‚Eä·YäÛáçÒæXT¥]eDgH‘°ÉTÄq ¢À x3F _œsÜ&e’÷>ïØ1ˆikÆÁ·6g J(ßn SÞ¡¼I‚®½1LX3T`Cz¤ö”«~$Å^ÐÊ(Íc:<˜z ºÂ9ÀÏ¢n4C…s†yI ÇóçÂQ(H•7=œ2«¿gÝÓ<§{»ÒßDVhà‹ŠëˆÊRvF“úb‹'Ȧ[]K¯¾KŠ™^2lápœm-¡ ¢ÐŸ6…È¡±¢ÁuÎbðoÈv]D5"êyËdˆG”.`ÙsæK¸”ö™Ò]Íé]•h¯¨n… W7)šWáÖ«Í&‰«þÜÜè04‚?ïÜG`¢Nù >Œ«êÎëì1r=a£s˜Áüˆ!£öå†3¬âS¥n`p~¢ro8ž,‡rbÀ?´•[_™_’‘²$iË>ÛlÅ|à„‹³>Ç>€~4Ý*úDÃÇér)”zZd²í]P"äfÔD‰WEg6Iô¾rÓ1¬%]’À‹¸ÜxtM©=bDÏÞñf“PÒwˆ':ʱEŸ8f;T/~ºôö™Ø¶uÒÙëÛO+õà ;ŠÑcï,eNN(à‡Gü´ºrî§¾Ü>RÙg.ÈáÒՌȸÈêEËýWa^_­ç¨u¦ÓÚr<ß$ÇëêH…q_·$NiE„D}~Ù–öO·’5ì·SL8exuo«UÏqFSÌù(7¥G'¨UeI™˜Þ^ßcS˜d'ŒîÇÇÁùÙMNu"‹e¤4ÿFB¯£ry;šš†C[ÛÈ×€óKw}ý¢æ6K‹™]fÔ4ÃMx8Ú$é³µ6Â8¡/‰x ŠÊzÕ¯>.¯þ÷Ó£žendstream endobj 1362 0 obj << /Filter /FlateDecode /Length 1579 >> stream xÚÕXYÛ6~ϯp¶"6£ûºiZyØ:h4\›^‘IC¤÷è¯ï ‡’-Yö6@_úbÎñÍÁ¡Y¼zwSN*Våq>Y¬'Q³"Š'yV°8É&‹Õäk°Øˆé"6\á¯Å`ÈR*oøÒŠÆïÙ}£P[7Ç`É’` º1 5 ó£(Nìžh±…cক¨G쌓”•Y~ÁÐ’Yg飬kâz瘊žX'©t’œ¢àOé•xÜh㉗N¹‡i–¼‘àlC0ÅiÂò°êÃÄàVxŠx¯p®£}ñhÔÏ´p©‚÷~F8û@$niÖ©±fލÅK2;1º‘÷RñšVê¸8 ~*Â(øcZ&‹i³ŸLÜšF>ÕÓðI 6ò‰jO» QvæVFÓ1nh­´õ ý‡ ÇL}pÖÑ}‰‚FPÉÜtÀjåù­õ^­ºÏ'ø+ÌÂF€ªÖÇÖåÞºzœ\•J€'ø{;Gð¡?£Â.]Ä(þ¢ô(‘¬bÖÆGq~D’°²èªÈîYðÆÌ!÷÷»v9$vÕ´ɉ·k μ`!Tøžß~‚Œ³ YqËi µÓr© ­’8y8.]™s¥ªGÕ«{Ñk"BÌ7ÜŠ$¢6beU±¤èÒz=bå¼(Y ì{bŽlùyN#î°u …²Å¯ß1hgÞÔÁÏ «º7ïÍ ©ëÅí—­Ž—Œ’}›ÂžgŒŒ `òò¢‘QBýªú!) ݈Çf¢žc:6¯»>éàšrÚ"J³Ï™}Ûgç$¼¹=ùGçîÇ ŒCH¨O(jã­ë!¬ u¥5=t½Îo—JËÛ XÇaª2¹ v™°0_ûæý§ßGÑ^ˆfk𴪾±îã qôIík¤ÜÚGǵµT¯×P:S;'9 n¬Þ!ƒ«\¹šêB`ÁÇÙ£´Ju—öÜöÊ-¸IþU'w>.Ì1f͕ى¥äµqüÞ¸cü%ˆj¡îíg$æ< ù*­Þ¸#H6\­jÑU¸ö×/M\ÐOÇCdE§jrõŒƒ‚Êãbvûu†±ðÍ1pT¯¯á&/4ƒXi]Ž Vó;?â÷œEÙ9¿QÔ0;¿ê£ô§©‡"Ù§Òµ·­›-tãÇvHÔ‡Õáê‡ÜËZ”zíJÏ™¤ýá’ H‡Ä¯ *¿\ ròꇗ½b±8,ûwûg×ä¦ib/æLœï¦Ð©POýº¡MjÃ`¢´šnO·½]ÖõvЕÐx.¨ÅÏøÀqYs3ÖþÇÐþWEWíìc'&Äô«iKãÞȺROnÅ|Õ¶Wjå;ÿ&ˆ2– ë¶ÓÆ©›º7Ø0ºÆžluýsk6N@)ÿÜ“‡wDAÙ ïöÖ“bfpÒÓ‹†ZàÚuaEåÒÏ6žôÐã*½,Yûó‘ç—ÍòÙX5âØM¦ðx‰BÉ•0Ih8Q¶éù³;BÕs™g 0Ó ›ç´ÕIÈ¡Bø~r“šk¹½Ì6Gäy¼o¿jÄ…¦Ã·ŠlFû_Û@kížpÐæº=IO¸ÿQ»«ºÚéJ:©¶ÿþ:rðÈõux®åƒrWÅÅ6Ä÷¾c½ºÒíåeÅ=¼Þ„y=æ³?-ˆp50š©söhphÿŒ†ð:Ýà§±®ôv¢ÿº éäðú‰."èþÜèxbΈÛF‘91ñó—OŸN‹iTä¬pÝ@Åʲ¤ÃU‰„¯>.^ýÑ6 endstream endobj 1363 0 obj << /Filter /FlateDecode /Length 1969 >> stream xÚ•XÝoã¸ß¿"XXˆµ¢¾µí=´×.p´}Ø(ÍcѶz²dt²þï;_T$GÉå^¬áp8ÎÇCÿíöÃç¯i~UGu‘W·Û+•¤Q\y%0qÛ\Ý­†¦=¸ëužä«¿¬ù;lõfÎi†ÓCg¾ÇyŒâðU×÷·¿^ÅWk¥¢:Uÿ/:hoÛ¸(¾aN/ß·” 'ßôú`æºÍÆu}ìZç?¾CÑv°,„«Z&Ûž¿êËtåç¯*›x©Î"• ŽÕ°ÄÌë2’$ŸïçÍáxျ»áQ[w×ÞßßÏL,xI»XØïm½CUÉ ?ùÍÉBK_±L²üMkU’GyR]ëŸÛK'Xð$ò“¹¨öÞ^Z †‡¶÷îÓ«±Å\»»Ü¶3ýÎ„ÓÄzY ì3W°¡ÄöÍó9’Wm€ä~aB¼‰w¿ß?~§L÷|ö‹0]X±[ŠSCu&sAPiÔ%E¤òäͨçPã¿G?¤´pþÕÚ^N—äµ|I/cü'™ÇxÉåïHôEöMŒYˆ,Ûþ¾ø]­3UYº8EÁT‹Q¯¦`• ''ük¸NªÕÓõ:M3@^ü¦+¿7Ll†Ãñäµo‡ÞE×ë,ËW·Ïs×kXÚÈP?ÐÔ=âa{íXÀ™£¶Ú›†‡ Œ›=^çÅJÛVú;žM^ÌJ™¹³Ãéè¾¼â7<›xà{¬Ê%'ÔE’™N“©êrsd!~ã×_«UÃ%Á'E]¢X£V4U‚K¼±‡¶É'ÀÚ@²c¸€ÒY‰UQYeÁ,çµõ/Mhë±Gûö²ï…q²eë÷’$uUe1ÏkÜ‘w¸·ÊØÛU3p£šÇ¶ß ŸâDP`ä.Žs£a#’D;0]òºZ}½® Ö–e@€œ„ô¾‰Z2õ%¤$U©b¼ÝÉ>šÇèä^º%|JGßù}ëXõƤ…-»Ž÷ä5ìŽêé³B*6äIL¶a+ÙëOÍ™IÃǶg<ÚdÿNäùv ZPðìø’ÁYíß§­oXÞ™R-b†f))W{Qs‚åùê¼h¡֜볂oQ$U$ ¶†ºHÀ­Cϳ>ˆÙv·—LÀážÌGʵˆ ý³5‡€âJ2«!œ×VcFëî08Ùö`‘v£»î¼xG€hö*Ê Ð ™—#˜ŽÙôœžÕ«W¢„Jã†5UBMµº”³P3V ˆSÏÈ883ó¦ÓÎ-à„ªÒ(+ëÑ:lO^§Š(ÏF™ÅÄHª2ŠÇÔøƒx™äÉ3nÀÍ ,ÉJð@@_»ÁïY›®sB²¢tE9ðWÊÓ²¥ |CM¹à!Ä̤ө,ª³ìÂOuI™ÔéBÓö'U—øðÔFŸòœAå6k×mï˜ÃÑ(![Šl&RTHðýB[ ½L>íÑq²A]žóq—Õc,“2Áµ%š'–míp-híR<´Öï%åÀ19ƒ®mm›‘ÁDZäL„E(KóÕ·ÙøâJã”­N² v€ÜåMʰ E8flÅ%ÿ¦Û b‹Š%TÀ@G3òH}£•ª.b_N§%çG Ì.°HÂÍ9}ÐÜ–¿üº y] +<’€nÏ2æ"ç;ôâC×°bluÉöÎ|œ.¾Á¦/Ï\Á^Oßàj ¿Þ¸›<¼Y Ó±ÿÀM®t>’†…ŸiÓ÷Ô¡ÑP{ÍÔ¤kÁáø¾ú™?Ø#iÎùNô·!ë¹:y”•¨™>ÈÖœÚ~zFÒ¿”üÖêN¸*)00/{Ö´ŠjU†. Üàþôì«y?W¨¨,Uå s¬ZÅøÅ.h¦=á}F}ņ;+vh&rYU¬B/à‚’q Ï?wò Xý¯0 ówB$oœDª*á­VFU^±Åusþqûáÿs˼ûendstream endobj 1364 0 obj << /Filter /FlateDecode /Length 1428 >> stream xÚ¥XK“£6¾ï¯py6eObËÌ«çÇV%UÉaÖ{HMæ ƒl´D!1ç×GOl0ff*å Zýøúën៶VŸ¢I âÀ &Ûý$AD“Àëù“m:yœo3|¿ô‚h^âã½Íq­9Úå˜éû”Ê» <#F•©]2ú~Ö—Dˆºá<5«V¾BŒa³鋳‚úfOk»·”.q¢. mÌæ¿ßAܳ|Rî£Z¼…÷OÛß'Îd !ˆ}é³)-Þzž–Ô˜K5ž§t2ü²ÐO5J°Ô¤¢Õ'¸¾@QªO®Q›i/¸ñ@úBP T'á[&´¨aíZa¸N®­81úüž¾V`£‚[†!X‡n7Dš4"C¾ëÏX&2"¹°p"Kè‡þüîkÃŒˆ@U]İY1oޏ6+t¯¯9.<Ó÷θ”‘±5­¯UMSåCJ v•”ÀDk HÁ 1P#Žõì†Vq ¼0°Pì°‚>X¯]+qGÊ$oRã~©pÂ€5»q ÎY7 ±R“ÈœŒÁ¹ò¯„üZû(–+JJñn`Ï%„²ÉsEq¹‘Ÿ*eëÐõïFc€,¡³Ó ôŽæ©¶Êx~2ø¨È†<¬÷(ˆJ¬rQ¬ym`k‚òî6…a«ìÇ[aõ̆ÂrQ„°+ˆs6Tan ïނ䋖_ ~ÛÉ‹^Ülà-2Œ¡ÐjÙlÖ¯ ¼…K>¡ò$/gOÆÈäÄ òÂwTW'ºL´âœ”ý¤º¸¼ùòÙôZ]°L‚â¦çG=nj¹?éqavdë.y}šé‡qÛ¦L+C]‹u+ ‰­›ëé,›b‡ën¿KÑi°R…gP 9g¢­˜íp%~qàWÕ8êèo˜Õ.F*ãÅcë{N%¶›éYɘ¨0F؉q\'}-O²sGíùW úkÎz3•£j n˜”[ÕŽÔv œó`±UY꿴〻óGaÝòu‡˜õÊfÕ"Üä~aß~3úh93ƒ¬h’Ì9;ÒŽI®ß7e -YGSc£MGJ{¹E5áY9IÆÒ´Ã9=óð¥•Á›RØÎ F½Ô|®ò†]ò6Zb«î£c*ƒ™Žy‘äâÌÕÍ#E•cÃÜ=;Ø·(g´µ×­Á—œ\ðÛ,k[#Îˆî‡‹Š³E¯Dc0w{ŒxSã¶Z‘a¶kÖ¯¶#É󞯂WFJG«Ñé{½E¥#*y ¸Âeªö…r•¢A£NhÞ;4¨Ú•õ ŽqSQ4ÓÅeÊZX\LbqÆ"i;†<¼È}u(ȳRF„};Z%j$vu0N+åÏC·©¤ÔæI}"èŒ>÷]–Åžž˜Ñ|ÓUüBg~‘$=9À£wL0“ÓºÁ½±UÐ×&­Ï‚qÄæØÖÀƒ™`p "Ø›`»s)´&í½Œd&»™lj3}2—¯¿;‡üð¸ ytŸž:Ӯç§[Ž$G×®HIµVé”eÑ7MoÉé~Ï0ïjÙ]÷ñs<âcNß(óÖ‚W´¬e¸ÚÌV3M[iz>ˆ£¸÷Q“)7S…Þ#ÑËÁý·OH=†Ý©ƒ¢.ÙA²Í Zò ˆdL³1ÎE‘àœ7Ê9ÁJ{œS]~a'Mƒr14£âøÎúªY¹Ðq†˜õ¾Ü˜šZã5gºÁ·Ü‘|TÒÃÝT©{{¾69A¥Ô p±;|·ß½z Nû@cy=íÒQP¤§Ñ„ûˆÏé|sÂÅÙ©.1jflx\v‡ï3"yû9¶„Aà‹osBT§ÉØÿi'#±@ “£û¿ô=à 8–žü#ÃÓº…^)ùá×í‡ÿÄ>endstream endobj 1365 0 obj << /Filter /FlateDecode /Length 826 >> stream xÚÅV[oÚ0~ï¯@´Ra"nì\Hª1icåaÚÃÔ2iã!Mˆ”ÚQlhÙ¯Ÿ;!„æmÈÆ9—ï|Ççø|Y^Ý-,gàßEî` mφ×™$¾,£Ájt=64Íc†ùØp3úh¨õ9 8V[}ò€<üc:&œÀÉó¹øÇëå·90 ¾S™‡w h×0 @ ÉBb£$( -Ò0…S¦0N3é}8È­Æ'$R»€è5ËršåI…ÿI˜Œµ!³à‰­†FZ ÙÀ÷*ìdXÅm Çžé51?®&!MÙ ­×MZÏ>èsÍ$²€a•$)𕆜æj¿ËÔ: w<£ álØ4FÒƒÚŒ#¬ù‰KušF%Ÿ‡T3“Wñà9Ŭ=§ì ½n“p«µ¶Z}®™¦QÉ>ÖŠŠóŒ¦O()‘ž¨Çy‹ë$VŸeörK¡:üe6ÊŒœ¤Ö·´§eââ¶K7µBNÓ!Ç/Ù1sEØE´ÒóŽ–á0 Ò®ÛOdi4Ÿb²á…ºH[­¤ƒõºÓ€àª©/ÃUJcÃr§Î躠s¤š]NOYÖ”Ò=Î>\壎ãÄÝ‘¨ Z–Ò›ÜI@ŠÊ¿'eÝOtªkv&…#ˆà ï<¤ûÊTeDþnë LÓìJ§Ñj{£KÑ>B-ŸÎÚŒ„ºÎÚ^À˜K´óL"ePEæYÀõÜ&’ó ΋è3-9=‘m@®¿Kzè$ <íò}/µˆîDW¢ï‹½âd³å¬'”ãu8g7QòÒ¨•#y—{ú©[?†IÆË"ëO‘ì~Eßë'þØ3NúðºhJ¤UÖ(4ô´ŠßDKã³Ù-ÞcÂoûÙÿÕI„ªšY KþvÓ›=Šô×E“â5ñ$î*Ý¥9µ=NÝ÷#Ó„ôÅ#ðâÕjÆ[[Óן?f‹Ïߟ¤Ü z÷­ÛZž‹ÀÔµ›ü^lkgÓSÇ,/=‹Â˜;µJ‰k¢ŸE‹˜)ôð|ÓºôtžuRTë¤ÎÅù?:éÝ«&pÄð` xž§ A³x—®–WÿÉ®aendstream endobj 1366 0 obj << /Filter /FlateDecode /Length 978 >> stream xÚÅVMoÛ8½çW¸iÑ8€ÅˆÔ‡¥`ÝC‹ö°×õ¡…ׯ¢lmlÊ©¤é¯/É!e)¦/°ÀlQâðÍÌ›Ç!?ϯî¾EÉ(GyJÒѼ‘pŠÒ0¥É53/F‹1¨¨Û‡-û;LÂêOn—ó?Gá(Àå‰Ïì™UëçŒ+.Ùš5Úº.ªÝ¥¦%]ý TO©'ÜzÕÊËû~ÒlÿÂh#f=PQýb§Íùm@pŽ/_±ª[.{æUiþú«mžºâèßmdlà`ȶŽðIüº,%UÐ=x¸ÀøÇK½øîŽ{ ²¥Y:¤x †YßNÍ“0SÏ)Ê#v_F¥ /Š¢±Ü˜A<®[¹o%|¬”ÿdü[Ýx,‘/£<Ž-pÀ0ŒÒža„²i¢RïÕ,(+^‰5ÍÑ”Äκ²pÉ+¸Î`fh ¦‘˜ É­J P³ZPIQÙЩµÇ­!³ ²ô¸ R‚¦i<ôñ\8:õ˜ÂC{„‘qkç< åF/†ò ¼4T}oœå<Á¤]Rúö– «<5†…6Â>Õ=2¶›?‚E’íö :ðñS24¸6Ñç µa4õ³K¦†ç¶âÞ4}±pÅ0±•wõW?é@{«^ðùãGx¾S,ðvDcœˆv·ëèÐð>I©> stream xÚíV[oÛ6~ϯðŠ•€˜u6?tÃl›­Øö@K´CT¢ ‘Jã¿CJ²9mŠ{ÙCbò\¿sÜÞÜÝGɪ E¦«í~Eó”¤y¼J“Œ„ÀÙV«¿¼v¿×lWóæÍñíp»S%«ùßABý¶¿®ÖiH²4^­)%Eâ4ÅÞ_'aâTðÀé˜æVyP»»§ñ™û¢ Q–­ÔÞ£Ä à:ËIœ¤s7m¯ßò§#/5¯ÐáküµˆÈ³0ƒëQj³ywùacUã9nÉ¥j;¬y ¯ €)m*Y·ÔX?t\)(Ã÷ U¡Ì tù^# m yÀ«Æô‚þF`eÏ;tjø­ãJ¼ó²•m#J×[QtÞ8Y@‚8zbëg™×î„~Þ<°)Òñ >Á&Ó\ذp.Â"%Œí:ÌHžçn2u³ñW¢êÙ•n§9‰Š©Û]„ƒ† mßvHg Ã'„ÂélºÅi€#ä"¸ì0g¸sž[ÉÑg»G‚â>HB'×ÈÐæz:Z}>$98ßG3 ’@ ÇÒ«£ûV«ù^œ“€ž%ã_7‚¼N•9=·”“dZñ~’Bc÷CPrè).>[f<èÁƒCØÓl)Ø""œÅZñGÁd¹& ÆþcNÃr> stream xÚ­XKoÛF¾çW¨NS@ÄðM ¨-Ð)zJÕSÓÚ\™[S¤Ê%¥¸èï¼HŠ䋵ÙyÏ7Cÿ¼{õî}è­¶î6 ’Õn¿Ú¦nšd«$NÝ ŒW»bõ§Sì×›0pt§Öí~}÷>»x&næ¥+IÕz¥‘sXo|GuíÚwÌg<гéJ¾ljÍGm³2çÌ›ãz¤Žny×’ðoD2éXEµªxsDmYS$âÇU¯Ùã³m‚ÈÝ‚Ï7þ|ÝÉÞF)òÝV¥Qz„^ƒÈÒA«­)zUYÖÂæªÒ_=¢}/W&Ø‚¢Z!ÑmÛ´bìž)/ýB¼XXžäF×xÕ-Y(ú²…óÌkÚg Þ­‘›Ni83cÁód×\Ññ®2µVbűՅÉ;0jIG9‹BUäÊê…*ˆ%þ ^ežÑr]™’ÂÅ‹…±ÇJåú0ø‡ô;·øÐê¼ÆŠ1O%‘Ù%EîÌUî9.è»a~I=ªe9 Tý¤—eáWδ¥:rV/Dƒ·Ð0onÓòc¾ENÍìíÐÿ$ÁJ“cZ•ט„•gF‡œrÙáÜoíiÐÞ+u\ÂÓ(t³t,§æˆ]–:©‡­ÃJ¨M{òüÚ"ÇÎßpÇ'¦<0èÈ3 ~C9îžØà iã Î……˜ìa€ÙdXª/I*•0< <È3s¬†É#«b C"ÍçxÄ>9?ˆ=”‚?…ê_XÝA|‚$å /)Ñp1&TŠ-‚Žº†K…w§5ž\ôMÜN#îØªD¬"rÅŒ:Àtç£ÚL|rlâJˆ#¦Æ2*ùÎ7§ Ôÿà·ã„¾J“­øÙ à[Éî`ÌlÞ†#Èà• _\DÎè‘|÷Âka8®È÷Sƒ¦ìòlIT৘¡·ôR¡hzèûs^ 8gSU\t.Âæ_Ý6.3AŸ„  €VMß™Z60ѵ˜(Q3;ŸÊœÇ» &„œ‹¢Äa ÐÔDŸy²Õ>õC»µ|DE„|9Ü•)L'xC/h¼‡kC{—ƒ»R?žÔìøk„5R9Cë¹p :â³WÁq7ÃQ5Ã/sã‘r ýJÛzCÅ üŸUÕ¸@AP|¼Ë›Ã±ï(‡)ÎR‹x¥ prh¬0É‘Es84õ¬T’Ášª²½¶Õ—©#3èªg*âz@ãöj¸Exkm'•åG%ßM|ñ_)Å—\¶mÀÚøf´vmßžZý´Àsë¹I4¾0Â2¾b ’¢¡ëSŽ^8à5 N;o>o– äõòáÆ÷>N±D”}¸ô¦Móˆp¶ˆS·–Ò‹7¯¯sŒö'Å\ÞòE÷rÔ9ßcêaÖÝËÕ}¡OFÁÇ# Dß]/Içrïa4©dzC[;îÏœ°ãž¿9„ãUÝó°A‹#í¤¢÷ ¬ÿvÑ<ÉñÃîã¿Èá3?¼ÿé·ß‡Ã3BÀÖìÐu]ä¾%A’¸i4¢ó~!M6aâ¹Ùözð±òÒ°AãÅ ìÚ’z½J×O]9Åî ö¹ãŸý£nvÎLXtt³ðÄìQЦ†îc:äìqÑ=¼C£PøÎ¢«b°]sÄ·w¦>!zJºMú Aã¯;Qk/•ÀúÝÌ7wøØú³Jû°®¥¸ø¤ZÊX ±²õ½°×¶£ÿŒã ñ±zp ½ ÿ,:ˆ кºmÎqù¤7§àâ—7z¿7ø/r¯?=¹Ìà!^”Ÿƒ_õA;ÙÍ áß–þWƒ›Z@ÁIhM}åÂCSèJ°:Äa Ðä²VšÓœ맑„h sO–±š¾!å«_v¯þ½> stream xÚµ]oÛ6ð½¿"Ë TbVß–€uà 4@†½Õ@Ò<(m³•)O¤âØßï¤H¶Ú¥ö$òxßw¼;êýúÕÛë(¹ÈEž†éÅzs„‘ÈË4Y‰ÖÕÅ­÷óbø‰ï)+xucË$L¼ª‘†VºaPÙ´­4‡FW´· }‹þXn6ªTRÛ+>è1MWóòKgvzÓ¹¸[ÿqá_,ƒ@äɉZv§ô–Õ¨ +[Z*Í ìdϪ’bŽQYƒ¸žì—%};m ½­¥0Yª¢6ŸAÖZ¶{suÉ— ^[„ͱUâ„„µÔ[»ÃÓ")ÿêhcú`ÊË ž*è@·KæwçH—=-F1ˆÖض°Å”¸°¶}6ˆ`ozKß8»˜lÎ_Ã)»æþ‹,íëQpç=¢AÓRì¿+s9à^Ž9áFi¹Aið]n=î7™¥Ú5«?“¥ç1VFè®®qÉ(ì9ДÕTÆõï~ü€¬ß^ñè"úD’³#Œ(aD"[Å€GÎ0í²RpkÎ9Å‘HVQ¨(Q╈ãÕÔ/ÂIñ¿ p©jNJ&2ÿTJŠtõ_¤l”Vf7#&‰…‰Y‰Ü_Mÿ%âlD‹ç¡ŸAô$¾kÕbA ó²Ö¶J>,ÂÌ“q ¿VÝw‹À³ªÑ»‘ŸzÇ*{GHÊЊbE«=žvµU‡ºç¨öÒ@­Ž£È[÷Ì+ážxÍ~ßhÞFNYô!iE[”XíA,ò8žºuÕ[âçÞ(W^%>–Á™«ýxl𽤕¬å^j` Ðl8R“&¾ŽÁ×Óµ­ÜŠÞ?èsîùÀÏEe=¸/9äNæ<í¤Âª¥%º´·òé‡ZÉŠ k 1N¦.¨ñÂ-£4A3Ü×IÀŦi÷¸J±ƒ9{ ¥1bŒÕB+Z&±ï}t¾AèÔ<*ÚþL~öƒx`P˜qP«µy–Ù«Sh¶7™ 6J¯(È9+puäŵ–N2¬0¤ø5ÒÎ%J‡(§Öy¤¢X$É€…À «\„á€S½˜“ÓnÓÔuƒúYëR+ýò¯VRUoñ€5x³ÀXô5« œ& „[¦°uDQŒN±t½[ÇN)ŒpJ¿â[ ,~žYä‰ù.Žˆ@îwËZòÒ6NŠÚ‰Ë'ò—ðTøù·çèye_*pÏUšòIÁyéI©N:áì5¿½±¼ã)gŽ›¬ Ïy§|G ~ …WÕkJß±'. ÂD$ÏI:WÊ–Y$Ò,=ñ eóDËjÛtºDûQ“G”þøäqÝΉ‘ÅጫÎÙ…©kXß1&HDš/°¥÷ÝܤUÍŒoø¬•éZ9ŽëOÓÀNÒ“¦Ç&#s"žZ&T¡Kyn[0K4ç *ût^ïr¨AÑ´&Pƒ‡ú®qö©Ý…Ðla¾Ò‘ëðih_Á _I‚w…e¨{&8X?ž8¶²ÂYê%‹JÝèM-ßÍß"Ðrê#…+kæ™…¬®"‡†l§ m]?ÍŒsSpQ]y4ôÄ®†yB3KâŠÖÒ [~yªŠ½=ڜɵ›ˆBï†1”%5e55íËDaºuÙMUa‰‰÷ «¹Šº&¦]AÈÏz&\Û^­¸MÀB>ÚVîyó°HRpo')m'ˆ'BPséOi¨}sWyA åýmŸIµLäÙÐWÐG/!“Ûj–Á¸‡ —E+ñy‚@ʆ¾­„ñ ’ÕÍ¥ðlï,pǹ…"òO =…:Šxʉú)|iÑÝì£ç/—©øö_ÆIè‚ñiG]×!Tª">7´çá\Ó®M°“ ùéÝ5A”žÿ ¥Þ{Ya½˜±»UntƒÍ^íᥬ·sy0Œ õžæ†¾ôoú4»~¨—ñ€Q7z{Å´ Žá¸*ù•ìýˆt*ð sÙðŒB *xymYV RÅÐÆçÞkRÿ¯P&8·*Š(€aˆjÕãL æ‰ðÃaÈœËÀäy–<*¼MÈðÞÝgæN¥…ÖClе³´˜¬+Ž;Wå+&ÒÌÆ…©i¿*òŸ#VUWÔFpZ Yt2Ý8?f}ì2x–á{‹sÏé €.ëŽUÎÉëÿ¢ç-0’nš'–šÐÝÀ½?²±?²“Ç ãM¬–æŠe’¡#Uû?DxJUâw_Kþå‹(ƒ ‡ð¼Ê2²z&¾ú°~õ?ÑQÇendstream endobj 1370 0 obj << /Filter /FlateDecode /Length 1284 >> stream xÚ¥WK¯â6Þϯ ÒU ñÄNâ$Õ°©4#µËŠYQ&1N(6\æÇ÷8v {o»€Äöñ9ßùÎÃÎïËOŸ¿Å“%”ÐÉr;I"ÑxBÃ?œ,³ÉÊ©8ÏÄÌõqäÈZ=©³™¹$v¸žlxZÏ`xR¼áš¹Ÿ8˽8ÍBê°&g›‚ÏÖË??ÕƒM Æb‚'ž6'ò]É´Ø52’ ߣPn .5",r˜Štæb‡¬Ñã|kØ@=ů2N Ù0Éæ0 ž³9J½Z«-¯¹h‘O\G“^0JBÃPkÜ÷[ã~`ˆHeÝèé×\îGüŽ|äÅQçQuïrŒÂtë¼à%¯”f)´™´ÖC–WyµÓ¦d˹‚r84õ8—\K‹”fmÛã,‘ÈÙë‘8BXÃÐù‡·äI¤=¦Ñ$´nCxžSð“ÒÀ¶33RaººQS yvd…PC•v ý®rËìëT mœÃN¦¥2Þä:‰d®ÉÕó%“M~†t£Aèü±í5FÕ«ÂÆ„°‘ø4@œ2§ÅQHÞÜGÂõ£yIb³ $°ÛE³œW7q(ë–‰ŒÝBnÂ÷šfn¨¦68Ç*Ó¯y5V- E^à÷iÃòG'6:ˆõ‚s­sHç;¼#š@è sÔ^pŸ¤i]êÈו¡é-8°Ø 0òCÅ&LÃfW"ô:>(Žúè4¢q3¨Ð¨G‘E4ÀBgvLv!¥f+$QHBço/ôrªcQ¨×zE!_z²a«Ÿ>ôó‹«ŸFÚðF­¬á…"8z¸Ó ªÚO|”à¡£³½M!e 'DºW/òràs½˜ªñjðPW‚OÍì4ã§œUé0ñZ7? L;ßZÿFð?§è2Ðòó§~þr%¥{콌Z»öì×Á1Kÿj5=O×ë;ŒÄƒDÂ6Ðrk³TÖP…hÛ°’ { n§¢åÚ} Ïå´\®aÞdmì#÷é½ÉZ—8ÛÒeÌ-~f[w¼rÛ…´ú{by¦,{u•x“…$~Š{¢^d—˜R¼=V¶ÁÑ‚9ƒcâØÜÔÊe5¯Òz y­§‹7=e•Úàõzíj.ê]Z7p©‘=q,•<,n²Žï²êµÌñz¬t®J÷ƒ*ÐÅbšWpÞœX1}Ä2‘GŸ³œÀÐ7ݾüõbá[¡Ç±t“_é&¯²²œÑ…#­¿ó>þz(&K¯ÕøZá÷Yx¨ÿ†¤›PïÆHj«û! ‘È|+‡º!î äi¾Ç â ¹âiL¯†Eè&мE}‹(<‚è^ÿ,7Ãöñ05ï¸\°='îõÒÃSõA,û*3‡‹9]˜iÑ*µ¾øv¸Ü5›öÅs_÷š÷eá8Oy¿>~µçá}Ú6¢· ¸ÎlÇ•dÕ®àHxšÃ^Ù_ò¦Ý!£Át׈‡×†v±•·s+WY}‘ê}ýVë.xµ“ú†£6Á©=£ é¡Ó€ÐÎo|)·«U¿mmÛ¢·iôPKO>´«ù Ï öu# ¶áÅbù×÷¯èÐZlÍLE¸„otr à‘’jLKÉÎ77­1óíGöØå¦ýN\éÝëÿÓl?ÐCðM¢Z¾0> stream xÚåZÝoÛÈ÷_¡¢DF£=î—Dk 8 y(ŠE ôÐ$´DÙìQ¤Ž¤çúÏ÷7»K‰¤––Ý8‡}±ÉÝáÌì|Ϭ~¸½úþÔ‹”¥±ˆ·Û’¥bkÃ6n7‹÷ËÛ¼Ùµâz¥…^þaåþÛµë·^D‹ç,Õ¸j»&ë²14A¶ÅýnWßý+_wßµë¬Ìé“ïßq5`n‚àÞŒø_‰üsüÇ98w€ÅÖ¡ÿé¨Êó {Ĉ3±ûÙ6„_9fä1tŠ÷ïß<¾ùøñzÅAuùÛM]½éÜþ}“ݹ§Ç2ÿ”—­{Y×»}]åUÖðE˪CYÒ£=H˜…ˆ×üIÞvõ&/Ù.ëš‚¾œnßúÍíÛž• Zl»–eÍý×ÊqqFxGÑt” á°/¢ÿ 3:õ6ö_¯T¤À`ÛÑ“•Ç®®Üj“·Åæ•n§hÝjw-’å—ýõ ÿò# {¯«6Çi”ËÏÅš Ü×Mþó¡œû +{ŠjYÕbW7Ýgú®n~ò˜¶uã ºkŸ8ƒb©Rã3רm€^Æ!0Ä=“éÑ_vµ[Y7yÖù]Bi7rÜb½uk›¼)>]ëx™uøOÇmÝ ‰l-Ç´°oj{þ5ˆÕ=s ýÇu"{6­õ‡˜X¸Ô)3QÜ;Á™7çZ”88ü ‡ªw+'™*›t,‘^%yE¼CÚÿ¶M½sOîè8Ç&ÿTdÕ:÷‡jÝdöd?€N–›±¦¸†ö–VÓ¡¶ ¨É»CSµÓOmˆ¢§½`]T¤¨.$såýA¿œK"a*5ý~ѵy¹=qìdbH¤ÆË$vK¥Ëü1[wÄ»–Ë2ߺG±´§ÅvSÜ?ôBÃ+ÔÑB×÷VßµyÓÛ…“°d•ßv$’e¶‡Uì›ÂÙ6vÅÆ«¤¨È·=Q¿Úã.'´ñ ºmÙLȸùƒp<0KŒîå×´ÍÊ:{—JX‰£¤Cº¢ºqÂלÉiTFÓîË>¿¹yCƒbÆ›™èƹfQlžÌ 0}®â1©/YcpoåDý‹¸6¾eÁ}†Ð|Œíy7Í §M0bsÕZ”Dñ;ç·ös èiŸÀ<•²¨ò¬a{èµXwu3sü—¤Þ! ²[(“ûL5&4…’cì#særLÑM׬\lœ192ЈNfÌ㳨X£2Z±Hž‘1,ÌW¤BÉKoîÕæS.€ý ó6‹Öm"¸oüJåV²²ßõømžrkë¬%ÿ])™öôãeÛeM‡â Ï O}&“Äð}ôÇ ÂGѨQ:ɧèBÔ2Oÿ-óBÆ>øß qŸ^]Üw°™[ê«….:¸®ËÃŽAÖÞ¯Q9ŒÕ$Œó´?Ç»ó@{Çmò­’QhzÙ"€&y©Yþµîòž@Öy¸­ÃÓY‰Ø¥¬ñJ%‘—'3‰ñr(»b_Ú9'Z=èmIS÷ÖN:’å Ç’š'™¥ë“fÝL¾êòf瞊ʯ¸1.z×ÚÎÕ6yiÚÆ­:}ÕºGùïØgM>B÷O=šxÒ†ŸÁÆîü¡{…Ã5[oPG+|³§\Eå+,·'­º„ ?æD7?0Z)˜:5ûkÍ—Ô¯e‹*·;Ÿ»È°t¶MW~—DÌP=§b–Sézϲ[q¼›G£•N¸Q,¾L´’¦Âð—œ&Åôä+G²(X›5*¼81j+F;Ù[„fݾ”•'+7G+7+§jÕŽ#ÙϬÝËç¦èº¼r Yðç%\L7:Æ&ú¡W'£öN+3šýÏèf‹¥œÆ*öýc¨BÐ_êgYž˜ÐzÁˆ%š …Èdß_ €àñ5;á_€°¤¼Û¤M˜á5ÒdØ@OYC2_™F‡Ð¶þûoñ¶%Äòwçú§â%ýë'ôŸ ó€£XQʯ@Zë"|™o| èÕ)Bšˆ“ Î PÀIÓs¬¬Œl’Ä6ÊxŸýg€9§ ˜¨Â¿¡¤P{š éY >Z¢ð˜.2DHïÈL'¥÷äüÔÆ­×yšY"`$êO ˜*´’YýÒˆgz±=¡š$*Du|Æ´äC²3£*afúF¦¹tΓKéÌÏgœ˜z£.‘„›À¤p7u}ÛþŽ~UA>'4÷7SZŒ.ϵ½<§íÓÅ=ÁL.î[·jmâ±ñvçZR{#¦…k<Ѳ&ܯXüAíÏ hï°ß÷•<_úͼšü²Àý*€L]£Zs݃½…vÁñ*Úm¡ž€GHx&`MãfD'› ÔãÇ_ºüx½²ÎÂU`Ì¡OîH1ª x Ðq%~rÄ#ÓOiþ…i¯endstream endobj 1372 0 obj << /Filter /FlateDecode /Length 2817 >> stream xÚí\Ýoã¸Ï_! *ßE\røk€Ã] ÷P hÞ²ûàØJì±SÛ¹Üæ¯ïP¤mѦdÙqœôºO–%z4Ÿ¿Iÿr}ñé³É,± Tv}—1D3ȔԸ̮‡ÙM~=*{…šËùø·žTy‰Ÿ`òráôçaÄb4s÷Ÿ§ø•Ùü¶W¸Q³W°œô MyþÙ2üb9ê1¤×ûzýë§ÏŒÕx DHžQÏÅRçV+W¿PIQ‰ѵ1”²]2L£Ì¬Fˆ9Ö ¿J2E(ˆ×ó´&‘àÇ]ñØYý¼K E³ì~Út)¦ðƒåô2Á”ÙÃÜ[éªb‹¥Ø*¸ÑÄr›Œ¡±‚“¿„‘4SÄjn¼-©dA1å=¥d°Z!ÍÍ «„Œ‰Ï›å`œ€ÙøúlÞ+8çyß}ˆ|>¾¹Zú»ƒrº˜ÍË¡ÿ6»]”.´æ«ÐœMçÄøLQ «µN;É=Iù¹y Ü ¾ŒPM²OÊ»´ØÓ’¤¬ Ln5Œ iÀý¹W nîýx]Õ1ˆ[0"¬¬Yçâo×ÿ¹p‘C3–1à„ÍÒÂfƒ‡‹›¯4âÃ_3J¸5Ùs5ô!c¨<å´;ÉþuñÏ‹_ÂÆúaô>†PRãï …tèQ…ï&†‹C4 ¡ Ò¢YRÅ*‹vT*Ûä\QªËù…r˜¯ 5ÄRå°Ì¶"a\Uyn¡ §:B`Æ#÷ES:Ç Mh³œ Þ+wð‡5áÏK* ¨ŽSÇ®Jµª0¢ƒJ1¤jUª6„k+µ{bM™±«d±ÝÐJoÛM¦‚U Ðd—ÄmIác2ˆÍ1)-#†²“Ä$ↈú 1ÙAÒŽ1ɹ7&¡5& bÒ¼Ö;f%Ù˜%äb+®YÂ4¨(cv-qÕç*‘j95-Thºø úA{D¬hÕ=¥{ w„‡™}†­ :•aJîŠÕ…j6lZ¨-(ÞÅ$Ì2L LË gÕ*Eþ¼‹°X¼‰Èë AM á#¯K@µ Z²½Õ3èm™TœH ­@m‰ä¼¨)òc2) ªÓ@åTŠQS1$ÐÜqÁPVÖkÙ +I±›%z&Á.Âa6€6ÙV¤ê²mÀ¹.Uó»2±È‡9^ æ)å{k*~xME“ƒ…®E•|mQ…¯±œ œZaÖÆC¤øw+ªt•¡Š* ›:)º½Ä° aüÊŒ5!GmÌUk)¥°Œ3»:©¿×§´ãÍxU0î Rœ×ưó ì­SúqA N^N‚~X®J,}?úu®+úÕe;ú‰®ègÎ7£ìP9ì¯sí)ë\تs?ø¯ªˆC–ØïŸ.èÖàÓ‚(,v"=WñØì§«ˆáˆ6òÁuþ©Jb‡ð²©&nÊ’f_–䇈xpÿâ|YR´eI3vÔº1è#óýv†£øNŒ Š¿DëµÕbˆÈ¦5 ZÂbÄE”Ãc‡”tm­Éì>ÕèUœÒ.G´¾€seA£NN-Dâ> ‹‹­Žå¥W‘VÌÏ¢N{;´ª·îUJŽr¢‚º˜R¡T‹)¥à„£²"S¾[Ym«‰P—^¥Xe:¢Y)[ŠÀàÖ®ËN!ÊkÔ[DÈVuH+Ÿ=ªÓytÅ]þCʤØwú§sÀT´ÒYÜ’k»zÃ>çɪ:ô|Ée‡`‰=·íSœ ZÓ÷6çû´9 Ó£×K*4:UëTŸw˜ê+{À\¿¹ÓiqÉßeÊZ=“ÒÚ_Q˜‹Œny/_͆ @o{y;Ї¥£½õe{3_ÄùN/!¶3h,ip^~X1§݆-ú9gérVŽÿ˜Ü³ÆaZêɱö-€!DwŠt `m‹—B`i„g§KWÛ’A{=ɪNÞ§=á 4±«% |µAW ˆq¨lÄë Énø"÷vy…ÄT ݺ¼oýÐ ýÎá•8ô£â)·,èó„4ò›Và¯Ê|W ûÔÿEKùU+N§Ÿ2g8}v»µNQRuäiÔAmLìIZÂ@vA(FQJÓ6m2Œ&…£¾O›ÞgÚš˜WW"Í:8¤÷Õº|þ*ƒ¶Õñ¶ãóÕR²ƒ”f¿”©~g¼ÚºŠš¹ÑXPس.‡·L‘±zCôá–W{2Ûê$‹~mÛ ¥@Êðõum ¥à2U6¹Õxù–mѸW[,Ù¬¡4u;ïä³qq¿ƒ©-ѾsAbFØV•b ®Rs8o4ƒÈ¡íÒ ?o‰…;0±gÕϾž}hÐN¢3þ’C3­ÌÙܳ‚ …RJ}4ÃHÿ+pÖ}›v·u™÷«µO¾½Üžb‡½‚óÙÁ³JBû# ç$¶}åT ­­ÛH7)¬­0ˆ~Ÿøœoâó5µìŒ@ÎLÇ~X©/ö5xÚ¹ó†9ü°FgÍáhC޶Q8n{]è þÝOU&_ºsåîb0«Î‰KO–˺‡#D@K¡gˆ±kÇ/¶(ÏËIù[Oʼ?]ŸÅ»Õëfãú=ì/Êßûƒå%^k]= —«Çõ£¸ŽõÍ™Tü6ì/ûaüúðm$ ·Ýh½Qâ%µWÔwz­%yzô\—s¯Y®X«âCÌåtØ*[?h><-ç^7“”,ÕùÚB ëÏÿ»[þ€ñ|Ü¿¤LœV½b}XNg‰ðF koÌ N¦ü"°WEp²ÅÓm=ÿ.¨°² ½çÑxà^7r·Tå/î³z¥»XôJ?ºz—»ÕŸLüEòß܃õÐÕxR5\@ 2ÄU#ò5íià7uy“¨Ê$îÁÆ$îÛìÇ-ÜYïÕ°¢Ò½ œ—?;š¥¿^ο…‹™ûtç«Á™´ò–¡¿U™âéø±ƒþtPN&«Cå8äÖ ”žã齿]‰^ÂóÙ#ºÉrõêþxâÍîÂQx4/–óñí“{s7ºÑPB2ô‘¥ãÈ©ÃæÏãåÈ_5d#¬6Yú„{d~B(¤hmíqUdÚ¸?.pUšHA:†˜Ý,oþ´K1ƒLʨ£àã6Dñä)|Ý%^£ÝÿJè8¿§Ô ¬ØZÿ®¬êÎÿ{H從kwí|Ø}›zoÃh«"ÉäáÇu«‹ñ2|.6´0b—`A3ÿÃ*œžÜírŽÀʼnpo…•ÿ/þŸ <$kÏHøÓ‚àêx õÉ¡„ûî3jëœD]ž¸6c›Q…øÈëólzý©V©r[›]cÌc„‰Q³šKÿ­\¯ endstream endobj 1373 0 obj << /Filter /FlateDecode /Length 1232 >> stream xÚ­WKoã6¾çWØ¢x-Z|é¬{(ÐzèÉ·]P,ÚQW–\IN6Áþø5Ôƒ²$m†èápæ›™Cò÷õÕò–ËYD"Ÿù³õnF'›ù2 &ÖÉ웓âšÝ¸’Iç«‹_-ºq© ¤ó)9Ï(~Œ³“ªn6ë?gÞÌ¥”DÒØxð´Òò–ŠïÑ’=ªXð\æ< _€IQ¯NT^lóß=éé_UÇõ©Z­ôŠSó>‚o ¶é'¾@@°ÄùT¦û‡e[•WE©’&$É÷¸é£ó±#zæˆvˆ`Äý`àHýŒ·õT¶ÆVÙøt ~¦vo2ÊÏŒ¦;•UJë¼üæ-ì<¹ ôhѧ‚F#Û…Ñ¡\ëžcí}~JóZ•À˜ÆœK#N$cc XUÍŠ½×Ãì²nå›e•î±"?zç&KÅ>KLåiŠOti¤C}Cd„ÒÕÈPq òÜÖàunêYÏmƒ±ÓefÔƒ’ý%ªŽ±"LBÃ׋N/0IXLú”äï5Ä'Ã7Lâ÷Üx—$Nö %$㚌KrÇþcQ šZŽguAbï%”äŽaQ¸$Q½·i`¸òŠÒ"ý¸ŠÌÍHŒvù0'ƒò´ –§2ÉjË3ÞÑ_y»¡÷ަv–äeq™ûXð¦¼/lÞá·P¿Ì϶™Í*k§kàCZ]Æì©k`Ï_´õ;öfÀCÌç9×F ‡‚Z;=]x÷ü f? < £–^íß³‰# 8aL^n±gõ¹À/ÅÚu dËx[%U¦6æí}š'ÚϾãUz¿–Ãû¶>AH„”ãT Öj:ƒc¨rû¡»˜ÚvÀ¦UǨ@Õ¤ƒ~ym]ÛªtÀ­um‚–·áðòä‡$úˆ HÄ9Zû«¸a¡ópyà;OúÒ÷”ÐÙÆysaA¶=e£™¨NÀíåçw3.U•&ð¯jWFé^›|À¹½ …S”#‹ÉîηPŸiJ`ª4“Oi–¡¾QBq‘+Ã_A"!ìdm‹ìt€8˜/#|G•øo[ ‘ïõ·©Ê5Ìz¡U"§Òs¾€£®¡E1€äuÃÉklµ^„#PTôKQnh©eÀï2ý‰â\)ÍFµÀï=â4×_>¨ ÷ñEŒh‚;åçE†àÊZ –ÅÇÊ\`u‰ —£K[Š¡ƒsÎ!>ýáD=~JëåmÐZƒ® žBgÝ”ÄU|P­<=ž²¸N‹%i…::hÀÔÈv `€$€A– VG)rá±0 ñƒÉ–?Ì Ùf¢¬K·1È&ŒIA<°dTÓ‰‡‡¶%Z…fSúDÊQ»ÔŒé.ÏGµZ]'ê1ó­ºîw¥åœRI<¿+ênêÙ B…o»z~ˆkoô,3®´÷çÅ ›qqÿ·ÚÖŸqy¨º&:j/ey~ur›Ž2o(¬ŸK3ÒÇ ÞzžŠòGš›¦Ô÷‚‰ëòØ>à˵²l|á?e­…¬ikM¤ŸÍÝj{ƒnì¦÷¯JÝÛÛ>VRíuQzgÖL^ÞêÚ"tÄk”ÿúeÞ5ÍŽF5©r%ºñ^âg‘”Žøg” èúŽ‘0 Q‘z‘V½úc}õ/V"ßendstream endobj 1374 0 obj << /Filter /FlateDecode /Length 630 >> stream xÚÍWM›0½çW ­VùÐâ`c¨J•º‡^Ë-›H)_µÙlúï‹m`1’¥Iµ‡ÈØŒgÞxæ=œïÁ`úhÃEÔ–D6ðA‰Pö"ˆŒÙˆ/v,›‘ÑWSQÌ’ÃìÍÕt¢†ãØ„±FwjZÙÇbžD¯ášçÁOÃ2LGrÿÉR=e{OV›0{‚ÂrúqEÀ¡8Û.·-•…ßĸØn÷¿å) ÓP-|Sl çºÀƒ´3u€ça=\„õ³Ú„)KŽ"¸ÔÒ–íÞüm1YìÖ~Ž«@R?¢ÏÏÉ6^à—bçûžycyð\óE[ËYú–ïrïn9—¶UÓÁ +k#¤ÆkŸtF7„"EuCÆôà<÷“{õp8œëÕôÏ>öýa´|ŽÓ%FÕí5÷żô%áJ–rʳT<+‡ƒpSüšÊ×€`-Bç$+cïÞ~½n¸ä›ÈD¯p˜B%`½ªÈ2æï‡-¡m‡¸ ƒ–\Û©Õ¯Ö@2ç¼YìwM’ËÍQ“)Mbþ›ÑsbÔ*C6 îRXtÉ 7!ÚG†è|"²É#ë’¦i½™}D‘Q{Cµ £”¨4Þìk Î.—©ª¨@ÅKŽ_ĺ–(\¦ ü%ÜÇí²@€çzݲ °¨«£ãí7•²bÇÏu¹6éÉ HOúž4ß=:¿üÓÈín—ƒ(r¹òýC'wSnó^ܦ=>ø§ÞÀ®ŽÍ(‹1*,î„(Œ~µYeÊ".uPwâ²:WÅ­"qpö÷•d•vZÂrð#üqa>rendstream endobj 1375 0 obj << /Filter /FlateDecode /Length 1563 >> stream xÚWKÛ6¾çW8Û‘‹5#ŠzÍ!-šC‹œ²EM\‹¶UÈ’ J»›ßyP²¥•½I/öÎpúfæ×»Wï>¦«Ldq¯îv+)‘È`G‰T´ºËW{‹J—å·õF)åuƒDèuë õñ§æ“ºéŠ8ùØv¦±î`Çÿ:Ï‹jÏôv½‘ž¶†W$Æûþw–%è*w¼uYêÆŽwëuxt¥åÛ߯7Qìýk¶ï¹Xÿs÷Ç»2<3o#C‘…!ü§"•1›w`FŸ1*‘&ÑÊg†Ö¶›]Qö° 2 …¯ÔÀZ8YÑLV80¼G†¼UD‘„wH‘EÎÍ?mÉQyè ðòúS®bÇ,_ýÈg6“-y·mùÿ—Ítýó¢Ü@‰L:å¿?5äpd«ûŽ 6Dzÿqñ ËÞX¦‹jÆÙÛ—ÝK/]XQõe‰t}a{Si¡·˜Ah YôÜÙ2N„JäàÌÝ‚·!ı#§Ú…xî–JÃ3‹|Iûíà¸á ×Ì+Žºk‹'\ð•S,ª™Î¶~<±-I6%Æ?Ì›ß-MµïÓÛ3×Ìdí—\ø" ¤‹ûxÖðc.ˆƒ9x©5ù‹Ñté´ûX͵(‘ˆ‚ôzýPÄ~rYçÉ%çùüõûê´°]Ý ÛÍ—¶2˜/3½«]r¼½½¹¡yå-ˆÐÚþÈñq ô~ø¿!ƒWg­ÏTÄb§Çg ( Þö>÷íCñ°Žàl ;kxƲ¬tú®@Š4pêîðÓb€t¸óÕ—a‡Kåíúо^="(kË k:¾Ò7¼Á€é¼<„ˆ€Äâ@ž; 5Ÿwípe`z[÷eîä5 $Ü%)Žcú¤®æÝ{RQcÀéÝu{D©}©ÈWU€ÊcÓw†\ú€øS7¥®6ŸLaøs¤]®WÈ7^F5OÍ—5Ö¨ˆj”ëM˜Hv-žåä ðàc¸d¦rºCa™þ;`'MžuÔŠè!Æ f5z ­²ÄÛcxÐüW]W¦]N.5m½oõñÈe7è¦i­# .zx\8AQmÏd¥Þµ&§\ þÜhpS¬bïµî}•“×Gs»dhIŸyèû#ƾ&ƒ’1¡ðºšÚu1‰0G›äN$NÉDÛ5Kº§—^lAÂpï±ÀCê«TágúV ‘蕤Ùvºë-æË{”kzA*kªTÖà€ÊšÃ\"qЧ™aô<²2 D”¥ç>toβ ——ÊTLøÎÁsæ0{|úaͶîƒ,k'ÇÜNâ')ª(ŸêqÎRŽlËÂó¹+ù«ÕfúùãPAÿ>ÏûñÖ˜1´¤Ê“1°d“ÂO O…̱• 2hÚ7ëö¬e8ߺ3n“K(­µ‹cÂùSâÄÁªŠcw9NN&Â&]Ø<šmÍ›ñxy<ŽÁÁÔz`îOàŽ(Œ¼/S9qNÆ™Á°[O¦K8?žâIEsqÌuéÜ—Íu;›¡ ¦Öa.^©oÇÁ˜Š a÷X­ÎAûîÒŒcðè:å¢ÛÜÿ8žÞ‡ýn¾Á%«nx†î Ûæ¥Ê»P¸"%¬ ¼ NÑKõ šÕƒL ‡Ó,Ê‹£x±(<]*¡Ì®0>¬¸6îÓNÙ«3‹»¦2Ë`øM¾sÜ‚œO¤0”LÏ.¡È/Ÿ£ŸŒ”P’L¤iÊ7¤$ÎW¿ß½ú)!¸0endstream endobj 1376 0 obj << /Filter /FlateDecode /Length 1027 >> stream xÚ­WM“Ú8½Ï¯`˜TfRlÆÆžÚ¹¤*S•T*‡9±4¶±Fb%™üúÈú°-c ›ì[r«ß“ú©»ù8½y|õžz1ˆC?ìM=σØï…Áøã 7M{³‡å‡ùôËã«Vv£ÞÐó@”q¤­o~¼À—ÆÊhÑâgHÏuF؇aà õ3Cd)V‚Ñá (ß½ÂY“^è…-æ`ýð³]±L-UFIñ°‘„f¢nÙ¢öª×°–=ý‘Mo~ìVendstream endobj 1377 0 obj << /Filter /FlateDecode /Length 726 >> stream xÚ½—ao¢0Çßû)¸Ììf"AIæ%wÉLîbîÍy¯<_0¬Ê†…Ð2qÙ‡¿B‹P@ÔiöB(ÿöéÿ)üú€?¦­û±n(°LÍT¦Kš˜ºb ±žéB™Ý½ tTC3îT~ްçú¯gô<;¼]Òrñ"îòîe„êú8‘cv€\Þ®]ghm‚Ñ(íÉ~ùô—ÒSTMä¶î’‡¥6¯è:³É§|‰Æí-?/B?È»ã6¡¡Mm9ûß'“ÌB`bÈ#¨£†ƒb džûÈLž¹s)a‘qÜÆU7F!Ï’Œçu~q›ºæ¨Á^Ñ"gÉ=?„Aè’—Jf\nD¯SùfìåæHaâ‡Å ®Ž*>¾/.8ò¼ˆ63CáþÁ‹ S±œZ*æ÷cØ/Àªj=`iš°5¹íŠ”¨nÈŒ%¶±ièÆ<5…¯E$KŽ9jÖM˜N´¬ñR- èSv¼á†?…1]#Þp˜h®mÂOaÞ"ÈCE ¡ï„Z ÚÆ¢3ߢûy|ìíêžË ÇÇÂ9ô·bßn…²ðñWÉÖ΀¡>?{>A¥eäøY&$z"Nèû(ÿ8܉lG‹§”xÎG¼¿çe¡ ƒ2[IIÁŸüy<–VÙóC˜C£‘Sc5µ/cÊQ+óžh)îÝn’õ(9œ¹¹]†R]íC0ìëåM-FVràr}jÝT‡“‰‚ ºÓS1s—.Úó·UŸTÌ}ÒË }œh³¶ßÊF\Íøu­UmƒgW°ôMUN34`#‹{­W@h$ñ¹›o£k)-û, dS{#/áR¯s#ŽC*‰×1=…XYmò-ñVÊbu¸D\È´v*Ó§U× –¹lÂõL£`ù ~rÇ¿ðdÌ>X:ã£eXFvXüü³ #c-ù—ÄÎé8õddëqÚú,Úˆ endstream endobj 1378 0 obj << /Filter /FlateDecode /Length 1465 >> stream xÚ•WKÛ6¾çW8NQÛÀŠ+êe íæÐ ’¢(Ðî%Øì+Ñ6‰rIj½ô·—¡lÉrê\LŠä¼¾ùfHÿrÿêö}TÌ0FEšF³ûͬX£u–ϲt¢8ÝW³‡eŽð*À8J—¿‘}Mxð;eT¬ï?Þ¾Ïg*²(3²á,À9Šó‰Ýïè*ˆ×ñ²i¥r³²mš–»y'a»Ý¸Qùó²ÏŸCœX¡h¹éx©˜cÒ¦vnFܰiE³ŠòeWÑ#½F§ð®±íÊ„ºÑK¹^╳h$tt6 âˆm‘¥‹E·ÒK>L‡iÈ*ý‹ÏI˜aâ\§Î 0H$ň%z‡q­‘Th$E¢‘Ô  °#Q0.[^¿8•d¿¯•`¨uãPú Êp-M–O²é ÀßA>«–/€i{Áz«š G…h…›6TJ²¥nŸm€Xê”`Z®,Yþkö½¸]Šp´º}“Q%¯Q²ØwŸìäHŒòuêa6»a*0èdÏ5æ!ÂyÒ§e"á…wœBGr`ÀyŒÂ,òan¦ˆ‡9JG>¼³-ã4Ò†¨r‡J½nbõæú–•åðããP˜HÄICäð\XÖKË7 ùBÝIÎJÓÌÔPQéNH·°lKËLt‹©¶ùÆm—‚Úr²öa©Ý¿¸™i4ee°Ú0¹3Ýž¶µ78ª¤O1Œ„Cjϲ¡ÚžÞC&Áš©ä¡'M[Ñm w†yê{Nõu"WF¤´ˆ1À–…¡fÿäì¿=7‹ž† fR–§CÓ GÃ^˜U~:·¬ŸaÅ@Þ9õë­u÷î_0eê͵°Ÿ©xñÕ½-U£Lqú– ‰Y„|³é5}©O>÷ÖšŠS÷©¤[_ЖÐ&´ƒºûË>&ÒP±Æ—§Á¨“Žïæû_|1•@K{áè´êJº`@S»7{sÒű'yJúáFAÿ阠Õü’MEÍÍqJ[Ä–:>GÆ#ÿxIÁ·k~~Âä‹~4CqúLj´'BdáÔFN%£Ãs„ŠF¥•Y:oÊ6¨¹TBWÀÜ3.yëØ%çZϳ>:¥ì³ÀÚöô×§¨X\“Üšò­²%ªeŽùý”óØr߯ïðÀ¹£<_Sž¸†À ¶ÇÂSÄE 4Ñ(³ê¬Ãzòøë혴ÀÛ¶ € k íÁxÒ\º$>º•%‡®Rãµôx *÷-—ô*H_3‰|ñ}êá–ÍŸ  wPxÞ¦¢™FÚÃÓß´Tó3öÁ‘HzPWF4‡n;¿ªèêÜuëŒ ƒš2,èÞ•-¿T+cļ…i>o6æ.ðv¶DpýÌ´˜þa©cËÛq×9AÍp.Âax ôr-x1ÿöswî;:`ÇáÛš"¹§%#µC3hSŸ.vcé‡g"ìeð6¼ôh‹C´Ö/²o=ÚpX <ίé0£îÀ[7L•Hé/À¾EìÈ3`¬þâ¢?é/ókKÔÎýŸúNžZó'üôE7vÄ7ÐÊOü»Ù·;ÁÈS}™ lÔ盇‡¿ÇÉëoâö±K´è¯3žçîƉ9ùê×ûWÿ@ã›Áendstream endobj 1379 0 obj << /Filter /FlateDecode /Length 1108 >> stream xÚ­WMâ6¾Ï¯ ìY)dã0¡ •Jݪ+µÕž6‡E,“p7±SÛiÕß^& 3=ÙIü~?ïã7ïÓ‡w&É`Χñtn ž„óx0}JÂx6HóÁê±(ÞŽ“8yüilV(û%QŠXÉón$äCXÀ *øH~o×éƒh0 œ'‰Q„·æ°.Ù‰½Þú¼þ²X˜5j_}öoa&¨6ÏP¥uØùâñ9ùU@‰YÅ™ û½èòOúŽ:rÁ €ÊZ¹*Šõi|*]\Æ÷æá§šÔ~Ù:h´QíùðÙ<—5f·±æ¡Y”¼aóÊÄð°±k~³¯GÈrnÍÔUE™Õ¼¥ì, „Ç9ªÊ0(7/‘x®œlW—ˆt'ª=æRTÒ!ú&3• )‹Œ¡><¼*g¤Öxˆ´T“7)øîx:Åi4g“¥:­fkŽxPÏf2EÓ~{ÈKçj멇Æa™ÑšLvCóâûwJÉV‰­þ©Ñ¿N ÃÞ¼4 É !ÔV±vøÜP±?«gWé̱Å-¹•và`|€¶³ý ½¸®ö.Ö*OË4è~U0Î}|⾋ßðZ‰ÔÜGêrŒMc®ïD8äaK> <=a‹ÊÊ—pS F.p< œ[,¢ž¶ö jº‚Ñ㧺äj«Œ8Y‹,p­_¦qžÀÕ~‘ßÃÌýLXrI]idÙ,•ìaîÑUMðßµ=U ²à¢Û‹š^²Q†§Œw•‚ £ÔæçS«ç^!V”åH×f¬R³ ⵩®xã û˜qÑ‘¤N í:RuVðöâèr6Óзmô`Üvÿ­û¹áÕ-4ñV¹£v À‚(h0Ldã0œ]pl -Zùö̵¾0±µ לíÃ쎔¹Qž1aW–~´ÍͪòåµSÐ2Úbh¯#.Š÷¢»¡¹^ëÿRAö¥±\L0 åöÞ X²`YAMMæÍ;"¾r=t¶ ¸«eNg%K+¿7¤Y*Šƒ’˜ó¬Ù˜ ýö³ v²“µÈϘ¥ ¥£‘¬—N§Ó-1± eçl÷9RËñ ÚÉ3Ýc«V£0³éFendstream endobj 1380 0 obj << /Filter /FlateDecode /Length 2153 >> stream xÚÅËnì¶u¿Âq X<ŠÞ ^¤A.läºh‹& ZâÌ0ÖH‘²¯»è·ç¼¨‘lÝ&»®Dž÷‹úÛǯ?¦ùUÖER\=ì¯â, «,¾*ò2Là䡽úw`Ýpþ%Ê£ë©u3zóÝÞîò$ì4>›gÕñνžõ5`Æ·¿>üøõÇ8[PÞ%QX'ñÕ.ŽÃ:ÊF\‰­QÌži£Æ†ýÔu¸tútþ«uÊi‹ ‰)á5²Öc\Àßìø{ƒï»AÎoyéÎê?E¥!s©“½¾c°‡Ì6@IÖqü^™¯Ú(çFüž„ÐM¯BÕ83ô7^»™dƒ‡ÒµàdùÎZÖ? M4wž( » Ù¨®[“û!¶Cô ·G›Oê+†&EÃr—”aUÕŒY…É-\EŽPÞ¥q é°*ó`4öÉ2­ê ·*L=‡#¸3‹¢ !IåI ŒIðr˜.¸F€Ï·ˆ?¾òî {=ªl˜ÅE6ðøe¦f§G°Oü¦'ÜÀ_Ý#ªÓ#oùêÏÆÉ] c^Ÿwêœ9wzÓÌæ¤m¬Ò(øx[eD.-’ÀQ𴈃Q+XÅî`„ó¨÷zdCà °Sl—Ž~‰Ó¬ÁËÓ-Qô2p|žos¨N÷¾f &V°Í W ÉžT5€Å\Œã¯¶ >ëŠw_ðÂñ/m©º}8§e {þ:¼ yýÆèR£œº®"ë¿2ð`Ø«ÈXÎÉør·+tÐÎhfˆ5Š"„] ¨À›$¤´ÑÝøúV@µo™Úz©]!µFln¯%èj‰™¶·¦eMÁ¬ jÄÙh`åj£¬¬ÐDˆ×{"º·Ã! Š%Bï¯*ǘV;Ÿ ŠkÑ€*§u¼H´´ŠÃ¤ª@)R棠DWEX—i…(E˜E%èfuÆXOï6 ë(¾Zà`¥ÚâVeî¹¹÷tÒ0¯KÎõ:‹²à^ª[…QQ­Ãk«I•a–2Ñ–(q&Qê‘>mjGõÿQó´ä*–âTPLT^$åGÆàÄò,¿$SÄ9(œ#¦Èk?öÜ7´¬Ã¸šÏ•™¸TlQLsPçh SI9Ÿ·æÙ´8‰ ÑG¬T¯$³:,£ÌßéßÓÌÁq3M,^¥7Zg4Ó«N ¡Ppè%qЉ]- C!‡Y¥ašåë0ûÇŠ(t¸ibqÂ%z¿s†Î vžÝ}æ•!Öœ°#ÐÚ—Ô—ï ü՟Ʋô<ÿ}6ê ›Q·ÆºÑìÝåÍrs"?ß\&ýÿ ªþ,x­rêþz^Þ7Ë"²Û’ë§3Î/”ÄUŠ¥%KJ_¸uKG–ŠÌVôÚ“h'™"¥'B ›¬ –5N˜§õaúÖ4ÒȱbÂZȽ@&óêÇÏQÁ`‚ZaQ©`ªœ{IRÅõ£ãe. Yëo}¦¿“ÄB ?"y´d …ÂA 9׌;õH%³¡$D všã¿C¯'u"%NüLµ1¡qRç«ÚÛG?óÁºÕ{Úð†Znº(êw¼çIR€™]Ú4¿Œµ¸¦ÒŽ–-=ÈËr±¿¿¦„»Ô[HuÝRŠÕ”b[Õ\[–9Jx7h-̹(½D"ž*†Á,8šÏ "Aà;{zé:<àZ#36š;…Ш<)®î€¦ÕlSû"îû€™YÂ+ä:õé͈h<ÖN'jWM’Ò©Ñ}±âg¬!|®y:êºkÞSp¢ìP¨–î‡#ò2|ûÍàí£±k€³†Ù%ªñµˆòìð€e`àc¦©úƒæ½¼ß`õÈŽ?R‡6Ã(‚ÐOÇ"<9 DX¿ƒ6Ôµƒïgƒ®iþ£fñä‹/)¾Ñ¼òEóB¼ù)‚Îhd¦¾ÓH›”ieË)BlúVío€•L€^:ybg©3¸‘$JÑn%Oæ{’K †-='U¸õjÖK´$ùQZLñ¥‘[Z 4±÷³*¬¢Äcšnµ"%¯‘<Ó·?Â.\V}l?õôÆöOiDÿ’ï Nη1Óú…Ä.¹0ÎáÝS¾)áØðèÖÍ“:wªß´Ñãÿ=´ï4´¹Ãî¨F,bnè/GÇ„ZäÝfŒé4¸øùïßožãpšÞÝ318ø2ÚBÆn8 ÿÖnv+Èo.òÁ¡7,”»áEBz²0`Ï—ÏÚ óæ4´fot{³üõöÆû ÄQQÎ/‹ý†ûwi ¬þ«´;íÚÏPa›c¨ÆM* üåÏÜÖoÓ¿@RÅø i±Ú|‘/ÿEnYþ“\üJütmúýõ;ÅL#K€Æ‹{ˆú+úâ4Zåo*€Á ^æäÿ¦š§§ÞìcÁkÏpçó0:ÿ§yïÏ}Ž`£Ñöz{‹ë<ŒóOzyðÇ"~øþáÃïx:endstream endobj 1381 0 obj << /Filter /FlateDecode /Length 1496 >> stream xÚ•WKÛ6¾çWx +¶¢—e»¨i)R @}häÀ•h›X‰T%Ên€üøÎˆ¤$Êòîö`ˆœ΋ßÌпí_½ý­f[o›„Él˜aämÃY²Z{!0öÙì«› ~ðä’Η«påþºTß‚Èôä‘êøÍ_ù l‚ù÷ýï3¶ o»*ÉÅ…V·Ï·ì[ ØACiVƒì‘¥$ïÎ2.ñ¤9ýöcÊVÞv³­®ƒ±"c+ÏO6¶Õ×Êè;õIEQ®Ö´ªD¥–¬V߃!45­4MŠŽ¤ŽqWmwêóñÝç¿>8Sqƒé2y¯U²<§G’«MIµÍL¤MA¹$’ ¾P´‡F[yÐÆÏ,#Éurï†ù4qO"Àá‚Sçæmw1yàOÜÍ2ôr­à8qC`Ñ(‰kwˆ”ˆÿ‹ŽÞAç%xêuÝíOò^íß¼Ñ×ÈKEÃ%ãÇžª­’±wúŽV±s­x$flÜt½–¢D·KRK,8ßyßM7ÖºOYFyJ;Ü–B† ­ù½¾žº)KQɉ«‰‚­>˜²á—C]…FÀq}T‹Öõen½Í&±#p&Œ­ ãLCßÿYÖG¿ÛùƒÞšÙ·ü§€ñº+'“nNÿÕu"/ú š3n@:5+J£ú”™¡¬{A 3–Tt¼•(Fg°a¢Ü3Ãgv»—MÅZ𗌺ÛÖîv¼ß NúCÎ¥¦‹*£×¾Òå<5³G­¡†çªµйèÞÛ§zÇø§$^ç ÌF.öÕëºeë¤+:¾½Í:63ÛÉ÷Ÿ–êQI'tn}/‰s‚)‰õ_Ë_yëÿk1ÔÞÏ7‘ P’þ>ÎÃKq·†I ¨”Ô '®¥P<%GKM…~‡„GÅÄØ[ò a­Ö8éMk¼Žq`#O)­8Í,‘J8›è#²kEiçÕ@aÈ$¹~q£5Ží_P·¨á.ãØÇí㌃-¬©TËVYl\°¸íuëŒ3ÉÐQ3ˆAÁYnˆøFÅõ¹Û’&`ÞðÛº‹ˆ¦ó’ò¦Å!%hµn¨­xàÄØ~Öæ£y\»3Q†—­Z‘û-ˆâÀÁuÜþuFš˜~WµT\5šæËd»{#aÒÀMÔJ®R‰\˜ .vOYg%äç+¬…†jË”ôÕö`t¤”C™Ò¬5¿rÿTˆP<˜Ò9q"ÎŒÕi]ÿi…k(cü$Ú#$ˆƒ¤\»Ìã¦Í 4gq¦¨Ýe#Ç\v¸YC>Y ôÓX?ü D7¯ôg•(KCÜLI«Ž+m?qE#¡¼©àÚ;ˆ¢HyÂÛ9Evþ‘·ŠôöM‡„B•LÆðz1§jDû^´êˆ°ÃDÊD¬‘ùêÃþÕw×íœendstream endobj 1382 0 obj << /Filter /FlateDecode /Length 1024 >> stream xÚ¥VKÛ6¾ï¯P7@j7+†¤D=€úÐY EOdáîA‘è5[™2$ÚNþ}ùÒƒ2½Ù¶ƒ29¯ï›]ß¼½Gqƒ<ÁI°Þy Ò$ ’‘`]›Ånù¸þíí}”Lä"¥$€F ;¶§-ï>AÇ`œ â^’YSäš©•‚89±A°í2$˜,þ„ü›Z:QÚ­VPþAêçq` ˜öæ·ÿa$K\wÚ64.ͺþãÓ{ôÈv®ìtïYO—iAWwºçÕMF¿Ç™_¶¥uG{vŽŠ;sÒ¯fÿÍ5Âfñ=ùÃ乂ÊíúŒºû_~ÿ8p‡##£UÊÊ™Sw¢¥hZá¶–TÜÚ¸¹–í£žÇÉ‹=픎±¨Å«5=É•Äç©  º,1^6µZ”ðj…¯°¥K‡)­ýT–í×®}íZþ"¬ÚI*NÔ> stream xÚí]ÛÆñÝ¿BèKxHDï7wƒ¨S$hZ4h› Ú ö-ñîhKâ™”|v~}gv–_Ò’§K|uôIäîpvw¾wfôÕ哧ߨ…KfqyµpYš»0:K…Ô‹Ëõâ§dSnËýÅRJ™\Uõöâåå_Ÿ~Ãùà+®\j™\,Ky&é³[b×)ãbÁhþÓ,‚K¦6Ó-Ìþ‡LµË8øÅRd6yÛV–rm[ØsöÃÿ‰A§™5þ¤‚»Àž¸R @ÒŸép€»6XRŽ RFÏ(y6¤Åú».ŽŠ=Æ5I]ÔJq&uæÊîÁ¡»Iâ1²èiRÀFµ›¢§|8=œ`´<&ç)® ŒóW„JKa9€ataSkCtq7a‹À^1ÙéþwQ5bLÓÖô½œVð¨ØUuØy‹€VE›`UàÁ¼myZF¡¦‰ê uR½jŠú7 kÙ×ySîËjp…ïödñ ‹Ÿ!C9­Ò`¾]{Ü×1K x'chNgñ)¦¨õ8ªÇ«*±9ÀÖá@¯ÁtG°jðåª3ØeLTϳ/b&ìyê”¶ñÔi=/x꘻‘ا•;ý±í£Ì2r9ðÛ¾^Ñï=dÊ`?ÆÌ ôÓÚ‘[C什|Š¥çi1+!JtXó=aóN,B ¯ÌÎ%HŒ“`¯d²ÜcÔõ %X&†ük©Aê¤?åõMë¾aŒäµc„™bÿ“õÕ„ÀÊþ˜KimP.ÀΞ²Àš ž´ûª `Ïš‚+‰Aøgf(Ö% âÃyò¯E8êÒ¬WÒ(GµêæÁüÄN˜ZçfB¨G–g*p]4«º ¶.z¤*èùŠb2xò–ÓÏVMªPøÖ+NMÙHܲ|†^¹©˜L®«rwMŒ½ª«mØH\+À? åf(w˜¬ÛÀ¾šEsâÀ±¥‹à4Ã5?jC²£DréµÀ­ËüºÚå<KŠM±-zïåÜ„pHW!5`à ´¿[æuX­×åj*Øßx{OE5ÃÆü™ù'÷ iâì=4‡m8’÷Àée7éõü©va·7¨q _ÐÇi¸mQþbðHÛÂÇ(È@f-Ù›˜õy«Èi`Um6ùmS„ù}ÀBæ þ–ßnòÝòïEéÃñb<iÊííÆ.Yù‹GÞîð-h OjÿQÏ,cÝù“ÄÄ2ëc‡—Žñ§ σÅsÂ_ˆG¤=¾ìyu‡«Ò¦Ø]ïÃýJÐÔ]Ù ®lœæž…ëä¦$„áu.sƒý<£‰u‘¯S¿=ŒòŽc‹ç»ª [OhÒœĨυu<‡ºhªö¢9¼SÊäp/ìh•oVð~Ú§ŒçҾ鿱òSåÒB:‰«©|Ò ÆØDJIÎH$fsÔ oâ·S¼)¸ôq‚ PD¥œË“5Ç™!:-x~šªÑ©s±¤ä‡ô«Œ ™æ?½Èo1:Ž!_!ƶfx‹ÛÍý)ýŠþz1ÂJG ¡¼#q,ѸãLhßMk’”òFAXõ.š¨®=ëÈuž\ÂÁº™,ìz(Úã e*—ð«Ì(7’k™f¦ß¶PÍå¾`AÐäÚÿiîð TX—¼:쉆AŠÌˆ˜:™¯QÆv»^Ñïuù.dÎð­K""òó8ŒÞ™—;œ1Âô¾×3šÃ¥Åeæ( B‡¬-yÐ÷àAo$PãܦâÔ¬ùQ5ð£LNÓ_+äCìqp¨°Qh׿ìÐßñäéºò5M¯Àßø0……h?Tׄ‡²¶Åa7‚ž‹‚Sr›|@èÓt…qx¡Mñ$ Ü—íõFCüzÀöyRSŒ®˜ =âf É|hüQ¶áÍ'D>á+è ¤pÓxß±p–";/ÞBnì$ÇF9êÝ\óºÌw«0â/ˆa#Mki¶Z’T±ññnÀõ!D©BÐ2Gnr|!±Þ}2ÅáDus(B”ÐÖÙ<·‡¡Äªò°ëðê#Ùb?¾hºóêÐ Nå𸚎 LóeA!Ó†ž0r[‡å«ý²-ÿÀ@.ÊÇ;0Ú†6ðXíh*HK(êÏIza?‡ J¥r2ùsµkʵ~Ãûƒ6º¯£ì"nU1¸ Ë#3þÊ L4¸J­œËoÙÔŠÎ*¶Ž)NÁ©ò<Ë(·‡Áå0£ãGʸ}hÕqDk_à@™ÛŠ&–Áç9u*Mj~ˆÚËŽòÞo¢Véq’ÔÓ1¢M¥V°½,,ù'Ÿe¹;C«õè obþÅ]Æxp¢ýÉ×—OÞ>Af³_›Q“pñ”J/VÛ'?½d‹5L‚¶§b‰;º]…šñÍâû'ÿ|òÖÐÇ NbJ šÉ@œ´ˆe¼0µéýÓlÊk)!Ps˜S·)wsQžf\Œ¸)ŠZÕ9µ{‹Ç±’?ö­c¶œáZ'K$ÇÙŠ{ g_FõEÀ‘¡förZÚ„]sÂfò9aÓ°e0€Âf½üÜ#l:Vä±# æ`‚n…í©ÁÅ Bœ9’Ga BÒçVècÈÀw|-¶0kÿ/TçÞf èý|ºØ÷ëuWÝGfûëÉ {ÉNFŒÜ \¨OHï–p‘QK…›u¬©´3:,%j¥\ÃÒÖ´ÿZö=Y§,'±”˜á”wbmqþ<~è3ºÄ£TÛN˜Â3XL-„Xif™¢BÞcŠ) ªž àü#1Ť<ò$ÖIAö­¡ÊÚ³Jospk™u2s]óÝj”äy„ûsŠ÷”„Õ|IØ|ЦŽ)çÂÏoõ9fGÜÒjÙ7’ìâ1¹3Ç«FbrîÍÂW:!ǵ룤³ê1§‹°ãΙéÀ$BZµ…/Ž®ÖS‰¢áy'DuäÏWD•|ã»ÓêùðKÔP|5ÌãXxF,yˆ*Ƥ$Šó£ k,2™,Þ%úbÕà³øïLkÇI–({¥ýEŠ™Ipòo±Ù0¶QýíD:ðŠÎùÛ ×üžž1Ð¥>ëó˃}ÌïŽó>E¦ôDz {›™˜9'ØìŽ7„iUm[ŸeSñʹv°W=ß‹÷µ¶x¿•„HEß4´‹j3ÈÁ'º¥pÙDª–êA•>Ýé¨à‹Ì—QÜo֬݇ãA}žãú2„(¢ì¥º›Û+Ÿ†éx¤ Õ}¤L1/ºUaàh>€¸ZŸ6æl²µG‚‚˜s{0ï,³äë·˜œ¥ê»G>Hlø÷º¸Ýä«h‚–3̽™GÈ‹Ý×Rû =¬Í®ÃÐ&÷É}O¡â–ž<‡@ØÂpœ74åÈ*4¥ùárï d’˾»„êgx)Å´ô3»â½ïìáÉ]]úâˆtˆÚK ŒV‡= ­òº¸:l6hüÐP[•k« ŽjðŠ5ß„¥“M‘¯{øŠæó½×$@Èͺé*†8S¼¥óúNº,¹l›Ëàcl¯›}¬†³/j¬mª)e†f?NM--i;nûiK)ˆ¢†S«¼u…cñß™ÿ÷Áí¦\µÛÔš'ßî Ý=}:plãµ×E]R5¡+Ìeæ»ÿµß¸‹àºÁVð,¼ õ¤¼/y`!¯¢Ùûº*™H w3]•¬íWÝlï«vI|Éé§£(<ßÝ”]s¼z.Á¶vÕnùsQ‡ÍU;/‚ðDKëz:HÐ'Ûùå¶·¶$ÿ%4æå6 ¯‰¬oÞìÊ«7¨w-º¶+.£k=©{ö´m$¼Œ¥ÿ""\jÛ6Î]›Òû/r å˜endstream endobj 1384 0 obj << /Filter /FlateDecode /Length 1929 >> stream xÚ•XKÛ8¾çW`c¶¢÷c°Ù³—4v;˜CO´Lµ9£‡W¢ìé¿U¬¢,Ùr{R‘*ÖócUI??½ûø%]dNûñâ©Xd‰“Äé"ŽÇ¢ÅÓ~ñ¼”¥¬d½òÓ¥îV›0–M±úþô¯_HpøVbà:žåùíVˆ9¡YÅ> d3²Ì ýÅÆóœ,âî•xijQ®6Ap [„˜J³—‹NuÆDHõr Œ¯iw×ëñk>Ô·-#£|¥­}SÐ$º•ÇÕ˜›–7ôA°ÈñÔŸŽ1Ù , §ÿ,K“ô3Hcã#>Mr‘(ú:ת©qQòq[УSõKÉœ`ä %I€\ìúË/«Ün¯ä!XzV2`ogeˆñ‹²ç]UÐÓ%#¬¿{AX7DKRM1z w7sþ~­Qh/Í=èÕÊ[‚8oI`Ǫ¦'™&àÊ‘K#ƒ3[ ³ 9pŸ!¬CÊ=íê†vdÝõ­¼R ÅñX‚àWZæMU‰zOL/Š<ë¬-JÖIÉ€MQ–Æawê*ÝKÄ•,ëísÓå}Ç颩x Ž­ì8ˆ´a‚1æÝ -ˆúÝ\&»~÷Ò6ý‘V•Å4-Í!?ÙøÔŠ(päy´8”í–¥{æo&~r(D®M(ú»0Bd>ƒr¸úô®jLä W]ôˆ]¾› ‹Ð€da%VhI_ju,ùtK¦£Þ=pˆ¹!« €÷™óeÄ€­‰¤*ÄWTÎ¥,79C–lI0ÕÍ<š‹äŽv0 é% ÈSS}ȬO™µ–cc3662"1`±}B±pŒ:“¼ðTõ^å’7mo‚î5ª§AìøîPR±þuÞÖÕ „îg™8Òc í’šKlâÂo#SIãxœ†8! ÆöRákÔl(gxv=äWϘíy©ÆÙ`68ú×LKÉœtjôXß8óm]Ù”LmZÏdN †ì¥Ð‡ÿ׌KÂq P´Px=˜BÜt^QSëÀŠš,/ŶC¾k*nL¶:ÕŒjˆ¯ª°<ò{ÄðŒ—!ôÕÁÇ»Áÿ #Å^ah‰7>À¥½ËcLw·üp$xã%¡“&ظaÓg¯9ÊArVú XR%r å›<ˆ$¶¾¼3ƒŽxL=ôµúo/1Ú¨ãôÀ𬔆Wã(ï‡6N¼±WEõ÷~pº¦ñaý4ìK‹³M)ª°§¿ Ñ9u_ÉVåoùÊhƒ!ŒÃªfÇ1ƒQ늤~=JÆ‘“lõ|EÁÕmŸþýíÞØË|û"õ×£-–Êüá­$ÌÀ`êdq øÊàrx<™ÇU”{š+qå;}áI×aŸê¶9o™•³:oÊ-)¿'þô8NêLߟìÇì̹ÏWÁh[ñ:1i¯ª­‰L=.£ÓÅ ß«ýTM×Pº/µ…*ð=ß~¹Kz51”pJÑ.Äšˆ£äÊ ÍÓ ®3Uàñ4'iˇù~1QºË¥¶LºÁ{{AŠmF}u¹JÇ{ ò­ÀÌdýÙ[Ÿîª”R”ë‰Ç‘r—Ÿ÷”ä3°'·žA_n£>é¥`‚%Ñò=}»ëQÓåÙv'¡7q)Ûu²= SÏÆ·/M#j-_¤ ó€A›f[ w6ÛR÷m-÷sžoEïM¿•|ÆŸZ2¤¡vì,~ì ·SÿM+ô××P°žâf~ùäÞ-c6x&©6ôô~ªÇ5ìj É2'}{ÌÍ3 | DW£ÉL,Œ¦å§-ò·ÑL"õ³b4~âtãÈvÏ/“ãáÄP-è& ÷Žžß:zÖÏtúû½.¯•Üßö†ÁÅíVÝSl‡1ƒ“àgµöÙŽíÖ½“Ï‹7NßÊ„ç:¾7Ìž`ÖUtäúäÝ1?L7 ÞÄ‘;^tõƒðóóz}#³·Š1ÛÖn­Æ½ ¹Ûÿ•p4„˜Â—|c$ÂóÍ¿Ôw¿<½û–ß endstream endobj 1385 0 obj << /Filter /FlateDecode /Length 1572 >> stream xÚXKÛ6¾çWÒÈK±ž¶ºÀ6h°é¡X´»èÁõ+Ñ™rEÊÞ-òã;ÇõXî6“æ çÍoÆþùîÍÇÏa2Y«,Ê&w»I¸Ì‚l™L²tDq:¹+&o?ÝÞý:ñc …ÑÄÃ`•öI?g'ÃOáj8䣕 šu .Ê‚0&sÍ´{IØPÖÛ©ŸF©WÔzm(©ôî\7_•©ógÂy:÷®5Û“zSïôÊ[&Ï©þÆ„^¥‘¿«K’äx¬ž†ä=;Yj-I%.—ô†TÆ8!‰¤b`^¦Í#ŒšéG_¯"óò/°™"&¾ngšÒ²ÎCð(]¤Þ[YZ« ½kÆ%mFVȲ†‘çQ¨+X\ M!"8Ñ\Ö š£€»³¶#–)W®n”[–ZÑ”ÀZ˜‰ö€«rÆaFAI14ä\2Éh!ÙÁøóCÞÖ˜þÓÜ„“Þ…LàR £ ËKºQ¢Ë׳ƒvŽs㊪R¾aÛ¡¤Šò½T¢PNÿr«0Ô—o†—Iè믘xü,Åë©P:Ã$ ¢p54»“¤ã;T7ÔÏëG®kÝwÊyÄvˆ*¢"à77Ú2Ež›õF§·Œœ’˜$þv=*ü¼><0N$«m]Ÿ™,ͳ¿È±¡Òl§Ñ½Ù_¬Úšµ©Ï´Ñqõi¼Ž†Wo\hpQ=×å¢ù—B?ÑF€ŸCl3â”´çÞ¼n׳‹+&XÌ!ÚÍ]ÑaF—JàzvÆ]of³pTó‡ Õ ü8D˜†K㇢Î|+êÃk’8=«’ è×ïÔÂùÜÖй¤Ep ²!\°^Õìë™- èø¤M è+Ñ©«ÂaÏàeZ4wdÚMN,àíšúàÒs?Tpÿîêݼc0ˆw$ͨýµÇÍsϽñÙ(£c¿ËþíÕM/ `ãj[—á’ŽC·´-Hë¾ØÄuþ™x1î{Cìw…m“B ƒ•W&8F'ºòÌýï½aü~Õ¶€¿_µãƇT”•__Çåý8,¾å :á†Ë#W• ÷P„}ìvˆ<Ý:$Ô•ÅRhq—v ýuf§åêÕýÕ½•;š,ýh¬"×´jHáÿ²#Km{ífõp8‚sAe¯qÁô5ifA¨X‹%åtÛõ^32ÄU³kÇf†‰Y´íéâNcNv$tÊF^õ½3~Qy{(É¿ëë—B›,‚ù"vÆoÙã[‹¹à—D¶Ô\wøc@$òoyéÕSø8á‡:ϼ]; =žKÕÇðàŒDlïx«ØÃp‡ýW /<ûõiÙÔí¾4*¨qƒ8‡ëE=NŠxˆ»0PÎÇKÀòÖ˜èT)SÕ7QÕ¨òlx¸^+Òì©w‚U’Œz:‘€R¸õ!‚©ŸD™÷;…˜#bá9þ$ÁµŒïÍ–´©ž.ß?ù¹¶¤ 3\—`*K]\À# Zƒœ õp8xÀ…ûšw‡zSЇv¿¿È?¶ÍQ{ Á\¥ò#ÇÌŸŠ‘’F˜EI´f< 8SàF_Q˜áÍ1 %9¯”ÀLž½ˆ¥½B‰¬=ê­1> stream xÚÍW[£6~Ÿ_‘™‘ªYmâÁ&¨UÛª#µóÒH;«41à–à¬1Éο¯Á ªÉv¥}râcs¾sÎw.þeuóøäz“„>ò'«x‘ B4ñ½@R°ÚMÖ…`‡¿Ϲ)y7ó÷@wjÅ<)÷$z·P+'ŸKʉ>3®~sñcõ1õ‡¾“ß…ï6«?&3äHÅP®TŠi¾û¢Îþ4S+ã;Â+,t7U;ŸÖS´©¿2ƒrÿá¾>b”“£E'èžh€'*RškTåöo‰ƒ3™ABÏkÔîþ¨ÒýüAë®´Ucµ}ÀT›Ìbµf8I $y‰FÉ€BÔ£°Ú×*Ÿ?X™Ë¾ŽÞ“î]å§umÆFm-—&€õ6ÒÛ?¨å– ÇF#T¦ ÊQ%oÎÜ×wZžAZWŒî~î5;nðâüµZš;ZõKÇŒÛe{WÅßøåñ ÎÛ„°ð\©³Ö«#ÎÏàbuQRÖu§¶ó½Zö4¯€žR¥_‰øÜ6ß 7;Ùeˆ+NߎƱd¼áyÂYy(¦ÝD½›öP¢Ò¿–fn\gS² .éqàñü¤0LÑ™Ô>šÂ±˜"1©Ž{'G¾6¦oC=׺±ŒY–±Ó¬<|ga“Åõ¼rØzk­ìSgMpž3ÍÌI«4e¹«¡é•l¨CÀ·sͽ0EEÍÝŒ¿]:#\txá(Q°¾Ž”—º}\ÉE8ÀÅñsÂ<§yrYf¢ç‰i”Bc´¿A!C(È÷^eN„&©(z+q[6ÚAã!ž;’þÿâëà_ ½í¤ç¤óÙoØÉÌ“Óe•ÉR%Iµ_ývr`áÇ%?ÆTüúû¬.u™èé÷ÐñÍ%Ú­ê«¶y, è¸ÀGó.Ø{eõGí–g¯ÚKØN•ÌÌ|Z„…­˜²| ƒh8ê÷sŠ·9”íÙ#áú«1åEïŒz¯™Å¶áGÜ(6£§L =P9 wf^Ôm)Îô8K8ÞëÙ•%4Ò“3„Ùi&o¦é1hz*ŽË,3~$@ËþÔî‰X^^rÊF‹¹¾³.¥ƒSôÀ«¡y,ôäIiØn®•9ý\Åù¡:*ÈþÐ3u×A®óD¥É •ã¥}¸è<ªåó‚Pq¾ Š¥ÁQúßï–ÖMƒªÂÙ ° Je™ÕÏÉ!£‘½MÏXÞÄ0#yÒ„½õfÓ9óÌNÝ«'ÆÿékM«quÇ¢L>ß²¢¼ŒMøN(§÷ñú ß÷%Ol%~Y.éåÜqFn§'þ;ÉBE â[ýtƒ›i»7KN›&Zª.·rÈõedÚŒš^v€öIÑðÁI­[¬×t³éµ]g„pü ˜×adÈ0Ôq ë0¿AˉiN‹´Ggà9ôÞÚnäDºno·Y•> stream xÚ¥WÛŽÛ6}ÏWNdÀfDêÔÚ ’¶@€h¯d‰^«‹!Ñ—í×wx‘u1eoÛ‡ÅRäðÌá™á ýËê݇ώ7‰Pä²ÚM°MPEß •U:Y[ÏU¼e|¶ðˆgý¸PÿwÇ"á¬,žlÏN2V󹚧ÍiÁaÏ6«¯>c· :ÈöÉÄVÀ;eÒc°À>AØÅ0À(ò4NóCCàêr½Æ›Íz­]n6S€ïmf;µUld5Êc^±‹ø¨bÓ[;B¡Üe†(Â~ß_‘ôµ*’2ëº3qlI q61ÊâÃ!{*ÜUþ"áä´Üq¨ÑüÍ¥Kß®¾ò»}­Êór5o™.‹dDE I“*ÄF„f55€aï~FxŠ°Ë¥/q\£MxYý/WíºÒ=J¨$‹ëºÝårÊãmF§-rÜËEs0èžÑâ™ïMy9ô/¥Tœ/¦8õä÷;q2GÆÂǗݰ4ês9[8سû:ˆÁ_ýDô(2îà†³œ^¡°xºìHÕ‰ÖZ«©°œ¶`¦ªXý"0`ã(†²º‡BO Ke>Ž"­ 0~“Т.«å8‚2gr¨èI ò€ÍÒì>Ž­Uy$L§½\˜BVÔ<æt×$–‹õX ‹„ú!9æûøïÁM®ªøuôwyŽ]c ÛO9è(ˆà¨O"eù2‘I,É6—±ûÑžG2¹wS}pÿ¶H´(ê-ÛŸZÓÕ”Nk^Å<îËô_Õi™\Fc¢Ñ=KMÑŽñQSL­ª>DZüãi7/ˆ=T9z¯L³Õ¿s\«$i wOcV4/OÚ*•á*öŽ `í‘.ÏÀwï6$wè:†H©ËÚÕà:½ž/ðæQ3y»¶Ý•Qè«s{„”}Ýz·…ôûDر‹P€AV8TV?§)ô‚бø~†-ªÆ‰HD즴HôÌ6.ÒŸˆX«½œ$Ki¬–Y­þçålA+…Ö ÅËJ•]Y¨ÕòJàòßþP Û#W+gîåßkLŽÀˇo^Šú¯ñJ§O^òyã <>ïõë§Ôýò[CBQ‰ ;îw³Ï·NŽ4î7¾(zß!È áýèˆh8ÊGX¾ûuõî0u‰kendstream endobj 1388 0 obj << /Filter /FlateDecode /Length 961 >> stream xÚ½WIÓ0¾Ï¯¨:H³5ž8{$r8õ‚€C&uZ‹f!q—Aüx¼é„HŸ½^Ðá1û‚8IbƒÉÏo`Aöµj+™Æ~/MË/7c |«¤Æ*¢p^, ëÔ(‚g1êKXrÏ€>RRQÅÄBf©¸1ÔÁ=jˆ^üÄ8Ê ë7\ÅQ|xv«Ê,vkµñÀ“{¸Ã÷¼­IFõa‘¥í#Þô«{bSvè8 y ŒðLqܶŠóï/4ˆ °L&X#†¹©ù ä®ÿÒ8ÆU|¼²ú½õ)Ü?-1ë_ ž0„ÆsÆ;uœè1Ò jïÉCÃzñÁÑŠg¶pçKoj£r•i1ÜíRO¤Å9ä‡ZÊX#*ö’œ ™éAd¤Q/Ð…Øå‚òãP ÎWܑ뺼êW–].xp µ³¨äN&îü)å¼Ë|SfŒV¥’¡­z®HC†ª‹={ò+2ƒÒå Jô]…¾ž¤bŠðøß}ä÷Ý¢Þ°!˱ïAƒ "LzZ QˆÆ.Âk6ÿ¢’Gý¯Ó%'%kîõÙËhAf’›^¨Ä^v¬'BDz— žßHGº±ƒœ®ƒÇŠbäúÞ£;×P#œ+Mµ)aW9w|ZT>IJ½Ø´0¦×¹[ëŒôÉvpv‰:@g§ ¨ì([Q°T¤_“‘˜äñÀ/gY+Zi<î¶Zou<+ þîîaP´´\BÜ IÙÃ[ ¦«ÿ rý#À¥°¼t˜K´ÍéÑç=þçÇïùÿeˆ ½±ã ɳ÷ó³?_]²Œendstream endobj 1389 0 obj << /Filter /FlateDecode /Length 1270 >> stream xÚÅWKoã6¾çWÙlÀfD=l ¨m°9E >ðæ@K´Å]=¼$å$ýõ¾lÊ–³›CуAj8üæ=Cÿ¾º¹{ˆ’QŠÒy8­¶#F( GódB8X£õ¸’¬¦“Y&ã_gf­èVâK[ubM½·ö”3IØä0Ë,/\nDÎÙ~Ø´-;k èžT•Òï^tüÇ9sÕ jzªAæ ”¦q©å…×ÍÖS¿KXlüç´§Ã|øføã›®;‡mo¦L½¯¼=ýQÞ¿/N5†ò±:ŽÅљ갘WÌ~œ»7 Eàô^·˜ ¹{Ïé!è‡N¨ íÇcßʦoÑ×¼ê šýõ›"Þœêåù€Ùlk®÷µÖœaƒŸÅ z‰‹TfÃe؃3} ¿ìý–*‹L|7MþÈp ÜùÇ86œ#œ„gSq&¾”Ì•KõÔÕÂÁ4ŠAƒ4È›\–Yshò`ð”ÓÆO¦ùÌÞYsŠLæQ†s¯«KòOF8'oN/C›º¦]gz8›¹9múHÿgÒ'^ `õ« cA>9„ø_9ÀcâÎ÷„ë>¦¾¾8®ì^MCµÊÒDÛñÜîóv2 —ãÂ~ŒëÑ›ådcdÒ×Ã<LNÜšµ&ß&FÏäd 7fuG Œb£kïgµ§T³Q«Σ…@ÔÓOmˆ9C‚|14ú*!Y౎c”ÆgÁy`\HcššÏ8n¨çßp¼í&æúÕ¢ ²$–¦Q6WÕ»…Ç0ñwjk¤Ÿ1uÑdÏ—ãUi¥ô‭E ¥&sõˆœÂƒO0·±Ð&8¡ Ž®øž®â]À”[ã¨NP““½ÿAðÿÇ ”¾÷ºfÏë¯Ï—¹Á6Š[ÓJbô³OI%¸ ŒÝÑP¤ÐI–6ÿ#ƒTZ•æ¾,´\$NÔña2/Ñ2'°®•%Eçóê例öU¦„>¡òv@¦{À¾¯~|¡þ¬0 ÓÍãä=3fiŒœöu~úü÷£{õY!ª›œÈú…º¾é±Ã)|…†¶žÈ…ÑÅÄh̯*¢^—æmqI‘j°Âë' 8)<…)Z.—F0Åxóyuó/÷4C£endstream endobj 1390 0 obj << /Filter /FlateDecode /Length 1523 >> stream xÚ½XKoÜ6¾çW,zÒ:^Z$õXÁõ!- =¤EâCÄ(d=ÖLw%W¯_ß©—¹†ÑC¶ør¾™ùfHî/×o.>Èp•°$Ñêº\ ?f‘­¢0ff®óÕWïËû?ÿXoBz÷â|½á~èOÆÚ¢Tøæ‡|}sýÛÅLöãÂg"‰W>íT¢Èj#|É’­\m8gIh´ÜÑrM–K¶»¸í›P•©M^dû´)úŸEAdW(R—,ÿYYVîûîRÖ]ßT]Û<\èâ¼ËçÊv´x;Y» !–(C8‚bïš](ªµØz]»ÞHá{] _žxÝ]A¦î;U4›6kî™ö QÖû}{UµcëMøÞ‡õVzuCiEßÏ´°¾΄Þ÷"ëhà—Á"ÿ‰¤>Ò§o—z²Z#}À0Ä=®j³}]O¹,!qb]Z„Ã5FhæBí)½¦( ´CÃ!‚†¶$²–À@Zå œÌåÄs Ÿ +²ÐXÛ»I°Pi€91ÄŸÊ¥dþ64,0––:ÏIŸ%|ðÜ;h-bïˆ ¬Þ÷‡ŠÚ‡´kÔãpª*`ÅÂcEó4zM7ŠGÕ‹’1²Ô4ÂÙ4CíwÔkû‘FN[ þ™©mÝtÜi*—ƒóorq?4\˺ÚôKÛ S ¦Ä` äZãGÚägÑb6Èл¶Òß|4mg–î ›|4 Ã _B©›÷ë úZaGåõÄ|[¢CqNÅŠ€ ÑM(ºÌé?°ÄŸûO¼Ö$ã?tFgÃ8Äs`mñ€ˆGWàÆÿTXQ× Vµ–Â;ÁbÉ‚h(™Ÿú*¹Õ^µ mõ•úœÖ[’ø±Òi–î{ q€!V†¯ŒG"ï$3[õ£8•´}g‹I…¦IQáÓ ãÉšyLº´ë[‡åÛŽ–!©iʨ­Í¨ú¶-0,ôR,ªÚ°Àó¯L¢Dß–®,R5;[2ÄU8aI1z”!÷ Lt*ÝS‡–BÓ7Xal’ý0LÙO•î‡Bïx§k@þ¨öf7mZØSFå  §é¼o¨BA›ŽùÔœ)¡9a"Ý뢗"„§ÖòpÇóCcT5åwÖ7ÉJC´ïÕIwìÇEÌâñ¸ø5mª£Î$µ»›äÒ¤€b"ž 9p£î:6HÛ •rbxíIæ±JõôœT9°D¯#£ ©›ÑîÞŠ3ÄsT॑qÐÉU g×mo"#:Má«cEY.l–ãHô‚Ösè,è…;½ÀJÍ0èêZˆ,ƒ±hȌڱ[g±ZaL‘{\2(ß3êM-x}=/°Z9ø%BÆ¿>–>T.sâçË{Šå¡N¤” <7¡æ¨Z# ¬Ü–t‚6¸L‹í#,‰=¸d¢o23èçtßÔ+û*3î„Þ!ý[Wï–ºúZß"m•.û‰ñ8ncÞºÓ¤»Ž´ÇZ \š C5çK}#2z(ÕŠY^‚ù‰[©¬p\ᕌWÕǯêæë÷G…¦.“U=°hZÙõE½1åŠ9ž›´-súÔ%t¼¾ÌeïăhþHYÞɧϞ+SL%ãÑâ1xqFKptéA÷èc#¥‡ ROÔÄ´HíÔr›U¸ÅØO¥š#§å+³]hÍèÙ…FçÏqaI&h‰¼îo÷ÙÙ™¥$<„}UuF1h9§æ8jN¼–áÅÍäxp»5´ ZÙŠl7W—3Ô†us¤ôÒeÛL*D¼Õ9IÀJš¾¢Ú:ß[¦ÛŸÿÒ±C‘‰ð.T—ÏÖá2üsズƧ•žÔy†®>¡øE:—¬.uå_çþŒ»ÚÎÛ·/þæ±}1ŠIÂdÏ£Þ…ÄŸ98?åœ|{5êÒÃwþ0°`¼”–¿ Ðoh: |ôªÍç÷”€ ¼®KLzIr\D(ùæýõ›£Å²sendstream endobj 1391 0 obj << /Filter /FlateDecode /Length 1254 >> stream xÚÍXKoã6¾ï¯0|R[±(K¶äR4ÛŠE±õ¡Àv²D[Ü•)•”ìÍþúÉ¡,)²ã =ô©á7Ãy|$óÃæÝýûõ$öâˆD“ÍnâûÄ[ùd…+ád“M>9?Ò´H½›Aà$E¡„¥SîÌDã—ã]:‰`ɶ Ò»û¼ùõþ½¿ì€Ïý¥/—ð sÁs£DÅÀ[¯ÂÉÂ(ÈFw¬NÙÜÍýp:÷®™ÙSNKÍ (Ë xÆR*ÍÀ½×&Œ¥Õì@Q¦U-ŒxïÊŠ¦lg­¼ [ANà‡ J!¨ý¦>IeÓ ×TPY[8*æ¨wHìÔy§¢¼eMÓz7Þ¶TôÍ£*zµ†{dR64»i¿e‘É:©m9=éaÉSNqižð=ã{3ÒZC $ðbßÈÊ ÃAâ»J&jo _KER§ù5‡»xnË9§—¦JÐcRPž¢úBTŠ›ÁÝüÔç 0³yò=™Mj-Ø7#'¶4r&‡ER•m”ÇsÞ7Û³$ê쫲—ÍöK›é‚©Höô߸0¬WmJªn ¢NÕùXP»Aa÷ü±v1 Åsß1…ûªºÖ].‡™í–=àwàmgÑÄVÎhM^ÌóIÛ"‹s’O”íóÚ6NZ6m“ì^:óFcu5 mšHÚµ+[²¢ß¬Ûç‘p¿^L'(þ¢˜úÛã½Lö³w_)'nY¤à1›Zñ6næ–¤ -dÉÕþ|>†[n嬰RE åY¿­±L’ƒ-Ž–“ëm–Ü‚CÙ»ŒÐHŸ>?ŽÜñ}?ôÑÊÞáw#—|x^¬‰U˜ruLOgS®›F ¦Ô§˜¥©ºVÁ@{ç‘eÜÏþXˆ±Õ†-·òtì {Á*²Ö÷Üó­‚É뜥AP.¤©:&hõØ‘or<ç(-UÉÏÇÞk•`Âc1FíPÅ<¼~ß,m;²ñóáò%Iyï¢Q»HmxòëpvŸª1”wdíœÔµÄ‡î©•°pšÊLÀY9pj)%sr©iÝÉJϼlaF¿la¼lAøˆó[ð ^„¦ËŒ †ú¥™m¤¦ÏÈÙX€ÚøP¥Î\tbÖìVûGÃx›%úz£f8I×LûŒîDSÛ†G¸Y;ø"´*õhðÌ~†¯ÏFΚª`©âõ±ÇúâýLׇç#’’ü."{*þ‚bÒHþhÑáEË,Äõ¿=}øió³ZlN®óêÁÿFâÐóC(9{ëõÚúd¥4ß=mÞý|Fendstream endobj 1392 0 obj << /Filter /FlateDecode /Length 805 >> stream xÚ­W[o›0}ï¯à±MÎH@['mSÚu꺪CÓ¤®š(8 [ÀL²ö×Ï×Ô¦6ÍÒ=Áç;ç»ÞÅã“IàDn4S'^8¾Ü(Šœi0sygÎõay4òƒYpx|4 @px>¿8?|÷¯A5ö¹ó_ÝÄÏù¾wyõ9ž¿éδÁ †€v²¶Zå)y¬l ¶¬öø"†ì—FÎ.âùéüªc‡%®ïÃ8/úPôµ@1 üvÈ/¥Ž™r ‹Ëc¦'ÂE_3 ô ˆÓmc€±çvÜkɸš¿=§° ¶CòLƒ(dy¶ST=P)¹çRT‰p£¿æeŽódÅU ×É –)äëÁØ”ŒÊège\Š2SP%/qR¢(ƒ¶¸…µ.•YiŒÊdêà"׳4g%†?aÍ2H_ë2ÁÄ|–ÔÉj…Ò­Þ¦Jd4HÂKñµ¸j!ºýSÜ+OM\‘`=wŒöS‚ëüÝ@ÃúåÛå æ»\Ð2÷µÌ±nN¥µ—£ô6V|ùÆ£žßêÕúÿz52ÑÁU#¢¿?±/¯J‡Ðµ,¬-Š;5­}Y]Û‚½î ¶¢¾„k2 ú¿jÄJ—Œ%nO·h.‚o'i),ɼÏS%ç7f•%¸vÒUçÍïÞŒëÚvì)”Z·ÊdÔÖЫgt[,“{KìL­0—'rÓÆ²¬vçªámM pø¼‰Ø¤u‚Ó%_¬™½“pÓhìTv†ÚÛ•> stream xÚµX9wã6îý+TRk &@‚Çón‘¼—-Ò¤Q§UAIK"µ<¬u~}<*Ù¼¤"g¾¹üuùðü5à³”¤‹fËýŒ²€¤lñ˜0x±ÜÍVÞ¾(ç θ÷ÍçþÛÿwoŸóªÎjÑná=¯—¿?¥aŸgà“˜§3ß°C’ØE’”F³¥$åFîáœÕ+¹^½­Q‚’ ŸŸÙöýé X„”$a0üôÕeÄ]î;Ý+±—õ„’`0„÷t IšPK0iÓ‹(«"Uoe·5èêV‘ùà»$hEhåf –0B“ÔhM+¾ààò¡ò”Ò¢”#”²2«KYäÈIOTJbªD¥„ûFÔò æ‹ âÞ¥”ç¬üÀÍ©˜ƒ^qÁm±ÇgݯevV›È»Î4;+|—Šüµ£¿U˜1F˜·öªŠ²f·X€µ±û®Dˆm]”OÀ9¼«¬[.Æ%«ªVlY4¯‡pH¹åÒW”EhøÌ'²íœÅÞwM.¿7IbÉÕëê9õ$ƒz‚ÌaH½?6•Pû޼ϹòŽ,ò ɳҰÊjd¯‡'27€´Z”À>8á© oÀcIà)«…-öÌ›µ9Ì‹Zt\‰ ÆÊw€Û§^† æUß SnJ4ÆQ+^WÀ7¤ ø Iµû®s!vÓ8ê{\ä ¶ÓÏøØÖò,ÌÉ|Šw » J9ñ£¤e¥±¤Þõ†F‹»".ñÌŠGa7œ¡ZRÎZ"Y¡òÚJ5:”žʆVÇE­”ZaÅÞ¶)Kã<°þU ±ÃèÍÈØÛd•Üâr±§øÌv;\ä⊋ªÙ7(d4š8±ÄuËß„¢µÎ+pDq¾4µxrÅI•)¬b˜[€º9é€âP1Î1Kq. mâ™ô?.²;Ü@Òš\Ý—…)#WdqE —6 ýÞÅ©ãk>X:KOSvN†Œ¼ °Pß6•ŽxNI”Úxº:¸@È@YçthÁ®Œ)íy`RJ®r-gÐm²i8êXt¼4gEV®(û”ñ|d=G½¨;}à‘.4ðÔu.ñ†R¸Ô¥@-¬hLt …U‡ìn(Ñ€¨<¦ÐŽ1CZ xª!è2Ê•u­„c,š@½/š²ý~'~HÝk`wÉjH#]c{¼/'´Fâõ ;Q¡wî¿3àq³-ò}Soâš«`¢ÃaýæÓØÕoÓÈΘ×À¼hjȱ´í­Ð)t ´ (‰»M­íHÊ~¶ò`Y×]…vÞ0"AÒÕ¸Žl8³1t!×*Æ4ú)R}(þ¶•ç·<¹Рh¦Ûµ=tTK™mNÂ÷š`¨›àØÆ®jƠ潞7žº`k¬ñkC!wÃæ"€q9 Œ]økí} –eA/ßå®Ñ£@p›îp4a«­Î,£+N‹SjÆ>fðÿ¸KÌ­–!‰}ËI Õáu}K1Ê\¦ôH|⫝̸Q€Ûðvc F}á$éÍ£Mù÷­\˜fèàœú$ íÒÕiú,¿àØ„Fá°.Ênò±sþó'¬–5n; ]ñžpmïm9Ñ—€²Ì>*\zv5qq©á; 6õÌ ÕIÕìÌŸmâ賃ћß¶»ò¦¯2/öÜå;s1½ww…y>MùèRz4¶ìà3¸¹/°=ÓÅÔÉj{z4Ñó'3Ÿºýñž³,ö­‹p˜ÛDÝï)EÁ-×_ÔØ¦a6“¿jw=•ÛÒFD55;ƒðbä«- ÷õ?÷qŠŠë!µ™þÉéÍÒ䮣ÒÊI<”zë'ºR‚Ü®êÿ Ð6Y×·F˜‚8¼2¸!ÂÔŽþƒ‡±~®äd÷df~ê„õ éRu´{¾È«Õñ¸~||qPWý?4 ®õêè6Ùµ¾¬-¦?h ô¿¡JOs²ç¬ü¶|ø °–a©endstream endobj 1394 0 obj << /Filter /FlateDecode /Length 1507 >> stream xڵ˒Û6잯ðQÎF\ñ¥Ç$Û™¶“LÚS§Ýž\d‹^Ó²¥­$ÇÉß$(Ù´µ^g&= "A¼üåñÍý'.'ÉbOWÊ8ÉØ$– a°ñXLfÁªn¦¡d2ø'’Ñ{õ‡ª‡îî`Nç¿ß¢â„Vš’ŒÆ“ÈQA ['$Ëä$¤”dÒ±Û< á¶n:6Óó÷æ Pñôê(’êôNÍ6s\ypÇ—fõÉ(‹ËÒ«¢eáIìs­·EÛårœ#»4Óˆ0wF¹»Ü7ª:§ÊñÐÛû1uªvÖÓž‡¡¯qŒ(‡$:p~ÕJæä¾ÌôSdms©§Ûp(¤ƒf•:ܨUÞ5º-}ºÑû„àŒ1ÿôÓˆWΨmëX4*/_&Mo'íÌ­MøÜÝ}/Éô/# 倕™%ˆõ¸yy"‚rÊÒ@}ß/Sy£óÅVµ¸dsŽ'<èúËz÷¼‹ëºÂ¼q;ÊÎü«“˜žHÂDD(âý󥬔‘„uyUx¤y€ál„îpç¹Q(öVUKÕëa”Zv û¥ !ƒdO“³dÿãR”„$ƒ¤d„PBD*®«"£‚6 H§ üÉm [¨Ã¯Ê—Fø5þí+ýï^!lâ¡çi(µF3i(À0ÖS–‡1£SN$Ù\Jš’(ë·ëÕ °”ìf]—5¸¢©œÆ ÝÑ|3BÐÐÀê! `…8˜ÂcŒÁWé­²oömgó?ä¦j²Ô÷ñÂÚMAHx⢊ǽmaÉ·í;³˜º0„]PÌ®çÚ*ç‘hòªÕ&+ÜŽõ¨Å KâyPÊà¯úHòÒ\€$;Z"” dï¥'ÀÙl°ˆÚªÝ1]€¸n=&`))H–žS§ÖkúimOƒà4(ÀaX­Y«&_b0‡uÆo^=©­Þ!ô¢“SIcWœœÓ~¿«¯“ã’$± I"ûÝw†R†þeiö‚éå£Ä·üf4£–7âÚH¹b7PÇ`C·°_ß-Pw!Vd*ƒÇ2‘FAS›ŸþŒ&p u7¡¯ÔÝdÐq’Xz4/TTÚ|Xi÷»!ã ó¥N¬ßVø_¹õºRhw@;˜6iïD)¬ÙÒ0RÀxL²ˆ¾îN(gã¡?È@ƒVuƒô˜‚“hHwïR[W“àg¬U­‚Ü/võ¬EƒÀÂa­—¦¸­Ý¯ÝGx™o·}fø]ç¶.Ê€:ÊûEg"B9ê˜/:½ DPèü©®rG-ï…ik¤f­‡·ˆtæ…Ý>2Fš"çE.ÜÎy½Ã…A€ŸjÜ[ 0¥;‚‘›þ [ãZ¡°xªªÐÕn[ ñÞB¨ ,kǹRª°z’ ]DÝûϸB¸èâ¶è%v¢ q#:º«©´ç|z):síLsTýK`ôZŠàJí#m¤w!è1bµFˆ˜Æ~׿G‰°ãåV8GTu‡bïñ) ÈXwH%$jšY˜¡â©¬]ÇŸLÛE}X4_Vº[ê=Únn áÈü¡I:ösz¤5㢸€ G¡ „¤öΛî6ý€·ùPÙÑÿ¾8åQ‘D^Ÿ¥h”‘”'~xŒËqé3.<ã5X&’YyÃL2Öå“8»a¦%Ø(ÁL !hÑîß"Ó_ë}?š€2_›¨ö»…rƩݧ¾À4Ù"l«€ÜTS²ry×ÓÑ;=CVuW'PË`fÇß.˜ÈõÔƒ%zå,üô1ü^¼H8ºþÀr§ÒøÒqí3ÃæÖg†òÿxfH^ÛKl¿ä• BÅu[$œ0&ÎÝ~¸|Ñ8ãig ² Á¹¡;oû؃۴]6ú¹Ññ {åý¤œ{Á‹M7“_<œ„ÚÝña¤§hKÀðœ2ë­0éü¯ð“èûß¾ÿUÄ»á… äg™ó°óâ‘Á|óññͤoendstream endobj 1395 0 obj << /Filter /FlateDecode /Length 1545 >> stream xÚµXÍrÛ8 ¾÷)|錜F´HꇚÝô°;Ûi{êì$§4E¦kƶ䕨xóö R¶9q:Ó‹E‚$@À]¿›}¢ñ$'yÊÒÉõbB#AË'i’Æ“Éõ|rü˜Þ]}‚é~c˜Àú$dœäw©Å4LX|’¨’²Ò·J«¼ûˆô(rФ ‰Òl!›Å˜°<&4N'!¥$OœV³ ä»P•j—8.ëͶӪúÓÏø¹˜ž `p~Q7{…®¢?pöðgÕêBK?ýðá”Þ<"Y’¿¨7r"¸p‚ÓCµ·w8ýxÊ@—$/ÊIáÞOËÍ9›»½f€Uo€ÕЫW Î0@vJ³Wø]n †¸]Ýjº_Æí3wlg¬çôôp°ÈkgÕ¡ëYDrF‡2Æ@ çÕð»¢ø Í…fCešz×â¸í68Ð5~ëJ¾ª;_9·E®[94æ^M‚8e†ƒ >CÐ!|[¹Púíðu€Ìëd§‡9Y¶íšGWªã\†7c°Œ(¡Qê)HYBòh̬ÏÀvBø´ßÞ¨Æ8ôÄÁéœdÔÄsN’Ø™çz þ¹6u«Í(³én­JÖ9.m‹Æ-Õ ¤hzêŘj”ð¸B¾Ž Ø‹ð_è¦(µt6Y4õWnnÕ¥G$ƒuqêœÂ]œ~š ØÄ•B„¥¹£I¸);ðô¨—… eƒWï8§G¼WÂe,‹9²/*'ôѸܹIÖí°E/íMbÚ lŽ$9â)îúFõ€†‡Dq€‡1W±}¢Î§ØñÌ6+gã)Ö1P®YÇ€¦$;jvjÝ¿ e#‹V¢k}.2+[(ø°=Š Ã|åˆ{Fª:Ńˆm±qoI±©;t…G€'ò/’OŸ L ÐàHÈ/EcS ”åMS7-n(ìĪÖH©¤t¹+qDzY^. µ+µõéÈ"6C^.»µ}~)©põÂ6´XÖH—îhàvÛAfKë#+Ù¾TáX(›â’ D©û`3£$†êæwµGeú F½rÏNÄIÊâñÆùf‹Åž_â H3‚ò…Âûe6n~Þ_¼tØaˆ_ÿvÚ±«3JWýJ'¾µåÜ­8TÕâÅVœF„Ñ>Ûz@—æz²Åà~NO[®³,ÿ}ó/h‹Õê+ GÊòaö0í)ƒZä¬ÿ.t|£ƒ+MbJD<òë›tßÛw¾y÷ m*}ÓÜš4˜Æoîƒß框w¬ûëŒjG’æ¯÷qTÀØþQOµ®tçÖ†ïþ¹~÷oŸÖendstream endobj 1396 0 obj << /Filter /FlateDecode /Length 1086 >> stream xÚ½WÝo£8ï_‘Ǥ9l>­nNº“®êÞÃé²O½>p %|L«î_¿cl ”doW+EÂÌŒgæ7¿™ü¹»ÙÜ[΂"êw±;,°I¥táÚ"þb-—›Û•ágù¥ŒÎÔú7ù,ƒŠËQ’ºÙó*•ôP™\±WV½¹ú>P﫤NWO»¿–‹\Lƈ:Ž4|_Tò“Z®>ËGÎX$WD>o7­cJÏAëùÏtÌ—­y'w/ŸòšƒGz»^Ã{,7qðÇ—'øÉ½±•O|ך1¯5P²ª.ò‘а¹Çv?ì–ƒ¨OA¯Ô' 2dº¾²ìÊ“Éád8à"špåí`‡ÚÛî¬ÏB„8CÿÒTZQAÛ°¡ËÁH»`¤Ãh§§X,ˆ‰(å¬Q HG JËÇ4}Ú¼Õâ!”Üör"øænÂwÃÆÈ·­¡™g‰­KñÄ«qt *@±Åø{ªÃB+ÃÕ—䪢(áI¡v]ÌXÆ]½ä|€íyÐ%'Ð]†›i#×ôfqà[ÈõÝ0¨‹Š“PÐ&ãIƺLn5Š„ô£ $õg/H)²<ïc«mMÝ™ýÝœ« ïúšp'k"‰ZØÉ$kLTÅ›â«&Û3•®DåüË\r‹cÔV˰âÒt:Ø9{ëŸynL“V£ËEÛUZyz!j­ÛÌ+ÓWQÊÖ×(ê¨Bm_áa&¦ ut=v¬Uiî+¤“Vg8Àﳑí[íElªNýS¬ˆ¿„Td—M Oo)É@xÜ.¼eØd+xÓž¼Š/”<¾U$ï…ü]ÊEäÏR.ÚœñBîc™ö2È£s»Ò;Ü»5¡Ù^×`Ês¿È ÖPìØæÒÑÏ…+·b–«þ ,m“ÿ¾Zª púYŒÞ¥t* –  ÝÂð‘×À™˜ZA!?!{ñM@@ÆGž¯P+T¹½#ò=G»W7Õë!áab„EV6œÿNR-†˜tM&°*´vAÛª†dý{tM+÷IïªÉ4½Æ–TÉÕ€TêÎsU¹0MM.&òœy¦Æ&E¾5GÕ ©»ƒyÕ6$Ú°Èa¼¬»~*r.§Ã+¼¾8£t¡í$šÙânP鈱ŠF¬·çwƒü™Çe=×vžLv  β’t6„;?o.1âÐÔ‰ÞuX³Ø“žÆ\;5¥ÏÌ[?8Ì—§Ð¨ *'&ï&Lâ!Áÿ.PU95Úxˆ8Þ%BpÆ„@(ò¼Ñ<¦!Tó¢bzºÐˆiûŽXdâAÈj-Öÿ½Þ’ãQ5E¦çÕºÖ¬öA˜~Çøùëˆã¶‡ÖëABËS2ýȳ!™€3žï«¿³Ø"âäÍ_»›oz»‰endstream endobj 1397 0 obj << /Filter /FlateDecode /Length 1673 >> stream xÚXÝoÓH篈¸‡’­×ßz‡ŠÄéP §“ B®³I–:väÝ´ôþú›ñŒØu ô!ñ~ÌÎ÷üvì?æONßøá$iäE“ùr"=_¤Þ$ cáÁÆ|1¹tž•µ6×''ÓYè…Î=JsùíËËé—ùŸw2“R¤!“/«šH>»¡{}澤Ùõ«ÒØÌªvzrû’&ÏòÝfý7‘ÃÒåõ—cr¬Úl‘ûÈ–^î50j©-Mw‘pàô ¬Ž}áy!p!ˆ¢ç8/|7øYK·ª6U90õ\p¯Çl¢½!Dy–ßÚ-ξ¡Çn“YrƳýŒŸõ˜¶A»ªCQÐËó‰ì3XoŠ(=²åŠ ‚-¶dB[kö]tÀÞIÜ9×ìêH®gµ²»ºQ' E »z$È1h ÎH›$©ï÷=e籨fœÑ£Ð†³âÙéX }¸x??=ÇÈÖH{¶¹~—mÔþ9ýñßÏ™w ËŒ¿Ñtüx>ÿ gæï/¾žÿµgÉ \~6UæÝgý Ù2Q7ª´Þ#UñZ.¹*MU?–ÏÏ-¤àcyü$dx,—Ÿ7jòéÝA´Ëm]Y•srœÈ£¡¤ê$vt«n9I±JB‘¤,0žè“2tµ.§¾çX]®¦3? œ¬\àÀw¶Ee›å†krÀUI„Ÿ»ùZ u§ƒºÛ˜ûÌB8uå”™1 ß÷…þìJ  §³¬« md#â’@¤n0w_˜‰Hz-Ùsâwµ³$b“•S/qîh¹ZÒÓ‚}ͶR£¥²ëj:Ú+[ª¬.îˆ.Ûna®ch'SÀò$ÅÀ^økÀÕ:°Ç2HDâz?B¬p€X¡þu£´ûÍCËpÒ]3{šiuõ òtLŸA~³-¸gÛÌì6›¬¾ᙺ" ú¨<™¥eÚ¯‹_’veòZoíˆ<éJ!ÝhàÔÃTš¥PZQÜãœr%uö¼g~àv ; ZІè2z`úÐ(¯¶S »£å` 9˜Y5áh$@;»©tꨓ€UWÐiBƒéÈ6½SçVÛõ^*›B¯Ö˜ñ¶`ymÍ©¦,ß´P[Á ù0 ™z\%žzc‡ª’1 Ÿ|‚¤n¨ºmÏíŠí¯3zE¾ªv¶ûSg¹Uu÷~¹Ê¬¾Q> stream xÚ­W[OÛ0~çWt ZÓ¤·­“6ih›Ð^螺>˜Ô¥î\'³Zöëç[.v@ÚÀαÏùŽÏ½Ÿ'W7£I/ñ4œö›^0ƒhô¦“åÉbÝ[^´Ï–˜®«ËÕâÛÕM0®q Â!ˆÃ 7O,ǃ¹èˆÊ«#æÞ\&áäâçp2ÜcÎ1}P[¹è?sŽßÌæûÛÛËA ï\ ‘=5Kq‡§LÔ¤(%l]³NÜÐÅÝ=‹»sq%·ƒ5mbahNˆÚϸ`PÀ°iÔ@5Œ#)P Ú´˜sÇ`4›u¿N"î¡`øh03†ÿâÔE|k­”Zè—õÍÇ}.̚Ũcö©ÕT© ¢‰µ¬üÈoóÜ[ë…¯ÔÜ[ÌÍ.YHHHz(ÎÑÞî¬ryá>«r>q#‰ç÷”&6¡¼ê9|¹ý™Ý¨Bþµ½èô.glKPz¿“±oöÛ¢¥”> stream xÚ½WKoÛ8¾çWxÛ ±›5©‡% ^` 4À.衾y}%Ú’+‰†H%NÑ¿¤†²DY~$Øî!19Î7œùfH}^Ü}|´œ|—¸ƒÅf€]Í\kà:3DäÊ",‡‡û…4ç¬ø4Mâ´$Ëï”îW£Õâ¯ØnYš&#ßÑ6¶ b€MÈù„˜ŠÉ þ™:Ó„£,ErP“Ãý¾ Or„Õ_"–æˆïIäÊЦÑ÷‘5sMÄ÷ø§^&ãŒ8Mi(h3–§/0ÂðS°ç1Œ"–?†,Mƒ=§01=ŠË,çÊ¥ndÚNi¾±©°Vç¬Ö>øýðÁN^¦©îÍŸ?á·±ÔZüÃ~l¯tbÿøûÛÃK·7-ò™|xr=çR:°ƒl›Ôï›órÍÃ"Ù‹c¤yÏEˆ Lf"ÓNN,æÙ@Vv> stream xÚ­WKoÛ8¾çW¸NѦ@ÌèmiQv‹æ°èm ôæ@K´Í,M¹"•¤ýõåS¢dZ.{H$ŠÃùf¾yÑ­¯îîãtV€"‹²Ùz; £Ñ,K— ëjöp³ÅüÃ"Ò› ý¬7O¨ä×Ï‚Ù" A‘Q¼Õß‚4xƒé5˜3¹:nõÖ{Ö6Ïbù^|åŸÒ“„ Oâ¡2Æë£<;gíá›ÀœÔzJH5”üÐo¤Ÿ-C•~ÛÖ~Õö³y‡¾°ðÒûP£_kÙõÞ(=6˜rÐP‡{ä¸6ï˜ég…Ž *1ä¨2îZL+Á8&D¿Ì8¢ÂT—ȬCÓezÃksœºVo Ħµ;Z7ÖuÁ=º"Ìm ‘¯Ê±.$JÂñÕF~NkŠæV­ÃG‡ãPTÚht:Ñg%$h¥þß:(]$FÆr¸!h¨W"½=@ÞàWÁ‘P~sÝEÓ’´¬ŠyrúåGK–dß©ìˆV|Ðb¨-—„39#ü~+y”Í0ê’ÚÌêdz³>AZõm(Ñü³úŠlɲ%"9 óõ‹å©Â¥Õ»Å ³Ñê°ƒÔf8$SÈ/˜ïG¬—uFóÑždÓ§Žö´YöG‰«]4Ù¥Xf/îw &a ºãû©ß¯uŒ7C·›Ý݇‰ÛSã,ÓB¨ÔíT‹ Ú®à®yœ›Uª‡,x­c§å× Õ;Ã/&”tÊ;í °Ë®®àç‡F§w>‡¢@Ì‘p(¨ˆ?Ug £izRá8ENÙ´‹Œ¯ÅNö‡Ö}ëT±_ÕEþÔ'¿=#¼Œí<­voÊ\ A¾L,ƒ2Òbd.¶¢®E0Xž‚$Líì£> stream xÚµVKsÚ0¾çWÐ “If@± 6¸SÚig’C§·r£„‘A©‘=² I}õ4~ˆWÓÀ¶vµo?­öÛôêþqt"…~Ø™&8A8vÂ`|!™.;³[’Üõ?¸ýå)ÀqF^äǼ(ZƒãM>›=ÍçúóS_?…ÞŒÐå ìõ–,Ë'_ü|˜ßͧß;^§!ˆã §>Ï”Ú~ÿ‡•èû¾"ÖM®”-ò¢€ª¹ÉÓmšÊw^·à qTB ýÔÜ„ÚFE·žL‚bž1i®PéêÄzZ˜â@c?Rµµ§ÌC/ÕcLÑBjj€¢ .l„Vãš›N±Õvƒ)×_ÏÈ,¯ÈS]1‘êpب˜„©ŽaJ .¤“lñ„cÞ¥?ék¢Þ1J±0( êF)`¤ø=ѳ›?åóìÕÈjêg4D(%„wí‡õþšcµ._ìZ¤"$ù_ò¥ï èé(ˆ1-c‡®kEupÊUÇQ;ìDä‹+> X´N”¨éC/^àBâRpÄ8õqd³6Lm£ué$§5à ֯ÆÚÚX` q¸¾˜d¦vu[Øl6ÈìX£9ŽIBðÒvO+ý–gÄÒw“ŒaG®-~ÖeBXavfiëÔ¸Q=`Ë#nÏ _#³5F>…x­U+ä¶lWmVÓ ѱã,r‰Àx0jJe¼^,¹ô {•ê™μŽ3h 0cíö ]áiåzÕ÷fé¼gŽ…šfϘ„~|ôÕ«EY?û2Š3ÁWÆ·y~–q¥wÄøû_Õÿ|Iõ1븮ì¥ããt~3…«ÐÁ×XsÕÉÒ‹}ÿNÇ9ŸàãEŒOðïMœ ß<ê5§ÃˆÆ'®kà+âlk¯ È–ÚI(Eyž¾ª«?«¨œ(銯kýÒs¶Êc“*ù‚¾Kõ]©"’fßuz5€ÓÔPÛU*AðØ#9¼,íòÙ3—õÍÖWEN]÷À_…±¶¥Ñ@k¢ÿ*³Œ²"&×´=©Õ Ï;E@‘dÔ5=ZYÛÕ^¤`Wù À@`Ü÷Eup0’šWÓ«¿DØgendstream endobj 1402 0 obj << /Filter /FlateDecode /Length 1769 >> stream xÚÍXÝsÛ6 ï_á­½«¼Åª¨o­MﺻfׇÝ5oi™ŽµÈ’KJvòß @YR”t½ÛÑ€à à_/_¼¹á"s³Ø—›…ð7óq¹~º¸\/®œÛåõåŸo.‚hÀæ-VB¸YK¹Y®"?r¾x‘÷C©Ýº«*·r·¥Ûµ+•‚¹À?”¶ð=Ð"ÆB†Ì$îÝŠ¾CÊO4éÔa¹ Ây bjÃ;6¨ÝJà†òW4+`&!«9KŠ*×ÚÚol™óZw»]®\º)Û×F’uI|: 9näßY}ìátÀ—¹‰€[¸~Æ\¿©üf¹ ‚ÀQÍÒOœ£þe¹ ÃÐx—á°Jâ–4-ÕÍÌå 6DXL––;©[àgn˜–)W·ÝNÖK?uZV±ýµÉ\?ÌYD‘$1 @¦ŸÄ-[87M"«½ ž^mÊz­š£ž‘œFn(ú åÌYQbhÎéÊÓÄÍ‚àiïJ­ËúÖ}3Dî4\¼Ð½Ø*ØÌX°J7N£±º—¤íïN·4Ú—Å…î»ù~¯š½*ó–Œ7æqÞtí¾kç9a||?¹–_‘7¯šúö`þ ÑGð$ÈJË'%·e±EY(¥våAÖí{ï —~g„ !u¹E$ú!Ú^4õÇ¡Säh®Zj^´¦¤1”uwÓØwàâ æÞåˆöb+kä;àJƒÿs}ADÃá $Ù"Ãÿpdý#‘÷†Ü”El‹Ýkn07™½Ú…ð‘óI¶¯í±Ø$cºYNrè6@ù™×ë÷3álͶC¿â99}ª²fc¬0Xç-3m0©šI†]œùè°,u"óܸ͜¸âéBÊ*i.¬îNK–[ aÛF˹ø B7Lǹê¼@,g¨á•4H’ºaÔ'—œ ÿ±×> Òj lÐÇ„—FŽœÉöF˜üâ‰d¼YÜçÖZ•úî*¸&çdÇaÅN^u¬9·æmy¡–÷-§}¶˜–À‡©ïÏíifBÌ@{ãä;ì•äÂñ•¸ÆkôŸéz'Tÿš–ÏéÇŠøX8µáCxs[´‡—Eñ! Ÿ1 ŠxÎï Ü éRŒ9Ìq(¡Ý‚|Џ˜+Ö´Ã=]Õ–ûÊšÑ*„ûL^3þ½ŒÃ4jš›¨ÀA^U§žB‹Š·Uy¹&²DüãRÛЗ€‚±g6Ñß4 It¼¢mÔ[|ëár;E¸§§ñ”-íTì˜Â³bû¼2wÌZÊ5?âh‚©Ózx@ó¼“úô…k|#hê6WŒ¾f3¡õV¸ßÂcüïñHÏÙ \!Ÿ³}UyÇi‚fx„ÿΪ.)b âñÌxCò¶¯×ØHýqö?´öî<ࢗp¢I'I,îSŒ"üø§$c(5pvG³> 5Í×¥¼U´½Ã,sË"ñe€x ¯¿ý‰†]Þ[Ø(ðŸ0-£}¨p¬$§0ÅÜuÓn!hRn¾Ý‰@Vĸzt]T ¢¯ÓLÁšEÎÅRá|øôù#( ƒ¢Œë) Ó0LÍÕ é&ˆq`ž…'Êé«ØÏœ?j»Õj§ÂG½`Œ¡Èœ ‰,òªè*SýYÝ|¦q ›Üf2W#j :|k86;¥eŵÆqm›Sí©“.”T[´6·€ ÃnOÁf’5XµEµmPŽƒP\sš)ÛIb å®½¾™3¼q“ôÿê*LUüX»"Ï6 Ð~³-Ãe_é×< "G›®.Ú²©iv#«æHÃ]y»mí*oßç_;yj °(ç^¢áMòÔ¬Vs-›ta»n.í¹,;²ôc^·cÉwµ5¬ï[ênw#Y g•R¤éݱR¬ç±—ü‹´J5F„I8¦Ç‚lÚºÌô™)c` õÂXý@0j±Šn‡AXäsº¸9Ë­Åè_½¢û.ªw}¯µ¬÷OXmzгA7Åôs¶ N³ÈPñ–EWÝÓ]ç# QJê=´T&ï ’çl˜œãl¢åêþú±]@e,ÞÊv²a]n6RÉ!°Ì£Ô˜òBsŽ>ÝŠõF5ì:{…KêÚ”jN¶‘ˆ7ç騀p÷É6~Qý=+Ã×ö<½ià‡¢ë,Û=øýòæ™w#ÇYå/ÕRë¹(ГtcQŸüwö¢øÖÐXÉ€&(Àõ#ö!3ˆ¿ÚB-·ùNÛ£›ÑÍŸ|‘„D}x27M¹JAŠœ/>^¾øj]µendstream endobj 1403 0 obj << /Filter /FlateDecode /Length 1282 >> stream xÚ¥WKoã6¾ï¯pÝ’ ¶V²ãWP·@H¯5°×Z¢,îJ¤@R¶³¿¾$Å¡DY2 ,rÍÇ<¿™oôçîÓ—·ùb´ 6ËÙr´KGÑllf£åbÌÔÁ.í}šF‹Õâ‘VÅó§éb¶xdiýŸ1•¢^_Hž×«#®ÿÓ@b¾ßG‡Ã¤³5s[XÆÁÓa÷÷(M£(Ø,½úøY2³bEÅÏäŒrû^Èsn šÔ‹˜Ñ”$˜ÆöQN – ‚Ò”ÄX h7^KfåqŒ¤•…ìsBO¹/¬ÐB“kôଈPuÑYEÌI)ÝÁÇR9ÚcˆW_úm AäD|ïî™\t6ñE’ ·Öõo¸´Ù!9’j;ê3Ã&îg$-ARŒ©`üçÌñ É1=ÉLËåЫ°¤o +*zõ5~y‹^Ú•¾Ëp¥$Ö’ê+^ñL×ó`¹^ú*/óMÕª•.­foŒÝnÉAMmäÒ9»¿àÜ;~Sq«×iS"D@Q(WP_ „F„oRJäg½»WÆàîQä—"áBÚôH&”ÜG½(9¡ ¢[À“²–"æWR¨ò„Ö~Žè ÷AÚÊ›h•çz© qhm:¤&{æj¡ézª6k¨ëH8œ õ:šGCÂ|í}"Êžê3[ûÖÁï[Ï`?·îÿ‚¯Ód¦ËU°Ù,î¢ôe„«¹_“ºö ]]°†‚Ôça½·÷޶N¤ó±cyGð©ÏôY¨Øiæ…ZÜ~O‡>;îàù݆õb—(þîõé©Å’êâ¬S)gÐmojÓ6sïHkˆktù{'N…倈*´DrӠ↉´ÆŒs,JF“¦v»Þ6ôþŒëèŽ+å½BËJÞÓ›èe®f(®¥dncÓ"ÃÉ,lªÙñzUdæÅb¢ÞD ûlr7ЮÁbQåÖ³ «òÄ`¢ÉLý̓>ëŽ'mR@]`ˆ?'§Læ¶a&$M1w¬­¯¯õÚèíjîx1~§`®¼`LÇ7·d„ߤ”ª>bïlf76tÀT{v7 ÇJŠÏÙÅwdCYMƒû*¥Žg%l´«ÿ—åvjHQà„¨Q’€R5Ö\O†µ<‡6+¬‚‘¡»oô~« ‚ŽXy;|äBI™‚*Æh s·]†ï™¡rÁÑ $(Æà4 €’'x@4ù DßœvK+íY ˜ÅŽ?}ŸÆàÞ]OÉ•%g†µLK°”:&­þRw‡šû_ik¸ª¡d[Ú&¬õõÍs–K¶j²WÜOݸšnC»âUŽ·3­åó‡Ó;š®ÞCZ$Õs‡6Þ¸·ubÁæèÙB0cûÒRt41—µÎÃSÛ~õ5ûèÀ«AæXË4’chjD…î ÒìÏӲɥɜ@/hô£#;ã?ì…¯Ž[yΠãÿÀœµ¨2¢ðµT½]FïÕʼnœ¡U¢[ênHÔMÕãî#H· ì~€6Dh2z— ôÁÑ·-ƒk®°í¡Â~¡DHÆTi]T"øtÓŸ†=`‹ÓŠ:¨=ƒ z®…7ú‹ ¨¡¡´3”Ã7žÉ{>¨^–ÁKwR]·GÙ`½Œ”ÆM°^¯ë[Ñ|£ï}úk÷é?âÖs;endstream endobj 1404 0 obj << /Filter /FlateDecode /Length 1230 >> stream xÚWYoã6~ϯp“Eí`m®¨ËÒ¢.°]l€Áhݧl™Ž™H¤ RqÒ__CY’e7O¦93ß\œC¿­/>ÝÑ$EiìÇ“õv‚“ÅI8‰£%òe½™ÜÍÊ ¼¾»£÷÷׋Èf¿,ìo¾mØ/ò$)+üÏíí–Ê­Ð~Çï ¾¾_ÿ1ñ& ŒQòSM±Þ1IK¢´`…:»*2!-M_ÛSÅ)ƒKÊ€¸Ú&“Ù˜"ƒX_›µ²¦âùî ÜŠöÈRÉ aR‘?Ž8öÔºõé‡ t?Z–^œ!FIôI!Èœ#ù Õ0mÇÐ"•,ÀŠ-Û• *øÝòz3^l܉¦~Q>ÂýÃÉ¥˜»ÜÐ|Aæl <9g2SY ùäÐÅ ÁÿßÙд<Äi!G*žßÛÓÎÊŒ½Ûƒ3gl¨¯ €ÎäÀÿ±7–Õp°¶“M+Öÿ|Ò¤G~ÎòÛ¦V`mP¾Ñ8Ý.¤U[‚]EáD¾s dÆëRÞÎé%¯’°ÍêæËíßß Ö‚ÁšòÁ=*Ú Tµ*8åç>{Cï-2ïL}ÄgêÃ÷Pêûê7@)î=鯼¬IIìšî2¬K»}uðPÄ!Ç+ûƒç؃ˆøžóœ­4÷*0'‚-„?¾Ó{zü¹?>ÍÖ6ºtógÊÁ‚É6'TzUÕüU÷)Óƒ fÈ!g{^.=öÜåÛUOAØ£„âíÓC+d®ðA}Çc—üšTZ«Fߘ¸ -{4âN/<…{ðÞ8ðø3ëü{å\Y=6wI &[Ü÷«$rÇ7«©jcBfLNÝ[9›ë¦ +_[ùÁÖ×b ÆÈñ|¤[íÈÁå_Ëì`·FzbÖPŒ#äÅI_CgXé)i‚rj-pà¡e”¾cÙÉaª ÊÌØ UãÜhXA…4Ù'û6wc/ÅÚx‚éˆòia3oû!ì òiÕ¦ê3Òšl¬)Û«2ƒžýoíû?··ãÐvŒ¡Z Àš¥å,l7Ô”m^ñ){ ñT‚M{Ä£ùM:|)Zb^Å…Ëõ©®~2#ºK ¶½Hrnøk}ÐKÁ‡²ö‚?([£™ÙT’d¶v œ©9dN5É {ÚP%𰏍è®j"HýréîM¯Ž æŒi¢§ÛÔñË –©Ú b·)€—cÿA¢å tw?ÆÃ) –í–•7å.û÷0Pp^ศêºO/‚ ·2ŒTǯ#yŒ ¹4ZÏŠg©®z™Ü¾¸kJ–QWê¥X¨å¢Ìê·èÔCqØJб@+ÈÐ1¬lL„ãÁö :P«u°m7,—”›¯»YÎK—[2ݶåöÓÃ…á ‡"ÏT_vݳ¿ÜŒÔo]’Œ­‰ü³r6LÁNdhSÛ‹GDB'Šð{9Ž0j;yÜvò~dl4þoìþD™Ú©ðq®OÛpO{ãtìûBHnæñå‰Tå,/¶ˆ»¬nÿk¿ÂðµpÙZÐ~âtV¸®CT Ö…>š´æÛ¹«¯úqºdœ‘ËãúÁËP 1µ+ªbK|(šÍóâÛúâ?~+ä,endstream endobj 1405 0 obj << /Filter /FlateDecode /Length 987 >> stream xÚ­VMsÛ6½ûW¨r&cψ°À/‘êÐtâCÆÓKÕéAÕ"!‰6 *h'ùõÁ§HPØdz°E‹·Ø·»ø°ºyx ¢I ÒØ'«ÝúHýI-€ÏVùd}w{ïE~t‡ò\}кÂê‹áêHõg­~+ô¢iÛ¼V5z«›—ûÍêÓd>ñ i¤Áëí3ÎØ;a¬ óÔ/ôôÒ±Á¯®ÅNþ;æbMñE z|ÅŸÜïÏyhÐɋР SÇ>û8eA™0úóï§§™š2ö 1  ¼x.7‚(ϰÓ9Ö¨4C%^Êÿz¦ÑvÐb!ÖÈh[bZ8{§è¸÷ Ç¿»ÝÕZ+HV¶´¨‰ê-Q·ìز.dñò<“œ•Ë5_rIï%­RZw»Bç·G¨>™®«–¶¨,¿ê45¦bß[sÚÌTÚ[Ư’GïˆãV³ó6eÖ–<™šöúÍ”¦æÄ 5©B$?ѧç•×|½ì0 ðñÕ: <’‘»Ï輺›ˆ~9dDöNNä­rá²Óò¶tÞŽÒÄqEÊ©úé)™:—2õ¦ðÇU¶¶×W‘€“Í53©|å¿tU‰¶b¶ß:—:#„ ƒqÑ„Úé|?誠´ {s¡þoÂTÄOä~-Ë{ã(è'KàôV<Ûï¤LÌM h ú2Õ™âCžAÂzã Z7}° w±qhûœŠëçdOYpÓí/ë7ÜÚã‘®å%Mx^‚«yñÃ9ˆÒA§~Ãù9Ëëõófãê­K­ÂQ®.MA0¢"‹„C¹øºé{œÙ …Û©R™Í¸è—¿?ýõqãÊ×cP›»§<—Xü‡F•œµÕ}è Wn5¿žÍTpƒØ“~aDø5éù¼)“D¡ÃP¦éæãêæ;Õì³ endstream endobj 1406 0 obj << /Filter /FlateDecode /Length 887 >> stream xÚ½WÏoÚ0¾÷¯`j¥µRâÆ2-š:©=LÓ.ãÖq0Á)Þ‚Ù¡´üõ³c0¤‘º Žýü½_ß³_¾N/n†Ñ Iƃi>€£˜Œà ŽÆ +ÓÅàñšä7~F׿‚(ø@8 ë¢ã¯ª+^3T#ñ åïf6ý6„áÀ‡$‘ưdØg_=s”Õ%“p\Ê<ºx3O-ø<…Ÿh³Õkà!Œ@ÛøšKI¥P´ÂÜØsûG–‹>ŒbÀöö'%ØŠEÐðØÆF¡n„rމP}ñ>í8„×2 4-ç¿qV_Qƒš¬p*ÿø-ÏPUâ1H’¨m!Œð?©zè݈Ò:ÕOµùÀ³¬¤9 B('õ•y1Ú_+ÜÌË™CóB˜$ÿw9÷]"¦¼Éºb‚•1KíàìfÖŸV"üÅ–(&’féP‡šì¡Bƅ׈Õ@æÇáÍ~ñ€ô­Fe8¼„Jå¥Ü,_5ÜRC°¹¨/Ú›©™]sãÎ éKô¬y…3’¼P¯hÏ+5ªJ‘o5œã¼d؃K@£2'Œë]šZ j5M!§p÷B2Tcn¼Azk†ø)u-·³õj‰¶ZcÆÉ Ñ;ÓÕsQR=ÚzÙrú¡Ý)^¡š‘“ãŠágû„;8à0ã(9{À “áØq(Jð6;šKÝ·§‹±Až·`e•>Ü}ÿy?kù£˜í¶Iry~5Þ5yI¡ÆþqçYùò÷§xà°Õ΂Íe5ÿèyÛ­F;e^še§¨3´»f”¬4N+0±9Xí_¾ €;¾¿ óþj„ß- öTÂ|—šs¦å³NNzÐкŒú<ÛYÑED;pëªzx#wüð*w…ðÉŠnøŸoyG\Ë;s•¶î{zWߘ.Åóp}*¾ÍôÏ:©?ëkÁû=:Oô¬ƒä½ˆuº›Èñ{ù|Š{ö£G ™tÜh®6œgåÚô& kjzÛUUñÚ4gxÓ´´»>Ÿ>ÕËÖ!ôþ~`¸’ýÇ‚j~‹¬‹ãß|Sè€'ð8KM›g—5* Ç•*g{E@Dƒ”ÔÕX›µcUû¥3Ì´¬Ö~MlÂŒGâø, EÙM&JŽB)yq?½ø ºƒÙendstream endobj 1407 0 obj << /Filter /FlateDecode /Length 1218 >> stream xÚµWMã6 ½Ï¯HƒÅFÆZÛò'Ðh EE'=u{pb%1Ö–KžIþýR¢œ±Sg§»m±(úé‘¢DÒùi}÷á‘ųœæI˜ÌÖ»Y2š‡³$Ši˜ÍÖåìORí–^Æä£û5{}0RÛðBP.J]5ÁþÒ àyÿñßUŠŠbk~˿ֿ̢€f›yA@ó8F{š7Çw£%È÷½‡ãø•añ¦h¶u¡”±nø¬ÁË\uMS´gªºöyWéFÍ-—ÿwgŒþÃc Âä…>„)pر{†ù,ˆ(‹’Ð"! €,¤yäHsˆT>üVK­+±_z,‰q¤z^&!)jÔlA³d!á ™³àg»,åÏK/ŠR²“(Q,Ì‘c+7õ2 Ä€4øêåÀ[Žâ\°!øè‘¾ešº\]icR 3P.½0%²Ë0#Zb#ˆG”’ 7'¤ÐPY•½ Àò”èÉ  (Š.½„ed}¨€‚å)Á1#eÇQÐÇ­¸¼o‹ã¡Úšîd¦E»ï.4ÎåʹoË¢…Öµ|áåüF¬.Ýtˆ[© SËÓm!ÔN¶×¨ âܧI”|)¿¼<‚»~;zM¥L=2"Þ±×/‰ÑwNW×6ÍÞ[þì_‚;¸œã <.2CwþY$ìCqݧ"œÅ4 âQ f^–Ã7^þ-ưÑxpÔ7K¾Æ¦ú„(“èÊNÂhÀ²Áðÿ`_›§â—F–íK·6ÍàÓ/¿ÑÆ7ÍÔõÉ,È×1r¡ÿÕm,Ûâe‚+·}vÄ”Ñ8Ï&?¥G›öGõáõÕ´ÖÑ>¦úžÙí 6è:‹iž½Ýá\×úš>7ñæºÇb#™ìnÉÝ —Ú~v³…Ù¾Þ÷ù¾Ý¾Õ­àT^5«áß / ©v<–Ð ®¼Å3È»‡õÝgüñ­!endstream endobj 1408 0 obj << /Filter /FlateDecode /Length 1036 >> stream xÚÅVKoÛ8¾çWx]£‘ŠE=(`shæ°z©{j÷ µéXD"kþøò%G”i»I»Ø‹I‹Ãyñûfæýâêí-J'(²8›,Ö#PÄ“,ÍA,«É— «Ùý¤¢´fXE|×>®+á¡TcèùÖñeY“øF… 1…Ö5e/-5ØàÅ0>¤lm‚‰#é"F/yžÿ„}[Nz>¾›‡P¦&xeƒ­K[avœ¬Ì®¢fb6†fßÓbÌ­%£k ŸÅ5wûîîÓ‡ÿ˜ãùh:,QtÉtíá YêåonÅÇ NŸ‹ª!#Zö/ãI͉Í|SŠg©Å)a&ûtQf9ƒ‡˜9DZ:)#õ¾fó0ÆÁr.æ!Š“€­ÕªÞX­ˆù,˜]{`öRÍVÊ壄Îå*øPM”ž¼ÃB¾å½–µ=·.§@Ñá Ù?2ið,eâaôóÞ¯M)ŒK¥úH”tU¶+óO!FÈ~c©)Ë)ŒFOß±±Q«( ö*1¬}' ‹AŽóóMŸÍ볘uXpc‚‘é„: ãŠnH[|õEmzHûôÐRýi¦Šì°¬9Q*‹Ü¸zΔúq_¶ÅWwg‡™Çg$/Úª3½¿'àûVUCˆp÷Ü5YW\¨óŸïîúÒ?“°úš——CÜñ£f{Ҟ˕dV,{×¹d@y>ΕÖ|*YæÐãi7Ûm·§ï™ÃKåâ|‹ý™ÑmGG#ÙŽº.MÉ#¡bú¬Ê5 S9ôB·ZýÃ~µ)ø†sP Áø1ÂK?f}§Ë¼{»›éo^^(…¾‘X?òELæ—1™Üó@kÝÁ´7<¤G÷túÕMõX]œ˜ž¯b nnÒ/Ì/G{2¦ÊN?]5eûПËúo듬Dm?R­È/fb0Ûan±gV{É 7Û½ìy{»®½¶qnwv£üµ7J1ÿå¬U½Ô|—°å—j©¯]+†n{ýT=¾ïGÎâ²e%ë¶›ë3°GP²8=8vº–lÝY&+q\Œ±„I¢D¯>,®~d±î.endstream endobj 1409 0 obj << /Filter /FlateDecode /Length 1386 >> stream xÚ­XKoã6¾ï¯H‘Ůӹ¢^–ŠºÀØ)‚^êž¼906mÑÃÐ#¶ûë;ÃÙ’#;1ÚCBr8üæÁáÌÈ¿O>|½ó‚«XÄ¡^MWÒõDì^…ÁH¸°1™_Mfq3 Ü`ðà œÔ”¥É–vªŠgQ™TÃBâqíÉ´üuHãÝ·‡¿¾ß872g}@hu±ú<Õ6ùpEºïBf/v€þoÏ…ïö\6«‹—£çÑöÀÏLšå6BËØOÙ¾0EYíºX©ª ³Å£´ËÖgE¾wüƯÄ^AÔ²!#‰·‰ ‘ìÉ ŒðÂÑ`›ª-ÍT±¬SݸѠ"Š)i¬K=§Y•Ó¸.êŒžÔ <3Cƒ‹™—› ¨„(è9äÔ](Åü©J˜Ñ&œä fµÉʽBnHËRX·¥/bßï:w²Bí}7С \>™ŠÖˆn „ š´Ir¦ioà ã|¥pñÒ¢  8ÎsF¬ "äÈ´Éh1KÌúFÖzy—[_á¹9¦½bþÕ h4Ø_7HQEÖKŠÕãˆJuYª¥ÆksÁ¢ÈS˜I–„¤:›ë"ÙYUpcäíy]ÀÍð´éŃoŒTäÚ= ™ÖxsfÌi,ôì±ñ‰§H  ÿp¤ù5Ùž³èI|¨ôaDЬ8å…-OD£ ©!ÃYž¦y6Ȳ2 „/÷LOED¿aÓ£F"ö¼Óuþ§V»‚Iêø?}âŸíUõ·†çD#à:±p! ž+n2Š Yp»:q™áŒ‡SÈxÏ4³î·eÆf;Œ\ÙQöÝ;ƒÝsײ(ß×¾DÍtû™‹Xþ‚o¯#01©á’³1MÑCÜ6¾aä]?HÏSÝ$¸³ZJ%Ö…É™Æe \PkÆi¶¸ÌõH|Öz½íÖ?$•Ä?ÿ~x`ÈëÆx›¥ÚŽÃs}"°½Èºx•zJ´­š¸yª8ç‹Å¾AmNÎê´¬S<:ÃûÚÊh‡Þ«B߸Âö¯45¬UÓæœê__„ÎèlØFž£°hU»‹·MÐÔš;›Ç·:lEÝub|°³Ív 7>ÿÆØ ·ÁzØÒoGY?OA»þÂamï ¨§œßQ{ì݅ؽM¤ûþö;|»ýv/l¿ŸÔü¨ƒ4‹µÐYhÀ´ÚçÉ“Îj‡ ǧ®:„ìûçt•Pü½5×I^Vûô‘r’‚ŽÏÖ‚ÐTÓµ?úÔ¾+>ƒo? Ÿ„ò ÙQÂÜpÌÛfÅf9¨€•íT¹ÇjCYƒOËË£íË›Akúi‹ñö± JIujn/ú¸9–Ó¬½•6d) [SN7£ÀãÚkºmê&¯/Ào% äîµ Ø¬GþµŸE='·3¡_tV= Ê`Ÿ¨ó<û\ˆ#‹ßiÚüÙåõW›ô\áE1ÜG,¢ˆû5éÈùáûäÿ‚3£Èendstream endobj 1410 0 obj << /Filter /FlateDecode /Length 1068 >> stream xÚÍWKoã6¾çW¸»,/lFÔ[@sh Т·º§í´2m³+S‚H9Éþú9”,É’“ÜzLÎóãÌ7¤òÛöîþ‘‹”¤‘-¶û ’t…1ñüp±Ý-¾8‡Õ×í‹ç’Ô£‹ ¥$ ûªûG°¼ÄpÁÔ')E‹«Mè…Nù} Q>á"ËU“Š —\™|î0“Tüd ~Ùà¯}ùÎXõüuàµ.ìT]@4åb³<ÿ,;3¡†nø†+ߣí?nèþÄ%MQèµöÍ™e ;ªÿ.1Q~ å7’IÙÔçÑѴȸ¼¬×»º¬ýó¯ÏïÂ*›ªbœ¦·C~иQñLœýDû7i@hðšÀ#ÀFöâ¶—EùtÀÈfŒ€Ï³÷]Ä~ #ïŸež ¡PQç£Þpq°Ü–ø»c{V×l‡»F(^ØîŸ²çv"ÊœIyíZÂ Ø õælÐÒ7Žz½oÄ~¦)ñãèf;ã„päA7úÉ€>ù1«aœ s^IH¡Ø^ú 4¨„Õú‰«üh3®ME Ôhè¸,ÊÃ=ðÌsÅKa†³7ë©IYš±_>Ì8ÑÍŒ[ÞœŽÙY¿  êD3ÀDcŸ a# "]G³ [V¹z[>Q׉t”Ûþàýiº$R••6þð·¨Y^ÿÑò¿e†úМ èZ #ÍPk’7·æØÖ†²}y†´î±ÏjcsMH-˜@{ ßUàwq†;Á~ ~Ë'ïÍøÄ­¯˜ÛSÍ•íqéwx»¤o½í;O£›ê¾ÞýÉë~Ïk©^¦¢nŽt7¤Ñ’˜ú`•0Ñj{^ø±ïì2•áJªºÏ¢Ú*öúÛÀ§UCùyFNV ¤*Jeƒ”«—8LâV´r.ò¢ÙÙ€ SÀÀ©ÆA*£äb?Š@¢p–Òú×e£¸€æÝ¤Iƒ`<åY Á¼(ÒÉx­—¡“—§ªQθÖeÍŠ: ×&½ab7Ÿ^œ:™ØaÈ‚e+/vÎZip…*UâþÈj«A‰~vs¾³² ª póØjaÕÌ d25MØ=\3]~?h …]kÄR¡ä˜iã»vÐ-3­…> stream xÚX[“›6~ϯ ÛNÆÞ!°ñLœ™6³;“NûÒºOI´X¶ÕåâAb/ÿ¾:`Þö!AGçûÎ]ì¯ÛwîoÖËpém÷&%Kâ-ã IìmwÞ×As?‚ßÏ}BÈŒêG4ËÊ­¸œãÙ1ç©Ù£/\!óŒfâ4÷ÃÕŒ¥ü[€#¶[˜mydFNä4˘æ—ä93ŸÐSÀïÊE(žýÃR9ÿ¾ýÍ <Çhºе *8 Ftos^ð|®(Ö !0 Af% 4Ї{õœå“ëØóCŒÖ81èG#H–=A‚’U¬X6§¬”þžWB¾8tÆk*ÿƒ,e±¥,j6ýþ£U‚•‘¢¦£‡ñì[9‚½4Èj…õ?¬QBV-ÂÞAÁOeðrï.PQg™^¿ü$$­$Ò>íÃza€Ö¡EüÒ(úè›g_1×u’e‚9¬ —Çá¤1±ÊôVÙòÒ–•ç çfÇEPešà׿ÿOÁ÷ÎÌÀÁÓ'8¦t óS´^s¥ŸË ‡qÆ+r!Q±4?Э. ½Ø±=­3 –ëRÐ ÀfE‹Yd¼`Â,9ŽÊ•6<¥Ù8”ö#Jékûçßw£‰3’àøj‚uI–Ÿ¬¼£2="Z \I˜ê½›‡Ro`çFû¿ûQ¨Ü J{Ú3Õ Íaè!ËSÅ‹'šqȵ¬™•‚-Á› DGk ÍæÌr*Ð÷¿üþפŸ©ÔqÙ±@9°w]¼üJš¼½)X4ÇU4T‚Éúäç´z´$FŽÓÊó×R÷ ÅÿŒõ†É˜¬ÐšXÙmîÈ4©¶¿mk;e4e»¶Å¸;؃êÂåZmÂ0Zk2[¿€ªÉXqGTÖrc:ËXñäi™9•©ýdËueKw%Ö9«xÚRÎhè °=¤ ÊJ^œj'& MeMÁþÀ  Ë}¯‰[“ÄXtK`÷r(tÑ{s€€Ö—³®qJz¶ØëÉæ†íA(_‡rGuv`Õ¢„ýº-s}ÒÍ4Äê2Ûµ¾Ž«™wð?c«Wv>¶NW˜”Ò1VJÏùðqc¿>'ÜÂ2©Ó%hÞE(ky›¹Ã‹ëÙ8^©Ðèà?ó‡ Qç6¦bú‹ò¢ñ|¤²“{µ²‡>¨ú±x)œ<ð§6dø«ûíÉ'õuRNçšÈÍÏÚSÂqÏKøN[«Ê¶Ýdü‘9‘ 4ì%ÍêºYÎj“¦ª3†®Í´þmÆÑ§W…a4}!  È8ÂEî©[—yûþ}[^ýÞRî/ Èó®2í. ½ ê¯{‰mµÖñÏA£r4,&K±Kï}xœ `4=nHuo6œËõ– vÅ”1ðžÛΠæ=2ÜÎQÝaÒ9m ™ò„™Š×·þ ²ŠÔ•YßaÔ§pw­´ä»»í»ÆàzŽendstream endobj 1412 0 obj << /Filter /FlateDecode /Length 1028 >> stream xÚµVKÛ6¾ï¯p¼@l1#’zõ¡²(ŠžZç”öÀÈ´E@–‰^Ë@~|†i%[’·ÛôbÑä> stream xÚ­WKÛ6¾ï¯p –+®H=,U‹M€½Å@Îh[¶Ù•%C’×Ò¿/gH½lÉ»‹ä`‘g¾y‘ã?w_lwÀcÞd±Pf“€MÅ"‰rÅ’¥§B®Ôb“Fy2-ÔbÏ_4Y³§Åß_¨ÓA`2K" “R¸ÂN1ö Z’U‚¥Šã“ùWªF^ŠOvZß:=O/Dšä Dtµˆ­âÓJ^æa8ý6Eû®aÎ}âÈs–:¹ÀgJº¶£Uxf~ŒÖ‚ÇJQi^¢Í‹*Öh·i¦i§ìE¼ÔgÖr ÂÈý8MÅ´Íyϵÿ¿éîEò<(§ˆDz/èÀKpJ^ˆC¤Ô{5Pb9?È.KçÚoò6ük8´Y^”Ùz®6ºâ0±èuVTqºI—Û²o&„M‰í³k°U ƒ…)‹fBè—"'[‘ˆ¢%„_trÀú7ëiÌ]ô¨kɞ¶A¬‰}‡‘ xMOªPZ qÄ5A@ìùü¦k°œ¼×,鲚zOüB]`Êe5¨‘³¯™öAº<9Å1Úw:£ì†u”ºÄòü›æ¡Î…yJðR ïÚÇéŽâpûè`Q²¢|½zƒÜ”Ò»V8ðç\CÞTHOMÜé Ú‹‡¦›'‘ç"Ùáå‚/âh¨øß¬›0æ^»¶qíøåuãz NóŠÿÄÇxJýBgü\¿@:|+ž‹µž¦åPU <ÆiÑ‹2º¥ÇÞÆó¾Ê×<Žê7 :Fá4™ê¥¼ÛCùãÒ³ y„º¦—1_…ð©]ëª]cןBH³ÕK#|OŽ:û!ÔÏéH,|›xþíŽÃcdî9ã÷Zó|!åÈáZ³N¹î3BMø()[6ÆÒZ­³¨ÕšÐñúÀN·2.CÛVñ«xI­§{!íë|gFû½îM6À2ÉF}Ŷ€„eóÀ8dæ[F:gNÖÿÊl“ Í-åIÉ¢£ò+"‘QȘº®mü»‡8VŠ}#6ø§ 8¾6²´¨Zz.mÓ¤L^²òô³ÚÀ¿@/±d~Ìø‡¯!êšG¦7²l¥Åi¡­b‡"füY< fêY]–%;];^_u°£¼û¼¸ûz ²Éendstream endobj 1414 0 obj << /Filter /FlateDecode /Length 1099 >> stream xÚ­W[›8~Ÿ_‘vVÚD nl0ió²U+m«ìSvpb³†Ì„þúúJ€VóØØÇçæÏçò÷îîã—pÈGþbwXDüpáã /véb¿¬3ÂÉÊq]oÛI¶BÁòLSNÒJ¯°ƒ‹œ’ÁRÂV —©9[gq-gx™Å+±þ,ÿ¬ªÇK•ÄÑT1:Ÿ•TµáÀ:²þÛàøAM\™­ô2ú§9”¶Ê§œ•«‡Ý×Åfá@"l Ík –¡"Ïëïí2uØ]Rr1 gšÔ9£•ÞH™ëÌÚ’Ôç¸0›\™ú’Ó'%ããèuÜî´"±µÄLÓ¹~‡Îa€…ÚŠ ,Xí\•¸å¦Ø³ä¹á‡üZ‚­2Þ à¨oýýÊÁ/?q×DÏc=T5)õÌj²ÖŸœœØ³0×~¥-1Mr ¹¢Q X°©ó“Ý`IræzšÓÞ5ù­2PÜùR=ÛC/yé™pŠetÐcBhŸõüðÒSv5á/§oŠ„ÖeÝ(tݺ" 0 ­û#þŠzÀßœÅ$û¼4VröðA/ÐC#¤ä·–~éÛzÙ;Bðˆcš>]cé†ÐE!Ø?û4¢ÍàiŸ}AèS)GXƒožgÇmt»…æÑû8Wµ:»½ø5ÛfŠ)*ƒáG¤9*pu8î9k´VW všY‰·®C>€ÍÞ a޾ENÊ"NŒ!Ï„?2kU&ÀþQzÔó"ÿŸ MìK)ò#Óñþê h,ʪugxÓ[áÔîôV4µÕž7^õ{_Ÿþ¬î}~À\³ëç*;(ìÅÐÆ45!$6p­N$æ6€qرšq©C×"m™¥¦$ãQé\ÞŸ‚Ú;±^䉩üTß;ÔBr÷íßÏS¤¨Ï¯:Ÿ$ )¨{¹ ‚Ð蟼&Þ »ðaH :ÊIVߤ{c†™OŠhÃß”MÍ”˜æVÌ{ó9+¦ —ëó×,á/Å_Š—ÝËÄË)æÇ¹Le43£¤2±®»y°ý°ä€ +P„@E³ ÂŒ œŽÔïd†õÏÕ5´JÍ¥6ÏžÏl*ûEÔݤ6mòxz»Éoâ7Êq¿÷á qñ†â>§5á%+äcTe¢ç¡yë[O¿Æú¸,9»Œ¡èbD‘–±tû>ÅfÓú½Y?lUùýGóŽ3$%&«Ê¾ß4Wän_ƒÞVv÷Ù½–ÐíUÞm­?l\L…¯ û¢é—ö¦×E©êgLWp`Üv=+h»Y¹†ýŸIîÊêtmÏåꔥ9ˆ ½T¦~Mõ(öª·í>dPaè… Ü Ÿ5xÐxˆ¬ì±’À>NmyfRë‘Òö> stream xÚµWßo›0~ï_”ImÕÄŘƤMj¦½-oYq·Ä0 MöÇÏ? Ø Ð¬í‡¹»ïîüÝ™|]ÜÞ;Ø @à!Ïš­,h#åá)@üÍliͯbt=Á_}š¨;¼ž@ÛW#õøDHV(±Ì£øI‰éª^Z%$e5VRœ&µDÊøz1ûfÙÖBàpOØÒ„¬NV–éöWB~ò8X¼ÍŸ…_ÈT®Vi®ô…&U"eê¾eô÷Vº(J²É„‡ÆËí=tõ²86˜bŸûVN•ŠY9 \5£.‰âµ’ ^2’1N ÂM3íÝ:5sÜ­i¼>ĆTORZzõV4€1]i‰€m“Dˆû (u=_ Ù @ÐŒ§Q'Ï„•sÝBy C[Ú)¤ -Rë^3ø\ë y”%QLj¾ìhY'ª©!M){PeêŠj¿7óŒìŠæE¹7…¦"áOê…ûë%ýÜùþãn¬Ç¢e:bõþl¢¼fyTª»Âï‚2øh~d¼äœÃ/0" 1¾ã›ðUÕW­jNÇ‹¦d_”Œ/õ‘L'T–¤%hbîˆwê—Û …Ë' v\3Z¢¬2†—Åå GÊH!Ô—)o’LR°áAU Óñaü„üšÇhÑŽ¡_ÚJ²[†ü+ÐN¶œ?àk¨µ ?oŒÀìë É©ÜVAK ¸ßvÛŸ?-cÛW}Å\æÑNhvçsðaôGýÅëP(Ìc¨g·‘é‰%éN=uŽG×>äW&¾ÏG¹g†ùÐA§ŽDàšäßD{•Z_m«N³ªš'„=”r+R-:§ <êµúù¦{ªÍóyŒÁÓ]S¶”•}½ç„ðpï!àØÎpï5³^ݵ><‚«whΛò |~ãö ©$Ý‘\›R}í-êç@àøè¨äZ¿uöºaä»OoMk›eï–V;FÒ@Š/Q±ùÞëhÌ®ùqFcÊÉyêyb8ÌYþAjîÌéì=—8ï@šã!ÿÊ “蟩óδѓlÅÿL&O#_ÂÀ ºxÆ­iP÷«×±“²gZÐúEB‹RnB(N“æ4 Åa~©ùú‡Z€yPœ¨.¾ë(·Pi^ÜÍ.þwhendstream endobj 1416 0 obj << /Type /XRef /Length 707 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 96 0 R /Root 95 0 R /Size 1417 /ID [<9b50f164d9f6083af4c64be5c5725323><18cac1087cfb84dec3e77d6991657fa0>] >> stream xœí™IhA†»{ºº§³ŒârP“8Fƒxˆ;Š ‚£¸F$âEL¢!BD‚1‚%¢a $ ˆK‚ š‹¸@DÅ“Û%ŠxPÔ1Úï›ÃxÔ:¿9|½ªêªùçÕðÚsä㹎3 ~q<\¥ò?øÛÓŸ‰Û楸èÃ3u‘ÒÆEåÝâ¢è¹ø'8 × ýk´û„‰…â±;;ÕcJÕ ‘©Þã¥Y¸«JX0V¸âˆpñHL7=[ÚÕå†á´AÑçuH»v8öáH÷qõ¡Ò‡^ÓöLìŸÎ_ê¥öÔ‰:"õÒÆ?-ƒâŸö“êå¿zæÀížØ3‡/ªg”6þi+•œÓº\ý£´ñωýâŸæ!õÒÆ?gªÄ?eê¥2s¥väžÿTPAš>,4ã©#ÕKuȬAÙa4‡úÒ.Cä€0¹VND™“Ê×<£Ÿ(T¥‚$í×Â)Œ­<',É '7Éêe¹ùPÝÚK|°x&kmDM ÿüŒ ©hEŸyª•(ð1……— û úÙOb£ü€ÏcƱÖ>æYB|Ê7br÷ÑjtÞ\˜ïô>ažÍ²£wI2𖵸_üâß1Ï"è³µÈÿEÜ;fÒ_»ÛÁØõ(iFN#ºŽ2•nÆ÷BòóïFDÌ1Ú…Œ]FïRÚÜž "CN,ÈÝe›òß]Èl>'lhWCN>ä2¼I4Ð+äüû(Å(uÌ|…³5|ï>{7½´OÃ^ç–)¤ž endstream endobj startxref 470103 %%EOF survival/inst/doc/tests.R0000644000176000001440000003132712267746150015204 0ustar ripleyusers### R code from vignette source 'tests.Rnw' ################################################### ### code chunk number 1: tests.Rnw:21-25 ################################################### options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default ################################################### ### code chunk number 2: data ################################################### getOption("SweaveHooks")[["fig"]]() library(survival) age2 <- cut(flchain$age, c(49, 59, 69, 79, 89, 120), labels=c("50-59", "60-69", "70-79", "80-89", "90+")) counts <- with(flchain, table(sex, age2)) counts # flchain$flc <- flchain$kappa + flchain$lambda male <- (flchain$sex=='M') mlow <- with(flchain[male,], smooth.spline(age, flc)) flow <- with(flchain[!male,], smooth.spline(age, flc)) plot(flow, type='l', ylim=range(flow$y, mlow$y), xlab="Age", ylab="FLC") lines(mlow, col=2) cellmean <- with(flchain, tapply(flc, list(sex, age2), mean, na.rm=T)) matpoints(c(55,65,75, 85, 95), t(cellmean), pch='fm', col=1:2) round(cellmean, 2) ################################################### ### code chunk number 3: tests.Rnw:298-307 ################################################### us2000 <- rowSums(uspop2[51:101,,'2000']) fit1 <- lm(flc ~ sex, flchain, x=TRUE) fit2 <- lm(flc ~ sex + ns(age,4), flchain, x=TRUE) c(fit1$coef[2], fit2$coef[2]) wt1 <- solve(t(fit1$x)%*%fit1$x, t(fit1$x))[2,] # unadjusted wt2 <- solve(t(fit2$x)%*%fit2$x, t(fit2$x))[2,] # age-adjusted table(wt1, flchain$sex) ################################################### ### code chunk number 4: pop ################################################### getOption("SweaveHooks")[["fig"]]() us2000 <- rowSums(uspop2[51:101,,'2000']) tab0 <- table(flchain$age) tab2 <- tapply(abs(wt2), flchain$age, sum) matplot(50:100, cbind(tab0/sum(tab0), tab2/sum(tab2)), type='l', lty=1, xlab="Age", ylab="Density") us2000 <- rowSums(uspop2[51:101,,'2000']) matpoints(50:100, us2000/sum(us2000), pch='u') legend(60, .02, c("Empirical reference", "LS reference"), lty=1, col=1:2, bty='n') ################################################### ### code chunk number 5: yfit ################################################### yatesfit <- lm(flc ~ interaction(sex, age2) -1, data=flchain) theta <- matrix(coef(yatesfit), nrow=2) dimnames(theta) <- dimnames(counts) round(theta,2) ################################################### ### code chunk number 6: tests.Rnw:462-484 ################################################### qform <- function(beta, var) # quadratic form b' (V-inverse) b sum(beta * solve(var, beta)) contrast <- function(cmat, fit) { varmat <- vcov(fit) if (class(fit) == "lm") sigma2 <- summary(fit)$sigma^2 else sigma2 <- 1 # for the Cox model case beta <- coef(fit) if (!is.matrix(cmat)) cmat <- matrix(cmat, nrow=1) if (ncol(cmat) != length(beta)) stop("wrong dimension for contrast") estimate <- drop(cmat %*% beta) #vector of contrasts ss <- qform(estimate, cmat %*% varmat %*% t(cmat)) *sigma2 list(estimate=estimate, ss=ss, var=drop(cmat %*% varmat %*% t(cmat))) } yates.sex <- matrix(0, 2, 10) yates.sex[1, c(1,3,5,7,9)] <- 1/5 #females yates.sex[2, c(2,4,6,8,10)] <- 1/5 #males contrast(yates.sex, yatesfit)$estimate # the estimated "average" FLC for F/M contrast(yates.sex[2,]-yates.sex[,1], yatesfit) # male - female contrast ################################################### ### code chunk number 7: tests.Rnw:487-513 ################################################### # Create the estimates table -- lots of fits emat <- matrix(0., 6, 3) dimnames(emat) <- list(c("Unadjusted", "MVUE: continuous age", "MVUE: categorical age", "Empirical (data) reference", "US200 reference", "Uniform (Yates)"), c("est", "se", "SS")) #unadjusted emat[1,] <- c(summary(fit1)$coef[2,1:2], anova(fit1)["sex", "Sum Sq"]) # MVUE -- do the two fits fit2 <- lm(flc ~ ns(age,4) + sex, flchain) emat[2,] <- c(summary(fit2)$coef[6, 1:2], anova(fit2)["sex", "Sum Sq"]) fit2 <- lm(flc ~ age2 + sex, flchain) emat[3,] <- c(summary(fit2)$coef[6, 1:2], anova(fit2)["sex", "Sum Sq"]) #Remainder, use contrasts tfun <- function(wt) { cvec <- c(matrix(c(-wt, wt), nrow=2, byrow=TRUE)) temp <- contrast(cvec, yatesfit) c(temp$est, sqrt(temp$var), temp$ss) } emat[4,] <- tfun(colSums(counts)/sum(counts)) usgroup <- tapply(us2000, rep(1:5, c(10,10,10,10,11)), sum)/sum(us2000) emat[5,]<- tfun(usgroup) emat[6,] <- tfun(rep(1/5,5)) ################################################### ### code chunk number 8: tests.Rnw:518-522 ################################################### temp <- dimnames(emat)[[1]] for (i in 1:nrow(emat)) cat(temp[i], sprintf(" &%5.3f", emat[i,1]),sprintf(" &%6.5f", emat[i,2]), sprintf(" & %6.1f", emat[i,3]), "\\\\ \n") ################################################### ### code chunk number 9: weights ################################################### casewt <- array(1, dim=c(2,5,4)) # case weights by sex, age group, estimator csum <- colSums(counts) casewt[,,2] <- counts[2:1,] / rep(csum, each=2) casewt[,,3] <- rep(csum, each=2)/counts casewt[,,4] <- 1/counts #renorm each so that the mean weight is 1 for (i in 1:4) { for (j in 1:2) { meanwt <- sum(casewt[j,,i]*counts[j,])/ sum(counts[j,]) casewt[j,,i] <- casewt[j,,i]/ meanwt } } ################################################### ### code chunk number 10: tests.Rnw:566-576 ################################################### tname <- c("Unadjusted", "Min var", "Empirical", "Yates") for (i in 1:2) { for (j in 1:4) { cat("&",tname[j], " & ", paste(sprintf("%4.2f", casewt[i,,j]), collapse= " & "), "\\\\\n") if (j==1) cat(c("Female", "Male")[i]) } if (i==1) cat("\\hline ") } ################################################### ### code chunk number 11: tests.Rnw:619-623 ################################################### temp <- 1/colSums(1/counts) temp <- temp/sum(temp) cat("Female", sprintf(" & %5.3f", -temp), "\\\\ \n") cat("Male", sprintf(" & %5.3f", temp), "\\\\ \n") ################################################### ### code chunk number 12: treatment ################################################### fit3 <- lm(flc ~ sex * age2, flchain) coef(fit3) contrast(c(0,1, 0,0,0,0, .2,.2,.2,.2), fit3) #Yates ################################################### ### code chunk number 13: SAS ################################################### options(contrasts=c("contr.SAS", "contr.poly")) sfit1 <- lm(flc ~ sex, flchain) sfit2 <- lm(flc ~ sex + age2, flchain) sfit3 <- lm(flc ~ sex * age2, flchain) contrast(c(0,-1, 0,0,0,0, -.2,-.2,-.2,-.2), sfit3) # Yates for SAS coding ################################################### ### code chunk number 14: nstt ################################################### options(contrasts = c("contr.treatment", "contr.poly")) #R default fit3a <- lm(flc ~ sex * age2, flchain) options(contrasts = c("contr.SAS", "contr.poly")) fit3b <- lm(flc~ sex * age2, flchain) options(contrasts=c("contr.sum", "contr.poly")) fit3c <- lm(flc ~ sex * age2, flchain) # nstt <- c(0,1, rep(0,8)) #test only the sex coef = the NSTT method temp <- rbind(unlist(contrast(nstt, fit3a)), unlist(contrast(nstt, fit3b)), unlist(contrast(nstt, fit3c)))[,1:2] dimnames(temp) <- list(c("R", "SAS", "sum"), c("effect", "SS")) print(temp) # drop1(fit3a, .~.) ################################################### ### code chunk number 15: anova ################################################### options(show.signif.stars = FALSE) #exhibit intelligence sfit0 <- lm(flc ~ 1, flchain) sfit1b <- lm(flc ~ age2, flchain) anova(sfit0, sfit1b, sfit2, sfit3) ################################################### ### code chunk number 16: relrate ################################################### options(contrasts= c("contr.treatment", "contr.poly")) # R default cfit0 <- coxph(Surv(futime, death) ~ interaction(sex, age2), flchain) cmean <- matrix(c(0, coef(cfit0)), nrow=2) cmean <- rbind(cmean, cmean[2,] - cmean[1,]) dimnames(cmean) <- list(c("F", "M", "M/F ratio"), dimnames(counts)[[2]]) signif(exp(cmean),3) ################################################### ### code chunk number 17: cox anova ################################################### options(contrasts=c("contr.SAS", "contr.poly")) cfit1 <- coxph(Surv(futime, death) ~ sex, flchain) cfit2 <- coxph(Surv(futime, death) ~ age2 + sex, flchain) cfit3 <- coxph(Surv(futime, death) ~ sex + strata(age2), flchain) # Unadjusted summary(cfit1) # # LRT anova(cfit2) # # Stratified anova(cfit3) summary(cfit3) # # Wald test signif(summary(cfit2)$coefficients, 3) # anova(cfit1) anova(cfit2) ################################################### ### code chunk number 18: coxfit ################################################### wtindx <- with(flchain, tapply(death, list(sex, age2))) cfitpop <- coxph(Surv(futime, death) ~ sex, flchain, robust=TRUE, weight = (casewt[,,3])[wtindx]) cfityates <- coxph(Surv(futime, death) ~ sex, flchain, robust=TRUE, weight = (casewt[,,4])[wtindx]) # # Glue it into a table for viewing # tfun <- function(fit, indx=1) { c(fit$coef[indx], sqrt(fit$var[indx,indx])) } coxp <- rbind(tfun(cfit1), tfun(cfit2,5), tfun(cfitpop), tfun(cfityates)) dimnames(coxp) <- list(c("Unadjusted", "Additive", "Emprical Population", "Uniform Population"), c("Effect", "se(effect)")) signif(coxp,3) ################################################### ### code chunk number 19: tests.Rnw:1133-1149 ################################################### cfit4 <- coxph(Surv(futime, death) ~ sex * age2, flchain) # Uniform population contrast ysex <- c(0,-1, 0,0,0,0, -.2,-.2,-.2,-.2) #Yates for sex, SAS coding contrast(ysex[-1], cfit4) # Verify using cell means coding cfit4b <- coxph(Surv(futime, death) ~ interaction(sex, age2), flchain) temp <- matrix(c(0, coef(cfit4b)),2) # the female 50-59 is reference diff(rowMeans(temp)) #direct estimate of the Yates # temp2 <- rbind(temp, temp[2,] - temp[1,]) dimnames(temp2) <- list(c('female', 'male', 'difference'), levels(age2)) round(temp2, 3) # # # NSTT contrast contrast(c(1,0,0,0,0,0,0,0,0), cfit4) ################################################### ### code chunk number 20: nstt-lrt ################################################### xmat4 <- model.matrix(cfit4) cfit4b <- coxph(Surv(futime, death) ~ xmat4[,-1], flchain) anova(cfit4b, cfit4) ################################################### ### code chunk number 21: ydata ################################################### data1 <- data.frame(y = rep(1:6, length=20), x1 = factor(letters[rep(1:3, length=20)]), x2 = factor(LETTERS[rep(1:4, length=10)]), x3 = 1:20) data1$x1[19] <- 'c' data1 <- data1[order(data1$x1, data1$x2),] row.names(data1) <- NULL with(data1, table(x1,x2)) # data2 -- single missing cell indx <- with(data1, x1=='a' & x2=='D') data2 <- data1[!indx,] #data3 -- missing the diagonal data3 <- data1[as.numeric(data1$x1) != as.numeric(data1$x2),] ################################################### ### code chunk number 22: tests.Rnw:1325-1328 ################################################### options(contrasts=c("contr.sum", "contr.poly")) fit1 <- lm(y ~ x1*x2, data1) drop1(fit1, .~.) ################################################### ### code chunk number 23: tests.Rnw:1335-1341 ################################################### options(contrasts=c("contr.SAS", "contr.poly")) fit2 <- lm(y ~ x1*x2, data1) drop1(fit2, .~.) options(contrasts=c("contr.treatment", "contr.poly")) fit3 <- lm(y ~ x1*x2, data1) drop1(fit3, .~.) ################################################### ### code chunk number 24: att ################################################### X <- model.matrix(fit2) ux <- unique(X) ux indx <- rep(1:3, c(4,4,4)) effects <- t(rowsum(ux, indx)/4) # turn sideways to fit the paper better effects yates <- effects[,-1] - effects[,1] yates ################################################### ### code chunk number 25: tests.Rnw:1381-1384 ################################################### wt <- solve(t(X) %*% X, t(X)) # twelve rows (one per coef), n columns casewt <- t(effects) %*% wt # case weights for the three "row efffects" for (i in 1:3) print(tapply(casewt[i,], data1$x2, sum)) ################################################### ### code chunk number 26: tests.Rnw:1421-1422 ################################################### fit4 <- lm(y ~ x1*x2 + x3, data=data1) survival/tests/0000755000176000001440000000000012267746072013334 5ustar ripleyuserssurvival/tests/singtest.Rout.save0000644000176000001440000000366712267746072017020 0ustar ripleyusers R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # A simple test of an overdetermined system > # Should give a set of NA coefficients > # > test1 <- data.frame(time= c(4, 3,1,1,2,2,3), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > temp <- rep(0:3, rep(7,4)) > > stest <- data.frame(start = 10*temp, + stop = 10*temp + test1$time, + status = rep(test1$status,4), + x = c(test1$x+ 1:7, rep(test1$x,3)), + epoch = rep(1:4, rep(7,4))) > > # Will create a warning about a singular X matrix > fit1 <- coxph(Surv(start, stop, status) ~ x * factor(epoch), stest) Warning message: In coxph(Surv(start, stop, status) ~ x * factor(epoch), stest) : X matrix deemed to be singular; variable 2 3 4 > fit1$coef # elements 2:4 should be NA x factor(epoch)2 factor(epoch)3 factor(epoch)4 0.1041579 NA NA NA x:factor(epoch)2 x:factor(epoch)3 x:factor(epoch)4 1.5726996 1.5726996 1.5726996 > all.equal(is.na(fit1$coef), c(F,T,T,T,F,F,F), check.attributes=FALSE) [1] TRUE > > proc.time() user system elapsed 0.168 0.032 0.193 survival/tests/anova.R0000644000176000001440000000204212267746072014561 0ustar ripleyusers# # Test out anova, with strata terms # options(na.action=na.omit) library(survival) fit1 <- coxph(Surv(time, status) ~ ph.ecog + wt.loss + strata(sex) + poly(age,3), lung) ztemp <- anova(fit1) tdata <- na.omit(lung[, c('time', 'status', 'ph.ecog', 'wt.loss', 'sex', 'age')]) fit2 <- coxph(Surv(time, status)~ ph.ecog + wt.loss + poly(age,3) + strata(sex), data=tdata) ztemp2 <- anova(fit2) all.equal(ztemp, ztemp2) fit2 <- coxph(Surv(time, status) ~ ph.ecog + wt.loss + strata(sex), tdata) fit3 <- coxph(Surv(time, status) ~ ph.ecog + strata(sex), tdata) all.equal(ztemp$loglik, c(fit1$loglik[1], fit3$loglik[2], fit2$loglik[2], fit1$loglik[2])) all.equal(ztemp$Chisq[-1], 2* diff(ztemp$loglik)) all.equal(ztemp$Df[-1], c(1,1,3)) ztemp2 <- anova(fit3, fit2, fit1) all.equal(ztemp2$loglik, ztemp$loglik[-1]) all.equal(ztemp2$Chisq[2:3], ztemp$Chisq[3:4]) # Change from ztemp2$P; it's a data frame and in R 3.0.2 abbreviated names # give a warning all.equal(ztemp2[[4]][2:3], ztemp[[4]][3:4]) survival/tests/model.matrix.Rout.save0000644000176000001440000000611512267746072017552 0ustar ripleyusers R version 3.0.1 (2013-05-16) -- "Good Sport" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test out the revised model.matrix code > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0), + z= factor(c('a', 'a', 'b', 'b', 'c', 'c', 'a'))) > > fit1 <- coxph(Surv(time, status) ~ z, test1, iter=1) > fit2 <- coxph(Surv(time, status) ~z, test1, x=T, iter=1) > all.equal(model.matrix(fit1), fit2$x) [1] TRUE > > # This has no level 'b', make sure dummies recode properly > test2 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0), + z= factor(c('a', 'a', 'a', 'a', 'c', 'c', 'a'))) > > ftest <- model.frame(fit1, data=test2) > all.equal(levels(ftest$z), levels(test1$z)) [1] TRUE > > # xtest will have one more row than the others, since it does not delete > # the observation with a missing value for status > xtest <- model.matrix(fit1, data=test2) > dummy <- fit2$x > dummy[,1] <- 0 > all.equal(xtest[-2,], dummy, check.attributes=FALSE) [1] TRUE > > # The case of a strata by factor interaction > # Use iter=0 since there are too many covariates and it won't converge > test1$x2 <- factor(rep(1:2, length=7)) > fit3 <- coxph(Surv(time, status) ~ strata(x2)*z, test1, iter=0) > xx <- model.matrix(fit3) > all.equal(attr(xx, "assign"), c(2,2,3,3)) [1] TRUE > all.equal(colnames(xx), c("zb", "zc", "strata(x2)x2=2:zb", + "strata(x2)x2=2:zc")) [1] TRUE > all.equal(attr(xx, "contrasts"), + list("strata(x2)"= "contr.treatment", z="contr.treatment")) [1] TRUE > > fit3b <- coxph(Surv(time, status) ~ strata(x2)*z, test1, iter=0, x=TRUE) > all.equal(fit3b$x, xx) [1] TRUE > > > # A model with a tt term > fit4 <- coxph(Surv(time, status) ~ tt(x) + x, test1, iter=0, + tt = function(x, t, ...) x*t) > ff <- model.frame(fit4) > # There is 1 subject in the final risk set, 4 at risk at time 6, 6 at time 1 > # The .strata. variable numbers from last time point to first > all.equal(ff$.strata., rep(1:3, c(1, 4,6))) [1] TRUE > all.equal(ff[["tt(x)"]], ff$x* c(9,6,1)[ff$.strata.]) [1] TRUE > > xx <- model.matrix(fit4) > all.equal(xx[,1], ff[[2]], check.attributes=FALSE) [1] TRUE > > > proc.time() user system elapsed 0.280 0.032 0.310 survival/tests/expected.Rout.save0000644000176000001440000002611012267746072016745 0ustar ripleyusers R version 3.0.1 (2013-05-16) -- "Good Sport" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # Tests of expected survival > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # > # This makes several scripts easier > # Certain tests depended in the now-depreciated date library > {if (is.R()) mdy.date <- function(m, d, y) { + y <- ifelse(y<100, y+1900, y) + as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") + } + else mdy.date <- function(m,d,y) { + y <- ifelse(y<100, y+1900, y) + timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") + } + } > > # This function takes a single subject and walks down the rate table > # Input: the vector of starting points, futime, and a ratetable > # Output: the full history of walking through said table. Let n= #unique > # rates that were used > # cell = n by #dims of the table: index of the table cell > # days = time spent in cell > # hazard= accumulated hazard = days * rate > # This does not do date or factor conversions -- start has to be numeric > # > ratewalk <- function(start, futime, ratetable=survexp.us) { + if (!is.ratetable(ratetable)) stop("Bad rate table") + ratedim <- dim(ratetable) + nvar <- length(ratedim) + if (length(start) != nvar) stop("Wrong length for start") + if (futime <=0) stop("Invalid futime") + + attR <- attributes(ratetable) + discrete <- (attR$type ==1) #discrete categories + + maxn <- sum(!discrete)*prod(ratedim[!discrete]) #most cells you can hit + cell <- matrix(0, nrow=maxn, ncol=nvar) + days <- hazard <- double(maxn) + + eps <- 1e-8 #Avoid round off error + n <- 0 + while (futime >0) { + n <- n+1 + #what cell am I in? + # Note that at the edges of the rate table, we use the edge: if + # it only goes up the the year 2000, year 2000 is used for any + # dates beyond. This effectively eliminates one boundary + cell[n,discrete] <- start[discrete] + edge <- futime #time to nearest edge, or finish + for (j in which(!discrete)) { + indx <- sum(start[j] >= attR$cutpoints[[j]]-eps) + cell[n, j] <- max(1, indx) + if (indx < ratedim[j]) + edge <- min(edge, (attR$cutpoints[[j]])[indx+1] - start[j]) + } + days[n] <- edge #this many days in the cell + # using a matrix as a subscript is so handy sometimes + hazard[n] <- edge * (as.matrix(ratetable))[cell[n,,drop=F]] + futime <- futime - edge #amount of time yet to account for + start[!discrete] <- start[!discrete] + edge #walk forward in time + } + list(cell=cell[1:n,], days=days[1:n], hazard=hazard[1:n]) + } > > # Simple test of ratewalk: 20 years old, start on 7Sep 1960 (day 250) > # 116 days at the 1960, 20 year old male rate, through the end of the day > # on 12/31/1960, then 84 days at the 1961 rate. > # The decennial q for 1960 males is .00169. > zz <- ratewalk(c(20.4*365.25, 1, 250), 200) > all.equal(zz$hazard[1], -(116/365.25)*log(1-.00169)) [1] TRUE > all.equal(zz$days, c(116,84)) [1] TRUE > > > # > # Simple case 1: a single male subject, born 1/1/36 and entered on study 1/2/55 > # > # Compute the 1, 5, 10 and 12 year expected survival > > temp1 <- mdy.date(1,1,36) > temp2 <- mdy.date(1,2,55) > exp1 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=1, race='white'), + ratetable=survexp.usr,times=c(366, 1827, 3653, 4383)) > > tyear <- as.numeric(temp2 - mdy.date(1,1,1960)) > h1 <- ratewalk(c(temp2-temp1, 1, 1, tyear), 366, survexp.usr) > h2 <- ratewalk(c(temp2-temp1, 1, 1, tyear), 1827, survexp.usr) > h3 <- ratewalk(c(temp2-temp1, 1, 1, tyear), 3653, survexp.usr) > h4 <- ratewalk(c(temp2-temp1, 1, 1, tyear), 4383, survexp.usr) > > aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), + sum(h4$hazard))) [1] TRUE > > > # Just a little harder: > # Born 3/1/25 and entered the study on 6/10/55. The code creates shifted > # dates to align with US rate tables - entry is 59 days earlier (days from > # 1/1/25 to 3/1/25). > # > temp1 <- mdy.date(3,1,25) > temp2 <- mdy.date(6,10,55) > exp1 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=2, race='black'), + ratetable=survexp.usr,times=c(366, 1827, 3653, 4383)) > > tyear <- as.numeric(temp2 - mdy.date(1,1,1960)) - 59 > h1 <- ratewalk(c(temp2-temp1, 2, 2, tyear), 366, survexp.usr) > h2 <- ratewalk(c(temp2-temp1, 2, 2, tyear), 1827, survexp.usr) > h3 <- ratewalk(c(temp2-temp1, 2, 2, tyear), 3653, survexp.usr) > h4 <- ratewalk(c(temp2-temp1, 2, 2, tyear), 4383, survexp.usr) > > aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), + sum(h4$hazard))) [1] TRUE > > # > # Simple case 2: make sure that the averages are correct, for Ederer method > # > # Compute the 1, 5, 10 and 12 year expected survival > > temp1 <- mdy.date(1:6,6:11,1890:1895) > temp2 <- mdy.date(6:1,11:6,c(55:50)) > temp3 <- c(1,2,1,2,1,2) > age <- temp2 - temp1 > > exp1 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), + times=c(366, 1827, 3653, 4383)) > exp2 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3) + I(1:6), + times=c(366, 1827, 3653, 4383)) > exp3 <- exp2$surv > for (i in 1:length(temp1)){ + exp3[,i] <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), + times=c(366, 1827, 3653, 4383), subset=i)$surv + } > > > print(aeq(exp2$surv, exp3)) [1] TRUE > print(all.equal(exp1$surv, apply(exp2$surv, 1, mean))) [1] TRUE > > # They agree, but are they right? > # > for (i in 1:length(temp1)) { + offset <- as.numeric(temp1[i] - mdy.date(1,1, 1889+i)) + tyear = (as.numeric(temp2[i] - mdy.date(1,1,1960))) - offset + haz1 <- ratewalk(c((temp2-temp1)[i], temp3[i], tyear), 366) + haz2 <- ratewalk(c((temp2-temp1)[i], temp3[i], tyear), 1827) + haz3 <- ratewalk(c((temp2-temp1)[i], temp3[i], tyear), 3653) + haz4 <- ratewalk(c((temp2-temp1)[i], temp3[i], tyear), 4383) + print(aeq(-log(exp2$surv[,i]), c(sum(haz1$hazard), sum(haz2$hazard), + sum(haz3$hazard), sum(haz4$hazard)))) + } [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] TRUE > > # > # Check that adding more time points doesn't change things > # > exp4 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3) + I(1:6), + times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) > aeq(exp4$surv[match(exp2$time, exp4$time),], exp2$surv) [1] TRUE > > exp4 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), + times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) > aeq(exp1$surv, exp4$surv[match(exp1$time, exp4$time, nomatch=0)]) [1] TRUE > > > # > # Now test Hakulinen's method, assuming an analysis date of 3/1/57 > # > futime <- mdy.date(3,1,57) - temp2 > xtime <- sort(c(futime, 30, 60, 185, 365)) > > exp1 <- survexp(futime ~ ratetable(year=temp2, age=(temp2-temp1), sex=1), + times=xtime, conditional=F) > exp2 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=1) + I(1:6), + times=futime) > > wt <- rep(1,6) > con <- double(6) > for (i in 1:6) { + con[i] <- sum(exp2$surv[i,i:6])/sum(wt[i:6]) + wt <- exp2$surv[i,] + } > > exp1$surv[match(futime, xtime)] [1] 0.9557362 0.9285840 0.9025661 0.8774220 0.8532489 0.8297416 > aeq(exp1$surv[match(futime, xtime)], cumprod(con)) [1] TRUE > > > # > # Now for the conditional method > # > exp1 <- survexp(futime ~ ratetable(year=temp2, age=(temp2-temp1), sex=1), + times=xtime, conditional=T) > > cond <- exp2$surv > for (i in 6:2) cond[i,] <- (cond[i,]/cond[i-1,]) #conditional survival > for (i in 1:6) con[i] <- exp(mean(log(cond[i, i:6]))) > > all.equal(exp1$surv[match(futime, xtime)], cumprod(con)) [1] TRUE > cumprod(con) [1] 0.9556656 0.9284398 0.9023612 0.8771798 0.8529944 0.8294940 > > # > # Test out expected survival, when the parent pop is another Cox model > # > test1 <- data.frame(time= c(4, 3,1,1,2,2,3), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > fit <- coxph(Surv(time, status) ~x, test1, method='breslow') > > dummy <- data.frame(time=c(.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5), + status=c(1,0,1,0,1,0,1,1,1), x=(-4:4)/2) > > efit <- survexp(time ~ ratetable(x=x), dummy, ratetable=fit, cohort=F) > > # > # Now, compare to the true answer, which is known to us > # > ss <- exp(fit$coef) > haz <- c( 1/(3*ss+3), 2/(ss+3), 1) #truth at time 0,1,2,4+ > chaz <- cumsum(c(0,haz)) > chaz2 <- chaz[c(1,2,2,3,3,3,3,4,4)] > > risk <- exp(fit$coef*dummy$x) > efit2 <- exp(-risk*chaz2) > > all.equal(as.vector(efit), as.vector(efit2)) #ignore mismatched name attrib [1] TRUE > > # > # Now test the direct-adjusted curve (Ederer) > # > efit <- survexp( ~ ratetable(x=x), dummy, ratetable=fit, se=F) > direct <- survfit(fit, newdata=dummy, censor=FALSE)$surv > > chaz <- chaz[-1] #drop time 0 > d2 <- exp(outer(-chaz, risk)) > all.equal(as.vector(direct), as.vector(d2)) #this tests survfit [1] TRUE > > all.equal(as.vector(efit$surv), as.vector(apply(direct,1,mean))) #direct [1] TRUE > > # Check out the "times" arg of survexp > efit2 <- survexp( ~ ratetable(x=x), dummy, ratetable=fit, se=F, + times=c(.5, 2, 3.5,6)) > aeq(efit2$surv, c(1, efit$surv[c(2,2,3)])) [1] TRUE > > # > # Now test out the Hakulinen method (Bonsel's method) > # By construction, we have a large correlation between x and censoring > # > # In theory, hak1 and hak2 would be the same. In practice, like a KM and > # F-H, they differ when n is small. > # > efit <- survexp( time ~ ratetable(x=x), dummy, ratetable=fit, se=F) > > surv <- wt <- rep(1,9) > tt <- c(1,2,4) > hak1 <- hak2 <- NULL > for (i in 1:3) { + wt[dummy$time < tt[i]] <- 0 + hak1 <- c(hak1, exp(-sum(haz[i]*risk*surv*wt)/sum(surv*wt))) + hak2 <- c(hak2, sum(exp(-haz[i]*risk)*surv*wt)/sum(surv*wt)) + surv <- surv * exp(-haz[i]*risk) + } > > all.equal(as.vector(efit$surv), as.vector(cumprod(hak1))) [1] TRUE > > # > # Now do the conditional estimate > # > efit <- survexp( time ~ ratetable(x=x), dummy, ratetable=fit, se=F, + conditional=T) > wt <- rep(1,9) > cond <- NULL > for (i in 1:3) { + wt[dummy$time < tt[i]] <- 0 + cond <- c(cond, exp(-sum(haz[i]*risk*wt)/sum(wt))) + } > > all.equal(as.vector(efit$surv), as.vector(cumprod(cond))) [1] TRUE > > proc.time() user system elapsed 0.692 0.076 0.766 survival/tests/factor2.Rout.save0000644000176000001440000000345112267746072016507 0ustar ripleyusers R version 2.14.0 (2011-10-31) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > options(na.action=na.exclude) > # > # More tests of factors in prediction, using a new data set > # > fit <- coxph(Surv(time, status) ~ factor(ph.ecog), lung) > > tdata <- data.frame(ph.ecog = factor(0:3)) > p1 <- predict(fit, newdata=tdata, type='lp') > p2 <- predict(fit, type='lp') > aeq(p1, p2[match(0:3, lung$ph.ecog)]) [1] TRUE > > fit2 <- coxph(Surv(time, status) ~ factor(ph.ecog) + factor(sex), lung) > tdata <- expand.grid(ph.ecog = factor(0:3), sex=factor(1:2)) > p1 <- predict(fit2, newdata=tdata, type='risk') > > xdata <- expand.grid(ph.ecog=factor(1:3), sex=factor(1:2)) > p2 <- predict(fit2, newdata=xdata, type='risk') > all.equal(p2, p1[c(2:4, 6:8)], check.attributes=FALSE) [1] TRUE > > > fit3 <- survreg(Surv(time, status) ~ factor(ph.ecog) + age, lung) > tdata <- data.frame(ph.ecog=factor(0:3), age=50) > predict(fit, type='lp', newdata=tdata) 1 2 3 4 -0.39518177 -0.02634168 0.52120527 1.81279848 > predict(fit3, type='lp', newdata=tdata) 1 2 3 4 6.399571 6.142938 5.770523 4.916993 > survival/tests/strata2.Rout.save0000644000176000001440000000334412267746072016530 0ustar ripleyusers R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # New tests 4/2010 to validate strata by covariate interactions > # > library(survival) Loading required package: splines > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > tdata <- lung > tdata$sex <- lung$sex +3 > > # Both of these should produce warning messages about singular X, since there > # are ph.ecog=3 subjects in only 1 of the strata. > # Does not affect the test > fit1 <- coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), lung) Warning message: In coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), lung) : X matrix deemed to be singular; variable 5 > fit2 <- coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), tdata) Warning message: In coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), tdata) : X matrix deemed to be singular; variable 5 > > aeq(fit1$coef, fit2$coef) [1] TRUE > aeq(fit1$var, fit2$var) [1] TRUE > aeq(predict(fit1), predict(fit2)) [1] TRUE > > proc.time() user system elapsed 0.200 0.028 0.224 survival/tests/r_capacitor.R0000644000176000001440000000104112267746072015741 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) capacitor <- read.table('data.capacitor', row.names=1, col.names=c('', 'days', 'event', 'voltage')) fitig <- survreg(Surv(days, event)~voltage, dist = "gaussian", data = capacitor) summary(fitig) fitix <- survreg(Surv(days, event)~voltage, dist = "extreme", data = capacitor) summary(fitix) fitil <- survreg(Surv(days, event)~voltage, dist = "logistic", data = capacitor) summary(fitil) survival/tests/fr_cancer.Rout.save0000644000176000001440000001055012267746072017067 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Here is a test case with multiple smoothing terms > # > > fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, lung) > fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), lung) > fit2 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,4), lung) > fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), lung) > > > > fit4 <- coxph(Surv(time, status) ~ ph.ecog + pspline(wt.loss,3), lung) > > fit5 <-coxph(Surv(time, status) ~ ph.ecog + pspline(age,3) + + pspline(wt.loss,3), lung) > > fit1 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 3), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.4480 0.11707 0.11678 14.64 1.00 0.00013 pspline(age, 3), linear 0.0113 0.00928 0.00928 1.47 1.00 0.22000 pspline(age, 3), nonlin 2.08 2.08 0.37000 Iterations: 4 outer, 12 Newton-Raphson Theta= 0.861 Degrees of freedom for terms= 1.0 3.1 Likelihood ratio test=21.9 on 4.08 df, p=0.000227 n=227 (1 observation deleted due to missingness) > fit2 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 4), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.4505 0.11766 0.11723 14.66 1.00 0.00013 pspline(age, 4), linear 0.0112 0.00927 0.00927 1.45 1.00 0.23000 pspline(age, 4), nonlin 2.96 3.08 0.41000 Iterations: 4 outer, 11 Newton-Raphson Theta= 0.797 Degrees of freedom for terms= 1.0 4.1 Likelihood ratio test=22.7 on 5.07 df, p=0.000412 n=227 (1 observation deleted due to missingness) > fit3 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 8), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.4764 0.12024 0.11925 15.70 1.00 7.4e-05 pspline(age, 8), linear 0.0117 0.00923 0.00923 1.61 1.00 2.0e-01 pspline(age, 8), nonlin 6.93 6.99 4.3e-01 Iterations: 5 outer, 15 Newton-Raphson Theta= 0.691 Degrees of freedom for terms= 1 8 Likelihood ratio test=27.6 on 8.97 df, p=0.00108 n=227 (1 observation deleted due to missingness) > fit4 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(wt.loss, 3), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.51545 0.12960 0.12737 15.82 1.00 0.00007 pspline(wt.loss, 3), line -0.00702 0.00655 0.00655 1.15 1.00 0.28000 pspline(wt.loss, 3), nonl 2.45 2.09 0.31000 Iterations: 3 outer, 10 Newton-Raphson Theta= 0.776 Degrees of freedom for terms= 1.0 3.1 Likelihood ratio test=21.1 on 4.06 df, p=0.000326 n=213 (15 observations deleted due to missingness) > fit5 Call: coxph(formula = Surv(time, status) ~ ph.ecog + pspline(age, 3) + pspline(wt.loss, 3), data = lung) coef se(coef) se2 Chisq DF p ph.ecog 0.47422 0.13495 0.13206 12.35 1.00 0.00044 pspline(age, 3), linear 0.01368 0.00976 0.00974 1.96 1.00 0.16000 pspline(age, 3), nonlin 1.90 2.07 0.40000 pspline(wt.loss, 3), line -0.00717 0.00661 0.00660 1.18 1.00 0.28000 pspline(wt.loss, 3), nonl 2.08 2.03 0.36000 Iterations: 4 outer, 12 Newton-Raphson Theta= 0.85 Theta= 0.779 Degrees of freedom for terms= 1.0 3.1 3.0 Likelihood ratio test=25.2 on 7.06 df, p=0.000726 n=213 (15 observations deleted due to missingness) > > rm(fit1, fit2, fit3, fit4, fit5) > survival/tests/data.rat20000644000176000001440000001001312267746072015032 0ustar ripleyusers1 1 1 60 182 1 2 1 1 60 182 0 3 1 1 60 63 1 3 1 2 63 68 1 3 1 3 68 182 0 4 1 1 60 152 1 4 1 2 152 182 0 5 1 1 60 130 1 5 1 2 130 134 1 5 1 3 134 145 1 6 1 1 60 98 1 6 1 2 98 152 1 6 1 1 60 98 1 6 1 2 98 152 1 6 1 3 152 182 1 7 1 1 60 88 1 7 1 2 88 95 1 7 1 3 95 105 1 7 1 4 105 130 1 7 1 5 130 137 1 7 1 6 137 167 1 7 1 7 167 182 0 8 1 1 60 152 1 8 1 2 152 182 0 9 1 1 60 81 1 9 1 2 81 182 0 10 1 1 60 71 1 10 1 2 71 84 1 10 1 3 84 126 1 10 1 4 126 134 1 10 1 5 134 152 1 10 1 6 152 182 0 11 1 1 60 116 1 11 1 2 116 130 1 11 1 3 130 182 0 12 1 1 60 91 1 12 1 2 91 182 0 13 1 1 60 63 1 13 1 2 63 68 1 13 1 3 68 84 1 13 1 4 84 95 1 13 1 5 95 152 1 13 1 6 152 182 0 14 1 1 60 105 1 14 1 2 103 152 1 14 1 3 152 182 0 15 1 1 60 63 1 15 1 2 63 102 1 15 1 3 102 152 1 15 1 4 152 182 0 16 1 1 60 63 1 16 1 2 63 77 1 16 1 3 77 112 1 16 1 4 112 140 1 16 1 5 140 182 0 17 1 1 60 77 1 17 1 2 77 119 1 17 1 3 119 152 1 17 1 4 152 161 1 17 1 5 161 167 1 17 1 6 167 182 0 18 1 1 60 105 1 18 1 2 105 112 1 18 1 3 112 145 1 18 1 4 145 161 1 18 1 5 161 182 1 19 1 1 60 152 1 19 1 2 152 182 1 20 1 1 60 81 1 20 1 2 81 95 1 20 1 3 95 182 0 21 1 1 60 84 1 21 1 2 84 91 1 21 1 3 91 102 1 21 1 4 102 108 1 21 1 5 108 130 1 21 1 6 130 134 1 21 1 7 134 182 0 22 1 1 60 182 0 23 1 1 60 91 1 23 1 2 91 182 0 24 0 1 60 63 1 24 0 2 63 102 1 24 0 3 102 119 1 24 0 4 119 161 1 24 0 5 161 161 1 24 0 6 161 172 1 24 0 7 172 179 1 24 0 8 179 182 0 25 0 1 60 88 1 25 0 2 88 91 1 25 0 3 91 95 1 25 0 4 95 105 1 25 0 5 105 112 1 25 0 6 112 119 1 25 0 7 119 119 1 25 0 8 119 137 1 25 0 9 137 145 1 25 0 10 145 167 1 25 0 11 167 172 1 25 0 12 172 182 0 26 0 1 60 91 1 26 0 2 91 98 1 26 0 3 98 108 1 26 0 4 108 112 1 26 0 5 112 134 1 26 0 6 134 137 1 26 0 7 137 161 1 26 0 8 161 161 1 26 0 9 161 179 1 26 0 10 179 182 0 27 0 1 60 71 1 27 0 2 71 174 1 27 0 2 174 182 0 28 0 1 60 95 1 28 0 2 95 105 1 28 0 3 105 134 1 28 0 4 134 137 1 28 0 5 137 140 1 28 0 6 140 145 1 28 0 7 145 150 1 28 0 8 150 150 1 28 0 9 150 182 0 29 0 1 60 66 1 29 0 2 66 68 1 29 0 3 68 130 1 29 0 4 130 137 1 29 0 5 137 182 0 30 0 1 60 77 1 30 0 2 77 85 1 30 0 3 85 112 1 30 0 4 112 137 1 30 0 5 137 161 1 30 0 6 161 174 1 30 0 7 174 182 0 31 0 1 60 81 1 31 0 2 81 84 1 31 0 3 84 126 1 31 0 4 125 134 1 31 0 5 134 161 1 31 0 6 161 161 1 31 0 7 161 174 1 31 0 8 174 182 0 32 0 1 60 68 1 32 0 2 68 77 1 32 0 3 77 98 1 32 0 4 98 102 1 32 0 5 102 102 1 32 0 6 102 102 1 32 0 7 102 182 0 33 0 1 60 112 1 33 0 2 112 182 0 34 0 1 60 88 1 34 0 2 88 88 1 34 0 3 88 91 1 34 0 4 91 98 1 34 0 5 98 112 1 34 0 6 112 134 1 34 0 7 134 134 1 34 0 8 134 137 1 34 0 9 137 137 1 34 0 10 137 140 1 34 0 11 140 140 1 34 0 12 140 152 1 34 0 13 152 152 1 34 0 14 152 182 0 35 0 1 60 77 1 35 0 2 77 179 1 35 0 3 179 182 0 36 0 1 60 112 1 36 0 2 112 182 0 37 0 1 60 71 1 37 0 2 71 71 1 37 0 3 71 74 1 37 0 4 74 77 1 37 0 5 77 112 1 37 0 6 112 116 1 37 0 7 116 116 1 37 0 8 116 140 1 37 0 9 140 140 1 37 0 10 140 167 1 37 0 11 167 182 0 38 0 1 60 77 1 38 0 2 77 95 1 38 0 3 95 126 1 38 0 4 126 150 1 38 0 5 150 182 0 39 0 1 60 88 1 39 0 2 88 126 1 39 0 3 126 130 1 39 0 4 130 130 1 39 0 5 130 134 1 39 0 6 134 182 0 40 0 1 60 63 1 40 0 2 63 74 1 40 0 3 74 84 1 40 0 4 84 84 1 40 0 5 84 88 1 40 0 6 88 91 1 40 0 7 91 95 1 40 0 8 95 108 1 40 0 9 108 134 1 40 0 10 134 137 1 40 0 11 137 179 1 40 0 12 179 182 0 41 0 1 60 81 1 41 0 2 81 88 1 41 0 3 88 105 1 41 0 4 105 116 1 41 0 5 116 123 1 41 0 6 123 140 1 41 0 7 140 145 1 41 0 8 145 152 1 41 0 9 152 161 1 41 0 10 161 161 1 41 0 11 161 179 1 41 0 12 179 182 0 42 0 1 60 88 1 42 0 2 88 95 1 42 0 3 95 112 1 42 0 4 112 119 1 42 0 5 119 126 1 42 0 6 126 126 1 42 0 7 126 150 1 42 0 8 150 157 1 42 0 9 157 179 1 42 0 10 179 182 0 43 0 1 60 68 1 43 0 2 68 68 1 43 0 3 68 84 1 43 0 4 84 102 1 43 0 5 102 105 1 43 0 6 105 119 1 43 0 7 119 123 1 43 0 8 123 123 1 43 0 9 123 137 1 43 0 10 137 161 1 43 0 11 161 179 1 43 0 12 179 182 0 44 0 1 60 140 1 44 0 2 140 182 0 45 0 1 60 152 1 45 0 2 152 182 1 45 0 3 182 182 1 46 0 1 60 81 1 46 0 2 81 182 0 47 0 1 60 63 1 47 0 2 63 88 1 47 0 3 88 134 1 47 0 4 134 182 0 48 0 1 60 84 1 48 0 2 84 134 1 48 0 3 134 182 1 survival/tests/quantile.R0000644000176000001440000001077712267746072015315 0ustar ripleyusers# # Formal test of the quantile routine for survfit library(survival) aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) # There are 8 cases: strata Y/N, ncol(surv) >1, conf.int = T/F # Subcase: the quantile exactly agrees with a horizontal segment of # the curve or not. # First do the 4 cases where fit$surv is a vector # test1 <- data.frame(time= c(9, 3,1,1,6,6,8, 10), status=c(1,NA,1,0,1,1,0, 0), x= c(0, 2,1,1,1,0,0, 0)) # True survival = (6/7) * (3/5) * (1/2) for overall # The q's are chosen to include a point < first jump, mid, after last jump, # and exact intersections with the "flats" of the curve. # qq <- c(13/14, 6/7, 2/3, .5, 9/35, .1) # Nothing on the right hand side, simple survival (no strata) fit1 <- survfit(Surv(time, status) ~ 1, test1, conf.type='none') aeq(quantile(fit1, 1-qq), c(1, 3.5, 6, 9, 9.5, NA)) #without conf.int fit2 <- survfit(Surv(time, status) ~ 1, test1) #with conf.int aeq(quantile(fit2, 1-qq), list(quantile = c(1, 3.5, 6, 9, 9.5, NA), lower = c(1,1,1,6,6,9), upper = rep(as.numeric(NA), 6)), check.attributes=FALSE) aeq(quantile(fit2, 1-qq, FALSE), c(1, 3.5, 6, 9, 9.5, NA)) # Now a variable on the right (strata in the result) # curve 0: (t=6, S=3/4), (t=9, S=3/8) # curve 1: (t=1, S=2/3), (t=6, S= 0) fit1 <- survfit(Surv(time, status) ~ x, test1, conf.type='none') aeq(quantile(fit1, 1-qq), matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) fit2 <- survfit(Surv(time, status) ~ x, test1) aeq(quantile(fit2, 1-qq, FALSE), matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) temp <- quantile(fit2, 1-qq) aeq(temp$quantile, matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) aeq(temp$lower, matrix(c(6,6,6,6,9,9, 1,1,1,1, NA,NA), nrow=2, byrow=T)) aeq(temp$upper, rep(as.numeric(NA), 12)) # Second major case set -- a survfit object where fit$surv is a matrix # This arises from coxph models # There is only 1 subject with ph.ecog=3 which is a nice edge case cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), lung) sfit <- survfit(cfit, newdata=data.frame(age=c(50, 70))) qtot <- quantile(sfit, qq) for (i in 1:4) { for (j in 1:2) { temp <- quantile(sfit[i,j], qq) print(c(aeq(qtot$quantile[i,j,], temp$quantile), aeq(qtot$upper[i,j,], temp$upper), aeq(qtot$lower[i,j,], temp$lower))) } } temp <- quantile(sfit, qq, conf.int=FALSE) all.equal(qtot$quantile, temp) # # Third case -- a survfitms object, which results from cumulative # incidence curves. # tdata <- data.frame(time=c(1,2,2,3,3,3,5,6), status = c(0,1,0,1,0,1,0,1), event = c(1,1,2,2,1,2,3,2), grp = c(1,2,1,2,1,2,1,2)) fit1 <- survfit(Surv(time, status*event, type='mstate') ~1, tdata) temp <- quantile(fit1, c(.1, .2, .5)) aeq(temp$quantile, matrix(c(2, NA, NA, 3,3,6), nrow=2, byrow=TRUE)) aeq(temp$lower , matrix(c(2, 2, NA, 3,3,3), nrow=2, byrow=TRUE)) aeq(temp$upper , c(NA,6, rep(NA,4))) fit2 <- survfit(Surv(time, status*event, type='mstate') ~1, tdata, conf.int=FALSE) temp <- quantile(fit2, c(.1, .2, .5)) aeq(temp, matrix(c(2, NA, NA, 3,3,6), nrow=2, byrow=TRUE)) # Use a larger data set for the multi-group + multi-column case, the MGUS data # However, it has almost no censoring, so add a little to make the # quantiles not be exactly even percentiles mdata <- data.frame(time=mgus1$stop, status=mgus1$status, event= mgus1$event, sex=mgus1$sex, stat2= factor(ifelse(mgus1$status==0, 0, as.numeric(mgus1$event)), levels=0:2, labels=c("censor", levels(mgus1$event))) )[mgus1$start==0,] mdata$stat2[seq(1, nrow(mdata), by=5)] <- "censor" fit3 <- survfit(Surv(time, stat2) ~sex, mdata) temp1 <- quantile(fit3, 0:10/20) temp2 <- quantile(fit3, 0:10/20, conf.int=FALSE) aeq(temp1$quantile, temp2) for (i in 1:2) { for (j in 1:2){ temp3 <- quantile(fit3[i,j], 0:10/20) print(c(aeq(temp1$quantile[i,j,], temp3$quantile), aeq(temp1$upper[i,j,], temp3$upper), aeq(temp1$lower[i,j,], temp3$lower))) } } # Do one set of quantiles by brute force zz <- 1:fit3$strata[1] temp3 <- double(10) tt <- fit3$time[zz] for (i in 1:10) temp3[i] <- min(tt[fit3$prev[zz,2] > i/20]) aeq(temp3, temp2[1,2,2:11]) survival/tests/fr_ovarian.Rout.save0000644000176000001440000000374712267746072017305 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test on the ovarian data > > fit1 <- coxph(Surv(futime, fustat) ~ rx + age, ovarian) > fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=2), + data=ovarian) > fit2$iter [1] 2 8 > > fit2$df [1] 0.9426611 1.9293051 > > fit2$history $`pspline(age, df = 2)` $`pspline(age, df = 2)`$theta [1] 0.4468868 $`pspline(age, df = 2)`$done [1] TRUE $`pspline(age, df = 2)`$history thetas dfs [1,] 1.0000000 1.000000 [2,] 0.0000000 5.000000 [3,] 0.6000000 1.734267 [4,] 0.4845205 1.929305 $`pspline(age, df = 2)`$half [1] 0 > > fit4 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=4), + data=ovarian) > fit4 Call: coxph(formula = Surv(futime, fustat) ~ rx + pspline(age, df = 4), data = ovarian) coef se(coef) se2 Chisq DF p rx -0.373 0.761 0.749 0.24 1.00 0.6200 pspline(age, df = 4), lin 0.139 0.044 0.044 9.98 1.00 0.0016 pspline(age, df = 4), non 2.59 2.93 0.4500 Iterations: 3 outer, 14 Newton-Raphson Theta= 0.242 Degrees of freedom for terms= 1.0 3.9 Likelihood ratio test=19.4 on 4.9 df, p=0.00149 n= 26 > > > survival/tests/difftest.Rout.save0000644000176000001440000000604212267746072016756 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test some more features of surv.diff > # > # First, what happens when one group is a dummy > # > > > # > # The AML data, with a third group of early censorings "tacked on" > # > aml3 <- list(time= c( 9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, + 5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45, + 1, 2, 2, 3, 3, 3, 4), + status= c( 1,1,0,1,1,0,1,1,0,1,0, 1,1,1,1,1,0,1,1,1,1,1,1, + 0,0,0,0,0,0,0), + x = as.factor(c(rep("Maintained", 11), + rep("Nonmaintained", 12), rep("Dummy",7) ))) > > aml3 <- data.frame(aml3) > > # These should give the same result (chisq, df), but the second has an > # extra group > survdiff(Surv(time, status) ~x, aml) Call: survdiff(formula = Surv(time, status) ~ x, data = aml) N Observed Expected (O-E)^2/E (O-E)^2/V x=Maintained 11 7 10.69 1.27 3.4 x=Nonmaintained 12 11 7.31 1.86 3.4 Chisq= 3.4 on 1 degrees of freedom, p= 0.0653 > survdiff(Surv(time, status) ~x, aml3) Call: survdiff(formula = Surv(time, status) ~ x, data = aml3) N Observed Expected (O-E)^2/E (O-E)^2/V x=Dummy 7 0 0.00 NaN NaN x=Maintained 11 7 10.69 1.27 3.4 x=Nonmaintained 12 11 7.31 1.86 3.4 Chisq= 3.4 on 1 degrees of freedom, p= 0.0653 > > > # > # Now a test of the stratified log-rank > # There are no tied times within institution, so the coxph program > # can be used to give a complete test > # > fit <- survdiff(Surv(time, status) ~ pat.karno + strata(inst), cancer) > > cfit <- coxph(Surv(time, status) ~ factor(pat.karno) + strata(inst), + cancer, iter=0) > > tdata <- na.omit(cancer[,c('time', 'status', 'pat.karno', 'inst')]) > > temp1 <- tapply(tdata$status-1, list(tdata$pat.karno, tdata$inst), sum) > temp1 <- ifelse(is.na(temp1), 0, temp1) > temp2 <- tapply(cfit$resid, list(tdata$pat.karno, tdata$inst), sum) > temp2 <- ifelse(is.na(temp2), 0, temp2) > > temp2 <- temp1 - temp2 > > #Now temp1=observed, temp2=expected > all.equal(c(temp1), c(fit$obs)) [1] TRUE > all.equal(c(temp2), c(fit$exp)) [1] TRUE > > all.equal(fit$var[-1,-1], solve(cfit$var)) [1] TRUE > > rm(tdata, temp1, temp2) > survival/tests/turnbull.Rout.save0000644000176000001440000001724312267746072017022 0ustar ripleyusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # The test data set from Turnbull, JASA 1974, 169-73. > # > # status 0=right censored > # 1=exact > # 2=left censored > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > > turnbull <- data.frame( time =c( 1,1,1, 2,2,2, 3,3,3, 4,4,4), + status=c( 1,0,2, 1,0,2, 1,0,2, 1,0,2), + n =c(12,3,2, 6,2,4, 2,0,2, 3,3,5)) > # > # Compute the K-M for the Turnbull data > # via a slow EM calculation > # > > emsurv <- function(time, status, wt, verbose=T) { + left.cen <- (status==2) + if (!any(left.cen)) stop("No left censored data!") + if (!any(status==1))stop("Must have some exact death times") + + tempy <- Surv(time[!left.cen], status[!left.cen]) + ww <- wt[!left.cen] + tempx <- factor(rep(1, sum(!left.cen))) + tfit <- survfit(tempy~tempx, weight=ww) + if (verbose) + cat("Iteration 0, survival=", format(round(tfit$surv[tfit$n.event>0],3)), + "\n") + + stimes <- tfit$time[tfit$n.event>0] + ltime <- time[left.cen] + lwt <- wt[left.cen] + tempx <- factor(rep(1, length(stimes) + sum(!left.cen))) + tempy <- Surv(c(time[!left.cen], stimes), + c(status[!left.cen], rep(1, length(stimes)))) + for (iter in 1:4) { + wt2 <- stimes*0 + ssurv <- tfit$surv[tfit$n.event>0] + sjump <- diff(c(1, ssurv)) + for (j in 1:(length(ltime))) { + k <- sum(ltime[j]>=stimes) #index of the death time + if (k==0) + stop("Left censored observation before the first death") + wt2[1:k] <- wt2[1:k] + lwt[j]*sjump[1:k] /(ssurv[k]-1) + } + tfit <- survfit(tempy~tempx, weight=c(ww, wt2)) + if (verbose) { + cat("Iteration", iter, "survival=", + format(round(tfit$surv[tfit$n.event>0],3)), "\n") + cat(" weights=", format(round(wt2,3)), "\n") + } + } + survfit(tempy ~ tempx, weights=c(ww, wt2)) + } > > temp <-emsurv(turnbull$time, turnbull$status, turnbull$n) Iteration 0, survival= 0.613 0.383 0.287 0.144 Iteration 1 survival= 0.549 0.303 0.214 0.094 weights= 7.856 3.477 0.828 0.839 Iteration 2 survival= 0.540 0.296 0.210 0.095 weights= 8.228 3.394 0.714 0.664 Iteration 3 survival= 0.538 0.295 0.210 0.095 weights= 8.315 3.356 0.690 0.638 Iteration 4 survival= 0.538 0.295 0.210 0.095 weights= 8.338 3.342 0.685 0.635 > print(summary(temp)) Call: survfit(formula = tempy ~ tempx, weights = c(ww, wt2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 44.00 20.34 0.5378 0.0752 0.4089 0.707 2 20.66 9.34 0.2946 0.0719 0.1827 0.475 3 9.32 2.68 0.2098 0.0673 0.1119 0.393 4 6.64 3.64 0.0948 0.0507 0.0333 0.270 > # First check, use the data from Turnbull, JASA 1974, 169-173. > > tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4), + status=rep(c(1,0,2),4), + n =c(12,3,2,6,2,4,2,0,2,3,3,5)) > > tfit <- survfit(Surv(time, time, status, type='interval') ~1, tdata, weight=n) > all.equal(round(tfit$surv,3), c(.538, .295, .210, .095)) [1] TRUE > > > # Second check, compare to a reversed survival curve > # This is not as simple a test as one might think, because left and right > # censored observations are not treated symmetrically by the routine: > # time <= y for left and time> y for right (this is to make the routine > # correct for the common situation of panel data). > # To get equivalence, make the left censoreds happen just a little bit > # earlier. The left-continuous/right-continuous shift is also a bother. > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > fit1 <- survfit(Surv(time, status) ~1, test1) > temp <- ifelse(test1$status==0, 4.99,5) - test1$time > fit2 <- survfit(Surv(temp, status, type='left') ~1, test1) > > all.equal(round(fit1$surv[1:2],5), round(1-fit2$surv[3:2],5)) [1] TRUE > > rm(tdata, tfit, fit1, temp, fit2) > # > # Create a data set similar to the one provided by Al Zinsmeister > # It is a hard test case for survfit.turnbull > # > time1 <- c(rep(0,100), rep(1,200), 100, 200, 210, 220, + rep(365,100), rep(366,5), 731:741) > > time2 <- c((1:100)*3, 10+1:100, rep(365:366, c(60,40)), NA, 500, NA, 450, + rep(730,90), rep(NA,10), c(528,571,691,730,731), + NA, 1095:1099, NA, 1400, 1200, 772, 1461) > > zfit <- survfit(Surv(time1, time2, type='interval2') ~1) > > # > # There are 100 intervals of the form (0,x) where x is from 3 to 300, > # and 200 more of the form (1,x) where x is from 11 to 366. These > # lead to a mass point in the interval (1,3), which is placed at 2. > # The starting estimate has far too little mass placed here, and it takes > # the EM a long time to realize that most of the weight for the first 300 > # subjects goes here. With acceleration, it takes 16 iterations, without > # it takes >40. (On Al's orginal data, without accel still wasn't there after > # 165 iters!) > # > # The next 4 obs give rise to potential jumps at 100.5, 200.5, 211.5, and > # 221. However, the final estimate has no mass at all on any of these. > # Assume mass of a,b, and c at 2, 100.5 and 365.5, and consider the > # contributions: > # 123 obs that overlap a only > # 137 obs that overlap a and b > # 40 obs that overlap a, b, c > # 1 obs that overlap b, c > # 108 obs that overlap c (200, 210,200, 365, and 366 starting points) > # For some trial values of a,b,c, compare the loglik to that of (a+b),0,c > # First one: a^123 (a+b)^137 (a+b+c)^40 (b+c) c^108 > # Second: (a+b)^123 (a+b)^137 (a+b+c)^40 c c^108 > # Likelhood improves if (1 + b/a)^123 > 1+ b/c, which is true for almost > # all a and c. In particular, at the solution a and c are approx .7 and > # .18, respectively. > # > # The program can't see this coming, of course, and so iterates towards a > # KM with epsilon sized jumps at 100.5, 200.5, and 211.5. Whether these > # intervals should be removed during iteration, as detected, is an open > # question for me. > # > # > # True solution: mass points at 2, 365.5, 408, and 756.5, of sizes a, b, c, d > # Likelihood: a^260 (a+b)^40 (b+c)^92 (b+c+d)^12 c^5 d^11 > # Solution: a=0.6958, b=0.1674, c=0.1079, d=0.0289 > > tfun <- function(x) { + if (length(x) ==3) x <- c(x, .03) + x <- x/sum(x) #make probabilities sum to 1 + loglik <- 260*log(x[1]) + 40*log(x[1]+x[2]) + 92*log(x[2] + x[3]) + + 12*log(x[2]+x[3]+x[4]) + 5*log(x[3]) + 11*log(x[4]) + -loglik #find the max, not the min + } > > nfit <- nlminb(start=c(.7,.15, .1), tfun, lower=0, upper=1) > nparm <- c(nfit$par, .03) > nparm <- nparm / sum(nparm) > zparm <- -diff(c(1, zfit$surv[match(c(2, 365.5, 408, 756.5), zfit$time)])) > aeq(round(tfun(nparm),4), round(tfun(zparm),4)) [1] TRUE > # .0001 is the tolerance in survfit.turnbull > > rm(tfun, nfit, nparm, zparm, time1, time2, zfit) > survival/tests/aareg.R0000644000176000001440000001604512267746072014544 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test aareg, for some simple data where the answers can be computed # in closed form # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), wt= c(1, 1:6)) tfit <- aareg(Surv(time, status) ~ x, test1) aeq(tfit$times, c(1,2,2)) aeq(tfit$nrisk, c(6,4,4)) aeq(tfit$coefficient, matrix(c(0,0,1/3, 1/3, 1, -1/3), ncol=2)) aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) aeq(tfit$test.statistic, c(1,1)) aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) tfit <- aareg(Surv(time, status) ~ x, test1, test='nrisk') aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) #should be as before aeq(tfit$test.statistic, c(4/3, 6/3+ 4 - 4/3)) aeq(tfit$test.var, c(16/9, -16/9, -16/9, 36/9 + 16 + 16/9)) # In the 1-variable case, this is the same as the default Aalen weight tfit <- aareg(Surv(time, status) ~ x, test1, test='variance') aeq(tfit$test.statistic, c(1,1)) aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) # # Repeat the above, with case weights # tfit <- aareg(Surv(time, status) ~x, test1, weights=wt) aeq(tfit$times, c(1,2,2)) aeq(tfit$nrisk, c(21,16,16)) aeq(tfit$coefficient, matrix(c(0,0,5/12, 2/9, 1, -5/12), ncol=2)) aeq(tfit$tweight, matrix(c(12,12,12, 36/7, 3,3), ncol=2)) aeq(tfit$test.statistic, c(5, 72/63 + 3 - 15/12)) aeq(tfit$test.var, c(25, -25/4, -25/4, (72/63)^2 + 9 + (5/4)^2)) tfit <- aareg(Surv(time, status) ~x, test1, weights=wt, test='nrisk') aeq(tfit$test.statistic, c(20/3, 42/9 + 16 - 16*5/12)) aeq(tfit$test.var, c(400/9, -400/9, -400/9, (42/9)^2 + 16^2 + (16*5/12)^2)) # # Make a test data set with no NAs, in sorted order, no ties, # 15 observations tdata <- lung[15:29, c('time', 'status', 'age', 'sex', 'ph.ecog')] tdata$status <- tdata$status -1 tdata <- tdata[order(tdata$time, tdata$status),] row.names(tdata) <- 1:15 tdata$status[8] <- 0 #for some variety afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, tdata, nmin=6) # # Now, do it "by hand" cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, tdata, iter=0, method='breslow') dt1 <- coxph.detail(cfit) sch1 <- resid(cfit, type='schoen') # First estimate of Aalen: from the Cox computations, first 9 # The first and last cols of the ninth are somewhat unstable (approx =0) mine <- rbind(solve(dt1$imat[,,1], sch1[1,]), solve(dt1$imat[,,2], sch1[2,]), solve(dt1$imat[,,3], sch1[3,]), solve(dt1$imat[,,4], sch1[4,]), solve(dt1$imat[,,5], sch1[5,]), solve(dt1$imat[,,6], sch1[6,]), solve(dt1$imat[,,7], sch1[7,]), solve(dt1$imat[,,8], sch1[8,]), solve(dt1$imat[,,9], sch1[9,])) mine <- diag(1/dt1$nrisk[1:9]) %*% mine aeq(mine, afit$coef[1:9, -1]) rm(tfit, afit, mine, dt1, cfit, sch1) # # Check out the dfbeta matrix from aareg # Note that it is kept internally in time order, not data set order # Those who want residuals should use the resid function! # # First, the simple test case where I know the anwers # afit <- aareg(Surv(time, status) ~ x, test1, dfbeta=T) temp <- c(rep(0,6), #intercepts at time 1 c(2,-1,-1,0,0,0)/9, #alpha at time 1 c(0,0,0,2, -1, -1)/9, #intercepts at time 2 c(0,0,0,-2,1,1)/9) #alpha at time 2 aeq(afit$dfbeta, temp) # #Now a multivariate data set # afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T) ord <- order(lung$time, -lung$status) cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], method='breslow', iter=0, x=T) cdt <- coxph.detail(cfit, riskmat=T) # an arbitrary list of times acoef <- rowsum(afit$coef, afit$times) #per death time coefs indx <- match(cdt$time, afit$times) for (i in c(2,5,27,54,101, 135)) { lwho <- (cdt$riskmat[,i]==1) lmx <- cfit$x[lwho,] lmy <- 1*( cfit$y[lwho,2]==1 & cfit$y[lwho,1] == cdt$time[i]) fit <- lm(lmy~ lmx) cat("i=", i, "coef=", aeq(fit$coef, acoef[i,])) rr <- diag(resid(fit)) zz <- cbind(1,lmx) zzinv <- solve(t(zz) %*% zz) cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) df <- t(zzinv %*% t(zz) %*% rr) cat(" dfbeta=", aeq(df, afit$dfbeta[lwho,,i]), "\n") } rm(afit, cfit, cdt, lwho, lmx, lmy, fit, rr, zz, df) # Repeat it with case weights ww <- rep(1:5, length=nrow(lung))/ 3.0 afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T, weights=ww) cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], method='breslow', iter=0, x=T, weight=ww[ord]) cdt <- coxph.detail(cfit, riskmat=T) acoef <- rowsum(afit$coef, afit$times) #per death time coefs for (i in c(2,5,27,54,101, 135)) { who <- (cdt$riskmat[,i]==1) x <- cfit$x[who,] y <- 1*( cfit$y[who,2]==1 & cfit$y[who,1] == cdt$time[i]) w <- cfit$weight[who] fit <- lm(y~x, weights=w) cat("i=", i, "coef=", aeq(fit$coef, acoef[i,])) rr <- diag(resid(fit)) zz <- cbind(1,x) zzinv <- solve(t(zz)%*% (w*zz)) cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) df <- t(zzinv %*% t(zz) %*% (w*rr)) cat(" dfbeta=", aeq(df, afit$dfbeta[who,,i]), "\n") } rm(afit, cfit, cdt, who, x, y, fit, rr, zz, df) rm(ord, acoef) # # Check that the test statistic computed within aareg and # the one recomputed within summary.aareg are the same. # Of course, they could both be wrong, but at least they'll agree! # If the maxtime argument is used in summary, it recomputes the test, # even if we know that it wouldn't have had to. # # Because the 1-variable and >1 variable case have different code, test # them both. # afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T) asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.stat, asum$test.stat) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) print(afit) afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T, test='nrisk') asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.stat, asum$test.stat) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) summary(afit) # # Mulitvariate # afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, dfbeta=T) asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.stat, asum$test.stat) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) print(afit) afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, dfbeta=T, test='nrisk') asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.stat, asum$test.stat) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) summary(afit) # Weights play no role in the final computation of the test statistic, given # the coefficient matrix, nrisk, and dfbeta as inputs. (Weights do # change the inputs). So there is no need to reprise the above with # case weights. survival/tests/jasa.R0000644000176000001440000000660612267746072014405 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) expect <- survexp(futime ~ ratetable(age=(accept.dt - birth.dt), sex=1, year=accept.dt, race='white'), jasa, cohort=F, ratetable=survexp.usr) survdiff(Surv(jasa$futime, jasa$fustat) ~ offset(expect)) # Now fit the 6 models found in Kalbfleisch and Prentice, p139 sfit.1 <- coxph(Surv(start, stop, event)~ (age + surgery)*transplant, jasa1, method='breslow') sfit.2 <- coxph(Surv(start, stop, event)~ year*transplant, jasa1, method='breslow') sfit.3 <- coxph(Surv(start, stop, event)~ (age + year)*transplant, jasa1, method='breslow') sfit.4 <- coxph(Surv(start, stop, event)~ (year +surgery) *transplant, jasa1, method='breslow') sfit.5 <- coxph(Surv(start, stop, event)~ (age + surgery)*transplant + year , jasa1, method='breslow') sfit.6 <- coxph(Surv(start, stop, event)~ age*transplant + surgery + year, jasa1, method='breslow') summary(sfit.1) sfit.2 summary(sfit.3) sfit.4 sfit.5 sfit.6 # Survival curve for an "average" subject, # done once as overall, once via individual method surv1 <- survfit(sfit.1, newdata=list(age=-2, surgery=0, transplant=0)) newdata <- data.frame(start=c(0,50,100), stop=c(50,100, max(jasa1$stop)), event=c(1,1,1), age=rep(-2,3), surgery=rep(0,3), transplant=rep(0,3)) surv2 <- survfit(sfit.1, newdata, individual=T) # Have to use unclass to avoid [.survfit trying to pick curves, # remove the final element "call" because it won't match all.equal(unclass(surv1)[-length(surv1)], unclass(surv2)[-length(surv2)]) # Survival curve for a subject of age 50, with prior surgery, tx at 6 months # Remember that 'age' in jasa 1 was centered at 48 data <- data.frame(start=c(0,183), stop=c(183,3*365), event=c(1,1), age=c(2,2), surgery=c(1,1), transplant=c(0,1)) summary(survfit(sfit.1, data, individual=T)) # These should all give the same answer # When there are offsets, the default curve is always for someone with # the mean offset. j.age <- jasa$age -48 fit1 <- coxph(Surv(futime, fustat) ~ j.age, data=jasa) fit2 <- coxph(Surv(futime, fustat) ~ j.age, jasa, init=fit1$coef, iter=0) fit3 <- coxph(Surv(start, stop, event) ~ age, jasa1) fit4 <- coxph(Surv(start, stop, event) ~ offset(age*fit1$coef), jasa1) s1 <- survfit(fit1, list(j.age=fit3$means), censor=FALSE) s2 <- survfit(fit2, list(j.age=fit3$means), censor=FALSE) s3 <- survfit(fit3, censor=FALSE) s4 <- survfit(fit4, censor=FALSE) all.equal(s1$surv, s2$surv) all.equal(s1$surv, s3$surv) all.equal(s1$surv, s4$surv) # Still the same answer, fit multiple strata at once # Strata 1 has independent coefs of strata 2, so putting in # the other data should not affect it ll <- nrow(jasa1) ss <- rep(0:1, c(ll,ll)) tdata <- with(jasa1, data.frame(start=rep(start,2), stop=rep(stop,2), event=rep(event,2), ss=ss, age=rep(age,2), age2 = (rep(age,2))^2 * ss)) fit <- coxph(Surv(start, stop, event) ~ age*strata(ss) + age2, tdata) # Above replaced these 2 lines, which kill Splus5 as of 8/98 # Something with data frames, I expect. #fit <- coxph(Surv(rep(start,2), rep(stop,2), rep(event,2)) ~ # rep(age,2)*strata(ss) + I(rep(age,2)^2*ss) ) all.equal(fit$coef[1], fit3$coef) s5 <- survfit(fit, data.frame(age=fit3$means, age2=0, ss=0), censor=FALSE) all.equal(s5$surv[1:(s5$strata[1])], s3$surv) survival/tests/model.matrix.R0000644000176000001440000000425112267746072016064 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out the revised model.matrix code # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), z= factor(c('a', 'a', 'b', 'b', 'c', 'c', 'a'))) fit1 <- coxph(Surv(time, status) ~ z, test1, iter=1) fit2 <- coxph(Surv(time, status) ~z, test1, x=T, iter=1) all.equal(model.matrix(fit1), fit2$x) # This has no level 'b', make sure dummies recode properly test2 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), z= factor(c('a', 'a', 'a', 'a', 'c', 'c', 'a'))) ftest <- model.frame(fit1, data=test2) all.equal(levels(ftest$z), levels(test1$z)) # xtest will have one more row than the others, since it does not delete # the observation with a missing value for status xtest <- model.matrix(fit1, data=test2) dummy <- fit2$x dummy[,1] <- 0 all.equal(xtest[-2,], dummy, check.attributes=FALSE) # The case of a strata by factor interaction # Use iter=0 since there are too many covariates and it won't converge test1$x2 <- factor(rep(1:2, length=7)) fit3 <- coxph(Surv(time, status) ~ strata(x2)*z, test1, iter=0) xx <- model.matrix(fit3) all.equal(attr(xx, "assign"), c(2,2,3,3)) all.equal(colnames(xx), c("zb", "zc", "strata(x2)x2=2:zb", "strata(x2)x2=2:zc")) all.equal(attr(xx, "contrasts"), list("strata(x2)"= "contr.treatment", z="contr.treatment")) fit3b <- coxph(Surv(time, status) ~ strata(x2)*z, test1, iter=0, x=TRUE) all.equal(fit3b$x, xx) # A model with a tt term fit4 <- coxph(Surv(time, status) ~ tt(x) + x, test1, iter=0, tt = function(x, t, ...) x*t) ff <- model.frame(fit4) # There is 1 subject in the final risk set, 4 at risk at time 6, 6 at time 1 # The .strata. variable numbers from last time point to first all.equal(ff$.strata., rep(1:3, c(1, 4,6))) all.equal(ff[["tt(x)"]], ff$x* c(9,6,1)[ff$.strata.]) xx <- model.matrix(fit4) all.equal(xx[,1], ff[[2]], check.attributes=FALSE) survival/tests/fr_simple.R0000644000176000001440000000426012267746072015441 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test the logic of the penalized code by fitting some no-frailty models # (theta=0). It should give exactly the same answers as 'ordinary' coxph. # test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) zz <- rep(0, nrow(test1)) tfit1 <- coxph(Surv(time,status) ~x, test1, eps=1e-7) tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T), test1) tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0, sparse=T), test1) temp <- c('coefficients', 'var', 'loglik', 'linear.predictors', 'means', 'n') all.equal(tfit1[temp], tfit2[temp]) all.equal(tfit2[temp], tfit3[temp]) zz <- rep(0, nrow(test2)) tfit1 <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-7) tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), test2) all.equal(tfit1[temp], tfit2[temp]) # # Repeat the above tests, but with a strata added # Because the data set is simply doubled, the loglik will double, # beta is the same, variance is halved. # test3 <- rbind(test1, test1) test3$x2 <- rep(1:2, rep(nrow(test1),2)) zz <- rep(0, nrow(test3)) tfit1 <- coxph(Surv(time,status) ~x + strata(x2), test3, eps=1e-7) tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T) + strata(x2), test3) tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0, sparse=T) + strata(x2), test3) all.equal(tfit1[temp], tfit2[temp]) all.equal(tfit2[temp], tfit3[temp]) test4 <- rbind(test2, test2) test4$x2 <- rep(1:2, rep(nrow(test2),2)) zz <- rep(0, nrow(test4)) tfit1 <- coxph(Surv(start, stop, event) ~x, test4, eps=1e-7) tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), test4) all.equal(tfit1[temp], tfit2[temp]) rm(test3, test4, tfit1, tfit2, tfit3, temp, zz) survival/tests/difftest.R0000644000176000001440000000314412267746072015271 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test some more features of surv.diff # # First, what happens when one group is a dummy # # # The AML data, with a third group of early censorings "tacked on" # aml3 <- list(time= c( 9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, 5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45, 1, 2, 2, 3, 3, 3, 4), status= c( 1,1,0,1,1,0,1,1,0,1,0, 1,1,1,1,1,0,1,1,1,1,1,1, 0,0,0,0,0,0,0), x = as.factor(c(rep("Maintained", 11), rep("Nonmaintained", 12), rep("Dummy",7) ))) aml3 <- data.frame(aml3) # These should give the same result (chisq, df), but the second has an # extra group survdiff(Surv(time, status) ~x, aml) survdiff(Surv(time, status) ~x, aml3) # # Now a test of the stratified log-rank # There are no tied times within institution, so the coxph program # can be used to give a complete test # fit <- survdiff(Surv(time, status) ~ pat.karno + strata(inst), cancer) cfit <- coxph(Surv(time, status) ~ factor(pat.karno) + strata(inst), cancer, iter=0) tdata <- na.omit(cancer[,c('time', 'status', 'pat.karno', 'inst')]) temp1 <- tapply(tdata$status-1, list(tdata$pat.karno, tdata$inst), sum) temp1 <- ifelse(is.na(temp1), 0, temp1) temp2 <- tapply(cfit$resid, list(tdata$pat.karno, tdata$inst), sum) temp2 <- ifelse(is.na(temp2), 0, temp2) temp2 <- temp1 - temp2 #Now temp1=observed, temp2=expected all.equal(c(temp1), c(fit$obs)) all.equal(c(temp2), c(fit$exp)) all.equal(fit$var[-1,-1], solve(cfit$var)) rm(tdata, temp1, temp2) survival/tests/ovarian.R0000644000176000001440000000353112267746072015120 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test the coxph program on the Ovarian data # attach(ovarian) summary(survfit(Surv(futime, fustat)~1), censor=TRUE) # Various models coxph(Surv(futime, fustat)~ age) coxph(Surv(futime, fustat)~ resid.ds) coxph(Surv(futime, fustat)~ rx) coxph(Surv(futime, fustat)~ ecog.ps) coxph(Surv(futime, fustat)~ resid.ds + rx + ecog.ps) coxph(Surv(futime, fustat)~ age + rx + ecog.ps) coxph(Surv(futime, fustat)~ age + resid.ds + ecog.ps) coxph(Surv(futime, fustat)~ age + resid.ds + rx) # Residuals fit <- coxph(Surv(futime, fustat)~ age + resid.ds + rx + ecog.ps ) resid(fit) resid(fit, 'dev') resid(fit, 'scor') resid(fit, 'scho') fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps + strata(rx)) summary(fit) summary(survfit(fit)) sfit <- survfit(fit, list(age=c(30,70), ecog.ps=c(2,3))) #two columns sfit summary(sfit) detach() # Check of offset + surv, added 7/2000 fit1 <- coxph(Surv(futime, fustat) ~ age + rx, ovarian, control=coxph.control(eps=1e-8)) fit2 <- coxph(Surv(futime, fustat) ~ age + offset(rx*fit1$coef[2]), ovarian, control=coxph.control(eps=1e-8)) all.equal(fit1$coef[1], fit2$coef[1]) fit <- coxph(Surv(futime, fustat) ~ age + offset(rx), ovarian) survfit(fit, censor=FALSE)$surv^exp(-1.5) # Check it by hand -- there are no tied times # Remember that offsets from survfit are centered, which is 1.5 for # this data set. eta <- fit$coef*(ovarian$age - fit$mean) + (ovarian$rx - 1.5) ord <- order(ovarian$futime) risk <- exp(eta[ord]) rsum <- rev(cumsum(rev(risk))) # cumulative risk at each time point dead <- (ovarian$fustat[ord]==1) baseline <- cumsum(1/rsum[dead]) all.equal(survfit(fit, censor=FALSE)$surv, exp(-baseline)) rm(fit, fit1, fit2, ord, eta, risk, rsum, dead, baseline, sfit) survival/tests/quantile.Rout.save0000644000176000001440000001355012267746072016772 0ustar ripleyusers R Under development (unstable) (2013-02-22 r62040) -- "Unsuffered Consequences" Copyright (C) 2013 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Formal test of the quantile routine for survfit > library(survival) Loading required package: splines > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # There are 8 cases: strata Y/N, ncol(surv) >1, conf.int = T/F > # Subcase: the quantile exactly agrees with a horizontal segment of > # the curve or not. > # First do the 4 cases where fit$surv is a vector > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8, 10), + status=c(1,NA,1,0,1,1,0, 0), + x= c(0, 2,1,1,1,0,0, 0)) > > # True survival = (6/7) * (3/5) * (1/2) for overall > # The q's are chosen to include a point < first jump, mid, after last jump, > # and exact intersections with the "flats" of the curve. > # > qq <- c(13/14, 6/7, 2/3, .5, 9/35, .1) > > # Nothing on the right hand side, simple survival (no strata) > fit1 <- survfit(Surv(time, status) ~ 1, test1, conf.type='none') > aeq(quantile(fit1, 1-qq), c(1, 3.5, 6, 9, 9.5, NA)) #without conf.int [1] TRUE > > fit2 <- survfit(Surv(time, status) ~ 1, test1) #with conf.int > aeq(quantile(fit2, 1-qq), + list(quantile = c(1, 3.5, 6, 9, 9.5, NA), + lower = c(1,1,1,6,6,9), + upper = rep(as.numeric(NA), 6)), check.attributes=FALSE) [1] TRUE > aeq(quantile(fit2, 1-qq, FALSE), c(1, 3.5, 6, 9, 9.5, NA)) [1] TRUE > > > # Now a variable on the right (strata in the result) > # curve 0: (t=6, S=3/4), (t=9, S=3/8) > # curve 1: (t=1, S=2/3), (t=6, S= 0) > fit1 <- survfit(Surv(time, status) ~ x, test1, conf.type='none') > aeq(quantile(fit1, 1-qq), + matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > > fit2 <- survfit(Surv(time, status) ~ x, test1) > aeq(quantile(fit2, 1-qq, FALSE), + matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > > temp <- quantile(fit2, 1-qq) > aeq(temp$quantile, matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > aeq(temp$lower, matrix(c(6,6,6,6,9,9, 1,1,1,1, NA,NA), nrow=2, byrow=T)) [1] TRUE > aeq(temp$upper, rep(as.numeric(NA), 12)) [1] TRUE > > # Second major case set -- a survfit object where fit$surv is a matrix > # This arises from coxph models > # There is only 1 subject with ph.ecog=3 which is a nice edge case > cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), lung) > sfit <- survfit(cfit, newdata=data.frame(age=c(50, 70))) > qtot <- quantile(sfit, qq) > for (i in 1:4) { + for (j in 1:2) { + temp <- quantile(sfit[i,j], qq) + print(c(aeq(qtot$quantile[i,j,], temp$quantile), + aeq(qtot$upper[i,j,], temp$upper), + aeq(qtot$lower[i,j,], temp$lower))) + } + } [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE > temp <- quantile(sfit, qq, conf.int=FALSE) > all.equal(qtot$quantile, temp) [1] TRUE > > # > # Third case -- a survfitms object, which results from cumulative > # incidence curves. > # > tdata <- data.frame(time=c(1,2,2,3,3,3,5,6), + status = c(0,1,0,1,0,1,0,1), + event = c(1,1,2,2,1,2,3,2), + grp = c(1,2,1,2,1,2,1,2)) > > fit1 <- survfit(Surv(time, status*event, type='mstate') ~1, tdata) > temp <- quantile(fit1, c(.1, .2, .5)) > aeq(temp$quantile, matrix(c(2, NA, NA, 3,3,6), nrow=2, byrow=TRUE)) [1] TRUE > aeq(temp$lower , matrix(c(2, 2, NA, 3,3,3), nrow=2, byrow=TRUE)) [1] TRUE > aeq(temp$upper , c(NA,6, rep(NA,4))) [1] TRUE > > fit2 <- survfit(Surv(time, status*event, type='mstate') ~1, tdata, + conf.int=FALSE) > temp <- quantile(fit2, c(.1, .2, .5)) > aeq(temp, matrix(c(2, NA, NA, 3,3,6), nrow=2, byrow=TRUE)) [1] TRUE > > # Use a larger data set for the multi-group + multi-column case, the MGUS data > # However, it has almost no censoring, so add a little to make the > # quantiles not be exactly even percentiles > mdata <- data.frame(time=mgus1$stop, + status=mgus1$status, + event= mgus1$event, + sex=mgus1$sex, + stat2= factor(ifelse(mgus1$status==0, 0, + as.numeric(mgus1$event)), + levels=0:2, + labels=c("censor", levels(mgus1$event))) + )[mgus1$start==0,] > mdata$stat2[seq(1, nrow(mdata), by=5)] <- "censor" > > fit3 <- survfit(Surv(time, stat2) ~sex, mdata) > temp1 <- quantile(fit3, 0:10/20) > temp2 <- quantile(fit3, 0:10/20, conf.int=FALSE) > aeq(temp1$quantile, temp2) [1] TRUE > > for (i in 1:2) { + for (j in 1:2){ + temp3 <- quantile(fit3[i,j], 0:10/20) + print(c(aeq(temp1$quantile[i,j,], temp3$quantile), + aeq(temp1$upper[i,j,], temp3$upper), + aeq(temp1$lower[i,j,], temp3$lower))) + } + } [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE > > # Do one set of quantiles by brute force > zz <- 1:fit3$strata[1] > temp3 <- double(10) > tt <- fit3$time[zz] > for (i in 1:10) temp3[i] <- min(tt[fit3$prev[zz,2] > i/20]) > aeq(temp3, temp2[1,2,2:11]) [1] TRUE > > > > > proc.time() user system elapsed 0.520 0.048 0.552 survival/tests/cancer.Rout.save0000644000176000001440000002317712267746072016411 0ustar ripleyusers R version 2.15.0 (2012-03-30) Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test out all of the routines on a more complex data set > # > temp <- survfit(Surv(time, status) ~ ph.ecog, lung) > summary(temp, times=c(30*1:11, 365*1:3)) Call: survfit(formula = Surv(time, status) ~ ph.ecog, data = lung) 1 observation deleted due to missingness ph.ecog=0 time n.risk n.event survival std.err lower 95% CI upper 95% CI 30 60 3 0.952 0.0268 0.9012 1.000 60 58 2 0.921 0.0341 0.8562 0.990 90 56 2 0.889 0.0396 0.8146 0.970 120 56 0 0.889 0.0396 0.8146 0.970 150 55 1 0.873 0.0419 0.7946 0.959 180 52 2 0.841 0.0461 0.7553 0.936 210 48 2 0.808 0.0498 0.7164 0.912 240 45 0 0.808 0.0498 0.7164 0.912 270 38 2 0.770 0.0543 0.6709 0.884 300 33 2 0.727 0.0591 0.6203 0.853 330 29 2 0.681 0.0637 0.5670 0.818 365 22 6 0.535 0.0728 0.4100 0.699 730 5 11 0.193 0.0707 0.0943 0.396 ph.ecog=1 time n.risk n.event survival std.err lower 95% CI upper 95% CI 30 111 2 0.982 0.0124 0.9583 1.000 60 110 3 0.956 0.0193 0.9186 0.994 90 104 4 0.920 0.0255 0.8718 0.972 120 99 5 0.876 0.0310 0.8174 0.939 150 93 6 0.823 0.0359 0.7556 0.896 180 82 8 0.751 0.0407 0.6756 0.836 210 68 9 0.666 0.0450 0.5831 0.760 240 57 6 0.604 0.0474 0.5176 0.704 270 53 4 0.561 0.0487 0.4729 0.665 300 46 3 0.527 0.0495 0.4384 0.633 330 40 4 0.480 0.0504 0.3903 0.589 365 34 4 0.431 0.0509 0.3417 0.543 730 7 21 0.114 0.0388 0.0582 0.222 ph.ecog=2 time n.risk n.event survival std.err lower 95% CI upper 95% CI 30 46 5 0.9000 0.0424 0.82057 0.987 60 43 2 0.8600 0.0491 0.76900 0.962 90 40 3 0.8000 0.0566 0.69647 0.919 120 34 4 0.7174 0.0641 0.60216 0.855 150 31 3 0.6541 0.0680 0.53342 0.802 180 26 6 0.5275 0.0719 0.40385 0.689 210 21 4 0.4431 0.0717 0.32266 0.608 240 17 3 0.3766 0.0705 0.26100 0.543 270 17 0 0.3766 0.0705 0.26100 0.543 300 13 3 0.3102 0.0677 0.20223 0.476 330 11 2 0.2624 0.0651 0.16135 0.427 365 9 2 0.2147 0.0614 0.12258 0.376 730 1 6 0.0371 0.0345 0.00601 0.229 ph.ecog=3 time n.risk n.event survival std.err lower 95% CI upper 95% CI 30 1 0 1 0 1 1 60 1 0 1 0 1 1 90 1 0 1 0 1 1 > print(temp[2:3]) Call: survfit(formula = Surv(time, status) ~ ph.ecog, data = lung) 1 observation deleted due to missingness records n.max n.start events median 0.95LCL 0.95UCL ph.ecog=1 113 113 113 82 306 268 429 ph.ecog=2 50 50 50 44 199 156 288 > > temp <- survfit(Surv(time, status)~1, lung, type='fleming', + conf.int=.9, conf.type='log-log', error='tsiatis') > summary(temp, times=30 *1:5) Call: survfit(formula = Surv(time, status) ~ 1, data = lung, type = "fleming", conf.int = 0.9, conf.type = "log-log", error = "tsiatis") time n.risk n.event survival std.err lower 90% CI upper 90% CI 30 219 10 0.956 0.0135 0.928 0.974 60 213 7 0.926 0.0173 0.891 0.950 90 201 10 0.882 0.0213 0.842 0.913 120 189 10 0.838 0.0244 0.793 0.874 150 179 10 0.794 0.0268 0.745 0.834 > > temp <- survdiff(Surv(time, status) ~ inst, lung, rho=.5) > print(temp, digits=6) Call: survdiff(formula = Surv(time, status) ~ inst, data = lung, rho = 0.5) n=227, 1 observation deleted due to missingness. N Observed Expected (O-E)^2/E (O-E)^2/V inst=1 36 21.190058 17.455181 0.799149708 1.171232977 inst=2 5 3.173330 1.964395 0.744007932 0.860140808 inst=3 19 10.663476 11.958755 0.140294489 0.200472362 inst=4 4 2.245347 3.559344 0.485085848 0.677874608 inst=5 9 5.010883 4.500982 0.057765161 0.077128402 inst=6 14 8.862602 7.078516 0.449665221 0.582743947 inst=7 8 4.445647 4.416133 0.000197254 0.000253632 inst=10 4 2.901923 2.223283 0.207150016 0.249077097 inst=11 18 7.807867 9.525163 0.309611863 0.422142221 inst=12 23 14.009656 12.216768 0.263117640 0.365712493 inst=13 20 9.140983 11.863298 0.624699853 0.874238212 inst=15 6 3.170744 3.558447 0.042241456 0.057938955 inst=16 16 8.870360 9.992612 0.126038005 0.175170113 inst=21 13 9.263733 4.460746 5.171484268 6.149354145 inst=22 17 8.278566 11.971473 1.139171459 1.645863937 inst=26 6 1.627074 3.542694 1.035821659 1.286365543 inst=32 7 1.792468 2.679904 0.293869782 0.343966668 inst=33 2 0.929177 0.416202 0.632249272 0.676682390 Chisq= 15.1 on 17 degrees of freedom, p= 0.590384 > > temp <- coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + + sex + age + meal.cal + strata(inst), lung) > summary(temp) Call: coxph(formula = Surv(time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + sex + age + meal.cal + strata(inst), data = lung) n= 167, number of events= 120 (61 observations deleted due to missingness) coef exp(coef) se(coef) z Pr(>|z|) ph.ecog 0.7299987 2.0750779 0.2689397 2.714 0.00664 ** ph.karno 0.0130512 1.0131368 0.0137362 0.950 0.34204 pat.karno -0.0140955 0.9860034 0.0093680 -1.505 0.13242 wt.loss -0.0148821 0.9852281 0.0084811 -1.755 0.07931 . sex -0.6612534 0.5162039 0.2339979 -2.826 0.00471 ** age 0.0050920 1.0051050 0.0137288 0.371 0.71071 meal.cal -0.0002398 0.9997602 0.0003019 -0.794 0.42701 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 exp(coef) exp(-coef) lower .95 upper .95 ph.ecog 2.0751 0.4819 1.2249 3.5153 ph.karno 1.0131 0.9870 0.9862 1.0408 pat.karno 0.9860 1.0142 0.9681 1.0043 wt.loss 0.9852 1.0150 0.9690 1.0017 sex 0.5162 1.9372 0.3263 0.8166 age 1.0051 0.9949 0.9784 1.0325 meal.cal 0.9998 1.0002 0.9992 1.0004 Concordance= 0.696 (se = 0.115 ) Rsquare= 0.167 (max possible= 0.912 ) Likelihood ratio test= 30.6 on 7 df, p=7.377e-05 Wald test = 28.15 on 7 df, p=0.0002066 Score (logrank) test = 30.72 on 7 df, p=7e-05 > cox.zph(temp) rho chisq p ph.ecog 0.0276 0.1078 0.7427 ph.karno 0.1331 2.0018 0.1571 pat.karno 0.0250 0.0841 0.7718 wt.loss -0.0386 0.2122 0.6451 sex 0.0399 0.1800 0.6713 age 0.0639 0.5600 0.4543 meal.cal 0.1611 3.6945 0.0546 GLOBAL NA 9.0115 0.2518 > cox.zph(temp, transform='identity') rho chisq p ph.ecog 0.0221 0.0688 0.793 ph.karno 0.1217 1.6743 0.196 pat.karno 0.0302 0.1227 0.726 wt.loss -0.0516 0.3790 0.538 sex 0.0449 0.2280 0.633 age 0.0719 0.7085 0.400 meal.cal 0.1808 4.6537 0.031 GLOBAL NA 10.0537 0.186 > > coxph(Surv(rep(0,length(time)), time, status) ~ ph.ecog + ph.karno + pat.karno + + wt.loss + sex + age + meal.cal + strata(inst), lung) Call: coxph(formula = Surv(rep(0, length(time)), time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + sex + age + meal.cal + strata(inst), data = lung) coef exp(coef) se(coef) z p ph.ecog 0.73000 2.075 0.268940 2.714 0.0066 ph.karno 0.01305 1.013 0.013736 0.950 0.3400 pat.karno -0.01410 0.986 0.009368 -1.505 0.1300 wt.loss -0.01488 0.985 0.008481 -1.755 0.0790 sex -0.66125 0.516 0.233998 -2.826 0.0047 age 0.00509 1.005 0.013729 0.371 0.7100 meal.cal -0.00024 1.000 0.000302 -0.794 0.4300 Likelihood ratio test=30.6 on 7 df, p=7.38e-05 n= 167, number of events= 120 (61 observations deleted due to missingness) > > # > # Tests of using "." > # > fit1 <- coxph(Surv(time, status) ~ . - meal.cal - wt.loss - inst, lung) > fit2 <- update(fit1, .~. - ph.karno) > fit3 <- coxph(Surv(time, status) ~ age + sex + ph.ecog + pat.karno, lung) > all.equal(fit2, fit3) [1] TRUE > > proc.time() user system elapsed 0.412 0.076 0.526 survival/tests/r_peterson.R0000644000176000001440000000270412267746072015642 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Data courtesy of Bercedis Peterson, Duke University. # v4 of survreg fails due to 2 groups that have only 1 subject; the coef # for them easily gets out of hand. In fact, this data set is my toughest # test of the minimizer. # # A shrinkage model for this coefficient is therefore interesting peterson <- data.frame( scan('data.peterson', what=list(grp=0, time=0, status=0))) fitp <- survreg(Surv(time, status) ~ factor(grp), peterson) summary(fitp) # Now a shrinkage model. Give the group coefficients # about 1/2 the scale parameter of the original model, i.e., .18. # ffit <- survreg(Surv(time, status) ~ frailty(grp, theta=.1), peterson) ffit # # Try 3 degrees of freedom, since there are 6 groups # compare them to the unconstrained ones. The frailty coefs are # on a "sum to constant" constraint rather than "first coef=0", so # some conversion is neccessary # ffit3 <- survreg(Surv(time, status) ~ frailty(grp, df=3), peterson) print(ffit3) temp <- mean(c(0, fitp$coef[-1])) - mean(ffit3$frail) temp2 <- c(fitp$coef[1] + temp, c(0,fitp$coef[-1]) - temp) xx <- rbind(c(nrow(peterson), table(peterson$grp)), temp2, c(ffit3$coef, ffit3$frail)) dimnames(xx) <- list(c("N", "factor", "frailty"), c("Intercept", paste("grp", 1:6))) signif(xx,3) rm(ffit, ffit3, temp, temp2, xx, fitp) survival/tests/rounding.Rout.save0000644000176000001440000000217212267746072016773 0ustar ripleyusers R version 2.11.0 (2010-04-22) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # Survival curves could fail with data that was almost exact. > # The calculations use both unique() and table(), which don't > # necessarily give the same number of values. > # Check that the routine handles this properly > # > > tdata <- data.frame(time=c(1,2, sqrt(2)^2, 2, sqrt(2)^2), + status=rep(1,5), + group=c(1,1,1,2,2)) > fit <- survfit(Surv(time, status) ~ group, data=tdata) > > all.equal(sum(fit$strata), length(fit$time)) [1] TRUE > survival/tests/r_capacitor.Rout.save0000644000176000001440000000506012267746072017433 0ustar ripleyusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > capacitor <- read.table('data.capacitor', row.names=1, + col.names=c('', 'days', 'event', 'voltage')) > > fitig <- survreg(Surv(days, event)~voltage, + dist = "gaussian", data = capacitor) > summary(fitig) Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "gaussian") Value Std. Error z p (Intercept) 1764.9 163.387 10.80 3.36e-27 voltage -53.9 5.545 -9.72 2.56e-22 Log(scale) 4.8 0.105 45.56 0.00e+00 Scale= 121 Gaussian distribution Loglik(model)= -361.9 Loglik(intercept only)= -420.1 Chisq= 116.33 on 1 degrees of freedom, p= 0 Number of Newton-Raphson Iterations: 6 n= 125 > > fitix <- survreg(Surv(days, event)~voltage, + dist = "extreme", data = capacitor) > summary(fitix) Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "extreme") Value Std. Error z p (Intercept) 2055.59 180.349 11.4 4.28e-30 voltage -62.21 5.967 -10.4 1.88e-25 Log(scale) 4.53 0.108 41.9 0.00e+00 Scale= 92.9 Extreme value distribution Loglik(model)= -360 Loglik(intercept only)= -427.1 Chisq= 134.25 on 1 degrees of freedom, p= 0 Number of Newton-Raphson Iterations: 7 n= 125 > > fitil <- survreg(Surv(days, event)~voltage, + dist = "logistic", data = capacitor) > summary(fitil) Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "logistic") Value Std. Error z p (Intercept) 1811.56 148.853 12.2 4.48e-34 voltage -55.48 4.986 -11.1 9.39e-29 Log(scale) 4.19 0.117 35.8 2.03e-280 Scale= 66.3 Logistic distribution Loglik(model)= -360.4 Loglik(intercept only)= -423.7 Chisq= 126.5 on 1 degrees of freedom, p= 0 Number of Newton-Raphson Iterations: 6 n= 125 > survival/tests/summary_survfit.R0000644000176000001440000000037612267746072016744 0ustar ripleyusers## check that the scale option to summary.survfit works ## Marc Schwartz reported this as a bug in 2.35-3. library(survival) summary( survfit( Surv(futime, fustat)~1, data=ovarian)) summary( survfit( Surv(futime, fustat)~1, data=ovarian), scale=365.25) survival/tests/data.interval0000644000176000001440000000161712267746072016020 0ustar ripleyusers This data set is to test interval censoring. It has 2 left censored, 14 right censored, 2 exact and 8 interval censored observations, grafted onto covariates from the ovarian data set. "ltime","rtime","age","resid.ds","rx","ecog.ps" "1",NA,150,72.3315,2,1,1 "2",NA,150,74.4932,2,1,1 "3",146,166,66.4658,2,1,2 "4",421,NA,53.3644,2,2,1 "5",421,421,50.3397,2,1,1 "6",448,NA,56.4301,1,1,2 "7",454,474,56.937,2,2,2 "8",465,485,59.8548,2,2,2 "9",477,NA,64.1753,2,1,1 "10",553,573,55.1781,1,2,2 "11",628,648,56.7562,1,1,2 "12",744,NA,50.1096,1,2,1 "13",769,NA,59.6301,2,2,2 "14",770,NA,57.0521,2,2,1 "15",803,NA,39.2712,1,1,1 "16",855,NA,43.1233,1,1,2 "17",1040,NA,38.8932,2,1,2 "18",1106,NA,44.6,1,1,1 "19",1129,NA,53.9068,1,2,1 "20",1206,NA,44.2055,2,2,1 "21",1227,NA,59.589,1,2,2 "22",258,278,74.5041,2,1,2 "23",319,339,43.137,2,1,1 "24",343,363,63.2192,1,2,2 "25",375,375,64.4247,2,2,1 "26",377,NA,58.3096,1,2,1 survival/tests/testnull.Rout.save0000644000176000001440000000242712267746072017023 0ustar ripleyusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # A test of NULL models > # > fit1 <- coxph(Surv(stop, event) ~ rx + strata(number), bladder, iter=0) > fit2 <- coxph(Surv(stop, event) ~ strata(number), bladder) > > all.equal(fit1$loglik[2], fit2$loglik) [1] TRUE > all.equal(fit1$resid, fit2$resid) [1] TRUE > > > fit1 <- coxph(Surv(start, stop, event) ~ rx + strata(number), bladder2, iter=0) > fit2 <- coxph(Surv(start, stop, event) ~ strata(number), bladder2) > > all.equal(fit1$loglik[2], fit2$loglik) [1] TRUE > all.equal(fit1$resid, fit2$resid) [1] TRUE > survival/tests/bladder.R0000644000176000001440000000244612267746072015062 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Fit the models found in Wei et. al. # wfit <- coxph(Surv(stop, event) ~ (rx + size + number)* strata(enum) + cluster(id), bladder, method='breslow') wfit # Check the rx coefs versus Wei, et al, JASA 1989 rx <- c(1,4,5,6) # the treatment coefs above cmat <- diag(4); cmat[1,] <- 1; #contrast matrix wfit$coef[rx] %*% cmat # the coefs in their paper (table 5) t(cmat) %*% wfit$var[rx,rx] %*% cmat # var matrix (eqn 3.2) # Anderson-Gill fit fita <- coxph(Surv(start, stop, event) ~ rx + size + number + cluster(id), bladder2, method='breslow') summary(fita) # Prentice fits. Their model 1 a and b are the same fit1p <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==1), method='breslow') fit2pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==2), method='breslow') fit2pb <- coxph(Surv(stop-start, event) ~ rx + size + number, bladder2, subset=(enum==2), method='breslow') fit3pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==3), method='breslow') #and etc. fit1p fit2pa fit2pb fit3pa rm(rx, cmat, wfit, fita, fit1p, fit2pa, fit2pb, fit3pa) survival/tests/stratatest.Rout.save0000644000176000001440000000453712267746072017353 0ustar ripleyusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Trivial test of stratified residuals > # Make a second strata = replicate of the first, and I should get the > # exact same answers > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > temp <- as.matrix(test1) > n <- nrow(temp) > ndead<- sum(test1$status[!is.na(test1$status)]) > temp <- data.frame(rbind(temp, temp)) #later releases of S have rbind.data.frame > tstrat <- rep(1:2, c(n,n)) > > fit1 <- coxph(Surv(time, status) ~x, test1) > fit2 <- coxph(Surv(time, status) ~x + strata(tstrat), temp) > > all.equal(resid(fit1) , (resid(fit2))[1:n]) [1] TRUE > all.equal(resid(fit1, type='score') , (resid(fit2, type='score'))[1:n]) [1] TRUE > all.equal(resid(fit1, type='schoe') , (resid(fit2, type='schoe'))[1:ndead]) [1] TRUE > > > #AG model > temp <- as.matrix(test2) > n <- nrow(temp) > ndead<- sum(test2$event[!is.na(test2$event)]) > temp <- data.frame(rbind(temp, temp)) > tstrat <- rep(1:2, c(n,n)) > > fit1 <- coxph(Surv(start, stop, event) ~x, test2) > fit2 <- coxph(Surv(start, stop, event) ~x + strata(tstrat), temp) > > all.equal(resid(fit1) , (resid(fit2))[1:n]) [1] TRUE > all.equal(resid(fit1, type='score') , (resid(fit2, type='score'))[1:n]) [1] TRUE > all.equal(resid(fit1, type='schoe') , (resid(fit2, type='schoe'))[1:ndead]) [1] TRUE > survival/tests/gray1.rda0000644000176000001440000000575712267746072015065 0ustar ripleyusers‹•Ø{<ÔYð‰jK7¡qÉe’Jr­(¥H*©ÚIÒ¢ÛÒJ’õÄF’Z•µˆ)·ÜUBHºl©èfº¬Jº(‹©ÇS­žqfæûÝsžgÿxæuf޿טñ;¿sÎwf>ÇÉÆyºœ³‡Ã‘áÈŒ=ÊŠˈ‰îÃE÷!ßûyšp8²ŠäE™^5Zt÷çHnVû›i ¥ñ¥=2Œ6¾™VàJ›C›<’1‚6MŸÑ–±™6]“Ñ›ö„mFcã'Ú“³i3_Ñf¹0> ÍV Í™L›»š6O‡Ñ“6ÿmÁHÚSAŒ!ŒŒŸhOûО™L[8Ñ‹1‚ñíÙ2Ú"EÆ:ÚsË7ÐûÓž7d줭ØÏM{am¥<ãkÚ*7Æ@Ú‹‹ikÐ^™Jy}5‘ÃÔ©ôféÛß%ßߥ†2 ñT ñT£ÉóŠ`üü‚qó TÀ”jjm0Mò:©šõŠšõãÀLò>e0û»CÊßRs%畚|ñøã‹5ÁSä<<ðÌ3­g2Ú`¡ä:¤~®0ú¹"xŽôC ,6¬R2¬–~qÁRû$®}’2xžôS,ó Tñ T+¢Ö¨E­Q/~k€•§MÕO›j‚Uä:´Àên)òÀ‹äº&€5}Ñ}1¨ä:¥^:Ðs õXK®[ cÂxð2.šuõHÖÕ£à2.*hiq\iqx•Œ“z-#þZFxŒ›::pÚØð72Žšè›½GßìM¯“qå¡}}ôMouÂ놺%uKCÉ<ðÀ›Üޤ¡d^xà-£¹gÃcF ÂÎïÝÀÛ1 õL“ Àz‡ë@ °a»¥«[X>x×ÊQïùÛ¯`ã´.·/Rÿ®Nç÷Œ¹¶cÔ=s©–ƒ¾4Ue‚rÏÊ_õËc…¥çºÝ@ḭ̂÷=[Õ@ÍûVµq?tƒé¸ö–Ôƒ3{tG|õ'U~œ>6[œÒ`×ëó8µéŒÞ8ýpÚkw­¢îÐàÝÂ%çÒ¬A£·ë==w\»×8(ÉoMÚu|é©N[ª–TÎx"SÃ+gÖ›.sýš^ô ª¯HÍN;>l€³okÞ‹žš{G)Ý1Uç¬|¹Èo~-8wæó޾€Á Å¸À€ÈGáèûÕír9༆=×nÌ.çç´Gå,ზ{zvŒ’ZéÙžWqiDlªý±ý¼ÂÕz’\°A&¬;Êýí°òcû™ õ´–ô.núëÐòs ah×—€/3lÁ…+/yµÖ›£gl ]ÚŒ©þ`_â€z6×Y†Þýà¼{;¸hbS|L¹|tem«+*\úþ±‘¸Øài³L´ y¶vT úd˜*×^\bèÞÐq½Y¿ûàŠ<Ж7²öé±·¨ÐHp8Ì\ãgW1· \¶‡³Ï8ò ÈÈç>˯ÏÚem%•ýqìã±móNÑÁÀ·º¬äÉÁþ^Û6KŽe7ïô—xø‰èg~B÷±%/½YY2Z1Ú³†Ònä0òh7×Ðîgt¤ Hc¼C»Ç˜6T—јv¯ c!í¾.ÚŸkh#ÊkhÚ2Òò¤ý•1úmLmü&ÆÚ£Ž´ ›huush“Ž1&Ó&»22‘(¹6e0mª3£'mÚÆXÚôïwÑžpb¬al§ÍÌ8”ö¤c;mf?m–6ãlFgÆJÚlÆpÆÆHÚœjÆW´¹3ÍÛióºhóïО.c¬gì¥-Tfôa eL =«À¸™ñm‘1£€1‰öœcãyÆ[ŒÍ´ÅóÝ+ÛhK†1ž¦- fLa<ÉXC{^ƒQqãAÆŒ¯¿Ò–`\ÀèËx›¶Ü±±…±‡¶b!£'ãŒÏh/(2ž¢­þ¶fa(­d€_B)/ÍàPÒû¿¾Ç%Qz,Í(ŽÎãÀ]TÁ4É뤊£³"˜)yŸTqtVs%ÿGª8:ÅÑYGg-°Pr^©â謊£²(ŽÆ\ð¼¤RÅÑX,—ôKª8*«$ý”*ŽÊê`•¤ßRÅQY¼(¹©â¨J®Kª8*Ç‚µ’­Då8ð²d+$QYŠ£²2J¢ò1P•UAq4VCI4NÅÑX%Ñ8GcM”DãTðGät”Œ»6(ŽÆ(™ðÖäyÉ“çe¢d^&ƒ·ÍôSÌô³Q2Oº`=™§©`_.•/—‡’y›Þ™þEÔ„(™GZÑëXÑËGɼrÁ»Öˆš%ó,@ë^®¬{Éï‘yç¢NODMˆ’u @ž¾ÇïK¶RÀ 7DMˆJÖ ØviUÛ%>ø€¬.êW&jB”¬#ú©põ§B>Ø(ÙºòEMˆ’­(öT>*©c0–\(*>Tm%딋žØ/jB”¬[øH/ØY/˜’uÌE‹üEMˆ’u-Ïñ^;Ç›’uÎEk7Šš|BÖ½µ[çb·Ž’:à¢dâ…àï¤.¨ËÀù(©.Ú²@Ô„`©ºÕÜu«9%uÄE{ŒEM>%u%@ƒt×éòQRg\Pü1(DÉǪ%Ó|”Ô%$Ÿú£…(©Sš80|”œˆ 6Ëâ(©ã›èê…›’º>Œ&Ê&Êå£C£—Ä‚/¬ÖÇë¾B«­ì^ ¶X|»{ty=zõšÿž¸`©û=>èÓnÓ¾àØ£ôSM@®É¨Œ‘k­Aµp?{­õUà„ŸM¶µ'žR™5QœTÖûTÑù.8¥.½rù1/pêÃÐ’7ŽÏÀiÏcn¼â¤‚-ú–š6ƒF/ì¨Fu‚Æ»î鯷MZ_Ç ±0g4F”W­JMË£•]Æ6ƒfÙŸ´ø5òà¬#ΌΨg'¾34ßt798gizà£ÑIà\}9þ”O– ÅÈ‘–µÖè»l³ÜvpÞ•¦·“d”Àù)ùY½;–þãô[ýŽV:#/ñ}cÑÈßýÚ8ÖhoàÖ±—ÜÁ./[;K~EkÆ7ŸPZëðÜwY¡º7Gü»}Õ3óÎpaŽaê7}n ÍÐé×®ëD7ÊzË£Õ©Ù÷'¥‹T‡m¸,tGýæåÍK2Dë,C¬oOר›\ŽœZºúÌ-ô¦ªK²W.¸Ds•AÜÜÔ×åÆÇUè%ÃîËA[ù†ì)ƒÞ£nï†Ø9¡}?]R¬—.tª=œ_FþëüŠ“hãÖ¼AŸeA;õ¼©uxè†R³Ó_£ÙQ Ý[Ð?LCÇXùË Nr*VB}z&ìI×CÏÈ.J|†v4Ìõ­—O‹ìª¬nC=‡üãþ¤Mh†Ýážé}èSW­ãp×bVPÑtE{nK¸î•’ø-¯UL´QB;ZG˜˜sA{Þ£èå™N¨S§êÃntŸ^ûæ—ÆhÑÁÍ ¯mÐæó÷ :Œ:×¹uýLÔ<ØcÓšvtwÎÅñºè/!qu'Ñ’sÁ¦fÎhSñûŽTè8ÈæLÖ÷†¨¢àq›W':ÉaYì~kÔÌgp®­6ºøýó‚d”ÿl…ƒ†<ºÅ¨éCÐ0Ôÿ]:烺oxÁN3ÍYÿMÙ”»ˆ‡æ6„¼³ÒFK"òÔ=6¡59«L‹Ñ›R‡Ú ªMc_CŸyO©>mŒ¶NÑ„þÓ6¨$ùúñŽüçê“èŸUÿ|뮬ôÐû“:üÞ7oR•ÐÑöú©D£Š{l .4£ÊÛÍwø£jW3KjP0›³"Q­Lƒø÷ÆèCw›5}¨¶FÓŸmáqgFçõ¿hTbóó.tÂÚž*ßfT«í'?í”gžæ>,H{hç®Zбµ? üöòò:nŽàšG™õ]FµT^ãIoÑË ljü_»òÔ»d¤6á™àátvû£·ÇNéö¿ôɡܿå³QüO9ýÿÍ0b#survival/tests/strata2.R0000644000176000001440000000126612267746072015044 0ustar ripleyusers# # New tests 4/2010 to validate strata by covariate interactions # library(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) tdata <- lung tdata$sex <- lung$sex +3 # Both of these should produce warning messages about singular X, since there # are ph.ecog=3 subjects in only 1 of the strata. # Does not affect the test fit1 <- coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), lung) fit2 <- coxph(Surv(time, status) ~ age + sex:strata(ph.ecog), tdata) aeq(fit1$coef, fit2$coef) aeq(fit1$var, fit2$var) aeq(predict(fit1), predict(fit2)) survival/tests/rounding.R0000644000176000001440000000074212267746072015307 0ustar ripleyuserslibrary(survival) # # Survival curves could fail with data that was almost exact. # The calculations use both unique() and table(), which don't # necessarily give the same number of values. # Check that the routine handles this properly # tdata <- data.frame(time=c(1,2, sqrt(2)^2, 2, sqrt(2)^2), status=rep(1,5), group=c(1,1,1,2,2)) fit <- survfit(Surv(time, status) ~ group, data=tdata) all.equal(sum(fit$strata), length(fit$time)) survival/tests/r_tdist.R0000644000176000001440000000217312267746072015132 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out the t-distribution # capacitor <- read.table('data.capacitor', row.names=1, col.names=c('', 'days', 'event', 'voltage')) # First, a t-dist with 500 df should be nearly identical to the Gaussian fitig <- survreg(Surv(days, event)~voltage, dist = "gaussian", data = capacitor) fit1 <- survreg(Surv(days, event) ~ voltage, dist='t', parms=500, capacitor) fitig summary(fit1, corr=F) # A more realistic fit fit2 <- survreg(Surv(days, event) ~ voltage, dist='t', parms=5, capacitor) print(fit2) xx <- seq(1,125, by=10) resid(fit2, type='response')[xx] resid(fit2, type='deviance')[xx] resid(fit2, type='working') [xx] resid(fit2, type='dfbeta')[xx,] resid(fit2, type='dfbetas')[xx,] resid(fit2, type='ldresp')[xx] resid(fit2, type='ldshape')[xx] resid(fit2, type='ldcase')[xx] resid(fit2, type='matrix')[xx,] predict(fit2, type='response')[xx] predict(fit2, type='link')[xx] predict(fit2, type='terms')[xx,] predict(fit2, type='quantile')[xx] rm(fitig, fit1, fit2, xx) survival/tests/frank.R0000644000176000001440000000136312267746072014563 0ustar ripleyuserslibrary(survival) # # Check out intercept/interaction for Frank H # age2 <- lung$age - 50 fit1 <- coxph(Surv(time, status) ~ age * strata(sex), lung) fit2 <- coxph(Surv(time, status) ~ age2*strata(sex), lung) tdata <- data.frame(age=50:60, age2=0:10, sex=c(1,2,1,2,1,2,1,2,1,2,1)) surv1 <- survfit(fit1, tdata) surv2 <- survfit(fit2, tdata) # The call won't match, but the rest should icall <- match("call", names(surv1)) all.equal(unclass(surv1)[-icall], unclass(surv2)[-icall]) # It should match what I get with a single strata fit fit3 <- coxph(Surv(time, status) ~ age, data=lung, init=fit1$coef[1], subset=(sex==1), iter=0) surv1b <- survfit(fit3, newdata=list(age=c(50,52, 54))) all.equal(c(surv1b$surv), surv1[c(1,3,5)]$surv) survival/tests/expected2.R0000644000176000001440000000107412267746072015344 0ustar ripleyuserslibrary(survival) # # A Cox model with a factor, followed by survexp. # pfit2 <- coxph(Surv(time, status > 0) ~ trt + log(bili) + log(protime) + age + platelet + sex, data = pbc) esurv <- survexp(~ trt, ratetable = pfit2, data = pbc) temp <- pbc temp$sex2 <- factor(as.numeric(pbc$sex), levels=2:0, labels=c("f", "m", "unknown")) esurv2 <- survexp(~ trt, ratetable = pfit2, data = temp, rmap=list(sex=sex2)) # The call components won't match, which happen to be first all.equal(unclass(esurv)[-1], unclass(esurv2)[-1]) survival/tests/concordance.R0000644000176000001440000001032712267746072015740 0ustar ripleyuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Simple tests of concordance. These numbers were derived in multiple # codes. # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) grank <- function(x, time, grp, wt) unlist(tapply(x, grp, rank)) grank2 <- function(x, time, grp, wt) { #for case weights if (length(wt)==0) wt <- rep(1, length(x)) z <- double(length(x)) for (i in unique(grp)) { indx <- which(grp==i) temp <- tapply(wt[indx], x[indx], sum) temp <- temp/2 + c(0, cumsum(temp)[-length(temp)]) z[indx] <- temp[match(x[indx], names(temp))] } z } tdata <- aml[aml$x=='Maintained',] tdata$y <- c(1,6,2,7,3,7,3,8,4,4,5) tdata$wt <- c(1,2,3,2,1,2,3,4,3,2,1) fit <- survConcordance(Surv(time, status) ~y, tdata) aeq(fit$stats[1:4], c(14,24,2,0)) cfit <- coxph(Surv(time, status) ~ tt(y), tdata, tt=grank, method='breslow', iter=0, x=T) cdt <- coxph.detail(cfit) aeq(4*sum(cdt$imat),fit$stats[5]^2) aeq(2*sum(cdt$score), diff(fit$stats[2:1])) # Lots of ties tempx <- Surv(c(1,2,2,2,3,4,4,4,5,2), c(1,0,1,0,1,0,1,1,0,1)) tempy <- c(5,5,4,4,3,3,7,6,5,4) fit2 <- survConcordance(tempx ~ tempy) aeq(fit2$stats[1:4], c(13,13,5,2)) cfit2 <- coxph(tempx ~ tt(tempy), tt=grank, method='breslow', iter=0) aeq(4/cfit2$var, fit2$stats[5]^2) # Bigger data fit3 <- survConcordance(Surv(time, status) ~ age, lung) aeq(fit3$stats[1:4], c(10717, 8706, 591, 28)) cfit3 <- coxph(Surv(time, status) ~ tt(age), lung, iter=0, method='breslow', tt=grank, x=T) cdt <- coxph.detail(cfit3) aeq(4*sum(cdt$imat),fit3$stats[5]^2) aeq(2*sum(cdt$score), diff(fit3$stats[2:1])) # More ties fit4 <- survConcordance(Surv(time, status) ~ ph.ecog, lung) aeq(fit4$stats[1:4], c(8392, 4258, 7137, 28)) cfit4 <- coxph(Surv(time, status) ~ tt(ph.ecog), lung, iter=0, method='breslow', tt=grank) aeq(4/cfit4$var, fit4$stats[5]^2) # Case weights fit5 <- survConcordance(Surv(time, status) ~ y, tdata, weight=wt) fit6 <- survConcordance(Surv(time, status) ~y, tdata[rep(1:11,tdata$wt),]) aeq(fit5$stats[1:4], c(70, 91, 7, 0)) # checked by hand aeq(fit5$stats[1:3], fit6$stats[1:3]) #spurious "tied on time" value, ignore aeq(fit5$std, fit6$std) cfit5 <- coxph(Surv(time, status) ~ tt(y), tdata, weight=wt, iter=0, method='breslow', tt=grank2) cfit6 <- coxph(Surv(time, status) ~ tt(y), tdata[rep(1:11,tdata$wt),], iter=0, method='breslow', tt=grank) aeq(4/cfit6$var, fit6$stats[5]^2) aeq(cfit5$var, cfit6$var) # Start, stop simplest cases fit7 <- survConcordance(Surv(rep(0,11), time, status) ~ y, tdata) aeq(fit7$stats, fit$stats) aeq(fit7$std.err, fit$std.err) fit7 <- survConcordance(Surv(rep(0,11), time, status) ~ y, tdata, weight=wt) aeq(fit5$stats, fit7$stats) # Multiple intervals for some, but same risk sets as tdata tdata2 <- data.frame(time1=c(0,3, 5, 6,7, 0, 4,17, 7, 0,16, 2, 0, 0,9, 5), time2=c(3,9, 13, 7,13, 18, 17,23, 28, 16,31, 34, 45, 9,48, 60), status=c(0,1, 1, 0,0, 1, 0,1, 0, 0,1, 1, 0, 0,1, 0), y = c(1,1, 6, 2,2, 7, 3,3, 7, 3,3, 8, 4, 4,4, 5), wt= c(1,1, 2, 3,3, 2, 1,1, 2, 3,3, 4, 3, 2,2, 1)) fit8 <- survConcordance(Surv(time1, time2, status) ~y, tdata2, weight=wt) aeq(fit5$stats, fit8$stats) aeq(fit5$std.err, fit8$std.err) cfit8 <- coxph(Surv(time1, time2, status) ~ tt(y), tdata2, weight=wt, iter=0, method='breslow', tt=grank2) aeq(4/cfit8$var, fit8$stats[5]^2) aeq(fit8$stats[5]/(2*sum(fit8$stats[1:3])), fit8$std.err) # Stratified tdata3 <- data.frame(time1=c(tdata2$time1, rep(0, nrow(lung))), time2=c(tdata2$time2, lung$time), status = c(tdata2$status, lung$status -1), x = c(tdata2$y, lung$ph.ecog), wt= c(tdata2$wt, rep(1, nrow(lung))), grp=rep(1:2, c(nrow(tdata2), nrow(lung)))) fit9 <- survConcordance(Surv(time1, time2, status) ~x + strata(grp), data=tdata3, weight=wt) aeq(fit9$stats[1,], fit5$stats) aeq(fit9$stats[2,], fit4$stats) survival/tests/book4.R0000644000176000001440000000630612267746072014502 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Tests from the appendix of Therneau and Grambsch # d. Data set 2 and Efron estimate # test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + log(2*r +2)) u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 1/(3*r+2), 1/(2*r +2) ) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, 0,1,0,1,1, 0, 0,0,0,0, 0,0,1,1,1, 0, 1,1,0,0, 0,0,0,1,1, 0, 1,1,0,0, 0,0,0,0,1, 1, 1,1,0,0, 0,0,0,0,0, 1, 1,1,1,1, 0,0,0,0,0,.5,.5,1,1,1), ncol=7) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to add the ties back up (they are symmetric) scho[6:7] <- rep(mean(scho[6:7]), 2) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, mart=mart, score=score, rmat=resid, scho=scho) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0) truth0 <- byhand(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8) truth <- byhand(fit$coef, 0) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) # # Done with the formal test, now print out lots of bits # resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2))) survival/tests/turnbull.R0000644000176000001440000001367012267746072015335 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # The test data set from Turnbull, JASA 1974, 169-73. # # status 0=right censored # 1=exact # 2=left censored # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) turnbull <- data.frame( time =c( 1,1,1, 2,2,2, 3,3,3, 4,4,4), status=c( 1,0,2, 1,0,2, 1,0,2, 1,0,2), n =c(12,3,2, 6,2,4, 2,0,2, 3,3,5)) # # Compute the K-M for the Turnbull data # via a slow EM calculation # emsurv <- function(time, status, wt, verbose=T) { left.cen <- (status==2) if (!any(left.cen)) stop("No left censored data!") if (!any(status==1))stop("Must have some exact death times") tempy <- Surv(time[!left.cen], status[!left.cen]) ww <- wt[!left.cen] tempx <- factor(rep(1, sum(!left.cen))) tfit <- survfit(tempy~tempx, weight=ww) if (verbose) cat("Iteration 0, survival=", format(round(tfit$surv[tfit$n.event>0],3)), "\n") stimes <- tfit$time[tfit$n.event>0] ltime <- time[left.cen] lwt <- wt[left.cen] tempx <- factor(rep(1, length(stimes) + sum(!left.cen))) tempy <- Surv(c(time[!left.cen], stimes), c(status[!left.cen], rep(1, length(stimes)))) for (iter in 1:4) { wt2 <- stimes*0 ssurv <- tfit$surv[tfit$n.event>0] sjump <- diff(c(1, ssurv)) for (j in 1:(length(ltime))) { k <- sum(ltime[j]>=stimes) #index of the death time if (k==0) stop("Left censored observation before the first death") wt2[1:k] <- wt2[1:k] + lwt[j]*sjump[1:k] /(ssurv[k]-1) } tfit <- survfit(tempy~tempx, weight=c(ww, wt2)) if (verbose) { cat("Iteration", iter, "survival=", format(round(tfit$surv[tfit$n.event>0],3)), "\n") cat(" weights=", format(round(wt2,3)), "\n") } } survfit(tempy ~ tempx, weights=c(ww, wt2)) } temp <-emsurv(turnbull$time, turnbull$status, turnbull$n) print(summary(temp)) # First check, use the data from Turnbull, JASA 1974, 169-173. tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4), status=rep(c(1,0,2),4), n =c(12,3,2,6,2,4,2,0,2,3,3,5)) tfit <- survfit(Surv(time, time, status, type='interval') ~1, tdata, weight=n) all.equal(round(tfit$surv,3), c(.538, .295, .210, .095)) # Second check, compare to a reversed survival curve # This is not as simple a test as one might think, because left and right # censored observations are not treated symmetrically by the routine: # time <= y for left and time> y for right (this is to make the routine # correct for the common situation of panel data). # To get equivalence, make the left censoreds happen just a little bit # earlier. The left-continuous/right-continuous shift is also a bother. # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit1 <- survfit(Surv(time, status) ~1, test1) temp <- ifelse(test1$status==0, 4.99,5) - test1$time fit2 <- survfit(Surv(temp, status, type='left') ~1, test1) all.equal(round(fit1$surv[1:2],5), round(1-fit2$surv[3:2],5)) rm(tdata, tfit, fit1, temp, fit2) # # Create a data set similar to the one provided by Al Zinsmeister # It is a hard test case for survfit.turnbull # time1 <- c(rep(0,100), rep(1,200), 100, 200, 210, 220, rep(365,100), rep(366,5), 731:741) time2 <- c((1:100)*3, 10+1:100, rep(365:366, c(60,40)), NA, 500, NA, 450, rep(730,90), rep(NA,10), c(528,571,691,730,731), NA, 1095:1099, NA, 1400, 1200, 772, 1461) zfit <- survfit(Surv(time1, time2, type='interval2') ~1) # # There are 100 intervals of the form (0,x) where x is from 3 to 300, # and 200 more of the form (1,x) where x is from 11 to 366. These # lead to a mass point in the interval (1,3), which is placed at 2. # The starting estimate has far too little mass placed here, and it takes # the EM a long time to realize that most of the weight for the first 300 # subjects goes here. With acceleration, it takes 16 iterations, without # it takes >40. (On Al's orginal data, without accel still wasn't there after # 165 iters!) # # The next 4 obs give rise to potential jumps at 100.5, 200.5, 211.5, and # 221. However, the final estimate has no mass at all on any of these. # Assume mass of a,b, and c at 2, 100.5 and 365.5, and consider the # contributions: # 123 obs that overlap a only # 137 obs that overlap a and b # 40 obs that overlap a, b, c # 1 obs that overlap b, c # 108 obs that overlap c (200, 210,200, 365, and 366 starting points) # For some trial values of a,b,c, compare the loglik to that of (a+b),0,c # First one: a^123 (a+b)^137 (a+b+c)^40 (b+c) c^108 # Second: (a+b)^123 (a+b)^137 (a+b+c)^40 c c^108 # Likelhood improves if (1 + b/a)^123 > 1+ b/c, which is true for almost # all a and c. In particular, at the solution a and c are approx .7 and # .18, respectively. # # The program can't see this coming, of course, and so iterates towards a # KM with epsilon sized jumps at 100.5, 200.5, and 211.5. Whether these # intervals should be removed during iteration, as detected, is an open # question for me. # # # True solution: mass points at 2, 365.5, 408, and 756.5, of sizes a, b, c, d # Likelihood: a^260 (a+b)^40 (b+c)^92 (b+c+d)^12 c^5 d^11 # Solution: a=0.6958, b=0.1674, c=0.1079, d=0.0289 tfun <- function(x) { if (length(x) ==3) x <- c(x, .03) x <- x/sum(x) #make probabilities sum to 1 loglik <- 260*log(x[1]) + 40*log(x[1]+x[2]) + 92*log(x[2] + x[3]) + 12*log(x[2]+x[3]+x[4]) + 5*log(x[3]) + 11*log(x[4]) -loglik #find the max, not the min } nfit <- nlminb(start=c(.7,.15, .1), tfun, lower=0, upper=1) nparm <- c(nfit$par, .03) nparm <- nparm / sum(nparm) zparm <- -diff(c(1, zfit$surv[match(c(2, 365.5, 408, 756.5), zfit$time)])) aeq(round(tfun(nparm),4), round(tfun(zparm),4)) # .0001 is the tolerance in survfit.turnbull rm(tfun, nfit, nparm, zparm, time1, time2, zfit) survival/tests/coxsurv4.Rout.save0000644000176000001440000000511612267746072016744 0ustar ripleyusers R version 3.0.1 (2013-05-16) -- "Good Sport" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > > # Strata by covariate interactions, a case pointed out in early 2011 > # by Frank Harrell, which as it turns out had never been computed > # correctly by any version of the package. Which shows how often this > # case arises in practice. > # > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y)) > fit1 <- coxph(Surv(time, status) ~ wt.loss + age*strata(sex) + strata(ph.ecog), + data=lung) > tdata <- data.frame(wt.loss=c(10,5,0,10, 15,20,25), + age =c(50,60,50,60,70,40,21), + sex =c(1,1,2,2,1,1,1), + ph.ecog=c(0,0,1,1,2,2,2)) > surv1 <- survfit(fit1, newdata=tdata) > > fit2 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*0), data=lung, + init=fit1$coef, iter=0, subset=(sex==1 & ph.ecog==0)) > fit2$var <- fit1$var > > surv2 <- survfit(fit2, newdata=list(wt.loss=c(10,5), age=c(50,60))) > s1 <- surv1[1:2] > aeq(s1$surv, surv2$surv) #first a vector, second a matrix [1] TRUE > aeq(s1$std.err, surv2$std.err) [1] TRUE > aeq(s1[1]$time, surv2$time) [1] TRUE > aeq(s1[1]$n.event, surv2$n.event) [1] TRUE > > fit3 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*1), + data=lung, init=fit1$coef, iter=0, + subset=(sex==2 & ph.ecog==1)) > fit3$var <- fit1$var > surv3 <- survfit(fit3, newdata=list(wt.loss=c(0,10), age=c(50,60))) > aeq(surv1[3:4]$surv, surv3$surv) [1] TRUE > aeq(surv1[3:4]$std, surv3$std) [1] TRUE > > fit4 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*0), + data=lung, init=fit1$coef, iter=0, + subset=(sex==1 & ph.ecog==2)) > fit4$var <- fit1$var > surv4 <- survfit(fit4, newdata=list(wt.loss=c(15,20,25), age=c(70,40,21))) > > aeq(surv1[5:7]$surv, surv4$surv) [1] TRUE > aeq(surv1[5:7]$std.err, surv4$std.err) [1] TRUE > aeq(surv1[5]$n.risk, surv4$n.risk) [1] TRUE > > > proc.time() user system elapsed 0.324 0.052 0.356 survival/tests/r_strata.Rout.save0000644000176000001440000001146012267746072016765 0ustar ripleyusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test out the strata capabilities > # > tol <- survreg.control()$rel.tolerance > aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y), ...) > > # intercept only models > fit1 <- survreg(Surv(time, status) ~ strata(sex), lung) > fit2 <- survreg(Surv(time, status) ~ strata(sex) + sex, lung) > fit3a<- survreg(Surv(time,status) ~1, lung, subset=(sex==1)) > fit3b<- survreg(Surv(time,status) ~1, lung, subset=(sex==2)) > > fit1 Call: survreg(formula = Surv(time, status) ~ strata(sex), data = lung) Coefficients: (Intercept) 6.062171 Scale: sex=1 sex=2 0.8167551 0.6533036 Loglik(model)= -1152.5 Loglik(intercept only)= -1152.5 n= 228 > fit2 Call: survreg(formula = Surv(time, status) ~ strata(sex) + sex, data = lung) Coefficients: (Intercept) sex 5.494409 0.380171 Scale: sex=1 sex=2 0.8084294 0.6355816 Loglik(model)= -1147.1 Loglik(intercept only)= -1152.5 Chisq= 10.9 on 1 degrees of freedom, p= 0.00096 n= 228 > aeq(fit2$scale, c(fit3a$scale, fit3b$scale), tolerance=tol) [1] TRUE > aeq(fit2$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol) [1] TRUE > aeq(fit2$coef[1] + 1:2*fit2$coef[2], c(fit3a$coef, fit3b$coef), tolerance=tol) [1] TRUE > > #penalized models > fit1 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ + strata(sex), lung) > fit2 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ + strata(sex) + sex, lung) > fit1 Call: survreg(formula = Surv(time, status) ~ pspline(age, theta = 0.92) + strata(sex), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.9036 0.8469 0.5688 66.45 1.00 3.3e-16 pspline(age, theta = 0.92 -0.0124 0.0067 0.0067 3.45 1.00 6.3e-02 pspline(age, theta = 0.92 2.53 2.65 4.0e-01 Scale: sex=1 sex=2 0.807 0.654 Iterations: 1 outer, 4 Newton-Raphson Theta= 0.92 Degrees of freedom for terms= 0.5 3.6 2.0 Likelihood ratio test=6.54 on 3.1 df, p=0.0937 n= 228 > fit2 Call: survreg(formula = Surv(time, status) ~ pspline(age, theta = 0.92) + strata(sex) + sex, data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.3729 0.84471 0.59118 56.92 1.00 4.5e-14 pspline(age, theta = 0.92 -0.0111 0.00666 0.00666 2.77 1.00 9.6e-02 pspline(age, theta = 0.92 2.46 2.68 4.2e-01 sex 0.3686 0.11711 0.11685 9.91 1.00 1.6e-03 Scale: sex=1 sex=2 0.800 0.636 Iterations: 1 outer, 5 Newton-Raphson Theta= 0.92 Degrees of freedom for terms= 0.5 3.7 1.0 2.0 Likelihood ratio test=16.8 on 4.2 df, p=0.00245 n= 228 > > age1 <- ifelse(lung$sex==1, lung$age, mean(lung$age)) > age2 <- ifelse(lung$sex==2, lung$age, mean(lung$age)) > fit3 <- survreg(Surv(time,status) ~ pspline(age1, theta=.92) + + pspline(age2, theta=.95) + sex + strata(sex), lung) > fit3a<- survreg(Surv(time,status) ~pspline(age, theta=.92), lung, + subset=(sex==1)) > fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung, + subset=(sex==2)) > fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), + lung[lung$sex==2,], x=T) > # > # The above line is tricky, and it took me a long time to realize > # it's necessity. The range of age1 = range(age) = 39-82. That for > # age2 = range of females = 41-77. The basis functions for pspline are > # based on age. If I used data=lung, subset=(sex==2) in fit3b (earlier > # form of the test, the pspline function is called before the subset > # occurs, and fit3b has a different basis for the second spline than > # fit3 does; leading to failure of the all.equal tests below. A theta > # of .95 on one basis is not exactly the same as a theta of .95 on the > # other. Coefficients were within 1%, but not the same. > > aeq(fit3$scale, c(fit3a$scale, fit3b$scale)) [1] TRUE > aeq(fit3$loglik[2], (fit3a$loglik + fit3b$loglik)[2]) [1] TRUE > pred <- predict(fit3) > aeq(pred[lung$sex==1] , predict(fit3a)) [1] TRUE > aeq(pred[lung$sex==2], predict(fit3b)) [1] TRUE > > > > > survival/tests/r_strata.R0000644000176000001440000000443712267746072015306 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out the strata capabilities # tol <- survreg.control()$rel.tolerance aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y), ...) # intercept only models fit1 <- survreg(Surv(time, status) ~ strata(sex), lung) fit2 <- survreg(Surv(time, status) ~ strata(sex) + sex, lung) fit3a<- survreg(Surv(time,status) ~1, lung, subset=(sex==1)) fit3b<- survreg(Surv(time,status) ~1, lung, subset=(sex==2)) fit1 fit2 aeq(fit2$scale, c(fit3a$scale, fit3b$scale), tolerance=tol) aeq(fit2$loglik[2], (fit3a$loglik + fit3b$loglik)[2], tolerance=tol) aeq(fit2$coef[1] + 1:2*fit2$coef[2], c(fit3a$coef, fit3b$coef), tolerance=tol) #penalized models fit1 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ strata(sex), lung) fit2 <- survreg(Surv(time, status) ~ pspline(age, theta=.92)+ strata(sex) + sex, lung) fit1 fit2 age1 <- ifelse(lung$sex==1, lung$age, mean(lung$age)) age2 <- ifelse(lung$sex==2, lung$age, mean(lung$age)) fit3 <- survreg(Surv(time,status) ~ pspline(age1, theta=.92) + pspline(age2, theta=.95) + sex + strata(sex), lung) fit3a<- survreg(Surv(time,status) ~pspline(age, theta=.92), lung, subset=(sex==1)) fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung, subset=(sex==2)) fit3b<- survreg(Surv(time,status) ~pspline(age, theta=.95), lung[lung$sex==2,], x=T) # # The above line is tricky, and it took me a long time to realize # it's necessity. The range of age1 = range(age) = 39-82. That for # age2 = range of females = 41-77. The basis functions for pspline are # based on age. If I used data=lung, subset=(sex==2) in fit3b (earlier # form of the test, the pspline function is called before the subset # occurs, and fit3b has a different basis for the second spline than # fit3 does; leading to failure of the all.equal tests below. A theta # of .95 on one basis is not exactly the same as a theta of .95 on the # other. Coefficients were within 1%, but not the same. aeq(fit3$scale, c(fit3a$scale, fit3b$scale)) aeq(fit3$loglik[2], (fit3a$loglik + fit3b$loglik)[2]) pred <- predict(fit3) aeq(pred[lung$sex==1] , predict(fit3a)) aeq(pred[lung$sex==2], predict(fit3b)) survival/tests/book4.Rout.save0000644000176000001440000001754112267746072016172 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Tests from the appendix of Therneau and Grambsch > # d. Data set 2 and Efron estimate > # > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + + log(2*r +2)) + u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - + ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) + imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) + + hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), + 1/(3*r+2), 1/(2*r +2) ) + + + # The matrix of weights, one row per obs, one col per time + # deaths at 2,3,6,7,8,9 + wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, + 0,1,0,1,1, 0, 0,0,0,0, + 0,0,1,1,1, 0, 1,1,0,0, + 0,0,0,1,1, 0, 1,1,0,0, + 0,0,0,0,1, 1, 1,1,0,0, + 0,0,0,0,0, 1, 1,1,1,1, + 0,0,0,0,0,.5,.5,1,1,1), ncol=7) + wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat + + x <- c(1,0,0,1,0,1,1,1,0,0) + status <- c(1,1,1,1,1,1,1,0,0,0) + xbar <- colSums(wtmat*x)/ colSums(wtmat) + n <- length(x) + + # Table of sums for score and Schoenfeld resids + hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time + dM <- -hazmat #Expected part + for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed + dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed + mart <- rowSums(dM) + + # Table of sums for score and Schoenfeld resids + # Looks like the last table of appendix E.2.1 of the book + resid <- dM * outer(x, xbar, '-') + score <- rowSums(resid) + scho <- colSums(resid) + + # We need to add the ties back up (they are symmetric) + scho[6:7] <- rep(mean(scho[6:7]), 2) + + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, + mart=mart, score=score, rmat=resid, + scho=scho) + } > > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0) > truth0 <- byhand(0,0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')) [1] TRUE > > > fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8) > truth <- byhand(fit$coef, 0) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')) [1] TRUE > > # > # Done with the formal test, now print out lots of bits > # > resid(fit) 1 2 3 4 5 6 0.50527611 0.66432995 0.79746211 0.22435805 -0.55144018 0.42933697 7 8 9 10 -0.01764508 -1.14132605 -0.45517594 -0.45517594 > resid(fit, 'scor') 1 2 3 4 5 6 7 0.2553039 -0.2183386 -0.4744295 -0.1101520 0.1137126 0.2491954 0.1057078 8 9 10 -0.4119611 0.2454808 0.2454808 > resid(fit, 'scho') 2 3 6 7 8 9 9 0.5052761 -0.3286599 -0.5949242 0.2539781 -0.7460219 0.4551759 0.4551759 > > predict(fit, type='lp') [1] -0.0105526 0.0105526 0.0105526 -0.0105526 0.0105526 -0.0105526 [7] -0.0105526 -0.0105526 0.0105526 0.0105526 > predict(fit, type='risk') [1] 0.9895029 1.0106085 1.0106085 0.9895029 1.0106085 0.9895029 0.9895029 [8] 0.9895029 1.0106085 1.0106085 > predict(fit, type='expected') 1 2 3 4 5 6 7 8 0.4947239 0.3356701 0.2025379 0.7756420 1.5514402 0.5706630 1.0176451 1.1413261 9 10 0.4551759 0.4551759 > predict(fit, type='terms') x 1 -0.0105526 2 0.0105526 3 0.0105526 4 -0.0105526 5 0.0105526 6 -0.0105526 7 -0.0105526 8 -0.0105526 9 0.0105526 10 0.0105526 attr(,"constant") [1] -0.0105526 > predict(fit, type='lp', se.fit=T) $fit 1 2 3 4 5 6 7 -0.0105526 0.0105526 0.0105526 -0.0105526 0.0105526 -0.0105526 -0.0105526 8 9 10 -0.0105526 0.0105526 0.0105526 $se.fit 1 2 3 4 5 6 7 8 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 0.3975884 9 10 0.3975884 0.3975884 > predict(fit, type='risk', se.fit=T) $fit 1 2 3 4 5 6 7 8 0.9895029 1.0106085 1.0106085 0.9895029 1.0106085 0.9895029 0.9895029 0.9895029 9 10 1.0106085 1.0106085 $se.fit 1 2 3 4 5 6 7 8 0.3954962 0.3996918 0.3996918 0.3954962 0.3996918 0.3954962 0.3954962 0.3954962 9 10 0.3996918 0.3996918 > predict(fit, type='expected', se.fit=T) $fit 1 2 3 4 5 6 7 8 0.4947239 0.3356701 0.2025379 0.7756420 1.5514402 0.5706630 1.0176451 1.1413261 9 10 0.4551759 0.4551759 $se.fit [1] 0.5331623 0.3940109 0.3241963 0.6388491 1.0026838 0.6453101 0.7848594 [8] 0.7848594 0.6401915 0.6401915 > predict(fit, type='terms', se.fit=T) $fit x 1 -0.0105526 2 0.0105526 3 0.0105526 4 -0.0105526 5 0.0105526 6 -0.0105526 7 -0.0105526 8 -0.0105526 9 0.0105526 10 0.0105526 attr(,"constant") [1] -0.0105526 $se.fit x 1 0.3975884 2 0.3975884 3 0.3975884 4 0.3975884 5 0.3975884 6 0.3975884 7 0.3975884 8 0.3975884 9 0.3975884 10 0.3975884 > > summary(survfit(fit)) Call: survfit(formula = fit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 2 1 0.607 0.303 0.2277 1.000 3 3 1 0.435 0.262 0.1337 1.000 6 5 1 0.356 0.226 0.1029 1.000 7 4 1 0.277 0.189 0.0729 1.000 8 4 1 0.215 0.157 0.0516 0.899 9 5 2 0.137 0.109 0.0288 0.655 > summary(survfit(fit, list(x=2))) Call: survfit(formula = fit, newdata = list(x = 2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 2 1 0.616 0.465 0.14013 1 3 3 1 0.447 0.519 0.04568 1 6 5 1 0.368 0.504 0.02512 1 7 4 1 0.288 0.464 0.01232 1 8 4 1 0.226 0.418 0.00603 1 9 5 2 0.146 0.343 0.00147 1 > survival/tests/r_tdist.Rout.save0000644000176000001440000001743012267746072016621 0ustar ripleyusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test out the t-distribution > # > > capacitor <- read.table('data.capacitor', row.names=1, + col.names=c('', 'days', 'event', 'voltage')) > # First, a t-dist with 500 df should be nearly identical to the Gaussian > > fitig <- survreg(Surv(days, event)~voltage, + dist = "gaussian", data = capacitor) > fit1 <- survreg(Surv(days, event) ~ voltage, + dist='t', parms=500, capacitor) > fitig Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "gaussian") Coefficients: (Intercept) voltage 1764.93485 -53.87917 Scale= 121.4319 Loglik(model)= -361.9 Loglik(intercept only)= -420.1 Chisq= 116.33 on 1 degrees of freedom, p= 0 n= 125 > summary(fit1, corr=F) Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "t", parms = 500) Value Std. Error z p (Intercept) 1765.8 163.137 10.82 2.64e-27 voltage -53.9 5.536 -9.74 2.06e-22 Log(scale) 4.8 0.106 45.44 0.00e+00 Scale= 121 Student-t distribution: parmameters= 500 Loglik(model)= -361.9 Loglik(intercept only)= -420.1 Chisq= 116.48 on 1 degrees of freedom, p= 0 Number of Newton-Raphson Iterations: 6 n= 125 > > # A more realistic fit > fit2 <- survreg(Surv(days, event) ~ voltage, + dist='t', parms=5, capacitor) > print(fit2) Call: survreg(formula = Surv(days, event) ~ voltage, data = capacitor, dist = "t", parms = 5) Coefficients: (Intercept) voltage 1819.28554 -55.74915 Scale= 96.84073 Loglik(model)= -360.4 Loglik(intercept only)= -424.7 Chisq= 128.55 on 1 degrees of freedom, p= 0 n= 125 > > xx <- seq(1,125, by=10) > resid(fit2, type='response')[xx] 1 11 21 31 41 51 61 -404.30257 -404.30257 -404.30257 -98.07767 -69.80767 -69.80767 -69.80767 71 81 91 101 111 121 -69.80767 -93.94023 97.43977 113.88722 -33.24278 -20.67278 > resid(fit2, type='deviance')[xx] 1 11 21 31 41 51 61 0.0933622 0.0933622 0.0933622 -2.2347398 0.7614136 0.7614136 0.7614136 71 81 91 101 111 121 0.7614136 -2.2156512 1.8511554 2.3107823 -2.0035571 -1.9821491 > resid(fit2, type='working') [xx] 1 11 21 31 41 51 61 86.38692 86.38692 86.38692 -148.70263 83.43717 83.43717 83.43717 71 81 91 101 111 121 83.43717 -137.49634 467.64123 200.98252 -34.84748 -21.05308 > resid(fit2, type='dfbeta')[xx,] (Intercept) voltage Log(scale) 1 0.2105054 -0.00703909 -1.743331e-04 11 0.2105054 -0.00703909 -1.743331e-04 21 0.2105054 -0.00703909 -1.743331e-04 31 -29.7982886 0.93975839 -1.076889e-02 41 9.6554540 -0.30502561 3.507039e-05 51 9.6554540 -0.30502561 3.507039e-05 61 9.6554540 -0.30502561 3.507039e-05 71 9.6554540 -0.30502561 3.507039e-05 81 -7.9425298 0.20791541 -6.194989e-03 91 16.3379622 -0.46035101 2.516742e-02 101 -13.8131372 0.53202477 4.665894e-03 111 0.7894992 -0.06147045 -1.308494e-02 121 -1.7672591 0.03187567 -1.433810e-02 > resid(fit2, type='dfbetas')[xx,] [,1] [,2] [,3] 1 0.001445482 -0.001447807 -0.0014173482 11 0.001445482 -0.001447807 -0.0014173482 21 0.001445482 -0.001447807 -0.0014173482 31 -0.204616568 0.193290466 -0.0875522695 41 0.066301320 -0.062737980 0.0002851263 51 0.066301320 -0.062737980 0.0002851263 61 0.066301320 -0.062737980 0.0002851263 71 0.066301320 -0.062737980 0.0002851263 81 -0.054539145 0.042764254 -0.0503659665 91 0.112188247 -0.094685467 0.2046140370 101 -0.094850975 0.109427398 0.0379342550 111 0.005421271 -0.012643305 -0.1063820631 121 -0.012135277 0.006556221 -0.1165704260 > resid(fit2, type='ldresp')[xx] 1 11 21 31 41 51 6.303033e-06 6.303033e-06 6.303033e-06 4.198946e-02 1.121526e-02 1.121526e-02 61 71 81 91 101 111 1.121526e-02 1.121526e-02 3.796054e-02 3.773652e-02 5.409081e-02 4.663892e-02 121 4.455789e-02 > resid(fit2, type='ldshape')[xx] 1 11 21 31 41 51 8.281125e-05 8.281125e-05 8.281125e-05 1.355729e-01 1.789400e-04 1.789400e-04 61 71 81 91 101 111 1.789400e-04 1.789400e-04 6.346182e-02 9.934752e-02 1.534546e-01 1.958545e-02 121 7.748320e-03 > resid(fit2, type='ldcase')[xx] 1 11 21 31 41 51 6.114509e-06 6.114509e-06 6.114509e-06 5.563427e-02 6.706055e-03 6.706055e-03 61 71 81 91 101 111 6.706055e-03 6.706055e-03 1.966021e-02 6.803951e-02 3.806159e-02 1.617087e-02 121 1.551988e-02 > resid(fit2, type='matrix')[xx,] g dg ddg ds dds 1 -0.00435825 4.361059e-05 -5.048286e-07 -0.01763187 -0.06488770 11 -0.00435825 4.361059e-05 -5.048286e-07 -0.01763187 -0.06488770 21 -0.00435825 4.361059e-05 -5.048286e-07 -0.01763187 -0.06488770 31 -6.10147902 -1.041351e-02 -7.002908e-05 0.02133278 -1.69495867 41 -0.28987533 3.893573e-03 -4.666473e-05 -0.27180126 0.04439884 51 -0.28987533 3.893573e-03 -4.666473e-05 -0.27180126 0.04439884 61 -0.28987533 3.893573e-03 -4.666473e-05 -0.27180126 0.04439884 71 -0.28987533 3.893573e-03 -4.666473e-05 -0.27180126 0.04439884 81 -6.05900320 -1.011644e-02 -7.357605e-05 -0.04965962 -1.59963182 91 -1.71338808 1.250705e-02 -2.674498e-05 1.21868456 -1.47261500 101 -6.27430559 1.141518e-02 -5.679687e-05 0.30004293 -2.03671532 111 -5.61156875 -4.155718e-03 -1.192545e-04 -0.86185235 -0.26993370 121 -5.56890563 -2.621343e-03 -1.245112e-04 -0.94580955 -0.10740203 dsg 1 0.0001604929 11 0.0001604929 21 0.0001604929 31 0.0172817991 41 -0.0006360167 51 -0.0006360167 61 -0.0006360167 71 -0.0006360167 81 0.0170281873 91 -0.0151130795 101 -0.0178836167 111 0.0081200691 121 0.0051953348 > > predict(fit2, type='response')[xx] [1] 704.30257 704.30257 704.30257 369.80767 369.80767 369.80767 369.80767 [8] 369.80767 202.56023 202.56023 35.31278 35.31278 35.31278 > predict(fit2, type='link')[xx] [1] 704.30257 704.30257 704.30257 369.80767 369.80767 369.80767 369.80767 [8] 369.80767 202.56023 202.56023 35.31278 35.31278 35.31278 > predict(fit2, type='terms')[xx,] 1 11 21 31 41 51 61 374.63428 374.63428 374.63428 40.13939 40.13939 40.13939 40.13939 71 81 91 101 111 121 40.13939 -127.10806 -127.10806 -294.35550 -294.35550 -294.35550 > predict(fit2, type='quantile')[xx] [1] 561.37687 561.37687 561.37687 226.88198 226.88198 226.88198 [7] 226.88198 226.88198 59.63453 59.63453 -107.61291 -107.61291 [13] -107.61291 > > rm(fitig, fit1, fit2, xx) > survival/tests/jasa.Rout.save0000644000176000001440000003146412267746072016072 0ustar ripleyusers R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > expect <- survexp(futime ~ ratetable(age=(accept.dt - birth.dt), sex=1, + year=accept.dt, race='white'), jasa, cohort=F, + ratetable=survexp.usr) > > survdiff(Surv(jasa$futime, jasa$fustat) ~ offset(expect)) Call: survdiff(formula = Surv(jasa$futime, jasa$fustat) ~ offset(expect)) Observed Expected Z p 75.000 0.587 -97.119 0.000 > # Now fit the 6 models found in Kalbfleisch and Prentice, p139 > sfit.1 <- coxph(Surv(start, stop, event)~ (age + surgery)*transplant, + jasa1, method='breslow') > sfit.2 <- coxph(Surv(start, stop, event)~ year*transplant, + jasa1, method='breslow') > sfit.3 <- coxph(Surv(start, stop, event)~ (age + year)*transplant, + jasa1, method='breslow') > sfit.4 <- coxph(Surv(start, stop, event)~ (year +surgery) *transplant, + jasa1, method='breslow') > sfit.5 <- coxph(Surv(start, stop, event)~ (age + surgery)*transplant + year , + jasa1, method='breslow') > sfit.6 <- coxph(Surv(start, stop, event)~ age*transplant + surgery + year, + jasa1, method='breslow') > > summary(sfit.1) Call: coxph(formula = Surv(start, stop, event) ~ (age + surgery) * transplant, data = jasa1, method = "breslow") n= 170, number of events= 75 coef exp(coef) se(coef) z Pr(>|z|) age 0.01386 1.01395 0.01813 0.765 0.445 surgery -0.54652 0.57896 0.61091 -0.895 0.371 transplant 0.11572 1.12268 0.32729 0.354 0.724 age:transplant 0.03473 1.03534 0.02725 1.274 0.202 surgery:transplant -0.29037 0.74799 0.75819 -0.383 0.702 exp(coef) exp(-coef) lower .95 upper .95 age 1.014 0.9862 0.9786 1.051 surgery 0.579 1.7272 0.1748 1.917 transplant 1.123 0.8907 0.5911 2.132 age:transplant 1.035 0.9659 0.9815 1.092 surgery:transplant 0.748 1.3369 0.1692 3.306 Concordance= 0.595 (se = 0.037 ) Rsquare= 0.071 (max possible= 0.97 ) Likelihood ratio test= 12.45 on 5 df, p=0.02915 Wald test = 11.62 on 5 df, p=0.04031 Score (logrank) test = 12.02 on 5 df, p=0.03457 > sfit.2 Call: coxph(formula = Surv(start, stop, event) ~ year * transplant, data = jasa1, method = "breslow") coef exp(coef) se(coef) z p year -0.265 0.767 0.105 -2.522 0.012 transplant -0.287 0.750 0.514 -0.559 0.580 year:transplant 0.137 1.147 0.141 0.973 0.330 Likelihood ratio test=8.61 on 3 df, p=0.0349 n= 170, number of events= 75 > summary(sfit.3) Call: coxph(formula = Surv(start, stop, event) ~ (age + year) * transplant, data = jasa1, method = "breslow") n= 170, number of events= 75 coef exp(coef) se(coef) z Pr(>|z|) age 0.01558 1.01571 0.01734 0.899 0.36887 year -0.27413 0.76023 0.10588 -2.589 0.00962 ** transplant -0.59388 0.55218 0.54222 -1.095 0.27339 age:transplant 0.03380 1.03438 0.02795 1.209 0.22653 year:transplant 0.20228 1.22419 0.14247 1.420 0.15566 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 exp(coef) exp(-coef) lower .95 upper .95 age 1.0157 0.9845 0.9818 1.0508 year 0.7602 1.3154 0.6178 0.9356 transplant 0.5522 1.8110 0.1908 1.5981 age:transplant 1.0344 0.9668 0.9792 1.0926 year:transplant 1.2242 0.8169 0.9259 1.6185 Concordance= 0.63 (se = 0.037 ) Rsquare= 0.084 (max possible= 0.97 ) Likelihood ratio test= 14.85 on 5 df, p=0.01102 Wald test = 13.77 on 5 df, p=0.01716 Score (logrank) test = 14.06 on 5 df, p=0.01525 > sfit.4 Call: coxph(formula = Surv(start, stop, event) ~ (year + surgery) * transplant, data = jasa1, method = "breslow") coef exp(coef) se(coef) z p year -0.254 0.776 0.108 -2.360 0.018 surgery -0.237 0.789 0.628 -0.377 0.710 transplant -0.297 0.743 0.505 -0.588 0.560 year:transplant 0.165 1.180 0.142 1.167 0.240 surgery:transplant -0.550 0.577 0.776 -0.709 0.480 Likelihood ratio test=12.4 on 5 df, p=0.0302 n= 170, number of events= 75 > sfit.5 Call: coxph(formula = Surv(start, stop, event) ~ (age + surgery) * transplant + year, data = jasa1, method = "breslow") coef exp(coef) se(coef) z p age 0.0150 1.015 0.0176 0.855 0.390 surgery -0.4202 0.657 0.6156 -0.683 0.490 transplant 0.0741 1.077 0.3311 0.224 0.820 year -0.1363 0.873 0.0710 -1.921 0.055 age:transplant 0.0269 1.027 0.0271 0.992 0.320 surgery:transplant -0.2966 0.743 0.7580 -0.391 0.700 Likelihood ratio test=16.2 on 6 df, p=0.0127 n= 170, number of events= 75 > sfit.6 Call: coxph(formula = Surv(start, stop, event) ~ age * transplant + surgery + year, data = jasa1, method = "breslow") coef exp(coef) se(coef) z p age 0.0153 1.015 0.0175 0.873 0.380 transplant 0.0446 1.046 0.3217 0.139 0.890 surgery -0.6211 0.537 0.3679 -1.688 0.091 year -0.1361 0.873 0.0709 -1.919 0.055 age:transplant 0.0270 1.027 0.0271 0.996 0.320 Likelihood ratio test=16.1 on 5 df, p=0.00669 n= 170, number of events= 75 > > # Survival curve for an "average" subject, > # done once as overall, once via individual method > surv1 <- survfit(sfit.1, newdata=list(age=-2, surgery=0, transplant=0)) > newdata <- data.frame(start=c(0,50,100), stop=c(50,100, max(jasa1$stop)), + event=c(1,1,1), age=rep(-2,3), surgery=rep(0,3), + transplant=rep(0,3)) > surv2 <- survfit(sfit.1, newdata, individual=T) > # Have to use unclass to avoid [.survfit trying to pick curves, > # remove the final element "call" because it won't match > all.equal(unclass(surv1)[-length(surv1)], + unclass(surv2)[-length(surv2)]) [1] TRUE > > > # Survival curve for a subject of age 50, with prior surgery, tx at 6 months > # Remember that 'age' in jasa 1 was centered at 48 > data <- data.frame(start=c(0,183), stop=c(183,3*365), event=c(1,1), + age=c(2,2), surgery=c(1,1), transplant=c(0,1)) > summary(survfit(sfit.1, data, individual=T)) Call: survfit(formula = sfit.1, newdata = data, individual = T) time n.risk n.event survival std.err lower 95% CI upper 95% CI 0.5 103 1 0.994 0.00722 0.980 1.000 1.0 102 3 0.975 0.01860 0.939 1.000 2.0 99 3 0.956 0.02914 0.900 1.000 4.0 96 2 0.943 0.03605 0.875 1.000 5.0 94 2 0.930 0.04286 0.849 1.000 7.0 92 1 0.923 0.04623 0.837 1.000 8.0 91 1 0.917 0.04959 0.824 1.000 11.0 89 1 0.910 0.05294 0.812 1.000 15.0 88 3 0.890 0.06278 0.775 1.000 16.0 85 1 0.883 0.06608 0.763 1.000 17.0 84 1 0.877 0.06928 0.751 1.000 20.0 83 2 0.864 0.07538 0.728 1.000 27.0 81 1 0.857 0.07849 0.716 1.000 29.0 80 1 0.850 0.08160 0.705 1.000 31.0 78 1 0.844 0.08473 0.693 1.000 34.0 77 1 0.837 0.08786 0.681 1.000 35.0 76 1 0.830 0.09098 0.669 1.000 36.0 75 1 0.823 0.09412 0.658 1.000 38.0 74 1 0.816 0.09727 0.646 1.000 39.0 72 2 0.802 0.10349 0.623 1.000 42.0 70 1 0.795 0.10664 0.611 1.000 44.0 69 1 0.788 0.10982 0.600 1.000 49.0 68 1 0.781 0.11300 0.588 1.000 50.0 67 1 0.774 0.11614 0.577 1.000 52.0 66 1 0.767 0.11925 0.565 1.000 57.0 65 1 0.760 0.12238 0.554 1.000 60.0 64 1 0.752 0.12552 0.542 1.000 65.0 63 1 0.745 0.12866 0.531 1.000 67.0 62 2 0.730 0.13494 0.508 1.000 68.0 60 1 0.722 0.13809 0.497 1.000 71.0 59 2 0.707 0.14420 0.474 1.000 76.0 57 1 0.699 0.14729 0.463 1.000 77.0 56 1 0.691 0.15043 0.451 1.000 79.0 55 1 0.683 0.15362 0.439 1.000 80.0 54 1 0.674 0.15680 0.428 1.000 84.0 53 1 0.666 0.16005 0.416 1.000 89.0 52 1 0.657 0.16326 0.404 1.000 95.0 51 1 0.648 0.16648 0.392 1.000 99.0 50 1 0.639 0.16972 0.380 1.000 101.0 49 1 0.630 0.17293 0.368 1.000 109.0 47 1 0.621 0.17611 0.356 1.000 148.0 45 1 0.611 0.17927 0.344 1.000 152.0 44 1 0.601 0.18236 0.332 1.000 164.0 43 1 0.592 0.18551 0.320 1.000 185.0 41 1 0.583 0.12737 0.380 0.894 187.0 40 1 0.574 0.12889 0.370 0.891 206.0 39 1 0.565 0.13036 0.359 0.888 218.0 38 1 0.556 0.13180 0.349 0.885 262.0 37 1 0.546 0.13320 0.339 0.881 284.0 35 2 0.527 0.13585 0.318 0.874 307.0 33 1 0.517 0.13707 0.308 0.869 333.0 32 1 0.507 0.13823 0.297 0.865 339.0 31 1 0.497 0.13930 0.287 0.861 342.0 29 1 0.486 0.14029 0.276 0.856 583.0 21 1 0.471 0.14187 0.261 0.850 674.0 17 1 0.452 0.14361 0.243 0.843 732.0 16 1 0.433 0.14506 0.225 0.835 851.0 14 1 0.410 0.14622 0.204 0.825 979.0 11 1 0.383 0.14698 0.180 0.813 995.0 10 1 0.356 0.14735 0.158 0.801 1031.0 9 1 0.330 0.14743 0.137 0.792 > > # These should all give the same answer > # When there are offsets, the default curve is always for someone with > # the mean offset. > j.age <- jasa$age -48 > fit1 <- coxph(Surv(futime, fustat) ~ j.age, data=jasa) > fit2 <- coxph(Surv(futime, fustat) ~ j.age, jasa, init=fit1$coef, iter=0) > fit3 <- coxph(Surv(start, stop, event) ~ age, jasa1) > fit4 <- coxph(Surv(start, stop, event) ~ offset(age*fit1$coef), jasa1) > > s1 <- survfit(fit1, list(j.age=fit3$means), censor=FALSE) > s2 <- survfit(fit2, list(j.age=fit3$means), censor=FALSE) > s3 <- survfit(fit3, censor=FALSE) > s4 <- survfit(fit4, censor=FALSE) > > all.equal(s1$surv, s2$surv) [1] TRUE > all.equal(s1$surv, s3$surv) [1] TRUE > all.equal(s1$surv, s4$surv) [1] TRUE > > # Still the same answer, fit multiple strata at once > # Strata 1 has independent coefs of strata 2, so putting in > # the other data should not affect it > ll <- nrow(jasa1) > ss <- rep(0:1, c(ll,ll)) > tdata <- with(jasa1, data.frame(start=rep(start,2), stop=rep(stop,2), + event=rep(event,2), ss=ss, age=rep(age,2), + age2 = (rep(age,2))^2 * ss)) > fit <- coxph(Surv(start, stop, event) ~ age*strata(ss) + age2, tdata) > # Above replaced these 2 lines, which kill Splus5 as of 8/98 > # Something with data frames, I expect. > #fit <- coxph(Surv(rep(start,2), rep(stop,2), rep(event,2)) ~ > # rep(age,2)*strata(ss) + I(rep(age,2)^2*ss) ) > all.equal(fit$coef[1], fit3$coef) [1] TRUE > s5 <- survfit(fit, data.frame(age=fit3$means, age2=0, ss=0), censor=FALSE) > all.equal(s5$surv[1:(s5$strata[1])], s3$surv) [1] TRUE > > > > proc.time() user system elapsed 0.420 0.064 0.484 survival/tests/book6.R0000644000176000001440000000741112267746072014502 0ustar ripleyuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # Tests of the weighted Cox model # This is section 1.3 of my appendix -- no yet found in any of the # printings though, it awaits the next edition # # Efron approximation # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), status= c(1,0,1,1,1,0,0,1,0), x= c(2,0,1,1,0,1,0,1,0), wt = c(1,2,3,4,3,2,1,2,1)) xx <- testw1$wt # Efron estimate byhand <- function(beta, newx=0) { r <- exp(beta) a <- 7*r +3; b<- 4*r+2 loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5)/3 + 10*log(a*2/3 +b)/3 + 10*log(a/3 +b)/3 +2*log(2*r+1)) hazard <- c(1/(r^2 + 11*r +7), 10/(3*c(11*r +5, a*2/3 +b, a/3+b)), 2/(2*r+1)) temp <- c(hazard[1], hazard[1]+hazard[2] + hazard[3]*2/3 + hazard[4]/3, cumsum(hazard)[4:5]) risk <- c(r^2, 1,r,r,1,r,1,r,1) expected <- risk* temp[c(1,1,2,2,2,3,3,4,4)] # The matrix of weights, one row per obs, one col per death # deaths at 1,2,2,2, and 4 riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,2/3,2/3,2/3,1,1,1,1, 0,0,1/3,1/3,1/3,1,1,1,1, 0,0,0,0,0,0,0,1,1), ncol=5) wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat x <- c(2,0,1,1,0,1,0,1,0) xbar <- colSums(x*wtmat)/ colSums(wtmat) imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + 10* mean(xbar[2:4] - xbar[2:4]^2) + 2*(xbar[5] - xbar[5]^2) status <- c(1,0,1,1,1,0,0,1,0) wt <- c(1,2,3,4,3,2,1,2,1) # Table of sums for score resids hazmat <- riskmat %*% diag(c(1,10/3,10/3, 10/3,2)/colSums(wtmat)) dM <- -risk*hazmat #Expected part dM[1,1] <- dM[1,1] +1 # deaths at time 1 for (i in 2:4) dM[3:5, i] <- dM[3:5,i] + 1/3 dM[8,5] <- dM[8,5] +1 mart <- rowSums(dM) resid <-dM * outer(x, xbar ,'-') # Increments to the variance of the hazard var.g <- cumsum(hazard^2* c(1,3/10, 3/10, 3/10, 1/2)) var.d <- cumsum((xbar-newx)*hazard) sxbar <- c(xbar[1], mean(xbar[2:4]), xbar[5]) #xbar for Schoen list(loglik=loglik, imat=imat, hazard=hazard, xbar=xbar, mart=status-expected, expected=expected, score=rowSums(resid), schoen=c(2,1,1,0,1) - sxbar[c(1,2,2,2,3)], varhaz=((var.g + var.d^2/imat)* exp(2*beta*newx))[c(1,4,5)]) } # Verify temp <- byhand(0,0) aeq(temp$xbar, c(13/19, 11/16, 26/38, 19/28, 2/3)) aeq(temp$hazard, c(1/19, 5/24, 5/19, 5/14, 2/3)) fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, iter=0) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt) truth0 <- byhand(0,pi) aeq(fit0$loglik[1], truth0$loglik) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) sfit <- survfit(fit0, list(x=pi), censor=FALSE) aeq(sfit$std.err^2, truth0$var) aeq(-log(sfit$surv), cumsum(truth0$hazard)[c(1,4,5)]) truth <- byhand(fit$coef, .3) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) sfit <- survfit(fit, list(x=.3), censor=FALSE) aeq(sfit$std.err^2, truth$var) aeq(-log(sfit$surv), (cumsum(truth$hazard)* exp(fit$coef*.3))[c(1,4,5)]) fit0 summary(fit) resid(fit0, type='score') resid(fit0, type='scho') resid(fit, type='score') resid(fit, type='scho') rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt) survival/tests/data.motor0000644000176000001440000000067012267746072015332 0ustar ripleyusers150 8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 150 8064 0 170 1764 1 170 2772 1 170 3444 1 170 3542 1 170 3780 1 170 4860 1 170 5196 1 170 5448 0 170 5448 0 170 5448 0 190 408 1 190 408 1 190 1344 1 190 1344 1 190 1440 1 190 1680 0 190 1680 0 190 1680 0 190 1680 0 190 1680 0 220 408 1 220 408 1 220 504 1 220 504 1 220 504 1 220 528 0 220 528 0 220 528 0 220 528 0 220 528 0 survival/tests/fr_resid.R0000644000176000001440000000564012267746072015261 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # The residual methods treat a sparse frailty as a fixed offset with # no variance # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) kfit1 <- coxph(Surv(time, status) ~ age + sex + frailty(id, dist='gauss'), kidney) tempf <- predict(kfit1, type='terms')[,3] temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))] #all.equal(unclass(tempf), unclass(temp)) all.equal(as.vector(tempf), as.vector(temp)) # Now fit a model with explicit offset kfitx <- coxph(Surv(time, status) ~ age + sex + offset(tempf),kidney, eps=1e-7) # These are not precisely the same, due to different iteration paths aeq(kfitx$coef, kfit1$coef) # This will make them identical kfitx <- coxph(Surv(time, status) ~ age + sex + offset(temp),kidney, iter=0, init=kfit1$coef) aeq(resid(kfit1), resid(kfitx)) aeq(resid(kfit1, type='score'), resid(kfitx, type='score')) aeq(resid(kfit1, type='schoe'), resid(kfitx, type='schoe')) # These are not the same, due to a different variance matrix # The frailty model's variance is about 2x the naive "assume an offset" var # The score residuals are equal, however. aeq(resid(kfit1, type='dfbeta'), resid(kfitx, type='dfbeta')) zed <- kfitx zed$var <- kfit1$var aeq(resid(kfit1, type='dfbeta'), resid(zed, type='dfbeta')) temp1 <- resid(kfit1, type='score') temp2 <- resid(kfitx, type='score') aeq(temp1, temp2) # # Now for some tests of predicted values # aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected')) aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp')) temp1 <- predict(kfit1, type='terms', se.fit=T) temp2 <- predict(kfitx, type='terms', se.fit=T) aeq(temp1$fit[,1:2], temp2$fit) aeq(temp1$se.fit[,1:2], temp2$se.fit) #should be false mean(temp1$se.fit[,1:2]/ temp2$se.fit) aeq(as.vector(temp1$se.fit[,3])^2, as.vector(kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))])) print(temp1) kfit1 kfitx rm(temp1, temp2, kfitx, zed, tempf) # # The special case of a single sparse frailty # kfit1 <- coxph(Surv(time, status) ~ frailty(id, dist='gauss'), kidney) tempf <- predict(kfit1, type='terms') temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))] all.equal(as.vector(tempf), as.vector(temp)) # Now fit a model with explicit offset kfitx <- coxph(Surv(time, status) ~ offset(tempf),kidney, eps=1e-7) aeq(resid(kfit1), resid(kfitx)) aeq(resid(kfit1, type='deviance'), resid(kfitx, type='deviance')) # # Some tests of predicted values # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected')) aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp')) temp1 <- predict(kfit1, type='terms', se.fit=T) aeq(temp1$fit, kfitx$linear) aeq(temp1$se.fit^2, kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))]) temp1 kfit1 survival/tests/testci.R0000644000176000001440000001072212267746072014754 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y),...) # # Test out the survfit.ci function, which does competing risk # estimates # # First trivial test tdata <- data.frame(time=c(1,2,2,3,3,3,5,6), status = c(0,1,0,1,0,1,0,1), event = c(1,1,2,2,1,2,3,2), grp = c(1,2,1,2,1,2,1,2)) fit <- survfit(Surv(time, status*event, type='mstate') ~1, tdata) byhand <- function() { #everyone starts in state 0 p1 <- c(1,0,0) p2 <- c(6/7, 1/7, 0) # 0-1 transition at time 2 u2 <- matrix(rep(c(1/49, -1/49, 0), each=8), ncol=3) #leverage matrix at time 2 u2[1,] <- 0 #subject 1 is not present u2[2,1:2] <- u2[2, 1:2] + c(-1/7, 1/7) p3 <- c((6/7)*(3/5), 1/7, 12/35) # 0-2 transition at time 3, 5 at risk h3 <- matrix(c(3/5, 0, 2/5, 0,1,0, 0,1,0), byrow=T, ncol=3) #hazard mat u3 <- u2 %*% h3 u3[4:8,1] <- u3[4:8,1] + p2[1]*2/25 u3[4:8,3] <- u3[4:8,3] -p2[1]*2/25 u3[4,] <- u3[4,] + c(-p2[1]/5, 0, p2[1]/5) u3[6,] <- u3[4,] p6 <- c(0, 1/7, 6/7) # 0-2 at time 6, 1 at risk h6 <- matrix(c(-1,0,1,0,1,0,0,1,0), byrow=T, ncol=3) u6 <- cbind(0, u3[,2], -u3[,2]) V <- rbind(0, colSums(u2^2), colSums(u3^2), colSums(u3^2), colSums(u6^2)) list(P=rbind(p1, p2, p3, p3, p6), u2=u2, u3=u3, u6=u6, V=V) } bfit <- byhand() aeq(fit$prev, bfit$P[,-1]) aeq(fit$n.risk, c(8,7,5,2,1)) aeq(fit$n.event, c(0,1,2,0,1)) aeq(fit$std^2, bfit$V[,-1]) # # For this we need the sequential MGUS data set, using the first # obs for each subject # tdata <- data.frame(time=mgus1$stop, status=mgus1$status, event=mgus1$event, sex=mgus1$sex, stat2= factor(ifelse(mgus1$status==0, 0, as.numeric(mgus1$event)), levels=0:2, labels=c("censor", levels(mgus1$event))) )[mgus1$start==0,] # Ensure the old-style call using "etype" works (backwards compatability) fit1 <- survfit(Surv(time, status) ~ 1, etype=event, tdata) fit1b <-survfit(Surv(time, stat2) ~1, tdata) indx <- match("call", names(fit1)) all.equal(unclass(fit1)[-indx], unclass(fit1b)[-indx]) # Now get the overall survival, and the hazard for progression fit2 <- survfit(Surv(time, status) ~1, tdata) #overall to "first bad thing" fit3 <- survfit(Surv(time, status*(event=='progression')) ~1, tdata, type='fleming') fit4 <- survfit(Surv(time, status*(event=='death')) ~1, tdata, type='fleming') aeq(fit1$n.risk, fit2$n.risk) aeq(fit1$n.event, fit2$n.event) # Classic CI formula # integral [hazard(t) S(t-0) dt], where S= "survival to first event" haz1 <- diff(c(0, -log(fit3$surv))) #Aalen hazard estimate for progression haz2 <- diff(c(0, -log(fit4$surv))) #Aalen estimate for death tsurv <- c(1, fit2$surv[-length(fit2$surv)]) #lagged survival ci1 <- cumsum(haz1 *tsurv) ci2 <- cumsum(haz2 *tsurv) aeq(cbind(ci1, ci2), fit1$prev) # # Now, make sure that it works for subgroups # fit1 <- survfit(Surv(time, stat2) ~ sex, tdata) fit2 <- survfit(Surv(time, stat2) ~ 1, tdata, subset=(sex=='male')) fit3 <- survfit(Surv(time, stat2) ~ 1, tdata, subset=(sex=='female')) aeq(fit2$prev, fit1$prev[1:fit1$strata[1],]) aeq(fit2$std, fit1$std[1:fit1$strata[1],]) aeq(fit3$prev, fit1$prev[-(1:fit1$strata[1]),]) # A second test of cumulative incidence # compare results to Bob Gray's functions # The file gray1 is the result of # # tstat <- ifelse(tdata$status==0, 0, 1+ (tdata$event=='death')) # gray1 <- cuminc(tdata$time, tstat) load("gray1.rda") fit2 <- survfit(Surv(time, status) ~ 1, etype=event, tdata) if (FALSE) { # lines of the two graphs should overlay plot(gray1[[1]]$time, gray1[[1]]$est, type='l', ylim=range(c(gray1[[1]]$est, gray1[[2]]$est)), xlab="Time") lines(gray1[[2]]$time, gray1[[2]]$est, lty=2) matlines(fit2$time, fit2$prev, col=2, lty=1:2, type='s') } # To formally match these is a bit of a nuisance. # The cuminc function returns a full step function, and survfit only # the bottoms of the steps. temp1 <- tapply(gray1[[1]]$est, gray1[[1]]$time, max) indx1 <- match(names(temp1), fit2$time) aeq(temp1, fit2$prev[indx1,1]) survival/tests/coxsurv.Rout.save0000644000176000001440000000757612267746072016674 0ustar ripleyusers R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test out subscripting in the case of a coxph survival curve > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), + data=cancer) > > surv1 <- survfit(fit) > temp <- surv1[2:3] > > which <- cumsum(surv1$strata) > zed <- (which[1]+1):(which[3]) > aeq(surv1$surv[zed], temp$surv) [1] TRUE > aeq(surv1$time[zed], temp$time) [1] TRUE > > # This call should not create a model frame in the code -- so same > # answer but a different path through the underlying code > fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), + x=T, data=cancer) > surv2 <- survfit(fit) > all.equal(surv1, surv2) [1] TRUE > > # > # Now a result with a matrix of survival curves > # > dummy <- data.frame(age=c(30,40,60), sex=c(1,2,2), meal.cal=c(500, 1000, 1500)) > surv2 <- survfit(fit, newdata=dummy) > > zed <- 1:which[1] > aeq(surv2$surv[zed,1], surv2[1,1]$surv) [1] TRUE > aeq(surv2$surv[zed,2], surv2[1,2]$surv) [1] TRUE > aeq(surv2$surv[zed,3], surv2[1,3]$surv) [1] TRUE > aeq(surv2$surv[zed, ], surv2[1,1:3]$surv) [1] TRUE > aeq(surv2$surv[zed], (surv2[1]$surv)[,1]) [1] TRUE > aeq(surv2$surv[zed, ], surv2[1, ]$surv) [1] TRUE > > fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), + data=cancer) > > surv1 <- survfit(fit) > temp <- surv1[2:3] > > which <- cumsum(surv1$strata) > zed <- (which[1]+1):(which[3]) > aeq(surv1$surv[zed], temp$surv) [1] TRUE > aeq(surv1$time[zed], temp$time) [1] TRUE > > # This call should not create a model frame in the code -- so same > # answer but a different path through the underlying code > fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), + x=T, data=cancer) > surv2 <- survfit(fit) > all.equal(surv1, surv2) [1] TRUE > > # > # Now a result with a matrix of survival curves > # > dummy <- data.frame(age=c(30,40,60), sex=c(1,2,2), meal.cal=c(500, 1000, 1500)) > surv2 <- survfit(fit, newdata=dummy) > > zed <- 1:which[1] > aeq(surv2$surv[zed,1], surv2[1,1]$surv) [1] TRUE > aeq(surv2$surv[zed,2], surv2[1,2]$surv) [1] TRUE > aeq(surv2$surv[zed,3], surv2[1,3]$surv) [1] TRUE > aeq(surv2$surv[zed, ], surv2[1,1:3]$surv) [1] TRUE > aeq(surv2$surv[zed], (surv2[1]$surv)[,1]) [1] TRUE > aeq(surv2$surv[zed, ], surv2[1, ]$surv) [1] TRUE > > # And the depreciated form - call with a named vector as 'newdata' > # the resulting $call component won't match so delete it before comparing > surv3 <- survfit(fit, c(age=40, sex=2, meal.cal=1000)) > all.equal(unclass(surv2[,2])[-length(surv3)], unclass(surv3)[-length(surv3)]) [1] TRUE > > > > # Test out offsets, which have recently become popular due to a Langholz paper > fit1 <- coxph(Surv(time, status) ~ age + ph.ecog, lung) > fit2 <- coxph(Surv(time, status) ~ age + offset(ph.ecog * fit1$coef[2]), lung) > > surv1 <- survfit(fit1, newdata=data.frame(age=50, ph.ecog=1)) > surv2 <- survfit(fit2, newdata=data.frame(age=50, ph.ecog=1)) > all.equal(surv1$surv, surv2$surv) [1] TRUE > > proc.time() user system elapsed 0.316 0.032 0.342 survival/tests/r_user.Rout.save0000644000176000001440000000305612267746072016447 0ustar ripleyusers R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) #preserve length of missings > library(survival) Loading required package: splines > > # > # Check out using a "user specified" distribution > # > mydist <- c(survreg.distributions$extreme, survreg.distributions$weibull[-1]) > mydist$name <- "Weibull2" > mydist$dist <- NULL > > fit1 <- survreg(Surv(time, status) ~ age + ph.ecog, lung) > fit2 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist=mydist) > > all.equal(fit1$coef, fit2$coef) [1] TRUE > all.equal(fit1$var, fit2$var) [1] TRUE > > # > # And with an data set containing interval censoring > # > idat <- read.table('data.interval', skip=3, header=T, sep=',') > > fit1 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, idat) > fit2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, + data=idat, dist=mydist) > > all.equal(fit1$coef, fit2$coef) [1] TRUE > all.equal(fit1$var, fit2$var) [1] TRUE > all.equal(fit1$log, fit2$log) [1] TRUE > > survival/tests/tiedtime.R0000644000176000001440000000135512267746072015267 0ustar ripleyuserslibrary(survival) # # The survival code was failing for certain data sets when called as # survfit(Surv(time2-time1, status) ~ ...... # The issue was how tied floating point numbers are handled, and the # fact that unique(x), factor(x) and tapply(x) are not guarranteed to # all be the same. # This test fails in survival 2.36-5, fixed in 2.36-6. Data sets that # can cause it are few and far between. # load('ties.rda') x <- time2 -time1 # Here is the heart of the old problem # length(unique(x))== length(table(x)) # And the prior fix which worked ALMOST always # x <- round(x, 15) # length(unique(round(x,15)))== length(table(round(x,15))) fit1 <- survfit(Surv(x) ~1) length(fit1$time) == length(fit1$surv) survival/tests/r_sas.Rout.save0000644000176000001440000004216112267746072016257 0ustar ripleyusers R Under development (unstable) (2013-02-24 r62054) -- "Unsuffered Consequences" Copyright (C) 2013 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Reproduce example 1 in the SAS lifereg documentation > # > > # this fit doesn't give the same log-lik that they claim > motor <- read.table('data.motor', col.names=c('temp', 'time', 'status')) > fit1 <- survreg(Surv(time, status) ~ I(1000/(273.2+temp)), motor, + subset=(temp>150), dist='lognormal') > summary(fit1) Call: survreg(formula = Surv(time, status) ~ I(1000/(273.2 + temp)), data = motor, subset = (temp > 150), dist = "lognormal") Value Std. Error z p (Intercept) -10.471 2.772 -3.78 1.58e-04 I(1000/(273.2 + temp)) 8.322 1.284 6.48 9.13e-11 Log(scale) -0.504 0.183 -2.75 5.96e-03 Scale= 0.604 Log Normal distribution Loglik(model)= -145.9 Loglik(intercept only)= -155 Chisq= 18.3 on 1 degrees of freedom, p= 1.9e-05 Number of Newton-Raphson Iterations: 6 n= 30 > > # This one, with the loglik on the transformed scale (the inappropriate > # scale, Ripley & Venables would argue) does agree. > # All coefs are of course identical. > fit2 <- survreg(Surv(log(time), status) ~ I(1000/(273.2+temp)), motor, + subset=(temp>150), dist='gaussian') > > > # Give the quantile estimates, which is the lower half of "output 48.1.5" > # in the SAS 9.2 manual > > pp1 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), + type='quantile', se=T) > pp2 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), + type='uquantile', se=T) > pp1 $fit [,1] [,2] [,3] [1,] 12033.185 26095.677 56592.20 [2,] 4536.877 9838.864 21336.98 $se.fit [,1] [,2] [,3] [1,] 5482.338 11359.450 26036.917 [2,] 1443.072 2901.155 7172.343 > > temp130 <- matrix(0, nrow=3, ncol=6) > temp130[,1] <- pp1$fit[1,] > temp130[,2] <- pp1$se.fit[1,] > temp130[,3] <- pp2$fit[1,] > temp130[,4] <- pp2$se.fit[1,] > temp130[,5] <- exp(pp2$fit[1,] - 1.64*pp2$se.fit[1,]) > temp130[,6] <- exp(pp2$fit[1,] + 1.64*pp2$se.fit[1,]) > dimnames(temp130) <- list(c("p=.1", "p=.2", "p=.3"), + c("Time", "se(time)", "log(time)", "se[log(time)]", + "lower 90", "upper 90")) > print(temp130) Time se(time) log(time) se[log(time)] lower 90 upper 90 p=.1 12033.18 5482.338 9.395424 0.4556015 5700.089 25402.68 p=.2 26095.68 11359.450 10.169525 0.4353001 12779.950 53285.37 p=.3 56592.20 26036.917 10.943626 0.4600796 26611.422 120349.71 > > # A set of examples, copied from the manual pages of SAS procedure > # "reliability", which is part of their QC product. > # > > color <- c("black", "red", "green", "blue", "magenta", "red4", + "orange", "DarkGreen", "cyan2", "DarkViolet") > palette(color) > pdf(file='reliability.pdf') > > # > # Insulating fluids example > # > fluid <- read.table('data.fluid', col.names=c('time', 'voltage')) > > # Adding a -1 to the fit just causes the each group to have it's own > # intercept, rather than a global intercept + constrasts. The strata > # statement allows each to have a separate scale > ffit <- survreg(Surv(time) ~ voltage + strata(voltage) -1, fluid) > > # Get predicted quantiles at each of the voltages > # By default predict() would give a line of results for each observation, > # I only want the unique set of x's, i.e., only 4 cases > uvolt <- sort(unique(fluid$voltage)) #the unique levels > plist <- c(1, 2, 5, 1:9 *10, 95, 99)/100 > pred <- predict(ffit, type='quantile', p=plist, + newdata=data.frame(voltage=factor(uvolt))) > tfun <- function(x) log(-log(1-x)) > > matplot(t(pred), tfun(plist), type='l', log='x', lty=1, + col=1:4, yaxt='n') > axis(2, tfun(plist), format(100*plist), adj=1) > > kfit <- survfit(Surv(time) ~ voltage, fluid, type='fleming') #KM fit > for (i in 1:4) { + temp <- kfit[i] + points(temp$time, tfun(1-temp$surv), col=i, pch=i) + } > > # Now a table > temp <- array(0, dim=c(4,4,4)) #4 groups by 4 parameters by 4 stats > temp[,1,1] <- ffit$coef # "EV Location" in SAS manual > temp[,2,1] <- ffit$scale # "EV scale" > temp[,3,1] <- exp(ffit$coef) # "Weibull Scale" > temp[,4,1] <- 1/ffit$scale # "Weibull Shape" > > temp[,1,2] <- sqrt(diag(ffit$var))[1:4] #standard error > temp[,2,2] <- sqrt(diag(ffit$var))[5:8] * ffit$scale > temp[,3,2] <- temp[,1,2] * temp[,3,1] > temp[,4,2] <- temp[,2,2] / (temp[,2,1])^2 > > temp[,1,3] <- temp[,1,1] - 1.96*temp[,1,2] #lower conf limits > temp[,1,4] <- temp[,1,1] + 1.96*temp[,1,2] # upper > # log(scale) is the natural parameter, in which the routine did its fitting > # and on which the std errors were computed > temp[,2, 3] <- exp(log(ffit$scale) - 1.96*sqrt(diag(ffit$var))[5:8]) > temp[,2, 4] <- exp(log(ffit$scale) + 1.96*sqrt(diag(ffit$var))[5:8]) > > temp[,3, 3:4] <- exp(temp[,1,3:4]) > temp[,4, 3:4] <- 1/temp[,2,4:3] > > dimnames(temp) <- list(uvolt, c("EV Location", "EV Scale", "Weibull scale", + "Weibull shape"), + c("Estimate", "SE", "lower 95% CI", "uppper 95% CI")) > print(aperm(temp, c(2,3,1)), digits=5) , , 26kV Estimate SE lower 95% CI uppper 95% CI EV Location 6.86249 1.10404 4.69857 9.0264 EV Scale 1.83423 0.96114 0.65677 5.1227 Weibull scale 955.74665 1055.18620 109.78973 8320.0103 Weibull shape 0.54519 0.28568 0.19521 1.5226 , , 30kV Estimate SE lower 95% CI uppper 95% CI EV Location 4.35133 0.30151 3.76037 4.9423 EV Scale 0.94446 0.22544 0.59156 1.5079 Weibull scale 77.58159 23.39176 42.96420 140.0911 Weibull shape 1.05881 0.25274 0.66318 1.6904 , , 34kV Estimate SE lower 95% CI uppper 95% CI EV Location 2.50326 0.31476 1.88632 3.1202 EV Scale 1.29732 0.22895 0.91796 1.8334 Weibull scale 12.22222 3.84707 6.59509 22.6506 Weibull shape 0.77082 0.13603 0.54542 1.0894 , , 38kV Estimate SE lower 95% CI uppper 95% CI EV Location 0.00092629 0.27318 -0.53450 0.53635 EV Scale 0.73367610 0.20380 0.42565 1.26460 Weibull scale 1.00092672 0.27343 0.58596 1.70976 Weibull shape 1.36299929 0.37861 0.79077 2.34933 > > rm(temp, uvolt, plist, pred, ffit, kfit) > > ##################################################################### > # Turbine cracks data > cracks <- read.table('data.cracks', col.names=c('time1', 'time2', 'n')) > cfit <- survreg(Surv(time1, time2, type='interval2') ~1, + dist='weibull', data=cracks, weight=n) > > summary(cfit) Call: survreg(formula = Surv(time1, time2, type = "interval2") ~ 1, data = cracks, weights = n, dist = "weibull") Value Std. Error z p (Intercept) 4.272 0.0744 57.43 0.00e+00 Log(scale) -0.396 0.0987 -4.01 6.06e-05 Scale= 0.673 Weibull distribution Loglik(model)= -309.7 Loglik(intercept only)= -309.7 Number of Newton-Raphson Iterations: 5 n= 9 > #Their output also has Wiebull scale = exp(cfit$coef), shape = 1/(cfit$scale) > > # Draw the SAS plot > # The "type=fleming" argument reflects that they estimate hazards rather than > # survival, and forces a Nelson-Aalen hazard estimate > # > plist <- c(1, 2, 5, 1:8 *10)/100 > plot(qsurvreg(plist, cfit$coef, cfit$scale), tfun(plist), log='x', + yaxt='n', type='l', + xlab="Weibull Plot for Time", ylab="Percent") > axis(2, tfun(plist), format(100*plist), adj=1) > > kfit <- survfit(Surv(time1, time2, type='interval2') ~1, data=cracks, + weight=n, type='fleming') > # Only plot point where n.event > 0 > # Why? I'm trying to match them. Personally, all should be plotted. > who <- (kfit$n.event > 0) > points(kfit$time[who], tfun(1-kfit$surv[who]), pch='+') > points(kfit$time[who], tfun(1-kfit$upper[who]), pch='-') > points(kfit$time[who], tfun(1-kfit$lower[who]), pch='-') > > text(rep(3,6), seq(.5, -1.0, length=6), + c("Scale", "Shape", "Right Censored", "Left Censored", + "Interval Censored", "Fit"), adj=0) > text(rep(9,6), seq(.5, -1.0, length=6), + c(format(round(exp(cfit$coef), 2)), + format(round(1/cfit$scale, 2)), + format(tapply(cracks$n, cfit$y[,3], sum)), "ML"), adj=1) > > # Now a portion of his percentiles table > # I don't get the same SE as SAS, I haven't checked out why. The > # estimates and se for the underlying Weibull model are the same. > temp <- predict(cfit, type='quantile', p=plist, se=T) > tempse <- sqrt(temp$se[1,]) > mat <- cbind(temp$fit[1,], tempse, + temp$fit[1,] -1.96*tempse, temp$fit[1,] + 1.96*tempse) > dimnames(mat) <- list(plist*100, c("Estimate", "SE", "Lower .95", "Upper .95")) > print(mat) Estimate SE Lower .95 Upper .95 1 3.239372 0.965006 1.347960 5.130784 2 5.183283 1.121677 2.984796 7.381770 5 9.705766 1.337420 7.084422 12.327109 10 15.757758 1.491460 12.834497 18.681020 20 26.115947 1.622573 22.935705 29.296190 30 35.812585 1.704575 32.471618 39.153553 40 45.610018 1.809448 42.063500 49.156536 50 56.014351 1.973350 52.146585 59.882116 60 67.592818 2.214072 63.253237 71.932400 70 81.233457 2.543490 76.248217 86.218697 80 98.764571 2.991889 92.900469 104.628673 > > # > # The cracks data has a particularly easy estimate, so use > # it to double check code > time <- c(cracks$time2[1], (cracks$time1 + cracks$time2)[2:8]/2, + cracks$time1[9]) > cdf <- cumsum(cracks$n)/sum(cracks$n) > all.equal(kfit$time, time) [1] TRUE > all.equal(kfit$surv, 1-cdf[c(1:8,8)]) [1] TRUE > rm(time, cdf, kfit) > > > ####################################################### > # > # Valve data > # The input data has id, time, and an indicator of whether there was an > # event at that time: -1=no, 1=yes. No one has an event at their last time. > # Convert the data to (start, stop] form > # The input data has two engines with dual failures: 328 loses 2 valves at > # time 653, and number 402 loses 2 at time 139. For each, fudge the first > # time to be .1 days earlier. > # > temp <- matrix(scan('data.valve'), byrow=T, ncol=3) Read 267 items > > n <- nrow(temp) > valve <- data.frame(id=temp[,1], + time1 = c(0, ifelse(diff(temp[,1])==0, temp[-n,2],0)), + time2 = temp[,2], + status= as.numeric(temp[,3]==1)) > > indx <- (1:nrow(valve))[valve$time1==valve$time2] > valve$time1[indx] <- valve$time1[indx] - .1 > valve$time2[indx-1] <- valve$time2[indx-1] - .1 > > kfit <- survfit(Surv(time1, time2, status) ~1, valve, type='fh2') > > plot(kfit, fun='cumhaz', ylab="Sample Mean Cumulative Failures", xlab='Time', + ylim=range(-log(kfit$lower))) > title("Valve replacement data") > > # The summary.survfit function doesn't have an option for printing out > # cumulative hazards instead of survival --- need to add that > # so I just reprise the central code of print.summary.survfit > xx <- summary(kfit) > temp <- cbind(xx$time, xx$n.risk, xx$n.event, -log(xx$surv), + xx$std.err/xx$surv, -log(xx$upper), -log(xx$lower)) > dimnames(temp) <- list(rep("", nrow(temp)), + c("time", "n.risk", "n.event", "Cum haz", "std.err", + "lower 95%", "upper 95%")) > print(temp, digits=2) time n.risk n.event Cum haz std.err lower 95% upper 95% 61 41 1 0.024 0.025 0.00000 0.073 76 41 1 0.049 0.035 0.00000 0.117 84 41 1 0.073 0.043 0.00000 0.157 87 41 1 0.098 0.049 0.00077 0.194 92 41 1 0.122 0.055 0.01373 0.230 98 41 1 0.146 0.060 0.02779 0.265 120 41 1 0.171 0.065 0.04268 0.299 139 41 1 0.195 0.070 0.05823 0.332 139 41 1 0.220 0.074 0.07432 0.365 165 41 1 0.244 0.078 0.09085 0.397 166 41 1 0.268 0.082 0.10778 0.429 202 41 1 0.293 0.086 0.12503 0.460 206 41 1 0.317 0.089 0.14257 0.492 249 41 1 0.341 0.092 0.16038 0.523 254 41 1 0.366 0.096 0.17841 0.553 258 41 1 0.390 0.099 0.19665 0.584 265 41 1 0.415 0.102 0.21508 0.614 276 41 1 0.439 0.105 0.23369 0.644 298 41 1 0.463 0.108 0.25245 0.674 323 41 1 0.488 0.110 0.27136 0.704 326 41 1 0.512 0.113 0.29041 0.734 328 41 1 0.537 0.116 0.30958 0.764 344 41 1 0.561 0.118 0.32887 0.793 348 41 1 0.585 0.121 0.34827 0.822 349 41 1 0.610 0.123 0.36777 0.852 367 41 1 0.634 0.126 0.38736 0.881 377 41 1 0.659 0.128 0.40705 0.910 404 40 1 0.684 0.131 0.42720 0.940 408 40 1 0.709 0.133 0.44745 0.970 410 40 1 0.734 0.136 0.46777 0.999 449 40 1 0.759 0.138 0.48818 1.029 479 40 1 0.784 0.140 0.50866 1.058 497 40 1 0.809 0.143 0.52922 1.088 538 40 1 0.834 0.145 0.54985 1.117 539 40 1 0.859 0.147 0.57054 1.147 561 40 1 0.884 0.149 0.59129 1.176 563 40 1 0.909 0.151 0.61211 1.205 570 40 1 0.934 0.153 0.63299 1.234 573 40 1 0.959 0.155 0.65392 1.263 581 38 1 0.985 0.158 0.67578 1.294 586 34 1 1.014 0.160 0.69970 1.329 604 22 1 1.060 0.167 0.73221 1.387 621 17 1 1.119 0.178 0.77014 1.467 635 16 1 1.181 0.189 0.81038 1.552 640 16 1 1.244 0.200 0.85188 1.635 646 13 1 1.320 0.215 0.89854 1.742 653 9 1 1.432 0.245 0.95056 1.913 653 9 1 1.543 0.272 1.00909 2.076 > > # Note that I have the same estimates but different SE's. We are using a > # different estimator. It's a statistical argument as to which is > # better (one could defend both sides): do you favor JASA or Technometrics? > rm(temp, kfit, indx, xx) > > ###################################################### > # Turbine data, lognormal fit > turbine <- read.table('data.turbine', + col.names=c("time1", "time2", "n")) > > tfit <- survreg(Surv(time1, time2, type='interval2') ~1, turbine, + dist='lognormal', weights=n, subset=(n>0)) > > summary(tfit) Call: survreg(formula = Surv(time1, time2, type = "interval2") ~ 1, data = turbine, weights = n, subset = (n > 0), dist = "lognormal") Value Std. Error z p (Intercept) 3.700 0.0708 52.23 0.00000 Log(scale) -0.329 0.1232 -2.67 0.00763 Scale= 0.72 Log Normal distribution Loglik(model)= -190.7 Loglik(intercept only)= -190.7 Number of Newton-Raphson Iterations: 6 n= 21 > > # Now, do his plot, but put bootstrap confidence bands on it! > # First, make a simple data set without weights > tdata <- turbine[rep(1:nrow(turbine), turbine$n),] > > qstat <- function(data) { + temp <- survreg(Surv(time1, time2, type='interval2') ~1, data=data, + dist='lognormal') + qsurvreg(plist, temp$coef, temp$scale, dist='lognormal') + } > > {if (exists('bootstrap')) { + bfit <- bootstrap(tdata, qstat, B=1000) + bci <- limits.bca(bfit, probs=c(.025, .975)) + } + else { + values <- matrix(0, nrow=1000, ncol=length(plist)) + n <- nrow(tdata) + for (i in 1:1000) { + subset <- sample(1:n, n, replace=T) + values[i,] <- qstat(tdata[subset,]) + } + bci <- t(apply(values,2, quantile, c(.05, .95))) + } + } > xmat <- cbind(qsurvreg(plist, tfit$coef, tfit$scale, dist='lognormal'), + bci) > > > matplot(xmat, qnorm(plist), + type='l', lty=c(1,2,2), col=c(1,1,1), + log='x', yaxt='n', ylab='Percent', + xlab='Time of Cracking (Hours x 100)') > axis(2, qnorm(plist), format(100*plist), adj=1) > title("Turbine Data") > kfit <- survfit(Surv(time1, time2, type='interval2') ~1, data=tdata) > points(kfit$time, qnorm(1-kfit$surv), pch='+') > > dev.off() #close the plot file pdf 2 > > > proc.time() user system elapsed 5.312 0.044 5.358 survival/tests/r_resid.R0000644000176000001440000000767712267746072015127 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) fit1 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian) fit4 <- survreg(Surv(log(futime), fustat) ~age + ecog.ps, ovarian, dist='extreme') print(fit1) summary(fit4) # Hypothesis (and I'm fairly sure): censorReg shares the fault of many # iterative codes -- it returns the loglik and variance for iteration k # but the coef vector of iteration k+1. Hence the "all.equal" tests # below don't come out perfect. # if (exists('censorReg')) { #true for Splus, not R fit2 <- censorReg(censor(futime, fustat) ~ age + ecog.ps, ovarian) fit3 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, iter=0, init=c(fit2$coef, log(fit2$scale))) aeq(resid(fit2, type='working')[,1], resid(fit3, type='working')) aeq(resid(fit2, type='response')[,1], resid(fit3, type='response')) temp <- sign(resid(fit3, type='working')) aeq(resid(fit2, type='deviance')[,1], temp*abs(resid(fit3, type='deviance'))) aeq(resid(fit2, type='deviance')[,1], resid(fit3, type='deviance')) } # # Now check fit1 and fit4, which should follow identical iteration paths # These tests should all be true # aeq(fit1$coef, fit4$coef) resid(fit1, type='working') resid(fit1, type='response') resid(fit1, type='deviance') resid(fit1, type='dfbeta') resid(fit1, type='dfbetas') resid(fit1, type='ldcase') resid(fit1, type='ldresp') resid(fit1, type='ldshape') resid(fit1, type='matrix') aeq(resid(fit1, type='working'),resid(fit4, type='working')) #aeq(resid(fit1, type='response'), resid(fit4, type='response'))#should differ aeq(resid(fit1, type='deviance'), resid(fit4, type='deviance')) aeq(resid(fit1, type='dfbeta'), resid(fit4, type='dfbeta')) aeq(resid(fit1, type='dfbetas'), resid(fit4, type='dfbetas')) aeq(resid(fit1, type='ldcase'), resid(fit4, type='ldcase')) aeq(resid(fit1, type='ldresp'), resid(fit4, type='ldresp')) aeq(resid(fit1, type='ldshape'), resid(fit4, type='ldshape')) aeq(resid(fit1, type='matrix'), resid(fit4, type='matrix')) # # Some tests of the quantile residuals # motor <- read.table('data.motor', col.names=c('temp', 'time', 'status')) # These should agree exactly with Ripley and Venables' book fit1 <- survreg(Surv(time, status) ~ temp, data=motor) summary(fit1) # # The first prediction has the SE that I think is correct # The third is the se found in an early draft of Ripley; fit1 ignoring # the variation in scale estimate, except via it's impact on the # upper left corner of the inverse information matrix. # Numbers 1 and 3 differ little for this dataset # predict(fit1, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) fit2 <- survreg(Surv(time, status) ~ temp, data=motor, scale=fit1$scale) predict(fit2, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) fit3 <- fit2 fit3$var <- fit1$var[1:2,1:2] predict(fit3, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) pp <- seq(.05, .7, length=40) xx <- predict(fit1, data.frame(temp=130), type='uquantile', se=T, p=pp) #matplot(pp, cbind(xx$fit, xx$fit+2*xx$se, xx$fit - 2*xx$se), type='l') # # Now try out the various combinations of strata, #predicted, and # number of quantiles desired # fit1 <- survreg(Surv(time, status) ~ inst + strata(inst) + age + sex, lung) qq1 <- predict(fit1, type='quantile', p=.3, se=T) qq2 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) aeq(qq1$fit, qq2$fit[,2]) aeq(qq1$se.fit, qq2$se.fit[,2]) qq3 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata= lung[1:5,]) aeq(qq3$fit, qq2$fit[1:5,]) qq4 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung[7,]) aeq(qq4$fit, qq2$fit[7,]) qq5 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung) aeq(qq2$fit, qq5$fit) aeq(qq2$se.fit, qq5$se.fit) survival/tests/fr_lung.R0000644000176000001440000000131012267746072015106 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # A test with the lung data # This caused problems in one release # # First, get rid of some missings # lung2 <- na.omit(lung[c('time', 'status', 'wt.loss')]) # # Test the logliklihoods # fit <- coxph(Surv(time, status) ~ pspline(wt.loss,3), lung2, x=T) fit0<- coxph(Surv(time, status) ~ 1, lung2) fit1<- coxph(Surv(time, status) ~ fit$x, lung2, iter=0, init=fit$coef) all.equal(fit$loglik[1], fit0$loglik) all.equal(fit$loglik[2], fit1$loglik[2]) # # Check variances # imat <- solve(fit1$var) var2 <- fit$var %*% imat %*% fit$var all.equal(fit$var2, var2) survival/tests/pspline.R0000644000176000001440000000207412267746072015134 0ustar ripleyuserslibrary(survival) # # Tests with the pspline function, to verify the prediction aspects # options(na.action=na.exclude) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) spfit <- coxph(Surv(time, status) ~ pspline(age) + ph.ecog, lung) spfit2 <- coxph(Surv(time, status) ~ pspline(age) + ph.ecog, lung, x=TRUE) x2 <- model.matrix(spfit) all.equal(spfit2$x, x2) keep <- (lung$age < 60) x3 <- model.matrix(spfit, data=lung[keep,]) attr(x3, 'assign') <- NULL #subscripting loses the assign attr below all.equal(napredict(spfit$na.action,x2)[keep,], x3) p2 <- predict(spfit, newdata=lung[keep,]) aeq(p2, predict(spfit)[keep]) p3 <- survfit(spfit) p4 <- survfit(spfit, newdata=lung[1:2,]) temp <- scale(x2[1:2,], center=spfit$means, scale=FALSE)%*% coef(spfit) aeq(p3$time, p4$time) aeq(outer(-log(p3$surv), exp(temp), '*'), -log(p4$surv)) # Check out model.frame spfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex, lung, model=TRUE) #avoid the missing value m2 <- model.frame(spfit3, data=lung[keep,]) all.equal(m2, spfit3$model[keep,]) survival/tests/book6.Rout.save0000644000176000001440000001422612267746072016171 0ustar ripleyusers R version 2.12.2 (2011-02-25) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # Tests of the weighted Cox model > # This is section 1.3 of my appendix -- no yet found in any of the > # printings though, it awaits the next edition > # > # Efron approximation > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), + status= c(1,0,1,1,1,0,0,1,0), + x= c(2,0,1,1,0,1,0,1,0), + wt = c(1,2,3,4,3,2,1,2,1)) > xx <- testw1$wt > > # Efron estimate > byhand <- function(beta, newx=0) { + r <- exp(beta) + a <- 7*r +3; b<- 4*r+2 + loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5)/3 + + 10*log(a*2/3 +b)/3 + 10*log(a/3 +b)/3 +2*log(2*r+1)) + + hazard <- c(1/(r^2 + 11*r +7), + 10/(3*c(11*r +5, a*2/3 +b, a/3+b)), 2/(2*r+1)) + temp <- c(hazard[1], hazard[1]+hazard[2] + hazard[3]*2/3 + hazard[4]/3, + cumsum(hazard)[4:5]) + risk <- c(r^2, 1,r,r,1,r,1,r,1) + expected <- risk* temp[c(1,1,2,2,2,3,3,4,4)] + + # The matrix of weights, one row per obs, one col per death + # deaths at 1,2,2,2, and 4 + riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, + 0,0,1,1,1,1,1,1,1, + 0,0,2/3,2/3,2/3,1,1,1,1, + 0,0,1/3,1/3,1/3,1,1,1,1, + 0,0,0,0,0,0,0,1,1), ncol=5) + wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat + + x <- c(2,0,1,1,0,1,0,1,0) + xbar <- colSums(x*wtmat)/ colSums(wtmat) + imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + + 10* mean(xbar[2:4] - xbar[2:4]^2) + 2*(xbar[5] - xbar[5]^2) + + status <- c(1,0,1,1,1,0,0,1,0) + wt <- c(1,2,3,4,3,2,1,2,1) + # Table of sums for score resids + hazmat <- riskmat %*% diag(c(1,10/3,10/3, 10/3,2)/colSums(wtmat)) + dM <- -risk*hazmat #Expected part + dM[1,1] <- dM[1,1] +1 # deaths at time 1 + for (i in 2:4) dM[3:5, i] <- dM[3:5,i] + 1/3 + dM[8,5] <- dM[8,5] +1 + mart <- rowSums(dM) + resid <-dM * outer(x, xbar ,'-') + + # Increments to the variance of the hazard + var.g <- cumsum(hazard^2* c(1,3/10, 3/10, 3/10, 1/2)) + var.d <- cumsum((xbar-newx)*hazard) + + sxbar <- c(xbar[1], mean(xbar[2:4]), xbar[5]) #xbar for Schoen + list(loglik=loglik, imat=imat, hazard=hazard, xbar=xbar, + mart=status-expected, expected=expected, + score=rowSums(resid), schoen=c(2,1,1,0,1) - sxbar[c(1,2,2,2,3)], + varhaz=((var.g + var.d^2/imat)* exp(2*beta*newx))[c(1,4,5)]) + } > > # Verify > temp <- byhand(0,0) > aeq(temp$xbar, c(13/19, 11/16, 26/38, 19/28, 2/3)) [1] TRUE > aeq(temp$hazard, c(1/19, 5/24, 5/19, 5/14, 2/3)) [1] TRUE > > fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, iter=0) > fit <- coxph(Surv(time, status) ~x, testw1, weights=wt) > > truth0 <- byhand(0,pi) > aeq(fit0$loglik[1], truth0$loglik) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')) [1] TRUE > sfit <- survfit(fit0, list(x=pi), censor=FALSE) > aeq(sfit$std.err^2, truth0$var) [1] TRUE > aeq(-log(sfit$surv), cumsum(truth0$hazard)[c(1,4,5)]) [1] TRUE > > truth <- byhand(fit$coef, .3) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')) [1] TRUE > > sfit <- survfit(fit, list(x=.3), censor=FALSE) > aeq(sfit$std.err^2, truth$var) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$hazard)* exp(fit$coef*.3))[c(1,4,5)]) [1] TRUE > > > fit0 Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, iter = 0) coef exp(coef) se(coef) z p x 0 1 0.584 0 1 Likelihood ratio test=0 on 1 df, p=1 n= 9, number of events= 5 > summary(fit) Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt) n= 9, number of events= 5 coef exp(coef) se(coef) z Pr(>|z|) x 0.8726 2.3931 0.7126 1.225 0.221 exp(coef) exp(-coef) lower .95 upper .95 x 2.393 0.4179 0.5921 9.672 Concordance= 0.638 (se = 0.159 ) Rsquare= 0.177 (max possible= 0.999 ) Likelihood ratio test= 1.75 on 1 df, p=0.1858 Wald test = 1.5 on 1 df, p=0.2207 Score (logrank) test = 1.58 on 1 df, p=0.2094 > resid(fit0, type='score') 1 2 3 4 5 6 1.24653740 0.03601108 0.14118105 0.14118105 -0.30336782 -0.27962308 7 8 9 0.60164259 -0.16851197 1.04608703 > resid(fit0, type='scho') 1 2 2 2 4 1.3157895 0.3165727 0.3165727 -0.6834273 0.3333333 > > resid(fit, type='score') 1 2 3 4 5 6 0.88116056 0.02477248 0.06057806 0.06057806 -0.59724033 -0.16737066 7 8 9 0.38040295 -0.13750290 0.66631324 > resid(fit, type='scho') 1 2 2 2 4 1.0325955 0.1621759 0.1621759 -0.8378241 0.1728229 > > rr1 <- resid(fit, type='mart') > rr2 <- resid(fit, type='mart', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > rr1 <- resid(fit, type='score') > rr2 <- resid(fit, type='score', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > survival/tests/anova.Rout.save0000644000176000001440000000357212267746072016257 0ustar ripleyusers R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Test out anova, with strata terms > # > options(na.action=na.omit) > library(survival) Loading required package: splines > > fit1 <- coxph(Surv(time, status) ~ ph.ecog + wt.loss + strata(sex) + + poly(age,3), lung) > ztemp <- anova(fit1) > > tdata <- na.omit(lung[, c('time', 'status', 'ph.ecog', 'wt.loss', 'sex', 'age')]) > fit2 <- coxph(Surv(time, status)~ ph.ecog + wt.loss + poly(age,3) + strata(sex), + data=tdata) > ztemp2 <- anova(fit2) > all.equal(ztemp, ztemp2) [1] TRUE > > > fit2 <- coxph(Surv(time, status) ~ ph.ecog + wt.loss + strata(sex), tdata) > fit3 <- coxph(Surv(time, status) ~ ph.ecog + strata(sex), tdata) > > all.equal(ztemp$loglik, c(fit1$loglik[1], fit3$loglik[2], fit2$loglik[2], + fit1$loglik[2])) [1] TRUE > all.equal(ztemp$Chisq[-1], 2* diff(ztemp$loglik)) [1] TRUE > all.equal(ztemp$Df[-1], c(1,1,3)) [1] TRUE > > ztemp2 <- anova(fit3, fit2, fit1) > all.equal(ztemp2$loglik, ztemp$loglik[-1]) [1] TRUE > all.equal(ztemp2$Chisq[2:3], ztemp$Chisq[3:4]) [1] TRUE > # Change from ztemp2$P; it's a data frame and in R 3.0.2 abbreviated names > # give a warning > all.equal(ztemp2[[4]][2:3], ztemp[[4]][3:4]) [1] TRUE > > > > proc.time() user system elapsed 0.284 0.020 0.301 survival/tests/testci2.Rout.save0000644000176000001440000001373212267746072016527 0ustar ripleyusers R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > > # > # Test the multi-state version of the CI curve > # > tdata <- data.frame(id=c(1,1,1,1, 2,2,2, 3,3, 4,4,4,4, 5, 6, 6), + time1=c(0, 10,20,30, 0, 5, 15, 0, 20, 0, 6,18,34, 0, 0,15), + time2=c(10,20,30,40, 5, 15,25, 20, 22, 6,18,34,50,10,15,20), + status=c(1,1,1,1, 1,1,1, 1,0, 1,1,1,0,0,1,0), + event= letters[c(1,2,3,4, 2,4,3, 2,2, 3,1,2,2,1, 1,1)], + wt = c(2,2,2,2, 1,1,1, 3,3, 1,1,1,1, 2, 1,1), + stringsAsFactors=TRUE) > tdata$stat2 <- factor(tdata$status * as.numeric(tdata$event), + labels=c(" ", levels(tdata$event))) > > fit <- survfit(Surv(time1, time2, stat2) ~1, id=id, weight=wt, tdata) > > # The exact figures for testci2. > # The subject data of id, weight, (transition time, transition) > > #1: 2 (10, 0->a) (20, a->b) (30, b->c) (40, c->d) no data after 40=censored > #2: 1 ( 5, 0->b) (15, b->d) (25, d->c) no data after 25 implies censored then > #3: 3 (20, 0->b) (22, censor) > #4: 1 ( 6, 0->c) (18, c->a) (34, a->b) (50, censor) > #5: 2 (10, censor) > #6: 1 (15, 0->a) (20, censor) > > # Each line below follows a subject through time as a (state, rdist weight) pair > # using the redistribute to the right algorithm. > # RDR algorithm: at each censoring (or last fu) a subject's weight is put into > # a "pool" for that state and their weight goes to zero. The pool is > # dynamically shared between all members of the state proportional to their > # original case weight, when someone leaves they take their portion of the > # pool to the new state. > > # Table of case weights and state, blank is weight of zero > # time 5 6 10 15 18 20 25 30 34 40 50 > # ----------------------------------------------------------------------- > # id, wt > # 1, 2 - - a a a b b c c d > # 2, 1 b b b d d d c > # 3, 3 - - - - - b > # 4, 1 - c c c a a a a b b b > # 5, 2 - - - > # 6, 1 - - - a a a > > # Pool weights > # 10 10+ 15 18 20 20+ 22+ 25 25+ 30 34 40 40+ > # - 0 2 3/2 3/2 0 > # a 0 0 1/2 1/2 1/4 5/4 5/4 5/4 5/4 5/4 > # b 0 0 0 0 7/4 7/4 19/4 19/4 19/4 5/4 5/4 5/4 > # c 0 0 0 0 0 1 23/4 23/4 > # d 0 0 0 0 0 23/4 31/4 > > # fit$prev for time i and state j = total weight at that time/state in the > # above table (original weight + redistrib), divided by 10. > > # time 5 6 10 15 18 20 25 30 34 40 50 > truth <- matrix(c(0, 0, 2, 3, 4, 2, 1, 1, 0, 0, 0, + 1, 1, 1, 0, 0, 5, 2, 0, 1, 1, 1, + 0, 1, 1, 1, 0, 0, 1, 2, 2, 0, 0, + 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 0) + + c(0, 0, 0, .5, .5, 1/4, 5/4, 5/4, 0, 0, 0, + 0, 0, 0, 0, 0, 7/4, 19/4, 0, 5/4, 5/4, 5/4, + 0, 0, 0, 0, 0, 0, 0, 23/4, 23/4, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 23/4, 31/4), + ncol=4) > truth <- truth[c(1:6, 6:11),]/10 #the explicit censor at 22 > > #dimnames(truth) <- list(c(5, 6, 10, 15, 18, 20, 25, 30, 34, 40, 50), > # c('a', 'b', 'c', 'd') > all.equal(truth, fit$prev) [1] TRUE > > # Test the dfbetas > dfbeta <- array(0., dim=c(6, nrow(fit$prev), ncol(fit$prev))) > eps <- 1e-6 > for (i in 1:6) { + twt <- tdata$wt + twt[tdata$id ==i] <- twt[tdata$id==i] + eps + tfit <- survfit(Surv(time1, time2, stat2) ~ cluster(id), tdata, + weight=twt) + dfbeta[i,,] <- (tfit$prev - fit$prev)/eps + } > twt <- tdata$wt[match(1:6, tdata$id)] > temp <- (twt*dfbeta) * dfbeta > tstd <- sqrt(apply(temp, 2:3, sum)) > all.equal(tstd, fit$std.err, tolerance=eps) [1] TRUE > > if (FALSE) { + # a plot of the data that helped during creation of the example + plot(c(0,50), c(1,6), type='n', xlab='time', ylab='subject') + with(tdata, segments(time1, id, time2, id)) + with(tdata, text(time2, id, as.numeric(stat2)-1, cex=1.5, col=2)) + } > > if (FALSE) { + # The following lines test out 4 error messages in the routine + # + # Gap in follow-up time, id 2 + survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 4, 6, 3), factor(c(0,0,1,1,0,2))) ~1, + id=c(1,1,1,2,2,3)) + # mismatched weights + survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,0,1,1,0,2))) ~1, + id=c(1,1,1,2,2,3), weights=c(1,1,2,1,1,4)) + # in two groups at once + survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,0,1,1,0,2))) ~ + c(1,1,2,1,1,2), id=c(1,1,1,2,2,3)) + # state change that isn't a state change (went from 1 to 1) + survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,1,1,1,0,2))) ~1, + id=c(1,1,1,2,2,3)) + } > > > proc.time() user system elapsed 0.264 0.012 0.273 survival/tests/prednew.R0000644000176000001440000000503712267746072015130 0ustar ripleyusers# # Make sure that the newdata argument works for various # predictions # We purposely use a subset of the lung data that has only some # of the levels of the ph.ecog library(survival) options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly')) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), lung) keep <- which(lung$inst<13 & (lung$ph.ecog==1 | lung$ph.ecog==2)) p1 <- predict(myfit, type='lp') p2 <- predict(myfit, type="lp", newdata=lung[keep,]) p3 <- predict(myfit, type='lp', se.fit=TRUE) p4 <- predict(myfit, type="lp", newdata=lung[keep,], se.fit=TRUE) aeq(p1[keep], p2) aeq(p1, p3$fit) aeq(p1[keep], p4$fit) aeq(p3$se.fit[keep], p4$se.fit) p1 <- predict(myfit, type='risk') p2 <- predict(myfit, type="risk", newdata=lung[keep,]) p3 <- predict(myfit, type='risk', se.fit=TRUE) p4 <- predict(myfit, type="risk", newdata=lung[keep,], se.fit=TRUE) aeq(p1[keep], p2) aeq(p1, p3$fit) aeq(p1[keep], p4$fit) aeq(p3$se.fit[keep], p4$se.fit) # The all.equal fails for type=expected, Efron approx, and tied death # times due to use of an approximation. See comments in the source code. myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), data=lung, method='breslow') p1 <- predict(myfit, type='expected') p2 <- predict(myfit, type="expected", newdata=lung[keep,]) p3 <- predict(myfit, type='expected', se.fit=TRUE) p4 <- predict(myfit, type="expected", newdata=lung[keep,], se.fit=TRUE) aeq(p1[keep], p2) aeq(p1, p3$fit) aeq(p1[keep], p4$fit) aeq(p3$se.fit[keep], p4$se.fit) p1 <- predict(myfit, type='terms') p2 <- predict(myfit, type="terms",newdata=lung[keep,]) p3 <- predict(myfit, type='terms', se.fit=T) p4 <- predict(myfit, type="terms",newdata=lung[keep,], se.fit=T) aeq(p1[keep,], p2) aeq(p1, p3$fit) aeq(p1[keep,], p4$fit) aeq(p3$se.fit[keep,], p4$se.fit) # # Check out the logic whereby predict does not need to # recover the model frame. The first call should not # need to do so, the second should in each case. # myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung, x=T) p1 <- predict(myfit, type='risk', se=T) myfit2 <- coxph(Surv(time, status) ~ age + factor(sex), lung) p2 <- predict(myfit2, type='risk', se=T) aeq(p1$fit, p2$fit) aeq(p1$se, p2$se) p1 <- predict(myfit, type='expected', se=T) p2 <- predict(myfit2, type='expected', se=T) aeq(p1$fit, p2$fit) aeq(p1$se.fit, p2$se.fit) p1 <- predict(myfit, type='terms', se=T) p2 <- predict(myfit2, type='terms', se=T) aeq(p1$fit, p2$fit) aeq(p1$se.fit, p2$se.fit) survival/tests/survreg2.Rout.save0000644000176000001440000000620012267746072016721 0ustar ripleyusers R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly')) > > # Verify stratified fits in a simple way, but combining two data > # sets and doing a single fit > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > tdata <- data.frame(time=c(lung$time, ovarian$futime), + status=c(lung$status-1, ovarian$fustat), + group =rep(0:1, c(nrow(lung), nrow(ovarian)))) > fit1 <- survreg(Surv(time, status) ~ 1, lung) > fit2 <- survreg(Surv(futime, fustat) ~ 1, ovarian) > fit3 <- survreg(Surv(time, status) ~ group + strata(group), tdata) > > aeq(c(fit1$coef, fit2$coef-fit1$coef), fit3$coef) [1] TRUE > aeq(c(fit1$scale, fit2$scale), fit3$scale) [1] TRUE > aeq(fit1$loglik[2] + fit2$loglik[2], fit3$loglik[2]) [1] TRUE > > # > # Test out the cluster term in survreg, which means first a test > # of the dfbeta residuals > # I also am checking that missing values propogate > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > fit1 <- survreg(Surv(time, status) ~ x + cluster(1:7), test1) > > db1 <- resid(fit1, 'dfbeta') > ijack <-db1 > eps <- 1e-7 > for (i in 1:7) { + temp <- rep(1.0,7) + temp[i] <- 1-eps + tfit <- survreg(Surv(time, status) ~ x, test1, weight=temp) + ijack[i,] <- c(tfit$coef, log(tfit$scale)) + } > ijack[2,] <- NA # stick the NA back in > ijack <- (rep(c(fit1$coef, log(fit1$scale)), each=nrow(db1)) - ijack)/eps > all.equal(db1, ijack, tol=eps) [1] TRUE > all.equal(t(db1[-2,])%*% db1[-2,], fit1$var) [1] TRUE > > # This is a harder test since there are multiple strata and multiple > # obs/subject. Use of enum + strata(enum) in essenence fits a different > # baseline Weibull to each strata, with common coefficients for rx, size, and > # number. > fit1 <- survreg(Surv(stop-start, event) ~ rx + size + number + + factor(enum) + strata(enum), data=bladder2) > > db1 <- resid(fit1, type='dfbeta', collapse=bladder2$id) > ijack <- db1 # a matrix of the same size > for (i in 1:nrow(db1)) { + twt <- rep(1., nrow(bladder2)) + twt[bladder2$id==i] <- 1-eps + tfit <- survreg(Surv(stop-start, event) ~ rx + size + number + + factor(enum) + strata(enum), data=bladder2, + weight=twt) + ijack[i,] <- c(coef(tfit), log(tfit$scale)) + } > ijack <- (rep(c(fit1$coef, log(fit1$scale)), each=nrow(db1)) - ijack)/eps > all.equal(db1, ijack, tol=eps*2) [1] TRUE > > survival/tests/survfit2.Rout.save0000644000176000001440000000213012267746072016724 0ustar ripleyusers R version 2.11.0 (2010-04-22) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # Check out the Dory&Korn confidence interval option > # > tdata <- data.frame(time= 1:10, + status=c(1,0,1,0,1,0,0,0,1,0)) > > fit1 <- survfit(Surv(time, status) ~1, tdata, conf.lower='modified') > fit2 <- survfit(Surv(time, status) ~1, tdata) > > stdlow <- fit2$std * sqrt(c(1, 10/9, 1, 8/7, 1, 6/5, 6/4, 6/3, 1, 2/1)) > lower <- exp(log(fit2$surv) - qnorm(.975)*stdlow) > all.equal(fit1$lower, lower, check.attributes=FALSE) [1] TRUE > survival/tests/fr_rat1.Rout.save0000644000176000001440000000702612267746072016507 0ustar ripleyusers R version 2.13.0 (2011-04-13) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # Tests using the rats data > # > # (Female rats, from Mantel et al, Cancer Research 37, > # 3863-3868, November 77) > > rfit <- coxph(Surv(time,status) ~ rx + frailty(litter), rats, + method='breslow') > names(rfit) [1] "coefficients" "var" "var2" [4] "loglik" "iter" "linear.predictors" [7] "residuals" "means" "concordance" [10] "method" "frail" "fvar" [13] "df" "df2" "penalty" [16] "pterms" "assign2" "history" [19] "coxlist1" "printfun" "n" [22] "nevent" "terms" "assign" [25] "wald.test" "y" "formula" [28] "call" > rfit Call: coxph(formula = Surv(time, status) ~ rx + frailty(litter), data = rats, method = "breslow") coef se(coef) se2 Chisq DF p rx 0.906 0.323 0.319 7.88 1.0 0.005 frailty(litter) 16.89 13.8 0.250 Iterations: 6 outer, 25 Newton-Raphson Variance of random effect= 0.474 I-likelihood = -181.1 Degrees of freedom for terms= 1.0 13.9 Likelihood ratio test=36.3 on 14.8 df, p=0.00144 n= 150 > > rfit$iter [1] 6 25 > rfit$df [1] 0.975943 13.854864 > rfit$history[[1]] $theta [1] 0.4742849 $done c.loglik TRUE $history theta loglik c.loglik [1,] 0.0000000 -181.8451 -181.8451 [2,] 1.0000000 -168.3683 -181.5458 [3,] 0.5000000 -173.3117 -181.0788 [4,] 0.3090061 -175.9446 -181.1490 [5,] 0.4645720 -173.7590 -181.0775 [6,] 0.4736210 -173.6431 -181.0773 $c.loglik [1] -181.0773 > > rfit1 <- coxph(Surv(time,status) ~ rx + frailty(litter, theta=1), rats, + method='breslow') > rfit1 Call: coxph(formula = Surv(time, status) ~ rx + frailty(litter, theta = 1), data = rats, method = "breslow") coef se(coef) se2 Chisq DF p rx 0.918 0.327 0.321 7.85 1.0 0.0051 frailty(litter, theta = 1 27.25 22.7 0.2300 Iterations: 1 outer, 6 Newton-Raphson Variance of random effect= 1 I-likelihood = -181.5 Degrees of freedom for terms= 1.0 22.7 Likelihood ratio test=50.7 on 23.7 df, p=0.001 n= 150 > > rfit2 <- coxph(Surv(time,status) ~ frailty(litter), rats) > rfit2 Call: coxph(formula = Surv(time, status) ~ frailty(litter), data = rats) coef se(coef) se2 Chisq DF p frailty(litter) 18 14.6 0.24 Iterations: 6 outer, 22 Newton-Raphson Variance of random effect= 0.504 I-likelihood = -184.8 Degrees of freedom for terms= 14.6 Likelihood ratio test=30 on 14.6 df, p=0.0101 n= 150 > survival/tests/survreg2.R0000644000176000001440000000453412267746072015244 0ustar ripleyuserslibrary(survival) options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly')) # Verify stratified fits in a simple way, but combining two data # sets and doing a single fit # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) tdata <- data.frame(time=c(lung$time, ovarian$futime), status=c(lung$status-1, ovarian$fustat), group =rep(0:1, c(nrow(lung), nrow(ovarian)))) fit1 <- survreg(Surv(time, status) ~ 1, lung) fit2 <- survreg(Surv(futime, fustat) ~ 1, ovarian) fit3 <- survreg(Surv(time, status) ~ group + strata(group), tdata) aeq(c(fit1$coef, fit2$coef-fit1$coef), fit3$coef) aeq(c(fit1$scale, fit2$scale), fit3$scale) aeq(fit1$loglik[2] + fit2$loglik[2], fit3$loglik[2]) # # Test out the cluster term in survreg, which means first a test # of the dfbeta residuals # I also am checking that missing values propogate test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit1 <- survreg(Surv(time, status) ~ x + cluster(1:7), test1) db1 <- resid(fit1, 'dfbeta') ijack <-db1 eps <- 1e-7 for (i in 1:7) { temp <- rep(1.0,7) temp[i] <- 1-eps tfit <- survreg(Surv(time, status) ~ x, test1, weight=temp) ijack[i,] <- c(tfit$coef, log(tfit$scale)) } ijack[2,] <- NA # stick the NA back in ijack <- (rep(c(fit1$coef, log(fit1$scale)), each=nrow(db1)) - ijack)/eps all.equal(db1, ijack, tol=eps) all.equal(t(db1[-2,])%*% db1[-2,], fit1$var) # This is a harder test since there are multiple strata and multiple # obs/subject. Use of enum + strata(enum) in essenence fits a different # baseline Weibull to each strata, with common coefficients for rx, size, and # number. fit1 <- survreg(Surv(stop-start, event) ~ rx + size + number + factor(enum) + strata(enum), data=bladder2) db1 <- resid(fit1, type='dfbeta', collapse=bladder2$id) ijack <- db1 # a matrix of the same size for (i in 1:nrow(db1)) { twt <- rep(1., nrow(bladder2)) twt[bladder2$id==i] <- 1-eps tfit <- survreg(Surv(stop-start, event) ~ rx + size + number + factor(enum) + strata(enum), data=bladder2, weight=twt) ijack[i,] <- c(coef(tfit), log(tfit$scale)) } ijack <- (rep(c(fit1$coef, log(fit1$scale)), each=nrow(db1)) - ijack)/eps all.equal(db1, ijack, tol=eps*2) survival/tests/book3.R0000644000176000001440000000722712267746072014504 0ustar ripleyuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Tests from the appendix of Therneau and Grambsch # c. Data set 2 and Breslow estimate # test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - log(r+1) - log(r+2) - 3*log(3*r+2) - 2*log(3*r+1) u <- 1/(r+1) + 1/(3*r+1) + 4/(3*r+2) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r/(r+1)^2 + 2*r/(r+2)^2 + 6*r/(3*r+2)^2 + 3*r/(3*r+1)^2 + 3*r/(3*r+1)^2 + 12*r/(3*r+2)^2 hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 2/(3*r+2) ) xbar <- c(r/(r+1), r/(r+2), 3*r/(3*r+2), 3*r/(3*r+1), 3*r/(3*r+1), 3*r/(3*r+2)) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1,0,0,0,0,0, 0,1,0,1,1,0,0,0,0,0, 0,0,1,1,1,0,1,1,0,0, 0,0,0,1,1,0,1,1,0,0, 0,0,0,0,1,1,1,1,0,0, 0,0,0,0,0,1,1,1,1,1), ncol=6) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:6) dM[i,i] <- dM[i,i] +1 #observed dM[7,6] <- dM[7,6] +1 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to split the two tied times up, to match coxph scho <- c(scho[1:5], scho[6]/2, scho[6]/2) var.g <- cumsum(hazard*hazard /c(1,1,1,1,1,2)) var.d <- cumsum( (xbar-newx)*hazard) surv <- exp(-cumsum(hazard) * exp(beta*newx)) varhaz <- (var.g + var.d^2/imat)* exp(2*beta*newx) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, mart=mart, score=score, rmat=resid, scho=scho, surv=surv, var=varhaz) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0, method='breslow') truth0 <- byhand(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) sfit <- survfit(fit0, list(x=0), censor=FALSE) aeq(sfit$std.err^2, truth0$var) aeq(sfit$surv, truth0$surv) fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8, method='breslow') truth <- byhand(fit$coef, 0) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) sfit <- survfit(fit, list(x=0), censor=FALSE) aeq(sfit$std.err^2, truth$var) aeq(-log(sfit$surv), (cumsum(truth$haz))) # # Done with the formal test, now print out lots of bits # resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2))) survival/tests/book1.Rout.save0000644000176000001440000001555612267746072016173 0ustar ripleyusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Tests from the appendix of Therneau and Grambsch > # a. Data set 1 and Breslow estimate > # The data below is not in time order, to also test sorting, and has 1 NA > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > # Breslow estimate > byhand1 <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 2*beta - (log(3*r+3) + 2*log(r+3)) + u <- (6 + 3*r - r^2) / ((r+1)*(r+3)) + imat <- r/(r+1)^2 + 6*r/(r+3)^2 + + x <- c(1,1,1,0,0,0) + status <- c(1,0,1,1,0,1) + xbar <- c(r/(r+1), r/(r+3), 0, 0) # at times 1, 6, 8 and 9 + haz <- c(1/(3*r+3), 2/(r+3), 0, 1 ) + ties <- c(1,1,2,2,3,4) + wt <- c(r,r,r,1,1,1) + mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual + + a <- 3*(r+1)^2; b<- (r+3)^2 + score <- c((2*r+3)/a, -r/a, -r/a + 3*(3-r)/b, r/a - r*(r+1)/b, + r/a + 2*r/b, r/a + 2*r/b) + + # Schoenfeld residual + scho <- c(1/(r+1), 1- (r/(3+r)), 0-(r/(3+r)) , 0) + + surv <- exp(-cumsum(haz)* exp(beta*newx)) + varhaz.g <- cumsum(c(1/(3*r+3)^2, 2/(r+3)^2, 0, 1 )) + + varhaz.d <- cumsum((newx-xbar) * haz) + + varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx) + + names(xbar) <- names(haz) <- 1:4 + names(surv) <- names(varhaz) <- 1:4 + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz, + mart=mart, score=score, + scho=scho, surv=surv, var=varhaz, + varhaz.g=varhaz.g, varhaz.d=varhaz.d) + } > > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='breslow') > truth0 <- byhand1(0,0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid[c(2:6,1)]) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)]) [1] TRUE > sfit <- survfit(fit0, list(x=0)) > aeq(sfit$std.err^2, c(7/180, 2/9, 2/9, 11/9)) [1] TRUE > aeq(resid(fit0, 'score'), c(5/24, NA, 5/12, -1/12, 7/24, -1/24, 5/24)) [1] TRUE > > fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='breslow') > aeq(fit1$coef, 8/5) [1] TRUE > > # This next gives an ignorable warning message > fit2 <- coxph(Surv(time, status) ~x, test1, method='breslow', iter=2) Warning message: In fitter(X, Y, strats, offset, init, control, weights = weights, : Ran out of iterations and did not converge > aeq(round(fit2$coef, 6), 1.472724) [1] TRUE > > fit <- coxph(Surv(time, status) ~x, test1, method='breslow', eps=1e-8) > aeq(round(fit$coef,7), 1.4752849) [1] TRUE > truth <- byhand1(fit$coef, 0) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid[c(2:6,1)]) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')[c(3:7,1)]) [1] TRUE > > sfit <- survfit(fit, list(x=0), censor=FALSE) > aeq(sfit$std.err^2, truth$var[c(1,2,4)]) # sfit skips time 8 (no events there) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$haz))[c(1,2,4)]) [1] TRUE > sfit <- survfit(fit, list(x=0), censor=TRUE) > aeq(sfit$std.err^2, truth$var) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$haz))) [1] TRUE > > > # > # Done with the formal test, now print out lots of bits > # > resid(fit) 1 2 3 4 5 6 7 -0.3333333 NA 0.7287136 -0.2712864 -0.4574271 0.6666667 -0.3333333 > resid(fit, 'scor') 1 2 3 4 5 6 0.21138938 NA 0.13564322 -0.05049744 -0.12624360 -0.38168095 7 0.21138938 > resid(fit, 'scho') 1 6 6 9 0.1861407 0.4069297 -0.5930703 0.0000000 > > predict(fit, type='lp') [1] -0.7376425 NA 0.7376425 0.7376425 0.7376425 -0.7376425 -0.7376425 > predict(fit, type='risk') [1] 0.4782401 NA 2.0910001 2.0910001 2.0910001 0.4782401 0.4782401 > predict(fit, type='expected') 1 2 3 4 5 6 7 1.3333333 NA 0.2712864 0.2712864 1.4574271 0.3333333 0.3333333 > predict(fit, type='terms') x 1 -0.7376425 2 NA 3 0.7376425 4 0.7376425 5 0.7376425 6 -0.7376425 7 -0.7376425 > predict(fit, type='lp', se.fit=T) $fit 1 2 3 4 5 6 7 -0.7376425 NA 0.7376425 0.7376425 0.7376425 -0.7376425 -0.7376425 $se.fit 1 2 3 4 5 6 7 0.6278672 NA 0.6278672 0.6278672 0.6278672 0.6278672 0.6278672 > predict(fit, type='risk', se.fit=T) $fit 1 2 3 4 5 6 7 0.4782401 NA 2.0910001 2.0910001 2.0910001 0.4782401 0.4782401 $se.fit 1 2 3 4 5 6 7 0.4342009 NA 0.9079142 0.9079142 0.9079142 0.4342009 0.4342009 > predict(fit, type='expected', se.fit=T) $fit 1 2 3 4 5 6 7 1.3333333 NA 0.2712864 0.2712864 1.4574271 0.3333333 0.3333333 $se.fit [1] 1.0540926 NA 0.2785989 0.2785989 1.1069433 0.3333333 0.3333333 > predict(fit, type='terms', se.fit=T) $fit x 1 -0.7376425 2 NA 3 0.7376425 4 0.7376425 5 0.7376425 6 -0.7376425 7 -0.7376425 $se.fit x 1 0.6278672 2 NA 3 0.6278672 4 0.6278672 5 0.6278672 6 0.6278672 7 0.6278672 > > summary(survfit(fit)) Call: survfit(formula = fit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 6 1 0.8783 0.122 0.66827 1 6 4 2 0.4981 0.218 0.21125 1 9 1 1 0.0615 0.150 0.00051 1 > summary(survfit(fit, list(x=2))) Call: survfit(formula = fit, newdata = list(x = 2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 6 1 3.05e-01 6.50e-01 4.72e-03 1 6 4 2 1.71e-03 1.98e-02 2.33e-13 1 9 1 1 8.52e-12 5.29e-10 1.22e-64 1 > survival/tests/nested.R0000644000176000001440000000065012267746072014742 0ustar ripleyuserslibrary(survival) # # A test of nesting. It makes sure the model.frame is built correctly # tfun <- function(fit, mydata) { survfit(fit, newdata=mydata) } myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung) temp1 <- tfun(myfit, lung[1:5,]) temp2 <- survfit(myfit, lung[1:5,]) indx <- match('call', names(temp1)) #the call components won't match all.equal(unclass(temp1)[-indx], unclass(temp2)[-indx]) survival/tests/book1.R0000644000176000001440000000651512267746072014501 0ustar ripleyuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Tests from the appendix of Therneau and Grambsch # a. Data set 1 and Breslow estimate # The data below is not in time order, to also test sorting, and has 1 NA # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) # Breslow estimate byhand1 <- function(beta, newx=0) { r <- exp(beta) loglik <- 2*beta - (log(3*r+3) + 2*log(r+3)) u <- (6 + 3*r - r^2) / ((r+1)*(r+3)) imat <- r/(r+1)^2 + 6*r/(r+3)^2 x <- c(1,1,1,0,0,0) status <- c(1,0,1,1,0,1) xbar <- c(r/(r+1), r/(r+3), 0, 0) # at times 1, 6, 8 and 9 haz <- c(1/(3*r+3), 2/(r+3), 0, 1 ) ties <- c(1,1,2,2,3,4) wt <- c(r,r,r,1,1,1) mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual a <- 3*(r+1)^2; b<- (r+3)^2 score <- c((2*r+3)/a, -r/a, -r/a + 3*(3-r)/b, r/a - r*(r+1)/b, r/a + 2*r/b, r/a + 2*r/b) # Schoenfeld residual scho <- c(1/(r+1), 1- (r/(3+r)), 0-(r/(3+r)) , 0) surv <- exp(-cumsum(haz)* exp(beta*newx)) varhaz.g <- cumsum(c(1/(3*r+3)^2, 2/(r+3)^2, 0, 1 )) varhaz.d <- cumsum((newx-xbar) * haz) varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx) names(xbar) <- names(haz) <- 1:4 names(surv) <- names(varhaz) <- 1:4 list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz, mart=mart, score=score, scho=scho, surv=surv, var=varhaz, varhaz.g=varhaz.g, varhaz.d=varhaz.d) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='breslow') truth0 <- byhand1(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid[c(2:6,1)]) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)]) sfit <- survfit(fit0, list(x=0)) aeq(sfit$std.err^2, c(7/180, 2/9, 2/9, 11/9)) aeq(resid(fit0, 'score'), c(5/24, NA, 5/12, -1/12, 7/24, -1/24, 5/24)) fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='breslow') aeq(fit1$coef, 8/5) # This next gives an ignorable warning message fit2 <- coxph(Surv(time, status) ~x, test1, method='breslow', iter=2) aeq(round(fit2$coef, 6), 1.472724) fit <- coxph(Surv(time, status) ~x, test1, method='breslow', eps=1e-8) aeq(round(fit$coef,7), 1.4752849) truth <- byhand1(fit$coef, 0) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid[c(2:6,1)]) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')[c(3:7,1)]) sfit <- survfit(fit, list(x=0), censor=FALSE) aeq(sfit$std.err^2, truth$var[c(1,2,4)]) # sfit skips time 8 (no events there) aeq(-log(sfit$surv), (cumsum(truth$haz))[c(1,2,4)]) sfit <- survfit(fit, list(x=0), censor=TRUE) aeq(sfit$std.err^2, truth$var) aeq(-log(sfit$surv), (cumsum(truth$haz))) # # Done with the formal test, now print out lots of bits # resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2))) survival/tests/fr_kidney.R0000644000176000001440000000454012267746072015434 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # From: McGilchrist and Aisbett, Biometrics 47, 461-66, 1991 # Data on the recurrence times to infection, at the point of insertion of # the catheter, for kidney patients using portable dialysis equipment. # Catheters may be removed for reasons other than infection, in which case # the observation is censored. Each patient has exactly 2 observations. # Variables: patient, time, status, age, # sex (1=male, 2=female), # disease type (0=GN, 1=AN, 2=PKD, 3=Other) # author's estimate of the frailty aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) # I don't match their answers, and I think that I'm right kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney) kfit1<- coxph(Surv(time, status) ~age + sex + disease + frailty(id, theta=1), kidney, iter=20) kfit0 <- coxph(Surv(time, status)~ age + sex + disease, kidney) temp <- coxph(Surv(time, status) ~age + sex + disease + frailty(id, theta=1, sparse=F), kidney) # Check out the EM based score equations # temp1 and kfit1 should have essentially the same coefficients # temp2 should equal kfit1$frail # equality won't be exact because of the different iteration paths temp1 <- coxph(Surv(time, status) ~ age + sex + disease + offset(kfit1$frail[id]), kidney) rr <- tapply(resid(temp1), kidney$id, sum) temp2 <- log(rr/1 +1) aeq(temp1$coef, kfit1$coef, tolerance=.005) aeq(temp2, kfit1$frail, tolerance=.005) kfit kfit1 kfit0 temp # # Now fit the data using REML # kfitm1 <- coxph(Surv(time,status) ~ age + sex + disease + frailty(id, dist='gauss'), kidney) kfitm2 <- coxph(Surv(time,status) ~ age + sex + disease + frailty(id, dist='gauss', sparse=F), kidney) kfitm1 summary(kfitm2) # # Fit the kidney data using AIC # # gamma, corrected aic coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=T), kidney) coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t'), kidney) coxph(Surv(time, status) ~ age + sex + frailty(id, dist='gauss', method='aic', caic=T), kidney) # uncorrected aic coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=F), kidney) coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t', caic=F), kidney) survival/tests/r_sas.R0000644000176000001440000002306712267746072014576 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Reproduce example 1 in the SAS lifereg documentation # # this fit doesn't give the same log-lik that they claim motor <- read.table('data.motor', col.names=c('temp', 'time', 'status')) fit1 <- survreg(Surv(time, status) ~ I(1000/(273.2+temp)), motor, subset=(temp>150), dist='lognormal') summary(fit1) # This one, with the loglik on the transformed scale (the inappropriate # scale, Ripley & Venables would argue) does agree. # All coefs are of course identical. fit2 <- survreg(Surv(log(time), status) ~ I(1000/(273.2+temp)), motor, subset=(temp>150), dist='gaussian') # Give the quantile estimates, which is the lower half of "output 48.1.5" # in the SAS 9.2 manual pp1 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), type='quantile', se=T) pp2 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), type='uquantile', se=T) pp1 temp130 <- matrix(0, nrow=3, ncol=6) temp130[,1] <- pp1$fit[1,] temp130[,2] <- pp1$se.fit[1,] temp130[,3] <- pp2$fit[1,] temp130[,4] <- pp2$se.fit[1,] temp130[,5] <- exp(pp2$fit[1,] - 1.64*pp2$se.fit[1,]) temp130[,6] <- exp(pp2$fit[1,] + 1.64*pp2$se.fit[1,]) dimnames(temp130) <- list(c("p=.1", "p=.2", "p=.3"), c("Time", "se(time)", "log(time)", "se[log(time)]", "lower 90", "upper 90")) print(temp130) # A set of examples, copied from the manual pages of SAS procedure # "reliability", which is part of their QC product. # color <- c("black", "red", "green", "blue", "magenta", "red4", "orange", "DarkGreen", "cyan2", "DarkViolet") palette(color) pdf(file='reliability.pdf') # # Insulating fluids example # fluid <- read.table('data.fluid', col.names=c('time', 'voltage')) # Adding a -1 to the fit just causes the each group to have it's own # intercept, rather than a global intercept + constrasts. The strata # statement allows each to have a separate scale ffit <- survreg(Surv(time) ~ voltage + strata(voltage) -1, fluid) # Get predicted quantiles at each of the voltages # By default predict() would give a line of results for each observation, # I only want the unique set of x's, i.e., only 4 cases uvolt <- sort(unique(fluid$voltage)) #the unique levels plist <- c(1, 2, 5, 1:9 *10, 95, 99)/100 pred <- predict(ffit, type='quantile', p=plist, newdata=data.frame(voltage=factor(uvolt))) tfun <- function(x) log(-log(1-x)) matplot(t(pred), tfun(plist), type='l', log='x', lty=1, col=1:4, yaxt='n') axis(2, tfun(plist), format(100*plist), adj=1) kfit <- survfit(Surv(time) ~ voltage, fluid, type='fleming') #KM fit for (i in 1:4) { temp <- kfit[i] points(temp$time, tfun(1-temp$surv), col=i, pch=i) } # Now a table temp <- array(0, dim=c(4,4,4)) #4 groups by 4 parameters by 4 stats temp[,1,1] <- ffit$coef # "EV Location" in SAS manual temp[,2,1] <- ffit$scale # "EV scale" temp[,3,1] <- exp(ffit$coef) # "Weibull Scale" temp[,4,1] <- 1/ffit$scale # "Weibull Shape" temp[,1,2] <- sqrt(diag(ffit$var))[1:4] #standard error temp[,2,2] <- sqrt(diag(ffit$var))[5:8] * ffit$scale temp[,3,2] <- temp[,1,2] * temp[,3,1] temp[,4,2] <- temp[,2,2] / (temp[,2,1])^2 temp[,1,3] <- temp[,1,1] - 1.96*temp[,1,2] #lower conf limits temp[,1,4] <- temp[,1,1] + 1.96*temp[,1,2] # upper # log(scale) is the natural parameter, in which the routine did its fitting # and on which the std errors were computed temp[,2, 3] <- exp(log(ffit$scale) - 1.96*sqrt(diag(ffit$var))[5:8]) temp[,2, 4] <- exp(log(ffit$scale) + 1.96*sqrt(diag(ffit$var))[5:8]) temp[,3, 3:4] <- exp(temp[,1,3:4]) temp[,4, 3:4] <- 1/temp[,2,4:3] dimnames(temp) <- list(uvolt, c("EV Location", "EV Scale", "Weibull scale", "Weibull shape"), c("Estimate", "SE", "lower 95% CI", "uppper 95% CI")) print(aperm(temp, c(2,3,1)), digits=5) rm(temp, uvolt, plist, pred, ffit, kfit) ##################################################################### # Turbine cracks data cracks <- read.table('data.cracks', col.names=c('time1', 'time2', 'n')) cfit <- survreg(Surv(time1, time2, type='interval2') ~1, dist='weibull', data=cracks, weight=n) summary(cfit) #Their output also has Wiebull scale = exp(cfit$coef), shape = 1/(cfit$scale) # Draw the SAS plot # The "type=fleming" argument reflects that they estimate hazards rather than # survival, and forces a Nelson-Aalen hazard estimate # plist <- c(1, 2, 5, 1:8 *10)/100 plot(qsurvreg(plist, cfit$coef, cfit$scale), tfun(plist), log='x', yaxt='n', type='l', xlab="Weibull Plot for Time", ylab="Percent") axis(2, tfun(plist), format(100*plist), adj=1) kfit <- survfit(Surv(time1, time2, type='interval2') ~1, data=cracks, weight=n, type='fleming') # Only plot point where n.event > 0 # Why? I'm trying to match them. Personally, all should be plotted. who <- (kfit$n.event > 0) points(kfit$time[who], tfun(1-kfit$surv[who]), pch='+') points(kfit$time[who], tfun(1-kfit$upper[who]), pch='-') points(kfit$time[who], tfun(1-kfit$lower[who]), pch='-') text(rep(3,6), seq(.5, -1.0, length=6), c("Scale", "Shape", "Right Censored", "Left Censored", "Interval Censored", "Fit"), adj=0) text(rep(9,6), seq(.5, -1.0, length=6), c(format(round(exp(cfit$coef), 2)), format(round(1/cfit$scale, 2)), format(tapply(cracks$n, cfit$y[,3], sum)), "ML"), adj=1) # Now a portion of his percentiles table # I don't get the same SE as SAS, I haven't checked out why. The # estimates and se for the underlying Weibull model are the same. temp <- predict(cfit, type='quantile', p=plist, se=T) tempse <- sqrt(temp$se[1,]) mat <- cbind(temp$fit[1,], tempse, temp$fit[1,] -1.96*tempse, temp$fit[1,] + 1.96*tempse) dimnames(mat) <- list(plist*100, c("Estimate", "SE", "Lower .95", "Upper .95")) print(mat) # # The cracks data has a particularly easy estimate, so use # it to double check code time <- c(cracks$time2[1], (cracks$time1 + cracks$time2)[2:8]/2, cracks$time1[9]) cdf <- cumsum(cracks$n)/sum(cracks$n) all.equal(kfit$time, time) all.equal(kfit$surv, 1-cdf[c(1:8,8)]) rm(time, cdf, kfit) ####################################################### # # Valve data # The input data has id, time, and an indicator of whether there was an # event at that time: -1=no, 1=yes. No one has an event at their last time. # Convert the data to (start, stop] form # The input data has two engines with dual failures: 328 loses 2 valves at # time 653, and number 402 loses 2 at time 139. For each, fudge the first # time to be .1 days earlier. # temp <- matrix(scan('data.valve'), byrow=T, ncol=3) n <- nrow(temp) valve <- data.frame(id=temp[,1], time1 = c(0, ifelse(diff(temp[,1])==0, temp[-n,2],0)), time2 = temp[,2], status= as.numeric(temp[,3]==1)) indx <- (1:nrow(valve))[valve$time1==valve$time2] valve$time1[indx] <- valve$time1[indx] - .1 valve$time2[indx-1] <- valve$time2[indx-1] - .1 kfit <- survfit(Surv(time1, time2, status) ~1, valve, type='fh2') plot(kfit, fun='cumhaz', ylab="Sample Mean Cumulative Failures", xlab='Time', ylim=range(-log(kfit$lower))) title("Valve replacement data") # The summary.survfit function doesn't have an option for printing out # cumulative hazards instead of survival --- need to add that # so I just reprise the central code of print.summary.survfit xx <- summary(kfit) temp <- cbind(xx$time, xx$n.risk, xx$n.event, -log(xx$surv), xx$std.err/xx$surv, -log(xx$upper), -log(xx$lower)) dimnames(temp) <- list(rep("", nrow(temp)), c("time", "n.risk", "n.event", "Cum haz", "std.err", "lower 95%", "upper 95%")) print(temp, digits=2) # Note that I have the same estimates but different SE's. We are using a # different estimator. It's a statistical argument as to which is # better (one could defend both sides): do you favor JASA or Technometrics? rm(temp, kfit, indx, xx) ###################################################### # Turbine data, lognormal fit turbine <- read.table('data.turbine', col.names=c("time1", "time2", "n")) tfit <- survreg(Surv(time1, time2, type='interval2') ~1, turbine, dist='lognormal', weights=n, subset=(n>0)) summary(tfit) # Now, do his plot, but put bootstrap confidence bands on it! # First, make a simple data set without weights tdata <- turbine[rep(1:nrow(turbine), turbine$n),] qstat <- function(data) { temp <- survreg(Surv(time1, time2, type='interval2') ~1, data=data, dist='lognormal') qsurvreg(plist, temp$coef, temp$scale, dist='lognormal') } {if (exists('bootstrap')) { bfit <- bootstrap(tdata, qstat, B=1000) bci <- limits.bca(bfit, probs=c(.025, .975)) } else { values <- matrix(0, nrow=1000, ncol=length(plist)) n <- nrow(tdata) for (i in 1:1000) { subset <- sample(1:n, n, replace=T) values[i,] <- qstat(tdata[subset,]) } bci <- t(apply(values,2, quantile, c(.05, .95))) } } xmat <- cbind(qsurvreg(plist, tfit$coef, tfit$scale, dist='lognormal'), bci) matplot(xmat, qnorm(plist), type='l', lty=c(1,2,2), col=c(1,1,1), log='x', yaxt='n', ylab='Percent', xlab='Time of Cracking (Hours x 100)') axis(2, qnorm(plist), format(100*plist), adj=1) title("Turbine Data") kfit <- survfit(Surv(time1, time2, type='interval2') ~1, data=tdata) points(kfit$time, qnorm(1-kfit$surv), pch='+') dev.off() #close the plot file survival/tests/fr_ovarian.R0000644000176000001440000000065712267746072015615 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test on the ovarian data fit1 <- coxph(Surv(futime, fustat) ~ rx + age, ovarian) fit2 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=2), data=ovarian) fit2$iter fit2$df fit2$history fit4 <- coxph(Surv(futime, fustat) ~ rx + pspline(age, df=4), data=ovarian) fit4 survival/tests/survtest.R0000644000176000001440000000435312267746072015363 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Simple test of (start, stop] Kaplan-Meier curves, using the test2 data # set # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) fit1 <- survfit(Surv(start, stop, event) ~1, test2, type='fh2', error='tsiatis') fit2 <- survfit(Surv(start, stop, event) ~x, test2, start.time=3, type='fh2') cfit1<- survfit(coxph(Surv(start, stop, event)~1, test2)) cfit2<- survfit(coxph(Surv(start, stop, event) ~ strata(x), test2, subset=-1)) deaths <- (fit1$n.event + fit1$n.censor)>0 aeq(fit1$time[deaths], cfit1$time) aeq(fit1$n.risk[deaths], cfit1$n.risk) aeq(fit1$n.event[deaths], cfit1$n.event) aeq(fit1$surv[deaths], cfit1$surv) aeq(fit1$std.err[deaths], cfit1$std.err) deaths <- (fit2$n.event + fit2$n.censor)>0 aeq(fit2$time[deaths], cfit2$time) aeq(fit2$n.risk[deaths], cfit2$n.risk) aeq(fit2$n.event[deaths], cfit2$n.event) aeq(fit2$surv[deaths], cfit2$surv) fit3 <- survfit(Surv(start, stop, event) ~1, test2) #Kaplan-Meier aeq(fit3$n, 10) aeq(fit3$time, c(1:9,14,17)) aeq(fit3$n.risk, c(0,2,3,3,4,5,4,4,5,2,1)) aeq(fit3$n.event,c(0,1,1,0,0,1,1,1,2,0,0)) aeq(fit3$surv[fit3$n.event>0], c(.5, 1/3, 4/15, 1/5, 3/20, 9/100)) # # Verify that both surv AND n.risk are right between time points. # fit <- survfit(Surv(time, status) ~1, test1) temp <- summary(fit, time=c(.5,1, 1.5, 6, 7.5, 8, 8.9, 9, 10), extend=TRUE) aeq(temp$n.risk, c(6,6,4,4,2,2,1,1,0)) aeq(temp$surv, c(1, fit$surv[c(1,1,2,2,3,3,4,4)])) aeq(temp$n.event, c(0,1,0,2,0,0,0,1,0)) aeq(temp$std.err, c(0, (fit$surv*fit$std.err)[c(1,1,2,2,3,3,4,4)])) fit <- survfit(Surv(start, stop, event) ~1, test2) temp <- summary(fit, times=c(.5, 1.5, 2.5, 3, 6.5, 14.5, 16.5)) aeq(temp$surv, c(1, fit$surv[c(1,2,3,6, 10,10)])) aeq(temp$n.risk, c(0, 2, 3, 3, 4, 1,1)) survival/tests/mrtest.R0000644000176000001440000000164412267746072015002 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) {if (is.R()) mdy.date <- function(m, d, y) { y <- ifelse(y<100, y+1900, y) as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") } else mdy.date <- function(m,d,y) { y <- ifelse(y<100, y+1900, y) timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") } } # # A test of the match.ratetable function, specifically the # change to allow partial matching of strings # Note that 10,000 days old is 27.4 years # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) temp1 <- data.frame(year=mdy.date(2,2,1960:1964), age = 10000 + 1:5, sex = c('M', 'fema', 'f', 'ma', 'F')) temp2 <- ratetable(year=temp1$year, age=temp1$age, sex=temp1$sex) temp3 <- match.ratetable(temp2, survexp.us) aeq(temp3$R[,2], c(1,2,2,1,2)) survival/tests/r_stanford.Rout.save0000644000176000001440000000741212267746072017311 0ustar ripleyusers R version 2.9.0 (2009-04-17) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # The Stanford data from 1980 is used in Escobar and Meeker, Biometrics 1992. > # t5 = T5 mismatch score > # Their case numbers correspond to a data set sorted by age > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > stanford2$t5 <- ifelse(stanford2$t5 <0, NA, stanford2$t5) > stanford2 <- stanford2[order(stanford2$age, stanford2$time),] > stanford2$time <- ifelse(stanford2$time==0, .5, stanford2$time) > > cage <- stanford2$age - mean(stanford2$age) > fit1 <- survreg(Surv(time, status) ~ cage + I(cage^2), stanford2, + dist='lognormal') > fit1 Call: survreg(formula = Surv(time, status) ~ cage + I(cage^2), data = stanford2, dist = "lognormal") Coefficients: (Intercept) cage I(cage^2) 6.717591081 -0.061908619 -0.003504315 Scale= 2.362872 Loglik(model)= -863.6 Loglik(intercept only)= -868.8 Chisq= 10.5 on 2 degrees of freedom, p= 0.0053 n= 184 > ldcase <- resid(fit1, type='ldcase') > ldresp <- resid(fit1, type='ldresp') > # The ldcase and ldresp should be compared to table 1 in Escobar and > # Meeker, Biometrics 1992, p519; the colums they label as (1/2) A_{ii} > # They give data for selected cases, entered below as mdata > mdata <- cbind(c(1,2,4,5,12,16,23,61,66,72,172,182,183,184), + c(.035, .244, .141, .159, .194, .402, 0,0, .143, .403, + .178, .033, .005, .015), + c(.138, .145, .073, .076, .104, .159, 0,0, .109, .184, + .116, .063, .103, .144)) > dimnames(mdata) <- list(NULL, c("case#", "ldcase", "ldresp")) > aeq(round(ldcase[mdata[,1]],3), mdata[,2]) [1] TRUE > aeq(round(ldresp[mdata[,1]],3), mdata[,3]) [1] TRUE > > plot1 <- function() { + # make their figure 1, 2, and 6 + temp <- predict(fit1, type='quantile', p=c(.1, .5, .9)) + plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days", + ylim=range(stanford2$time, temp)) + matlines(stanford2$age, temp, lty=c(1,2,2), col=1) + + n <- length(ldcase) + plot(1:n, ldcase, xlab="Case Number", ylab="(1/2) A", type='l') + title (main="Case weight pertubations") + plot(1:n, ldresp, xlab="Case Number", ylab="(1/2) A", + ylim=c(0, .2), type='l') + title(main="Response pertubations") + indx <- which(ldresp > .07) + text(indx, ldresp[indx]+ .005, indx%%10, cex=.6) + } > > postscript('meekerplot.ps') > plot1() > dev.off() null device 1 > # > # Stanford predictions in other ways > # > fit2 <- survreg(Surv(time, status) ~ poly(age,2), stanford2, + dist='lognormal') > > p1 <- predict(fit1, type='response') > p2 <- predict(fit2, type='response') > aeq(p1, p2) [1] TRUE > > p3 <- predict(fit2, type='terms', se=T) > p4 <- predict(fit2, type='lp', se=T) > p5 <- predict(fit1, type='lp', se=T) > # aeq(p3$fit + attr(p3$fit, 'constant'), p4$fit) #R is missing the attribute > aeq(p4$fit, p5$fit) [1] TRUE > aeq(p3$se.fit, p4$se.fit) #this one should be false [1] "Mean relative difference: 0.758395" > aeq(p4$se.fit, p5$se.fit) #this one true [1] TRUE > > survival/tests/clogit.R0000644000176000001440000000164212267746072014743 0ustar ripleyuserslibrary(survival) # # Test of the clogit function, and indirectly of the exact option # # Data set logan has the occupation of fathers, we create a # multinomial response # nresp <- length(levels(logan$occupation)) n <- nrow(logan) indx <- rep(1:n, nresp) logan2 <- data.frame(logan[indx,], id = indx, occ2 = factor(rep(levels(logan$occupation), each=n))) logan2$y <- (logan2$occupation == logan2$occ2) #We expect two NA coefficients, so ignore the warning fit1 <- clogit(y ~ occ2 + occ2:education + occ2:race + strata(id), logan2) #since there is only one death per group, all methods are equal dummy <- rep(1, nrow(logan2)) fit2 <- coxph(Surv(dummy, y) ~ occ2 + occ2:education + occ2:race + strata(id), logan2, method='breslow') all.equal(fit1$coef, fit2$coef) all.equal(fit1$loglik, fit2$loglik) all.equal(fit1$var, fit2$var) all.equal(fit1$resid, fit2$resid) survival/tests/factor.R0000644000176000001440000000203312267746072014733 0ustar ripleyusers# # Ensure that factors work in prediction # library(survival) options(na.action="na.exclude") # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) tfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog), lung) p1 <- predict(tfit, type='risk') # Testing NA handling is important too keep <- (is.na(lung$ph.ecog) | lung$ph.ecog !=1) lung2 <- lung[keep,] p2 <- predict(tfit, type='risk', newdata=lung[keep,]) aeq(p1[keep], p2) # Same, for survreg tfit <- survreg(Surv(time, status) ~ age + factor(ph.ecog), lung) p1 <- predict(tfit, type='response') p2 <- predict(tfit, type='response', newdata=lung2) aeq(p1[keep], p2) # Now repeat it tossing the missings options(na.action=na.omit) keep2 <- (lung$ph.ecog[!is.na(lung$ph.ecog)] !=1) tfit2 <- survreg(Surv(time, status) ~ age + factor(ph.ecog), lung) p3 <- predict(tfit2, type='response') p4 <- predict(tfit2, type='response', newdata=lung2, na.action=na.omit) aeq(p3[keep2] , p4) survival/tests/book7.Rout.save0000644000176000001440000000554112267746072016172 0ustar ripleyusers R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude) > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Tests from the appendix of Therneau and Grambsch > # Data set 1 + exact method > > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > byhand7 <- function(beta) { + r <- exp(beta) + loglik <- 2*(beta - log(3*r + 3)) + u <- 2/(r+1) + imat <- 2*r/(r+1)^2 + haz <- c(1/(3*r+3), 2/(r+3), 0, 1 ) + + ties <- c(1,1,2,2,3,4) + wt <- c(r,r,r,1,1,1) + mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual + + list(loglik=loglik, u=u, imat=imat, mart=mart) + } > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='exact') > truth0 <- byhand7(0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid[c(2:6,1)]) [1] TRUE > > fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='exact') > aeq(fit1$coef, truth0$u*fit0$var) [1] TRUE > truth1 <- byhand7(fit1$coef) > aeq(fit1$loglik[2], truth1$loglik) [1] TRUE > aeq(1/truth1$imat, fit1$var) [1] TRUE > aeq(truth1$mart, resid(fit1)[c(3:7,1)]) [1] TRUE > > # Beta is infinite for this model, so we will get a warning message > fit2 <- coxph(Surv(time, status) ~x, test1, method='exact') Warning message: In fitter(X, Y, strats, offset, init, control, weights = weights, : Loglik converged before variable 1 ; beta may be infinite. > aeq(resid(fit2)[-2], c(0, 2/3, -1/3, -4/3, 1, 0)) #values from the book [1] TRUE > > > # > # Now a multivariate case: start/stop data uses a different C routine > # > zz <- rep(0, nrow(lung)) > fit1 <- coxph(Surv(time, status) ~ age + ph.ecog + sex, lung, method="exact") > fit2 <- coxph(Surv(zz, time, status) ~ age + ph.ecog + sex, lung, + method="exact") > aeq(fit1$loglik, fit2$loglik) [1] TRUE > aeq(fit1$var, fit2$var) [1] TRUE > aeq(fit1$score, fit2$score) [1] TRUE > aeq(fit1$resid, fit2$resid) [1] TRUE > > proc.time() user system elapsed 0.940 0.036 0.968 survival/tests/r_donnell.R0000644000176000001440000000336212267746072015437 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Good initial values are key to this data set # It killed v4 of survreg; # data courtesy of Deborah Donnell, Fred Hutchinson Cancer Center # donnell <- scan("data.donnell", what=list(time1=0, time2=0, status=0)) donnell <- data.frame(donnell) dfit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell) summary(dfit) # # Fit the Donnell data using Statsci's code - should get the same coefs # if (exists('censorReg')) { dfitc <- censorReg(censor(time1, time2, status, type='interval') ~1, donnell) summary(dfitc) } # # Do a contour plot of the donnell data # npt <- 20 beta0 <- seq(.4, 3.4, length=npt) logsig <- seq(-1.4, 0.41, length=npt) donlog <- matrix(0,npt, npt) for (i in 1:npt) { for (j in 1:npt) { fit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell, init=c(beta0[i],logsig[j]), maxiter=0) donlog[i,j] <- fit$log[1] } } clev <- -c(51, 51.5, 52:60, 65, 75, 85, 100, 150) #clev <- seq(-51, -50, length=10) contour(beta0, logsig, pmax(donlog, -200), levels=clev, xlab="Intercept", ylab="Log(sigma)") points(2.39, log(.7885), pch=1, col=2) title("Donnell data") # # Compute the path of the iteration # # All the intermediate stops produce an ignorable "did not converge" # warning options(warn=-1) #turn them off niter <- 14 donpath <- matrix(0,niter+1,2) for (i in 0:niter){ fit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell, maxiter=i) donpath[i+1,] <- c(fit$coef, log(fit$scale)) } points(donpath[,1], donpath[,2]) lines(donpath[,1], donpath[,2], col=4) options(warn=0) #reset survival/tests/book2.Rout.save0000644000176000001440000001544012267746072016164 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Tests from the appendix of Therneau and Grambsch > # b. Data set 1 and Efron estimate > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 2*beta - (log(3*r +3) + log((r+5)/2) + log(r+3)) + u <- (30 + 23*r - r^3)/ ((r+1)*(r+3)*(r+5)) + tfun <- function(x) x - x^2 + imat <- tfun(r/(r+1)) + tfun(r/(r+5)) + tfun(r/(r+3)) + + # The matrix of weights, one row per obs, one col per time + # Time of 1, 6, 6+0 (second death), and 9 + wtmat <- matrix(c(1,1,1,1,1,1, + 0,0,1,1,1,1, + 0,0,.5, .5, 1,1, + 0,0,0,0,0,1), ncol=4) + wtmat <- diag(c(r,r,r,1,1,1)) %*% wtmat + + x <- c(1,1,1,0,0,0) + status <- c(1,0,1,1,0,1) + xbar <- colSums(wtmat*x)/ colSums(wtmat) + haz <- 1/ colSums(wtmat) # one death at each of the times + + hazmat <- wtmat %*% diag(haz) #each subject's hazard over time + mart <- status - rowSums(hazmat) + + a <- r+1; b<- r+3; d<- r+5 # 'c' in the book, 'd' here + score <- c((2*r + 3)/ (3*a^2), + -r/ (3*a^2), + (675+ r*(1305 +r*(756 + r*(-4 +r*(-79 -13*r)))))/(3*(a*b*d)^2), + r*(1/(3*a^2) - a/(2*b^2) - b/(2*d^2)), + 2*r*(177 + r*(282 +r*(182 + r*(50 + 5*r)))) /(3*(a*b*d)^2), + 2*r*(177 + r*(282 +r*(182 + r*(50 + 5*r)))) /(3*(a*b*d)^2)) + + # Schoenfeld residual + d <- mean(xbar[2:3]) + scho <- c(1/(r+1), 1- d, 0- d , 0) + + surv <- exp(-cumsum(haz)* exp(beta*newx))[c(1,3,4)] + varhaz.g <- cumsum(haz^2) # since all numerators are 1 + + varhaz.d <- cumsum((newx-xbar) * haz) + + varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx) + + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz, + mart=mart, score=score, var.g=varhaz.g, var.d=varhaz.d, + scho=scho, surv=surv, var=varhaz[c(1,3,4)]) + } > > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(time, status) ~x, test1, iter=0) > truth0 <- byhand(0,0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid[c(2:6,1)]) [1] TRUE > aeq(resid(fit0), c(-3/4, NA, 5/6, -1/6, 5/12, 5/12, -3/4)) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)]) [1] TRUE > sfit <- survfit(fit0, list(x=0), censor=FALSE) > aeq(sfit$std.err^2, truth0$var) [1] TRUE > aeq(sfit$surv, truth0$surv) [1] TRUE > > fit <- coxph(Surv(time, status) ~x, test1, eps=1e-8) > aeq(round(fit$coef,6), 1.676857) [1] TRUE > truth <- byhand(fit$coef, 0) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid[c(2:6,1)]) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')[c(3:7,1)]) [1] TRUE > > sfit <- survfit(fit, list(x=0), censor=FALSE) > aeq(sfit$surv, truth$surv) [1] TRUE > aeq(sfit$std.err^2, truth$var) [1] TRUE > > # > # Done with the formal test, now print out lots of bits > # > resid(fit) 1 2 3 4 5 6 7 -0.3655434 NA 0.7191707 -0.2808293 -0.4383414 0.7310869 -0.3655434 > resid(fit, 'scor') 1 2 3 4 5 6 7 0.2208584 NA 0.1132780 -0.0442340 -0.1029199 -0.4078409 0.2208584 > resid(fit, 'scho') 1 6 6 9 0.157512 0.421244 -0.578756 0.000000 > > predict(fit, type='lp') [1] -0.8384287 NA 0.8384287 0.8384287 0.8384287 -0.8384287 -0.8384287 > predict(fit, type='risk') [1] 0.4323894 NA 2.3127302 2.3127302 2.3127302 0.4323894 0.4323894 > predict(fit, type='expected') 1 2 3 4 5 6 7 1.3655434 NA 0.2808293 0.2808293 1.4383414 0.2689131 0.3655434 > predict(fit, type='terms') x 1 -0.8384287 2 NA 3 0.8384287 4 0.8384287 5 0.8384287 6 -0.8384287 7 -0.8384287 > predict(fit, type='lp', se.fit=T) $fit 1 2 3 4 5 6 7 -0.8384287 NA 0.8384287 0.8384287 0.8384287 -0.8384287 -0.8384287 $se.fit 1 2 3 4 5 6 7 0.6388078 NA 0.6388078 0.6388078 0.6388078 0.6388078 0.6388078 > predict(fit, type='risk', se.fit=T) $fit 1 2 3 4 5 6 7 0.4323894 NA 2.3127302 2.3127302 2.3127302 0.4323894 0.4323894 $se.fit 1 2 3 4 5 6 7 0.4200565 NA 0.9714774 0.9714774 0.9714774 0.4200565 0.4200565 > predict(fit, type='expected', se.fit=T) $fit 1 2 3 4 5 6 7 1.3655434 NA 0.2808293 0.2808293 1.4383414 0.2689131 0.3655434 $se.fit [1] 1.0649293 NA 0.2864593 0.2864593 1.5922983 0.3661617 0.3661617 > predict(fit, type='terms', se.fit=T) $fit x 1 -0.8384287 2 NA 3 0.8384287 4 0.8384287 5 0.8384287 6 -0.8384287 7 -0.8384287 $se.fit x 1 0.6388078 2 NA 3 0.6388078 4 0.6388078 5 0.6388078 6 0.6388078 7 0.6388078 > > summary(survfit(fit)) Call: survfit(formula = fit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 6 1 0.8857 0.117 0.683036 1 6 4 2 0.4294 0.237 0.145743 1 9 1 1 0.0425 0.116 0.000198 1 > summary(survfit(fit, list(x=2))) Call: survfit(formula = fit, newdata = list(x = 2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 1 6 1 2.23e-01 5.97e-01 1.16e-03 1 6 4 2 2.87e-05 5.69e-04 3.96e-22 1 9 1 1 1.08e-17 1.04e-15 1.07e-99 1 > survival/tests/testreg.Rout.save0000644000176000001440000002107012267746072016621 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) #preserve length of missings > library(survival) Loading required package: splines > > # > # Run a test that can be verified using other packages (we used SAS) > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > fit1w <- survreg(Surv(time, status) ~x, test1, dist='weibull') > fit1w Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "weibull") Coefficients: (Intercept) x 2.2373335 -0.7442249 Scale= 0.4563163 Loglik(model)= -10.3 Loglik(intercept only)= -11.4 Chisq= 2.22 on 1 degrees of freedom, p= 0.14 n=6 (1 observation deleted due to missingness) > summary(fit1w) Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "weibull") Value Std. Error z p (Intercept) 2.237 0.330 6.78 1.18e-11 x -0.744 0.486 -1.53 1.26e-01 Log(scale) -0.785 0.433 -1.81 6.99e-02 Scale= 0.456 Weibull distribution Loglik(model)= -10.3 Loglik(intercept only)= -11.4 Chisq= 2.22 on 1 degrees of freedom, p= 0.14 Number of Newton-Raphson Iterations: 8 n=6 (1 observation deleted due to missingness) > > fit1e <- survreg(Surv(time, status) ~x, test1, dist='exponential') > fit1e Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "exponential") Coefficients: (Intercept) x 2.442347 -1.056053 Scale fixed at 1 Loglik(model)= -11.7 Loglik(intercept only)= -12.2 Chisq= 1.07 on 1 degrees of freedom, p= 0.3 n=6 (1 observation deleted due to missingness) > summary(fit1e) Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "exponential") Value Std. Error z p (Intercept) 2.44 0.707 3.45 0.000552 x -1.06 1.000 -1.06 0.290944 Scale fixed at 1 Exponential distribution Loglik(model)= -11.7 Loglik(intercept only)= -12.2 Chisq= 1.07 on 1 degrees of freedom, p= 0.3 Number of Newton-Raphson Iterations: 4 n=6 (1 observation deleted due to missingness) > > fit1l <- survreg(Surv(time, status) ~x, test1, dist='loglogistic') > fit1l Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "loglogistic") Coefficients: (Intercept) x 2.177208 -1.195672 Scale= 0.3847582 Loglik(model)= -10.7 Loglik(intercept only)= -12 Chisq= 2.7 on 1 degrees of freedom, p= 0.1 n=6 (1 observation deleted due to missingness) > summary(fit1l) Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "loglogistic") Value Std. Error z p (Intercept) 2.177 0.365 5.96 2.48e-09 x -1.196 0.711 -1.68 9.25e-02 Log(scale) -0.955 0.396 -2.41 1.58e-02 Scale= 0.385 Log logistic distribution Loglik(model)= -10.7 Loglik(intercept only)= -12 Chisq= 2.7 on 1 degrees of freedom, p= 0.1 Number of Newton-Raphson Iterations: 4 n=6 (1 observation deleted due to missingness) > > fit1g <- survreg(Surv(time, status) ~x, test1, dist='lognormal') > summary(fit1g) Call: survreg(formula = Surv(time, status) ~ x, data = test1, dist = "lognormal") Value Std. Error z p (Intercept) 2.210 0.404 5.48 4.35e-08 x -1.268 0.585 -2.17 3.03e-02 Log(scale) -0.446 0.342 -1.30 1.93e-01 Scale= 0.64 Log Normal distribution Loglik(model)= -10.5 Loglik(intercept only)= -12.1 Chisq= 3.26 on 1 degrees of freedom, p= 0.071 Number of Newton-Raphson Iterations: 5 n=6 (1 observation deleted due to missingness) > # > # Do a test with the ovarian data > # > fitfw <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, + dist='weibull') > fitfw Call: survreg(formula = Surv(futime, fustat) ~ age + ecog.ps, data = ovarian, dist = "weibull") Coefficients: (Intercept) age ecog.ps 12.28496723 -0.09702669 0.09977342 Scale= 0.6032744 Loglik(model)= -90 Loglik(intercept only)= -98 Chisq= 15.98 on 2 degrees of freedom, p= 0.00034 n= 26 > > fitfl <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, + dist='loglogistic') > fitfl Call: survreg(formula = Surv(futime, fustat) ~ age + ecog.ps, data = ovarian, dist = "loglogistic") Coefficients: (Intercept) age ecog.ps 11.50853384 -0.08876814 0.09033348 Scale= 0.4464064 Loglik(model)= -89.5 Loglik(intercept only)= -97.4 Chisq= 15.67 on 2 degrees of freedom, p= 4e-04 n= 26 > > #test out interval censoring, using some dummy time values > > idat <- read.table('data.interval', skip=3, header=T, sep=',') > flsurv<- Surv(idat$ltime, idat$rtime, type='interval2') > > fitfw2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='weibull') > summary(fitfw2) Call: survreg(formula = flsurv ~ age + ecog.ps, data = idat, dist = "weibull") Value Std. Error z p (Intercept) 12.3886 1.6027 7.730 1.08e-14 age -0.0986 0.0254 -3.885 1.02e-04 ecog.ps 0.0971 0.3776 0.257 7.97e-01 Log(scale) -0.4773 0.2583 -1.848 6.47e-02 Scale= 0.62 Weibull distribution Loglik(model)= -56.2 Loglik(intercept only)= -64 Chisq= 15.57 on 2 degrees of freedom, p= 0.00042 Number of Newton-Raphson Iterations: 6 n= 26 > > fitfl2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='loglogistic') > summary(fitfl2) Call: survreg(formula = flsurv ~ age + ecog.ps, data = idat, dist = "loglogistic") Value Std. Error z p (Intercept) 11.5268 1.528 7.542 4.62e-14 age -0.0888 0.024 -3.703 2.13e-04 ecog.ps 0.0818 0.364 0.225 8.22e-01 Log(scale) -0.8023 0.271 -2.965 3.03e-03 Scale= 0.448 Log logistic distribution Loglik(model)= -55.9 Loglik(intercept only)= -63.5 Chisq= 15.35 on 2 degrees of freedom, p= 0.00046 Number of Newton-Raphson Iterations: 5 n= 26 > > fitfg2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='lognormal') > summary(fitfg2) Call: survreg(formula = flsurv ~ age + ecog.ps, data = idat, dist = "lognormal") Value Std. Error z p (Intercept) 11.1548 1.4347 7.775 7.56e-15 age -0.0855 0.0238 -3.598 3.20e-04 ecog.ps 0.2066 0.3828 0.540 5.89e-01 Log(scale) -0.2297 0.2508 -0.916 3.60e-01 Scale= 0.795 Log Normal distribution Loglik(model)= -56 Loglik(intercept only)= -63.5 Chisq= 14.94 on 2 degrees of freedom, p= 0.00057 Number of Newton-Raphson Iterations: 5 n= 26 > > logt <- c(survreg.distributions$t, + survreg.distributions$weibull[c('trans', 'itrans', 'dtrans')]) > logt$name <- 'log(t)' > > fitft2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, + idat, dist=logt, parm=100) > summary(fitft2) #should be quite close to fitfg2 Call: survreg(formula = Surv(ltime, rtime, type = "interval2") ~ age + ecog.ps, data = idat, dist = logt, parms = 100) Value Std. Error z p (Intercept) 11.1856 1.4419 7.758 8.66e-15 age -0.0858 0.0238 -3.609 3.07e-04 ecog.ps 0.1978 0.3814 0.519 6.04e-01 Log(scale) -0.2394 0.2522 -0.949 3.43e-01 Scale= 0.787 log(t) distribution: parmameters= 100 Loglik(model)= -56 Loglik(intercept only)= -63.5 Chisq= 14.97 on 2 degrees of freedom, p= 0.00056 Number of Newton-Raphson Iterations: 5 n= 26 > > # > # Check out the survreg density and probability functions > # > > # Gaussian > x <- -10:10 > p <- seq(.1, .95, length=25) > all.equal(dsurvreg(x, 1, 5, 'gaussian'), dnorm(x, 1, 5)) [1] TRUE > all.equal(psurvreg(x, 1, 5, 'gaussian'), pnorm(x, 1, 5)) [1] TRUE > all.equal(qsurvreg(p, 1, 5, 'gaussian'), qnorm(p, 1, 5)) [1] TRUE > > # Lognormal > x <- 1:10 > all.equal(dsurvreg(x, 1, 5, 'lognormal'), dlnorm(x, 1, 5)) [1] TRUE > all.equal(psurvreg(x, 1, 5, 'lognormal'), plnorm(x, 1, 5)) [1] TRUE > all.equal(qsurvreg(p, 1, 5, 'lognormal'), qlnorm(p, 1, 5)) [1] TRUE > > # Weibull > lambda <- exp(-2) > rho <- 1/3 > temp <- (lambda*x)^rho > all.equal(psurvreg(x, 2, 3), 1- exp(-temp)) [1] TRUE > all.equal(dsurvreg(x, 2, 3), lambda*rho*(lambda*x)^(rho-1)*exp(-temp)) [1] TRUE > survival/tests/doaml.R0000644000176000001440000000404512267746072014556 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # These results can be found in Miller # fit <- coxph(Surv(aml$time, aml$status) ~ aml$x, method='breslow') fit resid(fit, type='mart') resid(fit, type='score') resid(fit, type='scho') # Test the drop of an itercept: should have no effect fit2 <- coxph(Surv(time, status) ~ x -1, method='breslow', data=aml) aeq(fit$loglik, fit2$loglik) aeq(coef(fit), coef(fit2)) aeq(fit$var, fit2$var) fit <- survfit(Surv(aml$time, aml$status) ~ aml$x) fit summary(fit) survdiff(Surv(aml$time, aml$status)~ aml$x) # # Test out the weighted K-M # # First, equal case weights- shouldn't change the survival, but will # halve the variance temp2 <-survfit(Surv(aml$time, aml$status)~1, type='kaplan', weight=rep(2,23)) temp <-survfit(Surv(time, status)~1, aml) aeq(temp$surv, temp2$surv) aeq(temp$std.err^2, 2*temp2$std.err^2) # Risk weights-- use a null Cox model tfit <- coxph(Surv(aml$time, aml$status) ~ offset(log(1:23))) sfit <- survfit(tfit, type='aalen', censor=FALSE) # Now compute it by hand. The survfit program will produce a curve # corresponding to the mean offset. This is a change on 7/2010, # which caused S(new) = S(old)^exp(mean(log(1:23))). # Ties are a nuisance rscore <- exp(log(1:23) - mean(log(1:23)))[order(aml$time)] atime <- sort(aml$time) denom <- rev(cumsum(rev(rscore))) denom <- denom[match(unique(atime), atime)] deaths <- tapply(aml$status, aml$time, sum) chaz <- cumsum(deaths/denom) all.equal(sfit$surv, as.vector(exp(-chaz[deaths>0]))) cvar <- cumsum(deaths/denom^2) all.equal(sfit$std^2, as.vector(cvar[deaths>0])) # And the Efron result summary(survfit(tfit)) # Lots of ties, so its a good test case x1 <- coxph(Surv(time, status)~x, aml, method='efron') x1 x2 <- coxph(Surv(rep(0,23),time, status) ~x, aml, method='efron') aeq(x1$coef, x2$coef) rm(x1, x2, atime, denom, deaths, chaz,cvar, tfit, sfit, temp, temp2, fit) survival/tests/coxsurv2.R0000644000176000001440000000414712267746072015260 0ustar ripleyuserslibrary(survival) # # Check that the survival curves from a Cox model with beta=0 # match ordinary survival # # Aalen surv1 <- survfit(Surv(time,status) ~ sex, data=lung, type='fleming', error='tsiatis') fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, method='breslow') fit1$var <- 0*fit1$var #sneaky, causes the extra term in the Cox variance # calculation to be zero surv2 <- survfit(fit1, type='aalen', vartype='tsiatis') surv3 <- survfit(fit1) arglist <- c('n', 'time', 'n.risk','n.event', 'n.censor', 'surv', 'strata', 'std.err', 'upper', 'lower') all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) # Efron method surv1 <- survfit(Surv(time,status) ~ sex, data=lung, type='fh2', error='tsiatis') surv2 <- survfit(fit1, type='efron', vartype='efron') all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Kaplan-Meier surv1 <- survfit(Surv(time,status) ~ sex, data=lung) surv2 <- survfit(fit1, type='kalb', vartype='green') all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Now add some random weights rwt <- runif(nrow(lung), .5, 3) surv1 <- survfit(Surv(time,status) ~ sex, data=lung, type='fleming', error='tsiatis', weight=rwt) fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, method='breslow', weight=rwt) fit1$var <- 0*fit1$var #sneaky surv2 <- survfit(fit1, type='aalen', vartype='tsiatis') surv3 <- survfit(fit1) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) # Efron method surv1 <- survfit(Surv(time,status) ~ sex, data=lung, type='fh2', error='tsiatis', weight=rwt) surv2 <- survfit(fit1, type='efron', vartype='efron') all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Kaplan-Meier surv1 <- survfit(Surv(time,status) ~ sex, data=lung, weight=rwt) surv2 <- survfit(fit1, type='kalb', vartype='green') all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) survival/tests/r_donnell.Rout.save0000644000176000001440000000573712267746072017134 0ustar ripleyusers R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Good initial values are key to this data set > # It killed v4 of survreg; > # data courtesy of Deborah Donnell, Fred Hutchinson Cancer Center > # > > donnell <- scan("data.donnell", what=list(time1=0, time2=0, status=0)) Read 210 records > donnell <- data.frame(donnell) > > dfit <- survreg(Surv(time1, time2, status, type='interval') ~1, donnell) > summary(dfit) Call: survreg(formula = Surv(time1, time2, status, type = "interval") ~ 1, data = donnell) Value Std. Error z p (Intercept) 2.390 0.804 2.972 0.00295 Log(scale) -0.237 0.346 -0.687 0.49232 Scale= 0.789 Weibull distribution Loglik(model)= -51 Loglik(intercept only)= -51 Number of Newton-Raphson Iterations: 11 n= 210 > > # > # Fit the Donnell data using Statsci's code - should get the same coefs > # > if (exists('censorReg')) { + dfitc <- censorReg(censor(time1, time2, status, type='interval') ~1, + donnell) + summary(dfitc) + } > # > # Do a contour plot of the donnell data > # > npt <- 20 > beta0 <- seq(.4, 3.4, length=npt) > logsig <- seq(-1.4, 0.41, length=npt) > donlog <- matrix(0,npt, npt) > > for (i in 1:npt) { + for (j in 1:npt) { + fit <- survreg(Surv(time1, time2, status, type='interval') ~1, + donnell, init=c(beta0[i],logsig[j]), + maxiter=0) + donlog[i,j] <- fit$log[1] + } + } > > clev <- -c(51, 51.5, 52:60, 65, 75, 85, 100, 150) > #clev <- seq(-51, -50, length=10) > > contour(beta0, logsig, pmax(donlog, -200), levels=clev, xlab="Intercept", + ylab="Log(sigma)") > points(2.39, log(.7885), pch=1, col=2) > title("Donnell data") > # > # Compute the path of the iteration > # > # All the intermediate stops produce an ignorable "did not converge" > # warning > options(warn=-1) #turn them off > niter <- 14 > donpath <- matrix(0,niter+1,2) > for (i in 0:niter){ + fit <- survreg(Surv(time1, time2, status, type='interval') ~1, + donnell, maxiter=i) + donpath[i+1,] <- c(fit$coef, log(fit$scale)) + } > points(donpath[,1], donpath[,2]) > lines(donpath[,1], donpath[,2], col=4) > options(warn=0) #reset > > proc.time() user system elapsed 1.196 0.020 1.209 survival/tests/prednew.Rout.save0000644000176000001440000000720112267746072016610 0ustar ripleyusers R Under development (unstable) (2013-02-24 r62054) -- "Unsuffered Consequences" Copyright (C) 2013 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Make sure that the newdata argument works for various > # predictions > # We purposely use a subset of the lung data that has only some > # of the levels of the ph.ecog > library(survival) Loading required package: splines > options(na.action=na.exclude, contrasts=c('contr.treatment', 'contr.poly')) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), lung) > > keep <- which(lung$inst<13 & (lung$ph.ecog==1 | lung$ph.ecog==2)) > p1 <- predict(myfit, type='lp') > p2 <- predict(myfit, type="lp", newdata=lung[keep,]) > p3 <- predict(myfit, type='lp', se.fit=TRUE) > p4 <- predict(myfit, type="lp", newdata=lung[keep,], se.fit=TRUE) > aeq(p1[keep], p2) [1] TRUE > aeq(p1, p3$fit) [1] TRUE > aeq(p1[keep], p4$fit) [1] TRUE > aeq(p3$se.fit[keep], p4$se.fit) [1] TRUE > > p1 <- predict(myfit, type='risk') > p2 <- predict(myfit, type="risk", newdata=lung[keep,]) > p3 <- predict(myfit, type='risk', se.fit=TRUE) > p4 <- predict(myfit, type="risk", newdata=lung[keep,], se.fit=TRUE) > aeq(p1[keep], p2) [1] TRUE > aeq(p1, p3$fit) [1] TRUE > aeq(p1[keep], p4$fit) [1] TRUE > aeq(p3$se.fit[keep], p4$se.fit) [1] TRUE > > # The all.equal fails for type=expected, Efron approx, and tied death > # times due to use of an approximation. See comments in the source code. > myfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog) + strata(sex), + data=lung, method='breslow') > p1 <- predict(myfit, type='expected') > p2 <- predict(myfit, type="expected", newdata=lung[keep,]) > p3 <- predict(myfit, type='expected', se.fit=TRUE) > p4 <- predict(myfit, type="expected", newdata=lung[keep,], se.fit=TRUE) > aeq(p1[keep], p2) [1] TRUE > aeq(p1, p3$fit) [1] TRUE > aeq(p1[keep], p4$fit) [1] TRUE > aeq(p3$se.fit[keep], p4$se.fit) [1] TRUE > > p1 <- predict(myfit, type='terms') > p2 <- predict(myfit, type="terms",newdata=lung[keep,]) > p3 <- predict(myfit, type='terms', se.fit=T) > p4 <- predict(myfit, type="terms",newdata=lung[keep,], se.fit=T) > aeq(p1[keep,], p2) [1] TRUE > aeq(p1, p3$fit) [1] TRUE > aeq(p1[keep,], p4$fit) [1] TRUE > aeq(p3$se.fit[keep,], p4$se.fit) [1] TRUE > > # > # Check out the logic whereby predict does not need to > # recover the model frame. The first call should not > # need to do so, the second should in each case. > # > myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung, x=T) > p1 <- predict(myfit, type='risk', se=T) > myfit2 <- coxph(Surv(time, status) ~ age + factor(sex), lung) > p2 <- predict(myfit2, type='risk', se=T) > aeq(p1$fit, p2$fit) [1] TRUE > aeq(p1$se, p2$se) [1] TRUE > > p1 <- predict(myfit, type='expected', se=T) > p2 <- predict(myfit2, type='expected', se=T) > aeq(p1$fit, p2$fit) [1] TRUE > aeq(p1$se.fit, p2$se.fit) [1] TRUE > > p1 <- predict(myfit, type='terms', se=T) > p2 <- predict(myfit2, type='terms', se=T) > aeq(p1$fit, p2$fit) [1] TRUE > aeq(p1$se.fit, p2$se.fit) [1] TRUE > > proc.time() user system elapsed 0.380 0.016 0.394 survival/tests/r_user.R0000644000176000001440000000152512267746072014761 0ustar ripleyusersoptions(na.action=na.exclude) #preserve length of missings library(survival) # # Check out using a "user specified" distribution # mydist <- c(survreg.distributions$extreme, survreg.distributions$weibull[-1]) mydist$name <- "Weibull2" mydist$dist <- NULL fit1 <- survreg(Surv(time, status) ~ age + ph.ecog, lung) fit2 <- survreg(Surv(time, status) ~ age + ph.ecog, lung, dist=mydist) all.equal(fit1$coef, fit2$coef) all.equal(fit1$var, fit2$var) # # And with an data set containing interval censoring # idat <- read.table('data.interval', skip=3, header=T, sep=',') fit1 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, idat) fit2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, data=idat, dist=mydist) all.equal(fit1$coef, fit2$coef) all.equal(fit1$var, fit2$var) all.equal(fit1$log, fit2$log) survival/tests/ratetable.Rout.save0000644000176000001440000001256712267746072017122 0ustar ripleyusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Generate each of the messages from is.ratetable > # > {if (is.R()) mdy.date <- function(m, d, y) { + y <- ifelse(y<100, y+1900, y) + as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") + } + else mdy.date <- function(m,d,y) { + y <- ifelse(y<100, y+1900, y) + timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") + } + } > > temp <- runif(21*2*4) > > # Good > attributes(temp) <- list(dim=c(21,2,4), + dimnames=list(c(as.character(75:95)), c("male","female"), + c(as.character(2000:2003))), + dimid=c("age","sex","year"), + type=c(2,1,4), + cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:3)*366.25), + class='ratetable') > is.ratetable(temp) [1] TRUE > > # Factor problem + cutpoints length > attributes(temp) <- list(dim=c(21,2,4), + dimnames=list(c(as.character(75:95)), c("male","female"), + c(as.character(2000:2003))), + dimid=c("age","sex","year"), + type=c(1,1,2), + cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:4)*366.25), + class='ratetable') > is.ratetable(temp, verbose=T) [1] "type[ 1 ] is 1; cutpoint should be null" [2] "wrong length for cutpoints 3" > > > # missing dimid attribute + unsorted cutpoint > attributes(temp) <- list(dim=c(21,2,4), + dimnames=list(c(as.character(75:95)), c("male","female"), + c(as.character(2000:2003))), + type=c(2,1,3), + cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(4:1)*366.25), + class='ratetable') > is.ratetable(temp, verbose=T) [1] "missing attribute: dimid" "wrong length for dimid" [3] "unsorted cutpoints for dimension 3" > > # wrong length for dimid and type, illegal type > attributes(temp) <- list(dim=c(21,2,4), + dimnames=list(c(as.character(75:95)), c("male","female"), + c(as.character(2000:2003))), + dimid=c("age","sex","year", "zed"), + type=c(2,1,3,6), + cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:3)*366.25), + class='ratetable') > is.ratetable(temp, verbose=T) [1] "wrong length for dimid" [2] "type attribute must be 1, 2, 3, or 4" [3] "wrong length for type attribute" > > > # Print and summary > print(survexp.us[1:30,,c('1953', '1985')] ) Rate table with dimension(s): age sex year , , 1953 male female 0-1d 1.157372e-02 8.844000e-03 1-7d 1.446302e-03 1.027012e-03 7-28d 1.379175e-04 1.106070e-04 28-365d 2.814865e-05 2.346732e-05 1 6.169963e-06 5.423669e-06 2 3.860391e-06 3.161334e-06 3 2.909162e-06 2.424089e-06 4 2.448747e-06 1.950051e-06 5 2.210350e-06 1.692520e-06 6 1.988411e-06 1.481583e-06 7 1.813065e-06 1.298053e-06 8 1.684303e-06 1.169315e-06 9 1.593900e-06 1.087146e-06 10 1.569249e-06 1.051541e-06 11 1.626780e-06 1.043325e-06 12 1.771975e-06 1.089887e-06 13 2.062389e-06 1.199447e-06 14 2.462443e-06 1.347361e-06 15 2.944779e-06 1.550072e-06 16 3.410754e-06 1.752797e-06 17 3.819231e-06 1.928140e-06 18 4.164702e-06 2.056914e-06 19 4.504735e-06 2.169256e-06 20 4.822866e-06 2.289823e-06 21 5.086174e-06 2.410395e-06 22 5.278187e-06 2.511789e-06 23 5.335795e-06 2.613186e-06 24 5.286423e-06 2.714587e-06 25 5.198648e-06 2.815992e-06 26 5.130079e-06 2.917400e-06 , , 1985 male female 0-1d 4.429985e-03 3.701977e-03 1-7d 3.595869e-04 2.735770e-04 7-28d 6.385309e-05 5.193376e-05 28-365d 1.277308e-05 9.947467e-06 1 2.451492e-06 2.108968e-06 2 1.739100e-06 1.341882e-06 3 1.369277e-06 1.013196e-06 4 1.122754e-06 7.940941e-07 5 9.995021e-07 7.530142e-07 6 9.173378e-07 6.571643e-07 7 8.488687e-07 5.887021e-07 8 7.530153e-07 5.339338e-07 9 6.297793e-07 4.791661e-07 10 5.202416e-07 4.517830e-07 11 5.202416e-07 4.517830e-07 12 7.530134e-07 5.202412e-07 13 1.232311e-06 6.571636e-07 14 1.862374e-06 8.351727e-07 15 2.533686e-06 1.026887e-06 16 3.150341e-06 1.204921e-06 17 3.657474e-06 1.341877e-06 18 4.041315e-06 1.424054e-06 19 4.315527e-06 1.465144e-06 20 4.603481e-06 1.506233e-06 21 4.864041e-06 1.561021e-06 22 5.069759e-06 1.615810e-06 23 5.138331e-06 1.643205e-06 24 5.152035e-06 1.670600e-06 25 5.110881e-06 1.697995e-06 26 5.097158e-06 1.725391e-06 > summary(survexp.usr) Rate table with 4 dimensions: age ranges from 0 to 39812.25; with 113 categories sex has levels of: male female race has levels of: white black year ranges from 1940-01-01 to 2004-01-01; with 65 categories > survival/tests/book2.R0000644000176000001440000000654712267746072014507 0ustar ripleyuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Tests from the appendix of Therneau and Grambsch # b. Data set 1 and Efron estimate # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 2*beta - (log(3*r +3) + log((r+5)/2) + log(r+3)) u <- (30 + 23*r - r^3)/ ((r+1)*(r+3)*(r+5)) tfun <- function(x) x - x^2 imat <- tfun(r/(r+1)) + tfun(r/(r+5)) + tfun(r/(r+3)) # The matrix of weights, one row per obs, one col per time # Time of 1, 6, 6+0 (second death), and 9 wtmat <- matrix(c(1,1,1,1,1,1, 0,0,1,1,1,1, 0,0,.5, .5, 1,1, 0,0,0,0,0,1), ncol=4) wtmat <- diag(c(r,r,r,1,1,1)) %*% wtmat x <- c(1,1,1,0,0,0) status <- c(1,0,1,1,0,1) xbar <- colSums(wtmat*x)/ colSums(wtmat) haz <- 1/ colSums(wtmat) # one death at each of the times hazmat <- wtmat %*% diag(haz) #each subject's hazard over time mart <- status - rowSums(hazmat) a <- r+1; b<- r+3; d<- r+5 # 'c' in the book, 'd' here score <- c((2*r + 3)/ (3*a^2), -r/ (3*a^2), (675+ r*(1305 +r*(756 + r*(-4 +r*(-79 -13*r)))))/(3*(a*b*d)^2), r*(1/(3*a^2) - a/(2*b^2) - b/(2*d^2)), 2*r*(177 + r*(282 +r*(182 + r*(50 + 5*r)))) /(3*(a*b*d)^2), 2*r*(177 + r*(282 +r*(182 + r*(50 + 5*r)))) /(3*(a*b*d)^2)) # Schoenfeld residual d <- mean(xbar[2:3]) scho <- c(1/(r+1), 1- d, 0- d , 0) surv <- exp(-cumsum(haz)* exp(beta*newx))[c(1,3,4)] varhaz.g <- cumsum(haz^2) # since all numerators are 1 varhaz.d <- cumsum((newx-xbar) * haz) varhaz <- (varhaz.g + varhaz.d^2/ imat) * exp(2*beta*newx) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=haz, mart=mart, score=score, var.g=varhaz.g, var.d=varhaz.d, scho=scho, surv=surv, var=varhaz[c(1,3,4)]) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(time, status) ~x, test1, iter=0) truth0 <- byhand(0,0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid[c(2:6,1)]) aeq(resid(fit0), c(-3/4, NA, 5/6, -1/6, 5/12, 5/12, -3/4)) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')[c(3:7,1)]) sfit <- survfit(fit0, list(x=0), censor=FALSE) aeq(sfit$std.err^2, truth0$var) aeq(sfit$surv, truth0$surv) fit <- coxph(Surv(time, status) ~x, test1, eps=1e-8) aeq(round(fit$coef,6), 1.676857) truth <- byhand(fit$coef, 0) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid[c(2:6,1)]) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')[c(3:7,1)]) sfit <- survfit(fit, list(x=0), censor=FALSE) aeq(sfit$surv, truth$surv) aeq(sfit$std.err^2, truth$var) # # Done with the formal test, now print out lots of bits # resid(fit) resid(fit, 'scor') resid(fit, 'scho') predict(fit, type='lp') predict(fit, type='risk') predict(fit, type='expected') predict(fit, type='terms') predict(fit, type='lp', se.fit=T) predict(fit, type='risk', se.fit=T) predict(fit, type='expected', se.fit=T) predict(fit, type='terms', se.fit=T) summary(survfit(fit)) summary(survfit(fit, list(x=2))) survival/tests/r_scale.R0000644000176000001440000000325512267746072015074 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Verify that scale can be fixed at a value # coefs will differ slightly due to different iteration paths tol <- .001 # Intercept only models fit1 <- survreg(Surv(time,status) ~ 1, lung) fit2 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale) all.equal(fit1$coef, fit2$coef, tolerance= tol) all.equal(fit1$loglik, fit2$loglik, tolerance= tol) # The two robust variance matrices are not the same, since removing # an obs has a different effect on the two models. This just # checks for failure, not for correctness fit3 <- survreg(Surv(time,status) ~ 1, lung, robust=TRUE) fit4 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale, robust=TRUE) # multiple covariates fit1 <- survreg(Surv(time,status) ~ age + ph.karno, lung) fit2 <- survreg(Surv(time,status) ~ age + ph.karno, lung, scale=fit1$scale) all.equal(fit1$coef, fit2$coef, tolerance=tol) all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) fit3 <- survreg(Surv(time,status) ~ age + ph.karno, lung, robust=TRUE) fit4 <- survreg(Surv(time,status) ~ age + ph.karno, lung, scale=fit1$scale, robust=TRUE) # penalized models fit1 <- survreg(Surv(time, status) ~ pspline(age), lung) fit2 <- survreg(Surv(time, status) ~ pspline(age), lung, scale=fit1$scale) all.equal(fit1$coef, fit2$coef, tolerance=tol) all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) fit3 <- survreg(Surv(time,status) ~ pspline(age) + ph.karno, lung, robust=TRUE) fit4 <- survreg(Surv(time,status) ~ pspline(age) + ph.karno, lung, scale=fit1$scale, robust=TRUE) survival/tests/tt.Rout.save0000644000176000001440000000407612267746072015602 0ustar ripleyusers R Under development (unstable) (2013-02-24 r62054) -- "Unsuffered Consequences" Copyright (C) 2013 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > > # A contrived example for the tt function > # > mkdata <- function(n, beta) { + age <- runif(n, 20, 60) + x <- rbinom(n, 1, .5) + + futime <- rep(40, n) # everyone has 40 years of follow-up + status <- rep(0, n) + dtime <- runif(n/2, 1, 40) # 1/2 of them die + dtime <- sort(dtime) + + # The risk is set to beta[1]*x + beta[2]* f(current_age) + # where f= 0 up to age 40, rises linear to age 70, flat after that + for (i in 1:length(dtime)) { + atrisk <- (futime >= dtime[i]) + c.age <- age + dtime + age2 <- pmin(30, pmax(0, c.age-40)) + xbeta <- beta[1]*x + beta[2]*age2 + + # Select a death according to risk + risk <- ifelse(atrisk, exp(xbeta), 0) + dead <- sample(1:n, 1, prob=risk/sum(risk)) + + futime[dead] <- dtime[i] + status[dead] <- 1 + } + data.frame(futime=futime, status=status, age=age, x=x, risk=risk) + } > tdata <- mkdata(500, c(log(1.5), 2/30)) > > fit1 <- coxph(Surv(futime, status) ~ x + pspline(age), tdata) > fit2 <- coxph(Surv(futime, status) ~ x + tt(age), tdata, + tt= function(x, t, ...) pspline(x+t)) > > dfit <- coxph(Surv(futime, status) ~ x + tt(age), tdata, + tt= function(x, t, ...) x+t, iter=0, x=T) > > proc.time() user system elapsed 5.352 0.244 5.607 survival/tests/ovarian.Rout.save0000644000176000001440000003133212267746072016605 0ustar ripleyusers R Under development (unstable) (2013-06-30 r63119) -- "Unsuffered Consequences" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test the coxph program on the Ovarian data > # > > attach(ovarian) > > summary(survfit(Surv(futime, fustat)~1), censor=TRUE) Call: survfit(formula = Surv(futime, fustat) ~ 1) time n.risk n.event survival std.err lower 95% CI upper 95% CI 59 26 1 0.962 0.0377 0.890 1.000 115 25 1 0.923 0.0523 0.826 1.000 156 24 1 0.885 0.0627 0.770 1.000 268 23 1 0.846 0.0708 0.718 0.997 329 22 1 0.808 0.0773 0.670 0.974 353 21 1 0.769 0.0826 0.623 0.949 365 20 1 0.731 0.0870 0.579 0.923 377 19 0 0.731 0.0870 0.579 0.923 421 18 0 0.731 0.0870 0.579 0.923 431 17 1 0.688 0.0919 0.529 0.894 448 16 0 0.688 0.0919 0.529 0.894 464 15 1 0.642 0.0965 0.478 0.862 475 14 1 0.596 0.0999 0.429 0.828 477 13 0 0.596 0.0999 0.429 0.828 563 12 1 0.546 0.1032 0.377 0.791 638 11 1 0.497 0.1051 0.328 0.752 744 10 0 0.497 0.1051 0.328 0.752 769 9 0 0.497 0.1051 0.328 0.752 770 8 0 0.497 0.1051 0.328 0.752 803 7 0 0.497 0.1051 0.328 0.752 855 6 0 0.497 0.1051 0.328 0.752 1040 5 0 0.497 0.1051 0.328 0.752 1106 4 0 0.497 0.1051 0.328 0.752 1129 3 0 0.497 0.1051 0.328 0.752 1206 2 0 0.497 0.1051 0.328 0.752 1227 1 0 0.497 0.1051 0.328 0.752 > > # Various models > coxph(Surv(futime, fustat)~ age) Call: coxph(formula = Surv(futime, fustat) ~ age) coef exp(coef) se(coef) z p age 0.162 1.18 0.0497 3.25 0.0012 Likelihood ratio test=14.3 on 1 df, p=0.000156 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ resid.ds) Call: coxph(formula = Surv(futime, fustat) ~ resid.ds) coef exp(coef) se(coef) z p resid.ds 1.21 3.35 0.672 1.8 0.072 Likelihood ratio test=3.76 on 1 df, p=0.0525 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ rx) Call: coxph(formula = Surv(futime, fustat) ~ rx) coef exp(coef) se(coef) z p rx -0.596 0.551 0.587 -1.02 0.31 Likelihood ratio test=1.05 on 1 df, p=0.305 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ ecog.ps) Call: coxph(formula = Surv(futime, fustat) ~ ecog.ps) coef exp(coef) se(coef) z p ecog.ps 0.398 1.49 0.586 0.679 0.5 Likelihood ratio test=0.47 on 1 df, p=0.494 n= 26, number of events= 12 > > coxph(Surv(futime, fustat)~ resid.ds + rx + ecog.ps) Call: coxph(formula = Surv(futime, fustat) ~ resid.ds + rx + ecog.ps) coef exp(coef) se(coef) z p resid.ds 1.347 3.844 0.680 1.980 0.048 rx -0.749 0.473 0.595 -1.260 0.210 ecog.ps 0.453 1.573 0.590 0.767 0.440 Likelihood ratio test=6.03 on 3 df, p=0.11 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ age + rx + ecog.ps) Call: coxph(formula = Surv(futime, fustat) ~ age + rx + ecog.ps) coef exp(coef) se(coef) z p age 0.147 1.158 0.0463 3.17 0.0015 rx -0.815 0.443 0.6342 -1.28 0.2000 ecog.ps 0.103 1.109 0.6064 0.17 0.8600 Likelihood ratio test=15.9 on 3 df, p=0.00118 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ age + resid.ds + ecog.ps) Call: coxph(formula = Surv(futime, fustat) ~ age + resid.ds + ecog.ps) coef exp(coef) se(coef) z p age 0.142 1.15 0.052 2.740 0.0061 resid.ds 0.663 1.94 0.750 0.883 0.3800 ecog.ps 0.166 1.18 0.615 0.271 0.7900 Likelihood ratio test=15.1 on 3 df, p=0.00173 n= 26, number of events= 12 > coxph(Surv(futime, fustat)~ age + resid.ds + rx) Call: coxph(formula = Surv(futime, fustat) ~ age + resid.ds + rx) coef exp(coef) se(coef) z p age 0.129 1.137 0.0473 2.718 0.0066 resid.ds 0.696 2.006 0.7585 0.918 0.3600 rx -0.849 0.428 0.6392 -1.328 0.1800 Likelihood ratio test=16.8 on 3 df, p=0.000789 n= 26, number of events= 12 > > # Residuals > fit <- coxph(Surv(futime, fustat)~ age + resid.ds + rx + ecog.ps ) > resid(fit) 1 2 3 4 5 6 0.84103277 0.54424388 0.59670824 -0.11281376 0.75111588 -0.32609026 7 8 9 10 11 12 0.59998927 0.29570718 -2.15325805 0.76243469 0.06474272 -0.11680752 13 14 15 16 17 18 -1.22562781 -0.63474839 -0.07535824 -0.17058905 -0.22986038 -0.14654862 19 20 21 22 23 24 -0.18762920 -0.12771548 -0.53373114 -0.65480022 0.95866131 0.82111675 25 26 0.55136554 -0.09154014 > resid(fit, 'dev') 1 2 3 4 5 6 1.41281595 0.69505907 0.78916003 -0.47500266 1.13106322 -0.80757694 7 8 9 10 11 12 0.79532966 0.33122166 -2.07521471 1.16179002 0.06619519 -0.48333740 13 14 15 16 17 18 -1.56564862 -1.12671948 -0.38822221 -0.58410453 -0.67802711 -0.54138455 19 20 21 22 23 24 -0.61258338 -0.50540178 -1.03318066 -0.54976346 2.11059000 1.34157009 25 26 0.70736314 -0.42787881 > resid(fit, 'scor') age resid.ds rx ecog.ps 1 2.26503249 0.05686357 -0.10565379 -0.42661688 2 3.02525428 0.04641312 -0.08623662 -0.34821275 3 -0.06851355 0.07131430 -0.13250357 0.06167527 4 0.94597623 -0.02541510 -0.06423496 0.05971729 5 -5.41507168 0.21605962 -0.32258092 -0.39333909 6 1.48999552 0.24899474 0.14035143 -0.15380664 7 -0.68612431 0.13740891 0.28392482 0.29196506 8 0.93116906 0.08428957 0.16040160 0.18430641 9 -8.20092595 -0.51356176 0.95647608 1.11337112 10 0.95287510 -0.31078224 0.21463992 0.17363388 11 2.85526159 0.09417730 -0.14186603 -0.07586086 12 0.92721107 0.07495002 -0.05400751 0.07061578 13 -1.93962967 -0.43919871 -0.56668535 -0.48467672 14 0.63185387 -0.22745949 -0.29348437 0.38373600 15 1.41495195 0.04835392 0.04051535 0.04555769 16 2.54591188 0.10945916 0.09171493 -0.06745975 17 4.40282381 -0.08236953 0.12358137 -0.09089870 18 1.97071836 0.09403352 0.07878991 0.08859570 19 0.77692371 0.12039304 -0.08675286 0.11343089 20 1.76784279 -0.04576632 -0.05905095 0.07721016 21 -0.82272526 0.34247077 -0.24677770 -0.21106494 22 -3.48057998 -0.03965965 0.07368852 -0.26669335 23 -14.86623758 0.28137017 -0.52279208 -0.43881151 24 3.96084273 -0.56566921 0.34648950 0.44907410 25 4.30025715 0.15241262 0.22417527 -0.20390438 26 0.31490641 0.07091764 -0.05212198 0.04845623 > resid(fit, 'scho') age resid.ds rx ecog.ps 59 2.69315603 0.06761160 -0.1256239 -0.5072536 115 5.36390105 0.08039116 -0.1493686 -0.6031318 156 -0.89877512 0.10683985 -0.1985108 0.1984379 268 6.95664326 0.12857949 -0.2389036 0.2388157 329 -15.73656605 0.28889883 -0.5367805 -0.4634169 353 4.06104389 -0.70587654 0.4535120 0.5282024 365 5.50035833 0.25348264 0.4796230 -0.4413864 431 -8.06809505 0.27490176 -0.4297023 -0.5248323 464 -2.15471559 0.23158421 0.5066040 0.4814387 475 0.57065051 0.25226659 0.5518479 0.5244351 563 0.06487219 -0.47274522 0.3319974 0.2747028 638 1.64752655 -0.50593437 -0.6446947 0.2939883 > > fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps + strata(rx)) > summary(fit) Call: coxph(formula = Surv(futime, fustat) ~ age + ecog.ps + strata(rx)) n= 26, number of events= 12 coef exp(coef) se(coef) z Pr(>|z|) age 0.13853 1.14858 0.04801 2.885 0.00391 ** ecog.ps -0.09670 0.90783 0.62994 -0.154 0.87800 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 exp(coef) exp(-coef) lower .95 upper .95 age 1.1486 0.8706 1.0454 1.262 ecog.ps 0.9078 1.1015 0.2641 3.120 Concordance= 0.819 (se = 0.134 ) Rsquare= 0.387 (max possible= 0.874 ) Likelihood ratio test= 12.71 on 2 df, p=0.001736 Wald test = 8.43 on 2 df, p=0.01476 Score (logrank) test = 12.24 on 2 df, p=0.002195 > summary(survfit(fit)) Call: survfit(formula = fit) rx=1 time n.risk n.event survival std.err lower 95% CI upper 95% CI 59 13 1 0.978 0.0266 0.9275 1 115 12 1 0.951 0.0478 0.8620 1 156 11 1 0.910 0.0760 0.7722 1 268 10 1 0.862 0.1055 0.6776 1 329 9 1 0.737 0.1525 0.4909 1 431 8 1 0.627 0.1704 0.3680 1 638 5 1 0.333 0.2296 0.0865 1 rx=2 time n.risk n.event survival std.err lower 95% CI upper 95% CI 353 13 1 0.943 0.0560 0.839 1.000 365 12 1 0.880 0.0812 0.735 1.000 464 9 1 0.789 0.1143 0.594 1.000 475 8 1 0.697 0.1349 0.477 1.000 563 7 1 0.597 0.1494 0.366 0.975 > sfit <- survfit(fit, list(age=c(30,70), ecog.ps=c(2,3))) #two columns > sfit Call: survfit(formula = fit, newdata = list(age = c(30, 70), ecog.ps = c(2, 3))) records n.max n.start events median 0.95LCL 0.95UCL 1, rx=1 13 13 13 7 NA NA NA 2, rx=1 13 13 13 7 268 115 NA 1, rx=2 13 13 13 5 NA NA NA 2, rx=2 13 13 13 5 365 353 NA > summary(sfit) Call: survfit(formula = fit, newdata = list(age = c(30, 70), ecog.ps = c(2, 3))) rx=1 time n.risk n.event survival1 survival2 59 13 1 0.999 0.87905 115 12 1 0.999 0.74575 156 11 1 0.998 0.57398 268 10 1 0.996 0.41764 329 9 1 0.992 0.16673 431 8 1 0.988 0.06489 638 5 1 0.973 0.00161 rx=2 time n.risk n.event survival1 survival2 353 13 1 0.999 0.7092 365 12 1 0.997 0.4738 464 9 1 0.994 0.2494 475 8 1 0.991 0.1207 563 7 1 0.987 0.0489 > detach() > > > # Check of offset + surv, added 7/2000 > fit1 <- coxph(Surv(futime, fustat) ~ age + rx, ovarian, + control=coxph.control(eps=1e-8)) > fit2 <- coxph(Surv(futime, fustat) ~ age + offset(rx*fit1$coef[2]), ovarian, + control=coxph.control(eps=1e-8)) > all.equal(fit1$coef[1], fit2$coef[1]) [1] TRUE > > fit <- coxph(Surv(futime, fustat) ~ age + offset(rx), ovarian) > survfit(fit, censor=FALSE)$surv^exp(-1.5) [1] 0.9977751 0.9951975 0.9917927 0.9881504 0.9825769 0.9770280 0.9704304 [8] 0.9603196 0.9499085 0.9385539 0.9217097 0.9031334 > > # Check it by hand -- there are no tied times > # Remember that offsets from survfit are centered, which is 1.5 for > # this data set. > eta <- fit$coef*(ovarian$age - fit$mean) + (ovarian$rx - 1.5) > ord <- order(ovarian$futime) > risk <- exp(eta[ord]) > rsum <- rev(cumsum(rev(risk))) # cumulative risk at each time point > dead <- (ovarian$fustat[ord]==1) > baseline <- cumsum(1/rsum[dead]) > all.equal(survfit(fit, censor=FALSE)$surv, exp(-baseline)) [1] TRUE > > rm(fit, fit1, fit2, ord, eta, risk, rsum, dead, baseline, sfit) > > proc.time() user system elapsed 0.256 0.040 0.292 survival/tests/fr_kidney.Rout.save0000644000176000001440000003150412267746072017121 0ustar ripleyusers R version 3.0.1 (2013-05-16) -- "Good Sport" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # From: McGilchrist and Aisbett, Biometrics 47, 461-66, 1991 > # Data on the recurrence times to infection, at the point of insertion of > # the catheter, for kidney patients using portable dialysis equipment. > # Catheters may be removed for reasons other than infection, in which case > # the observation is censored. Each patient has exactly 2 observations. > > # Variables: patient, time, status, age, > # sex (1=male, 2=female), > # disease type (0=GN, 1=AN, 2=PKD, 3=Other) > # author's estimate of the frailty > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # I don't match their answers, and I think that I'm right > kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney) > kfit1<- coxph(Surv(time, status) ~age + sex + disease + + frailty(id, theta=1), kidney, iter=20) > kfit0 <- coxph(Surv(time, status)~ age + sex + disease, kidney) > temp <- coxph(Surv(time, status) ~age + sex + disease + + frailty(id, theta=1, sparse=F), kidney) > > > # Check out the EM based score equations > # temp1 and kfit1 should have essentially the same coefficients > # temp2 should equal kfit1$frail > # equality won't be exact because of the different iteration paths > temp1 <- coxph(Surv(time, status) ~ age + sex + disease + + offset(kfit1$frail[id]), kidney) > rr <- tapply(resid(temp1), kidney$id, sum) > temp2 <- log(rr/1 +1) > aeq(temp1$coef, kfit1$coef, tolerance=.005) [1] TRUE > aeq(temp2, kfit1$frail, tolerance=.005) [1] TRUE > > > > kfit Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id), data = kidney) coef se(coef) se2 Chisq DF p age 0.00318 0.0111 0.0111 0.08 1 7.8e-01 sex -1.48314 0.3582 0.3582 17.14 1 3.5e-05 diseaseGN 0.08796 0.4064 0.4064 0.05 1 8.3e-01 diseaseAN 0.35079 0.3997 0.3997 0.77 1 3.8e-01 diseasePKD -1.43111 0.6311 0.6311 5.14 1 2.3e-02 frailty(id) 0.00 0 9.3e-01 Iterations: 6 outer, 35 Newton-Raphson Variance of random effect= 5e-07 I-likelihood = -179.1 Degrees of freedom for terms= 1 1 3 0 Likelihood ratio test=17.6 on 5 df, p=0.00342 n= 76 > kfit1 Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, theta = 1), data = kidney, iter = 20) coef se(coef) se2 Chisq DF p age 0.00389 0.0196 0.00943 0.04 1.0 0.84000 sex -2.00764 0.5910 0.41061 11.54 1.0 0.00068 diseaseGN 0.35335 0.7165 0.38015 0.24 1.0 0.62000 diseaseAN 0.52341 0.7230 0.40463 0.52 1.0 0.47000 diseasePKD -0.45938 1.0898 0.66088 0.18 1.0 0.67000 frailty(id, theta = 1) 28.51 18.8 0.06900 Iterations: 1 outer, 14 Newton-Raphson Variance of random effect= 1 I-likelihood = -182.5 Degrees of freedom for terms= 0.2 0.5 1.1 18.8 Likelihood ratio test=63.8 on 20.6 df, p=2.53e-06 n= 76 > kfit0 Call: coxph(formula = Surv(time, status) ~ age + sex + disease, data = kidney) coef exp(coef) se(coef) z p age 0.00318 1.003 0.0111 0.285 7.8e-01 sex -1.48314 0.227 0.3582 -4.140 3.5e-05 diseaseGN 0.08796 1.092 0.4064 0.216 8.3e-01 diseaseAN 0.35079 1.420 0.3997 0.878 3.8e-01 diseasePKD -1.43111 0.239 0.6311 -2.268 2.3e-02 Likelihood ratio test=17.6 on 5 df, p=0.00342 n= 76, number of events= 58 > temp Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, theta = 1, sparse = F), data = kidney) coef se(coef) se2 Chisq DF p age 0.00389 0.0186 0.0112 0.04 1.0 0.83000 sex -2.00763 0.5762 0.4080 12.14 1.0 0.00049 diseaseGN 0.35335 0.6786 0.4315 0.27 1.0 0.60000 diseaseAN 0.52340 0.6891 0.4404 0.58 1.0 0.45000 diseasePKD -0.45934 1.0139 0.7130 0.21 1.0 0.65000 frailty(id, theta = 1, sp 26.23 18.7 0.12000 Iterations: 1 outer, 5 Newton-Raphson Variance of random effect= 1 I-likelihood = -182.5 Degrees of freedom for terms= 0.4 0.5 1.4 18.7 Likelihood ratio test=63.8 on 21 df, p=3.27e-06 n= 76 > > # > # Now fit the data using REML > # > kfitm1 <- coxph(Surv(time,status) ~ age + sex + disease + + frailty(id, dist='gauss'), kidney) > kfitm2 <- coxph(Surv(time,status) ~ age + sex + disease + + frailty(id, dist='gauss', sparse=F), kidney) > kfitm1 Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, dist = "gauss"), data = kidney) coef se(coef) se2 Chisq DF p age 0.00489 0.015 0.0106 0.11 1.0 0.74000 sex -1.69728 0.461 0.3617 13.55 1.0 0.00023 diseaseGN 0.17986 0.545 0.3927 0.11 1.0 0.74000 diseaseAN 0.39294 0.545 0.3982 0.52 1.0 0.47000 diseasePKD -1.13631 0.825 0.6173 1.90 1.0 0.17000 frailty(id, dist = "gauss 17.89 12.1 0.12000 Iterations: 7 outer, 42 Newton-Raphson Variance of random effect= 0.493 Degrees of freedom for terms= 0.5 0.6 1.7 12.1 Likelihood ratio test=47.5 on 14.9 df, p=2.82e-05 n= 76 > summary(kfitm2) Call: coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id, dist = "gauss", sparse = F), data = kidney) n= 76, number of events= 58 coef se(coef) se2 Chisq DF p age 0.004924 0.0149 0.01084 0.11 1.00 0.74000 sex -1.702037 0.4631 0.36134 13.51 1.00 0.00024 diseaseGN 0.181733 0.5413 0.40169 0.11 1.00 0.74000 diseaseAN 0.394416 0.5428 0.40520 0.53 1.00 0.47000 diseasePKD -1.131602 0.8175 0.62981 1.92 1.00 0.17000 frailty(id, dist = "gauss 18.13 12.27 0.12000 exp(coef) exp(-coef) lower .95 upper .95 age 1.0049 0.9951 0.97601 1.0347 sex 0.1823 5.4851 0.07355 0.4519 diseaseGN 1.1993 0.8338 0.41515 3.4646 diseaseAN 1.4835 0.6741 0.51196 4.2988 diseasePKD 0.3225 3.1006 0.06497 1.6010 gauss:1 1.7011 0.5879 0.51805 5.5856 gauss:2 1.4241 0.7022 0.38513 5.2662 gauss:3 1.1593 0.8626 0.38282 3.5108 gauss:4 0.6226 1.6063 0.23397 1.6566 gauss:5 1.2543 0.7972 0.39806 3.9526 gauss:6 1.1350 0.8811 0.38339 3.3599 gauss:7 1.9726 0.5069 0.56938 6.8342 gauss:8 0.6196 1.6140 0.21662 1.7721 gauss:9 0.8231 1.2149 0.28884 2.3456 gauss:10 0.5030 1.9882 0.17468 1.4482 gauss:11 0.7565 1.3218 0.27081 2.1134 gauss:12 1.1048 0.9052 0.33430 3.6510 gauss:13 1.3022 0.7679 0.42746 3.9673 gauss:14 0.5912 1.6915 0.18537 1.8855 gauss:15 0.5449 1.8352 0.18580 1.5980 gauss:16 1.0443 0.9576 0.31424 3.4702 gauss:17 0.9136 1.0945 0.30004 2.7820 gauss:18 0.9184 1.0889 0.32476 2.5970 gauss:19 0.6426 1.5562 0.19509 2.1166 gauss:20 1.1698 0.8549 0.34528 3.9631 gauss:21 0.3336 2.9974 0.10202 1.0910 gauss:22 0.6871 1.4554 0.23531 2.0064 gauss:23 1.4778 0.6767 0.47560 4.5918 gauss:24 1.0170 0.9832 0.31555 3.2779 gauss:25 0.8096 1.2352 0.27491 2.3843 gauss:26 0.6145 1.6274 0.21491 1.7570 gauss:27 1.0885 0.9187 0.32819 3.6101 gauss:28 1.5419 0.6485 0.49231 4.8292 gauss:29 1.3785 0.7254 0.43766 4.3421 gauss:30 1.3748 0.7274 0.44444 4.2530 gauss:31 1.4447 0.6922 0.47031 4.4380 gauss:32 1.1993 0.8339 0.35207 4.0850 gauss:33 1.9449 0.5142 0.55229 6.8491 gauss:34 0.8617 1.1605 0.27685 2.6820 gauss:35 1.7031 0.5872 0.52657 5.5084 gauss:36 0.8275 1.2085 0.22811 3.0015 gauss:37 1.4707 0.6800 0.38936 5.5549 gauss:38 1.0479 0.9543 0.30685 3.5789 Iterations: 6 outer, 21 Newton-Raphson Variance of random effect= 0.5090956 Degrees of freedom for terms= 0.5 0.6 1.7 12.3 Concordance= 0.796 (se = 0.046 ) Likelihood ratio test= 117.9 on 15.14 df, p=0 > # > # Fit the kidney data using AIC > # > > # gamma, corrected aic > coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=T), + kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, method = "aic", caic = T), data = kidney) coef se(coef) se2 Chisq DF p age 0.00364 0.0105 0.00891 0.12 1.00 0.73000 sex -1.31953 0.3956 0.32497 11.13 1.00 0.00085 frailty(id, method = "aic 13.55 7.81 0.08700 Iterations: 9 outer, 63 Newton-Raphson Variance of random effect= 0.203 I-likelihood = -182.1 Degrees of freedom for terms= 0.7 0.7 7.8 Likelihood ratio test=33.3 on 9.21 df, p=0.000137 n= 76 > > coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t'), kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, dist = "t"), data = kidney) coef se(coef) se2 Chisq DF p age 0.00561 0.012 0.00872 0.22 1.0 0.64000 sex -1.65487 0.483 0.38527 11.74 1.0 0.00061 frailty(id, dist = "t") 20.33 13.9 0.12000 Iterations: 8 outer, 58 Newton-Raphson Variance of random effect= 0.825 Degrees of freedom for terms= 0.5 0.6 13.9 Likelihood ratio test=48.6 on 15.1 df, p=2.18e-05 n= 76 > coxph(Surv(time, status) ~ age + sex + frailty(id, dist='gauss', method='aic', + caic=T), kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, dist = "gauss", method = "aic", caic = T), data = kidney) coef se(coef) se2 Chisq DF p age 0.00303 0.0103 0.00895 0.09 1.00 0.7700 sex -1.15152 0.3637 0.30556 10.03 1.00 0.0015 frailty(id, dist = "gauss 12.35 6.76 0.0800 Iterations: 7 outer, 41 Newton-Raphson Variance of random effect= 0.185 Degrees of freedom for terms= 0.8 0.7 6.8 Likelihood ratio test=28.4 on 8.22 df, p=0.000476 n= 76 > > > # uncorrected aic > coxph(Surv(time, status) ~ age + sex + frailty(id, method='aic', caic=F), + kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, method = "aic", caic = F), data = kidney) coef se(coef) se2 Chisq DF p age 0.00785 0.015 0.00823 0.27 1.0 0.60000 sex -1.88990 0.561 0.39941 11.34 1.0 0.00076 frailty(id, method = "aic 37.46 19.7 0.00920 Iterations: 8 outer, 87 Newton-Raphson Variance of random effect= 0.886 I-likelihood = -182.8 Degrees of freedom for terms= 0.3 0.5 19.7 Likelihood ratio test=61.2 on 20.5 df, p=6.25e-06 n= 76 Warning message: In coxpenal.fit(X, Y, strats, offset, init = init, control, weights = weights, : Inner loop failed to coverge for iterations 4 > > coxph(Surv(time, status) ~ age + sex + frailty(id, dist='t', caic=F), kidney) Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, dist = "t", caic = F), data = kidney) coef se(coef) se2 Chisq DF p age 0.00561 0.012 0.00872 0.22 1.0 0.64000 sex -1.65487 0.483 0.38527 11.74 1.0 0.00061 frailty(id, dist = "t", c 20.33 13.9 0.12000 Iterations: 8 outer, 58 Newton-Raphson Variance of random effect= 0.825 Degrees of freedom for terms= 0.5 0.6 13.9 Likelihood ratio test=48.6 on 15.1 df, p=2.18e-05 n= 76 > > proc.time() user system elapsed 0.504 0.028 0.532 survival/tests/singtest.R0000644000176000001440000000143512267746072015322 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # A simple test of an overdetermined system # Should give a set of NA coefficients # test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) temp <- rep(0:3, rep(7,4)) stest <- data.frame(start = 10*temp, stop = 10*temp + test1$time, status = rep(test1$status,4), x = c(test1$x+ 1:7, rep(test1$x,3)), epoch = rep(1:4, rep(7,4))) # Will create a warning about a singular X matrix fit1 <- coxph(Surv(start, stop, status) ~ x * factor(epoch), stest) fit1$coef # elements 2:4 should be NA all.equal(is.na(fit1$coef), c(F,T,T,T,F,F,F), check.attributes=FALSE) survival/tests/data.cracks0000644000176000001440000000017712267746072015442 0ustar ripleyusersNA 6.12 5 6.12 19.92 16 19.92 29.64 12 29.64 35.40 18 35.40 39.72 18 39.72 45.24 2 45.24 52.32 6 52.32 63.48 17 63.48 NA 73 survival/tests/testci2.R0000644000176000001440000001177412267746072015046 0ustar ripleyuserslibrary(survival) # # Test the multi-state version of the CI curve # tdata <- data.frame(id=c(1,1,1,1, 2,2,2, 3,3, 4,4,4,4, 5, 6, 6), time1=c(0, 10,20,30, 0, 5, 15, 0, 20, 0, 6,18,34, 0, 0,15), time2=c(10,20,30,40, 5, 15,25, 20, 22, 6,18,34,50,10,15,20), status=c(1,1,1,1, 1,1,1, 1,0, 1,1,1,0,0,1,0), event= letters[c(1,2,3,4, 2,4,3, 2,2, 3,1,2,2,1, 1,1)], wt = c(2,2,2,2, 1,1,1, 3,3, 1,1,1,1, 2, 1,1), stringsAsFactors=TRUE) tdata$stat2 <- factor(tdata$status * as.numeric(tdata$event), labels=c(" ", levels(tdata$event))) fit <- survfit(Surv(time1, time2, stat2) ~1, id=id, weight=wt, tdata) # The exact figures for testci2. # The subject data of id, weight, (transition time, transition) #1: 2 (10, 0->a) (20, a->b) (30, b->c) (40, c->d) no data after 40=censored #2: 1 ( 5, 0->b) (15, b->d) (25, d->c) no data after 25 implies censored then #3: 3 (20, 0->b) (22, censor) #4: 1 ( 6, 0->c) (18, c->a) (34, a->b) (50, censor) #5: 2 (10, censor) #6: 1 (15, 0->a) (20, censor) # Each line below follows a subject through time as a (state, rdist weight) pair # using the redistribute to the right algorithm. # RDR algorithm: at each censoring (or last fu) a subject's weight is put into # a "pool" for that state and their weight goes to zero. The pool is # dynamically shared between all members of the state proportional to their # original case weight, when someone leaves they take their portion of the # pool to the new state. # Table of case weights and state, blank is weight of zero # time 5 6 10 15 18 20 25 30 34 40 50 # ----------------------------------------------------------------------- # id, wt # 1, 2 - - a a a b b c c d # 2, 1 b b b d d d c # 3, 3 - - - - - b # 4, 1 - c c c a a a a b b b # 5, 2 - - - # 6, 1 - - - a a a # Pool weights # 10 10+ 15 18 20 20+ 22+ 25 25+ 30 34 40 40+ # - 0 2 3/2 3/2 0 # a 0 0 1/2 1/2 1/4 5/4 5/4 5/4 5/4 5/4 # b 0 0 0 0 7/4 7/4 19/4 19/4 19/4 5/4 5/4 5/4 # c 0 0 0 0 0 1 23/4 23/4 # d 0 0 0 0 0 23/4 31/4 # fit$prev for time i and state j = total weight at that time/state in the # above table (original weight + redistrib), divided by 10. # time 5 6 10 15 18 20 25 30 34 40 50 truth <- matrix(c(0, 0, 2, 3, 4, 2, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 5, 2, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 0) + c(0, 0, 0, .5, .5, 1/4, 5/4, 5/4, 0, 0, 0, 0, 0, 0, 0, 0, 7/4, 19/4, 0, 5/4, 5/4, 5/4, 0, 0, 0, 0, 0, 0, 0, 23/4, 23/4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23/4, 31/4), ncol=4) truth <- truth[c(1:6, 6:11),]/10 #the explicit censor at 22 #dimnames(truth) <- list(c(5, 6, 10, 15, 18, 20, 25, 30, 34, 40, 50), # c('a', 'b', 'c', 'd') all.equal(truth, fit$prev) # Test the dfbetas dfbeta <- array(0., dim=c(6, nrow(fit$prev), ncol(fit$prev))) eps <- 1e-6 for (i in 1:6) { twt <- tdata$wt twt[tdata$id ==i] <- twt[tdata$id==i] + eps tfit <- survfit(Surv(time1, time2, stat2) ~ cluster(id), tdata, weight=twt) dfbeta[i,,] <- (tfit$prev - fit$prev)/eps } twt <- tdata$wt[match(1:6, tdata$id)] temp <- (twt*dfbeta) * dfbeta tstd <- sqrt(apply(temp, 2:3, sum)) all.equal(tstd, fit$std.err, tolerance=eps) if (FALSE) { # a plot of the data that helped during creation of the example plot(c(0,50), c(1,6), type='n', xlab='time', ylab='subject') with(tdata, segments(time1, id, time2, id)) with(tdata, text(time2, id, as.numeric(stat2)-1, cex=1.5, col=2)) } if (FALSE) { # The following lines test out 4 error messages in the routine # # Gap in follow-up time, id 2 survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 4, 6, 3), factor(c(0,0,1,1,0,2))) ~1, id=c(1,1,1,2,2,3)) # mismatched weights survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,0,1,1,0,2))) ~1, id=c(1,1,1,2,2,3), weights=c(1,1,2,1,1,4)) # in two groups at once survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,0,1,1,0,2))) ~ c(1,1,2,1,1,2), id=c(1,1,1,2,2,3)) # state change that isn't a state change (went from 1 to 1) survfit(Surv(c(0,5,9,0,5,0), c(5,9,12, 5, 6, 3), factor(c(0,1,1,1,0,2))) ~1, id=c(1,1,1,2,2,3)) } survival/tests/fr_rat2.Rout.save0000644000176000001440000001300012267746072016475 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # From Gail, Sautner and Brown, Biometrics 36, 255-66, 1980 > > # 48 rats were injected with a carcinogen, and then randomized to either > # drug or placebo. The number of tumors ranges from 0 to 13; all rats were > # censored at 6 months after randomization. > > # Variables: rat, treatment (1=drug, 0=control), o > # observation # within rat, > # (start, stop] status > # The raw data has some intervals of zero length, i.e., start==stop. > # We add .1 to these times as an approximate solution > # > rat2 <- read.table('data.rat2', col.names=c('id', 'rx', 'enum', 'start', + 'stop', 'status')) > temp1 <- rat2$start > temp2 <- rat2$stop > for (i in 1:nrow(rat2)) { + if (temp1[i] == temp2[i]) { + temp2[i] <- temp2[i] + .1 + if (i < nrow(rat2) && rat2$id[i] == rat2$id[i+1]) { + temp1[i+1] <- temp1[i+1] + .1 + if (temp2[i+1] <= temp1[i+1]) temp2[i+1] <- temp1[i+1] + } + } + } > rat2$start <- temp1 > rat2$stop <- temp2 > > r2fit0 <- coxph(Surv(start, stop, status) ~ rx + cluster(id), rat2) > > r2fitg <- coxph(Surv(start, stop, status) ~ rx + frailty(id), rat2) > r2fitm <- coxph(Surv(start, stop, status) ~ rx + frailty.gaussian(id), rat2) > > r2fit0 Call: coxph(formula = Surv(start, stop, status) ~ rx + cluster(id), data = rat2) coef exp(coef) se(coef) robust se z p rx -0.827 0.438 0.151 0.204 -4.05 5.2e-05 Likelihood ratio test=32.9 on 1 df, p=9.89e-09 n= 253, number of events= 212 > r2fitg Call: coxph(formula = Surv(start, stop, status) ~ rx + frailty(id), data = rat2) coef se(coef) se2 Chisq DF p rx -0.838 0.219 0.152 14.6 1.0 0.00013 frailty(id) 57.3 26.4 0.00045 Iterations: 7 outer, 26 Newton-Raphson Variance of random effect= 0.317 I-likelihood = -779.1 Degrees of freedom for terms= 0.5 26.3 Likelihood ratio test=120 on 26.8 df, p=8.43e-14 n= 253 > r2fitm Call: coxph(formula = Surv(start, stop, status) ~ rx + frailty.gaussian(id), data = rat2) coef se(coef) se2 Chisq DF p rx -0.79 0.22 0.154 12.9 1.0 3.2e-04 frailty.gaussian(id) 60.9 24.9 7.3e-05 Iterations: 6 outer, 23 Newton-Raphson Variance of random effect= 0.303 Degrees of freedom for terms= 0.5 24.9 Likelihood ratio test=118 on 25.4 df, p=6.99e-14 n= 253 > > #This example is unusual: the frailties variances end up about the same, > # but the effect on rx differs. Double check it > # Because of different iteration paths, the coef won't be exactly the > # same, but darn close. > > temp <- coxph(Surv(start, stop, status) ~ rx + offset(r2fitm$frail[id]), rat2) > all.equal(temp$coef, r2fitm$coef[1], tolerance=1e-7) [1] TRUE > > temp <- coxph(Surv(start, stop, status) ~ rx + offset(r2fitg$frail[id]), rat2) > all.equal(temp$coef, r2fitg$coef[1], tolerance=1e-7) [1] TRUE > > # > # What do I get with AIC > # > r2fita1 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, method='aic'), + rat2) > r2fita2 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, method='aic', + dist='gauss'), rat2) > r2fita3 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, dist='t'), + rat2) > > r2fita1 Call: coxph(formula = Surv(start, stop, status) ~ rx + frailty(id, method = "aic"), data = rat2) coef se(coef) se2 Chisq DF p rx -0.838 0.23 0.151 13.3 1.0 0.00026 frailty(id, method = "aic 60.4 28.2 0.00039 Iterations: 10 outer, 34 Newton-Raphson Variance of random effect= 0.375 I-likelihood = -779.2 Degrees of freedom for terms= 0.4 28.2 Likelihood ratio test=124 on 28.6 df, p=7.92e-14 n= 253 > r2fita2 Call: coxph(formula = Surv(start, stop, status) ~ rx + frailty(id, method = "aic", dist = "gauss"), data = rat2) coef se(coef) se2 Chisq DF p rx -0.785 0.245 0.154 10.3 1.0 1.3e-03 frailty(id, method = "aic 70.4 28.5 2.1e-05 Iterations: 9 outer, 33 Newton-Raphson Variance of random effect= 0.436 Degrees of freedom for terms= 0.4 28.5 Likelihood ratio test=125 on 28.9 df, p=5.93e-14 n= 253 > r2fita3 Call: coxph(formula = Surv(start, stop, status) ~ rx + frailty(id, dist = "t"), data = rat2) coef se(coef) se2 Chisq DF p rx -0.79 0.254 0.157 9.67 1 0.00190 frailty(id, dist = "t") 64.72 30 0.00024 Iterations: 7 outer, 29 Newton-Raphson Variance of random effect= 0.78 Degrees of freedom for terms= 0.4 30.0 Likelihood ratio test=126 on 30.4 df, p=1.39e-13 n= 253 > survival/tests/testnull.R0000644000176000001440000000113312267746072015327 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # A test of NULL models # fit1 <- coxph(Surv(stop, event) ~ rx + strata(number), bladder, iter=0) fit2 <- coxph(Surv(stop, event) ~ strata(number), bladder) all.equal(fit1$loglik[2], fit2$loglik) all.equal(fit1$resid, fit2$resid) fit1 <- coxph(Surv(start, stop, event) ~ rx + strata(number), bladder2, iter=0) fit2 <- coxph(Surv(start, stop, event) ~ strata(number), bladder2) all.equal(fit1$loglik[2], fit2$loglik) all.equal(fit1$resid, fit2$resid) survival/tests/fr_cancer.R0000644000176000001440000000126112267746072015401 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Here is a test case with multiple smoothing terms # fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, lung) fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), lung) fit2 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,4), lung) fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), lung) fit4 <- coxph(Surv(time, status) ~ ph.ecog + pspline(wt.loss,3), lung) fit5 <-coxph(Surv(time, status) ~ ph.ecog + pspline(age,3) + pspline(wt.loss,3), lung) fit1 fit2 fit3 fit4 fit5 rm(fit1, fit2, fit3, fit4, fit5) survival/tests/coxsurv4.R0000644000176000001440000000331712267746072015260 0ustar ripleyuserslibrary(survival) # Strata by covariate interactions, a case pointed out in early 2011 # by Frank Harrell, which as it turns out had never been computed # correctly by any version of the package. Which shows how often this # case arises in practice. # aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y)) fit1 <- coxph(Surv(time, status) ~ wt.loss + age*strata(sex) + strata(ph.ecog), data=lung) tdata <- data.frame(wt.loss=c(10,5,0,10, 15,20,25), age =c(50,60,50,60,70,40,21), sex =c(1,1,2,2,1,1,1), ph.ecog=c(0,0,1,1,2,2,2)) surv1 <- survfit(fit1, newdata=tdata) fit2 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*0), data=lung, init=fit1$coef, iter=0, subset=(sex==1 & ph.ecog==0)) fit2$var <- fit1$var surv2 <- survfit(fit2, newdata=list(wt.loss=c(10,5), age=c(50,60))) s1 <- surv1[1:2] aeq(s1$surv, surv2$surv) #first a vector, second a matrix aeq(s1$std.err, surv2$std.err) aeq(s1[1]$time, surv2$time) aeq(s1[1]$n.event, surv2$n.event) fit3 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*1), data=lung, init=fit1$coef, iter=0, subset=(sex==2 & ph.ecog==1)) fit3$var <- fit1$var surv3 <- survfit(fit3, newdata=list(wt.loss=c(0,10), age=c(50,60))) aeq(surv1[3:4]$surv, surv3$surv) aeq(surv1[3:4]$std, surv3$std) fit4 <- coxph(Surv(time, status) ~ wt.loss + age + I(age*0), data=lung, init=fit1$coef, iter=0, subset=(sex==1 & ph.ecog==2)) fit4$var <- fit1$var surv4 <- survfit(fit4, newdata=list(wt.loss=c(15,20,25), age=c(70,40,21))) aeq(surv1[5:7]$surv, surv4$surv) aeq(surv1[5:7]$std.err, surv4$std.err) aeq(surv1[5]$n.risk, surv4$n.risk) survival/tests/coxsurv3.Rout.save0000644000176000001440000001124512267746072016743 0ustar ripleyusers R version 2.11.0 (2010-04-22) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # One more test on coxph survival curves, to test out the individual > # option. First fit a model with a time dependent covariate > # > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > # True hazard function, from the validation document > lambda <- function(beta, x=0, method='efron') { + r <- exp(beta) + lambda <- c(1/(r+1), 1/(r+2), 1/(3*r +2), 1/(3*r+1), + 1/(3*r+1), 1/(3*r+2) + 1/(2*r +2)) + if (method == 'breslow') lambda[9] <- 2/(3*r +2) + list(time=c(2,3,6,7,8,9), lambda=lambda) + } > > fit <- coxph(Surv(start, stop, event) ~x, test2) > # A curve for someone who never changes > surv1 <-survfit(fit, newdata=list(x=0), censor=FALSE) > > true <- lambda(fit$coef, 0) > > aeq(true$time, surv1$time) [1] TRUE > aeq(-log(surv1$surv), cumsum(true$lambda)) [1] TRUE > > # Reprise it with a time dependent subject who doesn't change > data2 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), + event=c(0,0,0,0), x=c(0,0,0,0)) > surv2 <- survfit(fit, newdata=data2, individual=TRUE, censor=FALSE) > aeq(surv2$surv, surv1$surv) [1] TRUE > > > # > # Now a more complex data set with multiple strata > # > test3 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17, + 1:11), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, + 0, 1, 1, 0, 0, 1, 1, 0, 1, 0,1), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0, + 1, 2, 3, 2, 1, 1, 1, 0, 2, 1,0), + grp = c(rep('a', 10), rep('b', 11))) > > fit2 <- coxph(Surv(start, stop, event) ~ x + strata(grp), test3) > > # The above tests show the program works for a simple case, use it to > # get a true baseline for strata 2 > fit2b <- coxph(Surv(start, stop, event) ~x, test3, + subset=(grp=='b'), init=fit2$coef, iter=0) > temp <- survfit(fit2b, newdata=list(x=0), censor=F) > true2 <- list(time=temp$time, lambda=diff(c(0, -log(temp$surv)))) > true1 <- lambda(fit2$coef, x=0) > > # Separate strata, one value > surv3 <- survfit(fit2, list(x=0), censor=FALSE) > aeq(true1$time, (surv3[1])$time) [1] TRUE > aeq(-log(surv3[1]$surv), cumsum(true1$lambda)) [1] TRUE > > data4 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), + event=c(0,0,0,0), x=c(0,0,0,0), grp=rep('a', 4)) > surv4a <- survfit(fit2, newdata=data4, individual=T, censor=FALSE) > aeq(-log(surv4a$surv), cumsum(true1$lambda)) [1] TRUE > > data4$grp <- rep('b',4) > surv4b <- survfit(fit2, newdata=data4, individual=T, censor=FALSE) > aeq(-log(surv4b$surv), cumsum(true2$lambda)) [1] TRUE > > > # Now for something more complex > # Subject 1 skips day 4. Since there were no events that day the survival > # will be the same, but the times will be different. > # Subject 2 spends some time in strata 1, some in strata 2, with > # moving covariates > # > data5 <- data.frame(start=c(0,5,9,11, + 0, 4, 3), + stop =c(4,9,11,17, 4,8,7), + event=rep(0,7), + x=c(1,1,1,1, 0,1,2), + grp=c('a', 'a', 'a', 'a', 'a', 'a', 'b'), + subject=c(1,1,1,1, 2,2,2)) > surv5 <- survfit(fit2, newdata=data5, censor=FALSE, id=subject) > > aeq(surv5[1]$time, c(2,3,5,6,7,8)) #surv1 has 2, 3, 6, 7, 8, 9 [1] TRUE > aeq(surv5[1]$surv, surv3[1]$surv ^ exp(fit2$coef)) [1] TRUE > > tlam <- c(true1$lambda[1:2]* exp(fit2$coef * data5$x[5]), + true1$lambda[3:5]* exp(fit2$coef * data5$x[6]), + true2$lambda[3:4]* exp(fit2$coef * data5$x[7])) > aeq(-log(surv5[2]$surv), cumsum(tlam)) [1] TRUE > > > > survival/tests/data.valve0000644000176000001440000000233612267746072015310 0ustar ripleyusers251 761 -1 252 759 -1 327 98 1 327 667 -1 328 326 1 328 653 1 328 653 1 328 667 -1 329 665 -1 330 84 1 330 667 -1 331 87 1 331 663 -1 389 646 1 389 653 -1 390 92 1 390 653 -1 391 651 -1 392 258 1 392 328 1 392 377 1 392 621 1 392 650 -1 393 61 1 393 539 1 393 648 -1 394 254 1 394 276 1 394 298 1 394 640 1 394 644 -1 395 76 1 395 538 1 395 642 -1 396 635 1 396 641 -1 397 349 1 397 404 1 397 561 1 397 649 -1 398 631 -1 399 596 -1 400 120 1 400 479 1 400 614 -1 401 323 1 401 449 1 401 582 -1 402 139 1 402 139 1 402 589 -1 403 593 -1 404 573 1 404 589 -1 405 165 1 405 408 1 405 604 1 405 606 -1 406 249 1 406 594 -1 407 344 1 407 497 1 407 613 -1 408 265 1 408 586 1 408 595 -1 409 166 1 409 206 1 409 348 1 409 389 -1 410 601 -1 411 410 1 411 581 1 411 601 -1 412 611 -1 413 608 -1 414 587 -1 415 367 1 415 603 -1 416 202 1 416 563 1 416 570 1 416 585 -1 417 587 -1 418 578 -1 419 578 -1 420 586 -1 421 585 -1 422 582 -1 survival/tests/survtest.Rout.save0000644000176000001440000000621212267746072017044 0ustar ripleyusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Simple test of (start, stop] Kaplan-Meier curves, using the test2 data > # set > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > fit1 <- survfit(Surv(start, stop, event) ~1, test2, type='fh2', + error='tsiatis') > fit2 <- survfit(Surv(start, stop, event) ~x, test2, start.time=3, + type='fh2') > > cfit1<- survfit(coxph(Surv(start, stop, event)~1, test2)) > cfit2<- survfit(coxph(Surv(start, stop, event) ~ strata(x), test2, subset=-1)) > > deaths <- (fit1$n.event + fit1$n.censor)>0 > aeq(fit1$time[deaths], cfit1$time) [1] TRUE > aeq(fit1$n.risk[deaths], cfit1$n.risk) [1] TRUE > aeq(fit1$n.event[deaths], cfit1$n.event) [1] TRUE > aeq(fit1$surv[deaths], cfit1$surv) [1] TRUE > aeq(fit1$std.err[deaths], cfit1$std.err) [1] TRUE > > deaths <- (fit2$n.event + fit2$n.censor)>0 > aeq(fit2$time[deaths], cfit2$time) [1] TRUE > aeq(fit2$n.risk[deaths], cfit2$n.risk) [1] TRUE > aeq(fit2$n.event[deaths], cfit2$n.event) [1] TRUE > aeq(fit2$surv[deaths], cfit2$surv) [1] TRUE > > fit3 <- survfit(Surv(start, stop, event) ~1, test2) #Kaplan-Meier > aeq(fit3$n, 10) [1] TRUE > aeq(fit3$time, c(1:9,14,17)) [1] TRUE > aeq(fit3$n.risk, c(0,2,3,3,4,5,4,4,5,2,1)) [1] TRUE > aeq(fit3$n.event,c(0,1,1,0,0,1,1,1,2,0,0)) [1] TRUE > aeq(fit3$surv[fit3$n.event>0], c(.5, 1/3, 4/15, 1/5, 3/20, 9/100)) [1] TRUE > # > # Verify that both surv AND n.risk are right between time points. > # > fit <- survfit(Surv(time, status) ~1, test1) > temp <- summary(fit, time=c(.5,1, 1.5, 6, 7.5, 8, 8.9, 9, 10), extend=TRUE) > > aeq(temp$n.risk, c(6,6,4,4,2,2,1,1,0)) [1] TRUE > aeq(temp$surv, c(1, fit$surv[c(1,1,2,2,3,3,4,4)])) [1] TRUE > aeq(temp$n.event, c(0,1,0,2,0,0,0,1,0)) [1] TRUE > aeq(temp$std.err, c(0, (fit$surv*fit$std.err)[c(1,1,2,2,3,3,4,4)])) [1] TRUE > > > fit <- survfit(Surv(start, stop, event) ~1, test2) > temp <- summary(fit, times=c(.5, 1.5, 2.5, 3, 6.5, 14.5, 16.5)) > aeq(temp$surv, c(1, fit$surv[c(1,2,3,6, 10,10)])) [1] TRUE > aeq(temp$n.risk, c(0, 2, 3, 3, 4, 1,1)) [1] TRUE > survival/tests/factor2.R0000644000176000001440000000163712267746072015026 0ustar ripleyuserslibrary(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) options(na.action=na.exclude) # # More tests of factors in prediction, using a new data set # fit <- coxph(Surv(time, status) ~ factor(ph.ecog), lung) tdata <- data.frame(ph.ecog = factor(0:3)) p1 <- predict(fit, newdata=tdata, type='lp') p2 <- predict(fit, type='lp') aeq(p1, p2[match(0:3, lung$ph.ecog)]) fit2 <- coxph(Surv(time, status) ~ factor(ph.ecog) + factor(sex), lung) tdata <- expand.grid(ph.ecog = factor(0:3), sex=factor(1:2)) p1 <- predict(fit2, newdata=tdata, type='risk') xdata <- expand.grid(ph.ecog=factor(1:3), sex=factor(1:2)) p2 <- predict(fit2, newdata=xdata, type='risk') all.equal(p2, p1[c(2:4, 6:8)], check.attributes=FALSE) fit3 <- survreg(Surv(time, status) ~ factor(ph.ecog) + age, lung) tdata <- data.frame(ph.ecog=factor(0:3), age=50) predict(fit, type='lp', newdata=tdata) predict(fit3, type='lp', newdata=tdata) survival/tests/ratetable.R0000644000176000001440000000373012267746072015425 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Generate each of the messages from is.ratetable # {if (is.R()) mdy.date <- function(m, d, y) { y <- ifelse(y<100, y+1900, y) as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") } else mdy.date <- function(m,d,y) { y <- ifelse(y<100, y+1900, y) timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") } } temp <- runif(21*2*4) # Good attributes(temp) <- list(dim=c(21,2,4), dimnames=list(c(as.character(75:95)), c("male","female"), c(as.character(2000:2003))), dimid=c("age","sex","year"), type=c(2,1,4), cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:3)*366.25), class='ratetable') is.ratetable(temp) # Factor problem + cutpoints length attributes(temp) <- list(dim=c(21,2,4), dimnames=list(c(as.character(75:95)), c("male","female"), c(as.character(2000:2003))), dimid=c("age","sex","year"), type=c(1,1,2), cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:4)*366.25), class='ratetable') is.ratetable(temp, verbose=T) # missing dimid attribute + unsorted cutpoint attributes(temp) <- list(dim=c(21,2,4), dimnames=list(c(as.character(75:95)), c("male","female"), c(as.character(2000:2003))), type=c(2,1,3), cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(4:1)*366.25), class='ratetable') is.ratetable(temp, verbose=T) # wrong length for dimid and type, illegal type attributes(temp) <- list(dim=c(21,2,4), dimnames=list(c(as.character(75:95)), c("male","female"), c(as.character(2000:2003))), dimid=c("age","sex","year", "zed"), type=c(2,1,3,6), cutpoints=list(c(75:95), NULL, mdy.date(1,1,2000) +c(0:3)*366.25), class='ratetable') is.ratetable(temp, verbose=T) # Print and summary print(survexp.us[1:30,,c('1953', '1985')] ) summary(survexp.usr) survival/tests/data.donnell0000644000176000001440000001677412267746072015641 0ustar ripleyusers0.558521561 1.000000000 0.000000000 1.059548255 1.000000000 0.000000000 1.659137577 1.000000000 0.000000000 0.561259411 1.000000000 0.000000000 1.108829569 1.000000000 0.000000000 1.530458590 1.000000000 0.000000000 0.550308008 1.000000000 0.000000000 1.065023956 1.000000000 0.000000000 1.546885695 1.000000000 0.000000000 0.668035592 1.000000000 0.000000000 1.048596851 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.594113621 1.000000000 0.000000000 1.010266940 1.000000000 0.000000000 1.577002053 1.000000000 0.000000000 0.569472964 1.000000000 0.000000000 1.045859001 1.000000000 0.000000000 1.555099247 1.000000000 0.000000000 0.605065024 1.000000000 0.000000000 1.054072553 1.000000000 0.000000000 1.566050650 1.000000000 0.000000000 0.544832307 1.000000000 0.000000000 1.048596851 1.000000000 0.000000000 1.544147844 1.000000000 0.000000000 0.550308008 1.000000000 0.000000000 1.065023956 1.000000000 0.000000000 1.568788501 1.000000000 0.000000000 0.528405202 1.000000000 0.000000000 1.070499658 1.000000000 0.000000000 1.546885695 1.000000000 0.000000000 0.813141684 1.000000000 0.000000000 1.226557153 1.000000000 0.000000000 1.744010951 1.000000000 0.000000000 0.520191650 1.000000000 0.000000000 1.075975359 1.000000000 0.000000000 1.557837098 1.000000000 0.000000000 0.577686516 1.000000000 0.000000000 1.067761807 1.000000000 0.000000000 1.590691307 1.000000000 0.000000000 0.580424367 1.000000000 0.000000000 1.043121150 1.000000000 0.000000000 1.560574949 1.000000000 0.000000000 0.539356605 1.000000000 0.000000000 1.097878166 1.000000000 0.000000000 1.557837098 1.000000000 0.000000000 0.613278576 1.000000000 0.000000000 1.065023956 1.000000000 0.000000000 1.629021218 1.000000000 0.000000000 0.542094456 1.000000000 0.000000000 1.021218344 1.000000000 0.000000000 1.535934292 1.000000000 0.000000000 0.542094456 1.000000000 0.000000000 1.084188912 1.000000000 0.000000000 1.541409993 1.000000000 0.000000000 0.479123888 1.000000000 0.000000000 1.166324435 1.000000000 0.000000000 1.609856263 1.000000000 0.000000000 0.574948665 1.000000000 0.000000000 1.032169747 1.000000000 0.000000000 1.511293634 1.000000000 0.000000000 0.580424367 1.000000000 0.000000000 1.015742642 1.000000000 0.000000000 1.593429158 1.000000000 0.000000000 0.580424367 1.000000000 0.000000000 0.580424367 1.059548255 3.000000000 0.555783710 1.000000000 0.000000000 1.073237509 1.000000000 0.000000000 1.552361396 1.000000000 0.000000000 0.558521561 1.000000000 0.000000000 1.048596851 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.569472964 1.000000000 0.000000000 1.048596851 1.000000000 0.000000000 1.546885695 1.000000000 0.000000000 0.591375770 1.000000000 0.000000000 1.147159480 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.673511294 1.000000000 0.000000000 1.111567420 1.000000000 0.000000000 1.609856263 1.000000000 0.000000000 0.574948665 1.000000000 0.000000000 1.051334702 1.000000000 0.000000000 1.566050650 1.000000000 0.000000000 0.558521561 1.000000000 0.000000000 1.034907598 1.000000000 0.000000000 1.555099247 1.000000000 0.000000000 0.539356605 1.000000000 0.000000000 1.040383299 1.000000000 0.000000000 1.615331964 1.000000000 0.000000000 0.572210815 1.000000000 0.000000000 1.056810404 1.000000000 0.000000000 1.552361396 1.000000000 0.000000000 0.550308008 1.000000000 0.000000000 1.125256674 1.000000000 0.000000000 1.596167009 1.000000000 0.000000000 0.514715948 1.000000000 0.000000000 1.010266940 1.000000000 0.000000000 1.585215606 1.000000000 0.000000000 0.555783710 1.000000000 0.000000000 1.054072553 1.000000000 0.000000000 1.566050650 1.000000000 0.000000000 0.632443532 1.000000000 0.000000000 1.073237509 1.000000000 0.000000000 1.585215606 1.000000000 0.000000000 0.569472964 1.000000000 0.000000000 1.067761807 1.000000000 0.000000000 1.612594114 1.000000000 0.000000000 0.566735113 1.000000000 0.000000000 1.125256674 1.000000000 0.000000000 1.607118412 1.000000000 0.000000000 0.728268309 1.000000000 0.000000000 1.095140315 1.000000000 0.000000000 1.634496920 1.000000000 0.000000000 0.550308008 1.000000000 0.000000000 1.149897331 1.000000000 0.000000000 1.508555784 1.000000000 0.000000000 0.553045859 1.000000000 0.000000000 1.029431896 1.000000000 0.000000000 1.546885695 1.000000000 0.000000000 0.547570157 1.000000000 0.000000000 1.070499658 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.607802875 1.000000000 0.000000000 1.007529090 1.000000000 0.000000000 1.508555784 1.000000000 0.000000000 0.528405202 1.000000000 0.000000000 1.056810404 1.000000000 0.000000000 1.549623546 1.000000000 0.000000000 0.522929500 1.000000000 0.000000000 0.544832307 1.000000000 0.000000000 1.084188912 1.000000000 0.000000000 1.519507187 1.000000000 0.000000000 0.563997262 1.000000000 0.000000000 0.999315537 1.000000000 0.000000000 1.503080082 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.103353867 1.000000000 0.000000000 1.601642710 1.000000000 0.000000000 0.520191650 1.000000000 0.000000000 1.056810404 1.000000000 0.000000000 1.541409993 1.000000000 0.000000000 0.522929500 1.000000000 0.000000000 1.095140315 1.000000000 0.000000000 1.697467488 1.000000000 0.000000000 0.659822040 1.000000000 0.000000000 1.122518823 1.000000000 0.000000000 1.648186174 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.078713210 1.000000000 0.000000000 1.557837098 1.000000000 0.000000000 0.517453799 1.000000000 0.000000000 1.125256674 1.000000000 0.000000000 1.571526352 1.000000000 0.000000000 0.520191650 1.000000000 0.000000000 1.026694045 1.000000000 0.000000000 1.609856263 1.000000000 0.000000000 0.561259411 1.000000000 0.000000000 1.059548255 1.000000000 0.000000000 1.538672142 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.021218344 1.000000000 0.000000000 1.560574949 1.000000000 0.000000000 0.613278576 1.000000000 0.000000000 1.092402464 1.000000000 0.000000000 1.596167009 1.000000000 0.000000000 0.525667351 1.000000000 0.000000000 1.023956194 1.000000000 0.000000000 1.738535250 1.000000000 0.000000000 0.542094456 1.000000000 0.000000000 1.021218344 1.000000000 0.000000000 1.524982888 1.000000000 0.000000000 0.577686516 1.000000000 0.000000000 1.097878166 1.000000000 0.000000000 1.557837098 1.000000000 0.000000000 0.572210815 1.000000000 0.000000000 1.013004791 1.000000000 0.000000000 1.516769336 1.000000000 0.000000000 0.544832307 1.000000000 0.000000000 0.999315537 1.000000000 0.000000000 1.555099247 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.002053388 1.000000000 0.000000000 1.494866530 1.000000000 0.000000000 0.555783710 1.000000000 0.000000000 1.059548255 1.000000000 0.000000000 1.593429158 1.000000000 0.000000000 0.522929500 1.000000000 0.000000000 1.062286105 1.000000000 0.000000000 1.571526352 1.000000000 0.000000000 0.580424367 1.000000000 0.000000000 1.037645448 1.000000000 0.000000000 1.670088980 1.000000000 0.000000000 0.536618754 1.000000000 0.000000000 1.073237509 1.000000000 0.000000000 1.494866530 1.000000000 0.000000000 0.539356605 1.000000000 0.000000000 1.054072553 1.000000000 0.000000000 1.533196441 1.000000000 0.000000000 0.670773443 1.000000000 0.000000000 1.004791239 1.000000000 0.000000000 0.580424367 1.059548255 3.000000000 0.985626283 1.503080082 3.000000000 0.002737851 0.539356605 3.000000000 1.062286105 1.541409993 3.000000000 0.002737851 0.501026694 3.000000000 0.002737851 0.574948665 3.000000000 0.002737851 0.583162218 3.000000000 1.037645448 1.516769336 3.000000000 0.574948665 1.114305270 3.000000000 0.002737851 0.528405202 3.000000000 survival/tests/nested.Rout.save0000644000176000001440000000227512267746072016434 0ustar ripleyusers R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # A test of nesting. It makes sure the model.frame is built correctly > # > tfun <- function(fit, mydata) { + survfit(fit, newdata=mydata) + } > > myfit <- coxph(Surv(time, status) ~ age + factor(sex), lung) > > temp1 <- tfun(myfit, lung[1:5,]) > temp2 <- survfit(myfit, lung[1:5,]) > indx <- match('call', names(temp1)) #the call components won't match > > all.equal(unclass(temp1)[-indx], unclass(temp2)[-indx]) [1] TRUE > > > proc.time() user system elapsed 0.196 0.032 0.225 survival/tests/fr_simple.Rout.save0000644000176000001440000000572412267746072017134 0ustar ripleyusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test the logic of the penalized code by fitting some no-frailty models > # (theta=0). It should give exactly the same answers as 'ordinary' coxph. > # > test1 <- data.frame(time= c(4, 3,1,1,2,2,3), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > zz <- rep(0, nrow(test1)) > tfit1 <- coxph(Surv(time,status) ~x, test1, eps=1e-7) > tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T), test1) > tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0, sparse=T), test1) > > temp <- c('coefficients', 'var', 'loglik', 'linear.predictors', + 'means', 'n') > > all.equal(tfit1[temp], tfit2[temp]) [1] TRUE > all.equal(tfit2[temp], tfit3[temp]) [1] TRUE > > zz <- rep(0, nrow(test2)) > tfit1 <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-7) > tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), + test2) > all.equal(tfit1[temp], tfit2[temp]) [1] TRUE > > > # > # Repeat the above tests, but with a strata added > # Because the data set is simply doubled, the loglik will double, > # beta is the same, variance is halved. > # > test3 <- rbind(test1, test1) > test3$x2 <- rep(1:2, rep(nrow(test1),2)) > zz <- rep(0, nrow(test3)) > tfit1 <- coxph(Surv(time,status) ~x + strata(x2), test3, eps=1e-7) > tfit2 <- coxph(Surv(time,status) ~x + frailty(zz, theta=0, sparse=T) + + strata(x2), test3) > tfit3 <- coxph(Surv(zz,time,status) ~x + frailty(zz, theta=0, sparse=T) + + strata(x2), test3) > > all.equal(tfit1[temp], tfit2[temp]) [1] TRUE > all.equal(tfit2[temp], tfit3[temp]) [1] TRUE > > > test4 <- rbind(test2, test2) > test4$x2 <- rep(1:2, rep(nrow(test2),2)) > zz <- rep(0, nrow(test4)) > tfit1 <- coxph(Surv(start, stop, event) ~x, test4, eps=1e-7) > tfit2 <- coxph(Surv(start, stop, event) ~ x + frailty(zz, theta=0, sparse=T), + test4) > all.equal(tfit1[temp], tfit2[temp]) [1] TRUE > > rm(test3, test4, tfit1, tfit2, tfit3, temp, zz) > survival/tests/r_scale.Rout.save0000644000176000001440000000502212267746072016553 0ustar ripleyusers R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Verify that scale can be fixed at a value > # coefs will differ slightly due to different iteration paths > tol <- .001 > > # Intercept only models > fit1 <- survreg(Surv(time,status) ~ 1, lung) > fit2 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale) > all.equal(fit1$coef, fit2$coef, tolerance= tol) [1] TRUE > all.equal(fit1$loglik, fit2$loglik, tolerance= tol) [1] TRUE > > # The two robust variance matrices are not the same, since removing > # an obs has a different effect on the two models. This just > # checks for failure, not for correctness > fit3 <- survreg(Surv(time,status) ~ 1, lung, robust=TRUE) > fit4 <- survreg(Surv(time,status) ~ 1, lung, scale=fit1$scale, robust=TRUE) > > > # multiple covariates > fit1 <- survreg(Surv(time,status) ~ age + ph.karno, lung) > fit2 <- survreg(Surv(time,status) ~ age + ph.karno, lung, + scale=fit1$scale) > all.equal(fit1$coef, fit2$coef, tolerance=tol) [1] TRUE > all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) [1] TRUE > > fit3 <- survreg(Surv(time,status) ~ age + ph.karno, lung, robust=TRUE) > fit4 <- survreg(Surv(time,status) ~ age + ph.karno, lung, + scale=fit1$scale, robust=TRUE) > > # penalized models > fit1 <- survreg(Surv(time, status) ~ pspline(age), lung) > fit2 <- survreg(Surv(time, status) ~ pspline(age), lung, scale=fit1$scale) > all.equal(fit1$coef, fit2$coef, tolerance=tol) [1] TRUE > all.equal(fit1$loglik[2], fit2$loglik[2], tolerance=tol) [1] TRUE > > fit3 <- survreg(Surv(time,status) ~ pspline(age) + ph.karno, lung, robust=TRUE) > fit4 <- survreg(Surv(time,status) ~ pspline(age) + ph.karno, lung, + scale=fit1$scale, robust=TRUE) > > > > proc.time() user system elapsed 0.304 0.044 0.344 survival/tests/fr_rat1.R0000644000176000001440000000107212267746072015015 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Tests using the rats data # # (Female rats, from Mantel et al, Cancer Research 37, # 3863-3868, November 77) rfit <- coxph(Surv(time,status) ~ rx + frailty(litter), rats, method='breslow') names(rfit) rfit rfit$iter rfit$df rfit$history[[1]] rfit1 <- coxph(Surv(time,status) ~ rx + frailty(litter, theta=1), rats, method='breslow') rfit1 rfit2 <- coxph(Surv(time,status) ~ frailty(litter), rats) rfit2 survival/tests/book5.Rout.save0000644000176000001440000001570112267746072016167 0ustar ripleyusers R version 2.12.2 (2011-02-25) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # Tests of the weighted Cox model > # This is section 1.3 of my appendix -- no yet found in any of the > # printings though, it awaits the next edition > # > # Similar data set to test1, but add weights, > # a double-death/censor tied time > # a censored last subject > # The latter two are cases covered only feebly elsewhere. > # > # The data set testw2 has the same data, but done via replication > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), + status= c(1,0,1,1,1,0,0,1,0), + x= c(2,0,1,1,0,1,0,1,0), + wt = c(1,2,3,4,3,2,1,2,1)) > xx <- testw1$wt > testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), + status= rep(c(1,0,1,1,1,0,0,1,0), xx), + x= rep(c(2,0,1,1,0,1,0,1,0), xx), + id= rep(1:9, xx)) > indx <- match(1:9, testw2$id) > > # Breslow estimate > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5) +2*log(2*r+1)) + hazard <- c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1)) + xbar <- c((2*r^2 + 11*r)*hazard[1], 11*r/(11*r +5), r*hazard[3]) + imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + + 10*(xbar[2] - xbar[2]^2) + 2*(xbar[3] - xbar[3]^2) + + temp <- cumsum(hazard) + risk <- c(r^2, 1,r,r,1,r,1,r,1) + expected <- risk* temp[c(1,1,2,2,2,2,2,3,3)] + + # The matrix of weights, one row per obs, one col per death + # deaths at 1,2,2,2, and 4 + riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, + 0,0,1,1,1,1,1,1,1, + 0,0,1,1,1,1,1,1,1, + 0,0,1,1,1,1,1,1,1, + 0,0,0,0,0,0,0,1,1), ncol=5) + wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat + + x <- c(2,0,1,1,0,1,0,1,0) + status <- c(1,0,1,1,1,0,0,1,0) + wt <- c(1,2,3,4,3,2,1,2,1) + # Table of sums for score and Schoenfeld resids + hazmat <- riskmat %*% diag(c(1,3,4,3,2)/colSums(wtmat)) + dM <- -risk*hazmat #Expected part + dM[1,1] <- dM[1,1] +1 # deaths at time 1 + for (i in 2:4) dM[i+1, i] <- dM[i+1,i] +1 + dM[8,5] <- dM[8,5] +1 + mart <- rowSums(dM) + resid <-dM * outer(x, xbar[c(1,2,2,2,3)] ,'-') + + # Increments to the variance of the hazard + var.g <- cumsum(hazard^2/ c(1,10,2)) + var.d <- cumsum((xbar-newx)*hazard) + + list(loglik=loglik, imat=imat, hazard=hazard, xbar=xbar, + mart=c(1,0,1,1,1,0,0,1,0)-expected, expected=expected, + score=rowSums(resid), schoen=c(2,1,1,0,1) - xbar[c(1,2,2,2,3)], + varhaz=(var.g + var.d^2/imat)* exp(2*beta*newx)) + } > > aeq(byhand(0)$expected, c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify [1] TRUE > > fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, + method='breslow', iter=0) > fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0) > fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow') > fitb <- coxph(Surv(time, status) ~x, testw2, method='breslow') > > aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx]) [1] TRUE > aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx]) [1] TRUE > aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho'))) [1] TRUE > > truth0 <- byhand(0,pi) > aeq(fit0$loglik[1], truth0$loglik) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')) [1] TRUE > sfit <- survfit(fit0, list(x=pi), censor=FALSE) > aeq(sfit$std.err^2, truth0$var) [1] TRUE > aeq(-log(sfit$surv), cumsum(truth0$haz)) [1] TRUE > > truth <- byhand(fit$coef, .3) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')) [1] TRUE > > sfit <- survfit(fit, list(x=.3), censor=FALSE) > aeq(sfit$std.err^2, truth$var) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$haz)* exp(fit$coef*.3))) [1] TRUE > > > fit0 Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, method = "breslow", iter = 0) coef exp(coef) se(coef) z p x 0 1 0.586 0 1 Likelihood ratio test=0 on 1 df, p=1 n= 9, number of events= 5 > summary(fit) Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, method = "breslow") n= 9, number of events= 5 coef exp(coef) se(coef) z Pr(>|z|) x 0.8596 2.3621 0.7131 1.205 0.228 exp(coef) exp(-coef) lower .95 upper .95 x 2.362 0.4233 0.5839 9.556 Concordance= 0.638 (se = 0.159 ) Rsquare= 0.171 (max possible= 0.999 ) Likelihood ratio test= 1.69 on 1 df, p=0.1932 Wald test = 1.45 on 1 df, p=0.2281 Score (logrank) test = 1.52 on 1 df, p=0.217 > resid(fit0, type='score') 1 2 3 4 5 6 1.24653740 0.03601108 0.10056700 0.10056700 -0.22180142 -0.21193300 7 8 9 0.46569858 -0.10082189 0.91014302 > resid(fit0, type='scho') 1 2 2 2 4 1.3157895 0.3125000 0.3125000 -0.6875000 0.3333333 > > resid(fit, type='score') 1 2 3 4 5 6 0.88681615 0.02497653 0.03608964 0.03608964 -0.54297652 -0.12528780 7 8 9 0.29564605 -0.09476911 0.58400064 > resid(fit, type='scho') 1 2 2 2 4 1.0368337 0.1613774 0.1613774 -0.8386226 0.1746960 > aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx]) [1] TRUE > aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx]) [1] TRUE > aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho'))) [1] TRUE > rr1 <- resid(fit, type='mart') > rr2 <- resid(fit, type='mart', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > rr1 <- resid(fit, type='score') > rr2 <- resid(fit, type='score', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > survival/tests/r_lung.R0000644000176000001440000000300712267746072014745 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) lfit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung) lfit3 <- survreg(Surv(time, status) ~ sex + (age+ph.ecog)*strata(sex), lung) lfit4 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, subset=(sex==1)) lfit5 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, subset=(sex==2)) if (exists('censorReg')) { lfit1 <- censorReg(censor(time, status) ~ age + ph.ecog + strata(sex),lung) aeq(lfit4$coef, lfit1[[1]]$coef) aeq(lfit4$scale, lfit1[[1]]$scale) aeq(c(lfit4$scale, lfit5$scale), sapply(lfit1, function(x) x$scale)) } aeq(c(lfit4$scale, lfit5$scale), lfit3$scale ) # # Test out ridge regression and splines # lfit0 <- survreg(Surv(time, status) ~1, lung) lfit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), lung) lfit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), lung) lfit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, lung) lfit0 lfit1 lfit2 lfit3 xx <- pspline(lung$age, nterm=3, theta=.3) xx <- matrix(unclass(xx), ncol=ncol(xx)) # the raw matrix lfit4 <- survreg(Surv(time, status) ~xx, lung) lfit5 <- survreg(Surv(time, status) ~age, lung) lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), lung) lfit7 <- survreg(Surv(time, status) ~ offset(lfit6$lin), lung) lfit4 lfit5 lfit6 signif(lfit7$coef,6) survival/tests/detail.Rout.save0000644000176000001440000000655712267746072016423 0ustar ripleyusers R version 2.11.0 (2010-04-22) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # A short test on coxph.detail, to ensure that the computed hazard is > # equal to the theoretical value > library(survival) Loading required package: splines > aeq <- function(a,b) all.equal(as.vector(a), as.vector(b)) > > # taken from book4.R > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + + log(2*r +2)) + u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - + ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) + imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) + + hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), + 1/(3*r+2), 1/(2*r +2) ) + + + # The matrix of weights, one row per obs, one col per time + # deaths at 2,3,6,7,8,9 + wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, + 0,1,0,1,1, 0, 0,0,0,0, + 0,0,1,1,1, 0, 1,1,0,0, + 0,0,0,1,1, 0, 1,1,0,0, + 0,0,0,0,1, 1, 1,1,0,0, + 0,0,0,0,0, 1, 1,1,1,1, + 0,0,0,0,0,.5,.5,1,1,1), ncol=7) + wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat + + x <- c(1,0,0,1,0,1,1,1,0,0) + status <- c(1,1,1,1,1,1,1,0,0,0) + xbar <- colSums(wtmat*x)/ colSums(wtmat) + n <- length(x) + + # Table of sums for score and Schoenfeld resids + hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time + dM <- -hazmat #Expected part + for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed + dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed + mart <- rowSums(dM) + + # Table of sums for score and Schoenfeld resids + # Looks like the last table of appendix E.2.1 of the book + resid <- dM * outer(x, xbar, '-') + score <- rowSums(resid) + scho <- colSums(resid) + + # We need to add the ties back up (they are symmetric) + scho[6:7] <- rep(mean(scho[6:7]), 2) + + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard* exp(beta*newx), + mart=mart, score=score, rmat=resid, + scho=scho) + } > > # The actual coefficient of the fit is close to zero. Using a larger > # number pushes the test harder, but it should still work without > # the init and iter arguments, i.e., for any coefficient. > fit1 <- coxph(Surv(start, stop, event) ~x, test2,init=-1, iter=0) > temp <- coxph.detail(fit1) > temp2 <- byhand(fit1$coef, fit1$means) > aeq(temp$haz, c(temp2$haz[1:5], sum(temp2$haz[6:7]))) [1] TRUE > > survival/tests/expected2.Rout.save0000644000176000001440000000233012267746072017025 0ustar ripleyusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # A Cox model with a factor, followed by survexp. > # > pfit2 <- coxph(Surv(time, status > 0) ~ trt + log(bili) + + log(protime) + age + platelet + sex, data = pbc) > esurv <- survexp(~ trt, ratetable = pfit2, data = pbc) > > temp <- pbc > temp$sex2 <- factor(as.numeric(pbc$sex), levels=2:0, + labels=c("f", "m", "unknown")) > esurv2 <- survexp(~ trt, ratetable = pfit2, data = temp, + rmap=list(sex=sex2)) > > # The call components won't match, which happen to be first > all.equal(unclass(esurv)[-1], unclass(esurv2)[-1]) [1] TRUE > survival/tests/bladder.Rout.save0000644000176000001440000001426412267746072016550 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Fit the models found in Wei et. al. > # > wfit <- coxph(Surv(stop, event) ~ (rx + size + number)* strata(enum) + + cluster(id), bladder, method='breslow') > wfit Call: coxph(formula = Surv(stop, event) ~ (rx + size + number) * strata(enum) + cluster(id), data = bladder, method = "breslow") coef exp(coef) se(coef) robust se z p rx -0.5176 0.596 0.3158 0.3075 -1.683 0.0920 size 0.0679 1.070 0.1012 0.0853 0.796 0.4300 number 0.2360 1.266 0.0761 0.0721 3.274 0.0011 rx:strata(enum)enum=2 -0.1018 0.903 0.5043 0.3265 -0.312 0.7600 rx:strata(enum)enum=3 -0.1823 0.833 0.5579 0.3916 -0.465 0.6400 rx:strata(enum)enum=4 -0.1332 0.875 0.6581 0.4968 -0.268 0.7900 size:strata(enum)enum=2 -0.1440 0.866 0.1680 0.1119 -1.287 0.2000 size:strata(enum)enum=3 -0.2792 0.756 0.2086 0.1511 -1.847 0.0650 size:strata(enum)enum=4 -0.2711 0.763 0.2515 0.1856 -1.460 0.1400 number:strata(enum)enum=2 -0.0984 0.906 0.1193 0.1144 -0.861 0.3900 number:strata(enum)enum=3 -0.0662 0.936 0.1298 0.1167 -0.567 0.5700 number:strata(enum)enum=4 0.0928 1.097 0.1466 0.1175 0.790 0.4300 Likelihood ratio test=29.4 on 12 df, p=0.00344 n= 340, number of events= 112 > > # Check the rx coefs versus Wei, et al, JASA 1989 > rx <- c(1,4,5,6) # the treatment coefs above > cmat <- diag(4); cmat[1,] <- 1; #contrast matrix > wfit$coef[rx] %*% cmat # the coefs in their paper (table 5) [,1] [,2] [,3] [,4] [1,] -0.5176209 -0.6194404 -0.6998771 -0.6507935 > t(cmat) %*% wfit$var[rx,rx] %*% cmat # var matrix (eqn 3.2) [,1] [,2] [,3] [,4] [1,] 0.09455501 0.06017669 0.05677331 0.0437777 [2,] 0.06017669 0.13242834 0.13011557 0.1160420 [3,] 0.05677331 0.13011557 0.17235879 0.1590865 [4,] 0.04377770 0.11604200 0.15908650 0.2398112 > > # Anderson-Gill fit > fita <- coxph(Surv(start, stop, event) ~ rx + size + number + cluster(id), + bladder2, method='breslow') > summary(fita) Call: coxph(formula = Surv(start, stop, event) ~ rx + size + number + cluster(id), data = bladder2, method = "breslow") n= 178, number of events= 112 coef exp(coef) se(coef) robust se z Pr(>|z|) rx -0.45979 0.63142 0.19996 0.25801 -1.782 0.07474 . size -0.04256 0.95833 0.06903 0.07555 -0.563 0.57317 number 0.17164 1.18726 0.04733 0.06131 2.799 0.00512 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 exp(coef) exp(-coef) lower .95 upper .95 rx 0.6314 1.5837 0.3808 1.047 size 0.9583 1.0435 0.8264 1.111 number 1.1873 0.8423 1.0528 1.339 Concordance= 0.634 (se = 0.03 ) Rsquare= 0.09 (max possible= 0.994 ) Likelihood ratio test= 16.77 on 3 df, p=0.000787 Wald test = 11.76 on 3 df, p=0.008256 Score (logrank) test = 18.57 on 3 df, p=0.0003355, Robust = 11.44 p=0.009588 (Note: the likelihood ratio and score tests assume independence of observations within a cluster, the Wald and robust score tests do not). > > # Prentice fits. Their model 1 a and b are the same > fit1p <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, + subset=(enum==1), method='breslow') > fit2pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, + subset=(enum==2), method='breslow') > fit2pb <- coxph(Surv(stop-start, event) ~ rx + size + number, bladder2, + subset=(enum==2), method='breslow') > fit3pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, + subset=(enum==3), method='breslow') > #and etc. > fit1p Call: coxph(formula = Surv(stop, event) ~ rx + size + number, data = bladder2, subset = (enum == 1), method = "breslow") coef exp(coef) se(coef) z p rx -0.5176 0.596 0.3158 -1.639 0.1000 size 0.0679 1.070 0.1012 0.671 0.5000 number 0.2360 1.266 0.0761 3.102 0.0019 Likelihood ratio test=9.66 on 3 df, p=0.0216 n= 85, number of events= 47 > fit2pa Call: coxph(formula = Surv(stop, event) ~ rx + size + number, data = bladder2, subset = (enum == 2), method = "breslow") coef exp(coef) se(coef) z p rx -0.42421 0.654 0.4022 -1.0547 0.29 size -0.12503 0.882 0.1171 -1.0679 0.29 number 0.00199 1.002 0.0938 0.0212 0.98 Likelihood ratio test=2.02 on 3 df, p=0.569 n= 46, number of events= 29 > fit2pb Call: coxph(formula = Surv(stop - start, event) ~ rx + size + number, data = bladder2, subset = (enum == 2), method = "breslow") coef exp(coef) se(coef) z p rx -0.25911 0.772 0.4051 -0.6396 0.52 size -0.11636 0.890 0.1192 -0.9759 0.33 number -0.00571 0.994 0.0967 -0.0591 0.95 Likelihood ratio test=1.27 on 3 df, p=0.735 n= 46, number of events= 29 > fit3pa Call: coxph(formula = Surv(stop, event) ~ rx + size + number, data = bladder2, subset = (enum == 3), method = "breslow") coef exp(coef) se(coef) z p rx -0.8985 0.407 0.554 -1.623 0.10 size 0.0850 1.089 0.209 0.407 0.68 number -0.0172 0.983 0.128 -0.134 0.89 Likelihood ratio test=4.16 on 3 df, p=0.245 n= 27, number of events= 22 > rm(rx, cmat, wfit, fita, fit1p, fit2pa, fit2pb, fit3pa) > survival/tests/infcox.Rout.save0000644000176000001440000000424012267746072016432 0ustar ripleyusers R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # A test to exercise the "infinity" check on 2 variables > # > test3 <- data.frame(futime=1:12, fustat=c(1,0,1,0,1,0,0,0,0,0,0,0), + x1=rep(0:1,6), x2=c(rep(0,6), rep(1,6))) > > # This will produce a warning message, which is the point of the test. > # The variance is close to singular and gives different answers > # on different machines > fit3 <- coxph(Surv(futime, fustat) ~ x1 + x2, test3, iter=25) Warning message: In fitter(X, Y, strats, offset, init, control, weights = weights, : Loglik converged before variable 1,2 ; beta may be infinite. > > all(fit3$coef < -22) [1] TRUE > all.equal(round(fit3$log, 4),c(-6.8669, -1.7918)) [1] TRUE > > # > # Actual solution > # time 1, 12 at risk, 3 each of x1/x2 = 00, 01, 10, 11 > # time 2, 10 at risk, 2, 3, 2 , 3 > # time 5, 8 at risk, 1, 3, 1, 3 > # Let r1 = exp(beta1), r2= exp(beta2) > # loglik = -log(3 + 3r1 + 3r2 + 3 r1*r2) - log(2 + 2r1 + 3r2 + 3 r1*r2) - > # log(1 + r1 + 3r2 + 3 r1*r2) > true <- function(beta) { + r1 <- exp(beta[1]) + r2 <- exp(beta[2]) + loglik <- -log(3*(1+ r1+ r2+ r1*r2)) - log(2+ 2*r1 + 3*r2 + 3*r1*r2) - + log(1 + r1 + 3*r2 + 3*r1*r2) + loglik + } > > all.equal(fit3$loglik[2], true(fit3$coef), check.attributes=FALSE) [1] TRUE > > proc.time() user system elapsed 0.216 0.020 0.233 survival/tests/data.capacitor0000644000176000001440000000606512267746072016143 0ustar ripleyusers 1 300.00 0 20 2 300.00 0 20 3 300.00 0 20 4 300.00 0 20 5 300.00 0 20 6 300.00 0 20 7 300.00 0 20 8 300.00 0 20 9 300.00 0 20 10 300.00 0 20 11 300.00 0 20 12 300.00 0 20 13 300.00 0 20 14 300.00 0 20 15 300.00 0 20 16 300.00 0 20 17 300.00 0 20 18 300.00 0 20 19 300.00 0 20 20 300.00 0 20 21 300.00 0 20 22 300.00 0 20 23 300.00 0 20 24 300.00 0 20 25 300.00 0 20 26 277.33 1 26 27 187.80 1 26 28 214.28 1 26 29 12.95 1 26 30 63.10 1 26 31 271.73 1 26 32 201.28 1 26 33 179.02 1 26 34 139.37 1 26 35 136.33 1 26 36 28.41 1 26 37 300.00 0 26 38 300.00 0 26 39 300.00 0 26 40 300.00 0 26 41 300.00 0 26 42 300.00 0 26 43 300.00 0 26 44 300.00 0 26 45 300.00 0 26 46 300.00 0 26 47 300.00 0 26 48 300.00 0 26 49 300.00 0 26 50 300.00 0 26 51 300.00 0 26 52 300.00 0 26 53 300.00 0 26 54 300.00 0 26 55 300.00 0 26 56 300.00 0 26 57 300.00 0 26 58 300.00 0 26 59 300.00 0 26 60 300.00 0 26 61 300.00 0 26 62 300.00 0 26 63 300.00 0 26 64 300.00 0 26 65 300.00 0 26 66 300.00 0 26 67 300.00 0 26 68 300.00 0 26 69 300.00 0 26 70 300.00 0 26 71 300.00 0 26 72 300.00 0 26 73 300.00 0 26 74 300.00 0 26 75 300.00 0 26 76 45.85 1 29 77 220.70 1 29 78 73.87 1 29 79 91.81 1 29 80 40.69 1 29 81 108.62 1 29 82 55.73 1 29 83 10.21 1 29 84 102.64 1 29 85 257.88 1 29 86 50.41 1 29 87 164.20 1 29 88 112.15 1 29 89 300.00 0 29 90 300.00 0 29 91 300.00 0 29 92 300.00 0 29 93 300.00 0 29 94 300.00 0 29 95 300.00 0 29 96 118.37 1 32 97 17.19 1 32 98 11.51 1 32 99 4.65 1 32 100 1.95 1 32 101 149.20 1 32 102 65.79 1 32 103 5.95 1 32 104 5.72 1 32 105 10.61 1 32 106 0.68 1 32 107 3.96 1 32 108 9.56 1 32 109 172.05 1 32 110 2.81 1 32 111 2.07 1 32 112 19.98 1 32 113 84.63 1 32 114 132.52 1 32 115 156.37 1 32 116 11.81 1 32 117 20.86 1 32 118 66.33 1 32 119 21.64 1 32 120 65.90 1 32 121 14.64 1 32 122 6.26 1 32 123 94.08 1 32 124 5.45 1 32 125 15.16 1 32 survival/tests/ties.rda0000644000176000001440000001365412267746072015001 0ustar ripleyusers‹mZyœNeû·Ë¥¥RHÙ²e sÆ<3ó<çœ{;‰²EöHˆÒB e©PŠH!´ ½¶HZ(’l¯-’¤H‘%ï}Ÿïuæ÷Ïo>}¦™gÎrß×õÝ®[euhT²CÉ *P¨´ýWØ~[¤ýOAû¯„ýWtHï~5´ß”±ŸYN¢Òç#,:›‚ _=´|w’»FŸY4þQ’¢/W/n]äø>o˜˜]½,éÏ^7÷aI¹Óº'×>¦H½Qâ¦ÛÿAº×Ø«õ£HŒ:zo¹ß÷Qêš[Þ}ä»b¤'°XDú‰ÔàbÁYJÕ³—Ûó )wÛY½ÈÔš3»JÇÇI»Ë_û‰{Æ®;8 ùAf˦ž#Ùù­"wy?’ðëÂâ+JSÂÝæ¹r$[ÕþÖŠM¤–µë?nR9Rî1÷|Oâà€æUË'–|ºí›š’˾®”±£ ‰_Vg]Õç Rÿö-´µñQ[W÷He~ì^¨?©B+Ö¬Û˜ï/¤6œ£¼g‚³›ô%Y/zÒoŠwLí ä7zb~‹§j‘Ø2ì÷Ú_L%QüÈéó—ÆºíåÜyÛ{“שå‰Ìß6“ÚuÕ~y±Ë–+äÙOÏ}Šr·¾`ŸôW’gÔ†‹k¨;Þ]ˆ‚A‹Ü7¤^›ÿÛ5·,"i–®Ù´Å#9õ©½ÏvÎ#½ëσWí%]yÇ·þ ï“©skç‹_.%ÿ÷@OR¸¾g¥?»Ü@y/Øå¹æ’ÝÚØmFâo¼Ÿ_Ù³O8ŸDºGÚô-LfÑ÷JºíYl×¹«]æ=U(§Ãª;õ<éfêŒ 5ìîÙ[H²xa»1)Éï™Ýµ¡Ý±›(9¢Û+ž˜CªÂùœÓíú‘*øÛgKæÝB^ô^ÛH¼lwqR'q?%ï;T}Óõ¤3P:ºÝKä}_»|ɧ[“zg}Áɸ2 Ú’à}ÑEVŸ›ÖÝ®CyWw÷’w÷÷òþ/ê4Õ®©‘£3nž´‘ÄÅW”ùäes¯}nc×&dNØË·}¼Âv9sÚR]÷¸ýGæ×¹<ðé{·v¾d÷û)‡'$i7½Påy$ï¿ý{;OPÞ=KæÝ´/#ÿþ²Û¦òkʵ uþ­ãIG·ÿœÔ Uö‘“úÆ-Ô’Õ¶üûʱ«I<’×á®ÇHwßÞ»ÉkIR±Ï¢Óú—/7ÜB¢óÐjÚI©íöχ֢섫«ÇH݉zlçʯ|YjíG{í2–_OÚ=Ý_‘Wæ“É8Er¤}‹[I|í¾¾±}õ@ןÞ~šd©R';M}ŸÄòÝ}?¾¯ùµ.ØK)÷Û¿kSбÚ=fÿ\’îqKϦ¶ýÿN©ä<ûëú9$_Ç:„7æ´^9t;ù;l™ílH“®OŸÏ9Fæ¬_ÿ]NôœÃ)ñþ^]µÑVÌ$¯¡~ÅZì¿*VÝmµæ¾2ü<â&{™Ë?‘· 8 NÙåoyÒ¾w&þ³œ¼UûN »{sþ>´K• `¥íúÂÏÚë£Îu+ö>É[vÙ ¹™ôÇmƒt#³ÆÂÛ°S$æYøØÐŽD½ÞÇkeï"5ñ Û¨_’nîêâ)’÷¾j¿^#ÕfÓ–d)Û¯mlYm>lïg—éÍË$]yfÞMbÊG æÌ®Lò;ÅmFFò‚…Ï–’¾Ínó»¶ÿO·»ƒ¼øÏýÚºN‰ÑxoƶF’oßòDæY oëá¾(5ƾîÒÒ$w¸¶»‹‚—¦WüqÕ­¤ÝòþˆXTØwj8©±è»dÔ÷ ÈÜ›±£êú©¤J­},µÚ>_©æÛf!¹Ó=@Wªìà§f=‹3û-À ÊZ¿Nýeñ u ®quw‰ö5ëÞ¹lIaáðÛ+”×ǾޒwòûZ>;¡ÎÈ#(=æ^ |ÅÈ{´¾-ø¤¾Ñ´`ÏHWD&-ú[×€’÷uÝzm±ëŽ>’gûÙ ±õöö'Y û›CŒ¯‰ÆÀï0®‹ïæa߃ïÎT!Íý©v\nøu¥LÊ«þK—·åu´e:Z)³Žôa §Ëo§„Ãû SŽtûj×#Æãâ º_I ±|õ}ÃÑ$4ö#k¡ƒ¯WÉw46ÂâPGÔ_Ê}|pa ºÏgûÌa RÛ\¿œ¥ÜY=í…¾$¹Êîιi$ìjÛ $û?p¬S¨<É.îº%I|þÃëOy$DˆçÏv0°¦4iÆg]8(« OÔBK?ÿ΢äÀç{•~½O‘ažÓõ±~2®Âþe_祀#)Æ[¶åwÇývÿQDZƾ®Bòà=®¢HuÀûh^oU™ñ΢oë•ÃHgZšon¯Ç8¨–ZØ=PŒ„D?©2nƒRÖ´5åZÉ${€wRÚ‚êNò\¿íGÌõ(Ýb©+pJF¼¶Ùò~nZ8œxäíàQu¬.'Rnû¦—#ýüI·p¤—¸Bû…Tk[.ß’¼Ö>V‰I¼?Î"ÝE27Ú2©y”t•z¶¡?¢à4ê[Tµ·™ý5©§-\œìDú…=PPîîr¿[D¤äbÇ+»)ÛÁÔØ$ùùô,à¿äŸ;ôq|&×Úö}ù2©¾À“à9‡ŸÓIGuTÇֹРJn³2å¡Âämv×ë }%›Ð3 W[œ›é~5ù¯þÙ¥ÂÀ9ÔÎÉ¢ªëÉkâ3Iò°m“ õÉÿ}”EÊŠÚJ}‚Â>ŸËúK;x[ò¦­{ô§¬†}×ß¹­HÙŸ/ ó¨ª þU±NÒ[±Ï*åäßFÒQÝW%ýt ^†õ•®ÿk(qýï£Ï|.K°‹– ¬³²fvQ⻕d–A¿š+Æœ&ùŸ•C¿j7©ÉÀ39ÙÊ”Öö=¸Å0WØÃ(ûôpt׬¯­+“û~DšùC•‡ÎTOZ¹4²åD¸Ú˜$ó™b}›¼ð«$æ“©ni}t+’ ¡OÌnÆic—ût‚tD‹›IN²0PÍò/ëó øD6v¿n@aKK÷¿¾kùɶÇ}lÿX¹˜,Aúv ×%Ÿ¥\·ü-Z½ZÓ"šÕcmQoj=ú.7˜iâ2U°>íâ>—ÀÍ,ÖužÛ¾ùÇI¶N©WÝ¶Í Éë)#]ÔœD¬G_$¯¸×¿@jêK__…; ƒHÙ:pË‘q5bþÞgì:9Â8CŠ}‰~|%;?¤ÁºÇº>7úü¯”ÌvŸëIó¼t6¦Â R±âþQQ}|F¹ãÝ´¸ß¾Î› Ÿ)¶¸ŸOËÇ[™Å~¡|•€þ®]U§ÀÉ‚ µH;X?o×s:x-ë²¥ƒŠÖ?±Ñ?p=ý*ÛEI²_*ö‹2‚‡I°^Uos/B?Åë'N_ågÔËRXë/GñºG|\Éâ ÖG¾ žQKЇYœÛսƖ²ý€ºÊ+‰œ!þ{Íïç;;ôå Ò ?P±okéðmÉGÝãõ&uÔÂE^{ܲþCA„–§Ycø[çë 9•ûõ·ÊÂóë·€Oz›ýóóÿ俯úº&ˆl˜Ýwæ5z5‹yMö†NÓ"D£“ƒIŸAý&êσ«áïso¼~.Ÿø2_?è;ÌYЋõÎÓöu[ R£ XgªúÁçª?ív•jA²3túý—ÌpåzŽîO“‡õUágewèÁÅ”8hëõ.ËW;b[Eò8x^7E}™JðS: ªŸ`fÿ*¸ßE-wáä•g]Ù¼ª_tFÇâUì¿—ð{\vÝúª›Ñê1à—šÜÍÞŒu /ôAWÈ×ü¤©JV—8Vx éJÌk'¡·ÂvŽ05Éáðƒ‚ëUœƒ.ÐOr.Q þ+`ÞÖÏ£ÏýßáƒÕŽ`Èדʱw÷KV¯@§dòzÖ§òAøUéh«—½ïWÐrµë»µä³QU‡Þø¥dèv±’ýë@ûËççwþDè+É}󯺹˜töï¦ý¤˜t¬O‡c}Ò™àÝT¤çÞ#éC_é›áûõ}ÀÉ|æE°ð*™8ßqðÖÐêéoá'ÕJ\Wõ‡‘®]&&)Áü"¿rFw%ùÜWI®¯¼˜—c>Œúsä±Ë3¿i¾Ÿã÷ÞÐ%êø7õ9êÚû¿Ïa¿jb=D$_º‘ŽtÛbRQÞU“|^çuªù:N:¸m2ƒÒ9è{Ó>@އìsBÖ¹9ÜjøPŒðþÿ k凵ºŠPîácŠO–EQ)6" W‚Ä|Ç)=¿$}§ë¶ódZÁüÈe wŠSy8ÈlÙÒ‚”Õ– ‹R­Á nxyÃæP»__E‚ÅÏEª¶;ñ[×¾|G«”âÅ’½\W³ S¬Ç]Õgæ‡mHž‚hÐÇ`î‚ñ–Ëæ¼F²@Ha‘å¸íûg¨-›6‡l<גͺáEo |۸鸩T¶ë‡(ˆDëXÒÍH„ÊAô8­È²©zùæD^D*6Eº ÀDuEx ctëcžGs‡¬Gó-H”Ò+œ B~*®e±‹¯6kÁb=âò‹:PêHú‹£Ï,šHÉj£ÂXtr³éKn¿¿³bÇ… Õ(á¸<¹šRM™ìr9Üéñ*¹uÚô@h¥9$0ÍœéEz?HBLEhd¢0ág’‹bÇa¯aPÒ߃,7µÇ¦Gƒ84Å&Lì‚©3yÖ=·'Mn½n7XÓÆ Ê`%¹Ž‡ìŠÃŸÁÞ0h+JÞYÂêZ[rv.û%Rÿ Т™%‹Ù!’ÞêR•Ãd·*2Ñš öÔ4¡ BëÜû;ø•O²™l[EYŒIŸ8‘ö&é ^¾¨}4@x¨Ÿà:¨ˆë(6ïÁ+Žø‘é›KbÀE¹¬îÌ2º‡?§X´é¡X¿´ÇÃÆŠÍðdˆ§vqØÕÓÓÜÙ|›‡bê9–¨„ݾɣ¨u^"ãÚþãŽV c=ü(Ü@r(Ĥ؋û‰Ò0—q(%oƒ(–ÛħC<*Ós ~Ã~gåuÇ"Þ‡—»ÞIº7ÄŽšŽPÈ\©ËA®¨÷fÊë1LQ,¶ãþ0lÎ ‹\½2‹jÉñË* ±+˜r¡`"$™ÂN cQšE@3—Æ?B‚ñÀ¼€a@ƒH<  ?ç] QžîÃ!I×%‡o¦'BúÛÜkgUÌ…Ú5¹K&ÙÌ]w4©9<}™Å?÷kÊiàå·fQ££Çÿ‚:°hoÃÌ…-¹N›!lMF^Ê’éY˜ËœÒÒ¼îBêßÈ|e%qËK‹±O¢/‹ýþàÀ¤&#¾XNíë°8lr\ÿ¢0L¿™œÖçð>Ië–Îv¬ü0%ž„©oyæFZ½åô…XWï üÐX'³Ú¥Dü_˜Ã&)X‘©Øü{lÒD&BðÔ„èúm˜‚$›]Åx›?ÁÃIÁCõÄ»ìÎáÃùmÎÆ“:±“çàföÒ×a4ó¢â0NñzÏCü$Û`Xrèn¾ÆúÇ&FæÂôæÕ†(ówÁÌç c‘DaUЇ²ò a^dœÌ}Îü#¹®Ã>àG=Ô±åŸx8v7ÖW_@ÝäÎb2|äñPYFh™í2³ÄdjÂø溺“k¾Ãp0Ÿo{¸ £ ™).M)C>‡â憱áçéigòq" ů£4‡m!oĵ<¬y"×<‹á­ŒPÍã0ÕŸ‹õÍæB^Ý`XT«Íx/bè¦Z€w•ƒÙœ»ó¯‹gÉaOBøi„ ŠÍ¥a¢>aS;êà÷y‘,hJA~sˆ©ê¢ßƒä˜³4ã·ßÌéŒÇ­É>nÝ…gM †Ð±Ž4l–²wrí,……Øl­sxS‚ô ð‹Z~4ݰžê"ï{Î?@!÷‰ù|ãPò†Dâ=¼‡~’ã öUI§Úç’ä>›‡6áÑaQ/5׎CæÁf.‡y_vƒŽ Yß'Û>]Hf/Bp]z*7 ƒj“b“gxˆ,^/çi–ï!Éýrئ>~š›Ñïj3ˆë’à é¼Eóo)}=ô’ž “ž™H—m ÏÑêãCIpHî±)Œß?ÉæBl´^¨Z&µ ÝÆäE'\6wø ¸Ÿ%9u/ü\å ~5‡Þ²Â.ã5ÿ 3L èðpmªb¸-ZF:y y—à+ãÈú̸Yö.cëºRÝÊþa×Q8›ü°t´‰õûÃf\³Ù5#€3â<ãí/MQˆä“⡬لÐCðp3ÖkŠõ¯äPPÍÂ{i«LÚ2oÅà ӓù‚ýF‡V(ÆÁ'Ó¬[Ãö_³é 9TL{Å:9j)À}Çz_ð¡ɸ¢x(ü6b¨­'!Ì÷¢ýi’'€ÏIö‚uVÌ»JpÅx¦ßu\LzÖYrý‹q¸Ä/…ýJÆ¡Æ]¸¿ì ³l8¤Q=`š -óšc(ŸMðq<„ÎåúQ›ÑWq˜'ö3¯òá É>Ód7ôZ„SÙ\OŠÿßpˆfxª>®ë™8,a¢®DK Sò¸Nõ!„.mòb~ ü£w#ŒÌå°ÕŒdý¸ue¦p˜ó:ã•Wá£äCï³àpÃÔGˆeæcدÀ¿hZäñpG®ãC|x)U}¯9\4ç¡[Ã4†¼ð—cø£rÈ\aâ>/èáÐ)â|Ÿ)=öý†CP!¯æºˆ‡¾ŠÙ¨+Ð]úwø­ì|ÈbtgÈþÏgýªX‡š‡ÑOÁ2üÜÌǺ«¥È b¨YŸé,ø>ñ/뺫iÐãа/¼*Ò |6±?|Œýò|ä†õ£dÝ`zc¸¬ 4×»ùÅÂÞo‘(M'H³OJ„®¾ï#ɹF*ÂûAäÇøÒa~¬Ã5Þ1òáÉ<ª¯5óˆŠóö·)Þ¯€Q¥»cÝõõV³Ï6p$Õ|//@o¨ÑÐGš‡À†u‡áázZëŨ±8+ëÁ‡{<”бz•‡kŒ«ê!èg³“‡hŒSŠûG±?Mp-øÐ’a\ŠŸ_ñá@}ṎpýèŸá—÷“d~4¬tš92oľ38Î:|9ûÆðßzÂ|YŸË<̇“8ï‘ë8ØŒC ê= ¿ò‡7ìõ(„Ô¢²…äóýë+9x* XG+>T%ΠÕ0ä0ЇnÆ]þï#¤‹Ã—Çè4ëÊÔÜOŽŽÄz4Öw’ÅøFšÝÁýxXÂx©gãpšæÃ’q"—M©òÐ#¢ö+µûä\D¾ÂyÙä/‚‡$I" öÙ!«$׿æ!šPȽM®p;S.gÒ7‚'$÷“©œÖ;0lÑçaãhCÈć‹Ö ÞÛó!¬qXñÐTòP$Íáv..ÓM8'ÃÏ.õ¿ÿ\ÍR¹q+survival/tests/coxsurv2.Rout.save0000644000176000001440000000562612267746072016750 0ustar ripleyusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # Check that the survival curves from a Cox model with beta=0 > # match ordinary survival > # > # Aalen > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, type='fleming', + error='tsiatis') > fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, + method='breslow') > fit1$var <- 0*fit1$var #sneaky, causes the extra term in the Cox variance > # calculation to be zero > surv2 <- survfit(fit1, type='aalen', vartype='tsiatis') > surv3 <- survfit(fit1) > > arglist <- c('n', 'time', 'n.risk','n.event', 'n.censor', 'surv', 'strata', + 'std.err', 'upper', 'lower') > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) [1] TRUE > > > # Efron method > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, type='fh2', + error='tsiatis') > surv2 <- survfit(fit1, type='efron', vartype='efron') > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > > # Kaplan-Meier > surv1 <- survfit(Surv(time,status) ~ sex, data=lung) > surv2 <- survfit(fit1, type='kalb', vartype='green') > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > > > # Now add some random weights > rwt <- runif(nrow(lung), .5, 3) > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, type='fleming', + error='tsiatis', weight=rwt) > fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, + method='breslow', weight=rwt) > fit1$var <- 0*fit1$var #sneaky > surv2 <- survfit(fit1, type='aalen', vartype='tsiatis') > surv3 <- survfit(fit1) > > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) [1] TRUE > > > # Efron method > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, type='fh2', + error='tsiatis', weight=rwt) > surv2 <- survfit(fit1, type='efron', vartype='efron') > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > > # Kaplan-Meier > surv1 <- survfit(Surv(time,status) ~ sex, data=lung, weight=rwt) > surv2 <- survfit(fit1, type='kalb', vartype='green') > all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) [1] TRUE > > survival/tests/surv.Rout.save0000644000176000001440000000424412267746072016147 0ustar ripleyusers R version 3.0.1 (2013-05-16) -- "Good Sport" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > library(survival) Loading required package: splines > > # Some simple tests of the Surv function > # The first two are motivated by a bug, pointed out by Kevin Buhr, > # where a mixture of NAs and invalid values didn't work right > # Even for the simplest things a test case is good. > # All but the third should produce warning messages > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > temp <- Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), c(1,1,1,1)) Warning message: In Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), c(1, 1, 1, 1)) : Stop time must be > start time, NA created > aeq(temp, c(1,10,NA,30, 2,NA,0,40, 1,1,1,1)) [1] TRUE > > temp <- Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), type='interval2') Warning message: In Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), type = "interval2") : Invalid interval: start > stop, NA created > aeq(temp, c(1,10,20,30, 2,1,1,40, 3,0,NA,3)) [1] TRUE > > #No error > temp <- Surv(1:5) > aeq(temp, c(1:5, 1,1,1,1,1)) [1] TRUE > > temp1 <- Surv(c(1,10,NA, 30, 30), c(1,NA,10,20, 40), type='interval2') Warning message: In Surv(c(1, 10, NA, 30, 30), c(1, NA, 10, 20, 40), type = "interval2") : Invalid interval: start > stop, NA created > temp2 <- Surv(c(1,10,10,30,30), c(9, NA, 5, 20,40), c(1, 0, 2,3,3), + type='interval') Warning message: In Surv(c(1, 10, 10, 30, 30), c(9, NA, 5, 20, 40), c(1, 0, 2, 3, : Invalid interval: start > stop, NA created > aeq(temp1, temp2) [1] TRUE > aeq(temp1, c(1,10,10,30,30, 1,1,1,1, 40, 1,0,2,NA,3)) [1] TRUE > > proc.time() user system elapsed 0.292 0.052 0.336 survival/tests/doaml.Rout.save0000644000176000001440000001744212267746072016250 0ustar ripleyusers R version 2.13.0 RC (2011-04-11 r55409) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # > # These results can be found in Miller > # > fit <- coxph(Surv(aml$time, aml$status) ~ aml$x, method='breslow') > fit Call: coxph(formula = Surv(aml$time, aml$status) ~ aml$x, method = "breslow") coef exp(coef) se(coef) z p aml$xNonmaintained 0.904 2.47 0.512 1.77 0.078 Likelihood ratio test=3.3 on 1 df, p=0.0694 n= 23, number of events= 18 > resid(fit, type='mart') 1 2 3 4 5 6 0.86225539 0.79200985 -0.20799015 0.74818869 0.65652976 -0.39796610 7 8 9 10 11 12 0.45424957 0.25475051 -1.05400917 -0.55400917 -1.55400917 0.87844483 13 14 15 16 17 18 0.87844483 0.74006941 0.74006941 0.57677292 -0.51373647 0.15162716 19 20 21 22 23 0.01702219 -0.14897252 -0.56448258 -1.15185244 -1.60340676 > resid(fit, type='score') 1 2 3 4 5 6 -0.546856248 -0.492501830 0.141063944 -0.479907930 -0.447416819 0.268453990 7 8 9 10 11 12 -0.235908976 -0.072655945 0.640826596 0.640826596 0.640826596 0.237767767 13 14 15 16 17 18 0.237767767 0.232585063 0.232585063 0.203878910 -0.165307985 0.044923326 19 20 21 22 23 0.007079721 -0.039651990 -0.181184547 -0.395076175 -0.472116894 > resid(fit, type='scho') 5 5 8 8 9 12 13 0.2706690 0.2706690 0.3081229 0.3081229 -0.6423931 0.3360212 -0.6335658 18 23 23 27 30 31 33 -0.6494307 -0.6791937 0.3208063 0.3269751 0.3360212 -0.5970995 0.3505693 34 43 45 48 -0.5525731 0.3778334 0.5484457 0.0000000 > > # Test the drop of an itercept: should have no effect > fit2 <- coxph(Surv(time, status) ~ x -1, method='breslow', + data=aml) > aeq(fit$loglik, fit2$loglik) [1] TRUE > aeq(coef(fit), coef(fit2)) [1] TRUE > aeq(fit$var, fit2$var) [1] TRUE > > fit <- survfit(Surv(aml$time, aml$status) ~ aml$x) > fit Call: survfit(formula = Surv(aml$time, aml$status) ~ aml$x) records n.max n.start events median 0.95LCL 0.95UCL aml$x=Maintained 11 11 11 7 31 18 NA aml$x=Nonmaintained 12 12 12 11 23 8 NA > summary(fit) Call: survfit(formula = Surv(aml$time, aml$status) ~ aml$x) aml$x=Maintained time n.risk n.event survival std.err lower 95% CI upper 95% CI 9 11 1 0.909 0.0867 0.7541 1.000 13 10 1 0.818 0.1163 0.6192 1.000 18 8 1 0.716 0.1397 0.4884 1.000 23 7 1 0.614 0.1526 0.3769 0.999 31 5 1 0.491 0.1642 0.2549 0.946 34 4 1 0.368 0.1627 0.1549 0.875 48 2 1 0.184 0.1535 0.0359 0.944 aml$x=Nonmaintained time n.risk n.event survival std.err lower 95% CI upper 95% CI 5 12 2 0.8333 0.1076 0.6470 1.000 8 10 2 0.6667 0.1361 0.4468 0.995 12 8 1 0.5833 0.1423 0.3616 0.941 23 6 1 0.4861 0.1481 0.2675 0.883 27 5 1 0.3889 0.1470 0.1854 0.816 30 4 1 0.2917 0.1387 0.1148 0.741 33 3 1 0.1944 0.1219 0.0569 0.664 43 2 1 0.0972 0.0919 0.0153 0.620 45 1 1 0.0000 NaN NA NA > survdiff(Surv(aml$time, aml$status)~ aml$x) Call: survdiff(formula = Surv(aml$time, aml$status) ~ aml$x) N Observed Expected (O-E)^2/E (O-E)^2/V aml$x=Maintained 11 7 10.69 1.27 3.4 aml$x=Nonmaintained 12 11 7.31 1.86 3.4 Chisq= 3.4 on 1 degrees of freedom, p= 0.0653 > > # > # Test out the weighted K-M > # > # First, equal case weights- shouldn't change the survival, but will > # halve the variance > temp2 <-survfit(Surv(aml$time, aml$status)~1, type='kaplan', weight=rep(2,23)) > temp <-survfit(Surv(time, status)~1, aml) > aeq(temp$surv, temp2$surv) [1] TRUE > aeq(temp$std.err^2, 2*temp2$std.err^2) [1] TRUE > > # Risk weights-- use a null Cox model > tfit <- coxph(Surv(aml$time, aml$status) ~ offset(log(1:23))) > sfit <- survfit(tfit, type='aalen', censor=FALSE) > > # Now compute it by hand. The survfit program will produce a curve > # corresponding to the mean offset. This is a change on 7/2010, > # which caused S(new) = S(old)^exp(mean(log(1:23))). > # Ties are a nuisance > rscore <- exp(log(1:23) - mean(log(1:23)))[order(aml$time)] > atime <- sort(aml$time) > denom <- rev(cumsum(rev(rscore))) > denom <- denom[match(unique(atime), atime)] > deaths <- tapply(aml$status, aml$time, sum) > chaz <- cumsum(deaths/denom) > all.equal(sfit$surv, as.vector(exp(-chaz[deaths>0]))) [1] TRUE > cvar <- cumsum(deaths/denom^2) > all.equal(sfit$std^2, as.vector(cvar[deaths>0])) [1] TRUE > > # And the Efron result > summary(survfit(tfit)) Call: survfit(formula = tfit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 5 23 2 0.932 0.0461 0.8463 1.000 8 21 2 0.863 0.0637 0.7467 0.997 9 19 1 0.827 0.0704 0.6999 0.977 12 18 1 0.793 0.0755 0.6576 0.955 13 17 1 0.757 0.0801 0.6152 0.931 18 14 1 0.719 0.0846 0.5709 0.905 23 13 2 0.645 0.0907 0.4893 0.849 27 11 1 0.607 0.0929 0.4496 0.819 30 9 1 0.565 0.0955 0.4054 0.787 31 8 1 0.519 0.0982 0.3579 0.752 33 7 1 0.474 0.0994 0.3140 0.715 34 6 1 0.423 0.1009 0.2649 0.675 43 5 1 0.373 0.1006 0.2198 0.633 45 4 1 0.312 0.1009 0.1657 0.588 48 2 1 0.199 0.1102 0.0674 0.589 > > # Lots of ties, so its a good test case > x1 <- coxph(Surv(time, status)~x, aml, method='efron') > x1 Call: coxph(formula = Surv(time, status) ~ x, data = aml, method = "efron") coef exp(coef) se(coef) z p xNonmaintained 0.916 2.5 0.512 1.79 0.074 Likelihood ratio test=3.38 on 1 df, p=0.0658 n= 23, number of events= 18 > x2 <- coxph(Surv(rep(0,23),time, status) ~x, aml, method='efron') > aeq(x1$coef, x2$coef) [1] TRUE > > > rm(x1, x2, atime, denom, deaths, chaz,cvar, tfit, sfit, temp, temp2, fit) > survival/tests/r_resid.Rout.save0000644000176000001440000003557512267746072016612 0ustar ripleyusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > fit1 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian) > fit4 <- survreg(Surv(log(futime), fustat) ~age + ecog.ps, ovarian, + dist='extreme') > > print(fit1) Call: survreg(formula = Surv(futime, fustat) ~ age + ecog.ps, data = ovarian) Coefficients: (Intercept) age ecog.ps 12.28496723 -0.09702669 0.09977342 Scale= 0.6032744 Loglik(model)= -90 Loglik(intercept only)= -98 Chisq= 15.98 on 2 degrees of freedom, p= 0.00034 n= 26 > summary(fit4) Call: survreg(formula = Surv(log(futime), fustat) ~ age + ecog.ps, data = ovarian, dist = "extreme") Value Std. Error z p (Intercept) 12.2850 1.5015 8.182 2.80e-16 age -0.0970 0.0235 -4.127 3.67e-05 ecog.ps 0.0998 0.3657 0.273 7.85e-01 Log(scale) -0.5054 0.2351 -2.149 3.16e-02 Scale= 0.603 Extreme value distribution Loglik(model)= -21.8 Loglik(intercept only)= -29.8 Chisq= 15.98 on 2 degrees of freedom, p= 0.00034 Number of Newton-Raphson Iterations: 5 n= 26 > > > # Hypothesis (and I'm fairly sure): censorReg shares the fault of many > # iterative codes -- it returns the loglik and variance for iteration k > # but the coef vector of iteration k+1. Hence the "all.equal" tests > # below don't come out perfect. > # > if (exists('censorReg')) { #true for Splus, not R + fit2 <- censorReg(censor(futime, fustat) ~ age + ecog.ps, ovarian) + fit3 <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, + iter=0, init=c(fit2$coef, log(fit2$scale))) + + aeq(resid(fit2, type='working')[,1], resid(fit3, type='working')) + aeq(resid(fit2, type='response')[,1], resid(fit3, type='response')) + + temp <- sign(resid(fit3, type='working')) + aeq(resid(fit2, type='deviance')[,1], + temp*abs(resid(fit3, type='deviance'))) + aeq(resid(fit2, type='deviance')[,1], resid(fit3, type='deviance')) + } > # > # Now check fit1 and fit4, which should follow identical iteration paths > # These tests should all be true > # > aeq(fit1$coef, fit4$coef) [1] TRUE > > resid(fit1, type='working') 1 2 3 4 5 6 -4.5081778 -0.5909810 -2.4878519 0.6032744 -5.8993431 0.6032744 7 8 9 10 11 12 -1.7462937 -0.8102883 0.6032744 -1.6593962 -0.8235265 0.6032744 13 14 15 16 17 18 0.6032744 0.6032744 0.6032744 0.6032744 0.6032744 0.6032744 19 20 21 22 23 24 0.6032744 0.6032744 0.6032744 0.2572623 -31.8006867 -0.7426277 25 26 -0.2857597 0.6032744 > resid(fit1, type='response') 1 2 3 4 5 6 -155.14523 -58.62744 -262.03173 -927.79842 -1377.84908 -658.86626 7 8 9 10 11 12 -589.74449 -318.93436 4.50671 -686.83338 -434.39281 -1105.68733 13 14 15 16 17 18 -42.43371 -173.09223 -4491.29974 -3170.49394 -5028.31053 -2050.91373 19 20 21 22 23 24 -150.65033 -2074.09345 412.32400 76.35826 -3309.40331 -219.81579 25 26 -96.19691 -457.76731 > resid(fit1, type='deviance') 1 2 3 4 5 6 7 -1.5842290 -0.6132746 -1.2876971 0.5387840 -1.7148539 0.6682580 -1.1102921 8 9 10 11 12 13 14 -0.7460191 1.4253843 -1.0849419 -0.7531720 0.6648130 1.3526380 1.1954382 15 16 17 18 19 20 21 0.2962391 0.3916044 0.3278067 0.5929057 1.2747643 0.6171130 1.9857606 22 23 24 25 26 0.6125492 -2.4504208 -0.7080652 -0.3642424 0.7317955 > resid(fit1, type='dfbeta') (Intercept) age ecog.ps Log(scale) 1 0.43370970 -1.087867e-02 0.126322520 0.048379059 2 0.14426449 -5.144770e-03 0.088768478 -0.033939677 3 0.25768057 -3.066698e-03 -0.066578834 0.021817646 4 0.05772598 -5.068044e-04 -0.013121427 -0.007762466 5 -0.58773456 6.676156e-03 0.084189274 0.008064026 6 0.01499533 -7.881949e-04 0.026570173 -0.013513160 7 -0.17869321 4.126121e-03 -0.072760519 -0.015006956 8 -0.11851540 2.520303e-03 -0.045549628 -0.035686269 9 0.08327656 3.206404e-03 -0.141835350 0.024490806 10 -0.25083921 5.321702e-03 -0.073986269 -0.020648720 11 -0.21333934 4.155746e-03 -0.049832434 -0.040215681 12 0.13889770 -1.586136e-03 -0.019701151 -0.004686340 13 0.07892133 -2.706713e-03 0.085242459 0.007847879 14 0.29690157 -1.987141e-03 -0.085553120 0.017447343 15 0.04344618 -6.319243e-04 -0.001944285 -0.003533279 16 0.04866809 -1.068317e-03 0.012398602 -0.006340983 17 0.04368104 -9.248316e-04 0.009428718 -0.004869178 18 0.15684611 -2.081485e-03 -0.013068320 -0.003265399 19 0.48839511 -4.775829e-03 -0.093258090 0.032703354 20 0.17598922 -2.349254e-03 -0.014202966 -0.002486428 21 0.37869758 -8.442011e-03 0.163476417 0.100850775 22 -0.59761427 8.803638e-03 0.052784598 -0.053085234 23 -0.79017984 1.092304e-02 0.053690092 0.080780399 24 -0.02348526 8.331002e-04 -0.039028433 -0.032765737 25 -0.13948485 3.687927e-04 0.056781884 -0.055647859 26 0.05778937 3.766350e-06 -0.029232389 -0.008927920 > resid(fit1, type='dfbetas') [,1] [,2] [,3] [,4] 1 0.288846658 -0.4627232074 0.345395116 0.20574292 2 0.096078819 -0.2188323823 0.242713641 -0.14433617 3 0.171612884 -0.1304417700 -0.182041999 0.09278449 4 0.038444974 -0.0215568869 -0.035877029 -0.03301165 5 -0.391425795 0.2839697749 0.230193032 0.03429410 6 0.009986751 -0.0335258093 0.072649027 -0.05746778 7 -0.119008027 0.1755042532 -0.198944162 -0.06382048 8 -0.078930164 0.1072008799 -0.124543264 -0.15176395 9 0.055461420 0.1363841532 -0.387810796 0.10415271 10 -0.167056601 0.2263581990 -0.202295647 -0.08781336 11 -0.142082031 0.1767643342 -0.136253451 -0.17102630 12 0.092504589 -0.0674661531 -0.053867524 -0.01992972 13 0.052560878 -0.1151298322 0.233072686 0.03337488 14 0.197733705 -0.0845228882 -0.233922105 0.07419878 15 0.028934753 -0.0268788526 -0.005316126 -0.01502607 16 0.032412497 -0.0454407662 0.033900659 -0.02696647 17 0.029091172 -0.0393376416 0.025780305 -0.02070728 18 0.104458066 -0.0885357994 -0.035731824 -0.01388685 19 0.325266641 -0.2031395176 -0.254989284 0.13907843 20 0.117207199 -0.0999253459 -0.038834208 -0.01057410 21 0.252209096 -0.3590802699 0.446982501 0.42889079 22 -0.398005596 0.3744620571 0.144325354 -0.22575700 23 -0.526252483 0.4646108448 0.146801184 0.34353696 24 -0.015640965 0.0354358527 -0.106712804 -0.13934372 25 -0.092895624 0.0156865706 0.155254862 -0.23665514 26 0.038487186 0.0001602014 -0.079928144 -0.03796800 > resid(fit1, type='ldcase') 1 2 3 4 5 6 0.374432175 0.145690278 0.112678800 0.006399163 0.261176992 0.013280058 7 8 9 10 11 12 0.109842490 0.074103234 0.248285282 0.128482147 0.094038203 0.016111951 13 14 15 16 17 18 0.132812463 0.111857574 0.001698300 0.004730718 0.003131173 0.015840667 19 20 21 22 23 24 0.179925399 0.019071941 0.797119488 0.233096445 0.666613755 0.062959708 25 26 0.080117437 0.015922378 > resid(fit1, type='ldresp') 1 2 3 4 5 6 0.076910173 0.173810883 0.078356928 0.005310644 0.060742612 0.010002154 7 8 9 10 11 12 0.067356838 0.067065693 0.355103899 0.067043195 0.068142828 0.016740944 13 14 15 16 17 18 0.193444572 0.165021262 0.001494685 0.004083386 0.002767560 0.016400993 19 20 21 22 23 24 0.269571809 0.020129806 1.409736499 1.040266083 0.058637282 0.071819025 25 26 0.112702844 0.015105534 > resid(fit1, type='ldshape') 1 2 3 4 5 6 0.870628250 0.383362440 0.412503605 0.005534970 0.513991064 0.003310847 7 8 9 10 11 12 0.291860593 0.154910362 0.256160646 0.312329770 0.183191309 0.004184904 13 14 15 16 17 18 0.110215710 0.049299495 0.007678445 0.011633336 0.011588605 0.008641251 19 20 21 22 23 24 0.112967758 0.008271358 2.246729275 0.966929220 1.022043272 0.143857170 25 26 0.079754096 0.001606647 > resid(fit1, type='matrix') g dg ddg ds dds dsg 1 -1.74950763 -1.46198129 -0.32429540 0.88466493 -2.42358635 1.8800360 2 -0.68266980 -0.82027857 -1.38799493 -0.66206188 -0.57351872 1.3921043 3 -1.32369884 -1.33411374 -0.53625126 0.31503768 -1.83606321 1.8626973 4 -0.14514412 0.24059386 -0.39881329 -0.28013223 -0.26053084 0.2237590 5 -1.96497889 -1.50383619 -0.25491587 1.15700933 -2.68145423 1.8694717 6 -0.22328436 0.37012071 -0.61351964 -0.33477229 -0.16715487 0.1848047 7 -1.11099124 -1.23201028 -0.70550005 0.01052036 -1.48515401 1.8106760 8 -0.77288913 -0.95018808 -1.17265428 -0.51190170 -0.79753045 1.5525642 9 -1.01586016 1.68391053 -2.79128447 0.01598527 -0.01623681 -1.7104080 10 -1.08316634 -1.21566480 -0.73259465 -0.03052447 -1.43539383 1.7998987 11 -0.77825093 -0.95675178 -1.16177415 -0.50314979 -0.81016011 1.5600720 12 -0.22098818 0.36631452 -0.60721042 -0.33361394 -0.17002503 0.1866908 13 -0.91481479 1.51641567 -2.51364157 -0.08144930 0.07419757 -1.3814037 14 -0.71453621 1.18442981 -1.96333502 -0.24017106 0.15944438 -0.7863174 15 -0.04387880 0.07273440 -0.12056602 -0.13717935 -0.29168773 0.1546569 16 -0.07667699 0.12710134 -0.21068577 -0.19691828 -0.30879813 0.1993144 17 -0.05372862 0.08906165 -0.14763041 -0.15709224 -0.30221555 0.1713377 18 -0.17576861 0.29135764 -0.48296037 -0.30558900 -0.22570402 0.2151929 19 -0.81251205 1.34683655 -2.23254376 -0.16869744 0.13367171 -1.0672002 20 -0.19041424 0.31563454 -0.52320225 -0.31581218 -0.20797917 0.2078622 21 -1.97162252 3.26820173 -5.41743790 1.33844939 -2.24706488 -5.4868428 22 -0.68222519 1.23245193 -4.79064290 -0.58668577 -0.95209805 -2.8390386 23 -3.49689798 -1.62675999 -0.05115487 2.90949868 -4.20494743 1.7496975 24 -0.74529506 -0.91462436 -1.23160543 -0.55723389 -0.73139169 1.5108398 25 -0.56095318 -0.53280415 -1.86451840 -0.87536233 -0.22666819 0.9689667 26 -0.26776235 0.44384834 -0.73573207 -0.35281852 -0.11207472 0.1409908 > > aeq(resid(fit1, type='working'),resid(fit4, type='working')) [1] TRUE > #aeq(resid(fit1, type='response'), resid(fit4, type='response'))#should differ > aeq(resid(fit1, type='deviance'), resid(fit4, type='deviance')) [1] TRUE > aeq(resid(fit1, type='dfbeta'), resid(fit4, type='dfbeta')) [1] TRUE > aeq(resid(fit1, type='dfbetas'), resid(fit4, type='dfbetas')) [1] TRUE > aeq(resid(fit1, type='ldcase'), resid(fit4, type='ldcase')) [1] TRUE > aeq(resid(fit1, type='ldresp'), resid(fit4, type='ldresp')) [1] TRUE > aeq(resid(fit1, type='ldshape'), resid(fit4, type='ldshape')) [1] TRUE > aeq(resid(fit1, type='matrix'), resid(fit4, type='matrix')) [1] TRUE > # > # Some tests of the quantile residuals > # > motor <- read.table('data.motor', col.names=c('temp', 'time', 'status')) > > # These should agree exactly with Ripley and Venables' book > fit1 <- survreg(Surv(time, status) ~ temp, data=motor) > summary(fit1) Call: survreg(formula = Surv(time, status) ~ temp, data = motor) Value Std. Error z p (Intercept) 16.3185 0.62296 26.2 3.03e-151 temp -0.0453 0.00319 -14.2 6.74e-46 Log(scale) -1.0956 0.21480 -5.1 3.38e-07 Scale= 0.334 Weibull distribution Loglik(model)= -147.4 Loglik(intercept only)= -169.5 Chisq= 44.32 on 1 degrees of freedom, p= 2.8e-11 Number of Newton-Raphson Iterations: 7 n= 40 > > # > # The first prediction has the SE that I think is correct > # The third is the se found in an early draft of Ripley; fit1 ignoring > # the variation in scale estimate, except via it's impact on the > # upper left corner of the inverse information matrix. > # Numbers 1 and 3 differ little for this dataset > # > predict(fit1, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit [1] 0.2135247 0.2202088 > > fit2 <- survreg(Surv(time, status) ~ temp, data=motor, scale=fit1$scale) > predict(fit2, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit 1 1 0.2057964 0.2057964 > > fit3 <- fit2 > fit3$var <- fit1$var[1:2,1:2] > predict(fit3, data.frame(temp=130), type='uquantile', p=c(.5, .1), se=T) $fit [1] 10.306068 9.676248 $se.fit 1 1 0.2219959 0.2219959 > > pp <- seq(.05, .7, length=40) > xx <- predict(fit1, data.frame(temp=130), type='uquantile', se=T, + p=pp) > #matplot(pp, cbind(xx$fit, xx$fit+2*xx$se, xx$fit - 2*xx$se), type='l') > > > # > # Now try out the various combinations of strata, #predicted, and > # number of quantiles desired > # > fit1 <- survreg(Surv(time, status) ~ inst + strata(inst) + age + sex, lung) > qq1 <- predict(fit1, type='quantile', p=.3, se=T) > qq2 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > aeq(qq1$fit, qq2$fit[,2]) [1] TRUE > aeq(qq1$se.fit, qq2$se.fit[,2]) [1] TRUE > > qq3 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, + newdata= lung[1:5,]) > aeq(qq3$fit, qq2$fit[1:5,]) [1] TRUE > > qq4 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung[7,]) > aeq(qq4$fit, qq2$fit[7,]) [1] TRUE > > qq5 <- predict(fit1, type='quantile', p=c(.2, .3, .4), se=T, newdata=lung) > aeq(qq2$fit, qq5$fit) [1] TRUE > aeq(qq2$se.fit, qq5$se.fit) [1] TRUE > survival/tests/pspline.Rout.save0000644000176000001440000000352512267746072016623 0ustar ripleyusers R version 2.14.0 (2011-10-31) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # Tests with the pspline function, to verify the prediction aspects > # > options(na.action=na.exclude) > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > spfit <- coxph(Surv(time, status) ~ pspline(age) + ph.ecog, lung) > > spfit2 <- coxph(Surv(time, status) ~ pspline(age) + ph.ecog, lung, x=TRUE) > x2 <- model.matrix(spfit) > all.equal(spfit2$x, x2) [1] TRUE > > keep <- (lung$age < 60) > x3 <- model.matrix(spfit, data=lung[keep,]) > attr(x3, 'assign') <- NULL #subscripting loses the assign attr below > all.equal(napredict(spfit$na.action,x2)[keep,], x3) [1] TRUE > > p2 <- predict(spfit, newdata=lung[keep,]) > aeq(p2, predict(spfit)[keep]) [1] TRUE > > > p3 <- survfit(spfit) > p4 <- survfit(spfit, newdata=lung[1:2,]) > temp <- scale(x2[1:2,], center=spfit$means, scale=FALSE)%*% coef(spfit) > aeq(p3$time, p4$time) [1] TRUE > aeq(outer(-log(p3$surv), exp(temp), '*'), -log(p4$surv)) [1] TRUE > > # Check out model.frame > spfit3 <- coxph(Surv(time, status) ~ pspline(age) + sex, lung, + model=TRUE) #avoid the missing value > m2 <- model.frame(spfit3, data=lung[keep,]) > all.equal(m2, spfit3$model[keep,]) [1] TRUE > > survival/tests/clogit.Rout.save0000644000176000001440000000365412267746072016435 0ustar ripleyusers R version 2.14.0 (2011-10-31) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # Test of the clogit function, and indirectly of the exact option > # > # Data set logan has the occupation of fathers, we create a > # multinomial response > # > nresp <- length(levels(logan$occupation)) > n <- nrow(logan) > indx <- rep(1:n, nresp) > logan2 <- data.frame(logan[indx,], + id = indx, + occ2 = factor(rep(levels(logan$occupation), each=n))) > logan2$y <- (logan2$occupation == logan2$occ2) > > #We expect two NA coefficients, so ignore the warning > fit1 <- clogit(y ~ occ2 + occ2:education + occ2:race + strata(id), logan2) Warning message: In coxph(formula = Surv(rep(1, 4190L), y) ~ occ2 + occ2:education + : X matrix deemed to be singular; variable 9 14 > > #since there is only one death per group, all methods are equal > dummy <- rep(1, nrow(logan2)) > fit2 <- coxph(Surv(dummy, y) ~ occ2 + occ2:education + occ2:race + strata(id), + logan2, method='breslow') Warning message: In coxph(Surv(dummy, y) ~ occ2 + occ2:education + occ2:race + strata(id), : X matrix deemed to be singular; variable 9 14 > > all.equal(fit1$coef, fit2$coef) [1] TRUE > all.equal(fit1$loglik, fit2$loglik) [1] TRUE > all.equal(fit1$var, fit2$var) [1] TRUE > all.equal(fit1$resid, fit2$resid) [1] TRUE > > survival/tests/summary_survfit.Rout.save0000644000176000001440000000526112267746072020427 0ustar ripleyusers R version 2.9.0 Under development (unstable) (2009-03-17 r48144) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## check that the scale option to summary.survfit works > ## Marc Schwartz reported this as a bug in 2.35-3. > library(survival) Loading required package: splines > summary( survfit( Surv(futime, fustat)~1, data=ovarian)) Call: survfit(formula = Surv(futime, fustat) ~ 1, data = ovarian) time n.risk n.event survival std.err lower 95% CI upper 95% CI 59 26 1 0.962 0.0377 0.890 1.000 115 25 1 0.923 0.0523 0.826 1.000 156 24 1 0.885 0.0627 0.770 1.000 268 23 1 0.846 0.0708 0.718 0.997 329 22 1 0.808 0.0773 0.670 0.974 353 21 1 0.769 0.0826 0.623 0.949 365 20 1 0.731 0.0870 0.579 0.923 431 17 1 0.688 0.0919 0.529 0.894 464 15 1 0.642 0.0965 0.478 0.862 475 14 1 0.596 0.0999 0.429 0.828 563 12 1 0.546 0.1032 0.377 0.791 638 11 1 0.497 0.1051 0.328 0.752 > summary( survfit( Surv(futime, fustat)~1, data=ovarian), scale=365.25) Call: survfit(formula = Surv(futime, fustat) ~ 1, data = ovarian) time n.risk n.event survival std.err lower 95% CI upper 95% CI 0.162 26 1 0.962 0.0377 0.890 1.000 0.315 25 1 0.923 0.0523 0.826 1.000 0.427 24 1 0.885 0.0627 0.770 1.000 0.734 23 1 0.846 0.0708 0.718 0.997 0.901 22 1 0.808 0.0773 0.670 0.974 0.966 21 1 0.769 0.0826 0.623 0.949 0.999 20 1 0.731 0.0870 0.579 0.923 1.180 17 1 0.688 0.0919 0.529 0.894 1.270 15 1 0.642 0.0965 0.478 0.862 1.300 14 1 0.596 0.0999 0.429 0.828 1.541 12 1 0.546 0.1032 0.377 0.791 1.747 11 1 0.497 0.1051 0.328 0.752 > survival/tests/book3.Rout.save0000644000176000001440000002066012267746072016165 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Tests from the appendix of Therneau and Grambsch > # c. Data set 2 and Breslow estimate > # > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > byhand <- function(beta, newx=0) { + r <- exp(beta) + loglik <- 4*beta - log(r+1) - log(r+2) - 3*log(3*r+2) - 2*log(3*r+1) + u <- 1/(r+1) + 1/(3*r+1) + 4/(3*r+2) - + ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) + imat <- r/(r+1)^2 + 2*r/(r+2)^2 + 6*r/(3*r+2)^2 + + 3*r/(3*r+1)^2 + 3*r/(3*r+1)^2 + 12*r/(3*r+2)^2 + + hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 2/(3*r+2) ) + xbar <- c(r/(r+1), r/(r+2), 3*r/(3*r+2), 3*r/(3*r+1), 3*r/(3*r+1), + 3*r/(3*r+2)) + + # The matrix of weights, one row per obs, one col per time + # deaths at 2,3,6,7,8,9 + wtmat <- matrix(c(1,0,0,0,1,0,0,0,0,0, + 0,1,0,1,1,0,0,0,0,0, + 0,0,1,1,1,0,1,1,0,0, + 0,0,0,1,1,0,1,1,0,0, + 0,0,0,0,1,1,1,1,0,0, + 0,0,0,0,0,1,1,1,1,1), ncol=6) + wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat + + x <- c(1,0,0,1,0,1,1,1,0,0) + status <- c(1,1,1,1,1,1,1,0,0,0) + xbar <- colSums(wtmat*x)/ colSums(wtmat) + n <- length(x) + + # Table of sums for score and Schoenfeld resids + hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time + dM <- -hazmat #Expected part + for (i in 1:6) dM[i,i] <- dM[i,i] +1 #observed + dM[7,6] <- dM[7,6] +1 # observed + mart <- rowSums(dM) + + # Table of sums for score and Schoenfeld resids + # Looks like the last table of appendix E.2.1 of the book + resid <- dM * outer(x, xbar, '-') + score <- rowSums(resid) + scho <- colSums(resid) + # We need to split the two tied times up, to match coxph + scho <- c(scho[1:5], scho[6]/2, scho[6]/2) + var.g <- cumsum(hazard*hazard /c(1,1,1,1,1,2)) + var.d <- cumsum( (xbar-newx)*hazard) + + surv <- exp(-cumsum(hazard) * exp(beta*newx)) + varhaz <- (var.g + var.d^2/imat)* exp(2*beta*newx) + + list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard, + mart=mart, score=score, rmat=resid, + scho=scho, surv=surv, var=varhaz) + } > > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > fit0 <-coxph(Surv(start, stop, event) ~x, test2, iter=0, method='breslow') > truth0 <- byhand(0,0) > aeq(truth0$loglik, fit0$loglik[1]) [1] TRUE > aeq(1/truth0$imat, fit0$var) [1] TRUE > aeq(truth0$mart, fit0$resid) [1] TRUE > aeq(truth0$scho, resid(fit0, 'schoen')) [1] TRUE > aeq(truth0$score, resid(fit0, 'score')) [1] TRUE > sfit <- survfit(fit0, list(x=0), censor=FALSE) > aeq(sfit$std.err^2, truth0$var) [1] TRUE > aeq(sfit$surv, truth0$surv) [1] TRUE > > fit <- coxph(Surv(start, stop, event) ~x, test2, eps=1e-8, method='breslow') > truth <- byhand(fit$coef, 0) > aeq(truth$loglik, fit$loglik[2]) [1] TRUE > aeq(1/truth$imat, fit$var) [1] TRUE > aeq(truth$mart, fit$resid) [1] TRUE > aeq(truth$scho, resid(fit, 'schoen')) [1] TRUE > aeq(truth$score, resid(fit, 'score')) [1] TRUE > > sfit <- survfit(fit, list(x=0), censor=FALSE) > aeq(sfit$std.err^2, truth$var) [1] TRUE > aeq(-log(sfit$surv), (cumsum(truth$haz))) [1] TRUE > > # > # Done with the formal test, now print out lots of bits > # > resid(fit) 1 2 3 4 5 6 0.52111895 0.65741078 0.78977654 0.24738772 -0.60629349 0.36902492 7 8 9 10 -0.06876579 -1.06876579 -0.42044692 -0.42044692 > resid(fit, 'scor') 1 2 3 4 5 6 0.27156496 -0.20696709 -0.45771743 -0.09586133 0.13608234 0.19288983 7 8 9 10 0.04655651 -0.37389040 0.24367131 0.24367131 > resid(fit, 'scho') 2 3 6 7 8 9 9 0.5211189 -0.3148216 -0.5795531 0.2661809 -0.7338191 0.4204469 0.4204469 > > predict(fit, type='lp') [1] -0.04226304 0.04226304 0.04226304 -0.04226304 0.04226304 -0.04226304 [7] -0.04226304 -0.04226304 0.04226304 0.04226304 > predict(fit, type='risk') [1] 0.9586176 1.0431688 1.0431688 0.9586176 1.0431688 0.9586176 0.9586176 [8] 0.9586176 1.0431688 1.0431688 > predict(fit, type='expected') 1 2 3 4 5 6 7 8 0.4788811 0.3425892 0.2102235 0.7526123 1.6062935 0.6309751 1.0687658 1.0687658 9 10 0.4204469 0.4204469 > predict(fit, type='terms') x 1 -0.04226304 2 0.04226304 3 0.04226304 4 -0.04226304 5 0.04226304 6 -0.04226304 7 -0.04226304 8 -0.04226304 9 0.04226304 10 0.04226304 attr(,"constant") [1] -0.04226304 > predict(fit, type='lp', se.fit=T) $fit 1 2 3 4 5 6 -0.04226304 0.04226304 0.04226304 -0.04226304 0.04226304 -0.04226304 7 8 9 10 -0.04226304 -0.04226304 0.04226304 0.04226304 $se.fit 1 2 3 4 5 6 7 8 0.3969086 0.3969086 0.3969086 0.3969086 0.3969086 0.3969086 0.3969086 0.3969086 9 10 0.3969086 0.3969086 > predict(fit, type='risk', se.fit=T) $fit 1 2 3 4 5 6 7 8 0.9586176 1.0431688 1.0431688 0.9586176 1.0431688 0.9586176 0.9586176 0.9586176 9 10 1.0431688 1.0431688 $se.fit 1 2 3 4 5 6 7 8 0.3886094 0.4053852 0.4053852 0.3886094 0.4053852 0.3886094 0.3886094 0.3886094 9 10 0.4053852 0.4053852 > predict(fit, type='expected', se.fit=T) $fit 1 2 3 4 5 6 7 8 0.4788811 0.3425892 0.2102235 0.7526123 1.6062935 0.6309751 1.0687658 1.0687658 9 10 0.4204469 0.4204469 $se.fit [1] 0.5182381 0.3982700 0.3292830 0.6266797 1.0255146 0.5852364 0.7341340 [8] 0.7341340 0.6268550 0.6268550 > predict(fit, type='terms', se.fit=T) $fit x 1 -0.04226304 2 0.04226304 3 0.04226304 4 -0.04226304 5 0.04226304 6 -0.04226304 7 -0.04226304 8 -0.04226304 9 0.04226304 10 0.04226304 attr(,"constant") [1] -0.04226304 $se.fit x 1 0.3969086 2 0.3969086 3 0.3969086 4 0.3969086 5 0.3969086 6 0.3969086 7 0.3969086 8 0.3969086 9 0.3969086 10 0.3969086 > > summary(survfit(fit)) Call: survfit(formula = fit) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 2 1 0.607 0.303 0.2279 1.000 3 3 1 0.437 0.262 0.1347 1.000 6 5 1 0.357 0.226 0.1034 1.000 7 4 1 0.277 0.188 0.0729 1.000 8 4 1 0.214 0.156 0.0514 0.894 9 5 2 0.143 0.112 0.0308 0.667 > summary(survfit(fit, list(x=2))) Call: survfit(formula = fit, newdata = list(x = 2)) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 2 1 0.644 0.444 0.16657 1 3 3 1 0.482 0.511 0.06055 1 6 5 1 0.404 0.504 0.03491 1 7 4 1 0.322 0.475 0.01801 1 8 4 1 0.258 0.437 0.00928 1 9 5 2 0.181 0.377 0.00302 1 > survival/tests/frank.Rout.save0000644000176000001440000000302012267746072016240 0ustar ripleyusers R version 3.0.0 (2013-04-03) -- "Masked Marvel" Copyright (C) 2013 The R Foundation for Statistical Computing Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # Check out intercept/interaction for Frank H > # > age2 <- lung$age - 50 > fit1 <- coxph(Surv(time, status) ~ age * strata(sex), lung) > fit2 <- coxph(Surv(time, status) ~ age2*strata(sex), lung) > > tdata <- data.frame(age=50:60, age2=0:10, sex=c(1,2,1,2,1,2,1,2,1,2,1)) > > surv1 <- survfit(fit1, tdata) > surv2 <- survfit(fit2, tdata) > # The call won't match, but the rest should > icall <- match("call", names(surv1)) > all.equal(unclass(surv1)[-icall], unclass(surv2)[-icall]) [1] TRUE > > > # It should match what I get with a single strata fit > > fit3 <- coxph(Surv(time, status) ~ age, data=lung, + init=fit1$coef[1], subset=(sex==1), iter=0) > surv1b <- survfit(fit3, newdata=list(age=c(50,52, 54))) > all.equal(c(surv1b$surv), surv1[c(1,3,5)]$surv) [1] TRUE > > > > > proc.time() user system elapsed 0.280 0.028 0.306 survival/tests/r_stanford.R0000644000176000001440000000511612267746072015623 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # The Stanford data from 1980 is used in Escobar and Meeker, Biometrics 1992. # t5 = T5 mismatch score # Their case numbers correspond to a data set sorted by age # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) stanford2$t5 <- ifelse(stanford2$t5 <0, NA, stanford2$t5) stanford2 <- stanford2[order(stanford2$age, stanford2$time),] stanford2$time <- ifelse(stanford2$time==0, .5, stanford2$time) cage <- stanford2$age - mean(stanford2$age) fit1 <- survreg(Surv(time, status) ~ cage + I(cage^2), stanford2, dist='lognormal') fit1 ldcase <- resid(fit1, type='ldcase') ldresp <- resid(fit1, type='ldresp') # The ldcase and ldresp should be compared to table 1 in Escobar and # Meeker, Biometrics 1992, p519; the colums they label as (1/2) A_{ii} # They give data for selected cases, entered below as mdata mdata <- cbind(c(1,2,4,5,12,16,23,61,66,72,172,182,183,184), c(.035, .244, .141, .159, .194, .402, 0,0, .143, .403, .178, .033, .005, .015), c(.138, .145, .073, .076, .104, .159, 0,0, .109, .184, .116, .063, .103, .144)) dimnames(mdata) <- list(NULL, c("case#", "ldcase", "ldresp")) aeq(round(ldcase[mdata[,1]],3), mdata[,2]) aeq(round(ldresp[mdata[,1]],3), mdata[,3]) plot1 <- function() { # make their figure 1, 2, and 6 temp <- predict(fit1, type='quantile', p=c(.1, .5, .9)) plot(stanford2$age, stanford2$time, log='y', xlab="Age", ylab="Days", ylim=range(stanford2$time, temp)) matlines(stanford2$age, temp, lty=c(1,2,2), col=1) n <- length(ldcase) plot(1:n, ldcase, xlab="Case Number", ylab="(1/2) A", type='l') title (main="Case weight pertubations") plot(1:n, ldresp, xlab="Case Number", ylab="(1/2) A", ylim=c(0, .2), type='l') title(main="Response pertubations") indx <- which(ldresp > .07) text(indx, ldresp[indx]+ .005, indx%%10, cex=.6) } postscript('meekerplot.ps') plot1() dev.off() # # Stanford predictions in other ways # fit2 <- survreg(Surv(time, status) ~ poly(age,2), stanford2, dist='lognormal') p1 <- predict(fit1, type='response') p2 <- predict(fit2, type='response') aeq(p1, p2) p3 <- predict(fit2, type='terms', se=T) p4 <- predict(fit2, type='lp', se=T) p5 <- predict(fit1, type='lp', se=T) # aeq(p3$fit + attr(p3$fit, 'constant'), p4$fit) #R is missing the attribute aeq(p4$fit, p5$fit) aeq(p3$se.fit, p4$se.fit) #this one should be false aeq(p4$se.fit, p5$se.fit) #this one true survival/tests/infcox.R0000644000176000001440000000232112267746072014743 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # A test to exercise the "infinity" check on 2 variables # test3 <- data.frame(futime=1:12, fustat=c(1,0,1,0,1,0,0,0,0,0,0,0), x1=rep(0:1,6), x2=c(rep(0,6), rep(1,6))) # This will produce a warning message, which is the point of the test. # The variance is close to singular and gives different answers # on different machines fit3 <- coxph(Surv(futime, fustat) ~ x1 + x2, test3, iter=25) all(fit3$coef < -22) all.equal(round(fit3$log, 4),c(-6.8669, -1.7918)) # # Actual solution # time 1, 12 at risk, 3 each of x1/x2 = 00, 01, 10, 11 # time 2, 10 at risk, 2, 3, 2 , 3 # time 5, 8 at risk, 1, 3, 1, 3 # Let r1 = exp(beta1), r2= exp(beta2) # loglik = -log(3 + 3r1 + 3r2 + 3 r1*r2) - log(2 + 2r1 + 3r2 + 3 r1*r2) - # log(1 + r1 + 3r2 + 3 r1*r2) true <- function(beta) { r1 <- exp(beta[1]) r2 <- exp(beta[2]) loglik <- -log(3*(1+ r1+ r2+ r1*r2)) - log(2+ 2*r1 + 3*r2 + 3*r1*r2) - log(1 + r1 + 3*r2 + 3*r1*r2) loglik } all.equal(fit3$loglik[2], true(fit3$coef), check.attributes=FALSE) survival/tests/cancer.R0000644000176000001440000000212312267746072014710 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out all of the routines on a more complex data set # temp <- survfit(Surv(time, status) ~ ph.ecog, lung) summary(temp, times=c(30*1:11, 365*1:3)) print(temp[2:3]) temp <- survfit(Surv(time, status)~1, lung, type='fleming', conf.int=.9, conf.type='log-log', error='tsiatis') summary(temp, times=30 *1:5) temp <- survdiff(Surv(time, status) ~ inst, lung, rho=.5) print(temp, digits=6) temp <- coxph(Surv(time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + sex + age + meal.cal + strata(inst), lung) summary(temp) cox.zph(temp) cox.zph(temp, transform='identity') coxph(Surv(rep(0,length(time)), time, status) ~ ph.ecog + ph.karno + pat.karno + wt.loss + sex + age + meal.cal + strata(inst), lung) # # Tests of using "." # fit1 <- coxph(Surv(time, status) ~ . - meal.cal - wt.loss - inst, lung) fit2 <- update(fit1, .~. - ph.karno) fit3 <- coxph(Surv(time, status) ~ age + sex + ph.ecog + pat.karno, lung) all.equal(fit2, fit3) survival/tests/detail.R0000644000176000001440000000515112267746072014723 0ustar ripleyusers# A short test on coxph.detail, to ensure that the computed hazard is # equal to the theoretical value library(survival) aeq <- function(a,b) all.equal(as.vector(a), as.vector(b)) # taken from book4.R test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 4*beta - (log(r+1) + log(r+2) + 2*log(3*r+2) + 2*log(3*r+1) + log(2*r +2)) u <- 1/(r+1) + 1/(3*r+1) + 2*(1/(3*r+2) + 1/(2*r+2)) - ( r/(r+2) +3*r/(3*r+2) + 3*r/(3*r+1)) imat <- r*(1/(r+1)^2 + 2/(r+2)^2 + 6/(3*r+2)^2 + 6/(3*r+1)^2 + 6/(3*r+2)^2 + 4/(2*r +2)^2) hazard <-c( 1/(r+1), 1/(r+2), 1/(3*r+2), 1/(3*r+1), 1/(3*r+1), 1/(3*r+2), 1/(2*r +2) ) # The matrix of weights, one row per obs, one col per time # deaths at 2,3,6,7,8,9 wtmat <- matrix(c(1,0,0,0,1, 0, 0,0,0,0, 0,1,0,1,1, 0, 0,0,0,0, 0,0,1,1,1, 0, 1,1,0,0, 0,0,0,1,1, 0, 1,1,0,0, 0,0,0,0,1, 1, 1,1,0,0, 0,0,0,0,0, 1, 1,1,1,1, 0,0,0,0,0,.5,.5,1,1,1), ncol=7) wtmat <- diag(c(r,1,1,r,1,r,r,r,1,1)) %*% wtmat x <- c(1,0,0,1,0,1,1,1,0,0) status <- c(1,1,1,1,1,1,1,0,0,0) xbar <- colSums(wtmat*x)/ colSums(wtmat) n <- length(x) # Table of sums for score and Schoenfeld resids hazmat <- wtmat %*% diag(hazard) #each subject's hazard over time dM <- -hazmat #Expected part for (i in 1:5) dM[i,i] <- dM[i,i] +1 #observed dM[6:7,6:7] <- dM[6:7,6:7] +.5 # observed mart <- rowSums(dM) # Table of sums for score and Schoenfeld resids # Looks like the last table of appendix E.2.1 of the book resid <- dM * outer(x, xbar, '-') score <- rowSums(resid) scho <- colSums(resid) # We need to add the ties back up (they are symmetric) scho[6:7] <- rep(mean(scho[6:7]), 2) list(loglik=loglik, u=u, imat=imat, xbar=xbar, haz=hazard* exp(beta*newx), mart=mart, score=score, rmat=resid, scho=scho) } # The actual coefficient of the fit is close to zero. Using a larger # number pushes the test harder, but it should still work without # the init and iter arguments, i.e., for any coefficient. fit1 <- coxph(Surv(start, stop, event) ~x, test2,init=-1, iter=0) temp <- coxph.detail(fit1) temp2 <- byhand(fit1$coef, fit1$means) aeq(temp$haz, c(temp2$haz[1:5], sum(temp2$haz[6:7]))) survival/tests/fr_rat2.R0000644000176000001440000000411512267746072015017 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # From Gail, Sautner and Brown, Biometrics 36, 255-66, 1980 # 48 rats were injected with a carcinogen, and then randomized to either # drug or placebo. The number of tumors ranges from 0 to 13; all rats were # censored at 6 months after randomization. # Variables: rat, treatment (1=drug, 0=control), o # observation # within rat, # (start, stop] status # The raw data has some intervals of zero length, i.e., start==stop. # We add .1 to these times as an approximate solution # rat2 <- read.table('data.rat2', col.names=c('id', 'rx', 'enum', 'start', 'stop', 'status')) temp1 <- rat2$start temp2 <- rat2$stop for (i in 1:nrow(rat2)) { if (temp1[i] == temp2[i]) { temp2[i] <- temp2[i] + .1 if (i < nrow(rat2) && rat2$id[i] == rat2$id[i+1]) { temp1[i+1] <- temp1[i+1] + .1 if (temp2[i+1] <= temp1[i+1]) temp2[i+1] <- temp1[i+1] } } } rat2$start <- temp1 rat2$stop <- temp2 r2fit0 <- coxph(Surv(start, stop, status) ~ rx + cluster(id), rat2) r2fitg <- coxph(Surv(start, stop, status) ~ rx + frailty(id), rat2) r2fitm <- coxph(Surv(start, stop, status) ~ rx + frailty.gaussian(id), rat2) r2fit0 r2fitg r2fitm #This example is unusual: the frailties variances end up about the same, # but the effect on rx differs. Double check it # Because of different iteration paths, the coef won't be exactly the # same, but darn close. temp <- coxph(Surv(start, stop, status) ~ rx + offset(r2fitm$frail[id]), rat2) all.equal(temp$coef, r2fitm$coef[1], tolerance=1e-7) temp <- coxph(Surv(start, stop, status) ~ rx + offset(r2fitg$frail[id]), rat2) all.equal(temp$coef, r2fitg$coef[1], tolerance=1e-7) # # What do I get with AIC # r2fita1 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, method='aic'), rat2) r2fita2 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, method='aic', dist='gauss'), rat2) r2fita3 <- coxph(Surv(start, stop, status) ~ rx + frailty(id, dist='t'), rat2) r2fita1 r2fita2 r2fita3 survival/tests/data.peterson0000644000176000001440000000017712267746072016033 0ustar ripleyusers1 4 1 1 7 1 1 12 1 2 3 0 2 10 0 2 22 1 2 21 1 2 11 0 2 12 0 6 18 1 6 9 1 3 12 0 3 19 1 3 16 0 3 5 0 3 14 0 3 20 1 4 2 1 5 6 1 survival/tests/frailty.Rout.save0000644000176000001440000000302012267746072016611 0ustar ripleyusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > # > # The constuction of a survival curve with sparse frailties > # > # In this case the coefficient vector is kept in two parts, the > # fixed coefs and the (often very large) random effects coefficients > # The survfit function treats the second set of coefficients as fixed > # values, to avoid an unmanagable variance matrix, and behaves like > # the second fit below. > > fit1 <- coxph(Surv(time, status) ~ age + frailty(inst), lung) > sfit1 <- survfit(fit1) > > # A parallel model with the frailties treated as fixed offsets > offvar <- fit1$frail[as.numeric(factor(lung$inst))] > fit2 <- coxph(Surv(time, status) ~ age + offset(offvar),lung) > fit2$var <- fit1$var #force variances to match > > all.equal(fit1$coef, fit2$coef) [1] TRUE > sfit2 <- survfit(fit2, newdata=list(age=fit1$means, offvar=0)) > all.equal(sfit1$surv, sfit2$surv) [1] TRUE > all.equal(sfit1$var, sfit2$var) [1] TRUE > survival/tests/counting.R0000644000176000001440000000364312267746072015313 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Create a "counting process" version of the simplest test data set # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) test1b<- list(start= c(0, 3, 0, 0, 5, 0, 6,14, 0, 0, 10,20,30, 0), stop = c(3,10, 10, 5,20, 6,14,20, 30, 10,20,30,40, 10), status=c(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0), x= c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, NA), id = c(3, 3, 4, 5, 5, 6, 6, 6, 7, 1, 1, 1, 1, 2)) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # Check out the various residuals under an Efron approximation # fit0 <- coxph(Surv(time, status)~ x, test1, iter=0) fit <- coxph(Surv(time, status) ~x, test1) fit0b <- coxph(Surv(start, stop, status) ~ x, test1b, iter=0) fitb <- coxph(Surv(start, stop, status) ~x, test1b) fitc <- coxph(Surv(time, status) ~ offset(fit$coef*x), test1) fitd <- coxph(Surv(start, stop, status) ~ offset(fit$coef*x), test1b) aeq(fit0b$coef, fit0$coef) aeq(resid(fit0), resid(fit0b, collapse=test1b$id)) aeq(resid(fit), resid(fitb, collapse=test1b$id)) aeq(resid(fitc), resid(fitd, collapse=test1b$id)) aeq(resid(fitc), resid(fit)) aeq(resid(fit0, type='score'), resid(fit0b, type='score', collapse=test1b$id)) aeq(resid(fit, type='score'), resid(fitb, type='score', collapse=test1b$id)) aeq(resid(fit0, type='scho'), resid(fit0b, type='scho', collapse=test1b$id)) aeq(resid(fit, type='scho'), resid(fitb, type='scho', collapse=test1b$id)) # The two survivals will have different censoring times # nrisk, nevent, surv, and std should be the same temp1 <- survfit(fit, list(x=1), censor=FALSE) temp2 <- survfit(fitb, list(x=1), censor=FALSE) all.equal(unclass(temp1)[c(3,4,6,8)], unclass(temp2)[c(3,4,6,8)]) survival/tests/testci.Rout.save0000644000176000001440000001304412267746072016441 0ustar ripleyusers R version 2.15.2 (2012-10-26) -- "Trick or Treat" Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y),...) > > # > # Test out the survfit.ci function, which does competing risk > # estimates > # > # First trivial test > tdata <- data.frame(time=c(1,2,2,3,3,3,5,6), + status = c(0,1,0,1,0,1,0,1), + event = c(1,1,2,2,1,2,3,2), + grp = c(1,2,1,2,1,2,1,2)) > fit <- survfit(Surv(time, status*event, type='mstate') ~1, tdata) > > byhand <- function() { + #everyone starts in state 0 + p1 <- c(1,0,0) + + p2 <- c(6/7, 1/7, 0) # 0-1 transition at time 2 + u2 <- matrix(rep(c(1/49, -1/49, 0), each=8), ncol=3) #leverage matrix at time 2 + u2[1,] <- 0 #subject 1 is not present + u2[2,1:2] <- u2[2, 1:2] + c(-1/7, 1/7) + + p3 <- c((6/7)*(3/5), 1/7, 12/35) # 0-2 transition at time 3, 5 at risk + h3 <- matrix(c(3/5, 0, 2/5, 0,1,0, 0,1,0), byrow=T, ncol=3) #hazard mat + u3 <- u2 %*% h3 + u3[4:8,1] <- u3[4:8,1] + p2[1]*2/25 + u3[4:8,3] <- u3[4:8,3] -p2[1]*2/25 + u3[4,] <- u3[4,] + c(-p2[1]/5, 0, p2[1]/5) + u3[6,] <- u3[4,] + + p6 <- c(0, 1/7, 6/7) # 0-2 at time 6, 1 at risk + h6 <- matrix(c(-1,0,1,0,1,0,0,1,0), byrow=T, ncol=3) + u6 <- cbind(0, u3[,2], -u3[,2]) + + V <- rbind(0, colSums(u2^2), + colSums(u3^2), + colSums(u3^2), + colSums(u6^2)) + list(P=rbind(p1, p2, p3, p3, p6), u2=u2, u3=u3, u6=u6, V=V) + } > bfit <- byhand() > aeq(fit$prev, bfit$P[,-1]) [1] TRUE > aeq(fit$n.risk, c(8,7,5,2,1)) [1] TRUE > aeq(fit$n.event, c(0,1,2,0,1)) [1] TRUE > aeq(fit$std^2, bfit$V[,-1]) [1] TRUE > > # > # For this we need the sequential MGUS data set, using the first > # obs for each subject > # > tdata <- data.frame(time=mgus1$stop, + status=mgus1$status, + event=mgus1$event, + sex=mgus1$sex, + stat2= factor(ifelse(mgus1$status==0, 0, + as.numeric(mgus1$event)), + levels=0:2, + labels=c("censor", levels(mgus1$event))) + )[mgus1$start==0,] > > # Ensure the old-style call using "etype" works (backwards compatability) > fit1 <- survfit(Surv(time, status) ~ 1, etype=event, tdata) > fit1b <-survfit(Surv(time, stat2) ~1, tdata) > indx <- match("call", names(fit1)) > all.equal(unclass(fit1)[-indx], unclass(fit1b)[-indx]) [1] TRUE > > # Now get the overall survival, and the hazard for progression > fit2 <- survfit(Surv(time, status) ~1, tdata) #overall to "first bad thing" > fit3 <- survfit(Surv(time, status*(event=='progression')) ~1, tdata, + type='fleming') > fit4 <- survfit(Surv(time, status*(event=='death')) ~1, tdata, + type='fleming') > > aeq(fit1$n.risk, fit2$n.risk) [1] TRUE > aeq(fit1$n.event, fit2$n.event) [1] TRUE > > # Classic CI formula > # integral [hazard(t) S(t-0) dt], where S= "survival to first event" > haz1 <- diff(c(0, -log(fit3$surv))) #Aalen hazard estimate for progression > haz2 <- diff(c(0, -log(fit4$surv))) #Aalen estimate for death > tsurv <- c(1, fit2$surv[-length(fit2$surv)]) #lagged survival > ci1 <- cumsum(haz1 *tsurv) > ci2 <- cumsum(haz2 *tsurv) > aeq(cbind(ci1, ci2), fit1$prev) [1] TRUE > > # > # Now, make sure that it works for subgroups > # > fit1 <- survfit(Surv(time, stat2) ~ sex, tdata) > fit2 <- survfit(Surv(time, stat2) ~ 1, tdata, + subset=(sex=='male')) > fit3 <- survfit(Surv(time, stat2) ~ 1, tdata, + subset=(sex=='female')) > > aeq(fit2$prev, fit1$prev[1:fit1$strata[1],]) [1] TRUE > aeq(fit2$std, fit1$std[1:fit1$strata[1],]) [1] TRUE > aeq(fit3$prev, fit1$prev[-(1:fit1$strata[1]),]) [1] TRUE > > # A second test of cumulative incidence > # compare results to Bob Gray's functions > # The file gray1 is the result of > # > # tstat <- ifelse(tdata$status==0, 0, 1+ (tdata$event=='death')) > # gray1 <- cuminc(tdata$time, tstat) > load("gray1.rda") > fit2 <- survfit(Surv(time, status) ~ 1, etype=event, tdata) > > if (FALSE) { + # lines of the two graphs should overlay + plot(gray1[[1]]$time, gray1[[1]]$est, type='l', + ylim=range(c(gray1[[1]]$est, gray1[[2]]$est)), + xlab="Time") + lines(gray1[[2]]$time, gray1[[2]]$est, lty=2) + matlines(fit2$time, fit2$prev, col=2, lty=1:2, type='s') + } > # To formally match these is a bit of a nuisance. > # The cuminc function returns a full step function, and survfit only > # the bottoms of the steps. > temp1 <- tapply(gray1[[1]]$est, gray1[[1]]$time, max) > indx1 <- match(names(temp1), fit2$time) > aeq(temp1, fit2$prev[indx1,1]) [1] TRUE > > > proc.time() user system elapsed 1.088 0.032 1.119 survival/tests/data.fluid0000644000176000001440000000114712267746072015275 0ustar ripleyusers 5.79 26kV 1579.52 26kV 2323.70 26kV 7.74 30kV 17.05 30kV 20.46 30kV 21.02 30kV 22.66 30kV 43.40 30kV 47.30 30kV 139.07 30kV 144.12 30kV 175.88 30kV 194.90 30kV 0.19 34kV 0.78 34kV 0.96 34kV 1.31 34kV 2.78 34kV 3.16 34kV 4.15 34kV 4.67 34kV 4.85 34kV 6.50 34kV 7.35 34kV 8.01 34kV 8.27 34kV 12.06 34kV 31.75 34kV 32.52 34kV 33.91 34kV 36.71 34kV 72.89 34kV 0.09 38kV 0.39 38kV 0.47 38kV 0.73 38kV 0.74 38kV 1.13 38kV 1.40 38kV 2.38 38kV survival/tests/r_lung.Rout.save0000644000176000001440000001206012267746072016431 0ustar ripleyusers R version 2.14.0 (2011-10-31) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > lfit2 <- survreg(Surv(time, status) ~ age + ph.ecog + strata(sex), lung) > lfit3 <- survreg(Surv(time, status) ~ sex + (age+ph.ecog)*strata(sex), lung) > > lfit4 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, + subset=(sex==1)) > lfit5 <- survreg(Surv(time, status) ~ age + ph.ecog , lung, + subset=(sex==2)) > > if (exists('censorReg')) { + lfit1 <- censorReg(censor(time, status) ~ age + ph.ecog + strata(sex),lung) + aeq(lfit4$coef, lfit1[[1]]$coef) + aeq(lfit4$scale, lfit1[[1]]$scale) + aeq(c(lfit4$scale, lfit5$scale), sapply(lfit1, function(x) x$scale)) + } > aeq(c(lfit4$scale, lfit5$scale), lfit3$scale ) [1] TRUE > > # > # Test out ridge regression and splines > # > lfit0 <- survreg(Surv(time, status) ~1, lung) > lfit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), lung) > lfit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), lung) > lfit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, lung) > > lfit0 Call: survreg(formula = Surv(time, status) ~ 1, data = lung) Coefficients: (Intercept) 6.034904 Scale= 0.7593936 Loglik(model)= -1153.9 Loglik(intercept only)= -1153.9 n= 228 > lfit1 Call: survreg(formula = Surv(time, status) ~ age + ridge(ph.ecog, theta = 5), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.83082 0.42860 0.42860 254.0 1 0.00000 age -0.00783 0.00687 0.00687 1.3 1 0.25000 ridge(ph.ecog) -0.32032 0.08484 0.08405 14.2 1 0.00016 Scale= 0.738 Iterations: 1 outer, 5 Newton-Raphson Degrees of freedom for terms= 1 1 1 1 Likelihood ratio test=18.6 on 2 df, p=8.73e-05 n=227 (1 observation deleted due to missingness) > lfit2 Call: survreg(formula = Surv(time, status) ~ sex + ridge(age, ph.ecog, theta = 1), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.27163 0.45280 0.45210 191.84 1 0.0e+00 sex 0.40096 0.12371 0.12371 10.50 1 1.2e-03 ridge(age) -0.00746 0.00675 0.00674 1.22 1 2.7e-01 ridge(ph.ecog) -0.33848 0.08329 0.08314 16.51 1 4.8e-05 Scale= 0.731 Iterations: 1 outer, 6 Newton-Raphson Degrees of freedom for terms= 1 1 2 1 Likelihood ratio test=30 on 3 df, p=1.37e-06 n=227 (1 observation deleted due to missingness) > lfit3 Call: survreg(formula = Surv(time, status) ~ sex + age + ph.ecog, data = lung) Coefficients: (Intercept) sex age ph.ecog 6.273435252 0.401090541 -0.007475439 -0.339638098 Scale= 0.731109 Loglik(model)= -1132.4 Loglik(intercept only)= -1147.4 Chisq= 29.98 on 3 degrees of freedom, p= 1.4e-06 n=227 (1 observation deleted due to missingness) > > > xx <- pspline(lung$age, nterm=3, theta=.3) > xx <- matrix(unclass(xx), ncol=ncol(xx)) # the raw matrix > lfit4 <- survreg(Surv(time, status) ~xx, lung) > lfit5 <- survreg(Surv(time, status) ~age, lung) > > lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), lung) > > lfit7 <- survreg(Surv(time, status) ~ offset(lfit6$lin), lung) > > lfit4 Call: survreg(formula = Surv(time, status) ~ xx, data = lung) Coefficients: (Intercept) xx1 xx2 xx3 xx4 xx5 13.551290 -7.615741 -7.424565 -7.533378 -7.571272 -14.527489 Scale= 0.755741 Loglik(model)= -1150.1 Loglik(intercept only)= -1153.9 Chisq= 7.52 on 5 degrees of freedom, p= 0.19 n= 228 > lfit5 Call: survreg(formula = Surv(time, status) ~ age, data = lung) Coefficients: (Intercept) age 6.88712062 -0.01360829 Scale= 0.7587515 Loglik(model)= -1151.9 Loglik(intercept only)= -1153.9 Chisq= 3.91 on 1 degrees of freedom, p= 0.048 n= 228 > lfit6 Call: survreg(formula = Surv(time, status) ~ pspline(age, df = 2), data = lung) coef se(coef) se2 Chisq DF p (Intercept) 6.5918 0.63681 0.41853 107.15 1.00 0.000 pspline(age, df = 2), lin -0.0136 0.00687 0.00687 3.94 1.00 0.047 pspline(age, df = 2), non 0.78 1.06 0.400 Scale= 0.756 Iterations: 4 outer, 12 Newton-Raphson Theta= 0.926 Degrees of freedom for terms= 0.4 2.1 1.0 Likelihood ratio test=5.2 on 1.5 df, p=0.0441 n= 228 > signif(lfit7$coef,6) (Intercept) 1.47899e-09 > survival/tests/r_peterson.Rout.save0000644000176000001440000001005212267746072017322 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Data courtesy of Bercedis Peterson, Duke University. > # v4 of survreg fails due to 2 groups that have only 1 subject; the coef > # for them easily gets out of hand. In fact, this data set is my toughest > # test of the minimizer. > # > # A shrinkage model for this coefficient is therefore interesting > > > peterson <- data.frame( + scan('data.peterson', what=list(grp=0, time=0, status=0))) Read 19 records > > fitp <- survreg(Surv(time, status) ~ factor(grp), peterson) > summary(fitp) Call: survreg(formula = Surv(time, status) ~ factor(grp), data = peterson) Value Std. Error z p (Intercept) 2.291 0.115 19.92 2.93e-88 factor(grp)2 0.786 0.177 4.44 8.79e-06 factor(grp)3 0.728 0.183 3.97 7.09e-05 factor(grp)4 -1.598 0.218 -7.32 2.48e-13 factor(grp)5 -0.500 0.218 -2.29 2.21e-02 factor(grp)6 0.475 0.170 2.79 5.23e-03 Log(scale) -1.684 0.257 -6.54 6.09e-11 Scale= 0.186 Weibull distribution Loglik(model)= -26.7 Loglik(intercept only)= -40.7 Chisq= 28.18 on 5 degrees of freedom, p= 3.4e-05 Number of Newton-Raphson Iterations: 9 n= 19 > > # Now a shrinkage model. Give the group coefficients > # about 1/2 the scale parameter of the original model, i.e., .18. > # > ffit <- survreg(Surv(time, status) ~ frailty(grp, theta=.1), peterson) > ffit Call: survreg(formula = Surv(time, status) ~ frailty(grp, theta = 0.1), data = peterson) coef se(coef) se2 Chisq DF p (Intercept) 2.62 0.172 0.0874 232.0 1.00 0.0000 frailty(grp, theta = 0.1) 10.4 2.15 0.0067 Scale= 0.301 Iterations: 1 outer, 6 Newton-Raphson Variance of random effect= 0.1 I-likelihood = -11.8 Degrees of freedom for terms= 0.3 2.2 0.7 Likelihood ratio test=13.8 on 1.1 df, p=0.00027 n= 19 > > # > # Try 3 degrees of freedom, since there are 6 groups > # compare them to the unconstrained ones. The frailty coefs are > # on a "sum to constant" constraint rather than "first coef=0", so > # some conversion is neccessary > # > ffit3 <- survreg(Surv(time, status) ~ frailty(grp, df=3), peterson) > print(ffit3) Call: survreg(formula = Surv(time, status) ~ frailty(grp, df = 3), data = peterson) coef se(coef) se2 Chisq DF p (Intercept) 2.54 0.187 0.0685 184.1 1.00 0.00000 frailty(grp, df = 3) 16.7 3.06 0.00088 Scale= 0.227 Iterations: 6 outer, 32 Newton-Raphson Variance of random effect= 0.17 I-likelihood = -10.1 Degrees of freedom for terms= 0.1 3.1 0.3 Likelihood ratio test=22.9 on 1.5 df, p=4.58e-06 n= 19 > > temp <- mean(c(0, fitp$coef[-1])) - mean(ffit3$frail) > temp2 <- c(fitp$coef[1] + temp, c(0,fitp$coef[-1]) - temp) > xx <- rbind(c(nrow(peterson), table(peterson$grp)), + temp2, + c(ffit3$coef, ffit3$frail)) > dimnames(xx) <- list(c("N", "factor", "frailty"), + c("Intercept", paste("grp", 1:6))) > signif(xx,3) Intercept grp 1 grp 2 grp 3 grp 4 grp 5 grp 6 N 19.00 3.000 6.000 6.000 1.00 1.000 2.000 factor 2.43 -0.137 0.649 0.591 -1.74 -0.636 0.338 frailty 2.54 -0.255 0.474 0.438 -1.21 -0.554 0.180 > > rm(ffit, ffit3, temp, temp2, xx, fitp) > survival/tests/mrtest.Rout.save0000644000176000001440000000312712267746072016465 0ustar ripleyusers R version 2.7.1 (2008-06-23) Copyright (C) 2008 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > {if (is.R()) mdy.date <- function(m, d, y) { + y <- ifelse(y<100, y+1900, y) + as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") + } + else mdy.date <- function(m,d,y) { + y <- ifelse(y<100, y+1900, y) + timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") + } + } > > # > # A test of the match.ratetable function, specifically the > # change to allow partial matching of strings > # Note that 10,000 days old is 27.4 years > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > temp1 <- data.frame(year=mdy.date(2,2,1960:1964), + age = 10000 + 1:5, + sex = c('M', 'fema', 'f', 'ma', 'F')) > > temp2 <- ratetable(year=temp1$year, age=temp1$age, sex=temp1$sex) > temp3 <- match.ratetable(temp2, survexp.us) > aeq(temp3$R[,2], c(1,2,2,1,2)) [1] TRUE > survival/tests/aareg.Rout.save0000644000176000001440000003011612267746072016224 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # Test aareg, for some simple data where the answers can be computed > # in closed form > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > test1 <- data.frame(time= c(4, 3,1,1,2,2,3), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0), + wt= c(1, 1:6)) > > tfit <- aareg(Surv(time, status) ~ x, test1) > aeq(tfit$times, c(1,2,2)) [1] TRUE > aeq(tfit$nrisk, c(6,4,4)) [1] TRUE > aeq(tfit$coefficient, matrix(c(0,0,1/3, 1/3, 1, -1/3), ncol=2)) [1] TRUE > aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) [1] TRUE > aeq(tfit$test.statistic, c(1,1)) [1] TRUE > aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) [1] TRUE > > tfit <- aareg(Surv(time, status) ~ x, test1, test='nrisk') > aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) #should be as before [1] TRUE > aeq(tfit$test.statistic, c(4/3, 6/3+ 4 - 4/3)) [1] TRUE > aeq(tfit$test.var, c(16/9, -16/9, -16/9, 36/9 + 16 + 16/9)) [1] TRUE > > # In the 1-variable case, this is the same as the default Aalen weight > tfit <- aareg(Surv(time, status) ~ x, test1, test='variance') > aeq(tfit$test.statistic, c(1,1)) [1] TRUE > aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) [1] TRUE > > # > # Repeat the above, with case weights > # > tfit <- aareg(Surv(time, status) ~x, test1, weights=wt) > aeq(tfit$times, c(1,2,2)) [1] TRUE > aeq(tfit$nrisk, c(21,16,16)) [1] TRUE > aeq(tfit$coefficient, matrix(c(0,0,5/12, 2/9, 1, -5/12), ncol=2)) [1] TRUE > aeq(tfit$tweight, matrix(c(12,12,12, 36/7, 3,3), ncol=2)) [1] TRUE > aeq(tfit$test.statistic, c(5, 72/63 + 3 - 15/12)) [1] TRUE > aeq(tfit$test.var, c(25, -25/4, -25/4, (72/63)^2 + 9 + (5/4)^2)) [1] TRUE > > tfit <- aareg(Surv(time, status) ~x, test1, weights=wt, test='nrisk') > aeq(tfit$test.statistic, c(20/3, 42/9 + 16 - 16*5/12)) [1] TRUE > aeq(tfit$test.var, c(400/9, -400/9, -400/9, + (42/9)^2 + 16^2 + (16*5/12)^2)) [1] TRUE > > # > # Make a test data set with no NAs, in sorted order, no ties, > # 15 observations > tdata <- lung[15:29, c('time', 'status', 'age', 'sex', 'ph.ecog')] > tdata$status <- tdata$status -1 > tdata <- tdata[order(tdata$time, tdata$status),] > row.names(tdata) <- 1:15 > tdata$status[8] <- 0 #for some variety > > afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, tdata, nmin=6) > # > # Now, do it "by hand" > cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, tdata, iter=0, + method='breslow') > dt1 <- coxph.detail(cfit) > sch1 <- resid(cfit, type='schoen') > > # First estimate of Aalen: from the Cox computations, first 9 > # The first and last cols of the ninth are somewhat unstable (approx =0) > mine <- rbind(solve(dt1$imat[,,1], sch1[1,]), + solve(dt1$imat[,,2], sch1[2,]), + solve(dt1$imat[,,3], sch1[3,]), + solve(dt1$imat[,,4], sch1[4,]), + solve(dt1$imat[,,5], sch1[5,]), + solve(dt1$imat[,,6], sch1[6,]), + solve(dt1$imat[,,7], sch1[7,]), + solve(dt1$imat[,,8], sch1[8,]), + solve(dt1$imat[,,9], sch1[9,])) > mine <- diag(1/dt1$nrisk[1:9]) %*% mine > > aeq(mine, afit$coef[1:9, -1]) [1] TRUE > > rm(tfit, afit, mine, dt1, cfit, sch1) > > # > # Check out the dfbeta matrix from aareg > # Note that it is kept internally in time order, not data set order > # Those who want residuals should use the resid function! > > # > # First, the simple test case where I know the anwers > # > afit <- aareg(Surv(time, status) ~ x, test1, dfbeta=T) > temp <- c(rep(0,6), #intercepts at time 1 + c(2,-1,-1,0,0,0)/9, #alpha at time 1 + c(0,0,0,2, -1, -1)/9, #intercepts at time 2 + c(0,0,0,-2,1,1)/9) #alpha at time 2 > aeq(afit$dfbeta, temp) [1] TRUE > > # > #Now a multivariate data set > # > afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T) > > ord <- order(lung$time, -lung$status) > cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], + method='breslow', iter=0, x=T) > cdt <- coxph.detail(cfit, riskmat=T) > > # an arbitrary list of times > acoef <- rowsum(afit$coef, afit$times) #per death time coefs > indx <- match(cdt$time, afit$times) > for (i in c(2,5,27,54,101, 135)) { + lwho <- (cdt$riskmat[,i]==1) + lmx <- cfit$x[lwho,] + lmy <- 1*( cfit$y[lwho,2]==1 & cfit$y[lwho,1] == cdt$time[i]) + fit <- lm(lmy~ lmx) + cat("i=", i, "coef=", aeq(fit$coef, acoef[i,])) + + rr <- diag(resid(fit)) + zz <- cbind(1,lmx) + zzinv <- solve(t(zz) %*% zz) + cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) + + df <- t(zzinv %*% t(zz) %*% rr) + cat(" dfbeta=", aeq(df, afit$dfbeta[lwho,,i]), "\n") + } i= 2 coef= TRUE twt= TRUE dfbeta= TRUE i= 5 coef= TRUE twt= TRUE dfbeta= TRUE i= 27 coef= TRUE twt= TRUE dfbeta= TRUE i= 54 coef= TRUE twt= TRUE dfbeta= TRUE i= 101 coef= TRUE twt= TRUE dfbeta= TRUE i= 135 coef= TRUE twt= TRUE dfbeta= TRUE > > rm(afit, cfit, cdt, lwho, lmx, lmy, fit, rr, zz, df) > > > # Repeat it with case weights > ww <- rep(1:5, length=nrow(lung))/ 3.0 > afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T, + weights=ww) > cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], + method='breslow', iter=0, x=T, weight=ww[ord]) > cdt <- coxph.detail(cfit, riskmat=T) > > acoef <- rowsum(afit$coef, afit$times) #per death time coefs > for (i in c(2,5,27,54,101, 135)) { + who <- (cdt$riskmat[,i]==1) + x <- cfit$x[who,] + y <- 1*( cfit$y[who,2]==1 & cfit$y[who,1] == cdt$time[i]) + w <- cfit$weight[who] + fit <- lm(y~x, weights=w) + cat("i=", i, "coef=", aeq(fit$coef, acoef[i,])) + + rr <- diag(resid(fit)) + zz <- cbind(1,x) + zzinv <- solve(t(zz)%*% (w*zz)) + cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) + + df <- t(zzinv %*% t(zz) %*% (w*rr)) + cat(" dfbeta=", aeq(df, afit$dfbeta[who,,i]), "\n") + } i= 2 coef= TRUE twt= TRUE dfbeta= TRUE i= 5 coef= TRUE twt= TRUE dfbeta= TRUE i= 27 coef= TRUE twt= TRUE dfbeta= TRUE i= 54 coef= TRUE twt= TRUE dfbeta= TRUE i= 101 coef= TRUE twt= TRUE dfbeta= TRUE i= 135 coef= TRUE twt= TRUE dfbeta= TRUE > > rm(afit, cfit, cdt, who, x, y, fit, rr, zz, df) > rm(ord, acoef) > > # > # Check that the test statistic computed within aareg and > # the one recomputed within summary.aareg are the same. > # Of course, they could both be wrong, but at least they'll agree! > # If the maxtime argument is used in summary, it recomputes the test, > # even if we know that it wouldn't have had to. > # > # Because the 1-variable and >1 variable case have different code, test > # them both. > # > afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T) > asum <- summary(afit, maxtime=max(afit$times)) > aeq(afit$test.stat, asum$test.stat) [1] TRUE > aeq(afit$test.var, asum$test.var) [1] TRUE > aeq(afit$test.var2, asum$test.var2) [1] TRUE > > print(afit) Call: aareg(formula = Surv(time, status) ~ age, data = lung, dfbeta = T) n= 228 139 out of 139 unique event times used slope coef se(coef) robust se z p Intercept -0.000872 -0.000905 4.26e-03 4.13e-03 -0.219 0.8270 age 0.000110 0.000142 6.96e-05 6.75e-05 2.110 0.0351 Chisq=4.44 on 1 df, p=0.035; test weights=aalen > > afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T, test='nrisk') > asum <- summary(afit, maxtime=max(afit$times)) > aeq(afit$test.stat, asum$test.stat) [1] TRUE > aeq(afit$test.var, asum$test.var) [1] TRUE > aeq(afit$test.var2, asum$test.var2) [1] TRUE > > summary(afit) $table slope coef se(coef) robust se z Intercept -0.0009538483 -0.11693804 0.534885651 0.533148054 -0.219335 age 0.0001053024 0.01795521 0.008746523 0.008734005 2.055782 p Intercept 0.82638908 age 0.03980352 $test [1] "nrisk" $test.statistic Intercept age -19.29478 2.96261 $test.var [,1] [,2] [1,] 7789.1449 -126.055872 [2,] -126.0559 2.082758 $test.var2 [,1] [,2] [1,] 7738.6204 -125.5077 [2,] -125.5077 2.0768 $chisq [,1] [1,] 4.22624 $n [1] 228 139 139 attr(,"class") [1] "summary.aareg" > > # > # Mulitvariate > # > afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, + dfbeta=T) > asum <- summary(afit, maxtime=max(afit$times)) > aeq(afit$test.stat, asum$test.stat) [1] TRUE > aeq(afit$test.var, asum$test.var) [1] TRUE > aeq(afit$test.var2, asum$test.var2) [1] TRUE > > print(afit) Call: aareg(formula = Surv(time, status) ~ age + sex + ph.karno + pat.karno, data = lung, dfbeta = T) n=224 (4 observations deleted due to missingness) 132 out of 136 unique event times used slope coef se(coef) robust se z p Intercept 2.15e-02 0.025000 8.45e-03 7.72e-03 3.25 0.00117 age 3.09e-05 0.000076 7.32e-05 6.49e-05 1.17 0.24100 sex -2.96e-03 -0.004020 1.25e-03 1.23e-03 -3.27 0.00109 ph.karno -6.77e-05 -0.000083 6.69e-05 8.30e-05 -1.00 0.31700 pat.karno -1.01e-04 -0.000112 5.59e-05 5.70e-05 -1.96 0.05010 Chisq=23.36 on 4 df, p=0.00011; test weights=aalen > > afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, + dfbeta=T, test='nrisk') > asum <- summary(afit, maxtime=max(afit$times)) > aeq(afit$test.stat, asum$test.stat) [1] TRUE > aeq(afit$test.var, asum$test.var) [1] TRUE > aeq(afit$test.var2, asum$test.var2) [1] TRUE > > summary(afit) $table slope coef se(coef) robust se z Intercept 2.119015e-02 3.05872822 1.044992929 0.955953617 3.199662 age 3.181122e-05 0.01071085 0.009280348 0.008182931 1.308926 sex -2.985556e-03 -0.49368373 0.153217001 0.151559500 -3.257359 ph.karno -8.371983e-05 -0.01131957 0.007825769 0.009654398 -1.172478 pat.karno -8.501076e-05 -0.01328844 0.007241150 0.007669582 -1.732617 p Intercept 0.00137589 age 0.19055946 sex 0.00112454 ph.karno 0.24100515 pat.karno 0.08316385 $test [1] "nrisk" $test.statistic Intercept age sex ph.karno pat.karno 480.220330 1.681604 -77.508345 -1.777173 -2.086286 $test.var b0 b0 26916.95995 -177.3767597 -791.4141458 -103.5540756 -69.1210402 -177.37676 2.1228915 0.1752574 0.4055099 0.1622945 -791.41415 0.1752574 578.6463538 -0.9726495 -0.6320578 -103.55408 0.4055099 -0.9726495 1.5095704 -0.5793466 -69.12104 0.1622945 -0.6320578 -0.5793466 1.2924520 $test.var2 [,1] [,2] [,3] [,4] [,5] [1,] 22525.42254 -109.0376340 -1294.620657 -135.7477106 -24.1718358 [2,] -109.03763 1.6505060 2.562655 0.1774270 -0.1206339 [3,] -1294.62066 2.5626546 566.194480 7.4865489 -4.7691882 [4,] -135.74771 0.1774270 7.486549 2.2974694 -0.9877341 [5,] -24.17184 -0.1206339 -4.769188 -0.9877341 1.4499155 $chisq [,1] [1,] 22.3874 $n [1] 224 132 136 attr(,"class") [1] "summary.aareg" > > # Weights play no role in the final computation of the test statistic, given > # the coefficient matrix, nrisk, and dfbeta as inputs. (Weights do > # change the inputs). So there is no need to reprise the above with > # case weights. > survival/tests/surv.R0000644000176000001440000000156012267746072014460 0ustar ripleyusers# library(survival) # Some simple tests of the Surv function # The first two are motivated by a bug, pointed out by Kevin Buhr, # where a mixture of NAs and invalid values didn't work right # Even for the simplest things a test case is good. # All but the third should produce warning messages aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) temp <- Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), c(1,1,1,1)) aeq(temp, c(1,10,NA,30, 2,NA,0,40, 1,1,1,1)) temp <- Surv(c(1, 10, 20, 30), c(2, NA, 0, 40), type='interval2') aeq(temp, c(1,10,20,30, 2,1,1,40, 3,0,NA,3)) #No error temp <- Surv(1:5) aeq(temp, c(1:5, 1,1,1,1,1)) temp1 <- Surv(c(1,10,NA, 30, 30), c(1,NA,10,20, 40), type='interval2') temp2 <- Surv(c(1,10,10,30,30), c(9, NA, 5, 20,40), c(1, 0, 2,3,3), type='interval') aeq(temp1, temp2) aeq(temp1, c(1,10,10,30,30, 1,1,1,1, 40, 1,0,2,NA,3)) survival/tests/factor.Rout.save0000644000176000001440000000342012267746072016421 0ustar ripleyusers R version 2.14.0 (2011-10-31) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Ensure that factors work in prediction > # > library(survival) Loading required package: splines > > options(na.action="na.exclude") # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > tfit <- coxph(Surv(time, status) ~ age + factor(ph.ecog), lung) > p1 <- predict(tfit, type='risk') > > # Testing NA handling is important too > keep <- (is.na(lung$ph.ecog) | lung$ph.ecog !=1) > lung2 <- lung[keep,] > p2 <- predict(tfit, type='risk', newdata=lung[keep,]) > aeq(p1[keep], p2) [1] TRUE > > # Same, for survreg > tfit <- survreg(Surv(time, status) ~ age + factor(ph.ecog), lung) > p1 <- predict(tfit, type='response') > p2 <- predict(tfit, type='response', newdata=lung2) > aeq(p1[keep], p2) [1] TRUE > > > # Now repeat it tossing the missings > options(na.action=na.omit) > keep2 <- (lung$ph.ecog[!is.na(lung$ph.ecog)] !=1) > > tfit2 <- survreg(Surv(time, status) ~ age + factor(ph.ecog), lung) > p3 <- predict(tfit2, type='response') > p4 <- predict(tfit2, type='response', newdata=lung2, na.action=na.omit) > aeq(p3[keep2] , p4) [1] TRUE > survival/tests/pyear.R0000644000176000001440000001630412267746072014603 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) {if (is.R()) mdy.date <- function(m, d, y) { y <- ifelse(y<100, y+1900, y) as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") } else mdy.date <- function(m,d,y) { y <- ifelse(y<100, y+1900, y) timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") } } # # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. # temp1 <- mdy.date(6,6,36) temp2 <- mdy.date(6,6,55)# Now compare the results from person-years # temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), labels=c('0-18', paste(18:30, 19:31, sep='-'))) temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) temp.time <- 3700 #total days of fu py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days # The subject should appear in 20 cells # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his # birthday computes one day earlier) # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 # and etc # with 203 days "off table", ie, beyond the last cell of the table # # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of # the intervals, whereas the survival tables use the starts of intervals. # Thus this breakdown does not match that in doexpect.s # xx <- matrix(0, nrow=14, ncol=11) xx[cbind(3:11, 3:11)] <- 156 xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) dimnames(xx) <- list(c('0-18', paste(18:30, 19:31, sep='-')), 1954:1964) all.equal(xx, py1$pyears) all.equal(203, py1$offtable) all.equal(1*(xx>0), py1$n) # # Now with expecteds # py2 <- pyears(temp.time ~ temp.age + temp.yr + ratetable(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us ) #output in days all.equal(xx, py2$pyears) all.equal(203, py2$offtable) all.equal(1*(xx>0), py2$n) py2b <- pyears(temp.time ~ temp.age + temp.yr, rmap = list(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us ) #output in days all.equal(xx, py2b$pyears) all.equal(203, py2b$offtable) all.equal(1*(xx>0), py2b$n) all.equal(py2$expected, py2b$expected) py3 <- pyears(temp.time ~ temp.age + temp.yr, rmap=list(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us , expect='pyears') all.equal(py2$n, py3$n) all.equal(py2$pyear, py3$pyear) all.equal(py3$n, 1*(py3$expect>0)) # Now, compute the py3 result "by hand". Since there is only one person # it can be derived from py2. # xx1 <- py2$expect[py2$n>0] # the hazard over each interval cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard xx2 <- py3$expect[py3$n>0] # the expected number of person days xx3 <- py3$pyears[py3$n>0] # the potential number of person days # This is the integral of the curve "exp(-haz *t)" over the interval integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 # They might not be exactly equal, since the C code tracks changes in the # rate tables that occur -within- an interval. So try for 6 digits all.equal(round(integral,3), round(xx2,3)) # Cut off the bottom of the table, instead of the side temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), labels=c('0-18', paste(18:26, 19:27, sep='-'))) py4 <- eval(py3$call) all.equal(py4$pyear, py3$pyear[1:10,]) all.equal(py4$expect, py3$expect[1:10,]) rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) rm(temp1, temp2, temp.yr, temp.time, xx) # # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. # temp1 <- mdy.date(6,6,36) temp2 <- mdy.date(6,6,55)# Now compare the results from person-years # temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), labels=c('0-18', paste(18:30, 19:31, sep='-'))) temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) temp.time <- 3700 #total days of fu py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days # The subject should appear in 20 cells # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his # birthday computes one day earlier) # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 # and etc # with 203 days "off table", ie, beyond the last cell of the table # # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of # the intervals, whereas the survival tables use the starts of intervals. # xx <- matrix(0, nrow=14, ncol=11) xx[cbind(3:11, 3:11)] <- 156 xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) dimnames(xx) <- list(c('0-18', paste(18:30, 19:31, sep='-')), 1954:1964) all.equal(xx, py1$pyears) all.equal(203, py1$offtable) all.equal(1*(xx>0), py1$n) # # Now with expecteds # py2 <- pyears(temp.time ~ temp.age + temp.yr + ratetable(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us ) #output in days all.equal(xx, py2$pyears) all.equal(203, py2$offtable) all.equal(1*(xx>0), py2$n) py3 <- pyears(temp.time ~ temp.age + temp.yr + ratetable(age=temp2-temp1, year=temp2, sex=1), scale=1, ratetable=survexp.us , expect='pyears') all.equal(py2$n, py3$n) all.equal(py2$pyear, py3$pyear) all.equal(py3$n, 1*(py3$expect>0)) # Now, compute the py3 result "by hand". Since there is only one person # it can be derived from py2. # xx1 <- py2$expect[py2$n>0] # the hazard over each interval cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard xx2 <- py3$expect[py3$n>0] # the expected number of person days xx3 <- py3$pyears[py3$n>0] # the potential number of person days # This is the integral of the curve "exp(-haz *t)" over the interval integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 # They might not be exactly equal, since the C code tracks changes in the # rate tables that occur -within- an interval. So try for 6 digits all.equal(round(integral,3), round(xx2,3)) # Cut off the bottom of the table, instead of the side temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), labels=c('0-18', paste(18:26, 19:27, sep='-'))) py4 <- eval(py3$call) all.equal(py4$pyear, py3$pyear[1:10,]) all.equal(py4$expect, py3$expect[1:10,]) rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) rm(temp1, temp2, temp.yr, temp.time, xx) # # Create a "user defined" rate table, using the smoking data # temp <- scan("data.smoke")/100000 temp <- matrix(temp, ncol=8, byrow=T) smoke.rate <- c(rep(temp[,1],6), rep(temp[,2],6), temp[,3:8]) attributes(smoke.rate) <- list( dim=c(7,2,2,6,3), dimnames=list(c("45-49","50-54","55-59","60-64","65-69","70-74","75-79"), c("1-20", "21+"), c("Male","Female"), c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"), c("Never", "Current", "Former")), dimid=c("age", "amount", "sex", "duration", "status"), factor=c(0,1,1,0,1), cutpoints=list(c(45,50,55,60,65,70,75),NULL, NULL, c(0,1,3,6,11,16),NULL), class='ratetable' ) rm(temp) is.ratetable(smoke.rate) summary(smoke.rate) print(smoke.rate) summary(smoke.rate[1:3,,1,,]) #test subscripting survival/tests/fr_resid.Rout.save0000644000176000001440000003632112267746072016746 0ustar ripleyusers R version 2.14.0 Under development (unstable) (2011-04-10 r55401) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # The residual methods treat a sparse frailty as a fixed offset with > # no variance > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > kfit1 <- coxph(Surv(time, status) ~ age + sex + + frailty(id, dist='gauss'), kidney) > tempf <- predict(kfit1, type='terms')[,3] > temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))] > #all.equal(unclass(tempf), unclass(temp)) > all.equal(as.vector(tempf), as.vector(temp)) [1] TRUE > > # Now fit a model with explicit offset > kfitx <- coxph(Surv(time, status) ~ age + sex + offset(tempf),kidney, + eps=1e-7) > > # These are not precisely the same, due to different iteration paths > aeq(kfitx$coef, kfit1$coef) [1] TRUE > > # This will make them identical > kfitx <- coxph(Surv(time, status) ~ age + sex + offset(temp),kidney, + iter=0, init=kfit1$coef) > aeq(resid(kfit1), resid(kfitx)) [1] TRUE > aeq(resid(kfit1, type='score'), resid(kfitx, type='score')) [1] TRUE > aeq(resid(kfit1, type='schoe'), resid(kfitx, type='schoe')) [1] TRUE > > # These are not the same, due to a different variance matrix > # The frailty model's variance is about 2x the naive "assume an offset" var > # The score residuals are equal, however. > aeq(resid(kfit1, type='dfbeta'), resid(kfitx, type='dfbeta')) [1] "Mean relative difference: 0.5216263" > zed <- kfitx > zed$var <- kfit1$var > aeq(resid(kfit1, type='dfbeta'), resid(zed, type='dfbeta')) [1] TRUE > > > temp1 <- resid(kfit1, type='score') > temp2 <- resid(kfitx, type='score') > aeq(temp1, temp2) [1] TRUE > > # > # Now for some tests of predicted values > # > aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected')) [1] TRUE > aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp')) [1] TRUE > > temp1 <- predict(kfit1, type='terms', se.fit=T) > temp2 <- predict(kfitx, type='terms', se.fit=T) > aeq(temp1$fit[,1:2], temp2$fit) [1] TRUE > aeq(temp1$se.fit[,1:2], temp2$se.fit) #should be false [1] "Mean relative difference: 0.3024526" > mean(temp1$se.fit[,1:2]/ temp2$se.fit) [1] 1.433017 > aeq(as.vector(temp1$se.fit[,3])^2, + as.vector(kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))])) [1] TRUE > > print(temp1) $fit age sex frailty(id, dist = "gauss") 1 -0.073981042 1.039553 0.59814468 2 -0.073981042 1.039553 0.59814468 3 0.020278123 -0.371269 0.38512389 4 0.020278123 -0.371269 0.38512389 5 -0.055129209 1.039553 0.20210998 6 -0.055129209 1.039553 0.20210998 7 -0.059842167 -0.371269 -0.55932015 8 -0.055129209 -0.371269 -0.55932015 9 -0.158814289 1.039553 0.28558387 10 -0.158814289 1.039553 0.28558387 11 -0.130536540 -0.371269 0.06628942 12 -0.125823582 -0.371269 0.06628942 13 0.034416998 1.039553 0.80505119 14 0.034416998 1.039553 0.80505119 15 0.053268830 -0.371269 -0.43834241 16 0.057981789 -0.371269 -0.43834241 17 0.119250245 -0.371269 -0.05631649 18 0.119250245 -0.371269 -0.05631649 19 0.034416998 1.039553 -0.49980572 20 0.039129956 1.039553 -0.49980572 21 0.001426290 -0.371269 -0.13028264 22 0.001426290 -0.371269 -0.13028264 23 -0.045703292 -0.371269 0.06377401 24 -0.045703292 -0.371269 0.06377401 25 -0.040990334 -0.371269 0.38815296 26 -0.040990334 -0.371269 0.38815296 27 -0.007999626 -0.371269 -0.47650510 28 -0.007999626 -0.371269 -0.47650510 29 -0.125823582 -0.371269 -0.66986830 30 -0.125823582 -0.371269 -0.66986830 31 0.076833621 1.039553 0.19359678 32 0.076833621 1.039553 0.19359678 33 0.076833621 -0.371269 -0.16483200 34 0.076833621 -0.371269 -0.16483200 35 -0.003286668 -0.371269 -0.15794998 36 0.001426290 -0.371269 -0.15794998 37 0.043842914 -0.371269 -0.46236014 38 0.043842914 -0.371269 -0.46236014 39 0.001426290 -0.371269 0.12603308 40 0.001426290 -0.371269 0.12603308 41 0.010852206 1.039553 -1.74303142 42 0.015565165 1.039553 -1.74303142 43 -0.064555125 -0.371269 -0.45211210 44 -0.064555125 -0.371269 -0.45211210 45 0.086259538 -0.371269 0.51574106 46 0.090972496 -0.371269 0.51574106 47 -0.007999626 -0.371269 0.09475123 48 -0.003286668 -0.371269 0.09475123 49 -0.003286668 1.039553 0.05790354 50 -0.003286668 1.039553 0.05790354 51 0.062694747 -0.371269 -0.37933234 52 0.067407705 -0.371269 -0.37933234 53 -0.158814289 -0.371269 0.11248891 54 -0.158814289 -0.371269 0.11248891 55 0.039129956 -0.371269 0.54791210 56 0.039129956 -0.371269 0.54791210 57 0.043842914 1.039553 0.45873482 58 0.043842914 1.039553 0.45873482 59 0.048555872 -0.371269 0.35639797 60 0.048555872 -0.371269 0.35639797 61 0.057981789 -0.371269 0.48803342 62 0.057981789 -0.371269 0.48803342 63 0.029704039 -0.371269 0.25597325 64 0.034416998 -0.371269 0.25597325 65 0.062694747 -0.371269 0.23054948 66 0.062694747 -0.371269 0.23054948 67 0.001426290 -0.371269 -0.13680005 68 0.006139248 -0.371269 -0.13680005 69 -0.102258791 -0.371269 0.51977995 70 -0.102258791 -0.371269 0.51977995 71 -0.007999626 -0.371269 -0.23878154 72 -0.007999626 -0.371269 -0.23878154 73 0.039129956 -0.371269 0.17174306 74 0.039129956 -0.371269 0.17174306 75 0.076833621 1.039553 -0.35822829 76 0.076833621 1.039553 -0.35822829 $se.fit age sex frailty(id, dist = "gauss") 1 0.195861829 0.3280279 0.6246430 2 0.195861829 0.3280279 0.6246430 3 0.053685514 0.1171528 0.6954922 4 0.053685514 0.1171528 0.6954922 5 0.145952360 0.3280279 0.5705340 6 0.145952360 0.3280279 0.5705340 7 0.158429727 0.1171528 0.4894541 8 0.145952360 0.1171528 0.4894541 9 0.420454437 0.3280279 0.6071455 10 0.420454437 0.3280279 0.6071455 11 0.345590234 0.1171528 0.5633997 12 0.333112867 0.1171528 0.5633997 13 0.091117615 0.3280279 0.6641707 14 0.091117615 0.3280279 0.6641707 15 0.141027084 0.1171528 0.5101890 16 0.153504451 0.1171528 0.5101890 17 0.315710223 0.1171528 0.5491569 18 0.315710223 0.1171528 0.5491569 19 0.091117615 0.3280279 0.5264083 20 0.103594982 0.3280279 0.5264083 21 0.003776045 0.1171528 0.5180953 22 0.003776045 0.1171528 0.5180953 23 0.120997626 0.1171528 0.6208806 24 0.120997626 0.1171528 0.6208806 25 0.108520259 0.1171528 0.5811421 26 0.108520259 0.1171528 0.5811421 27 0.021178689 0.1171528 0.6247779 28 0.021178689 0.1171528 0.6247779 29 0.333112867 0.1171528 0.5615987 30 0.333112867 0.1171528 0.5615987 31 0.203413919 0.3280279 0.6532405 32 0.203413919 0.3280279 0.6532405 33 0.203413919 0.1171528 0.5247227 34 0.203413919 0.1171528 0.5247227 35 0.008701322 0.1171528 0.5106606 36 0.003776045 0.1171528 0.5106606 37 0.116072349 0.1171528 0.6284328 38 0.116072349 0.1171528 0.6284328 39 0.003776045 0.1171528 0.6320009 40 0.003776045 0.1171528 0.6320009 41 0.028730780 0.3280279 0.5235228 42 0.041208147 0.3280279 0.5235228 43 0.170907094 0.1171528 0.5492095 44 0.170907094 0.1171528 0.5492095 45 0.228368654 0.1171528 0.6058686 46 0.240846021 0.1171528 0.6058686 47 0.021178689 0.1171528 0.6267998 48 0.008701322 0.1171528 0.6267998 49 0.008701322 0.3280279 0.5526664 50 0.008701322 0.3280279 0.5526664 51 0.165981818 0.1171528 0.5556706 52 0.178459185 0.1171528 0.5556706 53 0.420454437 0.1171528 0.5849825 54 0.420454437 0.1171528 0.5849825 55 0.103594982 0.1171528 0.6081780 56 0.103594982 0.1171528 0.6081780 57 0.116072349 0.3280279 0.6010279 58 0.116072349 0.3280279 0.6010279 59 0.128549717 0.1171528 0.5762113 60 0.128549717 0.1171528 0.5762113 61 0.153504451 0.1171528 0.5982501 62 0.153504451 0.1171528 0.5982501 63 0.078640248 0.1171528 0.6614053 64 0.091117615 0.1171528 0.6614053 65 0.165981818 0.1171528 0.5609510 66 0.165981818 0.1171528 0.5609510 67 0.003776045 0.1171528 0.5844921 68 0.016253412 0.1171528 0.5844921 69 0.270726031 0.1171528 0.6089631 70 0.270726031 0.1171528 0.6089631 71 0.021178689 0.1171528 0.6795741 72 0.021178689 0.1171528 0.6795741 73 0.103594982 0.1171528 0.6421784 74 0.103594982 0.1171528 0.6421784 75 0.203413919 0.3280279 0.5779661 76 0.203413919 0.3280279 0.5779661 > kfit1 Call: coxph(formula = Surv(time, status) ~ age + sex + frailty(id, dist = "gauss"), data = kidney) coef se(coef) se2 Chisq DF p age 0.00471 0.0125 0.00856 0.14 1.0 0.7100 sex -1.41082 0.4452 0.31504 10.04 1.0 0.0015 frailty(id, dist = "gauss 26.54 14.7 0.0290 Iterations: 6 outer, 39 Newton-Raphson Variance of random effect= 0.569 Degrees of freedom for terms= 0.5 0.5 14.7 Likelihood ratio test=47.5 on 15.7 df, p=4.65e-05 n= 76 > kfitx Call: coxph(formula = Surv(time, status) ~ age + sex + offset(temp), data = kidney, init = kfit1$coef, iter = 0) coef exp(coef) se(coef) z p age 0.00471 1.005 0.00875 0.539 5.9e-01 sex -1.41082 0.244 0.30916 -4.563 5.0e-06 Likelihood ratio test=0 on 2 df, p=1 n= 76, number of events= 58 > > rm(temp1, temp2, kfitx, zed, tempf) > # > # The special case of a single sparse frailty > # > > kfit1 <- coxph(Surv(time, status) ~ frailty(id, dist='gauss'), kidney) > tempf <- predict(kfit1, type='terms') > temp <- kfit1$frail[match(kidney$id, sort(unique(kidney$id)))] > all.equal(as.vector(tempf), as.vector(temp)) [1] TRUE > > # Now fit a model with explicit offset > kfitx <- coxph(Surv(time, status) ~ offset(tempf),kidney, eps=1e-7) > > aeq(resid(kfit1), resid(kfitx)) [1] TRUE > aeq(resid(kfit1, type='deviance'), resid(kfitx, type='deviance')) [1] TRUE > > # > # Some tests of predicted values > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > aeq(predict(kfit1, type='expected'), predict(kfitx, type='expected')) [1] TRUE > aeq(predict(kfit1, type='lp'), predict(kfitx, type='lp')) [1] TRUE > > temp1 <- predict(kfit1, type='terms', se.fit=T) > aeq(temp1$fit, kfitx$linear) [1] TRUE > aeq(temp1$se.fit^2, + kfit1$fvar[match(kidney$id, sort(unique(kidney$id)))]) [1] TRUE > > temp1 $fit [1] 0.696003729 0.696003729 0.244575316 0.244575316 0.494175549 [6] 0.494175549 -0.659248798 -0.659248798 0.521423106 0.521423106 [11] -0.114492938 -0.114492938 0.800127481 0.800127481 -0.488101282 [16] -0.488101282 -0.120396647 -0.120396647 0.131121515 0.131121515 [21] -0.214987009 -0.214987009 -0.054872789 -0.054872789 0.184657295 [26] 0.184657295 -0.510007747 -0.510007747 -0.790746805 -0.790746805 [31] 0.324674289 0.324674289 -0.239374060 -0.239374060 -0.264428564 [36] -0.264428564 -0.472698773 -0.472698773 0.006304049 0.006304049 [41] -0.873434085 -0.873434085 -0.530880840 -0.530880840 0.351411783 [46] 0.351411783 -0.037212138 -0.037212138 0.442049266 0.442049266 [51] -0.419206550 -0.419206550 -0.108012854 -0.108012854 0.346332076 [56] 0.346332076 0.659300205 0.659300205 0.197278585 0.197278585 [61] 0.304868889 0.304868889 0.139712997 0.139712997 0.093574024 [66] 0.093574024 -0.209690355 -0.209690355 0.302070834 0.302070834 [71] -0.278962288 -0.278962288 0.068599919 0.068599919 0.078493616 [76] 0.078493616 $se.fit [1] 0.6150025 0.6150025 0.6160184 0.6160184 0.5715622 0.5715622 0.4393615 [8] 0.4393615 0.5761369 0.5761369 0.4834244 0.4834244 0.6421184 0.6421184 [15] 0.4574824 0.4574824 0.4813578 0.4813578 0.5119792 0.5119792 0.4764145 [22] 0.4764145 0.5532477 0.5532477 0.5195437 0.5195437 0.5534327 0.5534327 [29] 0.4775572 0.4775572 0.6364522 0.6364522 0.4708988 0.4708988 0.4670896 [36] 0.4670896 0.5600672 0.5600672 0.5641880 0.5641880 0.4650576 0.4650576 [43] 0.4904715 0.4904715 0.5448430 0.5448430 0.5570120 0.5570120 0.5608187 [50] 0.5608187 0.4996021 0.4996021 0.4831697 0.4831697 0.5452255 0.5452255 [57] 0.6057428 0.6057428 0.5209402 0.5209402 0.5376594 0.5376594 0.5911350 [64] 0.5911350 0.5065368 0.5065368 0.5290283 0.5290283 0.5368433 0.5368433 [71] 0.5996077 0.5996077 0.5762814 0.5762814 0.5782753 0.5782753 > kfit1 Call: coxph(formula = Surv(time, status) ~ frailty(id, dist = "gauss"), data = kidney) coef se(coef) se2 Chisq DF p frailty(id, dist = "gauss 23 13.8 0.057 Iterations: 7 outer, 39 Newton-Raphson Variance of random effect= 0.458 Degrees of freedom for terms= 13.8 Likelihood ratio test=33.4 on 13.8 df, p=0.00234 n= 76 > > > survival/tests/frailty.R0000644000176000001440000000152612267746072015135 0ustar ripleyuserslibrary(survival) # # The constuction of a survival curve with sparse frailties # # In this case the coefficient vector is kept in two parts, the # fixed coefs and the (often very large) random effects coefficients # The survfit function treats the second set of coefficients as fixed # values, to avoid an unmanagable variance matrix, and behaves like # the second fit below. fit1 <- coxph(Surv(time, status) ~ age + frailty(inst), lung) sfit1 <- survfit(fit1) # A parallel model with the frailties treated as fixed offsets offvar <- fit1$frail[as.numeric(factor(lung$inst))] fit2 <- coxph(Surv(time, status) ~ age + offset(offvar),lung) fit2$var <- fit1$var #force variances to match all.equal(fit1$coef, fit2$coef) sfit2 <- survfit(fit2, newdata=list(age=fit1$means, offvar=0)) all.equal(sfit1$surv, sfit2$surv) all.equal(sfit1$var, sfit2$var) survival/tests/counting.Rout.save0000644000176000001440000000531612267746072016777 0ustar ripleyusers R version 2.10.0 (2009-10-26) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # Create a "counting process" version of the simplest test data set > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > > test1b<- list(start= c(0, 3, 0, 0, 5, 0, 6,14, 0, 0, 10,20,30, 0), + stop = c(3,10, 10, 5,20, 6,14,20, 30, 10,20,30,40, 10), + status=c(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0), + x= c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, NA), + id = c(3, 3, 4, 5, 5, 6, 6, 6, 7, 1, 1, 1, 1, 2)) > > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # > # Check out the various residuals under an Efron approximation > # > fit0 <- coxph(Surv(time, status)~ x, test1, iter=0) > fit <- coxph(Surv(time, status) ~x, test1) > fit0b <- coxph(Surv(start, stop, status) ~ x, test1b, iter=0) > fitb <- coxph(Surv(start, stop, status) ~x, test1b) > fitc <- coxph(Surv(time, status) ~ offset(fit$coef*x), test1) > fitd <- coxph(Surv(start, stop, status) ~ offset(fit$coef*x), test1b) > > aeq(fit0b$coef, fit0$coef) [1] TRUE > > aeq(resid(fit0), resid(fit0b, collapse=test1b$id)) [1] TRUE > aeq(resid(fit), resid(fitb, collapse=test1b$id)) [1] TRUE > aeq(resid(fitc), resid(fitd, collapse=test1b$id)) [1] TRUE > aeq(resid(fitc), resid(fit)) [1] TRUE > > aeq(resid(fit0, type='score'), resid(fit0b, type='score', collapse=test1b$id)) [1] TRUE > aeq(resid(fit, type='score'), resid(fitb, type='score', collapse=test1b$id)) [1] TRUE > > aeq(resid(fit0, type='scho'), resid(fit0b, type='scho', collapse=test1b$id)) [1] TRUE > aeq(resid(fit, type='scho'), resid(fitb, type='scho', collapse=test1b$id)) [1] TRUE > > # The two survivals will have different censoring times > # nrisk, nevent, surv, and std should be the same > temp1 <- survfit(fit, list(x=1), censor=FALSE) > temp2 <- survfit(fitb, list(x=1), censor=FALSE) > all.equal(unclass(temp1)[c(3,4,6,8)], unclass(temp2)[c(3,4,6,8)]) [1] TRUE > > > survival/tests/tt.R0000644000176000001440000000235012267746072014106 0ustar ripleyuserslibrary(survival) # A contrived example for the tt function # mkdata <- function(n, beta) { age <- runif(n, 20, 60) x <- rbinom(n, 1, .5) futime <- rep(40, n) # everyone has 40 years of follow-up status <- rep(0, n) dtime <- runif(n/2, 1, 40) # 1/2 of them die dtime <- sort(dtime) # The risk is set to beta[1]*x + beta[2]* f(current_age) # where f= 0 up to age 40, rises linear to age 70, flat after that for (i in 1:length(dtime)) { atrisk <- (futime >= dtime[i]) c.age <- age + dtime age2 <- pmin(30, pmax(0, c.age-40)) xbeta <- beta[1]*x + beta[2]*age2 # Select a death according to risk risk <- ifelse(atrisk, exp(xbeta), 0) dead <- sample(1:n, 1, prob=risk/sum(risk)) futime[dead] <- dtime[i] status[dead] <- 1 } data.frame(futime=futime, status=status, age=age, x=x, risk=risk) } tdata <- mkdata(500, c(log(1.5), 2/30)) fit1 <- coxph(Surv(futime, status) ~ x + pspline(age), tdata) fit2 <- coxph(Surv(futime, status) ~ x + tt(age), tdata, tt= function(x, t, ...) pspline(x+t)) dfit <- coxph(Surv(futime, status) ~ x + tt(age), tdata, tt= function(x, t, ...) x+t, iter=0, x=T) survival/tests/fr_lung.Rout.save0000644000176000001440000000262012267746072016600 0ustar ripleyusers R version 2.11.1 (2010-05-31) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # > # A test with the lung data > # This caused problems in one release > > # > # First, get rid of some missings > # > lung2 <- na.omit(lung[c('time', 'status', 'wt.loss')]) > > # > # Test the logliklihoods > # > fit <- coxph(Surv(time, status) ~ pspline(wt.loss,3), lung2, x=T) > fit0<- coxph(Surv(time, status) ~ 1, lung2) > fit1<- coxph(Surv(time, status) ~ fit$x, lung2, iter=0, init=fit$coef) > > all.equal(fit$loglik[1], fit0$loglik) [1] TRUE > all.equal(fit$loglik[2], fit1$loglik[2]) [1] TRUE > > # > # Check variances > # > imat <- solve(fit1$var) > var2 <- fit$var %*% imat %*% fit$var > all.equal(fit$var2, var2) [1] TRUE > survival/tests/testreg.R0000644000176000001440000000430212267746072015133 0ustar ripleyusersoptions(na.action=na.exclude) #preserve length of missings library(survival) # # Run a test that can be verified using other packages (we used SAS) # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit1w <- survreg(Surv(time, status) ~x, test1, dist='weibull') fit1w summary(fit1w) fit1e <- survreg(Surv(time, status) ~x, test1, dist='exponential') fit1e summary(fit1e) fit1l <- survreg(Surv(time, status) ~x, test1, dist='loglogistic') fit1l summary(fit1l) fit1g <- survreg(Surv(time, status) ~x, test1, dist='lognormal') summary(fit1g) # # Do a test with the ovarian data # fitfw <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, dist='weibull') fitfw fitfl <- survreg(Surv(futime, fustat) ~ age + ecog.ps, ovarian, dist='loglogistic') fitfl #test out interval censoring, using some dummy time values idat <- read.table('data.interval', skip=3, header=T, sep=',') flsurv<- Surv(idat$ltime, idat$rtime, type='interval2') fitfw2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='weibull') summary(fitfw2) fitfl2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='loglogistic') summary(fitfl2) fitfg2 <- survreg(flsurv ~ age + ecog.ps, idat, dist='lognormal') summary(fitfg2) logt <- c(survreg.distributions$t, survreg.distributions$weibull[c('trans', 'itrans', 'dtrans')]) logt$name <- 'log(t)' fitft2 <- survreg(Surv(ltime, rtime, type='interval2') ~ age + ecog.ps, idat, dist=logt, parm=100) summary(fitft2) #should be quite close to fitfg2 # # Check out the survreg density and probability functions # # Gaussian x <- -10:10 p <- seq(.1, .95, length=25) all.equal(dsurvreg(x, 1, 5, 'gaussian'), dnorm(x, 1, 5)) all.equal(psurvreg(x, 1, 5, 'gaussian'), pnorm(x, 1, 5)) all.equal(qsurvreg(p, 1, 5, 'gaussian'), qnorm(p, 1, 5)) # Lognormal x <- 1:10 all.equal(dsurvreg(x, 1, 5, 'lognormal'), dlnorm(x, 1, 5)) all.equal(psurvreg(x, 1, 5, 'lognormal'), plnorm(x, 1, 5)) all.equal(qsurvreg(p, 1, 5, 'lognormal'), qlnorm(p, 1, 5)) # Weibull lambda <- exp(-2) rho <- 1/3 temp <- (lambda*x)^rho all.equal(psurvreg(x, 2, 3), 1- exp(-temp)) all.equal(dsurvreg(x, 2, 3), lambda*rho*(lambda*x)^(rho-1)*exp(-temp)) survival/tests/book5.R0000644000176000001440000001070612267746072014502 0ustar ripleyuserslibrary(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # Tests of the weighted Cox model # This is section 1.3 of my appendix -- no yet found in any of the # printings though, it awaits the next edition # # Similar data set to test1, but add weights, # a double-death/censor tied time # a censored last subject # The latter two are cases covered only feebly elsewhere. # # The data set testw2 has the same data, but done via replication # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), status= c(1,0,1,1,1,0,0,1,0), x= c(2,0,1,1,0,1,0,1,0), wt = c(1,2,3,4,3,2,1,2,1)) xx <- testw1$wt testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), status= rep(c(1,0,1,1,1,0,0,1,0), xx), x= rep(c(2,0,1,1,0,1,0,1,0), xx), id= rep(1:9, xx)) indx <- match(1:9, testw2$id) # Breslow estimate byhand <- function(beta, newx=0) { r <- exp(beta) loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5) +2*log(2*r+1)) hazard <- c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1)) xbar <- c((2*r^2 + 11*r)*hazard[1], 11*r/(11*r +5), r*hazard[3]) imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + 10*(xbar[2] - xbar[2]^2) + 2*(xbar[3] - xbar[3]^2) temp <- cumsum(hazard) risk <- c(r^2, 1,r,r,1,r,1,r,1) expected <- risk* temp[c(1,1,2,2,2,2,2,3,3)] # The matrix of weights, one row per obs, one col per death # deaths at 1,2,2,2, and 4 riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,1,1), ncol=5) wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat x <- c(2,0,1,1,0,1,0,1,0) status <- c(1,0,1,1,1,0,0,1,0) wt <- c(1,2,3,4,3,2,1,2,1) # Table of sums for score and Schoenfeld resids hazmat <- riskmat %*% diag(c(1,3,4,3,2)/colSums(wtmat)) dM <- -risk*hazmat #Expected part dM[1,1] <- dM[1,1] +1 # deaths at time 1 for (i in 2:4) dM[i+1, i] <- dM[i+1,i] +1 dM[8,5] <- dM[8,5] +1 mart <- rowSums(dM) resid <-dM * outer(x, xbar[c(1,2,2,2,3)] ,'-') # Increments to the variance of the hazard var.g <- cumsum(hazard^2/ c(1,10,2)) var.d <- cumsum((xbar-newx)*hazard) list(loglik=loglik, imat=imat, hazard=hazard, xbar=xbar, mart=c(1,0,1,1,1,0,0,1,0)-expected, expected=expected, score=rowSums(resid), schoen=c(2,1,1,0,1) - xbar[c(1,2,2,2,3)], varhaz=(var.g + var.d^2/imat)* exp(2*beta*newx)) } aeq(byhand(0)$expected, c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow', iter=0) fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow') fitb <- coxph(Surv(time, status) ~x, testw2, method='breslow') aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx]) aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx]) aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho'))) truth0 <- byhand(0,pi) aeq(fit0$loglik[1], truth0$loglik) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid) aeq(truth0$scho, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) sfit <- survfit(fit0, list(x=pi), censor=FALSE) aeq(sfit$std.err^2, truth0$var) aeq(-log(sfit$surv), cumsum(truth0$haz)) truth <- byhand(fit$coef, .3) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$resid) aeq(truth$scho, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) sfit <- survfit(fit, list(x=.3), censor=FALSE) aeq(sfit$std.err^2, truth$var) aeq(-log(sfit$surv), (cumsum(truth$haz)* exp(fit$coef*.3))) fit0 summary(fit) resid(fit0, type='score') resid(fit0, type='scho') resid(fit, type='score') resid(fit, type='scho') aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx]) aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx]) aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho'))) rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt) survival/tests/data.smoke0000644000176000001440000000304512267746072015307 0ustar ripleyusers 186.0 439.2 234.4 365.8 159.6 216.9 167.4 159.5 255.6 702.7 544.7 431.0 454.8 349.7 214.0 250.4 448.9 1132.4 945.2 728.8 729.4 590.2 447.3 436.6 733.7 1981.1 1177.7 1589.2 1316.5 1266.9 875.6 703.0 1119.4 3003.0 2244.9 3380.3 2374.9 1820.2 1669.1 1159.2 2070.5 4697.5 4255.3 5083.0 4485.0 3888.7 3184.3 2194.9 3675.3 7340.6 5882.4 6597.2 7707.5 4945.1 5618.0 4128.9 186.0 610.0 497.5 251.7 417.5 122.6 198.3 193.4 255.6 915.6 482.8 500.7 488.9 402.9 393.9 354.3 448.9 1391.0 1757.1 953.5 1025.8 744.0 668.5 537.8 733.7 2393.4 1578.4 1847.2 1790.1 1220.7 1100.0 993.3 1119.4 3497.9 2301.8 3776.6 2081.0 2766.4 2268.1 1230.7 2070.5 5861.3 3174.6 2974.0 3712.9 3988.8 3268.6 2468.9 3675.3 6250.0 4000.0 4424.8 7329.8 6383.0 7666.1 5048.1 125.7 225.6 0 433.9 212.0 107.2 135.9 91.0 177.3 353.8 116.8 92.1 289.5 200.9 121.3 172.1 244.8 542.8 287.4 259.5 375.9 165.8 202.2 247.2 397.7 858.0 1016.3 365.0 650.9 470.8 570.6 319.7 692.1 1496.2 1108.0 1348.5 1263.2 864.8 586.6 618.0 1160.0 2084.8 645.2 1483.1 1250.0 1126.3 1070.5 1272.1 2070.8 3319.5 0 2580.6 2590.7 3960.4 1666.7 1861.5 125.7 277.9 266.7 102.7 178.6 224.7 142.1 138.8 177.3 517.9 138.7 466.8 270.1 190.2 116.8 83.0 244.8 823.5 473.6 602.0 361.0 454.5 412.2 182.1 397.7 1302.9 1114.8 862.1 699.6 541.7 373.1 356.4 692.1 1934.9 2319.6 1250.0 1688.0 828.7 797.9 581.5 1160.0 2827.0 4635.8 2517.2 1687.3 2848.7 1621.2 1363.4 2070.8 4273.1 2409.6 5769.2 3125.0 2978.7 2803.7 2195.4 survival/tests/concordance.Rout.save0000644000176000001440000001245012267746072017424 0ustar ripleyusers R version 2.12.2 (2011-02-25) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > > # > # Simple tests of concordance. These numbers were derived in multiple > # codes. > # > aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) > > grank <- function(x, time, grp, wt) + unlist(tapply(x, grp, rank)) > grank2 <- function(x, time, grp, wt) { #for case weights + if (length(wt)==0) wt <- rep(1, length(x)) + z <- double(length(x)) + for (i in unique(grp)) { + indx <- which(grp==i) + temp <- tapply(wt[indx], x[indx], sum) + temp <- temp/2 + c(0, cumsum(temp)[-length(temp)]) + z[indx] <- temp[match(x[indx], names(temp))] + } + z + } > > > tdata <- aml[aml$x=='Maintained',] > tdata$y <- c(1,6,2,7,3,7,3,8,4,4,5) > tdata$wt <- c(1,2,3,2,1,2,3,4,3,2,1) > fit <- survConcordance(Surv(time, status) ~y, tdata) > aeq(fit$stats[1:4], c(14,24,2,0)) [1] TRUE > cfit <- coxph(Surv(time, status) ~ tt(y), tdata, tt=grank, method='breslow', + iter=0, x=T) > cdt <- coxph.detail(cfit) > aeq(4*sum(cdt$imat),fit$stats[5]^2) [1] TRUE > aeq(2*sum(cdt$score), diff(fit$stats[2:1])) [1] TRUE > > > # Lots of ties > tempx <- Surv(c(1,2,2,2,3,4,4,4,5,2), c(1,0,1,0,1,0,1,1,0,1)) > tempy <- c(5,5,4,4,3,3,7,6,5,4) > fit2 <- survConcordance(tempx ~ tempy) > aeq(fit2$stats[1:4], c(13,13,5,2)) [1] TRUE > cfit2 <- coxph(tempx ~ tt(tempy), tt=grank, method='breslow', iter=0) > aeq(4/cfit2$var, fit2$stats[5]^2) [1] TRUE > > # Bigger data > fit3 <- survConcordance(Surv(time, status) ~ age, lung) > aeq(fit3$stats[1:4], c(10717, 8706, 591, 28)) [1] TRUE > cfit3 <- coxph(Surv(time, status) ~ tt(age), lung, + iter=0, method='breslow', tt=grank, x=T) > cdt <- coxph.detail(cfit3) > aeq(4*sum(cdt$imat),fit3$stats[5]^2) [1] TRUE > aeq(2*sum(cdt$score), diff(fit3$stats[2:1])) [1] TRUE > > > # More ties > fit4 <- survConcordance(Surv(time, status) ~ ph.ecog, lung) > aeq(fit4$stats[1:4], c(8392, 4258, 7137, 28)) [1] TRUE > cfit4 <- coxph(Surv(time, status) ~ tt(ph.ecog), lung, + iter=0, method='breslow', tt=grank) > aeq(4/cfit4$var, fit4$stats[5]^2) [1] TRUE > > # Case weights > fit5 <- survConcordance(Surv(time, status) ~ y, tdata, weight=wt) > fit6 <- survConcordance(Surv(time, status) ~y, tdata[rep(1:11,tdata$wt),]) > aeq(fit5$stats[1:4], c(70, 91, 7, 0)) # checked by hand [1] TRUE > aeq(fit5$stats[1:3], fit6$stats[1:3]) #spurious "tied on time" value, ignore [1] TRUE > aeq(fit5$std, fit6$std) [1] TRUE > cfit5 <- coxph(Surv(time, status) ~ tt(y), tdata, weight=wt, + iter=0, method='breslow', tt=grank2) > cfit6 <- coxph(Surv(time, status) ~ tt(y), tdata[rep(1:11,tdata$wt),], + iter=0, method='breslow', tt=grank) > aeq(4/cfit6$var, fit6$stats[5]^2) [1] TRUE > aeq(cfit5$var, cfit6$var) [1] TRUE > > # Start, stop simplest cases > fit7 <- survConcordance(Surv(rep(0,11), time, status) ~ y, tdata) > aeq(fit7$stats, fit$stats) [1] TRUE > aeq(fit7$std.err, fit$std.err) [1] TRUE > fit7 <- survConcordance(Surv(rep(0,11), time, status) ~ y, tdata, weight=wt) > aeq(fit5$stats, fit7$stats) [1] TRUE > > # Multiple intervals for some, but same risk sets as tdata > tdata2 <- data.frame(time1=c(0,3, 5, 6,7, 0, 4,17, 7, 0,16, 2, 0, + 0,9, 5), + time2=c(3,9, 13, 7,13, 18, 17,23, 28, 16,31, 34, 45, + 9,48, 60), + status=c(0,1, 1, 0,0, 1, 0,1, 0, 0,1, 1, 0, 0,1, 0), + y = c(1,1, 6, 2,2, 7, 3,3, 7, 3,3, 8, 4, 4,4, 5), + wt= c(1,1, 2, 3,3, 2, 1,1, 2, 3,3, 4, 3, 2,2, 1)) > fit8 <- survConcordance(Surv(time1, time2, status) ~y, tdata2, weight=wt) > aeq(fit5$stats, fit8$stats) [1] TRUE > aeq(fit5$std.err, fit8$std.err) [1] TRUE > cfit8 <- coxph(Surv(time1, time2, status) ~ tt(y), tdata2, weight=wt, + iter=0, method='breslow', tt=grank2) > aeq(4/cfit8$var, fit8$stats[5]^2) [1] TRUE > aeq(fit8$stats[5]/(2*sum(fit8$stats[1:3])), fit8$std.err) [1] TRUE > > # Stratified > tdata3 <- data.frame(time1=c(tdata2$time1, rep(0, nrow(lung))), + time2=c(tdata2$time2, lung$time), + status = c(tdata2$status, lung$status -1), + x = c(tdata2$y, lung$ph.ecog), + wt= c(tdata2$wt, rep(1, nrow(lung))), + grp=rep(1:2, c(nrow(tdata2), nrow(lung)))) > fit9 <- survConcordance(Surv(time1, time2, status) ~x + strata(grp), + data=tdata3, weight=wt) > aeq(fit9$stats[1,], fit5$stats) [1] TRUE > aeq(fit9$stats[2,], fit4$stats) [1] TRUE > survival/tests/pyear.Rout.save0000644000176000001440000004123412267746072016270 0ustar ripleyusers R version 2.12.1 (2010-12-16) Copyright (C) 2010 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > {if (is.R()) mdy.date <- function(m, d, y) { + y <- ifelse(y<100, y+1900, y) + as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") + } + else mdy.date <- function(m,d,y) { + y <- ifelse(y<100, y+1900, y) + timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") + } + } > > # > # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. > # > > temp1 <- mdy.date(6,6,36) > temp2 <- mdy.date(6,6,55)# Now compare the results from person-years > # > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), + labels=c('0-18', paste(18:30, 19:31, sep='-'))) > temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) > temp.time <- 3700 #total days of fu > py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days > > # The subject should appear in 20 cells > # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 > # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 > # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his > # birthday computes one day earlier) > # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 > # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 > # and etc > # with 203 days "off table", ie, beyond the last cell of the table > # > # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of > # the intervals, whereas the survival tables use the starts of intervals. > # Thus this breakdown does not match that in doexpect.s > # > xx <- matrix(0, nrow=14, ncol=11) > xx[cbind(3:11, 3:11)] <- 156 > xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) > dimnames(xx) <- list(c('0-18', paste(18:30, 19:31, sep='-')), 1954:1964) > all.equal(xx, py1$pyears) [1] TRUE > all.equal(203, py1$offtable) [1] TRUE > all.equal(1*(xx>0), py1$n) [1] TRUE > > # > # Now with expecteds > # > py2 <- pyears(temp.time ~ temp.age + temp.yr + + ratetable(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us ) #output in days > all.equal(xx, py2$pyears) [1] TRUE > all.equal(203, py2$offtable) [1] TRUE > all.equal(1*(xx>0), py2$n) [1] TRUE > > py2b <- pyears(temp.time ~ temp.age + temp.yr, + rmap = list(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us ) #output in days > all.equal(xx, py2b$pyears) [1] TRUE > all.equal(203, py2b$offtable) [1] TRUE > all.equal(1*(xx>0), py2b$n) [1] TRUE > all.equal(py2$expected, py2b$expected) [1] TRUE > > > > py3 <- pyears(temp.time ~ temp.age + temp.yr, + rmap=list(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us , expect='pyears') > all.equal(py2$n, py3$n) [1] TRUE > all.equal(py2$pyear, py3$pyear) [1] TRUE > all.equal(py3$n, 1*(py3$expect>0)) [1] TRUE > > # Now, compute the py3 result "by hand". Since there is only one person > # it can be derived from py2. > # > xx1 <- py2$expect[py2$n>0] # the hazard over each interval > cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard > xx2 <- py3$expect[py3$n>0] # the expected number of person days > xx3 <- py3$pyears[py3$n>0] # the potential number of person days > > # This is the integral of the curve "exp(-haz *t)" over the interval > integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 > # They might not be exactly equal, since the C code tracks changes in the > # rate tables that occur -within- an interval. So try for 6 digits > all.equal(round(integral,3), round(xx2,3)) [1] TRUE > > # Cut off the bottom of the table, instead of the side > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), + labels=c('0-18', paste(18:26, 19:27, sep='-'))) > > py4 <- eval(py3$call) > all.equal(py4$pyear, py3$pyear[1:10,]) [1] TRUE > all.equal(py4$expect, py3$expect[1:10,]) [1] TRUE > > > rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) > rm(temp1, temp2, temp.yr, temp.time, xx) > > > > > # > # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. > # > > temp1 <- mdy.date(6,6,36) > temp2 <- mdy.date(6,6,55)# Now compare the results from person-years > # > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), + labels=c('0-18', paste(18:30, 19:31, sep='-'))) > temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) > temp.time <- 3700 #total days of fu > py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days > > # The subject should appear in 20 cells > # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 > # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 > # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his > # birthday computes one day earlier) > # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 > # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 > # and etc > # with 203 days "off table", ie, beyond the last cell of the table > # > # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of > # the intervals, whereas the survival tables use the starts of intervals. > # > xx <- matrix(0, nrow=14, ncol=11) > xx[cbind(3:11, 3:11)] <- 156 > xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) > dimnames(xx) <- list(c('0-18', paste(18:30, 19:31, sep='-')), 1954:1964) > all.equal(xx, py1$pyears) [1] TRUE > all.equal(203, py1$offtable) [1] TRUE > all.equal(1*(xx>0), py1$n) [1] TRUE > > # > # Now with expecteds > # > py2 <- pyears(temp.time ~ temp.age + temp.yr + + ratetable(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us ) #output in days > all.equal(xx, py2$pyears) [1] TRUE > all.equal(203, py2$offtable) [1] TRUE > all.equal(1*(xx>0), py2$n) [1] TRUE > > > py3 <- pyears(temp.time ~ temp.age + temp.yr + + ratetable(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us , expect='pyears') > all.equal(py2$n, py3$n) [1] TRUE > all.equal(py2$pyear, py3$pyear) [1] TRUE > all.equal(py3$n, 1*(py3$expect>0)) [1] TRUE > > # Now, compute the py3 result "by hand". Since there is only one person > # it can be derived from py2. > # > xx1 <- py2$expect[py2$n>0] # the hazard over each interval > cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard > xx2 <- py3$expect[py3$n>0] # the expected number of person days > xx3 <- py3$pyears[py3$n>0] # the potential number of person days > > # This is the integral of the curve "exp(-haz *t)" over the interval > integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 > # They might not be exactly equal, since the C code tracks changes in the > # rate tables that occur -within- an interval. So try for 6 digits > all.equal(round(integral,3), round(xx2,3)) [1] TRUE > > # Cut off the bottom of the table, instead of the side > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), + labels=c('0-18', paste(18:26, 19:27, sep='-'))) > > py4 <- eval(py3$call) > all.equal(py4$pyear, py3$pyear[1:10,]) [1] TRUE > all.equal(py4$expect, py3$expect[1:10,]) [1] TRUE > > > rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) > rm(temp1, temp2, temp.yr, temp.time, xx) > > > > > # > # Create a "user defined" rate table, using the smoking data > # > temp <- scan("data.smoke")/100000 Read 224 items > temp <- matrix(temp, ncol=8, byrow=T) > smoke.rate <- c(rep(temp[,1],6), rep(temp[,2],6), temp[,3:8]) > attributes(smoke.rate) <- list( + dim=c(7,2,2,6,3), + dimnames=list(c("45-49","50-54","55-59","60-64","65-69","70-74","75-79"), + c("1-20", "21+"), + c("Male","Female"), + c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"), + c("Never", "Current", "Former")), + dimid=c("age", "amount", "sex", "duration", "status"), + factor=c(0,1,1,0,1), + cutpoints=list(c(45,50,55,60,65,70,75),NULL, NULL, + c(0,1,3,6,11,16),NULL), + class='ratetable' + ) > rm(temp) > > is.ratetable(smoke.rate) [1] TRUE > summary(smoke.rate) Rate table with 5 dimensions: age ranges from 45 to 75; with 7 categories amount has levels of: 1-20 21+ sex has levels of: Male Female duration ranges from 0 to 16; with 6 categories status has levels of: Never Current Former > print(smoke.rate) Rate table with dimension(s): age amount sex duration status , , Male, <1, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, <1, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 1-2, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 1-2, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 3-5, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 3-5, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 6-10, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 6-10, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 11-15, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 11-15, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, >=16, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, >=16, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, <1, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, <1, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 1-2, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 1-2, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 3-5, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 3-5, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 6-10, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 6-10, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 11-15, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 11-15, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, >=16, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, >=16, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, <1, Former 1-20 21+ 45-49 0.002344 0.004975 50-54 0.005447 0.004828 55-59 0.009452 0.017571 60-64 0.011777 0.015784 65-69 0.022449 0.023018 70-74 0.042553 0.031746 75-79 0.058824 0.040000 , , Female, <1, Former 1-20 21+ 45-49 0.000000 0.002667 50-54 0.001168 0.001387 55-59 0.002874 0.004736 60-64 0.010163 0.011148 65-69 0.011080 0.023196 70-74 0.006452 0.046358 75-79 0.000000 0.024096 , , Male, 1-2, Former 1-20 21+ 45-49 0.003658 0.002517 50-54 0.004310 0.005007 55-59 0.007288 0.009535 60-64 0.015892 0.018472 65-69 0.033803 0.037766 70-74 0.050830 0.029740 75-79 0.065972 0.044248 , , Female, 1-2, Former 1-20 21+ 45-49 0.004339 0.001027 50-54 0.000921 0.004668 55-59 0.002595 0.006020 60-64 0.003650 0.008621 65-69 0.013485 0.012500 70-74 0.014831 0.025172 75-79 0.025806 0.057692 , , Male, 3-5, Former 1-20 21+ 45-49 0.001596 0.004175 50-54 0.004548 0.004889 55-59 0.007294 0.010258 60-64 0.013165 0.017901 65-69 0.023749 0.020810 70-74 0.044850 0.037129 75-79 0.077075 0.073298 , , Female, 3-5, Former 1-20 21+ 45-49 0.002120 0.001786 50-54 0.002895 0.002701 55-59 0.003759 0.003610 60-64 0.006509 0.006996 65-69 0.012632 0.016880 70-74 0.012500 0.016873 75-79 0.025907 0.031250 , , Male, 6-10, Former 1-20 21+ 45-49 0.002169 0.001226 50-54 0.003497 0.004029 55-59 0.005902 0.007440 60-64 0.012669 0.012207 65-69 0.018202 0.027664 70-74 0.038887 0.039888 75-79 0.049451 0.063830 , , Female, 6-10, Former 1-20 21+ 45-49 0.001072 0.002247 50-54 0.002009 0.001902 55-59 0.001658 0.004545 60-64 0.004708 0.005417 65-69 0.008648 0.008287 70-74 0.011263 0.028487 75-79 0.039604 0.029787 , , Male, 11-15, Former 1-20 21+ 45-49 0.001674 0.001983 50-54 0.002140 0.003939 55-59 0.004473 0.006685 60-64 0.008756 0.011000 65-69 0.016691 0.022681 70-74 0.031843 0.032686 75-79 0.056180 0.076661 , , Female, 11-15, Former 1-20 21+ 45-49 0.001359 0.001421 50-54 0.001213 0.001168 55-59 0.002022 0.004122 60-64 0.005706 0.003731 65-69 0.005866 0.007979 70-74 0.010705 0.016212 75-79 0.016667 0.028037 , , Male, >=16, Former 1-20 21+ 45-49 0.001595 0.001934 50-54 0.002504 0.003543 55-59 0.004366 0.005378 60-64 0.007030 0.009933 65-69 0.011592 0.012307 70-74 0.021949 0.024689 75-79 0.041289 0.050481 , , Female, >=16, Former 1-20 21+ 45-49 0.000910 0.001388 50-54 0.001721 0.000830 55-59 0.002472 0.001821 60-64 0.003197 0.003564 65-69 0.006180 0.005815 70-74 0.012721 0.013634 75-79 0.018615 0.021954 > > summary(smoke.rate[1:3,,1,,]) #test subscripting Rate table with 4 dimensions: age ranges from 45 to 55; with 3 categories amount has levels of: 1-20 21+ duration ranges from 0 to 16; with 6 categories status has levels of: Never Current Former > survival/tests/stratatest.R0000644000176000001440000000314112267746072015654 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Trivial test of stratified residuals # Make a second strata = replicate of the first, and I should get the # exact same answers test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) temp <- as.matrix(test1) n <- nrow(temp) ndead<- sum(test1$status[!is.na(test1$status)]) temp <- data.frame(rbind(temp, temp)) #later releases of S have rbind.data.frame tstrat <- rep(1:2, c(n,n)) fit1 <- coxph(Surv(time, status) ~x, test1) fit2 <- coxph(Surv(time, status) ~x + strata(tstrat), temp) all.equal(resid(fit1) , (resid(fit2))[1:n]) all.equal(resid(fit1, type='score') , (resid(fit2, type='score'))[1:n]) all.equal(resid(fit1, type='schoe') , (resid(fit2, type='schoe'))[1:ndead]) #AG model temp <- as.matrix(test2) n <- nrow(temp) ndead<- sum(test2$event[!is.na(test2$event)]) temp <- data.frame(rbind(temp, temp)) tstrat <- rep(1:2, c(n,n)) fit1 <- coxph(Surv(start, stop, event) ~x, test2) fit2 <- coxph(Surv(start, stop, event) ~x + strata(tstrat), temp) all.equal(resid(fit1) , (resid(fit2))[1:n]) all.equal(resid(fit1, type='score') , (resid(fit2, type='score'))[1:n]) all.equal(resid(fit1, type='schoe') , (resid(fit2, type='schoe'))[1:ndead]) survival/tests/survfit2.R0000644000176000001440000000070212267746072015242 0ustar ripleyuserslibrary(survival) # # Check out the Dory&Korn confidence interval option # tdata <- data.frame(time= 1:10, status=c(1,0,1,0,1,0,0,0,1,0)) fit1 <- survfit(Surv(time, status) ~1, tdata, conf.lower='modified') fit2 <- survfit(Surv(time, status) ~1, tdata) stdlow <- fit2$std * sqrt(c(1, 10/9, 1, 8/7, 1, 6/5, 6/4, 6/3, 1, 2/1)) lower <- exp(log(fit2$surv) - qnorm(.975)*stdlow) all.equal(fit1$lower, lower, check.attributes=FALSE) survival/tests/doweight.R0000644000176000001440000001760712267746072015304 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Tests of the weighted Cox model # # Similar data set to test1, but add weights, # a double-death/censor tied time # a censored last subject # The latter two are cases covered only feebly elsewhere. # # The data set testw2 has the same data, but done via replication # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), status= c(1,0,1,1,1,0,0,1,0), x= c(2,0,1,1,0,1,0,1,0), wt = c(1,2,3,4,3,2,1,2,1)) xx <- c(1,2,3,4,3,2,1,2,1) testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), status= rep(c(1,0,1,1,1,0,0,1,0), xx), x= rep(c(2,0,1,1,0,1,0,1,0), xx), id= rep(1:9, xx)) indx <- match(1:9, testw2$id) testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), status= rep(c(1,0,1,1,1,0,0,1,0), xx), x= rep(c(2,0,1,1,0,1,0,1,0), xx), id= rep(1:9, xx)) indx <- match(1:9, testw2$id) fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow', iter=0) fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow') fitb <- coxph(Surv(time, status) ~x, testw2, method='breslow') texp <- function(beta) { # expected, Breslow estimate r <- exp(beta) temp <- cumsum(c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1))) c(r^2, 1,r,r,1,r,1,r,1)* temp[c(1,1,2,2,2,2,2,3,3)] } aeq(texp(0), c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify texp() xbar <- function(beta) { # xbar, Breslow estimate r <- exp(beta) temp <- r* rep(c(2*r + 11, 11/10, 1), c(2, 5, 2)) temp * texp(beta) } fit0 summary(fit) aeq(resid(fit0), testw1$status - texp(0)) resid(fit0, type='score') resid(fit0, type='scho') aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx]) aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx]) aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho'))) aeq(resid(fit, type='mart'), testw1$status - texp(fit$coef)) resid(fit, type='score') resid(fit, type='scho') aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx]) aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx]) aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho'))) rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='efron') fit resid(fit, type='mart') resid(fit, type='score') resid(fit, type='scho') # Tests of the weighted Cox model, AG form of the data # Same solution as doweight1.s # testw3 <- data.frame(id = c( 1, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9), begin= c( 0, 5, 0, 0,10,15, 0, 0,14, 0, 0, 0,23, 0), time= c( 5,10,10,10,15,20,20,14,20,20,30,23,40,50), status= c( 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0), x= c( 2, 2, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0), wt = c( 1, 1, 2, 3, 3, 3, 4, 3, 3, 2, 1, 2, 2, 1)) fit0 <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, method='breslow', iter=0) fit <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, method='breslow') fit0 summary(fit) resid(fit0, type='mart', collapse=testw3$id) resid(fit0, type='score', collapse=testw3$id) resid(fit0, type='scho') resid(fit, type='mart', collapse=testw3$id) resid(fit, type='score', collapse=testw3$id) resid(fit, type='scho') fit0 <- coxph(Surv(begin, time, status) ~x,testw3, weights=wt, iter=0) resid(fit0, 'mart', collapse=testw3$id) resid(coxph(Surv(begin, time, status) ~1, testw3, weights=wt) , collapse=testw3$id) #Null model fit <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, method='efron') fit resid(fit, type='mart', collapse=testw3$id) resid(fit, type='score', collapse=testw3$id) resid(fit, type='scho') # # Check out the impact of weights on the dfbetas # Am I computing them correctly? # wtemp <- rep(1,26) wtemp[c(5,10,15)] <- 2:4 fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp) rr <- resid(fit, 'dfbeta') fit1 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, subset=(-5)) fit2 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, subset=(-10)) fit3 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, subset=(-15)) # # Effect of case weights on expected survival curves post Cox model # fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow', iter=0) fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0) surv1 <- survfit(fit0, newdata=list(x=0)) surv2 <- survfit(fit0b, newdata=list(x=0)) aeq(surv1$surv, surv2$surv) # # Check out the Efron approx. # fit0 <- coxph(Surv(time, status) ~x,testw1, weights=wt, iter=0) fit <- coxph(Surv(time, status) ~x,testw1, weights=wt) resid(fit0, 'mart') resid(coxph(Surv(time, status) ~1, testw1, weights=wt)) #Null model # lfun is the known log-likelihood for this data set, worked out in the # appendix of Therneau and Grambsch # ufun is the score vector and ifun the information matrix lfun <- function(beta) { r <- exp(beta) a <- 7*r +3 b <- 4*r +2 11*beta - ( log(r^2 + 11*r +7) + (10/3)*(log(a+b) + log(2*a/3 +b) + log(a/3 +b)) + 2*log(2*r +1)) } aeq(fit0$log[1], lfun(0)) aeq(fit$log[2], lfun(fit$coef)) ufun <- function(beta, efron=T) { #score statistic r <- exp(beta) xbar1 <- (2*r^2+11*r)/(r^2+11*r +7) xbar2 <- 11*r/(11*r +5) xbar3 <- 2*r/(2*r +1) xbar2b<- 26*r/(26*r+12) xbar2c<- 19*r/(19*r + 9) temp <- 11 - (xbar1 + 2*xbar3) if (efron) temp - (10/3)*(xbar2 + xbar2b + xbar2c) else temp - 10*xbar2 } print(ufun(fit$coef) < 1e-4) # Should be true ifun <- function(beta, efron=T) { # information matrix r <- exp(beta) xbar1 <- (2*r^2+11*r)/(r^2+11*r +7) xbar2 <- 11*r/(11*r +5) xbar3 <- 2*r/(2*r +1) xbar2b<- 26*r/(26*r+12) xbar2c<- 19*r/(19*r + 9) temp <- ((4*r^2 + 11*r)/(r^2+11*r +7) - xbar1^2) + 2*(xbar3 - xbar3^2) if (efron) temp + (10/3)*((xbar2- xbar2^2) + (xbar2b - xbar2b^2) + (xbar2c -xbar2c^2)) else temp + 10 * (xbar2- xbar2^2) } aeq(fit0$var, 1/ifun(0)) aeq(fit$var, 1/ifun(fit$coef)) # Make sure that the weights pass through the residuals correctly rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt) # # Look at the individual components # dt0 <- coxph.detail(fit0) dt <- coxph.detail(fit) aeq(sum(dt$score), ufun(fit$coef)) #score statistic aeq(sum(dt0$score), ufun(0)) aeq(dt0$hazard, c(1/19, (10/3)*(1/16 + 1/(6+20/3) + 1/(6+10/3)), 2/3)) rm(fit, fit0, rr1, rr2, dt, dt0) # # Effect of weights on the robust variance # test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), wt= c(3,0,1,1,1,1,1), id= 1:7) testx <- data.frame(time= c(4,4,4,1,1,2,2,3), status=c(1,1,1,1,0,1,1,0), x= c(0,0,0,1,1,1,0,0), wt= c(1,1,1,1,1,1,1,1), id= 1:8) fit1 <- coxph(Surv(time, status) ~x + cluster(id), test1, method='breslow', weights=wt) fit2 <- coxph(Surv(time, status) ~x + cluster(id), testx, method='breslow') db1 <- resid(fit1, 'dfbeta', weighted=F) db1 <- db1[-2] #toss the missing db2 <- resid(fit2, 'dfbeta') aeq(db1, db2[3:8]) W <- c(3,1,1,1,1,1) #Weights, after removal of the missing value aeq(fit2$var, sum(db1*db1*W)) aeq(fit1$var, sum(db1*db1*W*W)) survival/tests/tiedtime.Rout.save0000644000176000001440000000270312267746072016752 0ustar ripleyusers R version 2.12.2 (2011-02-25) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: x86_64-unknown-linux-gnu (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) Loading required package: splines > > # > # The survival code was failing for certain data sets when called as > # survfit(Surv(time2-time1, status) ~ ...... > # The issue was how tied floating point numbers are handled, and the > # fact that unique(x), factor(x) and tapply(x) are not guarranteed to > # all be the same. > # This test fails in survival 2.36-5, fixed in 2.36-6. Data sets that > # can cause it are few and far between. > # > > load('ties.rda') > x <- time2 -time1 > > # Here is the heart of the old problem > # length(unique(x))== length(table(x)) > # And the prior fix which worked ALMOST always > # x <- round(x, 15) > # length(unique(round(x,15)))== length(table(round(x,15))) > > fit1 <- survfit(Surv(x) ~1) > length(fit1$time) == length(fit1$surv) [1] TRUE > survival/tests/coxsurv3.R0000644000176000001440000000742412267746072015262 0ustar ripleyuserslibrary(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # One more test on coxph survival curves, to test out the individual # option. First fit a model with a time dependent covariate # test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) # True hazard function, from the validation document lambda <- function(beta, x=0, method='efron') { r <- exp(beta) lambda <- c(1/(r+1), 1/(r+2), 1/(3*r +2), 1/(3*r+1), 1/(3*r+1), 1/(3*r+2) + 1/(2*r +2)) if (method == 'breslow') lambda[9] <- 2/(3*r +2) list(time=c(2,3,6,7,8,9), lambda=lambda) } fit <- coxph(Surv(start, stop, event) ~x, test2) # A curve for someone who never changes surv1 <-survfit(fit, newdata=list(x=0), censor=FALSE) true <- lambda(fit$coef, 0) aeq(true$time, surv1$time) aeq(-log(surv1$surv), cumsum(true$lambda)) # Reprise it with a time dependent subject who doesn't change data2 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), event=c(0,0,0,0), x=c(0,0,0,0)) surv2 <- survfit(fit, newdata=data2, individual=TRUE, censor=FALSE) aeq(surv2$surv, surv1$surv) # # Now a more complex data set with multiple strata # test3 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17, 1:11), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0,1), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 1, 1, 0, 2, 1,0), grp = c(rep('a', 10), rep('b', 11))) fit2 <- coxph(Surv(start, stop, event) ~ x + strata(grp), test3) # The above tests show the program works for a simple case, use it to # get a true baseline for strata 2 fit2b <- coxph(Surv(start, stop, event) ~x, test3, subset=(grp=='b'), init=fit2$coef, iter=0) temp <- survfit(fit2b, newdata=list(x=0), censor=F) true2 <- list(time=temp$time, lambda=diff(c(0, -log(temp$surv)))) true1 <- lambda(fit2$coef, x=0) # Separate strata, one value surv3 <- survfit(fit2, list(x=0), censor=FALSE) aeq(true1$time, (surv3[1])$time) aeq(-log(surv3[1]$surv), cumsum(true1$lambda)) data4 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), event=c(0,0,0,0), x=c(0,0,0,0), grp=rep('a', 4)) surv4a <- survfit(fit2, newdata=data4, individual=T, censor=FALSE) aeq(-log(surv4a$surv), cumsum(true1$lambda)) data4$grp <- rep('b',4) surv4b <- survfit(fit2, newdata=data4, individual=T, censor=FALSE) aeq(-log(surv4b$surv), cumsum(true2$lambda)) # Now for something more complex # Subject 1 skips day 4. Since there were no events that day the survival # will be the same, but the times will be different. # Subject 2 spends some time in strata 1, some in strata 2, with # moving covariates # data5 <- data.frame(start=c(0,5,9,11, 0, 4, 3), stop =c(4,9,11,17, 4,8,7), event=rep(0,7), x=c(1,1,1,1, 0,1,2), grp=c('a', 'a', 'a', 'a', 'a', 'a', 'b'), subject=c(1,1,1,1, 2,2,2)) surv5 <- survfit(fit2, newdata=data5, censor=FALSE, id=subject) aeq(surv5[1]$time, c(2,3,5,6,7,8)) #surv1 has 2, 3, 6, 7, 8, 9 aeq(surv5[1]$surv, surv3[1]$surv ^ exp(fit2$coef)) tlam <- c(true1$lambda[1:2]* exp(fit2$coef * data5$x[5]), true1$lambda[3:5]* exp(fit2$coef * data5$x[6]), true2$lambda[3:4]* exp(fit2$coef * data5$x[7])) aeq(-log(surv5[2]$surv), cumsum(tlam)) survival/tests/r_sas.R.orig0000644000176000001440000002302712267746072015531 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Reproduce example 1 in the SAS lifereg documentation # # this fit doesn't give the same log-lik that they claim motor <- read.table('data.motor', col.names=c('temp', 'time', 'status')) fit1 <- survreg(Surv(time, status) ~ I(1000/(273.2+temp)), motor, subset=(temp>150), dist='lognormal') summary(fit1) # This one, with the loglik on the transformed scale (the inappropriate # scale, Ripley & Venables would argue) does agree. # All coefs are of course identical. fit2 <- survreg(Surv(log(time), status) ~ I(1000/(273.2+temp)), motor, subset=(temp>150), dist='gaussian') # Give the quantile estimates, which is the lower half of "output 48.1.5" # in the SAS 9.2 manual pp1 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), type='quantile', se=T) pp2 <- predict(fit1, newdata=list(temp=c(130,150)), p=c(.1, .5, .9), type='uquantile', se=T) pp1 temp130 <- matrix(0, nrow=3, ncol=6) temp130[,1] <- pp1$fit[1,] temp130[,2] <- pp1$se.fit[1,] temp130[,3] <- pp2$fit[1,] temp130[,4] <- pp2$se.fit[1,] temp130[,5] <- exp(pp2$fit[1,] - 1.64*pp2$se.fit[1,]) temp130[,6] <- exp(pp2$fit[1,] + 1.64*pp2$se.fit[1,]) dimnames(temp130) <- list(c("p=.1", "p=.2", "p=.3"), c("Time", "se(time)", "log(time)", "se[log(time)]", "lower 90", "upper 90")) print(temp130) # A set of examples, copied from the manual pages of SAS procedure # "reliability", which is part of their QC product. # color <- c("black", "red", "green", "blue", "magenta", "red4", "orange", "DarkGreen", "cyan2", "DarkViolet") palette(color) pdf(file='reliability.pdf') # # Insulating fluids example # fluid <- read.table('data.fluid', col.names=c('time', 'voltage')) # Adding a -1 to the fit just causes the each group to have it's own # intercept, rather than a global intercept + constrasts. The strata # statement allows each to have a separate scale ffit <- survreg(Surv(time) ~ voltage + strata(voltage) -1, fluid) # Get predicted quantiles at each of the voltages # By default predict() would give a line of results for each observation, # I only want the unique set of x's, i.e., only 4 cases uvolt <- sort(unique(fluid$voltage)) #the unique levels plist <- c(1, 2, 5, 1:9 *10, 95, 99)/100 pred <- predict(ffit, type='quantile', p=plist, newdata=data.frame(voltage=factor(uvolt))) tfun <- function(x) log(-log(1-x)) matplot(t(pred), tfun(plist), type='l', log='x', lty=1, col=1:4, yaxt='n') axis(2, tfun(plist), format(100*plist), adj=1) kfit <- survfit(Surv(time) ~ voltage, fluid, type='fleming') #KM fit for (i in 1:4) { temp <- kfit[i] points(temp$time, tfun(1-temp$surv), col=i, pch=i) } # Now a table temp <- array(0, dim=c(4,4,4)) #4 groups by 4 parameters by 4 stats temp[,1,1] <- ffit$coef # "EV Location" in SAS manual temp[,2,1] <- ffit$scale # "EV scale" temp[,3,1] <- exp(ffit$coef) # "Weibull Scale" temp[,4,1] <- 1/ffit$scale # "Weibull Shape" temp[,1,2] <- sqrt(diag(ffit$var))[1:4] #standard error temp[,2,2] <- sqrt(diag(ffit$var))[5:8] * ffit$scale temp[,3,2] <- temp[,1,2] * temp[,3,1] temp[,4,2] <- temp[,2,2] / (temp[,2,1])^2 temp[,1,3] <- temp[,1,1] - 1.96*temp[,1,2] #lower conf limits temp[,1,4] <- temp[,1,1] + 1.96*temp[,1,2] # upper # log(scale) is the natural parameter, in which the routine did its fitting # and on which the std errors were computed temp[,2, 3] <- exp(log(ffit$scale) - 1.96*sqrt(diag(ffit$var))[5:8]) temp[,2, 4] <- exp(log(ffit$scale) + 1.96*sqrt(diag(ffit$var))[5:8]) temp[,3, 3:4] <- exp(temp[,1,3:4]) temp[,4, 3:4] <- 1/temp[,2,4:3] dimnames(temp) <- list(uvolt, c("EV Location", "EV Scale", "Weibull scale", "Weibull shape"), c("Estimate", "SE", "lower 95% CI", "uppper 95% CI")) print(aperm(temp, c(2,3,1)), digits=5) rm(temp, uvolt, plist, pred, ffit, kfit) ##################################################################### # Turbine cracks data cracks <- read.table('data.cracks', col.names=c('time1', 'time2', 'n')) cfit <- survreg(Surv(time1, time2, type='interval2') ~1, dist='weibull', data=cracks, weight=n) summary(cfit) #Their output also has Wiebull scale = exp(cfit$coef), shape = 1/(cfit$scale) # Draw the SAS plot # The "type=fleming" argument reflects that they estimate hazards rather than # survival, and forces a Nelson-Aalen hazard estimate # plist <- c(1, 2, 5, 1:8 *10)/100 plot(qsurvreg(plist, cfit$coef, cfit$scale), tfun(plist), log='x', yaxt='n', type='l', xlab="Weibull Plot for Time", ylab="Percent") axis(2, tfun(plist), format(100*plist), adj=1) kfit <- survfit(Surv(time1, time2, type='interval2') ~1, data=cracks, weight=n, type='fleming') # Only plot point where n.event > 0 # Why? I'm trying to match them. Personally, all should be plotted. who <- (kfit$n.event > 0) points(kfit$time[who], tfun(1-kfit$surv[who]), pch='+') points(kfit$time[who], tfun(1-kfit$upper[who]), pch='-') points(kfit$time[who], tfun(1-kfit$lower[who]), pch='-') text(rep(3,6), seq(.5, -1.0, length=6), c("Scale", "Shape", "Right Censored", "Left Censored", "Interval Censored", "Fit"), adj=0) text(rep(9,6), seq(.5, -1.0, length=6), c(format(round(exp(cfit$coef), 2)), format(round(1/cfit$scale, 2)), format(tapply(cracks$n, cfit$y[,3], sum)), "ML"), adj=1) # Now a portion of his percentiles table # I don't get the same SE as SAS, I haven't checked out why. The # estimates and se for the underlying Weibull model are the same. temp <- predict(cfit, type='quantile', p=plist, se=T) tempse <- sqrt(temp$se[1,]) mat <- cbind(temp$fit[1,], tempse, temp$fit[1,] -1.96*tempse, temp$fit[1,] + 1.96*tempse) dimnames(mat) <- list(plist*100, c("Estimate", "SE", "Lower .95", "Upper .95")) print(mat) # # The cracks data has a particularly easy estimate, so use # it to double check code time <- c(cracks$time2[1], (cracks$time1 + cracks$time2)[2:8]/2, cracks$time1[9]) cdf <- cumsum(cracks$n)/sum(cracks$n) all.equal(kfit$time, time) all.equal(kfit$surv, 1-cdf[c(1:8,8)]) rm(time, cdf, kfit) ####################################################### # # Valve data # The input data has id, time, and an indicator of whether there was an # event at that time: -1=no, 1=yes. No one has an event at their last time. # Convert the data to (start, stop] form # The input data has two engines with dual failures: 328 loses 2 valves at # time 653, and number 402 loses 2 at time 139. For each, fudge the first # time to be .1 days earlier. # temp <- matrix(scan('data.valve'), byrow=T, ncol=3) n <- nrow(temp) valve <- data.frame(id=temp[,1], time1 = c(0, ifelse(diff(temp[,1])==0, temp[-n,2],0)), time2 = temp[,2], status= as.numeric(temp[,3]==1)) indx <- (1:nrow(valve))[valve$time1==valve$time2] valve$time1[indx] <- valve$time1[indx] - .1 valve$time2[indx-1] <- valve$time2[indx-1] - .1 kfit <- survfit(Surv(time1, time2, status) ~1, valve, type='fh2') plot(kfit, fun='cumhaz', ylab="Sample Mean Cumulative Failures", xlab='Time', ylim=range(-log(kfit$lower))) title("Valve replacement data") # The summary.survfit function doesn't have an option for printing out # cumulative hazards instead of survival --- need to add that # so I just reprise the central code of print.summary.survfit xx <- summary(kfit) temp <- cbind(xx$time, xx$n.risk, xx$n.event, -log(xx$surv), xx$std.err/xx$surv, -log(xx$upper), -log(xx$lower)) dimnames(temp) <- list(rep("", nrow(temp)), c("time", "n.risk", "n.event", "Cum haz", "std.err", "lower 95%", "upper 95%")) print(temp, digits=2) # Note that I have the same estimates but different SE's. We are using a # different estimator. It's a statistical argument as to which is # better (one could defend both sides): do you favor JASA or Technometrics? rm(temp, kfit, indx, xx) ###################################################### # Turbine data, lognormal fit turbine <- read.table('data.turbine', col.names=c("time1", "time2", "n")) tfit <- survreg(Surv(time1, time2, type='interval2') ~1, turbine, dist='lognormal', weights=n, subset=(n>0)) summary(tfit) # Now, do his plot, but put bootstrap confidence bands on it! # First, make a simple data set without weights tdata <- turbine[rep(1:nrow(turbine), turbine$n),] qstat <- function(data) { temp <- survreg(Surv(time1, time2, type='interval2') ~1, data=data, dist='lognormal') qsurvreg(plist, temp$coef, temp$scale, dist='lognormal') } {if (exists('bootstrap')) { bfit <- bootstrap(tdata, qstat, B=1000) bci <- limits.bca(bfit, probs=c(.025, .975)) } else { values <- matrix(0, nrow=1000, ncol=length(plist)) n <- nrow(tdata) for (i in 1:1000) { subset <- sample(1:n, n, replace=T) values[i,] <- qstat(tdata[subset,]) } bci <- t(apply(values,2, quantile, c(.05, .95))) } } xmat <- cbind(qsurvreg(plist, tfit$coef, tfit$scale, dist='lognormal'), bci) matplot(xmat, qnorm(plist), type='l', lty=c(1,2,2), col=c(1,1,1), log='x', yaxt='n', ylab='Percent', xlab='Time of Cracking (Hours x 100)') axis(2, qnorm(plist), format(100*plist), adj=1) title("Turbine Data") kfit <- survfit(Surv(time1, time2, type='interval2') ~1, data=tdata) points(kfit$time, qnorm(1-kfit$surv), pch='+') survival/tests/book7.R0000644000176000001440000000337612267746072014511 0ustar ripleyuserslibrary(survival) options(na.action=na.exclude) options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # # Tests from the appendix of Therneau and Grambsch # Data set 1 + exact method test1 <- data.frame(time= c(9, 3,1,1,6,6,8), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) byhand7 <- function(beta) { r <- exp(beta) loglik <- 2*(beta - log(3*r + 3)) u <- 2/(r+1) imat <- 2*r/(r+1)^2 haz <- c(1/(3*r+3), 2/(r+3), 0, 1 ) ties <- c(1,1,2,2,3,4) wt <- c(r,r,r,1,1,1) mart <- c(1,0,1,1,0,1) - wt* (cumsum(haz))[ties] #martingale residual list(loglik=loglik, u=u, imat=imat, mart=mart) } aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) fit0 <-coxph(Surv(time, status) ~x, test1, iter=0, method='exact') truth0 <- byhand7(0) aeq(truth0$loglik, fit0$loglik[1]) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$resid[c(2:6,1)]) fit1 <- coxph(Surv(time, status) ~x, test1, iter=1, method='exact') aeq(fit1$coef, truth0$u*fit0$var) truth1 <- byhand7(fit1$coef) aeq(fit1$loglik[2], truth1$loglik) aeq(1/truth1$imat, fit1$var) aeq(truth1$mart, resid(fit1)[c(3:7,1)]) # Beta is infinite for this model, so we will get a warning message fit2 <- coxph(Surv(time, status) ~x, test1, method='exact') aeq(resid(fit2)[-2], c(0, 2/3, -1/3, -4/3, 1, 0)) #values from the book # # Now a multivariate case: start/stop data uses a different C routine # zz <- rep(0, nrow(lung)) fit1 <- coxph(Surv(time, status) ~ age + ph.ecog + sex, lung, method="exact") fit2 <- coxph(Surv(zz, time, status) ~ age + ph.ecog + sex, lung, method="exact") aeq(fit1$loglik, fit2$loglik) aeq(fit1$var, fit2$var) aeq(fit1$score, fit2$score) aeq(fit1$resid, fit2$resid) survival/tests/data.turbine0000644000176000001440000000217312267746072015642 0ustar ripleyusersNA 4 0 4 NA 39 NA 10 4 10 NA 49 NA 14 2 14 NA 31 NA 18 7 18 NA 66 NA 22 5 22 NA 25 NA 26 9 26 NA 30 NA 30 9 30 NA 33 NA 34 6 34 NA 7 NA 38 22 38 NA 12 NA 42 21 42 NA 19 NA 46 21 46 NA 15 survival/tests/coxsurv.R0000644000176000001440000000545212267746072015176 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out subscripting in the case of a coxph survival curve # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), data=cancer) surv1 <- survfit(fit) temp <- surv1[2:3] which <- cumsum(surv1$strata) zed <- (which[1]+1):(which[3]) aeq(surv1$surv[zed], temp$surv) aeq(surv1$time[zed], temp$time) # This call should not create a model frame in the code -- so same # answer but a different path through the underlying code fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), x=T, data=cancer) surv2 <- survfit(fit) all.equal(surv1, surv2) # # Now a result with a matrix of survival curves # dummy <- data.frame(age=c(30,40,60), sex=c(1,2,2), meal.cal=c(500, 1000, 1500)) surv2 <- survfit(fit, newdata=dummy) zed <- 1:which[1] aeq(surv2$surv[zed,1], surv2[1,1]$surv) aeq(surv2$surv[zed,2], surv2[1,2]$surv) aeq(surv2$surv[zed,3], surv2[1,3]$surv) aeq(surv2$surv[zed, ], surv2[1,1:3]$surv) aeq(surv2$surv[zed], (surv2[1]$surv)[,1]) aeq(surv2$surv[zed, ], surv2[1, ]$surv) fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), data=cancer) surv1 <- survfit(fit) temp <- surv1[2:3] which <- cumsum(surv1$strata) zed <- (which[1]+1):(which[3]) aeq(surv1$surv[zed], temp$surv) aeq(surv1$time[zed], temp$time) # This call should not create a model frame in the code -- so same # answer but a different path through the underlying code fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), x=T, data=cancer) surv2 <- survfit(fit) all.equal(surv1, surv2) # # Now a result with a matrix of survival curves # dummy <- data.frame(age=c(30,40,60), sex=c(1,2,2), meal.cal=c(500, 1000, 1500)) surv2 <- survfit(fit, newdata=dummy) zed <- 1:which[1] aeq(surv2$surv[zed,1], surv2[1,1]$surv) aeq(surv2$surv[zed,2], surv2[1,2]$surv) aeq(surv2$surv[zed,3], surv2[1,3]$surv) aeq(surv2$surv[zed, ], surv2[1,1:3]$surv) aeq(surv2$surv[zed], (surv2[1]$surv)[,1]) aeq(surv2$surv[zed, ], surv2[1, ]$surv) # And the depreciated form - call with a named vector as 'newdata' # the resulting $call component won't match so delete it before comparing surv3 <- survfit(fit, c(age=40, sex=2, meal.cal=1000)) all.equal(unclass(surv2[,2])[-length(surv3)], unclass(surv3)[-length(surv3)]) # Test out offsets, which have recently become popular due to a Langholz paper fit1 <- coxph(Surv(time, status) ~ age + ph.ecog, lung) fit2 <- coxph(Surv(time, status) ~ age + offset(ph.ecog * fit1$coef[2]), lung) surv1 <- survfit(fit1, newdata=data.frame(age=50, ph.ecog=1)) surv2 <- survfit(fit2, newdata=data.frame(age=50, ph.ecog=1)) all.equal(surv1$surv, surv2$surv) survival/tests/doweight.Rout.save0000644000176000001440000003571512267746072016771 0ustar ripleyusers R version 2.15.0 (2012-03-30) Copyright (C) 2012 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i686-pc-linux-gnu (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) Loading required package: splines > > # Tests of the weighted Cox model > # > # Similar data set to test1, but add weights, > # a double-death/censor tied time > # a censored last subject > # The latter two are cases covered only feebly elsewhere. > # > # The data set testw2 has the same data, but done via replication > # > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > > testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), + status= c(1,0,1,1,1,0,0,1,0), + x= c(2,0,1,1,0,1,0,1,0), + wt = c(1,2,3,4,3,2,1,2,1)) > xx <- c(1,2,3,4,3,2,1,2,1) > testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), + status= rep(c(1,0,1,1,1,0,0,1,0), xx), + x= rep(c(2,0,1,1,0,1,0,1,0), xx), + id= rep(1:9, xx)) > indx <- match(1:9, testw2$id) > testw2 <- data.frame(time= rep(c(1,1,2,2,2,2,3,4,5), xx), + status= rep(c(1,0,1,1,1,0,0,1,0), xx), + x= rep(c(2,0,1,1,0,1,0,1,0), xx), + id= rep(1:9, xx)) > indx <- match(1:9, testw2$id) > > fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, + method='breslow', iter=0) > fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0) > fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow') > fitb <- coxph(Surv(time, status) ~x, testw2, method='breslow') > > texp <- function(beta) { # expected, Breslow estimate + r <- exp(beta) + temp <- cumsum(c(1/(r^2 + 11*r +7), 10/(11*r +5), 2/(2*r+1))) + c(r^2, 1,r,r,1,r,1,r,1)* temp[c(1,1,2,2,2,2,2,3,3)] + } > aeq(texp(0), c(1/19, 1/19, rep(103/152, 5), rep(613/456,2))) #verify texp() [1] TRUE > > xbar <- function(beta) { # xbar, Breslow estimate + r <- exp(beta) + temp <- r* rep(c(2*r + 11, 11/10, 1), c(2, 5, 2)) + temp * texp(beta) + } > > fit0 Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, method = "breslow", iter = 0) coef exp(coef) se(coef) z p x 0 1 0.586 0 1 Likelihood ratio test=0 on 1 df, p=1 n= 9, number of events= 5 > summary(fit) Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, method = "breslow") n= 9, number of events= 5 coef exp(coef) se(coef) z Pr(>|z|) x 0.8596 2.3621 0.7131 1.205 0.228 exp(coef) exp(-coef) lower .95 upper .95 x 2.362 0.4233 0.5839 9.556 Concordance= 0.638 (se = 0.159 ) Rsquare= 0.171 (max possible= 0.999 ) Likelihood ratio test= 1.69 on 1 df, p=0.1932 Wald test = 1.45 on 1 df, p=0.2281 Score (logrank) test = 1.52 on 1 df, p=0.217 > aeq(resid(fit0), testw1$status - texp(0)) [1] TRUE > resid(fit0, type='score') 1 2 3 4 5 6 1.24653740 0.03601108 0.10056700 0.10056700 -0.22180142 -0.21193300 7 8 9 0.46569858 -0.10082189 0.91014302 > resid(fit0, type='scho') 1 2 2 2 4 1.3157895 0.3125000 0.3125000 -0.6875000 0.3333333 > > aeq(resid(fit0, type='mart'), (resid(fit0b, type='mart'))[indx]) [1] TRUE > aeq(resid(fit0, type='scor'), (resid(fit0b, type='scor'))[indx]) [1] TRUE > aeq(unique(resid(fit0, type='scho')), unique(resid(fit0b, type='scho'))) [1] TRUE > > > aeq(resid(fit, type='mart'), testw1$status - texp(fit$coef)) [1] TRUE > resid(fit, type='score') 1 2 3 4 5 6 0.88681615 0.02497653 0.03608964 0.03608964 -0.54297652 -0.12528780 7 8 9 0.29564605 -0.09476911 0.58400064 > resid(fit, type='scho') 1 2 2 2 4 1.0368337 0.1613774 0.1613774 -0.8386226 0.1746960 > aeq(resid(fit, type='mart'), (resid(fitb, type='mart'))[indx]) [1] TRUE > aeq(resid(fit, type='scor'), (resid(fitb, type='scor'))[indx]) [1] TRUE > aeq(unique(resid(fit, type='scho')), unique(resid(fitb, type='scho'))) [1] TRUE > rr1 <- resid(fit, type='mart') > rr2 <- resid(fit, type='mart', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > rr1 <- resid(fit, type='score') > rr2 <- resid(fit, type='score', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > fit <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='efron') > fit Call: coxph(formula = Surv(time, status) ~ x, data = testw1, weights = wt, method = "efron") coef exp(coef) se(coef) z p x 0.873 2.39 0.713 1.22 0.22 Likelihood ratio test=1.75 on 1 df, p=0.186 n= 9, number of events= 5 > resid(fit, type='mart') 1 2 3 4 5 6 0.85334536 -0.02560716 0.32265266 0.32265266 0.71696234 -1.07772629 7 8 9 -0.45034077 -0.90490339 -0.79598658 > resid(fit, type='score') 1 2 3 4 5 6 0.88116056 0.02477248 0.06057806 0.06057806 -0.59724033 -0.16737066 7 8 9 0.38040295 -0.13750290 0.66631324 > resid(fit, type='scho') 1 2 2 2 4 1.0325955 0.1621759 0.1621759 -0.8378241 0.1728229 > > # Tests of the weighted Cox model, AG form of the data > # Same solution as doweight1.s > # > testw3 <- data.frame(id = c( 1, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8, 8, 9), + begin= c( 0, 5, 0, 0,10,15, 0, 0,14, 0, 0, 0,23, 0), + time= c( 5,10,10,10,15,20,20,14,20,20,30,23,40,50), + status= c( 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0), + x= c( 2, 2, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0), + wt = c( 1, 1, 2, 3, 3, 3, 4, 3, 3, 2, 1, 2, 2, 1)) > > fit0 <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, + method='breslow', iter=0) > fit <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, method='breslow') > fit0 Call: coxph(formula = Surv(begin, time, status) ~ x, data = testw3, weights = wt, method = "breslow", iter = 0) coef exp(coef) se(coef) z p x 0 1 0.586 0 1 Likelihood ratio test=0 on 1 df, p=1 n= 14, number of events= 5 > summary(fit) Call: coxph(formula = Surv(begin, time, status) ~ x, data = testw3, weights = wt, method = "breslow") n= 14, number of events= 5 coef exp(coef) se(coef) z Pr(>|z|) x 0.8596 2.3621 0.7131 1.205 0.228 exp(coef) exp(-coef) lower .95 upper .95 x 2.362 0.4233 0.5839 9.556 Concordance= 0.638 (se = 0.159 ) Rsquare= 0.114 (max possible= 0.991 ) Likelihood ratio test= 1.69 on 1 df, p=0.1932 Wald test = 1.45 on 1 df, p=0.2281 Score (logrank) test = 1.52 on 1 df, p=0.217 > resid(fit0, type='mart', collapse=testw3$id) 1 2 3 4 5 6 0.94736842 -0.05263158 0.32236842 0.32236842 0.32236842 -0.67763158 7 8 9 -0.67763158 -0.34429825 -1.34429825 > resid(fit0, type='score', collapse=testw3$id) 1 2 3 4 5 6 1.24653740 0.03601108 0.10056700 0.10056700 -0.22180142 -0.21193300 7 8 9 0.46569858 -0.10082189 0.91014302 > resid(fit0, type='scho') 10 20 20 20 40 1.3157895 0.3125000 0.3125000 -0.6875000 0.3333333 > > resid(fit, type='mart', collapse=testw3$id) 1 2 3 4 5 6 0.85531186 -0.02593169 0.17636221 0.17636221 0.65131344 -0.82363779 7 8 9 -0.34868656 -0.64894181 -0.69807852 > resid(fit, type='score', collapse=testw3$id) 1 2 3 4 5 6 0.88681615 0.02497653 0.03608964 0.03608964 -0.54297652 -0.12528780 7 8 9 0.29564605 -0.09476911 0.58400064 > resid(fit, type='scho') 10 20 20 20 40 1.0368337 0.1613774 0.1613774 -0.8386226 0.1746960 > fit0 <- coxph(Surv(begin, time, status) ~x,testw3, weights=wt, iter=0) > resid(fit0, 'mart', collapse=testw3$id) 1 2 3 4 5 6 0.94736842 -0.05263158 0.44454887 0.44454887 0.44454887 -0.88126566 7 8 9 -0.88126566 -0.54793233 -1.54793233 > resid(coxph(Surv(begin, time, status) ~1, testw3, weights=wt) + , collapse=testw3$id) #Null model 1 2 3 4 5 6 0.94736842 -0.05263158 0.44454887 0.44454887 0.44454887 -0.88126566 7 8 9 -0.88126566 -0.54793233 -1.54793233 > > fit <- coxph(Surv(begin,time, status) ~x, testw3, weights=wt, method='efron') > fit Call: coxph(formula = Surv(begin, time, status) ~ x, data = testw3, weights = wt, method = "efron") coef exp(coef) se(coef) z p x 0.873 2.39 0.713 1.22 0.22 Likelihood ratio test=1.75 on 1 df, p=0.186 n= 14, number of events= 5 > resid(fit, type='mart', collapse=testw3$id) 1 2 3 4 5 6 0.85334536 -0.02560716 0.32265266 0.32265266 0.71696234 -1.07772629 7 8 9 -0.45034077 -0.90490339 -0.79598658 > resid(fit, type='score', collapse=testw3$id) 1 2 3 4 5 6 0.88116056 0.02477248 0.06057806 0.06057806 -0.59724033 -0.16737066 7 8 9 0.38040295 -0.13750290 0.66631324 > resid(fit, type='scho') 10 20 20 20 40 1.0325955 0.1621759 0.1621759 -0.8378241 0.1728229 > # > # Check out the impact of weights on the dfbetas > # Am I computing them correctly? > # > wtemp <- rep(1,26) > wtemp[c(5,10,15)] <- 2:4 > fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp) > rr <- resid(fit, 'dfbeta') > > fit1 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, + subset=(-5)) > fit2 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, + subset=(-10)) > fit3 <- coxph(Surv(futime, fustat) ~ age + ecog.ps, ovarian, weights=wtemp, + subset=(-15)) > > # > # Effect of case weights on expected survival curves post Cox model > # > fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, method='breslow', + iter=0) > fit0b <- coxph(Surv(time, status) ~x, testw2, method='breslow', iter=0) > > surv1 <- survfit(fit0, newdata=list(x=0)) > surv2 <- survfit(fit0b, newdata=list(x=0)) > aeq(surv1$surv, surv2$surv) [1] TRUE > # > # Check out the Efron approx. > # > > fit0 <- coxph(Surv(time, status) ~x,testw1, weights=wt, iter=0) > fit <- coxph(Surv(time, status) ~x,testw1, weights=wt) > resid(fit0, 'mart') 1 2 3 4 5 6 0.94736842 -0.05263158 0.44454887 0.44454887 0.44454887 -0.88126566 7 8 9 -0.88126566 -0.54793233 -1.54793233 > resid(coxph(Surv(time, status) ~1, testw1, weights=wt)) #Null model 1 2 3 4 5 6 0.94736842 -0.05263158 0.44454887 0.44454887 0.44454887 -0.88126566 7 8 9 -0.88126566 -0.54793233 -1.54793233 > > # lfun is the known log-likelihood for this data set, worked out in the > # appendix of Therneau and Grambsch > # ufun is the score vector and ifun the information matrix > lfun <- function(beta) { + r <- exp(beta) + a <- 7*r +3 + b <- 4*r +2 + 11*beta - ( log(r^2 + 11*r +7) + + (10/3)*(log(a+b) + log(2*a/3 +b) + log(a/3 +b)) + 2*log(2*r +1)) + } > aeq(fit0$log[1], lfun(0)) [1] TRUE > aeq(fit$log[2], lfun(fit$coef)) [1] TRUE > > ufun <- function(beta, efron=T) { #score statistic + r <- exp(beta) + xbar1 <- (2*r^2+11*r)/(r^2+11*r +7) + xbar2 <- 11*r/(11*r +5) + xbar3 <- 2*r/(2*r +1) + xbar2b<- 26*r/(26*r+12) + xbar2c<- 19*r/(19*r + 9) + temp <- 11 - (xbar1 + 2*xbar3) + if (efron) temp - (10/3)*(xbar2 + xbar2b + xbar2c) + else temp - 10*xbar2 + } > print(ufun(fit$coef) < 1e-4) # Should be true x TRUE > > ifun <- function(beta, efron=T) { # information matrix + r <- exp(beta) + xbar1 <- (2*r^2+11*r)/(r^2+11*r +7) + xbar2 <- 11*r/(11*r +5) + xbar3 <- 2*r/(2*r +1) + xbar2b<- 26*r/(26*r+12) + xbar2c<- 19*r/(19*r + 9) + temp <- ((4*r^2 + 11*r)/(r^2+11*r +7) - xbar1^2) + + 2*(xbar3 - xbar3^2) + if (efron) temp + (10/3)*((xbar2- xbar2^2) + (xbar2b - xbar2b^2) + + (xbar2c -xbar2c^2)) + else temp + 10 * (xbar2- xbar2^2) + } > > aeq(fit0$var, 1/ifun(0)) [1] TRUE > aeq(fit$var, 1/ifun(fit$coef)) [1] TRUE > > > > # Make sure that the weights pass through the residuals correctly > rr1 <- resid(fit, type='mart') > rr2 <- resid(fit, type='mart', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > rr1 <- resid(fit, type='score') > rr2 <- resid(fit, type='score', weighted=T) > aeq(rr2/rr1, testw1$wt) [1] TRUE > > # > # Look at the individual components > # > dt0 <- coxph.detail(fit0) > dt <- coxph.detail(fit) > aeq(sum(dt$score), ufun(fit$coef)) #score statistic [1] TRUE > aeq(sum(dt0$score), ufun(0)) [1] TRUE > aeq(dt0$hazard, c(1/19, (10/3)*(1/16 + 1/(6+20/3) + 1/(6+10/3)), 2/3)) [1] TRUE > > > > rm(fit, fit0, rr1, rr2, dt, dt0) > # > # Effect of weights on the robust variance > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0), + wt= c(3,0,1,1,1,1,1), + id= 1:7) > testx <- data.frame(time= c(4,4,4,1,1,2,2,3), + status=c(1,1,1,1,0,1,1,0), + x= c(0,0,0,1,1,1,0,0), + wt= c(1,1,1,1,1,1,1,1), + id= 1:8) > > fit1 <- coxph(Surv(time, status) ~x + cluster(id), test1, method='breslow', + weights=wt) > fit2 <- coxph(Surv(time, status) ~x + cluster(id), testx, method='breslow') > > db1 <- resid(fit1, 'dfbeta', weighted=F) > db1 <- db1[-2] #toss the missing > db2 <- resid(fit2, 'dfbeta') > aeq(db1, db2[3:8]) [1] TRUE > > W <- c(3,1,1,1,1,1) #Weights, after removal of the missing value > aeq(fit2$var, sum(db1*db1*W)) [1] TRUE > aeq(fit1$var, sum(db1*db1*W*W)) [1] TRUE > > > proc.time() user system elapsed 0.292 0.036 0.325 survival/tests/expected.R0000644000176000001440000002300412267746072015257 0ustar ripleyusersoptions(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Tests of expected survival aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # This makes several scripts easier # Certain tests depended in the now-depreciated date library {if (is.R()) mdy.date <- function(m, d, y) { y <- ifelse(y<100, y+1900, y) as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") } else mdy.date <- function(m,d,y) { y <- ifelse(y<100, y+1900, y) timeDate(paste(y, m, d, sep='/'), in.format="%Y/%m/%d") } } # This function takes a single subject and walks down the rate table # Input: the vector of starting points, futime, and a ratetable # Output: the full history of walking through said table. Let n= #unique # rates that were used # cell = n by #dims of the table: index of the table cell # days = time spent in cell # hazard= accumulated hazard = days * rate # This does not do date or factor conversions -- start has to be numeric # ratewalk <- function(start, futime, ratetable=survexp.us) { if (!is.ratetable(ratetable)) stop("Bad rate table") ratedim <- dim(ratetable) nvar <- length(ratedim) if (length(start) != nvar) stop("Wrong length for start") if (futime <=0) stop("Invalid futime") attR <- attributes(ratetable) discrete <- (attR$type ==1) #discrete categories maxn <- sum(!discrete)*prod(ratedim[!discrete]) #most cells you can hit cell <- matrix(0, nrow=maxn, ncol=nvar) days <- hazard <- double(maxn) eps <- 1e-8 #Avoid round off error n <- 0 while (futime >0) { n <- n+1 #what cell am I in? # Note that at the edges of the rate table, we use the edge: if # it only goes up the the year 2000, year 2000 is used for any # dates beyond. This effectively eliminates one boundary cell[n,discrete] <- start[discrete] edge <- futime #time to nearest edge, or finish for (j in which(!discrete)) { indx <- sum(start[j] >= attR$cutpoints[[j]]-eps) cell[n, j] <- max(1, indx) if (indx < ratedim[j]) edge <- min(edge, (attR$cutpoints[[j]])[indx+1] - start[j]) } days[n] <- edge #this many days in the cell # using a matrix as a subscript is so handy sometimes hazard[n] <- edge * (as.matrix(ratetable))[cell[n,,drop=F]] futime <- futime - edge #amount of time yet to account for start[!discrete] <- start[!discrete] + edge #walk forward in time } list(cell=cell[1:n,], days=days[1:n], hazard=hazard[1:n]) } # Simple test of ratewalk: 20 years old, start on 7Sep 1960 (day 250) # 116 days at the 1960, 20 year old male rate, through the end of the day # on 12/31/1960, then 84 days at the 1961 rate. # The decennial q for 1960 males is .00169. zz <- ratewalk(c(20.4*365.25, 1, 250), 200) all.equal(zz$hazard[1], -(116/365.25)*log(1-.00169)) all.equal(zz$days, c(116,84)) # # Simple case 1: a single male subject, born 1/1/36 and entered on study 1/2/55 # # Compute the 1, 5, 10 and 12 year expected survival temp1 <- mdy.date(1,1,36) temp2 <- mdy.date(1,2,55) exp1 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=1, race='white'), ratetable=survexp.usr,times=c(366, 1827, 3653, 4383)) tyear <- as.numeric(temp2 - mdy.date(1,1,1960)) h1 <- ratewalk(c(temp2-temp1, 1, 1, tyear), 366, survexp.usr) h2 <- ratewalk(c(temp2-temp1, 1, 1, tyear), 1827, survexp.usr) h3 <- ratewalk(c(temp2-temp1, 1, 1, tyear), 3653, survexp.usr) h4 <- ratewalk(c(temp2-temp1, 1, 1, tyear), 4383, survexp.usr) aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), sum(h4$hazard))) # Just a little harder: # Born 3/1/25 and entered the study on 6/10/55. The code creates shifted # dates to align with US rate tables - entry is 59 days earlier (days from # 1/1/25 to 3/1/25). # temp1 <- mdy.date(3,1,25) temp2 <- mdy.date(6,10,55) exp1 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=2, race='black'), ratetable=survexp.usr,times=c(366, 1827, 3653, 4383)) tyear <- as.numeric(temp2 - mdy.date(1,1,1960)) - 59 h1 <- ratewalk(c(temp2-temp1, 2, 2, tyear), 366, survexp.usr) h2 <- ratewalk(c(temp2-temp1, 2, 2, tyear), 1827, survexp.usr) h3 <- ratewalk(c(temp2-temp1, 2, 2, tyear), 3653, survexp.usr) h4 <- ratewalk(c(temp2-temp1, 2, 2, tyear), 4383, survexp.usr) aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), sum(h4$hazard))) # # Simple case 2: make sure that the averages are correct, for Ederer method # # Compute the 1, 5, 10 and 12 year expected survival temp1 <- mdy.date(1:6,6:11,1890:1895) temp2 <- mdy.date(6:1,11:6,c(55:50)) temp3 <- c(1,2,1,2,1,2) age <- temp2 - temp1 exp1 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), times=c(366, 1827, 3653, 4383)) exp2 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3) + I(1:6), times=c(366, 1827, 3653, 4383)) exp3 <- exp2$surv for (i in 1:length(temp1)){ exp3[,i] <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), times=c(366, 1827, 3653, 4383), subset=i)$surv } print(aeq(exp2$surv, exp3)) print(all.equal(exp1$surv, apply(exp2$surv, 1, mean))) # They agree, but are they right? # for (i in 1:length(temp1)) { offset <- as.numeric(temp1[i] - mdy.date(1,1, 1889+i)) tyear = (as.numeric(temp2[i] - mdy.date(1,1,1960))) - offset haz1 <- ratewalk(c((temp2-temp1)[i], temp3[i], tyear), 366) haz2 <- ratewalk(c((temp2-temp1)[i], temp3[i], tyear), 1827) haz3 <- ratewalk(c((temp2-temp1)[i], temp3[i], tyear), 3653) haz4 <- ratewalk(c((temp2-temp1)[i], temp3[i], tyear), 4383) print(aeq(-log(exp2$surv[,i]), c(sum(haz1$hazard), sum(haz2$hazard), sum(haz3$hazard), sum(haz4$hazard)))) } # # Check that adding more time points doesn't change things # exp4 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3) + I(1:6), times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) aeq(exp4$surv[match(exp2$time, exp4$time),], exp2$surv) exp4 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=temp3), times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) aeq(exp1$surv, exp4$surv[match(exp1$time, exp4$time, nomatch=0)]) # # Now test Hakulinen's method, assuming an analysis date of 3/1/57 # futime <- mdy.date(3,1,57) - temp2 xtime <- sort(c(futime, 30, 60, 185, 365)) exp1 <- survexp(futime ~ ratetable(year=temp2, age=(temp2-temp1), sex=1), times=xtime, conditional=F) exp2 <- survexp(~ratetable(year=temp2, age=(temp2-temp1), sex=1) + I(1:6), times=futime) wt <- rep(1,6) con <- double(6) for (i in 1:6) { con[i] <- sum(exp2$surv[i,i:6])/sum(wt[i:6]) wt <- exp2$surv[i,] } exp1$surv[match(futime, xtime)] aeq(exp1$surv[match(futime, xtime)], cumprod(con)) # # Now for the conditional method # exp1 <- survexp(futime ~ ratetable(year=temp2, age=(temp2-temp1), sex=1), times=xtime, conditional=T) cond <- exp2$surv for (i in 6:2) cond[i,] <- (cond[i,]/cond[i-1,]) #conditional survival for (i in 1:6) con[i] <- exp(mean(log(cond[i, i:6]))) all.equal(exp1$surv[match(futime, xtime)], cumprod(con)) cumprod(con) # # Test out expected survival, when the parent pop is another Cox model # test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit <- coxph(Surv(time, status) ~x, test1, method='breslow') dummy <- data.frame(time=c(.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5), status=c(1,0,1,0,1,0,1,1,1), x=(-4:4)/2) efit <- survexp(time ~ ratetable(x=x), dummy, ratetable=fit, cohort=F) # # Now, compare to the true answer, which is known to us # ss <- exp(fit$coef) haz <- c( 1/(3*ss+3), 2/(ss+3), 1) #truth at time 0,1,2,4+ chaz <- cumsum(c(0,haz)) chaz2 <- chaz[c(1,2,2,3,3,3,3,4,4)] risk <- exp(fit$coef*dummy$x) efit2 <- exp(-risk*chaz2) all.equal(as.vector(efit), as.vector(efit2)) #ignore mismatched name attrib # # Now test the direct-adjusted curve (Ederer) # efit <- survexp( ~ ratetable(x=x), dummy, ratetable=fit, se=F) direct <- survfit(fit, newdata=dummy, censor=FALSE)$surv chaz <- chaz[-1] #drop time 0 d2 <- exp(outer(-chaz, risk)) all.equal(as.vector(direct), as.vector(d2)) #this tests survfit all.equal(as.vector(efit$surv), as.vector(apply(direct,1,mean))) #direct # Check out the "times" arg of survexp efit2 <- survexp( ~ ratetable(x=x), dummy, ratetable=fit, se=F, times=c(.5, 2, 3.5,6)) aeq(efit2$surv, c(1, efit$surv[c(2,2,3)])) # # Now test out the Hakulinen method (Bonsel's method) # By construction, we have a large correlation between x and censoring # # In theory, hak1 and hak2 would be the same. In practice, like a KM and # F-H, they differ when n is small. # efit <- survexp( time ~ ratetable(x=x), dummy, ratetable=fit, se=F) surv <- wt <- rep(1,9) tt <- c(1,2,4) hak1 <- hak2 <- NULL for (i in 1:3) { wt[dummy$time < tt[i]] <- 0 hak1 <- c(hak1, exp(-sum(haz[i]*risk*surv*wt)/sum(surv*wt))) hak2 <- c(hak2, sum(exp(-haz[i]*risk)*surv*wt)/sum(surv*wt)) surv <- surv * exp(-haz[i]*risk) } all.equal(as.vector(efit$surv), as.vector(cumprod(hak1))) # # Now do the conditional estimate # efit <- survexp( time ~ ratetable(x=x), dummy, ratetable=fit, se=F, conditional=T) wt <- rep(1,9) cond <- NULL for (i in 1:3) { wt[dummy$time < tt[i]] <- 0 cond <- c(cond, exp(-sum(haz[i]*risk*wt)/sum(wt))) } all.equal(as.vector(efit$surv), as.vector(cumprod(cond))) survival/src/0000755000176000001440000000000012267746150012756 5ustar ripleyuserssurvival/src/pystep.c0000644000176000001440000000571012267746150014451 0ustar ripleyusers/* $Id: pystep.c 11166 2008-11-24 22:10:34Z therneau $ */ /* ** Returns the amount of time that will be spent in the current "cell", ** along with the index of the cell (treating a multi-way array as linear). ** This is a basic calculation in all of the person-years work. ** ** Input ** nc: number of categories ** data[nc] start points, for the data values ** fac[nc] 1: category is a factor, 0: it is continuous ** >=2: special handling for "years" dim of US rate tables ** dims[nc] the extent of each category ** cuts[nc,dims+1] ragged array, containing the start for each interval ** step the amount of time remaining for the subject. ** edge if =0, then the cuts contain +1 obs, and we are strict ** about out-of-range cells. If it is a 1, then the ** table is assummed to extend infinitly at the edges. ** ** Output ** *index linear index into the array ** if *index == -1, then the returned amount of time is "off table"; ** if one of the dimensions has fac >1 -- ** *index2 second index for linear interpolation ** *wt a number between 0 and 1, amount of wt for the first index ** this will be 1 if none of the dims have fac >1 ** ** Return value amount of time in indexed cell. */ #include "survS.h" #include "survproto.h" double pystep(int nc, int *index, int *index2, double *wt, double *data, Sint *fac, Sint *dims, double **cuts, double step, int edge) { int i,j; double maxtime; double shortfall; double temp; int kk, dtemp; kk=1; *index =0; *index2=0; *wt =1; shortfall =0; maxtime = step; for (i=0; i1) dtemp = 1 + (fac[i]-1)*dims[i]; else dtemp = dims[i]; for (j=0; j shortfall) { if (temp > step) shortfall = step; else shortfall = temp; } if (temp < maxtime) maxtime = temp; } else if (j==dtemp){ /*bigger than last cutpoint */ if (edge==0) { temp = cuts[i][j] - data[i]; /* time to upper limit */ if (temp <=0) shortfall = step; else if (temp < maxtime) maxtime = temp; } if (fac[i] >1) j = dims[i] -1; /*back to normal indices */ else j--; } else { temp = cuts[i][j] - data[i]; /* time to next cutpoint */ if (temp < maxtime) maxtime = temp; j--; if (fac[i] >1) { /*interpolate the year index */ *wt = 1.0 - (j%fac[i])/ (double)fac[i]; j /= fac[i]; *index2 = kk; } } *index += j*kk; } kk *= dims[i]; } *index2 += *index; if (shortfall ==0) return(maxtime); else { *index = -1; return(shortfall); } } survival/src/survfit4.c0000644000176000001440000000205312267746150014710 0ustar ripleyusers/* $Id: survfit4.c 11166 2008-11-24 22:10:34Z therneau $ */ /* ** C routine to do a small computation that is hard in Splus ** ** n = number of observations ** d = number of deaths ** x1, x2 = ingredients in the sums ** ** If d=0, then new x1 = new x2 =1 (fill in value) ** d=1, new x1 = 1/x1, ** new x2 = (1/x1)^2 ** d=2, new x1 = (1/2) [ 1/x1 + 1/(x1 - x2/2)] ** new x2 = (1/2) [ same terms, squared] ** d=3 new x1 = (1/3) [ 1/x1 + 1/(x1 - x2/3) + 1/(x1 - 2*x2/3)] ** etc. */ #include "survS.h" void survfit4(Sint *n, Sint *dd, double *x1, double *x2) { double temp, temp1, temp2; int i,j; double d; for (i=0; i< *n; i++) { d = dd[i]; if (d==0) { x1[i] =1; x2[i] =1; } else if (d==1){ temp = 1/x1[i]; x1[i] = temp; x2[i] = temp*temp; } else { temp1 = 1/x1[i]; temp2 = temp1 * temp1; for (j=1; j= dtime; istart++) nrisk--; for(j= i+1; j=dtime; istart++) { atrisk[sort1[istart]]=0; nrisk--; } for (j=1; j0) { matrix[i][i] = 1/matrix[i][i]; /*this line inverts D */ for (j= (i+1); j #include "survS.h" #include "survproto.h" /* my habit is to name a S object "charlie2" and the pointer ** to the contents of the object "charlie"; the latter is ** used in the computations */ SEXP pyears3b(SEXP death2, SEXP efac2, SEXP edims2, SEXP ecut2, SEXP expect2, SEXP grpx2, SEXP x2, SEXP y2, SEXP times2, SEXP ngrp2) { int i,j,k; int n, death, edim, ngrp, ntime; double **x; double *data2; double **ecut, *etemp; double hazard, /*cum hazard over an interval */ cumhaz; /*total hazard to date for the subject */ double timeleft, thiscell, etime, time, et2; int index, indx, indx2; double wt; double *wvec; /* vector of weights needed for unconditional surv */ int group; int *efac, *edims, *grpx; double *expect, *y, *times; SEXP esurv2, nsurv2, rlist, rlistnames; double *esurv; int *nsurv; /* ** copies of input arguments */ death = asInteger(death2); ngrp = asInteger(ngrp2); efac = INTEGER(efac2); edims = INTEGER(edims2); edim = LENGTH(edims2); expect= REAL(expect2); grpx = INTEGER(grpx2); n = LENGTH(y2); x = dmatrix(REAL(x2), n, edim); y = REAL(y2); times = REAL(times2); ntime = LENGTH(times2); /* scratch space */ data2 = (double *)ALLOC(edim+1, sizeof(double)); wvec = (double *)ALLOC(ntime*ngrp, sizeof(double)); for (j=0; j1) etemp += 1 + (efac[i]-1)*edims[i]; } /* ** Create output arrays */ PROTECT(esurv2 = allocVector(REALSXP, ntime*ngrp)); esurv = REAL(esurv2); PROTECT(nsurv2 = allocVector(INTSXP, ntime*ngrp)); nsurv = INTEGER(nsurv2); for (i=0; i<(ntime*ngrp); i++) { esurv[i] =0.; nsurv[i] =0; } /* compute */ for (i=0; i0; j++) { thiscell = times[j] - time; if (thiscell > timeleft) thiscell = timeleft; index =j + ntime*group; /* expected calc ** The wt parameter only comes into play for older style US rate ** tables, where pystep does interpolation. ** Each call to pystep moves up to the next 'boundary' in the ** expected table, data2 contains our current position therein */ etime = thiscell; hazard =0; while (etime >0) { et2 = pystep(edim, &indx, &indx2, &wt, data2, efac, edims, ecut, etime, 1); if (wt <1) hazard+= et2*(wt*expect[indx] +(1-wt)*expect[indx2]); else hazard+= et2* expect[indx]; for (k=0; k0) { if (death==0) esurv[i] /= wvec[i]; else esurv[i] = exp(-esurv[i]/wvec[i]); } else if (death!=0) esurv[i] = exp(-esurv[i]); } /* ** package the output */ PROTECT(rlist = allocVector(VECSXP, 2)); SET_VECTOR_ELT(rlist,0, esurv2); SET_VECTOR_ELT(rlist,1, nsurv2); PROTECT(rlistnames= allocVector(STRSXP, 2)); SET_STRING_ELT(rlistnames, 0, mkChar("surv")); SET_STRING_ELT(rlistnames, 1, mkChar("n")); setAttrib(rlist, R_NamesSymbol, rlistnames); unprotect(4); return(rlist); } survival/src/msurv.c0000644000176000001440000000523412267746150014302 0ustar ripleyusers/* Automatically generated from all.nw using noweb */ /* -*- c -*- */ #include "Rinternals.h" SEXP msurv(SEXP nrisk2, SEXP wrisk2, SEXP nevent2, SEXP wevent2, SEXP itime2, SEXP status2, SEXP prior2, SEXP etype2, SEXP wt2, SEXP dsort2, SEXP isort2) { int i,j,k; double *wrisk, *wevent, *wt; int *nrisk, *status, *prior, *etype, *nevent; int *dtime, *etime; /* death time and optional entry time */ int *dsort, *isort; int eflag, i2, k2; SEXP retlist; int time; /* current time of interest */ int ntime, nstate, n; static const char *outnames[]= {"nrisk", "wrisk", "nevent", "wevent", ""}; nrisk = INTEGER(nrisk2); wrisk = REAL(wrisk2); wevent= REAL(wevent2); nevent= INTEGER(nevent2); dtime = INTEGER(itime2); status= INTEGER(status2); prior = INTEGER(prior2); etype = INTEGER(etype2); wt = REAL(wt2); dsort = INTEGER(dsort2); nstate= nrows(nrisk2); n = length(dsort2); /* ** Add up the risk set and the deaths ** Walk backwards through the observations and through time */ if (ncols(itime2)==2) { etime = dtime; dtime += n; /* point at the death time */ isort = INTEGER(isort2); eflag=1; i2 = n-1; k2 = isort[i2]; } else eflag=0; for (i=n-1; i>=0; ) { k = dsort[i]; time = dtime[k]; /* current time of interest (there may be ties) */ while (eflag==1 && i2>=0 && etime[k2] >=time) { /* remove those who start later than "time" from the risk set */ wrisk[prior[k2]] -= wt[k2]; nrisk[prior[k2]] --; i2--; k2 = isort[i2]; } if (i<(n-1)) { /* new death time */ for (j=0; j=0 && dtime[k] == time) { if (status[k] ==1) { nevent[prior[k]+ nstate*etype[k]]++; wevent[prior[k] +nstate*etype[k]] += wt[k]; } wrisk[prior[k]] += wt[k]; nrisk[prior[k]] ++; i--; k = dsort[i]; } } /* ** Create output structure */ PROTECT(retlist = mkNamed(VECSXP, outnames)); SET_VECTOR_ELT(retlist, 0, nrisk2); SET_VECTOR_ELT(retlist, 1, wrisk2); SET_VECTOR_ELT(retlist, 2, nevent2); SET_VECTOR_ELT(retlist, 3, wevent2); UNPROTECT(1); return(retlist); } survival/src/survS.h0000644000176000001440000000422612267746150014255 0ustar ripleyusers/* SCCS $Id: survS.h 11252 2009-03-19 13:46:26Z tlumley $ ** ** The S.h file defines a few things that I need, and hundreds that I don't. ** In particular, on some architectures, it defines a variable "time" ** which of course conflicts with lots of my C-code, 'time' being a natural ** variable name for survival models. ** Thanks to Brian Ripley for suggesting a machine independent way of ** fixing this. ** ** The S_alloc function changed it's argument list from Splus version ** 4 to 5, and there is a different one for R. ** The ALLOC macro allows me to have common C code for all versions, ** with only this file "survS.h" changed. */ #include "R.h" #include "Rinternals.h" #include #ifdef USING_R /* typedef int Sint; */ #define S_EVALUATOR /* Turn this into a "blank line" in R */ #else /* ** Splus definitions, to use R type calls */ typedef long Sint; /* ** At this point in time (Splus 8.0.1) I need to add a little ** to the Insightful definitions. (They are in the process ** of improving Rinternals, so this may well go away.) The ** two functions below are defined as "not supported". I need ** only certain cases of defineVar and eval, so can safely map them. ** I am using the 8.1 R*.h files courtesy of Bill Dunlap */ #ifdef defineVar #undef defineVar #endif #define defineVar(a,b,c) ASSIGN_IN_FRAME(a,b, INTEGER_VALUE(c)) #ifdef eval #undef eval #endif #define eval(a, b) EVAL_IN_FRAME(a, INTEGER_VALUE(b)) /* ** These two refer to undefined functions, so use the 8.0.1 defs */ #ifdef asInteger #undef asInteger #endif #define asInteger(a) INTEGER_VALUE(a) #ifdef asReal #undef asReal #endif #define asReal(a) NUMERIC_VALUE(a) #endif /* ** Memory defined with ALLOC is removed automatically by S. ** That with "Calloc" I have to remove myself. Use the ** latter for objects that need to to persist between calls. */ #ifdef USING_R #define ALLOC(a,b) R_alloc(a,b) #else #define ALLOC(a,b) S_alloc(a,b) #endif /* ** Prototype for callback function ** */ #ifdef USING_R void cox_callback(int which, double *coef, double *first, double *second, double *penalty, int *flag, int p, SEXP fexpr, SEXP rho); #endif survival/src/chsolve2.c0000644000176000001440000000163012267746150014647 0ustar ripleyusers/* $Id: chsolve2.c 11376 2009-12-14 22:53:57Z therneau $ ** ** Solve the equation Ab = y, where the cholesky decomposition of A and y ** are the inputs. ** ** Input **matrix, which contains the chol decomp of an n by n ** matrix in its lower triangle. ** y[n] contains the right hand side ** ** y is overwriten with b ** ** Terry Therneau */ #include "survS.h" #include "survproto.h" void chsolve2(double **matrix, int n, double *y) { register int i,j; register double temp; /* ** solve Fb =y */ for (i=0; i=0; i--) { if (matrix[i][i]==0) y[i] =0; else { temp = y[i]/matrix[i][i]; for (j= i+1; j #include "survS.h" #include "survproto.h" void agmart2(Sint *n, Sint *method, double *start, double *stop, Sint *event, Sint *nstrat, Sint *strata, Sint *sort1, Sint *sort2, double *score, double *wt, double *resid, double *haz) { int i, j, k, ksave; int p, istrat, indx2; double deaths, denom, e_denom; double hazard, e_hazard; double temp, time; double wtsum, *dtimes; int nused, ndeath; int person; int strata_start; nused = *n; j=0; for (i=0; i=strata_start; k--) { /*non-deaths */ p = sort1[k]; if (stop[p] > time) break; resid[p] -= score[p]*hazard; } for (; person= stop[p]; k++); for (j=k; j #include "survS.h" #define SMALL -200 /* exp(-200) is a really small loglik */ double survregc2(int n, int nvar, int nstrat, int whichcase, double *beta, int dist, Sint *strat, double *offset, double *time1, double *time2, double *status, double *wt, double **covar, double **imat, double **JJ, double *u, SEXP expr, SEXP rho, double *z, int nf, Sint *frail, double *fdiag, double *jdiag ) { int person, i,j,k; int nvar2; int strata; double eta, sigma; int icount; /* running count of # of interval censored */ int fgrp =0; /* the =0 to quiet a compiler warning */ double loglik, temp; double temp1, temp2; double sz, zz, zu; double sig2; /* add "=0" to keep the compiler from worrying about uninitialized vars */ /* double g, dg, ddg, dsig, ddsig, dsg; */ double g=0, dg=0, ddg=0, dsig=0, ddsig=0, dsg=0; SEXP rmat; double *funs[5]; double w; nvar2 = nvar + nstrat; loglik=0; if (whichcase==0) { for (i=0; i1) { strata= strat[person] -1; /*S likes to start counting at 1 */ sigma = exp(beta[strata+nvar+nf]); } eta =0; for (i=0; i0){ fgrp = frail[person] -1; eta += beta[fgrp]; } z[person] = (time1[person] - eta)/sigma; if (status[person]==3) { z[icount] = (time2[person] - eta)/sigma; icount++; } } /* ** The result of the eval will be a matrix of 5 rows and n colums, which ** we re-index for convenience. Note that the parent routine has given ** us the address of z WITHIN the evaluation frame rho, we just keep ** replacing the values it contains; expr then acts like a function of ** z. ** Actually, if there were any interval censored obs they take up 2 cols; ** icount from above contains the actual number of columns used. */ PROTECT(rmat = eval(expr, rho)); funs[0] = REAL(rmat); for (i=0; i<4; i++) funs[i+1] = funs[i] + icount; /* ** calculate the first and second derivative wrt eta, ** then the derivatives of the loglik (u, imat, JJ) */ icount =n; for (person=0; person1) { strata= strat[person] -1; /*S likes to start counting at 1 */ sigma = exp(beta[strata+nvar]); sig2 = 1/(sigma*sigma); } zz = z[person]; sz = zz * sigma; j = status[person]; /*convert to integer */ switch(j) { case 1: /* exact */ if (funs[2][person] <=0) { /* off the probability scale -- avoid log(0), and set the ** derivatives to gaussian limits (almost any deriv will ** do, since the function value triggers step-halving). */ g = SMALL; dg = -zz/sigma; ddg = -1/sigma; dsig =0; ddsig=0; dsg=0; } else { g = log(funs[2][person]) - log(sigma); temp1 = funs[3][person]/sigma; temp2 = funs[4][person]*sig2; dg = -temp1; dsig= -(sz*temp1 +1); ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(1- sz*temp1); ddsig = sz*sz*temp2 + sz*temp1*(1- sz*temp1); } break; case 0: /* right censored */ if (funs[1][person] <=0) { g = SMALL; dg = zz/sigma; ddg =0; dsig =0; ddsig=0; dsg=0; } else { g = log(funs[1][person]); temp1 = -funs[2][person]/(funs[1][person]*sigma); temp2 = -funs[3][person]*funs[2][person]*sig2/ funs[1][person]; dg = -temp1; dsig= -sz * temp1; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(1+dsig); ddsig = sz*sz*temp2 - dsig*(1+dsig); } break; case 2: /* left censored */ if (funs[2][person] <=0) { /* off the probability scale -- avoid log(0) */ g = SMALL; dg = -zz/sigma; dsig =0; ddsig=0; dsg=0; ddg =0; } else { g = log(funs[0][person]); temp1 = funs[2][person]/(funs[0][person]*sigma); temp2 = funs[3][person]*funs[2][person]*sig2/ funs[0][person]; dg= -temp1; dsig= -sz * temp1; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(1+dsig); ddsig = sz*sz*temp2 - dsig*(1+dsig); } break; case 3: /* interval censored */ zu = z[icount]; /*stop roundoff in tails*/ if (zz>0) temp = funs[1][person] - funs[1][icount]; else temp = funs[0][icount] - funs[0][person]; if (temp <=0) { /* off the probability scale -- avoid log(0) */ g = SMALL; dg = 1; ddg =0; dsig =0; ddsig=0; dsg=0; } else { funs[3][icount] *= funs[2][icount]; /*f', not f'/f */ funs[3][person] *= funs[2][person]; g = log(temp); dg = -(funs[2][icount] -funs[2][person])/(temp*sigma); ddg = (funs[3][icount] -funs[3][person])*sig2/temp - dg*dg; dsig = (zz*funs[2][person] - zu*funs[2][icount])/temp; ddsig= (zu*zu*funs[3][icount] - zz*zz*funs[3][person]) /temp - dsig*(1+dsig); dsg = (zu*funs[3][icount] - zz*funs[3][person])/ (temp*sigma) - dg *(1+dsig); } icount++; break; } loglik += g * wt[person]; /* ** Now the derivs wrt loglik */ if (whichcase==1) continue; /*only needed the loglik */ w = wt[person]; if (nf>0) { fgrp = frail[person] -1; u[fgrp] += dg * w; fdiag[fgrp] -= ddg * w; jdiag[fgrp] += dg*dg *w; } for (i=0; i0) { imat[i][fgrp] -= covar[i][person] * ddg * w; JJ [i][fgrp] += temp * dg; } } if (nstrat!=0) { /* need derivative wrt log sigma */ k = strata+nvar; u[k+nf] += w* dsig; for (i=0; i0) { imat[k][fgrp] -= dsg * w; JJ [k][fgrp] += dsig *dg *w; } } } UNPROTECT(1); /* release the memory pointed to by funs[] */ return(loglik); } survival/src/coxexact.c0000644000176000001440000003460012267746150014743 0ustar ripleyusers/* Automatically generated from all.nw using noweb */ #include #include "survS.h" #include "survproto.h" #include double coxd0(int d, int n, double *score, double *dmat, int dmax) { double *dn; if (d==0) return(1.0); dn = dmat + (n-1)*dmax + d -1; /* pointer to dmat[d,n] */ if (*dn ==0) { /* still to be computed */ *dn = score[n-1]* coxd0(d-1, n-1, score, dmat, dmax); if (d1) d1[indx] += score[n-1]* coxd1(d-1, n-1, score, dmat, d1, covar, dmax); } return(d1[indx]); } double coxd2(int d, int n, double *score, double *dmat, double *d1j, double *d1k, double *d2, double *covarj, double *covark, int dmax) { int indx; indx = (n-1)*dmax + d -1; /*index to the current array member d1[d,n]*/ if (d2[indx] ==0) { /*still to be computed */ d2[indx] = coxd0(d-1, n-1, score, dmat, dmax)*score[n-1] * covarj[n-1]* covark[n-1]; if (d1) d2[indx] += score[n-1] * ( coxd2(d-1, n-1, score, dmat, d1j, d1k, d2, covarj, covark, dmax) + covarj[n-1] * coxd1(d-1, n-1, score, dmat, d1k, covark, dmax) + covark[n-1] * coxd1(d-1, n-1, score, dmat, d1j, covarj, dmax)); } return(d2[indx]); } SEXP coxexact(SEXP maxiter2, SEXP y2, SEXP covar2, SEXP offset2, SEXP strata2, SEXP ibeta, SEXP eps2, SEXP toler2) { int i,j,k; int iter; double **covar, **imat; /*ragged arrays */ double *time, *status; /* input data */ double *offset; int *strata; int sstart; /* starting obs of current strata */ double *score; double *oldbeta; double zbeta; double newlk=0; double temp; int halving; /*are we doing step halving at the moment? */ int nrisk; /* number of subjects in the current risk set */ int dsize, /* memory needed for one coxc0, coxc1, or coxd2 array */ dmemtot, /* amount needed for all arrays */ maxdeath, /* max tied deaths within a strata */ ndeath; /* number of deaths at the current time point */ double dtime; /* time value under current examiniation */ double *dmem0, **dmem1, *dmem2; /* pointers to memory */ double *dtemp; /* used for zeroing the memory */ double *d1; /* current first derivatives from coxd1 */ double d0; /* global sum from coxc0 */ /* copies of scalar input arguments */ int nused, nvar, maxiter; double eps, toler; /* returned objects */ SEXP imat2, beta2, u2, loglik2; double *beta, *u, *loglik; SEXP rlist, rlistnames; int nprotect; /* number of protect calls I have issued */ nused = LENGTH(offset2); nvar = ncols(covar2); maxiter = asInteger(maxiter2); eps = asReal(eps2); /* convergence criteria */ toler = asReal(toler2); /* tolerance for cholesky */ /* ** Set up the ragged array pointer to the X matrix, ** and pointers to time and status */ covar= dmatrix(REAL(covar2), nused, nvar); time = REAL(y2); status = time +nused; strata = INTEGER(PROTECT(duplicate(strata2))); offset = REAL(offset2); /* temporary vectors */ score = (double *) R_alloc(nused+nvar, sizeof(double)); oldbeta = score + nused; /* ** create output variables */ PROTECT(beta2 = duplicate(ibeta)); beta = REAL(beta2); PROTECT(u2 = allocVector(REALSXP, nvar)); u = REAL(u2); PROTECT(imat2 = allocVector(REALSXP, nvar*nvar)); imat = dmatrix(REAL(imat2), nvar, nvar); PROTECT(loglik2 = allocVector(REALSXP, 5)); /* loglik, sctest, flag,maxiter*/ loglik = REAL(loglik2); nprotect = 5; strata[0] =1; /* in case the parent forgot */ dsize = 0; maxdeath =0; j=0; /* start of the strata */ for (i=0; i0) { /* If maxdeath <2 leave the strata alone at it's current value of 1 */ if (maxdeath >1) strata[j] = maxdeath; j = i; if (maxdeath*nrisk >dsize) dsize = maxdeath*nrisk; } maxdeath =0; /* max tied deaths at any time in this strata */ nrisk=0; ndeath =0; } dtime = time[i]; ndeath =0; /*number tied here */ while (time[i] ==dtime) { nrisk++; ndeath += status[i]; i++; if (i>=nused || strata[i] >0) break; /*tied deaths don't cross strata */ } if (ndeath > maxdeath) maxdeath=ndeath; } if (maxdeath*nrisk >dsize) dsize = maxdeath*nrisk; if (maxdeath >1) strata[j] = maxdeath; /* Now allocate memory for the scratch arrays Each per-variable slice is of size dsize */ dmemtot = dsize * ((nvar*(nvar+1))/2 + nvar + 1); dmem0 = (double *) R_alloc(dmemtot, sizeof(double)); /*pointer to memory */ dmem1 = (double **) R_alloc(nvar, sizeof(double*)); dmem1[0] = dmem0 + dsize; /*points to the first derivative memory */ for (i=1; i0) { /* first obs of a new strata */ maxdeath= strata[i]; dtemp = dmem0; for (j=0; j=nused || strata[i] >0) break; } /* We have added up over the death time, now process it */ if (ndeath >0) { /* Add to the loglik */ d0 = coxd0(ndeath, nrisk, score+sstart, dmem0, maxdeath); R_CheckUserInterrupt(); newlk -= log(d0); dmem2 = dmem0 + (nvar+1)*dsize; /*start for the second deriv memory */ for (j=0; j 3) R_CheckUserInterrupt(); u[j] -= d1[j]; for (k=0; k<= j; k++) { /* second derivative*/ temp = coxd2(ndeath, nrisk, score+sstart, dmem0, dmem1[j], dmem1[k], dmem2, covar[j] + sstart, covar[k] + sstart, maxdeath); if (ndeath > 5) R_CheckUserInterrupt(); imat[k][j] += temp/d0 - d1[j]*d1[k]; dmem2 += dsize; } } } } loglik[0] = newlk; /* save the loglik for iteration zero */ loglik[1] = newlk; /* and it is our current best guess */ /* ** update the betas and compute the score test */ for (i=0; i0) { /* first obs of a new strata */ maxdeath= strata[i]; dtemp = dmem0; for (j=0; j=nused || strata[i] >0) break; } /* We have added up over the death time, now process it */ if (ndeath >0) { /* Add to the loglik */ d0 = coxd0(ndeath, nrisk, score+sstart, dmem0, maxdeath); R_CheckUserInterrupt(); newlk -= log(d0); dmem2 = dmem0 + (nvar+1)*dsize; /*start for the second deriv memory */ for (j=0; j 3) R_CheckUserInterrupt(); u[j] -= d1[j]; for (k=0; k<= j; k++) { /* second derivative*/ temp = coxd2(ndeath, nrisk, score+sstart, dmem0, dmem1[j], dmem1[k], dmem2, covar[j] + sstart, covar[k] + sstart, maxdeath); if (ndeath > 5) R_CheckUserInterrupt(); imat[k][j] += temp/d0 - d1[j]*d1[k]; dmem2 += dsize; } } } } /* am I done? ** update the betas and test for convergence */ loglik[3] = cholesky2(imat, nvar, toler); if (fabs(1-(loglik[1]/newlk))<= eps && halving==0) { /* all done */ loglik[1] = newlk; loglik[4] = iter; chinv2(imat, nvar); for (i=1; i #include "survS.h" #include "survproto.h" void survdiff2(Sint *nn, Sint *nngroup, Sint *nstrat, double *rho, double *time, Sint *status, Sint *group, Sint *strata, double *obs, double *exp, double *var, double *risk, double *kaplan) { register int i,j,k; int kk; int n, ngroup, ntot; int istart, koff; double km, nrisk, wt, tmp; double deaths; ntot = *nn; ngroup = *nngroup; istart=0; koff=0; for (i=0; i< ngroup*ngroup; i++) var[i]=0; for (i=0; i< *nstrat*ngroup; i++) { obs[i]=0; exp[i]=0; } while (istart < ntot) { /* loop over the strata */ for (i=0; i=istart; i--) { if (*rho ==0) wt=1; else wt= pow(kaplan[i], *rho); deaths = 0; for (j=i; j>=istart && time[j]==time[i]; j--) { k = group[j]-1; deaths += status[j]; risk[k] += 1; obs[k + koff] += status[j] *wt; } i= j +1; nrisk = n-i; if (deaths>0) { /* a death time */ for (k=0; k=2 special handling for US "calendar year" ** edims[edim] the number of rows, columns, etc ** ecut[ ] the starting points for each non-factor dimension, ** strung together. ** expect the actual table of expected rates ** edata[edim, n] the subject data-- where each indexes into the ** expected table, at time 0. ** ** output table's description ** odim number of dimensions ** ofac[odim] 1=is a factor, 0=continuous (time based) ** odims[odim] the number of rows, columns, etc ** ocut[] for each non-factor dimension, the odim[i]+1 cutpoints ** that define the intervals; concatonated. ** odata[odim, n] the subject data-- where each indexes into the ** expected table, at time 0. ** ** Output: ** pyears output table of person years ** pn number of observations that contribute to each cell ** pcount number of events ** pexpect expected number of events ** offtable total person years that did not fall into the output table ** ** Scratch -- allocated on the fly ** scratch[edim + odim] */ #include #include "survS.h" #include "survproto.h" /* names that begin with "s" will be re-declared in the main body */ void pyears1(Sint *sn, Sint *sny, Sint *sdoevent, double *sy, double *weight, Sint *sedim, Sint *efac, Sint *edims, double *secut, double *expect, double *sedata, Sint *sodim, Sint *ofac, Sint *odims, double *socut, Sint *smethod, double *sodata, double *pyears, double *pn, double *pcount, double *pexpect, double *offtable) { int i,j; int n, ny, doevent, method, edim, odim; double *start, *stop, *event, **ecut, **ocut, **edata, **odata; double *data, *data2; double timeleft, thiscell, etime, et2; int index, indx, indx2; double lwt; /*this variable is returned by pystep, and controls the "on the fly" linear interpolation done for the calandar year dimension of rate tables */ int dostart; double hazard, cumhaz; double temp, lambda; double eps; /* protection against accumulated round off */ n = *sn; ny= *sny; doevent = *sdoevent; method = *smethod; edim = *sedim; odim = *sodim; start = sy; if (ny==3 || (ny==2 && doevent==0)) { stop = sy +n; dostart =1; } else { stop = sy; dostart =0; } event = stop +n; edata = dmatrix(sedata, n, edim); odata = dmatrix(sodata, n, odim); i=edim + odim; data = (double *) ALLOC(i, sizeof(double)); data2 = data + odim; /* ** ecut and ocut will be ragged arrays */ ecut = (double **)ALLOC(edim, sizeof(double *)); for (i=0; i1) secut += 1 + (efac[i]-1)*edims[i]; } ocut = (double **)ALLOC(odim, sizeof(double *)); for (i=0; i0]) * 1e-8 ** The events are counted in the last cell to which person years are ** added in the while() loop below. We don't want to "spill over" into ** a next (incorrect) cell due to accumulated round off, in the case ** that a subjects fu time exactly matches one of the cell boundaries. */ eps =0; /* guard against the rare case that all(time==0) */ for (i=0; i0) { eps = timeleft; break; } } for (; i0 && timeleft < eps) eps = timeleft; } eps *= 1e-8; *offtable =0; for (i=0; i eps) { thiscell = pystep(odim, &index, &indx2, &lwt, data, ofac, odims, ocut, timeleft, 0); if (index >=0) { pyears[index] += thiscell * weight[i]; pn[index] += 1; /* expected calc */ etime = thiscell; hazard=0; temp =0; while (etime >0) { /* ** The hazard or survival curve (temp) calculated within ** this loop don't depend on the case weight --- the ** whole loop is only for one person, and hazard is a ** function of time alone. Once computed, however, the ** total hazard added into the expected table ** is weighted. */ et2 = pystep(edim, &indx, &indx2, &lwt, data2, efac, edims, ecut, etime, 1); if (lwt <1) lambda = (lwt*expect[indx] + (1-lwt)*expect[indx2]); else lambda = expect[indx]; if (method==0) temp += exp(-hazard)*(1-exp(-lambda*et2))/ lambda; hazard += lambda * et2; for (j=0; j=0 && doevent) pcount[index] += event[i] * weight[i]; } } survival/src/coxmart2.c0000644000176000001440000000370512267746150014666 0ustar ripleyusers/* ** Compute the martingale residual for a Cox model. ** This routine does the same work as coxmart, except ** it expects data in inverse time order ** only does the Breslow method ** exists for the sake of coxexact.fit ** ** Input ** n number of subjects ** time vector of times ** status vector of status values ** score the vector of subject scores, i.e., exp(beta*z) ** strata is =1 for the first obs of a strata ** wt case weights ** Output ** the residual for each subject */ #include "survS.h" #include "survproto.h" void coxmart2(Sint *sn, double *time, Sint *status, Sint * strata, double *score, double *wt, double *resid) { int i,j; int n; double deaths, denom; double expected, hazard; n = *sn; /* ** Accumulate the weighted score in reverse time order (data order) ** Temporarily save the resulting hazard in the residual vector */ denom =0; for (i=0; i=0; i--) { expected += resid[i]; resid[i] = status[i] - score[i]*expected; if (strata[i] ==1) expected=0; /* last obs of a strata */ } } survival/src/coxfit5.c0000644000176000001440000004304012267746150014504 0ustar ripleyusers/* A reentrant version of the Coxfit program, for random effects modeling ** with reasonable efficiency (I hope). The important arrays are saved ** from call to call so as to speed up the process. The x-matrix itself ** is the most important of these. ** ** coxfit5_a: Entry and intial iteration step for beta=initial, theta=0 ** (no frailty) ** Most of the same arguments as coxfit2. ** Allocate and save arrays in static locations. ** coxfit5_b: Iterate to convergence given an initial value. ** coxfit5_c: Compute residuals and release the saved memory. ** ** McGilchrist's method for frailty with a fixed theta, but for ** space savings I assume that many elements of imat are zero ** ** the input parameters are ** ** maxiter :number of iterations ** nused :number of people ** nvar :number of covariates ** y[2,n] :row 1: time of event or censoring for person i ** :row 2: status for the ith person 1=dead , 0=censored ** covar(nv,n) :covariates for person i. ** Note that S sends this in column major order. ** strata(nstrat):sizes of the strata, cumulative ** sort : sort order for the obs, last to first within strata ** offset(n) :offset for the linear predictor ** weights(n) :case weights ** eps :tolerance for convergence. Iteration continues until ** the percent change in loglikelihood is <= eps. ** tolerch :tolerance for the Cholesky routines ** method : Method 0=Breslow, 1=Efron ** ptype : 1 or 3 -- there is a sparse term ** : 2 or 3 -- there is a non-sparse term in the model ** nfrail : number of frailty groups (sparse terms), 0 if there are ** none ** frail : a vector containing the frailty groups ** fbeta : initial frailty estimates ** pdiag : if 0, then for the non-sparse terms only the diagonal ** of the variance matrix is penalized, otherwise the ** full matrix is used. ** ** returned parameters ** means(nv) : vector of column means of X ** beta(nv) : the vector of answers (at start contains initial est) ** u(nv) : score vector ** imat(nv,nv) : the variance matrix at beta=final ** if flag<0, imat is undefined upon return ** loglik :loglik at beta=final ** flag :success flag 1000 did not converge ** 1 to nvar: rank of the solution ** maxiter :actual number of iterations used ** fbeta(nfrail): fitted frailty values ** fdiag(nfrail + nvar): diagonal of cholesky of the full inverse ** jmat : inverse of the cholesky ** imat : cholesky of the information matrix ** expect : contains the "expected" for each subject ** ** work arrays ** mark(n) ** wtave(n) ** score(n) ** a(nvar+ nfrail), a2(nvar+nfrail) ** cmat(nvar,nvar+nfrail) ragged array ** cmat2(nvar,nvar+nfrail) ** fdiag the diagonal of the sparse information ** oldbeta(nvar + nfrail) always contains the "last iteration" ** ** the work arrays are passed as a single ** vector of storage, and then broken out. ** ** calls functions: cholesky3, chsolve3, chinv2 ** ** the data must be sorted by ascending time within strata */ #include #include #include "survS.h" #include "survproto.h" static double **covar, **cmat, **cmat2; static double *mark, *wtave; static double *a, *oldbeta, *a2; static double *offset, *weights; static int *status, *frail, *sort; static double *score, *ttime; /* Hp-UX really doesn't like "time" as a var */ static double *tmean; static int ptype, pdiag; static double *ipen, *upen, logpen; static Sint *zflag; static double **cmatrix(double *, int, int); void coxfit5_a(Sint *nusedx, Sint *nvarx, double *yy, double *covar2, double *offset2, double *weights2, Sint *strata, Sint *sorted, double *means, double *beta, double *u, double *loglik, Sint *methodx, Sint *ptype2, Sint *pdiag2, Sint *nfrail, Sint *frail2, void *fexpr1, void *fexpr2, void *rho) { int i,j,k, p, istrat; int ii; int nused, nvar; int nf, nvar2; double denom, zbeta, risk; double temp, temp2; double ndead; double d2, efron_wt; double method; nused = *nusedx; nvar = *nvarx; nf= *nfrail; method= *methodx; nvar2 = nvar + nf; ptype = *ptype2; pdiag = *pdiag2; /* ** Allocate storage for the arrays and vectors ** Since they will be used later, sizes are based on what will be ** needed with the frailty terms. */ if (nvar >0) { covar= cmatrix(covar2, nused, nvar); cmat = cmatrix(0, nvar2, nvar+1); cmat2= cmatrix(0, nvar2, nvar+1); } a = Calloc(4*nvar2 + 6*nused, double); oldbeta = a + nvar2; a2 = oldbeta + nvar2; mark = a2 + nvar2; wtave= mark + nused; weights = wtave+ nused; offset = weights + nused; score = offset + nused; tmean = score + nused; ttime = tmean + nvar2; status = Calloc(2*nused, int); sort = status + nused; for (i=0; i nvar) i=nf; else i=nvar; if (nf > nvar*nvar) j=nf; else j=nvar*nvar; if (pdiag==0) upen = Calloc(2*i, double); else upen = Calloc(i+j, double); ipen = upen + i; if (ptype>1) zflag = Calloc(nvar, Sint); else zflag = Calloc(2, Sint); if (nf>0) { frail = Calloc(nused, int); for (i=0; i0) { /* once per unique death time */ /* ** Trick: when 'method==0' then temp=0, giving Breslow's method */ ndead = mark[p]; for (k=0; k0) { imat = dmatrix(imat2, nvar2, nvar); jmat = dmatrix(jmat2, nvar2, nvar); } else { imat = 0; /*never used, but passed as dummy to chol */ jmat = 0; } for (i=0; i0) { fgrp = frail[p] -1; zbeta = offset[p] + fbeta[fgrp]; } else zbeta = offset[p]; for (i=0; i0) a[fgrp] += risk; for (i=0; i0) cmat[i][fgrp] += risk*covar[i][p]; for (j=0; j<=i; j++) cmat[i][j+nf] += risk*covar[i][p]*covar[j][p]; } if (status[p]==1) { efron_wt += risk; newlk += weights[p] *zbeta; if (nf>0) { u[fgrp] += weights[p]; a2[fgrp] += risk; } for (i=0; i0) cmat2[i][fgrp] += risk*covar[i][p]; for (j=0; j<=i; j++) cmat2[i][j+nf] += risk*covar[i][p]*covar[j][p]; } } if (mark[p] >0) { /* once per unique death time */ ndead = mark[p]; for (k=0; k0 && newlk < *loglik) { /*it is not converging ! */ halving =1; for (i=0; i0) { /* ** Compute the size of the hazard jump at this point, with the ** total jump saved (temporarily) in "expect", and the Efron ** amount in "weights". It applies to deaths at this point. */ ndead = mark[p]; temp2 = 0; efron_wt =0; for (j=0; j=0; ) { p = sort[ip]; if (status[p] >0) { ndead = mark[p]; temp = expect[p]; hazard2 =weights[p]; for (j=0; j 0) { cmatrix_free(cmat2); cmatrix_free(cmat); cmatrix_free(covar); } } survival/src/agfit4.c0000644000176000001440000004722612267746150014313 0ustar ripleyusers/* Automatically generated from all.nw using noweb */ #include #include "survS.h" #include "survproto.h" SEXP agfit4(SEXP surv2, SEXP covar2, SEXP strata2, SEXP weights2, SEXP offset2, SEXP ibeta2, SEXP sort12, SEXP sort22, SEXP method2, SEXP maxiter2, SEXP eps2, SEXP tolerance2) { int i,j,k,person; int indx2, istrat, p; int ksave, nrisk, ndeath; int nused, nvar; double **covar, **cmat, **imat; /*ragged array versions*/ double *a, *oldbeta, *maxbeta; double *a2, **cmat2; double *eta; double denom, zbeta, risk; double time; double temp, temp2; double newlk =0; int halving; /*are we doing step halving at the moment? */ double tol_chol, eps; double meanwt; int itemp, deaths; double efron_wt, d2, meaneta; /* inputs */ double *start, *stop, *event; double *weights, *offset; int *sort1, *sort2, maxiter; int *strata; double method; /* saving this as double forces some double arithmetic */ /* returned objects */ SEXP imat2, means2, beta2, u2, loglik2; double *beta, *u, *loglik, *means; SEXP sctest2, flag2, iter2; double *sctest; int *flag, *iter; SEXP rlist; static const char *outnames[]={"coef", "u", "imat", "loglik", "means", "sctest", "flag", "iter", ""}; int nprotect; /* number of protect calls I have issued */ /* get sizes and constants */ nused = nrows(covar2); nvar = ncols(covar2); method= asInteger(method2); eps = asReal(eps2); tol_chol = asReal(tolerance2); maxiter = asInteger(maxiter2); /* input arguments */ start = REAL(surv2); stop = start + nused; event = stop + nused; weights = REAL(weights2); offset = REAL(offset2); sort1 = INTEGER(sort12); sort2 = INTEGER(sort22); strata = INTEGER(strata2); /* ** scratch space ** nvar: a, a2, newbeta, maxbeta ** nvar*nvar: cmat, cmat2 ** n: eta */ eta = (double *) R_alloc(nused + 4*nvar + 2*nvar*nvar, sizeof(double)); a = eta + nused; a2 = a +nvar; maxbeta = a2 + nvar; oldbeta = maxbeta + nvar; /* ** Set up the ragged arrays ** covar2 might not need to be duplicated, even though ** we are going to modify it, due to the way this routine was ** was called. In this case NAMED(covar2) will =0 */ PROTECT(imat2 = allocVector(REALSXP, nvar*nvar)); nprotect =1; if (NAMED(covar2)>0) { PROTECT(covar2 = duplicate(covar2)); nprotect++; } covar= dmatrix(REAL(covar2), nused, nvar); imat = dmatrix(REAL(imat2), nvar, nvar); cmat = dmatrix(oldbeta+ nvar, nvar, nvar); cmat2= dmatrix(oldbeta+ nvar + nvar*nvar, nvar, nvar); /* ** create the output structures */ PROTECT(rlist = mkNamed(VECSXP, outnames)); nprotect++; beta2 = SET_VECTOR_ELT(rlist, 0, duplicate(ibeta2)); beta = REAL(beta2); u2 = SET_VECTOR_ELT(rlist, 1, allocVector(REALSXP, nvar)); u = REAL(u2); SET_VECTOR_ELT(rlist, 2, imat2); loglik2 = SET_VECTOR_ELT(rlist, 3, allocVector(REALSXP, 2)); loglik = REAL(loglik2); means2 = SET_VECTOR_ELT(rlist, 4, allocVector(REALSXP, nvar)); means = REAL(means2); sctest2 = SET_VECTOR_ELT(rlist, 5, allocVector(REALSXP, 1)); sctest = REAL(sctest2); flag2 = SET_VECTOR_ELT(rlist, 6, allocVector(INTSXP, 1)); flag = INTEGER(flag2); iter2 = SET_VECTOR_ELT(rlist, 7, allocVector(INTSXP, 1)); iter = INTEGER(iter2); /* ** Subtract the mean from each covar, as this makes the variance ** computation much more stable */ for (i=0; i=time, ** and are thus potential members of the risk set. If 'indx2' =9, ** that means that 9 subjects have start >=time and thus are NOT part ** of the risk set. (stop > start for each subject guarrantees that ** the 9 are a subset of the 27). ** Basic algorithm: move 'person' forward, adding the new subject into ** the risk set. If this is a new, unique death time, take selected ** old obs out of the sums, add in obs tied at this time, then ** add terms to the loglik, etc. */ istrat=0; indx2 =0; denom =0; meaneta =0; nrisk =0; newlk =0; for (person=0; person (nrisk *110)) { meaneta = meaneta/nrisk; for (i=0; i=time, ** and are thus potential members of the risk set. If 'indx2' =9, ** that means that 9 subjects have start >=time and thus are NOT part ** of the risk set. (stop > start for each subject guarrantees that ** the 9 are a subset of the 27). ** Basic algorithm: move 'person' forward, adding the new subject into ** the risk set. If this is a new, unique death time, take selected ** old obs out of the sums, add in obs tied at this time, then ** add terms to the loglik, etc. */ istrat=0; indx2 =0; denom =0; meaneta =0; nrisk =0; newlk =0; for (person=0; person (nrisk *110)) { meaneta = meaneta/nrisk; for (i=0; i maxbeta[i]) beta[i] = maxbeta[i]; else if (beta[i] < -maxbeta[i]) beta[i] = -maxbeta[i]; } } } R_CheckUserInterrupt(); /* be polite -- did the user hit cntrl-C? */ } /*return for another iteration */ loglik[1] = newlk; chinv2(imat, nvar); for (i=1; i1: estimate multiple scales (strata) ** strat - if nstrat>0, contains the strata number for each subject ** eps - tolerance for convergence. Iteration continues until the ** relative change in the deviance is <= eps. ** tol_chol- tolerance for Cholesky decomposition ** dist - 1=extreme value, 2=logistic, 3=gaussian, 4=callback ** debug - >0 causes tracing information. Can be removed ** expr - for callback, the expression to be evaluated ** rho - for callback, the environment (R) or frame (Splus) in which ** to do the evaluation. ** Output ** beta - the final coef vector ** iter - the number of iterations consumed ** imat - the information matrix ** loglik - the final log-liklihood ** flag - success flag 0 =ok ** -1= did not converge ** u - the score vector ** ** Work arrays ** newbeta(nvar)- always contains the "next iteration" ** JJ = the approx variance matrix J'J, guarranteed non-singular */ #include "survS.h" #include "survproto.h" SEXP survreg6(SEXP maxiter2, SEXP nvarx, SEXP y, SEXP ny2, SEXP covar2, SEXP wtx, SEXP offset2, SEXP beta2, SEXP nstratx, SEXP stratax, SEXP epsx, SEXP tolx, SEXP dist, SEXP dexpr, SEXP rho) { int i,j; int n, maxiter, ny; double *newbeta; int halving, iter; double newlk; double *loglik, eps, tol_chol; double *beta; Sint *flag; SEXP out_beta; int nvar, nvar2, nstrat; double **covar; Sint *strat ; double *time2, *time1, *status; double *offset; double **imat, **JJ; double *u, *wt, *usave; double (*dolik)(); /* will be pointed to survregc1 or survregc2 */ SEXP z; double *zptr = NULL; SEXP out_iter, out_loglik, out_imat, out_flag; SEXP out_u; SEXP rlist, rlistnames; Sint *iter2; int nprotect; /* ** The only input arg that is overwritten is beta */ out_beta = PROTECT(duplicate(beta2)); beta = REAL(out_beta); maxiter = asInteger(maxiter2); n = LENGTH(wtx); ny = asInteger(ny2); nvar = asInteger(nvarx); offset = REAL(offset2); nstrat = asInteger(nstratx); strat = INTEGER(stratax); wt = REAL(wtx); eps = asReal(epsx); tol_chol= asReal(tolx); covar = dmatrix(REAL(covar2), n, nvar); /* ** nvar = # of "real" x variables, for iteration ** nvar2= # of parameters to maximize = nvar + nstrat ** nstrat= # of strata, where 0== fixed sigma */ nvar2 = nvar + nstrat; /* number of coefficients */ /* ** Create the output variables */ PROTECT(out_imat = allocVector(REALSXP, nvar2*nvar2)); imat = dmatrix(REAL(out_imat), nvar2, nvar2); PROTECT(out_iter = allocVector(INTSXP, 1)); iter2 = INTEGER(out_iter); PROTECT(out_loglik = allocVector(REALSXP, 1)); loglik = REAL(out_loglik); PROTECT(out_flag = allocVector(INTSXP, 1)); flag = INTEGER(out_flag); PROTECT(out_u = allocVector(REALSXP, nvar2)); usave = REAL(out_u); nprotect = 6; /* Create scratch variables ** u = working version of score vector, overwritten with u H-inv during ** Newton steps ** usave = a copy of u, after each Newton step. Returned to the S ** parent routine, and also used to "backtrack" when we need to fail ** over to a Fisher step after NR + halving didn't work */ newbeta = (double *) Calloc(LENGTH(beta2) + nvar2 + nvar2*nvar2, double); u = newbeta + length(beta2); JJ = dmatrix(u +nvar2, nvar2, nvar2); /* ** fixed scale parameters were tacked onto the end of beta at input ** copy them to to the end of newbeta as well (survregc1/c2 expects em) */ for (i=nvar; i0 when in the midst of "step halving" */ newlk = (*dolik)(n, nvar, nstrat, 0, newbeta,asInteger(dist), strat, offset, time1, time2, status, wt, covar, imat, JJ, u, dexpr, rho, zptr, 0, NULL, NULL, NULL); for (i=0; i10, in which ** case step halving isn't quite enough. Make sure the new ** try differs from the last good one by no more than 1/3 ** approx log(3) = 1.1 ** Step halving isn't enough of a "back away" when a ** log(sigma) goes from 0.5 to -3, or has become singular. */ if (halving==1) { /* only the first time */ for (i=0; i 1.1) newbeta[nvar+i] = beta[nvar+i] - 1.1; } } newlk = (*dolik)(n, nvar, nstrat, 1, newbeta,asInteger(dist), strat, offset, time1, time2, status, wt, covar, imat, JJ, u, dexpr, rho, zptr, 0, NULL, NULL, NULL); } } else { /* take a standard NR step */ halving=0; *loglik = newlk; *flag = cholesky3(imat, nvar2, 0, NULL, tol_chol); if (*flag < 0) { i = cholesky3(JJ, nvar2, 0, NULL, tol_chol); chsolve2(JJ, nvar2, u); } else chsolve2(imat,nvar2,u); for (i=0; i #include "survS.h" #include "survproto.h" void agscore(Sint *nx, Sint *nvarx, double *y, double *covar2, Sint *strata, double *score, double *weights, Sint *method, double *resid2, double *a) { int i,k; int n, nvar; int person; double denom, time; double *a2, *mean; double e_denom; double risk; double hazard, meanwt; double deaths, downwt; int dd; double *start, *stop, *event; double **covar, **resid; double temp1, temp2, d2; double *mh1, *mh2, *mh3; n = *nx; nvar = *nvarx; start =y; stop = y+n; event = y+(n+n); /* ** Set up the ragged arrays */ covar= dmatrix(covar2, n, nvar); resid = dmatrix(resid2, n, nvar); a2 = a+nvar; mean= a2 + nvar; mh1 = mean + nvar; mh2 = mh1 + nvar; mh3 = mh2 + nvar; for (person=0; person0) { /* ** This happens when a penalty is infinite. (Which itself ** is often how a penalty routine signals that it was given ** an illegal value for a parameter). In this case the ** updated value of beta will have already been set to 0 ** via cptr1 above, which is of course the correct solution, ** but the U and H use for the parent routine's Newton-Raphson ** step are infinite as well. We force the u and ** hmat matrices to dummy values that will cause no update ** (none needed) and more importantly no infinte/infinite ** arithmetic errors: u=0 and H = identity. (Only the ** relevant columns of each, of course). */ for (i=0; i 1) { /* ** Get the penalty for the dense part of the matrix ** Note that penalties never apply to the variance terms, ** which means that indices go to nvar, not nvar2 */ for (i=0; i=0; ) { ndeath =0; if (status[i]==1) { /* process all tied deaths at this point */ for (j=i; j>=0 && status[j]==1 && time[j]==time[i]; j--) { ndeath += wt[j]; index = indx[j]; for (k=i; k>j; k--) count[3] += wt[j]*wt[k]; /* tied on time */ count[2] += wt[j] * nwt[index]; /* tied on x */ child = (2*index) +1; /* left child */ if (child < ntree) count[0] += wt[j] * twt[child]; /*left children */ child++; if (child < ntree) count[1] += wt[j] * twt[child]; /*right children */ while (index >0) { /* walk up the tree */ parent = (index-1)/2; if (index & 1) /* I am the left child */ count[1] += wt[j] * (twt[parent] - twt[index]); else count[0] += wt[j] * (twt[parent] - twt[index]); index = parent; } } } else j = i-1; /* Add the weights for these obs into the tree and update variance*/ for (; i>j; i--) { wsum1=0; oldmean = twt[0]/2; index = indx[i]; nwt[index] += wt[i]; twt[index] += wt[i]; wsum2 = nwt[index]; child = 2*index +1; /* left child */ if (child < ntree) wsum1 += twt[child]; while (index >0) { parent = (index-1)/2; twt[parent] += wt[i]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); /* sum of weights above */ lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean - oldmean); vss += wsum3*(newmean+ oldmean+ wt[i]- 2*umean) *(oldmean-newmean); vss += wt[i]* (myrank -newmean)*(myrank -newmean); } count[4] += ndeath * vss/twt[0]; } UNPROTECT(1); return(count2); } SEXP concordance2(SEXP y, SEXP wt2, SEXP indx2, SEXP ntree2, SEXP sortstop, SEXP sortstart) { int i, j, k, index; int child, parent; int n, ntree; int istart, iptr, jptr; double *time1, *time2, *status, dtime; double *twt, *nwt, *count; int *sort1, *sort2; double vss, myrank; double wsum1, wsum2, wsum3; /*sum of wts below, tied, above*/ double lmean, umean, oldmean, newmean; double ndeath; SEXP count2; double *wt; int *indx; n = nrows(y); ntree = asInteger(ntree2); wt = REAL(wt2); indx = INTEGER(indx2); sort2 = INTEGER(sortstop); sort1 = INTEGER(sortstart); time1 = REAL(y); time2 = time1 + n; status= time2 + n; PROTECT(count2 = allocVector(REALSXP, 5)); count = REAL(count2); twt = (double *) R_alloc(2*ntree, sizeof(double)); nwt = twt + ntree; for (i=0; i< 2*ntree; i++) twt[i] =0.0; for (i=0; i<5; i++) count[i]=0.0; vss =0; istart = 0; /* where we are with start times */ for (i=0; i= dtime; istart++) { wsum1 =0; oldmean = twt[0]/2; jptr = sort1[istart]; index = indx[jptr]; nwt[index] -= wt[jptr]; twt[index] -= wt[jptr]; wsum2 = nwt[index]; child = 2*index +1; /* left child */ if (child < ntree) wsum1 += twt[child]; while (index >0) { parent = (index-1)/2; twt[parent] -= wt[jptr]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean-oldmean); oldmean -= wt[jptr]; /* the z in equations above */ vss += wsum3*(newmean+ oldmean -2*umean) * (newmean-oldmean); vss -= wt[jptr]* (myrank -newmean)*(myrank -newmean); } /* Process deaths */ for (j=i; j 0) { /* walk up the tree */ parent = (index-1)/2; if (index &1) /* I am the left child */ count[1] += wt[jptr] * (twt[parent] - twt[index]); else count[0] += wt[jptr] * (twt[parent] - twt[index]); index = parent; } } } else j = i+1; /* Add the weights for these obs into the tree and compute variance */ for (; i0) { parent = (index-1)/2; twt[parent] += wt[iptr]; if (!(index&1)) /* I am a right child */ wsum1 += (twt[parent] - twt[index]); index=parent; } wsum3 = twt[0] - (wsum1 + wsum2); lmean = wsum1/2; umean = wsum1 + wsum2 + wsum3/2; /* new upper mean */ newmean = twt[0]/2; myrank = wsum1 + wsum2/2; vss += wsum1*(newmean+ oldmean - 2*lmean) * (newmean-oldmean); vss += wsum3*(newmean+ oldmean +wt[iptr] - 2*umean) * (oldmean-newmean); vss += wt[iptr]* (myrank -newmean)*(myrank -newmean); } count[4] += ndeath * vss/twt[0]; } UNPROTECT(1); return(count2); } survival/src/coxmart.c0000644000176000001440000000443412267746150014604 0ustar ripleyusers/* $Id: coxmart.c 11166 2008-11-24 22:10:34Z therneau $ */ /* ** Compute the martingale residual for a Cox model ** ** Input ** n number of subjects ** method will be ==1 for the Efron method ** time vector of times ** status vector of status values ** score the vector of subject scores, i.e., exp(beta*z) ** strata is =1 for the last obs of a strata ** mark carried forward from the coxfit routine ** ** Output ** expected the expected number of events for the subject ** ** The martingale residual is more of a nuisance for the Efron method ** */ #include #include "survS.h" #include "survproto.h" void coxmart(Sint *sn, Sint *method, double *time, Sint *status, Sint * strata, double *score, double *wt, double *expect) { register int i,j; int lastone; int n; double deaths, denom=0, e_denom=0; double hazard; double temp, wtsum; double downwt; n = *sn; strata[n-1] =1; /* Failsafe */ /* Pass 1-- store the risk denominator in 'expect' */ for (i= n -1; i>=0; i--) { if (strata[i]==1) denom =0; denom += score[i]*wt[i]; if (i==0 || strata[i-1]==1 || time[i-1]!=time[i]) expect[i] = denom; else expect[i] =0; } /* Pass 2-- now do the work */ deaths=0; wtsum =0; e_denom=0; hazard =0; lastone = 0; for (i= 0; i #include "survS.h" #include "survproto.h" SEXP coxfit6(SEXP maxiter2, SEXP time2, SEXP status2, SEXP covar2, SEXP offset2, SEXP weights2, SEXP strata2, SEXP method2, SEXP eps2, SEXP toler2, SEXP ibeta, SEXP doscale2) { int i,j,k, person; double **covar, **cmat, **imat; /*ragged arrays */ double wtave; double *a, *newbeta; double *a2, **cmat2; double *scale; double denom=0, zbeta, risk; double temp, temp2; int ndead; /* number of death obs at a time point */ double tdeath=0; /* ndead= total at a given time point, tdeath= all */ double newlk=0; double dtime, d2; double deadwt; /*sum of case weights for the deaths*/ double efronwt; /* sum of weighted risk scores for the deaths*/ int halving; /*are we doing step halving at the moment? */ int nrisk; /* number of subjects in the current risk set */ double *maxbeta; /* copies of scalar input arguments */ int nused, nvar, maxiter; int method; double eps, toler; int doscale; /* vector inputs */ double *time, *weights, *offset; int *status, *strata; /* returned objects */ SEXP imat2, means2, beta2, u2, loglik2; double *beta, *u, *loglik, *means; SEXP sctest2, flag2, iter2; double *sctest; int *flag, *iter; SEXP rlist, rlistnames; int nprotect; /* number of protect calls I have issued */ /* get local copies of some input args */ nused = LENGTH(offset2); nvar = ncols(covar2); method = asInteger(method2); maxiter = asInteger(maxiter2); eps = asReal(eps2); /* convergence criteria */ toler = asReal(toler2); /* tolerance for cholesky */ doscale = asInteger(doscale2); time = REAL(time2); weights = REAL(weights2); offset= REAL(offset2); status = INTEGER(status2); strata = INTEGER(strata2); /* ** Set up the ragged arrays and scratch space ** Normally covar2 does not need to be duplicated, even though ** we are going to modify it, due to the way this routine was ** was called. In this case NAMED(covar2) will =0 */ nprotect =0; if (NAMED(covar2)>0) { PROTECT(covar2 = duplicate(covar2)); nprotect++; } covar= dmatrix(REAL(covar2), nused, nvar); PROTECT(imat2 = allocVector(REALSXP, nvar*nvar)); nprotect++; imat = dmatrix(REAL(imat2), nvar, nvar); a = (double *) R_alloc(2*nvar*nvar + 5*nvar, sizeof(double)); newbeta = a + nvar; a2 = newbeta + nvar; maxbeta = a2 + nvar; scale = maxbeta + nvar; cmat = dmatrix(scale + nvar, nvar, nvar); cmat2= dmatrix(scale + nvar +nvar*nvar, nvar, nvar); /* ** create output variables */ PROTECT(beta2 = duplicate(ibeta)); beta = REAL(beta2); PROTECT(means2 = allocVector(REALSXP, nvar)); means = REAL(means2); PROTECT(u2 = allocVector(REALSXP, nvar)); u = REAL(u2); PROTECT(loglik2 = allocVector(REALSXP, 2)); loglik = REAL(loglik2); PROTECT(sctest2 = allocVector(REALSXP, 1)); sctest = REAL(sctest2); PROTECT(flag2 = allocVector(INTSXP, 1)); flag = INTEGER(flag2); PROTECT(iter2 = allocVector(INTSXP, 1)); iter = INTEGER(iter2); nprotect += 7; /* ** Subtract the mean from each covar, as this makes the regression ** much more stable. */ tdeath=0; temp2=0; for (i=0; i 0) temp = temp2/temp; /* scaling */ else temp=1.0; /* rare case of a constant covariate */ scale[i] = temp; for (person=0; person=0; ) { if (strata[person] == 1) { nrisk =0 ; denom = 0; for (i=0; i=0 &&time[person]==dtime) { /* walk through the this set of tied times */ nrisk++; zbeta = offset[person]; /* form the term beta*z (vector mult) */ for (i=0; i0) { /* we need to add to the main terms */ if (method==0) { /* Breslow */ loglik[1] -= deadwt* log(denom); for (i=0; i=0; ) { if (strata[person] == 1) { /* rezero temps for each strata */ denom = 0; nrisk =0; for (i=0; i=0 && time[person]==dtime) { nrisk++; zbeta = offset[person]; for (i=0; i0) { /* add up terms*/ if (method==0) { /* Breslow */ newlk -= deadwt* log(denom); for (i=0; i maxbeta[i]) newbeta[i] = maxbeta[i]; else if (newbeta[i] < -maxbeta[i]) newbeta[i] = -maxbeta[i]; } } } /* return for another iteration */ /* ** We end up here only if we ran out of iterations */ loglik[1] = newlk; chinv2(imat, nvar); for (i=0; i eps) eps = matrix[i][i]; for (j=(i+1); j=0; i--) { if (matrix[i][i+m]==0) y[i+m] =0; else { temp = y[i+m]/matrix[i][i+m]; for (j= i+1; j=0; i--) { if (diag[i] == 0) y[i] =0; else { temp = y[i] / diag[i]; for (j=0; j0) df++; /* count up the df */ for (i=0; i< *ntest; i++) { for (j=0; j0]) * 1e-8 ** The events are counted in the last cell to which person years are ** added in the while() loop below. We don't want to "spill over" into ** a next (incorrect) cell due to accumulated round off, in the case ** that a subjects fu time exactly matches one of the cell boundaries. */ eps =0; /* guard against the rare case that all(time==0) */ for (i=0; i0) { eps = timeleft; /* starting guess for min = first non-zero value*/ break; } } for (; i0) && (timeleft < eps)) eps = timeleft; } eps *= 1e-8; *offtable =0; for (i=0; i eps) { thiscell = pystep(odim, &index, &d1, &d2, data, ofac, odims, ocut, timeleft, 0); if (index >=0) { pyears[index] += thiscell * wt[i]; pn[index] += 1; } else *offtable += thiscell * wt[i]; for (j=0; j=0 && doevent) pcount[index] += event[i] * wt[i]; } } survival/src/coxdetail.c0000644000176000001440000001473312267746150015106 0ustar ripleyusers/* $Id: coxdetail.c 11357 2009-09-04 15:22:46Z therneau $ ** ** Return all of the internal peices of a Cox model ** ** the input parameters are ** ** nused :number of people ** nvar :number of covariates ** ndead :total number of deaths ** y(3,n) :start, stop, and event for each subject ** covar(nv,n) :covariates for person i. ** Note that S sends this in column major order. ** strata(n) :marks the strata. Will be 1 if this person is the ** last one in a strata. If there are no strata, the ** vector can be identically zero, since the nth person's ** value is always assumed to be = to 1. ** score(n) :the risk score for the subject ** weights(n) :case weights ** means :first element contains the method ** rmat : if first element =1, then calculate a risk matrix ** ** returned parameters ** ndead :the number of unique death times ** strata :the indices of the unique time points ** y[1, ] :the number of deaths at each time point ** y[2, ] :the number at risk at each time point ** y[3, ] :the increment in the cum -hazard at t ** score :the weighted number of events at each time point ** weights[] :the increment in the variance of the cum-haz at t ** means(nv,nd) :the matrix of weighted means, one col per unique event ** time ** u(nv,nd) :the score vector components, one per unique event time ** var(nd,nv,nv):components of the information matrix ** rmat(nd, n) :has a "1" if subject i is at risk at time j ** nrisk2 :the weighted number at risk at each time point ** ** work arrays ** a(nvar) ** a2(nvar) ** cmat(nvar,nvar) ragged array ** cmat2(nvar,nvar) ** wmeans(nvar) ** ** the 5 arrays a, a2, cmat, cmat2 and wmeans are passed as a single ** vector of storage, and then broken out. ** ** the data must be sorted by ascending time within strata, deaths before ** living within tied times. */ #include #include "survS.h" #include "survproto.h" void coxdetail(Sint *nusedx, Sint *nvarx, Sint *ndeadx, double *y, double *covar2, Sint *strata, double *score, double *weights, double *means2, double *u2, double *var, Sint *rmat, double *nrisk2, double *work) { int i,j,k,person; int nused, nvar; int nrisk, ndead; double **covar, **cmat; /*ragged arrays */ double **means; double **u; double *a; double *a2, **cmat2; double *wmeans; double denom; double time; double temp, temp2, temp3; double method; double hazard; double varhaz; int itemp, deaths; int ideath; double efron_wt, d2; double risk; double meanwt; double wdeath; double *start, *stop, *event; int rflag; nused = *nusedx; nvar = *nvarx; method= *means2; ndead = *ndeadx; rflag = 1- rmat[0]; /* ** Set up the ragged arrays */ covar= dmatrix(covar2, nused, nvar); means= dmatrix(means2, ndead, nvar); u = dmatrix(u2, ndead, nvar); cmat = dmatrix(work, nvar, nvar); cmat2= dmatrix(work + nvar*nvar, nvar, nvar); a = work + 2*nvar*nvar; a2= a+nvar; wmeans = a2+nvar; start =y; stop =y + nused; event =y + nused +nused; /* ** Subtract the mean from each covar, as this makes the variance calc ** much more stable */ for (i=0; i0 ** isurv[n] -- individual survival curves ** ** cx and cy must be sorted by (event before censor) within stop time */ #include #include "survS.h" #include "survproto.h" static double *y, *nscore, **newx, **surv, **vsurv, *isurv, **used, **tvar; static int *strata; static double ttime, /* Some HP compilers choke on "time" as a variable */ **imat, *mean; static int death, ncurve, se, nvar, n; static void addup(); void agsurv3(Sint *sn, Sint *snvar, Sint *sncurve, Sint *snpt, Sint *sse, double *score, double *sy, Sint *grpx, double *r, double *coef, double *var, double *xmean, Sint *scn, double *cy, double *cx, double *ssurv, double *varh, double *sused, Sint *smethod) { int i,j,k,l; double *start, *stop, *event; int cn; int npt, nvar2, method; int kk=0, psave; int itime; int person; int deaths, nrisk; int need; double *a=0, *a2=0; double weight=0, e_denom, denom; double inc, sumt, km =0; double temp, downwt, d2; double haz, varhaz; double **oldx =0; n = *sn; nvar = *snvar; cn = *scn; npt = *snpt; se = *sse; ncurve = *sncurve; method = *smethod; death = method/10; method = method - death*10; y = sy; start = cy; stop = cy+ cn; event = cy+ cn+ cn; strata = grpx; /* ** scratch space */ need = 2*n + se*nvar*(2+ n*(n+1)/2) + nvar; nscore = (double *) ALLOC(need, sizeof(double)); for (i=0; i0) vsurv[i][itime]=0; } return; } /* ** Note that the subjects are sorted in strata order */ pstart=0; for (ic=0; ic= ttime) { temp = -haz*nscore[i]; /*increment to the individual hazard*/ if (death==0) { wt += isurv[i]; totsurv += exp(temp) * isurv[i]; } else { wt += 1; totsurv += temp; } isurv[i] *= exp(temp); } /* ** The variance is computed as though it were the Ederer est, always */ if (se==1) { /* Do the variance term (nasty) */ for (j=pstart; j<=i; j++) { temp =0; for (k=0; k #include "survS.h" #include "survproto.h" void coxscho(Sint *nusedx, Sint *nvarx, double *y, double *covar2, double *score, Sint *strata, Sint *method2, double *work) { int i,k,person; int nused, nvar; double **covar; double *a; double *a2; double *mean; double denom, weight; double time; double temp; double method; double deaths; double efron_wt; double *start, *stop, *event; nused = *nusedx; nvar = *nvarx; method= *method2; /* ** Set up the ragged arrays */ covar= dmatrix(covar2, nused, nvar); a = work; a2= a+nvar; mean = a2+nvar; start =y; stop =y + nused; event =y + nused +nused; /* ** Now walk through the data */ for (person=0; person #include "survS.h" #include "survproto.h" void agexact(Sint *maxiter, Sint *nusedx, Sint *nvarx, double *start, double *stop, Sint *event, double *covar2,double *offset, Sint *strata, double *means, double *beta, double *u, double *imat2, double loglik[2], Sint *flag, double *work, Sint *work2, double *eps, double *tol_chol, double *sctest) { int i,j,k, l, person; int iter; int n, nvar; double **covar, **cmat, **imat; /*ragged array versions*/ double *a, *newbeta; double *score, *newvar; double denom, zbeta, weight; double time; double temp; double newlk =0; int halving; /*are we doing step halving at the moment? */ int nrisk, deaths; int *index, *atrisk; n = *nusedx; nvar = *nvarx; /* ** Set up the ragged arrays */ covar= dmatrix(covar2, n, nvar); imat = dmatrix(imat2, nvar, nvar); cmat = dmatrix(work, nvar, nvar); a = work + nvar*nvar; newbeta = a + nvar; score = newbeta + nvar; newvar = score + n; index = (int *) work2; atrisk= index+n; /* ** Subtract the mean from each covar, as this makes the regression ** much more stable */ for (i=0; i=0) { for (i=0; i=0) { for (i=0; i #define SMALL -200 /* what to use for log(f(x)) when f(x) gives a zero, i.e., the calling made a really bad guess for beta */ static void exvalue_d(double z, double ans[4], int j); static void logistic_d(double z, double ans[4], int j); static void gauss_d(double z, double ans[4], int j); static void (*sreg_gg)(); #define SPI 2.506628274631001 /* sqrt(2*pi) */ #define ROOT_2 1.414213562373095 double survregc1(int n, int nvar, int nstrat, int whichcase, double *beta, int dist, Sint *strat, double *offset, double *time1, double *time2, double *status, double *wt, double **covar, double **imat, double **JJ, double *u, SEXP expr, SEXP rho, double *dummy, int nf, Sint *frail, double *fdiag, double *jdiag ) { int person, i,j,k; int nvar2; /* nvar + nstrat */ int nvar3; /* nvar2 + nf */ int strata; double eta, sigma; double z, zu, loglik, temp, temp2; double sz; double sig2; double funs[4], ufun[4]; int fgrp =0; /* the =0 to quiet a compiler warning */ double w; /* add "=0" to keep the compiler from worrying about uninitialized vars */ double g=0, dg=0, ddg=0, dsig=0, ddsig=0, dsg=0; switch(dist) { case 1: sreg_gg = exvalue_d; break; case 2: sreg_gg = logistic_d; break; case 3: sreg_gg = gauss_d; break; } nvar2 = nvar + nstrat; nvar3 = nvar2 + nf; loglik =0; if (whichcase==0) { for (i=0; i1) { /* ** multiple scales: pick the right sigma for this obs ** The more common case of a single scale is set 6 lines above */ strata= strat[person] -1; /*S likes to start counting at 1 */ sigma = exp(beta[strata+nvar+nf]); sig2 = 1/(sigma*sigma); } eta =0; for (i=0; i0){ fgrp = frail[person] -1; eta += beta[fgrp]; } sz = (time1[person] - eta); /* sigma * z */ z = sz /sigma; j = status[person]; /*convert to integer */ switch(j) { case 1: /* exact */ (*sreg_gg)(z, funs,1); if (funs[1] <=0) { /* off the probability scale -- avoid log(0), and set the ** derivatives to gaussian limits (almost any deriv will ** do, since the function value triggers step-halving). */ g = SMALL; dg = -z/sigma; ddg = -1/sigma; dsig =0; ddsig=0; dsg=0; } else { g = log(funs[1]) - log(sigma); temp = funs[2]/sigma; temp2= funs[3]*sig2; dg = -temp; dsig= -temp*sz; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(dsig +1); ddsig = sz*sz* temp2 - dsig*(1+dsig); dsig -= 1; } break; case 0: /* right censored */ (*sreg_gg)(z, funs,2); if (funs[1] <=0) { g = SMALL; dg = z/sigma; ddg =0; dsig =0; ddsig=0; dsg=0; } else { g = log(funs[1]); temp = -funs[2]/(funs[1]*sigma); temp2= -funs[3]*sig2/funs[1]; dg = -temp; dsig= -temp*sz; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(dsig +1); ddsig = sz*sz* temp2 - dsig*(1+dsig); } break; case 2: /* left censored */ (*sreg_gg)(z, funs,2); if (funs[0] <=0) { /* off the probability scale -- avoid log(0) */ g = SMALL; dg = -z/sigma; dsig =0; ddsig=0; dsg=0; ddg =0; } else { g = log(funs[0]); temp = funs[2]/(funs[0]*sigma); temp2= funs[3]*sig2/funs[0]; dg = -temp; dsig= -temp*sz; ddg= temp2 - dg*dg; dsg = sz * temp2 - dg*(dsig +1); ddsig = sz*sz* temp2 - dsig*(1+dsig); } break; case 3: /* interval censored */ zu = (time2[person] - eta)/sigma; /*upper endpoint */ (*sreg_gg)(z, funs, 2); (*sreg_gg)(zu,ufun ,2); if (z>0) temp = funs[1] - ufun[1]; /*stop roundoff in tails*/ else temp = ufun[0] - funs[0]; if (temp <=0) { /* off the probability scale -- avoid log(0) */ g = SMALL; dg = 1; ddg =0; dsig =0; ddsig=0; dsg=0; } else { g = log(temp); dg = -(ufun[2] - funs[2])/(temp*sigma); ddg = (ufun[3] - funs[3])*sig2/temp - dg*dg; dsig = (z*funs[2] - zu*ufun[2])/temp; ddsig= ((zu*zu*ufun[3] - z*z*funs[3])/temp) - dsig*(1+dsig); dsg = ((zu*ufun[3] - z*funs[3])/ (temp*sigma)) - dg * (dsig +1); } break; } loglik += g * wt[person]; /*if (person<8) fprintf(stderr, "i=%d, g=%g, dg=%g, ddg=%g, dsg=%g\n", person, g, dg, ddg, dsg);*/ /* ** Now the derivs wrt loglik ** Remember that the "x" for a sparse term is 1 */ if (whichcase==1) continue; /*only needed the loglik */ w = wt[person]; if (nf>0) { u[fgrp] += dg * w; fdiag[fgrp] -= ddg * w; jdiag[fgrp] += dg*dg *w; } for (i=0; i0) { imat[i][fgrp] -= covar[i][person] * ddg * w; JJ [i][fgrp] += temp * dg; } } if (nstrat!=0) { /* need derivative wrt log sigma */ k = strata+nvar; u[k+nf] += w* dsig; for (i=0; i0) { imat[k][fgrp] -= dsg * w; JJ [k][fgrp] += dsig *dg *w; } } } return(loglik); } /* ** Case ans[0] ans[1] ans[2] ans[3] ** 1 f f'/f f''/ f ** 2 F 1-F f f' ** ** We do both F and 1-F to avoid the error in (1-F) for F near 1 */ static void logistic_d(double z, double ans[4], int j) { double w, temp; int sign, ii; /* ** The symmetry of the logistic allows me to be careful, and never take ** exp(large number). This routine should be very accurate. */ if (z>0) { w = exp(-z); sign = -1; ii=0; } else { w = exp(z); sign = 1; ii=1; } temp = 1+w; switch(j) { case 1: ans[1] = w/(temp*temp); ans[2] = sign*(1-w)/temp; ans[3] = (w*w -4*w +1)/(temp*temp); break; case 2: ans[1-ii] = w/temp; ans[ii] = 1/temp; ans[2] = w/(temp*temp); ans[3] = sign*ans[2]*(1-w)/temp; break; } } static void gauss_d(double z, double ans[4], int j) { double f; f = exp(-z*z/2) /SPI; switch(j) { case 1: ans[1] =f; ans[2] = -z; ans[3] = z*z -1; break; case 2: if (z>0) { ans[0] = (1 + erf(z/ROOT_2))/2; ans[1] = erfc(z/ROOT_2) /2; } else { ans[1] = (1 + erf(-z/ROOT_2))/2; ans[0] = erfc(-z/ROOT_2) /2; } ans[2] = f; ans[3] = -z*f; break; } } /* ** In the Gaussian and logistic cases, I could avoid numeric disaster by only ** evaluating exp(x) for x<0. By symmetry, I got what I need for ** x >0. The extreme value dist, howerver, is asymmetric, and I don't yet ** see the appropriate numeric tricks. ** Perhaps a Taylor series will could be used for large z. */ static void exvalue_d(double z, double ans[4], int j) { double temp; double w; if (z < SMALL) w= exp(SMALL); else if (-z < SMALL) w = exp(-SMALL); /* stop infinite answers */ else w = exp(z); temp = exp(-w); switch(j) { case 1: ans[1] = w*temp; ans[2] = 1-w; ans[3] = w*(w-3) +1; break; case 2: ans[0] = 1-temp; ans[1] = temp; ans[2] = w*temp; ans[3] = w*temp*(1-w); break; } } survival/src/doloop.c0000644000176000001440000000362412267746150014423 0ustar ripleyusers/* $Id: doloop.c 11357 2009-09-04 15:22:46Z therneau $ ** ** Program to mimic a set of nested do loops ** ** Usual calling sequence would be ** init_doloop(min,max); ** while (doloop(nloops, index) >=min) { ** some calculations ** } ** ** The result of this is as though the code had been written for "nloops" ** nested for loops: ** ** for (index[0]=min; index[0]= (minval+i)) return (minval+i-1); else return (minval-1); } nloops--; index[nloops]++; /*increment the lastmost index */ if (index[nloops] <= (maxval-depth)) return(index[nloops]); else if (nloops ==0) return(minval - depth); else { depth++; index[nloops] = doloop(nloops, index) +1; depth--; return(index[nloops]); } } survival/src/survfitci.c0000644000176000001440000002304112267746150015140 0ustar ripleyusers/* Automatically generated from all.nw using noweb */ #include "survS.h" /* allocate a ragged array of a given number of rows and columns */ static double **dmatrix2(int nrow, int ncol) { int i; double **mat; double *d; mat = (double **) R_alloc(nrow, sizeof(double *)); d = (double *) R_alloc(nrow*ncol, sizeof(double)); for (i=0; i0) PROTECT(vmat2 = allocMatrix(REALSXP, nstate, ntime)); else PROTECT(vmat2 = allocMatrix(REALSXP, 1, 1)); /* dummy object */ vmat = REAL(vmat2); PROTECT(nevent2 = allocVector(INTSXP, ntime)); nevent = INTEGER(nevent2); PROTECT(ncensor2= allocVector(INTSXP, ntime)); ncensor = INTEGER(ncensor2); PROTECT(nrisk2 = allocMatrix(INTSXP, nstate, ntime)); nrisk = INTEGER(nrisk2); PROTECT(cumhaz2= allocVector(REALSXP, nstate*nstate*ntime)); cumhaz = REAL(cumhaz2); nprotect = 8; /* allocate space for scratch vectors */ ws = (double *) R_alloc(2*nstate, sizeof(double)); temp2 = ws + nstate; ns = (int *) R_alloc(nstate, sizeof(int)); atrisk = (int *) R_alloc(nperson, sizeof(int)); wtp = (double *) R_alloc(nperson, sizeof(double)); hmat = (double**) dmatrix2(nstate, nstate); if (sefit >0) umat = (double**) dmatrix2(nperson, nstate); chaz = (double**) dmatrix2(nstate, nstate); /* R_alloc does not zero allocated memory */ for (i=0; i0) { newstate = status[k] -1; /* 0 based subscripts */ oldstate = cstate[id[k]]; nevent[itime]++; wevent += wt[k]; hmat[oldstate][newstate] += wt[k]; } else ncensor[itime]++; } else break; } if (nevent[itime]> 0) { /* finish computing H */ for (j=0; j0) { temp =0; for (k=0; k0) { /* Update U, part 1 U = U %*% H -- matrix multiplication */ for (j=0; j0) { kk = id[k]; /* row number in U */ oldstate= cstate[kk]; newstate= status[k] -1; umat[kk][oldstate] -= p[oldstate]/ws[oldstate]; umat[kk][newstate] += p[oldstate]/ws[oldstate]; } } else break; } } /* Finally, update chaz and p. */ for (j=0; j0) { for (k=0; k0) cstate[id[j]] = status[j]-1; /*new state */ atrisk[id[j]] =0; } else break; } itime++; } /* return a list */ PROTECT(rlist=mkNamed(VECSXP, rnames)); SET_VECTOR_ELT(rlist, 0, nrisk2); SET_VECTOR_ELT(rlist, 1, nevent2); SET_VECTOR_ELT(rlist, 2, ncensor2); SET_VECTOR_ELT(rlist, 3, pmat2); SET_VECTOR_ELT(rlist, 4, cumhaz2); SET_VECTOR_ELT(rlist, 5, vmat2); UNPROTECT(nprotect +1); return(rlist); } survival/src/init.c0000644000176000001440000000466712267746150014102 0ustar ripleyusers/* ** This file causes the entry points of my .C routines to be preloaded ** Added at the request of R-core. ** It adds one more layer of protection by declaring the number of arguments, ** and perhaps a tiny bit of speed */ #include "survS.h" #include "R_ext/Rdynload.h" #include "survproto.h" static const R_CMethodDef Centries[] = { {"Cagfit5a", (DL_FUNC) &agfit5a, 20}, {"Cagfit5b", (DL_FUNC) &agfit5b, 19}, {"Cagfit5c", (DL_FUNC) &agfit5c, 5}, {"Cagsurv3", (DL_FUNC) &agsurv3, 19}, {"Cagsurv4", (DL_FUNC) &agsurv4, 6}, {"Cagsurv5", (DL_FUNC) &agsurv5, 10}, {"Cagexact", (DL_FUNC) &agexact, 20}, {"Cagmart", (DL_FUNC) &agmart, 9}, {"Cagmart2", (DL_FUNC) &agmart2, 13}, {"Cagscore", (DL_FUNC) &agscore, 10}, {"Ccoxdetail", (DL_FUNC) &coxdetail, 14}, {"Ccoxfit5a", (DL_FUNC) &coxfit5_a, 20}, {"Ccoxfit5b", (DL_FUNC) &coxfit5_b, 19}, {"Ccoxfit5c", (DL_FUNC) &coxfit5_c, 5}, {"Ccoxmart", (DL_FUNC) &coxmart, 8}, {"Ccoxmart2", (DL_FUNC) &coxmart2, 7}, {"Ccoxph_wtest",(DL_FUNC) &coxph_wtest,6}, {"Ccoxscho", (DL_FUNC) &coxscho, 8}, {"Ccoxscore", (DL_FUNC) &coxscore, 10}, {"Cpyears1", (DL_FUNC) &pyears1, 22}, {"Cpyears2", (DL_FUNC) &pyears2, 14}, {"Csurvdiff2", (DL_FUNC) &survdiff2, 13}, {"Csurvfit4", (DL_FUNC) &survfit4, 4}, {NULL, NULL, 0} }; static const R_CallMethodDef Callentries[] = { {"Cagfit4", (DL_FUNC) &agfit4, 12}, {"Cconcordance1", (DL_FUNC) &concordance1, 4}, {"Cconcordance2", (DL_FUNC) &concordance2, 6}, {"Ccoxcount1", (DL_FUNC) &coxcount1, 2}, {"Ccoxcount2", (DL_FUNC) &coxcount2, 4}, {"Ccoxexact", (DL_FUNC) &coxexact, 8}, {"Ccoxfit6", (DL_FUNC) &coxfit6, 12}, {"Cpyears3b", (DL_FUNC) &pyears3b, 10}, {"Csurvfitci", (DL_FUNC) &survfitci, 10}, {"Csurvreg6", (DL_FUNC) &survreg6, 15}, {"Csurvreg7", (DL_FUNC) &survreg7, 21}, {NULL, NULL, 0} }; void R_init_survival(DllInfo *dll){ R_registerRoutines(dll, Centries, Callentries, NULL, NULL); /* My take on the documentation is that adding the following line will make symbols available ONLY through the above tables. Anyone who then tried to link to my C code would be SOL. It also wouldn't work with .C(routines[1], .... */ /* R_useDynamicSymbols(dll, FALSE); */ } survival/src/survConcordance.c0000644000176000001440000001166212267746150016266 0ustar ripleyusers/* ** $Id: survConcordance.c 11166 2008-11-24 22:10:34Z therneau $ ** ** For each observation, we want to know, for the subset of observations ** with longer survival (and only those) ** number with smaller, bigger, and tied x values ** ** The input data is sorted, largest survival to smallest survival ** ** n number of time/status/x values ** time ** status needed to keep track of tied survival times ** x vector of scores ** n2 number of unique x values ** x2 sorted vector of unique x values, smallest to largest ** ** temp scratch vector of length 2* n2 ** ** returned ** result number concordant, discordant, tied survival, tied x but ** not tied survival, and incomparable times ** (bigger survival + smaller risk score = concordant) */ #include "survS.h" #include void survConcordance(Sint *np, double *time, Sint *status, double *x, Sint *n2p, double *x2, Sint *temp,Sint *result) { int i, j, k=0; int start, end; int n, n2; Sint *count1, *count2, *count; int tdeath; int nright, nsame; n = *np; n2= *n2p; count1 = &(temp[0]); count2 = &(temp[n2]); for (i=0; i<5; i++) result[i] =0; /* redundant I think */ for (i=0; i x2[k]. (Draw a picture). ** The root of the tree is element k= floor((n2-1)/2), with value x2[k]. ** In general, for any subtree that "owns" elements i to j, the root ** of that subtree is element k= floor((i+j)/2), whose left subtree ** owns elements i to k-1 of the tree, and right subtree owns elements ** k+1 to j. ** ** As we update, count[i] will be the number of data values in this ** node and all nodes below. ** ** We walk through the data one survival time at at time, comparing each ** to all the survival times above it. ** If the time is censored, all those above are "incomparable". ** Otherwise, we need to find the position of x[i], among x[1: (i-1)] ** We do this by updating the counts in the binary tree. The count ** vector contains the number of x[0 to i] that are in or below any ** given node k of the binary tree. ** ** Tied death times are a nuisance; we have to refrain from updating ** the counts until the end of each set of them. Thus a vector ** count1 (up to date) and count2 (lagged). ** nright = sum(# values to the right, each time I take a left branch) */ tdeath =0; /* current count of tied deaths */ for (i=0; i 0) { /* ** Walk the tree a first time, to count this observation's ** position */ nright = 0; start = 0; end= n2-1; /*start to end of sublist being looked at */ if (tdeath==0) count=count1; /* use the appropriate count */ else count=count2; while(start <= end) { k = (start+end)/2; if (x[i] == x2[k]) break; if (x[i] < x2[k]) { /* take the left branch (smaller numbers) */ end = k-1; nright = nright + (count[k] - count[(start+end)/2]); } else start = k+1; /*right branch */ } /* ** At this point x[i] = x2[k]; we've found the number in the ** x2 list */ nsame = count[k]; /*provisional */ if (k start) /* there is a left hand branch below here */ nsame = nsame - count[(start+k-1)/2]; result[3] += nsame; result[1] += nright; /* # values bigger than x[i] */ result[0] += i - (tdeath + nsame + nright); /* # smaller */ /* Is the next survival time tied with this one? */ if (i<(n-1) && status[i+1]>0 &&(time[i] == time[i+1])) { tdeath += 1; /* Yes it is */ if (tdeath==1) { for (j=0; j #include #include "survS.h" #include "survproto.h" static double **covar, **cmat, **cmat2; static double *a, *oldbeta, *a2; static double *offset, *weights; static int *event, *frail; static double *score, *start, *stop; static int *sort1, *sort2; static double *tmean; static int ptype, pdiag; static double *ipen, *upen, logpen; static Sint *zflag; static double **cmatrix(double *, int, int); void agfit5a(Sint *nusedx, Sint *nvarx, double *yy, double *covar2, double *offset2, double *weights2, Sint *strata, Sint *sort, double *means, double *beta, double *u, double *loglik, Sint *methodx, Sint *ptype2, Sint *pdiag2, Sint *nfrail, Sint *frail2, void *fexpr1, void *fexpr2, void *rho) { int i,j,k, person; int nused, nvar; int nf, nvar2; int deaths, itemp; int istrat, indx2, p, ksave; double denom, zbeta, risk; double temp; double d2, efron_wt; double method; double meanwt, time; nused = *nusedx; nvar = *nvarx; nf= *nfrail; method= *methodx; nvar2 = nvar + nf; ptype = *ptype2; pdiag = *pdiag2; /* ** Allocate storage for the arrays and vectors ** Since they will be used later, sizes are based on what will be ** needed with the frailty terms. */ if (nvar >0) { covar= cmatrix(covar2, nused, nvar); cmat = cmatrix(0, nvar2, nvar+1); cmat2= cmatrix(0, nvar2, nvar+1); } a = Calloc(4*nvar2 + 5*nused , double); oldbeta = a + nvar2; a2 = oldbeta + nvar2; weights = a2+ nvar2; offset = weights + nused; score = offset + nused; tmean = score + nused; start = tmean + nvar2; stop = start + nused; event = Calloc(3*nused, int); sort1 = event + nused; sort2 = sort1 + nused; for (i=0; i nvar) i=nf; else i=nvar; if (nf > nvar*nvar) j=nf; else j=nvar*nvar; if (pdiag==0) upen = Calloc(2*i, double); else upen = Calloc(i+j, double); ipen = upen + i; if (ptype>1) zflag = Calloc(nvar, Sint); else zflag = Calloc(2, Sint); if (nf>0) { frail = Calloc(nused, int); for (i=0; i=time, ** and are thus potential members of the risk set. If 'indx2' =9, ** that means that 9 subjects have start >=time and thus are NOT part ** of the risk set. (stop > start for each subject guarrantees that ** the 9 are a subset of the 27). ** Basic algorithm: move 'person' forward, adding the new subject into ** the risk set. If this is a new, unique death time, take selected ** old obs out of the sums, add in obs tied at this time, then ** add terms to the loglik, etc. */ istrat=0; indx2 =0; denom =0; for (person=0; person0) { imat = dmatrix(imat2, nvar2, nvar); jmat = dmatrix(jmat2, nvar2, nvar); } else { imat = 0; /*never used, but passed as dummy to chol */ jmat = 0; } for (i=0; i0) { fgrp = frail[person] -1; zbeta = offset[person] + fbeta[fgrp]; } else zbeta = offset[person]; for (i=0; i 20 && *maxiter >1) { /* ** If the above happens, then ** 1. There is a real chance for catastrophic cancellation ** in the computation of "denom", which leads to ** numeric failure via log(neg number) -> inf loglik ** 2. A risk score for one person of exp(20) > 400 million ** is either an infinite beta, in which case any ** reasonable coefficient will do, or a big overreach ** in the Newton-Raphson step. ** In either case, a good solution is step halving. However, ** if the user asked for exactly 1 iteration, we should ** just return what they asked. ** ** Why 20? Most machines have about 16 digits of precision, ** and this preserves approx 7 digits in the subtraction ** when a high risk score person leaves the risk set. ** (Because of centering, the average risk score is about 0). ** Second, if eps is small and beta is infinite, we rarely ** get a value above 16. So a 20 is usually a NR overshoot. ** A data set with zbeta=54 on iter 1 led to this fix, the ** true final solution had max values of 4.47. */ halving=1; for (i=0; i0) fgrp = frail[p] -1; else fgrp = -1; if (event[p]==0){ risk = exp(score[p]) * weights[p]; denom += risk; if (fgrp >=0) a[fgrp] += risk; for (i=0; i=0) cmat[i][fgrp] += risk * covar[i][p]; for (j=0; j<=i; j++) cmat[i][j+nf] += risk*covar[i][p]*covar[j][p]; } person++; } else { time = stop[p]; /* ** subtract out the subjects whose start time is to the right */ for (; indx20) fgrp = frail[p] - 1; else fgrp = -1; if (fgrp >=0) a[fgrp] -= risk; for (i=0; i=0) cmat[i][fgrp] -= risk* covar[i][p]; for (j=0; j<=i; j++) cmat[i][j+nf] -= risk*covar[i][p]*covar[j][p]; } } /* ** compute the averages over this death time (a2 & c2) */ efron_wt =0; meanwt =0; for (i=0; i0) { fgrp = frail[p] -1; if (fgrp>=0) a[fgrp] += risk; } else fgrp = -1; for (i=0; i=0) cmat[i][fgrp] += risk*covar[i][p]; for (j=0; j<=i; j++) cmat[i][j+nf] += risk*covar[i][p]*covar[j][p]; } if (event[p]==1) { deaths += event[p]; efron_wt += risk* weights[p]; meanwt += weights[p]; if (fgrp >= 0) { u[fgrp] += weights[p]; a2[fgrp] += risk; } for (i=0; i=0) cmat2[i][fgrp] += risk*covar[i][p]; for (j=0; j<=i; j++) cmat2[i][j+nf] += risk*covar[i][p]*covar[j][p]; } } } ksave =k; /* add results into u and imat */ itemp = -1; meanwt /= deaths; for (; person0 && newlk < *loglik) { /*it is not converging ! */ halving =1; for (i=0; i=strata_start; k--) { /*non-deaths */ p = sort1[k]; if (stop[p] > time) break; expect[p] += score[p]*hazard; } for (; person= dtimes[k]) expect[p] += temp; else break; } temp = haz[k]; } for (; i dtimes[k]) expect[p] -= score[p]*temp; else break; } temp = haz[k]; } for (; i 0) { cmatrix_free(cmat2); cmatrix_free(cmat); cmatrix_free(covar); } } survival/src/cholesky3.c0000644000176000001440000000506012267746150015027 0ustar ripleyusers/* $Id: cholesky3.c 11166 2008-11-24 22:10:34Z therneau $ */ /* ** subroutine to do Cholesky decompostion on a matrix: C = FDF' ** where F is lower triangular with 1's on the diagonal, and D is diagonal ** This is a specialized form for the frailty problem. The matric C in this ** case has C[1:m, 1:m] diagonal and C[(m+1):n, 1:n)] is dense. ** ** arguments are: ** n the size of the matrix to be factored ** m the size of the diagonal upper portion ** diag the diagonal upper portion ** **matrix a ragged array containing the dense portion ** toler tolerance for detecting singularity ** ** The diagonal portion of the matrix is unchanged by the factorization. ** For the dense portion, D occupies the diagonal (of the full matrix). ** The factorization is returned in the lower triangle. ** The upper triangle of the matrix is entirely unused by the process (but ** because of the compressed storage, this isn't much space). ** ** Return value: the rank of the matrix (non-negative definite), or -rank ** if not non-negative definite ** ** If a column is deemed to be redundant, then that diagonal is set to zero. ** ** Terry Therneau */ #include "survS.h" #include "survproto.h" int cholesky3(double **matrix, int n, int m, double *diag, double toler) { double temp; int i,j,k; double eps, pivot; int rank; int n2; int nonneg; n2 = n-m; /* number of full covariates */ nonneg=1; eps =0; for (i=0; i eps) eps = matrix[i][i+m]; eps *= toler; rank =0; /* pivot out the diagonal elements */ for (i=0; i #include "survS.h" #include "survproto.h" void coxscore(Sint *nx, Sint *nvarx, double *y, double *covar2, Sint *strata, double *score, double *weights, Sint *method, double *resid2, double *scratch) { int i,j, k; double temp; int n, nvar; double deaths; int dd; double *time, *status; double *a, *a2; double denom=0, e_denom; double risk; double **covar; double **resid; double hazard, meanwt; double downwt, temp2; double mean; n = *nx; nvar = *nvarx; time = y; status = y+n; a = scratch; a2 = a+nvar; /* ** Set up the ragged array */ covar= dmatrix(covar2, n, nvar); resid= dmatrix(resid2, n, nvar); e_denom=0; deaths=0; meanwt=0; for (i=0; i=0; i--) { if (strata[i]==1) { denom =0; for (j=0; j0 && (i==0 || strata[i-1]==1 || time[i]!=time[i-1])){ /* last obs of a set of tied death times */ if (deaths <2 || *method==0) { hazard = meanwt/denom; for (j=0; j LARGE) return(LARGE); return (x); } survival/src/dmatrix.c0000644000176000001440000000075312267746150014577 0ustar ripleyusers/* $Id: dmatrix.c 11525 2012-12-07 17:20:39Z therneau $ ** ** set up ragged arrays, with #of columns and #of rows, ** where nrow (second arg) is what R thinks are columns ** but C thinks are rows. */ #include "survS.h" #include "survproto.h" double **dmatrix(double *array, int ncol, int nrow) { int i; double **pointer; pointer = (double **) ALLOC(nrow, sizeof(double *)); for (i=0; i0){ fdiag[i] = 1/fdiag[i]; /* this line inverts D */ for (j=0; j0) { matrix[i][ii] = 1/matrix[i][ii]; /*this line inverts D */ for (j= (i+1); j #include "survS.h" #include "survproto.h" void agmart(Sint *n, Sint *method, double *start, double *stop, Sint *event, double *score, double *wt, Sint *strata, double *resid) { int i,k; double deaths, denom, e_denom; double hazard, e_hazard; double temp, time; double wtsum; int nused; int person; nused = *n; strata[nused-1] =1; /* Failsafe */ for (i=0; i1: estimate multiple scales (strata) ** strat - if nstrat>0, contains the strata number for each subject ** eps - tolerance for convergence. Iteration continues until the ** relative change in the deviance is <= eps. ** tol_chol- tolerance for Cholesky decomposition ** dist - 1=extreme value, 2=logistic, 3=gaussian, 4=callback ** dexpr - for callback, the expression to be evaluated that evaluates ** the distribution function of the random effect ** rho - for callback, the environment (R) or frame (Splus) in which ** to do evaluations ** ptype - 1= sparse penalties, 2=dense penalties, 1+2 = both, 0=none ** pdiag - 0 = the penalty matrix is diagonal ** nfrail - number of levels of the sparse term (0 = no sparse term) ** fgrp - which frailty group each subject is in ** pexpr1 - for callback, the expression to eval for sparse penalties ** pexpr2 - the expression for dense penalties ** ** Output ** beta - the final coef vector ** iter - the number of iterations consumed ** hmat - the cholesky of the penalized information matrix ** hinv - the cholesky of the inverse of hmat ** hdiag - diagonal portion of hinv ** loglik - the final log-liklihood ** u - the final score vector. Usually =0 at convergence, but ** useful in other cases for a score test. ** flag - success flag 0 =ok ** -1= did not converge ** ** Work arrays ** newbeta(nvar)- always contains the "next iteration" ** u(nvar) - first deriv of the loglik ** JJ = the approx variance matrix J'J, guarranteed non-singular ** ** Notes on hmat: H will be p=(nfrail+ nvar + nstrat) square, but the ** upper left nfrail*nfrail corner is a diagonal matrix. It is stored ** as "hdiag", which "hmat" contains the remaining dense portion. If ** H = LDL' (see cholesky3), then H-inverse = (L-inv)' (Dinv) (L-inv) ** where D is diagonal and L is lower-triangular with ones on the diagonal, ** and L[1:nfrail, 1:nfrail] is the identity. ** The return parts are hmat = L[(nfrail+1):p, 1:p], hinv L-inverse[ same], ** and g=hdiag = D-inverse. See coxpenal.df for more. */ #include "survS.h" #include "survproto.h" SEXP survreg7(SEXP maxiter2, SEXP nvarx, SEXP y, SEXP ny2, SEXP covar2, SEXP wtx, SEXP offset2, SEXP beta2, SEXP nstratx, SEXP stratax, SEXP epsx, SEXP tolx, SEXP dist, SEXP dexpr, SEXP rho, SEXP ptype2, SEXP pdiag2, SEXP nfrail2, SEXP fgrp2, SEXP pexpr1, SEXP pexpr2) { /* local variables */ int i,j; int nvar, nvar2, nvar3, nstrat; int iter; double newlk =0; double (*dolik)(); /* will point to (*dolik) or survregc2 */ double x1, x2, x3, x4; double y1, y2, y3; int golden, goright; double newpen; /* pointers for the data regions of the input arguments */ double **covar; Sint *strat ; double *time2, *time1, *status; double *offset; Sint *fgrp; double *wt; /* copies of the scalar input arguments */ double eps, tol_chol; int n, maxiter, ny; int nfrail, ptype, pdiag; /* Variables allocated in this routine */ double *jdiag, *newbeta, *u; /* variables for the callback code */ SEXP coef1, coef2; double *cptr1=NULL, *cptr2 =NULL; /* stop a gcc warning */ double **JJ; SEXP z; double *zptr = NULL; /* structures and pointers for the returned list object */ SEXP out_iter, out_loglik, out_hmat, out_hinv, out_flag, out_beta; SEXP out_penalty; SEXP out_hdiag, out_u; double *loglik, *usave; double **hmat, **hinv, *beta, *hdiag; double *penalty; SEXP rlist, rlistnames; Sint *iter2, *flag; int nprotect; /* number of PROTECT calls that I have issued */ /* ** The only input arg that is rewritten is beta, so no need to duplicate */ maxiter = asInteger(maxiter2); n = LENGTH(wtx); ny = asInteger(ny2); nvar = asInteger(nvarx); offset = REAL(offset2); nstrat = asInteger(nstratx); strat = INTEGER(stratax); wt = REAL(wtx); eps = asReal(epsx); tol_chol= asReal(tolx); covar = dmatrix(REAL(covar2), n, nvar); nfrail = asInteger(nfrail2); ptype = asInteger(ptype2); pdiag = asInteger(pdiag2); fgrp = INTEGER(fgrp2); /* ** nvar = # of "real" x variables, found in the coefficient matrix ** nvar2= size of the dense portion of hmat = nvar + nstrat ** nvar3= #coefficients = nfrail + nvar2 ** nstrat= # of strata, where 0== fixed sigma */ nvar2 = nvar + nstrat; /* number of coefficients */ nvar3 = nvar2 + nfrail; /* ** Create the output variables */ PROTECT(out_beta = duplicate(beta2)); beta = REAL(out_beta); PROTECT(out_hmat = allocVector(REALSXP, nvar3*nvar2)); hmat = dmatrix(REAL(out_hmat), nvar3, nvar2); PROTECT(out_hinv = allocVector(REALSXP, nvar3*nvar2)); hinv = dmatrix(REAL(out_hinv), nvar3, nvar2); PROTECT(out_hdiag = allocVector(REALSXP, nvar3)); hdiag = REAL(out_hdiag); PROTECT(out_iter = allocVector(INTSXP, 1)); iter2 = INTEGER(out_iter); PROTECT(out_loglik = allocVector(REALSXP, 1)); loglik = REAL(out_loglik); PROTECT(out_flag = allocVector(INTSXP, 1)); flag = INTEGER(out_flag); PROTECT(out_u = allocVector(REALSXP, nvar3)); usave = REAL(out_u); /* the working vector 'u' gets destroyed in chsolve*/ PROTECT(out_penalty= allocVector(REALSXP, 1)); penalty = REAL(out_penalty); nprotect =9; /* Create the scratch vectors ** u = working version of score vector, overwritten with u H-inv during ** Newton steps ** usave = a copy of u, after each Newton step. Returned to the S ** parent routine, and also used to "backtrack" when we need to fail ** over to a Fisher step instead of an NR step */ newbeta = Calloc(LENGTH(beta2) + nvar3 + nfrail + nvar2*nvar3, double); jdiag = newbeta + length(beta2); u = jdiag + nfrail; JJ = dmatrix(u + nvar3, nvar3, nvar2); /* ** fixed scale parameters were tacked onto the end of beta at input ** copy them to to the end of newbeta as well ((*dolik) expects them) */ for (i=nvar; i1) { /* ** There is a penalty on the non-sparse terms ** Create the vector coef2 in the contained data frame ** (pexpr2 is implicitly a function of 'coef2') ** Since scale parameters are never panalized, only the first ** nvar of the coefficients are passed in. */ PROTECT(coef2 = allocVector(REALSXP, nvar)); defineVar(install("coef2"), coef2, rho); cptr2 = REAL(coef2); nprotect++; } /* ** Get the loglik, score, and hessian for the initial parameters */ *loglik = (*dolik)(n, nvar, nstrat, 0, beta, asInteger(dist), strat, offset, time1, time2, status, wt, covar, hmat, JJ, u, dexpr, rho, zptr, nfrail, fgrp, hdiag, jdiag); survpenal(0, nfrail, nvar, hmat, JJ, hdiag, jdiag, u, beta, penalty, ptype, pdiag, pexpr1, cptr1, pexpr2, cptr2, rho); *loglik += *penalty; for (i=0; i y3) { x4 = x3; x3 = x1; x1 = x3 - (x4-x3)/.618; y3 = y1; for (i=0; i y2) { /* toss away the interval from x1 to x2 */ x1=x2; x2=x3; x3 = .618*x4 + .382*x1; y2 =y3; for (i=0; i *loglik || y3 > *loglik) { /* Success - keep the better guess & compute derivatives */ if (y2 > y3) { for (i=0; i 1) *flag= 1000; /* no "non convergence" for 0 or 1 iter */ *iter2 = iter; /* ** Put together the return list */ alldone: *flag = cholesky3(hmat, nvar3, nfrail, hdiag, tol_chol); for (i=0; i&ÌãǼ|í¯»ó„ý‹+θÇ×Ö!~®O¬T;_ºîãæ‰ó»ˆ\ˆ?ï‹3Îyç1¿SïÄãuƒüçÞßuÇÒúÃyxŒ¯´Ǻª®3öÝïX?Î'wênÃûiÒ©ëÅý‹ïk©¿yûùçãhñy÷‰Û_R¿C|,^ìñùò⸂çî¬ñ|Û’Íý½TªCŠóÍï;î›g½õlõÖi7+ïVoÒß-|ï“æí”o³î+ß|U×A¯zþz·ÍêS9®ío_;ºq}±pö›#0Ø;7Ûl^_€½®…ßñeÍÙ×1f±9ÕümÑM÷óÜÔ"¦ÃÁþkSÍ©™…‚ä„÷-Ü\°+xvèhtBt"tbttRt2tj8‰`¼€yÜØ*óëT/~ÿét¿áwßxŒó©¡¯âíòÈYåúûοßU¹/Êrmô~ØŒë³ÞëY5¯ÏZÙûØû§-™ÿcÿ!Ø;…þÚ²xܼûZhbïzääkþüó¸ 9ñxÎ5þ§–:äÇØ_,ßÄÌ8û ͺcf b–­Úf!î>Œ»õ^¿5Μ³n½3ÀZ=.ôÔZ§+ÖZÍCì¬Ù}¨í±•w˜óÀ¼k导fMŸ€¹1öä}21ga]ñZáM˜sÖàÈ»ìó§aþ¨ÓçŽóŸ¶æƒub­÷ààu¸`Ísý øZ7A˜ã‘u¾Y“ÛÖü°ǹ–C³²¯×œU+Ö3 1³À¾e­7ÞköuÂ>1õ.A X×_V܈âû~ò/Aþ[ÖõÁx¼Ï ³eÕ†sjXs¬ƒ½ßa¯µ¬<¸6÷÷û´u\ê{;Ç(ز¾o)îû¬µ]‹Ý÷-à<´bfœ}»ï[ª¼ï1ϼâ¾wë½ ¾Ô÷¸fv½Rßã:ùö=æíÔ÷¸¦OÀïÔ÷&Æí{\£²¾Çµ°¯Ù²s\êûäùWí{¬ë©“Ë·ïñ|»ï±·ïñúùö=®‹oßÛ}bê•ú×Ó·ï[Šïs\3»ßì¾Ç{}û;¿Rí¿»ºcëùý×'WnY¬´ï›ÇgÒ1ßuòåm¤>Ÿsª¬ÑFçå»6UæV%W•¹V­q«â×›×g®Î¾y еª^ü=¼ß)Í^÷Í…&º7§ñeyQØ;øª¢íµu7æßT÷˜óôéÊ‹«««æ·gFÿ–'Á˜W2survival/data/ovarian.rda0000644000176000001440000000115412267746150015230 0ustar ripleyusers‹ r‰0âŠàb```b`f’Ì@& `d`aàÒìùe‰E™‰y ÌÂ@.󱔃o8Ä€ÐÉP~U”þ¡k t-ŒÞ¥/@èÆºª¾ÝBwp@iÝ)¡»v@è Pu= ô=鄞¬¡  î+™¡Ë æ•Aí/‡ˆÃüeq: ¸øÄŠS àr'û ñ$jî}lù‡ ù¦ížqÂ!`îùUgçµ8x­[²â`È)Oíj/e˃>æ¼-¾ŒÖ>åïçnÒåsð}›%&ç_æÀm![»ßÃÁ{Úéߢ[K|NkÆÍ“vðäcÏ¿¤àà{a¹ì³YW|ÚV›UñOtp^´m]mX®ƒkÿ ïØ3)ÎE! «R;¸ùœ‚³^_„X÷0.vp“ò½ôqåßÓ)Q2k8‚8ë,­ªppØ tð ÿ9|ûî/qpÖóx±\ÎÁW}ÁOÎì]pA=Iˆ†… !ytš:bÅ ¹)Þð¦CBö2].ó™O¬;`4‘j©þ%6É5­¸dÍKÌM-2@…%D-­´$37Á+.I,ò˜ÓaE©Å™)z)ÅP>SQ¬NMÎO×+(F·,9'±fL+%±$Q/­è4åœEùåzÈî“‚J0ÂF0†1Œac˜Âf0†9ŒacXÂ\nhgÂYFp–1œeg™ÂYfp–9œegÁí0‚Ûa·Ãn‡Ü#¸Fp;ŒÌ€ä?÷7—survival/data/flchain.rda0000644000176000001440000024231312267746072015204 0ustar ripleyusers‹ìý ÜeÙyÖ‡žšçªS_µF ù³,ËÛ±àÚC`Æ’°dy fpÀטɀ!`Šár™.—„ažÍu¸ !\B ÅØØÈ¶ZÝ-uK-©»kž{î.u©;ëÔyþï÷ÛÏþ­ýµdK-Ÿóû}µkï½öZïz×;<ï»Ö^û›ßöÿéáï8<›ÍvÏöìjÿîiÿÝ»»ý³k¶wv¨|×÷ü¦ßú¿í{g³=§Úé‘öw|6{ã{ß±˜-‹oŸéxÆÎuÿÛÎl¬ûgWÇï˜m_ŽvÒóß~ÖÚt|»=ÿmVþ¿ðvÎÚóg·¿îtsNûUþì°Ü·ÛsÎ/ïψÔ›Ú£_NßY£ÓÛ³ëNŸ÷¯øïí/¶ï×h|C{>Þÿ$g©_=9‡õ³ê¥½]£q>;<ÿ¿•ó3vó³Ûßÿ–ÅðH=ßjçõÜÙá}®›W»‹íßæí@Ÿ÷g1,çÏW{öœ÷›ç‹Nï7å½èòc¨ß¯;}Õo£¿Æ£ÓÞ·z9¯Çéá¾÷ÛËqÊ'9¨q˜mîGçg;½ázÕÏõ3Û÷c$ÖîhܹêOíøx _#ypú(?³ò‹íï'ýýV¿¾Øþú¨Ÿ¡‰Oi\)_zåôBOz~6,G;#=YlÿÜÈqýÌðþH¿ö|ºN=¡ßÉþº}r}sûèök¤×^Óåý˜ éÉc8z?¾ÕŽI¯zrZãët.ìyoÿ¬•§=ê9;¼>¢ßŸwº½~ßú‘ìúÈNøõT¿Óïý³ë.?#»¸>—p€ËQôc¡?“Û;kÏ[ÿFòÛ¹?ªÏúUvøŒ]7ú#nðöfÃçGúzfûò#yá¸>ùúëvrtŸú9z»g†Ï¹žŒäò¬µ»^w?îú™pQÒ7· NÂ3UÞΓýõ~ž_ ïG¹±r $¿8ò×g‡÷G|;3¼žpÛ¨½E(ÆîÛó£~Z“}Hå£Þx¿tt¹‹¸,Йüê·ù}¯ßé?kôÙs#þqîôROê×Âè;3,ïõŒôd6O<¦ñ­vfvßûçí{}”óþ,†Ïõä¡+ß”KçÞ¾÷Óë?cåV>ÕkÇÈßÅö÷]_ÓõØÏÔîÂŽVnD¿÷óÌð|$gìhíŒê ôöìl|îL(ç×½^§{fG§waG¿Îs©^.Ñ{&”KôY;]»¶°rëѳ°ãÙa½QþÎ:¹ïôxùpžø0¢ƒréyëgÒË©vh²_8;ñþÂŽg:×íís¯=ïßÔú­?‘_Þ™ö¼÷ÓŸK×vtz݉_QŽÏ|jz#¬ŸÑÿz½©?gì¾÷ó̧>Oþ¸‡“ßëâŸ3áþÂîûu¯ÿÌöôG¿áõº»ú³–ëâ”Dï;žc?¼tßûãýMíYÿÞc×{õDÏù;:}©>§ÃÚïÚS+×ã]ú¼_éykô<弞p¿‹#½>§3•sú§ž;]V×NœÙþØ•G££ç7ºvvÊÑÞÐnº? ×{ýñú½ÔO£ÛëéÑÝmïl¨Çé?cG¯ßé›…rÞŸ3¡ïŸ]Oò<êG:ZùÑ8…~tý½÷3õ»ÓΧ÷B?»ã•è[X=g†Ç.^LýìÑ?žwí~j7Õ¿^vØËϬœ?çtA¿Žï¦½™áüLxÎÎß}vx¬öÎZù3vÿ̰ܻ½œÝôÙóNÇèèÑå圮@glßÛ³úGãäý™ ]þͶ¿ŸÚ÷~ê÷~y{ÞÏ@_âk¢¯G—Ëej'Ž£÷kÎízߣ眮Ô_£g4¾Î(ÿÖ~¢#é}W¯ŽÑuoßè­öR½NçÌž_„c~¯?ôÃËÇqHõØs£çý¹Nùø| ·W¿ó-Ù¹dŸ#]©=¯ÏËú»öÕé±r±}£·çO¢? Ïè²ö»öÙêïúÝN½#yöö¼_N¯»xºB»‰¾‘Üûu;Žú—è°òÑŸùóvLö¿'©ŸÑO†óˆƒB½£zœ®N===v’çÛ_ŸìïÏ Ëuõ±Ó^O΢~x½SûÃõ]i\¢\½E·; ÇÅöç½ñLòÏ­EŸ÷ÓûátõÊ/¶?8Ëë·ëÉž$þD?åôœ^ïúY?ζ?újíwû;³ò^OèOŸhߨ?]·û]î÷üzìåfv\„ë=ÕOoߟ³çGÏ>ý†—wzzôÙyÏŒp›ß_ Ë%?1Ò®û¹—7:GýïÐûcå»þðL¸ï×Cÿz~«‡Gºþ3ô;ÒµCz¿9”]·cÄ+Þ¿³Ãç’\'›ü^”§D—ÕíÒlxŒãêMôŒÆÙ¯Ÿ>ŸøÜó ]ü`ýŒ~1,×Ã/}Ñ^ûõŰ|’nÿ½_~ßêíùýPÏž}zíí§zvôzR?­Þžõì]¿hߌÞ8®þœ]ïù½._œ~ïgª×ééÐÛÅ+~±ýõ‘Άå{þ|²~y?¼\¢×èŠü å«ÞÐ~×Îy?>§ßúÑ•'§Çéõò½~¦vÏ Ë'}ÉÓÂŽ3+îúè‹þÑêrÚëÙ·.?­ÞoNå®ÎýèÏÏ~êç"ßSûcϯ&ûÏÏØÑÚázÔw§6,çåÓøNµk=ûÓåÕ“ìÔ»ÂñÝ”ÓóïR;ïZØñ¬•ãxfx>ªo1<ÏŸ±ûºGíÍB=F÷¨}îÏìºÓqvûöŽQùpÿÝv}Ä·N?Òø8ñy/gíÚ9³³ò£~„~ÖѯÏ:õy¿fÃû>±¾Þ}/®§qïµ7ê—÷cñ©¯Êy}©Ÿgí˜è·ó‘¾9^ŸÓoíBŸGvÃÛµöâø;}gB;³áõºïýñ~%:­þÑø†ç{v´gFõ…ò=~$º{rí µSíGrâõp\ ˧ú¢Ûõ¢Ëë³ë={ùaíôÎGG¯ßûáçgÂýÙÄsúwvû~uÇÇû3³c¨o4þÞÞÛ=³}ùxê‰t.ìèí{=‹OÝßä¯Rý£úÝ‘_ÖN]·û^>ÉI7ÙÑÛ‹ãsÖÊuè­Þ„»Fts<ûòÚíÙ«È£³ËoÇÏîWç~õ›ú¼];ïá³h×¼¼Ów6~¿Ÿè°þEz¼ŽóÙðzª·k÷¬Üh<­ÉÎE½ðúŒÎ~Œô‡~ìxœ ?•³û]9å"ß¼žPߨž³Û×ÛõW^Ÿ·Û«÷l(Çy¢ßÊS.â"?ús¡ºÚ‹øýl¸ß¡«§o©¿;õ[I/Gý²v£ßñ~žÝþèåcÿR¿ü9£3êƒ_õWyïç,” ýêâºð|¼?³û©³öü™ð¼ß·ö½ T9?·çFt/¶?:©Sýsò‹Ñ/y?ý~ê§ÓŸúaÏyùd{v­›7 Ï%¿2ꇗ÷úgÃó¤·=7¢ÓÚ‹öËë;»ýõ.ÞðþzÓxtõÖêëᣑ=5º»åφòg¶?ïᣈC8÷v:דþ¾;gë³ó*ïtŸ{õ;==;îç]{îýðþùñÌðõ!•súB»Õ_»_×Ó}ï·µ×åƒ{öi²ßïörú". ôwËy;Þô|Ä+Öï_ן[}Õ§W÷¿‰ë:þj»Îù¯öráøMö¼«>ú;±^/ïç©þH7t†òß”î{¹N»Õ»î÷ßeåÒÑûˇzߪÞ«'ÝOí¥vb¿R»VÎË'9c ×å~Ô+×çT>¶Ê9Fôxûö\Ò#Þé‰vÀéíô»×N¯|âë»ìzì‡?oÇQ=ÖN’Ÿ¨wDO #ÙQï׈ÎN¦ò7ÚS¯/• ôôô3ñ»kÿS¿zýðv¬½®µóÔN´Ÿ^‡þ(©¯ÏèKtú¸z»#ú;÷9O~'ÙÞŸrúFÏÙýžŸŒöשÞžÝô[{=ÜÓÃWSùÙÓ·ä'ÉO%Üð®p½gO»öÊÎßeå&ûY(ïÇÐ~âCÂÉo$»×«7ʱÓêöñÌö×Gö¤sLå«}£g¤Þ¯3Û?—â('ö{ñL²»=¹Mz>—uqX¯¯/”ïÉQÄFwÏMÅ3éyÊ÷ìC—nê]OåÞå×Þè·Ï|êó.}¡_Såç]vì>èHõôô¹‡X½Sí¦Óï'zÎ Ë'~Ú·ç¢_·r#zìù·y;¡ÝžüWûN‡ÑÙ“ß_y?Ãýd8çØ³Ÿ ÷vãÀtžè¦¾ÙöÇn|ž÷~öäÔËG<ú•èçùÄ·wÙ±‡[b}vñ„•óö{ñÀÔñOüëÙí(zªÔ»ïåΤwÝÑáõ‡ç¦ú›®½Ø¿˜×°ö§æ³&ã¨ÐŸ®|[}±¿NŸ×cô¼\½éâΞïæC?“žõðÕ»¬|â[Ïôâºâ¢„_¼ß=ÿ2Õν˟³ú{¸4»×Ûó^_´‡¡ùÑÚíÅË1^µòÉN¦x©Çòüˆ./ïíú£¾Úýdg?ïå7»v3Ôýz g²ýí×}o'=ߣ3õ»×ßÉ?÷亇ëzj?”‹þ¸C×ó./èŒü Ïê õLƯ^~âõèçì¹wùýPÞËÅx8ôcj¹nœú‘ìß»fÛ—KÏèÔùÛÏl|GçüzþÜŸ U.”û™íË¿#”¯úý¾]w:ª};¦~%ºÞé玢7Ôëõx}Þ~õËÛëÐ9âCx®Ë«ÿV.ÉI¤#´ãç½£×ïô$yòkýMãå°CçˆÏVÒ›‘\zR}IÒ¸úó#ú;í%9Hrôn¤×Þ~hw$W~ßúŸäp$~Ýûãô†çFö¢COï^ý‘_ޤŸ#9ðúÂs©~çOêgo#]ÖŽ×ïívå/´›ü]Ò£c?ÃýžMöÙÇg$ωî=³í¯÷äpª}Ñmå{r˜Æ½ç¿"ŸfÛ—Kv)ÉM´ûv?kÏžÇzBù¨©ÞÐßä/ãøÎ>õõägRSûé~ovýl8O|Ù»P®×N´·V®ç^Kx¯‡ÿ“]K÷§âìžœwåçÌöçSõ¡g_ãø:ÖnÒ¯Øîl{ú»twú™ìRÏ®$?Òóǽ~÷ìV’û®ü9Ý¡Ý.néô¿‡/R¼Õ‹Ã¢Ý´ç{rùš®{ÿíØÃ“íI¸ßggÛ?Ÿä¢'gŸÙ¾|/ß15Οjç{zŸä²Ÿõôð]‡TOÏ®î4èù¯ÉöÚÚ鯝¡=¿—pzÔ÷pžâ—Wz¿¼>/èŠy«wÇù­Ðÿžÿï[/ï“ꙚÇéâÐPoïzН¦âê©~³çO»øÀë±ö&ó7­ýú‘$—Sý^Ï=ûÝ‹÷z~²‹ÏlOo7OdõNõ·=»ó á¼g'£¼zûÞŸý¡¾.îÆù¡üd\ß©§gíTŸ{þ£›ÏIåfÃëÉN¦8ajœÞÍ/9=¡½É¸-ÐÆ'Ú]{¾×¯Éú°S:ìù8ÞïÐn´+é9+ŸðäNóIïz×{òس_ÝÙi¼•ô¤›? õôòSýÎNãÊ©qrÒ£^~`j¼Ú‹'zv0ÆcÞ^¸Þ³#Sãï.¿í¼ç¯ºq¡Ñ95¯ãüN}ɯ$û25NKø3òÙêëáñT_ÂIž’œôâ‚©qÖd?I=3+ï×í~×Ï„ã;NG g§òÔõ'Ö^]úÕß®}óëÞŸ@ŒO¼þ™]?³ýõ©ü‰åR}vÞ‹û§>×££'̆çSㄈÏì¼ç7“ý×$¿;5ä§g§¢ζ?Ƽ…õcj<íB§_IO#.ýêå5¦Æ‹—¥~'º¼ÿv½›' ýš/tûáýµû=>¥qîù¥ž_îÅy]?êéæï]=ÿ³Ó<ÆÛuüÆ3vÔõ_5³ó3ã—çœzßnÏ£]¯ú¼‰Ï½ÝÊ{»½v¼_#zí¹_Êû}¯ÇùœèKíûs£qýLô|cz~¶ýy¯ßÞþèyëG:&¹JtŒÆÓžKןF×]=:¼Þ¤?IœI"ß]IFòÕ¹ù{æS_OvaÔÏTOx.ò¹ó|”ãÔ?{.õ#é½×H?Ï|jºFõvÚIö0ÖgôE½ ÷Gããý°çzúõ,µÛ£Ï¯‡z“½›*Ÿ£ú=£þZûÑ>x¿½ÉoôüJ´»©Þ@gÏ$>Åv¡4NÉÎöìZêWÒ¯‘Ûó=ûžvx¶ýóÑN¤ûÖn²©|ä—_õôÆ1éM|ÎÛw:Ý#ù²ò½öãøÚõ.î´v"¿¼~£'êQ¯_¡Ý¾éùév®‡G"Î ô&;•üNl/ôgÔÎÄv“>';3â›×oç·X?z¸¹çïzø²gg¦ÊkijáùTO׿žÞïêkègÏ~'»˜ä,Ê¿·fûç£ýòòFw¯|OŽ’üöî÷übÄñNo(—ðÇhÜÎl½ÿ‡~Lõiœ“Õïý°ûцc´Ï¡Ý^¹©|éé;:}á~òÓ“ý Ýþ¡ÓÏnÿÂõ$WÉî'ùë=—øÐËÿ%¼ÝÃ]àåÂy¤{¶ýyO¾{ù»¤‡=ÔÃ}=ÜÜ•{nj¹è§C{=þôðD’Ó^œ²Ó¸º×íTîb~Äé ýœê‡R==ü›òœ)I¸'ÊE ·ïŽüièçd½ô¦qŠ8"Õcç=ýNí'ûq–µÛÍßý½|DÇ&ýëáþhw½½ÐŸ^^"ùÓ.NòûvŒv.ÐÙ³/^.Êw #ò?Ô—èžÊŸnb¶ýs=ý¥×ÚKz”øÑk?â²D_ 'ùƒ(çSï‡ö"?3¶gýJrŸú=Â7ö£^ùsvŒzÔ¡'ÙóÞyâ{²SÝqògõ$ÿýR§_]»žÝ7zºãwfûç{v/ùˆ—þ©8a*z¸2ÚëT ¯Kןè Ï¥zzþ§÷|Œƒ8†þNŽCŒÎ©¸?Ù‘n^!Õkôwí¨õ/ê…’OõK=»›ìÆä¸ÙÊ%¼Ç3ôÇù‘ìsj¯g7§âˆh·íùžœuý¤•ïáÉ©þk¤·©~ï‡'º{õõðKO÷ìmWOB}1ï”î;Ýþ.ŽJý²vzz’è|¹úÕÃ+Sõ¿çç§ö·'_£ñ´z£ å£ýKíX}‰O —øõdo»q¦§ñ‹ñuh¿Ëo?µ“úÓ»žÊ͆ýLþ»‡ßºøÊêIãÕ̓Øõã';ïÅÉ“ý„÷Ãé÷úŒÞ©|ìÙï$§_³Ùžc³ÙßÛþ³ký÷iÿí^ÿ­ÿ֟տ϶ Xÿ­ÿÖë¿õßúïsýï³í«×ë¿õß+ëï³m³Öë¿õßúoý·þ[ÿ­ÿÖë¿õßúoý·þ{¹Ÿí˜zý·þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖ?{þ>Û1ðúoý·þ[ÿ­ÿÖë¿õß+áï³ÙÖë¿õßúoý·þ[ÿ­ÿ^IŸmì¶þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖë¿ñßg;w¼þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿÖë¿õßϦ¿Ïö¼Àúoý·þ[ÿ­ÿÖë¿õßúoý·þ[ÿ­ÿ&ÿí]Åq{g‡Úqÿ÷ü–ß÷[¾ç÷´ÿÍgËouuׯà?ï´òû~Ó÷|çï¡xUò]ßù›¾ïwüîö¿Ûßñåç¶óÌ–¿Åß\èÈù[íè׿.”›züá8µ|¢ëÓ¥çk;íùýTÏË=÷#í}](ÿç^.zô¤sžwº¾Âî{½‹=i|¼}¯çÓ•žÜOí÷?[_.ÉgO/¿ÖŽ=ýKtöƳ÷œ{õzÿßêIú¹ÓöÒ±Çÿ^?“=éµ;õè|ðë~þuvôú’¼¦þ{ûŒ“×O¹E¨?“þ¥q ý$={žŽ;¥;GO¼|žd/½<÷wêÇ“¥rŽ/zr˜øáýpº¿ÖÊ;=î?{üLõM•¿©íøñåâ¯^{=ûèýx[¨g§8mª^õpCj?ÉûT9zŸãT9Jý†¾ÅÄr½~÷è*‡®‡©žþtñ²ãÝd¦ÊçT{²SyIí½Ü£“ã´—kw?]úÝ~§r=~N=:¾K¸7Ù³Ït<”êqz’êáþ¤GIo~ù}ÇÉÞŸ©×§Æ/ÞþNå±GW*7Õßôô(ÅÙ~|ÇÄò>ž½x¾wìÉqŽ…û±ÇŸÞ¸$ùMö<ÑýrqDʸœx\ÐÃÁSã¶ÅD>}º¸»w=Ýïéc²·Séä˜pNÊ;LÍkí4ŽNöó3å<ŽÝi¿všoÛ©?ðë;SvŠóz87ÙéøÄÛëá‘_½ÜNõÆñizn§~€úñ?½¼Fz>•›jßýþü"´çö¡×_?Ÿz½W_¯)ÎHÏ%<¸S½ŸÚ^ª§ù¼^½/·|Oozþij^ƒóE§Ý„C}^_î©ñf/_éý^„ò=º¦æÅzõ¦ãT|çô÷òS妧ŸÞ?§£wìá´ž=õãNãn§~"µ›ìT/ÖÃ5½¸8éC:NKüúÔ|S/_05nï¿¡óüT»<ç&zw*¯^_ϾM•Ó©zУïåÚ¯©öØïï4®sû˜â«©~®§·½þOÍÏ:¾Lô$>ôä ‡—{ó¸^®wÞÃgŸn<èú½S=š‡Iþ®÷üNíÕ;ÂsSñqϾõðÍÔyY×·žþ¼\=rúœþ—ë·§Æ—©~}jÞ,Ù^Üšü¢ógêñåÚaoo§ùª„O==;4õüåæý^.nLå¦Î/&üæqJj'é{¢gj?R;;½ï妶7µß\ïõ¯—íù“Þú/ϹëûT~&þ¤x{j=SóBé85Ÿ5u=ÎNûŸüîÂÎÓuÎëßi<”ŽNÇÛ¬ž—kGý8Uî?Sý›ÊÇös§ýžêwS¼½S=˜ï%»<Õþ{ž'•OñîT{ìÏõúéÏyü²ÓõSùæv;ÙÓd×{y³tt}Mt&>M•ÿ©|Kø¾×¿©qµ{88ÝOþhÑáÇTýHø¹·žgjÓýæ»àCZ>O•«Ô÷S×ë÷"Ô3•¿)ÎMÇ©y•ÄÚ³T¯ç“vêǦʡû£Ý)ŽÞi¹¾òë½öz×Ï©¼·?µŸSõgªþùu×+÷ËN_òÛi]ægj…ÓÙëç¢s?Å÷SÇ£§'ÿÖ‰×{qqû:;r½—ŸŸŠ#zø'ÓÔù¾â ïwâSÏN.&>Ïõæ={åR^¥çO“u>öì¶·;UNz×{ò=•¾^Äù’êéÕŸèKþàÓ¥{ª|L=&ùÛi~,Å1.'nÏ8_tÚí{óN)¿–ÊûõÅËOµ#NOo«7>)ÎëÑëýÜ©ŸYXù^¼˜pnòSõ!ù³Ex>i×ñM:¦|E¯ÿNwª·'O;µWSùÑ“ƒ4ÔÃ~þƒ•›š¿Ix ÉÇ"”Kþ°×ÿ4?÷_=z{ñß7X¹ÒqjÞ>áúTÇ©ù›Þ±Ç·nÚiþ Ù¡©ò·Óvwº¸÷\/ŽHyˆ$÷SõÂéKv¿×ßžL×§Æ é˜èšŠ?vª— gôäm§¸rÑi'É{ª¿§/ì<Ùõ®—Ÿj§ú·ôüNù›Æ)å5ÿzò<ÕîìÔ¾N]?ÛÃMSqš_w;áø!Ñå~5µï~?Ñ•ôa*=Î^ÿ§Æ‰©—û¾ÃTü;µ¿=\çõ/ìþÔ¸,Õÿ»Ný ·:SÛóv¼;ÕÇwX=SŸó|@ºïýÞ©öä*ùïžôÖ¿'ºz¸'áNïO§®›CÎÞfÏ¥ú’¿Or3u¼_w¹êåGRÿ||SÞ»›ôfª›Ê÷GO=NŸÛéû;ƒý¹t>µþ俦Æ'>¾>žçz}~œZ.Ñ™ä-áØ”t=[tø’èêÅ…SñêNÇÛùØó”_XùwØõÔ¾Ï>MõSõùåÆ)/ÜÃí©^?öèIöȯ÷ò¤®Ç=¾Ó¸±WÎŽ£üùd÷§®ËñþúÑçE¦ÒÍqaÇ®›ìù™ÄŸÞq*^IvÎëIö6áµ~ôrSí^ÏÎ%=ŸšÿKíú1ÍŸ/:Ï9{x³GoNç‡Ó׳céèí.ÂõÔŸ„'¦æ_“ßt?”ìG©/÷˜èîù=ן©v.ų~\tÚß鼬??Õ¾øñåæz×§ž'yô¸§_'ýHýööRù>p½êåéÓ¹Ûý¾I¸¡‡k^™çûxìÿ¦uuSçE>]ÜÓëçâeÖãã05þíÕÓëß"”ëÉcoYÂþ<çSó½qN|Kþgj<°S9Iôz}‰Þ—kwÓñväzŠ{õMÅ Sí½÷7á®TOî„/wj‡ÒÑùºÓø$µß³Û^óm§yèž_íÑ5/B»)þKt&ûäõ;=Sǧǿ©ò—ⱞ_JÏõèéÅmSíùNýÐÔ8ÚëÛi^Ûù¾èÐÑÃÉÞ|¦òB©ÿnÒs~½/ì4˜êÿ¦¾Ÿ’èèÙ³©8?_n>¶ï¼Ü¼Ž×¿°ó$ïo›XÎÛIþÌåej½=|éíÿô~ËÔûýžü'»ìyïô|:N³?Së‡Óx.:ÏïŸû1Å ×ôpoÂ…^ïNóVSõÛå.µÓ“é~1ÑÑó—^®ççzzЋ»vMíoçDï¢ÓÏ—›ŸŠë{|vÚ«w®ïÔo¾Üë½xh§í÷pRÒßÞz’þÜÔ|@²ÿ=û2Õo»?q»‘žK÷“\M§‰Ý?LÅ} ;&|Üë_OOvžä4Õ›®¿ÃŽ©¿‰=»ŸúíxÞåt§ö7§âƒ4^=¹ïù÷}é˜ì@¯Ÿé¹Þy²ƒ oöpÚÔñqú§ÎÛøõE(·ÓxÎéñúzôyýNWš÷ðöÒý^Þ1ÙïÄ—TÎÛqüëõôÖw¤ö¼]Ç™)/ðV;¦xj§úïåR;SŸÛ)^Lz—ì{òŸ)nýtç•“ü${ýró·Sã>——·†ëÎ'§ojþÆëï­œÚß©8hª>§ò=:üzz~j^ë3¿÷ÚIrêMòéãŽ\¿ÍÎ{r“ú¹°óŽçÂŽôÛí³×—âú¿V>•ócâ‹Ûµä÷zõì4O”蟊ó9N]ÇØãkÿîÏÒ}Η%<ºÓø±×nÂë)ÎÊŸ^¹Ow÷ìÅÔ<àT<·S=ïÑÑãK—Ok¦Æ³éù^½é~òï‹N»Sýq¯ïoÏN¥yš^ëõ$}âˆýIô}ºv'ÉmÂÿÉŸ&|°°rÞ~ÂA‰¾©÷§Ú—·4®iœzüñrð£—÷÷zÞfÏMÍÿ§~öü`²ß½¸Æûáõz»©|‡úõE§?©ž^?]’ïá{ç{âÿÂÊs=áŸd·©'ùe×Û©¸Èé™*‡©¾ž|N§DçÔq›ê'½¤ïiýBª§×¯tt;Ý›ÏHå½¼aÏ/õžŸŠçÓñmö|‡½Üõ¶SñùTz’ÿLí¦ë;Í·õìJO©žž_ôz{rŸßaçNG/.ô|eî®êážœøx%ýLã¹SûÐ׉îÞ:™^»©þ~uÿõ鯱½v¼|Â# G/ìúÔøÁùÂy iþ,õÛåÝýêËõ;.GI®ß^á~Òäo{zât¥~stþ'¿˜ða:&=Oí%{–òQ~þ6;¦ò~}ª¾8îèÙÍ^¾¬7ŽŸ.Þä¡ý©óÁnß“ŸKþ 7&¾öú½S{™ìTo=Joœ“]K¸Âíˆ÷cjž ßÂÎS=ÉO%ú¿Ý.$;’ì÷¿Áž£É>x?¡ûáù^|’âÃv>öä2ÅÙ^Î'î4nšz=ñ¥w=ñÕùçòåýòç{83½^\ì|M~ËŸëʼnÞ^üÜóÛþ\êo¦r½c@—LJ=úvºÎÍå!éÏ/ìzÂý©Ÿ½¸1Ñ“êõëé¾ã/çsz®‡‡ÿÝ>-&ö?ÙÏ…•_Ø‘rÉ%\ÈóINz¸ª]I8µ'×;Õ«©xßÛá|aõ¤v’¿NýHçÉ~/¬œãø^¿üzŠG½ý^97Ç SóRÞŽ÷¯×¯tÜiüÞ³Oéèã•âN/÷6;Oz0/õø45>XØs;õ‹~½§×Þ^¯þd¯SüŸÖ³¤þz;=œ3µßiS<œøîô:)NMë{vÕqßNõ£'ßSñH²G½<ÑN×!¤qHõ¸Ÿïña*q»±˜ØNòÓSý¢·ãÇt?µÛó¿é˜ä%ÙÝä—¦Æói<¾ÎŽ=º9B‡£ßŸªg½ûN_Ï.%ÜÔÃo å“:þ)/´°çzxïVÎéÜ)^LÇ^Ü’ðOÂ=}NíOõWSóc©ý$_=\߻ދwi÷B¹^œéýNø=Ùõ4NɾLß“?ï•›zžìŽóÇûåú³°s¯ç­VÎË÷Ú›=דƒ…]÷qKýèñ3á÷‹^óq*îñ~õìíTýMvßéõø+å1zzÒ[ŸôÖù“ø˜ô¯çïœ>¿ÎqÚórŽgzrít¹_íåG“œ%û÷rí³ë‹Ë{ÏϤvzrßó7nG_I¯“¼¿Õî'º’H8)Ù›©ýM÷“^%ÿÒ‹¼ßè¥×׳cÎg/¿è”ëÉ}âOòïþüTyïáZïG¢+•›Š¦êËÔ¸¾‡WRý¼g·vjÞþv=ʼn©ÿ=º{zšêw9íçÔxÍíêNóK £/µ×«Ïér=LõOÅÛÉO8Îx›Ý^_©y?öÚëÙñ$_.ÏSåÖûÓÃUÞ¾ãý¤;åK¯ÿ~L~0Ù=ÇÿÞ©~±GÿÔ¸kê8¤öz|èá´…Ýwº¦ÊyÒç„+=nìùÿä·Üî¹Iö8]§çKÂ^.õ›ë½y¶©ãîãœô1á˜d/RÔ‹3{qÌNíR²oÉþy==â>Ç ÞŸ^?¡ž?íá€^<›Æ9Ñ =<Ô³û”ƒo©ŸnGRèýz‡“Þ&üÙç^\±°ë‰Ïo³óÔÇY=¾öôÞùº°ó„{zvÙÛù»ïòþÖP~aÏy?’òxÑéOüt:zúããÖÃþ|j×éõrN—ëMÒ‹äÏ“ßJõ»?N8;ᾤo=>N—xÿ|œS;Éra×9Oþ-ñi*îíõsj=ÉΧéÉ“—OñÑÂî{ûÜïÅ‘‰Ž©øŸvzøÝëïé]zÞíÇÔ<×NqX²ë 7LÍ›$¶SýZ„v¦Úm×úÝõë?xÜçíôì{OÏ“üsþuç½ÿ½üÀNq¾?—ÚßéÑû;µ?=%›äµ'É^§çÝ_'ùéñ-é‘ëçÔùïžýKãìõ¾ÍÊ':{|]XùÞº©ëCR;NßNó| ‡»>§qq>õò)©ŸÎ—w§#Ùyçg‡¤xÆëOvÔíPÏÏôì¯_ïñkê1ÙãDýZtøã÷{öd§ñÉNã­tÎ1Å1=9ñç]¾¼Þ„ë\ßÜ®zù¤=ýNv²Ç·©ö²‡wÒx{èõ¦cÏ/¤|•Ûõ^üçãÙÃC)>[X9·c©œ÷üŒëWÂwI¾zqvÏIϧÊaÏŸxÿ§âÞtLýééÑbb>šj§Ú¯ä?¦Î£ï4îïá9¯ßϽÝD÷âe¶Ó»Ÿø•üǯ³cjoj|Þó7i~¾ÇÞë÷~÷Æs*nJí'{àÏOÅÅ©½^¼Ì1áÎß®§r‰=»èô$œšìËcÏ/÷òÛî½\ò‡Þžëo*×Ã==;Ü“¿žøâÏ%9ìáèNráüv¿¶÷{tº¼öpú[íùÄÇô\ª·§½x!Ù£Þxûü ?—ìzoöô0=7Õn%9j.š:ï›ìÑÂêOxÖëqºR~¼7íãñ6»ŸèéÑÙ³Ÿiü]{í;ßë »Îq§qÞTÿëv,ñ¥'ÿÞ_ïG¢wa×{yÇ‘=ýœz}j½=>ð|/ÎKò³°çS»‰þÆ]þ|ªê:×Ódÿ{t÷æã’½IþÓ‰ÿŽG’¿Mõ¤vÒói\{þ;µçõ¹½t}w>§ø,ÙÑ…]ß)½©×#/ï~¼—Oðqðþ:žèÉŸ{þØéä<Ù·©þÔå½'ŸŽ¿½Þ>JõºÝL8£7N^>áø ‹™Î_P?z÷Æbîï½{Ví,f«öû¹.~žZµ·8¡öàÃAñeß²õw_?ýŒø¾ku¾¸gŗŬÚ=ýÉÕs§ŸVÿž}ÏÞ%ï—œ~|ÅÏÅ.õïyÑsHçWÿä—ï>ú«þõbŸÆíiññ øöœÊ=%ºgwÙòͧ?):v«ÿů¹Ú;¨#ýÚи~Rý‡Dÿ•Wý‹½ªw¿ê}­î¿fu^ãù Ý?¢zž[ÑyúŽê9ºâÃbcU>žþ„øÌ8ÏÉrß©gÏÏ¿û[ÐõýŒÿŠŒ_ññ€ê{NÇ—ÄÇÈ÷wÝý¾³R¾Ó/ª™®k|áGéÝ®§¯ë9Æç¨ø:SûoÖ9òyHüyAGñqqJý=Èó¢ãÉã|Tzó,üP?>¡ó½+z'$OÒ›Ó—$G·¤7Œï^ÉÓ³êï¥ÕýÓÄOúyQô!7$3ñEÏ/vk²{‹ÝªGvîôñí*ö\+¾=a~97= ò/Èž=§qÆþß½Ð_UnqDýc<ÀQȵŽèø?>¿õ×ÿùWÿ¶½Õ?ìãUéÙ†Ÿ®ßø ¿õwÿÓ/*\Q|—<ì½Â-‹×‰>ü©pïé{¿ÿþO>õ/Eñ¿¾Fã =7e·žU¹§ðŸâô+N(ÜŽ(<‰¿?ÁØIÙ‰Ó7u¼¬qD?Ð áupYÑ-{Sþ¹ã¹#²²SÄ!…ë/áƒÂÂÛÄ3ÈíŽÐó“‹}²›5>7Ä'ä¿öŽåÕoÅ5>×V‚RvèˆäK~h‹?ò3ÅOèû$õ˾ïÓ¸àV{ø-ô:ÀM—Õ¿þõ¿ðô®¸F~ùô“Ô Žï˜?Ç¿*)½*þ+ÿ‹BŸOˆ¯OwˆŽ'ÄçO"Çð]ô_ÿÿþ¹÷<÷Så-öaW5ÞÏ?€?$/ðãÙa»‹™äŽçoÈîÎE?váüÛøÞÿáϾ«èÁî”ßP¿…ÛG8t;£ókô>ËïŽn,\€Ý?®ñ#y`if6ÿ}µ/{Sxÿ¨è)¿*>cèvãæÙ»/<ˆ¾bÿ+^E¯¤'Š?K¿h‡¸ ;„þÌE×ãàTpµÚ™k¼S¯êþ–¡ßÃüHšϒ§À_á'tœ‚žƒ7ˆ·OüÖ}êï㪼¤ø¶p8ü¥_´ïvõ˜Æ{b|ªx–¸¼®¸wqrˆ³Ê®î"^"@^ÁÔ/þß'œ>G>Šø ù×óø¯Ç Oü“\/Nª?Ø ü2ùœWK/Àר“gìÐ øüŒžßøCÕäø~ÆGü8H\C¼A>ºÑp6y ìíãbäo+0þDÞ$—ÇE'x y»ºLÃýÍ[úËxÿ¡%àý埰÷ž? .Ô¸/6À‡ä;ÄoprÿÆ/(/Pù9úœÜºô=úëÿû?ZrEü Ý-~‰èGþÁ»çÉ[—ŠŸD·ìUÕ3S±GØ‹sò³Èíã²ûw4¯’üœ#ÿ!:/ÿÆw~à‰¼SyXâ)òOø]â4ìïqìûÐ.–þ[ì–¿ÚM=êçÇwµ³{‡”~aßÈkÝ&¯Až…ü‹ä¿FþVyÂÅQñüx\þx1çyÑé'zõŸüòÝ¥¿øügå“É_è:xæú o,ŽË>—îÀò:bÀǧÄÏã’Oü¾â°ÓçådwÉ¿È[0þ¯ÑuäœñþLúL¾”< úârwí=Ï-9T~=ÜÓ.zTù´/%¾RÿY\QùIp¸Š|ìRáÑsci-~ß•^ÞÐ<ÁQów•w&¿(zna/,¿Ê¸"ð[ñz_ñɦO“ØÑÊï ¯ø#ò¡Ä…²S/’G>·¥]âð0ò.}Ùn½ÈË3æ÷®“ß%¨öÈ÷ƒg°·GtýÃØ}òÌ*‡Ã`÷Á¯3p)öMüø"ì£ä¨òä7$'àŒËÄaªg¿Æ{Büü(x¼8ˆ<ñ(~E|/\#~¿ˆß×9vsÿ0ÏXyròV%ŸðWý,\@>.A܆>‡!n’<]ØSòä/*ŸÿªÞ ð¿\ÕñÕ_Zøˆ8ÿNpa¹¼ãëÿRåíð+•A‡þ¾pöm“wüþŠxþQzÉwà׉SÁ!äñ°ÿÄÄÐ ®Py;ú¿øO7¸¹´ÊÃÞÊ=yEüaá?ò¸Ì·íÚ믧ñ…ü‘Í x‰üã!»ŠüÐþùU¼ZvyÀÞÝø£Ë<_@¼Yóªòµ†ù^äïâj>m±ùGüñ—ê?#3Ζg…ÿèëùÖÈÛäU¾ìüòwk^~9ÝñËÿNùͪ—Ó~÷¿¸5L|Bþ¾2îùHïÇî12Ä)[q·Æ¸¼…ýdðŸ•/”ÿ:¦sü™üôé[ô[ô¡oÅæAÀ»øCò¥k²_Èómâ³OÄ¥ðãqˆê¹ >×|—úÏ|~>Òoä¿ô–<ñúNž‡8Wí^_gÑ{Eõ*.­üÆuøcúÎýñÔé[¿»°íô5˵åò“Û9}Y|$_Š^2OG¾þ㪇ñ,>H>èòžÁŽb?°ÇÈ“÷ýèyôê%óO —¿dž ?PxÐür„Üs^òeò_ùipÐp´ðß#Œ7ñqŸúünåmÀªýfþ üÏ: ê©õ6:g½ó)É0ÿJþ ¹ùëáé?tã/TüYã/»‚?…?è)öúÁYÌw㟰·àMòjØ ì?|Å~3îÈ+xç¦â3è`~?Jž½¸L\ŒœZþLù£ŠË¯ï Çg‹?äDv{BžùªuŽ'Åoo_ß!Ø}äñ¾<“øúÅÌ €'…ÿ_E^ph+¿ Ÿ‰C˜—"C¾:Ègúú4ôÿŽé!rpK|Þ§öÁàDì=þÜ~a}ó¼ð“öXÇC|…>`+N½×ï†e¿ºü9~» ]5äQÕö›ñ_#ßð}­uà?éÃEärߔݡ¯øßZ‡|ÿ î–]º|×¼ñéëÊë¯1~ÌË“' ¾b¼áç×çË ÿñéGwâ0øÃ|Ñ0®.¿=Á?€çËž2ßFÞü%x ûcódõ|é›ââ×Xž!/¾Ào“ÇÐ8{^ê†ââsòêàsüÿå»ÓV¿Ëߘÿyù MÞKr‰^£ÿøpžøsEëaÐCðylÆ}¬qaœÈç2ŸH¼x–yùs®€~×±T^yŽ'MNÉ'°n üÇèN)}ÁÎc¿_møçë’ðv¥ÖE qËÖºSɃðX]Çn0ßC<†=¸õ‡î©ÂO/Ÿn-³Ioþèé-®½µ ûÿú?¯üõ_øÈ›Z„òËN_XÍsÔºsð+ãM?Jþ{ËÛÕ¼¼Æ‰õ†5Îè¡pEÙG_ßú˜Î±ßµ¾Av™ø:À¥µn»&9¿E†v~q¹Ç¿ ç¿Jï+ïHžGýcÝéaÑI>B¾U×+žîc¾¿„þç ´>£§µnx8ÏVrþ¥]p†÷?ôÑsˉ·×Ô8£Œ[ùOñûQÉÉcÈ…ú‰¼Qï•UÜ\v¸øûª÷;j|‰ÿ±ÇøðÛõ¥Y{ç}#¿‚^÷bÞþúj~¿èc^¾æÓ…f’³šOGΘwÂJ ?ŽÜz^ˆ¸ÿ >Á^íÅNj>}øIÖE¨~æÙ+Ñ9yWÆ=eü‰—7_'ýW?ˆÈ‹Õ<ˆä¥æÛ,ÎÞO^^ò~ÄßcÇ.󾵎Œüù äø<‚¼_Ò{TÈváÕ ŽANY·Š>Ý\­û¨ø²æ#ÁÃà"éµÞ›©¸|ˆ£ÁÿûÈ磟’#ø,»]ëʼnG¡“þ?jü~ÆÆ¹ÇaonÚ:ðÞå»ðÃåÏoèyáfôú[òØQâ ³;'`·<ߪv±cÈû'‡~¥Þ{ÒøÏ¼é.âDÑA>~¿ù«…ƒà÷ùžª÷Vsò ÅÑI>uħÈG ç;¶äWô#÷ußA‡úÏ®+ý¤ý=ÃùÂZ¿U×^Ÿa?ÈSÛ¸@78 »Ê8ÒOÅ1•'aþOó…s…WkÝ+ù.ì8ùlä {qó+ï&àË_•¾ëùZ§ñ½øï.P¿ÏH\„=ÃH¾?¬<5ë*îQ½Ì£¢G—•çÇ/ÞwwyÊ—W\"ÆüGõ¼VëHVëGë=2ò|µ^V¸Ü¿Ž&/…^©^ü x‚q¬<²ô‚|*ó¡¬/À. ï5£ñ¾®3ó8ÈÏ%åseÏK^ÀC…/T?~Šùôàªî³>|VëÈ««?äcnçIΫ]=Gœð¤ù)W|¨|MÙCæåÈ7í'Ã7å?ð¸ýÙnÜ‹\ó“5.ä‹ê½AäVãÀûÍä}àvî¼ä»E¿É·C §¨äh·òÂÂ+MNkAòIþ±òn:¿%ûWñÚaG½Ëú&ì¯üôqäQô“Ï=&úÐç»Öåè7–\bï?ÖºìÏ÷ÔúBѾ’×ÔyÙ3Ö3@ççª!ÿ<Ïx€k÷Å?òÄÄñ´˜Ïاóó«ùâß­¸ž<¼ž2Îø/pv¤ÞÕóÄ!à8ô }®yCµ[yWò.øfñzôù^ð¶ê%_†_|Àçc4.׆ý,ÿÃsØwâoÆ•~"/¬7Â^Ø{“Èõâ ð‰øVv}CvãˆÇUÄÿÈ ùJâGµwqõ¾H½ÿ*{\ó†ð;H>è…a}‹CàDæ÷ýƒ­õ*æ‰>~Sÿ.½þ®ƒ©õøéÚßAÏÁü-qvƒø€u Š‹*&ÞÀž~|§v˜O`= óœøypéA•»ô/ùßþñ³¬øžeÿ è†5¿Dþn(Ç¿2ŸÄ<¨½wZ¸ ¿s‚<8™|8¤ö‡—þ߯öuJÈÕƒ=×sû,Tñ1vÀâö3!ßÄ8’‡'‰}©¸]ãYq“îc¯™#¯ùù4ÙaÞ3¬ùp‰ÚG®ô½ò àbâ5òmè1x•|;xx¸ž£æ­‡« ì5×9ZoÎÃ^U¼­ê;…?`þw˜Ol½÷μ³úQùñ÷Û‘+úý¯ý Æ·¼O{e¹Lë“Oo½oK^<ŽðëÜ‘ó¼áî[½¯ ?à7óXäÈ£]Ó~è ãÇ|]½¿O>^tâßÐWÏÿ€§‰ãàÏqÙ%ì3ò~VòD=Ä›àmìåýµ¯î“d y%·õ^'¸Ñâ[ôøaÍ‚ˆÏÀ—VóúÅ¿Š¯ÀäYî.Ëû­5®_ ¼<ö{rÔø$~„oϘ]Ak½±øŸ‚îûñƒÇšOÇÏ’·3ûêóàÈïǑϧT¾Vò¤<,ë¸k=Êò ä½Ì1~µ¯‹äýÕz~æÌo~ÒìvƒõÜ·÷µ«õ>›ô|[÷Ÿˆƒ‡Š‹t2…%?O?+/¬óZ/ öÁS¼/K9ì òÆ8ÔºKõù¾Ú÷ˆ¸nˆ·ü®áá'\ž™Ï"þ°üþ ¼I^›søA°—×yž8z‰§‰÷,nÕ{b%O5?l^zKþoÔ{£CZø¯Ö¥›Õ~5ä¥5¯x»ÞWŠnp óÓZG\ùyìôÖxëù«Cy-}¨õN«xîôáÙÚ‡‚yò#j‡ç+?#¾}ˆüƒpq ë[n-áý7}|qXú®yÍÒÛ;f¿Î¡Ä36_‹]*»€ÿ!?,z‹Ä«’“Êû*]‰nŸ?d¼Áø‡G˜' /à÷ A¯­Çßšç“ü#Ä¡Ÿ0ù®sÄãÚ ì¸Îó”è_å%÷×Vãvúšîß´8zžWyâ^æ…ÙÿŒüóö ›çe\éôñÞÇ>ñCû Uþ¼Úý”—üœ×>|Ð ÞcýóÜ´K¿Ð#òˆ¼Ÿ_ûGÊmÅïìW†ý'nÇ®]?ÐKò"Ø ø‰Ç¯|@û R/v¿ Þ&yTúDœÈú™Ú¯FúX8UåkŸ+ñu>¬S¹=Ô‹z¯†}w‰W‰—5UëàðØâq=‡ß«qAn‰¿ôÜ5åÑKžEßµ»Ë¾ºìxÿÁ<á³ê7ö‡øy*ygžüžáB(÷>âåõxÏÜ\ù›/Fo/`ï5~%?²çsâ6µWûhˆ~öÂ!O“'ÇNbT_íó NÑõkÂÕWõ¾õ~³Ç†w3µ[û"?«‰ÌÑû Èþšx òoØM›¯ªù_½¯Èº{ík4Þç\|þßdÏj¿.~´äUrüÏÈ “'˜½#ÍûÔä—ÀýøÃ+Ë4κYvù¼Öo–^«>øRïÓ‘gZ­SÞZ×C<Ê<^°SµóCàMõ_ü ã„Â×Ì—2N†õÕ{ÕŒ;å°ƒç„çj_>ð*ùo­[Áòü Óì ÷+ÿ@^OúŽª¼»Ú¥?–çqý(¹«÷…‰ˆKÀ)äcˆ·l\®©ßìóIý¬oe¾È8P/øì¨Êã_ÀÝØ Þów׺'›ÿ€ŒtÓÿŸÒºSìë^Oü,¹ÁŸ`¿ñÓŒËýz¦ì»ÞŸüÉÇÃä±Ïè©Í×pyº¬y\ô?Åx^_¾ø·ÿcÙsô¹öy/˜|QŽ<ãDܾ¤KÂ[Øè$ÿôaòX¢{YëÛEÏý+zk_-Æ‹vj}¯è¨üåó0¼mûén½§!;RöY×ác­Ï$_iy;øE>=­úÈáGõ<ñŸáÊÒ« Z†F/ê}âò±àò{4Ÿ‚?Çßh<Àᢪç^ò€«ïUTÿï˜\VüªúÊßWáÇÕ.yzò›äÀÔ{KxÿQÑñÀR ~üß¾²uó£õyµ?ªžç¾ò_5/Ux ÿgù”‡É_é}è„.ìu­#ÿjŸKõÿ„<]Xº½;¸Çìë«7ùÍÓ?¬vXï޳vj_–ÚïVçÈ?ôÀ×òï6ÏzcÕÏÓ·–oG4×_yŽ¡-=ÄÎûþ"éý¸‰Îë¦7µ/3ñ–ùiò4·ÌUü) >e½t|!zwê«u¾6OXûŠK_M^Ÿ|òF~ ?‚½Òõ‹Ú¯RóÖ£ý‡‘÷ûÑ á¬êŸôý¹¢ùµg‡z°Ø«ñtûIó’¼WßkÝùuò²ä7UîºÙIí_Xq óå7ïº_\öñ­×¯}m¬ü ù2ò1Œ÷h=‰å¡}ž¯ì"íIîÙ;Qï‰OeÇ‘+ó1ÓKâUæáWáá æÕ*ÏÂ< ~ŠvÈŸ3o ~Á—‡È÷¢'Ê+‘ÇÝ\ÍÛÔ¼õAò‰ÒcíO]òGN|À~žSžLû'ÿ¯,W]müŽÓ÷YÞ ûYß=P¿°³•ï%Ÿ£vÁŵþB|b]v­¾WÀ|ygñ‰yðZ!:>N\§zÀ;Œ7ûüqΑ•OÓ>q;übZâfìEíŸdùìãùCö½ªùdü„ø$\¶8)>‚ûÐ/ì¸òpóè«èû(yò\àkñó~â9ö ÿ‡àù›ÄÅ*=EÿȻǸr˜çã{[xWýe]v »}Uù'òL—´Î|[vÜ ù]·×èxý´ï@láoê}ÁÚ/IõR8‰~N!>Tÿ‰W˜ç{3ýdÞ Üiò!|U~Èå¦ð™òfìcYû¿’/±8êQüˆäôcß¾›–ù’’³óœƒKɈ®GÉ çN_W½ÔWóöºÎ<\í-~Àß÷iÝ~ˆõ!¾_vüÆzzâYê%߀ÿ¬ý°ß¬{E/•G^Ð'ä±¾S¡ûµ_ø“¸FyÀŸ#:jßBæwô\­WZí+XßE#Ê>,¬—‘'/¿iùaðqh­7¡Ÿòwð½ò 6{Aû€Ô>”àõ£ò´ê?ïOƒc¯Ýmæ++oÁ¼:û.àç˜ÏÄn}ˆyAÝ?ÏøëºÞ+[Ücó9Œ z\ù Ùƒún"qšêgÝ­¯/ºeò‹~=‹þ©~ÞÃ< n¯«Šg-Ž@ßYÇÉ~ÇäGÀqØûDoÍÞ5›_UëðGä+±çø³zO]r}¿ÕûÁ•ÇÚõš·$Î<Íá!Nª}1*¾c?X§Džÿ:ô[ë]äç7<¯þÀ’"že[ãø q ôê¸Í{ÑÏÝŒŸèøØµþ¿òª¿ÞÇ£?*ÎCNk¿Æ[÷k_É=xûRq¡Ž'(ž«}yTyƒŽÉÓX>ñêÝ0ü7×<À~@Ø¡ò?*O~šï%C÷yÙÕZ¯€ý4ûŒ\ù>Æ7Vã¶ø9'ìÁ5ò_Äi:²/Œ¯+a=ï—ð~3Ï_ÎGÓþæ>ůŒû¶ì'b°[æsˆóòô³ì(yÙOòÄ䉰/ï×ø0„¾çü;TàNÆÿPó#àÝÿ)Õ{c¹Lå‡ÿZù­Â¢;Âz„ÂáàâAå­ÁiÏ¡Oà •ÇÕ>R¦‡ÄǵŸ+vP÷kßê…¯ð_ãöåêzø’Éò î¯^×<í׺ Ëc?ÈWÞ}!Þ€>⃊×uŽÿÏ_’\ÖwÝ ¯=¦¡ò7\_=·µþWôÜÒüwíÁ<’ö9.=¥á:“­}åtÄÿ”Ý“‚Ëm?¬ZÿTø–qÖ¸½_û«ò]®z/Žù=}#ïôØ;ïô5žä¡ñ‡{ O· Ø“Z·"~g±{÷¯ ýJʼnŒß“ÎG‹¯£ÃîÁ×'°{–©ïqP½ÌŸÕz/á.âòµ§èD/Ÿ0{‚½gÀíÌ× ßO›ÝÃÞÝú‡Š«„_ —Îçœ~Tq|áÈ8°î—÷¨jŸ ôVõ#/…ëD/vÎ×½ßÐþôÈÃ?S¿±cµ€ô¿Áø:î$nÂϱ¯=ö¨ä„¼¹ánøŒÿgü_0{ îFÞÑß%lxrÄþÝÇkòÇØWÿ]½O¢zÈC+nÚ›Œ«è!Ït»€è(ùª8?ɯã‡évìóGj‡õ(…ûÔN­wêËÖ~5–¯ª¼ðÏ9á™À?숞Ü0}¨ui¢Kï§—~Õzfp«úWßù^åõk=~åEe/+нDnjŸDâê!ÞÊÛ¢oäÁ7Äw¯Àô\çïëÜÔ~9Îoªæ ÕïÚçKåÁ}Œ3ó¦Ï3/#¹ò¸©Þ6¾·³î•ù껬8ù­yJÓ®ÃÏËÈ ûÛ«<ö½~fh§ˆ?ê{‹øSè‚k.ó•|?mK?‰×åÿÊŸ¨¿…ïÄßÚÿYëDð+Ø?Öy_Ô¼ òrAóåÇÄp¸„ñ-y#E|k8Ü×ëÔ|3ùæ!m>¸äDóú>oðÂ0ï]táßÐkòwè_ù5ðçæË®*.îØúžÊ?¢<.ü©÷]ÁõÚW†ý½÷ûÄ'Ö\×:vü0õ÷]½ /¿»Æ¼ü…/ÈïO³¿MÙOå]ùß1ì”áâô‘|&8Œï±^âºp'z]ëÂîn'²Qýf?çŠl~}){ žÔ>ØÄ—5¿\øOrSïÝ©¿Äî§ù®3öynâ 䋼tÅyàGò­Ÿ‹fgˆ°·ø{­(ý'Π\}·EíàO. å·â ð&ë™á_ÅÒÇÒókw§~}ÙiôžýÁsØÛZ· Æ£§zß|Kž½àºÎù~$ø€ýÅ%.¥}üí*þ*=$NÞgþî>ã#ë<ðsìk€ŸÀ~ñ€¯3øy-éó}õ});ïSÔ>ÒÌûH~‘/¾‹NTë±çÌ[þý¸„\#W¢y©v¤—Ðó®Ùÿ …ðs•Ãn±žEz„`¯‹_jÿ²ÖÏb‰ÿñ·4„žëû·õÞóû—ÚóŸØÚÇLý({€ŸÕó¬'¯ïk½ß+¹%ûèøE|Ǽöé•\ð}âÿ{WqU剛ȟn–|ÂwøZû°®ÖuÔ~¤7´Ž¶öÓýØ/pó…ÿ°wäA”_ñç™O ¾¼®ñ®ïÞ©¬Ï¬ïæǨùÁ7‹ŸØaöãdß¶zÏù!´yèŸÔuµGÞšõäÁßgó›õžë†ôž›í[qòÃ*w¿ðÁ5}_Íß'†^Þc'ÏD~8º™Ç"ß_Ù¯ù¿µÊ—=Âp2t`ü»Hø!Æ<н¹¢õä{oiÿ±š'!ï§öÎËo_}âîÆÇWCž—ùžÕ¾p[ë14>Zç\ï' Ïà/âûÞæÖ¼„ú‰ß«ø[õ°îæ#WŒ#ý0o†žâç/®>41š+\Jü…½¡Ÿâùª½óÊÏ¢?Ê#Öþ’ØÝ²¿æÑkÆ9"ôí|s•~(ÿ&ûTßÍ$þeÿsâ¾CZñyYòÄ“âï)ÏD\Å}ðãêß«¤~äL8·öú¤ÙAÖw0/@\ŒPx™ñƯ\Ô>:Œ÷ æÛ”?`>”ù7µSv­Ö±ª?¬»`”<3x\…}®ý 4ßļ z¯÷··¾§jö¯ö·—^}@vþœülí?&ûô¯ÉëÚ¼ÕýànìˆèÅ/`—‰_×ëäÁ%äyÀAõ]uõ«Þôüp½ qÆž_±øìaåùÎËßs˜wb\Êÿã´nÄ¿w}©ïyþô5½/®#ÈwïÁŸÌÔº}ü ú vž‡oØcä¬òâËuòÁÌ—ÈÞV/9@^nÊþ\^š7Ý[ü¢^ߟµæ¡ÁIâíÕú:â¦Õþä5þç×]3þ‚ŸÂ§gÚC?+/)zÀÿ¾þƒ¸†üí“¢z±÷ôSû”WÜŸ­ý:m½Á%éûI±ºûKö‡*;¥~¢”'^¤è•üaÍ;o=&þ~PåÀ»©=ô ú‰·kÿN‹ïùGó :²ßg}׎¸IyNåíj=+ãŽý†?µÿ¾Žà úA{~§òD·ïbŸøî,ùÚCNÙÇþŠì4~ yôùŠš÷÷èˆÝä;"̃£÷ÈeíëB^tGÈÃ}Hv¢ÖQ3Ϥú®ËnÑîMáŸzIt£Oø¾[Â|¸“<=òž‘Wû¨Ùmä“÷›jLôü¾R=ðý‚¾g½ª|‘äóãä ”'Ežë=oìŽäáÙ¡ÿÛÚ7ŒyË"÷÷Ùüýû¾SÂ8U^RíÞÔz–Úÿ»¶ò#µn¬Ö!šÄîß2ù§0…ýù òŸÄqÚoð~å½ë=tåUj^uoª‡þVHÏ}Dùy¯§öcAÎ-ÿRßWà|ÿïÝ2^çåçÙ¿™÷Kê;ÊârÌû)ð™õQõZü°è½¾z¿¯î3¼o®Ð÷¾¶òž¬ÏÿÐ+ùóʻ݅žû´OóÒàâ¶Cœ]ï£Ò?ìü¬üŸž«ý'™w!Ÿ¯yP®×þpj÷ƒŠkŸyåOdj]_­“/²nCv|(y¤Ç$geOÁÙòƒà]ú^EÁWì'Ï÷ùˆ?*o§qB_À“È øýAò.«ï®–cOÿ½é)|&OÀ÷=àý½)<Ï<ÕÙ#ü剻ôÓ²ÏØ]ä­äAx®öåâyp¹Åñ¼ïD¿”'¯ý.Ó< ¸¨¾·)>‚‹ Ÿk®ð}ñóQ½7ë뢡8è¦Öu‡­ýUˆ÷ ?’Ÿ»¬q¯}¿VýXœÂÏ7lž´¾Ç£ù]ðñj­'d^–yÓ;äÈ{NèÇzÏ_ß‘ºWý.\ªöyϘ|%ùXò Ø=Ö«°¾œ÷~Î?Ë;Ôº_×fë®°ß>O…}d<‘ûòº^ûqaµ¯ öÏÞÚÚÃò¤ì3cœê=•c½)ë&÷k|4üZý“üa_ê}lì™øñàï§/h‹yìÀ9ñ•ù4ö¹ù ù³úþ¥ê'­ùÑ.OàW|ŸòB¶ßßÖ¾ ¢ \ƒ_ñü=ü»¡ýJë=PÆÙÖcÕw8u$Ÿðaå¿Á×ì»B<ú%Ø äLíã_®óÞ€ú½5K&>ÔþäMô]‡=Ì“ oÚoŠy äûUëéÕÍwWþ€ëøkè¯}˜Å_òwµ…åð.úÇ<rH~¯æGÚ{h[ø†| Žð»ßÃUþKrPû’(ßPóð>ŸB>^ãt¼or ø¯zNzsAãQv^ü(Õß‹Šÿ®2>gÉŽð>íá«ßÂñøÝšoZN§ýÃÇӺѲƒÈ3~çý»ˆë‡ñTí›\ysÝÿ°âúú.…åÅ+Ÿ¨ù_ÀwÈé/ãQëžð:¿bòÄ|q ñ‡ä°æ¡ð3>ÿWûÁˆŽÃî‡É+ÏÆ8±ŸƒïÏxÎè¬÷µ´ù»Õþƒšo¬ï:¨öÑï’Ï©÷ɃiÞŽýY¯ãûª£Ÿ5Ïza8Î5¬ŸðýÑjþ ½ÐuúuEò‡¿yÌø]ß±Ôyí¿I¼#zè'8†÷ê;ÄC}^=¬©õHâÇùÅÊ+“ÿ°ï¾<¬yúI¾ƒq¾¨ùƒûõ~4x’x‡ùfü-~˜ýäàw­ãQ½•/§? _ªv.k~òœò£ä[$Çõþû/áoÉÏÔºk˃b瑯«ò—à>ŽÈãÂú[¾S´Çì8þÑòÆ…¯lÝz/÷Âýý_Úcž;θ¥øþÖúù¡~Õ|æEÛ‡¯Ö©Ýû˜¿gŸ,ÖOh__'ZzB¾vµaúǸÕ~G´/:yOºÞ£%^6?Uïó’תþÚwñöxŠü0y ò®6>µŸœøVy`±3à©zo‚8Uv‚uu¼Áúýš¯&Þ•z«øƒ¿Á¾×÷塟÷êÜoK¯Õ¿úî#ññúÂüqƒèÇb·|ÿfôŠy<Þkw}oãïÑ?ì]}/Oñ?þØ×¡€ßÑ·Êsª_´Ë<ßé½!ûˆ~s¿öuÕx?oô“?cÝr­g²ùÍïÕzô Ž¿}TãVû¤1¿Ç¼ù6æ“Dr^òŠ¿â÷Z—vMúü„éyí»îN%.¸Îü€òn¼—Ëú%ÖÖ<„æÀàüáÄWääšÆ~×:Pò™²{ìóQû1ˆ~ü*zÈ|#û6bw±{5O º®Ê¿Õþ¢º.y(ûòáUÞª¾kWß'ï§qF?ÐÃzÎæÛþwå‹X?À~oÌÇ×øb/‘wüo퇨úø.óžåß,Róš¿@oÉs“×'¦÷ý«^òPÄgõ-=I~¨¾£&|Êw_Ö—€{ÈÕþ€ÃyÖÊó×{—Vºˆ»ê» Ìó)Lþ³ô›ü‚Æ ;ÿ€ø‰þQþƒZ_ ŽÃî(žªþ==¬ÇJ¯á3yTð3òG| ~dÿôä!•WÆ~]Ò{&Ä[Ø×ÚïSô0ŸO¡ü†ÚÅa—Ñ›'¬>OC¹+ûZó5ÿ€ŸÃÞcG°»–!ßvCó øô|z ù®ÅIâ%ÉÖ{׆OàøÅþŒeßÉc(Þ§_ ¿]‡~ñƒxñió+¾¾ƒõúØÉZ—!ú>°¾‹·õ}b³3ìÿE>?‰Ÿ¡~­Xœ1oFÞNë%™w=Ç>[â7þ¾ÞkÊKÉ“ÏsÕü•æ3êû¤ò÷ð‡q²yÛ-Ü«çj?p­¨ïô¨~òyÄ»µï¸Ÿü”úCž„ïù¯}½Vî“~²N™¼xžuµåoÕü6rGûŒg­'×9뎈'˾’_ZùõŠÉ—×z+µÿöñÛ|ÎÄûÌÛ¨<ë`°7<ÿ¢áÞ{º—ù›7¨ï^3~̇¨<òÍzÛ}jçºÞA^°+—[¾¶ò`äà«pþO w0G¹Vœ¼=jóêø/ì6r|CûÛÚ÷^ª\}GAí—‡Ô¾óÄ]† ·kœ°çØ â-_ßÁ|1ßç¨ï0o¢òèßû¤wà.æ_¡úýûÞàUââ/òoWµ. 9÷Ôºùñú^x›u¦'ðéŠáæë8b÷èï»b÷\µ~wëû˜Ã¸§öïÂ~×~9Ä·Ìëä» ´ƒ},~’åy/ñ¨æy Ö¾hÄËâ'ùÞÚ߃üŸêá9åÊðž$õKïù¾Ná­úÞœâFÊû~Úà*ßÇJïýnÀ~W?…7}£Cy(ûF^ªèQ}äÇ?ìD}' ¹~&ŸÁ¼ùRæIo›}Áþ"ì7gAt’gy€qBŸE§G¹ì®ìãêóÔ˼ôÕ>pæ§5[ïýÐ?ŸÓwd¶ö=çRvŠüäÿÿ}žú®«žëÃ}\j@Æ¥ö9Oš/»£zëý#Ñ}¿½w¬¨õä3,ß…Àžw3†ŸÒzóZƾ4–W¬÷zñ¢Ë¾g]úN¡{ÁOª@üÿŒé)yßÇœ~>¨ü`­ûÞá{>µÏúFÍ|¢Æ‹õ[G=¨ñ­}2†ùØò?ÄÍœÂì ý¯õZŠÇŸ3»]qW7‰_Ì÷Öþ¬[“ýÆâ—áû‰‡Õ¿ÚOþà×`ÇÄÚÍâ«z¿–<0q‰èÁ¾oßéýÉšçE?YwÇú æí‘wŽä_˜*»ÞÃÎÁ¯!øÉ‹šG¨üŒÕƒ=ÄþâÉ×ÒóàGüI­ËœÎ5Ž5¯lù¨gÍ€sàß5Åy¼ï>«}eð×6?F¾Bq|í¿ Nô|.õ0oʾWÄÏ_èOí Ëú¿Â=ØoÉòÍ8]4ÿðˆúG½¶yÍ3ÔzLÝ¿¥þÇû>íÄ5µßr¯ùZ¿ò=ÚŠ~3.OšÜÕ¾¼w§vì½úþÜs®zϦp6ñØ›¿ï=î©w–ýÆ?»|×~«¢¿‚Ü]a]„îóëØÈçh>rq„x‡<y7ËGÔúòXо×{µ:q–Ù}_çÃ9yóÚ‡ÿ„¾‰Ž‡”·}KÉ#_V<Œ_Â>ŸWÂúVòEµ¿-øÇì6ñSí·!ÜŠÞ•G.Á•ºŽ]e~¢øÉsĉÌߨ?ð…}àßY"ß/øpUò†~’§©ýÀqà ñ·öƒÕ‘ý8Kpî~Æ•<ÐJjÿ‚Ú‡Ûð‡üK}çžÓN­[Õ~«ŒÓcZ_Áø+¯±xƒÚÁî‚á/þÜI>ä!éís¥yÌúžÎ7[ÜÀûÀØòßÈïeí‡þÖ÷°âyüy4ä¤âm•Ï×üŒÎYçZïí¨ÿèO}ï }%þ#^!¡q)~Jî—ƒS%õ=L?Šž’WV½þìëÐÃZgfø »O}ÿgì:~µ¾ÇJYùÜ‹zÏúj?Q•c?ÆÑwmñWÌ w*‡=æ;?ð¡ì¾øL^ŸzX¿É÷l°“Ä£åDó°ø×ÒOæ_5ÿ€ÿzÔü x›÷§Ü^_0}$¯"~×>`àÚkÄ_ÄS¼ÏhycìcÅÇØIµÃ:M}/}±_÷y÷œò¨?Œþ¨äãj]‹Ö÷Õ÷t¤Wí{àBÖ€³.ÛwJëû˜Ø5p‡â´ÊªõT~QבÛzøÔòÕØß‹6Ž>ÿK½ä j?Kµ_ß5~ã7vò‚Þs¯÷=TžüÆeóËÈqÉÇ´Ž\èßaÔ¾:£ý¦j¿>õ»òšØs=_ëqÈóáÄwò?䟰WµÏ%y[—=Ø#Ç¥µoŒüþ^ò›øp®ô±p¿Í7º½ƒ®z?Gôáñ Í^Û>ú£}¨ïU¼¸±âS½o’/G~~BzzEúRëMLN4޵¥äš|°è­ï ƒ·Ínb×+¿€ÿb> ¾å{džßë;%6?‰¼‚Cñä‰Oj_vôLïGC_í Ž_•¿ ŸÌïùúþš÷/C9®õ¤ê=Åš_µù´Â˲wø·ÂÏÈ ~UüÄΣOå' ×±oŠëßA'Ž)ùb^Ëpy}çNïÙ½Šùì€Î‘[ÖµT“Ú¿Ÿü“ð¨¾ãUù*ø\ûzcÅÇ‹ÊG#¿”óýSj¯Ù!ö!_F^¿ÖGhjß}åÓØOû|O‚ušõÝ?ÉÇ>âW•;¯ùÊÿÀû5ä'¥àÆyf^‡ü>ëìÐì)yŽZ/©ëõ½Aøb8 ¹ª|ðqW½Gnx zk$ÖéX¾‘rkÝ5óÉ·¦÷Äñà(ìùþÊçO(o˺´ÊGHN°Ïµÿ žÇÿ“¿CŸÀMå×u¬ýÿÌnx¼Yq½Îµ¿Îâ-z?ˆCn*/­ûØäûÀüýóuàçß׺É-ó¡ØÃjß8òäîÉ[—\`§DtW™<¢Í7Cï]aÏÀ[õ~¥Íc2ÿu^ó‰È•åŸOßüÊ»t¥ï¼×ŸÐ{c•—Ô¸0ŽŒùÛz_ÓæY‡…ª<¡ð‰ïÏ¿Séï÷"gÈq?ú~\*y¢䙼68™ùËÒÛY¯¾ª?µþUõ–ŸÕ}ðÓapymõ¯öcDÈß/ªÈ3ö××ßûz(òçG±+â[íK¬òøUæ> 8qd˜'9&~ºŸbýÆKf?(üð¢Ù“Z7dñrù=‹;öqy{¤ç˜7s?*ÿ¤óúÎ…ðTå°O6Ï_8‚¼9y/Ê_ÐoµIy‚+äM-žñx£ú#zô>kÙ…Ê›éùúî+ý?"Oj¯¾®öÈ÷”>H?iŸþáß°÷èxê‚òŠôÿ–í=Øëú>.ñŠø\~\ë*\ó[øÝGVy¥Zç_yæ D?ö´ü$yÉÏ%í³ÝzÚã ›ç‚oˆ~Æ«ö[f^Vr~Íä=f~=þyOäû!Ž€¯Â]ø™‹ú~öý2é?ññE½WN> ~ÿ¸®co˜/!7²^šy¯Š˜ŸS¾Ï÷[?‘o ®ÿ`×À/›Ýaœ|ä‡þx¾Öàñ#â'òˆ|~@þzxÎñqY}·Vû’±^ªð…ö9„NòEø—›¶.ùÒ¾€•Ÿ`ž…#¸ùd^ìŠÖÛñ])Ö¿bïx/÷&ßÈï‘'¨<vÞâØZ¿£u\zß½ìçýZÇÅzNìqìÕ^ªx°æÄ'ö±Ôº·úp}/—|£Êß«z¾w‡Ÿ«}mEßc_ì~‰|þ‹ýìÂUÉ õóPíC N'èœü ïÅÕwhTïOò½&ÕƒŸ!_øAéyÙ} ùô÷1ùïû™_‹Ì;³n¾áwê;z¾¾k'=‡'þd@t=€ÝÅ¿³þÍìAùw•«}%„Óà£è_¼–ü´ŽÏØZσ¿0\>@î±ïàßæùÞëkð³Ø‰ùPrvAó+õþ4ëÿ°{–G¹nþ ûŽªï;ÙürÍÙßÂaGü½|Žõ^,þýF^©|þÃè•Îÿ™èdtásì‡ÙyÖíÖ¾‰ê7ßÿ¨ï†¨Kš#ŽºOôÜ0Q¸N|xØæyˆëÀ½ø§[¼Ç7|/¤ÞûF>ÊCÙòïØ/Ö/³œ[ã¦v‰/Ȳ^ÄçïgÞg¯<œÊùºjâAä ¿‹\sÎ>^äjÿRè•ò%ùmêAžê½bòCø-ù?ÖÓñr}·Bó´Ì^ÿg_Òþ+Tö”üô®Žõ=5æ_¯Êß©Ýsª÷!â;]ß"wµ¯¼Æ¿ZûÆaW$g/Iîð/È#ñ)íùzNä‹y1òQÄÍ×…«*>1z˜ÇbÜà7qþ÷ÑÀ5ØåuËÿ`Ÿ>`öªÞ;Òuäá­çd=ëA³ÏZÏ7Z§Èú‘½Ì7»ðçš?þsz ‹ý€{ñwŒS­cœ°¾¼?ß_Ç>Â?øó¤õ·p¤Ö7ŸQüPû5YÜ_xŽu Œ_íßL¼¥ý+°¬{`?ÚÃj·Öƒ(Ÿ÷Iü/qˆÊi¿’Ñw=àùì)ãÝ"ŽcßGÁ¾Õ¾˜àäU=E~< ù¾Å1âQÖ‹‘WÃÎG$ΊÎGìûl…ÓÁ«¢“ï_'ŽÓóŒýÅn×DîhŸõ$<Aï#”?'Þ?ðØ ð8z´NÆòµÿ»òÚØúK¾<‡\UÿÉcJ>J~5þìã|Cò Þ±ï1þ•¼§ïÛVúaóvÈã“ü_í·nv~`Ï©‡ï?Ö÷E8÷šâYúWûü‹Å9‹CWê—°%ûþ“/Ã_£¯È“ö©ýñðo¼OÆ{º|w ûóÆ‹yPË “'Ä"÷ÌOûºöó²óØ9¾'UØ÷Tô’×e¿?âÀÚ/ &>âØ×œHÞ{JýúÞWåJÏÔßûÃ|ÀÃòà-Æûìï/w=¤ùFÆ ?SôÖþ¨¶^\pMûH]"ÿ(y‡ïìW€]¨u‹’WðÄ'†öºòá¬ÿÁ.ð~Í×ÙCúAþò^åßÈó€™ßfý󜇉cħGµ>²ä4¿Zy/p±è¬¸SþÊ¿Cξ¼÷¿@X¯ vÏ)È:ïëzžëäÓ³Z׊\j]|.{ÉóÊë_έüŒêe_!Þƒb_rptÍca·oü…â¿z¯‰rÄ“*=!^¹¬O|†õ|·âyÕŸ¾ëQßC±ï†Õþ âkÅ×Ìë@‡ç5Žõ½òÊ¢\…Ÿ­u.øiµ[ó“’çÊKS¿êÅ‚Ãë{Ú6¯ÈýšÏ^ÀOöÏgৈ¯'ìü±>EåXŸVëØl|ž2:7ûË÷ljßVÕ‹=å9Ö½ƒ'ß/½»¬8÷„'¿ Wb‰›±'¼÷Uï§I.ˆ{Ý~×{X¢—ï×÷j4þÈE}ÿ¼Ž|Éÿ?4õžÌpß(Äîâ¯àW­ëP°[È'ù}pöîCš?^Æ_þÃO×û˜z¾¾÷kx’u¹øWðî*r¼ö«%N½Oøˆ¸ä)³3¾ÿz½÷¨¸â€õ«ÖIhÜ.)¾¯}Æ…;À5ï²z¾‘x|6{ã{§˜¿]íKʾ[û“«=òàÒòñ|7…òä)'†ó¶‹¹ú½5?¾Ø£z^¯öÙxòò„äÕlÞ€¸­Þã`žVÏi\ê{¥Ò‡ÅIîKžj¿µ/ܳ8´znqþ¨ëˆÛwÉÎ(Þ[¼NëKà×(¿«xxqäWæ3É-îYµ¿øBÙ¡ÃÔO^}Eoíó8|ÚÏÅœ|¼Ö5±ÿ’ä¢Þ70ܺØG¾šüü¿¾@üc÷â”øA\¼ÿWÿô]ÌÅõ[ùÀÅ\íÜ£zˆ›éïÉ x”ëÇ%¯Q}G%gÐPå^KžD÷™ÇW¾eqB|Q~‘¸Ÿ}”ùíâ¸äKë)kÊ^©Ãè‹Ù­')¾ê½»j—üvÜB½ÇÕ­c^¼E|Ò:ƒÅ!Ñnd¿Ë“Ü×8jÛÅ«Uß1õüJœD=¥ªïU¶?B|.~Ôwú°¿ÌSÖwŒå7Xª÷=oú½~Õûêû‘Ó‡}ØM£òaÕ_íÉ>-ÈgáêÚQúÎþÙì'¿¾ íÀÖ÷´À ȑƕ÷ú˜ÿyµú¡u*‹#ØÑÁ<ß#¹GvàåuT>±Ö÷ág…¿Ç¥µo”êå=zž§]ìÐ=²÷Øiì©ðÌâˆô;ùÌÐÔ÷%‡õ^úQß·}{†y©Å»}%o¨~/ ?šßZ}AŸçŒ»Æ‰üœðÜâ”ÐþPA?kÞNyµ-?!ºÈ³‚ /êõñ½®}ÌkНûuýõÌGÿÐ.|VûºÎÔ|Bù;øpT÷ï`—tÜ…=}:¥çðwÈ|Dï÷`7¥Gìw‹þ“w.}QûWé'íh¼x¿‹÷ÌïQûà‰cØOâÑq~[ú÷Iòhô_zÊw$ëç‡ò^ã²»¬û…ŸÔ¾ö¿­ý¿ý=pyWË‹ÃÌÿJ¾‘Ù×ÅeçÈ—Ô¾âÛìŠÚϧ†ózŒ_½W¸[|Aþð‹àš#ä¿5¯Ng_cí¿WûŽ2Ð .½=”ë­yôBãû:p†ÚyÁÆ›}Þ_´z°Wôç¤ô–ý`ȳø:xòS|_‚õ{5ŸÁ8‘ïR}sô}&î¼—}ß"7Ä¡5®öŸÄ›]þ 'Ô÷‘wô‰ö±×à¾Êcã?Ôÿú>»ÅÝ|—¡ô¾I.‰°Oo”d^ùÿ˜öK ^üy­‡·u à€Ê?€ët^û`Šî òàVÉIᕇÿµß®è©ü#ù&=Wïq“ÖóõGú£~ãωw¾Ü*>°þù©õx¢¹Ä“_€Oµ_q½ä¢ü¡ž¯ï Â/õÜÜgøäú¯%%ÿðƒý2¯ÃÄ]ðü¢q¨ïOZþ’ø±üý0^:}Ÿ¾+Êþ_Äoà/öýœÓžúQNæ?ÿêõc·l¼˜O@îßzOArûú©ûµ‰èTÞ•}Ý>ní+$»@\Vóvâ3þØÚY=ਛðx‡x„ù@ñ¹Þ?w#â vÁþäåoÅGÖY“—ƒè…Öñ/o|¿·öiǪÞc¬×€Ïø+ñ…|/rü,yÖZ×ÎøŠžƒâùâ)òEØ/Úe6x}+ÿÆ8/iœÈû8e\>Êú~ü­Ž{†t×¼ vºjß ä»ù'†ë°ƒÃN âó𵿱Öç°Ï!x¾k]óâ¸ü¬â”­ïãïÔïO ý v¥ö“µïSUÞ¥ö'džßð4ø×¿·Ç÷@Áí¶?Jí‹Îü88?O¢¾¯Š¿NÈÿcw;âæÍ•*¿È~(Äà òÌ¢õ= =O>‰ø”qÅO2¿E¼\ñ„è|ih§KÁïä•‘ä:Ž‹>Ö#€üòòÄS¢gNT/þmûÇV¾ñyìùË7×~ ¢/ü´øjÕ»x\BühòB¼4ÇjÉ“’­ù*ݯ÷—©_×k?$ò–Ò;pqy‘ŠÛÉ‘¿Ò_ñ£ö¡[­SÀ®Ž!ž`¿·=Øaò´ÈxEòµËìâ)‹ Ù/¿¤ñ]üâm=G¼F>R|\¼ZåùÞD͉‡†¸ië»+è¥ÚGïxϺðƒGtý”ÊÕúfü‹äæyð¯ésíg½šG©u¼†ð«‹×«]ä‡rð™÷È Ýøäü„žâÁ{àž¯<•î™ä’ï W?‘ïA‰ïà+r z±;µîÁð,ñ qR­Îã=ˆšÿæÝFë‹yŽ|@íkñþåÆöԃߴ±ø¢ÌÓVþ…ïÂcÏ|ßÌ›øoò~Äqä³$؃²÷Ìß0¾"Jž|?Œ*>Ü˼¸YõÔ¸Ô>RäCÀ³²àâ?ðëlèo{$'›èòŒÝcü° ªŸ8ªü9ñ“îûwÎȳ²?'ûw‘÷?’ÿ'oòñ¡ìqèÞýѺÉZ—‹~ƒwêû·à&æu~D|:¥~½dö¹æ­4þàôŠSDöûŠ|!/ø1ô—ü9x œPûîçÕ·ìºúÃw]jkâ$âa³×ø ×ïOšß9¥ç7ðkà¹!î¨x9Å#¯äÅÞ‚}±|â ¦çØÇô~0öùyqø†y$ðyuµƒœ£OÄ…¤oCSy$Æx†üú©ø£Öƒÿ\Ë'V9â<õï¸Gõ‘/Ãþ×>)Ò·ÃÈãp~¾æI™×¨ïÔ—$I¾{ þ’‘à~}GÜE^rˆw g͉§âuµÿjÉEí»¢vÑcä§ö»V?xૉÛ%ßÄKÈ¡}‡›}Å¥µO|d¾†¸Ií€w)Wv=’\I˜‡,9`¾c?ó2–OƒN} òÌø9ìlù#éËQì»Ê3O.DNv‘Wa>A|>&1ú±Ñ÷!iõœä+ö‚ß¡w˜ðïÕüßG8ŽÕx\OIþ7˜]Ä œ#‡µ[|å;)ä óˆå/ȳ°þ•üq$yñzYõŸ$¨çj}#r¡sì3ytÚ#¯Pûï’¿¢¿øQôZö<÷„ÆuŽ ï^¤]ß^ôStc·ñ/|ßîÚê=¶š?™K¿jÿ’÷óÛ¬wÆïΈÏÁyä1$?Ï çÄÏ¢×ó¸øõ³Îá øÜFPû’“ày{ÿ²æ‹Á··´¿C½_Ìü#ø9îe= ïdó[û½ ñ×Öû+Øp6óxØú‹Ýfž {,9/|ƒ^’€Ÿâ78®òäʼnðª;\xZë>iãSóÄq<&yyøƒ}«÷¹±/âöË× ðÿÙ!.,Ü.!¯Äú/ò'O íRõÿ¯uï•'¿Iþ>Y>‡uyØoÆ£¾£¤#zE~˜xp˜÷.  ODÿ}Ý0öîq‰ìÞ=’/ò¸ø!p$yþšo3ûVyHñOó‰µNõæÌ3܃ÝfÞ }•®qWû¯W¿n óÅGüû¿cj?Gä[õ¼„nµ[ûà5®ØÛÚ·ŠyAp”úɺâ«Â Ãñ,yõ}jÐ{Ö+m7ª]¾{½¾?yeüg}ÿWíVÞ܉>‰ʃÖ<ó¾¡}®õî—ø{$µÏÖÿY>–8äß™±¼pí¯…þÚ9öûTñÍ=Ã<¾}çfkžJãE}”¯}ð4[ÞcƒsòúàDñ;Rr¡òØ?ìâ‹Ãq®8ëi³ãð©ÞÇ1½Ænë}­}èt‚߆þr1GÔÞâ+›7¿£ŒS}_š|“Æ™üëŸÇ°‹zý=&¾=!~øwžSý•O&N„ÿä³Ô~­_U=¼WÏþÂð]íÕ>%ºÏ¼ vÔ÷!ü~Gõ¼–rzþAéņä=GÏ^eù€g†t•¨õÆÂ#µŸ2ñ’á ð?óžÌSÖ>5Ÿ{°›6$VyÃ-µ­ìÉ~Ù=ô“ùBÖo G¬W+;byRü rÏ9ïÙ°.ƒùóš7²¼ôÕzx=w€ùdüºÆ™ù$®cŸ÷sÌÓ©ô¡ö+´¼'yXÞ;W—Ôwx5®¶ÏjÅû”»3´[óa¢¸ù¨Z× ýÀß¾¶ã­á|¶¿/YñÝÓf/kÞ~ƒ«$_àƒ™äãM_»ª}FŽñØÇÛC;2ŠçmÿÖ­8ºð—а¼3rÇú“ú>ƒ®“Wa^¢ò‹ºŽ^0ÎÐW|!ÎÄŸk—ÚÇÐò…ÌÇî¥zžü,öºø„½WyÖâ+¯AžFãëq'ö“üö>ðÞÑ£foj5éýð:ÖûŠàæû-Ïwe8TtW~]í05?Ä_‹ÃÄYÃ|ÀhßVÿ"ïO}Ô⢊¯¡ÿ,¿JüÊ<óÊç3߯vÉg‚'ÀïäÉãó¾ x«¾ Bžx€õÄ b0OYq|íÛ-ù@ߨ©ò£ÄýÄ!Èr®U¿ÁãÈ/ñÕ'‡ã_ø¹¨õ–_@¾êýFì ø…¼¸øËwTçÚϼ˜úcµ>£âÿîB­kÒOõ磒›šw‡²oÈï Áwægø¾vñM|g?2üà£CÿUö³âä\‰ý–Þ¿€7jÞNvœO¾š}f‘;ð.yðõnò<²CsoÏòj\çÀgè¨|ÃpÝÂÖþFÌ'¨ý£ÄaøEñó?ð>v‘¸œ£zGìzDüD|…ß*=c¾Lö–uäYÙ§ƒ8’<ö›zyƒ<ï›’ÿd>|Î{%3Óä©ð²ÍËÔ÷ðð‡øu觉/ íUÍ{ƒ/È+o¿µ >œWÞún†ç͇þ£ü ú|ÿjæÚËö¯<0|¨u§j¿òÃ:'T¾RõTJ~„üy\òðä[É H>‘sâß§„þûû¡w\$|—ë&ñù p,ø<íé¹ÚwCý©yDéùò²/µXô‚°ȃ޻ÚÊGÂ?ü|×sâãâ°úÍøR~Ðö½(Ãüë•oÚ«ïžàGÕ^Í»šü?i~=$oÃ>Ø­ãÛzÿ‹øTí`÷Á9ìRþXv³æ;8JŸñì÷€_E.jŸ›?(¹”ü£+N´¼_½×¬qÓºÞ›*ùG¾*ß­çˆð£¯Æ!5ZySñá? Ïâï1œÛüÀÖ¾”΃#^$¯8Ä¿5ÿ®šŸe˜uèqí/`ùdâpã>ÁïÜâûB'ô¹eœ˜/fb}Vú_ûêzíŽ0ûRû@˜¾×ºXÕÃ>BÄ;àúSø@õßæûpØëÛC»qúxßú¼ÖþÅCÿWv™ø‚xмëóJ.ñ#Øqìó)z¾p)vxÚèB®ÈÏNÃЮüšò*•ï××wq´O8iƒù8òÄ•è·ÉE½.ùä½ò7´¿3/,}ò÷Uð7ð£ü ù4â6ÆIòN^p•÷ÝÉç‘Ï Ï©v.3Ï!¹-ü¢öXGIýèö´òéÄoÄ3†ÀW¬ÓÅð\å ÉóhœßZç¤ñ¹¶Ú?`qH¼§vZ¾çöÐîm釯³æ/m^yðø–}ÓÉÓ_îÛÚ§;@\­úˆ§Ñ[ú ÞdžØ×UTžFv©âRÑϾXŽßN(/‚?Û¼¸¢Kóȵ¾„¸–8óžíóÌ[xBòOž’xþ”ú_ßïRùýF7ö÷þy~ŸÑQï¿Jn´¾¤æSÁš+»‹½¬õä‰g5Þà2ìùkÞ ­~ØóÐA9ì—Ç9Ì×ðþè³Cý)ýÀ3¿@ž›yèúN8ZqóâàJüSí]Uý5#ù`}PÍwhÜŽÊÿ½IõÖ÷§5^o‘œƒêûÎâ;x«òƆÃÑoòZøaò‹è³ï¿W¬çÅß³Ot‡(;¯þ\²|ä-íÛó¸á}ôŒ¼ úXëj°£äÁÏøÉÕIÉ+qvU8´p:ñv<@ü{ëþÞñ$ï+‘‚õþ+¸x@ü!?Hñàvô9g ó)/2O ÿ_ì0y ô]þð$x“<øBÏñ>YåqÔ.å°—•oñ¼×Omn使ßÈóÒÿzû@~ÀòkøÃZ·K<$½#ÿ¢o_õç„ú…ÜÏ<ó?â‡ö (y-?Å8’%ßÊO±Ä=øu ˆŽÄzþ0~EGÆó顾Ö8½ \‡ƒË›ï!O%ûpNçìï@K•ê-ë+OTïÇ‚ñ[ÂÐ³î»Æ{µ_¶ÚÃ^³_qDÅßà7‹wê½üùéè/<òÄа¾o´/ ö幡8ýñ.*½);¿Á©à@ÉÛn£³ü¬ú]ûXˆ¯Ìðž.8v*þ‘|Ô÷ðw¢›q×û[ùõ{ó…±ÛØYüñ ûeð ߇#¿A\À<;óêØÅ]¢ïÃrþÝ(pîÈŸû¾á5îâ›ÏӢ׌|¯ïÒÑü†è"N©u7â/ù§Š7À¿àVòrÖ_Öoø÷+>$NU;Åíõ¦ò䥡þÔ~ðèÆƒË[Þ²òíàä‘#/©ñ"ONðù0èÏÄ ØŸÍ_&ýbý8—ü-ñó¢¢»ÖOh\žÊiÙ©Zï¬úˆ'lž¾öÿšaO˜ò¼“žWU>_×±ß'‰ßUŽç+ÿ.º ÿ’äG‰‹ÁËõÞ#q5þWtn—~à×ðW6_rq”x—uØyí×Ï󵿾úSû— ‡è™ä¡¾Æ|y ä|©ÅSàïz/ƒy =Þž .=ÄKàWuŽ©ïÉN!¿øÚWXãYßEGŸè=Ÿ'‡v»ðqe}\õò¾ôNÚóò£à-â½6¯ ^ ö\}zï`^rôpü?ÇÂAÌÀGòsæÁ}¬?!ßž•#ÎÈíÙ¸½7h—8 ¼§òèóg•×8°O)~\pM~’yÞ|=v{È×Ú§Üþ¬ý°›à(ã ûÿêû£àõû¦ègžÜTû)ãÇDÏ-íCþ½cü­÷ÀËä'%Gè}­ŸèÈwý“Çͯà/Ë>ª·ûðþ×þÄEØ/ð±úsSß-&NCÎÉ#á¿ê=ð3zgñ{í»BJ|`À>Qù^âcòCëßeæ=Í-܆>á÷,ùFð×õx©ýʊ϶n»ô‚|=퀧˜÷¿¹ú®7û¹Ôú}üç íK\ßÃažWòŒ]/`Ïj^ ¿¨ññü2v²ð‰ø®f߯ñ-?£z¡¯ö-¾¼Š|®Æ‡<ïy°xœ~à‰G.ÜM¯}cùpráep ã­ñ<@ ÞÜW`_ÑŸÚßVvô¤úI~?Wß«}<Ïûmà]Æ|¾Ä.Ø÷´\Ÿ*ßðÔÐUúÞõïô]7û=«õBâ;ö¶ìrm~‰ïGpŽýÐø•œ0NøûÞAÿôÜâ>â5‹ã¸Î>¼¬¿ó÷è° ÷^þ¥¿ì×ÜüMÕopU}wÛp…¯ë€/èu­g—þ²Î‰ý KŸÖÿÎ/m½oiù#Ö"/Ä=…#%7È+yãÚ7UõÚw2k-ùpÒÙMðçÕ?ñ·ÞkŸÉ“T¼2Œ“Ê?²Oñ'ß[|Æì%rVï'26Ì#nå÷‰kà§øÃwìá v =¨õÄ¢üXqówÌjÜÎÅÇòª§ö×Ðuí+_yèò[†3±à^ôû–Þã@^êý<ô‚¸^íÖw Xý‘ÝÆ®‚KÙ×Xó[ûøýÎâü*þùòy–‡ þöxæ©á8ð^@ÅMÏ ýû;”?¯uÞj¯ôÄüR­ÿbþÂòwŒ'ø¾³¾¾=¼úÄÖ| ñŠÊ_¯ÑƼ®ìÉ#–ߨ÷}³a|š|G}çÎâŠ=ê8¬Öe¨‹«ï¡ì‡Æ³öw²u8‡mžˆýÔðû¼×@¼öaÅô‡÷NbÕ¿Í.Á‡ú^8rн\Å_§/3žzþQpšåûž5û@œ=¯ï·‹6?=š)?~!çä3Í_V¼dyòqäS}=¸¿¯QûÆ!_ê÷»é’ßQþÆÞ3)ÿI¼ß}¿ËóÄCô¼%ú Så[±S¥G'ðÖ fwðßÔ‹±8cq’ü’êî>¸D{ïy¾ìå'Ìnð/ÿ^=òVóžOÀ“ïÑuÖ/2/èߟ"_Äü&ò^ú(ú/“_–Õ~™ð‹8¿Â<´èÆnÓÏš§Æ>‹Þ›è¹ùoêÁ¿=5Ôï­ü(ôÓì¼ú޾ÞV=Øð;ë¥Ø§–8žxüæó6…ëÔ¿ÚGüó\Ø=_ù¸¡üm}Çò7õ½(üx•yô_ý!?ŒÞã·àG­Ò9úD¿Ëkÿ@ä ú¥þ“Ï­}åõü¯ý›t^ñí1ÎðƒñW™Ÿä~­7 ïoñ"ù¿šgÓ}ò¼ØaìWå#™$¿‰óÒ‹7Oß[}Ïr ç‘ aŠ=Üš¿”|×>F*‡Ô<Ì0ϼµ“z˜"jóaØ=æ]ë½;Ö£ˆÏ™ý­õÝV8æIÉÕUÆ <ªqººÊßÖ¹WLý»Ê<1ë,ÎC~ˆ?ý;¯ä«k_RóSª¯ÞÏñï­ùøãG7†ó[û£íLÅ‹¬ãc~ÁåüÏúÓz/V×±‹ç,ORûá°¼Ûyü«ò<¼_n¸xqÔìºï_ƒ_¹ºz¿¹ÖÓûº Þ³‘½¬uDµ^ÏaÿË?0¾àRkíG+yÃo¾D>@ý¶ïålå‰-~|ñ óàdõ9§^Âî“§f¾½Syöû"Ÿƒý½©}çÁÿð{ɼßgUÜWùÍ£C¼[úN:)ýfýþÔÞ§ØÒòE6U/óI–‡f=°çó‹.Ë£³. ½©÷°ØKéñ9pÍ0®©8 ùG^w›ž×ze=^ù@žCO?ؼٖ«èíÕ>ìàqÃù¾¯IùEÃçõÝù'ðV퇩8æ-ð ܆öùp¸Ôü ücßA¾sB> y`¾­ì8 œ^R¿Ñ÷é÷?ZN<ñ·üò$¼Å<ñ*yìqíkÉx‘—}Œkå#e÷‰âªzï@þMö¸ÞS`½lí`¸”¼0üb}.8¼Vï=ãÿÔÎQ˳|àwõ^~í‹€Ü íQ­g`ü‘ËšoÎ+½Q¿îÓ¾gŸ0»ýäwxŒü‚½^ö¾ä ?:Œ÷+.Á>Tž=&®²ü¸ÚדU~|]*Dÿ·Â9â?ïÍUžUþ :ê{Ó’ÓÑ~<俈ÕòîúŽÞÖºKâlÕëï?`/ßú/VÇSäÉË0>Œ÷p}DùµZL~Åò·…óðÿä•t$ÎçýÆ ¾Ö{ÿŸÞX}—±ô«òªo†¾ íOɯ¾/±õÞ¦øÅ~dõ] É]á2ì±úŸæ»åôï9“[òšäÅ+¯£r•÷µ±ž¯ý’…³_M¾¼FþKü¸6|Ÿ¾öKoÃâAöG§}üãYïKj|à£ãÆQ>|Ž¿’}}?yËÏ1¾ÌcW@\­þᯀ»4Þ§äÏN‰në(_ö‹¼8¸Zö‚ýy^0{Ÿ±÷´Ë:7òŸÈïG4þž?vcÅ=â¯åŸø~ãV”ü ùJp´ãõ‡ïÒ™>~«øs˜Ÿå¸Nž ¿Á÷šjžMtñýÛúîïpÞ ôýcv ñZ­ÿÕ>³5/PëdÀÌ‹ò<ø_ñÇQµOÜvEypì®ø½˜cw‡õÔûMÌ@Ï-ÙqæK¾#æ½™'®bß\{¥ö=çûu7—èüµ±æ«0ŸÎ%~„nâ(Éöùðýf,7Ê÷b¿Ñkìþ»böië=ò#–7ÿ„å+¤#v÷&þBôïzïÃò¾/´Ö¯2Ÿ‡~“÷İnKå°ûô÷AæÿE'ü«ïžn%_VxCý`ÿ öñgüðû؃[_~wB´ìFí÷˸‚ß5n•§׉.Ö]<9ô÷[ß5Ãî‹NÆñ"ö†¼ö½GÞÔOå5+¿[ûÞ ÿè7þ‡ü‰Å+ç±³ÄÑ–¯y µ‹”}ÔõkÃ<Æâò2ªçºöE)Ü< û»õž²ä9zôîôÛï©ñð|^­ŸP?>ª÷¡ ãÏÉn'~¬õž:^f‚öȉ¯èQ}ßÇâfÖa\Ç_‚‡–Û½þomùøK¼€Ü ׿l­£æõNÿëUÕ_p3ùÊ'Ý^bŸÀ7¢\yfñ :˜ß&®|Öä¹¾ ßÍ~=7ä×VüÆuòØ7ù‡·0~äß /2.äsë=@úž€_°Óèq¦Ú½‡B¼IÿïÌso­³8éä¤ÏìWˆùèJ®·¾Û¨z9úû™µŸœøn¸÷û— ö+ ¢‡Užç%Ÿ ž%‡ºŽ¬ù7âÙÕú¥ì&úA8¯Ösƒ-Ï_û’·PyúYëåÉc§D7ûOm0?Á|Ó*__yP}÷oëûÒÌ軣5oýƾ‰¾ú®öS~n7zoyoŽøyÞ›`ÿØò×j‡}(j‚p$ëe‰ãjßpÑ?jŸOøLüF>\߆ñrÙ?ò0Ìÿ]{ûÝE¶ÖY>yµú9¸ºÈûоûôý·š—#ŽQûà2ô܇ݬïGâ_„k¥Êã×ë})Ë¿”ÿ$®$b}q6ö}ªÚ'ßíÁpþ¦î_á:qœìû×0~•‡ä(œµûnØóU[ûIŠÿ|ç 9!?þ¨uߺÏû…e?éÏPN}?ÿ­uá–7®øÍò|•¯TyÆ“~2MœÊ÷a+O¥#ã >Äÿ¬Š¿c+…Ò8ÕþèØqòýjÿ†ê­õÄðA÷ÏÑé!ûõá_ÁÛØ pÌ­Õw JŸ¼¥OÌ¿‚G±»7Vß ÝZw&ºw“'FNÈ;b˜'$Ϫx=¯8Bã^ë#,nzÚìZ½*¹cÜõü_å¨û²|*öÛóÊO¹ßÓ>çŠÏ¬G®ùò–äå¸/º®ƒGÕ.vï ôü ÅãõóCž_¨q±¸¸Mû•?ìcôZÃ=·dç‹?:â§À‹×4¿öñ3è)ü¾ñ5K€ü7j?ÞÃ/‚«È#'Gƒk+þS?Ék”ß&>@ŸÔÎ1›7o×ûðQúǺxpPáä ¿*zêû+Ãv·ì²øO¼^ëÀÀ9*_q q¡ÊÝXf-¾÷/Ÿ>oùâ^ÛwÌóe·ÇZ_§þ!ϵ®w(gµn‚¼ûù¾ycâQËKÏ ßµ®\t²?GÍï3_‰ÿP¹ú>+ñùgµwÿÁ¯~Ë•ï`´~ûÆZOe¸ÖÖŸöa&ßË÷3Ø_à8þJžnX¼÷Sèî/e·j~8ùô Ü¥ö¯ß ¿ÿéëKsú·ÿãb<‚|‰ïñä‹E'|¨¼œíRójø©òߨïÚïÛò>Ð~1žûÈo1/B|.:,Þ„!®úÅ­}fàóU”8é²é1òQñó ûL/ ·áFüê1ò€6½h¿ÀG䱇ØÇÒ­ã©õ7âcÕG~[þ÷Âö]/š¿>"{G|ø”óUüd]ñ"|ª8CtÖþŸ¡g•¯K>ÜœIÓÐÂSÄÍØ÷–áéÛtë½zòÏêÿy3ÏÉþ+ìÃ~Ióœ5o†VÑó–ÏEO°{—lLí› îCîÑ‹¡ýÚZ:œ÷ªy<Å‘WU\"¹fXìÊWïÕlå“5.¼Š¿©÷5ɇ0/#>#§ìËÂ÷7~ñÜõ»¯‰¼kq’¸RrùðÝèáWþ¸Úóý¨Éçû÷ß¿Œf~à[ë£ÈcõkkŸñ—rõ–ôàUè1þMãWyrònä±Ð³WøézŸKý>$:ë=xòýf·™?ß×>£ÌWˆ^ð;ö«òØ3ñ©ö!'¿GÜ(:? <`áDò¶Ô˸ˆ·”W|PëÔêý!ÉÑ«}´·öK$IœIœˆ^Yƒ½×U\OÞˆñÄŸÚ| ¸”ø{ö¤v²æaÈSkTÓ¿­ý<‰{”wªy‹Ój¿Qå£jŸ<Ùôàcø=É—ïÓEÜ}r¨q}HõÂOüç3ä)iÜ­þÕ>Æâö_kÿ]Ëo?²Ú¯”wDNj_ò„Ä?ºîqÜu³e-O†]ö÷ýjž‰<œÖUÕ¾øÒ›ú.“é ¸ <€Ý‚_µŸxÒqŸÚ½&ë}ÙëSøãažmkùÑ]ëºÅ¯Âð;Žü1߃_Òõ®¾7\|"OòaÆYt2Ï ž°ïÆß¿š¯Q}—ì{u7WþºüñVå›ßÖ¾¢äiÀyâÇ…ÕümÍ[ž=´üÅ}ºþ¬ùcì üª÷žo“ójh>¾õ=â)ñ«¾Àøê¼Þ›¥}äYöœïÕwXͯbë{§ÈóœÄ×äoEv±òÃ|ÎéVùÌѾ,È‹üÙxŸ$ò€àðþÕòz”/ùa>Vö=¯<öpäôMá“úNì>~{åï'c'ëûyÈ•pîAòàKä€ü~AòÀ~,Ä?µßã…Ü#G–÷«õ3à ÑÃ÷^õåÿò“ï®À/^"Of~›ñ®÷é ‡á÷á/y!ß'­Æ‘¼&~d8O°%äÀ'f¸½·ïlÕù#+\XÏÕ:Ëw•¿j¬Ù üü3C»½•wÅÞ ¯°þîüj€²Œg}W?§zÍßV>¼Ö/j¯ß}å[È‹Tœ‹—3/„¿¦_‡©¾GÀ§àcË“¡7ð ‰<‚‹ÞnÜ}‘lk}$óÄ¡Œyp¡øB¾zàóÙþÞeíC*¼Çì&ñï=i¥ÑzðšWS}õÝ*ÕG^´ò¯ºÏ{å|oí†éï±ùPpÍ%ñ‘|úÞQ/öâºäácÚïËpÁhÝr޽­|ŠÚGá÷ÃØ#?¶Z_Qß­xÁøËøTüjñBù1ðrôÆáú–üË»‰»Ó×´Îã“f˾Z<Œ}¬x†¼íêú…å´Á×ÿ¥Ò»ŸÒ¾Á'°§‡é}ž»®x’õoȽïC|;ž¹fGìüy‰y!3õ oõ}.ü#y"ÆÝæ%*ÿ(?E¾¸öÕT¹ŸT?]ßK>¤àˆZ_¢þÛ{Ô[ßãÆoIÏ‘£û4¾µ?™¾wsín:ÿ«·Þ"n'n#_#9¨|6ó*f'™W,œ-¾“—f_LÖcÌÉ‚#‡òZù§ÂêßEôJrþE^Õ>dµ£Ïu‹ÿ´ŸÌÖ~Èø'嵨/Æöç,½FÞk‡øÃ~änþú»€¨Þ§?ôÛóQœûwȉçöã_È÷Z?o›~”|ƒÚýðê»Uå?¿Tòˆžùw¶ë}bÏg“_Çj<Ñ÷úž¹žÃoÕ<…ùð‹¿ÇÅ{ÜWÿäÝ‹£ä™—ðuÄõøEp€ÅµþUôbß|} ã̾äY±õ^óGØaòIj§ò¬Ä¥â{½W_Éw^çÕû£àaèGkÿ,p–øÏxÖw…ˆ›¨Çò‡…3Áiʃž·ü× }ÏÓ¿OŒœ’?ÁÞÿOßö=Oá}eÙÛÊ ó&[ï›Jߨvï_jÕ›îÝšŸ4ÿøŒG}/ÜF¾¼¬ô‡ü}ÿ¶æ·«’G¾§]ërEÿ‡YÏ]R;àVìì¹ÕüÃîß7MþüûèµNý–â1öeà}À'‡z¼µ^R×kÿNð¤ž#޽aÜÊN‹¾GŒ?¾v³ä;H\L¾Oσÿj½8Èìù¡úŽ®è®y4å…niŸOû.Wõ¿Öý‘O’=ÆøZœ„¿å}[ö½Å‚°Ce/ɾï!åè'|g~@û=—?'ŸSß÷4>î5?æñ!òÌ:ÝYÅA…?‘ònÌßÒÏÊ›Àü+ùVæ°äËÁ‰’ËʧŠö ©÷PTþ#Ê/<¼Üæï¹Ÿ*=Ãîn$þÖ_ï±ïû5úûö7­õ¦pãÎ>óµ¨ÙŸWªïî·ô0þøAŽä]}ŸâCâäZWbã\þ :Õ~½G)}ÅÏØ>#[ß9EO<ß¾ª¾'Éã’çÓø‘¿¨ýT¿ö_®÷ø®Hõ_r]óèä TO­û`<Ì~^µï/vÓòJ7/Ñ: ò·èÁµ•Ê~­âíg@¼hr.? حµè5ñê³ïlÖ:ÞŸaþ•/÷ý_±¯7´Ïq¶¯K®ùò äÕ”Kó6äOÉãÖw,ðk*O¼UëâT_}§Gú~©÷lÞ{H?jÿ ÑSë&®ãç}Ýp­[6|{Qëœ}]«}‡f ÏÙúüL½—`qÐG•7«÷~‡ùò_؇ç‡ò[ù]윯‹¨| 8€ùü›#óð©ÞÓ%Ÿby\ä»Ú“Ü\Ä™~ó}+æñÅ/ÑϾ]åçÁ{à;âð­å›^"V/«|íëny‚Zoļ q–áL_¯Xëù‰+dˆ7ë½:ì#öœ@hù‡¢zÉC g¾ÑÆÓüáÀ­ù éö}ÇÿXvq\õ]Zù¥ò/µ^œ|¢ø}Ÿüï!ÏL>j?}Å |—–qyqˆ‡ê½@ìè­áïUøj8Ÿ¸eo gVý¶yŽsZ×ôœŸïìï{Ö>­ºO#ù]ßOþÿÍâ_}—”|&qã%þ:BŸ’yåÚczÈs— ×Œ'þz˜×«ü¬­c¬xæEùmü.ߣ*Eœ¢<¨}{ë=k“;â]ô¢¾GF׿;ž2»G}•G“¼Õþ/ÌããWÄÿ‡ùêÚñ–ÙKpÚóð>œÇÞúø[v>ŒÞË'¯e¸†8’ýzjŸî¡_¯ü›ÿ7<_úÎ{Ñûl·ÖEÈ>…üNõ÷À17ÕôÿÕÏk+¹­¼/ùð$þ°æ‡ñƒÂáûɳÈ/dÞÁòXÈ òqCï·\]Å=5®é;µÎùQ=àÛúnrcß›"¾©û†Kéï#Q?ñ"ûwßÚÕ­õ ²ß¬{d<êûwo¡GäK™>ú‹­ï>Z}Üg¼k=ñŽÆ ÿÉøÕþÂäm·¡_«u³Ø¡ðåß}éïú©ú^E­ƒ5|‰Ý¬õjà.õ¼Çzvp‡ömíS«¸më»ijÇÖ l}¯Òâ4Ö-|œ¼ªÅõýPåakŸÖ‘ àäZòXyÝGOÉk>¤ï"—¢Ÿ<…ü4v¢äSÏc‡àyèZ_§qüÀ*º•oÇï0ÏŠ¿Q;žŸþ˜öQ¨<y^ò¿Ø3ìòn¸«Þo%jù–Z¿‡\N"߀Ÿ£öèã:"÷ð‡þ²Ä“Ø%úkô—ÝP~‹ï³Þ¶q¿’G©}&4ïaï!Vü¸Wüyj¨5ÏÁ¾—•§@ÿXç£÷תðë\ÈWQ?vü#ZW…}ø¨ðïW_Ôü,ÏCÀµäoëá<­/ÿÇ<Žöwz~0?¢úίÖ/ÖþJeçÈϨ½úî(ùbÆYüÆ.ÖzuæÝ‰Û‡x}ôÝ<èAÿjžF=–÷}ÖôáŽñÇ¿ü!ö»Rýõ>œ—OzžyUûµ_…ê)œE~ ¿‚^Yþ~ÐOϧúú@Ÿw«ü=ùlì=y/ðy2æÉë[Š÷*߆|‹>äàù!Ö'ˆnæë{ «ï+,ˆ.æ§Ïk¾>Öþ4‡÷i~’ù¢š%®‡?Þ¸¬ýíÁo…ÛÑ_]'®-û©~|Tý¨uêàòäÝÀźþ qÚ*·8$ùÖûï§oj]6z»_~¤æ#È_k&õ×÷ÓmžºÖh\ßð_¯¿Ä|àp]IásìüÃÇ/Ƚ/³•÷1<®õ}®hºÀÝø'ô¹ö‡^®÷±‡Èó쪇|²}7{ôýèâ{ŸÌ ú~Däïë}µcûíÔ÷]k)‹—ð§5Š >Ång¶q*?¬xs?v¿©v<¯ Ä-µ.¾©žZOoö¡p>öÈâ$òP¬W®|5vüK…üùË_`qŽä¦æ¥+¿bóAÌ¿±ïóo¶Îa´.yÁ¯à/ž79©÷ÝÔ¯GÙ÷ž8AzÉü#|½¦õ0µO¼ú¯¸nk]q?öPþá ~¿%zïUþ ÖÍnŸg¯øîë§ÏŸ£/Ð ßÁïµ.Sv 9yÎÆã–Îo ÷BWáõ ½-~`g¡Ûâô®ü±Îé×#úî*ë[ÉWð|ÅóÌ÷©âàW›xžxC×ýûC¶.§Öá×¾×ÒƒçLß¿šgÁÞހϵ_ ýQùúNë4ÀZ—Vë®™$®!ï ÷eÁ|_“¼ïÃþÖzKÕž?dq=ö¢ö§A¯E'ó*‡È3ã7ˆOä—ù.xí)¾>´Úw+hó¾nßæ)O?F¼¤ñgœ+?ƒÿ'?¿Õ_æù©Ïסß¿ªÞÚÿ—¼¸?†ŸÅ~YÜöˆáK_»Åû&•GßÙ|ö ñùþúþ6㌾ŠNÛwyk}4xLå¡ëC²ƒµ^OöùœQ^UöÃ÷ÙD?û÷–ê»jÊoóÝAübíŒ=&Á|v…¸Žù<ì°é±ï/GûÍè£åÕ¾È)¸ùÇm çmÙ§äOr½õ>ð"yÓgŒ?ô³ÖÉ`o-Á÷õj|ò„Ãy’wìñõ»Û¡üêê'yžò»†'Yo\y>ÃÕn' 77&ž¢âC}oƒ8Bü`ŸgìôóÖ/ÿÎví ýÌ0j—~‘ϲu˵>ÝöÝZ.þ]ÓõKà'õ××5Öþ_àõ“ø¶¾'®°î|M¾N÷‰±]Í#ÔþAÚW®æï°ìëYï-ï€ÇÉû‚³´ý©¼ ö»ˆ½]W™Gb¾\øšý|?þò†â/öçÑ·,'Hžåû/ô–ïÆúwhX7Wyop¦ž¯u”àѾÖ÷ûʧ?kr¨uÌ5O‡}¦bóüÈ1vñœ•óùÄúNò ¾òäù!ÍÿT^ŠøVçÔ:„úÞÕûøÐ¾nÅf?ðÏŒ#û„ÖûÖàjò‡Ø+ž³¼yæÇx?½AÎ*Ï,ºß·z/³æïÈó×wÄÕïàó„äGUÿû—Óû÷¿Xû˜×þ?zþÞÕzÐZ÷Sóø!Õ˺Vüë±yù’ñ»ög¼É#`Ç$|/’xõäÐo,mgx¿¤¾¯î|"ßÅ:hÉuŃ|7êžaÜ·õ=ÉÉ.ògêWÍ¢—àNáâíòÛÌ‹À¡¯}X·WùCüv–¸¹!Ÿˆ|Iþ|¾ßýq}oZã€~^â÷-/Wùâ ÓãʇËoÛ¸»Œë5[ïÇZ>ç²êe_ü9ëÍØ¹®ï$k:êá;Èþþ3y®z@íSí<®´µ~÷®oW[œß߀]¥>=Wû0~¢ï¦Þ'ªýÅ,ßN>ù³|ãÖ¾O+y¬}a˜ÿ¨õþ¢ÿ «ïP3odó£>Ï‹?àûuì§Yß‘ÿ˜Wçý¶Z—ߘ' /L¾Z~?eû½mùEæñ‘_ä”<5øŠöEŸâìZŒœv&äEk½äp¾¨ìL½ïO~†<yiò^C|¶ߪò¯¬w$_[qŽúÇ›üù)å5ê}oÖ’çÝ0yÀU>Uø ºÈïû{ÃôÿAíçG^ì¢üÂ!òUàòs¢“xŸýÁ{è8ù„ÚÏDÏ€¼¼ÆõE&×5iïCm}§‘ylÝøîò§/ÞŠóÕÞ9òÔ’£zŸÇð&ùäíƒæÇÀgþ¾ÿ£äÈiÁ¢Ÿ}tGù$øLÜ/» ޠߨQä¼öõÀO©•ï&¿­þ2ܯ÷ɉóÉ·‘_Ýô÷Y³èøõƒÚ{÷àÖüà­uløaË‹Öü€ž»©ù;ß/ÿQß)“¢×Œó7EOí „Ü›}Ã1?É< |ªýÑì'ù?Ñq]ëÒ®iÕC䉠WçȃïKçûÂÕwœÅwð(óí俎`?<¾½ä©ŸÏAÏuNüôÔ°þ­< öIôÕ¾WâC½W&ºkÿdô¿%~’ß"î‚?Ú—qq\K<$>Ô:Mp$tÃ?õ¿äû ~W7꯷ǹ—Õ3ù¸®ï”/›vì]÷c¢ßù´Sº}\’¼¤£÷ëŒË=V®Ç_׋öÏù“ê3;:=*Wòèå\þ’ÝH|*‡vÙ—¤Þî¦Ýg|æ®TOÒïY‡þ4ÞÎÇM+ŸèpùrùIô&=HãñZ;&ºœo›vœÛy¯”Ozä~>öêOþÀ¯§vçáúÌî;Ò¸'½x¹v®çÿ\ˆ~wªMöÌínÏ;>˜Û}ÞÛ{“=çüçºÓ“úåí#'ÎÇ$×IïœÎž½äèãèôyûÉîmÚ±çg’þ'½òþ:‰®‡³Ð¾×gýɳ÷ƒsç·ß³'I¾Ý.Ó¹gVþ»îýöv6í¾•ùsʧþÏÃ}×#ßžèéå,”ó~:½›V.ù·¹SOz>Ñ{“~R¯ž¯qØÜ¾|Ýw½ðz®©xËý§ëÁ|x½Ê¹]÷vôqØ´ç½Ó£îs¹s>»ÿíø»‘½±ñW² ÏÅç9wy›ÛÑëç¹™=—ôp"ž³ëcÏ~:ý<—ú—ü$Çä§“šÛýM»ïúžä,ésòx¹ƒvôö~u¿îöhÓÊ%;·iÇÎM8Áùšâ ç®ÿM~:Å?I®¡+åG6‡×GvÅûëô»~9ÿ’_p»’ìsê×,´ãýv9äzÊ rníÚs‘>—“„¼>ÞŸëå½½îHqßÌŽÉŸØ8Œôv§í'{âø0àΘg…^ׯ^ܾSÑ‹Ýn§ú^¶çb<ê~~b^b„ƒ“]òþmÚÑå7ÅÁί¹]Oñ#å’q¾§xÛÛwùNç^OG/"žñ¼›û§„¿œŽ¹§øËã&¯/éaʯ§ø/ém²ó#|èå硽ž?„#6C¹ào·Ö lOÄà —zûs;ïÙ›¹]ïáß$‰®d§’Þ¥ñçùÙÄr.ÏN_šG›˜Ƀ㿞ÆefåMNGòÝóCÞïä_{ãM{ó@'ÇägÒøöìXòA¯¢M~¡ç÷ÜN¸ÝNõLÅ-3“_â¾÷ÃLJr´ïþ4Å%®=H¹©ø¦—Ÿ÷¼€ËÁ¦Ó<ÓÇ1Ùƒ4>÷=Sý¦áîø|ÀáG>­›vžæ1“Ú´z“|ùuÇ.Ç)¿æåçV~nG/¿>³ëÉÏôp÷Ìν¿^¿÷#Ù ïW²oÔç|Oø/ó¦•ç|nÇÍá±ÆŸû´Ÿp—_÷øsnõºsþ$\¹i×~Û´ûs»?³ëÉ/¸ÿNúçí¥<çÉÏnZ½É®ÒÞÌν?{ûþ<çÁ^8]#ëüóú99Žv'á–„S2ÅsÉN9ÝÜw{eãÛµãs;wþ:~r9OñB¿zù¹»œú8½Nx æ¿ÓÑé£]÷§3+çö'ÙÉ„?6íºË£ËÛÌîûx9ÿ©fG·+s;¦|V¯óp?àj§wDO/_&»Gùä—œnÿTÿ¦]÷zRÞ,á씇 zó vóâ®o›áÜùïú—èOú1³ëiÅãÖà¢ÿr¹Krer4z>Ù·9zø5áš„ogv?é[ŸÍì|Ó®ë|„ǼžÊGŠ»h?Å1 ×ÎìÜéæ¾çÌŽs+çô»½˜Ùý^þÒŸw;Ÿæ‹7­׋dǽ]ï—ë§×ãö)Ù¥^^ŒònG]î¼}Ï7RΟŸÙõd×ÝO-ŸòË)/–ð@’«ŸÓß™Õïý˜Ùóη„ÇÝÞù}—Íás1~õçæÖŽÕ?Âñ>½|TÈOtqM'¯íüñßäuDÿf8÷繞ò‰ÏÎ'ŽÞï„Û\½]ç·ã§ßíõÜî;ª×åÏå=ÙMÚ™ Ëqîríîlxñ€•É‘!îµÃs›ö<ç½ñäèøƒ£/å½þdÿ>r¾Žôâµá¾Û}÷CÐ5³ëãîüågvÝíwOoœO®ÿ^?å\޹žèNþ)ÅeŽBÞ8åb¾‰þ¸Ü»¼z; 7z9¯ÏåÙýÖÜ®»\yÿœOF×ȯ»ÝãèùD—Êìãó®©}¿Ÿð_©ɯάž”wMñ­?çzEý¢{ò:'“‹nÞÍÆ!Îg$>¹ü»}KrBù”rþÏ>·oì«Ës/¯âtöæÍ'õð@Нgv=Å#).K~rfÏ¥|ûÜŽI\îçv=ù9§?µ?³çzyq§Ûå/àÝèŸÎt>ø¸8]´ïô%:f¡=·Æ÷Rþz\Þ6í<åŸ]}r{àýr9à9çkŠgÃrÝ÷ üy—ßD·ÓE»)>4ºêܯ{?Ü®ùuèt;Iûn§½]—ó„o8:=>.ï´Ãós+ßË¿%{œèJø¯ãïâ|²×ŸèOùÇô|*§û1þIy5ÇŽ©?é™Ûáà/»óâ½¼ë¦]^B<ØÍg¤ü™·—òNnR|çøÄûçöiÓΓÝIòÔ‰ÿFvÞqB'íæ»þõ3Ù§Ía¹4ÿçex>å|ü¬½n^6ÍǤ~'<àí÷ÚMñzòOóa¹8‘òy”›Ùý^|·iÇ4?“ü¼Ë÷NÔ—üròVOÌ%=tûáö4ÉÝÌê ã×G&<åò–p~Ê+nÚõd¨/ù—“0nïRŸ÷×Ûs|áG/¿¿i÷ýÜí[òw)®Ý´rΗŸ” øÝÇy„§R|‘ìw˜?ŠóÇ)NLòßË+¸èåÝ7ûu§?ÅÁ ?&¹r?ëãæãe|S²+ANã¼åfá˜ìmòw wÏíÜý.÷C|ÜÍw$ü}!IqÕ¨þÔ{.âÈM»ïúåã¿iÇ©ñD/oÆ'á·s)ïðÆÌÎߥüôÌ®{?œÎ„Ÿ\Ϩ×ù1·c²S3+çòœüc½NŸÛŽúœÇ¥)ÎHý¦Þd¯Üôp§®G=´8¬Wn4~)o’üCÊ'¼âô÷ⱔ߸§s?á‹Dï<ÔÓ“s—4®IŽ]¯’þ¦qsþ͆LjGÝþpìÍC¹¤½ÞKñ•ËSÂQ={äô§xÇíåf(—≹ÑòA£þÍŒn/ïòµiÇ?¤ü<õ¤øœó„}<¼_)Žâ<á:׋dOÓ8©øž…ÓétmZ9o7Õ×›×÷~¸œ&¾:]nSüé|šÙs3+×ÃO ?lÚyòÞŽ[Òëž?ôþvò¨1?ærðpw‰]y_o7=—ìS²WnGÝÏέÜfx.å“}çèvÕÏÎw{ºi÷½Üwþ%êôYù‘½žÙõM;Où+Ž®G ?§|Æ,”ãº/×}|¨7ä GýIóÔNŸëeÊ nZù„ƒ\ŽCÜÛ[§qgGŒÆwf÷9Oñœ·Ñ1¢;écò×®<×›ošY¹„G“¾{;s{Îñ[²›É~¹<¹žÐÞÌŽ.?Η?÷_n‚<ŒèHù£/®KIþ:ᨹ•§”ã¾ó‡ëîŸçvžôsÓîS¾7O±iå9O87ù™'?çÇN~b$ïßÇõ)>÷þøøÎì˜ì¥?ŸòTs;¦z’~¹ýä>ô9?“ßuys}qþº}èäé#nyßæVåfvÝqŠóon×½èN¸?ñ3á¸M»îõ‡øzäw¬ý˜g¡½„c“½Ú´û)Mþr6,ŸðTÄ-iœ¨×ê‹óvî/ævœÙó~ŸcŠ {ùŒ„¨7­óØ ýJzíöžúCÜó_Ô—ìM/ß›ü®Ï¥ñq;âå­Þ¢ÛùéürúüyÇÝs£;ÈoÌKz}i~Ðõ£Ûƒ™{?æv}Ö¹îõõâèM+—î;ßÍ_ÄyhïWºîx`Óêu;ØóÛÞ×[ʹw½éÐ7jßñÖ<”ç˜ôÅä#åͺùs—³4ì²ëÛ÷W:?Sœ=i>Ûéóö6íhò:âŸ×ŸðËA¢ÛåtÓê ùÀ]¡½¸ŽzfGç“_ïÙgÊ›¿ŒzoÏE\òçö¼÷cêü‰Ë™ëE²;ô'Å;Võ8^K¸(ÅÍ!oó`Ðéy¤÷¯ŽúC½®ß~nçƒýõ;{½I6ÃÑõ“£ãð¹=—ì™Ë×Ôu ž§U{îï¢ú¸ÎíÜâjÇé†Î¹=7·£—÷~ø1Ù}çOš—sÿòcE—×ïúãvn"®ìâ×s—'/ïr—èwùÙ´ëœû¸»ÿây×+oÇõúgV~nç)ï“æE>Iã–ò/nSþ¢‡6C½)ïàúâr< ד¿Hø6Õëõ¤¼£ÉóHŽgžM;w=NóUœ;ý®gÉ¥|þÌʧ¼æ›­¼Óáx7Å73;ãó ÎGŽa<ãüjÀ»£ò!ŸçRÞ<ø³hÿÜ^$~rî~*åIæV.Íg¥üÚÌèI~žrNŸ_çœç¼=®'ÿ“ò:¸¾x}>žnoS|ÕËï&>†y©´N*>7 t8}Éî{ü²ʧüËÌŽÎçdO¼þä7{y?÷w®Çiþ¸·.Ëû“ülšGîå57·ooòûÁîGÿ—p¤ÃÜÊ|˜ìþÈNl†#÷{q™ÛÛÙö÷ãúo7Å#œÏìèúÄu÷Ûn¯{8–v½¾„+Üÿ¸±çcÜãt&ÜÜËÌþç$¼ÍÑøçòçQ/S_—ôÃõÁùÆ-®ßðs×——§Þø¹Ùñ¹=çöÎýÏoÚõ€ã⺨7‰ñiâKªúS|:ôy»³aùˆK{yÎnOãê~cÓÎ]>Â:”‘þQô¿ŸKíΆ÷GrìÏd{å|Hy§$/ÉŸ¥8gÞy>Ñp÷³7ÄxÆý•ãØ„ÓŽõzÓºëϨþ¾éæ‡ÜîÓžó9áµ€Ÿ»ùãþôñp{¼i硽8þn?ÿ7‡÷#=^¿ËeäÏõp õmZù0¿×Õ%9ðó4®~îö%Å?^¿Ë•Óçv{Ž)Oãt¥üHŠ×{y /—âÄ Ï#ûœò®‡³ÐõÏípæH>ÜÿÌí9¿Ÿp@¢#·Û‡ž˜…z\ß9&»`|ñžû¥Ùð¹˜ow{òÊ=¼pÙ¨Þ™•OòïþÊõÍø×Îíz’§+Ùa¯f÷S^=É«÷Çï»ÞÏÂýÙðØõ7.·s;qXÄk´?·û=ktŒüš×ŸðÓ¦•›Ùý·Eÿãõ9ýÉÞÌí¼?ÏÃ}÷'.ÿ!žñÏõ7ù9ãs\OêþÕíà›‡åâ:o?åÁ.qû3Õ^̬\Â_›á¾Óëráã–øêç ïÐn²×Þ¾×ëãåþ:Ðç’]M~-ñÇ屇?“üz}^ÎõÌË»ž¸;=ŽgR¾*áG÷#Ý^¸ð8€çzv…ãæî‘üܾ\äcÊÓ;<®œ…£óeÓŽIîSºìÉ·Å)ÏÓ•ç£Ëµó#ǦÝîÌÂ1èͨ¾°'οx;‰_›vîz`8aÄçPÿˆŽž½Lùµ„7ø8:?z~$á§¹•›‡ë.ú’ôÓÇwÓêq>ù±“ÏÕÓ[5·ò!^M~s$ßiýVŠsÝ.ûÑév$ÆI¼òˆþ$Ïi~†væv}êIvÉû3דýJy¯™•›…ë^¯Óéý x1âhè óQo“?¤œÒƒ¤o©ÞTʇ¸e„ë]6í¹´kÓÎ=ÎóûN¿ÓCùä·Î”ä¸iåçÃû£ënϹžü€Ëмþ®í­sv}fç=âˆ:çò<];ëô'ùpû–ú›ÊÝ3,íí¦ùˆÍáyŠ[º~™c/Ïïõqîí…¼X’¯8.ޝÍoD¼5Û¾½Q;þ\Âg›Fד_tú<^·ñ•Ÿ[;óa9×Ë8_ðb×/wâ”'Iøµ‹‹“üøóÉõò.óíéêÒ×ǽ|ýÜÊmÚ9÷Óúä^\Àqn÷Cþ²—߉|Hv*å 8nZy®SoˆCc~ÍéòöS>:R¾~6¼Ÿðl• zõÄÛu<4·ëÁ®Ä¸Ôó‡É_rLùR§/áôÞ<çÜŽ&ÿqþ&áUçgÊ{uì]/ñÒÜ®O­×3;OóU3;&ÎùNÇ»ÇÅø€výy·=}qýs=ž…ò=9ãèñ}ò³iÝŽãÝ€ãFõÌÃuo'Åͽ8ÃñXšïí­sñ8?øƒ‘ÞÍC9Ž);^OqÒ(÷úSœ½i÷>LöÅñÙ¦ÏíÜéJþÆýù¦“_˜Ûy×›Ÿ¥8*á™Ùö÷Gí§¼Cê—]µëòÒ›Iòâ:§ƒ~ø¸'üòñ=¯¿—ïâºë%å oj¾'åÛÒüµÑ3ªÓÎSÜŸôó´Î!ÅË®‡ÞžÓO{i=d°si¾9áòîúĹ]Où<Ús¾™}ëæÁ¦Ž‡Û»4?çz‘ôÑå½g§¡#å’Ý óÙUßÜ®»|ð\ÂI›Ö¯”‡ðçR~ÆévyLq¿›ë…ë3õÍì9ÇAÜŸÛÑŸ÷ñàú›í8³£ó•zÍ^Ç8)­×wÜãã¹iõ¸}q>y½IÏ­½ˆëæv>³zi·çÿܸÞÐŽ×ëãíú3·ö:ë·b\C¹dg¼ý”ï‡îY8έœãUoÏÉÿ»\oËÇü]’ßÎ|IÏ.øêø…ëI.­_ѯ¤ø8øÕè÷“½uyìõÇ颞N¼ó©]·”Ky—[êKz›Ö‰:Ÿçöýó~øxôæù<^J¸~ÓŽÞ7ŸëÎlZyï‡ËgÈwFyíÍC8nq¾%ÿ?³v½IœÏ)¿‘ìѦÍž9ßbÞsn÷S<ê|›‡ú<^pÿC9ÏM+—øcõöâ•( ¯ÏíØËWÌí¾ËíÍìH=.o!’üešŠx¬gS|“úåÏ'¼ô!Ê·ÖGÆùÎ{ë86‡å¢žzRíúÙ[Ÿâå¼·<7·ëIoܾͬ\ÊQÎíâ¦]÷çRþÈígÊ%;?³ûÐáxùÍvîvËå¡—p:’?7þG Ý®G½|…ÙÙî¼s’»M»ìpÔ«W¸ÝO¸ØõÊõrÓ®'Üä|æ¾Ó›ÆŸò ÿoZ¹Ùðzôi«£oÑO¥çƒ¿r~Dûêt:^óãÜÊ'{âç¿Ûç¿É}¬ÏõzzïÎÂužOãÇýOIyé4Û]W“æfvŸs—CÚ7=ór´»iÏ»½Oñr¢ÇèíÎÇ»ºNùçëÔuCIÞh?Ùu÷wɸ~%ûä}4î^_Ÿ…ûi|æ¡=®o†~mZ¹Gy{^.ä¯b>˜co'\ô×ííPoðÃ1¾žÙu?ëÑ#~šÙu÷s.½ú]ïÒÑí,×§æË7C»^ŸëíÌÊ÷ÖÑ9êÅ#nߢ¾õì|Šz¸ »œËÅü«÷Ãëq}á¹™]w>m†z{ù‹$?o¶ò\w}´¼yÊcÅ|•ËEÊß9^ Ýu^nŽÞo®Óõ;]‡ŽqDÒó¹{ñiÂÃ)çç~¤ÞÄÏTOÂ)ÞÙžðPZ¯itFœ`z㤴®‡rÞ/—}Þ_ÇI”KyÛ„«Sþz­_Cžg¤=\•â——´NfÞi?ÉMŠ}&ÎÇEü“üÙ,´ãrB{!ß6—w‡uúq=¤ó+å/Sœò¯#¼éþßÇ£W§¸jn÷S~ÅéqyMv:éû׃v>·ò³P.å¼_Ž?’ž[ùnžÎéLír}ÓŽi>¶§ïs+Ÿòìé˜ø’ÖQ{¿gF_Ç¿ÇyŸM;Oq“ã Ïo¦|UÊçÎí~ªÏèëM½]ÚÛ´ëÁŽNž?Hñí$ýÔ1æ¿þðcÈïGœòеiåŽHóÉ.†u:1~OüÞ´c/ÿœâ®Ÿ'œôÙí‚ÓpnœGwÿåò”ìÓ;³rï8)™Yù¹•w¼@y—çٰ܈¯ Çøx¥uq!Ï7âßÜêóAÐ;çx?S¾2ÅK<øñaÂiΟÇÇ|Jj7ÙažKò˜æœï^ŸÛCÏ_:ÿ6í˜ð-íøsç$¹äù¿ð¼ãÀdŸÒûÊÐ5·ó4?3³sGî'üëö*àÓ˜ÿ±r×¹>Ííºõ'Ú‹ÔþÌΓ½ò£óÓí õnÚ1ѹi×yÞûíô'¾„yטðö¡7Ùm§#µãüt¾ýѦõ=Éž9ŽHãâõ”¬rÉÿ$ÿÞ÷J묈7’~¦õâ´“òñn÷7ízò¯)}´“pŠŸ~íÅa)Ïõ Ä}qÅæö×]Žãó´ã|œÙÑÆ9Ù‰¨¿óíË'ÿÕ¥Ûó+!nÉËåÜÊYý#{ì[o=Ã(‘ðt¸\öøò§1ŸÞÃ?Ng'/ßOñøËÆ}Ä—Ç{ýNwÏ®q¤Þ4žA_Óz˜ïóvÝ]9÷úR<äôܗλvÃíCŠÇæÃû)žŽùï^ÜD;÷Æz8&ýMù]÷Ka~¡Ê÷æ5’^lZyèu;’pç<—æïzö|sXntîíx?Â8Gy÷ú©×ýDÊ+¤þ¸ v!ê]ÊC[}1ßëòµií E»ëÏ›‰y¬T¯·ë¯Ç›v?Í;¤ñ›…vfÛßù±`Gýö8×qÀ¦{½Ð›æ/Ün„|^äÓÌÊsN»žóò.nÒü”ó1Å÷s;Oþ/½/ÉÏoÚuúæ—Gt$¿pėwâŽ#½ |ˆqk/‘ò÷®WÔ›p»ë_ß´£ã2®§õ,)þÙý™•ãèãbó,ɧ¸·‡»“}ñú¢|¹=ÙܾÑ|‘ÇÕ›¡?ÜOëó̾ô!É]›„'F×/ 7Ï?õõçtãÉ Ýx8å ƒ¿‰xˆ£ã¶Ôÿ'ˆqeÀg1oìÝHçv½÷Ÿ÷Ãä&æS~Æõzg¡¾tôz6­]§ÇëOñY//À1ùË„KÌ.ŽÆ{6<á+·Ï^Ï{âñ»÷Ãë¡~ïõOÔ—h—.èp=Jó5.WN¯ãîú»y©¹ÝOþ:Ù5êq:¼þ\g{û!o9êÇfxÎî§øÔ¾µ7¢wfå7ízZï5³ú¸ŸpÏ%ÿÜ›÷ï囿¡\êŠ?¬#?”pcÂÇaØÈîÏìzX×ó$.ópœÙ1Ùi‹OÚïølöÆ÷ž~áçßý¾þ¾åï'N?û]w%Oü•åï¯Öù?¥ç8rýiÕÃsª·ø¡ëäùåÙ¿Sí¾¨vïèœöt•Âè°òuýù!ÝE‡Õ³ØÓéÇSÆ'çåis¿îtz}jg±w8®§oÛ8p|Úž·qs¾OX?é÷Eëå8ª¿‹Ù^Æ­ÚƒŽÛöü;§œè¢ßUïm“äÃés9a\8Þ6~¾nG·í9Wkwd÷¨~¤qpy÷úC{#»çö?ô:WïÑyÿâ·ËŸO*ox"ú—§Ç‡í•\ª=ʛ޺_éõÑo——ÇëC¾×ùCA®}Ü9×s>n#º\~®=Ð<9Ÿ9‡¿­ÿWŒ.—ç«·›ôïb‡.Ú½b|£^®{Îßd?¼?ÔëöÁí²Ë1÷½ß.o´KùD‡áܮܸ}syõþݱþ¹=s>ûxxûm|h—ëÏÚx§z¼ý¤7Ôãô¹½á:t$¾ù8¹\ú}§ÏùçýóúœÎÔï¯Ëo¸ßµ·®gfßGýp{‘äøœÑçãäGʹ~ä'Ñé|q~&~øóÉÿ›\D{œäÁûåvÀõ%õ;õÏŸsúh;|ÑÚ£ßnÏy>ùžßô~ôä Ñý¸ÑçÏ»wüDé˹@Gâ»û§$‡~=ù—Þ8[ùŠÛ½ŸI8—<ìOâ_ÂwÎÏ$ç)ÿðˆî»q¹ ä2õÏéôz;z5ŠK7ú¼½¤Ÿ´wgu=Úy¯oj;.—œ»¿õþsîty=Æ÷_\ïM®Fù4—o§ÿ¶µŸì†·k~}ñz{^ãoùÅ~k—qêÙÏC{ý9÷?ÉŽ:{Üúçãâòfõêéµïòmò±8Ò±3g§|øèºëgÈ›Ôú Êy^ËùïǤnß’]MqOȯƼšûUoÇës¹c¼\è¿×ïùD—›åoêº?çüs|nímå­ÑçQRœžúííûø{?¼o'Í·¤qÖøfr4ÊwaŸÈ³Ò~Ê×rîýÖxŸµó$ŸNWÂw·ƒœÜ1þ`ÿ^4ú<ßÛËOûuèóçßøOø™p`Ê“:xN×Gv Ñ™äËÇÑùFÿ\¼}ÊÁg×#{œ¯.Þ`·¯[=&_£ù®¯ù§zÝ.¸_IùÞ|œ·kö²ò©©]øçý@¿ÐäÉûev¤æ{]ŽÒ¸Ü¶zþq»VóI<ÏÑýÅ󯝩ò¬r5Oåv%á?§çºÑïôž.ßSç¸ß/ùçÝθ^y{\w}p9¤¼ã»Ÿ§87õ3ä!³a?FvÇäz$'InÎÏ£¤yZ—ÛÄÿ^Þ8Ô;Ê[%âòçãèúìˆû—KoÏù™î§ñ‡Î$ǽñòs§½>«§g×»ù–”‡u9 v4Îû¹ßñþùŽv‚rè[П=V>Ž‹÷ÇíËÇ_O¾ôôÇå{•âÎ$¯n?:åz~`—Pß#ýrÚÕ'/yð~9Ž÷z“Òžû¹DŸËÛ×Ô¾«óÙãé0n‹™ñ;ýy¨ßN¯?ϱ“ŽþÚùëöÚåË툷§ûž?Jþ¨ø—äŽö WŒâÿäï©ÿ‰w‚܇ùâïhß}<\Ž]~ÒüËí`7žïÌÏÇø¸˜¿‰ö7É¥ßwùé»÷»ÇW—s·/ÎwçGOoÒæ¹„zãæãíõûxX|å&ô3ÆÎO—ŽlÏ®HãéüNë/NÔoï¿çͽ^oâ£û«;ÛëCŒ{Œî®¿Jv6ùyo']Oü£Ü9ÓçÔ¯¤~¾S½pºmœ¢p>Ò®ó/Ù ÷wÆŸn~ÝÛKG쟷çtÚy”«À§ˆ3ÎÙów¬þžÝt}t¾z<æö+Í@O/¯ÉsÏZûÆ·‘ü¹^8ÿSÞ¡ÇÿçC;Þ®Hõ$;›ôÂô7®ÃH|y*ÄKSéHýOãçòdüJñF7oä8ÈøÓµG~Üi?“O|Hãéç6®#»áó–=939Ž8(•Ký戧õF6¿^óÙ»lü{vÄñ¯Ë{÷d§{óñÞ^jÇímâ‡óÁë÷ùfï_Ê›õæ¯ÂýÅ,ð§Ç_ÿ0³v¹þ%Æ—°Îcyÿœ§7Ånç¹N^Ùô,Æ9SåÀ׉Ý6ú\Ó:ªŽýr{q…ëg°g#;{{È—Å)]Oë5±z’ü˜}w}ˆ8îJàŸÛ#‹g'·¯Å ããtÛÚ±ñ(9OùÏ$oN7çW†tð’›ÉAÄI½÷%¨×ìTwþù /Ïé‰ë=>þþ~f²Ûª¿Æåy;vìV/¾NýŒršÚuý¶~Åúzë_“¿uùëÙu·S¾nz%¯‹/Z×¾Œz²×è òå|ÙëÖÿ„LO'çãŽÅ«¯>.¿6~ wDyJã}ÝøÅøÀÛÃç«ÜÝ÷uˆǸ\]4þ¹=ìñÙûÓ“ã¤Ïœ;~J8Áí?Ï»ü»ßIô†uÀ£çzôØsºþC÷£ÏéHër)oòí/ëØµ^v13þ%{ïvƒ~›Ÿˆ~ÏÎkþ2å Œî—pLvÚåú]^Ò:-ÆåŽÕðàH>:ö>â:—óäo¬)Îëå‰j<:ëìêý,“»ÄÇØn²×éèrè|è¼gí»âS—^œáåýýÖ©£7··¿ÔßñcInºrçôß¶þM·˜·éÅ©ÉN~"§1?rÑÆÿúÿ ߯ø(ñ9ù9·ã´ã|îcÒ§ßq›á½8n.ÿ½¸ÌÇÙâ‰ä/Rû)*áxçKò#W>µ}Œzm~¶‹'xÎëç~x¿jT¯ã’©ö3Õgô-fßNwàÄ®>nÄ ngÒþOÉ^9]îÿ;ø}ToÂáFGן$¼ûBè§ãðïPOƒ¨7®Ÿ)®šÊç'GìG’Ÿ ];ò¸Õãô»ß ëÚc¿ŒÏ›F} œê_ÌtnñóÈ_¸Ü¹¼›¿Ùñ^ÞÕÇ;Øÿ¨wÖ¯‘ß÷¸§—oòqöøÆõËýö•ŽÝHrëãWãüˆCòN·?çòêãg{¹ŒzLÿ;ùå„Wãú ×ÓÛå#ð9âA×]¯} ƒ½íâ‹+Æ“×Ïsôñr9 òÖÕ;ç«ãï;ÃûUA’¿Hy¬Ô¯4^¾¤Û¥À‡Ñ8Ü^Oó\5ÞIÎ’ž%ú¡Ëùèà:|væ|¼bräõÙyôŒç9Óƒú{ÚsýâèòqÅè4}ÉËÏœÑÓχ¦öNêáþÅíÇßùžðAW^:qMl'ÙW—?ïo/oäø»c?bÜøåÕèNzå6ñ©ÃOûºë;¬\Wî\BÿF|P{•âz'?Ͻi\L¯ãº¡oFûv$:l³íÇuTñk4.½õ´Þ~°w1ÎKtyÙE£4^Ðåí¦#õ§ömœ.‹úâõ¥ñJy"çgh¯ëÿì¹È·4Éþ¥ü‰ë··cüKýÉ«Ÿ»ö~¤þ¤q»²=ÿGv;é¥ÓgíFûíýðz½=×»D—_7yïò­—'ñqöx"á§'à‰:¿9z¼A½I¾“øuêÄøïvÌûëõ¸öäÔŽ±žþLýMrâõ‡çj=Sâo§¾(‡=½ù§žÝÉ•—wyOt$}åâ™ÉvÏüWêgÂùÑ¥|²ñ+â ”ÏHy×dGŒÉÅ~$ÿ’Æ»'w®o”{6ø}o¿ã#.py°qŒ|2ú»øÃå7É‹óÁùÚMüù‰Äw§/k8vãÎ;ÄñêɉÓÛÃ÷”s¹¡=ÏO¸Ü%½p¹qûyÛÆÓùâG—›ž%>û1áBêñxB÷³@çf'Gó¶>Îü}OÏŽŠùz»>7§ßå9ù¹4ß4u½ªç±½Ÿ)ŸìÏ¥|½/^ô+åÓC=½yýÑú'žcˆË“Óãü'. íO§ôñɇ×ÎSþh²]àèýêcÊw›ýK|O|Y|ñžß9¦ùß×ÛxÆxññP¿ÓŸÆÑ¯»<ýŽãéãÂ9|v»Û{ïãŠñ#Ø?’ü1nÇÂx‡y¤Q=½éÊqXwó¥=}KóT=z(wNõÞüîèWÒó.ÿ~Kô;Ÿ¼>èöù)ŸW·uY]\:q¾¥kÇ\Ï{úåôš=ˆô%yt½žZ_²;Fߨ³·£qëù›Þü@§È¿$/.çi®àèãéãnv¨÷^ÙT¹|Ùö>èkÔ¿`_Fö0ùÝÄ“øn~ݶv¯Ø¹W’§Gç‹™®;]!0Z7ÚË‹†òÌŸDÜä|õúzz11^ˆóéÉÞS¿ûÿž§~Ž·­=ýNùû ‡)ßäø%öïúöü‡K¢«³Þ9Æqÿ“ìqÇ$>;Žõ~&;éúó¼=ç~â¶Gª·#ŸÉ>ÇñŸ×%½ò˜üq\ѳ£‰îdgœOŒGÂgI_}=Oâ¿]=Ÿô+ÅIÞΣ+Ô7ŠÃܯ'¾=¢ò.‡É]Ýü"ånûçͯoßnÌs$¾ù1ù±¦z^Î/JN¿(ïãi×c¾Þùî8Àéó£çÙ(Ñìd°û‘½x&Œg—oþ|·('>>ÎGïOâ«õ'¶ãã`ã5ÒçSx.æÍ/noÏzñt”K··Œ‹÷ÏÏ^NýüñßÇÿ¡?¼?rqüzô‡ñéÖæ¹ãxQ¿éGÌg„q™<ïâíLäcšŠü4ùõ—ûçtt:è×9Ó#¿N{ÉF=òv“}´þtq¿óÙùé~Úåá©íù“Úïʧ_w:½ç†ôõìa*7ÂK<ïqƒËU§¾þ#އóÇì^×Î÷ê t&¿šÊÅñLt¥üèEã«óÍèÕïø“òÞÎD{åÍëKדŸòò©þT>s’3ίs“ë>˜Hïd<èæ˜â¸O…~ô,èCŒûyÎñy’Ç‘=üšäéJ¨'é•ó?ñ'ÍG¸œ8_ÎYÿý¾ûëž|&¾„zâxYûU.ùƒ‰ó‘îž¾8¿½†âw%|œyîYãÓâµxpDòQS½†‹ºqyo|‡~Z¼~{½œªwSå"Ž·Ç-®Ï½ò&ÏÝ8$ÏùÑér½ïÅÎ7—ÿT>Ñ‘ô‡qíùÓ Ÿ=9ßOñúzþÆíU²£FW‚Þ¸‰|s:ݯ9ÿ\O¼|Ѓô€Qý·uß¿‹œäÂñ¢•ñƒûoõäžë‰.¯Çõ-Õß‘Ãn¼ãýöçB\âánüèrü[Çuã —“$ÿaÊh|²qðñ˜ÏMzõ¥çÿ;y»8/–øÑ“çÔŸ€ÃGöÍåÍëKó4ö\7®÷qéø—®Š~Ûçm’¥ñë©ô÷ùíǫ矻v#ÈSô»NW¯Ä·DçDùèæ£Œ¿ÝçÜïN”£n¿oÎëåM?{ö»7þQžýá˜â¥^åÞÛw~¥ñIú‘ø‘Ö—:>qº’¾8]”{v{9ñ-­»öü€C’ë¤?ίԟ·{¹N¿¢œ¦ùIÇ©‰ïNßD}IóvÝ8)ɳëO¯]“·®óúI’·ø·›oLt&½Kõ¸\%ùLãÁ±‡c?N̯uó‰¿=ý´ñv·'Ÿ.'½ùÒ+Ûó=Úÿ`÷zt×õ;¿½ñMÇž¼'¿ïò—ø×‘“Éñí$ŸäÎèLõöâŒ^¼×Í¥%áÊ{ž³§7‰¾+ÛÓõÒûíò¬ö_4ôó]{₞ütíjOŸ òßÓ‡P>Êu¢Ë¯;ÿ½Ý4?Ƨg7ºôÙ¸ÆýRzýw¹ úص—i=í&¿øÙ³›¦W#º~Mzéýñ|d¢³Óß^¼×•N¼?ºžì’÷·'¾žÔû•êM|rzlœ¦âÄɸ”þM;z¶S}‰ö(­ûôvŸ ãîýp9÷þ=oôûyÒƒ$)_–pDâ³×ëõ¤q»ÚññãØ}¿âÙíùÙµë÷±âóž¸Îœç|ÞÃëóz]¯Ò¾ÞI>Ã{^1®vÜÔãG»ý½÷o­ž‘=ëíÛëÇ´þ>ñ-ô{Ô¿gM¾CfD§ÉÙâµ&)¯1U¾œŽ´î1ñ-½ÞÛµûü_ÑÏ:=ÏÛýëÃñžúÞ䈞Ý·ƒIzâþ3õÓèŽòÊ9ò”ð=çõE9á¹Cýö<ûÍŽèíõú{ãÜÃ#ÔããðLʆõ3©ÿ]:m¼G|6¹¯s;õ×õÏîGyèí àúÞ“§ Q¿ŸÁõâ‘îøuä¯kR}Éî¸áW·b<ä|6ùLqwÄ7©þÔÿ`g’ž÷èéâ†tî|ð~ítœ½\àK´ó‰¯É>¤v{øÃñK£H§óÓéLúšöIzîí¤¸(OàW×ÿõìX§þî~þáÞ>)ßòC)ι­r) ñNä—ÓÁùu—ÀÇ$ç)ÞKzã,³«½xlÄ¿ '·{óOöôhä¯|\¹%ÈwÇÎFú=¿Ô4^nW’s}09‰~!øÅˆÓ{òâôÒÎóvLqMª}M~Æùc×'ûm«7Æ].WGûýä(;ŒgÏ®'?ìú“äÁé´|d̯¿ÔÓ—¨ï}ÑFô%»žúŸòK==ƒ>çS’cž÷öýùÄ÷”géé§ë›×ä;Å—1Î÷ñp¼Þ±kÑO]±ç’¼zérß³ß!_—üT/ï§ñs4nN/Ç€[zþ9æUo}÷¹'ï)Ñá«·¿ØcÏy|™p¬ó#´Ûãgôƒ»þÎñQÊ#õèMyŸ„'¼Þ©ö!É‘÷³÷<çŽ;Ò¸st=µv£ÝMüÐõÅ,ô;‡ÉE·ß!?ÒÍ£ôèHòàõŸ3þ_ õ¹¹mõ÷øÞÁ1ž˜ˆûºþ¡·ž'ŧ8m$GÔ{=Ðä}4Þ>nW&Ú•ž¡~ŸGëWFó®—‰o.¯6Ž‹{_Â8OË{qv¯üh<}÷ì\/Ž´ül/>èâL·Ã®O wûñJh¯ƒ·£=I÷{q‚Û3ӳ´®ÁåÅä;­/Šùé$§»’ò#©þ^#Ú7│ÿiÜ_z8»Ÿ»ü…sÇEñ»yÜç:çè7×ý~ÀÓ‘Ïçl\¼ÿNG²«^ÎÛ±qì^‡ž;ÖO®'þÚõî¸ymN~Lqg’+75ÙÓþ­ë/l¯ïÉžvã—W“óQy•k'Çg³7¾w¶þ­ëßú·þ­ëßú·þ­ëßú·þ­??âÕõoýû|þ­å|ý[ÿÖ¿õoýû™ü­ýÎú·þ­ëßú·þ½r~k¿½þ­ëßú÷Óó[Ûן™ßšÏëß+ñ·–Ûõï3ñ[ËÑú·þ­ëßú·þýÌÿ^)þ÷•Bççûïse>Wèø\ù­ù±þ­ëßú·þ­ëßú÷Ùù­qØú·þ­ëßú·þ­Ÿk¿5>YÿÖ¿õoý[ÿÖ¿õoýûìüÖ8lý[ÿÖ¿õï•ñ[Ûëõï§ã·–«i¿5Ÿ>»¿ÿw:>ëñüìþÖü_ÿÖ¿Ÿ}¿µÞ¯?¿Wª\½Ré^ÿÖ¿õïóÿ÷éÚ§µ}[ÿ~6þÖrÿ¹õ{¥ŽÇ+•îõoûßz›¿µü­ëßú·þýôüÖöõ•õ[×ú÷Jþ­å÷3û{¥óósþÏ5zÖ¿õoý[ÿÖ¿õoý[ÿÖ¿WæïsW~®Ðñ¹ú[ógg¿5¿~fŸëëÍ~¦åÁÛ[Ëãú·Ýo-ëßN~kyùüø­Çñ•õ{¹ãµçÏÏß+}\_éô¯¯ìßZþ^¿4Nëñûéù}¾ñõó­?Ÿë¿5¿×¿Ÿ‰ßçz¾÷gºõoý[ÿÖ¿Ÿ®ß+ÅÞ®ÃßšïŸÛ¿ÏÕñù\¥kýûüþ½Òåî•NÿÔßÏ–~~¦ë¸óg×o=¯ìßgzÿðŸ©ßç*]ëßú·þ­ëßÏÎßÚ/­ëßø÷JÑ‹W Ÿ­üYóig¿5¿Ö¿Ïæï³-Ÿíö׿õo»ßg[.?ßÞË]ÿÖ¿WÂï•ö]ÌÏvûëßú÷Jø­õägço=îŸÙßšŸëßú7þ­õâ•õ[×gö·æç+ã÷ù²ó3]ÿZ~׿õïÓÿ­÷kZÿ¶û­Çwý[ÿÖ¿WÊo½žiýûT¿Ÿ-rñ³¥Ÿ/÷·æÏççïóu\?_ûµþíì·–ƒõïåü^rsl6{ã{Ûñ[g³}»Úñ—·¿ß3›í=ÑÎß>›ùâÙl×÷ÍfGo´óÿd6;ü`»÷êÙl÷ÿØÊýüvmÿl¶ÿ×Ìfþàl¶ç»Ûµÿ{ûÿïhïoÏ}m;ÿ•­ŽŸÓž{}ûÿkÛßÞöÿ¿±jïÐ{W$ù/ZÙÖæì5­¾'ZÝÿ¢ÕùÖví Úÿuûû·íÞ¹ö×ÊüÇ­ íÚÏme>Ü®=ÚÊý²v~¶]ÿ]íï¶ó§Wí,»}þQ»þƒíÒ×´ ­Þ}íøÎvý¥vÿGÛ³íúîÿ_ûû}íüµãÿÐî½®=Óþ´ÑºûÛÚõÃíø·ÛsíÙƒËêÿ×ví·¿oj'ßÓþþAûû?ÚßZ¹×îWûÿ¯j}må6šö~åêÞì{Û߆֞ýŸÛÿÿ³ö÷¦ÆƒÆ§Ý7Ûÿ7[»KÿëvÿHãÑ¿j翽 SkôXŸ£‡»ÛsGöÌf§~s£ó›[ç{þJ+ÿ'Û½F﮿·âùñû¹ÿy»Öú~¸å®ÿg»ö­Î/k×ÿ|këJ{î§Z[ml÷´ög¨]ÿPû{v~O+ÿ-íÙŸlm´úw5y8°˜ÍNþóVî¿iÏœ]×Þ?Ýè8ÓúóŸ¶zßÑ®ýîV¦ß®?׎ÿ{£ã]íÿ·ÕÓdáäÿ£ÑñÛ3ϵ¿÷4¾|¤•¿Ôúôõ­î6¶Ç Zß5ìjòr Ñ{ìb£ç“íÙ6nûÛ˜kegíÚñvmÖÆädãݾ_ÔʶþíÿSí¹ÚŽ¿}U×îËí¯ñ~+à©Vþß·¶¾±=»¯ÑÕÊìmÏîý›­Ì_m¿Ç›œíû’öÿ¿Õhh}<õg[¹;í™&GÛxìYòà·Íf'¾aŃÙw¶ëׇ¿°µûbã]koߣ+ÙÛׯþx“cÇ6:«ó‹Zÿe;~áŠ_G?Úê?ÞÚiûÿ—vï¿jþ¥Vϫڱ=3kr|àÿlåÞ×Î_O4Z6z}{ûkúr°×¾FÓѦwûšìÏþe;¶>|Ÿô¢ÉÓÆ·¶Û8íj2~à74zšLïk22ÿòöÿ_׎MO´:v·1?ÑÆz׿i϶vö-í@ãÉ‘vÿT“Û=»¿¥µõk[Ûmìÿ·í™ÿºõ­ÉÜÁ_ѱ·õ÷@Ó‡C¿Ýkrqâ´g ÇoµºZŸv5Þžj¶awÓ…=ËñøËíø¥­Ì/mÏ7y>Ñäôàßim¶¶vµ¿}ÿn%K¾jü7½9ØÆf÷ò^“ëC½]kmÎ~r¥kûߨŽßÑêi2°1oe~l%ƒ{þL+ÛžÛõk4þå¿þ¼vü½ízÓÃ#·‡_öþ­¿¤7Ù?úÀJg–r¾§Ñ·Ñž=Öhµ¶O4Û·»õiß#­ÎÿØÚhòt¬ÉòÉ6¦§Z[ÚXΗ¶ð¬lÙñ&g‡Ÿf­Ž}§ZýMžN¶1:Õøômí~ãõ‘¦;Ç›Ìir¶ï7µöž[ÙœãÿŸV¦éĬÙÂý­¾ÆóM‡4Ù9Üx~â+ºvÝßþßú»¿Éä‰fö·±Þ߯rßÒf5¾lÿ?òÚóMµvNþÎÖ~»wê«ÛõÛízÓ¡]Í^oúµ¯ÙË}KXv·µ1kcz¢é¡6>G›LìnÏÏ¿ªÕÑìå‰6F‡š~íj¼Üÿ]+Y?Öø{ü|»Ö|Çþ6®»ÿ»ÖN“¯£¿µÕÕú>oý=µäÍ—¬ìÍ®¥?ùª•Ži6ïÀ½í¯éç‰F×üdãÿÒ®4Ûw°t¢Ùì#­oûš½;²´?KûÞx´÷߬äu)“ÇþZ{®õcOãǾÿfe/O´±ÙÛê?Ü|Õ‘fŽ´qÞ÷ß·gŽ5u¼•Ûßdæx³ã»[ÿ÷6zf?¾j÷ð’ŸÍïìjcµ·ù‹o\ÉÞ®f]«£ùǃ­ÝýKÙo<Ù߯êP³ ûßÒxÔúº{)›ÍGÍ–6»ÉÙñFב_Ñžo¶ï`³‰'šNjöñp³¯ûÿpãIÓ¹“MG6š,ìotkò¼ÉÚüÝí¹æƒwÿ…VÕO´óVÿ¡ÿ­õãO´ºMÇš?Òx¼«ùˆcÖ]Kûu½Õóº•]Úº£_¶’Ý]wV²:o6~ïRÚñp«c£ñöT“¯Ãÿïv½ÙÛÃËóæÿN6Þœ¼³Ò¡C®ãm\fM†Ž¶ºN4v¼Ù´½mŒ7®µú› ;Üììî‡ÛñwÈGýH+×ìÓ¬×Fã÷Ѧ³foOýñv©ÑªÉü®Vçñ&+{›Ýßê8Òèžµ¶v7Ÿyà Wü;ÒÆõøÒÿ=¾ÒõC¦½Ç[Ÿ÷6º÷ýÅöìÚ_“Õ‡ÚsM/6ÿ4ùÝÕú~¨Ù²ƒ/4Z~×J÷·¶Ž´qÜÛž;Ðxyò;4öM¯w7œq¤•9Öê›·gf­ÌÁ›òm w/Ë49>ÚÆc£Éûžfc÷4{rø­žVÿ±fëw·v7Z½í|£ÙÏ#O6—47º.1U³wû_Ž·vw5Ÿxêt+÷ñÖÞŸ¿ Íf{–~ÿ6Úšß=Ôø±÷]+lv¢µqè7.ÁS+Óx¾ÑäíDÃc{›.môû#­¾f£4Üt¨Ù²£K™\â¬ÒhjüÞ¿ôEí|Öè;ù¯VüX↣ÿS{¦éÙÑfÃ6–ú¼´µí™ƒMŽ´¾ík´ú+\2k~sWÃ{O6,¶§ñè`³Ó§~ÍʦYâ¼Vö`ãÓ¡&‡ûNØýýí¯={ô‹VØjWóë{šœîjøñಭÖöÁ7¯pÉüÿÕΛnìmÏ[b£výäW´zš9ذÁÆó­Þg[;Íçíiôm>í@³…Ç?wµ1ÜÓ0æîöw`©GK|Òäs÷¯_éç±XÙ¸“Mæw7?ÙtïTó§‡ý'›=™7hºv¬Ñ½¯ÙÚCM†ö4y=4_ñpöÝ+ÚŽ7}ÛóÍ+±üÃÊÿh8qWó'M\=³çûV6Ok_ÓÝ#MÇO¶1?ÐìÛþ¥|ÿã•ìXúïæ{7½:Òìùž&÷ûš¬Ì¸•o|Ýßx´»ù†ͧnvðп[áÚ­î“M®ö¼u%«Gš iºshIKãù¾f·5|½¿Ù—½­®mLN~reûv¿´jg£ß¡†ß6Zù]K™o×=ÖÊ5[yôKW¶êhÃ:'›Ηt7hc³ÑÆïØÇZù¥î5›rb‰ËÆ?Öìü‰&;§~›ô¿ùì%vû…í~+s Ùª=—óæŸæÍFm4»¼g©ÍÇo|Õª½=Í'iòp°éÛ¾&s§O5Û³Ñ|óɦ3'~ÝJw–v|£éÁ|‰ïš=>ØÆàP;h~ÿDó£§–xûç­pÏ®ÖçýMæ÷4ö.ñY“­ãK»·”ÿ¦k›]˜µkM.Nþ+?¼¿Å#§–¨Õq¤áÍYóŸ_±ÂÏ{}'¾q…­N¶1;ÖdêÐò~Ã#m\fK{Úì×ÁgÚý%¦j ~x‰Ç›<i|;Üpĉ¥¶ºw7[¸û‘¶œ5]ßÕÆjÞž9°´Ílr{äÝ+=9ù{V>ùà2¶hvô@ÃÏóf뎶:ÿ–•_<ÚüÒF»°Ùƒc˱i>ò`ëÓFÏ}w‡ÚØîmvdÞú|°õ†N-mDóS-¾ÙûÆ•ß<õ5+Ÿx¼ùÁý·WqÈ‘%Þù¡öÌ2†Ú¿Â'Ï7ZÿN4¾nú{ä;V˜ûèþUœpli³š\îm~g_³mû~h…;ö7Ÿlíï_ú‡ÆÓS§VöðÔ÷®b™Z=‡V±Í¬ùó½Ë2MÞw-1âIÅmx…[5›r Ñ{處_ÛÓ0ñÉfN5[w ùï“¿h…‰Žÿ›•?YÆ«‡›oÙÕäèd³ýû®ÜÝxxâ{W<›/u¹Ý;Òút¢Ù†e,wªÙ½M¶÷þØ ƒÌÛq£Éü°Š'–¼9ÒÚ?¾”ýf#N5™·¾]âÅvýH£{ö_®bݶvš-<Ôúv²áºùŸ]Ñ9o¾åÄR=q¯â©/]ù ¥¿=ܰמ¯XÕ±·ù¼6&mü÷¶ñ=ÐìÃñ&ç§+|»·éÖ®÷¯ø:oü8Òüù®v<þgV¾òpkëÈXáÄ¥­ZúÊ=Íœjc¶÷j{æ™U¿6Ú˜n÷6Úlò¾¿ñg£ÃÉe\ÑÊœh¼ß×h=õúÕ8ì{z5Þ{š¾m,mÁR&›]8Úì߉†6–ºÓ°Ô‘e Ó|ùÆ ´¸sc9ÖK|ttÅ¿CYaß#Ífk㼄!K~ìÿ‰•Ìš:ñkVöå`Óµ#ÍíYúÀf5zN¾j%K'þúJö¿´¢åDÓ™£Ínüƒ•½Üó·VvâÄXùÀÆ›}ze÷6ÛóªU?–öédÃ6§¾sË[>׎G/Çâø kžhz¼ÑtnÖîlrvbÙ%öi6zÞÊn|<Ñ|åÉfÛ6š_Ühº½ñçV¾pãµ+¬r¨Û‰öÿCmìNµñ>²”Ó¦?û¿~…ÙN6~îir¹çwjüZ\³ûC² ß²âõÉXÆc-¾8¹Ôí†öߊ†e ¹Ñ|ÒÁ&~ãÊÆÞÅó-~Ùý¿®ìà‘f—O¶q:Ñê;ù£«6–qýž[Æ_ÍÌ—Øo±Êl´19ÑìÁÁßµŠ54]æ^~Þ*–^ÊØÉÆ“cK›ð7VvvÙÖ¡FçÁûîn~rþÐJþ.ùÝlõþGV~øä×JΛϘ7y8Õäåä»’íCÿq…Í—AÌÁ¦ƒ'Ÿ[å)–>æÀó«8ri7ö~b%ÓGZ5þìnã²±››+,xâ¿[ᣣÖM¿O4û¸Ñäïø§ý»•\.cä»ö aŒýÿv%óK½>Þh9Ùh:ò+Ì{¼éϱ¦ã{šlnmíi²zàç¯âêo[ñîDóÏ_³Â³Æ×}MÞÅJ§wµñš5:ÞÚ;ÔdwO“Çc_•_ŽÛ‘åÿÿÅ*çrê÷¯b¼†£O>¼²Û˱ÚXÆ ?¾*¿Ñ|݉fsOüÐÊö,sR‡›}8ÒìÄ‘fƒ4~_Æ-KÜÑ|Ξ¥L5ý>Õúu¤÷Ɇ­Nµ~žl8ñTÓËüV‹|Ç*²ÑÚ=¶ôM÷O5p´ÙîY³WG–z×ìÇ©ÖÇÃ7V÷÷7<·¯a×ù³«øp£ùµY³É'[}'›ÞÎV˜7^mñÓ©f6}'šÜø!ñ·Ñzìw®ìÁÓîYÆÅß½Òƒÿeeö4½ÞÝÆãx‹IŽ6{q´éÚ¼a½ý;\æ™þà*>;ÖÆüP«sO«s“ñyóù‡—yŠe,óKVxäxÓ÷ã m4l}àw¯lÁÒžh<™5|sò¥U<±Äþ‡ÚXüç+L¹ÿÇVqß©FëÁ&“ÿÿ­½eâ—®äsÙ·ƒßÐΛ¿:Üdn¾´EÍ6hÿßÛ°þþ†ë·þiváhãÁ¡æ§-ñsãÍ|)Ë­OG[\¼§ñþ`“™yÓ³C_¿ÂF'›¼œlò´¿õ¡¥>¿e•{˜7L±-cf ÷¼ÕÇ#ÍÆío2y¸Õ±ÿõ«z7þØ*þZæjö6Lrhi[¹_¿ò‡K<~ê¯üü©ß·Â¿GšÎjº¼ÑðÂñ3«xmw›ƒ¿wEßRV-ûמ;µe7–þoi‹7Ú¸œjã¿q}eK–~ýdÃûûŽ®pÉR¿–±×6ž'¯îùOVãr¸á‚·¯0Ï¡ÆÏGWùÒ“­¾“ß®8|¶ÊñÝÕ•¦‡›,œZÆw«nüW+]>³Ñ|ÝÉ_·ŠÁ5\°ñÅÿW{çf[UÞý5gÎÌémε+A%F˜lA£b,õ Dà^¼4±!ŠÁ‚±`A£’Øc%Q¬ˆF,hbì¢1Šј/|ïïý¯=wŸ=§—™3x÷óœgföÙ{­w­õ–ÿ[ÖûÛ|‚¶ÅtÏÊ[¥‹ÀLü"óøØÐŽÍ¯Kö|U6>h˜ÝXùAŒß/ùZÞSñ¦ö %kà9â,-³åù×Ê/Ãn»5ºó?V\wùÞ#v z+?6-K¸ceOÍey½©µ÷Í1|×Ú)û½‚Í·ý‹t¾ÿÊÕ’ó²ÙÁöGþ—>%¹wx?ùŽmÃTEîÛ:­˜ÝhØø–®–¬7m®Úç*¾Ò>\8·f¾síҙıšï àúe›§Ã_-ð™éÌ•w s¯\.­a¶¢ñ ÍX“¸"qíš=WÝÇlòºb2V2Ú« »`‡š&—E“ƒ–­gûoëY¾P¶¼a²Qµ6›ç¨d»úÅW°³uÃm£¯az¡™O¬ÜÝÆÉÏ)–Æ\4ÛÓz–Ö”ø}Þø öÅZª¶ÞoŠî|ù%ù ­÷Ë?Zx½|•ö QwÍ-ÖþZ§¶Ù¼1Yé$éiø¹`m7J’ë¦ñJóíj ÑÄ¿1?­h<Ã'¹¥lNÃ|ã¦é²%r‡‰ÿá×ek+oý7ìÞÊOe›Ä2MÆÚ6—áÃZk°nÛtRî;¢káÕ²÷îã¡Óž+^\4»[ÝK¸±eº¾`£mº§|¦ð¿—^±õm›­Ý _¿i:§ió_'¦ÌÛ<-÷°±7‰»˜OÕ6þ+½+×E<ññu0{ÓÂß°ui/ì7š[¯“+ÜVþ0þ&cX:E+\£˜nÃôKýÅòÕª—FÙfŽÏŽël<Þ´ù^@/Ú{uÖótáuæ¨e:må ÒïM{¯jú{1Ýž;H4#?m£³½Ex‚u#w²bø¤i˜§ò#é2rÙ”}_>M|³dr]-)V†oÞ2½Œ¯”¿tcñ(Ñ®ÄO©bk>­˜(:¤i¾PëHa.ð¾lËìY㣒…¼ÙÁšÍMë"{Öæ®¶$¿xŰlÕÖµy Å›è…[k~ÛfÿV¾(^†o‰ï2fx`ùuZðSóÅPÊÏÓ®¼ÊÚo©zAz½v¦° ¹C‹á׎X¹ b?Öœ|Ü~Â|àú%bÆ—K§5Lw¬˜î¯ü±òV¤ýÈáà¿v¹0Yÿ¡ü× þ‹é‡–ÍmólÍ%ü„ýj]#~ÂÍÿ[ľωºÖÚ'—Ð8Z¼ËºŒw[Äx.Xy†h©›<â› cÌk }më·hkÒzæ]–Eök¦‹*— /‚‰Ú6•Ë­’KýÙ­Ö+sª“ÁÖÞ[ô7£ÿ^k˦àGÔðU§5]ù¸æžØ v›ù$žæ|jýWŒ¶N…_‹&0xÉèl™.]Þ_±¡°>rd8·½ñUÅîÈG¹þz°ôPƒX5yœ+¤³ñÂ’bÈðÇÊÃ$‡àYôëÒÙ’_rõ÷(¶µB¬è}Ò»Ä É©`É—7ìÙü/”ó­ì®öøÉpùZ+|üèªÉYËÖ¼ýÉv=~­" {híáq°%þ6 H\©fëVy™|™@|üza¦öÒæ¤nØ´þ6éÓŠñlÉÖºúMñûŽŠ+‘ÏCßàC/^!ƒœ˜ì>ªõ(b×>«Ü»ç#/R|³môMïT>)üV?3ÆólŽ›¯¿!7¥;iŽ ‰IÃôÄJE|„î^¾Hrà¸ÈÚlÞ([vÛßÀË5»/‹²lsW7Ú›T0ÙmýŽì)ï!e³Û¥«”@îß©\KÕÖ£~7åõjè°ƒ)ÿ­øµq¨ü°Æ_(.Ƹ øÀfC–̦å~çÑäŒW2ÛÐB‡!=ÝÄ×2j狟Û_–­Â¿¬àW4ýT4½d8¦ô@á|GÇ:†ÍË&Û Ãµõ»+OUú¹ìºëÓñ%³Så ”çw;ø0aô@Ì|ÍkÎ> ×Zxë¢Îüoå_Zo‹>­Cãå÷‰×-Ý ^ï/b·%,Eœ¢iv`ioÅmÚE|ù ¨wî#¹‡6ޏë8ÍKÝd´þkñÞ’‰¼Šc;üÝWé¡_sgi+öwõá òî­Ÿ+®V5¹ÆG!o³pzä%›«Ò[´N+P»5p±ù™9â6¬‡£m<Õ³ÿFz¥ô.Å\[f—á#[Û:ù-{¦`|PÏËVbËËÄà±÷÷ŽÆß©Øœ­¯7Εüb3é9(`“Lîšð5úа^þ&Ê .–ûœò®•#D_ ?fú£òrñÖ²ÑÐ$Þn:¸nïåÀ£Fûa}¶É·}•×X›GE»dö¬uóH·aJâ4ÄÎëE;ø»òù«f+F{õ7¢­òű­Å×Jw/á{ý{Ä4§(V Î`fÊøÉ7“ž#¿á®ÇQ’™<§!µÈòÊAQ'44Ç-ìƒÉj=æ–ˆ—X{KPl·q[a[0ñ⽤o‰?Ó^ÝänÁæfÊV­5¹nǃðÈ_Êž![Øã•‚æ¸t¾ü‡œ­Iøº°_¸­ê„À´5kgÑø6_иŠmÙoäÅuåƒ%wîÞ'Æ»ó²‡èæ>À9’Gž¯¢wï&^Æ¿uY:Xxl¿AÌ€œõM³UÅmŠ…/?Yµ(í«4g>ŸÔù¼^¹i|ªÒ£…µ 9&7€<6NRžºñWââ«„ ÛfŸ©9€ÏÀÃíÛ‰·+¿¿G úµöBÙnbeK·À×%§Fì­õ)Ù×Å·ªÝÊ%²ÇžK!6È;¦—ŠºÂæì˜;IëU}JÔeε!¯]7£6¢…î g´6yeQø‚D_Îät…˜Øç„1ÃÙÊ¥¸f§ñoÂ%ÌKÓÚmÞS:ÛuŠÍGójaÌ‚ÑÙBGÖ]4?ºhú¹iºgÁôS¸»äµ¸OÄÄ¿î*Y€¯‘pÄÂAŠ#ümäûC=I“8=µmåÍð_É©@7:ýVù¶t^õ1ZcrqÎsõ =Y˜„òŠé±ÊTÅÚ“Ÿ¬{©æ±m6øµ×˜ —¯¼À§mãµ"¹îÿ'lW´vVhãiò)±ßŽÙð៬|¹Ç;¾+žmÙ—¯U ±bµ Çwc<äÇ<ïvô µ;`Š…G«í6>–­_í ’±–ùâFÊ?¥¾X5¸;omU?/[Ü‘ÿ$¶Ò6¾¯î),ÚzƒÑWrÅäÌ]´ö©GsürGáÛ僅ß‹þgEzÛ}ÓÉ+‘­^£š¥âõŠ-B3º•øpî©ZÇþ`…²x)ÀLJËÏ?æX¯ÿŽshv~Ñt×›ýgxv‹Öªfc-~F¹…&|dz£uçhÿñ¥áe|:pá‹ÿwœoz1¼1x ÕùroÉx’7 †ÅÇÊ:}5£‹ø{ãùâ9ükðu;Ä;™CÆ»ôµh÷¾¨xJñ¥²cµj«is[½‹ü¨¶a»¢ù åÃ4'Mò]Dýh6Ï1´ÑT7LXºCÔ9F+1íò¯…ÜÿþY´ÉÖx“t}Ã|Œv´ùà%l_Ëæ¸zé r9ðrÓd{¾3:K?‘d-òø…§+®Cómš—JGà¯/ MþÈ[Ôñ]?®÷Às• µŽ•O¨V¬Hm8 ü1åð©=¶cü_x«l9ëÒú^ç«e«òoV$&ÒB÷ؼ ç—o1–ÍmÕži½Yyƒ¢asj––_&]Ú2lH>©n|W<]˜ÐóP׫ž¥JáaÆ%r™ÇC´À›W-QóVÂðýöÅd¼Ñ‚Éñ‚ùRùç+>íqJ›óšñDÛìò‚éÖò;• ÀV×m^ŠÆ[­Fû¿§ò‘ø6í8ôú¢ø}ëÓæ§hk³ïP“ƒ¸DsE^ NÞñ¢—õ'·†?LÝLËpXÓôÒãáúa‘wÍ?#c_ ïÒlj—Ê®4¾&™ÂgkØ8‹U |U§~†8ôícmØüPH-ñär™ËïJ/½O1„%|¸‹å#,^!½¶`ÔkÍ®W>¯ùt™~—t6|AŒßÚ×¶ÿ2Ù=púòKµNÈlÁè*~[X†œ¥Ë¼Í‹ûFÄÝ.rlkT0þ¦Ð팹fkðkñ ¿SBܺòØ7ZçilÔG¨ x£èeØÖìý¿”Ží­wÛçÂÝ…‹¶áCZôJÑž§¾?²JLÇd¡iëÜø/É*¹Í÷°¨«ñÛï¥vJÆs•¤÷Kð¤µá8ü@ýÜò8É9;|.b\­_¯">Œ×–¯F-\ñPMz¸ekZÿ¨ô˜¬I¾ï|ÙUâÌkƒù7»·ðYÙâzä`Ïep»É|õK’æGëíK×8ËØ0ŠñWù«¢8Lã,á%d‹cŒ‰Í3þ«“¿ú‰td;Ê=x“˜ßâJ—ŸöçÉ)}Ýþ´Ö¤òû’æOÍ„ÇP‰¡añó÷—Π†²üVщo‡^­šéybò½·ÑúRÿ Vj>M9FžWGžy´ÖÎùÜž]²õic›ïóÎäóȧÚ;%ìÈJ´»û)¾B| nº©e²Ñ„¯–½¡µö©ØçTOÌ|ð\1Ö¾`ÀYÄ4Á‚-tþ&yB³Å­–j/–Ÿ*¾ Ý4? tÿÈc¶6Mûž\cóOdÇšÈ~ùѲƒž¯¿ŸìsU5=ÛúcÙSâj-󟪼ƒ.;Pº–ñmYT¿Š¾&FøSÅ—VN“ÿ„üz<•<ÅUÂ"Ô·¡'#öþPËCç(ž"û‹^÷<Èý%ïžs³y(êfa5ŸÙ4:jFOó~—.?ÈË»ûÀgj¾-úÏØfô0xÚìyo}¨I†gñÏ©±ûÖ°—¦×ÊÖ1BhGJ_Š1ƒ¿¯ðŸ¤ˆõ#¡Öt‘Øã6éHrH`æŠñDõ„ó›Uì¦fóÔ &q¾ô*¼]´yôŒÙøÂe/ËÆ{Ä„ð¥‹ÿ+=Șñ=ÁNðJã'â7| dÑãžä)*š3lkÏ}Ö›Kþ’˜üZ¢¦ª&ûçú1¯µfoM£©Oxê_ÑG&£|7|*ü`û=ÿDí‹´ž#ÿ¡n:=O­…µ½ð]ñZñ¼hë‘}ÆŸ$àÅ;Ë~ƒ#VªÒ¯äêÀV`;üù†=[=Oz]R"wûû h¶¾ø$Õ†â3bêßUL€ýˆðlýëÂâø%Ô¥W­=°PËüoö«±ƒükÚŽ>cÍtGÅü[|ôšÙ‡¥WjîÐÔ´ £ñƒGÞW|ã5ˆÆ[y›ËšáÕæíÄ3^‡q½ø“ñ6¿¦½?è$bW¾Ïæ.Úÿ#NM|Lçùïr¬Q2¢q™|Qø–±VmLy£¡ùƨ+>¨z9dÀët®T­RÃ|àrp®tö~ òðaéô˜‘œ!òÀÞô<†_P»Dëìñ„;+wŠîõÚ”ÏÈ>?n¼Dãa-?Á1øâ/R°õgòáàѪéžÅŸéžûV7W¼ è13ã©ÜK¢ ´~–ÁÚø× Ã£[ÁÄÛ<þNÌÈä ü܈qC0.uØEô‚Étñ–²¥¼t²AüÓÇfs¿ß_¼L|Äs/èG|¥gk>Ý'{ÆÜƒ×ŠÆ¯ˆfð0ü_EîΗ\‘ó†ˆÇ3çð¿Ëñíc ÿQqM­ïÒƒÔ7~sK nãfÒ‘eÆdcá Ù“¦­yÕ|êÒ¢ì)¶©bú¡Œž.ûÖºi´Æµß‘.—°ŸÔq„­Oé ñjý—ŠcC{Ö<Ÿõ­ÇÂ/µGÂãsÌý[•k©UÞ$ÝÉX<æm~£ûÿªºöâ¥1ÞöÉ$ùEƬa«‰½R—[y«òu؉šÉ¹çlˆñϺ^ëÕx‡ô§×k©}&Ä2ŸÇT¾ã$ÆoÍ}%ãØþÂTßN<ÔõÓßKß³'8¼$âß ›C‘ù·–ÁEw6|%òªÙ“ÂÝ„¡È͸±U¾—cÛ??nßþFmzírþtÙn|¡Æw$Ô7ÌNÖ¾l¿“¯¾DÍ•†x𼿛A5Wȶºo@^Ä֬Ʒ~ªo×ØÐ«Õ_JÖˆ–Ì®UÿNïú¾!“¥*1ä£Ôn,b럃‡±•ÄÏ.•þ'&7ÿÀë@Rü?#ÜG¹¡Ò÷ÅeÃ䵛ǽlÄ1ÎЧñVÙ!Þ]4<œ3þa¿køká™Å›«Þ˜õ^|¦rÚ`qöÊ“hÚœ/“WøI”1ð™Ù\jïÙïç1 b1—k ÏÕZO]ü¨õ]xä÷B\Sësùåyûh\Ãæ! oLnÀü^Ï´§ñ ð@éYä<à‹ZElÓKÄ ¹‹¥KÁœÄµ™-^ù±ì û°»Ð¼h2W³ûßèV²+ f‹+`IxÚtuKÄ=ùº˜ßÀç=A¼XûŽÖ]Ä~Ú•s¢_w•ü÷yÉUoÕÞi0ÝNlÂçñQòЕü?U¶¾¯¿Rx ©l¨ïðÐa²9ÔH±¦øEÕyñ‘Q¶Ë²áŽc¾)߈0ö¯ö:Äk£ß í·Sܶ@Nweœ[˶ֈáM9båÄ^,<€ý!Vξ×Éà;_&z8› ùa¥=Cü„|•áÚÊ-eûš‹šgtº¨ývÉ üRÀw=I±Eöé ³ë_’­ðz4ì²éAÏE›¬ÇéòO=òÏÂŽËì½â?EÿœØó4ï@Mü·»O– 0Ÿà|ÿŠ=Sú‘j ¨ð:’?‰ºßx­|¤lˆãô÷ÊÆøþ,³ÇÅF¹{›ô¥ÇÅ+Ý Ïóþâ~º·øyÙ¯#=3Útxlÿñ¹hì4ºì‚_BìÌé~¼{¤p_Û|ÊÂM#O'9Ã+ž@^¾£]ê:À¨ bÛØ°Ãec<–´3®EYsÕº“ìJãeñÞ ÅÿäÛ&_ìqðxã¿P¶Å^_oï!ZsÇ毵•ßÌå—F=ar—³÷ƛԖbÜþác?[ëV*a› '×ÐUWÇù1›à5Œèè‹å繯ð‚X·zºêc9/Sã‡O¶hsQ¶±7lÌ쨙]ò<ü'4wìáÅ‘ñ|«ñSåXéš%dõSñ2í}a>‘;×ù&ÛìgïžÛÙã´7„¡ÜÛåãº\©µX ¾/>Xc¥Žšø y?ö:Q]ÿ°hi|D5~M£ìY´ï8wÂ÷C쯚ã b&Oµmz ó„ù*ãï.ÆœÙNõîF/á â¿!§õÏk?eÕÖ¯dï6Ÿ!ûäãÝ¡1PY8TõmÎ'$ÛÌþê}ÙŸK| :¹[°6½~z?/—P 螪‘& F¦NŽ5¾&ú„9¦ž‚wÉR—Eì¬t¨tn5按ÛÕ£/í¹…ß(vÔzG”0æUq O’M]"nc:’ýÑèRrJ^Ó½&¯BˆØ;zàÊ· ;šø1¯Ö¾{×7ß•<£3±Ä=ÃÂlµ+¤¯›’l°Îó5GˆÇÁ“ÍÓDWîµá5c6nö?°Ö³tLÓì:ç'ÁgØòÔCyÜì}‘N— w¿Ûìê¢Ù Å¯Iø~x¿&]Ìš±Ÿªö–hwL€=B{>± øã쥫›\/’Äó¾¿ëÜ(7ôKlÙôôÒI7iØ·ïØO® ,m~99ðAÕðÑÒ¿H·¯‚É]¿Õä3±¯Éã㯕/K~ÊãE๛j¾ÜξEú€ø?ñ€e¾{³æ»ö^ùîÄüy§rø¥¯Ëßs—ìƒÁ›ÆÓÄM‹î'ÿØÏ¢°5i}.ò1ø¬&>ðü ñF›§ÖçÕ&5b~FΡÒ1>·Wþ‹³\ˆuTéçF¾˜Í/±XÏ©¡~Ñ{ø å/KŸS+ɾ”ús"¯ÝO¶ÌcÈøWfo©5¯›ÎZØ¡¾=O6?]úÝ^™l濬ŸØxbIMrý;4·ÅŸ©-p õ$žc8@|Úx‚äÑsíO“^*T2ï¸í™â¿&rówq/ñ=´¿ƒ$ñ{ô}ÑhkÁÏÆã-ržg;ƒ™©_a/¸˜üØÝñ‹éú1Ê’l·ûÝä? Ч¹þ6ìNL±’³!?ë˜åtùjàkλñý¥wÑq^ž¿û¤r²eÓ Ë/_, Ÿ ?g}Q÷ÛjH¯¹¿Þ”œ;æzœæœüOÕ…¯|*¸o¿R95 åUGÃa!SÄûœ½.E¿ž«8›Ç>‡ O“nqgXhÁxmåí}bR{ÄXÞ¹Z'?ƒÌPQ|°r/a-jã q…òe§À¥ÏHçSÏÿT·K¨‰jÙz•WжîµÃdó¼¶ê;Q—ßJ±÷«î}õ#¤o’º<Ήßû¾»H^¡Ë±Ú“õ¬c’tjí—Ѷƒ—%Gƒ¹Zó†íà\ ßÀ>[/EùÄ Úxð£ñqƒøØñTûC tÕx­ýý¾è÷Xœ­öMíµ@¿_jîÔ8ÙÓXy¯l‡ÇˆY›Ì“C6‰áPãíÏÿÍ.ëµ€fûwï:¯ž&¹Á_©]븾Vk*¨qp{×Flš¬>yãÎÚ‡>¥´ŽÝg/D;‡Ž{†dÐ÷¯› P?Ⱦ]¯õú°dÒsØ¿Ÿƒ5©5hß_ö“ñ×÷‘¼ƒï‰UÞ¥vÙÏëøÓìRóÊ'5ß ù¡Ýã@·V®ƒÓY[üXl‡ïùB_ÝUkâ8ðŒhÿÿO{üÈŸ0×ø¾sïàgHÃ<®hþuÔ÷B‡ó2iüŠÿƒL’SA?–_.¿šý4µç«>¡`¼QÛOú£„þš÷éÆÒu>HÝx¹°,ÛÓþžæÆ÷,Ù\×lÞÊÄ ÀG·‰u!õc„ïÿ]:cÑè¦N ½=àEðJýñ Åñ=¦eï/ñºÉyí©ÊxíF[z±H¼•8Îã"ãäÝ=¤ƒ8k¯qgÕÚ’Û¯š-Y¼.î»À熿_±ØM$g‹¯ÕÞáæ™²Ãðbíåûpû‡Š§]oš¼UM·¶Þ¤õi|Rr€Î/™Ý ¶¥D\è'ÂGž~ø“œUŽú‹XÚÞ›×#y•tÃ"1°ˆñD €M¿FyEΖk ÃÍ·lý¥Ëeã*È~9ês„#Ꟍøá­]¸J²ä6`¿Øÿ1²y 0ã^ê¿ö\}ß,KÆÀW^_qÔ&;ËÄÅÈ|Okëµô¿/]ìõ¿ï“½‚‰­4Þ ~!^³`x¨‰}l»Ÿáð(ÕzÑ×]’“mÉ&Ð5n‡m^È×;6¼Qǃã S/]"9a\g»ºEÜ‹oz‚}åu{ó|“aÛÆbf§¼~Û½ÆDfýú1™—”Ò6Mç.0Ÿ?Rÿ^ÿbc\4#¦L=›ããe| lÞ§…GJf{—Ê.’û!7èg\)û¿Ã9ž³¸A6²lr]0Ý]c}ÛäûÇË&QÇB‚c×_JŸ²ç«¼U}WÁÊÆ×åJÖÓÿmÅ7âÿ'̃­iÕ¥k_m¾7õÈxÕuŠÅvö2ÔÞmðQÒEĺÑkOx›jW<®orUûX´)öŒ×Ý›~¬¢Ã‰Å=Ou—Ä£9¿Ãëgo«X±t2óUý#É–ûÀ‡ ›Õ^';áõ{[4ÿ rß÷”½ôý,oVM;ãÅ÷©0wÿç-èŒ'öè•ÍÖmœ?ú¨øÙ÷HÞSºŸxgá¤Ø“[Ü;Æ]?£¸šÇŠáÿ#ÄÇ‹_~Ãï)}[:Ìká¯ò†/Æ#•+…m¨—E9·§þ ÙÎ~ùÕã\‰8žœë™ øìG»\}/%Îþb÷;Àèô—Êv»Mþx:ß&üióYiKßQŸçûÈŽ‰ºëSÊ?/Ôµï°tžæ9¨)áýÚ»œ)CŽ ½^Cç-ÌErL®‹Ï–ù/ùçHïc¨ôz6ü{¯}þðÅ÷ž"¶C-> Ûä_Ľjö~ÙæeᙺVpÞ6œÜ<\þ"‹úóæQQ‡U¼B¼b©.û¿ÀŽÜ\º„s‰±^.~p;†îo?F¹ÿB®²tõ:Äæ5÷‡â}ô|Ñ>[ ï éDp ×1šÅžNl"8þ$n‹Íõ½üö¾ôòuZ'pùþ¦ÙöFUö—sT=žqŽð¹GÏÛý™j£È¡Á5ä4mJ?“~÷‚YÙ;‰^'VÊþH|DßKüsͽ纟íÀ±’7Λ#­î×l§d«f˜ŽXˆÇŒ>"AŸqög· ?Áƒè›Ö¥Š À~œ½¾HžèÞÁ÷&yÍÍ=#ŸÜC÷9¹ú÷ÒØXæ?i¿AñYÎ'Á÷ Îòº6Ã+^¯júºI,9ưmè*jÒ9¯ˆ³½á!ßû÷~Éã5)ÏQãìû^ÁÍUáIß“õõÍ´¢µÏyR^³w‰ô?z›ó‘9O£®6,âçAü§lçŸ9¦ú©t@¸Zë”'7òw’]ÆNluy3Wÿoéa³§‹¯ðŸJðµñ~Ó|Εô}Ðiö¡j|W&v€ïù„3μîõ«Â[ÄÒàã…ý4>â•è#ÇŒËÂ@îcŸ?CúÃ÷fÕ¥°Óì«Î®­ÞåüOjè°ž{y¸ìrìç~á§‚ LW”L?Öð‡‰uØ|· —ÇùL.‰Ï.à7—nË~¡X‹ÚH×;'´`Ÿ’é£%dÆú®ðìÑ0ÝÁžæÀñèíe/¼¾ùqZs?3ò{²óydÿƒÒKð{}ˆÝà—»ßþÜàû•9/y«¿[<=Ôˆºî¼iÔA¯T Ôc™{Êöµ ÛéöØú¬þ»æ™ýœä\ßï%[@&¶Ú÷%ÞÈN¶…<‚çº)Ùk0Äë*}þ•Úgd3ý¬>æèyÒõØ¿Äw Vªns vFÇ¿#¼‰¬‘_#g“ƒ¦uÄ·aý[Ø£?WÞÃÏÓü@ÌbG¼Á0ÕÂá#ú»ˆŸQ8Lô‰á_ë©%bg&Ç ‡('š»Ðž7¹ Ø1Ã[ä´Ø3ËYøáÔãV÷Ñ\»ÀáºjhX/þ?ñÎ'ç $þ—…Ç‹ /ÕðEÔÚ{Žßä3nÑ7Ô7xþýâaöñWðAmœX?TsÕ¼N|FmŒ×¡>R¶‰X<û®ýŒô›ÍE¸wÔ¡¦_8?‚º b á©‘o^¥<6=Ø:ô.qIp6g,ûÞ&ð€é¿*q÷ï ?øÚcÃoz»øua/éò/¾wÈìc“<Ä×4wC;(ÎïŸFܶ$ýïu>GÊî7È= œL½–ŸÍx Ùê£L„CŽ˜³ñg5³¦Õ—©îÚý9›çªñŠ×"ÿ±lgÍÚ¤6×÷+|Q²à8à=‘ÿêÖu§;½H¾g©9v19ö½&& œÙZ_Ž6åÄh 3R÷àqmÓO—oI ‹©åB>±Ïž·ÿx„ç¸ß| |†qO³a~ühXÍsY/–›j>S>ik?µ‡ÞE_q6rþÕ¸ ôZïOhüMãSê²9„ºbx|9 þg aŽk²`KÎâwlClÇæ§ö¨ˆÃ&|Åùçž8Sõ ¾¯ôª(w†±¼.×ôõ½ÔTà‘¯ˆ?Àøz¾¿Ãæ§p¾ô'úß÷T™®hâ×0¿*;ïyÛk]ñ±|ö«eóK•°z&ŠŸ©WSL§Q®ôú.£³z7Éçü{­ûuªëôø¦é°âÍ¥Ÿ} Î?[6ÞÃOÀNÕÁÄ×êÿRO%Ïâ{°°Õ¦o¯îrØ[V5:¨…Ìÿmð8k-æq½æü«Qæ*ÛFL ¹£Æ“ø*y1p­Çˆàç…¸&†{VŒ—«×E>¡Î`»x}Ä©OP]YÓøzé_xÈa²œ½=ª™žð³o‘â×Jî='güþD±ö¯Ó÷x0ï›)Ûx˯¯´¾¥g‘ûÞ ³Éu[§æ’eƒ£¯/V-8øÁ÷­˜M¨™Í,~"b=üâØWIÿaïªKGÁÇá7’o?ïWâ ?Kü!²ùœ}ãgÜØø8›š\çò€éáUô2:ƒ˜ÿ'‚ù¯›n-1Ÿ[d‡=U’.åÿKà ‘ÏÇ7m˜>#OÊûèNç/ø…Üøƒ"Æ2ÈÞ\ö¥»O¶¯Ú¢^˜ Jí¾QO0v³%œÍXü¡x®nc«üJX˜ó¿8 Þ&U™>[S›¾\6œ&%n@lËkˆ/_­øµÇ(YEG€¯ˆ ?$?¤BŽâLéV÷I +,c[ÁGÏ_å¯U¾¸¼tvŸ½,俼^Åübê5ë`už1¬I.|Éô~sýÍò±øß!œ5Òˆzÿ‰zgüIþG{n–î-þCÏñ¿.^)<΂¿ñ_ñ ]ÿή›ßT5¯˜žð3î$ºð8#ž9òZ$ÃûmÆo>×4<[˜†ØõìWf^ø-ØtΠô8ûyaõì¿…OÊ6òçg¿s”¬->*þÃ;T7E¬’ÚMrÿî ì+\Ýð¸ú~j#oôU³é¥[åJG8_Ý^ºÎÏö»úÁ>û^Ú˜S“Ö°ŸWEù6ÛXÛ[v×sYO¬ÿ^ŒC³ÖqŒ^w¡|Ï/>]2æq’–~A‡úþ‚S”‡Y°vüœÞªmõ|ùÃd£9ëÖsN¿/S3„œ{;fï+ØëkñöЧ9n>d&gaQ×I¼¬‡œ¸0¾æKóÿšr¶æä®°¹.¯çéüg¯•Ï ïb“ˆ{R#í ¶ãq™òŽ––xí³6Ÿßóì?’¾£?þ·Cý é“Ê ®BB“¸€é/òó~öYòI©•ós«®scpì¥DÞ™kþ+qûß‘szÝä#~ÙWù×ÙæãQ»Î>PâøúÄŠ<vް°cù(ßNŽÅ÷½W6‹}½íè_ßÕÿUý>;¶¡f¸@µdî“Û@‹6¿Å·Ø\_òïûÊ* †^#íç°V—ß‹IÌÁeÚè$ŽHüÛýIè[š^©?R>„Ó^„Füƒk´~–ƒÍ99AâjäøÜ§3Û’WŽŸñ{»h§n.yF'ƒ!±S–ô71cΛ£þ'XŽüò—ãܾQµ^>ï†E¿åñ¬Øf%b xôaŠç;¯/È.6lýÜšûÙ}Zµ­¾Oë¾Z ÿ¿Æ[£zS}Žô4zÂë‹°Û‡Ëñ½ élÏ5C<ä5×Öˆ[¹}x^Ô7û˶lA׿$'ÇÿrŸû_UûžËù¾ô ù0â Ô.R„®öº‘Óô¥à!jJ¨-£Æ‚3Óµ3¾çÊÖ®ôç²™ÄjϾPø‰úw?KæTÙJì¬ï™Ú!Dô7.ˆ¹ä£_(^ ™%ßà9¹{jî°©ð.ñ/2þ?:g½î5–ßÒzRkˆ=[97ê´É÷,¾^ö¯y¥|—&y,òW ÿ`S°3Žg ³¸O÷û¾'uK”Éý5gð>ÿ‹½·ø‘ì=*FŸÑ÷¿Iy;ÎéuŸÝtí–œì%ÿ‹…ÿ=ÂÿˆÄ·e¿gý’ß®øÿˆø¾lBýõë(uùœOéµøùæ¿ð¿/ü¬[›%â ·Ó£ë°õÔÜ0Ó™]®™Ìóÿ/‰RÓígÃi’³âü&tL õÅ0ˆóÓù0Wüˆx™yfÏqÏý^Œu}B|@œ‰3Þø{ä|ý»€ûøù~õU»™|^?cŒø#kÏÈU^ú’üœ¯©ñÇÿ¿íõ Ň~Ö™É4µpij—(>¦¦¿rn|Ö06g û^[üvóÕ—‰õí+=ì5Z9ű¼®ü»1–²‡øÝèûb±9ØäÇ(.Åù¶ìݧÎÑóT×Gü^:[ø< ÿÃÆé0Þ`o²Ç8?ïý$ÚsrQÄ<ÿ(ÚP0Ë}Ëôó¯ÖÁÞ£+ØÓ„½ÖÜt{ñâ¸âÇQÖÌ4Ž Ê…Ù÷ë“ÿ¹™ûÉ4ñÇ™7•ïUFO?]øŠ:¯<[¸½‚ºî«.vÄ<¸®|SìÓÆÃ™]¾gÚt4þ¬×ù¾YöÒë]î!šù_ì-X¹T5] “«¢½¿Œ/þcù_üßalû9Êk¼¬Ýò%šß§},¯‹ÀŽC:7®õGEqz0WÜ~˜p’ŸñÍ¿×îbŒwüÜtÛG„A¼¶ž8Ê­u–£ãœ ¤Ñ÷ļöÄÚ÷ºá#¥»©›÷ºŽ3"¾<_öÔÏ@3Ù&–ç¶ù®²ÍÎûkmSýÒgÔ퓳\±þêÿ*=\3šŠï ~¾º=Ãÿ=õ3vª‰ÿëÂÙ0~q »Ç™Ž?#z®ðç)4m Ø{N|ËÿÇñxÅq$1½=4Ç †û /«¾;gnú9ög±žÌmsÆóê¶þáâoS:ßøåÑṳ̈Ϫ^Þ÷‘Ù}þG³×¾FþñBêOË·.›¾ç(û¾ÚÃØ—½Ök&}Ò~³ý÷¢gö3k~™ÖüϺßõoöš”žiÑ7ëv³×´ùbÔv³ÏzØï'mgTz{õ;èûi÷?k~œ}0¯ze³ÏK¯kÜq ûü çÆ¥cÔvg}?{M{¼Í—ƒèîÕÿ¬éš”îiÏë¨ÏÛÞ ~†}oZôf¯yÿ¨tÛïFñõ¬é›u»½ÚŸU¿£¶Ÿ}.{Í+ŸLª/Æ•§AßßXæaÜyÊ^½î÷znZó<¨ÿiËñ°íºÆåËæ×ì5mþ–ïf5ã¾7mú§=Žng\>éõܤïOªïz]óÆ_ÓêoRý0,½žÔÞ¸ýÛ߸óÛ‹®iÉÇ´ûWþ†¥gÚó<è~¯vz½7­ùŸöø§¥¯³× ý¶^zsPÓ²Ùûã^£êaßW~'m§×sþ7êüN[ÎGå—aû•ŸÇÕCƒÚu<Ó–ëQû—¯FmwRyéu+oÓâ¿aŸ¶½qõæ¨ÏMëùY¯ó¸zpP{Ãö×ë½iËï¨ü9ê{Óâïqçg\»4.?;ãÎ{¯ï‡¥7ûܸïÍš¦Å'³jgÐ5m=>è½qߟôš7ºÇÕÛ£ò˰ß÷jÖýõz~Ö|2ªöý^Ï «×†íoÐ5).µýõÆ/ë-?ÓêgÒvgý~¶iÉÿ¸ò6n¿£ê»aÛÔß´×oÒyYo¹ìõܨãU_K÷¨ãš¶ý×¾ Ûî ~Æå§õþ{Ð5¬>™tž§e/¦Õo¯ï§=¿Ã^%¯£^³žŸYñÉ´®qíâ´ìJ¯¿ÇmwÔk\û³Þr3ì÷ö?n{“êŸaéšö5é|jG&Å‹“~?¬Œ«ÏÆíwÖt ûÜ´ú¶ýIŸÔï°íNzM:Ï“®Ã¤r:©½š”F]çqå~P{ã^“â‚Iñİó>®^Ÿ–þDרË7£~?èš–^Ÿ¶~WßM Lº®Ãö3ìû“òG¯ç']·a¯qõÇ ö¦Í_³¢kÜçõ3èïIõö¤r8èþ¤z~Üuöš–ž–½ÔÞ¨ãt==7+ýÑëûigÐ{ÓÆ#Óâ×Iõâ¨×´ù{Øþ†íZúpØûö3-ùèÕþ¤×¤8jÐó£®Ë¬ìÒ¸Ï ûü¤ü5-=3®ÕúÛï¬íø°ôŒÚϤöxT~•™•^'öz~Ü~¦mǽfe&mwØkX>œ•¾÷šnž•ÞÔþ¤8oØþ¦mo†½FÕë5¾AýNzMJw¯ç{µ?m¾oM«ŸIûŸ6þ¶ÿQŸ›6ßeÛUûÃö;m{8és³Â£³Â‡£ö3è½qåo£äd½øcØkX}3j;½¾Ÿ5ßLodÿžö¼ŒúÜ ÷&å·Iíò°ÏÍŠ×Û.{«ççmã^ÓÖÇÓngVíõj\½2).÷¹qÛtœ£¾7é󳯳½î¯·þœôš7¹›5¿LÚÞ¼Û«IñÜfããqýyÓ»“úsój‡‡íoÖþù¨×FÍC¯û³²¿³ò'æÍ®dÛ™6¿mT`Ü~6‹þÞ,ý΋œMjÇ'õï&µcã^ÓÖŸÓº&¿Yã•͆F]ÏiñÕ¼èË¾Ö NïMû½QõæoÿL[>‡ÏI×y½økVøc½pß¼ùÇë§¶ÝY=?îµYôЬpñ°Ï{ ЧÝX¯Í‚‹6Jgƒ}?-~œ´ýõÆëã¶;k»8m>œ·ùÜhz6ªŸA×zÇ­GígÖôíÆAëÓÿ¬íÀîk¼«—2oúrØk½åy^Ç¿ÑùƒÆµëÝþ´®y¡sÞý§õÒS³Š'¯ÞŸö5i<+Ûδžôެ㳳¾æÍï\¯<ËF_ë=ïë=oë-ó†÷7ºÿi_ó>žy§o½¯y?lt¿óÊ'‡Û¨k£×Övx³¬Ãz_íï»>ÓòK6úš÷¼Ê´¯ÍBg¯k³ÙƒõŠwnöu½±]óÎW³¾ÆÅÙë'š÷ytõš·Í2®YÇ3׫õêVu6Ãö»Ñó5èšÕ|ΪÿÍvÍ{ÞpÞâö³¾6 o6~c»&•ŸiåQ× ¯MKO›§Ü}vš7}²QþÈ´®ÆÕórm´:«ç7 'mTž|Ü÷çÍo™W|;­kÞò«³²ïó¾Óº6KüyÞêw½7ìóů½ž7ÖkÞæu³ø?óJW¯k½çuÞñÜFõ7lÿó‚ËzñÍFÏÛ ë· WÍÊ¿Ø,ãtÍîžvžl³á©Yé·y‰ _6_>/u;ób—v_»¯Ó5®ÜÍ+Žßè~¦Ùh¿tRœqc©˜ÖµYÖoV×n;¾>×fÃå½®ö—6ªÝy»ÖlV»±Ñï¯w»›õÚ=Ï{mV|¿ûÚ˜k½äu½õ÷¼òçFÓ5/ñ…aqϼÄç­ÿa¯ÍBgöÚèøÌ¸×¼é©QåiTùö½Šûüf᯺6:îxc¿æe^ç5>°›ÿv_³¼¦evóç|]Ó®w›Wý¸Ù¯Í¶7ÖëÆÎß›_~[qÏo«¿vc×¼gÞèõº±Ëżãìy¯›˜×~oì×oû¼þ¶÷Õÿšwþ˜wúv_óqíæ“Ù\ó;¯‹µö¸Ì~ÉÙ§&ŸJüÔíÓHÝoôx>}/Ÿ<÷,u”Ü/'ÏÆûÙï—3í&4dûÉö—~®ûO~O?ßHýìÖn1þ¬gÚL~–# Ý•.cÈwi—{¥ø|#>Û­ÿZêûôý…T| ñï|¤5=oy¾Kæ7Þ¯§~vОî/Þï¶ÖÙÏêýÔ;ÞGBgfNŠaí8k™¿ ©ñ'÷÷RcM¯yÒGºýnsºÔ¥¯¥d®’yÉЛŒ«ž¥+C ý-¤î'Ï5RtûÏ­õÔÏ¥L¿8–욤y:y?—ù;ÍS«ý'í§ûIý^IÑÜO䦜C2_é9OúJd%½¦åÐÉké~“gÓ뜕ùä^>Ò’ô[)’j+Ñ7µÔ˜Ót!.ñ»d\ÙvÒ'<±úNü®ÖÎÿê\gÚíŸÔ\Ô2Ϧçd•¶Ô|•Sw¬Eê™åÍ]ç4=žÔ»ÕÌßµÔûéµHÞÏ¥ž-fÞ©­E"i™Id1_9ôÖí•Øsèð,ÏtÓG«s›ù®Òå÷ô÷ÒÝå°KoæSt-w¡7mÃ*¡ OÄŸi]í6&™Ë°Kþ+™g‹™6:Æžº—n/«ÇVõQê™´ÎNë‹Õõ‹w´:çsuü©ö“ç’¹ÈÎWºí|üÙ¡[’{a—§uݪLñTBo53îôø“µÍÚïJØ¥?Òò“¬ÿrèÔ¹ù }ùÔ;Ë©q¬‘™°Vç%»žã™ø\7“È}Z¦Ê©þš=ÆžØÖ¬rŸš‡¬îMÛÉ4ÍÉœ­ÊRjüK©ß×ðyj¼Œ';×É÷Yûæó“š›|¦Ï,?V3}¥ù©C/&cOµÝa·ã¥é馯ʩyJ¾_JÍmb3²z)é•ÿ3÷³ý•2÷™JÖ7W³üœÌG‚WuMªïEÚŒ'?WíNBSò{ê^Z²ó“Å…i“ö+ViM·“î7=]hÈ%ãH'i7ù$ß1o ¦K?çz6tòHšÞ´ÞHÞMë¼ÄWJ¯sšžJæ^z~VõeêùBè´}ÌóRÈÈMº¯ØV½Ëý,¿KËjú“¶ÑévÛ”}>Û—ÿš—,ßg±O‡ÍÎŽ-ûIµ“Öƒi¼‘|VõU꽄ߓ9LžcmR§e,Ñkx2þLË\G»™çÒ¼”µ§sÔ¥´g}Ò¶"ë3¦ŸÍú«z7Eû>Óvvm’ùMÆOõYL=—¶‹iž-¦ÛOýžè·„/¼•´—ð÷ªMJµ™¶ÇÉýJºÍÐ);cJžO~O·vÉdòn=ý^öºØîÔwYŒÑAOŸ6Ós–Ä’q¦ù*ëuÄRýfe0»îég;0e7zS÷û²:y<­×V1A¦ô3‰<åÒÏÄï;æ?dpvvL]h]åÝtßY:»´YH3’wÒ|ØMþÓ4§õz·1&Ø©:å™÷±5svñôšñfþNèÉÎãRª´_´†GC†ŸÒ4d¾Kó~2ÞU™ú.±[ÕôóégºÝ òÞHÝ[Î<׌ãË¥žI|¹þOýÝÁ«]h^m+uoŸ¤–S?WûIõ—æ§Ü€O gca«¶/ÝVš¶Ì½ä½4ZƒSCX£W³¸>ë/fq^ktÓ½iÌÒ¡ÃÒŸù#û}¯ç“ïB1ì'¤x¸GÛ¹^ßgžM¯ñR¯v†[è\—¬6ˆîT?Ånß÷¡•¾ÁëéþBç8K©÷VcƒÆ—½ßk,}è+eÛ kñ[WyÎþžz ßöGÒggûòc¶­Ï$ò×GÉŽ!ì²É1Âä^7zB ‡eî¯bº>4 ”‰Ð…×Ã.;ZJÝëˆcgúè°-}úèЗÉÏYÏÐigÓú+ûw5óݰk•å^¼‘Ð•Ž©­ÁÌ]~62?“q­‰ï÷è·”´RyªÌ3ÙµHÛšA6«/:ôrü;­/’quðõ€>Òñ›UŸ é?dtJv<=ÚÌÒÓuÝRϧó¹aiïÓ^W:CÊo²¸§ƒöôýai ]tfBS¶Ýíx<1COB§¬®y.¬õcVã©]žÉþ‡><—ô‘Ð:ç§§ÍÍ<—¥}5–Ÿ7—ú{9õN3¬é7¤ò‚IŸ]ž©¦ÚèéGeî­æÚBFežK¯_òürXëç­~º¼›K=ÛOû}ºÐœŽ³ÕR?W}ŽY^meèÊö“´›]·nò—yr¯CwÄO7½Ù….2:×£—/“K=“½×¡‡B—õÊ´¹šNßËÐ’í#»KãÈÕ¸Rò|裇Cw^Ncå¤\ØÅÙXõ*m!å·eÚLâƒz(óLbûšÐÐ [Cèä…~˜$¡µ#nߪŸ›í§Kº©Ûs!#Oñ~šÖ$gW }tošÎ.íwÕÁ]úkd~\aW—ú}5†Ð­½Ð9GÞnü{5_Ûƒæ\æï5¾AècèÑV:ç—Гõw:úës/½f}õJ–¶ÐÃþ÷CŠÞZö^>Ùiö¢)Òî±Ý°V¿ Š _²4†µ6¼CÂZ>ì©#R÷~JrÎ}±o!ö:ç¹—ï‘KÑŸŒe9¤ä"¤jj†¡§Ùû]þÎb»\¯ïºýÞ…öJ¯çR÷³:6ñ;òH=ÞíÕf®ßwé~»Ð¿&ž–þ. ‰âÏAÏåzüÞ!S©ûùÐç0œ ®‰1d¾_¹÷è'›ËÒØ¡»´ŸØŸtÌ¡y&ÛÿP:#ôŽË¥é_c¯²ý„N¾-¤Û ýãYùÉÊPÇÜ 1ž5:;ÄúÉ.ãJêM»êùô3ƒúϦýƽÆÏ úw±GŸizÒ5Ýü§\ü™Ö éø}š¦nºp v ¸¬+VÈöŸ¹×AK¿÷³m…!çº×»Ù÷C}<àžç {oP»a8ÒﻎšÔÔýÄîÒGÝødœ‡.±õ©³DèŸÉeß ©øÝ ¶3ý$6®[î&—j¿-ktlè“[Hµ¹Úvê»51ÝÐE¿dÇÐíý~Ÿ°6Þ0ÔÚ Ón—{®g²´ÎâvÍÙ0ù’¡bb£ÒzøYI[¡;6îë—eî¯ÁÄ!e‡F¤§W¼®>è™ïeñã<:l[úé«§Ò4 ø¾×ø‡µË}ãÊa‚¼k·÷C§-å÷Õš«QiÐoÖ7ïÀ\Yšº¼ß+ÐK×­±sÃŒcܱÅ}GöO§LC6ö™ëÕ~Z;òFé{YzÂ2׫ÿ.´tÅ$Ù6²ÏÅ{Cç²zµÓ­ÝIۜŻ¡ÿšeëð²2œ­ëå÷Ń¡‡:Ì82ïNd¿Coû“K~†ùûn4wûnØ>¼³ºa-ÙïÃ6i–Ÿ°–Öĺ¼“Îç÷U÷ù®cÏeº­ÐÅ?XÏOè^DZ†–ÝCÙªëêñýP¾KŸ÷×`º~ôô{¦-kìHjlý|ž56©ß8zÜÏ óþ¤ï ÑfÖìåsç2÷ÕÅ ôÕgñ }ðþmöâƒ:/(6´­ÉþzÔÍõ¢/tY¯Ð».b”RÖ> #‹¹n¿÷z¦W»a„õ }jꇡ¹Ë;}cÈC¶Ñ3:äûY,5’†Ð#Ð22ýÃÐÒå¹5þѰïÎÛ'ìÊÕtÕÓWè-c}×yŠýÌYö¢5ô°3£ÐF”³0z]ØH:¯WÃÐ6M¹nt…L«aÖé÷÷„´'¹~¸»gn¥Çó5Ê¡“'Fö¿ûô“÷ÙÐYÏ›ýnæ±âQÚl1m¡ûZäÆyoœO˜2ìÓÏT×mÚíM›Ž0Ù¾š±ÞíE˘måfIë,ÆvÙÉ¡ã-aòO£Ža„çsÙ¿»ÜcŒ«{׃în}Í¢ÿYŽ)¶ß+LBGŒ…ºÖ5Ír¬ëõ #úaú¶#׋®Ð'÷4N›S¤Ù}¤Qé¥ýq¾å™qÞ=b¯a8ŒÔ3÷=ƒjÒúÖKL›ž!èÕ7;ÿ&ˆ…{ËúÑ7,ÍaJ5Óþ„ëúÄÜÃ.¾Ì¥îåº=ÛçÝ~>h.óìÜ`©>4'¾u®Ûx‡xP}b¶¾s( 1ýýtu®×wS¦¡+ÆkÇÞ•ž^cèv¿×³ƒúôݸï±ë¾§1ú´aâ{–ö÷GK!þ6@¯vÏ0´ŽÚæïôÛÇÖ/‡:°¯Ð»FmÃë †ý„X_<…v¦^KfdËÆ¥µßóãÒ&Œû†Î:Aûÿ{ÒŸG˜r. Ýö¤ÏŒÑo. ØÓŸzvæ>~Èœ{1àÙ~X#}fAÏõ }°Â„ã„ :Η›´ßì{!bȰkOÍP8ô©1ê÷Ì(ßïþ¬ß'ôßK•Ë>? ­qrHÃú-khéw/Œ‰=»µ™þ®ß÷C´=ÍǸz`lúGéšcÖ§MÓ¤5Œp¦Ù$4Ïò:uÀºÄ‘½†ˆ[Œ3¾üŒHóÔj6‚þÔ;¹¦{ÖŸ0†Ì z'ôƧnSÆ}¿Û˜Ò÷BLÚíõãzµ™m;̰F¼Ëý‘úêFcHåü²Ï†îgŽU_Øë~˜³|sƒÏô˜§O˜O‡Éð@·=¢sa·7Ã' !añ〱®êŸÐ‡Gª_»3S¿³6…LBç8ïNÒ߀vûþoˆY~²cšÕ{ô½.cžÖ˜¦ÕNŸösÙ_¼7SÖ­Ïi¶?/Ÿ¦u£ûŸ·O¸‘ÖØÏÓ'l¢9™&­¦2s¦Ön:›·ò^+»tÿwì8&þQyÀñ;>íÄ­§îØyf¼U~ÀŽíÇmÛ~ü©[OŒwJܶSN=þômɃ¶³ãèÇoOn4zÊ©ÛvnßzâžØzÚ)ÛN‰·k¤§Ù“[WÛ¯râ‰{¸íX{;¡¢|Èöc·}êñ;NKÞÜrÈö'¶óÌ=·n?fÏCwÊŽíÇo?.~·ümÛw×xÈi§Øvœr¶·¥h~è¶'Ÿ¸õ”“’ ݶóô]Tþ|Û)'¿3=ðü#N8~»&m1™´…¤Ïc·mÚoÿ§'V¿YÚ¾õ$°¯Ä›‹[K¦fñ”mOIh:eëI'Ÿ¸í®gîLÞ=aëÉ'oMº8qëIO8&ù«pì‰Gßõ¸''3tôÎm[O=~û®)ÏŸtÜê`–=íÔãOJ¾Y:Æ}bÒÎÑOÜz²­M†êÒÎgÜ5¡|5 |à ß; Ç”ÙzêÖ»»Ó^Ñ$„ÿûÿÛý½ñá$ survival/data/pbc.rda0000644000176000001440000014010312267746072014336 0ustar ripleyusers‹ì}˜Eó÷ÎæÝ‹$£¢`BQèãrâ’Q$šÓ© ‚‚Q@ (*** ³‚ sEŒ¼`Vüª¦«öv{wvfv÷îðûÓÏ󻺙鮮®Ô=qûä èt8N‡Ó§9œ.ø×í„?šÃ‘ê?l8ümÿ6dÀ‘»äaVÓë</Àð°)²M¤ËvŽL@ ÐÐÀ|÷4ìh 8p à @3@sÀÁ€€–€V€C­mmíí‡è 8p$   +à(ÀÑ€cÇŽt8Ðp"à$@@O€äzry€|@ P(”Je€r@o@ Pèè èè8p `àTÀi€€A€Óg†††À6Ž€‘€Q€3gFΜ 800000 0pà|À€ .\¸pàrÀ€jÀ•€«W¦¦®\ ¸0 0p=àÀ ÀLÀ€Y€Ù€9€¹€›ó7nÌ,,Ü X¸ p;àÀ€ÅôûK÷îÜX ¸ðàAÀ2ÀC€‡–<XX XxðàIÀS€§ÏVž¬<X XXxðàEÀK€—¯^¼x°°ðàMÀ[€·ï6Þ¼xðàCÀG€Ÿ>|øð`3` àKÀW€­€¯Ûß¾lì|øðàGÀO€Ÿ;ÿììüøðàwÀ€?þüØøW†¾4ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø×0o@ükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿZKÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯Aükñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÚÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÿÄ¿ñ¯AükÕˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ â_ƒø× þ5ˆ}¢ùy6>.ðeÈâ @,úÀp<:Ã\Ÿù˜´ø·{œ’2Aß.tjK6Èî{e€>œØørÄL6øó ØÑ ¾Öà6é™ Ǥƒ-²ÀFiP/ó §éwüÐOб|£بä‚ °Wä?ä ÄBð'ä øoŒ'~á‚öÀø=à+>ðÉtÈ À–~È]  N6è âÇþᜒ:ËßB^É‚q»A·`Ÿlè+Æ— ¾ãƒXqc~,”¾êþ™`_Ø99"â? úÉ‚ü–±æ½Hæ´èÕ ù+ˆ6ß íþíÄ|}dAœ;Á3AO™ÀÇ :Ï€|‘ŽzŸK%§CŒ§ƒ}3 –‚ãÈ‘~ˆ±@g©käÀ ˆ¥ 3tóCžÂõˆo§Ì»éó\OÓ€wlá‚8M‡|í}¤Ã¸<`wè. ü3r¤ƒ­Ò!æÒ!¤Aî÷@ÎñCL§AÎKƒÜ»¸P‡0'¤>ƒ ç4˜<à“NÈ}i`—4È nà—†ëðã Ä” b5 òVàA¹ä ‚ìÁä|á§üç†|ÿñ‚‚àËn˜C‚ · èÂò!~ƒ÷AÈ%lù(: ÂX‚0æäÜä^?ø¨ æø“ôê„y ù00_êçŠÄ˜ òcb*c €î¯ ƒtÀ>Á¶~ˆ ?̃~È‹~ÈŸ~ð?Ú|Þ¿Tú–Æî‡ñúÁ®^ÐÚû!¸ 7ûÁOüGÜ0gù!÷;ûËœæƒñù`îñÁø]0ÿø‘9Ës§âÞ1ëÝyÁž>Èi¾ÉDÁVN˜s}³]?}h‹»¤_za®ñ@ì;aîóB ya^òœæyÛ ¶óÂ|çð‚¯{aî÷‚^˜ÿ½_½ ¯úõÂ<0¯xÁHîeœï1î9<¯RìÌ›×70Ÿx`\nà弿Øð€žÜ/n˜c\-$Oæ°¥låž.ЗÚ:AØ×“!טÝ0&7Ìán°¯{-ò¬âÌû]à_.ˆU´Ë‚¹?ÆŸ¶÷Cü¤ÁZÁ;KÊ.ãÝk… Xd€Ü Q÷àWÙÓý0gy@Ï^\o@|¹ <»lg€þ‚àç~Øvß ˆ« Ì0O¤ƒÝœ0O¤£¿Cü;!‚à—i`§4°™âÙ ë• äç èÄ2`NöV’ƒ¼ð æ˜ü ŸÿU9GaŽÆ5†×x ?7ø¥ó´ñCžôC,ú f<<ƒ|0.÷,és^X‹ùΑk"ø‰øyA^«r‰Ö^˜ï=XzÈõšç² êæäK7ä 7èÀuŸÌnhï†ùÜ srŽäv÷6vC7¶Ü炾°Ætƒ¿¹ÁöNð+×[5ó‘~nä J§SQûÂá0ù_mo[mcT×aP×HF#™cµ1’ÇaP?Þ¸âñ¶Ò_,>ª=ÊþxýÇjkÄÏlüê¶Ú¯ÊGåo$ƒÊϨM¬ïX,?ŽÕ6XýÙ˨ž‘>Ìä1“+\—*O-l¬ïXxp>±d¶ÂϪTZŒývlK†x±fÔ.^Nql‡S-6áûU¨Ô(cù8+>K&+Çi~½.êcíS÷«m5“¶f¼ÂyÆâ¥òÕ&Þ>µ­QŸjµžQ«uôdt܈g,9­ök¤×x|âÙЊÞãùY¼qÝÌ­êÓŠ¿Ù‰+r&3;þaÅ/âŧ•þŒâÆJ,Yµ™Õ¸Ñÿ¯vÈ‹Òû°wá_pÓîåCwùçýsƒ(;¾Åé#Ö>'ª¦,Yuí†CDé¯ßúâ¦ËEnÆe·m»LTΚùWÞ§¯ˆÒÆÜÝ{Ù‹¢äÚüYÇä]-òs´ÆvÜ"ªî~¯Ç7K¾%Ÿ ùzkåBQ>{Q‹éâQðáñ5n7C”5¶©êâKDeÇÓNêûãÅ"¯Û‹÷ÞµûWQ²ÿÅï>Ùÿ*Qò[vécGME/¯ýîŠÕOˆò?ƒŸµºà!Q™¾«æ¿Ne­GxÞ¨¢ô¯×ÏÝ1q¾(è5züVLüáÚ´ãD‰«ý˜·:eŠÒn=Wç‹‚‹P°N¢âç¾øéðÕ"ïѾÝÓ_»Qä½´âåN=]”ü{ÑØÏz÷ÅK:ÿrÿøE‰oÕÊû®î!Š*Ž:e¿oeGÏÞoÆ™3Eo”¢tªèU).Xr¡!¯ÞYä…ýÉâíãºü|Âf!>ü~Û-kEã&¸ŸiÝMôzmæâ™þ-ò¾ž¾àÃQýDÁ¶¾ÿl…¯{ý•ÅG‹¢Ùãò@¢÷Üi7¬l¹S”¬k:°ù¢M¢$íXÔ˜(Î?öò«ž(•·ƒ–ƒDw»íì#*†t…•cO^}äé¢bòaíw +yüø®û›EáñÿÞ[ÜãhÐÇ—Ã÷Ÿ(Dï+¶Ï©˜!Š<£iç^'в£:pM·1¢hLñ-;þ8T]Í DnÏœK:ÿ*Šy¿,mGÈ_ßç´ç·5Å¿/qXt½(Úþ\§v­…¿ÿóä§ûŠÂ^Y ›ÑÆÕwÝí?Q±øé_}~„¨Üôaúm+rD™¶vö+~'Jwä?›}ÏhQˆ^ØÿSQ2´ásV7½î^:üš5{DÞcC÷9|»(!?«¿zÍŸuŽ(ØøxæùAÑ÷ptì=¢WÞÉÇÜ~<èõ—Ч¶w[ » Ct£êN7øg7q¢>ìBQÔý‡F“Z¸Eñjו­gÿ ~´ðÉGºíe¤ß"ô‚£>ùWùx÷ãï9žÆ«Šª–·Œ8Ó÷•¨èµþŠcÛlŇ?sÿkC_ Ôè ¯È<õóU÷ydïÒ§Ý !!ŠoÛÜ,Ðl–(ýÞüÛG=,òu3_!zOó¶ÚÓó\QÖÙ³ ­(B³ š"J[¾Ðóå^9sGgˆJŠ“Ò'Þø9Ó=SlO{öìA‡Š’ _»}«V‰Â[Ž»þÞ¿—‰’ Kw4ݲ\dT‡WDÞSJö¼äoÜ| ˆ, š7ï5LŽÃ0‚E^ÁkGïØP!*ú\{GÁoÙ"­èºRä_²åÓ…__qØTõ‰OTœ{j@ßñ爹_åŠÂ¡º£ŠÒÀÝ­Þ‘! 9Ÿ|º{QÙÈÅ¢0£MþðS·Š’6¯ÿré¼Q¼àÁé»nì Ä÷u¼¶é*Ñgíš%ߊw½·íœüż DÎåý?ùæBŸ(: uÚð•¢êÒî¨Q´qÐ)‹.ÊU¸{ÅB‘Ñå+Ë7\šù¤(b¿!-Ør²ý‡?ˆ²GæÜŸûæÝ"p[a¡(?ëÖù¿7/J°öØå"•†!JP¬•‡.ò”ÿgÑûâûp$¢póyÏ}>äZƒ  »(ê÷Æó]ï^*Jú£cœ Š~:í–àòÑ£`üå׊Rú'.JéŠyod½Ø2ûQ ^9ÿõ^¢ ¥ð¾È§¸É/zâ®ÆµÅuÙ…ß”ºx¨ÈkUòöŽ;&‹^äçE{¡ÇŠ*Ôò)¿Šœ¯O_sAõxQQ¡3Å}pÀ‰ÒÜó¾j5ä½÷ßvÍÈBQ2¨dÈszZvŠ‚®o] ©]œ4óÀ¿~/)eS-|à²7E彜m “‹<0ÎÉ7ö¢ù«¸ÿv‘w½¸¢7H5é ¢Í %_vЧ9¢ÿv~Uôg;õñõ¢O—ÑKŸ=éJÑûžõËL}L”Tl{aÁåËEÑ–Gž›²äqQr^:f8QHy¡øÀƒ¹ñ+Q…aüÎë"Óþ7÷ˆòyÍs›ó»èì¸b÷~O‹œ2L¿ˆ| ÏÏ–ŠŠ·–ß±qÚQ¢¬ra׿MrD!zcU+Ñûdø†È…dxþF—ÈvïùÌk.ÊNuõ+ê’-Ê/zù¦ìƒ?½pon3QqÌþ÷-? »È)ÿã”q·måÅûãŽÛEþ)¯ö[üÍ;"çH}"ÓÀ—³D.åßò-Wmm½æmQ¹ðŒß/h÷”(Äi¬ýBQFrç=òýÏ­cDel”¨ü¢ûÚn zº¾@|©'6!(åaù¦‰ÒU§ý¼nbCQøÏ Žc§ˆ¼‘…•/g\.Ê.]ßöŠáQÕ|Ñ;¿=ÿ”è‹Óp«{Dî/m¾ëÖž"G3êJÑs“î}ó-QNz)F¯i3Q”ãlßc¨è³XwQÒùÖÿ=üʼn"„˜"gÜo7öî×¢ Á1¢ÆYÖ^dQõt“F<ÚæÉ'¬h´QL×'\qBaëï–Ío*ŠOœtϼ·¹]ÿÈ»Nâ´{Ò'¡qäv¸h÷¸ QœñÁcÛvž'r®/Ïßþ½WÝ e?…6¼÷âE¯ˆÊ gÜ4ú½BüþÖg—tÊGEE]²vþ5QöðÔ){ƈܱ7¿yþ¢œâ¡è}b•[¨Üõí¢òŠ@ñ9YóEÞ¤Ò/2·~ Šq9´f‰([Ð9‹ÞÒP"gÙNȘ¹¢'ç9HÒÇyöƒxú4õˆÈÅôÛi(‡E„Ž(X¨/D/šÿ{÷Cß,rh•Ý7~2c(ëª'`ÑcÎû-Žœ6Dô&?*o7øÁ­T‰ œ¦Ž{JôúwxJ3!hé-s¢²çnX @ž¡üÝg­¾åó|Ìjÿ' i»€ÚÉi>STÒvÑ ªŸCõKhÕç~¸o3ÿªWF혖R}–—÷Ò~O‰ÒO1Ñ":Þ‹å!ZE틉²¼¥J»J>NüY?å´?—å#ý•ÓqÖO¡²G|X/¬WæÇúQõÌõó•ñ±ü½ùÔqq?‚ê±Þ¸?ÞÏò©|Y¾RÅ~,ûë¡JoÙå)£ýl—bEO!?TüOåÃöáþy?ë½TÑG¾b·bÅ~9Ê6×cyË#ýÕáp…ß72ºvï¼ÝÊ1;<A¼ë?VþOVN«í¬èËÊõ»üã]‡³Ã+Qß0ºžb&s]øN*‘ Yëj¼Vc·>tï:c}Ú.U2Ôµ~­Æ•ëèµ<ÖˆGÀ½cFž?r >)œ-ê{ñ‘BùÏ(¥¾gø˜¡“¸zˆÉ¨¡Ã'ÃGŽñ1ÒðÛRfE­“h›DÚ%RÌx$ÒGªå²#c2}Çj›Š±ü×K¢:H•îŒøÔ¶m’w}ÅMÂ¥zþpD?&áû?–ïåGµÊK­k[í'£þcmÇjkL±Æf6ÆXrÉOæxzÅÏʱx|¬Ú;O3ûõm$«™Œfs©™¾Œlh$«U1âi&£Q;ñdäofv6:¯ßx±Ï_ÔbÕtc§†6ªÞ‡ÿñç£ðb%gYõ©x±mÄ/|Ûj ˜åúx¼ÌòŽ>Vò¨]Ä:f%_õoÄÇn1›“¬ð·ãñljuŸÕ¹ÇŠN¬ú•U~\Ï̇­øx¬ãVcÙlΌקY±šKÌx˜ÕÇ÷Hë=×ùHl¯çÏŽˆÒss$µZT>‰7ë×”Ïfkõ¬–Dù¤ª3~©¶SÒü7Ǧ©îϨž™ýüÝjIµ] ûÙl±ž:ž:’/Ù¢ŽÏÈ_ìêÁ®= ù¥ˆO]•ÿмõ-gmç¿ÚæSßÅêü\WzKx~Þ\»üëºØÍ›‰ÎÏv娫ò}–ý9Éã‰ö›êR‹ýÉ×™§~v.À²°ç¯£ôÒóï X6Š´£ôÒs;ç¼·Iî¹_t¤zÔ^¤Ëö=·?nÏ”ö µoY_4¦v_Q?$‡èBÇj}’÷â×…äáã$hHíh|Qrí¢v<¾fÔ>Hòðxv¿ƒ¨ËCz Õgù›Ðq²gÏ=Š^vFÊ!šÊzÂMív+rs?NE.æ÷=Õ£þCò[-ù²¼<^¶;ËÁz;šäe>\ŸÇÁõZÿ.H¹:Ðþ‰éG¢Õ?ŒíBüxœQ=’S4Vü”õJÎÜóªÏõx<ý|œhz¤BÛ»#ûUã&t\±›8’¶y\W^jÏþù{¤CãRüV4'~Š^Búc}ûHξ,ß.Ž;’˯؇åeûðx\Ôžõp|u¤¾8°ýx?ñ éŸã¾ñÍ&ÊñËãa=è7äw,?ïgÿ(úa{±ÿqžb?þ*’¿h§ðc:LÑëîH}‰nÕ‘zlKrE†2p¿ì—E>E®¨¼ è;¤÷¬H¾!=é“åÝ?2®Bó×ã<É—ó‹8Œøþ)gˆŸ’OCí(Ÿ‡æÃûq?ˆïï‘ò„ÆÏqÃù­ms~hIýe)úb½7%ù˜Ïn;p\òüå§z<Þ‘z Õ§z¢Id\„ò×ãxâ<Äú å{ª—ÿêy“ÐH¶o+õYž(;wÙáç¡qñ¶,W+’“â;´náñ¶Rò˥ؑý”õBÇy=ågêø}‘vVý#Dÿb?ˆGˆ/Çë6…ªë-žÕü¥Ì«j> ù3WûAÈh=È~Ã~¨ús(ßIüøø~¤ÏCh?ÇW;¶‹÷JžÅ%Û•ã§sdýÐø™*~Êßê:‘åæù¼«"‡GÉŠžÅ¡‘ñÏãÍ£JÞ QöƒÖJü°<œ§Ø¯¸þaÊ8X•þؾ¬¶?ûwDÆQ(ïmŽ—h™§D¶§4_ˆ†‘ñZ²Ÿòú„ågÿd½©q·K˧㣿³¬øY`ôüäòn‡þy_ü¼°þé\X;Ñâ¯8ôÏãgеªe—øcüÔ(JŒŸiþΡž?E¬B?+‹í`¦pãç®ñ³ÎŸ;ä'maôú'€ñÛœï8äçoñSÞËò¼ø Û±†C~.÷PúÿK‡ü䯋¶5‡þ‰bç(Ún ¸ð?Ù~F?÷ëÄÏt(ÇëZâŸÔÅú:ôO-âç§7§CÿŒ0~:Û õ¨«é¤£•ý³Ãø)fm-?ý§C~ZÆä…vúçqŒó¡-~>??þ†Cÿ,°ãÕ°qøÉgül+ê?“«ÞyµC~ ù-Ò7~‚?íŸþÝ<ñÍiRçú'ž±îk0®Çúg~—RŸø¹ÞNÄã/ÒÚ>½¦ïO¤# ~ê¶Ÿ~À!?™ YJÿä1Ú« êág›©Ñ¹ õ¡Ñ6ŒÇ‰/éág²ñsߟ:äçñÑëúçšñ˜ö+Ùh;Éø‚ÃáA¿¹ìŠŸ¾†Žá'º¿'þ±ˆâ'ŒñóÛ¿SÝWÉføÿ ?9ÿ lŸ%ã'$ñ³Òºà§©ñ3îèWA’?‘ŽŸåÆÏsã'½ñóçøimüÄú{5}êþ~õù­´~.Ùý·ÜçBÇ> =â§Ÿ'“®¡øùBÚEÿ´øsÒ?^i_§SÚß¼ÿö=-ã?™­÷‡öÿÐ??Ÿí¾l ñŒŸ½Ö튟ØÇÏãçÃwÑÿëò3×È ?Û¼ñÃÏK£ý±ý‡ü´5~VcwùÊžCú*¢q¢üŸH»âg³ñ³Äºÿá§fñsÞø‰èÖ4†c)öŽ¥8ÅÏ‚÷8 ®—ŸVv^C>‡ŸÇÏoŸL:ÇÏVWHêýá'ä’ãv/i˜ÀÛìÃÞ_§£ë@"ûÆA~Y£Hû xÒø»?îªï¦üd‘Ž[Á“DíÏÖ« ¿úñèø%ƒի¾Ù´®Wë(2‰¿“·‘tøUd>Üøâ-E" ¬çÒ/ÞG.éõD&ñËл vóÝÔPÿÙÔ.Cs‚RûÉ›IòóxÒ¨}ðI}‡Ð6Ÿ†ÖéiúîÂOr°øú ·òqâŸAíÒI®,’ËKõ3h¼Ü_&é=¸EWHèz"çu/Ÿe‘¼™|^Aü³Ù^$ŸZßËö"ýs=µ¿,² Û9ía}€¢!əΔû£öYd7ë‰ì–Füüdÿl¶?’_žéƒûc¹2I¯ì’ƒ×µÙÔO¨=é/øÈ_2ˆ¯ŸŽ{È><^¶_&ɤñøýd±¼ÄíœÍÇY¶?·g»’¾²Ù˜é­·ç~H~–›×߬çl²3û=ËÃqÄvg?ñ‘œiäG™j?¤'–—íÏz éG‰?¶'ë•íÈõCz'}d‘÷ìßiJ¿¬G5ß³ÿd“}J~I£~\ÔŽçŸe;³r ù)õü—ó Ó¯øÏì·>…/Ï_œÿØ}´íeTäç8òòüJzb=? ÉO~‘Éy•õÇó5QžYŽtžyäy™âŸóI¨Úï$ùx¾á<òÚö±Ÿ’½üÔ>SY7pœ„æKö/’—¯¿p¼g)ãá8`ýpì/\ŸÇÅó)Ç™ó,ËGãc¿c¿TýWã8¥vœGƒ4~ŽG¶ç™ÐúGÑ#Û3@þÊ‹ä~ž_x\4NçêõžÉò³ÿsþc=r~`}’߇ô¥¬K8ϰü^ÒGϤ—lÖσ$/óç¼Çó`ÇEüyÅzQÎćý–×W¼Ndy™?o³?sœp¾gI£qó¼ÉëV'õËúOWìÅväùŠùxIÏ¡ù‚ã—ösÞäñó:íÁúæñsñð:ýƒìëf9”õ!ûƒ‹çW%n9îÕu:矿¡¼Í~Çù—ÇÍëeýÍúáù!´.%}{8.Ù/yýÄë|%?±Þy=Ärrü†æe¶—Ô—£æ=#ü‰5üù;¼N%ògÚðÚÜÑüÙ:¼×òðgèðzž÷ãϪáÏóáO…àGµÚS=üù­·äµ-ýçã°>þÄþŒþôޙǟeÃïAàOס,ø~ø³ixÍ nõ?e7Ä!Ž®Cþäþlàb‡þÓ{øSaúOõJc¸]ʨ_ÿß0ŸÿÀë‰ø“|]¨¯fÔf0õQBýô£ýø3siÜø äµ ýçÛð'ôðgÞJIø“.xmʯ@7'¥„¶¤KÔÛ¹4”¯#àOÎáݼ‚?ˆ?…‡?ׂôs<ÉÑŽx`FÍ$]–Pü©@üÙ?üù‘*Ú2âO^ ò­¦þš“nQ_¥ÕÒðËx· Zq#µ=QŽKÿiEüù¿ƒ¤t}ÞA²t'¹ð' ç“}pÌ-òºå!$;b—´“þ“u¸ý é ë~D}á5ºÄíZI¶ÀŸ8:ŒÆÒ’ô‚׆Ð×zRßådW´S{ªß“ø&¯ êcÄãøsvÉæhÏí’7^ Óõ[Fò@ãÄzøs‰øþt%^ÛÂkØø“Šéd wéþ ú?@cœAcÊ!ýç’®Šˆ×%´o ɾŒä{…äů¨!¯oé?YHõG“ý¾‘ãÀkº-ðçÑç$œJ|[“܇x}ðRª×šê¶!£žÐ_®$™§í‹Hx¯F`~@½¢OãÝôóëȹdƒ«H‡x¯MŸIu‘7~Œ ÞÊޱéíþ‚CÆ-ö±1Â!}sÙêPÒ[:Ö"Ì®iÜØ÷Ó¨«}Øûáàët ?Ô7Äê/å¼XÝRn?±]nO‘7ªÄ ÙJL[+écòÆ›XüŠÜ¾a¹¤³…¤W](éœÉ’^CíÖÍ×ï\‰©gÉí[vK:S.Äm#ˆþ-éô’ΣþŸX.åzü¹=e©¤÷w“tãöOåöã¯ÒøÆJúü(¹Näíù›%]Dò½¼S®C®/·Ÿi$Ç9·ˆä_%¿8·Lïgɹ®­¤«Ž•õg5&¾×IúÒ,I¾%é ½%Ÿ©òFª˜Er,ÿ^ÒŸÊãOu“üV“ôùuEˆ×I®—š ç §l÷ìKrü×!;}nÙ@ò‘\7’\×ÜIú~WÒ[©ÿ)Ù¤×'i›ä^,o‹¹c$½˜ô4“ôç‰DÉ.‹¨Þb‡¤ n’ô¦Aćì>Ÿý‡äç–ôò%dŸÛH®Y-‰’¼·Qý»IŽä_wÌ‘7XÅ•ä—sI¾¥äß·õ#=‘œ×ÊïZŠ…äSÈNs·ÒøˆÏ’{ùÁAÛó%Ær’žî¢ñ]Kþ0“êÍ¢vóiœóIßwÝ éõÔžãðZÏì!´Mr\Gt*ù뜒Þ<…¶)žQÿìwÊÄÕìÔßUdŸym$NãY@í¤í»Hž¹Ôÿtü:Ýù·^&þÓéøMd×ëÈß"»,t>ˆ^CòrÞ¹”øÍ"þ hûnÿm4ž›¹=¿h³¤3IþidÏ«I®›™ñ½ýNÒÉ7ŽÏ[Fã"¿¾ŽêÏjFÇ9ž¨Ý5ÄÿVûãÏDPÞ¼’ú™JúḸ‹òölÒ÷ ²ó½oS¨ŸEÔžíýÅÇÔµ’.&¾3IŽ»I/Ó¨ÝÒßBâ7òȼÕ4j7‹ê_Åñà ½ÐöÊ•4þo%½™ô4‡¶g“ü7‘¿Í"=Ì&½ÝFÇç¿L_©Ç¨Ý !é=4Î¥¯w¥“–j7‹¶¯¿SÒ¤ß)ÔߤICH_dçÉ¿–\Jú£ñ›ÚÏÏ“ôÊ7siœ? äƒÍbÙz:Nùj>éýž»$Ú’ôArÏ$ýÍ&}]FǧÑþ 8P^˜Í”Æ3ì°„ô2ó%åÕÔÿÕ¤¯«IOÓi|G³I3ÈoÙŸÒ¸îüˆ»É_dºªÉ3w>Nã"["Œ×>Ü7¿YäWSisÉη’WÓñ™ÔÏ5ÔÏ<¿~8/,]Dãb}’½fÓx&R»4ò¼{Ç#å­9”ï9¬ÔßZªO㹎ä›C~¼ðªGóÚ×èô ݾ»öÑ}tMž:ø¼hh¹þ4T^? /PŠÞ•òzá byqŠÀ†Ñûx¹}"Õæ–ëða¯}Ÿ—ëõ~Ód½“å¢j­<>øyݳϱrÿé“dý ×I>ÜÏ‹äve¬wõ;†ú=gµ¼þxÚjYoÄ3’Ï©Ëë°gÞ-·û •×qÏ ñŒ¦ë¢ýè:æ9U’ïHÊß}äpQµI¶5WRÖ?­…¤Ãþ–üÊH®ÊåõÕÓß§qŸ¡ûËëÈgNý9]^o0Znó8¼'Û³œÌ—ÇÑw¼ž{ÊgR§Mû¹Þà…’/÷ËöÊ_!·Ï%½{äZ,úTîŸLvãögÿ(ÇQÚ’ìBüØ>E$çÉEò>DÖg½ªtùËÇ~Òé›ù²?±½úµ“Ç^-ë³Î}CîïOãKóÕðÝò8ÛeÉÝ—äd; ¤qŽ¢uÏê·Â!·¹ýƤGê÷Ô_#íÍzaù˜ïÈ+%¿³n•û™O¨Þ6ɇýõÅú`9‡P\R¼pœŒ"}•-‹ŒKŽÖËÄÇd}®ÇLJ¦ËíÁ/EŽ“·ûÐý§ÓY¯¤¿aϧPÜIr Nãü$’žEúÉûžÆIr±<|üÔ¹‘íú“>Q=Õ/‡w–rŒ¦õ<Û—åe½õ!»q;_åýäÇR¿´})­‡û‘¼l‡¡doÎs¬Ÿ“?Œ ΋ìCiÝÌqÉíx¼c—Èö,ç §Êã<Þ$·«"~<~WÈ_hìÅÔÏŠ#¶Ó9+‰/Ù“åáž·¹þÀj¹¿„hÊgü³5¨Ý`÷ªw2mŸLÇÏ$z µ;ƒhÕ§'‹E?¢gåù Ñrjן¶‡8"ùk)ç™´]Fü†R»óZFòg9û‹Èúg0%~§Óñþ´Ÿí=úNIŸR0qVËÈýCi»m öÃx<›é8ñçŸJÛD'Ò~º{&†ˆÈq°^G‰”{¨lWßëÈ}týÿ‰:jž_À žÇð">.ñþç{€gé޳ĕ!Þó¿ªÚ¡—!yÿ7ñâÞ¼Зx=Øè¸×!ß5yÞ!ïµâs#‰N‡þ>ŒÎßUÂì8®Úq ïÇv¥ÿïqÈû¹Ñv1Éx:m_æï à8Î ž—’¼x¡'­©ô?^Ðyð”C>£ñ$ñÀ'µnò}'Ê÷ãñ^;.. äÿø††“"^èÃì‡ò&=¢.†9ä½ÚnÔ/4å‡k ée¼˜t…<ðþ->«@ïNé÷‡q?^Û]xOû4êÿ_DïÀàû0§;äó!øL Þß§ì¯ß/žF2 ¦}xaj( ßîÏsà}k¼<ð1/PÍ¡q OœIz;›øL¤ç<ÆÓ6êàrê«”t‰ÏI¼AcÅ!VÒøó¨ÝL² Þ)8—ä=šŽ!?zßı”èT¦i3–g6õöïA|ÐKäq|Fï÷6ÓiToý¿žtˆ÷äÑ÷ðù‹ˆ7ËŠÏÓ Oñ{F¨;ôýÍÈ—ö½Cgø 4.Œ“[©üu¾ZBº9Œd8…€÷øñ¹”³I7UÔ×õò ÝFøü>Óð¾C>€Ûh¯BêûBâ‰ý¤~ÆPãH·Õ$+>g„þv•<®¿†mVlç‘LÈw2µ™HüPÎu¤SÔÿ×€ûiìÿ•Ô7ÆûÿègèÛ Ò—§’þS¿èÏWP?g’¾Pfô+¼Ð+ò¹ìŸQ˜@Õï2ïÃÞGÍ|´Æ!ŸuCÿx@wàôwZÑïþ’ïáá{ ºoã eÌ}øÌÊK=ö4|–èmz_ý ŸµÃ¸(ïÞi8à~|'óÎ ÏË÷ 1éïêáûqèc˜v@þ?Šž‡úR¾oçxÝ¡?˦}L>¶Ë!é<Φ}ø»M0Ÿâï>9>”ãÑßÓÛ ØäÐßÕç4|Ïó&Ì¥øþ¯ÞÇWð€q»…þoH§6xgåû°w¯¤gž0G¬’mjÏÉwõw†«¨ŸÙô<¾Ó:[¾¨¿Kˆ±‹ë|ç°L¹X;]¾wˆ¹T¿ß Æg»fÝäПcÒßÓÙ4Ô×ãòH|öOëJzC= 0†ñ&Ð}ÎÓ^Äq“nÐ."ùaŒú{À¸yƒxàÍù™4÷VJ{ã{’øþ!¾Çˆïêý`>½AÚD;\¾Ë¨ásgcȶø.äLíx)£î;ø Ûdkìë]ÉËñ#É~¦¿‹s$¾'ûƒä…ïBâܫˑ/m¤Ï§ “ó )¿†ï‘®% ý–H] Žõ÷yÈ9\÷Y|Ž ýýU؆õŒþÎe™ô|÷T×>k‡yûg‡||‘\«à»Ýz>þ‚üoZ蹎i÷9ä{å[i¼x³ÿÙVÎu2ü çÌÃkÈ÷šQ\¡¯ô'ßj/×ZÆ×RºÎñÚ;®?`m¥ás­“(ÎŽú‡C¾k kÍ/e×炯ȧ0Àjß{ÕçµßÉÞøîöþ’¾Ö¹…Æsί9ä{¼ÇH¹õqà;¾M¥ìúï ßKcE_BÝ;I7äOøn,>ãk2|OW÷ß¶Òæú:ð=òÇödK\Yã{®h hË–$ûòM´;òÃyëKò§ÄçØ/ÉŽ¨sœ{wÈ:Ž_‘RýIÒ¿ôuÒD¹Ïù¶Ÿ¾¦ÀXü„ìŠÿcNÛM|°æ‹;iû9i}ý~3Å ú®Ÿqý„ë;ÈYø ín‡žø]‚å²¾.Ãfégº?"o|—¼ZúŠ®ô›†äSm2>·Èvzœ’uôµÛ.)£¾ÆÙ_׋Cæ:Ì…+ÉÐþ¸f”÷ø;bm’×—äe/‡hC×#ÛÒu,ú’hMõy›i{¢Üž¾sâ«ÖoËü¹ÒO'®OûÛŸöÔk®O|x»ƒÒ^í?4.e¼m•úêñvüÚ+úh«ÈÉúëÈrSÿQúPú5Ò›ZŸõ¦¶ãq²:Qÿí¾m¾mLø·7h§ú÷ÓAÛåaýÑñŽêq–‡å ý!»(~Óžý@áÛžôÁýµávDÛð~…?×kÃzS¨êOü}>u¿*?Ë’ûWü9döÅ>lWæò{â²ËKÛüý ŽgÖ3óc?åq3ÿPP+vWý(j<ŠýQôÓZÑ×Õc~Äÿ0¶‹2žP?¬_EÞÖì§¼M|;±}XæGÛ‡(üáã<^nÇT©¢Šÿ…ÆËTՃŸÇÑQw;e<Ì¿³j_Ö¿ßí9YOªœªŸ©ý±üíý„ê+vŠ¯ÚŸ¿¡þ9C~Çñl0©íx?o‡æögŽ7Å!¿£úQü•zQ~¢øykE.Uoj|q<¨|Bý©úUÇ¡úóSìÊ·*_Ö3ëMµ7ëUoµEϪ~ÔvU9>!}øITœ*ãë è#j]Ä|YŸ´j§Ú‰©:?p{–[õoå8ïg=wPÆ’K3æË|”m5vUü&¤Õ/é8¯ûÚ+ããí¨üGüUês?X?U;ºÂŽ…#ü¸3F[—R/\VÍ€o,]ÇÓQx}•§jµuŒªŸ©öq*mÔ}Zœú±úԱǪú¾j§ðþüÓ(&cÅG,QõËT>jì¨ÇÔÿÃûåñb*ÞXÔ‹BµC/!h›÷»Â÷)ò„û¹3ƒ¶F9-V<©q®ê)–^â_SøÇówXÿFüT™ÂsTøxÌü/^\„ýï&?ÌÆëžs‡Ž‰™ñ†|cÚé=‚þsO=o¹âÿÞI“‡N>om¹&OœL•\CÏä:®I#/¤}C' =y$×÷ž5rüÐÉãøà¤ñ£GŒœÈ=#GŒ;”6ÜÃFÍÿ?kܘÃ1ÃÎ;ú\f8|Üøñ#'Ò–è˜s:?k\H¼¡“&3ÉGŸÉÕÆ:y䘑|Ì7~⸰!z`ˆ8–&Ž» 3« ¯ë>ýï¿{Î]ÿ’ú¸ApÄÐÉC;š8Tç»Gaç?lø¤‘ ^÷n$yú8j.ÂÆX¿3šËx à‹¿ q€ß“H³‰tB†MdÆA– d'€ahH6NìgM°?¡i8À&4Þgn†æqpZØDË$ÑÊ"I­´±¶„vÑÞ’@G’Ä¡Ià08Ü:›àˆ88Òº(èjGYÄÑpLŽã ÐÍÇÛÀ I¢{œ˜NJ=,¢g„r Ð+äZD^‚ÈWP m ÈÅI DAi àýörBo6P© Ê"úXDß$Ð/ ýmŸõåg/(8UÁi00 ø¼ÃéIàŒ0às9CÄPÃÄð0BÁH›eų̈Œ¶ˆ³càc‚±qnŒ3Áx˜m`’ML¶óbàü8¸€p¡ ðÄ‹-â>Oy™\WØ@u \iWàjS 0Õ®±‰k-â: ˜fÓ p½n°‰a˜i7†a–‚Ù æÄÁܸÉóÂp³ÜbóðÀ"ð¹ç[ðHÁm6p»Ü¡àN,¶»w‡a‰C>ߨâ^Üg€¥q àïµó»Ö"Ö)XÏ;ä7GãáE xÉ/‡áxÕ"^#¼nL°1Þ0Á›qðVÞ&¼c›Lð®Þ#¼¯àÆÁG >¶ˆO ði |f‚Ïà³ê›M°Å¾´€¯lUðu¶)øFÁ· ðùø„ïß~ ü†ŸÂð³ v*øŸ vv+ø…ð«~Sð» þß~‡ƒñ ö(ø76Bï¨ÐÂà4+ÜùÛŽ±à ƒ/ü  ‚q&ßSÑ‘™aÈ2A¶„¡a 4RИ°_ 4‰ýã iàï'…ã Íâ ¹Cþ!¢…‚–„V ‰ƒÖ1Ð& m íâ =¡C:†¡Sð=¦Ã‡‡¡s ¡ß‡ê] GÅÀÑ1pL Ç)è ¾×¬ÿ¶# qs¸vGÂ7Õž-±xÙ/ÆÁ]&b ¼ï‘ù˜=èödßbîuƈwZEööáÒj€×µMž²HdÛƒsq 8ßfýd WÛƒgIlàuzgÛ4zÇð=cFæ¿öи(9¤³†&†´‘È~Ê:ôu }™5øÿˆÆÙ‰ÃS‰ÆÎ$1:qdŒ°Ž†'›ÃÿV|¤?dŒFßšÃùB$‚íÌ‘•a >æÀßÄexÆ@eløŽ‹ôw¬£±?9ø—£Ñ à¤ÄÞÐ\kày36îˆìÁö|ÛŽH î9‘Èn4ëhø‹þJ¾Ö‘pß ¼Ï­à]‰M­Ãuq$ß[CƯÖÐp\8½[‡ï1Ñ5®tw$¼#¼Òøûî!À¶Á7‰Ãùc ðþHƒ¥‰Á9& nHÓìÃÙ!Ù í!ói{Àû®é™ÑØ"nŽFÖÇÖÜ?>ÒGZƒïoc:ÇGÆyÖáz"¹Ö‘õ—Mðº|ÖåÖàz]"«'èv‰9\Ý¢‘ÕÏ:ÜÑÈʳÏÕ±áê‰Ìæ±üÞ™;lâ;‹xÂJíÁÓ 6ÇÄFæ,›¸¶Iæp5 ã‘È<)ñrZƱÑðÌ çŸ5ÈøÖ6Y‡»º¬ïÑg¬®«$2–[GàAs¨¯*dL0ÁtëÀû‡~_ ðúªûèhdôˆïM±‘ÑÍÜ«£‘Ñ |åAkH[hŒô=°Ó">³Ï»±‘þàQ<†;-b`~4üëâÃõF4ÒzEÃÛ!ÎÏ",ôcb@Y/à=ÀôÖàj‰ôÎÑHƒ<ø+>Ò>¶€·MðH&ÛÀ\‹¸ŒPb'´ŠFÚ45†ëº¤Ê-¢‹ šÇ††„÷ÏH¸»E"ÐÒ®&‘HÛß"‚±áÞàñáì ü>bðX\m§˜ÃõM$‚e‘Àï62‚"áž‰à‰ :‚ŽgHø÷HHøn%ô©óñ^ˆW~$ü•ñáºKB½Ž¸UÂcײHn6ÁMaØŸëøÀµa¸*>œ["i€^±áÿ®Üøð /¬‡Å†ï„xö†× ÷‰‘ðÿd |¦Š¯ýøÎŽƒkà_c‚9±áPÏ}Ñðm„8áøhø6DÃlÄȽ |gÌ;-þ#´ÈaþæÞìH¸•pµˆ„ïgc¸¦FÃûG |/VÃuŽ„ï¥8÷«ïÑ0àó„ôüRÄþ›¢á=)>ìãô880ކ÷Š(Іg«‚G£z¯ÙI°Rœ6`ôÀ‰QýTõ›JØ-õÕo¬¾“)õ¥ï½EÿõeÃDÆ’*þµ![]è*ÕzO¥,ÉŽyoñ±ÿQ›º«ËR:Ùí°7ø@²¥.åßÛ㩮䬫1Õ–Ÿ×e©ë¾íØÆðv‡ùùF*eJŸDư7ú¼YIT&+úID†úò»%YÛÕ·ÝS]ìúImô•¨Mþ 1›h~3âaWÆDâ2•%UzOÖ^ÿõ8UK}瞺šgSQ’ñ«õjÛV×hÉæh£R×¶«Ï8Mf\©öƒTåʺ*fýZ=f&³êëÉÜ oŸlþ2â—ŠXM4¾ë"?Ä+ñôo'¯ÙÕŸU›¥B7µaçTÈ¥Ž/•öOdýh¶V°Ó¯_µ$š7÷Æ¢~C;ը˲·È¯Ô¥îêÛv±xíí>ô_-õac»úÜÛý6¥>ÆóYçvåLåXëÛßSa‡T/ÙöñøÖ·Ýê£Ô¦ž’‘!•cHŸTÙ®®mŸÊ8©ëøJt|vJªÆ—L_µQêÛævÆYºOEItL‰ò®+ýÛ-{ƒ]Ô¾‘¡6dO•=êÃîñÚ§RWuÁ+ßDôeG'Éö_›¶®íM%ïúÔSªJ"vI•ÿØéËn©K;ØÑG"rÛé/™±Y­ou*s@mÙñ¿«\R!W²>™J¿K¤Ôf‰Ä@*|Æn»xû­òUÇn©­ñqÉÄ{Í¢|è.ÿ¼nѲã[œ>bísIÓª)KV]»áCZzÆë·¾¸érÛ47㲿۶]f™VΚùWÞ§¯X¦¥/Œ¹»÷²mÓ’kóg“wuÂ4?GûalÇ-¶iÕÝïõøfÉ—¢ä“!_o­\Xk´|ö¢ÓÅ!!Zðáñ5n7£ÖhY³a›ª.¾Ä6­ìxÚI}¼8å4¯Û‹÷Þµû×Z§%û_üî“ý¯Š¦¿e—>vÔQôòÚï®XýDÓò?ƒŸµºà!CZ™¾«æ¿N¯5ZÖzäçêEKÿzýÜç‡hA¯yßÖ>6øÃµiÇÕ-qµóV§LË´´[ÏÆÕ¹Å¢à"L ¢hÅÏ'|ñÓá«SFóíÛ=ýµ£éK+^>áÔÓk–ü{ÑØÏz÷­7Z¼¤ó/÷0e´Ä·jå}W÷¨3ZTqÔ)û}s°!-;zö~3Μ™rÚ³DéÔíU).XraÊ($Ç«w¹¦…ýLspSñöq]~>a³1ýðûm·¬9¸ÞhѸ îgZw«sÚëµ™‹gøwÊiÞ×Ó|8ª_Ò´`[ßÀ¶%L _÷ú+‹¶M‹f˃%IÒ´÷Üi7¬l¹Ó–¬k:°ù¢MÉÓ´cqE—2ZœìåW=Q”4­ü¸XbPÍ]Põn—ç›ÒÊñ|±¾Ï@ËT¼ÙlûÈɇY¦%¯¶éšï>J9-(ÚzÙys]õF󺞿Ñyç'¶iù‘_5Yxý»µNóõÓ`­ÎhïÓÎ>¢bH×”ÑÂʱ'¯>òô(Z1ù°ö»†•[¦yüø®û›-ÓÂãÿ½·¸ÇѵN‹—|9üpÿ‰)£¢÷ÛçT̨3ZôàM;÷:Ñ–Õé„kº©uZ4¦ø–šr*ôÓ–inÏœK:ÿZç´ø—÷ËÒvÒüõ}N{~[SZüûçE׋¢íÏuúa×ê-üýŸ'?mÜטöÊjðØŒî)§•÷]wûÂV,~ú×AŸ‘2Z¹éÃôÛV䤌–ikg¿òçwuNKwä?›}Ïè(ZˆWûšrZ2´ásV7½î^:üš5{B4ï±!ƒû¾Ý–ðu"*Võš?뜤iÁÆÇ3ÏÈFѾ‡ã…b7ïäcn?~SÓ’_*žÚÞmA-ì‚&:×Z^3¢UtºéÄ?»Òõi¦°ÎhQ÷Mjá®uZ¼ÚueëÙ¿Ò‚‹>ùH·]µFËh=Y[´¯*õ¹È¿êÈÇ»oÊhާñG?K­jyˈ3}_™ÒŠ^ë¯8¶Í†”Óâß¹ÿµ¡/%L ÙŒ®ð¦ŒæNžúùªÎûÙ¦ytÞ›(-}zѽ͆mJ9-¾ms³@³Y¦´dô{óoõpÊi¾~º{E­ÑÞÓ¼­öô<7å´ÎJö,hkNñôhÐÛ´´å =_þáåÍ™;èѾÝ3¦•t¥ô‰7~ÎtÏL-ØžöìÙƒ Ñ’ _»}«V‰Â[Ž»þÞ¿—%MK6,ÝÑtËrSZQšz%å4ï)%{^r˜ÒŠ7n>RV­Ñ‚æMÄ{ Ó-Ó ÇaxgÕæ¼vôŽ –iEŸkï(ø-;išg/®+k^²åÓ…__Ÿ2ZúWSmÔ'¾¤iŹÇáŒZk´øŽ?GÌý*×2-ª_h´LKw·z{DF­ÑBznC¥¥Ÿî^T6rqÒ´0£MþðS·FÑ’6¯ÿré¼CZ¼àÁé»nì`HÅ÷u¼¶é*Û´ÏÚ5K¾4¥=è~–UÚ{ÛÎÉ_Ì» Šæ\Þÿ“o.ô%MK§h6|eÊiÕ¥Ýq¦Š¢E²è¢œ”Ñ*ìnÅB‘w{Ó‚Q´|eù†K3Ÿ4¤Et^jÚ‹®W%K ¶œì_ÿᆴì‘9÷ç¾ywÂ4p[Èä…)§ågÝ:ÿ÷æãE jcìò(š¿JÃ+´¢Ãg廦4ï¡ ‡<åÿ9aÚûâû0sX¦…›Ï{îó¤Œæ¬Á´ÝMiQ¿7žïz÷RQÒOOH-úé´[‚Ë lÓã/ïè¸6iZúÊâ£GœpxÊhI#}âKÍ{#ëÅ–ÙïX¦¥Omï6ÿõ^¢ £tÀû–i>]ÿ¢EOÜÕø¡)£|ÿ¬ìÂoJ]<Ô”æµ*y{Ç“¦½èzŸ-êÜ ¯™Ò*\-œò«!Íùúô5T7¤º¦Å}0Á~dJKsÏûþ©Õ§Ò’÷ßvÍÈBQ2¨Óº¦N-Ó_tÒ‚®o]ý˜»MéI3üë÷’RQ6õÐÂ.{3aZ@ÏÕ$Ks¶58–Ø ÓÍI˜áßίšÒÞpò|êãë¦}ºŒ^úìIWÚ¦½ïY¿¬ÁÔÇ¢hIŶ\¾fÞ~a-£¸H”æ=òýÏ­c iet´Q‰Ó/º¯íÖðø-кÀ˜~©ßø QA÷Ù¬Ò<¼Šã›fHKWöóº‰ ¦…ÿÜàX1vJÍYXùrÆå!Zvéú¶W wˆªæ‹Þùíù§¢h_|}¥Õ= ÓÜ^Ú|×­= izý¨+-Óžžìpï›oY¦å”‡TZŒ«ä6¦åø¶T¡¦´Ïb})J:ßú¿‡¿8Ñ2Í¡_0‹¢9ã~»ù³w¿6¥ ¾À+†´âÚˆ–µ×/Ú¦UO7iôÇ£íDéc3NXÑhcˆL×_H°MO(lýݲùM£hñ‰“î™÷Ö£ ÓÜ®ÿ nÛç:Ë´_8é“hjg*ÍípÑîq<†´8ãƒÇ¶í'k¾mš7©ô‹Ì­˜Òb|=tÍ’(Z¶  j0D{ˉÐ6ÍY¶ó›OÉ ÑžtD¥¥{z‚Eö‹¢%ƒ>‡ŒõHÍÅÛ§Ö‰òý¾9NmC´`¡þB@íEÏù›ÑÞýðÄa³!Í¡÷Kó¯»âÆOf¬3¥e]õŒ!ÚcÎû-Žœ6Ä”ö¦u’-o7øÁ­T™Ò |ü鸧Li¯7ÁŠ¥™!ô|… u8\êï4Ûý6¼f³íÿÄ{§¼¾e«­qYk"ß'¨ïqïÃ>üWQßñ•ŠþkSîd¿Rúª¯¹·Êµ‰Û°¾å©ïñÿW|6U2&›ïöVýìCjm_ß²&*"<ë{\ÿeýíã©o¹êK{ïºÖ]Û>Ûç§û°ÿ·ñ_^wý_Á>[Ô¿Î÷6ì 2ìCíÚ7ÙóGµ­Ý<¿7ù{- pþ ÿgËíìŽy,ÿ3JÖpq xG >yÜDøo£æ·ž±¬%ú¸dãÂÊPÇ¦ÃØäp¤õr8ÒRåPg tû m¯†íɰýôºÍáð_K:ö2»øî8öˆÜ­] õ·À¾°ï]ècí¿ö·üÇ`ž·A†÷‰×Óp|*ð:Ž=òí/å÷?@ÇŸ„㣡-Èë†x@&ÿ6GMÁ±]ÇwÀñpüU)§Æ< Æø(Œñ‡#ó\ª¿’èSÐî*è·=´ƒþ½ Ÿo.´íwa\™À;{.Õ êgGôáN0¯èذï,dõAÿþÁ ƒçA†Rà÷6Õ}ê^uÿ‚ºK¡_èß7êÁ¡ ðHƒ±e}_ãpd‘Žt»,ózØwìÛ<އþží ¿9ÀäO;Æ m3‹` ?; PÛUж7´´ ¶Ó&¯Wì?ðe¯+×?Àk<ðúdz*Ì^gÕè^/`síàñ#ð<À?| —6ŒÉ <†ð‡Ì g}˜Mýû ÍÐækhSmî§1€ï¤¿mŽ «þõÜà·ö[,+àØôÿ£Ò.äÙô; ø¿È•‘ºø!¬Í¡ôÿ¤ãÏw.´[m`·ÿ2h÷=ÈöIÿdñ†ùÖÿêƒm=ÐÞw0Ô¿êï†ú0îôO ~ï2‡£ÈÛð>‡£qË0`ûÍÐ62žíÁg@_0®´ÕTï¨7ê½Mq>àƒ8ñßõšA=°Qú¯ÐÄsô×`t˜\ËN¿ làéý=|@ÐSl—ží'SÝYäsàΙÐ/ŒËõ¼ÀËþÛ§AÝôiT|Oƒq:?ƒº0&ĉâßÿr˜®Àß\`G7èÀ‹ùé8¾xu—ñ™þ– 9"ë;ÃÉ +²ÚÇãt_AÛ#¡ÈNèà ¶ô€ }‡¯‹`,Ð&-ŸôÑx=¼Ú: G5ÚS#«³!ð„ØñÀ¦r¢t8dñ¦Clg€ßeaf=7€8j”Am×J¿×Ç qç…øñ͇¶‰ƒã oÈ?'‡ÅÃXÊÿ^»¿ÔÿMç|‚qzr¾uŽ•þì;ê]NÇ1.ÏY€ã[žÐ—Ž=ÇÀ7oÀ1°§ç!ò?ô×÷ÂülîdùÁ?´i”w /y ßÑ2gµ0["¿> ä>üü&í8ß«TüPƒ|â{ºÁv°‹wðj u˨äF×´šÿ5Ð¥ø¸GÒ¾¥R>——ü¦ íǼ öv<ƒ ÿÎaú‚8t‚_¹¤ù¨ô ¶ ¼¹$ý-ªû$ésEÔ…¾|­¡.øsê¤Á¾tÈÙè÷ Ù “†CÀÖy] Ôõþm¤cWµ»àX)ébÖ¼‚W_à•9'dÉ‚9¡A_jó:´u~Osø‡Æí_íÀÇÓÀ2šÊœŸÝÚm “ç>ÈßnÈã^hãƒy>~}¥³ÝpN¹2,QOÿ“ºö\f³‹É'{ʧÈÙÚ=0ˆ#÷½ÐèÝrøÁσ¯Ó W¥ƒOe‚œÙý©Íó”—0_Cùo?š3€_ðͰz¿o˜‡ÝЇbϺñƒlAÈÏiçʹEŸ†qçÈfÚùÀ{´90Ì/Ñß 7èÛùÍzöC, /Á¦é0Î ðÝÌaaºƒ}NÈî~Ð7ŒÃ_õ!.Ò ïdC¼4Ü+ WçWPdñ<¦KŒy°¹ûnZ›ÀšÁë‰ äš4˜«ÒÁ2[‚üGÙ0Ï4<‡ÚbŽIæëЮ“9ã=TV‡ÉãvÍ—›N\éN< /¬O|ÿ0OÁWÓ!î2o†>ÿ¢¶ëeÌ8y<ŸRþÇ\}zþ„ö0¯ù!†À3°…êÝKóЫdÇ;¡^ÍÁ‹Óx>:ÌáÎíP|ËkÌG~Ì‹Ò. ÓÃå´Þ8;Ì“jÆŠëFç6š7!F|Ýe MÄ{ú¢0Ý<ÖæçÈ'ž¿A/×ÒöÃ4~È“î>p æŒÕ¼‚¬ÿ§dL‡óÖJȧ x`Nõ‚?ûO‘k¶ øBø`F×r¥Ý཰¶W„ñz–òæG2oz 6¼ßÑzƘÖÆ:Í€™97û>j‡9ÖÎv´ý"ÙÆæ†µt냸óÃ\„ù# ü9ý')OÖr®ÔË:ʯè¿EÐîYZÏ€v3Ò f€L™W²yü Éì¤mÈ]ÚxZGÓšòhâ¹ü/dË¢u¬–€þ\'@ýÛ¡>ÔóÂzÅ8Œô„µ~:ä© Ža,ÏS^ÞFëЗâÈ>l'׉zy•ì‰óððÀzÊw*Ô½›@=Š bÕ ùÅ 6KŸæoPß zr_N¹¶·\ÿ_:ø[ƽ5~¤ÇÉ4fð#äFÿr:þ„Ì¿úãêù ù7RüWP=ŒÝKin=ô:ö­ ³ÍE‹8æUd›™a:A;À9‡ûynäƒ9Ôë¢`%ôreô¢º8gÂÜíÄó%Îë›\à§nˆ/ØÌ<°n ‚Ìià‡=¨î 2ϹšÈ9× rø@GþO(׃~3Ürþ ÕKçy“eÌùÀGüׂÕPrEæpª‹ñó†K@]ž³WКí Z¯ÁýÕtlчhŽ›¸¡oÏh97ú>óŒÈ.r™m~ ~ 6帾5¬ Ê3ø®¢9ã]Z@œzRwéüÍEó»>p~z’Ú4€6Ci#Ó!ö3;QûµPòŒõ¿)LV˜œ½WÓ\scÐ6çñzûòAœ¯!¦<¬^ï|Æw­!ð“Ö:Úõ°mú­U@>?¬c0??¦¶«¤mœà‹îv2Ï{£u3è3 l”cÍä\ù£òzò’Ö2~ÈA°w:¯–Ñ:ôgƒ^Ÿú @®Lû*Lî´¦{‡ö-“vÇ÷?Üà#ž(WþKÇA×N˜‡\p.à)’×BöÂkc0»AF/øoƒÌ9A¨›žIõ ~5˜o\ÇÊ\*óeÜãµ:}N‚üæƒüæ‡|»§ÝCõž%ß…9Ý ¾êv>>o@˜+ϡܨ«&tM ×­©ÎÓòZ–ëIºNkøFæ—àiÐÏFª‡kÄSéúÛÑtÞÕl y0¯K­¡5®`Þòð5H,+åÚB—gðûÀaí‡×Ì÷zûk÷Ëk¡rX^,^|°Öñϧkf,Ï:Š…ÃdFþà?Þ—Âø-–ó¨û²7ŒË9>À×aî¢5ÕP|Õ³êÀ|6OàúÖ Nð ×/Pr¾ï ¹Î阯»A¼j°Öv‚O¹aìôˆu?äªÀÛòzAÚ˜0¾ƒè<ªˆÖŠÐ§ÿ º¾Fç®èÏzYOsßf:wÃkF`?äþ`.ÕYNþ†ýw§yæ,ÿ!tüVZ® [ÀÜ×Tœ?Ð5jœ×`må¿™Ž¯ ¼¶Öq0?ù)®àû®5>’¯áÀ|æ†|ëüãÅ5Ω÷´£h\ œÓÝ0NäZ_yŽ<˜øðù ò˜ððzí¢Ñ91¯ÖÈ~]ÇÓö*Ò×gtþ³<ÌõŸ»à|™Czi)sµòžææøPZCª÷>åi°“¯SþÔºÈë>.Œs¾¦ý0ÕÅsötþþà5ÎJ’¯Ÿ£¦÷@NðÂzÍ: pþÀë*x-¦]ëxÖç0ž ]{ÑçgàáâÜHñìb_{\ú‰^6Ñ9Ðï´½‘òLsÚÞEsÂÅaãXQc½?¾Âãx6lý¶w>Jÿc¼¥uN/:÷®’÷-ôö¢æ|ŒûÑ}×ýéšß€kô©·»’Î}ž¡mÖÎõ#.˜sÝ…5×Ï5˜h´qÐæª‡¹ªZ®i\·ÑºÿWy.²­ 4¾†Äºâ9s^kÜBç`ŸÒµýÏÂtë4']kÖýw²¼žäi"×ÜzyQž¹²iíÃvZ*s^`ÎÒÊé\üÚ¾æk/¯ …ô±7ö?&/ä8çtÊsä5k½€>µçèÿ5Ò\EòW/oÑ:4üZã…aÛëäZÂ5]®C¼Gþâ°~—„é|Ú‰sÍotbãÈÇóâÓ´¶ÂyæaÏK4ÿ²îÑ|€çÈ#@ûaÌÚô?øv»<Çôô¡>2ŸyxÍ×ì>–:×ׄÃd…üçtËs%½,¦5Ù‡t_âßËk£ûI¦ÏîGpF›@çúyÖ·´cÅ)ÏU«ä\ Çõ¡´ž kϱ¦¯ÁÏ\nÚæö—ô{Kœ_ѧ§Òü“K>Ò’ŽÍ$;`lð9érí¦—HfE¾® yŽŠvõÍ :»ˆ.—sº^ðK;c3âaÅÆVc0V{+1‡Yôh$SÿjûýÅ“ßJ¬õm(c<9-ÈÏÇ­œO˜ùa_¼­»±«½‘m#ö)ý™ÙÌ–?Tˆägö|ƒ]Dð6ág”s“ñýXã°RÇNüŪ«¿DtſښìñúTå²R±{¬>ŒbÒR')W¬úá|ì+¹%UyÃp<ÕÑuÕÿ­öcÖŸ¹¬ÆˆV;LK¢1o%ìøšN«mðŠQ7Þ=¸([TÇ®g4¾DŠ™¼fqoÌ É`W¾jÅài´ÏޝXÑ#Æv,™ã1™ÉWW%}é9œ·ú¿™é׌W¼beÜVÚÅ:·mÞf}Æú?ÑbfÏdøµ í¯6¡:²^<>vóU"ö2âÅ7¬ÿTÄp¼xŠ%‹•‰×VíÃ,έŽÑJl™Å’ýZ‘ÓÌÌÆl¦s«y$žü±øÉiXª£yñN„LTGóIE1Ê V’¾Ñã·®K•,qõ_¿¯Dr¤]Ù¬Ž1Öµ[²ÇàmUßFñ«½¿x:%_\Y]ðU‹]¶#¿Ýq8âÔ·*“™œf|íôo_<þ*5ÒÝ¢òL¤½{#›Ã²=bðÉ£:²ŸX60å¡Ôµâ#j_¶}´Ú¤²#ù{Ív|?îX-ÈjVâéÆLwvå·ßÕñåŒåo‰–xñaæo1Ku$S›W×Ku‰5Ö¨myìð¶ó±dØÛ‹Õ¸1ʦz­6îÓJcì¶³ÏvŠ¥ñTÇ>Kþx|­ÊjIoŠLñÚÚáofŸð¾cé!ª­R7–N­æ¨dKmòNi©–Äj¬§ª?³Ïç˜ÚÉvŠÙ}•º*¡~«k¶W»y-îñjÇ^óŽQ.1Ú§î·âgLr¯Q^²S ùg¬Õ6™$Ó—Ißµ/fö´âÏñø¤ê\#»šÍo1ëWÇï3‚G¬ºÕ6d k‹Æmk¡žÙbÅ]Ü}qxXñ“¸¥ÚšÌá}ªýGµ·Úw þ±äHÆCÿW' ÐÞVªë¿_£ø¶ój}u_T½êHÞv棾ãÅ–•¶vó\"¼Už©ì/–¢b¹:Aæíb§¶ôo.M6OÙ•ÇáH¬+s’]~Q6¨6®g¨§mìʬþãéÕ0?T''g¼¸4…;SQŒî)¦’w<žñbÒ¡üo&ŸáÜÀ´:Nc™’)vb"fŠSßjÿ  }ÛgãÅ„!9¬äk+1fUGvüÁH®Xu,å‹uÍúL¦˜õçpÄîÏʱx}m[õ9³bU×j}+|U™“-FzO™,Õ6ŠÑOܹÏ&»º³3ñÚ&Ú·^ª£yªü3ñ^sÏŸåN¦f¥çæÈú†t³A;3jÂײ<›cÕÞûŠ]9Æ›*9Ìô^WzUíhd_•¦¬ßë7UrüWü:Ùbæµf¥¾õoµä¿VíQÛŨËóK’4Õ%årÚ̵=®Ð¶E´*ÕqYGR]Œä3Œ#9S-O²û몘ù±åu£R¯¶Šÿú^O$Z ×ñfë»çf4A½Ùåcêw©^o›Pµ¾m~ÿ1¿««y7Ôß^¦—„ç{‹çkµgÿ•Rgë9³ùÈâ|•òu¡MûšÊ¯ôóÿK±¼­åu›Õ’²ë› hªóLªh¢ëDe;U%Ùu‘íuz-Íïfç/vùXåoõxTýzŽ»½=ÿÕÕùÝuk¢ýÔvIÖŸRv>´—\ÏÙ[ŠY4k—¬]Ôþì^M•}Swêë|±®Öã¡í$¯ÿ%6ÐZÒwªìiÕ?RíG–çƒ~Må4 fý[õ[»çIµ½Ž³:î}¥nK¢vø¯Ú-Uç}vûIu}»eoãk¸þ¨§ëÆV×C‰žî-~`µßÿJþ6×6[«·¯Ø+ÿÿ0+ ç¯Íñ©ÕvõU’•£®®ë$Û~oõ˺’ÃöyE-Ï¿É^©­²·ø…ÕRÛÏ£¦ª$z]*eýZ¼/bø\T=ÿjõ¼£®žÏµk·”÷[ÛùÇ"­«þMÛýþ|—„Ï›ëë¼qsríR}¾™h1»¯Uslj»_›íS]¯®‹ÝëL{Û8j=ï3Mô>‰Åúµ=¯%+w²Ï9™Í£‰úáÞºÎ4*ÿ9ÊeÞ·;Õ×ùoÔñ$óLÒó^ŠžkJ¶Ôöº»®Jm¯ëcðÑßg‡Ë qLÙ({î\€eaÏíDÙÏöŒÒ‹poÐë‰t¢ÙÊvCY¯ç¯D™ßïÄçoY/Dÿ ã¥Û"ƒh6É·O“´F:Þ„úoLô(êo»2žï©ßm$ßWÄ·y¼»h¿ªÞϔǹ‰¶YÏÌ)÷»;rüb?'»‡õz(mw z$éápªßQ‘ƒå"} ê‘Ñ…ƒø¦)úVìÒkªÇÇÛ(ãcý±ž¸Ö×NEï¼Ívçí=ŠüÛ•ã¼­Ú‹ë3®÷‘ÒNµµ é#¨Œ»)é«â/l_UÞVõ¡Ê­ÊÃrê¿!õ(Éi$‡JÙyüFõTj'´-“~:Óv;’K(úP)Ûç¯H*\DYïjÜóþTý•íÅí»P½£ª#ü;”˜OÕϤíPþ"=7â|Cû9Ÿ´¡ú­‰iâjü«vP· Ú…òØ´½?ÉÏ~yˆ’Ž!ù»Ðvg:Îy]õµ_U%ïqá<Ò_gÚîEõÒ~_d\ ?Q¶3û9óåù€íæ%Êã¥ü§Ö åΫjdª^wTõÁTÖ‹š_Ô¼ÄqÂþÇò¨ý«òªý©~¥öËüŒÆ¹IÙf9Õù‹ç‡t¢ä÷Qó˜ê'fùë1öçfDy>ã¸d?*ödÊr²¿ð|߀ü¼‰b¿ ôÈòý¬´oKÇU{±=Ù_QýÆÔ¾%у•üМó7‹çí&|œøt¥ýÑ6ç5îçHe¿š÷xÛŸ!}6 í¦Jþ8„öFû;°]h?éCt"½Í¿Fó±ºm4ß1ßÝÊ6Ѩ¼Íãfûó:”òL¨>o³i½"NRä3¢ì/ªß(ãͬ_ž·Øl®×šè‘Õ‘üúQ³Þ”uR(òüÊël£|ÈÛjÞâõ†?¶=¢ò33[Ñ;ÛkÅOÙ«5õÛž¶Ùï>@Ö;‚ê)„æî—ý‚çÃŽTŸíÎ~}$mw'¾ì?l'^G³Þ8ïp=^tUôAõCóçÓ–T¿Kd…ƽŸ"7¯§ò¤§/&çS5ã!Êöäó‹# âT_ÔõŸJy1š—XŠCù\­Ïòóº‹ó%ÏÇ®ˆ”“©šOŒæQ£¨¶SÇ­Rõö‘ߌGù¯ÓsñÂõ±YÁžè‰Ëv“Ÿ€àèVêÉˈŸ8^¨~ñ=@¯ç}~¾E¼©ÁÓøð1êçè:x:O=òê{Aoˆ‹±»GÂ/§'/–Ÿ)r½)ô+?ÎGûvëJu8¯ÇqâqÔ»›U)ëyÄdpXÏáñïàóNâÛÌšuD½¥¿+ø ìv[ô¯_/Š~à7¨ã¡{è˜<`éûB]ŸÖ7}Ãü+xÎàféxõ{|&ßîí§þ€,ø±½õÜÞºo¯Ãòñ^ZÇžš‡|lkÖ¥ãÝ‚~Ôáèºp=âþDõºp\ì üÀªn5`Ç5ñ÷0_´ŸX—ˆzK\qc"ýWî ãDÿŽ^á¿ÉLjÿgôë뀿ŽòˆÇu|ˆç/ò—û9®©gøïà—X×ýaÞõu{É}[Gÿ‰ëç†ñèCUð¼ÁOÍGßÕï>#GÆ/êôcëêèèß á~zÎ×ùƒxßæ>OO|ý%ñ(~x´_Î…ïÈÿ=·íªçv>=?¡ëÄQèE‰o5xJ½™8—z ÷¯1?uè#?zŠzæCЫ˜¯c·±‡/зw÷Dõ’ºü+æ;¡~ZâqêàL´ãº¼ŠõjùÃò~€z8ï xïɺ©ß”¸]|ÞRÇÔϨCkýüÃÆ÷w¼7¡±ç6ùxG‡¾Fÿá |÷y•÷6[„ñ£ÿF?8Žù ü!>Xø<¢˜Sc·Üñ0Äoů”õ"â-òÞ]éÃ|ÑOÄ>ú‰wÖø¢g CÄY{‹Þ.rÑó䇻öÛm¬×Ôñ£ÿÆo“ϡ—3ÿÞAâzëâuú˜‚;èÍ#jôº.›È¯¬ ô1o¬'G?ãž‹qx]Üì«6OvHÝ|8¾‹øµ_°‡ˆ«1_‹ù|™ÈŸ×ñ1Þ7‘ÝÄ8*Ú?¸HœÎw ØË“ÔǺ=z¹zÞƒï†=þÓ߸剼*ñÁÌ Q?B øzìª訓c]|ùýMœ?æïô!/D®%¾ñBñ+ñ}süN ò¯®nãø¿‡ˆÏG«‹¿¢$nDOb<ÔEŸ´žX¯¨«?DùßøqµÔ5/v€ÿ'¯#ÏÜVý'Ï_ uÂǺ:ÕD8¾O)r/À ò"Õ+J¾Âw‰Ô}w ü‡/¡îPüÇ¥×yê“ʃ¾{;0ØAÝû¼ØGý¬ûÞ&ÖóšýôäÏ{]ܯÇqÞ]uïUãû?êõ¼·ÞIççûA¿ /è8>·„ïN¾³ ß×Lø,¾vùsm}Gþż*¾ßïïŠ_C_ü.âÏýç×G¢~¯ ôj"ºÃwq…ÿðo¢ïKâyú‰â–‰òê³tLœÂº‹Ü?Qƒ/uôoìú6²ŽT¾#!î¢îí¾ÄøøÞ~¹ü§ÎßkÆ8ä®ÀGâ ¾–œc|5Äãu5ëÀ¾ÂzÆ*O\…y’æç;ÅÁµïÙîÂ~Ôó>Šï׈Wɯè÷?,Ó3‘¾ÞÖWWÇâú?±N‹c÷è%õ,¾'$îÜ6èƒð¦à@ø. ¾Fü*þ§äMþNÞó5­£øUƧðï3ƒý® ãÔõŒB?÷ÕÕ'àG]ý>æ èþ8Ö¿ŽÑ+Ö»¥ÖÉû9ì&~ÿy3ï—U'(úƒÿ`½¬+ö¢‹ï‰gŠüáúG\çï"ßð'\¿AÇ׆ã8ÇêËz‰ø®MuÂBq;ï ˆÏàù'ßaσº8<¯øNuÛ`Ÿ7;â'óc䕼OOø’:æVÁî6öû¬ºø"æ‡uù|®ñ7â¿{ÁO’ó=Ç,ø©cÖË8虾©Åõºúb\ë—…õÑ£o±.'ÊóXúH|ßg>²Ÿÿž)¾GW¤?µÿ>èÞþu”À Þ‡òó'?E?Ñ×ÙÁþêüpÔ;ô=ØFóá7Ñâuê»å××uõÜ“‚þFùÐÇïWâ{äùwQßêôPú²þûÝ~¹—üþáw±Þ«<×óð¹Å< Úqø^¹è úUÞ¨ÇÞ„õnêw}‹ïS 7¼G@®ïx®î|\w¬ÛÔ}—Áõð½ÈX%~¯oøTü ö+¾Q.ßé„~aÐ3øð‹@G¨=O‰Oñ;Ä•äÄAØ/ß3|/Ý?©RÖIÝ„zó`Ô¹êò}øòûº8«ŒË{øÝ>Ó/ßýž˜óuõ~òü¯ô¼Ø9öÒôUÁ°šuûÆîÁ‡øtÅïûb½?Úcü÷~áßýnâ„ýæû â–]ËÏëý‘]šâÿž¹ª‹Ó½§Ù·÷üýGkw[û¤Žmí ~¾ÿ™Æ]­ý½UÏó_±öMk'Y»?<3Yý=´õ¦5£±ažµ±uï3=Ïîa혪jê-vs÷ªêÌî¹þ>ûß5Ö·Ÿ­néùû¿¬Ýeí:¾KÏo³9×X³u4^#ÚÆ¬b~Ú»Þž¿¿¦þŽ ¯¡zPý•ÖnÖß×õ\ÿaÏßß¶ö#k·úyk¶¹§Z³u7,£hŒæsÕ§­ýFÏ|·fÞÿ´vµµk«,›ïYûŸ|¾ñüpïC5cüºÔ¿L<š¶þžÆkÔ_³¡1úÇKò|µµ=íà%Ö/ç^ב†µÇºò¹öië¯7_hç]Ÿ¨úäÝ8w::ö¿{Wçæoý“ìk­Ýlw'¾¿úI•åx‡µïWY&ß­’ÎV×÷Ü÷ðœëÁÿhÎUê—X;>Ðs²µ¥£Oµv‚5ˈ[{JÏ}ÓìÛ}׊¾ßå5¥µ™4×s/Õ}Ͻ×Ú‡{Æ”Îÿm<Û2}gY{«µ[ûù÷îÓó÷­YTÐx¼µ'õbžcC¿éíÃx@ó[ûA•uò_3uïwÂóŽECUÒãæŠ Œïüš^³–Y8wyÏßó±Aëï鿯ý=ooxìêFõµvþ¾gC÷ö<ó§lÏ­Ý— kf»ŒÕܳ{Nî¡û™ÖžÖsüè*ãö#2¯’¼¼º³Êöù»]Æø¯p¬/ª×¯¹úy%ß&ØÉ}óµ5´îÆÀbûï6ÝÛœ`î¿äç«ëCkî{Å8c\`íåÖÞ¨Þb†ê’õ×›AvÍ÷m`=æsœeÿ»î›¥ã½­Íszlævë¸ý«*Ç6îgîë¹ÇŽk{æh‡9çôüýãúûR,âsr£ó†­ÕzŽ¿níkWUÂo=û½ü|c¨gŽ «yþÆÚ­ùïî˜û4݇ÞÍPÿvÝÿo¹o¾Yç›ûÖªÜÚéü‹­Ô3ÑÖX¬kçôcmÓ¢ïfÛέ³¾«sn‹¿õy­i'®Õ8W‡õ¼£÷Xçžî~\>üX§CmkWèž‹5Þïâó=ã42¾4ºÂ™_»MÛN×uã<çqöS5Ÿû]s_}:Ü÷úž¿÷íáÕmU–Ëß Ñ®{…)ÆúŽYí|=ùá×÷ïW_¶~—Aúª‡ìü·óZ’¯><±þª0‡ÙYÃe·¨~½Ù„s®Ã7fžU·T9Žöœç¥5c|ÕÚ:kôœ{“5Ë©ª×Y»ÔÚÖ>(ºn#ùi[K³Î'¶ÔOÒø7þÃÚG­½·ç™ç«ŸÇ Ï^gí‹UÎ;Þá§uïøŸôÂ}÷QÖ^`íè*ç@~üí Œý³*ËØóÇŸ›óß­Ïm`ìK³×ëYë›ØæAxÎw¬ú°žy[µ\ÁÎ=ÊÚ<µ…UO _%lÏ6/Òù›ªó4©kSzÆ›«¾ðVÇK­ýÊ}žµ¯¸[ûµËzÆ…Öó°é0Æjk+Õ?W¾ùpkO3œûî >µ qÐzL×±ÇL-k‡VÂÿ*ë‹ë¦Åo•Å™Õëóùæ i­µWÊž<^¶<1Å¥ÿÓ‹Ù=ôxàÏÙ–Ó¼šûþV¥º2M±Õë¼ϫRNÝx‚µÖ¶w;Ñ5i>ÇÔµgª\•c7‹­ÜÏ4¶ÛðýÕUÊ}f.Ì4¥ØêÄž1W…9,¯lhüjöèÃaêÍÏ5c¾ðÄ Í½~þ„¿ÈxÙ˜žµ9Z÷õŸËqubõ ðÂóˆK]Ç«³à¿»¼Ê~fa³ñÙãžæ!=4ÞžÙ2ó6aüñЫܶö“žûV„çŽß•m¸±¸Ê:ãy©çRîG¿ÞoËl¡íÿ¢è÷FÛ§íø°ªÇÿÔÐé>Ícf¯àº¾…µi>ºy‹ôéã¹v”dú–*û¨_‡ñ¯ä_çšžëÏ8ÖyLãy†çÉ=¾!ñù©ú»Ñóœã°ÛÛ—åOîëÒñÕb=³‹ëÇðÒ|{Êϼ÷xïæü¼ç-¹ö£ë{}ÌÚû­ý[¥k³ö¥*c¯ñ"ù¶7~:oF$#·Ë¶Î;¶>Z;¿·‘>X®Þ`|¯+ý8Œçx¹Ž±ÃµaÙ¯Ç1¯í9ß[Ãy‰pré÷ήãUªq ä'gÜV)&ëáçAý÷åøÛzÇüvï8÷flÉñ§Î™¬[óûÇ©¾¤Þë4®^sþ»¿5ŸÝèÉ3V…õÛ¹öÎçžsgIþO’ æªß1äv.£žø=Õ5Ýyíõç=çÝï@_­gG{Æ1Þ'?î¼sûq_²{¯W9f¾ÂÚ«uü2k¯ê»çÞùZë™UÖ3¯åx½‹8º„ÏéõÈ»«µ«RM¹†_÷Øì-:÷NkïñµXóz¯×š?)ž?ÜÃÏÙ½~ñÉš^¢þt­ÍßÂü@çÜ=ÿs{ôüÖí+Ô»·SÞ{]^Sãµ=ë o=QývÒ×…®Ky u ž¹Qóy}êž*Û%5Ì_©w;½½Çþä¿ä7o¶v‘éžk®4¯“-ÏF¾ÞîY¤gÃ/î¹÷÷ÒÇ£µVǯ“Ͱ¿¤ç¶Êôºïô¼3ûgëÏîáõi¢çrûÛýþ‹uþ8õkÔŸ¤~m%ßi½ÍÙ4ýiz}Éc+Ë—Üo準õ{I¾¨ßÓÚ“«ä«ªŸi-wdù§u< æTŠÕ:§uyÍ«ú–µ¯ö¬cg]»5ó’ü¯õc¯ûT%VwôgݧäØÊü…¾†MþÁyûEÝ»µz¯ •ø¡Z/óßKV+Mÿý^âW÷_°~‰Ž “›î+&ó̓t^u°_y cúÚ¼­ZŸ3¿¼‡÷—U©&ZÞtõÞ§íë;|½¾&ÜÕ¿Øk¼4Ïë~<Ç¥UÎíýË’­üY÷znzïú{’rœtóº…Ûÿ/tïctïQC=vý¼µØõçè¾F¥ºv•ß ÀS·¯wëo¯Åy%¬ÖÛ%u`-ÚzÎë þ¶Ùk4ŸVÝ러]¥šy¥ëgãŸíú˜Ž “›æ‡›îçóÞÙeÂW>îª#~óʱé¯;yþŸ¾þºòmÐd½cŸ–NŸ<6ªëC:îühtßÕïÿÑúoðu~’ÎÚ »êȱÉzn4/`¬­óCé¶ÑõßæéùöUéúýþúŒÏ|á­Ï›œnßwl”^÷ Ó§ÇŒU:ž&:¦éù©·¦?Æ&Ûÿ쯱©¢£|C¤ù§ûé#î›ôu'ücÓC?YãÓóM ãOðoŠø;ìT¯¾bl(‘ÎXKãq~Jºíñ囤®3ÿÏcCO ‰®–ÖÓÑñtž×}ôÓ5뙬ûï$ø¯ómÑ_þ-BbÓ‹Æ&k=|k3U×§rÌ}âÇ$ø§õL‚ÿâÇ$ñyD×'ëù¢§©ùÚ’SGßR´õ|Sç[zž~ªø§#'ôYóLï:?¬ñÐKäÂ73SDWò,òŸYß=¿§é~ìqŠiþ=Ç7Ç-=‡}@ù7Ššw†ôœ›…½NÁu?tñ\‘¾IÁ¾ÐŸ²÷‡èCnÃâ3ü™Šþ¡gè—øÈ·U#:Æî;ôzþ7+üGO¥MìBüi…oÆv7UÏméµÎÉš™$þŒÀÇ<ÿ~÷k^þmè4ÝÇ·~ða²ì¨Ø…úÍ;IóÂ÷Q‹¢OݰNìR|Úï!]e|É{XrG§ê˜o¨é‘ý¨øÎO ób¿5=÷3þ Éq Í?¼Ò8ÓćiàžÆ…oÅßè:x?=ÆŽ;Ïë¹²' xÄ:YrzÊùHÇúøƒžë‡ñâr¦‡¾Ò³¬?,}(xË8q}z?½é:~ƒõ‹SÐoÆ?ñ›ØÉ4=Ïü#]é{ÑSßn€¯-Ù18ÓÑýð•q°Cô¿->àâùåßz³nä'}Â. _rB¯Ñ+ô¨Ø ò/5¸PäÉ<è©èÏ;àžžÿFÅžGŸˆ«À¥é—¦ƒCÐ¥~”õè9p?Ÿ‡‰·$_pþ7Ñüƒž‡üz¾\ʼn^pq}A/ƒ|ð«Å¿ŠØ#ßÒC×®—8”8)ÓYô¤ÈSò› ž`×|SŠ¿ÑºÀiäÙE_ˆgÀø ]Ä-ÄsÁ#ßâ/Cœ€=¡'å7eˆkÕOÇNÑâœà?§ã§d·ÇÄì ù`ØøVöÚww¤/èëšðzºøŠaïôà:ú_Î#Oè€?ÄGè1ø'úñàãhÀ'øÞÑ}Ý ü1qQ[ë!kd~”o®ñ%Ïá= ö=½C¿5_ñkè¯æ†þs¹i=eoäg·#wøXâ ô:u} è"®Ð¸%ÿ’žáG ^£çÐî“ë~Æ™ÞbGàó‚+Ò;æ‰yë/‘'þ»à)q¤®GüDÿñCmG\îÆ½{¡§ä«º|+yr ôN×üÓ‚ .1r@Îø/ì;Ôx%%Óyðü$Ÿ蜌ëÅo¼d>ü6þ Æ+à=t‘ÿÍýècÈKþ¾yƒïØöa'q½È‘ûgäñÖï9Œ¾#gÆçðCš‡úõ ü!õô }&~CŸ5±çáÀÅ0?öRâ$p\@'ñ)ñ,ñ)ë þÖ}Ô›è›Á~J¾òã_'á߉_‚Ç=ôás©·„úÇØtÿ ™|¸ŒŸ+çÑ'ø£ñˆÛà¼ø«¸~¿¿…|‡¸8„øjDëæßº< þªà%ù$øJ@÷7ˆ¯¨?R'·È7à/ñuE­¯b^êcÄY俇øyFô·è5v«q˜—ø<+~ ~S÷@Žâ÷£çmêOŸ¸œ(ù¸Cüð¼ä7áù²Çnèc\Î|¥.&¾Ä8 ¿DÜ^âÊPCï £ÄcàëDñÛÈÿÊúˆ3àkˆcñÓØíhðƒàwÉÈ'µNþ-e±#âü ùT¨£ƒŸÅ¯PO>p‹øœ‹ô²^ðšz+ó‰~ð³Ä¡/u‘à#>!—R—ÃÞ±KÙK ûÆß·àgÉ«°p\'îò*u<êä×øSð“uhœiOKÞÂüäGä­â/úH?P/Oøì.øóâ¡Üàyâpú3¸Aê_èë§®Îá[à~ ?…ÞB?ügò‡ÜÑäBœÔ…¨S7Ägüê-û=Ï—=¦„8½(uœ GØ=vãúXç*õ'âô–<»!‘œŠŸGžøeÞC§âð»á½ç‰ßYoùÍêåàv¨Ëb¥NJ~D\(~à‡Á/ì]|FÿÀ—X¿Ö8Ø3ù}©»„ºpÁYÞwé>ê¢mè#ß$ÿ¤þÆ8á=ú€‰yg¬«u^L~¤à ñBŒu½ð‡ø“÷Ô%ÄOâzü_© R@¯Ñ—àï°ó’O£·Øµô´Ô]¡G×±¯¨ŸÌOž a_ä»àç'},;…<€ûο%/y5ë’û+ñ×Ã{×ò}ö$:ˆÓJŒü?€Þ£·Äw!~+ß[…x{ÄŸ”÷8z{Ákô*äÃå; ê&ÄíÄGÄ'Ä‘:_Þ—kÜòý‹ø@—ú8¿«$®Šß‡ÀøJÞïɉzo‹8ÿ†½á?±/üõòQÞgïQ÷ îòÀRç x_¾ƒâ»0õ%Þ8Pò+âsÆßC]1Ö×‹ß þ²Ô¿;þŽx/ÔÂou¬¯+~•º8që_ {%Ð}å{[Þ{W„87úô àdxï^ðž<ûæ}|ß±ëPÿ(tÿÿ#?Ñ×7‰kèyŸN=ºyO¬ç›¼'çEöîO ü+ïAÐ˧Mý”u“§âu½|÷€|ˆëˆçćò^ ?¤õÐ3qõ«â÷Âûžò~¼ ú…ÿ+ö C¨Ôˆ‹É#CÜUê6zŽ|§ì勼°ü)þ•ºù!Ï!Gâp˜õÕÄ]àiÉ‹t?ù_ñ¡NSäJÜ ó¼çàûì‚ÃŒƒÝeþì÷0ùvÎûɧè#v„¾ƒ³!_,t‚Søiô<‚oèGˆCcùþ.Ô)Jþ@œ:"ó€ÇÈ ;'nçñ[Zƒº‰Æß‡Cù"~ »ÆOSwåýpy¯C_Ïó]-ôÓ%¯%Î õâò]©øEÜBüKÞŠÜá;q/8){á»rôÜ*õfèÅo1ü¸_êð‰<ÿô´ì Ÿ±øâOpœŸñÔ%Ë÷?á=lñã¬ý Ž†oòþ.à@yû¤nð¥Ä1Ä™Ì#þ`÷ÄŸøŽá3qBù>2ä3“‚¾ :°gð®ø5ðýÆÎ‰?ñ7!N‹ßíGþ•ïB©|÷ŸÁQÍןˆCx?V꟬‡÷âGù^óbñ»hâðò]$ß àONàG"ŽGÿOþQø ΡgÈ‹óäġثô¡üû+ÞÀwèB¿Á[É“ñË{êà[ø®ªÈ?H\n‹=¹?<ô±¼/¤ŽÅ|!~,q±Ž«€'%~ Î N"þÅ.°â êè |C¡û ïQc\ ü,ñ0uqÍ•÷+áýVù4øžÇßï`Ôí nƒ!^*ßé>âÔXÇ-8ƒÝwb7:¦¾…¿*ü žê³å}¸ƒ}%î/q£Æá;Ž¢g:n¨NúÖò6ð ¼Ocˆã°‡‚ÏÒ#ì­Ô#ÐcpŠx'Ĺ¥þÊsw £ï!.*ù5zÆû —ï•cÞê°å;vî#ÏõŽòïáˆW©à?ÉKC¿Ô›³üª²wv÷sÖ«ªÇü¢ª†÷¶¿?QUcªª}lUµn³f÷¶&UUó_õï¦}¯#ß;ë«UµÕvßÛ¬½ÒÚ;¬í`Íï=ÛÚ{¬}Jû3,´æû]hcù¿§~®µmíïiÖëßy·öÊû8´v²þ'Ö>kí©y€-|Ü™¾Ï¡Ñ¶½õFc÷UF¿ÕþŒÑmÏMÙ§ªF®«ª-w¬ªi»Úñ£í¼Óz«Ýóë_aý“Gë!›k몚ü.“½3ÉÖ9ò>£J¦gê9FÏçm.[sû×F˵֛®´÷Ìs¶Ïzáã·çn™î=æLdž29͵g»GX3:Ú´v£µ/Û3·çÖ:Ãú«µ·×/ò³ÃƇ½ÁÚ Ä“gäÖ1ë­í»­5­Ù[—XoHÜZb÷˜= Ͱ{L÷‡í¾Ñ'رédÇ×r½ôÑìpÈt½s…=ç×l­í+}B뇬›õ=¡¬™n·)›4Þíb4޾×xf<u{ÛÙ6½I{¹ùÞ¦KÛø>æF_ÓxÜô}2L/šTÕ£·4ú®Íz3d²sKvaôt޶ó7Xû¶ËWºo¼éšu s:¦'íÑÜwOÍï`v9jºœí´åûø®O7¬ií#ìð}—lÌÎÌŒßiÌ~cKÓ©IËL¿ {§˜½ŒØ8#ÆãŽéaçqYÇ·±gº‡ä¹acwMƽ]ã}ÛNÏ3ÜèÞd÷›v S;wæ{÷œ[U[Û³[Fmm2Ÿ¡ý£vÜKr6žh÷M:gãv|L;n6ß»U3ÓÚþ¾]– ™<ÛŽ¯³k†K-³ÓÖËlßÏúŸö#ú¡5ÓñÇ~+Ûርq’áÏÉbH{¦}yÍvZ³|/Åìך&Ó¦ÍÓôýÅ cšÏ³ößÖ^,ûZå=+®Ö·2Vuµß̰ÝÛq<›cc»1> ÛsCfCGeœh›íu„!ÝåvlqEëíY_›¾þc¤†KÍY;#ÿb–Ù×ÜžÚî®Éú?d6ÚþCn-Ó…Ö÷}|Íák5,k»Žú¾°¿ÉúÚ8Cûùø>lF_ÛcÇÚ5£)ýþÅ¶Ùø^fio ßsÓäÚð}“nÍ1WÒÓÙŽcètkˆC†«SM¿¦x çvo:büòíl½y¬ï4w\ÏÍv›Ží/ÊqƒË¨y§â0íØõ|Áì¡kzÓ1^·=ž·¸ªe4´ž$Ì1^5mÍ7Vy¿(û;ígíûú…¦'¾Ç`ÚëÊ÷-ó½ö~™çk[l1lúÝUë<ÙèõøøÙO¶ ‹ºæëºïé7CFn“Ü,¦2þ™¯1»éÞ#2y¶ìZÓc5ýŽ‹cƒó¦µ4ó9ù­Ù9¾uLõ½¯ZnC¦Ãmçã‰â¥ñ*í¹º¯ö®2ÚZÛk¿.ßkÍÇåÄo7Ì6/ʲh~1ëJk…õ‡äøÝõ´µ<ÇìîCF ûF=§1{2}ìZ|Ýy«èõ}Ì §›[gY:ö6}oQßÍ÷Á÷ßµ¸J¾Ç0§eç[Æ“¶~g ==ç m“CÊöκ’äí±«ÇŒ#’ñ®ù~÷Am÷í®Ë“ï›L[Èt·,_jš}w-&i]ã÷äç~™±¸iëKùâÃÖ;.ÖM2Ýìö­ßLj™ÞvŒm‹›Ú†Q-Ç÷{rã¹b×±ýoÙ·¸îuŽÌñ_ò'§k}ÇgZ ž±0ÑøP–²¯›»µ5·_-ÿð•Ì›„̱kû†;M®Ÿou_“‡Ì.;Gã¹aãóËÖ|ëÐÙÿ¦ØÃ÷¸4þµÝ×_R®m:Òzš5ŸßmjØüÑd“ËdgªÉfä'Ò‹96iyñYÇ:Ë9²ûÏ”ó½M¾àe¹µœ7O”µ±›ÚS­s°r ‹A»Æ®á\ÛsÌ»òz;¯&ïFgf\HûåÛ:Ó~¾‡­ë½ÅÚ-Ã…¦û‹aºîÇOκãkmýDqÏqЇlž)F爯ÓñÕô´ë¼6n9.¹oøYŽÅš÷åxlÄômÄh1üöo²ö~K´^žu©õ«g Y,0l¹GÇböŽÇ±®ÇJG–c¹„?WfºZ;flnÞ¤ÜÖó³õ¡ÙÙoz  k˜Ðq¼Òomu,nšjø2lX2Íâ«ßÍ0üØÚcgÇ·µ—Èçš^7?—cäÔ/Ó\.kÓÿT'Y'iyöT£wŠorâò7>N1Û÷-;‡µo§ç_Ž][w÷«ÊÅ,?è|Nvô›¼¶¶×/Üoyüíñ¢ß=!ÓÒºIúwa®§ ±·¡ïoë¾Ãƪl}þûéo³ëêò¼G^ÃdÓ6ÿÜ5^v ó;&—³«á§å|Îç²u /Î5™aÓí®­±ÓÞLÍ4{=§cúí?¡6j6?dqø–1ùZ<:Åx7b<Ý+ëiÓÆhÚµæâ̧äK¼îâ¿å¿]áûX7÷¾÷»Ç #†½#fw#·d›5ìëX¼9Åæšb>m’áǰóËäÝôXN{¨vL‡FŒ“Œ¶Q³á®bÜ!Ï!Wþc1QëË;†·ó†ù­û„iv­í¾qažûßßÒhhzìe¶Òv?dëi}(ëEÓòóÎ[ÜW¤\ßó˜_f›bÌ#ìo‹['U©îæ5¥–ùÖöÂ{ÿDz¾»Ž¥šÚG³ïè¼(cF×øÓzIŽ<ÿë\”ñÉ}_Ó±ã{Ùf“oŸ¥ÜÈ}çUŠvÌ÷4?£Xæ"Å€æƒRîãûEþ6û¨®ñ¹¹CŽç:–[y,z\Žš†çÍ×eŸÑôøÃÁd3lö1ls-RøÝ\ðØ8å†GmóϱZÛýÀBŨ^ÿ80Çâî£=Îì¾(Ç ][c×óc›{Ô®M»(ÇSÓmþQÿŽl»íXþÖ\»éLÎøä>ÐkVŽ­[û¤=3MÛ„ËŽ‰¾ÿªÑ”öÊö_âôØåf¾kÈãUÇCÃ¥–É£õ‰ì'+»FsÛä?õ]Š£Lšî[]gÈzïþÖk—ž·~güyUŽI‡æg¾´¾Ÿq²å²º;Ç#–‡¥ÞUÒ¿ƒ³z®×Ô>¢m¯Õ®Ë˜×²ø¬õ#;·[μÞäùP×èòZF×b³ŽëÍ[².uî“þœ—s%•“ÿ»"×ÁÚfŸmËÛ#9çðØ·ù'ŸW汽ד ïÚ¿È1Á­môòŒ·Í÷‹ï3sÌæ~#a÷{W¾Ty˜ïa}vÎż6’tÔ}¸­«ý õM£Gûu{œßÞ&Ç»»¬gšÌ|ïÐæ¨ÆÙ1ã[ú«ù™—iÿRüFá ïÕêyƒÑÚÑ>«mùþ;Ç{©víq¸b'ÏéWj£qKÆÂTGtLxD–yúFß›ÖÖëy^ã§Âêg)®4¶Ï’þ¢ØÃeí±›­cò§ ×´wjªQyÌiºÚ¶\µ3Ãù`ü¸>Û¥çÎî;¼>›tçTÙâvŠáì~ßS¾i|Nñ²Ù\ª í ÜÚ%ãPÓ°xÔtdÄâüaãmW{aO¶ã©¦£f£Çæ<`Øó_³Ÿa³£[ï°éæÐ§„­ r\æyoªù™l†\ïŒf¯ÿ·ódŸß²ØËó–Ö-òc^ÿø–ã­µ5™?­ä/lþ»—Iÿý÷=O Úþ[ú-ÀRÛðöqÅ é‚c‰×^‘ñÅ}ÙˆaרÙÁ$Ï»~mÍß7˜½u ×G½†ã5H“ù³ëG™þ·ÜvmM­'d™´²f>Ëëwÿwø]DóáÍC³>4;'gzRÍaµtöMUª·¯Íu‹Ë›<×õ:ñ-™§#ŸO7þó}^¿öš¦Ç5ÃS¼3¬øá‹9Çndº½f6Õ|ì´ϱ֨Çß´-‡i?Z±§cË{Ÿ’óqïÒ2žŒÚõa£±éõÏI͹cÂǵ…C.ß§ÙëbÛçxØkämeÞ”íÚýLú½*~ÇÇqÊòNçÑt]°x®ó•ù»¦$¯§äø'Å<çz8Åô—fÿœÞu™~uíZÇë‡^ÏX”u¦}zÎ_’Ž›n7-mjýÌèï¸R<åy±ïü‚œ™ßštu~6åÙ§çøÔýcÂrß#úÛª¥ø¾ð^g\•u£y¡âŽéYfC;YÛ'ó$åGîë¶Îât¥:épz§ñâ*åN-¯…í“}aÓ1Í÷òö½Ãß•u«{Y–•·¡ï˜œÍŽš-ÌXbò~wޝ§šþN1_5ÉhM{ƒ_“ýÔë•ÉrôµÙŸ›=vnÊ>xØøØ}µüÏG2]îCž;Z~êû¹ßG^ßÙ¼=×m_Ÿglóü£óŒ÷´-þèxþoôzÐ}ZÂlÓïögó}΋T£÷˜Þß šޏ_¶<`øûY¹&à5ÖQµ-ÞéXÙ:F6}æUwmŽƒÛ.ïy9^šb¶1Ýhža¸7ÝðuÚÓs<—j —ûÌ.'¾O1žwMvSÌ&†,Ñï:¶,ÎéXŒÞ>"ëU˰¹ýüwäz™Ç“3w=_p¼ry».zÂb檜ãz¬åüý˜tÐcOKo KgZÌ7ÙâŽÉ¦ÿ[˜-Mò|Öcæ;³Ÿé•õÇó™–ã¹ÇŸþ.fr^GÛyîï ý=ÛY—Ü~ºŸ²füšžãvÙ=Ît{1›ÙBôÛ³Ý;r]Æõ_{g/KœÛZïºO^”¯Îý’ü§J¿èÂü›~Éžùüs׿û­r¼î?â¼üü°ÏäþØmòs‡–ç[>+ß¿ìËùxÙ]¹_ù¦|ÿ²úç;YÏð@>~®Æ_þrõZv¨;NÇÏyz¦ç÷œåq½¥ç~­çY÷_¶ŽŸ£ãCÕï£olž{Sþ-¾AtåÆVîªõjÏ{²ø(~þZñåö|¼ZtŸ½4³æK¹?ãs’ËÊüüQßÔüâÇ1â÷¢Gæó'k½‹®u|¼ä~¼Ö{"½Öù<ñãhÑÅsÈñÍ‹\Ð'äƒüÐùãªþ¾ž ëGêøÑq”Ž…åúþá>úSÄWÖÏú þлNÏiGÏÕz4ý‘’Ó‘ú†~­ùN”^¡o̧_‘;Lô):OÖñ‰ºÿy:†®•:¿øòÜŸsiÿøÏPÿ,ÝÿL­ýeý‡JÝúE‡±gj¾ÃXü}QÿŸ':–Ê.c}!/ŽÑ ä°Dt,Ñ}KÆúùpÂÚ@üÿŸ»ežqV-Ê×±§3„#§–ÊîÎÆNd§àÌi¢oeÞ´dì´YùþÕznµèZ%>`'k$—ƒ¾E9sT¾~”è}:|‡_¬[=xxÚ»rºô úÎ}ô'h§¾_¸)ºÀÏ#5/vÉu켆/']’‘Ûs£<´ž•âç¹ßѱî?Kò:ã¨~þž5’ÏŸþ{ñSü¢?Kë=Sóœ&~Ÿ.úþ èܲŸîcµ~ä‚]û×uέûŽü§—ôëcúeò²žStù Îâׄ÷§¬è?ΣžûN¿ÐãÅ’#vÝ#p±àŽèZ„œÔü&Ë¡ûéý~ãù«§‰îý¥ޛσ#ø})Pô¾¢^˱²3øý8ñŸèá)’ËQêñ'ô¬ë8é|‡ÐæY!?¶zç|ýÄYâ«îƒÿøeìyAz€þ‚×úõ©‚kG!oÝ_ðï¡Lô|S\uØŠ~~`ŸÌ‹ÿ‡®âß9’#牳ÎÔs§Š¾3éÅ×Õ:>C÷?Gr>I~½ÁïG1yÃý³ñKAOð×ëW~Š>±Nô==ãö~{*8°Jz}qÿzW^ÜߣßП°‡ðù›ýë+ç%?ýZèØbñyõÌ|ß©?”ž·±'ä»â༞Պ¿NÕuâVì~©ðø}'>;U¸½â'šW㬾±nΣ'Ä¡Kˆ÷Võ÷EOÔƒ£ø-ì~EÞ„¾Áwè=Ir?Nýñº¾dVîÉïÎZ”ûSuLÜ œùÁ<ÏréÁ¡Ò7ò9ø }Äa\Ç_R—xVè‰×¯íïÑ×· /W¿A8):Ñòý¢çØ¢uº®ñ–è˜øôÂ[ò:È[/xgÍ9ù?Î:Ö<ð½+ù­øÀýÄ¡úÕ»xóé:¦>sP8FñóøGzô¹¬_8Lþ¿–J¾ÑÒR¿¡ç:y)ô€ç¥#ùáÿ‰óõ§Äõè!ñþŸzñz„>ÓS×a~ú¥ßÈãp8ž8{§ÐÓ¥ÏÌ‹]q~/Í¿z쑼|$Ù_ãï­qÆËÇúåȱ1£¯7˸û‡óàõüi¬ó ðƒøÜ.y³ø‰Áÿc'è7y!ò×ÉOÖ}àõ:âò—ÃÂ}ÔsÐê«ôÈüÄñçu¥7WöëñõÃXxÎXÿùg©GŸ(9¬Þ' ôâq õ7ü-8s´Ž‰ë+ñ5ö@_üÅ•ýþ£Ô×õˇ88‰u'1?׉—°üþÿ1¦ûöUÿTõOSÿ Ý÷4õà|¡¼è‰‹‰«ˆÉ[ÀíÓÄÏs.Ï=öIÿ'<穲Káu…sE×9²Ó3tL^ëÒGᓎ‰›‘S‰»ý¸ƒÿ!Ï!ž9umÿúðÇø9ÆÇo#äž·€gäãÜ{îÇN=ïcÐè@ÿ˜·¼÷]¢gäáà |Ï몋GJžô%¾TütAvlëã…8®ø¸\ü^¢qN_ÛߣÈyqž>Æ÷%Ž@žŠwˆ ‰xÿ°$ôè5~cÞ—àÿÉSx˜8ù¤pL¼ó§RWzz¿^}ÒsÄ{Ø/çÑwüvEÞN~DßÇ¿RW*vªñ©g,½èq)yOy¿!» ç‰ –KÞôÄ;¬»¡ÇΈŸˆ¿¨£a‡„ó¬ºx ]œ'.Xªu‚ëøí3EgÌŸˆ‡x®¼—ÑüôÄ ÜOœ_8A|Y<+ߊøq²ž§Þý<Í{²ŽÏÕ¸çeG=vøC]ˆ|ƒuóþ¹þêÿ‘GW¨ÿ¿YzwºŽyßëAÔ»ð£ä¯¥®Œ}ÝÔëØ?øv¬Ö ½ÕºˆKÊû'ñóÔu¹§NMϼ‘òôžúä1?Nž‚½c_ËtŒŸ×á?ñü“dð¿Ì1q;þ›8&Ö©˜\"^Šy2ñÝÒEýë…_àãóÞ¨Ô­·êD=Œºñ8uÊÕšœ¢'^×KIãAx¾³ì »#î…>âYÖ úÔç!Wäý%ß uèézyŸ¡qx?²tVÏ8gK¿Ñ?Þ¢×øßóUO(y¦zòDìÿ b—ØúÉw#+D'x~.è>zè[­x|`™îÇ.Ÿ犟PÏúÁbÇŸ¼†¸ë$è^×O?zK<Ã:Ë÷3ò§ñýzÃw<à.ñQ©€êÁKòpì;EŸž¢žóÄÙä/hâê"Ða7à%zÎÂüþ?Fû\õ<ÏûX¾÷ßÐ[æ¯Áû³u:ãâÛioåå:Öyâp¥ÄïZ7öë%Ä?Ô+àãÞêñCð¯¼Wå;£Yâ«è–q^t>O=8‰¼‰Ç°7æç}*ñ6ïC–Jã·/zs¾Ÿ÷1ÏeGàâÙšÿœu¹?St'–÷’²ä{üöL€¿(yµî'‰£È¯éÁ×R7ïj½¢…èÇoààõ*p„x‚}ŒyõNòâ'ðS¢—úutÖSêï:NÇïÞˆ¯ñøùR÷>ÀOìŽùxOJ¼FœBþ~¢î#¿'oÃÞñ3å=¤ž/y?té¹àçñ|ŸRâsùa¾¯"!?DN±ÞŒ}–zu.È•ü?…>À¯ò}‹ø^ž :~càuð? .Óƒ_Ôo÷øð¯Ô;ôx‰ýS_-ß©AŸÖ~•ï2tq~½'N§™Ÿ¸ª¼‡Ñ1ïÑSêÄ àè+^œÇç»â/üLÉË%7ü8ß…–÷—’c©S®í_oyÏvqè%GÖ‡Üxž÷œØ/õBê$cŒG>ƒ‰ïùð»Ô!OU¿@ý”¸ })ßµŠžò^N=8ļø»Øcø{울~…îî®úùÂ÷WEß„CÑï”÷[z>æ™è úÍ}±îŒýSw¡‡âzÞÏ–ï­DÏR=G\ŽüÔ:¨O ÇÄmØ!=vG<Êó¼¿Ó}ä×û†çÁƒR'S^"Ÿ’‹à[±ó v_ñså{]Ç®ÐKüï©Ñ¾Ûäyü ú_òFõÔ­Ê÷TAOÀKò7ò?êùç¿,¯ó¼?f>¬Ô¸à}Á)=ßøÕR–½»¬¿|/¯c¾ÈÇ‘{éuI‚¡ÞJ]„ïùÞ“x”8±à2ô]ÜßãwÊw{zžïÂòˆùtùŽ˜ïëužý!Î[¦qÏÊ=ß«®}«4ëZ¬câBÆa=äeå»Ý_ä¥cò´Çiþø¾ü#nDÞÔ-ˆçJPãœ{qO¡¼Sß“o@7þ‡ø{ÄnÐgp©¼‡Ôóà:t—¼ìòÜSß)ßwê>òÃ5ªk> /x¿’/œ"úˆËsêËû&Ýn¡çè?øx`8.ù´è]¡óçÈþˆ·ˆ“©«/_ÔOõiÎÓS—@ÿÎî.ž¥ñÖöß_B¾Ä‹ËÄgìˆ÷?ÄñÄGè1t'€[àïOc~EÜDÞQþ½zôëµzOŒþó½Ü"­;&-8½¶ŸNÞw`'Љ<À â ô ûâ}z‚>âO°còâÑ1£/å»3è σÔOáù?þy–úÆÚþõáÁIø„]üYÛ¿žêù÷TGÇúÇÁ¯àWÁUâÞ¢êÑ“¢O:'ùw§éyìžï'ð àòÄ^À¾» _D‹4>öHÜõD]§î\ø¥ž|ïR©Kœ®ñÊ¿ËÐ:¨¥}G¯ÁQòP¾£âû*âÑë˜: ù[ÉuŒÝâ—Ñä–…~‘®¯ÐøÄÍð•¸yïcà'rÁÎc] Ô'Ô£§§2žî§nÊøü»œø'v|JÝ@Çà zÿýùó=Òóçk^ä½Äçøô9aè;ëEË¿»»8Ð¥óøwÖ‰<Ð+ôžüe‰è'Îà½ÙR‡å»±*ôœ×}àt`ŸÐ‹¼©s‚èï2ÝOž„ÿg}‹uÿ²Eý=ræßñý$óá/±+zÆ/õLõE^ºNž¡—å}øÅýÏ—øOë/y >€‹ø±už8‰ú"òdýø™òMÇÔ›øþ>Ÿ¡óÔ•ù÷ ‡†çÈC±+Öµr‘ÖÝkû×½¢ßØ|‚Ѿ‰ëˆ+þ—ï¦ãò^Wã•8c]îÑãò]‘®/¿\ë¨øO{gW_±öyk?­ò¾HïµöBkÿlͽ¨kÒ9úûmUÚ/©ò¯iÎÔs0þÅÚO´gÑ5Öü_í¼ÊšKÁ3dG¿¶<¯®± ïC’šö±¬®«òMÞ_Qå½g.ÌcøÞÉi”s´g…G¿¬Ò~uÕoóü [OõµíoÒ¿‘×ÒØ¹Êû;ú¾v¾ Á­}ÉÚ;µFø\îMlüÊÑo‰îýS•÷¾©Êû û¾¶¾ŸÔ-UÚC¼úƒµï[ó@ë]Ö.µö"k‹¬½²gÍóª´×Xcræµï£“xÿYkWYóc®è´ú¦]ߺJ{²¤=w¶µæÿ[»^kwÚîµvs•öD¬ÖYûqæïe™îýQ•÷úªhý¬îû–µTy¬OkMŸÏÞ§1|´E»Yaã™âõÿä½e’xó[\G^`MÖ‘dw©Æÿ¡äòt—u•÷5/Û8&¯)­íÉÒ…'Ù}÷Hì™Æ’Û°ÖéúùV­Í?¸üˆµ³$+ßcæÚGËe~šóXô8м^2÷=ŸyœhÚNÏL—ŒýÞ÷[»HçÖˆ7Wç=sûh?Ge]vY¤½B}½/³vA^gõ3éÇ­UÒËÄ¿Oª­ïýš¼GköþƒUÖAßwéoUÒµFK÷º½ÅÚ§tŸï)2Cºàò½&ÏÙØ*ëPû{ú{è0ùúÙ ß·ã3Ö|Oì›2ï“Î9wÚß|_õkóÅG·k³óÊ«»çê¾ÝµÇß“c­ÅuîÊü\Ó÷Õ»9ïÔô½õœÆ;µWÊŽy?´žsóšªWƒÜ~wgž&ù}´Ê¸ã¶æ6øssù~œÇkÝìØ÷–\žçö>aÕõ¼ï¡³“õw[ï›» ½ÝÚw$û7K¿LWª7XûP•uÜt¢ru\;Jºå¶áã·²î4ükŽ/Iž/µv™µ—ëíåÚp;Ú;óª±Èú»¤/?Ë48ÿ}ÿ¤4—c©óõh]÷hØ÷v[&ÛÙCÏ»M|E²øaÞ7¦±P{Èt²Žû~¾iï°ökÉõê½ó ½‡gLþÚi÷¡K³Ü’?p ºKº ýÐɶÖäøæq‹Ç n·þA­aCåúîò‡6nŠ…|­/Ët¥øæ âók¤Ž}ïÖŽéž5ýFüuÿç_…»šî&›s¾z%ãé‚ãÔ¡¢ÇõcLÇ~~±úc²ÜÒß®WhÝ·fÿšâÿ³$¬|»äéÕŠsósþ.•Ç“_”/ó8àmÒ%çÝ+µ£/ùy)<ö˜/ì|Š|ÃMÒÿ§e:¿“^l¡æ÷Y\Õ8\´8ö9fÝ":<¸7Óš°ÿËâËåvÍÇ:RòwÿT gJ7 Õ83Ô»qŸæë×…ŸN“û÷wÇK‡Ü˜oh(LϹoþ7éÇ+ô·ë€cè¥Z“ËøMzÆã7߇ÍãVÿ÷‘ŽóSeËî<ýS–wŠ·Wo–l}ŽnÓªã=$^âïTógã.-¯žû—P÷ø^ú¾Çþ?K/œmÕ㚆p9a×ûôÌ«õ˜vQîŽ|Hkó_{:Mc¿Cç&K¦n+—ˆ°Ô›=¡ AÂj‹‹“„®+ß®2>8ï?/ù~)é¿eã¿§”|üs²¤ç·/wËúäìºä˜î6ó]­ÍeôañåÅâó¹™>-“îŸm2¹Jzèr¿Mcü ÛTÑ;Ï!\ÝG¸ÿÿOÙÁçÅ÷‹ŸÓ=./· Ç}3“®´ö3íxè1˜ãÔYâ‘·cÖ[÷õ kܶ¾’u"Ù‘Ç鎱/ߣ]—…G wý7'ž°Þž:†Ü¯u¸Ow|p,¼®*~´ñáø¸Jzá:ï8ê9ãDׇ¤ŽƒŸ’ÜÝ_–ù‘|Õwó8Iw}¿fêI»ŠÏ^§:^úêºqŒôswñhšìÝíÐs`ãgÃ0$å ^“ðµÌ’=šßL¾ÈsÏ)<~öºÍÁj{‰îkEÏ—Å×k%?ã[Ê;Ý~_,[qÝ}f•ÅãÀw‹?w¨dxX¦/ᆯßc—Ÿd9¦¸Ãý*ÞÉ_9Ÿÿ%ó#徯—Þ¹s|ôߊhêþVësÇ}r÷ÝÈϧxÁmË}¿ÙfòCžoë7õR¬áõ%¯g{Làyžç®ÃŽqŽ-ž‹z¾~W~>Éý}™¿äm©ê¾ÁcB½QHrÛE|˜“iHvã8æñ¶ã¨Ç†_«Ö×¾ÜW{þæøéù‘ûgyÔýÿ©õºZ[åϲ<‡Ó—lÀíÖíÍíÃc‘›DãÅÇzϙݧ»o{ƒhÜ]4º¯ñ½™?¥±½6âùõç…/nƒŽËÎéÒw——ãòó%K?öøZoZ’=ß'}p\D¯®©Ê{„TǺJô^Ÿy˜â!¯]ÿîÖØ^»kg>6fU9÷÷xÂcÏ©n”>¸¾C|ñqÌòK±Åtñßó>5ÝÏ>Zs»þ8Vz|àXå6¼¨Ê~àÉÅc(Ï Ü‡ºþ¹?>_´ø<ïIÿȶš0úñ²eãåþë2Ù³ÛŽÇÛ.{Õ‚>=Q8|0ÁñÉ#bIÆ‹d§ÞnÈ8šjÑÝlŸ)÷r_O â>Êsš©Yw’>9zŒîù–Ç_–<Þ›ùœðmìÝÇôüÏëzž'ï#½q›?SkuŸåöòNÝ»‹ðÇ}ã¾Â9¯—zÀñá9âç)â§óeŸLwò¡_mn[WK6{º?tût{º3ó:ù÷Éž_yìÿ+éô4éÞúw¡Æ¼'ë]е šÏÈ¿»à~ ùÝäµ&=ëf^¥uÝ!Z~‘ïK1äc2MiOÍz•êEN¿×Üý.ëKªÏß(¾ù;Ïqv”>:ïÜOzåm’cÐ-ÒëK²ž•£Ç…ÛVëã´yy]Iç?‘å—0Õùç¶³šcη«õu†5²ÃÐô{$·J÷Þ,»–dôOºÏ}‘ûý•’ç$·¹3sŸÖæµ—óX·M¦Íù•|Â/uÞc·o÷óO•îVâáº*ÕvR¬áuÉË$“­Eûãuïýëçó÷<•Þý%~Ýe°òOÿô;D ïÿÜÞ*¼pòøØãóë)Þž)Ý}a¶™TsüH–gòa‹ªõyõîZëÙäÏ¥#^‹}{–]’õÝÒa×mÇáyz~jUr¤73ÅÃûEŸÛÓ3¿RmÞ1öÙÞÒX¿ÈºÓЛòû9Æûó³dËÛ ƒ¦Kǽ¾õé5¤¯mÙ–ç;Ž]¶¯±%y!@'ã2z´}xŽq9Fà™_×çÓ×èóÀ:užùgëüìp‘[àá'ëÔýðanàö[ÖÁº‚•ñÿÐwô |@Ïv€.Æ ÏÓóÍ#ë-|G.Ág#'øøˆ~D{-t‹z¶@ývŒä0;Ðqûçºæzá_Áך>âzáK°ãÙ5ô²Þ¨‡ðùE¾ÌøùSì4èË‚@'v2o¢u„ã2´÷ˆ¬›õb‡Aß ^a_ÌíO|‰tÌ ô| üˆ÷E9¾Ö¥çY?z¼ à×üp¼CXϼpŒýG{Œúù97Ðϸ1~°·Ð} ú¼}ìëü=üeþ>Äñ#¿ Ÿƒ>•øGÇ»nðû ö†Ç;ÆîtùE})| ü„Ž…n”õFûúYæ~(êyÀÙ?qgÔ—HöäÀú‡¸q Ÿ@ú‹^@_ïСû÷ôǸ…uD{Û!:'Ð]W*zƘ/¬s >ø2°î~=ˆï›âÆàgˆ£K~Áú‘+üe¼h^ü7òŽu»˜ÔÕgãºËøèY7Æ1îðw~¯N?‘/ëŠ8ßÎt ¬~{/ñ0öH¯ëO¼]zõ ýC¯Vôß7;Ì_ôzÂqmÆaÏXè#Þå}uÑ/è‚_oñýâ@/Ü?'Œ;‘c}µ~<èõ@ü­câp.êçž@GÔûh?A~Ñolôxà}[ 3Æ‹1^ˆïsòð¨Á>Þó`A?JÝ$êOÀ!ôfÇ`WE¿ƒÄ:÷@¾ü^Œ¯â ô)àð@ÜϸÈ]ÇÐë„gê A_"Ÿc~_êЂ<çz¢¾;|‹zùñù .‡õPO‹ïùäÆÖÇ+¸QƒÅ^Á%äøõ*Öûâ{†8^çc\É{ÿ¹á¾¢aÞØ|‡×úX·ˆó‚ß)õú 1މß#ÁÏœá~øAÏG;ä8Ìñ¾ïp«äq¬+ò3è;úU÷ž~a7ò<Ù9èO´ÏÔ½‹yT]}mäWÖô+Æ[ñ}ãüð|ÄÁo×Áýq½ȵøøÇsA~1ß*ò€Ï:Þ.ð3Æ×uß Ç‚§Wÿâwï/jôi€øè)þD×ç‡ñô)G|g=ägßWÿ‚Ü:£¿¨û^¨ä š7â0yc¬ àz”Kà9®‘K‰okøí½®û~¥ÔÃàgèâŒ|Bà÷Ü@o|ï6ðYàÛܰþøÞ¿àr w®¹>PÏ þ¤®Þë%×yô™z]©ÛÕØaÌ?bœF_Ëwšgç`?ØgÝ÷Hñ»Ö¹Ðõ-úÉÀ¯è×â÷U8¯Gýã|ÆzüÂpßÀw›oXgÌû ¿¿ë‹qÜ@>Ç|Á ŽÄñ88ýwüþ:Þ7¯G~G=ˆüÁ£\jôv@.‘oÐÖóšíã}ÁÞYÇn¬/öçbþÉ}ñ;ËR7«Ñóˆ3u8V÷~$ú©ºïÑ¿ºïžËwœA©;ļ¦Ô/Ñ‹(Ç@oŒËbü¿ˆÇ‘kÀ—ºzz¿_‹uœ¨G±zë¡<ëõ¢0_”[ùþ«Æ.p ~Ezu~~ä_è£}Æx7~÷×±ôÖÉ 9£Ïè7ã‰õça½1ßÞ•ãšuÄ8»/~0ȵî=ÑÀ÷¹a½Œ[÷=s´‡hGø]3×wŒtÕô‘¿Ñ Ô[£Ý„uÕéÏ@ÜÍ1ó×è}¬—ÐSƒ‡Å`7Aþ±Î鈸óÈ"ϰžø}Düž±¶ŽäQ÷~/Æ=EÑ×€³Ñîãû¾(‡ûŒ~ øÙøÞ}àß;ÐC_œúkì!~—9pÀ‹X'­ý”ýˆrVOÞ_òË€EþÐîßÍLdÿçÁOpNçùî4ÎO_ë·‚cþóµ¼q> Ø{Î{ŠòŒz^ô‹ù¸?ÒøX÷Ý[ÔLjû1ÿŠùlô?ëŽzäÌsȱVïYg?ÒSû½ü 8¿?«•3øô¦ÎoÔjäß› ÔEƒ¼èãûîX§Wk¿ªñåý¹úX'øw=a¼HÝw€ÑŸCßNqÖp:Öƒâ|ußS–øˆyâ}èü x=Pg8°Sã@ÞŸ ü‹8=÷¡Oÿñ½ú}ÐçÃþÑݯx§Z¿wv[­µ­½ ­îÎ7Õ6eþ:«wÜæ8÷ÿ½køß+ò¨¹‰ÏÇÏôº6¶õ®¥Z­½÷÷žëí7‡Ç¢%êãx:iÙ¹þ=ò›HGz×e=‘=mˆ×ÿW¶òÙ6ÄÏVÕ¯'ñ ê÷xóDý‹:6_7æZŽlÌ:ƳÉ::#þý¨[¾oʽ|ß½O6‡å׆ZÄ«‘á¦È4ò¤ŸÿÑó§§Ér<½ìõ›b÷aåDrÛÔ16•—:¿©zû÷èùæÐþ÷ÚÒæÒV‡yãamäk/ØÔõ§›*û éZ¯ªÃ…h1îÚ~Ot†ç6êü†p!ÞWómH>uq@]ìº1¾1òðæ6×¾ÆãÛ?ÒvÇ“ãæèÛ?s'²çMñ-›KëæbÅx÷Ö]ÛØØpC÷oŠ}7ÖÿO6GGÿÜß/‰6UG˦Æÿ´ˆg;öÆðk¼¸4âàxó·¶M¹ws1tcó–8ÞÆŒ¹©ºùÈÃ6UŽuò†‰äýÂÖ8ÿDþ`slx"û¨cÎmêú7W+ÿMÉ£6EŸÇ³ÍñhÜ]ØTÛ¯MDÆhç6E§7ÅŸn¬­×éâÆÈace1^ ÛO·6'>Ú OîÒÿñtzsðuc×Q§Ñ¦¢~m*îo,½utl¬MnÞý½ú°©v±¼÷ ucmêœÙ䯬mcíh<[ßX{ÞT9nªOÙXlÞ{ïùñÞaLDÏæèçÆÞ¿1ãwïÆÐ;ÆmŠ¿ÜÐù É­.vï9ß¶¾íûÖûžÜ[Zç¿/Ð\¹ÌþïuWœ¿få™Ë9:oÍâ5矧£Öšs×èÖâS¹§uÞò øsÙâ õçÐâó–®\³œG»§-_½xÍÙ\B…Gà²W´vö|ß°‡lm¢Vj,9ß™™3çwÎìx½ëÍâ̲9¹|ÒqœQg´4Ò}wͱÑîŸÇ©Ltõ£Ýz»ÞL·§ôi·Yî¾?é¾_œí쿎õXÿIçXµX»ç•»^8û§œ¡ß£ÿÒ»4À{ìïìÉQ®Ó uÁÚ侚N4ê»õF«kUÄ£×[n=~’níÓDòÀ¾Ø•þŸ§%ßj~>öËÑDz_§œ|äã}„|iã¸ã¸Å¢ËâWUí[*_%ic|£âaÿ,‰ÿyåWûn1Éó/Š^Sù¦2oCüïH¿'z¥“Ïñ×:y¿ÒÆ:^–ö‰»ò2S9ž<ÞO¥ÿZæï|àkj¼†ï7oØùÇz°âuØù‡ó_«ëÿ–׬/»>¹•5’…N¦hë~œÏgDy^.˜¿sÊ¿ˆ£ãê~í¯ã¢}]ùaqü‚y‹{ç‡qO¯¸Ð¥¾ò×õêõÔù÷[~w•ù!^‘Ÿ®óô¾ÑqP—^Í)ª~?§ü|Õ_´/u~˜þäàºôqG<}Ü¡¸ÎÑû§HuݸÎQýEë¥ùº>½.EûŸ‹¢õ‘yÎ'¸~:%Šëë/DϨqÔ…ë:\Ï}&ZSmOså_Q~à©üËʲ  ÿ)ÕÖu£×µçáäkѪêÇ:žÉÏK"Q\_bý°^:Šjëú¦Õ¸®gRé)Õv”VUÞ§T?î0y—ó~ï¬ÆÕqp=Vcõºj?ÝÆ}nEõCÁÓû±ZgAÖëŠâ~ªªüõqÔû9ì3ŽxEŸ ½?NôC§T[ï¬ÇiU'Æš/ç“…¬òd^Æ/‰âw€y—û$ú/ˆî·xÞJòó¡¸Ã} îGñ{Ëåß=f‘ÇÞÁy]?Üå‡8à¡^Ä’'Šó2øàÜVýø õ-¨qÔ‹x˜õÆ÷ ëSù_@<ÅǺ^íäçƒûèUæ³¾N>ÔyQtVù£Nðõ÷5×'ÉtN÷«zçT?âê}Aê_88_,ì\'~A=¨ûÇë‡ùˆÇë¤N¾¿çñx«¼nÊø%Ô#ãX/ý9âþÅçŠëˆq•'ö7¸ðÃ>@]ȃûAëðÎçí½|¿ìGÎ'hà|¤ÛEýý^ƒÆë7oÐñ~ýƒæ=hïgØu{ßñ"¿aëï—?ΰëxT¼a÷C¿×ûîËAÇË/òöóRÌÉ?ÚN·êxÔ»„éu–ÚͶ˜åÞÃ¥öóGuiµ7·`ŸhµÓ6ŸE?L›|ôT^ÛL7Þr-¥0Ç57{šzi”þrò¢N®¥ítj½™néçVͧSo'ûB¦Œ¸0 †#€ˆ`Ä0jbŒºÓ´\Z†–G˧Ð iE´bZd2 † C†!ÃaÈ0d2 >>>>>>>>>>!!!!!!!!!!111111111152jdÔȨ‘Q#£FFŒ52j`”ÜéikºÖ4Öô¬é[3°fhÍÈš±5-͵4×Ò\Ks-͵4×Ò\Ks-͵4×ÒŒ¥K3–f,ÍXš±4ciÆÒŒ¥Kó,ͳ4ÏÒÂ|\Oô”¥µžÑsÐf¦Îè èòß/SõpÿýÏd‚Šß_ýÛâ¶iÑøŸuf%Þ?[_ÏÎÆ‹Yêú<õ¦¼PS"b¯ý$§A¤MÁSyžþ†3•¤4òdˆ9(óDŽ¢Ù\Ó*H_a¸ N+šú —†‘Œ!ÌŒÌúò|öÞØÌQƒM‚@pZm„B¡‡p À&‘C$ˆ\¢Q›¨CÔ%êQ A5ÕTC¸Éß›_™óµÇ2’É\ÆÇ–;ã#O-^•?•ûÞþÝ¿-îÿö6Ç—R¬›s,×ÀFìÞ³%\²oÑøÙêžðâf‘survival/data/bladder.rda0000644000176000001440000000664512267746072015203 0ustar ripleyusers‹í]ùzÇo´º0²¸Å!Y—-¬lŒY‚Øñ…1NÈEZb%)«…8ù+”¿ü8yŠ<¤ Uik«ï™Y %Óß÷SïLwWWWW׌¦zjîüp~ôá¨R*SÙPŸÊúõÏLÿéSj|DçÃÖ««ÍÖœRýGôñƒºxf»Ž‚º¯iÔ4CÐVc1Ê4Þ`8È0&ð¦À8Ã!È#ˆ£ˆcÇ5NhL N œrà´ÀI)·Óg-8çÀy ˆ·3¸„¸¬qqñŽïjÌFâšïE@넚×X@,j,1,k\׸xñÆM5n!>Ò¸­Q·àŽ?Ѹ5>Ñøi~¦ñ)â3†ŸGàsÄ_2|¯5îi|£q_ã[ßiüBã—ˆ‡üJã×ˆß ~Ëð;ßküAã GˆÄ*CSã± à{5?kü…a]ã‰O56›Õhil ´5ž!žksÄíS…ÿ_dJG…¢èº¿\o>o®ƒÇpvhs½±Ò|´‡£›o­­nü°ö´‰g†Û߯m´›› A®¶²ÞØ"j;}‡# åËg¬\òì’§òðSdœ*±®MgcäÁÇ’ÚV&—œ|²°­o9”B÷²mÊuƒ ëS’´cÆäã]ÖóÙ'Hƒâ˜ú‚'ñãì<<©“õ9Î~ƒ®Ãã!¬ËË©ñ‰Æ{ÒÂÓVžêg´€ßaäïãú˜°Ðšd¿G=ª |‚§àÖ=Çê“<Ùñ ê¬ ÈÁ{qy™Âó‡ó˜b4€WxÚ¾Àêel SÈ<퇧úðd}ëÁüŒ!Ïà¸ÌÚ“\b0'g±=OÜŽgÊ´ë–z”jâêÀ|ƒLO±s#8àó¤¨?¤:úågp¼mºß#}‚9:õ.²z£˜CÝ£ø{û?ŒçŽ#°.a+ŒxJ®±¶cØÚ€^€ÉË“øZ¤ë­ J¤;>â c£¹¥cÞdžÕ'oÈkÏÁ¼r9˜Èiéð5Cc8ÍŽ¡Ï£ŒÎŒ(“ii_cç¨ ·OtEr¢¹‡¹€y¬aNºsy Û¿É6Ño²M'T·mšPµHÞ¿>Ì3Ìá©:ò—¶é’²Û&òüAW±Ï«ªÛ6½£ì¶é]”é1èËö»¤LÛçnª8ÛtKÙmS]…mÔQªc‹øÿ×|í ãyúßåöG:[Cþ¦‘¶´Mç”Ý6‘÷5d›¸÷5d›® ¼G1'Û4«Â¶iÛÃ<-«ŽmZVaÛVðª‚7•ß'‘×ý ŽsLÙmyÑ)ÏPd›È“Î=çÜ6ÂãÓØvRulÓ£´M•ß6A9·M´.«Žm"ï·Í6‘\É5îØ~ƒã Ðwñ#û‘©l>c墛گ”Lyù(KeÑ+«™BëÖÕ>¤g¡ú®y Ù‹²Ç¿_è†ô ¬~c×S¯õR¦T}IåK^]ò¨;躮2•m7cé—5_±×;J!;’Ê«ì/–~½qü¿î;ûfS~ÌEÔ™wŸYp·Zv×¹áþ1gü¸án~~,gL:6vÎ,Ežz5gœ7ΘS°ñÃ31Sé»Y´ÓÅ’» sšæŒæž)0Ϙ],•cdhNAL_ž"óÌŽ²™saŽÝêÉá¢QÙóæ©uKFe?ËFss86bº0‹’è$™¯¤ÊžÙ1•g–=+׬cÏ"òÏ‹´ócÉÝé‚QÇs 0Eç)2;]6Θ–$iåšt<Ê6ïîtÉ(òÈ9Ÿ¥1zæ6WeÒ%;ßÒótá¹™gL6bVŠ©Æž;˜ë©ç¦Â³<=ž$UAÏmOA£—ÄXWQoï.Í‹¹Gº1b޹ª›ëÞ39I槬‹UÒL¤\p“Zå»àç{ÌÄÌÇFéŒÅÐ1±ÇÆì‚ú%‰.Ÿ>ÇÜþĘ”² mYÆØSÙs;_ÖÚ)K%òõ•´ êXYÆ3¦‹|ÿ¬—¥užkÜ.ØÕ‚Â,ëÚÔ»UYPb1?òÝ廿–5MÊc:ŸI~Ö«ÒÊéØéSr”Çž¯+å?vü±rˆå»Ž;½êiôRç/Ô^>SåZ¶|ÊâCÊ!•¯:îö¬OcŽ;0ëòÑ+«ÿ¢z’ªÿeÙ—^ëi¯äY]¢—×^¦ö+ûÛ­~‹æ’ïX¾ŠÚTþBv¯¬ëkÑõ"ç+ïõ¨(ß±ó”Wî.zòÕó§'MzõüžÌÖVñ×H»Õl´Ÿ4Ÿ¶é­ô§Ïž°¬âøTà3ådõ¹À_*0«¯î |#p_à[ß À¿êʺ%ªò*¯ò*¯ò×+¯«*¯ò*¯òý™«øÿÿC!Ml¡ÆŠ %<–­~ˆ W˜¼H•G*¿²¾DH~¡ç7Eû/{¾‹–ï¶>ÈþBarB뫨>å?U1aúŠ„× …ñ+ªo¾V1ö…ìjÑqözµ³!½ ÉUÖ•‡ô ´nŠ^'RÇ›Z¿×zm ˜ÂoHRõ)U~!»’*Ty–m—˶Eõ9D/b6u<¡û$IÏu¿ {&ýIƒâXú‹¤ÿ§&Žy¨ ÷ÃÁCÿÈð?©!€lþ >qœ‰c äò…@á„@üb®°B¶pBç¤ÿhRùýI#¬ÿ e† ’þ#àû‹Å1ñtma‰(Aú‡ÀÆýAÀ÷ÿÐüÍb¹ôßdª;t‘ QD÷\äÛ ­#i—BþTé/¥Ð;Z{‚G®é#ÍT·ôê„å±ùC¥¿3W(ôÏõ—‡ö¡ð>2Ô óã ëãBŸê„û±ù'?þGú+¡\ú,9BþI[¸ Žq,õq íêž&z®ºWôåóݼô]í]Ï‘‹–‡òØTT>½ž¿Pê•üË’oÑT´¿¢þŽ¢ü¥êWÞùÉ›zŪüz•M¯Ëú•¿.úûº¥ØõjK?5íýïÕøbÛïUêõýEDâÿÿÓó¨ê¸:®Ž«ãê8ï1¼&0@/ oEd­|¯C/=ÔšÏ;oP°jÐá_*Ï{ ôµçyµý"Ã0RýÑ2PþBñ@>s½\òbŒ@¾@À_à_{ÎûÿÊ3mìŸ8«ÌÍüç•ýëΡ ûüá—o3~ž øô ‹•Ù·a^nŽ—â}_h¾£º7¶ßUæ——S7°Ëê®é|ú=åÞ`Î7“ƒný¸×«¼Êÿ—òºªò*ÏŸ+ó>ƒœo.¶tfûÊ82Y?´ËÇKˆ6¯ÃùÒÉîÛ !ûðõ%eà’‰ë\ÌØ¤¬¨Ü·¯È&¢Ú4WÖ÷l]ºfÛ ÁeCúìÓMÛÜÄÌEl]>OÄ'ñ8ÀÊ‹lò²ÍOÌJyÇÎ?£o³•ÔWÛü»dgãÏ·f|¼Æêyì|ÇÈ4TOê­­·sP‡ôÙ–öë7‰ÇÔo *Õ½Q†R?æ1ß„ûÝ@J™à•on¡rÚÜâKÄ'×QJÔÆŽ{ñ:H|s¤<ߣãçdâ›7(±ïÐíÜoÐÆ¶ýþ º¼ßžãºL›¾€vÊ÷æR¾3Wd£Vì·Ívû›f±H—]ß/+ðÝ2§}ÞI!G‘,9¤\å©ÿ?æmçj¢J»Íwˆ¼üå•W¨ŸT>\ü§ö[–ÜËâ;TÞ«yˆM½îw¯äŸ—Y/”JЋ¤çÍõ@¿²œŽ«˜¢åòÝ«¢©ýIú®ã¢ã.»ß½ž—²ô&¯ 9 È”¦Rwí.Š®£0ùµŠ’j¯ÿJFi êëŸÝÕQæy=ƒÊ]±-ÍOíÀcL™q7?Úãñ.û…Žw¨˜WšÄN• ·²†Ÿ¢Ê4—ËB<‚¶ÄâFªY5Ëö|”@õ×7Õ‰ÓQcSªäÂ#SÔrZ‹Ò¶Fí¦—\=?ߢ®‘zJn@êµÕø³ù¢Ëh…uE._¶Tü†Æ›™ûžGSiÙ‹mhv¶ž›ÜÅ ÍÕò®õ+7¡{ÎU‹,´Ø±°ke=‡–£¼ ‚í hÕ‘reÒ<­{X—Ë~8£Í’…å)'J´ã9æ³”yí}˜^uwK¡CÍ(÷ßÎè_»Ÿdî¢s®|Nêç›èÊm}Qú§1ºéî;3‡0`qãõ€52´1Ɉüùe˜ˆ]ä2/#•êÑOnâ0/dR2+ ý4…L‡¯@Û~BD•¹>43‡U¿³Mº§I]Ç’¸ *ý_‹%”ž÷zÕ ¥]¢6!úPÈyùøÏcP¢¢ýô<ï»ÿí—&˜Sìï_úßùU=3Yç¡®ñæ-KQhúiôùƒŒ ´T \ÚC†bïı!dÊʧ[$ùŠ,9Q#€l[„-342îj@òØG³#ŸFšöƒ[(@:Ï[œ¨Œ‚»¼ÙdP„ŸÝYèìY þÙSú.%©7oãÑöD›I”™½û}5×å‹lÖÆñ˜nô÷žÇ|¨ :Ô<Y„'޶ºGÝáAeÇ›…BjTýBªµ’×(pë… wª ¼ kb¤F %#ñ6ÔL.ñøjsJ?݉iB·ݨ'ÿ\BüîkÔoN­°nCÃËÊÒ†4¶hÌü®AzMŠ)‡d ï¢Ùñ—VU2}h~(’¯ŒŸÍG¹âü›ãÐ"/9Y»ö#ZÆQ¥¤ˆR£•ÿÍkwºMÐÚ54Éër"Ú8Šýgx4 m/’FszvïîLnñØ£ý^Y­¡P1:†3°ü´lAg=M ¼…®ZLÑ›gðñCnnq‰CèÂñXˆéI/Ê•]#‹5ÿ‚´ÜRKfö`v¹»ŒÂ†ÒðiA'{ï…šïÐÒ·JY¢ Mÿ¨Üoè¬Býõ©–ôj¨«òÑPDMIÄZU.áîiN®P%öøáÒ#¨ú ò ?ý Ôœ%\=Ä u!Äaž?u¡qQr¢àÊ"´„=Ö½cÞ m™|z%óБصa󺂫ó˜®@Ïý“sç¹ /Ô¨ˆÃ+$¾ˆ¾þÆ ƒ/$²îTzÀPLíG†‘d¦Ê/.º ê½¾{‡aøf®]ñŸ@ˆZ†þÅša”h÷P7Œæ5­¶‚±ÏÂzæ0PiSw» &ÂR,¼0„ÉœÏ\1ž0M¿È~vfʼ2ÇsŠé¥3ÖámÔ“¶Xäé¶<ÉRK_}|v¿Ë«:¯´?UÁªíÖ%‡µÁç=“ò¦°KF¯}¶Î–'Î(WÁŽÏä®*á{øûðoéI~ø7d;zÈ ¾p9!ñ£ušçQH|•3%ƒ I)+ï›B²R-»_·â%ë6áaJ¤Š¹>å×¥†Ôi3S/)ëvXüwªàÒ½àñþÇP„GÚÈßZ°!_¯á*52>ضò•\EfJsÙo9È’JHÚ¼âŽl§ëî;ûÞ@£ú 'BwäòèŠx<™ÏF+·!K²˜ëTÈ¢ªµc{“ÝV"NF¡ªúM;ÆIÉ n ž¡A±6A†ű()¦Tàÿ_ýIÿ¹ó´8Ê>=’ -‰r'ï(Ù2È¡|&'»è+<þdyLÿe*ž£Ó~?ÍŽJÞï$/×H¢JÄ¿°3µ‰x²½b<몪ñ·GÞüê¾ÎoÏ jTè,‰eýF-‰ï½Ùã¨8«cþŽ u9 fÒtèQïÝó‰ÌŒh Oû„9аv9ÓB“/?¿bÀŒ¦ìW˜…ØýÑÌë™Dá¹h®ùx2¯"-„¨œœ“¡%õwíCŤh¹'=±æv­¶=o0Ü‹E’¦õò×hËÿ¸ Âqílè}<ŠüÑþmŽ—:’äÅ)¹S¡Óu‚cþþ;è¼6¾µâW†®nÌiþNÕèvîY¨bˆ †› ±Ð2ßZêŒÿÅAü±N|ÉPü…E¸¬ßJJ“?W]4…²œæ .¥m¨,z¿Ll µ~zv½¹ãÐ(°Aü‹š<½s»õ5´é 5ièAÛ™ˆ‹Õ—ö =Çò©ö‰ÃÐ1ý¾Û¹i:÷"ÒU•© kà¼ìjÉ=è~לR## =ÆY¯83 —óVQ'ôn­üžÓØ~æzm¯y`ú±ýŸ Z‡EðåÔÂÐ7'K¿¯0öÚfA‡F,èŽÿwF^MÖs‚1žWÓE4`\@Þø†L(•ẼIß™4Ö¡|˜ÊäÌJ93Ür7²¨aö“{ç¹z˜¿ÔäWàOãÓ[¿Z`éÄswCX>ÅjöÏ­ VÞÓû¿•f†ÕÔ#®Ý*°~>\¡x"6ÖíNиÀÖ›Õ»­Æ?`粈ø×øøë³û 1¦þÅ.0t$†!œ¶ÜîþŽHþ‘‡ÄóÔgL ÁT@.k>êÖF44ŸùCóOÉâ¿Ü8¡‚&¥Æ»âL"h¦N!Ë“-ƒæ|kÎЊ¡IÒsºG§Ñb¦-œ?èZ¶þV¶3íD«’Ä3iñÄh×ñÃý·ÚŸúœèn…¶ý·ñm¼Ú3yÏý@?æ[q èø·*‘]à0:ç‘]$¥zˆ®_õR\ðQ†þ•Åô–J4B5µÏ]vªKªfÃJPé~çÄãY&¨”;kÊz¾*¿î„ÑMA5%Þgf|µ÷¿Ù‡ù@üd‘m¥´±4Þx˜mBÅöWÿA¯^ñ%g.èÜ|lg|ºÛNç@oÁì€âoè·zþï¤ dzD Üs;ðLÓÿüW¸H­Z¾wK†\ê7ˆéÃPcw¹àuÆa–7A©0\’É,V #ÖÔ5Ûž0J|h‹ì³ŒVd›K¤ÙÀØ·LÍÙåz/óÝVºÈ|µ”¦T W“Êa:+Üÿöµ¿0kW7=ÉÈ óG/W&ßè…ÕÓ"çÙ²`Iuöõ{MX¾}2j—ŸVFÕbÞÓÜ‚µ³—ãç<Å`ƒÓ³ª}6WCâêzõ`{‰ñæ¼Û2üe¢Ÿ}´‹ðïôcúÇ‘àCÿ›5HXþ“Ö-¥‰) CM¤fÂ,ë’…tU°üƒŽ9j䥈T–|W<2®!µ¯’ü7Áe¤}ÏOû¤ énÀ÷ëgðHv^”ôÉÛÈ@T 64H„Œ>‡´—J‘i:FSÔFYî]³P8Ⱥ©'_¦G¾{Äʯ“KîªðØwä¹ázÓà y× :?j ¿›µÓãŽÿP`*€\€ð> ½h¹EJrEnæœæ#çE±ø›Ü+dQbŒ9ó‚ß}<êÅ:¼†eb¸m…dUQŽ"íëê­Ç(ŸÐ‘œ“:€Ç"º žú£"§ó¼ˆç2*ѦڢŠÄPñ¯”÷xòJl¢ÿæâÈ·ŠëïP]8E£ÆS7îñ.QÔÜžßôCm_å 5Ѿ¨3k%ùœÙ õü.Ÿ©¤ÿ…äÊN]‚Óhøþ »9›–?)DSÒ—l¬Lhæá¢Љæ:^Vÿ™™£…´‹zþª'Zò0Êj{'¡+J—ÍAk.þPµŸ<” »^Ô6„¶V ¢"Žõh½äÝÞè‹ö}¶2ß}gÑŸP”ýD§f1¶'¶ÐE6^å¤2%º¾íÉ#Ò@·ÇíB<ðÁËkÉÿÖÑÚ-—RÇ)%Nj܎Òz!ù›,5{¥e˜þ»U<ï =fµ†õ˜§ä™Ö^hPIôg„VjÂÊPñâìɦ1(ÝŸ‹ú%Ò1¾Ö¼„¢±ôá…?ÆPt~Ÿ?^[ŠêrßíAñô†Å£¡£PZ”ýPxš÷àú‹[Ž»ù÷c÷Ðwƒúø>ðÐî…¦OuË!ôÌÐB³»Ðsã´:§k7Je@Û³6ÎWí\ô×™Œ€Ž¼¬EñéÐù°8 c€º ô?©Õ‡®EMÿë¬ß ûSkÊÛÍOÐUx§ËÍzßäm5¾ì…¾×"Q½¦Ðßœ–p}=…ýÁ^~ ¾}­gÑü€‹¹7%x`äÔ`Cyy.ŒêSŒh„1݇¼ÿNdÁ¸S÷÷ˆ q˜ˆ.‘ á‡ÉÆ JLy¿aZ)äkKà,ÌTˆ~43ùsa,d¯¥Ò`~áeëœ,ÞxÿGü5,Fб¾€Þ[½‹“^°z¹ën¿š!¬ ì'˜5†ó Ç·ÿåÃæþmáÇqî°]¡"ÒùEv³ëŽ{¨Â^»²Ø‚<3Ž};Ù‰„f­¡J»×èóh’º÷+$‘l%ã¿Wˆ¤×µJÒ‚‘üiþÆ©k¿‘òÞ=²)á¡$ÝBï:¤ùsùe`ü ¤S°?û׉ Äžìp¨Gfê¤áÌÈX;ò’æ026Èp"ëR$ËÕ:ä8ó9 u5‘["œâ}œ ò&M<¹âȃü6Œ+[¿PPyòð(Á36ί+9‡¢±ìåS:¹(qÈìù>J˜©*¢Œ¥¯y¡»/ÊNÔnŒ®¼qMÊcYøÐÌ(æšbšŸp£Ý‘E ¾WF hÉNì»/ê†VGÎ7R]}ƒÖ´Í–¹hÃ(RçL–†¶B‰e‹qTh§¿µJÛ´öá&‹ íGÐaúÌÛâkèt9˜?xÅ]Äjª:Ñê-‘øG|Xç_õCÜvˆÊÛïJ£LµÈ£Ø‡H5SÑŸ@³·þ|vÌ€þ»êËwË¡ÝþaRàkh¶=oýõáh°TÖu¨5ñ:Æ¢zÀ9“ÜÕ¯²Péíû¼ÐáTx^;|õj=T¨h£†ŠÒ×祯òA=…×Ô<èë7±Ž€úÉç+lÏ¡ùæëÀšh}åj–"yÚ#ÙÓfOÅA§ÅÛѼû¡Ð-xDòÎK3èÙ ßµô€¾›¡¤É¶Ð_õât¥†3 ¼j¿ßĨÄ$4ŸoÞƒAÍ zê Ÿ`ðZg› iùÊÐ÷Â0ó¥Ìº Nô›J«†#]ÙÁX¥$9+Ká£^ÊRª†±5Áâžl˜`h9ìÊW“žªëÛ“`ªóó‰h²n˜ ú#špCæLÈ ²À»åÝDŽ$XŒkíj< ˇŽg>w‡• b¢]ýþ°ºa`¹ôŒÖS^n{ÆÃf°ZÔ— jؾªAP|vÄ,Yóœ`o®1ö$yÈQl—Ç áý!‘ï?X‘h³éÜi ’DJö6ÎýC2Ís²{w‘‚Ëòm€?R1Uí™ßÍDjéðÛÕjÌHëÃfqóßK¤svþ·þ‡ÄŸ  v¤KÚ,¨ÞBF=®cÄÙ1ÈTÕdƽ‡,S޳±®íͤ#û†Š›Ê r1—KØ@KAù:äm] ]Y»„üpÁ_ÈŠŠÆSï{¡Ð¹N’o«{(¢·¸S!$‡böâ–5Í(‘°šìcˆG™xE}÷PÆýcÂyC”mk~<3òn>–"Å~©Á¹ë ŠpüŒveÞ:§Ðqs—÷§:^÷¹•%ì‰NKoæ•þn¢ËÝ›á¦è:ö‚}/µÝ²Jš‚B"1l¢!·Ìß ­æZ¾—F”ÐàÈ¢?-†dkT%0åÓP|¹PºVÌœ¸æÙ Å¤jïÃ;¨+ݺ@ýïTõj¤Éœ©…ò˜¤UI¥z(Ù‹øÂ‘ÅŽåOœÎk@¡ë©a™Œb(˜Éãõ×ÕƒBU6bc=(>¬·icJ%ÕÏ߯ëA¹Ÿò~æƒ|þ¤™éé‡:²waÅÍ ¾zi”äÖ24³}ÙûÞ-æum³Ð`ña©ç´ÝÓüáqÚªh¬@0äÞJƒŽåÒ¯?%ÏCgL»qWGti…7zKß…nîH­²›MÐ#žšÕÐË/æþ[Þú k¿¶ †þW%LÕâa`®T³Ëâ9 –DÞ¸eÃOø²‹¬`Ä_R¦lÞFÏM®Ý•p€±Û_’#|ù`<ãyæœÛ ˜˜/*º3FSV­c*U0=¸|¬å6̾ry¿çâó´å"ìþ°v^1öÈXòœ-ák> Ë sêøVfÈWìÒaÍä*aŸ—¬WôZiò3æ UQ l³™ îUôÁ.ÁË‘,ù$Øc S#«N}kV¾dg$˜ mV?Dªôßþé!qöÒ±€D$5ª|é)Šä‡5¹êÆŸ!ÅVÛÅ*[B¡±ÈÝÒùyå¬WzþÅ#o¾*ò*A)YŠoõSú(C>ò&ùÇ<ÊÆ™UvýCyµ“/OßKÀã´M ‚¨H˜Ò´¯Ò‚Jì"  ¿QÅæa²ç-<™K|,V¼ÕxÍfööPýÚ§Ëç3iPcÂà9ïeÔ:Ícº.G‚Ú›çO‡fÐhòÖå#…Ѥ²Sž#ÍÍlÇfšóûÐܤ&#{R -ô““ô¨(ÐÒ@Þ¼¯K­ÌxÜ'AkÇí#çÑæBЈùQ´ìêU¯,B»ŸWR‚)³Ð~÷øêâÑ èèüû¡å+tš”I*‰D——ÑÁ‘o2Ð þ”» bôìÎëéÌètF5îûVJÇýû d㎔¦±DwÖÙ`:gî¿L¹Vèý“dŸa©mì2ZŠ ŒÐ$nr‹dªêöZ•MŸxø$»Ðiã«P¹ÐÚ“õ‡*\†‚Y¡Üûâ¤+i”kñ\Õö1‚òû¡î¨dŸrñ‚êÈjrMÁt¨›”¼í;M+æ¹ãT¥ÐJ÷O·}„ÚVçŸxž¥†ŽÏÙó ¢ ËÏš#JfzäEØ.^„Þ”óþBfþÐ7ØŒg¡ÿ­½¿"Ã0ôo×Ù8WÁ€èÞQ¦:^H›9“û)é xä¼ap†×#¾ï6 ­\SùįÃÏBÎå\%=à¢U¨‚;ŒŠÝãë(‡1qÞã´A30®qŠBçî­ÿìgK¡¼“;-ŸÇ}‡éW´>£—aö|‚je½ÌÜjjàŠ†…¯ Çã-»`é?‰ó^´_ayçHÉ¡Og`5D€n½bÖeæØÄפa“ä_È6}Øúw1Ô˜'vð×»«A°w…öÈìýmØŸú{Ô‚è ê’«“•¹"Q®hcd¸’ø{®æ_E2â‰íLH>¸ÔÈ$ú)»/„«ÙLá¡•®º!G¤•¤KžÞx%lšã=$¼Qª\H×üÒÊÈU<¯·%­õQ^`'k1ŕ丗‚ ·¶•$]Þà ÷×/„.Få‹ïŽ»º|GÕ/’´ÛÛRˆle"ê#¨Öñ¯èØû£¨!ìÈKˆšñ®Û5Ä1¨MÑ[”箈:á^YWsöPI€Š•úê}²fwO m¯TÅ%.£ñ‘†KícthÒ7ËCÀn‹föKVãšãhnÄ cqº -´È¨â˜ÑR³“27§ ­LœËNCkÏ×O_qððÁñ¯w´ÍÓý;çøív2¼rçÐÁäyÅ#ÂTtü« GÐYbY³x]Ò·ŠZ+Ÿ¡ýgq>átë´]’…a²ü Ö|Ð*ðaŠ%]#Þø5‡¤¤Ç;,ôŸÃDû»¢M~è|Úéx<šÏH4Q[;ðPŸXû¡2áÚŸžÏvPö #-<æ”°2\z-E‡—vèùÚáwçÐ_yø}ÚÛBß~gÐ>êÿ/ Ï)žP¹ÙÅ-Áß+µ.B™19ÉN8Tº§M_>k5gšx] ^Š©5l® ÊÙúz Y{n¹'•Z¬Z¥uÒ] Õ‚A`u¢Úd§Ö+Mg¡mÁk‡QÚ_¨d¹Ó"ÇcAÇlHzÛ@ç7Н¯” +û™ëW¢Ð"¡˜x÷:ôTΗIùYAÝŸËÁýûIiÛ ÂÀ0=»jJÀA_¬Qô«í‡á×þVƒ&ã0£VMÂM£ïî=d±úKÇ­ÞRÂÄ¡#ÚóÔö0yI€%à=Lm嘲YÑÃLfЦÓcF˜“Š¿uC¿þ<9~wûç:,Ö¥®xÓ]ƒe6ÛÔ‡Ö¤°âv£ƒî¬.xû¤Üõ£FãW`ãwü%*¾<Ø:Š_pàì}ôž”þÚ´Úð¸(À¿(ùÁý ÃHd¨á¶‰„µåqH|’Ö£ú‡3’´iëùñ´!Ydö1³óHá›Ó`*€T+£…*Oúû¹üýZx˜59±™é:ŒéåË_"½&S·«¤12Œ±¨j3]D¦rïñÛÇveÚTjQä ²›6‡³þDνÐr9¾~äÙÑþη‘/EUDÈJ®:»°†BAŽ2ïX}Q$õfæ¡Ù§L7°­AÉ4§ôcQúÚç!zÆ”ÕèŒoä>rÓמÌÜeÇc™–c:¨¨±Ö|ÝO|ù›z«u•ÇéÎÅæàIèe >ÚŒXz©¸¢BÕOŒ}o†êF$R¸QK”mlÕ»µ ?ÑŠ/Ç£®O‡µÛ ê E¼¬åïBƒÕma›ær4ê¼báL8Œ&5즌WØÐì”y¥È ùéc2­êhá+ôn¬ª-¯ŸRÈ cF«GÍëªäÑ:mï$O?ÚT×mZ¾ÊFÛ¥#KO·Ð^pÞ~Fó4:\àÜR¯EǶÃA#2èì0!¥S®‡LCÏýF7?¥ë=¯1š²î²šX:vz>½t¥^|‘Š¥Eò.òçL`raæî¾ÚôØÿ-i¬Vv²fhøPj–ž}jÓÎJ©íG@Õ$õx|hT´Ûì\ï„rëÑë‰rPvÖ»@çé (3Ú9ä8eÃL!šO¡B ˜ö¶L;T=Ì–S\­ƒÚ1I#ábuhœñ¨ì ¹-a‰H/mÎ…Aƒ—B¡ƒ¢òoÞúSè,}Aõ¬ê 'ž¯PŒºüzšlGSï?Þ r¶C…öЗ2èñ\ð ô-Å&ÑSA?-“H<ôëÓý¥¶Ý…þ†<Zó5H`«çñ‡ÁøÔÇa«0TpÃóg ?~Ÿ Rí#§/Ò×-Q7ŽlìÜ0viPjDÆÜøp¬`’{£øÿc˜ú-F©ÿfÊ^íö…¹ØCÉ{<×áOm†UÏw ð»pÜû Ë÷wìñº ¬Òì6ìläÀÚ/E?§ÐjØxø;È/·¶î'’îÝê‚tAÉãñðwËøÉsØ?7éӬЄÒö-)Ht-DVœªI¨~-²†/!iy,•\p’¿yÄÄÑ7ˆ”¯˜¤%¹ñPŽËF Ò,‘O[uÒñ%<ûSéƒGì›ô*Ó þÃé§A¯Ç‘‘Bá•êQd 3>K­yY8ƒ“!k=w`À­ndOJ'ï tBηÖÿ~ L"w?Ýé7 FÈûH}0̼ùvÞ$›™Ë À¥â×û¢(txˆþP# ¦q·AÑápuÂ6Z” ûáDn‡R~ׯû7£ I±H±âY”=ËÏP]œ‚rS•£…Þá±`ól7ÕPAFgèKßUÙòŒð¤¼Ú~•Yš‚ÒÛ‡œÇ'·¡X.Q^`  |ìZ΄_6ƒÙ)?"Å)ch¿8‰··Fà÷Ïþ»µÎÿAQvÉ#‰ I(n¡µZ„ 2¿Ò­Žƒ\˲ܜä…Úóùe”viPï!®¸dþl «.Aó1óÜ„ÐÂ3{Cã:´,{êgDBëë|µnéhSËÎý š mmOM‹úã:×r’$thñÕ¿ÊM†NeàQH†.q)š[M¡[ƒ¶3,Kz„]  †ÞZÝžV6Áƒüz|ÜkŒ.SRŸ¹XzrmyÙc†³_¾z@—#¡áó40:¯›W0ãbõ¶ÇÓ`"ÊÏ0£"¦èoòíu¾‡éŠ?#¿ŠjaÖXðDS ̿ګww9 ×="ï°ÃÒ³rš~j+Xîòi3¿vV¥OׯOvÃZ¼“v˜B#lpð3VùxÁfÉUÃuØ~®¬ò¬Ó vŸsû*®VÂ^‰â‡“$ yðöo}Ú]霒HF¢ É' Ÿ‘Ä:½Ö°ï’‘Yú&üÖFòá—â]O‘r´:¶PÈ©™}ê´´j‘öBá¯â ¤ , ݾ‹Gz^ú?¾åƒ >`‘„LºƒvŠ>Èâ)›'ÞqÙJGöÎ^BN¯»o·¦“‘Ç6dëœ,/ò™˜‰Þý‹ìX®Þ:ȧÄ黚ó("'-ôZõŠ…wn- j¡$=cåÉ xtäypAÊ,;y•›Çc2Û>¨pbˆímî žÐlUy×-‡Ê—Ÿ*ž¢X@ÕŠÌå0¹aD-üü8#Õ¶Ô,ŸÇ¢†—ñO3‰:Ôœc¼ºœxµïÏæ»©º ‚I b¨·Sz˜Ô† ÚÓÆÙJ’ШÒK>M›Mê\ÎѨ¢Ù…¢wwKÂÐüÆël‚B}´x”šrû~:Z¦?åxvl­B"xú¨õ×QÝè.´à¦1™TF;k#²IIq´õ¢±¹ÉŠ#ÄŸŽ £“ž‡ç3jtnz‘õÁ ]ƒé#éêÐ-õ¾,Ç7VŒݨ$ý莺™Ç®LE‰×Î?„ò‘ŒCÜÓ:U&„§|MLy «ÒAlyÃZؾùíC=Ÿ‚€Ùx¨±$â•;ÿ*¿ï'WåÍCy^‡¬ÏÇþí]²+4„Òó®qGy Ôº=éŠG-”.4WH|¬‡rÉgOÞ)«AeÌgÉÒy¨–*aˆ‡†a¿öæ>hþ«ª g¨ ­U1v;Ð~ª'"_êtéß~ãÂ]i§¬Sý­ {KÃ\,ÿ ôÒœ\ùl ½§Ì¶»Bï”ýTÁ è]•ò½G }œA´_6úbÝ ö.ß~SòÓ„§ÎÀ€rç˜GY. š.Öß}CfΆ˜uÁð[Û-Ÿ¼‰gÞÈ·€Ñ¤°&µ äµó“ MŽ{ß2ÏÁä€ÙTQfLgTfÍr6Ãì—çפø¼a~¢Â”ÁU ]äßnÄÂò‘Ñe?}+XyÑE kÚ¡ Ü`ƒùú%;CØ¢® ÿ<(;²¾Ñ?V³áï­‡G´C¼àßbs²Çz ÔØúe ýA¢}Okª qqÐIÛ3Hz_(0FUÉ=$œø3"¥ó¯×Ü„6x((ГæIÒ|ß—WÓ>‚tÄ¿FÎ|§Ç#*wå’냑>LÏÝ6¢¦-‰½ö÷étôU¢©QdÞ±ŠìEÖßå~…^Dvw— /‘óÒz1e!r§,’Ù’,#ï¹™¨f‚äëÎËŸhÊE}iáÚm*{ž[ú…Ó~}»}E“GŒìº2P¼62ØzL¥øe?'_ËCéŒøÞØ+«({Ü ò´$Ê}â)}?ŽÇf>> èÁã#qa²v&¨˜µ­;JŒJß=Ó‰™KPe¦âέWóöJ}T»\t˘·ÕëÊ{Z|úPS®õ¯÷èÔúpƒî£ê°µ}…º9íégIPßv&ªgì1RùÝ-î}‚Fm„̯ÝÑ$KYpêâ 43¹d‘“ææÅÔ47lÐÂîs—̱´ôùoT’Œ ­îÛ±Û¡u{òzè‡Ü£séÆÐŽ«´å«£9ÚûøœN¤ÒG‡’^ŸøSè$¾0èmrß=ÙÕ[EWAG-K~t³ºpêt= ºsÝSï%Ä{Uõ›tk/Ðò!iAÊ ;Ȥ¹„DgòÎÚ«Áh†Q᬴uŽ>®.†•É1çO[Pe7fÐaüÊy'‚$BI :ƒúÉ(|i>{пsãz23Cˤеko}Óo z”"ß7ŸƒÞ¬ïJ…Ð/ÛÞæB­“”ÊÂ"0ômz‘ì OËø…gÀ(5ˆðMØn¶E©Ë&Œ§”Ý~é “’šk£ö 0ÕwüûÒ]˜ñý¶*æs)•Ì5$Cð§É¨õób!,ÑËø‹—½‡e“š ÃQ°’4 *" «ÿA¤DÖƒ>çÝûJ›LQœ~ÔOakœrúAj-ìôŒ[ø»©âûKÐö5É…g‘`òÝŒ_©]˜ØCân:#ÁÿÄ‘ôn_©(’[Ý w•ý†”&¯5 Ûäöt_x»Ò”ÇN½ ˆt¬’û±G<ö]Qs(Òïj·,q5!cõ¤¬R23jy… ÛñÕk³âÈÑtûvÑ׳È]ŒÏIŠ‘wÃSÜöëoäÏ¿T±»ˆ‚ïw_º]<¿‡_É<ÊF1 âÔðP2”xÈ\©1}„²§zð0iT!ÿÖ(ÊX¸³|å×hªGàñöpe3»S›*|QiŸ™0趪=h&PXD¨¤}iÿ´Õr©Ê2£;PC¸é¡ÿ·k¨ùåð¡Å6%Ô6÷Ì XC]b¿Ù`jmÔkÚ U‹°Gƒvoû³®£QŽãj¸)š4¼{@Fê‰f×¥nõjõ¡y,¥bJº9Z|Kçм–½e—ÇКúgsÚhžä¹h¶7/ È¡]~× —!´ß*.Ë9è…–s“'CÐ©à‡™cáºh™œ ÖD×ùŽ˜6Â^tëkž Š‘züìubüè3KbáÚbÉ4'…)½äÎÆ35s™°ItÖN¹Ÿ±ŒUÐÌ–íCÐìµ ×7Œ  jï%ƒ@_;TÜ]ñØZ†²$W•¥”`(Õ’ÊU: %—lÏ1}y%þ>L %{ÑŠtdPvüc…æ¨xÎKÕûŽ^³Pßuo´êr 4_î“r'°‚VYƒÖ›W ­pž9ÿô{èpçN_ËÎ1B¿²«tÐÍ'Yôi±zýëÍ•­¡çÛ4:èpCÏ ŸÌùëO §[;Dvø.ô,Žð™Ç‡@¯-å“ù'4ÐG¸3©ê}CdŠwúG}ä‚ }aP2"á!Ý( å‡ÖÑÙúÁp=½ûQ‡0ÒȺò÷Í #Ë/M£‚qo5½BЉWDYæaªÞñÏn ÌÔ 9 XÁRòzˆQw>ÂCÂ&˜ñ i®nÜ’ø6އërìë0pÉsÞYREzo éãþ-ÈPí¹*WVLZu¡ÛÑæÈÜUßl(„¬·u ÃÉ]ŸõÇÓÌäT{¦d°ø ¹/7¤Òœ†¼úO”ؾª"_Nkë 5àKü’½1‡‚ß§yNgI¢p@§¹uâ õV¶ýÚoˆâ÷¼/š)£d‹âp}p2J›~>ýþ*=ÊøþçŠr²ô+…Q~ùîk Wðxì¨ä÷aTt|EÚÃ~•¬µÇ­VªQåA¬’úõm<ùg@i~ÅÕ0i Ç•Õ_ RD?ÔEMBê›?-N¢–_¯j¯‡ÜЙAÝŸ¯?%"B}I&Û—O•Ð`lu°sk²{õƒ©Ð$ÑC¤]ÍŒ oQ.Ñ¡¹U|Ð Zœ"üýð>?Z^ßj<ýù Z%E½iù0ƒÖMÝü9±h{ˆÕ\WíÌT8Ê¡}’ÎéÃljè°{C°c¸NWZ&x§óÀ¨cõ2ººS‡}góA·S îvtWg÷Þ Ã{ ü‡:ü³Ð’õäeŽ  ü½\,‡„»ÇªFa„•¯ð‰´^óI¼Mou—¾„H…CŰlÜy (ã(ì¸F Åç«ã„áw“û% Èg½ÃµY ¹&ºŠéQð³û-˼© üÜ]h– ¼yæ"ŒÓ\Œð«Û¼ïlbÍAOlT&Y¾¥f”×(8 ¼¢(My÷=T.’¼§•sê˜ 6©¨ÕJ˜êÈ—„ºÉ·ñ1JÐp•hˆa3ë£CÞÔÅCÓ¿’˜¸†Qh~œRòTð/´°°|7©©…–T÷óÁ´]Ðz&ÏÊoõ´Y¸í¿¾ír2yêçò¡ã„Åž’ô t^ŠZŒîõ8ðÞ†‹õCYÐÃI\s‡»z£ÞZJ@¿ò‹‡?40°“pŸmn†‘ ?·#¥ £^¤=Rá:0VÊð=ÎT&t¨ª*ûj`ré&÷u>E˜ŽÆÏW»òaöÛ#w™OymáÑhquƒE.¥ì•õIXª¨É6Ð{+tVÏé¼#aÕkP¡Æ0 Öº•\Ô× aãLÛKAaØ’îy$;ì9ÏÏpOÁ_)”¾#ÿ| J-2Ï ë_»=$ìðùSòωö,:‘dïÔ¯óO7¬ÚmbJ± )òýV ¶•‘ªßc®áT'Ò°G×<å(ÅÃ~Jó!•oðYrÆÒ?pæ¬x»Œ&õSTª:Èì¸ÑôNö²~$Y“kGŽ7Ãe‘ûÈ^Xy·;ò¾¾&±4Œü–~!—/  r]¾\@aÝXºÒáï(ú@Ɔw¤ %9®=E©ïçs¯îE²Ì¯Š(;"v- ðÊ?›mÐú„Ç/±œÒR`DÅó7OÍŽ¦¢RôóºÇëN¨Òæòåºò?Ý7„QíjDZËwYP}ÊüÔ E!Ô¼L™´@±ÚŒgÏǽGæ²ã”Éî¨÷AnóÆï—hOáš”lF)ÆP†&M“ïþ5Q¡ÙýWŽrÕ2hžæ÷Ë(Þ-Ú>}þIh„VT+&±ihm0‘yž MŒ3ÝêhÛUª¤}CíyŠå#Ÿ[*˜¹MkúÄÔÝίUT7 »L_~íx%ôp|ëîË| =Ù Þçæ¬ 7ôxûiQèóL‘dR„þïbÿ5ÏàœíS_&¢©8±ó†ÿ¦ÏÁ¨´ƒ>UÿAOŒ:M][Ï1g¯ÃŸG´nW›*aI,›¯w aù[)U„¬:pÞ]–‹…u‘ ŽÿŒ`“CèmBlã çš‹ °EM÷æV+ìm~`õ›ž@ÃÔ‹¿×‘0ï‘=E¬,Æ> [sBR2#SÃ_žH6qzVzýRŒQ|ßýT‡ÿªT5#ÊŸî<üxm©ŒµéþM¹0ì"½Íƒk2¤Žþ{ð™©b–dŠ‘ù‡gû%dµëÿ¤ýÙ¹š©¯˜°"'Ý±ÎØ_äVÍÐ-ëTB^‘“§œ‘/nn–®¾ùw¨^¯Õ£àýùú·¹(¬~xrû×CzŠlxÅAËCÿ•JÞ†õ;Ñxt¥l)ç†,ÊÔ½ºúšè7ÊÉiµ¸'û |[l€÷!<®%ݦ`þI´nŸµ°Ç›"Ü)ͨ"ä²B¼‹'#&f›_ù¢Í“§/ º÷¦¢î·lÔhÒÞ'+©C- ÷T ¨]U¨°uuí ~ýKG}uGQ4(ðWùÃ"‹FÏŸØÙG“ðHñÆò>4ÓgŒ*óGs[ß©ê˜n´8oýv¶ãÀGÚç'Y+£UþËÙ·óÇz5>Ût怇 MLÙÒ§Ñ.ädŠŸ#Úw zÞUDÇ㋚¼èô&±z˜¡]Øä~¦6/¡kbAõÞÐt‹—NH¿üÝ=3q‡šc¨ËUÞkµh‘lÇdDŒ3†áÌk°Ÿô/¼¥†Èÿ³yþ†¶…Ï]޽Pó!PôÝW6(÷¾=Hâ %,Hnýz …5v»«A½ÏýLN8ä^ޱ½ŠÌSKÐtæäX92Õš›Bιqãâßð3±Þ%ðo+äͲQî°@§Þç%=(^k·xœ¡à­aK/ÂNC…ôǸ˜¤ywŠ•JR…jÉÁ§#òÏñæ£JïÔÑ¿ýÍŸÙõZu®©÷: ÁÕ‡•œ” /`4£@Óes6{š×ЬÆòL]'šÿÞgu;ðΖ~#©‹­ç 5Gî1^´} ‹½í… jÐÉJ§\«±]÷­ìÕuÆ¡{rø¢žqô>«}œ%ýšf’<-ƒŽ¹©t¶Ã0lب³ý®FîÙº>ÿ£§¦ÂÙ`ܵåå'G˜$-ÿÝcþ¦>5xד‚™ß6Ÿž›WÃ\ërÖZ1,0Óßñ¼Kª;‚•™é°|§n/1uVšx¤ÏvŒÂšBѾêYX/øÎ\¢’ ›7>jœ3ˆm'¢/w³¯Âî)À¦NØ‹ º{[e ˆ‰i£Ó‘Ðù'sõ÷™vÒÞE’ks£ûH¦ª¥yñÿý.¬ÿ®`Œ ©Ðõï‘UG¤¾t_êVÒæ°õŒÈ\@ºDQ}^ÿ|¤gð÷~%, ­šScð™ºz†î +'óÅø_y}{CÅXu ¹.*7,g!¯N´Tä¡oÝQà£XðBæîÊ (Ôªf-—…¢dÎ$yj(À+¦ ïQŠÓÎF5·¥·û>±¡l„çÅm?”W¬ª/R©Çㇾ‡3ù¿GE"‹-Ú©QTbçx–r.UŽG¯! ž¬ÉðûãqÕ“>È8 zj›RÁïÔ¯Çëñ|žûœën§‚Î[žºfaè:;8/¥ ¿DœûVå¡›â8{O? ô©#J^…Þd‰û/xœ¡ÏƒÉ<@~$TFê‰`Ðz£m„±†¾>nî<ñFÔ²‡ÆƨýyXa‚–‹EÁ”B¾§ñ¼Ì|ØV*"ä΋G®s]: ªåôܰ8r®—¿\–Ó²,w~Àj‚CÉ6¬W­¶8D [ŒÁF÷Â_ï óíÓ׈¦é["Uß/Lbþ‚{¨»ÙRÊÛ‘´º¿ðÓí5$ÿ¸GF!) )?|…©ÛHUá¬k>´Š4»£Ì$O‘Þòp@Á"?2 „ÏU,D&ÑùºýbÜØRgpYöèÅŒµK!ë«Âó¢†E¸_öÊÙç/å‘}1àŒé´rô·]ë.ÔDnŠ'·¡yIB¾Ð$ ß52âD3äo¹]¸˜Š‚Ö ¿½<†Â4zwb~½E‘?3—íG£Ø:ßñc78ñ ”¦·Ÿ ëö®¹oŠÒá³Ê— Ü­tÚìð'ãa×tÿÉSïQnåî­¼Æ6Tøüg}ë‰*½¦´YOîDå ‰äê;QUh6:K31§ìÈp®7ª+0¸’tð¢FÌýV2¶¨Épñ Ê,j…„ ×ø£ŽØ©#[f¨ÛviŽcñ!.¿Þ#^C¿n)Ú¡ñµ Ér÷;hªùûõÍÓ]hf{ìx"Çk4¿ñ)@W¨ -â »¶Ûв=YΣ˜­Ø,‹îr|xúQ·,$¢M–7C»í ÚÒ’œYR”B»ËEùiž÷ñd'pz]Eˇûž„Îâ©nwjÝËè˜ËpİÒµ³ðáMôýÔ ïp}Í]ýÑÉŽ|Wµb.¹åÀ_¢¿!>ƒ^ÐÓá-x°š¼&ïœÒo&äGÕz-éd(Ÿm‰yÓLÈ›ú"»üP”[éúÙ7òÞö¤r†œÚõCÍþ®­•ßS(æYÍ,û’,L!«çWâjJÈžº’DÖLè‹C¢Ÿ¬\ cÓÚj޾ÛC·ž“ýÉJcO 6 ò ÍÅËÇ8QÕÀÛ1W¯q¶Mb¬U ÕϧҸ‡«;ß§®»£f¤«Ûç=¨}Ñ©Nðg$êš¼ë_àD}ë³=BhÐÐ_>¯ÝlÛ.wÏŸ¶BÓ77ö 7ö Y»nyäåóh±ÿkÖì9´¼hþ•bþ¯Ñíœ|!ˆÖâoǦ Í3WS<1%çxhít {¨Ï ãÉÏoiF Wê>gjo<•p±FúÍ6:Æ™?O÷C§›YT!ô$ðá=;GÒ!÷ŸùUmÏÄÇ¡¶(&¹«~|ðêFh¾ÜEªÜ?›Š i‹ Õx&».ï!´½êid»¯íÑ3Ô²AÐqýÄ‘ëÆÐQ~ƒêîM»×€çF+Cÿ^ÿ@âš?—ùÏ<ÎúPÙò×ÐõºþùÓ¤FøUzAö‹1ôðížø±Çz{÷xãe}™1….÷ÏÂÀƒ×ŽÅÚÑ0Øš:<þ †ÚÇ^ƒQ Ž8éâ*ç­¯ù#Æ“fÙ¾´ž 0]<%`”´³©Þ?¢²„ùZÅûÌSë°x9[ÁÒ¬–\5è0†U±!îvÖ°nT}¨wF6#žÒoy#lïÞzî×K »Ñs鋲 H¬¬Î­!Š$ |ñÍ/‘4àš(…òS$?÷ö¦ªÝ$Rž;^ûËJ©ü3CÏïp ME¯ÃŸu;¤ß•;£Þ Êu»÷ÛÝF¦½­‘Mò™¸ï\Ty8½2&ÿ¾‹¬²Ù!J¸Ÿ†\ 5¬Ù¿CT`r|½ÎÈÏ\-çKôEž*Ÿ?^ŸÏŒ›ýhí/äOžÔ¾:„‚b+™—4¡PçC&õµ I׺•5%Šbé;ºª´(ѧ['ðRZ ï~èŽÒN3ο¼P&ÿü@Tü æÓó¶·QE¹ÄzÞ£)¨p<âê³ò¯¨¤<¢ï߇ʎëg·«P¥lÍ0âO¢¹Ïú¶ª“Š…o>G‹ùÄÞNⱾŒÀþHÔ:«ÉÙŽÚ›ŠÓ´k¨›YЛ €ú×WÙ-~¢¡õ8_ );tKçàBSµÄRoTÐÌž½âa¢-áö/}ð’D‹ ަ÷—Ñr>ÿžšn,ZeªL6!øð…JlšÑ8ÚŒåy+Úv í±3.ÚÂh—dïÇõí7Ú³fÚüâA‡ Vw7›?èH,\›Ã…Žóísl4è”ÒÛíøð-ú¬ðéó/o¡Yþó;r BÈw¬/>p6]|Do/pAW®úíCË„<š¿Cÿ{êþþ3gæ?\$Jýt‘j…ÜËÑ»Ô!›ß‘\ìG.d–]íÞž†Lƒ&Fÿãæÿ¬YЬ ¡EÆC›l¢›‘yMÁ.»F èN½jÔC(eañ±Šž„²´%ϰ›sÿÌ»ù÷U±!\kP­×ï¥&p¾Ëë±g­Yý3ª–F f~ü3ªn˜¢6âÒWB<¢æáöÏ\«¦;—<ëR–ÿ™wõÞÿ™‡c½r³"‚ãÞ;•ôm7TÌ «-÷¶Dt/t3œ¥·Î‡ß¬›q‘:&ÿÌ«úÏ\ª¡Sj×Ï<€i‹ˆÌ0:5Ñ{Ý%ÆŽ«Í€ÉŽð£©z0CQy ^½f­r¨ï‡Á¼SAMžh(,ÄÅó~™Š‚Å¥^Ã[µå°ìÒÃH¡V÷é¾1þc k}QÝý°Ñ¤(ë­ [£v»ÌG`ªÏ*ïE"·Š›…:*H<˜hð¨ ÷¸oË$vÞC2AªûúbHþw…¤8g÷’ÙrF3EjNÏ+A'¤=ú++–”éCÏì!‘BF‰„¿Ú‡‚é—Ìdرdnнrüè3d#9âêðœ Ù¯y­v×ù#§XöI‹cÈ#yÎéæÛÿΓÚVqûÍ厂ã‰Wnu¤¡iŽÓä ŠÙ‹=“­A‰YÉ—-TÝx(sñð7”þÕ}ŠøÊzûÔçžc@9韹 Õ¨ ±ÃkµhJò|b­6{Pùì°Þ„ŽªüÐ7ò‘¡D¼|žö\a1ª‹vŒ‘×H Fþ†ÝD²j^cLUÌ@m¥tæŒsY¨+Øk)ieúJl‘žã„|*Å&Æ«“Ûhúqd^Å\ͦ3µÁö Z•É{¢\Š–Ñ¾!#qÊhE¾y1:{­oЩ;þË¡Ée/±l´Ë®~q3&íy˜¤—Ð!„h—ñ¶õÿrøy·t~ì$_ÔrA›Æ“Êô( bN·¤k;•>ï]™¡ÇRpçW´ ü¤5ªmºµ¯/¾÷¥+‚ªçAëóûL ÂçgزF6”ù •©} ߆CÙÞy^€âwD d>7¡H¯5¸CÓRh¤¾›&rP<€oI¥éJ…ÄP~пˆ~€Ð3=øzˆvïC­³»t«£ü0¸r$Üš ü yç|dd¤évÊA«D„èŠ7óÿÏ‹š¯`Xƒv¿“'h³Ç Ãü±r-ot$0”æ?™‚Ž`ç-®Ð¡—åRj/\þ5œÐaøq'Ù=:ŠÂÏ7_†Î Ní\ešÐ¥q…QH~0 e·9ÝYIv@ïeuÙJè“uœù² G u1²À` ÏAû7a˜^óžß)i‰iºÍH cå§V4ŸÀÄl«­I;L[•NÌúÂ,³úyíp'˜÷®ûþIX<8ÁùÒ˜–ÒL^œ „•^?ó™µ°ö·Šñî#?ØÔ÷pvîÚ„íü¼ÍÙMIØ=UõÞÞY‰y¸ü$mÕãzþ’ž¥ürùû$Ç5Ɖ¯ËH)/NwgÞ©ôïˆýy»ˆ4¾&O—e^ ]çäü+C+dø`C!W“‚Œó4$¸Ïbÿ„ÔÑÇ®~Òk½Ú¬§ÆIôhþ Ûδvêl3²­¾s¼Â‹‰½yÃ:ŽÈUs,ì>¡Gñ”~èNzýùtB¶D7Ÿ ,Íç›s](¸?tè@> •rJyh5 Hˆ¾­•ŒŠ=O<ï·Š™ÄÖ,Çïá!rßæGμ(­m1õŦebÍ$Üß*àa*Tßçxå"ÓÓ>ÜñBó¿¥ÞûˆQIí Æ‹·®¨|fÉ-¬+UrósÙÓ5»ó»S8Pmû‰v|vj¸¼Øûc{‡àà Ê^Íë¨u鯉èJêзÕv¸ì î÷ŠþP?â÷õ™þR4ô;øÑú« ?9X¶ïåy45KØØw@³‹¤IuÊ+hþü0ÝŠhZdgb¿–«¾B$ˆV ìÄ[ DðáÎ#ªéÇh3ºò'5Ïm5®›Í‘µ£]âÀãs-ОEôv¾à"Á‡ ¯É¦Õ úðÜPþö_>üGzñú’Øf/DV£Ù¥±‰þÞËÈýÙŸ¢ü*l4´ü"ר„.zÇ—trß þïíhŽ|¨òžÄ@{9(cÛH–¾`Å©•ô¼¹P@«Z¹}÷ ä z[Û‹@ÖÛ ó#ã‡!SV(H:2JoYD2@Fưž»Kd¾:+æøÂ²Ï­wJuí@Þ¾ã×ÒßzCá'ÚÅϹ÷ࡉeÙòB™”ŸQªŸ3”›´/ž<ú*œÏÒ…ÂRå½ßùU¿V¡êµõŒú Tßûýä¦e$¡7ºÜ8³– 5zs™ uP+uGõIA0Ô±P³þ.üõVÓ26“ðƒèÝÌÅéh ïåÛá„f…?ÓƒZ÷á§õÕ8þYh¹±óÚ å´6?z÷W½Ú鸤 œ³Jî#p£O>ÕÝ(b¢¼ö‰À«ºLGœôUÙQv3‡tíkRvÞ0$¦:ÿ*†KêÉöŷèǽ˜oõ{a܈g¥±ï Lj­š¦è:ÃôEïå¯DàOºñEƒœY˜§¡"-tôÄê;ãÍ`1Æ6_#!–é^²Ô÷ÖÀJ¶žé¬y^ýô˜T6¬Õ9;;YaëäÎÚs2üý cèÛý ‰Øïp½W{ĬµŸãž}ùÛc®YHZÕü‘úë=$£îÓÔ”1Ó¦9s H•:~Äð‡ ÒÔ¾_Øø‚ôoçäy·arx]èÏ[d Rd éKBæ;dj‰éJÈú¾8epé<²SqI,Œú!GúøJf‘'r'Æfe\¼‰¼sßéç·ÿ"ÿçßQ=-(øR6PÇz…os 6l è† ö£0k”xü$ÙDÒ Y:¦)1'¢tÚ§JÍ£(k[IÉPN”6eï&%*0Ä'}缃Jû 8¥+PùÄšSþ×TéX>æÑ|ã‹\l ªk—‡N¡Æèãi…¶bÔ|7,´éwµÆÉ{òéìCï>¢þK¾—Ž— ÐðG Í7J4°$l²hú}6×Ã]ÍÉæÍëƒ2ÐÂäë§¿§ÑòSsÞ]Y´¢?–®…Ö·K*níóú—CÃîpË´ËXÔúÓЃö\^oúdÐáÓ{-ÿ—ÃÏý—ý”0à«´”û^´ -ü¢ü1ºßÚôaGÐp½‘Úº£ž¶ÄŠCsÌæOÖÓ¡–ÈUÆÃ³ ªh<\¿~*ÈÕqþ”Ë­öN¢ ðMÄtqJ|šÐž»…·vŒ'Í ððy½ˆQ#(2jb½ì%éÉÂÌ9ìPVTäÎS.G¸ß~±ÎX6Bž¶Ü¯†åŽ¢È?aÐ,*s•Øhõÿç'&t¼MVJõ7¼ªyqußå„ÏÐ~©!q¢7 :”78m~¸C‡O²×JÌ-èp0Ÿ.¹½ ÔÝ+²•>ÐÞ¼Ìiõz ڗ£æ" ×­O¶É&Cç^©ç½ç ³óŒex|t-Ê­<:uºu¶.ÙCÏÔų5Uð;G’üZ¯?ôÏðµæò ªEE§é*Êdu÷Ø€‘Û<»Îf0vf™/z|&ž.Ⱦ’; Ssò~r{áχ›‡(ù/ü)EÍÛ}e°0ÍAÒ¨ –>ÍZ]¯€• @¦ó¡Ê°ö¥b™›{6þÏkTȆíkëçNì?»Ñá5áÚH¼gcÖGz IÂêqÿ'’jÇÊvXL 9›QJèž]¤$Þ±à}ò©è4¿]9V‡4jåy›J‘.©üÊd<+g&ÿ»¸¿d ™á>ÕÚš³=È\Ì~íKò+d5‰6ÞlE¶…æóOtÚ=#õÙË)È«åøîÏä*áŠoTôDž¢£‡ÏÅ"ìýÍ*¡‚ü/¥™îÍñ¡ …CÍ‚ %eƆŒ£ˆ'ᘺ™‰bçŸ|ŸéG‰€¼ÃÃü1(ÙÆ%­Ù‚Òâ…»Qæ¡’—f¬Ê.ɓמ‹B¹'‘êô_4PÁÔ™îü TÒº¼Ð’?‡Ê®³7² Qåˬp‡V*¢âáÛùü.O­?òèFSgWO0|XwJê“ jÝ8i{ÔÜu„®$Ŷ‘¢îØì@òEÔÿ¦µTz1 Ó®J²è}FãìûfW(³Ñôtœaµ¬šÝœ{ÁÐŒæ‘çÒ5{Т„ñE0Znë×W}@+õ##óÐ:¨ô¢Ëc ‡‡…Y–ÑVRífÕ#´ûpæEæˆ Ú3“j°{T£Ã‹×å±wÃ^Ý/øíôù°ãL’E2úÒ‡ò•ª£¯Úñ'ßs‘«oTÒmk6ä¿ ½gïüs=êÕ5æ…O<†Ê‰Œb”’Pšß1,Áå ÅTT»O‹h ÿºA^H}äXj:I Y<¯bõ‰R üèÁwódÈÜäín‚ ö5Ï"Èø“ëtÐѲ*uN±îêB®õŸ3LPЮÓÁÑv“Ð;ý+ ï\†ÒT¡ïA]PVóÕi…Êë/É¢%ôÄnÎ÷ëaË„ïÓ|úXõ¨ª¹²u4½ª“X¾÷Þá€ï…52VCPsö̶Ö57¨Õ¡s¤Š†º7×ø@ïzšâø‘®›qËô4j©m©JBs_Ùƒ'Ëðsã¬SKÔWhÕciR˜ym> Ã’«Jàz‚äÌá¹¼yÈ>t¤~E€¢kÄkèùPɼ–}”e¯Ã[ŒÃçØ`ðû䥲66Ò` 6ƒ‘UæSÔÒÎ0Vc“¢ÀíÙVt†îÃTc=!f>ƒ?Ôcõû/éÀÜ¥ Ÿ×•Ù0¿˜qƒØ†µ S{߆¥\Æ™°b­OthÖhôož‚õ~Åô»²K°Ùöjn¼ÃþR¿‘É÷æ€Ý'ç¸6ćðþÑcH’{£FhešgÃM"™[‘\ùÑZTR*ÜñkùáTê6wyGk)Ëc&H—Ð×sŽ’—È>g “–ŠÖ«[%È,z‰~]xYuÔ\N”áþ·N{‰|Cù@§Pró´SÌìõBÞ¯Þ50& ÿÉi#›(9T.‰cþ¥ŒÂºª¿~E¢hQ{ØJŽ—7˜£ärã5=‚Ÿ¥n…pº¢¬2]úëO(G+åw’ÄåW´dµPqÁë€ËÞ‡¨lH}ëéþ›¨2{ÄÑ_1Ã߈ÈÇÕSÕ©©ÛðãÛ~»¦¨ù;FYû'7j·Ë{ˆ¨[÷|0b~õ§$w¹~E#ÁqÖeÍ4q_µµ#CÓñõ{ïŸEs^ÉS6•Khá,}E™ -ó¸³Ì‰¡۳ɧ^oÐúniÂðè³9Ô×ÎM­D»4®¿§·yОÃUä‹:¼Œž4û_?ãäh_Æ€ÌUåÈÖýhqô\7ï=äßWâûÌQþúí7R ›ƒ_‹‰§3š¡Y†ÁòôJa_;–8ôAå“ôDí^Pþ$mrÆ;’À ³ÇÅÃPr‘¶QzÀ Š4ÈO×ßúÅ¥¤â䇡À¢o'â$ê¯3þ ë…₨ùtY(3\ä—z•It7SU¾BMæï[‚î*Ððæ źf4“ö‰~ö‡Ÿ7šÃœ/ðCËÈ ½‘´)?T8@ðMûq•åÊ=¡CàÜ߉[»Ðá¤))“F Õz¶Õ ½‘ØïƒD3¡G:Ý=˜íÑK‡žº?…¢ýVLŽÐññ/{¶B4tzI)qr‹C×ÓV ®†ð«{ãæ¼o5ô\yóÂaÊ~+^OÙ¢f~§×ކ,0°(lgFÚ CøRm}Ëa„/Aš&7ÆÈ–t΄=U[Èg˜ èÞæ¹ RkSïÀü>÷?.I°ðÉh’Zû ,>h5ùxV4žþKû köå%yª°‘v”V1Ô¶)¶W(<‚ñ+×8!ÑD‡UÌß~$¹ý–¶˜šI…ç©„#Ùì{-´¡BŠÆ–ˆJÁ\ÜÛBk¹<–€Ô»òcDï–ÎêW¨™1+2\ôrr{G‡Œß4•DòÞâ>Q–ÃN¡‘9Ù©‹¥‚YÑ$:+§ÙF²Ÿ¹¼íDö$WÏr äK¥t™F®ÌµTÎÝËÈ“ÛüŒ»ÿ5òÉÝÿ¶ÇîòûYÜô›=+­xCì) ½4>ß0D‚"Ö–‘ßÖQLsõ3í‘ï(qÒ!m®%ãÏô=DizþU[ë”9ÇSÆþ¦e{Åî{Ô Ü{?oõÑ¢‚QÝIę̈¤ŸÏÚz•ÏOú| ¦G•w“!+W>#Š=;ñšàÃ?Éçrè ¥ÜÙbþÌ~H'ŽZ>….F_Pç(]ÀY½¨GξôÒÄõÇR¯†¬Å aonFËül|@Œ¦×¢ã^Þ}‡fþÝ׬ÅÑü]¬Eè󴨟øÅ¸'“ì»hëƒVšFQ´A†hìkV*܈6#-1×|ÑßH‘<’C»wc!;«áhÏ4°÷VQ:<ßžQ¤Ÿ"px†¡E“ô¿|Ø*jxô+úrþxþbÀM[_—Ëg!çNv[›üXöRæc‚Žo±% YáPç7ù:=Â*§ Õf C©]§Ps¹˜Í=°v‚¼žŸ%Ø!ûûþëd¶Ë+1e{@2TÕ 2K!ýýqÝY®çîC¯þh2ô("×e¯¼6¶#ô r¢úƒXÈ>A±Oþ“…kP|NîCyl”üðw ÚÊÔ¥•Ϧ:@¹ì‹Z¢¨· –0[‚J%Ý.­H¨b"¿¸KÏ UÓÕû=€êª€ßfC3ð=Πè >ÔÜbL¿p"jk^©eô ünt¤;êsš›.BcBjòṓÐìÊà´ø5~Þn?qFZÊ>lzDCëÒ¸&…>´{æt°Û®A'ѹÉâ@Bž;ÎóJñ to5ZY˜ŒÀoC‘%EIèï ó´ÿ ƒ–kªó;0Ô“ÏI}ïŒx'óZ…}ƒ±c/c<`B0»þÉh˜’5áK—‡×ûâ£|oa¶Ìt#õž7Ì¿9Ê/AW óÖ¯Ú,­`éÔ_ÍÒXÞÐ/2©Õwü:òF°~ö6ÿ‹fØ4Ÿ‹”‡í«¬óïag°»qÆõµ­e{³¬#‰|ˆË#>$Ýk·.x[ɺº0?ëBŠ&Ú¼Ù2ÜÛZ[¦Ìs©G^úzzéÄ9¿GíBW—?£+qKýÚK‚G÷µµôë½y‰,“Õ ¥ûq¿âùp^Žûx ÜHÔïE7r½¦¶úxyí? ë"?­F1«M ŒègÙ>@¡)â°ŸZPT†½P(ÜÅK5{ô®†¢d˜Š‚*;J;èIé-¿DYöã‚Oêfñð¢™}*Õs”ÿ5‘ÿÑã;*6½}õeH•çåInT™Ò•2•nCl ipæBuß׳Ï%“ð˜JÊÞV±!Ôb³6ájCº”¬£Á~¨Çåšd*hpLÞ×ôÝÑjwà,C“¢HâÉÅÇhFI¢ÕõI Í•/\Ý<Œ7SžäDËj7âÔ>´âé}hµˆÖÊ}sþåP'£}ûŠÚ}ÑËê’pF{öãÇ SÑ!XႽˆÑÿrø9¶6Ý( òŠ´ÊŸ1¢µúUú–ä{¼\d3#ÛÃÃñ±D'á—ȉÛ"EÈm_O1ÎÁ÷F;£c+P¹W*j¯Âc(§ç ™ˆÜ ¥š’Ô|n¡8µîÓ°Y(|ùøÖ!ÏBW ÉX¹Õ23‚ƒ tùh¢m¡¨â.}Ãg(ý-ÒŽ~kP©IúݯGjìBc WÓ ASÕÂúÍhª`ùæÇ*?mO,Ž"pîëYþÚ¸lªª÷C»ê8qIB^ìê¿) j¿‡ÝÊ# }óPÃîÝgÐ,ÊÌÂíŠý×¾ùCû±Èjï¹{ÐÿËäç"+th×-hC'óG|T,t ìæÙ»¹À/·µ‡f_º×d­0"ôæ™ùù} S¦ƒT0¸¾X—/ClÁÚZ¡Oa¸VÐÑŠªF?rÞÖOì€ñêƒÃ¬‹k0ÅûàuÁ76˜ù>šûTù1Ì}I´ºÅ g4éjlÁÒ ¶J°¼ôòÌ.X£-Ë?egxÞ.JÀÖÄc’–é°“¢ã»y‰~d”Ô}G’S×{¿AR²ZÕnZHVµÙ7õ™)¢{Ï– ãÞ°ö©›o!uñ§}ä¿…ŽÕÌUºqŒ½x †Œ‰çË£^Ìá>¦›Íһȑ¬r·ÇY¥öL\xúÙ:£¾ªmô {,·Ã’xr•¤˜lÅí)˾Si…ŠòЬ <ðm‹?Y" K#û¯/æ@žÆÙ¸ò³Ê}d&ª÷D7drV)\8œé…½dÚ”œÎv0­ÐÑÒ&xÄÃ…~´n®$½™·G.ô@vßû7Õyj/Yøf“î2Ýò¯-£‚oVn)KF¾„>úÛÁíl”½öò:³låÁQÞ´‹PPf¬s~*í¢zË/9@•”×¹~cP½ÇbñêåU¨î<|«`T¾§0ï¤%ùCÍò×ék1'¡Î)A±Ñl êÇçD–_Áâýû.Å?ƒ¦îÿl^hÞVZø-Ê BÉTÐêlµÞo mý>5øA‡³q~dgté\¢(î¼ ÝºÌ/“X 7è…­ áüègb/úMèmSm¯\xÅùUZ$ÀMFˆq0~댖Ա’ÆÚÂx(Kà&kL†µ4&=´„é2¶'é0Ë2w¥BIæµ*~XV]‡…×í»1’2°D™)H,ËÑ—›<"aõÈ&+õUIX›ìþ>õ6* ú×NlÁVוmá"IØ9b¸¿ä„yŸ“ðšOEâ%‡Ì6¸'…ïmZÿ]$»!¼+s¯ )ÎÆþ¡ ½®Gɤk®"õ5òd*ßP¤M·Íü1«‹ ‚‰UâíȘ®ôu÷ùIfRE–gúw. »#[#}½¢Â< ¿lf¹˜ÔSOi]E^F±z_åYä+Ž:ØÆº‰Ï;¾öT¡ÐÓ*³Ú#%(òƒÙÓ3‚Åíâ—ªÃDQRþÓÆ¥Ÿæ(-¿¿Ž¦¡eÖ£#¼§‡ñpç5E"¦&”/y¦Á5ƒŠ_ê©V IQYúð'ÉÉ*TYZÂ7ÄÕwÏ"µ'Pýí£7ô&wñع£¯ù,=QËŒñtÿ…'¨s|JbêPÏÝIžú£Á¼]cí…F­ïC¾/Ç¢)é›.ž* 4¥¡¥©ÖFsË7¯I]G‹çb÷lŽè¡e[¡°²£•(ÏYoE=´~Xé”ÿ8ï_µ¸Wš·¢]²ç%#Û$´gÓRY~8ƒAºJõ9úÿËáç{7´«.a@±¯éŒZ5'åÔ“ž‘øªÐMvØ>–ºJ¶Y]n¥FÓuÎИꕽ®¤ßåwM¡$ìÿ!ƈ( Vɺ ß²ž<×{E‹~%P0HôòJ äk©_À5È ­;ž=Kx­Oý¶ \ý’>:C©›} ‰ë ¨èßbµ»Õ5{ Ê<ï Býô|lÎÒIhºã.©Ùª ?UfoßÿË-±j+oÙ@ënŒ÷ëFhæ ¾m:í˺e­¼ÐÁ{ãõ§vah¯á,ŽÛé‚vsãw7/CÛ´Š:‰¹%a‡Kî/Fé™þl€öÑHÔèȬÞac‚΢QöÚë÷àÑÊóŒÎ<辿ÓóTqz•÷¬í='}†×ý=w`À®þ‰¦Ûm¬Üé“N´„aÄà8AÕMKL ׄñ3ú…'Ì5`2_XÑŠ4fNpÞ1¬‡9¹nƒñ¿aA(3ûêÂbK’ƒæç«°œb:0«Å¥Ñ»S«°ÁJ–Ce2[ 9iW{aÇë2ÕÁ$ÊîŒHEM½²“Ò¸gÔ¡‚fc ÉbÌn†ñ"Å9o>êt¸÷Dìý탦H}‡S–ÕiÛk•L:A&´0ñîd|dDëÈô—ñ^ÈL#2û-¾]&BVîüØÚÝ{gžÊ¹A-ÂL ÓTHÝô§Þ»¾ÁoN·(äèo:ÿ‚r?y†œÈf†¬Ï¥e™6¥íà{ÛˆÒ•½LºL¦ í éþÀwTf"'¶/ÑÒv“(ƒ:!£CvµáªdóŸO¾y¡ òN¬<8/qŽkƒÏ6Û@‰EÐI!ç‹P*ûÄ÷”yG@Ùô/×àÚ(ïSx%=ù^¤ šXÀàúÇÃ{ìªaØ¿=á£çÿÿ/FýÅ>¯{<µÏ§ý„‰ +ï¸Ö<˜æø:uï™9ü¹ð|²s‘æú"ç·×­`á˜å%WrZXL?/ZüžÀ­ª¡€ûËs°Òüsd0¼Önp¸»iÂÆQãÎ]Ž2Ø‚ÞAû“9ð7¸øt°á~$â늿Z‰ÒÅFÞ½À=†ãzªš-HÆríž±G3RIó »²#åúg=‘+^HMôsÜ%Ai•"ßývBúª¦ïz­ ÈxÖ é…þ_Ü'ùöîLÀ$²j,›{VlÎ9DÆf·‘½%Ãî¸ çӛđÃÈó|ª¤ NùÜÞ¼l?‰Ч‡ïÚS¡äcÚ2Ê9O/U‚b«»4Çr ñ`[Ñ=—§(M=áÜô~ e:‡¨ÜhºðpQƒ9Ê¿“ª ¨bBŧ+1¤•ùuJwÍ/¡Êß7Rþä¨Fs‚U–ùª—\Ñ{yÅ…4ˆºß§@­'õ7$rÕP'ƼV=…O+öËçv5£ÁŠÞ55“n4–Øc.ÓpMÅÿ|Õ®E3]–6µa4¿<òˆÈ9-â?º×çÍ åð^ýþq´’>—xí-ZûW« Ú5þË¡ÆS–w«¶h÷1^ üñ´g‘ûþ¡P^ØR(kéü/‡Ÿ{UE1 \÷$Ëδ:Õo_q[y½œ¤I÷ÂÖ»Ûún+ŠÐ™%—fu~´Å½t†ê7¦.âLPA®™Æ¾žel»ãÍ3P2Pô 3—Š4Ɉ¡@:èòÛä=&-<ù r³Õ¸ÂM ùõ)Q¢´›lø%Ü!ä[a¯’ O¨ð^p‘ÝïEÈ$£±d¯¡>äÝ«~4É×D“Ÿ…Ÿò—­Øyy-eÙ¿±Üê@ïñÝDÿä {Ôº×Úy’ƒÃMu#Û sÝ,1òÛ'‡Ïh¢@YZ½O‹. °—Y7˜¡ðßÓÅwÂjP´sŽþ7¯/Šw‡|<`}%©ìJ{¾G ÔÍLú”amŒHFÙ®øÇ(g.ë›çᎠZµùß¿A%Û[©Ã¼Œ¨|µ;®Càª<êé1_ù€H~Ov‡à÷Rfû먡+Q{žàÃñ¼»*Ũõ¶Ë߯ê êx ”>cG½3ѵ¶[Ðàäø]ôy4r Ô¤ÎØF“Óµ¯ÆFGÐ418b隥E Hðm¡y*?ü@‡£9<ô§[ñø>7׿KgÐÊ(ÐÝ£‰ŒàÃÒ¦Ý,‡bâ{žI¡íQë͸J ´‹s7 iŒöô×NE½e&øPøB±i:µ·%¡'º.dAéÙ…¯{,¡Lg¿YÅ£y(ÎP6 •ƒòÙŠ=á!¨ÈéÜ[ò<*ïÍpfPC•Éš´ÕÐÿ{ñµªöUøn8­¶Âk 5 ß\Ô¢ ŽƒX¢#rê¦FûȦáÇÚ&eB-4í°PôÜ&‡ŸVw¸"|¡Å`èN/ÅUhÍ0;r+Ú8aâù:Ö^w±°ÙB×@-Í-èaµã tY…ßü½<`€5è¨ý½»0À ÷õ5`˜æ¢³RU3Œd}ÐÊ}Æ®¶ïù¥?'»E#¹`ÊKWß@=f¾tšIi„9™dS— ˜Ÿiùu¨omy$o³ž„¥~Ã.úŒ#°röSfnáMXÝe"eJpõŒ¡fòß°ùA§:ä/Âöġϧ¡vƒ_úm(‹ÄÚ—We«döóBm²0’f~û{ñt’G–×8ö)Ÿr=ç>p©^Ä––u!Í·Žg‡ ž ×0+Þk6‡Œ\¦Ÿ1!S7…‘êß0dþiAqu‰Y·NÊ»\º‰ì¶#ËÅuW“4Õ²Åǹ7|Æ úÓÞOÈšúÒ`VƒhmÉæØ}vG`ñ˜ K\ã,ÓE5õð_…U®'u®¯°îÝìð›ú$l±É?½øUþ®Öšÿ@¢;:kŒ2÷„vI×è‹îyÿøGï>S$3ØI™IR@ dóç®H9(•²ç*RmD±#­e^O“YÒϹJ”|MBF»n§%Ædj¡­­Öº‚̧žÏ\A–ÞÆgTæÈ–¦ÏÖJ:Žì÷µ<qBŽk¦ÏÜE®§§úmx,‘'QhŽú¢òÑYkçqg ¿é Ûéç(f²)M€B‡3úü\Báþ³±\¿iQ43B†ßí"ŠÕ8!xvþy⟤‹Rê¾ç’¥Qz«hÆ-le[¿ôA9Mö}üñʨpìL(Ãò,**r9…ʞퟆv9QÅ»S÷*ß;„EÂÙàIðacã•õýQ¨¡öL¹TèÁ‡stÍñ‘¨•¢ø2‚_u^ú’nò žo5TG?S·!k4zþ£¶ÖÈM^p hÚK£i’dI4+ñ§¼’ŽæÍ×{[­£Å¬É ]çgW  á"E+Ó7ÔãG"Ñ:äñ´xŒÚ º¾¹=Y‚¶G¦'Å. ]Ìâ' |†öt&›Óè@(}¯O(8^ ´zþ_>¬Vîé©D_³L•Zw4Qß™,/ÕAö»ëWÝ8<`U©h[ÿ`*´ñrÐËÒ„ï!~Ø÷"Ê÷ª‰žÚ ÅÕæD|ÊßâöÕ¼2rn¼¼hZ™¯ÎÓ;Y=ƒôÈ—¢°CšbòÈv¤ö»4k›ÑAªr¾LýóÀÿ÷â¼ñ @ú³fò¨’|Èü´TÕÓL9çut\ ¿`F¬_dŠŒZŠ¿R…Úп"qð-†ºè|L*”&X«¬ªÏB™—xša_;”+ÙHÑø Bùf€­"Ó~¨(Ê“iÛÇBðâTö4ý7B_ä{vªoQNg6Ã÷ò·¥s VÞ]_rz/ÔÓX𰿀äM‚ÎÄÐD49I- ÍïÆ>Zk¨ÂÏ’§A?¢ïC+ç¢àì/ h &¯$œS&i¥j¹úÐup"Î0-ºO”y;× CoYbˆ]T#ôÛüâÉ´3†A–0½-¥zE,ä'!#Ò×”öÃè\™î(%Œ—Ú·¿¸î“ÍÉlk¤0³¯®›Ø%fý cÞµJÃ|¸™ÖZn,’´Ë*êÀ’ѳ¯­{ayÇÇ÷ù7¬PFæîhÀº¸W ]œlRg¤ÔÅÔÀ6Æ­ÊÉ<…ß×´¿A¢©ƒ¥gʶ$øj”½7’šÓÜ ´¬AróÇ|’HÉõâ'sÅ=¤âª(Ô?W[ÁÍ ?Ú;K«% ñ¯Ò&²;rhz#Èþ­¨šŠþÄe…æïb4)¢EÝ;óŒréÝ÷lgÔÿ—ÃÏ\(Æa@}ÛÕóîËxüžaJ–c(rWEë°*6Ãæ†%Õ)FèP[®=âV ¼kµ)²PuAë>ù€:”ï9Q-^Ð¥¼ýGím„â#ÜÓ—^éAAq ë«‹+×ÖRàÊüÿy5üJx d¯J„ù¿€•ÊͺtsÈçV‰L…’£5v˜·¡<³¤ÿx"To^‘œcöºaªm‚Иäí@õšG¢ÍÅNÜ„95ÞTÐúQsø:Í´õ_¾M]EðÚ—H—œ®ŸÐþM³È¦ ÚeÆ‚||‹¡-²ÜlPú$´‘ù¹¤R•z¥”°êœ.´‰þ–ÿá1 måÄZR=‹Ð,þ)÷ÙeèÚÇuЙ?÷¹Ãš~±¼21ú, ÝÅÝã±KCÐûynŸˆÜoè[ö?Ã< ?ô?,ô¤ÂÐYI>oëU‘t“H †1å÷š¼ü0ñA¤]¦iJë^^(?5 ú9•`ÞÑ𜊜,,l>oäÈKe±A60+?Š æRÃú¡ìLíól°ùóúzûGø[§eP>DN‚§$w\‘x±†u¡} ÷øñX‹ÛA2ãZÛêHÞ¸6»*ò )߯«0w"U®çwž²y¤e–þ’Úré³ý­=¡FFÝ— qd*z:wêJ92Ö7r«º#ËŸvõþ#ÈöNJ9Õ~ Ù¯ïìÉi˜AŽ ù&"­ZÈåsd:qÜyâ uª_ÜG>Ò¢LÎ ¿&©WÂT; ÄΉöiT¡§ÁVÖ9.»tï› 9Š¡ùÙ ÷#vÌ^°Áƒî[Ên •™KÒJ¼WÔ”=·ö‰öõW”“ß}÷¬… ÔjwµÔPÉy—ö¢?*ßlΜëîG•+-Ù/âFuvçf>ü.%ÐÓZ†ÊN>!®º’_G­ìð7Ÿîm¡ÎGîA³s‚¨¿`¾¯* RòfO ö™ø¿G“üË™ñmwдæ±êã4kðø“g æ=É÷¨ö Åêä;:Ã<ν“uüÇ´²øšdÿþ Z‡ü|¤¼6ïéu ÑVé~gæ±·h÷Æ3ÕˬíiÅgí ÑáÉL‘ÌtC¶ù©ÿòaùîýŠZôu˜IŠÜg†ÆIéûûpL-{«å<¬¼¥ûÜ~ï8´ÞT–]–‚êNñÉó .ÿlþ¡"b*š«¬oÛ!_2+NÇ‘ ²ûâ.óÄÆC&™ª‚Òñ«Î&îšü:”à½'§¸“áKsÜ@ÇøB9óeRdN½¶‚´ î>£{ ãO^ës_¯}ïÄs|mGQéƒBýåK…Ÿ„ œ ü¦Œ²’‹¬Äq~™ðmë ©ÙV7”V½þ?âÞ3(Š.ìÚ%‰$I$$ƒs΂ ’UTDTATPDÀ,A‰"HÎQ@²(9#*9ªœñ­z¿ªïœßç×®®šžš©êk¯µºw¯mœsªÂæSÛGC5(dd'„t1B{%•›;ϾhL†Ú3|2MNP÷B(!ð™!Ô­jÿ’Ðý›{=¯©HA³PY‘‰·>´2ËÝY<m¤EÖ’í¡ƒ3°3n~>IÉ>­¸‘•Ï¿‡®åÉMò½ çUÃk_Eè ’Š¦ø Ÿ ©’ø_~‰|aá‚¡ˆ»™ÅOaä9ÕyaEcM˜j‹„ñ̬oORH`ÒìÞå¢P>˜æ ¿V; ³ƒ('²œà›§—9 ·=|ïk]^W} ØžW÷3£å—¶¤`™ßXÍdù3¬Ü·3s'«5Úq'ûý°þ”ª’Å•6¸îƒl'2¨’ hÁQKòÖ÷»‘(f.ú™™4’HV;Û¤ ¶Û/´kqWÓxYП÷¸;‡ˆ™Ú7)3dRÏs"u›¹ûÃŒ7H«dõú†±,Òßt°‹âTAFéîo#3?‰Å!>¨¢YD^§Þ}zÙ|ô…o'÷à¾õ}ÛZe>ÈÕ‘#7ÈA…<—׿µÐG ŸìnáÉ‘`ìV{}î4 )ï8¿{¨Š"M,V%Üçðà{×]ù)ÁóÖ[Ò¾ ¥Î½sS=Yˆ2>[ɺ2ý(g¶Ï­_# „ÎÎïÛ¿ lDPœ¹uUö=üõçZ'ªâÉ]ã³”¨Î&kÎÚÛŽš,!½vÊQ[a³€þ±+êž1òlîFý’§7û*³Ñˆè„ãë#äh"ÅsÒ’MÈ6¯Ð£Ùk™ƒŠh^ö(ã5Ùy´æÕRèD«=ËEéCh­§éf_ômb[†Ý;þq¨Ø~Ž[eRôùXKЉŽôD±Ë$Á—Æ\[Rùáð·xòs¼Þ‘rWä;áû¯šguµ"WÞîÙ&9°YýUçÅD(ô\wHþ½y Ztø:?…Cí'UêUKÂu?a&Ãñ *ô·d^Òã¦<…;_áqðâgÞ@(âf›å:vðÖ}æ‡Â;–'Ê÷yýáÝ‘ïk…ð~Æ–ín=”9z¦sõUBµI·Ù»€ú§"æ¬Ö 9ª¬UÖÔÚ\»'tª¡£ATó=ßtÒÏUÄ>‚®›äÜ)Ï¡»a¨aêÛô$Pèh_;=)CIÜnнÓ}…Œ ºígF-³ «h±Aùñ-ÂyÝå‡N*AWsŠ„¡)á|—¶é‹ )Ðsh-F…b zy‚SƒâÆ¡Ïðû{…°$èO®97Þù/Fˆß¾òyûÔ¸ÇÁ VCJ…ÂM=a}ôÑîìúNØŠ.ðÀo·à÷ås …«¤H¤MÔ ßb„Ä}É“÷ÿ\FR·‚þL±7H¶•9¬ajˆäZeV•!…ge/Õû·HunfEp›iº^‡Þ¶°Aº‹OG$Ýý‘AT0°¿<_Q1m¤0!“"“t¤Õ,2Þ<±^À¬ LN7  »÷»ùéwç‘ãïÚLPrß»¾š­‹ÜMÓÂrƒg[ƒ*þ 3ò)}=·ùcnÛܺH†‚d“lc…i(ôìôQŸ(â=}æÍneµ-R¹Z~ÅÎ0p}õÊÄC]<ÒÕ¯rQ².:œ5þ&J›}÷¯y2„²ÂS2ë$ŸP$%¾ßÇÃÞj¥Ù¾¨x±¥ìWá3T>ÑÆ—”ŠÐ—VÙæFÐÊ؞ŠÛ3¨.+o@?˜NÐÃß%ç}LQ«bõUÉ— Ô)-©dïE½*N÷­ 4èâõ¹‰²h4eÛ£¶&U;húùZœ•jš 8tþnAó©Þ€ÒËh±sõøžjr´hp`»¬ÖÖ5šÝ´hsÏûáþGh;<æõü Ú+ì­W!5E‡¤ü*wrt¢!Wrõ6AM&›CÆ RLŒíü?8¬¨åÏlÃp_!&÷hLçžìïç¬e«ŽÜ> «»]œ\ÚAg‡.…ì>¨ß÷)~•J*Çw·Ælr[ýÍn>(º±«´}Þi½q-œ¿yœè,í ç~MÞ‡|zxëU¾¢>¤ Y5'/:î†Ì>*†“mõùSûe_ÈÑðcñ¢6üŸ÷1PNÞQ Ò ¦ZÀû oß}ïÀ]Îï•tP*zYi=Ay´{|Šþ罩÷g¾˜™#Ù4œ *[ÂèïÂ+Âü0½-²oœM™ŠBõ2.aAPóB0Œ^Æ‚0hª)¸7þ½ßDÕð2 ¼ "¿a“š0ï Î`háﲬ™:Mȉ7KÈÄ# ]tÏö} oBN|—Só>-ĶÚ=Є.›–ÆÑcw ¼Å%®„Þºs5M®{ ä¶2×½rø"ŸÍgÇsŒO?g]‡é«.ËÌ…0úXìõ¾ÕQš|B18•+Ê"ìS×K„0ëÃL$ƒW®k!Ì•ínýÌ ßE‡ôõßRÁÏÎddìÜ„EK5¥l_NXª3^]`Ê€1)Åž°š°ZMòn ÖÙSŠöóõÃFÿ@…¡Øú~³Ÿåü>/»Të€DR¯­ÇF<‘¸ë÷7ÿA$½ý"¸úpî:vvñþW5Ü­~ÚŽ„ù:R*üùÚÉSÔVq¦­ëqÏû¾V¤G—ë7Þ›#ðR‰´sî-îû-$€ÌÆÝe§uùRå:9î;efêà…\Ê:Nw5­‘GÂÄáFÛ4òÞ…ücÜÈ_ø;MÓ û·Øw=lG÷3þ‡Õ)ñ M[cmá)<Ôf”ZH-€šHÅe Œç¹$e”“+›×õ{… d©îÇÖêðÈÜÍUrTÐXú!郪¦VM'Q]ž{çáÆsÔT§=þú€jŸÎotœcEÝiËF#‚h@{Ñ4fÏ&Ù¶â‘òB“— >üަµRÔ«hÖ¨¼È`ãŠæ}ýï厡ÅrªÜÃ÷çЊSmP=ò'Z›Å<5°6ñËÛŸ ÿãð°Ò½e¢ _jJœ¨½CàpiÉûÃ'ª+aŠÿ/~ý"ÍÉŠ×{\n”ŽN¡erñæ 2äL9{H÷D,lò½JÞ34Ý«OU_³†f?£ÞÕõ.¨=¬ø`üí ¨"òÿªtiç¿^Œ’;aÖÄ~§ XKá#wïÆ¿~Œ»È„;\ÿëÁø¯ccµuåöð=ÿÛoó¿=ÿÛƒÓÆqÈœ"bô_oÅ÷ûræbÐå{T¤EÒºsL˜«Ë çò‘^©¥ÿÆÿýÝÝ\t§êþlÿ÷ù.©`ëý?ý;ÞI¾Ù`¦÷ßç{Š]ˆ&Aïð·ªYŒÐÏ¿’´™õ¯·&qH8Þ¹:vô¦`DD¸§aa´P*|ÏŸ«0~ê~„õ¸?Lž^yq¨¦ Ž8»¨ÃœÄ!K¦ð~˜ï½3øÐ¯~»{ùÚ%âÏЩ×ተ,ü’Öü|¬Š—PòÍÖÂú½+Žì1°¥µÜ•AY¿Õ Dù„÷#‘è Ä‰rH\zº@Q˜I5ô‹¬“äÂç6ÿzjÄnúܶD*YG^1Y+¤¹Ëcæ×­€tjUŠ^ð  ˆ î5"ãŠwš#“°cÂ7dþ¨Rðææ.d½±yå8ݲ»øõ²¥ ‡]TJ:w;rùþ Ó<¯†Ü&7•»Ï"ÏbÑ|hN=ò‰¨¿=ü—Ä#ó5Pàûey²º¨Jœ7ˆ"Ú±÷–,QTüä>³èS}:}]ß=ú '_ dF@ë|\J+ŽËeР,{kíßõ³òJ !_&'ððÉŸåHT¼\ßHïÊNM±í/#4m†e ôðýÂõgú´¨~ˆÚâÈ‘rÔÞÅÐÜqµš-óÚG N§mʘ¦ê蜽‹[7ç[øÑ˜1Å„ÓM)(ç¹F¡é\Ø8Oô=4›Ñ.Ò:ëæKÌ5Õþ›hIÁ%¼G­D㈿šFk»ÞQý s‚¶§(ª8Ü¿(Íþ¯¿¦—¡Ôzw1þÇíÀi¯šÿõLý×[ÃWíåá  cO÷[Ÿâêý¿{kFÒ›.³ÒÁÃKuŒŸ†ùŸi)çá§àC¶ç¹°ðk]Õgˆ–N˜dÄÉÃr ÅOzcZXÝ?oýš¡ÖîHçN¤À,;ø‡ºýÇñ¯Zæ¡RÞAØÉhÕÔVAâs5w·1IÅ7‡EËl›\0·¸ɻǒ7Ê£‘¢®yŸ¸ª+R}mSÞ¹1‚{díîíÖFº¹ÚçíÈý4êj·6îupçºrë"2[­RVõû#ëÅlû£'‘}öú“¢ÍÈùjèšžßä®0JˆÙwy¯s[]wG~k‡â{õQðìJ—U’3 ïtD¾sOFÑ åè^ýt½µÞ×ÐöSä¶ÚžnøÄ¶Re]^ZîN'¡ëÛ®§K¡G¡}á±ôRð¤uÝøo챕û¹+æ,t?¨{Ù_k]ŸmKäý¡+¶hdÈxºª–âb ÛŠÜgIê"ôð‹¹A¿½´ÅüÚBŸœÃ~±Sèò8f}}çcc&À—9·éNµ§0ÄeqíܱúâÿŠßFÇg´¹Ia<Ť-ˆX &S$Jæ'Àt¯U¡(ù˜Ó«ÙËËó?³ÃÏ7|æ5½)E*X _ªÝõ–e.UZåÏÁª¬ûâKˆ…õ8ÚÃm”.°%+ìšCÐCžñÙÏ)ýHÄ$óàˆÄ&?‹Ì¸"¤âyœÕ ÁHVÃ~%Ãrv랦iX¥s¹£óHÖ"Y‚ÆaCž6ÕÌ<¶ŽØªys?…_ù›3°s©,³(ˉÍ6Òº Éï7ë9 º‰4©ÜîEƒzH§Y}¬ùÖOdØ#|ô û2ÞT~¡çêˆL/š½Mr¹Š›1Á…à/C÷:ãÃ…ìŽ*ƒ®SÈá(_œ7‰\ç5Óªh[‘;Ý{ïù^aäÙþÉ<<ïˆ|²ßm›g‘ÿzÚ‰JÚMøÅ¡\6]„BI¢GĪQÄãdh®ŠÚW)ç^A± —D©×rx¨Gõ I½%J–?}âÞ‹Ò*Oe®²¢, ërÁ[[”'+·×á=Œ‡9Ž* ¦BEv Ñçq¨´N¿²Ö€`wNòò“k¨šì/¨¶”óŒûà0jÄ´fX£–“ãÓ6ÉAÔQeÊãñF=‰1x›z ¤ lbï Ñ‘áÏRèÑD"öêžR4 J7]’¾‰fžóNœm’h~4soŸÎ Z8{tuQ±£åqÑ y¯´:k•Ýr­£?é„ å MÇý‡hÛ£4ï¹+íwkÆZ¿uEõÈkI¼Ð1rk4~5º‹¶ŸNÊâQ±]¡õÐE;dùéq ›´­\?††D'Í’¸¥ùY¹ç“ñDX–ëÒ?¾>II9e€Ú§¢÷ïÉ›j!ÙÞð¡¬xȘŒÞÓ‡:ÛY„ ÊWJqG9Oãæ¡¼9Èö½fr9ì'deTéÚŒnÜ d€ôY¢÷¾1Ijèøb²i½‰ßúGBîsÓ®[ÉqsæÏ»BÎðþlÒólzø ËxþÈæ!Š­Z]ƒÒ¥+º3žw¡\À/šï<;TX;Q8ÅÿÍ­ß8¿@åJÆu…?dPõÐÛ¦™ì TÃA'æF¨ûžÈ=òj“sÜ€:¦âZ¢R¨÷“)‡h nO¥ø ͤöÇ«ÎCËeØñ¦h#}2ÖJñO]Ôi;Í¡³áBŸ@ ?a>HûÇ¢½’µëÖЯæ}Ì{£ÂG­»®õýÓÃKtwÆÏìQîöDO9{{ÁàXÏ” Gijo|ï…Éå5F{)˜|å̬.Ìíê5?ý§æN݈û?< K.]†…~b?rwXR™tô«€åäX±«Wlae§»eZà¬oi¤¸õ†øqYÁ—°%Vš-*w ~ÅñÞTxÛ;ÆÙ{ ñ!×Ô{ƒZHÒæµîd7I¶íÆÜVo.Ì¡ )4£+=Ï#•ïKiΤÉÜ Ðå.E:Û}"¿x‘áðØIµ=ȸö”ô¬/2Mæ= ½„,[Ÿv©ò?CvÛôÖÙ‰`ä¤Þ5bFlƒÜl¿||Ë©WšÚp•æ2òý:ч‚ -½K£(‘qûÁ@?ŠÚŽ%÷“¯¢xf¶ÊÜ9 ”ÌùÌ­4´ÒgÔ û¢¬ÁsfÇ”—¡s2R8‰‡©qýV AåýÛ§ç{CâXG-QíÖõ´¤ÉjÔ¸0!¬`…Z7ÕÈ¿PÙ NqËü{Ô[ó*/ ™GC‘Ûñò'~¡±R”Ê©+šÒ{ RþñB3’“6£÷ÑlKQþÃa4ßèÎI×½‹;Íj޾ъN#Œ¼+­…ùógÛÐFçÇ“ÇÄÌh{:‘\è~(Ú=—ÿ½÷ð"Ú0+g5FGA¡õxyt:x¼£æ:·8HýádA–“Q%…FYmQ!¸Ë Í ½®ëAö?tÑީ̰6q0†Vmñ.„|¸Y{¬Ly&:'tÊLafŸrt•Å!˜»<GÑ¡¾óε Ó×ÉÛ5ßßg`ñnëÚ6M,ˆ 8ŠIÁªZQuÖŒ¬_?°¤ÐE[ô·Dý!èá³—îm}ØùXÙUTA„ħs²Ø¥Ã”$,‰Wæ=’½Ð8— $·é^md-G HQ%¤Òg”0áGšû8»v"¶úÚ¶Ì2P3ßÞ÷5¯± ¼ëG&æfwUkd.¡«ŠjåCÖ`Ñ™àyÈn/8J­…N·ÄšN!×¥“?vìï wnÏ}bä%¦£B>EpëÕ<€ü1výá¥](HêUÉd'B/ªsÛ½Þ¡HàÑAí‘Ý(zÚs·´æ9»_q’¼-Î<1´ÖBÉÆbŸí¶~”Fâ|êRN”YS‰vö)D¹YsÝK壨°høŒ§<L=|§$þ•j ^EÙ:"ðÊìž¾¦„ªn7–»mP­‡Ô€Q`5|d°·ù –ÐHR›8%j¯-•T\)Fݾì§ÌÂK¨ß³Ý½Øˆ†uÎ:/¡q…‘ƒ•Išª©ìþBN†fPâÆE4g9W2Zà‚”ÑrËÑ’ä|Áùw´"N>vöZ“wr ÆÏ¢ ãé@…ãh+HNqøåÚÈÖÅæShïl{óó¯yt¸–Òœ1s  8Ÿ±G§9V¯)ŽxT¸ÌœûQ†=²rOÑJC­Gx¦™Ég<Ÿ.úÀÒC·còèx3ÔÀšµš¤I~”PÁ¥I+, ,zùΚèBáËÇ¿ÅBþ»œi%1ÈU ˆî«ü«skeø2;x7 d õé¨ÚBzÔtgž‚ŒÒbŸžä·ðvmÜ]î¬4ä–ôÕ .AÁômÿx‡ãP´×’øR…|h mÕ¡6 ä¾#'-Ç¡Ìó °õòe(3T.!èóz°âîßPégÃãäd U42/H߸BU&ƒÓA[¨Ö[`¼KÇÕ3íÛ±? æÛ‡¸ QBÞ5Év à†zW¯mRßoÐÈôs‰Vpš¾µÓˆ…–n—dºv)ø¸þ%S¼×úŸºÉÔ»aw`‡'-8M;‰©r^¸fD’TÁe‹$3%ö_óGrößw´2¬‘‚tþ.ï¥0¤b5°oñhDš êžQŽHG'¿G^¸ èÂ]Ó¤’‘±¥|BsÆ™ÞÜqÿfA‚,\rBú‘^q,Üž9JÆt·Hãþº®ž¯±õÈ»;L7›—ù:©]/–AÿFÖT~Öaº¿†¢”r/l'9P\#.@­S%O Déž{Ò*ÙYË(Ë6¤TSqå¾Hs=þ憇oQÇ-äN¢R"eDÉj9ÂÀÀe>éBT©K²7ðDõ?‘•'ˆo£æ†è£åNÔa6(žwF=Õ•ø3±ªhàö@öÚu&4òré+»*†&ڥѿO¾FÓØ«¯²_¡ÙeÓ¿ÆlÐü´ä¹ófæhá}ÂUšº-½6;&‰FÐêäÇòŠ× h}ÉúÂE"´‰½ý¶÷rÚ¦ßKeIÒE»æ·Éçtï¡ýRo^U—<:ò)”ˆ¨v£“ë*í^tNŒgõ‰eÂHçŸtJÚÑ<@õðù¶:dçú¾Óâ¨kûWL‡Ü€Î§ÆdÃø¡ñòì1x´Bٕ̬¦Žoœ t`ý#‚#|8ϳFÔ½ Šnlìa†Â«¦më6Ï  ä-ՆЕ¿=Â=ÓgÛ!/ö¡“Ƽ»:sŒá ”ü|úH*¶ªƒHCižuCÃ{aÃâ´Ö5ò¸ôð]ô“s–ÖÐy嫸üýtèújµÈØÐ=› ;)ÐÛfvhžú Ø(ˆŠôÿ{×ã¼Ú^´ýí9Ôc`:=ð]‰â4Ñb,Ð.¯¦Ï€Å'œA,±›°lCÔ{ÔÓVueJ*ÿ„õð÷móï?ÃæŸj‰+/zXúö9ì¤ù½pøq‰mëÒÝ¢_"Éü¬mGn/’%8äH•@rs¥fƒÌ¤ ‹%.úˆT&Æï¿”|åþ ¤SH§S}ð -2P’–Q¥²!ã•Ez¢ d¢ûñ{Jò72¿#:ªÐ‡¬ç”\Âêu þrÏD¦D.r8u¿%ÞF®°G**/ >³ø‡x^ßä%DUáEäÃXÿñcÞÈw¯ž–÷[¤*Òðn.@¡œÈ¾ò—¯Q$ÒdÕö5ŠÞ ·îóF±¼ýÚ_ÉiQ‚öëý)y”ììX³><€Òª®ÒwªùPfΟâÊ}œ’ÏsŒF…Eª‹£x$„Ì ð*ÅÙÚsÍê Ḛ̂©çªêxø!?‰jï­–wí'B ­‘ë7/\AÍ÷ø¶ò¨ý¦£ÎùÞ4ꆆ캘ã‰ú'&²Ì-vÐÐ¥7C‹»M¨¥_vGSŠŽòšÏ¡h:O¼"¼fUÝæyúм çʃÁ}h‘Z»pç¹ZÞî—eæ*G«°Î…&>´bS0OqC›³”º‡ÑöÜžãiS,z›Ý• ‹êùÕ_ÄÑáîeeâ+èøú€ÅÛšFtª¾\ºå;afæä,w‡Q?ªAüäÖqdòfô|¶ƒ°øk%ÒÿõUè82ç\jÌ 5“_‹KV% <‰C;%åÏ.y$%ÅA¡r©J¸™8ä»ÙlŠL퇜'·Ï3Þ‡·9¦ONx7@æ†+Šû ƒmOÁªHkûž`oùWƒ+%=àí°c}iÐ0äv9‰˜YþÝãû8?(:}ÆÓ²] Jô¿óZr–raXÈÍE5(ìÝUwÙÊGòÙEHœ büÎ,b“¿¿È1.€é©; ^%a0»E~ì¹÷k˜W^Œò!…%2W:ÏÂB>õô5°Ät‘úÃK2XdöZË{ +#ejB ñ°æ^ÕÇ2N.Þ›-³°µ÷ZT†« ür—ÉWʇ?KwƘö^E¢©ÌCääè¢`²’±ì|"¡zŽ»¾ä¦Üø‰»kŒ<¸ân!eÏ9:÷œJ¤áO¸tcå7ÒÖ“ihX ýŸÅŸmwd|4(éèˆLçN‰o ÝD– ¥žþ=ÈÖв±¯ýrø‹+ÙÞ߃û2U ]Ãç뺦—ÜCä{±ððôÃ^x;_kkàŽÂ” —̘ð@ñ7ŸkÔPìËé—%hPRüäª5Jý¾7ö(8ejvwð>F¹«–ƒ?Rmñ0G/é¿1*ÑyÒîúóá°À„=ªÖ‘ÞcÏ݃êìnÅÕ£æ &)šÁQÔ>½÷¹ãü.Ôõ8”võSžôv¿CÃD…ÓwHÖÑØ÷ùÇ©±ËhÊ™¸ò^”ÓçŸG³Ù[ŠZöôhÞCve3#-jsxjÑ£eÑù¦„â£h•Snb»S‰Öo"m"Oì ÍÛ%5öíT´}§óK¥Þí*cà“ÚwlÒ‡–ó¡ÃTwÑ~*ft"Ñb?š{#©VǽôÐlúI£Ø©wȦÒzVŒý$¬:ï6rš” ä2ÎËwˆX ‘Ô¤ëÏÆ4Ô0’$ñ¤@EAø@ÓÒÁ/ö^¸:$o ½É€"»Ù)Ó}ÉP¨{™¤‡ù(°f)S@žKTÛ/¾Ÿ'X¼!QëGàíØI•6(iµ†C1B÷}*Ìz½AD{v2 >z§í½ÿ>qߨ¸ó :מÏåílA·-9÷æ¤&ôL¦FÇ,ûCŸU—#Ÿ ô«…î´Øü7ö…“Î0¼™‡Þë)¡üŸ+ 'ÉFî”AE>õ—iÐÃêÃþÜÒz2Þ¬<ÎÓ‚Þ _"S0 úÜâ/4C4[Ü¥*}øÜ.ÔXÙ _×HiîÏàlð̧t0|žÉÛ€QšôNþüzKª±ž{BV‡×‰/¤Á”ÆÙÏÎ 40ãÌïj›Ú s,t‰ôðÝRˆy ³8"ŽO ŽÂâ[Ÿmé½f°|¬ïƱç`Õ„ænþ°~Y+óIrlίÖôð‘öÌûrØ9³/pg?ãÀË7-HÒgÆzEbÉ®Ÿc}98…ä†OSÚñ)R(T$Å9#•5µSd¡-Òäî'N÷ž@:=MnÇp.d _ü¶åš…Œ—Z´kÚ‘‰joâsÞgÈüv‘û̳[ÈzÊ ÿÆò²[­Î˜ts!‡Ëá1 ÅH䊬¾¸Ä‰ÜՒжÈK­j± UŠ|š#A W2‘ÿAë ¶›(ÈH^_¥,B%ú¿ßŒ'¡H‚êžP]M)zÁåí‚bm!ûse·Qâà‘˜á@”ü:s%çéW”V«ÌcmF™¡r§P./X`zK Ü;bˆG„,±•ÑäK¡JÎÛÂbרzPc*åÜuT{ø:iƒ•5¸Ý7ùP³x&ªMðj»¿mû΄ºÂúžc‡‡PŸTɱ½P VÜË™G Ñh¨‰êÅ›Ãh’ÖøÍÎnMÓ'ºv Y5õZŒ ší±Þ®„*Œb¨–Œ–œl7êÐòWWï¶#Z 'ÜØåŠÖµIøy6m2;êIn£íý_ñ¶uËh>•<ðñÚŒ|u}‰J*OgeÑÑIU¸Ãv¿º=Æ…zíËö3D¸÷£²ç‹=L°èrM V_Ú/Å”¹Qj@ÍõwŸ©F‚¡œ-KO‚% НÐfTNöûÎ7,­O¿ÃÇ}‡rj;îp¨ûÀ[sy}‡aiÈŒ;s&ÒOÒ‹Wâ»'áu[!Eæ¹Ã!q÷fFí~xÛÐ{@#ôÖßu8 ᓌo\Ý9(jo¶#pjèzHüo.¬z“ åW&d)-€@ÖˆhÂ?f9´•¯Å£\‡´¡JIkä 'Tµ•z}¡ª]ƒBb’Ç¡zå^­ÑG¨^}ÝNíµ3uI1–×ÑÝŒi‚†ÉùyÞ¿û¾ÙM{ŠCK.í'·Ù¿ûB)-ºnüÓC/V9í}LÐù™¿ rðtGðé¨wxw8êìÒý~¨-Ï«ÂÀcE½’ðzxFá•Ï]jåpsôþuÆÒC¦tÈë`Bû¬j@]^˜~4i/u™†r }iµ¶SÝAdôÙölè°D&ãuò-zd9rõÚiud uÚ“¯Å‚Ü•3_gp?wxF©Œ2òäù©òë !_PϧÛÁ(â]ù`ý% µ,&ùÓHã¯/…öO•ï£þ|Ú赦ªzxóÚà›A=èòõ{-ámÝ]…Æ£$ÙÐ뮽«`¡oÐR~Ò6úÛ¦×ïoŸû7Òœ÷°,¤†>RËwò©ìгu8Ñ>råbÂ#qSèñí÷r¸ ½D¬½ñç 9S{Ñ­…ÿï{‡ä{i„¡äúwúº›0 Š/LáKö…£ó§Âað:Q:Cö 7–îÏV7‡QE'’¾1k æ`©Š€‰ðe5þ„ó0å[×5g0 3WXZ´9`®-£ÍEö|÷ÓøP_ "L½üml°XRb”Ëþo<‚U«ÂKòS×`=¨ë†uX(l~9àä³\ ¿‚†_û¯ž‡­ݧF H,ôóنʒTõJ¼eB² ·È¤9“‘\‡òŒy×=¤8ò;­äÄR96’J{-!Í{®hãŸþH§_›s@ ÈFöÍ 2^x\k€Ld‡¥Ž1ê!óëÑ6O:Udõq4ã=ƒìƒßV.ÜD×Û?sÎ0"Wôâç*£ÈÝ óýómä¥wðLs»Ž|úR¿Sæ‘?%R´¹ÞÙ­ôYßä¢P=ÿcžy))øÈgEß¹¬0þ¶B±¹/k‘n3(¡3Fv€œ%§‰¨©iQZƒGêq›Êt¾5wxö åi÷r%£Â¦£µ"¹Š–结è³ï£•6ÓgjߣhÍäîÕƒÖc½Jßö'£Mn[ƒ¿ëm¢®-U¦£¹Æ¥\Ñ^ÀH8‘6 í7ˆãsèbñJ™ÞnIÔcæ¦ÔêI½’ž/÷ÍÀB-suö·h»¦]fh 5noصÔBY¢ŠAÅm?(fý1-Å ï<793yÿ½cÀ¢L97wîV¨Â›ŽeS‹”¿ëhzn¥ÉCºÃ—“RÅàõ©Çü•qœŸ#>¸oÓGÈ‘&ÑÍ×8õM®%gÿ».ü[ìV‹çÉ“ý< ¥F -þ˜ò?¹°âÀo(o:Xýô@EòÆ+ñ˜4¨<ìvbº@ãï:» ÷ýåPeÞöÇ£$ªFÈ–R/AµÈP·BõÖy‘¼ÇñP3°Wv‹œj‰âëu ö™vnØ@C›‰CÈhz!NT»Ê-©Çç÷ ¿ƒÝ7É,„›ÿé¡/Åüûë–Ð9¼ÛbeʺomP`ºôwŸÓ»xæô_²úa¸V /U$ë/ÐÿÓÃSZ¤?t]`”}vÙg6Æ2Ö½HD`B”ÃçXLíº@e¬q¦g#~)Ùò½½7`ž3 Ôìbüˆ$*˜õe‡…ÛÌõJçyañ}©É.,›}¿ YBn:~¿ÛË_Åïé„@Ç™÷z¿A —¯ç¦5!Ç™§¨ÿåÁø¿.”TÞm×tcƒâg¶o‰\Vàývs™¤\&Á¯ö{ÇÅ¿üôù¦lûܼJ0TrͶívÕ†áK+2nPr­,BäzTýœÏ‰‡&r­â­MÐV`xAoá)|Zßnæ­†®1ùã™Ý ÇÄ#¤‘gôŽÍ‡~ùBýî= •±»á³£ÉO—ÇÔÿý s‰å /”ꛞûYè=!}àÝ· è©“äµ!†žjå7‡ŽUA¯UXÑr@ôñç9°®ƒ~:G©¤Ôø,·®÷¼©‚v… ÁWâ­ÒV6üée_#tœf«ž½0êÉ@:ºýÆÖ$‡ÕÇù0çM´V1L%°´ë¨‡™§Tò?ç½anc|;íá{¤ëÑÛ÷ª`Aö…¶K¹ ,6Qíxí#åàˆy/ÎrXutqÿ d ëç\S{˜Ãf“ãŠkAm/x ùIÁÛÙ}Z!û‘˜–ì‰z"3’dñÜ“A2¯§ eæH®vJ§÷D$R(+¥?Àp¤r‹x=Äu iʸ˜Vά#¡–NY‡2´é}žêBƳ¡9Löõ¸÷c É2?í q ^AV߯D d7«ûùs9ŽMü–Ê|Œ\w¸„7n¾BîÎ+j{Oäe 1 3G>“ð8ª2qäŽbÎ" ò<ûèÏ-B]z·œ® H!Êû¤(m¥Ô ˆÓGñÝŠmñÎÜ£‚¨Pr‘õþñÀa”Ö Íåï–F™ú®¹]®(wñ)±…ÜMTÐ#Qß] €G8òC̶PqMãt29ª¨Šfb@œü×ùêª9Í QJ£z×.îþÀJÔ4\nã*A­Nï1¥O§P'pR"[¯õŽÌ”5?CŽ+“ï¡áÍâ5ªQ4®`­ÿõjME£‚e ébš#µ Y!7iÕÃÇh~>ëYÒ%´(-ÎNK=þnmh™u÷Àt—3Z¹:QŒ­Ù?¼¢WÌDëiI}··ÐæÊ¡“Tùh+õ’s2smÇŽ2DËÒ ]|õ﨑¼rFg.ôòCÔµ×_—¬‘EÆ»qž¯DJaAø¥KGL|ŒÙ)S·ƒêOÖ×ïé Œ¹ÍØ”üeéÈì¹ä;¬·ð1äù¥™Z“C nOYàMq²f#dt«*ÄwiÂëßÕ†C^ðš1z2‰ ý©ß«ÐoqðöA㳨 Èc_Že¹ø?üÆJ\ƒâèOÉ_w¢ ´]Žç¢Ýß\¨÷¹Þà‡{Ÿ0p‹@Å6‡¿¤…:T:ä¤õü$ƒÊqÒ£ PåmË)íÝU‹oؔ륡:ˆdæ†è;¨!²‹a5l‚šnÉ*A¢<¨ý¤t­\!ê¥­ØØ„: ¡°öbs’4Å×9çº^÷ãù8ãyÂ9aÍg^³ÔP6òÂÙjx¨Èx°tvfxg&Ó>"Ñ*GLè‚*’¼¸où$ÅÉì úõ_S"…jçþc[W‘®g_acA*OM“-ÂHS±?&j=é«zç®"#Ñ·kµÉÈäslÌGX ™×ƒ\û—_ ë› ³ñddsñ׈¹ƒ¦éËêeÎÈåªJ•=*‚^èû*ü<‹<=NŠôj!gÄS¢ØýÈoÕÍÖëÉ4fü(tpɬ2<…{_ž¿ñúŠ|g°n«G±á¬ˆDI¨é²2” ’Yø&´…Ò[R<%ƒC(£; Ü£ˆ²…AÜQÞY~þ~› *rÏ'—]C¥É ǽô¨R>!xVbÕ÷Lª-¯U#¦ç|LðCwO[H´P+íë_}ÞŸ¨³ïòÅFŽ Ô} ?Ó3ƒG¸³Ÿ±¶j þOi™u…G@öa¿ §Â~È¥M™zâ S‹¤_èã È,îÊý“„,öxåd”| Ha†R‰XΨЋPzëow¥èw(#:/z:6Ê‚†”w8堜ԊúÞï)(¿[C~!†0窋7¶‰ ¢ÑÄØtË *«|oØ$ÓÂwá°ÖG¡:V9F9ï Ôúî3 ¤7Yø\¦ó áÛvä¾ïÿxxá÷ñ×.?¡uºñ©ÃÚ,´Ç|[}ö:Boog½®¨ŸÕWë¡'oæ@É¢Ä<ôtú¶œ³†ö­ñyWäÂpúôùêõ9µ,lqxk ãtç~+~…‰ß×>Z;­ÀÔ°û½Zg`fkù²âB?Ì™5Lš€…3Ɉ§žC9ÃçÅQÁ~·)kr•†eñEÕt÷‡W¼þü9¦¯sŠùRP‹¿0ØçîÔ”©›œ~‡º_R¾pŽá‘‡5ÎŒüñ¨ID׉ ’éþ MoC£÷­Þ^Ë¿ÐDÈ”›q~ M#ÿ¼ÞÜdD³€ëDìÂh.õÀYu¸Í{yV–¶ƒÐâö‰”æ¿lh)亩GK„–•§kn¢•Sú §"u´ZóðþÂ.‡ÖvÜúsÐæ@uå‰q&´Igä“VõÅ»oTÄWdÐÔÏŒöïÂod)ÒÓÍ ã‡%{Ë^Å;? )5r|í;|g™!kݨ„rá¸Øš;PÔßVAc™ð¿ç,ÈfžÿóÜá-"„¼·©ÏÌ áË ™V#zGÈÙ_fyóéA9sLz} ó–Ú©_;<ÿxãÔ•tøŠ‚uü·¯@…èÃH‰F¨m<ráó^hú»ÞÏ`òZ«ý•HR¾@{Cõ`|²tè}ï}a¿ðÏýŸ—E˳¡ûRGµïÖ'è¹ÊókuPñßewjËÐF7èò½j{nžà‰šB&ôù1(]¡Ûè$txÓiä_N"kÿ£²ôÐÙøàðçsTÐU¨p?ù»tvÔ·ê@¯àJ„ a¿ûv}C‰´à×­ˆ©»›0èúªSz]†*®É¿Ó‘…óh2£áçy0¿ ã“ù¡=·arl‘&DyÌpŸ¡¾Gûfóß$kÙÂñwម"XI!}Ç›ËOeÌÎG’Ãê™Ïò¥£c°vÖŸûŠÔ:l|¬ä7š$ð5y"Ò!vŠŠõI"Qß¡èΣÎH¸À">HfØ\ÛÖUŒ ê ýagR#ï«ùÜG¤òù»"·ij÷‹ ÿ^¤7Õóáá¶G†”į-d:+Çùc±™—>îDª#닜^] Gdsxœÿ1E9Œ#ÿ »Õ#—[»Üþ<}©ò Ÿ òŒ(×sàB>ž´„ÌoÈo/˜ ¸ñ 2²ý™šVPHJ£‹D…ÇGzvº¡H‘÷üÚÛ86¸œ+‡’¸~‹|!¥Þözù‡ÉõR8 †QædJ ª£l‡]ï ÊëÔöûô¡ÂJ?ãC›¨”‹a1®‚¨ö°c·¨ÕšXzo"^¹ôêô©fÔä_V©Ø²@­{{òêfP{`ݳq êj¯^ߨG½ïnÚç¡¾Ï î*dD­·´v„ý6:PzFïô4îw‹]­ESgµ Óhæ$ŸÆKØZsšÓ™!gcÐ<ûçjî&Z˜sô>õÒC‹ÉN¶­zM´¼öãÝ{{´"-ÏØŽKCîøÛ_¬Akr6vDhíï«©òj­¼N¸× Ú8Þ»tkmjtÛ4îÜÅ€âÛöƒ â¨7×FsžNÖq…Ùþ08%ø{¡ˆ¦è<”ÓsÚè=އoL –>«×ðÕži>‹[yöÓ…¬êèªMµnÈÈáP´#½ iÝõs’™CÂN³«ìIšá{’ÿîB¢ÅåÝÁjHf=ReÍLŸÎ|Íqz}”øRz¤äêûŸ~õ õ<ó|…¢VúºÈK‹/lo¥ÛeûßõÂ5΀¼ðç¼6”Æ2e»Þ‡²=Žžƒ¢ÿ{΢¶ö)”³lî´0ÇByx¨åíü¨ á¶LU„Нn¿Õ?PYå3Ïy¾sÖ%ÄÝ)‡êO¥IíAPëøpõDtüðôR£^P‚†,…×®Ã<¼ü‹™ºi´.dŽ *€öÄë½m’ÐñBÿp¯Y"t%Ý{©pÅ zJËYÔÒ¿þÇCoßÓ'`ˆÕ?ÿ\f gœZZZ1‡Q»ƒiÖ*¡0ÎTò^õð6LÌ.6e€©¾[ø¯ƒ™™œ¹Tñ‡0§ w‡z l>îÐ΀ŴE]©ìLXf#}‘é+ÏHܵǿÁI¹êJ¾ý°67YìAðïöžË°Õcpb’kvhô'lYzHîaÍ¡àÇH|çñ¸zŠ’l¬MŸÏA²xÙëA3Hx8xïJ9R†ê¾8Å…Tq±âT|HkGm,YŒ lZô]¿"cÚå ïÙ¡Ž ôÅ‘Uñ{¯E4 ²xïÊÊ¥Šãô13÷,që Õ ?1ä¥Ô•¢~sùj=³4oS @Þɬè¤4úI˜úõT?Øåȱƒb­iÆ»·Q²¶•ãà–/Jû–q)ÜâAÖÎÚÚa”­'‰½-À‹òÓuZííPéŒÆ·kâ‡Q•êÕHâéT¿8•nÿ5xmlõ†Q3"žóÁ¹¯¨­ºùüÑ´êÉßÿ¹¦‚zU­$Κq¨óôÅì 4;ÄæË›„†_·h)Y5ÐXòRøÈS4¹÷Ið%õ4m—À’‡£hö39é·Ñ\ v·Ž–à¹UAŸ¶Ï¢…¶CÜê ´¨ýî%6l†–z½"*ëhYu`#à˜Z©”|•—NA«Ô»!ÞýLhÍV) xbïj<v’44qc–ô«Gæ~ÁBú¦°従>sÃgÙ‹WÓ *ʼeÏÆÖ¿=2ÿ×KQ˜ Õâ&ÕùMán»³£ÿõÒð;Sˆ6äAv‡x¤tbd>ØI;õ üß¾ŒÃ&Æ{Öÿö]TuÕ×™ýÛKÑlîRPÜüoŸÌOíð>æÇÐQ~•ÊÿÚqèr˜3˽Ý[¶q2$ÐKÒQÔðï²GA×ɹãt-I>ú|:?q®.óþÛ;óëé´.qºÌ¬ù_ ý‡Ï‡Eýûû^?w[¶ûDзÔæÕÓ¿ZØRUma0Ì–£±¤†ÅN›ÀH€µxµö]Sî;“FÛL{‹Ùœ`jÏèU‹˜Qú[÷4Uf[ Mö+Á‚½ÍK¶'+°¸°ü5ž–cö’\lUGnåLX;Mµ%Æò6ž­h…r¥V¢Qû Ø ÷ “¢þŒDÚQ|qÁHâeÛ<›†dj¹Nl—‘B:¾Ê…à;”Z«•‡¾+"ÕÕ¨!%{¤iâÊ#~ŠôfÕd¦UgaûUGò¡0d:Mgv°H™×½:Ö>‚¬áñ•‹™Í6F:­³9 ý7C¨”Ë}Bè‹5àw±L9g×gÆï橾Uä¬þêÜ“üNW²dØæQà‹×ìOÿ&R³½p)…y¾Ú³Ø¡ÈØÂ=á³(Î@"5uT%l­{y^£Tá~SÝ~ çÔâÁ^¿Á_ë‚(æ™?øÑÁ%õNÏkŠ´¢´È‹R~Ã<\JìrßÇe/ 9µv²¢¼ßó/¯~”¢âP¬n¹'ªxŒ<"Žj}sýB]ˆ†‹ƒ½]ЍIô8#Î.µ^–;ššEƒR‡Ê'¨GÔŸá\ˆGRæñWh³¾òðtxˆ=¥}Û]¤á‡Â e û-S¸qô$h¼ŒÕ…ž4Á–`Oèþãt²|ºŠ„7¼f„Îðä[¥²Ðш>ÅÝüБÞUzmî(tʸ'=ë#Ì/È| ¸E ‹wmŸÿe†e‘ë|cÜÆ°²Â¼aÐ&TÆÞ>; ´üM‘ÙaËÕ;³x[þ. ³¹†D^š™I‡„²#)Ìø’6ñõ™, y®Ï ¥¢hÜSè…²5¸w°¥è—\0Òˆk= ¹@Œtï½ãOÙœF†w,7_UX"Óªµ§ Èò.«ŽGY…¾)Û#ŒûÆ;ºeL"{ór܇È9tê¤ë$`ˆ1^B«ß,iÈÛeteúPò3ÿIºIžŸ¥ ¹ÿ¢àÔVß%~[uÃõÎ Q§Äiû°áöê` JŒ¾HxÂõ ¥”Ëz]@éúT;·”!o9ÍYŒ².*¦Ñô¡(7é§¡„ BIÿ颒®ªáeã4TÙ_ ¾Üœ¨fnröâê~„™ñ†DºÔøÙÂcpҵĒÞ;ìGí !ŒŒm“¨S´®FÒ¯‹zrÂm›CCx¤%øö6»>ý-â–^Ì<}¬³ e¯ñºµ Ißµ¢#‚hºÕ6uºÍÞ÷’é¹š9½ãš7ÜN4àèC ë“ì%+¢hÑ6û:ý¬Zýdtjæ Zæš”~v@+.ÿÀ?Îqhuí†ccËa´j¤ì æ!ð0œó—Z»~¸÷v²ý«Él…ÏI¡.—Às–,døpEòÊýÃð›NËù…MÔ®½~P&ï~tLÁ ‹¾™Š˜æíuoÒ·AŽÜÑq˜e€Ìå_CIõ¾)þ#Ú„ÔÄÍîËéz4®®aAù ¹Kya ,ÃÍ… J!IŒªè‚ñ8¤§ß¿êY° ÙtÒo†ÈA.Çùƒ®©w P°J@÷ }ª¤É›%ô•åô{š dk?ƒü‘8(Ure½»” ¥×÷[‹©ª@é\­ÒGÃ(s|íQîeΡËÙ¡$i ø3 <}sÿÙÅ$¨°(J9ðœ *•ÔMßh¼‡ª ׯ—+Â÷^^_c¨ ë"«¤ƒº»Ã’W~@}!Ñõ/† Ð$FS:¹ÍÓÁ“–ZËÐê|qäZž=´Ó9kþìý?W¬NÚZAçÊà–þámÄ+øú¨úÆgÉà×óÒßtïÃ`ì«~c‹{0,áz%ŸFÚçùN…ÂØ½øÜà°0˜°÷šn;BSô£+/æ`FÛýrÂnÌú¿ðQ´‡ù¡“·Bõaš¿Ì ƒ¥xòc¦ºG`…×ö³VL7¬­¤†5_™·M'caÃìùs’?°¥«êb©b]ž~Úìã€Ý„sy–&ß‘xßúÛƒ>$¹Í>ÔäöÉøHÇ8|AŒr‹Ø÷ü.cmDªýO²+ï„#Mس»•mHoøÊ6| %ŽOȆ#SCÀKòwcÈòJ}ƒxª ÷¥˜XÿúŒœòåE&1È55ðë²òòPºù ‡N#Ÿ<·‰B« 0pìµä¾‰Bl9.Z¿½ñ ¥ÀOîŸK(ÚCªIÉ6„©…ÂOI&Q*}pŽ‚Ï{–Èó4=AY.î#=á»(Ïù¶R–U}çA›¼•&í-ßñ Úñð.âóI'ÎKÆÄ¢FÁé…Á[z¨e4p¾ŠÊµ·6_p¼¹‚ºŸšŽ®·â›ß<­ Pÿïí½ÖC5h¼+îñ" §s³$Ìç¥/A=þhr6詈š>W¬T,E3keQÊ.hÖù Ôù 'š›+ŸŒ°Aóò›ÞPP†â…XÊ·Ñ"4[ýLVZŒŸž=cXBà!µ1áøYÞÝ.6¤MÄÛ:îö67ÑðøQφ‡Èœi?ª ­ÿøÊA»LöƒòF¨Œ“È=ö9ʈ.}Ú|Ö_»xw‚¡@2—Ñ«ù7!§¾÷Úlü¹´_ÓÌ!§k§ê×¶!¯ê§ß Ì'ÎöÞ^‚ôTÔÆ!ùÿë æíi‚BƒEâP^òžLôr Ô:>)¿ í M÷•»BNîƒÖÀ¶×›B{§ÑrtPÿâx[aIç¡n=n‰‡ž#v·È ¡Ç²¬Þà:%tÇ­9¹føB×}^ׂ€wÐyIžiÏã#ÐñíÏ… tD©ø^vU€NzÚÙwÌÖÐù™Ü<þG tùD¸¾“‡îÓtdÁ"ÂÐs¿™å©yôŽ>¨}wìôÇÄPŒ˜|„òQU¿æÉ¥Ÿ¤”†á(Û/qZž0*ë$Ÿåc ¿G›ž…‰Î¹î¯îÕ0µ¢ÍrïçAø}Þº™>ÉæÅóÕš~†E¶/ñ.sÁRö”¦­×%X¹ZÛnîÿþ¸{632‘Ãú=㱉⫰Ùþªð° 5üµ: «ŠDÌXÍ˜Þ…Ä ÖÒ+SHêrÌøØ½³H®¦æÁ`Û‹{3}o‡{NõJg uÈ™K¢ƒ>H»Ä¢ã;ᎠÚáü÷íØ‘1aO̶k$2óûþP9sY¾ùd蛩â>_ú WJd·9c°çÓ rˆeñûûcÕ'oõ"wñ‰´•juä}Ô"}éöS䫹[Æ$‚<ÛKK%Pð­ÇJËÅr6ðR=·8„""7FÉŽF1Å…è#ä(qöçš&;?Êßíôn!Céë7mBjñp§©*ÊòHÍÉ7¡\¢÷µ0æ)T02~ò}Ÿ *Q,ä+âEå~§e»Ùs¨F­4Ë+Nð:–³×5Ž÷7Ë£æŸQ\Úʨ­QbŽ:wg®ýN GÝM"¦ÁH<ò’[áK˜4uN°Ý°•ACÅá°*v 4Ú<)mã:Š&Þê ÷"ÑôGÂU?4  JLtAsQÚÚ3©hþ-•Û”Ç-ô~ë zt¡Eu{³;ZbSCO5Á3h¾w¢먽-YZ]î{f¸¯­êµ³NާxøÈ-þ)‹îØÄ{sožzÌpso.êÐ\ó`zëˆ z—4ŠÅ`æj»Auµ/Ô¡ºflÁ ¥ÝÜrË…„º¦o*ï _ª¹>ÿ-sƒìDÞÅÀEuȼè×îœyÒÝ׋ÆTCJ»6Wµ<@SÿN|$x± sÝ…Ÿ&˜”®þ„Ä`焸UH§ìíšë܆¬¯]mßßpÀ—Œ'j÷=¡àƒý¡\(¢¢Ú}ôн¨¼W.‹B‰ó(mÓq(©§yÚ+ì¥ïs:% 4Ψ¿ß×ÊhäËT¨'þ—Ÿ ô@Ùà^ÆçºsP~tùÖóûÃP>¼8©KðÄ'J™«>P¹LÝ* ßeN´‰lCu/s£ÓY¨Í"!SÞÛ?ÃÂíBãAê…W73 ù„…èÑph©3ý#áöOñï©RðS;áÄjó !çÞt9Ý’ŠïýZ€^åÌõÈHèÏ<1àíƒâ’^â{”a(Çš¨!0FŒÍ›ÂèŸýQKƒ0^åuýøñE˜L~ ð¦Sí¥¢Lá÷@D…Õï]˜WñIÜGÙ cn&'uŒaI÷d¸‰&-,)U¿o¸«æ§œ6faÂEÙŠâ1¬wë¯^壇Í:á°À§‡`{t†^¬CvÅE[3V¨;ÑvÖ”I´U/Ä‘AÒ>ž®²Hþ®¬`~£÷„ÑùÛ–PãÞO©¡êO‘†Áø¶¤4"Ý×üÒ€ }BœÁKÈäks´D˜Y”55~À}èyx²ð²¿©Q¦6¦G.«=ÿüƒÜÖV1eùdÈ[ÿ;G¾´ ù_›»ÖNR¡àK+'!®«¯uÌ)AÑ£Æï=ÛŽ£#õ‰á¾”¢z~¼:Õ³úSæúŽ2ålRÓ(W˜ÐÚàxiP¡¢3•¯Ïzo0¡jLkGÁU•š¿n”¨qQG†;žµˆ·ƒŽ‹ vº\Sœ´ê:”OM†OãÒ(Y†ÔO™-0’fBùž±?hÛ^øIG惾5¿\@©·góB¾¢©ã(úU4Sß9r~&šUŒ•ÊÎ]@sM®<m 4ÿÒÞ`*Õ‹ürôJ ºhq/lõAmZŒ˜ÕéNÝCK¥öÝ`ã~´ ¹mëÿzƒô,§¨ˆ\ñh‡ëƒÀÏñÈ5Ç1ïó 2ì‰_„úã?΋:A¥ðkQ’ˆ (}X£pø¹|e8 \» ù®>Ïwà…¢së_N(GUÞí&äU¡‚gYÙQ´C i‹.Jn…½f”Í$°²â­õç<†‚—/]Å{û ü:9Og³Ô¬¼}9Ȩ ›óêŒVæÐ*tPS ÚEOð/ÂÏ̈÷’“Ði´As9 ºïŸM}ï ÝSÙÕ{ yбšþrt3srž‡.KŽfk¼tZ—Š…ÛÛCGÊxµ¬&tÜ}#q¾G:f¾Èå2;AçMÚ49ù(ÕÚÅI¡›hÉ–Íl zÈ–MsoC¯=mea”3ô“»ÈÙÁË.ž¹6ƒ•7¤ßØñÁ°°ÝfXYŒdò¾æ#Esv¼ª^} &p…j>%¦ÌÇ §Ù`¦X b¯s!Ìy¨Wò‚ ,¤2ç˜8À’ú1çÚüW°¼aÇsVÇ^Þ ÿk»×¶U¬;aS§¢âƒá0lçÚ„%ºìÀ®ïo̤H¬ÝnÛú†I–Ÿ²wM Y9¥âÄR$ŸÐv¦›BÊ"ò.‰¤ ·¬7@Z­Âч×ܾ‘-|¾;uÉôÜ󵑩Èh4%§Y,lÊš¢Ìp¹¾¦D¶Þ_‹5ÄÈÑq¼·’6¹b-ïìi@îƒMºêj.È‹ÖÓÛAÈwsý%e˜òÿÔù¢àb‚fíÚAMPhaëºs¬-{FtqEL4¯ŽBñUÖ#+,xHI½Ýß+”>¢ûîÈU<¨ÈQ'eú…Bl3¡œû“¾Ѩ@KÏñ$•kwéž¡òÛõ$Õoå¨Z%àÝༀpÔÖâIâ&jøN¼ºÜ¨YÆö R̵‰ßxGÙ*¢Žá¯/7úP·¤»Flà(qÈ>O!€G…F–]¤UÑà/Kž´]•iè׬¡‰’]’)šF_wb %A3ß+»f$hÎZX~ùš§¶EZ ¶ …’ï¢Þ´øšö’NÎ-åMÍãÂÐ2щKk× ­ eó’Ðê‚zuµƒ ZÕÝz¤ñ©žÀÃ{™{? µGÛ†q¼AÄZÛòPëoƒŠ€0 2øhåQ¯Àô»Ü†Ò ¨yág½î6¥`¸t7‹ öÉhúrxÀçåãaß.®ýóÞßíòUOÈ–|rX´ÒnäOŸS{)D9Š ZÈS5æœ,Û¨€TêmòÓ0˜ÖþFÒ\¥T.þ¡€¬3ATi2Vÿ¼'#‘ÅÍ øæ«É7^Â77óù@[(únÆÑ=xг>æÛ²@ÉA³Í4$()ÕoöW…Rëæ;¬ï•Ü±>eúËãeÞ@YÐë¯3P6ö{ðï~(¿$,KÓËF|U)•¶áo‡¥ ê™ßÃ_ Z Óôåf-Ôôóõl>›‡º>>/7=h¤æÕ:EÈ˱£GvÞƒ9IÊAfRh­»õ÷œ´?]?ö¬,:|xþú¥Þ„.'ŠÆÙ(mè9}7à‰ ôu˜&hEÊÀ÷%Æ«0$þ]H†«âÕß`„Q·ç7oÚ†qi¯=#>í0ÉLrßý´"L3<Ê—é…ßš÷]úòæžÝê•v„…GãH‹ã%ÕÆjm°lÏÑK´-+S”Õ 9YðçEX{WÊMXwùëòE`Ó”±(}š ¶OkŸ·o¾;£s4¯ï!ÑÆ>KK$!s$¾.Ò¤/U“<>Q#¹ù1ÏÑ%=B¾uÜ|Z÷jԸ得@êˆ=~Ñ)H'^·ï`Ïdx4g\zÑ ™x$¶¯¥!sÕƒ€ÖIdm¿GGaú Ùyì3Ž g±ô{¬;x N»Âaäòº~e—Ë8‰ü‚J5²^¡à¾•ê'>£°Ö•¢˜ˆÇ(’ÿЏáIŠû:DÊæ±à!#µäPºT¥ÏäñÊœa`›&kE9ûŒ!DBn}&¥“,Ê$K7Ä,(PÕ®½!Tճ嵈û †8Ï%‡ÚfÔÌãxºhÈÚŽç÷ŠUj£.Unh°( êeêéy½òD}»cg´n9àѱ\‘94´ZÞ'V/F©a•<Ö§Ðx)ÄkBMEšÜb³ÃÑL¸Â­ƒkÍ25WöxÔ¢¹ôîÙÞUR4O–”tú¸‚ìýÑ"Ð;=yH-•ùCŒ<ŒéÙKU–÷,dŠðb ¾æUû#Ô7H’ÐDæ;÷”ÿ À‚‹u:ý±×Œ¬Â "uOtêyc(eÝ_túù/(ÔçØc¡…¼/jæ/R¼0ûÂj&%|N«¸Ú«æ ÙaoƒŸ‹“@&‹אּ¤†ß¾=¿T ©¤öä¾Ç ‹M"ó«³a®%\¤6C¹ÌÕ{äPó0ÍÛd€ ½ãßGë…BK³øh{Ö8´Õ}Øúî~ZëŠÓ…ŽÅwó†{ºnkÛ×^8Ý<{Tï×¼p«¬ÝGºé“Nß?]Ü̪‹ß SÉP›ã๼ðÖagsè8ÿwØËŒ :jnÔ3ŸN}Mo“¡³%€•ʧº¢:’“¯Ö÷R¹•–Ëzš"JÚ»F ï¬à©/.Ëð˃SÛŽO5ÌÍ’˜9Óý5MaDbh÷­5Œ65SàuOÜP˜S‚ÉŒûŽ~»{`†fÑ‚”ƒfã* }bü`.”èHÀbum y,È?t,ó€U׺øuz X»Ï:«ŸçX/À6»AXÓ­rØù~ušô¢  YJ]ÖÖB’àºQËÕSHv¤²$ô8Rðþd÷¹y)÷³‰þ%G*Ì“;Wb‚4Ï\îÆì=…ô¬t}M¤šÈ0J4ÛB½ˆLvü;œ;’È<©Ön3슬Ï[«ôÍÅ*ê¾e&r˜u±_zg‡\αg„—àþà¬`äûbHc5Œ|‡¯?1£qFþ‡¡ki$÷QLãéá =(ô!÷ë&O<èµGs;Ô E(â˃QÜßêU"C*JæÝh uGi²§•JöŸð°º'Ó­|9”‰æw½hrBþBbF(ßÐo‹Ã¨øðxDåù=¨ìq‚;” Uhçü^ô ú:}$Éå¨qäâO²4 Ô eô£g¼ˆZµ‰\ýì¨ÃÔ²Tjxuƒs´´úÿâ~Ó6ÔŸá{R»W Êõ~EGé£Ñ}3UI*4!½¬ÁÖ狦^FzßF¢™sÅM×õhN¢|5€Í_oÓ3B 1¢·|¦ h‘Ê ¯.£¥SsÍ-z´ŒÍ º+8…VTÙ´ìF;hå³­ýžð¹¦ÀÛwžÀà­¡À´>sÍY(~¯¿‰¹sP£ 5çùie?"ƒMòN±ý0m°Î#–¬ÕcÓ²®@I°ÿã¤~*È×òVyó×>óD{Þ|Y¡M”d¯þyßï¥wKóvýzv3$K´½;«+EðBÎIÛ~ˆ_*p^:WñnÏŸ_Þ…5šëÚç µävô =a.E5#jÂásoýøo-%ÈÌ>®Ö _K_ \^Ê…"¾Èª£>(¦™~Tü«ŠoGžôOjû‡‹#O¸¹¡t¯•ˆq=+”z\£ù3¥UoNÜ$p£L ŒS$Ô‹ÀÅq­‘<('µ¿z÷V”wJSõ8ÑAEÏ7RKâO|Y¡Bv¾{kœ­?ÓKn=›t„Îð+Ë„9¶3üõyz·5]È‹hà×ÝtÚú!5üRÿÈŸñ, «ï¬Q´ÃÈO§«·a,Úó…Wp.LܼÑÃcÖ S7Ô^jÔ{À̇ûgžÞ2„Ùßé ‰§aAæI€r5,Þß¿c¤K6çœÅ†a%ðÓ¡K~dðG¸Øç„‰'¬Mg5TœÐ„¶í™^Í Øš‰nzX ;rïöžÑpG"'²?lø*0„ÊI-l&­ 9ñ"W÷tR´¥gä0#eëJel"5cÙÍš=û6º~?ýîudPÍ ÜŠÈEÆÒ é@dö[h)®¾ˆ¬gÞO ŒÞF¶÷³B‰GSÄNžŒ÷ÏËL¬Ó) ÏÓ¦‡ê4ò}*çÊ»!Œ/"ý^¾°C¡Bî¬_ç£ÈÁá“Òæ(Ö›^7B %+¶ J\PÚs=clVe(w‹¿¡ìfþñ¢*( ¬ò›B¥Gk"S6P¥Ó·&Èxª‹¾ãä_ìB¬^=#? šgâC¼î¢6}²VŽêä§Hñ•q¢žÃò±|ž Ô'¯âPªOÀ£‘‰Y¹lhHÅx!ÑŠ<Þþ8ÇÔÆ_ÚíyõRÑd™KFêü:šÑß¿«Îe‚fobö ñ¡9ïÿ«„n4üØg?ZЇŒýD ?C·Úõ&´èç½³+ÄLàáéÏ¡ÕÉhúøÁð—xë¹#µM’êÕ¿þ>±÷2{óÝ}ð ˜ÍíFôl ¹Œ‹CùOTH]¡³2Šƒ~€b¥P¸/0Α r×w/\)JðB••eÞ§³ml½¸< YÓ¿ÇΕ[Á§ê‰=ùZ!EêCƒŸØ'H.$áòṄdì÷?æúy™£@ÙLƒ­\H6Ôð~Õ*J[‚†A{ !¥jh¹Ú¥›ÿ9´=Ý&Õù Ú7Ö3Md+¡ã…¹Ôƒ·¿¡K`GB“º%¢9 B ÛàÕ·(¯AèúNâäyy:§hK@'gÇñ÷+AÐòDÒö±Ë?=¯Ü¿AÇGÒòaæ‹ÐIÃíâF‘A«³¹1Ð%S¸­÷º¹ÏeÖ‚]ÖÂyvwèmxÊíõú äèÕ&ÀÀ:ÕèÞ…=0¤qü®gi9 'pãHèƒQÔ|k“ãô;Þv‡`’Vœô ó˜>^´Ýr ~ÿÒo-݉…ù±œíNâ…rì'‹aX&™qs;e+#›a^ûáÏb“ÈÀÝHØâ艇-?[‹¾;û.³-û'#Ñ­Ö=¬Óç‘„4£EbIb»_ ¿FòWF³ÓT¸'øq«4îþÅÊx¨©G)³^ŸD: ‘OuÈpûo¤ªS,2.m°=Ò'ÌÑ-þñ_â×U à†‘‚;î¯ÓÔO CöVÖ²ÜÈÙ{+Ÿ# ÷of_iNA£âRîíräÛ ~ùÀùñ§ ߇\ÈKºàŽBf7ž€¤1ZXÿ8‚"Ëj–ïúPœüÙ”=Í㸛.¤ åÍ¿ÒNþ$Ø¥tîB/¿,WÍè0ôGwˆÞ7xƒŠ”fíÝ=0”{,üÇÓ0¢sWëÒþ6£ð\~ý ÆÇVÅ»”aräP\­ÛÌßù–¥·³ºÑÚn·|a>[Oêæ‚ŠúÉÊ9ÂÒ³>â’cá°Ân™©a«¹³ÔCKv°vÉ]yê†=lØMrRFUÀÖ¹©ÂÊzø[p\°j\‰ør‚ ÿ@â{øøs#)íe’iÍB$˾_ß8¢‰Wþê–#¥ {Rq R=½áÇzñ6ÒR7ò­ š }'ñi‘ѧÇeæK2surüýº,;Eß5¯_D6Á€èU}gäxèðr‰÷«ñÓÒuGiÖÜ;þFçñpñÄÆµ(ûºlçJÊ×Kñê½A%–í7Ĥ³¨bÃ^aóbÕÞS']Î×@TNÉËCM>ËܦQ«tä¦êo&ÔqÛR|Lõö¾ó&K¼Gr¤k¥8𨮷ðÖ4(‘jè#G#ÔÖoÍúh|m¾¹=AMŠÜwJ$Ñt!ZW_^Íîoÿd ;wYÛe yXÿlàS‚Rnˆ'W‹Ë¢¦|Ñ¢‡Ò¹·¼›ÀC™0†»OÐ2ŒY€Uë5Þ|¥|pm[u|{-w™mò®7í£ù‡¯÷Ò³ùüó¾êqžLPž3øWt Š-½L¯„ü|fb›$QÈU+¸ÎÌó?/\ˆà"Ìg§eªdé©é=–é¤ /~쇤Æ*v²“/ É'E¸Èu26òˆRD@>³Íq%Å(ûxøâðˆTçÖ±Kø5@ƒ%½gÁ/[xî¦I=Ó‚6:É”(khISüuL:T‰Ï×ÈDCgU"9Ãt5öߠу®%ùË(ø—DõUÚ §?]!äJ‘†‹$2(ö¸M…v¯,J|Yû‘2a‰‡vìÙåŽ ¡t^3éŸ$ʰQœŽtìAÙ¡-UÜ™(ojY0yæ*Ò~÷2•šE¥òï£b¥¨²4<ÿ“$Õ­9¦iW[˜ÞØÒg¢&?ùq’TÔ:öíšë)Ô~—öÙTê2º+\ìuG½ô òhÏ]Ô¿ò¦êÕW[40J•¼È©ŽFû¨|xV£qTêùäH[4¥Zbm(ýŠfòŽWùŽ£YQÊÐsg4¿n´yJ^-hYVO*øÙÇŒ”ÇýZû|D ¾˜ox&¢R|EwÍø빞᰺>SR»GoS@ÞÛŒo Ç¡ðªp‰£¨3|íâ;ðP(¾U\–=?§ EÊÜ2¼â"P´ê²÷óãQ(Ì»©ý–à±—³(N}ú‡‹Ï$ ¾Têqÿ[ëÔ?×?÷ÈŒÕ|±‚èRU!·ô“Ö¤CyIrŽ“ Tä¶äÒ¶B‘ ÉJý|w rB‚'ò¶îß~äu\”lW ÞLd‹¤†GîýQ&…æÑ\n¥:&h œ3ò~vÚEv¿Ÿ„Ÿ+—ŸñÕt®ìŽ´‹B¾`G(M>ôeïêj¦€ŸûÇtÂaèÐg Cîc0œ³-t.PF/œÉ¹‘áã¦çü#ø…`Ò÷“ùî-˜ö o¦¿c’¯lÃÜîygWÇ»°P×yÖ@Z–¤‹X¹ï«ÃrÆúö,E*¬áJt¡¶9è£.Áz›¾üb,l.…MoÀ_اÁ* »5•¥tH|¤*s­¡IjÂ¥Å=E²S¼þ½%HÁn4Lwj÷¬q/ñ5D"³üÕ“ýsHs£ùààQA¤WxÖ8òn9²X>ªL Ó·¢“j™÷åYwœÝIÜ—ÈĤ­×ŒìÛI7yÙëãáC®žÈmgôäää­iýH§…ü‘ƒÍ{bQ0Ùçµ£ØøÕØ¯*|¿•ŒzòÜ!_-Ôèð©ÎI3C­‹¾Tl KÄeûECÔÍ54—bÇ#Îo® QFýUýJWZÐಉȻS‹h8PÐCýø+«Qy@þMB²˜L×¢i¹Ðí}²ÝhvÅ&,¨­͉Rž0Q£ùãJ-4ßîÍ«ùãŽç(:¨D\ìXPÏwŽEKÅí3Ï5/£eÄ«oGš:Ðï ‹N”ÙÔ.o!3vbGf Óyޏ ˜›‹p¶“ZO粊P®dºœ°Ç å¸$j oþ6Õ’"| κy*à…†›sÄñíÂÄsr2ß?ú(°° i¼Ï®Py@¢÷øÉ'¯!ñ …d”ƒÁ?çušõÌé /bÆNÍæ=”9F>‰@¨6êšÖO†úªÊ&åêÐ\}˜¾ŸtZ3–n“„ÖC»¶Sɹ[ßàç@V&E5Áû<. ñB—OäþÎFrèŠjÍ8µŸàwŸÎÿ„Î[»·*·< càwhΓ$èp•ôa‚à‰2d'²z¡ÃÑœŽùt¼‘ÚÖ•Ã#oÓµT ÓõÎ{§5è’è:§{´º¥d ¼< =ï¼çnM@ß /SAN/øåÁãÞ+UƒöŽtº%‰0ôAXšÉÀF¸+Î'>†ÑAʦ҂“0^ãc|F½&7ìŸ/hÑÀŒµåKñ$Ì.² ¬ß‡Ž_Og%a‰Ê–ëb¢4,Û»Z ›t™,t ¢WebÖ‰(¶éa)ù5”—¯)”ÇC×Vœ÷¢Bé+$Û‘Ö)x¸}{äÏ({òyÓ{”g`ÕÉÜ @…¦],á.¨ôîøï›,¨’Öàs[) ÕÉ”Nô¼A¼(Êê?s5~ïÞü^ƒZ|ÕÂI':QÛ#5Ù¿€u:1óa'ê]â(°ZF}•"ß û­úíóѰo%阻Vï¹x¡Mz*ÿº´š OêJàRšÕzK‹æ§¯\8­ò Íwbùn§h£Å#±°¦ÊhIwÕZ’à‡÷“>‰¼Š–ãQ*ÊÇÐêdyTþÅwhUqf)¯É†ÀÃKýj„ãd}ÎX9Ýy¯\TÊav@õ{š4u!Ȱ·¿N©ž&CÒû‹·Ö¡ª]¹>þ‹(|{w($ÄØ ¾Ts 3&‡¬xûÍæ[3J'Ÿ—Ý/Œ² ÜŠZzãáÝ‘.·¸P¸‹ÙûÕ'm»hfÉü ÅÉ–s)gìðhßtê„VžÒEÝ¿ߎ_bB}£í·}ŸÅÑ 0õÛˆÄ-4<—QjFȵ† ~'~Z¡ÑM¿äÈ»§Ñhùqä,Q _ñÂr4nîàÚ¾Làa…*ëö)4 â2»}†ÝÃçÏÉG·¡Êñ™Dϲ‘ñðÄÅ‹¢«0gì“!²?RHïM IBqá×Ëú#PèÙ›õìH äÒ|WTƒ¬2ÍÆ{Y²„\Øâ5írÒ§¦¤9¼ ù/›ê}$Ä?i¢•q´ÉlM¶Û»!éfò’Ë™ÂÚžC½·™’›1³®'àû|¨/¥fyµ²·•îq‡†ë½7ž»†A“QÎɫㄜ8Á¨¾#­Î-¨Y­A;ÕQF¥´—ÐÁ ×›ýª:”“&¬ó }’ö¬“¼>´k­MÙ üú·ß0VѪڌŸÉW3ùCÛþGù'UA›üz?#áú¢ŒóAeO¹ ûPòä•å¥ý´„|I«G’’Jȉ‘IÇÛæ ‹B|ÿI?èN}bÂPR½añŸOÔ§@ÿÏoq—ïJ ÷ø¿š0älîÉ#štD+8`L€aé‚qLh šMnØÀ”§m7-̲6o?þóÃŒ[Ô®±°èG³ê¡ÅËçžëWPeÁ¯3†WÛµ3à·Ûû¥>F&Xàðw\l€-rÛÈÒð(ØNùÈùëû4ýLaÐl6F’³¤ºûBÒí,‡ ‰BÜUt#¯Š= )ÒŒ³×¼v#UëÙŒž5ÒˆÍÐèÄ_Dºïã,+_9±ôÎ…žC·[¹\É ÷Aã×~ÊRd¾%,ûì£ ²ÊWíŸvFvžðïO³ž"§ |z‚ûïws›¯œCR¯«×‰š÷l ñƒ§ÊÈ׸X»è´ùÍõ ’Ÿ{áÁ…ýf–¬ñPjA¯Â3ê¾A\ˆÂY7Ê«\nã‘e¿OkDó(&!õK㹊,ÆVèØà1ÞwmøQ²¡­Þ#Ð¥_‹«v.´ ¬ÍŠX|•Ê_ÎYûr{ŸN|Y|œ¸¦$ƒF ‡õ¢÷/¡ñ=j:"A4! i‹ž¡GïMŸü-4YÑsyß{ MÏø)™+¦Å1µoÞºxè(huæ(š9N>8ú‹]éŠm½RFPÁv*c:j÷ <ã¢$݆ñE¬\pè‡òñ ?Ö  žILà‡4d-Ÿä–õµ„´†÷­nS’fnÏÁDè·5*f]ø4|'»Ü(ˆÐo+ñÙ—öþ˃7¨õ* Šx³§•!²i>$jÆ¢ã/î¯à‡x‘>Š—’$o¨²õû7t¾´rh—Í­>È;’®aC ù~In¦ÛªPàñ§›çOÌ".I¾KÈ‹ÎG»þ$À×”òÛ§çéá›Âº¦Á³ð­êÈ낈:øn~Þ¼ñÄäßï*‹ÉÊ ¹ð ÑÄP6¤Ë»þÔm¢$ô§iUÄ«žâ÷Ù‚˜$ÁßÑÔÆ¥`¤=I ¥ŽwNS@ö+fcÕ Â¼Øx¦|võ T¸¯†¸Ø@MâÑ=âLh`yÖ.3ª Ëžb­ÊyÐü²â§_U´f{¸ð Ú¦ˆ­½Ïüû]4ìуÿ{^˜|ÊÚÃ/ŸuøíLKf[þíÓýZ.XmJ=“ ÊÐF9ædú1ÚX#úåßC›Öä'ÄBÛ‰F}öº6h ÖU¤Öí *ÂEŒ¡ƒóà'Kgè¼¶¢S ÝÄ‘ÄWÅ §íØd’£?ôM‹){qÀÀ‡Ï›Ôs¬0ø‡bÒçí{Nc”8¬Ô£¿¼=så Œ¯² gdÁd­õÉ=q˜ÿ}ã!ñ0÷{E~žn÷–4Þ›Þ Kùrr>ưÒvçÁá!X-ß2”Ÿ†u:ÿº Ø4¿XŸ™ð þL¾¯‘£SE"›±Þ êŸHϧh%ÝJ”e‹Fêg]ÔÒÑh0Ó£ôu$»L¾{ù7ò-9* \ôÐó®ðF“¹,ÍûÁhjõ˜$íO9š~ï»q6”ÀCû-:hæü¸:ã9º$jó6k; œNÐIš¬ã¸'ÙüS˜ãŒŸjÌàí­€²ìO7z~@~úzGÅ bÈâb;ëlF˜;¿ØØÉV@r0™wؾ¥9o®¾âÖÕ©æÏA,µâ å,5Di¾4Ëž\„HµÚ;ußú RTýdV‚-D“å“o?5†Ï>¾H8)«#Ÿ9o@FµÀ€‚û34|y ×gó•ÂæÙûyåíà ¿U%eýñu(О¶ œû …B*sR¾ð•¹¶¬Nµ¾¾U\Ù÷¾±%T:¨Á·÷g¥=´ÿÛheb>ß?ýbs Šž—…(sæáÍ6j6(î ½:%½{³ÂÖ¡tt`øaÃi(·~Èæ›ž • äp¼æ9T]K!ŸÏ€ëì%]"¨ûÓ¬:¡óo~AK'¡q°—Œ­šŸ Y˜ý–…Öûw´œ²A{Þyë#Eè\»â¶ =·æj¯üæ‡þ£Oÿ>T‚A’ ?mXa(Ãö,ã/Œ¼èr)èa€±« Óµ|0áëL%b÷¦â[ëb`fljy¬Àü™>>?õX¤°1PdR‡¥›“Ñ'c`ù÷'•{áW°ÌÔýåoðÛ!¨éëº$¬{š¥ÝN¾›µ²^°mÙÓ5ÓéŠD/ŽØÜtICâõ‘œy;v$u÷*—A²¿ ÉoÏf#y²ÛÝ—ë‘òÍGq¤®i“ ɉCZ3õ3*HÏ$%ÒX}÷†;ɯûDF“#Ò9ubÈ,ZåvD…Yxº Ž"»c_ØßÑläç›9íû¹JsªZ; ý›»ÁŸþÐ_½µ¿ì,45WÝ¿œ‡ÚN ²5‡ P çiç;xä¾Uô—€p3õa³ÑE Ž1¹]6 (ÉëH¢x¥åè{S® ¬aDJâ7~”¿›7XÐ8„ljÿжFœ~µ6ÃI‚ÊkÏ[+¤à .‡Óby¨Zhš/]^ê¶ýÏ(MYQ“¬›÷Á¼¯À¼™ƒ:ŒÃó¿+˜P÷ñ™Ä8þ]¨7,¶}€ ¤Ëd½f¡¡üU¡-lGóTMJ4:ƒ×Jì_¡Ñ@çM)fDc«ðm{GF4®ûÔ¢/·LàáÉunw4ywøiÿ­—èú)ö½—ÎM[Õ¢º¯Èð‡]]cf9n]Wq‡J)-ö¬ßæ;þ‰ÿ|_Bv‘j8·ã™IŸ}8f‚;šäËËÏ®\ÞñaDëh«QQØ©‰þ.È<øèŸ'Ñ@“À‡ÿ<ÿy*jölµ-ÏA½§ƒ[uâ 4¾Q¦„b;¾š–º§’ÇæÐ¦3ïi(ºã™i÷r1[Ù¹ÞñÑ<õmÓû5ôïüìw,×Ó uESÀ1æÿ·þ÷¹Íÿû½-9·…C{ Ë¤ðÔcôÐ~fÞã}$¥ùûîü…v{›§8ƒžoöDÂ0Û…3^ÀÈ ¥¢…g,Œ–¶÷^¥úŸ·æ’®‚–mÌÑ´x4ÇËÃÂ÷¤'/×aéìÔdòyX1ˆ ñôp†U³Å]%çK`í"‰‘°lÄÙü‰ÎÖ„?ü!·=O‡Áß14~ò(‰íßÏÖîB’Ù–fÚ^$ ˆ".eØ…ä¶îÇ­&‘ò––££R늡ں‰´ Yad»qÏ’ÁwYÜ{5òă~d˜o)Ÿ~C‚LX|¨•Gåhñ£×ôÛÈF>UXq9¨¦e¬qŸÁ•§*rulg®¯2#O5<¹V†|²ÕöFŽð@ê;…[r<(o5zð ´'h~]óCÁ”ÏŽ Uʘÿ>þ'E&Je âòðèI™:‹1@qºž¡ß2c(ž$´yø&JŸ¥þº¥™>p]L/@™¡ƒïmP®ëåÒ³. T¤?w O)ÁÌÁ{éîoTÒ›Ý7幕=ÆÅoDýD•ÂÇ6 S¨*XËÕÔ&j¥Ã-÷Õ¢ÆóÀc²Üž¨uîF ÷>AÔÏH|ì…ºì?ë(ØQ_ûx9|ì”ëhAC¿eß/ß™ÑHj®í–Ž5ÙeˆÆ—«¨mÂÐx¡»óu4!:‡ï&ß…&“œOÌBS‹1™#',Ðô‡·Ñ¡¯^ú¢sÍnð1Jí§Ag¦nÁÑe”=þ÷Hù;Üs›_\²{ÆÊ.|0ÑOÞñ¹äå÷ß¿ôµv§ïþóÊüç¡ùÏ7G³Õªï+ 1ÒE­ÜH ÒµMö“}ñì#G…­×N²Ù³ &zo§Oÿ¿žšÿúáSl‘$¿9÷?_®Á‚Ž©)!ËXDÒƒ÷”ß~ý‚d‘/ÔË)—ÿç«aÙïòâ#R+t w'ÒdõÚ~ 'Ü7¬ßYÂíp¯’ùCÙ©È0¡ÅÐzž™Ò­¦ï( K¬æ†jˆ ²Ö•†Ò×#'Ë÷ìSö?q‡à}"Û_Èt2YiJù|˜®ž‰:‚ü¥1Þ©âxHá ›]r ^8ZÕ¼é"míÚ#F{ðèrဒäUÏŸ×ÃcÙß6ª/q£T ó{Q*ÊÔ«Äß§XF¹ÕƒN´!Ú¨è¢èÎsѬz›ÕOT–!«ƒ*µg·ëŒQÕŽ¸î¡ž9ª³èÈnGC¬ìµ_ꨥYð0µë«?|Šºš|§z¡^Úàß;4 ÔwÓ5FCJëú¼£hX$w‰¬± ßÖ5 Ä£QûC›“ÜOÑØÌ+ûù“|4®~•.ÔžGàáæh)4 Måe «B×C‡˜n…]ÅãTHݸ]áÙX0ëne˜‰î74¸ ÉóŸÄfµþí+Ò¤ÝñÑ|¡îú(»¯öß™6ûóÓ¿}K¼Õ¥/ Éúd]@8$*(ÍwLÿó$þ­…¨ÙcÚé/êvj"GÓÆù·fð¥’éü•ß;ÄòÑæˆ•w]P½˜nõ&Ò¦qöÿ|…w.>¡…¦uŸžs2óÐr_"€.`Z§ÝêÍkx m:׫¤ÚQï·ì€¶?Bz”9O[‘´0„ÀÍ87¯üË…Å:Ð:á-àŸ¦m¤$Fé mÿcv=h“ßHÉ: mÏ ºsA»È›—téÐAþè~Û*èÔó9ú}¯ tÕ¾f»d¦ =^ßí§Ù ï;IÍï"P¬É}á– ƒw…æ4WÊ`˜ABùô‡0RndWÔc_~z|q‡‰rKåM0ÍÄ*&˜@³Iwò´©Ó{ŸzòÂ3š”H6Âò²˜ï§Wà×T¸è•ƒ'à÷|ÁóËôY°q˜û¡¬dl} ÉÑÿ0M )"¯ ñ>É‘H«$ u®»,…dpÇÏљɕ<*µ‘’ÛWüŠ[>RŸ}Ðs'¼i¾¿ cˆÄ=îå·Ì—?â^AÅ·6§‘!îÊL|!+2It}$5ÓCæNaêû¢ÈeþpŸ²ÇÄ~¼øõr²ÜÌÊE®Ëj¸åÙÇïˆG¶Í4ònî¾"Ül‹œf™U³ž ÿRWæ-©û(ð¦aÄš’ íjîSxQ ÝvCŠ|08`L„G©]HÙn Ø¸é1‡Ú”pßÝÒÒ½„’‡}â?m–¢Ô»ø´šʤ*ï!Ù@¹è¸¥¹ TèØÓrùÈOî$Š,Z#T’Nm³vW@e[ºWÔ·ÕP%ý5Ñ%QIT=(@y»ÊÕÊÝ£ž]0E—ãY“ä/Q˦Ȇ“U uŽˆ_O xºU’v”6¨oâÏ÷´w bô;[ #l½ ÑÈhÒ-ä mÕ…¹,—¡qäÑ‚'åCh‚Á=g•æÑ¤Ãù˜O`š:ì›/sfGÓÍç?s·ÅÐì©ÎqõŸ™hNÿšÉîc4š‡˜L<7D§î«nÍhŠÒ¼g"%â4‘.â㧉'0v¾~­†=J-Ã[›6þïoG$m" À IÈ…$fF±^ØNÞðrË럟4À™”bßž=+CãÑEÆ®yÞ„<¨¦*XB 'hLkc&wj”8™«Ë[ç‰- @rOÐä«dÌQ¡á/FŽjÝ£“ÿ¼Äž_~Bîvć×|ó×'r Õû äŸ a^2Eȉ“@¬Á …Ò ï?“9Caâ¨bî®û3^ /,Eò¢œ­‰ƒ4ËýÒbðÍÏx^ïå+ø¾É.rpãŸÜùÍÉ›ÿã¡È#íé¾·Pº¿Ü/j¼ÊÜM7ÉÙ@_»i)!'¶ˆ·Œ/…jªã|ü µ÷ب”nsB½Ñ‚k/4Ì:}_)°†&¯Þ ­“ Å¦.…8ŸÚ?ÒáYí/à wüS½aAÊfÉ]0 N*w*R;¸r–“˜`øslÃÞ'Î0ÜÚe}ƃ‡£X«&“UÇÍ‹ã`zð<ØÚvÀœ^olI,x\¬_{!‹ƒ®¿}¼”aÙêFëÊIXùåái¶Vkò…TÁZÇE†m°)ätÂ9Éþ¤ºqt°!‘XcéæíE$~«Ô„ÝŒHJa©å覄d8©ö«BržMÙ‚êH±r/Ò¶m©™ÓÉÀ&ižU²ä†_À=ÚWxÄÙq¯@‰¹ÉUd¨3u ôD¦ [éÈòp‘š˜KÙÞÜNœëß…ã^iV8ŒûÃBŒ’ÇùÒå'Þ“Èg-~„^à"ò¿~öPo;þþ‘ŸÖ9‡‡|Š;sPä)ZÅàÑ÷ÛŠ†¦(þüŒ<ƒ¯*{ ]8îgŽR/¯Â÷ë(:¤~jWÊU~ôÛŒŠÚöƒ’û%³þø”÷¢²àåk=*Tù®æ_Á燪§‹“Š?ú¡: kÃî3ÔÈ8ii}µ ÌÞë@í—W.~¨{éqXýŸ1Ô ÓÎ×ËCƒ÷Y 4<¥—ðÎã3Q˜4$¹¢Qª[@ä®946ní =?ˆÆKcÛ vhâן-ˆ¦‡-XîÌ6¡i) ŽoÞÆqŸýœmP!ñ‹ú¾û¤ÈÀ’Ù+ù3 fŽhÈß)¿Á’IÊð½–Þ÷ʹ¨M–Wš´¦4dh‘šilAÚľï©ÇÚ!õ¸'£ŒÕ¿ýLkî'–!®ê(‡gücˆzµÏDªÕf§&Äû’ªw¾xß½ÉÛ,¿ãÉ//Œl!¾ïÕí*—¯ý»¿ FôC£é¹çŽSÐTüö|´w:´HFežŠƒÖçê©âê„üw?Ý¿Êʼnçî:ÿ°úç1¤h? ~ξ^·Úö~+ê=’ ­CÙ®þƒÖž\FÝqÂß =³i 9P½d÷ÂSý¾o¥hmÍù)å íÁo²ßÇR@‡çÙsò)\ÐYa9jüdºÕ.µv/@ÏlQB1/ô}¿®sç†7 Ø¡•ø_õœÝ꜀a]n«/»`$^û­Œ=:WÎüw&Ò™ÊVœ‚©’¡ƒÓf0«ûÓ+læ,pãMŸ«Z°Xô°ý|,ç?hfµ†_÷ô,v—Áï;®v¯2Àzbem¦l±„¬ðôJÃv©laA”<ÕýìvómE-|¸npI§Ì89(q××oy‰D¤¨lÜ_àɆÔDÂL³'„‘æRìÝ0^¤û«P,éHŠô#9RI‡:‘áô&ã•aadKß²ÍFæAþκ¿‘U5¦DË%ÙѦæ5Õ$rÞj9à|Ð÷/¿|¤z—yŒ÷9l¯É"ïWÝ‹ä2Ix@Bi®’˜ù3ivS©Å£€Éï{Û¬¡(È_ñXêo ñÒ:ñ"ðРÛËöŠd0¤hF±ï5‡Î5¡„áÕ»)~×Q’(纚¼J«9wüD/ãñ”C(çP´lRƒ áß3rRàñÉi?·ÐDTâvyÕäj‰ÊæR3‘F…¨÷!â•Ô]Tå½·ÄWøÕ*i^ßëFWŠÒïfC <¤ùÅÊ`:‚iGn…Ç¢n­é‰ünÔ?=俘5€#Üeõ h˜Þ{#üÊ 4º6\•7ºμ%’Aãî`‡¤ÐC„>3êé«'MÅ›œ×Mç¹òE ½Ð,üèeÕ5ÆÅ?F˜{;Ÿ¾Út† æc?Z& 7—Êäúä½h(ëX…|v¢S¾}Dÿçõ'æÉ‡‚ùh†ëÖPxI÷]»U?v­ž*[¿_ ƒDwÆ&|­Ð.ãÛþ—óVë ¥B"Ý#ö³éø%.G>hÿçù¿@ä&ew;®*dB©’Rq«T–<+bÿ UTi™MP«*ïæÌ¢ ?Ûß\å¦Ch(¸¸ñw4)Q‰ÎëÕBË^]uås× sï R…ÔÐq´|c|”bÇ?Õ»oZŸ­húÌdØSÀ`@볃0lõ»;ESFUЬ”, aNœ7‚I‹OOJƒ¹`Ú/Ͳö£2ÌnòŽªO¾Ïq³foX̲2ëzËG÷;~¶ƒ•Zò(‘äpX]1çP€µÜ'9·Ïü…MÒÞN})!øã:6Z¨†DÌ&o#ýØÃû»©’LŠiˆÔ"Ùå„·;§œä";½FR4 ¶ÉñÉ#Õü³›#iHcV–UŒ{8¾¿9\R…{iEÃŒù!CÆÙÖeÈtKpôŒÈ_d9ÿŽýk /²]?¤’,¹ §™Öpÿ%Ê–ù‹È£ïÌ]Ë‹|’zs% ¡ÈÖå<§> ”]:ã0ÉŒ‡/æïÉ™G™Øî¦ <ª‚!çŠÅOÖˆ†Æ? ’ãÑäÕiÖš-à ¹…fœÏO𯅠ÙÔϨ¯KÂxC@ˆÒAÕ åõ®ù”½Á½Ñ÷ùHa:;•?’|ÊÃK; óÜŒ·ÏíÂ;>šÌ…Çõ–_"!½2l¾°ØÒ.çž Œ9)Æ v'´Ü!aº:(eâwKãà'Ì¡»¬ò¹–vjÂÑ §-’Uø"7ñÌï‚×Î9jåNtvlP¹È)ÆM õDÕ{ÛCÍ Q’ý\ÚÉ hz;1ZåÍ -q)ÊÐz˜õÕîb2hcMˆw壄6+ÛÎÖQ&1Ò^W$ä? ±ÎÞ(hmk—æ¯ „ÖBK–¼ûÐÚ°ph老ñÜü4ImŽÛÛEÅ|Ðöãìw hWÔbÛ‚¢XšxkèX’W ë:]xøýèÖeèþ&hнgЧÞ®ƒþý¥ABóÊ0ðÐÏ6pð4 Fú6¦}ß Ãä—þœªSßeî]0f’V¡mJÑ*‰y=0åœÌ>. 335÷ùþ†ùj9 YC°xo2sÆ?–åUom_6…_Œ›÷ÒÔà7ůônGXýàwN¼6_½[Þÿ¶Å¿8·‰Ó!Ñ=Û&­ïÍHü›Vþ¥“0’‹~úq”wÙz?’ £A 'fê=n!UD³žõØܽñâBØÑ:¤{œ±{ï”-ÒGªˆÍ›#£Ÿ¼µ2¯øåÉÌÂÛ,çìWeì“èžÅÈÖŹþÕ<9wWŠ]}3†û½›ìJ¸‡e·Æ«GÈ{Ï×f tù–ƒ~hé=FþÇχš5 gØ!^<Ô_üìâ?<ܱOSQ1EH¯Dàg?u˜—:éÙƒb!*-«U(!X#è£4…ÇÚÇ$†<èQê£åšƒ%ÊhOúéËV¡œT×rn’-*\¹&UD‰xÞc*DýË’­^Ô¡ÁïPyöf4,5¾¤PFÏúNXI° ±Áì+ÿ†D4aþ³¿Éé*šôÒ nx¦ icíÔu4sáyô†bÍUšÿ4ÜD ö¤‰}ah±6^D£Â‰–Cß .¶£ɇÄCK¬(IñaTñÊ'¤™}8ãGüFÃ?§ç§ú@É£ÚŒÀ·_!§¶hÝñQ7WÉÉ/¥ iÿ‡–C¹1à›zâ|B/kšt͓ăr÷ˆjMyÿIÅ ""XeÊ5BøÕÖ× wjdÓ¬çjç]ÂÜ*zî†æ($-š¾n¦M„ô4¦ ¹XNÈ*;Q¥J¿9ôwý˜VHýï¢p#¿òäÜ.õ\Qƒ¼&Ûp>)ÈÿšGG´añÔ鞺PÈ•¹ºšA …Agž½#R€¯ÔvEÞÀ×{éÁ–oëàÛçGáæåðýÃj‡‰6]q}ýÔVþ<”ÕÜò=Ä¥R2Ö$ ìQþTìQe(ÿs&At, *ÓõD] *»õωgcPKuz02à ~>>„UoQïô´&X Z¦’„^G¡¯3ðÇh*cù°3ü]NhËñ·@b«¢$kas$©¡>É5bdZò¾uY~¸k¸výÍ9¤HWÝMuÍ©ªÎûæÙÖ Í±÷.iq\H7Íè}ÌÔé—ß'ö­ !ÃÛ«Òc«RÈtjÏyýRÈ¢¬|ø¶+²©·xßqBŸõ˜ÓS´¸_Ø}»áÀ>äöìÜ›bƒ|Ôöin¢MÈÄJi‚×|êîÍ=ù‡¹å3Ž  ð-¿¶þ;ô^qyrÅËq­™¾Æcìç•yÊPŠ—y€šÐ/2R¼Þ4Ä(gï¼-‚ •™Ö*ÅKÏ‹ìÞm¢2MÂà˜ÆªÄÒgå”™¡ªªòU8þÕ~§m xj$çD{‰- Öi稽ü¨CrÁŽ×ðꆇ½Í_ÊG}Ðe´Dƒ~2oA]q4,>¥"²‚Fo|>‘F¢ñ5ñ}Ç ÝÑDëv¥Åd0šŠèhŒ_¨@3Ö{E\îmhNûõѳÖhÁ`}!p¢]b\~«ƒ²ók®ª à^1ý«Nf`Z‰•®Bó”³ÄÔ€o4 }eîøh2/XÙÚ‘Ð@ººÜ+~ùOZýiuA°0_n”±ZCÕg¤ÿ<‰“ÏK }7wlíÔø¼_"𹕵lüac¹hçœír{ç4Ìjÿðúµ_ó^à“75ÐȘÝÒv"šŒ²$¡9ôÁ¯¥‚Qh©œ¸>¦° ­ÉÑ%\кb¢Ìuî ¡êOË(@kÞ¥DÕ9Ah Ot¸ä­ÁTo‹½öAk¹à!ã'Bÿž6ï£ äÉw ‹þ¿¡}ƒFϵhÿp»íñ–=tØgÏiÌ‚N[fRrMèÊÙ0ôpž‚™=†åúÐ[W*tM"ú=Ùzº®’À@Ü|Q«( f≋1Ga˜è^÷ÉÑ{0⬸¸U;c|3ôƒ*a|[Vœ+Ù¦xÜé*®-ÂÌË÷í¾„ycšûL°(#ÄßÜ`©÷çµÃ_t`åsüg3‡ X »eQTkéVŒ¿Òda“òݵò3?áO„„ÀÂ÷A$'©Ú¿Ø€Ä1]‹Üþ HªB)éêGƒ»y|d¨®!›åêŸV¤R¾ó¸áÙî~嬎FÐtþRÒŸ©;Ԛ݄{«ymFÄM‘QM {î•2µ^ù`ä³€,>ñïÚ¸ú͵ýÐd´+r„ç¿L~÷Óq˜¾"çEîÌ•OjYÇqï¡LBîäÄ]yu¨ÛôH&ÿúGÔw|z­ü|>îzaÑ3¬„†-•'ŸÑ£QlGáÖ=:4öðòáþÎ&†~®©¥¢©påÈ?4£e'&pÞìŸþu4ssZ4-†z]•¡å,#sož¢Xa iâDGû1Á‹(±QøTYÓi×…‰é\`˜é$nߎa^ßÛ\ÿÞëæu©”‚t7õ——´„!ñœ=c@‰ ÄO’zÖ= …¸÷êv±ñ@Œô“­…ç§ Êfï·¢'›q*àŠ»[.„õeíú–e½S#£‡ˆå<¼Ê"t£ ’îd]ªõ™&|ÿ‰6ýsï Ë+…z°0eWOœcܹBÝÔ£äÍ;ÎAÞßó/'g¿<ù·xV‰<)8ï¢8®"œ¦,”âP¨W–{‚ K¯ÛÍÄ…¯rl¶o4Cÿg ©0߯º~^pù÷¼„×ÛñÃÿxÂfgjNB©2Óî"({þÑž.AÊßa ]cÿwNb°w6TùFi5ßÛ„šŸ÷ôšôSà§Ä7›N/ ÁBÏÉpÆ ËlÊy§h¡ÙEëfQ´Z ©öe‚vƒ å0'×ÿTû»+aãÐ׳•”0Hy‚eã“: •„.ׄÃÈû·]4š‹0æ«uÃ+À &’Ê?"-LMêú¾!g„Y³d08 ó‹abk­Íd Ùy»(ÔSàσ÷ˆ‚?Âß”»¬½¯‘ˆÞ]3qG’¤a›ÕÐa$®6<8[Œ»Ê¥º8žd"Å«8ìÌmGªhã›3£HCùˆ')þÒ\¹ª8&ˆô]äyWËÃÁófˆÊ¡dRüÕìÈÂ=)'FƒlÜ÷/NiÅ!ÇÉœ°3ßùpßâ¤`Ñîfä¡ô °PãDÞ§.‡2©ðÀ¦*÷—YRГŠrâ÷DÁÎÀ×3(âêP½EýK êúuíÓÞ«²2(12GŠT›(9}U,ÍCeˆ‹÷üýˆrŠ»2ÝÜQ¡iuß > „F·È.2jTÚ~©ï_~UÞ®ª§½‘EUYbmO?)T›õzs¬Z5ÏǼz/ˆZçÿÆEÆÆ ã±{ŒFÝÂD&±kPÿÚU |ó u”‡…ÑpeÀwµ`/õD3Æ3É q-Ýàn·¯hRV‡$"‹hZ%ïn•ì†fÝõå'¥ÑüïB?9?ZÊÍñÛõû¢ËA‘-›)%”ñï£cˆÍEú¯œ~le0UuwmúY”ù?ëå)g¯GlîF+ìøh2Úĉ=ôoBZY‹è‹Ì-H©ì—È£ºIè§|®ék™ÿ÷^éÞÇ»!–·Ô>|ótUÝ—…Vß㟫.Úø·ò¼ŠHZ˦n§@ë9Jž,bkÂõ÷v¥l'mòÕ@Ûñ©m²Rh+q9'Y ífe øHÚ×]ì–ÒÜ [jèìÿ{EºÅjÈiƯCOê¼Õè;^fBá,ôw]?øl¬ªØ>èÁ`Ù¶gÆ0´ñ.ÏòO!Œ˜Is_æÙ†Ñ%ýÏSýÒ0^PÇý:b&ëOƦ̈”?4hä¹îfç°0ÄÄ2cK÷-Ï›‘)ÃÊq‹†£ê°Êîô'NÖ$Ùß=Í‚ûïÞ†qÀº”žÝúYð·\îÞˆÆ$6þü)#= If‹yféìkÑK)ןH^ôa(ç•$Rø¦rDwó[ Ó]CÚ€°°ÚA ¤ç°ä™ºk€{½³žFYÚ!ï©…ñ¨EdºÛȧ7ƒ,BI»>¸n"Ûžsæ9ä8–¬ms‹÷…žSÌÒæGn…&ßtOEä%ÛsêÍÅÛÈwSñŽÞØc<°±÷ûM.<èwÕ¸O]™å¼.öaÆÃêrk®—ÃPØþÞèÌß}x¤Þîvê :Ši‰»àù‚âÏ=b‡ðØ“…ûVÏ ”4­÷®@”céö½þeЭ<ðýò«ÕoÙ‡Òð¸f_¾z.b¦›ûéÆó¨Ì“´ëRª<þ~ŸVç4ª²ø¦rS¢ZMMW|ëuÔ–+HŠªF­3KY»IëP‡SÄ®¶bu[Ãý¸‹úî=Gåý¶G‹!i` Çu½FѨ¸Yúc-GÓz§$ Éójo.Ž4½ý`üMî54»‘}én5ƒîüì—ÂÑâù~‘ñÉ´L¢ßoÿOÂÕ”±´:"ø:Ïâu“Тu­,Ÿí9¬~˜wË_·såd‘žûö jŽPœ¶îÿô4K-´nR½‚´¿1W÷“óAB¬ŒñŸšjB?YdËžˆ£ùûBÚõ6DM>養…È)סΚÛÁD|ãxz„xÔ‘Þ©‘®mïèxH³Mõ%,’È™ä*ÈD ]Þ%ã+dɰé&)Rþ¯‘J²„4䌜è27®†Ü oŸ†õI!OMNP{XòÅ|úˆ’ €³ó‡Q’ ¼~.e} )„Ç•i[ Ð³ÕÞû.Ý“o\·ƒ¯QÛì‹<[ÿÎSÜ{¨ïý¿ó£Ò=nnÿ‡ª´)¢Žïÿ7À¾ÿaº7é~ÊC¼¨¨^C¥ïëû™¼Puñzð…›{ &02ŸdªêŒ»÷G¦AÃAåDch|òÒ_AVšù~ì!²¸ -ëë£i’3ÐÖ¿~q=[xÇ?ÕývÁõÜÆQè³RɈè‚’õAcC r›Ý~äk #êß¹(—À˜dQž¶ÐS˜0¯¿DÍø¦‚ßZ—÷„Y’¥KSÍ!0:JÝm‹Gè®^²…¥ø©öAJX1Ha¼ñVV%£ZBaM¯&=}Þ6üÞ×;ÁÖŠi5ü}œqÐ]¨‰y”žxÞy$~…¶?M®#Ý)†»¿pW\X~xœR\§tM ;ˆT^L¬’NqwﵟŸ“:îE¹ú­¤/r©X >… çœC&îžÓb{¢yûµæ²41²®‰êkr¹…XÉâ¾Ü“Æ©+Ï‘»Fð­\N òfÇë’QÂU"Ûo¡ÀÞe‹%GQ0p&ÊÎ8…5»¿ÈþŽ@QYÒ¤ ½(öƒ™´³%Ò<ÊO“@É/E÷ÍBéŸ6y_ÿø ­W™ÆL*$ò?ö!ŽBH³y¨}•®(¨t£ÊóîŽøËœ¨*\|8¿ÏÕ†µE”™P#ž66ŠôjÙù&Ä^'äC~²³™¢ ¨Û™ã;þõ?øÞs ù†2L'2ÄèÐHðrgÑçh|àë=cþŸh"4ÛJ‚¦JÜÙIN:hvùðçúßühÁ]Í"„Kü¼} Sxòœ×(¶:Ǥܴ:.…ÒÁ†ùÚH¯5±žØs¦ŒÇ†ék,¡ŒJÌþCaÎkðÈüTºã£ÉÐ"ÿìý ¤¸^·|Ä’ËY®ßŸ¢û?oâ÷{ ðÙ)²íÝ#Ä…?6w H–"7õÍÏ;õóÏì¨!~[Ⱥ,PÚ¤ß2ÙIÎòhW„÷ Tký‘{¦Í?Jyž M‹|¬g q°ñNRt64“\}Þ~Zv= ï„–Î7Ë®bõÐ* HïzÅ€ÀÇŠ¸*ø"8÷#Tž7›U¡Uë&++™!O†jþîmº±‡Wýóz·‹_$äÂ[–QÄû×ñR è„fº–mè2©î«±¾Ýñ¡§¡W0·&õcô%—'°« ÂÀ¾s9ûÒU``6Ã)âA ¶E Ô^wƒ¡•Ì·–Ìë0"wT·ÞF‹?†?= ãçéÈ‚ÎÁä]ÚµG /aº¶ä±”KÌ]zÏÌfРᓪ"²°Ä?dám"ËM»ÖÃ+áW‚¥}ô‹§ð;»ƒ›+YÖ7ÞÛõ]-/á×{ŸÂ_Ák×^&¾Eb¢›ÖjMHò®@¯Nw’ÙÚøErÛúÝo‘òAÍjfC0Rçg³òCZv¦‰„Ó!¸'¹âØö‹Ü+£‘bsï.2Ä¥îÈ>…L‚òŸÅË&‘¹6Åù| ²&è=RQÜFöÊ‹SãɸOð3§Ÿ r•¦¹ª$´!O…¡…ãoÈ'ãoÚplÈl´3z¢Žu_ÏÝ5ËÂCôo¨;Pðfƒÿ(ÌECYšpxÇ}´b¼ƒb¼ŸËs¿$¡xú”³åYú P¬±çï}„/}QÎ:“öœD«¥” Él[­ásxâ|´Øuˆ½×­u¥¡¢uté‹}¼ë _Þ³áï¶wuÓÂÇ2§Ùö¸=;5R­†ê룻›2ÚÛVõˆÐ¿®´ßï9xéw«ë d.<ð³1ò'ô}þ‡u#Èù˜_V ¹*4ÇŠÏCîv¤C¿ü)È›\¨ zjù­Ê&…,ÌP =Egšõ ŠY˜™"¡PZÑþÏ»óP˜8FK— _mGÞ“³Â÷=%Éqµ%P¤zHÙåî¹ÿñPkü/c”Z~̺™P eÁçm#öBùô—±›œTPygÒaüìT)È-;€Ë2cO÷@ï¸YeSÔ]­©tŒ‚FÍ\+Ó'úÐÔ¬þ ·ë¡%¤êÉýìths¢ö1ÝÚñOu³hÜ?H« ½¯K>QºÁ€WZbüº- V¢æ5`€á%GËù@í‘ùËRò&ˆ%ÈnŽoÁÔ‰‰’3×Ga&MÆÿ­EÌ« ¾™< Wjš ÒaÉË'ätòqXP“ƒUº^"wú@X’ÝÅ^ vAbE–°UÊÊé´ õ¿Ôv¸“#1‰÷Ñ…HâôÆ)ŽzI&[Úlã.ŠPþòX¤Ðµ¿mp©Ìgº±ãî Ϙ4i¤;½GÙÊéãúZ_aAußSkϵ‘‰¤¤“wW2÷ÊY¦¬"kC·Ô뱽Ⱦy,à¬î»[åÞ«‚Ü•¨ÊFù‘÷eѯ—·ðÀ[æ^ÃÓx°m×ø³C(¨¯öþ©X- ­«üIÓ=€GúÕ(cÚ‡QìíƒUÿPÂs×SÓv(éÍܸÙê‰Ò¡DæÁ›.(Û÷«•çâTxh<÷aá•ÎÅüŽÃ¨4dph´ÈU¼Ší£¤·Q•û>åºh ªu²”ê[s¢F\n\–Ã{ÔrâL‰—&äCÉ–®­ýi¨»ZFËynõkRkCœþ½GÓ«v_Ьf>W$Acûö©M©‹hò¬ÚþS‘&š¸ˆšgÆ¢9)[§ªR3Z\t¬g`_AË‹‹9ÏÒðÔ3Ú8æÚytæ?º`æ/„’-úçl{ë¡Ãý@¤Éý:išf(½ß¶Æ–¶ו\+òtw|4é=ÇÞëBê#†®/zúT¢— ]G˜We[_ÏÁ§“~|VœCq'‚¦'"rã½jÔvê瓬֢]rÅíß®ó ¾=ð7>¨XesŸ›U(¡Z qÎ(¹~Z-¾ |, ¯D5‰å¡1~€xnÆš¾4Ÿli„æ+:·¤hq|EÃ5pZ¾3¸sÛKBËôq’GÒÐÒsŸã w.áZn÷ 9!h= b^\9­‘ ‚L§éþyLM³}ÒδTMüù&´Ü•®).ÞÅeCçç¡‹ÃAÙÐUûíèsèásp>Öä ½‘¾Ïøû­ Åä¼î" è¼´ruäƒÁ½Œ?brc`pÂ$ÄÛä ÍÕ¹YˆJÃÈ~ÁÛ²U|0ê?|À•Æ¥W·n=†I‘ŽÙ‹â]0íðý)'“ÌÎÛôsˆ€3pUÖä€Åº‰Q¢°|9ëÿ¡ë½£¹þÃ÷q{o22’=3³Ò}Û{ï4”†–%”¤”R´$Ù•‘‘ÈΖ½*Ùd~yÿ>¼çó9ï¿îórœÇ9Ž×õ¼îëy_ëæÓü¨s ŒÇôÏÁ‚òÓØ ñwð×=\@•'–&許‡µ{¯öÒ?F‚÷Z,m3€DÚa^ÉŒHÂL&køÉ>Š˜B þKR‚î“He·uJi^Ý“ ü¾ŠôB]B";#Ã¸ÇÈdë¾³½²™b÷ìîÆgS»EwïE6mŠô³wK‘Ã!ô˜µrfþ¡YkGÃöMíç÷Î#+I"ܽ8¸ÇÂwC^"*xꆂT9A<.ûP¨ú]8Op$Š|´MH y‰b ÏÅí“QRf L;¥fÕ$Ÿh¡Lþ·?T('ÿZÛÖ= å»Éã™r}QᆖHMìIT²×˜3:'‚*·…ÝóyQµ[TzÿÑ3ˆ6~NEm¨¶²TH‡çZ‹˜D-zõ›§¼Q»nÎ#—îê†÷ÐC}Ç{=DKôhÈ$:bßG‰FÍdg¼Mîù|"¹f|¥wŒºœÑœRHöÄý44ÿ[!Ú번ó’j‚®¢åú³þ“eÞhͶø[zVmÔíÖ¼†BÑÖGø½ÂÞKh×pÜaýÚùdŠ >u¨|Âf~ ^yôˆ›cϼ^ù ‚R ¯š«2ÐnØ^Þ 9ìù_tÚ@a·ÐÙk»5!Sù÷ ïZÊâ,rß%šz¦ ~™@”Ž< b§³É_Hîùgn˜D±·õ}â4Vðж`GˆE¼T4=<È3º]_³¯çoð¡YmÚÂìQHÞÙÔ—³”©¥õ§î?c†ŒÄ_õ,'Ø!sžAûüÉM_—ÒxdO’ËoúkÒÜ]€OoìÞ8ÏBB~Ä›þšÓ—¨Rà³×’Ö§Û¦Ïæôm¦•MŸÍCRÈ—´ü ñSv£N3̇B¥# §JþåCÓÆCßr8¡äØ‘;Íú®4RkÔ“pÓn: áå§Ôív–ÕC%¹”ÿ%¨æ~|Œ_ j÷]«¿H¼ßnZ©Ûï#†ªA!·æ³Ðè_†¾qÂЬøBØRÉZ 8“SÕ_lçOu„EòÚC·moc¬4#ô*ð Œñ‚¾®Ç;¾0ÔÀ@”;ȃ!ÿZöÉ0’öf ïŒM)t½1_½?kvÑÀÄäÅB3¯Ï0ÙØ)z5e¦Í…ì¾O\„™• §E9˜c§h‚E²X»o¿Á’&á×ÈÞYXyÚ2 ÒÃëlŸ.)•©!Á`¡sxuYœõ¼^€ÄM^Ïö¼pDÒ“ç¯%íBr±šƒðb¤”.‹þà%‡ÔêbÑ¡H'qTâ@„2ô3)6"“øó<ËÏñÈ<”høB;>÷¹žQÿ‰l‰w¸‡>ê"GõÔ}g8‚\ÚÊqË–pÚz›1Eàî#ÝÙˆï‘ÿØZw§3 †Ÿ¥œ]}Š"QßÒ£Xb’ŽptJÞ¾},óe-JŸ-CYÝGúO¢QÞà4ßkÿ(T8ñjæÜ_GTJuZì´Ç}7lÓ o!œUÐ×PBµfé°ý¥¨q>n%‚¼µ˜ÕF}º6ð9`ï@º±Gã¿¶4¢¾GbzÊú†>Ô~k£M“ÆÌõwC6ðh²ÔÈQÚýÍ|âtÍTˆÐü¡ûË•«h‘6m«½„–£ R—‡‚ÑZ¡4Ž``CRPæÝD;‘‚fÚ% <Т±ÇÔ—Ç–Dãù7i§Lv¡œY+EÕ¤+'§¯+«ƒ1—¬l(^º7¹ñ=O=×^Õ¼G“¶'­&I. ÞßÐ㸅‹\pk˜9y?$~Z”:K q•2ÚI_ùáÍUÛÜcµÍùÅmÓµÛ5~À“ãZd´-¿“¯/n÷ø®p@iÙ2“?²PElÿf'£7ÔÉ~>­áõ%^»ýd…† wdö*CãIÍk|Ó— IS|ÂL8C'Þ¨|¸Ͷ+?ªÜØ¡ùqqØ»Q„MI4§šûµ0@óJÿÓ3úªå)…ˆÕâh=Åá;²Ü ßA*¯¡ßÚD»Nº–WA;eó\t0MåN‹ÓB'ú½ Íz ]û…Êu¡gçðÝTð#¸B´Ì:z¯f­×HAŸüeÞ„ è["¥’WʃþÑKw$ÜÃ-CÎûî|¹ó÷ÆÇ¯¹Àhç›~MwøI“w— ³~{ 'rѸÃ$Uh¬Íåe˜:=¯Þ:%ÓËG F=*a¶¨êà ˜Ï³ÓM…Å_á‡éœÖaÙ^`Ù~y¬N´èu»##cõ"$œ:{BˆŠ ‰ó£ŸKgM"é'×øŒ3$/å:ñŒÍ)(º¢1§Ô8ÖøÞaÔ¢Ž8Ãtî6j×i‹¢îKEµÛ¿¨ïÐvqmN iâvOp£QÏDt|+/š„5ŸùrÍ$njru°¢ùÎAGç_h±£øÍô)´Ü•ÊÁs­”×B†¢õñŒ?k©Ñ&AÌ`Á]íE=£üÚ7t!Õ̽Üè@}bíÐtÌ/tãëÖA§È¯ õbxºRÊyáð J>ðàI|*ŠïêjÕ‰` û«cœº«v_&Ž…O”Š|ë£þñqß¹J ç_1Âè-ˆ·±:âÙS±.˪înÎ Þ†è»Q¦‚Ïç Êï¥äΪ$ˆL’l™|V´]£G>2©Ï_ßàÑÌÛ»4ÿñ}§_þ©w×u^[†@ÆQ[Æ ïWù!ØüÑCÿM_^’ÂûMô;r.\˜' „OŽ…O TÂ!WáTÈØäæçT„:·Àg¹Ãîù|*›>›3t÷ŸnúlÒîP7CÞ´×Ïzcø’öj86‘ %¢ ü—­?æD;:BÉyáƒ2e¡P#|âã“i(û1ùÉlÿ"”Û½Ð4‡ŠÑ&of;#¨ X +¸5c †\{ùàjÖo²cP_K?È÷å5¿ûBS«k…@®*´„H|£Þг[ùSLsáÉrg¡«Uªÿµm üVõKÆ}wÛ7Þ†ï±ò0$.ôa:F¬4ÍB~ÂXÔ­ÁïÙð‹ªhhÒY&Â?EPSéÂäÛ¢@~*m˜(尔Ї™&ë[¹~‹0Wbn·Ì  ÉcŸ—¸Î9zÌ‚W† †&°Ö›Ïù‚é*”'ά#‘¼®ŸõU$΢+¡ÆÑûBÛÊP‹œ üò7Ô.ý0å:MŒº1t íHú׳RËߢ¡Íå†àå/h,ÝMFfS‰¦¢³Ç§ †Ñ,æœþ.XEóâ¿ùÜy3hñ—¦ØØ&­tfµ¨Ñ:;YÅmUT$š¥Ñî7};eG:ÚWä».ïGÇ6Iá¢\s<Ï/;h À‚²lì©âkHÛû:ŠÊè!Œþáyí÷°ŠÝ˜"àÓÞS¿º·óhR_ºäúí†w>×í,ec )/ow×½H¨ËÚ—%oçjÛþË’PG ?u• ê/T±„6Ï@ƒò*ûõehäʈÛVÏwzÐOum”»úe¬Ra`hg õm’ òw¤˜…átÞöƒgG`4èìw¾0žò)hØö"ü&špç/?¾ ßusaŠÞO‘H¦C܃• `ÖØßöɾh˜Gæ]"oaÑ%üeï+CXªxz9ˆV-(¾ßAÊ7ÖåË‘ð¥îLãI$vU‹”â3GÒÃ)aä ï‘üXi4Eî[¤¼2Qh†Ô)W¾jÔU Õ5¥dp ä ŸýŒŒ9ËZÕ“OYàŠ O²¤g~̬=‹¬W}éÊùM‘ÝßËÇ@ùî¬÷îÖ·—Anáy…ä¥e6^›»»¯Ýë³e¿…|³.çɳòP ´Èé– ©¿‰¹Ê"|—ís7øP)õ‚nŠ2J„9‘:&q ” ÷YÙ1.”ÙGÉs® eû×êM. ü-º]}Që‚u‡*þò˜g5»‹*;Ô>{„ªöúíBø{Os%ÝÕÚõ¯í]A„™®·6ð6g{$µw1UéÞAÝW÷ŠÏ#Å ’/Mš£!¥ð±Ñe4ê§T&D“(þ'­OÐLW}¯As vó½Âh!“ÏÍ·>†–úÆGÆOF«K.Z™çIÑ:óìtÔO´¥[~v™ ín‰k’ÕÚ³¸ÇÚ<‡õ ³d‡ñ`ÚÏâY©›x¨h)Äö,žšt~jÄR€â—2dØÞAòfÍ£jÆq0`#Ûu÷Â~(¤´4:;L“þcþL‹ðÞB±zafþŸû‰Óì—–1¹oÚÎú/õÁëq÷÷×Èþ™B·;¼œ¹¦õVÃ"¹iôW·ktNÂÓ[R|öÒ^Å€’¤Bï&OIBªé¾,:Èà*²ô~, ™®óÉÝï_nújØ9o¾…lCsñ)N?ÈëP‰Ä(øÄ*âCÀ‚KxenÙ²gÓ_#˜žµ¹¿*b‰’Áç#Î<#“‚Ïm;ýKób /;Q+,Ó¾Ü|àÏÿL yÛ§†þˇÏ/DBɵ_2- 4r„‡¡Ê:èøòMÏA¹ÎÔž|¡¢àUÅ“ÃP• ~ªÌ!jžÆ–}=® u¹‚¾ ePÿp_^ôùTh,>·6ÛM—•\çU ¡…wÿôñZ²íü©öGFñgunA—•Ït”¯üpHÚqxl/ôi*H,„©Aÿ¼ì3*ARl|Yïô Fôç»1Ã&Æ ^ø™CÎ9è Ú—Ë›`Ò3~°úĘZ<Ü^w¾ fû“¼ëº`îå=?8o ÞëæŽ|ðw®kÚzÚV” ¯iæ\ƒµÄÂ⿇2‘ QMå×n$bå½#)‰ÄÏ_pþ .AR ÕLH6òH÷§Ì!¤¼"&véeXn?Ï5AÚZj¢3_ž!ƒ=ߪx»>2Î}ð¥âqFædÓ™QoÜá%8dÜŠlö}ÁféÈáææwxô>r6r,{æŠ<·w»ƒ»éÙTbõ¸Ÿ Þ+çª> òƒÉ¢Ò* _7»Ù[}Ũ<¿³ê¿C‰J®ï¢Ñ(MZS›˜tezjëÛèPîÇŽ’_?úQà‡äî9YT²t"O¬œÆ}Ô=¢¾Ç$h(iXmP-{ÆmHéjØ\佟˜€šK…qw¢v®÷}‹øü”ø3AõýËr?†¢á £Öñ246»y­AM°~äÎÙ‹f_• &4Ñ|Þbäú´T–œ?!ŒVqG?1I³¡äÉ'Ö×3Ѷ}øÔkîx íPégFtÈ’TÿHŒ×óFŸ¥á9m×¼»LÌ(ý銃mpÒ,©Jh7™Ã¨çí{o4¡ègUôýÇ­ó-Äeý÷àv.F*‹ãZUÍýí\ŒÄO3ßžqÛιx»»ðãçH¹íü‹Wª•{R5¶kÜ¢rËròöy[9[9•y94Im? ¶×T$úR0Ô›Ÿüô¥ˆ¨Ã2¿æAC=þgÚÍ~çv¾E7'½•Ço¨d!ºTf ƒkí^‹–Gaø\fyý‘“0ª¬\C8W ãFY÷«ÿ’Á¯û™ûwU2Ãĸ7%á›ë0™A%!ùq£Ïü)³\ 3íªæûxWa®¨qïùøÝ°ÐÞ‘þã,)ò¸„°7ÃJæ~=ûüaýœýd6$ÔßíçSÁŠÄL½Ñ’ÁéHJ9éçðÉIÏ´]u"@J𿏍'ÃH-;ÁÀk ‰´¹WbË}‘1Lÿg=2ž,8PF¼†Lµ½ÓªÈb•ÃëÍYw¨¨ÎœgAv¶3÷´’¨qçÁ’²³QòÈ5 B袊»¢ž¤gDãnÕ¹í.$È÷ñiù‹¯( -á¸Z‡‚+QqI;†Q¸ý– Á·ý¥Æcë‡Ú"ä]&(ENCÏÃL‰2Ì®µÞ|¦(›+*%…ò¶>}q—¹pï8Wòe^TÌ ™¿¦®ŒÊÝòTWoU¢ê¾‘Ò›t^Õ YƒIwQ­ü|»­;j˜ü}ýã\j‘˜âëÔnÊèm‚dK9¯3ì  ö•2¡ª @“GCÈ·m¼lå?máh+f+ÿi+f o/p”ÊÕˆ‡ã_(ïºo×­œš­›-oá;½Uü‰tüÈäs&­Í†,Ó‘ûu‘µ8W3ûàÇvnÍÖóa+?çÿä×p¶¹íò­ü?96[y5[95Û|xØë”zl7”¦‘þêu„Òw¿ŽÞk„²fñûbÎ#Û¹YOÏìÓº UnÆ­s MP£¥¬vþ™ÔÙÐÆ0½ú÷¹±•oÅBAYžÿõß¼šÿÉŸÚΫi¬#Šˆ€ž¶$Æ}¶Ð;G)Ìz úcxlÎs·ÂàÕ¬ú|}0œ”wSL¹FÿîŸP»»3õû®™Ÿø!˜4| á^ÚSÕëáúéŒ0ãw®¹ aîJYRËP,DŒY|R4„¿ß îÈ^SªÛºæ‚ñ°v±ôÔ”?HpÏO¸BK þ†Œ #ñ5‘E­$¥MæVÖ¼‡de3ÞŸ½ß!ÅÓ‰QÒ›HMº&–ŸŒ´/~{˜é"ƒÚCªœ$RdìÈíu1ÍCæŽ5ƒ=é¸Ã¶ýÙë¦jd“{ÐÚÇ3Š ~õHþkä|$pÈyÜ^6M…¯#ïÜŠM%òÕ}² ¨ÌG‘¸ ^­©(¬˜xu-1Es{wGI£„·çÈŸ»(•tÙO™Ke’äNj£\âi–ÇHpo­OåÒ * ´²ßTß*ƒ4'¾#PÍ{û¹ ZbsÇìݨ¡o›põjNøLŸóGíTý]þ¿P÷層5FoÔ²ü’c·¡=Y+vµ× ñ©¹µ)ÃH4½£Lh €fã„FùzÓh!Ff•¶-Õ_¼º’Ö¤ê×{­Ñ&!f½ˆí|#¢^ý½€õÛ5îf„oµ‹ÊöyyÕ:¡¢tÍPÊHp3Mä Tî—¥|?µ63Eÿ€zšìlÔH…úbÔbfch9ð1·e W%ú8 qþéc:ýhÒæšÜS\M·~ ÅÕšCÓƒ¼þ& ghÊ"£™S ‚§Fe`&~ôw|ƒ ÌÝ¥÷©/„…'EÂQýð·5ŸÞ*MVöëÿѪó‡µ_ªE™ÃH°øbXLøåÌœx®~IÌWx»ì-¥÷ˆ=-R¤R)Ñ“…!U;w]ó>=¤•½ëIŸ‚ô™dÅW½#£°‰©m22ù‘øVI#óº°àèÎǸ#/J¬"Ù¾ôMÉKŒãN"×—J+Èå½FâÙpw‰\ãÐâAÞ…ª·ÓzÍÈçRX—šD‹ü¿¹dJQðyòëjivs] EÑk¾´i(ÞäÂÄUnŠ{B«I5þú t{àlŸvÊÞx¥éuËåù«Íµcpo!§‡ý#¨öC/Ê~ƒs£,e¡*ëÁC9{b%Ðíüª}”­{æ5TTa!ƒ5ǦèÊ ¹P;íÇå¢_7P÷ꢧõnWÔ—g¿ò®F bhû=zѨ¸ \óšd~ ¿…fr÷J´¢¹ ­ã ){´Ðn«§ðBË3WšTä~¢U¢í‰©ù½h½ö““ü×´=Wö”D¢íÖ ,¿îü†ö©º.C¾|ØF¢q¤‚Ú”qD ó¡ÏôIÞà)õà•½(²ß.dŽoɪw®¦Aß2º¦Î1ø"¡§À`Ò#Þ–ˆºAJD9»)Ä%Ö³J±ÁÛóbxó ¦åÝqŠˆ^WžOA½m¼EV‘ ‡B„º¿Ä +¥í}ä$IO:ÃóáØ×æ0­hÈÜ»ÐÌïYç>šHì2„¬†/Á¶ã’}SIäräè˜ø9Œþ…OT.E§CàShÂ蔤˦ïT3­prk]-. ÄÁçSú;Tsüþ›e®ìzàŶI­ûöý—³?«›­WlúKCl^@¹cÀ×ÐÃÖPÑ 'T{t}Srøþ‚_¶<"9'¨ ùíeùêONÒgèCû*uûBQh’xÌ¢§¨Í%S.%,½ÐZ£½C´ÚI’>-màÜÿ ‰–#ôÜ7³º½U¦Jó+¦Ðï~fébp. ·ˆD/°§†Ö¹2­isJpý?¥„_ª‰„ßñ?R]ÞyÂä.Ås…ƒÃ0õ«µxFftsn*R¤ÁÜ>s¶K‡R`ÁIRöûãø.²ãut?,÷ϰÛR…5#i=Yb$¸®–Ê44„ƒ…Ÿæð!ñÁ•µú†T$)mõ–“D²(Bí@ŠÈ”èÝQçjBOÛ£‘iƒ¿0®;d ƒÒ©SÊŸ¦±îºˆáwdöþR_íÚ;Ô¿^éö®C6ÎÀWa|/Cˆ©À™‘9o>]ë×´GžõÏû}‘·3ôÙÙ Rä+ynàÌB„-AÑSŸQXbß™6ŽÍa1{/¬†At­áý(õ¹ë®mƒʤ¯ÍÔŽÜE¹ kטw—poç‹Ãäþ{QIù¢ðÉÒ¨²¨éO[ñ•¸¨¤ªÕ’Kï3$ £†Q÷ÞÙ[Ô\Ü¥6\n†Ú…qwoÝËFÝ´("½rgÔË1ÿZ ×ø´ú¸Ðø©aT}Òc4­UºÐ©³€æ;*ä—}WÑâЇ"îKhùµæÏËv_´6%Ê^eG›•;šG% ЮYb5ÉÚí;)½´´ÂƒÝ‘”xè9§}Î#t»`œê%B‚ýg™>J#ÉDíÁÓÆ08]grº ƒÊM2ô¯@öÙ¨ÌÒt*Hw¾~5Þ×r‡ÿ‚¤™¨4.2CHð3ìè®y·Ñ¯ªˆéÓoâ«"˜Ïh³Om|ܼQÄ¢u¤_¶kÍê¹uÛçåíqÝ+Ó%ï?ÿûøTä§¥O‹AMís{¦4øB_{7xÔßôª©;Ô f“s£Ø¡‘¥ÍÈ*ö14~N¯]¥€&W™ýLo¡I8å™Ô»óÐÄݽdž~ôs¯ºzšB_ÈP–BóáÚÝ¿ÐréŸBñ†N í¿|¾gÏ›‰+B[ÕxvÜ9GhŸ zòc:Å¿ß_~ê]þoo=ÚÝnÕ—Âûw6½¦Ðë¤P“ô–ú¸ÛŒeC_¿[ùr%è/ˆüªs/JE]™ŸÀq©“› þˇœ/·tÃ8ù7öôƒ_œž¬“‚0aó©m®7&éø$-êÂTå½KošŸÃŒÇ“ –.0gfT!ýÀ ŒFÜ"$ேÃ'ýç°\f“ëpø&¬Ù¾‰­ÎNF‚&Ã–Û HtˆLŠhN Iô¤ù#'#™VÜn+N¤°ÄJß+šHåk|Gâ(Ò4ÎÎ\½ƒô:ƒÓE·a°[+0Ù™dEösÛÞFæÄ§âVŒ/pÇ1"Ë»#Ûq[[þ•ÈOë±·©¹X›–Níÿ„<éÆ1Oš#‘7=óµÄäco)V@þÇ-Ǧ_¡ |Nä/›«(LhœOt\E©5N®Rg¡øá=+2éf¸‡÷îò‰³(ý*žKç¤Êê3Ì”´Ó£Ü$[ÁVaÜûtO=•~,*^’ /rßàÃç㨊û&—&Œ®ë–Ï+nôŸÑ³%­-QCЧ‹~Þ5¿=îsBíjª´K³¨kÅr—+õi ,Ž¥¬£AñËE–¡khípÈ5Ñä,å îô4æB/ý³§Ï‘ÏÙG*¾y_y}õ¤HêÕ çAœÃñH£ÛþÛdwç»>Ä839›¬lê¾³‹—¶ñ)‘û¾'¬Âg8ÃËxÖ¶kô>ù‰ùåØÿæÃÕ#Ì }!©ÿŒÔÇK²Ù?VŸû YIÆŸµ¯A6ï‚6«çOž=H9~™sXBÎ|•)ƒñ› ½Ø›¹fÁ¹>‹ŠUºþðY“¡Ù“øÑó¡pBrÚ8+wiÈ·¦þˇEA\;Ýó7óKÃnöí„rÿb÷ ÕVPI# tÂ?hs~xl)Ô|šW ýfuÕµfÏë6žžÏRj} á«åUA¾Í~™§"5š¿‡f–²Ckëν)‡¡my=ºc§=tÞRö:Ó×=º÷"ŠÜ’¡7ŠUù@L,ôk}Žº´ú w?QY<ÊÃòDNoSa4úá£#vÀø_‚±hi?øíìÉ`(†ŠT¸(G`êø,³ªü~˜¡'”ß3ûf׺n1µ—Â惡ßKð×…ô Ã×{°üùÐØÑçõ°¦Ü4¯ÍŠç•Æ aCàpV 7«5ì:åtIŠzð}C2«€úkß⥹ƒ¢#Rµ>¶±AZn…;'xAZ»2·² ‹ñ¼¬S2ŸæmN›!Çâv‚õÈFìçª+d€´K$EÎ3oÚ]6úbâƒkÈÛ0#{»$ùr®¨ª8é¢@É› šræ­uJ»ë¢™z7êRÍPâYC}™Î>”ªÕ|ìq»e>WÚ¾«­E¹|ÌK¯À½c‹,̦¨dB§`®ëûh®º‹Ëê"ìfxA½ÃÕÞ}Üÿ(J5ÌŽ|:¦"€Z„ùË»¸Q»x&àÑMÔ-û~ ôº6êLyÉ ¢a~·÷ÉQ74.z ©”wÑŒ’sJA~/š«?äVΦ@‹'TGêWIÑŠÌN;rŸ:Z?/™æø>¶fV^_ŸOâ™[Ψ¹Ô/>P¦Vƃ·Ÿ–/t­¢3ÉeJ»Á<¨&vAvÅÂ% ‹™rú¯÷؆Žš–&ýDïë?€¬/‚Ýñ,\›9N=³.@ʔͻ—7‹7sf¾°ÏWýãñZ©ÛÔ}5Céªÿä&^:°Ñ§ªh–Š(m¾¯™wNÞ®›ùŠJJ6Ûç}~ä_ nU%FÔWŽBg­ÕC–êtõ·[ð,U",¬ê5RG;RÎACYLîqhèéŽðv¥‚F¿o”¿Ö.oðbÆEÃ#·¡±ê,yNp4¦¬†ýÞ¨ëž|iZÐDjÓ1  MMžš=+›>T[Yh%¦äÙ°¾+™åé¸B›™ØßZ´{”nˆe‡ŽAC{Gè\§XÜÕÝΩÃm&ÐÓ°‹E?²zykèŠù¡÷ØÄ™€ï¦v¿.x*EY¯«|„!2åúøhÉùfªªìŒ 98ɇŸýíþí*{`‚¦­ðϺLî=?–ÒSS½]…k0£­!tC&æØ‚Cn¬À m6#÷ø»céHwß, ¸0{V«+àÕþY$° JóšB"Röy·„a$1ÛOrI5ÊŠ,D|þ²ýŸ‘i¤¼n¤Êíƒ4îÎg‡Ü2®­„šÌbÎ(®“ ã árú`'2[‘JRDãêãN’Wé¶&ŸY69 ÓM^œ BÎÔÄI‡ÄäQå%wÙ‰¼nÑÞ qwKWÏygäWN ÎG±!YÊžÓz”¢ÐYb /³úåÒ€b‹Ã:/ÍPòÞÔý¯'QÚå«fòýO(Ëp3–N²åòŽí¹1œ‚{Ïhˆ~ÊFEËk¿ïoðá勃1\x«Ö{*àæƒ`sÔÌgµ Õ‚³>±žÓD †"/娙)ÿî~X4jŸUx½zu%EzóÙ)Poä¸$gp¼~ѯkÅŠFׂ³Ï¢‰¹%û}ë%4Û™¤ùµóš³s¯%^3D NEß´<”Rüy’ ­¢Îí²£CëY7—A11´=šµ$|Rí&âz/íCûç’¿NÚàã·ôfjsÐÉÊÞSDß½3ߤ(â©'ÎúE¢¯‹‹¢(Ræ¨Þ”Ôò…^òaórûJÈ#—™p-°ÿgŒjC,$‡¸»ßvÙì+ù\ ÿlÞ¿?Rp°õŸ¹¡W‹ãö}Ã-¼E<üi§@$á±)ùÆJ¶k4 A;½¶âòaꥃd” ùFYz×9O&@–¿OtÕÆs¿(E.²åª2™ðAvâE¯å¬¼ø3SÊ­ÿÿ?‘{W²óæ{ÓÐ “˜ÿæCîÅf“úïnñaµÝüÀH|•¸øüÃny(OZç5Ûk•º„oX š{()6„jf›3OÃÆóâpçð¨ ÜgÕ¼ñœèÊ¥à„¦ƒq¢úbʸW -ãÚÌ÷®Öº?mÓ’Ïö\Í…NÇ?ò-¾¸&* {q»z/t+çé-A?+•Æ·[00gmlF,Š=;#aô’N)×'/îT«; ¿9ÎK§%Ÿ`æ°,"˜’?kšyÙ ¦[õ‡…zÃlñ‰É4Ë.˜ïÿ8âo¥¤}ÉÃrhMî™FXãvÈTCç¢ÂQ $übÊDoÃŽÄüoÕˆò!IÄ¢>Ó$3  ²_vFŠljÂê êK× •e"¤=ëíÀx1Dv‹îk¯@Æ,Âöad>p³íùuYܱ#Zɪ®YzI/‰.#û\Ÿ¾}v)rÚ¤fŒTÖ!¬_ñšòVXÔFœD¾w6{Xî£@‘\ÞáFÞqÈ,è¯#Ц{§ÿQvF‰·O¼3¦ÂPª')â‰*Ê”†~þȈråb Å¿,qïBÝCÞ7®¨t$I[©ê1îãM;ª±† Á}ÞâPª}xó‡é±Y“Ú•D=cÅ#±žKð3Ie²(S~/$ŒsWÃ$õÍ‘Ã×aê¬ñŽwÇ`†y¢øw_Ìö”ÛO^Ž€ùÏò]Ű˜ù‚&æª,µœ7»¸Á‡ø«íb) 91›„¶ &‹ç·9¾AâÛç¾v{ ©ÿS{Lö"ù‹¤_ÎvÑHYýŽj’îÒ0W›™–"Ý©×æM†®ÈphYÊÀ" ŸžËÕ»(Lk—Ä×ã‘%½ê¤Zc6²fjðeÞAöI[¡UJ ä4ð6fÝ‹ÜeÓ<ç^ ¯È½ª³¸ÛksU@òõú¨6¿€gC÷<£C!Q6}â•zÓÃ΂_(æ]\ïpÇ%UÈGÒRzPZ|è4Cª,Ê|Ÿµ²»é‹rwR_^ΖŽÖþ'y„QQ¶ Éßnð¡E·ä¿pßÛ/2öÁbR>íä¥ê¨vÕó½õª¯°ªyCÍðVï?k}¨mtD>$ uÉÔY¦˜ ^-yãÙ{hà÷¤Æ«8 ¥DùÈÊ¥¿ hF§ÌU%ûÍ©ãL«^k¢ÅUïCû-èªx×I¢Õó¿_(–ÐúÏž{zsh{ðCŠ2¹+Ú _ª°Eûû»¥Þ›nð¡¹ýi#ÿ=è¤Ìùl¦OùÝKñTÁ  ׿(0xËô¥:"U 3ŸõÈ0ôpÅ}dª\ÜÀG\á¤×H "<âõ¶`ó½ ë0[¼ýšp‹ÑÞ¼ø¨úðͱÞÇ„:äÁ+Õª£4-϶ñ>ÃE|Î ÂmŒ®ø}¼³]_µ¿¸mÊýä¿ùPàùãÎ y¾Ž¤I  ²äûnR1Únêĺ+ì•ã¦Óõ ½xçÛ¹EÈZ\ôW½Ô±¡i9MðBηGáÏ.„OýìD—éaã˜x‘þß|ÈB]2ŸqŠUp§…ÿ¿|Ø"ÜðÎ!¾êÿˆìü’îšõ™ùbö®GGZY5ºQ˜rJãØIMý:H_|%2ˆÄDþF©IÆØŒ)”©uÚånr ,Çš¨KPtLHRî*]ѱâ5~ûäG-“f!(Šé¾H2@µ´ÐèÐÛ*¨aëV¨ñ7µX–/”Ôe¡öÔ—òÀ—¨;a@!2F‡úsåÒ®  q¬tÆ-š°ùœ-¿Œf&œ‡Ë­ãÑü×ï,An´$ ;?™'ˆVg§ž¯•¢„ÎqKû@´]ø5|¾ü’<Éói÷*Ÿ¿FˆNΔ»ZŒeÐù²fþÒÜS<•!ÈsXo…(ßqÕeW µñRÁ7]øaå>Ô/yÓ·â;²¾mô‡ò’§Û46ïéž³‘†¤š“µ1•òïׯô½|sŽñ4ý ݦîcâYìûgŽ¡{úâfŸ*$T÷qó}͵« ··ëæ|ñ-õ¥íórm ¯ƒâ;;ëí¡9V Ø9¡Zæ¶Ðˆ@íÌäxR¬|» êÃ÷ø¡þ‘Lȧùh¸8ª\=± Ôä7ª3L¡QVÖ•Èé'G«Œë ¡t‰Ér¡áͪ_O/4Œ¦9Ùz›@cVm²ò14µ9õ>g†æ¿3çƒbàU™ô —w5|·OöåâÚèo¨ÏZJØ@{J¥õx?+tÌ}›¼ÃÌ ]š•‰ÅKÃÐý…ˆLjGü0ü-ØTÐû¨–°µˆúîÎ?<ý¡‡ìÒ’f` ¯ÒKòÎ Q drùPþˇÎ\ c¼ cÑîãGáç…ȃIÒ¿½XCUàO‰úl„4L©}ùdò¢¦û#Ù?&‚Ù8’X³“*0Ñ^)’­³N0åÃÒÁ뜯vÞ€•Œu îÀú™ù¿ôÉÐ4!±àÃç×G9”ß›.Â@ÉU{¯×Wš å…®Ê7ë‘ú£¢Ëg™V¤]ñ½b ÜAÉq‘Q/Ô³{ý62% ì{6ÿYì÷\²wFVÇì;ÓJ'=lyÝ9v'î´î‚›—Û´lïøm6ÜõõWlr*?îsýI£|Vìk~í(@ñãi¶ æ­Ð“Tð ð§j±êä(Fu?÷¼»J|ýÚÝj…Rƒ”?ã­QæÕq’˜ïJ(gµJs20÷²»v³ß9‰ŠLìľlð¡´®cë(îó“« IiE ?ôÕN¨¼yâÀê#:v…ô¨éçidy’µÅ‚+ýèŒQçÇ}AºDÔ Ïè¿kj‡e¥È¡‘òž÷ß[ªÐ„møÚÉÈ‹hFX>W$fë{¢–«næxg–Í·¢¥E_úþM´ 6ú4‚ÖcR O ­m‚“ÁÛ×h×cìÆ'€ö~,§°Q:ø­R,:qwex1 3ý©¦5Ëj<5výTŒ¹-òUn1´Fê{cÅ>÷Œ¡KÔ¯ôiÓŸp†zÊeÁ‡ Îßgf>B’ME®v1áæÜpÏ«ÖrˆYég=4:ýÿÍ û¹!ÊüÑ(݉m¼mð_Ò`×W'êÙÐ?[õÕ={ßÔ¼ÿæC%¹F¾œ#yëä­ëWÃ!k·öhâÒM^|0d{2—è5-§Îmü\g¬ºÅhC?ú”¤óEm¾G½áöÞiC'ŽÓ ’>€O¡ñ#UsD&ÑÁâÿæCªýfìÚP,}þöî×gþåÞùoQðõ„Ñkò×Ç¡ü¯çUZJ³MßÛÞ~Q¨V,‰6…ÚS’ôÞðnî}j=ÂVõ5LR/ŽnôËô«Íh¡éA.pKC ÓÕ·åÜnÐ:ó`ÞýÏOhë¹ëÿ}Ÿ7tÒÙ'ÇåªA·—òmýObÐËqZ寓Xèˉò66‚È– ëš60T{BãîEåÌ}D9ã6ÿð9ŠÁ¯ u©å̘èÌѯR†ÉoG*âü`úX§kŽ;ÌêûTNèÑÂü Õ sX,‹2tR¼ËZq޾Ú`uð´‘Ž9hi4ì?“Š„Ïº] géhÌø†"É$1ÿ8•‰¤kÃÌç–n"ë. "¤zxþÎ:ÿ(ÒšªÄòß=Œ lßG÷ÿ}…Œ/oëÍÉ ³‚N¯Ë£@dóZ¬ámCÖϧŠe"{Ù‡&k§@ä«rým¦‰Üé#Þ(5‘Ž\íÏòYŸà.Õâ«ÝWŠ‘·óñ4?G7òíi“IÕ@þØ_wÏAA³ÞÒÐÓ(¬o²#÷Š>·‰ p²D Ë€¦e¯J”:¯ëž9¡ƒ2Ç¿ü->‰r»õ¯´ÛòÞ åÓɨ0u|ÀøûÒ¦}©üȇûìO|­¹‰ûû2Ç9̹QÍråys3ª7Þ5»@lŠšÇwrf5¹ 6Å'§sO Q'çÂõ”Qï’}¾š4;@ptÏ«4b­r_ü‹ÆËÒmøMÇß½|]BŒfÓYÓ4¿åÑ‚ÇçDºZy‹®@« 1GO5¡õ`jëžÛAhkþšÁQ³íZy3¼ÄÒÑþy–¼ÔJ’}X؉ND/¿ßcø‡æK¾ÚšŠãif/[UåLäK4 µ>4— Äïù ö-;§K¶ý›[û ·ð÷¿ñ¶åýß~ÒŸ®[©0ÿŸº…ÏÿäÃÿñ³níAÜÚWºU·~þ¿ë–õÿìMü¿éò!ÁÙ®}Þëÿî?ÜâÃѲ@5Í0øzëÓ[¹>?¨àÍúén • a>õ„P]wÝÇRÄjßžì@ø–môî­´ Ô†g?oÿïñZzUOS Eˆk®bW´®:ß§~}öß½¦ÿã'ßÂõŽc—+®Loö·{|òe`àü“[6gaè5?QùõƒÿîCä=¥c\H ¿4Úö)ÎÀ„?Ul•LFv“îVz Óü+t±Ç`––Já~±à6nC®µÕ”„enfÉ;¾ü°Z>C;Yí‚ ÄîÐ9#á­Ø0ŽJ$ªÙýºþ‘ ’ˆi_ªê³EÒï¬Ï–®2#ù¬7«z#R]É}ѧd´ø¢"%¬è3t (ï!ã#½‡5ÞY aЈ3YšŽ·“Wv 뛣÷˜÷Ò!û»gìi£ÈÉò]ó<óu䞯»vxy“/D §û"ß½â7ö(^DqÌs…fv±é3 h‡ŽYó#”¨ëõóy…Ò”ç:=ß¡LÏôˆäñn”£™1ˆA>+˨ísáÏÏì;h#Ý.„`¬9/‚ûQ-ÓøÉYÔpò,ßýɵD”FR|ÌP‡É+ânÂÔcÍËúbõ Ä%&öÐE#ýSƒk¤ïÑäìÂÉ€#hº³Ñî šO&}‘ •CËÓL¾ ×tК$àå“b=´)¨è¸ßÍv¯,­ô2Ð>®oüñR8:¶- ÆWá!åkWÒó]Ðy˜éâK²Kxò!è_¸ˆ|>M§„‘ês“œ¶*;tGwªå¼ÛæÃ-ßõÿ÷½Š-<ýo¿÷.·ð·…Ï­ßÛÂÝÞ·ðPæä©ê§G•4ü/'¡v£ÿ{õ]þ7ÔJ¥‡É>ˆø—ïë…q<ãù—ï¶øñîeÔ'~RÔúub›?·k¹èïâdÿÃóOêË(¶ïklíÞæÉ­ýÀc”ÏÉâ¡Ý dßËTñïe| ¹,ºzz&¥p†>…Þ(–®ÛQÐ×ô>l`¤´l*L`°ä»àíšyö¹r¢5VF]nš¹~;ãW³óÊÏÂ/óW¤žI‹0áâýãÜao˜´˜>e³S¦^½æ}73Œ—¨S"ßÂl¶îó´‰0ÿ<|ÙãñX¬®4TËëØÞ3º&âs<æP„;庿D"•9ûaá$^ n&ÿ¹I§ä<¿ª"“sUC RYµ^4Eš4î´Kž>HO8~Ø(/2dò$¯ /#ûðñËŸù‘¹œø)›‰:î(X.ñ¢D¶aòslŠs¸“k‘ÞþºrJ ˆl¥EžêGÙäŒ_÷ÕG€iî{4®ß‘ß$|/{ æ>7ã¥B¡¯Ôš:$ (Jâ)•Qpųž4?#Å=u‹«ÏfzPfçÊÏ}n(ÛÝ7ßüò ʧEÑMš£Â{nËå°¿¨TòíFæP î£<1¢ûïÔǽÓÉF5¾OäF„¨©Öa1цšb½fÂJ¨U^NbÍ3‡:îõìÐè@=aÍ¿‡ÿ{_UÓ¶¿ "¢ ¢" b"°°„qîƒ ¨„˜ ´t ( v vww·°v vwwÿ]ÎÌœÝÁ}Ôç{ßïÿ¹¿ßìu¦îëž>gæÌ!´}¦òìó…à½'{ÊÖìËÐ~æx·m}îƒOö&³gÃÁw—SŸ íkàwg–Í”Éë £Na¥›“B€Gê» 1yÐiÆœo-‡„ÎÅËöŸÐx]5>öõÄèfØc¦~óÞÐýˆNÏc— ç”KUœ'WƒÞYË4—¨î…¨‹»§²wÓ nÿ;§mª3PQôèZS“¹<ºûâõLÉþzŸéïýÒ÷¡ŠÆCÜ>q{Äß^ߪË}­Jï· ÆÃR¨l?=.j6§ëŸG¾œ¿e°Q£Ù) ÇÅCæóNO®ý‰Ü/+Üo‘óÂ8ïþ@÷Éäþ÷™è–ñ;–ì·ºÜëÖKßmCÉý.nÇ·B2RŠjobîÔÛÖ½¥ô}ñ³9•¯0÷—u ¿éÌ<œýåP…¡5™Ç'/ «´.”yÖØ¹ÒÑ»ü¾ ü}ï®Ã®ÊïÆ¼êæ&ªæÇÃNÖó_´0c¾¬TõÂÓÌ÷¶ÛïvšÆ_ê“årTš»˜zLoª™ïÝëÔ~ nå]Yh\ÔÇ¥ocX 4—ilŠX÷tÕÓˆx« Ìš=äå2¨¼wëͼP¥WRÑÍÁ`ð!sfŽÛd¨¶òD¦îSW0J_ëâšüŒ3ØOs^Œ“Ó­l _BíY·Çm,øf)¹¡Ý>„zþ÷>ŽŒ‹°æ+\,ƒåѯ:õžõƒFã²t¾®‰¦;¾ìmfëÖ_fož×lÏì»a»5ì.jní¸ª rx‘ӜƌݯÐÂãõÛi¯.#º{ýøê `W$Þ«Wœ ­}μû¦3ÜŒÍzEMˆwANö;Éóá3Ç=ÛµÁËpåÛÝ [C;Û37¾zêB‡N6Ðóleðvöø©f¾’öhtZÔô tìftàÊ3x«²ýèçtè¼zÚ“iIÙÐutz…ôšqÐmÂU›~‹¡G^Î;CïZƒ.çO‡ ‹-Ï[÷Ü‘-ç®}xÌ-èôØw脆5Эع¶8xYþé"Roñ÷²W-f»¼°Ô8ˆüñýb˸ɡÁLÁ[«Šæuf3…±—ÕØœËüxŠ÷5΃™Û®é“ýŒç'];]}° saös]áDsþùÑ%ªÅŽQÌ•·oŸòˆ¹öÚ½Rcocþ{Ûh"Ù—ˆö#Þï1edûKÇ™‡õ_:ûÞª }¯f¾v–+ùîö³Ï?.\JËa^ü¨tÛûíGæuõ3›WlÖfÞtðÖž×?›y»cíŽÎÚo™÷>Ëf LOàÛWûÃÍ®?oÈ|Ù³HãE¥‰Ì÷ð¨÷Þ' AР~áû\ þ»ÛÑ­—ç=Óõîßœºt³Í”þZ! ¦ ½vÅjß}g ¢à£áÜÏæ ×©ù±¦§¼@?¤Mì ¯.PåŒÏ£VîBÕaÏM–xŽÃTsó„±P}dÕþ5¨B¹ósš¯„šÏ‚›‰ÌÀ´¦H8dÏ30sO:¿îrK¨;þvåžÎ…PïÅÖÞ´^‚Å 1·MÙ`ÔnhãÆÉÐp±Ê”ó\¡IßÖ]ªœ Í&¼x6f–ØÛïô±œ Âm5"ÛÆµûˆï{{CûÅÈó68-^^P{Å.h^ôrúå>/ Ušæ3ýŠÁÀ꽺˜ ?À%Õ}ÜéêË õ›lgõ¯¯À-ëݼ®Û‚ÀݼàhÝ Àãj½‹ò í¢‡ª­ŠïØî^íÃO¨Yy6øô:}^{œøn¼ûÕÔ0üî¦X‰’‡BÇê‹NYϯÁ—¾~[:í÷[øiŸti¾zÆ­U ëÉ.WÇvné¢TÈ ­‹çHû ½šl_ø"5‚Lv]m³D þ4ö¥ÁN¨7Î>¬éû\нºe”¨ûæj¥Ì•_’öAÆCÔþèqPÑsáô{UL·¨R q8<®âû\̳ñ郡;³y_âÕoï‘y"EˆÇÍRωHÿOÚ©¯˜Iæƒð¾Ä=o3oÍX?žÉ;ÖÐbÉòdFqr[¥Ýcùñµk¼O™ì?´¶™i»ŸúÚe‘¿P•ì7¾¹yîîÐÁáÌíãz}nº”¹^Ïi­Çæ~ÝÉ7ö½ôejõ럖SMºoJkÑëåÌÓ(æyXÏ6Ì ³¸„€!óZ?fS^Ì æÍÖB1]<˜wéÚ~˜Î|žXõĤ#̧áë2G{dŠÞ÷zühÿdæÛ¨ÍQ ˜b»'WŒ¯Ûñó:Ti- /M¿²¿¨Ï7Ë=ššuª-]7 tÕÊû˜• ffŽªy*_;¨]ª„ÔXRw·.¼Ù¾õÆ Pm^â÷#O€QŸû»k€±§++‚É‚Ì4=•QP;5«}ë]}À,~+õ™P/Ä;Ô §Xäjô1óˆ‚@«mat7ÍÌi–=E>ÚW|FBÄѸÀGÀ\?0ËaðÐþ ÷|ÂÌ8æê…Žs{ñã!ºOÄûïéñoô¼ not;Äí·;Ünð¾c\ÿ‰M}iâÀ˾¶ÏüÓ&éºyç­vòωh|#ã"ßÈ8ˆÆ½‚Ñ)ÇW¿çÇC<Ÿ‚ŸñxŠöížmóTî£|ûAûù/«†Îá÷ñãçÄEï¦ßõ2d®M¿Ù`R¯#Ì#…Åm:2·>ݲl|Á‹¹Ã2»Â¼Ì¤û/æg>j͇® u¿ïXÉ<öø6³úã—üóaPȰã3n3/=^¹xÝÔ`^[Îöò­¬ êv™¾w+¨=ŽnXÇ4®wk©òú%h«w«5Û t{˜e%~ê •/®»Ã½è[/Õs]”®Ï7vláU{ztº\g<º˜·é¿4ª‹’—Ï—ÔÇ6WœÇ®š 5;íìmט…Úë_oœaTfõî;Š2C nv§ÕCÛ]zo¦Vþfl£™JËÞË>.æ›WÞ‚†9¾5G>¾M¬·óYx š5½#M}3ØœÊÛ3«æKN앲cØ÷ÞÕó‹$‘=]¢ö4§Ó=z>s‡æ/–¯®ya'´Šü¾ƒ]o`5‡³u—XëÌpMZ?Þ–Ñ' Üú›_lU½3¸×hÑÕ³c0xœO];j5´ÖrgžîSðŽÓ ZÞm´ïr©¹ÝTðñiºöƒýXð]’•¿è+ø]qúÚ5‚Ž•NÚ´6ƒ€.ÝûÕÕ|¶½õÑé–]šuI™ÜÎ ºæ[uývp?tëgvf]³lèa÷ÔáÇ ЫæÈ¨Ý›³!È@ÃWÏhDU¶fŠ‚¦A=U̓žÝ†#ž<_Ï\ñ/výÄ÷2usÞÀ|J½¾i¢j_~_~@žû¢%'˜b½ƒ&uôøñ=âùR ÝŽÃ^þZ O·t;X:ºBÅ'ÝRîÍþ •§ÌÝ/°…* ne}IÞg–%Ee„jÛµ¼7l F{_WœiÆ÷óNWƒõPÓï±Å«Â `Úxt\º8Ìò—Ïöªõ–š<87&,Žõ?ûÙy&4ðvýºw”4¶ë©š×­.X k~hîÍP°‰nòNÓ„n:yK À¾•ëñ·¹àÐóiš­kpZ~«¢h·/´¨9ùH«ÂMÐjçä×óçë2êA~áTpÙ}ͦO\!¸zß«åßÐÜ^¿È8Þþ¸¯sX´©x¦¹¯²6Ö¯®Q/­#ùyÓi+^'Lß ¾é[{~< ~ù³w÷{³:š®®“ùö1Ì8:qü£1ÐÙúC.ÃûB—‡O[Æ.Àü¨  ñaÐ}Ïé¨Ã‡§BÏ;­—·ˆ‚ïVN#­+ƒùÐø•÷rSAGíô[˜+ÇfŸÕ~EΙؘÒúåëG'Èú‚¢q>ƒqûÄápûÆí¯'0ìjÓ-–ÔûcîÅsZ4ÜȇøÜ£GuYÆÏâçC4¾áûC2îáðôø‰ã+zN<¸íñíϘ Z+ƒ%é3Û-y5зséÄáY™Ì•á™ú ‘ÃøñpU—¼­¶)ñ9xßEnÊ<ÝRmøØÃªÌó#'õ.lf^®ï=µñ¸,æuð®£;NaÞ ©dk¶Gļ=}K·í¶{üó¡É†))“Û3ŸmÌfÏh”Å|µUônìTæ»a>Û ªS¼¯ºÛº›ñ Ò&2¤ÕÖþ znò½°Ö@m–Ñ|³Õ 1d_—Âí@ktÑ¥¦ œ@gýªãÕçÛWÀ¨ÌªÁqP¥Š·Š÷”£`°ù°@µ\‡Åú·æóó/‘õ }Ú&Ù_Ÿû©Å@­KëŒZ-J€:Ñy kAݪq‡{¨7¸÷îSÁÂ`ñ3Íè]Pÿ^óÞvƒ†šk¬:¯ýg8%Ö3zVí6Úlú}÷±Ö+Öþ› vOF¹éÚDêÇÌH'Í7ɵŸ‚æNë-wÖ}6~ @‡µ÷ݵí»Û^ž ­S|­¾Žé®EáÎÚ&Ð&§Þî;º§ÀÃ9»qÐ]7ð|ß^t=”¯üÑ.=Œƒv³êÜù¸: ñoþút ðm¡«›3q&ø_t¾óíø¯aÙjÐCèxÒÿÃÀ黡“Ù9»Nè@çq³f3õgBWýUu‡µ¬ë¶^íXû.tØ‘ñݤ2ôd;Šk‹¡·ãÍíߢCdë½j÷Tw@Ýб)‘Á “°µÓÝ æÊ¶ÆžŽȸƒÛ‹²öFÏ‹–u<Äó°˜gCñ‚å&ûG‘uD<.*|üÓã!ž7ã§U\Oί:ÜöV*kEÖ ªO^¾’Œ‡d=¯âû[ÜŽ]sæÕ­:žŸçAçR]=6SggT[æ†Ñ—ù3<|˜[óã|ê5þÀܱÍ_éaséþ©ÔÚ¯¶”žß©¹¥Ã—ÓŽüýìûÚSk¤ud^½:+a¿ÎÑ=>¿ëF!óAT/rk—ÞÌ'¿Âqǽ§1Ee9æ0ߘŒª®}3˜wmuÂ?lÁ…«[kƒjû\ë¬ZàÂÓç!–õ=Ÿ/×Y—>4XWÍo¨yÿ]›¶‡@ïÑ“ÕâÝAÿ¾…yØó™`0ÝÆç¡û3¨6zÙØn5Áhîæ66_ ÀøxíöSêCMGÓ9§}ÁT÷NÛnc¬Ál½·Ñ…C5 ÞÔùëõ&zÅ®›cŒ?Cƒ–9*T.Cã:37]鱬úø\­=lz>8f[ç›­_±öà#°¯?/ «à8¸>î°#»18yàY½Ò$hþuÔ,½g¡Õ´n?m<¬UqGµñCÁeÙŒ5÷Úk«½«Mz‹ùàvÉlýž”™à>!Mèë¿<GøLU™^×glÉ® íê3Ã{óëˆ!VZzÅà·¢ú{Í˵ £ºº{—­! Sµ•…¸*t®rãFVìRèrèÁ®Å­VCàì»kv…îSoµYa=·Íuº2"bº¼tp‚z3š»Ÿ±›ZšÞ rצ1W^>/68Jê-éùREíߟbÄ÷¯8¼¢ùܾp{Àëˆxž”ž÷Äë…x\#þè¹Ï«bw²®€ÆEò|I—h|<Û·û…å½RÉ}%~>¼pñ¼ö«p/æòÌãÇ®8Í\]Sw_Þ¼åüyOh¾ôÖž'—Í©DÖîiw-.X¢ÂÜŸ>õdUëeäùðÑ‹}š»î‘ûKrn[çmºƒU¦ò뇺âAïó6ÜgUŽ(ƒyg]ÑøÓ¸×d¾ô£ZÚ®µßF1E™;¾M¼qˆùºãþà.ÕñùmLñ‹µÇûïÌÕ¶—Ãâ³ BÜ7Ûe—ú¨¼C?ÏÍî~{3Of‚ö¬÷íæÚÞ€ŠZɳm*g^ ë#º/ý9k"ª^¶ƒZ«-G;BÕ“ëjû¼Ã`ßx+í P½{”šÛ¨qÌҫͶÝP«·S†§³:˜.u¬ûAk˜Ý |íßTƒŸ‡©X°uôÈÅ`iZ°âÍfhØÕeÄ›öÐXíE·Ä¶6ÐÌäãû‰}n€µ†î’6ß_ƒíÛϪz`7²z|cC¥]ÐtN 8NôíÖÐo18¯™Ðe·!´l´0ÀÝõ<0ë¶§Nµªìš[Ë7÷ˆ†Ö†ÓRµלùžö—ì ©Sàõ5À}oºcõÓ}À3f‡Õ¡å…àeõ¦køüðþ¶Ç,'/Ú_Îí©šþ|ò“Ì¢¦ç‚o±éY·¶•À¿Þü‚O+èœÍñ ,µl1L»tÖlœbØô\§õ×õß÷eÞ¼h˜^¿˜yÏ^Ñ6©Ì|\PÁ{õùkÌçÑìØ‰Û˜¯ám´‡Ÿ~ůûw·ºQ9TvìôNï¯Ï¯sôÞ®{øf h [®>¹õhûÖwYý&t3ªïjØôj½Ú·ª›?è÷¯òr¤Mw052ì±T=»P=é9žjµeíhu0nÚ±ß7»`ÒwÀšþBí¡Ÿv³mf^íc\&CÝgYÝ’Ïg€Erá÷ s‹ þ”&‹=fM€F5Z\XMëžÏŽuëûÓM"Á6¬³E@ ع»Õˆ˜"ïÌĉV=Á±þ-Û!’ö¹X´îæyhÙfj—Œ_€yReäϧÀ^`àü}´˜ýìð¶"p½ÛÔÙøG2´²%°p9xˆ:?÷²žžE ö6y-¯“cT›mC»˜™?ÀÇÚ«ªmÜ9ð=–û`×Üõàoðepâ~oè˜²ÙøŠËSx—v;yéjèJÞ«ùþ>{÷£Ô/ øª-2<TÒútØ FtZXñícP^áâÌú§@Ó·v@±V"h7ÎÆ|ºá=Uñ€JcæF,õ= ún~¾ë^]‚*ë#£íÇŒ…ªI/{ÞÖCÏ­í"@u¿çŸÇ_ã[ÚoïŽÛ5Ïœï8@¦ö¦¬Eþ10›!|pxéW¨ÇL׿YÌ÷ëTÿ6  þ, Ç•nß¡a­öSzd˜AcËa†ÝЃ¦Ù®ãŠ|Ö킇͛ù=zµYzì:½›ÿ 6D®Ž¦vF€cÇ%U[Üç‘×={ZÜ1þp³!0½™´wÍÎ<±Ê<\Ü:9óæ&pí±I=óÇ+p{0/àÀ‹TpÏÜ(«žoåÔ=¸Ú>8q¨šIð^—×­û2h?,#sÉúùàR|àêx{ð=ÍÜ©eë~/öu²ý:šÍ Ÿ?y„ÿ¸œX-:ª]äû|tqÞòðæðáÐõHƒyLÇB·¸Êã»ì‡v>λ7z™ûŸ4…ÈsÝÇ´BÝm?ò¾´V T–Ð`®¸NTéÝÿ‡pû£ß߯íŒ~T´n¨h¾¦ÔxHÏ—Ró¤ø9?bâN?'Òã"~NÄçš*XG¤ß«Áãá‘U?ÎUwÐ&çãûfú½üžÜùÚ•ãýøZêýqòÞx—3?Çh’ùÛ ×6ö¨Á‡]û¶M[Á܇juÌ·cîßéÚ²ËÀ¥d<Äè>òØ­“-™çsoÌŒ9μþ0iEÿˆÌÛqÞÓš?eø{æÃeí±MEÌçÄ S›l~ÉÏëXÌÈØcŒ=ãŽå•LûÊ5 ìAõf~W¿±ûA½JèžÜ-é 1þ½¥îÍlÐ:¿ô_öt‡Ôɼ7*­˜ÿþf“pÐïú£In;På¡–Èâx TÍO™?l+¾ê\Ë{Ûp¨^Ð2¨é!˜OÞœyäÔzøµßîNV`fÓ527ÜêY ú^'Ì—_8æyf4Оã௠Þê7Šg¡© Ò½Ü¨°nf:,qÝ9°õ3ÜÊÖ»f“=.«‚ÈÖt–¹Þ*pì–`r0è8¯jçõÚå"´¬W3Ù[˘}'V,Œ8ìÁ·L^-†Ö-×,:ÿØ\šØFŒ³6aÑ}£hŸsá•ÀóÒéån>{Ák…VIJ(hwú“ŠûɃàSá@› ½ŠÁwS¥E­ŸÎ¿¢ˆšçÎHîSŸ Y1ù\ð|pmÊsès¿ö€=yеþÆkjäCàËßîÙÝ¿=9äýtˆ¬7¦©î¨{ÌýÅêæÞ =8õN_ÑyæJí‡=ïüZj<Äχx{ËPæZÝâÀSzòç~ãùÒßÞÄMéÿŸ6êBt€—?ó0è½íà!C¯â÷¶ã‡6Ÿöà¿.¯£WmüÖ¾Ìû^ÉÎ~æC˜Çœ?h»Žùä~¤Î úÌçÏnÍ­_Á|yb1÷ûùTæ{ó›©WçC•‰§bk<˜ :=Yàvp-¨ ?öœ: 4µ©:£%hÝÛܸh~Uй~ºeñ¨ÛP©îÌØ$çwdÿE?÷— žß/½NßÛœ1r”Ÿ7=÷U-ÿX4Ôžñ±Ï‹Û`æ²4Âðå$¨»O½–¯ãx0ïûòèžäd¨ß"öN×£ _ý¼æ»û@£õZ}:ñç{kUÌXì6ŸÌF¦ ÂQù?ô¸öíwìžœ’-¦e^{pœìY¬ÖšÏݭѤËЪêí —쫳ÌjÍUpéX?±_Mh}oŽVÆ»à69vzÀª~àÞ÷ë·»­Á³KT¼Æª–àû”¹¬>Ú­¾6H¥ øT>ôX«† øžÊ›½èuSðoµêe­mÐñ`mËäL èÔ¯»ºÕx'èâ »´¨“60]qtteèî²ôÕÚ3¡çèvƒô?>„ Á½@“%Bî2<5dk"ô9~jê#ûUÕâ˜Ò»¡`öÊë(\Õí-yn_0—­ßhÝEÖïéçò®âö7©÷¹A5;‡åàû\Ü.ñ~(̯hQḇú2_Šß§Áõeãa©÷jfúÑ,úJÆC2_úþ¼ºïFÒžÉûãÔý,~>$ëÿø=šJyM +'27[mÛ–ÿ–‡x¾½OóàTX„kÑæÑ´™ÖúÓÉý쳧γæÞ<ÆßÏâ÷LѾ‹w?Z©4›$à×9ðºÿë‰G» ™ï~ó“Â5˜âU'ÝÜnµ3§3½òÃAu±Õ“Ë+î‚Z¯Ä£éç’@ÿÅH§„7 5è@•ÅûU@gÿL½ˆ ¡PÉ>pЦWè«Åt¢Ýª¬^*¹‡¾UGľŒÃd&Ûte_¨žò½gQ¶Pã@ÜÜû§>C­¡c¦ôO)€:»S; >u™ ݉ó‘gº$T1†úë†Þq Z©ÜÌæ MŒÞ¤¯ð«/‚^¶®ƒÍ÷y_ªhƒ0À¯u˰l°go0æ5WƒCÏP·7‰/Ài°zØÃjбçù8s'hõ½ïÕ»;;D×<ÿy´nhž¶og ¸¾ :Ÿ{¶'´yp«êŠÉ-ÁSUm«¯ÑrðjûFeî‚Lh—(³vâ ð;pQ½hðs_ا¨±>ø?¯˜1ò;ì|R±]›6Ðyó4¯ /@×ÃGÕJß Ý[]|œ=ϾZe@gê<¨B £ üÀ¡á··é1ß`àä‹× ®æ½Ø&ϬAëíÅ….š3WÄó}¡ÞÈZ‡?EŠÀ"`W«˜ÃOÁ2Ô¦ÆüÔ¦Ðpûêç'N@áúGa»‚ÕIƒÑ¶ ëxÉèô=°Ývûáã†B° Œ[WsˆZøvý¸8¶\Øf}RupŸ¤z#RÒîö r­·¤ 0ívì­¶¾°#R+ˆu^AkÕÌñµ§™ƒëìâ9ëB¡M@ÅàÇ5{ƒGÓ¨ƒ»¯†¶–[[¤½aÀÛ5¶wDØ;h?ôRuõóóÀç‰NÅâEàçc0— 8þyÃÓ^M?íFfv6‡N_ŠÖ=k—]N ±,|û ï»´Mtr}¯žãzèÕÜÌ+jÓ#êy+°A‡u¼³õš:G RÇL/ºG¨ëá'º6çh»­ž<ñþ(æò§Z«#7%ãn/Šö÷*iÄáqûÅë ×½Oªd‘®#Òã¡Ï³yÍz¿W¼=#ÛíŸ5èÑqþðí}+ÿ~ò7ð{ÞgîMÐqÞÈdÓ¸/Ð)}ž_\ 3è’}&¡oA î®7yË~mèѸù„ŒÛM ×ù®‡JÚã­LÒ5U@ "1ÚS!$2F•¤—“ 1Ro*˜–$XlpLh’äº* «ÂKýÕl¬lCðµ­•#¾Vw´:a‹¦ÐÉÊÎA„­*¶øBˆ/ìð…=¾á |áˆ/œð…3ºPµµ!W¶äJH®ìÈ•=¹‘+råH®œÈá!á!á!á!á!á°#v„ÃŽpØ;ÂaG8ì‡á°#v„ÞpØ{ÂaO8ì ‡=á°'ö„ÞpØáááááÂá@8‡áp „Ãp8Âá@8 ‡#áp$Ž„Ã‘p8GÂáH8 ‡#áp"N„Ép8'ÂáD8œ‡áp"N„Ùp8gÂáL8œ ‡3áp&΄Ùp8cŽ ¶66ü¥-)ä/íøK{þRÄ_:ð—Žü¥)e“v?ªÈI-&8:]k„…"›4„ aëLj¼ôÚVæZ(sm'sm/s-’¹v¹v”¹v’¹væ¯E2¼"^‘ ¯H†W$Ã+’áÉðŠdxE2¼"^^^^^^^^^^^G^G^G^G^G^G^G^G^G^G^'^'^'^'^'^'^'^'^'^'^g^g^g^g^g^g^g^g^g^ÒÎÔ„6¤¡I¯me®…2×v2×öÔ ®.Ô#¥£±´¡T@Ž‚ÃqKªš†£§‡'RÑÕ’Óã¥Aõ¤AY÷ƒ×²úÈA>Žvß”äø¸ÈØdÙ ©€- –SÏs8an§!ûœÑ.Dî‹‹²Jpò_¹Ž³¯AáÖ÷åìQøMãJÒÀnFñ¶†‰KpŠ¿Ã…ó߉äì®ÉùïAòö~äüó‘\qDP îCò÷]XP‚ûÏÖ·9D|7˜•à!Ä{¸6ÿ0â?2†‹éqôÿÒçx(ÿÒëÄY.þI¤ß)àâŸBzž^ÃÅ/@úVÒçé]x`C žAúŸÉðå¥ã¬ÍkQzÎ>Ê)Ás(]çæÙpˆÒw> C”Î ºñ¢ô^ØÏñ_D龘Æñ_Dé¿dÍñ_BùpéÇåÇå9ÿe”/W:rüWPþ\Õæø¯¢|º*æø¯¡üºÖŸã¿†òíºÇåßõûÿ ”7fqü7P~Þôãøo¢|½¥ÅñßBù{+ã¿òùvó¢ü¾=M‹C”ï·ßt-Á;(ÿï´[Á!*‡;Ë?sˆÊãnOQ¹Üí5ƒCT>ww>æ•Ó=C'QyÝ‹%à~?ÜKqñ½þÅÅ÷?ô/.~”_\ü¤iqñÓYÅÅÏ5‹‹_$¿¼S\üÚ§¸øÍžââwŠ‹ßO+.þ¨V\ü)¡¸øóÍââ/ÞÅÅ_w·,.þ1™¯+¸¯I:‰¾ê[%æ’ç ‰NÚßÝ( âeI—ÐF ¨¼I ¨"I¼ÁxIWñE 0 Œ$•Á¸µ@Pc½@PSÒCÔ’NíOAI7fvF ¨Çæk‚ú5ËAƒwA£` ñi i ÀJ’‡ÖFÍPÀV’Ov=ût,s\*8Í%åÕâ…@Ъ›@À¡:0ͤ”˜˜àDéc”´ëRCYFcB=M=9..: YŒÓœz;Ø[¥Äö‹ëk›’f›‚ü58dÓ¦½«pÞMÍhB~à±m&3HðG6üà «.²u"£ˆŠ?º¨ío–š˜k&l&•fÖP*ÇÊÆÞJ(l„ꊴ¯M?W&ÇH›—¾lÖ¥†&‡&Çr±äs5>¸o¿’GM]b}#QL6¦VRJbjdjp4=€áGR9_,«D9"#¾_xoixä.c¨â©â:ƒF ÿÑ_éœéœ!OdëøÐ¸øèPë>‘qIÉÁÉBëäˆÐÄØÐàkÿèÈ>Ö|†ýcbÕÃ"£I`Ê>ÑÁ!!¡‰ÈªÑ78¶/±UèNžíûÆEÇÅbK„ä!G階lZÑ¡)ýBc"ƒ‘]-:%6_Ç„§àf¡Û?¹oV".5812‹¯ß§/Ž’œŒ£hKÒ—‚k±Ž4á¡iñÍbbiž'9®O$ö–¯” 3JS’©Í¢ãúòT®8Lÿ¹8dBV଴|•0AÙKHpr°[d"£i«„µ4º¢ú™$)EÕª¨>ÈÞRõB Ym)»Ò‹¯?²®¨É:‘ú$K*W¯Ô¢‚“p-R—^ÛÒ\¤âÉ>VމþI]”ˆë¤,µ\Ý”^ÛÊZèd’Ú+WŠ|-–Sˆ¯Í’ˤÐZTÇeÝä꺬´Òu¾2ïÒ?"29TQ’<]Þ….(ÒZ~^;¥ÕG¯Xð·‘éAäš”FHŸ>ÁI¸°«°<ÕÚŸk²ò3²}ãbâC“’dº$ä¯"®’4no>pi£ã‚CBqc¬õó"ü§Æþ‹EüÓÆ\ºì4Þ¬?m¬å¨ |£ü…êò“ÆW¦F÷Kþ%4¶¯ìýQ±äGµCwzTûy•ܬµ‰MûWÝÚ)’òo›Òã^‰šÚÅ ‚¨†Ùä»"§r54T«›%†à:æX®ø\+‰n_¾èá!2qÊWÚÎ~9vIÃüåds V&ºs¹¢ãf-#@T>’~à—#Kû‡_η’þD&vùªê€~¹¾Hº©_N¶´S“‰Ü¼\‘I/øËeÎw’ÍüK€¤ðü©èJºÚfÉiÉ¿Tt¨oFé§».i·YîdñYAê+ª¥“÷Y-®Ë-…Õ8$ó¡ âyQKÊ»#´‘ÇŠäåxòቻˆŠoLÙ›QzaD¿lcy¤ÓQJoþX¿fòîÄ¿¥—¥O-y$ñp>c=(w_DÅ3VÀOÅ/¥?%èK—;ÎZ.ÎÿÆTxN@ɧóÑX>=QOäÒõņŠï@ùÓåkI…ÃúYPáp~ÐùMåK)ý+°ãøÍ©xXOª¼‰¿åO—/­Î\ÿq:›Srèö‰Ãáúˆõ¥ê=):ßi½ézEûã|§ÓO祼;á¥õ¢Ús©òÅáY—ÌNk."rqºèz‰Â“r ûº ë'Gë) îßèü¢íµ¸Sé,Õÿa>œßt=Q¿ ËóÐýv§åcwª¼Y6‹C\^8ŸDòþ¥Ú–o©i9Ø]@éEµ:߉ÞT?#Àãd’ç>0žÃ‰9FqÙ±3;'˜M â0…ë‡Â…ˆ9 EöaHÞäî‡0{‡}>C¢pœ‚l‡,;#ÿÄBܡȿ?WÐlÚ³6Ò³' —†ôÅ垉ôÆå—µ‚ÃnH?/¯ÂÑ(ž]ψËDñúšq8@¥Ù‡8¡x(\"Ò/ ¹CéùÉýÌaøy}bQüáÜrë‹ôÀõ.…žÆa Jç¯ßmCv@ñB‚äåE!÷Ñ(_2Püh„cP¸$”N\/14òÏ@úà ›ºA>|ÂQ¨>àü‰@rBž£Q9' ÿaH^¤÷H3ùt CéAñq=ŠEú Aᬲãz‰ê®ÏÙHÞ@Ä“ŠÜq} Cî}‘ÞY£äә䥠rÇí> é“€ò%ÉÉBzàö•%Üq~@r"Pz³Q~y£pÙ¨þF"ÿ.È—6ª‡Y¨Þ%ú¢ð,âAå<é¿AÞNÚ!¨ޥè˧+Éë'æÐñDú§R|¸<…KAþÑ(<®×IHŸ0dÇåŒôÀ啈ôÃåÝ…KCòãq8ÄŒìé¨üâoòOFñH9¢p¸¿JAñ#ÿÛÈå["âCŽäâ~#ËCrpýOArЛDßdë‹ÒÛÉO@ñââþ4(ˆÃhŠÛc‘ªG 8’Óñ¶G<±H/\bPünÈüqûŒYÀa(Â8$§²‡#=p½Åí×£dCò¢îçpþG"÷ž(|8â ¿-¯_(’‹Úµ“È‚‘Œ³etÿ¿‚ÿ×ÒÿŸª´|e|åÕç¿-üKÝ_+ §È^Vž_åÿSz+‹¯È^VýÊÊWV½•éYÖt”WoEòÿ”Þeå)kúË«wYùxœôÏââû!9í0"w|ßI‡Ãχøy?¶£Ã äå`_ßÙ}p|á<‘½-òoõÂ<”¾ØŽõ#ú³ÈŽÐ“Ò§ßïâç,_JŽ/Ńåáû*¢ÂŽùø8½ØŽÓ…Óƒýq|œ^,ŸÖç‡õó˧ë‰ãáüÀ<8¿Iú(w¬‘‡ìnÈŽó×¶ÈŽËßÇÒùå° çN!–‡ÓË û—Ê7„¸ÜH½dåÓôÓéFáÛSáp:0Öóàç8œ_8]¸°¬w€@ÞÇÇõ×{RY?Gê>J?\Ïp:;¢ð¸Ü¾Üq<E?eý€2~E¼eí—ÊÚn饈_‘|eúbš§¬ýÈ?èÃÍ»vÎâÂ)Â@$‡<'#wz~cåÞ™ @!öÇò;Pî8Öƒ–«H_šO‘>éôÑvÚN­7OŠÒ¥(´ ‚ðt¾ÐñètÓþtþÐá±|eñ¥GQ|eú+C:?p|eúÒþÊÊOç¢ú ¨>Òú”µ<èö¦¨œéðŠø”ñ+ʯ²¶gE媨œÕslWÖþ•Õce¼tº”µEz*«G´EùH§[Q|š§¬íNgYÛ­¢tÒò(½ÉûÇŠÒ­ŒWY?£¬~)«÷ Ê]€Çɲ¦[Y¹*'•õÃtûV&_QGË£Ç7EùÞŠ¯hÜv£ÂÑýÊî+Õ?ºßWÖßýj¾Q÷ ¤>+Ч¬=)é÷ÊWÖ®Ë:Î+Ò‹.G:¿õÇŠòŸN²þ¾ïR4(jŠÆ?EõBYûUt¿¨¨éz‹Û"½µeõ¾¬ã»3 â+j§eוñ—µÞ)j‡Êê…²üR6+OËz¿¢¬½Ñù¢¨?STÊê›"yt:•¿²|QÀ#Àã䤜ûdni÷¹ŸåíYè}|üuV!‡£rÏ=¨²9jrñH|$Ÿ]âûSsˆõÂîÈNâMH“·c=pøœ“ŽíÊ!ÞÇ€ýÓXùøãËÇÃápº±œ¬ÒƒÄCïë¹XÎP´_` |>±ÓÜ~š¾Rñ1ß.ÿØhßFŠ™<Öë3 H>É„¹S8Äù‡Ë•„ãdeÉëÃÑåBÊá¤Ü›Ÿ¦³T<̃ë®O´=›Ò?ÇøçzàýÃåóï£JY ¯'‡óç+Î?º~ODõz$•^Ž®OÄž”ÃÅë*ŸD.N/.O\î8=؇Gí‹ÈåôÓxÄ_Y9àôŽð”—¹ñQý®?‹-ä—'ÖéKä¹x¨ö‚åbýq9 vÊ·O59;‘‹õÁˆó“ŠWª½ãp¸¡Û;‡Û1•ÿDo×OäN÷»ìäçòòÚÈó ½,—ŠÊ©”;–§ ßÅ'úã}.¸$õMß"jœ!ý?WÏhœ$áñ¾.j_'ý+µ_Û¡ ÂVCÈ"Äã8âc¼É'zÙ¢pf_cJ/´?TŒ÷ר#{-y{þkÊ¥SŒÓMóãsfõ:Éë_jr *>âãx ëå×üôGö7£äãüÊËã}¾fýäã•’Ãa»åÊ“ä_+ÊŸ>¯ÀNÞ_ŒÃá|ÃùPr7“ç!õ¬)eÇù…ßWPúáú‡Ó…â“ýW8??ý‘òÁzátéSáXyù8ßK•}v§ÏÀ|öâüÂõˆjŸX.þ‘ò·¥äÐ톮ß^Tx¬'~ïïÃn%'§WL•§·WW„f?N—€B\N-¨taêN¢?Î_{ùpX‰óÅŒâmMÙ±þ8?ñ~yª=0b=P>ÑçàÖ‡Ôº|P~â|Åáp=§Ã‘t›ÉóÑí ÔxÒ…õÁúùŠÒ‹ÓWMÞ^ÿ#<¨]–j'¸ßÂr)¼ç+êïÄØŽË™:gƒý¹Ú$©¯Õ~®7u„šô|ž’Ãß"c¥br×É‘1ä+Ò#‚ÈQn??4]3>¢Yhß8|D–ÄÚ/81Ÿ?§œ,ç ݬo0>ïN³r³è¸’þ$ªÉœ“œDŸ©#=•¨YXbÉ·òG®'Æõo&{Pî}äñ÷û+‚¿ß_á®Çßï¯üýþJ¿¿Â]Úòl¶<›-Ïf˳Ùòl¶<›-Ïf˳Ùòl¶<›gòlBžMȳ y6!Ï&äÙ„<›gòlv<›ÏfdzÙñlv<›ÏfdzÙñlv<›ÏfϳÙólö<›=ÏfϳÙólö<›=ÏfϳÙól"žMij‰x6Ï&âÙD<›ˆgñl"žMij9ðl<›ÏæÀ³9ðl<›ÏæÀ³9ðl<›#ÏæÈ³9òlŽ<›#ÏæÈ³9òlŽ<›#ÏæÈ³9ñlN<›ÏæÄ³9ñlN<›ÏæÄ³9ñlN<›3ÏæÌ³9ólÎ<›3ÏæÌ³9ólÎ<›3ÏÆ÷%B¾/ò}‰ïK„|_"äû!ß—ù¾DÈ÷%B¾/ò}‰ïK„|_"äû!ß—ù¾DÈ÷%B¾/ò}‰ïK„|_"äû!ß—ù¾DÈ÷%B¾/ò}‰ïK„|_",éKJ¬ŽN>.9ûQzG*“Y#Pð+õN]kE!‘?Ú §ÐŸzÁgJ• gKóþ\.~–,ån¯À]HÙÍ(;­=' –·+x–'þ~⟻Û(O§›ÊOú…¸{Pvj.„5 ìt|7Ч½ L?Eï\»èçñèzT*_iAØÝ-ëçîÔ\ÞsX*¥ÛQ^]Þ¥âSsø–Ø©úCÜÛý3O)ý©g[ü,Jìôœ­Ÿ¸{(pGg×;•t;¥ŸÕ‰;KÙµ[3ÊÞ²Óé ’·‡(àO¢ÂQýC©|£ãÓs!t}骀×õçî2¿’~–¼ãAÏÁá9<„çñ+žcÀ{ñ~Ç¢Ë!ž{Á{ñ™}}Í84Cv<…ÏÀs*S×Èë…çê’p8dÇs>xO5Ž/¤âa¾3yýp:pºF 55Ô°ý‚8Dý+;ÅŸzŸÃx´÷û£p.H.ÎOî]¼§ï=ÆzÌ@kxwF޼¾x¯9^ûGý+Ù«Œú×Rgàâ=ßn§!w\>SÐÚŠ•+)÷,yÿ‰fâ³.qúÑ\>)§\´v„óu‘ röY ¥'>ë ë…ç¼È^{$o<*‡> äõIAî¨eÇ-—‡ÏÀéÁ{ÌñZδv†ç>‡ \X.NÞkŽÓCó`ý‡¡5=\Nx.Ïõ âÏíY ¯~ÇÇõ §דl´ˆóŸ š…Ú-Î?ÔŸv:ÈŒCî±þÔ½ÔÏ–w¯Ï¯î‰)ïÞš²†û]¹¿j§Z¿òòüª]Ïïæç*ß~µüþ-½Ë«GYåÍ÷?Íÿ«züª>åÝ+¨LNy¿ÐNKúY±mƒÃ#ž]IfõÖOZéZ0Ÿ­ac½Òè=‹QlúöÚ®9ËêlápÙ9½ZÖ$ø°•¨ú Vã}ë©‹/¸`«Ûm8¹â©YþÓ‚ZOB“Y±á÷q‚Í1Yó'Ïÿ2ù¶#[íp7ý´ñ3Xï®÷×Ï"h\qîfv…Áê­÷v°8 Ÿšœ> \ˆQÜbµmËS=Ùº›Æ7ß\õ$AKˆuT¯v‘­mºòS«úÅ ®®M ÚA°Úõ#âgƒÅY‹m/—7Yƒ ^غ&§[ÎÇ(¶>!yÓ.‚¶©E7UĹb×ÙѵöŒ1`«Ÿ›Qד`…´]qÇwkm9ßkž8#[sÌ»‰ ÍXÖ&"vïtDZá¹$ך6`×>¶®ëʹ£ÔÛ¸æÍéðbÎÙOv²Ù&‚¦×‚ÜÃ(61ͬyÝÅ#«f9nd›‚póâÙy? Æ(VŸ¬ú%7Ž%ØÀÔ—ÐÝKlÛ÷vJþm±áúŠÕëÖþ,n°¨ÚZÓ•áÞèq[ÌÞ0æ?—ª#cdÍ œëô ‹-7 óúq„ àñ&9½1£Œó;: a1ŠkªLÞa¨•ÿ@ãB¿êb‚ǹŒœ#`«œ ©ägv£¸ÞШ­w†Ü'hòz_b•[sÖ­³h~1F±IšÝÚ…áõÍ⪳Y‰ø‰×rÄu½Î<Ÿt^ÜLZì c„§5ׇžº'ÀÈêöÔÕþv›`µ+_tnÔM·L|Û°} }‚U‹6ZöÞ€1D̆ķÖ?0²ÕTM<ÇÞ€1ÿîóq·¿ù 0ŠEmž<×èp#k¶rîˆP_Œb¡4{Žºcdõwj½ÚÒ¾ÕïüDwoT0FqÍñûÚ8  ‡™š‡šdad%…ûqôÎŒùŸï¬Ï¶dF¶jítc OúØu1|̶¬ñò¼A±¡™¾$§1âv/â>M»q`þ×·ënµ3ÙIÒ†²ƒ V4~õë.µ¦‹1ÿŠ„íÑ,±–¹nßͳ‚0æÜûx/ÞO£XÑlp龂 ©„ÍÉÀ‰ (pôè»yúÔ‘ÄŒ#h×ëÄìCçc„ï%áö‹Ý.H]ЀÅŸÝÖ?RŸ/6«Þ¾¨K¼¸n¯„jš[p? ùcX‰æë¡Ð{“ÝÐ7žPX\g{Í!cÞ’4’¼%Ý ÞKªSaíwðPZ?¶‡ÇŸkKrî&Á§;Ö;½¢ϤÝNUwx6Cê1Ç’|u"ø²¤GÁ+‰Ô·×vóhRR‘y”jýÞ˜„#/Žñèhûºù­×ðFÚÜÁ·%ýÑtøà%íhX¥ÕÐ#‹à§pÍ»9Z?'ŒmßæÉK‚EzcÍ¢FkðX2þ¸ðèwÞö@ïl(*©{àKIû'ømâºMA½ýᇤ6§„5ⱤKƒ“¥Ô[Œ¬J눣ÉjñAuƒŠ®ß]ã±™aÐ8«‰5õ¥à-%Ù­Ájõ·ÜÙgY*«]’ÎÁ¬Ž´8î>åÑqÇž¹sx,)uegzn_Äê–ô›šŠñŒNç‰ßVÖÿªåC†Õ“ bG¿;Ÿ8³†+ãW«Gó( ÍóÎðø¡D0A#Ýœ _Ýnð¨×«öâz<Öý!½“bÚ2ö޽N¬^RoÕy”fÿóñ<>n’,i"%¹%lû–ÇÉÖÞvjÈc!7”Œ^'VfkL­íZKô™ÇÕÜS{s›®>,e‹°lߘ®%ë`ÿm¿_½Ïÿûûù¯¬gŠ”õ9ôWŸËÿírýÓ¼ÿSzÿ©ßï>gÿ·¤ó¿-e—[¡’€ëge?­J!íþOáþÉMYXeø«ò~‡ëWå–'_”¥óO¤§¼ú•·l%þ¯êªRêKå¡©¡Ñø5fUäªbƒ/l¹ðõä>ƒ-Ü79Nº_RúmV¹• V€ÞÕ¢O!µ‹ƒþª(YùÁ+Ò_ÍSôUŦâ]"6â0!…x…”ÞU"¢ÐBG (t¦¯œáº–¢]Cd¥^ñciÌ’G¼ËŒ rÇ+¬³ä‘¬XaÌ’G¼rO0Kñ)üx…œÆŸ%xÅ‘`–<âSåñnú+³äïÊÁ+ØätwäŽOÇH¾¹“¯&`Ì’Gút úëäôr„¾ Y q8±<Ò_à §ÓcÌ¢P,x… Ka…(9í# W° Šå±Ô).,…(^ÙÇØI@! ß)‹B±<â¯þd)Ì¢ÅÃ_#ÈR˜E¡XñŠ/A–Â, Q¼R§¢ ðøM†@.µ›FÚ«–¼™”\òd‰E-)9.{HzöXì!³›F-=48]k&¥$†‡&¦#«NrbplR|t0‰§ÂñšcÞ5~hà.þnu)¹ú»ÕåïVÁß­.·º Ë¿[]Ðåÿ7[]~ú$$·K´äiH‘ß¼×'2m^¨ à¡È«Îð0¬ä'(ã­4Sú›EìäeÇ“Òß)Eñà³y—Ò£DO¶Ý•>¶m’ôÇz²\x7äî°=—ÖÝá¸}ض8>âñàxø[k$?R¸Täâ¹¾ãÜÙ͈¹{´ãÐkNo%”ŸÏ%y^S‚s]b^JÌe‰›ô!ó†%ù¯R ùIÌG‰ÝP‚$æšÄHjU¤—/JÌWêLZnÒÂÔ II îM¶+ó÷Zê )%÷RÊk¹Ç’*£š%ù+..–§B×͸ÔàÄÈ`\w4P™˜ÇbñÇ3|rÏçì@”§™7 ,ä0{‡CQø‘¨lG¡AGqÏïìhôè˜æ p¹ž—p8 ½¸;™{þ&[&iFòRΧëO¿¸øoM|–cBš+/CGïÃË_³þós¦ížq”õ[°êÔ¼a¬×º%+ögÛ6àeî¼mçXiX{•l»þ¯æn²ÒcÛ¿ˆ22õIe}ujgæ{²ÞÓN|5ܚ̶ :Ѩ׼šl[=ÍÞqgÍØö…Ëk?œužm7bµCFå\ÖuѶu™cØ6z÷<º&­ 9Àºã¶óÞ@}ÊbÖݤýÙ7+¿±íO„t«µF‹õ_àÚtiFÛ&w´Dá¬Ï½¼[KXÖ·f3ÏÇËMÙö i÷ÛEÒ…© KM)ð§QY¸²º+Ó‡zALa=TƧL>N‘ÑÁ!!¡‰hüÒ” y*‚Ÿ/Èš ”Q£Œ:e4(£I-ÊhSF‡2º”©H™J”Ñ£LeÊèS¦ e (S•2Õ(cH#ÊT§Œ1ejPÆ„25)S‹2µ)cJ™:”1£L]ÊÔ£Œ9e,(SŸ2–”i@™†”iD™Æ”iB™¦”±¢L3ÊXSƆ2¶”RÆŽ2ö”QÆ2Ž”q¢Œ3ešS¦eZR¦eÊeXʸP¦5e\)ãF™6”q§Œe<)Ó–2^”ñ¦L;Ê´§LÊøPÆ—2~”ñ§LGÊP¦eô¤ýª²ûˆ¿øÿâ_ü‹ÿ;‘üÅ¿øÿâÿN”ýùŸö§Ÿ÷éù:|y =ßPÞðÊô§ =ñ»ú—7?Ê«/ž6ÊòOÙüÍïòÿéòþ]ÿÿéú@óÑù«,¿Ë[ÚÐú—7?èù?º|ÊÛ¾•ÉÿÓõnåí_p¿ú»éü·ÛÑïö³Êê²|¥Ã+óWV”µ›ß'Ê›Þò†ÿ·ë5=_^}•ÕŸòÖ§ò柲~¥¼ùQÞüüÓýòŸî~·>+“G·Oeý¤2ùÊî“hyŠîWi9t=§×“4(;½^D¯ÿ¨Svéš“¾Œ^ߑʬ,c¯€ÂËÚ¥ë\†ÈŽu”†1FþÒøŠÖƒT(»*e—Æù§õ!eFGvýH*_º.f„ìPj ø5¸ÊH÷Ÿ­/Õ£ ½~T[ðÏëIÚ2üÆ(Ÿª¢¼“ƥפúÉ®iPv¬¿TnS„ÒuÅj(ÿ¤ej#P¼>$]“]’ê&»þƒË¯ò§×oTeòKšŸÒú¥‡ÒTSÀßsáµMeíˆî—”­§Òë¥ø=8lpÛ“ÊÒ”nô©ª@~}´ BEë¡ôz§2£!“&È.»*å—­¿&ùuJz=¯ÉJãš ¸>C_ÆÍÉÊúÙú$mTP©†t¶FvzýÑ’²ÓõQõ«ÿÑžWýOɧçwU¾¢øŠæ‘×_–õ÷»ùóo—Ÿ²ß¿•ÿ*÷÷»|¿»Þñ»ú•·~ýjùüêïßÒ¿¼ù÷oáïþþ[Ú·2ÿÿ–úûßö+kûR¿¬òËûûßRÿÿ­ô•5þê÷oß_”á'ûüç£ÔþÚÿÚÿÚÿÚÿÚÕ.·oC:ßS²‰@zµC#6%¦O(>Ã@-)2ƒœm èüµPIÁOwÙýX#(ÇÎN¹½ jQÁIÁn#ƒž¥“Váâ##ÒŸøœ¸ÏWÍ*ÁS_9w±€³Ÿ×äìgWsöÂužáæørxf6ËÉ‹CrŸsáÎíDö¥œÿÙÊæmàÜÏoäÂ]ÈDöŠHî$νÀˆ³_¨ŠôØÁé{Ôšó?ìʹ¯úˆxÒQ8î q¡%þÜ.ü%c¤§ÇInw©ø4Â3=8÷ ç8<Õ…¿ËÙÏ4@úÝäÜEñƒQþíDîÕQ~qñ #Q~Ìàô9ˆä¼Bz¾Eúd¢xÝP¼¡(ßÌ9÷㉞lŽâ åð¤ŠwŽ“VŸ‹wåï¡'È5JÇp”O6\ø¨œN¯@ḃwÄg5‘ÎwÐø\].Þþ[(ß!¹38<ÑÉéxê£ôê¢ðÇ8<0‚ wæ9NJ—*âõçðôf¤OK^—ã?ÊÙ ærñN¡tŒGò¡|«Æ¡˜;¨E¼é³o6âëÎáa=¤·Ç{ì4’»!‹ËŸ¶B5·àdÔþPû…ÚňB„¨¾3ãpÈQ³¹©â,.ˆÃÁ·ŠrôâÌx„H~&Ëá@§¥8ÅÏXÀaz‡)ú¢/˜ˆ‘}QD„ɉEñcOrEႜ dï¡s›ÄôyTøœšœ?Û¹sñÙ>ÈÍ¥›AöDäŸÌ¥“í¯¹ã/¯¤£ðé äqwGÍf"Ì6–Ç!hCðP$w(’;tB.ìðx„HÎWnìH®\ÙQhCñh$w4’7¹åò›‡øÆ›!D<Pú'pý;ÑaÂQæØ#DéÌAs¹ƒ¡ØaèKO¹NAˆÒ5©"‘üIhƒõ¤9‘ÜI(ÝS¸ÐØ©Hï©,B”?Ó^ÓÆ!Dñ§/AxÃÜyâ1èà¬2¶/úëæ¤} å6€—ò”õs÷Á¨þ£zAÜ¢ö…ÚqO÷¥ìñòöd.¼8µÓ„ Ñ´Ä¡\~‰£åå’øÁ¬¼¼^?þR>N ïÏ¢ølPB.ÙÑ=A>½¥¾OÚ*Ï }yü¥¤Ab3oËûéJÙQ}n&ï> Õë¨ Ïú©^ìH¤÷(Ô¾FÛÈËk†ÜQ}‹ÚÙ8Ô.'àv†ÛÒg¢±¼œùòd'£ö‹¾–‹ê}n|¸\$w’…¼û$î>„ŒÒGÚÊ·©?nSPûžŠ$˜ê†p‡Ó†q8C¾¾³3œ~šË<~@ãÓˆ9¹â!¯²f£| pvԎȸ3g©Øa*÷q¨Ýâñ iÈ= …ïÚcRo8Ò/æ6gÏDo,Òg Â\Ä;öµ|øqŸžîTÉxÕ•ò¯&oŸTëçr0/¦¡öŸ+–7EŸJÎß,ä®ösùÓÑ88uàÏýI8­ôáôTÞ¾J^ÿOoÈùÓÄÿSñ—÷w2ÅS&¯¼|txúWÞx¿º ¤L^yËGüKÚÏ?‡þó¿ÿô‚Ÿúýj}.«œ?¥²ðÿÖïwë隯 áKÚËH? g9žmû´¨ñ”–_XoKué7FX·’/6µdí•|jŽõnçthÙ¢lÛ8·FÝZ°îk¾%ôb=¦×-ÊšmÃvüd’/ëQòŸa¬×Œ­+WÙÌz·íWy†ÛÖ}ÉÆëqWŸ‡g²žÒïæÔ˜ÊÚK?·xÛ.zq‰H¶ýÄkÒo]±Þ‹/0–ÜeÛ¬¾¿Ê÷ݶ ÷"¶½Õî•ǃ³mFÝÝsï8ËÎYV«Ï9?–­!ýæ [w’ÏøJ—$¼Ò¢¹5bÛ:Ž]ömõÖ=yÓ.£ª’ô%H?ñ¤Åúr_Nb=“–N-ܰ€us?nÿô¤Û¦D¼뙚ä}KïÛA¬+ývë¶Ç¦Ç°þWÙ¶%_ªÀz¶Z»´eW¬û²‚ÂÎO*²­ú½úì½w ×Ýû?nïdE22B ‰$Òu½ì½g‰¤¤´ˆJJ iY¥ÐNƒdï̽S"{FV¶ø¾õ¾»ßýî÷güþú~ûçtÎóyιÎx<×u^ÇuµŠŠT¿Š¢ ¨~¨¤HPâøMCOXªÒë A}!à—(A‡Â_½~»$AÉ8çîA 6ìÒ|bš aõÙ¨ÕŒ– r¯ì²Ô·]õÅñ«wZežôp$hÉ‹±†“ ¼KÈèâ=u‚ʃ…:¬ïÈ*ß#µ4ˆ‹æìšFÐÒØ¸|xæAù¥ö AzÁä8ƒc} Aã{ä:_‚æÂðï•´m=Þ@&Î^\×0Aí{àJ‚úÜí5“•M-eMf‹wõ…/Œ)yâlNÅ tÖÙï¾mXKض°{dS ZßC‘û¥kâ?ùR‡ ò}˜’…€A­…x6²Rõ-#žä ­cVtÞ°í{BN‚ÖS¯m áUËoÉÇå~î'ãYŸ,OšÔâLñÏ´%¾‡ì"hú,„ÀQ%hQlº¶Âo?A½TÀ|\’œ æ^¡ù¦`A½…›–;àAõsTGíU‚Êš•'¿¥äv2A6|á…@‚ƒM{åňëÔ·" xñ{C\¡s{HÄ *R<ì„:‚ò³=>™s¬?ñ³d',ù‡_²Ç•Óß#_XÔO—ü‘/ù‹^òÛ½g1¿äW~Éu𳿀—à¼hÏ.ùE_ò[®´˜.ùe\Ô§—œú´üHþˆ¶t~³Xîhó#]ò¿­¸XïJÈ_Ç·äW;dQY<ßYòo¿ä/zÉ?8Óbù’óàÙiÐâ9Ð⸖¾[?çgÉÿú¢}þS.¾Åòkµ?RÿEùœŸ/ù¥¶·ùKû?ýûý0à¶‹ý_|Ïw±Eÿå?åYò_¾x>Eð\´—–üŠ/Ù…Ký/ù?_:w[ò‡ïµhÿx.ö³äç[ò·ñŸ_L—ÎK=÷Í’ÿùÓ‹y·EûeÉùÒùèÒ¼».–/-ëX,·ç[œÉ¿¦Ž?Ò½‹éÒúÿ´{Û³üMÞ¥ý¿ä÷ÍbúÓm(É¿=¿[z¸´¯ÿvþ³¸ÿV¾´ïäþúüg¼¥ßÊ·þ–—þ-¿„Û%.µ¿$ŸÉâ|lùƒ<†•iÞþ&×.7ÿö\m±ý¥¸‹ëøs¨,¦:ÿ~ž~ŸÏŸõ6ýÖÏÒ÷ci<øÛs•ßò‹íü6¾¥u_ÂÉæe)nÄâ KóúóùRƒÅú?û[ÚÇKûiÉi¬ü_Ÿÿ>?ó|‘ûg ¶ßê-áø÷ý²´–—.ɱtκ§å¯ï;ÿ8§úù^”÷ç:,Åÿøù{Hö_ë+ýUþ³®ÿÖþùOí°ÿ´Þ×®üß:ø¯¶ÿ¿Õÿÿ´ŸÿTîÿ´ÿ©<ÿÓó†ÿ¿ÎCþ·Çñ'ùÿÍ¿Ë?„ŇKxýÛs¦?”ÿÖïÏrš?”“üû÷~Ïÿ.ÏßÒßÚùcû¿—¾§hçOýþ­þú_J~ïHþ¿Ûù§ùý›\¿×[*ÿC?Z¿ûóûÇùÿÓúþ§ëù§uù½üêÿÞß?Îû?Éñ‡ùûþ¤o,ýûÓóÿ´Þ?•ÿ)ÿ_=Où'9ÿI®?=ÿS?ª÷OóòOrý¾ÿÓyþÓ|ý Ïÿ$Ï—ÿ4Žßëßq÷'¹þS>ýï®ïŸêÿWñƒÃ¹;׎åáôB’ð·çc¼)†Ÿ/¬þ[yû…ï°žn›ã£zºŸåsß³Ûðó¿úù¼P¡ÿ×÷àGPƒŸy*6·Võh6YLÇÓ/ ½ð¦àÔú84¶ ðøßäùôãýŸù)bÆ­Uãg¾k±½ãÁ÷ß›5ú%Ïb?‹rÿMþžÅyü>M;ÿÑþé]”wü7¹Æ~£ø5/•óoãšüÞèïýâ·Åq¼ý1ìüÃ:͵~ï3Ç÷Û:àÐbýéÅ÷~Äþ™ü±¾8ñ£éy—Öÿg;3?êýÌ/q|8þcáü_÷ æÇ>ÀößêOüx@¶8Ÿ‹ûtl±½¾ûìçûo¾Oói¬[œ—ÑßÚkúþºÎ.¾×³u|üóyççÿÛüó§ïã?}‡~¯÷Oxÿ¯ê«ÿÄ?êÿOãý§~þTïøù¿sÿÄ?ÿ4Ï¿÷÷Oëû'yþS{àŸæçŸÚý§÷þ«rýWÇùOrüy]ÿr}Kß# Ø8æ²_bïÒMtÚÝ{öØ9ºü* vq•ØûãÃ÷ì¾ãÿšýk¤‚ßâõýKà‚¿Æ7 =¹û€‹Ä¿ü=²Íá·w»ìÙ¿ÔÀþC»%v/yö§:ì¼ç豟³s°ÛãBò×Àö$ÿW6øñ¿ÿ ðÿE$ù¿7àö‡3ù£™åÄoØ ;WG‰ÃGNî?°ð¡[¸¹¾YÓ£#›üi Ö|Ì5ïTJOð^ s…‚唇»ã¶BÎçâû¾×ßAÎ n'™äM}%§5̈ ²዆‡Lc÷Õ/ØÂë¦jû⬷?ÓÌ¢µk?uìüíû÷4!Oç}iék(Ⱥ1·&ŠŸ­Ë˜Xçåf˲„ Cå‘÷„À÷P¥0pi4Ϊââ¶‹@Õ@°Ì #1¨¦§Ê¾ÀNö3­ª|¾,ªNV»+˜A}PbATújqÞâýÙÞÏôyª¬J¿=TvÜI¾Þ÷ág½j²hJžPÓ&šÄ3 u¡ýôR‚PÍÛ26ÊfÌI‘AãŽv¶íм×íøO´ mŸ´}n0-޼z!ŸÒqèª'maN†^ö§¥GùžÂgÏw {-á W(‡e ìv«[ñ†çßP1¤½„Ñ»´dǪÖ˜ò°œ·©L°_éñJ·‡)Ó·©7Ã`æ7õI˜ã|TË{þ’œyq•C Éu…ìu…‘<ÿÁ³é&R>üx­ßC©ïT%„¯ãEÚ—Ï" rª¾Ï-‡D~ ÷ç5¼L·hôµ 7# ¯ß¥SªþÈš§¢´ W\wÚK†îÁ–#!:ÈùhùœI¼rµS²d‰!ïÖ·!Šú´Èg¿æŽ}$ò7Íx¼3‚7Ž_6œG¡@•Gª1Þ(ò¶¦h½ÿ1\·i)!u5Š•¶ÕN>à >æåÓ,¸Q8Ì6#¥n8å~“ø€›¸ÌwúY² Le¨—ÚÜ}”ͯ¬ÐCy2K׃bgPá̉R–>OD‰ISÚÍ ¨H§zXøæATºQ–_<ôU¶•’Î]ÐB5½Ô9¶Tÿê-||~5ûØO0]ÒCíæv‹#â¨[»â¸LÒêWT^T@R4øLæöõH~Ußøa'Sóí>¥`&ü*ñׇ'ÐT)þ9'{1šöÏøvÍ\Ájõ-ºRNËîx‡;ä ¼Ö3¹ eXd,]‚Z1Š ôZz µoˆ¿´¡.JâA›ú¡ºAÜ5Ÿ=Ôu—döqÿ4•ì>ošG@ƒ`ø”ýÄUÆ™ÚåÛîxAšäEÏêe"Ü¡tNòf$-{¡¯— Qé¦zò¦¯]Áìcjq6—ìfŽ>„ؾN¯.cü™.•Ççk˜íi‡D*ѲdHòÒïö-ûÙnªªlÙêw“±¡ÊnC ¤_;oFzØ2FÜ›C^ùýÂó"Ηp5'ª+~~²õ?ß•ØõrHŽ4n=391£Çƒ]!7Ìf~Þòr/Û= |kW (tlç¾ EAg+Iã¡ôk-¥A,TŒˆ3®…ª`E“„šnf¼ƒP£¿"—å5¼sàÜ.ç¢ïϘ&(†^‡†n&ûåæ©ÐÔ©eL¡‘-QÕÏÉž@›÷ýMë-¡ã IÑpäGè2’zÜ>Å= Ã÷h=”¡7•qœ¾¿>»0óNÝ“€Sl’—CzaˆôI–Ï•~ö\¶‘/CF70¬œð‚1š¤£!.0Á3zµ/ë!L鸥N² f:æßuÀÜù{ÇvœE’„½wÈYLl§Ë!g’$¤Ð¿"ÓRý©ÎQæ&œãCšæqaÍCHÁdµ{»2zªJ&âr|t¶ªYêõéU7"[ÃDòkš5ȱBêÔËÀ7Èyë‘ÎQ äve<™äŽ«Ÿ)í:Òz ùýë©ç§)Qð„eN“/  í~¸ EÆÈŠ<¯Xãºj|æœÛPü Îªœñu(©$_Z1ŠGs7yh;¡tÅÎSd­¢(Sõ„óØå“(;­å¶ë¡#ʸù&œ¸‰ ‡§%ï">œ~P×…ŠÛý)º3.¢2¥õ³ÀuÒ¨R)ÖnQu Õ’Xo«ZïEX¦õ‡kÃPëí¦#n]‘¨KåŸúæÅșߡA««˜™k ñ ·4×Ñ¡±ÝÖmô_kÐ$íQ"Ç´ š­2Ú© “„æçZI ë«áMÛóœØ—½h«›÷ð)Zq;Û+œ<ˆÖ×>Hù:ñG¼±úÓJwÏAÍü½'«OCÅÞþÜÜW³ÿ„Sx½­ä<ÙPÍê$9¢÷:T •![eíÚѵÃ%Í”{Æê,¼.Ðþм¼^ó_yãÏDÄ…—Žyç#xæ[ñü doÙ÷HØ!7ëцªÁ(Pž¿†}K9—?«z eýAr¼ÒP©íÎ7hU… ¶†CÕ›9óAP-t±vN³ª÷´Þ<ÒÕÇé ªY¡zýá}C{Œˆ<Ÿ¸eÅY¨bMüxÝ*ÝîæˆqÈA¥êƒ{†ÕP©æ?·n÷>ÓBåÇüª·-Påbò¿ø­òìõ¾š¨;ðQÅ? ê-Ì®xùÀ‡ žç]¬¡‘=lù‘#|ú0>½ÿÐEh%iÚÀhÝmIùi•òÐq“§dr t½ŒÝÇÈl =Ÿ?¨”æ‡Ï¦ŒCþ$¤0Ðk£¾>h YéÜØr†{V]– ­…Ñ€iîÉSëÞ?üñLˆQ^¹SŠQ|Ç‚=aæ^ÔÎm’0·•ùT©’\x¤Ä§‚d Ì7O.EòTÒ ?¤ô·8_œ!ÔÞE«&MöΘ޲v¤o„‹çÉÑüôÛKþ]Èà¥jzÎYØvïš {ƒ¬‰³žÐžÇ®% &)†È±ïhQxž)r^ÔØûzÿr^ª´uE^¡ ¼JþzÈg}ÓùŒ Wï”>´y‚—JV]ÔC!÷^©2‰¬’dR}Œëè_ Ë×C±[FM»©pƒ¦¨»£²3n¤e/Y½k¥NOôØz71‘,ëèG™Ú~3ïß l ‰Ã는g(È7{¸NêÝv‘odÍé­H˜gÃÀëQÉÇN#Oâ)ªHÝŸzÌsÕ¨÷?‰z· Õ''9åw¡æXãZ¯i"¿FwŠDê¢îç'ái¬×Q¿ê”¸óF4è»;Yߊ†£ÑÕaLhLI™²J¤Mx³³V‹±¡)A3vJgš¼ê{Ö,Í2fìe D‹Î±è;"¿YÑðÓ$ùmÇJ`³E«eï›ùïhùÍ¿¹9á$oçWŸ”Ïú¼5ñ±Þ‚Œr³‰PIú9`¿Ëxë]hÇMþ²í]²j+¯@¾OÇRÓZýjZ YÛ¨ôøøNH´’¹älY ñ³ê½Ï@ÜS>~Åõ[¾ÏîT(Ä8Ï_œwbÏSŸjÚP qŒ’a­”Ÿ þ誣×ý!¡Ûoº)Æ’Lø„% 9{‚ö¾L'¤²¯ÝÐqÒv…¬˜òéƒtéÝΩæDž­sp´e„×;íìÚæàuõòâ`ça"ÏukÜ[Cä9Ñs-ƽ¥ÒkQÌÙ«&•Œe_-è³SÊEã(?)³ŒrM_…¾Œ„¼tíôåMO%ÕÝË …T2Ó'ªó¡ÈqsÛÛÜ$(5 Ö­82¥£N—c¡j½zr—)T§'ÓðZï…ÚqóÍÒLP×{}×_¨ïâÓ–N¿ êßXøeå ‰ !èdÅ-æ­%ý²Ð¶aµ=¿ft°›¾8é“›óß®ƒî¸/eë‚\¡wå#ûÕð™÷È6Á6l/¾Œú·l¾d™9,KÊ)„\©Ã×ëì ÿíÁÄ Ôס(#£e‡k-”yòûìºG€Êµ‘êŽC• ¹—{T½£>&Y¥ÕVn.>Š—¡:'”ìiaT7/_Mã/Õ>ÉLB)½DûîÖ½‘/Oê ù¸ *÷ý·L ’û üÖ·D=ùÒš]Ï,Øqw+ŸíÄê¡·ˆn¨òºÿQÎå¿eÖMNÛ u²Åî}O ž\³t5k?|XþÒæîÃ4øèË?Ã8`ŸôÏÖ§ï„–œÓ’œï@ÛùØÕ_NxBÇþ½ÇœÞ]Þ6 '‡.ûœj|Q¯M9ÉBNXFCJ±‘ak¥`¸Ò‰ÁâÌ Œžÿ,{ÖFÆ4›BvíN„ EïñkÎU0µÌu}=Ì)D»(êÁÜÎs«ÝXÊ‘Ä/ýò”¨"’Ѿ£ö©ÎFò(ÓÜq…'HyªÎéÙ$RÉ)¸‚´—”VkoCúr2ݘBdÔJ=yî“2]œÛjó²YèddON#ë3†nê³qžûª‡©‘C_KVãË.ä<èQ"Ì„\Q þ¤FùÈËüX¹ì:ò™Ñ¸E‘ïCþò+R_VîDÁ³|‘¹Úó(tðÞíÕ½¾(â_~óëì;m䟬:‹b»µ+sy8pýÌú.:”ü|MúÊ39”Ú{–¹NC7Q<ËR8öeêBbâzP¶E¢3Â]å9¤X”Vª¢Â1Κ@7D–Ï£h‚„ÑvæiþϨä:[’~(UDŽk&& ™ç5Ë[z¨>s»(Ã¥ µH4LÒCj7§¯{£¹L8nFý¯ yŸÚù­'÷›¢Ž8XUX¿Ac²ÏŒé¬ªh­P¹o#šnkNûàIŽfn|ÆWuh~?nOBÑF"Þ¤m„W|Å[Fý8HƉüFsÎÉå‘ß¼C·`#òÛ¶€ª«ˆx;¶rM–í¿à-‹›«î+2î²yg±Š¨G6ܲ,€ÂoÅÔßæõF‘»ËôI ƒ7~3‹áÑ®’߬yç6$ÅíáL7#'ÚmÙ9w)¾í¶Z÷ìü-Gæ$9K¦±qû*¼‚ ¦‡;ë•t=Ärˆ­eرéïk Â8!ž;—â“‚Ü‚Ý7xíz/$ IIÆ»ç@rxdÐò:vHé^ùh~„Ò8Ivø}"´:ÅkNJDüR‹i°@Fäý‘ÙMðÚàáñK¶D{®¶ŠM`#‘çÎ]ä ‡Ì–¸Œ‹“O!«”¶tˆ·–h‡æ±ë¬€œ žnµ4!wù*3YËNÈõµqz)o^òè_‘€‚0 æºøaxÛóA-Ç+J"e„´¾@ù©C Y£D=4GÏÞŸºªUGÓxÊB¡&ž½wÖxÔ™j–\ð.†zý¾6¡®ðáYïkiö4h UýätZH›WKòB뇻w8>­‚ö׆­{”¡ó®|«Ü­mÐmñyFûYôRÌt…´:@ßÛË‚g7¡¿,‹4¦f•7%†÷ž„a:ý1‚;Œ„ ó+‡ðÂW£øÛCÏ`\©2´Ü}&O˯;­Ó­=öÍJðÍ£>ç©K’Èßs!!i“jÓý$Ï4á¼ ”ÅAþ±§‘z~K+ Ò9˜ì’eˆË6N¨\žVC¦ÍLÛ}ý®" ÍþXñð>d£qó¯™<Žì„õ;{&CpeJa§[ëMäòl›+«GÞ›±"eiÈ÷uГ³AòSwŒl«Á5%‚¼_^آȊ&[Ïn2}Ñ:í¯pÅ|$М¦À ¯•+²qã;öÞÚ(í’x£$cÊS/`ë“BY¿ƒ3Ÿ9PžUÊiÇõ¨Pò­Oÿ bíÔÎ;ïbPÑ—Ôf•õw¿¨ CU)Ò§jC㨾á99ÛÄÔD“çí Ö¨mKòéRýkÔ½•N%Öjˆúõ<±JQhÈNÝÚ)F—?.¡Fã åÕ¸ß Mª¨Ö½¿»ÍD¨N¼þͽ•>½Ñû…7uÁË:­mò*ÎÛ„’=þPÕ;wïa;Tfc”“…îNÁT¾,¨ÑdÕÓÒÚ Õm$©–Œç zíé+/ +¡J–],Tšksr…Š®/z^x@Emöþ¦Ø»Pi¸ß覷TsE}ñþU—ÝÖ^ÙBþ‹ß^®Õñ¾?u”©Éj×öÁ»—ÍŠñàýí÷øæ#|$}JÍ + Mo†ÈÕé$¡ÅsÕJëKfЦv„»:ä#W6To‡.K&-&_蹩 Ñ‚ú¦$Тh²\œIÓK[ï¡ñA%ÊKv>~€’åô¡cC'PJ—BNÑä JO:Þ˜{2iÙùѣ쀕MÀ:”çß%î¿MdÇ·Ÿ@¤èÌÛ¥| =±{º#Qé`^ü 7TáÖêÔíEÕoaît¨>¿&t×+ÔZfïçð‰Èo\ªs9<þ¨·*ÿKniËI\("òÛÇnRb}Ãa¡^^þShLRig9—&œ)ïdïë¢éÖãy©É÷ÑÌ>L‹”–Íï™ÑSž­F‹ÇêpgO"¿]aa˜’EËФ®ÇµeD~“4¿ÎÑ„ÖWûñ i&o{˜ªU(þow‹bucpÙ‡KgU·(BE¬ƒ\¯5ž`uö{ Ù| gTËN@úàâ3DܤTܤÜmIœÎö$‰/ˆv›öôÛh6ˆ ÝÍp»¼³œz;TŸ‡ÄqASµ:Hv³á=ç¢))´ËÎûCjõþ{2ìv’ÿ•¨8¤_óöX]È Û¯Ú+®r€Œ ¾Ó†Ëáõþõ"ÚÍDž«»ö­2O”$‹ ËVp…\¹dëH›ìVƒì/Eß\dN@ÎÛ³³5t|Û´¬©þª=¼1}á—¼^ ¤vˆn æ·»O¿HSÉ€*»D †ÝPöš!—Ѫ‘ˆcS™×¡ªRòBÔlr«åtN‚Úâ6ŠH?Zx—šxŠcæ | }·_e\>Ž+¿Ñ¾P ÍÅ=4ÐêÍSÆxì´ï38ÌÍø :U`~ï>èšë=”Ñ =/F¬›-¡Ïy­›¸¸ô»²9¨8¹À—vQƒ.c5*w27° †Ci¡áI0:'q5ú9ŒÕ¡`¶•8L̤6q§4´—©Ð1øFâÜKq¾æGvªl¡BÒð蛲—”‘üx*Ç~kw¤t´ü:§õ©ý Ow˜!mÛ„—£¸2\®Ô5%ÜÇå‘Û–×”_EæûcÞqÅêÈzoëô.Ç»¸¢îi¹O”®ÔÜ!EòB ¹è*•r·{#ï²/oåZä{:“%\섇÷‹œ •À5ûøgz¢}P8Bëù cÝüªûy9+б> \ÿÚ 7¨„t5^À{|ÎSY§ ´º-¿ä: ”QºÍ½oU ÊšÍfÄT›£ÜWÿ=/ïoC…2Õ¶]7&S¿õ£âmqiTvÙ³> ÒUmûiä9ªrNžÍóFMŸ½<ϵ£»Ù*ÕP·-Gj~rЖVèCCIýŒä7¦hd•n!XI‰Æ7W†}ÐC“FY»”!4·ñnAsŸã{úä}áMåërE·)´|±vÇrª`´â0‘ŠÜÖI«÷\ù#ÞX)W–R+o„êñðIÍ”;PjÙcÜžÞØ›è÷GvÕ®}ψû.[eÝ6§‰£D}-ñÛ % ¼ŽÎ/tyJÔ7Sh‚^IBZ•}ìd¤IOÍ›o‚4ÿ´&ŠW%ðšÿ‘·˜Ê,ä¬$³h½èFäMeGµ¾=ð¶JŸüu¡”FË8D=Øy+²¼Ù×Aղ곬šŠP5µó*£Ë¨.ÛS²j\7¨ŸzNÔã8Ü}©4 f›–mà^v¨Þ³ëøþû“P¥‘#2D¾p.©±çÖ¨¸1ÛJ/îg/Íú*A¥ô$ÕÎÝD½Pí¹­íTX…Ëm¾þ‹ßBÝE /Þ‚ÚšgC¯‹À; —dM)ð~ 9ïgVgh8)ÆJ{ž šä]LÚN -J)~Tá¬ÐÆq±9:†³tDÝ kcVF“(ô<œà}%©áËôF`ÀèUþ~Сe§÷ÈûÁð^–Ǩ£ve‡.î€1ý¢ ùÃÓ0qèÅ=1˜Š~%~]f¹­ŒZé¯Àܽu%‘än¹ýV$£´î°Øä7HU„Æ#¥A…¡ÝÑ^¤Vzåd;Ž´¶o¨Ž¬DúØË »W#ãÆMuGÎ4#“ëW‘“tGy¬±Ëíá>dõm’)Ýß‹+”´Ý…ßC¾y–{*ÇSzøÖÄå&ä:ÎF«Æl<­¶1j:\ȧÒ™þ?òg­ì$?˜‹‚ûKÊ¥ÂmPHmÚZ ELŠöfÜŠ¢~ÞJ1½¸~,¡ôj°@zöõÝ´Ž²½¿7g-=$zx%¨­0"ÚmõÒ£D\Åö DH¬‚˜TV§Wêðj*¥B}¼*~:>´öÄ(¶ÌÉw^°ã¯½ „8Wf‰¬€Håx?e±  ÙN5ˆuA²9Û³AÖ“riÊ­eÙ H½ZÙžä+N´ãHK[9®õÔFº‰S×!ý=¯=ë–û¡[XrïBÆÈyw¯°Áž e—…L†.Û.Ó9©`ååž Ù+8 v¾´‚ìhfÖ¢Gs¾ýÑ‘KÈ °Üv ò¾ÙÍñ–Z@þÛC„'4¡°—1ž2 ŠwßTU]We$QÏwŽíÛd¿´®.¨Úq˜—;Šª?en¢…Z‚Û¶ª`ux'èÁDÇe ïòXÍêÒ࣡bPÊuðéeýJý£ï U"œ„’ê=´/×›¬mP„Ž>ež™½Ðõ¸ËܯŠz zê…Þ‘@Ï…±sÐ/p ú=ã|ñâé—xÍCׯ§ÚŒPDéÂhXLÞÅC/`Ìþedœ‚%Lx|Ý3~¦>ÙUˆ|³LL»Haþ¸Ÿfñ'7$µæÐ+·áArqÞeÙH¤d´do‡Ô¼§sr#­¹—þÁP>¤o}nÆç3…Œ}ÛùŸŸGf9O ÙñÇÈ*óÍ®¯‡¨w\CXcs9>ôŸõ96‡«®-x¡s#ò\XÝÑ’:€|–Ô³ÒiÁ(°‚ý+Õä%\CÊ÷¾-î oNžñR~‚ksÝkówÅàúlÉzóŸPâ£ÒÀÜ-Ü(}ìÎ%;!”^ÅtëʰôKÖ@Y>?÷¾S(W×gF½*ú5$Ÿ¡q߆ЙW¶rQEåÛ{£ÎS¡êwe˜,Qý9êè@ͲÛk-TV£öL™ÞÍ·¨'^¸«†± Ök‡* £¡Ö­[žMgÐèXü)r4ްµ?ÖÈ&ÝûïßV:ƒfÒi׎õQóKÆbŠáMéMPøó:´|Zà+½•­Vz´ÁÞ­ýo7KJ3ÿo,õÎ&Ì1§¡ú®ÆÊõ„i(±èúð„[œ¸÷SË \‚ì+oB$úÞ@Ö ån2ÆiÈ4öô §)…×âæÎ…v‰zžOn•Ü#"¯]‰,”‚TUµO¾îŒê±ú*wl+dPОê±Òô®4 ¢þöJ÷éÇRxk²âè‘Pª‚;köy訸JÆÂ=‘tK‰¯PMOÍá®&5”FƼkƒ ¦æ”ÝÇêëPËÃU–»jB‚èóS£ˆr+Ûºñq`=Aáf²p?æø ŽÇP¡È!ckøžsíë‚Jö‹i¨ •)NOÞf~¿fî‘øÅo—«©xHBíƒѹë=ðŽœN¬1Ÿê£Å瘵+àCìjªâ!h|ÕË ô´ZÈÍI£c+¡µÍY_ðÀhoÞb÷Ú#ºhŽJ,χÂ=‰[îtÐ>r^63ø\ÏœÁΜ^¿‹.0|Ù%¸˜ï(Œšg^\žÔcFÙÂO¿rÃÄùYú'˜ª¡Ø*ë0 ¡Zÿ²¬³*ä™<ÖCʯïåÏš êh¥‰ýGVÔ ’‡ˆ5+QkÍȈa.‘ß”šVî(G=Í.,ñYƒ+ŽòâŸ"ò[î:w64ü6ŸÑŠF³¡,áuÏЄ-fÀ€í"šn~Pç&ðÍö¼¤öJß‹æaáÛ#úØÑ¢ís²¯Ä}Ü!›Ì5Ù›Fä7ÖDúà-D~»XIìDä7Í{Ïô)‰xS%×Õø¼Y¯iܶÊêËW;—A…õ7SÒê3P`ov¾„#²<œå/Üï2´[ÉjÊg¾¼„î Ò«.ÓD»Íö0/‰ ÄÊ»É ö…¶½6bÞ@ta[%—Ò1m–J¥=¯ây9©BÌ›*ד֥'”’#'O´ÿTË^ÊÇCbåÝÃÞ®,]$m÷ŒÈ£½]«Âˆ¸•[«Õ®©i­}·ÉX -B:¸BŒÒÍb÷uš½ƒôÒ'vKˆCÆ™úšôz <÷˜ËÆ^?"Ù¼Âûdú›>)ßL‡gCÑHdÞNoU 9[5´èöC® ÓûGêC÷„ÿˆÏáÃo}Ö|ÄÜ ²EäBQFA’¦*ñ{ )EToèŒ.AeÇóJn.€jY¥gÆ ;¡&‰åÄDø¨óÓŠ˜Ýjõ%¯2÷'n…†(´Šö†Odí—['CËn©™Ð-Ж¢ëí÷¤:Õ·¦Q¸B—Vû…èN-èoÖ?d  ½…mIÓ›ãàsiÖÖƒQ§á‹ ËÅ“Â]0d–ÀåÈëïuÅŸuÀ¨â+ ¯uQðuš[ú1×e˜ Ð ÜÄS;{~#~fæ£d3Ã`n2S_aIy=¨íd'¬Ã‹|%Ó{¤HïËÙàNTÑS"âÐq\™›7’['мŽRýé[§(•pSûÖ"šÓÚ¸¹ÔCQ.YMÃ8ƒÊjëªÏv!aùLš-•$*Öi<­Ê™ûÄÌÒPõMv™#ªwÑò—îTA-¶tûë-$¨£ïžcz®e¾BQh -:{Ž€†{›éŽ?B£K¼F†dhœ%Å<†&#·?ž òG3y¶»yæÞh~彩Í/¼‚9§Þǡ哽™æG¢ë‹1Á}hí÷6ßìÖñÆò¼¬‘›'ªUG¶0í€bÓÎ]VÉrwãt–{uÑn-J,†,3[u¾ +áu>—V’Ϲ$ß*‘—Naê¾ì ;¤ºt? v#âe"óa¤8yËmŠŸ ÚuÓÞJõS‰mõx ¯k=MÙ&(ìlá_qJ4õ¦‡ ™·¡”öP9®2ùˆíTsÇ>êçø@´ÓTF"ø” V"Ïg`ý¨½¸ºqùY¨mJ˜Y®ÕD´>kBÕ!Úm­P) ûðÒ­,(Ô56€ò’Ê"yÅ«P1"ñ±RN*_…=ÔZMU¡k|nIÇþâ7Wá¶Ï&EP{ôâž7žAÝË{L½ ~‹E“¬÷zø`»y=[4 Ù¿‚æ‹}ý/ý8¡õ¥u‚ÌòGÐ{ŽA¢>:›yï]¾zVT>»pú×ÛÙJlƒþ/òœ¯nÁ`Œï*“Ûå0ìT²rˆô&Œj¾z|ÖÆL“ÌV¸LÜ:ÅÕS–õËæ`ö¨û„n]>̵É$m”¹$¯×ÔénA2’î’ü¦Q$?UØ8‹”"Eù»Óšý®jÀü¤ÝvœšpE郙홛¥‘#FÚŠë2ècõ³§EæVïàÓÕÈêôÒûš±8®à'§ÁFd‰»ã+gm÷¾B.àò¾R1Ž< 24Š#Ÿtå­ƒòÈÿêé­•Y"(h|bèá—\0õ®µ G‘Uo¤.~¸‡¢òœ{mÅõWxÞš.Û‰ŠY›íQò¸[l‘JQÝ|uá49J×k{ßy¸e:OæysÄ-l=UšRe(OhV| V®‰&j6&h"¡×òÁ–~TRÞQ¶W•§‹*ZØ/£ê—>{˜)jÐæ3iZû –dÊãüMD~3{öDDã êí>±_¿í-ð^átÊ`&ò[¢1c×n4°¸Jw ¦=@Îj4a›lÔ{Œ¦›d?í°8Žf»÷©²¡y¨"ÉĽd"ÞDבûn ò›îý/­3hy'—ÆŽùMÚW¾v+Z_™Ô¿sü9o2Ó UŸÿoÛªÚ‘A}þõÄý^ÐæÏ ùÍÓã/!ëp—ø§k±në䕞M´¯ŽÜ ß’è zõ*k|·Û4ž‡˜+TåO¾At³Csyм¼ÉP9h6 /óÙœïc$–ÛX゘c§^í£†Ø‹ûmŸãœ»›G÷ç‘4ÒC2“ûërò®Á0{íH™{p¨Y~¤îÌ¥1è¿MÔW¯òE| ‚´:•}ÉÇ ]k€ß„;ƒ¨¯JˆŽrD-ðÜËu‚~§U‰g€Ì5G¾°7FBÔ³5\å„l±ûŒ†¿Aöר¡6"ÏM\7£–<ÆO_=áÍ×À£†D»° ÄöÝã‹PÄ1a‡öÉPr±ÿäT/”KUëlÏ…Ê#]ž\W\ *%âºcm4Ô¬Ãó$j'Vlûb©õbaÜ‚2 z›ÌõÜ&h2œq9ç-^¡v#nAÛn&5'èØ¬½½£æ*tµÄWLƒî°ºÂ¸â›Ð{ ëlÒíáóI¶Góšó0G-˜C«êÜÏÍÁ°óŽ£OÃH×˳=/á«ï•ôàéd¿ 0âô&Ú7WMÌÃÌ9]\Ï•`îô ÉË­{‘äSOÖìò*$ ížì£BŠÝq"ìRHµ-óaÕ9ÒîtÛžø‚t×,í“Y_â²ý×…É{zÉ!t^Iß Yöxl#ýÀl7yw½UDöfŽëöÈîoË0{¹ýŸÞŽX«= ý¡2©È¿×Å+PP–÷ú»´Q2¿äu_E8£g={q]úe°w JP=O¯AÉ­2_§y”ʲ/²:Ö‚›âýVo|Ž›ã£çÉȶ¡\ÈCùˆ¢vT(žbÿ$pŸ>À €ŠÃ4f›žw r»}t€ØQT‹Ü ¸!5jÞ%¬}‚Z–Me§[Q'øvæãÔÔË«I=¥à‚i¬Z†úÐðœˆ.çòb4 ׯ°/!AケÙý"4ùV¾½ë>šŽD1_sCs?Ú†pÕ_x»{fÔþhùˆlèôcQ´bîU\ÛLä7߉۟«yþˆ7–3k÷ _]Uaæ_ ӠȨ½“ÝH òDNæx>#òÏø)}È|}@ôeˆû™ëùä^EÈXçVz¨7ÒN®‘ÕÒ»))LOïíÉ#âòÙÓˆ·o Ù¶§['i¤VŸJl¼\ ™-yäm yÖid†A¡ãº-Õ Pâh¬È·Æ“ÈG4º>PÙwV¦oz'TKì”ÜÑë5Çe¯Kp Aí•eOç¼÷AíðzCy"Ïé‹XKî%ò½Ìm±c ÷!½_ûOB%Ó£ŠPŽ(Kò:–D€rgÞíÜ’P‘¬§lù•*# ï¾þF U¨gÔ¤¿ømß鬔­¶P»íDXRШ³YIÙÙ ïr½2¬2.ÁûútYRëXøx§m…ª74ÓŠÔ}Kº­®Zœj‰Ÿ¡Ý+?î¾Dt&–³ 0ÎA÷g2§æ¡Oi¯¦ox;ô§Ï+?îÙƒ§Í´¹¢ÖÂðþ°m¯atëý .5³ˆºàEbQãœñÙaš+Nâ­ÌÞfÔô–o‡yòG–ŸæT$å ½¯™ ’ÎE)ÔÝÏFòÃd—Ù_h"%«?‰à#¤& Ž_Vvi×åäl{§‡ô>uâB ÈH7Ðfâð™líhC‚Í‘¹ÞâÐÌ3dÝ»"rô­® /QüzÙ?ú[ÞÏ÷Ç•-wJ6¾(B.{J┑'ü¦’mò­WºJ“†üO¿ îo@AÒó9œQˆ‰l>Ç•…¿åÜ>X…¢L{Fóp½‰‘š\Ñao` ’Ù7‡’æcÛ1ƒÜï†/&¢tÉW™ ”é.ß2Š[8t6¶lAym­ëí^£‚…ÞN™ ö¥e¤"&>HH ›‹B%™‘AùQyðná…èLTí£XŸou5–é·ö‡|E-…³æ["ˆüæà²ñ+#ê¢ ¬ÅCh ò„ÅÁl‘ßždÕFÃ~6öíbšh4i—ÕuM–?§Ø)M7–uËû³ Ù®×ùT‡óÐüvÇ3 S ´hÝæÖ›‰;6wu4(ùÍÑë˜é#´¢oÖpf¥$ò[ļo˜o£—Ìüþo<Ôb÷>W„gêÕv¨`t\¥6ùw™q&¢Ý§ï¾p‘C˜û$MNŽ=³âÂØ7ií6×fg£`¢}&œŸIh\àµy»³µwsUžC;Dåê¾Ð*Ž€húˆÓ:I›!†¿KéªÒÂ}Êk¾ïó ™m¾庻ƒ¤ïBÒ€”ƶa:Hž)~-)¹ð;\¬ó5'"Ï=¦©ç#Úqm‘g¯±Cšqý¾Ë7” ­è\©:½ö÷ßåÖÕÑyN\£Þ:‹Œ)ø¬ƒâß]T› Ìº9ò¹h1Q/UÛ/3j UòtgüÆH¡úR¯r4ÔÚ4×¶œ–…w~—Ù|]ˆúçVÊùzYhŒš=LM Ð"±*¤'oÚè´Bç·1B{£¾ëò‡w¡ófSëð²èV*Å)•Vèå-$pÁg~†ëÝž0`;“I=í ƒ¯²VgÖÁ°¨ýfÒ¹åé _y§”/~è‚q†wòr¯T`r;_HÀô\‡kÒø6Ï·ƒ÷À{$¹gèz½;ÉŒu¾æmB êS~6¯v!e™ «²•?R' Ç[u¼CÚÞMŽž;¨ái´gfØNd"_[]x: ™§Ÿùmýí ogÄýꣽe\È)X–SyI¹ú hƹ· oÏö}‰ì¤ÈÏ ¸=‚)ªyŽVfqàšîùVòòP±ë[Éæƒë4Š¥ ¡xØÎUË”|´¹›ÑõJ]g3Ëi9‹›¼>ÑH…›Ý1«0£åN͉MÕç£ÂÛ§v¹we‘°v†#%*Ñ©ïÉ9Ë*46­A5áàk«Ð5vݽ:F‰Zç»h8rQ§íÜxdÜÔgüÐ¥c¼ ®teIÖ¡áí£"k‡Ñ(î¼ÎYç94®ÇBmšÒÌÊo‰C3µ·©»JÑ<`«ÂJV¯_xSؼ&n³ZÞ pï} Z1‰ …ÚùMø¤æƒÇÄ‹žg¿ää¨ V;YÑÀ oõÛÊŒîóKRJ%õÊžíéë‰ú™#ëΣFD»­gKó ¤?gp͊̆ÔÞ‘aŸ÷߈8©´¿-EI^Û}¥¿Üƒ$Ýà½)Dܰ;qhï#Ú}æEýÔ ·m¤³8† ¦µ¼÷´B ••´Ú“(vúÄEºÇPù)ÙYªe9T¨2ŠÒE æåºIËïBm§yÑò&¨³\+}Üj_8QÛ¥…½A>Ê; ¿§•ÜáÔ‚Šo£S–ú \K35XNʹ6Òž¯…Š3‡_tGBeøHèÆLPñùè˜dÅ/~3© »À? µôvïX‚×AY±ßúðN':Ôëk¼×%(Í=»™¬o;YÀ§+{³t[ UYæ¬ÅNih7cØÎ|a:}Ý/0Þîlé°W § -\ fji¨ÐF­$òÛYÌÌN߀z7S-ˆv›d6½í‘ßBC9R¦Ñ°¯âÁÓ/sh4®Íî€&Ë„–ÍmBÓ {†VåE£™U`aÁ(š‡\Ò¿M7-GÔuˆüæö¢¡ÚÈo¼}O?ùí*E¤a9‘ßL_Í"â£_æã†_x‹ü&öØéôò»ÊVCyûöoç¥àM•b½Þ¾‡Dý/6"ûêH§0xèjEÄ‘‘AŒÒ Äs¿éµ¼1D´Û(V†Ï$B´~‘,É„(W¼i,®)eS}ël-Dfyw±Fnƒ—²}öòG àUh¼Ò,ÄJ¼òôÜ,¿ð÷r‘oÛÜ!‘îƒÈUIH*êª~(É¥ékï+KAŠ“Ó8uÏEH¹ï©œñýþ¦™òM¢~ê°Ï2ÖÒ4XNÊM5@:WÃ;ÛëDžóÊR~2ìt_=bxmðàì‹­·¾ß«œI? Yf»V¬Ù Ùö'¶59©.ÜÃ6¨mË‚Ü0ã¬×Qð†/á.ãô$äg<½{“¶ Ë-.È=ƒâåbj75¡ôÊÝdð!¨ Ê*ÝT• •éGöE®0jöˆzkMñ‹ƒÕ¡Dœ~9žu×8Þ¿ÞòîÐç@h$£ùt;€šc¥oeÆDBk¼¦H ÍSh÷4¾)ï ™Xø{ «'7³Ä §`šEüMô•d¾@dCÛ öšq*é…ç²a¨ÙE^$õŒHFrœØû FcíKN¥²ÁØ5CþO0Qos×ÍÛ¦Ïz¼¬Ëó†ož†»Bt‘dWÚFÑ,o$£‹í¸f‹ä/ £§4üÒŠÔ+qk#R‹ÆÛn”´ŠËNéÞ·Aú®âæSú•¸\ö Îmqd¾Fζ²h?²æ°S…J²#;·LLxp®|±Œ?ˆµ¹vs0ºn„¼zN-åãÈ_-,yxsëçmÅ5®‡Å½fûQx8ñ²t„оk2n¤½ŽâRLJ;g¬PÒY$ðì”Ú›Ý!¬Çƒ›L6”Ì2ìÅÍj•~'=QÎrÇjÎg¨PÀô2íe3dÜ N< F%A'== Twˆñ¯ÿ€jæçF™õ…Q#ìÁ+ǵú„”â¢î†}q/FP{ ëj*4x‘Ï瑉hŸLöJi%ÆsÏ¢q÷åkòÑ”MÜwÕ•<4Ó(ˆ¦Ü‡æ×Å ^Îù…7yªŒvjhyMÞ,“E+F»fó½h}ÕÔä©Óº?â…¯Ée«Ýc¨Rºk{ uZ†.^²†\Ó¤¶‚ï÷ƒÞ†Áë«'¦Ü!ƒ7¡Ð8+ ÒEî ±.†Ô9‘y{!En˜@bc›$ªÆ)ŸIÛÉáñbFËȈ¼Ø0Ac ¹öÖyëé¡8Ì^è°p”ï®íP/Ìýq??ª c5·øV@M'wPëBáAÿf9¨Ë;Pwê(ÓbB™¨ ær =ã§\¢=FÃrâQè½kcI>(›hLÎ ¦¹­¢7«\¡BÑÅùÑ> æ¹õ$•ª¢Ê;o°þÅoÊB§Œh‚¡æƒéò#ÁŸ¡ö¥ ùªD¨{÷Áí…8êsóõfFœ áÂGž¶vqøDÿàÙ]Zheäkw ; íkæ=›VC籉³Œ²ÐlÇž\ðz»Þ1·ºK@¿ùå[eÛ/à S_ÔóÊ&^Wþp÷:]í9,\·ƬC:¬žñ2$’sJ ¦÷Z’÷}³ýÔ«a^íìSù€$) ~?½_I§exÇ„w ¹q4ýZ ¤è#d„GªZoZJ¤¥´”ÙrÄ év¦­ŠÕÃÿCÜ›GSÕ¿Üæ12+ó’2Ëx]¦Ìó<Ó¨¤IR†$Ñ@ƒ(¤Q%³ÌSÊ,™ç™ˆ™DÏq¯ßÝý¬õ]ÏßÏ_{}ö9ûœµö{¿ß×þ\Ÿ×‡nᔚ&u2XØÿJ_ø‰ŒDœ¬½Y÷ûZAÖcd¿T×ë´lišò+œq¸+‰6†” 9¦Þ}¼0ÓÜçÞöD>áÔµ·^ÈsõµB1¢ Ìå·'ÛQhÊé×ÓL1®(v“Û’GÑâU–«Â_Pl⃩z8îwÉ[à¯GI®IzŸ¸q”*Ý»çKÜ.”É=§ÍŒrsßG^'}C/ Rå¨äÊ/ževUŒV“~u¸ d”¾¢u"BµøÐÖÁPqÔàäw á^BÍݼ毢xhHT`h7겑¡kA}KêbÞP‚¿EÐÜó2AãDááþßyhªØGæjOð·û%\:hö#L|93 Í—$ÏðßBKš8ÎÀ?kh%¾ú{mU­ƒîð  Mô¾å¥ÏÐöëðõSoûþÆ(Ñ\û ž4˜õ°ÑüM¾t$<†àod.çDôF5:âÒúÿÒ[Ÿ4;ÒäyŸi›üE‚aÒÎA¥Þ÷¾ûžÃ§Xö£R·½¡¨CMu­}äÑ¥${P'BÖùW?cþW{¨— © vlo¬_C ©H”xB2QhÛéˆÏ\\ÌßÖA¨çXˆŠºCúòh"繋ÑoÃîùõ;d3l¼ò¯bƒœ¾ZÉ¢oå÷î©·Äéæ 0˜m?§Tz†/ @ãÈá+©û¡ éaÙþå]PhºqbS:VÇ ˆOœ‚¢wRâ±&5Ÿë©±ö(„ënA­ÐÅcEÕ?§èàã@[Å‹wð©}–ã¨Õv_è¨o ”1±5*•‘A¹ÖNI¡…2¨È«Î=Ó/Urú$÷k›àóÞ;¬òôðż~ÿh¯ Ôå­¹ëÓò©¢¤LÆhVi5­‘K€–»| €6ÙK$•¸¡Ãäˆ{†Œ tï’׳5 }6¬¦âl½ð•Bj#¥ç ;êdŸoW#èÓ&ç¸Z5Œ~ëyn»_(ySñ2L\°‘|¤w&½YŠ9ôõèRL£Ì6^ÔqQK†ùÇ×Á¨D:’R=2à§f§Åé øÅzìd˜¬X½47®½«›\ÒÍoaƒ<è8Quñ ü(vFâr¶ÞË—tJe÷p¸ɦ_/‰pˆ!Å 0°,}‹T1cA»Æ ‘vϸŠ,é!¤?üóMâ2ŠT^{KÐ ³uÄ…Q"dMý¼!è|wI^·yù9zdëÞSFîœPû‰Îpäs\,ª3B*ν•Ÿ]Pˆª×—l ðÕÞ&Kpï1ß-ƒ-ÿ\íõT%5wr0…h£ôÁ3B?£¬Ðu#•2”g8¬n!-„Š*yŒ/†¢J…ϯ¬·PM}í’èÞ5ÔP© èã‹@-s©ûi÷Pû¶»•3!WöÈü:}¯ ¤´Ž]5¹Fþ†' ßø¡ÉÛ1\ lDÓÚ7×›ßN¢YÃæ€¯¢yÿ¨vJÕ:Z¬´9^¼ª‰V¼ÎÕkýhmáßöÑ&ò…è­­ÿôv°KÂý‘ :<¸9¡þv¼=ÀË|” ·`irµÌÿO½1þ<øçPëì_®GµÞWo5A÷¿Ü’¹ÿò þåüË;(h ?¾53ú—‹ð/_!ç Û£bã¿ûÿýÜ¿ßû/¥Vú{dBá:>`N< ÍŸ÷Δ§xCëQ‡ŽgohçÞy¾jsý/W¤SBò ÛÙ è8Lf×|ü´Uæýú’?õ—wÒ”o˜/i ñç÷ô"4¸?ÔËMå&äÀTŸ-¡Cù&ÿÿ×ßþ“Ж ¥[•ú—çòïyºôíWUÌþòLî>œ•Þ‚¡žº~‰ðmíIü’¬|Wì?•J×ãîQá%=gÿr¦÷— GHÀl_ÎÀù‘ƒ°À¼gÏ­›Rð“Ñ‹6õY<ü:ü€¹ŽpŸZ™9s ÆÊÖnçÊý { ¬%j"å6m8akƒD­%™ ñÊj8Ù$Õ!­¯(øŠdÅó±]ÎHñÉoý–‚2R-&ÌÉÝ@ZG¾@Ï[¤}7§dÛ‚ SE|êÈXÐöÓ?-™•8Eò‘¥Ã€¾Ž) Ù¢¸ß¾ÖNÆ]÷47O×å!G³˜‹‘(rÛ}i7úœ‡|Œ19bžæÈ^¹®y|Eän< A¡Úó·ÒQø]a#GÞIÔ|Û#ýŲæJÆ7âp¿Àí—Ñ¿+Pb³fæK».J%¾7’K«E™¤Y½ß-+(÷ÓeÖ&˜ô^OM\F%÷»>Ï?ŸFÝ&ÓNQ„×Eç®VEµX»x]“iÔ +¹ê0ˆšÜéÞ—ðPŸÙlKœê²Ï[wê"ê»4øCð·øÎnûýçи$Ÿæ°Á×4~mX yüíú_Ø#4›Ð.8äuÍY+ÊÏ®¢%·ÝAv´ 'î;0ŽÖvÃú>æhó¸é…’·*AoêõÿÒ[ñíÏ‘mH#ù‚µŒ*Ãgv}ú•ú—ëñ¯ÎþÕUn 9™Hóá¿<’ts9Ö±§“ÃÁTøÓ)Þã $6æ´ã»Â¿¯ÿ}ÿßã3îl¦½YûK&¼ÿ«Ï¿“³O·ÕÿòLþÝØý0$O|òWß9'ÿÇUùÞÉÿqW>žÙàšêøûþòMþcô¯þÿåU¦MŸ¸ÖJÈ»…ñ2ÃPåÁ*£u jG(¿D{¼‡‰¬GÒ÷ ¹ÕßãRmÊÒ_NQë |’×Çð—kÒuQö²‹ô¦ò—}z‘ƒ’GŸˆÂ0¹6î}Ù ßZÃwöÀèíK}s“}ŸXŸ]œ9Æka’Ï]Û¨”¦5z ü ³Öy´×ˆüÁ}‹•Ý°à›¨~f(;µúœ.Ÿ‡¥');O2ÃrÛ … C1¬^-øó`  þÜÎv¿ðK¶ÊصÒÏ#±_³‰ñG$ùÝT’ì;dþZÇb~_A ¦ZvÓaH9_:ºŸiŽ“ÆÌæ"Ý“±éįáSÈ”Da!2MÓÿ茞DVU{½$‘ƒÈž6ÌIð-Sý´ÁÈÍñºƒ$¯ùH%J‰&"ÿŠOu7Pð‰Nu°]8 S›uÿ∢ e¯î{ ¸“÷ô]¥q”dZ—y–Ò4»7çöÚ£ÌRë•gxQ®g‘d×t5*ò0‘þ$ö@•ÒÕä T3öìÉ"èΚì®Ûb=j]>“uÿ†jZæm C=ÖÍd û=hpåÄ›ü©chôEúEé324™›ö¨ŠŽþÿMoŒ‘KbVåiÐü|)ˆºwª6œëržÈBYylá{%ÿä1’®¶¿<ƒ"ÏcE ×ùíõyn‚&DOÎý“7<`†Þ‡ W¬y1iæ•UäOȱµðÃý@¬ÃúŸ¿é nœÔþ¯~K¼úzuè#´0Pí­6†ÖÔµ¼@ëßÐ~´„É+i:¦¼¢ ꃠózê ùîAèHNŒíÚ€¶ÕÂA™zhiÖf˜Õ‡¦“‡ !ˆ»/%䢤NŽ¥Ac)¥ý[6 h>ùK¦n¯7´Ü¼#öÄ}Zmÿnm$N+ÜÖžÐvEä,kÇghí½jS²]a&͓еƒ³Ø‘?z*œ2ª\a@Sš-Oµ†O:ÿ1.„o%/í.½Ó€ÑÿØÅ~%ß'sÑ~ܘT{ì÷¦6Î^rò$‚Ù’¸pϺݰ@æ(ûûe6,®…¼ÉsW€_*aK?óÂJîÀ{Ïʰ¦Y–ä ‘ š6wŸn„-ù1÷ûò‡‘¨Žéª‘’P\5eøÍƒ¤'÷+x÷EròÞˆ¤øÑ"ð2Ü©YÌk˜ô öÜú«½ÊµH7“x1û2Y<~ø ‹)_†¦ïGf­û,6eâ`šÞ @¶¬G*‡)TqWz¹|“¤.rL+žo7kDn·#Œ<îÈGÇJ!b—‡ü®mí(È8Àsè 0 UˆÑk~ÐGᘋF?ö èƒ›M¾ß"P,£œÎàþ=æ3×5¡Ä²Úµ$þã(õä×㊃s(s·ŸEflåª3»Û|QþÍøÕ¥%T~¾[¿ P…ä£ÀÀi~»sTWv2¢Úå«iOY¿ úärPP=j¾éOZY^ÁCqÅ'Ä,¢N½ë“èSÕ¨O3Bá׆šº[t4§ÐØÁF†Ô¡M™»$%5Ñ´|Mw*–Í>ÝT¸auÍ+¥“¨JТýmsÒæQ´œ òìxp­Y:œÙöŽ£–_—ìÆ$Ú^£#áP_F»ÊcïN¾\C––õLt<7ë`$‚N,ölCè¢óÑS§²]¨ë¿©²ÄÃÂÖÕ/Yé‘ú‰“¶yÆ84x»± ‚ ç ’¶ ø˜^¹3š/ [O©“C®â„¿æ d~èêßßéJé·zF¹ åÊÔW#ÿ :6%¹SÏ?sÏò¼Iâ%fJl„ºÎp—f,P†OzùüK|û¯~{ôQX´© ûMt… Ð±¤*3IŠT BÓÂ_BQæÏ¡•ÿõ·‹ÓJë¯àSÐý‚ÑJP²¾{4.•J×îí¹öì(”󕊲[~† ¿é'Õk ²ÎŽ;@©ªCŸé84¾‚šÐwQ¿¿}‚Ú: nV hà¡öšuüÏßh†Þ_øКLÑͳP í…B“;å~C×SuÂÍz=8ñFŸ Å©ô™zfahÄyaar ¾Å3e‘ÒfÀ¨Wí»f##â-‹Î‡ñ±HWë²ðc¬‹âå{˜¦0ì¹mX³|;Ô÷Ì0¼̄Óc X8•@Éпd¾>.ÕK¡|]ÌS`9¿`Ð|)¬ÖOߨ¼ (ç~ïUØril »L…Äø5AZ#IŠÒ%}5ÉT–t¿7Œ#yÛIúê F¤ÌØ»hˆ4¼Þ®Ý¼H§G¸¼]î™^¯KÝLéI=eUg‘eq^ÁFÙ]o š÷„ãîŸZç,²¥‘«0Ó,\ë:ò¾õÖq4GþóGc¹¥PÐuäã¹/¸§²¡DùQô©«©L!î›ë·zr…¿F²Ú0Öø¿„Ü÷œy?P@~îA ±h(x\×:ô›P§E4ÉH1þ+hzHd°Üý¿+Ü> ½t>iú„"ÝwXØ÷üùЋdÿëo×2®ôèyÀ§Ì—co“˜¶ŸOÚÝ42‰ë[ÎOüÿáu½f+„Š¢ei¡r¢ªÝëǨøqãC)Ô ïútj³ç‹^Ì€†®VñJÜÿùsníÒRhÍmd»EuÚËÖ>9ÚÉB—›íÁ 4èõß ½õë& ü’¼›™Ce—ßÉÓÁ7¿/½)oÂèþ£I¤&ð½Í4*Ï/Æ3=CuD%áGšfõYL})”8| f~ñ®ï¾ó\WòÊøaÁ6¾>»Û ?òœò˜V€%ßÇ'Þ«jÀòÓȼ늣°Ê9Ô…—Ö—Ì6SJ*`só¦íÉ/‘˜B3€Uþ=’øßÓ§~„¤o÷K¿±FòG*]ŒHyî‘].‰ R÷ü-»;~ˆv½«EGÎ]n/œ‘é‚Ö—ÔÅEdI ùsù?²ÓÜè ½5Œ»£¸2ŸŽE.Û’FîV1äÕ¸Çp@;ùUÓöû6¢ è5›7‰qO >ǯœ1=´ãöÕJܤ^¬ä!€ì)T4g;QÊý‹TÐXÊh®Ï¸H« ¯é¡ôrTWìQGå'¤º‘Çã_^üy Õ¯ÖŠÙf‘¡æ…ë:ÆôÎxèæ«·eOSQ§ä‚o¶ê“Wp<©zGÈ•GsÍBÑø7Ý…WÏÑTXsgÁÊšñ|v8†æ<5û0ßÃíýWgnAgö§küÓ'¡ÇâTCʧ(èßçmaC:|a±ïà›^ré•ÐC0êY¼èC c©ªñÏxáÇîW‰OÄ`*-­ßJ*foù.{ÇÀüX­Eok,Ö'¶Õ’;ÃÒbH¾ÆF#¬hÊø·V {ÃÅ2Úà–ßÄÆÙ9ØlïïYôF¢â…ß!lH"ܼ—m’&îàsGrûiI{jE¤Tó;߬ö©m}êN "mtæ×Ç•éH·•âÏíŒ ¦¶e†^…ÈX~våÝ{id¶¡[+S EVz†Im:kd›º~z0äîZø”ðxÕ9…l-8‘;("l°®ùÈè’ùE¯"ÿaz1ª÷1(0òg®&è E»éF]Ga¿1£Š—(z›Nè“úg+‚ŸÜd¸_lüŽqýJ|—xãöá%Jù * Œy~b2Ã'”;cÖÑçyƼSyM7ƒŠ/>Ù¾Aeï˜ê©ùtT­îV:ã^€jRUŸÔân zü…Ò{©7QÓÄþÕÚ²8:ðвOŸuäÔyw§v žå¾ºß)4ØoèYéˆFÑÁ:'3Ñä´ÌW>£éÅ)–ëùThvš\a‹½ÍO–0x«¢Å™Á‘»ÐÒÇͲִ­B[mÒÂÐ:®]OŒNm>ýà¹[¶m‡ï¤ÚÍ£=MsÝáîPtP¢8¤©›E¨ãüxt…¤Ð)Åt(²¸g*Orh~FWÎ0 cö¤rïKð&v:uæÝ·‡¡<ê¢jÚëm¾Ý\ Ía(Ùøä 9WÓ+Yĺ Ó©øØ 5¤ÓÆ.õ ‚½¯¼ÅYÛõÅ!ËHÈ9C½Bð¹ ÄŽôƒDágúsH;84áö2Òt‰Æ½ ;iº™ÅmäI®¹íçÆb¥êÝ PÑGê€å?z– Àÿú'iŽõžã^!¼ïÅß>…aMyF¯úo‹=}оøq³<ÿ_ óÊË¿¢°Ý/£¿§hr›;VZ3 eǼ{T£¢ <4å xw2Tô²È|¸8UÒa§cîBuÔá°”Ä!¨¹ÈÌk µÏŽËˆž„úµ|yçƒÿùWè褀´–=¶œãe†öÚæˆ$ÿóÐuøV‡Dá7è=îžáñê 4°SÜñ…¡—á6A×…á›yàù¤Ž0²•\ãëÒß_ÇÑ¥¸ÄÁ¸¿YÂŒ•8ü¸˜qKãÝLÝ“ñèôÖ‚™¬‚Ô‹•40Oö,²µaAçm„u»,f„Iz½{K§iì¶DzaùÚÙûÆ>ð{r©Þa=™_·&ž6Ÿ«~ÓJ<ˆDõ –¿Å‘N3ínžÜæu1^»R…ä–o6²÷Y!åÍ2n¤~ä0Ÿ¼‡;fæ¦}:ûþž4<™d¾Æðy#‹3gÇ`>²å\ë.——ÆÝ K?G¹î!çJ£~ŠK;ò ½é!RgA~šåÒî¶»(0ÏÉ·ï™îQ®öþ –‚"³™ë)–¸%Aˆ1¸„‡ØúqÜG)N¾Úúª§(=žPò¨e˶Ü|…ð`¶É‡Uâ¨LÁv‚Ý›paÜÚ4°T’FuÆÔU3ÆW¨1ƘÖ6Z3ÚO_g©¢‹Ø·®û¨gxÁš&« ®‹jK¤¡ÑS9§Ïñ¼hr[ÇÆ‘ M —/Í>$ø\.¿!Qe šç&éÍ‘}@‹b¡Õ}ihYÓû"z=­úB¿B€0Z/=x ¦¶Ì]üüih§xbLòö´?î3Ð`ƒ1t‰éñ}èØ¢UJ¾,C(ÅÑÅÖýÇo5dðÍ yøš‘–X…*öþzƵH(Ó¡¥ ðÿgž‹`“ð_žAáű±á„|÷ˆ´Tr ò~¯ºÇõÒCNê§Å‘æËu…åùrâãm>^ê™G‚N3¹sºßCÑe¾e¢vòÿümí¼6„ºýÿÖ,*W;¶FðÕ#6.lÝÐv§ËŽVítlX L~½ô£ƒŸC—oC ûI輸&!í1åÑžÇ.C+WÖ} hjìy¥ºì »„7ô?ƒú¨·AQÛç?Ssд±¼§¤ŒZHè^xðAKßtÀ[•`h½DÕ»ë® ´N6¬D§×D’ŸäC{†o#S'á|†‚[ª ‡ó\?ÏŒ'ôŸ§wÞ Clþ¯ÔžÁ7úŒ‹«´aTÒéÀg³0æQ›¡N£þ|Ò"‹0Òð …ÑfO»%] *ùn⣄¸˜[tº­u–‚bÜë…ae§„”çΰê5Ná6ë›EusçaóM{ŵæ@$ÊÎãûÝŒ$ÒTár{H‘´.É/\cÉo™zR„”§›£'b¾ µ…yºÒ¦ÜÝ2¤æCzª4bê{È`Ö“-2&ŒU¯ßä¼ÏEfW£™7ZÍÈÊ·q»Òõ²Sþ&}®µ‚»™U¾®:m"§Ú s—2äû²Sà&òn1ÿVá-G~3áû¿¸}Q aGw¨(% ]÷ æFá3/,¹Q4ØÔÄeá0Š•È}ŠóoÆýû3»äO.¡D‚œU1J©9wºÓeäâ=¿ïIA9µ×WËÚñ S‚›,‡;*Ú7þ6[ÎCeÉ›1?e¼Põêݶ“»ÂPþGu¤›+ª½w‰äú„š{v?ó¿TZKëõ2]ù¨ý#ópo£#ê®ýRs]»„œ//B£SœD“¿ë&œDS㾆UÁh¦®U¨ò{Í•V®9v2£…’rC ¥.Z‚]Ue¦Zjn÷Q~‹Ö¦ABæÑƹK¼šèÚžêg,?…v!3Âmo–Ñþ%“t|õet(fD±^tàˆ.,HFg’ãf7^Y£‹¸‘T R¶ÅvS&=…Záƃ…‹P.}ºÜáCiÌW¯Å<È·áÛÑîrx#Èè^X@æô õ¼H[âÈ.ÎiÛ’%#B½¶QÙ´ò¬-ÐtäCBˆë¨å›„º®8bqR{À:2 whQ”Bö|Ð}W³ðmžå‰å(çqj»IÐs뙘=GßCaѯ\Ý™¿óß )äDb'¼.¥åÛæ6¼±yïÆÛ E.ѯÕ8É·û`v¾Ï“û_‹VXzœ@ %;ËÓÞÕ—C©Û%Q²ÙQ({r:›+ò=”—¼ú”û *©E‰r3ª¡Jð¥Æ/¨~¦µ¿-Šjܬ¹ô>>Úàž”túL¨ÿAÏÎþýåþ¶ÇeëZ%´68FÚÈ•@{Û»Ë/S ËáÍK‘6è5ê¶23</lVƒ¡«I4úõjðmïAS‡-iY—*6„ï‚_iFÁ¸ŽdUdÐ^ø¡Ä­óHO¦Lßå] £úoïoÂ\ÏŒÓOßXc³Ú´ ‹oVVüÃ’Ã5#&OX>ªwâëQ:ø]DUìêêë.óßCÍ`Sù—¿ZEÒîëã‰C"½ 1jHzôW½±,’³ªÿÚ{-)fO‰†tGjãÆ‚Gö¹¸ÃÆ)ŸØà'îüé†ȸì›tÃh Y˜3ß§E6g¿ŽÕÑ`ÜÕ× /n¦„œQýŸf®"O@Q\«r òu«YÊw*¢@~ÞDA–' ­h´¾:"16g{_£XÂŽ°‰çŽx€Ú%qªZ%ë®c{ëˆÒ‘{Žð®Ø¡ì±ô;Z=ZxPé˜Ñ·L6Tòô¯³‹AÕNëÙÀ5T‹P£wAy›×O÷ĵ,¦#nÔ4¢öÉQf* Ôä}è÷òêòM¦d@Ãv£tî¤×h\IuåuÍ 4µ’¢ñ×>‚f¾>îÃÊh®ÕM¤¤§ƒĆÌb±h©)%C)"ŽVºËéÿ±TóüË/i>;pÑ%‘ ZÍ_¨–Ê€¶6oÅQEè¸úDÂê&tí*Ï(û]uOc ®GAgËAýʸÐÞPu­ÿA,´”Z¥œ+†¦öâþQ‘ßÛëmdï9 P8©Y®™PÏÅ{è¦|“ãß3¡¹cô\–ó´dåHד©Î;íÇö3Z?äj´ÊB›ÇáÈcöÎÐ,df ‡ÕÇó {äÒd—1ôsîí<Ù_ë2/l4Áp[žˆßY]™Ùp¥gm‡±ý6Ù7{'aâ½û‡¼B˜ršÑ4\ЀYKG_÷8˜ÿ¢àù‘¼_Ô“¼ †¥Äk>±°Üõ2‹+ÀV%~z¯ñlÀzÁjú°'lz6ïIE¢ô–‹Å½H¢v×T]f I§[Ç5{"yvž}ϵz¤ŒÞSB4?Ô±›û‚Ãî#mÉI^£¤gL‰úU¼Ý?Oj“ƒŒ5&å È|êÞPˆ!²ÊLŠhäœEv¡³OÉBq·ì‡]ŽåáÈéxI§ý˜r?¯ @%ä]ÞñLn6ùÕáçp˜# äq•4$¢Ðé·! PØÅÎHàò. Œô%~µŽbå:`Òÿ ÷Kúïá!'B‰vžÏÂVÝ(åBŸ¿êzevEªò)Å óOŽAF]<(ø°ZxÙ¾Fo‘ÜA¥I/÷5o%T•U÷8Rí‚ØÍù¼ÞÞÕ]¦7cî.£ÆZwôÆ/WÔúpBóîqcÔ~ÁÿöéÜêÆ}Êi÷ÙBýBÆ'Ý&hø¥«#ìR§ç¯Ï—Р©Pß{;š±+úö ¡9Ĭæ¹´ ¨¸ÌÍù-I åK˜xЊ¨ÉLkZ­¶Ä?ðr=GëÍ*¥-5Q´Ù²õ˜gC;bê C玢=•– :P¥ˆÊK¡#ý¨ñל§èÄN¡4ýg ù¯ù­É,#¥Š=Õ³Nø²Ãd§Õ”5»âä²—¿6º¿=¿Æ‘3ä²Ë.iQ26CÆVœºíƒ1Hëd’@6)­®û&„ ±1—ß>ÖÞýVª¼çMتh/ ìÏ•>h©~ÙuÙBFeSR‰ð‚>w¦ªPA¾LÃi»? 3®— ‡¢Ó‡7ãi·çsëÜõì/¿¤0pÇý\y–véäÆMÂþ¯ ¿Ç;$s¾¸ EÃd¼6ÿëo¯7¤/v4ÁyEc¡4´üÚÊÂÿt½»þÊ—¢´5ïA¥‚rÃû™·P¥N»j»ìÕ¯…›ÖoðACø‹ß öŒ±L¾Ôw[iQvýÏßÈqqцÖÁ–ÃÓÐÞﯬY>]V%§øDõ¡WþКÜJ; œsYS¤€!‡²Ììö0¼5+ѸN#oÉ쪅ïêêëEÂ`œiçˆâ{aøAJù}ê>L±p ½l†™CÇÙËž’À\rÜ#ùË<°°ç5÷³ºZXŒ>ö)˜ó8,,©½Ø e!¤¿¿ïp¥Z^ß ë¬%$çb`£7õ×FÏ $²;Gò‰)‰ËE~ºD!)f÷î&ø YÇ×é—m}H‘Öö`V} ©©Õ¯VäàІ6žÛ¸3üW÷d*2²>9ë€Ì_tn§±!Õå6©ˆNÜÅ+d9å¦4«ý„‘‡«Åý­¼òÅßÔ=Ž×Ì3Õ¤ PVÉm6yQÿó¢fÅ/ü,É]ÃýAŠ«Ž6QÒ¯iÃõJ+qÚM ,¥SÊÎö£(_veÈù91*ŽìËUÉBU¡÷oX>W š¢g´zsªO¼xwÆ… 5‹"îûꌇ>>ÏÖøy uzê§ïÑ Þz=­Ðáv4¤;¾y1}m}‰W–ÍE“¡.`þUަÃmïÚ7êѬ"/ä^šx·÷Z|¼õÙÛü5Zæd¹Lu—£UZˆ¤m¬JCGÕ~¥A¢sÛu›Ñ—-{èæaw랪„.Ž>–Ì£ÐARsR»èÓö|‚ïU»·çìµ»õ-A§ˆÕ†¡^<=ÿ­487|ìoª€¦ó‰ooÒæ¤j¿ŸöBË¿±ŸuËÐÊÖÌÅj_­w£Eï3š@›ªæ!§¶Û¬Õÿð„N é7úÏ ;Åo•Ü`/ôµ¶¥¿¸ _ÝO½ØÚÍÃ1zÿ éÃHÊó‡–£Êð}f´ÈÏ«&|¥s „)ùË5-Ì0+£¾ÓßüÌ :À« ‹·žŽŸÝK7üí‹NvÀò+éêé¯ð{rkòp'¬_TxØv16Õk6ëî>F¢„2)ÛbB4a`0ÒX@2º?æË·–‘|ˆóüneV¤,÷Û­Ç€ÔÅId‡9+¶M "È‘ž#ƒfçð$2XöE ~‘BÆzêõæŒ"dölhs³pBVíΪ2Ê5dWû.ÃQÉ»­MKE‘óJ°ê£StÈâ y®iygÈÕ$>š#¿”mÃ* ÀKñdº‹º(dU!0éb‰ÂfLõóÍ(êßùöéc«²ý¸©â†ûe´/’ÇÑ¡D]”ùë_(ejEtsòJ¯_§t0¹‰²ãš]\‹Q~<©ØVæ*´ÎL¥wD¥·GT‰ ‰Qer™ÜÉK1âhú…19TW{þ|ãj4GG^óZG­ëÍE£‹£¨mþp܉ÑuuoïÕY½ƒúÖ7JÃôÐðøåÍýþThlê{$¦3MÖê*WÑt¦¢°àƒš}=é$FýÍÛ ø ¿ ¡E $zV å‡†F†gu/í~«Ö/²õ®å Í}Vç‡óßÐÖÏ@¾R3Ú£s/'A{+Íýûö¡ƒZ:yÆ]tÜ— dmçNlÙ+Iòg"~·¢Ø|^øBçÅÅeîN¬¹ÌPtY¸Äy¯+ä¾»+ð²Ú…AFsd칓íVEWk´{»„èè FH|™˜þ]UÞÅ ØÏŸ‘ƒw§ÙRÁÕ#¤[üò!•ûÉܤ,åöçw¾ ø\ÎÕtšßÂÛãnçÊ‹OAÑnò˜åo÷à™õ±ËcnÛùõœÂñÚ¿üÉ¢¡“Ý‘VÛuÛ@¦L¡Îs{Z©Cø¼™+ü¿ hºæ@ûªÛÿú[zÙys²X(9óÝ+qÞJÓw.ûoù@9©Õ‰Þ{#P±7¬¡'*ÝLb“Å®o¯—aª©=Ï«CIoûÚ>¨µ*VèB¨ßª>t‡>øÏßÒÈñ\ý­£S "GÙ¡ý»ùÎð1è2é“Ùår zy²_r¼Ñ„5¬õb¨‡!ÅÞs}G.ÂpgüNõå!ñzuI¾3Dx†ÒÂXÿÑ×~˜¨^®9x¯&»îéÕåDÁ ý£“7`ÎϪÖçâIX`y5‚ŸŸÁbhKHXÇXR9%3;Ëb[ìªwåà·­ä3ݸ.X«{ Âk9>Ç®õüƒˆ·µ'Ž"‰ƒ)ŽÝžBR¢£ŸŽ¯2"YÔÕQ6Q¤8£ºbú©*rtÝij‘6OõØ7î<ú=½É ý2îØ%‘ sÀÀíedͺØ|J]wñ_-*.ŠBŽöÕRKª&ä.šñ–ìA>Ï6ßžG( =ëÓ:8ŠBg•CiÃÖQx굕ìYÜ[×åÕâë,z Üù().•|¸¥¾w_F™äõ½MA(¯{ϳ÷ö4*èÝæm@•‹TÆ¿èï"Æ&×{¹Ž¡úñÄó BQ¨É¯xè×b²áôü:|þTN¾ûPO‘{æEq4hÉJD#åЖ¶824a7t“p.CÓ+âíÈáˆfGå<š[]ÐܨpABÔ -:|Ø–üÚ|7w¢ µªù>´Z¤¸ÿ=Э{Ì™-Ÿ’¢M)# R í»“êkÊhw÷qÅ¢ú´÷ìÞØ7¤ŽvŽcïjz‘>£èª{¹>4Ló\·<•Òöõç ´ÎÏœýœ!WöEkUûüå¤êÈÐùŸúgÜ-øBäÆPà48Ù­ÊÇûzŠ~äµ~2ì„·Š@Öª/…ù*A'¶éD®Kÿù[ ÑÉk©·ÿ[?àx¥é"´~Ýñî‘Ûh?‘½%F´ýýwSl¡«&¡{D¥ºÏGÊ®Z-B×±€A»›ÚÐq°Î4ãû0´zHµÞ8 š†nXK†Q|S’g€-êV²_>Ó¦!œGôÅõ²th#ù!Á ÍW#˜ » Z\5ŸrF¾‡–ñìÌåÛëñõ˜ºC½°{W_*´ï«Í1´,ƒNR2²´ë}Ð}1ˆòŠ/9ôÝ‘9à_©ù뉎m°SÙýs9¥Zþ4ë5|O¿Pvž>&Ñm5¶ë½x²VÆ(̲ï/P:ó)ï¾Tø‹ççd”S`ÉÙGùÛÁý°|20û‚Ã9øýn‡Ó—{"°¾ÿ²WÕ%iØd¨àºàþ‰^eÌ.½E§Èf;³ $“Øó))Ù)v†Ø.;#åL3Tœ,RZ ¨¦¬"í8óÙÎËH/˜yÿvãnd°v¼]¤”ŽŒMª ƒ™ªÈìOW­gÿYí*Ž¡ÃMdwr¨í¹‘»/çß ËEÎG‘2–g²‘»àgà+á8äÙÝ{w7òóŸûX䯇·U"švM —ÆΣ°F½a‰XŠúìn:D$b5Ïdp¿´Rasš|9‰Öô¯.ç._AëAÍœ®Þh“"Åûi×´½”QånŒv@"wôê"Ú“ÙÊv-@ºEéžÐ¸B}ÓÊö¨‹*¾÷ò´CékƒÓ^îü„\'­¿kò/Ï @ãèe™Ï™Ûü yNi>È8rN³Z²:÷o*µšoóËÇ^²uÀû§1÷UÚ!ë “Eÿ·òíçøQDJ±ÿùÛ÷>žÇG"ÿ®ÿÖ¢Ñîñ%sÚöÅ–®)A{†yÿ9ÛÐi~7@ÙZºwIýãËÝ;Iv—òAWº@¢àïèðhTäd$Ô}73KÔ%[¡iìDDgñ=¨h/˜ºò‚[&±„zîÆ5áìhq4´¨Ü^/g$„µiM4Ü ¥ Ú™i¯þv?åE¡7 >KÕùð™´m=ÿ^Wº::;N0¸)@·òmÖ©ÄaèCß‚wxa0¡g•8c†>«oUÁˆðÀÏoשáûÙÍšc‰Oabç}Û£;arÌЩ4<fÖ9. èÀü³8s„E{¢ºuj€%EonòX–\å¬%‚߇wµHi)ÃÚxžM¾wl|ý¨Ä®›„DO^¥†z"‰{øqׯHfj"æX¿ ßcc2j÷Y½U¤ÞÚÌãP9€´k«{8~ ½x63q‘.2Ø ø>N݇Œ­,¦3K‘9ĨpßáÈê‘Aòñ=²û´‰ÑÔÂÝOäÊnÎë gÆë½,žöÈ]ö±ùªòö.ß´F~ÆÛï:HPà‚¡_ø§;($Fäìªt…eCêï› è%ÇÕ±÷µ(Vç÷Ñ~} ÷+ôÑ·÷ìA‰¢ÿJU ”’~·9‡ÒeŽO[|\QöÞw’Ã[oPþB*£¿¡*0^¦&F¥]ªÃ pUl]š7õ"Rül*ÞHBµ•ø¾Ä¨áÏä%ZôñIQôLx胧ÇWKÔ‰âd:ðûê=û Z >8ž¼Ù€Ö)Ô;’»ÑÆÓùQlKÚʨOH|¼‹¶³ròG»·ê^f‰„ºqéCsÈß)L3Ck…‚ßeÕ£.‡ 0Ì(?(èBÑù×û´¶ZpßtÍdú%”ØáE(%uÅ îú#”ž;Íp¾ª å¬ó¢[]ËPAˆÍ’Œ•w¾Ë}ƪ“òTV_­QÍ¥˜üîû,TŸ >K%È€š¾LµæNà¡´îkhyu²Ë²"=¹Q¯ }îÒ‡44ȦÛGæó‚å OH~D½OÎÂïÖÑôzD›Ãe4³óŒ26Bsñ°àŠ 4_;ójn(-Ê} (gCË›Ââs%>h¥9ÛÏn6ƒV¼÷¾ü6ŽÖïW7®/Å s]õ·S±hK½ïÌSηhûÞâéæc¤“I‘K¾®M¸ÿ‡¤å«CŻ˶:7¡Ô‡3¸å8í?ãfä§þò ò»¯}°gZ…¼f™‹î“Zœá¡® Y®wÊ"jà½Çí Çj!ýºö¾µGÈ\NŽ;ñ]{»Ï8€ˆÿú[ _n{Ê®×ïn¹ãϪáÒmWDûŽKÆõÓ¥°¨ÉtŒ¬³–X<7¥Úúá×êáœj…pøÍµG+fÝÖâ~)%]±€ô|›Â9Hî.~ÄI|Ÿš^8׉d®D휻ŽÇõßw{Ì#•–¯Ã3_¤áOº¿\ wз?ïsq@z¹œhßw—‘ÁÎÙãw2v¼ÝZËÒ@æû÷RéNI"ëµgq*$/=Jw͆¤ we¯NZö g}&Oûe"än\'j§FÞ–9qÈOüêV¤Æ( Ø;3?&†B,<8EEPX w è…WB·]Ž¡Xã=Uj‡ZܯïX|I%27èß„¢”H¯Äf”~«bÇ}#”=,÷vÄ„ ååÓTèm{QR€-[ª[÷e³_·D•ÌÍFWÓòБ;GQ­}Ä7ݨ5ÌÚo’þ¬E;٧IxèÜÿCÖ{‡cù‡ÿÿöŠì™½²²"Dç‰ìì½Ú”‘´“RRQ(’–Jfö–½22²7É*#d¯„~·÷ñýô9ŽÏï¯ë¸/×徯Ãýt>Ÿçëõz¼F3¢®¡®Úÿ/QÔ—îWˆ]TÄ#ʶ^Ì!ÇÑHñÓ‹§ÉᙡJ‚_t‹ÏYŠ„´ÛÞìWD2!¹¤`„Æ¢™îÙ<ñø;}¼z­W ®*©1#Á~§_)•¡×ºÓÇtœ!bƒÌ¥oª±jðÑÌSûëØO(T¹zksë2¾˜2ã¿Ã|±”ì %”’jFVÿöï.rwXӤʅ":Õ׺;¡ˆão úÁ9(Šp¯”êÅ ,Gƒeÿÿõ­}·øLèæÎº·÷R"ð‰}]JŽÃ*cö/_ Uuçœ<œ, z9ˆøÕÔä•uíÏچυY¶o”¢¡NÊ;^¤‹èù) ìöCch…w^˜óÿÖ7³GÌûL ƒJýËñ.èüÛìeÒ = ý”˜œúz6×ŇÁ@v­ÏÈ+^JÔgp ¸#öõiSN0úËÊ÷s`5ü¸}¯Ç%ÿ8Œ ¶k?Í“\‡¨¥®T”À„hÅâ̸•ÎÕ[‚Ù_—<4]´`~ä‚X1,:³÷Ç’­Â2]Ý`‚ ¬t‡¼o¨_„µšsçDH‡à÷Ìù5²lØ´ â¹ ZÛc›%Ϫ·¨>:oýÖ/$Ѽìnxã’öÚ4ÜžDòŸ}!3†H¹D%t6iªƒ#\]¾ânJkud¨ºk·Gî 2½œÕïîB–̳u †ÜÈNCq÷¹m$rf‹(nf}AîçRgøß!ßÇnœµQàݧoÇ(•ùÎá—ŠL†¥—A±{”ϸ9:†‡ÿ|Љ|ŒXô¾wê.jXI8ýT‰ÆÃ ÷,I¢O Ö²Q¦Fê,0?§kF½…ZüR!‹³Í6oÇѰ(eôîëb4¾v¡`c˜M>…dG‘¢éñdŸÈA4û0ʹŸèšŸ%>©óx-ø.<›ö¦E‹VÅ?ËCÔhyãºWÚ)´âJ|/ëlƒV¹•_µÛ„ÑZw¼ÎÞ'­;-ãÛ ­ÑÆÞ¸Mþõe¤½*ô´áD4j©¨_xéñ+Pa2)}|yg\ù®siã?žÁÿðòè’Mô²sÿqJþ/g!íÌÒ£³ß!ëªæìüÄ—„õÍ!4°¢9 š­éb˜Þ‰B[«Pi1]É?I×áÐHæÇÐ=4ýéU*ôækxK/wBŸ Å[ûð[Ыá¦ZðÍ«:©çÎrWqÖ«’¬}öÑ ñ½ù÷<_l+­?®þ{ý?ï÷?×ý·¥ÍþXÔîµ¶Ÿã×äÿñLºn{‰uË-BÏ—pùvŠ×ÿ8 ߯ ,Èôª`8µ=‰$ÑFcx­/ðtÃyŽn£30ÿ~ÈÝ7¦^U˜Zïʥ¯÷wÁü#å‹4aQJhswœ,ÍyÙÅ(ÀʧvÅ °Ö#W@”í Ž »ûà²~ãýJW\µ…ÍO¾ @ïiX×2Q¯ÑÐÁºE :Ö£>>oCÞ{[*Š2h\æ^ī܇¦:ŸŠ2ñ;š‰pT_(Dsr×Ú}DŒh>@å³b… µŸð8?Zº<ê%­ÜB+^w?Ÿq´ª§átjFk——Gn»ø¡õ–]år!;ÚÄjP›7£-eçè»(c´½-QÿçK.ÚN?wV×E2=Ö?ß@U@ṵ̀ã?¾ÇÿpC²OüÇCù=ÿ_ÞÈÿ¼þ¿|¢¼’ÿË-ÙÓëÁw§þÿ_ß¾µŸm(¯ƒ VÖ»Öo~ìˆö3þ¨ìk¶öÓ‡ª­“Óë¢ZP#ÙüŒg j:%ƒ%NLÀçògUŸv|¯èôe¨_ ¿ÝJœwØ<'Eÿ·¾ý?v°PQ×–~†.ª¤5—þ—/Tá&ŸfF ÷Þ;9xþ€!'ï«¿y²aDÎ÷1ÝøA-ûÞgB~u}c ãTî×½BY`b8©þ6;=ü³¿àB™3 ,Âd ž0[&ûÀé1Ì·¾ùý%ï,ÚÞN.·‡¥íCÄÒaD°Rävý÷ ?¬…û:r ?†ß1&a?ßeÍÃΣ°}©ÚÍ.uîuK*dòÚ¸ I_­|š»!‰änáëÖ#H™vÇ…¶5i.ož¼­zéâ†"žœCn}ŠãLÈd¥P›EÑ€,ö§kt7<-u°êÛcCä4ÛŸˆW{ÿaë²= Èg²ÚÕøœ¾¥TúŒBŽR¿NÓ£H˜²À4é%c=·±$G‹ƒ>A!/qß×]k±…%(ë]qJ' åê-)JˆPÁi¨¤AùØüÎYžzURݶ¯‰§£šÊ'-¥£59ï^]}‡êÅ­ ¦ò¨é¬V"܇Zª «Ò™¨#í|ýáÞXÔ“ ¨ÎA‰ûŠæšxdA`×;’B4Šbná<„&8ô§žM%UÏ ïE3å´É%4ëx.ðNUÍoNŸk•'F .í†ßÛ¯Ð"=(®Ÿª-•¿²TLÔ|gP!uZ&ZÉ×·?ýŒVï}il(њ܀車îR;­í_TOžþðb*Ûô]Ç + º»Ùo ÷eõ¹]èƒü¤Kšyu÷!/ûÔóX ~ð’Æ¹¿¿ Ç{¸ÍX²¤³ƒ†þÇÇ;}: Ry"ÙçÙAæäžºñ³ÿ8'ŸâeÚ™/ª@íBt°DV74U~®gу¶‹s'÷=„›ÏßM¸¡³µ0ø6µ0t;©jøð0@¯Tû벇g ·?¶ oeg<®ö°Š8tÝ?öåž´¿r¼3øàø_ù)%ÙŠgïÜ€ñÑ_¤^æÂÏܺm¿Í0SC£YÓ{æj}|öß„…ø„©!ƒ°äaä|è ¬hßt«5{úgÎÎÂïöãÙ—D>Àf7ÓÏÒKŸ‘HHîJn ’PM7HAÒ?ë<ŠlO|ŠíùÊ“6¤ü”rͯÀ©_°¶@áÜåÍPò-Cé^uSR "ÕÏj÷A%d|ðò¦ÂósȬ~FÃg. YRŸ¾¼hì†ßd‰³k‘Óc ³ÖU÷\qa˜îòA7ŠeÚÓÊÈg^?˱ËùóƒTdÈn£ …è± QP(Ÿò¶ý‹Fùdv«qÅÈ%ÂßrU£„u§€JÍäÆe~BþCù5—Q¶Uµ¿â<)Êã=6Rú›¸∈™T3*&žoʃJîQE¹ D¨"ÿ€ÌKç9ªºrÊí&ËA`Îù-C‡ê7N¯Ú;l?iúß)s7B!ÍYî ªÓPœÛöµ8þã¥dOÿËs;\IÃù:(:þŠõ·ÿ®ä´hL|ÜéS®dê]ƒ"5Ã(WQ.(z’”á!p ŠF(KŒ‹vÆñ¬[‹— d¼<±ÆŽÊÉ(@¨€ *Þz<Œï» •\?”DG› JUy‰)`ªžšÉ|s„öጢgrð™åW±»ÔÞm×s€úc!øÛÅàK¿^Uë 4WÐY-±Cë’aŽÇ ´'pÆñ®€Î°‘CÓŽ¡;ï£Ãѯ>зOðü 3*ø:£oÁÐ ƒi5±vìZ0ܪjÇZ[£Ö‹§vÙ”Â÷¡Cç»OkÂXˆ7iò7˜8ê’¥í ?íDSCœÆ`:ê"×—ö˜:`îXó¾Ì"飰HR=ϸKÑõÏ‹aÅê³ô›Ëé°¶7¡Îc3 ~Kúi·ö˜ÃŸ‹ä§ÿôŸ­ñûNg‡]è0kµäc%$.ÏQUARc±±o…#H¾gÊèı ¤4]s ú4Ô[cgvû"]´µ{Æ2ˆëžzE3ƒŒ“Š»Ï\BæÙô¢×ÈÆã+¯9‘#-û­^-îñ*—úøÁy}ØX=r.·žêk ~ex††%(B/µq£÷z: G ùKýá‘Q¸gâ‹P–Ë'‚ã+ÊÕw/ÔÂý¿*¹ØšàëW"{LP…S¿=oŸ)ªF*üVnD`#º=™MСG¼µTœj²y‹Ù>žÁÃSŠ’»T•P»t¯ÇÜ ê¶Q¯Ï‚ä§ Õ‡̒φôufE¨)4È?òxá•VE ¬^®¾A{c‡o ç)4yëTÎN^€«bé¦ ÷ùÁýOöBvYreÀwȼt›Uν RB}؆%Br§ÞïsÍi¿óu‚áçäÓ±ç¤&o 6 ûqøsh’)â»ä mÌÅÓ”F–Ð>ÕÝÚé#GG½û·K k2ðÓÉ'ôÐsºÐxÏÚÇ¿3·ÏzLÆÌ›Â'¡Kîçcö#íW)ÏÙí‡V²o4+W… ±pµó›7|É[ÉÞc7m`qZ¢§¬–ë Vv…Õ_ž†<^ð[/HW¯Í6¥¯cn¿Wkîiæx#ñÂ{à Hêl¬œ°‡ É5}δ¯¸"%s€[`í~¤šì9Ì.‹4mKÄ‹®!íâR×ÍH¤÷˜´b³ŠŒòÖ'¼Xirûíùdénù~%8ÙÆ7š~ÅŠ Çß ޝ¸‡ˆî°Œ%r/šeL¼ÉAÞTZN^uä÷9ú`ÐV ê†=›”üPȳíÔ{ЏeÚ¶œƽo/öï Dñ‘ÝÓ«þÅ(¥äZoªÒ/×xgrn£luXU]3Ê­5ý)»Y‚û#H3¡¢• J•|G%–Ý唣¶¨Ü;¯­žUi]×;¾ã¡L‹kSz[¨®EUóš5’¶^r_®ÃÃ,ËN£Ökzçï|½¨cÍ;ãÕõ±W^®YCõ¶ß—ÔòÑ®›O{¢±Èð+­oÆh2×".AŒ¦Ý¾e÷N£YFŸ"¿Á(šû‰ÅÌùˆú-.¡%EêÕDÃx´,¨Y”¯—@«ãƒ’‹Œ,hµÉ´?ïh Z?Î&έRDVêÓvahv‹ƒÉËm)tý-Ç‹]‹ï}F’²ŽÐ}©Uðiºï µØ>(ˆ~¾ÖÆy–º_~RAVð—ZΣԄÜ˰+AÒ3ÍŸLµüâaëùxH œ z|ý+|ˆ ±(¦Ø^ÏñˆÓóKQ™mÚâªRdL¯—@’TëWš× )9–¿¤¹>™ô\|ælÁóßP4Ó£þ+ Šç//z“üÛou…Š8‰ìîpІ÷dUÞ™æòäÞg(lwõôà>EÄÞ EU{¹.xîº,•VDžþF¨›s©?Ëõ 9näF„²”ÿ‘øSJÈeŸŽ½¿vØ *oÐoHýŒ€ªg÷:ß~"Ô¹ç5ÞPã¦{‹¹[>ÎÄÇë¸A]MàÉ‹1ïà‹¢·äìájh&M—o;¨­Á&¿m~pAûAIhQ*‚NÎ=ŒÚíЭÈïP齯û“ï˜ÑÃW•xiƒ¬*ø¶ÆÐZÈÐÃçWEx’ÀȬžð«:ø~áCˆ‰¤Œ±= ù&ãýt\‡ÉÆÅɼJ˜¦mf|v¡~ÎÕóY~‡y™@³§‰C°FÎ^åKÚÖâlßÍ`yA`ìU¬µ(TvvÁz®²ÚîêTØøUÇŸ<|¶ìµŽ]c¿+ÖŸxR­‘ØS–­…1II©¿l¼D²Æ_äug‘bÙÓƒ&G ©šÏyŠ´×N3émm!ý«ë‘ñ¦¢/2¿ñ*†¢YŸ¿GQÿtsNä*S%I“ëAždåòwBÈï½k•æÎy´[Þwô€+ ß`R¦ž—BÑaòÒ€Á=(îï"þúB2Jhxð!«e\²'"·PÎnå¶aÞ#Ü-ښ‹)ïÞ&qAe±«² ¨J’Xüž¹y¬Wž½…ê|Þ¦OÖ¯£Fm~øí'ÛxøµâñÝ2Ô¾ÕcQpu¯+Ø ØX þÅÐ,ÙR ~'EÓúŽi74»íÆé$™ˆæââ,Y-3h^ÿgwZœh~º§ù%ZüŠ»üÊä(Z^èÛø¦û-§jYL“Þ •C’òi´ªªõ¯ìBª†Î ÕDv¨ÏJfzA Ÿú%â8ÝßÏ!†»Ô¤PÀlýèr÷äéÝ—å¤r€*swôÇÊ §DäcÄ È&¹ZAÐIƹðâ´yH–‰fw\üNÐá’"éŒd¼‰øÓäôsò‰}CQ`ß6ÔòT=Ùö’Æ·¡ÇBëLJÄiÐî3^f7TÓ»\•–- ë\¿†ö_:èa_îý–ñzÊ¿Íü‡îÁA›ùèºbœrHÚͲ÷Q@+M…ÑÙ³MиÜ1ëë _Æi\Å„^ìŒÇ9ªü>Mñ‹½*Z 9tÉÓD*ZêIs4ŽUC«^Ä‚h­•£ãå‚6ߔșš)hÔ)áæk…Nõ wš¢ü:¹xÒÞ„ £I^1;Oøj£hµÛÌ ÝDßÙ)GÁðŠ‚BYŒnj/EÔDÁØÑ@ùôša˜X8|‰Ý·¦ê•õãàWï^¯´.0ÿ*ã³ÿ™6Xt¥²X¸âˆ?ïÒÁêñ/ İ^–7Àç#ü»Ú/÷Àv¼Ïžºe$¦zpèi¬’4ÇYrò½G²ˆJ™ŽÄHá|úXX×R©¾Šd½riÄÚ‹¯Ö|AZ#&—}ó\¸»~KÀr=†X9ƒí‹‘ééKÿˆÙ½Èⵤh–P„lw9Üûžù!ÇS¹´¢ºgÈT@ñH ¹½ßºWvJ#ï™'\râÈX¦ýqÊ EÜo>†BbotO¿BZ>53Ü»¿ÏWÞÅ]jIŸÏ£dÎx]ü\JÓ+ˆ~ˆ²Ú=µB¯P.“cäÆÄ6î7ì‘зAEâ¹”K“Ix äV•Cn&*ßq$•<ˆ3Š*^çsà!ƒb•¯§fPrÈרÿ)j¸ËGO,ýFÍ6µûôWPËÂã}ìbÔ¡·q–8’º+>×H4Q â[C úZú•{üó4ê{Ci+óM¢VHixÑ4í-ã©4{À0Ã9Í­”Ë^¬Ž¡WóÒqž´è*­ö~z-,I:ß„V’zÇÎ*£UMKB»-Z[ °Ôi¡õ×’OŽËhcÓ’ÝøCm¬¾¼dE[–”3ñþH¼!oô1>ñüzÁnÈ Å½ò]ƒÓ¿àc°Á%mõ«%øëz¢E)dwóš@Ú2oÏs×MHñš]hÎ&‡Ä­ªÐµ3¿rãÇÕ\ˆÝ_{'ðÖMˆÑ{¬¶üÁâøHÍkQ9“ȬCÔóÊËLК¾ïâ3hÒ5a´¼ë­"zñ›ömMj}æË9Б`º®$#]9AŽ{9;¡—"lÜÅŒúÙ5ͳ᛺Ã6'+ Óe.ˆæÂȃw¢Ê¹ð„>£v‰~¼{ÉM½Æ­Ë/°Ç˜Ã¤z¹ð Ÿ%Lݤr §„™K‡£Ý0WF²ñóp,Øh›·äËÁâähé®]¿a9ØçÍà»MX5ZfO]‡uµYyCÂßiÃ-ð›Ý¸7l6“ÙÞ×µ‡¿NwÿDb‘Þ®KŒHR²¯HÕÉ|æÊd=†âå„ç£8'¤f̿ػ†„›E ©p÷ªäµ dÜ­ø¦óa%2’ù™ÐÎ#ËvåQf6²Ÿy?_áp¹HózãJÅ‘»Ç÷ÝWä';-D+¤‰½=µ7ùÙPhæÎaÎ3QTÛœ·]!ÅúzEjæ dlRcâ¾(ýÖí -eÊÎ=óÌiBù¿~‚q/+QñÜëG÷ù¢ÒåÍ axð,÷uóÙ~Të¯b~$1ƒù|ôµjx­Å…2âa=Åð!KmÔ–†__Ôå9V.Àƒú¬Œºé—"Ñ /ˆèÁS4|¼ë¬eéKSþº¥ð MJWœïGÓH.ãQ4³è|®Û‡fk'c" ~3ºkpä'´P™§T˺ŽuÔBd¤bhixwO-KZÖ&†|ôG+•²±¯%´Š¥8x‹)Ãè[òÊ¡Ž¿¯IïùK‚Ïz£!ÿ‡Jƒm”i!ß_lÄ+>¾¢mÓ!øÀ•Jà ‡»½oâ5déÀo /‚÷þ¦ú ‰Í5ì}EA¨ñ®ê±{¤ß5L{ܘôsRÑvüL"íIøœÓêâàÔgÞÎÜH…VK‹à_Ðΰš2¤é^ 6á?§ sAü“ÄZè~ü`Ýã0ôÈߤ£ç=ÝÇN¸ŽžÎà¿ (³gÞ£¢QÿÎþ¦!}ö^„\˜{ºJÈY=凡ñ²™³94¹=ãÔ¾îÍ{C~M€^½+ïG ¥?ëÖcWB} VF“D_> „u…Ñ «b3°1¤¤ÓX2[y˃ç‘è¡ÙÚa2BPÚð CÒ¥#T+_!y>šGü¨EÊ'öä¾mŸ‘Úwѧ6~Ü• '¥áôw‹2þzö¢‚:& B¦ƒ²ââ§e[€tå²í9@]so9¤¼Ž û ò‚¯â&™ØI›„<óôöh1"?5 ŸÚß0¶ ówVAÁgÉIÎI.=;v%ø6Š~!rZV›¿³GÑl%eO·1Ä}þ7ÞY‡oîg;¦Ñ~2b½í™ŸÒ‡„\O…ŽÃö„ügeyJrN;¸¸’Ðt¸5—7¹—P¯$µÔ{ èºØT•ô¿õp;ïV( jýž¼ï?ŽÉÓëÇ¡MÜØ`à ¶cé®RÍCÁÏ5kŠsPÐòêáÌâ+Âù´}ü‡ ¹.Àý£p?}9 Ü¥wZ£¨Ê¥¾ËReAÅrÕÉÔy¨$u飨•߉¸Ü%è šecË) jâ……s>€Úg¾Ż ~z`óÜûSÐ87×SwZnùÅkDÕ@Û ãËÝYiÐ!÷°ë(Ç3è’[u *$‚žËGÍÌx¡o.y]e)%HÞ Ý„!ÛoûÞÓ0½””“$£Ï¼ZÕ‹wÃáøD"ë¸hnÐZ ¹A'ÉoÃϱ€¿‚i*0cS0[¨­sÜ æŠaøÁãêfX ö4ý«Ë{ûÌ}÷ ÃÊ/ݹܰV'øþ8üž0Š š¹›ÕæaÞ°Ý‘&ŸÜº‰¾ª ’uú ‰G¥Yâ-R$“^¼öêê#¤P=~‰êyR½‰º®…»tÇI#Xp·ÈÓcܫȭ8Dí†LN!î›ÌÜÈâédu²ä²UqÚ·;•#§¾|ú[½›ÈMæ«è‘‰|½zÔ©z$Ìÿsõ žJ‰1¡Á-ÛÍÖ4”µí½kpÚË HéÑÄéNnÚár4½ä|_áÒ(š‰#£$7 šuŸ)yæÑ‹æ72CD¶ 3£ÏÑp´ˆñh÷Ì[DK11µÌ‚ïŒ >ÖüéZ±w†÷½D+?­YqF;¤°3’뉃ZâùÛÏ¡âû®AÃÀ (¡Ty7Âò__ÒçäN¼à¹©'9ŸnÝy~²O„Qo+t|&•éþBMH½Y3¨%` ?9¬ýàúž9Û´,¤Ù>éõeöç¤"°ú•ôT5|Ö{ÚáË5µ¯1óÍв¨~tÉî´ÅQ¼vЧ„ò£Ú C~Ðyõ†Æîè&egßìN…îxq5‚.»ÆÞ­œK…΃Ú:öAû.*nçÎtheóo?b$´SǤ^~†F­ƒW¯hJìŒSŸ¯8˜ºS÷®3í›"ä¸ëYç“¡ùòcÅm§Vh–JÒ=A¸?DGà¶-´vMaÀBŽûõ.'¡5 :ι;] ….QÙy÷0èQ>çP-©}±{­Ýldaàê^oÕJFqÈF2vg5ïú ß{EÝd—ia|_éXê‘4˜l:=Ôtq¦Ë.뱆9vOíÔ›aÁ©ÊÐ:E–,M˜¬aÅ9€ä°ÀZÊnòFÂsm(½*Þ+1 [¤¿L›–&‘ˆŠ7sù áÿe´ià–X’Éês—Erê=:1KaH1²çÜŒ Rõ„Ñ \Á]Ä&ó–}LHç'ZØ®ð”ÃòðS#ãhÝ—ü™·È\ªÒ·k Y?Z$d]QCö\ÿät12䌥"ÑWëÇ=Arßoh #·ùnëßÈ÷.±§÷C 0îŽÝdEÁ†s (|¦*¥V EOé&;éE1/%ùÎüK(‘:< Ý‚R[EA>ïPæÚØÕ7ÙŽ(ÇŸž:_á‹òÙÇÞ‘:¡‚Ã…{Õñm#©Ý)TjÜO)Lƒè©kY®%)õ÷N&÷ ÄteæYØ„ô'ó_ùBÚ@„Õ/¯2Èî–#¾a| òô‘/ƒ‚ðÚlí©s„zöST¾EëϤP[õ©÷¶á¨"fðpžÆ™˜Ølö¿ùÓ⊹„ûʼþ*ÿ×çŒMd…>^«„ŽQÂQè*Fáú+©e» Èý²äV! ”hr3ÞØ„2‹ØÜÖú¨Nk÷ø¤êàÓO¨s¢ýq´*7Ë2Úa+¨¡Àï%¤Lðy㦢ó&ÔëîvJi’…/Í¡Íô1М~y;ðñnh]:±Ûþ|´Wdß#^†ÎÌ“Žó¶RÐ=Lzì ™ô¤}“ ƒ¯í‹¶½[O`ð…“Û›c0œ«Nƒ3F…Gæ ý6á{J®Â&U3Rðù+b6ï¤úªá§Ù•©#ç:å¹ëÈ fo%_Ý› ó)5u“Žn°(óçÇÒQXªR¤¨3„•+Ú7>U‡5c{ÞºàøíÄ`¿ >Þ7ŒJ7„mÍ^÷‹§è‘èéa÷"‰àÊÕ%…H:´"C䣀äƒ=WüJäÑ­ûJ¤ÉLÔžäG:÷‰§¥W’‘AးF 2NpY%qê!ó0yae!²ñ…Uÿ8Ï„OÒï?ëhÄ=rQ{›¬ÖW^pƒ·«ù»#ÿä-y¢`‡²…&ŠÐOœÉƽ~zl ãŸQBÜÅ>E$ ÷‘öÛAYÆüÒéÖ(Ïx¸x¸GN–ñì¹—k„òT»QE–t¶(nUß?HmDp]¼ãþ³ Õ¿zö·@ÍŠÛ9æ¨uïÆ9#ê¸æ<âÏÑD=G¦+IßüÑ€Oô7ÄC<ÒñA?­û]¿~¯­-Mvщ¼ESÌÂ>²H4ÝNz¼;ü 𥑇ÞWkFs³ u9ý4Ÿ‘_º}]-nµßýêV‚–¤-G#ÒÏ¡å]O2º&´\™ÂɃªhuò^ôWª$ç0›:çŸé%˜sÃS¡âì­›g8·¡xÏøxs^Èsozzwž r•øX¤\x!‡\ó/³‡*dÅÙm úÑBÆ›¸ãýÀ)¤ÇøÎzåÁâ.A;ò‡ïZ–L´xëÒÛƒ©¬ü‹×ˆŒ`–æºÀ¦ù-˜ª{¤ó{‰öëÙoÀò¤Ó·Ñ¥w°& ëë ¿C6d‡Íý&S Ô§á/}wב$¦ùðÁsßA$‰ãHÖ ©C2ûµƒ)$ŽH± Ó&øRI¯ÚMÔ#Ãù\£¤TõgèàFú†ØÝüä'‘1èäy÷d>~Tbò·>²š\Ô~çì:râ{{JS:c;êEîa¾õÞÒ' yÈîó¸Ž Ÿ¸ÑE%cYäï¨ûˆa (h¾¾¼°g…ø.qæõ¡Èï'sÝVѸ÷ïœÁr‚ŽŽŽ'4›£Ô•Í=î (=ã;sve{‡¥J}Byg!ï¹e!T ’×vÿƒŠ?·ÚH¡Ò¥È»Jí¨ò:}Z3Õ8ýÒ3KŠU›Ú#ÅQ=½­ÒàJjRl{öL&ãa¿‡†ã²7Q[•¨Þ—¡.ozhZÎCÔ纟<è‡GlÜýmfÑp¹Á2LT sÏ„4_GSùYb}Y4#+`¤~€fÍ®ŒëWÐüq·ÈíWh¡¹¹p|-~y·=žƒ–ªÄºF£•™¨îk´J?uG¡çZËtkfœåDë„¿M±ÃhÃv·íÍ©khs+ö‚ M üµ}wùHT0”ºXÞó| ùÆŸ‡«9CŽ‚¹³ÝÔÈhˆgJöÌ„ts5ÓÔÈ$H)¿—õüà$NÙ+®ŠA‚µe”p %ÄQÞúþ5ŠÛ´› ì« Êþù‘ǽ4#GùÝÒ°>¨Ñ=yóë¤Q Ùx%Ý„l}ŠˆG#ÿõa†|,!¿±FE7œ˜»’N¾{áðG¹Ã•ý|÷á|ô¹¡ƒö;uÍè¢Ô-(x¸¡@y‘ $Rn­Ü!Ü_¾± _ùçãO}Üùøº$ó´0Ÿü•lcH¨Æg¯¨XB1™[¼ßt”|åò¿Xeýû¤†ƒ¡â²Ñ FXÁ'7·“AO¢ ²<ýöGZ¨>ëË1ŸO^Íýqêb°qê|a’K´®†¦ag›Ž6Ðê1qP2Úµ×C§­ Sºñ¨åš tG™IAo|f¥¸â]øÊ}È_y¾uT&{³‡á#拏Ea$Á4|—¯¬øpüühìbËÚão…ú,lÂd™ÆLÖÏ÷0-ìÇb¡¿ú›IT9SaÞš‚t9ƒ:zMÔ’f1Õçˆ:ôßfùo…¡îßg»ö†m þ§å•ó|†xäÚRQÿ©4â–1ÞŒ¢@ã¬p‹·Ÿ¼Ð”ëÏœÏ ‚ßìd¡Z¤uG³{qNWwU¡¹¸ó‚šíš×Xº¾·ç@ %9]Þ´ºvûþÍchyÌ,ɰO-;þþb‰B+õJ«à¿H:Q±-F)OðMæ¦Â• ¼§_ö¯ù0ɆK:²ŠÂÇÁ÷?ýc÷BŽ"Í·‡ÔPß!Ö¦‡ÌIYHRæ3¢N'èo¨ß܇à+å8MïCœó;Oñ)nH‘?YoÜàõsRþ‡gõ† Ô\£ ÿ@6 &?í臠ùÆ…‚ Þ8hm½âé¦ í|‚) ™Ðq›C½§Š:gUlölµ@W ùÉê s™“öîñ8èxþÞò¹ ´UJºe ­‚F62ò^;óHÊ4h_CcŒÛÝŠeÐø"ö®ÎÍuh,\“OyCN8þYz4™ M¼lÅnД/–4BÆÍ_úŸ,•†VI±aЦ¶œ²ÿ®%´¿:£ÏþH:ÙÕ<¯ÖÏ@W÷üëã[ÂÐ3ÇióÙqú}Ålx=–áÛ¥˜¢›=!0|²ç±Ù ŒšWFç*Ã7e; ¶w0ÞšnŸàgÜ„çnq-˜Ùº½m(î ó'nk’¢CöCØHXv×,|˜$ «/e¼¥ä`}Ò!v€bþœÊ¾ïËû ¶é/襛ßC¢Ë›ŸFä*‘xóÎM‘ÕHšÚ!Ã(Šäþ‘ª•?“Òߺ ~‰©?>öºY¹ išš›\¤æO½Þ‰Œû7:§™™Ø÷Ög–ÈòóÉ÷G–kÈÖó5!:à rÙl¬Í?D®7µ2y{û [ ï­äÍ]¤y¾ü/ü>¿oBÁ]•}Wß‘¢PáMås†(Ú­¨wò,î H8Åì÷ Åãûç=ºQræýŠ]6JŸâ¶Jâ @Ù§Z^g_“ <û¤í€Ÿ îÏ]p zù )t&o3¡' ÑS«+¨¢¶5”µgUsíµß7¤"è•ü¸!‰ê(šX—?¡FU¸+WŽV÷ÿ°‹ZË*ºóŒl¨Óâ¥&=ƒz­ 6úßVРÚ;ñÙþÝh˜x¿*Þë;»½ýަ4ԎÕhÚ7WGôàšEߨ'‡æÇzƒ]¼‹L$«âêТ(‘Æ…Ü -mKéË«Ñr¦ÆKS“­®=‰ ¸‹V«<¢Ün¢µ/O^¸Z÷‡šÐ@ôÉf–º[-T”ÙÆPÜx+õ}¾äe_ïºi£ Ùç¬vå ~ôÕÉËuGÙ!íÌï¶ÅL‚o4ÙÀ®nH‡½iùàC½L¼qÄžêPÞz½ QÑ"ßõ6¿Â{÷þ¨Ñs|œÁJ“âï ûj~TEa;Ò~eÈ*ØÿzÂr'Â+/×NC>Ye…þ¡^ƒë;ª£ÿí'P`7s‰¬ ¨³.?½¸³ÜëJš}á>Œ¥Z@~ÅooßéÏ„zöôLŸ…¼2ñ9ž×!ïÙáûÏ ŸÛD:n>˜çÄc¦ áðsQÈòÑP|ê©-Ó‘:(uôW=; åÖ¾Ÿ r®BE:߃=SPÉJ…GŸVCUÝõSW»¥¡¦î"yîÔn]T”k†«ö “ï& ‰É:‹Û9 Z9ï>9ùÚZeÏ5wæAGšÒÑÂ÷ «ðr7­™ôå$ðw_€~ç‡9¯æwx&ÊšÖ0Tós4å0ŒèæÊ¥0õÃha›aojüÐ÷_ÿáHãôó¬7Ã`R"òû€6˜ OàßW¿TJì‰w%À<‘ÇÁÂuVÚ¯éo`ñ÷Ì5§ÅXŽ7w§{«Ç?ïÒ:ëëGŸ·²nGÁÆ;2õRÖC°% =°ý`þnD1&/ÜEâÇ¥—AI56Þ·?Dr‘Ú\­RÅ! †h©ý$KßÜWÆ]ëÏÖÉ„™qw®‡ÇQ¶*d˜‘'‰B¦Oz~÷‡Æ‘¥÷Ák*ß|dçü ë7u9ƒÆd·D ·ÃtgäKl<>ö8 Šö{Úà& õß‹ýó¤E%äs³ûP,Ct2' %Ýõ]*RˆPÚ£¶eͬå„È­xØp¿õèý¾¾¨øÁ¯ñÀaTZŸ>#h¿ŠôÔ¸SðœŽËÊA}T?4•¥d\üOàáÞ:­ÑP;Ê‚_{uc™£ãõΣ¾SåBq=áÒ¢˜ÝDÊ ®½çýÐØ–7–Å×MŸh™J iÒíû]÷ߢ™ýaeçþB4'VÑ=»Žæ‘W‡*ÔÖÑBîÍpv»9Zó¼?¯gŠ–ª Æ„GGËlÖõ?÷ЊŸ˜Öx‘$}“.–wª¶¼íùŸ}"ø«bwù‹Õÿ¥q‰©Wæ¿uAÖ ÿõ7ž$,CVpËö÷wÈ”ü9ìÎ}R“¿ –w†D¦0÷Ý{ÄŠ³±O b¹u·r\ŸB2³J}É?ÎI¹Ç¤]À®¨¡åxA?¹êKÊ_~¶–‡¦Rª±^5h=zàärãhKíe¤ªÐ%䦳% äÐyºáZÊÓй9çS•H¨37­_í*> ‡%Øž¬qC[4UÛSqh“}-"Í{dX3Þïp(Æ/Pîp½ÜY7êeFÈuZÀòêe!ß9xsþ…&¢ø‚ÍQwÂ}*2 <Ð’zâ[I ´þˆým—íÒ§‹ÝH/BGH¥ôÆX;t‰Êìg€V&Û+Ç{ ïAbMH± XfçÅeÀе둊?·a$”¡ôŠŠ|xõÙ®[,0Ö‘ÀúLD&_±Ÿû`~¦çýûß‚¹’ü»í°0äôíàŒ&,Íò?—>–«t¡Õ¦=K°®^Êqà*l„±òÚ)ØÀ=u #«/ü-Š/úpî[Ž’:®#Év†`1ß<’õ•ÖYFŠoùù Û—š>U-ä@îzáÌû„þ$îö‰4h ÙF†°œÓnFÈÛ+“„,÷Rï^Õ¶D6WÑ=JRÈ¡ýwÍÄàr 3±Ó̾@nöõ ¾läU»üŽ ùíÔzÖ+’P :¸tƒ—…Nuo—ìG1ï")ÜKüFö¤Š Úl$ÑÙ¡äéÛº%¸¯'¿&£ƒeõCŽ ‘k¡\CÚz†TÜ2«®­*)bz·[Ýñ@ùÕ;S=s¨$ërkN]h„D§+"^? ¹Œ&ù3Ä”‰?á{f ï×7Ö/ªŒC¤``rØ[BŽ›È;d­ä´3rÒéå<¤œtµ¡YþoýNòþ<ÈUâ>FÅäyjº’ï/Þ{Y8àß~p;óœ>”‚‹W)'vֽޛ޼"äÌ/œU1oæ”î¿uBÁé!.£¸÷ú'øèë¤û)䉨y¾Ôy¿ÉOªtBÁ#oç%(œ¢Ï¡m…â^ýg•¡ô³óçEy€òïIf6ãg9îù”7T‰?h//†™sÔÖì¡Ö6æ«õ;¨}ÙõÇ A·z4Îf“Ðb'^üåˆ8´Ù»è/—±A‡dÌ1^Åt‚.¥WÌBC^0ÇõЗÞ1¼>¥ Æiý¯˜Ãàòó³íÝa¸Ç\¨¿FÕ‡úh~ÏÀ÷ÏÊ_ÙÝaì^‰YÌ‚;L¼øÓ¯!J?ލüƒ™WÉYŸ·b`Ίv™+Ѹ¢£ZzÃâs½}•°¼¯¸¬|,V&oûYVÃZ¿mp Yl0Tü¢—›¡ö¬5ìuð÷Ljïp®k>9yû+’,nÙ*‡Ë#Y=Þ"³ŠUZY:‘jê× ¯öø ¦$÷Þ¬Eº~&d8_Ì”)ù™ä~ŽMg#‹Â_R®@d;.Há}µ9 )?>ßý÷\¦KmBÞÏÂNÌ À¾(ï3y¶(„­äÚc(r[Œ4Ïq÷.RÈd¼NF‰÷ÄÜû:šq_ØÒÆ!Cm”M(>påÛ®’m¢"óɨk:E¨tô¸@·â&ª|N à²ãBµðù£…£OMÖH|Eœï.†Màá{æ«y®s¨í(_ÀO/‡º:áÊ‚[£¨O:K-ÖŽ¥OÞí¿©††Î‘cæjÛh´¸Œ²h üññå4½ý“¨`³ ÍdGi­“2Ьo…ùu 4¿þÒj„¯-h‰Byý¹ÑâEu…-«&Zr°-5,ìAËPI]ǽhùKægO ñ5%ÞåP¹ãcýÌJ¾wMü¯¿^ÿFr«µ^‡Rk@¶Há:ÖCfë‹ÛË>t:ž·ã!Ÿ”ê…bBîECôÔ .ý¨Nˆn_ VûI ‰[5rÂõÄÿ8'eÃÙ%áuo¡:Füå/¡^üy÷­&KB}‰f¶é„–áàÈåã”Ðvè¯óÇ!h÷ÏWŠ'ƒŽ>‡ªÂ‹Ðéüz¾¡:IÂ…^° Bû|n¯àO6hóÉ)ø%´­ÒÌÌìMÐl½ÛdÊüá÷F<¡½cé2ÏKµvÖyÏjSñ×f_Å<øR¥êua ë8*ª¡Éíå_Ÿh!j!ö’Z…Öà#1åòì„|xr_‰O4tPéÎúAçÕ+Ýš·¡[u—à©"è W ¦Š„¯ÊG.¶Â ¸º£«¬0 7ëS4= £²»F‚áGWé­®]0¤ë7å`êû“¼ék˜-¸ä­)õÿ‘u–aY­O¸§¤Kº”¤C‰D:¤[ÅD,DDQÄ QZî–n’”’RéÏË>ÿí¾®s>͇w]Ïz?¬Y÷üÖ3Ï=0wj—¬¼ü8,¸l¹t°€¥;…¶"w²`%”7øÉ¬•]Ë•Õk…MºwRW»oÂÖCÓ¹ ÷x$J1âªx‚$&Ø*$ LB€:4V)Øs€ª)ÏÕÅ$‘"õüõ©†”;HÛÅ5)biˆ â–s“÷I«šßW¿YxêøN(¤#ë†tì‹ñQÜÕ·ð!V 9’´‹0"WtïLò4¨¨™kú!?×ò¤¥u x[ÅøD²ánÙÏŒ'pOÉéR Ïy~µë©™Q!оýB–܇{{KzªpŸ‘¹Bö½t”&î=4à€2ÞWX²ÞþB9º+ »~¡|*C¿YL%*žú£iw÷߉¼¬Ú¤Ê“bõ·· šcîJ))ÄÑá϶SºxPµÔ>J×5>Ŭ‹Þ\DMÇÄf ŸQ[g0ÉV( uÕêÒ(ü¿¢¾D™`ò¤Ò¯E7pO Qu7ïé¥4vñ%ÇóÝhâï °ÐRŒ¦:¡§}ÖÉÐŒ¨ßúí 4KŠp’tAsK/o“04ÿY]ñýâN´ðU?-)Æû-Æ#ÑòÎÏ ?WDË•Ïæâ­N¦X^Ø×…VŸeιÂza§Ì­/-.j¼Ø­C™|a–zÁ}Öggãü|RŒ/+’)CÒ·%î°â΄ì,‡¸ð±òe}xÿq,5¤+b8n ··©‰{M¼Ø ¼G9ó03D¢=o-‘±;n°êβAâÃG8UÒ -:ðL¾¯dÜ}·~”²ÜŠš Ÿ”BvísÿôÛ¿ó¼sœ#ìÏgîÞ^åp|Kà06ÙÒBa‚þÉÇÎCö¬û½nK‚ŽÉ•õJæBÖQ…{ÏmwBfÔæósÕW!KR,-l7dµ qtå³@ŽÝé.õe‚^úl˜7vA¾ù7ëú½ PQ¿Aü_`~í©¿¥%¥ÉByÐÇa©]¨|é¸gټ݇FïjúYt$$ ÞãÀ© M· µ}æÞ®?E8ã®A["í1¿Ž^èx6j4`ªÙy® ì&нÊGg3Ò _ƒw_Iˆ3‚Ýê3³9Ò0tþî•ð˜l®þqFMGF4¦Šôs;atåÞúÃï`‚Ô¦•²R&­Sòy`z%”*øç[ø‘ðð¼œQ!ü*–”¯ø3óÒïFâ¹§`¡tDœ¥¨–\eVJ5xaÅšKÏ:Öüýå{nJÁÆŸ€ÃÒ`«-/Šíš ­”“—ž…š—Yå4Ýÿú‹4S$_ÿ³G ZªÅfË“< m'Ei ´žÉªË½íßIJyfe¡ý~k*ÿ•ah{‹¡Ù_þú´È­ðP{BÓ“Yöâ¥í~’ô²Þ@CÞR}ÿ4PÙ2üëkRÏ3ºÙ¹ðêŸGvÉGòü½î_Ÿ“×ûwý¿¾&ÿú¬œ ³m9]Ob®X.B/{Ó5 ø}}Tœá0D¼¸|ö: Wþ¢ˆÒ!ƒ‘®öQ¶¹)÷¹v¶3V&;_>Wù¨³™û®Ä9]‚_ãµû¼ƒ`~¡Ïðz-¡.\›˜Ý’ºËs¾DÓ¦Œ°ú«×l§ƒlЩÆt¾¹¿¶D}òˆîQ™C0r‰n dù!õ`ç§éä+:±tª¯ ùIùùP0ëуÓ;á«dò·þ¹(ÌÛ?—aŒ¢\ft‰†Çq¯1û‹Ý­(Qþã}袔›¾¹\A0ÊH+ÎÇì“GÙÙèc\Ì(oí3üÁi }"úFq¿ð/%’8OT¾óôÑUö¨º¤ÄI-ƒxÖ ÷×T2ª¯YYŒ0Í¡ÆEb¹Éƒ<¨É÷-ì ji›ˆæ@E¥#§»£ÞШC^å%4¨Èd¼,€Fž¿WõHfј7;qëhšØ¾œ™õASÎ_¡÷òhÚ:X” ­†f·g”¯j¢¹ Tzà²*šÈêX”K¢…Þ2ñhÑÌ´™9ý-õc~\u‹&pûìX·*Z t¦¹Æ Õ=šk,O+`Mîy•ÊÄSÈ^]jX|4éâ!Òq©ó*ùFú+A!£¿þ#ñM™ø!>¬x²‘ô7Ï¢Ý:÷ŸºË ޶G¤òµáÍã©bªûW!RµV2íм3Ðר§¡ò7?ÿ]ÿßûe&XV¶üëC”}Çx"¸)üïÿú×Oåoü×·è×ýë‡òï:eWz7¿üÍóÿoýÿ­û¯Ñ¿>(ÿ¾oþúüï=ô¯ÏI=ù¥‰t•¿¾&uñ{ WözAã{¡^d€çn2õ'ÝÐ&êylÂÚÿ„߯6ÕƒNÆB«yø×稷6”:ï¼ô›Î\¡|-ƒ+ƒÂ{¿èÃðá͹Ë/NþçkrÁ¢v.é+Œ_Ϊn9y¾³8²©À´Uà ³áP˜Ý¢2˜_†_'òkrE_À\ýŸ0½tFX° ~u.dá¿|m ØÍP««š’©ñ°áœh¦ò¶ ê¬¡2%/‰‘’X’ÔR¾»‹d R·IÔ¨‘¼‹íÕº3î(t™“s¶Gªú—OÅ¥‘Fø2k,g:ÒMD7°¸h##³Dj<©!2ÍÎuAx*²Lq¤Ÿ >ƒ»˜ ‹+m‘#4¨PJ•¹c6CwD"?‹×“€wL(HíTÝûÌ÷3E—-¡ðµÊ¢ô§PŒÂå¥Ð9ï7<\{Ð ¥n»ÿ˜þ€2U¡ü×ì%Qn–OwÙè7* k‡ªÍPãþ¹ò[×Q刦Î!9„wZÓG¥„ð £Ò­¤%Ôè~du{Ý5ãýø¢[QûaÈ^§:Ô5’•µA}2±[ÁÏ Ñ •îF\Ï2=½Q8‰‡»MƒùòŸ¢‰XÑê­Y)4àËܯ†¦÷Z²œBÐL¬WCpì5š•ÖþXšý„懙IÄSEмµô(¡…¡UtÏe´(*ÚcÑ7 NÍñz]&‚²ƒûk=º &=Œ—Ë ûøÎJ•Æ«aÐá&}o»o9}y³ŸÀm'É\Ÿ8A²aÂó™¶ÿÌ›Íý±gž}.Ÿ¥…(⫪^¯ÿÆ8ú²~}¥ØêÆ›ö-Ptä\qØ./¨H"½ïVnտϯ.zõ‘XšWC“‰ ùÞ¼ŸÐbwg8 Zƒ¯¼|Ú òÙâ^ÇC»6Áµ½*n+8êVz Ú˜Gîé_[øç;¢Ÿç~h~ŸxúÈsrhœûí2o#AЫU CåÓÐ`_Mœy–Àm>tP¯bÞr&?ç?}{¯[#@VòçMÝ}M×vx&A‹V4˨ïÐê(tÿâ:ɶ³–÷`$´—}Þ•&ÿ¾ÛD6-Ï@×Ù‹©1Ü|ÐÓÆQÚ!}ÞE›Ï>jÀ`è2‘ý‹0|3ËjŠÁFüS‹<ß„qFc¥ m˜T§]|ùf&ÇmHûmá×Ù¢~Ë÷Ö0âî¥c4`ÑNÜæmw%,zUïïÔƒUCwÖüáuX¿ðëGd‘l–i)ÏvjßK:¤1:¿‘ØDçÓMc$Z9]—Û„äb¤¼D´ƒ¸Ã<Ú1_«©šj((y§‘&²ŒHÏv éóµ«E}FƇÖï5%Ù\è²Ý:² ¸\a# F¶9º™?«_‘½‘zæ[×2rÖGvæqk#÷1kV-ä» yØ¡ o´…î Eú(ø€‰Â5*÷ˆžK8Ýq …f¬ì/0£Èhü„ø îåPíbÛ[ˆ<(Ö…QJãäÓ`9”áRÉÎ:Ö…²‰rdå‰â(¯K%{þ¦9*l\eœ¼Y‚ûûNßlHAå‹»h™ÚQµâ°ýôUD )ùã¶æ¨¾À´)h†çvFÎkG &ïs:wÔÚØíæ©:?)Ï¥Tz¢^w™¬Iägq <F#¥+ó4xN'w¢MŽ-ù(yp¡©pÂˈ,v48W¯Ž¢Yôåüg—«ÑÜÂ'#›_-ˆoO³Ô E\Êc9UM´ÔMmT¿s-G¿š´jA+ï±ÜYÑhÍÄggãÖïMšgÛaUN0âòN7·¥°ŠBºEÕý‹ßd •îR_úŸ&HÒ‰5” ßî'ÉN|H¨3oäU˜Ãû%/¦Ô[M«8*[^Q-R·)5!üÆîƒW:BX{IïQ:xë±½ï Ä|IÉ8fš·=ç»ÄT™ Rýi¥«; ýNûKN…ëé(´ðäÝÈ*0éÔ6‡léåýÁ¢ÃýáÍÄÒédȹ»'(š¨ÿ¿H–Ÿé»¼Là6Ùd^È:ð]SàÐdÚôÑÓ ¯þ/ Ÿz!c´ØäÞý|È<ÉzC„ ƒ8­Ù×~þ`™¹Š‘S¹DžÛsx\´>B¡+ã}‘!M(Éôuuꬲ$ÆÕ¼ùY¨(Œ«Ú5± Ÿ›ôj¿+vCõà*Yçq¨;qŸNMhÍ)LÅZƒ Eµ‘lWñ9h}ùÔ ÒÚ³þúûÏ—B‹¾Œ )Ð5"Zg? ½÷×Í•¡o¨ä}:? Þ^7°Ùb€aV_cÞ…Tøtï_ÑRÑ\NŒ0®üºw9°¾ß¡ž\l¥iF„‡uë0›•T]ÙðKýzýCC^˜ËÕ—½' Z›t…‹`qy®çç ,w=ÓÎ2nƒÕ5âÕ'éaãdë³à"OØâí6 ØE‰DW‹‡fO"‰„ÇȘI’ÒûãÌä‰9ÚƒòI¸ãõŠOVšReRøo"Í®+žqa~H×SLøZ2RÌ×ô:Õ#S×·…>%d©qz*Јlãk×>êÑ“µgÆ—gûÄ;-Ž!äºvV' †ƒìÝÅtp÷êJ6þã(¬5{h×µ&m™ô9äõÅcõ^¼åí@)åžû®Er(=X¸.·å*•}l/¢Âo¡…”¸ÿ”< [7ª(p?ZçˆB¸)òÅñÝTÿ2ÃEŽŸoи/$¡æ+¥ŒÄ+è}K@Xûá2êjh«š@}â÷A§eùÑ SºÄS5ìÙ ÆÃËç4-NžF“C•s vqhJ‘'{âsšVÌ-µñ>B³3GÊÐ\2øÝí¡hÞ7}@MÑ"°ÞÖ\«-¥…e´vСe—\¦§°/lþ)W_„Ò—O¼·‚ _ww[Ôd™Þ¸·¢úþŸsõ±º–;»¾{R^Rï4 ÌÝþ.±´ÞLà³ÙÉäjð.átgÚwBýXÿê Ç™¿ñƒ*Íÿ8’öïNm˜Aá«£OžCOƒyça¨>í˜|D1êÖÃ'¥lÍ 14뉕q4÷¦…óŽC+m¿_e¡> ¼æïÙm‰»J[ÎjB›õûµ´cÐz?Ðc€å ¡ŽN^Z„¦Ç©Œ„矶V(?éŸ}¶3ãû þ÷ëóTA£N‹¦‘>@е1}Ö[Ùÿé[ö\íùãÛsQÍžK4…gt½´†kªJ6Ðê:s¥nSÚ‚_ô-GG@{qû—Ÿ´à‹ZòXã=Uè©ÂÖoúÐóà ÍŽsg¡ïÊÀ½ñ0ÈSÅ{"f†å½âäzÒ`D¢Fz¿"-ŒÅŠì/? ßî+¦Üz3|‘jÇÍ´àgëiÇ0m˜k–~¤aÌ ùÎèÇKqîïÚ߆•xúžó§a­ö½²Ó l ]Ú×[ÍÂâ5*‰H´%j³ïÄ$i¤±~âˆdŸƒ<(Þ!ň-eñE¤2&¶$›'Ôƒt߯3‡žDzÒ}^.dÈ([Ù-ág‚L?Nño®Œ#K6yÏù›Èæß8E¼ìgœ ÈLŽ#ç¿O&w¨‘ûÃÇ›ðùØ×ãìÃK‘Ìæ¯ ¹}Káî^1ߣˆByý´å](’ò§$Å5ņZè(Þ>{ -Éêµh¡e¹aD-ZÝbÎa&BkÕ-;óçhýÛo€èZ(Ú”‡ˆV³RŠá=Ÿ­å»ÖÕ}æ+|j?áÀ)‹-ŽþÈÎòÉC¶â]bf˜%äÿùî/78±óù!ú¤s.3fN˜Ô„(ñ{µ)¤ n›ÎÝsÂv½ˆ—“N„ˆJWñÛîæsœqÏ㊙Èÿ{G1¡.u`¨_~ é27^‘VhB&ß“§í4<å´rôÐHd „ßpG²-4H–•¯CŽ(ÅKÆ cvXϹۓ «šÕ%åyd~­÷ç̱ƒLJª8•' C^·%Ü«2žI½i-¼=/¼¡`íŸ}w¥Ýyµ,Tlà 9©—]˜i!ïA;½0·<ü|/›Ã°%ðeh{1”·5™0'ƒŠ³QJ qðùá#¡ïîP©ü-¨Ìê8'îƒF¢ð›×O“A u9ééí9Åi,½Ð~ñäσ¹Oà‹ãì)^.èòŸ°Ùú]=K^“3¹„ºó"+­F; Ò°º wÂPir“Ù&|³tSÞêM‚ÑÔžZ{´aœüÆî6ø®KìvòÁLÕÌÕdÚÃì%½l™Âkð‹oÓÉËq0÷Fvë˜,(ÍÌçÂâÂÆçáØ(Xþª¨óè;AßJÊÝY<`Ãj>¢­á÷Ö”JÑâ$º²iq§×IH§¶Ê¶d‘4Ýši3RÉ}¬—*~jàw¥y=¤ ÷ps¨ëDJ÷¯Iœ¦HWßkvÏgÖs¿Ñ4é#SYÃ-®bdùÐú(7GÙòUä÷&V"‡%ýÛOÈ-З3'!ˆ|¯ÖRî|FÈMúI_*»ë*œ/b ³°ÖÜ<º„¢oN^÷iÞî3Ñî½²i†’ë§Â•¢Œ·°­÷΃(^+Aqº:H{•….â~åÍ;ö9¨B»Øù‰HÁ’ªÄe× TŸâÜó,ˆ5ÒÏ–Ÿ›ù‚šc ‡æPÛ%yÂ9CuU\Û_C½?!*-wÐ ÏœT7RÎÑ‹«I¡1‹ïæ}j%49Z?U˦Rfi]FÓ?ÌŠ*q›hÖ8òjWûš‡Ûж3¢Å… §f/´TËw;ê‹VÌK¥¿’ÑêW¢æø­H@Í4%]ã=—w>‚Üùå’_{!ScÚ(=©>¹‡L°oÁÇÛf‡I Ü–Î$v‹Š‡¬ñjµàÃ*ŽH™¾‡˜YʼnÖGåðÖô…®©ZØßøÞɺ±„í8¤ S„u@³Ææ}•$(rþå”TÕŸZù•Z u–MEòµ aD™ëö˜&4 l"É´<Ö÷…Ö‹î6 ÐFGW%{Z‹åóØ;AËñ3®Ÿr¡y^Û±mžš3ˆKBC&¯€-8×îtÜzºLàÃs-wOœ€z›ŠLþõDŸ53ÿÓ·š°„µhd:”bÑõšJ)æm¤2¡ÅiñOLcÍöþÞÑ-G>ót»|* Ú †í½÷Íà bñŽ`èb™¯#Ž÷€Í4+·­øZ&Rz‹W¢7÷‡Ó¬ÂÐ ®x¿£€o]VºÝ|0¦¸Õõ£õ|g&¹çè¤Ó–6‚…Õ2ð£ÝˆÙ`ræT{S…ŸÃgú¾!ñ£°DâbÞ>”+¤‰¶°&b{W–˜6î´;̇-róRVH”L¹5p•IÜô­D,ì$ëÌôG¤¸ÊXþ,)›•c‰?»ãNú¹þîÏHw­´>!C·ìN7dºÕÖ1ÔŠ,úoöt\D6öà Ò¸ëwk‚PMrî<ó`b² ¹³6EŸBÞªj"ë›}+\4_‰DAEöÍàº+¸»~ô×ÜÕ% l¶ë jœâ÷$3 GM®é®B¨µÖüH8uFý1¼õj¼:7n A|ŽL_³ ¹$Mº,£±ˆAGÄy!49—UïAЦPñ°c͘¼³Ïy‹fcÃÖNMhžÇÍtu-ÂÊ®¼ßhyŠ–ì’éM´R™t¶N/DkCÖÇߤÑzsŽ!Èå<Ú|?ïõm{nGY%Á²-É×ã>D}¡f€W >™nºŽY+@rÏ—°ÙFeˆ×*Ž:àqVö7êfàý­áº”Í»ðîçÆ®Ñ{,Ýb;$@ß‘´•{ÞèBXlÎÎMÛj.B—L"(µÄ¦è¨!zÊ-¤Ô%â™üâ¿8ÂGåOag… àÓàîW³¦tѽ!ÍêNYl£oÊBV°FoPÿEÈ&þγ CàËïÑ·¿Hý¥WyýDôpUAmYp{^j%ËÞ.ÈÈJk‘U‘€ôÙŒú‹‡j C–ÎeÏs‚Î9ºnÖCfrñ-É#*Ûû}9T#' X¼(* ¹[±)ž&¼ö÷iL‡âZñÃC,YP&•À’Á *r^Ölá³aÛíIu&¨>æ]jçtj;´Òj¹›¡á£l\Ͳ4rÞ,Ǿí»ÌrFÚ«¶fäá cÀuË}è~?C»B¨;/ôÜuà†¯kbvƒã 0ðR:$Ë8†b©½ÓõàÿqÊ‹ã0Ò1f줻ÑnâŽÇ÷ŽÒZø3Tq7µ7j­dºrþnFÁOïÝ[F½RëÇ¢4ˆÌUýúS.úh§¢ñ^Q¥6g#4¹Ì(Ë꾂¦ú ½ä£åh&º#c«¡Í)9…ÂΘ¢ùô…õˆQ´h?$ó‘æ5Z––PaG«¬»0¢­3ü¯ýøä€6…#UeFÍhÛ¡7fâýí~óô^}–Îx+•“{A¶jÞHg<Éö<`G§9Trßk§Ü/ˆËô¨¯SßT™­FÏÅBì™7WD9ø õ£JØ-%ˆvë¿òZÑ’ÀiY³$«šç;§þ¨ ^G³#]ÃnÈ!jö¡œp]7Åœ¯ ĵxG)/ÉöXìØö·|Ý9нÍYMÖýãÛýc%²LŠ)bê£ý+ã,ý­KžG›¿1«š­Ý¯ŒuÛ§y­É&–ÀÏÈhßšCÆ)ë5Ñq^Hã­R¥)!è\æ¥Ssï}vµÈTâ|,ô¢2,S ÖkòÚ¯¹®†”!?ÓðåÊ9(6÷-z“‘¥ß¿k0Ë@ùúu‹kû¨á3 [ÿde*Tó”¾ÝKÿjƒг„ûšvö{«Ðld³Cù‘2´ªÎ‰zf}„¶1‹B¾nè(äuÉö[ΚÓZ¼ÂÐ#p¤–Ÿ‚¾ÞU‹÷&¢‚~ƒüÏ“0tŽÚic OtÞjb‘˜Rá×áŸ`ì‹ÓJL´þ¸Ä·aJý—òÀL_@ð®€Uø™w)žã’;Ìw´¥‚®·=\°øƒ>â3G-,K¥¼HË «*V$×ÁÊgªbƒß%t R)èé­ÚÌL$No—¿aÓ¤>±+Ä'‘\(ÔüáiWÜ!ù@DÕC ©.YY›ž¿;§nF§süBº4¦î͇‘ᛋk¨.2…dë•„5!Ë©ûv|#C¶b O<$‘½8àˆ rE¿ºªgòù(¶ljÚ£€ãO6Í ¸û²› »Ï;Jsl×Þ«…¢Ò——®ÏáÞµƒŽÜ9‡QòúµŠu™^”‘ËxæW`r†WéÙn Âí2.Åc¨4õ ß`ì**—¼wämTB h|~‡ˆÕËtR@àƒ’¦ƒ"¨yJWWœµÍ+Ïÿ¾ºbÙrÇüCPo#qšÖ *^Mž~†FwW®rGc“´‹ó¶ýhò´§·ìšú$ š¹[æÐåw¡¹ëÌ M¹ Z\ë(ÊuEËûWÞÿlD«„׉®›ÖhýõÅ`YÅ$Úî~uú©lPî‘ Ín†¢}W^˜­ïlÝðâE—gÞªë R…Tµ#ª$cô$à.oŒ!$ä“ð _J„¸‘Û…õM2ð^ FUaÊO_©†¤= ü†P¢Ø]Š¿ñ]él±Ü7¤UvspötCž/·²§C”yˆä1‰ÁçÐc9¢ç¡–FÖÑèæ^¨÷8$ÓÃðT óëú yžì„çŸa\jÐòe³¥÷8´Ÿdû¼|š;Æd:ס‰ËÐ7j!Âßx`MXZK¾í%è½Eúä=B¤‰ð¥;BˆTÉÇ ª îshΞ¦OÿéÛỗ¶7Z„û žìS%èeŠÈ×ñbÂ}t§w®Çøñ äIÕv?Ë»ã/¡=ëw¤¾ˆáö|ŽœZU è,÷=!ßÝ9ÚÓ&bìð•ì©ÿ…G¼ÐŸèt‰ah†ìë^3*dÀ7 ŘóÜ0zäãµ­Ÿ%0>¶$Þ}À&KkgÝ?QÂLï…™ûLð‹]ò×Ï]Œ0÷õ©€÷2,äžržÞ KùC{2–r+ú§Ç#óÕÏåâ ‘UzxÇ(î’|}Æ)ï-rˆd˱B®ðÑ«Óù‘WÐ!ÝX• o%öéÈ,¢À0ß|ÜâqBþßïÃ|…]…lzQ„šLOV,ÅÅ[yµP<åùƒŸ‰oQÒ«"è#?JW®&:…²ŽòÏ,ƃQžZÖÝ+TrivmŠ£RÑCÎ3'|Q™NºÜmSU}?8œrñBÜQÆË<‹ê½äï;t¢ÆQ¶#~ãÐîÚ›ñµ–ž(Äul¢N¯áÛVw~ÔË•¿Ñº©Ž/ót¾Ò« Ñ¾Á¯¢ÐxÙ›W<ÐÄír…ƒû šZ%üò^ü€fjO?½@ó½f ó':Ђ'?×¹º -9t.j:È¢ïÅëqŽ™h-µ›ÞùÚöù>BÛ›7WÅåÑ®$ÅiÕ÷á<)gÖó ]W^ì^Ú|,iiƲvGöCâ{5[ѰðÁ/®{Q{ŒWõÁF”öÿœ·‰QÈ#ðØMŽ'vu?6†þÈ!¿Ät}ãáu“~§Å8¼atMºùÏ÷Êô‚¨?*ž‚Sáêª6‘K.$ÏY¥Dø•Ã'å«¡¥ßA†AËÅ0í:ÈtšWM‘…̉Ç7ï?]¬£òæ«Äÿ—œ{2áö߸Ý'yÇ–p}rQñ±aÈ(s×ÜÁØ ùž2ü3ÿqç—lHcß`]ráŸyÇò>΄ë<"¹Õ ÷™¿äJYmý¿_ë×AΨÎtµÏgÈ¿p\êô;~(êï”°6‹†Òx)ÛËWu¡<¯DòåB¨¬·?0¥gUý¤7Ö²ßC­‰¹%s4PÛrâºM“ß'ê_z»~ vh{xÝü&t8f¯œT8çw“}—´"ä¥Qn^ò|e6]æä$!ä¥ãc´( I=üÜçò †³•bÕujaÄ%ìw¹ÍŒ9 ‰<æá„‰—cÌI…f0¹TwÝÅf^ì¾F}>~zL§TdÞƒ93"ª/Cñ°@[6]zn§9îgwƒåñSº[†â}[ã«O„ 9ËÊeøÉ·îô€‰¸w°^ŒnAâ c 9$zviQÖÉÖ”I®ðQᎌ™Å¹’HeY¥[§|w~õ%Ë -Eº)nÅJdèܹïÝV52ÝŠstèµB–ƒc¶R×."›|Ôè!ûQd¬¤ùüM¹N¸µ,GÞb_ßýw¾£0$ úoáîƒ ÑÎoéPÈç±MÃEYo¼ ÝÌ„{K!iîEJ îò&uBºu)òçÇPn.ÑÛÀ½¨`YyÕÊÍÓöš¡òkï”/Ũ6˜ê즌ê©Î-]š¨q}ߨV· jš®^ÿ’#ˆÚZ&{'ãP—¿ûîCŽ=¨·’Užô jòšòª QÕÓž1v4v®!NC“¤¡v3†»hšÀ'¾£HÍÒŸå\_ú9_ -:ìÏCóø« ùÀ>h*•MÇõ‘—¹4 ªžŒ #O‹ÄNn‚¾ªá²hæCìw—²î[ò‡§Oó” îù¹ÒÕ><ŽÂíö…(úûìã(#3÷àœ•X¸’º_kµï½Gétó¬Ö(k)¿”ç‹rë…UuâäæO…S RüuÁ»™x`9‡ˆnù!ªž³ÚýÞ´a1rá¡ß To/76¸¬ˆvXÈw’ 5w-zÊ݇Z Öå“÷¢ÎždÎú¨—ÆxXM9 æ›õJ©£‘“mïëïOÐXjhKÕ#M®7Y$¸¡éÉDŠe² 43çJ ÛBsÃåúǬÑ„*/|.- >ô~j@«›Üòš®&h_2¸~½m&–T“‹ÑNµVNŠ2í“f¢îÜÅ£J‚%¸žÃ‚믖Ë5ðæ§Næ‹mÿñyZwHšÛ¯M|Þ›tóE@ìŽ;eYqÌ#CWÆmfQ…‘™,Þ©ÚõŽ–¢ÞÈ|í¾µeCÐ5–‚š5 x%üýæÝ[ìÖ^&´»[– ƒo'Í# xaW\2ßîSÚÿÉg{^UXÂú%È W¡îKýHధוµ>AfˆBã½Õm>s^{úq›ã*Ú™ÿÆÌ µ;ó>y8Êï'OÛlü‰Œ ½øƒ›* ¤s,|}› éz¤âÁ]îɘR¢NÐѶTòòmçh>¥1'Îú™=9ÖAq‹K7¹Ð½ÐÞ ENâo˜æ^AéYOáíP~œ2;Í*ƒ"C¦¿CU¸¶míÑl¨%:û†^ê³—ÄrR¦¡)@‚╦/´Tï{xÐê´iýÌW äƒFcÚ‰vèÜ9üü@·Ä››ÿ„Þ(ÇC9rëÐ/ïG޵?apFPgWÔ1¾½û Q™Œ€{Ç +ŒÉP*gi¸À„ý×·×vÃd¶S¦íÌ”ømì ?åÏe\ÚxsB󊳫`þOÆ)²õ4Xü¾Û=þÑ,OíºÿäÁAXÝÌž|<À"uŸ´¿Àï[2£ÑNdðg‹ÕЧ‰Oœ—ϸ$ËçN=F²†ÞOV=ÑH1ñZC}}R¢ò!jÜÙpçlÇc¤{aàà~j[µ;Ok#Ó¹×wˆ8ú‘…ÿ Ž5M²Q²ó. EvS’lïðeä0“ŒvA^’*· `•UóâšÆÝ,B;*‹¼PÈ0g€~ùŠ|Öv¼¸G÷ªÌU]ÑÇ}«¦þt,¡ô”zý½ N(»É=/ü, ¤|ŽÈ¾–B¥0®b–ËÒ¨ìj¹¦j¹Oφ|wEõ7CÚ¨áÈv Õ 5Õ㓎ߓEmů3ô:í¨»k½§ %õ–KÃô™Ð ±)Hlޥ˻›ÆÁƒýö þhòy¢þ›÷o4mÍMQáD³é×JÃéhÁº|8í!ZšÛíU‹hA«¸=†# hÃê1t×c'Ú¾“Û*y%ŒöVþ¢/Áj¯Z±˜]äûm+~χŒ·ŸÆ~­Ceâñ(§(·=Nho†øÈÜ—ŠË!'b¶/ôÈö9œÙV;{B}i¢zG "W·¬ûc­¶÷hˆ›\þÆŽ;ã ÏïÇêQÓ™<ÈyºäyÖŸJíó$¾*3@åY[aBP]þ’ž衎ÊPWZeêC_{+>ë„F±™––æcÐô”%'!ƒšU¾äðHCSæùñ~ÁahLò@_}hÐ4 s^Òzvfƒ@_¨Ûïà'·jWÂ:ÆrBpêùëV½3¾xs*ê‚ ým>þÕ·z¸”äxï³Û{=†f#ó£5Ð’Þé.rZ“›‰£wˆA["E›Ù…gОÆ1²‹ÿ=tŒ™ª:Ö—·¶JË¡[¬ßWÜü1ôêlèZoÑB_zGt@ ¾LtÕ{RLÈ£½?w„¿cìô´›0–;ѬO] ß%Tr%Æ`ª÷gåCQM˜ 8sy üzSÒ}²å1Ì;Û_¢Z ƒÅ+¬I]ó»`ùíÞ,«{þ°Fù3ar$6ro/lQÃVõ.9-·5$fpg½Dæ€$*Aß®"Ù§Ÿ²íLHÑÂ7¸Ät©”S¾PtšáÎùÍÄ›€t_SN?#E†åWaòþ·)ü—¡ÆMqd9{ïëΞDdspHJtEö _ËZþýÈ9Á¡H+<Þ«§µ7‹‘Ÿë4ÕÉ‹ú(,ü½‚×w3}õ¥Nÿ…{Š|‚O&¢pø§u…ÃM(Zùî° …ŠCÌáóª¶(ɶ¸#’H ¥#lŒEï% ¬¦‚-/Y!ÊMëì"‰{‹ /íRU†QéùwÛ¤I<0¨¦ÿk UÍÈ'&d# ß1Üœ#Ô>k;|^¡†µ¾¨èÙ7¨ÉáL€Zs:ÅewlP§ùGÞ)#7Ô‹ûÁï¹þG{ŒµÐèÌó/ø¢±lÑ W¯j4¹%1¶àަΉ<Î,—ÐÌé}r /š;W>‰±ëE ?›üz®h´|o<ìJv­zê ߘAÁ#iw½ÐÖo_äNÞh·Y0yfl ¼tsѽë‡Ç,¦ÆÈ*Â|ÐŒáöü߬Ôà%"å~øøº% Ùï:¡n|¿ë”ÄòQ-èZXn\áÕª‡h¶§—γY»®!s"‰7Ì ôû£sµ7)áåÊ@4­¤0¼<_äúÆ,Âv…ìv™‚(;ÿ‰ð¾ʆ† ’â6JÛ‡”·çÁ½y~o?A—Þ'ð±?ƒŒÆýDJÒ©ÑÇ{OÛ2s}ﯟ½ Y¦.͇¼ÛÿÆÌûWæýÈtêŽÎ-_±m}¬X[­…ô‹Fn4ã‹ð©Ý!;éì»íùuAh§Iл%·"&ÇI–ìMȸÌÚ²U™Q¿wP^ž‡ìÚi±{„!Ï)ÐïÙc(œ¿MÕôä” SÕÉy@ù~ýoWø RodnÚ,ªìï+…’UCM^ñÒ0õ+¨?ýÀr‡úh`£ÐŠŒÙ>§ZòþÃ,´nšÍ,äW@{Áw²¼°ƒð%%JPòp&tH½šY‚Þ}^O-Œæ¡¯8bï¥ù,¼.Fâql† é±LEFhL’Y[Í`tcÚèëÙ*˜ào ”Y‚I—»Ÿ‡fH É€syìaN@î\\ð(ÌÏÅöê=ð‚ű}'Âôay¶¾N°ÎV»eX=ñ„ ®W_¦k2á·Ã¡¦^-RøSÉ}ûô*- `<>ˆ$Õy~¼xdQ7Ž«¼Ø•¼Íª\H%üA¼ gwÝ­+ =†twÏÆ$¾+D†¢WÇ)k?#“ùýÈ(Û3ȼ¡à£Š¬_Û&ˆFv΃Ǭ?#ç°T°Qà9äÝ@ó‰” ùgÌ[YÒ{PpÜÛ™³o…8‡N¹õ¢Èã’q×­pïáJoŒkp_.ë–ß?”þè´ó+ʶÏ||K G6Ó2‡PÉuä£g&*ëKªòmBµ§WM#$ ú=ÓÙ¶¬Ó¨a¾Ãd_Ý;Ô”²é›¶Õ@mѳ)Jÿ .=Ä”Æ!Ô›XïúÝ Ú¶¬ì‚Ñ(Ý^ßJEìP¡æ¶®ñâÏ#ä˺¼»yľx÷5:ú9Äg)+iN·¾1×g´©!4ïVáìü‡¿1Z«éÃÈ!Å|–ß¹BvØ·]l{ $‚L¹;œ*š¬\»hªyªG.D’@­YK»}ë+ÇUõ»y´CƒDÅsÆrAW¥^?uÕšH+ÊšW¡ÑAÃËbî8]¨·ùg¹Ì u–Í×Þ’‡@mèå^;ªD¨½=ôâÏÌÔÖø¶,?m‡:Ù+†ÁÊ”;¼Gž'ù?}ãŸ8öªaïö¹š«<»@³ËOë†ÐR¦Ý V´­¹!S¨ì -uê\ý¾ÇО"Jö; :Ú?ܯüÅÚå;þ§ùõ÷:è™LÛ{X‘ ú”¨ JùH`B±÷yÏNâ #¬ ßwñp˜à ’g˜8±ñ€¾&ûº]ú¯õÃL¹]œR1'ü\¥¸K± sµVrÖ^m°Ð˜v9Э –6‰ùÃêyÅÂs*‚°Áy‚;i.¶»}ã^§ QN¥lA ’¸TÎøªˆd?tt™¹ …‰­äÜXR&|1jeͦnß& ¼‘N8žYî£>2<ýbHsé<2ɼÑçBæ nÚOd])¿Õ(øÙ÷¶·ôMG#çsÎ _ï"xe‘F_1òýù1Ä4‰'Oµdh¢àhèîV’TÜó€\µvî ;R¶e» èƒAšX{Qß!– „ûÆh´V®¥ ô½£Ì*ù†(+§Pè÷¼å¾¶ž­ú؉ ·Ù׿¢’iL{+/¨®¸¡1­†ªÊYÉb,ˆÐäøá¢Ã0ªW«ÄT<\E ‹2—üÆjœ0µµ~î¾sØ.uTò·¨Y·Àœcƒ7 º/ ÑÉÆ–Œ W4V­üàó Mü\Ss¯AS¯D¹ñ=¦hæ#•hqÑüÉïcëÖÇÐ"3®`MëZN[pï°&Fk¥ >wï¡Í›µÛŒ bhÇíH|îÚ~Œ ¯8‰Gow-üºïW¤ÔÞvÃÜ+ÇÝݧ!Ë×{=·LR^R8ïY¹ qV6˾MÕÛºFtÅž¢Û%îŽúAä¿À.ˆ¨¼¡×v Þ<^<>õ^Gªo0­åÀK𸻦§´!äã3Ç4aãí>%ªèú—/Ü4!ð`ÓÒžODzXÿ2Ý2¤ºîÍFà-O·¯A†×@ ‚GÚv¿ãåÀ¨jÈtŽÝPÓ%ðšYoÆÄæ‘ïi\ÀîïÛ}#4ôß’ =Žtá¢ö6·E>‡OÁuŸnH‡Á§XÓI9‘4øTÐ#m£> éǃšI<ª }6ë™ßçgIIó Ôï.d«Ö8 [Aî—“‚6Þìô ’ò‡’ꊟ"P¶ò¤pY®*©D¦»¡Š³Õ)©j®òèˆPPB=“€¯UÛ 4‘/¬†ÓsóT+ÖКžÍ—öã,´;ú>8c˜ _Œ¥µ®ëüw£[¡'ÿÑÀÜÙièÓÍ5çºAÈK©¢/<Ï`˜mƒövæ|뿃ïÁhUÓ â‡<0>V“¾8S“â¶ïöJDÁtþo¥ö5ø‘z¦¸ü~9ÌQ6r<9E ó#/MqkÂâ7%£`2îíóªÔYTΰº%ëÍ£1ô¹ÃÂú/à7Zæ1 ô-hwrb›&¡}ùƒNI^7ÖL.@27nzþÃ-Hõþ¨–RѳñÈ'TáÎAûJ9$‘ÎóÎØh2|:z]EJ™Ô¼ Õ_Ï"sßÚîJï5•âÅZRÜ5âK5Ëô9£i&×B‘gl‡Ù¬Æ3ä¯p?ªW‚¹_:\6MqÏ$å÷žòQ±Ûä[“'îeUôvÙ§û®E1‘{Ò£tTÙ#®(›TõE1á:Ê÷«DH¶>A%½¤·}«3¨¼›Âý¬%ª·T‰oBu·Š›×÷¸¡.RT4 &/Ç^3ÔæXpvx&ºèËÞÙ†z¿¨:õîö¢A7ØÞŸ’hTFºêYG„ƵôF•k{Ñdm©ˆÔfͧßû+þBó½¹™CÑ"ïOÈòÛ´’|nyG­+; ø¥ÝÐö¶%[ØÏb´?ßÎStþ½ïúþ²X ,'[ëæn½…œî jÎ.H[øÛåz’º˜;$Qmï³íŠ%èÚÇéÆúÛý"*¦úSÛs8ƾ§ÚÞÇþqˆ›"(µß¬OÃë&ÝK½l}cÔŽHžôLÁîz%µ ²Þ5e[Å«B±ßK®õŠP¡`^tá®5Ty®åÔýY„špËcg5 vlI-Ý®ê¥Â,Í2 :¦©¯Â# õŸü„¨¡Á„1JÒf êýÈךŠéze“©º< µÏ¼ýu'jÖ}e^ƒZaKŽ×ÉP{ÞL骓 çB$ÞÜwƒ:ãÁˆBžþÕ7Ù'Æþ2õÐøÈzë ª¾°íŸQ¤KRZPP¤û&D¤ ;@Â@AAE,:¥E%*ÒÒHw È{žw~~ß™ßóך3ëìufÏìk}®ë̬k—ô×õÕCƒÿ†ßð¹&hlž/î;wšÊ.´ZPû@sN=©êÜhI•aßÖâ? ¥îw û9;¯Ž3tD8±P>¡ü¿çÔîlBORÛo è»÷#ón. ´8ù1Þ†’iòˆ€Ÿn‡‚^FøüéÙ˜gŒ÷s‹WÞ‡©é$ªw`6ï¹æ)=XÔÛH Ù K¢ÚR²k÷aÅÔÿÌøOEX«u­÷û \”ÔšFm`ûIhýžBk$¹ùgÝaÉhΚ~nùƒäMï÷<¬Ç]~®³ùLHµ«"܈÷fHº r"ý3g²_¤gÜ16F† ŽI}=jdzGÙF× Ž,ï…~͆«#[Mnš“Áä8éþÝͲ ¹º|Y¡ð<^³©ƒÈw\¼¯Oó$òçWØ¢ ‰ÏœÚÆ1>j™v‰E 9j…­™ðP~¤žų=u玡„㥎³Ss(É/{`Œ¥~šç½Ê¥A§¤§ãñŠ:«(—¡•×;„ WîÞ\qC(ÐÚé©JEëgž~0E}K’“a¨Æ´m®e*ƒêÓ;=Ç2Q£ü}ËŠPj'•?YÉEm‡oŽïôPÇjwmQ5Ꞹ°Çc?êyOR½¸Wˆú^©§/JK£~ÒD£%fÉŠâ¹ß«ßÚÝCãc&ÆR"ð|àáËœ¾‚hʤÿA© Ír#mª¾Á .1F-Ñ•xñŽüƒ×ÑJ#¿Ö|`>npWJj1Ù‘ØkØÂGã·Ýþï9šHWˆ)¸Mq©¢ó>^šó8IäÚ;=%ÿ¾¥»[¹ŽèŸýè˜%`£¥×\ƒ@>‡[!W!`ñšyÙÆ$‘{챦©ïç\~âKS~~N2ƒÔ‹Ñ­{ ðyèàÉ:È<öh4nÒ²DžÓJÑI@V¤H‘×& d3ýü±ÅÄ ÙÒ¿ „þ³r2.Bk†.K ã7h[ÖÖcЇ£–NLÊÐ%Î>{2azðþ¼ô%ü=mH¡Y n¡VßNutrôåAyc^1,s*û£uW¯«nÄÃØ@Jõ6:˜t&?TUU3ÎÌÞ!0ÿTûÇâsXô]ýýH–¿h„f9`M¬lðÚ¤lô¸½ÖE[Ýæœ·Xÿ_ŸIJG±ÐÏoH~‰u”îÒ«ý9õÚw¿Ä+.¸—vþ€ÕÄ&î+¼Ð×ô»éÞÇX>|â fr&ù›ÈÄ_ÞÌPÈ,"Þ ôLŸ‘íf¨u¾(²N0yF®v'#ˆ|S³Kb}€|û¦S¿Ž!ÿKæ[±âÿõ$­çz|¥ÌFcïäëñPÈ ~Ö%wW(I¾šƒ¯†[sû¡$ƒ¬‡v&JþÞsö›ÊØÔ£§?'º]ÅùåBVï÷Ï¢Â>éí%Éâ¦ÚŠGPéköªüǯ¨röÆmÕ‡¨Æ˜º¥OöÕ'{ö]§@¢KƒÀ°ˆZï<ƒ'¥™PûÆ÷'íŸPÇB¹¢^Ìuå |è_(£Þ;ÍЦ{¨ï—jÕ®¶ RTžІm¶›©z—ш]ý»Q¨%?¸à+µ%‹ç{xò‹Ðô¿HçK4×k¯8øÚ-öí}"†–&‘›JïœÐªÝ|­Ê—æ¬rËX/ ‡ßŠR´î ¤½w@–AÏÿÕÿóO7ÿtšïzNá4Óº ڗȰ² z]u^ÿÿæÿõšüÓí?=ÿÓ7arÔã·!þ×g’¥ÝÀàedð¿{Hþ¿ñßü¿ïÿ»þ¿^£è$Ž’—ÿkü7ÿÿÿ½÷ÿ¯¥À×ݘôÎ]ø^-"ŸäÅ÷¹ìe¾HCé ®é Pªß´{có¿ýáŸî.·îÒ#ìýO¯M\ž6JÿO§­~=õlO•¡=ìjþ\t¶~yt8¼z.̆®ßÙ }¼ŠÒ~aå0ð±9…,Y†î óßµ#^ètÔü¿“è·RQ;Ö0uHަjè̺TÃÆ6ó$ÎÖt‹•ÎJlаܫ-d笫ëã>]/Â`}'>5é#üYû³~Ö¶vœßxö’«$¹¬I~ø´%]@²“+f¿Ž!§Åí‰Ò¤4Í|xšŒ©úWI„µn#õû÷K•ûëöBám“ü¤™H‹ú£‚Œ VÜÙ¶)4cgÅÚYŒVöwÚ"Û½m‹ /!oe‚þwqä>GÝ¥øòÚçùŒ<ˆE~ ¯ny|nº÷N …çš>,DѸc{ØÇUPl5[ŽšS%Λ+ú×¾EIó»y§ŠLPúÕzßὋ(»!ÿ4áY ʵ~a¾.}¹Øé òuQI'1´‚,UØëöä@ÕÍö>?P}{ïüç^OÔXö¾·³€ZS¤Së¥1¨=t…¯6ÛuúŒüNМB=²(K6Á먄<]Pª œxb:$ËѰ“[îÅÒu4ºH59õ†˜Ûö^Þºsý=š =µÐ«D³©3Ÿo8 …¤ƒBb4Z^,ÏùFBÌÓÙô´6SoåÒH3é§ûî–ZAòÚì“Z3H¸­Zs’^â’­öÝ t†Øª¨×jCÌø}‡WèÑüW®S}M…°) í ¯ël¾—Éá9_úÞà–בQï²dBªàÑÒ¢?Ô%Ëòà‡Â©…œö½|Pb=k"Rå^{rÞÕ‘Beˆ&úÓ©BU©±²G*TÏéô·l0@Í`½…ØÙ·PkÅûšŠN j–³ïÞû5gÏ5ŸíU†êÛùéQ'¡ªœ›7%–ªÎgèG5@UØ–w®…P½Ÿä´ütT7¾K>~‚ƒxÅ…}¬^P«ìK—ÏÕ?ïwd{÷ ˆ‘‚íAÚ4¬ÜV{·ðš¨tå>ÏBÓÚ”»pí/hÛîºÍ -m/&K  u`Báë5hþòÂêÓt¼Ü2,‰Öƒ.+/:—Únè±ìÏôÓú˜Ï«“(ÓÁ@ Yò˜L7 i0yÃ;',«Ìa´~ò i ŒuÊÎÏÀ¤ E¡ò„;Ìr5lE|‡yëÀ¡aÏ_°xá9)yÊGXv·2îJƒÕ1˺yØx±Û´G“ ¶ì>w}7†gO³}$½¸Àbå2‰äÔ»ù/}^DŠÙö9é@ÜÍnzò›îñ3ì'Ã}Ç~^˜ñFÚu‹±œ·a÷]ê2ÈXEÕxd˜™ËçBïvŸDÖåÂÓ×ÝÎä‹Á'rÑœ¼ií‚<¥ínG}!ouò_s?äWii'‘iA¾é£+·Qès¯·ø±0<ØðÓ£â™9:èþ‹!Å¥âÏ].C‰ã2UÕ\f"ߨ®S'ù¶+܆ºŠêŸ¼Û†Qïý÷‘m·Q?ÀåºÊv ¤éGŠZѰ#ôb<8mÝvË¢±óui‰Yy<¿L˜îdjFÓ÷%Ù§‰:47`˾!жr¼»/£¥)ÕÊÀ´$‘oz²yhaö†kwéèGÈvÿõ-«ÿ%¤VÒÍëÓ&Cü›÷ÑÑ~*Þ}ÜéäÆ@ÎacŸ.Ò^ö‚PÁgúêž›l¥·ÂlCáL”º¼ÞàßZj̯Ýþ=ϳBùB°)'ÙÌD¬&{ŒùIAÜü4“ g¤Ü,T©7¸éãã ½*!@(–Ðcàà…L‹·òó K<ÍSxŸd¥òå×B¶p=×¶(d‘¾ß|²N‹œW$®›Ù=¾Eb¢ „šd‚çéì‡gTÀøcºÚH¬é¥‡ªN};qüë øï —½™Ô×—OdnD*Ã>IÈ9ýåžUÛnÈcw ¨Ù‚‚2?ÒþúRø¾S•ÿlË Šýåê ¦/AiB’–ò?(ÿ´6£tªÈÞó¡3Póbîb–[(ÔQÿu¿Ü ª 6”‚&!ŸÁ{9ÐümõÂcËhh}ïæ[íä í˜×N<‡Î Ü 2žS•~¹ÝÐGª¶8Ào !'ª?…!sWõßOÀˆ|ç!«@ø­ICG#ŸãöÁ?ó.HÃä’Êé-òû03Òœ•¦óYzù9?Ó`ñÂ{.3,§ $¨sðÃjEG•+¬×4DZ±ÁŸb[z•¢Uت:z^¦qþö‹|y1>…$ñNt.G%‘Œ÷ñú”ðR¦Yθ!¥²gÐn¤ªf¿+ý9©]ؼ`ÚiµÏ¨üÌ%Czßõñ/ƒ‘qŸACúº32½ôë‹G–sn´ïOýE¶û$ÉÂ4ÈÁ¿ks«í&rã, ûgäuäµµëD~Kò.ª›(è•æ¨Q€Âó”Ú¿ÚÒ‰|SÏaëB±•¤#,—ºQ˜IøÀÆ”4=wT¥_$9¹‹²ËYþï#’Q®¾Â¥± ™Ç7·®*iÝé½|£UXö^6ýž…ª«ÇKëÜWP}͇Ô#O5fÇ y´[PkÔ5H4t™˜ßŽíµy΀:]å„ÐõH>îî…Ǩ/öžÁÅ µSN'pùFkMxOFäÛȹ;—\ðü>C§©°j4Íìyöøš-4ÿÛÙ…'¾·ýx–e‘ûf\aùè¶Ù32ÃnÏȤ#ŸŒÓÝ” Yf"êc†&Ä×¾ú!ä/q''ßåÌA¬úrG•'ÄÜí]Ñ{ Q÷Ío±§CØ©†. j!§âù»A·Ýäe߇­{ó8æ)qÁÍê]Fµpšq«v í l߉ܒ½ó-ôP~|¬oEŽ*Oç:ò…AÕ£—#ù«/¡úã¡dæÓÎP“ðå›{ʨ‹Qêyj5µžã{ÖÜ æ¨y]RÑg¨>Áá* Uy‹éUl¡Ê°qÿ“Ì¨Š´e™úBÕ½«/š zäšjið9¨¹íùÜj¯(ò‡«gÂÏ™„ï/’ þôQʳ× ‘½|æ›i 4‰‘$ÙP@ó,5?ïha¼‰š1ÐJ^û:ÿó´1xØìç`„vSáq{M!è(”Ód·„.ÿE‰ï ÅÐç&³˜ð úT/ËnÉ™Á@*çƒ;QGÞ^oÒadŸàéŸ$0Úh{ôÇ««Ï/N ©IJ‚½ª0#.dgíóê»Z=¢´ 5o—4,k;³^ʆ՘}R«{`ãèÜ©ï¹;°EÑ/©;Ô>â'z‰|cÞ{#\|?’e¯.ÊCŠ×C e½-H™úVÆ ìîaùox— ©“.N-Ë#­ûçÚ¼sHŸ}´Oˆðïh×ko® ³ÑjSt²ê.¾Ú€û·ª,Üt¨‘ÓºÂDä‘GUÑTóòzEÇÖœ_F¾m¥Øê‡(\©4Y=„B×ÈÞF_pÃÏU\GÂóPtgš=dßûMý›ë JÐS¬Jp¤â±R¹×fÜwPêî‚ÍÓÉ=(Ãyþ¼cǤݩ¨×_ž¸Uäu¼«Œjät¿¹Ø=P½oÙÕbÝ5òÄâ³ÒìQëUgá- j_7ЗÛþƒ:¿¸~ 7E]<ÑH.øõü¤nˈ ~ÐY»Ï_\Ðà“eP³˜v•G1t¢w°º'-?vìPÂó«/¿®ùŒ¢©ŸÁ©[oHÑÜPÇ_Y}-@óªÌûp"ßæÝ5ˆ|S»/•F 3j öW!kÐüžâ‚ ¤lŠy-_ q–~žÃLuž¶5,é1|øxœâA‰1„¡Ý_& w/Ξý1 A¿Þ×ZûÐ@ èÓÙuíMðwÈò«n¼*²YŸkê9d k37ƒ,M÷ˆ¯DÈìO´n¤ÂŽZðM±çD~8ïdA¨_òÁ8Ä ûOÖSAÚ,17“UvÏÉ!óðô9EÈ⦟Ѿ› 9Ž´#Á½&Gtjë;jP°ûé»+ü½qö’¾6gœ?|—ï-”–~xYå­í<Í^fPu@ÍÏ„šØ÷¿í÷XB€Èvø·>hèÙ䡇¦ÃáŠE,;Ð\$Ï{’&Zß =¾‘í_\w7Î/•„º÷-Ð#Ã"N’¿†ÎÄS~ÀG¤ÆKÝG0¤Ìn&—ë #œœuŽ[ð›÷²ñiæ W‰¹Ò˜O “…Ú/ ÚÃLjC¤ÂüÛè?{^±Á¢Ó I®#z°ütKˆ£€V*…?ñƒõÀ1æÎgðçՠȤT(l½åý]> “ÜêÒFï Zz+žHFI4/4ˆäcKWÈRÄÿûÐ>¤ÊTPe)Bêk‘ûs‹„V®—])Sé}v·¤°N!ãnÍ”ÞÎdò·ªìGCj¦‹9o‰|#_œ7Ÿ@5ƒ¤éDä6qÜ*³' ¯ÓK½¿ßißÊ­£- _l-Nõ-ð&)Q ÍV RßšW~€–?R(…%×Ó$G^QBöe÷$ã×NðÑæ4?ƒG$9ŽeÈ@ü¡¦lVˆ}ÍR•Ò~bJOóvSCô†ê¸ô"“¦wq|§‚ÐX•kJntzs«Öj ‚,9$V²ÏÀ‡ gôwçëB Í£ÊúÈò÷µoe.€‚¥ç5OåCq‰R>Õc+(›¨ 2KŠmÁ)C©¨:Vð’§ù Tߨ}÷\ø‘G1ÜäõP³Á·’>çE|¾ÏýŠsÖ‚zëj’n¨V¹çøƒÈ³•m÷‡*¡Jw®ß"ªbíX5æOCõÑüØÍV¨^‡~ÝÕwPóüÐÈÖ2BíË WÛ@øY%ÕyåiÔ?åY樅Æmù’_/@“nž"!Šš5ïþ«É -Š%1$bÐ*Iw„ m*Üޥ܅Ðî¤å>t:æî+X~µƒ®Ê‹¤lÉÐÓæÙÙôTúìEÖ%ÂÀ÷_rò̦0t«§,W¶F˜v·Ê4ÄÃhÓ"“«á>+/þVÔ• “Çw÷K¦€™ÝGh‡â¯Â¼è!‘rO&X¤.eªXfñmåt‡Õ ŠB7ça½³C*Vh 6ÃøsµÃ_Ÿˆv6^$©øÖöKÉ.NÈ\irEŠC3ÒÇžÓ#¥|©„÷n¤ å¼ú3‹©¹úþL#Me[ÇŠ‘Ò[Íe¼7GFÆ·?o0ÿFf’Âs’×Î"ë¡4‘ê#øÿÕ òOé›ÈÉ~ômõÌä.‰—¼ä¯¼ª!rFÈ—g¦nÁƒz1ïÝŽ˜¢HÓ‹«xðdÞC²Í*Ÿ1Ü}ÅBüz`G›’5ŽHÞÆcòôƒ†ü(uz>ÄíJ¯q_ÎñDÙ™Ó¿NïA¹®,Fz(ŸUüi+¶ÁôäY Ñë¨b»µ7öª{åK}ûªnª˜“Æo£z©Lç¼,jd3RÚ>”@­—ÏÌ6YQûZÄÉ[ gPÇÒÁ”¶u•/º8 £žª”\À(ê‡ð>à²GƒÏwÞ=NtEÞYÁP_4:PDU`>ŠÆ®OjVÇóë–Þläëhê?Øùz ÐüÜËzþ8¢ÎøýµÙ›‰|ëâKøLäÛ‰œ'h`úñ>*ž±hÈRê«"…imƒÊëswå(é /ˆ|¸!ÈçWÃ3sæîï 4X2r?G*ÿy­}þÏO2kŒÉÈ¢†€/Ó1î€?C“U–æðÞïÌVg AùƒL.†ÍÁvªå¼ -qÝü_ú×Ë!ùçY^oHÇŸΑÚáNùøÕ¤È¼Ž ƒ¿j sáò+¨ ëñ=mÉ•ȦTpüø¤²¹+Oþµ„¬SÝCŸèBæˆMuTþ#ÈÜãÄ'Æ.„X3|Á"„ Ÿ;‚ZÍæé– œý’è™Ò „úWKé-QyÆ®í˜<ñ¾=BMÚŽCNøUÃúádÈ»­ãa!õ e™FøÞ€wö câq(®szùƸJý¦\ÿBùbˆú—Ÿ¯ J~c|×ó}PóMÒöˆŸÔ4t.VÓ„†Ù.aæYh:–¶÷¾4—<^/¨VŸvñ‹+Ðþæ$ÛšCЙ¢[é£ = *O»Ã¯Òsv=€; ÖZ:α}C[ Ã,ïzÑÀèzÁ¯YgJý;ÁÒ “ÏÏ•[«ß†™[”ÃÓÍÔ0cᤅ†,ž<Ì“ø–õ[ãçÍû`Õ:×ñê#:X¿Ä˜_=? ÎSöMT„-Ó°É௣ðמ•÷Ð'+$±Uó*è@Ò)oéÁ_H^¯¡¾.㉔ôÖG"U¸•žþãI¤6L;â߈´"·æ²Óí‘Þ“uìS‚2’çÞ|dz<À‹,úAûÅyˆ|Û­øU½9Ÿ¥’#·Y2µcuòÞ›—òTEþKÛsì±Ó(è}Öὤ /|Wøýî=‘ov4c»QléÍ~Ñ9y”0|¶vÂè0Jž«r&±‹DiwªçlôwPv*®àjc<Ê•IÜ㊔/[]+¸PIiëRÌ YT¡öÔÜhèFÕ©ÖëzÓP}ÚGà°ÝkÔN³F­n§IŸS¡¨Ý\Õã/¬€:¦^;ñ¬¨»ñ*óç¨ê‹&wŠsÞEû„¼cÞUD¾ÍçPTË ‘UøAû½,xž^âÊØŽšLÓâÏÆ>4Ûdø+rè0Z¨›¿*µFË6®ð [ñ°X”¨XÙ YŸýBk !Ín´tpx ýƒYËü÷jòV(;ÄlÏ'–®þ‚¥¨;6—6!Ú=e#ÄÁ>t¹DEY[CÈvöò¶«–,/<(é‚À_•ƒ’ÔQÈOhðá†ä˜m­ÒÈ’élL³x Î^ÙÅÎï#­â3 ,<þXƒ.T|öW–:¥ •㳇=ÒU¡ZhäDÀÌi¨õDì¢-ԔǦ>³LgÁ…MF¨^¸QfêíÕâ†Èr¡*úÃÑ_ ê ]¢B°2T%Þeõ…jù ]žÕv¨ÙÇú¨×¨j¢¿‹Þ³á‚Úš–Áàç²$õ¾ƒPŸM;¼MäzãùQÏdN6hr¼ý£ ç(4Û©ÔÞ¤T–ÜqÅý_ ÕÊ 1¹ZÚ¾dØò]ƒöï»Rý\¡“?K"]ã tý©qTU|½»½g˜dC_ÌŽeÑEh‰t¿BC.⣻a„kÖ“·EF[î­ÉszÂXau~Çs˜äÛs÷“v9Lʦ%ËÃü>'í\ϰ0l}Àü„*,õ§úêµ…UÖ¯=$¤í°îþƒ÷yÀlµÑ0e…¿ÔéOV.ùöD‘‘þ#’QuÃØ*’W­GŠŸÅ]?×cÔRq=U_eŽ~VëI#‘æ¨ Ï¢ÒÓ|~¶˜"„ _šj¼Ä;‘)’Ÿà/Þ…,E”–TÆ|¸Ÿ-)¥‡~ 9¢xU7²ò‘[…šúQ°8ò’¼›JnÎE>GF–±ù2Øóx€Å¯ÛΆzež!úÄ#¼õ(z-ª˜–t ÅN÷ì mÖÀ£§b¶Žzâ±{ ×_¶£”àÖ7kJ7Øù¿BÙZošô~”ÛÉiÅÍåƒôÜÙŽ ÀÄ鼇¨ô†ÌP7ÊUN.Æ]¿†ªKN cQ½…fÖpl5>¯]U›C-/±Á¶q6Ô¾ú[àÙ(Ô±—¾Õm…ºª˜WŠ«P/—r9õCŸxêGÂã—B¼MhØ·ÿ…‹6ñÿ”Œø†ÆO}¸–ÆódÏ˺ìEÓ@û›éÊÐܨÌÊlǜȷ­"«¸½hivj´„Ì–È7±åÈr˜òháùy=2£G ˜7 ùæYÄ6þ½{Vt >„ ;&»nBg|7*UAÈì p­|ƒà+¾š—d²!°“þÁßž=pÊ´ètl?øe˜\Ù¬h¿ÚK=üÑdÜD—Où “7éØ7!Ž—·ä,ÝHve]Ô¢ð‡OSÀðn ‹È!úl_ÛrÈT ûÍ5×™-J½»$æ ë2où\üsÈZYŠÚó#²™üò¹™¯@–º´Èå/9Á'aw“ 2™âRgwÕ`½‹Ö9 g¸¿µÑ„Á¼‹Í¬Ë 7˜ bB€0­5Ë/™·—Nq8 Y6«êWå¾BNé·Ò]“ëšèY|­ -Êv=Z,„q©¹7ù¡xÒw4ÕgJw^1)YHC½ÙíŒùPeòY¡6ó綬LsLA¾ëÊïšLh$ñÐy> MÇóWϵëAsYYÒ—ýÐêmÛÛî´??“ÌÆ¸avÏk¡‡Âðý¥#øA¼*Ÿ Ìnü¦Y‡¡}úÏ®QÁpWSH½8Ñw2Ž”V^‡±‘ìR‡T˜<{‘,ðêu˜9¬8í}å6Ì«+?"PÌÁ"Ÿ© O, |,ß*€U‰„¢À{>°.&­ñtÏyøÃ]i&·¶øõ²5?÷Âß“ûZ]èÂÄP¬ðÏ3Q$m¢kþ#ÐäÙ'¶)w᮵{»±J#•§G‘å3RCšbâ5¤eݬIMFzW¡ÍL©dØ–¾x"t™ÞÐi‡Y\@=>®M¿t"ßö¾ô<ƒBE;9 ÷…^¾ä}`ÂÊNáŒü6÷ì¿{_E-J_ÏEáÅ0™›Óψ|óÈÛþ‰b‹n4Ò2S(ap²¿Ìc/J¼·ß±Bi×¼kW §PvŒ³A2å¾´~MB…“¢ï÷¨QI¡4£n£ e±¼V§-ªþŽýêëŠêcÔR;Ú'Q£Ñ•í¨3jµÎrM£v]@Ù¡Õ&Ô©ÍŸn7GÝ•xŠóìWQ_DFþùõX4¸Ûü#~‹‡È·Á¾#WêÑèÒý÷‹}—ð<#OßÕc÷ÑdN~aaÓÍvo~|G íøp!õ³hùË|( Ð Ù†ÏèìJÌ?±M¿¨) ÕÅýJ¦ÚH˜ë!ûD±–ƹ˜!ƮֳíD[Γ˜˜‚è½ô=á5ÍIAÊB1=øìë#<9ó[P°/Üó»ù¹†¨Ó Æà ÓÌw´¶6_ 2;y>K4‚¯›ûC¾zèC±Ä€G^= ”é<3r½ Ö¤ÁL&‘PÍ[?þŠª†ŠIÚ “È1Ç>÷|Z¨ñ°4jø 5ºËUí.ÝPÝ|÷Gæu¨ÞìòkõûPàðJMàTi½Ãé}ªRíÙH¬;¡ZÃaóf|'Ô˜e½žC5…úwfš6 ¶QÙ\¹Èêx%³ìþBýøßæVïHh¼¿¢Çý¸š‚ù”+ØÔ 9xïÛ¶2h x˜èqXZß9DMC[œ~»´ÏߣŽcý Fó‚[­o ûˆlÀs›‡Ð+÷–ç$/ô5úì›ç·¬~»ØC¯ŸÎ°xKÁˆp›4uû4Œ¶nt¯oÁXVSÎŒ¹ LRS“ ßö‚éÔ©úHsý.¿t)`¡€TôáµXJ)Õ}øŽ VšN˜^Ýý Ö%ÑÜ ÿ ÊÎù7†mŸ¢ƒ-ɆH"e|U[1I3k5o,íAòkäÎ{Û|p×EqaYþ<Ü54õCŽ ÷îÜñ¦ÒÅ}ÁgE4ßÑ S_j¦Ö2X0WŪF&yoÚ¥åËÈbt)PÃÕ ÙØô¨zˆú¡ßu~ˆ\Åö#þáLxà1¯¯ò‰7¹½ò¼‰ü%ÆGS×N¡àk§È_’(œÆQ”Ó9 j+o«„‹‹áQé‘­±'ùÑ7&©ý,XBõ:ŽÄúþ2ÔHë­aHG-öe½¶ýD¾Iì«_Z$òmœ®E}uÕÛÑßD½ ÀÙÖs¨^ö|eÄ ²¼ÝêÃ…Ñp@eò­ô.4dx—ò+݃ŠsõðüÑ2š“l5„As㊱^&´PjŸ¹/¦Bä[Æ€µ¥‘o|R­û`òu˜ŒóDvZÃ{…k )Æ+G±Tbêú%ëlˆ~°®ôè 74/ !ƒS_úø!¨1HýæÝ4Ò;«C¾ü[+’—ê Àïlÿ-5uAð»›A~CàR1õJ~2„å¯X‡ØîI§s!Y¼¿Ã~2>}®¨-R‡¹[¡L"dò¬~5!í…Ìî³ñcíuæ§ÒGÃ;5šZsIJ÷RwÝ‚,Õ7¶\zq9ÓŒ!“»Eúó"1ݨ ì‚¥"¹G´%Ƥnö<ìyC/@æ^ú3âwÛ!óÍýÜ$F9Èzq}Á1Rr¦Y$5!¯bÇK(‚ ß·LÏÑÃní}[z´P²û³Je1+”q»*÷…#\þÏLÆ¡êÞe_ß~¢þ﹦Äe@Ýõd‡}ú\иçëK =MŠÕQ²ÎÐ\¹çÖ}¶eh}Áí«uÚ]-OØš×Cçk«]Jn§ {V¬n³O~=·™fU õ†½9\˜ –ú¡Ãy¿sÓ|*`4å¦It2Œå|?ÆÞà“l×°êÅe˜žrZZ¯ƒy^ߊsXXk⦀¥•çñáB`åo M™ýnX[3j“æ+±“>°9Eéºß ÉÉ_ÖÙ·"É æÕÍÇHštw‡¿ÉÆÅHÛ½pWßhr§RÝI’°Õ¤>t¬‘G^iwùDD$ ý}ºÜâ dX?tâê£[Èäý»Ï#‚YÎ~ä«!"ßhZβ»"‡ðŽqŠä䶤ivÎCÞ‡?Ö¦#ÿåu6Å»(è³`ßņÂK÷Åç´œˆ| ¹¼ú[ÅÉÀ%%ô«ô2&PRÏälÓ;~”~t]+ûÆ ”òV¤ˆE¹/Îe **¨°.òqGà*xõ»2UHÿЇ’¡ê ý¾VTôQkGÎûŒ?›¡VÃm˜^BÔ®²úXRyu*)[»©¢Qwá›Ñ Žê GþÊiA»Êý¶ND¾µì6!»ŽFÖúœ2Óñ<3ñˆÍg4Y¼Ï&¬†æúŒôÑBAòGåI´ ýér ®]¼ ú2Õ³®ñž>)ÞÜ»ŸÅ[C‚x»@ÁñmˆÕLôk‰¢…èÁDëõã5-šì¯}D Îl…ŠJA„‡Öä4VΣðàdþînô*„€U!ñ—þ¸ÁÑòH$E[;é¤;Aæ£koMçøáë“!}ǘP4.qƒ~M—èÓ¬<_MxB³ÝôÒͨT³¼ç€ê è`J‡š‹ñÌ¢85ÂeßíþÆAuÖƒjƒ«PMNg°ûåq¨z©1’ZÚUjºR¿†ªt¶ ¼Pm¨›”kÐ 5Rå„f$ú¿‘Ì«JíP»4c+0!ugŽÜ5»Î ܳÅiÅTд‹Ó¯÷ 4}m+m44…æïÍÊÏ<¡åGKŠÚýzh-ìfòƒ¶–©í2‘èà¹E8ÞâìÚ—" ûRlN¥·%ôÞò+¶¥ö¾à¿ÓÞ0°ÍÇ7Ä Cͤ꒖0"Q0¼Úí £í®ßs?:ÁXjW&y„2L¬ìóz£ Ó3òŸG`.‘AàØ®Xð‹– Ö‡%Ç^šhÍ XñÉéøIk-oÿœqèƒ?¦c–;,°MÝÔH˜>;ý÷¨{‘ôB¡þ4y’ï¢ àZ…sÖ|b ¾¸[àTú ÜãjCÉLG‚Ô;{õ¯ mýEݧÊ÷ì|E‘e2vÎÝ>÷u™' k½â#‘MÒkU¦µÙÓHÓMQ¹”:¿}ŒÜ@žå¿7hÑwüý”ø~zä,ñTÉü ª†Åß¡"êȜ㪩8Š4^÷X³ÆÃŸSÅ_Òã‘ßçCDsðØAŒ¼¿¬„’]TlCª~(ýêÆ‹ãºÁ(ëu«>ãák<ÑyHZº1åÍmž±AØ«¡jLJJ÷EI»B¢Q…9-§Åê-ªwågjØ¢zåAK­ÔH*9Ùg‹Zî%D¾]q^% WCK±S' WQWc—é¸å>Ô ¡þ“ÍŽú‚ÞXGª¢AN°óC–Çh8tGçeÀ4>iÈÇs =bmø’ðüöðÒ½ÛGÑ4äýÛù•e47‘wÊ«E e‡OŽ3ZšsôLùÆâ¸§Ÿ&/9xó=‘†WO„Cb§àÕ‡óf“üá,ÛÝïËcÌ=ça>Œ”?ä!8òÑá´!’WqL󄀿÷‚á‡w¿”oÄFøÎ\½ûºôø±,ÇÕ‰Aà{•äí«’>ý¤º bf_k\x I}É…a ðI…ÏewT:dÌ'žù½õ Þú3BfÐF±ZäwÈ’yPpƒÌ²Ú.­”)ÛB6icÄ ’=d)ÿÎj™ÐÌÅð¿´µj)BöݾŸ öï¹U‰\» %)%ïÝG#[@øPŸ0ëË ™›×oÿp€ÌOJï:Y©=ÜÉ~@.óíÇPÈ[6yáÝx KG-ŽçØ@Õ½ÆW(ü5²ª eò÷C'9£¡B»ï뵨ýPåÇþÛ„F jiØv]»uO›gu<‡FÆ…rC—RhRíLŸŠ…æê³G¥+¨ Õ3ï²*¤@û=ûªòøètçcxTÝ”ÔA7á×Õ[©6U¢0pLÆÓÿC= vx§½`óƒáC¦ßµ,aÔ½ØQÑyƼ*k$ÅÎÂÄÀ]—ÍdK˜NKÛ.y}æÖJW3vÞÀB½«0ÂRåEA{¸+?=Í–n{ÀZÉ뉓ⰑñÉçÅ_aØÌ*ÔH ­†íÚ?Š<­tHµ-O[¤Üt|­Hî~ìeîª0>ÃÈ«ƒTÆ5Ñ.éך%Ï:ˆ¶i–9éãö#½š@ Ã/c€Ù82y}·¿ÝÝ„,:Ç…Cìˆ|càÙOnŠ"ŠŸÎi…"÷%µãîM_‘÷ÑÁ©Ó#Èõž"ë^ ¾QYpi{ˆÂËÂŽ‰Wˆ|ûD?7Z‹bóWÖ4KuPB75£·¯ %ÏòÊ}åEéûÅÈYÆP¶zM„'åÑÙÃ}±¨0¿ŠÍã¨$m êr§ •·åLL¢j/Z²Ò¥£^¨{ªSêG]h8¿‚_øÞ5 áHpƳg4±a ±TEãçé”îk¹fz¹ïñ/È””Ô”ªÍBŸ³Q|ž?~;P>„ò[¯&¿!ïpBáË¢oŒÿHK ™õ®ÁEëÇ!«þ¬ÖÛk*«PFŸF2ù|„—³Ÿ puu+k. Tp^pY‚å‰m²Ãw¡Ìôö/øÓ7¢ÏŒjýjƒ<ÏÉ×P{0ï`ŽÔmßK"ߘ¯ÎÈ ‡¨ ùŽUrÛ<ê.^9³NnLä[qáø¨5ŠÍ™LîÙF‰³Ö¡7ö%¡¤ö¸`lzJ;VÑê—\AÙ.Oj¦Q(—V¿þ˜&ªž»¹w ’ûmŽ6:T^È(·(Šª4„ó¥»P½Ýçê£>Ô¨Sz&Ô*³ñ?5ŠÚßÖ]¯û¢Î·lþì;‡Pwbn}%§õº¯¼Õ“E[Ó¶C^"ßrLÓäÃÑè2UÝCóSxžmRc ŠMÖË©.=NFsš÷JÔø’¤5ß„ÐñæÐYç ˆÝSh¬”’IJ'½¦#òàc(Åï§=!ãƒü¨Â+m ößsœÈ-³ÌDÏ}¯!‹²>cÈJ²²Ï<)€¬yZ·„Û.¡¨Ê ™[¬µéÄÜ”©p©i%Ï3îœbÔ>@ k}gò‰È5†aóÐü2á•[2dÚ˜èM]H…Ì9R*)ÈZ(Z ¯-‡Ü+œO‡¨ä _wï+ƒ+ðíeöòÃ=P„¬Wj“®C‰ån³V‘PöÀ†×¿{T¼°¡’<üªj=ß\›†Z3æ! ƒºôƒ¿]FL¡QÈ Ÿ8FC“îÚµ'ÆKÐ\ב›É/ ­n¤SI¢|Ð~%hÂIV:­ÖM²ì¾BwZžWMA,üy,ü·C¨HØÕÖa0¶¸U¼Š† QÃeïaTò.é±k0&Ò½e=ºÏÖ.Môífæ<Ì]¡XÛYQ„…ÇrT‡v¾ÀÒ-:A.·c°rÝzE߯ÖL¾>1¼Eªþ…íÃw`Sý`Ï>/°m1–Pâ;uášá²#Hzí6í:$שÛE¯I»û¥º†T¢ ÿ‡®óŽÇêÿømÏì"’$#Ù¤ëB”½²Ê¨”´£¤Rš’”‘…–Ò’ì-{ï=²7‘Uvüî¾|îüóóxÜëºÏ9ïó<ç}Îë¼Þ×í~¼ï›ÏÜÒ~$ÿÞÝDq\W½sãlÈ=d9l¯—wzY‡ Æùºýæ™ ´ÒBN]iyý1¢¿qÇ}ndEÞm©>]fC~‡H³Î[ßPðÚÌ+ƒGƸéÄ9göwr¸Ù¯o<_C·LÓs_;¤Mô·†ã]½s(ñS¯ËÖ8 ¥ xoýVñDhæpåœ.¿:Û‹ u‹K¦a¨üîgà:îèÚìœ-]€jâQ)ªZ¨>•@y>wW·R<»ì…ZÕ — SÆqoá«ÚäƒÔùֱ놫"ê%çóVÞ‚)ôů_:¡Q?î¡4Ùt¬¨?ÌMÏx¶Ï¿Dô·ˆÛuMòDëU˜ß€–¹ô jD¦tÆhžC­‚X¨GúÔ©÷Æxí?õ{ßÎ_÷ºKÔMªs¾l4¦ÊøõÝ„æM=ÓŠ´%в0Àã³Àmd¯>ÑU@ÇÃou§¡kçÑa…¯uÐ]^´«N²z ÏM%õ]‡¾ït'Æ©ZaÀo"b]3 űjÓ=„áÃ¥OÒìáç\ù¯FŠ30Áãn2*2“5[´¹]áWš”éÒFK˜®Ø“5™s<_nkG›ÃÂCêRýd¢¿1_:{jñ3ø=¯@'vH“g¸ÞBŠp26© Äq¢óï·ZŠHÓÖÏ“ Ìô P4F…Œ-m»ú·Ê#s¯úííæÈ³Éã“/²ª8«Ék…œ-õƒó!¸^µ¶|Ðÿòf®Óžù‰üöe»?1¨ àúJqŽZ2z—y–p_…O0Æx£ÈÕkfIš(:ÜÙ?ð ·tvï þ†’ vÇɉãÅXM Æ@[”qäÙ(A‚rüIâtCQaãäÍï™PéRã>öbÜIÁû*Tå7îJ3SºEÖ†jûzh>ø>Fõ™²–³"Ü]æ¼Þ~¨µ ¼R¿uáÞóÆ•š‘¨ãvTïó¡Þ˘ÀGªD«uwšš@#ýöl3Ý 4=sŒ®ÖMÂÃ?”Z¡iZö˸opÄõRâšKćyvN¢Åý|ýõ×¢ÅqÛÚºc¸? µÌ)?¢µõèa>ÃI´ÕÄ×e&‚xÐÆª¤§f Ñß&¥?yÒCÿ×Dÿí£7!jáé/ÚÖõðöê·m—òáe·¼wâx¦y‰LkË(:Å,@à»;ù]¼ðäÚ'e?›]ðX×èýÝ7ËÀä¦|ü‹nƒsðˆªªøq9ž8Þ\¼kÏ®eG˜„Áë<Ọõ!b‚â4çíˆÔt IÛ5Ñä&þ’™âÞÞ»ÔJñâ$Ïß»}âT'=æãt!ŽP'ãÞÆ ±{Y'½]€˜E¯Î8'â¸õs*ï®ÎS¹1üÓ´ÄŒô½³º|boñþÙöyÄ1{\ni—ƒxNÙ×¥÷B¢Ïù1foH¹väAâ™]aË}¨¦Ù²‹V©n‡œk›“TK!/pÿ‘Á (x'²Û9Š•{?êC©ÍBèË‚"(Ï7µs2ª¤‚®=c‚j êÜ¢$>¨©ÚàæTµêÜ#¾î°…ÛWJo¬‡&Ó›.'å¡%ðQž•+´ÑÝîÓ·ûýå½É;x ËËvð– =ôÈÿÖ˜¾-}ô…Ú¿¨ÞCÿ\oàU<ÚùP.Á~Œ˜pï11¾w—ß;q„I ™ä¥)˜RŸb‚ß ¦7ífaF¸•‘öΘ[G]ֵ݂½Í¸üþli?À6ÿ –ƒN¥kæz!™~ô»@ RÈñÎr®ˆT×>ÈOowAZ6¹ñ÷}HߤÏóç~#®Ë,™>ô Y8,Z؉¬½d¯ùm‘Ý]kÛÖ rj7ÉS¤Ý úïÒŬQäŸ1÷3D~ÇÎ#~ÍY(xýàí–ø»¸éäȶó®¸ù‘¢Ó‰ËωþÖÏBÈP!úÛŽ–^”…Ç ;”Ö«9yë¸Êì½4¡BåΈ֌ñÙ£B•‹ÌÐéPT~ÅyW(. U¿·#ëH@5Ñ÷–áWQýçÄt …1Q‡ŸÌ¿KÑ£Vé¯M/poå‰CŸºQ'åÀ@´¾7êÅùm¢KGƒøÃN¾Õ hÔ½)”^@M§$`øšžŽëíW,'ú[Ðç%— 4wÈ|u¢-ù •Ú$ÑjYðôçj&´æª<Ìó9 mO ?«ÄCúÂæÓ0*—Ï)s‘¨·ž—ø6û´¾y"ÒðF$ç}qf,¼|àQNa> a¦Â‰Ùt!ô0ØœV„㛘OÄXÀ3òNHSu‡ÀMG÷ž:E%_n3y@@} 5óæÛ¼°uúúÅßð.L’ËüÎcˆ¡¸K—ÄfɾtrV¼åéݱأ,9ÍÛŸ@^»˜æ…x(ã_…Y†¹êÓ (Ÿñî ²Œõf=…:—ÅŒ“\7 žýëç…J¾hpÔ×ªé  V÷”?{ŒÆa=»eéÑämûgλôhšQiÿDÔ×®æóÜh.ÕvhI¨-Tq:@+*ŸÒ¿‚û_T4ºÚõ£µíÖÂâŸÐV‹§¢«Å’èo9ùR½Dë?×ÉN}ÉîmgÝàKjÀ‘ Ë©"îðv^|Mdß÷g ;l\CæA'~Z¦ “?K*ë%àñÀW…à (ôs¯-ùBäÔß?ÇÛw£ÒsÀÿ3¯Ä¾M{à ¥Óœˆ’<£s²ó†××½•§»!‚è¶p¼> Ïð€hj÷€õLã˜ÝqÆbN=Èu³†Ø&‘댈{áÊšM×®ôD°ÄíÔ+‰ÕûqTžøë2㬾+^@,ƒ„JÝUˆùÖ|pä:Ñ×ú%3S~A,Æ»-NÒû¢í㉹nˆ“¦r¬–…x¥ƒÄ'%˜PbgÌÕ)Ó}x_ß… ÿ­Œ1*_!ëbâüÇE3Èy¦Á±¿dòâŒÞï ¾ 9æ‹I PL9¦ì” ¥—Â6ÛùByëµö I¨R¬HùxÒªm¸Ùÿ~¬æ0l¿nuWõ.0°?ƒótúM…ÃФIëo~4Znœ"[6ÒÖaïðgý§¡#ãÙ]M»¡ëÌÜbÝå÷ÐéÔO‡9ÐÛ#à/Ý>ý%?¥¿| C”ÎED]Fz Ê5ÇÂÏ­9ÃáQ˜Øºu~ûøv˜bÊ.Ìß”ê~_¸ÀôÏ?Ï2Bš`¶áÊO‘¢8˜ox|öì™·°8VÏtÔf–«nÿi,‰d2Š÷Öó"ïñD©ÏœŽñ"¯× x¾|„ ÄNçŸ!6%« „M@ G"<ÂOAtŠ@;L l« $v’ľÙÎE Hß!vÏ_Ö–@+%þ:†â;A™måùBC|¾Pþ}¶P®3Ýòêùþ}æð¯lC #¬úëy—Ãöý•‚ø$¯Cö´¨Ïm¾´PgùûrnTÉÎÜ¥'V–ÌTgbwBö’WH3gfygw…šr@fü .±‹ðmŸûÆ7wí!£­Æ±$³ˆÿ›q3+?XïÕKÈÕo*+Ë0†‚ÌÇó¹›³¡äöô™mnPa±î [ب:ÛD©æßÕª£^S± :6vÿ>ÉQ¨ ”w5•€ꬻ\䤸ß̹՗*KÜU- šœáIBAúß_n~Â$@Ú)~LQÔqü7óîj»š›åQTü¯¡¶[,‘TêCFdü„¡1J ó÷” 4/X¾1•!‡Ö×Ü=ûý¡ã¨ÛÅ9þXèRƒÔcº‚Ðý£Å¼TlzsE<˦¡¿‘lª“5 †¸Þ—|?n70ñ·†Ÿ|!üÜÖñ0~iÀ­ž³ &–ó¨S¿ÀÔ :òóÕ[á÷î esg˜áò¼“æsüæE)OCaÁu=Í%6Xâ ¯¸u ×^§?àÞƒäL"Ž["ÿ“Úí¶§Hõæû£‘›ZHó¼:>l›Ò}ùðÙ8»†Ý² *sÈtxácd ¢5Ò5Q@6¯+Z¾Èž«¬ñä rzO;¥En÷@ëÉ`}ä g^2‹ÓG¾*¶ô'(°³(X݈7ŸÖwüŒBm 7›òfPøñÅû&óa(⯮í¢EµÅâ¾çq›Ü2µ”(QÖ]7ûö7n÷´¬˜gkÅ[Bí㹿¡Ìcçœ?RÍ(Çgiãc͆òU!wö,½BÅüê±úM†¨Bn}ù”Ä5T½æZÆ6|QjÖœN¡ÕéµÎlyz 5—ç—Œg æ®2²¥»º¸‡Ñ0e‰£ôßL Ã\®,^†¨×Ñcu`R ê8/Ê'Ž¢QeÕ=U$Cãän¿Î>A“_S{w4Ûà>ÁÃWT­ÐLH3.`bÍ5â>òp• Å™;’é\Ñ2ü'»íO´êO¾ªx (ÜgqAëÐÏ1ôñhË$¹iÈú&Ú=ìÜ>êC¬´ü·'òã¡Æñú1nF<¹œ5Þ ™O±zº·A—gÑËÒ Òÿé*ýZó®çw UúÞíšu¢¤™l×}2ÒŽ'ÍtMš9÷—ù7ÿfÎýoFÜÕåÿͼûß̸ÿÍÈýß~S´Ë76ÌBjÄöj‡íµ¤sÓ'Ý;‚¿úüÓóªÎÿÓu&ÔºVûW’žYF?^HüÙ„³­;¯-CvôÔÅÀËc¤™¸ssî;¼†|»Ëª7µ)¡ÐI¸‡{âÏ<¹^E÷oÆÝIIFá!yB¥¡v‡›…À˜iF솓<û•] ¡éšy¼zH´ °82[¦ü› û¿w=^ÉmK°†ÞSfÅŸ¿C¿©ÌÛž9.dœxIws7 ¥0M3ŒÔÁV¹—RÿfÄ&{—éé=·×íL—‡©íŒëgŽÃoÚÄsÁ.0Ã?õ`8ó Ìí ÚKX }'—›L{aéÖËó£®#!þès 63$·q9}ˆ”FÞò5¿úUNü Á3ïÞ5ÛèÞs™nkÉL!êrzj±º…Ùè…µv GËLRífäæ”¹òÅ?y‚ÂõÏKá†Ël—Ýqãƒg»¼PÈ·‘fyž …]­³Ûî H ÈÑù7¼(ú›¼ø¶·n{¼GÐ’gJžÒçÍžÞ†Ò*e•K!¸c*G3ÊVÚ\!ïCùêw<çï_BÅy]·ƒoœPÅØía¼ëSTm)83/ýñÍüëºØ~TßïK9~wSÙ}ðß&‹šU=VÕpO"û3-»£¨Ã"~¦.u‹äκõF²¨Hϸ,4²|+AÁÚ€Æ]—%,.w¢©À–ÎŽzzÜç°sïZ4K Oàž—G ^SUùD´¼ÑEVØXóOoz·oHü<ŠÖ1¹oN¡í† Žª—N¡Ý£öÉ¿fþ_½±ûÒÉ,˜BíòËàw¯BåÑ‘œœ¯‹ÿŽg‹¸½.d¿Û^Ãî¬ Ùb/{5 wC–æÖ­S[' S–%çšíuÈ(Ðkî`®‡ ¡Ñ<_¢.îè[ö…CFêÚôÞ¥tì#¸ '3|{õX ì^nÚ̵ Jd.T|¨~å#ÜO”d¡JÏ#Mp̪wl)ؼåï/›ôe/?‘{uK:-Ps̸ëéÙ¨¹H?VPÃ5âgŽ1%ú`\‚çu¨fOø`ÂUn/²%¸•¡JëõK“c¨Òˆæ0ZÚö×÷~ÐBÕ÷üxê¢N¨vC •¾þVu=`¸¶êO|×ôõë…F«x ï;žÐ|÷ö­Ë'í •+tŒ5Ü Ú›§çŸ¾]„¶íLvmИŸÚZ¥½OùKg7sCÿ—˜cL¬û`ðGóžK²BðÜiÜ—@£C‡öŠ?9ã¶ú•^RÁÄ ï}™:˜ò›ß0¿÷ Ÿøþf$hƼƒBaN=Rð|àmXxi³«U–v²^)ÓåGÂ]©p AM$gd}z‰y )Rdé>üHåku«$] i<Š7ñΚ!Ýó߆ëz¡îYÝ"G&Ë«E^¾ýÈâwGËü†²q>8š‡ì o3ßÑÝBÎË¥ñfÉ&È}ì\qX®9òÜÓ>šq|ù ½ªì¦.£€Èv _C´{zášwÝ­õh-ÑçÄntî‚LÝà!«&ÈâÕØ§øõïxvnw17d;©ÌʯÛ9æ _C¾|†\Wú†Š6ȧ–âBjùyך|(vRè.ÊI„2cÊ@ƒÊkP)_6å|?ªÅ÷&õ›’AMZ­€ÝQ¨Û»Ü!Ëõ1¯=„Æ~A=Ù´»Ð²÷›¢2´©i ;ÛòC§¥UWéˆ"toßè(¤“ ½ûÌ?]r¾Y…\¦¢m0û³|Û“Ë0tꬩãFø!pv×!án>ñŒ_á Œ…«ñšßø{¤K‡~‚É>~þ€{ðëKå™÷0mÏÞú¢ f§Ä£|w½‡…#ã"Ÿ±ÃÙÎ纎/‘pñφ´¾H¾¡M„®É)©ÇÄ“#7!õæò­åë ‘ö\S°h*ÒÏuü¸br×µìü7Š,Oo‹o—­F¶sßÛ>8û"‡sаöM}äúõCO3 y¶Êÿ^ß|K&wvjlïd•Z¾F!õ-Æa1 ÷u켂"Ò›ÕEŠÞuâ"OŽÆm9ÖÿÔ‚³ßÔû”‚PzÇ%ë wÜ‘eHnÒŽ²oè¨ ‹Pþõô¹Ü”zTÌý¾SÄ– Uv4Ü ñ¸ŒªMÛ&Õö ¦Í-+æ•¢úùr6ßlܽí˜ßò j‘qkuiâžÉvCÉmy¨=+sòƒ“;êqòFÜêCýøæý%÷Ñ(èÐÏ7âh¼E#@ƒ¦²V¶Ó×iqßÅ»4ï¢Þ£Y~ÝØ¬þ^´Œ<á}.-o³]ª5dù§7}”÷ùÕÐ:êÇï‚0/´åIT–=Iô·u{¹òÜÿ_½±:’6y<jßë${¾ÿ‡h_Õ£…üíçØ@¶] Ås£Èj¶Ü×h™ :/‡Á·˜7g+7zA†2ï¾ç:î`2ðÍf?¤ÓÈI÷1\‡ôÏ7ë>¿‚L‹“ë³ !GæL@ã&È/:•p—&ŠÓÓ;\®ƒòÛBž_ªAÕÖçÉ ¦¡ZäÅ÷¨n 9/]­ 5¶n.žê÷¡&;„ü}a=Ôt0o¤õÏ$‘ä!b}ôròçû¿í6ý~ªŽÿú AfPµá”Êö¢ÿýÂÐÁS×þÖq/ªÞoùûË`ÑnP}çiÜwe—þö­ö\RêQ¨W,qö:eÙG ™ùË¡oRáûC¡¦Qch7ºp½1Í:³¯†'^xÝ·b6þt½ ½Çž?qU ú=5©²ŒÃ`6}Ö ­Pø!º·.ù\Œ&‰8c9Æ5b>‡n•‰*gF«k 0uë‡âõCêð[§-øàá˜Q÷˜~t¡掑_â ŪQ.ꆰdsc£[|Òîω©#9]gMRDšçL«¾Cª+õÎf¹‘æl–_p7ÒyilÔÛÿ*È ¢ ‘I7åÒved¹·´óЗd£—W¼25ìh®¿EÎc¯f´ÎÐ ·‘®¢öσÈsêfé'ÈÉèKfšLow—  ­[$Å1ªð–ù¹Þ…¯ ~ÎÑ[F‘S/Ÿmzˆ¢¾O-6 Xç˜Ðlõu”8¬W•ÃÏÛÄû]èQúÇ#YïÊ(sô:k½¶*ÊQ~ÈT=ߌò~Áѱƒ¨Ø)Õá.Œ*Ü2lëµPõü&žZ7D¶S£h†jS=¬óB?PãòbiÚiÔ½8¡“{Èo?²2Ľ ÏŠÓ]ÊQ—ìuËÌiCÔ§qsþuô RÈ€“ýR=%ðÞžèoƒ9Ô¥Ðdò¤m¥]î#ÿÁ”Æ®…fTK>Ûæ»:R›oS Å‰Ç?ðk=Z¾Š=_¼ƒ¨7ÙC[8á¥)nÂ4Ñßho8»ýÍ#d3ÑßvùUç%êíüúÍ™ökô–¹¯þ2<Ô`ÅKG¶¼Š´.€Â?§$öåÇ¢/Ö ] NÍdŽXW©(è<‰±GxÒ,(ˆu[Vö Ê_ĺ­Î=+_ bÉ¥Éõ!F*öXå'=¸!ó«l#Äp‹«cÜ1iMµ¡<·!‡²]UùoÝ7ö(`Ed¤ãܳ!)ìóæz.HX¾íH­Wä¬AÔ/Äom?Ho™u<»(Æo.zÙß$ÖsuÕ›v}î†×7|ëŒM¿7û2ËèÊÆêˆuh.—>§do¿íV÷Zr˜y-­û Wìá!ç/› ïË¿‘·„j³ÖÇM@Ñ`óžì;)PúY^Dwô'T\9Ý’9E‡f:úÒÔ@ÖT*yÔÆq -î;õæ:¥w=J Ñh¸[äûehþ0”!Ë• ­!ZSíήÐIÖÁ(-]Í/žs·óBO†IבÝLÐ÷B¥K9h XýXÐû C” ýÁ]'a¸¨ÔºàÃS)Ï$‹®‡±Ýr aC—`‚Þè·š» L†lÚ,¿Lãžù€iª ÷%˜½t>¿þª:Ìw :ÞìЀ?7³ß»d"A1ð¥‹Z1’µiµ½Š>‰ßÌ„üï!UÉß¾˜«H³¬ÔEOM‹ôgO%¹dšàº3š÷ç÷ ‹Ëþ‡>öxŒdØ0rкùÖÎ^D.5q›ÁÙ`\Ÿ\ØçÖõù<ü»—ÊQàiÌ&ÑòTü5v›§Å7姘ÜU‹›K…~~²GQÎ6ûÛä(ö©kÞWÕ%<¥OÐ^¥Äí_[wWªfáŽÇÏ=¬ôPÖ%áqiú1”?¿·€cX}N-üàŽGvçPµ>øÏ°ÑOĺ9›ç ѨþQìÐî6:üɯ>µdÈÞïŸÆ½Û?RpÌlF4ûØÃh‡zö„v¯Æ 4J£–è2A£FþÈ›hÂEÓ5òY Mµï_'JƒûîVÔàq74«¦ÞÖôb?ZˆR»6}|ƒ–»GÛó ÿém¯ðý>}~´Žô®aBÛõãTòc'ÐÎ_u³ËÊÿWoì2ßv/Ö@­áTÓqi(·ªí焼jµ§±9'!›X4 I.A–D‰ýÀ!È<3tNý‹%|“–ãêzDô±!C«Íéö‘õ}ò¶×Æ×Çy~Ç~H ³ù’ßT©‹&îØë@Åß­fc¯ßÐ7;Å{©&‰=åëÅ/{ @eûÖ®HO¨æy¦VzĪb–^¾éšÀ3LÊŠP»¡O8E0juØ uu ¦›bÍtj¶^õþRXÕŠô'ôb ÊRÏ„ûTöŸø4øé&TÖeo‹yU&ÇMŸzxBU _äOŸP}ßm«·Å?û²UßãÕÔS¥$íyt ¾t¨Ç½5…¦gM˜÷¾“½§aT”†¶¼qнôÒÐy›w½—të‡Þ%l(^•Ïë[jöC¿5‹îI–‡0øTUåž ÏÝLîîЇQá3ªßÊ•»s&’ ý®Û ýÑ”R´~ë×– 4ÁŒ%ÙŸ`c˜ó¶ªì}l “å„O§aÉ}$_ôû $<ÕvŠ–A$§y~ùi R¼üì±}D©Lß“# UÒ®'YHwÑ·Y;‚2 8èÖq!Ó®™-—$"ËÍ+;Nµ "Ži^OÙŸ_d:1U€œf®* BéÈ­´ùí/žãÈc”²Ã·NùüýõÂcY‘fq›c ¸Ýú^­‰BÕfs˜Qø‚«ê¼ËWÙoÀ±ŽšEKÿ4ÇÓ¡X’r¬YÛ”¿iÑ,†Re-6o_£tCÈïqW”1 TV7û‰²s&N—2Pþ;]¸ƒ*ŽÚòÛæ‹*Ba%}·¡ê陬¸WDʾ܃»¡Ú`Lï‘Ϩqê‰aÜ'7ÔÜ ;8f0„ZBÝé­üqïòæƒ_UQw£ÏÉv¢¿ñi-eóû¢!oþÏœ²4¦P–º7ZLô·ïdÄö&"CBWp¡ÊÁz)Íx’_ ù΋¹)I¯ÐÂ1T—ŒŽ -_Z0P]¯A«^§š° ·‰þæÍÆ8§ˆÖ!‰ýoëʉþ&mÀ݆vF0ìQoGXj4)×èíEqŒA4®köº®¥¤•1'•‡ìȡЕiê‚Od ¶\Ó*w…´±7Å׈ºI®|ìOuØy.8>ë6½ù¢(ˆ 9Ì:OÿblsÔ›J :°ÐQÙÇ¢%Û>~+ Ñ_ôJûÿÖsô‘2f[râYE_/Ä;õj]¼ ÓÂæ{êÍ ÉíÀ —=œLÇ|nÙRjŽ¿Ü$Ï©—„¾ŠIRBÚ#› Y!}ÿGuÞ“^)/xÕ„2Ž‹‹êuø}®þÑŸ~øæZæ—$ª™öœÊºe4*kvxdý,þã"ï ÙE×ké!§m][ãGÈ3ÿä“$¾ dˆÉòCÑ᫟R5Ó¡”Ú!A›ñ0”g0æ0Ù¶ulÎ-Ÿñª«¤Oó«VC­œ[Ï…D¨+é¦üìC ) W¸NA3]ÃqÍiø>½;OïntX•D¤ÒB—9Óù+ÐsÌøÌ¦Ч ËGCÿÒØéô.ü4i×aöºIJêÂÈeŽ“šÎ.ð³G̸߯p¶4¶ „IY‘a‰05+õ ê#ü®Gá,[I˜YHiÛÜ ó‡DùÌEÎÃÂ…!Ê[°â¸pÏG{ûßPíg¦¬ðÏßBÜÅLîA]í‡ñ7¢Ð`å’¤-— M›)~°_€–Kìt·X Måô½ÄýTЩ‘ìCÆÝÜ÷†YsÙ —q"S_Ì úwd¦³ˆÁà©3ñ~'ýa¸4%lá$Œš~Í?ú0¾îjë˜x-ÀöµaÊ¡üôý±ðÛ¨xFåÌ<Ìœ¾AùRBæ¢¾Š†ÈÂâ[Ó.oXzyàdý[i$¼¨·tÜ©ŠäTvCVâ1™Ö‰8¤2®4q87„4_O>±ŸF:ûïµ&×#CÌý–Ãû6"Ó¹ú³×:åò/ÑKôg‘õwk¿Û›cÈþ°M¾ìørjè¹oi8Ü‚Ël/5Ï#ìDÐÌý6ä»ÈA·‡Õù»ì£÷èó¡ æÈ}†—B(”¹¾âT /­ ;„"{æ}ç7¢¨YñÑo§v¢˜‡FôP+ŠÿŽ/{¨‚R^xÕÔ+¡t´'åa¥x”‘÷>ôåð+”%VcÞ¯Q¾ýN¯ãvTœðýRã,ªHÐFòP2£ªc¹ã…óÓÕ{+P­ífbù—S¨a'^ýyð(j²nì|Ò/€Z³‰ÇSxªQ›üëò¡O¨Ë#‰íÆDÛÎúÀ§! e,¸÷ŠÝ@cF3Ñ›÷ºˆþVÉ@Í^ˆ&c].§{%Ñt)!m‘8~5ã–ëÊm9‰æÊ eÏFUÑÂáí‡{9´ ›‹µsA«ž(-ŽjV¢¿ ‘O\&ú›ƒA“<9Ú2¶²—X¼'úÛó±Ä­‡‰z3£»Q±Fo×/íÉ?ëöEo‘± J/Ù‹Á?cS_š&CæoübP3¤eØ Ð9Aòþ‘¡ì­ póNüNSbÝÖ(;EÔUÌðh„¬1/D§°;Ý _ç’+÷ng„¯%ï§Ç·¶Côî3ÖÙùþÖqêŠü!ö2«T¦ŸÄ+r7ÍYñBB!Ç•‰~H²äø0Æ~ ’½æÜ:×qBʃªžÄ‡’Ä:ެ¬‹ûqœÚJ?s%ÒšÙ•^AºAaéY|é“·Üýõ¹Æ0EøÆØoßoÞ ßfUmï¸gA'·±Í[ÈŠb½É^Ù·zÂÏ&[CŽ¿Ÿõ®‘ûÇaI Ì ò‹N«=vÕ¦8ªL(9üTKk[-”"?ÚNëÛ$ŸÔþ~¨>pF`C$ Ô$´SxBujn»ª÷BƒðMz>;h:™ËnQŸ ßMÔŸ$?ßí_×k€.©0uô0ÎÖµ¨Cïðn~?ù£Ðÿ¶ßÒ§š E0Ì7øqÌŒl:QÓÄ4?ïðHepÁx@@Ê! ‡I51¿p˜ νwúüvüò9VÕfn~™v…¹v‡J±S¯añ& Ëa?2X¾è£SÒî†dv܆‡ø‘BR`šâg¤â¶æêi@«Ù£9o‘ÎòŽÑ©Adèúh!è9‡LÃûOûÞZFVåÛVŠÓo‘]þÃð qÜyj³ÚæCg»yäºçù%ä}Äüænßä¿»±·3e­ieSq'×/êY/ÜL&ØÔû ·($-ÜÙý·æ¸×åŒFñ×I†Ëí(õ]ctéš.î=ÿÜËAey™¢ž…£<Ûðù$ÝQTôqw}8‡ÊõĨ¨Zuʧå Å5†h÷]¨þÍ{'Õ9Üýìh¤ß-jÔzÜpJžÅ÷~„Ó½~½¨Sþl«•æFÔ[(7|ZT‰†’…k™zÐX\/D]8Mtƒ‚n·]CÓó#õ*W(p_„½ãùV!48þê™Æ5´M}t‘8µôŠhþ]òOoyOÂ>Ö£õû‚‡²;7 -çéð펎hçû¬CZ–õÿÕ[ã3Öè«PóB{½¸Ú<”Zõ7¿Û I¼Ó¨lò‚,ï¼`©á<ȳ>LÎ4ßöÝ~F[’– ÞÇyž9ÕÊáD_{$ú¹PR´ö´?tg‚”›lˆé‚t5t¤"î§,­?•’8~ûjðþ{Ysž;{Ê4ѦvÓq¢“Ô¬Õþû=‘4k©_PÃ@Ãí¾Gj©L÷ l}µµW¾×@?_dyÎ~¨ ~ŸI<î݇„݉:°›¡t3ûûý˜‹®Üo¡RÝŸ[2úTnüÈw¬ª¸î¥nB-¨Jv~× ¶ø÷ÿ׬ƒò›þùÛýj³ÒP÷:Xl)`(è%Zó 1Jr‰U¯šGb6R—ŒCë×!F‘÷-ÐIaIS]ÝŒ„O€ž%‡Œ›!ÐO{Nª€9Õ^J¹ÓÃpØä-ÅoÁ0*è2vÍuÆú²‡|î¹ÀÄ}—ÀÁs0eùísb?ü6ÍÚòþט¹µÈAë sµT7,­‡E­ÑwÜN`)«ˆåÎén$¼·M$§>È·)<-©ÃõTJU_}÷礑ˆhbÛ!tÆ[ vÃ6d7x•òl+2m>ïáP&ƒ,Îçøo+¥#ëèŒù¹Pd¿¡e+Õ΀œÒ‚YÜD‘›®ù¦î¹«È³^léÞB¾ýAƒNŸ¿¤XaïƒC(¨jç¿óô %&N¶:x²€Eä>Ð Š*”†o:ƒbG*j§Qó$ÿï÷;ÆMÄ!©wÏîk?ó ~à Ù—ybÝfF€`1*n*§B4ÇÑCwó ª°»ŠOc‰;dRè\ákœ@¸³&DçU_¾dW±"ɹÑÊ*ÄúO«ü‹J$S½8ãq’d‹eíb?}t¨ß˜7”¨[å­º=š’Ú5üŒœ R#d+%Ø!Í"æXŸE¤•p=,% é×kÓþõ¹·|‡L #œ Àéq¾ùš¿+—T žÇí–âÉaÈ:³Ÿ<ζ ²wjëÒ „M–¦ð½ãûNè¬ç™3owÝrÒÒ M³Î.Èâô‚z -âó@ßÿ³ -TRçÒ›zAUïǪ |5ŠöÅÛ@m"›ëLØ]¨÷ÑXÜi¥_¿OØ -‘è åíä=÷»fÞBgó™…%èN6ððy×½þ{w¦R^†~Ýž»Q}º00ÝatÚX† »çbáGYæÎS‘Wá§0Û½K[úaÜ"žÏIà&LdH&|è…)õ¯Vw¶E¯ù ²oùîà ¥6Ãg9˜³y{ûñ9°°©ø-t,Í~3ReC2›4Š3HÞ{‡b=KR¦ gow§Dê(~™ƒ¯&‘¶Œ™Ï‘Ž”oÛý(߇Lb‹uä]¥†Yy½”qg,òr‘ë8µã†EË=»¤©Q‰CYíS2 ¥çg=2ïAáÐ ­‰(R(¢Má<ƒ[ õ²;'ôQ\ʳý¼Q‡NÓ»¹60á »xúS(3’¶sŽJåzvÓ^ÕC…aPÝ‚ÊI{´÷¥“¡jy]}Íõ~Tc^Hµ§–FõÆbí÷Ÿp÷·c’~©¨•—U.!È„{ûé„Êl4Q—#Í1 “€úÚqžaÙVhx¹üa„H$ë‰->¢WC“£ç ¦ÃÑÔKÀÔd9îKŒ”a üf“Ͼ_yâ‹*/r-=ÐһɘL”öŸÞÔyæšbÑúÝÑo–çÞ -û§I áchçS”îKôÿêícyëþ|¨ÑšTb,>%æ}m“”!÷ñÕL÷š`bÝ&VœP¼2-ì÷ n_F|º‰ž?—äýi”æîëò¸ ÅÅxà] Q/3¹‹Ž'êJ'¿Í—#ú›Å‡w¢Ú?Ñð°ëq£î"4ðæqNg%ú[Â>¦þÃh2jõ€þD šÎß<ÙÑŒMb¶Õð-šË)¶°ºˆ‡Žiqˆ>å«Íoˆ©=dõª»â²/äæ×‡„ãÓ¹„VHbqϨ0i†äm-&Y[7CòÒëÓ* Å&‡Öxäq¼ú@0¢ý ¤ÖkKºÈiº£BfÒ‰ãU)±)îÈ¿>÷e›ð©¿ÿ§ÓŒc„o›Ïþäjý ™ÐÈÑò€²$^Ý5øY¿"Ç#8ˆ>7`A·Erõ[Û2݆¼_þçLˆuaA©}ÃÛ{PÌ=『IPzoäÒ\¨TÈÔèïÿ&Ugûoóy»@urD€S]ÔŠŠæ— u3œ»~ZkB£Dè ·'éÐB³K> § Ú,Ç\n8Cç‡ÉíAÐ}XŸe³ ô*èíï­}}ãq•s7` ´¾0¶ä) ÇúCiŽðãGø²Î2ŒæÒlÊôO€qÞz÷K¿aâÂߣ®Âdÿ—Ñëƒ_à×Cï´Àù$˜öòÛ4éü f[zªg–aá†öA¾°tuÌìËΣHhÌ\d®FòÙ±aj¤<+ªÍ%ƒÔ»¾½©¾¡†´jÏì]"ý#kÇ$ö/¸îxÀŠÁAd9²¬ad‹lGnî"kæFާü‹ԑk•;€ÒyÂ|í½qÃß÷Ï"6âÆÛj#!ò)(tÔŇ/PXQ  !u E,žÜy¥ƒ¢-ûö6¥ skS®¨º ñ)ZÛÎña4¹!jÀÃ\‚¦aF•Ž¥ÜWð{1¨Íþ”ríï…jg#Y¹¡¥]c˜Ö?½ÃK _´'¿úV mY‡Ô·výíá̳5üÿ¯ÞØ®m=ºå3T†Zþ4I…bÓž>.Ó=+æw)ûö¢/ñO_1bƒo'$ÁHžx?ó}œ=ªéÛÜÊN%Aê¥ÍŠº†ÞœÌòþå‘\¢.?¼(ʃ$ûÁýÄuRs%¡õ~|ëÌ¥èȵ»G{â[(:mSªI‡R§}ê‚›oýhm'T _—ž·)éC7¡ö¢b€÷8Ôy¯{¿äq ê&63˜¨}ÎHÔNú(Ñÿ8äŸIœÿû}H ßY¨b ¯ ánŠÐÄ;çÕ âÂÍ¡ý¤¡2Ép·õ/Z¨Š(|‘ñ‡ª_Ó,ì‘QûçoÇ®f&ï´‡º]®¡‰ON@½•üzª¾!hȹ“n›îMiŠdv1ðýy7'¥–tЉÖÿI €®Ëº<{~@ÏüØWRÿGÜ{‡cý‡ïÿ²GDDÙ›DVFÒuYÙ{oÚ¥”‘d4PI…JJeì•l²÷^‘™QV„𽽟wïïq|Žïß¿¿îã^^îã¸Ïûqž¯çõ<_0–ÝÈÈK· ÓļqÑ[0¥rJ+øõÌ|ÚRý0y~zšë°% ü5OäžoŸañÈÛB6u"øe™àGä+ÉËû2Kú`-ã`õ£Qøó‚NË_a¶HÞÛ nª!QžM°¹ îØLVìx[‚$—ˆ0'j!£:ß{¤ zžIÛð©DJKvê#ÍÝ1'E¤£žýfêÔô'NSE<·@†.Ë‹ëñ”ÈxjOÒbµ!î¡©;ö{)™ûÙ¼­|„{‡^ÖI&Ö ï1qUäx¦¢M5‰ÜT¢^Q OÜ9¾s½È§Y§Å艷Joò àFé‹‹!-¸Ÿþäb%05V?\s ÅzŸÉœÙD ‹_Gß3\DÉŸìó÷²QºnIfá .ÊLÎ7Êÿz…ò¼,º’Cò¨ £Úwú3*ZêÛʈŸE¨oØ!dz•>ͤÞLF™ëgïxPõgÔ—€Ô"<6Ez Ò. 5i †g"–P[ÑÛB>–À7'WÉ%b:Ôw'iÇ‹h(³ÛÉ\„À·øŒ©h4ÃÄl%ª…Æ¿OMCÓ] ¤çî—¢™dÄ£Ýhîð¹’üR9Z¼×4³DËá3‘ß‹ÐZvT`´W‘À·«~Îfïю櫦 #o±[Á‘º½ .Þ7øéÇBô Ò” q¬~´‚¦!WYÕ—¡Ò2Šž7š 3!)ƒG¯·çYÙ£!ç÷ïå%/YÈÌΊd>¤IÈm7¿º?'ä3ÁÊ"¥þm®m©ö†äS²-åN#\¦—¨] ©4±žº9²ÆÍ3®¤²=O9û$ø1dÞÎeÚƒìÃϤ£ gVJóè<5ä®×~–IÚ^‡KwyrÀ¹w‚”]Ü„÷-Éû 3˜tyðT jn×kÐèü³.'ÒACàœXŽüx6I÷» ÇÀç‚û²ŽÁO®\N¥IŒmWH= l)ÂÀŒàó*ßÝMÛWUjd ¯5k ÚEè—â]¨­ vÐ$? ö_“ö×|©ú9™E3hQ özøk´F«|WM%†vǯíCžrÐùðS°«"Á!Ûê’ƒþä?—((†²FL–/Ã7jíW[Gé`¤ßàæ®wQ060Š.¨éôêj¿Û§d)CÝo·—“2Σ]ϸ®ÉQ4 /–èz†F/® Ï£qÆ]o—M4éÂ/JT‘hFùÇHA>ÍÕ«óꮢÅã#Š{ýþÓ›¢,†¬Ú¼æ}Ó†vôB!¯Nø&xC+úÃÿSo»õ}g$~[CËsõM½û Úà›Sã¬ñö<¿™T.ÁWNZÝ£é"ø³«Œ¶WŒ ¹mR>–a>%ì¼YœTùßæïvotÒ|ö… äøYKÿx9¦zÏOåñtÃ|Eç !÷YÔ̼W‡²o cµidPµæ¢írêÈí¤ÕcCc¼§Û=êÐ<˜ë"5´ Z•È k> A[Šˆdή(h³¨Ù5`6 ¡Ë¡=ñÅé‚+Цÿ“Û”ìåözZÝË}Úд±¸j#>ÚZùÏK@#›$Õåvhòº”8‘úš_/¼’죇–Øé+¿$šþã›isdÏh§9ݹû¹t×>|éfº©¯ü–F¡[OIe3þ ôÑÛ¿pyf ƒ§Šõ†v°ªŒ·¥­4Œ˜ï´bØ„±à[†t/a¢D:òc–;L1½Ë¥}3*.åsÀOunÏoE¾0¯r“ëHù,Š=錦 †_6ï²æîn_™Á…»à5¬)QÞ½ó°þ”E½*x»¶vWýB¢RÊUiÜñçjÊØÉ‡Hâh©mhÕŒ¤›åôƒÁH>õ;èURí¥ó<Âë€47#Ë.CÚÍOt  ½õ×­÷å1ÈÐ ªæ¹Èh~«Íü¨32­¾½ÿ=A™+ÎÕèÌ…ãÞŠ6É—Ž—‘‚w«‰àß8îþ©ÖÑCnÞ¬˜ÚÎpäy+«up÷Cä^FF%>äßHóH}‹‚CÅDFš¤(<žêÏÃúpÞ­à ¸MÐÕ˜JRøs”P¸Kg•€’]ï6ížEé’È ­ ”™¹Ð=ÛT„òâǾ°>|‡ fÙ_«úÞ¡¢ ?Éß“EUÍ/,ËQ)­Èµâ"ª?¢AÕQ—âê‹xlŒ“Å•³5é{3·DmM5ªä½¾ycQÉ'qÔ Ë·Œ$ä6‰šs*¾½zÅ’·†FSMÑq?6ÑxY‡Ù'b'šÒ ìZ*@3ñ“s¬å©hnWÅ÷¥j-"î¼ ^CË¡t º¾y$ö¶Þ"ðs*&»‡À· Ò$£FßÌ>z—ÍôÆ2#Ó'þŸÞ’6Ä"?Ø ¢~åx4ŽXmÄÞ‘‚Šå.ý3ïþ/=¶$(>‘&†Ü´#èÈØ0Må'd²W|·y:GÈm¤{_¯gCª1þ¨+‚dÝœ»oB’”ck¸w;$û3&…¹©³ W áã«g †* ýàG__Y…íýrIÕßnA6uÏN¡ È©oM Q€ÜúOÂoU¥ ïÚµeŠÉ{÷ÖWµ¤4öŸùMsÕ0‚?u:c“~ 4wß8¼Ú ŸØz;O„:8çW¬‘ð Oë}|OðÙ0Ú;ñHø?s•ëŸn@±¹ÃþC©PrÖíèÀµcÛs؆íߊ¡,Ò¤ø³a2TpgEÑ­ý†Ê¸¨0ªzøÒhpøC$ÔîU»ªõ³Ô¿Ÿ_„&òâúC-eÐüéò™¤=¦ÐÊÜÇ{žà[Ûj/´¾"èôÇõâ(“Bèþ,ßyq:ú‰)_<Þ _ӥËҒ`8SK(2F|M®eÀ˜býnžIŸ,ËÃbQ˜¬ZÛ-VÑSuÅ×Èa–xÎÊð”)A§~x»澺*å'‚D‹Û©°˜~¶Î=Ÿ ~=á0ò™„•.Ç({XóöIé(÷‡ _#‡ÇzHäP ¹¿Ø‰©ÓGßDž@’¥Ew͇Hf·Ã/ûH?Rìϸme\ˆTÊ´îzo‘f¼ö«»A3î’» ûÂP ž0í­9‡Œ¥Ìä¯$˜‘™]&íõó&Ü›HËóŒqÙŽo8‡#§þµ¡ÆeMäÎl”¸´ˆ¼—ØukË ÿÍKb~fPp>ût,/îï0é§ E1)zÛu;”pá# ñîA©S%£‚úxÈT¼îÏÎS(«Þìóð†/¶±æÒ‹GÅ*ú”‚”¯¨$ãQåM*|w¯éë[¢š˜SÚ£®T·¸½È` ˆš‘ç•üJO£ö¯€Jæ;Ô?s0#q ¬†¹œÈÑ0±’Û§Ñ(3—ø£Ê^4þ’QóœýšL E ì¾T ù¶¥Iå'¯B.†=%2…ìê«¥L},CÕ«@r_gŠÓ¸8óx…ÒÊÎÚ—ˆ¾ Uþ…¶²4tPyVà’`$4oÕøRöÿÍïW–A«Qº–|p´±·…t(EOñȆŽJÑóío ƒ¬ í=9´=h£¡,#ä1ÊÝnï_mÏ]›øHpCÃJÿÏÜBÂmÙðþ°–›Ð¤üp·ËyB>|ΓÏ-É£Äíÿ㛪€»1åshë1Ûuùù4´§8’ˆ“gCGgG¢˜t•Uê¯/\ƒÞ€>Žo#b0HEu†é¸Gœˆ=aDØxËw€ ÆNŠ®xÓÉÁÄóÓ̹UKð}¼“aøÖA˜±xÞ`õ~ÒO%'4À¼Hã»ã1Ô°Èå;/ر~ÙGŒÚïŒ!èeN¨Ô]ÖNÙ*„?3gçɸ`KÝ;Náq,Õ<ï^;';Öd8 Z#‰I*M •%’N)¾ºŽäíþ¨œÈŠÌFFþò5¤q²-`M×GÚùóJªTÞHobý+u~ʉØþ˜»"£æØZ^Æsdš¸^×k·Ì)ª²+lѸ7&‚„y7²NÇ~¾6ÛWOêëÞwFnVÁäµ®Èqë|!"Ÿô:çÚ‘Úî׫t,/<+³%‹Â…«L·kPdò“ ‰rŠ9äÌóT‹¢û{ôJ–쨉ދÒÙÇ"¢ÕQæçØÈ»„o(¯èªBrd'*8òˆfÝEE½Õ„_i%oiìˆP)&°u0PUØx8–PµG3§ù«0’'áÚ‡šL§¤i[PÛ”ª+À·P‡®¨/8Üÿ; ÷‘ÚZøö¨˜W¾‰.§g ñ’Ä%?_4¥Žfóù³†f¢«¿×VµÑܦÑ÷7/Z„Xþ^‰–_‡ïœÿÐGàƒxsmÚ¼h0êa¦#ðM¶d$$‚À7R‡«ßŸôF9:âÐúé­¿OŠ©sÜ.µMAc_Ô§+P¡5åqà5½d9)yß :”Ž®µï…ڤċTñá×!ûv1âŸuµ'Z‰|Z?ëÛ ]P8^Pµ8M ŸÚÊwšÄBQûÖ“v”Ûs¡£î\>Pº›¹Q¡”ÊÔvIðÏ—ByNUö¥~~¨”Ñ&~TÛ_ö?Ø#[N5Æõb£½P—³æ¤¹ƒŽàOKH§„fÅVÃj™8h v±y\ä m‡®W| NiҊнW6¶gk ú,öŠ2÷ÂWrɤžó0l«‘yµ]‰ O‹¬ÓJU0ú­¤e9`üQ¾ÄÝÃ7`òš…Ä3-?˜rc(à%øÐw£Küð£ÑEÃA)æžß½be˜ïHHvæMƒEÕN“ *ðkÏ©sÕ"î°böÆX¿ö!¬n²wH5€ 2ßÓDU¥HÄÍû½$Üw”1÷Þ¸þ˜ SJ«'ÃH:ónIˆUÉ£@Ç´äRFŒûîÏG ÅC$Çîœÿâûøqdª¸ý FóЛò£D¸'ùËŸ½î•нcñæ ²öªûHy9²­';CÛÆg¡ Ny)ÙöW|q@~Ê^Ò€‚·üÜ äŠqÿ)--ýRîúŠ%Tw±îPG)¹K×?â!þ;¼zŠ¥(K\ÙDŠ+æ0¼Y DÅr÷_Ÿï¡’òÚuáýk¨¢XéÝÇŠjÆ%¥—Ó%¯m½ªhô·Ïd xðÉ©-êÙ©é_ßÖ^Ä,R‚±Ãýç“iÛ`Â),¤¸çòßž„ýÒáPqøÑ—5puDæîÝ•„EWšäÈøuü1cáwjeöÒÁj3OX»Ÿ-³ô6ö+ 9…­³3º“–HÔÊ[œ~í îXY !ý.„$$õåy_‘´£pîe—=’y®ß“?‚” q?e üÆ–ÛÇyÅiGc*X¶ ½NÇt·22äµ-z¥$"ã}^6¡\dêС«ÛÌaÞ©'âÞ‡ª›êrµYÄ“IO9¬jÚõ¾ä 7CD–ˆ³1ò„T¬«ž^@>á¿'ÈßCsõ~C* Ææ7²æœC᧪z¤~£HÆÏâ‰hã½ÿ&üw9ŠoVÏÖ´k¢düG=™”Z”Nø¡õ»ee~Xø“£¼Ö»ÂéɨàìþúËTÔl2ì¶AxWpåÖñ£¨ôÒ*FÓ`UhóFnÙ ¢j#GªÛ ;<Ögô£%Ú5YæÌ;5µš.‡þ!ð-¦³ÛZì êçR7#pMå׆)¿3owF¸ƒž¡Ñ¤zÞ1×3h¼°§¼ìò*šRrÑʱ ™HÈŽ¾ƒhnÕ9¬ínŒÏ›¢ÜŽôƹ8Lì„Ö2qYUe[¾yæïtSC;êo·ØšN ýƒÌ]'éåБzu dÔõÿÒ[áý/OÛZ"jO)e4†Ìî-ú•ü·×ã_ý««ì2R¡æãûHReöŒ¿š‚¤gÜ3ì ù‹v1/A|cV;Ææÿ½ÿïóÿ¾>íÁfòÉ!Ñyà¹DÜÇ¿úüÛcrùÕ–½òß>“oó¬¾ë’Å¿ø«ï¿='ÿÓ«ò¿úNþ§wåó9¡ ö鎿Ÿço¿Éÿôý«ÿûŒ*RfÎÜ j%øÝüéa¨»¸GZí:ÔŽPÔ„_ü âϤ|«×ÅëµIK{ŠZ£ðENýß^“.—C74˜Ô 7™§´(*m$N¾ †a2uÜÿ¦¾5Ú´†ìêÑûMµaüÐÇøúÌ2˜dËÒ_k”ƒ)n'u½Z˜Qéy<,·?Ìshnïxs:T\*ºaÞ#^ùÒP:,tªõÙݸ K/’|vc„å¶Ar>úBX½•÷çñ@%ü¹Ÿétí—,l•²¨¥^ÅîžÍúŸ‘øwSq¢Ç$’z©Šø}Éwײ BйâÀQ1F¤>Mñ#'i_D½LÝñ鋦Åóóq÷ Ý÷Îð)ÜsÔZ+AHYr‚†ÙÜb5¼(Fãí¬ï:ˆsº‘›D¼ø˜p<ò¼g%/ªóC¾UþV!(HetÒ©Æ…çKßñ>ºˆ¢vn3Á (±{]úYP&JQïÛü¹ß¥—ZoF]âB™žâ½3Ux˜s7É⎋¨X2r4±A•ô=øz2º3' >»Pj7.e<òSAõ|Óœ­ËA¨µg3ÑÄZunžyŸ;} õj¤¢J"IÑàçÌÅÊððÿßôÆðtIĬ,š_/ùRõþ„Ê ûº¬‡ ´ìeþ÷‡Åÿø1â®¶¿}Ÿ„^¿ÊË#|Ïï¬Ïqt0'|îç?~óÄcFÈâzwÓŒàfßêP†BÎŽIæø¤ývhìùoZC|çÔÿËoñ·Þ­}†Æ<ÊýUúК¼–ãcþÚOïvM…Ži×0z_輓|F¶{:ãù^vm@Ûjþ ô´4H©ÓÿІ¦ÏâS:Ç Á—£/‡)dÂ$ϧ@c …õfqh>÷Kºn¿´Ü} òÂi Z-žŸ³†6b»sgh»)tyOÇhî½eQ‡º‚ š§ k'[¡-O*ô”Û¥U:€ªsÎÑrŠ?gÿG?¾¿±º«£+^/ú`â_x–‹)|÷›Rzîù ¦7._·s&‚ÅÑ!Îuû`žÔöÐï7™°°ð>ÇI~)--ç‚•ìÎ;aMµ4ÁF%þ4mòí»Ð[²ãNd#QÝî[z&ÌHL~Ëþ7'’œ“wë;‰dļd½¡qHþ½…÷Mˆ=R1WïÖÎCš+ëo÷©EÚÙx—ÌcDH¯g>ðüI2R¼ LCFµGL7iR.Eë sÆ3ÅãäGqoj™l“„&²Î¾ÚnÔˆgO0xs:!7ír!«äñpokG>†Îcr‚È_.B§úI#\ô¾Ó  ðã»MßBQ$g†Ù]B1ãÙÛÏšP|YévÏi”|ñëy¹ÜO”îg’E™ª´î6”§{?qki _ïÓnT$þÌ;pÁê åÍ] ¨tãVÊ«=5¨<µìë[ÏŒªïûV–WðXtᑃ ¨Qïø"ü|j“GŒ{v£®ªæ-õyÔ·±&±©GCÆ.‰x U4,[Óœ~IFEwåý̂ѸB_*²MÚ?4'lžDÓŸ¾ÎƒÑœ©ÃžyÿZ¨yvÚ˜BË۴ĬÊËhUq*öÜ›5´aŠ`òVNGÛ+?œ¼õ„ЮS‡Éšy4>;kTô ã eí÷•¦x\мêÍ:¤za§nœ6 ng™‹ ÜÞ—x£Í>§Vì çÎ…üÖ CÊ$; ûð¤ê ¤êê߃T…Ô{=£ìtsú«ž×5HŸ–Ø% ñW#2œoB‚hc±‘3!×éNd |ƒ”%6ÅÀ—ö¼l·J|?d²—šx… AöA«œµTÈeW àôz y!§Þ¼þGÇ’#ßþËoÏ> 7åAÞB¿&¿<äÛW¦'H@¢N`JÈ(H_Zi¹ø¿ùæ2£°ÎúŠ|ùñ…+@ñú¾Ñèdj(Y{(p;ò$”q—³˜~rÏ™Uk¡¢ÎŠÃ[¡ª#5lßBu`lØïoEP[ç¥Â±G8©\§GmÿãõÐÇkc­‰äÝœó…ОÏ?µKæ7t]2T&ü¸Bï³ÇgÞk3à(¥öîž04b???µßbvgФÁ¨ {Ml3Œ“q•†çÂÄøÓ‹o×Á÷ñ.ò7'¬a†\·ç¾n>üàÞ©,0ËsÒ“vÏU6`þ|}¿,Ô¤¿;-ÙKÜ.ÆI°œ›7h,`«ºõ3~›.ð|³õÞ‚-‡ÆÆ ”¸¿ÆI©ä qAª„‡ ©â’æXÃ’µ£«òmDŠ´ý ºáñHÍåæØÍ•‡´ZtÇËÚeþ¡áºä¸;5¡§´ò22-ÌñÑ[ˆ"‹ã½AãžÜ·¨vÅ$S ÙóÓBÔî ×7 [ ä¹zò%{£$ò9Žÿ,Œ„)‘«ƒ_,÷;ÙÄÝ`Å[_‚C*V7ÙËV‹áOàQršKö°E6tÿÓE$ª Vø~h ‰÷ì ç Øƒ$Ì?ìß èåà=6V½9¤Ø#¨•;é‹T2oôþ@¿Îâ¯>ŠH»œð[TRéõ»š®‘("CñˆÔȨ×HñUV ™Öùu¾ä×"su;We3îmVº"õ¬Ù(5Ï<3wE×5ýÔëœÈMùÄ’_™• £_•ìÊ9È»6KAÞ_…ü)šI›ñc((Ú{þ Õ¬±‡Š¢HþîbµÏò(&Ìqä¬D?ŠÏæ1ܿ싒AG ËQúJÍàåõ”y¹CÚšwåÚbvÓ︆‡¿¥ä­|eÀ#…‰K£)“ô|ÑÎ…£¨d=Û‹ÊÕ‡xî+꣪û«w·Pï´ ‚¿|;Oê¦TÄìn£V|Po3Ì´nÑekoÍr.Âgjꭠ·÷“½S²úêüYs­!=¸V–‰Œ Rù„VD éøéÛ,ö`Ó{³ } âwûïyˆ“ȽAQ‰nB!¦NJ¶Ã>Ô] Ò¢nòT CæI †j¯7ýñ±=×'rÈÍ–ãM ‡¼·þu­C¿ 9-´IZ’áïú[^Ó"åîú»B¬ƒ ßU£HÕóhî }ÀÄLøÈ t!ýß|»v³Gë"¥¿ÿ°{ûü¤U𠔊ßÙ²áõO_×;æ|(O":S*G“•í®ßßCUˆ÷w¿O%Pí=¼·èÔfμûœ ;Íb8þãcvíA’hÍnd¾GyÚK׊l­A×Ù‹4r¾)ÐëµAsï×]ø3$œžC¥7>ÈÒÂ7Ïš'nwaTìdB9‰Œµ†åx&ÃDºs †°|OQ­š'ƒéš>ñã·aöû ·úî‡0Ç®r3§”æ-cê3»Í`á3çù‹3ò°äñüÌÇ£*°üêiÎã°Ê6Ô“‹Ö—Œ6“ŠËasó®å¹]op¹ª÷ÙHì­Mõ I6>ˆI½7G²gääŠ] Hqå™U6±"Rõ|.½Ÿ‹;{ wÅÖ"½-ÛÞ³Qö¸ûšZMòÂ2Åü¹qY¨ýúï ã¾0öôW_‘ݲ¸‘£U¹TÒT÷Fž£)b̓È'|Û"êîðÑfý•5ŽÂÇvÞ¿ÕC|• .ò¢8K%õåN”tª‘ôïCiÕõY)E”á2<–:B†ò¢G„§z”ñÈ‹4ͧ§ǼqY<Ê·jE,3HQõÚ }:{çã(«øŽvGY~˜Á#nUÓs©x´ª[á’S*IV)Eû¡r̵’‡ÉwQÕÀúíÚ²(;øÄ´O›5d”¹ö%w –éºYiÔñÓu®°E½ÐpséhpAúàÛÇ_ÐÐešéN.%] “ßbéFãsÅônŠºhr)‹o$øšºŸ5­5ì@³ÀV‹” z4nסUE‹¢ïœÁ¥»ÐrxðA²ÕZS7×ïDòcªš„çÉ©É/‰vI†CO Ð~¶â«êtd RÑg @J§¾8·P§løïþ0”…¹Mya¾Ýo÷ÓÇâ8䉌lüN°‡¬[©L"]nWøXd Ri¢/”¸úB’ÖW®Â í¼F~Ì´â².„GP­8àßq¾Ë/¦¾†¹ ßɳ¿!-EshÂ2fš™Îî…‰Õ÷= O_¤D¹ûäv—üÃkúžyãó“Ô§z¯p¬žwåé„ü ¦œ½·ý·½<þ j¼ˆ8˜^ÿo¾¹æäޔߞ—Ñ(˜Úî+© ¥§Üzކ…AY`’œhw"”÷2Ir™„Jr©  ÁPv<()~ª]Ø^úsBmäiiá3P¿–+kÿxð?¾±ŽNñª@késÓŸ\ŒÐ^ÛšàuºŽßëÏÿ½§Ò.¾ý y,ä<`èMˆ…ïAøfìsõ;‰-Œl%V{84ÀØ»hÚ$‡h˜ð2Š›5…ï.i÷Tb—`ú¡ôÅN75˜ÍÈKv© †9ÒȧݨóBÍÛ…`!-HÂ5ö5,] ¶Úê…åÛ—¥é»Ãï©¥ú‹Øë‰<šÕ1Ô°ùúè7µx9$ª3ý-Äpa÷¾æ©í¾.†Û7+‘ÌôýFæ3¤8¸YÊq±©žÙÌ%Îçàθٟ3}$ IÇÝÒ_ó#¸ÝÉž­c0—™³nw—ÉJá>ù¥ÅQö‡È¶Ò¨äÐŽœCï{ˆ”™‡z¹¤»-yçØ¸D* À‘*·O"I(ô#}=ÉÛ0Åñ3øãÁKOÖG(ÉÆ][_ù ¥¦C⊟Õá¡Ò­³îƒü(—iðéL¥(!g>ÃâFøbÜÛÔ1UBe†äU#†·¨ò#ˆ!¥mÕfÕ_½Ë8ŠL"ßFØ¡–î5sêŒjÔ¹#¬.ž¬‡z¯dì¾Äp¡Á} ]j[f4Ì_¾þã sÙ<ºDIhœ õ“ôšò¯HAÓêÞ¨ðõ4ë ü Þ‚h¾ôØû±ˆ6Z2vñtò¤ Õá3ã÷ߣõi÷ó,´‰ OéCÛµâ@²hÏ`g@!Š–NX+!½›pVÀ“ïÐôŒ¤lÀü$T²ô×3¬=…R r"o¯ö¹ð5 þí3Èÿ¾pæåË‚¿{FR"±9¿W¢{é +¹ha¤ùdÜdz½ÿ|»/ùÒ¬-A§éYÝ¡à÷2Q;Ù|[»ªgÿîk–©_#pgõ„…s7´=è²¢Qº r +>‰QÐÙK'îÿºÜ¹"XÎAç½§>kâ¼ÐQî|ê´²gìÔw€¦Æž·G—¡a¯à†ÖóH¨û0éf³Ýãü'tú'4m, —A 1mÔEž!hé›ñþ è­×){÷+BëTóÀÊÓ}Ðöê¶Pâ‹\hO3âjÜÝI8Þã!ÿ–Jèa»ÒÏ9ë ýgDcèìwÁ³×;o¥HøF—æ²úGF%ì~Ѹ ãk“C•IarÔ‹[Jh¦·08à gnúÃ\÷Ž“:¸]p¡­u–|#œêae—¸¤ó®Ï°ê:AzvÖ7 ê~^õÍ÷íå·›}({8‡ûw3KQ†È I]‚gˆÊ$»gtìE…/R\hŸŒ¨A*wã¸u+¤I ÞÒ¥âF:Ê”œT‘Þ¨'Sh\*ß½Ïú˜ŒŽz³ïÕšq÷Æý ÇoÈBñ›äµÚ îcTüºj·‰lJgŒ™J‘#D¤fï]äÚbü­ÈU†•D|u]È\ îí^ÁÅJJeéS'•sV e‰u ³0 ’¤,‹—ôym£ôiÓʈ379HÝ‘ qŽ£¦ïwr]ÿpèÂ:$÷4Äy<¤åïT"/Ì9ßGŽF!Û}–gæäAÞ§]Û]‚ž[/Eœüù#\2u—þîË?&ŸzŒ…p¿„†{»·á½Ådz\ÝPàþN‰l{f×Ç™ÿÍ·pù¥çq$P¼«,%¶¾ JÎ^&ý1 ¥/.d²?ýeÅo‹r_FB•0QvZTò½Q9¡á U‘jbmaDP}Öœ]ëó ¨õïIJ¥K‡úït,,coþ㛀ÃV¬R´6Ø>µ)†ö¶Ø3Ëo’ Ëæý¡yfèÕë63Ò= Q7|Ž+ÁЭjíz%ø¶_ÎÐfKFZæ'$ uaìÚ¼ÿ[Õ0˜Ð¨|껾+ph<ÓR†iÃØœ[AÔ0ëE÷õã]øÙ3k·èÑó²ï-V›VaáýÊŠ×ñ°ds[Ï`·3,ŸÔ:óõ$-ü. ,ttô„u‡¹Ð±@#Ø<òë"R=¥9ÐÇÄDZ¾ß#”ä6ɯzýCH¶Gù×þÛHþã¼p@×i¤ÒoÌ{f;-ìrwè,â®EÇ $'G†e?½5dbLÿxl‚™í=;VGýqo_ƒ¬¨‘²…õ‘Ÿ½…œÞÑ­G’»[ÉT¶ó0òææLæe8#ÿŠJ«ÏÛ«(aq¹‡ïŠÄí š|m‹©â§«ÔQ¢îæ)æ¶(õTà׊:•ú@­G åNé}KgFg¯êq«<Úi¾rÈg •bWk];²Ý×OûÂÕLfBýªQýܨ#%9j>åzâùæ;jy'RУn»^*GÂ;Ô¯ ¼ù®ú šIR{©Ÿ@#w§á#h¬ÖM¤ ¥&*;tE^¢©ª¤4…(šir¾y~Àͨ-\¾)¡…Ýø\Ÿ²"Z^ÎÖ~2º­ü’MìzøÑ:²ó®³ïY´)p(%Þ§Œ¶ýwƒ ? ¢=Ém­§œHÏ<úíùxh"ϵ¨“ Š:[ž»Wí ”£ËÎýôö~NCžð¿}ù>t‰%cÝg5Ko>¯9~&Iµf„œ&ÇšòÒ§¦æ¸+ ýº¦ ÿá·ùGëôÚ^¯$JIüË·/2ÚL•œÿö—4_pqˆg†Öcsת$Ó ­Ííðèabèð¾õBÜì.tí+K+ý]u¯^æÝ ƒÎ9íŠh?ho¨¼Ýÿø%´ÊI®Rü,„¦öÂþQ¡ßÛ×ÛȸP<¡Y¦™çbœäz )×à4ïX:4wŒ^ɰ€–Œ,©zÒ£„ãÎx2/ú@ë§,•ÖCÐvñøÓSÖöÐîÏo¤çÍ6Ç•'ry¡{äúT(»>ô³ûìï<×_ëÒ¯m4ðÃp[ŽçeM™Ýp¤ÛÓãb™w{§`ò£…Ó§œ|˜¶›UÕW¦¶NÑ0W#ïü™¬¢êIÞúÃRüm÷ЗްÜõ&ƒÝ[VÅÝÖ87`=o5uØ™6‡R‘(µÅ¥°7‰•‚ •¥×d¦uBõ´3’eæX÷Ü®GŠpb¢¹¤z¹yÀ?èÒŸã"Ö E:†Ô€°_…Ûó“1$YÈPÝiP–&Œçè2ãé)!•¬ËÈÂù•-i î;ôi¯mY²Ù^×h?u9^—“£»r-ùˆ<ʰ8d‹¼9ì¥: ñÈáC€øµ<t°Òã½±…}žzìx»Ž"e`Љb^œdD(ÞÎùEЬ%èrWï ôÞ§G¹"P†q‘uAåxãŸT Nàaæ¯á[ÄPaÊÕiÍMR¾x¢Ê±›íu½µ*;ÌlF/£ÊZwøÆ/GTûtF5ø´>ªGñ|xõs5£‹²ÚÝ·P;ŸáE··êÖtu]CýÔÜõ¹bj4äïbi'B#ÿýühL+þCõJš—ßà`{†¦$º²Å»9ÑŒ¨ÉHmæ0šm‰~âb曕 [JÂh±eyqŽq­vPù»r­I9¹)Õц2IXVÒméFõ¿f½B;r…™?ãhÏsÛsMz)­)_uBÍNƒ]fÓ¤PÚxê¦Ã~‚üÚtþÑöþ[¶4ƒÈ,½®FÁÐ i[ÑÊ–Ç!¥ÿ™Aé8$±¶:˜ä‡øÆlë—Öû[¡âV´áVQèjáñÜ@)9+Hö̬{vÌÒ*šŠwô¹W7Y‘r¥.Xý¡'è˜aýô¡(¸p|S?†f{?·†ÜÞÈ¿ý%ù>;e_”%ÜÒ,Û¸KxükÜïzÂëmÙ¢nAÁ0)—ŠEãÿæÛ» )—ŽF ‡Ahð%”–=VZ9HøœŽÁë!5P¶¦®bû*ä4|œý•Ê4«–˶PõN°iݪmB¢vÙ|ƒÚKúüÒ¹’Pßuj¥åˆã|;(ÃzÂAZ{øZŠu/@{¿×Õ²qè2+>Ï-¬ ½²ÇÖdVÚaàÊÙ‘µÃä0dSú™‘ņ·~ˆ7®SÃȇÃdß÷Ö˜²òús¡ ˜Ø½käðGAøNH16ý¦™X‰øß4Ãì±Ó,¥¯ˆágbô3Ùœ0/ðŽ#²®ÂOù³†%%¥¨ jXÖàGºÑðû{²éý°¾§x€øJlô&ÿÚè9ƒDVWˆ‹v¿ÄeB‹ùaH‚™½ûœ!íø:ó¦­ÉSÚÿP^C**eŸ[åY¸“¼Á›™ó>î ù•ç6•Œ ù{^\öôFÆû),DÈLy£M2´÷zÇÜt ˜D6™iÕ*OAädoqú «‚Ü1&žuO ïmãôcÕIÈŸQ|PY…”ÿ|#¯þ‰"‡¯-g¯¡˜ïáUÛk›(áÙ´áèÇŽR ì>V“xˆÂ.iWûI”-½9dÿz9­˜Gù?¾gúRŽJ‡Ã•›»Py2*ö’%ª„>8õÕ}~©²x5zêgR£Öz= ÿñvÔ¥=½é’*€z[51Ge£ÁP0þ*CÃá¶Øöz4j'Ï x؆Æ_¢¢÷ßC“Ï÷¾¸¿CÓ¬ ‡éî24K °|)‹æqËÅCŽõhñ$u¡eô`õ›çhý攬ýZ¿÷(ó³@›¸K*!h›z<â¦ØÜuE…Gû[4º;Íä3B…wŸÛÚ¸”,%ɸêoŸ—\u¥üÛgÏ,òcB’g»?ˆ}6ý!äЦÌ,4óôèvó±Ñ)H·+UÑþš i“\T½#é1œW=GÈ}sUD÷ þãÛUŒóË·þöO6g°u›“Bk¨w°˜îhçØÃúYÒ:*ʼn®lç6½š-kèæd9Û=]]¬}LG¡ƒ¸úœzAÑö~‚±Ê´}ÛûöZ݆úßó;”†¡^45÷;'4Ø7|îo*‡¦«ñîRŸ€æ„OJ¿_õBËÏñźehenfßc]­Áá  í¨ê'Á§¶[¬øÖw†Nq©÷Ú‘ÞÐä¹J¦³úZÛR£\Âá«Óù¨­} 0ñ©÷Ï6Œ$½~b:zÆfG <]›aÒC*ûØ1˜–ݹ\ÝÂ?¤•wyûÁ\Á߃\G`áÞÀ«‰Ë{aÉÏ˺à\,¿¥—ªšù ¿§¶¦Žwî†uù'm.Ѱ©\½Yü‰âJ%- ~Ѐž^OeIiÿ/ß[F²!¶«ûŽìAŠ2ñ}ZôHU˜@zœ­iÚT!/” éXÓ¨w O!½i_Ø`$2ÔS­7§ £sCÛY;Ü£ÞYYJ±†,JcÒ¬¸Ïü°a‰²Ýô?úì<-r$Ù¨^išE®Y2%ñÏÆÈ#iaÙ° ÈûF4‘ÖEùÍÊy§LQÐhwý\s {u~xoøE*-?o*žE1iu²hZ¯ ³"{÷ % ͈îNÅ¢Ôú ƒ»xhBõ³ƒc!ÊN$ZJŸBùÖ9¹d:[TøpâèŽü¨8µLfç*z2õÚ¸ *yýzã ª4‡?½íºŽjwš FFQÝøÉ„ƒjjÞ߯±úµÍýJ‚l´P÷ôM1/JÔ7ô8Ñ™„kñA•«h8[žŸ÷I¾ž³¡zƒÆm:Üù߆ФâòËÑôSC#}d#AgÝKû>h£yT¦–üí,´x´ÇþÉÜ7´ôÈUhF«ó"´NeÄhm¦*&&m”RÉÉÒ‚Ñö@¿¹•Ú1g®$È^Bò˜}‡EÖv×ùZWvf(u²Û“­Â7‹í÷;BöÇ‘`ÞïyÒÒŸ(@ÒšŸ¾¼r®R*iK_êíÛž!:éÇñoâSÇŽòBìK^ë¹K2{%.!^9TªÅ3’9^üœ:D±ýþ]QÎeÝJ¥þ-è³½îv¥¬ð<ì#‹Xþö>‘šŸº1~vÛ¿^‘?]û·2¿`è\÷S³íÜ6.ÝCÈygßVhþO®ôž_P0S}°}õìÿæ[jéUcÒ—P|iÌ5~ÎJRw-{m¹C‰Ù™Þ‡#P¾?¨¡Ó*μL¹³}=¸4ƒ˜cPOåÌwUª ê¸Ú×@­YYd¾!¿U~ê|Âûßä¨e8oÕ@ëè4½ÐIh3Þ2Î ]}Ò{nC/gæÖ÷ª0 „µ®ôõ0t¸÷Jß îŒÙ¥¼<#n>üo¯kÂ}¨s Œ÷ÿ$úÚÏ “UËÕrû`ªë¡V]VÌÒ}Ò;w×~zšÕº»œƒy¦·#ø%[‚:j`Iñ¼ô‰hXÙb9,¿-%"5£»`­î±—é l¸ŸºÝKàWkO4ùSÜáO~êà4’,:½Ê€¤a·F™…9‘üÒÑóäÇHYž¥yV4irŽ™çÀ]ÇR›ŒÁ3íU12zœ`R_Æ=.Íç•…p/Ï­‚‚0dm_-1¥lBŽ‚Ii7‰ävnóXè{†¼ê?Ü[G‘ÿò‘@š uœ~gvè²"î¯ë² k GÑu&­Ž\” K<Þ’ßô;‡ o tâÎúÞ&_”Õ|èÜ{ëh=òçj@EJý_tÁˆ/ë]ÇQùtüÕþ0Tå‘÷9öë'ÛmÁæ<ø5¸½(í< ÖaŽÙ¨ÂpÔQ÷֯ɈG½#-mѤhÀ¢{Vܾ oж#«-”¹ØÜê€Æzùóâ®h"7h3æ½MyÔ¹UîîB3j"ª£ÆÐlüј š÷3š¾"A‹ð$GËØsÊkG|Ð*øyù‚ò%´vîÞ80¤Œ6V¶ã±Õ½H—VpË©Lf8ïÄ.OB…”uý›y(©ó4f¹"Oð•}ájUîû ò’5¤i½Îÿ³îæ­ ²#(²é„LÖ#§úz æº~ Ҭ兴 Aƪ¹ñÐQ‚N,S‰—þã[ѹÛÉ÷ÿ»~ÀÑ #’hýº3öÙÙÐ~&s=L„:iúûƒ“,¡«:®{D1º¯>=´j¶]§¼­îªC‡\aÚØ0´^”lõ»zš†üÌ%‚È Ü”à`ö‡º•Ì7‘êÔ„ãGÝ)M…&‘#ßÅ¡ùVènèî‚GÕWlO?BËDægÆ2òíëñèõ:A SW_2´¨ÍÒ5-…NRÒ”;}ÐíâKqÓƒ úIŸñ¶¯T<õD§6aØ®ô‘·±Œœ?Zö*㌥^+½J— “Çh·Û5ašN4Q-m~°ˆ•y+œ†¹¤Ø'oä?ÃÂÕŸÒóG’`ÉÞýÈ791X>ç“yÍæ üŽÝiWóPÖÅn¸V^—‚MúrökNoèmÚ¥¨@$¶{Úle4‰¤âE ‰H¾Ó'ÀrÙ)f›i%£!Õ ÉÀѤU¤™à´¿ÜyéøÒÝo܇ôæ¶÷ R‘¡éhÜ`úQdô¢­Ò²~{¬ÊO¡Í]d±³©íñKÃ}7rðe#Û³§Ò¦—2‘#oÑç­`4rlŒîÞ‡<œåFÞûŠ¡M{'‘‡KbtçPP¥^·X$…Ý÷ý²Î:ªª¨[ût¨4HwHII ÌIw·€X‚ ¶ˆ¢¢‚Jˆ¢¢b‘ÒÒ’"J#!  ßáßëãÞ¿ö8ûì=8g°Ÿój¢=W»Å/h¿®¥"F¡†Í _°Ž'¿É A'AgWÊ$Ò®|΀æc9:à ü)hz=JcÍàSöîÓ}PIa›K#ôw§O˜iU“yß:UÜ×X!—\µú÷¯†ù!ËAšUž~ï@Ø3H™©~޵3oRÍghÞ«Q/žP^…„ej‡=Ô˜çõíl ¤~¼Å¬!PYýv—ü]ã!¯F»A‡þ*Æ\”¸^ÅÙ¿ï? †’7F1ûªþ£s•œ_ÿö(ZÍÓÚ,¾EŸâ>ýö”$äÓù—\‘7¡øöXQ{‚ÿ ÷¨íÿëoÅ2Üàãëµ^q#¨h;|¸ˆ²ª”4Š‚ÿ@µK€­ýðY¨‰<áïîµ×ÆÝõl¤àSú,³ñácP¯Cõâ"4‚ RÉASc‘öÄØÿø™}m í 9fáW«¡snߨ õaè1\ûK™_)ùµ·Íra€5ëçT ³. Ä¥‡ÁHºÓ\ÞRŒÔiÛ·ÕÁ÷¡Ñ7æ/ÁDb3O5L…¸ÿ@F¦_=9ßà ³½ wèÎmÀ¼É.¢RŸlX$}—4Z}–n€É“GûaErp´«Àmß¼WtüÚ§ªVu6\Ω†¿l\ÔvEÂv“÷1ÊUv$ÖýÞå0§‰$•L±9Í·Ìžó[èõcH!™äò‘U©n죷x–ƒ»O¦ïÁê¤mâcœÈ]C0¾ªÓ„LòT¯]žAgŸ/Ñó¾ÈZcû—l^9.R©Dú"·ÃÖ‰³È§ÁMk1¨…´ÁZGV¹PHìÃxqŠ<Ó¯?ÎŒb.jÕÞ“ò(ya.J½Á¥ ·ŽLDÙc5yÉñ€IÉ\Bc,*´Ä’Û]ìF噋Ö$“¨Zyt£ËÖ¡ê¬çI>ÔÍQ•œB­{ƒWöí¹…:îôwbÏ¢ž»¸v³» \öieguD£›‘ïx?H Éã-/43­|dT÷-hƒˆ“¢Å’« ×Þ´ìˆÔ.Ûw ­räl’ô×7üòÀa´qóØÅ‡¶j{O¿›F;Úè+ùk¾h7¨Gwô2Ú§Êò–³íA‡KYµž¶wñ(œð_BG2ù®…H³$×SO¨oÚ÷>ía†êñ¯ücm¥Pk|ú¢'?!×ÉL`›þÇ3(Ô:qå@]ö?H‘SŽòŽûhRœîý[Û­vøåïövAæ«ÍÕ:!ǗѺ´j§It0êümüϳãOþíÿÖ¦ÕéÕ= Q›·Bg–U¿À}è¶ ½¡j§ ½l2'þø±Bo5 {ôd$ þJ„.¯fNBÝ”ýQS¦Z&Ü"ºKà)x ³pv|®*¼g~+ŠPÏݹ)’ûšÇœM¬kvöË dé$äÁÝæÚNîÐVøÜ…QÌhg>å¡ð ‚ÏRu?~m ÛoÆ?WÐAWw—½»2ôªÞg™IoèW(õ€û~gMÈ@æv)Œ‰ ,PÃø™­zפW0E÷ÃÈáLO˜®x”?79.ÝЇ…×1ôVKŽDŸ7©VT.sï"„5™EyÎF"øuŒ­MVG6& ì?\®†¿CeY ’‘èetÚ£[ç‘Ä‹õÑÉ£CHfa.îÜô)”Ç£^d'"»°¼áo{¤ÞÞ*àP“ÂÝ¿osü@ZÉ\&âb¤·ð{–& íç¬g³+)дHâØdñÊ")ËdDÖ«íÇ_hë ûK…Ê }äÌŠc>ïˆÜŸBÊZým‘÷ëÚ}AÇäg¸/ð¾‹Ι\{Tþ…ĉ\Ž EùÀ¦°»æ(zÉù÷Df#оV渹û•¿Ñvö £tqàõui”•y³5r•ίڮEù°q’cÛq¨x.áºÉaT6f¸B!BŒÙÔGè! ÕŽ(Yµ|E¤Xn)ý›Œë ß’Þ¢Öu–àÛ¥Q‡6!9’–uKÎ{ Ù\EýHNF©_¯Ñðñ)šE54~]h~ŽGMŸlKÿ ÿ‰æÎÁ‹[?Ð"J«XÞÿ9ZÞé;¸®.‰V^Ž–Ï]Ek+Áò{ÐF¶±.ñï:Úî–u£ÍCÛÁð“)[_Ð.5\³+¥íÏ»]MR‘¦¬[ ¾¶_‚i— ìƒü0ã^Xpø Ìs•+nŸÞ€…¥·g?jÀÒ¹T¦WF°ÂmÍñ°´ V—òê^å»ÀúšÃu™19ØPÚ_rˆ× þtËøi_@!R)¿ìUÙÊÆÝ,\6‘zH둯Áóâ2MxÈíBÆijæÑ÷ÃÈBqº±÷M#²ºK¡©à"r0í-ò@®u–Z ä£q‹ÉžGþn‘]?wۢ฼fä•@Ÿªá…=(º+¡³Ý†³õÓ—ö¡4{zÄu(FYY_㘀§(7šþlm%*Ø¿%ÛÑ«¿å}R~¿¸„u^lZÀFÌêÁd_kø›ñÁ¾L$‰"yJwD¿Wç|º‘ìœo$Ý|Rœ4ÊìõZ@*?§ã–~¸‹?ùáZ“+î¡í|óíˆÒ*ä=÷{é¹xãNF†®øí-dz–Fã!ƒ,7_Ǩ‘¼EÖHƒ {’d/Îý=mÓ‡œMÙþàjtŽùe˜v£–egér#jwÑóͽJF]ŸÑÌèËD¨¯ö=(ÖW ¥¾ÊÇ-) ±²ƒ/Sø4U¨Œ|ÌýÍiüæîsŽ ÅÙÛÏ»”¡¥Cò@÷2Z)r?R®EkV–¤§Yh=Û s!#mŠÞQ«Z í ÿ ßÁ횸r¯í~ú-ìyÂö/L»"T­ÐAu·£‰0:tï–¸y<ŽðÂCk–žê­H6d×8´ô jb•(›3 õ èý,nƒÂû›áª›G WÞÄž÷õEÈ1$Ñžª"äEÏ„Üå·~Ãõ¢p¤”Žì²î…$Æ;öÂþp³Ç õ"ÄW'7e&:îô+%3 Zwú˜Î³D{!ky@S5N ò-}t¿ÿ€"•K×ÿü½%cÃçRgƒvø‘‘Ë)~PJ)1©fjûoÿîâÓNëZTyPL£úòAw'³mkœ‡â¨Ó Òœ „žùpè Ìÿõ·vZ±ÙGvÖ½½“Þ€JÖ_’²lP{`åJ 4T×{¹z»ZCÍJñ‹¨-(ï:½ŸŠ²^)Å@½¤_‚p4ÒñQ:M*ü "Nþ¿Y>´ê3‡*ÏG9 s»#Ô×¼z@ê119ôõü «Oˆ€þœ:ÿ‘<0”dHêÞMqlHšv…ÑŸ¶·>×À÷wzN}8ꡇÚO°Á‡:µäÅ*˜æŸ©Xš„Yϲ¹ÃË0÷ó¼·Ö)Xy#/ZÂK'Y¿Æ‘­Á M=Í`â)Xíר°ëµ^^¤Cð{ö/ùe²øcÂ}Vµ¶Æÿ”>©ù‹D 1¿®ÿD­ §M®º i¯}ãU¡)$Oõß>k‚”Ë{¢ݳpWMh”Ç©oHKiämç¯ôÕ‡8e"ã»·s†Ý]Èœå^OoÂ…¬»(ž9¼Eöa…?ÙŸ‘ë™dØ,ßäÍ?êÉ^wùßTvøñ‡¡`tÖ§ŸF(<‘Qæ"Œ¢w(Ÿp±ù ÄÉ8U^¾!”òs®¥û£Š2}4ÄßP.‚CNµbå>‹›™¤¢Ò£ë \xÐ…ÑêÙè8ª3l¾×{†Xò®w:5mÅ]¨Ä 6ý’˜£¨³Tœ¥Žz‹LÏhš†Ñ`±?WÈ Ñ\³ýëñ%4)N xY‚f—Ïn s¡}exN4)Z ™Mõ DË÷£ìˆ®£•;ñ1½°_hÍ{öɌߴnUØ\¢F›«ê¾éÇÑ–#éÌI{´Í«ú¦Û&„vúõŽþYh×i“Ð^d‡öŽfmr//àžK‚VC“ŽŠÆÙçÞÿ¸æ3o¥Ž¬ìŒ+œ,kúÇ3ø/ï €&ÅÜ 'ï§äsÒÝ–¸{Aö%­¹…ÉÏÿ8ÿüÍéQpEs24ÛÑÄ2¾¶VÁ²šÒ<’.íGoù™Â {h¦òE#ô~Ðô“Z鄾S¯Ÿ^‡^MOÕÂOB]ÕI=ïN¨»J²_”fïì° ï«ßç³C•]þjÑ¿×ÿý{ÿ½î¿Ü–6G—hÚõ¶Ÿã×äÿóLºnøŠvË.AÏç§rí/ÿqÆ¬É ªa8­=™$ÉFcyìÎrwÃ÷¶nÓ~7˜Lx7túÖ[˜Ž ©)´°ƒŸUËßî,톅›Æ—µ`IRðm¼+,Ïû Š•‡ÕÊv…³‰ü°Þ#[H”s6œå¹_]ýý³/ +G¢[ûêu´‘ä/½ÿ/HK\ÍHŽ3kÙDUʧå¶_ò[Ü¥mãÞáü÷d–=Žû‚´PÀ¹ñ~‡?éb.‚ ½½iT9µÈôüËÛù³—‘%âÛ‰#kÎÇ–*Odï—“3-:œSÌO¯½Gî‘ReYñ2ä­ŸlÝûë,ò-ÎÞÌú„Ú^¦ÌÔ(¸¥þ²›¥EX5‰+5 ¨÷˜¹8튷½-ýP‰ûÁ'%žP:ùbôí”e9#PƤŒr÷”eô㢼|¾ëÛ`TØÌp‹&<·JÕrGÕQ%”=§†Ukë= $®ÝY¤báF~öÜrZÔÚ÷$ ð‚+j¿ò{¡/¦ºBVKÇžßC½±ôM–õ,4h2q²k‘F£Ž_ÑùÏÚФçÎ_i4+?]̣܇z•ÅY8†–¢Fl5g‹ÐŠÜ£n?ZõSŽ]µEëĺJ<‡6§ô’VýE[žÓ·¹ý'жZ˜ÝµíN=7¾qê6Úý=TµRÄŠö÷â4©­šÑ²sôM´:ÜoØüœ‡3'5ô‘Ì€eóÜ+¨¾—M>;ìüïñ_nHÎÑû'7}bÿé)‹Ùy«±)ôŸžRä4çj!qìò8]½$ðW䕼>ñŠRN—Hàýž?]faRÿ®ËÚŽN䨺ÿ‡ò_=ÿoÞÈ_ÿo>Ñ?^Éÿæ–pözóÞlø¿þ6ÐîÞø±*XXì^ý ÄÝ'Þ|±PÕ#ÚlwÛªÿ›ù%¢µ‚o›Ÿp¯Cm§D¨øÑIøôñÉFµPåN` ëOo´çBÓMV'Ÿ)‘ÿñ·ÿ¯Óf*꺲OÐE•|´öýÿð…*<åÒ-‰¡ÿÎ;W'Ÿï0äêwé7wŒÈÞ £™8£_¿óŸÔ‚ï¦f‡_ÙÀÕé+¾˜ar8¹á+üw<{Š2få™…Èä}`®\$.Ð5 Z_ýþ\ð–îÆ¤|t„å-ub©"X-ö¼ò{0ÖŸÞrf ƒß±Mæ?~ÃæŠV¢IçaØ:_ãy(mþtK*hþÒì ’¾X­œ¿*äž“OÙ eúÍS{Z3q×…?Çn¨žE𸡍‡ÇÆ‘>ˆËâ#2ÚÊ×eS4"³ã‰Zý oÜ›6X=f‚ì–r‚ñ"rж+ç”G^óåG]MÏÿäá×”JŸPÐYò7ÿ :ŽPæŸ!=¢,^˲{P|Ð?$¼é9îÿ¶{=®¨enÅT×ËF9ùŠR"”w*mTŽDÅ?cìÓQ%Ísë²Xª©Tê(®EÈ}'ÿâÒÔ(iuj´C­“j¥r¡}¨£*¿Æ/•…zR'¯Ü߇âCøkrÑH<ü®‚•/òï~CR„¦q‚L-ìêhŽÃ!› ¼hqRBÕ]hZò+§ÇJ,£eÇ3þ7ªzhumÆ«UŽ­9to½@ëŒø¯T=h£ü¹b²ž;CЍӳÐV–¸¡ýñ'´}ç?¸ËžíÈxÉ[ân5—]ß`ø¬zìÄûÈ_PÕfè1aREÐÝÝ;L·¡hvŸçÙ>ø|^« þ.ä¿yF‘…Ïkzmÿ„\¿á636È–Ên ºÿ>Þ‰Æý–uáç!Ț⬟p÷þÇ9©Lng:§u‹1¡âÙÝð¥jl¸ÙÚÎÍwÛ:ì?™sCgkQè j!èvUÕô禇^Éö—å÷Ý ÷k\ὂÕñ¸:m1èºëòùÎ!há|s0ðÈ_ù1%ÙAlÔº/Àç{_ûÉI¡É|Û0·i‡¶=d÷Ÿýæd›ßBk¸:›–¤3´nsï{=±mWÚûHʾA»„×–•mÑ¿¹æ‘ t1_z%š&=:ìKö· oóÄpè½§0°[Û:Çø= KG «šmÂ(“ptØ]7ønè¯à~ó*LŒþÜ”|ž?òê·nç7Ãlí.­ÚÞ30¿Xçïà,&$N+†²·©S¨ú+XÕ½ì1_ ëŽtOÞ»ÏÁïö#9ç…ßßnÆeç?!‘ ìż"$¡ši”6FÒÍ_Ü {"ùôÞg«Û²2õòíÂSHÉÒEßq·}é@¦Ò¼è¦¤@zª5§•!ðù5ùg^Ȥá¦é?Ÿ,òiŸŸsDV“âœ:d÷îϪóD΋§ègºü‘Û“beÏ eäµj˜cÛí€|BT¤Én …ˆËÙè÷(øò†cd WÚD\oZCQrñ§¯9jPü]§=¿(JÏæÅgU¢4_þÐ‡Ú (Óªúµâ )Êὤt×ðÀ¤±°¥d3*$iŸxÌJ§£‹óè‰PE.ÌWïªz°ËÒ’å"°Ìäþ–¦A«G«¥†£æT}¨År$j;Ð?~°ÜŽ:ƒÙ’N}½ž¸PçA…wshÇž QðIS¦:h’xPÞÍ΋ˆÉ†0¡¯Mb¬Þy´Ø>y:nZ-¿ÆÜIðC«L¶{†ÑhíÛ¸Ïp…•^‰tS¶¡ÍÌ‹bQÁûhûôBR`ñ"ÚÉÙ|Œ:Avµ£6å"hofwzÃNí¿ˆú;ì1A-cMº›èqT”þ8%’Þ¹XÛ7UEµ ›d:P~šÞ޾À>pé ‡¶íô;ö»Ùr¡Žá¯¿Ú餧!O iUúvCÒ:ÂFäžk‰ðå leÄû³™¦ªCÜã*2RpʆÄüö%HþAœ!¢= YϪ÷ ;N@þ®¯o”¹š h—;×Õ (Ék‹D¶ÿðÒïåÌü«çv¸’& õP|äËï i(ZÍmÑœÌßéS®f\†b5“h(~˜œéÍŠG(JÍŠwÆñìZK–¡tâcRí!jøHF‚…ŒPñÚû~B_Tq|WýÕªÊËŒ÷æ¡Æé±¥ô€3Ô²g?‘…OÌ?KNûûB]@ë„s?4¸„Ÿåk…Ï_ ª3YV¡¹‚ÆÆt™Z—íMr½W¡=‘=ÞØ¯:#FÔgœÏAwA¾Óáoþз_àL¤%|Œ5´¦ï„ÁôÚ¸C¬:0ܪzˆ¥®Fí–Žï¶/ƒ±!õ3Ý'´`<Ü4eÀ&;¥fëúÁC"iá®ã0}Žãs{,Ì …(Z9ÂÂ-&áŒÌQX"©éÿÀ°Ë1 ÏŠ“`Õö“Ô« °¾/±ÞûO6ü–¸­ÛÚc›çÈOl~uƒ¿w]݇O!‘6KD˜‰åÊ˨ ©™èø@Ñ’sN›u AJ‹uÏʤþ;î¶H{ ihbìNg."½˜þñ»f‘aJÖýÞydêŸËX%z‰{¹o‰ÂKvdKOçzmP‡œ¾%óß!ÿ^ï¼~ä›Ïk ú…ß蟠I) “'Hn\mÁ}~EÎê÷ž¢¸Üù¯OßFã~îHP(Fÿ(¶ol([wÄC¬Hü¬xpÊÁ¯\2}ÛcŽ*ì†íû-Põ­üöŒrÂ^¢S9z'ØIÆÛ¢Ö^?Q‡°YÔžVØ­ª„º}¤û¼çgQ¿z•ÿ!)6ÓsäR ñ“yÊé{×ÑTïìÝÍ4ûþÂ^äù+´P>{BôZ¬ÞÓ+ËDˤí7·r¯ •U°F%Ñ:Z-ñ]'§yÖ÷Ò96f>  ÖH¾Š@›gr}Ë~±hKó݇áM6Úú? Qüжßïw0I<Á]¤/³*Y@£Üƒ þÈÛPe[L±Ý/å ² º;|YÁ (øµ©â>uò×D·i¦!ïÙÁM÷ANyJ6å½1È:ƒEöt¤>òß;,qR: Þûy5C–ãJì·Iúœ“J—g¤Q毠î^NØÓg$ðEº˜÷fˆ´1•ÌPšÚ@ûtwk§¿tõûºU ]SÁ•ÇÒAOì‰"3ÎõŽg^Ÿ7ô˜[}y:]²?ÂXÚ/Qº:­d»V/ BSÑZ;û€|.X:AÂl MNµVk½EðeØâpÚ.Mh¡È6ÓðV•!ßEï!hû–¹³½7`ÅÈ{Úº÷˜½ kƒöµWvúg 3åÍ5+è.}—ÝîÐg”°íx6úeÕlŽšÝ'äÄ÷R“3F0rWr:ez ÆbGž„ŸÚÞŸ0ÕA¡lÊ©3u|)”åm0÷}ý‹óyXä•èu¹fK3â=å}İҠ8tBÙÖúú˜pûÂoƒ}ƒ¶SðGê¢ ëp l_ª½£•ë‡Ä÷ ï k6"éI3åDνH®åïÖ¾ê”L÷<ƒë ÕTb « îj;W*V|÷,-Çs\{‹tÞS¶{#ƒœÑQ_fdœÚú¾çÌ,2w·Œ] ƽ_~Æ #Ûö=iM¶oÈIDO£-mƒ\K–™“¯r‘§?m;òùtPBþúaŸ/J·QЧíøk {f9´Â}¯Ï}¥ F±Ú™µ ”Tò(O°ÐE©çë<³¹7P&„:¢º¾e׿l–_+ÅQô¤ê%Œ¨`+’¥c¨ÄLû‘rÔ•{î´5Сê_¨že}yÚà/jhDSÕ¾¤GÍä¿Ï¹.Ô£6óûà¦ò¨ó’îäo/êÙñÌú~=‚ê¬Uj×ÑH£í÷yµh‚W¬f|ÐLxø…΀šÏ·ˆ‰F£E÷­ò;'BÑ2³OÏh­n‹Æ.磵aS˜Íýe´¡H»”d’€6…µKr âh{dPb‰mÿ0(8Œva9ÄyÕ hÏB9s(í#®³1ú¡…~S5áxî GÉOHRÞñhZ5TÎô¹Q‹î‡2þ˜gëmP`£ÿùåd‡~®c?LM¨»âèw'êAF–ÕÃérB^|%d·ÉÁS!aW¾Áû(Ápë’]×ë3Õb*(ïq„øêTi‹+¥,Ùúm×KzÈ’OJXÖ<ÿ,EEBΜ+|hõŠg[¸5~¦CÉ|Ò…%?’ãq;ãí/.òA1;‘cØà§h˜3»J{g~Ø©‡w>AQ»‡7×q(&ö[,®æ$Ôu¡óWdÈ ¸¬â퉂oΧýø¸dH¨ãF®F)[ÃÇMñÍ2B]Véòîݺ¶%T]¥ÛüÕOît4½®$øÜ³£Z?¨õÔ¿ÎÔ- ŸFgô<¡¾6øØ¹Ø7ðYÁObN»šI3äÚª@k¨ùoûïÐ~PZ”Š¡“›“A·ºøœªü’ ÷å×”›–tðM%AÊ(»Öé[‹è{`øÌš0w²"ŒÌ½¨W±³ïÃÍ%da|ïýðñ`˜øJöýÂL5-MTqÃÌžf†'g;ágð|¯Í,H[>N‚ÅtrÖj×§°¬k'¶wÌVùÇÕ©º`­¸E¾ª³ ~å)«ÑÖ¤ÁÆÏz¾”á³ð×QÇå2Ól¯ÚUr§Ù!±ÌÞ†$%u¦þ¼ñÉš~’×») ÅŠ÷®\Q¤¾×ìubä1î¹|‚Ñàï_¤{ñý—µw2\S°å¡â@¦#W_ÄRÔ"ËCþÐwñȶK$(Ê9ÊUIÒe{;E9Šü òùí^Ûuó ZÙXÑ…®2*S/H¢È0yÙ½AN :%öòl Jm |Ÿ]ˆÒ§r&ßþEÙC«7L àË1v¾Ô¨°Dpƒä*‰¾_“YDU’¤’wL¨î{¬Ayî:jðúY<üu5ë><½ñp µ_*YÕ/GÝ;Ñ=օЍEÞ‘ßÞ Ï=Ê–)GcÅ22å=ˆ&?ÊÖDeËÐì…€¥+ZìÎ#E‹†¶sO´¼áÉî*‘„VbbÌÙ-³hÕ°¹Ÿž+­6?æl~ŽÖ?ã/¼0?Œ6gû6ôŸ¡Ít³Eò+´uJV>Áf޶ÕuAµ]HÕØY¡šÄ bÙ)Œ‘{ ò«x<ûéDÂó9D@M …Lv.t/CÁ]v*'ÈW™¿i8^¹}$ÂùQG!‡ä⣠‚N2½ž–¤/ÈCŠt «óÒA‡Ë ¤³:ù*êwìל“JÖ þý[PÇ]ýpËWš^?rQ$ †ÖüûÄéÞüÐî?Q~h¨:fv{(­XC—×WMÝmèa]éȼ=F6' »G`Ð~!:‡.š¥ª«@»eŽ™À~ hÝUaêîþšVº¢æn݂ϻméö°Ôyä‰ kvAAÑWú'^ ¡0ó^þuKÜw ˆ÷–œ9Šª#}6k†¹õ óõ(E§ìÂset{Œê_ lÛÈÕÉ-<`Ò9"nh Äó©ç§’Q±ôzµS^*ßt&•0ƃ™Å/?°¡ºQ‰Ê·ã³¨A9tË,è1jž–‹™\þZmjwéî¯¢Žµ÷»¸ïĨGgRÜøê¯ú_&ÑtFÃuHh}DÐ×òϼ#Ÿ¢iß+Jéûh½Jº'‘-Ò_3ï_EË@úYöc´²U.\GkŽæå#ÜýhÝUVã÷ø*Ú.‹«Ÿù‚¶™.îÊh[Û’Øî@ƒv¶ƒüÌõ:h÷­´²ßyíí[rš¾¢}£éçç,è ϜꖄÄrŽ!ùñPÉý3’Õ„Jzåºg~B~¨Ñy]K-ðóJ’udwóXAú OÏ3?ê;·ØœCI«媹AÂêÕï—ò¼!î@ÝÍàë× Ö Lmå}Äó’8[z“@ÒÙhʹ9ȼKoÕê¹ -ù1ð!ù²À›GP,Ô¯õ\ JœÊ<¬Éöo>e±LpÚØº/ÁÇN½PØ»³îÿë¶ùaß¼>²@Ñ© 8ǘ EMä©\« ï3–Ê1˜AÑ âøÚVÿŠ/ †Ò¥ùô…O ¼ÌoB*ò&TÄ:QÕÅuAeÁ$±¾±.T}¾lçá,ÕïŒÖ¾®×@ÍǵR©Iø¤Cu’DúÔKZU]`„ÆG©O÷Ÿ{_ôÍlœ¡UØ á#@Ûµ>«•\èH´ø¥$-]¹!ÎûØ;¡—"bâ”%+|}šÄ¤e•N[ì»<`˜&kQ88FßLŠ(çÁ ]fÝ2|óœ‹îJ-LØ}<ËkS…ym`úª•%Ì.Ú8ÍšÒÂ|9ÉÆíbX´×µjù KS£e»wÿ†•PÿWƒoþÀšéZ kÚ/ø¥6'gBø?mxšðƒ?ÍdwõaÛ5à÷w@$VôóXf@’ÂðýŪ¦Hæ?_.ã=„Ï'}Ä»"5ÇsÝy1¸{H¨YÄ„ i‡T%.×j"­Â«ÎûUÈ8JvÛ|Ï2oU-eå «Û»… '/ä -è/C®'ž7ÈGvBp ò÷öÔ]ãÛ‹‚³7µÙÝ®O»|Š~=ìûV+%â’›’öç£ÔkÏW{(Qf6ä‰Oî”Û¾-ÿ¼ ¼^æÞ •–)¯)ÊGàAw®+Vs_Qík5ÓñYÄØ·ÏF_Ê£¦ï*Qü#Ô6Px:d£‹ºRpOåÖ-ÔçvùÈÏ‹†, úçߢQ_Qàc4 ÛínSöͤ(^—‚æe«'Å[³ð´´î|¦ׇ–ÛuS±o y3¦kS¢­U(Õ²¯ u=µ ©(Ú˜pÖ1ßC›ºä¢ðü ´U)÷]FÛ8ŠƒW8X‘2‚®¥àã Ôóõ}1xöœ³^iÊm²CéR¨½RÓø$:âLù/hDEõ90[©,r¹Yû&_B¶œõ³ö%èp¿ÉoªOÔ\ËÚWIšoªÃNCF€IzXSò?ÎIEÛ·¤=ÇàSnç£SNNÐDíözöj´ÚÛ°Y‡þ„vúµÔ!­SÐá+oÿôÇ4t.ŠUŠŸÝÝa¿¼µ9 Gî  t»õ5qƒÎÐmz”>°3ïQA‡èëÎþ¦á}޾„º0ïDµ`4±ø˜É CÓË“þäðÅó »îghæTxtø["´ð\|7Ò-_³¯‡yüñ̰x_³ ´IÍ«l‘ììk®4òK:º½—ø8r +=Ufâ²"ôüW[Ór†¯þR¶¥6¦0à“¸»1p†ÝToŒ²Â¨mŠUÞ©øÕkæÓ¿“t·RG&àÇgSßç0ûÙþ²nÆX`<—ae ‹ã­Bt-°ÜúêmC6¬Ž&‹<¿ ¿äGÏ®‰ÎÂÆ’^Séüí .X<ƒD÷-×µÉõ€Ò†Oˆ(’.S…U½@òhõ½):’ßjû„Ô·W¶ñáîDYIM×H¤aøù$²éC:¦ Õ#ãA11ïãÈ̹÷žTÕ4îåT¤®½3„lý’ò¾ÆÈÁz”|‘«¸H&÷½Ý“ŒÜ g 8uš„Wm;ùÍl"‚Nª ÀÈI‰)ö)*s¿zE>¹. Š.ÜäT°F ™íïÃMpÐÕ7váOP†(¤ñÆ ”=u¢NÁ zzùqoÏ+”ÏÈb-böAE×éºÌ{Ô¨,\wûn3´Þ}ÿÈ##TøÓt½ñ­ú|Æ”jJº§å^”@­°v+ë{¨Có¹Ï5I uëþ•Ñ¡~ú˜Ø£Ò 4LOµ’{ƒÆIô‹^1hf{ùt@5š[qô/ä©¡ÅÝ®Zv.héhÇô,­D ¾ªÇ² ÕLÛ!œZ´Žoa2é6Ek¾ã„Ïg³–+×Xæ„¶áaœsVÑŽg—ÆÅ/Öhë3ûå¨Ús šÞ³ÐGû‡®-ô_‡Ñ~mî'C.+<úQ~*,ˆ? ûü…â‡5,Ÿ(>B^)[ÌÕ]UD'ªdt²˜¾–Ù4…t¥> ²%HéÔú¨wÁà[oŸõ-B‚E«Êóôˆ çeóãz1qãšíÇr ÎïЫ㆘ç#ß¡íH¨ÿlmŽ@î §S${:ü;_0µàW:=P|EtºžJêßz¸މ´_+…´Ž„îÿÇäñ•#P´WÌÌhã$nÅÑ\¢Z€ÂIîËv^PØòâþìÒ ÂùôýÁ|Ú„ºîÞé|¡F(yü|ážr”Ýll¦øØ$9&C• +åTÇÒ ŠôTgTqœ§æ¿®÷ÞBm‚Ðö@¨{rK‡Iû4Ìôÿñzwš‚çç{êoBËõÛ šÑµÐvÔìBwv:tÈÞï:ÌöºdלCŠˆ ç‚±€¥%ôͧüRYŽ…þ‰WIÿÀCŸcï áZNÎM–†Ñ'¾­%´ð](!I³–Æ;ÎYµ–Ád^È1òë¡ðcüÞ¶@º ÌÚÎéªÀ<×¢U¦B>,†õS7ÃR¨Å¶|,¬ì볺u@VGxh¼¹`½6^4øÝø=iE5{þhÖXEøuÀVGº\Jë>$ú¦6HÖé$ÞU–I×I‘Ljéò‹KBõÈyªgÑHõ*úŠá½lÜ­?LÅŒ´Â]¢¸Ö>Fa4„Ú]ÃOÿaâBfWÛc¥7qo5»c»ëGd7”Ëxmp ¹Èüã¼³—ûb4çCIä·/9ö’º Ìš‰ö£pÊÛ[\!(*eUÇ\Šâ˜’“sq«€ÙU™(s“?)"›åîŸ×úp å'%~¨9¼D¥#æ—•åQåó£ è¦.t¸ÏÝ‘ 8Qó*jŠËy5>D­u…††£M¨ÓÛ¯ÄkЀzÕ„ø~,¡AáãAIQF4ºî𧃥MdzŒÔÑ´ýca")š»ÞÌK×þˆçOÞ•??Š–bÈ Áµ -»ÝJŸx÷¢ÕÕ¬p‘ƒ-hÍÄàø©=ZÇz·û,¡¨¨ZÖ!wƇº4WžE[ÖΈ’¾çh{[gNŒáR2’퉇:6â…Ï bl÷ Ip”Rª¼™ gþO_Ò_ò&#¹¯ÈAnåõ›ÂÏÜ çhõ–|!gRY(Ò‚´kµƒ:üèýƒÍî¶<¼ÿe`µwFÒݶŽù~žûÇ9©®y!5]Ÿ Ç·Ã}ø|Yí[ìB3´,i^>tÚâ)^º&PBùaÝÅ¡ÛÐyéª&íÈ.è&eeýÓÝ lbj]v¿YõJ΃Ú:ø÷Cûn*®“к7¨ÝØTpÇÇ$Ÿ …&ƒ—.j‰ïŒSŸ©8˜¶ã{W÷Oê¸+Ù^Á)Ð|!La˵Z„¤B’õî×ã¿á­]ÓxO‘PÇý|“›Ø^§]Ï?….™…ÓÜУìåT#a}qûì<íe ÿÒ>?Õ#ÊŒ P7ƒ‘LÚìæÝŸ`¬WÄSfeLì/O3N‡©/'†¾œÛ€™ò{zì`žÕG7íÚ}Xt­6±KU€eÓAsF;X=yD˜a=•–¼‰ð½6”^”쟂¿¤?-¾,O!OÖŠá÷2Æ"ø¯h6’g÷“ArjN½Øå¤áôš•fDªž§Å4ýq7±ù‚M#ÒÜ)j—ÿôʾóQ#Ãhý糯‘©L¥o÷ ²ä['f_TCÖ¼ ” Q2d£"1TûŠœ!²cWu…ÛÏÊËî7ò¾Iêé}_ü ´q£XP JšÞ+j…ܪSëøÓPä¸~Š«á7õU’ëüpÅÓ†û¥ZPòoqˆÿ”¾<~éUŽ3Êòe¤-TÜB¹—7¤'‡PÞéìm T¤qh"=t•šZÜD•5g aë¨v3øcYd¢dé`Eµjü|ýáÆÊaÔ2:uùj׋3 {Y¡n@½]˜”ê» ð* ¡¡+ëV˜=;ËK]½ÞŒ¦štã7:þ¢9©FAg¥#Z8µào©CKé[Ž4ª\h¹é°úÝT­J;>^ÔÏ@ë ÃÇy9ùІÏ4ʪ˜mª¸ ”˜n í!£G»LYÐvBñHgûq´ód-?Qˆv£—§4KuÑÞê‚…O*Ú5H•þ G¢³óóúu'á#™Ä¬û¾&‚ØÚ¦óòâóò¿ÙÑe.ÓûIS2ÕoÔÜ3Š%èêééwS"Z._‰cW£¶j¯C|šÈâDYˆ™¾œíQš ÑÛêzY\ƒÛ•U`mÿˆ ?8öáÅ-Hï²ýé[9ݲÄWÍ.CA`ˆ±\9>­ËÑö"øÙ¹<“"]ÕÇ~[¢„£Š¨Ñáü®“ÄÄ–sÿ™?-¦G¸ïc¿ï¶òúœqI,PÈËc›Ø1J8 ^âÖÌ%\1-³|7Ÿ¾ ñ·ˆJµ8J®þr븼ֆB¨{FwöTª:9Å~%øœH¾ú¦³=T{ڔﶅZ +%e„O×\™þ@ƒ>­kêøÜü¨Ù‰.š3.l‡ÑBëòQZÇ3‰Ð^R‘s‡x:³Ž9/8HB÷0©ËAKaè3J}ßÚ—zÿ>„ÁHSFÏW.0œgè¥Éž £B# E·ÿÀXjžüEFU·”÷ß…IQû7’}5ðÃòûê´±A§ÜAê®0wm(åÒ¾,XH­­Ÿrö„%éÍïˇ`¹Zš¿ÞV/ê^­<¬ëfŽ<õ¡…ðÛ•ÞîÃR(læß5‰Î0-­ÞÓçŽÓ!ÑcmÍwù?D`õRdi’­JùË#ù`ÏÅ{AýH%üàz©cîÊJÒžâCšÓ“Ë.¦ ½¼¢˜f0#2LrØ&³ Ó0yQU½ îå¨ù~†ÙfÜ}ÒÑ„œ²Ñû¾Ø®#œÀOW'òu¿Ý,XöAŽC‡”­µP˜nzÄm$÷Ý6Ø›8ñ ÅÅN9¦ gã~үćÜP†áCY~†Ê1h— ÷È£ü±rnÎ;9¨ØT+X Ú*2¤sÅñS¨ú.0I,® Ácéæéå¨ñͧw!BµÞ+låz[¡Î«“ä Œ¨ç‘û€/W œ/&¡¯Èo¾¨ûhÜñÞ0½û:š^¹r§­-Íwï"&yzYE}doÑb+9ŒöéA´L'tW­­,C4d ûÑjVnùÆe´¾ÞðͳmH[Gex¡M€Í'´YÆ©ƒªh{ìNÌ7ª($ç œK›? ŸèÄ™òž¦A…ûõknì[PÂ9ñ=ÁŠ Ny°ÀyJ¼Ì’§x —\k›É[²ãý¸½2_Åù Jêâ®2 ïihØ: û!!ci8Úó=¤™d±œø|àç¤BG¬!¿Aj‡Öž¨ñçCãÇ!÷yhQè Á—»¡MioÐ4å{h’7ëb‡ŽßõËVTÐ囤ê©ݬùº', ËëÛ­uÒqè˜b~âδog}6齤ÛÐÊåÉ\†_vú«^Ou›Õµ(Ë‹;ëá|I¬vú–ƒßw껢ök*éð¥¾mÝy²š½S£j…‹ùðzU»ó´ÞzÞyFÚžJ{'-CÉ©îZ:è|[¹AÝ÷2ü"˜¡·ÏžÍ‘¾ù%N¥ó½ƒÁGOE4wª ô“}0Ær1pi·Œoò^ΆÉ?}:˜Îþpî2‘)ÌíºÂÿÇê:,ŒF×?Ð{ K½D 7`eÊu`tù ¬ó«DÅÝòßáÒ/àÏóéDê°M×Ýe„Ļ޿÷ÙIâÙR Âë‘Ìqý`*‰3Rèï´uA*©Õ¢C“ ¸ËéLÞ)ÓpÜ3¨DßÁ…tq´|äÇ!䨽Ó=Ètä°øÔoCd1?§ûÆ5 YõdÅöõ”"»TæVtd6r2]gãÜdòw¹=FWÌôœ’™ òuÔçcÄ" XýZYäÜ@!zÞóì}(üûá|·m îÛž7ºÈMNÐÑá‰Äf+”¼ø‡³ât"JÍÞu_B™Þßi’•(wRÐo~Eå©dtOo¢Bþ§V{‰bT:ÿ6@©}U^¦³Îhe¢ûÒ팬R„Õ/íoÅP#£­Êèb8jQlùôL¥ öíû&2×PW•¨Þ•£>OÆ£ôÜûhÈq7e&ø6ÓÛŸ²ŸC“•F›%4Ës{TØ|-äævÊ %Y!Åp Z6{0ÿºˆVaÝÂ7ú_ µÖbÖâ‘´þé×~øH.Ú„ÝW‰óˆA[A*2ý—h›qü¦|Ïy´“îÖÊtgG»ÄÆÛDµÑ~o@Û«ã—ÑþzÜÙS»jaÛáÍãèP(;ecrÇç5|ØœxöTí$äÊ[<4­™ Œ)>Ya¥f‘ö6R?ÞÉ~vp’ƒ§ÖD!ÑÎ&Z(˜â)¯}‹&ÔmºÍF‡œ«!Úñ™qXï.ˆ•¥³1é†÷j4_ý|éTCö¾É× Ç"êAÔÈú0Cþ6ð¡©VEÿ)1¡îJ>ö&Òér‡+û)à&á|Œ×ÐAÇ_3='y ïoÈSž#…BñþÔë«7 ÷ÜX4,‡gâŽçï‡ø²4ë„ 2û™boBðG3÷‹*6PBæ™p{¦J¿q ®€òáÞý’áPqÁt£l¡ÒÓóXÈÃh¨ú˜q#_eÔ¸;űÍFçc—Eò¾Ÿ…úXlšÞ$‚ÏŒ²iƒv5ðeø¤}ÇU{h :—4(íº¿Â“fl¡Sªé°Íº=t›”D ZJBoBV•˜B|ãRR^烎ª?G6~'Õ,#Æ rF30&WUñþÈeøÞÔµ7{ÿS˜x-Øg£ø¦Ê5g³¼ƒ¡ÛÌÖ áðók3‰*{,ØQ®dRÂbÇ}ßÉÀ%Xvyô±úðX¥ôšØ«à k=ô,~ ðk¸ƒÉíW$lŠéèeŒÔÀßÒx¥åu$Ò7L8øÜ‰{E_Þý냤Ö'OÝDòÛæW(|Ù‘2óüméýí¸‹Ý“¸\Q÷ä¨× 7¹ ÝC¯¡– Èà‘€v¼‘É"‘G°“Y®ï‘Z»âЬâŽ!GxÃ¥*í$rëµÙpû#Ÿííg\( ÷ÉU¿á ]RÒÊV>ˆ"Ýê'Ó [QÌK?&-&%•ç[ß>€Ò¯²íåQ6Jèþµ9<Ðoa±‘ñUâÖ×ð *?½’rææªO,]VEõ/¯/ÊD¡FhºîÞ'¨e«xàÍÕ>Ô‘bœîsF=º9¾ë¨¿ýd÷¾ˆ 4¬\Y=Ãk‚Æ——‹¿/ES.i³?Ñh–ýÔúu¥/ZplÎûGòf'3ÕÒžÓhy'ÞõÒîj´;¹¨æ0Vµ6ïÙÐÚ^IVŸçZ]¾q÷š Ú¸X&›ôé¡MÇöOæ¨!´Õ¨² ÝîGÒÉŠ-QJ9Bn²Rœ~ª{¾Êl[ C±ÌS gÈ|÷#(nä%í¸OMÐ õMb]:ÈšâŸÓkу Ae^Sê ‚þÖ‰¾Zùr¥,»Ã]ˆ?ùÆGlš RåŽ5˜5úþãœ|Üä^»jε—)Ÿ¾'Fó‡è†è¡ùêÙÂÞxhm¹èã© í¼™©YÐqƒM£§š:çTì9ÿ¶@W°Õ±ÈÀzè\aßp$:ž½³Ù$€¶šÃÓÉ×í UÀÔ^ZÎwgI¹æž—ÐëPq´š"ãô®ý‚¦¢u¹ÔWä„ãæòƒ©,øÂ³·°Ä³¾|M!c„æÏ_+“‚V Ñaþ÷FЦ¶’z ÀÚ_¸²>ЄNV5ŸK ³ÐÕ½ðòÈ_!è™g·ÿä¼_o‰Úóx¯ÀÀùØâk=á0|¬ç,±å,Œþ?²Þ2ª«öy㥻KABéŽD:¤KTQQA1[$DZQºS¤)éN¥A<_<ÿÇßZ缚lî kíÙ×|î=÷5–eÑéB*0rZÅaGŒ5‡|´€R˜Œ?Ï ®3›þ[&âçaÎÙ_'ˆÓîî{÷–ÎhçÞM…•W'¤}%eamÂñ]ÅüvI»Àß [Œ-o!ÑÅÒAÙ2$Þ¸~UdÅISZ¥Ò™E‘üÎ[õ²ÉD¤¼c›ó~‘©3ú\-£E:5sK3O@Fá)—k>!³ü:SÛ4 ²\ûÊvÙ& ß³^EŽŽïñÑA—3Ïn}uî.r¿©t”ÎâAÞG1ü×j?cæÅr4î|yók¸x= Ñ–uyEâ®Ü«*î&(Ò®hpô$ŠÅ»°Þ|âï»çζ£ÄŒæÁe‡4”ráµIä B™':>'CIPnÇ„}ÏM7”Ϙ?ôàU)*QhKÚbAe.¢'6—PUc³ÿ3Ï ªgÔ¬IA0Ì+¹"ZõìK¥¸¯üù)ît ܯ1v'néê,©êÏ1s ^›Ž†Ô 4ÍÛö.£Ñß„gò h’p»ü½Ï´C¿4VÉÛ°ÙèHE™vò뮥DfŸ…¬´Ë߮ک@š» m–P-|\™¸Xux|pýÕÓ¼ð‰P7š­ã·vH±Ù÷ ®Zú½Ñ§ðÎ¥Ue3t¢¢E† 6¾Cä™î¨Qwˆvb²Ñæƒ÷×{ò´k!EQØ´[>ç÷È‡Ž›@Æøó²‹•ÓMVVb¨¹í×p*‚ê°ç¿y93Þ,d“CýùâÏí9p¡ƒ”4ÛsáâFS¬ »ä—oÀôW‚ž=Ñ„é“U$þ“ïåeÈrf"ÛûdóšIÅÎxNœûò|˽ØNg¡Déñ;Û= ûÄÝô×sÛ~&*Ú÷m¡¿br({y? êgÈ&³tÃPn³IgÊg1¼³6rˆÆçد>W€‰=o‡¯5ÃÔý±ø{ó`Vµà 1m<Ìé!1q,Ì_f§ûþñ ,üšñ>¾KaÏ-ÏÐß…§¯´:'ÏÀÚáMì[Q°A¦UÈ® ›‚R=[ðg=Š9iþ?t,¼"Hºo=²)ø.’‹T^ IŠhR2Î-vî&°çÇ`f}ŒtÌ÷ y¢ÿío·ÃÑâà~•ݹhI¬£r -ßzõ—h¬¡•ì›´K´Êç‹nпã_ƒòM߃;Ÿ•ê«ü3rž_õ×¾ ,ÒÏ<°Uø»¿ñ(~ >7nýä†O“gx¯CJRm_ñ·ýÀòø©ÈxglÃU×% ïxõ7ÓO=$NV?Õê‚>'Åg'‚h; ‚Žó%ãT¿új+õ…T£œÐtXéèRÝ4§t2S•è¸édI9´«ñN~â m?ýÊ:sÕö5mþ1hÝ¿‡ãÑ*/4GS5ך‹CÓn™Ðh‘]ÐÀ#Äž¹íC4æA¹íƒpÿ^øÛís!>®Ó¶×¯Ò |çèË5;õDïs6†Î~OUzžï,4&‡8÷T@ÓH”è/‡,h‘:–šÔZ—I­¶À7Q¹œ½cLÐÁÎbÉ©º*çAõçY±©Ðï}ù­âä †0^R5…á»^Ïh¯±Áhk<û3a˜x½Ã=ÎR ¦çît‡¹ÀÏ‚ì=ë-0ß¼WmFì|!u$VèC¾˜w,šV!§’¬?eçwP°ƒMFêföø“÷>/Îý%[™ZC’­T¡|9$ërz'¥·„½ÙÙó[š1Eã±RÒ¾<Áÿˆñ(2ø½5j|¼…L=OÓ6E–wïÞI'"Û­”^ºÖÈqêŽ(²$rêþY53rFna–4?^"ÇiȯõòÝR îtÐèX+IDÁ/Á…ëüô¸Ë¥}«hPEvóùæ•D1F§+i{P\Èn=‘Þ%Žù‡íÑ/À½Ù©­|(cøøÈ.r”­ù TÍ”‚òG?W5—¡"ELçVÓT*öº>ÕñUÄ{/³¢ú2ª‘7¨Ù©š¼b½µdÕ;/-ྀ=.‡ýP{U§ädNê|ð,‰¾yõ_Y­I²@ƒ #¤ ²nhä1ŰM¡\A'p¤éL¤¡Y™¡S€š§Šù¯Kآť{ÚÐRº{þ9Åi´d;ðb2­‚¾i_HZCkáÃZר'Ð:ëæÌ(´¼Â¥Á´)Ôxýäl/ÚÊyæxi¡íÛ·m"SthGb·Xt@6ô8ÃË¿0êÇ÷tù2OQ³»\ Ï±vi,ŽG õ¢DÛ˜‘ÿß}ÉU½lHÒçÕžò¨ƒ„}O–E|& \F“äÁÊ1EâžÙCäÚúš§ê¼ºŸô4œÀqãYš¶ÊÇ·û('Ž¿šƒä£§>¦Yú{~'I> 2”yP±Ü„,}£q Ⱦ#ÞyQ8èß<¸í>çÃw¥!ÇÓs…r"hûÜë˜ùàkgÖr•Ç@¶‡áí!ú¿ç„‚2B}j~çåRÈ ¸cÜG Y"ç#ïÕCÖ/²¾£ªmsÆ÷D£2äNQ‰§Ó5A~§‚áË“*PøõÄ×9€âáD »1Wǹ‘OùB¹ø3Á–â|¨v§¶ <•ö1§l# :ôâ©‘QBÞМ°˜€FñüZcqh>èf¸TÄ­1Gø?òR’yÙB :³‚9/;C×ÇÖµ)]è9ð¡;tÄú–^œliWƒ.>Ë]ÝU0¤ÕßEók†¿ª|ßqÿ ŒÞ*°ˆ™?ã/wï%ƒÉycÕY‘Q˜yôùëf ü´¡[âN¸ óÜÑQûaá…Á^Š 2XÚ›_T<š Ë׈oZÕnûà ²DXgú¢Vk!Ù+vTÁהΠ$Ö~4xÔÿ;’,lÚ«<—C²j¼Fvð R”ë-û‘¦$Ä®V"}÷ÙõNd:—ÏòI¢Yd'ÇF§ÓMá)÷}äp¢ðõ*CÎ\ÊÌ µÈã!Eµ;¥ùãž=tžAÁ½Q¾®Yö¸ ›ÈuGPÄ7iÖ¡![ N MÂ=‘ļ{[pïÓÅuM]”IÌWrF¹æK9¹d¨Èz4Ê[/•; ¶+n ê×Ä nnÔx>w8wèbŸ¹ZÅžï¸/])Âóé8î¿e¹’uê'ê’ËÙÉ(‹úzÏU„6‡Ð2äõî4*|!UMN¼µÔØBÓ­„…`”A³ á̇cÐÜ’(g£-d†èlSÑ¢‹ÇÊò2Z^~e3(ЉVtD!üwxÑêå—{vm´æäX¬™çAë ý³‡ÄÐúÌýpFboe>~¥b([Šñ³}f…“áïO„$üÝ_¯~£_tBC¨÷AšHîVÀ§¦—þ=K9ð±ÿØ{þVŸ9½•‹ê„¸°Ý»'EiÏ«ÂáKŒø«+µjP-þ¢ýZ½5A_¢Y…íÚ q øí’%4«ý9‘Ù-w²µ¢Þ“Ak—ãKuáh;:W“ m$Ïw½Ü!-sB“Ðì—ž3»kš¤X{XwÔCƒ-ƒÙ”eaݰGt×- î£ô³ºBísÞ?t©vBmC€b¼^ÔVE©ûxL@‘Pgɨ?ýÊ5À/‰‰}$W )Ø8¦Xnî-ð‹†V*ýÄyÐæu©ýwô«Ó:¹äAçqbª·ð]©xhÞ³ úĵ’†ú#]ŠæÇ`(.­îÛ`0Œ|+¼ö6Æ蟆«²05ü(kºÃ~ä\ðÕ–‚ùc;äÆ`ÑcË£M–o8ˆÝÊ„ÕPþàajøUz9Gΰ6ÞI_ì¼[-æï{% ÑSÞò$1ÀQ.•d’‚4¡±ZH¡È™ Ô•Huª–(&™i®LÕ}¸…ô<“b6&È(a3?yYt+wu!_ÀQÅ4dÿ-û|lw4Ç/ÆÅ*#WÊ¡–11fä‰îîÛ†|uêšV:7q'Ïʤ] úÙÆøGrà.:¹ fï£(\|¼DÒgE_íxbiZ€»ß~#KLéÁ=ÝÅ]NŠ_q¯©•bÖÝ4”!îÞß爲~Ø2ßΡ<ÃÅ?MQ!•©×2æ *ø£sðªÜŠ<¯Ñ ‡j“âµ7¶ ¦kÎ*iiÄ‘Á ‡)ܧQâeà„ÚŸcÖw_[B×$UËÅ ÔÓïOvÉDÍšO·¿£‘d©Pʤ)š0þŠ®ãGÓÊNþãËMhæ@ާ;Ñü¶“âbSZè‡÷_'CK¢^»·o¬Ñò“H„›”ZÙøú™‡¡ÕÏÊò wZ´ÐröUFб^ë±H´¹õ³ü¦'¢Íj…•„; ­Ë›3{;жBNñ”)¬´Ë^ÿÖDà¢z÷N}ȳ1 îO=íÏ=[fç•È”Ç 9äÒ2oXÑßó/hË >|´,BÍÞM}Ñ‘1\ׇ÷çÁÛÔ¤=æ¾Þ¥–q€•¢öÓŸ¶“L†XÊ«ì³ôðã!nõOð):èD^€ ¤ßy÷+ü0'd^*l0 )¬ê)ÖÞé·ÿæygŸ‹8˜Hx>söt«…ã[‡qÈ•ˆôO>8Fh²få9ïvÚtL¾´[*2+Þ}æ@ QÏNU^„L)ñOa» ³e€«# ²ïÐZ!è¥ÿo«úȳ²«Ýó ”Œê$>SCÑÖ×>FëPRœ_òq¿”Ýÿ8(h_^º®ÇÛ4n÷¡‘'Üv‡ª^67II¨õV=öd¡áºÉ\Kïvý)ÆZ’èÜl놶§#¦}ÚО•ëÉÄik öÃð=x×…ÄxSèÛ¥53›-§ï\É‚ÁÊ'4õÅ`X{ªÐ(§FVï>¬9ðÆI훩¾(Á¤]j]?L¯†Rÿ| ?ž–7-€¹")…ò?3° ón8w K†%Ø aÙSvµD›Víx /ѤÁ¯Û·º®IÃï?$~‚­–Ü(ŽË²H´ZFnVüIb‰˜¢Þô ™{¶ÿ-ã¤0Ýû4(ž©¬Rmwš!M Ö£ÖkHOtî®2— 2=XË;ö™cë­^GÖ'>g%ŸBö؈ž Ĭ¸clšä* rßîq‘XòB¾ØƒU‡tqg4} ·d& ½çu QoFá>Ë|©SõþÌž€â-9aá(™³Sø–^=Ê(|ýá`Ër&3¯eØQ!@ëR–Ñ!T*mé½ÏLŠªâ4ͧ_ÜGõµ0KÿûmˆZµ¬Ì{‰pŸ‹R‹cä9Ü¿w..\NuIó tÞ@½)¶†¨t[4H:2eûá9÷08S^CÛO~´¾hú^^›t‹ͤów¶¿âFsk«kᗶЂ2`@ß'->­¾ÃŠ–æ9u$$9h9v龜¡Õ…3ƒû†ÑjéW(õ&9ZŸÓZ -¨Eë>˜Ñ$Ò¼ zàÎ?_‘‚¿þשÿù”üó'ù?’ÿ¯ŸBbîâá÷îgÿù(DÝ‹àþêæ÷/þç³ðß:EV~1.ðEEíõðÇ“PõÒ]^Ç럿H#EÊ•?ºÐT)>[–ì -´%$Ðz`&³&ç´‰gñÍÊAë½æÔ¡å-†f}gúçkÐ$¿ÊHã !³œEËÛý$iÏ彺ÜåÆÞ)¨£v4a.úøÏפ–od£}ñÔ>‹ìPˆäûwÝ>'ÿ­÷ßúÿ|MþóY9JæÐt":Bc.Ø,A7gÃeI˜ƒžjîpoc IYZ9y¿ÌQDé“ÁpGëÇüŒù_>Ù»&Û_>Sÿh³{/Ä»…¹±ê ½~÷aa±ÇäJ5¡.ü5>»%}V戦-˜am®Û’ÖÉ~3hÄ´¿¹›N[»Ïùç"yúlÑžÝHs’¦V3Iý‡.?@òà+Y÷Ùy‘²|òK–Àu¤9ð(›Ö8éeBƒ®s¿A¦½åknåÈ<>uá°+5²fšŠ2"{ð÷] /ÃqÇa³Ÿ›[ È¥ÿ¨Ô)y$ 63o"Ÿ]ûçéE(<º|¬§•v‘î@¡ÌGŽÓ>BaÛò··sP”¿1a>Ý wóX2$™8ãKbÎ绚Q²ìÇûB0@éKFVòùÁ(+£´³Wåòå¢ð°¢‚ÿ`œ/*Ñ™øGôŒ Šèœ2I¼ªÝzòè"çUÔXV¾ÏM#‹xÒ¸{n*µ~ÙZ³Ì£¶;±üä>>ÔJ#;Á‡zDºGÆ£¹PIùÐñÎh80â”ûå,—g0õŸDSŸÍ5C’Y4ãÏJÚ:œŒæ/gf½ÅЂ;1@ä½Z4÷&Êh¢åu¥µ‹:h%$´¢VùrúÖeRhm¸ÙöR6­Y62¦?¢QÌ‹—¢ Ç9;Ú©¶¢ùíŸ÷)ÈRý5lÁד&jÔH”²,DúHbCRMõî’1Iß Ñ¤AòŽW뾬HYà1/Ωk_>9'!ƒt¢çÙc¹Óa<ºŽÍC™Y%SHMev¾ÂS‘mŠ+íTð ÜÁjRô¥ß¹BïHkð!oŒàF(e$îdó |Ç‚B4n•ÝOPX”%º„hE/)L{‡â·¨DN¡D¯Éê}¶(}ÕÌëÇtÊ~ ÝyÙQ åg VL7QIT/Ts†U¸óä5¯£ú!ýýò\ït§K‹à>feJÝäeÔî|d{cý&ê$݈nF½‡/Nð»Õ ©äX¬œ=‘‰_~V€Æ© Wã»VÐÔ¸ðÉÕ‚I<Ði,÷ÍÅ ×®ÏJ£yŸ@†Š~ZÜmÊt{!ˆ–âÝÚB£¯Ñ²¤úÇòìg´:ÀJ"‘*†VÍ=`H5‡Ö&¶Ñ_ùΣua¡°uÏü96Ïï{žJ÷í}¬ûèäG˜w1Ÿ/…,gÚ/êõ!ݸÍï“ÌÝí¾å´•^·¹y†¸AŠIâ³çMíÎù±'žV”ÍÒCñE ß×ÿbÉФͦ5Í®"÷Ü×I¶}œuýú#¡µ´bÇ'…×ðÍÌ>²ae:Nº§Æð @W Wih›ôøn<ý¨ ý¡!db*K0x-ÓvŠé ß<@#ölƘ͔ûÒõ`R‹qdé嘙³'íu€¹“…½6ïí`áè³GèÎÀÒA û·_`ÅÄ·R¥ÝÖL¼Øó×aýÌÜÈB[Ø(ÕU›m׃?gõIcô7‘Ø\ÿó53'$Y=^“Ó€äâ¤üDôýHiíš§Û‹Ô UTüÓHYJdè°…Œyº5£*ù¡Ý{%Idµ9/°Žì‚8ˆ‚‘cžaæÏÚw䬧™êXAîÚÈö\^=äý£/nÇ®‹g¤8ô¾À‹©Ð…°PxF¢ðîS‰ÇÛ.£ÈŒ­£{>+Š$ŒKô“à.Ž=(ùÀ›b=H¥µ]žË3¡,zVæ‘”K’'+K’@j¹Ó׬Pñ÷EæÉkŨÂÜsüZÝTsßQGÏÒŠ½ã§/"ZK+8;X¡Ö"ËV¤%jŸ¢\Ћ@þ+:/ÔÝÜuÉGõRúðÅ ;KåDHjÐ8/“§ï±(šz+/ÚZõ¡™à3ù£mh~dÙ_Ù›-D_Fdr¢Åø©|xu-£Ïç==_‰VÖþéY;EÑšXéÆ4[ZÇx,¯¡ƒ6©õZ·£ÍÈwó–ýMhëGË›v,í/E Ý{óÆÙVWXÓbŠ8OK঱–ì»!Íúë=÷!YHe8Û“ö§’ ‡cM$É·ûI²’êÃŒsWsË­àý²/KêõˆU ‘++€¨&éT:K~u×¾‹?]!¬µ8ÿ0¼ ˆØËÙób¾}H?b‘»=ç»ØBRoÓÉT¶AÚ­Ö—ÜŠW ÃUd1ä*dæ›·ë+@–ÌŠJðîAÈŠ{3¾|<²ïß&êý_$ËËXY!p›\ Ÿ,?dªNèîƒ.þ:£úîÛû­îs7¤™ß½—"™R¯Št §• ëòÊ8›LÈQŠœÊ!òÙžÃã¡G žÌ÷Ät 8#ÀÓ­½ J“™×rf¡¼ þëŽñ¨h0¬žPê„Êþ5²|ng¨9zASdê­(,Ä›ïC“F=ÙŽ¢SÐ<ûò‰ñhÍüSpûö,|+°îI?ó:†w×8ΆB·Ó½u+f5èé'*~Ÿ¶úo¬Ûo1Á {€ÿb* Ý¿{œWaDU:šÇÆÔ^w¯•ÀÄ-šÉ¥f:˜fL|X³³™ÉµÐ‘sZWjšðÃ|z¨‘Ü]iXÔÝ`ø(ZK+ó]?§è`¥ã©^¦Y ¬ý"^ûè¿]šŸúÀ§Eà*$z¼V40ë‚$’Þãæ=H:¸ßðϹHž”­×¯Œ”¯Wý3?Y"uÅͱߤH·ã‚O|ØMdè*b)í` õ¡™!¶faÐØý)œ˜ šé{o~¥úJ¨Ï‚.ßö©‡–¤%M'u Åî=m5ý(4ß òîcûF¨ãS–×"¡aØõA*3áù§¯ÉKþûíÄØ^¨Ý|}šúþÓ¢édtmÔˆýzÖÿô-k>—þ´óö\TËgÒ áé/­e ÉΘú‡²=4{Î\¨Ù‡–àç=+ÑÐZÔªúò³.|ÓL­¿« ]ИªÍŸ¯Êp„Ù³†Y²—aN@¥Áå|<Ì¿‘[ç9b ‹Ê³ ÙA°´ø»b06 V¾ëé?š è[q™›7ü¶]ˆ¨D;ØÜšR/\¢D¢ Ö·ºý‘„tj«tKIÓìX6"•Üßn¹ü§6RzùÓ)/"u¸÷%§šv¤£òúžÌm µÝ–wýבi=gˆ®ÁYJÛ˜®ó![\ó£œlEäÈSWØ“ô¹$©ß~ÎG^ÁžìyI!xõëí DÁœäŸŒ% ¸«¦üœ;Ö¡({ÕµÃ˸ûËÿÆí>½î –(µ~,|éQ Êú‰:øÑîCùðjIŠã=¨ØFÚ­&âŽ*j¿7n9f£:ýRûg¢Ý6ÔÅ;ž£Ö·ðÓûì¨v²ìÔÌ7Ô UÜ?z)ãçÒ…Ð@Ýó!±ãe4ü#øB½éçZ‘Dê é)F u"i4c ظG£Œæ‡k'£ªøÑBÚòÓƒýçÑâ«’züZÖ¿ÚÑ:…Váföô­Ìh}¦ÜíÑm4ó.¾‹¶¬Ë%ås)h;—¤óƃ6•hiXÆ¡¸c¬ë<í#ÈYX©#™ÛÚÓ¦iÉðÙËìÅ8ç|¼aéMq€”Àmi,âש yÈž ¹OâÖpXÚâ=ÄÌ*7?*ƒ·Ï ,4ÃþÅ÷nvõÅÎ&RDmÖùç´7î©'CYÈ‹Ó/§´ákí±Õ¹Ô¨±i(|”§ uÃj<7Fu ‘¨oI†¡é±ÁðØÍÝÐüºó¨ý"´00|=ÍEòøÝ éÄ ÏÏ9и çÚ²@ ‚BéÄ¥ .ƒ_ÐO‚Àk·Ú®?Y!ðᩦ;GB­}ù ¦ÌA-‘wy…NÆÿô­*,ñW Ô³ìÿ`Ý1 % öÒÐä¶ô'¦¾jûûÞ¡Ý[Ž|êséü±0hÍtôÛ»ß$‰%긂¡ƒm¡†8Áºt>Ù^ÚŠï¥b%×ùe /zC%œn fpÕï uhÛt À¨ÒVÇæ[0ÁJr×ÕM¦mì… *eáG«)«ñd?Ìkt§Š>)‚Eî´½‡a™Äêu VI“"¸Æà—˜Ã9b&ø}«Õi&жdÉ­~HÛ"Q ÕVßE6$¹$hd+fd.ì3Ó\‘â"SRÙÓP¤jT‹%®ðBZÆùÞÎ d¸\R›û‘©SŽ–é²Ü‹jihF6£7LÂmîÈÁ¨rDq¾Ö…ûe¨ØU¢Pà…ÊãÅž;8PMSXåmÔHÕkïÿ°‚¸wy•¢Pk,ØrÇ>6Ô>¶Ó‡Ì"ux¦_ðAÝ_)DcP$é6†×¡a•oûïëhœ-ÛÓ(‹¦É“ËEh&fÜqZÍO¥EÕz“¢$–?lëGK¿¬S'Þ¢åè ¶[Zåòf±\\G뇰º#wmŽÑ“µ¸†¶ê“çìÒ ÐŽË„ýñ ÚmÌ3Ý÷8öcG|Ÿ£C×(ÛdXq ùîìOYgªúøsá³Å†ç¨"¤t} ›­Wƒ„1Ý¢(U/ˆ·u¼Z3ï¯Ö|ظï~þÞ1r— [ûë!’þ‹ð»@‹Í¦ÝpˆƒPÇSdzA¥+>Å@ÑS—^”xd@KàÍ„o®ðQísØIcøÜ¿ëÕ¬¤wþ–a÷"LŽˆ‘}×ä 3X»û~¯;dOð­2éør"úÆ7éÿE™5þ›» z¸¦¨¹"´=/õ ÛžHÏüÔ$§. i³éµîû« ]‹žÁCøAç\ƒ<7j!#¥èºÔ!õíï}ÙÔÃ.,ZÚ- 9[±)ž'¼Tzôö¥AQµÄ¶L(JdKç†ruy_»3PaÒrcR‹*ø•t»ÕmºŸªy¡î£\|ÕŠ?4~>G,Ϲí»ÂvBZ…¾ nÍ(À7æÀ)š¦{Ð!ú~<†~•PwžéºãÄ ß‰ìc‚¾—2/2ÍÂa &ˆÆ/͆v:S[;ÃpÛ¨Ù¹k0ÚäD¬Ýât«[Mz©0uÇV4¢f…Ç£…£•áçïŸ1çE]`þf]™‚;,Š÷m*lûu‘nuR„•¾õÊ®ú?°¶î¬þµ~³&—*Áf߆ÈJ3AßlþL‰V†"ñw'®·ÉAHzëô÷_M&Hn±›Ø”–d¡y ZH}{ìDgXÒþºÃv"CáÊ‹²;ÖÈôÃÿ7ÊW#KrÅ^G=d Ü{mÀ$9¦ë ¹‚œËz¹¶î÷g0=Ž¡€ÙÕŲz|\3ÉNwEð´•9© È˜êðáîß/å 7¢„œÎNý®&”ÊýtÙÙeíÝ—ÿ £ü¥·|Ë'ü”ËÈ}!K#w¸=d{°«à“lH.¾çK+?ñÞµ5Z{!NƒÕväT,Äžxsa7×NBý¨vN¢/õ^x­dCà4ïÌY’5Í ˜×zô^GÂÓCƒnµÛ2®Œp]'Å|€,Ä:X¿c„/É„I¬)·ý-_·÷unsVƒ]ïØvÿØdKƒLÕI‰ûÊ„˜úHeuŒ ¿5) hÿ/fVr´Þ,eßöiþÕ`Kà¿§dôo­ ý˜Ý¯ÝcüÏÿUƒ®˜ sgÍÿ!¼?Œ´[5# C™û±ÈóBÈX´IÍOR%¬×à3 ¢9žÞ&ãT/ o¦.ðÛ…SPdPø&=J&&ˆµYe¡lýŠõå½4PAÇÑ;ù%*ùJÞîa|ÕcI9÷AcU+çÝ5h4µ§T{¤Íó»}2?BK—¸u@'´ð{dÝ\…öªãÞºü¢Ð%x¨z'=|¿£™àGD };ó†}\`àÛ^æ08mÜ~½ †cJD_‡†Ñ7Úln«å0Þüã߀)­¹›Ä3=Á;×àgîÙ®³^0ÚÕa–æ>,ò4]ºÚÅK?#*¸ªae(•ÊžÖ~«Û’\Ù¿Q!Cc?l30I¤@"UÒëÕHœÖªpÕ¾I­ýcW‰]\$ÔêáqO¤”z ¦á­ŒÔgmí,N_EÚ©kÑi\sÈð‰¥sãáGdÒeó 5@–Y†Åa ÈvìÞÊ!2ä8*žâ-…œEÇÄì‘'úÕECó÷(@±¥º¡ãˆ‚®?9t~0á®ó—Ô9ýß¡È'×V½=º¸[Æúüò•yÜókŸ+oö”ºr¹|]¶eåÓŸÞÌ·Fy“‹ŒWóQñF)Ò‘zTžzÐkN=Pê-fœË"¡GsE/@5œ«éµ=Pë½_¶‹é5Ô›ªäÕô@£0š˜l‡¦s?Ãx¸4¡éÛFS¿34»pT¬¸CcÛX lû:4ð˜D-&A]øâ¸v„u ¹xhAÇ­Ó&ï"]DÃ!B¤N9büj*B³…>ÿOߦg´¼Ñ%ÜWÈ¥S\ƒ —ľîc0M»ž@àÇ}R£$_·ûYÞ9¿„ÖÌÍH#1“íùÙÕ’Ð^æ3rT¡:³õ¦ÍÅ9á;Ù“ÛgñCo’ÛY¦ p¬yͬ˜C’J1§yµaäÐÇË[?‹altY¢S5&Kªg½>SÁLÿ™™{,0Ç)5÷s3ÌW%ô[Åœç¦÷ÀrÞ€°ÏL¬•ñ}Ñ©u½£·§|ac©á–û¹Œ%öqdÛ"OøÈÅé¼ÇÈ/ä”f¦AÐ7wɽú²K(8(°¿äLÈgÖ ("ä)bß-„b4d†râ÷Q\I¢™_Ï %><{ð3é-Jù–ßÿÁ¼e*T’ˆC9W…§ÖcÁ¨@#çå*ƒŠ9ôN;6$P¹ð!÷‰£¨Æ SviC5✎yø"R„ñ³Î¢V7ùûÇNí¨}XÑœã߸ô:ö¤CÝåÅø¶ Ôï6yÛìµ s®6oh¡ñË\ýïŒêhzF ÿÁ«(4ÛKö†ò‚7š_:_îä5ƒ¶‰s~Kqh©ùäósù>´Úc¹¸p´ ­ùòrÎU6  —¾»Ž“Úò»_‰wÍ@;é]Œç†xÐÞ´ Û4à:\k¿¶&¡€‹?¸­<ÀCÜ.ò–]s°ä¹ú|WðòvßÅäc)cød&wðp $½×tØq7ã;—ôF yUlJåø÷¼MŒb.Ç®ñq…„¨{±1Œ‡úù%®¯¯ŒÚo—Á«aÖ Ïäk÷+óÑ¢þ¨û=N…¸5 ="H™·ýq³ >«] -qéÆMîaz5á9µ ñA2Æ_»÷d2+X­åþ¾”—ÄÿâvŸä-Âõ)…EGòE!½ÔK‡’¹ Ò™þ ówÞ±‚ÿ9ÂuÞ‘¼õZ„ûÌ&œõd„Ì–ÞÍ×F5=¢?]é_ygœ¥¿Û …½í’v–ÑP’ ípþ¢”åK½üQ_jU§ Màk/éÕ_Yï¡ZŸÄʆ5ê¨l¹ñ\€†ImЉÉÄú—ñ`/'´<ºbu Ú\³V]O@ûé]dR¶„¼4ÍÉMÙ‚ï¬+ÜÜ$„¼t`ŽÞ Ò+z<†`0K9VK¿†=Â6ËìÇaÔUDì17Œ¿eM.°„Éß÷k®xøÃÌó]—iNçÀOïéåwaÞ’ˆúÛ@,Ò—N—œƒ¥i®{YmG`eì˜Á–‰Aß~ TK$Áoy›bï/+°)°îö€‰x)ÙÝ£›ø¾¾™=…<’Š<=»$çƒd¿ÔH.P#%-sFQŽRÛ|5¨Q;€´ßÈ2CK!FšWé2µÓî}·U‰,×ã]ºm‘mߨƒôewäPˆÙï8‚œA_è*†Äç襦e—1ä/ P¹5‚À”Ø{ wí«‹>÷–EüÛ'3¹£Øzý™FÜSÉóÏëPJ•¸ÃÔ e֥ɟAya¢·A{PÑ>2?ãª?*—YÕÚc‰j¯ý>|K/BÍþT¿àKj¨•z®)°Cµ¯ìÑí4G‹µ+ß²…PO×|ϸP<ìì¼óK W_d–%DãªÜ†ÜJU4}Aý¤k”ÍÎU‰ˆBóäVK¦;h‘( AY(ƒ–Ÿ¼W}ttЪ|þeêq´}åõ9y'Úrš°¹¾ŠvNA×TeѾøøy­wñ &ý2¹Éüš—Y¼[ù*ž_æÏê¬ó9ge¾ÂçjoF~ƒ'™.]˜>Iœ {ê< Á#I´ðø:ÄU+W²²ÅC¬R°[®R/Då|à¿aNȯŽìIêÿb̬JÖ¹ã¾ð‰í„ É•ƒsªëüü¡N›Ó0å… "Çîv8Žƒáqϲ¯,ÿ\øMª‹íŠŽ§¡qìÕ}… h(‘rq`*&pWãà%‡ÙíþEí5fâ‹:IPsÖ†­î…ÔÜî#Ý邚Éà³oäQB¦íYêÿômóŵb¢q¨?ý¤0´y÷iG”퇦ˆ…’'\Ûçë8÷“­AKì.µ®ÄçКN[*ónm{~ðfe½´‡ªÏ‡¬¯B§ÇSÅÂ"kèŽÓs=ú•z¥ÞmÁë㉃¨a°ýS•/áçÃ?ïPlõ˜Ù9¿'B"0±r³¥Ed ¦»(95:“á'mÚ®¸tB}¨~íl™˜6,²:Çx¸À2‡ïÄîón°ªå}ê¡küŠOxu:˜ 6lcêœiß36£Ã:H|ÊY(Þ”I•Óv™N~Br!åFò ¤4 YC¤®½sHãåO¤{ö+îì"d YÔáU€ÌއÞÂRäâÛÏQ«µÌÌø¼jÄÔÙ±ä#wx/ê.žYWHÙƒúßøR¸¡á'æšjhü0ϲ[Z Mݺ_O„ ™ôÀ–†w$š_i°Nô@ —$вûhiÅ“*¶…V&ÊŒŽØ¡µ9unø|6Ú8Çu®CÛk¼ :žæh—PÜ¿~¥íÇ—5RÌŠð Fµ¼4U(:&3ÍDݺƒ‡•ã‚%yžÁ¢¿ç\ ÛyÈì{óS?ãù¶ÿx„½$ÞŸWÑ#>ïÍ;ÇøM# –òVif<+ÄÈ2”òZZAÔxAd›Djt¼£§¨ƒ7²ß;¯oÙt-¿ê¼¸vç:'„µ–Šìê”#èàÛI«HžÙŸÎÛý`Ê*Ÿý·çU…%®Ÿ…trušžÔ{rEM÷3d¼P¬¿;£±Ígç~=ù¸Íqå­¬IÿbÆ¢µæ­È8uó'_<ÛìošBZQœ1‡ ¤q-å›i†¤ÆÁæÃœû¢X‹ £-©läeÛþÎÑÊ£Nœ½i~ødÛqÝ_Z†ÜÉÅÎÅÖN(t“xÃ2ÿ JNzou‚²+äTYŸÎÁ—û‘/¦ê'àk¸žCõá,¨&rŽ}Ã(µYËâÙ¦¡!P’â•N4Uî}¸Ïö´èþÌS €6f3úñVh§|ö¡Ó¬¬~Bw”ëþlùuèU¸IŽÕ?¡FHGÔ¼±ëQ©? ƒWÛ ;ŒÊR©ej{À¸ã÷·\—wÁd–K†CÌ—Ý4óŸ §ÒÏþ~󪡹EY_aáOú1²õO°4±Ë+áÑ"¬Lí¸ò`¬mdM>îc†ßbÞ5Ÿõ¾ÁæuÙ‘h72ø³Ån+À׎ÄGóO+¤ßC’•8¥ùc‘¬®û³mW4RŒ¿ÖÖZFjPRÛO#ˆ´u·Nær=F†çÆNá.ÈTݬ×~\YN½¾EÄÕ‹l;÷éÛѵ!'ÿʾPä´ Éò _AAK©h/1ä÷&ùz©ÜÙå4}y¦q›å—B_1Éîc\yŽbz®î ¸'H}þë#Ü»ö`êOÛ2ÊLiÕÞ=ã†r¼ ¢OÃPQÚÿÜkiTã)b;/ƒjž6ËÁaz¨™óää‹ OÔz3à$©gÚ®ÜaªÍ¾¨£•ì|Wõ”¾Ï0ê·¢ÁŽõ®üh¸Ì\fÄ‚Æõ=,÷ÅÐô]Ú‘Ü;yhÜßë˜xÍ+Æk‡ü6Ñ¢9'QV-§_+Ö§¡5ûÊ>âOÑÆêà͈&´6fD{vï;Þ´èðN~«ø•(:ÚÞÜýò¬uk‰̆¼›[fJyþVûóèÜ:|¢JrŽr‹"pÛƒàÄÖFHˆÌy©´òâÅ,÷†Ú>‡3Û|БP_š¿Ð¸¥ ‘k[v½±¶Ûßèˆ<þÅ®[ÏïÇÊ‹6Ù\È~²ìsò6”8æJ~Wc‚/'DµŸ‹@eÙKF:`„jõY¨ }í§ô´êÅgšš@öìÄtFhTÿ–Í'3 §Çþ²Þ;ë?þÿ·2² ™Y‰¢d$áñ‘•½I´ÓÕPÙiÈ^YÉ,²ŠˆDöÞ"{“Mf¾×ûs~ï÷çœßç¯Çq^×õr®s^÷×í~¿®çóþúÅ? ÷Ð]Ó êU ¢ìVÕ n?³ž–¯;Ôž´~*”rjþDµŸæ€Z¡¬.E&ÞéÞr~µÏŠÓ½Ì2ÿã[==Üθê ~Äû-¾‚&mC+ë7ÕМÓy÷?´¼o"N ÖtòVƒ›AÐö‘}„÷´(Wžo€Î;ÿ~+ã‡n‘_îG _ÁOµ-uÓ¿´Ð—ÓžàOaé%ž °¹ #OÏ裏݆±‚‰&ͽ50)*Wp4j¦ÎW¼VßäW†…èÒî‹Í¯`ÉÎò6Õj¬8²dt-±ÁZìá|?/Ø œO› …­ï¿{áo›¤ªó3Üe¹Mf$írÏʇ,{^¢M” É› ¬2ù#Õ©äH½ôY%Ý®·áÃå RdX ’òz‚L1 g•\à¾k~½Ô=éÈjmÍ—‘î€ûŸ-¬©zýBŽ™\ö´RÈí¶~ùÌv òr^¦ºxKùž M–óh£S¯ûÞœüúø™ÎT: ÅdoJë4¢pÅ[~#<‰:7äÍñ(ë E‘Š¿1ÓöKC is²b”œQc#I‰Eé0 ï,¹!” ¾r×ÄóÕɃ®‘cá³›ƒðSìák#í%è+ysøöR> ¸ˆÜ;¿Cgé±LNFhôÞ³´ÀèÖŒvïµJ˜àmö=¾ Sö¥óʳ¤Ög¤danq¢p¿R&,òIÚ¦<…¥Å¤ŸaeLìB”†/¬ý®«å¯5…õç\“À°ÅÞ1S;ÖÊ?UIa·‚Ëãò:-Ëóf´@’ªÂݹwHÿÈF.ä$’Wð4•Ës"•Pò‘¢ž¤þêS[yé|®%¦¿-F†¯á6”5?ÉÐ?.Þü 2ÿ}#ý8QYz_™§ÒÁý§m¤M ÇбçÚ¾¶È#æM“MJ†¼³†-ûrzÜÍŽ£or ^rî+ÆC¯J/¤¸˜àaY™hÝj+`ùû4ù)Šÿð½N­ì€m‹#™±{QšüÜöǼA”qÉ|G‡§4*(»7¢Âk'ý¸si¨è§ÿ»5ÿ2*Rè‰Õ¾E•cf}3æJxFøÚ™[»¨NÏ-:­¤ŒK/ê&ï¡Vë_‹ç¾¨cy$RØ uÓÿ„ꛢÞÀ\…ãÌ]Ôß48dQ¸ … h™ò¢ÑµÍ×CŸÐ¸Œ«¿&ÐM¥·½ˆã5ѬîÊV`Î(Zø’¾÷ ¬Hi~ÎJ‚´/äIƒÅ*ÿpG™· —M©»†Qò¶7!!mö••6}€X÷D—Ù3{!²ðIñï¥äÿf‚jcòˆò‰ÿéY~k_ Ÿ¢†Ù¬Y¡ô Ù©îr(o4q袨⮹G5Ím–-á„WùËù^Ô‹–3~ç'äª,—KNæÐHZ^Ö”¾ OAÙûëÔ‡•p¥x©CYGŠñ Ô7ÝÝ 5‘w~ZP¥CÇ`ÈîìÔT»7¯½nƒZ dzÏOQ8§#(ÅýþùÆ;q>¼þð?ûjœ¸d¡É>ùŸËYh.;S/òuZ B§w©, 5kÚ¶Nì´}&ÛycímÉþ ÜÐyæ;õ‚¯Îÿ¬GŽ˜¬…ž©‡uNAŸÌÞ¢oH`€\šñ—À :òn_ Éa‘ždãæ€1þ |$Ëv0qaåM}=LõuÛÿºÿ f¿[¤È”pÀü:¹ùò'X¬1‘4}Ø Ë ïø:WÂêÖñtX¿q¢ØV޶8.pe,~‚¿üÝî)èó3J‰¢D$±¯X’í=d§“Û» ì‘\ÏüèâX#R¦uh·°ä#µ¾óð„–Ò ¥2Kfj"Ã뎳4·o ÓqïhqNdÞRë¦m€,¾?iàïÅý‡Ûšûf#˜ãfï ä>RñU©¯ŒíÎ 2M!ß…ôK͹*È?)ÐB’…‚{äko£ÐUÊÖOCö(0@“d)ŒG(D²R¼ePlŒFõÏý(îgÅ,÷å,JHJ? nGÉÞ–k•™(íí±³·eë'¶µð lUù#¥”?•ÿ^d"4^M¾e=„ŠUr‰å/ÖQÉÈ(äømB~cÑýr:ëªÎ xêXx£á‚z/‹qµËÌŸÍPëQñõî;Z¨}±¡9÷™êJGV$?^@=¯€û w«Qÿaºä¸ ><>–nd‹h¸s~Óô<å¥m¨ ñŒ…)1šÊ*ߌqc%ä­ j<îCîÃ~_é{ÿYïxÇ7¾ ò® %m)¨òšÁÏ܉íÿ^§x Lþ³n„†~8rR.ß:óOn{Cúz²Ÿ×f?‚ì$ý)ÉC!»¨GÜLqrlž5‘Ü«„œßùAOA%MÀ·§>ðI¾¸úú LpŠ2IŸb×ÎÏŽyAiýÞòùCìPö'°xM²*¨„µgºø¡’£žåzFT;q«"§„:&>w“ÖhøJ´gyó4ëÛ.Qý1…–œO>Î]ƒ¶«îWÎfA‡îù-çG Ë…××'¡z¾¼ì_¼6}êº1œº<öµƒ;†X·h=ò&`øçO|ᣕˆ_pÃøXuÎÊl%L1{X4f¾ìÈŒì߀¹¬+%ßý¿Ã"e{à%RX ÓÉ¥+Ã2ÚÏɸþÙ¯º7ŸÊÖÿJ¸q+õÃ}Áfì q!3?oÏÞ§·ª|èÛ¸9:)$‰h¨žùQ„dÎ\ô¼:ÍHÿÎJõ1RѳrK¥U"uæ3±oìG‘îçØh+2d[¹ÈSA&…‡ÅŠ¿‘¹oC Yæ-²d‘‡œ£%E¶wªßLÁÈ‘@3µ™ŽÜc¿•‚·üîå,*ä/èh·ßÖGÁ)ÊÉžï£xÈâä¹áÆx˜å„›½Ø»Ï´ç=ŠÇ7’½ä|„•'Ò\Pê—Ü›£-(£‘Û·>‹§Ƚ6¯£Â c¹ÔæATt.wutF%\!ç+¯G*º{‡ ð û²u(ª“£ûþÎVÔX êÔðù‰ZݼQ‡ç¢véúƒZ"Ô­¡×®Ø8Œz«_IÍ~£ÿÌ;¯ hxágAÞà 4*Ü ]‹íG“£ÁÆžâhZÑ^Ä+îŒæƬQó%hy£ûëKhåïðîŽH5¬½7U/ø Ÿ»Ÿíåè҃˓I]!£‹¹ýèKª~gûÊ–DàZæL²®fÿ?ëEäô5§ÿyÇØä$Õ?¿cÏ)s±ÀÊ3Ñ›%Ѩ~û'kß3Þ‘=Ž;'Þ“ïwpÌ*ƒü·ŸLRå¡äiçfù”K~½éc •6>×î®@uŒñyßkJP3¶ªcÑ uÇ¢Œ òSÑ”ã–L‚úºìú§÷B½cüQ³i¨{ºg£±„ŽÀ+³<ùµQ¨ ˆ]ðLƒêMw‰·D †FȘ=â=ÔÜ0qº®GÈs¡¢ÑþÎP«;ðf„ Óÿø&¨ëu¼¾4ô×@SðFЈQ 4·.”õÙBKŹv+êhÍo$Vžmé'„FÙw¡½l³©Üã6tr{³ój»@WŒ3 ùcòÿÙ' r{ z‹;6ýÉ ÿniŽý'6ìycŽJúÖD§£P…yÇRÃ\UgwÕzç ÚÀ¶ÕƒÕ¨žòãñê'ÔrüêÔõJµm(ê¾õ^DÝ“÷õzîG=ÿiJ߻Ũy^J ‚ S¦š­Ñ0÷„˜á¯}=tç.š73y“ƒ¦¡G.s¾Ds–0ý7Š=hñ)öRõ׳xÎ5Á¸-¾ Ïß–»ñüÚ¨ÖY.,¼Ú“–ÞOÈEwˆÔìà}°¼É›[îÿ³&VÚ ŠnÑÆ\øñï/Ì{ž"píþ=Eˆ.ÙÖ¥8Ý@ðOK»æˆ Üxùù¹û× ”ÏñfhÄUYºfY±1Màž¯U¢9Äê¹4DkBRyZ}VФŸoß« YÇN5¨E@Îñ‡co§-!WØ›N’^rc…¿ùlÑBs}é63+ä…J üoææ<ç]üæöÄ«Š|0‰òìÀwÈ®Šþ±)ßÙg¤ßkn¼†lý u¡U.ȶ*ž)ôøÙÓãýYÿ伩ç× 9Ž‹áA(ç?ß{^Ó0õ‚+™ Wv ˜âÈ„jãC(ÕŒtÖ˜8eŸ:ÃYVŸByõ­´YËRøñ“nù¤Á4T‹>ЏMüà?g$_1‡³é=‰ÆÐÌê'h§V-¶ìvü{¡‘‰a—Ú¹ÑùtÑ3ÞçUÿ=joE_zŒBok›s­Êiè>á"Ùw‡Æ{•ŽFtIna«ñF_g;Êq†ñôR…‹)09¶þ’ؽÉ4Û:/ŽBÒ ï£–wIþëEH´¡_?ú俞’ûÂGy*åÿ›ÿö)üÛÇðo¯Á×ë‡v¸f:à{Œ>åî®=üh?òü°ÍTõLålϸ$ðfyË-8%íÿôŒüûwímíÎÕ?m„œÖ[&ð'ª[Ô*•‰K Ú2ðÙ·Æ´ÿúQþ=_MqMz÷Àÿ9ï¿ý) ƒºÂñÎ/ éóÙïÄM y4êsÐt´4 |-¢-†Ö¢ìˆâìhKQQ¯ {íuY¾3}…Žu!=æ$è2.µvf> =bìs§Þ-A/Þ[Z&‡_cš†dêå0èióõ AG§ÆüÉ™ÀȪa…sÅgk¸z]y# &Ój³Ñô éáêêoðÛeŸ¸Ä,<Ñ*]òV‚%¯±µñ‡aå³ZDöü­º6-ýnýéa€íŸ–œ7Yÿ·Ï$­«ì`ýW$½Àº N÷èÕÕÏ<7C ?A¼âŠ{éØLm!Mñ¹þ–ñn¤L°~ðØ->Êšn!3ÿVÆZ&dö—g`ÎB¶‘>Ô…"È>4ÅxÐÿrùZÝ9Cà›ÊVßä£É6ŸùuùýöÝ´Jû¯'áàú'Ï/äy(ÌaâŸzý/Ž8éÈϺŒbòßS¯æ£øù«Ñ¹ƒP‚ñ„§VJSé|UAéKÄéˆ2F";Õœ¾(Ñ´vo`åiX¤Þw~GH3×R8ŠŠ_òÖäÞA%Û[Ê8P…)}[ŸäªN÷Ò\§Dµo†€q 5^y…OK1£–mÉãÎ,cÔ¶:]Ù(j€ºr ¾§Qï•zdËݨ”nÓ©² Ò”ß=‘y‚†v[éz—ј]µÄ8ÒMîŸ{-¹}M—zy ¢¿¡ù+I~án?´Ôë¬<ôÜ­äChö>Ek³Ø-ÅWÎhÓiù§ú5=ÌÛ|ª`½œ ùü6ä" Ÿ!#ÐY†¼þOÿÏ¿ºùWW‘…nFòšÌÿé*Œ&™ûÝ*„œ×ëiðùoþ{üß^“uû¯žÿÕwöô˜ç¸!þ×g’«ÕÄèclð{Hþ¿ùïñ_ÿïûÿë5ÚOáøî÷æ¿ÇÿÿÿïßÏÿo?JÑkâÛöPR#,˜”â e÷¸¤?KA¹oöžÙÁsð#R¿…bcë¿ûÿº¯_iߣ—½÷?½¶põ>bœùŸNÛƒzÙžœ†Îw$W çs¡»ýóÃ#Ñ}Ð{n.rý6ôó*HEý€Á÷­i$©z0|wèxðže=â«ÝUû¿=&ñ/%ãv/ÂÌaYÚêá‡0wøB-Û$,t¹\¤GXªrQdS膕>­ƒw\Tam}2 Ç7 Öw3ÒSÞÃæŸÍ?Ñ:†°½ëò«vY%HOød#Qi@GÊõA$9µj1~hÉ8­nM•ï"¹yÎM"¤X#Ò¸…ÔËUûî\ñ-³ÂZdˆ˜ÊˆÛTB&Æs«lÛÈùqwõ¢²¯R•uÛ!ÛÝ«s~Ç‘ƒ·ê~‰rQ\)û€¼£÷‘ßÊ'[N½Í—ß¾’D¡ùÆæŠQäíq*öI%]Ë“¥æAqSK…ທ(ai_pæ›J=[ï?²w OlÈ=y÷4 eÛ?ï».u¸Øé‹ uQQ;9²’$•Ø©>@å-[‡€zGTÝÙ»Õç…j+^BwwQc†xf½<µ†¯ðÕå¹¢v¿qÐIÚ3¨GgÍ&xõ’f Jö¡3OB—Ä4ìæ–õ]¾ŽÆç)§g^rÛÞËÛ·¯¢Ù°·ˆ•^Zü–<›eëˆVŽòE ñh]|þGþW"Bžþ˜Ç@w òm\›iG!S“©ß¾ÜRÿÌ=N£³€w·”kO1ˆÀÛTš»¡.X÷|³ö$LÞs|†žÏå:å—tˆš±Òªô¹á–{™ßBø…’&÷‚fˆ‰{õ€%Ò¯ˆ”ü¡.IÞAO~(žYÌïÜËß ãçÌ„¿ÁªüW ÄP¡ŽÁôÊP]nrÚ˜#jæµÚ6¡v¨ÑJTç%ÔÙð>§¤W„Ú•¼%û»Ÿ¡VǨU§ï4ÔÜ*ÌŒ;åÕ?¸yÓY¡Úô£~Ü·&¨ŽºÍòÊ­jöiÊÍ6AMó«T™“„÷‘£aõºÓ¯é ¹š¡Þ^ƉíÕ3 D ¶û iõ–Ê«Åzh¡Ô•}#4-f<„ê~AëM´Û+´uøN0€öÁ)ù۬נS賯͇QèòÛ6ü¯=6>ô®u?¡×áQ0s½#ôï3U%:Mƒ¡©Ò?aXK&Ædô)Œìžr¶®¶„±Æé³Äß¹`¢+ûGˆéo˜¾DV|zÊ~r5mÇ”ÀÂÅÐá¯_°tΛ˜4í=¬xؘô¤LÀÚ„’uÂløR˜÷ªSÂö7B=%&°àâe¡ÄçYl\§‘”š‚ÿBÖ’ÍuΛI…"»ù©slÆHd8ôSŒiŽÿ;÷ÛéÖ­|9o"#…=u©t%2US6!Å}?æ#ížBÖÝ•bÍÁkÈ~Çì³Á 'rÑêÞ¸èŠ<åîÇ"oMê_KŽ äWjë$’nCþÙEã+·ð`VŸ¿Øñ(<ÔTïYùÔŸeRýÅøÅ$“Œ.—E¡¸Œtu Ÿ>IÑ:Qˆ’a3Ÿ®&£4Õ=Ýx€2Çâ#Ý­PöAž «=ÊÍ%QTÙs#¼è3N˜EÅ,um÷4TR©ièuC•½¿N¼¤DÕщŠ¢T+VSZïÏFGÓ¯ðí#ðò:¥I*oÛ‰Òᨫ úÁ¿cõKîÇvÜBý×ëJ;µh¡+œÝކ]‘瓲yИÓΣþç 4q¹.%>'‡¦+Ù³ÝÌ­hø=O“ CK&Ñ<[)´R°“奸ŒÖ攫ƒ³¾éøËCs¶n?ËÇÞCžÇ¯¯¹~^E¿ O— I/âñ-Äs)ù÷sC¬³;{)DM|8OwÙ"Ÿê«zmA¸Þê¾KôÍL®ËëÁíå&üZ=ÜëÉ_áîÄœ$¿·!f-Õs"HÞ.Ì2›qF@Úb¥Fƒ{99¹Ø§ÙeâzŒ¼“ík{³°rÅ2¼„hd!7Ǹ0¼ò„¹wD ï¨ôȽV#ÈÕ6U œ7ççä6‘™:d¯²Ð¦â0d{iæ=8« ÙL¥³5ÆÚÍšY~¸ú d³ï$O~9 ÙÁ{¢ÅO\ƒêë+Ngr6bOäk~¾kÓAŒÑî!µÛPTD<ÐX%»Õ…O·m ,X¶Ñ`ö”¿KÑ8]?>3ÿù­xªI^Ëá³Pë;>×=¨ÿzÜ“q†¦š¢C͇$¡å`ÀÐÝü.hýºvî‘u<´º¿®qvƒÎ7ûþ0žô†îJ Ý3ƒÞ3U]AŸ~B?±ÊÒ ¿ Fœ| úh †-ÝTÇÏŸ„Q¹îÃ6¡—`\–žV. &Âë ÎIÁô²’æ6é=ø=Ñš›¡ ¹z…ùõ°ôfQ–ýÓ>XÉx§ÊÁk•]=”ž¬°^Ûký 6Ë씾­Ávõ1Séæuø; üÙwr‰’œé]I ï£õ¡Q$#ΰž qGòÓœa´HYÃn/•†Ô®l>0ë‚tZg•ê?‘ ÃëõÒ$¿pd¢1hÊ\wAæ0¿ þ1d1r§ <óÙî¥ 9Ò"ÿž­íŽÈm‚s,ìYÈëÄkçÕüÖ¤E\”7PÐ'ÃIíG -kýêÈ$ðM5Ÿi¢EWS޲\ø‰â&ÌB6n£„ùÉ·Çô8PÊ7õ›Ëg{<±’“вýd®Í¨°orkû: ¢Æí¾Ë¶µ¨Ä²÷²yI.*¯É”7x¬¢êŸbÏ T››(æÑjC1·0‘ÈB~;¾÷’7#j÷¼—=ˆ¨Gôž¢¡¾h £«-8i¥i¾ã$ðîbv o£F·/¸¢)¡óLT šåô>}ô-[‰îîA«“%íÆ¥ÏѺ"–æ·ë¬Û±8pVòÙ˜˜µEáƒI¦ûiH•žŠ{ÿQ’êž• €·§¦_åÏC¢êJWµ'$Ø÷­ŒêùAÜ=Ëaì™u¦©ÇÓÓ ÂÚH)yþ®BØà-w¹/áÍöÝœp‡´·á­ª=Æ»¨É´]7ÅwŠì^ ߆ï{Ú>0À™‰þUYN¨ÒüêÄÕýF ×ü æýáÔ}š.PûîóW´£P'š ØûäÔÖyMRýq‡Úc– )ß² Æ4<†ÃM ª –1(ÙAµaóþÇ9«PkÇ2ó™júÖ|£Z fôšry¸ÔÚ†Ç{y_‚º+ üѪ9P#ý®Ä75‘ëŒ\€fö¿¿š'@‹(iQÊ%2h=«ä¿ mL×bQ=ÚIëžfm@£ç¥ýLÐi.4é ~ºŠeÕŬ¡'xI¼d± zߺK/½ûýÊ—OlËZÀ`:ç"ãAv‚Žü?ú¼È„Q*>AÍz"k¶;Vú,& ËÒ#jaZ›\»h¯2ü;xçN|,¨îi÷zKR‚Ô¼=R°¢åÂB|!ÖJû%ר`ãØü™’O»°M6 ¡»Ôb'û|Û·×6Zl?’ä­ùV€dχ+úÚ<ý¥´AÔQ¤bùœdhO‰Ô)çg&VäΆ=«®ÀòŽõÌD¦ÛZZ[«¸ï’ñZK|²†ê.=£x‡û·«­Üµ©‘3z¢„åGYÁ\ý• òúÄ'Öš® ßN°bbͯRœ®ƃ×H^ÆŸsÇCÞJn£Ñ(²;ËAsEÇ©Çù¸£8Ùš8G:/—}nÁ}%í/=™¦BiNSS§®Ç(Cª|cLeÍ"ò?‰C¹‰ŸÃTœ ˆ¦£âÛޤɨ$wø˜“ýiT!¥çb÷DÕþ7«u;T+MÊÍp@gÝŃt,¨uÝ@_vgµÏv{CjŽºx²™TÐõ‚¤ŒoI £~˜Î¬Ï®hðÁ:¬UT {ÊËâ»Ñ˜;\U…“M9u‰ *¢éšß—?chdpææ b´4Ô>­:‹V ~U:0šÀ7ÇõEßTîIfÐÁoG•E‡«É;dyWaÑ Òv>$<—«ƒ·ÖA^#ÌgJוòÞ¼—!»ÿÝ¢ðÎ_fŒ€ˆW¾::¥#ö+°îb-„Š<™[×Ú‚`'M˵¢ìÞÄjö€ï¸Ù0~b|þdÄÝà…·ëFßA§÷¡?'Ý!3Ä"e??)d‡?â’"œç# ÉueKï»ö£œrƒjšïɃÈQDk!UB2ƒ`=tQt_÷SØ|6$<- Ûc¼ã?æàoê›=ZBHäNCoÕ IÈIÂ!éĆÁò$.¦á@ÊùAe–oH}-vÿ§o‘N¶]1G(ÚÒXg‰B=­¯{™ƒmV L"‹!5óùü—¾‘.-XN!‡€ŠAÊl2r›9mW8d#¯³ŸÞßZä·qïàèÈ@Aßí¥‚¾…†U.JÄøfqzÂEW¢¤>Cq£:º÷‡Î¢„)ÑK¶>”ò2K¬¾4‡'ޤ<ú”Œ²5d+¯o  mÁ¤›*ªJ i!B%5“´ª3¨¼HÎJ/sU—¨™LƒPmJK¿2<56-ìÕP«k{iË8µ;H™šQwÇá‚R6'êárnoD4p|ð±„Íà/wzE£Ñغôë¼t šÒþmÛ@Šf“ƒ/R’EÑbÍñvzHZ!õÍ…Ó÷Ѻþ—ÑAùrXvÓ$:úŒò.{¤˜¤~¦ʾ+R>²Š©JJ‹wÒP¹#8c(¹ÕÇ‹üxZ¯@-…½Qô0G Ü]¤P»Á·š9ïC¸¾~½uÑ€Z†‹5D︡Fé®h)gï«:î WAµîü€Õ;N¨N¼Ãª¶  5Ç ÛÔÛ¡ft×^A­÷áÑí„:¿)i7»P¨¯–ì¾ò¤Ÿð¬ qÔAóÉŽB‰/ç E·@!;ŽZÕQüUç…6…ï D!¢Ð.A4[>:”¸ý˹‹¡3 LÃcø*tÍß“·þrzªÎ³¥Bo‡WwËuèwt^?ž ƒ%¿dåö™ÃðÍÞŠO'za”™¢]º) ÆZ–˜Ý i`âGÙ×o=©0-C1 u„ ~S¥Nº "‡…x1Ãu9 PÁ Ëë6NX;§p.rkÖ»»$þ­(>…ü‡ð7 ¦“׉j¾vüRE’óSÒWZÜìðo©ãÞ H.W.®ÁM”‘œWës鑚k`Éqsi«:ºVå‘Áfþãs1KdbzYo»o÷I\ÓAÖÃÂ5GGpÿ³“¤2·“ýØËšß›Èý=IâB°ò*G¨É†#_A†ª è%º5ǃ<Â!̾WñЩ‚$ù,(’ûã·!ÅapºÿëþE<Ö’ªvTâ‘c2äGIÍ? î7QêçÈå|/<ñ[s\^“ eOº±wë¡\nÙ‡íÄ6óS:V"×Q1Ân{oâT:þì5õ-#TÞR²$NÚAÕbéî…¨–ÇDn÷@5üž6Yl±¢Öµ˜S7ßEmkGs2»>Ô=}dÉÕIõ‚Ó%eCÆP?‚÷>—ƒdÝ~õ(Ù {ç#_£ño”E–châöäááVU4]·ög#]Góà¡î瀖F~üo :ãÖbo%ð­o†ï]o'ómOÒÂì#Jž‰xÈUì­&4)-ƒªëóðöÊ1b[Oˆ}°!ÈT1#¿ç-=^Ad¸Dì~Žtß|®eºYaÍ s©!äólWÂýÛÌØb“«þ‚…ö»°5˜CXᳫa+İi3U¢#œ·ð—þõZ¯CËËã™XΈØ²oÿ˜¼š2 9בqèW-ä,^¶½òrÝÕ’X2ÛJ ¶‹§¬Ô¤‡õ L…5 ³°idtúu²l›GM‡ƒ¿¬¼‡?Ø ‘ŠçÁ¢.$žñ—Zü…¤jªëÒ^HÎ@vñ(ã!¤Œ¶ÑÓ4Ô†‚Gƒ›‘Nøæ|^¦2x±N|x§ˆL$൷Йe ²y‘E?l¿˜ o _T ‡àÓ4CÒä¶H¥vªÉEÞ» ’CÊÈagž=qýu%ŒQh±D~üU owhÉ&(PtùÅ~‘y97|úç¤ñ”0ªv!º‹R”Þl ·ñÄÌÛ¢«ÍI([~d4™ÊÈýÚÝ*¹PQqûBÂɨDí¥¾Ñô•gÚ¯ëÍn¢êl€À‘;ÏQm$sÂn$5~:Oœ‰D­ÖêÞ`!yÔn6÷ÙMbEÝg9õcЍ/’Ú-Æiï ŽûWø¶OV#Æ6чö² )ƒø•‰]y4›¥Ãúæ~´Øbü+|øZ©š‘>+¿ˆÖ\Ñç¶“`©6,Y¡ªr³‚ä#ëŠ!ãÎXùÐÈ$g å®ðÃÛgûS·#Ù!ag!¹|í$(ÆÝ¾ta â=Ò6"_Û׸¸‹!b'oeÇM B¿¯,ÞÿÞ¡¿ª†>JPCL1vS7¤&ìh”B®tws†•Ý×$¾²Ê\cm’>BEtÒñoŒºP™|ZòŒ:TMÎñÌT†šƒ£'C~kB­Ø³Ç¢çí öGbúSë4¨ul“ßb‚šEÛ sÿ¨3¼ÏHò ªãßûåyªÏÒ'ˇŸ†êd{Ö$‘×P#¦Ë³Ö µ4¬ûŒk¡6¾Däî%.¨{ªn~êW$¨iîAcÝÈëͦc^©œlÐât«´¨÷´ÞQª»A®m¶ÜoË>C»Asj*t8~þhÇw :Kö¤¹&C7®x¦ÚcèÙ¬uRV„> ÿGÍò ?á1ÇŠÈ ¶Åz\!€aW±î±A åšóâmS‡±¶»ä8½`¢¸¦°‹Ã¦ù¨ì?hý€Ù¡™Æ©r°@ã¬õÉ3 G.°<© Ëé¯õ:t`õK/q'¬{”òz‡ÌÃÖ±Kæ¬ð—:óñêeß+01¼pBÊŸ01¬Œ¤Õë&±b:¸§~ýÆ "%×Õ5VÜd³þ—8iñ,DÚ¬§Ki‘ñsK­X72Çòg‹õ Ë7rkJ>ÜÏ–’ÖË0ƒq¼Ê¹…È­DMý0\ y‰^ͤ¶~B>'&–‰…  z4ÈÔŒ‚:‘>9g >ñ¨#o£#Š\‹+£#ž@QÍ^ªÈV5<æy&aû˜¿+zݯ%·¿f³6 Tëàãàgx¢ŽÈŸ6se÷_p^uw@¹0=6ù£0¥Yð@_êÆ¢Ò¡é¥·×¯¡ò²sÓ„øTm£3œØAµ¬?×ETæQÃGt¨c’ µ®Ž ¼9‡Ú6bR7Ú ®ò}«eÕ¨ÊËH¾’€ú‘Ký Aö#¿ƒ¼-hØ¿ß7¸M ù&ë%b¾¢É“îCšhºyÂô„ë^4u¸‘yú!ZWØXìZø¶ýÍæí^´¶83öÄŽÀ7ѕش0ãÙÆS=râMF öm@ê)2’0fHlþk¯#² o¢FœRݶ †3é'*VCÄÜ*p­~…ð+¯Õ/HçAh7Ãý¿½TrÆü›fâ}4»²UÙAuz»øã!̤…¾ü+D§„nѳoÁ[^Þï:ôç ÕuIƒ,>Ìã«Á‡ò^Ûý€å¨q®ù6ÈiSìÛ#>¹—yÌ'yCîêrUiä1rﻹªR—?o@ΟøÌÃü6}nOdg_ÜCç’Ùg¹¿vÐFA¶e›E;dÛîK6Hˆ€ìYí¸9~9ȹµ|†ãÀ)Ƚ´¦zUö ä—-ß3½‘É^e×ڡتbÏÃ¥b(}›þ€{‹ʦ_¥LAùî3fE+)¨d°¸õ†©ªÍ²äërþÙßÚ¶:Ë1 ún«ãµ9ÐLä©%ì=-2…kFzÐZQ‘òÙvÚýíúŒŽC§÷ÙT6¦mèŽêšºã]½d†BŒáWÒ9±êBJ´°§]K‚aý§ƒ×(a¤ç-sD£Áw2–W]‡‰Ñ¼bÇt˜Ö9Ozõ:ü>¢0ëå,¨ž~˜M6K|æ‚|<Õ°"ðAðÇv¬‰¿ûz7ÖE¥ÔžP™Â&w•…ìþAØæ×ËSÏꃿ§hÚ]é£ÈP´xó©·Ð·n üDҼГ;ä{pÏŸ»{²J!¥—ç7ëá}H  É×\‘Žu«R8=ÜnåH† ãŽÔù“‘sÈü‚^+Êê²èñqmeø¶×ÏëXrü¶û—órŸëãàËGÞûf¬ìd.ÈéÕ~û£(ø,nIêú'ZŠ’¾1û”À7Ï‚ñX]r§•’žAqƒSž{Q ðÒä® J¹\»R<ƒ'&8›ô§ß¢ìWƒö/ï†Q~×ì[É]jT”/O¸[¨D^&§Ñm‡Êã‰_‚ÝPu‚ZrWëªõ3¹±sAö…b®YÔj©8¼Ö‚ÚuÅf;-Qw5‰Ì”ý*ê KËy_ODûÖÒ¤m߆ú^iDã ÷—ú/ )OÿÕã÷Ðl^nqqë5Zìf¿|WZ‚VZIÑUuÐú—åpH±,±œÕÞ“9›‰-¿¨É ÝÕãJŽÊQx7ßKò9Œ§¬ßLr탄;u^ýlFÿu¥@|jâ÷2Ôëßþݲuͧ-O3‡^q…Ü;¡qòok»,4ß[Õã~Ô -á|§+ÙT 5|ïËŽŠKÐò Ùóˆ´¿ sŒ7ž…Ž·ú]ì¡sá.õ[Öqè6^Ün?žñ¾ôúd_ò¼’à…þæš~€ÁIëš—K]0üüÉoIê¢îœ…±öŸë#Û0‘Û’ÿÛòLSS“ÝòÙ"Ô®~Ïó®¿tÉC`±ˆXäÁµZXN+×}ðŠ V[Nš_¥ø ë‡ShmIÇa³âÑkØ øv¨-Õ‰$M®j)Ä#qNºí2’^#uÙÛ€{΋ à/@Џá™RY.ÜK1´ëO©‹4á:Âê¯h‘Þ¹?=Gc­öU¿=SƒÌrþtË+—‘ÅøB¨š› ²½cÓ£tì%è‡aCÄår•9ŒG3ãGô¼â¼âÈ'ÖâþÌëò79–þç >wŽÝø%Bï’nÁD3Špº„To'á‘¥h1Q<&5º]+ƒÇu€}¾$%vInÔ|G©Ì¤­3x"õÓ‘æOxr]µ=T8åîZþ‚jÌ•£¨èš½‰J¡ZHIðÉW(?‰ò  —~°¡ü˜­„eUÖ}SlK÷bédÈáYûbFÜ9ùÜ:I{¶^ñ½ámÈK¯½F y{³Ówß„\åv\zo!çw8r¼‡î6©¬%Büf[Ú/ÙÖ ¤žñÖí8!yc ÛÓ!™7òäìe8+fß 9/î}Ja’…\ßë‹N±ò?Ë"!¿¤•»>c¸ 8°=Û܈JjÑlëÑÁwŠ,¥ª2V¨àv7 •'ÜŽr?5›„ê»—_¿ èé®[ÚÛÐp=Õ‘FŸ 𩾸±´(ÔÄpÖ*ª›÷ØV Ý—9þµÆmèt³>igÙÝÏmö(ºŸŸs¢ [ýÂðËûÒ,«b ª6åëÕÊÂÐâïpÉRm)ÿ”P ci7D‰âSa"¿ä8{“+L³]ÃjßË0;ã¼zp½x_‘}·„Å?-Üád°¼êý&Vÿ†ÒV8PÀŸ?ÆR|ßacâ”ã`€'lÍ»m$µÂ_RR¿‡v$:¹o­Iý ³ßåïBÒ¨QâNÜÓ?–ZÉ©ˆ”·SÄíÔ©oæ‘Fº=11ɃÈpOšþSÙ2®>yõáMdöï÷ŒaE÷|µÄ@àm›»r횤IœCnkáV—ä}Pºž|(ù/¯ °)Ø£`À¢Cw -ß›×p&ð-âòÚ¸Š.:‘€k Šë-Uë}œB =3–Wü(õðºFž­-žQ KDÙÏ.MJJ(¿.ü~W`O>ï'OD%â¿b‘C$¨<ä@ÓnF„ªC*mB“¨Ö}©ô‘j4Ý‚ÙeD­j›÷ß«®¢vyûOÊxÔ]üj<¤€úBe±¿òÛÐàÎnÕ~;gßÚ(ÌH®£ñEýMçœL4ÝGk2z) Í–l“Ø„TÐ’Lÿ€€±>Zé/J”VBë±h‘z×k°xåØÒ9凣š{Wó,¤ùsSÏ_ë;%¼o“â¶ t >ÍÆëÙ”Tî»3»|cªL µ¯ì@uÜ›–@¨É·‚.æL¨=Ÿ´O V¨¢äÎß·P“{¿ˆÚà*ÔÒPøÉ@µŸÚhzyT«èJn>zÕ™Žlçbx¡ÆP7å“ÁO¨•ü‘½º þo4çªb'Ô-ÿ¶˜’ƒ†³Gí-®sB÷\YF%4‡íá ê{-_:Ê› Í¡µ¤ÕàôS/h+mKS¹×íÅ?÷…AGÛÌN…ptñÞÊÍ>ÝþbìZbàç…Äü*kè»TfGý»ág9üap‡±`˜†cZ‰U%¬aT¼hdíçkët+ùôÞ&Ò{rHcNÃÔ*MpÜ u˜ Uû-—5 óÉŒÇ÷ÔÂbP¼dh¸>,;õÑÆ«OÁj@~W=müi{¹yÖ±6Í'¬wYBa‡º¥9{Öv›îR÷F#ñ¹býYÒ&$ÝC}ß­Éæ/ò‰¾{g2Oº •Û%ò}ôDH½»WÏñÈ*Ò5ž×}rú.2’˜V~³.B¦îù[F_æpßtqOR,²Iø¬I·×!{q¦9ž@.Åî¯ïc7gå¯-]ÔòNΈíg@þGâO-¿¢ rTÒmJ‚Ž,9®Z‹¡p“áuÏ?ñHVº“÷4ÉÇã‡0öÞŠ"JôP² +¡Ô3[_Ýp<ás³ñãƒçx²û°”TsÊYÚ:k7аWMùË[T¼'BÜJû2òÛl^¢òHOaŽšªV²Öè @µ”ïGbûíPÃüî;oW\Öˆ¢UPûBâ̩쫨«¶Ç|Òšõ"¨ëòØQÿMØ‹‹±Êhîò€åßÖö )Ec¡S†|<7ÑÄ3ñ_ª1šîŒ,ß½u Í#_.¬® ¥™œ˜sAZÎæÈwAkKŽ^’¢ißXœ¨¨a*ôÂÙC7 <00¼z2’»¯>X°€„Ô7:lömÝ_ÀôÉÈ¢˜>’—ÊAxìÃÇBÃ&­ä”á!­‚ÑGö@ð%É×1ðú÷Uûçå÷!ˆe%Á¸AB³)%n…@Tµ”æãšH ™{®vÎRúS‹£šßÁ%>WЏLø¸|v|Û²7 ^3ANØF™Jl äJß/²%1†ÜŽ «§í ¸9fHÑrOç¶MiCÎRô_º:È&)q`‚ì&‡@n¥h×ÎiHH B¶ÿªîÃÑmÈ~Óønî5/äj]¿Uê96Ií9 ¹é½o~ðý+[¹Åjé‘5°S·©ÀÓND\;âItHÃMOÆ×ޤǧPâžJ“³L¼ÚHiRïšy ©Y .†Ñµ#í §ÃÛýÈpGE Hq™—)Äb™}Jný?öÞËnýŒÊ,QæH¦ÌCØ—yÈ,óP ©Œ¡¨Tš•CBJ¡h”¡DQæ1B¦dŒ’’Yü¯çyò}Ï{Î÷ü×o­ïy×Ywk}Ú×uû³ï½÷µ¯½ïí¹¯¶z`7VŽõy‡÷oÌ<ë(ì€KD퉥Ap;k+ž¬ |G6}”ÝÖ{ª­¥Ë€—5Ç‚›‚@ø§…°ŠÞ¿=aù\ â£nSúÅÆ eú0½½³dLø”_ò|¹Àuâìý ÐI?%Âs”3î<ëíLÕÑé8hø êr›ƒ½>€Æ/ÞhÐj‡kלvz«TòhÐkøpß½\ *û¸+#Á°X<Ú>fŒ‹œŽ–oý ¦ÃÍ©'ÓÁ\È„\‚ïßÄkú«ðþ­Dêämr°r‘p™<7 6ìsïvGÛ‰kU³Ip }zç[8ÙªUÙÁÎá¶”ªúh438Öã¤Ê/žw¹p ÝÎy°ò:ºëQ¯ýúÃ7”˜:|þ-º³ý¤‹­º}ÅnjǠùWdƆøy¦·¤„©/ŠaZ  Œ®‰v½ þš†®ÙÕw=ÒC7>ÞkÜ„»€Ry£7¼KÎC™Ò†¥GÐKòÇtâoPÁí“}|·Qqz2j•€JË:5ß3Bå çØ35>¢ Ç#V=§PåaÝÛâÞ&¨JlcÅ|:+ªüuímˆ'ª¼v<ÛU¡U éªiTÌ Ì®›P…º÷ì¯LT‘éÏ‘ÓäŽ*wŠ[’ãÚQ•Þ-ã“þGPÕxàdçÓ,ô–#î$5 7ª O&Û¥„ÞYt¦ŸšöCuÏÙúiÔôQ}çE¶«>¨áË ö'ê)èý äcª";Ô8È}ÕG 5SžÛè#¾µXm¯)1Ü‹Zóö¯‰ûþµE3´Ð>ÕEí·b\ú&Q—äÝѯ,M¨‡ù“ݧz+ôéÉFö€a¨okRTO§<úÜJ–0„ú{Ò8;xÐ@ƒÐº4Z4äcv)-+xÞÛÇJ…CcûA-³ìWûY]Až&te­eX/¢©àCý[zšÑÌÈfÏñ&4Ö{8\ ïßTX¸OªLõo¶h OæÌï¦ʘ ‚"û:å¡oÆQ ùÑ·ú6{&Ðï) Нè†M?”é€)õFIGÐc`9dUùüd°…¬#+­n‡µo&oº(¼N©.('`}\/MêïáŒaöçÀ—lfõîÑs£«mZŠÇ1[ð [æ3…ï:ÊuDNK¨¢¼ ¶›ùuí§Ÿ ËŸ¹G¸¤q ›‚LÖš’Ù?An$«ˆÄ-Ppå?p²c7(å0D5½µùYwµ‘I¨ruõýyv<Ѻ I¿šÃÃ1oW«%c@§PŽ£äè%§^¶{$'Ä8uŸr‚¡kq—Œæu0ÞíT–´á˜êO;?I³¸“}X›ÀüöÞkïl&ÀâÅ=?þ«ï`{_Lú©‰Ã`%â²6v§XŸM£æ¹a6‹/ ¯õi‚Ý >~3)p°;t,ú48i†é%¢t¼;Ó”¼îÞ¿Ñf‚'=úš ²»qð"J]G7ºÍ¥0q<ã>ŽÙ<óæÙ´P<.i·䡸¢Êߎ ë“jWE5×í·qAu6“ï–Fõ_ée'«PCuäñnÔxÊiÓ„ìgÔìuÆnð?jõñUýt¡¶Â.©ïP‡žÿÞ Ó—¨{Cüöæ.¨'_èM›O ê ôš¯§žFŸí×½<²]õÛÔ»l»À‡~)Yi†=28sÛ˜önW|Ó ÌßÙ‡ŠT\õôuJkÎ0`7,ÛÓ¹ïߨöö Ë׿`ŠÅ]MÀí¤+½9øŽ^Í/ðæ÷6l-?`ã•køé?€ð„$Ï4…5Þ¿æ}ý¼ÄGl‡¶Óþ)“ÝqûV§‚Œá×Ii© ç_Á`^ä Îг*ÝåGåw§’ê@ÅÙ“- .ÅéÉÕÄÓA,Ê?6ƒVËš ›b*ÐiÛs¤SôjÔ+”¸D™Üþ †ùÓÇ~ìãügϼDÁt`dzây3˜ ¶¹]1S o»¦Åí|xÿöÜî‘JzÖ„«ó„‚ÓŽ‹Î?«™`ç$gŽÊ¼(YŒ ž8¾¥lŒH©hG©I–†‚®•(ùÁ[·¢£-(q•\ðÃ{”èöÅd;æƒ<¤e)¡[º¡Ôd^ÚèÆí7´ã•èºÇ ±±ëQTRkÉæmwPTëñ»76S¡*ÁrßlQJBy©yÊx=iDò åž;Xô?®X×ÉŒ b— -V…9¨ô°QlÖÕdTVš“ËÁƒ*8mì®Ë ¢Jµ-‹'+¾£Ê©{ÇêøPe£ëƒdryTyðlFþzMTÑZ-¾°&Uøüˆ ¢ AªW sv¶¢Šì€uì i¨ÒƒgœÖ…ªÖ4ÒjQY1r) ÙëÆ*ºÁèjOÝ)u+ƒ5'â8¥î“QGÑlD°°æmZ«OlìþJ”ã\°Öxfxì#X—Ý».§ê¬‡ŸÎ”2àþÚ>[|; üÀø‡>óxl|‚_žnwê¡2jû8Ù~Q\Å83Ôbl‡ÍÂÔ>€¤AÁ9ÁÏ õA3õìÎ s™ÕÕ×ä4~Üæ¤O¶íšJ ƒ¶ø~‚ _XÍÉÄ ÖtOU(‹Ôwš¦»D &™ça Ûg Õˆ’ípWêuPÎz·/°Ap“XáM.¼[Sá20Æ.ë’hC½ÀtÛ`BÛ¼)˜Ý˜ UõóÄ­7U™SÀ"7k5ÝFØþ¥ˆõ˜µ X‰†µ1Þáëó¹Ö_Ú ¶dWŸ9Z‚]üÓ,Ù‡^à`Ÿ1{Åo+8i¹d—Åû·ïuZÝaWÓ¯±€:ÔŸ2rø”çY”Îc\tÄQÝÓÙY1²- Ý Që~‘…n\Ê(G±³!gkÕž ëÆ‹¯¥v¯BÑÌ÷TÏñ[¢¨ÆzÅ£d(2dÍî³û(B4à(wÁ±ëüžÆÀ\t­*÷¨a?ŠûÚ÷ýp:J¢Í³Vð¥ªo=7t3=Ž£ürbÇ”~Kå³êEC”‘A§H«ˆ÷[ö™)gV_BYÔµéŸv £¬guFÇ‹QÖ(CÈ=Ï`”…â@‹ëÊœ_[†_7eª:×O䨢Œá“ëÅéÃPFìÆ«¶Oð~ùüÑ ”ÑzïbÈ}”ébk6èøeŽÑÊ£¬±‚‰øêR”í¶þÄ'e”kJwÑBiå‹R?ûD‹ `­[uê^T´s•=ï®TèÂÕ¶•w¡‘ DÕg®ö¹¡jM{¶OˆÕ¤múÜg‡ê„vÁqÿ;¨ÞtÊý¸õ8j¨iÉÎA!dƒ©›ùQ³ÛõÔºkÚ6Ëç%j{”s®êUê9*¼ÐbˆºiÈ9µ§QORa£D7êµÎ¸Ý[Ž>Ëø’½wGý"mó»?ÿ@~§¦œ¿Y£!q.†¹ÌQ4âF9µ8¡†ÆŽ*Óˆ.¾@ãŒ7„H£‰½»'Ì]‚Ñ”íËãÛ=ÈÑŒVT^s¯šÓÙôqõéè—Sÿ½ÂØÓh±&^?^¡ÈÜE xk€Â¸†ŠIŸ¨¢#ŠºÍfæ¸#¯€n¨ôüÙl1XS¯Â;˜œw–xöó}Ùèú` ñŠ[`ßf,%o4‚÷oYZ˜Kô¥ýà àv{lÙ}ò5ðOÝ1Ž0}>XïÉÁÆ«ŸGK5•Ax’Ž#x—>Þ¿5ïíé›ñï†=Nfi eÌurbë91Hg Cû@Î7pôŽw(4Îó,XÜå{ߣ×p8ƒê§Ø…Re .Ö–«ªãÏ)/ÌæƒV};E\P(èÔӚ䎂^ù÷9;q`ðºKíÄ!E0Ì)ÙsQYŒsé*oû‚éÚm'æÀ\`OÅ—[î`áu®Ã¯4ïßRN5¶Êãý[ŸÂì–H°ál-Ø1ë¶s?^žKq–-u7×Ò“kóÌU£yع`»èŸG¾ß«dé@韅¿ÑlD)i#Cã%ó(©¿ü\w)º³çèë›P‚·×ìeGtkOTY-« ºicE÷üª1Š«7½«+ˆ¢ËÆrÓ¼™PW}NÓãHe#ne™R‚ââ-¢³ï £îY¯÷Wðöä¬ö°«2åÒÁÑ„ù“¨€“ÓP1Ûî•D*{ù=*q•:¹ŽÊ›åø›ÏlG•dœ;[¯ Êa™äp;TùHî¶êéTi}é ûb:ª(~ÀuØìªp)+÷kJi¡1æ ¨âåÁuô&På¡Ïã{P•Ñ™Ò#¨Z4áĻ˞è펱”*—O¨¦n3©™z—÷úŠ´».ª—;öcá5j7Yu½WØ|óLÞjÔè˵óAMzwg‡žÅÛÍË¥²¯PËK™«ŸO|Ez'iªPÛ\?çå¹µ¨ƒìÎCº˜ZÔuéuc7…'êQqý¦ð´}ª©Pk”èC}&>ã/>GŸ?Òî¥jGýWÇRtw|@YÌút#—РsõµW»Ñ÷™šŸ-^hŒó˜ù°ÐWô£AXŸãúùJÒb×MÖêL¾)E3œONé§[¡¹KÔÕF9xÿÆèí1ÿpöW½ýðóÄ.)òüC'"™Œ…Ir~žx`⮎"¬êøÂù\ èPÅy¬nëPû""Œ}§¶Xñs†À™@†+Àú°Ö[›ËØÛš¾æÏÆÃ:Õ÷5_ÃýëÍý©‡{÷[­‡ô[oÝ;1¶÷dÀï7î?î[ý¬,´„Ž[¾0Ö†Mߺ{ŸõÇhY÷'½Ø× 1·c/9~¾˜©-¾:Ú dÜ9yÅ©sAŽû…íÀPà½ôbc*(¶lg­d ®;7·N€Ú+K¥“d ¾½wÕý+Q 1õ¶-Þ²´ÞX·{ tž‡¾|Ýzñ~fï´ƒÁ‘HõÂz0t±ÉˆŽPÅû·÷Ç|ÇÇÀÔ¨³ÐrÛ˜ÝôÚCûÞÌ“W'߯¶‹W….g‚`ûסCÙC`%þìÖ¹î`}¡ÔhÝqW°¥Øëô¾qØÝ+Êàà0ì¼Þä8iCâ[s>Øéh[ÕÛ Œ÷o?¤ž£C_žf‡oAis×Ò´¯Cwþ:"XŠn·rÈ_ÌÖEqÚd†kÕP¬Œ¢oÆ|?оW´C^ ] ~¨|ÕQ Em3M=›´ˆ"ŽÆs¡ðй=ÈEPÕUFÕàÐ5÷ù¯g­PÜaþÂó[(±DPEÍÌ¥ŒQx²Ÿ*BµÅ¿RAéþç2ÜÍÅQÆ¥=ôÚÛpxu•S°8ˆÝfdDYw϶SüBYý~çOBYª?ÎÌfmCY¸F™cŒ(S7ÂáÅÝ9”1Ú募·>zÉ¥6xe¼ãM~8©€2†>ß³ òD™'¹~‰>ÒEYŒg‚Ú:åÐ3vÙÄRz(û²ß'ãE”ì–í¥†ò8v5|pDö{Ò·Öw¢¢à/T£«QI´Ë×\MTvOh ÇTñU¹ïa´ªvœ»y»¬Õ”ZìNÚ_Œê$c‚£FP½5uqÅ‹õ¨¡nÃß:=Ôx,å©jvzp¸úÄ:Ôjpf¿6ÙFa†·Ã‡V%é@§:,T :ôŠ(÷ízø ríûÓ.‚aV¸©m?sö½RÿL? ܤãás¾qqô-,<³ú¾(Öàý[Ì£…€Z°r{s'˜¢ lÖ—+uˆGƒí"Ÿç£zpXûΙóÑ-pòŒØ\ûvQ ZåO¢a¹Rv™ƒx{ë ²¿òÝ{v¥DH % ¥V¾ÉD·ÃÎÔPXý@·,³ ý·¡›ÎÈqŸ "Šß+À¸/ÃÅ‘w£WªÇP´€«ž‡ŠŒ¬zrŠá Šlj£fÜx ÅΉL?8îÝ’Xku: ePœ¥}Áb…r®ÐÊÙrÕ 7»æ{•yPQÙQ¾¸!TÒ¹YÛÿ™9*“ã^ìnòGåQLßÖ6½B¥äâÇ%QexJ .Už¢¼ÖLUŽ*£î{÷ñ Š´ó«~F©  ›[&::R¨B®ÖôöFTñúÐºš“ªøë‹l?Óõ¢ªÓù„#DQµ®t‰Þ¼z{êVîãK%¨f~ÓÖIý«èÝXÚ1š„tTÏ¢m°wçaÔ`Z=£õ½wÛ9z”5zÁ3ƒ»³¨éà×›‡ØÅPóuËX_E7Ô2”8:ɵ}°æûv6úú¸eûÖ:¾_¨CöžÑÀeÔõªºìã\ê1–Ùu›}êä² haB}¶ÖÉIèsûeã'µ–¨ÿÜL’ãíhàˇ3LÆhð×~UoÐ÷‚Ý[sÉ“ÑèØG:+ôã&Pƒ7úyðQ½«B“’OÚ$óÑtÚÈåì+ÑhnõºÑykôëðõ=NÔ€£ ü©ûÈŽ©‰ò¼ÆÛ‘Âêô  ’jÊáE°j»;Ÿúæ2 ½5;¶îv ¬–sü”Å[Œ’åÇ÷'f“О–¦uÀª¾ùîiëÀ¾WçÊ cp•œ^‡_×p¡¦´HØÐþêRèÙ_À›Ê-æ]c ü;âò£‡cAOæ¥rÖS’úaÒ´'6%¼|áóÉDëPŒ'Äãù¢:v ÓIªf ž·Ú·ÖƒìÌÑìÙò§ ÿKÓn’¾”l^ef‡­Ÿøg7šZ"…\»Y<¨ëÚ1¦Œ·+ UY³ U’|Yÿ è<µ×Ͼz16™™=À h³Ù‹CÀpwâr¥+`ìzŶug˜šÔ÷ÖÄEÙ­^­Y:0¿Ûùˆý,Xä¿sä^ÀÛ×àÚ~)`%Ù±k¿¬ÃêFØ}÷-ˆ»„Ú–C;¾€ƒ“Hù}±‡à¤ÃYÛÓfƒ÷oE¥g$ûðþí‹O7+-úœs,¥Ãûzò2ÒeÃâK”œ/ævw%<ÍfÝþKÅîq6k ;†bö}wˆÎãC×~YغNEõ?UˆB‘åW½¯ú…"nöËi¤^Báî§Î¦å¡ðG\âÛtÑ5Jß!%uGë;°cóE”xü"Ÿòä'”‚÷¶ho5z4òÕlŠÛ¥Ô‹\Ç€2Ü »N8Ò¢L°â#(³U(Å! e]CÉÊÚ­(«ÓÈu_l(ÊR1¬Ê4ü‰²¨"âŒ/ã×efŸG$ Lúð”­GQÆë;‡ŽãýÚ‰7/ç~¢ÌUš÷„}¥PfBǃ}3ŸP–Ôª÷zYôL)Å8ûZÊ~^µÃlmÊ}w™+ñ,ÊY±õ)*8˜=û`ÞÅi²ÙUM£’,ÓTµØ TVÔo5ÿ¢URŽ(û=FÕ·6:™^A5íÁåc¨N±6÷Áþc¨Þq-ëÒ߃58£-ÇQãQCzÖ8Ôl•G'Pþ µjÓ„[¹f ¶d‹¦¨ýÛÅä¸/ž¨+?î´Z«êñš™o JE½ìJ_h¡õõò„Kuö£/Uß%£n_G”Ñ*Äñvù8”OîC&úÞ 3còm‰ˆÌnÝ‚Æ Ë ‡Ð¥ÆÕ§öhòû¯¸üøV4Ý|ø»PEšmŽòööº‹æGš\§Ñ¢³ê–ïf@&£x~w9Ppíä`*×u4åNª9Û]ÙzŒ@WÜðø ÓiX“fÿ¶;j˜¶‡ø×\æÎ©£†ímÀzdC>sÓK`×sQneÄû7xX \Š4¸”0àÞÏæÒEÀw¢Üͽåxî»Ç /`cdèèš´9ž*¢9Ë%†÷o‹ïû6øtõNFÚvqûšëÚ £Ÿ†An_ËsµònP¨Òmvò€!èå¹/ÒL–€AVsD@¦9*æ¶™ƒñÓŽ`ŠY0íT¾f¡ æ¼'®Æ(V…G÷ÝCA¼ maÞ V{âiµŠ ÷ó ‡µ`GnÂS7Wë½Çb4¤À逯H‰Ù{صʣlìV?GIŽÃ‘/âp¸5xPàáþNvùÅÒ9VÂ9&ÂyZ<Ȥˆ‚4Q! ²DAŽ(È¢ H”ˆ‚2A —–"IÒ$I†$É’$9’$O’H’"IR"I$‡ ‰C†Ä!Câ!qÈ8dH2$‡ ‰C–Ä!Kâ%qÈ’8dI²$Y‡,‰C–Ä!Kâ#qÈ‘8äHr$9‡‰CŽÄ!Gâ#qÈ‘8äIò$y‡<‰CžÄ!Oâ'qÈ“8äIò$‡‰CÄ¡@âP q(8H $‡‰C‘Ä¡HâP$q(’8IŠ$E‡"‰C‘Ä¡HâP"q(‘8”HJ$%‡‰C‰Ä¡DâP"q(‘8”IÊ$e‡2‰C™Ä¡LâP&q(“8”IÊD i)©ß¢ôoQæ·(û[”û-Êÿ~‹Š¿E¥ßâÛÒ˜BN8DéåìéF©÷¸´¥+ˆ\”Òʤ޸$K¯eVÈ+¯—[!˯VÈŠ+d¥²òoYa¯Â ^…¼ +xVð*¬àUXÁ«°‚Wa¯Â ^żŠ+xWð*®àU\Á«¸‚Wq¯â ^żŠ+x•Vð*­àUZÁ«´‚Wi¯Ò ^¥¼J+x•Vð*­àU^Á«¼‚Wy¯ò ^å¼Ê+x•Wð*¯àU^ÁKêï”2RK~ÉãQ.ú±£:»;%…¿[ñŽÃnÎ~ËwP-ÝÁ°tZ·üF—Su&Â?®£^éK—®÷&žU?Ô¸œž#¤¼Ëéu‚~óÂršH8ž<òGšB8ÿ mYL¸î©Ë²žA¸>óÒESÏ"Ü÷|OÁi6áþåó¹„|^­_>ŸGÈ/rùüB¾{wý‘ò/lºóGZDà)Öì^N |%é|¤¥Þ2îåûËüå—ï¯ ”£bjùþJByªÜ–ï¯&”«ºaùþ·„òÕÀòý5„rÖ>^¾ÿ¡¼uk˜–SB¹ëŠÓÿHë å¯?b¶œž£Ajt9%‡ÃmÇá6;ãp¢µ8œ¸ '¯›-kq8©Ó8œ4þùep8¹jnÉc(ÞÃá”Y–Ç—Uøñ…?¶ˆ-.ë82ÜòXEfÿoŽððÔ+OÅ-{ß•ÉU%GI—ýÅed.qzŸ—sÀ_œ¡òó9èíúWùlù‹ƒ^û¼ÿêZ‡åƒ‹„“s„ti4%#Žº„]XyŽ8Âþùø?¹O*³ø[–]!Ë­W”×yE),þßówüzýUkª©ý»SÇý’ƒ\iE](/þ¿òüéøJüÃSíÛóG)÷ùKZüÏ;¶K@º3Hæ/î\åì/©íàöû”ôŠÇ‘ÿ÷æŸU•âÿK 2hj¿}îXÓŠ£tK“Ô-RÒ[þ˜°ÿ‰ŸXªÕ}iöy¹-?ÿÿäÙÐsŸ³÷ß³Fþe¡òuö'5çÊJbæãÃÏçøüœ½ÝÝüùöøùxýc)¤W²ÿ©ûÿ9CòŸÿ-uÜ¿Ìzi*éO÷Wgø–Ö@[ÿ×üiþeþ4|Ëk©ÿ=¦™Ù_‘•Ïßoø|öð¹yøþ'5ªúÿ\£ªÿjô’®0Å?]@ë‡/t€óî?˜ÿ¬OýSëóvusq[²Š5„£T¾Â-(ÀÏ?£`]Qjol; ÛN¶“þï¶“Hv‡m+aÛJضÒÿñ¶ÑéþË×»éžéðs gÉ=~Î^„+‰[Tä!øÿ#ÿMµäàýñ×ã*`}•ö¨ã j´™*ŽYêd§xÎÒá;8#•W¦ *¬ºs)²™¢àbaÏM 6ôæÙ‰µ›ã¢×Ûñ&Ýò;Ü«ÞTRb<‰‚ÒXÃ;· P±QëÛ·ùf¨ìMÔlñÆBTu_4oJôªµ^“ÄrKÕy·Rª‡·¢zÕáÐñLTŸ™i·]bÕG˲G ôÔg×’“Rb\˜úÀwUÇT­Q=9ýµçey¨î’þ5ÎR~¤ôA®¢öûï¸2„ûBjÒ¨¸ÑûO›³¹‡ePSü½ÌUAÔ’ÆÓ=1·>ÌÙ$YÈ£öDŽ^6»pÔåzäà w&êQG/÷lãCŸÛ¬ª7ÿ@}Å-BçÞN¢/-dãÝÌxǹ6õ­_*<Õ¼Ú%Ü}_ÏÍáð öiboEc‹%Ô«_>Aã ´ä~õ"hBkLùŒÕ4µöâ×Ó¯ÜÑ ·UEîõ›hîкU,h3¹‘ç¤'à‚óÂ8tœÁXÈÝX(JªŸê¸TI#†Bt`Õúg·Dy€öÉýGf…õ@ÿíH!në 0¸"Έ¦Ómæ ÀÂs9ô°Î`-VÕ¼¶Ø/Np¥¸ Ç¢~Äg2ã‚e–¬ï¥bÉ»&<*±¦´Àç¾ÑÓÈýðwÌ…´–L`ÔÁ æ³·@(\;Y'ý lªx_)vÅDåìÉÔsyAüí§Æé»°åœMí,K;H ßÜýŒã5ÈD(ú%ùäÖÛ8^v`ùºøÓº w@±´~¤IÀ¶’;yˆƒjð¡·,ßNHN[Ñ*´Ž—ðuÐŒª)­Ímµ·d g·îj“ܶêßq.¾­=Äj†]½¶ö?$À¸‘ý |ö0˜¾«;¯ d`6H~ä§÷50ÿ9®'ýÁ¶¯âs>¬j –üÚY‘cS`¥™õ€smX{–Èûul’=ØY¾ƒí—œ£ŠöÍ`¯\vZŒ)n>Ê {&N !°ãR÷–áËxƒ§®Ìæ†]-£M#«ÁùñbÁè—``ô`>w¬sÕ­=W‘d“BŠD´«¼àFFµ§ÑK©ó§Öl"ÅiÉ^óÐT?ó)Ž).Ì®P·9Ÿ¤ßqaˆñ^ljqeˆq_ˆñ¦ˆùæê(Öð6O£—)[êݶ¼'ŃÉûq¬+öéåßöL°s¢]¿AïÕ‡¿#¦ƒ ’;¢Bœw»Jð"*L?4BŠ3U\tÁíÞh,*ݤ¢O‰Ê}{9ÆâPåÔµãudY¿ãÉüX-Èê£5hÐM)ô^úˆ5ψ$)ÞSó~N;åÔlõL#>µõ3¹3ÚäþŽóDŒ's掜èsÔçaY9öè#úb!s·wf-úºzì6mˆÈe˜¤jDƒÌ<3·%Ç{"»÷æÜÅ!4vj4_ž<ß²zÝÔ¥Q4A“킦¸Çþ½IB3Þ}1z¸5hîóþÅV‹>´pò¶ß°ýqÀ=s½AÁb 䎞þ¸l 4½(ßÝð¨OP=;Á÷;®ÌYKÞc½§á”ŽÌ¸Þ.'ÇçëÛ8€¥Å”NPGØÚ¦^äÓlv™ÃOÂK€3&ÙÈÇL6±fÞûš;½{BÿJ˪ÅY*<äPØqš„¢…\g“¸`Óyå©‹;@4J—φS $<Œ¸ 'EAJsëÛw ñ =^$bxdß9&ïÙ òõ÷8ý.‚âì¶#;“|a«Ù‘KÏ]Õ¶2¯Y©€¤ÙÄÆÌ/ aw…²?ïx“ìhHȤ°'r úþñY‡o¯"c:N3Ð?¾yM8_e­Ž,GSÃ^’VGÑlèsùñ°hô‹ýú¦ýjhÑ}Èè«­ àÞd²©™pÊM@¡Gñ¶8§ (›òFo´ìê×GçÎ+©ÍÔù—§Þ‘/ÄoÊÖô¥Œlµ­&æÁ—|Àœó~<øÉC`U1X¿é°52T³dÂÚëÜw“tºËZ ÕÙÀU'z”ÍX¸í*˳9ö™¨Ÿð‡—Ìi¹ýA‘ùÓgaãzßК4NÉ­åÊÞ "QZw?ÈLƒhæÈ›þ_‰ !z;fº¶,T W6êƒôý§ÆòOª@öÁwƒéú)ßùÝæ 5($å ~ „­û/¾UîªúïÌšE%½ô9æ¬ê7ìî雿šœÞc UËv(Ð t>š¯Ot}ŽQëf}€m;ßyGΛ€Ñ½æV{ 0yó‚ÎÙÊÌ4'~Ynô³o'{ùÂðþí«nŽNÀ°øÁ^\ä=–4Ü›Ö(r€•h8ÙGÉ~°¶kîÙvØl¢ß%l=¤¶]<ã=äûÁ^>õYYÑ"8ÄÍ]}Hœè>[ÿn7ì¸Å褻èf:Âû~ÛÛ£¼Ðò¨÷@'•À^HóÕ†¯{=ñ˜4îíŒhWÏc©(7Õ9“üUš…<û—øo¤¸lĸi÷kŸ5BJ.I'ž'^Ÿ~aá±Ë…pR|3¢}’üœwübÈ ’¿#¦9vFT÷ãHöMòƒ¿ûþà—‰ñ‰ÏCò„y.Ñþ‰óÝ’'C{·5 ²3¹÷d{BHq«zWUÆx>E5[2¯É\‰Gï‚=V=úIšÇ6$@\öG&’ßkñ— ÔcÓFmù _'¤¢N)—8rÔC¥ ›o·¡Oµ áŒP_h“§å6 ôEîéý·YEèëúg&³µŠèß~]ã‚5hHóÃÕÅqôÝ:›þY45¼¢é_‚Ÿ¹¯áÕ~4kt ôE?ã…0îeE“ï;©™òÐ̱œù«¥h>4kÿ ´XÈ¡Öé d‡Ö™šäùô»7|Ê`m×Øé  f©â0“ ƒU£o.öI°Eì÷ì\X—p#ì0½>;¸%7X†šc¾»š½ÁƒMŠÀ‘Ö³^ —™§ýñ3ÀÍ•ÔDžÝ |[ÞèˆÜþd.ê×Õ§A0N¯ìŒ]8Óš»ì¯t‘±Â$+ž îthèÒÖ~b™“½–2tœ #›íAögCP‚/ÈøA¾n¨ ”yX(ÆÉ]vIrh¢°AÞ7•MµHçà2ÝЬ£wüá>ôëXÆAÊ×€ ÙT¡­äx™Ž¯ÊÈ$²b* ŽxZºNDh|Þ:ò è´,Ýß;ÆÁj§ùÉ5À€²×G¦“}×£«ÂÀÜÚú˜&³XcjF|{äxi- ™o"Ù‹ög»ŒŒq®¬ÿZÀvíh p÷ä)I‹æoEÝÚi_àË:‘^ZžÆl´U ¸ ×Ì^ ÂÓoE+AÄ«×T”aDëò^¼ºÈçá]f[Ü9Õ²¤Ù½òY•@æ¼’”^òV“;§çšpäçÒöÜq³Åb™ì]j© |‰ó,O ¨”VìÓ; èèé1vnPÏäçÌzÍš›¢Nžõw­ø#±z›ÕAg£Åç˜ó ÛûdŽ}*ôß9X¿ÛÛÞOßy]F-§)Ëo“×/y”>€™náËtès‘mëJ|sÁ‚j_¹Ž,Úi<’&¬`{jy!ìä˽Z)Š~Ç)îc_Àª’VˆÓµ¬÷Æß{ ¬ÙýÌå›óÉ´µ`»ªñÓ­;&`{\´r®úØžý⦮”úìsâÉIñ1‰ã?ѯüy=–Îæ¸PõöÉžˆñxS{}f¬Ð%Å%Æ %Æý%^GŒçIô—D{þ³?"êž¿’üÙŸýÚúV/Þ•ÿèßë½vö“Öñ¨PE'Ê‹/ µˆÔZŸ2@Å¿œ§…µQ©`Bm÷)~0ñ½NßsáAÓßëº>_…û7‚¾g£¡-Ï/CM4v•ú3ýžì—ybN†ÚOßvuðéûý¾E:äòš/[ѧ77oë×D}Æ&Nñ–è G`P8)~ïÀg{ß½«ž !9¶”r>èûkáä³®—Ñh]üLuvúa{&ñá{4¾ F&‰C/÷ÎtžCS×B97^F3IoM#fÐÜOÍT£F'´àW²ßîñÈo»¥43©ŠØ‰Â‘Ãb@µ¿ÿÚ´u¬zrbï꺧@ç?ï|\ÅÖÜíºqÅù30Û`@½“X¬äÊ3¨«€ÍÞ¥ToÖ Ö>î,î¸lœæ²™!6ÈjY¿^/¼¦ãáMo£ßÍéæ*Å2tŸáwa¡H%þA ?a÷œ—^ ¢Ç®¾‰ôSɹy ’X°[7dä*-©óp çÚ•W¥tæ{9ß^x~%Ì•þ l´~L•p&„yÞÝË2‘õ v¨Ùºk‚õ ^ôý^>Ò‡-۶˾ºÒR ?’$ä@æ•LâŽõ¬ gs¼'åàPXmtüV{( *’§ÁÖÓWü×Õ Å‹\tÒî†m£ßƒúŒµe/Ëhz’Éhpƒ6ï§LJ7nÐÅéìèOä½ŸŠŽ®­&`ÐÝ·3·Ä ‹Ÿ1uùðƒqЯiòa0åÉ~¸àôÌì® ÂÛ׃¡{r`^ß•ÿ@J ,N( mõ׆í[2ÏOªÂöW2z–E’`ið«ñºô}°|Ç2ÿl0 ¬¶%}÷H«üuß[UÁZøUsú$°]ÈQŒfd£ÊTú#PöôÄÛŸWºHë*¢]=>š# dLòOÄõYÊ´r8ÛÜ#’%4+¹œÛ@ЇMŒ§MŒ¯MŒgO´Obþÿ°Ž#ÌS‰ë9b¹þ¼ž#Ík ×ý%é}éŸãkÿ9B¾Äy.ÑOÇ’?$®ï~øž‡è÷ˆûÄ÷3Äý‡‘ ýÔèýâÍ åæ¨™9ÏzU.æÁm•qt¹û P‡ùMì&Ô5Õ%,Ú´ õ˜Ìù\ÛýÛïßgãc¿fÛy~­ ´>ïlч†Ötþ˜D£Î/+rD®¡±êÅ™ÌhÜ’.f_ôøo{%¬ë¦§µ%ûŸÞGsÞéç-TbÑ*s7ÚJ ¸Ç›NÈ­È+i’Ï%Ó–“äjt@Õ²6fö+¬Êó“õvÚêëÞbR°Z؇ý.W&0ô'¾eóÕfVñ§÷)Œ€ex¬Ý| lß83÷]rV£×%]vÀw1o‹*7lHâŸ[uøØŽ„ŸMfº½åm‘v¤øõÂ%ù™)°™Ú÷4Ð>ë02©Ô°†-GM~Lé²8¾@IæÕŸ4þ ºqjCt æ¹þeý,¨8jëiÉrJÖtÚ"ÌŠ«tM€fë듳§@ûþùS¼‰õ {9Úgo苹+c Û(7Ÿ¸•†Oަ~˜cÃüˆ£y`Òj~‰÷e˜mΟ>1¼Ì:yŸ)éÝóкç{£ùÁbs›¦ÀçX°(¨ü>1œÛMXÉÅžn‚íõíÈ€f,¬˸}À2?£e{šˆveÀÕE’ú-1N<Ñ.ˆóAâüh7I»G¥$OüѾˆqè‰)ÑÞˆöJì÷Äy#ñýHp~ßzïú‡F審¯óBâvåëÆ£O[?‡nR±F½ÛKJ^ Ï5{öjÍÜ%Í#¿¦­¨(ø½/@\ïù<ùåˆúùB/6ã;š/éqÿ¦Šf:y=§>0¡ù6‡õÝkû»-…BoóÂyíº®Ûâ@eVývð’-¬ ÝnׂŽa”w×À¬Îsì¬ÿÒ Œá‰;ƒŽŸfûteÛÜ9`(m`®bv‘ ªL¬OcÜ9úÜÍÀÙ3À,tA 6œwòÙz¿®ÓöI]{þð¯Î°ìP6§$ ’ MgŸ~Iý D¸¬/Üß‹_×Å*ù ¬‰“ªE÷÷<©{âwsG‚ ³ÂiÃLJÍûBk’¯ ò.µ¹Þ-7ÿªX”cßMêúª«Ùå7º/ag¨& ê/ŸMª<~ š&û<µ‚¸@›åá¼9ùeÐùöqõ^šnÐ+pîAÌ?ÀàꙘor¬`¸ïõñæ§V`ì¤QV+n¦*aLç5Àìª~\ýÁt0|¸«Y{X<кwBñloòž{hæ Vœ:¯­âv‚u c„ì¼ØüøÈ“_vWeDZCÁÁ¬¹lÓ¥`pR½¶šî¸8ì´M˜S¿»š¦*"ÑȮ쒵®¤ý0âûÄ?ωvC´«¸Üc–ªÛXIvu}u ÷½ tMAÕìCÍ9RJ‡uÐäô×°ço éÅ4¦‡©ÑìÔìT¼Év4¿xøò™v2´¸V†Bá\àÞ„5¥îíò­ö_6õåz'ÏâE ¶Ë ÚFŽû½_>^¾®óH68]œ†ŸÜø«Ÿƒq§U¤Ò]0#¿½“cã^0—¤HÛ(Û<‰-2¥°½•[ùüø^°ÚAómð²ØÐ¹Î{í ÛOg7;™•ƒý°¬ÑÓ}~à$ã§úJíìÌÛQú<‡ýa'ö‡Øvbß Áþ ûƒÎÿÞ?èüËï„Pÿ«?Ât]þ‘ô7Qáp«ð¸G&yx”ýé†UK¿%q9€û¯üæ_×Q€›—oá/Õ©Õ‚þxõ„;„´‚.ÿdFýö:BJúÌ?«|²}+~ âýWì_qù_\@ûÇÏ\¼÷9{~ÈBµ|u7¡)1`Àðƒû0`ø?C& 0`Àð_ˆ< 0`À€á¿e0`À€ÃˆûpËŸ„ ¼¥}YJÂ>õÒv*4ÄOêàAÇj¦ßÒv##á³;Ìx°à–¿M͆;kñàÀci¿‘.<Öã±n0¸Êš6}ý~›È+«@/æ­òb3#èÞ|-!:wŽÊ‹žQ£ØÔ“×~§?wЛ0·ƒÞàS&A—L0<ç­õðp˜)9ºwõŠÂv2×3 \`E¸ßÆ«­ö;£ØFäí?> v*[÷fÜÐ;¿].Ã/ß_üNÝÄÞ;³‚-¡\¶ñEwÌlå#æGJ óï1ßì[ö?I÷Ùïj´–¤]G[! ‡&ØQ³-‘œvu ° /øÁîÓáš­EwÁÕík¤4 ìqR¾>{ê+ì%”sÿx¢ÑFxE¾X I›ߥ«-;áÀǪë©NàMúÈ[“8è¹ÆÇÒ0 å9·ôïí« ˆ<ÌÇ·{hZ¥!î—pÛ?5ÃÉæKû¶xŸ†Ó'”Jµ<ÂᬣE¿D¢ œwÙ°ùV(\ ܉RóLW­4\I¶“ŸW1…ð¬ˆH×õ²¹©N$±+¢rúr޶B´ÿ·,÷;3ãöëb[îćÙ†ˆ×ø†6ú$èÅ­Çw¸|æy{@â”9e“y $ŸÞän¼Vîñ䘞兔n#ªH&%¸ß)Z,°™IÞ¬>¦OÚy»W}ƒôý íº;!sý¥¹y7Èz-𹓽 žŸêˆ™ƒÖZäÏÝ!W"Púj)¼ z´:ô.ä›\M§¯þoJ_åš@¡Nvñ!úI(ª²I=W´ J<Ž$9]>e/iKCùè°ÚÙ›—¡²í(½2§0T÷Ö¿ebð€š…¶=,§Ã¡Žaÿ|í[¨çx\2š \K Mï×ëd¬ƒÆõé;Óò4 i÷æ…× ™÷Gß•‹~в‘Ï7ç]´Š~7n‚’~m,[ž@›âêöó–ãðQ+ú$õÆh·’q^ßÌeõ=´Ðyz¹Wz'tÝÜø¼¼ºí7<¦‘ÞÝ_¤§ï„KB?%Å7rp]lÓžw`=J}9çe9˜ú Ñ®´ÍFÚo?Í''Ÿ|»p4èX—zÁÕŽ½Ñ?Q *{Úªðipƒ–(섘«JÊŽŒES:ó³ìK¨ê…˜¯&UY²÷Ð"Ø£ÖQ)ü£ö݆Ì7Û3ÑÎ v­«¯ÞsàviÐÓpi×÷}‚ìwÛÅÒB¨«#B9L–zIÀq0Ë–zÀ®x,öeIà³.cHŸ;fý_·ßû€ƒcpklæ7p"<÷Î¥f:Ð Î~#tŸÌÀEÌj„·cÜåt'Øù~‚]{±õæ½·?>ãøž¶ð®–+¼ÿüLŽ‘_äÿ ÏùVuhCÀôóÐÞ½cpˆÀDŽ.u—w'áØ—⪷!ijJ"{}:œbúc ƒÓ5Þ”vpö^îîKù,p>“ߣ,àâª,‹ûZ'áR°±PåÁÕÖ'n[ÅCDL’þµ}ˆòãÞŽ¿¢ñ¬£gvC aœ¼*üðÊ3¸µýŒáŽœWi³Ò9Hñ/(œ¿ ÉKÕ¼ÿ=¤p,=è-¸ï—ÎWŸð£÷†Fxò鱌@Ĥ‡šÅÏ”‰B¦ÎÄ“ë)wà™°õ£Nȃl‰ÝJmªüƒïýê—¯ÂË¢#.þž]oÚ¥âjÏ ä?fÎÃÿÇÞ{€Gql[£Ó3­&ƒÈDÎ 09í!šŒÈÑ E9ã!g9Id9ƒÈ„2`ƒŒmlÁØØlÞªÖ®–T ùÿÿî½ï}Ãw¶WwOwõ®°ÖÞUÕp^ÑÙ‘ô£šÒyÇÞ#O2¼¤ !¿ŽßÿÏEº4ùÇÈžqteD›Ï›÷§k®µ[MÙA7‚ËÄ¥ËM·®¿Êzhø6mî]Ê4§;{jlÖi$…?x=®Ú;Efê´.æÒkŠª_«áþRô耱߬/M1{L¢P,óå^Ns$ð­gãñ#²l¡/ƽpö\Û,H»vmÅNôpýß¾OZ|,ßV5ùíilý0K÷[ò8qMŽk9Þåø—|¨³ïn©OãæZ¼‘ü«õò³ª!M­ëò9Y®ŒŸ­™ÇíF;–ãTêÀýÜ™ùÙ^}2ÖŠ;Ý×kGû|]ƒº1Oº2odƒõdæýßf¾>V˜f3…žæ¶¶MŒ¬S‰æOù[ŒH Ì!ˆ™Žm>uMËr]Ýûå½ñ´üïoÊ6zB+_î+ß;b­Éœ û­mútUç½ciý±ªkZÛ&ц*Ïçµ­|Œ6^êç11ûTÚŒÞÎùÇK °yÉ•õuhÛÈ–UFÍL;Ö þ! ¨ƒv}s°p÷Îwio«]«ÿÉ»BžEüÔzRkÚßùçžù礢/>m~êÏßèÈÚ©ÉïtäŸ[‡^¥ã‹7y´)šƒN3° j e>ŸþtH¿ú}éÜŽG+ª JE²›JƒŠµn뻃.·}>ºËdoº*²’L?ÒõÝ9»}áA·XÇÚ—*õ÷ÁtgÒñgöÊ5(|±Ù1*Íï1³2!¾U˜;hÆåy½D·u¹):mããÝ*Ťóî_*»Åf68ÝÍëiñ‹ïè^©¥wc–ÓýZ]v˜Ü™>G´Ïw´5}áÿÙ†¹Ñ=èëYébÁUèáêì"ƒ¡¸NÂ&L;œÀ·aš!Òb?í® ªÙ4µ¥û’g’Wµy¼ËxU‰ÿˆyTAÈÄ«p*Ïü“çòwyïÕl[ÔÈâ§ä¥“㌌w~ò¢R*‹ß2ʸûV<ä¸\Ÿù&ëcÅ?æµä¿Ìw›³?>ìO«™ß†ÎyŒÚpÜj{ëBÞ;óS{n?™Çvæ¸)ãž/×£'ûÕ›ßïÏ÷÷7‡$Þ^  aZbÖ¹ühØÊYú§£y¦d»”µ\&¥i4ºìÓ=mzÛiÌç÷«\]ý„Æq9¡êÛ—¤%çëSr{YÞ’[éTç.Ë‹_¿C¡"+öþ”Î í=€.6LܬÜTºÌý}-)”tÞe^Zžn#ɬs …A¥>·Â³˜GÜÿS|[Z­£gæÔ¶è?Cç̈¡¦÷Z引¢»5­8ÆãÝÙ£yø³í¯­|RƱªœïH^Uäq.¯K~4þÊ–åÏC³­qÜŽõ¾_ïÊåuû£fÚüWž“¯)´U¨?/㋲æ”ç³ò¹.Ì¿$/d½,žÈ8§Îy>Ø9í3Wê ]¨ Ç+éOw®¯ûÝ“û¹Oªö¡Ñ¿7°æs†Ž\P`y|ÔìZ{rƒô_£áM®½ôQ*)²‘r¹i´p3ý2WàûJKº_  ¢×F_ OKm¿óBK“3ˆ@‘ÏŠsÓ9žÎäúͳ”ºwi>ó,0UéÛ¾šD‹Ú‹Ä'ˆ¯)ž!Ó¹q´ä›‘Õk‡–£eÜÿ+2Œ_gdøšVpL¿4ñZ³ éÌS·´N4Ëî]Äí½ÑL/=hÓ´Q¿nÙÜŸ6ß tü¼15š¿é\ÆY´uáÏ¿ÿèºLÛÅð ÿ•všÃ¥í™úu‘=+PˆHþ™IÈÑF­;w‹Õ¢¾Þ4•­^V7^ŽT¾ùkŸãéXÚýËž|¹N?;øì§t ÙØW‹Ñæ<§Pæû¹º{îT«—ƒÎó<í"Ï_/7˜žú¯rtåÑÙ’±¹Ò5Ö½¾íE¦I·d”¯ñˆÂŠFºòô¤;ÙÌ£;ß4m±ÇŸÂ×å=MÜŽOª}ÿE§´)Ò”º{)Šóâ(_Q¦ŒÔ¡è¾éKgÚ=…¢Yïb ‰þ’b8O‹9ûíò {¶R¬9MËH± Ä §i¾Iß–¾ËyŒ+2žIÞT漦"Ç+®ñýe9ž—æqZŽÇ©Œs²ÉWÉg5ÉyšŒSõþNgŒ õ zœY¨Æ35®Éu§r§Æ³¿åzޝ—´fž·á÷µc¿$_åúÌk¥Nøq{ôàùH/Î ûìË3(Ÿç<òÙO‰J ë-ï‹s5þ(–¹¿“FeŽÈ½¦ÏKÃùÿ¸¦÷ƒ¶]žÀWs:Ø•\abáå+šR?¸`íýiêwYDËÐô€)?ÑÌ)`R0ÍæþËëf Úœ_ýñ Ýí¸»½--Ó±-_ÑÒ„pߦ-zŸ:žŸVE˜>ãx²þ~³s>ÃRÒ†ÐúÅ›¿þŠ6a–:}æRÚò «Èœh[Í_o/‹|B;0ÉÍWdzÂúÊêÕïÌ/Jû‡Í(×iöC:è?s[tóOéðȱÅã®Þ££ÈÖoŸD'†]̉šNÈ,V`è¬íñÞ_^¢só²¢GRÐ}yßCÏÎÐÅ £¾Øõó—ty†¹@BWÍfù„®¯ý(Ý\Úe`ß3t{ôÞ^Fµh 3§uNºS¿oÕ¼ÏÐÁ¶Ôa>SóÜPå7ŠÈÑvΚÛQ±ÞBÄE3 Qä‚h©Éã,ªÓ`ØDŠÚioZ‘¢y^Ýbó¶³m¯Qôâ±™¿Ë‚ø–S–à ñMá]]æ“ß8OR㛚gªñMæ2kÅåÉõI_¬qËzë‹·ø_ZB~ŸÅ|ñwAêÁy’Ÿ¹|1‰º0º¨³¸¼b£µ¾!ëÓ†×÷ä¹|Ÿ¼ÏZ¯<Õ§Ø„7âœ\·ävëÆë¾¿›¡„'dz\ϰòI…o2Ÿ”<+Î÷I”¿Ë8(ËoÆç2εá|Ñš_ñx’óº.b»Ä¹€º2?dìÌ~Ëõz9kÏy¯\÷”ë”r_òÆšßñuy¿ÿXT?¬ý^Ï}k?@dA™KQ_ÎÛú‰mÍ•¿Z¼ àyð0Ž_rÎZ·4§_=i&[cLØ—»Ó¢ÆÍJÛhª9a£iæ2]6šq?]l¹˜n4›ãÖ\ÞW[ÀóÈ@±]5o -æ÷-5—) ÑrîÏU­Ã3öã˜wAüÞ Û_};pn}Ú$šaÖW´YLëúÅP0¯“oý¹…˜!Ñö¿V|YáPwÚU9#”ª)í9›æ{D![nu©ÛàíÏc.8ÓÁssnÎF‡†¼Îˆ!@G˜ÇÇxßíDk±`ÓŠNM¥=šÅì :;_¤tžóæ S3A‘|è"fÃк¼uƹ¢®µtuHH¯ÑõUççê;}éæŽM»s„w§ÛA/S 86ÂN:ç/¸Ú•î,Z`gÓá.¶'NÄRDƧç›åšK"öG‘½ÎýYåàFð->ÎFÍ®ÒôÒÖ§FlÔ…Q4HVzülŠ«ü™·S ÔpؽLÃû0±FÏË-5¡Ø6½µG[Ò”If"aÅÉ/¹Ž(çiê:¤7ɳ’‹ò8/Ìã»—#ã|^òÖÚ—ãßeÜ{k½R®O*¨®ßÈ}=Y‰j¹oí÷qýd<”ó½&ì_s$1]kýlÅ=k^§è„\‘ë-Ÿl  M¾üœ\çéÉy®•òwþÈŽ²=Maí/ âùu€ØM:*a÷‘Gò|l´¹­;†Æš ƒÆs¼²øŠRùÇh2¿*ïóMYYßßiæÉOÅŒ†æp¼œ7Ó\p§…";ª¾Y÷×57²iÉ£h±rBËn¦9üSßÑ´’×óÌéX‘Ÿi­Ø, Sïox¡p>ˆ6§ÉÅ(˜óƒí¹FŠhçóªC}— ¤øeí«9û·ÔÅÇÐÞ/9ļ;ŠŸÛ¿9KÇ¿ªý&§ÏGtŠ÷ÉB[/+Rt.E÷!áùŸÓù—ùz ÉÚƒ.òþ÷å¿Þ(’¢]ýmßÏ…+õ£ëærO ºÉóïÛxêׯRج͓n?9Jñ²Ö‘ÂSvÁ î3 ?b÷-8…":‹ÌúñLò!Éq8Êvò´ßí7e¦¯ )êÛº«0U èf»;œüt Eo?ùwÓ§«hfêZ›bR[ó*¹Ï&ǹºþø¾ø&ù%Qæ™ÉÆ7^ï“qæ­øÆí!×åw ]8ÿ•ëð2¯“ßÇÈý krÜ—ïÉ2Þ⇜×Éu6Ì7yŸõÝ —'Ë·æurž)÷çÌeåTÔƒ×7z-¼ûwå?¾¦>wúù|”¯úÄ4°ž9A ÇÏSíØLÃz‰…é™4’÷ ǰnŽãu”‰<tñïÑÓš×YߣðzÈP^7ÎûV#ÍáטFs>6–y=Þæ)øÊñu2¯3Lk&~4ó癜‡Í†J|uçÍãùà^¿ d=Y\óŠø’+!¾ÝÞqsÝÔ¯âÛÖ5˜9M¦µ—ƒLw|hƒHÓæ\¢Í¼/ˆöñ>Ê/s¢D‡\ݺ{û†Žšr›™Ž›i\::u|ެAã)ô“ž³z/ÝKçø»­ ÙMÁ§K¦tE¤]ÞÐ51ÿݾóêÇFKºÕ}Úµ¨ñW(,ò®öO^d$‹éN䀢gfö§ðuçn5lH]ÿÚu÷»Úi¦ùÃ)òPš ÅNxSTK¿¾… _¡(^‡ö{ù4÷ŒÁ}iPŒ¹íÐböí­žåÖrÝ3'°V>)ã˜äYrë ’?*Ï ðýeœ“ù¨Ì÷dÞ֔׬ýeÿ­yß©¹üý‘§ÔïFÔuHùœ\ß°P–§Æ3®§\ç—ë V|•땬 2¾Ê|Ü@c*e;åÓ4žóÌIÜŽ.æÁ^טÆí4Sањݿ¿VdÕO4÷á½ÕiÁ’u»£ÏR 9Ý(iíÓ-S×ûõŸéi9ó`%¯c¬É*ðOØßæýèe?ù²kð5ÚÄù‚\Ùz¥é'7z>£í×ÌÚin¿5¤=ýv×=õ—„8×hé…ϧ£ƒÌ$é0¯GåùØñíKÒÄ=ˆ “üýÙѽ ×ÐY‰Ù1%¦sÓª¦œž*”.d6 ‹GÏë%è²¹<⢫ü½Íu>¿Éß™Üîe~hEa"m‚vñüiïE}ò[?Ú'>Ûº< 1ût¸Ñw[ó>^CGŽk1îH{:±éGó ËÓ»Ë\ÏÒû l…ù¢O¹;ÐEñvƒÂt™¿#¸ÚHL¤žÑõ æB=Ýd¾Ý>Ü`õЩ&äqÜ—tGÌzÛÍ ð?ÄÞÇ)’óà(±ŒYy!E/ÿfN…ßS Ïãîú-Ê‚*ѽo'OÅÔ‘>7e) =¨.~jŠ_ywõ§IP»Ðݺ5Þäø—|ëùj\Sy¨òOå™ÌG%_äx–ãX®Ã·âçäwÓòûJ5.És+ž•Û=ðP%ÍÿrÝSέò¸^j¹ÖþœŒs¼/"÷ç¬8ÇyžÜ—³Ö)›æ{T¯ý ë{?Οzöwf8>«Xºˆº^ÉyÛ^o³ö¸^ò»e¹_7®½I š(vß:= óvŠØ>¯¸›¦q<µæsiS‡ÕZ½Œæšá§ -ð6¾)0x”×Ïó3ÒbþþciS‘ðܦ忰ËD+ͰԄVóüc­YÍê$¾j¬š—6ŠƒÒ¦çæm‰œE[yrûóƒ+OÜãÿÉ‘5Ž"¾Å·ÏþÆæ‚4«…óþßQæåqþnò¤X=ÎTŲtVÐÐÿs:7]Ôit!—@wè⥉ÿTêC—yžuu{Û¡õ‹ÓõÓ£ÄÝ_evjJ·kóü@awO7‹i\œî˜Ÿw ð°ƒ£GPÄÙ%‚çæ¢HszZƒ¢Ìée/Š~>ëV@ Šu¬>óÑÌlt×L»=éÞØ»CW¦¡û7æ?ÚU¡}!>ÓßСbNR\v!¼S(î›ü?ÛH£ N˜ÚZyžÌûÔõÉÉ«‚Ïÿ–‰Uÿü´‚¿#\5B|€µ‘Öˆ¯ 7¡µ‚5GRëÂF‘6½ú–6»ÌCÁ?‹…¿E´}®ù{h×s‚öî7 Gû‚͉¸k(!¾}ã[gv•ft‚çE§EoåïrÎó¾ÌE̯^¸O—{¦^Ôfì+º*fqzº~ùh`Tp¢¿¿óÝ ­vÓæ1…ó¾u„øÊÁ¯/E~’aË¡)jYäw¯l§(šã`¬óˆ«â Kt÷Pã—ÚÝ£ûÎÂjí]@Ÿó÷eø{î¸øýG›M·Ûléߨl6Oñ—ãø/Ééc{û ãc‡__ùwçÃ{‘w óë)/kCã‹)(‹Ñø‡Ô½üFø•í3ÌoPïø; ‰;ÒÁì.üçÍ›—^€Þ6q¯UЇpf8?ø‘Í–bl=,¶¶¶ ¶¶ Û ÛÛÛÛ ÛÛ ÛÛ íƒí‡€„‚†…ƒ‡€„‚†…ÂÎÂÎÁÎÃ.À.Â.Á.îÀ®Â®Á®ÃnÀnÂnÁnÃÂÔŠŠæ*fÎÌ] ë͸Âns›Ûþ{l›ÛÜæ¶ÿ6Ûï6·¹í¿ÍNºÍmnûo³Kns›Ûþ»L®›˜ÄâŠXdqˆE+^W1`)`)å:, ,-/2¥‡e൬Œ°L0±&“–– –––– –––––&V· À  Á ÊÀŠÂŠÁŠÃJÀJÂJÁJÃÊÀÊÂÊÁ¼aåaâ¾la•`•aU`UaÕ`Õa5`5aµ`µasÂêÀêÂêÁêÃÀÂ>†5‚5†55…‰6kkk 󵂵†µµ…µƒµ‡u€u„u‚u†uu…}ëëó…ùÁzÀzÂzÁÄ¢aX_˜?¬¬?lLü¶ƒÜýæî7w¿¹ûÍÝoî~s÷›»ßÜýæî7w¿¹ûÍÝoî~s÷Ûÿ«ýæÉë&æG=ƒÜî÷ÁÿOú¸ÜîƒÿŸü/÷ûÀ}àŽÝî÷ûàþ—ˆŒûÀ}à>pÇn÷ûÀ}ðÿKDÆ}à>p¸c·ûÀ}à>øÀƒÿ%"ã>p¸ܱÛ}à>p¼ÿ ñ7k£ýûèí>qŸ¸OÜ'î÷‰ûÄ}â>qŸ¸OÜ'î÷‰ûÄ}â>qŸ¸OÜ'î÷‰ûÄ}â>qŸ¸OÜ'î÷‰ûÄ}â>qŸ¸OÜ'î÷‰ûÄ}â>qŸ¸OÜ'î÷‰ûÄ}â>qŸ¸OÜ'î÷‰ûä¿ã$½ø;~´æbÇ^ ½ ®o~HÑdt^êó?¯M^E-Gz6o—·5^˜·vT±o¨Ñ·/H»Ž>^q£Ú›è Ôð³BG–•)D ‚ÆW*9­*5h¶²»ñbiþÖ-M‹ŒŸÓÇ?ìõ,Ôs?51¸Þޱ'ɧj×¾¿*Im´^ÓÒgÏEíøùƒîÝú9C-ê¸dÄÉþ“þ¢N5ªûï[]‡:ñû;K¿ýñÏG°w©ˆó~™©#ûÕ‘=nø¬=u`ÿdyž=µ%ãgqÔ1«ùBë¹Î¾‘í˦zC];éâèEÝn6ÙÞ^€|ã f)úÏ0ê15°nì¹ÍÔ«÷w‹‹”ÏD}>©¶ü¯)ß‘?ûÙÿù†f?Öù‚->òOÊ=¯(@ÜÝö ½mù¢­ŸÐð¥åÇÝhñ’FL7¤mÓý4šý»JüYM㿾9bñØ,4©úÄ-¯Õ#Wßy¶6¢irô¼~åO¥©ŸV½Xo@ MïÚúÛ2 ÑÌžÝF”X;‹fóóóôºÓÞ*O 6uªôºFK <°hq¯ÜÑâbaÅ7<¿D´áVzT«Ú4µXßæÙ>¢-ù޶úaz~ Žkæ±Ø³*m{Pò|Á^´³ìg×'ÖA»?Ï7¶ïµï)¤øçûv§ý)ÒÌ{õº78]ð›Y¯Ñ¡™K¾Xñ¢i_Ï~0C_:Vftù…=èD¡1;ÓÎÚL§Z, Isý1¹ÐõĹc-èlƒÃçG¥yAç®uØ:ã\1º0`ÜÆOæ£K…g7«?¡<]~úS­éŸÍ§«÷Ƨ©–³(]ÿêÎ Ïôèæ?÷údšHaéû¿¾•§#ÝɾëÂ/³ŽQx.ÑÑ©)"÷ÇÓ e£ÈÜ!Ý÷œ¬CQy¾ÿµÕÙ¥ÿׯÌF1…½ŽÞ¥Øâ£nQ4Šî–v/S¹Ýt¯JÚÏg¶}N÷ë-›lþ‚>oWÁoBî{ôÅ€Œ—î|™ŠLíÓjPÈzøY ‡.ߢ¸Îyv¥,_Œâ—ÿ3(°,}9\w¬>S‘–—êÿmTŸÛÔþ©1ÿèñËԊljäU}Ÿ_>ÿ¬ùvª»{òîïg¢:©3‹@Ä|¬5ñL£O¯/¦̧ê•ý§^ªÆ<‘(¯×,ûÑ/Ï–9¨v‘i¿]z|œÜ.²Üº'µMƒËQ=æc½í%½Q5ª¿9|ÿ™ûÍø,yμnØÈùåÐõ.K>®÷¤ççP#æacæo“9ÏRX5c?ZˆQ2bùöÞžµJµf~µå÷µ¿”µ`ðóß©SÆF¯B]ºNˆ]¹ÿ{ú„ëÝ]tÓÐä7ì—ÔßTö¡ž¥Úý’ÿ‹©7ûÙ—yÞŸy=(ËW'#:Ï !Wžc¤¥£¡ùÓV<»m kYp¢}N>>ûWŠ/êÓˆ?ÍúÊÿâ÷a}/†ËíÉ4ññêÈÒ5דkàµ2‡s‡ÐOSÈhêÍ/ë¡hú–c=æÊD3÷;0¢ZÓœZo«7™æ]¢,™ “t¸Lª÷j £ýÎù éø¹q=‡|H§Z>¬Ñ«s^ µÿúr&½¢³#éG5¥ó޽GždxIB~¿ÿŸ‹tiò‘;<ãèʈ6 ž7ïO×\k·š²ƒn–‰K—›n]•õÐð(lÚܺ”iNwöÔجÓH ðz\µ)vŠÌÔi]Ì¥×U¿VÃýþ¤èÑc¿Y_šbö˜D¡XæË½œæHà[ÏÆãGdÙB_Œ{áì¹¶=XvíÚŠèáú¿}Ÿ´ø:Y¾­jòÛÓØúa–î·äq ãš×r¼Ëñ/ùPgßÝRŸÆÍµx#ùW3êågUCšZ×ås²\?[3Ûš}-Ç©>Ôû¹3ó³+¼.úd¬wº¯×ŽöùºucžteÞÈxØžùÖNŒÒrç¨-ÛöùZŽê»ÇŠò~ß$ºr¼ñ^¾ÇwÕvܲâ]ïtfÇ‘¿mëÅ]ç¦)WÛGiHƒ9Nì<ØÂçâF¤˜íW«üqÉú0¦Iú:iz¦¡ñyE`ÜK“z Éê·(+¹Þ¬(<¢ÍBš3<ÇkŸF4Û}ëÉÌû¿Í|}¬0Íg =Ímm›Y§ÍŸò·‘˜C3-Ú|êxêÖýhI»;—ß|š–庺÷Ë{ãiùßÞ”mô„V¾ÜW¾wÄ*Z“9"ö+ZÛôéªÎ{ÇÒúcU×´¶M¢ UžÏk[ùm¼ÔÏcbö©´½ó—<`ó’+ëëж‘-«Œ<š™v¬üC@Qíúæ`áîïÒÞV»Vÿ“w…<‹ø©õ¤Ö´¿óÏ=óÏIE^|ÚüÔŸ¿Ñ!µS“ßéÈ?!#¶½JÇoòhS47f`AÿÔÊ|>;ýé~õûÒ¹VT”Š.d7”.kÝÖw]nû|t—ÉÞtUd%™~¤ë»s„wûƒn±Ž‡5/Uêïƒ7èΤãÏì•kPøb³#(bTšßcfeB|«0wÐŒ)Êóz‰nërStÚÆÇ»U"ŠIçÝ¿TvŠÍlpº›×ÿÒâßѽRKï:Ç,§ûµºì,0¹3}ŽhŸïhkúÂÿ³ s£{Ð׳ÒÅ‚«ÐÃÕÙECq„M˜v8oÃ*4C¤Å<~Ú]T³ijK÷%Ï$¯jóx—ñªÿþ󨂉WáTžù'Ïåïòþ*<Þ«?ض©‘ÅOÉK'Çï,üäE;¤T¿e”q÷­xÈq¹>óMÖÇŠÌkÉ™ï6g|ØŸV3¿ œóµá¸ÕöÖ…¼w6æ§öÜ~2íÌqSÆ=_®GOö«7¿ßŸïïoÿ44H¼½@Â:2´Ä¬…3rùѰ•³þô NG#òLÉv)k!¹L$JÓhtÙ§{Úô¶Ó˜ÏïW¹ºú ãr&BÕ·/IK.Î×§ä:x¤t«•4­N¥¶#7å¢3KÙ1¤hÖåGSœG\4ç«Ç.®hAó=JTܵ÷ZèÜ8sÒ×(Ðl6-ÞVÏ5Ëç3Zú¸Ë÷i6üN+Ö¦îÛ#ýZ½ùõæ’?e¡µœ?mŠI]+`3m¼b>BmîxÓkïÆ§ÜáU¿•MÒÓ¶•¦lˆ¼³ò¸ ËOÒžI[þl¶»#íó>î§âóé€HË_Þ§C¿\Þ´Ò+/å|ö8²¼%¶Ò©Î]–¿~‡BEVìý)*Ú{]l˜:¸Y¹©t™ûûZS(é¼Ë¼´<ÝF’Yç@ ƒJ}:o…g1;Ž"¸ÿ§ø¶4çW¶,¦¶Eÿ:gFŒ5îd>V—y#Ç»äƒÌ'eSyX‘ÇyU΃$OäønÅåÉù›œÉxÕM„£Ý»Èoñ¿´„ü>‹ùâï‚ԃǑŸ™ÞM¢î̉u—Wl´ò?YŸ6<ÿ‘çò}ò>k>wªO± nX~Xó:ŽwÝx~äû»(x¤æÌ»Aw6æÛÔ©2D™‰ ûqÀ­éí£‘e µ8¶a4Ó¡Ä~×3;õxÅz‘4ç“~<³¯K"û)æ´°Mû¹ZÙ|Ô¤™üÜœ†k‡×ýéÍ/¼®þ_Yh!絋¸]Š{‰–ĉ‰G;ZÆý¿"“hÀÖ´ £±øáXZ³ÄL`i]ë¬È0rRتð¦M3³¥jC›¿Ì{r{¿\\6Õ?3¦Ö¤­Ì¿í"üOtÑÎÓ×vÎéú˜öp ‰ýqÙ™§ hÿjýºh:˜Ò¼@‡ÖMýºÈžÇtDL×^¦cf±£èçi§Dxº{šÎœÍú°w»‹úÚ$ã8yþÍ®¼%>FO¶›Q¿5Ñe3 ÈNW 8¦_šø]{¸™¾¹š—nD÷øÐ­'c"ÿ~~˜Â¸_JRø¢­]ÃN ¡ˆ±aÁ£¼~¡È—uÈrœ¢Jo‘–¢þØüíΑ½(ú YqŠéƒã ŠéÖ˜(Š]Ÿm_žAùè®I÷ twG‘ؘµ©é^~S8éÞ\Q¡"tï§EþÃB Ð}žÌÃì´ùÒ”Ôô^«œ·Rt·ô_Æu>V™çy’Oñ¸+Ï÷—åx^šyXŽy)ï«Êú.ã¥ä³乚¿ÊxöV\ã¼Ior¾×ýnÄëM8¾6á£àVjÁ~·dþÊuVõï›ÌËš0¯ãr­øÆ<íbÊeúä•À)òO®_/~ÎZo™4ÁørÍ"êÏ:1PLÛ—¤!¾ÙWܨn£Î+‡qÜ‘É è4RŒÂ²Ãi4Ççq¦œf  ƒòyâ•4éQ½öË¿™C®ÐÝŽ»ÛÛÒ”Š?@qïÓÔØNW®VHOÓ×ÔJq¥i7‹·³g?Ì8ì—44—×Í´=8¿úãÈÏ/F6Ûìœ-e¾¯hÑûtÐñü´*¢Á¼ðÔ‘©î£/Ðzžn8ýÛg¿ÞM›„Š (F[î:pbêmÚV½ÍѯN Ww?8…Ô·#…¬}–!›ö6JèàSÅBè0ÇÁ£¼þsb²w6¤ÔtúÊÁj={ÐYOSè܆C—oΞK ôk]r]ge×Òå㟧rí¯KWcfe„ÔÓT‘Ër”\E·ª—¸<6ø…y›„¤;"wJáZ˹T¡pæiÄŠbeƒ"ÍignŠ|ýgºóUÀõÁC(ºü­½Eòä¤è¹ÄŠŘÝ:‘bĨ¬ô-Åæ£!ÅŽ›/˜J±fÐLdH ¬¸#çi2ŽÉø%ã”Ê7™7Jžã|Q¢ä¡,GæuÍø\æk2þXó,Or=² Ç]¹ŽØ…õAæqrÜËõU™Ëü¯í¸/?Þ“e<µù;1&ÔÊ{m˜§m˜§ò>kݔ˓å[qOÆa9¿3Ó’TÔƒóÀ^ ïþ]ù¯©Ïýt±åbºQ?ŸòajGë™JŽŸ7¦Ú±™†õ‰ÍLÉóÍ1iÄYãuω']ç'ÉÞñQÎÞ4µRxã¯[Ñ4‘ådŽ 'V"S¬C³µ#Çÿ’æm)ºlÙZ`†“ &>¿¢ÅìßR°b× Zá½4ϔ촊ç³kBs …¥uMªV5âõ©9âUÛ Ú°³é°‹9Ç‘˜me?{š6O9=÷l¿s\´ôñáe~§­åJûÌ•švˆYlê`ÚU9#”ª)íY3þÙwSRȆ‡bfHû9?9 T½Åq:4þòã^8éHÃ{&¶DÇ|—‰•\:PÔ~5e:µê§   …æ3šÎ" »îOç3‹…Ïltê0ýþhº$ÔÆ1”.‹ð‘b6]E©¾õ3º.Ô ëIº)¢²¯ƒÂ S¤¥;)ú¦i£HºÃã,üœÏ°”]rPļIÅ §C‘\ÿÈWm×/Þ¢‚ZÕ;3l(E›²“–¢/ü®M OŠi\lQíÉ (FŒÂ¾ó(¶ÜÔñM U§Ø¥«ÛwxÕŸbÅì±HÝmÐ#nýwþ4YD›œÉÙ£yø³í¯­y•Å+Öe+Žq^èÍ÷Kžg>fâñ[”çù¥˜/’Ÿ²|u'óTk>ÇïQçsRä}2^Zë5ÌÉó·Ê—år}dœ”z#ã¡Ô!å:Œ{Ö¾óEî?tiú¡ÙÔ•ŸëÎÏÉ<¸§X¦øk*õË•ÓgQÎoý· ú¼GO+îY뙜/å¼z8Ï{FšÃ¯1æ¸3–y=Þæ)øÊñz2çaSÇþµâË ‡h:¯SÍÜ:ã\Q×Zš •øêÎ šÇñrç·¬'‹k^;´äQt¡ù›ÎѲÛ;n"E¤•<ßY½u "ËdZkN{JPéŽmxz¾Y®9—h³Q-êëMS)xÈ¡´=×È›iÿD;Å2P¡M´7“X Dû0ˆÓÿ}x™„¹ºu÷þö 5å63ÿnbéñ³ÓÑ©ãûs`J@¡ŸôœÕ{é^:Çëþ²›‚O—L90èŠsþ‚«]ÞÐ5fÇA7†ï¼ú±Ñ’nuŸv-jü Ë#„¼+…ý“wkÈÅt'r@Ñ33ûSøºs·6¤ˆ®íºû]mŠÌ`:H‘‡Òd(v›¢Zúõ-Tø E=È*ž¢ý^>Í=c0Eߟ»khÚÓ´QÄÿn³oouL!iÒî(¤º5n+3?$/d>(óCÉ›’œgÊ8&ùU€ù QòMòUŽ{™7Êõy™Çµâç侄\¿T㬬!ìcX#XcXXS˜h¯æ°°–0X+XkXX[X;X{XXGX'XgXXWØ'°n°î0_˜¬¬'¬Lt–ø§ÃûÂüaý`ýa`aâÿ4`0l,†>µ‰!0666 6&ÁXØ8Øx†‘m"lìS˜ 6666 6666 66666¶¶[[ [[ [[[[ [[ [û ¶¶¶ÛÛÛÛ Û †m…mƒm‡í€í„í‚í†íí……ÀöÁöÃÀÂÁÃŽÀŽÂŽÁŽÃNÀNÂNÁNÃÎÀBagaç`ça`a—`—aW`Wa×`×a7`7a·`·aa°;°pX,‹†ÅÀbawa÷`÷aŸÃ¾€=€=„ÅÁ¾„=‚}ûö ì1ì[Øw°'°ïa?À~„ýûö ì)ììWØsØo°ßa/`Àþ„½„ý{{ ûöìM<õ5üGÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ó‚ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿø¯ÿšþkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þkà¿þk¾0ð_ÿ5ð_ÿµÞñÿ×ø¯ÿø¯ÿø¯ÿâÿ4Dÿ5ð_ ˆ×t ü×À ü×À ü×À ü×À ü×À ü×À ü×ÀÍÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ð_ÿ5ðßìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìðÇìÂè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zd‡Ù¡Gvè‘zdŸ‚8 Gè‘'è‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 G_‘E Gè‘zä€9 Gè‘zä€9 Gè‘zä€9 Gè‘z¤ÃþèðG‡?:üÑátø£ÃþèðG‡?:üÑátø£ÃþèðG‡?:üÑátø£ÃþèðG‡?:üÑátø£ÃþèðGþˆœú¨Cuè£}Ô¡:ôQ#2hôQ‡>ê"͆>êÐGú¨Cuè£}Ô¡:ôQ‡>êÐGú¨Cuè£}Ô¡:ôQ‡>êÐGú¨Cuè£}Ô¡:ôQ‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#z¤Ctè‘=Ò¡G:ôH‡éÐ#ýMüTÈzä=ò€y@ÐGúh@ è£}4 ôÑ€>ÐGúh@ è£}4 ôÑ€>ÐGúh@ è£}4 ôÑ€>ÐGúh@ è£=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈ€Ð#zd@ è‘=2 GôÈz-((—aÄÊ\éå7¯lŸa~ƒzóì*O—yó1q Ì-+ÎíñÇåøØ;ѵò‰Ž+$:þ(ÑqÅDÇ•Wæã2òÚ+F±‚£‘˜?Æÿ‘>Z¿9GE&þí}Ï| oUþ‡|«šè½Õ>اÍö?úåzbãr«'zG7I“c©f¢{j%3®>|Ì8S&W÷ïÛw”Áܨý³ÊW«ì]λ<þ÷ößUCz_’óÍÿÎZ¾«ëÈç×<£——_ßÞ^Ãü÷í=ܫϰ!ƒÞ~±%ï–jöCÞW‚Óö¯%bµyxêwýâ5Èo`ïêï-?å¿–ŸÒ«Oï+Çó_ËÑÞåbf/ˆto¯!}¼z1ll2-Zóÿ¸Ekþ'-jzšhü¿YR ƒÓ#üz T‹¸ÙºIÔwäðø)¯µDÿŒ÷¹—öÝKûî¥ýÿo.íK.‹1)ƨ{blŠq+Æg#þMŒÍê|,ư³uù^Á‹JüŒ¸¿£àJ¾_ àAC¾Þ„Ÿ\jÌV›ŸurÙµÙ§ÆŒ‚c5¹Œú|O+~¿¿G\<+ËeUg¼®ÃeÕç{ıÐÁ=o¾^}­ÇåVäß>æãš|(«*×£_>V`kÎ~VäßK±?UÙêð3µø¸)ß_ëð1¿³#±U⾪ÀÇ¢¬*Œõ½£!·¨Sy.£·“w¢viÄ}\‡ŸïÀþ~Ä× ²/…ø=¹ 'û]ë*Ç@9¾¿9×­±-AK…ÿ­ùYg"?ÅýBÇKpjó»>âòËó59îêsÙ•ù} +ØÆoMöG¼§(·‹x¿ˆ¥ùwo¾^˨–¨-+sYµ¹žU¸žeùý5Ëñ=-ù]¢ÞÍø¸!סס:û]‰Û¡2›ð³ÿæ´%ÄwÊq9’2ÖÕ‹÷Ë!¹lgÓl 1Z{Çõw™=™û“»fÿ—ûÔ{ÞužÜûÿ“g’«[r¾%÷ü»ÎßçûÊüºýÛ»þ­?ä÷)ïß|—}Hß7æÞõ{r÷'Wçé»÷ùø¾2?t,ü[ÿ½ÏÞÓ®"ÿ."“uq->÷(¿µ1â§2ɤõF¿ž#†ˆÜNäóRdŽšëÛ’æ®ulñÚ"®9ùºŒâZ½D÷ÖPΗ!ëòqc.¯—#~“±LÞ+¯ÉgêqYõØdÙuÝ/Îk*ÏÖLô{C~–lIóô‰~O\^åZÝDu—&}p*ï‘ï­š¨|Ù>òÞÚ|\Ÿ«'ªGr¾È#ç!õëðõZJÖfK|,ëíLäS¥d²ïë'*ÓÉï“~ʾ‘åÖMdÎD}˜¸/%&gõÿ-q Þaõþå·ä,ñøVûåC-q»þÛ}'ºWúêLäKÝD1^0Ýaûp½Q5ƃ={¼ç9ñ»®<«þžÜùûÊ–õQŸIî¹äÊ~×±¬ã»žWË_›&ç“ly¬–#ŸIì‡þžw½/V¼«ýþ+ãáßêú¡õOüÛ‡Öë¿â‡ýïûß’³ä|ýOÇîûž—ï±'¼7IŒ÷ˆÈmc´×i.šùÈ£æu¬£æù]f¡)þ§f³eÿÙfKoð1f=¹¦£Ø'6[†%ÿþ\¦k6[ÚÌpõdü¹#$éïEŠ&=O'áØ³ßûýJ»Ãf+>:á<F¿g©wß›fvÂqÞî ÇFÿ„ãŒGã1Ï7h«ÂIŸO*S¥V®ÿýï>¦(ˆ{¾xûºÇ ›-søãt™Ð¦I÷œÅ¿UL¸–Çó}m_fÌS~ÿ}ù~Hyj]ß¾– ýŸ2Û»ïÏ€knd?iÊüßõ#å„ãT¯Ž=¿DßM8Ï2cî×ÿ¬lÉ\“èÿ:&Þý¼~.á8M”q†gÇcz±âÈ‘_|ä–: >„M‘uÈk…læ‡K)îáÙQ6[ñq†X™!2Å|ŸÂ*Âð|–!x>¥Í–3ÆÝ8ŒûUè'<“u~óµÙ²MD%Ð7è»\þ8ߌëxOÚßâ7Þ3Çá÷ñÇy.àð¥ˆXÎöEŸ¦ˆ†ß[¡LÕÐÇ]ñ¬ø 2#úe/úïÊrÒfó>GÙkQÆK”}Ýf+ÙËf~ˆZ *–î{øôÞÕ=¾nžx¿—ø˜aÚ"íÝ uAý ÷ÿàOh’gãø²²ƒ¿y=å‚åÕáÃ#›ùÑBšÒfSšºä9×1 A5³CAíPß¼MЖ8.ˆ2ó¢®ÞÛm¶+Ñ]P_Ô/UOøSÄf~ ›óWøüe^ˆ¯Wön(c~Ÿ†gó¡Œ#8Âï¨w´mZèqºÊh"´¥ñ8ÏŒÁ=¸/%Ú#?|ôN“}ÿác:Q¨|ñQ5ü(†º§] ¿ûâ]|ÿq^Êð<Ú¦HÇøúåÏ  Óù/ÆL(VÑS`ææîEåFd¾<J¢àÞÀøs¢­2Œ‹ÿ(ª0žÕ+á]be c#óºøúŠXrÞFœ‚‰wüßçÁŸò°bðq ÊC{äï?&DÛ 3-Çi6ôÞc5ÇMF_¢¾iÑÏÙÑG™¼ãÇm>Ì R£ÝÒ£OòµÀsð;Ú*¦ø³ˆ±&v¼ðûyÔuˇ±Ÿæð~ÇøIƒzæÅ»³_…_9[Æëqö¼ñjz -3Á×4ð5Æp6Œ«Tÿi"ÐþèÃ<¸?C†xåA{Dâ=à^¾û(_\ƒßéЇy¢ðÜ´ãü.>ny1Fòà·ìÓYÐ÷E06Ò,B½á[Î ¶¤;hÿ©É?ÿ73,íeÚþå·ÿJÿé»þÓ:&çoâöú¯”ù¡uøOÚà}÷$ö÷ß|øÐ¾úçÕ2T>ä™ñÍö/÷«¿}Hùÿiþ[ÙÉ]û7?ÄŽö3§ÑÇüãLyCü¹éÔâÿÝß„ëñ:S|dþ±Îåý©øþ´|=ŸÛøw>—÷ÉçÒ(å©¿Ëò¤ª?ªé?äïüE„35?Ÿ–ïO­”—žÏ¥_²Ù?链ÏzNí/Õ_YïLIÛSúK¯•ñðV{(ãFú™Bi×”Êx–ïWÚÉz.¹q¦òRý]EµßÔëUSÛQÞçPê¥úOå8—å[ ?'õI>§êÿ[~(õ•ïO•L¿ÈvUãCzeËú$§/VÿQ9—(Ÿ{ªŒ[ÒsYžu.Ÿ¦”#ý‘¿¿ˆ¯‡õ~yŸê—êß3å÷Ç\Ž,_žËò'}ô3YÕ÷*õ·î{ž´Ÿè+~ÿ+¥žOz™ÌuµÝÕþûMi§?“öZ«\þÝÒãäê)ÛéqÒñeÝÿø=ýõ§â—¼Om'y¿Ú_Jý­ûe{&S/µ½¬ßÕú)ý¦–çÌ©ÔS¹ï­z?UêùìÝþ«þªíªÞ÷V»Ëò¿zwýÞzNÞÿg2ãVgÉðý­úý(uS)Wég«¿~Kê÷[:ôBig¥ÿÞ‡jÞù–N©ùÒ^V?«z¨Ž3µ“û=ݰÊUù£ŽG…ïÉŽUWß7>•úÉüȺ_Õ•“ÞÿVÿ&§Jû¼—GÉ•/Q½Oõ39¿“ÇV{ªú$Çarí)ë¡òï7åyé·¼Îh“óãbñå;Kr?å¼ ,Ÿb”÷•b,ÇXœùW†ï+ÿ>g .§_—å•‘ÏñïEù~YniyŸ,GÞ¯”#Ë/#ßÏ÷åße9¥øz1y¿¼.Ïå{d=•ßåû%æ÷ÉßK&ó\¥þ²J(þH?e{f”íQ*iÜKhoé—W6éý–_ò}åõRü|I‰²žJÿËrËÉþRν]ñç­~WÞ+ÛGöô;·ì·¤|°úE¶‹7¥”ú[~«õâëV=øziå>«=e;Êþ”íËçåø¼¨R?YŽÕî²^Èþ´ž“÷Iþ1ÊqS\ÞÏåÈö“ÏËö(­ÔÃK©§lyI9¾”rJ(ï+Ä¿K,.ÛGŽoÙ.ÒÙ.Œ…”vô–õ–ÏósÒ_µ^²ÝŠÊþ”ç²dùr\ÊúÊöPôCêŒU¾^ˆÑ*Gö›â‡DÙÎ*ïd½­q è“Òo‹Œù¿å{J+<õ(­ô§Åwù^©'êxa”ý!ÛÍÒeeœ[ú ŒÛJ;IžÈöPùYZiɧb äx•ãÊâµÂ»¼Êø.+ûCÖW¶§¬‡ôCiwé—Ôo…ïÞ9“–/ë+ë)¯[ú/ë#Ç‹Ò_’?Ò/~¿MÆãøÛlrÝÈŠÛò\Æuõwyókƒ×!¬üB>÷R޵Æ÷©÷Ë÷È ú*  KÁ@ƒ Q0TÁ0ã|šGØôTÐKAo ú(è«`€‚. R0DÁPÃŒSðiRiSÐSA/½t*裠¯‚ º T0HÁC S0NÁ§Iq”MAO½ôVЩ ‚¾ (èR0PÁ C U0LÁ8Ÿ&ÅÑ6=ôRÐ[A§‚> ú*  KÁ@ƒ Q0TÁ0ã|šÇØôTÐKAo ú(è«`€‚. R0DÁPÃŒSðiRkSÐSA/½t*裠¯‚ º T0HÁC S0NÁ§IqœMAO½ôVЩ ‚¾ (èR0PÁ C U0LÁ8Ÿ&Åñ6=ôRÐ[A§‚> ú*  KÁ@ƒ Q0TÁ0ã|š'ØôTÐKAo ú(è«`€‚. R0DÁPÃŒSðiRœhSÐSA/½t*裠¯‚ º T0HÁC S0NÁ§Iq’MAO½ôVЩ ‚¾ (èR0PÁ C U0LÁ8Ÿ&ÅOm z*襠·‚N}ôU0@A—‚ )¢`¨‚a Æ)ø4)ºl ¦TÐSÁ z)X\Ao«*èT°‘‚> vTÐWA£ KÁY *¸RÁ ·)¢àQC¼¢`˜‚± þ?ì ¼U•ÿ»û-yÙ jDÀˆˆ‘I×Þ€pCö$,5e I€°7!°'¬yKâ2šq›è8út\PQq›a\£¢¢£þqT&îÿ[ésëœ{êõ»]¯z{IßÏçæ×ÕUuÏ]ÎùÞ[Uý*{™>Ïô¦ût½9ô‹é8¦ã™N`:‘é$¦SÁt&ÓL1]Ìt9Ó•L×2-2ÝÈtÓ-L»™îbº›é¦ýLŸbú Óg™îeú<Ó˜îÓu]†iÓqLÇ3Àt"ÓIL¦‚éL¦ ˜.bº˜ér¦+™®eZdº‘é&¦[˜v3ÝÅt7Ó=Lû™>Åô¦Ï2ÝËôy¦/0ݧë-¦]LÇ1ÏtÓ‰L'1 ˜ ¦3™.`ºˆéb¦Ë™®dº–i‘éF¦›˜naÚÍtÓÝL÷0ígúÓg˜>Ët/Ó百ÀtŸ®ë3L»˜Žc:žé¦™Nb0Lg2]ÀtÓÅL—3]Ét-Ó"ÓL71Ý´›é.¦»™îaÚÏô)¦Ï0}–é^¦Ï3}é>]7d˜v1Çt<Ó L'2Ä4`*˜Îdº€é"¦‹™.gº’éZ¦E¦™nbº…i7Ó]Lw3ÝôŸéSLŸaú,Ó½LŸgúÓ}ºÞšaÚÅtÓñL'0ÈtÓ€©`:“馋˜.fºœéJ¦k™™ndº‰é¦ÝLw1ÝÍtÓ~¦O1}†é³L÷2}žé L÷éz[†iÓqLÇ3Àt"ÓIL¦‚éL¦ ˜.bº˜ér¦+™®eZdº‘é&¦[˜v3ÝÅt7Ó=Lû™>Åô¦Ï2ÝËôy¦/0ݧk©™D»˜Žc:žé¦™Nb0Lg2]ÀtÓÅL—3]Ét-Ó"ÓL71Ý´›é.¦»™îaÚÏô)¦Ï0}–é^¦Ï3}é>]oÏ0íb:Žéx¦˜Nd:‰iÀT0ÉtÓEL3]Ît%ÓµL‹L72ÝÄt Ón¦»˜îfº‡i?Ó§˜>ÃôY¦{™>Ïô¦ût½#ô‹é8¦ã™N`:‘é$¦SÁt&ÓL1]Ìt9Ó•L×2-2ÝÈtÓ-L»™îbº›é¦ýLŸbú Óg™îeú<Ó˜îÓõÎ Ó.¦ã˜Žg:éD¦“˜LÓ™L0]Ät1ÓåLW2]Ë´Èt#ÓML·0ífº‹én¦{˜ö3}Šé3LŸeº—éóL_`ºO×»2L»˜Žc:žé¦™Nb0Lg2]ÀtÓÅL—3]Ét-Ó"ÓL71Ý´›é.¦»™îaÚÏô)¦Ï0}–é^¦Ï3}é>]ïÎ0íÒ4SæïB[ÚÒ–¶´¥-miK[ÚÒ–¶´¥-miK[ÚÒ–¶´¥-miK[ÚÒ–¶´¥-miK[ÚÒ–¶´¥-miK[ÚÒ–¶´¥-miK[ÚÒ–¶´¥-miK[Ú\šÉ´ ÿ.4üÀrr¹ídõ½Úæûùùü<þ}¹rLÇq;åìUz^¥å–kg9{åú±\{Ëõ_¥ß—«o¹þ1µ»Üq¦q6ùG¥ã\®Cõ—JËIê?¦öVjÇä/I÷—OÓøµ¿+­_¹lòÛríLI¿7W)ËÅQR®™âÊÄ«JãÞÔž¡úçPý§\®´ÝåúÓTŸ¤\0}_)*õ³Jç‘rí4Í&>Wê§•ÆÓPãØäåʯ´ž•Ž«)›Ê7õc¥ãYiŽßàN?·tÒ±ê¤,ìî¼hÉ…k._%?ý=SáëwMÉt|òÇ¿ÉìÕþqtºú$MÃíüZÚý¦4Üü?iùiS½Ë¯vyÕö¯fó—´åÕúøj÷OÒÔèöT;ÕÚêÝÿµŽÏ´i¸Å{ZûI÷§-¯Öã[ëú¤MiÛSëú×ûøzÇsÚúT»¾õæA³_ëþLZŸjÛKz~³ñ;iªv<hýÛì|­÷üÜèùì@朗Ú<0•_ëù9i}’¦Zó®Öí«÷|Yíú¥=Þt~£×ž/“îOk¯ÚÕö7Sj6>Õ»~õæw½ý§ÙæSnñÔlío¶ñOkÏ”ª]^£Ëo¶úV»~µ®O­ç/S}’Ö7éñõno³ÍIëÛl<©uª¶¿ÕÚ^Òòë=ÿ¦­OÒú&MÕŽïf[oÔ»}ië—Ô~Òú5ÛüoÚ_ëxÌÀß…ŠiÅý‘Îgº°_×E] ]çu=[è:'£ë ¦ ™Î(ê:;£ë¦±ó åÏgzv¿®“3ºÎbÊíÏezfQW~þ¢®g ]ù~^n寮~¢¨ëL¦¼¿yùg1åýÅíñöÏËèzV¿®SŠºrÿãçOeÊýw^B=3£+ïo>ggt^Ô•·Ÿ?»¨+¯ÿ¡+/>Þ¼xù\MñÍý#Ö?E]ùxÌ)êÊý‰ó€Û‹Õi,ž‹ºòxããÃÛãk/Ÿ—ÇëÏùÂý^_ÜþÉ]yûxÿqÿ:«¨«)þbñÔ÷ÿ|<¹¿™êkš8ßLñÊã…ׇ묢®±ú3Õ—µû'>>§etåñx:SÞ>î|¼9ïy}x|ðýÓ2ºrðþáç2ºrÿ;5£+÷?“ðù‘óz SÞ|~ŒñDèÊ×_üüØz £+o?žÇ?7nŸÏ/<¾bü`åÇæ'¡+ÎÇ™Ly|òþäýÅý…×wjQWî±õЕ÷W/±õS¿®¦x‹­wXýyûyÿ™Öç¼¹¿óøŠÍ'BWnOdtåýÁùÅûÇ´ÞãëEΟÜß9¯ùõŠÉ8ïLÊÛÃË7ñ”×·çl¦¼}¦øå<äãÁû“û›i=ÍLJï7­/b×K¬~œÜŸcë‹¢®üøØzµ¨+¯ŒßE]c×›Lùù<^¹¿óúóòc×Lyù<žcñÝÏ”•wFFWîÜøúß1±ý¦ëÞß±õ+×76^E]cë¡+çY}Móaì~@QW^÷>Ÿr¾Ä®“3ºÆêo¨ÏôŒ®±þê×5æÏL¹ÿóòùúˆóÐtýbŠØúŒ)ïØüŸÑ5ÖŸ¬¼Ÿ‹L3ºÆî·°ãy{cë=fÏt¿À/†ö›îwðý±õwBÍ_LM×Ü_üzÞÄߘ²ò¹òëרýZ¡kìz _W>ŸÅÖƒLyûbë팮±ù±¨+÷?~>îO\ùúÇ_ðxá|á×±x(껿ÁÚ{S±ëv¾iþàí‹­C3ºòëÝXý…®|¼bóKFWÞ_±ù‡)Oï¦ëeÞžØõ/S¿|þ0]pÿŒùoQWÓú‘Ç'¿ßÂyèet5]¯™Ö[|ýÆçOÓz9vÿ™iÒõqìþ'k/Ÿû¯¯éþ>ŸObëQ¦¦çIÆõ6S>~Üÿøú,v¿&£«éþ–©¾Ü_EFW¯yÿÄ®çØ~Ο©E]ùüÆýƒó—oº?fš¯L÷§ùü»ž,êÊǃǧéù¯¿é~6oçolý#t5­·cëyV?~šóδ^‹=_eÊûŸÏû‡ßŸŒ­çû™u=gÇóxàñdºÞ]ÿgtåü3ù—éþéy‰W<þbÏ3ºÆâ“)ç?žû_ìù)ÓØú†)¿¿ÈçoÓó}ÓýÓzÓô|:æ_¬~&~›®÷c÷Xýø|Áûßô|Ÿ×鈴ço]9¯øñ±ß]MÏ£ùõ ÷çsúu=WèÊëcZߟ§ftLMÏbó»Ð5öü„)ß S^~Œ/¬þ¦ëEîo±8*êÊíñúóßïðù€óŸó•ool¼3ºÆü)·ÇLJ¯ÿcÏKX{øüjâ ïOÎϤ¿·âõ]¹?ðñãñÁû{jQ×ÉLùx™ž¯Ç®˜&å1o·û=YQ×X|°óc둌®¦ë¿X2åãË÷›Ö?¦û¡œw¼½±ß)et5Å·7µ¨+o_¬¿SÖ¾Øó¬¢®¦çåœ|~àöøõ¸‰ç<~øù||8L¿×‹Å«/ïØïdŠƒkìù>«¯)~cñ’Ñ5v?žµßt½›2ºòúÇž¿²úqÿ­·Ùñ¼üØý„~]M÷Ûcëe¶ŸÇ¿»É4öü…)÷O¾ßô¼9¶¾eû}SxòõŸoù~>^¦ßñþã÷sM¿ïŒÅ7SÓï³÷?˜Æ~OšÑ•ûÏ›2ºòúÄxÎÊ3]ïðúÄڛѕןé~b¬>BWÓïÃb÷ï„®|¼yù±ûaE]c¿ïו¯—M¿?æ{¾Ï4ö{Ý¢®œ"£+¯_¯›ægÓñœg&¾šxËý5¶¾/êjZ›æg^_ÎÓØõ^¿®œ÷œ||xù<^LóIìùŠÐÕô<&vÿPèjúû¾~е§¨+ÿ½,_ß›~lZ¯ðþŽ=ïdûùxòú›žOšž'òøåãÁujQWÞ>~½ã-SÞ¿I×c±ùKè{nܯkìþ+ûÅÔô<7v.£«i}ÆÇÇô{~¿Æ4Ÿòñ‹ýÞ’)oŸé÷á|üc×7¬½¼þ&^ÆxVÔÕô{GÞ?üþ‚é÷ ¼½±ûýºÆž35ýŠûŸï9¿Më¹Øz1£«éïѸ=Óï}có;S^¾éïLÏçb÷Ä®±ç‰Lùï7¸}Óß÷q­ïØ~ãýRf?öü„iì÷ EM3ðw¡™„©ÑïnJµ~ŸEZ{ÕNÃí}¦Të¿ïnöö›ÒÞþFÿý~½Ë«wù­4xªÁûš*Õ›õ~IÚÔlí;ÐÞß’öø¤i¸ÇkµS£×«Ã-5Ûûjm?éñ›ÿÔá}MuMÃíz¢ÖñÐìýQïò›Ýyªw<6ºš?µ¾3ÜÓpk³­ç[©¹ÒÎÛáæÏÕ¾ÐJƒ§fï¯j¯g›ý~\½S³Õ¯Ñ×?Nµö÷fKÍV¿ƒµNýýÍVÿf«Ïžê}­Ö×'Í6_TûùBµS£û§Ñé@¿ßÜlã;ÜêSíë­á~ÿÅd¿ÑñÓâgº4Üû¯Úë‹}|kÝ^ßÔ;5zþov~hþPëñ¨wj¶ùš;hý Í§­øi®Ôèë›F?W>Ðâë@OÃm¼}¿d¸§VÕ65z¾otyÕ.ÿ`»^ªvû}?¢Ú¼nöñl¶ù©Ö÷/ZéÀNÃ}¼‡[ý[×óV:ÐÆk¸ÏÃm~®·½f럃=5zýÜèño´ý¤i¸Õw¸¥F÷ok}¦§f¿TíÔèú4Ú~ÒÔlõmôú¦Ö÷cÒÞïK[¿F÷oÚ4ÜêÛJƒ§áö¼¤•ôÔèþ®õó˜Z§fçu£í×:hüi¶ûµ¾?RƒxÞÿw¡âˆÒ†R^Ž8Šéx¦Óc™šÊÏèjj·éxÑÅtœ®±ãY{’®ccå\MÇÇöŸ kÚúÇú'Ôí7–gëj¯˜?±ýIë›Ø?x}¸?3Ÿ°ÿïçöyý’ú×Iº&¯˜ýã˜&V/bþÂÛm/ÏRÇË]ýi¿˜Ï”ïgýwÓ¾ðß½JõqtåÇóòx{ÇW±þæþÆËãöøùIùhª¿i>3ìO=¿%­ïæO5¯_ÒúN`ÊÏ7ÄoâxH8^¼>‰÷³ùœ'~~L þ´~Æx4í7Õϰ‹oÚoRÓ|˜òü´|7® ã)DQÓŸÙñ©×¯)Ë3ÅŸ1þMó?«Ÿq>5Ïö›Ö±òLñ9)·ÏË7ñÒÔ¾”óQZVûø˜x“úz´þãýÏ׳|ýfª/ßP¿´ë—˜?šêÇ×ï Ûcì_“òö$嵩¾™&¯¤ó¥¡=1âÇOÐ5u<'íOfŸ×/ñx›æC צõbj^%ÿ„÷ÇŒjò¿ì|#O ׋ÆòLã?iÒþIê¿l¼b멤ñÏûŸµ'íú˨ ïo¤^ÏOÐ5Öüú=ázÆT¿˜=Þ†û ‰yÀ懤ý—ºÿù~®ìúÒt}Ó L9Mý“pþŽÏê«_BÿH|¿ùD¦§0åý‘òùAÒþ1žŸ°bû ×[I×?‰ï¯¤½_èš8ÞLó·‰/iýÁp½`ªolB~ÛËëg:ß4šx’ÖŸ®7Ó®ÿŒþ5©éþç¡é~{RÞr{¦ù9ÏÔÔ¦çdžûû©×G ï$å-ßo¼ßlª¿á~=?ž§¤×‰×£I燄ýmZ?&¯Ä<âñdzþÄ5áýxcs5ÝOäþÃÇËt=lOS|'^ñö˜æ+C{b×»†þH<¬>Æó ó[âù,áþXûùý­„ã˜gIç^?S{ØþÄüMx¿ØÈ Vãñ¼=ì÷4‰Ÿï™®O™=ÓõsÚõXLMüâýÃ¯Ç å§^²úÛÇëkš/M÷; ë•ÄÏÓx}¹N`jâoBžëg¸žŽÙ7Õ/éó„*?/Jí¦ù>cФý“ôþjÂù9-ó8éýmÓüeº>åÇ›ì¥|že*ߨ ߘ¶þ‰ãÐÔ~Óó¦Æú›®¿“®&0Mêß ý-éú<ñï í1>Oæå¥õÃõ°Ió™û‡ézдþ2\ï$^o˜ÆƒŸÏ4©¿¤¾Ÿhú}3_ï™æ“¤÷#L¼7­®LåÇöO`šô÷IycòWÓõzZ'½Àû7¡}ãïËÙñ±ñ7ÝŸgþ›t=cŒoΟ¤÷cyy¼?M¿ïO_¦ò¸šî%äeâõ¯?ïÓz=)Ÿ“Æ+k_Òßs'¾Ÿ9‰iÂë!ãß/™xœò~Pê뙄št¾7ÝHú<2¶ßàI×»±ë«¤ãcò?~¼¡|Ó|{~–ôz$éý*Ó|–0þy{cjÿ¤þ’¿ à{-%åªI«†j¯Zõçß§m½û»Zí¯–½´å§MµöçrçW»¼jíO[^Úñ®VýÓÚ¯´\SªuÿUjßdo¨õjýkÅãrûÝÿÍiÛ]m%åe£û/©½Zõwµë“Ô~¥å'Mi9’6U»¼jÛ¯U\WË~µ¯4Õ‹iS½ySîøJËIº?i2ÙIZN­ý§Ú|J;ÿ5ÚŸ†Z^½Ïjÿ¤/«ÝÕÞŸ´•W­þ®tµ×µîÏJí×{}Ólë‡j—_/¬V}“–—6U›wÕ¯´çךÇiϯõ|¶¿ê¿ÕNµ®ÿPë“ôøzùiž-W^R{iëWm¾µ>¦òj5>Õî÷JÓPëW+7:¾kÍÕZûOÒñªõ|½ýÑT¿–¦Ó Óz÷µËoôúä@÷ç¤ñßl×ií 7þU»¾¬¼ªßOJ{þ®ƒ6º>ÏjÛ«uý“>ŸjòñmøýƒM3Lëm¿Ö×ÇöÓ|×èñîþUãòºñªõø4:ëíOÍ~=Ùèþ1•Wm{IëcҤ㟲ýÃŽGiOÕèú§Ô¦¯ Ó´ç×úþLÚú6[ÿ¦]ïšÊ¯7Í“FÇC³ùW­û«Ùx—a:ÜÎOëÿ)í'þ;¹f‹ßFûÏVßj—Ÿ´<~|µë“¶~5¾_Uóß·$¬OÓùS5qÿ7Ïš}<ùù&m²þÍÀß…f&ÓïèMÇ'-?myµ.?i4[Jú¾Œj·/­½jûWÚã«m/iûíõ¶ßlíotª5?ëê¯ÍVŸf÷ï´þÖèö4ûür°÷éüá6?šR½ë[ïòë½¾LZŸ´åÕ;5[|&-¯ÑýgJõæy½û¿Úé`›/_õ¶×lói­ç“´å5z¼›Íþp_¯U{=Ólþ4Üã§Úóo£ã¿ÙÖÍŸ®O³µ¿ÙS³¯íOiÓpŸO=þµ®OZûõnO³ÇC½ý·Þç×:èí«wjt|5ÿMö†›ÿ 7Öúz»Ú×KiS£×¾^Mšêݾz÷OÚòkmß”†[üÖûþF½y×lõ©·ýZ—Wm켫öú Ñþ]í4ÜÆ3ijôú¤ÖñTïòê]ßFûW£×ßÃýüZÏ?Í6ß5:>ê½þ¬uj6¨õùÃ-5›¿˜Ò6¾ÃÍ¿}}šôøf[Ÿ5›ÿ%MÔÿß…V›û§jöu{­S³ùk­×™ÍVŸ´üh´ÿ5zž­÷uY³×p·—65Úÿ“¦Z÷o³÷G³ñ§Ùüù`Oµæ}½SÚxl¶öÕº=Ͷþk¥d©Ñþ[ëù¯Ùüi¸Í§Õ.¯ÑãQïëŸz_¯¤­oµO›š}>>Ðì5ûøVÛÞp·fç­)¥íïzŸÉ~ÒýÕ>¾Úý1Üü'íù¯¤i¸ßhÞ7[yÍžj½ž­výÒîoô|RïÔl<ªvîëñZÛo¶þi4/ª]Ÿ´ÞõNÃm~jôøhí©vª7¯ªš}|›mýRëõľžN{}‘tÒúÔºüzûcµû;mª÷ú¨Ùâ©Öëó´ý[ëóëíõæm½ã½ÚÇ×:Õz¾L›jÝ¿^Ï4›?$Mõæ[ZûIËk6ÿ«7›m½bJØßÿw¡âáÏíß÷ˆ’î:F×{Æ—´X*H¬ZPÒ˺Kº~ ì_TÒǶ–ô.(ïZÐKàø]/0ý²®ïyV×{t}Ïwuíž]ÒÍ»à¸O–´ç²’îX¯ë{Ž*éï/é5‹Kºr´Ú·ôN°»noIß›ÓuÇ—u½Mõ×Ú’Þ:±¤Wö—ôIK×÷éúØnÐë¡™’¾C”TÓ*¨ï»aûÂî’.ç½g®®O>¤ëcSKzý3%íû|NI„~Z·ÎëÖõf8oZúáïºî|¯®7ÏÔûã.ؾi/”û~]7,/é› ÜåºîÜ©ëö¹ºîœ¤ëŽç˜~B×;Jÿ¡®Xý÷Œß-PßGÀ/î‡~Ûñ(Ó‰L/Ðõ>¨÷Uý¼ËÔóV]·ÿV×ßÕõ†bI/RåíÒõ†î’.Ýq‘®WÁøçoÿ„®;æêºúñ:Ð]ctí†q¾ú©û‰’>ö|I¯;k&Ày?Ñõ~ð»uÐ÷C¹wž¼O×Û¡7¤Ö1Pÿ[Áβn(gÓ{t}¸K×íÀ‹õ{Kº%Ðu=ŒÃR(ÿZ8N­ŸvŽÒuû^]w¼L×?Ôõ^¨Ç-ÐÞí™^«ëŽ1ý¶®¼?ûz™®Ôuóâ’Þ5Îcñ³üõj(ï*wµ>¼¸yU±¤jZ˜v^¦kß_uíž^Ò'þí¸J×Ͱ.ºüñF°{Ñ^(ç!]_®%}¸v¥ò7¡kŒï%ª¿Îѵ÷mºî<¾¤›Àßwܧë5Ð?W@ÿîºöݨëõÐ*Þ”öž©ëö»tí;YWÞ}K¡ ý*U{ïƒq¸Ʊïºîtt½ê«®¿®[ ÛPÿÞßêºn®;Ž+é­Š#/–ô (wøÃ&Çû!KÝ%÷¿¹¤Û`ýÑ{¸®}Ëuå×k;fëúÌ+¡þ}èºÃbzˆ®÷ƒÿl‚úm_ kïb]w| ¤ëa}Öw„®×Áyg@yÂúq Œã#G1…zÞ¼Ø q»^ùß"]ßÝ_ÒåÐÞ`g Ô¯o·®ë`}óîî’^ åªø»ê{”s)èÙÊañ¾ã$]χãΆz­‡8W×£½ßÕµïQ]{—ëz?ØÙóåÝ tåñÚ óã6h×u0o¨õDß‘ºö<£ëj8oÌ[÷ÀºâÚÅ%U×7Ã÷ëÔzö÷}W×KûuíéÕµï]·Bm†òï„ñº]ÍßÏ3ý”®=ÐõVh¿Z¯ntíû~I»þªëÐ.åǽuåóÏöºîØ õí›Äô]Õuõ‡ë¡¿o‚v<¦ââ­Ô¨wKºÖ{üúøf¸ïrÔgû×JºÊ_ýñþp]û¾­kÏ›uíƒyqÔsÇ ºÞ! ~ª_>¦kßx]{?¤kϵºîü‚®}ÀÛ50^›¡]ê>¿^ß±EW>Ÿòõi¬sîÿë¾C×GÇéZ,–ôí Û?Æôy]Þ=þ×{¾®7ÇÞzÀxªû`=®;˜ªëæSáx?Û€¿›a¤®£ßµ·¤w¼º¬¿¤j½¾^ùýsºÞv—Àù}ïÕU]¿M@=§ëºÎ_ û{OÔu3ÌÃw¨yY]otƒŸëz÷â’^ íê+êÊã·÷]{Æ1eþ1´ó"°sí]{×èzwI/€öÝã¹Žß ×)×Aýøzä† Ø…öªë&U‹…®}?ÑU­+ßõ¸¶WC9WC9j¼ïÿ¹®‡ûèÊ×}—èºÊ¿PÕ‡ùÃöwéÚwœ®Çéõë[£«ºUTûÕµçE]ï‡û€7·‚ÿÜ\„ó]ÕõóÕоÅJªæýÒ2,#fÂùÝ`çF(WÝß¼ øø8Œïj^ÏôT]U¾ìôž «º^x;ìßÑ©ëö£tí{V×Þµºòñ½úëÒnÝÞÐ~Þß|ýuœw%Ô¯ç"]{?¢ë6¦j~QÚÝ¥ëŽv]{ÖèZ„y1Z|Y×[a¿º/Üsœ®}¿ÕõQ˜'„ý·A;ÕýÎîÓt½µXÒëà¼Þ-ºÞ±\×Þ½ºÞqW„ú=8W×¾~]7‡oQÏÀÕ}íËDIÕý€ž_ëz§îǽêÝÿƒ®[—ëÚ÷”®kTÿ@oZ\ÒÛ@ùõý•B×­ÀŸ[ ^z™ö|M×Mêù ”ÿôßfèußxé°ËxÔ q± êý èÝPŸ¾½ºn}A×îtå÷§¶ÁýÚ+¡?îƒçj=v¬3Õú¥úe ¬¿Öü÷Ö~¨»Þ‹õOF×û ž—Ãölþ\ízìïÝ£kߺ®†z¨çk=wèÚwŒ®=³uÝå^¡îBœ\ºúÆm´çQðÓÍï—M(©ºÞy`£®êú^Ý_W÷i”ö¯ëf¸.¸ÎW×uS¡ü{ŠÐ?ÐOëaÿ-0njžyÖsj]}9œ§î»¨qÜÐ]Ruµû¯Lû™¡kÌ›Ýo½ßÖu;Ü×SÏ×îìÖU=×]Ñ­×gÌëa\®½Ús;´¿ÇÓµûy]ï©õ?_ßßþx#ÄY¯§kÏn]/€vÌ/ÂqÖõV઺Ýñ=¿‚ïo†úõpÝ¢kï3ºö½¨«šÕüø8è#0ŸwAמOèÚû]‚òîÿã×ϽpßàhG÷eºöÿR×ËŸÓUÝ/Pªžc-z߸XWu½±AëGtí;DWõ;¥ê:%º?yŸ®@¿.›ßÃuçjÜÀ¾âQO'Ó#uåë—îuݶI×û`_½I¯÷&ðÛž}ºªqºæ‰Û ŽÕ}ü¥ÐNuÿ¨÷x¦Çêªî*íy—®Âº­å>÷ ïV÷à~ÆýÀ³ ‹Kªæ—ë ]o†óï‚õ€Z/ölÔµûº>èÚ}œ®ÛöèzywI/zlû«®Áþ«¡¶ýZ×î瘾M×^xîtþ9]ï„vªçÃÔ} ÅÃuÝ qp ÔçÊÅ`OÕïeº>\¹EÕŽ[ õé…û&[Ôu Ü·ºâœ?_èþ&S6_÷téÚ}=S¸uøQ÷&]{àºôëèz7´#Zÿ@œÞT„rø|ÓóÓçtÝõ¼ìôÂ}šGá~šò«èzt’®7ƒªßã<õx@Ý…ëÖm_÷77@y[`ü¯V÷‹Ïïrn;7(Nƒ®ƒyåú߿¨ç†=ŸÓõfX§¬Z\Rå/ªÜÞñºn€r–ï…ãázD]'^Û_Ru}¨žç+½ÆUýNó¹çD]»¡|u¿„Ï×ÝŸÔµçi]Õsåä÷tU¿º¢XÒûÀÞ°·ùi]U»ÎƒvªõR¤ìþDwÀtÓ™º*.\ ý¤âVÝÍŸ‹tí9D×î‹tUσ•ªç~‹ =ÝWéªîǪõõ=0Îo-ܾ £«ú’z~~ø×5°žî¿zÆïˆsuÿPÍ—-†v2UÏo¿¿âsŒûÀ™á¸íÏêÚóS6ö^Ë”]_ÜÚ õÞÒ®kïN]{®Òõ‰tU×ñW€_n‚uÍ hïãpßæ!u?¨»¤êw]*ž¯‚m>>Û¶ëÚ}ˆ®ÿŠ{¡|ö<ó®ç|]»á¾ØCPßž¿ëª¸¸ô6°S¿¸MýNúã-¢¤S2Ð~6Ÿ?õP×Q<þ/;óŠpÞsºòûê÷Œ‘nÕõ‰SuU~²eŒ¾­”¯÷néÖ•¯ß·^¢«º®R¿ÏRÏUmU_ÿÝëtÝz½®|~Ü ~«î‹lÝÃô¯º®¿Œ~ßø}]ùýþ|õaðµ] í‹ø÷ÑÜ í] ýÓs”®*¯ƒúðõz¾£~¯³¶¯v/»ê÷uÛ¦êª~¯®ÖÇ÷A;Õó“mŽ®Oе÷׺^×_Ò•àß½÷èz+ĵºþâÏçøzé6(GÍßWA?­v>ß—ªŸøú{%ÄÓypü-°Ž[ýs|5ØY ߟ'Jºu“®üþ…Šû·Áy=oÓõ&h¿ºžºT]ÿß~~”³­]WλûÔï`¾½c±®›ÀÖ©ß“BùT<ý¯®O§ëÖ º^ýw.ôÇzà™úýZW©ëüîïêz7Ôã6Õ?ð»ä¶Z/ÀýußN©ú½ðd8ÿõû´½PO˜ç6Áõàsu-Âzt­¿íºn¯ë:è'µ>QÏn„þà×ãê÷-‹Uûá¾Ôµà¯Ás—kÔu´{ÏçÿØõâOt½©»¤C< ëaõ;ê'vëºúk1¿T=÷è9é(]7@=•ªçjRÏ÷¶¨ùã ]ÕïXÔºT=7P´Æy)ôKÜÝÇóõóàË QÏ-ùú°ûWº*Sªü[i÷ºÎÍèºæuu½yÓÞ’^ õáë¯[à¸wÃqê÷ÂJ·MÐõòÅp<ôS÷‰ºÞ~§þ΂?_á÷®€r—÷—ô¨ÿ&øþ¸Ž¼ Ö•OôëzŒßb¨×mð½âýãGèºÆS݇éþ­®O@9¿¨û^Š/¥e ê=0®êú¯÷]×Bykö–TÝŸWÏõ{áï<6©û°îÙ ýÐ}—®[·êÊëß]»ÛuUý¢î'ªëô‹ þߥëÀÃ+‹`÷ºr^]Ð_Ò·Bùê~«ºŸÙ½œ)\g«uÃÝÐêwe|=µþ)]Ù ýõ|âsºòõ‹º¿¤æ·Í§êº ¸V„yÏ?ï%} ôÇÅ‹Kºêq7œ´G­g”n=QWõwJ¿¹Ö/j½¦â䉧uÝz—®›`½]_®×U]?EÏÙ NÕsã5°}6lo€mõ<›Û{ìÝöîÿZ£î/uíþ¾®êúJi÷·u½WÝÇ螤ëÖ•šfÔ߅†úûÑÖvk»µÝÚnm·¶[Û­íÖvk»µÝÚnm·¶[Û­íÖvk»µÝÚnm·¶[Û­íÖvk»µÝÚnm·¶[Û­íÖvk»µÝÚnm·¶[Û­íÖvk»µÝÚnm·¶[Û­íÖvk»µÝÚnm·¶[Û­íÖvsmg2í¹LæÈã ”9·b)|êX½æÊ¥×¨¯W­…Om«—E—\¼ >v]~Áê5«®¼p lw®\¶ê¢ËW©­%K—/[¥Ží¸ìò¥ËV«]«×,Yse´µtÅE-‹N[¶vͲËT‘í«¯\u1-ÂQ;Ö¬¸4*{ÙškV.+µí5жgÀÎl^}°Ô[}P…e]õÁS|õ!P ªWò“¢Oùè“}²£ONôÉ>yÑ'?úDŸ"VdÊlX‘ +²aE6¬È†Ù°"VdÊlØ‘ ;²aG6ìȆÙ°#vdÃŽlØ‘ ;²áD6œÈ†Ùp"NdÉl8‘ '²áD6œÈ†Ùp#ndÃl¸‘ 7²áF6ÜȆÙp#^dËlx‘ /²áE6¼È†Ùð"^dËlø‘ ?²áG6üȆÙð#~dÃlø‘ ?²D6‚ÈFÙ"Ad#ˆl‘ ²D6‚ÈF!²Qˆl"…ÈF!²Qˆl"…ÈF!²QP6Úò“&áÇ<~´ð£üèâG?úø1Àh-Öòh-Öòh-Öòh-Öòh-ÖòhÍBkZ³Ðš…Ö,´f¡5 ­YhÍBkZ³ÑšÖl´f£5­ÙhÍFk6Z³ÑšÖ´æ 5­9hÍAkZsКƒÖ´æ 5­¹hÍEk.ZsÑš‹Ö\´æ¢5­¹hÍCkZóК‡Ö<´æ¡5­yhÍCkZóÑšÖ|´æ£5­ùhÍGk>ZóÑšÖ´ µ­h-@kZ ÐZ€Ö´ µZ+ µZ+ µZ+ µZ+ µZC–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰…,±%²ÄB–XÈ Yb!K,d‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–ØÈYb#Kld‰,±‘%6²ÄF–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰ƒ,q%²ÄA–8ÈYâ Kd‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–¸ÈYâ"K\d‰‹,q‘%.²ÄE–xÈYâ!K²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–øÈYâ#K|d‰,ñ‘%>²ÄG–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdI€, %²$@–È’Y KdIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%dIYR@–%…ˆ%íùILÂÏyòÙ"ŸmòÙ!Ÿ]òÙ#Ÿ}ò9 Ÿ‰Ý<±›'vóÄnžØÍ»yb7Oìæ‰Ý<±›'v-b×"v-b×"v-b×"v-b×"v-b×"vmb×&vmb×&vmb×&vmb×&vmb×&vb×!vb×!vb×!vb×!vb×!v]b×%v]b×%v]b×%v]b×%v]b×%v=b×#v=b×#v=b×#v=b×#v=b×#v}b×'v}b×'v}b×'v}b×'v}b×'vb7 vb7 vb7 vb7 vb7 v ÄnØ-»b·@ìˆÝ±[ v Ä.áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^å ¯ò„Wy«<áUžð*Ox•'¼Ê^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Y„Wá•Exe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^Ù„W6á•Mxe^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^9„Wá•Cxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^¹„W.á•Kxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^y„Wá•Gxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^ù„W>á•Oxå^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáU@x^„WáÕþŸ”‡/µ”åq$&óá_ùÈ/•ùe2¿\æñ_Áò‘eò+Y>Jæ£e>FæWAž ó«Èǖɯ‘ù8ȯ…|<˯+“'B~½Ì'@~äÈo”ù¤ ó?•É“*È¡§†jC½Ò%9ôÆÐ ÈÈ'Ë|ŠÌ§Êü&ȧÉ|z¦ô¦Yž'—Éá«Y§T§Êxs®•«žÛZ9m×W¯U+±ð»p}4bå%K.\vÁå°9jå5«V,½|íŠË¢—¤¯Y¾âò5ËV.)³”ë¼hÉ…kö¿4=\Æqª%]¸Dk‡Qu*ç_ÔÇò¹$uWck›NC®tÌÊ?Ðø ÔŸ”á~Ê'“Ÿ T¯$~6رÔT]U=ÛÉ~ÕÞÁ˜1˜Í|5©ÿÒãËõ%ñ¥>€lò³Z. ”“?•»ÜÇ»#ÊäJÛ9”8åujIrë§|f°±0ÅS¸¯Rn¥™*‰Jç*7N´ÞŠO%uߦþ’ÉT#±RåÊçö©-^v¹yˆW®}ÅR¹¹€ž; Vj“—1ÐñaYa.g³«‚Ìû—~Αý¼Îåú33H}Ò´3“ðØ|¶’þ mIz.Oåúi°¾(¾ùX¨dZ#ðs“Ì*óãUâeWÒ¦ÁêÎŒOaêdÛÊVx»}ù>¼(±9Ž|}奰=Ž¥ûÕyªnaRí}Åu:ŠÞº)+¬oÔïHR×ÐÆøÊ:š|IÊSdžõ ¼Ž=–¯ú³“lwf06B Qu9¾?œ”ñÐÃHa]Ã[ê69.GÚp Ô#¼¥ÞºoŸ;p\8>‡@ÃG¯'ç«~ öÂ1y5œOåx.çzûÇ©ÔÁ¶ÃcÂñûôHòÝHhOXÏW°ãGdпÂýGA{ce«õžò§pŒ^ ǽŽ7 4<öøÜö‡ï^õca"s)#|òOäÜCà¼ðœÐ/Â~T2*I4Õ|¦bC%å9²ý’2å…mSc«¶é¹aß¿†¯i…ý5¾ Ç•öcØ&õ˜)Lã¡3ª ¯$Û¡Í#H9dz}<µCÙÿD¾SçP>©õ•ê'5öáX„ãØª|çp¨ƒbSøY±I}VlzyFgÓø Æ¢zÄ—͆߫Gz*‡ÛÇdt6“˜MÇdt6©ÇÊ×Î`ÿs6MÌ Ì&õx/´÷°ù†ŒÎ¦3³éÐgÊC±Á®›‰³)üî”LelzSf`6‰Œ™Má1™ ²ˆ^_ÓØé‚ïÕµËh°§|¶ê7Êæl:630›Ô#V›è#V›N€þªØtRÆÌ¦“àüpœ¼ ²É˘Ù>F †Lé:I=Z í<$30›Ô£r¥9èÅ&õ¸œ>§l:¶_ çA6mälz]fp6…û)›T ¼>ƒlR¸b“zÔËàãlõHš²É‚>>ô”R?e°*­NÉ÷Ñÿ‚Zæ8¾_m—;ï/÷½IÅÏ+g×Tr©\»+µkl§¡ürõávxªv=+íWS¹Iíòþái¨õ¨VT«¼jÙçÉ·åÎ7ù™éørãfâEµÛ?\Ê5ùAµìVOµöKž’úKÒzñù°\ˆ2å–›yª67+-¿ZãUé|§’‰#IëSîvú Cÿ&nÂ\IƇ [ƒìŠ9[|,âm¤ªñ:±ƒùï̸׹±ƒ©;=ÞœAªQ‰‰ø®Då$ÂW¢ƒ8¬åA"7~LƒÑ ð¬„HÑ·¼Q;vÌ S@¼ëÙ7꞉“$QäÆËÄÙ¬òFÝØ®Aúyh¤­zñŽGe¢){h¡7ˆ‰A& ø7ñjT)q7dRÉ|:È¢bðÄÃõê ²ìI ½DÓvÕvuŸÌéÝJº¹’Y=÷ƒ N"üTk²J4’)KN9‚‰ÎÚ„?´¶W2•8´jT½b•”‡ñ Œ©ƒû%꺡ùs%ËŸJR-ÐV ƃ<Èr¾Z±S-—š­DáÒǪÏJL íb½Z^7ÈW®¦ìÌjÍMµ‹Ê”=Vɇ¡-†6çVk˜ %"õøÄ÷z3Éö«í²Ï”Êì¯ô{1.ÝþJë_iû+í‡Jë-à—^b|²ò’ŽŸÉþPë™´_«Ý?ÕªõðkO1~)ŽZyÕ²ŸÖO’úµøRk?­UV«\UÞPy™Ô.·W/»i•×»Òz¥åFÒú™¸W­ù5m¼ðñê|”¶Þ•ŽÓPû½\y¥¿6?DýµyøÛÌpA•[±>\³jÙ’5—.»l |ÑyÙ•—^°llµ¯^q­úöŽUË.¼RíèX½fɪ5ÑQk._©Î—;Ö\¹Zm­Zs套G'­"ŵ/“–Jõ{MX¿ðwй¢üçÿøûw+}á‘ö²£Îw¯XzÙ²k2¥W…¿”kÆÌܲ}Éû”Cî[ÜÇ8”Ëô8¦Ç3Èô¦'2=‰é$¦y¦S›©ÃÔeê1õ™L LOfz ÓS™¾‰éiLOg*¸uœaZÔõŒ Ó¢®S2šfÀÏ¢ñVý®úC›ê/Õ®ëJ)VïÕÛ£Æ]õßeÝ%Uþ¥üè¦ôófCý–ƒ*¸Pèç¯y¦¤K \UïEz»Ä°!”Wì/©GåO*N..$.]vÏ/êí¿p¯^¿óÔ÷ 7o*é5PŽêÕ  ¼) 3à{ÕoSAÏû+ œÅpü… jüUÿe2zûÃùÜOç*LSå²ò.î×{;lO€í9 Ê_OΆòæµã3exÆïS­µHµµ\ýx*w|¹ó‡Z^Òþ+·¿ÒzU»ß†Ú¿WâçðL¦‚)ç/Ÿçø|4«¨ëй°¡ÐU7öOgjâú´Œ®|^<Ó *Ε=ÅÛÙì{¥ŠK3`?Ÿ·æ+åõ+¬sAxÿÎæÊê§x£t.ÓYJ™=¥Qû`›¯xÿòú°þÌT¸>«õþ´Ç'Õj—Ÿ¶¼FŸ_ms-|¥àþ×:–{Ã`™¾†n—{_ÿ¾\ùô=ü]ƒårõâßówU”k?û{xíUgáwû/âæ¯Y]æfœ©>MVŸÚÌ™ZÑ[ÎJ³Lî¢ýIéégú{{Št/Œ®Ò}L÷H˜UûU!ƒ¯W­þ]ýùë3ø oúºnõÚí°sÔkµÕ+µé«´z…6}}vxõÞy ïÂÐW_«W[‡«tõºjõªêpê­äÔôUÓêÓ½Zú‚ ¾FZ½>Z½zE_­^ÿ|Yfà×<«W;_%óÕ2‡ ½Fæke¾Næëe¾Aæe¾Iæ¢Ì7˼Næ[d^/ó™o•ù6™7Ê|»ÌwÈ|§ÌwÉ|·Ì÷È|¯Ìá£Í2ß'óý2? óƒ2?$óÃ2o‘ù™•ù1™·Êü¸ÌOȼMæn™{dý°Oæí2ïy§ÌOʼKæ÷Èü^™ß'óûeþg™? óeÞ-ó¿Èü!™?,óGdþ¨Ì“ù_eÞ#óÇeþ„Ìÿ&ó'eþw™?%ó§eî—ù32Væÿùs2^æ/ÈüE™Ÿ’ùK2Yæ¯Èü´Ì_•ùk2]æðÆÞ7dþ¦Ìß’ùÛ2Gæÿ”ù¿d~Væÿ–ù»2OæïËü™(ódÞ+óeþ‰Ì?•ù9™&óÏeþ…ÌÏËüK™%óÿÈük™#óoeþ2‡kŠßÉü¿2ÿ^æ?ÈüG™_”ùÿd×’ùÏ2ÿEæ¿Êü·Li5øX†Ê²2þ³2þ³2þ³2þ³2þ³2þ³2þ³2þ³2þ³2þ³2þ³!7Âß†ÈøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏNYÆVÆVÆVÆöµ™ý¿jÎÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏ¾±ôû”¬Œÿì¤Ò„Îåá4ÎàáäÎÛá”ÎÖáD•ñŸ•ñŸ•ñŸ•ñŸ•ñŸ•ñŸ2ËøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏÊøÏ.–YÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVÆVƶ(³Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬Œÿ¬ŒÿýóÌGa™‡ÉrÚ¤/ué12RÆâé #åþ‘²ÏBÖò¡Òø•þÝþ™Ò”tˆìï¶Ð©e[ÆÉºwÈñ+û#Ú¾|¨Œ™qÒï:BÎÈqÌI_;ìñ’„+ÖÃ$cÆÈ±8TŽÑhyÜ!¯,ÅéÉ.iç0ÙÇÒ7“ct˜dÁX9^‡J¾tIŒ’±p˜ô‘œdÈ(鿇ÊöŒ”~Ñ&c¸C¶¿CúÊé“c$+“cÙ%Ùu˜Î(ùj§,ÿ9¾mrœGJFŒ•ñ¨´s¨äÛXk×”˜6Rök§äרpÌŸ.÷¡Ò¿s!O¤Ceœç¤"ûéYNNöùXÉ‹1a?HŸ#;yŒŒñ1r|ÇÊX%c|¤dd—Œ±‘'•úºM2p¬Œ¥±²žceŸ·Ë¸ë’œÊI¾Œø]‰»c$óÚ$OG˲Gʱh“q:Fòº]öÇÙ®9îm²ïFKÿ%ë1FŽÕsc$GFKöwHætɘ-™7Z²q¤—¶°åœ0Zöç(ÙÏ£å|Ð!}2'Ù7ZŽËhÉ„vYÞèpÝ ýx”Œ©6«£%·F¾^c#ë>ê7¥ù¢ ø×.y2JúO§‡QÒ—Ûå2JöÛ(Ù]²þ£düŽ’q?J²¤#<_òh”ì£Q²-£d›GJ掔ìí’>Ú&ç‘ÒŸ:e¿æä<0Ròpä–R†sÅHcm’#eL”m)ûn¤äÕHY‡NÙG#C›rl»dLtÉy°Kr±Kò³KúMW8þÒç»v•|«K¶½K¶·KŽk§ìƒvy~—äA›ds—ô“®ðY°œ³º$ûsç–˜6B¶o„œ{FÈö·ÉùgÄKÌ!çÎv÷#dÌŽ}×)Çs„dÚˆ5 r¬rrÎ!™Ý&ù9"‹Þ’_vʹ¦CÆ~NÎ}2†:å¼Ô)ç´9owʱë”ó]NúC§ôõN9÷wÊztÊù¿SòµSÖ·SÚí”mèóJ§¤öSKÇ„ó}’»ré”ýÐ!ç¾NÙ¾Žð{YŽ/AìÉ:wȶu„ë9ŸtÈvµË²:$×:dltÈ~j—ñÒ.瘶W•Êl Ù#DzCŽU‡,³MöW‡<7'ëÑ!Ç·cli Ð!çÁvÙ¦v9‡·Ëñmï‡,9Û.ã¬M~ß&ý«MÆj›<ïP9÷•í-ǾKÆÏh¹VèÜTª×È Kñ>B®ÆÊõÈXYïÃþ—~5N2½KÎY²Ÿ;Ãõ†Œ¯62v³r{¬ì¿QÒÏ»äv›,w¬Œ«±!#ä<1FŽ[NÎcB—ñŸ“10Júåh9N£å˜åd<çäze”äó(Ù'm²Ž#åœÜ¹|XÖw¤ô‹¶r>ê’õëúRiŽ ®1ºÂ5žì¿vé—í!—ä9]’“]2GȘéLè !ÛÕ¾©äsr-6âÝ¥5Q›ô“NY^§ìƒNÙÖNÉ’N¹~è”ó}‡Œ‹¹>ìXTZ¯u¼Æ&ì9tH^¶KN´Ë>h{²Ävy~{x_LÎu9ÉœvYïöÓJcÜ.ÏiÏ‘ìk“¶srÙ.ý­]Ž}NúUÛ38í¿6Êdô{xü;š3†Ïü¼Á¶ù9åŽÍ”9¶\ËÕy sÊÕ'SæøÁÚ5Xٕب>öý`ö:·\y¦öómn——ÃË/W^^¹sJƒíÈ:w°2²Wn¼ÊW®?Lõ1Õ‹ö%/s wÈÒ4Ø>z -g :WR^¥cÄËÈð}’±¨ƒÅZ¹ócJ¦Ì6ÕìΡßó1àZ.òZN%>0P*Ù?”sèýºÁž™ ôÿ~ çaƒk*‹–9PY¼ÜÎì;~n9›ü~\¹s*=¶\?•Û_®ÌêY©Ýrý:X9ƒa%ý>˜Ÿ Ö®rm7ùb¥ýY‰¿%‰—JꙦ-Iü£¿,>+±W.n*‰¥JǬҸÙÿ¹˜)Ý”nåæÎ™ÒßöŠyK~ßõàßîs ¯zûÒþO‹…ë·ô¶§sÞñ•Ç>ÿ­Å”±7üõµ¯}¿X°éž¿LýþSbÎç.é;óýŸ³o›¶Éz‹˜69û›K_ÿc±°ï;§ýbûOÄìï-þÙs ó6o}ÕâX1ýÙÂ5G·˜{ÔßZxíubÁëßö¦³{­˜|~gï^³_~í·÷œ»NÌþ¿qs>d¯3¿Øÿ?7}ò_ż?úÁ«¯þg±`ÌË_}ô‹wˆ¹¯Yvä•Msþò•Ë~µj‹˜~ƃÒâóbúíï|¶´/f·½î’gN8DÌ N?¢8e–˜~MX±ÄüNþÑÿ{ã'ÅÔ9û”1_¾WLý‡¿xò[ß.fÿãšKpæÙbÖö“þøž•ï³G|ô#OÞrš˜9ß~ËKqŒ˜ël~éÝß#Î k1gƒ8c¸î¼Ùk…¬ä-¿›Ù.fœûAY³c„ø†Ÿáä½B<ûëŸ?ü©cÄÌ˯hÿ·×âŒ/ßÓsÏ‘SvÇ#Ï^tŽ˜þóÓFœ÷·Ÿ‹ûÌWžêqÄÌÍ—O•]!μÿö»>2áwbögÆŸwôÖo‰Ù£½°ÇĬiÞëþu¦XðÝãå™ç‹),üvþ?Þ)¬ü¯}ö¬ó„øúQ¿\¶æD1ûK¯û­ÿóßbúÌçn¸òþ61պ꫹îï‰y“~ú²Gïü¶˜¶x³âÌ·½ëŸæ/¶ÄŒ—¾ù““Þ.æ¯9ñu¿¿`ž˜úŠß~»ýÿ3 ÿØ9ë4GöÇO.|cשBœyÓ/ï›·˜ù¾wŒ?éŒSÅ\û„“o .3/™õð¯þô!öwóabÊé“ÏÛ~Ò‹bÖÿsîè_MÓ>{ÖÛþã燉Yû¶çŽœy§˜ùËOŸð›ßRÌØ÷·=ß?âl1ãŒCûÐݧÈvý™'~#ÄüžO¼xþÿI,øÖ³cÿðd17Û¿ù©?ÿ˜ó«iÿ>nÇ 1#ôÂs¿/f/9üÓÿR|™8£o×…·~êïbꇿó¬7þRÌ?Ÿüé—»}·˜þÕòŽi£ÄÙo ûï〈ovŸ(È~ýãüÿ2xDÌȇqRÔŽ…:áSÿˆS÷7{†˜yÊo^²úUíbÖ'Ûn~Íæ¥=ºçƒÁïÅ\èß™¡Ø?ÓÖMúØ)…brÇÿ-]U,œððÒ‹GüTÌ?ã³7yÇ=-f½ñßÞóå%_Óe¥VÌïSÖløáGOz©˜ ã=ç[wʳß{ÔÈ£6‰Ù+¾³å‰‹> ¦íæ›Ä™·w¾úï§_&fÊÑùû#¯3Ãa;½˜3ás§ñ7_“ï?_zôX±âdο~í…CÚïÓ9úßßuþÄì+~Ö>â£3öïÜù×÷‹ÙOïúÕøïÓÇ.”%<%¦þiýì¿!#æí¡·È*‹éG¿L|çð1b~æÄ0‚ÅÔé_v~õô|1ÿ¬Û¶Mÿ¿qbZ8Šm7‹i×ýøûþìN‡ã³}o„˜™ö€˜µíÏKïÿé1cÉ~GsFö½úKÇŠŠ'ßÿÃÖ¹ËzÄŒ±ÇM»ð­Ï‰ÙÇ}å×?8[Ìzä}wüþÞ‰BüöÉ×ß6þ£â¬þOm?ï£Äiwgþüwk~ôàÕbòç~ïkGˆ9½fô… ¯?%ì1ó«ç¿eë5“ÅÂðë?*¦…Ñ=z”˜÷‘yO_È1Sù øëô¿¹ë³ÏþFÌýà}ï™òõ>1í¯•-œ!æ-l˾£WŠÙáÑ—îÓ>š #BÌ«õ‘o‹©ÿ¼vñÇ»^g^ûdØ1cþáy²^Ÿ pŠ˜yÎ×þÃêÛ%fŸ:ÆÉbæÿ{ÛãvO§M_yãë3·‰92è—žüF1û%û;JLýÚ¡ŸŸ0î›bŽôÊ-_9C, k·è?Å4ˆ›i3ÿµ÷ˆ~U×s×þbÎz–ˆ©¯žý_m[#Î?ŸyÒ¡ÇŠ…a/¿åE1ùgoÿÔÕÅ•bþüý‹Yg… þo1gÊ•¿þø'%÷½çñ[—ͳÏ?AGrn?–sbºõÌ-íâM÷ù—}³çˆ¹Þ0ã½7|]LîMþùaoC.¦ÊÁyó½ç qô—>°è=Oˆ©wî\q¦¬Õêo^!΀yaþìcnxå÷'‹™á¿'}Iœ)í­û¬8+¿b׿¿éfqæŽÏ¾ÿ° ³çÿüsܸ[Ìüñ?½~ûÇÄì+Ç„„3€ ³Ž|å—}õ§baÆßüŠ˜bÿ;ļžr”»Oœ1êõþÃK?!&Ï AðG1- ÏìóŸÙ½í«·Ûbî‚G­£_6Y̽qá«Å™Û¿&¦H^õÕ61å‚W½âÁ£ÅÜ·¶33?N̻拌;æ¿Äá·SŽóÝ—?¹û§ˆÉóþô–Ëß+æAÌzyøÅbÚ[¾tNÏ/¾)&OÚ? bà'›ÄàO{î5Ÿú†Xðè;ö]}üÇÅŒp{Ý£b.Ô{꽸ã±KÄ‚ãŠ]$üè”þàð‚˜¾×W‹é?Ù6!€CSÃ(q»˜óÑ·½ð™U‡‹»+óáK׋©Ëf,øâØÅÜë?ûÚ›.̈…GoýæÿýÇÇÅÙá4üêbÊo¾°·÷±ÓÅä°5Ý,N¿bÏÄ_F̃~™zÍq«Ä¼p¶?m‰8«g¿#ˆÙ'=ö¿øÑ©bÚÒý)&_þýàÛ?ÓûQ1b´sîëö²Xø‰—½äOÿr¼œ'ï>ùÃ/ùª˜~Çþ Wœ<ã5ÿóþ-ãŬSWïxð™S¬¿ÉÈÛ(f„ÓµcÊÄkþpùbÖØÿúÐÏw¥˜|ç¼i¿üu§ûÝÐs!~f¼äéï|þš§Ä‚µw?°â;±ï™\wÒåfÎÌú»¿¬3NüÀ†õ¿DL¹ôõ{¿~U·˜ñ0óêý«XðÜ{üþù‰7œõîC·ˆ©«çüèçþKÌ —CŸÚ.æ>r\X²8³4Pbòû'‰9Eœ®8'!íw¼TÆÓeO}PL ñ{ÂgÄ<¹ˆ¡#¦?º ΀ùÿÌsBß+&Ã:jÚÆ›îýÞÝŸs­ý§Ý÷Ÿ¯štûbq&øÑ¼ãßù¾çÞ»P̧)ÿãâŒ|KzÊQBÀ<¢~#¾àô?È•€ä ðû¬þý ‰ˆçÓBª­ú_1¶ÕoÓKÓü!blOÇO†ãÕoÒgÂñÊŽ:Nm«ògÃqü7ósàxU_õý ø^µg6³3 Tý-Ū>  áüY ª¾sØy Ô~(_õÏ<ø~Šªôß<دúgÛž å¨~QýªÊSýÃûY?µOÕÿ V?Þ.eGÀqªß”=õ½ª/WÕo?U/媲ö.„ñSõ™ ß«q™Åú)òCæ¼5>ʾú^õûÖÓØ¸Íbã7™m«ãT}çéþZúí{ôܨܽ“Á®Û+Ù—¤Ì¡äÁîÿTò9m=+=¯’þªä~IÒò»—¤¬¡úF¹û)¦:×Ãwª™«Q×zµ·ÒØmDß vŸ±‘cW­:Ô»+»Jî£×¸­Úß…ßíÿë…KÕ‡‹*úË!úìÉ”ø1C=g(ç %™ÊŠj×+IÓØèÜj´e¸§¡öAµú®\9µ›4ínTÜ 9[yXäLü·òy ß+ÇG~/‹3Ð6·3X9åì´=йµi ¶™Ú8P=ËÕg°:Ö¯•WɾÁÊ©t¼*Ó4~ål—««©Ž¦¹ÔÔ_寰\]+õ‘rešêXîœ$ñTÎßLã\nß`v‹¥Áü…§Jý·\ߘâ´ì[yXäÌàóM•0«RŸ,¶Ë•G·+ë+ËÄJÊ©„£Iû` }•ðªœýrå$M¦9©’ò“øÅ`cZéw•Î=•ôI¥~Uiyê8“Wâãí¯4–Msæ`6M©R–˜Ê0þ±hÃYÛÊÍGû›{OÝ^]+M•¾×δßd×XÎÞÊŽ«4 µœjÙ7•WíqJ]þÞµÚöÊgÿrþ^iªö¸–µ³·Âã ïålÖÄÛWÎ_’öCÒñ,[^•Ê©W.õmt=kÍ¿Z—ÓèTéü\¯~òü¼·¶å×;%åæPçç¤õ¨W:ØÛQ±?§Ü?T»ÕN5´Wú›¥7‚õ†Mõ&Qxæ o´ToUÜû¼9säÿgï= ªÚµFáMïUD¤‚EÅ’l@°Ñ‹¢‚X@±£¢‚½‚½ bAVš]é9‚"V{·³×ÌÖÑsνß}ÿ÷Æ?î##;+É̬IV²22ûtöHÊ•˜Ôc&Û³(õ )õ{w.Ïí õÀ“(Ń;¨³çÍŸå_S€7¨³GOŠW™åA”õàIéÓ„úÒ,O¥Ôƒ¨”£øPϯÒ,üU!ä)ð0KÛeydøãey\ýÎjG˜……÷ ÊQO¬ß¡a \¶ÇR*wŠåÜÃñ'´”ZNàêÎàeÏÕ!îÞY¸šP¾/• À£t‚ÇZ‡UzÅò”ò´¥‡ÒMõôç·wàP½§|¥|„˜+Ê£¥3ž>Q»,ysU;·ËU€ŸÔs°:IJå H¿ïÜ.Ûnù,¹qBšÒEíJêSý¤žt©~QºXzËíðØ{)ÿ(¿©ÇÝQ,¸,Ϲý`ßyDñ¥ò¡ôˆ@}ʳ°Îü¢ý•}N=@SþS»ïp!¦öKé¡|ø zÇöüLõ_ŠÅ*/ª´Ÿ¢z\ß>½¯GêS__ßwæwxXg>ê g®k íR½ä°ðcáõ§~Åoß:Ãðáwü¤øªu¶+Á¸AËÑ~@¾3\Ú¿pû\¶j ÕŸ êA.+Yò£íÀ=1»ùÒ¹¿Ø íß” MûmhOÅ/Ê÷n€…óþ7r vIÇ/I(GéméÌÇŸË¡ÕÎv!èh9jO´¢üô÷PN¶³ý³ß›žµ©Ühší×_µ³œå=ë¤çºhšm¯^€'Ø·`ÞBéíÅê(]",9R=¥||:ù“ž±é§žÇ£‚øÕƒÎtàR{}ÆŠÙó-:>²û/Ö¸ÊîúLéeÑEõ@ ?0¤zCõ­Ï‚þîgä«?uà9µ¯ÞT.,»gõó»¤r¥öÓ¿sù?y´gé¡ ÿfÏ)Þt<7aá!ÆêX|æw¶Áý4teõ»‚˜ê.Ë~(>´Ÿ¢zEË÷eÑAñaÃ5fñÊ—òÊŸêÍçt¶#A¿WÛ™.®vç~Š«È²S/¸ÊíE0?¤zJç'ªŸ”ol»keÑEñcÙç§ïUâû—h ñ«üžÃ÷áK|óýãòfçÂDâw9|_ÁıP÷0¦I⫘ø%_Ì/9|´Äß0ßO0ñKêñF QâÓšøn~ÌaüÖò¨çûù%8‹8Œ[â¯û ‡ñ³KüÔª“vhà0>qáÿã×WÒB¾bá™Öæ…8^xÇ´E|%Ÿ¾ÂÄwC¯H<‡ñ›KÊ'røþ‰iá­C˜Ã÷Lüc óÊ ^m¥pø¾…‰¿e¡L^ >Ÿ¿rÿÉ<šÄyõø>€ {xu‰\âc<Ã÷ý˹×.į3ñÍJøH|áò}8_ã0þŽ €ßÄÏ4ñßMüû>ãÁ$~˜ežóý8“²÷yt¥rø¾|…C¡Mâ“×`|¾ÙËþl_ü-ðˆÐBüÙZ-$Ÿ¿§9Œ_d^/Å÷kLäeÃ+G|3›þä¹á‡¤yô““xÄ6ñé]Ía|?ÐÙ¾Of’'ôdÔ8ÞäpĈÞ,¹Âë!øá~ð5¨œ &~ЉíÏPöÈŒü¯ãáFüÊ_å¥áæ>â'’øŽæëñ?M|µ½’‰tâ{›øà&~»‰sâ?›øQ/ýÙ&_ß= ÍçŒüˆOdÑïÌ3a/È+>ÿÎ!ÀkS°ŸF.|ÿáŒ~ ‹3òfä!FüÚÿà=»ÂØ%ñ‹ÍoÈÓ‡xúÁ÷1M|s¯ãÉ”gÏÄ·5_®Ä>ñ5N|„·Âÿ,ãËšÀ"¾™Uñ!MäOêûrÿÕÄw>±]7Ð7‚»9ðkÐIðÄÈ•øÆ&¾‡ùúGüÉŸÝÄ´.Ð0lo(Ø)ñýí̃AFÁlƲðzÐ9âcœøØž<'¾©íòÛ#~âß2ts@—„HÄÓEa.©óßðÿ~àÐu:Xâ*îð4ü½ƒ+S.=:èX9WÔñe„VºW–¤¤Gsà¹"¿˜§àýU’äÅsÅHqÇW\EHËò‹õáÊ|aš&‘áG®ÜØä®ËëÆq¥Xó9Ùåu¼œ\Ù®ü?\y€'Ço^š+Ašyñó>[¨'ÇGsWêK¾ò€?¥GêK§óp¥ ï§‚yº ÿqO®$àAù@×Oh}išðå ž,à¥x‰Cy9 —¶'|—®ã3D°žHóé¼—¾)¾òô½à+Ry~ìòâT^ÀZŽÝžÈ…ÊY&™O Wð”¥1mê+€üE)Ÿ@n2Oä¯HåO¢9~Ðö(^òÀWªR€×*B;‚úÀ?€+ú"p%!_ äCé¥ò“ü¤I(¾ÊY‘æS<¨üi}*Wà—"Õ ø¦DëÓvŠ7S{ öHù¬r¦zOñ¡vDåNõDð¤ö(z$ÏnøDñ¥ò§|ð‡eTž”¯TŽ´¼€ïÀÀGðäS»¢ü úEóž(´+À‹¶ xP¸TŸe©Ðþ‚ö+еo¶ž€<(Ÿ¨ÞQ9+C9A}ÊÀKžÕÏ)]´]Êw%ÀG–ö´Ÿ¢|¤pXý4•#å7å›@>ÔÞ©¾@Lõê í¨ÞÓõU Ÿ¶OûK?€ïT¯i9Eè¤ZÒOåCížê· «]ÊGvOõGä+Åê_d ¨GÇALåLõ“ö€?ôc¸ö'@§$KïèøGõV‚—Ž_´ÿ£z(iqª,ü©‰ÓñøDù(ÍÒCþ ò´_¥ü£ã5Ät\¤xÈÒñ‘Žƒt\û§ý‰ }x. øÑñ†öƒ}€´ÕS—$Ô—gͨÆKª_€/]¡ö®À¢‡Úåmê -Oé¢ã)µ3 ÚÏRü€>ªwT/Ùú+DíêÑ~Tè§öHåEûÁü‡ÅG*O)ÐWA¿ú!IÇJÐ)Bûhò]žâOõŸö”´ ü½ð‹5/¡ý Å_ø¡@Ç à‹"å_ Ÿö{t”¦t|:¢|Ä´8ToéüŠÎ)¾>MS}¦vBû{ª/2@77é¼UÚ¥ü—eɋʑŽWŽ8ðY0^Pû…ç´ß¤ôÓy •å7¥Ÿö#btžNõä+Jñ`Í©>ˆÐñ•e·ÔîÙótÚ¯H°ìWÐoS½£ý/¥›ÎXóoÊ:>æ¥Ào1j—T/éü‰ÎóYýå;Q<©ý Æe*/†_œŸçŒÈ=jäŽ;²NÅå0w±‘µ¹!ÈÝtd=‚¬å‘»æÈzyï'w§‘;øÈ} Äs–”#wl0k[ü;âHyr¹«ŒÜoFvæÉÝkĹŸŽàBîé#w£‘5 rßÛLh›ÜWçÅaîœÓã0÷Ê‘»pø÷ë‘ûÀø÷ñ ‡ùëäž"rÇYO$÷î ‚¶4¡Îthc´ãÏÉ]r]nr ³–Á¿£Ü“Gîr›ü#÷¶µr_ Yî0&BÐ^¾Í.dÜ+GvGȹÜwGî¿ë ü1„fm³n©¸“ÐÊȉ/I?~‘²•ÐY£›0‰\@䣾@‹6ð…¬ ]Ãж-È•ÈÉÊc€Ó—YäÓHòÉu}@æDžM l²Æç¯ àÓè$åȈä r?%YÛ"kØäÞDY¡[x¯ÿ¥€Æm@“9ðßx5`­€g€ûÀï.àKî`À¬oñïˆ ågƒü:ø7ÍY;‰Î¸\]À›Ø!Y …rºPVxNøDôe àÜÒË€dš¬Fþð•è4Ù½!z¾da 2X <$ëtäžB²6íe lâqÜáHîë!w.ö~¹ßä0vKÚ ¶áËat˜Ü{ùde |S…¼žäÚè&m_!¼úoø?pè:ݾ ~‚{í 3.†i3é´&&ÎlTq·1µ¸›2™ø³ñÆ=r—Io=ÇÄQ\&^»”‰£C˜x=ÔËÚÃß¹âFÌbÒ»ß3ñvf‚À=è ñw&ÞìÆÄ±Ð~Ú9¯ÔÉL:ü' gâ3@Ç¡j&zè d✙Ì<‘¦÷Ô2ñÀïN 3YĤ¯vaèÜ9ð¿ÄäßÚiÃo'ðÌÒgâKC™ò‘]îF&¾ÉÄû ˜ø¦'‚ÙHåFç^1ñÅj&ÿòpÞ¥ùLœSÅg÷àu[³;Ÿž4a¦ÞõÛ ý[¼@ ŸÝ?Àkàµ>ø]ÂÄû¡ýpEàk:¤ï#ÌÆ1wg/>mþÇ‚ärÊá0ñÞ&Žñ8 ÷=TßXQ&> úò9xEjC ø„òǽ _‡A¢™ VîÐË€ß)Ðïƒ.À'Àsã¼’»ô1ä´³è8{ïHЃp.¤÷0ñ&Š'ðé(зôa;”‹„z{€Î=Àï£[™x Ô§v¸è‰ò‚4à±âÐ×hC&Þi°§Ð>Õƒ8æÃî:ªÐÞZO¬ozöBýDH|vBûq¿è€?înàk2Àß ù1 × oI —}àÄë_ÚH€¿ÒÇ€þƒ@Ï.Zò—Õ2ñvÀÈsോ¸‡â€_€ßfÈ=t^o„ò‘šOí ê­øû>ªá@OÄ{¡ß\íD¨]…~; ø½ ä|ì-Ú9õ©¼“À>"2™øÀÝx¾l‚zÑÀ¿}/ú‘Øk@Ô‹„òk©=p€/NIúŸ3ñ.àS4¤£ÿзHàCðí äGƒ¾lÎìÌÇ­Po—‰§À^ÊâÔ‹„ô–8&Þ ü ‡öv?z¿@Î;@¿âC@O"ððkÀ¢ãà¹øõ÷ŒaâÃÐßì:©ýìe>læžÉ†|è¯ößeâmàà½øüZ ù›àùÚ@¿Ec g3È!øKûKèW·Aûë€_ë€O›>jGQÀ‡m ·TŸ÷]‡™~¸Ç@_˜îêg?— t¾Å3Fq×?÷Þ1/ô*èØ rÞx¬ƒüíÐÎzhç4_€?´_8uè¢üyE=ÁPo/Œ£tÜ¡öýV4ô÷´?HáB{™PèÙøEƒï» å`\‹[ÏWóÅ!qô¿ñãÿÆÿó˜Cß‹¼3ÿöôfÖOݘJ®³^è9žy˜Ì%9\;3&= Êûˆ2óp°Wçf¾î²‰)7‰ù@˜ë˜ÉäOͬ{: ežO]È”_°‘CÛ™v€I;X3å¦A»ÐîÜkÌú£Ç5¦œïUŽûrfÖÿ“vòfÖq§=³a]ÔÖ1ç:2pý ÿvbÀ¹ŽÅLý™;™˜ò‰æ{ôdbŸï <ÀËá³¾:µ è8ÞjÌ:²ÿ¦=ÿÍÌz«Ûl&Mép+eêS<)\J‡s³ž;ù† ˜ç´Üô} \Ú.•—ÕE&=øêóð:ÂäϬfž‡€Ühý9o:&jƒ\•Ï8ÀsÒ²Îpfx1å)_ÙñLÐ ŠÕ¿€ß.Õ'*/—ÞLþ”uLy*‡yyÌsW 7Æ«ï™|*7ÀÛð¤r˜t΄y/´kÏaÒ´¾WWà#´ëþ±³¼)_(~®ßÞ¬ýÌs GPî‡êååÅÓ ìb,Ø µ“™À/›3í’ÚåKð¦<-Gó½e™ôôÛé¤i'ØšJù üó{ž vçxMŸt>êÏþŒyt^šï¾³s=Wà‡'”cëåŒþ ³a>OåKñ¥|s¹Ñz”>‡ÐãDhÒ¡0v|©¼AÞ´Ÿ£ü™TÝÙ.h¿HõÀæÍÔ.i=Jo`R~yÁ84#‡%7€C퇎C~ @Ô§íS~z¸w¶‡9†åKé¥vDõòŸê1í¨Þ/;¤ü¤ý5Å›ÒKñ› ý‡ ÐGÇmZ~Jó|ĮПѻiÜ Þt Û ÊM‚ô$È÷‡x2Ô›±#”‡/‹¹.ûCLÇÿ)ÛB=WH{q:ÃõÑ?¤mž7Ô[¤Ý>ÅÓ•Û¹ü4¼©ï Ï©¼gÇ1ñt€ãË Æ¥Ýù¹7¤ íõ}(=µðé/Þ¶†8žÃî׋ۙÊW?¯Îx{3õþ·ç‘ÿÿÿÿ)æüü~,xºñÂ0^ ‹ødBHö?Kyá:ä‘=K23${þkÃ8üŸ‡Ù¿%I²8Bö7ð‚3ÀÊà…g¼`Á '8ÌY“³×J¾3ðƒx/p9üó0|˜ä¬éç‡q:ío‘ýXøœÃìç^€ôxÀq*¤Wr˜3„Ži3ð% dЊ€ÿdA'‘.s˜o4Ò1È 6œ9"Lð&ûñd¯L.¬™ÿä †ÉBéýÈB^2ð‘ð‡ÃìÕ‡:d¡Éª]S€ÇåÀ+ƒìß’oàì˜<' bd³‹ìi{@»äÿ8CÎÃLå0߇oRÈþ>ôþüýâM€ÃtxF¦¼&rl‡ùžƒì[“=à=¼PÅ d*è :á|›p‚á; H¬‚¶&/Éwy@+ÙY )@ÿ¨·dBv æ¾C Àƒó&œSGИÃÈŒâmù#€CdÏä“s4üvMPn&üÏ’=y¢{äû‹›âJ¾§!:EÏÞݯ%páYÄd„_t;Ùí“ÿ„÷DW'oú“!=~ò]Êà#´µ…9Ä—ù~|ÓPÆa¾ i"¯±ÐöR€IÚŸí@™aÀÛ0À•|gDôm-“Ï?Fê\ÜNnÔ xÏ,à)áÿS^HÚ‰ý;@ÛÄÞßA zFt{/‡Ñåàÿth—èójhÇøEp&zEz¹æ»ÒùF‰ØÑQþ.óÃÿûós<ºÁa¾u#ú‘Æ °Ç?ÓJôîsœåë6ÙP&}ùfå6‡o{Bä[¢B8/Gô|kGìš9{'DÆòœœ $ýr˜ó…¤?âŸÕ#ç㈎‘þà¯ÿ ßC=aÎÛqpøß² UÁ™@_h£‰!‰c<#÷6ñÆSþUO =üsz ¼PÌáŸåiäœ)é7yc)9ÿËo£ž÷_ŠˆÝÖÁU^…:dgåU‡3Œkà›'ÒG\bêX(ƒ9£È?3ìíDÁ÷LäLks>–Ø.™3‡cAD¼¾Xh*sîô¥üóäL0ù¶k/.æð¿câŸÓäá&Dø•Êœ$ßþ ™ßˆ “M 7þ˜'t‹Ð ¼!z° ðçÑÈ?Læ"yƒlÎo‡±×‘79'IÎ’sŒäÜ!¿ÒŸned"Ô9Ë(D¾; Ù’3¸¼>SÈŒÁ‘¯;ä¶85i«„Åy¸ñôŒþ–Œ‘äœìk9 IÆ^>VŒŒøã)'a !rŽ4d@äÏð‚ð˜ž×Ãù:K¾##ú~—æÍgøg.m!gOù<#ßÚ‘~»™Ãœ?ÀÌUÈÙn~\zI6­+8L_ÎË:ÉaΕ7½d³¿ˆ©ËÿÎðd3èGH?|tOìŠèŠ+è–3×"ö¥Îð€Ïs²öNæ¼¹•ù®u!ØÙ^ü…Ü5æÍ=„$ÜùcA=èéx³Urî•?®}y“³Ûj þ\g7ÐAÆ<2~Üç0çxM¼ùt3¾ÝÜùc<9/|h%ºDx/ ¼‘}"gcÉ7~¼99§Ë×_}Fæüy`)è£Ȓ̬É9×.@‘¥6àþt“ÈÀ#ãÖÐ'%€MÆØ' GÂs2ö¾`Êp>’Ê/dô‹?O fž 2ôñçÄ\ÉÒ§½8¤é/â ÁÈ?ßöBtƒÌŸÉü‰Ìïx}ñ tŒÃï…‰_‚sLy>µŒžñõ‘À&gÉÃ]áó„è2蔇±Ï:¦ßÎ=™2ü¹[+ƒ#LúÑEtÌ_’=#}·P4Ø™[¾!‹‘!ÿ>‚#Ø%ùn–lp“öÊ@þ|¾p˜¾Žô…) DþdÎÈìQ?búƒ™õ%fÙ‹ÃÕƒõH}XÇH\](OÓ46€˜Ö?¸ìòú>­ÇjLj–‡çÇÚ×¥åM²ê³ÛÐÅ¢WŸUžßû7ð XüÐgáIùׇâ íÿ‰¬vÇ7vyÊ7v=J'僴oÀ‚«Ç‚«÷7ð ~S­´C6]TnÊ?ÈïÃΧøP<à¹@.,½1 zÀ‚kü íéÑzëÑç,ø´œå+fëõÏÇ~ÎÆŸâ#À¶ÏÒg\¨þ°äCåJá ôàäDñ…4õDí™ò™Â£zJé¦ðý;Ÿ%w¶ý‰–ütXüÑeñ–”£ð~_*=‚v(YøêR=¥i€kDåCñ ð ­Ã‚§Có)½´Yå1KÿôÒ˜Í|JGݽYôPøýÙò¥ügÙ· OÊ'6žl=c·GñïÍâ Å›­ß¬|úœòÙE/¶Q¸+Íî?MXz#à [/!ŸÎû XôÑôŸú?€oÌ*OÛ1¢ü¡t²ôV0.C¾‹ÿ‚þšÒGùDéfÛk\aõÃtáçs–½S¸ìñ‡¥Ï8¿§Yz©Ïâ»_Ôeá-'Ä´?§íýÉþYú/Ðw‚ù'«Ý?Ù=íh;,~ äü»`—ô¿”,{û“=±Ÿ³ìš=ÎB=ÎÏu:ò¾*1ýß1wÈëXVäõDYÞ™.ÂzÖ1éP†ÝVDzìöé=€+Ô¡¼§3þBœßÓ,‚ɦÿwÏØ°:ÒÕ‘þŽ8üªÍŽ4 q~O;ûÙ¯Ò¿â'[Ž"ò:†Žù¿¨+Â*×W¡ßÀý¯ÿŠG˳a²åÀnƒM#[ÏØòfÕa?ú‹ò¿jSˆókZٺϖSÇö§Ÿ¿³É_Ùǯô…ÍÏ_éÛvØyìÿÛý•>ü•Mý-lûSãð MŸ‹t|ÆÂ§£ž ÿ Æoêþ®Oû•=±íœÍ§_ñõwö/Ä‚ÿWú"Ú¡ýßÁcãÔ±êHÏßéß_ÙE‡ÿ¢Þ¾+ôfd¥¥#Ƭ@öàû±BVÀ äCS²CÞXÈ<Ž|GBöH†BÆ d]œú¡ad‡@“ý²ŸBÖ乬`Á‚e‡0†Ãìùw Ö¬0–È÷4dŸtB‡@öQlX|·`ì¹½4²êÄ äÛd‹èÖ…?ù‰ÿoüßø¿ñ¿s9ÿÿÿû1çÏó “ùEÇùåï‚Èßä±çº»<ÇüÞ_áòw°5g¯tœ[ÑðWmüU[lüŽ'¿{öOhcóŠæ³ièHǯèú§Â—äüµ¬ÄYáWïÿ¤Þït-³ŽºEò©>ÿ•nþJ6ÿDÿ´lG9ý꽌æSZÿJï~gK¿’Ï?‘!›ßÿTþi”€ðOlñïÞ7E8ß_ÙÌ_áúOõüŸÊûŸðôïÊýjÍ…:ös¤ Õç_ýÄYi1ˆÉ{žb‡çä}Pþ‹tÈ#ÿÉû¢ ¤% lÇ|Z8q€òëþ œ4;”!ïª`|%;àH`wûŒþK±àÜÈû§Z‡2"‹wH‹C] ƒ¼ÃíHåuu!VêP—àÕ¿Ca®„Ïò€Í—šþêGñ쨣ôGÛîîÂùõOœóó]ž¦;Ö%ïÖºÊÓwt HSäüäa7¨Ó‘ïOi¿+§3ï…9þ‰ÌžÁÎL§ù)GuNœóÓ‡$‘ÄT—•¡]ªËä?ÕeúŸê²§³.wãü”+]‡‚Xbòœ®EÐ@ÒZœÎº¬Åé¬Ët]…ê]¿Ðá0ë=8?×':êr7Ng]&åúlc€oÌé¬Ë}9uYøB׈ÌÁ'(í¡£.“ç#9uY‹ÓY—58uYŽó³/ãü\[’ØòœÎº,øÐõ"a€Ku™®u\ê¨Ëê¦xôàüÔeÂÃޜκLøÜQ—58u¹ãZÕeº¾ÓQ—Éó~ðŒ®ïеœŽºLÒC¡ÀOþºço~wÿ6;Ÿýž÷»òWïïâ·Þïêÿ¼¿ûý÷ßáñïâ÷ïòëïÚùWñøþÿj»ÿ)¾ÿ§ðþ»üÿ[rø§¿ÿÛíþoñÿßŇ]îï~ÿ½ø—Ö›¹Ó.;Ÿ¦ÿtñßäÿÓç‚{KÿÍüŠÿ?¥ÿŸòáŠ7;ÿ_•ת=6üߥÿ§tÿ§Ûýß–ËJoþ]~ü«øüSùü«íþSøÿ)þÿOñùwûë{ºoýó{á`úy€ø¼E>‚í{Ñ…³—wÜ„|[ º0d~Íð[ì7OáÇðëúv»ºSßi—^zá¢àÅ~KƒúÎã½òðÆ­®Xö¨Ök_×èá3nÐî@”³á¼Ø«ZO”ykÏĸÃãÑ• ý£t÷&±S{Qêçßo¯A©r§íÇ]HA)ÃT[b®Ù¡ó‹,Þ47>@ÉN¦*Ïö¿@I3[7ùÖ ž_¶–Û³ì3Êî}äÆˆIèÁc¡¼Så®nAE†K§5†ˆ£’kçªË>B¥—½8OwGå®ÓCº˜£Ê ‘#ž3F•ß&u2Fïúm[“²•Íéînb‡Ší^]ºŸ¾lÓ}·Êp!Ædû~]4/~fY»ž*˜W!ʬ@…£^ol½°è^¿*w Y½P<¸ö.*ú[pK*B€O™ÒµI—1ªØû`Û–SyèÑîÇÑÓî Ço¢ÎhìÜ…ê¸èÊÌ Ú¨~̤»Cí§ §ÑÞï=ožAÏÍÌ }¸‰^j„x¤ÇÞDoÌ ÃŠš¬Pó•y{¬þ°C樂ÐM‹Þë"ã‘ÅèÃsÙ—j}9Ux,Q}ÝxÉ´uK,úq}w¸ˆ0çHžrt>ÒØZVEÏ\qÙº[‹ŸR¹}Ø K®]ýíÔ],ídSl÷ËõvÝ Ë£TÖèXÑ­Í8ªgV*í:Vç;î#^›2x0V‰ŒßlvC«]ȈVÉžƒ»WMˆ+-…5Þ(˦4á†k8³>àž—7§‰œ|€µŸ«mµñÑÁ:ʾOǺïb›/qÍqo9³”c×°¡¿¾SŒ6z˜稣†ûXØ}rØ*<àØüN~ð ù)Qeoa“e_³ž&>ÀCz.LŠm¬Æ¦5:VÑgð°#'æ~_é‡Ífu½|Ú <¤µ î#[ˆx4æÆU‡5–c ÎúuœýzØÒ÷Þh:©4xêzÈ[‡]¯©<€Çá#¢ƒ·~ÇÔ æ(÷Å«³Lo…öÛ¸íÊÅjßÏIÁª£ÄãØ!mÛú“zbGû˜IÇ\±ãcV]½±ÓŒòW‡Ã–c§ZyÍ•’nØÙyëý׊òØù†ÿóÕÛ˱K/Õ“±×±K¨º‘Ó–ÃØ%?÷ÇÉI~ØU3&ß?Þ»Î@.¥X4§ÛEIk”cSñðáu”iÿòPÿéïQZƒÅê»RÐùO×=sÆ»9;zɨ¸ýЙvëèÛ¢„Ë­S¢“õ‹Ÿ*ܵFÇ{e¦\=0Åè?e‘0:!û½Ôn[”ŒUêÂp¨½R{¾>Ëà‡æËRtÃyeÏ£>èúEþ÷3î¢k¡% £÷­C×$Œ¶Ê8Ý@W5*{®¾÷3ŽZ3I(0èg9ˆðîêÅŸ A™›³ê8uEYçZÅ.}+ ÷fÒ«™¶¡[{ %¾|C·3v~ÍÑËBwN·« •B÷¬ÛŒ4<ôhø^ÖúåÖÚÆ…lØk‘Œxf„ª0*¾™úá^ÚËŸýD“ÔñŸQ•ó5æ.ѨúËšâ¹U¨¦ÊwÑÝ%ïP]À²ÐX…#èÉË*×}Þ¡†¥.œÐ³!gO=¼˜žk¤Ø}͆^hϱ¶Í”C¯æÉ•+˜¢·’Ò+ÝýCQó›þ*>q.èÝÊ0ÏÕ ?íµBjK_SqôéôU»„»èËe×Â{ÑwéõcõO¢¶M²m{æoǜ践>aañGMW5wa‘=²Þ.3Æbsc>OªÃI«gÉœÅÒAÈxß³d,w¤§EV÷GXq½æxñéÊXÙuÈóâ÷qWϱ ׬°jòM³¥I–¸»³ú»ÅÃì°æ0•›Ò† ¸§ó}´ÇÓ÷òŸ8i˜Ë¬;UàÕb¬9æ˜Õ¹pl¨¸neÈilTõbOêiܯ@ñòîˆ×xà²Xéy‘Ÿ±Iß“½%¤Îà!îÛÒNßrÀC_&È™‰Í¢¿4˸€G©ŽO œ3£uÉ»VnöÄÜý!ñ·`‹aõ-M:»°åçûÞ»°Õ=ÃÇgL2ñØ£¬G †Ç;¨ºOß¹ O(Ó=?ô(¶1Ý#riˆ?¶]â—<¸‡4¶K˜¹Úîî}lïe{ór7ì"}DK;¼ìç¶õ[6vôv™x¼& ;æëÉõ·<‰†ÔŽhNOÁNÑ%ã÷ ÆNMk·&}ÁÎfæV–(açµKô»…ÍÁ2‹Þ ç@œ^äéß„rÔžîL}1eú/g9 ]‘}óûÊ$”–l‘z7¥Ž ÓºÞ?]r 6h..¯-´Óé†ÎÝ,:óÄD%I>~¸õ¢+:cª›§>Zk?*ÜKU ¥çäõˆz݈²ªôò’æMGw{ïsº‚òzixt ÞXy¡pÐ{TœuÿaÃà{¨tDfÛ·‹QYáp«‡³¯¢Š7mQßQ¥±³’Æ&TxäüÆçr¨L>7æ€w*ÖÉju)ùçøæ›œ}4^=\è˜mòí Ê5=á>&åž›çÒ- mú¶×ö3*xŒ–o߉ —ßœfÖ¿¶®˜^õÝ–Rí¾Ò?WÔY€PiÒþæðÕÚ¨B…›šx U5j¿?¹/z¬´s/ª<Žj3¥6OŸ<=9»È©åø,ÔÐ蚯6 5.Œ4Hžp½nRcy½i–üÕ{9j’™Þð£–*Óú¯&¢Ö#Ýírò÷¡ ZÝÙx}Џ3YFH}iëÕó°ÉôC¨¶ß&N5æ˜i=wëÖª=Óåp U±?¨[‡Å9Ëž‡Œ˜†%J»¤9Va©Mc\°Løæ©²Ã±ÜæölIK¬(µdÞ¯‰•ÂîŠ |Š»`¥Y“GÆ*CNO%7«Ù¶[5JÀÝÓ÷æ¬Æ ê+›âÞÃÎsCÏážcLn˜í•ÅÚÉ"Ïmì{}ÍR‡uÏôV~õÓº¼Ý‹ Ú>íý¥6rµí&%û¦½Ö¼¼)ÐØuuåx<ð^Tã7wlbr>êb.Ê~šwÔ›n=±h÷þ<æ`CÛb/t,Áçj¯Õèøêʹk©èt ·ù@Ùiý] ¹ÖïèZUt¹hn­¹ˆo\ª\ñábº¾°E³^ö ºÞ+ÚàævEtõÛ,¹Óɪèj‚t€tÖt¥”»nvš’ ¾ªQyצù.ºZ¡y¥nDW3cÍ7ÌG×6칑»]¿í°Ø~¨Êx;5ô…a Ê’~Éßh:ʎ܉’žj¡œš­®ý ›…–¶#š£[ŸÖ>«5JD·ßG»l~%Í›÷,eî/:Ïoc”Û§L:èòtT wiOÐ?TxìGùÒÓz¨xòíz{õͨÔzCÖÅÜRT>ÇwN˜šª¼=)Òñeªöð׿2gªémìÑÆAu²g–í GOÖ÷*œºx jP=ûÓ›ôôúÐTc;[ԸǷ<Ém.jŠ1U øh…^V·[ð/Goæ7Й堿ÃbEdÞ¡w}>6…Õ[ Ö{7VF; KT+ÌÔBŸ¸å±7"<ÑË‘óà Ñ· cÛÏÌ›‡~|—W[*Vˆ9êÖ^õÄB×ã¸Æ^ÙXÄþøn¡mbX¬Çítç+X©dÖü)*Xê»X—Ó'3±œÌô÷6ëŸ`Å>'û¼ìÕ€•ž›ÊûoÆ]kÛL¾ŽU{š*« ŸÆÝÎî|#ÔZ‹5B#Šõ~‚µÖhS–^е[ŠŽ ¶ŠÀ:Õf~—×íÀú¢]‹¶V©aƒÅ¶‡V=êŒÍ4-0Äýº”˹U®Â»´oºÑ%ʨ:XØÛ®Ÿ—ß]õÏuðS ÀfB?ÄLúZã‘+Ý?ÆŽÆ£›´&ªµïÀ\»Ï-ÓÏÞÃæ/u8BçÚ°åéXQ·&Øj©ö¸½7åðXî Ö¢ÑxܵR®uwñ„ˆvcÿ]«ñÄ©Ó]sæÙáÂKkªVb»€5E -°}̰‡aÃ2±ƒ«YÉÞØ¡|ÓV¯EêØÑq¸OÔ$예.ga'ãÍú]³¿c§­FÏ>_…žÍz={bo|“ÑŠü„ÿߘ(wK¿×mh„9ºï}À³ðöLžÝ©÷ {/2¥\|kÔG—C&¦ï|°÷ÞöÍÌÿyº´G:("oJ‰18ÊÖ]¸qú¼Ä†zt®«ÏœâPs”˜±qÉý,”(⢜+ëŠÎmRq3¥[øÎ-CYÛN&⣳ÐÔ»±Í½ƒQîZƒ.ôo¢B—uâWÞÖ£âñ]ú'{¤¢’k½~(åwEe6çûêeš¢ -mÑ÷òPÅÝv‘1EÞ|M¥4Rc*½¸&¿Ý.š÷¾µ»oò…ÊŸãÛÞÓ-Ê—w ‡GçX~ð G¹#—¦¯þúåHñI3Cù?>=mPí ~|/4'êû¶¥Ù7 Â#²g»-zЦ†N l释cV=8ŠJǯØ"dÅAå‘—jD¦¡ª¡Sô„í£ÑCb×ûôLAµ¸ÄÃÍwz¢¾ó3ß¡†Qã ÷e£gIÏÖyÞ„š\Zfä¥Ö¡W£'üÑ«2½¦QRÕ µ¸ø*ÏNóÆ·-~ñѼqn&Î×­Å"C¯sjÝŒ²E¦ÎøzSÝ%ZÕº  ¥ÎÍÛ8âŽ5:ßÿlä² èÜe¹[‹5ï¡dÝ> Gü$P¢·ÿ§ÔèT^ªdBµ7:qo€zhBŠ—X¡bî°ÓäŽmÜTŠâߥ†>|…Ðén Guì/åQžÌwÇe(½íä[Ͳ¼÷°Í_óV¼F×büÔuc|Ð5?ÇÆžîèê²ï²jY èê„6ÒÓЕí§ö^|ãþ3>a2bOˆ6º:ØÏmCWE'-,F¼ñPÙ¼5V]ËYzçËÍÞ{ܰ¡û“8¼yòÊÃ壬Ûs;d_¡e…0"tSjȽ€WЭ Š~ ŒE·‘~iÛQtçiíù'_£{w7ԼלǛŸz¾â¶ Bùî½Ý1¯(õþM²FE/Ê JVöA%Åg×®IBe/3F}Ù°Uo¾u1çztÕf©äWwôxiFíëpT{¦f¡¢Ú,ôD{¶ÍÛìù¨>ñ¸ÿþè]è©ÕõœMÏ+P£ŠŠ×ô'‡Q“D{õÖ¾¡èå„’°.™ËÑëòœmF[#P³ã¦®Ç–D¢–²ÀÅkÝ¡Ö ”ÿ|5ú ªgº{(úXÖZ]l^‹>çÎÝ4 Â}•J—H3E?æ+ œ| +æ—WFMÎÂB!¾»öÇ¿Æ"â®]âj°hÁñG&1XüsŸY…O—c© ¾]™U„eÅ/o}öùª¾€•V˜ºjIªã.^vµšb•Ç_\rSÆÝde›¶ ÆêÙ2‹9z5¸Gò¼[Òw`íP÷W†Zb)¶ûÒ¿ÄzKž •ˆ$âÞÕj›d¾â>«kí’Oྒྷz«÷SÀÓ¶ÛÖ~!$s…W"ÙŒ#Øü—¼:öÇ–ž®—5+ò±•Ú… ®ØúµAÜåò×xÜé×—m*ã ¦U§>zòæ™%W’Çp±ÍÛ5× v7c»Ò6\ÅöÓÖíUø`ˆF·¯y;ä<Íüfv4×HëiÙ;^*ɵð;é Qžk…Öïø°éÞìTïpߪi=v^ÒaûvÞ°vòÊ}õXªÇ¡~‡º {A¶/…§>AÙÃíÎNøQ2&ùŽqVÕGéÜÏw÷â½·…ì.9¥4ÆdÛÍë‹.V ë_Úç….‡Df¾NBÉw7mýŒN/61«xÒ%†O^ýh;oÜó2\Ò2¿ÞX¬q e™m(,[€îX,³Û½=üÃÅ"¡ª¼ØèŸT„Š ¦D.]JF¯ýfðâ*½k¤¼Rõ,*ßÐØd<)U (JÙþf7*÷Ýôe·½*u*ã32ݘ¥}Nôçø–w²çÚ|iô°pí­´[Š(×|ÊýçPžú¤6¡‹(»FIld *°[‘°Ñºˆ6 úŒ í¶¹¾]Š߯eû ¡bKã¨Æb¨äéýUÒu¨\ÖXòex"ªŒØ{tÄØO¨zòî…~7QÍjär´£ºˆ ³f9®EõQ£Ã·Šå¡§ÏGÕˆ¿Ÿ‹ž/8ûÜýNz‰=eÆ;Ö£7N÷Þ[±@ÍyÇ“ÕÒ„Ñ»ù±ÅwÕÑûeNcÃæ^A7‹zWžyˆ>?ÿüîcXúv^gÇ—j¨-?¬r¶~?,Ô#}ˆó ,üly'ÿR,zÞÂiXÐ),¾|ÜêßûXÒAG£½g,mf‘wá4o|sŸygZëJ,_RRo¦Û+Ö›˜®ŒÅʱ½—´YŠ»†¦Šs·aÕðUI›ösp·è^íxè\¬¾é ©ëÇXsá$¥ÌxC¬å¾öáñÛ°¶Yõ~‹’¸WؾXýØ`¬Û£"2÷ÉU¬/}×7¸~,6è߸??»÷™:øxÙ3l|¡Nwåþ,Ü_æ©}IÐp<·ÅŒé/ŒÅ÷d/:6óžÄU›Œ‡4&—¾LVÆC)x¡V+<|úÁÒä u»á^s•x•[:˜­Geê ÁŸ®¡ŠÄÍßT¨£GšƒîOÞÜýqçõ®0i-Tk«<ÏvÿDTwåÜݵòI¨~´œšŽòÆ<_7=‹ºÕ¤PŒž¯¸2Ñ'½HO¸lÒ]½Æq*]zJ¡f‘¡1–õýPËÚ‘uy Q«j†z4½¿4hÑ·»vèc ¢nc›/úíßÑ÷'Šã‡™LFí‹öh¯{n‹…Œ _Ë4uÃÂ×ÅÌõS®`Ñuámö¶XüàªÙCæ×b©.Ñõ÷û4`™šºÉ3¼Z°|ݲòÙöŠXIÞtÉÆl¬ü䎼Ôö$¬ÂQÍqNZ†ÕfE<í(ŠÕ%ÖÛ}Óùk>Ê4›yk‹× 36½ª¼óSÆaÝ——iôC¸·y]íÎQ·±aɆ°ôgºØxÿŒ”Ga‡qÿ¨Å+ƒxvùÌ|›ßô|lò©×µÌeØÔK¥¸aâ2<¬¦m¯®Ø</ ¡¼ ½04 ºß ½;Ï4<ŒM^Û¾´°‰,®’6»áüéùOñp‰C 7U¢sÁËGÎGg¿œöñØ”$Y­ztf-:=Vã걕èdýÒ‹É6“ÐñäFû¦Í9èèkÓEwDŸ¡£Bß¼J@Ç*‚ô&N´ãÙ_’Ø Ôû»˜Ðr÷l3Bi“µeKB·¢ËW^“CWJm»Æóág…þç?¿@W–èI¶<Ïç_§e¥äÏ¢+BKoólÄ—¯Ô÷°¼]nú¸ÃBzº¼¥¢bÖ“A¼ô÷õ÷ÑOªªPäÇöxƒžÉ/^pó“j||ÏKô¢÷ªw 2Ы“¡¾ß†Þξkp÷à.Ô2À#2bŒ,zw‡Ä„Þ» ›Ü/3ÑG‘¾s¾_yŽ>Õ=¸¶íÙ)ôåÇ6ÃãrÐwW%Õ»ûPÛÓ°mO{uܺז¡ýÆ`á…—T‡ÝÁ¢C}{L‹Å-Šgïúj…%»?¨|ñËLБ|“ûËîØkR’‚˜>Ù"5+û¶„?7ê»mØÿN¸«Þl«=Þgîn+dðQûÖ”RÖ^Ýõî©S(j7`îå¾XôBÌq¬;=ÂËgR!Ö?yFè``46ìÓÿBNÜlTc$y d îw{•‚ûPBYni÷k”Ö£ëTËI¯Fi ‹vº_âÙ_ã®+Æ™ ‹ëüj’Rѯh©¶!ÅèÜfI‡Á—-ÐqÝñv—xöqR_I l¨}ºœƒ’FÌ9$ŒRoL÷ ežÈýˆÂÑmçÉ2Ëæ¡;“ãü­ÔQêNá¥}’QáãW.²ù«Q1wÌ'—^—QI†FM¿œxT6eÉ…!A¨ìÇrUÙ¬¼t°ùñÔa¨äÈ¡µ†*ŸQQ°jèiŸãÛðá>_ÚP÷Fm7@¹¶½Þ¼ïá‰rdâ“/N¡¼äç?‡¿DùÓ¥û·¡}ëÚAµQABæ‚'Pá’2ã¹6 ¼qÓº½±é!*é¡î±d×QT&¢2Å8 Uè©:=<UÜoû å úcÕì˜ jM¨vÊÛ•@OFêàl78å¶ }*.¸m›—оzù¾›3Ì ýè›ó{£s4w\‹ÎÑÃBiña­RXÄGúê×ï°XÏ¥å-K®`ñ/$N‹cÉ×ßäÎŽ3Å2*ÕÛ¿=NÅr»®Ä¶*vÁŠæÍ%³vÅJ/G®¯Ÿê€»ÜÌJ¶_ƒU®´©ô5öÅjižV n¸ûQ¥Oë7ÌÀ!Á܇pyE”¦)àž[æÎãÎýÄC¾–M´À:‘¢ß6~IÇzÓB+OVÁ½§•Å.Ý —œ98þ66J*52Ozƒû~Ü`Üë>P¶F]¬RÙZð"¦›n¿}~« b‘6gN¦-•WxØÙ‰3íÂfU>AÛšâð(‰Á¡k÷a,e–>&çæ–VÜ÷\W- ‡e9 ËÅ–»êžo7Ú­F÷\\Ò‚ÇŠ–zå&øãq5gFdá ‡ç,5wÀ6öÚ^ý¢´°mÞŽòÚôgØ~dÏþfg ±ÃDÅ/9GÆ`‡·–ïúnºˆ7ë­›6à6vÒØ|Ï<û)v:6wç¼ï+°³Î'ìÎ{Û#ÒxkÂ<ì"ÖíÙÒMì2‡30£qv¹ý}ÇJ¼ñm¥uû§GØun×S§†7cNÃàÙŸ¼P¦ŠžuFžï=jü¸Ò•Z¼y£vì}EÞûÖtÿ«ZyãR¨üŠŠmèÌŠK¶:¹(áòÇ.û#CyvU%50Üï•3çð7tÔKù„T2:RñÆ,A›hóYzyÏW¤¦'Z ìÈI©Œ8”ºÎSãœý”žx‰[‰2ºü!Ké©ÑÞ{Y”Aâ^:]bÚwÞx7pÓ+É•gxãYmutÌ Ÿ±ÕȨåm†¼°ì}€gŸôÅ”è²ô‚Ó*¼r-×¾5 «“nÎ87b ºönÿì)µ£Qú*ë'yšgÿczo¹ze—B¢n(»ív±pB7Õk=ÜoÊ£[%£Ö¡™wл¡CW@÷í[¢Î?<‰r•'MÓˆ $ª[=ƒ ãÅ÷ú—@Å+zß|u|8*ŸŸâWPyd†_¥Mªüãû¼÷ ûPõÌñBÇUG õæ{QÖz¨ö-Î8qÒ=™þ‡×úUßQ}ÓËãéËÑÓ-½¿.Y3 5ÎðÝ”¯‹šb\ŒçÝ÷F¯ÜõÆ(£7¹ºR!E¨ùQaõ—£w32n¿Üb€Z[m”×­BöŽ» ´$}šû­lÔë*ôe¹]]÷¨ÍèÛ]åå§=Fm®³¾Y»?Áœ=ç÷¾Z„…|_ޝž‡Eš,Çl«ÅžÎþžˆ%µ/6‘ÄÒ)>W–ä`¹ùÇ=¾{¸aÅ!Cû˜oVÆJßnß:„»Ô~‰t‡U{-©øÌw‹å´hU`¡¾Ý>gc­a5û¬¿bíŠÍf笄°N±ëŽ„0_¬/·Xçä¡iØ`eiCÞ”žØH§ÙsšAîûÍYîóÈYx ì©Ð/{Gaé*c/ÿxˆÛ´É3""ðМ~]óì°û¾W*æNxäª?z¬)ñÄhD×q07]}øŒqØbÁîò¹2ñxÌàÍRØê½ä©ÅŽíxìÅ÷¨7ãñV½©¼Ç2äêV‹aÝÄ¢kã°íÒ·%'ô°Ýõ™mý¼°}ó~«q¦#±ÃƯS’=–bGÅÛ®ng±ãŽ?^‡EóÞ×ÄåÆ¿ÒÂN!}z¼P\Œª$½eWòÆ7“ŠáÛ±óŽ.º*û°ØÞUO7£Û|bcôÜPæóWn žèz¯Ý-¾¯ÓQšâºõ-Âoøïm}gi¡ eƒÓNÙ.Gçãݿ묕Eg÷ÇO¯Bêèôq‹[ƒ&x ûL}`8¥¢¿güp”4óëMݯ«Pê¨ëgzEóæq{l Þ†n}Z³{ö‹@tÿÍ£|«¯ÃP¾ûÀ39ù#PáÌ!—Ê> ¢¬ã挶B%#bn­W×B¥·ð®ô]Q™¯í퉼÷º²g~gš²P‰µÓõ-"ê¨Èê•úâ“á?Ç·Àý§‹–¢Üi'´½»ˆrńԋסܻ7¯ÑAyhC\B»ÊËìc–:åΚ~j6*˜ìøJÞ³*4”‘¹M,I3~*Nÿòþ½ç:TºjsøD¯¨|¡«æ“A†¨2óàˆ·ÃZPõÊö!ËLªÙ®©4䤪‹ìÞõªõ[T¿¿“iUFOï¼\ôõ‹&znµ#6ãÊôr`j:'÷9z³<{h^Ô¢êÍ™{­ µŠÎX«’9}PœþN!9}?êì—E×Ñ—tqÝ£áÍèû¿mg¶Ü@íÃ> ùuÂBÚ#$» ?†…¯Ìk®¶è†Eƒ•D9B&XÜö“÷–· ±ä¸Éýúí‚¥CԂﻸ`ÙOIóÄ7c…'qc33°Ò.kùõ~×p—YwÖŽÝ+‰U&¾ûcán¬6þËìa>y¸{·C g±†üº£a5XóËò'cípO5K—à­‹±ö=Ÿ~É'Œ±ÎxÏ"†b=ÉÉ]-Ü‹°þÇU›8Ûµ½°.ƒ›GΜ}o 6Ý·ÔeÍl}Ê]®ˆnéžU«8á‡îôÈ=Ñ?p>º·wéµJËÐCå¯×·N@ùæGcõ8ˆ ‡©®!qKÚE\y¤ˆJZŒÖ׌ Cå"îûGêA•¨.ËÒÌ=º´8mØñèñ”I™²¶¯Pí¦ #‡·ÎBu-VÓŒtµP½åQg1ôT¢|‘LzVn,%%65 ÷ñݦ+‚^.1=óðÿõßá\þÿÿ?no²³÷Nö(q»Ù;[„Š6-«´””‘¬¤R Ù2BfF¶²w©lYYed„ߣ÷ñ{ö:ŽÏ÷¯ëÓùx8×óz»<Îûýzö=y¹[bƦô°lð:Xà&§Ö/,Evnv| +²'×Å`uuÏÂzXûÍøÌû‹%l`yÔ»"[õ–gÓ¢²Èüò¢Sa,°V9."é ¡3©:ëHæëæ´‹ )‹&c×/p" _ÒyòtJ¤+*ã©ÚÂ]áç‡Ù¼ÉUß3Å…Y,]Êd¿A6ßÅOå‰ïp÷§ÕþYž>ä:QÄäé>ƒ¼¦ór¿þ´‹»˜½r… D+3ÖPÄKS'¯] ź|ÙûÙ^¢äé¢\þV(-'A÷TóÊbñtйï(]¤}¯,{üŸ =@•½D¿éL¤pŸ_¦dÇy;T7íâ1Š@W<#w¶‰Póœ½þÍkÔ¨-l*Û¨‰:£+Ï#P/aÛ¶PÔ œ_\u݆+†)û.w¢±·™D‰Ÿh2Tú…6¬ ªÓÜ'fAùÍf3ѼFÔŸ]±-.ЏÓÝ–D¯Ã™iÐò®ÊÁ‡TÚhùçkñ‡ÕÓhu‘¢F‚s}‹%Îñh­úÇ5ZË­Æ”´÷!Ùù_wu¼QŸÉ*\WÖU×&¼Då¡ü”uo•r4ù<¼lñÀmé4ÁÔ/ZIí>;%8¯ß®9ÂûøRç@†îq-–ÁNH±ègõÀ/B£çfÂáI˜?KfîÚ€Â2"ð¹U»”7¸RŸ@}ЛOÏA“1Õ¶Èkh 8`óÔd7tÌùî~Åë]:K~ö]Ð]DŸ9è½²”74îO@o³ OHtôZ9Ü/à5…îks‹êÐÅYm;•üæù–ø´_Gä´†·TÛ´ÚO±hÝÏ€ÖG$,»_@k[f„ã5WhäÙ1¸˜ m+ŒÚŽ3QÐA6vÀ¤·:Ë‹X•,¡sýøÅ„ô(è¶éð: =ë;Ùçl|¡¯æQ,—d|‹—`¾E_}£{Ι>‚Á“‡Å2­ÏÃðwº…Ëy0Úùä`‰Á2ŒglR¿†Iƒ„ÚI…"˜uX‡Í&˜»„>«1ð­.¼TÊ¿‚Yf~ÉÂrÔ-2X­L–ÂS ë»Òl¾t…Ãf%?‡ý3ØVi»ŸœQŠDÁíon’0w‹V h i]†CÈk$O|ÔÆ¨4Œ”‰oM3'”ºËêPÌÇE¤³O0ÌÚ"Â]ZG'2]!“–ÅÉ‹ÈB×zÈhJYúÞl+ûˆìßž„†ðè"Ç»ÀÒb­ äzÕUµÄŽ<÷„¦}5"_5ûçÛ(jîDÌŠB$ò§u P8_Þì[_&І×GRDñàÉÄjÏT”Lÿ(O^Å{fý¯Þé>Š2‡ßôg¾)C¹À ÷@Q T ˆS&¶@Å—ïŸ<êz†Ê:‹)³ßëQe{mu¹•÷‹æöšFã—Á·U;ªd½HÛ7¡æQg.®á9ÔÊ8³£¯Š:lë¼´²P·ÌÄ´›õg¬’'×Ððx¯^ŸªËÔsŠI>A“oË~̇uñàÉFJOhö¥nË¥Ë -ø3—ý~¡Å‡ŠOâéÑòìe³jåh¹/èÿZ­HE´×ÝGkÛ½Œ~ N/0xìƒÖëÏÔöF›ã5ÏJ<ЦÖõWqû!B¾y ¨O° íŃû³ÿÀö›<2n#%¨xjYö5#J´¯Lž—U‚üʬ¸ÍÈɵ(Ë¿ÙõLeÚ!ו¼žNƒôø×™-‚5êÿ¢@iY÷ﺒºo¯à•^+EÄ£óàMY_1‰òñÁýß!õ'gÃãÈþË?Qqô|íÙfu7­“\¦9)%*t§÷r‰1-þD-”ü&Û/LÈ3£,JÇd(Ý›G-NRýOKÏ^a&ûÅ›—ôަB±Ï%#»e(6qœ§S?Å…ÚÎfázžóùÄBȵwÇrÏ&¦lAùÁ±îé´Q¨ähó3#]ƒ*YWã ¨6à¹n&59”G´ä˜ ÎK0Ës‚¼øwWç‡Ñ[«C&ÐÖ&̳tÚ¼"kœôF¡£IÌû’›t=¾¢Ÿqz<Û—TCß奎Úàs|#ËÃ\ð•,ù|“= Ä–ÙæÃ°p[Q3¦Âˆ¶ck£&Œ.ºPŸ‹„ñ{Á´ß'ÄñJÄ(˜º´ý2óF*Ì 1+ºrÁÜ£~ц°¨T©z?ùüÌ­:s€–äO¿a }Ëõw4Õ½`ÕωúùMXóê²ìæ€Ö¬Â'aKyU³Q¨é·¬7 ñÓºÇɄԜ8¤V³ÉºÜ*Ÿ]AJíœ{Ô2{:xœ÷!Ònu Fœz… .a¯EÆîÓwÿ„#sõÑVRvdýâÚmxÌwózäOrõ çC*êY~bäqùÓ Üý ù³OØ™\FÁw+óªÝP¸ŸædÙÎ*Љ‹Žup£Äk_Òá¶1Üsr‹VEïÊœæëçN±By¾¨Ã»PÑ"õËèû(T~A\MV\‰ª“egÀ#ûp!@ýîA±7ø˜¢²—ô¤;´æéýqkX†ïúkçt  ³îÌÏ'ÞG¡[>0J¥‘zbÚÕ°C¯üŠ„Ñ­ÐÓÚ–]fÑÝeJG¡sîÉC‡W_þ—oŸ¢)ߪ]€Öò-³»eMŽk=‹yŽ'õ;AÛoÑ-¥C«¿˜›­Ø,´[Þµ—~í'§Ù˜ãâ #Jvólº(t¦.ŠnQ®ü½'97¥ =—½ûz@S§•à/øLñŠM¹Ž¾øJy9=jOÔw`X¨IŽ—Fig3N¾èƒqâ³·™¸öÄQÞ/†×30͹£æ+™ ³'ÊoMˆEæÝ7 àmu[’,³¾ø3è «J¬w-j›`íŒa ‹€4l”¤çÞõ&ø%•iü€;ìŒ~T zƒÄçTâ¯GÒÝZN¼¬‚Hö[N-úº)Rlí:/¥¬€Ôrajg0 iK Q/ù CoÀS¿ydœuäm¹̹ÝR¦ªÈZ!—@º‰ì—ß|ë}‡úÕ\íñúÈ%HJLщ< M‹oå;‘Of¹¢L$ÌÕsüƒ‚e±¯^( °í}ë{(*VA»RFƒâLþ·‚?FI1¥3å >ʨɖǽ<Ë÷2Pó4­ç4{ýt|el-¨×=†b ~*¼Îc’Q†–v/§.hª¢å¢äÁ$Þ_hu›†H"­Ébú’fÑÚo“+øÝ´^>èù|ÀmŽ ·)•( MurËã§W ùvIÂñˆ,Ú^šö—]!†-aÛàS«ç ×û>kê\'(f +*FÈ'ñL:l¿ Ù˼ß+þÞw‹¢õ þ¿uþÉn ùÞïq·SJ·M], tÝî]íAMH(y­Òu!âŸI‡WIc^†ÔþÞŸk>RôÏyúûµwïm„*FCzPDÿviLZ…O¼Ô©Õ.óêÌ3Z(ñð&IUå&pd(EÏ&9ù=Ô¨ÿiñ¸îÔÀÛqîÒ¿þŠž¼Š–†¢sŒ>© (ß-oçï~>ËȺFBN²«MéS}ƒw½öÅ™¿oBù͟Ϧ͠2¯ì”j°=TݦuÌ´a„êßÏ &˜¡¶&Z‹^ôÔp¿oòx>Hª ÅòBSó}“›· 5åÖ¢ÎE1è8¢â²Ü2]Bq”vú5н4¼§K’z§ÂÉ·{þÀg¢¬SÃö_à‹u—SúiøöM(›äÈ5º)}²lwŒ°²ö8wF¯N±Tsü¹/:‚ÿ3|¯¬Š7ðh‚Éî¾=†0£?_þr3f+‰4o܃…×ûìJCðÓN³bþüêðÚ²­h„eÇ—AæY¿a•&TؘÔ~/FÓì97‚lõÓàOŠŽ™ì\ÛR»~c‰Í¼Ýüvo!)ñpö°F’}?'(ü )Ú.ŸçXÐ@ª%‘v6¤ÕH°ÿ¡‡ô_.l4q0#ã…Xçã1Ȭ`¼}ÎÞYUFÛz¸‘ýøìƒQŽ.ä¨t 9Õº¹}hö^@¾Ì°<«,”iཱུŇÂÐÐ W¢7š¯Ï‡Ä ø¼Ž]¢J=ë¢î5Îý¡Þ V¢\úE÷Ö,¨ÐÒÌ“èƒÊ´$!["V¨jÖœ¢_s÷¿‘>`©¸‚ê—dXU4Ž!&¥×;îy‹Zý+¥p u4Çe8*¤Pwc:W¡…õ˼ú™É[ÑÐf'ñ½r( † =ójB»Þ© ªWhZ£­ô³.ÍxŒO^<õ ÍOíßÌ—gG 3†ß ~h1ì±þà¢ZºNÒç-_FËÙP&šU´r©Ñ7¶;Vï{¼&ä[$_l™&Z?IšÏš±@Ö9ì{« öƒ¦èL ¼Wd%cð(†w³ÍqWêM P/Û¥höÛJ×°qøï>·lé3t"…¯Û2ŽÅ)$|&Ì•¯öõSV@b¥ôŠ‹¹˜š²”[4¯S”Uõvý„‚¿WB)Ç rÖçô-^ ¨K§³Ð8 ‰N8Žr†BË€E2hwBûw‘[Ÿtê}XÈŠ˜®¬«¼¡ÐCòTW?)˜sú©ÎÔ@‘vgÍ=gèVºtém“tVŸki‰'ÿ—oít‘*Âæ“Ð:ËÖ¡/`ûw?œjøÊ*´Jv0n–GBËüÒùÊ “Ð2&Û{|HZã£êl.ŽB[íÛ°‡ï¡C/I³‚{:m|Ÿ9 ]¡1un9¢Ð½8½“©~z]Ÿ†pÙÃ'É$’Ã4üгŠÕüŽ|c춌Ɍ‡!Þi£^FÑ×!güY c|â¤/¤á»I­€Š0?L1$Ý(³ ƒöû¾È˜Áÿxå %øá]žÉšKOÊüõr¥a%Ãïü·ø]9]lrá#¬Ok-ü2‡?J¾Ï…[%aûíRm9ó8ÕÆFÜa B×þà=/Ÿ!™IKÇû¤°;÷ ýžR…àS.”BZ®€ÍÓÓsH¿ýMänL 2>=•ré612Û|Þ6 ¼‹¬âÆ=L÷";qG·l„îîÚ¼1ùç!rfä)jq…"÷3ÏßÓÂÌÈû®Õó˜{$ 0K6¨£ ÷‘Žñ\&ÿ^ÇÔqE* ‚›øGPì9¯ƒ¹fJ$U¨~ì2D©otŸï-â^ýû ‡Ÿ ìb‡€Î93”¿ ž}å *¬5®NŽ Ò“ÃÚ!rT1K zºŽûÜwÔo½ Bµ~ê¦%¾ï¨a›ËÇ2—ØÚÖ“µ¤b4Ä)^¡öcFË`¥Û¨{@-]¨Sõ©vtoŠÝGƒï›nL#½iìaúŠ&nâ º¡éƶ*™T:š]wk¹¿â…æSaƒ7ƒ¢Ð"Q¥—¨à,Zê7óÔËCË‘·×j¾B+ÏéP¹Ð§hµñΞ«‘s×ú}öCëù“Í;OÐÆ1€$w«mÞ¥z‹%ä››×µ´õhÊ¿O›O6èr“R¡ŒÌaFµ˜•0?&’Œòg_Ú ‡d«NØÙ!‡,Ó´³‘YðÚ€K\䇤Óùó– Rž;¶ÿä~HœSì½V1 {‚ΰÔCœ_œvRŠ'¼b¯2 Ü·òûznûç¿Ül÷-)x«djÇÿ …Ny–-kÿý|†bÒpŠ1Rü‘ /R³çxŽú<Åþ—P’pG¹ÌÃòŸ_|éADÈ1—7OÞÞ\÷àf3†ê+Œ~ÏÂ7H“2S ¨rñ“(n©?3}®JZc/pÀ»Ö·÷"¡B0îÈ‹ëãðþÂrDäÛe¨Ö’q–xÁµÌ½i§êy«7¾HÉAãzŽ_C ÐD­ëõµú)´|ºÀ'õÄ Ú‡Cã–QBç›ú¢7ŸC÷eµm“gºÐë(qÀ9[>¹<,‘™Š…þÄO 2Þð'8É÷”& æ–9åêÃpНÛ®{0J|IP@(Æ|§yµ^ÓÁw…n§Ó‰aÒ$c×”4aÍiÖ †Y‡ºÎ*Xà>”Ä)À‹[ÕŒº3ÛðëÒ“çóC°ô³´í¤ë X‰.W_§I†ßlk Ra=š}лxþ°Ñä6kÐÁödÀ¤#Ù$&Á¨=Ÿ¤à}Ç–Z ’ùÞ•Ín4$û*èÿØe`Û,F–±…ß ¬hp$3U„N<‘Û&Fs•º}~²h¡vNê~B‹Û7†Thy/Ô¸E åpÿe6D+Çøm·K,hÕšÖc¶‰o‡×ù¯Š¡õ3É !ŸP$šò¨½­× 5Ÿ$Úùýë3x'äßE/Ye¶fj¶ÿzrY¶›ZBÿõ“ü×§ð_Â+ï¾}'yþé?ÿ¯çä¿ó×íS‹Ë9#CªÚ2 …ÚÑ”©2çý"’s5™WþõštŸ?&Ñ,çÝ;/î7Zýë/èêÎd/N„ÎÇZTðBîù¦zòÑ)hã–±¢º7­n ³x¡e¹‡Ü"Znïv¼4%ö¯ßä¿ïÿw|û¯½tÂü±ÐIB]ØPþÿy=¹æl5ÌÐgš¼pÓB>ß´-Њ‚/“ŒgvÙ•Â@cÇŽÑ„* û=s®Ð…QµïÁâÁøÁ³#±60IjP¾p fL‹B›×)`ž;–w·cüd ”‡%Ž/”ÙL°Â7{(éüf™º[vÖÙ~t;¾—‚ME[¡GG`+€Ïf&މ¸wêŽçd!q¹Gš8’&¸²¼$Eò¼ÆL±ny¤œ#%!“jDšW{j‡O"ý‘çµ—ry‘QÛ}/sÐdZì²èÍB–ZõíècÈ}aÕß0wS :<€œ U'îÈ"·×?«5òê§Š“–Ç ÿ뽿„Ÿ£à^o §·2(ôæývÖA9”Ew¯Å„JTØÅ/£„ ê=_¢”ÍšéÀ;”._ ”¹‡²Ç5Þn– ¼Àƒ¡V9‚ŸRMÅ™ævPIóðsYÇT^õ5ŸŽjÁ}ì©—®£Ú•&÷Žú5TŸj-*áGi´ìÖH'·@«ÓiœãÐjñkÿÃ$¿yÄOÒR£õ4·¨“hÚØM¨îÕ±C›J.?Kñ B¾ªŒ19ƒ¶^B,ʼt°A¹i1 ¥ï†îœªhùç¯ÜûÛY'îGþë)ù¯ä?ÿ¤®ídÝÌüç³Dç]‹r2·!^ý£L®Î¼<}ØIö>$ÜÉÕpÖ÷_ŸÉ¿ÿŸoóƒOm^JüçÇÂr2ñ(ºk>Úö‚_±;~Gµþõý¿úÿö 9SH¶ÿû;þÓÿÏyÿÿý,ÿõý׃ò_oÊ}'5.×Ü´’ Î‹åüÙJ÷ý&ÿõšü¿×‰ÿú‡þõ µÖ¸×‚¾ß«Žÿz޾:Í?[»@ ß­É kaXå»MÉÛT¹¿*s«BF7ž¥,+iÂxê!å€Áý0Qzˈ" ¦ÙÓZ. ¤ÁŠáƒé›0ï­SÁC« ‹ÉZÇcµ—áCø³aþß°ÔÇvMtçŸ_Wgv_ٺ딻Û˜í…Í{K|Ò—û`Û–!ú@h•õ°&c’œ‰[æR=†dBç&ö¥!ù©ú>¤lLUPtAênfá«aH'v‰-™+Ɔ_àË9db‘~“NjŠÌ =õ?“ ëܨÆgÖVÜͱµtXR9_Ió^=…ŸÑ9 :ÙÓbÚ'/A—š0gÉÆGè¾*öÒúŠ;ô¼Õ"׿S„>ÍoŸƒºnÁgû?,*ã‡àK–0wÃðtè«,„ac&«~2Ù¼³/ºý<Œ“ÄÅØ_H†‰¸U%Ò{˜®^ÿ!Vz朙IEtý`ñů9ß×áW$÷»w¦Ù°üáR'ï1X½Áßú±¦ Ö®ŸbðV< Ϧ3¤æáÏüý¹þ‹Çaç•þ •=;_H—ÚkV„¤Æ—™ŸÇ“"¹¥¡ï$Ÿ'Rú1•æ*!õ¶qlŒE3Òµ;ʯ°;உ}DÒ.#SüÇ^ÍI"dq>µh}Ùö°jšu9 ûÊÙçOˆ‰£ÕÕùÇ£ äjH;ðüU òüôµeju@~GuÿkûQâÎ釖ã(hí±\ê€"-%ñd›(º(z#ûìKŸa”|&Ò€R<Äæ…OQ:àOKÊÊòÊ3ÚòtóûL%Pá©l”t®*)rÉ__<†Ê“³o_Ôã>RW‰â!eTs®ºÞ̓ê]W=hRuzòüößEÍï{ËO>NDmËÉŸc'ÝPgƒï‡`¨4ê}¸Ìµ¢º†Ia‘çKÜ¿d¦+ É^ù‹¹QÑô£’+•óšYG  ,¡yG²Y¢EÂY¿×,ÐÒrÚ‚#F-ÿ´Æy.Õ¡Õ+Ù²ÀúQ´Æ'ߎi. õgÅàGYhsžg¡Îƒm6CÚJ¶åÐ6ÈDC¿í-b|Èêú2 ÅŠš ±€u­=S¾˜¥Ú[7(r¡€ÿaÚUÛïKkXMu2¯.P/‘Ãë+’eÞ¶nŸeº[÷6¤Òí<^•&äVиBMùÿ}©y… â„‚¾›‘}7„µ¼NC+±—úõHªš²ò.õƒ é¶÷–jìðæ]\cäs.ýxy—ÞþÑStÍkÂ# ]ÆYP¤^Ú’GÅ]„ù“nñæÒèz3kÿÀ zn˜sú 3RQô/ûàs8Eùì5ø²0Ë&¡æ—Üfô»¹`è÷xLÍ…t±ü¥Iº˜ £ ÛfªnÝ0î#E1& _¬žrwÂÔ×—ªv9Âj:¾û0/î1|›È ý>ì­â ?—³å>øÅÀÒëãyß`EPä—ä©X]Qò±9O ëŒe®§ä™aóΦ¹Ùö{ØÖ0!Ó¾D‰á®§îÏ#‰6ÉÙÓwtuðÛéÕÏH^¾Í·Øî‹”iÁW­”Ãú=Êmu!÷Oã[º9ÈðeÁÇ,™¨•¼óäÝùëgÏä9ÈÚ&èªÄ9‡ìó+ÌSÝÈyî]¯¢í7äqÕJ> ßŠüûÓ˜G›<›íiPxmûª\æÓKûAÁíñ¯émþàžWÏg[Pv__{飔O¸#;¬ŒŠU-Ë×à-*/¥Ø]ŽÂ}–å’·íñ» MÆc£ùç'o?FÍOª3a¶‚¨Ú(<.ÿuõª<$µPŸnwí¬-仼²?zÌmŸ?1FãáÏÏp4=×¾5‡ÉŒß,Esó᫳û ÐÂáàëg×ÒÑ’Òº#{Ô-ß\ŽzE>VV½ŸI Õ¯óÛ®h>T$VÂ6’vì7æºÐ¦F&7¯ÃN˾|ª!¨NQÙnwyeUÉoníø@qK3ÓÑ´/?Wæ(që_?Iv=[ðÃaÈt9g°rJÒ™ƒ„¶“k!éó¥‰çßN@‚ã›[4Íÿôï:å,r ÂyŠ]¤OAùÍá M¨•Œ,'ç‚FÓ/{¿Z’AÓ|ÏCŽ(OhýÐ|g¤ ƒ1úÀV:Íh«¯8î2“¬÷Yœ–H›Mà©ê„ïÏ~ŠBçdÙ7Þ‹ýÐÑʪíscÚkyMÄÅ¡M¡Z%þ^ ´hWŸxIȱλ-N‚éÐò$Y¥óg´˜ïxËõ?ø«z}_ê¡Ux6e@›KÏaÙ÷ Cèàó¶Ç‡ s΋*!è2ií ¹ Ýw百–æÄ"…åÉtèSf­~dÓ Ÿ•=¥÷rÃå^ ¥ àÏQ ºÃ,÷E§Î]€‘rži’þ0V|vÔ—`B-9“>@ ¦U5Œî\{³ÉÁÓò{MaQ¬ªÐs±~Q¹ÐøÈ–~%oHLÁÊPÁÛ]MÊð{pÐ(4-6ˆnÉ¥®nÀ»•À ;4á&&V½HÌ7˜ pÅI–ï0ÅìF²Åi®o‘’Eàb˜r"Rßá9~¾Zé´¸®ßŒÁ]©JþŒÈ¤_ðYnÍ™·®„Å1s kõ»n'dk¿']9Î2µ]ÏD.WÅ«ì2%ÈóÂæ.ÿ òÓ™0·}F¡ð†úÅç(ä4ñ]Cô oÌ‹@­ˆªÖͨGñüiŠ‹2(9Fcø ì2J›“–10N£,±‡øÝ'WPnÝ"²åH*3ox¢’è— ¨Üï´Û̳U÷Œ,œE5ã¢{]ǵP½œßÖáˆ4¢¼5F<›GÍ¡=ñ)hÚbNªóî+š9Fþ,Fóqþºkí¯Ñ"oÀ+þÌ´¼0ö±ô;/Z‰yJ<ªŠV_ŸœÏŠ'øÉrHz°mPÛBÐ møÞI—û¢m¼ìiÝR*x'ß ¶)3ç‡ÒJ·îƒiÐ|2äi¡Â-h36ö\¼ãÒöJdÐåª=lÙç=_k´*¸¡vóe­|–šYI;_ü§#í)‡àÛúƒ;÷xÀÐí`oÂÜÉ9oy_„F_½þêŒ,ÎM‰Á„•Š“x>L%<ÚŸ½ ~ÈIØ«E/ ¤#+ɰxÄlmaº~~inÌÙKîÃï`EøHØëÒÃð›ÈÒ«áË3Xç:úõ ËoؼMêç”Û¢AÞÐr‰îVŠõH# Ï5Æ"Â\FÚ4k:YHäÖ‰3öÆ e[¥Ão¤Î<»rÉ‘ŽÉë¶ýÅ dèüê—³swÔ÷¿;ŒÌßøj; kŽst$?²×Z¯¶¤;#§ÊA!#Ekä‘J®ÝË¿†üñÉõŠw~¢`™4o9o ·Œ19TblîfyÚ¯Q"¶ö ¥ínÜã:¬FäNŒ2ëÎ.ÌQþÆüû¸žó¨ó¸‰ìö*7 —aLÄ}’z[†mPmÁ¬Bªï<‚°º*í³^Ô¬c½üi9µ¯—éõÜý…º*9¹òCe¨O<~†SÅ réÝ‹ÑÈv,î9+ß~FÍ}vyŒ¦þQÜzW-Ðl—ØÓ‰2*4êy3D[-ºWO¨  ¥ÙEõCK´hÅ`mwi"ZµI˜g§ª£u„Ón/.B®YË– Åø -wÈa›Ô´iK¬øµ¶?Ž„Ý†j:ØMÛ©ï|öù\P÷‡¢ç³Ÿ“W” ŸáÀQæw,ÿúI²é¼w ׃×GÓÄÕ› :É35ç!I±ñvÈÍÿ|=×ÿ§©k8&k™ùF”1k Pö0lûdÁ¨I<ÐxRÎ êo휒‡&—‡Š±¬¡Uò+ãðAhwë¢w°Þ†Ž‘·£2¾Ùйî¦ð‘ŒºñÂgfÃNÁËCðEÅ0T) á[ãÅ€tû=0ôŽ„qs3 Fn–<»ô;ÆÎ+J›1ëÀ÷>k¡Ý{`*Ë/í›ü˜ÚivNXpáÙè4e‡Ÿ·âzú'`ÉÉ/QXÉVtbl;_Ào»{)܃°~†¹øC-%lV»ð3¬Á¶WoVøÁGHÔÁÆÎG„$qaŒ»*‘,ÒXøLÁR¤ÊŠt–1"5鼤–ü3¤Íÿư3Ú‡ 铦ê2‘q.þ« u2?lÒ±Œ¬öÎÝ“ßk‘]°­Ú\9HÊ«Ž9!íû‚‡e3Èc°'oïü òUN2¹‚%/Ä6",PHñº}ÀÃDneàK ÷GÑD_gæPüF …Wñ”|Í¢e~Ê ¥9h2¬H¸Q¦“æ«íXÊ}ÏŸ6YA…««g+ïB%ŽXgfÎ.‚Ÿšo£ê·ùXù¯/PM)+¼[|Ñy“È×Ù·q5û%n®˜ª¡¶éímž÷ƨ³ÆÓlDº†zõ&}Œ<:hª›žL˜OEeÍ>G™YÈ*EÓv×—÷ÚVÚq|Њæ¿cÕ8›ÙТÖêtô´¼?¨ã¨ÀŽVæs‘™hͶÅÛå~­èF6næ M*KËÝœu´õ¸÷˜riwoux gV±OÚ­MVÑis£ýèû(ó“ŸàwŽþÓ;¼‚Pº7÷ŒPÌUxK&-aäC›A²FÇ^gåûï@ºVL¼†2¤žã“ØXN&pÛƒ;N?d!Ñ™]GpW+$ì ¹æBn±óäV÷áyr1íŸÃ©gmh©ñ{sž§iûæÏÿôÞÓ£–÷üŒ¨Éß~ËÕ‘Œ.xøª˜åE¿Â/F®é@á›°'›êãPä–xý*cx¡2eÀÿ”G§É×¥Šˆ§x3@áþ©ûá'|ÿòÚ¸Þå;y0»ÉêŸ$¬àò“€Â³kÊ«BPtךÉ÷îî=FïèÑì*ÍS(OÊò<ï7¹/ÊYkCu¶Ã·Ï=Pû½Ÿûøhȹs‹ñ|ðâíâw‚ff!ÀÙÓÐ:ËyÉUv :BMÞGx·@—г³ÄÐÝwö±ý6ôæ>|µwª >Õ—r¾I†/l“´A½&ðínGóäG¢ãð9y݆GfN0Ø=€ÑcqŸÖ`œ£Ò„jŽ&ø¢N•†©SÁ¹.³µ03mà™G samâº3}°¸¿·ŽKC~VÍ}¦ÕK'­ôÊ>>…Ñ'’Òôœð›ö¢û~#9X!9¸ú 6oÒæE3>„múÚqÍóöHäNÊ<ÅçŠÄ«üduuH·^qÖk?’»-»<(@Ê3É"¦œ‘úé3ÁÐj¤£X)PˆIA†ŸMäÊ ãŠÎvmX 2¿jÙýŒYÃãßÏŠH#{Ì­µÀ3óÈI4técrÏRŽò­‹ ÿaÆÌ÷¿’QðQ؇¬±s(œÐø:„ÄE¿k^ñ¹­„g&‰mq‚Ø]ÖÛÊ(S:ý«çá!”·s2?âe‰ŠîGã#ªÅPùÕРÜGÌ7ï®e‰j]5!ÕA?÷»ó ØP3÷'±Ð£Ô>ûæL]5êŠÇúÿz¢Œz¿s·Åü ²‹“|åÑÈÉ#ñ倚œp´x¦ñqOßýz‡f`øEÂ͇Èü$LåÑ¢ÚA[z#-§‘¾B« ò<WÑÚèz£Ýô´‘61˜<Ñ€¶»oWñ]íÃCô/ö;ŠvÌGO<šú[aÌ·â ÊKOÖS¥{[ÐñZ(º2ÄÿЃ<™2çíñ´ý$™.¯óB2óåÅ]§óÿqMÙ pBb?ÇužGç÷êî^¾•šJO¶+?Žò’í:êÈn»T0L¹Ä5\}ãŽ-ÐÂ+ÝGácÏÁ>þÓÊÐ2ã—» Ú ,½L¶Þ@‡wcI¬ßwèô­Uá_€Î¹´0wYè¬ éu“r†ŽUz1&è ›¼™ë˜m2.rå3xl•*3‰c^vr•Eí„<»bNòT‘ Þg­ E`2ôgÓ´8Ö›hðñþݧŸÔB mé×Éð@‡É½7žB§Í>£ûÐuIØxotÇÞܘ5Ì…žröîÍhèã½÷èõáóði~A޽2ú7u´˜ªá›ÇÚ^‰.2ýÙ'.p F4lŒäÀ˜ÀÖÃñ(øîIüL0€¦ë(T6®Á½W ·¿Ã¼wIHyQ,® w Ü…_ Ne¦¸Ë郾±ý¤°šÖñ¾"’ ÖZÓ`&‚6¥ZJR†´ak€—¾ÓЉRÔ§ ‰á³]ÎÇ"™lÓª‘Rì×øÊ®é‹TïÙ‰Vä…o€ 2ÐÀ/}dŒdâÚDfÕ\ÿõˆdY ä-¸äƒl%D݇VÏâî—'KÕ3 gŽÉOz#^äþE2t`'ù.žU̸Ά3‚de(Pˆ†¾¹u«…ãe:PÔþ‚©—4Šë>_!ÚFI5 9Ü3ÂôôñÒA”IHŽWD¹.6­æ@×þÝP‰Öñ÷‘œ¨\®6øÖ*U?æÙ\ìoG5¾Ä˜îíTp_ÚK²‘ÎÂ1Ç¡5»E4ÒQÛ¨…lÿù2ÔùÍ]æô~õj‹_†»¢ÁÓq ÏÐèØÏ•½ámhŸI^ÚŠ¦]÷Tß]|‰f—‚.Ô‡äì¾i¢EOãáûŒÄh™ò¹üÏm´ºæÌÿž­-N´­é½A›=ã¸ÂÑ–î;'±z<Ú®™mYë㡉«dÞ¡Ý耷xm4Úϱ° DÛ¡å23I7¬Žw/ÒŽBÉvÂÛ¢'È¿Êúr5ý1dSxK] éîÉïªd MÜB."R,>í>ßRDà1Ë›Þßóà•÷€gŒŠ-Ä –­>ë…çÝuÔâ•ð¬Ôï§fx¼<í´®áÒAÈA¦ÊªÀMÿ9Û$í‚ì'd"$6”§¯rón…*¼5i_›Š2$ðW¹zy8!‡~ß ³‚"QÅGÁw‡¡hÄÝáæ­ÿi¾ËrŠ1!Ã÷ýžøÛ·bõbc©ê/¯}^·çú˃5Îæiÿ´À,~‘p<Í—õ6ûd(¢Ïž½ö¯Ç¨ôA÷j|´”«m¢ýxÿb-moXT§ÈšƒÚ¢úLÚ ¨ÿQ|˜©À>Hûî?çùšÞ—ŽÙ§šAkØÔ¹‘A/è°<'ÎQ _“ü ûî KÕò0ôÚêIT2Á'—(C×ç¶ÐŸ>XœX ßè[r<`ð‰ÂéB¿rΘð~²£ÒÒÄ !06ý íþ/ø>3Épð%LIݲÌÿê3‰§ÃÄo+Áœæã´aJXdwŠÐL‚ŸiT+w¯Ã’ýLqÛ˰"ÞV—íü~³?8ŸYÜë{SÞ?í¯†Ík,£EÏ®ÃÖ*‘6.ª8“q6 ‰;­÷Z-}GR/ʽÓònH®5ßÈ9ÝŽ”²Æ9ÕMH}·Á^ÑÕiÿøLÓÕ¼B†÷}§øœç‘ñ‡ImKY-2Ç]íXÈCÖ‹ƒ? %M‘ýBƆ¦ø ähö(÷ž×BîìsÄŒ]æÈÏ|3Êô„= ž[ðz™ÁƒÂÞY:EÙó(ZȧQV‰J4Q›¶f(µq¾E‚à™ë^÷Ž3r£¼ÂÇ!feT4¿ÌMr •}:6ã©>£êçJ–ă¨öê¨â99.Ôèýä~¸Í5_¶†^P¼ˆÚ‡’îJ .G°í[Ó7¨7çûX±I 2'G<—@£ã;©¯R’Ñ„EqÜ “д<“Uî‚0š]8§€ÓЂÅDkl Z,‡­–1¡å·$– VU´ja¡½\Öu­H"ým>ª]u̾Œ¶_Û빫à¡Å! ´ß?/â:ê÷y>½áï b"¨]d¡xܙҨè áÿVîŒ|Ä$äš8ñc—ú¿~’ײñׂè!ý0ß÷&û]òôd3Ù5]x5s%ϵ<“௣ IÉÿ4EðƒºòÌeÈÝI§Šè †ÒwóQ’¡PýèáÄÉ 1¨/úx—5>Ð\MìØ Í?6YH u«£_#_”_#¨îñB' Ï~Ï=Ðé*eæ°ï,tªï´ZéoA‡o‚hÚ¬¿û>Ÿ=¥ƒÖš…ÛѨ åE¤GÞÛh¡v9{^ǘpÞ…HÛÎ5Â×NwXºnþ½OýÌJ'Z\Ò.bÓßõ'OÖ¢Z ­¹õÄtŒt8 ìŸáM$¼ÞîŒ}nêÐå×F¶ÃÖÝiº—¼ בž÷TµÚ¦4Ÿ›s³ðk9|j~AGyú«.lôÓ…o<þJׯÂàÐH¬•ž o-l˜ð×Áhoc•NÑ(|§ÏeÜso &ŸRž|ø®f<æbí&ó`.؆+]p,^ \8ÿäöõ\6ñƒez¯ã#Ãn°Jg´ÑGvÖ”4Ð9 ÀFô>Ëè7¡°¥ò«#)ø¯Ï#ñ¯†‡×´ÝäÔÉe$o1}èP?ƒTÔ‹f˜O#ͧYš7HîIŒIÎ2¸Âš ÿÀ(ñ¤»|}:g`ñÇLQqÀ°Çh G¥'Œ¬E.èêñÂØ»Ãd4¿©á{±ñÕ~ï˜\ðZ"m’‚Ç€´—Ë50»,u‘¦w,|o(øÀ?ÃÄCÝH¹aÉ4…1jÄ V¤(e bá·`º+Ÿ˜¬«ɧ—§Âæ–~¡ã°5¨^§“%D>ånùãHœYuà•0%’°Æ¹.Ä"9ÇtF—Á¤gŠlUDêKK§ôôÕöçïÄì d(êþtˆ)G¬ƒ{§GùÁ¤hˆþd5çcO–9ìÚ=›ë“ÔÈñ„Œ:¤¹¹/¶ dÞ@¾æ©«Ÿ{èPP×’/üb+ F~;€¢÷†H× Q‚HFyÅÖ¥jÞ²©¿ŒCµ-¶…ða”gP½ø%ùSubPÙ,DÁîÞ2ªæÞá/&5Fµë§æ8ýD7¢ôDSQ3äõîâ®o¨­û43åº*êR_–ð&•B½1ci-V14È OI$uA#×°×) ü&Bvì­Ìk4í/ŽL™ E³a·Ï“üF UV|9´”8Ý_u#­„+n[‰´¡µÔlJ, Úhòe¹› íiÉôöß"x(¿‰}4Úýì˜ÁÃ.¾ß±`³fŒŠç*Tú§¾÷×üû¹äR»êÒ+xKn%ã3  9CWZs¼ÿõ“¤oµÞÁ»vÈ¡žÉ:’ks²óØÜá•^›ña§ZxaÊCç,aóO“UBÏ–ª @®Ãš¦cz4Á×qbc šN}e<ÿ6ÔË^ðf´-…¥Übûסù uZõåeh5°@YKFhWlúÁð:/«7|*…Žñì]º§¡£Ì»^íÄs·Í‚Ô€!´]»|¡ëÊGhåP~Èàµ-lR_Šk¥¡9þ\g{=AÏvfÐU@óÝg=ž Ðü³=%¿üÿÖ™X$¹\VÞɃ‡C¡mAàŒ/ áu¼Ëê N¸ñm¶UÈtE]}ßñâ)t¿¥ûÓó zª7òkìnCùò©ê£tð)ýÀ<±…4ôøåžo€¯ttMü0èÙéìë&Õ^—¼ý£!Q4p_Æ3Ž)ß›€I:ãšÙ 0]tòÎÉ_˜]xýèÁGXøðÁkÝñ*ü|Î:gG KžT†â“]°â^«<5 ~?ï8(#¾Ö·’fîÞþÞdvØi´ÁN£ûÂÉA$~‘Gž`‡¤[bÓŸ!ù1Gƒx{¤ =á[éߊ4T¼‘láH×2Ögo⮺êÆÑºÈä1sÕ–>Yx¬óú!ëøi3Ýdï*²Þ‰ô@Ž¥“nd'ü‘Û ï€½ òvØ\µF:ƒ˜sž(X¬”´…uÜU_š¢È’Á§W9'Q¬Ï´³ìQ;JìÈìy>;ƒ{¼ø½y{óQ?­¶4ÿD¹×ý¿šŠÖPÁ$!#ÿ¦*.ˆ.ÚAåxÎT…$TMRi˜êSÅý¿Â³zŸw¡úñšÈ4}„Ƀ>­ÜÏP³QàeÛQ^‚¯N2z6¾@ÎØ{ª¨W6_âYˆ!Ö$Ãhd“% Ó­‚&왺WÐôséyy¡£hæ/müŒ1-8)Zof¢Åï<ô,¹‚–­¹ÈID˜_^ÓxAÖõòò:‹ûs£ÆÌ‰C¦hû%(ïÝÚkaDû½Õu^Éçððe˜gaòC‡^×j¿}mèdu„É5+ V,çã(¦ÿ]oo:ä%yGªµ‡ ÿ>o#[’œRÏñ¶DþŽƒä_ï%Mc& ‰ÇpÙâæ—ÿã¶ä/¯þ)‰ž¢bçiÈ…K4!&^ëÊñ™ðtŒµìÃ:ÄFÌ;²½>𷯋bi×á|»Ó²À²L3T÷åÝúû\‚ ÆqÈå«÷üµ! _›õ]3÷B¡ßí#¡OÞ8N‰ïäi÷Z8g¸ÂÕõ—Ç.®?Ì‚Óbµ=¬úÿÇk.¼¦ÿǃÓÿÓŒ9OzÙyÇ%ø/ð¦òóDRÓ¥kÿzŒJ‚·ôçÓ*¡ì¸×@¸È6T¿å” 9Õ´&Wéš¡Ö>®éGÔßùHµï4Æ«S‘>†&®i™?\|ÐÒùÿ#ë-£ªz¿/^º[BTBR$$Da-R DƒREA1HAB:”nénTºAJº.ßÿ¸úãÞWkœ³÷>¯ÎÜsÎñìýyžØµžðƒÆ|£i“+ZЬ÷nçòµ;ÐÒGwAQ$Ú"?Èþ:£oUã¾èjè»Ã¦à½<´¿ž4ÀÏ”‹j¦/\¡_îWHÄü( T,…øÜ΀!?k¿y”ðБšÆrOü‚Iæ¸rfG}˜N4{í\㳑mÚ’W–aÞõ$¯áùbXTlpßvƒ%ÜÈ °„‘o^.Àšâtla”/l¸ò©n¤jÃVå-)5N$à“d<¼Åƒ„OD5g …x?ÝäÇ:$™~î›@Žäd‹ÓnïÒ’ÛÅ”g©Ç¼ ¿°†"ÝÇfÍåW‘¡ÓB·m™nL¶¨DP"³˜•2ÁQ?deÛÙÊNÁ½ÖÁ&ÑÉâ¸_\þx'"çãÓç.¨~ƃ²ªïIÝEÞî ¤ÿtÆLT+ ÖtÍ{£°ïÚYý-(ºñ$ñmŠOÄm¿=µ…’+…ÜÞ-(ͯâÀ@H²O%™Û©ãq#çäÔgU¨ðÔ%9‰¨o<‰%rÑFeI¿ú :=TY·Ù*ŒCµnÖ¯zg÷£zBABŽSj^ÛŸ–,³ÛߤÚz692Pg¹‚v¿Í2êզׅ^ûï¹’Ÿj¤)ÐÀb†ßWž ;'7¤íÐèYcb™žþärÄ$;Mˆ÷v«*¶¢©ÝÕF&ö?h6lj—ÿ,ÍŸÑ&°ÔÍÂzÙ‹ˆ]-@‰~ÎìWäø„ˆ€ÌV×¥Rá0øÈíÑú¤ªæŸ$±vÃéɽH0 Ž3;ubgW_Ye†Cô{þ!Í^—èÖ_ûHüoÆjëÉ?Rƒt§WszK°ÛO ÚG:B™÷8©ÝÏ.¨HbR‹…*‘G%ɱ½P“Æ.fÓ5 u¯ã¹×¿@ƒ%Ùo,ìÐDÕ ¸ß5r·W‰5 üMr%<÷e¡qﵖ׿C}¦FµÉc¨s¾óôôÔ¾ø¦RÒÒµÒîß-• ÖpiSýÔ¦ŠdíaØõ9•¬=Òd»ç_12yÄóß~:²1Ü:ÐÈäz™Á™šž™ê%ò Có›S™N©1ÐÇëÃk­¥­f÷ÍC[ÅtŒ²í´¯‹èÕõ[@§÷ Îrèrß!DÍS”ÒéÍ$4f>@‰:½mdN^ˆz~w ‰Æ >OÅSÖh@) iÿ< Öª„ú/¬¢á²èõ:_O4Ú tøæ…Æl«3âDÐDÉlûÖHšÞL“‘vC³æ‹;çTÑ®¦Rìú£Eu›ZÝxýšƒ}þ<½½ô´‹ ®_ëZLM!njBðbd˜(â/™ßüf±]ñ©4uCD8X~zz··Å:·Kïö¶‹„F¿ Ì=“ZUÝBˆøÆ@ðʯ÷´Gþ[‡£!l¸Ñ;'Óœö€øŸ‹”f4”š¸QÖÚ2\nÑ:¬ØCV¸y©½KÅÿ­—qˆ^ƒœ éÃþžá{„_Ù?ší¿çB¦9{ÿ7ÝŠ]9ˆ%þ{õÙº½äp½êTŒ{öëxÌ;#ÿõAfѾ¸ÿMÓ@1ŠÏ½=÷HýÞ}¡ÝWzOîÒÜ?ŽQùëYV w(Zõ¯ô¦–ØÍׯ ùå?Á¶ÕyBNø*ägNÚbßtšûê¢÷Áw³ð«§R衺ê~[}Û®n]m´'Y¡QéͧK³½ÐL¾è#ѱ -ÏÃiwªžB›Ê¹ÏWîC‡4G[È“,è²ù±ªNµ=ޏw0 ÀO©ûRIÐOØ“ÌË^›cM–2 Y,–Ð,È>‘ßú{»uN:>ñ LÔýáÛ÷ ¦ÍŸä4}ƒYÓ–z˜?cWt¼Â ¥VzÖhaéÈÍ KX‘´%&~ kZ¯Xj^…k"œRR°•–wr𠍦/̨ŸCBë03…ZH4+vïòå-$©ì»ªBƒd£ÔzdH©¡{ïÒNRÿØö W Dº¸†Oß\Å¡þ<ÓøId:ÿûîæb.2Ó¿s¶<–Š,3Â;ÎùpïáC±yOqß| Õ¨U rB™Ú|®+r/1»]]Cž9szùŒ,äç{Àòêº †ºßž0ŽBa#L´+&CÑb9ªç(þÉßô÷J6>X*®¤F©Í¨ª;Â({nHë› q·«Í‹B›²“§8XPÑîü]Æ"Tæ¾7û„óªLéÕ/]ãDµ†!s‹$zT;ŸXÙÞ‚šÉYvvû›Z¼‰M>êîizöjWwzë-ì?ƒQÿn‚ºþq"4xézÝhÓ 3LâÔÖÑh©3–Üi×”ÐZVOkCmß½.¿rÚÛÉvÙ¦B§ÍÓÔ©\è¦Oàr©­Þ\Es—àghÆdkö7èǯÔ?È`à@¤”h3 õr×ô.€‘åæ{ï7¦a uïÆ°ÂäWGëi˜‰oT<â>sÎõ\sWØaá„$Sör4ü‘ËýÀeC Ëök×?Ÿ„Õ¦Ûl¸`ãáñ7?jÁös­ï U.H0WMý¬ ‰>6( ‰Ê"Éã›9‡LŽ"ÙrjûóáH1)6H‰Ô/#|m{³ÎÚ¹5¦,>ð9gø)!“f´êh°23ÔV|³ˆ¬zmm¸÷˜×àÆ1Üq.ÄM9 9$cÜ%›^!×T)±A ´³M3Fž±Ìˆ˜'­ÈçÏcÛ$žƒöÛiÁQxè…"Ï»x2àåÛ‚E¡ƒŠíÞ“°$ž)™•þV”wκ»pÁÚé£>½NƳT¢b l/0kø­Àή»¯ž ¿è—á„D_åg§…E‘$¢Ç`ì²à¼°àU¤”ò|îùã R·Ü/vw|…táu¢[¼³ÈðÕ±sÞí82Z8œ§e{f{C j‘¥Ü„P? Ù–Šæêì8q_ÖŠW—Ì6r¬ŠˆÜ@îz.ëÏ}ÈSI–šÈ÷Ç@Áäã Ú½å2þ„ÂûÏݬ=Ž¢^okB© xô}NÖ•(™¨U«A®ŠR-¹÷×ÔPV6Ðá½€"'½Ã55ä 'h—eQÑ C2…P™ÎÑ㚪ü8'Šjéó—ˆQ=†.©©QóŽl^Æ÷xÔ6qo~±QŠºâ?ÉÈLªñ”П‹óZ£¨sU“ ¶Ð |­„£x ×hÊuM^áiõÇT©ZÐ8‹#õ¸9šÊ¯iG³únÊž,4¯*™¼´¡€–]¢‚_Š `õÓ`Uê£ÿöÇПþå Y¥é‚D)eÖw•"È7 ’c<úd]üã“Ä_2Ua¾ qzt¶£'C!Fã¹qÞÄt77ÞUp‚<ÚôO{4 tÚK£Æ¾¾µ/`WÚýÿne܈„êkÇ &²jy®“èñ@]’q󭃫»>Fðâ™I4¤9Æ‘F@ƒsâ™—A¨—~OïÐ/uܳî°lAí^òo^¬¿ æî:Kõ#ÔØøªó¸ƒšÂ¶ ˜:¨ÕÙf5ŠÛíq‡kÚ.CÝ-)³âJO¨¯*ïÒþXgØ]d•â¡)Ëÿ¼Ý¡,hþäS=C -ßoΩ‰÷Ak‡­RPâh«iz |«Úßq ¯C'ˆQ {BW[Aǽã:ÐS™üæ‚üøy8:}»+ú Î^;IsãbÜ0äå0mä#NÌ?7‹5`ìQõQ?ßA˜è(77®õ‚é@ÃMb˜M7t‘\T…ù¨Ê•µmrXŒ<2&Û®K /ü aUn4÷Ô\¬O=øÃ}„¶~çg¿`+F‚°v*çY$Ò=µgâæM$ÙëãèÔdÌ]-'ÚˆÂêl·ÆI¤š[w ÒEÚ4•î‡CÇ‘ASéÒY-dì?éŸÍµ‰{¶}T޳"KL¦|y‚l½”\7¨÷á> ™oñÀP&i€rEt59½ƒÇgiŽí»…<…-ú±älÈgñ2ÉþúïŒ ¾FއNk²Œº=Bá)˜HÖDÑ´x&•Z¿F°©éI‡’œZSD_Åñh5çTgða”vµo{è²w¢ššQ.ãZM©"Êso}ŠìAH¯>¸!ßƒŠ¹{K¯¢²¼OUãoTY`½üù²ª}j"·®@õGOm,”QSå«uFa jS ÚoH Î åñ!qBÔ‹ä ê²@}Üšî¬C†½Ò‚h(QÂÁ³3Fšº¶“ö6xÚí‚jî5R4ν²P'6…¦t!îýhæ}X…¬Ð|oºkÛZ45óý!³A«Ì©ò?bñÜ—õWþ\…¥à¸ç¹qP°ÇPòn¤;=½þÆ®7LÏl“@¬m«½†u%¼‰´ÿQac÷t¨þßzvwàµÿ[oëüM!Þ;l/ @þ0yš—tÐårPèEmÐpîaýñïÁÁOWˆûš\—žh)g£Û¨2!½&ZÂRÞ²øó•­Êþë_*ç5Èws-ÅR»ä<»Nó&kt×Ϻ}¾Yþ›9Ñ«ßZg!gOÝçÍ=¬»¾e·Íþ~·¯mE{}cý¯jåMêýof $íôåB¶”FS´šè®ºÉ°YüøÇ1Ê'ù„T‡¡ˆ¯"ôjg(”TjUpeÞ€²Â6ù=ŠåP^kwËT­*‡üÇ&¡²Ö\a¬‘ªy3¸¯«w@mÞ¢¹‚º(4˜0œy±° MžÑÁ¥±kÐ<–sî.´>¯lð¯Î‚v§&Iê[ï Ó§ówB| t—]³àoƒ9{´¢} 7>Ôbï}æ}eÀeƒ[þôTC0<^µ¿~ƈµnª{¯Ã„"ãš ˜*ÜNÞ‚ßÕ[tâç½`žÿý8õãHXäÐJPb¨‚%ɉ)âHXÑ;`>ÖŸ kVkÓr°á(ßuþ$lÝ;â­uxv2Ê9ûòsÅÍ­»ï…hY;ŸE·v©ì²3H––¬IД܉oŸ #uÑü©@?¤{S-Õ– ….ïÖcÌéÄR×Õ÷4¸§i_³ò$²„< êAd+ÓUT Â}næá5 BÈ‘º‡*¸¹ã;k ¿BžP^¥`ò>ä«8xáÀ¤ ŠùiÜBCurÏ{®¢¨¯%ÿ³E¿=ó±]$%ïí‰nÕ¸‹RÉWiåÜ­Q–^í¡ª<Êýòî¥aÐEf‹{A¨TõCQióÒÑ‹å¨RÈÕã'ªy=õ8±ŠêQ…ÉSI*¨ùè[QÎ+~Ô¶?©Ó1ù uu'Þn–ÄSgXs8 ¤Q¿ò˜Öo•U4X¾O1vÇ E—íñtÂùB&q64u2¾“‹¦Ý£Žï9úðLæ¹_¤ŸÑ¢h^T)‡­vŠÇC2‰`¥ðÅYñËŒÿx 9%9 ‰C#ôU'ÿqþrbµµ”E•Oüã”üå'„ 1rVž`ü7ÿòþòþòþr ¾2©™_JïÂø£÷¡ªY½R…°jœu;–VZ¡¶áÎ]£C— ^,+PÒ?êã¯ñ÷ Ãÿx$ÿ/¤Ö¬Ü$w©ðßuÕ+w›³ÿÍ¿Ç1¼Ù±øj¢:¥¢8þqLêûOŠv{^Nî5©þñSš›xK>íöÊ¿œ”ÖA¡<ŽÉœ„öŽ6ÊY{-èÜ×îÐá Ðõ¶ö…_Rô\?êÐCS´›_¹ m9@߃?]¿(ìvsâ'I¡–k0´wïy+o?0“7õЇÑ*EöP×4Ÿ´šT’¡ƒ©‡4ç_YÀïGTq©NÃ<‰ÅOEÒ+°H”Ä£¯ù–¤yrMÏÁJ¬¡|!„õÓÕÆç}‡-¾(W{2$P |L^„Ó£É_ ‘85˜;Ó†ICRÞ2¨: y#s|š7Rêt¸è#Í&{ßyÒA¤¯+®Ü˸ˆŒÓ]÷’3p‚„j×€²(˜k& Ê"Û ‹…Pd_¤]|e'‚?­Ün@®S‹¯Úë‚ð ãÃ{÷ŸD ß"q¬ÏïyoÎlg“ ÿZ†ßµÂ«xh¿!]ŠŽ5 ‡œ »¢w¡’•Ð Å-ÏŸ®f¸Œ’ôGL8ûáÑO}x…GPÚ®Sj`ÁeM”R4’¢\ØÅ¶®V;”§¼P7o¡žA¡†Šé¬œ³µº¨,xhäÎYT™g±hTÚÕÕ »ß'tPýžÏ'Ïs¶¨ Ü–d¨M’À›A¡†:#¼íœÏQ/уDÑIõq« ¸ý(<¦>Ii»Ûªóƒ+tÑÈå§Å-ãv16Üõ—žÍñ¡\“ÿ/äï÷Ïû{]VÇá ñÄô\”ÿßüÿ=ÿïïüåšü½ï”\Ü:0Õþ?ŽÉ;ŠkPñqú¢_ËÿïþðWïuÛtt…ó1ÕÍ£V OÎÙ#ÐN‘lýÍ•áŸ>»µ^ˆÈ8 ½- Dá Cð+;âÓ…{öпüôX ñ: 6X´¼¢ï†á\Ö¤vÒÿÓåÚÁÿŸÁ”#çZÔ‘ÿé’ºìîâ(Â"£õ‡wñÿÓå9SóSÚ°fïyyë0'lØ«Q>n˜…-{Ç?ÚµM°sW¦ÊVG f¢KG¢Ë¦M3 /‘D»‰Í‰ÓÉžxÍÚ÷(#%M[BdÐ(R—<*õAºgß™œ_C†tO[â&d\{|h¥÷dœ™½¦A…,NHÂâê‘Í·Ïw•‹÷I—}š0FŽËÄk!ä/û®œ»²¶ò8‘÷”g{ _Àüó!MØì·ë4žG¡L£'bQdëÃL6EŠ›Z(Ôú£¤É³ÏòQêþ!•ùùÛ(3º66.‡rùσEøP~&ù€êåvT^m™#G¥IKcSæT)e9)ðÕ24¹=žFõ»”mF/Ôô5*-0Ûío7Y«¸ºëP×qi{^ûžz*G¨Åÿõ' uJ4ÐP˜ìt¦Â0ù(½ºQ‚ƤJwú-Ñ$©˜fç =šy´‡³Øû£¹{úaø5´üÈwmŸS5žÔIvN̆¡…‰gZo¡í¹îeêcIzt¥í‰0¤6 8ä.‰—ãõ %!®m#kxç!ÄQݹí ±òÎû ÃSàýí+©SV3á{)„mì „Rå)é„A(±ýb‹­-Dû* *t^‚T3'·#¦Sûü¬µ'”ÈMæQ°\‡òH¥q6g/ø¶Ý-v¿Çª´3=ùÓ¡z>Œ‹Õ“j-?>*Ô…º¯XÚð êO0 ? ukº/êCm[ÂÕRz¨é’º¹ždÕӳʗ)ž@õ-ÍÏÏk¡ÚsR dõTÏy›R<1š÷Oõ3% –Ëö;ƒëÔíᕱ¢Ðú›e!¿OQ@#ËêOaÅÃÐ I}EZšßbbúpZâ|S{¡5•*Ñ•ÚÿÜÿ²úÚßäŸl‚޾£¾ÃÇ¡ëL`ïÖNè”ÜèÖ?ìË—Þ ©A×÷Ñ~Ì0 4+nœƒÃæ꤉0ü±láŽ$1Œ¾”ùøÀ¤Æã)h¢GaJøÖ–Ë<𛉤OŒWæJÎfÎõoÁ‡ ä“îÄð§±FÃO/VÄ´®Ü] …µ¦à?æÂfá÷]µpØéQÙz'ƒ„¾‰ú·ËµX‘¶™ì3’òó0xµ"¹ñ´‹`ƒR6Ý7PPîAš«/ü²¬@ú£ºe‹O"‘‘çBs¨N82õ‰—<ÕBæ6ÅÛìO(‘âk£ÎûWÈî²&'|÷  Êi<:hœ%WåŸÜCîŠ@f-ž‹ÈsbÞ@õ¤ ò¶çÔ©Î_GþÊVúqi,e³¤v…v¶¶AQæ<£¶vjç')pÌÞB‰·\o<ê$’EæÒAŽ\Qy(+xáÞ«ó´(w…,ú“BžèMxíßnŒàäB@à̇ŠAŸ=§óûQù` ­ðGTé»#Óµ‡ÕrÙR}£ú‹[æÄ©gQóüG´þèÚÊ4bJ¼¨+ÛtΙé(ž"¢uúéõ õíçwäÑàLÇçÚÛ2hh)æ?&£ŒF×Sì™Õnâéð‘džý”hüScÅù‹š³q$4 @³ Ãís yh®QQßKC‹–dDþb'ÙÑjÆ–L«p­‰œeÌŽÕÀü½Ã4„·-ë;Çw>J/¦wŸ…1}Ágï½à}ËP]rlD _•S„Š%%’öUtêaÌ·J– ‚e:~ŒùC ÎêÉêûŸ!P|XM-1B>ÙƒwÚkˆœºÃü”bwñAÉ.z¸“] DŠqñÃŽ!uàuri’:¤³*§¾ïÜ‚ o÷Ug_dE&&u’gÜnÁ¯šˆ,&Ù-¹5ÑÈv­£Å®` ÷±üÎ|±ÛßÔÎñLæ¤"·Ã… 4WF‡“ ¢ˆ|w´ÕÏ¡ÀhNÓ§f =çi¬…"£ù·mªµQ\ÇîeGI]¿£_ªPêVŸMžÊŒÈ–ާF¹O ÷=zP~˜zfÊz s¦ Òb‡å~BT©t=ÿäô­]樿lCõÈ”ß:)”¨ù¸$ΟGµçß=ø1‹ºÓRvLñ”õu¤!Ô¯/<š˜‚†$’6ÇÇ¢ÐÈäê6+ž®:6ëZ¢„&Vqî: Th¶?ÿGÂ4§P§çCKáÚ¦g)Ÿñì󱎙"JX3s>nrì×Ìâ!#ˆŸ €ÏRù¢ÞùÆ ‹­Å{sBÜS™L:ÛˆílºZ»±¢/n,í…÷ɹ\¥K!"íF ³„JZ\´;Ë¡¼¥U¿žåìúÛhrîI#Hå¾0Õr[rÜ ò‚§Ÿ@q01‰Úev(~Ä2qß¾Ý\-¬o„ï•û^kFAµû¨½Ì¦(ÔLþ|&üa×ÏLݧ´én@]SáÑé¨{JÙæ¿÷ÔêgÐ\΀Ó„p4Ÿj§WûÙAÕÆSæt¶!¨ÚƆÔYE¨v-êÜÏÜ 5ü¿÷Ô\q‡šTþ¼i¨McÔ:ä õŒ’äòBÞÐþXõYÛyh:w\ˆ½tš/‰\tÔj„–«óÉNÌÐê:•’½Ðf)ðê‹!´Ûn¾½'`±oÔÐXºØÏ x÷C÷Oñb»ðƒaÉ}£ú ü* c=O[±›y<ð­ÁŒZñ'_aØS()fÌFMD•åÆ`ü\֑환láHý®63Ñ;ìÝòl0çaóä}ñ X098ãýþ8ºÚ¨õÀò'eÿÏÂâ°¦c;# ›<Žñ‚|b°s„ÂmþP º[¤[ÖƒDmX¼Þ‡$Yo}&l(ìGacòÌ2Rêe×QÈÔ#õ‰ù™ìx¤{ûëSÆ2ÔÿªÉ˜}‚LDÊcÄ,ù²À‡gýȰ œÒŠ{†ïV¼5Áý÷S(®íæ,NáÉqYž(侟¼§TNÍFŽú"ïC§?±ŸÈ¯u~_:ë Z°)ÂEjrU8‰"©¢I)(Ö«slo:JD|rº=rê^ëPäA©m£(+”Y}f¤²Â‚rJ NIGñÄÇ1“›…Ú'ÞZV BE¯Kq®¨L9ʓѹ…*õ#Œ?¶Q-}q«ÕÃWŸ¯X æ³ã/wXPûþÊŸ4OBÔõõšøæ§,ãÚ=_¸¡þËöCËhàqÈM† }¨¸bÐèÚ —téýxúéŽå¥¹j4γ_SÊC“õ¥9î(4;ssöe-ži—¾µç©Z¸wûÕƒVRÄñÏãj¡7a®Erÿõ9ÈÛ+œžu>°ç*;µñ/–n«ëÂ{µüdÞ½ ì{OvšÞ¥¾æïžO†puy±2>qÓ»|‚mÈ#-zH!ð|Ž|áÑU<ü\.óA2„”œUáa€È0ñõs¥<û=¼¤x]’O°T8ž‚t ‘BMÈì¿@ ÑÙ:Ü£,«}ýý®¹Ó>+ÈQ¤J6Ñkœ ®òÛË 1Z¾/ûä0·Þ>qâdÅÈÇA¶ÐõóÁ—‰ «U»©øêoÈòÍÞ“& Y I¹?Sí «xK·±«²•º»%ÖBvÝV«/q%äTi†&'øB>CɳP$V,^É %ëKW ,Òm걇û®¿U³oXTBÅ»µÜ :;¨4ÉçðXµ†*Ï â÷AMç:í‡[bP¯’ÙtíI4VOËŒU­@³F. óƒÐ2`¢ÊV¿m‰¦—†‡e #ôÎDãíèz«ª»Uæ=ÓÂ<¡4²ðóý´À}õ7Ðñ—àõþÏ0xÒØ¤ó# Ë7_ûü§F-ºî¬“Ãø›$K[5˜¢œm“Úíoôu kù|0WCùÇï¹ ,”Khó÷ÁŸ¶kËœæ°<:Ç.þlVÇDqÖæÁú`~VJ¦!lŽñ+½Üz;^ rw Ç$Šóé‘HF,@°Ê I˜Vf©‹ ÙÉ«ëqËcHñÕ/ã|Ïg¤¾l9®¨Íˆt%$&ÒÈðð“„íF>2n1–Ä=O,¥{”T‘EñStÓœ ²™4°7ö!û2W‚³ø6rpé€M5rŸ~c%ï ‚<Š5™…ñTÈw)—25ø& 4=“ÖiF¡»òFeó(ÒXNÉðìŠ+}ÄKañ(©*7ÏOö¥\ÝHšo‡£ÌÐÍÁ 7”+»¬×–ñH,7B.3¢â‰‡‚ºº¨´e:bsÐ Ušï·³\DµO\Wß±º zÔ¼D¸r0j>ô=?5…ÚVu׆ú™P÷Ø CGW<ž:–ÌE,¢„ú™×鯑٢Á¯³Î¯ÍшpÎ2ï*žö·!çD¦ç?C IÑ´,ŒóÑžj<öK¼áÃ9´Hr_ÏE«…G$Îuç`™ª”àe2ä7Œ¸'0B?+exù¤Übf^ƒ/"Áw®Ôwâzºlå®^r^¿¿µâ±œY5z>ðþiÔ› Ú—ÑâC3®tBÍ |^M…PU–ˆÉLRˆöó».’ 2~®\üû&äpŒÐÕßžO û –•×¼ •Oo¡bq¯ê¾Úuø®èÝQàü ªÖ%ÓMïšCÍ-Zÿà+{¡vÊ4¸SïÔ]´*Z6ºu¬•ìëzyPÓ1år…Úª;÷–xÓ>…ªiIvc¡)¨ºó /2fªy¼%ƒªåySÑXK¨N^ˆR=\52ã U× öÄñiY·°š=|‰w A“1uâR4V>ùM#š¥Ä‹¾Lœ–fIo*u¡U¾.žÈ>ÚxÍ¢ËúL¡]ˆa@ôtØÏe-VJBg· ÇâÂtˆ]¸W@½E‚Ëvi[ðËÂ)—ÿ•ô—›Š|¼¸ ƒ^}¶ûÈûaøä›³UïÊ`”ƒ·ÝˆƒÆ÷YXUÂä­/·oq§ÃŒØÚéG§WaNÌÎÂ0ôÌïüj嬣€?¤ûÈdö²úñ´³ßaµJ,åKþkØð£M"$ª€íû‡ã‡s¯ A¥ ×çËHtiK"#™ IvŒgÍ켨m:RÔl.Cj“[!íTOŽàj^ÊÕ%d¸eúµúÍ5dâ~ð¤Ã ™‰h~®«|@V.î<‚6ÜëÒXq6{ ÷-G)}H÷FŽÐ‹cõñÈ-œ¯ðóÌ Ÿ™~\ƒ¼b|O›¯h!ßB±­žÚ$N ÷“½„BÎôz¼Ó"(¢ÕÐKÅœüw,–UPâáJ*‹e•»×Xò¥jÛÂÖ™Q¦ú£ÀŠß®žXN»ÏŽ'îÚo¡ˆ@U5MÓŠç™$G_“¡Ò=WðcT)Ö™˜ÌBµ”¦c_ú„P=Ù2„UÅ5Ó*›?ëG ögYý¨ûSÈŠ§ OåË[$êçwu|7ÌDƒ7ž‡:ÎþDÃ[\÷D) Ñèªê]-¾R<íÁNŸ^ù_>Ù`IrG“_ΉT4#ŠìG¢>’nzî9,„½ÿ:éâö*DvÁòÇZÏý‰G`5éiAú;"X¾N®Àó6‰.I²ZÂv}d?›DNR’S#íwSí¾ˆÄË~==UäH&àp_å±RDŽIŸ¼#‚ÔÊÕÚ¯‘Ž4+ BÁÉâ-Ók3dì‹êÀ=×­ÎÐ+ô#‹ð×+Ó¬jÈ&ÿÍFaº Ù;ôß©µµàu÷7tãÈ¥Ír7U‘ç°‡4Gò±VÑ7È @‘U’w• ÙŸg E‘‚ºàÏZ×Q\¦CшH%§=UÓ@)gö%ÅT”("›oJq2U½zùnÏ¢2YûÇ‹‚é¨Ò)ÉÛa„je¾!IgsQý½¬ÛD//jz½¾&—ëÚú‰jjCÒ¨ËÕ¥%Œ§DûÒ£P?èÐ\õ…}hPàë©w‚ —ކ2®ÂÓz‚-a/hÐø»»ÚˆÔš^ð²–›Å3¢î¦¹Rh!°ïõ%T´2㔘ù•K·yý&$ _ôM¦çâHw¤ãÛ. ÉõÏSOØý„ñîÔˆýýá£Ðuˆ}¦èâÍ3±ôí1å‰Ëðþå1²‡#Ö±¬Þtå „>ˆO#z ¡vN.Ë]¦ý\üXŸ¤dœ }Éܸ›íI¨OÃ'½£Ñe¬—á‹ éõ ‰Pá,Û`_Ñ•E¿Ÿô½~Uwï®Ü$ðr…@"±-¨½'§|Þßj7‰”vÒßAmüÃs½' ÆJ ËYbªM|ûªÊx êr«wÍñø¾s;ÅÿȨ"™âôùQ·›û;%ú ZtE¸d|ªËSƒcd¡¦ñäw¾KeP§Ì<ÒùËê#÷hl¶@ãïÀª¸h&¦g÷„²Ï‰ÅÜO •ôc”Þ«ÇÐ:é›QføÚfù…èFl¡Cäw’ìè «øb½ÝšGèòæ÷BïysúÀnø¹†Fã{ø ßßO¸[…5æ?Ý„a¦ æß†œ02¼ÏAžà Œµ“¹Ç;ÁäÁ ÚÂî0]ºøRÔ¹f›¬ÉÆÌ`>9¼ `Å£¾ŒÐJ™ÀR«d#œ…U•Íëò÷`}1#¥gà lµèut)S!è‹ù’M$Ür$ýÂÄõO=Êï$!éäiß4ÑKH¡½ïK$gRUÿn×·¹„´ö™‡ß#_Sñ ´2~;¤xùÎܺHïsYRN ™—˜#ÛÂ'ÊÕ†û¸Ï)Ðs‚•9H1ôf r}z¯;õjOxT„<½?ìÙ>ä#_8KòŒ› $\ã꿌B”©g¸³ñp×-ÆSãxd«¹2JÁ%D4ö¨]EÉ>"¡³o­Q*¤‰²+QešÖS¹øñØø(‰í"²±ˆf¿Y½ï× ¹IƒZ|Unè±E+«÷¿W€ßs÷oä ç@ŽkÚ‘ú÷< íø_®Šm ˜{3чÏÙ²5@${OÕ9„ÏUÍz Ñ@¸Õ¦+´zýB‹ŠÖ ç:p1–.@àk‘C¡aŽÈýƒç™t„¨:D”QÒCÄJh%ý1ˆ5ËÒå¼gIsë‡.I@ZÍÔþBú Ù>ü@ìú›KQü»Ë]ÿ¬»W»r4¶mØL 'Û[,9‹r^2%†ì…W$E_!Û¡9ò[ùÈ&ß“›p? ²šœh4މBV²ÁáézÈš®&ý<¶ëƒì.ÒqÊTýñ)ÇQ=ÈÑ z‘urÏxaé«JÈ<,rø+1Å…ö ØÞ‡RÊú™²Ìi(Ë\ºÖ¹ëoJÂËû¡â99)Á«e¨<”TDPŧ¨¸£¤5¦1›ñP—È|S1t OŠóÚ‚¦M¡ƒSö@ËkII†…Ðv’ô:‰±%t° 8TyïæÏ±Uk«¦è!}¢xÝ~¼:þ:œ¾úÒ.‰Dv’Ã@©^ïÑ0TñüXëck™«h°¿o ã"bŠ5Þ0U-ŸV- 3ïü×®œ_‚¹§F޼’ñ°àòÛ§6þ¸~öV1†e·„^² OX½4Ø¢è¤ëg…-r`óbŸ›˜4l¿ùbÆ¡‹¦û Î]E"Brc›É3HÜÃU™b<ˆddçI÷ø!…§r‘W(R³K¥˜t†!mwÖr±À:2o” ¬"c³x¬×C_ÜcyÖKõøda®U —gC6žâ¤”'YÈž÷à çÍD<Ðv-r¤˜l7N©Éø¨!Ë‹§Á‘ȧpó‰éˆ“dvPÉD!ý;Ëd¡ˆ"ï;ù®P“ øá%‡b””¹<õ¨¥.~þ–Iú eú6„§Q®Z‹üï*ìgè™tÔEEm©ƒ)oP™ÁÈýò2Té{ñÉ%DÕ¾-}ÎIXEõ˜;Ç\3PóÆ† ý= ÔVyÈž8j†ºd mÅÒQo‚]¾Xr õoö·ð|mÝÍ™yO:‡›Ð°Â[}é žfäRý3Æ^ViëhJuöý\ š•ÑÜ /ÑCóØ/óvïѲ¤ðœó<ü™zÆ:]Uy¾xç¾â$¤=›“ù¶£¿›÷ˆÅ•r¾@üó³ÛqÃCû~,Õ÷yÄZͪøë™C,Áªç8¡¼jò¤*‡È}ñ Âã 4Y«¹ùM1„zÕ ÚIÚõ·v‚ýÌrÓèÊŒM d_Sø|<¬ŠR´o91CYãɨs…¹ðuÌÔ,§ä=TJ›É’åº@Q-†>Ìê ç·ÎóƒP»gßÌlƒ2Ô¾N¨¦¤.ƒZ)ˆkùtª‡lÁÉ,ªÚ·ˆh]Šáû”ÛÜn(€ïÜÝï†ïO+Ý[ßÀ÷­³¦†e¶P•¹‘'›P­wåɽÊ-¨9oÃøtj{žó,C½—°gÒkJh|Or¬@ šêäÎ_p‚æ„Ï2hiðVh­™ÅeŸ+‰ -WîZGÅ8´Ï}ô·L†N³"&ÿ†uèÚÉÿ-,½4ÏWd<óàgãBJPô›"å2„A;ꪽ0Ôw¾–™Ü FR¶ø†Æ^fï  Õ”û~tÈôîLuç“"˜Un£¼éóFf‘F¼´°xÜáëÐá@X:'<{ïû2¬|®–#øâë–Fs>ÿ†->òÚ†$ "YùZü _O¿1ï>ŒÄæ;¿Å¨W‘ôúÁqq]$¯Ö“w`ŠC*;¦Ú-¤©ýÁæŒÒG\^ÊxŽŒöü;ú|þ¸G¬[±—PY¤ï¼Ë©ŒD6—„So&X‘}ðY¿WpµšÒäMG®ƒ9 ¼{‘{cÒç»r ò< T³šâC>•+óÏcuQ@S6î Ð<” nÇqc_ ômâõÁ#/™_ z?GñÅ—t”î—P2±¦eÆm¥ìü‘õ´ Ê\þÓp6û+~ܤ:æˆ'ø’ãe.F…äýØù!Åí&ûEP©Ü†Ý¦oUÞˆ™*ßÍÑO¿­½/FõoØv¨W5×úí8? Î —4¾w¨÷ðáÓÄ£¨/#í“ÔŽäeм hPËñz@Ù ƒé¯ºô~A#§_A÷IH𴾎‡‚ +Ul—¼|ƒ&ÊÙåoW ééÉrÎ% 4óôñ,Þ¢À3y¤¨¶Û—-¨^Ÿ û±Ûã|~frÃL°H„vd_¤.ümaIK÷²~‘@,uÊcËc_ JþâÎÙ¯añp¦ 0ÂìÚΨ–B¸þ`…ÐQ \ßáñï€à¾·}N™˜8ÎùT7÷{³.Ñÿ‚ŸKîz½„ˆÔÑ¥{P!°Qi’J’Æx -McϽãnÙ§\h¸ëoáq3W$!»éåÛ7ã{S~5%rre.*¾b‡ŸÄ]‡tȸ¢™³n ÙF§òW+!kiøWšŸ/d5l ÓЬOn4{!›¾[4“”²Õ?$û{ÄAöÐ9<º 9þ_—_>sƒÜ–MÒaÈØ2ºŠúÈe;ü>@©¤¬ÃD¬ ”zž¥Øõ·;GÝ.ž„ŠG/>D¶ T2fô†¥Ã÷Õísi‡¡†µ>š¬¡Îì[Ý¡÷ÛÐðcB4Ç”šÚ‡™ÈÓ@‹·íÐÆbéÎL; ímëÉß(®BçKC‡]ß û”á›8)øAnóýk+ôq–î÷²©ƒOíãœ)zêðî§n Œl„«¼€±Õ…JÂÀ_0阯z`Ïn³£K*²‚9û›|³¤¥° ­+ÐêšT.Ö UµÂò‰‡'æ*aUH~ªY> Ö÷eØ’ŒÂ¦@q®‡l›mljžF‚K³ùáÙ‘H8ê*swC‰K²³n •"騥ßý÷¿Â8©ËI‘jŽÛÏ–£i?~œm¢·D|wézq(2~º{™ñâõsQ·d÷!óv+5Í$²Qdϱq‡#{p–ÏÊÛx ­¶JιYÙ ŸÄƒ;¿ÿˆÐ_B>ÁÕ.…,ð'»¯û™…äB[ú‰GQÄw ë@m(Š<¤,Ø¬Ž’‡N 镟F)ë Ü55(óK^oêÛ”«/<ßl•ƒ Ž5“¨h|ïg·4*³7+\“²B•±©®/f"¨Vk=V6+ê±_7|hPÓõ‰6Ô–±üM9á…:3ߨÄD¤Pï‹vhž%ê[†f{ñø¡Ó`€ÿs4 h[¸è‰Fm¬¹_,;ÐXâ$ë]‘%4IWJ æA3ÃØø‡jßÐü ƒáɘ´ä=ýü7±5ü±ø£–¤ ¹£ÓšýMàcr‹Æ yzHò¸•«AñÌ/…8!Ö˜'9{Žb%#™Coµ@ÌÂ~#ZóVxÿîÒÌ› Bˆ„œ’èª|mš]ŠŽSƒÐø}ôkýâÖ÷ÂmHQÔUÓNsßÍuŽl×…y¡ˆÌNáø—b(³ð©—¨«€¯6C„ynð-ý˘h·-|÷aó)$„jÞˆÈîì*¨IØ|ëE'µ‚ÚúLöCPS¾> ózPíwùž,T_å3ä7ï—Y-r,‰á;ñUEgUøN|å|Íø~?°ó‚Þ(TÉ(ežU=á_¡zå¬×v2 Ôº¬T¸\‡z–¼A ~EhäÌÅ—µÐª_U±Í/èÚÖ %äjÀèàh½ù»é³œ´ÝÖ-ˆŒ»í¹Ô›Œì‚й÷‘µ¥1tå¶á?¯=¹ŸoDY¿ŸRï÷>‚~EAñû00`Ýá'C©uäŠ{`Ä…ü5m¥9Œi™xZ퇉k&ý3‰aêÇ8Ƀ¨wð;§;«Æ8æ¶XÍ轂…vƘBžæÝ|ÂKÿyó¬œ&à>ikËþ‘aÓ#èØg ØÁ‚¯‡=Ž#¡€rú¼߸¦Ž$+³jYN½H®þ _Š,)3ºõÕé#O¢|ý Ò­<>+°l‹Œ”¼¥Rµ‘ÈTùÙEÛš™Ë>0Ð5"ëÂë QâTd7»;c3t÷÷w¯5ä §O窛y r§Ž·_"œDiÞ8¡WÈ;U%w¸eòOír⹎‡”‡®îSø‰‡Iiöú¯ànScþÚ /j{,Þ%¯xyéG ”„ŽÛiÂh”QØä.ƒÇ^ñ¿4hÁãË“ŽÜšÜ¨pSíe½—*²ÑüiRŠJ)¾¬ê/Ž£Š÷¹4^T ¿@ôˆ Õ[%\²uP‹ËYTWM un…§Zy¢^»ÓÒ§ï¨þÁ‰ûQ4ËþÓÜ8€cWÿ¦Îªª¥‹ã—’)E ¥SÜ›é)iQ±±Ai¥ i$$¥KºI‘0õã}ðxÞµÎÚÿsfæüföÜ™=ÃZÜÑpʶ@ã¸ûÎÁ•¼hr<9zûÂK4=à$xW³Ͷ ÜÙæ[´(tÔšÑü7]í,'ZýصtI-ù¶||¨<‚‡º_}hcÆ#á’ûiÊHà“bä›;™Iy“P™:Í ‰9A}y”£RÆÙ<Q|´2ô=3ùL˜Á žÊò÷ÙzÀS5MËè«––ç/BÔZ¡[ëžWÇCPq“'¡‚XD¨l§¿@Èó€âÜÚþÍŒPœ 1Ó5ý7IoAâÃ:/b'FxO¥îx2êýù,Å·ß*KãÈj ¶Ô¾fÙFól=g{ ;w*²ë$ dß<ð4ë呵ø§ëç-ÿ²€ˆ$º2?ä’ç†ØCfã#Ív‚ûšÕS¶‡,‰i³¾)È:?É噌Í.c'­Ùï °} 93¯'Ú®@žpXÓ•2PÈ~þ±Wv~1ÁôJ+{ÿ*‘[‹oùûç™NCÅ&ÓŒÞP¹œIóK€ªß^?jG µ®WÂor@åÅtÉLÐä;%+N ÍiÏö•Y‘B«2펭¯CÛ‡¬KüU·¡ãIÓtÙ£è’I9S4üz¸Gíý;¡ïº÷jN×4 >f¢´ü#2Z6×Í`LW“0ɼã÷È÷¼'+€ÉÊ\¹ø·0#¯ãc½¶4⣫„9È¡‚în˜çO®ì“3…EFZz¯#øF|4²ÿ|ŸÝbO=?{ž‘.^`…•‰ð~6Û)øÍEö|rôôæý&È›¨~ˆ5’$Z3êàépÜReNÏ#&†b?ßÍ:œAÊjj÷;‘æVâÔØ÷b¤Tlæ5–Gúø‰—š‹È(a[þZò 2Mõö¸_„,³É²w î"û…±kïK ÓGà«/‹ î RÛ+¯…¼3†6 Þ⸓A‘Dñü)¸ØûIB!ù²ÒòOù¡ÈÙOXÿHÅXŒTäZQ‚{q"“ЋR‡©¼ü÷¢Lÿµ3ŸN |ëžÒ]¡nx@¼¢à€«7*Y&8É»Q…ß`Ëy…lT;øŽÕ›¶5ÊÞ@ÍxJ舫Ã'ßó2x¢Ž lùñOÏQ·½£çóP?Üçðyù4T2 긥ŠFš´Ï?Êi¢ñ±]Ϻ$ÛÑ$”v·iÅ[4Øw½.qÍMùwY»#WhpiRDËçt™9þxÄûKÁIæ\Xh0Ýu¿rTÙô•CJmöaSÏ&H¨›SÐ7õ¸ÈÂŽTó·Kq4aÀÄbÉuÇcâµ!f „%²U :–Èn»{+DÙ¿ûá½Ta?‚ÙOå4AX¥Ç<‡¾¼ðã~Lé1 Iš¯V´ ³<äTBþÈ·¿úГÕJÞ|#/‰ƒò¾úiZP)$júËd-.{ßsÛÚ~«1Ný|*Ô) ªSèsCÝÛ/]dPgôF4y÷-¨ùÒCéß Õí#!]sP5ó¦ZÐ=ªî¹RY½?U~ŸXŒÊÖÆIý¡‹®P]@Ú(¼£jd=@íC·Ck%¡žÊU²ìÄ'hHS=èœï M¹•—'†Ä ÙA…zDZÐâ²/'*­¶†~’T$Ц´c¸8å5´+Ûœî,BÇ%7×ÊüÐÙ­ûZ0™º QZEZC¯õ×'¡¿õ˜èSIšÐ×ÎO; #©S9¥Ô†0æ)-ksFÆå~ïüöê"Ln!íí‘[€i6Ã¥‡µðñø( ç]ƒY!+êl˜{Ùêzÿ2ÌŸÊ¿õxû6X¼È!Fß ßÞØWc½üÜžårmmÕä¹fNÁï+Î!ïÏ®£‚¾…-[e‘øüìÅžP$½þ6VêQ’Uæˆÿ^~€[wêû–;Ñ UDV ›J,Òê_4´P”EºdÞkìgÒáh|lañ"2éôÞqéÙ…,g®öVs+![Ó9¨ƒÈ¡o¦’t©¹>¯ð‘ÀG&ù)ʈ‘w””hÆùòñÞ¬'ôà.¿ª”7çp÷Ðˬ$å(ôôÎK½ºJÜ›ÁéÊÐŽb·9w:wA y+*E”üMù*àõ{”¡U<_Ù(w¬Òeë[yT¨¥ÜË‚4O ½Ó=Œ¸rJ=Û+•³÷*ø êùOKየ¢l"î`€š#üôûÏDmµŸß®†¼EÝ77„B,Ð`wß35564ôo˜SŸG£C ¯nü|ŠÆ$¥ËŸDÐ8óMÞë[hâæ™’3vM…nô×sy£é" ±ã…44«î÷;LÓæ 2±¿'ÅðЗ–½K^háGÚ܃–áü¡nTúx8w0Ô«yfF“ºÜØã #|©åÄ…vxùè|ià6ˆ¾Ô•­~מ‘ç|!­`€§ƒm²ÇÒžADwdÉU^x*›Â­ðþ&„õï²a)PÉ[¾CÔaKéœÍAtm*Òx|uå˜<#ɾrªb2MwŠU³@¢åI{úqRx}ž˜„Êß2ªøKT_ϯŷϗ®ÑCVçSvbZÈ6?¾Xp€²ó"ÚNêA¶g›1ûd•µ¹ô²ö°eD:އ̶ûbÅkq+³Ó1üÃ#Èj=Û¬ Yf?¯=Qª…¬8Þû¡µ8i@sGZ»r¶Íç=‘‚\I-…£s¼wÆày̲!šŒMÊ ’AñJûý^סô}ö]]#×µø¶¤vª<*ÎD¬ô™¶@åXzwÆc¨Ž¹üŒÚcjC¶b*ë„ú·{ÎþÈ‚&˜ÜHEþÏïI‹\ù­l«¬[–G -›òšä fè0Ž,¦›†ÎA²+Ÿ§×ÖŸÉþgoõ†Þ¥t Õý¿aàëOÙ‹æ0<¯Î÷®Æèv:Ì *Á¸ÁsâÚ ˜ ¼Ô|*7fOŒ¿%¦Â§/™ò\Î{anWY„Wò<|]¥t]ý £9‚›`©VîW §5|õ•{~@~†š[zMjÁÊˋėÊàר jÛ•cHXr;ò‰2´äs‰!ÉݾlÎá–—!EÅ·‘‚ÚL«…l)ŸýÐóLrE³Ø‘ïüHÇ0 Û<Ù‹ôþìËû…‘‘Ën|LÌ™ZG,R#K{Ìõ9Ó“È~ˆélâZ\äi±úÖxY·Ũ.«®¾°F æØ8f´E)“ g‚é Êô‡|6êFùÎ0ÎK-këÌܯ&¦PÉé6²Ë\A‘†ÆËÊT¨ú#‘Ѻ— Õ;ee{n”£æKÃÛ;ƒnòäþý¨ÃÉÒø¥u 3Î3å@ýÓe®FEkãq'Å…}C+hÄ«rn”%.”nÛ‹&‡·„M‰D£éS–IÖÑìçgf+¹ßÞ™ßj‡WÍJóZÛ!óxyõ ÖWÈ+êÉ9A ÅSLFÉã¥Pn–óýi"TÄk^åUƒªÇé¬Ë[¡½Ê „Ú¦’¹ ?j¨3²ÞµCj‡Ïžg=š 5˜<\.Cµ©‰K߃Påf)uͪÈí;uŸ…*åb|3U÷‰ºÿÕ°Õ"nª¿¾1gT7„Zž ÝÓ–PÛ»MË´Þ§Wë¥A“~GîùhÓ°õ$¦€©#qv>Ç¡UPÜû†d7´‘Ïï …vò ZûŽ]†Ž5]—Vx 3Œyå;;3tóîÉzÒqz)vzžц~Ÿ¦y®1ºž«Iïœ #—…)_ùž€1µgŸïí…ó†ÁDÉë_rLu0U²è3ïä3Ëý—:Z¬ásØøßwm0gøØ€7>æ)íléua‘„ÑPɱ¾IŠúÙÊÀÅ\•#)°²½/âå¹+ðë ‹ÛY«H00‰=Ì«ˆÄ$N¦çr'tËBnŠ’©N¥ÔÎ^EŠÐwõÞÎ"‘ZäÂ}¤‰wUñ¹Mƒtz<û³—"ýâîJdì¢øV>êŠÌó.;ìä:MÍÕ¦7Ý·6ÏÙYŒ\¦Ü:µÍ¸ƒjÜãÕÍíÈëW8,öÒ ù/׸‰>Ç]â~âÄLp÷UŽ{Œµ‰($¾"Eå€{UúÇR, ØAû´Ð-¦(A¼ó}yJÖÕ ¾_ÿÒC¶/Ò@9YGÉOѨðôøÂ"=`‰Íç”G¬)ûõÚ¦•/÷Ó1Lv£ªƒ©äò½ Tà oTGÍ/Li%ê¨íæU’<¥†ºKŸ_½—EƒËÞ»\а˜-.Èó*Ýxj½ßw0¤# qÙÅC}¡Ãh⪞gØú MYÃýé4Ñ´‘TÞíš=8ÍäÒ9…æ†VA³Ãjxˆ§çªÓéJ<´L®ÆrÖ-†OÞý¢ê–í> †k`Ú;ï»áÍçž53°—ô1Ä{H—ìug‚é³:BRðôóÑ„ï¯åáéŽ+Vòø âŠÜíîÐ6x*L7ÚÎ÷ÂþÜ+=œ¡Ö";®y7BÐ'NÂ!g=¢º²(Å!ñåœù]´™érô¤È0Ä\:>â“ ‰»€÷ؼ¶°^n)Œ‚ŒÒ±ë‚ï KåXÅØ]ÈêyÑÿº²7?%; Ùz”[— û´+ÅMžLÈz½•m_¾d1ˆÙû=Z[§ZXV¥0@f]Ê›šdÈœ'аr]Û^Ú×: ²Z­¶è1…ì»â¥]!Çð{ð6>Ƚ2â;列OæQ÷Æ ýŒa’\Š“Ï:x’@ißV¥±(×ýìQn¼±—B¶CeCš—’âo¨¾(WXx³ jÍ¢%üI þDOõp‘24~™ØysœšÑï}ú Zæfh‰ÝÔ íŽÝ-UÙDè ¿èZ,÷lïq}å…n9¸í«(½î]ÎÍ/˜`àTÉ3ñv~­<Ö #£íD5Ë/Â8ûÁ;2¾Œ0isÀìeõE˜®¿uøØ‚|ÊeÔ?Ts¤fÆ7¨àk»+ÉL™,dZE5œÕ…%&ë,ùWðÝMGîNê5øi¶í5»Å%Xq2´ Œ€_ :“%LnH`ýqàrú>$ ÉíéÜÇ$.§ÎOù௃œVºíH>™Þ˜õJ)Ï}Øwg.i£ú¨jîà¶+HX^DúËÎeÍ4G‘‘âØV6‘9dz;sþl›=²„WYÍBvYu×[ä?óÀ€š”Ç äIS2ó BÞF™¨K•È?ñç&é‡( sçÝŠøܳ8íê®Ñ"DGiŒPŒ«6I>ÔÆvž×ÆQJï¦û2Êtÿ)˜e­Cù>rÏ&ÊN< åîïRJ§HÂX¹PEF;ø†¦=ª‘‰¥F, z_ŒÍxÍÔL©<Óñ:Æ|vŠ/FÚÏÇEçÇQ7&!éþZüÓ?øÓsŸÒ4$/=ä Yh¸â”÷ûaU-ñBÎ_”W‚¼ÐÔàÁ±ãhöl2±í2¢tÝ.=$Œ6gƒ¬.áaSæ“ v0ŸÊ£f¨Ñ Y«ó©ÁžBòVÏk£ó:ðòì€ÚáE#ˆMeKÉ© ‚˜“mqbì¿!&=é~îªÄTÞ黿ÌÑéZBœç *iô¤¥Á„kÙÑtA8w¤dä,¼xìÂõS¿^…)Ô8}†L¦/;˜º-!o{êîùò\(&„¤RõCÙûŽ[S/f¡‚û÷÷Xu)¨b\µÝþpm¿Õ´7ó§'ÔÚGGîh\†Ú)¹ñ}Wu¡ö”hÁ'“P½jÐé²ÀUm•wØ•ÓËQŒ~kãÁÇ*zÿøC¨ uÚû:ª(åE.Ÿ‚ªršÜOu¡úÚeõ/ÛY &ë6MÕÖ›P§¨Ëp”o êG­ØF&¡qbük0¼ÿìú\y'4ÿ)}0-ó ·ë­R µé¡è‰%´5>xüM•Ä»Õ÷¹s@ç¡¡ƒ÷¹¡«k·U=­ôd˜ÿèe€~Z«Ù/žÀ+·ªëZÑ8aó„ÖÆèÉb“ú—àCÕGÝšSé0qÙ’'d.¦œÃ,ã”ÍaƧ3ûÆŒ|¦œyýåò<|Y s½³¾ÆoÅý`á1•ÇÍXz½jv½c'|ÿ=”Ï© Ëî¿ë#ˆXau¾XODÁŸêë3w‘È ~D]I²–k Ã-圻ƒFO"•c3R:w„¾^FêÕ#RÕ£¸mP~©òV Ò?~t°#T£QÂc†~=:4Vt8ö}k¿ÿbðû–š¸0¼ûXþMI³T-jÉÑô¥2ÍÑ4ÓÛqñùâÚ:òö½ÁK4OÑÞ5KЇœÈ笨w¡Åîü3ç®”¡Å¼´¡ç\2Lí«f•™Œ€´§%-=;ƒ Îd©Ý\c;Œ¹¥»"LŠzºÍ`:ä”]Ëøtõܱ@Æßð¥†e‡bÜAøšR3ï% ·IÆO™×Â’ù—’(ó%ø.oÌt­~2Ô'×&Ê€¸ÁïäsðËýääÔ3ðçç7Áo‘è*_Á² ‰.‰]‡0nqR‰^îÛäï¨CtÞ ¥Nó¶Ç2óHý+¼'}·5(ÒÚ H#½CŽÃ=2,8ˆè ú"ÓËyU¿ŸRÈò"€¦Ö[ÙY/ØX&7"'›Ü o®gÈsï ƒA\ò¾:Ã>ÿù[ìÀ•ó H[ˆ¥ŒâžAR õÌ;("J5ÕÕøE?†=Œ\‹o$DÜ}o£”ƯÝCC”(Ó¥48;ðå‡.tð©ùâ“Vù){Tºx÷+ã“RTÁš£wõòQm«ƒÞê‘aT¡¹?O§…š‰e'OãA;ê6ÅSv¨CTƒß(P×çÙв†êó‰ß§|׎s§ß)t¡aG`¥·´'µ°>_ Bã¡Å«´«îkãpòM:ç0š©ÔÎÜž CógeNçX´`#k'‰8…–ùe*³ºo`žëîûWöeùüRD9$ ~œ$J ñ5&µvjÒ+­É¦@tbøhc,¯éCÌ=K‹²Ý™“û2+¦Ô¢së 3Õ!ªéë+åk$~êîÝþ8+^øS{%Á+[©¨Š‘RÈ(æðÔq.…7*/ˆ±Ù@;;Å¢øO(;¸D-^ïÂ]ê\×âT˜Vâ~š¨¶:ší]xj¾ÝÑL¥™‚Úkî²Ý§ æ×Ç?_ê¶Cõ퇊.ìEPe"›êð¥*]#·zG5B%•¹»°G,T²}¦åˆ?•¾'»Ò¼ç¡JƒáT˜Åc¨Þz@ºnvj4}§²_Bm{Ñ­¤_ÖPeê†×nh¼þMä{¼÷bп. Íõ‚1Ù ¥`áë½[Ðü†®ˆ, ÚžDuóyA{Õ½ÌÑVèdM XÚ ]¾dÄšñÐsØç’ÊbèK¥¾È¯ ƒi^XÚí # iÙWÇÃèÀ)Ëæ@øà;2œaÜÒ$ÊK —`j›¢ 9'̰5"á]OsFôðE‹A*ù§$|Å nº?5°ÀAâ_Ú4KBµœQ‡à»óíÂolð³„wÕ×7 V÷£/t+ßs^1þHÄm¦ª×æ…$Œ; >–à%ƒ›N;$¿þZCÊ-·69&½ˆGj=O4y¸Oú¬ßZܢ糣îsE†ÏŽ×Ö‰ó|Ⲋ™´š\»ƒì!5êo/×"燨2¹%äîª`íX ÆS‘EüªÈç»÷P¢¯0î¼È%FvrLžÒ˜EAëƒê1(âhFbJEÓ†ÎÔ=Bñ'¹|oJØPÒAý v®JßJ˜5GÙÁ¸úôTÀÏת»¿¡böìû¸ÂoˆÇœOÄ00¡²Î¾­ƒ*QU™†ô¨#ª{uîÞB!‚Z”ß?uÔÎyaLùÐõΠ\¢Òn›‹b½‡Flé4â> hôþvõƒ õhl‘ËvõJ:kñº½@§¡÷^™hòµáÛó¨j4½aK>btͶEìðr% YLâ…¦Öh.WÐÚ妊æ­‘Ñq“xè©ÍϬe´Ø6œ2Oðƒ‰öY.ý`H}ÿjÚB‰ bes¦oìà(YÒøøÂóRÙn{Cxl}ü /õнý^žÒ÷º“Õ,@¸Æ‡¡ë£‘šé-y¢‚ÙŸ|’i, Bý±4„˜Ÿ´’)¦ÈmÍ‚\ <Cµ´¢JÛ å–ß”ìºà5ÛŒ5}däÚÿÒäqX‹o.r¦÷é!k(Åbϰ:dëñ¶ 좌‹ãmt^7|+d=¬Œî; ™6g)^AæóåäβrȬn(þè?Y,6“ç}!«DpÉ)²÷5æ½–ÙsÓ²š¡Ó’×¶¶ßyCÃ$õËà äkœcÜ.þ Þ’ì›Õ´ô…âUÎÜ#Û ô³2£ùÊZ|{utª‘*,÷Íç²¥@eTÊï;&ƒP½#û'û‹0¨iïžöºOu-ЧÒߟ„F£ÜÖáôÐÌrOëDß$´¼¨\Y9¸Úø¶ùØ'6Aûcžé¬g/ £)ô:‘ tEÄøD{AÏ‘]­]ú W6³ÆÁ°À~Ë_0zäm­ìøúp ŠÑ&~TØ2MK´ÝQWð^Û¿©tx6¸9Á/›àví«ðõž€ò²öÚx4JaPЄ%®ú>ç”áÛÌŸãñúÌð£ùö!Pè‡å Ú /*ôà—x€hˆÆ%øón¥›;ƒ‰ìü"é )D4Tïþ«µu§†âîp×KHåÜå9»)ù ç"®É"uKP£d¸n{~u ÄèÒþl­B†AGƒÛBÈä¿LŸÄCŽ,^Þf2|BÈö=ÁL 9柄ôÕ"Ï‘ËËÃ÷I'MðqKä/,_m4uF‘§{ŒqO5?·а±\ðò»ˆ¢3¾_PügÚZå¿¢”R,…AÜv”é¸Mü%ö5ÊMˆ_¸®ŠlD<Ç\¨t“L›®üªÔØåcJ‡jôåÇu8Q}Â3í·ÅCÔLâ×¥#û­.ä3È“¢öb,ãÂOaÔõb>A½¶î\v žÔ”@ƒ([©ó?4Ñ0­¸•~H^¸èeÈ¡qÌÇÏ1Fh’ß̳Ö‡¦“)"ò9h.êB<·¿–:Ó툖^fx%GÐ^¨Pꔽ҄W¢ûWD+ £”úDim0¼y°ãë¥óP$T-6µ;ÊôZ/¸ŠÅûঀävPù—ãâZüR=nh845î>qòcP«îwð¾ãK¨i`Y ø ÕŽ±ƒížPuP:ì|¤$Tº„Ê8•QC%…µ4©ITR†ä˜GèTà¨Mß] µ†©ž: uo_žPu€†&úøØÁDhjœ*ˆ<£ÍŽéäåqIÐb%™³ÅD Z5¬Tì'.B›™¦Á‘½ Ð~¨:¾]õ=Ú ]W±ñyd/ô8Ú¼ÜÖQ}mᤎžƒ“ u¾©0²7²‚tLF?ûYïÿs>Þ=«À¯¢o™Ôî¹Âayÿ®³§a†h5Ì…”>¡}F±@ _˜LH3ÎÒÂWVm~I¦˜4mþ¾¿ûC­N×€ïT¥&ƒ‡à§yE³ù9 XÉÊþ³8F ¿Mç\«Çþ !ïNè•'wØŸ.îyc’Fe4u×&!Y©™žT»R,= ªãQG*ÛV;ϳHË´Z:‹t¾šy|ÉBÈ M¦õ Í™TÈd†/ÞD–óa­ü‰ÍÈÖNß&l1‡‡.ùÏ'ßAî­Kõ‹¸ãÆä1CóäÛ%©q•2wÒ‘|ea"Cý/²J¸ç±1Ñ5 ¯”lßÊߎ¢ÀžBpBqCyq3ŸA”¤ï ä(îF镵™}÷PöK¡ÞÞ%”Ÿ&œ(¶CÅKŠB×:lµ8ò”¾BeÝóBoíÞ¢ª®IˆôÃ@TR½W•ÿ-jm3å¾ÌäŒÚIT5xRPÏ8ЏhÁ >YõK¬íß<Ý©¾æ QP`“ËYa4¦—R3ÞOƒÆ>16¯]cЄÄñUBš\'úø{WšüôdÕ%²DÓó7ÜÓÐt^~xAØÍN™>Ê),C³OÅs¦GÌÑÜízû!›E4ŸÒâPxXzÌ·k$@ªº•ïøJ/Ä|•¾œÄo Ï&nÔô³@ø¹›ôi|Õ¾Çx!ïðN›í:Þ á%—ÅîïR„ÐÞ6ò° !¹ü}´ÿ¶éÞòŸÎBî³Ç¦y#¯!ïdû Y(´/»-0• ÅGÜ)ʘå 4.ü¹‡”ÛpÆ„=… ÞgŸŠÇG¡òê@÷w>¨æq"¿~' jú÷l¯è†ºYFŠG Ðhû:âût74SöÌê‰¬ÅÍжmê|©&#´œ9°Ø;_‹RíÍ….¯Æ6®Ý•ÐÐåwýà4ô[wuÖÚÀ0Y«iåtŒÒœ.˜1̓’?ž<Š> •B{ÚB`*2Œ}(ø|<âÂ*¡»fïМj˘…¹‘¦r˜¯Èºäjc ‹ãu×á›í –ÕüP/ªšZ€e#@5 „ÕGOIà­½Î9¥f$"ºNÑ_Ë‹Ä mGˬZ‘tÌ•c壒+™åî±QÄ­5»d³öÿ@êSûc*q›à~Æþ¹ËH¿…<÷ ‘52Ü3þüM[™Du®—<ôCAné){>dKÌãfÍAŽ<â–j×bä‘vS~R…¼^ÚòÁ¦DÈŸ,æô‹|ˆóíXO=Ç=!eR Î(Ü0YúVî%Šz,\™PCñ’7\G”"Ñj¬2a7Â’~¡|û¢5x`¯ÓªÊTô?Ÿ|gqø7ª¨O>B¦}¨& †ûYJQƒß„?Weµ>gÌ¡¶tÏûÔÕ¾,ÃÌ‚úÖƒwEÕ(ÐP×x¸›ln“_äx!ÆmψÞ^AS5û¬‰ìX4ëhÍŒÃCO~>Þ{Ð-¯™GØW°à‘ˆÖë^FJxt±íTÐï´Õa8FP ¾JÌ–Žú®B¦Aß½ 'H¼O^£}Î âÈ©·ÕhEB4o‡Þ´)<EÚjrxÎúäœq<=þðç­ckãr÷)ëwyÑtæ5ãë%Ü-Ý¡i^B~-ð|j›Ã.ÁHü­j±´¶OÏ(ûuLFØ Þ<»ê^>yŠÏ[ôs‰A™QÚpdµ7¼ ”º"•×~Åø÷FAµç'vÒÛPgVÿÔqjiP s~j"”¿KÑó@µÖÛ›v¥  %ïxi%B¥sà1µ1m¨Üâøk@f*V•ì/J³# æP¹xfÞ-Pªî¥.žuì†ê›¯’RwM­ÅK±à'ÞP‡þ¦tÉÐÀµ—ûHl>4QIÚÏ8™B3Aƽ…Êšý´°c Z¾£¨R‚6–/U?äj Ý¡òFšÀièhV³ó®z]Ç-ƒçi¡ÇCºµ?+úVˆWMÿù®ñv•¯0¢åÓæ+3£¿RíÜ“áCèî-å M0!tnâ XÂä|žîb]%LÜ£ü’t>É‹Œ”f“Âìð“öÜOS07;¶ÇLpæ£_ÒïMÌE?ÇHuEø–ö+1#¶~Ì:Çñ^…¹¥Ù}GLáWþáúû»N"Á8ãã+“HL½ê{7í’üb\1z»ˆdD«¦Ò‘‚³4dúÙ¤ñhöÐqT<àsÏ|¶Q¤™x¨!•õÞêDÜ" ê¡;*Nù%¨þ"Oòê¡cº!g‹?jG]h¸•M†z« mñ­hXvÍÛk ‹•ê&[ ‘eL‡Æ©hT›é±{ù K \Üï‡ÆÏg¾ù?sEJ™«”l49ë/›a&}ÞƒFÅÖhª\¯Ãz7Mãg5‚hÍÈÏ«‘ÓW¡™ãO­ªY4+Mó¹Ã2ã•fMç« ¥p›ÄÙ7¯ &)‡ªCÀž=N§Ôn¸áb&[o¾#ƒ°”^åGVœ¶åk€Åe;Á¾D~ë.„œ,ÍÔäƒ`Uû÷B&áÉS¢^4…ðD1ìàc%qðOþ> ÏJI;.ZCLem¨ÍUHÜÔ]~û¤ž®{FÚn éÏ)«÷Ä@†c¢t§°-d¨tµHNC†Ôì¸ä3>ÈÐÈñ^J—„ îf¿t)Hoý~{EÒ»T4ÄÚ Cò´ï¨>dÔ:ÜoN“[‹“wo¸Y¦@ÖîŸû†â• +Oëø§³¿!ûñÎÀWª£œÄø|·/äî£RÓH&ÑÏ?GÚÌŸ—_GºBj΢KÈ ¢ôÈí¤26F~lÿÁ‚ÌõÙ,1ÈfY3ñ‹[ 9®¡Î¢(GÚ)ï¦8äõ,v VLBþˆg-"…~¸kBCÀ-÷îqR³Ñ‹Cá[ù”_G×Ö›T«n¦Q>(~Ï€O‘È%+g_4-ˆ¡Ì‘kû¾gꢼ‡.­ïY]T\‰¾㪂JÖDŠÏÂPEÅ{~±]Õ¢…é2QÃvoèɽš¨öØ¤Ñ u¶m?ühÁõ^1'FC KžE1hôÔãÛ[7a4‘l[U3@ÓïWÄY¯­r^É£EK'[ÂwãVâúÖ$)vµº‚kþܯ®€šÿçkû¯çº”bÕDÄØ¨KS¿¶þ{7k‘ì«oÒ»¦¨ X¡HŸÿf3C=”™ùj7[»Ã;¿‡)Õ^¨ôèæ),[[¯Ñ{Ýd‚š+HÐ 5ís¤7™¡ÆÅ}¾S*ª…;ø¬~*iñ“!KœPéäëÏ¿Å*‰OTång‡ŠÏ3Ôñ[·B¥¼ÑXr¨¬•lK#*Õ “êhs¨æ’}˜´“j4gx¼©žAm´Ã¢ÂÀ<Ô»k…2ºÔA£Öu*¹Ãöð^úRlñ‡Ð•½sxö)´$¼Œý’Z»ÃÖæših—wbÖᆎ”@»¢]‡ÏZõjªBϪ?¯¬ ŸÏ}Q…O†Må ü†‘cƘ\1šg†ž.øð´6L§B&víÍù~&?\°®àc‡év“™[Úᫎ€ç¹_0›Ò÷Ö©檮î½Ë0ïðÝÈ9•$ûÙRŸÀ7Óý<Û\À/Ê‹SÊѰ\,ÓïÜ¿¸*÷j8 ŸžÒ¯~ ‘ÏÔ×i$9raw]:àÕØ#Ò ;‘\õsøVλ¸õJgCªå‡NÕn*H[¥ç|éI4¹3ý#ÃH°Þ…w™À×òîÏqdÕ›ÝÊŒÈ^{ÞÌÿ9rž´4ÊéKGë¢áÏW× wòoyüÊ-¶ ¢¸ëöîGý¸GHÂü+ë( ïñt͉ø‰ûû~~åŒbµ¨Àã‚î«üEï[PʆèÊ¡cc(“ºqï å÷ è%Û¿DE¢Îa1 Dú»z×_õ£²‰»ç 5TµÏœ ü„ꩯäK¢õ­¿|ÔÝZ¤eƒzŒGB¦-”Ñà„x”Tßl,-_A#îÌþÇgÖÖbOåw£Ñ0›_óK4VôxÀü„CŽwJ&¡ñçD^;s4Q¾y@Ö•M¬rö” I¿7áŒušò ‡æ×H£©ÝÙ"†7ÓhÎò½>fŒÙÎGÜ)be]Dg=!ÆAêA°žÉ¹5¼ýaŸˆŒ©C˜¸Ýc[kfÝ“)y3žB·ççßh€`â´Cõ? ˆªÁi_ò5Ì´jÙ›š½×o^hÕ€ãÑíAíðÌÓs&zè:Äò½S¾ÿÍ2µIŸA*ÿ é Hg´NáóV†ôÓ5R!¿¼!mªãLG:¤),ìð‚4–Sü¯…ÞÂëŸáõ6ƒàõg^¡¬|*H{îzÆÆç=¤_YÐ<ÚbWXê%öCf¿m}¤Ð+ȺF*lôE²­O8Û+/AöϘ´+oÈ)¾$FÆ oÂ2Cض»CïÄ« ² (bÏuïôy¥ŒÚoÄT l˜DøéIx—ye¸ù¦áÚøE3ó‰PÍY³Së`?ÔŠÆ«*]zË<òßÐx]5Hè¡3¼Ÿ$;ÇõƒZSó¿I²ÖúWîDB{ËÄE³Çй—>e——=t}•’R“ZŸöo‰£Q„þ+i "0äO°’¡/…~Ú˜ÇÓ0¦ÔòǵHÆÙªŠ Â$#ÍÞŒã0ýÈ×ä÷¶ øtÕ•¿õf;|iJÙ¢nt ¾&U0±¾: ïÐG]ø Kº‘Dµ÷s໘ÔKâ…Ÿ»skŠß…ª#Ä×_¯XQ [Y$([ž/4FbrëR®HÊõŽ´tö’Ý?{_ùneø^ù!ÿ2R%“°ÝâÑFZÅ77ÙöÝFºÓt·{¬!}Û>¡Á@md<>k1ãð ™Oü®;Ê„l”=i£÷®!‡ÊˆfTBrO95ïnOFÞãÁ»Œ‘ÿÕ~«S¼¸«¶õcÑoÜ#ÝùË&…e˜íö%Æ} [,Þ±4¡¸w¥ÂÝ~”ô:AQˆ2Ü—+VòŸ¢¼Ìõ_lŸ[P±¶Ÿ„hzìŸÿïΙ|$*(d™äŽjT“”q¨ñŒ‚J€5î0[J¿‰:SîÂÚ†/QÿÛžë¿u?£W~zO2Ï<¦~ÑxM'sÅú§ð‡¥}æ´|tè]¡'Z©Ä†Kh£–î ¿$u´35+¿®I^¸ µ­íßx&Š¥ËÃd§”Ç“K'`ºèFY!|\r=.&ý f/1Ÿ+~sQÌá¦T0¿G+ âöMX˜'æøÄ] K?<ƒOì€\©:{4`Yõb]´Î4¬Þ}¼%QþÐríÙúò+‘µÛèŸ%GâünSÕØûHzOÛ^†î9’ßþtÏÓHácOÏû)?¿éÕrGšH©~¤³™ô©:Ù† âVÝeA¤È¤îÜ$”‡,g¯\\pB¶Õ<çû${‘ãÅÃmÉÛÛOú$ãh&îø¬ÎðíŽ(òõæ±ú+Æã.Žw ¹j¯p÷;mK—,]*î Øù÷NÕP+Ü‚b÷Êî›Ù‡ÛýÜýºõPò7©`"Êh¹?à­¼‡räDãþªû·òF"|“ ãºÏƒÊ†Ú¾æ%>¨zb4¢–…Õ "ð×…“¨Åé’e¯3ŠÚ÷õ4~ôç¡îBíÊt4.›EÃc-ÞO…£Ðp¬|ŒØE^W·]4zhòÒÌ)º¿qEx¿@c¾ ìkÖ¹Tý½'\Œäb,BãáY[™^4aä-0Lß&Š#ݯǡ‰Õ¬¸ÇZ\69}݉i¯|Èétl‚AH~yîÊcQMˆáÊÞ',²‘#‚<ú©º–ðãçN’»š35 eK!:g::”‹×Ö–×)˜áIȳãɯ °]&¡«”ƵÏtè½@O‡ÜYc9“¹Ê+^Ïæ2„ù5£ öÆ]Þé|èõ¾P-fR*®$‡’@Ú6G>‘ä2x½Òì”öÜRuÉ‚®õA 5Å]f•H~~VÚc‰’sJŽGû•@Š” ŸÝ•rHõ×-•Èø i¾Í¥½[r ½nÕ0§ñ>dD¾bµ¥¬ƒLÿ‹tFÈR.™yãf Ù{s9”þù½¯§:ñw!Ç€õ1L Þl=ÃÊêBù·.¨ !…·ž}Q#ª9P¬áå4e/.x$”ùÀ»Ë3½=z^PÉêÁùuøTs\’H]óW­áøX×u]¨¿$ðk[åhô¥¥{׿Þ¿O+Ì„ϾèÐÚsV¡‡wÚÃ\ò‡ S»ðhff>t 8;t܆^éOe2³Ðÿ€“DfІŒöI?'†¾¹ë©·`´r,tvÂÏjo‡ÀR˜Ð×./†©xžùc_ׯå%–_-S0[PßG9î_¹ìN6]†ù™R»åFX,¿¢•˜Ñçøâ1´¹8ÜzìÙ3´ P˜µIµÁcÏ…æOŽp¢ã¬ò…‚ºøðú_Ë{€Ç¯á^~–})1@ü‡@ Ь]$k×ɵkí=äŸ4Æ4ºô­k‘Ø¿Bü_!ñ¯üWHý+¤ÿ2ÿ Ù…Ü¿B~C‹‹m*ñM%±©$7•Ô¦’ÞT2›JvSÉmªM†Ä&Cb“!±ÉØdHl2$6› ‰M†Ä&Cb“!¹ÉÜdHn2$7’› ÉM†ä&Cr“!¹ÉÜdHm2¤6R› ©M†Ô&Cj“!µÉÚdHm2¤6Ò› éM†ô&Cz“!½ÉÞdHo2¤7Ò› éM†Ì&Cf“!³ÉÙdÈl2d62› ™M†Ì&Cf“!»ÉÝdÈn2d7²› ÙM†ì&Cv“!»ÉÝdÈm2ä6r› ¹M†Ü&Cn“!·ÉÛdÈm2ä6ò› ùM†ü&C~“!¿ÉßdÈo2ä7ò› ù$âbbÿIñÿ¤ÄRò?)õŸ”þOÊü'eÿ“rÿÉhÿÌ)ÄHOع;nh2'Ç»rðÿ›C\~³ÿÑâi‰¿´ä_Zê/-ý—–ùKËþ¥åþÒòÿi¹¿¸rqåþâÊýÅ•û‹+÷Wî/®Ü_\¹¿¸rqåÿâÊÿÅ•ÿ‹+ÿWþ/®ü_\ù¿¸òqåÿânö?©„Øæà-þ—–øKKþ¥¥Ö#éŸ>#ù·£íœÿíT’³Žžÿ–¸ähwf½Ä–JÐþ“¬DXÿàܺU¢Ûxðÿ|dÇ¢òŸü7UéBûºõÚ°<ë6dã>ÒgÝFo<ýyóÿöåFú«×ë÷)ùÒŽ­ßgläÏ|ôÿª)em”Ëq*ý¿ÍÝ(Ÿ§¼žž¿ñžBŽõô·ï+ú¶ž^²ñÞRÛÿÛ²÷—u¼ø¿-ßà¼S^·¼Šôÿ·•Ü*®õòUüêëåk6êQó}½|íF}ê×Ë×oÔ«¾u½|ÃFýq½|ãF=›RÖ˿ߨo3 ݺݨwó»ôÿÛ–ú·\6\·íh›[·íiôÿ¿mÛhW[”غÝh_»ióºÝhg•ǺÝhoGù:¿s£ÝžëüÎöw‰®ó»6üÐ5¾ÎïÞðGwä:¿{Ã/=&ëüž ÿôn]ç÷nø©·t߷᯾‹ëü¾ ¿õï]ç÷oø¯ÿÃ:`Ãëü ­ó7ü:D±ÎÚðïPñ:xÃÏà yëvÃßÃ!ëvÃïÃ_-þoG6ü?¢›¸n7úa$áǺÝèQ­u»Ñ/£Öaëv£Fó§ÖíF?1Ë­Ûþóð&¬~Ö׊k32­:°-“@ _«ƒïÚÐ\&˜ –µNaS!ØÓNsÍI\ß aG ÀkÅS„]ì‚€°{@´#„š‘ýÂÞµ¶ˆ²bwñµúJ%¤ê „bºl< Ï@ (¬ùmÿgáÀaª×çòµùôŸ¹t½ª[ÿlÔ÷Ÿ9ƒk=ÈÚ3’µ¹ƒ› ©c¸?;˜ýwÆâ»û[> [Aie˜Î‹ç¡à¥h‹£häYNënI ‡ÜK ‹~CK“d •™½yÖÛ¿gJþ{Ö]ªÓ‚ó‰±Íçùê²õ꽑>„KÂ-er(š‘Ù^'Õ£L Y3ë¯dhà^sŽŸ—ŒK¥ŽFt ÷™7Ã3û“ÈçªLÁ¢Ž I•öÈ P„f‚VvŠÒßðIsBñþGóÏ Òð@'}ñÓào(u5ŠÆ3âÊìO¦¤~‡²6÷ ÓêMPþkêî$ŸÓ¨øxóˆbå{TfÕ+ôp;Œp;3:à®=ª¾ôI|·„ê “KsüѨñ§×øÉÉhÔjýüN¦ už(k+K+ ž «Ã“ëx´_à]¢|<È=#Í—uEC_—ÌCÜ4h”zú†Qc37}ÝYô³Fwš7<Œhòõ€uøF šž´ÐO DÓÁ]5RÐLvLi±(Í÷ë½8„fs7éÃ3ÖÐ\Qíh@/šßòbtCÚK+$m’Ðb6ßþæàÔ²}yR0/ U®—UÚ5 d—JÝf@¦z«4An OùÁDÈ7õVsßù¹~c]Füì]×ýnB†2¨>·†çZÂ;9v.ÈÞ‰'ác¥†¢ÚvîGßf zX°=ÃÓ…_X>Ê÷vᵩ¯·ÐUð¾Kzzª›[§5AŸRÕöFnôwÖj=[ ƒyÖ¼üÊ›0ä$aÎÀy=Þä„Íî‚þÝm‘1'½ ‡¿zI9?ó?¾9gÖÄ'²@ëEÓ™5h“‹J¶Ñ¬ö®lO öJ蔟Ûxnø:¿yƒßƒ'ÐåWwBñ`'t-_sÞ´î4jÖ½6Ð3KÏÙ /ãåbÐ ^dQ-H©á®¤f«ýð™áÉsJ‚±*ê»VGa"ë’ÙRÒ˜š±ì`“,„™‹"™G“aþ°Ì¨F²9|;¢˜¹~Òe«Š¦V–†ES„ôaùÍ^£ÚްzaéRCX9ün°¢%&†µm¾}q21°E, ;Œ»bwj¨4žÚ÷¾äB† ‹Ñ<¾ 2œ±:‡,²i'”wA6íšÜë>Sô¼ör^½(Ä(‡Ü'rTý³qŸ¦L…âs:äÍ$Ž F¾õ*IŸÑ×(þN˜±¥… ™~¨ÌE¡ÈöŸxá51·Ôög§¦Äý…߸ŠïD¢$gti@E"J5=šÙ°aA™œG¹>Dx¨»æK{¼-Ê…'_zú²ôyÊ]×ÉQqÏ¢­Z,ѨO|%P‚*_ÉbȧMPõÄÉT¥6zT«kmÊD ¡­€3k¨ù,÷F$oj+ÓÓ7f .QzÀ¾ýZ¨7tÊù ¿êÇYìâòú€†‡®ð:u¡Q<ß•rA4Þèy8wæš¼ùH¦»]…¦Ê¦{¬Ol£iÛ­”£{GÐÌÒ‰½rE Íz¾½Èpw@s½LƒS_ yA‰QUž=ZpþrŒG‹+×N´wI£E;Õ@0O(o!œçÐÒ9!äÕì0’nίˆù5o9ÙOU½ƒJï´oÙ—¡P”êv~æä„7çøž>9l¢¶‡n…Ìl“‹¼Sþ=|RÉcR5-rE]!å˜Ù·Ã_ 1òÕÔöeGHHu*å»áI7†Rw•@Z¯êbLÚ_ýåû”ˆ¿Å ÅÝçÆÔH‰ \º¶š;å—¸&é& œï±HÝz(Ý8³+-“JSiÜiªK ¤OõöÙB†¿±”s¨Ñ`±J¹²  J«¢ÔÂÜÏCYØ«}aª× üƒÉecyA¨üqÜ^4ªé绊;@MÄÈøÂµ£[Ë–· ®KÃPé¢Ôÿ¾5=&žV[Ü] !ä½ÞR}gŒ¡ù¢¼§KØAhë§ñ*v€Î]ùϼ4] +akàJš ôX}˜4æ¸ }Ú¡Õ¹m}0àæìȦCŽE˜~­„[W¡·g0*öXÂv›ÆéÞùv? ‚‰¾®ã—¥`ŠCåìïï>ð¥\¾@ÂÈfž9dXŸƒ¹H9÷_ZðudG{Õu¾ŸŸ!W['‚ŸQ¤´?á§Ø¯¹ÀIuXnªx,a«¾¬CNóÀoÕ¨Š`{XÓ8r>°‹6BuvÞyzÂÖæn¶+ä]Htt2~¬Ô‰Ë_«J8Ö ©qÒSâûäHÎý¡ˆÅ¼)ÍzÏœ·cAêMr¦´”*ÜEë°b2ôb)b_ù¦aVn·k¨72}öæ5°*GÖ}rŒl$iÈžõä;ñòrúG¼"ž@ž›\ Œ4Ww©ûÍ!­`äQt)¾ý…Ș»Ã‡ÙPä²aìõQ\B‘+á‚(`Øe=t¥˜vîT0¡tåð«.a'<4y¶½c/Ê»¶™¸0¸£"ñ¹Ì~m<`³*¥‚*s<úl;QÕèÏ’CVª}å'"ÎÞF´(2knԺ«û¼nê¨J/_#{Œº[·¨-ÇñhðŽ„kô ÔŸ/p.3'èðbþÍá4r¿ù‹TT#ZªÐÄRQŒŠû$š Ü w¼Ä¦¦‡‰CÓ(®F3‰»BÌ5›hþ^ålÎ0šMŸùvV¿’À7Z!âˆßh´Y¡¿+iôšØåƒÕ ùdŒ}ׇÓÝqð®PBµ…äÆŒûè=i %ø¶ E×Y/ÈFãÜ~ò¢”=2÷i9”¡“ÍìäÖã¯é•a·eš«!Ô‚±Î²ï³˜jê@‘º³'Y?TßOIÇø3ÐPе(ì m·D˜Z„ê Ëâ6EÉIèÑc:˜i[½e|[ ÌÐo³_°JyxÉ’›Úa°q‡´“œž¯±ôEp>ƒ¾Ü›;F ~ëéþÌ÷CÿñíyÚcñChwÓXu ‚¶#WŠn¬ÏB{LžSê.EèØúýeŠõ t¾úµBì–]BÎÛ…ÆSÐõ†.‹ýÒ½Û¸SÊz©]/j`:cú¶mܘ³X:Õ^0 *G?ñ eÂB¹T¬Ž°dá*Û• Ë<+Þú-ð²úæsÂúøMùeÄûØ ¬]¼O}t(6mnž¨6º ;¯Gu¶¬Í8ÖÀëЙ$ ˜úRʯ„äÖŸ¹-ûn#¥H¶yýG3¤ÚÎòªFšÏÓY²v H·!10†{.NPìÏB†CÝÓ”W³‘qžóǺ&-2fË€½3²ÎÁZ‘Y;²ï}\ð_EŽ-§^•óÈ5¯=áŽ<íÃõçï"ïÅEÕÅLqä+Ïp2TºƒÎ5v^V*(äø]lð´'ŠD/òlœ B±OãVŸüÆýr®¼œÓñà“ òT6O” j„}µá(ýõÌÉ›Êrx(„‘‡Ò~å”Ä“ªQ~åéîžËIx¸°a—ýà*͹<·<„*aõj“÷PUdñÒÊ{=T»³«»â"ªOŸwöŽÉDMkÜÛ †Z«§ò*P§:ÿMË}Ô{ñË¡pCõONO]tžEƒu'©cÎShä¡B"…Æ-ɾ~^h.z3%å$šŠíjÜu6MËÒyŒ÷C3íÍ1×A4khcÿÔyͱ£m¸àß²èò‰‡ÆÐ‚eÊÖŠ¬-|Fžè³Ö¡E«FŽÓto÷\8w;xýÇT¾\Álù.Ô?µ^GÊdÃ˶¡à\{˜Rƒ6äÌ¥º ÙÅ»ê/s5A¦€XêJH?é*iVðÞ¶P¥Žœ„ä&IÿÔ`H¤¼Æ¢f \ª:3wú ñgë@ûžx–οúËûØN»izжS~põK|ØÝõökß ,Ò…C Ò Ê\Lg*ìm ôê&[u*”7 ‘*„’oŸç~·ù/&Ë(=óá…ÒC.ÆØ}JÉŽ]ì[Õ–£ø¡¬öJÃZ]/ÁÇ)È¿Ì "äÉ«‡?v@u¯aöCº¨eÜÈß-uÔ²Mî ¡P/y¡{K* >€Pßv<-4|™ª?Ÿò šCGW¸< ù©ý‚ê¶4tØÛ a}èR^ùîÚÐ=ßßÙ ½=Y·n‘f@ÿ×JåµÐk0tx±>·v>–\¡Z·ÏW*Ǿí±w£éÙÎÀïYƒ5ça2=Éõåãhø¢U^{gvfXX&â`Žrg$|¿?|=ÚÈTåßjâéæßXê÷¸|Ëú#,{AÇìmmXe)x*¿ú—GzÔÆàOÛ¹;’ƒ°AF]DY([ç÷HYÅ0#ÉÀÐ#«j$öqŽ~™ø I),Ý™^"YgÒG“H¤ø#v¦ë‹R‡¶l”œéFºK¯“–çqÏ g–¸&wd¸&gÉCÅLŽ1OÅ—ååaÒ|¾5#²ÓÑÍÝÏöFŽÚËD‚£Èé)y¯è!òúÛ,HÊk ¿á‹ÂC_QÐ÷ q/i: °UÞ¡]G±cF™ɸßêÕIŽ{PÒ¾—‘s?/J›ïfy©±yh}Yv¯F¹É¥Ç‚™ÞxØk«CüÙ0*M¹ÉLV©£ŠÑý÷>5¨Jt•oP-Öq7º¢†½e1×`j‰°½µ´Eío"¯‹¾¡nÚ·b)F<*7œ&þËžgö–djª¢Á›eOÑHò•{ah)Ÿ¸ý|Ϫ(š¨lëœçÊF“Ú/U‡¾_@S5ÎÂ}ûÑ4¿·ÍXò#šñËî9ܦ…f!Wï4ÝD³I“f­¹4?Ü»lø ÍCoY¼˜DjîØq¯, ÉËð+Éñ ¨9l”utk*9kš³ AÑG›w{ ¾-Hj/•äÍDÖyî‡Ü!¡üŽðžÄ'¢ê[d6L™Þ ÿi—e'öCjWÕÜs½é …Uë—9ë¡ZM<´«ÿ4hÿê7zzZ?Y¨§Cç|˜mbF7twÚE\¹™½*·6Dæß@_£8ck „ÎÌI{ ƒ’Ýy¾?…ç;kOù¡ÏZžÖéHt7»ŸáÍ&ûoí)ûnuÐ@k×­úÂzzhS³kNÎÙí®EǶ‰s¡ãgoT„t]K Óî…ÎNò89¯?ÐeôjÛòÇ5è¦ÿñºÆ…z4$IJCï;¡ë4ã0@'Aõ5(†‚ŸÇ+éü†«§ƒ]ê`ôXÄO"Œ¿?sÆôL>R 'o‡/³Ê£+ç`öBÖ¬Mƒ|E{Z=ÓIønÖ´¢­©‹íI™l…$ð3¦#ª§‘V®šéž+_wÉN½k…?³~þ L…þ‡k1l°Ý8tVèsÉšK»#É´ßA3×>$ËQ7Sðz‹~º7z›‘Ê„ŸsgßA¤QToŸFà›Íé†Ë¸»·wRQ@é'eä‚ý‘1JØ÷•Ádö/ PM¿¬A×3î¼$BöÇ|;(9î¼’³lmE®‹ÇªE‘ÇæVkÒµûÈ«8òR½Wù_D Ey£÷`DÛD) Ñ4:{Oê ÈÁ™—5(vÚÿPRÿ4J¼xYi¿÷zF)ÜŽÔ†¢Yé»§»e=Ð\nÉØ4þ!š§8pªï¸ ½þ¡Â·£hqA¥¡ÁþZ4_¿§šÙJà[Hv-uZºŽ°%ÐO#‰×ëWŽ Cõ‰¸¬G § œ†3 Zþ*+2¼r4²;£èž‡§C¶í²TQ¡.dD“Œñ}Y&ø1µkn;òðÖ†íÄ~f{HV¦•;Ä! ~ÖZAâÅÿ»7#!Ñå‰I8çHµûlžVõû¯þòÔGçñ~„"ñÉ­?©'œR¾š¢±¥yClΜ>1¤‰¿’?4A}ÊP²Ð¼Ÿ:.Jté³¶…Þü¥î¾›ü}…À»Œªß޳%óÐkCIS¨ó‰9‚¯«z³7Ñ<Êè ¥Ý¡28Ä…ã:T³Sñ{ÉC&Ýâ%3¨UÖŠsiƒ:WÇJùPZlåmM rV¶Ô3÷ ‰{ÈôVv´”M¶3hB{ôøÍ¸c[ÐÙ·@îÐ}º¦+lF¡×q@ÃD1ú=8öxÿ.ƒÁô»,1ð‘KºÙêî^øÔð-:†Æ = _êÃxIvã­Ý0©²Ëå‹`ª]³söö)˜~T?Çè޳ךSÒò`¾(µXf/|Ã×,Lû¨a‘T>Rcò,Ýš"½Ý~–Y+ùáãXÉ—¾´Ñh¿<èf¶áÕËøÏ£—a=°ÅËig6'èõd¬`çÒ3ÞÛ³†H,!úvŽIÊÉÕ„òJìvж±¡R¼º~VöüR3=žl›BÚÑq«SŽK¸{üêÀYczdØ-÷²7¬'vS?È@"ÖZóŒ«Èv&øË^2ä  1Úàÿ„\«DÉO'!/Ÿ‚„1ò ŸìÈ›ÒE¯ùÒœ…ÕÆÇž(@ÑÞÐÀ¢i”xy*ïc`|”J_"MÐå´Ú}‡”ùÍ·ÅVuåYz¦ô¯¢ÂèösrOTÒ÷óŠýª‹Ê¹[ys«ˆî¤,c—PÍ4–K¦­5v³zŒGžCÍþ=\>ÓoQû·áŸt=Ôµ¶9«~Ýõ¾ˆ~?¦„úˬâ­ûÑ ýaÝ>ËShø³hòÜÌ!4íp‰{&µ.ýœ;h’­¶BéÚ„¦R;îWIÑ4õÀ‡¤4cÿ´f?pÍ=2RÇEÑlìp ¨o±ÃÔ4µh~—r1[”)—.jP埆Æë;WeVO@uãmʨxÁ+šy‚˜à»\ãj\•¾m—p³¨6ä)ìcfÛµ¹\ÍlC3Ï!G¼ü̯@†+i›;Ÿ'¤îÿ¸x}í¼Ë‹‘IûY*×}O©…@!>Ú=+“U+ÎÎ4~ða@ˆ5ƒê<´¾y!ì!á¹ ¼Ÿùà\t[%üTûz*&×€âôiÄÿéóƒþ¥¬¶¬É 0ìb8Èý£Ûܱ·2 ws^»^´ºcÕgHþå[;i‚áÏ)‚o#z©ã'öÚt`¤ÍUÚeÊôÍ~€¬Õ¡yÛDª/Ë<¯`÷‡š«lÕ]£LPgœ® |êº §wï‚AMßEÄ ñ¢x-ƒæh¡pË탶ޘÔí 6èôœä2?}—þJU?=ßvÈxÎ;@ßwŸñ×-ä’òõÑá6®ä½Cð‰Ó€1b?Œßía…0nñG“Ùö+L´_rš†©c-Ÿu¸¿ÃôîËê~SÂÌ(ïæg_a^øúO“ •°â³‘s~œmi| K’¶Áštð³}¢IÊÔ©®†_¤ûÝ6Kfá÷xKÙýé·°¶u_´B·6-œX_Àö—Àû_øØ‘hü›†ÿM$¹˜ÏªÐ‰dòÎ|îGuB½çlôºRÅÙ´ ÍÿBÚ£üTßÛþànчÏezóþÜÄ=j7dt^ šFf¯Ð—?IƵn{,I,÷‹üâýˆ\ÔŒ¼7˜Ëp™‘äuä³¹Lö>2 ‚Žu¡PÊ;âWQTìàûÚ×oP|Tœ*¦W |¸¾ÇFÞ¥®^"—ôA™Àmfefi”QbI˜½ F;§8½IPñýÝL[VCTÞëqfÆA¡‡6³­â5ª‘ˆëÛFõÊþd*Ô ¦qò]EmÆ …뉨K^¿÷pk2êE=JÉ)`C}† ){ÑÀõU‹'c?æ÷Úòj§£Ñ2§Œäù?h²',H…ÓMbbE†ÇùДw’ÿYòšÆß÷âÚf{B'ÇûÐÌOߥéOš}â½½#ÄDàÛ™¼ð†T4¿g"ÿ8RÔëZ_h» ÷s(O…„jëÂæQ†(ÿ4²‹:i S/=±É'èo&šûš® 䆤ºŒfÀ{ÇÇÔÛ²=}—ÊäP±:¼£Ð3ÊŸ"è/8EˆR<¦Æ¾øA¦™ò«ÚX(¨q°ÕK€ª·Rª¿ >¸š[Ñ^õ„–'™¯]µ8 “õ ɱLèú¼`A×qzT5[ðCo%çèÚDè·ó}/ë¥ý[~¬tÕÉ„±·ZRô¾‰½%Êòº½YGÉÒlÿãÛá8§µmh“ÌmR~ m†|ßW¸í¡m« SæßB{橜?A_¡ÃFLb[:…´Ç¤sy¡3µ*¦s"º|û%Τ¸©½33× ½Ü¶¾ÑñÐOÊb'á ƒ‚¬±i‡k`øÕKÖ¥ øtýld(ÛŒÙýø¼G„”ˆ>NÁ”ý\´C¬L§ï_:?{æ4®»>S7€eÆË5¯)àGˆ–©7,= ™¬z˹{Š`õšû[ëhøÝÓùÁ°½Öº)˜ÁÖþÚMÕŠI$âzXö¸V‰ +—©‘Ô‰¦t=ù'’ï»2°ä[‚k¶«”iHõmcW–®Ò²Œ<Øø\€»¢K¢–é™^m±÷ì+fdøz$dò¸ 2ÕUgjé"KÉ6Ë~ gd+´×šJµÆ½ñ ¿CBO!g°·jK,r{vd8±÷Ýs‹kWõD> Ÿõ~}uä Û[+BÁþC)#k(|¢?êJx0Šúæ|=”øÅ3úÄÕ2¾ãþÍCS|Í(éÞ“ƒ| ¥YÂ;ç#{Q&nçCN¸ʪÊcÕ1”[""eYF…,ýÓ¦±Ñ¨8ìäuî5*;Qò¿õ‘Z±H³vUû›ío¢º¨Bµ™BjDÏ>ŠZG’ì/÷.¡YŸc[ª+êŽf™HWãÑÔ8·+j&h`Ìëxà¶?+šFã#û*f‰¢‰>ýZíM4ù¡ñsÿ\4½+xû„ä4ã¼Û¤VóÍÎ=ñܼ†æü²fhCðoÏHgêz¢9ûô•%.´p#’ªœ¹†V`| ÐÞùý-Ï1¿}{x‰¦mÕüv„*AíÊvN‚ÒÓí à!ä¼QÍôü¿åàZú~™À%ÿÝ×ïûkù†ü3mZü‹ée„?AWÃÔRA&ÄWë·áñŽŒÉÔ£ŒðÆgð»b*#$èü¡ñë'èðZAQºÆ_ýå2¦PW¾†‚ÛöœÙÆ%PÔçkÝËÅ«Õ _Ä'¾ì‘Hzƒ a\Dyb“À;©; Tï<y)ý_Ô:òÈo[”QRC8†0Ï šÜ!$”Ç´×ßAW"Åsç$Jè¹&\·túÎwä¹  DTº øÀЧMÏ•Ô0rZ8‰U F9›i ÂØ¬LN‡ ‡OŽ!×7arÔìkR‘|¹'¼î{SfN9ªÌuÀ\¤…„góIXØc#8¥ÉßÛD¨}ºañcwHqüàbM1ƒñˆ½Ì¥Ú?`ò)þ¤]f„/ _/­¯qÁ¬Öèʒ›ðUª ˆ¨m¾ûÕ\ kƒ%Ö“Dçʆa™ìÔ-–*yX¥wø¹'Ó~ë)g­]*‡µ" ø EØ´s¹ÿî^ì(ü&va'Fb^%*öà HRâ¹8¢ÎŽdÞ dDÄ2Haøû佑J×êÀ§²HãÃæÝlat¿3ΛPÜÅ=¯u*M+‘!Z{wˆK2i¸¥óœ YŽ©4n]|ŠlzkgœÚqïAëØ©,äÜ};>pÔ¹Öü&tŒMp›†…wøeämr:™,üzœRÓÁò(HeŬnÓB¿Ú –ìQ”ÈàÃú½—0>PH†û}ìó‹Äƒ“œ†ÛQª]ãuÑq*”17Úž×îÆC‹GNŸmòE¹W,nžB+þƒ r½¨Hp—“ì4 ÙŠe ÄX™=°FÕ\ÞGÞ;¡Úlǘι[¨qÌãVkjnÜÍ:ÙK‚Úõ£Cź٨ûF]ŸôÄk<ê.£Ö!w Xi¼ö­J£áóôó©QVhLó“¥­ªMäNøòëM£ÉQÚx¤#š^5X?%§†f»˜Wä#Ñì©>Cœã-4g·ì)#ø·ˆcFç—Ñ|çFåP”Zœ>é¢|`ZÔK²S"ðíÊcÏßhéž½$Þú ‰x(pÖp *ÆÚ3â¿C±#;o¿8äúM¿0=YîwÄŸ‡„Ì›Ú_ˆw݃ôïn'œ)Ôý¹Cû ùÏ‘ïËŽBbd\ð1wxÓý£ß áõLßN®?ÄWˆµ4¥‡‘£gðõÙ¿ú{…%øÔCÈÏz&Î?…S&¿¤cx ˜UnÐ{'Âu˜Ì$Eù¢yëžU(î>ÛJ¹ð–0Öý9Òrõo,êˆ$ýpó½íÐT ELvÊÛ!ÔP$>Ýòz¦ ŠŠ8v'ìDøË}²"JS…fw4¸¡üƒç¢ˆµ6T楟~_žHXgÖKä»^CÍž·/è*C­óÅm~ôP/Å6˜ì ÜmÉ=ÎCÓó+o1\…VÆõòð£Ð¡y‰ût)°†ÌS&C•QpÉGzè]Õ „R›—GßÀŒWk(ÚÂÇüË… 1zðÙîXáŒÝ =rxù Œ/iàIס52srøB9p[œÖ ¦$¨©Éí`ŽDÌù¾)|õ•{×Ú ߥ® 5Ø‹a:ia’?iT÷ªMrÃòcÇ»§°*é¼&|èüú%ñãëê.øó›þ¹Ï°)lazÒ·Ê[õ¦gR¿C"ãK‹öù/‘xœ¹ÊnQIcø]“5Öü~€›ý¤,˜y¹æ±ixÜÉßR"]A)Wýèîyà>ºÈrÎj{'dE&Ó³†3²%`q ,¾Ù~ -põ#Ç©o¯yä6ø.¥ò“ O«XÏŒÕȯ#T±˜ú/ªjätˆ£pwëË+;]½ïšî—¥{ªz%±p.ôÜ”Ž,P*ÇC½·ž ðßCùD¿éôÅñp`ºX§»*Mtsé=D•7\ã7·‰Põœµ¶ÿUjT°—lPE‰U[•Qëõ¶e¾-ê8Æ\:«ˆº«ºI‡/uáQ#Ñ×§–P´x˜ö~)*ÓêÜ!A£Ð÷-FóMh\#t‹õК\:öðfO'š¥=`¤ FÓÛò†¨ÔÑtócaã¯ÓhæIÑO#Jà\ÿ¢J‘cš+lžTóAóGÏÊt:ú‘Ìýçm ‚ߨOg¨+í…ª«¼Ó…¤¡Ìż¯J. |ù…™4|Û[šOaÔð^¨‚Úë@ö,ßwímÈ8¼Ï:R5Ô˜>wA’Éó†$-7}voBþY4tlòK-ˆÀ÷&Tí‘[çHކúЬF»sÐ|”j[0ËÚƒX<ÕgƒÎolo¸m¡[ƒb9кz v¥öz}’”×TîLC_ ŸïÝÈ<è3³½“Çm=_)þ|[T†î½Õ–³‰Yÿñ-þé†àOh»?ÕZmÐf=ˤv'Úž4ŠšöÄ@[{úC»«g¡kGÇ3ÚWéÕíæC'Ùäý¾ èü\VÀ,k ]kNž¯ß>†‹¡‡ø¡wm'ãœEô×× }Z©»ÍŽ=kZD:ë׺ﶈpÚ‰éô³ÇAÍ$ZÌS™èÚŽéÍJ#óR€{i²ŽD‡ßåÒDö’âBµuäxú¸»j™¹‚øçT!O5ëà ä 7v %fF~éÓšôy(ð^Úh¤?…Ô?ä;vEÂf⫽“Qìm“4y'J,ܺr³ç´ÉJÏ*E©u¯!”¡ˆU 6ÁC¯*£Ÿt?G9Ť…/õ(¿ýç×J#* e÷‡Dâ‘Wa7:«$}¾î·nFÕŽcßP-ÕuG9N5XÖ¸i%ï¡f©‰Aj‡Ì›%ÎüA]§>­~…@C-BRý7Ù,\f$€ÂÎóZ'’¡ÐŠë¼žÕ êÛ}§Sv‚Â|uG£Z?ç;ÀDàZ‰Cö™ø¤-(3œì™K™€ öö@#Ò?PÅ» öè4Tëp`$ 5™”ÇÕ¤ î"ß;ïiRøpq[9q64NìXšÓ‡–ûí\ËÎÐ~1¢Æ^k:›…}λiAwÔeí;ôsÐëlc]T ý—–;c6Ûa0®éQ|$Ktoæ·†O/Ë B-ߨ@{A &Ãø­ »¶U˜XEž+õ7U•/¯@{ꛪðçb·i§;¬g2¿Ë¿ç [rŠýT-¾HD¡¤Ýºö‰ŸÖEy’ñ#©1ñÝZÕ$—év«x~)Õ3ƒ¨J uØ÷#–ÝH»Õùù¡ËÜçáqœµé¿zÍÝÞ|€ŒÕÃBm¤¬È<|¶G×ÁÙ¸/¼Ÿá莨¨ö#×ÉÍr=?q_†‹Ž•þ%ä+Yý®Ðs†hœKw~¡°ˆ îd''Ц޵O¢„ó­¼ÖsÐh/³CÓË2Þ\·GÓåà7߈2ÑÌuê8Ö£YÏ Gäöiß>h²mÛ¢y$¥ßq&$Umx–Á’ uÅõ9«æ&PEmé£"IAÈ»ö”pxAþç8Ï}±o¾MšøAÊ ä\ÒµS¼O Ùscç¸nÀ»´–Ï•}2y³ì×Em‚înµ°YiAÂà¥Ì­™4Hð¥ŸÊ½ùŠó&Ù¼ 2øB†M>@=ÛgváV7hJ’?@êìm9Z›nV Ó§þê9Mèªs]Šö9=Ò!å¡÷Y‡C k!ôI¯Šê]?½mí¥&ýÐó°TÖäÓ èúýÈöÍð|ˆ¤ÌUò€¶²-£Û¥Í×"t;ÿñs\ɬ„Øqnù-´Ýv³^€ö£¦·­÷—@‡ó cl,t>–Ü8óVº’…¶(Wÿy'ömVz/ùôßÓ½ý Ý{Íø~ Å¹:z÷9~z>)E+óíØQ³79LÐ.¤:ÇôÃñ™ Š0­—óswÚ<ÌíÝQ K‡…Se×gO=ƒEF6kù¶ð“¶Î¼=AV˜c6?ÛjÃ/YæÛ&µÍðÇU7„‰w?¬½Íò!è%™aêˆìL4ÉÜÍBâs ¶qWœ”MÍž›™É~K)Eú ÅÖwq9¤–º¯äŠ÷‘¶ø ?õ²/î~Íü4ð;Ò/Øq·^ŽDÆìq[d/—zMº¬çeô• »v5GGœ6rðÆ“St!×îæÅ\é.ä9¸R^*мÆÊOì6‘¯Tçå›°§½ãk„BÂå´«¥4(Âpëz˜MŠ kȺ6It”Z“±_tr¯¥¢樚óFéâoçíJÛñ¾Æ‡ò¥(ûíÌok'”Oî¨Ôv6ÁÃ-ÖÔ·®ïÆ#Gô„X|»Q¥æqÐkeTåO¨^ßã‹jnD<ÒÝ ¨ÞT¨÷ž5¯YZ*t ¢¶ÎJKD¨ê žQM¥w@½%«ÅîbÔOøAVn…†’qGŒ£QÚÓ©ÕÉ14¡^»0ú’ §|?.ýÔR4µz5롪€¦‹b† Ü?ÑìÍn"Ñ4'{ÖŸ°@æa%›h¾bèýâ“/Z8´ËÉ EubkÔÓ+¾µ;.‰–ççnI®Ö€e˜Ë/wÂzßoNm…ô÷ ÃÞ“x'ØXoCÆ ÷اÁòÞ»=¦õ ûßïüÝžÀ[Æ ßSn.L·M]¸ ÁϪ¤ÖP^¥Éw{<ƒ¸“blqð&aò¢.µÇ?ïçZ ïüÕ_޶¢:ÛÈ£¢×ÕhÒ‚‚]¹Ë“ûå |â¦N®>ù¯\ŸËÐBÑ’dN‚¯ §h&ø³™½û.(Qÿ…Sš³Ç ¦Ðjïm¿4(xñéM¤Øœë¢÷}DïÝrÖ¸þÙÏgQ×@à$«Ò¬6Õ”ôY¦ÿö‡2ÿ¥çsG "§ÔE!̪nÐÚ¥[ÐCõïŸó¦¡¶&Rm—Шoôº£µûCø_rCsË}ÛëЖt}QÃS:ËŸ\i‚nþXJ+íèY“è#¾ÙäÛ½›0HôÎeÌz†Í»ùíßž†‘þ ’ãWaÔ¿s)[3Œ3³Ø\8çWf™ªÃ8 ú<ùpß |©¨ŠÓ¹Ð 3Ÿzú›zua^û{Ù«XXø-+ز?jÎÞa•…%+ÕòïO¨àgçÅ-ËòX±{jüî7ü¢ 8Jê ¿#i$ÎÂ:K}_ l&ñk¸‘©ÁÎÕ-%¿kSHläãȶ…¤Äcc*ïlPäŸÀR´_rgÿ¡‚TË‚\·XVsúµõW-Ü5ì±ÞÌΈô/žQ £ÌÑísÖÈ,?ÑÞËùYîM°w#{…-‰KrúÒÚÈ÷@žôû9fï"ßÁÜ×·xPzƒ?HU£Ðµ¿ïwŸ¡Èw «xþ‹(þ¼›ºïhnÌú\Ro=½ÚN1¡Lk W¼ý3”£%¹»%h† F-IÚ5N¨˜µÿˆé¡UT>Y^Å1ám½D.ª… ­ÃUÔP:È^.ŽšësÙ2­ô¨]zqˆ‘¼ u-vâ+åÂQïóÝÑç›Qߪo6•ê Ô¨Ë.Õ…£×QgO—çh좸ñ^šMŒvÿýˆ&cÖîyÊ éÙ™]9+—Ðt^2œæš¬Ñ>jåŽf•¿/Äì'ð-‚çe©*šG'|7o‚$Ì1™¬ª ¶ÑWUh¾*1“í¾P% -±—ëõ!_+ãdÁÂ5‚o+þƒ cÿìsË Ùß™£§’xz¼ ]Æ!Væõ !¯|sxˆ²â+öß,÷̆øä¤åì‚IHK’SÐÚ³yEoø“ bÁ÷ôun¨{Kg¬ršˆNÙMì ‡ÖO&‰ Þ8 ÜúÝ K«ñÇ»‡óÐýnçÊCîpè%yª©Fà\ã•k ôê©wÕ9Bìùó¹ÍÐU}®µ5Žü/ß:è"äŒg m¥S›×òŸýp VA›X'ýFY´~_v¯ð˜ÖIÉ>§ÑýÐ÷¸ÎÂsÚ«hsï?ª„N­ÕrÎ5è²ødãjÝáÏêÜ2… gqn']ù4ô¤z—ÃÄHlhöÁ³ñM¡ï1}–£Üsz}ô¼0®­AN¿T “<"¤1â ðE¿–W^`ÌîN¸Vju¾Z+4‚û¦ú)OÉÂÒCŸ²tæ÷°]zK+{?¬¦ºoºuÂB}&X›9ªöã§1lʼhƒíÜåÚ2Æ)$ª}ùð&S(’œ “xõÉô[SØ+‹Âêܽ·A2Hõ ‘G._i9‚7NÏ}Ã]Û#‚·Ÿ… ýS—¤ó7ˆ‘ÑbpÛ(ä62‹lN]08€¬Ä=’¥­{ãÚÌæ#Ü›šsH#9Ÿ{ÿž`Dî’6o¯äeû P0…|>Ç;wD²Q€üKCçq¬È kÞ7ŽÂ/¸mUƒQ4¡\¡©[ÅGºèƒñ€ö›h”\ìäÕ8g„ÒÊ)‘— QæOO(=®[;JŽòFÉ¡O7àa¯åëY¡¨4DݼÌóU,³y˜¾e ¶µ÷¼÷'E5ñg*"oP=ŠÞ4LöjQzËß%‡ÚT;šþÂwPçËÆ‘ksˆz¹ó ½ Qß­1î7Ÿ¬o+‰¿E#?·Ö;«ÑxöþgÿÐÇh/ßG”wMµ?8xkå éxîÕÚGoÐÌ{.\*ü)š­—Xs48wÕ0°i,Í¿çéoÜŒF »`’ì­z´¨M¾èð’À7·‹W{õÑòBpóû;°½N— ¥d¶ó …Ì„ü11„dü(?‡S>_Ð …Ù#;;äðÎ åLÄ»HÓáü)Á›¹TôÔÁAÑYâ¿ê»Z>¯%B]Ytê!60V=!ÉÞ°VéP^ýß}½7Fþê/;CŸ×kKre ¬öÅø@>¿‹wéŠú?ÿÏPÌèŽC!Fˆo´@~¸¶ÌÄ—LÈÏzBšžG/ë¯Bak½ëܹ2(¶o{é©Ã%ã̹AñPÎ{<Æo *=VFä®@µÚAGÑ&¨e¤èKqA¨ç®^—‚†Ë»ØŽþ€fjÍ‹«ŸBë€x´tŒ…Ç®8PBWV}£ÿ 蹤´­ÿ\úìD8fˆÁÀÉGEg_ÂPüÎÀƒ>0–ࢠŸ³KíF³µa,)ÀŠeOLŸçãåO†É€9nµ4:ø"sÏíô[b˜ÑOÝ3»Ÿ‡f¶h†<€Û‡‚t]UðƒóXÂ^^zXܪ¦×œß†Ÿçoê¿ø> ËKÅíÎg¯Ájd™òM"üö°¬ ÉK†µHÖÏ>…ó°ÉB“Ý¢BÛ3Á3vdG˜\K I^eç–R’øŸ»©†¶Ê¢ÙÆHuÜ%0å7ÒÜÛtâ÷šÃ]Dža {pÏè½Ì[§7‘!¾t€:ã 2=±kvôB–·®ÎŸX;íkúú赃Ⱦ÷§Pôr§pÑÍ"o|´Áá÷ÈŸ›Üyò> vz¿[ÓbEêôS—ÉP¬=…ÊǸ ÷¿_(Òd—@)™£¡K§+£ûãÄɵX”õ#µX˜Fùü“Äß\Q‘ù審¢x¤_>#âønDÁñpÝ T;ü"-`Õ||Fa䋚)£Ç/Ĺ£ö™Ñ;Tl¨Kö‘ïVÔYÔ{’z„e£õ™&üþÀŒÁÇÓ“ÉÑp:Zj[€åëJ桉Ò9ñM@“NË,]^*4=Ž5nÑtlè² ¢™]ܶÛy&4kKé5R\&ðÍfmßa4.:êŽD³johõ@Í€hû±[zë”H…ÞêÞ%yïJ-”,ÿÖAÈf¶ßnn ÿ[Ÿäßz ÿÖQxãÓøT×ßøïïÿÖ9ùwþºÃJÏ&3]¡Ñ.ânU{*´RÛ0TdþW_¤Aì[Múå¿uMzÜD[¤l¡g'æNƒ©ÞßúÝC鬅ñÐ¥F1RÿñMíŸæ4'¡ó UÐ8´¹=ÒËÇ ­+½ä&94ÐzƒÍîü¬ðßú&ÿÿ÷üŽŸèö½„.ÚÈüeÿÏuôf³Ô0–C¿AⓃ0èo™§öò1 Ïлî±*†O ;zÓ 0øÜ±\û%L(} 9r ¦ {Ž¿´€R²µàó0oPÞ²Fß9_r³ÙåÁ“Phˆ4,³SfP0À*ϱ· ð›õîìíRWXcùÚcW)‡,ùÿ‡¬óŽÆúÿÿ¿½É^YÙÊ)ñxˆlÙ+T”†¢ÌRQšŠHDF2#!”P6Ù+Ù²’‘Mø]Þçûö>çóûë~®s^×ë:ι×ãqó|¾nÏ“Ç`ý.ŸÅD 'íÜ,?‘‘ŽÄ…î9*bLHçÌM.‚äYUi¢­rHù›”„lwÒ\ói+ëwBú£‘e3y‘QÃMŠ9À™–{[L¾¥#K™j„ÆÓãÈöÔuñ–nrWê!:Òƒ\òÅ'oJëâNaîM~VsäÕN#-Œ@þ7R„"q—”…ý{i|÷e#ýð^¶J'¹óE?îeóFñ]ÊötÃÝËÖ¤=ŸP²p¡÷žô”9¡ö¥wí#Ê õÕËê)ÉPŒé÷&*ª‰”±KD¥E?ãñ°:ÜÇžtñê1ª\ªqkªXFÕ±úù­¬„Ü:9Qý—¬=ŠjXDýªÌ[AÍ5þ5ú&mÔª¡.:SÑ‚:É!{JùPï’_ìò 4Ë~7~× +¹ê)¹ÐH_-‡’‹Ä;÷w´¡IÈ\pî64Ušj¿l ‰¦­j‰Ãä&hvú+ÃL šÍtw>~Mà7÷ØQZ r4ß)b/’ƒÖ#ÊRšÖhñ™ÛßT¬ˆÐßN}Ž08ƒ–ž‚,J¼t°JºfÒùŸúnž*ªÛ®¯Ìé'„n{Jþõü[?IËûCY×Ò¶ë,ÞaÇŒ¬ô ˆUý*©9ѧØË|Ò†¸ÑÜ•gý¶}&ÿ¾ÿߺÍv¸jíbüv=æF“‰59BÞmãч / ý+jÓÿØÁm_Ñÿæÿú‹r($ê?lÿÿæÿwßÿó³üë1ú׃ò¯7å_ßI©ã•sz Ü“Ååìg·m¿É¿^“ÿýø×?´íª/u+½kí¥—iü|ì¶=GÝöS/–])¡ç§¾9™nôïýiññ} ¯Ï)äIçú ØOûÒ›h¡ ÍÙª®°#(,ÂÕGºùE½7…¿>C R_J‹ÜÓižÜa2>‡A’å*Xâv=O@…q2¾ßëWq/Ϥ@§ î»J›pϨ¡ö„ïg·¸õ¢S–¨>aw\#75bZ‰çúÊñÅ7šL*Ôf7Ø·ïˆ:9yqZ Ú¨§[õ<ìökÔoœ]Ò¾€†ºWmoûááÌõà~g4¦2ò6’6CѪcù2hR¼ÿYs/šš„×·ô§¢é÷ÛGøÐÌÒ//ðÞ'4«y”µû{>¡¿ µ¾V¢Có¨w»˜É¾"цƒåòP 2#a³ ˆ†q4´Ô>n¤êsÚÞ„÷õlTœ&¶ý$‹£c?žùBº“ÌÙ ç»2¢¦nF ~œ‡ÓT n4§+S×k;S>ŠüïÃÎH8„ØBÑY)ç!l†²ÌŸ)';‹¡ªMÉÞhG;ÔúrL=…†3…ıû éüx\¿4¤ôgú¨›©ˆÔúQ&µH×h'·Àn‹;FöIV{#Sì×oê£DÈâp$lÆü²íaU7j±Eö…³‘ω‰³ÞÙáדUä®L>ùêòÌúY2ÕÛ"¿ê­[Wöã.Š›§›£à=s÷ù|[¯ûK¶†"3"×ÞžF± F‰•¸›‡Ø¸*7%ïþ­«áÏC¹ïžYz(G7µÏ°JåÃeÂ$3mQQ[îêÌqT|ÿ’¤÷‘:‹èSB‡â«ÍOyPµåÒ=wš$DͶ,ÿý·Qý§T¡Ó³xÔ0r:‡š«|¿v=”D­joîåeÔyêòPÏ­+'-E ¤ä.d†=FïŠÎT«hd*Ð3‡ÆM Fmˆ&qgýß<1ASÓqÎ4ý[ã1WŽf¯d îU ¢9>ÿq\}Í;Üî?IG žérw.´X lø¸!‹–jÚ ïÑŠñ1«sôk´Š°  4•ƒ{Æü0òƒëW)2!‡ÿq²åOȤŠÒ-¡r‚4Ÿiê9rxsI¢ÀËò¤Ä¦rºIt›A’‹’„¾0,_ZøÏÿ!Õ/qCŒ`ÀO#².xyMè çôiˆc%öT½¯‹Ç̼òý!U²á‹© ;¼»C [ÕÙ\s¿¢oSÂû¿Z ÎYu{T¾E¿'òTóë²bhàÏÁá[gRáÃZ-W1oØ9CyI*tò’¢FœÒ!·ŠõD®ÆäŒ¯ödš@Žû¸[Ø—7Û™«•V"ä`y"òé¼r|ÿp_lèîmQ#Û†ø’8yþ6)Nü Åv™×¹§5¡TþÌŽš<(×ÜüËä#•/[¬ªSá+ÑqÒ€’P›÷gvÈç94¤\»t¹¥™0ÒÍøÎ€–w“6AndÐv͘ëÖ®ýÐ~fw}t;t„Px» ]Ó“lâ*žÐsñÜ„v+7ô- G”º¦À€éuÒ™¬Ü0R>× Ã—…Â(†d`än—YøÎfëŽv-Þa¿.S«•ó=€)1÷þDž0ã_-UñÜfçßÊVûGÀܵͫÃY?`a—ð‰S°¸ xÙÂ…V œOÉ1ÃÚÍ5c£/°¡f@¦&y‰âCœO=˜B :’³§o"ébïÓ‹H^¸Á7Ó臔É÷}Ì”‚‘ú Ê®·ê!ÝÎYýë‡2¡«—á²Ñ[d¢VôÊ’;‡ÌÝ ¿2µa—³"×odŸ_`kE®óŸ¾)Xþ@çƒ ´ë‘d_o2à®ÁZZÞð‘MÛƒ¢Zq¢¿(øQ¼1ö ½Å_ÜóêÅ̤CÊìkoÌR‡rq7eú•î£BqÝüxJs‰ÖÞOpŸia‘Ä <À®CB“ú Ao*ÒéÆ3Tÿ®<l¹ 5V Ëuã!­’w‰ƒ¨MÇÑD;i‰:ÙŽ¯lŽÝ@=cËÈç†B¨ß_êñÈ# OÝi\ÁÃýdúŸ磱q¿Ïä>4±=üæÅ•4¥4oz;è…¦ï¼Ã^‘O¡™Ù·ÒhöÇed£ÉÍCúòD?r¢…„5ûµß-hQ£kWa³n_6Õ]A(IÜ»Ñèø ŠÞ]ß¼ êj™Ž%wAöï;ÑG×·ý$o+ØÚ„÷Cšãy…Sâ ¸‘P¯;.ŽDþ8 q¶O|×ij·skŸr:¹á>%NA¡oOŽÐª:”I„~&ç†*Ã.©nS2¨™j{ÌæõÕµpb741¦šçXŠA³QmÉUÇy3Éx&Ìiñ´Qo œÌ8Žzç•k$õO£x¦ÔåØD4¬3&ÕüÔFöƒ¡³9ýh<Ì_~¥ñ šdõxÆž BSס¯ù?yÑLôh8ñ 2šu?wI#Ô“iŸdo#Z †?Å.3´˜æû$Y臖±2§åS¡•ɵUUïT´&+<§2݇ÖEAÌQKOaùr>nJ;B¾}1wˆñÓ­¹o%ÞÝÞ1\¬Qc¸Hèk{Rf‹‹ Õn@¹å«1$ß=¥ò€ç1Û*îšÉ€×Æ,©ã‡¶öK.šåB4•vÔ¯Š&ˆzô[ô£ð=ÏÕ†Ÿâ:E¸ÎàRðúæÖ¾uÊÏÑwœ±vñdµwÇç.ð¾ÄÓ’ ¶ø+Îubr…²Ú]/CÞ×ѯwÜáCtúèÕ° ÿòžHœåkȳРYT¹¹þ×/íjUÙâµéÇaãäú~h㿜3»Î7s€ÐÙÜÞ>‰#pßò^†qÛ£O!o’Lüûó4Õþ¼‡2P,Ëýâ¡”’ZäšWÝ‚rÖÉ OríPi™˜:áòªó?Ÿk=œ µNá¹òסA_ßcæ¦=4UIÚP(’A‹³F¿iû-hï.=X´Úi{¹¢ËÌ C¢ob!Ùºn‡ÚPöÁ• ›ŽºCßÍû,^„¹“kÊô0' >9±xõÕ)Ö™™ …³½öbÙl0÷dãÆø%+n£ò”~wÅ‘,$ÀÌQ£åéñ:˜íª­ÊØsnâý&jŸ`Aèhð›ü#°DdêYÙõV¸u_bY‚µ¤þî)°!àuç‘èîgÑ6I$á¹Â˜G˜ËHk& Gs©‘üÉ qªTRœûìΰ„Ôi.°#“阠žåPL$+ßfÃ~w8>CÃ[a;µ|LÐh‡høH‡{øj¨¢IpëâI45º j5G‹f æÖ÷( Yƒ¸ñÛ$U4dÏáÉMèkæ2‚—Ñrgà‹¤´œhˆ/ú³6¾éßì‡:à mÖ‚O—÷]vU½y‘“ ŠÍpàó'–m?IúÍ/çB´àͱd1U‡H†fò4õ)x­Pu#Ð÷ÄFÓHííLZÆ!ÓDÈÖ£ŒX–w‡‚ÇÁN9ï 4þ@•“¬'TV\ß<&5Ž¢þšC½D7cÿah<×Bok¾Mï¥ýÞBóÊ9ù¯dÔÐâ!\w·{ZÔÙznÑ—BóEÊù¸oh:»Þ÷äW 4rž´kæú4»ØÄ§ÚP×c¸Â´Ûêî¬Ó¿³w%pÛCã°ÇcP·ÏÓÿ±™ÔYê>øë¾åïZ4&7€†»bö¥eõ[~J)NnhƾWd[ÏõydOe­rï9‘DA[¾ð°†´K¾‰ùÎ ̺ͻ¼û k¯îCÅ×?ª.ÜM±Ù}ŸH×ÖÒaÀ÷ã‹‹K0ä¢ iĬ ?ÛÍ9îî±tÿä*<ðkl³ع`Ú‘gµÙf¯Ç ´uŽÀœ½¼¢,Ò‹°l~ KšÖwwöÂÊæÕe”°VâÈÿa6<¿¥‡~‚DMlì,1DHÌø¬å3’…ê É™CŠ$áæF¤&’8(÷i³0l¶#Cʨ¡ê4düÛ½‹:™#ŸÜ7hšGV‡ÖÑŸeȾ«­ÄX 9I ìŠÛ#7í—œÇÈ£³'KjªùŠŽ¼Ö¾„_Š®>2AA…«6wÇ£P=_ù- "¢èžøb×J)ðž ê‚É!ƒ6•d™ŽR=ÏÊu†\‚”ƒ9rjJtžO|u>ÀmA7íÉ@¼»æ®õ·'ðŠ#¹ DM‘›=¸W‘ hÿI‚Ó§º¦j‘ÿ-#2YÃ0Þ½•òí4d¨dEž1Øò[.¤¶Àû{¯>°¼¬!ðWÈ…ÐeMÈ}ü|Muò.gÜ»ê0$W‰òîÉ£Yãç˜yÄc¼KŒ:»ìAÈI¿-^Öò¾¹ÅƒÉ;k̶3'nå·¿8äž]VR[„¼ÛæL~·9¶=FŸèÑȇ& ã„Ó=N—µdÍ5 ¤MÃöGG”ýìÜyâW T dܼÎxª=y[ø¡–YPíÞäi¨Ÿäºè,3M ¾<òªƒÁg9Õˆ¡µýìyb› ø–ùø•ÔX|¯Èçz×]l£´ß àÇítÎÚѯÐGÇyÙéªôLœd°‚ÁãU1Eß—a˜ó³Õoá ;õQ÷ŒºŸé8Yã:YÔIð;¸AìÐD;ÌìÿVέ¦ ³ÅÇ^ì„9'3­‚¯á° ò\B’ž –h/¸íד…a’Ã÷Àš/mÖSÆÇ°A_6¬îbƒDn¤Ìc|ÎH¼8ÂOV^ޤ1+Eg=÷#ù¹¹aÇ ¤t…âªÞ’Ø ÈOõK—o(¢ø™‘bKÜ#/z›õ†Jçÿi{l…rÖöÆG=MQÁíXì£QTzÅQ>ò°÷óM¹4E•j+RMTûû 5;‡ Õ3g‰Ÿl¢ÆÙwgÊÛ©ñXÔ­?Ï•Pk)sCÔPçí‡×~²3¨gïÝ#Œ$'w™¼DÃØ˜ðO>¡èþd·Aã>2qC94)±Õ\@Óg÷SˆH_¡™«š‰šë]­²Ž’:£'+Ñ’ãF1ŸO;Zѽ”:~ ­™|2öÖ«‚{˜¯Ç@±§–Œ.¡OåKÕ¡Ý•‡ëÌûK#²¤ 6†“·ý$iŽîo²S óåÅm{BýqY÷pAü#~ΫÊ+Þ}†³íb×a@ÍB¯'(†Ö/é‡ÁOâ»î²ÂØ®rн«Wà—Ô¥\ýŸ0åõ1°0/fú[nßJûC\†ù”^¿¨NRXLnúRÊ ËõÉ0ñˆÖv×}LìÓ€õ^úf]S$ºið¢"It_ìxâ…d25‹âDŠH±_­›]Ý©î}™a‹'BZá—~wõXþh.h#ãÓÀ^&î5dVμµò¨ Y¦)ys.^F¶D­V‹g‘#ÚéÈî äÊ0˜¥×ãÅHúlÆ!ß…³ ©WÙPàqj€Œ4 ÒÐ×Ö¯W¢P¬tsÜÝJ±q5ô”dC±C‘óD(áΣ¢&‹{˜ÂŸÍF鸄Gâr (ÛÂv°6PÞ¹³Õwé*ÒÚ-ÍB¥B•Þ÷f™¨ü5ËâBg#ªðÅG´n¢ê#·9)’ýˆt&v¶å¨Þ*Ò£–|5ôêÈö» æÒÎû/½¨UöA!:Äuƒb*#ãPïøì‚THð¿M#ϯGÖ;ÊŸ.D£ÑÅ׊ŸÐ„<ÈúÇ:š´UyÀHŒ¦‰…o0 Ù¿ûü_øÑÜädòÖ;´ØS5\Í‚–t?¹ˆUcÑrAÐhÝ\­F|žÙKBëÁ/±²§hó›…­ç©5ÚRÎ3“´ì„ÅáÖiRÚAø¸÷>oÀ²}X£SžÁ[ªÁï©?CŠ[§{iH3‘}”µM¾s¸ÔåxÌÔ×ëg¼òêñˆØk 1½˃/¾Adk9µ˜Îgx‘ï?«R ѧíWÔ›}ésñ½5ÿ9 [¼ÞoŸ“ “XPB–ö^ßÛEÊðÞ qy,L—À_…ª9ä!„>´ä+@gy" Oîß·[Ó¾×ÿËlÇùD}6B Ù·4²å[1{¹:W¼Åk+6Ü[xìü@¯'4™žãÌ} ÍÝÓÓ½¯ý¡õöKñ|?|³ÔÿÌ ßÃt#-¡3eøÞ‡øðƒ¾.“ÁCzŸËŸÎõ/„þÔ¯'›0()©CÌCãAÉþ°Àω©‹º½Ñ0¶ûºiv÷e˜ˆ?,vC~«ÿÕOî§„vûG‡B_Ãl2ÕÂÍø«0gs-MÌÒÄÊß:tÁ{KÚ‡JX‘JüÞYkWXó^\…õE" ºCHdUt&õl27›K™ÍýDROJ©q¹sH~pªŠk¼)udô3Jjúv¥‚³Òþ½„¯:4>ñMPûkU` Ô¯7uª%úe÷#ª;¼ÐL³ßã@4;ï6²ÝwšU7ëʹסÉ/N$ùfúÖsŸ /Âé ¾túÆÓ'TP÷2Ô=ë} ÔQ;žuÑÔ'Üw:Ô²y™ðÚþ&K‹ïÖ:õ 3Íx¨sL9<ƒ5[ûOž/‡ÕACmýÉñˆsÐä °‚7žðy©ûΩB‹Ù&[´&ºèEøiûBU¦aH³unŽonw!|¯}öˆŽò,t»®ö??xn)>^ñÞ¾(3-è_Ÿ^5à/‡ÁoUÅšyƒð“>“qÏu §tzü©&ÜGYfÁïûÜ)»öÁŒ«à½é3üðGv_›·?ÌÓ{žè?‹tz«ídV°¬x ’ÎNVŸî3}úî!¬k;]dÕdD"ù[Ä+¿õ‘øO"ÃcŠ+HÚhP=fàäu†m+&ŠúqÞói¤yn?IóÎéÏ?0È@ÆÞÄ’FÈÔVï—l”Ž,wßžñ_ÙƒlF ¡“ÑAȱÞêÙîbä2éºßn‚;_vÑë3ž@>þKå´9(p.oôd]!îê…ìÎ(än|ç5Šˆt…Ѹª¢½ç‘þi”Ø'"ÿ÷¼á¼Û9ìÒn ±z= e?_Ž4ˆByÛ"ϯ@… žTM-TzûFãTéTÎó¢Oë Eªˆø¶º T½ÂUÊnQŒ°Ò0^T êõBj÷HZPC‡“ÆŠ[5¹ÓÜ®•£V©àã=DPçIàòph1êÙÓdÈ‘ ÁNIçºÊ4üÓ¼P}?döêj‡szÿ"šŒ¨ú «¢iIëÞè:J4{MïŸñ6 Íküù¸çÑâê­Ñg]ÑÒ3ïÔõB_óæ:“†Ö¼’£ãah“Î Ç{. ÀùŒ‘0´“œ‡Çaq§£öÕxøØø˜È`·:dMLÌ”‹êk§×ÊÓì: ™*1B˜ )Ó§DˆÜJÞ›PMèW—öËC܃„øö½„ú:±I*ACèk·¾TPå@Dƒ~û²xyMäÄ= B=z vÖ^…¤eUm"·>kõ6úVé?ç ˆ4½„÷Œ*E•þš ùÎܹ‚ŽŽ‡º‹!·¥Ó'0X—À[f&©³—ÿK]¾zy/È=ªh¾\0°Õ3ÏÜ!Ýâµú·*ï·x°'¡íïùW;—)Ž„p]Ñçc¢AUmw‰tÛc”Os6¦Š êlæ# ¾À·þÝUPr‰7qjÍʲUrŽÍ~Šemô¡êç¸w9¡ÆÕôÁn‡½P/óá¬íÃMhb yµxšŸi_N¤Þ€V¹›…þ¡eж²œi¤Píëç/ =©ÎƒÄ£n‚Ðþ[Çäïeè0´¢à„~÷Á{œŸ=``9tú/ }:BF³D ??èûtz Àè´çiÍn˜°»›=_ “ó»/Ð|ÛÓ?+szªù`6Xìá9Ò0g˜È6` »)¤s¢`iWŠ3Ÿ¨=¬(ëÉ¥&ÁÚ%–NÁ°Þ«Z®™.‡Dj— Ïe#qZñWB”HªÃã<…äœã©-:¿RŒ)´>J©/ÎÒÒVAÚÙUÞ‘É—È×úÝŠ)Ìï@æ Q‘@í£ÈjÌÇž í‚ìmk+£ÔÈùœŒ:°ö#î¼Ð @’v ùjÇ|:Úèp×!S¾ õ(¤úcèÈ]¹Ó_Iº¬‹âDÒJ –θ»ô=›jt J«¬³M‡ô£ƒò…®,.TàŸÑOÒŒ@%£@yë;ó¨œy“ÿ©>ª\=5d?‹jïDè‰Æž¡zàŽ-?PãPxZâUe“׎— þïèá#¡aZàŒ ás¼ ÊuãN¸ñý[³Àih óùÒô2ZßÓýmûm%«Ù¥Ö7 |þTÉ1:øžr`ŠØD:ïúg™ª„î*::Š~èõhvð;· ú?½ùø¾ Ãhà< § Pº3£tú¥“×äa<Ïé¦S“LFM¿yô¦««=Wì|`6’õwŒ55ÌyP銶À‚[™Ò”O,E6–“‚•õ×·o|‡¿ïÒš¬Õ`³ÊmºK¢‰_fчÄY#é…º¨”çyH~ÜN'ÖÀ)žôû|«i¨xmCÙB®n ÌÏúâŽò’ªÁk‡É}ÂÇ’þ>²ð˜g¾Õ‡¬Ã§nÊ@ö–<óÍPwäœs:GvòîÔÉ:`³Ky›îZ\1GÍrˆó¸ëƒbö±vzÒtS~uÏ…çt¾¿ÊpBÑvÃæ‚'(¾)½'rr÷xò{ñ~ËFiü¾XW;‹²o:ÿÔä-£¼A\j¶¯*ÌôˆÌßD¥X®$NùרüzoåX»2îÿ’þ-²UO”†n&k#Œ¾\¿óªW D7ã%Ô•£GÕKÔ\àŠº£œŠZÅÁS=rQçQ 9ɽ~Ô³HnÝ‹ìiâOZа#ßENðÝ’ÔÁøM¸(ê}{ÓÐd) =>^BÓžúLä""ÌÑWÔ^R y…œœæÌ>Âܨ6qÒÊ-»²þZÿF«5‘¡ú F´‘*)÷L8G¼aŠ…Ém¿9—øïk@{³£LÎé¯aÁt*†büÄÖ~{Ã>OaÈ:Z¢¡ß—»uÞÆ[ rzH:Ï[º ¾HFŒÀkÝyß®¸-¡+bU¿¿¦§¨ƒ¨)r¡ê{ðÒ‰¯i>ÄZP½BQ¦ìØÞØòuQÌíX&Ü#9 Ý0Uy_Öõ­s ª†I »]Ò7ÌOëþZœîZmç4)Èõ¿qôáówŽSäs:í¶¹½1º Ü-[Þ_מJþ '<{B„7àsÿ{.q’£P¢CkàCW e615G9_CÅͯTûþÊCU¬*iøS¨á—þËÍuÍ÷œZAãóI« úÐlôró¼›´ô1œR—L‚¶˜tåÞ#êÐþâPbO0@GCŸ‡Zt Ò÷>¹×=oNkY{BÿþÞðèÙ(_¸– CA¢Ak›ðóvÒ­s´"0šãüÔâc/L°&”²ž3Éd›Ç®5Î0Óf af=µ…ÌNœzƒ÷†« ,HâZ&•=,IVœ }úVÔ'_çÇš§ð¡µ4X¯¼¢¨eȇDÂòL{Ö‘øž”Þ´™’îd˜x[‡dÓÓ(‘’b®}Òë%RÛ xX ."í¨¯Y {2¼mÖ .½ˆŒßí÷ql"óå‰Íhjd•9ªA¤„ì›ëï“‘Óá¹U\ª,ƒù;ÉÈw×âø©C_pOö׊×QˆÇû#9ŠXdþ®QlE±:ÓŽiË;¸;på˜Iz J­ÝKö£O@Ùñ„Æë(¿”/ w§•D4‰w ò}ù}¶N:¨bîššö Õî{¤¦|CõË÷^“x †|Pý³:#Ô\u\SÌO@­Nö2£c;Q'écRŽK$ê¹íÌHÝKà7Ŷ®¿¼™h¸XN¿ÓqjßÕE¸mí+éѺ©D…¦v¿EUIÐìÜ÷‰5%'4Ps.¹X- <¤­Þ'¢)gç!õV´vºØÈÌ56ÃÖNd¢íú$¶ºiX-Ž&Ô™äL¯ñ·A®i@¸¨l:dµz.|Þ o.µÞ«®Ùö“$×®¹Ü»ÑIæÏlŒ-àõôrèѬ(ˆ{%2¤û·¢ä:MVÞ’nçk“gª·µàKèŒÑøÐXìLÌ9(¾3FîÔÓå)ÌZÑÏG ZòvQêën¨Éà’qìºÐÆDÕh°§¸\ÁÆM4 ê;=c\%Ó$ýô4í/ôW†FN··öîUPŸ¥›Bkuê\¯Åß·øµÁšE- P«äý½Êþ Ôš 2ÿÕ¹ µi’ÙÏX }N3›E‰‚pýs«Û‚[çé(Ç B#³çyFW*hz`m”,´šÃŒ³\Òâ¡%Aèj¼-´~nµ¹Ë= må“ñ'àÛª¤Q]¿|¿3h¸1 úOΞ>ª Ýîφ®EVB/y‰HJÈôß³Õ™A´·Øow†µè6ðNŒÜ Ù¥sàŒ­vŸqÏׇ_ï‚T®/ÚÂÔƒ.–±L˜%¥¨:ñþ´GK¹Nï‡ùoªî“ °DìÔf<·VÎì¸ía"9çä"÷=„M‰žîâ+âH¬]D÷PEI_8;°„dœ×‡š*‘r‡Ò¡°9E¤¾Òó•íZÒIk Û ràæðúÒèIdÚAéIRw ™³WÖ¸éž"ëÕt¿š‘Ýõ¸©ó¢ r>›Iº1“ƒÜî;Ÿ–AÞ›O†›®þAžæäzqÜ\-’¬!‡Bl¡ñ¡(\œË»oú!ŠÆŠ‹÷(£x¥²ð±òjÜ£*z±r¥w¸¿‰å2AÙpUýÖ(¯z‡µ®¡ÂPt‘ºËGT }@]ÿ•­ø‹´Ãý?î䵟]BUÃóÇÇVêÚêÈø’¡z ï{¾3jÌdäM‡šóœAásPëóŠ¡Öp7ê=x+àGŒzÆÔJï¼Ï¡³Ä¨í5v·Q¸ø"]Ï'½‰&‚å÷ 8 )µ¨ü™‡YhºR-ÑjÍ¥Ü믢ùfø s…/Zr,ÿ–—D«ƒ6W~>Aëëb{•¼Ð¦ù´ÝæñCh Ó¨ýÑîë3Ó X=ã 9ü¡ßÕü³ŽÇºùs‹Y¥úþKë§2T_ºáýÌmþŽû|cÿÙ™mÑGÊÇÓìrÞði9¤ò­a¾5Q-€ŽåYb>^(“²%o±‚ Ãæ¾º8n¨²‰ºhüf|­öo«o#Ô­§¥£Á;4 +8;Ý Í”srí¡åaýfõ}hÓ<þåÂõBhWâm ¿— Ž?–uhV¡+]Ú»IzýSž4B?qWªÈxl‹5Ù0d7WDO´?MH‚V_9Ãè•ãJ‰Éa0^_ö#°¯&mïå4}‰„ië¶z˜=âôI¥ü(Ì).u;¯Ð´O¸œ=/,)ž %½+ú¡l5·.š›ä%>EEXÏÈMО¤A"šÉS¿uŽ#±C¤ÚM}$™–¹qþü:’Uö]Ô$DŠ‘v^Z# ¤Ö=|ãìf6Òþ؈RŠ ž2ÈX’yL›™ON]ÿ;—‹¬;^ºÚïKC¶ß»7]O #çñ×y÷’‘{öéÑ‘£-ÈÅZ³¹ž(°ÀêuqUglw¨ff£ˆðM¶P÷£(á}mÜ2w›c²S!J2î§y茲Ì!ÖS(ßxs¡°’×þÆVûíFåãC&뚨"éíT›‹jŽÅÚÆ¼l¨îtRú0Ó'Ô¸1}ïjþ2ª_pãC­†![»”¨“p2¹ò[ ê]JÍNß$ð›V¢•Ý<ÌÒô ”PwF«-\å=ÏÑäz’މ š>òt7ÿ{ͲþX%h­¢ùXŠŒ÷Ï`´Ü[žD´DDà6*ê·ÐFüKýªiLÕ Ô]fôé_eq°òyŸ‚¨û3(ä+ðÜ…ªÇY]ó óÕ³"²Ëóæx©ó8ïü¶Ÿ$)RºÞWMZnÇê/æK OšÃ•»¼ºì¾"9ž?{"—½ñ¬%_ßB†Üñ‘V·¼éžbÓ _ÖD%j˜O@¹ÀŽÝ,„ùLÝAоjvˆ 9ÐIè?Æ´Ì [çÃI Çî||F÷úù)óÚ)A¹{»¡Ñ­èÛþh£ê=)¾uã;í%ô±Ò’¥1¨¥8ž^6xjjýwx^ÛYßÒ…Z_ÖZË÷¶„ë>|ö|ûqëüS+ê„Bܰ8JGàÅÊ ¯¿[CSôŸNòÄ)hNú•{¯Î Zr”<ßð@kMd=½#%´Uõ>.½p¾M9)wœHƒïŽ÷Ó~ äBçŽ$~Úèæáÿ4sÞz"2'ZßW@?–Ñ>ùAó¢1ŠRÍ0Ô_à­wç#ü\l¾ñjmÆÐìðõxv˜(­9ç0 ¿Õ¥½ÇaƵžæü9 Ïü~1æ÷ç¦ó;RÃâ™;÷/Ú°ÜtÇQÀÖn©„õ(èÃÆCýª¤j$šùJû IÞ6”RF²»>9âV HFI{ædRýŠQޤFÚGÑ'º³‘ÁÁµ5¾ø 2¦ »fDf½¸C#Ïu‘•±öëÛ°9d§¢2j³kCÎ}¾ƒk~£È}<ÜK#yåã½å›B‘ÿ×gFRÓ"Üåd1a‰‚£YÑñ÷ZQ8DðD“lŠžÙÈx.‹âÁ꼂/q¹”IâGv”ê£=æ~:eoǼþ:”…òRgnŒ}C…öc‰=Péæ²«ó3Tö-Ü¢%÷W^-þ®¼U÷²J·š#”ê?ùõã"ªìÕlj…¦^ßZËï49ñ_ÒtEúºÅm kjºð¾cuâ­bݯ¥Uúmñ Œ‡ÓÊv¾'W™$3®†÷a§év ¦8‘Ë6åÄémч{¢ájRð)$õÝ•ÙSðYØ5Hð2<”¹¥«—Ç3Ò@GׇC$PÅ´ÚU_/q^ ž‚:6á£åñÐPÛxÍÝšJô–Õ®A‹ŠXÞ§óÐ:Æ¢½‘  ßš–HMýÅàû|—祎Óеטž3Ê~|ŽZ‰Ü}OÞz›d½€£ŸÇèǾÁd Wù$üä9ö,Hù-Œ‚Eûâsm¿7¸Dlé “ô9 9u0Í8}¹»0fñ¶©ð:ÌIìRÿvgd³ä³ßõÀ’Ææ1o~X±Pè>ek®ŠÉêE¼°þü«nÐlö>*´‰PžÊtA’2ÕéÉÝRHÝeºv¢òãÉÝb‘Zñêë?. m‹¡÷¹Pdˆª“ZšFƲsßg½TÙøÏž<}d™îŽø¨V‹l¥VÄb"Ùȱði¦Î‰¹³—|;ön ﲤäuQQ¨¿Äïð¥Ë!ÅÙ^…çMÕ¬ÞŽ¢˜Ó ¾!ËܽóîŒO­ Jù¾¨‰ •FÙ8>öàJ”OÖ¯Õ¥<„Š-¹íþ+Z¨¬üÔù•¨:ªûñÿº„jè•-QÝóó$PƒÁ‹é’›/jþ8—'ZåïfÏþ!Ex†”N¤E=?å¼ÌªD4°òn^ûŒ‡e{((¬¾¢±ÄüéYý4‰¿¨ÇëhZºRÄ[8‡f+t¥‡­BÑBçîü!š´ÌæàMS±EkÕ%É6Y´ù½£“º+m«‹&ή©¡}‡”XÉ'SX.¬N»`¾u>†ÉdïUÈþüNŒäM1dô]¤z ©ñ—ú”=y¶ý$‰g­5Y}b ÁˆáĈvÄë>´ÌŸ…˜wov›\e'Ôy—dÞ‰íÜòškò°Azgsãu5È£W0΢ Ÿ'}ukœÙ¡ì…ÝØG®ƒ„ïï:Iæåøê¶âcê V¨ÁÌHêR,›¯ìZ&ô1¢àVMÐq.|0\“üô„z¥W;œû÷BÀ4Û:ÔrRVø²÷BÍõU¶¯˜ Æ1PGÐ{Ôä·=‹/b€ZÿÃìæ ŽÛSÓ&zê®(ÚV^…úêÒƒ·õÐx„ËCù`"4e‡œtφ悀ü¸ßÔÐRå3£%Û­í'>Kæ¶š¦›WúáÛàK¡áUø24»¯BGÛÇö*†ÐU™vJ•zöĽÛè‡~¢c…Än<023&C$C¾Î“æwâá§ kÏßB]½ýU!(pÆÛKm-k}aò©Y’© L¿3óŸ;³±•K+”0#=ªüM ‚Ÿ™Áòþ‘\㙼æ(D¢Èo4®ÓHrؘeÜÇÉ8ιtÇ!kGË6¤:z,I@WifdÏ=;Œôš·†TQïàÙcú¼ÈÔ¯òžÿ/²$mhª°#[|–!”ÜCŽnjþË´ÜÈ­»·â–ù9äÊ"&*ƒüÑM.$p—Ê4Ý>î+(˜ßbòš’…í¥œqÿ¢²ß£IÝ(QÜBmÄë6înP„ñT=”ÊHdÖÌ¡GY7¢¿zWPžOÿI™,*|åûõýùTò<Ó,s+•¯ÿ‰mjÆý™n5äê¨Ê_¸^Ó…ðîë®5Õ.TÏåüœìFŒªº‚ÕS¨ù‡ýü—óv¨UÐDéðUunßw´wÖ@=Í2‡Ìü4 s[“CÃAj•!Yb4ŠzÖþÌMöâúä÷:4•dä4UC3¹"^ÁÍq4×;|bâŒ#Zx:”ëFŽ–¹þÔÉüBk†µpo¢~´¹³G“¢Жó]{ÛÚ55 ÏS8âѬ_¥ó2·ðxÉjèíù ðgáyÂÃÜøÈb&ÿòp¼s¹ïæTÉkDÖG6Èàõ‰Ö3º•ðêõϘ3óá9zÃf×?ëÙOÝþYoû>Eáw69g&~‘ªtàÙ.óÏ"NCDƒ®kûžƒƒOH(K­{—l oŽÅµÑ¨eÁ»š89{Õ-òAƒéhñižÔ¥$̵T \— ç;]Xö¡Ÿu<©°ßΜ¸å*—ÖiÈa©ûò—…зœ6¸*vxm=η‚}‹õó&ŒþËì”;\x¯¨Û§%Eè£^{9ì~l{Œ>à©CÃðI¸<ââ÷(ªÔ/çϺ Åùmª,ê¥PZëtÅZ«Ê‡BæF' ²ÖVm´‘¾ e ¸ë´CmÞœ­šŽ4X1 þóš®Æ=ÿüzšGsŽß : ­+B¾fÃ7—&yÚ+/á{À÷©¤Äè,¾˜`'Ò?tsXôã O(1ÂŽÓv …šòŸÁõK;h†`xìSìÎúY%Õ÷ѹ³ ãê$L—kÖàWñàÚóÔu˜úºÎ {ÒfE^ÑÞ9^ý¤ƒŒÕ° ?Þ HKF<¶£ý¹°r´}eRw?¬Sí8©Më7¤ïèï‚ÍÌR¾¾9HÌæåÕÙŒ$áú.cÇÌë›âûâ#H‘™ªGÔ‰ÔÉ/æïFÚj’Yã§AÈö5N±-ó=^®ÆÛ ó…Ž‹¯è¥‰»œUcÙÂo’ôÿDä(>¬6xðr{ÙFÕ0J oV Íó.Hü^cz7#„>§ìCáò]§x&Ç.|“YyŠ fj©ßÛÈQ)Ò©»¯ë*S_lŽÿe‡ð^;“潪f°ó,5飺R衉;¶¨ñ‹ÍªKTm/W'.,žÐCí{O‹}Ï; ðyI[S .Y¢`&•êMöð<EƒÏ^dªî§Ð· JzàY•'´'©öZu~XµÞ({ü°ò1íA“ô¦ÕA-4#[}×ÒˆæžÍc+ÁOñ¥$ýUŽX´,1ˆ iEëHâ‘™/æh›ÈÁYó  ín„Èì‡ Á ñþ»ç‘ntŒm2jö¿û$ÿÙ%ùOnþ“«¨Ù2êg7þ›«0ºÄƒ «*¯lØßâÿßëîÿg×äÿÝ1ÉP¹¥üÑQ²f'MîÕß½þÅäoj´ÇÓcÿÝ5ù÷HþóùÎýç¹ìÞÃo¥>güwåÿ»þßûÿ9ÿŸïùÏ®ÉÞ;¥.¢ÛÜs=ÿ»c}–jw÷T™wzÔùÿ½þ“÷ÿä¶]vç ÷wŒº¤}Íx–Ž@U²]Í Æÿæ³ÿôËï3Ã`g+ITâüÌy_|ñž3 ¯(†šnÂh«UçË}ý0žËž”váØÿæò/ÿáEÕg0w“‰çï‡#ÿ›KÚŠ»¿'~3ݤM‹Nøß\žS2·<£ }/mæ-g-ê'­K°íìöG·©vïÊ×;èE¢¥‘G‡2ä’yûBb’é¶s¸óx"…¿ß’ó€:RÓu'ƼDÚÒ'"beO‘áY³û“kȘáë@Úî…Ì¢ŸZ/@–ÌsK×NÑ ›{Yd| rnðÒáþc¥EÅ3¦xðéßpÊÈwWÉS]W Ü)ªr¼Pèͯçc"ÿPäßð…o¦¿P,ùáÇ™8”ØN[È¡*@)s+•7MÁ(cöÝËöY>ÊÝ?¤ñë×m”Ÿ\‹œšVB¥üça*B¨¼Ì­y©UÅ7Ú%–)QmÖÚÔœ55ÊØN*¼yŽZ™:¼žÌ£öû );L~¨h\V`±×ß¼Ùëyû›Qßmuç—n4ž P">-ü g‰õJO­ ‘8…I–Ê8?U{÷áV)š’«Ý6µF³¤ºÝÊ}háÕÅæŒ–žcÄQ×Ðú‹Ðµýî x^T/ùòçX[™yvúr<׿D«Yä²ëÝþâÚ.Æ}ÈS>_J0 %–øî­ìñ݇O+»{ñ£/Ä)_Þo•Ÿn_I³Y€÷.áSç ‚&Oý­^$D:ÿîtp€j£*ß\ ÕÂíæs 4=·µ³áR¥Ù<*¶ëP£6ÍqÙjvúÞ0†zÝ,/7á høÉËîKMÖ_•ÍêCó×P,k}-'XÓÆ¢d¡ù¯~ÿ¨!45ÞL¼Z¶ûä¼7“Œ¡a~Iý•?4øë”?o‚ßY‘Ò hX~lNåoŸf ³¤¡‰×¡ŽñÆ4³ÊÛPéA‹wEøâ*hcÛø!®zÚßÈÐ^9&ч˜™ÓNBg|`Š*Ó t¥Òdº±SBwèŸû•iÐ=}6ÿd;ôÉ~ ?}çBϱƒQ&­Nøî\µúzL †xën} b…±%)Óô÷0:nY MþÆ¿T¬Ü‘!…Éù/Ìš`:Šî#Ó$̉û|g»$‹ÌdCGÁr©mÖòð6¬¤]¤œõ$…?m§‚ ÞÃúÑÓWî®FÀßö0î‡_rá_a]¬¾VìNhlGË#qàgÃÛU§‘T•¾ƒÂ‡É…ý: ‘ÒtÞC´U©ÛïŸUQ@º«!Ü?­«qŸ¬~Åoÿd¸Ø¡…ÌCGIKN#k·êm.jä úÚ¦÷é%ryüU¿[‰Ü4„6ÙQ;ä)½ªì+ùªCYO 8¡À‰_g5Oz `¡Yó×uŽ¥îÚ7} E˸^¯j9¢¸ì7Eq;{”dÍ3îî¡E)a²·œm”î½9¢—ûe'IdS<ÆcÒoÝx?ä¡‚èÅ{/éQé ÅÇb•f<1˜ø*¸ÇÁ݃ˆè²ª¾-÷ÏFuþRá&ñ/¨1tG¾… µr9R¹ÃPû…%iª-ê8~A»/Á¨«ÞFwTMõÚÏ_f–Å3$ôî?ü~¢¡ó¯Ën»Êxö\oyÓmy4²><%¯ŽÆ×SœYµ¼Ñ$j"Yà5šþ8µ~¹ÒÍí݈Íß E¦ÑÎyÆ<´Y Ê­Œ{ÜYßj儜jïHƒ@8ñ²ÅóÉK ¤_šàÔBÂYZÂ-b ¯Ê;oÍANj`Я&äÿx<ØN²»‹³×‚Z!Û#ÿùÓàÈ~ñbþÅ#ȮꟈW†:’|é³'!繓G€Äs ÜËÔâ•v‡¼FŠBP®ê÷³Mþ…Ò—¯|´~XAEh”ÓËq­=¾½`ºó% ªn0·€ÚËö¦îËPŸH>¾Âô š8me¤nBËk"¿€;ñÐNçýï–/t\ÙbH.ƒ.jý¶¯ »èBÏá8èíONî\¿ }¿f5[ NÃày?æwý/à§xõòÊØNÏ‘"=` £¡ùá0îý‡.Oâ>L¾¶?Ù,?Ó5ãYÂgavEœfÒaQçRa¹] ,ÏN(•ZÀÊLg Á^VÉ2-Žÿ€u>Ö-÷pø+ÚýäÅ–l íØrªòÁ¶è©ý ãɰ«qÎ]B‰ºÇ-=†Äðk6MþC$;zôDš!R8yyR¸„"Õ´ÔáŠÆHzòY32ØTÑ޿܉Œïö7ä8±#3³¶^éÀed‰²bNÐüŒlf9¹‘ãZoç…‚UÜ϶˜úb¯¿i˜%¤"ŸëÅ´TG3ד ¡ŠBwuµm‹Pd’Ð^Üabo%ÏûšžF‰ÉüÛö º(¥÷îÊr¡Œ~le½ Êù´ Ùç¡ü„BÙtúaT*ÞZ¹ï5€ÊIiæn ª¬¯˜8O ªý8h}€5jo8ú›øìå ÒzµcRõR¨QçIi|°À)Ôuûýàûꟗ»ÀÌgì®3Š$¡aKáöÏ)hD&c|꛽ÖÜá`G“zÅ¥¥jhfï©§Bƒò¿7«¤¡%•6õ´àZ‹7µ?K)GÛçS½ EÔ°iqsTœ n*q]³H€Ì·ÂDB*ôáÓ‘6HüÝUÂyœâä³:!nh´ýjÓ ÄI†¬ÜZå„O)yo+ƒ÷é·:‰XÝ!BÆÊé‚­D–Õÿ|FØãÛdrîIcHå»8×y[7 òÂæý¡$Œ”LëT‰?b›¹5Þ…-]¢PW{@ä•Îhðœt–ÿ' ³?ž‰§íñÌÜsN—á4·Êί›Asuw0ç#h2̤»2ž æ‰Qh¹ î/¿ s)BýVkÇÔï`kê’*4Ü(úv€µ…Y¯xBcªpÞü©hú|”éô¡ÐÂ$C©,öZ3žh>ëv„öóÇŸÊ ÃEÂÉítt^ý•ìêÎ ]7æRò`º­E^VºCÿw÷DÌ 7ÊC—­˜Èãaèÿ!Urêî |g\õÜjà‡Ÿ¥‘ìŽôÕ{ž(xäA`#Œf¾§—òÿ ã¾bI±Sö0i&©æ¦4Óç³ì,”ÂlçÁÔ:­iXø¸ËÕ¯ÌË^öþŸJ^ÀŠÿÂãþðÇÍCÔ^kÖŠÕƒËť௞ÃX¬LüpK: »G¨nþ:ԉćîéW I÷“V¯ö#Yö»§3öTHñ½°-ya © rš©ä[vŒÌò\N2¼ûYܺu[~6f.ù#ó‰ªØ£VÈzI$íÙø ²¿YQOLéBΕñ»ÕïÌðÀýªk{žÅ#>;­ ðùn%$³”I!ÿÜRÌy >tO :ú…O;îÏ`ßBQ»UpB±ö¢"'Q"UräMR ÔSäÌàEé÷Åî·'î ¬þµ^ÕQ”Û1þ`£7òÏŒ5ÖÙPI-Ñý}’,žø2eæ]¨‹p"úÌš ªú¹ôÎÄß@uêIÌoÛ¨Ñ2Áô}gµ2~¯o¡v”ÛÆóu+Ôyvœ*d— uï¯ÿI÷%Fý@¿™âÈÇxÆ:¾Ç÷ÅM4 ™à:´†g½Ý4\ F#·ÏOixcÑøÚ-ŒcÐ$`×Úe¹Móœÿª¦Ðlsu™‘ïZœó^:CÝ„çzŽù°è¡•éñ›?ÐF.íwÛŠžxÒ öÀ–;e¬Òž‡qâä¼U1‡±ëŽa—H »K·½äê"d?žÌaIW€ìĤÜ© »d[¿­¯rÔúû¥7@NóvW i-êu"’!Ÿ±ôÙ÷SmPt´Dª–QJ 6W¯´Ž@EÌ͹'^ž{|kàÚ²ª…êè¿¹Õ  Ö,ÿ ×†ÔûV“~âß6éÓ|ŽB‹FVû5ÿ"hk˜—Ÿª_‡ŽS¹l¬ßù¡sÄL“£å7t6w—‡Þˆ;3m·  ï¦þv…+ Ì‹ DÐ)ÀOó"÷µ_ðÓOÑëÃå0zÒÔlˆç Œ+w\+ÿÓ“ÖoìnRÂôë$yk-˜£^ì–Ûëoûš[ÿæ Ár#õŸ ç°R%­S"<º¯­mñXÂÚä2—Ô³1ؘ>ò§)6Gó³S²Œàß”°ZÈö#Ø¥òcTº HT8%]’¿Iä¾­¿‰dÌëK´Ç%âäÕÍøµ)¤ú”é8PŽ´—¬§Uu™Aº”,Ôì2>,–vØÊG¦oYJù‘ÅßúØ€š&²©l_ö@³V®£!äZãM¼,µƒy‹ôÀ¾ùL^Û(»j €jcVa ¹äR§†y£Hû3åz(v÷”²qÅ/”h«¢f|ö¥Ô¾ KdÊh*ý¦øŠr7n’uÜŽBù1ïÑ™›Q©â’Awæ+T!³Þ ¿Ä„ª'¶Šêë£Ú¶ù„=¿j´vÜïasB­bÞ«Ñì¨ýá—t”zê< tœ›C]›ækcĄ̃¯8êÚÛ—€g“yI%ÔÐ0ëú¾kxö§íåêW–h,<ºlwM‚¤ì)…EÑŒùùˆBr4¯ˆäyÄÒ€ç"Jµ¦G«¤RÓ¹h³òˆìróyX£)#:A ù힉L)ÌNU5)>ì"ÇXÿB¢‰hô Zˆ?q=C¡v//„WŸ|ÖÝ Ž'»ñ½ÁSøðáõ}¼ï|J7­v",‰e¯¦B„&ÛûÙ,røt]" eú|•TÝ? œ`h¹½Å+ŒVTAe^µFñ›wPý›SsÓ&Ô©>î-¸üê7e2ÌïZB£}pØNhš3ûfpšlŠÖŒ} ™½–kÓ {ç<®ÐAÃ7ÎÒÇôP?/Ãe*6õw ÅÄnAýƒ·^ï&) ~í—¹dœ54$¯|Ð<\òÓ‰õ¯AÓ‰ãó §ÞÁž4{’îB«SêŒK$´V?Ys*:䤊*gÎAç ‹¤×µúХܜ@✠݂+†Ì¡GŒqD›ü;ô:/gÿ®•oý¢^¿Wf ÿÍÑ‹÷ ˆ`°HtíBú6ü´rÏ~y†«Ì%¾8mÀ¨ßÃ~Êa?ùÚ¶>º& ö$ƒéýÖgmBaÖ§ò¶_,ýkòÈd–^°2Šà†_»?»xš©àù~ NXÓ>ž¾k[õGS*ó_ÁV}1I5ìÜ?œ0ž{‰jÍ„xË/!‰Ë¶tf2/’©2îš.Y …ãSI ú ¤jž:Ù%^´f>á=4þÈ@t5/åê*2ú˜mx} ™Åø÷º#+ ÝM4dçåË#"p §G[µmÎî_û ––ñF8½™jI@>ñ|•çþ"ÔÂü“êX<*Ðqå4 ­”8hU¢(iRT‚ Š]Þg 8/j Wütð¨{ð®ÕšJ_$^OeóBYv¥{m¥•(×ÄԹɊò _DÖƒöòÄvRñ>sž¸è€Ã{UšÚótèêÈ,3ùŠÕVöñ†=ÑC½ù‘ÙlÔJiW¬Cídëpv sÔI¯í(7|ºå|?$³‡Qÿ‡ØMn<“¯ 14h˜ß×[g”…g_ûêµýF>¼÷$©‰ÑøªæÝÓBehâŵ/£6MCü·Ø’<Ѭ4Ћg&-Hb†‘dÏÙ' é‘¡åOÒÉ¢[Ñh}{}ÄTÜ mU¥…c_Y²°Òáiø¹2ü±WqR¶=MíÅ6!þý3^øXô$úEÄôÉÄÓû<ƒhIš z+ˆrã¢íy8 úí (!,HÑ6¯ù6„ú^“Iš’†P¹#­Š Üå.ñÛ—sj|Xá¶:Ľ%¿\R É?uͨBúT°àʸ9d UÎ|ÍÜã›N»Mcä4>Þ/˜³šŸ(p²!«ã/s·4Âü¼ï/[4«‚á¶äÜ+\èzN9œêÏc< »cpñ¡ d‡³õhyÙ ?Z´ {N¡²ˆþäÜÊÜ’‰÷ý[¹ A"Èe—;ùæ7­ÈÈg ÈM<ÀKÉJG.\¯p‚Š$ƒk¾T‰Põž\À‡zªCïÛ8œùµ˜Ûñ¨ êÏ<0”v‚Æð·3¢E³Ð¼ê(dÒm¾s²½±›Ð!põÀ½û¡³Pó«Št{¥»ÿ‰n€^s#±¦ÝUèS1—¬ Þ}2a0?¸X¬éS“`˜—šg8‘FIŒ¸(9`œ(½»¡” &Eâ>É–Êíyç¥â77`¶{ð˜ÚÝ/°Ð+9.Gÿ–“d˜Ÿ+‘!Ó_gýàO<§J q¬}iò=ðùl$dD“ÀæÇë”*àßgvkØi‰!sh!QÌ,5%-"ɨ›šýNHº40PO‰"®÷5ž(!UÌÔ±“w$VýTƒî+Sd ÏßN‚pdt·zÇüÊ™&G§>ô"Ëu›sûT†‘Müë•yv-äP®±W™¯G®^Ãh­îNäÞdó|Í0|XÖ¡ä­‰‡%;ØBÆìõûZåQ¤È&éq½Š9;rIJD DAsXùéë(%ß«jL"…2ǧÓ´N¡Üe® 5ÕT”)¢˜=¾•ªRÍj£Ê¾¼9ÕÙ TÕôº½„ê=_œD3PãÛÑÁ^cÔª O²ÍEíO 7gQÇïÕ5¥Ü`Ô5ü¬¥5v õyû>è|Ç3Œ#’CÐðí¡å†‹ûñlA ¯Á 64Z•*6­GÑÎÈthZç©5!·‹æýì”f&ñœ¤§y®\/Z‰ìå"’Š6<Ò ? °z[0èÍŒ4äK¾Îòý}2Ü„vª^ArËóÔ~@"™Ô¾Ôuˆ[Lûb/vâž©z<…¸}=±UŸ×àSˆ"Åà ;x¿¦Ý~å5DÑoªÒCÐ ¹.^:½ U©aq+ ÐØv²NÈ¥šÕY'¾ýô…–Ñ–Sÿ:¡m1´~$¾:ˆŽíãz: åŸKøü¡‹ü˃—O k60³Âè t/ ‹1L8@¯Ä¾$…#ð-b¹ºÒnúuŽ0äýâ„AGK¯–Ð~øñ§Y„`88H¼_CFuøóIþÁ8óë¢LŒïwU&⇩Š% î0ËQW|ËæË~‡H^öV;Š) ø•UP°¿?TNÐË™Áj—L¾±… ×G”ïÁæïÌ”‘s°ÝiÐÛ§NƒD$_ü*ý‡ÄÛ7GÉ+…‘´%À«êN’Ïš¦Kº •îþÊžl¤iXì1´wAzg¢¬'ãŸQ¨½dô˜2ÕR½tç²DüÞç{ÙRΈY–Z"ÇJ1õFë}Üïê;ÃÎŽÉG1Â;y‹_%èÏ=A~Ýùã"ŠP`ð»3GZ> E±%/Ü|Š"‰×x{¥.¡uê9¾l&<ÜǽÍtflwÔ~PqFi‰S´®¢Ì‰˜í;;” o§îû¬ò‘훩¼Â¨8=Iæp‡O¹ ë=G•þ契ï娪SµÇA.cñê4ó%à ¬ $Þ¾È>¹çü°ìe-äÇ–8ü•Šâ#†EîCuËBEÖmÊà‚?7Ê«N˜ÂÚÍÄAŠj_ØpíTu7€M[q«¶7øç4Ü}ôì¼®´`ÌÔG¢GóÃgÏ_EbJSûÙsH:À[›b:ŠŽä£,AHå«^$Æ´\r)fß"‘¾?{­DdMÿU‰l S‡TœßÃ@d±¶õÓ<~ÙX›T(•9C $)Å?¹ò¼æñþŒÜÝ×b&J(öüsNKþ© °½È ‹A!oÿ›äP$^†ÕU# Å ï¬QD J|ú&t…– ¥睊¸– Œtø¥¹G­(çT^“E^ŒòC[âsDĨÔpšòŽà6ª`˜uÓGU½9þ”רÎhìyéj ½(öWE­šÕrBâjÇÞ)P¼‘‰:·¶ÌöÝ“F]‡\Ÿ'-PŸ¢µ»äbÌp)—Èl£¡÷p§À×®=ÏÌóÿ6ÞŽFÕµ¹VùÑ„‰WSòÏ/4õ³I—ÎÜDsÛOËdhQAw7ªÔ-ã*}»ð ­K Ï_þEæž±Ï×A^ Þ¹¯: éÏ–åkv ÷|TJP ÏmwâÇÇ îÓTjàó ˆ³YÒ6°„8¢ ßiâ ðém»/M©ÄìOxXɧ;:^—@Ä㯧Hv“öøÖCtà +¤x_Y°…œk*åÇ#K (EwqÛ*ÚN~8_˜ _§Ì-¥Ÿ ö˜…E®Ô“4aÄC4¼½üîò¯QhbÙ¿°ÔªM¯¨i+ Iâ;‹¹¡aÌÜ-ÞB}Ï6 ½G ÔÍÝ\Þ“¨{àéy§ð0Ô¨Özv½†ºm[s£ ¨ÏÚÊSHh0¸â¯vb™&¡iÀßT¸` ZüÄ}“^QC›™b´7+9^q‡ŽN‘Ä ß èl ~Yh ]Y%åµ$Ыt­·zz–¿['‰Ã7‹"æàÖMèÛ•È_—‚Aºçëò¾yð#œi%åm7 [–‹‘óÁ(ÛÚNrlb¥ôƒ‰TÆm¡1€©Ì°4a¦zÿ÷^e˜×_høæ_KêÝÔ.1^ðËØ"ÆX~wý:v8VÏ‹/Ý«[ƒõò%¢JwØ´6þB(_„m!ʦÖD$"![ÿZò‰_Í¿¶ì?Œ¤–»‹Gi7ü:ÿ´”¾R6(»2Ç#Ê概ÓH×ò*ÍþœîûøæÒjæsdrÞ5 F–£ýªƒÄ†ÈvìN4¡69<ϼžaG®Ñga¿$ä¾a3§#˜¼ü„ÖANäÛš}Z§Þ‰¡Z6sB(¤qå×ó8}ÑQˆç»‚‡µ/¼µŽ‡¯„¶ >Å#!¬/F?G©ß! Ôž.(ó¹±sáæÊ]Fv”¿ô§Õ6ç*–šêy©xP¡©ZõNiÈk4SÏy¨|»ÍMf«xV©ÐÂ÷©oÉ6žË#G­½¾lEó¢ä|ä÷½÷ôgh,„‡¿×M‡'ÚÂE+Hª^½—ý“ âhSžX+VÂe§;ùã#ÛÆ÷¹¡hˆR¡7( Êd\gâ< ¢„Ø×Q’jowdo:„êG/Òb:j™rÎFf@ÝÆÎùô³‡¡‘½å#ØA³EMó¡O;Ðú}F’`Ní=c‡Ì”é Ó•OŒž›ºÙ¬=Yé— §{3¹†ê*| 1r}ÑWý¯åŒ^ÇËÁwJûºC7º`ˆ§ì€Ÿ}3Œøê¾7%ÌÁX€kôý˜(šØŠÒxS+µÄ¡?aÖ-_“›e¯¿9,3$ÙÀ²³·Ðy¬èê‹tÝȃ?Ncõ]°vâá‰_#µ°!¦<ס ›Æ2È&áŸHI®×)Ø1Ûú§c‚D.KùQ91H¹§È õ…›ØÁ6ˆ3HÎYf„8™ÖŸNˆ]9`LoÙŸ¢]^¿%† ”~¬Ï‡ˆö¥ÕñZ‘°ÿà>‘¿ðñ…OÝâHQÕ×ÒM÷Üó:7Žëâ‚PDqAåxe TX=m‘n®†¯ö^cÄy7¡&£rJ²ßêžr<-$…Á÷1ý9õИøïƒ4‰ê2;AcÕæ,ü2€×÷ñ—î)@½éU!#a3¨»ÄnE°&…:Ò«ª—55 Ž6ìŠcã9¨»úí¢Á$ÔË©e9>„úi/«¨¯Ð°në·“LMëÕ7Þ\‡¶¼Q*aUhãÉŦhPɯ¯^…Ž÷/ºÿBgøÕ7“£G Ë{±½\ɺoëÄÄ_ž\ÚL\¢ðó‘µ )ôå¶vÔ†Üò[ì^ùñW—9Á°ÈoQ©­û02’h×$c©Í”J`ƒò}­%L¶,ðµ93×Òfƒ³Haîû4ÙƒѰHèÏn4} ËÛl ^ÂJSl¡@ÇžŸî+ÿ÷ÖO„ñ´„¿Õk™Á1áŸ×[År+ ØÅ‚¯‡½Ž#±ÈõŒ_ÒH2}ëbT¤6’­/ie»"¥öƒ|9Šp¤Îì7ÔÞwéä>+·¬#Ãú[‘5d¢,“kŠAæÚr];d­HcdhEö•Wo%IS‘Ëâî‚ýØ <0Üö·•€ùƒˆ‚—ÄMNÝø¡.nBËâY½‰!”]‚Önf ÂVÙ~(/ïõ7S¢WeÙŸ v¦þû}²ÔèOâÄé¯hµ.>„¬&ÇÝ9=¾U‡à Èéz{îô³@8»ÂÙ£yÓÑß®Ðá¾JTN¢Õÿô‚”v ˆ‰RŽŠBöxe^˜d·<×î&rß»Æékv€™ÓXiÈñœ:èŠ@à’·—ûtmVæ¯ìÒ!w6}²ë6)Žh½­"Å\ž!þ„~(³ü8ɺ5»æåŠ{|+<±Âzªo³š¨°@Íf6ý¶/Ôµ”ܵ±g€†^×Ûïî€fš[|Œ©¬ÐúbZê »Ð5žã#XûzÞ´ÎT>Oƒoòi¥ÃãÐÏ3êð²÷' Þ ø—ûm~†°Òœ›#ò§ÎßQ6…1=m¢)¶U˜xBy¨¢¦jòtJ`öX‚î3Û½þ&vVpŒ±–OFõõÁŠ`jÍ ¢ üaa`òO; k$6Ñßw™a}&œÜnþö¿'ûãÅ[“ï¾sÚMÃÎAŠS£VH¤¿²Nô«<-EöÅT…GE‘ËkìN[Åä~&òë»:òkJJ%œBþYÃóŸ¤QˆY™TÙó*ŠÜ˜—9þÅr2 ¯£Äylz~¥ØÏj0+v¢ ÏŸÉl¢”³¤õ2€òßïxÌM¢Rç¡ áp7T‘®.Rq @U[¢InÊ>Tº¸ç‹Y ÄQÙ|þalq”z± §!v ËÔáS±ý~÷Nˆqøº°Úo¹®æ¶BD͵•ºð1˜'„æÚ ¤PiHÞ:ÙUaW?B¡ƒ_7ÇE(o{µFYUƒa— 2NAøáp“mã=.9¶õ?Ý·×·Zâµ<¿@ãñŸZT<ÐX²ôí@54žÍ?š*úê—úiÜú ®{ädØ·e¨Í¯sÏ…Ú'®´ÖmVP<Ï~¶r/¤Mæ·~¸B]YËa¾¨¿øÇIáZ 4¹™Ï5ÈB­«lååyhÎÐÐq.ô†Ö¼ßÉ!)h¿ NÇçx:\þ$(•N;Ã`YZRèRå.KK‡n5"§G ÇÇ͵&PzûôÒÅRé ï’8u´- ØþÚ :y¾wæK’…¡IƒÓ…–0òe:·‚ÎƼ)œ÷P„ Å¡µä[0EN6Яøf8 ‹Tƒ`îÒ(.¸‹"CÖtXNìt}êË +W „ìßn"’‚µ|‡:l:%ßå¸ÜÙËQ}köÔìÜvk»±—£¢ÁßäÔ Hâ¹øƒêP8’Ý-‰“{Š5¹Ò;›H-dð¢Ê‰i#sb9ÕãÁà–¡…²2¦òßáòÈ@f›„¸â²?Ȫ;ðÈ¥_Ù=üêxT‘³õ¦HŒN 00UOñ)ƒ [”¯UÏjJª’ùGɈg·Q0”ÿ~Q? צ帉¢C÷|9H«P<êQ¢~c JfEr»2w£ÔCn!ç+”Q²¡•PFÙšäWém(Ï ìY3¨èXãB]¢„Ç¥‘dGí«C_õ,·®jüãPíu‹äñg¨á9o±úîj…©K_8ƒÚ#‚L'nèàiÍ¿k~a%¨—_}O<Ìψ¾×ÔäD×ÍËZËÒxÖüsò½¿QhDZ±9/"FÙ»ç Ò ±›wZˆßûÞt0Mþ’\ôÊ@ÓºïÁ–ôßÑì³|ÜΔš¿qé\õG‹`ŠðöX<÷N0ÜÖ-ó~†û·OÂìhÊ77®xÈz·ÚqÙ«Ÿ{¦½ÞŸ|¾´_€÷”¹KdÕÌõ³KÁ1ã=DöEÇúñC”BÏñ¶ûñ]Øb„½Âe·ìÂÌ!´ÇŽÆ™À ¡Œ]»ÍÕDÖréß–c0¼'%Ü »Z±Ù&BRuìtîŠÓ¤{’Ò¾| Yµ‚åé+{|[ð¹ÃT9½Q\$ì @0»ô§Hå "»®èÁ»ËˆkŒrÊÅ»¬|¢ çgVôŧÝõTªl[ÙÍÜß?‡ì¡Îí§¿@Žéß;oT 'žÿ•ÃÐ'ÏÐ?:vºr÷­¼Q˜†<ÙSÇm–ù¡Àã̇ØMC(6›’ÿIehNøß…Š6Âc½³®{|[Õ¼Z Õ‘[ƒ&P3–ÙÈ“u±¾ïé®-CC¹9ke/4•º±A‡V˜}MKù?»CÇ$noC'ç?òÍè"ÐÜ‘½Ç=FqbeŒ3Ðû“âöÂÌž¦¾ô¡€ÕL;ðc×õ¯Â-3^ÑâÿZcŒB–ªÂÄ™Cf$ “0õÚ§ýj^$̽1ZKúóKÙJ%aY¸2Ò?u~ý£¹0úïü͵ i…ÕÅízn[XOþųòCþ†›óŸ:[‰·HŠ|*a{TL£ë¶#ɬ:IYí qÖéƒRHúx0s÷&’'ž +-{ˆTt¦§:(~"Íû }ïW¤7YæGFæ íSÈô’kó„x²´Ÿ“2AÖÎÑÏ_B½;öî²Éä2g½‘´ÇEnLJû‡¿Ú!o߈º•Ë+äïÎj$ÚBÁï+?~‘Dû ö<£m}þzðJX¯µøê•¡­¯Æ¿¶(Ãφv(gœåLd2‹òea gûP©7‚Û§cÏ3Ux’'gDPÕé!rÉßFu‰æ_5ZÔØHb± @­^…þ{U¨høPHÅuÜ”(_~?€ºÜÌa-KU¨WœåÉZ¨‚×+]Ï–îåQˆÊëÈОå?žvs”d¼tŽuI¢±%yÄ´Ä'4‰bŸâšCÓ¿äÎlêÖh~«ã÷3žã.`æy„–‹S‹‡èà·raÁºóÿüŸ…ÖÈK±#:æ~ ÷9|æu*7‰¿ ñB³jÒ!I[‘H‘—±ƒ[yiíUÛmOjAŸŸ’ßuÇjÆAŒ—ìuðŽï¸ Ô™CÄD]¨gôß¾š=ê†ävÕªSû!ûRUÝÏS¿  ,´?÷2”M³žM¨€*ÓÜõ¨¤PÿVÛ_jC296©•¡·“³^CCkùrh04…Ú ó‰AÃð OÔ{±^smö…:c—ÁÀ@¨u;'sÇj)zõ,o@-³ZæO@íSâo—桨-âRAݯ|3-Chàõ’é›9qqûN9Có©¶Ì:ý h5èÉSYù íR'í¼I¨ CÎ*ÞþÙ%蓸'Û]”FËe|dÐMéuꈣ/ô¨ÔóÙâ…Þ¶­u.6èã?”ó¦Ç ¨„¼¯Kœ†ïמµ®ƒ¡»yÚLÎñ=L“üâ2Œi¾_x"ã» †ž‡Âdyú¶"k#L—ÿy¶âôf7¿ûôtØÂBÄù‹¯]°lr†?!Vhìí.2éÁRCՋŰ&{4ø¼¡Ô¸`"»ù¤µ^|×¢õµ—X3ªËµð´›yê´&ê­.8'·)àßÑ×Í.hXÆêí‡gïEÙ4C#>æŒëDhTyË|0|]µ ;çÑ„ãÝK¦ßÚhÒ"@¦ä¦‚¦×Y]z§ÑÌÐ:tqXÍyûýœ®× ù&¥&û h1|åñ’Fžë~ö{w¸f Ö ï€ÌœÙ’d!píX¹¤;+|Ì\Ô-—ƒ¨›ÏëéJÅwÛZIE"o+>ì ̣݉±[ô¤Â2Âm%øî´@è<7‘¹³>„ÒÞþ£à a UÜ…ß :ÛÅæŠÄ0Äú]y– I¢ÌÀï¸ é¶›Å1U1v7Rì+äè³;V=†œþ}…éM@°œh¢°B‘> ¹Ø*®»RÝç͆œtjÎ#…ŠÃ,å5½ç©çjÓ˜!»1íÑùúTÈ^!Ž´vÝë>Ô mS §Óš\Ÿõ'ûã ¹†\o÷ @Þí‘Ó )®5æ»Aq°LQÊBYꟼI¡¢?˜Zu,ªb¤õ®ÕBµœOØ~¨iÎðWUÞº[ŠÅÅ÷» Áô“ÌKÒWÐt¹¿n¸T Z–&…îOÐ@»#Ó‰ð¨5èXže qÓ„®Gö4’ ‡é–kÑ[è}b÷äà/~èS„‡/”e`Àý›sûGVøqµ|šd? §«5ëŠÁh7qýfbLpé<’ÁSçULënÁLÓKÇß0ŸÇb`^Ëd“¦F÷háW·+éle0üζŽi¾¡«/Yms”’aÝMWñÑ—;ð×t_:—…l9™ˆY¿Ž„íϺSå¬nHı¡â›y‰Ãòú{"©ËUÏégÜ_‡ÛZ¯)§2[r’u‘ææø‘GË_^,f¶þîÛØB¢Í?Èäë\ÙNoƒ,TŽÔœËÈZ2ëy£ËÙ‹ÞÕZ/š#—‚–ëÊ äVù¡)wíòf7õEþrùŸœÜ½O6>‡"º¾nI{à¡?3®î'¿£ÄIb+1ú³(E§9E9ƒ2tFöÞw&PNß\û×&Ê÷í-r4¢Ò ¥w+M/ªœò~÷Ò¥U¯’F°_<ˆêò§ßÞÓv@Mb ©/‘¿Qk0öüD=9j«ñèG‹± N e¨Ë°péèÊêÅ~NyºÇ?¿ÞGT½Ð²Â<rÐpË©`'¨ˆkÿ„zø£1÷6ÍíP49³{Æñãš¾ŸJjæôEs×ýdž£Eäù¡Ö>hi"Âvå¸=¬|áÕ4<99ÿV¾¼õŠ‚Tjï;£+ºx㇦埳÷…3-·>b¯tÅKqí@lfÊÓ¼Ç!¶æÑàg^ø”)sJœû&ĤŒ^9wfÞiÙÓ÷ Á; žhÙèEøârð¯A9$G¯w ]€lÖ%>Ö¾sP°ÿ‹èJU”…}1¤ý•m=¦?.B5ÏÎzœ–Ô²ü³Û´×·Z%3¸ÿzCƒÃ§h¾–Mh˜Vœ8â§ W=z3uÿÎôºü>µ]5A|*ÂP3³Ã¼—‡gÖŸNLAÍÛp'Éô4¨¥Q4Þ¼ µUôã :ô{œ,®“!‚ÜWü¾a“ÖWí;â1`»¥j+7Aq}EX¸””uý°|áú *Æœƒy6îñí²é%ž_PmŸ¤ËñÍjrÓÕíë¯@îÚ€ÛË\h`Sa ÕÒƒ&Þ õµÐòq‚ÿj9´+7©“/BG}ÙN"t<1Z>ÝíºÉù\ŽÐ+Q¬ÿW¾UÏ¿ºòúÇvÞÛ’‰Á÷a¶Þ•çC0ì ¿;ßÀhø$Ù•sËt3D˜’ øÑg 3aWí;TÒ`Þï¦ãk–XªgçSŽ×_iu±+þ‡á÷CÒ‰«f °j¶Tc¶ ëâ F¬wà/sIjC*l‰HŸÙI½ ÛîW‚R¾xÀîß5±ÿÃÞ›ÇcÙu}ã§!$d•Ddˆ2ÑZ†ÌóQ"CѬI#QQÆT¢P$ !ŠPÆHf*™Ê<Ó "¿Sçå¹îû~žç÷yÿxß?®óÓÙw­½ö^ß½÷±÷^ûplŽK ¹HuRàÙr!!c68.rÕ¸ûóƒÒ¿b20xŠŒÕK¯*Œ#Óôz¾Ôn\Z©Ê²CXÙœ3œGÙ}Ây½Ñº@\v\3è‡rÝ f.÷WÇÜGl¾ÁUË•<üyo#Ÿo(»I|®yp(vÅøU¬q„Ý« °¼d[r'жÒjk¥ŸÇõ’Kz›Þ|FÉÈ˱­äøFCµúCî^”ÓžikcD…&µÖṨÜv¤A`s n²¨ PîuBµ£Æ8B P˶]0ÊÁÍ‹¦ìÚQ«ƒùâ8«.ê$~d(Ü·õ™êT=Ñ€ª ƒ¿1 aÀí¶ŸÚÚh, }‘ñU=š4Žîµ± MBŠýå½Ñ¬†;f‚­ ÍÛ¾œd™r'ÏÞ§©«ÚÑJ£¼ÿÜp$Zß&©¯r‹C›åtõ47=Ñ6§PcØð)Œó^xû@Ø žØÆ»YDIë¶^M’d„{e厛å!N^gùFª3+Àk{Êb}mm EÒ!6ëþ“Ø‚ ¸›õúyÚ-ˆ®{ ~Šnx^¸ÐÒ¿ nÞEw®1uyå%ÁƒrÑEö‚ÇÛÀ­ž)>"µÜòV¬`ø"ý õ¾2Éßx ¯nìJx½›§"uU˜# Ô~[†ÿómPöí¼N s/”Ÿúè®Øì eÓ3#¯WBé¹Ëª»VäA‰…bŠóH>ïŽZìýŠ—X»‹{ÅAñò!ž{ 8p_Ócÿq(Ñf÷Œ´¹ ¥‹7É¿þe:½OÖ݇òú¼³IÓÛ¡âDïi¿#«áÏ·õƒ+"àíµhvcE¨®X›±é#Ô<›8Åí{jß²æÑ=†ºÐè¦~P_â›Þù‘¹¯¦@a:j{ðnkÀ1Ijø,ÉtTPZûaAónè`œqòê=èüèi[bŸ;ÚÓÌß@·<ú×ÊcлTuõ*^è_^="F³†<ŸFmÌdØ`D—]îáYôլ3e0ÁCs­ ª¾Š•¯ŠÞÊßÝÎ=ÿ¶¼~䯙 |S‡Øžïɇߣ~ ±×jµ•¦QÒp¬}þl ©™Ä:4:"½Ï#m¹=i¸¸Ê5$éÎ=d²0dÎÆ¥òƒÈq‹MÀF‰éÃndrùxä yŸ8Ã=f[Ê¢ÖâÔy\Q¦•{¼Wñ;G*}ÅÕMEÜ SáÈß+•'¨‰¶$ŠãÚ£¼Ê‘t'Q8Óâ³ÕA\·½ßä’V,®wq: Ó«Ž’Û.÷¿¾‚Ò¡YO󗣬³–ž~–=ÊŸMm¿nŠ­ñ©¿¼p#*mþ†ªÃoãŸCÜéæ˾ Õ $·jEMuÁ~Úm.¨å×(²ˆa=ê2~lÚ¨ŸyÇœñ²@¥Dµ 4]:Í=ì‹fËS™¥ØÑìí¹ÒKG*ÐÜ&kùÉ hÞꦻfÏ´pm{ë—.ƒc•ßb¢KÑòôú³­hµô&¿ßnZÅ&©ªõ@k¥gµM{4Ѻ–!ên|nñ¤uøñä'Ú,mO'Aw}ƒ"¯q8¤¼}Ðg£¶â3ûNóóA4(|Õx7²SV|<ç7â*î}¶Y7 ¼ ϽU€[lïÝéÊ&à†öç6ŸÎ(¸žxWÖã9„¯Tx“a¤Š¬æòa½Ï^á3D-­^Ç›À±K¾þÒdi€„—¶ßÔ›àßòþílÏ -ËiZ‡Ï™ßv)Y^dƒ'mÉ6¢íZ±ó¿}dd䥕éúNa‡ o,†'—‹ï6(„ôn‡¢ƒ  =æçÃÆÂ—^ZùbàZ?<árè9”Oò×}u½éÕCkN%@ÆhHŸ¢ÎuȬÉþI¾ßyʼLnÚäähâX)}ri$†uláÅ”vc–ÝR(Rç£ÿEŽo¶õ¾YE¶ãYË“¡8:ù÷y‹V(åÏø±âN$”Õ7÷ù]¤‡×5ªž©o÷Á³Ï«·ß`ƒj._]=Ps§ø×/½ÅP'°4À)± ê¯òõ=¹}ê—]÷¡r€&³›±wýàPíÀ.„Ó½ÅÕÜñÐ.¬²‹Çv:írƒYùásÊåÑîÐ=Y´cYŸ,ô9nÛ þäû7ïÊ=®0âç^¯Æ|…Õê“ç£ÙÃõìuà+oÀ!uøÖ?³÷ž1'LVŸÛ[àg7Ë‘;EF0-,¡} f^ýj^¶ ©ƒ¢XMFòºÑÅä}§¶ªÈÝÇ>Ú­É{x-2 <½yJ™jÂÞÈÞÐÅ¥1'?æ›A6Óµ%ÈÞêbrNX —]ûÉ–ÄG\~þV b¸ü{‚•ŒÉ]äøðú9òÙ üÔ{‰kB™Ã÷Ú¢àó—So,ÝP˜oý­"Qs-åä[-†ë—sñ :Š’ ýG‘PúÇcråÇPN-ŽÁ$~%*4œ£‰{„ÊŸº¥øhâ&‡õÞŸv‘Pí >ë˨¡§-`ÉŠ›Ù^î5Xõµº½ÿ¶¹Œ:I‚†¬t¿QÏþH»2-ê‰ã˜ø!ކ^aœLä}çÏÝá=:2h½Cîð¤š>~QËÖ&‹fwv˜¥)¡yìÀP¬³ZäTóME~@ËžäõÊE™h-y}õèJÜþHî@³ ÚòÙ{ís`†±Då2­÷’^Ÿ—um½<°‘ÿiVñ=ÃJvC¬x,Ó­=p§=Â!Õk7Üeð »wE$TßÜ;–#Ê©Y!ª*]<)|"•¨ßøA¤}ȉÌuþpGƒÑ ð’Ç {)T=¦*vªa¢.O¶ÚÈT7<,–똋š†ò—CP+´tƒ¦`.ê.µ\}|™ê'-¹ªÍ—ŒFæÑÔyNhòÙ̾E††|ÿæí¾d,ÍÂBªvGs6¹Íæ*Ìhëðhw,Zиì\’P…>T¿…òÐâ‡7·!•-Z>íÎñ-Ç•Û'ÄýÑÊÓòJæóB´|1jigÖ{|ê·8|Aë^]ž—ó¡Ûˆó\ù¥HѲìúõbÇä' ZÂíî‰Óe-\pãжǥpCÔ|"{ëZˆü$5Ü´·nä—º(¤ ×ß×ÑG†µAÄñï-çÌ Ìðl`«G„F§s\¬ÝÛN_Þú¢üvÇ,EˆÝõî¢($Lu;{`¤”í•v ÒIJ:7Ñ@º­¿"§­2¤k,{´³Ò+Êx¨á µì™e ^ åé’Ûo'¯¨‚´Öš½öQ/ ­/kù”9Ù®·Ÿ ÒŸŽËzž]O‡ò5“‰+É~“µ‘ÿ!oT+ 2ÒŽÞ¬ÛW-³;AöSÙ°§á¹Sá9áÞ‡ðÂΡS âoĬ籗«b#/)BÑšÛƒ/º:¡øäÇ’Õß ”Ï•Þçüc(›h]YÔ ¯)r0\™€7;ÝüÞ× ÕŒï†UÆ¡&@æÉçÕP·´÷pÔØôåý(4Œ½Ð[²! šüÞÔñŠûঠ½>hÙÞÔ°®ÜÚéj-‹û¢¡“yÿ³~Ëlø,;zåîVè¶)­‹€Þ¨Èmáƒ0`·‹[ÆP†Ï3{Ö¥ Ãè/…õ—½„ñ¢'Çv;X—`¯®×>ðmG«®ý’¯0©•WÒÛ6?Í´C6#L]qu¡ù3,N‡Ôª‘ŠÊ‡¡¥| RWÖm+´¯EÚO»y~ #½šU–¨ƒ*..R|¢2‰LžÎ*±Å_pé:Ž–Ñãȶˆ>k„j;²ûš}Ó—Çe’>ù—ƒkÝjù^'\ž˜½š;«y²©kJw¿@>ù=ê¡eѸÆO_9Ü’ J¹NÓÿDaêGnÏH+”KpCñÊž‚\¥û(é5q¢[x3JçŸ>½ÉQŽF·þªÁ=Tˆ<9‘4ÊI+ø©&ËpÓ×)Þ»³?Ÿ|e³õ7jhõ\Áe¸YX U¸ P[ÐB0K£u…?¥õ‹¡¾|YÀÛˆh¨\1–“ ··^ÜÌ€¦†æíÍthvŽþ(Ïe4¯»M•{¼-7;=éΈC«æuµéñ¸%ôÇÕ z–h{Êú¦SÚݬõñ3SÃm_ê<Ã~ãöÃÖIÁ˜ÌpAgछ|˜ð s…Ä‹ôeú‡ü žžii™nÜ]Ó`Ô&o 1 º‘¥”b¸C©Q€ɽ—œÝIž—"žÛ_eÃͪ8uÀuÒYÉÑ{p=䱟XP Äô.uZW‰¿5m¾’ïÓÓ §w*ˆï§·Oº¿ì¹yª‡mZx¥ Ðìq{T©?¼ ‘;!{/ŠOMÇ^{ ¥bÞƒ+hÏAY¼UÅ-—V(gFáÆñV(»©þ]ŽJusÏ8^•ƒ”=ï§›Ån!;7Ò‡âE.ÓÆ¡hJÍéè¦õPleÇ“àe Å_Œï ‘ß”/]š¡ỗ¤¡^r¼” Mó‡×xí%ëC¨äݰÚ..ª–È:õ»ZB5IÁ½f‰7TOœàï…šïT‡JÔ Žk¤dR© ê‹O?Þ Õ›ýK®@Ó^ÛpÕqxç%_Ûò$ >ü¢ž²x£:ûwººê5Æ C7 .P¡:§SœÜÂçë"‹^NTA·Ø¡îP°…žñlÃ/¯‹¡o@Tý>í0 *¯ï(È …áöÐú¬Á^þ$jµ®ÆïÞgÛ˜ _‚\¢´TwÁ·ÇÓ‰iqï`rØ-žoëüRú:,ag Ó9[+. íC’yÚÀ‹ÓHÍ4xáñN¤™æøe–û騦,å7%"ꂈ¾ÛŸ‘qß–(Úæzd¦/â̸²—ŽîóòúÚ„l÷ï?‰NëDŽà7/ÅÏR#ç³5õ«q9›ÝŽ›ŠËqePÐùµ«ÙWU$´ Øù¹ãÖ}ºdŒkò”åMü7 `bbØšk(Ô{¹Ôñ Н´9-^ÎJ³A‹þ­f/¶£¥z…÷…x´¼7¬ÆŒhEx3=[ Z¹üÐÍ\2ŒVÎsBW±UÕá’gü|©ÌÁ§ 6)sIƒpܾšÊ¨_y nHY,>óŠ"“ß«_±_‘‹Æ‚×3‡H_éÏ^€ˆ}…’é:®é´Ö7¢BO{Jú1?‡PÕH½s5ˆp¾–,þ½n“Ô’øn‡Øâ<–ë'!qmXóËsv²ÿõmÚúíÃX*ñ,Ò\åÅw@šFSl9¤É wÉÞ€4íLÿ¯©²¶úgPª¤Ö~¿qî—¤6i²kKÕAšì~¿5ÆVî|±ú±9N^8½Ç6žˆüh»§O²u÷ü W׆<Ðl„Lõ$Ž‘@È’`¦N‚ !é¬úÞðÆówðÆ;ðö÷6ÑmŠSP³?fo•\$ÔN:ñvÙ@}hQˆÂr5h\êö3r+4åRѤ>¢…weúlâ!Ðâ¡ùùü‰•ÐVU{®}Ü:ò…?—0…OÏ\ôNHêBWvñÕ¼ŸÐÓTûúL\2ôü™)Á C§ŸëÕ­p„ÑýÚÜù­y0®ø¼¤àÂøB«U¨ÁŸ _ó„ØËàû³ ¡¾Œð#×'¥çi)üêQü.[¨¿mÊ^”W_@Ò]Ã4”‘zÏR_¬ÑH{&‚u»{-Òuj†5U[âb ŸŠŸ9ÈÄ,›Ä6ƒ,é?ô~^õAÖçL«>K~EöõjWöìSCŽ7Qõ“\ÈY‘Áu3–—Û–uO¯–CžS˜ž0¼D>–^ÿUñ¸Æû…K¸j Þ¼]³þy uk ïÉDQ×ÍúRñ(~6‡q¬“¼ß\2µÇ2:¥}MT©‚P¶xøNÕ„*Ø’øžnˆÊ^†, Qõ×ÝÓ±»5Pm;•jÌD$jhø©7ÂÍ£9ÄYÓQ{džëû6è n\äU‹7Vh°tåÖ+^htÇÌÎTšM…ÃŽyçÅ¢Ù-¯o¹{ÄÑB®µnj³ Z~?!íÆu•¼?ܶêD6 Ú2»î !}G»}¿·ý¨ÄíT —_Áçé^_x'ƒN리ìB¶£3Ý‘ô÷0š—sZ½ Ò^ÿ”:> ™­Î7¯kBœð.™_¯«áÎòU»ÒÞD=7ÈÈMQ…¨Õ4 Ñ-Åz<Úâ¬ÜðÚk/m ‘U²R'K«!¼lÆWº´"Ê*¯Åï¿b ¥J©¨!ñ~syÿ÷jØæa t"×XáZÁEPP½f»$ ùx…¡EÅd¬Ç¸;Q\Ô{wæÍ(±5pPüJ•£q0ß.”qŸÌ{[ƒrT'¶ìü„ )?oú†’PYEØè¡Ó}T¥jl—bAd»`äó ÕMhܽïlFM§ôáë=ƒ¨•ò@9k+ê.g:›”ƒú!‹ótЈÃ.¢ÏFM<¤£å>|EÓàÅë ^þB³Õé-k÷ö“÷R·¦sšÑ¬}yP™Û}4WõºÄJ‹æ{ŸË&¡ùP¢ÂGk´P?³Iq7 ZÛgª|ÌG‹Òíyh) ~=§L-æ±?íCË\ß+bù¡kSÄJêJH–*l¢:è ±Îr·Ië^Àm%÷°ÊÜÏ9(Le¾S "¥¯îØÎ ×EÓeÏÜ[×Wæä\üX áÔ·Tüp…°%•®OAHº}͆”yïsæH­6Dì½[/V·½½ûï¶ù@œÀHõ‹o!Ñ*]Ÿ&ä6¤ð±‘OƒTŽíÉþ꺿L.bÚ÷~à9Ð 7NˆøÁc.OÁGb¹ðèÇ ‡£aðhhØ“œ%ð8f÷‡€·zjý„Î0HÓ—r×r|üÅUá"£é-;*¢ÄÀ“S´âf#ë c»‡›“úWÈøû8ÖÞ2_ø†IÑqÂÓÈôˆå+ÝáÙšîÝtÝ·"˽1à pè?•Ò`‡ÂvñIÚ}ð*ýD{õSòüE+ëM‰Pºªl­®^ ”KwÞÓT;&ëm³éÃÍ0±Ënð¶‡îï$;Ôle|šäµ7Oœ‚ú®î£VW¡q[²Ÿ4ÉÉm–#ÏÏ•Eñ̪ÐrâñÄÇõ Ðvd¯ÀV^-,±Wûà“ZÍÌî<èZ^òÂ4qôp0ŸX“¶ú®Zü^Ú ƒ'w Öž©‡‘ªäEZfž0–T´ŒûL=Ï}ä|5Œ¢*¿˜ ߥäîƒØø!’U~YúüÒXbGís¦ã$eøv("Iݾóðss¤¦7ð‘+Ú´¼¯h †O#ÝéƒÕ=p1û÷âÏ9ÇqÉCšågùô‘Eõé™åçu?ë¹wÛ¯ [„Xkˆ>rì¶éw¾œûô¾v.ÃåŒïwúžBè„\ÝëZ-Rÿ×ì• 2GÁKKTì=× Pyí@Þï(*ß8íÓŽâ —¬D©Q"a‘Í+®*”6X]¼ñB Êú‡y°Ü|Ž «ýʹ…Ê >ÓˇjPµ¼…†ªïÓìïwgö\‘A ³M sÇÍ&KzxãQû6Ãaî{¨Ço!õ5õ ôº‹ë›ÞGão¢>¿ ‡ÐŒ7'õÝ;u4ï¿ÊtçÍ!´ìÉ’jéuÆ-<¶Žlé›ÐöÊ_ÖçÞh¯wCÖDt =‚’´ÐÑÒêùVGwÜ©oUPŒ.¶Aãƒ÷¡[áû‘ÞU`T×&çk8y¿¶ÜÃ˹îÎ$õ?£‚X­"kI#Zˆ^UJÏPk7•ì$÷„€k)Lg™CäX@jÊÙ$ˆÜžãfÝo&Ò»Úó!,øÔû8×NÿÝw‹Óv'D§ÒNïjV…Ä(sáµVÜfÌ?BßE²;­²’ Ï¡&±ˆÁ m÷dÒ|5W—IÆQ\P¼3=ª;á>”L† >0J€2sQ“€¼:(‹ºÓq„ÙÊ®{Û¬…R–¡";Ú$(—´M¸{ Š]üó¨DJ¡hæðÕ i5(j ͪ­ï†b^‡˜-9P[wXµ¢J¨W?ái!cN±{‚À:(}÷à¤K:”Ó(ó¬y¨¯Ÿ;/­ØÐ•¾eOüŒ½ jŸÇ‡t!¨Æ/öU¹ÆPccÐdé[ µ7Õ²dL¡žf‘á Ï hðo?}}šô×ò†w¾ëx A‹^ã ÔQ9òüY|¹'åtøì¿Ýº>ñìõÑ¡ÏwÜÅêÃÈ÷o|Ý—¥R•¡§QÎ+ô˜ôå {_wï•’ÿÃÇ8¶ß†ÑhN™–K`\T7øæ¹301NÍ3¸ú|ô÷ø“¼)i¢ÚðSóèë»}0uNòê¢D#˜aá]| ©èêŒÒ#uN³¥fÜE¤õÕwR`Aº½+o‰ÞZ‹ Nl¼qcÈ8dþô½®;2G­÷*“kAV‡ž€’}uÈ.mß\F‹Ë´ÜjÂIJ‘ëòð‰£®¸|*Ûí"Íä¹syéC᥸:H~Gg:òi±;/‰ï³¹¯©ÞC!žWY› È+}Û]O QìEÛåÆ+¸¡·ŒI]oJù¾Ü&Ñ/2+ƒÜƒšPö7ŸåºDvTÐu¿´¦Ø•>+oºÛÕŽ*%kU¯‰Bø¦É{‘ÕMõ­óPÓ£óf9× Ôzv§ìCÝU»ž8t¢þE#íÉ–l4œx¶c†1M¤ï¾èFÓ5þ·Ä£ÑôÓËOÔ»ôÑlã£Òºc€f—-î[¹&¢Yó7Þ›þwÐ\àNåŠgdt+кÂf…æ G£x9òм}˜o‡Â{´àXóÌ4U-T;Ü}âÑÂ~XÚ‹—-öû¸.Û`Ÿ3]ª Þ?t⪤ÄòfHˆ¯Ÿ€¨Žu|Æ)†™0ùc-͸žÙûQn3DhhPAÞ7Úú0lä„Јۧ»>€z…„¦îÒ?Ð`ôB¼³†Í â@úÔéB¸=š&.¨ q§/¬H€D¿·Ï7ǶArÑI“‡×iàñRõ áѯj×Ç1; Å.ìTK$31\àÔ(ƒ‡1å½¾²ÃÃÌü½wƒò!YÎBÀñÄKH¹fX “öV¼_” ©¯§L3ß\„´¨Ü;_Cúµ²]6©ðD=¿ÿéKÈØ¥Ê£6û÷¾nÜ ¾™&¤'‘ºðtñnî]tsöئâZÈõþÝ¡™ ùáÚ~ÎImPxçˆWBa¼:Þÿþ‘s{­k„Ržc2)äþ*7íúÔäcÇ„§—Ÿ‡7,¬¯Z$àíÛÇù­Ùë FÃûÃ]~a¨}wpã»5P¹{cvH4ê?ß–žžÍÂnÎMÏÎÁ{ùÁB…ánh¹´ŠF¡õ´™IÈ_–¦†`%Ÿ”³ÐY ™6ká³w©¿sHt늿̇Þ{|ã;ÇÈóò×tM¯6 ?«øÀØå c¼•ŽûªŽÃxãÏ7 ðååñÖ3Záðížgï[%˜ î’x¨?£Z_Ô¨2ÂÔPø½C#0ó22ú®¤Š¿´Ï›¼ï|6òCÐk=Ò ó™+¤û"C¶#Ó´· .Ñ­õ5ø†Ì%‡³äßø!«È²ÞªÀµÈvœ§Ü<Ë 9±x¦f-r²¶5Í0!÷ó~ïÒÁäa0=wI»Wvqk¶ÝÏ gþ‰‚Ǽï]È@¡‡46­‹(ºh÷­Ãš¼(6`³MQ%4Xt¤¯²£4ëð.e1”5بl¬¡òÞ[g úQi*m ~—5ªFrù9î¹€j*S’’kß †JEÁËK¸yç±çKh¯£ö»NŸVjÔ»Í\{=4 ó¦èSZÐTh¦ÆZÎÍ—µönüÒ†–Ê)¾Ryh}300ïÊq´EÅk¹Fh/e6tïÅ't8Ú^»óömt Þ8ìâ€;cÄÆ÷u¬B—aõ†6¸+`͵SÙ—pï)Ü È%A"ÑR“HÔ3$‰™ü¥!÷‘¿ä4’àœfÖÆAØX ûbò—Jj^ždæÙyAn^ŸæÅyAi^P&ji)Š$M‘d(’,E’£HòI")R$%ŠDá¡pÈP8d(2 ‡ …C†Â!Cá¡pÈP8d)²Y ‡,…C–Â!Ká¥pÈR8d)²9 ‡…CŽÂ!Gá£pÈQ8ä(r9 ‡…CžÂ!Oá§pÈS8ä)òy ‡<…CžÂ!OáP p(P8(  ‡…C¡@áP p(P8)ŠE ‡"…C‘¡HáP¤p(R8)Š% ‡…C‰Â¡DáP¢p(Q8”(J% ‡…C™Â¡LáP¦p(S8”)Êe ‡2…C™Â¡<ÏA#-%õ—(ý—(ó—(û—(÷—(ÿ—¨ð—¨ø—¨ô—8Ë6»¦PI´Žî.„LçêBh³9çsH+S®â¬,½@–Y Ë.åÈò d…²âYi¬ü—¬´€Wi¯Ò^¥¼J x•ð*-àUZÀ«´€Wi¯ò^å¼Ê x•ð*/àU^À«¼€Wy¯ò^Êõ§•‘¢ €YYz,³@–] ËÍE ÚâšÑÌ_hG·ù‹JsÐÅ{¾Ä1Çs%Í–`™5«‘æ>8:‡j¬DŸ|t cÑlþ}óVµ#õsèG`0ßFzTÀÞ%Òã~œùƒ÷ ûƒGsz2‘ïñÎ9=ÈŸ~åOÕÔžå2] þ`Q>[}ΞCøyÎ3gÏ%üå}›³ç~ víøƒ…„ÿ†;ð%ÁóJ£} ¾¢Tþ?XLð–ðΕ/!øK/Í•/#êQö}®|9QŸ×.så+ˆzUÔΕ¯$ê÷çÊ¿!êY•Ð’×Ë™9}Ãìzñ‹¨3‰$1«SÏÉ’„,µ Mz,³@–] Ë-åÈ „¼a>í³ëÕüzFÔå÷BÛüÚõ÷ôÿPæY7ÅÿKuSZÀ«ü¿®ƒ‰ô•çoé ¿„ß 8Tfþ«m~,©.ȳé?Œ«ÿý˜QcøOmÿß_Ûãã÷ÜÜ€ù(MEš‹ÇŒÒÊ R’RÒ’býßÿ] ‘˜ej3ÿo¶òß]Eõùò [ÎÆÏOÞ¡ðpÜçærßõ€§Ç¿S–‰7,ÿîúçÿäAôßz ›ÝdüwþÙ]ñÆÿÑ?ÃëŸnwý?ûaýoýPý»*rð;;rá÷tåwÙwèÀ±ÿУªÿÇ=ªúÿ§GÿÔtÁøøûø_|€\éCŽNn9d¤d ö®ÌD5é_FÙÉNuŒ¨™3ô í×\ÚJyÙðüËKç_z:ÿ²Ó¿¿õFÎ)KU}ÈÑ0»nâP—½cÅ+Š}>}¾üüËŠÿþRâÔ€ßÉ;®Aê2û߯+¯PÒç_–šX•Q÷s(õ›·§¸N¸y|¢¼¼uþe®ó/M÷;ÿÒãyóúüËOç_ªš5ùµòKPåå¨ÏƒÏZSyxÁ‹rѵñ ‡à¥ðÝqžÖP¤´1òÓ#7(Þî­zF—Šo˜ÕÐÿø¯?Ñ—_wLyÉñ[ºäc3kµþzI*—_Yì–ûP—°Y÷uD248ÒÚV»DA3ÝiÖÐÑ#гƒÔu} ZtÝ™Ù9ï—W]£Ðæ|üðÞthǤ{"ñtº (¥è4@OÄÇS’¬×¡ëPÛ—{Ùеjkë04¢czFÜF¸jJø/ˆÃXfµÎ¥-:0Ú]~qéKð5pÊ£ýF|;C0cƒÉûÙ/&SBà§ÑööÔC0mìx"£fŽ”Ý42)BêÖ|³Ë/‘Jp´þ«ÐA¤«®‘¨ŠÀÅE< ƒ édlz’ñsdʵo­énFÖ3ÞÛb©*‘m¿ƒi— ² s¯úT°—M\]~í~=roøèn÷áò˜Ì®4FÞ>—Ç+rÖ£À6¿»¼*¢¸VêÕzý §P¨²¸7ý˜1®ÛðÎ@n[ŠÞ[Ð×7DJˆhÚ®A©üÕž¶³P6bòrnK"Ê·%ð°·Š¢Rÿ»M¿½‡Qµ) .^J Õ¼ïw­EÍÛ¯:޽Í@¶Áû{ü¢ÎNYé P{úĹ #[Ð0¨T`ÝÖ‡hš–m¹¦ê%šŸpÕÜ-ò¯“HcfÁD£ùOóÑu÷!òÿ³÷ƒKç§Úü @¹$ôùåp~9S[FàrWÈO k &P”@1×(A ÒÊ(K ò*¨H Ên$P…@U7"jóxfÕ ]Ð5]ƒÐ5 ]“Ð7úfB×"t-B×&tmB×!tB×%t]B×#t=B×'t}B7 tB7$tCB7"t#B7&tcB7!tB7%tS5çÓ æÐŒ°›v3ÂnFØÍ »9a7'ìæ„Ý‚°[v ÂnAØ- »%a·$ì–„ÝŠ°[v+ÂnEØ­ »5a·&ìÖ„} aßBØ·ö-„݆°ÛvÂn3g'ó;UénÜØƒ†®¿…ŸVû(G1ágÞÖž_žb—7‹¤M}¹ð[:‰Ø¿©|Œ?Ø ,έ;ƒƒV*—×ø^Æ!X#·Ø£‡Ù/ôêÇᇕQip¸UÇx¿Ÿý¦Úê‹CGcŽ<ãfÂ\÷Âi±TìKí鹨†=Ï6Ö…îÅn™÷ÆÜصÃÄj™víí7v»Í‹u|‚g°gÌÏHø¡ö¯û¹Wüм(Çvøö[N:õ¬˜GŨµÚ–>ÁÑ"ΗúÒ¢8&XU\гÇDS†ý·ºáèÇËßè¸uqÔÁRåô÷Ï8’õeÙ¹o8üëÆÍýWrpøŠm]× 6žP8po¯º;>,†C“=ÓÞ­–8Tqòh¶ ÅgˆHf§Ùa5TF¡b$¤?Æå•¶ T7x6áàÁ3üË„qðúz¥¯g8h_ô¬½TšÑ-­wÓÎ;8è¥É~r59_ì&O¯-pð§ÈÛ•a£8ä–Þyõ¹ßÏ<û¼‡Å¬N*ìÀaÝÜr'‡×WçØŽCcëèN*ËâPVÜ Ë 8tÇèñ^*Õ_úîV?ó–™í8ÆÃ!wU.^ÉÂnŸdÙ¨«8rwËÖgqñ8ÊÚ(²ØdGuŸyßWMÁQ?FÁ€ß‚8úá2¯yš8âR¤wŠw'Û$W0Ù†#NIÔz“Ü8 ÿ3Uþz8þø‘¼[$‡”ä¾PãpÍÆ™Ð2¾Æ-ÆeÃ#Tzoª¦•q¤ç¢“AË0ŽžÌNÙcÞKXOóáðõ>’úZó(LkóÚ#"Æ5‡-épìSo íâã8qà~pC/~Y™!úì‰D½ð¹Õ?÷)jóxfÿ¹O!°`ÿ¹Où'®üWþ‰+ÿc\ùç>åüÿçû”Ù³üýdÕüa¤?kþGIs?mž›VëÞnÛþ֮߷Q/ß_?Ø`ƵÝËï_Ôš¼µËã¢sûüIJ¶õ©ñ*G±œÿuBs|,–mÒµZTS…eË<­ òtv§°lå†=õ<>Xâ¦ú¢Ñ™Œ•I†Jw°tòÝ¢ìA²þn]™ªY¿µd ƒ(YÒ<º¢Œç¿èŽ"§Y_c²y6Ý×tYYw) ¿JÖõusoÈaYðÇçÈ,[~3¼¦&xV?ÁyxÖÎ.ßö`6¿ŸäC«Ùò ÜKÖËrXJ‘õÓq²—Åÿ ø­é?é¤ð;ò-Z:9[Î7b­Ñ¬Ÿ¥q²,³~=uÈË™çìÒøÕsºáÊ?öØ6ñ?ùÃâÊþ”'9eÏú“ùjŸôÇ?·U,çÒíˆ|;VΕ»]=ç§¾~Î/ìžã‰ #tžGäÏ!Ê/!ü='ü;èJ¤ù†çÊÝqŸóó>oίn ÑžÅD{çìý—çòÿúü§ÞÊ?ýíû¼`rÖ«ÊbáY¿ûßU<šå 8ijV?ÿ¸a¶^ú ñT³ùó‘«y¶ü‰þó³þNx.ºAÖÏD¾Î™f‹Èéç[ZrÙÉú“Ì¥rýd=Mœ+g¶\îé"Y2:ÄjaÙ ásñ.uXº‡ûäIrÿÝðêãPìÇ2¶á}Wbs±¬±"嘺–ù»éïw&ç#Λù¿ó‘ǵ¨cc–s lçhÅŠ7÷÷8aÍïp½ƒ"‹#Ü%Í?½ Hª}"ç]BÑû’¬%‡J¾’<æZí™DÑåH/—œš4§äoµ©~I)½Y›…õ]É·MóÇÒiˆyÌü¦ò¢Ý;Ì>"”ƒ^³‡ çî>är`nVÿyX´ˆ`ÙLú>xáqãó|;Œ¡/=ÉÇ€ñ„þ˜Ð3ý©VÍ¡mÜÚ˜»¿tùæö—+>Têºyb‘¯øg=ã–S,»VÕꤩ‚Âåéî·D°’(÷–(W½Î!EíÞiœõJvµù[ÏêOïÁ:çw F¡.XOøk üÍj[Ï`Ó€)¹¤:6þßý¡—ÆÏœ*€¹ÿTg3 `Æ6‚·àm?É7›‚knçùÅŽ?Õ;€D{:‰ú|"êóéiä,#~þSÝmø™¨_—ÕŸvõì6 %—0Æî öYOØó§˜&öõî%êÝû)HéS2ö0 u¯•#oÊ/Çö>“ÄþYÖEëɛĹö íüS]>,ò;2Á¾‡ˆö åþIÀa¢Ã™ÔáäªàÈŸê/ú_üpkþ¤ÚüÈ\0<æFò½aQûëÁЉ!Ã6©hìôSÐNJ9ŸÂ¥4‡HaWË-!ìõQón?öUoÉÖaŽÅÜÇáõ þ8ø…Ã6u»jZ ŸpÄ™Øû¬‡åÌlÞö8ã€Kì!mìq¿'±o)vIž‰X"‹]6«×\?ñ{XÄìÖˆ¥bÿÀýÉÔºW8ÂpjíêO,8šøòb¥„$ŽÙØÝ í%o0©OK[=ÿNÞˆ˲§2àð㘟Vä>²9üåØÍ×8¼"(àÝÑ—8Tv^·ñC<ùYí¶Ô#÷­üµå ]8˜Qb›Ëi†ƒ'ÇÎûsãà*“˜ !8ðúçÔÅ6ì/Lþv®òöï£Ïßp€ûm§—…¬3ǾNƒâ{Ú°¯ íz‰döU8‰¹ô `ßк´ËñKÈùtÎkœÜ…ýMv?&%à€Íùé–Š`xy„*ü5rœ¼öCNãœf8pð:‹ß'YôFèÄ!ßï79|lp¨Šct²w‡wn?r·G4Õxn¬òÃÑJA;6“ûϵ‹Q]þ2ŽŽðè2: âXÿ™3œÕ8±üˇ âÁ=8ø/«Ó¢ù5hï>Ïùʼnzß^B¢ñØ=ÿÛ4‹þœ>šÏ½ÓÓÅõ?Sa;èáéyh—ÄA/÷Ýû\$þ<Ÿ?ßHÉÄü_2Íy’šù[&ªùÃ?Ø©ùkpß­ 'ó' ­ÿÍ­¿99t™«À|Ûÿtèç/N[ÒÎûàŸÚÙ•ôW ù[ )]¿”ôßîñþôÿ1JÿÓ:;rœOvw9Bˆô;H,ˆ+ ^.ûê´ ä¹ZýI]|èÜ=œœç=Óí&[<’` 9º»ÿ‡+þ÷‹¹°O6“3S“{‚Ö™bW9[ñBåfe5¯ëðêbÚ¢Áv{((Ž4¸£ÏîKÖ¸HÖA¶mŸá¢ÄÆaN2ÑMÏ€ E®±°\cH;¬1<ÚSA9ì3h>=GKñ _ã$å°NY„;§ìæÃPUQ™Åüü2ÔŠzoï9DõÏí]Éôrè¦É*ßá‡:¼Ó¿¦r;UÞýÚk.C ÍãÏfœ‡Æ=+l•Cñ`æëìóP}E7lÅõÕðF2=L&è¥]óúüáŸê}Í´jך¡FuÈ"ý ÔT æ=gÎ…Z­~ÖÛçÊ ö[xuñb_J}Ùr­ésšoT^N¬‚×[EB¶—Bëpp2Oht¨Á3W}~ø´ÙºLÁĺB¿Ø%C¯²r%Õ×"à9´5;¼†•EÏÔöiÁè³}‘ZaÜ¡_0…n¾‚¸JÝVø:¬Î4À 0I“X÷püôÏ”Ÿ¸ÓI0eút·Š=¤Í©cõL46#mò3Ë+×é.‘óIHŒ22œ;ý+±Ì Í ÷"“˜„—bž2²@ÏDÈ}dµù-Ì×l ËtxœV G]{†¬,r^‹¿¤ü‚¹ÓóC8_îÁïõÃu#Ïçav¦Œ>äm=KÚõùr.=¥I¨@þ^î+†N( X;u!ÇÃG3ÕÔQ˜Y9#Î=Eݨ„ÌÃÌQ¬òá3nܰñàŠ-g|P2Îs¿¹Ë”f± nŽF™c? »V ßÁ”ðž”oÐòIFÅ»÷÷NrAå]+Næ$í@•èÕû!i~ÅM¨VÛr¦§ 5H~çI·Ö¢¦ ûËoÆÍïDº¬¢åQû¤X^Û»(ÔÅ»´²W¦PŸ»z»ž3´ÊŸŒC#÷ ÖýQ/иiQû—=hÊE²{xMŸúõ[ó¡™I˜uœ¥šµn•ÒZæˆæ;›cÎGóv–U§lÐÂâÊë!V´xáÖ{:¨ -×p%„ç^@Ë“+ÅÌ/Ç åÛ7Ó Ö.hµ*ì­[¼ Zí¤Ë¤}µü ƒ¶)¼2l®¬Ì3…“h ‡/ðô³Æi©ˆ Hëï:ßm”y38.ùDúu!#x3±íž»åÐݽ5Ï£d!^ÁWÂî05Ügšj0” Æ›÷3?_ççsÞ.‘éU ðÂâ_¬¯ä}¬u{_¹'ë—nºyréÅ®,1Ïyš=øN—ÿ…Äá;J>)þˆCy— ;¢Ì—AaêÄápïJ{‹R]/^®¥Î+Éýùjm!”&ý®ãVX åÚ3Q*¢i”Ãz”CzÄ|­]BWàËE uEY_ËŸüµNô-ޤ»? ï-r·Žr„@˳u{ß7CÛ{çÃeGÇ¡ÃýØÉð¥w¡sà½Uźqøìßàn©oÝr+Ÿ¼„^ž ãŸUŠÐÏ¿GÛ¨€=Ř›–ÊÃã)[·“0:,ÁétÇÆO±?íñà¯ùÚ¼øòzy:øžôÜøAY3üÈYbUSÞ SŒ~:fB ð;€éw¤g’BFÜ¥VGjº}ÏWE Mäבcâ¸hOOؤuÒ§œÞÅTý½@üf÷#d¾Ë§Q¸â²ú­Ò£s`Gv+¹Ò4º×¸Ì^çG®r=*RöNÑÄ+Ç(ã*EÎ"FÑÏÈgñ"íq›µ¢e) n’z^'ƒB×6Çi¥^@QÖó§%9¡XcpdVn¨f͹î;„RÇÂ÷]›D™õ Âô‹“QÎ6ðiR±)* <`¹wÈ•C¦T”óÓQ•Kï©Ç%„ó"N]²Gµ[‡âÓcÆPCñÓXŸ@jNÖ›„:F V¹hk²Lꄪj«J+¢ž)—­C¨ê7 &Ç+Ä¢¡|$M¦œuy$ËˈÆ\O—½F“ò™Ñã6hê~ˆñîjv4Ø`så×K4s´4¸×vÍÞ®e–ÐL@s¹ö£ÙhRï«wSÍûβ^IùÊêú§êÙÐâÜQ¡ågö ©wÿ«ÓZuð²I´Êúœe¼?“ºx®–Y„r(u~žÌv_óóm~žÍ–Çyû|œ÷?µÌîÚ¥‚ªP¹ØÎíÅ£¿âO麡—Pâ^»ƒh…ÔV¨›‰ (5Ó£ŒïÚw‚¹žÆBM¸:DIQâÛ[õÙ?ÅéU<æ :àÍž`½ÌdrÿR¿È4*OsÛyö Sâß|ú|þ·ã˜ùnA õ’°Ì’Ü©G}ª çKö…Ž ¾®´Ndk‚ï\—zÏ?wƒœuvùbðKÖJ`çö˜ö]mÙ½I<3EN’‘*wÆF6¤¹³›ãö"!\”VúP¸Né‡h¨iÅJ‘ñ„wý«vgdÞvó•g*/²jxm`¿èl“­µ¦ ÉÈñJ5R#Ì9Ã<¾Ó½ÜòI¶q…LÁγºÈ³vå ß2 äÕ¾/B“‰|IÆùoâš ‡èìŸH ÀãüßÉF ¸Ö:yQ49î d+p‰FÑ5Š*â¶£˜åäšÏp}î×V?‰ (é´)¿õW6Jó_n{#U2÷ E؆fPNÍö¦¤Ý=”ÿvʤ/¤•¸î{ï ÂG^{UO¢jï›§³ù­­½Þ-Gµ)ûU­QÃòÖ@IÖÔüÅ÷‹¹Zµ^/Îs+®E„ ã—«QïÈ©ñE¿Ñ@:ýqŸï)4,YQõ†~ëoÊXMO‡&y¢ï”›ëÑ4h"03ŸÍ䇬G³ºM÷>/2Es×rÆ£Ñh>úá]p+ZìéYB·-úx„ì…2ÐrK·âÍ-hùbå3‘?Ïbw,•’8M9ô~ÛÕÖ^ò™6åú|¼›/??oÓwø»üòŒ¥ÌÇÌÈE´"ÕŽ”ÃãO÷Ýš9³]²Ÿý;þ};(}¾óø/~‰ø=¿Ï“óqu>¾t<¶G=þ#äpßõ‹ÿæãÞß׉ùý)e?úæ¥×K_kh|y”ñ”·eüÁ~øÆ¤=|ìÒ· Õ}í ]–ÙOîCGÀ7 ŸkMÏl± )Å}o@‘FBº»¤»$E¤‘P A¤îT)»E,,¾ÿ¬õÌ·Ç÷x®ï»Îñõ.oŸyVÎZ3¿û‰™=+ùŠ•ù‡ê•îKþyÈåì÷v;‘ü[´“3QÒl8–q¼*ѳ¾½µhÑsnóa±Eb|¨•(Ö©‘X»,T/8G3äþìû±’”·C¦·®”´ïAf~!éoºwùb­¢døê؎ϦD%ã9•q¿dÎòëåÚw•‘[ææ‘­g3ɺèìÐòíæJŽ››÷½¡rÉå¶ÜufbmÉsÇ-ç´«“%o·ƒWóìž"wi}­›ª_{NW[tªÊsò@Ï'’ïÍdI7ÍÉ9uúDÏþů½¥HÖÏslÊÒVŠõö Ë^W~DÊ~Úw³$wœóë¦f5$åÓº J­^)¥f\>·]­~Ü]Ñy—”½¹B±ßæ5’Ç^{}N™ïÊJùr»¦N<_?x釲ƒ‡KÅr½rÕÜOžXqá×±ç[É“v¥n•î¯*•óîªpÝRyKñfúá³R¥ò´ýGÎ/‘*'7¬}ûp©Z£ß룆­—ª{Æ¿z÷ÉuR­hî£ó 'IµËsfÐw'ÿ°nlýümÒ'¼íXàìÏú‰ó+<^ê¾R'Ú±ÀWðG"A™úBÁ~ýf†4ëËÔiŸ¼sȺ ]üÖáÇv–ŽlNÞÓî‰ßýp4yï~ý«åk™í±ãg$ݵöJµO{ŸÚVsõwëÏÛýÃäþ‡"«eâõT¿pï¤Ù'œ-ÑÎýă}ÛvÛóò·‰ö51®SíèÑ‹w½ží‹‚ GÇOs¾jñxòÉ[·:Ñ%91¾;Ó©P«3Ië“ßÙ<¡Û]¿¶J>7ðÛSgí¦ÉžÞPð®#“ßË’¥ÉÓCF'¿á©µú¾˜üá[)·<×eYòÇŸ>ýiÉ"i“?t"©É„ºÉ_v u«'_Òë¾›b´O¾]œ«rùÉßÎÕju­É?̯Z)yk$ù§ê»k4É·+ù×*yfwiaJšG/8C­ýùüà‡KÞ\'ÚËSs¼Ú(­Ó^šžîÑVb¼=ã‹Ë†\çýr˹&ÆE¹q߯YÒ_–ôÝ??õÌ’rÓ#=u¡¸dz¤Nù%w•Ìý¦Ôý湊rËå.Ohz¯düÆ”úÛŸ¼<áø¾)’3ý g ›)¹F_Öæ¯#yòýòÅo«t¹ãÊŠÑ×u|·UMûRņr÷´‡ï»ïù>r_ÿä7GÚJþzMªïN×F ÞxÍlCGK¡ çç¾û)Üô䃾.Ek–|ùƒ†¾ù±SG›J §Ù¾—JòÌÇV¸3ËHÊò›³µ÷ )U|r¾úÕ—Ò—2Õ=zgI)³þá¦_>\Q{fø†Þ KùäÝ Ô3¥‚¾0÷ »ŒTü ÷ñì#/J¥EÝõ”¶å¤²üºvãñRå‘¡^Y§±T}bÍÔí/JµÎïÖíUã¸T_¶÷»·Ë”—šú]ßMß¿GjuÛ÷Þ7ã†Kmë¾:dž'u6VÏ5oü©÷|äÂ'KkIý…™³ì¸Yv™6â¶§“¿¹7÷/i4Mäû`¾#h¿‚v+p¸JýGZÁ_M.R¢òéýÃepÐî¥nç‚ñ`0N\Uá`úa5ª&þX*h÷R·WÁíÁã‚ç­Ôí™èç-лfö¯îO>n/i¸£Kº„Ï`èí#¢3¾—|vÕÌ Íži‘|þûÅ&×ø)ùâºG&Üx:ùýÕ7/~¥iák.¯ä¼çË”‘ÉŸuMŸýÊìû¯¹ô¶ô¿ü¡$_NßÕ{å…¯¹¬]¼V'+$_iѻͯ÷dOþ¹Eg诒mÑúÛ {%_í_ä­Æ4_]œ/ír‰¶©uè‹…ãE¯p(sÛìÝÄÖ÷«gJ‰“tlá¬)Š·ihÞ»6—´#weh;´£¤[Þ»±v¨»d¸óÊÐ|?¬•›VÔþªc9W2µ}E~íܨs£~¼=In-¼iý†OjH¶6Ú•iÖXÉÑ¿x·RJJ®¶Ö™m«ºKžI—Ƽ—÷ÉûËù¦'k\’»^É0hÎ'óåÞ__ùb•½VòתûȤ½ã¤`Íwº×¹F¯ô¥K}¤È‡ß?ÿÑÇÅ¥øš1Sï}$”øbIÖGÛ—”»õ¢Tèyó[·ŸÞ'O´þî·K^'G<~ÇP©üi¤â¦rßHÕ»Íê¯>ò¾T^rúìô’ýÎר'5oLººõFyªûñ™ZŒ“:Ý–¿™ÑQê-ÍÓñÖ¶»¥Á—´[´*ü%³ð—ÌÂ_2 É,ü%³ð—Ìþ‘¿d^)8¼Rpx¥àðJÁá•‚Ã+ÿÿëJÁÆÏÕ)sÝ㬕ÄFbgü¾²Á}³+È]¿þW¤4Rf½;½(eVüd¥”ÙYT™¢ÊÊ©Î@ª<·}8ÇÎ1…sLÿ½9¦ß.wýE„Ú_»½üõ·G¯ÝþøÕëNç~ó<9kVa„ñ_‹Åa„Æ-V†Fa„Æ?06†Fa„Æ?0v†Fa„Æ?/‚ãp±Áñ:ÿÜ]§3ý‹tøWæPËðåÇ#’Ô1¾´êJ þ5ÒÒÄAÒ¿®n&âf"3áÔ¿…¸•¸ÈJd#²þOìå r¹âç-¤ñ¯·{‘—¸“ÈGÜEø×Û½‡ð¯·{á_o÷¿ޮ­Ý‚„]ÿº%þµuýëêú×Ôõ¯§ë_K׿&‹ Ý„íÜd¿f®²\ÿº¸þµpý‹Wù×¼-Kø×¶-Gø×°õ¯[ë_«Ö¿>­MZÿ:´þµgý“ükÊV%ükÃú×õ¯ñê_ÇÕ¿V«=VÿÊ+uˆºD=âi¢>Ñ€hHøW1iL4I¿‚±-’æD ¢%ÑŠhMø—·iK´ ·[¸ÝÂín·p»…Û-Ünáv ·[¸ÝÂín·p»…Û-Ünáv ·[¸ÝÂín·p»…Û-Ünáv ·Ûßv»¥SÇáb×Ïo.„ áÂ?t¡y¸.„ ÿÐ…¿I’ Â…p!l»Ã…p!\ø‹ “$.„ áBØv‡ áB¸ðþ&I&\Â…°íÂ…pá/.üM’L¸.„ aÛ.„ áÂ_\ø›$™p!\¶;\Â…¿¸ð7I2áB¸.„mw¸.„ qáo’dÂ…p!\Ûîp!\þýÂõçmôhÙªk³°VÂJX +a%¬„•°VÂJX +a%¬„•°VÂJX +aå/VºvèÚ¨mX +a%¬„•°VÂJX +aå•ÿ}o=¬„•°VÂJX +a%¬„•¿gåß[+a%¬„•°VÂJX +aåïYùß÷ÖÃJX +a%¬„•°VÂJXù{Vþ÷½õ°VÂJX +a%¬„•°Vþž•ÿ}o=¬„•°VÂJX +a%¬„•¿]%­e™±ã©¦er/õ®~f=Þ#›Ôºå‡÷ œ.OvK÷Dl­¤üølÉÇïü@Ê}Tk⸤YòØ´}ůž¸Qʾ{Í”ûrK™9} ß=¤˜”©ø\óûÉ×Êoë{•Ò¿#}¶<]î&+¥Â°ö¥_êµQ*«×âÜ{wKµHÓ!i3ß*5Ôókµ;sàË‘§&uÝØºÿORûá‡Z¾ú|I©­Þ¿öº´K>ür͵²Ù=Gßlt“<¥Öë)yöò—jJ-µ~Áë%Ê­›^LÿÂyy*Sì Ï«ÓðXÍû«Rï©;êjuKýýÏMÍ) Ïçʘ÷·ÎÒxð„R§¶-¦Í>žxG ÒüéâSô±´TëÙúòÜŠŸ—|WÚM\ó›½ìgéè?ºúYéôöž©Ï.zZºL.Ð{_¥+Ò­í ªWX)=Ôúôšîÿ{^ú¼¿¿ëÄ^¥ÿCý^zrOiÐbLšjOÈÀcZ=Ð~° ~¦ØŽÒm&ÈÐzU?ºonnÞ¤~×»fŽ‘êùcôRCÎ( ãæ×.üËÃOÊ„UÏNlz[!™xç¡|sÏ­“Ikß_Ûç¯eJ—OWµ˜sE¦5ûuÔ™ußÉôáòÓÖ#³dÆÁco8S^–YM¿]Aæô²ú"s¨¢¯rRæ¾³Å7’³¯­òÙÐÛeáùŠÆÄtÅdñÙ»ßÌuWyùþöö+ÙU–¾“½W‹=ŸÊŠÖGÞyµlYiyc~þ¥™¬Úœëƒ³™öÈêá“Þöý=²¦féèk7¶u÷õ(0~‡!r÷|9iÄÙTiü oï‡òÆöz¶­«$[˼þfwï{Ù¶§Ö¢aÛî”ímzÏ{zloÙ™gdÅGû]_ñÈÐÆÊî3}¼â·ä•½ïÞ—.mÙÿÛ™æOCi[ÿr ëSr8ó+Û¿±NŽÜêohWŽÞöØÜ7’c·­h°lcI9žõÓoªl,'nÿæýq£:ËÉ<9:®=¸ENåëñe¥¼ÇåôýÏdx`©œ)šôÎðê—åíÒSšyÞ•wjlÔ÷¶3òn›ô;_päìàæUÚ­8+ç^hìÞ³e@Û=÷½~Û ”.–ÈdðþwÛë[jËÐ×5³)ƒ _©±GU•QÖªª‹K”1;%cc£Œ?µôåÙ5fÈ³Óæ•›¼½œLꜭO•)¼ë×CË4•'Ÿ‘÷¥q¯5‘™Õb/,sl·ãD±a2÷«.[¶þ2^æû_s룲0³ÿAgÊâÎ+rlŸ±P^&{gv£,½øJÁ\Ïþ,+FTžqeçݲ²ÌwK§.œ#¯å­ùòYÙ(¯ß׸ؙ9e-{ÊØñ²~[ï&]Úž“MOž{¸il²%úÍ•áò³lívQoÛ½‚¼©-_óÉWdûŠoú¬üm‡ìøù±—Ò—·ºVwù‰Ö²gÀÌòU½$ûæL¸ïü ·É½?gZÝå394dôguï{B/Kn[±v79rö—ÞÅEåX†Ú³NîüEŽ?úHÙ•m~”=:öú`ö½rrY ŠœR^ÎÜÛ®ykR¾O׌/Ê»½¿Oi2³¾œ—4s惵åÜì_~Réý?õ6ýño¿>õè¡DÞRíA»ì×Áþìÿ‡’¯ž¾ç™ó£n%Ž_y¡ØŠ ‰Ûƒç¯´ŸU•ãÝGîɲ©¹ÔRÛ¹ŽòYµÎûI¯D»Ó`vdmó÷–úÊI=å&hk*o5ü½ômR]í·5³?Ù½Á©e‰ö/x|оŽê©ö"hïƒ÷i8F’µŽí]³bNZ¦Y´ã•Çn“6öóÑnw”•öªêøòk•*ïø,ᨫ5²Ñ#ÖK7•z>ž¶¤×Ä“>Ùü†q¹ôoÚ!S£g3É€«Óòt­6^ì’å—ÊådˆúÞ‡©|2üío‡ÿ².ŒìKô2ºjš~ÇJ–±ƒ~õ÷H™Å‡yƒ<»`Óz·j+™Tã±:l–)·î^~áL™úkΫ÷—ûDž»òjfG§ËŒ›n¦ÅþYfVøzzå½döºb3ª¦é/s‹^S½È:™·³•Ñ/ó`YÀÖ¾å‡+²°Í‚IoÍ.)‹»=Y´ÛÚ›ä¥Yí?ë˜W“W>x-Oƒ:§ey•Wžÿ-ÛbYqéèUûW••u¾lrû(GV}ÿÌ›~üVVƒµöãßÉšßVt]Ôi·¬Ÿ8ߨ–7‹lêݳm®–®lQž·ýºC«G[ȶ—.N+ÞΑí™c Tv̹³jõ†/É®ê—{Ô˜_vû½’ ŸËÞ¥YŽÔ×*zâž{~}mŸî¿þR´ÈÃrdblCÈÑîÞw'Gd }+8ºÝ°Ïåxº½wÕŸu›œH*¿¾~a‘“7äo}OfCNÝÛÁåt¶–;'~ÿ±œ¹gò锞SåíG꾜s`y‡Ö>ûÚªònËæŽ>ÑXθtï ‹Ê¹ç3û=9_{Õ¡¾C^¿æ­sÁŠ42Qí?5ö´S¢‚›Èû³ÀU²Ú߃öª°º¿rTÐO?‘Ê_Pî_Tíï]<®QÂgà2Eµ3A{—(Ÿþ¾]ª„ï  ÚÝ?´‡ª]~Ty >O¢ýS®ÿA÷ µ>•ÕúTþÑ–ö·¬“jªÝª~`{¶Ãón—šêû ú±uT»´{ Õçh¢Ö«™zÿ–êñ­c»¿'íüwÏYK:¨<Òé®ã‡ÝÚH:?7âÇF o®Yݼ3Sné6Åï( ‘÷½¬Z³¨ô|çí¢»ŸÿDz«×éGV_2)I¨þú [_[so•çdHÉÂջͿU† ¿'Ê.%#v]”²f€ŒzïÃí;¦U’±Æ]¾²üŸ2oxÿ÷/Ê„Ø×–F&..=`Dådò‡u?õæ~'Ófº-§ýDž_ðË‚»¿È(3UÿqÎü“î#ȼöÓÆÒ$É‚§öçX>ïkYXëçVÏ=žV+2Þ.K¿³Hï'LÝ(Ëú¿øcÅ¥OÉ«ù7ßðE¾±²Êï–_y[Vµkþs9²ÉZÕŸ]O/oÒªE²©NÝ©ùö–-~¯8ÿ3²ÍÏ¢ÍÚÈŽ²îŠ –]j{ïÉK”²µ»ir9H'³äª»äYê™1‹åHÆØ†“£j;þ¯¼M.þTºÆO•êyë4jØI©p¦Ê-¬‰ý1ÑŽ©ý=¥ñG.-ù%ÑŸ Ú±bª¿¸zPíçÁíòï¥Éøãꑉý¸†Ê÷µÕíõÔëÕÿ¡DÒío]–†±D[T«çíK#zÍö›ß&úsu•— ý \Ÿ+á$hçRÕx°NÒ¥nߺRWµWÁú4PŸ·‘Zï&j;7wjn9ñ]™Äx®M§nãrN­&íׯ6ˆtJX&í¯{¤Ëã{®¶+äH7¿7òÀmÒÃ_Í´S¤wÎO Oj°]úú[­Çvyæž%‡¿ô’7ú EöD;7Tµ§ÃÕçåRJ–±ÊÙçÞƒmÞë/ÏÖô;>sdâŒ|7fØÖ[&}Ðí¡ä-ȵý§ÝØg–yãû2=§6tg¿ßdƸ Ã7Ôd–ÿµ,}Eæ¨ï{^¬{iÈü!Ý¿yqAkYpf‚öå`—,ñwŸ#ßÈ˱ݥ–,üþË>,(+ünÃoÃ…>Z÷YÛÈkfñãïÏ,«ŸŸR*«^ZÖÙÿMóõåe]ÒÊ)Ÿ\xU6ä{ýTû­ÏÈ&zcïM¼(oøÍü¸Ë²EyßVjÙá⥳țjœ¶C_w•sÄýéyëâÖ»OÝzNö¨¼·¯aM¿§)èdxø¢Ê{lÀíÝÒÉá›cLP¡ÜÑe-åȬÛü--GÕ÷xô“⟾[;IŽùÝ”RËå¸êWû×ñX))'Z¤½7ÃÒArB廓¹ýüŠœTý´“[?šÚwÙ"9¦¥—Seül–±1¾w%ò{0î Ú• = ÜQýšUû‘h×ÔãïWíù½j?}@í§A;¼Nà5𜺠ÆiA;Uú×Ìž[ )­úG‰2u{–º] æmÔ~ŒãR·g•TûÌçTVó%U•ójêýj¨õ ¼ó7A¿6ÈÔ÷ÑXGšª~aóW³¶ËžnŒ´ô{?w¾6ßòïÚ¹‡¸ó¦Ö)Òý¦£·Íh~Ezªþï oÏy1ïÔk^cÃÁz2à?ñòž zta®ä,­eðÇýoF†¾ôR¾áƒŽ"i¡ŒTÛw´š7Wýµ±}8L&lYª^R]&úñߓɟù‰û L«Ôlóœõ·Ëô£±]^PíÉì·+n«ÜÙ–¹[Í÷Ä/ïÉ|F©C‡O–Ïfò{N²¸Ä7§ûD^b›ýޡ׿Wžé¡ÃcóÊÊÎè=òœ¼ÖrøâO<#¯wë•ïüî3²–^Âì%ýeCç·Ð…–Í«nòg`dkš—ï»°S¶Éıd»>µÅêKoÈŽ¹Ýß}åË ²kXl‚DvǾ–§eïs~þVöO®Û¶hÃ7ä`åMÍâ'äPlX—"‡mQ,[¿7ä°¯Í=$G†GÒÍ-ú­ÍR}ÔŒƒÇåèìX"¤]Œ5HrlÜY¾©‡å˜ÚÏŽ×~aýäøÊcÇ¢”j\r¢Ò‚Å[«ï‘{ÝôqFÚ·[ü†åõkí[*w¥”§Dû¦úI©Û·ÔýÌÔí[Ð úoUÔëó“Aû’ØoU¾mÈ»´Ü9I½p¾Û÷¿æ’ƪŸÔ(6}Ñ_äŒMtIÿæióóÁ穦æ÷‚zð~Áã󕛚ßٷ̾kí\0o©¾·újþ¯áw±Ðµ~bêy•_Ûž—}~í"ÒñxlâB:ÞæÀÐB¯J·ûrWZ7·‡ôèY뮕.I¯Sƒ×?Xú˜ôUó£ý?ãÕºµD¨~Ý Ø´ç=2äËâ÷gÿ¡„ WÏUvf—R_l±yf=ú“‘QÆ«vþYõ½Lœà wʤóþÄZkí[ÿ ¬*ÓémѤȌI± ™U5™ù–kí[öØ–ùÃýá¤,¸mã’V·ÊBZ­aƒKÈ"Õ¿\âoû —7ïyyT½e™'­8õù”7¾.#+;HÕ_òÖ’×ìØ ²zV¬”5þôèÌ]².ö²Ýeƒš‡Øä§ëӛ孙Î5«±C¶ü-ÛÔ8ðÍ«¯d»ëβccaVÙkþ3ËnÕ^ï9·@>ØMö5ç½Ú±²ø¤ç±_/¿.‡Ôv9ü\^án9òì¢z‡6t£½-ìžã+9V«ß”Z×Ëñ{_ôG’rü‡½Ü­©œx-öÁådÓ“_ñÈ09åO'ô<.§fßìgN9K÷}åôKwœ:9Ó•3·Ç¦œí ;äÌ϶ì¼"§¼­æ¹Ælضî‰Év¢Œo‚ö-õ|c5x*¤ö»Û¾©ÇSã—`<xNÝ.%ÚµTó3Áxíã¶?iï‚v²¬Zïrªß÷¸?Vô‡G¹I%µÞO*¿A;WåAýÓÇÇdº6o©^71~SNëÆ†YäéŸýؾ6¿¢>_Sõ¼Äñ„þ}Í 3ž•Ö*O´õ§¥'½&fž¶ï¡4ÒQÍ›tV㢮b ­tó÷Âû»HÕßï.Ü(}c­f²ô¿XºæÔFÉÕ> zÐo˜Þ–Á§j¿µ»`Z:ãë­ õnGŽ<—¾óWÞŸ·o´Ê´\2YyÿCû¦ÚÕÙj¾sîæo_ø®ýR™ïg‘6wÊ‹ow_µaðAYüPµµï¯í+/©qãÒ³›&dùè)Y1óRf†¤²²Gì@€¼ÖaÓ ‘äu5Î[«Žol˜ÿfºV²ù­×ülMK ²mîê]ûGŽ–í9Û6ªzwÙá×îŸ)»Ö¿ã XYJvŸ‘žT/ûœcS²Ü=]÷MÂUG5î¬Ú¯àø\bÞ26üj"ýlõzvãµãr‡+=¼¿ðb\96`“!±iº›eØÛ7œzàd}©Ú­Ñê¸Ú85Žœà®3I&ª÷››¦È-SÕöœ^õˆ/óÚñ8ånŽzß¹K~þ¨íèGe¾ÿ5ŒxOøÃºV'e¡š'_ôe%„$K~šv¡àêòJ‘ôdª ² œ²_”/¨[ªÌ÷²2klÂYV­Z8ú–7Ë꿤g5Êñ:uÜmCU¦Šlêï”–É–Œ± $[Çú RNySõ›·Î@Fª,; “d×¢aÛò˜)»ÇùÒ=²wú›£õ—Êþ—æ/Ír¤œsÅi³nŒÚ˜2vÜîzrx|§œ/Wè"GüÃNÉÑô_¿YñÖÑrÔo [Œ‘cM·ýXôµyx‹·³ÇG­°sÑ×rÂóÔ’ »·ÏH9áÏòß´DN’ ;ŸÉ 'Õq˜Sf“]O®~\NUk¹øÔ“2¨¬#‘hg_Áãhd”j/Ç M¸Ëx¿wôÐb™ òþÄR±Ù2éâ æD¦ì÷^ÿ¢EyNÍçņcw|)3ý£€9u™£ŽÏý>Ò«ï›sdëH¾SªþÁ’[»ù¯ /_.Ö©á”¶ŸvI#¯–ù­›¯§¬RÇKV+wk¹»æÕ­²þ½ä«·T.$›Ôq²-U'ù3R²ÍjÐáÈí—åÍ+Ù›vÈÔXv¨ãß»~}mßVNÙýí«_æ)ÜJöƦ{–ýjü}g}óþx94bAÿƒŸ¬•xZ{JŽØuÁ½ GÖDÞ;a­ãÈ|TŽ^òòrLµÃÇÓlÜÜèàU9ë¾–•㕚ÎPANT\Zkã3=åÄ’¿Vøzº wé8ÿ¤›WÇÙ‚ý<õüã¿kß_Aô3ÿ´}Só}A;ó‡öM}ÁücpH]Õÿ æáƒ~]p~Lp|#1OÙûÂcË2öIøÆuÁ›Vv¤±šßh:þô¯E~x_š«v§UåBÙê÷’´- HGíËyÎK ¤sSbz¸tSÇ {ª¼Ù[Í£ôSãÀj;pMæ§.ÞÒL>Rþý'çÈ–ú¦£2lƒ?!PRFFüÄ~AFÏy1ï”)Weœš/œ æO&ªõ›L¯ï•a†L=šrÖA™eºšGš±åV?ÃȬNjìÞõ°Ìi^¢ëÏÕçÈÜ—+ø3â-˼u³,´yôÖVÛdaÞ{×w¹ï;YôÓ­þÌ®¼äg wáµömFŸKhËŠ¹çü#{²R¿Wù£–JëeuŸ]?ôþ>EÖ4~}Y¿šídèhéeCǼÑÝvVÙ4ý‹¾t1eKöX”­Œ²Öím)oƦMn–í´ÂCßî!;ýÞ´ÖIvùÃ#k¤ìöÓÄ¢d¯ßÛ­·Qöû£Î†šò{™V’¶¿ø B¹crXígGüÙžºYäè˜þùòx=å˜úüÇ~®>{òÐúr|N•Òotî$'bÝê$9±sãÇÕN''ËßùlòÀ2rRµ‡§ÜçñÜÉ©ÉÏ׬õsk9åý»££œ.Óøüì[Ê@¿·tKúD;K¸ Ú·`œ¦æ=R·oAÿ1h×r«ý7hïîQ^þо¥:´S‰öM½OêãqA>´_‰ãíÊCàü¯¼®ú<‰yR•o‚ñ^‡‚q^pœ>×%ÎKS^ó–Áñ õ¼Äñ5ŸÑÄ?ÌüÓ`iêŸn2t„4Wý×–‹ÛuºÜ¸Ib\—8E͇tRóF]Ôq«n±Ý¯¼ôPý±^ÊuŸØnn]óªÚ×jžap¯XÇO†ªþópÕI–xïð>£ÆƒãÔüÍ•O&–xË?“ëZûvð¥ý³¿­}[4ƒ‘Ó@™©Úå9±Õ©,sýnÚ¨²@XØa’Ÿ1®µoþaüÜóe¹ß‹îÒN^UÇQVåˆ ”dõ€ú òtUÖÆÒíM²>Ö»A6­_™%Óœ>²åé&#šM^.ÛÔy[Û3Ǿ쌥SÞò»u¯ÊÙç]Ù×ååÝ™OÊCöïó–Êê'òzrè·lôH&Êácmò¾1¼µ™µí@Ùòäh½Ÿ^9ýq²‹uó»È±ÕÞwnÈ/ÇŸlÔ"wž·ä¸š‡=ÑèÊ×· k/'ÞýJ§¤Ur2vØ¡¾œ|uùCl—gbØD2hÇg6øIí,§z|Pí\Ð ú{A¿­‚šgH_VûUuÜ©Zlú»P¢J}ÞHêyÈàyÁüF¢ ^/u{¦>g0Ï̃$Ú×`¾Rå… } ú‰ÁühÃeGôÛ,q|®±z¿¦ª½l®^·¥j'Û¨ÏÝΟžë¶_:*”‡Äy—«ýçJÏ™FzfžôQýÌþê{  RóCÔ÷4ÜgXî ÙºuäŽé_ÈèsãËŸòŒ›4kéñ [eBl¸qwâ8Ý䞥òÿòcZ™ª<§æ1fdòW åµãÛêxô¼ûŸ¾Poᙯú Á¼È¢·*<½¯É%Y²'6a /Ç¿••e­––zs÷W×Ú¹r“·?öæ òZÁØ ’òºš^«Æcë—LòΟ=*Õùgoø›wü ÙjôËÌX¶ )fu¶Èö›b+ ;HŽéöÞ%»bÓ#d·:ßf¯ªïWç™l;ÑJùÝÆ5oÈaÿhø-ãåÈ0£eöý䨚ï<Ö6WKçØ9®Ž§žPçלŒMf’Sþi¢õGÊÕ®¾]?GÙ]M—É;j\|öÞ³HUrNõïÏÓ›™¿ô–Ä|tÐnóùAûŒË7©Û¯ÀÕí*gUƒ2¸?hçþ0ŽS·óŸÁy˜Ö>¥>_,x\âüMå"þ¡T÷'Þ'Õyg‰ùRõ9ã8ÕoýÃù'*?ÞÇçT?ôç]ó—Êgp¿‰Ê+ÍÔücË»§ûg`\;E½oÂ¥‡ç[&\ªùÄybË©±§ rzÀXäÈ`Õ>9€È0u>ÈãƒËiŸù^F©y1±]eü{w3ò¯,Ϫþì¤éß?ü¨Lao¬º©„LSûõtu|kÆj_hK™•-–˜dÎÐW‡–[²Iæ1î™%E¨þö«þÄMYûÚ»Ê+jü´|‡>°CšVòªzØ¢WeÕYÙpr¥&¯—ûxQ¶gÈÚs½+õ^SS6Ìÿ½¦ÍÃkißâßÏÊò± y-ö±3ÊëêøßZår½:or£? Ôc¨¼QÄ(Þ/[}†-ß‘mCýuˆl¿ÕßËŽý~+8§¹ìRã¬ÝKªçÜòh>Ù»¹»AöûgeÖ® }µY?“C§7WŸŽÞSŽÚÐþDŽrtë¤U Gß*ÇbÃÓ‡åxlxÙTNœ=2â@LJå”öü…†ß,§cÝîtr¦×†¥[žóäí}c/¾R0·¼ëŸ¦_•³~«µQÎgöï 9ÿAÎZ-_˜'ÝIN mý¼ ß—zþ#p¸Ê¥öÛ¿Ú¾íâ¿kßþÐþ¤jç‚2u{–ú<˜à8ßJuê÷ >ÐÎ'æ+Õù)Áß#Ç)ƒóQ‚ü¸Oü]AàµÕà*O­Í—pú´:Ͼ¡šgk¤òCb¾R§ÇÏÕù#mÕùÓ‰qœÊ#]T¾è¦ž×#vب…ôVï×Oõ{¨ù»jœ×?¡?ƒ ñJåß,ÃüÙôû釪÷©ú=cüfù“ý2^õ£O ÆSüY—–·Ë4uáô®þ Xód†ÖcžÇe¦¯ D7™£òÂ<¿ÛôóG²`@l‘…_úÏʒѱ?ì‘WºÆ&(dùÊ8yual $«NÇ]kß>hXrdÑŠ²A‹6ûÝèìóe«:/çMu\f£ÀÝÛß–]MÜg«õúYvû£8½–ì=²kí„ã ¯ûûßXe©Î› –#ê¸õQÿ,‡F-äØÓ7¾8¾S.9>åØÇ?§Ù$'T;x*eÍ€Ûí”Ó«Ë_)W㌼’gÕ#ËÇÉ;êü²³ê|îóñãiÒèÑ4iÒ^M“&M:ÿãÔÉ齚5ꬖµF-‚¿Óº4ë<¢s£&ÁÍ‘Nñ—ɼLDÝá6mÔµÑýÍ;7j×,þˆÜþ#n ¢øßÕ«WrPüÿþkÏìÒª}‹¶ÍÔj¤õŸ‘2;%ÿ/evå4êßo¿v…àÕs§Ic­$V¯«‰×‰5ÄZb±žØ@l$6›‰7ˆ-ÄVbñ&±ØAì$vo»‰=Ä^b±Ÿ8@$‡‰#ÄQâX|Ý*²nÚMê+f£“Õ:†FÿØFaü×bga„ñߊ _ûç÷¤ýµæwÖU¿Ó$,ÂzÙ„G$©~³ßϾQõáÓ¿Ïš‘ÈDÜLd&²···Y‰lDvâvÂïÕç$rÅûâiòwy‰;‰|Ä]ÄÝÄ=ĽÄ}ÄýÄD~¢Q(Db?q€8H"Gˆ£Ä1â8q‚8Iœ"Ngˆ·‰wˆw‰³Ä9âÑ€hH4"Mˆ¦;s´9Ñ‚€E´ÑšhC´%Úí‰DG‚}> ‘h¢+ÑèNô @íEô&ú}‰~Dâ™4±ß£‰$ƒ‰!ÄPb1œAŒ$F£‰1ÄXb1ž˜@ÒÈGùH#iä#|¤‘4ò‘F>ÒÈGùH#iä#|¤‘4ò‘F>ÒÈGùH#iä#|¤‘4ò‘F>ÒÈGùH#iä#|¤‘4ò‘F>ÒÈGùH#iä#|¤‘4ò‘F>ÒÈGùH#iä#|¤‘4ò‘F>ÒÈGùH#iä#|¤‘4ò‘F>ÒÈGùH#iä#|¤‘4ò‘F>ҮƯŒªGâ9\'éÜ “tò‘N>ÒÉG:ùH'éä#|¤“tò‘N>ÒÉG:ùH'éä#|¤“tò‘N>ÒÉG:ùH'éä#|¤“tò‘N>ÒÉG:ùH'éä#|¤“tò‘N>ÒÉG:ùH'éä#|¤“tò‘N>ÒÉG:ùH'éä#|¤“tò‘N>ÒÉG:ùH'éä#|¤“tò‘N>ÒÉG:ùH'éä#|¤“tò‘N>ÒÉG:ùH'éä#|d°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>ëc°>†¿>äGƒüh ò£A~4ÈùÑ ?äGƒüh ò£A~4ÈùÑ ?äGƒüh ò£A~4ÈùÑ ?äGƒüh ò£A~4ÈùÑ ?äGƒüh ò£A>2ÈGFÿ(A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGùÈ ä#ƒ|d ò‘A>2ÈGÆÕøšMò‘I>2ÉG¦þW~òí_þ´›Õ>þÛnñŽip=èß=Äð_ÄïÉÍ"R†²óð/¥\šxYD•ÅT™G•¢ÊBª¼_•ÅU™/ÕíùUù* «òá4¿¿Šª¬¢Ê§TYG•µÄËzª^?%^6Ì/k¨z õ¸Zêq5U½Îu»*«©ûk¯«Êúi~_·7R¯ßô|¼lœòû²™z\ õ¼Öêö6jýZªûÛ·«õ袾÷nêþÞ U]=®wü Lé§×_ÕŸQï3H½ÎÐ,ñrøˆx9J½ÎXõ:£?Ž—ãU}bËx95*‰—ÓŒ—Ïï‹—³ÛÆË9¯ÄËùêùóž— ÇÅË%+ãåKÛãå²ÇãåòÅñrÕ}ª|4^®þ>^®‰oè”õê}7—Š—[â;TÊÖh¼|ójì JÙy&^ßs[¼¾çb¼Ü»$^J‰­`ÊÁ=ñÇù2~û±&±/*åø[ñúéOâ÷Ÿ©¯¿ßqR.n‰?ÿl)uû¢øóôŒ?>Øï‹ª2ØŸƒý>‹*󤺿@ª2—*óªòî?©WeéTe|5q4à÷+£êeS=>ðûè€ßß^I•©Û‹¥ªWMùýë—W·WSe…T«§ÊÀ[Ý ®xm¤^¯‰z\uó†ñ²EŽxÙJ=>pÔT•íæÄËNêñÝT½—*{žW¥º@üƒ¥ T^«ýnˆº˜zÝkãåHådÌ¡x9^•3ÆËI}ãåä¬ñrZ×x9]9¡ê³ã¿”2GíïóªÆËÕç_T=^.Vë±Xy]öm¼\^3^®/_'¨”5%ãåºH¼ÜÿáΔ-ƒb$e[<Ѧìȯï</÷¤‰—û¯ÄËC¶ÄÊ#¯ÆD9>‘5~û1åàÔË)±òíBñç¾5þ¸éâeõy…R•ÁþŸ÷Oʪ̗êy…S•Á~쟩۫¤ÄË ýxj‹*Õãuõ¸Úª´5Õójªûƒö'x~°õàõ믔êy Ôã‚ö*ØßªÛƒv%h?Z6Œ—ÍÏÇËÖêñ-ÔýæÄËNjÿê¢ÊîêñÝ:ÆËžêqƒ>êö~êõƒí5Hí/ƒU}°jgF=§J;^ŽUÏß0)Ϫýx¢Ú¯'—ˆ—SU{1M½Îó+âåìãå,åinÓx9Oµ Õë.Þ/—ü/—©÷_¡öã•â媑ñòuõþkã‰,eS¦x¹YùÞ6D•½ãå›mâåÎbånõù÷m‰—vÇËÃã÷/7L‰•'¦Çï?ùn¼<½/~ÿyï|¼¬û¢RÞm{Á”w^ßßG½OÐ ý¤Ôý¦ ÿ߫ʬªÌ“êþ¬©žx)¨ÊdU–ReÉ¿¿½¤*ƒþØC©ž—¢Ê —¢ž_vÀï_7ðW2U=è×íQyUÚ« Ý©¼%^VSeà°VŠ*ÕãŸVõ§U½áyUªÛ©Û›5Œ—-Ôí­s¨úœxÙ^½O[õ¸NjÿזּSWõþŸêöî_ÇËêu¨÷¬Ú•AÊÅpõº#Ôý£T{2F­ßø·âå³jÿž¬\L/Ÿ[/g¨~ج×T©Ú«¹ÊÉÿ9?«Ûø0÷_UÏaùµœÿºÛ \·\ðºåB×-?xÝráë–‹¨åû‚Û~V¥ÿã9‰ïi®[ÇÄ})Ý]ß¿{Î_\·¢ÿ£u+vÝûÿËë’&Íÿô}RÝ~}¨×}èº÷xøêïï ö¥×=æ‘?Ù¯þú>“bÿÙgÿëÛö_¼†²‘ü‡™ƒÅ‹ä þûã;þ«O(W㯔rõïù)ÿÕV,<ÿúOž>GŽF-šåèܨ}‹f]r4ïÜ¡Ýß8‘&þÕn™ú£];ü»WHIó|Ó?ÚØÅýW÷ähרm³‡þíëÛÿÇ×·s4oö×^'Ýÿñu"ÿjoÊÑ´Q×f9:4ÏѬ}×νþä-ñÿú-ñŸ|£±5½nÿÿÃ̙ә•îÚ¨qÛë&ÎþåšÝ¶Y·6ÍÚµ¢»®ù¿‚¦©5Èœ¸ßª :\ÁÀ§„*ƒwÐ1 :NÁÄWÓñ2cšß—9R•A/˜P Þ'è¸%:lêõ‚o,¶þÁ6¸n[ü®þŸÞþgû³ò?}üµçi~ÇÀÿºÈÑÿ,ü}àŽ`§ño‹%Í'µjß•hÖTÝrC¥íÛ]wã¿Ü×ÌæštíàŸNð[ªÓ 4õ½k«vÁÉf—®ºvë¢j‘ž×ZN}îØ‚…‚ÁB¡`áÁ`¡p°P$X(, Š«…hü‰¥‰¥‚‰¥B‰¥K…KEKEKÅK‰÷(˜x‚‰÷(˜x‚…þ“yî?P5Ú÷èÚ¤ƒrÛ:iÒܸñºíþ âÿ=¿‚Øžð[¶Âéû||þp¬ÑèAø£•^„?ÚéCø³pþȦ?áO ƒˆÁ„? 0”F 'üYraáϨù£.ãÏf'üÙ‹g‰‰Ä$Ÿe˜BL%¦þìˆ?àÏ‚Ï üQÎLb1›˜CÌ%æó 4çOõ-$þ¬øâ%âeŸ]_J,#–þ¬‰?çÏŽ¬"üÑßjâub á&×ë‰ „¿¿o"6o[ˆ­Ä6âMŸÍÛAì$vþèÓŸéðgÉ÷þ(s?q€8Hø³œ‡‰#ÄQÂ!'N'‰SÄiŸ›x‡ðgDÎçˆóÄâ"ñá>? >$>"üÙMþSâ3Âm~A|Iø#P?ë_"¾!.þ,èw„ÔàÂ_!~Jï&úG/~MOWUúçüGðÁÿüGðÁĉw"øà?‚ÿˆ0 ÿüGðÁÿüGðÁÿüGðÁÿüGðÁÿ‘þ#øà?‚ÿþ#øà?‚ÿþ#øà?‚ÿþ#øà?’?žêý,ï'x?·ûiÝÏè~2÷ó¸ŸÂ#øà?‚ÿþ#É~7+ÞQŠà?‚ÿþ#øà?‚ÿþ#øà?‚ÿþ#øà?‚ÿþ#øà?‚ÿþ#øà?‚ÿþ#øà?‚ÿþ#øà?‚ÿþ# üGðÁÿüûWkà?‚ÿþ#øà?‚ÿw"øà?‚ÿôºþ#øà?‚ÿþ#ø÷ÛÇþ#øà?‚ÿþ#øà?2€ÀÿüGðÁÿüGðÁÿüGðÁÿüGðÁÿüGüSûðÁÿüGðÁÿüGðÁÿüGðÁÿüGðÁÿüGðÁÿüGðÁÿüGðÁÿüGðÁÿü‡§¦ùûœjžfø>Í0Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(ö£Øb?Šý(öý d¿»¯a_þFEþ†} ûö5ìkØ×°¯a_KŠ-5ìkØ×°¯a_ËShØ×°¯a_þ†} ûö5ìk´ýþ5ükø×ð¯á_ÿ† ÿþ5ükø×ð¯á_ÿ† ÿþ5ükø×ð¯á_ÿ† ÿþ5ükø×ð¯á_ÿ† ÿþ5ükø×ð¯á_ÿ† ÿþ5ükø×ð¯á_ÿ† ÿþ5ükø×ð¯á_ÿ† ÿþ5ükø×ð¯á_ÿ† ÿþ5ükø×ð¯ùó&ø×ð¯á_ÿ† ÿþ5ükø×ð¯á_ÿ†ÍÇá?<­7MxZoxZïí´^ÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿îOá_Ç¿ŽÝÿëüëø×ñ¯ã_Ç¿Žÿ:þuÿOkð¯wñgÉüëø×ñ¯ûscø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_Ç¿Žÿ:þuüëø×ñ¯ã_ǾŽ}û:öuìëØ×±¯c_ǾîO ^OñØ7°o`ßÀ¾Áö ìØ7°o`ßÀ¾}ûö ìØ7°o`ßÀ¾}ûö ìØ7°o`ßÀ¾}ûö ìØ7°o`ßÀ¾}ûö ìØO¡OžBžBÿ_;…ÞÄ¿É&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿæíþ[ÿ&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿ&þMü›ø7ñoâßÄ¿‰ÿ&öMì›Íüã`öMì›Ø7±obßľ‰}û&öMì›Ø7;ûGÃì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±obßľ‰}û&öMì›Ø7±o^Ö³°oaß¾…} ûö-î´°oaß¾…} ûö-ì[Ø·°oaß¾…} ûö-ì[Ø·°oaß¾…} ûö-ì[Ø·°oaß¾…} ûö-ì[Ø·poáÞ½…y óæ-Ì[˜·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-Úz ïÞ-¼[x·ðnáÝ»…w ïÞ-¼[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u ëÖ-¬[X·°naݺ…u çÎ-œ[8·pnáܹ…s çÎ-œ[8·pnáܹ…s çέ«ñC÷6ÎmœÛ8·qnãÜÆ¹s›Ø8·qnãÜÆ¹sç6ÎmœÛ8·qnãÜÆ¹sç6ÎmœÛ8·qnãÜÆ¹sçöíþiUÎmœÛ8·qnãÜÆ¹s›6ÞÆºuë6m¼wï6Þm¼Ûx·iãmÚx÷6îmÜÛ¸·qoãÞÆ½{÷6îmÜÛ¸·qoãÞÆ½{÷6îmÜÛ¸·qoãÞÆ½{÷6îmÜÛ¸·qoãÞÆ½{÷6îmÜÛ¸·qoãÞÆ½{÷6îmÜÛ¸·qoãÞÆ½{÷6îmÜÛ¸·qoãÞÆ½ÝÆ?•ŠÀ½M;oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömìÛØ·±oc߯¾}û6ömÚyÿ6þmüÛø·ñoã߯¿ÿ6þmüÛø·ñoã߯¿ÿ6þí«ê<>ü;øwðïàßÁ¿ƒÿþäàßÁ¿ƒÿþü;øwðïàßÁ¿ƒÿþü;øwðïàßÁ¿ƒÿþü;øwðïàßÁ¿ƒÿþü;øwðïàßÁ¿ƒÿþü;øwðïàßÁ¿ƒÿþü;øwðïàßÁ¿ƒÿþü;øwðïàßÁ¿ƒÿþü;øwðïàßÁ¿ƒÿþü;øw°ï`ßÁ¾ƒ}ûöì;Øw°ï`ßÁ¾ƒ}ûöì;Øw°ï`ßÁ¾ƒ}ûöì;Øw°ï`ßÁ¾ƒ}ûöì;Øw°ï`ßÁ¾ƒ}ûîÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒ{÷îÜ;¸wpïàÞÁ½ƒyóæÌ;˜w0ï`ÞÁ¼ƒyóæÌ;˜w0ï`ÞÁ¼ƒyóæÌ;˜w0ï`ÞÁ¼ƒyóÞ¼;xwðîàݹ?EÏÅ»‹wï.Þ]¼»xwñîâÝÅ»Ë]¼»xwñîâÝÅ»‹wï.Þ]¼»xwñîâÝÅ»‹wï.Þ]¬»Xw±îbÝź‹uë.Ö]¬»Xw±îbÝź‹uë.Ö]¬»Xw±îbÝÍïŸsO`Ýź‹uë.Ö]¬»Xw±îbÝź‹uë.Ö]¬»Xw±îbÝź‹uë.Ö]¬»Xw±îbÝź[Ñ?]•Àº‹uë.m½‹wï.Þ]¼»xwñîâÝÅ»‹wï.Þ]¼»xwñîâÝÅ»‹w·‰F&wï.Þ]¼»xwñîâÝÅ»‹wï.Þ]¼»xwñîâÝÅ»‹wï.m½‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞż‹yó.æ]Ì»˜w1ïbÞÅ»‹wï.Þ]¼»xwñîâÝÅ»‹wï.Þ]¼»xwñîâÝÅ»‹wï.Þ]¼»xwiç]Ì»˜w1ïbÞż‹yó.Þ]¼»xwñîâÝÅ»‹wï.Þ]¼»xwñîâÝÅ»‹wï.Þ]¼»´ñ.æ]Ì»˜w1ïbÞ½?%×ü‡yóæ=Ì{˜÷0ïaÞü‡y{˜÷0ïaÞü‡yóÞ=¼{X÷°îaÝú‡u¶Ýû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïÞ=¼{x÷ðîáÝû‡wïm¼‡yóæ=Ì{˜÷0ïaÞü‡yóæ=Ì{˜÷0ïaÞü‡yóæ=Ì{˜÷0ïaÞüÿGÌæ=Ì{˜÷0ïaÞ£÷pïáÞý‡{÷î=Ü{¸÷pïáÞý‡{÷î=Ü{¸÷pïáÞý‡{÷î=Ü{¸÷®ÆOÃOÂ}î“pŸ„û$Ü'á> ÷I¸OÂ}î“pŸÄ’pŸ„û$Ü'á> ÷I´õIØOÂ~m}þ“ðŸ„ÿ$ü'á? ÿIøOÂþ“ðŸ„ÿ$ü'á? ÿIøOÂþ“ðŸ„ÿ$ü'á? ÿIøOÂþ“ðŸ„ÿ$ü'á? ÿIøOÂþ“ðŸ„ÿ$ü'á? ÿIøOÂþ“ðŸ„ÿ$ü'á? ÿIøOúØ{pë’ªL¸NN»ö¾ñë _çN>§›Î‰†nšnhº‰ M#Ý’Än’ˆTT@ATDELŒsBù˜FDó8úëÌ0#¦ÃŒú¿ï­Ug•å>÷žx¿ÖÿÞçÙÏ9gŸªZ«ÖZï»VÕ®ó}Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'Àü'À~ì'À~ì'À~ì'À~ì'À~ì'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À}Ü'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|Ì'À|¼'À{¼'À{¬'Àz¬'Àz¬'Àyœ'Àyœ'ÿì~jcs œ[àÜç8·À¹Î-pns œ[àÜç,pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹½ƒ?<Ü[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·À¹Î-pns œ[àÜç8·ÈóX·ÀºÖ-°nu ¬[`ÝëX·ÀºEž·À»Þ-ðnw ¼[àÝïx·À»Þ-ðnw ¼[àÝïx·À»Þ-ðnw ¼[àÝïx·À»Þ-ðnw ¼[àÝïx·À»Þ-ðnw ¼[àÝïx·À»Þ-ðnw ¼[àÝïx·Èó˜·À¼æ-0oy Ì[`Þó˜·À¼æ-0oy Ì[`Þó˜·À¼æ-0oy Ì[`Þó˜·À¼æ-0oy Ì[`Þó˜·À¼æ-0oy Ì[`Þó˜·À¼æ-0oy Ì[`Þó˜·À¼æ-0oy Ì[`Þó˜·À¼æ-0ow ¼[äx Ì[`Þó˜·Èñ¸·À½î-po{‹o} ì[`ßûöŸÝOìR`?åO"ýØOýØOýØOýØOýØOýS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?öS`?îSà>îSà>îSà>îSà>îSà>îSà>îSà>æS`>æS`>æS`>æS`>ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÞSà=ÖS`=ÖS`=ÖS`=ÖS`=ÖS`=ÖS`=ÖS`=ÎS`<¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾Sà;¾SäôOñOñOñOñOñOñOñOñOqþÌ™?¡Í€ñ Ï€ñ Ï€ñ Ï€ñ Ï€ñ Ï€ñ Ïø»]`3`3.3äá ØÌ€Í ¸äoÂ3à2.3à2.3à2.3à1CîÍw3`2CÞÍ€Ë ¸Ì€Ë ¸Ì€Ë ¸Ì€Ë ¸Ì€Ë ¸Ì€Ë ¸Ì€Ë ¸Ì€Ë ¸Ì€Ë ¸Ì€Ë ¸Ì€Ë ˜Ì€É ˜Ì€É ˜Ì€É ˜Ì€É ˜Ì€É ˜Ì€É ˜Ì€É ˜Ì€É xÌ€Ç xÌ€Ç x̀nj¿‡µnŽ{?~+Èk1ø^ÝËû>þnZ›ýúNkS4óë;Ï5oÿxŽyúÎ;ö"}ñÁ2¾ }1« —Ë:ý8¯­ñåaÏwݲÁïaÛbZŒîg³Yâþ ¹Íc›YdÎ2ö¢1ºJŸ¯ƒg±÷*ç2+¯­‚+ç™×2œ¶Ì˜«àóe|·N™{‹Œ9Ï,ªËA\´Š9.ªï:ætX±qrõéºì·lͺL¬4þªbiVŒ¶_+×,œ5ïÚâß«­ÕýßÚÜV]§LÃß¼uÕ¿­£ÎXVÎca}¸Šþ‡U‡N³ñ:ë„YÇ^åžÅcñZÄóÎÖöóÖUëÞ;Z÷:™šë0cn]멙NJy÷0Ñw±[e´_ûQÇ.3×/µÚ¢¾]„Çf‰ÓðÍ<\¸Ê™µ®ËËå‹®=–ሃøü±ž£OT¦ÌyâbœuuÄcéZUM³ŒŒɉ³´9‘¾_çžÖ:t[fÝs¢u?‘vy,Ød•s^×>ñ¼}WUËœ_¦ïó~÷¾Ÿ‹òÒ~ã.â«8÷¯{/fVV[‡W«à®U¯3V1ßu¬×õëaäôUÙv>ZÆ«ê7 ¯Í»6]¥½Ëuß<²×µ¾Xf?e•{ËÔ³ûÙf.9±r¢ëøuæÔÃà¼i±tXyrU²cÑšì0¹ø »-ÃAËÈ?2ª±ggÕ±½jû¯[ßEl¾ŽXe ÇŪ×wËê¢×Zëº+óZçžÇ,ïסÓ,yzUs=¬½‰u­MW©Ç*ׄ‡Í«¨åçÕw{>Öö¢Va‡yæ1ïüÙ7˜WßuàskîeÆÏ›ëºcpõáx,à{ÝcÏ“‹cž‹Ú}Ѻp•>ž—•ZtÙ5Ù¬¶ŸÇGËú~^®:,_̺–Y…n«òÛ:t[ÕÛgë°ç:ÖËÓð´,Öã6ëÞØ§†9‘ëÿUùwUùxZ~[Öw«ò÷*÷æ±Ý¢õê"ùh]5źëáYcp‘‘÷~^ŸÍ+«ª#—±ù,5è:u™÷ËðÐc!gæu¢æ»ìúvÕ²gÁé*宲F=QëïEÇXEî^E®œ·ß<2—]O/ºöœ§Ý¢uͺâd_­jMz˜yl]uýªêïuúsì¯z}±LÛýÖ&ËÎy™ÜóÆ:óìº0³Êܸ¯c΋È[f]·Žúf-»72«¾³ä¸ƒdγÿ7Þ2ç¸e|v¢kÉYä׋æÎUrÕ":¬"w-³æ^×zü°bcÝõÙ¼q·JÛ̵=,߯büÃŒŸE8óDÚòDùd™¹Í¿'2>åíuÏcÑþXˆÓÃăÿÝ{(·l”»Ëæ_Æb|•ƒïJ9ß—¢y•¢>ñø¥H–ÿ\2ÿÒ.yã¢ïKŒð½oSÚ•‚{å¨ß4ùáXÅœ6¡Ã9…rój´R0~¨CÌ %ó¯máå†òóÚ„÷C»øÏ±ŸJ9òŠQÛ8߇ú—Ìt]b¿…¾‰å„²bÝbÜ„²óôŽã$nÇÖ4{äõ=H—<ì„zæÙ(Ô#”YžÒ.ÆdÞ˜±îq씢¾¥¹Óâ8œK<§XŸ<Û•£{ñ<óðÇGyþ‹qÇOü>Ž—x~áX¡?ã¹Çx™ƒ±_§Éœ·ys*›iƒŸy<Ú,œÇ´øŽõ ûæÅe^Låͱ#÷ ±Š&_Ïi˜Š}Çtì§<ÿN‹¯0vc{îÇÓb!ΓûñØ´yN³ó~œž‡ß8Äþ¹#O¯i±Ë‹y)¶qž½òü?­Ž˜ÆUyãLÃoÜ.϶q›iy=nÇÈ´¶qÝÏoZëÖgñ§Ù)îŸWäé“g“˜Ãb>™ÖÎÏ)o^ñÜòì•Ç%ÅO(3/OŘ–“c{äñù´ø±8Íq¬ìÇûùg¾òb>Æf‡±¼˜Cýã>;ŒÛ<1‡Lkê烸‰¿;ˆ?¦a5kÓðã7¯.ÞoŒpóæ‹0¯Å¶ÌË‹Óê©8çñCÜ?Žƒì<ÍñÍã X§G!§ÄzåqÇ´õlwÆ~˜Æ£yøŠmã0~çÜ8.C[åå¯8¯ÄºNk“‡Órqh‡<c2/âØ/FãÇsœ¯Óü;MN—æåç<æåÿX·<[äa2Ž«rô]ì߸m9j›Çeyµ@Ü'ï}7ïLJ1–÷ãÍ<ÛÆy-¶a^>ŠýÚ?æž8®bÈÃcÇN³CŒÿØ_y1óºo7mͶËûœ‡ÝØnq›<œÄó õŠ¿‹y"®¯c›‡¯yvãvZæqJÜ.GãyÅñÛ&æš8NólœÓð’—òiŒƒX¿rN»Xרw1N›Cì»ýâr?ŒMÃUçO˧!æÙ#+òüš‡Ûiø‹ÇÌ›w^‰çËÙ/Nâ×øÞ4,îç‹ýj²¯â\û)O¿p]3mþÓø2Ž—<ŒÅ8ù)ÎÓÓÖ!¥œ>ûá-o¿Á·ÉÃjŒí¼ZdÚ¼J‘¼8nK9Wl§ø}öÃ8ËÃOì»iË›÷4¼åavwLãâý87æÒ˜ÛâøŠ¹2/MËÝy|ë–·6Íãæp^y6šV…sˆ1Î3«y5U^¾ËÃ|Œá06ó0PlÅuP§ÇÍóO¼÷Ç#Ól4 «y±>óäÄñrV¨‹yµTĺÆsŒsU)3ïû<¾Ê7ÆzÞË õž6<Ŷ˜&?Σñ<§Åh\äqL¬ã4{M³[WäåÒ<¿çù?Žñý°¶_ˆ12-öâøÝ¯æ‹ù4¾öãÆØ/yy&–5 {å¨oÌ-yù"Ïçq»¼ü”W;ı÷‹96¶QÌ1WÄö‰sLü]Ü.ä´xny14-¿Åýòb#®{C~sUž¦åÀ<]ú5nç©X—xÜ<ĶÇÏ[+çåÛi÷÷Ãv,ï lǶ óW^¬åù7oü¼9æÅB õˋ͂ù×6ˆuÌ㈘SòÆíã5/¯Ä6 y(S÷ãŽøµ8eÌ8oÅöLju‹c2/6ã9Nãü¼˜ 1Æqø9On¸6Œç_qlåqiÌIqÜ•Ìþúì—O㘌k°ivÊ«Góì“WÛÅcıµ¾gYëľØÏæñ¸Óø.Ž¥ØNysŽí’çqÛcyëÚBÎøyü¶‰ù!žCÌ‘y˜c%¶}Ì÷ñ<âXÌÃw{y}òø,ökl«<Êãÿ»q,仟-cŒå}ÎÃaž=ò8$+²IÜnš>Óp™ç¯Ó1Ï–Í¿žë~ù o}·Égš½c¿M[OçÅF^}ó@þòÖž±Ýóæ’gû˜«ö/±ã‰91ôÛAëòi{DÓtË‹‘˜Kã\”g£¼z3žÇ´ø?çù73÷±¼ØçùjZ^Ž9h?|æÅö~~ˆyx?›ÅŒù7ÆGhƒXŸÐ6y\8Í&yyknâ¾ÓrA,7oNyçBtÏÿî½tt]G×Ñut]G×Ñut]G×Ñut]G×Ñut]G×Ñut]G×Ñut]G×Ñõïè*]G×Ñut]G×Ñut]G×Ñut]G×Ñut]G×Ñut]G×Ñut]G×Ñut]G×Ñut]ÿf.ÿ»÷i…}¾;¨]|¯0G»ýdÄÿöÀ<:-Úî æ‘3oŸUαs/”Ûx™¿¼1V1î,r÷“5¯üxœƒâušÌØ{žÜðuÚ÷ÓÞ¤ï~sš׫ü›s³ô›e¬YÇËk? ާÅî¢1;‹ÿf?»®ç‡eþfµ×ªl0ÍöóàtVùóä›Y8cQ¿ÎƒÉYú®b܃ÆÎk· ŽWý·LÚ¯^ÈksЋȥͪj—ƒî-#c^˜¥>^DÖA¸X&îãÏ«¨§÷ë3kî›5Ï.jÃE𰟽O4ðo?›-RCæõåþaü­ZöAyü±ö7oﯛGã1–Å̺rö¬<ºèwÉ^fÌeýµHÌÏâ‡y|½ÎµÈºsټ㭒KÊ‘‹Ô€óÈ^×߬µÁ*Æ›Çvõw}6Ïߢq<+‡¬“÷Wù·HݺˆŒyí½L]?MÞ*ëÚYsý2ñ»\&¯,+{Þ¿Eòux•±«j3­ÏAëU­_–É=«æôýÖD³ØaÖzj–šq^=fé?œðÞ"øXe-¿7®‹è:O=¹Îúä ³ú,l¿Ê|µÊ5Ǫ8y‘õÓ¼yn^žœÖï0bg^9Óôu‹äûEêÄEæ´î>óþ­’DzûAõÁ:æ9kM2«óæ©yÇŽeô·ŽXŸgŒÃâi«Š¡Upý¢5Ö,ròÞ¯b¼øÞ,²ëýî-Sw­³ß¬c„‡y컈ËþdÿUØoѿðÓ2|6oüÍš7–µožOç©/WÉg'"~–©mÖ]NëûX˧'Rö*kÓYÛ-²þš'O®êoÖZ;ïÞ:bm]suç?¯#f–í¿¨½WÁ'ÓÆÉû~Õq±è|gÁÓïüoÜãõjÈ(áõËpëhs9ú<r~ŸŸ}zxÝÆýg³ù^¿î™×ãz¾¿Þµ?öCx:t{2Þúœ…16ñùGŒÙz?^_Š×Ï‚N°Ûö©øzn? òOÆøÿŒ>ïÄçróÙþQcªWc<Øgóùhs mþ;¾û\M¼ÿKÜ!ä_†Ïça¬OàÞŸa^èS#Þ?‚ë÷1Æ{1Ö{ðþO`£·¡mfL‘6ùq¹ Û±ÂA_ØøØ³qÁ–'];ýÆo¡=ô;VŽo‡>íøâ ó|‡1OÂ\v> m «~'Ú¼2÷_½/Àû‡1Ηã3t+|¾15ØøØg£/ô> ó<öø:×.Ä=øè¤wcü߯=ØÕ~äÀ_Ç »þ¹xELìrüm¿º¼¯°í1¼¶n‡gàýsðýýN–AÌl÷:øþ¯­ âkç `›·ÉX¿™o€=¡ûIƒlèTûîÿ"¾ÿñ Ûn߃1¸yoÂf»°‹E|m"¶áëtLàÏcï‚éÈ5O€<Ø»þ˸û§oA?Œaþ6‚­va‡-|·ý}˜âäØãñž>n»¼ÿn\ˆãìm0ÇÖ-ˆ+Ñí2ÚûãçÛðÝ‹¡GcÁ^»?…ïѧŒ¹C|ƒ=[?‹{ß…v}\B7ø²XÞ8ß#FŽ}×Ëpý¼óý6ð`W'ÝîbãØ -tMÐÿØwâú Œÿ)Ì>Ø…½vÿ÷¾ò¿öÁçcwwŒ×—À–Àûÿ¹_ˆÏð¯…OŽ} .øøØÛ17øm÷1ælžÙïÃg`ɗǾ¯ÀÛl» ;v+ÏÃë—`N7£Ïm°5°XÀ¸Ç~Âan¶Ý6ŽÁ.ŧã=ôßv¿c!î3Øq cì@NŠx<ÆÏˆ¿c°ËîW¸~»ø¾L_~dC÷ì) œoÂ.Õï@_Ìßb5ÄÓçŽyoüÈù9ÈD¿Â/àýÿÄ}pÊîäÂð{ ¿Ô[Ûà‰]ÄÖ1Øbr!N̽°/ìYþgƒ-ðB1kÀu»·¹x8†øÙà¿òÃÐþÜø+ôŒmpåç†>»¸¶Ðïøj:e¿íx¯Ž¾…ÿ…>ðË.xs÷R|ùf» [0¯]ÄUñkßú8Úù?˜7üY8ÍñØ6p± ß—ÿ[àŠmØhܵÛo¾ï¿]Ä^ÌÑ|˜aŽÛ߈ûˆŸôÝÀ¼7Ás»ˆA¿gm¼ò{Ìiü½ñ1ø>ÜÆœ’7á{â¼cžíìºý7±o gõÓÜxæ•ÇÕâ3|U!ÎOB;Ø|Ü—ï^í0¾…yÔÑn1¸ ¼lÂ~»À¿v£Äìι¸^éâ~±µ»‹Wèµõ™x;n#î¶ ÎހΛŸŽÏÐs6Üù{è ÛW€Ëð\z‹‹ß¶Ýù~ô‡ov`³ý+ÞcþMðÛîcŒ¿ƒ¾;”ñ_ñùR×v<´‰\Ø@ÎÚy…‹—yjòw#¶þÀÅ_ñ¿ý•¸þ¶Gž)PwÄo.Þ]v/)tÚ¤]¿uð|9eí¶Áöܽ m§°Çö;~3àøbÀ<Õù²ÿl½ÇÅâ°j—wàóèµÌaÃô ØܵÛÅ÷ˆ±mÄödî`.;_…÷cùa œ¶ógÃäèVBÜ—ÁGu`;û„Ë“uÌ£Y[àKs§³Iñi/ È-g;à±ò¯ÁÀêbf üQdLŽ7$è³;D;äõb`²’KÝXclÿ‚Ë¡µ[OS¿]Ì}ûgІñŠ8*ÀMø¶®¯"?mCÿ ü–€;¶—[÷8 Ï77œ3ÆÑ?:¼øxû7œK¨ ,ü_ø]ܶðîcà‰®ß8a®áûmÔFÛä|äÝoÀ{ÄRØÜþCÛŠ×/qµCBýѾô·ø«’€¿2b«ùj‡£òEq¾ ßmÿgè}ŸÄõ[q!G$Ÿæd¤È‘é›Ü¸ç_nÂ÷êœ È¨ý˜ãµ-ÈÞA²ÞÞ€v€…MÆ âpœ´›pNḳ3s[qß@¾ÜwT€‡ø¸¿XðD‚xÛmœ‰¶°y zn}­Ë}æ.\àéòæbr þ¯‘3¡_“ujÁí¿wy»‚9ì mÑùm xÚÄkÿ6`ß sHS–XCþÚ¢ï`£ñhj>ÙDâê€ ÄÇb·úf‡«-¬ªˆ-ÄdÆxû|ÓäßMø!ùM·–áœ6áÿsÝBnÚbÝz§[cÕÒqJm Ôëi.nî:IÀÃ[ÀÇ&òs†\\†¶P_nÂWðÒ|ØÅþV/›¨‹6Á÷ ê˜6Êð¾{g˜çÆß9¬>ìø‰5õÞÎs¹†óغË齉8* î·ÀßôÉÀ+…š[k±¾ß@¼'˜ûb£ðá<ØÊÂÆ°ßÆáóÛ\Œn`í²~Ú¸šhõÄì•1ÿ0‡3GÇ-ä’ÆkÜæjå&Æl<Õù'ãúÜ““6qv݂ϚðÍæ÷9Þ£®[ÀÈäµh ÆÖ¬[ÈO˜êž¿7aç c6Û­7¸±ª´=òÝ&¸¶žÜDn°¨ EW×m¢Î1à¨JÅqt¶ß$_÷›ðË8eãwÜZ/…ýRä± qŸ"?oãZ/v¹›¶m ¯oÁG›¬u1ÇM~×uØ`Ùäø˜‹…&òG5UóO]ìfàÀ `"e½Âø„M ãá^ÇA5äú28Ñ2&`ËÂù®6dûòg9YuÖª ‡¯­¯tõÉ&æ¾…ØJ¿ÕñB¸º˜Màï*r{ŠxÙøu´w%';<6À÷-äš:æ» Üo~Ðå„ Ôà¤-òÚ»Gæ©»Ü:kuÙÖ‹\ nÐæ?îòGö nF»n!~7É5#‰Ÿ³Ü=®y“±[ï§hŸÀïEÌ«üK˜ÿÚ`ìMäì è³^OÐo¹=»Å­¡,ójó rå?º5× ä¸ts28gÖ'Ísð1¶ *osñÍ}¾n€wÊ›n¿cœ°‰\Z~ƒ‹· õÖ&ò÷&b¿‚uöbzk›Œ8@üZÄ}¼œ!Ö6~ÎÉË€™MÔˆƒï61F†ñ6`£x.c?—á£ìë~¹g’`N›7»µ°½Àñ_öQÁ>û2?eà4C-’}™« ˆ›&rÞêÜ2d`÷ÒÉ®.ÊÀ뵿rû¼lÁ ›°YòÍ;]NkƒõÝ:s]{·Ã×Hä” X±à ûËnÍŸ¾M8uzý›¿âj;æÝø(㺋¸´ðKŠ9YÖäVȱˆ+óCb/`iã÷}7Áå79,dŒUæÅO8Œlü¼ã¸1ÞÚ@ü1^†°ÀI¹ŒöÀÅFÕÍa˜Þd¬¡¦Èзñ£®>©#vÀ›E ФÿäÚsd0‹<³xÛÀ cl`½”ÞéÆËÀ{ɇ]ÎÙàgäƒf×Ù»¿VQ[fÀ`†Ð_¶€•&óã]í¶‡¿KÝžFî°Ü¯{·Û³)À r÷×5ÈcUÖÛ̳›n-À~-Ô©ô*²fEKYWc¬õÁðo N(".’ÿŽ{ôòO NΰFÈàÓì›q9uã!·É`Ÿôûnräø9}¢ËO÷Eþ—Û÷aí±ú´À¹!Ç6‘Sšø>ÖZð ÷7àƒ ä–k“ÖFM¬ÛÄrŠ9gÐÓ¢–KÀ‡)^ ¯qûcäŒäAÿ-ô©SàÑ‚#²KÝÚz~4¸Ÿ—)óâ4AÝ[†œj®-›Û¯* ¿—tëÖ1e¡»f©ã‘ ÊEle/q9"W4k ׸ü¿÷°“Á˜ Ø3Řuø1û ó×¾ò_ ØËZn¾ú6É9ˆ‡ u“W´ pc‚Z·õ#níYçÚT‰ Äv˺zŽ{MskO+¯vó,ÃÎ)xÑ ÞpAºëæžçê‚ô4·Iá3.2ïpc6QCY¼0–ý[—§[ŒK`&ÃÛo ù—5âÂÒçàªü˜`œ*mv·“U¼ßí•5^àðOîbŽ _Ы†5©ýCçÛß[à)ã>ø%E,o çµçJq50±QOµž.n(vÝ^Wv…[÷¤°u ¾KNwûdÜC˾Óqeú~WKqÏ1{©ÃQöwÎß)æT´^ér 럾/]‡ï:u—/Âýw‰-é:l’ÝÚÉ‚ÛZàëlV@þNßè8©úI‰?ض…¸¯€s,l—B—âÏKýŠñíÏâ"Þ'÷8Ÿgw¹üP{–ØùoݺºžIý&pn€³Úý®.àœ*Ð7Ã,bÌÂf)bÞãÀмQ‡šÏt8c‹Óþƒ[K0~ Øir¾h‚CÒË{äû*ðÒBž­#šˆ…¶ÎÀ›)Öj>i‚—Rú:gŒMúmšàÌ ~jq϶¨ƒ¯ìŽãòQ_§˜S•kž»}/Æl±S6ìû]ìRÇ”yþKSîÛ¢Oƒ5 |“1Èþ|é¯]®àÞ¶½Þá¯À:à#nm™|ԓŸÉ¸¸orílXΉñŽÜ™ ­ý6Çåu`Ý~Ôq?sb5•EíaY ¿Xl[ÖÛ.~,æû-`2E-PBŽO˜¯QwÚ9ûÐGÜ#§’ÏRÌÁ@§&ò¢Ø/s>´È ¸#þ5Ô…-âjÓåÈ„ØBN¶°QƒÜÎX»ŸÿÎÍ5½Cúc¼2kÔiéÈåô"çðë®ÎL€•¸¸I>àÞ×þäò|‚×ƬðÙðb_ëô°Èsr‹ÀQ ë™ðY‡—8µ £…üP?æòR ¼Xýugÿ:jÐðÑ|¯Û3h!OX¬ÙRØ´Â}Ö¼×â|V„^-Ô)júê×»xhü «Sî‹#î«°S•\„úË{\\@ýkÿÜñ} xn!6ëÄÖ |æeˆOø¯ ì&ˆ‘*÷ˆsÌÁ"¶,jh ÞN^äø¬þCn=Vþu7F XJœ¸ïX@LµC­ºg%Ü/çšÚS=ܧ~Ä"÷j`¯Æ9®Mkn=• O`o’žÅz¤E¹ÜKVÊà´2rƒEüÔù¶*AFŠo[[à­rm‹uŸ×!VJÀZ ã&x-ã êúÇ#…sݳ¨cÔã[ˆ—*îÕÚ®þ¶È 5øÝ¾Ìå2,-MáûÜZ*AmÓ@_BŠ6i"GØ—»ú.¹Úá‰|Êçy¾+À¾MÄRuîU€5ûBǧÉ.wÔX k/âú£.þ-ò\‚øJàø¸†¸¬|Ôù¸È¸Äý*â—ϦZˆ­b †ïkðWk"þëÀby¯…5Bk‹&÷Ì‘'’žã;î9³þkó?uÜßÏYæ-¶{ÄÕKuô¯"6ŠÀb z7 «‰˜jÂ/­ª« ÆN>áÖß|fǽ³äã.~Šéx!áøä(Ä@ó§S‚üÚúFÇ?¶æj©ÖÉ/¹<Þâú‰{6hŸ _ ÷‹¨oÖˆÇ óÚÇ\ ^à#0W{óiíÇ |\ê;ZÏsœYBíÜ$'µ7»=¯ çðW7þÆåmƒ¢`ݳ:òz ú&X5˜KŸí|JŽM~ÆÅC ù·Àgÿ_﹚+A 5~ÀÍ‘8m‚ƒê¯qû ŒÙ±Ÿ€“ qEN×¾ÔqkëG0ç6ïïqë;î[0Nå{Ðç N×Âõî{b²‰µn5K øk|‹Ã[ 5J\Vèº}»âÐÍ8j kßëž’[ Üã1àžŸÀÖ?r{´MØ¡ >Là‡:¸«õ!Ç¥EÔ6­;%6 S‚z¡†º –¹š«ñ7Ÿcšù *‚‡ZÀ]ƒÏuùLà/Ýó‹2ñ‹øi`Œ"׊ÜÿƒÝ[¬U0¿:Ÿ•üO·Fkœ…±cšÀQ˜kWMଉz¬Æ³Èé ÖmŒõ†Ûç) ŽàŸ&k/ÌÁ|ÊÍ·ùݾVƒ¾„>æoÝžWÜÛd|!¯ÕþÆÅ|x8ÝéÝB,WYßcÜ&|ׄ=[œ;tk/ZïuëÓ:b²Š^¤ü‡Üsb®|5û8¤Øt²ö°‘u`¾ò;n ˵.÷À|óz§?kúx ñ8WóUѦÎ}‚†{Z#®àƒòSí ·Öl ^ŒQply§Iß}.Æg6À}Í':ß5QË6_êbµ|7hóßp6ÚÃæ{݆qGlµ{šðY“Ï)ŸèöÉšÈõ¯rkóÂÃŽãKÌ1Àu ß·¶Ý3$êÕ|Ð=+ mš7¹ñaÓ §ƒ'›xߺPö8ÀçîÿËK¿æÆãùrnýQ÷“ëÄmϹ}³Ûcm!Oø©ÌU¯t{̬y ¸³A_}›Ãuó|‡:k~Ô‹ æ-Æ8ñÿ7ï͸y:Wçø±xš['ÉkÈCåó] Ö0·jCžW¡mÇÝ>\éç\]õyõ{å.oT¹¶ø¸³Aþ©¿ÚñQu^é§Ýºƒûàõ÷»óŒ5î»KÖ$M·—Þø”ð-8¿ñ{n?¼öƒ.·ÖyÆããNæîú/B.r¦^Å+gӥ绘k@×ú§‹Üotg« ìÃx¹Ñ}®oÌYÔØ©Ä"&ê˜÷¼Ë”î+–ÜZ¨þI·GÅ©pçÝ.v·:™u1TC[ù!wVy‹û>Ìeø¶ŠÚ¿úÇ.GÐVÄQë°2Ï ÖmÀuž¿ù„«sÈQuäËêëݲÆ/ºµY ü\gÍËù¡Ž¶|nD/ÑþÀ\õYínˆ{2åßwµ5ûÖ‘ç«/uÜÉs!òôåÿQD?Uîp¸bΠŽUÖÇ\m±‡Ä!ϼUÉÏÏsg ·»5UuVkŸ:ã UýU‡©=^'Vßîb³þ¯Aïã„5!ê½*¸¡ÑrkóÆ…n˜>b|ÖÿÈù·À\]‚Ý«_ëb¦Æg2¿ëÖLUÄcí^·G˼UM\¬Õ¸÷¿ÖÈè)ʨ‘Ê\Ç¡þ«#†ÊÀm¹¢Jì³ö†} äzø¸†xª"O”ÈùÈ˵['—‘S*¿îÖ.\GrO‰6¨]çlZå³Jø§\UàÛÚ«Ý^a ÜÅó‘†ëÄSm×éP{»«ÍëÌÿÅÅwýr×–gìꌣŸry‡k<ÖÍ%ÄKòj\;ý°ó3Ïa²Îçs±ÚÿvgËàÊ}þ´Ù7¹3žŒ½ìVG~¨¢6ã~qíË\}ÆÏe¬}ËðO{Aw»=Íø¥ˆZ´Ê=<ÔÞ5žácl½ÜíùÕ~Õáœ:TnpuUyˆg‹Op}u@ýaWVá¿ÚÉ®v« \\•¯_ëâ¤öÍ+ÕŸwmk\—A·Êý¸xª!f¹wXB Z}¿û\b|nº¼Xüˆ[+Tïu¼DV¹ßÉ=ž]—÷*ûµÓ>öìDýp¯‚ù×àÿâ:ls¯¹úÍŽÓøì©ÆgL˜S™ûŽà¦ÚÏ:ÕÈí<‡ú Î6Üç®C÷ꫜ¬*x³ ;ÕÈ]øº‚Ú«úOοÄX ÜSüe¼b RCÍSÅÚ¬ ®¨ &ªàºê«ÖP—y~ë'Åor9¬Æ¼ÜtüWç¼tùŸ±KžæZ~︢ŠÚµÊý*àŠç«Àhü\ÅzÞü‰‹Û÷䑇 ¬ß¸V€ýª¬)¸¾ãþb®Š|Q¾Ïùª V¹OÆý´G\æž y˜ë òn6(³Ž&v“*ðRxŸØëÁ"°Y㙢{\ž0x®ÖÖ¹?R9ÅÙ¸ \×Àe`£ÆüÁýäž!¬¾òq•>Á<^U_èö·÷üÊø:ÇÅI•ëFÔÀµ×»¼S…+ø¾ôF7f8©Âæeä†2ù±W&—Üêä1§Ó<¯XÂZº [Ë•¿pµkõ>Ѿ(¿Þ­G*hWã ìV`}ýúts)~ÌåÚ â Âóðôãgº1ʰ=ÏWr¾ŠÇå®òÇÜÞcåAWŸs\nh‡gºx®À<7T¬2ëøO¹ßJð3÷ ÷ö£/•¦³×ð\CV‡Jœuç¹|Ä÷ÅÏ<_A½Âóë劜;Àš£|½ã³ °U¸ßísqGÜqÏ{Oæ:ÿ–‘˰Sé«ÝüˆaΗù·òw>¶üZ7×"Ï<ƒÊŒ îý~‘ó¿a-ƒx¬ðw°Yå'Ýü =ÇW¬X‡—y6ñ³}Í]}Ëß>鸌Ïötúw¾± |T€ù2± ð•~Ñå\ž7.£Ö­ N)aM[¾ÍñŸS•¿ÌåŒ2uoUþÞ£î- GðŒã£|…{.ËÁ}pÆ÷“ ¯uíÍ×¹½r‡¡^_ïêQr×"ä‘⇜}x®øù.Ÿ•§¬i+ÀB™8æ9 `»Œ|Pâ3çß΄K¿é|ºÇÈIå;\lî½â^ü_Bõ2cõ^‰gÁÇåopþ)¢¦1À‰5b¿À˜ ÆÈQÈÝ%ðyó5¯qkgžc(ü“ãÅÒ[¿ärã‘vÜËWº|̽ôòw9Ü—à/®yÞ°ø_]|þÊa”gbkå7ºø/0®¹xŸÌù±Ì³wwº³ÂU•ÔñUù%þ‹%î_Òÿåçâ9Œ—Þãâ„ûÑEŽCE —þÄù¹ðÓ.6 ϯ Š_ápVú¯ÄLác{ÏNÀ\KÿÑíKîéÃÚ±_„=ˈ­"s)±©Ûççú•~(¾Æí¹0.ŠŒ ÆøÙ ¾Šo0îmóbáˆ';Œ•Ц\sXàÖÏ!3_ÏxzÏïôïw:î"FÉÝœëAƒËáàâw;Ý÷îÃgE¬WJ<[ó•.Ç¿ÃÅr¾.òàõr{{>¯ýmgÓü\ú|‡çb渤ˆÜWü3÷ÌÅ¥¯puO¹ µ>Ÿk•x¶ê¸[ûôã“çšÏr6ä3ǽ8¢_©¹uUéqnü½šå&·ž*ñœ3Kˆz¡„þü=áï-yfëZgs~WÖŠÄÑS÷3‡ÿÄ­_J<ûõ-.Ç—Pð·XŒ ú‰gêö¸üSüU÷,§Ä ¹¹t•‹í=œÿˆ['ËaŸ~+"÷ÿÆå®©‹Ÿãø¼Èøy—³ 1Áü_"/wßîl½gKä£"¸«ˆú“¿ÓÛ‹{ÄÏ,îÉ¢¬AÎw¹xáLö)2ÿÑ×›gèYw16ö¾/¹¼L[oV,b Uï°†,~ž[£3Š\ÿW$öøLþ¹Àq4ÏŒïrsâ™–"Ö1Åpµ4Ÿïéþ°Ã çÈß/ùl5/Àýcò*qSçr}Ç3§Ä*B=È?´ÏVø|˜çûkÎöü±Ç0ÿ ~ºF^_,ë?®—ÉéÏgÙÌW¬×÷⋼D~C]Éܰ÷qQ|“èüZ™7jž?*^á^ ܳC-Æß°ÏÞy)ò?Ÿã1ÀÃŧ8?íÙ€Ï"Pûð¹6Ÿiðœ+±Xx〽9Òg/’¾ç‹|ž—À§XtqÁs|Rd ÿÔ(|ÆQ`Üÿ¨‹uâžÞç7ž«æY’½gÅßâlUø‘@gä#æž '^æb¹@¾bÝÆ3cá|صâÞ }µ÷Û¹÷Ê<ë?îøŠ¿õ0üÏiÝä0j>.:rùn­´÷º¿ãIÃß@_žGb.&×Lþ¿w¬u çIn$>ù<ù¸ãys‰‹)óÈ'»zÒ°n@½i(››BЛ¿'3¬‰€9þv}¯?×c'g¯/cä¹(ë$á‘s¤ÏDž1¼ØÅžÙ’ï9ÞgÈ{êÇXÇZ—Ï?¸–Ûz“¶ÝÙ\°÷{´G]e®”><×vÙ;óÎór\+íé͹ß'²ž)º>ÎÅ÷¯÷Ʀ}Ÿ-ãœ,ã~…ør¿RìT–ypÿ†Ï×N©ÿ eÞOþ\s>IÚЖˆWž·ÚkŠÌëliw’ØíBiOž&íyÖ‘üÝŸ–dnÇÅ®Þ/^êx¿È£2ñ)Û\%2Ï’±Ï]ž,zŸ,>ãº?‘±Î”q2î=òã…¿µ}TìÌ{U±ÍbËË¥ÏUïˆìÓć—{â×3EGúé±áŽèóÅ"kS®3Å/§‰Ìsd¾F¾»NôaŒWľÏÛ> 6ß–6´+c­&:Ý'6áu¥ŒÏ~$˜÷@dÓžàÖ~{ro™[¢;å¾GüÄ1šòí€uÏòìÇx¼Ctê‹>×ȼè;Ö—ÌÕüÍ!ãõ|ߊ¾Û(Þÿq¢#ß›|>&6ØÝn>m™CGt½Ut¥nÈS¾ =2±ýÀ¸f|ÞØ%•öçˆí(y}ÂAüܹCч×Ò†rø¬‘x¼PôPüÓ”þ—Ëû;d,Æò E^C|z¾èQ“÷lsèO_pͺÌ={4dŽÄ±û¹‡<·‡-~ÇØÙ=2Ñ#‘1ɼ2—³åµ.×¥â÷KÄvO’qï{ž.}½‡âç,ðïé2Æ–ŒyLæW“ùm‹nlÿ¥b‹3dŒsÅÇ·ŠÍ9ÿ*b;Ïm™OGæwŠèy®¼Z¹w¦ø¨ þ:.~äý²È¹XüÅ6·‰í®p.ò›‚=ÝÏû3Ç~N©ØãÑûTÑ#•±Zb3^ü­í‹¤¿çôKåzªŒS’þç‰~WË8gˆ-NÝ(ÿ&ÿÑÿ,ó™ÃI2÷“DÿÏ›^(vOe±_CäŸ"²¯›´Än›âSŸÇiƹörÏŠ>l‹zeÏççÍmÏ”ù~¹Œ¾\©èD=k2î5âó“åó¶øý£Üzšø„±z®´¹$è¿#}j2ïåµ/ö$v®´Ö^{ÜÏ9~‰´í‰}o–¹/6y•Ȣϕv7É<.].”ñé7þ‘Þ-~Ø»³ýkD¶¿J¾§ïÞ"¶Ïä}ËhýpšÌíl™'ÖPõÞ^\"óç{ÆÒ Á|Ù–>¿Hî)þ¾N|ê}µ%²/±Zb·‡¥_[Æ:Sú<_|qšØ‚qHÎdn&GX±á%2×SE?ÚýI¢ƒ¯{øJޏOd—18¿ŽÈôµä9¢ÛSe Új,c\e4ï’[kr¿-~|@>ûzþ»Zt?Iô;.csLî'Çäàºøóöü9½¯“ùÞ%¶¦ÜMñÃuâ¿'åmú„õ̶è~–\O?že´mŠ­Ûòù2£uÄ™2—cFóÏXædeîÔaKlÓ‘9|–Øð$Ñã4™çã¥ÏŸ26È/÷ü®'ŸÉ«¬›×ŠÞÇÅ?O üx¶Œ{¹Ñø­ÉœYCß*s¥~ÛŒÅv©ègD?×çŠo–ûÛb³ ±û•âêT‘yÅŸ—Š=}§}|]KýÿÄ1cíí2ÿ elk´¼Hî¿Oäˆr)c£,}hŸLúpœ¢èvµ\ž§9ÿ´÷m¶dÎMñÉ92÷“æõ‹dŽ>g D>íàë Îñ‰rÿÑ£.÷™w}/Ud.»âÓ/”¹\,6?Yæ}—øññOÝhmt³Q|œ-6"Þ&:Rcê™Ò޾ O5ZãMìM]n0º.9Ë(¿ðª‰m¿Dî{|\*ö¾NÚ´äõç yÍŒ®oë¢ç2vEÚx_жŒÏ‹Dï{ä~YüØ?MÆçE#'|»Q\ÀèÚöc.}£´»KÆj‰ »bßþ^Ñ—¾ºXƤ­Šâ/b˯ý:ë^™'?3ÉgJ{Ê:]äøœ}¡È~ø´)¶¸\úÑ'ç‰Îö—Ëxüžqå±K]ˆ“Ä~>·vD×¶èp‘Ø’ã|‘Œ{žQ¾ä$ö}½èr¹ÌoCÆìÉ8}±?¿ï3Z°ÿ¹F×ZôõsåsKdq\¿$w7{ÿÈÞÜαøþ£{CœûurÿñÕåâOêÂøz@îÝ)sf»Ÿ0®.ö{VôóÛùbŽûJ£5cI¾óöåu£èäs¬o{¹ø3›\i4W.:UŒî¥Ç¸ÿt‰ØñÒç~±ó®ØùÛ®ß9çÍ¡´qQü—ˆØv$v8CÆ >Més·È¬Êgï—ÇI;Ïc¾¦îs;M|t¦´¡½^/c[£k•ºøê­â¯ËÄ^Wˆ­h‹§‰ÎôcMæVßP·¯“ë…â£+el¿¿FÆLåû‘ø£b4_"sôõÌùb¿ÿÁ8<.¶z²|þ4ÑéZ±ÉeF׎ÄÕ¹¢«[Q÷[e¼Wˆü]‹²‡âëe^ž7.½¾À¸bûm£uÀ¦Ñu’÷Û†øâ|™»ÇîIâ§D|àë,úßïm]et߀>¹Pô¼]|{Üèz„¾cíÒø:—ú\ :Ð>7Ë\ا/ýx]/m=v+ò™}ˆãçI;¿·¶#ãS^Kô>S¾÷kJ¿Ovž´ñû*‰®6º¿ëómT—1®›oÈX%±éóä{Ê•ô¡n÷ÊçSÄ'oý}àýsæƒ+D§šèCÎ8UÚ_ktýv¦È¿EÚ¿Xl¿øàl£kgÎå£ù‹ú2ž®™¾N¹B._¯mtï¦/ó¥n#£{¤>ß&¢ÏÝòž2ÇF÷¡®3ºî§^Ï5š§ËrŸsf ø4£ø§?¸~ñÏèGÆcGìr‡ôµ¢k¡®Ø®jtoù*é“­)Î6Êy¬Â}Æ1{›Ñ=1¯Û?ó³ßÿ>×hóûž;®’{Ä ×¿Äßå¢ãéFkʺ|÷‘A™ï4.§Ü,z{¶Ñ=üs]¼þžïSñC"÷/9gsÉw>wù<Ä÷ôý3DÇ{ŒÖÞ~žû⟲èw¾ÑµR&¯Œ×çÊ{ϵž#;Ò¯itÏÈ׃gH»º|¾]ÚG×­ýü:‰ëRÆëEÆå-bÿLæÙ[0?<(~ Ÿn»=MÚ³ïÓå»-£Ï3Šb7_Gûz‹ºzL?$6)‰^ô 1é×Q~ïƒ|w­Ì—¼ñ:£ugKæÇþŒ©;î±ùç>ìóÿ Òö6‘]“¹Ÿ!}8.÷÷n•qéÇ»DÖq±Kft_ÛïPúg9MüC½ýó˜›d|_/=ÇhÞñ\±)2N[û=aæPÿ‹Ï#ÈK—‰-ž-ý/Û#þ¸Àèz’2èûûDƶèu‹øå2s×h¬rlÆåSeÜk¤qwèè÷^ž ã_/óðkÏ Œî[ž&6½[ô»JîSÆŸ¯GikÆË#¢ƒ·9?—Å;¢?uy›ÈöÏoo´§nwŠoÿpŒ±ô÷X¿Iüâë3ÆÕ%rߊ½–~ÇÄÆ]±6ë÷|6Å''ÉŸ/ó|†´û<ѧ)º+6ºÎhÜ\e4oWŒÙŦ䘇ŒÖŒ­¡Ñúuòùéòú‘u®ÈoÝO¼Lî_$¶¨ÉÕ“±/6Ê“¾n`̼ÂèÚìyâSÚüõ±éÀh¾V|ž]/ù=ººØ÷2£u„â×A·]£itMV1º¹atoærùŽm.¹Þb”ã.»ø:ïiÿDFKäq¾7]o^(~ôÏRéâà¹FŸ³î}ŽØ1y÷‰~çÉX‰Ñ<åÛ= >¿ÎhíO›!zòþíF÷»2Ï«Œ>øVã¸Å¯[.2Z?=Ùè³ì›¥u¸Iæõ™ÛÍÒÎ×Ãô¯®ÉqüÚŸ\ûyoàǧKÛãâÏ‘|ÞÝî—×{Ö\¾þõkåï—¹ûçkô×®Ñ=Ük®ç|Lûú³,öâ܃×˸¾&¾Íèó¢«¤ï ¢û?htŸà)âÓ+DVUÆô{ž×6æ=ÿ,ý"Ÿ¯¯ÿÝe”ß| dF÷üs*Æ,ãêòz™Ø€º0N•±‹o|}TyþÙ¤ß':ÓèÚîßùçÇå>å_ØÇï7pïë…bû†¼VŒ>Ç;Uúù}ìÛÅVO“±wåz¾Ü»[æâÏNÈïöæâ÷8Ïï¯7z¦è32º·ák€+Å.Ì‘Œá¢Ø¸$ú¾OlÍ|UÿúÚó âÞÿ±u¾BìqŽÜ»Çh}~™èw•È8Ùh¬}Î3ú<—¯…}}þb£ÏDý9¿ÇéךU±×9¢?e0O´E7ö{ÀhIœ\ ú§bÓ;ƒþþÌ–Ìÿ"£Ïë>Ãè³{Ê<]Ægîȼ¶Eïß*ïO—û/3š#8/_¯1~žèp¡ÑýFÿ<ŽD¬^-6j‹~M‘CÙ}/0º6{†øðçÃF9|×hÎù Ñçd£çrüù-ÚjGt¡¬GeŒŽÑ33þž_¯at¿ØïoøÚòñòý¹b·§Ê¼N•ϧËü½ý^etÏãñb'Ï_Ô¹*²㌡+ž+y¾Ñ|â×׊ü'‰ý¥ÏlsŽø2¹ÿt±Ü»D®3E¦¶V1Zg¾Åè³Í—HÛwå}^Èó»çDÿløù2/ÎÈýü9‹·]“½Ñ8 øç”ÇØb<{.{ªÈ»TtºTúú:éFéÃñ‰¹ëŒæÒšÑç( £uÀŽÑø™2.}Éú‹Üù"™‡?×çÏntŒ>Ûôëô‹Å†žû©ÓƒFÏ`ù5äíF÷“/”ïÂýr_ø=ñ«ÅwËÜ8Æ}2/ÿl¥+~»Vú?AtyºÜ¿Ýè3¬kDæ92>Ï­Ñçb~ßÏð{õ™ÑgkþyˆÇ즴9Õ(ÿn‰m©³?«x{0ÖU~ÿŒ}ý^ûDv*÷|¢]žhô›æí9’纞ø #sók8Vƒ:'îß½Kú\&öñgeü~ý5F9ì¸q¹Çï}œ|ï÷%hóg‹­ü3Çc¢÷"ó¸ø`KìçÏD<,óïIöy‡èÿ,yåý»¥?1Ä3IŒENÁŸ9ºDÆç}þùXöÏ?¼iS®µüYÊ~¦Ø–úÄÅPÆóç üL¿sºŒ¹kô½ÇÛ²–ñk·ëŒÛ×¹JìÇyŸmtŸîÉbß-Ÿå×,~½Î9¼Yôöç/‰á®Ø¿és®èä÷’Â3m¾ö9UäcŸ&÷ýù$¿¾áë"Ÿs~­èEû¼Ddôeìe¬DæÉ:Ñçs¿†ñõñõü@ÎÀè3hÆ ñüz±SÛè~ë%ÒçV¹üwþ¾ß£lÆ3ãqs»èyºøúb£Ïy_hô¬×)bËçÈw牮žkï6Š7_Sùçõ}£{«Œ¥×Ý—óg\¬G2ÆUb· ¤¿?{ªøð i®Œq¥ÑÚÝç¯Dä|žøqSú\i´–÷çn/¾!ÿ’|r›´ŽÌé+e~È=Žç¹»%úŸet¿ØŸ“õçõgôÌ“_ûnÊü.6š›èÆGUæxø’m}œdFŸsúsѾfòõ…_Ã<ÁèÚbËè¹*†‰ö¾AæBYŒ‡;å>íÿLyõuÐ-F÷yùZedôYÕ>7òç8›F×§¾&óÏ L0WÿLsÚ1ÊÇþ̳?¿uŠÑ3žþÌK]æö ±?ug^ô{y£ûaÄêKe.—ÉxÄÙPìòM¢WCôz™ÜgßëÅþ|—_Çñ=c‘œüt±½6ëc—cmr‹ÑçÅ~Ÿ£'ö8.÷Î3zâVÑÍû‹²»â‹Kd¼g=Z{=;ð íëφ+sð{|_4zvˆ>!>¾@dôŒ>K{†ôa sŒ‘ÑóLžS™/å2><‡]'÷•þ»¢uµ|w³øèZ±‰ß{>Glq‡ÑçÇ”ãÏkzªØÄslÓèÞ²ß+÷1âÏ1øß.ø=GVÕ¯·n0Êe¾óÏ8nÝŸ-ßùgqĈ•¹_!mÞ!sØý¹äžÑ½±ØÜw›ÌíZ£ç¨/–ö¾îiÈ}ÿœŠqô4ù|’Ø}Sôõúø3§×‹ÝwŒžû¯Š¼»Ä>Wû=N¿žðën¿žmʸgнü™dÏ%wÉøœãSD–ô£{%U£çÕi#ÿhÓè9QŸ—³‰¾ŒóWIߊèv§èÌ{\÷]m´ÖݹÜoôœ÷ƒ?âÏÁûóãç‹/7Œ®•KŸT|éë‹ãòꟅùº×Jß»Å?~†õ:ãém¢‘¹ž%óñ¹ÒçŸkæÒ¦Œõ]âOktOÍ?w ÈáäÞÒŸ©½_ú-¾¹Yî?jôþ¶øË碆È÷ûJ~Ý™Ýß]ßûµçJ>¸Øè™bÆÌƒâSúì£ç˜O2[F÷qΗ×ÅmÑ›÷ü¹Rÿ¼ž¿o¼Qdú=\_7–åžþxQÿŸc´–÷ÏjN6ºG–=›ãÏåû}·Såóýb¿·åÏf^+ãueÞþüûØèYhŽ’Ø¼ÔèÚà"‘q£|¹øÆÿ΂våyG~ö2ƒí}ýoE±ÀXôûi—ˆ}î0Z#p~/ÐÿFÁ?Ïöõ±?·Âvȇb«ÛÖ ”Qûp~þ,~XóûgÎÔyGÆ¡üÈ¥FŸ\-:])6óÆ×çúñžß'¥ßo|Nè‹ÎÛrÿ2£õ5óÏ=Òןs¼^úùç:7ÝŸzœÈe\øó½ ïåbsž[0"›þóÜê맇EŽ_“£¯2zVÁ¯uùù·%özØ…1ð~£g.“׋E®ßS½Àès4ΖíXOúgU/þl®çž®ô‹¿ü™+E'¿V¼Ñß6ѳ!~dl|“ȹØêùF×þ7%±c€qòñMEîS®?Ëw†ÑßЯÜûòçÑ<§s.O7ºNækøìÒc—zùšÌŸ3¹ÇèoÍ(Ûïñûß[\/ßÝg4¶ýšÔÿn†¶ñkzÚ‘þÿt£5ÔÉFsù®øgC|hÖ'É}Ñýf£Ïüyp~GÜû³ÎþŒu{…Ìöò5½ß¿ëÉ"ëÒ§#ßÑæwÊwW=r¥Ñýqêz¯|Gßž©È:KôògyØÏŠ_"sâÆÕ›ÛteÌ—ŠÍn=üo5.;Ó¾‹É\y3Œ‘S¤ýùâ£ëDg¿7Ò½2Ñý2çTùþYb£m‘×–ñvD×»þöÏ?¾TìCLäõn™ÃçÈÜn2ú»HŸƒ½Íž,²®[eô·…‹ ŸëüyÌŽØáõ¢«?'Ä i4_’ÛΑù{ú}‚ DoÞòeFóÜ52ö3DÞ¶èñ\éÿ¸Þkôœ…÷K]>S—ŠÌ›>eÌ3nýÙ{êÁ¸óÏùŽËäzÖηˆ?šò»÷ð¯`¦ÿ¦¼?èï ~ÓÆŠïÏÚn‘¿ýdö¹—÷þ h—§Ë,sŒõœÇÖ³þÍê“EÆ:¨Ý¬v˜gìUü­ZÖ<¾žµÝ¢XÚ/–æù;¨èÛøý<ãäµ]EÌıw˜ñ•÷·Ê™eŒel9 —dßY¹l¿{ëàƒtXE .:Æ<9f–ñgÑm^|äçý8aÑ$þ<®gÕ÷ þ«Ò=¾¿,_ÎR¿ÌóÝ,ùdÞš3މyj®yþÕkÖqV‰ÍÇÂß*¹uœì—3–ÁתÚÏ;ÏuúxÑœ0Ï÷³´_•ï÷wŽžÕ«öÉ4ÞX´fX–g•3ëß<1”—Ógg‘¶«˜ç²>Y¶Ï2uÛªs`Øæ ™§ÍAmýw«â×eí·,ï,ˉËÖçóþ-3Us⺹}¿¿yyq–~yü9Kî›6Æ~:åÝ?Hö=uòýÖñ7-ÎÖ©ã"<=¯n‡Y“-ÒÑXžUÖ¼¹u¿{«Ž…Eøí ]–ÑqþXVæ,¾Êã«EÇ>¨ý,þÏûî0ì}F–•µl^sþ‰ø›§öŸÖoÑ:eÖñçi· ¬­{0/ßæÅɬuÈAíæ©—æýÛÏN'²~Z…Œy¹e-[ßÎÓfUqíAýV­Ë²1vP]±ß|瑽ŽÚÿ Ø›Ö~¾?¨Ïºæ9oÞZ4/Òö°ÿæ™÷*kæyþ]c¢k•:Ìû9ï»ekyúÌšÇÑišåep¿(ï®’k­?gí»ŸÞËæŽy¾ŸU‡Uóß*óã²Ü¾î¿ExeÕòå„iŸYOäµ]gÓ¾›u®Ó0¸ªuÊA9o•¾ž—sæí·Ìß"ü¶*._7”ªk®em“—ë§Ý[FÎ2cÌ3Ö¬ëekÈeü¸HÌ­ÚþëÌé‹òó´ï–ÑuÞút^ŽX†3óxcY‹äâýdÔvÖû³~ë1k›ƒt^UþZ ÅñA|µÌ¼Ö™Cãñ÷‹Áep4¯‡1ÎóQ§ÉÙ¢ÉÞ/ñÙ¦àÿyß‚ÿwó þp(ôü›¾3ðoü?RðÿCnÁÿ÷Åö“wíÉ»Îä]wò®7yן¼LÞ 'ïF“w‰ŒÎDFg"£3‘Ñ™ÈèLdt&2:‰ŒÎDFw"£;‘ÑÈèNdt'2º݉ŒîDFw"£;‘Ñ›ÈèMdô&2z½‰ŒÞDFo"£7‘Ñ›ÈèMdô'2úý‰ŒþDF"£?‘ÑŸÈèOdô'2úƒ‰ŒÁDÆ`"c0‘1˜ÈLd &2ƒ‰ŒÁDÆp"c8‘1œÈNd '2†ÉŒáDÆp"c8‘1šÈMdŒ&2F£‰ŒÑDÆh"c4‘1šÈMdŒ'2Æ㉌ñDÆx"c<‘1žÈOdŒ'2Æ^F©}Åú¶­o;ú¶«o{ú¶¯oúv¨oGúV¥µUZ[¥µUZ[¥µUZ[¥µUZ[¥µUZ[¥uTZG¥uTZG¥uTZG¥uTZG¥uTZG¥uUZW¥uUZW¥uUZW¥uUZW¥uUZW¥õTZO¥õTZO¥õTZO¥õTZO¥õTZO¥õUZ_¥õUZ_¥õUZ_¥õUZ_¥õUZ_¥ TÚ@¥ TÚ@¥ TÚ@¥ TÚ@¥ TÚ@¥ UÚP¥ UÚP¥ UÚP¥ UÚP¥ UÚP¥TÚH¥TÚH¥TÚH¥TÚH¥TÚH¥UÚX¥UÚX¥UÚX¥UÚX¥UšrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t”K:Ê%å’ŽrIG¹¤£\ÒQ.é(—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIW¹¤«\ÒU.é*—t•KºÊ%]å’®rIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô”KzÊ%=å’žrIO¹¤§\ÒS.é)—ô•KúÊ%}å’¾rI_¹¤¯\ÒW.é+—ô•KúÊ%}å’¾rI_¹¤¯\ÒW.é+—ô•KúÊ%}å’¾rI_¹¤¯\ÒW.é+—ô•KúÊ%}å’¾rI_¹¤¯\ÒW.é+—ô•KúÊ%}å’¾rI_¹¤¯\ÒW.é+—ô•@úJ }%¾H_ ¤¯ÒWé+ô•@úJ }%¾H_ ¤¯ÒWé+ô•@úJ }%¾H_ ¤¯ÒWé+ô•@úJ }%¾H_ ¤¯ÒWé+ô•@úJ }%¾H_ ¤¯ÒWé+ô•@úJ }%¾H_ ¤¯ÒWé+ô•@úJ }%¾H_ ¤¯ÒWé+ô•@úJ }%È@ d 2P( ”@J %È@ d 2P( ”@J %È@ d 2P( ”@J %È@ d 2P( ”@J %È@ d 2P( ”@J %#å’rÉ@¹d \2P.(— ”KÊ%å’rÉ@¹d \2P.(— ”KÊ%å’rÉ@¹d \2P.(— ”KÊ%å’rÉ@¹d \2P.(— ”KÊ%å’rÉ@¹d \2P.(— ”KÊ%å’rÉ@¹d \2P.(— ”KÊ%å’rÉ@¹d \2P.(— ”KÊ%å’rÉ@¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •K†Ê%Cå’¡rÉP¹d¨\2T.*— •KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¤\2R.)—Œ”KFÊ%#å’‘rÉH¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ•KÆÊ%cå’±rÉX¹d¬\2V.+—Œ'\Rn_1!¾oï;Áûnð¾¼ïïÁûað~¼ä¶¹í@n;Ûä¶¹í@n;Ûä¶¹í@n'Û äv¹@n'Û äv¹@n'Û äv¹Ý@n7Û äv¹Ý@n7Û äv¹Ý@n/Û äö¹½@n/Û äö¹½@n/Û äö¹ý@n?Ûäö¹ý@n?Ûäö¹ý@î ;乃@î ;乃@î ;ä¹Ã@î0; ä¹Ã@î0; ä¹Ã@î(; 䎹£@î(; 䎹£@î(; 䎹ã@î8;䎹ã@î8;䎹_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU;à«vÀW퀯Ú_µ¾j|ÕøªðU'à«NÀW€¯:_u¾ê|Õ øªðU'à«NÀW€¯:_u¾ê|Õ øªðU'à«NÀW€¯:_u¾ê|Õ øªðÕÿÇÞ]@Guµ} Ofp îÜCxž3†ìÜ=@pR J€Bq(ТÅÝÝ%…bÅÝÝ‚»Û¥oÎ>óÏ¡s“Ê·¾»î÷f­vslŸ}ì?“Éoö&È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È+‚¼"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(‚Œ"È(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†ŒbÈ(†÷T yÅW yÅW yÅW yÅW yÅW yÅW yÅW yÅW yÅW yÅW yÅW yÅW yÅW yÅW yÅW y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•y¥A^iWä•yeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lW6È+ä• òÊyeƒ¼²A^Ù ¯lWvÈ+;ä•òÊye‡¼²C^Ù!¯ìWvÈ+;ä•òÊye‡¼²C^Ù!¯ìWvÈ+;ä•òÊye‡¼²C^Ù!¯ìWvÈ+;ä•òÊye‡¼²C^Ù!¯ìWvÈ+;ä•2Êe‡Œ²CFÙ!£ìQvÈ(;d”2Êe‡Œ²CFÙ!£ìQvÈ(;d”2Êe‡Œ²CFÙ!£ìQvÈ(;d”2Êe‡Œ²CFÙ!£ìQvÈ(;d”2Êe‡Œ²CFÙ!£ìQvÈ(;d”2Êe‡Œ²CFÙ!£ìQvÈ(;d”2Êe‡Œ²CFÙ!£ìQvÈ(;d”2Êe‡Œ²CFÙ!£ìQvÈ(;d”2Ê倌r@F9 £QÈ(d”2Ê倌r@F9 £QÈ(d”2Ê倌r@F9 £QÈ(d”2Ê倌r@F9 £QÈ(d”2Ê倌rÀ{*ä•òÊy值r@^9 ¯WÈ+ä•òÊy值r@^9 ¯WÈ+ä•òÊy值r@^9 ¯WÈ+ä•òÊy值r@^9 ¯WÈ+ä•òÊy值r@^9 ¯WÈ+ä•òÊy值r@^9 ¯WÈ+ä•òÊy值r@^9 ¯WÈ+ä•òÊy值r@^9 ¯WÈ+ä•òÊ y儼rB^9!¯œWNÈ+'ä•òÊ y儼rB^9!¯œWNÈ+'ä•òÊ y儼rB^9!¯œWNÈ+'ä•òÊ y儼rB^9!¯œWNÈ+'ä•2Ê 儌rB.9!—œKNÈ%'ä’òÇ ùã„üqBþ8!œ?NÈ'äòÇ ùã„üqBþ8!œ?NÈ'äòÇ ùã„üqBþ8!œ?NÈ'äòÇ ùã„üqBþ8!œ?NÈ'äòÇ ùã„üqBþ8!œ?NÈ'äòÇ ùã„üqBþ8!œ?NÈ'äòÇ ùã„üqBþ8!œ?NÈ'ä òÇùã‚ÌqAæ¸ s\9.ÈdŽ 2Ç™ã‚ÌqAæ¸ s\9.ÈdŽ 2Ç™ã‚ÌqAæ¸ s\9.ÈdŽ 2Ç™ã‚ÌqAæ¸ s\9.ȼGrAþ¸ \?.xä‚,rA¹ ‹\E.È"¼GrÁ{$d” 2Ê傌rAF¹ £\Q.È(d” 2Ê傌rAF¹ £\Q.È(d” 2Ê傌rAF¹ £\Q.È(d” 2Ê傌rAF¹ £\Q.È(d” 2Ê傌rAF¹ £\Q.È(d” 2Ê傌rAF¹ £\Q.È(d” 2Ê傌rAF¹ £\Q`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçDW`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èÀ¢Xt‹N`Ñ ,:E'°èþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ ü9?'ðçþœÀŸøsNàÏ Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜ssN`Î Ì99'0çæœÀœ˜sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9''ðäžœÀ“xrONàÉ <9''ðäžœÀ“xrONàÉ <9''ðäžœÀ“xrONàÉ <9''ðäžœÀ“xrONàÉ <9''ðäžœÀ“xrONàÉ <9''ðäžœÀ“xrONvÈ%°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–ØrONàÉ <9''ðäžœÀ“xrONàÉ <9''ðäžœÀ“xrONàÉ <9''ðäžœÀ“xrONàÉ <9''ðäžœÀrCN`È 9!'0䆜ÀrCN`È 9!'0䆜ÀrCN`È 9!'0䆜ÀrCN`È 9!'0䆜ÀrCN`È 9!'0䆜À“r <9!''drCN`È 99!œ?`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9-'°å¶œÀ–Ør[N`Ë l9¹ —À™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™8sgNàÌ œ93'pæΜÀ™38sgÎàÌœ9ƒ3gpæ ΜÁ™38sgÎàÌœ9ƒ3gpæ ΜÁ™38sgÎàÌœ9ƒ3gpæ ΜÁ™38sgÎàÌœ9CŸç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ9g0ç æœÁœ3˜ssÎ`ÎÌ9ƒ3gpæ ΜÁ™38sgÎàÌœ9ƒ3gpæ ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'g0ä †œÁ3r7ÎàÆÜ8ƒgpã VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8C¿å nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆú-g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`È 9ƒ!g0ä †œÁ3rCÎ`Èú-gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœ¡ßr[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ë<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ“3xr†¾Êl9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3Ør[Î`Ël9ƒ-g°å ¶œÁ–3ØrOÎàÉ<9ƒ'gðä žœÁ“3xrOÎàÉ<9ƒ'gðä žœÁ3rCÎ`È 9ƒ!g0ä †œÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆú$g0ä †œÁ3rCÎ`È 9ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7Î`Å|8ƒ g0á &œ¡qÎàÃ|8ƒgðá >œÁ‡3øpÎàÃ|8ƒgðá >œÁ‡3øpÎàÃ|8ƒgðá >œÁ‡3øpÎàÃ|8ƒgðá >œÁ‡3øpÎàÃ|8ƒgðá >œÁ‡3øpÎàÃ|8Cã VœÁŠ3ô=ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒgpã nœÁ3¸q7ÎàÆÜ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â VœÁŠ3Xq+Î`Ŭ8ƒg°â >œÁ‡3˜pÎ`ÂL8ƒ g0á &œÁ38pÎàÀ8ƒgpà œÁ38pÎàÀ8ƒgpà œÁ~3ØoûÍ`¿ì7ƒýf°ß ö›Á~3ØoûÍ`¿Œ7ƒëfpÝ ®›Áu3¸n×Í`¹,7ƒÙfpÚ N›Ái38m§Íà´œ6ƒÓfpÚ N›Ái38m§Í`³l6ƒÍf°Ù 6›Áf3Øl›Í`³l6ƒÇfðØ ›Ác3xlÍà±<6ƒÇfðØ ›Ác3xlÍà±<6ƒÁf0Ø ›Á`3lƒÍ`°ܵîZw­»ÖÀ]kà®5p׸k |µ¾Z_­¯ÖÀWkà«5ðÕ8j ì´^Z/­—ÖÀKk`¤50Òi Œ´FZ#­‘ÖÀHk`¡5°Ðøg ü³þYÿ¬ÖÀ?kàŸ5ðÏøg ü³þYÿ¬ÖÀ?kàŸ5ðÏøg ü³þYÿ¬ÖÀ?kàŸ5ðϘg ̳æYó¬yÖÀ™öùòŸ·¾,QËànÁ~­ºw ù2õÉýßkkÅéнSk//kª?¶øò_²/ÿÝ HàõŸŸ¯ÊÔQ¥|¢OçÓËÌz™Ç´\ÍO¯—þÑ× °E¯ÇØÎ}}c¾Í´}zÓ´Ÿ©]ªôÑËÑKóq|ÕnËUûü¢Ï7–§6µ+—©=™£—Ævê<«vÚMóÕö6Óvé=ìß´ýWí7Õg´×|ÝÕy0׫ÎÓúj=/Sýæó˜>úvÆ|óõ2ß/þ¦íí¦åæë›Ç´žj_.Ózê|˜Ï·é¼|Õþ¦ÕöÅLÛ©vš®·±<—i¹ùúšÛ¡Î‡ºÿÕq3Õc~>Õzê~Tí5Ý÷Æõ0Ÿws»Í÷•y¹:ïæã7ŸŸ<Ñçû5·Ëô<u}ÕúQeÿ7ü?þl£^u\æûR_߸æ¼1çƒùþTë™Ûée*Íùf>_æéÌ曎ó«üSûSçÛ|Ÿx8¿¯«Ú9‡Ô|sýj¾éz„G•êz©ód‹¾ü«çMÕŸÇCi®GÍ÷2µËô<˜Ï»ÑnSÎx©×É®¾Qóû†E•cÆF•í¢6 1IŸUq@׿Qe}½öúz-#¢Ê}ú{½¾!úüZz9`cTùÞžAùôõ¢P=<ª¬§/ïr4ª Ôë¤/ïu¡zÍŒ*Ãõåôv6Ñ×륷W]÷~z»Õõ _U6ÔÛWYß®©^Óc´ÞÎúú~†œ*ûêÛµð*ûøèǧOtêÛéëuÑÛ®Ïÿ^?î"õzßD•­gFoO'}ûÁC£Êšz;Ô}×\_op¯¨²»~œ}ôíÚ_*Cô²º¾]ËæÑëk§Ï¦Ÿ—oõí;èåp}½®úqªûRí¿ƒ¾ü[½ýC¢˜€+£¯ßJ/‡ê÷ƒ:?môzZêí¦_çÎúòïõú¾ÑÛýƒoôãø^?þŽúöê>ꤷg ¾žPíЧÕ}ÝO¿ßÔý<@¯¯¯¾Ÿú|u¿´Òç·ÐÛ>4úq~«××]¿îê¹o¥·§³~^Úêõ„ëíPÏo»ðèó»èóÕùì£×ÓF?Þúùª¢¯7@¿ÛêËëëóÕõ ß‡áú}×¥¦¾~€¾ý:÷×Û¶2ú´ñêe_ý¾ëîý¸zëõµˆ*kèûï«·¿‡iêzJ}½îúòúúê¾îª·§•>­®C7½êzuÑÛ§®wO}½^zýaj=}?Áútoýú…éûm£/ï¦og\G}=•WÝõíÛèË{^Õ—ëç­‹¾ÿVzÙZ¯WåF˜ªO¯GÝÿÝõz:{Eoo7µžj¯~¼ôú;ëÛ…é¥ÊÓæÍ£Ê¦ýªéNúòÎú}ÔYm§×SGßo5}?ôv©û§£¾}C}ºƒ¾\=ŸgF•!zª×Ó^Ÿn­·CÝ·ê¹P÷Q}º•^_;}*çÔùo«Ïo¢¯ßZßOë«Ñۢ׫?×^êuRŸP¥ñ:ËùÿWÊÿkÇÿ¿u˜ëiµ=ÿ_[ÿ»üêýu ëyšŽí~þîþÿ­vÇ´½§éض/¶û‹m»cjgl㯶ÛSýÿV»c»ŸØÿ_mwl÷ç¥^'k‡Gm_K¯§ª*õùê}§y=õû¡ú}GýXÕ¼žWôzÔòšúöµôéj{ëUÔ§+éË«©v©ý˜Ú«¦UûŒöèÓzYÑÔ>uêý®ú=«¦©žš¦ý¨úÔû*£zYÇ+úöêxÕ´:.uu¾Ôzª}µ#¢§j§ÚNµu¾ã3ÍWí2êÓ§ËêÓê|«û£’>­®«zk>_Uô²œ¾^yS©êSÇ­®“ZþÕyÓKuÝŒû2 úúÆñ›[_¿ši=uj?ªýj?ê÷8u¾Ôq©ë êQíôо\m¯îuß×!üÏ·3î7óñ™Ú§î3uœuôõÕõTÇ£®cu\ª}꺫ó£ÎKÓ´ºÎj}u\æûÖ|ߨzÕ~Ôòðèǫj§ù¾Vë™sFÍ7î³€èë©ódÎà z©îCu®˜žOíŒé>2×ãé<šÛÓöæýÄöy7glŸ[OÇi®ÏÔnÃ{:î˜öSÎÄtÅtß{¸î^êu2¶ÇÓuéu2¦6?ß1Õï)ïÌõ™_ß<÷ê¦í=½n—5­gÎ/óù‹é}…§ûÏœû1åÝß=o¦÷ Æýìi»˜ž§rßcý1=×±}÷Ô.óu4Ÿ/Oyìéü›'¦<4¿ïòô:àéyðôúç龈éùõô~ÑÓu4ß·ê9ðÔ.OÏGL÷}l_ÇÌÛ©ùÂÃöžžÓؾ®Ç´ÿØÞwžžÃ˜î‹˜ÎWL¯Ãž^Ocû~%¦çÍ|^<å™§ëÓýæ©>óqzºþ1ûñR¯“ãGÍõ"ã¹ÿñMôépÝã+G~4ª¶/ª ‹úE5`lœhÛÛëõÌ­ù§ûQÛtŒˆ*U»Ô|}ÚØnt¯èÓªjý±£ÊAQ¥úƒZÞ+ úö##£o§ÖSÇ­êQǡڧ·ÃØN÷úF½ªžAú÷úF?O?—ýÓãûj{µ¿ Qç/`ˆþ½î¾Ñ÷§Ú§ÚÓ§yôíŒó£—?Nˆ*ÕùS×ÕX¯DTù]xôv¨õÌן£ïWµK}Ÿ&$ªÝQ§Å+`bXô󡾿a´Ó_/ßDo‡Zo¤¾½ù¾P×­sxôù]¼¢M»ïƒ°èë ñÿÓãüj;µu?¨ûÉ<=ÀÔþ±éÿ¼êûƒÓG?ê{TÝgFo§ZOu^Õù3ßßcôûúÓñêë™ï'cºëب킢Ÿ?£^u¼êzªë®ŽGÍWëëÏ—QÏPçŸng,é:¨ãR1úvýVêû3å–ºæäŠ^ªë©Ú­·×¨oøU}?¦çEÕ«Ú¯®ƒþœºŸÏ8ѦzU{T©Î§i»¯žwµžÊóó®ÖSϱéüíVÛ©ûSŸoÎÝ€ñ¢×7Ë?úþvþ<]§¯æ«ú<œwOÛíWßsQùhÜoö7Ûô:cäÔ}Në«ïu™¾×iþùêûÚþzYJ/‹ë¥C/Sëe€^ª×q}?j¹ú>¨^¿Ñ®¢úz¾¦ý0µKÿ~h„ú~¦OgŽ>½ã‰i¹~œê¸Íû/¡Ï÷ÑKgôöõýäâ¦íõýG¨í„i;Õ~U¯?ý1¾wìgª_?Š^o„úž¯¯^ÖŠ¾ÝWõ«õÔtÓrýz篤i¹¹¿޾uÿ©ãÒ·7¾¥Î§ËëOŒë£Ú¥ŽËÇ´^@ôúÕyÿêú˜û¡PóÍý ¨ýi¦R/u™žOU¯ú1®QS=æçÆ|W6­¯Ú©Ü­úvéðhõ¨ã0]Ïõ¼–ÑK_ÓþÕqy™JuŠ›ŽK-ÏlªGµ__-úzªc{u^|Mû-mšVíWçS}_ÞtíP¥j‡~žÌý¨Õã~1_ý|ªóªÖS÷¹y=ã¸}£ïÏü|õz¡—jj¯Q¿§ãUÇ—:ú|óßÿŒýèÏåWωÊ-U¯Ã´õ=Zu^õ¼‹PÓê:›úÙøófë÷kê?owT_=ÉTÏ>ôÏóŸ>{ÚvêÚMý»[ÛÿôïóÇ¿ãuíÜ­{W}ÊÜZ-°v é¥ÿ3~X¿¡­õÉ_&ÛwéªO' îmF‚Ž!ÁüZwPÛ÷ìæ×!´kרt:ôÇ9Õ7õ5¼UKÞ¤þ¡z?òÖÔ?T¿GÞªÓ#oÕã‘·SýCõ«d1z ³ý…YŒÞÂ,F_a£§0‹ÑO˜Åè-Ðbôh1z³ý”ZŒÄ,F£'1‹Ñ˜ÅèEÌbô!f1z ´}‰YŒžÄ,F?b£1‹Ñ‡˜ÅèAÌbôf1z³ýZŒ^-Fb£71‹Ñ_ ÅèUÌbô)f1z³ý‰YŒÞÄ,F_b£'1‹Ñ˜ÅèEÌbô!f1z³ý‡YŒÞÃ,Fßa£ç0‹Ño˜Åè5Ìbôf1z ³ý…YŒÞÂ,F_a£§0‹ÑO˜Åè9Ðbôf1z ³}…YŒžÂ,F?a£—0‹ÑG˜Åè!Ìbôf1z³}ƒYŒžÁ,F¿`£W0‹Ñ'˜ÅèÌbôh1z³ý‚YŒ^Á,FŸ`£G0‹Ñ˜ÅèÐbô hqû0ú´=ZŒ~-F¯€£O@‹Ñ# ÅèÐbôj1ú´º‡7¶ºG7¶º7¶ºÇ6¶º‡6¶ºG6¶º6¶ºÇ5¶º‡5¶ºG5¶º5¶ºÇ4¶º‡4¶ºG4¶º4¶ºÇ3¶º‡3¶ºG3¶º3¶ºÇ2¶º‡2¶ºG2¶º2¶ºÇ1¶º‡1¶ºG1¶º1¶ºÇ0¶º‡0¶ºG0¶º0¶ºÇ/¶º‡/¶ºG/¶º/¶ºÇ.¶º‡.¶ºG.¶º.¶ºÇ-¶º‡-¶ºG-¶º-¶ºÇ,¶º‡,¶ºG,¶º,¶ºÇ+¶º‡+¶ºG+¶º+¶ºÇ*¶º‡*¶ºG*¶º*¶ºÇ)¶º‡)¶ºG)¶º)¶ºÇ(¶º‡(¶ºG(¶º(¶ºÇ'¶º‡'¶ºG'¶º'¶ºÇ&¶º‡&¶ºG&¶º&¶ºÇ%¶º‡%¶ºG%¶º%¶ºÇ$¶º‡$¶ºG$¶º$¶ºÇ#¶º‡#¶ºG#¶º#¶ºÇ"¶º‡"¶ºG"¶º"þòO÷Þœî½9Ý{s¹÷ærïÍåޛ˽7—{o.÷Þ\î½¹Ü{s¹÷æÎ÷ÄV÷ˆÄV÷€ÄV÷xÄV÷pÄV÷hÄV÷`ÄV÷XÄV÷PÄV÷HÄV÷@ÄV÷8ÄV÷0ÄV÷(ÄV÷ ÄV÷ÄV÷ÄV÷ÄV÷ÄV÷øÃV÷ðÃV÷èÃV÷àÃV÷ØÃV÷ÐÃV÷ÈÃV÷ÀÃV÷¸ÃÖ¨a‡ÿ¬ƒÇø=Bº…t îäÕÇãï<ÿøìeØ_5¹ÿ-ÿo–^ÿ-ÿ[z.¿äJÒ/ÿæ9÷?ËÿÒÖXüçü÷OÎÉÿäyŠÍqÿœ›?^šr«þ˜÷ÇKT‚®»w 5>¹Hصcp‡-B:¨â· 1>‘ˆÛ!¸KëŸ?ÄkÜ¢[è†üãµð?/tµ½þóÐ{eTÙ!<ªl¦—ª³CõaN >­:ÿê:3ªTìW"øêå7z©˜k|ø£>\TÜWª/Ó«›FD•AQe‹¨Š/a7Ñç«¿¹Uª?Z¨/­«Î.Õ‡ñÁÍ£Jõ¡œúK}ÈÚùIôõÕ—×Uçê)ª½êC.õ%ò^z©Î›¯^ªÎÆJ™Ú¯:9T ¶Ôç«ÍT'†ªS@µ¼½¾|@E½Ýͣצ¯×VŸVصÒë ¾UªNÊèóCÕ´¾Ýý¤õéºúzôí;éëÖÿØÜ(j¹ñB9Pÿãf¯šQ¥ú°VÝ=ôùýüõöúFß^Ý/ªóÕ¹¡úP^Õ£ÚoêìØh¯—>mþZ}x¤¯çkšV%¨ý¨ëa 4}yIS}êþ Ô×—¦õšQ÷]í€èû/­—ªÓ ÕÞ`};Õ¹_]}¾þÇ£“Õ>UËðèë©ÎÔyT?¨N›ÏŒ*õëi\ïžú|ý^ÿògõów—ÇöK:ÿÛo ÿÿRªŸºý?­çÿkÇõ­]ÿâñE½?ñ„vÍóUž+Lë W7­gFŽžöc®×<ß¼¾¹^5]É´žZ®êÑn3†UÇm®G—ù¼Ä„ÑÍõ¨å´žxº/Íí3cݺ~\æë®ê3_wUª÷9æûÇSi>nõ>׌Ù=/óþÍÇg>/žîsõ\x:?úv^*OÔû'õÇeõþ:‡^æ1-WÇ¥Þש÷s øèe5Ó´¹>ó~¼Lëû˜ÖSû/dZß„]¾„Â<¨ŸiÚ|Üj¾z_«×£rØ@(¾¦ù¦AmŒý+Ü£Þ_ªó§Î—¹>¦ióñù›–›Ç<˜CjÓ´—©ô5µ;µi¾ypÕnÚúê<¨å6Ó´Ú¯sLûQËÕy6ŸWózæiõ{®i¾*ÕþÌ÷£¯‡vz¨Ç8^…sÔïS¾¦õÍ×Ñ|?›í1/Wõyz.Ì÷‡y0óv~¦ió}bÂ_Æqšñž©^*O̾)LetF§/7:GÔ§Ugê÷-#·¢o¯Jõû›Ñ ¨>_}ÞRÊ´¾¹³>s§˜ª]ªs@£SCí3wz©ŽWÕ£Jcziî$Oí§†i¾úJŸ¹3Ou¼æÎÕùV¯+æNUû‚Uí2:cÔKÕy¤¹3Sõ{tYÓq{šêUíQÇ©VÓúê8ÕþÍ¯×æNS«™ç›Ž÷«NõÒ|_ûQÇ¥ö¯ïGåÅW˜ê¥úüÅèÏ3®·©]ª“D…JU½ê|™Ÿ#ãþÓKõ\çQ-7µSÝßæÎ5Õ} ŽËÜÉ¥ÑÙ¬š¯¯g<j:"ú|7ÖüOž¨ 35rÎÃü˜~b[_LÛÅvyLócÛîØ¶ã¯ÖówÏÛ_]îi½¿{ü1µ?¦ýüÝóø?µ¿¿{?ÄôóWïËØ.ÿ§û÷´Þß}^<ï'Žýã]Ë(D·.ÊÆ&øãOHÝz‡)ëÙÊÆF^[¶ n «¤Ö¥í]ú‹öu˜¾Æíëþõ_ûú_ûêõ_ûú_ûªÿóÒ¾z÷8q×î]z„ô óëÞõKž[¿¼3íò›³G¦–\6IYŒ”E[5Þ1sx™xþŽÍ粆ŠñËx Ô.q¹×âôùû-§NŸLø¸ueqì§R Ä4qdCÕeóü뉃ýÓ5 Ì#~§ÎéÆ/X$ö5;<âð"±7,çtO'‹=ï:õx”Ñ.öÚ*eXûºžØ»øÓ‰tö„Æú‡Š¬ž@£§Š£ÎÆ {VÏ׫énñĉßÖ¿Ü¿á¾8§ÁÑiâô•û¿NZšRœmzåQÍõƒÄ¹ÙÏ'^¯œFœ_šý×íÓˆ M~Ó1¾¸°®^â¶IX\xR>i*éÅÅ‚öÆ“í/&Ì8­GqiïÑÏ•n;Äåcé§(^_\M´ôūֽÅÕ-cûçö//®MZûÓÇò Äõñͺµ7–Lh\iî|qóZP‰ú}ç‰Ûe:gÿ¸q‘¸sìN@ëé«ÅÝï¼ü«ì&î‡T-^©Í&ñð‡ó]z®î$ßÚ²cBÊíâiùÛ%¿¨.žm\¶±^ÂgâEý¤­º÷ÿE¼JUqZõ‡õÅëÂcs–dïR&Ì—§Öbñ¡ZmÿɥħuÓ—<|°Qz-}™_xU– =S„–¸.­ .†ú¿©!ã•jýÍ›2¾_ø¬3ïâÊ„y½Ïº¾Ù.—Šü´¬z˜LÚ¿ñ/½¨L~á·8¡²ËEZ}7£Ñ™rˆ“r‡?“©^•XØC>iôOR"ÒK¦+øzæ¯é\2ýÛ%‹‘Ÿ…'y·p½Ì’yäÂc­ÊlßÅõ¹±¸´Ìžü§âÇä”9‰‰Û¹|E¦.jÊÜ÷|‚—¦È$óÞ®p®æíd²@úTmÓ2Yh`éBëRZd‘Ü®Õ*²Wõr”O;ÏKÒð}·÷é)5zßóøåþÒö>_W¯ÏÒq;¨ÚÇM£¥ëÕ²º[†,—%Š ßz/yO)Æ÷ý¤Cs0¶u…vGûÊR÷îßëµ´›,SÿÜÕP­ƒ,{zdƒÐ.9eùü¡³ö’-÷[7$”•–¯ø\iÀMY¥õ˜Ë/å’Õ ‰))Ò~”Õß×YžjJ\Y³íœ6YCGÊZ FnßXÇKÖ®šÓþf‘²NÀéFßFÞ—öºº8³ÉºÏÝX¹p€¬—í•(±ZÖOQ=èÍá²þ§#E¦$X]´ÉQöAkqlõêu ?ǧËÉë/øˆÃŽ­ðírMœ,6°}Æ$ÄÉû¶+韈SS$¦19Åév¸ºUgêîhÖ-U)q¶T»â/µ3Žï|gn{>Éfqaâå¼ãš~ynß8ÑþüYq¹‘‹É–|âÊë+y œª,®þ^½é›BóĵߞěY!ޏ¾cÚŒ~wJ‹·ÇéP¦”¸U0Ó ÿm»Åí©ïv[e‘z&˜ýd¸û"kýª»‰û÷\S~¹¼_<Ê45KºFkÅ“{¼«6ž žLZÔw«M<»´xeí!óŒçõåË…~i8Y¼^«Î»ÀIâíÔo¼_gß Þo¼Ù¿~¸â“µq–%I¯Š“ú,=÷Dz/ëïZ2iufõ=Ó襌Ü!_¶\2Þîç}·ô]&óî¸7ð¥Lœ´O»“m®È¤ƒ2_^1pŠôI稻n|-™b| iç•©\í½f/ˆiRœl›íxI™.Oùró¦–ú¾ß°vÊR™9s]­iÖö2[¢Ëô-³ç›¾#éx™ãmà¸$*Ê\2&Éx¼§Ì[t_Î3{Èü¿”èéœ,$æÇ½Øä­,’>Õ„÷çºÈ¢i÷zÕü{I;ÊG>qúJmDßw7–ö~¹E`’ï¥s’OÛ“ÓY»4¯Çô±wdÉꑳÚ4=+åÝõÿ_–ª×¯¾ß $²ôßSÖ›,Ë–ao2[–{\*ÇîŸ×É Ó,y›‰e¥Æå¦~W±–¬RxÁ‘iYnÊjÉ_‡¯©&kX³d˶v¡¬9(ÿëEå²ËZ#oܪÓ䂬ýË‹ö{Ú¬—uÖSf×µm2ðTÏ¥ÇÜ—ußç_2âÚ¹ÕŠÊ¥÷®ë£rÖÿ -˃>5ÞIZWÔ8¹¤c]縥ף¹õe¼ŒkŽ{!ãoîb·$2!¹ÕžÿQ&z<äй²Md’îúÜ/*“mž Å;ÐFú4µwD­K2EË s³oI,S†NZ\lΙª_ÓÓ¾œ]¦ÕiÂÂÍidši^—Ûo/"Ó.Ju1¼ù)™nõŽqiv¶“é7y¥HüóZ™a£¥MŠBƒdÆÛ7· ½!3Í»sfÓ¸ 2óLgß•óÊ,³‡•úà?Lf]ß»äºÊ•d¶Ë '+úZúŽúeήÔËdvg2/—ý˜Ìþ¸IéK}–Ë«”Ž×a¦Ìù}dÃT[ÊÈ\|jí¡ÉÜa©L_øRæ™âý]`£G2ï3ŸQiÃdþ~këÏš_J,1Ù2~A,œ÷{ïwUÈ"%òøuœ3Húož° õà\²èí1³WÞ'9«s"eŽ”Z“%ÝOvÚ/m3%ÝI¤ýʦ5ãd‘ÎLwšÐ¬tÒ亾²b{YlZŠmuÛÌ”ÅÅÙ/t·,Y÷Éò=×›IqþÚÛZ¬2 Ô‘fÍR—¥ útÊÛd’,]˜k÷»"ËT™b³ô/,Ë÷Ÿ·š·,÷pÿŽsþýe…oíñ¸É3YÉ>¸ÒñÎÅd•<jLºKV«Õ+¢D¢ßdí¦Z÷¬UüTàƒ½…eíCg¬²]ö~X¦¯õ”¬×æÿÔeФ±í.Œl'¥{7þ§Â²ÉÁ¡s®ç•ÍÇ÷y{¹lbùM·!£¯n¿'[.XÚ©WÏÒrô¢oÎ×ÿl~ëØG™µ¨#Æ÷HçUC¦O•*ûây]Å«§á^÷k¥·Ze³9î‹‹ƒf´lzSœ×ßgü“âd–äa»?½G÷æ¸sIq°¬+ lbG±ïX…=e¼·»ß‡Þ:wwõ‡â÷…¶¾.ð­8švȾÙõç¯Wê}äµ]ã¶ZÄ­úM3íØÞWD† ¬ÙæHKqoçÙ#2ºÄƒÓ?^šÜñwñh椱#E/ñ$ݱ5 ×$Oö;ú§¾÷Få¦4k/ÞÍoþqÎúŠâƒ5ã7­Z5;ÙjÖñézÑD­_n^vkƒ¡ÉšKï¤3ovìî/½?·ÛðxùiMyufáQ«eœÃmW¿q—'™•-ûEãýd‚Ý¿g,,uèÿÆa#“ä M37ãj™4²u7{D™|Ûº•ñ·o”>Gº–›o…L±÷VÒMy›Ë”ûœ%Jûþ"S\ž9¸Æc™úÈôÎu‹”i•\»lX\™ö×-éÓ”ß.Ó-h¸ëfï#2ý ínÿÚAfh<£\·L{dFÛ¶Í[îÖ•™RŸ)–ªŸÌôqWÿ1ýªËÌ/š5Jz»­Ìòfã…mKë¯w¾i[õMZ³œô]YªG¯Á2{ýKG¼—9ReœÕ©ó™ãæ'ÇË»Bæ<Ùçö…ÙŸe®¿ÖªàH&óøä}³æÂm™70íÂÍ;ÖÊ| #?´>OHpõÔ¶sóeÁιDï>sd¡[{ƒîyI¿vÖ³•þqÚ¥óïü«ô¿Þ)lú‡&²è‰ ½“÷;!éìÞNFH~ÕxGxÿÒæ7ôÕˆ“$íƒîå/÷ƒt¼«üm³ÙaÒ5a|’gY¼^ðÑ.ýÊÈ’e¬q’ŸN%eÓá¿]ô­ 8ò>UÝ…²t†Á÷Ðd™oç _Wä€,ûahPÁÃßÈò³ÇhøAV ý¡Ù†uweåÖƒÞu,"«ŽÎÝkapY=’¼Ï%¨&knÛxµò²vž‡¾cÍuÖ¶õ˜˜KÖm5"g[ÏeýòžíZó­lT³ÁüÃ…e£9·“—ºTY6-úãľó›ÊѧãÅ[•¤µlœn뎴֟¤ÿ÷ÙÓlÞqR&rœþœu[*q/l‘wx¡…âRÜ[#V¯'¯ I~-ãwâè…yrÙ)·>”ů\q éº %:ûsnËûò·aboÓ¡Á 7{z{5é·Æ—÷›>¿Z$öÔ8ØrõŽGbÏ™¼ Ú>ÐÄþÚGâ=YäëÞ3«ÛfqäMÆñ²ZűS6íÉ9Aœ¨þ,wÍTûÅÉ[õߊ,»Äé n•M#Θ¶zÁæ‚â\¼ÓSlÕó‹óÞf¬œUœŸT)ÉûâüãW«æ-]'.d.T¾Îƒ/ÏyÅo(cíçâ½^™ã½-.þÞµç›5ëÅ¥ ¶5½{S\~=l`gç;q5ÏŽsuÎXÅÕo?÷éõå÷Ä4yíâF\K®Ö×^‰›®2‡{ä½(nýÔ1cÈææâŽïÍC;†‹È=&¦û$î­^Ó7böñà”ÿºñ/ß‹ÇE‹€„µÅ“Ö²-•Ïšxß-°7@<›yN¦cÃÅ˵#^ÍË™A¼ž•¯C™ËWÄÛ=ÖnéÓE¼¿û¨ùÄÔ;ħêa^¿<¯^=O Ýöp¬ô¾Qh|©Ïc¤5,„‚ßÝ–q³§?Ø~xïÕíþ—VÔ‘ Ü•ò°LœpÏÊ q dÒò-}ßmò“Ég=ï}1õr™"EøÞ鮕2e«Ö7*S Éð|–·LÓ¬kö¶OoËtñœëš´V¦?Vtñ¬ÆdÆßödá8.3ßͳàéš×2[¹ “tvIß'ß¾0pƒÌÑ,28e¾D2ç«§µ"©¬Ì½¹Þú Gó˼+vlm7?‹Ì>"GÓ´¯d¡â΄y[ûJ¿“FÕÏp^úû8±Y×"’êM_šn]'ɯO=$mŠ´~5tLîSaìÉ‘Ò5«CªÙï›Ëâ' 9½~Ú-=}°õê<Ð,îÏûï’¥6Å©õîeJY&wœâÞMªÉ²³³¿.[³£,ïW,ň"Kd…}묿WEVê2éY§ÙßÈ*ùn =9 º¬úð—/“Õ·KôytY³z¦‚û2ÊZiãýT,ƒ¬mïžúÅ:’uŠŒŽÜž5‰ ,0¬LšþieÝ<¯-øœDÖËYe†÷dý¬) ”»@¥õÊ2öí.Ù aã·o¥ ^׺?Ùw²áeÿác¶=—¶Îš>SÙøÇD—¾½½W6iØ$bÒ­Y²iõ‚ãBÏd–?l˜éÁ')þ\uqÏõ²ÀÐýwv –qGìÏgÍQHÜé^3Þ]ûq6ÉkÚ$ŽÍÿd‰c÷“×½{v*±/϶#ùÅît·Ö|Gì\˜m\ýÂOEÄ£#Ý vüÇukã±}¿Ö MÉÖbû¶°‹­|_ó#".x;.­Øyýu³.–õìíóæV½,SÄþyáÓ6´&Oé'Yfqhƒ#²cÎ8âȪK×Ù㉣‡²?^{µ8¶ôÖúd“Åñ!Fn^'NøÍ¹2íïâÄépû©DIÄÉ5&´IžMœªôS‘£ß'§ó‡ÞøTó–8“&õDéTœMÙñRñ5[Å9{º¡7zwçëI–eg¸°zÔèìã‹K‰ß©[þƒ¸<£G,ª#®f|loÀq-圵÷¦×ùiÀââF‘« 8,n†^Êß9ëqëÒ¶õ•¬wZU(;oÜ9q7_ÿQ/\³Åýô³yŸÏ"–XXmCçÍâñó· ýI<·dßœ(ž5®5=ò^'ñüàî59Æz‹—Í_ØšÄí#^§ÚòKå7£Å››ÔËú\¼o—([Eñ±\_¯Ò©r‹Ï»Mp ^"½\9s(•´üö­O!kC§ãÝ+O”ñÊ Ê³¨c™ \س´ee¢^ÍiAê™äFåëÕÉûoúíúš 2Eѵ)¥ò•)V\3zE™zríŽ%× “iç>¾þC™Ÿeúç½ûô;"3 sUÛü±ÌÚqÞ³‡cæHßëO›sQæ˜î#ë¾î.sMªcí^<̳kͳ y·Éü9ù]7IÜ4§÷¨“ó¤ßÏî‡4Ï$ý÷õùô1Û=Ií>-§¦ÔŠ^‰›Þ¯˜´g>èj\º«tú¿MŸ¬“”ÅBÛ—ÊTeœ,qvÞó,½êHÙþr‡Œ]JÉR©¶ÜÈ•d ,=ÄQöW{Y6É—ßÔ&²Üün£¶9(+Ô™ùk­xõe¥Ôƒ;ÒN)+ßá©§®N’U—È<úæYY}_‹>~[FÉšmßÌí½a§¬Õ«Q“œ›žÊÚ£3Ìöi°KÖY2=Y»íeàѽŸ¦Üð“u?&|Lµ„¬_$ùçGÏ¥ ¹1¬åôL²ÁÌ_’œšzþËó·´åÒ-×ec_GÙ•UkÊ&-\3ì lº´ÞÕ‡–Êf¯*_[7ùû{­}dÜ'ӮؒVÆ;°x{ØÕS2A‹Rqî5ž&e(·YÿÍ2ñ£T/ïm “ž‰?·ý«Þ2ùÉ»‘Í_%}Í©¼ãXq™âížU½ÃûÉT ÂO¤îz[¦Îd»PÀúåuÌïºcYŲ2m™êµ_yZ¦«·âB/¯é[>y³v9™!tÒ·-Ó<’ôxçwUf «³¬û£2sס¹fŠ+³|ç9±Èn™ur¾ô•¶—Ùv/ؼ6aZé;pÁšLÉì…G§.üå}Rö›;*Nº s,´~7ßUFæì½hèc§È\MG‡†Û.s7síuç­2ÏÀ³W{g •yOø…?±%“ù‹³Æ9[Œ·í‡1¡¥e¡ëC îÏÛNúÝÎß%[¿³ÒHXÖÇ"eÑ…_YÇÖ“trcÓšÛ‡K-á9Ÿb£§I[™å ö•ûò<†Çk37éuéØì›½Ô»3Òù2éóy>Ëbų­uÿ[YüçôùÎ%S$Oéì\Mе?üÐeû}PºE‹=¶Û²Té~‰zo©,K7ñÊ–iñlYfü†ýû†ʲ÷ÏÿaÞ¯²|Û™S–7K(+¦ð;œnÇw²Ò­‘UÖ[/«Ü+0{Ö°¼²zžÒ Ö]y/kÖ|zèÎä5²ÖªK»ûùô—u\‰êÈð2ð¾¶?ÙŽ­²Þ¡s~{¯•Awû¨þ±žlTñ`±nMÉ&ožæ:ñK6Ù|ðÍ–;§Èoª”ýfß„dËF­_mX÷“9êÀ¼‹Ÿdó–þÉ=³ÈOß½ºá_¦ý\¨¹3ïYñr×ÅKÞ7¿[ò¡ÖöÅ…q>¥Ö¤¨ðåu$AÚÀ޹ʼnÀ«~S]ÍQÿźw‘â@‘i»keœ"öžµ\swŠ=β~­{v¹ûÍò`±¿ê»D¶ˆ¾âpÇ_Û|.“_œØ7xU»¹â|Úl»ÚuY%®NmسHõ…âfŠeÍŽ7Ü)n?ïÙ´¼k½¸ë/¯¶x×CÜÏ_c`ŸV‹—ÇÏšòxÔtç›mƒŠÇ|¯,Ë-ž´_jI‰âÉÁš”ÛTI<ÍVÇ‘åuñ4ü~ïFˆ§oÕ-˜àx6·NûÞÙ"Äó ,§í/²·›ø¾bañÒë}•2ÍNˆ—ÃãvÏ}_¼Nqøaš™‡Ä›J‡œŽ„UÅÛcj¶/﮿_qSñ¡ò•µ+ú‹››‡T¼M|hðÑuó†ôêž¹Ó­Óû¥w‹W»>h$-]3¬ºTå;i]|ˆ“”øò~Ãúâ»+ Èxý†—;²|²LÔÿÔo÷ÂeÂ%—‡_üV&n<³I¹ödÒ4!ew¼J.“]ëùöÞïáÒ§I—ÐÕGì2EíG¹ÇüQ¦¬µ÷tû>A2U½.÷w¶;)S7¼»æJ¡O2M#Ë7!7ºË´µ›ÄI—­¥LW|ƤóœY¦Ï:{S­n2ý»Jûm¬+3œ}7¸ö³Å2ã¶E]цÈLK>º X$3Ï¿è¢x-Æ»™r¶x[õf©šóЉ÷C†pª¤øx§TÝõ>K¯Òë"Kž?+½—^O“zg iu>|9îc?çî“¢Ý2‡Èx;ª6¹Ñr–L°a~ÿª;¯ÈDÇæ~c=5C&MÚ~n?ùL&o“ãqÅmŤÏó©>¿¤;/SV¨V²B@V™jí¨-idš’­í?¿?$ÓÞ(¸`uÆ"2ý ‹#|y˜¤@¦=eæu Rze•Ù’®Z`s‘¾ÇºíÔ£ªÌQbÜô·JËœ‡æmrÃ!sÿ%Iâ1v™··cÆ÷­ ÉüÓŽ¥ìÔMÊ‚/ ßš¼µ¤ô”ÁÕÄúHúÏÙ¹°TSI9ºuÍù¸•ä­+Cü½HÚºÚ‚.V("U§—Êùx„tU-plxX*Y¼Ç¡5é2§–%·«<,ðž (<çæïEËR?dÞÔ¯ä*Yú™ßOã‡øÉ²7ü”Áoƒ,÷ºòšþ—e…ÑÓ­Ê2JV²¸5~ç5Yù^qº˜»—¬ºücó%{Éê¶·¾?°†¬Iãµð](kå™Q½Kv–µ}#Â|õ‘u²Vèá]§° ̺­ÑÆ=IeÝ©ÞΨ;QÖË3óÞå—9dýÿ‡çòŽúÿ¸½÷–•½·îE²ÉÊ^!I%* ¥’U"«©’”¦Q„²¾²÷Þ{dï?ýþzŸóœó¹ç|ιÏ}^xÇNy.ÚIÉQE‘ÜG{IÎSQcþè z\_î8=:òÈŽØGð)õ|á¹)ItZ×;ܺž‚ÎoMÂEÑeàŠÖlz"Fî^ï'VmB«uõ_|ÐT;ècÒ6ÄfÅP›Çywg’ªÉÌKeÒ ’¿jç»}”ýŽã- ‰„_’ŸÕ2ª¡T(<'±¾~xÍÔÙ…æùù|”\ÿ×ñOõ:Ò„râÓö¨úóÿsþ;ñíÚF)ü>¤òšˆóÀçní礠^rì¼Þp4Ò½™Nhj¤ÚPŸƒæâ˜ÖÓ‚Ðr§êÂ]¢hh=ü_§!´–ÕÆ%ðwA›W.Ï‹\Ð.Æ@v&©Úÿñ{GÇÝ…ŽéÒ•ªpeèì5í)0…®íws“üÐÃÒ´öAxzÏ=5è2ª‚¾â»çbša@/@Ûæ†# vYÞ•üÈÃn¶¯HõùaÄŽ(&ÂWFƒˆÊ¤9ÂXÞËÜ/7ý`‚ïÖ»DnS˜|Ívë½L; W¦dÿ‚Y}ª‚Óþ0çü-Ô6ê',|(³T!†¥Ã>}ê¿°Ü»{ÓLVunì7½: kõÊã –“)ÏÃaËŒéù7nØ>)pÿó=ØJÓŸv‚½m9Û@$hL}ÿ‰Ì;öo}ü‰Ä«—(ÏQ"icócçX<ô}8ð´URŒénýJCêc×&æU\¶…dÐç¾ùhÂ;dtñ ίFfþfÇäNd|zÓ{ˆ ÙÏn‰œw[AÎ §òôËÈÓ|R!½ùojJ« áaº¹Ô¤×(¤³Ý”ÞŽ"'S˲IðÈÇG½î'ìPBñÕ<[ Ôf«vãdʆG™£<»åßÇÍ·Q¡[ÛBïÍ;T*¹¬èyÍUjFþ3cT'”£zBv5Ý=t[ÈLýÌ¿£VóöEއ›¨£•zoàãQ/ sYEüB«² l7Ûødû•ÐݽdgÎ|òƒ¦ 9D¥ïçï; §<'ÍÝùAäRÿyGÞ[¯«~™fyì»ÈË!oHçÊ Ù}äËÔç°VBþ«_Ê//ð¦ íþf{è0®Ë'ÇÃ/\‹õH'QÐ×'çô YPÇÂ3C6UÐ1WC‘s9:/F—P4ÏäJÍß~“hûRYG„âÍ£Ô1*R(ù"úä¢i”Ž—üÖb'‰²–ÆûżŸQîl†¡bÇÊǨ _t“<àM²¯².¢â4áÛF;CTæ÷¼´Å–*vvÖP5a”$åbªõJ}ZðµB ¨æ(AÍz©€qR,I_[úᦷ”í jÛÏdÔ³ï¢Îýú?ß}†ñX_‡K\l7‰þL±wõ&®܉MBƒwÏ…µ(Ñ(9Éô©¼šd¶­”‘Ä ÙÕªÌ7y4/¿Ñài÷-E'•iì[Ð*û¾€ç7N<étÝ,-ä5ÚÊI®%k¢½úÅØr_mt =3ü3](z‰íØÐíšISÆZº&RÎñBO:ÁÐÕ)Œ-,Ùøz]«¸1!æ-jع_Í&"F–?Ç_V}Ô„µGªºç3âaì±êºññÞ{u›òë'èLàf!l‡Öû9å?øÒ q‡jÓ29j¹Œä^ü†ÿºûeõÿƒ* <Æ9®Uof];¡z¹ÆöŠÍM¨Ï ÐúÞEzð}û¸á(t΄œë‘†!Þ;ŠÏ`´n7}|“&nŸ?/ø†¦^dÔköæÁÌuQ«OáwÜײs×`.vôžØ+˜ïk­´ w€…µ—S“ôY}ñká“/¾°$ËÖîØhKIÞï÷À2µv€÷cXþJrÄõx¬¸=$üE «‚Ó=f¡w`õß¾î X[ÕsˆxD D'f[îͦÂ=ñ¶\)Øòû‘îUÀË»g%¨ýaGdš)~ÁvüRb©€=æL}LRØÿ.³RâW…ÕwȷĹ‘°Í²"–‰ÉèeUÞ6!‰}¿“¥æ5$­Oš©öÂCÖœ’_!ùŸ£<7/FÊÄ–7“%ãH­ãÁb(±…´¤êÇ: ®sLþן`¤Ø<êå_Ž }¶~ÉŒÈ8¬R,Q„L“Šgyý‘yºšž÷è$²Œî-±oQ"kÓø…¦¹³Èö»7fä:²?^3N²CŽë*'fv Ó+$½öäärP^Œ$En{çÏ^´ÑÈsš?^µyo,FÑEq#_†( ¨ òû–¤;y¿B–€÷tÆ£žQáá‡ðWŒxEaø›…â^+Ä¢p®œÿ« >(² â1âσGÔÞÿà¤A±x‰ä55Ÿ+W,IGI«š‰S]¯PªîÕ'¹~V”qùp¡Uieï :°JE9ÿìËÑߤQÞ‹ÅcRþMtô  bö݃üÚ¨, g¢•‡*í"&–"¨VISÁK~5æ¿ë^TÕC0½Ã€9¨uqÅó®¿jw)n<÷iÁcîÂ)õ=ßð8-Jx£^ˆˆé9u4ø]tÏ z¬dëí3Дårfž±9¾X†$C©ãÓwÐÒ5âɰÑ]´jˆ)Kب“VDkÛDÑf½OŠ],í~®döh£Ã—L! kYtê ý-5]ÕÞ%‰a,éljy6t”n%|ã·„R7­î ž”ÃC¤Q¶aJçRã,Ñ%èå“#]ä·֥Y®Ê[SÐØ²P1YÐu¿vµ|¯A Ï iGû§ž4ø¾gUž×è®^­‡Ê{ß-u%K RÕjn5;*Ã[·³,z¢Ì5/:»¨Nº7ññ³Ô¾v޼©µ’‹õô¬ï¡¹{èâ°lhõðwª ‡¶ù}UŽ8zè0Œ°©½ÂoY5N–CWãó—}6–Ðý)ÉS4 zd%Þ)³7CÏi•=Þù"è¹¼UøN:z¾<ê3ÞC6¼YÜÐÛTxÖÆ,úÒgǶõö¡¿x:7˜†¶r¹lÁPÅ›ÅBþÖc³n0R0÷Æé1ŒÎp®ä†¸Úi*¥ 0Q:SKÅS^ž]ùaÆôö~6k ü¹8 QƒækØ5oÁ’òÑ“ÌÊl°üö£Q»ö ¬Õàöð€µMÆOq/a£_4-\ï4lÍZ4L4ÂŽ È¯Ä‡ÅðïãG“û‚H@óHÿÇo$ |üh*|‰  + ˜‘äkõ£ëY‘HõUc†cÉonµv^ZDʧaLÙ*HÝ~Ytÿ¿¤“¶ôüvºé;¾Ù§l £hWy7_2%}Û]ðG.GãJÒ\d-­ú$žò Ùoý8|#9ÏZª~¶¡@î0‡ y“ãÈÛµâ¼/‚ü_=¸ÏãaÍO|¯ƒPðmi[²8 ;ŒÒ0ÓEQì°—"ê(æ2JÚ™‚åÔ Ž(-Ï>á¾@„²÷Ô–éâPnÁH]VÌnßëL B% }©,TÞ/S/ ¼‹ª3üÇÿC ΋ÒR¯Ýñ¨ÿèû“52ˆ[á^«%oPûäFž@ŸvKÂÙ´¨«f*¿@CˆÇ9ž¼lÉ€úÖ¦QŸÌ›Ñ`Û§»pÌ>Å÷Õ¤¡‰ŸÓÇÒæ|4Ó]­ì ¼‚æl”_"‚”Ñ‚æÈ£ä&hIEUgìZ‰V4ĺÑfh͸|ʼn†OòÈ‘<ú,€6bÚ*¸ôiý°ð3´Ó=õ÷ Ú›/iF[Õ÷Ž!éèè$§*hÕ‚NÎÓ?såÑÙþ¶·ÉEt1Ÿë¾x& ]Ï—,žö;„‘ZWŸs\vC«C I• (šYj•+ÒŒÄjüËC¯'`ü}QŽFtÄßJ$'Ò‚¦ÉÖ$ñPc7$ÎGLUOHp³C…X†Îk)„_Ó»Ÿ$j¸¡´ƒvž-Ä J>“Šâˆ”Ò'4ˆ‡â±Ý]«Zÿ×K¿Tr܉þÊÛ¬¨ú[ÿ?§JŸ1"¥i ªÅ¾,¼3i†ßc¢š>¿ñÀ¯qKü/ ¡þB©ÕR 4’©¾€¦d`6{h¾õÓ䇑´°ÎPõ‹¿ƒ–LæIS•th5aÍh£cƒ6òûý{é‘ÐÖÜ<ÏX/ í%gÍŒ»žCÇk1þ«EƒÐùsè¿ Ë6èjÿݧx7z„ÞÇôÄo Ío¡oþ—Ùœ…' \Ëô­m „!'Öž‹qÎ0üFéö]¹B)WW§Û›†Ñ¿nG—‡Ãø©cOz¼'ab`ªäc×Q˜JÐÞ9&<3Wªjš«àOhyÖæ‹J˜/ëÛ¦ì÷ƒ%ºiY%GX¶O½ÎòeV •M®çÔÀšÊ½ÿúµ`½sVfN+6ß÷aæ8Óµ˜ü(`§¦ø?ÓI°'CÖ°*¦§ç]ƒÞò"á€ÜB‡¥_Ûá/µ¼¤ð:8Âô’>±g9†fbå&ço#UzÆÌ}†ŸH{øÄfK}"ÒûVÓ«½`D†¯R£6  <Œ,¯q?A¶á@çߺ,ÈéAè·6±‰< ŠA È/~—Ô¶ù LE=‘iBÁæÊqê;(<ó`WÙÈadâ Šg¿t[*ÛC©3_ž¨^ðEY©‡T”/óQ®²‡ðÏó/¨šþ"€‹•œ8eÎgY¢Š{í•0ZTKÜèdþ5sü¢>"øIKÿ'#‡Zqª;t|P{çPs…5»Aðµ3÷yäÜþ‹zeFsý/Ñ ‚”>%ŸŒ ½ÑĨÊZïÐ{4³\R0©±As•‡{œ/HÑâ„‘Iå%^´ôõ¤}£1€VXÒóý~£uµw:ÞÍC‚ÚÀ›²þh‹“Í!f?Ñ.,üuöx(ÚW³›‰ûº¢#-»gúÁ;Ù½›Õ»ˆÎïV7/Y¢ËîºK{ ºI*ËíÍ¡[¿¤—öÕRLôP{j¡+§ÉlrOÜxù°Ü”' 9ì4Ärç¸l™¸V¦)&FÃ5^A_a,{ ¯ tÚ=RQ¤€¶£n"2¿ ¹Òb¿(Åuc}ÿó|õa“Twz N_§ÀâåY¨ûWq§ö/4rqXÿÂrw[i“üBЖØ]Ìr'ºÌ´bSJ¡ï[>Û"E% ËiºõÁhÆ_þ<˜0Š#¸à‘ Ó–+™,fá­ƒŽñô*,(¦‰¯À’áš.+,‹ÒEQøÂòoËcGøÀŠy ÙºW(¬t|^¥‡Õ›=êŸÀŒe¼}ÖIž\å ‡õñÑÙKßa£ä¥MBª'l5ºš1°ÀV“eð mø»¶w¹;# vTiàì>Ž!¸Sí{tÆWZÃþSÖó2ÞHAT#mƒ„ÉÍ ×É#Ñ ‘¹0$îÞîW¤rDRM3ª§E^HVuBž£ºÉϧ_9·q)îTßü€Ôt Ê&)HK¢ülý%Òç?Þù÷hÿÜT'BFÞÊúÝudR®ô–LîEfë7³²N嚯‘ŽùA?|¡’‡ÙÊÃÖx#û`e*Åtr¬êp|îC.R »…wEÈÍ) ½XŽÞ饟PŒhÌ¥ÓÙÅSÈ"÷ÙQÒîÞM¯A/”V—ù{Gþ6ÊòŠ~¦=ç‡rrϽ¸üP^»`.ްÜ“5ê â}ëåösö¨ô«ü†‰€*o$|p˲AUé|–bQT ÒHW_–BõIô<Ç\€šQÆ=\Äδ¦çe¡Ö±˜óÉA{¨íosŒ70uJžÚJð ®àʪur:ÏÌûrßV õO™™Û•ð !P\÷{„ÆÇž¸ž˜¦þ7t†o.≦Žûîy£…"Eý[ Z¾XÈx‘.„Ö"4‹wgªñdCE»¢J4Ú>N‘8Y…ö1®|JCR蘫3`Ê ]¸~?P`¢C7Ÿoê1&ñÔÖ/Ê'X†åC‡”åÕñ¾×X–~Ô>º”u»s)è¡ZiÍVÑ2w¹ XI¾‚Uïd/)‹0š]µ [7=YË»îÖ´Ð!Ï)Ðq/Z*oŸ+Ì^ƒ†/Þ¤j O †Ì£‰‘ªz%ΈÌÖ@%¨Û6ôæðèðt9ƒü÷èÉ›¯saP»(Æ~ÅgZœßxÚ_€Î®\… øÈ,³ÎÔMÂH¤ñÔf’ŒÓ &¤u€I*šB–¢˜j¬­—¸ 3w+ú ·`ö×Ã’M˜#çëó =ïÞÛÃ|§MþÛ%cX¸]8¦`L ‹FÙÄ™—a‰¿BêçowXú™7qüÜiX>K­H2æ+"g8Óòzae›à¼¯ˆ7¬ÎPg?";k+ÍÓ±‡`ƒGŸÇÏ™6OþÙ0P¹[¯ ¥i\ƒ`›hI½)ù ìøüäâz[»3 ±G`/ZôP¦Â&H<»~f b:4«Y‘蔕”&gWªý©ùI¹^Äþd+C²”=“5ø‰äâ)9‚ñHQC4Mó©.ºM´žAš#»±9£ôH»2É­zéÏœ<ʺ‚ žS”¥²õÈxv÷^ø«Tdò¿¥ºJ7ŽÌ1?:ŸØ ËåWýœÍ9Èê)¦Sõ¶ÙLk]ü#]éeãëåKÈÁw…ó6éIä¤3mÛ |Š\ä~Ÿçï¹!7Uãá'ÈÃe}çûMFäU¹Ú_q ùÜÛÙîú” ¿é¶Z£ò¯i'®²¢À'Œd–ÂÃÑŸøžn£ ‹<ç­ÞlòhªÍʯGáð|iÖ| )Ö/»RÓ‚GˆÈGo% ˜UKÜ­ÛwPüc4?£³ JRÖ=ž4»ˆR!ÛooÿVCŠdš{CÊ(ëü¯±F å´ÆüªÌûP^²´tj‘ ”ƒîù¡¢¥@”ž*-¶ÏêÒ¡J³’± !ªõÕñûù¢¦šçÞ…‡@ÕZÁ+ºŠZÍ ©PÇöù·õÓ¨Kð¾ž*÷è SFýú+±.jhØ×FZjN&´j6Ÿ"Ðìü¹Fæ3–h~m³¶Öñ:Z4è,žâü‚V²çÖ%$“ÐúU#Óùn´9<ß6çmÜ‘Û5ŽEûkÛ+¯ç„ÐÑÅñ®úc9t¾b,”¾®?¾&žÁû<7o9_D‡"§×Þ½@‰¢~YÆŸëHú‡»nñÉ>L|²ýörÞº?“Œ´ø-Ÿ ä+rAƒ+ã~Þý5¨ 2;WsG ªÿÅCÚ^)Tm¦ÙssÊ3']Ià"éaý{­KPa²^º~Ÿ*RmŽæÈƒJÇWsî´ùð_îtÇ¡Ìa¨ùýèö‚(4è;¸?dÜæ³„µîòG¡e>=wLô´]²ìŠÒS†örš>j^èdhÝÿ\uºäo¦I;xA7ÁwÝu“ÛÐøÐÆè7t§v¿qŒÓºƒŽÉWç¸y`˜õóÛ°óa„ÁøzùÓ)Õ& o»c1§ˆ_ü¼4}of{æ`2·§îr< L?›Ñ1w;¸ ¡Ó¿Ò`žy¤èØ<5,æçu?¡„eý÷û’°2ddO[}֞ؾ«<Aï4…‚ÀVÔO‡à­ØþY¾o£ÿØÇöYËô`?gÞ,ħ µLÙ‹ô#QÍ~È:Ñ'$ y¹¡õÉÌÙ9šŽ"¹±ˆ› Ržr­rpjDê”àOa¦!H»v»÷0­5Ò4½~Ö.ŒäîÞû¼yiÐ÷\%"óßnËtÏõ™kV:²ÛV|" ½†œOô5'„‘Ûlí­å“óÈûÂåhä<ÈŸdy:Ùù ¬O6‹¸~AÁÊuÃã¼(,!–ŽÆE©EOL¢ÿÊÊé”ðâxê„R#ì ÞÝ,(«o£6ðåŠø 5=N¢‚ÞiËX Tü£­t“Å •¿Ž+ G¡jÚ{S{ûk¨^JÿA÷Hep$;|ô âÃ2+.Ô4¾Ý¸€:÷ït-¢.Éhsùc<~÷Üæ]Ôçdß|Έ¥VuƒÄƒht~2òÏ…:4‘+!M÷XE3r1 Ÿ§xb“dæDzš¯~”XôB‹u[‘Ào´h¹Sõã"Z¾¿oµ'ÙÍèâˆ>£”ñãx±D´Õu~)¥†vމS—9ùÐÞ?;´fX¢$)"¾*¡cŠ\Ü<ï/tʼÇÁtS”dÞa:†.õŠžï/£ë.é‹aÍ~ÉI&s ­Äï¼#÷ñG-Õ»C·È‘ˆ®¾³aLÆtüHÊ~LA»eˆý­ßzШÀ³K´ÿáÀwéµ:|PY•6,\åò‘wcfáÅ9•G¬_à‡ùóÅŠ"^ÌìyQ†¹óS3a(ºªs6¾ßóÿúÂPãb&ø¥«mÒ}kòÿs*%SO–~ ‡ª?³o??Ž€ê¨ù7¼ÂæPî~yÛñÔÖuQ1Í‚zÕ‘Óz{yœÃzdô<4î\²rf**íKŠ ù‰+P˜ùB‹\°,ù&h™&Ï}˜« ­onû¿ h…¶x¦­DÐîCVÎRz:Â+&öF@gRYÙÏy*èÈ)Õ)ú =\£—î±AïC*§0á ÐÏIní½Ý ›¡—Úã‚`h¸y‘cÖF¨ü¿.½£ ð[^›ÆÒÉîñ … Ž‚­Ì ‹0Y•.7›²ÓéíRõ0›Ú4ô8·æz6ÒúaQŒ†²·8–ºõ|>³TÊÔÂS±2)X}ÝI÷œì0¬«ÞÒ÷ƒM‚*•ˬïakÙåÙá}:Ø¡êû`•X ÿ<Ò}šw¨aÙÖC³±ƒbï"ÑÞ¯Ç —¤D^è2\@²×?o[Ê#ùwÚ{|ìîHEÜ>/>'€4—S íUžÆè±­/²ðÏ}—dåD6›µ‡B¢ªÈÑ4!z$¹î¨þ¬E¾OŸ }ΣÀýcúòu»(xþßLx€ ]uéü‘„¢Óòa](.žÒþZõ#JvÅ/¤­±¡Ì¯c‡—¨¡œ¿+%z¢‚0éLzÂ-TÜ)¿2®Ê;¹‡‹ÝQM¨äUBHj LkVVâÑznš¨e|5Šäýjóc}ÿo)ic³~€ºõ´BèQï?¡]uÕ5—¥D#¦.‚;G¾¡ Å’ÀSz4cW~àØ¬æ¼žÿÐe …zYer£"ZºÜÕ]œE« _§WWѺ¼p=¡mˆ> ¿¢D[KÕ²ë7Ñ.¾CædT6Ú÷ž\hïzŽÂž/ÛÑéʈôaDçš«abª‡ÐUX7Û˶ÝtKï+Õ£Û6áe¥u}L˜pÕ‹ GOC³RcÔ¬“»­ÿt Ù¶¿ß· øëÉgÿl¬ìÂøx+‹´þ{è͈IäÜ4>Ø×^!¯ hlgþÛRÍÜQW=“ú¡ý¤oFò ¨S¢ †Z.æ‚É_¡öçþÛMüP_¤\'þušéN·É@ëG´6H‚N ƒÖC½ ×?Mr-o g´Ô.pÀHú—ï[Ö0n|öðÊq˜w¹nÂZ³ÄmQ±sÚµ `a­\ý3ÃUX2Œ €¥‘ÕŸ ¶aÙíoÚ÷îƒ,e½s`%4þy ¬*sì%*Ãêê mé!XûùWg¬_ÖSÞ‘ù ÃFbÚåç&!°ùʵ›¯õ€CÄ®ôÁßÞW¶oYÀÎÉO¯‚YÀnµUŽ¥¬ ìFö¯Úì¿€ï _ŒXðŸÿ+Š„³ªáÙHÌ 7äJêWiQ$ݰ1ørãzdûiE®)l4 [JòÔzÊÕÏHÃÕ¿vpô‘ŽûÖ EѧHÿļZ™µ >LÖ,+« ceLVæ@52MEóŸ¼,Œ#•R¯ºUçVþž†-²ù9òû†o#û#‡/N­²È‘àöá\7r6=–þD¢„\óWy[Ò‡A´ß[*yµß“•7#ßõˆÎ·q—‘ÿTÕˆPÍ ¥5'?;Š•Öß—Üñp4»bDª$ ÚÎ3ѧ¡2ùï¢.(,nILXO‡"G]ɦή h`´Ó;Ax¤g•jj±ÅOK°†U¡$ÓýJßÇQj\á¨uÊ´“åTøAÙ¹’ÅÇn{(·¥’û9ÝhO _`AEÙ÷G{C½QéÔ+ TN®½àGΊ*u÷D"£»á³¨+‡P=Ί°Èø+jêøhÆò²!h_“ëxöµtùüvžS¢vtù_û)Ô™ó _û㈺çé£9SjQv¸€6‡õ„%¤fß¡a{`[üøa4^I³p]•D3%‘Äýk4·<‘ÄÝŒoÖ;w>@+¦M6©¹@´~þàG6oÚ •ý«Ñv÷º˜›Ú÷›å|0gGÇéPéï·ÐEJQ×½ñº9ó¼½øfO5ݼÅâ‚ÏøÝǘ ÚÔ'ηй49üMï4ª Ëé SÅ5®álRXQ_Ššß¥…‘ß–S`Ý?Ü{¾¯_‚v­tÑGLòмkÉœ§eõg*™øZC z¹Újå T¬ðÄ6@…¶Òù[-âPá;í_þª4Î,/‡…CLÿ’ôÇ6K_ž nnÕë|3Ä wA  k¥HRÊ$Ãè ›¨ÁkŸaüÚ•ô…˜ˆö§¥ñ†©'áíO®Áôœ@&aÏÌ +ß‹¯€?2ÌgIµHàÏÚv^®Œ(Ì¥ëðdý= ó¹”vϧ§"³¹-,>«Óµ=|–üïœ {ËG&×þÈÂòFØ?â»_ae°$#PVÇ,& ]…`ý = ÙlhpŠ ÀfØcÿů·akpËV}¶u‰”š`ç‡U_ÁQ#øgËËýbS öù”ó"ARåä\ø(–<»ö‰I?³EØ2#‰Ï;¹üú“H:vš†‚Ê•óˆBjb«"÷©PØF}öþÞ<ŠDÛñ‘ŽDÑZïž^Gfc»*pž¶Ž­Yÿ¥£DYƒ‘O¢”¤ujKžJç…f‹¾„²rÝÇ0Ž =›/á\4Ê­zyŸÛlBùõTj Õ_~½!{Þ•J¯Ý\ 9‡*YD¼ºÎý¨¶ÔÙ}5#è Ï­"Ú‹ô~0EmÙT¯·üͨÓM¼"|ó/ê~¬úVwT õÒ¯ Öˆ’ AÉ…µ‹äŒh´0“°˜V‚¦Çø‡ÿy≠Ÿ&ü›h¡¨+´ü“-fÀ€ÉZZZÒ>Ç“WÄÝ“Gÿ ÍJwîY:1´‹P¾pCWï“£Ź^yt¡c»Íñï9ºñVŸÍå˜ Õèp|JW~ÐÅ6<ûõÅ‹äº"½’J:Œ3k>·êÖ„.Õá<‘? …ÈLôÝÔ ¨›SÑs瀱Æ>ËÇcð߀ôUßpO¨œž?ªJ>g~è%©BùóKúÔÖG üÔãøMï«Pþ½'þè TDÕ\Ê«…ªv½JÏl_ø½ÐtÙFêOUþå¤3ƒ¦£ÛÉÐrupììƒz½‘¸¶ç íê<ÿ¼€ŽÐ•Ä¿k¡ó‘{úm—è:9$\¾¹]%û¤®Ê„ÐÕdôDººêªÄ·ýF¡ëÃ]&·Ð-¤(Ûf Ýíÿrgò '¢òáè½¥?6Â}ÛáÜc`@„Ïhúæ .ìÿ‹˜…aŸïºÃ]ª0òd…u©=FœvIËÔaÜ©»”ê}LšËkþš†©ió°÷Œ`–òn9)‰4̹}R]{‹ uѰ´`ùùFI0¬Ü¶øCÖÔžºþÛ„ 6‘ÎÊÌYØ–œ¢?œÛN®üq¬ù°ûå›Õð†ìëeÑ„÷DBJ¢g±”ºH”"¤:H¢èÛúÉØol®…ßGrúA3môH)vô*é+/¤v“!iG¤-úr".éŸÎüyúÕ¦çþ#“%ÙÐŒ°52w ä帅¬¿r½LCvÃO|©šÈI3x²áŠrs޹4žŒ¼§£³c™‘ÿŠvލÅÿZã×¥¸§QТT¢tƒ…vü¨žÕ»¢HGªAK†#M½Ï‰|tÁKÅP*žý¨où”å`íû4‡rë¿ ^˜ Öh|-EÅwú‚Íׯ¡²×!©­HT59C¥Õ(Žê§¾ 9dí¡fN›Ç—"Dùi_ƒÊQkùô Û}Ô±Ï|kDЌǚ¯ù>®IÆã–ן:^ D½¡ñ3©Öh¦ù“XÈ ¤5eWÖÑx•Ë-jSMë\B³]JñÄϵ‹É֯ѼWC„¼ó&Z ½¾ýšÒ-gýyjWâÑjÇþíëgËx’égÄ·ÛÈ¾šŸ®¨E[ ‹Á®>hw©¢ã¬Ð4Ú'Óø Æ¡CŸOöôot앛ȟÉA§݆gŒ]6Wú³¢«~ÈÒñOt;þND*<Ã_à>>} -«ŽpÞ ÏA¡Ö¯¿¨z´`òZq‰àKé¶wÕÒ‚6æ@þ¿q¦P3ô ¡lü÷ÚÛç´æT¼5òç?Ke^Í—ÛA©Un4ÁïûP\ºàÚŠߋɘŸQLÀ÷ãöyÖVEð2ú˜aUôÿõâ„ÏcLónPZãkd¸òÿ9Œ’Â#aRP™%èôeTþ“Ì£j s‡ê؉Ívޏÿ/½uÿ8 µ~%,PDA]ã®YWf(Ô¯{±ç‘AÞÃý h:d%q¯ö 4³|::h®¿'YA-×ä6Dõ¡Õ£”Ô.ÔÚäÆ=rË  Ýð=)…¤*tX½76~àó’k[—ÞCW=톞ƒôhÚø°ý „ÞbõC‚ý‰“Ôjq`0H¹OÀ߆­?H´^'‚‘°1ËKi‹0:^âMÄã'£s¸Ò`b›Ä;‘‘¦ZõFª}aæ×½JM3üYa0ülh ò†ß©–læíu‚âa9=c¢³%Viì¿ÀÚ3öòØh/Øpà%ie‡-¼Áß±f Û¦;÷í½‰`÷‰Ö¡¬ú.Øg#,UÞ¶@‚õ™†ÐW HN}¬ÏIÔÊOI"› ±¥Åm$\µX®<†”žDK5ÿÝAêÊIñ_ýHg›ÇebF‰ l?oBƒ2Ýø¦Z„Ì©lh¾È¹ÉB±{»PÆøCu£ êìÉ4\ó&¡1A×êÖí8h){;’A "~aœìÐ#u_{Ûü<¾]áÅÄc?.­Á˜‰îq ʾƒÜ©5&éÍŸ/gáºÚ€±--ÌŸL™—¤ï‡…G¦*á÷°¸aùÄ=õÙw^_ 5|KS­{Ÿ.ÀòÍ@¦çºÖ°"uòè»×˰2úšIùD%¬fT¿8^kA¿7C4§`ÝçJÔlÔ(lø_P*÷Ȃ͢óÈ [åýù^Q°ÍT¯uñ´<ìÜtœ¡có†Ý¿›¦/Ã`ïÑQã€×IH ÕrÙÙ‰ eõõø¯!‘@Z¡ã+$þ¼lWž´…¤¢Î®† lHö‹jìÚi$¿¶ú™Ue) :¼^—"µÂÓ»^÷‘V.©ÖÏjé‡6^Y=àO%òÿ&w‘ÑÒr]F$™‚Ï<Ïõ{„Ì™'}©Y&ý Tí‘Wn\_+ÙM—*²‹Ÿ#G@:¥šx'r>#&9ã–ƒ\¿þ«˽‰ÜsMwˆ%ó‘Wp,,…ù<…•ŒO'"¿MÓÒ å ŽóØUÎ@"}{9š8<|㊿ð¹&4ÉÒ±™ØB¡#‘“×r¦Q˜}ÄÃ!¹ED”ÏRK]BQÛ s[}<ò…¨ðo˜ŠËœH ›C‰Æ¸6’‡î(§|krJeΕRøP, l–ÎïŒû(—U\wüÀ‡E‚Úh¦Q¡}çîpÂ5T" MXS\Ceb¹›§:QÅÛE庸ªØ&´m £º²W*EXjü‹NÝË$Aàâù¹wï æ¸—²¢ö+™ y&<Æ­`‘øé êæIs¿^F=?ê’ò_h`·KFÌ!‹F>ãâßg¡IÚ{«cVïÑl«iŒ/°ÍKò\ŸCK6ºÞ‡áhuw?ªTé÷A>2Ä´[ ¢MŽåýÁ]±;å,Ü݉R Ã]F‚N<ßo ¬¡ ¤þMŒÞG·‘ôVÿ˜ñT†Æ×3³;è!nÖ—5„÷&ÔâgЩØütØ=TŽy²ÍD’€ŒÙ ¾r>°Lcò!+£†‡‡†UzÄ8¯­€áQ´”²I…fÅÃ?²›S Ž—_€Ìßõ€OÅ»ÛDÍ¡b˜ý³l ”ëÊÞV¨~uðªO \Q<ÐUP–= ªýâ«gSr+²[$þ´=ÕK÷£~ÝK¾~Û×a`½}Xíq>ŒH?,݃щ¾Õ!çaüŠË%s˜è¼9É ½S\Úpac¦ §/<§Ø‚“bÉ]Ù0Ëôòë/_b˜­¬³÷þ$Ey›SxÁ\”õº9˜Ï—,ôe†…Õu«YX’ðxa  K«¤±OæþÁrûSûüI/Xik'5Ô†Õ¥2¢9ͰÎoðœJõl¸~k%½›ÅwMFäà/OótUl'¼!½»",rqENðoê)Å?ajgY5 ÙzD¿²!‘cÒ:ï¸;ÏéȺ5ƒ¤âu•‚‰{HöÁ®ã\½(’+©Í‘AЧÈñ†\¤ò»-ø÷ÒˆJ¶¶¾EÚ=aŠöò÷H é'uáF¤˜^§2F³–’­üF¦D}SdNÏã½½‹,÷¿Î}a·@Ö›BaÄ ‘Íoµ½\<ÙOÏgg³ ‡ÛŠ¢Eá'äôç¿Ä†\~}">FùÈUbHM<££%žø#o¿´äåhä§ðúzAù¿ôøòLþC/¢);<,9¾9IW‚t6š ûÍ(DÎõò” ‹þ|G¬Ÿ"'½¯§„¨£hâïå'x¤;Ïö9+Š‹ðS5¼D‰k»‹št(ÙŸõLàÕM”v=k²+—…²¤_ ÙÃPvÈøD+£\-ÃA"Ê»˜zrŠ–)§{íP)–›%½Už-:z?Õ©Žw(hCÍæ’K>æuˆÇdb]¸Q;~}êëV2³;wq–2Ÿ`)¯õÝ@ý Ÿ)i…ZÑðóÇ›¡hBDÀË¿zÍ®‘Ìž;¡ƒæ±RÝÚófh±“ãp.Z¹PÄÙߤAëVÕÌ_Kh£”Ëj·‡¶å‰™âhoÒ¦QùÀ–ˆVbæÐ© Ðê"º|ˆ'ý‚nîãz¶Ï;ñžéás߀í[ü'‚™7ñˆÜ|tÈÃP$¦1¶î4€ÑwÈ+úXUÁj^ñ/h¦"zú,jƒ¯š«T÷ž0êûüªJês4()¡¢W-hØzÊ/¸&Kó/@Ù[³2¿3CP¨æþWwÊÚúÞ}ƒòÜ忇Bh ríMnYÎ.üf!¿V·ju×e¤R¥Ac,Î9補Œ‹C<мÍêžm¹¼v5… ýI´C½?tlÛîŸHÉâÓ/B±wÞåÊgÐűÔÞ¤›Ÿ<…)¡³÷¨KË»Vè’OäX€®®Ô6÷Eè,å³Ì€÷«7 @ï {Õ`9Oè[úÈ3>Ö99Œ£7a(ÚŒcOŒ†—>ÐÝœ‡Q»µ åË0ö©£Kòj4L˜ý÷”t¹¦” *™+aÆv˜T@¿þ|¾RÒ« ÆGúUÁRbÆ€eP ¬z·:žƒÕÞþ"k™ XÏËð÷É„Íòg—ßšØÃß­ó˜.EØ5Š|ÿI"öú}ëCøÖ‘ ­Ûµ~åÀÇ D¶‡º‘„Æ´ê‘ç,’ul«õâ¡îņËwø‘b™ëHÎØR‹ÝýåHŒ´·†+w\/ ýuÅ'ñw¡æªÕ½Ò@d’“±ðŠôFæo*1Æ‚^Èj‘ô-™ŸÙÉš>¡,!r yº;!×ô‘ô$Ùbä•¢l붦Dþ“²ÛEº/P [ƒS¡—ø»+¾#E¡º|·Ú˜ (’Ê&ñÇë yËÜš=ãâݤ¶ôy(…l3W>k¢LG‘㣵?YÔ=°î:†òÍœ8{ì1*z˜2 ŒÅ£2‡¸¨Ÿc8ªl ×Ñ@uR«T%SÔ47.+ÞGhVG†n Ôújé&:"]ûýb_ðØsZêóïñ8W¬Æ‰ˆ¨÷6»ëéì#4Ðþz䀋 z·óùÐ8/¸øü=_4KêK±ÃÑcë=¤¥hþ«òÂÄ'hQ3ßßàš†–=bŸhEsÐj1¶ôøÈ4ž¤¾ž]Ž6 ºÚ.Ähë<¡U}Ýíî®U¸Ê|AûÝçTý è0ÅX×ËçˆNòš·òRÑÙL$¨˜M]"Tdgѵ¼âºœøIt‹5¾á3›‡áÔgúéÑÒµ>v9OKn¨Ê_ƒý`Cmëê èÍÜ--~Ó—¬­¡¶nÈxÿÔTéKQFÛByø*Ý-ø¥«Ïæô^J’ã_ux@‘ò" ÉêDÆèóŒ{PÑÙŸ€‚tþ#NÉì’…êhб8r^øý:µôá_z¨™3ˆŠ¼–µ‹öíyÇ>CÝdª½fü$ÔLõmQBÃVXø/+4™”E½ …fãÑà/œÐ¢âí6ØÒ-ËI-ª ö¾ã“?ÐÎ×™''~+d‰¿„ÎëÁD©‡¡k,íjfC(ô8•ò½5~ }Ò¦o_Æ}…†çÕG¶\`H£ÌðL W¿éÏ%ª„Q‘ûç³Ír`,ÁÎïë6˜>ª­SÙKëåå0=2«Õ5Ô(%–¯ï¼F¤«¨31,~:òàKQ,s¸ÊßY‡• ói\Ž“°º“C5(é ë¹­r ü°›ò.zæ!üçºèzT vêûßÜùö4ínuB‚°ã%mÖHD‘ÜaÑ…Ä×Nð™!iÌ˨4óf<×ÍQé'„•²kÞ¯&šUNWõÒm¤M®f/ìÚEú/äÅÛ;~ßnã<„̼¸²hʃ¬Ç–‰ûæo û‡Ì̘Ì0är¼{Æxy톘FD GQÚ$6xøíÅn5½(ôÂl7¦^EªÔb„òO¢ÿ£R"”(8‘@èƒÒ÷Ô~oEÙÚsœS„¾ô¯ #µGE :þs~T– ¿)ŒªJ÷–fQý®]LÆf1jn¼m­®}‚3stèêsÔ×z}Å"uÞþL=ÔLŠºêoR.Ÿ¨•$Iú™•ß'Ñ0ráÉFG$‰v¡éë ý AR<ÑMBÁ6ÓŠ 9yJ‘nh m_ÂèHÑ* †øý~Z·¦|çÚÓ¾tó(ÚÚ‹Q˜ví¡]f Á«Ft h‘ûxOª{&G S¦edκP‡>~LŽ®cj.èÐd•)qO)}Šå]²Ãø™¯Vz{ѽÑ*’î˨&佯™x Y0ßâå]6XéS–‰P›†Ñ™ ÿ¥&h@wXtçh뿲Ä_¯-Å+qQãÐðt¼ÁŸ’jNøz­¾„ßžÚ˜8–BuyaáÃÛzð[WÝ~‰7j6;>%ç7BÁ|ŸÃkyhÌ*8è› ×víõ kæª-• ômüL>Ò× ÃL3¿æ“aÔ”ïLù ?Œ÷(sT½r…)§*µ¿A“0óCÞ˜ÿüÉHýL¯óBY_£ƒ1±´sM‹$q†°8ÒTO§ K·¿©ÞR€e¡8RóÜϰܒ1qtÚVbufÛÀª‹þÕXÓÑ®Zaë:ÁIžkã°aCR¹c›Q¦º—L~ÀVËÜðiEFØVñ¨Û» ;Ï”fuÁ? û#D–°·–~?%” ­îu(f"áão$ÁwÊ‘hBgß–  Iì<†§ó‘tæçÞû{x(åSê8óa¤8mÐyº¡ ©ŒÅ2Úbï Þ;¶Ï·ÎÞþÓ™WIHÿK¼¢§  †95r.¦"ÁúÚö'dÖÿ]H¢uÐï2¼tµYëÉßóíäid'ÑÛCȡܜû{¦í€;}{H"W2«¯âCgäþ}Uì¥Ä*ò’%:ËÜdB>ãʤeÍä7îÙïx#üi¯.ûäÞç÷âÅxøRsf•ê%Ô¾èW[lŽB\¤$Ê…—Qø_E®ó ¡£©“]ZEQÕJ]9<ÍèEÅŽb¯ðÛt¡ÄÝøÝ6¿a”RU«|RveˆÜéÓQöbÛÿs(wZE{f2å½~0«I• BYÇä›hTLën…¨Ô¢±WüUHå üŒ¢ªÍé»üAE¨6¬i÷ýj¾#öÓXÁ£kflaþ¨u\?¨fø0jº˜Se•ÛD7í…Õ“†xêúßÈ¿ž û Cêê¼<Þò S'¿…Ž…Ô5…⨸B>ÙÉm„ÅŸÓ¹`h¥ç«ûÏ×|§›|VUZ¿)° %@c×dƒMY?Ô´_—ž§?U¿ãœs?†Bù9e[”éK<œ,e2Á©©áPAvß7ëT}ÑM}#r ê^ ØÞT„–mzGÿËBÐùã§Y@Âoèó¹ìíÒ¬C—nëË?Kƒ+WŽa´š¸è·³*Œ3oJT]ƒ #·¦^¦~˜ô}fþuD ¦ÎÞºèÓò:9 Ÿ‡azÒ:1ÃFf VŸ½)pƒÙ|G›nÁŸ–8•Åïßažd,•óY$,8þŽ÷ çòÿÿmÉÞ{ï‘çI¶²gD”(”‘T*ZF*TV*£RV¶Œdg‡ìÙÙ+"Š¿ßïçû?Žßñ»u¯××uã}=ÎçóqÇûªý¬”SË?èÔN%GÀJóéìë`X­³«Vp„µÁ[ºv¹°Nê¿´P’¶Ï§ÕŸBÛ§ð;î@îÃPØüe$Ùn5Îm{üÛTºA·"àoŽ›5Ã1MØM»ÄO°Ž—¹„¦Ž#aÞΟ\$>PvýÝá[Hâ+ôIIgŠÏÓÎ1 ¹Gl­'¡>ømgs‰ø%ŒÖò°#½€TºßoKó “ò‘»ÔHG3 ªñéÉ ·Þ¯š エɣÈÈ;P¿÷þ=2 ‡$óÙ¥ 3ßfõ»o‰ÈÂú­´—ÿ²Ò$Ú|kàA6 ‰]~+d§¨s (DFîÁãq¾È)hgÂâX\ê+’EfÈíB7ü#Qy⇔¶—·ïܶþp:òE¥Ú}vZE~-÷Ò9_8ÀÈc°ï•?gŒEœPpbD›E)…þhŸ½åƒ"×¥»–PÔ^¬ñÙK.K¬ÑÓwBñ‰ÂLxƒ’29—ó ÔãÑ>^£ôA‹…ÂÁY”)à°£QÓAÙì ó7'PîvÑ'? k”¿¢!;æ4*ä=Íö=s\ í˜nh¤åíçcfÈÚ]¡vtpq-is:Œ§µsUɨëÑéíì-úM|à²>m’}OžúR}ü-Š\ôWÌ%8†„‰gâ«ü`tšìÂçl2è6Œ?¾Rm¢.n,/¼¡‰,¨€‡ê,Ô‡·—¹T›@ÝK÷YòÈ\¨i ?æÓÕÞ6ÌÙo¡*[òh÷¨ RÜáw„ª¥Q‘ÔË7 z”#ÈNNꘉÞðä‡CÃQM?Õ+Л "D¾mòߊþÞiŽGVÇüU·áÛžQQÇ¥ è’|™ª[ºm)Näu°C£Xš¨ë[è%øéh<½gÃ,ä¡×¤,ŽÞ«æÿü_ù•Qôl^PŒœß…^M¡[öçɱô÷ ¡Ï-GNŽpßµß3?,‡‹â…¾Àü¤¸2¦— ß}Î<ÿÉ#GÅ3Tßä¨~ÓQiI!»c¹ÐS÷Æ·;WŒtm`ò¥Ú^û¾ÏNßã%}¸Ë3©Júêõan ”ô:`1æÌÂ,çKXQÚ¡UfƒÕ/×h ?3ï›|Lçö¹6¡"eö†M§ªþüð'&îöƒ¸|Ø™°ùwÅ)v}el‡ Á«‹‰ò‘IH$øüKØA/$î–HܤDÒtƒ‚½e1$O9Æ÷OA)J¶O‰Æ åÊ%б¤Ñ£S=O¾tŽ<·â.}@ú ÂÎD*d¤³©™øy ™žI&_;d„,‡•R¥Ä!ëˆU¦cU=²ç»û.=½†œ…5¯ nŽ#÷ú/!'!ò)ñé©È!ÿÃ)T³A=¡ø ›-zñ·hÛ0EÎGÒ’Šø£˜›pM•nJDí(ôœëD©%Ö˜€XS”¹®»+ƒrÜ)ÖÎôGQ>zýc|·*òZ\6LÃíFüÄþwQ9e2”¶8 ¤mp„~zG—ëxC´.ú÷QEDZ•ÒšPsÈî’ùSÔr{“¡"†Ú“¯†µb¿£®Ç ½hî~Ô?H“jtî$äþ &²3ÀãWY̸³ÐȬI%TuÝäþ8ˆ¦ïŠjÞæ£Yáå­Â94oW1;õ -&ª{gÅ~ Eª¬™Z+Ox¾umÜÓ˜ž«¢mŠpž•jž¤•È2B{V²C$V‹xÊVþ™aP:$úeÐL¢ãÜ¥[±xIïÓ~ƒNÝËÝi¦ËxÏôÌK_‡d4Ûö!tu8„ü›ï¥\æÂ?ÑJ9ýáå#U|0ñ9óöÐĆ¿þ=Ý„ÚùÕŒLÿ~¨vyñŒ¹h *ŒËÃ7‡¡¬çbiúî8”Ô.-§É×ÃÇfrÂuù8øxÏÓ¹Ùq>Ê1þþ×ùß~‰OLÖ[³¿ðé8‹ßÍAÿΩÖ©Uô‡ùèæò«ï Ö_cHE-ꮫí…FwÁ—iAþÒs6Pß8¯>ó)¢«k½…ÆY£g\]–ÐÔ6Qwþm4Þ ¿!üZj âÌyhá+ÕÖ¥¢ºmhCáÝ«Á· ƒ’¡üœ°"tT'½[n€o]ÞZ\¤‰ÐÙ‘uå ktèZ:;=Rnÿ*&~CoøB°VJ(ôí²“jù‘Á@SG´ÁPQl- ·É_S†Q*W×_g`켉Ãï†0þU,«È‰&ÏÔ÷ŒîÚÁ´ ÛÞÉ ˜!Úô¹º1sºÏ>ŠÀ‚v-…чFXJó÷¹« +‘¬A²k'au²xvˆ¬~9èYIwXÀU{RÍ)ø=T&}t¤¶:šŸcð†ÂëšîÞá߱ϮH@“’%º\Š„‘Ü®C †H¬8& N[¤4”+ûÞEö§|,Ž‹)„·Èoè!¥ÛM‡œ=¤þ6È"켄têS,ßm‘¾^7xeÇ_ÎFvÌ$!s™×QåŽddcyRýy… 9*LŸ@îœkÕ/-ø/Àß„6ù h¦µ?ËQG!ÕW‹ó(r|\ÙÊt¿¯¾ˆ–ùø2%E¥WGÂñÐr„îq•D”õ_TýzåÙ¤Ú¤×ëQað#çãZ<\ñÐãT¤! ÏŒAUFæáSôJ¨vík!w:"™«UsxjL¦ÍœÜ±Ác{FÔU¨µšNíj…:/“4H¡ž+‰ÍÅWÝh pNÖû×ê«-4ÒC£óoÂ&çÐ$5åLI;šþ“"÷Gsé­Ÿ­ háAÒf"s- ÓÂz«ÐúÀñ`¶¥^´qŽö‰&­@ÛOõ=º>Çö󦣛Ñí=W\"?Ô㩦‡n™[2è(M$`4} O'ÊÞ§D§›Bõwžèlq;ñâFyt‹Wâºüo ²I…2M=2Ž+c¨‡ÕÀ—f'alþS’­)ôy‡ì&Üe„®xvW¡ã¬Ì˜íø ´š”×íÈBÓ³—ôu Áûøbc'¨ /%¼ dοßëªì{c*gSI1´xÇU¬é…öÑi¬j‚ο•!þñ—¡7õŒ'éG-¼X—üL F¼ï¶‡u¸Ã˜Ñv¸b>9Lä¦ÌÜ='Ó ¬`93%÷¤`ŽÕÄ\Š6æ=ãØ¯8ùÃÂ)‚ ¿Ý X&W¤9yýIènx ËDw?¤_€ÎúÖ?un°R•Y¬s‡Vý\Ît°ý€5¥_ñ.ƒîð‹ƒ#7dw¿‡2†®’‡pÀ?Ù(a_ü>YÒò¿`3Šú¶=Ñl-{Ú…M¶]¿ôú€9ìŒ^!‰H£ƒßÊßÔ>{×j8S–¾"AŸ¾›Zæ$qG§Î_ Gâ®%Z!)£Ÿùý‰$«8û,oÅÜ)×mÞŃg:¸ ʾÌe&ëÒ\,*²cCºã'ª¾n…"ýű»r%!YÂDé~åþï¥&·µï‡ÒfO³b)åú­âldýÌ5cá‹l›»¶iÈ!=˜3Êž†œn®,ÁWÕë-OÇIäžÕT®>Œ¼ g×âÛ‘Oc’Všþ2ò-E<œèFþTÊ3¼z3(p^jî)3 *É&AT Qßã_¯ÜE¡ßBT"gQxsêU¡в«ü6b§¹ÞM¢xm|ª?O Jj?y}Â¥ÆÕ¾èBéReÅj»(+ç8+)÷å8‹)„Y¡<Ã\v’Q$*p¿æ_(ŽCÅcªï^êßÄÃ^~¥‰ÌV¨ôšì¤›™?*o\¾íù7„<x¿ò^þâ:Ö<Šêmç¿«øŸÜ÷á@9"iÔl?Pè¶xµn´ÎµI1¢Žö]ÏÅvʱ‡ñÌ“¯b ’÷ñÁÙÈËá#„hWظ ùí+*غíd’é ]hmß%Xt¡<½•#‚¿ÞZµ.AÏL‘OÕÀKøæ *}4à«^¯Ñø]h ïWëÊ…º‚ÕñèCYP=MúŒÐª E2ž†CqôÏÛ};¡ÐTr¦Bê2 ÉIaÚt:{p¾~’ †ŸßO·þ9·ï­ÿ>wF2ÁìÂr^9©#Ì3w’5ñÁ‚Ss¹Àb?³C¨›,ß>AžóXV »Ü⾱?'HžÂÚ\ªfÛX8¬›™—éúšåÃï–›!ESc°¥jT¦“êˆí½5ª`çjÐ{ŽÏuðïü¨òæÍG°÷²B›ÿÂ$’ŸÍ5ÛÝE"›:îWsôH\úü¨ùOu$cÞ.$ßE²”FJjsg< h+ºy$x¿g’©ÓË!å™Á®ž5H-apAÆÆiY §”/"ÝÚF ªÃHŸøA‹£'>$ú•±!ãG±G zÈT¤û2|™sWÓòÞ!K–þàØÙÈšå¦=,‘lù±Ñ™ÛÈ^mÍü¢ 9z®Öøö"çºc<rs?Wxöfy¬Â4}¯Y"o̘¨ÔhòyùèœD~¾z*ÝÀGÈ?¡©œ„U§„VP°TÅ3‚² …š›x—PxùrÔ «\QKB±3nƒÒ3P<¥x3ì‡ JLw:o‰ç ”ú™ˆêk_ðP<ºx_eìÚµBôBQöVÁ¹âÊ(”ÓspÙbà@ùÃt_2µrPÁ—2WrÄKœÕضBe¿–™9OTU­z¸@wÕÏ3N»Q¶¡Æå±äëg¿ã1³×³mi<¨}RÕã2ïGÔ+úÞØéD̽ñ|^xü‘xÊek4;¤t/¶M½g*ÿÜF³Iá¦ëïÖÐÂU\Ámv-—:™M\@k?RWëÂR´Yb³dדgž›ÌB»ï‚:ºÈð”ÛÁµ«ÊùèHÏ̽÷F Oÿ¸{“y¦—µ¥CÙ0ìfƒÓO;Ú΄Š¸kŽBi»£“dH s}˜Œ1F^õ&OÉõBç7µ ázhUiôÝ&쇆go–æÇÂàËQSñÅ^¨½IÁßÍl ÕåßÞF¤AÕeÍjvPy‰ÖÓ‡'*a›úÏÎk¨¢8ëóFª©´H³~ž…ÚÃNOo²A½s€Wze44å‘”§“èÂW ÒÑiè`‰òùÛßî¥XÈ7è|+³Íí)]uõôºª »†2#À½z¬L%·OAO”Ã˱fè ·W7¦Ó†“«½W-í¡‡)æ ±¬ÄþúŽð¥ô|Ÿ¬«2W€^ÛdíÀœ*èéͦ㕅~ –ÅV®¬Î ƒ!…uf¾ù ø¾Dªz•Ç~h^HxžU£]¦SêõŽ0nÐAq‰Y&f \ã-žÁTGˆ± 9ü\{ôðd[7Ìi“þj°‡…/ÿ=×» Ëomδª[èñ4Z"øÅ}Ö‹à…;¬/§¾K5P€ßÿ®¹Ê'ÞhoJÃ#'bc5gñh¤Ú-Kš ®wÄ\B û‘ðÕó¨Y-UDpõŽè³¸ø¢ö‡ì å4ZÔ•Ó-Ž0ãD½¯›ñ¾Á}hà«.C±ë‹Ç•øÎE#¦Ý˜ËG¡ G-Ñ·ßhú¸÷_ÒÃ4K¼ÿLè "šLøýdŸ»¾åG^=hERsÔãTZ«&¯¬=½Œ6W='œ?ò£m‰uÒqm<ùw Ôh íuÿDH?º§âäç˜ o¡ÃRÍà™S¤?òËâ4EÐ¥æ!‡æ–ΉI?h™%Dð¾~é]= í ÛO8ŸŸÛ÷`Ë3¾¦ð-2Õ~ñ†1tVÿHgOx]ߣïÜÛç[^ùéÀ•(èMº<7öÒúÏqõŸ˜ƒÁcç“TÈLá»S’Ô‚—)Œ¼6w Ñ õŸã0~`k¦„H&âĨÂü®Á”Ã]êÏ¥îðSˆä5å(̪:kòx>ƒy£½‚Ë»`1µÎÒ VHÚ[Fˆ>ê)±|B^¬UŒ$ùÀº«˜ç2e<üï/\êæ€-&ûÃî?ßöóˆþ1øZ®Îu×öï(ý‘VCB¦Ô­³æŸ‘(ß»U’@IünE¡É%$sII¿Ð0…î?Úyg•†K®Š>lEjšEÆ'ó£H›œ'KÚPŒôFuá4ß“‘ó™Tþ}>d–]ô}VP‹¬÷®ô¬È‡#?kL?—2r“1xÙå#¯Üß“j¹È?<Ûb,OÞœg´C‰8}}šrí:~Ö%~¦¨Ç£-.ÀZ‹úÛdrî !xœˆëtäH2Ù‹›oC“ËP~²ÐMg’ÞôÂc4çåáa^åE 'øÓ²h™³ CÄh}P²±ÒÑ m.ì *¢m3«ó“Ú‰žð ¼ùíï¿s ïeÅSSul’ˆŽ&ÁHZðtýÚûç¼ÑéÝ(Sÿ tö±zO>Có¿?‹ëí÷ÕwŸ•5ñð­ä[r©á~ËÔK?X ºÌx»F—(®Ñ ¶A¯cð5{èTt¬á–Ë€ö“zɺ7~CóvYÛ‚-4º]¹$j¾õÿR4 à‹û©Ò‹áKãƒgŽç á°ßÃݲ$hÕ˜§™€6Ú_ñøöó'ëJ_2ô8Ý¡t>$êl†að½TîWä— 5îÉzüÆÃ¨‹Q‚&‹Š/ÊŒÀt­ HósU˜¹&N’E{f sÝús}Òa0¯K=§vÈÝÙƒ–`‘Ähely–„÷Äu2´`ù´3C‚‚¬ØË×4Ý=«Ìa3éR°ººX×£Êk“1Ƭ&ðkáÀ•` lÐË3α‹Ãoci>Óo°ùÞï™Nkü¡ÔOJ&n…íà¨1N‰6ø+ò¶ßbvI†ùŸû° 5ív“!¡Õô‰ As$*ó}Cgñ IÔÅÂ)yµ‘tŒ34¨ÕÉeŠeW‘"Àÿ¤Û7RzÍàBê»ôg_"mÖðû¾ñH·“ÖX@x (Ó®Ñt#ãÍœÌÁÑdêÔš.ÔFÑ2ß.#²úåo§]F¶R)²·¯ÈþG7ø¥¿ rªUôžä@® zÿn änYa°=jƒ¼œÄfjsKÈwx‰'$°ù&i’ú^þBþ„‹®±ç˜QÀá(É·”Xýšn…1¿! …&#ï»,K ðhydÀÕ Ù!œŒÍG1%¹*é#:(þø³„ÏtJìŘúˆ~G©GÇÿú‹¡´ü$£CoÊLu_+Y:²J¢â›(WÉf@zñ ÊWo\\k~ ãñ¹+æûÏ'õ‡[¼˜P ÝOMDåè;WKƒ.áéÿMÑ$<*=Ñlq² ÕÓhÜOºk¢†®×Ýx!UÔœ¾bZv\µ2Ÿ{,˜¢Î£!ù7Ô{õ•‘ ZoÇÞ}Û†'¤¥dåÝÍÑ8û³íân4M™š­X÷E³ñzR;u´ðøÒlÚé„– l^ô•híû[kU mIĽé'(ðd!·ÚóQý¾ÊØ€§>{øyAGß vþÒŸè$RiFHZ€ÎW¤y=:ñŒNX®ï…> {]æ2TpOæÓ´\¿´?‡Úo^%çEšŸeR‡|¤aþ@ ÷˜1|·¢ŽÕT…îM¶€=èh€øÃËÐR,î£C, šŠ†eÆ¡6ÉÊÍ/wàÿ|·{‹ý;T$h>·Ú…Ïõ÷ڜ酡ò•¡Q_ÔÈg™°Ëîç×ÙŸ¥§öséª^ìÌm„ÎÇ4UŽÐk‘{-]Ó2¬Ó´fáû)¾woU `¤—‚ÔŽF£|ØÖ®ÁXZÒZ¾Q3ŒﲌFÆÂÄ›=­Ä\˜ô Ïš‘ˆ‡)q7òWù“0MвgÌhÓËC±nÆi0sÀL2ÌŒfEª.Ý-‡¹så5÷ÐÁü7ŽÀüC¥°èÑŸ×q1– 3Ë|ie`åÃæ`P¶/¬¶wEç”úÂ/"¦;×v_ú ÛÞ®5Øx“9öòÊOؤI!qt膭§ÛÞÎÄk°q[‚Gt᯸¹½õ–ìZhÃ5µJ$p8þxþÑq$|÷µ:&1‰ ö~Ï=9…$n~m…g´ïyö›$7µÚºíu  5ìñqýÁƒ"“¥H¥aÿ=¥iÄÝ9ÙÆ‘Ž£;Î]”éÅ·‚ß6ð!ÃѳÞ§ÂQ·ùšå"2Üñxª­‚ÌRâ74³‘Åà—Ã*²š¼¥õSØC6ûóuœõÈîõÄèG²8r„Ù&_ ™BÎ ›Uòäêã —^< ‡/|*C^ËS–t#Èg¬®ðײùvE?t1¤"…—mU <§òŽV¾‚OcHÇ ÐK£ï®üë(\þ<Æ*ØEægŠO ¢˜õE­u?}oÑ5è J¼êfº™ˆ’‹åè]f𓸔È!g”!º/µkÞˆ²'~žY·”£!¥¹É1‚rëc¶=«»¨ ÿˆ±‡ä*þ!ë}·2ˆÊÎ¥5âìz¨j~ë§þ57T/¨L>wÁ5>ÞyÛY¡Çòþ¸š@í”Yå CÔS#m$QÚçѰ|˜ðÄM‹¨|ÍZ49ªUS8sÍ(íÍI¼Ñ<2¥†ù^Zò_yi‚VÅ 7Û˜ãÐF{¾&%¶m«ÝÞ&|RF;ùûrö¡Òhÿ¦ÅÐ{}"Ö< cÑñsí=ÙitRº~f ÅÖkÙÿÁÐèçC÷#EÑ־ɤd&C³õ4ÿ;Çâ\ö{©Wò%òäÿó^f,À®š ¥‡Ïk@=_£DéÇP;ßñÜ® jìßÛ%'ü…ªlîL²}¯ªXˆkŠæ‡ÏAÎGt‰ÿÏwõóþ>€ ½¯×QXB•ŠÇýW‘PcUq§¿è| -ð`K-€Æ/ i‚çÐzÙžÿª´kÆi‘N¹Ã7òõõÌ‘Mèä*¹#Mrºäîöœî;ÝÂKY_/µBw†ÚŸÔNèîM­Îó>Ýu;á¹ Ð}Ñ6yã>tËURùYC·ÃЍw%tÿU÷â͇ƒ'6­ŽÆÐKA¦ý@ú®X=eï€~SÃØAÚ³0°‘Ðð~`(y´¹ ~ †W5*úˆ`TøÄpj#ŒÅˆ˜X‡ eñ¯Î÷¯Â÷bX€Ï*üÄñ6g˜ü¦ôy Äûh .›ÃҞ`•"6ÌØii¿g¾k²þvÖ kêÜü ¿&Ø]šra«­}4˜-v˜¶ßS4oÁ¿Wy9iH ÛŸÒÏô 3ÏѾBb·®õ\Nc$Ueö¦L»¸ö¾$y&TµB½sê¬Çíh°í+ãÞƒÆðŸM ÄËÐôx†.ù&5´¸´MOÄBëë¢n›äPh+ó!r¨ ‡ãÄc×FFá[ÀüÙvó»Ðù¨šTùb"t ÜMö2ˆ‡¶Ž º¶}nïû|$ƒþÁ¶‡øØÑðd/¸Ã°dçï™ý^ý£/ãÎÁó¿aL»I¨ìíoy %3“ç¹ø +`Z‡¾³„fÌoÌ, ÀœšC‚‰),¼aU¡? Ktr,"Z°òÉø†Ý©Ç°Æwåg¯Ê;ªÆz`ãêæÑ”¦S°i}ƒÍ»|þ¸çßa"†&åv7`׸€ùõ-2$H~0W*‹D²þl+‰H<³Èa\¤í!>j—ë‘|²lOGö <È•ÄæƒT'èv¯t!M½gÌpoÒõ‹ú¼€ jMѼ¯‘é½Gúrì4²¬œœ¸Bƒì÷F>ðÈž@®SYÜ YÚÈ:d¡“WŠüú·PЂá§ó& ŸTˆüx/EŸD²²‡“£Ùbb^Œ+J•V9º*)£LÒ¶[]Kʹ¬º>KDúW«K¨¸¾/½B¥ÏcùæñˆHÔízm)E†Š™ÓšåÝxx(û†ùµDTVˆô"#ÒC•Þ"&]Ǩ:Gt¨n¦Õïl8Š¡†qÈž®.jþ[¤JûŽZC®÷)²"P§û­×Veê­—w&xT¢¡¾M—-ž¨{j×2‚&uv= hF\ö¤-_Í]õžÖh Å°YÓ×'–hu†ß`Ïž­Ùê.¢íï·‰+xr}ŒïÐÈ´÷þ:w?O­½ûÒ粎÷ÛÌü~ »è§)‡t&T "×ôBç?Ú*yiâ:6e-õ€m³5嬸éPVXéŸù¤ª\H׿² 3œÏ¼‰ƒÁѰ£?C¡›4NÊ›ë ´3$‡åÝR‡f‘æZ5Á6ø²e›¼°5á% VŠdPÙ7e6|½ Ê“¼ß;6 Ÿ‚‡¿VùÑ@ùôÌŒåØ~¾]v駺`¢…¹ã¡YeˆlÞè(t\‘\ºg“]&m×Bo=&œe‹€¥¥@«­: ¼n^™> Ã/û-7éWàGNеžû0ú=çϦk ŒU«Jv)ÙÃx„tÆÆ?˜0\9Æî| &…Uä^WŸ€)†ÒKiÔaZ0?Õòå{ø©œÝ+yÉfÜKuÄ7>Ãl3oÒ÷uc˜·9g¿jT‹’Šf'.À²Ì…•Üw°RDøóÉ‘~XûõÅÞ,~Iò‹èÈÃú!µ{¤‹°1¾n&¼›Î«Áf Bð‡<×@²°¶gë?^.‡Í*í´ °çêÚwPA 6úÎ=¶8‚Dú®ùwÞDâw]¼µº‘”F"Ádý’ݲh¢HµAò½pb±j¤Hè Ð AJ다‘Zí‰çk¤5ÿ{o銴¥Kž"}“h‡ØÇ-dèótž|†ŒÃõ¡ÿBilÀÙèÛGdþùjŒàe3²¬Rª[!‰ê™Z²s·§¿ FÕ¾&Ž„uätzØ•'\Qé#;9‘»mÜÚuyún¯Oo!ß! ¾m-È7ôÀäô»Jäþê‰ïŽ/ ø$Þi1¤CÁ³ Ÿo}ÔG¡‹ñßÝ?¢ðƒôµ™*)ÔÏN¿õEg H¿©£8·É„6Ÿ JXö4²£d"Ë=g3J3gÄ SxøûBF"tvß>Fêc!YžÖ<{Ah³÷Ò=v9 ùùèŽiDÂöÓ”è×t?Z2ìík‡¨y_@£}TxU[:Ô}Xp }Ø 5/ÍìíyCõQgù^C%tù‹j‡òµ[?âsç'w¬ /zÿw-¿ÙM«žp*šÄ„Þ¾÷ƒj.ŸÃÅŠÿ×050›ÿwZž%õ)&qC›5õk†W"ÐñH?š=޾Åh€—²°?ÒŸ¢ƒ®ßrø|Ç kïåƒ3ƒý<¥õþ²»óߺ뽶~slt/5—܃.ÏÓb-²vÐ5.þ‘{QºUïzpP A÷üál¿4 §·›bÙÍú8z.ô^è/Ö ^ï†A‹r»Ƨð=…u‚édŒ,=Éâ| £?›æä×ÀøýdE‰"{˜ô°lZÍ‚éÇGèŸZ-ÁÌPBþñ»0ïGÏó'I–ô–5 GÈ`%3µn=ÖNÏ ~ [†u‰·CS¹¥ð[Å4õϯk°åáIww@ ¶?´ìtpÁ?ŸÆ€ð#°·Á¥g•c„„·i9‘X6ódÉ/$%ºaLOË€dÛG8´Î Ý“e‡µSH©ó¾ê‰?R?OLÈ&LF:’‹¶Ñ’H<åB›Z2|øÆzêà'd:Dþcï82WîÔú‹P «ËÏÌÏ—™]\-1[“#*™ÉÙ¹O¸ÜðšBÞ¼ï†TÂÃÈÏ?‘mÜöî¥{ Qµ=}ƒÂu¿KÌ]_£èÛ§«Ž¡(þé{“Ô9I”ÜayþÈ2¥Ï.L ŸËEÙ;™Á•ü(7qŸãmÈ?T°piq ZEÅ©Ôå ·Pé5_U=ó{Ty6ð°Å8UÛ©,l2¢ºŽTa¤ù#ÄåÊy^RÔ´¿ã.ôU5»Ü«â'Cml¯åm¾‚:åÃqw‹“PϪ)°¼¾õ×gî±ëÖ£aé–ÈnŸ žxqÁä¸àU4ÎzM3ß|MífŸ<¹‹f—9  Ð<šr”ã¯"ZT9òuþ«EËí¿fv‹h­yüÕ›ú ´‰ZÞY^EÛé’Êv½hwìRod¯Ú¿5½û'˜âÞÚ£cäé£õN¡e”HÓGntê[éYf¥BçÌïƒN÷’ñ—ù÷"j34mv´¯3™ENGÉW]ÒÙð[&í|}ó ô”:LÅý…¦òªŒþPûÏy~KD* ƒXÄ_\rr‰G”æPÒunoqŠâIID;œ¡P™e5ºÜòÂÎíx½þïš77uoÚÿ[Tûþ™€Ô&úù…ÿó‰³ÿ"oPÓ<ÿ·ÿsßj‚KßÞÜûãçëîšo‡¡¦O¬Íú®Ô†æ‘.Œž‚:Õø‰l·ýžœØöŒ{ê ~økºCÃaöÂMkh¢|µ_¡YÞ‡õÙûthÕ>¢áwÚ8¥Í܃…Mžàƒ×à›ÚbدüËÐyûk6)wÊ÷¼X ”„¾ËŠWõ˜´a øÏ…û0TdMyJFìeÏ>'ƒÑÛÏ>ë¾€±½¹ë}Na¢ÌR"8—¦\y‰m•çá§{lTåÀ%˜uºN^•ÌóÉN$.ýë°8z»Ù[VDž×q{Áê]j9¾òÃð‹mü=¬×3×XV$Áïø„ÿ§Ì°•dÂF<ÕÛjNò!ðÏÍ}ýxKðsúò¾AÂQ|dc4Hìp*~ؘIU=ŽÐò¾GríY¢ÉƒžHaïÁ’Ê‚”iÜ÷¾ õ‚èNÑÔ¤;UõÔ0Iئ]¯|D&îÙ±ãÈâ ¾kYüÙ¦Së\´‘³@§ùkò|3ÿÐ?Ljü,E¯g P`rWycPèÇ÷£?¹-P”êQx AŠû·nprѢπûå"b”þCvÍÓ…å(-òËl)Q¾4“êè0*>Ua©HG¥ÈÓ§o Å¢J®Qç ‡÷¨º§cË«} Õ¯ ¿zXkˆŒce·¾¢fH…õLýj±j™™=Gíjž;ç ãP7¢¶õ!eê_än.YBÃÀÔ8= }Tã}ëÿæ0k¯jeú&>ž¼›ýrOçýš)c¾†r½};"÷â‘öÙé’“§SaîÛ«‹Z‘A0µ±Ú{͈ü—“õ´¤æý×Z‚2»KP{¢¿µõ³)Ô]fô<_á õ•϶k…ª¡ù¢QïÆf´ßô¼Òœ¹‚™,ů¡—¾Üš¼aÀ0êè«\ÉÿrhTiʲ¤àŒÓ¤KNõÀD‘ߘ:òýBuLkùðÿ+I‡éõà/Q¿ÁÏ0N¡t¢\˜‘¸zàõÊ{˜%Ÿ¼jþÃæˆÆõfe`žÓÏ®$¦Ì’H¯elÁbªcÈcGXÖœp®‡•\Šå#Ÿþ{þ×^°L8OÅÀ¯f/'5¯g°ÁLR™ð ~{Šßþm[ ›í в†ðÇöOL-ìp3 „R¤¼dú±°÷˜QÁÌ­ ¹nw`¥EEýaÙE‘‡^œ÷k´%n;€ÉÓk)ÿŠ;î÷Ðõ¯ä†‘2£iÊ1äRœó²º’t¬ÊVEÏÌÞ¶ÍnGà2äÅ&åÝÞ÷CKv+ŸùÞÙâ»sge⯱a!² µ#ŸjDö9fä³¢½ÆÕ‡\ÊÌuÅ&‘û‰QÃíÍä™;Fö\ ùøˆÔ•O*!_;MC¥Ò ä–óºŸä…úšÉÚî»(Èä'‘@—‚“ÿnHï÷F¡êl–ÛÅ(œïaQ»»‰"ŸÕãùŒQtÒŒÃÌ‘ ÅÈ/øßA‰+ÏßÒŒô£ä¨n—“Ä7õ‰¦åò“+‘DÛ~lU' I3Ìž?Ò@rÁO§à=__X,àAÏ -e¥H¤2I»WiÓŠ4§Ê=mK›‘N#ò`I)Ò[/Ü£¿€ çiLE?AF_Jæ[») ä9Ÿs2ë»Ð9‰,±Üo_ëf ëja‡dk%©¾œ6Šì‹Ö«õ9$ÈÉRùÑν ¹ åsŠ,‘ûa¤Óرÿò޲‡ú¨~%ò•Ì­,¨ ¿_Kq¯’= Ê>#:•Œ‚Gt§6†¢ÚX™\Caë2Ó›JU(r3íĽUlˆs€¿ê JPö]ŽàAIcï[yêÒ(U´ë4€Òf‹{KN LobÙ°ʾ°t¾/uåüîI¿Bù‚GC¢¦·P1Ö˜ˆ@ò)*‰æôÿ‡ªw¶ õ]޳2²@Í£Õ‚/3 –ï;Ï-OÔôž¬ª¼Œú÷ß×»ãq§Ânìƒh|J×±käšæ–\|øe Í54U#ýŒÑbúy‘ú´Š§ÑaúŒ6zÛœõ×ý/‡çÉt^½w@ûΓ+–µrè ÀiyD%ŸÇ®Y{;ü?9 I®%|ÑEŒ6áoÏl–#ß óÉœ)ðg#·öÁœ+ôÅ>7•z“í 7ß³qFCC£wœSé ÔÉÛsŸ¹Ö5R!å´£PõÍq׳8*"¬R?K5C¹Q=c\Ð(#(7.ƒ²Ïå&bf÷=1¤&S·eŸÓ¾îxÉGPÍÀšøðþ¨³J»Ÿx‡R¹V·÷ó°Å1µ{¯ú)´Éb8—$·¢öçÑ_øö @ÚZß:cÜQÑ\ ºB~tO–’ÿ¯2iþ±9 ]SœÃn™@× öCÇÄ=¡‹e‡ÕÒyŽnŒÜ€®ÈÚ²bèš'ìæl°†îÄÔ6ƒ‡Ðj¯Ì?½5ìŸÒÿB¿§”÷l6 Ìf;‹råÀwa›ûïÍ´aÄsÚ%ZwFS(ߜЃqåMÉ®k“l•Qïóò`Z±¨õ—ŸÌÜm"RƒyÚÌR¡šO°8#&¡ +~ª=ür°&TÇæ¼¿Õ=r+(`ãÏYÆœ3‹°%sþþ$ l¤\´Ø™‚ Í£a¯£ðdºØ"ºïÈ Å!1[_Apú<’Œ·¶~<È‹dÔi‡¹ñÀ0Á+Ê)G¤¤úÒ÷´ž©]úUÏÊ!mïìÕî¸(¤WZÁEŠFdxiðØ•ýÒ~Ï óˆ:™óÅ»4Úx‘Õ¶&]î8²óÄxøìGN:­,úr!䆽GInÇ7)ÙÇyÃù™×z?ýŒC?úÔ›öÍ(ø‡¸sYI…3-ºÛ'¿ èã»t\(›rñWš.J¶ÿ}‘ê[€Ò iµNhвnRÎ Ý(×LkµºõÔÛØÔ íP±ÿðg=ýTJòп¯Ü‹*ñ_ûÔDQµãZ€—¬"ª«U\bñD“zΓù5-5¶mDñXmµS›Ç¾Gæ¢NÃ9eÎÔpÔsϪ2ã5AÆøFšR4üññÐS¿ xâ‹Ð/þ?hÜùù›¶'hzA'fQÇÍ;»#v„ÐüÕe­Ì²1´hïN}ņ–{®ëdh­U¹ªèk‰6O¼{Ÿý‚¶S‹Ù%çÐNS´4Æ2íSøE•£“ä ×Ì+èÑF|="uŸÃ;¼WU+ÿ~8D⑊w8ù‡i¡iÀQùÛ­…ÈáweÑŒël„«ŒèAÇi²9h"Ó;É^˵ޒGD¶H ’¶®†–¼>¹O#Å %JIs%× HÀÙYƒ³ Šrš¹\Û÷Áé‘™JÈër ® „¼ wø›kBÞÁʇ¡@ƒZ8R6Šn=lqnþˆôœ‹ü¾P~Î('V“*dåŸDKýwߪذGºb¡šêpl"#TϵáLµï‰7ù†Ëw – •f“nCmîTÚÙ*¨‹u=‘v£¾äŽ~ð‰úX×ë‰Fû}:öÝj4…ÖmóCKèèφ|µ êyŸmíÑDüªÊÛÐÑAüB>”:©ÿ}PÉ#€.O—x›ìHèá6:åzç?i¾™{ ý[ìíõ_aˆ—¹ŸŽÙ†KyÒØnŸ…QI¾cÄ" 0–º71e&öŸñÞLØËä0„émÿvÕ[03?3šóB§ºLÏ_„E'bç¤oÿ`¹EZÌ»„ V¡Eë_Z.¬µæì šÜõ‹ÆWŠïîû|`‰Ã:l &ñªUm]†…‹L<ð·1ïUG×_Ø{¶j]®…„:~š¿‘h/I”ôß0’ô•”—ŸçG²!G¯È—vx`á²Áݤd'×OKDê˳šöCžHÇEr8t¼éÛ#oTèf#c3)Y|ª2ïWÝÙÕC¶ë%·¥¿!§’ÚIvVäѪï;x ùšX»#äëQàéúÍÓrïP(´Þ—Ž›E>\ê“~3ˆâ WÒ¨âÓQ²T7D“P ¥ã¦Ï6ä ìèÛó^úk(w(õ-)*ú±Œ};Á‡J>ÇŠ›é:På¡í¿gQua¥ó…9ªß j¾<¨!à¯yû·j¾¾“ÙÁ‡Z¯9”´ûP{ëßû>2bÔíêùÍîÇ‹úæ1éÚаG¨ÕÇü*Qú.}þ0ƒ&V¡: ~·ÐtX5NX)ÍY?оéŠi¾@Ë‚¯¥Ðšù^ÝÖ°"ÚÜz .½6ÿ¿wd÷xöyJkôuÑK·Þþ%:>É Oþþs˜õãRˆ£ FPž2N§¨@ÇH™ÑXƒe”ýY“¢áÇõÿ‘uÞáX†ÿ·³÷Þd%›DñùØ"{e‹¤¡!I…Œ …J IJI!"+{KöÈÈÞÙ{þ||Ÿç8ž¿®ãþã>Ïã¸ë}¾Þ¯û>ÏëFšÎfõÑL9˜t±/'Ö—€ÞôT¿U:h½¡¹ÂúÑ~/éÝ…ýûvtìŸÃ*T¿Usʺý *]Oû[—9C¹ãý=Æ×Üû¹¦ < e·©Ó9r¡<¨{O`<*-œìX?Cí[3¹; qîà§‘FhùÖ[þrA :¨ºŒÜ3i û<Ù’Gˆ2ôöï0Î8SÀc–¼qÏ6 1¶tœ€q¯ͶßõX…±²³¯°iÆ]óækÏÂøß#/¦~„ûe©|e˜”Ëa´Ž$„©ƒNÜf`ZõÒL"¹1Ì\uY§çü+[+ØL„9óóÅ¡0i CGc á©RßùÓa1é¥Å?,5·Ïh0À ïÌ¥ù+°z£.‡ü¬õ:¯ôò ·Â©ê“V°%¦`!ÄD;Ò·RëßÁÞ½‹7/0ïóŒŽWõxÜ"Ýæ;Jë÷IˆjÍbŽ é‡+•™cxàÒ´ÃÛú ¤0cNöØYG*+¥öhç|¤¹}›m]]éJã^àÒANª€7R›ûýó´b5N!Så—ÈwÚóÈ"´nûFß Yýõ Å~´"[óæ•ð·ãànŠ$=rÞšØz·‚\ÍÃïvî!,¡Ë*ä}2ßîgš€|3qäïÛ‚‘ÿ£ˆS½† œÞ 9OyÅLI>>‰‚Ûós¹ãx°G†ó¾Ý Õµ—Gו¢ðïùˆÍuA™¡ô.×E1®[;¢ÈñuµµÏŠZ»Q¹ŒÌ%Ç{•òPò9׬ž©J³ˆºý¨þˆ2†OÉE…P–K–èkô!”ÝûõÅRJåÉÍÏ8ž'F…ƒ×GEÄ­ñˆ¼²ÇmTü:Õœªv•œ(I¯^=†ÇΪ|“ÖDU¾Ð›kçQíwbÅToÔòh¾*…šŸCåžý9‚ÚÉ]z„%$¨[¹±þÉLõ9ô)ú, "Ë«|Ïõ¢1õ ¡ñÂs4©}KÎ6?±ŸGo­ð\4¿ÁRIÔ}-zS’ Π•væ¶Lÿ8žúÐwö4Zo0úw•öîsQòýZ ]ÈböM%´oõkCkt”=e;O€NI³cJExúÙ2AËH†*ï¤ èø¢ÕŒØ£•sÏñðGjÝ(I)¤”ÿîä£]Õï½^@gá"ëYß*hQ0§ù÷3 êÛn±ó:KCõ£·LñóPÞhÍÒAzJŠ #õ@áçS±F¡[hY?4Î3E1@«tÓ•Mr(ä-ºAéB¥ÖyN ¼P9]¡27ìõ®oéd¸G¡éÊćõ# eõó#‹]h§Êçeè$¸>ϲ1]ü$ûàOù_rŸ+ÐûîD_I@¿^.ñŽ;üm®ùÔ?âoÓù˜Ù¯o_!‚¡Sôñ]»;ûG"Åþ'²&ìHRåMIÞ€$ý×õ35þ"™wÇRòu<ð+‚'Pe)<å‹^ö"•º1“©žÒ=!òœÍé´x.6eº"ý—ˆïnv„Èð=åeVk,2æ=Ëá€LE m£¹²HÇ)’ YÚj+‰ÎAÖ™'œ+³ÈNKÝ÷=’9ä• ‹6‘ÓÉÖíÑbäzq†e@”¹»næÜŠPB^ï§®C>?£ëò€üÞ?ßèw¡Þ_8)µÏ?Þºó,;‘xžù•Ÿä ÑÇIß ÔFa¾Æt†å,A×ìçPôb™»’èo‹š õ¶!ÅC5“ÿèW‰ð0õ¡D«³”(áQçõäUJ‘i…©±¢ôCHëfE™›úÛ„$¶(kËõiÏÚåÞ„ºßoG…ÛïÓG–ð(åÍí'xLNléPU;(+{[RQm:żèj’kEDt” ¶9­Ó)AÔ­¡z,ÏŃú×jÔ ¶¸ÑPšFá ™/­Ö-2_EÓsñlŒ vh6iþÓi¸-¼^­Àà´Üe 𹌧nþ° @´îðuüÛümùζPíœé9<ŒZÑþC‘àÖ©9t$ï¼xç>:]7vpóÇÓ>:×gbÈKŽ/ìBðKšÓöÞ/ägUˆ^\ý'è ä¹÷ûVkÂ…õ}OkРa{ÕGL’ Þ…òœÚ6Õ³¿ ´°ð*_™”œ»uá’ÑÛÿï}k* à­n”±äËDÌÝ”!¼ÉµÆG.Bþeoö%&(\ ½žž%_ëÍ |Ç5ñ»· T»:mjxž‚úCŸ[êFÈ¡‘îüÝïø÷sÙ%>RÓÍw²,./ûAKÄ‹‘ÌÚóÐzïßæþOð¿~Hå*´1_ ­u¯eŸ²„V£Y†¼B hùKq«ŸJxÿJY©7 ­ª:"øU¡õu*OP ´™±~ÛíG‰ø÷†AÇEÞÚ„|èœ]îÿÖÿºÎ9 ×Cϧh‘c'Ö¡oú8õ¦ Øt{Žþ‚Ái£ƒ~Çùa¸Jü”Cîí•{`ñÌ &x³}uŒWa곎¹ñØ øwý8;\y•ÆÈïOB`a2ž†ua)½}Ë·ÞVòo¹¶œµ%× mÍ×°©ëÝߺ– ÛýmœCs°—fà¾ø ­ËÌ ’7‘˜„Æìƒ’”óž´#•@²÷C ©"Hþéª~^×i¤lž}ÁJ…4‡³TU”"]ò:q×!ƒ ²Ru”"cX±‡?2ÓÒœcoâC–äSÃTÞŠÈfðæÃûƒ$ÈÁ4«¤Ù>‚\¤«?èX÷¹ùš½Üñ-ò=rÉ­˜EJ½C²(è:JûÏ Ž·É@á§ †.(zùó£‘î_xèšcþ´3Nzó3²¥ˆ]†Ùöù§H§ê‚²±Oñ¢Ê‹í¯Ì¨P÷ýRs$*Æ}oÒ°%A¥7e‚_nâ±–ò‚… –¨*VcðDZå•.¯é?T?éËö{5Š´£ }›öýP2"~µ›g:²Ÿ{£n@$áèÍ:Ô“Ó£!9€'I½D® Áìßòçü¾h´ÞUaײŒ&7ßÅÉä iX˜S’z š}ø“¢rû š7æ>¸¥r-IÕ¯÷ó¡•Ž‚V%OÕ¾þºÒ»ßKåO‹°,£-ÄŶ52× ™:J)%l61Á]œ.ß ™?×¹ÃjàÛÏ[½dQcD?ðßqò }ò˹  ‹'ày‹?E«ìÞûößyK$UùÅ%¡$ѨÐ(cJ½´o¨ì{âïë®k_¡ìþ¯scŽÉP~(2w„”*($늺S ’mp$qÛ *×îýQÔÖ†êÏ_+“¡¦ÍÇÓ êêý2¿ aÓ6:µÐXÂJzÑŽšÎp|¹fWͯ%Ó.i9ísú­ÏÓ«3ÐÿõKÜ»:èpÕ &(%®‹9O¸eoÁŸíɹ¼îÐÇF=½?é<£õƒAâauZ.åe7þ#±ÑA;ÛŸ`,ìýëp˜¸yrÅ]@¦>Ú$_ƒ™¿Áë¿íçaNO¬æ‹³-Ìo=´úóRƒ×Ä,À2sHST†¬T¹ÜÐrƒµ”9‘±+°‘§w{%¶­ëZö‚Ý /ïØv5$Xߺ?˜ØDï¿K}ù‚$7ÈÔ.d¼F²k­½Ç¥t‘ü΃IÍ f¤LÌ$1õFê­ÔPÂf&¤Ëy’f0ˆ !JOÉZŽ!“7ÿáѦxdyûënºÖ6²SO§Åq¨!gžÜ¸«-òäH²µ‹÷#¿oÏÒm?MT›*©ñ¡E!éŒÊÜ_PÄÈôà3]BûÊk»Ë¢…‡Í³i QJ±BËî°%Ê|_áRîF9¯ X•D…SdááÝQ¨h.BϪC‰Jngdï\˜Äcâ Ù´_¢j èÚ•K¨&KY³ºÌê?™Û®t¢æE‚áJ̨-ÓÛ¨]êºì|)½oQ.ÔùçWTä<®myeÅ%éV 4c׸ùÃ~ÿ|·žzóAYdÂÓú·PÑÇ\¾D5ÍVI9¯B£óŸ¾ÝyÃ}νìeÿ ¤Ë:¿?öüçwñÏšö' {H£âü b'1ƒ¡GþmU0Þ>þëXŒIõEñ¶qÀ¸º-}Ф4Œ·Íø›’lÀ„¢I\`KL¤±hʃI‡Ð/Žji0¥Ù3/Åúþ³¦ÅØ( ön—–1"!aAêQŸoHäüåéF$þ{@‘yjI½G˜ñ€ Sºæ"¤ PØÖªcF*”Ê&•_HÃQòšºé,êB’覑¾çD2[EF¾C¿zw·éšÒ·ñ×ÂÈ\±“›‚¬ìß}‰E‘íüå{t+bÈž÷—GkaßéýÆ E™‘ëRf–r‹ r75µj²- ï‘·q”ÌÈ÷J>ªwõ ò©®uB•ú7'oX¡ ¹“kæ+½üÉI6»äuZ£PëŽs= ÿ»Q%»`ˆ¢œ]ݳî~(föVÒ®‘ = Ñ pCñ~KeÊ/ (¡§œl­ó%ËGÙÆcªQ ,…}C»éo§iP–w64»§¡Ü?3B¡‹ª(¿]S(Ç…Gø†ÇHDŠQ1\I•p«•ð¤Þ‰~(îÏç–¢µg[Ïè •ÛDÑó¿ñTŒË_«aE´.¹*çýmƈM¤²ÐŽ…~u¡ýÉÇçõ~W¡Cô–ù¬¦ :.4]¨ü¡fÓŒšR^h%i^CMæ…âJ=ÏiOäà’AõZÔ0rÀÊmž:Ê¿Åý€f‹xF¦âsPw[5ŽR¾ªî·0ún¸CÙly¥ÿ?(¡°OÝm€ŠËútàÇCÒãË16w,÷¯[]¼TcSßn6³Ö%%aM’SÆösÉI´Vut'‚Lìà·zõÃk™ÐB%é~ØÚH3D þóüÃÞ%ÍÌM.èüèüŒ»ºoïþ½{ z°‘Ð5Æz;îK9&°ï‰3„?nqÂß÷µ÷DT a Þ·f¾o=\9CÚíd·>ðÇ0ÍÜ¡<y(:ù ²FëêcÓmÜ`\©ºÈäœLüûá/éâ S¿ÙÙf2nÁÌD…i ÌqžÄœ¾T˜/I쑡׃…­ܧ|`IŸªÆòÝ,,î>àŸº«‡½ÿ]õ…µÊy¼3°QbB¤/[ÿ>¾Ö¨aÝ#ÖÁ_…íदx††»—ÕÊR ÖÿCÆ[¿Sý‘ôÊ?.Bf{$Ѹ|VxÉoއR¬BJ¹•Äác?š¡uà—×Òà.‘¡ý‰ô$3ÓÉ1È@¬Öƒ“›ÈHp&û½ó82ôèÇ›_Ff29±¯c¿…鯍Kh ²J0Ðÿð"F6æµ›æÈ~›3Ø¿a9RVXK²”‘³ÿù}Ìoä>MM×>…<¾±7®¯ ïÀÒÀÕ¶]äWxfÆhÛ±ßSA¼DT–\UÅ àØ!Q“¤ˆ3Ü¿'†iR¾}@"¥ÈÃmÉ(*&¡é¿À¶Ÿ×ò#u çðPðöé8‡q¯ªÚŠG‰ÃQwB³Þ dþkæ§åY(}¼?¾Gh eÌÕ£îô¡,f·µºˆ \hÐV9©*Øï8Ô}EÅn7ç¾mT²±ø)½†ª§wož "Bµ×+oQãÍPš€? j½=º3ÛŒºTרß6ÞG½»=ë±½h@ØFá)EF!~ù oˆÐäñæÒ‹¯çÑt†¦Ö3ŒÍM…?¾ýjŽÙ2ÃROXÑŠ<·/ )OiÍߨfDë+‚R§¿k Í’þ”³dh›5lž€Ah7•î¬þ¸‹˜†âGö9y´ÏÁ¹CzX¿ô¡D«„lÛŒ}È'øèqxÒXõȶömµµÛÌ2¿Ì¹úˆ˜B *Q&#!ÒÊ+…³›ÕC©Á¢ tÒK(Þ:ø±³þ8IÚ¿p-†+ß—|ÚÈX(Ç`y¬rêÞç /æPÈ[;(˜D&IuË™MQdwà× ËU/4æ[Õw΃æk3>Á IÐr¯8LZí´nó_Ö6û?$zÀ4ù Z38ƒo·ÛA«`Ùª¬Ñ ´¤°ý9—í -1§Ÿ?Ü_Z¦ÚÊ5•Ë Õ€àŸŠÑ~΃ÓVù¡mB/»*Z:Êo‡°Ý†Î°ÆÈåVgèfyvù¥ÔôHvTÿÚçiß…'íÁ_^ÂÓc1‹3ŒÏ%´KÃ×_ò29Âè½tÍï¹0^¢îTþ&¦tþùR´Ã?ò•ÝÙD˜'uY}¹Ó _oÖwÃ’ç•p®TXñ ãT\çËnµÀ&³‰ùR lg§¸ÓéÁ^舿 ·$ê<¼>zʼn&eÎñ%!IÒÕ:‚cHæ›S*Çþ Éoô­Ÿ«?ƒ”¯‰H_º‘!õü‚¹¹ˆÒ]?@*™HŠ 4fÄ“ò‘ñö±Û>Š­È´)þþÙWd‰ ^ìà5@6µ[Éì›ÛÈA¡KÊ’0œ[Ÿ*¨¯• bò¸å6òùŠ•Ð¼ðFþ]Ñ(ö´üqËQõÇ>/Ñä?WDá[´4uƒT(jØNå}ˆçÞ•òÅ÷kÞv¦“¢d+¿ÿÙÅg(#¥fJ(-ÜÑKƒòŒ ™£÷óTt„Ûþä}TŒ%°&ð“G¥Äœ+<ÝWñX;íÎõÄ›¨*¢Ür8^±‚t…gP]óæì{wjÔÈÉáO´ñÓí6æÝçtM‡CôYèì37ºöÒº_^s …^¯-Y6¿nøK`OÁó›Åc…B`èéZôàÛ0¢ÐZjò—Æ8žLÝŽ… ¢ï—Ôœ;aJÂêšh¨Ì8‘?Ù‚Ùêƒç§(£aþ‡î…Ü XT°›Wr†¥‚âS¹Ÿô`ÅAGNâòcX“@ɯ7†„§AH§l…ÃüŸKØUY‹òæWE‚øÌ£ÆÄÕH¤%¤yÊáÎ>oÍ+X7XŒ\ïÄXÉ$§ðçás¤”Ø Þ4Fê{î )UùHw„u¤T?;T"“àqS¹­ dQgÑê ÏD¶Ú„ÄÈ©rèFz\òˆÅ´žÔB~©F×ÊR˜$•-óÆƒ±ý.Üv(<'ueJ Åôªiæžö£ø,QÏ+O”lO7{¼Ï»píÖnñ”3“ë¼Ôg‰ Ê«GtÎQ£âŠó.¾Z¨¤~y`׃ÕèV?×BÕ`C¡ÓòÕ¨†oM.-”£zw “ì/j>wú’|Ø µÏ,gûõ¢®Ã¦ž¢6ê.”T«Œ'ïT¬\vCÃooí±†¡ñpâ9JX=¾Ï£Ð BO˜Ðæû“©ö&¹[_ÊïÞï—6>u0ùÀæÄ™+˜rµ®Ð\‚é Gz¯n0“ûXeøxüÛ¥»-Ò.sÁ©÷o¶ÌÃ|Ò}?£ìÛ°?r¨o2³­ïó{i ‰ÄÒŒV$ T¼ÏÒÃêC~I7X[yñEþu7lܺŞã[àýÎîX>ì;¼Ôüö<Ø÷b®*"Á² ›¼õu$Ò?þm[/‰ ´9žÆs"©N]KiÓ$[R!§·@òK ö(i¤üšCÁ6ˆÔy T»® íøº’Ò7ç¦É!×€Ôæ¥ÈíñÌFHŒyzŒÎœ) E>ízaföä·µ|2l³‡ì1ÙRú(0qÅm¯m Mù˜ÙâÁê—6Òn9(Ô'TëØ"”›{ç§n¡¨^Š*ÇS&{X¥8HFƒ‡ª´ ïuáaÆ,â/¤PâNu›ÅC”\þª<à„Òçï~e§d¶ ?ñ¡\‹IüÔ%o”ïàIú£Ü K/ž )¡â¹à6¹<¨Äñå à]<&?ûüS¼ª¤ Û¦?eG¼2ﯸɌêj2˜£v5f¤V/|'G­ï$Í¡ßÞ¡Înå²Ë]x¢<(Xuk õ·U£Ü{‹ÑFR?ô|¼£Ç2ÆŽ&IÙI¿µMKƒ ¯OG¢Ù軥û=´ ø}cüþ'ô— ¡ÕÑ,l'‰ÄS˜QLÔR‚ÖÚLÿ"ÏH£1á oG´=[yã=á#´‹ ]5:€öEy„’eìêÞuóëe´¼@$øÞ ÅjSûC\É,5ŒlIJ`hH˜FÌý ´×˜µãaUvŒ@¶ŸÛƶ=ãÈ>ÿ¤j©ó rŠUt©S>B.ÏÎ)|qÈÝôÓF=yµcÊ/yÿD¾‘RýöTäo[s=ÂÕ»Œªx‹2zVàÁ,ááRŽ~Ê\»¤êñ …+ ‚!}EF£¸*óPŒ6j„ïa-Ò¤m­¬GñÐ×Ó ÙxxÌ%$àWJ^YˆöG©YÿÈ¡”‘V’ÙÌÖDYaý÷)”»æAÿ7Ô,©¾†¢âG£šŸÅPùÙà î¤T™^k‘¶Aµ“ž ’ß~ †|`}ŽðÔ’VtŽ D£Ž$ê )<ñ|.C¡è-ê·Åö—ZÖ£!QjŠðK4¾”ž 5…&³ÕmÁ2×ÐL2ÓžÀ—Í/è ½úˆ¯r'ÕУeÖÙ§®"—ЪÌÐí«>ž*ÜHê÷UFëRŠûÚ¢LhÓæ=ÍžÀ¶›âÕ#úhØ‚ŠKBCîT“0>B«Ã…–gèþ!/{æ?Y›Ï°6Ó”V\ñÚ£D…®†@Ãu÷›ktPEG_¤æ[ eÅ)êKX %}¢íx ŠE­ü;6” Ð¯W. òâÓŸÏIÀß1fcà‡Æåcq;®û¯ã{—O&Bרˆgn+70rô”A¹AoÿðéE¨£l/ƒºâÜFg±EøUS~Æñ=4™ž+Mߌ†f7á„7µÐâ3%–[­þ”:²á·þç¼áÆnÉ¡ÇÐúòU÷iBghYþóq0 Z®Š_p¨†Ó皯Uûžx†{Ó\Z¶éøWk¡õÇÊk0p‡¶˜*MZÓ:hÏ;ÈÝè(tŠ|ÔT¬9]Ÿï_oP"?ßX/œV: ½ã#vOOÁßWñ³—d3`Ðt›ñWÉ( óïÔ–+ÀèáÃ{¬›0îܨ¥6}&‡|C?HºÀL|Hïh|̽žý1Óå ×MWkŸÀÒ‘\ £›°¢kÿ;ÓÖ|†|¥„AÒÖ9ØS\(8ž {gü"“^þBB“—þGK¨Ù¾dæ­#’Ü+=‘¼¥‹d¦á†ù”H®aðåçY¤táçŽÊ!B깑C‡‘N¥þ("ýzo™žG62žû6w_;™ægå,U‘åA6QBÕdS0ѲŒì»o›ÇÝwsÁ¾‰¢áò°¶ÈRÚ ßù™ñ3gö‘ß„XÖ uÂK¥ãÁ¢„ÃüêE(ìè.~ÂI E%wtY2â!‘9{½kQxØèë»ù_R(™Øk7Ñ ‡2zž+’Ó({'óÀÃ"”Û¡ØÍÿ éÙõc ½¨­ÿ÷g¼3*¥¤æ=þvuÚÂJO ªrMôRºP#~÷Lâ‰Dõã^•>Ë»¨‘!’ªÑ»ï‡á/–®» öØ6ËØUCÔýdL+VŒzW?EÍÑ+áI“yuÓ·ÑPÃêhOkÓÝ®ï)D“6éŸ\FÓw7ê¡YÞ§+«“hÞG?ÏãËŽ–´$²¾™¢ÕIîé1¯Oû~8Z6X¬‰ÖÃ_µ™›ÐVÕÌå}ã´{w oý$:00‰$QWìû!§}µkà~/µ ¨ùð¿üð÷ÌüÁl bê;—¿Á†ÆLI—/…F¶\‹žº1.Xzµ©.TøZUíÙç¶©öó±nAcPZÊŸuYŠ^Vôî{œQ!ë9Èqo¼5 t²J½o=Ø¥„o²þ5¡ökF¤×èÁ‡'&ï3@z]Êê¼X?dØ®„©¾ŸƒÌ‚^RrnÈêÚS7¿Jýßq~Œóx[‘]‚ü¢"¾Ç+W¡ð¬i—Kù»ÿÎû3ó³ Å×\(~CDûÛò4”„Õò”j¿ÞïÁÞì×/3AiÐdíßÞPÆ9Ö1b×e³…U/OAùèˆ9iûq¨Èû›û\ªôæŠ_S4AuhQŸÉBÔšu–‹ÓùAÝæÇÓÁâ™ð‹]õWÝ;VøÍžÔOI Mߥ¶ºó@  ’,¦@ë»k&dÙ× ÝÒ8!ÿr%tÏÓTm\‚n{K •I‚ž–ÉQ[ÌÐoy¡þÓ“RˆQS“9ÛCÒR ©sê0ü›ž ©ôŒ¦²=Üpøãy‡Y¯Àd†¹kL÷‡‹Jy¶Á¬6/…HV;Ìß õ{qE&d'\7Ã’ËZW¢$,/šcÊÉ…ÕŒ' ã&<°þöÝöóc°9ë4;O}rLÝ!–Ûd¡k:޹5Ò qú;Ý õ'Hÿóû3³ƒxàm¶ØµÃŒHQh´0˜$†ÔT’Œ†…ÎH›vfH¿V=i‚ŒVÞ¢òÈ<äp€¢Å Ùäe_´Îò#G1?ñfß_ä~} ¨Ùýò•Õ¸$ðú¡@\§ÞkÊ~<ÌÎMŽÂ‘,…6ŒQtôjÉ í-ð¨ûãh4JzÝ¥×[|‡2§£>æJA9éï6wP{ô/Áò=Td)ùšáJÜ·"¼ã±ïKt:Y¨æijúõ5ªÉwÍ]DõwÓåéO¨Yøó¦o$j'¼æ:¨tu“¨=+¾¼E½Ìù j¿+x²+Ñ}^ÛÈŽ_[÷ýȧ¥rëÿæ0Íÿ¦Nå%|0ytÌä<Ú‰ ׈[ ÄRQîp#$/ÜöþŒ2ÇVhøÈC7ýŒ±%h~ðœÚ' ´âg¿ÍAM¢éóÅç ò¢q¸O=”»^Kÿ¼Ø¶ŸƒY%çPb¼5ê°ðŠ·NœHsè’¯’¹†.P¶ùò‘àŒ;TqÒfV¥„_ºz:ò )ТFNÃÏí›G£cnBw‰;ç$¹+ôŤ%zÝ „îß,{0Lmáó1åŒEÿÎP…ñƒýeOca5öÈ8¾ÃÄwó£ ~01Âl8“RÆïëa2K|øB"!LÝoq^\„é$«DG§˜é~œé> ³\qóöû¼ê`4_ÿó_ø¯< ……A¢žFܰX %_ K‘oÁÊÁd‡AX}öÕ/.Á:‘y? l<%„ÒKt°¥]½Ú ;Çúƒc,ÊaÏÍC3ƒÛ ÆVïK+Ê#‘\íü’ŒGßÝ¡5UBRÖ̧$éH–ãjöí’ß¼ñyÆE)­ƒ?¨/.#µM6Ã@2 ÒúŠ8ÿÙP@z‡²÷Ìæ‘!¢p›ü72Ö­yi?AfŠÍ™‹ŸÅ0¼ã± ²¾4Oc'y€l£ ^Yû~ˆÉE‚²¦È™h˜xÁ÷4rÓ›ÿ%UÒCžÀñS>[È»è’uòØoä—¿,:w¶ù—ÏÖ3žTEš;æëò(˜s#¾<ßç_õúý&3@®("¨ôv8 EoÝHÐÊIE±’jn@‡vH_?ÐÇúôd¾ú(ñM↉Ë5”¾é.$ºŽÒ‘1úè«PæÖ;²“ý(+rá©¶e8ÊþuI:5ö årU2®¤£|ºç=õDT¨ÖÆuCTÔleÊô¼†G÷ ¶·Eð­< [Ñ Ê%ªœˆ´= éßž Ú†ˆ¨Ø'ZÔˆ¸Ûe)è‰Zª\,uŸçP‡UÒÖh+O°¿Ñ˜5¶@}ÙMW6Y4 1œ;(D†Óq£&TиãÆ!u"4/ú!áõM§øì/Å>@³éueöK$h>ξ7廒Ä æÂ“hùsñäno´J ³ˆNÅSåU<—ÿ uÀö=ys´ dÞÚµNCÛ‡ï~ÞÄÐû•}ä»nh‘žª¢¬uEm}íT#Éd’Ýg,¬—ž§†¶Fâi ú×ð[ü¼Bñ]Z¨.«Iìúוè*¾ž†Ré×K=É¡HY¹O"¢òXÕ®“oVìó­çŽè•{ð]y}ôO«|¯ËÓ.IÛï©wz[*B ¨o7Ç^|Ÿ[Å•WЪ]_Ÿìl"*?hRe\¿ ÍIkW¿ˆí÷Í…©ÉÍphW’z¾¶ù:ÆÔ>­@—_׉´ì}Oœç NîR„žcr™îo_@¯g ýè£U9½7ôÎÂÀ»›a3”0øJ¬Ÿ(>†c©ÔŠÁp‹§—ÕÚ$ŒJ½ñzœ° c¥ú4Â0ñÚ ãœ}(L½;%a 3ó—¯ýƒÙe¥æl5˜OÒèÿÍA ½¿×6,Ë`I¤Ö+¿>–C…Õ²b?Ã*G³½Q0¬u^êÏì„ZÎäö°50»nvœvivbºþ~A±Q¡.A$4"“³0“D"Ÿ.GêÛ…Hœÿ(‰kYIÒi¤Öv‘ìž1KoV9’³j”àIBŠªiK  ¤zÄuq¶Öi\þäÎ\D:•±† Io¤\hþ‹zB¥·¹µ÷óÊõÏð…:2E6ŠÖt ógæmÕ0 di–óÕ®B6’~Å©>dW¿)²•„ž+y×üô‘³X&.!·ð*ÝWäIUýpÝùN_wóXIAþ·oRÙ)öù=n2àˆ‚/îdÓ³HáÁû‹FÇRQÈ—ª®U*…Ck|LÃyQ$qo™ú^ ŠÖ]|æ%xèfIf ¸¶%½vo~'õ俏3J•/[ªxþ1èË@\͈¨Òêµ¼Óú E¨™ð+ü8¯4j?S‘¼}ÄuߟkŒ@½çlú;ÁxòóƒØ ¯bhXpÁF¾™‡‰‹¥¿Ê—:Cîˆi¤óÚäËD½p;>Å$ä)•7Ù¡l9f{ÓêT%bâH¼uaE 'Ïï÷­™)ìФ‘þˆå¹74Û:Ve¯ÏA‹'s»¸Ô ´ú²»¯4ÇÿÎËëö\ÿÿçu$ÏAKÝ¥b~¯KÐrTáïöý>I-CN{Z´¼3/5@KÚÞ-ÁL-h½t6L71Úô4š­¨/B»3u·Éýè( Z¹UÄ]êÞ>ÄêðGÑŠrI†zÝ”un2ü¥ˆv͇ARsJï{50Ôxñs@-%Œ´|Ì¿ùOƉíÄ~* Á¤?«@³ÉÌ(H”7Sœ$Ûý/ßé`Aéðô‘|EX\{›Ú»¤Ë;iuÁüåûŸ¿­Õùa Øø²&o>ÍÛN*Tçö`™×è® ¡ [.¡ å=äÌ{ýI\«õV-LÔéúö$§-0/Ï<‡”‡@>†t©ï4ºOz!г´ÛH?r8æ¼êWd´:|ö±…2ý}™YÌÖ€,>CŒîWn#›˜Ô[‚Ôd_ZÏ;J‰œãt½Dm‘‡âr‘´VòYeÒæÉ?@þ1é[ú(xÔé¤ß<ø©íDð¼ kÕèTö™ (­™ãw¢š4Ïy-«ÅÆ]D+çx“ŸO=waä’gCë¡éÜ©´U¡Òþlðí¤Hªs—ÑžŠÒ¹³# +~®Ûï¥ÚD’†'þ—6d¾ ÊÇ †J?/ 4ºîÀ9P†¬¿Þ>Ѻ ‹ËsU”9 %ÞŽwñ%TIÜk¿$¥ÇM.!)úõ\KÎS„¿£k8žFÂ÷–¾ý:È:ÙÒþNÏ 23Øj‘ Bóé²r9HW½ËÜ(Ü_«ÿÊåQxCz–À‡¸s$yÌÛ¸Ëxjÿ}mw:xÿ;ΛÙIYþÿ>ñˆñý|Ûk›é§ýwÞ¢¾þ¸Y»QøY«`3aÌ %,<”ï$ëþã‰7S*÷=ñæfo”>:æ*eÎ÷µv–¤¡Ü`4ì¨z:Tpöl®‡ÊW.5¤…Ï ª¶D‹j¢Ît]„:¹! hÐ2Íܬà‡F¥Ü»,ƒýõ (•lך_š@6 ´ ¶¼;^T m¿:ÜÙ´„÷sñ‹ÛÁ ºªX(Ó”BLg>ëmcèK½ùøˆ‰+ €efU  6¸†{!5 _0ÀÕ¤*U^«ÑýùÆ9ØL “À¤‚ íîS˜v¤ùé°SÿÊÙ?q`‚yÙò'×lßÀBÜ'74`‰RæìÆkzX§ù¼¹÷Vþªð‹gÀ:csZB¬?l6hŽ,…íщEØkSV2—BŸœ>q#±Álýµ0J$=¢ ¨:Bdjk4ä¦ñÊùA‹|b& Þ™Þ( ÿë1‰¹½ªŸÍõ…eÖÉ‹d¼Q4ˆýzK8#Š n®xË¢$ÓéUu+”92ŽšÔQŽF‰Bçs2Êïµ?(ÚÄ#ëM웣?ðèÚ=5?<–_®«ªO¢ý5y š}“õ?FÔ``Ì]î@Í1uF†FÔîòQº”º¼qæ¬ü¨O,\Ñ%i„Òï8£¬ÐȦ¾®7@M”þÞBSó©÷ýG"ÑìV±¨¢šº˜šâÓ‚/=¿ü@+ùÁ˜Ïv>xê¹ÉÝøÿÉ¡znÖ/ ´ûPM[ÕèÌá[‚%èø˜obªÅöÿæ0ÍQ¨WU (û³Yd€¶$|%¸êPÜêÏu“KVH6}žuí< ¿·å$R€Î?¹äNŸÕ é´>«Ô[/ø½yÁ ÕŸù™‡(AÅ—½,á6(Ëk(á!Ú„’a†“~Wü¡VNŸÊßçå—åk¬©P|{â [”QX.ä÷[BÕ¹3 ¯­¡!ŸÀÇЪ Z8J…ŸuæCûò é­H-èîl)è÷„¾Ž§-þÛ0°3õ%íŽ% Ÿ,6Œa†Ñôõâæ©5w²®Û ‚‰ŸG½OȮäpÈók¹ßaòxB“VØ L^Õ®f³³€É¾mÿ«fi0õÞìRÀ² LW+è¶øÁÌÖ=ꀸÃ0«,~îiz6Ì}#Láu†ùœÂšÇv‰°ðW˜ì[,–W}Ð5€¥9T°¢F­õ VãŒÃLÓa¶ÚõÁceØxËNzQ ¶,~Ì>sñ‚xñW¥³öì«C«k‘ ûùÂa¦e$â²–šbÍ@âë%á$VH2c¬“Ýd·#’¥,Ö‘\*ЏDÊ )‰—£|É‘j£:ÿÞÕWHKkaìý¯ éù…ÿ!ƒfÈs^ d¼þ‡#?¶™>ë“Õ óøɳkÆÈz¸ª$ŽZ Ù|"^°!{§ÒLjœ«È©ÊKh¼‡\,®c'¼GäóÂIù«È¿©~×~ù©ïo]û‚üMrƒ+9²(ð1B­…+ãGHj-ð`ÖfôŸk×PhîzQÜâŠè^ëèmDÑ-⫽ê(¶Î¬7í½Ÿ3ùÊKÌ…xØ÷JÌ}7”{ß×àaRVj/Ê®>Eé¼¢é¤Ö&” ÙÊЦ­FYqQVALCÙ¶ú_…HP.Îð·ÇÊ?¨vy¬ç† ±+3ñF/P‘Ÿ?€B²ÐYt´×¡òÄÍ©w4PEUÏp#|­*s§DµoÜ´¯¾¢†DG¾Ú“^Ô¬”µ¥y¨>=Ï£îå<‚øÄ Ô;—ëfošˆ'i®<ÿù7 ² ƒ¶¦N£ÑéÚĬhB³’5²S‚&³qÃ]ŒhÚH—˜?ïŠf)²¼^¢¹·A³®&Z€|—›ZeoA˺ÖŠ;¶h+iw–Oy 4‘1CkË0‚ïùú&KÃ}ì4šÏ·{s ð´Þ ïׯHìOr~{‘¢¯™}v ƒÖÖìPŒ~¿.îªRÝKßÏÏcÑ_Ÿƒ ü¢;íò(1!k¥›ŽÚç–Wo›ã~ÿ´[ézx¾;èœgە죇$(žyCvZ3ÙЗdzÁdQrìjH^¹¥™\kä/ ŠN«3“½ê.§óý!h|z¶Í‘Aš–Þü­MÜï£× x³ ÚÈ^‹O>ƒö8:i"èär¸dR®²ï‰Ó½)jÐýÍŠB[ÞþtS™ñ»{Bï±<$;ûúò¦×–Bmà¯}Qâuør²ŠÚzÓ͹¹;®ÀP‡ö xµ8Œz`"Y” £ÅÚ™ŽC!0ä¶üí LÞ´5þþL¦ý4‰#Uèàß—oNól07+0h² "rtõÒi°èªþÙºg–²·/šßЂ9³7’c¦°Ú{Ê×`tŸW9­ëöa3'_6Y{¶k£N ÕÃî’Ñã*DzT]f1B¯›tâƒöH4à0~È•IÄÎ:0 #éC¢>¦}~˜4}EÇäïnÒù=ª@JÎ#‘¤¦çY#*Aš.ŽS5¶JH÷¹Y§´’éël-zT—‘¡:òwÜÔ2þöѹ;y™¦¢ X4…UÒ¨HbYõ‹‡7Z‘-¨RÔ–¯ Ù‹DbßÍ’#'5u{rù’ñ÷>þ±ï1CÏæòörVG³$#ÿÅ |ô^(pM¶Ð5ÈÝOž‹ÊÁƒ–é1”Y7QH‹ÿÐùÖ¼êêf‡"§/4˜Ì¢h¨ÕäG X‘|¼|âÄ´ Ó$~xØn3ƃP%:ã³BêPÊü§WP*J7ê×OÔX£Ì| ¥q€Êi_KK{¡ˆ HÎÝbïBE¾¨À¹o¨´8åÖnŽ*„ÝáÕäˆV¾ÝÇó Pݱˆò¯#j2ºfwïG­öw¹£9¨“ÃÆw>POøˆ=tz¯†ú@f¯Xˆ”•©xÐpâf»Å¦:ÿz|ÿÐy4é¸G«ÿµM rægèÑ,Ò¸|ÂWÍO5†{&Ø¡û°”AÊ[´è±}¼ªˆ–Iw«Ê¾ U™ôä V<åáUJ‰!n^vTË/ÑR½A¿–Ÿ¹I6Sý*`õiä›Ç–«Ð¦v?çê=f¨Ë¦ü2xÀ*&š:Í, ´æ~ú'Ž (Þñþù䊷[ÊC×@ä)¥ôÿœ÷e{úx{ß “]¾KBNì°ÄT¥ã~þH4'ËAž¶Ž–M ü<¾Gtñ*”ÅYr1œ¼ UΗ¸œ¤ Î²¼vírüºË«Eò‰å?Ï/´ö•°€f£è™†÷,Ðr}R>°Cë-‘§ùlåÿã‡4œÛ¬¡õtL„Íåý^­žs@š÷4öH2.Bs…ó®îå-h^ h:b-þƒBî%ÐÊ×~ÛdƒZ7ŠÞTSA;yæÃ#YÐáh—’Ÿ9çétç¿L ­…ž‘G»sÕÏ¡ß?ùÐbt% üH%âÓI…!ßvÏ#ƒ0â#|£›*Æ’'hއôÁ$GFÁ¶—L×¶¤~ÛS…ÙŸj&WžæÃüéß©Ô~XÌW:ö‘ –+‹T‚5b«º:öÛ°áÓÜ:6ÛG^…ؽ°…=δïúi‘®¿+½.‰Þ}÷ ‰±D-WíÙg$ÝQp«ýW†zÄ ¯%_@Šy{ýW–ëH}B‹jý$ ÒöÉÛÈËf!ýoŸ+¡”)Ȩ•Ôã2LMì7Nþ±G–Ëô‚ЬO›"Îëî(²Ošº‡±"goÙÉ]1äÞ¦Ð3WaD>­ŠtÄôÈÿú\bQPL.;“>F‘ŸŽ¯CáÃÂg4í®£È¬é½ú&ëÿGÜ[UÙ½aßtHwwHHƒ qžtw ¢""****¢ ""6* `´HKwIƒH—t§ ¼ÜÏÌíýŸyžïï§5³g_kí™}ë8~³ÖµŠõø't®Õ£Äú•÷B”A(¥mË:{ý<ÊÔæ&¬}rÆUäxQ¾¹'ò(x£bD¦Äæ÷pÜÿ¸Nu¨UÒŸZúuDÕŸó%¿ÍºQƒ\®j¢1Òd‡{Jµ$OŸ¥AíwäßnÉE]‰k½]¨·EeÇn"Œ­<û|E£ä=ü?–çÑ$ÆÇÜïöM4{VŸ$ÄŒõeÔFn¢e:CqSŸZåzÝ[vZBëz¥ë~ºh3åíPš[Švl¡Bn¢½%éSòºð]>ì;lû~j7—ŠK‡Ë “j¹XZm9:Çuе_ŠC:¢Yþ·èzom&a‰i7—*ýînžú>¬¹¨¼T„Ato“5f7Ѭ•µÚõ²#² O\©,i†E !)›¯á»õë$¼"Í™:uíO@q G>}%äw ð„‰<‚‰6nïøz`&ØÒÅ2:däs#ú!]:#“ Ùt— /ˆƒ!yû' ¹‚õtÐ$-¤¤9ª| –ügßi´÷‹È(ü”çØ ò·Ÿìú¢ß F…ûîPQ»ä+xfh5gÿ÷Û†?­”LðmÅ3аg7ÿÎI.ïr"÷· !(¾N&ùÃy?”P«¯Œd\‡’6“2&+r(ý2Vâ•"eW7œUwç•ö&ß3ÖP)TSæùU¨êÞKRw j¼/» u¾ÇžKü‡×áé‡"àû«ŸÖ„² ™ï±ÿ…ÃЯ°è[Åmú.J~œ·¡CI<ülÉaè’ië´Ñî†îÛÏÖ gç¶e 9ôWwèç6%Ãà‰—¤º`˜8ôºQˆŒÔt‘=ç«ÜÕíBS±P4Œç˜öN*ÕÂdï#»û¡¹0£ÅdôšÌ æz‰ucÈÁ‚EoWAa,¦{Íp>]‚e¯!#rXÉ•Ñ9Hª k!„‡’X`#•qæÄV7l©ÞX¥ T„¾øXiÓ$”˜šiö™F¢Iu Þ–[HR÷éÁÄ…m$+é?wš)Ú§‡c– gjlÔ‡4¤IKªó;QŽôî=câÇ‘Q4¼„óZ2 Oß;êÖ„¬/]£*ÝAö þÇîGëúàTC’òÞïê3ÓõEþõ²–S/SPðûÁ½\(ÜÜmÇ߇{¹KDËÉ“Qü›ƒÎµ!Ü—=*¹Ó(K¥¼¼öçÊMæ½UxR Còé|Q©ûËYÎTn¹?| U+“4¡FDÁgÅx]ÔG6€¶+U-ÕÑ^í2Í‹Mjt¸GúŽ},ì?¢9ç±ÃWÐ9ž÷(ù<5º0ÆÚ¾LF×ûD}¹ÿ·“4ZÎfテ˜@: ttζÔF1ÿÔ¢[f®H*M±ðÎp†ösœ)™{ žn]Žáð}?›9Õ ¨•s2½`•_f_»¦€²…ÔPߦ^(¥ÛÛô€IŠu]ŸÛ÷ÞÅ•¶+æPÄôZéûeøöâBîõPÂÎjoݤ QÇ·„ÜÞCý¾ì”ã— v}ê 028BûìQ1·PFø±éö 3ú˜/ ‡øÃ HN¸NÂg¾'Ác 3EÒaœ½ŽÄ=&4$gÂŒÕaâYî\ó’L<É—=O ij3Òïú`’¢‘ã±LV|׌]i…©_•rz0ÃsÍÏ¬Þ fí³ûª¸7`®ZJšZ—æ‹gSd”a!?_ð%,ÖM40;uÂÒjÇÇÓŠwaEgÁOJæ&¬&ÌY¦†u.÷bò°‘,]ÏØ©›nÝ,R«VðGÛDeÐéìØðÖõ_L@‚z9WÑ…¯HD<æ3ðç[l—“gŸG’¬ë4wEwõ ž¹Ò¼fŒä£YÎO!eê‘/Ÿ¸‘*êçQ5i¤y¬Á8€tÅWN=hoEúß– ›ÈÈwL`î72™ö‡ H4 s°‡¼Oÿid)=ÐÎÏ4Žl î+ñX‘ýtýÓ5µûÈÑ9ñ8J8¹,:&«_#w½SL #¯Éãï¹× ¯N%v“ù?ï¬ÿAЗRùЈ‚wÜkI·ÈP(QJYfõ; ¯¿TçU_FÑ#aŸiÚ7po£çKÂ.—Q³ñMaF ïÛºÄeP2µþ‘ÑM”ââÓ7 ÔDé;”…îÙ(34Þ÷¼eŸÙ;AuÊIDïˆ7 \MÅ"ÉáK(dê¯~^<¸µÆ­ÄQñôû¨çnTÚ:5é>ÁÊÅ–ÓROãÒ‚çÜ€j˧¤ËšøÌÓGßÝÞÕ'Ã*ÍsÔjˆ‘ü£‡:fq–q÷QwÕ⥛ꗶš¯R£a¬Ÿ¹m83Ó/Yß}FRkÙʳÇ`ìxáÅ · 7Ô‹T‡IƒgÑÒdr0}\r†¼fŸ’e‚ù3{c)ŸÃ›ÜÁÕiXj}ºdÑËf÷¼vy`epñn>Ç]X‹O6+ˆ‡ðÛÞ«–}°y[zMòÄü‰¸V@5÷v²¾R¥õ Á0W±‘á&‘IKîo#FbäJZ¯%G’Yñ©çvçˇƒ’‘<€¨&kÊ)™8Y’o‰âžoÎÏ ŸÍ!õy“¡u¤UðåGzš[ÉÑûë‘‚4}Zë+2ÒŠzSN#“û¯Ò×öÈì¨ä½Ã¬‚,Þ$ÍQÔ k­[ç}]Zd'w¸ÚâV‰ =|¶2³I‚$‘•¹ÏßññpÞF^‡R±oJo_Iˆ>‚bôêû j  6 ‰.Ÿ“¹¡‹Â4Šw¶Ï¢ãÑKZ‘(ÊÓͺ÷j3ÌñXÏ¢Ø}éš?þ(^\uðѾƒ(ÉZùÆ‹K÷Ý[ÑèòFi2WÏŸÂP&D…`È_ e;8nÝUAyõß§¢Âä!–Cƒ¿p? ùòTyÇYª¼Ãjá ÚªnY"ŸGòQsÙYÂ˵onöù›=@]rmëÔ«’è$:| Lç\Sê7Ѱ)âÊþ"s4vì©=e4™™šº¢¿€f!§õJ·Ñ‚C}øÏ¹<´4ÍzK¯dŒ–Ûå½ h•‘èu­õ;—n~kAëñV…Þj´yÜÛºŽ¶ºç‡§n íÖÇÛ{~âTGZÍŽ¶õmzb¼È¹ÉG)À +ÃóÏVâ’ õÙ—Úa#g¨is2ì > åviÃü/¡ÄtÉóY)q=îé³V‚Ïsm7e!ï¤G‘vÛ'È9{Éä‘ëdŠÏñ<¿_«xE>9CMÖš†åÈ9¸²l¶ë7ßί¸p'WB©.Ã1ÍZ¨äOúÄ6 µü5U¥¬wó`]¦ÃgFhA¡ yhÖnf±Rƒwo~]h½ ˜è2ñö+ÿºÚ ­úl팷ÏCË9ÖPº¨ih®²rp0š¯eׇ4<‡æ7´|¯:¡…fÛXTTZZõ¼œ,L¡5Qmf4è3´¥Ùà\<í¿•n½¯ÎSN!gmœà´›sð]ƒŸCÙ^WÆ¡wA´êkm ølTS†Ã¸¦ÊT[6Œ¼•S/…1}¿…œ¶]ý~5±ßI Snþ£RϬŠn™Óž0_Òßöêe,4Õž§™„åëÍ s;)°Zeƒ’fi°að–Õf( ¶¨Œ›>…íUݪ8¢$ø“ðÛðé8Ýl´‰hFá¯åO§O#i+Å’U’ˆLå{q)³¯ŽNXFjú=F·’ž!ígm¾þ¬¤Ï«ÑMè|Œ ÜVoÏÆ"SñK•®˜)dqy‚Â÷ÈF75îÔ‹ì}‰*‡‘³åÂ2aÏ*rÏÆ·_R8ƒ|ò\޶D!£YñUEä ã$|†BÁê7­Ì,Q„!øzñç(Úx•Pïþ&Šek¿Rý… îÕ÷&¢#ÝòÙƒÌ(ó¼!˜åä¬sKß6¢|ÞèŠ6T¼£Ðb9‚ûJ\Ü ™A•¬;/5,QµO8 dÕ·V6Þ'F¼›“Ìý8µ„Nm>é@íᾚ]>Œe¿;)·Íî%֪ؠ¼èÐÍÏPÌ?LC!ÿðZ͙Ǔ">À§k ™¯ÿSœY„ ÷{›Œ -ÙôÓ7»‹b­vâ {'$S E:\0€¤R³DãÚ÷œü ¶/ÖÒ”G¶úïü³uõg€ùß~²ñ±L‡\Ö}ï|ꂼè³|rŽ¥Ç-د皥 ß"ç9µ£ÿÙGP]²e³Ë‰üŒª¶P´)–›¤˜ Å·ÆIövA‰“–XJ?”rþZ挄Ò^ÖüË¡P®bØõS*îdŸ_‚*žÆ%ñP¨~«3åñjc._qÞ#õ·éH{ 1OÍ²ÇØš>UŒfì/„‘g: M>ÐZ8¼Ó4?í*MªDœ¡3*âÝo“Uø1©Ãr¡zlŸ2™6'B? ¡ø˜ ’5_'닇¡Øò¯[0r0GwäF;ŒÉ:<;*ãêFIí:0éÂ8ýé3LÑLô¤>„9ûëÞöÇÅ`øKÓ$… ,:¾ñS ßÍÉ9í"5OdaEãºñãþ.XÝ£ÎsI† úƒÏçHÉ`ó! ˰©,lŸ¤'¢¤mB‚é«¿¹ èÎÝ–zÎm$ñàÝ|F>dÖ+äJtÂ#¿çJlîyë;Œ±H#£È0;¿…ôl·7ÏÞ[D†–cÇ?1"S¥¢Ùã÷·‘e:úìÞä3ÈnHœÒóæ=r.Zð×Õw#ÏÒan¡Î“Èÿ>µc„/éd“qÑ£ð¹‚7·.V hΉ_o ¸C»ý®Ïï³â-•åy‚2% v{rQ®ZCÿò2*TdöÈÆŒ¡RÁóš§–’¨œùŠ(ôª®¤ß4tC¨Á.Q>vÔ¼¼pZwܵ Oѹ<êªt·]_7B}C•g¼ï£á9í¹3¿øÑ8áá¡3iÑ´‡ŸêŒŠ>Z¬«LýªGËë3‚³\‚hõP;Yõ+;Z2”sþ<Ú|7ù´ÿÉ,Úm|^\ßF{úà[ѱèp?G`ÐøÒ:T¹ñ'÷':¿¹kÄ.ô)ÏB¼¢Ñ5Ü©‚sŠãÿÖaÏ ò}¯ðÁòE¡ŒèPøb sP4ú6UŽ´'Ÿ»rU&:*»*‚U¡Ý—%ÛŠ´ >G{D3A µ‰ò¦ý¨(ø&ÙÇßeJn.G®ŽBÉÑà!(2NöHs…‚€ù{îOrÙäw¨!ä%ê[(ƒbÑŽ¼ÉR (¯óqHœ_†ºW§‡‚^JAsƒ‚ýcãUh¿Á_v}ºÙ¿k{}Ö‡ä¶î/àYˆww#! ×F,úoÀع¼ woê~[£¬& øÖ{\‡IÒSyé^˜˜è0äv¦‡‰y&½éã0©ð*óJ&LŽ™2ç¯éÂ4¥¦#göS˜ÁK=\[ïaÖOÏn+ `®Ï1üD Ì׬07ÕÃB…#¿ÌÕ»°ØF½L~Ú–¶5/Þ €Çæj[XM}¼|Q%Ö÷þæê½ùz»dZ ›Þ›j5aÒðGŸðÉíÞØ1ºH·&T‹…u‚ß/ á´_bçpïSÿpËû1’„««‹AÒ^ƒ Q1HÓñåxe R:µ\œ¾%ƒTæ¨jÈÊ‘F1M"¥Sé´—³Zfê‘>£Ä(Ï jç] ôdqÖOJ-¬™¹Ü Ìî#‹cÒDÝ“Ãs­ß|f¨~6‡ÔüYýcÐfÆ™@ãË ¼óý\–5ZŸ—œ¼ÆßƒBÔãÔž-îHð¾òæë|S艺*{è 4÷³%%œ…ši ³w!óP–Î!“`™%ŽÍTéßšw}©àÈÁo³ø;JãÈøzãÉæ¥DðE“[cƒ't×ïîæ§ÿþo¹ïXA¦'è¾ÜK ¹{ÂZ×ÏÇAÑÞû%+û5¡ìè‹ü…çÕP¥ôD¯òãíhs<þ%²?ÚŸ‡›êÙBÇÛ˜œu§:èLìá¾; ]#§?y5@76Û1›RÂÏŽ[Ê¡erÐûYh¾´‡þÇaW)S` w:¯åX2 ñ¹’Ÿ\ÛïÍ%îÀ¨ÙËg|®¯à—d¡f{œdk|·åƒ‚ëLmÍèQ¨Ãp,Âë( 7ñ ãnG‘Ÿý(úg4öì”%Š);¾µ;æ‚â7•l÷£Dó“Dw¥]ŸÔ4©–ùŠR9ÛŽ?…/  ˆ(õˆI l~FâÚ“-”çðl04ü… _Ê´WPixþ¨ßoT±1áy~n ÕØŠg ƳXÏqÓI æÝ cŠÒ<ÔZyJÁ:ª:‡|ê‹,n¢n<ˆÑN@}¾,…?ËYhp„Ó›Á` ?<¿¥sÝ –Ü _=}ƒ&XlC~èšÞ>ÿùØ^4Ë÷yïõåšwŸŸþñ*-~I=ù#Ü…–~õ9ym¤h¹òV¿«Â ­®>côÕFkòÁ39Chý¢¼”Ñ®C,2H_Æ ­C¦Œ¬4r,诖W•ý–ý:-“Cýto¡zùÓpíÎQ(+}4W,6ÅÍ<®KEP¨öG{›yëŸõ„ŽÖt)ÈÍ™•öÿgÝáúCéú]LÍïºT™KùTî;ÂWÁ‰‰[¥}:!^³Z~—+§²«¸ÿϹø¸Ÿ*ú%ç[¢ fê{ÅýŒ*hP»,œ˜LM¬!sú® Ь¼Geó´8DT¼ð…ÖsÚ½Úñtÿña‡‡Ö³Jh•|!¶ž~Zô¦|îìKÚÕ­[);1õîó4Ñ•RrÐls³#÷4^û²w ZB¾:Ix­N9Rê&Ðæð{‚@\vW×tÔðò-t›†¾?·òÞ é¡…ì§ßQòÇ'‹á(tÚ÷uÖf' ¯õÇ€C.ЦęĢØÂ9Ï@B”x«Ÿh§×Šûëš—å3QÆcÀ¯æ€7ʱõ®Ð3¢üûTyšV T¼ü%Œ¾E ÷‡ûmgïåF•ü«¿¬Y QuàŽîv1ª/&ß>{ñªˆ3·r'jqyñ7s× ö³ñ¦Špé]>4ð¬â¶@}ÎcÑM4ؾ疈F“Þ‰å?>¡É¯qç—EÐlB‡ÿ$[ZôŒ|ž1AˆšæõÌ´jê|Ëý+­ûõ·^/Ä¡ÍFYÑñõSh'@ÍPâôímgUÅÏìòaÇNÕƒtˆ§]40E'¥ÙüÊAtŽ÷_]@êůq¤Ð5¬=ðVÐ?÷[°M+ý”ù>,ݹ^VƒATÇ‹GúÐôI˜¥Ï-d¦ä( …SŽà”sÐTâ(ûÛ Ê)å}%¦w}Ë1±×+ò$]°ÝþçýúsÓ‚< “‚ú^qp¤Oþšž”üi’c¯.ÿy ÉžëÎÚƒ ðyöI77÷6|.º5ÆôY’+íäøCªO˜¯y"¤ÇÛ*¸JýÛOV†Çõðûtºåv[Íò¯†ó÷7þ7ßÿ(æˆ/˜Õ©)¨;À7/¹·Aõ»œRÁŸš …ëz\ [ÿì3¯eô€âÜî" Îþç½D™º;ÔP Š\y2ôPv'P¯­ Ê{÷¼£U; •‡/ê ß ‡ªnÁ3„MÁPS}ßõž”:Ô}VWjK††¶—:gå¡I‘ jjšß¯Ftÿ(†VeïZ©*}hçÙFêä|ÇþJHã*à'½‰ eT™m‡éx]áŒ*²\ÿvLçE²ÕþÖØ;4ŽœG ìjfy'þö>†ü¶iΚûQOjF†³…™âfÆ9¦QÔ–1üÁ Š-jö±îCɹ?÷© ÌÉŒâ²Â;(—PÔFs˜>Æßž’pA¥¸+ý·¡rè;ó›RQÕçäŽá,j¼"'e‹šFÍÐÛ+ycä¨}”ÝŒÞu=Äퟺƒú7Ø2ûD6Ð0ÛŽ}Ûâ5¯–‹©á,šÉ¿ÒŒº haûàÌR 7Z¾ó£ùôl ­’fÓÆ—{Ѻ$<ÇûÚ ©‹òn¢½dõ³¯oÐÞøÃÚYUtxäýúSÊÑÿt¨zå×sF tŽk  SCÚ¢¡¥Pt½ç¯ ¿æÿÿÐᩘxg|ÈeQ®B¼Šö/[?¼Ì•Aá'‡i:$Ìš&ÉŸ¦ƒ¾TÙýÁ5ЦZA[óEêx.üiÚ‚ªÑu–Då·P^q/ÛùùG(½L'o/:»[ï½ ¾ § z…òE4-äsÍòÏ0œ‡ÜC}kEZ¬Ûòˆä(­=ž”FR/q(ûãûE>X êEY_~sÚ­ëé3ô·" }(†cï¥èÞ¯÷[Ñ=úin{æ ƒlή:ÂåN¥ï kãzÑñR&h¹.‰N¤sí•R˜¼Èÿñ‰÷Y˜Ô\ ¡Ðá…Iy±.Šó0ézÖâÆÑ$˜"«ÿ±þ¦%U&I$xaæð9É}Ã0û¸¥An-æ–o•?¼ó­Ug:ÃBã OÙ1,öÈrþšeÒwÅu!°b]¬³uXVsÄC¯‰ÀºâÓKw6ªa£æÐÁ£Úΰy‘Ûã/ü1Êž–pŸ‡l°¥mšE‚tÞäýHØN4ÞXk†ÄWîò¤ ‰½i-•)’–‘Fq¨Í"¹Í•Ú“l¤$Ó:.⦃{º‰2O¶Dêª>v㺠¤­8CÀFZ‰ôLJÝ.»"ÃÅ«7îGEÆGMv“óÈ”­ò@ ? ™çø¶Å„ ‘UC`°M™Ùb—½ëõj‘ƒæöê†ä|xpõ®ÿ:r³å苪Ežøâé½eòÈ'ó‚%Ž ÿ‘hÑWkÔ(`˜K~ÿ¶ ::Ù^7öG¡çO.ü$ C‘=“ø›)Q4îÏÕj SHÝ·`F†â±w=¯òr DÉÒ`4îc¿³¶ÍV€R·Ù4£éQz<†!Vße9_O¤½„²T)òêA(§äŸ³M‹r™âši=.(obô¥úR*0Wĸ§¡"+ù’ÊE/TúJQBïV‚Ê7Z-zdáKz3ÌŠ¾¨PÃpõ·0j<•xq1wóîÈ .Ô¢iq'êbGm?юǨÓq¶'H¾õNQH©@ŠY^=‚u4¤i z°…FÔ\¶óuhLÖ-i+Ä&„jæ<òôh².¾õTàšŽ.ÒÝ$B³Æ%JëŸ:hþ1L÷…ý´¸4¿y#$-ù=ÿ;‰–7(r?÷ åxWŽÏo´²44彩…V¹:7SWñÎøÕsq&h•é ü´¨b³úfÆaû¢…À(Ž@·yÕ…þDRh©tÞwª÷ÛÍ…>‚R»¾/…Š-Iöس›îúÓÓ’Õ´@ÈQíœù, ™æ)JÅ»\xGl"YÒ¥s·Ÿ}/…t—š¹\?yøÂÝZ«¼›OsCƒ¥áÛžfëÕõPJ§%ÍÐ^Qá‹2‘ŒPCíÛŸP—uelr©ÚüÐH×wîËj+49źɿΜ¶y?[½¶lèy¡7q+ÖC…úËnX˜žè…ANÃa*¦qzÔ2òÈãŒ(|<”ùÆHç‹ß ¿úT«NDûÁD7…sQ L¬šžP„Y’´” +-0Ïh¡@Ý ôK”oþ!x›œK3bï_©ÂÊõí,›ý“°¦ÂÕíùÖ·Üí®- ÃïN9i‹O{`+õ0ééo‡`ûy¡µì9$°jübõ¥ }BMKcè‘(šW!Xv‰{z ̇¯ ©'H¾€dQìÅ>»LÁÖãÇZ`Ž”ŸÒ6è® •ýOa•J#¤Ù›Q(k¹Št }3,}ÖH/ðÃ;BdøÄÝju{ôÞ}FfîcšD³Åù™òR¸?²¾Ì-d[l¡yùˆ9®œ­×ÎD.õfyçW×Ç‚~ŠòB ò=“$Û\:ü³;j¯Žr£À\f°D\; ÖŠ^æèE¡W.z¢(üdÜìò\Q!ꬨ1*etÕ «ð¢ ñUÿå±]ß|›ùZùÍ?÷†ˆDM¾'b½iQ븄Ü×€iÔ~Õâ°hu&¬õ÷ ýBÝÅk”fܾ¨·òúàT“ê¯Zjæz£Áz[ù€%®wæV¯J¢ÑB⹆X4îõ¡HÛRB“lW>—e4 ^i¦dG3½àÍá6_4'}4»y° ÍksU^̰¢Åó¸ýCÐR~`®‰ßCtü]‚Ïðíúîˆê "û¯ã•§Æ`94-¤\–Z4–jÛ' šy#°hÓÊd|·Ü™Å¡Ø®©íÀÀ7øvÈëOg1䓨&µôK@îžã<œÔq-Fþåþv&|uQ }z 2ù"ØÝÎÚA¦2·+ûneÝ´³U45‚üá!Æó#ç äéÝ ö’NPñJIQå¾9Ôdµ—9¶k@»hÄŸTh"oÌû¼:Í’:nLŸB¡Å¼è$?U ´ž±"&›TüÂ_¦‘A+k@_ïuhá(¶Ü.òf‡ÓBo’\ iþÈ ÒðzhÚ’è½ß2ͧÿp‹¿”‡U}ŸÍAh¥RÚã·:µÛß«ÈQ·Yh—/¼ñ(:¢àIÿ±§Ðe`ûiG¡Û-\ìààèéØG¬.;ý .- ¼ï`ðK¥ÃÀQö}ùaËÓFï>ÈûâK¿¦o„]ë‚ɰr·ãt?`ælÞ—ô½ß`Þäi!e@,NRŠÝƒeÂÕ §¾(Xµ0Ý;“Ã냦6݆°™•|̔ö“ý¦uWvýô‡¢ÆÑ$rR š¹_Ä£Ž%½Cw‘40ƒúpé’k^Üsõš/Rêe=ŒÕ›BªWÏËcÏd!­[²J‰Ò?öœ>Œô4Y‰éÍë¢EÁ=È¢mõœ¶Y×¢#šö4 {s ÁuäüÖCµõär·þœ)G>š’$ú³‰ÈŸåÃ)œt~'-ßD!§øBîDWîSÏÉoïAÑ [(5Q̧2Bª„%.íK:}d ÷¥ßI½Dm‹2ÒK]7æ¿£ìö Y—i”Ì8û}¼´yŠûï…\02F•b_ùÒ9-Tj ¹±¨>nKsTé$¢ÏJ®>qÔb:ºöþ}>j?<èäyà)ꪯ:«“…¡>×[…aæ14d¨¬_AcJι>ªg>§ÝÛ)‘G­ç 7Ù~Í`@ ÎEªÁ`‹††¶”6 _ö/ Ò^„Qi%u…_º:ÆI#J0qˆ‹[üLåKØíY£K_k9˜aþ¤[‰îK"XøÀ|-0Çb^E Á²>ßAâˆXéäÓÆß k-c,nð[e]Ôü!«+|â‹ _"M!a©p·èçE$~HÙ6-Y…¤øõ=¬ yÀÁF¥¹#H™¾tú^hRïÓŽÞ9…t”i¦¤ú È Ñ'G¸ó™(Êš§æ…qà [°9²™Í×–@ŽNñ°jšxä.<û¢é;ò½õÉo ªØ…9½Q(3HÕäŠÌåcäµ O=úÙà %ô<àéCVÛ}R¯íPÏoC]T¸!“݆J7\®Hæ½Bå#ÉÛ$M¨êdúþªQjÄï“§d.AÍœ×d‡SQûzÙ½rŽû¨{/òøL_9êg¯þ4ôDíãÚá9ühb°¾L6߈fwy/”u+¡ÅGá÷›–>hYù{ý}ZÕFg¾P|‹Ö?šº¢mVö}¨øL‰v<.£*çtÑÞ}\~£ÃS¾sŒ–ÿéP…Á\Ú;c„ÔÙf¡ u³Ì$Ñ…]>{cBÜõÿÐaÏOyn6|¨-~ÜÔ·í.Ó½º4óûdâùæý`g5ŸûÑÕð³)eˆÅ¡•ÔÏSÛÝjŸ¿¾»F>•EñKÙ¡¬ÑIûµ?”‘6¯B1ÝÂA(ø®&S³ró¦².»AöWÝw77F!{žG¼Ãý6„¦R(™lïúëÚ<¦‡P{«×øk4ßH¸ó°ðŸóósî €n›‚ òýIÐ×(ú8)fcÅ(yS`ÄÈ;Êã`?üR  nï…‰ÐÃéiaÔ0™Gicù”&ÇlIßï¶‘TEË’û`ò<¯›ßµË0yW{2„Ŧöê¬ýi3¹«31‰0sÓçsŽ‹Ì¦ºë?Z ó¤SMNoa¾Wê0ͧXèzÂ娋#6Z3Ïüa™fé6RXqÚûyxW¯«¥m®Ñ%°®µ¯UþÜ:ltžç§^›…Í »éãðÇì´^ãð&ììŽ dB‚xÊΰU$üöX´"­‰FrN_kªGQCËkç‘4Dj² Oɩ؎й¶"Ezšƒ«ª=î¹ÂêB;‡ÔÎÔ¤cÅÞ»þ6aäÌSŒô¼IsTN#ƒ ÙÛÖ¹(d”‹=ïk²ësVïò·ÄëùöSÆ$‰udi%r˜fßåC¥PûýµÈþÑÆßýíUä”á ð¾+„\ߎÓp²òX9^q5FÞÁJMmzäÇã7ï €XÕòÅY(¨ÙÉ‘¿Bá,²!¿P„™!û-ŠpÚg”\A1k¸ÏÅ¢x[š/=7JÒ–×5Å…à>ÓÑÒ«Û](•sïzÁ‡u”á8¦¦vee$T Îl¡l±§£äª7Êà6.ƒrŸœÆÉ9šP^ÖÐêÁåF”Ÿåì_õòC…‰œ×¬7SPé±ý>/.T>ÌêNxÀ*,òá4ªi®uщ¢†ôy3*ÓDÉ_Ž5^Ψ™"ª5«ŒZ£a'9ÂüQG?øMqê–î]s›D}øL¦¡v hD¥üÑ Mu©jq Ÿ†9öý|‹FfŸõèj¢1¡pCPÌ4Nê~F\‚&B&©n«hòK’ôi”š^ôcŽâ¤@Óí9Euq4»É›Qr1ÍÉøî=r<Šæ¡‰šf\õh±Çaçžc†zu®…è¢åJ°k¢ë+ä—yç@é ›¯ÔïRÊA S¾ÇBøÞ63¯àù *OÙ»ª…ÉCñïx倕V(|pšayô>ä¾;Éÿô]$dq\e]ü¶Ëµ„¬å7 ]p‘©[}Ò$'uËô@šÎ9 ûÃÌÞzBñ"ÓQøÚ2®Ae^yÓ#?¶œ¡8wòµ‡ñ§‘ÏISÏÃdø_®D˜~á×'"ýf3õ¨ÞªZüÏAú–þXx¥Tï§ ‹‹e_I¿2Âò©ì¼öeZX¥ùÅ:}ö¬eo|8  þa¿ÎÞ.€MÅýR¯uâ`k‡ðƒáNlÏiÌÜ@‚›óá6 ¾jþ=õH‰o>h›Gª„uOQ$=ÄÎR£ˆdÜÃH¡;|KœF)GÊÜϺ"U ù™í÷Hó¤:=ó^%ÒEØ="ëdGúñ¸š=Zϑ׬¨¼f™< öÜTJBæx™qÑ´dä;’¹l˜wDþG5²–ƘD‰œo.²8ji wmŽ©Ì³(䓈½<:¢‡üeQô_H©Q 2X)] Q0ºŒ vì y}W4bŒÂvi:©­(bÏ uú-Š^ÿÍÅÍŒ{Ó¯ÝõQE±ÅªëïfQÂ@¢ÀÒ«%?®÷4ÜàF)^Pÿ)Œ(¼óêû]݆Œ¼z‚r3Î3Ã"Q!â•*•È“Zj£ò—Ïm6N—QUê£U†Þ1Toÿ´gë(¢÷IÆ£‚¨ÙUâlËüµ†•#³,Qû÷±?M¤b¨S¡Ó£+º¡¢F•)POrÕléêmJMJ ~úØÃ4pTUÊFƒ“Þzähah5dĆF¼…t,hôÆ'Äš ùz-õĶÐ8ÎÐTŸ. Mx.ïŒØB“—¿Õ¸Ú=0Dù;ÅŽö;´95­ôLÓÙzÃE˜âaé'ýuIÿ¦ÝúÖ¢€Ù]=qd®ÙCiŒÅÎŽ/e^gya7¶ÑiDß„<Ù;Á-4{!çà„)éǨ]þ³øÞ™IùvæªvðÅä;Cˆõßök$)ÉÞ¦ÃÏÕuŠïz ”¨é==Åÿ*\ýÕo’@MÐÏ¡µ ¨_n#µLßߥ¨…ø^B3_ÀmI»hÑ›¤ ®†V7±:Y§ÿø°dV–î sÔÕ\ꋺè²gè×wt½û…î½2ºïÙè}4â÷?¹´ ´êi+‘K©ètïúªÕŸ@m·tdÔ`Ì)¼ 0wn’êˆy*|'Kº¼#¬÷W‹×ú#SwýOO¹¯cý¯ž2:$ŸÉ~H…´×8KC!ÅZ‰eìå$|~tYoÁ§Ü%—ŸSÛÄù ­Ù Hö\º{üÔ0¤ÝÝN:r÷Ñß~þí7ûôË®Zóýѱ™‘¿ãææõûVyïešÉ´Bþã {ÂS¾ç…ç·Þ–ãµEÕP­›}‡b‹©8i·e(!8Ý£°¥¢o¹Tí¡ìN:éôÀ!(¯¸£¹›«+ú/j yC5ÿWÑ©óP³ØDøê)M S ñÑ {áJÒ_=·ˆù»þò#û;´w´QÎ7†.²ëôOç/þ“¯æ™ž@ÏFPëÉî.è/˜èªˆ¡AŸËÏèÞÀ0¥ãÎ÷xBiy‘Ä"² cÕš‘çS`ügt†If0L©ü©}òÙfJ—~Þ\¤‚y>¥Ü³#ç`ÁÜ„2îR,^»qèú©O°T{Æ]ýÌÓÖS¸‰.Àš¢ÔÓ@ž{°~ÿ©½°ef-e«;ǧMÇÐíœK벋\×zñí+’’)®/Ó 9¥XSä®ÈÌ” 4EªÄšQ×÷H{‰èâs1¤ïذ·X@ÆDªŽ+ñÈüžØìªO!²6ý:Xxìr=/ª”ÞƒÜBí9!ßáÕ"WbQà ÑÁ N6²;’ꮊ"÷Ž,ÞýÍŠb{¹oø§\DI©|?VÃ[(]¼òâE°ʹWþ’ñA…Ó7¸ë£’‡fË¥¹¨ 9É·£PÕ`͘ 5>Y¹þ~ø 5RIÞÚ£öËÓµwóQ7sM.¾…õç:ócZÐHë²ÿk4‰’*jy“‚fý±‰³’Rh±™×GLòíÿ7>fÙ|Óg$h:é”`&á8SÈ}W˜­ŸÙý»¨þúÔüXÍ©ka°0$Ã>ýq§/z |"†efß®‡7aåðC¦º'U°Zái2ÀºY¥tÏ´lŒÞûšô×ÇþX ¿:œ vö]íI$xþ‘Õ+ ßó-xq‰ŠW­~ßœ@âUN²'sÑHjd¯î~ã ’•*ç KÌ"… ŸÁ oÜÃ)Aš~âRÍX þJ‹4µGž¼RÊEºÄ–Ù?Hßð¸‚S·ZåYÃ>3#ã4íDÇ‹Idæ&Û++ÿY¼†‰7˜‘µ[ë%9²ëœY¿Ä‰½D&QÈu„¥¦!¹ÿÌS<'?‚¼OW|Ï,D~.E[Ïú% èt«'FAq›¾õÈ) ^Ë ¡ÖCžû…Žñ èW'òPì±É’A¤"JPu^¾ý€%õn½+z»þ×¥fHÆU¾ Œ±ôÑí÷QVçÅHsÊ6–‰¤Ù œzwʹK”‹ èâ ƒò,ús¶ä(_u¦ÈÒW¾0]~´‚J§Þ½(ê8ÊZvëì,Ûx@ò».Õ»7¨F*¼¬(,Žê®gn‘ú"ĶîM9ðÏ9ÃW„~dL£Ö©×©‡nV¡vVO´¹5ê²é|¥× D=¿ã³J~¢>-CmMè êÇ8=R]aB~ÕâhÍ¥¾c{øâ|Ù‚Ñð,å±ïÔ×Ñð»Íª‘Oh$RWù°‡üÖ¤Ò“ýÐèý©Ÿ üh´ýΖîY«Þ¯Ÿ¿€Æ¾eã.r¬hüVl‡ÉÊC9í5œNk åþäÈâ?AÈø¹7ÎhÖ«ZöµB{®;Áè‹-h°{íwÊ“§=ïÜkùë/ÿúOöˆöuÙç™shúäèÍ1„4æCÛµõáýñßö_ÿËTf]ˆ(0ÿëwÿêø_}þ›S«·[ÙöSþÍ«u×mļ Ñžæ-c¬è?çfðÞÞãÍê3¡Kç¡…Š¬ø6+´üúÌšýZ‡Ä³xfä¡â“{Åyzèðæ8xÀϺ„–c.o$ýÍ™?[‰^¾†>~ Å'Ñ0pögú!š]ýïL^îtÏ‚á<[‰ÛiŒ0ê׿œ ¿Ì…R_Ä¢ôÓÆ|9˜’8@S=tfd”üûœaNÑÝoÔï*ÌçŽÔë5‡…uײóãS°äì[ä˜.ËÖpVÏ?þÒèë#¯Ÿzœ‚\*»æš>Ø<®Gy»qîŸsˆ/þØk ; ?Ø{ áv©íÜ$,–à;Wé‰Dcr¯! ÛI‰HzÎÅZr(ÉXé´üAŠóá¡Üçpâ!}ŠvHÍ”qÑæ€*Ò2$7U±K#½a}}"2¸Ûõ¥ó"ãG±67Ý·È4]y°mYd¹"D 5ümN­ÐdÎ}: à‚œdœë¶C[ß-Ùîësä-¦›þÞÎü‘ò£• ›(k1¡<ü }È»K¿\D!¹"»·(Ìî¯RšŽ"LWI¿ªÙ£¨œûÇ3™qïé‡[k±{P,ûó´p]J®V'£¤‹Åq>)KÜ×Ô'ýSX¥M·Õ(¢¬O äù4c”ë´”ëœG…Kyõód|¨dù)rÌË•ôȤ7jãÿ½»ŠªjïþŽ ÝH—¤„48'ÝÝ ( ` * (¢‚Šb ˆR"Ý ÒÒ-!-¡À»}/ŽWçöùßœ«yÁkï±Çø®9?̽~;ç ‰äRª+\°?ráY¬åÃs§QÃÈáöb¢jм=Ez" µ¨}3OŒŸD­TéÓžc¨Í™¨9ôµÃ¾$[K½C’zßÔñ$»k"f:5;ÞVé£.ÿÉz͇]¨{Nî¶ÇÛ:ÔÍ»cÊG˜su7íJ¤ÔQOU,5dõÎu^–Ó@½¶Ç&ËÅP¯E.üùIE l« È$QG«Ù‰ë¤W«]i—ëª,™Ë§¥SšC³¨ãQ¨¬uôy$ï eÇœ,{OsrØÖB·Í<é©·ÕÏCî÷¹•Èáe“+~D YW?|ù2<„—E«@Úlú¢é„¹Sr˜ SeR‡_»òf¾:óÝ€R‡TÑɪ‹P‘ÒçYáª5”1§ï@ýG­ÏlÐtPC¼Sê$4_Íʲ¡ý-QòñvòUóNÚÄâ´œúØåyÚøv¾\> ­fsåMŸë EƒRšc×whöØsÖ§V šFß0{ÚfCÓ·ÊØ[·u¡ÙìEŒ´°5\hhZÿ\IîK¸îkÙðïÐöCTu„ê.t˜|Ô»#çß)çØje û—ýúÉõÐë±Ç‚/Ç$//Ví„!ÍœƒÑ&50"8Ú>ýVÆd‰Ž„ÿõ!·žÏj9Ìl]˜Ó*†y:ÅÝ5‰†°P21ÿý?,åž´•<½V¶”öð³ÁÚÃ;¾Z½á—s´HTÄWØ2Èd=ЂDqC|ž#LH,ê8zyÁ‡éTQ·d§Ôx±ÑP@Éiu,n %ÓÙϳ‘EH}ê×Ѻ’8¤c ‰±óý‚ ~:B/Dø‘q½‰3-¾™ïO¦´…>@Vé{ß-æ ÛGE}VÁ‡>ää"gv©jáT6r5^³uä%ëÒÒóªB¾1Õ&IäŸëæ6P‚‚†K»Ø‹‚P¨*Û5Š{E.D¯xïÛƒ¢–ý‹‹Š§PÜÉ},m#%Ÿ îLCiú½jWI³PfªüÚé<”ó |Àµwå-)dÊÝdQÑ3O}"•ß2qÖdïCÕŒ©ßS¯Q=1Íæ\ý,âCPyÔ˜×U㟹ˆZ§J\tº›Pgå‰ujÔ]ª7 åžGý‘:›“Í4hØÍÂæ-.‚ƽö“*î\h:¼ÎcI¼Í[BëÌäCТlÃ`úZÝQ¾eû­ÊÍäâ)ŠÑºíCSüÖ´™»éÝNøœìXÚ±‰M ½Ž§üæ:\§%æÔü‰ÊÆØ@G–,×4SÑéÌ“×L÷ s‡1ËA¶A<¬_è­_Þ.nšFÑ6è*bWÁJ‡¢3²‡bÐ(Š®ëáÇ)dìlɽW?žEð[¨ÛAÍâ­‚2ûüÓ:PôÒúL£äLìâõ:ó2u?• º˜AÚëƒF™EzRÞø³Oó0|^Þ­ªü >˜]T‡øó.Õl%ïØ“uâž)$Š(:Ëà ŸÍ½¨*Ç£ %*ðzÓoHgØŒ¼RÁ™?S{”Îú¬v#ƒÁ…*¢æ‘ÛÌõ.Wøäí":ø8®òÖ ž±oü:;€‚O£«úiDPÈ2``E;xÍSÛ’¡ØÎIyÿM(±­ïâ-_…R2Kþ’óe}x£áe”l<õׇœ-^/w0ý»FxLÌ¡EÖ4ýí»ph£ðVÓ[è‡öÝjÐEsÄ5UÍzì’âU¯@ï¶GÍ­, |͸÷2­†Îw¥ØÌ†œ|CÞ“0ÚuÍŠ˜OÆ«s‡#Þ²ÂdWLŸ25 Lï=Ø2³RïλÍÁ<{suؽ-X0z›)`‹›Üia©Õ¢g.ŒcÍ›üܰ EÞFòÀú}ÆÆòJð[98Ï´x¶Uß ¨fÄêVïÂÜ‘xý±’SîlÚëžëúÉêìÇžY ÅÏ– ¶Jv¤v=SP)„tÂ1Œ³w!^ lÏã(dºx“>íÖ6²œ ”ý&7ˆlÁ½Â<~ȱñ3Iåa"înpµ~ø5!·z?ξ[D~ ±g÷νCA¡¶áí$¶‰š}på=î ªe°û‰âÝ×XúÈ~â^["…¬Ÿ(ËýpÅ›0‡òâg¨@miy¹nÇÎ'«ßøŽ*·Ú ’•p??Cpýv5jØœ8X!AŠZÊê1ÞMoQGí©ÍYUÔs9¹@¯‰‘2Wr%Ðhò‡Mš >vÍ¥@s¥ÅåZn´ró=UZ€–·n˜´ŠŽ¡UÐéÉûÁhýܸÏÁ?mRNÙœjCÛ6©‹¹¾¢=ñ‘CÚ˺Š<ÜXèê\Én²z¥ˆ„GÐümªrçø~¨fÿ®F¿óT$¬?-©™²áÙW¿~„C)Í>O~ówPÔ6ã/,ùou/Ÿ¬€÷Ï ¤¬³µë4cædÚ?5/uipµù¡¿:VþЄêÍKGž˜@³³…}€;Óßý¡•‹]µ p~ý®ÿB†Z“JnÖ²À軟®mIC0‘Ó”oäWSÒÒ}=&_`úTJ9ÿžN˜¾ŸÑÑjt¦ºjåÞÚÁÔw ßöªêôõQ5¡i˜Iж f/‚ÙÑÅL+×0G»ÊM5Øóû$%Þ×Ã5©7óX$Ÿì-×vƒ%V±¨Ï³° ÑÇNOÁÊCÍ^#àçÆ1qÓþ“°vuõžØD'l°ÿ&ÿî¿JlN[yÖÀæ]gyÏ»§aÛ=«Ö³\‰2…{–ŸãŽÊ€û$t2H<òJélîäÔ¶DÒ3dn‘å H6™* tW )nÑ{ëÊTZªÄgN# û%Ž–Õ6¤] •ù$’ŠôÝbg9¹ëa\%a‰ë(2Î> ™jú³g—!Úp÷FUö„ï¼—‘5h"³O1Ùæ.W÷Ô‹!ÇqOW;jÜõÓ¦‚¿Ä w_þV£r ¹÷˜Ý¬…ÈS¨*õÞ_ù¤k8c›ºŸûSIKu; ¨Ò?[{Š‚/GŽØoÉ °B–™ïN-YzõóSò8Š&z±WÅ÷аôq£„ é­p/ ”|¥­×{w*1ÿ˜Ci—/üã—¬PF¦'@@eúIÎX©&£¬EóæÊAM”ÍžxÝòâÊí h(:äŒr›LÖ6p_Ÿè¡ìþ`T¸3uì—S *Yo I»žD•'÷~0 ÓÈÉàûP}ð½g”3-BÖmf&ÔpZ.é¥GÍ+ì_]”–Q«ô2[ÜõhÔ᲎;Qÿg>¼»I¢¾t-¸â·»·Û–b¹S`]<ü"5ÖüçÃÿ|øŸÿ>€ ÞG[i¸!-ôù†ÿ Hs nXiDÈøV{›3û äæ˜ò>VR®¢£§õ¡’Dë5•ß ¨yôñ~.O!g”þ¦„÷q¢ñM-9¡/ÏO\©x-¿¯kù¥\6Ñ>…ú³? -K¹ô{ '´ù[Ïæh5Ìéµb–'WEs‡b 9±Å±Lã+4ó^›{\L¸m{—Á›UWõ¹Õ Ï]´€V ͲFçãÐ:»ÈyDLÚéBHIBsþäviå'ÑŸ=Ä'ÇЯÎ `"O†Þ[ÛZ4Ñ0`2.xç{$ Y΋*§„éTßÌ^Sü¾+‚Òã¯9oêEJûÁÌÙaæëÃ0O½u»cš Žm—‡¥äÚ|ƒ X™6nÞ¶i‡µSSwS‡#à×Þ‰·1ë5°ÅªìùD‡ ‰‚+‡Ê;˜‘˜ÎbV!ŽàÃHOâ[wö#©öaÒ¸Ð>‚£'mŸ"%M¦ú§p¤ö~Yu&…験ºª§‘áRËͽ´™È¸ÂyãCæ*2~îW @V1ãsšbÕÈ6œ¿nÜ‚…n^ÒGÎü%ç“ ÈÕåÝUõî'ò2‰§Š¼rF¾ÌÎ}taÕÈ¿,;(®KŽ‚¦´vŸ…$P¨¦íÅD#ŠøYœ“8‰¢Nr‰sÇ#QüT.Wÿy.”L¸Rjáz¥mUK(£Ì|E´å¡ï]ºg°Ò…òÚÎ—Ýæ.¡¢ÅIÏד_QùBq¶kÌ^T½#Û|¨Õý]G¾E˜ !!õ@vÑØª85Ô²Èê½Y‡Ú+^·5…§Q·ôlé{ZÔüñÊÔà ƒÖäŸM¡q ñ±ä¦(4½§ûcnÍý=·ÎS¢Åk郎¸hù´"§T1 ­ÂïD…¾¿ƒÖQ’~zÉh“qa¤q^m[{†züÑnI”A:ð9:ðüb°¾q Xó¿ º²‚C3ÎÌÓr£cÛ†ý`Í,: Œì²äÂC¾wżJªñp·àµ” %t‰\Øén„ç„"y†ƒÑpžO®kF}’f2^éÃlŽÒ~±M¨÷q÷(Üm¥«?øôq@OF•Þœ2ämœË§èŒ%«k<ój„|Ý#Rmë%ô¹m½ˆ%ø¾ãÐ_CøDbâ4M±ñ’ òA÷˜!n³Œ^*F 8h~½3½ Ÿ•ƈ> )¹4Ö&oNüÙóú:|²l´?xwrLg*”„ܼ¡©ë!‚ wœµºPy—ø÷†5@¾Ñ÷9ßëÍP@.!â4j=+–ÕW Ð"böØ Rzñ=нF×eÒ¡Ä1…‰QlãÏ}L÷ä¿>ôŸ‘JÇ(ï# ȘŽüëC–¹ ½ö÷aò›ÕD%hQ¤°®†6Fý™Ê'çÿœë!ò¨Qº˜ôÓîh@ÏÈÕ@ÝcÐGj\öƒa íºªWõ+òWeþØðgïïSöªFû®Îq†Àxí¾O1•Wa²=BÈ5¦…,¦¹¼ïüÙ¯¸ºµ¶þÙ«tgJÂ޸nm=,ÞòÔѳò†¥^9Û÷Yù°âuÜC+`Õ`&·P Öï…‹³pëÃoÁ/:Ä·a›ÖôÜãu¸ƒÓDÿ„Ü!$®IìøÕƒ;_‰Œù6 "YèÝìt”H‘¾°ë7íRs°>•ê:‰´m†‰ñWÇÁßDj{Í ™4Öî?<ˆ,’ôlªëÄȦÓ4í‘ r$Ú½Iœ5#̹_›ßîý†<ŸlXò¿è#?£Eóãj!XÊd‹àGaîÉm)ܵ»} Å52£+N ÔwjEãéj”é±ý½IŒr¿ð Z6Êg¸6ù&p¢âƒ½)KÇQÅ>ø&ËTјuf5HSF.d f;ÕÍC×®£v™z÷N:oÔmÚt›zŽú[í•¢ÑH9éûÇ 49v3¢]oÍ.ˆûœ~|-D´ésVGÐ’'È¥ï(Zñ|å ãDk¿°èi´Q4ˆY•,E[³ÛT¢Mˆv§Wy&óºý – Þ¶èP]eÕL̃wrÜh”Ú‹ŽúúÇÕÛ´Ñ)L§fªÚ'ÅŠXð°ž<—é t±Ëîø¹7õß}X©{“¬~7tï>5Tùš'RÌŠŠ Z0©Kªf/TD9ø¾î‡²iÇ¢ŽB)ûê¹À~(Liøü~òã)Ÿ’ß9çÎñì¼¥Y²m‚<ÉÿÔ¼Âìùàó;¡Ì _Mí…’ƒŠ«£Ðì¢E·Ðbõ÷ùÛCv­0 v‡‘ê {ù¹› Ãh&»½-ó9˜èù²î>: SŽWÏ×$:Àtä‘Âäî0]2lb~¦íîsîñ†ižS§ù¤ü­9dì.f03æôDŠO~]³çQ¼sæD×.Ï=…yÛ©wº¸aAZ“–&þ4,J½|Ý×Kû{{üšº`ùxûÚ9 XÉYþP(VEJ~d=ƒµ$ÑŸ‘@Ø0:-¦«¿–¤(7Àfá³ê#±°ýn!ï¥ón$jý{7àîJ5 $B2w¾‹;áT”âÌ$}š4DIäôâ÷î„#ŧXÝ莤:i¸­zÆi42@Põ%Òñå5d³Ç#IÚ÷PSdØzT»´ŽLäëäF?U‘YÈ’ƒGî²8ˆí}Oc€¬q3o³.¨!;c»‹‘1r<Ìh«‘ÿ[Þ]8»C¢JŽŽS!·Eâ&ÑÅä¿6Õþ&ùtN¶!¿\@¤nU, Õš,É©£`J#“Øün6ÛçÑ} ÷І;{}EÑ*ÿÆÉrk×ÒH§‘äB ¿;G¼”î¢dº6QYû Ü»û~žBéKöýK»8PFÞ)q·÷"ÊÌêö^« BÙ£Õ¦—†eQ¶Y+N¿{å,ó’D52pE°ûË…¸ï÷ÄYIÂü)«¬8ÂŽJ,ô;QEßÖ™Bù:ªñE ‰ª/Ž+ÊH@h”ߺ¸J‹žgœû/£fpÈБ~Ôªs¢ÏJYAþ#¯¿Ølÿßù°î{5ïåûhAã.”u¹%ŽF$/œ†õ‡ž|ÿÌúŸÿóá>ü_ø®ô,ßí³h9ÛÏ8¶–¬Sûl9ãwÁ¢ÒÕ]eâ—™äg›šAÅj€Œ^R”nz<3> EֆݕŽïæý“1ÀrJ¾*f…ìø³DûµAfK×ÉPé@Hïú%Ãz‘Òd¯œþÉ~ŒÏÉÏŸ(@ÆÕ¤rñNÈ ‰ÛÏûrJ¬Y9¡Ò6¶Æ<¬j9¨Î‘òÔH–Wè>xš¹Â.¸&̯>…Vûêo'ôm¡í.—ºÙcehg¼Ó·AðbGİa$´nG'Nüt„–ÑÇø£Ð¼tUŸ6ËšºÖæˆ*eÜØ4íÐrBc)´Ì Z÷ÞëìJ·#Ì—†$ÒÞG¡}ïR£Ëwè¸åžGÈíʱH›ÃУ¨'þrå ôFq$qÙ„/k› 5rÛ³Ò°k FÔ®æ“7܆1õÆŽi¥¿>dÑ«>& 3+ÏF÷GÀHNGrCí«RrÇÜÏ:ƒÔ—•Å™N£ãh¤VdB†‹._VŒqþèdx;2_?O}}ì² Ò¬ËQA¶þÃ’C‡º£`ë‚aýä,Ð;‰\CgƒT†’‘—û*Yå"òåJ˜ü’Dþµà蛦(h±ç©Ö½ª_ô;›š"×Ï,P'¡¨Ç™Wm(~•ƆrúJïrôBi¥+ª¤%ù(ó3 …ΡÜŇ4c(¯V²ãJ!**p¾²Øs•M¼¬×ž‰¢ªM GÎET7bhh¼$‡Û·îSñ 5òhX¼Ž£–üg‡’âÔnn~wOãꆲ(gÚˆ£þ!†Aé_ãh¨ö±{uGï… ua4•¾,û ïš Ȥ¥ÞF‹óÓ,7²)ÐÒ“Ty›½ ­Ž3ø¨› µW†àȃßhã{̦Ƣmƒ[ì?ßg@»¨6CqZm´/úÎ󠔆úï%˜ÇƒTMµ®]Áè¨J¦«m†Ngüy „dÑù“Å`XAš-?Ω]….»ïk™±b€Ÿ Ç4DÙ‡B'02_%KN¨…™o”¦âì .I³‹­J?Ê.ÊæÍŒ&5z:ÈÿVNU ‘ëjœ¢&œY<í )æ{Ãݎྉ›“ÇÖ ¡ ׳ýMÄ«El°{@\Dü±…/´ßì§\w¥>ó¹ÐvqAJS˜H©p;¤ß‰ÊfÙƒ¬4WZ$ !ôɰG < O&8qŽlònŽkN‰‚¼v-šï×!ÿ­ÞÖ­Ø&(Ð"¢ Ž(‚B*²*ÇÁu(¼ž²lî;Eú¹¼×·®Bq Wž‹Ö”¸>1!Ù‚R&ÖÄW£¿>ô¡, ?ã åÜ›g0ö¯éi6–¹^ü»ÓBT›ix¡EkÍ™r)Ú8¹ßéí£€ö;ù¡[\ÐÅ!I2Ý,=Naºý–ÐG-“'pn §5]`èæsö–ù1á½,§Î¦££Æo{Y¾ÁxÝç ŸçFa²¥xCŽ*LïÚðwµ†Ùð(!+lB~)¿w´³Ã‚ö¾‘áK3°xÇ%G¬¼–Ƙ›l{Ìaů ¸ü¬Z›˜ô~Ô…õ ÎÛGžÙÁoº_õYÏ…ak`‹dÌî­æªïkv@â·2>¯fpçQ^wUõ$$³Êxñu)ÎÑ› Ù&"UC¾ç³¦H{sV?NL/¾ì:LŒL4gÈFÃ3yŽeãU±²nUä÷|‚ÎY÷ùLæq· Œùó-.ä±pU#›xƒ|×i_ñ}B²±sFð …&¸GßÈÁ=‡]]0v ÅeIìNÞú†RWÙHcøÞ ÌsÞ¶»#õ(µh¯øå½Íý¢Ü÷´ó.T^zú¾¡¨Î2|aPñHÉ• Ô<×uÈHÒ µ ÓPWóicÖc?Ôw~÷vE[ ƒÎ\ éFãO9 Ú Ð4ÅMëƒ}?šé›P9±¡EîÏ‹?œ˜ÉoBTþ ­2ã çvæ£uÐz Äg´ùÚóîù¯,´ý<×DÐn9ôZ¨¸:0wòwðÆ*ã2AÑxÐÝ·¯Þ._ÐÆ%}ü†NÍ:ÅÁ¤xˆÑÙ&\;œü͹¦ñ¯>Ü:ñRBáÃuè–¡¹ÿ-<žÐO.w¼x®ÕÒ.š„öCEƒ!—Ü©&(Û¸$¯W%¥‚A3˽P4sQ0/ž×úôî§!çª9É|8dɬ„?²ùüOÍ«¾BÄÍòÊÎóè?è€ÊýÌTéW¡ùȾÊ#øäïù¥÷sL-´Üa@Y[¹þú: -HÊë·*Àh­²Iûe"˜ø­tܦîÖRæSÏÀt[6ð-ÃôOúÒ6. ˜Þ¢35¦­_¸ªi×9õëB`hj²ËËö˜VFŽ´­»û˜g‘SWǨî"îþp,ë‘·"rûQ_RH,D^ú/qEûÏa%V¬ëòëÛ^Ï©ðEÇ»$ó×FQ°*¯ä×0 {¤\Òz€{ö<.—~uE‡ÃŠTº¡¸óEóFN”xF®­³£%ë´òbMq¯ÜkOGç9”~8óz;¯e$¯f}I@™ßA†ŸÌ=PörÉ›“(;õ6£p·2ÊY~øD ÷‰±çQ ”«¯øÿ·1ûBwl¦¢y³nøgáEäÞQJ”S!ëó\)_9]ÿóá>üχÿÞþT0Ñ¡K‰–^ÝŽvŠ2Ȫ]âνc >E™æÕAã‰9PñðÉCþéJ(ýzMò\öu‹mBþN«ÚË&ff´á٧ߌÏêíÿóÜÒtèÆUHâÞ`ß7©­.#g?{AêE½î†Áûd'í;kÈ;üBŠ÷}<”¦,}wÌŸ…Ê8šõ§‰[PqÆÎL³6ÊtAóÕÂ]¢dÐòÂݰAá>´¦³\°ï—†¶1G­ÆÔ›Ð~ªmƒ:÷!´ËÎÞ¹ Õmö›‘K¯ùSrß½yŽŸàJQ¹#ÐüL'¶ÿq 4Ÿû±†ÆýÐüm–²QI ZžøÉÍ>¹­6Í3ÔºÐ&1ý+? ÚͼÔyÅ IÌÚ¯Z@—¦§àÇ*ôXjË–ø@oÑcçÛ™v0ð°$ðÞÞNò>üåH€ŒèI=›‚1­¬§´¶ä}ÈòJoñÝÌ,ˆAÆ/'˜'µ›; ™MvF˰ô&än@Ã9XùbNž\`kiBçÄa£ùìýÔϰu¤ëG™=9êS@ðaêVJ%Á‡þå·÷Ž!©œ’÷1O:‚ìz®š‰”‚:_zJõ‘újǃÌZ¤Û5·?Y¼çöèíGÆédó edöUVnt Y¹nð¿‰G¶bO¹‚Oyp9Ð"g¹}4åðäš:­”(t yECÆ—‚¯tŸà}·Päÿ=â>ù­5›;ç¼Q¨™¬Ë?Eã§\Z@ѳ=|ßë)Qüááû G™Q²5s%¦w¥£UŒxöú`xÏZ«)ÊTot+åE)È#©HPqWMõNvT✽-€ªBV¯#î[ :G õ–qÂ-Ñ£Sw,QãÝÜ fÞjÔâˆnÛJs@í$…œfGFÔuÊNþzÆõwïazl…3?òs½¼Ñ¨SÎãMlš´gç‹×Ú£Y½Ûè<Z˜ñ3©¸–š:¹êk[h¥ºzÝ©ƒ­UÕêl ÐT”§ú¢­nS›¯Ú´³¸)ôtíuJV½A‡³¯ýͧñ@à¬HkôO<Á$÷±ò:0 ¢x:õq>ÏÍIÀCÄî–·"íð°¤1‘±l^ÏR¦_j‹Eƒ­‰3—Ÿ#CŠ1_B>ažÛ,:ÂNj µã<ÖþL&PjÕ‚³y¥o4´²w²ë ÙìT Ã,b•ÐÿÆ=u‰) ýÏy\¨p »ëcÁ.|DüJdþ¿ ©=?æBœæ£’ÌYˆž¸¸‘( Ÿ)ºCÆ,z er׆B²&¤—ž/så6l†ëy §ÞB®®ÚÉi‘ó³ï äþù^x-s ÓmÈßç6Îz¢ òç>Ð>lüÿ}ùgŽ£ª°'»¯ù@aRé/%¦,(ò$#?Æ|Šßüôm} %Ç..-ïø³gY4w ýëó{l}#„ ¼YÍO,ìó_RŠkF%8þ»3¯'œ"‡ãúÔhX2¯ ¼Nû†¤¶œ tñ0ØRrQCÏáÀ§œ—Ô¡‘55ãÃ~˜ayú*C÷~?Qû#"³™?Â蔜v5½(Œ7ìÙŸ¹Ë&k7éê`šþuŒJ9ÌÞí™ÐÌ| ó;>®¯ùEÃÞ¸±.‹÷ì$i•sóìŠ1Åæ¬1$»_e…UçO¿÷tÁúwýé´ðkCÞÞ“¸¶Ò’ÂU>i"Q»ˆÌÖYK$>3À¦²…;÷²n$¨ ë˜&ç­v¤Ø+u½òí%¤ tÕÚ—FZÙGÃïÞ#oiJE2vŽÝ¼IÌiœýzÈš“wò–ƒžÍ7,ñ rÖ?¯Rï„Ü+§]­¨/=ÂðýeYxÂP|µŸ…RûŸîÔÁ=\õ —Q¬·bUVË¥ùÚ‰lÏ Œõd9SÍ ”“õþh#'Œòd7ü:¢B÷‡ WÅFT¾)²LÓŸjAftî¥2y ‚¨I£ªÐ£ƒZ7Ž £NšX1•²êØ&…™Å A— ³¯õ~4š;ö´Àí9šÌ¼¢ëá4+§¸üþ«ZØÊR]ÑsCKc?ß“Cjh¥ÓE¤j¨ÖZ;L˜Å_¡¶ì>ò=’hkÀñLâÚYRÙŸÖ@{çñùošêèp:Óèñ(¸•híÜ-„ßtÜñ¾y ó—ïÒD§Þ; >ôã!#Ã0žõá6ÍLÛQÿaèÖITX ÍÛØ?|¦ªÕT™±präòªP¸« ¤ Ÿ×}¯“½÷ßIü°Äcœ©•7[ûûcÎÔ·. ðu©ç¾C©¸Gó¡øBhŠn~J¼7Å/ÇÏ<©Ù…ÉA‚œuì(9¦uá~yî5¬Îøl¥?Ü8@ã2B¿Í­XŽ ,uMVgwÊ>Èž¹²ÈŒr$k¥rNÁ(²÷ÔoRWÜgø‘z8LåÕÝŸî¨2@…–¢®Ïs•¨t1î¢v2ª¸}óÙIȽš:O}ˆ¨5îg?}xýÈ"QxûþŒë¨tôùÏ&jÆ^eö´ñG­a¡­Ì/PGâÖM€ÿ;^¿j3z³ Í߆þäêâv-}1 V 1w?ÿçÃÿ|øŸÿ>4È9ü€ô=Z̶}¨<‡,oM/òì€ÞŠ€fc#hønç‘'낾oŠÿÿsFÍDË ð¸D采„yQNõ]¹Õu€é°{ å<w€Í§OžbG.ïòýÝñ:6é¢ßî@â‚5ƒNõ‹?çÚÔ'('®§[ÿY5ýŸëçæèVt@þî^ÙS½o—<ÆãêùokÚüÙîàz¾ÚÙñýãlo÷Ñçgé¡°¯•˜çS…XÍ™‰šü9×J½ø¨”xÙØ ¥Ü=JmfM}xRç»SC”×:ü™HÿëCý sež÷aι'·j@‹M4™A´ITïн $Ä–7§6ÿôÛyèq»4ìÎ }lñzá0°:`2E;Cm¯[Þe‚‘½JñÒ´t0:Ïñ=‹ÒÆ£È ´Ò`²®3è»û!˜&5}=Í}f}YdE®ý9÷ŸE^ã,¨5òÑ×Áâãˆùøˆ?¿^QÀï+ÏŽ¶‘½.‚ÕãÔçw'xÂz   q ü;5Ä{ú8l}¸ý ‰Ò„«éXërcf7’¬1Íg/GÒn–Ão É§Ó>i!•:9çÑVF¤”¿Z)M„ô#F˜Ê‘1Úq‹-þ$2_äûrÐø8²z'[½k²EöŸãä4òÈyiÛøá›·ÈýÊÿî[=ä»]˜Ð˜ƒ®ê´©W¯ ïËîð;M(Ò£²rzm Å‚‚ž¯• äG‰ƒµP†!5ým*a^Þë`)å„û’ÃL¯h^A…€ÃYÜU¨Ì×¢=jD´ª»K^!ð|ô¸€Ÿ.°ñ‰ –° ÓwNÔ(Jr@ÔÛMS,{P öÌǹmG¡Ñ¾ƒôÒóÞh"Úü~ôšnWT“ÏDóÁN`^)C‹¡Ö˜¶Í:´l#Ë |ØŠVU}ï¢Äî¢uáÝ*«÷h“‘vxº« m?Ê8¼RD»ØŸÅƒ.uhÿ$i CÐ!ªÿëÇgx *â¨â¡e<íWæ'eޱÉåËZÐ)ÉõÅe©ßÿîëaÖzÐ}ÀxýfÙŸ9oBÒ@ ªõ¶“ƒwk@Å‹ètið…‰¨þqDÝŸóÖbr^qB1Éf}>—ä×Ù.¹°CÎÓ‚nâZøó|þî“%qÿÔ¼¡¼Zö PvmL%²EjX‰keÛ’ ù»‚' ´/Hÿz¤=o=T óo€maõ±$¦‹£ùf£«~Jš<0©ñ6=GÐ ¦=^ײŒڕGN&˜q9™Øöƒ¦ÞS\©¨$8qÞh«¾çŸ:ãâéÒX£³áqI*Cðc„_ýF†ÌSÒYº>œ‡ù"ÆôËT°ðzÙö›§,¾kœøÌKÙ?oÓ<‡å ¯8ÈÛðSfkO,;¬¦IÝnFX‡‚EçŽ'°1Tþ£f~?’8!AÒ [.dBI‡D–:ŒÌk¸CšŸÜ¨ôîeÛƒPB¿<ûîæ-öZT3ìÓwÆýbiNlù7wé—D…)£Fø€ü˜ßÔÌ\–~äé¤jT½ÉIÎͯsïö‡”`bö/~Äá6Q )äí¸LË›Á¥Óµ,Ö”O Ê¤ÓgÀê’TøF¼ä¡éE^áÝïТÁà–®é ­6݉¼}¡íD|Œõ´Gu›7/²A‡à99©ÙhŸ j¨²"ä-õÕˆ,´öšÒk½†–ªkól›„|R¹HÕƒæÊ®ÿ—~ׄÏohI—{ ­QnlË™üÐæoZøÔl7´?– üà3ñ™;£ ëŠÝ›Óï…¡'äÓW;€Þõ›ùU‡(` áÕÄý ô0ô¤ñPˆéK94”Æq ÆÌnÓùGÆÿõ!]š¾.-ÌLšðØùtÀ< Ÿùø~XHòÔ±k¿K÷,­sé¢aåµÕ~ÁXò+õú• ç×} \Û`S*T7pv19Oˆ¾gÃ1 £ºHb;sçvç$å§ÑÓ@rz#3ÞN¤Ü{¥årÇ*Rßc¶üåõ鸤ß?ð B†ÓÔk‰dÈ8¬Ã}jÜ™O•…Œ›!+ƒåcbú{ÈÖlPu­g†àCÃÒSsÈY—?ù¸ï"rý>þ(¾yñ©X“4ä« e¡µCÒ§ÓÏDøPð€)q^. uóÆÑŸF‘ÇÄ.Ò¾(xã騬7Š'‘®?°¥BÉßsb›î(}~A©¥[e)Ž3E”úß™f,ŒÇPž&-¼Oè*ŒHˆœ9†J­>b…nì¨òe–Ô+û+ªeñÜq\á@`-Tk!WCãY=·CÍÁGõ~/(PÛcsÖõ‘"ê¬n½ýññê=»”ÚY æ×AgÄv¹ß»–†&Š 1EhÆÓ[exjÍ7âîW”¯£Åì—Üœ|c´8î,NV­Æ|¹Ãƒhýbs½¿ M~}ÛÂ<Úµ¼ëƒÚ½K7T¾žö!¬‡Ï£Ãá¾lÕ&®ÈnŠ9ÜѶ5Àt†^d¤3´ˆÁˆÂó£qA>0º²MòÆ›9¿œâ„Éê‘ôöü˜ÚX•”ÙA³'ͼøž»ÁÜXü¥û—`A™«Hä²=,†j2·q‘ÀÒvŽÆ]*XyŸ³›ç«Þždj’[°~+6Ìróüjúx²µ‡¶èó†m2‘ègX’6³2òÚ^D’2ŠQÿ@ $}£}{ý=’Ç{,Eƒ”‹‰ uþKHÒÅÑX|éïŽä}FÆÓ-¾ÉiȬ,›ÇŒ¬’¸·Æ²‘ý\‡Ÿg'r xTyö#7}ž´yƒ|¶³¥é{dŽ9ŽqÍ£VgÛKJGy£Aå‹bòÆÊEÅr(©¢x>£˜¥_­èYÊ8£ì“)j3Ñ'¸Ï!ºî*ÏTØÃ™Ý¸³•"Àùy<3ª^ªsŸ“iÀýW8™rûQÃ@s‘V‘5{¿î)»kMègÖoSï ®ï—ÆF÷xÔ¿”ºß$‘ /™Ü‹¾f‚Æî”±º [hªÜܵÍÙMŽI*E‹Ë’mÈé„–GN5µF+ÓÜiÑ h­Ôï8vmÚðëñiÝ¡G[*"ÊýVh»H2àˆvÝVÌ6¯Iо„®õ“¡CÌqÍ µ<ðàÙ—EM/<èݵ)1¨‰ŽœÆc¾öü›‘H¬†Ù•Õº½¦ƒ.7B [ýœß¨¶ª0‰œ‡JcNà wÅ+%N(Õ§Rxw*ŠéËŠ_öC~'¹ó)ȉ (#Vƒ,¾ÎŸ1ÿÔ¼™¯{ÛÖAÙíªpÓ PÃ9«ë®ͧ(f²ïÚüÙƒ+=q zböËT^f€£~)lŽ÷`˜û¸ëÜa£}-e÷1 &Ý-´>¼ Ó4éµÄãaæŒtô÷ðH˜yöBÀÖžf„mìÍG`z‰ ‰#þ©3/ ./=ƒÙæÒWÝZ'aN ±ß4¨æÅˆ9žYÁüàè}öÏa¡D†£v‡",–ßKÞЀ¥ÁøÂd¾°Â©¬8 ?WF^Z†ÕAÞÝÞì:°~ú‡IB‹übQL:ÜT¿Ëù÷ ‰ ÁVøen±KH¤ù#?vðî0h9‘ü‰{q$yTÿ5˜á îldì¸6¦d—ø‡wýFòx‘>› ¤4ÈÖ,<à‰ÔT÷Mü¶‘f,®õ¨n ÒÕŸÐÿv\$’ŸßšBF×¢ÒVæÈtîÎdíƒ@d~Ú~áó ndi:³?°ø.²‰íß}2Ù_ë{o@îøöÎ+¥9ó?…YÜzƒ»Çr_2³å"÷O‘±v+vä½ÿxà½@ò…g­ÏŒÚ `cÑ< <Ì<ÚB4WëÏeW¢pÊž¯Â¼¸çâ­µ‹~R(¶ïÛ= ®G(žÌ,²ë8;JŒÞþêƒRìš“6¸÷²ìk¤Û(ÝœÐ*¹eX_/e¶¢¬¸ùc™¾(›sÿæŽe”SLêáB¹š÷5´¸/¸8MâÃW”÷ÉróFER_¡ßP)U“(º'U®¹†îpSE5û×yjâÇp¿ÚOyf^DÙµDÒs‹¨ññ@óD;)j–{êz´¡ÖêôÒœ*ê(DŸ»LôçC9†Áø‡"h® ý«Ëb¹nw¶jœ€_TGÜtþóá>üχÿ ÞL6[½ÓæßÂϘöÉ ³Å±gB4a0OA;1xÊê>Ù‘~E(7¯ŽN&ô=±Hrr26Bþ:UÎØŒ@î÷…ë’,£å3–h YE‚¯9ûBÆDÈé'ŽîVô1ž—ã ¤äÒi ž¹IÈ¥‹èƒº?nü²¾V ¹-Ç6y š ŒR1¾!Ū"ÔïYË#¼î;²½D5Ð4Õí™ç-Qªä—X¡5¹ÏÀù,´•/£àûè â°³frŽkÅfH^ ÚÞËtÐîJ}•íîehÛ[J1üÕZéD—ÕC‹î¬ºe}8´P°üb¾-'4½Œøþ.¼@Nü Z«$¶¨ í݇—çО¼#–›®öB_ ¡ëeCºG!ô$ ¶_''Ó\a`Ž‚ãAø'Š&—Ì Ì™'“5dE`ÌædmZ¥ï_RéŸÖ£†™‘¾=ò„Ï™hò ‹0,$ääŸzUK×ÓrÛ÷ÀÊ]ë.eûǰZÝߨ·ãlèîŸ/Íï€ßK~wzÂöä]Kñ½¸ã'Ç÷ój›LJ ")ÇÖÀô.‚o Ç?9Ž”òÝUCH’šñÎié¸ÍÛ6“‘Áó•Ýî°WÈØrûÐâkdö¸[ÒñX Y©˜9 Ö‘­núEÒräe©…­º gÓjÛžä&=¦G<мF•ßîú _Ë~½¹(@9›t¦ÿ := ~Áç„B=Çé» ù Oúö£ ECÛ͆ŽÄ xÑ™ìú@”b¼_..ˆÒAJìŠ_P–Î"é¼Ò Êy½¡»ÜeŒû¶ÉûýS;P¡ê›-¿*}¬´±dD•°^×yžTiPUŒ¦47 S¦ÑtÁ‰Ÿ“yÍZi ;¢y¦ÜœejäŽ.»úŸîäËÓWù(yÐêóщø ´¦IðÉ^ñEë^ͬ=—Ð&]š»ˆu7Ú^|_ébu‘üIÿ´#±•k;™ûŸùÐÏ{t-ˆ º‚oËYxtC3_ôjñ/-¨9vk¼*9¾0ŽíczÿÊEoþá{JÍë+n  sÜô©`yùC½’»ìJ 7C+0irH´Å_þ­Ÿ×îÀ™gÛPv+uaÅjyª¯Û.÷A“Çú+‘¥èŸ£EÙ„TøþŽQXSî9ôy+vt™8Á ¸0GÓ óðuPªÁØ’3«q0©LèxõÀTâ`œ/ƒ$LÕV>n+ž©Ãd¯y»¶aJDOö¢Ó?µñí(;çÌìþÞCb°³'”®±=s,™ ±Ù0Oü’Äo0æºv~, šÞMÓ°Dqd媜,«6W å™ÃʃólzM°FC›I?ë ¿â¹“WëfaC'¥!¹= ~¯1<6­oï3è÷!Á±;²1„n{ãøTÛ‘(¬Ê3µƒ‰?z}x±…$‹ªüC7‘ÌLXï˜2’7„ß“þ Šç6ÔË?3#•ÌÓYÚÍq¤¦^Ë »ˆ4kÑ?¾!­þ[ŒÒ]¥Ù%úéoO8îËdE†÷+·›’‘qæZ)dØ ³>©ÀR ²¾ÜÍ_A6=AÓöˆ÷È>Äo-”–Š8Œ{¹C(Ãå‘;«=¶MKyÒJö© ï³”ÍeÈ÷übßð‡›(Àï|U3õ V¿ê¿RÌÂÇÏy ¨ñ¢_f<ŠÕê–ýøÄŒû¶)ËâÅfp¿”F¢²8%JD8±Ë JŽa¤ŒÆJQOVÝAiåû[G}ÛPº:®›$|eL)F¢xQfì•r†ʦ"5Ýåbk ß“£ÂÞúÁ_Q±|L<_p •ïÄf¤¢ê);©û;þ¦f¬biæR€húØÙ4Õ?¶zLHQ Fóà±K^„¨IÔ0µùúj©|Kø^ó4)rŠzä.°S’åÿÉ™¯¾üx w$ÄžC—üVëõ`ØÎ,l|Êà>ÜU«ûØ¿ ¦ú<6WLavÓqE½* æ_“É;PÃâ%FîyãVXö¶ò¦½m«©{v©Ã:sð™*¦.ø÷93°ô=lg˜·dÓJ!áù=¼¯‰vøPê^È59$Ý3f8ÌëµÃ‡~¤$kö¦ 0O¥ U´)‹†‘1Òìõ$÷èkGZg‘ü$‘®³sÒt+ŒfÄÈ#qkÂ`°32WGHDÿÚáCý§ƒš‘½G‚­S¹hœ–/Jê!·5›Á™¤äé˜$ !àD>/ƒGoÿxZõþ›(ÐsSÉç% P¬½Í[Qy&º«÷a7ŠÕgœÒ!ÄýB"Ç,ZúQ2ì£uPšQÙ@çmʸÆ×÷ÄK¢ìüQ!väDùŒÛ×ÛvògpÓ‰Iu*T>zNõ§ªZøä=?Šj)æôyaB¨.ã/›F3„)þ•+þ¹¨Éý…w¾òj=Ð¾ÃØ]„:{ ÔbGIP7“þ`9gêû8]²ÊGCìÄ`<äùpß›ñ49r‹o~kMŸü,çÿÍ®w©¬ª‰£¹›÷¢×e´0ç+·-¥k«^o®¢•ôiš/Ѫ7âTÚVZ§Gh´¥u¢ÍùcÑÏšRÑVVcL²ðÚÎx+rh_Åï4.˜¥¸£åت(ýC´'äœ%WµCÿcLïŽ/îè·6Ì4ö¾?Òè’Óí_/ƒ±°¨ÏµùcP])¾J`%—º/Ñïèæp€Ù[å¿óE?’ªL‘˜TÃû퇜Üñ;ƒ£çoBºãi¥Gt§ÿµÏÂ%P^‡Ë“î#…ä þ/âëòÑùd¤GŸ”m‚:òzä­ ÿÒïý¨ñ¿óQó9¾·[Í$íøn»¯HçŸóÂÃÆ{  }Ä ’© •YõsÎÕþëw¥çô& pÙÞäžµóŸ¾Cæ¶‹}ú°^Ÿ!„â ¶kÆÌ®P°éžFó§Ok×IYŽøÐ6.‰ìèTä}p§úòÎDZ8ýŸù°TçÑžÉdh>ÇOò¤:Zu ˜*¬æ¡ëÆÕ‹d Ð)ÿâi€n|w5®Óú> ="©›î‰ÐOÿn‡¸aàµ7{ÄYkÒ²îŽÙùœ† ¿u_]; #­4ŽMEc0Vþ›â­33LŒåUkÀ´QéÂöe1˜­¿°Å›óRŸÖ-êaáᾂo°Dç'ßvG– 5ÆWs`5TLüŠŒ üºö^wn: 6^3ø`››ž}·¶ÄÀà;‰È”~Ö(ŠÎÑEb«_C¿N#)ß‹|Þ|IΗlh_ˆÇ×bêr‘jŠÛx°ŸiÃ]JFŽ´Øs ò ÒÉx^Ž«GÆ„»YÅ´W¹õ‘¬ã>dó‘¯  <Žœá‰ëq:È=çëšñyë ׌ì;¿Í¢ö9Íy¢h“_¸‚"·¯ØÉ±ŽFôÎ"ŸQâÉÕ¯á(µäè¥ÇM€2iµ=(w!2ÿ@ó[T(°ªâóvEå3…èð€"±«ÌÑgˆÄù5üOQ}‚º·¼^ð¿jÛ2ŠZŠÒóTW3P‡Eæ É7ÔÝ–¸õŒõ{.ãÅ"4üH½äòKhvøü#C¡Ch.~ûFyš¯»'Ìö§¡EÙr>Y3ZÞŸ-¾ŒVš3?X̦Ñê÷%ÑøÁQ´~÷k3hé ÚûúeÐùÚRìsáx…¶ï,®o=üÏ|XÇU1• ]Åz½œÆ YâEÓ¨q1½9âf_„"fêƒB¡\ÞD6èg6”{`áB·ÅÂߪZCþl¢1…-äæîŠ&dP…×ê™'^ü­ù$¦‡Ö<²È;&ÉŸ¹¡V(ý¸ÛÍ\é5eÿ̱ ÚI—tRºáû§I®âyqè ZÚŽÕDTnË: ÃÊ=¬6ß`,Ùǃұ&O¯º7ÃTûÃÇdE0µ½Hm-ÒSwrW.8qÀÔÑ Â=n¢ëô®Æ4ÔA˜Ñ]â–´ðƒÙ¼ÃÒ?`Î%öäÍW,0/äèßϲ »^?OÛÏ‹{6S¯†%ZI}=kX>MjËR™+Å‚6Qlo`í‘ÞǪXøÕ`F¨Uó6.³ÏMÿ¸ ›â»“]œ„m¢q]9ÝîMk»| oÅù^•D©"æõ q;Ó³¼ G$eqòâø†d—:Ôu»#êX—I$iw”ÖêSadv¦Ü]7üYú ®»+³!›û9bôx”1¬¿›²‘“N;ÄE’÷ê }Ç äîå°ÛuêòÞô˜âFÞwþ?V?G#ß;éGƒ[’( bµ)&x×i¡pê•Ê_NïPÔ…êÔ7½·(6|õx#гÝN¼¸¬€ûõ5Žp½¬@‰äGÚ—(Pr«õ å¡™êÃb-”Öku½E,Ò?Š…Òµ£Œ³Ó"¹cÊ’3M¼¼÷e¿~·½cŒrùŽÝ4›1¨ ø-–‚Û#l›½PùéèŽM± ª7kò˜øUTs0õ(³Cü/þ—ÿø0¸ NîÚ…‡º¯?¤i¡Ezâ l‘"S˜îψëc¿_ƒ ´ÍŽÓA¹ßÌQ®|Zœó¤xÈòïPᆼýïËó —àS¶ìD¾…í=¼÷ÕðÏùƒçƒykÈ”¾2ürÂÞýzk‘®È½£Ců«‹+©O¤9ÕWyt{¸ëÕ¡L‹ºµr‹ªµÈ†gö)@½Ö™Æráå?ód˜«¹c åä]3vch=†OëŽC›_¸A£'´<:ie¾òö7U‡ }'Îê{†@;]ñ©ýäÐÚ’ò[ȦZbj›}’ 9?séy‚<4»ÉˆújÊ@sÕåw±tüÐâðä\Yb´2ªXÓæLCë°¹Ï/Ñ–?óoÊÑ@‡’A&‰ÉSèlýÔt`v ¾Ò‰äŒCÙTÍ>{Fèg™WÓuŸ‡òKUÆAú0¬çrä„/ ;(éðÒ³ÿǤíº%Ù¾0ÕMà^ýžfתk«ÀüK‹Ô'‚–°èvñ&µÇ4,·¡+¦…Õ°ä©|š›ðkôKï·s?àw`ãÙßéK°í¹×úôŠ4Ú’ˆ9Ýßáýԩ!­¡HJn¬Aä´ >áH¦c§V¯!ÕÓ™Ë?Uß! w¤r?ýÒžþD§{¢éZùÍ5) ƒ=GШ2n>iÎïBæ ™œ6Țŭ¼[Ù»ÌM{Ú‚‹åÄ«ÑóÈíèš§Ûì<=O~—Ÿ D>úx9Aã%ä?QIZ6ù ú_Vô¹ ¡P"y‹ûCMyuµ¬»šÅz·ãiŠ®â~•е@ºç(ùþ´|ü|5J³óް >Þñ¿—O3 ìP¦{î·(_53<þ(*ÚlK’¡²¬å+¾uTåW;¿j^±ûõbQÅ!Á¤6 5î\8(牋Pî›E-‡qbᕨý­÷zàUOÔ=i/¦úü‹CS¥êhȸìª~®±yíqAê+3ahê¬rþX!šYÓ¥ö´/¢¹Ò W¤R%Z°0­§D¿G‹©-ï··Ñ2¯'žBÕ­ü½‚Z«Éú„¶ õô•¹ÝqLhóäP[”ª9ÚªR 7DÛvª}>¯Žâaçðþ¨sxxÅÌ%G­¯VS³¨l-à¸zì8dÞ]ïyoúw¿â½K%dBÁB JR;liî»»…”äüó­Pxû¢mÉã(LÜ Œ#9ü÷Y¸CÑ3®Bš´?ç(÷&üÆvøÖŒ§¨%Jnô½N›¦ƒRù“‡ÆD{ÿáCó|¥ñ»Ï¡âcýxâ·øp²à%é9Ñÿ̇Jã†÷ Ùgí°ñ"=´špWi®Ü„v!»[•Ÿ‹¡S5d"&*¾{hpDx7BĽЈø ègÙÅ%wÞ6tƒ!Ünjë`˜ücóBŒ´…‰uŽ™ÂXé.¹gÅ)0ѽøc+½¦Õ6²g&h`6Ï顆[ Ìï'}ââ[ OxÏxKÃû‘÷aï¾ÀrmöéÛÌÇ`õ~xñÓ¬\ø(—¨~*6¢LÈç9§a³‘׫Ï| DtÖoK"áï4rVvH̽p² nI†»^ŠY!Y_E€‰R0?÷%¾ô ©ž•Oy^Aš ?4Úîé m“üÔ•ú6¤R²ì:9‡ŒvÁ׸»‘9d…·õV!²ñÆiúvÅ#§Ä{žšÒäŽú2ùÄ>iÇ'Çu7 ÿùýÊ„È-l˜ä®{¶Ž"Š8è×ÃQlÙz üè]” OŠzÊRI\Úì (cѦ˜½…r†‹yI¨`0à7Úù•ú(ƃ\P5Ú—ÅcnA͆*!ðª{¾OlrÜ@az׌+5¨ùpœ05LµO/ü¦ø …ºšük[Â?PŸíÕÈ7ÌÔÛÄ/ ÑçôÁ §ùh|É3w}‡‡MiK#2ˆÑ´Ïx¬KPÍ’Ùd ®¢ùBG»khÁíù`òÊn´h”ßXê£@ËËjê¾oN {J¼Ô)´Ê*ëÖn@kÝ‘j;ÿ÷hÝj™Ôœg6vÆM2O½ÿ#î­º/lë]éµavKÿwJš.Ô\b •!‚/JŠ™¡æ¾P®ÁH lF¥.6ƒ&?B±ìÞ:Èß8íNiå ¹åßü ®EBŽÏAî'ÏÿÖ|ZÆ£wz¥ ì‘G†Å‘j¨¿§z…š.ô2P50ÿù´±ëjø^RÆxàM>ôEf Wd‡AýW&ŸÀ°ÉuGË«vÉü:“÷cïÕ?Ó”z‘wÁ´ÔoЉfê]£wCQðW<à¦3 —_Ï?<¢!ü–œ½E¸àýï“V (.·;بØ÷ŸÐ`&â@‰Âj¯„·4(E™"XVŒ’›ÌõÙ&¿PÚ–¹3ç»s…âé” .Þ¾ú’eMj©½èPvêLúS¤C¹nž©fC)T0ã‚Šã 7Æ êPùuZÖU›¨z­ƒ Þ„¢Úù2£;l«ˆW©<¤i¸P½±&ef„5f#ý»ìQ“õq;¥$jiµh*ÐüßãÃÂ3Îghü”ݑد 9É'u¦ó_Áoõw'·Ò„ÿˇÿåÃÿòáÿ~‘ÃZˆFÝW„g ‘î(Må> ˜ª^&™Q½µ)b«bWþôÝÖ¶ó€’[¥±æŒÏÑéÎXóW?ŸNî‡7§Ãϸýý{ž¶bwûÚ_ÝU?rc’Õºõ_¿åPç߆¦é‡ò—ÌÅ¡¥"g¹æÓ$´Ö•y–…XC[{+Åìè`osn÷èˆLM2·=LÞG¶Ã‡tT²½ç†÷‹æïÈÅã`y8+¹ÝŠD„·w!ÏÎ2aý ò1¯®« ÿ©>M[3]*5ÓU¤A¡×Y&û CQämãÕÎu-›5oWQXÃý&ŽQi&ö(YqWî§ÉŽŽx(ƒ¦c½QæÌk“×â«(ÛNžms8å/N¨õ’¢¢Œx,Û^T&æí¢¤ÍC•¹n?ݨ¦22þ‚‚q-Œmr÷jxº?yvÞ³ZF-‰;WTé~¡ö-‚št=¨ËøŠLw‰õ¾ž<)^ùrK½Go£QÙ¡HúÓÃh\äúy¯Ršê”~~Ch&bÀZᙇæ¤ÎUû èÐüÇ.×Äe+´x]UŠÇyÐòlx'qÙ&Zíu æòA« A6§z´>ûØ0àl0Zo.[ÊcA›Ð—æõhKÞ:—`Œ¶b5_³Ðv2d䔺.^•! d&>†ZgÓIe¹æp÷g¼Ì~ Fê~¼z¬UòúlY«Ö}êߺË~BJ"Üè™a§6Î%þõ·ë,-I&Hc¦Rê³Z19’×”#7Ò!y÷ï6ã»ðzèÒðžjÈðË|Ì'x>\<837úõOÿ0™hݧ¿ú, »Ce^…g…79'ÛþÿÚÓ|¦¶¸úo-²ðçN 9ñ÷ýþÛ·K˜˜‚¬cÆÿÞGJUµ¸ó$þÇFß¾šþõû¿|8Ü5žù{ê?óa•ètYú%h¾V÷–”ë´Ú,û–?æ€vI©§Ìï¡SÃE5·Ç¾{É:ßýzä¼y›-¡ŸÍÅ!G` G:˜zëúŸ¹Ræ÷.±Ã0õ3aë©Ué \ì§ûcEŒÇC™Ua¢)Î]3"ðŸM‹Í¾ñ© æE-‚ø#a!†yÈqø!,ñÃ>Õ;X-.O«1ãæyІðË?÷wDO%lø‡ÞO »›‰Í$²¯ã‘€ôãt‘˜?´eÉ ‰Æ'†üU¯"IÊöšÀ°êN>ü d¤ˆ»ê´L\¹¯"•þé+]HÃ&ÉvÓþ5ÒÆfœeè”Bz-PV£GFFÃ@U5dV´¦Õ8ެßHJ½Sú‘£¥P—qx¹å™N¦Rf"¯;côÇgEȦ¡ä%C8 Þµq9¥é‡ÂCVù]¹(îø+Ê÷(K9RV™ÜQú÷põµ{Q¶Œ¬(-!å»Ü¥Þ¨•£’u Óùç¨2?Už~à Õ.-”ûtó!Î$OœF «×ö¼xp)^÷Á;ÔÊù¹x4uB™½½²sPÏj¬“³" Ä"nÈ›DÃy^ª8¢<<ô’Ÿ¡M M°ÿöF 7šžÚ§zF@Íx•Þ$î[D³–‡¼qª:hî7éÖ(CˆìÚµ¿¶ž ÅÛÛ¯¾ïê@K¥nÆ’Ñj´Ì»Gñæ=ZIÖ4ßÿ‚Vñþ½”6ähMjÀí(göŸùÐÓëTQ't•¸È¼1#„fí Ú¸à꿹ðß×鿯ßÒKœ^òŸäþÉ«ÿO?ÿÖmÎu“Ñ;õ±ë¿ý´,Öl×ö¶'ÔÊx± µþ¬ÿúÐ÷š§”y.úÐ΄OlmOê_>—ò×gÆ&ŽNh(ÐÀdáÿ¡”?ÿǸÅÖ Ó.‡Ö¬×“`j‰ë!›¯LU}£õjûø·N_f” 23EB/CœîþÙë™YäséIK™Ý0ïÚë™ü̸Âm·þÉ‘×/% yîƒåÏ.>¿zoÂ*ó­±ëùg`íñðÅeŸEX—ü˜Ý[²=Û²~cº°ù`/¯t ¶ÏÙy ¤³ A–Ó3bzK$¬z¶iØwñŸëžã¨Ûxù6’ÿDõ¥÷0’•)~›Á]—+$¾("Åp•Zû¤J«>v3©oÅM2ý‚{®°3Ç;#mÁ«‹ñ¡HWÁSõ> é»køš‘ôpÓxD&½l#çóUÈœÊðãšCÛß\É–Kt–Nü:r¾õ<•»94y•ê:ãÞ˜„ú4‰.d5wQ´<„<ã4ôs‹ÈÛ%Ó“£„|©$=¯¡ÀYñ°¼À?çðœ¢~±÷P¸Ç뿉 Š&¨t¿P‡û8†Ÿ ½¢Gqã»'øÃ+q¿ŸzÃÈ%”h]³a@)¦­¡ †D”œÎñšœwAé3‡µ‡XÆP†äzÍÞO(ËA5ÿóÊj†§úXüéÓ_Ú*¬jE¹õ¾­‡O*QÁåÌg¦&TÜèù@¸K•³ÝKÖo/£ê½‡JÜGµ2½T¯hÄè‚ÃÑSí¨Þ§¥=¯ÁŒ[º©AwÃP“߯SDõjé)DÄýïñácÅ5Ù¥h|Šaÿ¹oÈÑ«ûz%â$ü~y>¨‡Åû¿|ø_>ü/þða QË“ÊA4<Î.5Gzþ>t}ÂÇCVµìã·o–µ@Ù›uN·ù(a_ñ>ΟÇÐe¿†\nÖ±ÍcîS3®yIž ²Ï®uHvnÁǨ3¢÷ìàƒÊ…zñ¦ xóã™UÝ5mÈç¯gWã„ÎA¼µå·!·ÛÊÍ=±ÊÄo´u™‰CµÕÛçôœ Þ=fΊzš²“LbHK¡åæ€EœW0´>))½W° miÉU®š¡}&yì¼…wÓ|N[÷¿ç|í¶î µé ÐÆ¿ÀÆZ¦çõ£>‚*™Ï}ì+Ðün"xвš_öÉrׇ–J³Úª}ö¦-kçAkûSðퟅ¶ºí¦ ô{ÐA¬ë(é“‘kŠ•àûýDŠ1õXøñsŒ<”(úRÌÍ3nÁ€[PkU¢ ±ÅFòj4ÂϱŠ.¿©G0²5Îöäw*Œ;ŸQy%y¦„Xõ&`v?Ç‚æ•'0/¦”@` Óú>¯é¾ÂRã­û—9h`et G.Á/I(é„7£ ×zú`+ìꌱÃs$è9ãKv‰âU¬ý,î"IiZâ¤2’…¶[÷>Å]oÈä"%rÝÖÙ•Ú©Ïm¦¢¤fÕóóÏPêG¥ºÛÅ”á—]Û=D€²‘îqÚ(/‘±¿9iÆûÉ"o¢R^gÞu TI*°o PÄãü†»yŸ=ZÙÇà…Ê¿rój ð`ÌWp¾NŠš3â:Õ¨­'—‘Õˉ:Ms¯(ס^XRÝÝŠ84¸-Ývk |_;º(×£ñy!QéÛ hÊmù:Qç<šnŸr}9Á‡fß_%]Aów¬¡ú !há[+¬¿Ã™–Š1BíäMh9ùä³ZE{§„|žGkËâg'Éк2dвHmŒ­]×­¥Ð¦NÄßv·ÚT6ÔØˆ¶oDhOã•îsÕ… ¨y–å»zä îNxmïr÷$ŒxDr_R¨­Y¡h÷Èôç>È%"ãT°‡¬FJV×?ûcnö”ìøÞ±ÃuQññ@U}¶sRÇ ß iNÀëõm7G ùeÚÙÀ@H2­wù­ç¯¡NEº4Ògî ©¸Ïýé?lâú Yݵ—Ųÿ9?ŒÓ¹U†sÿùü0ðƒé0£ù?uÙþ+QM?üiÌ`Ç_Eû-Æ¡8vÍàŽ‹”€—±æ%("eª~÷êÏÞ¯~þ·PÖCýr¬. *Ä}gI|u¡2§lôÄÒTé¬Ðé'îð¡.é§e›ãðõñYÓ¼'PW]û°Ø¡í4¸â.@3©¨ÊÝ;÷‹ºh¦½”¡-fé–ŒBG’ùnJó~èú¦6Måp~øWEÇ+(AßÿCæG`@+›éuÁ/ü.ëC“Õ?ïU?¸hŸ#Ö_¾[˜Z–Š`LUœˆ»û¦â]6j †Yú ³ûÚ‹a®ëÆŠÅP ,è4¸ûæ Áb­ßçÎQXöi•8šj«òy™ûácГ«2`ƒQÍýÈl6lp¥*”8Û¯XÔõP|øÓðÅ$ú¨lgÄùÍP±'’™6z_Å]çC…¼«Ÿ eO¦å«1 ¤Žy/Q÷»i­ö•™Y#Ý2ム_ÈPÐøòFødjÞ`(Ñy¬ÞU¥s©È¡¾7%§ø-î z0ûZ§y‰ÍV鎤!ßìUÉý!(Há6B©Ô‡ÂÖaEu*ƒ(ºpаzRÅ{òO2OßEÉß¿TMß® ô væ(ù({B‘´dû7ÊŸÿdËxÎ ÖÎï}‡*Þ4gÌDúñÀ4GÁ¨’#âÑ{sïKN e´§¢´LÞÛ9ZyµœèïGÉe© z^¨»qHÖþê×Ó²$ÏAóä¡WñŽç$4þùÄFèq š*yžä'~ˆ¦Ëׇt ß¡YÊvܵ>hn~K½”`Íx®’R'£EèöõÉOhÉ€â1QhùP¦kñJ"ZQÿ¨œwé´5‡)FL·!ÅsGÜò ‚'+®ûS6Yßña”…üTê…ŒOðIöëxt½>dí¢âåÍ9 Žš_Nù3¿m!ÑZÞ\=øJŽòo}ÏÃ{>bÕ>>sX¯˜û«×·5 ýo¶¡4%]Þl *nTHíË‚/yEEÇÊ úF£X×1¨Íôàz¬u¢âGï:Bƒär_ å;hŒ¡ICjhræõ?>ÍŠª~Wh E]­VðíehuhW+»EmÃénÑD@‡U#¹ACtn°V`‚ïîzßžœ†*ãÒ€¸"èKwnþ¦÷.¿x݃«»EÃáçËýGò"0âêéò^= Æ4 ô6*”`Bôò¦í‹R˜âe‹ £€ŽÎæ\YM˜}wÞ$÷3ÌŸpZ爛€…åƒ]?aIƒèîÖäXþú|î—?¬ºeÝ´qƒ_Aéé—la=ûlœûø¼¦—¾óyoßúª¾Øƒê —œ\Ð6xÅQЉüm%\ˆ:‘8›â}Ó‘H$%Ý0(ÑF²s}~Š’H¾©Î4[ë…Ù9RäKËHu—r¸!z©op4¹tþÆ=9?”ßi3#åÇ]¢·¹‘^—³ƒb!ð.3ïKzdü´$ï﬌ÌTŠŸìê‘%V%Úé/²ùDß&ÿňïšbƒ¢£p/wúðGq=äÑœø‘pQyu Ãiny#+³ótòõe=ÿ®ÔŽüÕLMûQà‹Ý‰rR[œ¬Ð0L\CaEïSy(òôÙ@µÀ*Š‘ž"ˆÇ}!‹§ëFá~šL«Ã/Qâ•¥–J@JxícƒÖ“ÅôvKÑÐpùÆ(· ´—ùžN¤Ü ú«-_ìFþö ¶ë”2Út@2ÕþMZhù•ÛCÕ½-Ü ¯~‰Ÿ†æÒ‡n¼*w¡…èèÞ—MÔÐrþàÒEŽ‹;ÏË LWÛ ææ¬‘H–,Ñ3‘„Ê öEW#’nSm ´°â.&îË®Gœ‘ÒŠÅxö9î.6ø9tÝ÷X†Ë[¢ Òín4eÌõGúpc{VößÈÈ7—}~c™z™f¨:¼‘¥Ü¾2«ÝÙšÄwqŶ#Ç6Í,kû*îEóÜUä1txç–,Œ¼×E­ïWU#_[YŒpL( ˜½èC!rëêëÚgQxyq|—ÅØÞîû¹Æ‹âŽ~í.×v£D9Ñ.Â×(õ4pkÒ8¥{KÎ?¥DYƒ–uýþ”u»rƽ^<$^"¦B%ψ§ŒçjPÅ.îÀÍÜ:<ðøxÆÀž¿;ÔìÊNˆÄa ¥èðàñ]BfTa¨ùæ}Eà&j“$O³G{º.÷QOËI1÷È%4÷ø–{$ eÊvBcÁþ'Z=Æh2Û *òŒMÛ¯]?yÍÞuÉó ¢y°Hâœa6Zè»k¶ˆ–dSŒ’Ð2·rA¦F ­Ž÷î[ cD«ßô²9Go¡õÝL¬ry´a¢x4y8 m¢®²Òû -™î·›;ÕKÅ9ÿú¼|£›.Ðgž¹ñΘ¸w‡îQûÜ3#{„ëø´à {S”ŸO š&å4>i„Oø Y) yÇ÷öxîò¼t”^—°þWï9E{H/^óÕ\„TñÆnʧ´ðZXÿðH ì®( ¶€WÑ iÄQüŒ?Â"ŸÒÏHšç<ØÑ%ûGC:eÈz(7ÂúñŸþCÙá—÷óýçþCÞHåí³ÝÿÔÇ*—NR÷ípâ‘þ¯¢¼;¾6ËB Å{*£\cã¡x(:“Àù”ܪx"ÉPêb7ŸDMeîýHzZ¡<Ô'È©*ù“mC¾Þácz¥~½i¨~tižýÍn¨L¿‘ u)ôÅ_‡ áûûX½#Ð~£ŠY¿Z4e>\6³¶]¹~æ{vîÊ?ì«­¡KXÏó@%tWq¤q>ã‚ÞXÁ®GkSÐߢ”ªá烎¦1÷oÀÏ=+Ûjí`¸ÝæÍ›Äy-´´œ–'€ñªI›ÕÛ}0E[x9߈f®i^N‚¹ðœ¡—0¿ºq+½òô×O_€e–çM\ñ°Ò~0¯ÖÒ äÎÆDÁzÚ¢>£õøÝN “õ¶ŒdŠ«#Áúaº•Õ@$ºZCU‡$bö ‡×'Œ¤àPÉBÜÅR³yÕ+)½¶,”z¯´SÜ$ÒR§sFˆ]Eº¤ŸáÓ]}ÈpJt#¼#™<X”g‘åû`=­’7²g\£´}êŽ\õô~IÁÛÈó4â𹽑ÏGäk¾n „;¾“ÐD¡šüÒ’‚µ?k~AKÅUTˆC.œBIcõj.YúÜjìô²Ãe‰Îu·GùÝ„~/ö¢âùo_j KPyIŠr¥Î œÔʱ~ðíÒÒñkÇQ½8(ÄC} ÚÄŇ®žG-:¯÷oòÅP»³eúR·8ê&|H$^TB}¯ÈR…bh¨PH¢´Ñh¼pEDºÃMùÌN³ )Uö­Þ!b4­i`4qA³6§})h.*Êø¡a Ík6öÓr~D ‡úûõÑbú•÷“£héÙµÞ£û-'ªMScÐÊ>Ué$« Z•WݬäkÃ;úÊ'5ùœÐܘ-¤µØyÄŸf‹»Zí|/%†–‚ÖÐIP˜ñŽHš=œ?qCµý&µ¨ÜÍåëÓÆeVŸÉ¶ÈAI Qþ€ýA( ÌZÝÑÙçãñg)ÿÕm6eoyÖdó:íä]0¹È7#¥A£ëoŸù@õ­™µ—Јõ/|>.@«s‰zÑ+NèüÁŸç' =,š çé¡¿ß«áž? ¥Œh·IÂHS ÐÆ]†ñÓ=#m Œ0ѹk]j0&…ó"¾J†ÀIJó_—DŽ /'caRÊ^2*Ð&'<¥¸Ã4{ùT¾„ûŽ/•ê•ÝÊ€Ù»ÖκÉ0wùÖ÷‘Þ˜7Ú~´Ô Z¤æ ßGaÑé”ï,ÂÒUkeÓ¶5X.sÛÿÌV%bd²¹_ÁÚÛðfÓYcX×9“P¨æ“j¡[Ó°™÷üÎ%OØN·~.} FUåêN>B"Š£Uä¤H¬zìÛòü$ t1~´IGËÛó—y‘Ü™LÔ³ß)HD¥&Ú²X„š²®wG/™iä"M`Ì\ŠHÒâÓ•ÈÆ ¤Ó;[ïÈôÇÜŒ#Hœ‘áúZÍÍvd,r?r› ™é›y¥êU‘%Èà­óOdÛåÃø1' ÙØù%zŽ!Ç‹ÕCš—y«E5áÕ~ävü Y[¿£ÿ¬ eöVä=#M«ŸyùŽºç,¦ÞBþîQƒŽç÷Qpç[ K¿†ÂÂüoßB‘ö¾¬·ô<(¦g̵zk ÷]N¾K9âÉ—¢aS÷oÉÉLj¡ä‘H±KM(yó‹>=MJóý2”²ÖCéÑà!ûQ”Ébª”taBÙ¨yjöóº(<õÚ¿@å’‰¯½ú† ý*?d ’‹¯ê¶pª°$ª™õ£ê˜ý¿Ï[¨Öá‡uˆ]<9ÕÜì¨þ+ÒnQM ²‘Þ H~šüŠG<úPëzLÒ@Ã3Ô.ž}¥ôŠuNU «ÊÙ Îöàù]yЍ{oräükÔc8ñ†¡î%êÝ=ÿD;¶õ6«õç)†QßiüªVcê—GŒÆ¢»Ñ@Ñ) 4pöùæn÷ >„•´Ï@ƒÅsOv}é@CÉ}î´×ÑðTüÀI«T¼Q=Ýx‘è>8nq<ü²Ï›ªµÂÆëׇmÂÐj¤½'<´ ¾Žpç°: Cùƒ«m’CO ð¬t"çãGð¹M·£Õr®[Yü"í…'í¦–evòh㣀¢zxk®<úŽA2ÒÊÏ9~Û÷·¾s óò­EøHªÖèP÷à¯^ ¢]ô9³nAÉRö”ÈÖÒŽ?Ñò>u‚Êê+i§Bý *´bQzÇGk’tŽ‘ñÀ×ͬœÿ¨[Ý Ž%ð€†³ÈÒÇFÐXu@*/µšZöœú ÍÏÍz÷Ÿ+– ‚„_Ÿx ‹ÏͿ۹Á2Æ~û‚§°RìqÙÈÖ¯†ðµÀ:ñé=T5°ñ•žÝŸ63 ©Ba;7ÎJ2ó&Ìu×™º~¹û´“—Â2gaŸÈ°ôä­øÅÚX|w‡T5x ¿Oæ‡fò(pY¹¸±á0 & ¾…¶ß7—8£ˆ_x‡k€ŠQu’|¹r÷½}|új|î7ºI×ÁƒùÓ+£P*2+ÅÿÄ”þÉÛú¸8eÝh‚kÛQ^Š·˜Xe ¥mÙ¯~Fe¯êÏPµyox•a‚¨]vtü(ªs³$E- ]‹'ß"¤©=ÊÏ?< Q0äÝÑi¨Öj~'¨s—A­ã.—= A­îÃiÚÆŸPÛ˜òakØ9ÔÎ¥Ô~ðæê°kd FoÓÍ~A2Ô©Œ};Œ ui‡ÃšO¡®Õoq-GÔî·öwFÝúìKµŸ0é—ôµ/¨wÚîàü«¿|8ù¾÷Èõ8u¨!8#’´xJ‡§ú x8¡èR›ÛÁÈå±˜Ú 9E¢3kÙ×®u,„,î‡#[‚Q©OþdMÆ Þ}ªô~>éìýaŸ/BjÓ ›Àî{ðþtîѯø!—<2Bå ”–żٕZ U­²ï¾ÖBݧ¡ÌФ]yý§Û´P)ìÑúùZ% O ‹ËB›¹ÑÁ2ÐþH˜¼í.t=Ÿò<êðwÎh»<ãü4k,´qé2õO6B+é5Ïà–cÐ"çÁ ÖÍ-êVÖ.FвK½ò\´œö{Ì}®Zº¬(ž ^€Öó¾¿ú Þ@›ÎÍê‹‘æà8%«‡Žú{¿µ&@Wz»§b‘ t7L n¤ZC¯­MÂðc„þç"–Ìã0(•¾r¯A †fhCÊ­¦ax*„ØwîŒ)xñ°f‰ÁDUàäí}0ýÜèÅÈ„(ÌYYŸ½±¯ˆ$î%²XÁâ÷™ã®·ay´¹æ„Ù7XãHºG4R ëþãNî°)ý’5ÏÙ 8µ;m!á—æ™S)óH|?â^Bõi$½¤‘r¡ê1’û+鄟GŠw³×eš†q7Í^ñD>¤yæÈË耴éA17ÂÕ^€â§ÒqWdÈ-T¬Ý–E&wvx“Š,zá —DÍ`»Ù>¨9Ü‚†Ãö$l} x¨+†ÜV2 M–‰w¿Þ‹¦obéNüXF³Ú)¶9C4·R*z´2Œìõ‹Ç¹~ E[aÅ•û‡eÈ¢˜šGZíÓ{wìŒZU6¼n¶¥Fk«^^Æj-´î.(ýqd ml2¿ýÔG›ZëC_3¡­cú餛è+¡c—%#„§çoØ_ªÄÝî>ª3&­•Àû<ÚêDWùßSuÖÔ÷…´ÉÚ÷o7 Å3|fF’-¢9ct5àUyFßžPaxÙéõȦ¨’–/ÿ¼˜åi­~.Û ðþÅ͇¾‚seoÍñóÃ?óKk¤حþóüÒòsül…Nk¡2o¹ù^(¼í½Î«PØÓvó;G}7h ƒbƒ8Q'£óP"sƒ=°.Jw+z9¯ƒÒMsžf(½¿½e&‘á5)á …„Ã¥™i¨S'Ê…šV‹„úwnðM)$¢Daz#Ñ4Q÷[<ï'€æÜ¦C­¡õâU·s}ÖÐîΛñFít›/zgB7í¹â§[„ÐÓXª[Þú t+ÿ„ÿC×_Uù½ÿû0ÝÝ" !)%àyÒÝ-b ¨ ¢€Eª(‚€¨ !%ˆ€tK J·ˆtw úçó›¹ßßG÷£sf?Ù3{Ö±^¯cöµ®5å^I/«£Ï„.ç£q¢ÐèËOaRuÍ4^ë Lk2›‡ÒÁ¬¿¿¯hMÌñey KǦnlŸu„åwjþua•c£ïD6!¬\ôª|6O('q¤À–S«ÕŽ쨧úVN»Wßr¶ª<€¿CïæŒ9” ¾Ù‡‰´»U¾–{#ñ,eñZp5’¦qÑþ<äe4ÁœmHE¦¿F”iâsN8"Ò?±š•¢…Œ69z2uÈLh.´Ž¬TÚœÙÿ‘ýŒy§Ó}Uääø}yçúäæ|FžX!Œ|RÍ%ÍÃÈÿ·Ë\÷ô+£n–ç;4è{LüŒ¨]­ÊöÐD’|þ¶\š–­»È¢Ù;N“ðßÂhnÙù\7±ÍÿÕO%¼A‹÷]CÅ«Ðòعêç›hÙ@)HB,‚VFþëY U}ZQø—´>V>~k­É”or²ch‘UxžVšÜa¥£GÞà)™kHP1YÎÓµ=|“?õAëséÍ…ëPßàëÏ Æ]Õ'*sªúÅ’\NJâ¿%  4^üeé*=îëž?/ý·y& kEH ÏcIq'Î ãC·%;ì÷ÏÜëÁ“ >¿·2ƒÿüÐ}s`ú×=èx^­Ày z’C¥&Ã@‡$}\' "‘&ý‰—‚m0^K?¹e.S*¶ ¯Føa:™>G1<fÈ®:ë¯Áô}ìáÑI˜áîl,Ýx3ç*:%`V×¥¥aNŸé™ ³#Ì?”Sv9 ©[iJoa‰à4-,5-þú«ñ– Mß<¾Z+U‚úç^ÛÂêO£»æÙ°Î)œEô¨6|6YVoÃæüÚp(ÙMØö}Ýã8¹Ø ¹/ÂîPe,¯% üm~«cP°‡7©Íž }@ÂWìJߦgèÛ©Û»ŽHÂ<ú*Ò“I}¥Ú« Ù.ÝIÆùP¤xþäÝÏ9¤Ò·å^ÖGNÞÞbY¤#r¢¼6ï‰ „,”º‘‘êIWƒC2ñq0dßGfM=íWlüÈâ£îñ ad­ÿ¬ùˆdÙ¥¢T²J]‘#ûóe’?eÈ©yzÜ£TZ…ª<ÛEî«””ïX!ÏŽ¢ß­YäÓ£àú)©ü’òM÷²ËQ@°•þoN8 >¯É˜ÈâC!þ4uzÙþ¶[œ”"ž2óß›Pt(ÀùÔ_K§?–¢þí6Qeô¾,+†‘m„UçPr­O›ùÝ ”²4‘KæfB‚Fãîõ[(ÓGtM3ye+™ù¿Ç£ÅIås„(W6å÷3?å+‘nˆµ¢âÁ´oaÞPé}­ÿ]ÅT6x9”ת¬à¾H(‡@ð¥äñ™Kˆ,ÆOª :Y¾‹—Š*jŸ»¿wT5½'6†£VüÍŸ¡Ó¨=ž{OY…už½ëò¢¢@]™g_ë£nVÌMéߨgFæÂCyõ~p±JŸºúZ‡K‰(^¢þ§¼ë§uЀÉcgÓÿ¸m–ÔT‰ AE†_¾¼5Rí‘U@šGL7ë£áÓSR#ŠÑ°ÞÁâ±m=þn(}ž+ŠbÁçr?#§o×gÍç´ðçÞì’§á>1÷ iš|·Ó‘¾’iÓÑûAéíá‚jÎ(&ô/ ]¾_Ú‡Ê{ANyzaCÖÈÖ¼²+Vç™ç·KZµ £‡ê ï9ÃÿfÖË–½¶äïãfŽuÝòÿñZâKí`W •`%Á•ñªÛN²ŸÔ`…š¥šl9¨ -z¢ôæ 4D|4ÎñÚ…¦¶‡j«îÝÐ\I*tnC¾g=i•̾­B6S«Éкz™K­L Úv]VäeÈ¡ƒQj³´`:u.ˆk2@WQÈàÜm-è‘ ¿'ؽ£]’~nÐÿÛcÀ&ñ3üTþœC>.¿F?®¸¹©ÁoϤë!\Þ0Jðcõ–%Œ¥Ùúø&ÎôäZwëÂÔá?ƒ·øL`†äw‰ÍˆÌÎ4>uÌ3Fu¿øaIÁÃõ2ù,?jÒï+1€•?‰”÷=aͯè¿C>l0©Èº©_‚Íô+¶N?ŒaÛüSMGºüaŸ3™_‚Ýe‘OÏeàïâùãžo‘à‘\#aF²Ðž6  /¨òw·HEûÙW„Ô3à‹oŸE(r öøôÇ#¯Â—èÔÃäÈ÷æeCI/ò_;úPó— ¨2öŒž'GÁæ BñБýžøÊ…œ_'¾÷…ÔÕ,8PÄñV ]Š14${¢xÊyñ‚(jO¬_“€Rü‚‚Ü4Q:áÇ$‘Ê8ÊÌ<¸×”k‰GÏ«HIÈ <ïÏvÆ$)Tä`SþÞ±‰ÇôG~™÷ ¡Jüõ„µô3x|UÎõ¥¢ ªQÞT8¢ƒêä·ç…î=C Ïì=¿{¨Qî'Ù¶ÖÜÞï«Úöoœ ­˜ø½UÏHË{#›^ŸšR6–D† àm–-Ù-¨ Kሷ9õQÞJY‰Ï Å’2NœÔh¿ïu½£ä» í-Îîït¡c»$wõl;t óüêƒîKϺÇïA±)穾ÿî)ì¼ð㮩3tqZóEõG@'£ñvS5tèSúH˜êBûØ,<Ž¥†ºCn/ŸC‡}Þ±ÆJè(\Šªéµ€Nµ =QbO ‹¨Is1àtSÿ::©zÜí¹ßþ²†>¥¥ÄSw(a@ûêùÝ$ø™m¯GÄ{†þD{¶iÁïÒ£iµÏ‡aôZ¾Ã$ÕK?k±ua& &ßl0µoÜ…öïõý†0×=¶]ø~¿ûÌLÀò“÷œ¼±œ°êÌgø>ª Ö]+éxKnÂæ³Þ fíØŸñ‹Éë†Ý‰…ù!øwó\ؽû-Hh§lß‘ˆÄì÷ãò÷dþ¦y)’[óçû"%U [Þ¤vw¼QÙŒ´ÃžÌO¿FÙ‰µ{ÈX^ën—8€Ì&Љü‘e×FÇ#pÙZ |Xw£¦ãÍ«óíÈù³ìQ϶"r3^¸£¿xyϯudíô#ߢ}¾àCÐN^Ùo@Á ¸±ú…Îo«÷=2ÀÃÇÙmþ¬W¡¨¥x‘Š_áË.E‰*ï^‚P”fZ÷›&Cë¾e åBÙŠxT½À‰rvóÌ{¨À°wùû*þÜ;Áó½Õ8ímˆî Êjï5~V3„û_Cgó£Ż”ðÝbT÷ßàãzŠšÔÆ ¨Ðj“©Ñ‡:ä3?© nÉoÚ'"¨ÿ^~ª„Y _çuyäKµ‰\šGH}6 Ù¬õ؋̮{°>P·ïï¾™¬œy”uìêŸþïþÃS±!“äþÿßèbB#Ǹð³³E0æ$”ñ?{³œÞeÄ_Ó¼U„²ug1B7(ÿœß %yŽåÙ@eó²ä¯üý}ࣨê_;¨Nåyèw<¾î¹+»¨µ— ÒFïû¡ü‰³.vç ‘ýOmº |»v–¦2á |?L{òöÄ0´Fª öæ…vÉ«3RÔQÐ1¢æö) ºÚ(oÿÍÕ€žŸŽÞqöÐâkûéqøIê½ÂëI ¿†ïÅO/åÂï«¡cá׿a”ɲ§5¥ ƺ2]ýäÄa¢4ÚÀÒ²¦Êid<˜YÑö}y\æõ÷Þðõ€ÅN¹Ë/u^²þ6u™T/¬TÊ](Ü~ k¶rì+dJ°A,*û–îlö¸©Ÿ8Û½§…Äa—RAàDµ(üõuXž"‘F‚çXw`'‰èeÏð qFÁ‡p†WHêö|Æö’Ÿ1Íûº€”±Ï¿~~ûi^I–Fº=Ë–íd$íOxô™¾ fD{É"Kò ¨Ã=d›®ìÿØ@Š‚5ZÞÍ —+}Ôû?FÈû„EÕZëò‡øwwøù àL»í4(”Í_ŸRƒ"WV›ÖWPlUQëL+J,ýø¯b€ÒaõcPV£~€„çÊÁóï$>¨ð´õ–uò*m\·Ð` DÓ˜4y3.<ž®ó§ŒÀÕD> :›¡zñë# ò¨é&Õz£ µÅž¹Þ&x:³¾—gùWP¯ðÙÐ&4¸m·ÛÁZ‹FÒv½þÇѸ½¢0…˜MÏÝËËÔ¬@3O— 9Ï4EFq.*4ï>_åÞ‹>ÙáÂÊ?Ð’™ñŽc´-Z&¸·_Í_A+Õìß>h•ôÄé{Õ5´fïŒ,é{ÖZ ¢Œ'ð‘èÕR!W*4Óžô²>™‡<9'ר¨ ˜^z:ät«3 gçA+ÉJukÑþz´ºh»6_¿;ø~ i…*§×ê²@};í¿ ûœ¼ëáò¶‚ÂBm¥j‚ÿ¸Ít¯x- ¹U¾{^á-ûœÕÝ>ù*]ïÎ9Êß…º‘?&ŽqVð>viÌö ´WÕˆßxºݯ‚U‹žp@8‡ic$ }«—3´O†ß³™2==a¬0þÙ0ÉLÒ·¥;®KÀ”'Û%P€©q¡ÃxîLm|Ù5˜V8ÙM Ó/gLrE `Æ¡¥Ê¯`fož–_Ú2†¹ô”#Êûžøõ´ç´èsX¤»jàm KzÃ<¾°|äÕ„.ÉX'÷O+UPßIi¹k×>-öøHÂz­Ù¢W½5lJœZøÊ[Y­´#ïÃŽf¡Ê8ì¤4ȧÂÞüè& \E²7“É$iMø^„DÎD¼‡‘8Y·¡ÛxIiMW¢+¬,œíiÎΤòa ÝŽBÊŽ¹–N¤Ž3T\•Í@Ú`>c9¼H̳H|wš³JEû ãï¯ím„ÈLô¢ª`ÊYä„Üb¾é ëí—ß*ï‘íç@Ãjt%rØÍVÙ¨µâ‰´”¼Øyá¡¶€ÕçÅ×QøZWýçFN¡ ^øä…¢^ù å(–Ôpaã Š·}´{á*Œ‡Ý[Æ&ÔQ2LàÊn#Jñvó)‰Ç£ôÐ+³;Ñ©(Óä¿'~û Ê63Üu[ü‚GG쮕=;Œr[cfÇ÷sTÈârv*ÚT´9φ RSÝž®*ß¶¼ÏÞŒªü§Ïè^F]Rd&7Dý{—î”¶£Ái+š«g=ö½0áù7n:4dý%ö Ï]Ó0僆Í5µ•¢á|äòWÒe4eûš{bvSóÏÆ£^U†íÏ¿ÈIbŠ|NþðT°šD@û/1‰›ùÐ8»¤a­ Õ>´š½*NûùÞâúÎ Š$JÞìÐ]/DªnPBΠ7bÞðÉíéªD_#|ô+jk³„ bó†Á]·ÿff-s¨˜¿#|î8÷éÈP?úè]¿ÏõØ _ Tm¦RíÌÔÂ×ñ ÿÜÞ9¨ Ë»§¡þ6ãñÛ£½Ð˜ìð œàÛCš‰Ù9h¹Ô@ÿº1~ªúÑ@«yÀ\‹-´Ùû’©®˜@ûÅ“Eß{¡#¼WÙï§9tΞÑ-³ð†n‹òjçÔnè™6lÁé‚—÷!é£Èf ùkH44eÎúœYªråEö?~Z”"iE̯#nÿ¿ó‹í¦Nû½ÕKéÝÇ}Îß]HìøEëùÁo׊ö¿Pæ©Û ”Ø|ç9}~?+Ô­Zÿß}7&çoýß¼Ý}+°?v¿ÈøC2›¥+þIÍ÷=QâåÑv(çÈâ8¸$dàÞc•¦K×Véö÷™ß'èb¡Z8ƒaKŒ¾^2ËXP®€šoç?%)/@]PÓ›Ð,hpHì3JVƒ¦TµGU´ Ðb¬RZÜ4­l/ܲiÚ’èBM}†S“Œ{5Ð%·ll&R=J®Û­Ÿˆ /‘}&º¶ •yïžÍz C{! Üîï`x#•’þSŒDh.²]1k;­Ó» 0¡*§MvV¦Ž9+‘†\™³”~d_j`îsWWƒ… ,ʽ˜=^ç K럟wîïc+®[šœ°ºñ·DÐ7Ößl‹Å(ÃæÕ$ ‰BؾÊ2¨üÄþ$üÕk†¿l›K"Hp&—Oü6ö^ç×c­Cb7—HÑ×HÊP˜ ÒHNãN…”’¿£œƒê‘:9/pÎßé®XØD"C¡Ñîï(drR ~U} YÔÃùßÔ#›‡Ôðúïȱœ$©x0÷)o¼¢'ò†24"?äÉSÏo Àvuç;ºk($hÕôZãŽñÔò6éA1Ó/cm (±§çQZfÖ¤·,eF¶8ïÜ£=¿Ö?+F®vóƒí+¨t3z}²„•k+’2ðøÉ—+­KŸ… ÿZAu·«ÂØQóÀÓamÝ'¨ÕqíÐݨ“¨1Ô:Td‚z'™¼Ò~† ¯ð6_ìC4ìø ŸÙ}oÞ lk ESj*!¢7h¦“]ÔGòÍþ¦…ÑE+£y&iDêw´0¬&£?ˆs²«wo*¡åívÿK¥hEüÃ16Ë ­ü¯’ж8 Õú N)« õéÀ÷±øàUèTÌ#'4 |Ó#n󹇖 G’äÀ@!1OQºN+~~<ß§/•°óA]‚lÔ¹5!ø*åë÷íT:TŽR…>Þ_ß…¶µ ÙPü›ñ“”T>Œ™äq·þÇmN·ü15:=Èe$­^¸ò·‰E˜K¡"/ºé" ÔÑs2p«AsÏ«ú¡ïùÐ6_Ç×Fâ ]a÷õE?>C¢ðÕØãðÓâÁÉ÷>¾ð›–Q¤ºŠF?ʨÔÆÂø˜á e˜Dn­é»0ùµeûn'Ln:¼ é6€)[©ÅE_˜j‘Ò¼Ó ÓÑ·… 1f’?õ?þ 0ÛÂÉÁ$sCççE9Ã`‹síaû{X ‹/š/s‚¥ø1i¢WÞ°=[T\È+qŠ–ú°ZLæã…xXgÈhé|- nM»»rM°9J¢wœnݧº”ÙŸ?¢$_<8Œ`^,¥¥fþIØ2ðZ>E‚ÂP.ëÜGH8ëü“B~ ‰2¶8Ek$žÀÿÐ$ੲ"¯Fò/.¡J+HéøE/LÉ©ygÔeBZò"ïf¤§`¹ºæ¾‚ O;ÇbZ® câÕèU›fdªš<Þ]\ˆÌ‹„^ üç‘UæêÃcžVÈöä’;r ³§áGË7}ò³(›-äkr}Hx-Ö‹<âš3]1È[äøÆ ý<ò•"Ìfr vt5KM, RÞ»BÒxÈÿä.õ9fÍê,ŸŒÆÃ©ÝÎtyP”jf\z\ Å”mÅ2ŒâQÜUWùëß00»úá.dYà™ðȈð©ë28éR/×c÷yúÿÍË'ØOÎÁgå[<‘“¾ÿñZ¤m|¯µá”%ò;QЈïçÔêßWQ7 z-ÏÝ0j"Êuœi¡ÎÕ[B×"|¤¬™B“˥ߡù0±)ÅÈ´|åÈa¤û?NÉûÒõP@káSN­Ühh«zô9¼ ÚûtWšoFî÷Õã9OEÒ ëê†rD;t/ÌœŽpò„Þ‚èuÉ´$èo"V=ÎV?…U—Ÿ?l_”zgxêá·ç[{“›É©s€1ÿUîOS60!|§äÅ»˜œJ›LQ=ÓEÅÄ’çö9wÉ[0j…–?i^£-°dé`Öï–ËùšÁ)w`U¼côã«EX+h‹ýßsÃИID6ç7æNN2Àvâ©ð•úLøsÕ"ê·Eìܢݺúþ]oN’ÏÜï¥}+܉hÚë/MÅ"±Õu) …$$ùD*–-¾d‡èFŸ¸!y ÏeïMo¤ôtK¬"žBj㎎íÁ£Hk®+FºÆƒôL=.Nh CõÜï<·,dlzA«6°ÏsÏ Jë’ÈBúøóÛÛÝÈê 1ÞLÒÈ~Ü·«Óü °~uB†!¾;بöp ¹ÇŸ_£?[м#S í†rÈ×`öáÕn1ò¿¼Ê0¥„!¡®µ²(ø¬§{G uY$•œü‹Â'μá"ü6…ÖRQŒ3mŒøŠ+ tyø-%É'@ê=J½]!üˆÒõd稌PfÓ¢[:vÚGÔ-O¡Ü?ë-Iï~½¹ôì äF^~¡éª92þws_^…lû-5‡Ôè}9_˜ì÷TýŽOŒ¥ðA•U襾dÖ²]ñŸ¡ûß{m®¼S„*Á²ÅY…PÏøÇÀÍ’šcR™‹Ò% õíz»ÅƒTh7ÿ"RÉx: ­wÐCgKowøÁ},w>¦øºK£®œûÝÉÄ&]wÌþwŸph|é t±xÈo2@§HØdÑcèðÔ4>í) ê ëÛ¡ãÀlñigèкÇãö:nNå:èÔ‹Ü!3€N?såQW.è:¿x±×ýt§/¹d¬•C¯¥eÖÎè—öêHODt>£"MCmZ"^W`¸C“ᨠŒxQH^_€1³…½¡ ˜¸øoK×o¿gº«äE *1ƒÇ$ù*\^ £Š™ùÑÓ¯áñšßš—åÔQM´æ OãYT¿ü§vQâ9j|4ÔìÙÏÍJܶ¨íÿôè˜÷¨{ÔqøLÉê³(œI»r ).Üâ·s@£µ&«HaE4É;Qøý&šÉ.PêK£9I!#Ùp0š¿Èºå…aÝBw_¢¥Æröò©5´œ÷mw<•‹Va%^|Ö‚$º¯Ð:ëÌ=¹O´‘êÖøäzmRšvE4Ñ–Í¿íõo´½xíU-z‰=T°pžGÕ¦kääq²H×U·Ëwƞ݉å~Û _ÇG‚(nBñ©ø¿GÇ+œŸ ÙS‡t³_C– ¬MdKÄÿrϧâ^+¤^{ßýj‰yŸ7Ú§¯ç?@bïõs“ Î'IÅ”ï'l— ‰üöè@|ÔÿÎ)žÊíã…O¯£oþm‡\ß¡´Ò¡€á^ñ²Û[(zÜdõ{v?^…¢!(žûÆÌô¿s‰¬[¡$zèB á³”ç‹àO”×à8â»ï‹=™b‚—¡´çóÔùcPv/?<|­Ê-ƒ5­;AÅè«ßçZ 2‹µçÏ T%+¾ºÁ Õ=rÜŒ4 Ps$ Gyxj;Uº²‰Ë >Îpýq¼4óUݲ€æë—¸¶²úá‡üøŠ‡V´È«ýí% Øhú:_öq¿' ÝQžwˆˆÒ¡w΀I4 ®4P¥ÌŠÃgØ¢ÙL( ß©•_°…–ìlÚ`>í"æ×«uñ’N,ò|“y$N½ƒéŽ¿’Ö0w ‹þª‡*,Dÿ¹4ªcµÏï%Þ™ÎmX¡ûôàæ“Xit²Zh‡u…F§;İIæ–ÄÉ.Û¤MË«>ðGõ‚ŒÛ«°÷¹k{ ¤…}U÷> áûªh*õ«H,Á|§FXI:¯†¬_yŽd»Nı #ÅW‰³ô—7‘ZDþ•œ€Òþ2§¦~'‚ eÄmù Y¸CC&2ÿ”âd¡GÖ­w“ú¶/‘É4b˜ÀÐd¼»þj?/)k›"ïyÿïÙO(p£×L“¸Åd'æ¼oŽ(|9/úŸ6ªs¿,¦(ßBºù%o[ÔºmòÛ_˜u4åÛÍ2P÷_õáÈÔ¯Z[¿Âk„†Þ«ÅýgJјKÊd7ž M>G[¾©º…fœïÄØ£Y' Å Íe4L:wƒú+Zˆº,«ÚÍ E­ÕÅ8{´´U”Ñåy€–¿¼ïù9¡•“yšQŸZuü›g‰ý…ÖjÕÖOþ båVòŒ4ò»T›±FˆÜÔ!wJ€ èØîN~ƒNÿsñ9ç< ¥aA±3ö=Ž¡Ìcõ*TG¼º=©•®·ýÎø eüïGøø¼ÿÛœ»Ÿöü/CŽsÄà ×ÎC¾Ðñ`Ѧy(/eO µ*j«_‹Á·¸—ïút,ö×sÛŸ®ýï÷³.zK½ds­ÜwŒ` O7hó¥ Kz5öÒçÃH\Õø'7S+¬uŸ8¨ 4‚ý†1—a"!¢<÷•LlÆ)˜úÁäõŸìWaŠÐǽ£=eßÅ­Õ{ï¯ë¿÷„«÷ó1ŒÞx†f·Ý\/Rüh½S½ä,,<òW˜8°Ä*éS.iK,×À DÉßšX宾îoÇk'É>Ê]%ƒõ Ôò†«°É®ä‡“oaëõËë‡n Áމð×;˰+íanh6uã{>!žæSΗvHèw:ŒÎ¨‰;‘¦ ‰ì û£‡ûy&¼ºÎòɵÍÿS˜#ÅäØÉ³sH•–À+øiB“,¿©ø"ÝcÊ¥ñ“sÈ`¶5û—ì,2º´e©‰Lþ EëaÄÈœöóvæÍ`d™0I–FŽlÊn£w´==ÍÙ}«iH;¢l燜nš$ºƒO‘KÃCë¥'rm<؈¼&$Æ‘m¦È¨¹ÍŸ¡…üÞ›y[âPàëÉ̃ßñŒ‚]B£ ?øÝLF‹‡µD^IÕ£È{Þï잣èñ9gÚ£(¶;ÂµØÆGÌR΋Oœ@‰²¼ê¬3(Y8¾é¤W‚ұǬ›:ÈQ&ÓŸíÊŽQ+¦ß°A9™ŠNçlr”¿2°µ—, !²´6¥¨Ø<û“¼û4ÓÍ4ÿs¾•5ž«þY€ª¯'õô:zn»Hº[ª¡šôZá õVT— Ú”?‹&þv·z;Qó…ÇzM×;ÔÚ¤ QjD› H`±ß/Ňys¢nÝŠ|’ú}Ôs3ùÔ‹ú¤Ëaª¥T¨Íñx)å&°ë0É“ä A«]~ê$üã:uX Ïmé÷t¢aµÎ£ˆÚGhÄnSteò1¹õ{2˜€F;Þ7–œÐh.챓ú9q³&µ7ãÌdcðûÙâˆØØ9érŠÜì)´yÒis‚úåÊ6 íh¨rz›s?JŠŠç·r’…  Dêl¯ÞÙÿ÷ÿü£±£ÝË¥)™ŠKSCׯ@zò±’òkæ0,`wäãó#÷»„A¥ÛýþqØÖ÷¼Š-DÒ|/€RÇ_‹ç5 R W”T… šØó‘˜|zak¬^µÜŒUPoLô«B ‘ƒ‹¶¢ç24ÂÓ»œÐ|ÏD@;á|?èÂÙ|ZÙ$¼÷ùΚ»[íÜŒÐaz€Ûéï t†IäÎi®µG)U¦Гð!€sßwûž}$´ý õAËbì,0d=íC˘ÃO*V ­ía„X·%×µFŸÝo\v„q¡òŒÃN0Ѷ÷ã¢L½—Méš?3“‰ˆS`nš‚­Æø,^ÓMýZ ËÌQÕUlû\þæó§kòžÀN–kå%iتÜP9a“îZ0ùë!Ç+{‘}žji ß"Ñ£!‹*’À÷˜(ÑÃHšY³!} ÉUoùZ²#Ål-óñSIHU©Þùö-!Òüž87Œte”Ÿb5‘áôðØ):ƒ}O9ñ˜"m™NÉõ— dâË–1A–劘UdËZ»ðÀ59*¨õN.ÞCν‚jÁáCÈ}œÔñ+ò*~5»÷²ù¼NÉ×RŸF~·™¢m( p8‰>æ jÈ‘o:ã¡ðüã/ ï£0ÿÊ×GäÂ(B¬¹5Ò…b¼±Õ—NàóÃ.ŠA(©ÙÕSè‡Rƒ'<® Ï£tBDý}”Ù+ô?û4Z•D¥Zi¢Ü"µê¯MTh6ÓžíË@¥ÑïJBT¡ö\¸]gŠÇͪî$ìö">ÿ‘Z‚jS'¯h?wC ÖËŸ1D£ÆXÁáfÊ—¨™¾§ëñ:µÎûQ¾=Úluý­Ò¨]òoIñÕMÔ±^,× ª@q}Ź·¨{qùf"ÕêŽMœrò!D=Ñ%ã ¨Wî¨@ˆú<:Lo.$¡þ ÑêÅÔ¯3üô¸o¾Œ¢”¹Ô€^ýç×,8ÿÏU.µ4ÉBÝ·3gƬf¡Òºý¢ýb(Þz‘ðÇþ&|Ù›W¾ýrw w“ g¾pàÐÀç'­d±åEðÉ-bÉd ]ê={Jt$¿p›”ì„d*íK†žð±Ú8Ý éä;“‹¨]b‡Ê…FWr¨k;Þa(6ÍJ7MvßBëyÒ¹›*ªÐÎü+$ê tØç°£Ê‚Î÷/”,.3C×xøP±1t¿R1åpÕ‚îOß»¥B×¹ 2«YÐÅxOíã‡Vè”{W!Ê~¯þç…;⢺ÿ{_Íi³¯#СèÄßP9¶_eµ–æ #]éZ¦—(t*Fç;žpÛ÷Ì›—£Úö=T¿äQÎ?OèFÕî¢З¼yfl#  Ï·-Tƒ!¢™TU‚vjúzqz ~o¥ YˆÄÂh}iRïo š%,ó…)ŠRoºËaæ~¡D£1ÌxEz–Ä·J_ \„åÅ|Ò&šX|0h»åëk×%µÎ|†-îùÊ›a'pÑ=ÜöŽîˆÍ.  ²e¦'Ú¼ ¨FbK“ÊWQHÊý¶-÷x4’äίv DJÃ&s®F¤Î f°ºhŒtFa‘^ú"ÃÓ-Š"1d¢_T§¹´ŸŸùߨÈ‘ÕQÒaý ²Ëšü±dmÆâ_=6>ÆàA£©ã‚gc‘;Nƒhñ~:ò1&ÕÞG~wßÌ.4zЇ¼Ý6û¹Pøp³oŒ¬Ó>_‘ô(FWv¯i» 0û7R”Œ4¼òãJ?¼7sõ°Ê,´H•]£Û¦ÖP^‰“ü¦ "ÿ¶¤£'*Æs[–¢òß°ç„<÷ñøù%Þ å6ĉ”#ͧ® º”Rfw>j\žeàb&CÍ27‚ä”Ô†Sã)ƒ.¨³Èef™‡z-ùqñ¯¢Ayµ¾¸¥}M¾å‰&.O.½ˆF3*Ê“ÃÕ±hÖ·Ø@<æï}$d“Щ÷ñ#´d"ú÷5©-‹S©.Z£•ÝJ}E ZÍÕÞÒÐàFkï§ï¢ýÑzã‘{ü%?´qçáÎVG›þ‹áêh‹wr˜¡gÇê½¥Q¹Qÿ³@0Ò³¥]+†1YfÚ“^ÊðÕîCååB/(J<•^Škûº®vúdó‰Þ)&H†LŠ‘—¶7t÷sO©3êÙ¤¼™~*àp’ï –Ü×ø‰$eí—ê7à}û²žcŒ7ÄOÌÓe„A♥½W—žÑÌ_ ŸèÜTí–_A®œ>¥]*ä眦EÒ§PÄ¿HýƒŠ¥C?.’ CqÀ„úì×÷PÜ¥A3}÷”ÌÔÒ‡þ߬Œú¡u–JF‡ ÄÝÍþß¹E¥‰à}_¬ß®¥d«=÷ ,q¿~1Ÿ…ŠÃÃï@%d=“â*Áþb ¨Öbzôg| {÷·-dß3éºN\„º‘5Ʀ×,ÿ{Î4°jô |{õòŽBd7|‡·Ô×v¡5ܰæ¡]ä‰ô$Ÿ,tìVί2'íï wŽÚX@¯|%kxX$ô'^‹™;\?Ÿ³¹Þ€a’  øýü—øj;ŒZeþ•zJã*^Ênþ³0)•%P𦵞ù~˜€Yÿ}¶˜_wšyX' KÆé„)¡°üež­»[V¢ CÎòÀZë+΋ͰñV^Ì›¶ÞÜJ³‡nB¥ FØ3Ž"*l`‡ަ¾ùë„„—ÈšÝ9h¾ê¢Óg>$yxÒZãÝ’YpH§Th"…­l¹¥0R¥çgù}AZ3ÓŠ%/dà$±üü̳¦r“œfùVŸHä5[d½O;ÿ"î4²7_ñïFN£ÇŠo>U"7cPèƒÖ‹ÈÇýÀõf£;ò/Ï›ÜVÂC”Å­:†(|áÖx A<ŠRä e±½Cñ±ÖÇ¡äZJ×ño”´ËÖUUÀ£T^Z÷^ìsÚM”*Á‚Š>½Ç’ã±Æç®½¨²ñ¬QÍ!Bû1Ï TûÁ~?u©?wŒþýK@-!‰w…í¨=[;Eº‰Ìï“õ® þ¹êå’$z4äT?B¶°‹F•“œ‡¯ ‰O"Ë}+4zj e&†fiwƒº‚Þ ¹½¦’KZª%èºn¡Å»¿*U·ÐRæõpN»Z–pÇ]Ñ3C+9“ÇãÒh•ëö'­ù)a“ƒ|ªÔo}'EƒëJyGž#—ÒA¨žqø—FÍ%ÝïŸ:æ'æTψs{¨õ[˜¼»R UË…w‰OBEO¿ô?‹a( šçšiÙçfó”UÂ-ÈWýÁÙåù·Ÿk„‹×žÂçìƒÆ#Î9ðÅ܇R<€ÊîUgÖ©2Aë™ÍØ ÉõÅŽ²hÕn¢~°¨7¼ÏKö‚îê]g{èw&Ï4.8CqÙ]ý¥Ÿáw”Eø >R CÓtI+담дƒqP÷Ü<ßJ‰oøÙøΤ|åÞ¹ÃûyDÚ» cªÓDÆ‚U)<0ÃD@°Tµ¿¾Y<~§îÞ9Åë¤`>øtîÐ:/,2-‡¬†ØÀÒ…<1†Î X>-ø&]-V¼ ¿ØèÂjÊéÐh!X›}àÊY.Ø0tû<)›õï?~aÛ×õZ«>‡?æ…”fm5°çö➀C+üû´ý¯|Ç ©Ïg9„D'¼lÞÿ~„ĵ \'Þ#©ž”p ÿ6’uÁHúl¤ðd¾vìÞM¤’l‰r³¿oÒžw‹&A:Ú݆ÈÀ̵ê‚vÈ(\@Aé2©…(°œ2EæsEA…-ÉÈòZ¢yúW1²N}¹VÍÝ„ìæ±5 TÈÑzᎢ&ròt­P¬_ƒCù\ô$rŸ4³—‘ÜEž‘ô¿ý[ÇÏ@/×6ÍùŸðëNB;ÊÒsŽ(ø›ZÔl…N9/ôz€Â¿|ÛM_{ ˆ¢å%ÂfuñÊbi©E±ÈÛÿ¸È8P|\KÖôü9”°Þ›+<ž’Áî#˶z(}‹ÒÎÃSeâG êQv‰"Z_IåN\‘Å›(ŸÖÓâw Xé›5†P‰‚pdÀð;»»óÂ×ûª0ZŸSËDÕ†&•RN:„ä¸tÚ­Ÿ¨¦AûcŒî4ª«˜„ß:z 5† 6]œ÷{gm²Ó¢ j3O•JY²¢ÎíêYµçQWô©­ó7ÔÝÊ~,‰z‰)6l%P_ã¹¶Îf"êwUS \âCÇä b4è6íàYFC㵊hX(8$]F¾J}ñÚht­qíoS U%y¹° 1µ¤Ò—çhl¢Ï.÷µåÜ9nP Ö£È?uÁjy¶ÿ(Ž~º­%þy‚§ n-½æx%T¶¹LwVP@á·tv"ös뢮®‹ä2’¸.l€lñé)¶wO÷ýïýh~¥:¤mg/Ô܃ԇ‡MYkZþ›úcRò,ÔMñnÏi«â?^ “ôº4 ¸1ötw¥”w±ËlÌ€*&i­4Kv¨Žy¼d%xj@fPÚ êøº/ñJVBý°`öÃ1hŒóie5o*‘¾ –ÐÜ]òæh9|Ÿv JuÓ†VÑËŸ™?A›Ûá³îY ýþÚC©.ºýê"þX±:wDæWÔ} ;¬žìÓ è=aUç©wú/4/•'ÛÃ`kcZ!Iüònzz«à9üæÿÀ’G)#ïéR±Cÿb ¸/Àx³'ófL$L>Ì MÍXƒéЋܬÅwa¶Œ%ˆ¹  Žõ~ÊW= KׯüƒÂòÀ‚£b¯¬:ž0Pb=ksºYµþ ° Ì‚3°u4êhÌûK°=û–Œ?üiz4tWcöº¤þ-Zå ² 6z"¡REAVù}âÛ^îDâï/‰¼…O ©¢·ãÐE$+k$y«)\¸ŠJN#•ì§.uÇHÃs;AÆ0ékø×M´ s’òÓ>×K\­·D‘q’ÚsmK™‰¾d•wÔ#ËEµwÛ Ïýò×È!rGñáw?ät´,!W4C®è†ÞñžÈóä]Ä‘ {äãs¯Yâ¤@¾µfýõÊKÈ?^3üÆu6cž±VÁCº¯+¢ÐLà±—]xx\.ñ*!Šz,èÞø|;7ÇQÒ?­Q66¥i¯y0 ô¬êoÖø<”%á9€GM&Nyä¿C¹¡ï<†úʨK§/=‰JùêögP¹¯<ýÐ*ç|-õ!šÑefé]Š$ªýÜÕÜY¡B v·¹%ÔX¾áᣀš_©+è»QëÑ«—)"‰¨­õvuj(µ×DýóŽFÓŽ—-QWúåŠóîÔ-g4è©oD=uÂr:Ô+6V#Ÿ•C}Ñ!ùiÔ° .ôø‚ú *q®F¡h e9>¤²ƒ7Ьµd\ôPmË÷ê:åãÿüpzˆváöó«Pü2×çµ bôÅ _(>@!æ_ŽÍ?kO‡\ÃÎ;³ÿ]o”UûE #-% ’Ò{Óݨ(ˆ¢‚HØbƒ‚"JJ—´t*!)ÒÝ4¼<¿ùŸwæ›÷¯=gîsßgΙkíµÖ¹ö½÷µÃ®KÊ%ÎØ©cœÁ~ÃDÌ'yj$Ì âê¿%Ê<ø,BºW >u\OÞM€/ßî0|QÞõ™«‚¬@qnKå™T†øž&L‚ºN­G:ÆÔÐ(ÆLún¦ šÚö9ÞûÍü™+Õ ¡åú…åzmJhÍ=}’¸¾Ú®8–^(úg~ÌâòhíÊÑ,vƒVš ýS¯B Eå¼ikœ94¿óæyõŠšE^ÚÛ’îþ^¹Š`Ì?ÇånLRÿøÄ‚+Ÿj ù¦‘ý94/vH¶ëçCKÉÎ%cY%h{”G!í—l¯lßÔ€_ì·¸t;á7­Ã»Š/tË<"º~z[>O«žFè÷2̼ޭƒðä»ÐO–ÛÛ¿óFm)S´¾Ãx®–ÍŽLÌ(ö–ƒY—¶½“0ï>:ã/S‹Ž×y˜Î„eç˜×% °r¦=£Ù Ö:üýËwÃæµ¶Ì¼ZØ1l±ÛlÇ=c:ï\m°ÖpÕ<˜‰ïevGÒëãê1Ê:HþŽÍè­â5¤X½§ÄúñÜ!G…u¤=”ñìWÖ[¤‹Î/»»/äÛV”ºr‘qàò`ê+dNä­Y¯EÖwl߬”³‘-›þçÅÞ<@v¼ð˜õ,r=õœ¦D~—¨WžºÈû6ÿmZÏM<(2訿ÎN’sP0´XtX1½©ýø…þŠÙûÙ¦Õ eñdumJhP=oéVEÉxù ”VœÑ:`Š2³õŠ÷ÒEQ6§ã—tà:Ê¿ðm¥2Ç£‰5>ò»ÔVR®9®*hõþ} ÿZZ/íæ=Wo»êüÖ]ß[Íw\Ùy )§ï„—èÂàÏ8ßwzqPZç¼Y¿9£œ—,\†!ýiÄùÉ·œzÒÑâãIø2󼓃c{—÷VÅ?SBL¤fB%|.û2æðf¢$ɱ'Ž>2—žIcÓƒH‘Çþç¿ATÑ¡`®6GoeÈù$ûid°“AútÆâ¬ȶP;øÞrr(üJ L 7¯âƒyÿnØsÕ̽ònðH¾¨‡¼©šÔÆ¿1ÿÌ5ÏϱVkƒ ’þW‡ªÿa×7¾R©#ýÇ'Þ±ÎSƒ‚…»/$¡è"eß}ŠÃð-|‡òØ]¾2I¸<ë %©ë;V)üP:“/à$:ó¿:Ûõ&¨Ûûjª”=Úo•ÝîÍðCÛâà‹Eh$ž8þÖ—š^™ðÏ9C³}\‘Æc6hÕ}x×!~ Ú}E¨æ=àWÇ~> =è²Wþ:d½,ÛÓÜí~ÐÏBýHïÌ]h±ùÍlõ†òp=3„‘„VVß-˲¼mÆåãvþ…)ä0mYê,¦E ³óÙNKG`þ¤pŒ,W ,´Ù}þÚ~–œ/Ðû¿‚?Ò[¿ZÖwyUöŠ}I5¬_y«âÓ• ›ã&äæ™û`ç5Û‰â=»|*cw+8´ “¯X¬)®"±’.ßÓ†SH²rœ,Õé’MV^:j…‡åÊÊrªÄÈP­÷½J^eù„tÖj”ñI‚ÈÀxG”âûd"»½8<*Œ,²Õ|C¸?loÙÛÉäPÞ1V·PC.=ÇN²ÊŸÈs™H;p&ùnO7_¯–Dþ¦Û²7mï£Ð9ÉJŽ92Ã8¦ŸbÊ´×Øu DÙ£•“ï^¡Ô§¢‹#u(SÙþûò1~”]_ëëˆKC¡£Á ,¨xn”â&*¯sïuUGß×Úº¼ù¨Æ“¸¯«yÕ멎?ÐDM?Ê\ÔÖz)Ï»5€ºd!3{…~¢^ap„´—œ{?l¦´†Ûq (Æf¹E¡Éq‚œÍh*1@eŸ‚¦¿ØÍÍn¢Ù7–ý\hNEÂù€Í_—Û0©¡+óbí<;Z„ˆh_:!ˆ;X07cþã]—ÆçlPç"iT’X(²;¤’¹¸ÁŽ´íªÐsJøY’ÖÉôêþ™ ›¹åc?舡Ĭ݇sBŠúò/J¹–C¾ôE¹êàߣæ,çxüd9mmŸ—Tû‹ÛÔ7S!u'†á„É6dzgV0‚‚s¶ÜÛY¡ìÅýû‚o FüµAý‘'P?º§²Æ~^p½œ›4­wJL\Õ c¤ªõSë:t Üd%±]‚¾ƒ wšó`àt®äeU{Œ‘Ô³™Ó‚¡S›V‚õahÍ0ê•j7 'ÉÇ=l#ÎäK· aš]j[‡1‰wÕ'i`\æÚ‹°"˜¿q|lÚ&5¹¥ÕG}aÊOM¢=d¦7°9§RÂl´DùÊ—0WºßÛ²Àæk[VDd—`a¡Ài‰ù+,‰P Æzj²O䘟R.üY¼´Õ«¡Î=‹`ýÚv½,lÊeêƒí—A²$xwfšÍÓ÷LtÜ.¼ˆD6NÂZæùHü[ÎVNœIÏ O"Ë>$ÛT»·ïîÍX#Se AÊ¡û'Ê[‘:di¡êhîKð[{‡´c×~[ÇK ÝNkº´ä[dàzXÎWŒ&T³jÌ—éõÖ6é^d^ke{gyYݪS‹™)p“So-&²{R1?Š@Ž¥¶g½jbÈyÃ4•‹¹é /žG¢üGzã‘WŽå™äÆò…Œ¦tØ ?±ÂƈúðüAye‚ }B¥å$qq{ „úNþä÷ž¨b.0*ѹ€ª:îak’·Qí*_ŸŸFõ¢ýkäÛ¨)Q¾Øqé4jE=¨TóDm—^¥ÙÛ¨#ìÉrä3êü& êû†º>ò[¦ÒʨÇrñ~¥h5ê}&þcMÈŠúü_´f_n ~x—™ÑÄ/4 0Ü ŒGƒËIc¼^„hP«,œä…†œL—ŒF¡¡óé ¡Îïh˜JüÈüŒÞ)àL¿¦O€êœê:Å‘Uøó~]!X{KWL£¶›ß—¯[_…Š•gv¾G¦ XCŒGhb¾ðm}™‚¬žOÂÙþ6nôÓÌÜRhÜ[ŽˆÂ"³ž§ÔŒ»º47zÃ/b3/{5Ÿ˜þ<åÍîòj¯Ã¯'„eñšõG"ûÞïï{¢m°ˆí2ò¤¤O²SB1÷Œ„‰W#”„ù>>NB e‡>oÆ|Іò¥ø%gÎu¨Œ17-ƒêãYÔ&b¾P³’K˜\Ëu/ÊOœ`…Ñ/¿Îü„†—ÜÏNXîÞWÖö"- hJoX$ø¢ ?«Â?Í”CóNµ ŸÔ&´Þ¬y·íÜ[ý‚ð‹‚qÎ\:~ëÇwžYy Ý-LòÇÊ= O…øxfB(ô§†+˹ÀàA•'Z]É0Td%ÌU#WùÎz9À˜ÓDÓ!W ˜xÆ=–§¦‰.dgOÂl¸Óí»ãl0/½¶uCR¹E(ÎÁ’Rñ‡Ã©°Üq:6¡Ô V¼’Hœ‚uaMô™³mØ=ØØcVY"ú¶Hú“¾ ±ÃÔñt¶2#A}|¨]î3ܿа‹g»Ó—mùž qÉ¡­Š@'$EÑP k$ë¹¾ Ër÷Fhæ GÊû,vZ+H}þާ"¡&îÃgÍNŸHÖ¿çA¨–5Ò]Ší9ƒô~zIÆ>*ÈÐWJ$é‰LÏFƒ¦_¤!˳Y̤¸¿`6c"Ø Ù'‡„áè¿ÕÐ)=ƒ\¡«q²¦§;j}ÄÓšy^9pHAy®Ïð8àAbï+ÆBw‘?ƒ!ÕAø Vñ…á«Ã(|È«LåŒ2ŠF]qx¹ržyç%6r¡„èK¡C_ Qbˆëí­1”¢¸Û^ãa„Òºt"Ьk(SÿDÒ6ÝeþZ<:ˆòÏlV‡’KñhÜîö»oPiȽ?AÄñhÝË 6Tiߟj‡j¬:5¨¶­¹Æ<ÖŒê¿Y ¨î ¡FbŽ`†à4j^»NM6M‚Z¢æ Eí¨õkÀìfÝ(j{%?¡’AzINª{»¸H£=µƒºœWŸN‡~DÝWû©ãΣ¡ój‹g%ê÷c¢ŒF½R›8ª©£èÖÉâ#yªaUf~Òoí?è›F™lÿ*Rûˆî¿‡oìOŽ›[Í@®ÂÍ"ëàà]>K•=_^éïNŒ dCÚgó³'3!UýóJHüÕÔpGÙb/õ¨”<͆¨Ö .٠Ľ˜š= <]­¨v¾kO;ßë“z •Æ¥ÃäîPw›©ôéÇ;Ð0e ê§QM¡2jŠp~ÎehÏÝš‚]¥ =>"h ’úíüVÚÌûº¸ÈA›A´Ö)h­£â³8-­”ï¬èï™@‹Ááaƒ_¡9•2%Æš•U¿¿zTþ/LpþgÑñÀ…ÛÐ̼®õÖ*šµXEGwÏgO2 h¹òð ÅÛph}hÚTÂØmënŸä #dÓÏ6B:BªK ë¼\lí=ôLfš'Ï|€¾­Å'aÏæ` ˦„õûeŠnôPã‘øc¥<Ó06ß“Ú$ßóO?ĹÓ'H`Æ/?V`÷ºsëûÛž$‚…Ñ3ç~Ö5ÀR߯ísÜŸáÏôìL>;¬fz³~w 6Ò2àñ3ØöRpÑ5SD‚¯‡¾=5‹„ªw?Žø?C¢éÆãÞ|F’ÆÌÆ'\O‘lÂñÉà1¤€»Ž3 åHUeV¬õÛ÷=ê9²¸ÄˆtŠ43"}Õ ß•ô9dt /"9BÌüžÖ÷V#+Å5ª¬úVdãRvÌ<^ŽW®ß¨—AÎD=®fWäî¶3ò満¼¦o{¥Ï!_Û>WI©-ä¿<;›zO·ç…Kâ!îö²á]½©üvbÌn?¾/ëTy»Åw¤<® ¼Bɳï'ßæB©¥äç7‡¢L¬ÿ•kÓQöÊÓ\ù”7(;X>ŽG“Ú¨ü€J_¨;D´ç©™ÆW‹Q%+Ý;ºŠU'…ã¢ýö¢ºBs•¾ #jäéQ9N£Öù0λçQGåëþà?gQOäú”P3ì[ûøc «:8–Ñøª/ :w É½SG‹ÐT;ÌáÎ:1št[¿gf©üNbWÑÜ’ÐÓÛä-šÏV•¹P¢…¯Š½§ÜA´$é¶ù€–wgËü]-W*ÌE\­Î$Y^<ÜŽVRG.\%«µtsO3Q¶r‹ÄƤ )›G.Mӵà›òb' ”‚¸‚”|%äwË:Ÿ{iUH·=é ‰Û±ùˆêUHhQgï+ÏÞ彯O³… zùæ–´¤|&óbÒ™f†'Í’Ì™@ä±ÞÄï9á}O¶D‹úDí÷T ̃Øû§Ô73È!i‰½‚Zã:¤ÇøC@ÿy—ùÒ:å®BŽ‘€ï­xÈÕT2Ž€ÜŽ÷¹ü¿w}"Á±gq? /8.ìkÎû¿1ŸØT€xò%äÓ2¹™ÎlA>û¯j+—ÜÿÍɸ¿åù™ Ëù»>QÐTÏØ “Ëûhºº¡¨Ð)÷ù]Þí–šü½%z®Þò ‡RãvÃퟳPVúÔ›¸*œ5ôtBÆ êa¶win4Ô /+§k„ï&”ÊŸk<¡~™nv"Ïšx‹?ÂÏòàWÛ!Ðòù9é«­ÐVí¤òÄò8ü¢*Iqì„ß®Ÿ&O@€‚,Åô…*.95ÉÀ€Ñ×-.%:š)þ32Fø7©/ù†1ý·‹CIaÂT¶ÀáÇ Leó7WÌÀ¬®àm»0+˜'v:òê‚,xÒ×ßÕÉÄ ·~Ÿ‚åÚʽÒ}°R3¥Ï*4 ë{¥uöžµ‚ÍûÔÔ3‘d°#¹‡vø>l%N™”;!á•*/*hîÈ|×N9’„GôäÒÝF2_ÚŸ<÷qoJÎ/J’ßH%e(äýŠ iV,u¾ûCÚwg“7Î!}*Ÿø]¡Qd ž\—[BæO‡²*‚¢uø‘q˜²;{2lw°!§mñ0×z-rO°–IíAÞ9î¶ z¬ÈÔç!_ú,I=pÐ…ù˜Ùо‹×[4h‹gsÁm} ¥”É_nv£ŒÅ¯L™‡²({›ýÞC%”öÑ^K<ÚÒ@#P¬…Êg×¥{O*¢Šõ¸Eª6Prå梺Ç$ë£mÔ¸êÄ\‚ZŒõ‘V¨“`7a•ô õì»hìÉnïêL«ToJO4Œ–V#Ú¦Fcñ|î¶7lhba~;Ü}MÉ|û´o~FÓÔ?Ä'0 ™IÎwBÂ49‡OFÐüÚÅ~Õ#h¾´¶w‹-.«,…Ô¡EÏ«QÃQèg»òö8}"jiyv¸nÙži|פ| Û…qÝ…‹ZÐÔßßž9sj½Ôy^B¹åÅÐy#(Îøã{´Œ ÇãυÄAž’©¿»Ô|=ӽϓI2_É»¤ÑÿÅmJmŒÐŬhH5–èhSÕƒŒø9:±¹;¯7÷Œï7”~‹£ïdœ„ª•W|ÕIüðCñÝ”w¦ 4tñRÈ>-G¿„¼ð€öK·Ö–êá7?_‘‡ž¥ÑÊ4}Ð/+Í eánò„§"¤`ÒyúÇ^ÀàÚâg|ªQ2—7€á÷&÷švùèÆ‘ì»Bµ›pY¹º cVÃC²®¯a\ïv›P L˜}ðW¯…IoÞ¤FÑ>˜bKêÿU 37×d~ ž€9¾}v{äI`žÇN@à<,‹¶ùD,:ß8Ò÷ì ,e´rñŒêÀ.§w¶-æ°R8ÅÕk/5›{baãKû ¿lÍôVþ D‘³ÜÏXqÏm¥¬CaFH8)&/•Ó‚Ä—1 CII–Yì§8/#Ù×7ÕÁ¸Wá cÐ^¤¤ŸxÏÿØ©&ÜrýÆ}bµÄŽgî#mgÄ­ý›H÷_ÌŒhé;]_6ÜBFâ)º·†ÜȤ© _ï…ÌQû®N½•DVZ7Â¥Ÿ¸ÿîÆAndgúåóT°9‚NÔYÚ#'åêé‹ZÔÈ•úÙø¡þKä®åPKFž¹¥UÊÛȧRvUöTŒg _<í…Ì\!òå(x6ægz …<—¼c4‡ ÓËܯҢwíëó^(ú DåI2Šqz籸; „tüÉ¢Ô7(é·S˜ž|¥É‰ V¡L\çx«5Êr5xxуrú¿¿ £üÃ3þ²ñ¨0ýŠ÷æknTt_‘% EeÞÞ¨¯]ÇøÑXƒUpÛ;ö.ªZ¾ýì)þÕ<Þ‹/ݹ…êM—ˆ_ð&¡¦áG¿‡I¨U­÷Q½"µCs&j¨£Î ·ÍF]z›ìçÎf¨›ß•uürêÙ2¦Îº¢Þ„ƒ“Aê_õ*JRÔŸ,:[ù= N¬¶OŒ=Eƒòþ7-‹Ð/Õ…3Ä =œŸZGÚW…þ&„hD÷mÍËÁoO·<Éø2‹ªY:4Òn#KÆ|Yw¤=¬É÷ü¿Äõá?î¿/‚òõ[ÑJb¬ðíÒTêúápÈ^ÝPø$nYÝ4üÌ!-•E)ûÉ"$UÐïxV‚øq¢_޶#;xë9„CL_V\È2ÍßuE{¤N’’r¬Éÿâ5ówSuñ€ |c8íþò/k¿rq¢S6r³ºtP~÷ôH”2ír¥áƒ²jï;Yûd¡âªÔ¶œ8¨b™3(Ô΄ꌙkƒ'Û¡ÖxqëPÈ5ø~º ¥ÊÕê5<õ­î @Ã6uÜahúr²ÉÏ š†Z8ÌT‹¡™ÄÑÓâ ´œý-Ô“õZÇbLbo-@û—³£%cð«ò %õÄmè’<5 Ôd=šÎ¡ÄÐW|hÁÊ øünµ½ûƒ©GU´ç¾Á°õ»£C÷`TÛå¾²(ŒŸ;l—P “ß× ¿¾Ÿ‡kòUâ*˜ $o+c> „cVv`1HæØÍNX¸¯xž þ”U¶õ„Õ‹1'üÒÄ`]ž=…˜ùlʾ8·q¶/±î¿Ì¢‹ïzˆÝ?㞨IúÉ$"$œîTâ.@b½î´ÃGÏ#Iñƒ˜áµU$³®?~­÷²´=êuFŠÉt¶Ÿ*_þ§o¶Òxßê(QFZ¦ÄöŒöOaW•7Òíô~éÎAµÐ‡Ï™ˆNsGÆW#óÆi¦¾@7ÜÏøc8ÙÕ-º»…ð€¬å¾‡~þÈ9ÏTx9¹MùoO¿CÛlŠ{È{ÒR_ÒrW¿õ“‹°#¿×g¦Œ§˜9†Âb.gvìÄQ´ŽÁA=µŶLI> „~UïÀ±\”ÜçfÇeÎŽR´ãþ›ÎûQZ]q…ØËeŠ´4œØ‹QÖ÷‰)y¯=Ê»\}ó.†z\;J< „JÉF/’Jƒ÷]zâîƒ*5гç¾h£›CÜÁèxT§¤>]`ãŠê‹üõ¶«·P£¡-û› jFl\A-‡ÛŸ“L¢6ûïð—¢^¨]%ïœÁA€:çMæUU}PgÙÉ[n uý_ô6ïæ/=5‘,Ôs÷¾8wwÇ=•ORIjQ_夳b¸'º®ÿÊ“<¦‡Š;׉¦æºþó‡|B}"cPÁ÷¾þÅ(2÷抺rlÇ Hâ £äZçæØ ¤M ß1GH݉Œe+})Ê7”"φ/!שÿÄPm¶‰ÁG÷6ù³8þÆøÜÅ“Ñ.— ‹×žôЯPl<ù^ìÔTî#¹4š®u†6Ûg á¶ËõÚ/KÐtÌ.’f¥ ~æ§…¤üÓoæjÅö´ž&¶m<mâaÌ—SÿÆÖ\{‚á7›ÐJo_áF -ÖË7ËÞ°CsyörÍ×ÉúÑdտ܅fIO+ÎY±úÔì­*¬„Ÿ^5Vì½ÿ÷¸Ùå”Pıÿ®'À±\ÍmƒÚ — ƒÔ‡öÅœü*v–J2Ý¿ßô>·«‚²<¯èó ³/Ôz¢Ù䕎0DÌP&qï: ¯%ð³oQØð ò¨¹X˜ˆ6áÖ|x ¦_GñXºÂœþ·…ûj°àhœrÄ–¬©Ï_÷‰€?–ó$¥gJaÕ/.I‚ü¬Ï=­¶9-[Q?‰¥c? ò5Ñ0£¸''WÿÖ Z$²Ô(OBß“—÷´!™Bf•èÍJÜ{ÏÿEÞØRgY Ü^Gš"K™Û‹HÛdQ-ÍlôÖ,ÆQaª6Ô¶e™>Ô£*¯D–[5ǘN-ãþGŽ››í¿½ý©”©'r:vǧ½ØAîWÆëå‘—Üó0Õ#3ä»ß—Ôe1ƒüô~ï%.o¢@»ÿÓÍJо¨V­7(. èö—árñý(î¡_¥ò<%9Ih¶*Q*ér/uÒA”9%ûéÔ9”Ð Sž¢@ù=ŸÕ4¼}ðè^µÜ~ÁT2äȼh䇹‡âfÅT¹9{.Èø#ª&ÔºOÈS¢Ú*YÂ{*sÔpoÙ„¤4Ôâµ~LÍŽ¨½.gõ€¯uû }?í ~Y&mï4¼¹µªK8Ɯ٠Û'¿ ‰íë©iA4e‹÷å–AÓ¦ÞÂx e4ó‘:ê¦æ¼âéÿ(¡y¾”¶E©Zènµ¼–ŒC‹úÍÌÉd´Ô‹šqsÿˆ–…¬ÓÃJh%ß–ê…V¨n0>+ÃK‘ÎÙz/fP¦¢-ÅMöRæ™(Ÿ9ƒ ÍŽ¬+÷¡$uñú«›³ðõò»_;Õ¿xûgÿâ)vÐcx_µDógæ‡KÃ'}=µÃjŠù8‚­ÒÉ>(Õˆ¥ªBÄyÛâyZñ³ª¸ñ’Î/>v¼´«&íÛ¸Y¡$Ä‚§áëšÄëLÈi9·3=´ëå~pµ­Bn^¯ß¹Âï'ñÐÿ'µà1F¼éœxóÿ3æ³w\âò©üg~V{.]…‚ïÞД (ìþéXû­¾A³GSH?)é7cü{ÿeôyšÇ.CyÒÔù‡?¡òÛ‹õ²ƒ%PCÅ1? Î¦Ô*k9~ô EºAãåb•ø)tÓnÔšwÂW™êþÓ¿ÊŠ,¡CÕY1§Û:ƒ9{ä [ÆÍ‡ç§ôíw¶ˆ#Ðßœürpô æYßO¥‡á|„UÞ'aôu··8íÏ¥ùC9ÕSÌ/ÜÒü3‘¡!pæ¾D—/¥ÿ†¦ÅI¶bbX|¿—ðZ“,Ÿ~ÊP÷¼ Vì£B˜a-ê»ñóñ5Øä®ex°Ûu£¤d¡HP¹qŠ~Ž ÅëDÅLc‘è3o±°Ä!$QíË*É E2Æëȳp¯”ÂŒYÌR~ÒïZµA›0?)A¤]ÊÏÔBzýj©ûâÈÈ|œÀߣ™÷°8:žFV)Òßo¤‘íõRGÞñE/ñ¨úWºV_uTúÑbgx;±J0žj Uo;‹¿‘¼‡ê\5­®„¨Q×R™Ì‰ZA¯Îq:բޡèÈg)Ô#>äø¢õSh¼býACýÂg^ãhÔaÈ•÷ M®úL‹£IW¦¼ö[4}Ô˜åôŠÍuªñ‡¢YqÍÌòtš1Ф¢ySè’Ï¡…ÕÇÊWТ°ð E×ú¼ä ½°Ç¢|’/HàþÂ_ÏD_mí•2s _h"¤|™UY5Z;áŠBiPVúø\ô\(31ùY½ÿ»ŽÿÅGö]ãÑÀúð¿|ù/n“ÍŽ0¼›øË—ém"¯$bSþâ§d²62ðyÛßõ]÷âC»Ì‡Ðhêø0·¨ñ/Oµ.é˜0|†_N¤áÇ^îêî½láúÐG‘¸ôÇñô«@Þy=n8à8NDëaÑK2*08ò¢ÁE]†~¾Idâ_‚á”!¶‘ R {n9£·lZé^†±sþ&N 0n‹¬8’&n WWïêÈU[¢ë0mP}à Ì’SxÛ:Þ†¹£ž­L0ÿøF‘,Ähì …Å±½–¥ÏÚ`Yß&®x¡þ $¯Þ÷‡Õ¬@öWçöÃzÝMþ˜±]£1K8a-;Õo ËquäÐ¥ëH轤Åu`‰÷hÝÒ5@’ûDmaü?Œ6òKþ’ÏŒ‘ø#Å«Äì# ¤zÝ»ÏÚŠ4ô GZ® íÅÚSoŸT#Ý÷„«m’HÿÊ0¼³‘rë¤î6#ãâSÖ˜dÖÓ­RîÕ@–<›#šÍa¸_68ß7‘--f,P9ø÷(:½À‘è3\V ’ʵg;Ä×G>y~š›°S"ï\oÁ¨4œb&ðYFþ4WïÔ‡—Q`mNRQ@…¸¥÷ÝÆCæ†Ñ‘Ñ”(ü‰íuîÈCåüåì–E„‡'I¢üçQ‚î–ý9ã*”tóÑ{{o¥ ø}ß Lcð»˜é*”=V§çÌŠrAE,¢-ã(Ÿ«¾d™ÈŒG8®D¡bLš Î…`T6vcfšJCä1æ˜Ï@•ë¶LµîŒ¨z¦8yãðkT»»Åë¶ëçÔ‡Š3+DMgï³Â×Pk†æ¶æ‰(Ô.¶§¿u‚÷¬aM5êꦽ8Œº«¾—Î%\E½·E>ïÒÙP_¢¬óæÎÔÏW="äG‹G#¯Cr¤|J›×ð@Cv&­L O4ôæ‹Mv»ˆ†m+§h.¡‘PÏï 4rórþtþzq=9³LÕ‹*O'U~W#‹²‡ëÇ•0XmO[¸Y÷~ˆ§¿” ~e[§'W4þêÓlêcôLÈ”cžY`ôo‰^éoxù !®>³crÿòÝ¿úôßøïçÿžÿï÷ÿÅï¿xþ—÷ n·ìS~{÷/_•\îR¼½¥á¦ä;;W¡\þhè`²#T´ˆ ÛBÕU¾A–ù°ÿøêÿӹߗZHLÒ( >dšµh9™TGYÇüÍ7?)I‹ï3þÕ­-©ÆL¥ô…Ðfðyö¶‰ØÿǺÖüš/vv@ï‡+ƼÂËÐÏ[záüq%ˆâ´ºz  †‘‹{ÌFøgLz‰`LAáûžår˜xPžcbÓtñn÷£%a¶ZTÎyæ-Sºh—ÎÂBwBªÙƒhXrkÞ‘€?”}ñTN¤°’o_Ýk—‡ÞhPÆ£æÞûõ³°õîÝÛÛ°³Ì¡m™bˆ{dS=y÷ÏD-Ï^ŽûËk¤MMbõ¯‘üñZ»h¤Ô ”6‰u©C…eÍ:?Ô¬çC­½¨#{hHµO¶Œ¤íCúG]"u¨“wµüúö1Ôµò*îú¾‰º#_Ås=QïbËPr;ê<í¥ E}k*‹3Ψ_tFÔÙ ]/fO¶MïÅ£ñ±§†ì¶O›[:Hƾü3͓ʟ|ÜðÉW†Â€›oI¿ý3¢•ÇÎ2T¨ùŸJ¤AÚ?žÚ²H½£4¨¿Ë{ruÃëТ2Þ–ÑoN’£ºÅ45„J‰à£fío¯MVˆ?Þ™}á±!d6’®ñÑhBñ^3†¦l[¨È.–ˆ0‚Úo9 ÝnéÐ@õœcØgš¾¦íÛ)‡Ÿö—LŸ FCs‚¢ÉT¹ ´tÝ%cŠ7€Öí]ìŒ]К8ì&œ­ZK2~´BKÂ匑ó…ÐB§Û<~‡š_…m VÙü·(gG\SêóÏ\Ä—}Ó»þQÒ+â4Ÿ då¸@͵ïÅ L>CË=ã’1Ð$«ÚüÂÚ&¿nÇ•¯BÇéÖSI§‡ “šìCnu4üþÙpê@é:ôp+ä ôyfLKënÁ]x²ÝÌ ¶Ÿ»}6† ÅÎVR݇Ѿdêeçd˜0’½KŒ30-ܰš¦ns ¹yQ$°@ÝÝþý,Ϊ‰Ãò ÂøÉÙ°J²¶!¨MëÎNŒ*Š/a‹Î…ú<Í)ØéöB¹?qϹΈ_…œHDc¡8˜ƒÄ-ÙGå¾#i_ðó-ÜËWòö9ý¤|ãþäª Ò¨i3¬Lu#m ïñÔ¤§—H”¯G†°Dr‘·%Ȥ!–«tY˜¢Èvu‡C^Ï¥dw8y§Ý L×°§æ!·¥>‹Û¥¡ÊkF£¹Fȧv7x,ÞþµçA¯Ɉ2²Ë“+ýú …/ñÎ BÑ/5FoÇPœûØÛ ×”X䤯}u¥üW4Ø›•QF†…=o´¬´O\ ‘C¹òËÁž¨Ð˜ÿ‚UD •¦ÜÎ_Bp¦):ã€*§“‰ç‹Ÿ jè½äg:Pm2ˆˆå 2j\–ùiÞ†Z\_Äg[£öʘÌÂû ¨Ûõ…O­âêçe±÷<@C¹E+ó4æyA#}ºMì–ïÈy°£©@üëˆ,V4½oN¢ÙÇ+yϯT¡¹ÅŒln´Ø#ë7ÉX±IO¥•4ÐR'å‡ÊÝ“h9ôÛä§z#ZyS~æÈúˆÖô\ÇlÜ#Ð:Ú¤aºù<ºd6Ù|¥¿Gˆ°iñ"E_ݤÂâH¼r±ËvJ´©,“}Éÿéç¤îq„éŸ9…&4/ßCÂdå›Ê&Ä3étŽ!„XøqT²$>¿ŒÚö°‡¨Ö¤ ;Ó\ˆT§²øþyÞ§ÄD«w§ù‹Ç˜·<‡ŽLCâ¼y‚7µ(¤ï_œŒ¸KYš_Jøìàë³11é ã}$žhbrº:ù¦æ!×éžÍ…è~Èíåkõ}¹ã³Ë©:gÞ¢ä8úåÿ[Uî^øJùVIb_¿HBÁ×xÅ 0ï~…• |ÔkñÝ—Åw¶\_Ùz@Ƀ°k½…Pºôrb„AÊït´»j@åööS;fPñûÊ/â¨]J¿c{<~\õhòt¢ƒF1&oëî hêØp;ð(š?[¦DÅnžH8ì7íMÞ§ŸV8@'ç×Å&è*yĪT ½³úFÃÐÿ̦…ðì7¼³SÝv†M[Ô@FµÅék¾‡qçæ{4K`²²®&G$f »óåKÓa熙Aaæ'¨b…%aÑ£9Ãä%,+ë^㈂å¦#a{,aí6&Ún_ƒ*n‰.WØ~¹¤üë²Äõs_¤GB:=áU>V$º¿Æ%2$‚$<×H^"’ÎZN7 á^ŠwGxb«‘òF÷²›œ5Òw,8Òe#mˆÖÊÖj(ÒK³ö&¡@†+nFdšî^q=Ь”Û/MÇÍѶÓÅzˆ)S§”³ ·êNü<ÞB^¹È‚ -xðŠoáµè³› ©ÅC!F±×ºQÔ‹7²çéOH‘±.?ƒ’QRi÷x ôãÔ^ìx¤Ü,²Š7åºûIJLð(]í­kÅ´¨EV™fª…øQzê5û<ª^ô?¸ð²Õ÷½>KRq 5 $\—öŽ¡–€VÐÔÑ0VøY9Šz{¢Ÿ8Hq£~¦Ä·›J»T}ì¼Ýq»@4úsAÃ⌚¨—ÏÓ‹ESÒ\©Ó÷Ñ´l~ù'g0šyõLEœ(As±ÀO~}§Ñ¼kRAMÑâa­¹f-ZJHj’Ñ e»tæM_ô) å%™mFõ’’ˆwõn¸?©­ªß3 ¶n+$X[IBcGKÜ“”«»ë­GàûŒ”Ùùn5û÷Kc¶N©—þ·.¬{ãõØY 'võê—„3O ÃúE¾ÙÞRH}B@æDG IÆWõ†š!ùhZõ'FHúz*°ç9ä]<¾¢.3¥ÇÃüsxô¡êƒúQõá[ð½.í»??4QÌðí8>„æœmÝÑ÷µÐ·‡“”útË“×s3@÷ùW·ZngCŸZz„³ô»x‘&[Áš 2íw‡Á}x{Ͼ§08½Øü©þ µÐY°W+ÀðW¬û ‚0òéqêíd}EzŒú0ö&³ä “Œ¼–ºwQ&ªô‡LaJ AMË&¦ÓTÜ:fÝþÜ°Žƒ¹¤ê¢Z˜ÏSï~q%šÚé’^<ƒ%âQ×ùàIX>aŸòDâ,ü9‹2Ÿæ`5>•ÜΈÖ“¤XÆa³Ÿ*7!IvOžŒèD‚1Ö«ÁŒHhì~¢Õ±‰ªSLä¶‹DC¸¸¹ÛIk¾>šCr×bKÒ‹¹H¡1ÆVeåƒTê·O¼Fšn}²}»þP…"kxo,Ò™——›&'!½Ëûáþ™DdxÁù’òÎdüÞôL!…™yÎIj†!KÈ[2sÜO+DÙ7ÏlÏ«·ÔÏ [¹hUxÍÒ¾”¶\Šï*ÓÂÿåÉZu"ïl´‚HžÎ®?l–Z9܃ü ±.¦(°Ãs%F¡…ÄD?°â!»£b-NeéÛ>Œ¢¢Ïé„•§ððZxy‡ƒJ°v;åäÊ¡¤§•,9¯J³J†x¸È¢LC¾µ -Êšçj9d½@9?‰káÄ(ãóþD,¥lò­Î©@ÅÀœַ˨¬|r‚éZ"÷››üe¨r÷׎¢ï=Tõ½‡V«ÕRxñ‰Á•]ÝiïÈÜgŠšwN ,ª×¡Ö¼¨ÐYyÔná¹U³É‹:IÏnœ3D]oÊ{¾¾N¨§¬âåM‰ú{EÆ¿£þ×®4‘+4p"g?´††´¢‚ÏÐ0“Äéä`"™×þö™æÔR.¢ñ“Åçl¿ ЄÞ.±¬$MNÅX÷ª~@/ñSk¦‹ˆ.¼¶w G2 ék§ŽÁª£äFâeøÞ­+—ñÊ^Üdò"j„ÂO²$~7!+%È4¨" 2†ŠL=΃Ôò†?ݪ§ ñ@˜l‡~Ä=â½´dm15‡=ù£Í º{®GVùD/{ü¤ŠÓ¸q¾«› ñ×êÞHm|¡<¡Ïr’~MA¶…*·€äúR.99ºBaYTì€oûJM© 9 x)áD…È”¾¾œh~¢ú?ØIÃ[h|ªAóóxêšKвD}÷!ý.þƒÜ^/tx\»F)þ:ÓI‡›ŒB7 Ÿuýïÿü!ûÙóì)µ0ðlxñ%Å ì‘Ø{í- ï<—Ÿ­°„1Â÷#'NGÀ„¾Êúò“0•ù>$¥Sfµ›Â<«õx5},¼µß4ÖK¢B[<°\ràÜ÷øX±O(þ¨ýÖR|³»— ,“Aª9j°¥iL7™;¯©h¦Ýïã"L3EB½ò'h Q é¯oWdÿ¶CÚM"$MÊc]×GrÇ£÷)ž†!…ÄÇO'‘r‘ýaÿÈm¤ŽõcN|†ûôÊëÒËÈÖÿPÄü™«Hwï÷Ǫʤÿéø‰#}/SU´öˆ"³IÐÃB d=ö¾»h Û[Êl‚Èq¢¦{1“9•9|ZA®¶Š¾Øäîg¬èð‘EžÍ{9mråÈwöw¶nÔMäΨ%ù˜Œ‚îÅH´ø£0)1Å™\b͛(Dqvë@§k(a6ß„(I·ò«Ú( ¥öí¥È:SÒŠN'fˆ P&õrjcäÊ^Šj{~(o:ÃÕ„Gí¯‘&¡Ò;ÚéDw~-—=¨RþDzkp ÕØéŽê–Ø£:o³²=©=jð>öS›EMžûyTP‹fBf™ãj-ñÙiÄ vc—w˜ÞêÄ(k޳ó¡®ûÉr¥ ÔSú(é4шz;o)£ï íúÀ'‰ gÐÀ³/&¶÷ùr#VyWÿκ/è{àÕ®—nûT£‚ù¯üßÇûö¬—‘ŒÉˆ“ä˜ØBÙ|´‹Í]((sgt^¿ ÙýîvÊŒâ^{•ç¦/¤Žq|K‘n‡”µt—Ó¢ìt~õø¡÷UÀº/Н®¢yJƹÊ!r4Óxzk>2»óò#Äm•î;s2½“¦8Œ~·û®ôû½ ÂÎsÑl©jO.Þ€úð¯åæ‹Ðøƒ¶”Žì+ü$9Dq.¢x××9J2<6ƒ›=™Ç¦6 •ч‹+ŸZI6Œ¤CKsŠ¿?Q´È‘sþŸÏÛç0Íç½ ï·Uü÷ÿCeÕ ÷WÐlÑĵÎá Í.§_¸Rîòo­€+ãqhê>òãê ´L*k™8˜Aë’qP/™2´½¤†ŽB‘äÊfsè´¦ªTÑ….êâ×ñ‚‡¡GùëI[=oès¯¿ohý+ô1Y,v0÷ù@µZ û¦G]eß„Ñ×à ÚCÙ0¾Â1\ºê SE;Òª’"0;VçHâýæ3/þ‰? ‹÷v¸H{ aùªÿ÷µÛ°òD_—ó~&¬ ©Ø 1­À¦/)sèu.ØQ¡çW2 Å=ôsG‰#á—‡äÒ„¥Hì=ÅBPU†¤ìêÉÿéHðñ‚b3R KÑ’X u¥|oþ‰*¤Õª–¿§éŠò鲯J¡â›ÕB™ýWà 1<}Â&šŠÂ^Å,PŸBQë¬Ä_¤Ù(V{á²€Éo”¨–cñMB)ŸøCkV(C¾ò’Yþ©¹ !ã€r¡?²b>¸£B¨Œ‹±X*vÈP¼´Eá¸Ër Uô\>[Iº¡ê“·©Dµ^úã!J‚¨áø2îXÀjql·5àÔ^c8µŸuÛ<&)Fý´lî4ts9û¹^qu:·‰&ûü<ö¡©T|Sùšn.æ4o{£YYÜ£ =4ð#sH-´ø9žEK’“ºZ}hYjñ­|2$ÐZiû˜ù R´Þòï!¸†6¥¯„ª˜Èñb\ÆØAR”j>Sbù)ÈtÈÞ«†MÊ« T ¸›ÿHÕCnÈæ—}èB9©ê×Ïgþ3·ðqc¤;Ä]}o#°õz×çñ=5ϧø_]©ªI DÙÓ|zZ>¬®ˆ.M„÷¼¾krCxÂác¡ŸZÿâ1FioFÆU1Hôʨ{žèiͧ\ñµ d.šÝáœS„¯Ô-{Or„;§ÈF· 'ÒoTˆpr™‰_ ú¹å‹ÃûÉÆ)øn%äí¹ëüáîÿ;Ç…eÌØþSwJviláŸ÷°ñÁgê¡ðoŽÅ?|+%üŠÝöÛw@IPt¡‰V ”¶bðÊ+tX¬¾B%°glþ€êã/TKj?AmHTôfIü xïiqü%4tFOõX)BÓã;Í#Œ Y—¦õ–ðwhU%ž ƒöÓ!Ï'‚_ÉÇï¾Ì†.£ð4ë2èÕÞÛúTsú‰¸{£a{­•rs†¶¢ v˜`dÅÿˆ£g Œs„ÒÓm*Áä šC+t0½Á;<¬5 s–SŽ’Å0_’ &ýÒß;ˆÌÀò~¢oçc¼a…@ã̵°f™±—‡~6ÊŒD;DaÛŽ ;±¥ žTö—·1àž…šC%K‘ȱáÎáÐÃH²‡ÈòÂÉQ$ýq‚öÍ;$Øôš‹{Ž”W©§Z#õf¶¾Á¼ÒÞ “ÑŽ Bz¶+LÛ÷†¡/ÿKÏEdj4ùüЋY†^ð<Ãd“+êâ4ßBŽE{AÛKÈ} ‰‰2:y)§?xèÇãAÅ;QËžOQ *¸Qp,éps;5W¡¨ÐÙ7ÇÂPÜ0àäÛ.”¼ò6ڹťÝÊNs«Îâ‘§ýÎæ6(+ýûm,*ôv÷ïÛéA%Eq&þD/‰ýÂC¨zì-›áª(ªíœ™óÝÿ 5Ù´Ï¥¡ÖÕÄÑË»zTÑ5hÏñ¨»ÃóJ±ñ.êçšé|Ð@à ûD ÄјÑwó1…šœ¬¬æDSq³Ôõ+hºÃ «»‰f?ß°4O y¸± u3Z\,»êÔà‰–Êyî'ý?£ÃrqÙ\"ZÍ%h¼»z}f)²Ý®Ç£ºP_þcé,ÜѼm<›©^ÏŽ[@cJDÁ©ÐƒPÍ]f—Ñ ¥ëž‘–Ùÿ›ç™zðÐ^Èö 4ðÌÿêÀ ¨K +”ì’¼ñcHŸÎ|+ ©Œ§³Nù@¢Á?ÉÃ$7eݲ麄êãL×!/Fâbæ‰H(­srL)†ê; ·Êc¤ ž¨¬¤!ašÊÝ‹5iZ¼Î—QÈìƒöãyLä:Ðyáºê—èžçùEu—úàbc®%“L/?Ü?9S¾³êÒI+0ÃTÌU–j ³½®¶ƒ-07Øõ‘×±æ'™^¹q÷ÃÂZ]¯êǰÄSÌHË—œ²Í/­ÀŸ –{_Jí`5¢yYPNÖŸ½‡Çã`3£²zˆ¶w?žœC‚2}·˜U$ä^r H C¢æþ?™âHBdú…æå’úwë¬Dr~‰üƒMó¸w‰ïN¤]=RÎòÓÒ.! Iëî#¾Œ´ŒúTâ Ý!Æ©‡BH¯>'6Nm‰ .®K=Ù1†qïÀWydZõ}§Ç?,ŽjÔ.Š4È:^râz”²¹MÒ­þ„ì[Ä9~ #+$È%ÿ¸ò|GÐÿåaÿ©ì8äI2~¤½ëóŒ§W!–Àò{S$6K¦3ÔA!y’ó”\ÛxÈùÌJï¨* R–3ýDÑ£z_û*[QŒ\zˆTÓ%¸U]©xcPÒï0Ïõb ”æ8ãQeÝŠ2õc {eŽ¡¬A¬š~7 ʹGÕS±p¡ü‹ ›QjyTX( «‹AÅkÅ™cߣ²ˆNãê/D®§/ N7£Êócc‰K¨uÑœÿÔ(ªujŸøÔRl÷´Pó¹Ú™üáˆ]½©Û⳯µS=g>:?¸—Ÿt=DÝÔsQÎT“¨ÎðÌ8õÂ:ŽðAX~Ø£x h~Sÿ@Ãá\EÚth”ãÈYë?€ÆëX2ÑD2U´C¼ M>Üx~ºMimÂÂ"Ñô~ðºKÃsþžµ×ÚP-~v†\ÿ§ýdø}(°ö³mé ßã¹cÂD ûæ_ƒ×*Q~¹ãÞ9OHÕŽÙ—FNòïy¨—²Å$¿ç™+ÿlj µÕ{>úâñÔ$dÌÝq<ûl²¯µe†@ž§}œ[íÊžÿÊËæ…WB‘¾ê‰Ó lP›§Ìh½eƒ9’†§ bb¬Ï¢» ªbîX¾ûÌ÷ÌYi®Ã÷‹“&¡†mREþÌ£ÿåßÏFu+¡¡î'±í‰hr0½k> ÍÇEÕmÎä@Ëõ¼éµF=hí8vlÌËÚUêÌAGƒøHñBgÆ…ÔÃW:¡»ÝoÜ}}‚_zåúxÿãCff¾’óiF©ç´öül¬KYõ^F Œ×“|ü “Weƒ*¼`ÆáaV7Ýq˜›½b7÷ï¹O÷ßµËr$°èÀz×Ú”–FRôǶa%ØYðÎ4¬±>—úí'¬wÉŽSXÁæXúÄG°ýG±ƒ§þ*ou\S+A‚ÆU» {2$b3‘ˆçÞÓóù‹îqd‘›)QÉÉnámb$×»(?qi )iWýÉ|ú‘ªCwtÇ#i&Xê”"^ÕC–Šd¤¿V"!Oª ·užñ~EÆvª¬;È|:¶C‘õ åÂ3udWú5Ÿœº³DÝ×Ù[ÚÓ'÷é6ò,L$þ.^B¾÷=‘F+MÈÿóΊ¯àC˜h«9c%ˆû-ÎÕÝAof_­[ AQ£}ß{Ž^BñÎ Æ}lã()d>²v ¥¿20œü eÕkJöED¡ÑQÖ.”'«×8‘Ž jÞk´Ö¨˜ÛC)QÒŒÊ;Ž—Ž£ê±´¸7¼¨&$ÖÃý–®/T=†È]¾FÖZµªoËQ‡“%ä!A1êhÎvÓËF=­‡U.L¨ożdÈM€–9I2ÒhhšpûU2+éŽ2_%ŸGcµE¯UÊ‹h"mò…¸ã2š ~K\!OB3ö°ñXJ 4gÐz—v2-èä|uåìöüÔdn“m­šÝJ…ÙÑÏÜßRñªìR³µ<ð@ºŸg3£Ã`¼äE Ç¨vL=ä¸òŠ·ÎÞkT\ÚÓ‡Ú¸cÍ&äjjΫ°€ìã…‡&í‡÷«S[Áöòeá”ïÁGæÒo›^±I™BäTt¸ß%O­ù' dNÐAêë´ Õ4/i7ÀrßÊÖ5we¿éÃW2¥äqrPKì¦=  R}§¹D¡éºw+#]:4§V«3uCË—‡ ê— µ5âh‚l´Ýñ:ªm‰É—¤ÞäC›û/]+µëÐ:»á,fÁ­Wo)™¶íq¥;ùÈoùÿæ—ê {ðy BkR“é7hM1 üN}Úˆ)~-·÷¹Ü-¨B»KÜt¸œìšºÈ ¿ò©-Ý<÷Cû•A½*è~§Úòizro~9鵜ô$㳪‚¡Þè×TØ #fL™ aLOyˆS2ÆÍ¹ÙŸ»•Ád±Ñ•ì1˜±•>ÓÌG9?þÄ ΛÜ›Oa‰kmËò^>,ïÔe?¦5ÚOX¾ 7öLºygØšKà«í€Ý7iTÚÜ ‚Gç¹±Ù*‘¨GQ¥Z‰"$“Ö‘xÕØä˜ªuì R–,.DÕ\A‰ŒKõ9HOxe>slÎÝY,ʃŒK¾ã"aÈ|gͧWŠYÍm½®ç¦ »ž›râ³Hä ßdÔ×Gî׫FS²È—îô°cÀtÔ¾Õñioüdü”º¥öß$!y%t4(ÿ ¼½à¨%Q‰S+üòáõéö¹×àåãc ÎúeðÂŒÍé'ûËÿÕcrßÂ×Èt?È$cšI5-…œ;µ«Ci-Ÿ°¡Á!gî¨]Ø…O2Tc”ÿú—¥ØG¡°ºÌ?˜ŠÔ‚ŽõžÐ‡"׊Ÿr(úÀÃxÆÁùÿ\?ÑØN„ÏC$ƒB"¹P¢C@{óàY( ˜‰8£ø|ï~ v¿Æ*N>¸qR*/îÈr†ª¢R3ѨeøÂŸS8pP¾î‰y–?ˆM™ÒcîA­TìÏÑPóm¿´%;4:ñPÏ_fuÂø›9KÐ2û}ˆí´õ^ëu6€Ž…·Yš  Zª•þ¬@OOŽÉ¹ûCÐß,t¤1 †¨³lÐå6 ·™¥[î?£YUçUÊçáwJÛƒ«²`¢Á5…øL‹ZÝRZ; ³©'éÔ Ã¼$]¡•,<¹fY¾{–ļY¨ž6Áòr‹¢¬¬®ËØJŽ´À†ŒÈ± QOØz£v9üìŠÒÈDhD"Oæ[žf$l3»ýu‰“ûd̤‘dðQ²¦Ì=$KÛ.S8BƒäŇ«ÊÓ\‘J€HäÄ/{¤ix˜$ßÔŽôîÓ~ì¯"#aÕ’rdú:Cè²Z,Ùy§Ù¢f­´KïÞkä$ßß×dE„Ü…W^ÍU!ß’>› ªG^¥ºŒBû¢£sePÄ«,¿|ßIû»ðÌõa.J¶'Ýí¤yÒó'®÷ô ÜAxþ5Ū˜*W£’Mx,MªøÝˆ¾¬þÕ²Œ²0šø> Ù,DÔ ªâ4³žÙCéŠ'Ù@bÒÞõL¥hnŸ^~˜†AOYZzȽÚ~qÛô2|Ð !uY… ãß;‚“ SId0õî0ä‰×7sü=G¹Bµ†Š!(C[b‘þñ)hÔhÿÄ#ûZ·\o.C»fãA©;è¤  9Gôz>*PÑþ‹ïUõnÞÁÜÒÙé€vú²ô<=¸†¯Š5ì3°‡ÕÛbœßÀÈv^/ãè0Œþ"I§®†±o¤SÕ Áð»1qj¦VÆ'hîK¦“ÀÄ6Ç›øg?ajÿq‚ÏL`Ú³Ïi$5fzèôˆUaîfŠ€yáq¥,Xàø¥hLŸ ‹\ãæ6-¼°$P‘Ùî Ëð6Ýò&3¬\ò+åθ«³uµ‚ƒu°þ`mhž_6sL¶NÙÃöõˆNC'>Øýr}ML ^ñG—÷"ábà-í­³Hìp) À;IªB›E#™ÆV®ß·¸¯3Q@WU )Þº ‡žàAªxíÛÕwIæƒÊÕu_¤kfý²Lûéw½Ö™ö~F.íóó’;ȤÿÕN3H™/ÛGÞ.?…,/H­ŒuMóãÆeßÈ^íœEi{9шäŒx!×Äcºk‹Ès…ÂãüAjäS:ÿ=!¡÷?>L[Ú>ug ŽS¸ìña¢ÏèÍlþD˜óX™ E)®Î„¹×£˜ÖÚëóbZ(4›ð7ú0JÔ’ØËA)#b·'–e(ÍZG¬(ò eE“CÜaE¹hê‘Ãq¨Àÿð0»nÐ27|vHBeýÇ @rUN²ˆ_,Ô@Õˆi*™ÒTëú{ªÿj8þ¸X¸S…š ±Ì—fy?4F¿E­„žžgž¨]¥•¬J‡º¤>¡…Ú¨çøº~JLõß GÝ8‹k'"â'íù$j8Ëf ÑLv@ö±ßhr:Ȧ òéŠÿþëÇ?dÐnE”^Ýg>—@ñŸ75aYP–“@zåë'¨è8Üy³ªn¥-n²ÿÇZ-G¤"àû•ºµÑëPÃSOܵþ’…ËJÓpCÃäÁõ— Ðt>ëOÚ¿ýìO•hø+¥öòî­+9’¿¡S tñ³´_¼u„q ~ÑÑr²@ç`dÿ‡6zè^/¦1f}*ÇÝõkÿLJÔÉG®;ŽÂ°О1Yê±î¾¡c¹ÝªlÂøco.5K˜ÌÏ8nâÓ›Ñu$z0!9ݧ³ ó/SI•-í`‘©þbS–:,Å‹\ bX‘Œ0—z «õ7“bô¿Ãú=º»w`3TõQÑ­ß°ýl?SÅåAØý5ýŠ{w ^d®—— áÈ w×$6šw3>…$µjU1‹ÝHv¼n|ֺɊ¿ùº"Ŭ)X]ìFª"öþq¤¹\~c@ké Â9¤LéoZ|<—ʈ Òb‚R}øÊ›Èìî7ÕÍùYňîŽÊò!;›™?Q0r²Glü¥:Š\··üÃÿ Ï7݈“­sÈw}aÿäLò&&þº€íBÝ$'/ã~5ŠÁ†^ZËÝk¬‹¢"·&¯Í…¢x† GFp-J;Wõ–±£ô-²:jN”ÌnЬ,@ÙÅZ;ú‡WPn7¬ºÒç.*¨œ~ m•ˆŠ†žQ…¨|Á¡ÛÝÚ U?š Fõ'-?ÜZÃCfª)¹ˆjT?Zîæ£Vã8Cuüêpp|ìÕbC]Õ¦ý®W QÏEwKñ ê_Jª%e-Gƒ˜~[íN4|Ëóщô}œÎðù6ˆÆ?S¢ˆ6ZÑdB¥º¶*ÍÈg¯ˆœGs¹#Õ—B ÏÕïJÿ åÛH¥þ«·Ð*4HA$Ô ­%® ãÙ°—„÷Mî r*Ô|EÚÖAgý7`\Ÿb8&°fO‘úiÿÍc£P8 'ÿú^þ 9ޤäÜ{95eu^¬²–÷ߺÓ*ò?ç¯åv»ïñ_©ÜGHR¾¾=ËœcO„BBaê—¯nTÿžãT ÌB^çV mã,”¦œ<@_²æCÊT®BM²œãüâ_øYJ̨´µÇ‡X5ÊÄöš-Âho®@‹uÙÂQ¦thµøK;è ­?“Å÷¹C@íM·‚=.üKÂ{ö´Þ/Ë2Öþ­šc.ò¥ÐJ®K§½òú¿ó)èk@ëãçÊR¹ uø€=M4´Ù°ëržš‡¶1ÆœHh/:ÍÕ]“ U‘Â+sSÐÉ®|¾H^º:Í6>ÊB÷âÀï™Ð{õ-iùŸXèÉ ˆcß‚AoâØÇvB0T¹ûäèÉ=6W q'h„±}Å|_Ô§aœØ–g¦ó+LMfhy…éñéG©Ç`®å¯…ðükX ŒÖ©zðsç=…ã°|›ù‘lܬÆÎŽÑSÂú¯ùµµÚØ:¬.¶£óvIqÁ€\ ÎÀ£Íû&HD(ä' õ ‰›šÞý€¤í\«gŸ\GrÂKØî½CJË\¡»ï‘ºû¼ÎÁx¤ 9oAP‹ "n­5†_‘1ÁÊ!aÆ™å\~¿-C–I)ÆÌadët^¾*s 9)xýpV@îË·‰M#Ÿ„¯ì»r pÎ5ÓAÁyšw¿qÿnï¶³1(œüJË"¢EÃÕ¥kXcQüÒ¡3ô‡P2»<`¶ß¥yo°PÓÑ ì9oþ9—Ç(O` r £ê»ÂQÉçvßvX)ªÈ¬‰“WžB5QÞR¥bÔ8é’—Ö-š?TÛ½¡×ä“jÍs¹‰:ßx¨#Oo£ž³]ð)=4`{'ôÀó5Îo6©Ò*ïéHÓî¦xš¾.<ØóGÍÏŒ^2ø€–b*-¾æhu–Až%h ­MÒºIG«ÐFl_Þn}Ú’s ??f¶Ó§?iíù®]«®Ü{ê§x¨¢¤œÒ•í ®Ãˆ‰:äEŸË9‚Ž%#ß*ÍÑ©ÍxÌ*<wxºCŸZ ÷"Iε|”œEhŽävz%2)’0¬{A$b*(ìW6[ÿë“§s(Š´¾ÛXÊ!uçKÛí#^"jl“z¯’­šÔžd5›Y¥ ï$¿!1°“l!B^õç“–å»ÁKr=¿ ƒÃ?GèDx÷Øÿê1ùr×/ëÑœ=ýÒ”N“BŽrØÕRÈ·x½ÎJÏŸwiô¯„O×…ÏÑ ³Â§­zBYé>(ô?×䯅ãœdÝIÿê‰&›Çö8±2ÜNþÿ\?†|3rüW/)ìö €’}’Q¬tPjõºo={ʳgoßÑ„ —lˆ³/ ò”#)³ø¿¾Ž°šuP½ðJ”{-±W$I,¡-( ¯õüt\ùØÊ¾—³%&L¡çäב»¡Ÿ¡ß¦è©ea°ÖáÁá_þ0|ãõåXã u}c”Q¿Ef_ÀD„€4;Õ[˜ú;Øg ³‡²4ÀòÌ(Pø6rÁÂw³“…°D¨ðuR6–›BN~–‡Õv·£+‡èaƒüYÕ^Ø:Öb òó;ìÌs¤Ú¾A‹X¯à’=>,ø.zèÉi$– ;(G ‹$Â+ „JHvýÆ9{‘$XNq/])WÁ°è!¤IðÛaÏöBzcÍÌÒPd˜dÙ Œz†LÜöõœÈò€U.åÞWd{Âwâ6rtFDšíCîðwÇY£Ø/}¼#bä äß8v¿Î÷·^ðåšlD‘¹gö"b(ö©šÑÊöJFŽEÙÕ¿B釺ÙüKOQŽ|8†ÿ‚*d(é7>A%އ”Ùù㨢֣äÙ…ja$Ù&—Cñ oâßÞFDÇO|Fõ¨­ZKJRÖ†:ýÛTUÙ¨wW÷Ô>Ø~ñ.Û¹ˆFâÜ¢£ñ&Gú4)šV?¹5鋿×Ý¿lîådK«lŸE§>´zÐÕ]ù–­#®eö£>ÚúDûùÚúÏÌPWi Ýù¶JáBÝRüþYÞ}:kï‡lÌ’c±o"‘ýÅÒÎk’päT–ÑðF®6‚1ä Ž-¼Â„|òÇ~t{Ký|˜6pÖFgJÃBôöø0úfÊ3.ì=s‡sEi $Æ-QÌx²sDö Š_ 1áA‰Žíi{}”:TBjÞ™‚Ò‚û~¡¬ ŕܕk(w¯{ÝjK„¾èzË0£âOí[§/Ì¢2\Uç”"A—QÓNö¨ê+XâëŒj¯ê4N¢4éÜ”GÍ}¼Ç™I yš¨è»–Qëƒkñ½äVÔfY³ŒUE]ÙqMôé¨w/·ÖK£þç}æâÚh°yMª°j ˆ¸Mþ 15.´ÿ1@6Ž~Máy4úTT²Ü‹fÊA² Ñ£hn.ª¤Ü‹§z#–„òÐ2¦…`£•ûcýæÁ´ÚÝö÷û‚ÖI ׺„×ÐÆ6å…Éa´¥6 Ð?B‚¶Íîxcæ1^t,KŃíÛ)UÈêù5d$î%¬^QŸ2oƒºßÔ‹Tû© êÐçXâPüàf¨tP1ä?VvtÝ5øW¯?ã¹ð²™ÿ*ƒ bs–ÍòHÉ?­Áèmño¿ŒªÃ£=¿¬_Ÿµ²úWGüa°©ŒW¯ýáüÇ“¥´wÿíÓ!‚Gªn]‘Eß™C»¥~Caãs?¯£P\ë:Náe‘÷J"I¡¢ÙµßC5ª¢¾Ç™6þLJÓ¿ƒ¹(àû÷i—¨7 fÿû¦À.ÿñ!µ;œï8d™³ã]óÐô”Þ†`—škuþ0¿ƒV¢£l§¢o@Ûá~Vz h/7ªï`\„_–w]Éi ‹å6 ‘ˆ!ôps-Î\ƒ>³}£k^ÿñ!©«FÖ9>z°öo‹,Œtÿð¨f¸cw.©Ô‡˜Á¸[ƒÒéd1˜ôv¡ Ó/Ã'¤Cãaޱ#²nðÌ»[1ΞI‚…¦ÈSVt§aÉ&¹äÉê2,¶¾ ñ•‚ÕÈPÖ_*a]7\%™ñ!lаªÁ¶. sú0ì†ôËÿ"…Þž/ÉÎ!av—ss•Õ»$oü#²õ‘L×QïWø)Ü·»}/ép)RÔ%P=¿ÕŽT/½VtáAšÓý!¯H‘NµL §xéï éä™ #ÃSúõOž"c·m¥Åú2;½ÙqUcFV¦RúŽï$ȶòž’gó1rÌ2/ìÉ@®æ¸[²ÃÈóü•ÛÔôò!ûzkDùß…Û=ó¶@ÊÀ©øˆ>Ü¿?a•!Ô …úå¬_Ò¢()-•ìÅ ß°lÏB)ú*íQ_QÚbûšù¼/ÊR> $CÙ…Šã(·ªœ`è”ÎHZ/¢â§¼’þåר‘ëªí,‡ªWk×Þ¢z^ÄîÕõ¿¨I\ó¶˜õ/â!‡çO_ÝE­öÇïBP‡gEøò9ÔÕmˆs®´A½ eEÚ¯.¨Ÿ¥˜PÍp š‘•È. 7Ÿ1[Fcñ%û¨&49êú–nRMßU?xŸ„f®Ò虢…‰ÎëÓhù1ód“2ZÅO^*™Dë“_æ¿G=ÿýý­èëæàÕíG‰J6~Û'¦Ûš=½6~ÿ _D ™ ®oÞe@z²:ùZˆ4¤Œ\üX˜¡ o+&¯wQ$C3a€fN¿9'úÚöíý=„#t»ò®¿ùJNJû~µ•ñuþÏ<¸€Î¨1$9»vî ü4+²j\€ÆE•)1ä…¦%WÅ:hîŸj¾±÷¾–Úð‰BJhõ œ8uZŸ¾býÍùZ/Š|™IV…V¹(‚SJ~в¯u…ã´t‰°$Rn­¨©ý×ï[D·Ç»•úé~{|ɤ@{Ú_XŸeÕ€vÝçÆVÍõÐÁIözÛ~‰ÇŸ#ô¨„Î0÷½Éº¥_0‰¾‚ ·NQ‚Þ²Gš¦¶_¡?N¨E1B=yù¨®ÃPJàýO1-0–œ1ðFëÐÍ×Ä~ÝÚ6õ0±ÐDóW ¦/ޞ߬‚9#í"0ŸÊz²Q,'óçØa™ýðùúýë°Ê¶Å´óaݺFw ™6ëÚäeÒŽÀΉŽ_&ÃSHÀydܹÝ 3–„Ø #qèÝ,×ùwHzq¥Jëˆ2îK(-˜+¤GŠaG_뤶¡Õ%ͼ†´³S•ÛJ-Hß-›ß²vÍ徟ËUE¦ö !®0d¹FRÑ‚¼ÈæãëõÕ9žÄåøžDnÒà6âýï7]"õ–¯ò—ÙtØ… *Ñ1qlyáþ¢%9™|vƒ?eQTžî ÿí«(.ýQ0ýAJÖs1Ä?O\šAYÃHá¤%r”ëbï´;ýn<Ý“ C%à‘‘âŸBå­ÛÃE-^¨:÷jmY PCF2 4œ5cõ3gb­P‹$5òj” j[žy|àæ ê½ñÚºúõló%¢œ¼Ñ€y£î\P!Îe¼OŠnDãìŸMMÑ4®È°‡NÍOó Ü~’€–Hâ÷ F«À³ÕG‚fÐÚ>m>|ùÚh>Èy¤Ð¶6K‹GÛÐŽçs¡ï÷<Äaè£wDíy}BSŽç£ƒÌ~:ßa.t4/é6¸‡Naaë’Šè\žur=â6ºrz(ØtÍ£7ÙiY»0q”iôU8³Ï÷]¨rRu…!ÚK“#ÎP™Âªm¯Âkkãµ—3ÕÆ‹‹¦ Õ‰#t¢¬ÞE¾jœt°ƒ¤L‘{E)rðÆñÅ#$üÕ¼ÿ^YdžÖP†÷klAüýiGe"©ÿÕã¿}à¼KÁÙ&Ýzë__ÿ"ᦷmPÀ@.MáÉ(ø¤P[À4 ŸÒüiõ: -?Ô@ •¥ŒXÿóÍJq¥|(¢<6qî;åÿ½~ì}$·w_q}óFŠëí;/ýɆÒ¶QD ¬FÌTŠýßܪœÐà]¨tÌ›¸°U—ƲN®¾êª[ÏÏ¯Ç[½Áw›ÏŸÂ¸½ Æ+€û÷RÔå°+óCƒ=kõ)ajhŠßW½Ò£-*ê†Ä ôÐF{ô¶Á‰è`¨YŸ>fn³±ÏßB÷JwXªç#ès ´:kƒÑ„Ma¶Ž0¬¾h×î'£T‘œ´Sá7y¨q G LÈ•p19ÀÔv“¼j ˜%Z<6Õúþ¤gpfÚ®FlgËoXìÚ þö#–3å+õh`5÷®_Ù7KX¦á ¶²ƒ-f›^uØ)%¯EÙáÆ,HøÄ@„ïd/ÓØÄËçË#ÉëOz£-½HæÉ(2»„ä>üV‡Ó‘²VÄÁõ¼Òœ³8´{éåîO åû"C“÷©«$Èc–ù$ÑYüCÖUž¾B6¿c·¢É‹‘#uvHш¹uj®ÞãðA>[™î¡@t›Ñ‹Ûâ¸ÿuˆí?žä ŸÕ›D±³në1]GIY‘ Í·PZ™¯Ë‹ØeÛ¯_»hÎò?ùøã|Pq0õªíØT!–6òÐB5v¶ñrÔXl?©•$HáµùÆ¡µE‡6ÝÅP§áÇÓ?l\¨þšI;” ô­$ÆSЈ¿óú]!4^{\P•ñM5}WCóÇºÆØÑÒ÷‡°(a6Ze ¶ÚÐ_Gë4>É}¥²h“¼¢§‡¶Õ q7Ô¼ÐnìIPN?Ú³›±|¹¼†Gn| S“CÇr¯³ZYÑè¬I³Bj¶ˆ9jýÄPÛ X¬=ÑãLÝ›ùÆ$Ø4×68ẠM ëký6Úðí„£53Éu¨lð 9|DJÂúòíc{ (‚™Í/‡>^=dG{dnO¯œE1sÿ3GñÝ]MÈ:¾Å þxÒô CºLüzÖßlÈ Ò3ÞùÌû¯·f_k;|ál§:îÂu¼ªÎÐÔ¾ÝÔËë­ äY)= £*AÚ©º‚G·ûÖzw>¿°ðƒ˜o«ùq0$X÷šOÂ0ì”…áo»…ª0r´£M1¬~ï:½²e£]kËÊÖf0ÖöŸÐÿüÞog{¿w]÷¸Ó`Lº_Šb¬ó†©d'kô…߆Í'0{ßR+ë3üÑÕü•§š óZe²,¥`áZ½sœÇ#X ¿Uʨø–üÓ w0–CŽ g]XIˆ¨ý ’«+ЇxR`ý_YØTÿåÙº¶%—WGIÙa×<û–W‡ØÖN„-$#áãÀOïïs"Ñoó'òmQH¢õÍ»¬ø=’¾W=úˆÄ÷á•Ù’8¤ lO—<_‚”K‘ñ×ö# á³ý ²óòRê!}©d;}<2ÔŒRìîå@Æuæ³§£Y®' ¯±YÂ[º\ïO#ëTBsrÇAd¾k¡Pð9Ù¬­øÝ#WùÇÆE=9ä9½9³ñùdlk™åÂþ?>D‰‘•ˆp×j”ò Ì$9ƒÒ Ú÷'PVùÌ-2·”{œ3Röô=*ˆ­ˆæÌCÅz_îWʨ¬â¯Lh{ U,67ýQÕÅùl%瘟ܥ!1A ¡N '÷<¸B¡Ît›‘{Þà+ j•ö%ýÍÕEÂic¯ wÔuù˜7nÃŒzÉò¥~‚¨ÿsr˜¥Ž vÞt¶¿x€FŒ®ÛSÇÐX²ñìVH2š˜l‹ä éÙ¯wZ¾£ÙK>.ˆCó6-ªUæ|´d­¶ûù­däÆL£Õð7rY´Žw]-2@·Ã¹N‰äh{àœŒ¼C;Jw.àE»5£a– ãxÑ÷ã¡'ÇõPC#æqg²pRÏÛuƒ•é—²û¤Í îáÛ›WŒþÍqj*¾ú>Qßàß²§7ç7 ’ïRïP~>äqžn½°—K ²CʙζïËðŽzGð¤éŸ¾GØNÈÉOܾ’2gïåÒóòÖò{>زéù£ï_>ÛGÛ!%ãÿŠáß¼¶Wg¢Böü®´"€–ìß|µyëc’ÿæã­ T|}ê6=~ëŸO©%´ˆüLJ OÃ)(À÷»\Ø6Cøƒ—,yåÿñ!£®Yåëhâ‘g"„¦ÂsùŽ)%мm•[z’ZµT²ö‰íåÒç¾4Ç™¡ƒxŸz<ã_øó^±u•ºLšÚ…\ÚË¡!fIR¡Ï=ÍÛy0úùppgÜqˆ†­INî/7€‘Ê‚€Œø6;.¨rÚ팋)X~c „I^–†‰ 0­@êø¾f“¯p|Ï€yÁuþ¤Û˰pWÕ±Ñÿ,Q ­Í/Ár½ãÏaUõdôeÝX[{¤ä‰"lt_{!wølͬ±<ÖÛ»uÌnz!2§¶Å Q$ 7%<Äù‰¦»Ù¸ž!É… ~¿3ÙHÆ7šX™Æûz5Fšó"EÚrçè³&¤º\²mùËiv6¶Ä‘N¾xrïf‹ô1 K³¹Èðêüåý7‘±w­îÈçed¶i§ëwð@–¿çÖžB¶6º·jdÈQ™:aIJŒ\oeÙÿv ï†æâ1äSá>!Ù5ƒü±+Q2Ô(õeKþ™:î§U¥²cú’Î;߉"#¤zÈýQÜ*AlY1%}Ïl0=‡ÒL‹¨ÆS…2£;cvÑ(Ûú¢Á±ÓåfçÃ~Û ‚‚ïWß—:¨ø™ŸUmϧ”oP÷ z²¢jlOʲ8)ª7Êx;ž CM‘œ-Íëfˆþo}Ü>œ@­Ý?7íÈP‡MPÁ·ì'êZü¤püûõb’|&â#P¿çËù+Ô€†ŒdT9'¤ÐȆêç7/4~±Ù¥¥S&+ UÜQhæÊPíøü#š·+/=óàCKOá‹™·Ñ**G¨)Ðú8Ãð­‡[hãÈœjG¶‡+ënî—Ã3Z ?„G£Âö[ÉB¹I¤¬l(þø~-?ùL*ïæôòþ|Eoîl^ƒ¼ù[‘Ó®]DÿüÔ“BÈúÊê{eŠ2æ¥^…´¢Í§Y6!EÔä$&xÃ[S3úÊèyxý|p—´‡æ_‘rÕ„èß<ýsÀñþß9Ü…„ÖPj•TAR¿—ûvŽíŠ_ƒ¿®ï,FC}Ÿ…ûé·óÐè5E-aIMOÙf?‹C³kÎûWDТ¿í}vë3´ pKÊÛ~‚VfNO޽•ÜâÚçzhi5¶½-Î-þħ܃–t ®]æh†ÛÏ© Õ®É—o„Z;<Íܺ¾A›Ã{ Ý-h[à?R]yÚ»,›Y¡ãÆÓ…cÒÿô˜_FÝñ:oýðmò‚n‰¨i©g4Ðs‡³b· z7®v|Z‡þ¼Wo[Æ/ÀàaÕŒ+Γ0tg*š¦È†¾´¬•mÃè½ê—ìN=ðûl¥Øƒú6˜xþѯ´Û ¦éJx"&`¶TAÉÀ3 æ-’îõ”„…Ááñ—u°”üÎåD1¬ÄÇDlEµºÄûß/_ÙóW_ z>Ø®=SjYš ï+7 ¡}e'Ý¥$¬¾%bûIï1ˆŒïùévÉס H${{„•©:hk¸Ï"­§›¼ù©¤¿Gô¸7…6™TôBXé‚Ð匇jÈÂßç»Nê„lv~.È!äµËE\·=tµÜ‘W‚I~T)ùÃLÖeÞ«¡ÀBβˆå üӅ¬¯Tå¢ÈïÑÖ‚@`5`2EIŠ ¢‚9°r©:7§ú’ÛáÒÆP¨ãiô»Ò £7÷ùÿ›Ïatiøÿ\‹{ëBá³lô)ƒ•=ŸÔ ­±†RJ²gti§¡,çuêÄÍe¨ÐÕ>wé(TRš}ú UGCû)>„BõÃóTÊ3ðUCRÄOO¾mž»é5l 5žz·œÞA¶&O‰ø[øÙö ài¹ 4™Þê”ü3Í=K>½}-КbéQä`±§ï>Þ*s#ø5·¹iN˜Ý‘XªÍ}¡ïlÀnL‹' êgÒ=ošÓ—`{ #ŸN§EÁXa]r§E5Œ¤›ðrQÁ”*[úb%Ìd«Äñ<ú ¬ûz¦šôèÃ&Ï”ŸåÌØÚý@&ï »ŒúvÄB†H ÀAy ï}Îy$Ê*[¸¹ŠÄgm7tô„}‘ð[$[\´}uªÉshI"¨òõ[Á~B¤Îp:È}ikŸÖæ‘"ý¥Cú“¬È¨dKzc›Ë£§ 3ÏÌõ_‘ÅnN×#O Y+YJ‹(ÖÝJäÕã¥È±àõëu*reÆŽ¼µFž£¹TüÈ'¥]g¾Q÷ÿñ!Kò¥Ùœú™v¨K{í«<ôAá’c¡£å(ÊÁ–Rï€b. ¦ÅÚÄ(þôî ·ÓïQb~Ž%)Ð¥üØ|žº€Ò:1¦(«Ùëôãʽˆn”RVC…"ôTd6¨XOø³2•eÈM\Ø@Úø;¨j+HÑxÕî…m÷³I¢å@“øƒU<8¼LËÄ ¾Ç‡ô‘{¨Uïvϯ,u*âC¿D£îõž¦Ý‡á¨Wi,…™ õ‡êöûŒ¢!AEÔb°( L÷å^>ƦnsD$hÞÀI«hú¹õÈÄs4'±ºybÙ-\‡Ssï eUºHgð5´z¹âéLBÖ^«Ûp¹mT Øіm¦¿››íöù½“ŸÇCäZf <ªhÏ#õ–B /^º=•áˆêb݇>óu#ËêÌvÔq^X9ô÷ì-Úê½û»:ÿÚ]¨¼ò{ŒÂáöÿÔí—ÏL@^ç¶ë¸=äKšÞù4C©lÏ‹Aº!ç¡Ô÷ör©ïÅÚgÿú)¨CVâ i±€²$gðß>ÓÊj™º=?=Õ'ÀÒÛ°‡òêøP›päõ× ÈMá¥¼Ï 'W« z© ÐiJ!èS&{ø_-®ø eB>ä6_CEQë@PÜ9¨ %ê]–¹ô®]dŠ_ç€ï©s8Ó F&ÐûcÝþÿø]Ä…Ê[µït†™1BSg;k¶µ´H»]»]­—huú´k mÌþgñt|Mug¢†_Ía½¦#;Ðu9þÊ»Úèñh{ç8ã}A&³¥Cÿñájô¡wöwaX«žÔ0ÓFRßD=„1ü¦B©7¿žžâ놉–º}ó W`jä¤`äH#̪Jf§qŸ:-×Ov7aÁxÎТµ+“Œ;`ÙÔœåÌ9lW}„µ¬šm\í°q[ŠoÖ ¶â†X/¿ÓƒÏŸ—G-â‘€¨i,n¦ W–rìé¹ÔÒagñ-’ØÄ6ºKr!é¶ßnF[;î+ Ÿr?ÑÆï¤SëÊcÌé´í=ã‘Ëp4G:©¢ìÄO¼HÿˆÌE1æ*2$õ_1EÆøv¿°Ed6Û'è”,Óò¬ÅËÈ–ëÐÎé8¾!dÊ‚2ùõ•”·Pö UØfÊ¥;Ù^TB9¿#÷ªcQ±äÎÙ‡R>¨|÷„;ñé-TMœq4̰Aõ©¾6©vZÔ4~nS¾òñîªÐF­ÁE7YÔañÿ´+†ºNuašK¨—a—\埄”vH¶ƒ†6? ÝC¡QÚcåh‘V4¡'ò“ ÈAÓèoCâß{Ñœe·šïz Z»z _^B+ ‘|õ‰ÖÒÔ,–nÃh#«nà¨Éж†^Ç+O¡Ýy†??ï¡@½¤_1Ê¿k¿ñáÄi¤—ª“ cý6Ú2ÎAÅrÕ©A(ì9âÎGµÇsVTßE![%}t{àdV™§›Ô¾ƒôéŸ* æÿÎ_+ÈûïNsp|{oÚß?O'×€×4å,16½ yý=mùî?Ö)߃ܡùôÍqPRíŸaêÕÉü\àÇ­ôW$çÌ þLà¾ëçç¡á× i)·)h:ØúîöŒ4mèôJM‡_k ”ì&¾Ð¥—?_ó:º¯õ¨P†AOg¡4I\8ô)gzpKB3{¿E :ت¬¹™ÂÐ9÷Ï¡þBC ûŠFm {ª¼mà·ðúQƒ^˜Ð}ÑÛSo§é;ÂaVÞ\¬ã¥"ü™:æÝ”uÎ÷øœ3‡%ù?H ´°Â7Ô°XN kú¡=œFa#\ïQðl yk÷4v'õÙ•«¦0æÙËU$ªÛ8þçc,’Ô¤9 Í=A²ê—”£H±ïO¹C·R9-tß¹ã„4Ío^½Ezí¶àßö¥Èðn9…uïzdâî1 \Cæ’<ÊßBm³×·8QøiKòÝé 4®su~¡ ‡æˆÌØ‚ÚGЪ¥©.e°írózÏ”tá×eò£]¡›žø}¿Š!ônÜ‹nV ƒAb{‹"S!J|ò×¥”F¼µK«ÝaÌ›—pùjŒ?öí,‡É g*¹{S0s8¬X·—æþªm<úós í )Z°xûaç•uWXöLñ9åP «>Ó÷¬SëaýÑRI¨lv=õá.ç…=‹ûÙA'nXKH#¡³Þþ<ªr$júë¤Ì­Œ$n]£w‚%‘Œ[ô^YX’s÷me^GÊ“hk6[¤a¥ØWkɈôDŠG ‘á5½ùuqdrÎrh5ãCy¸æi‰l‚ MWF…‘ÃøÓèS-äúIW®Ç†¼ÍMN|†}( çKû‘²÷«ò¶Çd£ð™K†\‘§Pt@%\ò¡3JÜJ=QG‘„.vJN þDYß?ÙÅ”w#[º$ÄŒŠ¾­Ï÷d¨ü¸ã ÃÍO¨úÆa5⪑›Ç#”†_I JAm2†1Ö‰&Ôy4o¤|õÜì='dߠ؉,Ÿ¿hDÇ#5¥£‹Æ‹wëü'‚Ñ´e×ÞùÎ 4Ïu‘|&v-Ó×ÇX; ÕÀÜ—sÓAh½i#ê\Dж"E!¦ühwbs:Lô#ªä‰ÀÿGØy‡sý¾ß^Ù{gÎSöÞDFˆJI(¥R©¤]"ŠŠ"YÙI¢”‘½C¶²²GÈÍ÷¸?}~Çý=~Çý×õÏåý~;Ž×óz>¯ë:ÏkŸÒFa’ :Öy¯GäàþëÄ÷ ô#ºœXg1ÄPÁÓ›GQ[*ÄZJ†9Ì«éƒÏí†Õ‚OÌ'Ü¡±Šé màÓ^–C*÷Óá™ý¡MxKâèñ5ŒŠwsÿŽYÚΑ¿ß©ÇÂÓ o†oÓë¸iÕð^EGžhl…Ðz÷Xœ¼”` pr~p®Šïì£çNZl?×ï‚© ¾Ï­ÈȧZhi«ÅŸ[@»Ë×dç&è2 à+â==ýSÆ“CÐ÷Ú=êªw" Øüê‰´Ž‡Áȶû{d~ÃPÐȧò¦j{6™Ä÷B-ŽÂ§ÂÔC1ŒôNêéFwÀèð {Ôe…q1é"ooøq>]n¦=~~ö¾¹I “¢fÉF£`*@×¥¥ftïv8jÁ,¯¸ø)?˜Ý|/þú®#ÌÍ}Î?óße¤š1À‡¨aa/XÌãæÚuá,UFtíMî…åøï[û¯Âªçõh¦æð›`3äÃq9Xoöa Í¥‡ÍŽžä@W$  ²º*x UOr T#QwiFâ÷Ì (Ѥ|AôE{,ͳ¤¬™)ÜÍúnìG*ÓªŒtÚ®Ò±íon¥×kå"»øû_®l}ÈÑ}ö^¿rÅtÙ·ù#ÃÔ™+QÜ-.[½’ó_>|Yw#üm. ülÿ1S{›µÞïµGárßdÿšå5ËêA1¯Šk¢Æz(þœ]ÿ"u JlŽeÔÝ¡E©‹£k'¢Œµè¥ÉWa(§¯÷Z¾ åŸ(mý´íƒËÎss¨XûùÝÅ‘ZT7—nL9…*JýÔ5_ ªRM›M(5ªù²dKP£úìxÌZ•+j6õ1>ÒBä’{—~Oµ{¾Ÿ¬D½ÑÓ÷úrQ7`†¥m õxGïBý¥¬Á´…hHÜ/OgùäÏ•Ÿ‹}‹ÆGg| n{¡I®˜ÊZÝY4#ÜóÇ7ÍR~ú:Z ”8[D+£ÑûEhMñöaÃii´í<ÕŒ6m õDRÃhÛ²kÿ#1´ôó”UC2uµê ܧË)*÷è6ž¿çq5`ÖÕX…XG–ŠÐr»¯ßa±Â#›ú—:ÔÎ4<Ø6iï(±AI(cÙ>Ÿ?ðæÜ÷RÊ‹»œq ÷ëAÖçÎŒ®Sþ“`‰GÒò)äÎÃÎyÒå›OµvÞ‹2=÷L‡Ô#6å—MFáÅ5·[3Ñžq7óm®ÖÈö½vWþüiÈ ¦›h „µññ‡ ‰Û:gM ö°†· l"ÜÉðnÉÙÏ·p*²èléï‡Ê“|¡†w:þåÃM× ™±øëPn’|j”ö)ï ÿ—y)}ì÷Ü„F·¯Õ×·ó­ÊYòß+Ðâî븟ŽZߎtÅ$…vq&^1†qè¸Æ*ÌÄ]Œ¦W«š— ;ÿYÑ÷| —' Ñ£€¾›S|C ÿòá/qçWœ0$•r,ö$ ß¿’ã£G•Ó%u`¬t3ìÜ7ðãz¨V£ã ˜wÅ×ìÛ~VÛaø¨Ø~YE ?€9²çJ Ê0VÐ/eö3,Ül±ØSKÏ }ýöæÀŠç¯ìɤ3°¦Ñò,]n[ÏÚulG)Á¦sFYS+l=¥c*OFBÖ¤Ñf}$º÷Ñ~¤& I$r.ZþGÒ®Mç‚[HSþ$‘òPâÉà¢jÜe@SÞøiä4ê HQ0I~Ò?z<¤`‡ ¯ô7IEÆ!ü~~!³¾šâPÔ&²tLÅfÝÎG¶ˆ–ö7Æ‘ãhSǾÈepPù8Cò°eýPèEÞqÃŒãŸíïØèð~[oä÷æv¯YBáCJÝVü(ô «ãÕc?Izä/'àƒbK3ªšóö(yH1æ}W=J'ô½¡ öAÙ°8é;“(—Â(™‡åû¼”ºCÙPA6`-ëç0*–¯~™6²E娃#§P5g“â‰ôSÔ »ƒ„º¬¨å{%CÇk1Cƒn¢™µÇ’¾ZR3£‹D¡ÖUÔõªùe¢‡zÕ$ýñ†_Ð@uDh“° £¢Vèî\FcBFë:hr•Šœ©<͸C”‹Ѽq²r,°-“/·å&T£UmPìcl´îlŒé•Ö¶þH«Gø5þs®ô“õÃmý×™ß*üOÿÄÈëáš ÍY›OW—S,Ž-BZŒ`µ­äÝ”°Ð"eÊ)¢ Ufß®>,«‡/R ¨æé¡n36+Ùô4˜XXÉø5mû3oyÅÇ2h ÷ Øs‚f͵ªßW9 ùãÑ\$:hÙŸ¾aQ -‰äû *¡…µuí+ý6 <¶žo8-¦b¥ 6Ðò!Ú—_ý.´º?ª ºY mlRžTý¡íëÇoA Û|!rœ :Üö¹´íÙæBûêê_ ËmÜA°\º_~çò»=ƒò7œŸ€^aû' ´üÐwâððt¨+ôÏDҬ€õñÇ=^ÃྎàR*}б—¾AFXê9}ƒka´WVA¹bƧ®*k˜ZÁ„*gdÒÇý0õâ0÷¡ŽRø¥r¹àç·h˜£m3*Ý”…ù UÄ:X|®Àýs3–ßÛˆ>R4€5¶óê¾§°~ÿÉM§“ðG÷zÙŠ%9dÀÍw„Û¾*«[ÂqIü¯ ç"ÙÅsµ§Í‘".k¾>Ñ©ú†Ó,7t‘ÆBŸñWÛÒMšelûƒmëâ&d¬œV¸R€ÌŽ÷êt4"«˜ùeø,²á#÷×SÈùH/îlòˆ>úè‹»gOŸ©çóDþ£+…°ú&Uìÿø ¢Ð ¾?4$™(bu?XdÂŰ#ñ ë^”ðl%b»{¥ª+=;o¢ìݸÃ?£¼SùžT S?¤ÎõóšÞÒø£²› ÝWR{TÕ§¼«ûÕ¯ÆåýðFÍY¿o{ht/|ùàñº÷²Çë”®¡ÎÃ=~‡êRQ[3³D:Ñ€z±‚%“ ÇË®>AãâŒÉÙ„hz¾ìH× S4÷üÚôæVZ*Å~L»8‹Va·Ïh}Aës cBÖhsQ6ÃÎÑ6bÓí÷>7´ËñvMÿ6ÚOÚq“ï#Ä}*çÓ/†ß@Ç'k—ÒÅq?÷!BŸt.Ëz_剮—;fo^À²Zý‰]xH71³¢Í ÅWY8ö,@’ 1þÉYøž{˜óóØNÿà©·Cž1ÙnYæÈäyÒ˜æiÇØŽôéÂó‡O _å2BJ¹ø½ÝQŽTœ¡Ürü1<Õ¬{t,Äj§_iûì£;\ø†Ï¨â‚Òí[ÝÃþêñ9ù9Þ{_‹!½d1’ùˆäHŽDQSÕïÔ]L‘X~ë+Ff P¨Yzqw‡æ¹+i‡WB‘™ZØŸ@(Jȼ5ý’ŠÖë8ªÆS¶× [ñs3þ÷qœcw€:åÎ9S®7ΧÿÓÇôDHäöÿyÜN$ye§žÃKÿú+¨Jôðº+ ˆf{B¥H šò‹A•’åTu‘|,Éûž¾fÕÆCÒÊ~ÂðEU7ªYø)ÔzÜ9áOŸõÍ×c—ú ÑI€Pn4 {ß+²‡–nI†§Ê/¡­’ø¨?tÒ±ÔäËCw»á??ô^Mgbx ߯reßc†A»‰¶Äá0ÌÎ/!LcÛWýÝè‹[`ÜPáD ü|ÌÿT-LQ}u7€™ôÐ'Í…0û±~å"Ãq˜÷r»y `=*U`Ù„3‹s¬úVª»û~gô¤‹€MfÓÛÉšù°•iÓZ@/‡„U!}rH”×^¬Ò¤‚$pLÑݰIWótõL‘|IO¨öµ5Rö&Õ¶Aêñ1÷™d¤k§Ñ$¾’ˆ áß“‡‘ ö½à?ƒ,ŒÉ¦ã…bȺ¡²p±¹98¹ÇL49‘+rÏ·Ån_ä½yRÖŽ™ùIKç*kÓQ8äÈ+–Í’ÌK–DÑGË»mõQBå§›á—4”æÍ·—Þså4½oúŽ{DÎõELü@E¥ÓZÁd¨|@üÇ2ÏITÍ·±x1 5NœHö°Cxtó“dØÔ^ï 4BD™½nÌ®¨g‘G­qÇ 8üDJ¡†²w´ ñ,e‡qxšvñÅIü’AóÄ«ÁµhYCgþqM­Ö–Þ;N£Àdj˜ò,ÚzôçÜE»’­èåÄ~tùeU÷}l{Ë'w .Û³Æý*G磭<ïŽD×›©'Ä¿`è¥>ö+föˆ¢Êý "7C«ÊPÓÒV&ÈÖOzRA£ÿËC¥ì¥ðñõÂl½:T¤XXy“C©Kñ×Pä—ì+|ñ;äûÐ”Ç yÒÔ[lvÞ·ô¥þꆌT[*ßZHÓ¤­¢–ƒ¢¦ñ…Þÿ¹¯†Ñ­z§WÄÙ” >Ý›û“,¾¾£Y®‘ƒ– ¶Š¦ÃzÐÁï3NݔݱÝo^÷Hºá­1Eè7~°µ<§ •©dìša°¶Gåj_ ¥ðÓk…a©÷±^…w`øégÚáš‹Ÿ‘~¯)U.øñ«_òŒƒUÆÕÛ3ð#)‚ã@’ü\aéÐnÉ#&»TSajÒhó-)Ì$dU½¾³ª®Ÿ›ÝC`N¡@äu¦Ì‹–1S¹úÂÝÖH®‘,ü¼‘SBà ‹ ¿UÔÏ…ÀRëãïTß`…ÀZøtð,¬:¼ºÜûÚÖFèoõç‚BäÔ°ùÄo+aëK4%up R.®7ûÆ#‘f˜™ßb7_ÔóòA’î¨#F5HæÔºû›Š&RÐ]o/ŒHGÊ•‘=zk6¸ëßyPÜæC®8Á>â¤[:{&Ž,;G™> cØ!ÅR—dz—Ò×õã ² ³ù­ýDÖã[Ñߎ!;±Î}ùƒ¥E÷ x$ëŠ{µGò˜yk¾‹–ÁÝ"<_?Ü:ú?øðò±{7CQàG_‡Â%ØæC¡Í‚_€Â†®‡³®¡¨à9¡¨J7;žWeŽâÙ)3 ¯GQ’ê;Î?ËG©;‰I¢f(s ü)Çr”3‹}FðDå3”ÓȬQAézofßT¬Y<+GÁ„Êâ…5¿PEÜj>½¯ U ßÈ% š‹³L¨æ4ªwür­Yüˆšå5…Œ<ÖˆœVkòµJ¨ýÓÝæ3u<Žá³ånÔíÙ%Íj‰úå¦çœ·Ð€òljœhH¶Þ'%n‡F{)Ÿêä ñ­ ¾ÌUh2rÅ~xß:šYý"cFC4o‘"<ð-}nEÐÌh Õ]1·I´>y¹Zç‡Úø8æ½ÚÍ„¶þ~x},ínïRùƨ†öo}Ïçp]Å}$Š"ñß|Ñч¨¦\¸Ï'ªpPºŒªÄÇÛÏœ:“¸>²sßw}¹"4sÄ~;ð<Z"ÏIŠyF@ëÚ[?Ëujh÷m<­t¸y§oéÕ &Qè²å”Ôx?Ý?_͘ž‚oéw><)†¾Ä»ËW‡çþåÃñZKú­—0ÄçŒ÷Ãoîœ#HóV/‡‘Ze#†h óLl·»?4•NfÑGÀ„¸K§ L¹†ö‡ÛgÁLû@TÔ×Z˜­Ú/dþXæåRÒ×gŠa¡ ú>í)[XÚ¯Üï]‘+ì,]ÄÂì°:uVÔ›ã*üž(`·;z66☺©`K5ÄÅÒ? †M»èØŸ ‘»šm]R1’5Hcê<’Ü,•B$?¹eÀÍ¥ƒ”z Ú•Õ•¸K\™)Åti¸Sú£‘ޝçíGú'’' :„!7Ó[Ìq G†FL!33ôÊ3E–ÊÜɱÈvBÑïV±#r ×ׂÔäbÛø$¹œÜS”] ¦ÈûÞÕŒ¶œùÝ-W!`ÔÊ |Ý4åšfB¡`â€)5¹Äù 'Û Å¾Dã µ*JJÛUüôJ{¶úþN}‡²vGlâèLQîy×µOx åÛy„ýFé“Qô ¨øÁ[ÀÐK•ã¸~ºPª4Å3ÙS¨! žÞžË‹Z÷~lSD¬Ì\Dí)KMù\¨Ã,3còuO|ñ´-F½¶Óé…Å^j$âõæ»r IØ\æ®^XA2ž’fS×"¤öÙëy©<Ú™|¥‘ºªøê^ÊE¤³™ XðeG‚¢ð’š,d£Ûq3aIó, ·#©äýxG#M¡O½‚$ÌÅU¼ø¡è©àLw ¼ý•–9ðxÛ÷l MæÃ+òûMb!µÚ—ÎMó-<ûµøqêl¤p\Þ{§’$¯f1üôŸºÃ¯OL ž‡Úx“>â ¯fŸ‚8¶({òvÓ¿z|–î)çF¾ézvo$ÈýwÎÕÈ»hzB^ÞàË­ï¿Å’fª >¶ÚA¡;©Ž^ü[(lEcìúöú`-9Ç E wR桨båá…4Ÿÿu,Nº¬ô6Àú?÷HùĪìômô=ê°Ê’øróxµ üé‡E²p¨àëžs}x>0²»±ÊC%¥ò‰Éî-¨"Ót½ß ƒ—Ë Z;àÓ\ìÖnEzøÜ¦ðöÔíx¨™Ëg7!‘z+¢;B÷ ¡TL<Þù14Õòö~Î -ì?Eì¡Í†5ÂT:ž Ê{mç„n ©AfªßÐKS•`½žý›ö±S×`B+}ˆ²†>º³ë³ÁHMe©ÔtŒ­®,ŠîŸFýuÙûÓa²˜œ>~äÌØ~Ú‘˜{ÉAu>æµÄյĸa‘‹›ôX0,‹¿¹m «†=‘‘)*ð;„ûÚ1w"Øès$9õ̶üy-Ë#!¿AV2=ÌdS SCž0EŽsHÚ®¹B²«É¿¦‹ÍâF*n¿ý¢m>,©*‰¡•GºÔÜü˜[Èp¼Hî&q?2 ÓÓ.7 ó ã™ Bdm¿Èzþý=dŸ¸<¾¡º¹öÙ¯ùúU"ï^VÒRÈ×CÞÖxë" 4žø¹¾5‡BsýôÆï'QÔ¢ç“,ŠJØ}¼žŽR".úë ëþ±Çµ(?3óùYn*lüñxÙ€Êb¢{reQõŠw¡Kyjè>£l\¡Aˆ¡ÈŠº‡Ú#{¿f£ÎÝß ]GjPiòïýPBƒ]—d¯9¢á¦G«á1O4ž¾6È/¬…¦}:}ëÖíhÞ˜ùÉñØ3´%]KÚDk¦‚¨êm¿3½&ø:¿mã××x}~£=5‰v+9:ħ  £mæ˜Yi4Î%z³G5» s>¯_×…Á¼ká y27XÐnŽX»‹ .šMÚÃâd—­Ï™°4’4ÚÆC +$¤G§¹ÁªI£_jŒ ¬}Œ~î—ë§ûy\)`Ó8§Ÿöl]ÄÆŒcHð-ˆñzaOöKg˜ ±–'czì’Dæ¾ï¹ôÉht¯­%œBòò*µûW‘ò9IÉjîzqŵ!ÍGΦ@Bu¤Û¸-’3ʈ ¢â2œÃ¿Ñµäa«##2ÅŒ:\žFæíËAT±ˆÙgã£S)6šÛ|HÍ™™ ŠÂ•nQGPTì•çŸöA;ý|eËé3Š¿•~ôÎ’%Ù:Û9Þ:¡TÜ>ƒþkJ(ãg_nx|ål7_Ù‘¼Aù\šA´½¨ V\¹Y#·Í‡üŠƒ’.¨Ì%.œ0wU¸«,8.ö£*½šêð  ªéšZ[6 zÙŠPœˆjfæßbxæÈ XJ¦Ú+ƒ&U#D¨sYûA =êQ˜Šéí+F}m×?·Ñ€çä ªÍ~4¤â¸iL4FVC©ôÐ8ƒæÈƒDA4eë=Y?rÍžltK0 ¡…Ç= w´œ}v¨â#Z ËZv©&¡u¿áJÑþh3yóî _ÚQ×¾¡I E{½8/ç»&è}4Z‰®‰d˜KÃÑéÞ¤¯i¾,žÏ¢Î5;ʳEÑvÈbûrïR‚,D‹È0æH@­ñæ¸Sï#¨Ð÷x0+ Å»ÙòxJB^yêÁB—wk½f$²Ä ¯{þòW„t©Å›¡2f{_#¶÷æÖfÌßçÞ„O~TßÖ£AÑæex!ª?œ×á!òx +Çò‡Ý˜ßÎ}ÀiJžÊÿ­V®t¨ŠÒOܹ¿s¯Öï6öÿÜË4${*bÂ=ŸIAåaçêÃkÿò!¥@§]ÕøœÊÍ![jör7Æ1˜ÿˇâ×~|񠮯Þâý+úЬ¶¡Ud¡-¯o.RmçÓHÊ}¯¡=çvƒÎ»Rèd$˜ËfR„®¨-o^@o¾PÂgøVÿóMÐÂè{#{nl”ù_>8fZm§ Cô½oN&Á°«O‘ù'©ÏS[‡1óÏ%²ÛúŸH¿óåÑv56n™¾JÔ?Í?Ÿhl Aör­9Û,ÉgYç©BâžÉ^Ùƒ®HÉÊrtß"’[ãÂoªçH)hDKÝþwQ»ù¿û"†4ç¾9Q‚tœoÈj³W‘>ñÝÖrð"23¹\2vDÆñë )•Ȭ’à4ÖôY²<žF•\B6óòÔñ/ÈÁ´ú±G’9ÆØN|{†Ü^EA[‘÷Qàtv~òéuè\‹ãCþ¤Z÷~ç @ñCw·[$(äöZNU›E\Þ\ÓtG±'š†×r¸Pb194÷(J‹ÖˆŒ¶2 ¬ò²™(½·ò§Ç(Ê×wÎŒÞÜÖ­dô/å0T¬j>ŸÊÊI§GÓÂ_¡j#¯Î5ÔÐúÉœ±[µòl u¯ µ¼9=ÿµç6_1äG&©¨2uÔ=WÝn½:ŠzëÞV–‹ôhCܼ¢F,üCÇsÛÑ8‡º°ÈˆM}8ÇÕ¯ ¹îXE ¥î§ÊS¦hU8¶dª­‡ƒÂ¦9ÐV‚{¬Î­íî½ ø zXlcwS^Ã}UD.±|ix¤zÝÞFòJ›t«HÐ #Åï°´­C_`äLÜYö!®ºÛÝ)×<¡ðªåø†xÈÙJzÁYy^Z¸yøøð¶ß-¸¦ú‡çGé¾@õF»Å]x®|MÆ9ˆ’Ou¨ 熄CN.²¥ðT³F&Gwøï¼Ü‰Ñ«c¶o¹ºŽï¾T³ÓŸbkË>û ³ÍÅþ«Ù¼‡{î=šÆ‘sÚ^QÞФ°Â{*šÒKTô¦C3Ñ®‡ÕeЬ9}c!ï$4ïwK¢]i†æè½/ÍÓÑJ§m¤ %c ¿ÑC«ï±:¹ýжo)¸ê´ëF$ò3Ý…Y¹XV¿èäl÷é8 Ð%¸v-º¥9fÔSç¡'@Á§‡º¾=êtû ½åAâ›>Ð7jbKbTßůM˜…†ý”>§#0(PésÈY†ÔGoˆj8Àp|Û£ŠG%0j” õ-ÆÁr½¸Ì~ºŸ%¯Hb†ÉOˆ¯éæR n•w0«YMhæòæzj~¶ÊÂBf{q×y*XzCôþÐÏ]°²Øá.ùj7ü¶«±?(ö6ViÈ‚ïE“ë¬Hø9nÓô{—+¿³Ó¤e«]×ù‘¼BÚ©P¤ )G?kuô²!µšäB$l"méCE²º#HÿúñòíûwqWÁ K <2Eh‹Þç5@+ÃÃõy…ȶ/Q.³³9žÑý±{c†Üâ.¦¶ºÈûÃaKuÄùF´‚÷%C¯ª¹Ùã(¸æé2eŠÂ¥êÜímª(š3ÛÏ¡²í“½5RÞ’(Å9@ùÎ8eÿœ;Öƒò$•ÍO$øpOöºÃlÙ8*Ú/|â´¯E¥¥“WeEMP¥u]™ÜdÛÔ÷\õ5ÃnYºPEä«‚…€s¨½H_àÿ-uÎkív\?‹z{¢kIùÑ€<ž¦³I ‡ùÈ*§Ð8Ë£ˆe®r[Wå;²íÑÜuouƒ” ZjØÜ¦¿¾­îÅ6å ud†{‡;Ú¤ë¦^R¹„¶í~ëV^hÏ¡_n{θ‰h“ÒdXååÿ] W—êï}‡"¿'[¡n{ÿ¿c±ÓO3Ò—±P¢¯òuwÇ*”¦É6{˶î܃H§wõïºSÁÂrÙáÉOø@à׫²&k“îDv@e§XƒÃãÏïÄZ7“¯­ÿ]7j.û ¸’u .ÚŠ.аAhòë"ÑŽè‚–]d×X‰ uH¼gzÏ_½wí='³ØöW×ýÁìâ2aàmÄ%a9 ”"]€‘s,¬Æƒ0–QvEB­~¬ñKÎhß„Io3 ã#%0ý‡fÀt~fý¯ªÇŒ~†y–…IÎ XXî8Þ²d Ë$Á¥¯7nÀ*¿ù/§Âømîɘs 6Ò¼.Q®Ã–ÂÏnö^$øó>”‰N_9­¡ªÄ›wÛÈ'ù‘4÷ó+‘Vy$O#Ë;’5†”sÍÛ¦J};™ñütÒv–€ d°§J¡ºZ‚LTà˜Y/ŒÌ­‡ºÉkz5ë£Zðk]d/û™¥(„\ÜgYGHØgµøÛ»L[ä˲+ê5±E'Çï«<@¡|šÅþL%{õƒ¬•Å#™î5x…R^¾/ÞØ¡lú©¤+>(_ä™[ ™ú¯vÇ Ò\³Î{½ITµ:˳öÇ5Ø:êªLSÌäS® v«Ó'qÆzÔ¹ðÙÅæ"êÉú¸ én¡þ&Õlvo.†‰mó©ñ$áäjU2šyó×几y¿}¤*Z==À&t­eˆ³„zÑæorçžOhÛÅ£v}áÚ»QLLÞ•Ã}T^ÇD ãÐ5qW«Ï¸ZÁ,Û']÷j¾ÕJÂenŸ Þ`èkËÌ_-Ûyºêý·QÈÁó.¿j­ –mnÕœ÷ö…†ºúBš··¡êz.éÔ€ ¼Ï¿Ä*þ$Š#¼·¦Gþêâ͇ÀžÃýí=ý£¯üñýæ0»ü©­¿ó÷ù¯6þ~Z[ðèÎ~BPí«Å¿ÏigDzJ ý"ôÜ˸ÃÛ¯½k—[õtÁ÷Ë‹]ý^ÿå3C¿cSµaØ?:Ìa؆k˜‰N}Ú#r¶kÞ8ÁÈ £æ¾T]ËæÚ¤ñ£1ï»ýàÇ„ëÄ^eZ˜p>WTöÙ&'Ôâúk`úzOà™³óÏø ‹j¦°DQxâñ©4XZz9•°?VÈKr¼ êaœý.„µ å–_v°nüH÷ØØz|.Ä%ñ_d.‰!ÖÙž˜:P†D76F¬#Ä´‰Í—7I+ÞL±¿BòãŽ$"¥•ðÞWs¸Ëj„EÛl›}Ÿ\ û³‚t/$÷ÆP"ýŸsgˆ!£ õâ”­2ù‹6J¬~Fæ\çÉóÚ‘ÈÊùÓ´kÙ orIr„¬åÇe"—Ó­ÄôÝÈ£âðY{·&îÞ½Ö¤ÄEù/¾˜–OæA±ba 2[PyfJÂUíöÁ¦(*Ý›ìóÓÅ.=’?æIâÕÅÚ½³\()ÔtT»e ¥^ÒMGÓò¢LÈT_¥<Ê9{¼yá'¸­«‘¡Ì#¨ õ3Ý"¿¿˜ÏFZ¤¡23ÿ5öQT¡WJ¿¹{ U6ý'¥¼G5 5wÏlTOù3ytßÔŒ{êÆ ~‘ý¿ŽŽ=î%óTTœ Dd–áq ÔSð×wŽåGýC›¹æÏ~ ¼ƒÁ¢Ò¨(y÷†¢‘»¨{Ëh\?V$zMM•¢Ù8U&Ž\@‹$rõ¸ºm.Ôèç-y¸„Öj%Öw™ÑƘV\²>m—ú°•£]º¨HÔ~K´ÿ#ÑK±÷8’UJŠNbF±I¸?¿¶[ç2ž7d¤ö>•ú í•è©‘…G“¸šTæ·nŽH†š•‡›ßüÕß?¾ò_ý¿9õÝý“;ÿÑÝÿ«Ã´UµæõWsm–ËØ“‰¿:þÇÿù¾|ëÝÑMîÉv¨¸õa0Þ†y§NþèÞç}ÿò!éññ< øœñ§•M™j ¶â5Ärÿ+ß6™½N•sø›[[–£›>Q^ƒ¶ #±•ùоh$bÅô:íß8Å´ºÚŠÎI>é…Û²ý³L‘ðmÖ€F”ú>7m©üˇÝÔFç_VÁàÖÄÙN÷BÖsø¢lé #iJ×úÕ`ŒMªõ–ÀxêÓïÇBáç ÍG’Åj0y¥ƒú`„3L„Öúîú7‡þ_½/ðiSÜ[9‹Õ,•våOaùЧØgX5¯–éƒßp“S\¦6à“îÁsðç˜Ãtùa$I.»Íf€DÄ‚–±_‘ø åíÝ|_Ô/%Ðîj:’Ë„&wþ&EJÂøo#ÅHõ+ük·ž+R/Æ1Ó×÷!sNƒôë¤O±º£Âõ ÊÏÙv¨å!ã„äæ›°qd–kô=23†,qÜáÛùŒMr%雲ÿ¸óöOÎ!ä|+;”^ƒÜßG¯œo@Þ7î[½òG>y‹@.­ Èojo!ÂDƒÏ$ƒ’E–QH_ÊåOTŠhòµËÖ¸ ØñaK Ú?(ñ¶s)Cª ¥¦Êš ¼Qf‘äÉIfj”»öŠ€&Ìå?>¨;vï=*ˆŸþBçÒ†ŠÕZmëñ¨œÖ|øúýTí—åˆÎG §G—.Þ•F­vœš¼FÄ-ÞkZÄ/P{%“c%I uUŽö®G£îµOFV*ʨÏÊrS¼V >F¥+ÏýF#û]Ü/¡ ùÍÁ€—hÚËW×´ˆæO\]¯i¢åf^¥† Z‹¯1I¬'£Í‰šáó{жõL§ å ´wüÖ~opgÿ™Ý—ÓÃèØkÚÇG‚GèkÕíçKQÒÑÿMU R¤ÍXT:ÂÐZgK‰ýOx§½°_}Ï,´t[/>䜄8)Êè_iwII–4 ^.ML‰ï¦…Ïæ éÞBª¿D6oK<«øAêòU’¶Ô–3Ñâkn‘^‚DëßãÅü—¤›ý®ÅJ/®‘†ýÞ•rŸK8 z6Y(Õ‡jo•'ݱ3‚ú4G ³úSðµ>7üÆ«„mŸnPõlºë¼Ìoíä¾O§H„ éÝþ‚*“(h‰?j–ÜM ö'OH߇fÎG)Ž©íÐìGôë×ê7há}åÚhg¿­¿ÇíßϹ@ë8óB¸@[ïÅ §NÐþ•äË£,èx!F­ÐYýZ!ðÁ¶K¤/‰CÓ¸Ê%Ù+;ý¢žÝÖ„Þë<çë¡/Ã14²Ñ¾©¯ßs‡Ðã¤vþ×·µögÖ̤ÃpÜóy­$U9Ì8ë ã¬K•ÑGá§Àò¤4ML~œm"U€ék‡âFhËa–­e„ªbÌåÇP>9/ ¡×câ´aéÌ—â‰Ëܰ’ÂÍ1EKk×¼[ÞÁÆÙ=W6 aË?Ã-”m  ã‡_Câã•bŽ7‘tCÙA”Cò:‘ò:}œ’l8îê¦-qx€´¶¾“¿‡>ð-5sç dø2𓱰„L†Ï×V± YHœÌbNº#E w³ø}ä0ë}#s^¹>Nä§Ð=F^7kƒý.È—0¯4y1.ò•m¢àS›œƒÏèPØÞäùbŠ*Dd éBq“StÕT(ù’N¡VÕeüGfŽ  \í}ñý5ÜsæÉ‘¯íZ¨( ÑÅIXJu·‡Jnü/)eT›\ú´Ã{šÎϨ„uVn„ú–nçÏA^Þ#æ¨ã£gC%]Šz<1<4å/PºWûKM8V¸ΰ£5_×^éDS§ÄkÛ‰Í-}Õg ï¡¥’%ÏM• ´ŠxNxhr­c”Ü?ÊP£MZ‹àðW´óZoVUD{YÒO®ä£èð BÆ&±é[Ÿ­$F§úÓK±ŸÑù$p¿SvBW·üÒÕGLx ˜”"íl-º­^¾…^Yš±õ1(¬lª]œŒ$ÜÞö…’Ðû`!йªJ†¸Û>z9–²JŽ Cú ø}=J)x6³´ïq¤dµ:À(ûWo‰O×P¨é¯îâ¸Ä6Bì1–¥Íy­¿c⌇²þ6g=bù.]>÷ß|xJðq˜…%äW8|á¹ñ— Z:›ŒŸoçáWô»/¼„BNbêž(̸©Ëó¾ Ë…®\vù¸ÍËw¿:êA‘B u½¯9˜ù0ýË‡Ž­¡-ÕPZR7éò¿ó!•–»þÎþ¡ËÓÆ8¨üs0R9>úèõ·ò8À§Z—Îm|~äžžÏ5O+G“AÝw#=@ƒÐÅü~h:YÁ­Î0ò/v96DP@uëð['t…8•žû«ë~V_ÁëÚá0pg˜­UO†Ì8ÍØ™~ÃȾ ³Ä»0vÃÂ…VØ ~4ZúP9Á¤„zdÉů0[ƒ›0«˜=þ ÌØõJÀBÕ.}~XjzÎò»ò¬,3+rß½ ¿eóÏѲgÀFT ]³3l Ó²\wG‚EU°³¾…DÇò…ûMxÔ!y½"I½ª! $èuÔrîEÊ!ÊÚ¢åx¤¾$ÃSHç93pÍ6ô7Jçö?DÆ¥ÆÛ_Þ\Ý©¾ríŠ,²>^9dò!Ù_ìýpÕù ríšíy¿„<Î+·u›vV…•~"’ºWØQ(mrbÜ‹E~?v©x¸‚â÷MSŒ;ÂQ*0«þ"°¢l‰,ù‘”/§÷Ø;'… µ“œS:6¨´ k}ŸŠPõ _öç}¨!YÔÜ~ò=¾ãäáT¥¨ÝA—}R u®xí™õ¥F=u‹Í%¡n4  X¨A£]O7÷΢ e­ë†~šíz¨ùT-ÅÅýíSÑJ¢øý9»´v_/öLE›¼»§º}>¢ÀÝÑÄ hŸß%ýƒŸ÷Ï™+°ÐB'ë-Ù”÷è|„ÅþÝt-ÒçóÖGw!k-‚Ò Õ™’ÖŸGõfêöWºÈ¡x„ØÂ¬{uimEeá뀽üûÕÃPÅH¤©*å³-mbº øøµ4&Ç}|Ü|&oN’®6ÎCnóuùÈúÜqÚ=k¼ 5Y¸ûýÎ_üG¿ÙZÁå{l¨àí÷…“/À§õ#» Æ'¡‘þB±‘´¾Ð§â¨ƒNÓ™bß$MèÑæ ä¿“½iD­kË™ð]&@À½T –o2Æ\Þöoj%br– *Í'ò¡aÒ1ï%v™=è ÃY ÔêB0beÓÎÀF]l{´#XaìS‡·q!ü€=æzS!ð3õxÙ¢1˜mõ:bÏSùÒšìëÊ0sd—͘'ÌrîS=ds´ÆŸiÂ>Áܦ{BA6#Ìž(¹ osŒµœ-`ñé€&M:;,%ˆ+¸ ËUíì”˰JîÎÿzå¬×<û•( ë<ÌãJóV°±J[QÌrþüyݦaj‡·†#+µN aÒ=Ú0…í\Y/\0ý‡IØ éŸi;!é̓{{ïË"¹ä±t—rH±vŒôÖ9¤ú~ðuï§sH=è5õâ,Òí:Ó°ÖLƒô¹þY–‚‘a~Ÿù³ldÒŒ Q¿ŠÌwO2¶Ã<²,›mt’»tçE b–JS¾ðT¦iÒQCæ­¯Qm+¨Ê=Yþ‹ÍÕ\z?e X¡ú÷õ[¬ŸæP³YÝàx³¢òjù׸— ýI6:¡ÎUBç]=ª¨»¥ݤ~õ¥¿Ç¦V£±üóù§úhðãÀ­³F4h$¯îÕ»|ﺥ¾ýœ…&Ä9Iî ÙµÃþì·&ÑB²…ýháQ´œL>øË~­FOî6UGëÑÁ©ê_h³&ÙÎÜ&‰v|ïˆ ¢ý¡/—íªÐ¡ð9eÈF1:JмýzÞqª<-·Ãóýr¿ªP±jšìÓþ(d¥åñàÖ‰…ùÝÇH¥% ¦úzÁA)wxm*e¼ PÄ'j0gðׯrrWÊ»?Af-¯ÔgvKxéÄ*^)pRË£î5½i†ç­û’Ÿ Ý‚çtV¹élÊðü÷^mHk&©6†˜m»‡WD +)éA7W ä1rõòxØ@þøÝ6s ïýCï‰å=}ë/¼qí'ý™:›è…»Pµõ*ŠàSÅ=“ÃdÓðù½ŽÚÒa¨!²k¢ Õ†Úa ¡_¾P¿Øæ=ôRkç}P‡'[4+ð„³ilB˧+_ç@›úU)?¥!h/7¶P=Ò 2g)™W« ëÓÝë|æÐã˜zƒÑz)ÚæÈ›Õ¡oBQèC²|ozà*òy§?Mlˆ”$ íî å©ßÖÿ¡Š…À0ùRº‹ÕÆT„³tE[`¼JX@Âëü¼æ©"¯Î“·Tï´8uÁt›Ü—ƒ¼ŸaVÂŒÍå !Ì]¡YäwSƒùÍÒ»ªyö°˜Ì”£éÑ Ëû‡ÎŠ/ÒÁ*oçQóm.XÛ¤ŒóºëcYNä ô°¹•ýDê§5hjêp_ÿ„¥,Ô–%H|ˆ­òòj’ •Ò¾¼dc+ŽQ)Š.Î#DªèÒ*+bi¤¾Ìq²ÖÛiC¤m“å^ÿÀŸW÷ÁÕöip\;2ƬlÞýq™~g;¤F–Ûߥuf"›Ná‘Yä`¶ßµHÈ9¬³¼å8ŒÜ©6µºOr‘×£þ©®'òí¦L§»Šü l–iMå(p×§n>Ž…Tû¢~H‘ ˆšó²–é2Š\¼Yà‹ŸéÃ;iûQšxë¶«¤ Êò¥, \úcEº‚«(¿¨ê?4ô¼L[H/£Å-MuTž´8LO’jÜL¥#eܨqk ¶”8 µ¶HçïF\EmŽÅÅïJ¸—÷Û×§/ôPG罞îÔ¶Nßìaû­®„úZ£Ãï‡sÐ`„åìV+#2o£§ÔFñû»ó”øÐt³‡kn›sÍW•zzËÑŠæ2]UZ+Ëešœ@›`›ïÔ®gж£:÷VÑÚÛïf*A‡~± ·At¬¤¹uÑïÝíT²„â‡(äôH? …­cU"Ï8 †°H9ÕC™ŒÏÃæ P àYæâ”9Q9«>ðJ‡j`9A^ÊËlΆ´ô¦Í‹ûd·uçxã»ñÎ~D¯›°ûNÿüüÅÕS/UšÕÿpí¸ùÄè<­äoÑÖ!Ûù—#aâT<|ø¨ðªxí¸ 5+õöæ§@=÷æÐa* øªkôO)48ÐSïÑx´·ÜÚé;nûŒkš‚Ó;šŽBÓSÓÔbÛ£™AãA hz:£˜}šfü3|žÞ‚æ§lüã_Ÿ@KhË•…nÐzZÑϨÆÚ‚|Íyž>„ö£]«ì3òÐán2¶w7:}¼k}‰ì¶ó££oÕ„t>!²1žq¦Ý½E¹ÐËïý©®ZúNÊâ·o€þžÉëM`@yÔíHŽî¿|ˆÍ¾Éë0üh‚Dp8FEä~¬\…±_On4Ý…£§bÏÂÄæL?{E"L«1Ž¿}¿Fßß4| s÷<Å=XaÁŽÆÁ®$–4ïåùqHÊ¥Gk¦ÿ4¬…î=­ãëë³îFJŸ>çãbj_‘§Eã¾ôC$&|\½qì’¬>Oz¶¢d[æìûç‘RÌi9êÊ"î ž»ÄÅ6Š4SúÏf~+"½JâîJdg9©T‚Œ[”õû‘¹ø˜¼»"%²–¤Q,·Göåô#º¬ÈåÎG½Z7…<«ÞÏl›!ß¾´…KÎ'ÿCâKË›÷PP_—¸g+…foWF‘êûígQ¬{—ò‚ÈO”T×NQu”^GËÊ×(÷@ɲ}©÷ Æ¹Œé(T˜ñ˜äxý•’îÜ#t´G•û@ð&ÕªsDSQsÏÛbÙ æƈo¡vƒ}xÝâ8êì3 {{à7êQ<´–Aý6î“%•½h˜á¹l¬Æ!lÏ/1M£©ñÅÛ"—Ñ|oL6­g-Zʚ掿D«[G6<™Ñ:¶Â=m>ÈþùÁ…¶+û×WùˆÑ^ïS½×écèðªª.`¯:ÊÔ‹+K SÓt]¥3:G§ž´PF×ÐvŸ±ìßxàÑ1Vj/>tÿ½K̽f©ãÚ¿ Óá³—-·dSÛ7¾ÑÓ­¾ù‰PüÒCÓÇô=ñf°á!”~=Bj¾$ü¿ó!ó®ªå7·w|—ý õ¨NtàzA ã,…*ïlçéÃýsZð¹<ÁßJÃjÊŠŒ÷쇺¥2f—Ufhi`óPy¶½>¼TTˆüõ/6\'Îö‰32é[ÿ‡±¿ê*j»ÇaBº»CPJ¤;öE—H—¢(  ˆb€II‰” %  ˆ”´¤twHwóÂwnpæ¾ç™÷÷מsÎæÌg˜½ÎZkǺP§âõ[ª{ǸîËöFƒVâY~f‚h˜ÃÐ!šŠÃÃåßhÜ~P|‰üšL¼Ï8ò‡MÏóLóü¿gííµÅðkô³ÖZ<õe´˜×꼡‹–C˜=õ®¢Õ¨Æ[êOÞ õÚn;´EIhKà;ˆvüÔ?w„¡}Zý5¡€1•iΉ XúZKäû7Ûùwå€ã2>.}ðîgïQâ·A+eyæØ8ßN8ÿóõ Ó}üfÐ1($æZ;…oåuñhä0P'áòcË­?ßæ¶U a毌ێ1ïÇ[¥gÏ»ÓØc¢¿êv¼ŽG­£Vëip*¢fpv*¸æšï™´ïó3›6Àï»°¨ÉÇ ‚ÕS.9w½A¸¢˜ü÷Õjm.35J#=ЯŸ³vÔ‚Ô];Å·™“ ÂîLù€.K–uß^…μ›â­Ñ ô“ ˜q TTÅbñqrAí¤4g(hpC€ÿ?äyݸ_5Ú¢£¸éAÕ £ºS’ƒz-l}|@ÿÍäIíWÎ`°°£ÞWFN{¯$¨€ QòÍÑÜa0mÚ߆ ¥žâ“g¥À|xýîW+°’£Ç£xþ¬¯¹Òq…¶‚O6…¹µ.HõÛ·kD.Ã9JýÎØ4´l¿mÈ7¹x ãúÒo‹+¡²(ÃÛØ1P1¿ú“û¯åP>ѽñ©úž´‘ùòæ Ê9A¥õ ëpþSŽœçp"‹}Sê€/‡({é/óã~3 $4î BeÊöÖ¯:è×ç…êóŸPCBðÖº™>ju²¶¢IÁBx¢ Ó¨kñqà)YZÔkàÿç ¥ÏßÌ^¹>‹ku +“ï ¡¾ïñ…hø^ƒUßß 4\sWãá.^¨Ÿ¾±‰FÎ4°ö¾ÛB#?Ï;×Vº£ÑâÝ{Nv4~’fߣ`M¼ÆÍÒˆÿ‹&ç­K1‘š¶w©³@}q¾+ï¡ÙÜ$Þnåh^0¾ñ'ZðZrvf]@‹WÈ1©2þ %}9Ö§¡вüœZÄà?”$ÄØ÷­žïÖø]æ€Ö||2%éÑzcýÄì%´©n‘Xs m-¼~†!üíÔ=Â]np@{5·-¿ß Çæµ{a€y§:· °Þ—¹¬§öh1A·­<àP†}`ÌÜÉÎ<}AFÀßzz‰ó!:¨y¢'@lÂ’Ú¢» ¤7*”ýˆ)ÜÎáÁäE HÿdNäTD¼ZXR@}õ©Œ ¼Ð4g=KR:‰F5>š ¶™I±'†]ù'ÖîíÀt]®ž+X(tèˆ\ºCª¾ŠØ«&Îîm‡ü¼Ìnž pvHª†’ÃiW‡&ƒï4À5 Ïy¿îÀR)õį¨é…^Ê-àsÓz=J3g†ñèÙW˜àì¹fÑ@{Üäz•Vö„/»=]ÖÜ‘ÕDr»,{{2«mÇÄw$ìë:$CÍbLÐ*HÉ9¼ÎŽÚéß3²–K ˼ÁS.fòxmµžºFŽ)'éú@a[›7X”ìfZ4Ÿ©ƒríÚ¸JO¨,U’Œ%Õ6âÉQ-+P+<ð<'4°Î;NœM}v»’+] •ÍN Úœ¢‹Âàü·¨5™å {)ðéu¿Õ¾¬¥µ!°ý‡#ÓKσA@´"Å4 † ~òY£v ®ü`¼;`«æ`j¸2"ˆ‰Àì—µµƒ 7ÜßóñLPìÑOùƉŒ@»·W|Û—-*h;ºÕ|A5ïîý]3%FÅ5¼tâyÐ׿Ÿ˜$ÚÇ|•e[£a»ˆ…>ŸÕhâ*+:¬[á£#~¸.¡aÐ}çp^&ø9Ïàþ˜ÅÖ ®úÅÇ £:¶qÇÛÏ¥â[w… ¢Œyb’ºÈMôEÚ@Ìè†Ý¾­ µmï o£JõÆÁǼuìåtùĺQéß:™i%„Ê3fŠ•ÜhЯÛt\ãæ±¨êdZ¶Enªþ‘ŠÝÕÑ€jSΘޞžBõk’¯K÷Åí³î«¡f¢^'6_^ÔòöF­“µjÝþÉðí.j{¢u—½øð; ò%¯_u¦ßˆN(FÝ–ÁyˆBë@‡^þ3fjú‰Ã´¤-Ñ FWõ<…6¢>1í•ùú@6ÚIÉ ‘ 3¬hô¯@íKËhÜ”õɧšLµ›Ò8‡¦Þ?î(Ü9ÜÇF¢ÈiŒf«+×®SœuJvA‹v÷ªÞ6w¢¥qŠage´âEs ­‰ÚÖž,(Gëó“‰?ôWÐfáSÆøP´<Sÿ0í¾Åט¬“Eûëé!æ‹æ€y³·ÛG/°NoŽ6µÂ‰NMÌêßw7Ö…Ì,à:à;[O>ZÔBÙ¹üÊÒ] & oõß’‘äHÏ·µ@ÖÔ?¬€ ä;ü·7€R¹|×ñÜ:PU„( 7O7Y•Õ*Й)¦}Oó)½JdBd´(Ìyc{!…oÕˆ\­ Ç؉r$†‚à$c—>wð àpOáP!!‡SüÁµÍ²À%F§Õðxî0¤m›w_‹&=öÂ$œeRŸ2Aá.úýÈ‘b¼D8h/J¼ÑXöžM#×jìÕ3’‚uáž }aÃB´ü ÈñѬÞcÄÓ$¦ï" b“Ù²BAQÈO=Ô\ÕYR{{@y0f"A^ Tí¿"ãÝ3 Ž¦U{4^iÂÖÁ­so-—J3A›íÅÃÇ CÏMj&¦zÌ<Åžs ¯ä¨zuD |{º£Ÿ°a7ͳ:‡‹`¬ÏçþZL¦bv8ÔúÁ,¹ú-Ûs6pHpU“èÿž¯?j:­Ì(A|Ъ´?/`CM.ýv#jÒ¨™íá8†ÚàN$Â'µF­8†SD¶èéÅSïÇÂQ~:wäÙEÔŽ“àžsà‰YmìqSP'çúgüçá¨ë‚NKÍJÔœ…9Ê…zZš\˜S_¡>1·žÌ^£Ãú&âÅР``Ì‚ÿ?¨¤²Ff¬ƒFÞ¹}7rBcÔ[?ÂëÑxµ¢žÎÅL4™¼ôgŠMçÒ×Ùxᣙ™Ÿb®E%hþ}—!i7ZtÐäJ&DËÜŸNSv¦¢UL£´Ål„Öv’_8µþA›4»Ù³¡hÛ;îa8wÚÓ"¾ßdÕ³ÝYë£f]Óƒóp"ô^Àh¦àÆô¥Ÿ.$üš‹í—ˆþÊ@€(XN’!S—àeóTÁíyþgD¿‡ï1\hñ» T×nvƒ¤Ó€Ë<Hpšñ``9‚?>™$×%Ra_Ò~ …îóž~¾ ¤jðÍéµ (/¿O|'œ ªß-’R‹D@=ø„ ±éhÚ.½MÄ‚sÒV¯œméá¼h)§À\ÐåÕPºÖ zo.6½êTýèsÖq˜+`ð›ëŒ³ÜU0Â×ÛaÃkã‹Z¯.‚ɯuÇ‘n0Ó®Èp[ ‚ ‹uì!Ìj`žO\3ù” ,ã×èÿTÁ¥¯Íœ·uî‚õŽðÛNõ`/ÜGEµœ^þ_4¸-§_Õµ§uó[’f¡o.‰ ¤b&(½7ÒxÖ£¥\ KÓß:ЙçâAÜ:œÊ¾Ðã-ÚášÅxÚ1î" ¼ç® +¡ðui?¥×ÇmŒþ+ÕûÔ‡xeÈ·ü_øþÂn(QÊá¼izÑ ÜþÐR¤åÜÝ€C=l£ÒSr8tCþ6ýA{¹ÖìáÆÁsñ'þj×S¯hŸC_‹9¹ížÜCßD«Çeî¾üç}‰’•jmϲ)™6üßþ¥[òN*S!ùS©É‰Êµ»ö¤o¢Šº ײ·%P%ÿí±±+T5Ö-1c}Õts9™7f zóK6Ó¨A*z‹äÕ ÔäýRû,Õö?XñußMqµU3zº^ãB¸¾NÍ„ǸîÓ_Qª”9ÀñMA'N4´ñÜCRþ)м\Æ•o“µíÈ Éû)”VÑ›¸¥SŒH]A³ XžI°]÷wÀàº×³â X(Sp›Ï°s'åG®SÎe·¿fÌÏáñÇñ¼Z ¨`*Jnb‡Ómìå€LŽ]]Ö» (¸g~âkeýâÆC 1nó]êZgËŸsÓ:@ï³~ëlj 0NÚºw Ë綠s.ÀZ&#÷qç*;òáÔóäö—%ྥ&FŸ¼AÄz×ä€?D”–šV;?¶ÕUâƒpÝõ³a;íŒxóƒª$¨«t@*èB«-~>ÈÞ{E_ž èÖ^P蹬Z$† JÏ¢ÏÔƒŠ£ãx0¨‰êÉp†4ó¢_ó ¥n®„­¹Ú=YÝ\@dzÉtpÜôîýõUøJú•ÝK$ÀPð:c_G)}»!OrLlïæ i™˜F¯*C8\Z–;ûþXXv9ŠXü«’é¹Ü—`õvQûö<èÕ2Õ>Òz<›¢8Û¥whq>'+5÷`<9ðžºÍŠÊ¸R*¶èÂ3¥ /bÑ·O7¹*­Pî碬+ØÇõÒ²enÓŸšsüç †Täë«ñã~ÓÖàzùúž$"S!†~YyÞ2º9{0nãä_dø Váû_(]Cíe£6bõ¨+~ ›k*õìŸh£0@ý¯æ9°|Aƒ1´vk¿_¡¡ŒÖÊ:M4,3YhPu ßO `­@߬œ¡áOÏ„}ð´Ðˆ€nÀuk4z2Y%è+ó2þÚÆ§ŽÆÇz¨´/\D“Ò†¿>z¶£©¸ë»ŠIè/qK£ùóJ4óVinûšã ñö÷@óÜ·ÅÐBÓO»[¡h±ß?ì9Z*áW^³×AË ¢6(vÐÊæÒÚØš6Z“#š0r/FëáÒü“2¼5Ÿ¿Ý¶*ÈjoN ˜íó‚µÐÞ[ñZ_ÞPÀP+±¯ýV˜ç°Ïåt_¬ë—x0MI;[›"à$à0–ÎÚ'In’j©ê]lÀ×¶È/z;¶4ßB¨¶¿ôÛ†ü!ÏÇW§r:‹g»=r@áøwŸòJ$P¶yµ_\jÕ6A²_€&šÑÓ|h×6²Ÿ6ýÙwxZŠÀ K»+ÇÙ Œ¹)3Á†ÌÝð2`¥i›ÆvÓQîÒëÓprêFûò®pFYØÐ¾„Óç˜~7_Ü®o³vEvÀÝGŸUðNx¦’ÆÍ®3^²ø7#8フî0ÁgµGë(?ì`¤W·xK˽Ú¯‘æ‡åóT vèåz+?ˆ/¨-º– ’¬oi>¡2rpãxÒeœ/«zÞ‚ì…•ªñ_@ݤã>)pÛH…üa<(¬]ûØÇJjšåŒA9ô»D7¨ä§Ê òÕ¤Iþ¶UP‹É‹cãõVk§EJФæü…Zv¤|;g>À¹2öõšŽJ8¯|åá fÐi½ž5‘¾zˆ¥b²*ôÙº ] ?ƒ9i:éþ’MþÈ}] F'™$ëfCÁX•ñ'Öì˜x÷Å‹ƒéï¤ þ¼-ðbm ¼ðpDB*®ŽÍºùA¦êhÁ:Ã~ÔAö@ºpùåðă{C§ýÐW=¿?túÇ|uT·0í¥«k 3ÏqÝãz‡ î»ÝDK&òUÌcPÂgŽÅgO"QÒÃ÷"ÙNúöõ¼kzÄ!3úî[}þÌÛý˜÷òÙhEJ¸(yëØÒÐ4<|PiÖ 'z9‡Ê¯©6-¶Ï _œqØöYú¨²‹ÝÇU{ìK~´DµÎ:%ã¨Þ‡ž@©ç!jÄMçî/FM£ï ¸+ŒPËe‹*¢¸žÊ×ÿ%MˆÚ ÎÅP ¡ö “òjÔQ—‹x…P·­û°=9ê•^Ê/ë{€ú¶ndÓe A†k]1dâhHØOÖ[d _*žúq¤½Óœž Gc$ïih=и;Ýå<Ö-4±'˜œÂϦ²ÓÝåäûÑßðÝ™3-h¶ðe…FB 8fÊ^õ½hQmâ=¾ª;ZÊÏ }Î#‚VLÉž¥È 5¢&Ÿ»h½dsèl@7Ú¼G9 ¹„¶%iG_QÊ ]뵄t.´w8òAK9`rÄ.鿬z1aõ”N8ñ‚Yóá’àšŽVÒ×Ä>§Ò<‹ûk æÈ÷­¢HzQùPg 9ljûÄÈhw«x¦Jü=®ÄKF XÙUÊôªàgØÊÆåÕòĸ<й8~ ¶†ëciý±sÀ$z•-5è0WzŠôôÜV5#W5`[eIºÂ '±Þ¤h³‡Í¸Ç;_8Å®€Yhq ¸D[¤Ìôù€Ç#·ÛKøúü> µ,ÁYßÁ;¾1 èj-ZZRB‹·£¨é–@ÄðQaóÓ{ Úµ:6§Û â/8ÜI7 ö¹~ëÝ}X§²³®6B ‘€ "ïÒœ›’ Öêë è,+6ŸçJÖ)~?R¢o: ¢ ú"0|†6 Ô9˜^½Slººµ× å%ªƒ@[Q»H¸ê5èH9·=+=¾&çÓS'A_'¶?È” ‚ìÚ¾TƒaŸ1u#Ÿ×ÿÂr-Lz™zÁì…tI?ØÏILÙh8Ái?I^ËíXÀûÌ?(׆‡ú0Ù~ŠÛ~Bß L1e#PNéWgFãPÆ<ÉÏìêè ‡Ô£zG”ô©9,Wb%ÞFäÊ…|´CñÖäO­ÛŠQ¬\íeâ¶0¹ÌŒùâ†ç¡^]²]Ê8î—Em%ª¢›òS.6ä]uA%3°G¯”¢_·é§Î7>@ÕÍçž}¾cŒê5…Þb z¡hÑéLôûÚ›œfŠQÔ/ÐM¿5z¹ b…~Cý/…;> ¢ÆoÌ…÷]{آߢFc‰¡ó‚ž‡£‚®æÃõÄTú.ÔüNµÙì2jyëzù÷v2jMVßa<óýIò3erÎFm‰%¶é®€Ú3Ú7¬wPG]èßó¨s+Î%¬uKhÐs“G¢žYZçàÔ»éO€l»PÿsýÓøŸYÑ ÷€ûÍ?¨òñ þ4òzÿæcAC4†]ñZ@†ÇMÐñ6£Ék7ßÝ6iDÓ×”òS%]ÑLÜu?Ù7¥h^™þY;-ZTÜrœ‘ÛCKÛ*ËMëƒh¥’1ñަ.Zû4«~Vâ;ÚH+;ˆ¶ö½LâРݯ?žzx»†gËý\ÀRÙjJx%'Äô®ž¾r p‘sõj/à_›ÉÔãmÂüo„ê„eªƒÈ”"l.Í†ÛÆuO% tn½%šà ÔìÁ[Ëy–@Ë”>„X‡€^K©¹°eCŸþHR |7u—¢ûÀÊާÇ'Ov>OçÈŽWœ©5ùÚpŠ«ýOÅ18=ó¤àgòwà^“N(˜L>ݨìÅMp–Ú÷Ô]¥ bIn /õá†û1ö¬ ØDÁ€ÓâçÃ[ƒ¬ARË·î^“3H{ñøT˃ìଌëÒi@÷;U:ßE‚BJ¤7)(‰^˜f©¸Êý1W;ÿÊ€j\T×û¼ P¿•8Öxß45¿š” ƒs¼(,6:Οþ¦¡ ºœ*–5ÈAïíW)nÐk·~ñw º˜Í(&¿ƒÚŽêüG0¾©Úíjè&ƒgp2íÁìÚÑœüz¸H™rǼï˜w»±?]Ë_´UeCÕp©]R¨SªlðXŸl‚½kú3mœ³Àû—tï;àþÔº“ž‡:‰5Ê—ÄØÑW±i¢&!ôù~>6_Í&J~GZ ef}¸¯ôÛ™ž(®÷ÞÊCÂc¼EÕ<•ú[~Œ»æŒ½ÇÆ"(Üg Giºè¸Áæ=#ïà=_Å©þ×f¬ ±N£Üm^ögêŠÿüáæQôpPÇÓ:”û(0ÑøG;ʵÒ'Y}zp¿˜(ÀLûÿ­/æªéò·XVhðá> QN^ãþðMräÇJ!ô}%NZâ»ûÿí¹SÒ²§iÏu¼ìz4ÊݨúëZQÅÎå¬×N£JKï™nZTMB»û$`óð|J¢‹3&ªgÞJu¨*E JνÓv¨é¡‡×;¼þðû8ݸ•ÀÎTÈS?À÷;GK–c\÷ÎQ ¢BƒÝC}¾ôh¨á×ûdD‚F®ÎÇ4|Gã'±§ &²Ð¤~Aו4í‰APŠfê‹ò™Y£Ðü“Óöí£Eãjl¡ÈÃy:¶´hUœ‹{ˆ:­»]Á²?ÐÍ›í_E0ôÏ¡ ¾Þ+Ü^hoã^mkÀ$`ü‰Ž`ûµXüTÎcM€•MÔ¡`8šf‰±ö€§o©Yh[y§òb+¼€øBr¶äw ãÉß }½ ô­8‰§2ßÿ4óÕ öH|°—&´¦/gJö’€ÞÉ@«Å»Í¸ kB€å§ríëîÀ<ž[n×7¥7¾UÂ)ŸGõ[+—€«Ýòûl÷+à}4“|9ø£ïÈ `éकÜ(Íkna¸1jŽ ¢7›N{= ¶'lÒŒ ¥k/hód¯˜/|¿ž èÞoiePè§`Rz{”^Ê|­ñ•‹ûCg«AMõЉ—thèn¿Á›-Î\ÜzÐ~dû7ä 褜g(½'?Ž¿ýÍú·nsû`èÜ5;HZƘ“£âoÀ¤@u­¯÷˜…½m~¾¯ 㜕\ RÁ¢³ð–¶&\RýÑ|¥W¬×¾ÖÝÖå‚xþ/ÎØ&½IÊ=`ðp˜›UõA ž×{»î¢:–¹„öŒ­ý·:@v)%mýÂBßÔí¯àûç¢\Iz.f7WôåñÏsáØÏA­H××ø¿Î!J¸%Ñ÷xŠsÌGøý|?ßkè€oõc®¶0 _äXŒæâ.‡ç)|OHG-ka¸$¶Í¨ÝûÇ–¹5ê2²óå [E=iÚ´¸P¿èØÞdã]4x«”k9 ùrº&%Σ¡mlºªøf4ÌaJüFä¦Ôr¥ sk¨œôx†£•b¹ ÐÛÌÐE£ï\„#Cиtæ]=²j4á¯V«š§ƒ&ãJ«¾Í£iéÓá;mÁèoªU“Å«@4{úÙ;Ùþ 4—ûØÍ,é)Zq©jÌ0E‹B&üfÐ’Ò5EƒéhoùÁYÍ­$%ìñ‰¢Õ nÍ|;´näædýmŒ>ü䕚¶Â^´¼ÍE;·o½¹® €ö¬6ŇçÆ©ŒF•IÀd—Ÿ>—>X2ÛCDØÏÛ;mG# NŒÜRæ.ÜË_~KÍÞjc+¥ñ[ x:ìþE(ˆ ¶3:nH¤,ùC2ÙÛÄÓ#Q2@qJ´¦¼(?Ìù_%úÔ'óŸŒÈPÍ÷OZ3öešÔþ>Ðý¨>%è ôq ·éû!–£iql˜°â-‡ÊÒ€…BÙ3µØË4æ³sàäÛ…ÛÓªÚÀiãã21D§9šêt·€ëetâ‹ôËÀ4÷¨5É xb×n÷ˆwoyEác³J8ô§ô¹›ø'žW,þAÙ "ü”V&;=ñDÒ­Ýï¥ý±K«·R±A|Ô¸×óÑHrZIç,/Ô} ‰^©\3º ²¡‹Ì” ‡pß¿æ4ÀKØŸu…ÁV~Pâ)/©˜½ ʶÞXõAåAð5ï4+Põ(¿Y÷ Ô<;ƒržæ‚z‚ëÍm¶QÐèü8\“" Zt9Ž?ù᜵waük7Šdw{¸Žº^Çån Ðý3<>DdzE5Ä‚‡ó7ï}ˆiZÀàñƒÈŸ‰1`øöÆ-é}0znÂðk<Œ“K+i{À¤m&{Y¸¼€9´‚„ïd1Ý•áúÁROÖ­]4Å^™‚óÕˆÚ\`þl~ôµF¹¦tðã0VdªÉ1_e>i5Aë(u9†vœî-JÚáÓ|÷åp°Ð”»ðpÝÐÑ"/ø@‡æÈ¾Úm=\O4çâÿ’ÌÇñÌPªI5;I¹Áá{p²" ×%GËž==Þ7sÀ_|ÅØÇ¼uäöäÅ„)¡Ò»,D¯b÷¹Œ|.Cm<c8ب2Ü,$^ÔU‹]÷œAµ"·¾¢zéî¥ÕS¨¡î·^xƒÄá9))!|_Ô"¢YAõuµµŒÞüƒÚ˜µ-:^BíùI8럴Pg wUDúÔ}ņì9ê5ð‹Š»‡úõ-ßñ´´¡Aáíéó$¬hHg÷¹÷W[4ìóõõ"Y1ù½‡›3 á]Š,FãaäÈ…1M2åN_!Û@SU­tŠ?KÐß8kRÖ¯:h6S¡L6q Íå0Œ¾F‹¼F.÷ hÑR(“øÈI´"Bâ¹|έŽ^v¢PåC믉˜£¿ýD›RϘ˜v?¡­s|ÆšÐNQA‚u9Ú[£Kü{0úCíí ¼ËGÉ1Õ·N(ο’§S\rs¯.ÒfÀë:µš»ÛOL>æBq…½^Xâ/1¿îï©%ógŠÆV —xx©X(¢ÍwY¨ð€ÊL—Æ"w h¬ICð]@0O¨-0„¥o·ÎW“¹—ÆÉ:`î ¾Â½}X¥Âö8‰¤€­)z2‘ˆا-x š€CûTÃø2œ¢Z”JXI.a’ ö­¿€ÇK¿>%ø&¿ËXæîÂYÍÒg˜i ý‡BX7„i.5Ñjòˆ?¿Fÿe£®9÷ÄoHï1µdþ/ûO—7@º­4¦¹¥äX‹>;]¡äe÷­‹7®rÅ ˜âÛk“aE ôǤɣ˜Td=7”E@5Ïdù¡¨+EÎ\¼k^US@+$¦Ûµ»´/ãGƒŽÙ—Ÿ#ª 'íÁÔjfú;ÜSjÁàÕlóϾ[`8˜£ ]®ÆšÛñʸ`ÒùÑ‹¶Ì\Q²Í† ØKá4Ø“%gpCâôZ0à™…Î= EÝ8‘·ïj©¢üµz•ð).”C¾·ý&õ$Ê8ƒáTEƒRÓGÏۢı.ɩׇûE9N}âw†i/M.æ–ÚØžýç cÔç÷·¥ŽöV¢È„ܺ1ÖÇýÏ]HF§£|¢ûWG:Q‰ïJY´_ª8x=j먴iËDµ¾syåݨ.Y‘ÞzÌÕ¯´=ŽóÆA Ú€iQ°|8ï²c])rà\—rú®3¬‹o¡† ¿ArÔpi”Æ/¼5 ¸æ¤s ¢&ö‹.ÂÒ×Q3›ÏS¡x{ÔÂùºÿåÛZÔª Þ~+ýQ1ŒJ¿Ú4* výS2=Ôá*Á÷ªuÆ|u¡úºú†ßjË“¡ñÄâbWÔ[üJ¢~Ê õÛc/ûŠÙkØößïþó‡ê‚`T¸ŒF^>åÊo“A£KÁW”z,иçó~<—4É?çÑ_ñM³;%.-õ£#ºìkehŸ¸?Ú-2U>ÉnYDK ƒe!t´håé`ÌÆ5Z3Řø€6ï$¿bºƒ¶üÌøÒ ž¢]N—öXl§éW8Ês<­Í#°[¸Î;°¹Nßîè/WÀ'– ÊðVB³ˆ&GK þÚXW§àd¤® §€üGB!Æ6.Pž–RŽúµTâ~ÜÅšúìß¶7“n…,ð]d%0 —ÐìbLóËû^"€à©Ù‘`o^}Ð3À!Iµ§Hœ¥{X%<9pÚçÑ™ "sàhê‰Ö ÞÞºžÝåHàÿÀ¼1p ;«Ê-tòA8”)KI"D ñNÑg·€øIV¹ã ÉÃ!Ô‘ý¤MF©èm±A6gUª}At ~<(¼+*ùyX؆¹a­”k>0'”‚j`ñóŒP7V·|SšB)O¢ªÎÂ9Öèæ.8OOKä’ëº,ŠW®o(ƒ^(ElQE*è'ØXßoëƒ1Ê€¯ïpÀˆOnÇ©ã6â Ý+Ý“-«øß<‹`ö$/É— .Š>ªå‰©ówª¾ß`9!y7k+.­F#ÄÉ64×R¤hÝÀ>ïöcçKp²¬ˆ³­ðât*£ö§ö¼¯.¼:ðg®fX(±-Ë‘I%5ãTiß®BñÉëUAµ(NV<ˆKïoQüßïßK <Æ]¸Ï iRõI.ìá}âõÄqyÅ?V1Ì®ù_XöÒ6¹ å‘V¼¹øÔëØÃÈ•¤ûrMºåL¦ö¸¼E9‘Hÿ ÊÙQ ~dÒxè#«0 ÐW oÅ„èñ+_¢^Æþ0Y9øDé*Ä—3<ÃÂþûCaw¶G¨ìÁ˜öLÙgTþ^çC¹•úuÖyíe5ª ~²ÜwÀ»†§>5£Z¬~?BcT/±z=3ìà;!ÿÓAùjzlíÅNKùÏfÓ™ÝsFmþ6d¸EwPÇËÔË“Á‚Ǹî}ᦷwn $\\¥ã9ð‡ {_ùµ©ùõôŠtÛ{WÝÊ…&y°0„#дüò‚gšñut!ç Dó³'ísߣÅÓñýòÚ%hi¹?þvZÅÔ÷?Û€Ö5ϪsO6¢Íb†í?´£å&0ׇö¦bñ”i£–úÛå0GÀbpOkºû°<»êh¾Ž œÂ#ƒÛ€''2ÿ’ì+$ÍË©âó¼\‰„R@F£Ÿ¾˜B¿XŸÅÊj3)½] ¶Yåñº´Š o(÷Þ,½csk§¿ÏKÖx :£/°?&Ý=ãöÎØ¡a­pêöårLÏzàªÕLŽº¼ë÷œh–?íÛ¥Osv ¸AÿqÇž„;«Øn´Fƒè¸ñ‹1Eà[m7­©L•µï¦ {_^Ï‚ê# À°•Ž´pP,^¨^饷/®p»€ŠýØC…eP3}pc^o4:5üaÀ ¡ŽhgpXah‚Î{ ¾;'èÕ±*âÑþâ–*0ü¬Q2¬Z ÆÚzo ÕXÁ”œFºû¦ ˜m Vþ]s² |÷a°4Œ¾ôé'\ª}ùõ vØÈu&†ŸÑo‘"K¹" ŽÚy B(äÝÃÑ®†²Åí=çÎþä@–ʪӘÂѵôuìb²Ö'”Sêú¾Ùnøp?Ú•ŸNB(«¢±I'í,ú¼hhiÓ­qxNÿfeYç1?á7í¥kI¢x+*pº…%6°‡*JŸ–ÛlΣßÖeeß/ö¢–Â/ ¤Q»46¹qêÂiÙåW³C=f¸í"ö[¨oÐV㺟 TýøÍ”¡ éßž ô EC…,nr†*—x5C4ôÙVÍ1g %☔OÍ abyÉõ÷÷$[—v;àÅʸ_Ÿ‹[rO¹@˜k=ï¯é ÄQŸ>Ðþ`Ò­W¢u~»@>à›åÇÖ ”.ÖB/mj·1K^Êh.÷H1娭»˜eÉA ;¿-GKtK5ãË÷‡€¾€¦ÕÊ4 ¶µý´gÞ3‰93s!°Î)Y<{ 'n‘¾ÐN®x¯ÜWpjëQuCTp]=?c Ü7+.Î~sÕý‹UšÀ{ݯ±sK øò7;–~ÓÿC±â¦.è-Ô—dZ¡Ñú8b‰‹ „Îà| 1Õ}Yßnï´&ñAâ€y,‹S@*²ƒdólÈp_3loÙÖ¹Õ>® Ÿ–81x‹ ãÌýy3>P˜þ(~o”3¥°bnƒ²€BGüÏhPQ¹^“.ªZ1¹çRAÍ£¿rMÔïÞÁ9[Qö4,@³fY¶Íà+híuûÜ?ÚwCR/×ÃùBñÝA\\Ð=ûTyáqè]øV±uô¹œÉý}j÷ÚüÛ`0B‘L膭¯Üž (QsŠä“¨T0îé.H¯Kו+p΂ùû߸™ÀÐß~GÊ Í*–>Fá‡ç÷B2;(|O1.¿Êwõ·‘·8櫌yb·盇>ï»jæáº O=ÅÍCèÖ¥séЫl¢·Äá¡Ë‚Š’¦A”$&˨¥ŒR½wõ’»ˆQf·ŽßG†—‡¾Sn3"êøÜ}þÛ¢ýwÆ+Ǽuì_¨ HQã|T—'tQÙàúš^TªÌ.²»‡* 3ö*–úPÕü§Xõþ{‡ó˜}¶‡û\>$­D /g=ó2PS(«”ögÔ‚)Q2ak…ZufÝ™åDПñó³]?tÁ«K™áÁõ¨ó¶÷ª%êvÒ’Ë!éG½×É}½§ÊP¿kÉ÷¸;hPëùÖròì{ ]ƒ†c?EHÞ÷=œßŒ»lV†Æ \SÙÖ>¢ño Ü´œhRZæìéå4Õ·ñM]ñú›\ü§ÍÆ/”xç¡ù’êA'´HTª8ÏŸ‡–\bbÈÐ Ñ•î¹x´Z4òƒ€°­_f6#™NDëDïͲmÐÖcŸ›ŒÂhGŸÒ€ùæÚ»£Uñî5`¼såë4<à7½8³QÀ^+ë\—ãœêÑ£€‚»£À O#øöœ€0‡v)«ÊˆêÿÞˆ’²/·òÆ,ûVÔ TZÜ;ëwC€ŠC`?"é*Ðè?ããYiºÈœÚg™¿¡ü&ÿ ãïôÀ<ûÞIXùzº:>òÛgVÞ’L `oa3þTå—OK9HÂ)¼øÁÏûK@ãž«É%àñù+)®Ë|ËKuOÃðଠ–ø‹vF¬VŸ‹ëÂÒçOÐß³‘/­¸%"Ú ¦»Ù©.…oPa5Hî*Ù wQ‚ U’{·+Èéá¬'÷=”$°§ þÏ~ Ý-ÅÂÈ((ÏåýŸ2ÊAÅqÌ$^MTû¸uè5c@Ý–ù§©hÌ•÷1«Vv}î+Ðøiq[?t<6šdª@Oƒ­Ö÷p=ÿ y5ʃȻ¿õñÀp‹ñÅ­ï`¬§ÊÍä&¥ôî<{`f¶™- v~rÛ‡ád”‡û¢7àá`ìô<çB„4§¿ î³ö Í=Î…:ʃ:Êyúï¨xk²!ŸÿÉ-ýïÜÄ£~GùPGyPGz°Â•Êɱøæ¿¼§ÿäUå=ÕûЙߘäB¿uyâÜ^⊾xõóq¾ÜQÎéÑóß×^iæ}f9¾>Î?=Ê=ýòå‚á_·tq¦Ñ~‹?΋ûóW|€~Yá_nÔQž©â5Ùü¾k¨ë‘7ù­«¨{‚ü ™iêõµ3¿1Šúå¿–9ü\:\ß·~ ãÿü¡fÂåõjh$˜ºwú>ûq~ܸHÂÈ&-š˜w²8'rMµ‡¾‘ÍÐD3xŒuŠåh®˜ëã#»haõuŠ»ãZŠ÷zu^âZÑM ÷ò¼uœ‡¸Þ!œñÅma‹î}›ØG;/Ù’«KÉÐþ[¿›gÞ$æ‹ní¯Ë€}cG8©ãàxc¼Ó½xé>ŽÄM™@°áÊ_“ ĺ)þ?Më4¼v>Ð÷"ßûãêU ½Ñ´8~@õäKÅc‰, ñÎ+,sºè^Ù¶iÀP¿êbxÀÓÌôÿ¥„«×rktôY`Hy‹°°NöÐϿŜ–§… [Eà4¥_ŒËpS9Rú¦ÚïÕm\Âa{à?[²yÿ~‰…‡1^aËÂ26eC’ô–­ ¶Vü1ñûuÄ){#Ò±IŽ š¹[ˆ×¶ªŽ;ð>äÖ%2G]_žPÎý¸dm¥ªÎ,à"êR“mÆeœ Içï£o¦çð÷NPwÃyBŸàÆBÐ¥“ßMq½0g<™^ÐOž±¾ú³ ñ³Í ÁHVdçÍO%0~ÿkò¡?˜R¿†¿uÞ`–”„Õ à¢ÑeÖUkl°`Súýéq*X˜Ž¥ kB¿ÄÜ"°áÀžØûuûem¯€}¬Ó"*ý.àûÝÛu@mø~!B>XÇyˆG¹jG9lÿ_óJÃF(X+e)þ§=ê„Çÿñ‡ígÞ %gú<\ÞßßþùÃÿä¸ý®œsÆÇý®úçþ'çôØ~ð³ÿQœÏúúCYÕ7ÎìñÇùÆåeAö‰ áè—•‡œ¯Æ TùóÍVù©RTmþòiIçÃyYº7ÉŸçen†9šžk¼ecýç“U4jC?£6›šì£ŽsáŽpÝ{F‚´ ¨cp¹êa¢¡û’MÙÑHÚ[ Í„$4ÖËíWüMì l4l_EÓXÃêS³‚hFŒúÔ ±h®'·ïæˆä?Ü–PyVâ¾E+¿½úïÅ¥¢u–ågÓ?ãÑæ{[Ìõ“ßÐŽ$)ÑÚWy´×]®œÕ¥?Ÿµ%;nÏT!s(`;)%ÿÅv+{ÀãÆgW”aÉ!)€X!µB­÷aNÛhÿò­o’®Ï{€2$ñ™‘”9PŸSiÞbêÚ3ëjöÜf@¯Š·‘~Ò Ô3ˆ>Ÿ–ø Å¡ `÷Ì‘XbŽ‹q${îƒpÊ^±o_¸Š%l¬Î¯Oº±[bðl¸u»ƒöÔ£§ AxÀ­a[[DgÙ4ÖÎï‚„Äåw5³AªLæI-÷?|¾¶Íâ§j…§J]cPŠp³;Ñ®*7ë8 ƒX@íê» [ÇS á»ÿáÙ,h}Ì 'i2íö¡¦[b6 KsŽ%èçCÐ[–üpMý3\ÊÆ‹Ö~ †ÓßÞŒzýãÐR…×&ŸÀÔaÔ«ã„:\°â/b®sÝq&°lðñÏÓkîìß4%`óp˧ϼ,W-'WÔ@˜ª¶ÿB60$>Çük€þ2äÿ¦X?Î,ù~..VóxÜåøû£¼Ã¬ ½Ï—ƒ^¢Ï÷¿„qœ>Ì›G¸=jòˆrPø¯~åŽ^6!jñýÃòᘇŽsvOå§€S-2•çå?—âwlÈ?”‰«öâwÏºÍ €— ò½O>ãUg©jàgîÍÏ\©ï™qûúþ6™úÑ)±gê™l bgj„-M³A¼þŽôr‘'Hò/ùÕXÎÔwý¡Âœë s‘¤ÔÙÈäȧ?ºÍ¶‚ü°B“<ý6@=]Ù(ŒÑ~ ¬éÅ™ÈL]_PÚ:ÁCg=*„&U4™  Ê칑ºVjB¼¢Ý6  ®áI&ûú_Ž©×X…â¸"hEK*֑ùñjç{º§á¼ Ó) "Ð þ€½º³ÚÛ—C@ï‹í"®b(èßM5j«Sâþ–f0d¬o<×1†ÛÁ)ÛMž`4î‰íË{¼| z=ÕÔAÀŸt÷lŒ30–ˆÖÝù‹þú§9¸BÕÍê•ʘŨhÉ{ <óÅ1/ñÏ‘®üo¾<Ò©GyÝGíÑý£~Gx<Ê>zïáôÿÇþµÞm~Ùxœ·}ÄWÿgŽiQ>qjçÀ¿œí#žúOÎvsçB’"ÔJOPõ£ýÉÒ¥)£üÚ¯1\vÓAVsz_ýóôõg(ç ½æ)4x™•(  ­ <ø!Œ†FÅzO(¡QÊÖºØíhÌm`%Q w`.R|C“&?oŒv$¢©VSírô7ó4鎦š +>i| Í¿o#ºxO-Ì ÐØÆ¡%}¶SAf{hy’À¸ìU;Z}gGŠÑô­‹}ó€åÚÈ{ÎôΞm æäõ—l£í±kû£G¸ mÝ…sFF€9fÕqSh °ÓBÙ³mHÇOcúB„$à©La:þŸâà?ä€B ®]Ú"¿w¢—Exêâ‘÷@:JTÈ×–wš»é€r†tª=lh”ñ~izÑ]V—“f0Ì£÷Å!îÀ”o‘f`Ì"%²lÀÊ–÷\–ØÇ\ë5Tö‚!S¾G"ÀÁþá~P— pn&yœ¦®3þï};7Ç?Ð>zõ%ðퟱøæIg=”1:Ap©°žÜÙí@¯ÊH1¦E‚ȰçgÉ@q{zû·ÒHáÍø˜‚”âO»ï:ü £ÿtèÆ0Èùé*ájÜ”µÃ…èÅ›¤Œ 8\«;QÛ Êâþj± jÀ¥­)j'ÖS2.3€º_Ì‹©ç I¬ö³É´Z?™¬,Ï‚v’Ççס_@'Ý<ÿZôLª<$òAßUíÓÄ0ˆß¯)à ½•vA0V¬ N[®“œP­¶ñ60C¹ßìŒÁ.èÇõž;áä…¿‰ÏÓ¸d¨ÜþjÏanê':ÖqG<÷ß¹úÿíÿ[¯éÔ#=úùÃ#Ýx„¯£üðcÝêD#ªrçÿö‰Gþï?í¯=¯'0צ(Îø×þçùq½Œ¥³ÄœlïQSïlYÚÝãz-—ÍÛ’­î¢V™¼Ú|ô‡…ìæ¯½íÝþÉú—+9j×N˜÷Ò@¬ƒ«Ëì¨Ë7êâ[/Ôc1±áŒ‡únØ{hg:£¢©Î_Q$‡ç„uoDÿAÃf—5=o¤ç9°a›IþEìuÕ³¼Lh oÔÝ`Àä˜g=©…‚§ÐÁ×âl´x½ÿfÊÃ0´´­$¶b ŽV¾©‡gÏ1¢µ_$\LÅzhSôM¥ìÄ+´=ÓÞ̲²‹öZýÆžkÆ68§O`%ÏIˆ Á‰Ç®ñhþé|âxÿè{p¤Çê[”kwÖ×ÿÐCé3Ÿµ×¨ëšú²3sü8ö‡ÿ™7:š:ö‡ÿ©osŒç]ëçD\ŽëØôä™]%Eý9Ñ…ö>WÐŽðÆv£áó–—d]h´¼ãt`ý¯V`wÍ@S´Éõ7Ø“ÑßÓœçS¶ýáâÉ9?ÖH´4Fþ”gZ­g¤Qt_DkõwÞ¤ã"´Éb\]…¶ßÔª®ìK =žñ—Æ5¢Ù}SÀ,ác»]éØü‹›|?àDŸðÄeÅ]Àý«6µ3ø/ÏxçòƒÓO€ôÁʽý /¹b‹õ<(-Šç)"5Ûï¨ÏÕ™@{‚n¨P è霞©¤£—r…h°èIÎF“ã•ã¬ð­fž8…¬ü(Ön×ÇZ]ìdàuž©_}D|œÇ/¸\4¨ v„[kÌ®• €è Vž/&Hð\¬Ød‰©ìáøñ— ë5Õ˜DÉè\µº¡(t’…ãÐð‚Ò \íµ"P±]þ jÖœÎÌ“¿Ã¾g"h½ìeÃJYíÒç9% ³7¦XÜÿ ôÆ[‰ˆ%6ÀÀ€€˜ÌõödÝõÁ‰ãÀˆ˜´T%05fbù³´Þ‰cPÝó«»w%Áò›î‡bÒ°fìÜ­T¿6n+‚uÂàþõq±õï ôDoV™çÐ×6j$IN¡i9[ŠžQTÍžÇõ×U÷8Wÿ(ßþÈfßQš[˜¨;Ö•ÿ]ê·qAÑŒ•ŽÞÇíÑó#ŸYÆõa‰IÆä¸NKm`u¼ij¾gÂ:/€Ú)ŠLð àŸO<§Ít©²¦hÐ7Âú‡Úûúز™_ÊÐ`­ŽÕâ±^äán«Ú‡íÑýÿô?ö¤ŸÇÚŽÇûÈw#¾GY”h´%ì3Íé4ŽÝÝã%õ?ÿXß@’a¦=±ùª«KþùF7åÌDJhá¢I]ð ZÌkRjªŽ–Íoþ4ËA«Ê‹Òúsýê»)´ÙÏæ´ÞE~ì÷°-XääçÐþ™·MÛ$€Q®üÿ£ì½ã±þ¿ÿq{ï½³÷ÞÄóØ{ï•(!*Q…’P(II4DT* „hiY•Ù{į÷íw=ž×í¦[·×÷ó‡Ûãùt]yþÑu®sîç~?÷“#rí8~+rN>Þ äñ†ÙÕâÔÏGåå²@ÅöŠÛA1¨³9Ö fVUgÜ©èO])¬~YKÒã}.T I¸ËÙѬÏ|¢µÊ»?ã+w‡×ÀñB&1Ô$8ŸǸ‡—sÃÇçõåÀukÉþäËÛÀ-ËÚ&öx´*Ý^ù‰ŸÖõsCJŠ (j%Ïî¢Â~;7O´ÞQ“íõÍ!W@œµD£áÄ&ØG»³ª $C™¸¿½+)“ m÷Ëb@Ú6|SÜÄ È$e}/{ròÕIyÏAÁËã›·=(Sýšm뢕3~a½AÍR¦ãÿwP_þºvîB#h¦ªßŠøÚŒ*3¹ÖÚ sU÷í³žRØluéiÜ=Ðgblàyµ°aÖä‹0]¤ i¸†¡Bü2«¹`6K.3Æ^2?K^“£ú 5Ç~i“Õ*0Ë ͹jæ7¯/d©å€ÅÓÞ°×Ï`ÙÊOXü¬Y×›hC·=ç-³oµ`{1áân’°›“¥8àJíãvé/ÀaÌ«¸{ŽeG™½ZWÁ)¡'öµÐupö¾Ë}U \0ã›ojÉàPZÔÈ aP8ÑzY‹x¿ð2'>ýó¹º6ÙùÜßö#¡øCñ†êJÔ—AuëÆ=lÿÚsò,ú{(®Q~ÃûœÿÀ‰x_3J \ã±:ÖÀFRiêµïûà8å+´ Õµ¨>%ðhªKQ=Šö±}Ú§~ÀœÃïk¢ýL¨o´qÏŠëïþíƒ9¶ÁØIžÛÞ@⾦RG“Ç}W±‘úÎÙT>ì×€{ù¡¹$l|ä0-iA,6o];}Ü›*¦’®{Á‰ÍÐ1q¤?ÜŽÍæ”afÇæÍ…ßpžöÇéÙXŸlÀ–:ÊEö`+MU£ŸïÿÀÖØ43õm[€$ÐeGžð®‡<ž¸{ÈßÊîªßDÜßbZ¤@SÏHnÁ ´ÝéÏÅC€®ô{ú5  ¯3ÑÍO‹ÆœËï’^weû`Û·åËWîÀ±64­ ܹóâ$€wþ³Ãér">l¾{s¶d$9ï€M,W]v&Ö‚ðN–—ª2Ó R¥{LäA,a¡<‰Á$.®ÿs¢©ÏágcíUAÖÿã]®µ"Pà:»R~ä6(­4æ~VÿæM¡AB :ÄõN×½ Ô36Åm¹š^¯­bOñ€¶Å¹ƒí:›A×ã÷Ö9OAïĶ5š={þ|¡—mõxe ªd&„ÀpHˆöÕÑ{`¼ÙOõª¢5˜ämOŠ: `FÿÄŸ:ÍÌOpR¿ˆäKyÞ¿NU¯ë»ãâ`S:[øLÿØí{Ñþ|ÓëïÓ€c´†«@*8ÝÜ«1¡ÃÎã66¯86«¥‡ÌX¦¸U->¹÷<Ì›œ”>²Ãö™CZÉz—A$µiÛ¶! Ú¡95þëÖ1ë6Èw¸ß áCÔÿD}—øå»áCt¢÷£øEõcõçA¯j›ñ¾ ¾×ì?âç ÑIØ'ƒêÃ×g¯|R¿"ˆ½ö¨w{8W÷kÞTÌ]bþ<‚ïGCû¦ÏðáÀ»W±znDœˆö%fö´pÇbím´AVDÞÕ•"ëžoÉ·`ŸÕ÷Å‹|tÁ¾ÄD.ýÏ?€ñ=ˆˆ‡p÷寭9Œýd£­áÙº•¸êÃ¥ÝÆ§ã±_³‚çx:÷N­.„~¡Â¦æc$°Y xH§‚Íoñ”™pÜŒ->û ïÿ[q$»sN¬ˆ‰,c›ç8€L<Ÿý~”4Pš×D[Úàù”Æs[Ôá ?¡• êáºÔÎÁ• ™”ø4ø[:h7ŽÆ¶¦öÂf噯ï< ÿòÓÊù<0°ÄÇ/Dƒá ÍÉm`ìó€2vmL}Ÿëî*³.²Öþ [`Qû] n¬ê§|s³âÁæÛâñø)°ܹ¢ô—:TngMSKÇ™_lI)\àì32Ù‹±€KëÇ ûØÝàd¢L§á ¼vïì~•‚ç/ɢðî—É~bz¶¬ygÒ%ƒŸÈ]Ι#GÁßK4T_rl»nóŒGa‡o[JRé nø±ÎZÔŸt£ü(ÇÚf‹×äÚ›ð¼„êHãì_|!ƒYšz]o“ð{ô~(¢üŠï?Ü€ûÐýFÞ½ÿ/‘ð~„NÄ÷!òl¥rrÂGF)ì)µl½S ‘GD{¥uó_üáòž¨q>M¼ôj·mÇÜB+ÞÂñ!ŠkÔ—%ÔÛõe»–æfùÂ^Ó¾Óî¼-µŸñþÚ#7(1®ãð•ï¿¢¸+Wˆ(ÞM܃(^“§²òš¸‘¾ï&C0¶Ñ~N®l[^”{Q@ý¾…­:”a@¢Iî™Âä¤ç}˜i\¤qXæÍ PLtªº]Ô<<ÝÞimêï&?ý‡À ZZ}¦à-0½õ|Àdg ,­šÖ…̉Àæ—Hç«<Ø£×*€s¸Ø8CI¸©Ã¸µæ€L™Ó“fAP(*v<0 „Mc«¯K¹€¨ÖÇÕ¼Ä' ¾Ý¾7·@òKâÛ–js¹GIž-Âò_ߊ—,=e^²«•OnƒÊp®¶î¨ýØq; Ç4lâ.õþíí“®SÝ ;®lSw¥ôïcõSîÌ–g`ø‹ž{·9 ºý¤¼f¦±ÒU;‚ùA6†¹•°<¯WQC?Ök¯:ƒ’ÀÎ0oR¶ ÚÉ{9Àqi´ñÈÕ4pÎ wüÍ<®ö¬fö±Òà®&õKDË <ìßµ¶Í€÷ A>ù2Ø29j”$ ~6WO8DëƒM[åSÙ>84ûYáÇÕ§ |jö³”áà5{TSîw1­ÍÄ^Ý}º ƒÕ¼”/,Þ÷7þâ û×PŸ¥$#8¿%þ3¢úÅâÐ>OÔ÷Dù¨u=ïD“£%qo'aÚÆºíïÄOa}õ̋ز†JCëÄÓ[y{™4¾·÷ëÂWIÙv+¬/¼ç¾c0ÞùÖz7ëûÏ.œ‡ø /âàgßÍ—qÜÌØð€×Þ`ê;Ø/®;£Mßq⹃·“Ò–°iµ~o¨~b³Œtšiõؼ¶Ãõ¥™ƒØbơη[°ån;Ò†Elõ[Ó©w½ØZ5ƒvH||<ÈHO¿ÝÃ; d_j=SëÂÄûÛ”émâ>DÄ?|/“]ºÂt¯8GŠ\&€‘Ë3r½·˜©ªóÎr«Û¯Øo¬;­KeøœñYàP þºnMœ’…-ÂÇš€³óâZLÅàr½É ¤¯\S’‘óªcÀC±«Àâ¦ßÿðËû+âA z%Å&6]XÒkÛ"¡’Óã&AŒº—×çå!ßMkZža‡×™’u’^ŸÆAšñ µvÆ$È-rc²¹rÖŸz6€BšFvà”(«ˆúˆ›IƒÊçÝ*‹dL VV’Ü|Î4‚WxCäN‚f«èdÙ‹c gøsoa#èšNãwÐã4Ø,Õ忦10 ’¤kÿ†¦îsÃ]`¤HﬣSÆÎ¤kΕI`r,íîaŽJ0­¡Üæ”jáµÑø~5Ë{m$rrº`ÍÉכߣ6 ’Oµ[ÀnÓ«»´v‚}C9ç¡P[p¨Ýþ5Z´oLuæxä€Ó‹&¦.à\ µ%Ÿý¸”ÿ6öô×öÑ{oEÂÁêÔbö?uiÖ»(¶28Ì%ž¹y¶Î=¹dÏ |[ý\e†a#w ŠÒ»‹ñ¾ Š?”_P¡ºrãÞÃéÜPÝŠîÿ '"Ý ªQþBy õ>DûzQÞz>Ô˜l`œõw_Õ·„zÕ³¨?ô×^D”·’Ó;lçú‰|"a"â¿2Ð×%ñ¡¼ä#šAÄúS§wçmÆV"Xñ5™k3VPÙRnªÁƯ^ÈHÃb“&²›ö&Á¦ì¬i/8Š×¡(¯ÍªùüÚbMì÷Ä>Y=ý¹[¹Å(¹¿¿ û½2>"àR$†29­Ý1@zùn™cÕ#b~«õ5¯ÓÉ*×ùµcº®@ýnÇõ»‰@«±à@öÆ èlkè úÁªŒµGo€qæ&›ÞÁ<`9ü°‰ K¶° ·t ª€£ò}¦Î€psóh|YÓ^g¾é(-;àW¸—ŸS ÷÷(t‡ÃyŒMÍ?ßs-îá_Cê½£ êÜsðÉÍ] .¢ÙýÞC$·…¨P€ô%>3¡Ÿ{ANçJ×PX$¥ûù”ƒ"¯^:|T¾'ò&ýµC­~,¥ ¡*eRè Z4~ á·$@{=,×læ]:ÔÌf úžJgn‰<¨ñÿ‘¡ò'>%ÝôÛÁ(álsÿ"Ͼ§¾Uœ¦q—-ÔS†À\8)÷sâV°è ÷Íô«{ëí¬u­`ó47^¤ƒì~ÌÚˆœ`‡Ücâ¡àØ-ðÍÚœUîÝþù<¸\»¨ZøÜ”ÔM/­÷®Ëv¤ ŸÀ³PD$( ¼3V‡ïÓîƒíi÷¢Å§A¸¬6Dœº(§ÚlÉÂ>bí]»M-l‰øpÃ^n_ÿгºÒ¼zÊ›¨nDýÔBõÊ“HW€ôc(ŽÎÃyCtOÀ‡ñ‡ˆw$àHœGDºSÄïë¥Ì<؇}4a¹”ÐLäÑ¾Ò ?’ìUì“¶•×’ž#Ö9­~´üO|¾Ì¡«±Äzk2"e~ï$Æ'¡‹ãÃO­?¸¦F°|1²¦Ø-ØÏ~ñ›d÷°aLJ Œ‘o°QYÆæþlL8,Ü%X›ð{ôœ+à>Q¯†ð¡;c`dü%l>fiô4϶8¼7†³´[‰M>s=å¶Æ[Ð&tt‘øõnðfC÷†)/ÚeîŽ,µâO@ÝT¤ªæ#NÔãܼlµS|˜]RbÙýÀUîÚo3ÅÓÀöã˜ÁÏA&àxnêñY‘¸îݼç#wx®¯|+ˆÿ|õïëùÙ”@§‚,Áñ%l*|ÀÃÙ"2¯ÓNh¡˜B@g2ˆƒ»«SÙA}¢É% Òþ|­Zû˜@ŽsæÓX^(jNyp]Šå6Û‹¹Êj šË%»ržÔ÷K|úB šÇFdŒ(WA»¾.‰fÿoجPóÒù™2è¿`п—H掌zr`ذd¢èðz‰„3ßüƒéêÊX$À¬ƒ!P~^ï‡ZÕžøùi0 l¾ÈñdÅœ{^åoœuQàð„1í÷pœJ¢}õœ½L(CytÀå§YA±¸èoÞ¿k<8=ôÙ žC\ÞJÞ_Žõ%l‡-˼åäMà·io_Vqø»_·Ob‚mŹmïwdBÀdEÍ£Á ¦ºd%zø*Pûìˆþ½‚µNŽÑœ—ü ¢<÷å>DçF|ˆê×áÿxC„7èLÑý_|"â ß+ÿ‡UgŽº‘îÞ‹÷‹žÙ^VÜ:Kä ú‚F±Ë-gþƇ„:}¼£º½.nú7xâC©pÄ7b–Ǹàc YnÑw¼¾î»ýñ&Ù \÷ƒ‚½A91ß/>¤£ó†tî96Òç?ñPÍ…¸Wø‡ÇkÝ@lÚÈE{˜ã6KY³+žšˆ}r8¿¶ü­â`ê5wì÷ÙEÑŠºY Ñ©¬k÷§Ò†þt1÷U¢.Ü–•<ø° Po{Å|Adæó‡VµÎ @¿tà" m(0­ÍL›˜õsFÞÕ3K€CNœ¿,gpiìÝc7<[ –:×È€¯u…¢öå.,k”Ü‘XÂ'ž§X Ñ}ÏIÔ÷ø¥ÛæûFÏ‚”§z`©<ȲÕU–€Â.k¿zyÏ?yq>ú¶€!¨Æl¼ êæ´tkoA3†òøáÀeâàÈY5æiÀL(wèïåƒ"½soïõƒ‘EÓñŠT0¡~«›› ¦ã·–¸ù\H’Z‡X Wðâa›ðZÓç Æ`7üþçtî8|}=dm’N~Û$gb¾ƒ ¹I¯éÛ+àúºH°8h/¸?u?i¨šž]'· ZÉ—Aõ®à{#;59ãøÝ¯n“m½ Û½«£{=à°²ñ&–'Ñ <7h-Ûüx‡tΙq`##uí¾:xý†>—û8Hè§nć¨ÿ²Qç†âÅ âÍQõCð±êþ…§÷S±vI¹æMاaÚ TE‹å¤_ù̵|傹=Ökq÷êúö)üsxG¤£þìø+‚æ‚®OûÚÙ|`ë»ÌÑ›‘tû¶¥JUæã^b}Ië±þ®”úœÃêŠg[ªTþÞ³í4âÆgM-ú6ìÅfºô7 ÿ&ÆCè.–„.ylùé5ª1ÆÓØêëãm4cØÚ]²jË" q®éûe§¤±êÌülê@ÖœXEà ù¯FùÞu¦×¬¼¶ämbÂÙÊ¡u\—Ƙ)¸ZØÌwïÖë_T"êÒÄÕö7•»Uʱs=Àá+wª«z8·$[üºu¸ŒÒXœþÜZ^ÑE²['ŽÉ•ùL$ð9ìR K’ûgrjÊa“gš-7Õ3aIýÌüJDO0°ìyöÄÉ„õ9Þû‚Dt»&¹Êb><²DÒM¡‘ªêäc+ úi¢Rv;|O>ï9(ùÀð•¨îf£¡Ý#碧Á„5ñSÚ™:05Uuó±6³c©ç+Z.€ùëºõXP°Ìæ‘ÞV›û“?P÷pïyìünì©o˜9óÿ©K½3¿Ù®Ì#ö%² † œoŸ¸)Îrn‡Îz%‹Æ«ü–§ÀÕ®Ÿdgª,¸E­¤­|w÷R+º†2 8ìøAÛøy)(Úéì}š |ÙÁµl^بs¼á.7zœCú6wùÂsP(Þ6Ö«èDõìéLQCøéþÅâs„¼…ðmc›\š¬ßObþ"ÌGàºSŸêT¤sCóPø|ªC‘Žís_ßǬŸx¼ãºT¢øÍkË~–] 0^”rûµ€ æ.7’ãdžÌWs¸‡Æ±á3ÛgŒÄþÒoÒ¨ÿM¹–ö²ÌnǦ4ib³:Ö}vØÜ`—ª@›¶P‘î«ÊŠ-5õ ÊþøŒ­’óm ôÃÖlóåH"i€Ä:È/úFzooW d‰2‚N§‚}ø@ûN L‹~t’S¨Ål2ÕOMç¡ûËÞm@wJYøvqàÿüº÷ð×)S©#UfŠ%°¼=ÓÈgÒlgCFÙW=ãŒfË×+ÀU°=•]ƒ xš5—áÍAàûÉD6gcë]ÍïH^À&ìëäncnòV[|ô Dé‚›º3=AlONšUd0HP½_lìÉwíæÁÕ9 ݽéíé&U¼£¨<íóÃ$”Ÿ^XÔUƒßVtr Öï¡0Fý4®E-›í­„šÂÑ„,Ð9®ÅV¤›KŽõ¤;ý…y!¯g›Á@£Ìähu &&$l£û—ë<©¾€I@@ÿëe50]¨ïJó‚…ï‡3™Á2Äê­œ»,XÛHܹ˜ølwè(É6ƒ}ž¸J¡O8¬5Oqéä‚“Ù¯gºÁ¹èûÌV!op©œÝMin¶Y‡ò"À#ìèå®bAð2k¸Z{N| ÍXÈþàöíjMär{A„÷Û­QÉ  ²ïÿžƒµ‹×æ„ôËã<:Ês(¿ý þ>Dõê¿ð!Ò•!žÕ¸^›0ÿñOàÿþ5wˆãE¤7%Ü£¸ÃçÏ@è×¼ÿqñqæH±žD|ƒûÜÁ†l~b\näï@Èˈ?Äõig·ìß~ûá“•lûé>ˆ×—¬EFùíÙ¿S(P »Äž”î‹MTìÜ噇MÑ?‹›l:öˆOüî›x\ÎÓGç.¥b‹'Ø RO?ÂV¨>tïÇ~çî`%õ< $²Ÿ•‚.hé aªoLÄy&—¤ Ãå·z+ã€MÎGп9šÌ8LfZW—]NËé„‘ ÒOÀ¦=|Á8ØÎf×­…çüðR/u5p÷¹äü¦éÞÙ¹üï°°˜ôž ¡/µ/<Ç€ðkõÅ3 v ªÙs:S-Ä^׊a ¬ QÐÌÿ©úB>–|»ù¨ }.¿ §¹þ'ÞÙ&éS¥÷"ZÀÌÖº‡½ò2XH.·ÖëƒKç.}:°‘ÓŠ­f;×v šÈýà`{ŸNÚê8ƾ4‰;N==7>.Ÿó¨¿“5àÚ²Ž=aÜ#Ê¢*®eƒ§æÇëïn÷ƒ·À;«‡ó`‹ÔͦѤ]°Õ3õ¨äðë^©®œÛ6 G¤0A€¡»ª l¢:E¿ü§¾¦ò¿ÈÆ~k+¯¿x«³ ÏK¨Ÿ‰âáÁÿ+ˆÎñˆò"ʳx¿tCü.ÜpþKgŠëK7âÃÍ#"é†~,®/E}X”_ ý#ôý€âÏ«¨ßC˜çBsÆøü!a¾ø/})‡(¿‰jß1oÿ78!y¨]÷o|¨;þ*DVà¿ña”ÉÅ4@Âcö²¦çIp}éÚ³'«×€šVº‰ý‚ÐZÜÚò…æ'ÐgÙhþÁiLd%[BùXv—\ž<µl¢N’ šÀÁåM’UMœ?t#%]µ¾çO~k”^ÁËå?*"Ä@8ÖXk>·Dƒe.fÙ•€ø™õ°;y Åílu²“dI–F,³›AÁv»òÃfPvó,(InUE…䨤8PWc'KdMÿSÃÏÚû7îûÊÚBRuÚvÏ Άkýª^#µ™3zÓ6`<«/Q!{LÛ#Û½=.ƒy׉M?®iùÄ}ÿÛ`ch&‘švϱæ)fpxõóÓ‡tàd™YazœGHLâïƒkéݘÙáYp¿Ô´çB¤ x>.ySÁý|HCû”Á7>n.¿ÙürYœxN~€mœÞ7” .Â!cjwÝÿäùafÇw€§¡ÃÒ&ŽŸÒȸL‚5iXò–/¸áu ú¼£üˆú*(¯áóOxÃó(¯¢8CŸ{Ä7¼d»4‰½ÅóÛ‡±sQNòxŸéËpÞ Prq]"ƒˆÑIг ¼„Ÿ„×q~qüÌmþ³çñ¹|Ži#xMÈm¯`qné­ýfUâˆñ‚ý ÜbŠýÊùî# Ø„DOaâ}lŠïÄûå_ŒØôç[÷œ’®c³£¼ñ“ÙMØ‚„ºæ›nliÏlsFlåþÁ÷áGŸ`¿Š÷`ÏEDlÏþEŽÿíCl8»1@Özö{ ÑP¨T$gwåá3wĵâ‘üOË”@ós¯‡µ¶ ®‹axrI4)Ę*³Ô©^ËÎa‘dÍF`Mо¸îä lÙÊöƒf£À~é@ㇹAà¸ñûFòkà<9@ž\ÇÍè€ûžŸü=Uà½äy%C÷&ð~b»EBÔN P‚pê}Žò¹X™ØbôùÐ]óÒKÈdñwö¼}® ¹C™÷J”Ÿ_ÜÀ'âóˆ„|Œø†6Ý„P>†"¯O˜ÙèkãC‚þŸëXι>«n€ýŽMÂC6Ø@é¾ÁÁxb>ÕŸ=;x }SjèI‰M˜;‘ÛŠM¨ûíØ›¬ÜsÁô³>Ç1›Ï÷ýQ6»ÛpìžO'¶ðåb÷ƒ¯ÙxßæwZªŽOÏfì÷;?¡‚_l@rqì­L79Z®ÐH.çwy¯íuÌšôGÍ%%®/­ÊW© Æøœ^ˆ¹ /§\9°Æí¿µ·CØõUL:¿éÇèï…Ø0kàzJ—•¿Yx•»tRo]þÖjsŽI’ß·úÛS„/Oˆ –Ù€¨¬µÑÝá k=æSü«$~­ùèeÒƒ´¸L÷“w> Ó»W>óÉ+Pä\Tj=ÛŠë ¬riDÿ‹¬Ñ‰ö ; ‘dq_´ßl*yžºTW—·ƒÞ‘ÍÙ¾°.OÀõ9cú+'ÅRz°?å͵¾6d+C#ŸžK_ÝÝ—ó [0Z§òü¦†-³ÑJK:ÞÂV?ŽßžšbÅÖ™žó1Ð1ç†32–¸Ï­ÅE®+öÂ%@%?8v©hüzù•¼Òˆú9Ïî\ûIÀÂéæàâ;¬íæüÛx=øbýyfmàt£­ëÜÜM‰þØà£ ÓÞë ‚ ®Ý›”@Xò©vhO4ˆ¼? s¡tÄý}Éú•®€DCÄ–darüEÛ)òÚ¥á’T eÝdyTŽÜ fMŒµ0ªï•¥ò q"‡G¾û9h}ègáNy ºÖ÷ŶWü½¥lº¹Ÿ¹g‡Ž €a¬AŠí—(0–¥‹ÝÚ&s=ÿ˜sÁ¬?nÿpðm°˜2iØ¥œÖb\lçuçÀ6Ú>?ó…$8p¨Ó×´Ç#2²ôªüàÌ@wçgT¸T‘Òå ~· M­1[ð8uM”åÒðªÜ·~Þb¶p+äÚ7âsÀþºËÅ•qJpÈW×1*€”_Ѫ·/§²¨ÿ»Hl¤óÐæ‡«¸ÏÄFß6TŸâ¼!¯¡¸B÷(¢÷!¹‘§@ùáPܯ†÷.ÄëAô¹%ø¤¡¾â ‘>º¢&Õg¨°Þ¥£­¡Ý8¿€thˆwDó¶=“fŒ²Ög¿`ÐX996pìêDÑ] öK<ЇÑ3¹äÉ–ÍØ¸¬ÿ+nî!l²Ðp[®Ñ,±o¢J&‚âÎ?,’ßøPP"@äl”s\ ±µì!ñûš’ØzÁ–Åë=xÿ„t2%|ùP<)<+ ö'5ú>Ε6ÿ‰ª7)@«Á÷åY00ÏȾ1†§>_> vc‹8M³?^_²^|p „ØB[cn¨w‡ÄÁŽýS)ÀÙñˆ÷ú©àÖ§_Ø+¯ <…œÜ*;€ß ò+ëio,¼ë=%¨!?¶D *ëcêk@ÔóFʬ»-ˆ5ç ñç9í:Îë yž»p»Ú.–a¿Ä1!²ü׎$³¼ê“ú‹æ ÄÆÒ^xv(óSJ,õ‚Êë’S÷•@ÕJ¼…ÌJÔíôvºS—‚Æý¸²¡S@ËŒî9hOä˜?þ“ï*uË?œ½£]¼&· UjˆKy ê_g?¼,CìCxêãÃ`䬿ðŽÊ Œ#8¶&-°ƒIîæ¼–Â`Ú"f´Ý`N—ÊRî ‡G>°N‚ååW"_²€ÕœhûìK°9XzQ®n ìÈ@íöq)°Ï÷ ÷ù%$4àxf5ðäð8%N7ÖçãÂü\ÔàrV2q_S'ÞÏqë¹q-ùÆ:Ädw¥Í¹Gƒb»ÏÈÝ…ÀKê¤p²E¹rZ(QížPÿÅгøocžD8Ý£×7âGŸ(nÑ=®/%ä14‰òÊ[¨¯‰øC¤ƒAù ýéLˆêVÔïDõ/‰¸žmƒ¿ZÇu²ÀЉ2|Žä_…æ‹ >¨¯ƒôkƒ³Ç3Ò?à~kÃMk›n~ÂFΧ>âà†ãÄÉN’èmÌ€MUkøo6u7TãáPàßúÒA 2«šû¸ÎtÅ2Û8´Œûmd-+*%„­¯ž|)Ú¤dÑŒû›ÇÔá̳ tm"oAеQ=¦H4Ù^´Û:‹>I{½ªüÄÖQ`dêJÎô Â}Yuï ¯ Ì[^çÞÂŒZ`§8ç-:k K›×^Øâ~S<7_ÆVrŸ1G›$}>j¹5lÒƒMr±âœ ühM2TÅD[*<Ž¿¬±ÒœÍõÁT ¾"\ÞNu¤"w„9{TgJ7ï«­ ·Î|U𷆍šdf€²Í«‡Ùõ¯@¥6>#¶šÔlj‚5r¯‚ú¼nôïŽЬÞ|r¸Á ´ „‡YV@÷æ¯-sÚ¡ ×ª#(@5 °©$Ñð\:4§‰…Q‚'U^MzG©”û“G:ü<_³(Þw—Á‚{Ò­ÃÀr”tt±!¬;bMò÷œÛAª]-_[À)<0ñX‘Ï?Þr2ý8ÿø’·Y\}µ Þ° Û̶×êš%àQtÈAfG'˜,Þ4éÒanš»½ò9@%2PÐLµûnÚ°-¯ëðøÛÐý—¾í¿ðáFcÜ!? ”Q݇óƒ×÷Jt Î÷á| ‰^ןð"Ò¥¾úNý2{W)þ{üïþ>ú{8>$£Ïzøâ)öQú ïÏýTÄùฃÒ*ÓD]Úµ™ì~+N¬·—–//ÊçNç[ñ>jr2컉[³¦½7ö#†“ËRôîoñóÃOƒ Ëpþ÷/E¼¾õ)£}Ï;±) ïÏ”{pÓ™hÚÓƒsÙØüÝÖå窯±ù€:g’|léìB…Ñé l•.ÉÜQ¢HE4¶Þ’Ý «Ìõ€,­“ü”æP„s>>0ÝTVϯr}ȦB¹”C-@çF·èÑ3 ‰"Ÿ36æÜAÇk®w‰:Ó©Ç?'ÜŽ.ö8‰{ÂÀõVÀ0ßç%ø·xw¬ÍÁWϹ[¨A8Àp`ÐWDÉîîÊ‹8b§rk6‰‰DÔÜ¢uH ë¬.öØ€Ì"—[¡1ÈÇ›Ùç§²sûMí7Aùá‰QŠøPPÛñ~Ûé*ÐðÍOp ­8šÍÌ,f óâ××ÊM” §ÛvìÄùxÀºÝœ”r€A›bjÈb&9ªÆ]zÆÃWI?ˆÓº|'0ßFJux: ,MÏ͵郵ãÝÞFz°uÍ˳5HûÄüþ¬sà0°ú6²ÿ8iî¶<“ùœÏº<à¤Wº€y2«up»tŒkí,xØõ[¸åƒ—päÞ´Õðá”)ØsÙ|•¸kEùlÁOûáâ†iðËZnÐ0€Æä3oL&@¨w™šËq ªc7=ÖꃵY׈êÏqáyñ ÿâ7âÀÿš?ÜÈn㏾t£ß Ò™¢yý þèÜøþÿáÂÿò©ùkÞÿ_ó‡„|Šâ׋oÐàü?Ò•¾ÎRýH•ƒÏvŸº•&ôE‹8?Lð/ísñ »%Ç‚ëKûG»]_ËL}:¢=Ú»,÷`£æõg8WÎãóUµYl5ØT@ôés3G°™š ;¦¿}L=ŠÄ…Î5à>ok×;è~FÉGÑÚûáŠ@&¨T¹më ØñS¸à}"P~âÊ^Žaš€ S¦aÒ@÷ÃZOïëA`øØ«Û-Ìó¬l‘U™Àšž˜JNûop·`Ññîà²3Î& ÀGÅ·èÒÿJ D®Y0{bnÍ­夵ê·Q±¢Ï[Ö“Aòw(GDHMòVgù¾yîšl”œÔ\í*›@e×Nò éŸAÍ#!¶Â…4öꊫ½>Z¸e•ß¿]ù¾Ší ×±^µUµà±áñªœN0 fhmJc¶=ÃwÜåÀ¤—±l¶€Ycý+=¡~°øa(ÉÖ$¶]zëÒ`ëTóÉ+µìרjîpôƒcð‹ãÒÒà49¯¨.—›Cž¤`à¶wôÉP„6xìr«ãZf¯¬l/Û'Àg¬ú´dl=ÔlÌSªþ"ÍÜþ×,àÐOïÔŒjA»v¸œBƒ"B°_»=êŽ5ùà<â-P¾BóÿÒ× úr#Ÿˆ~ãB‰âÅâÉQˆæp_m¤+[q¿æ¤J†~q_mÆ9Næ~¾å^3¦ÿûÜô~ÝrP áBÜWð¹GºS4'ñmJ®%>Øû>xöÝ.cC¼ÏùÝ™ËéT®SC~kCûMu zNã¼ú/Ç+”o-â<âäàËd…ؓ،°Í©…@lög½KÍlÞ.e0º¥ [–¶¤ç‰ÁVžüˆw—¥$ÎKœÖj~V³HfrK­ø€,·j(ù©8/µþb‰fªxÊúòxa l–åÜÛ4, ¹~»ˆóõ[.6„ݦ26v¶0`1SLÿÑ lŒL®´§ÛØÔ',¯8¸Rè çÖОa“­ÀµWõáYmjà.‘"9P ¼MX¥RÊ9à_ésÎ~‚Ã;Jy+äA¸òS ë:'ÞgSN8}Äë¼<Ü,A¢ßà/•!H“6íÒKþ2Ê-±š §vç¢ì^PÌŸ$OÓêå3Üyõå |ÕןóP:¨¾=u9ÜST>uúŪU‚FxÓ=£É,Ð"ãû^¶´‹¬œœ—@wëÖºáž?ñ¦°--œ0ænåð"0 Ÿ©ty. †tiÇ¥bâÁˆ_Cò¬i"k’¿=òL¼#Ss÷ƒéIë^JÀ¬þ¨“Þo° O°SäK[º×”ú`uy_IÅÙ°¨|;¶W÷È ›ƒ½.e8Ÿú$8ìšu$ÀÑƒÚ H‡œÌD&낳 ¹95E-¸ØÎ–ïÚ ®ÞϯÏé[úø‡0¿f8dÊàka» ” wL,ìvž‘¶ø–DylÔ{·™Ì;|Îo£®¨>ýNDq¹1N7ê¾Qœ¢¸Eu0Êoˆ?D'‡øÜ<"<‹òîkŠxDBCz9¼^%Ô½¨ŽEþ8H¨GqßÄ ýÎnMÓ­~LjºÂùm}$ú“ß#ì[ÿnùÎñø|ÄO¥ôÏÆÉñxÅçœúpœŸð¯l~"Eäyº©ïP±ý3M’§vâþkÈO±U9OzΥJ®™tH9YÚƒúã”Õ£çîz!ŸdÖ3WäÂ物œ6'k‡OõýÍ/.¿Úg[,BæƒÊùþÌ:¼¿ƒÏ×cwØ[Í+ñšo€cæ4OFQp)Õ%žaYîJ ÓÖâÜð7Ì¿?ó ÑŸf]½ß#ñˆ\UŸ]S(±Ñ—×£Ž'ƒMÃ}- ´¿“÷”>dÃnøPlRyýUPd^ª+d#åmãÌ[LÆþħ[œÊ§IP ì_e ¶üüÕÉVÐì%õ9sÞ´ŸŽ[:ïº-ëóÂ@oEª¤ÓŒÀª«ÿ]ÛôñJ¤­#Å\—O4ÇÀøŒJrГ0¥%°ædfç«÷´u‡€Åæ:“ÁŠ•)]Ü:¬×¿úÛ>L;¶ÉŒ‹aßÀA²É÷]…8zj*UÏ€Ó5ÛügÖàB¾z–A \㟦1;÷~22!ðx[}jV† bn'<¥ƒM7oQ|Öx”õªÏªhM±¶Ç£Ñ‘ÑUxžBq±1ÿmŒ»éJ3·¶>ñãmÀëSô>Ï(ÞP|¡:åÅùã¸í· œùD_¢þÌFŸš¿ö_8%WÔ¼ÿ{Í-¡ù¤K³ÊØ|éžÑ'ùZ|âïð‡gû–ÄT"¯Ÿ®Ãšé:Nä•]8:ÿÖ}+ünÍm&ú—>¹óÄv›Ãä6·zas%¹ôk¿c ž:î^öÖØ’QÐgNjÚ¿çϳq?2W²—4I@!™ÆŸX”‹%†ÛµB‰óÀ¯ÏŸÙ#§ ÜáÏýÅØˆyù^ Ÿ(>Ñ=^“Uø?Ò™¢¹ Ü÷‚fƨx“ˆœ\‘ÙÛ(b*Id®×ôA‚ù\èjRütä{‚#Èd{±Ù·àsJLÌ̬B BQÿ!WVT ô}äªÞúQ«KÓ® 5Ð1¶ Ú…Š·Üæ‚ÍdÑ󌯀þ¹÷›S’RÀ@9šÛ1æ–Sðäæc÷Œ‰@ÚǸ·9E.@þo°d£ÿ˜ÖÛÖ¦£o=4§À6ÿ$í³ÝFàÀ~bó÷çSàzh½u]–¸ßâ´Ôé´k•àæµÖ¹Ï <´ÕŠ^È•‚—e1cY/ø¤¨ŸÚ™¾ ¯žÚ>L¿7u•Ä<ئ_H÷0¶¿Ù>ߢ:;*b£ClZ@è6¯6…9P*ôQ’·.áþìZÉ}a[[pß niyÆëJÀ{ˆÃÛ3K׃o:Çô«£rD.îï;± bI]d/Ò@â‘ӃϖF mpóµwq8Èi_ÏÞŠ*ÓJ…-A¹:WÆE𨦻|Y‘Wõ4’,ZË9Ь®£ô_Ù:RŒlFl°ùõÝ”\éw€ÝçxÝlãúþ‘·Œn<¡mÉ«“T¦õ»ÎƒY¶ËýC¾w,Þç:ÏýÁ‡Z¹ImûÁöÝh-ýÞ}à°­´ñ\/8.‡í-ôçŠé!]áàZØ_7äîµQl;,×À‹é\__''øœ_pÌïR…­¾;2Ø4®¿ÆË3oVaÛ·)u}Þsp(cGÝ#ÛP|á:)wxY+§äzïbÃOW¬ ’â} ôyÝ英ÑO£žÅëÆ:åUÄ×£8@Ÿ÷‰×Õ¾Áóš£E}Ê~¦8ÿ½a¾ç ó¹¿sxfà|!êgnºˆ÷=‡ŽÑ(ž§ó êL ~aqæÖ籩-eÛ÷ÞÆëLhÿÅ’xmý𦶒æ[šgÚˆ­a/‚lti$õˆT³‰1ÑŸ­ïªBú PX?<ë蔯ߌ¦yý¹ÕÉÚ|ºMŒB}ÉtÆbeº“ XÒó³Rb:€õƒýOýŸýÀNöÀ7žƒ8Dî{º§F³¿ß£aàò§‰Þî ÜÕ×ÛM71G“Iç ð_Uð=l÷'Ä;¨ÄŠ@X6ËDþä1‰ªH6Lû ¢][ïq‡Ž‡b¢@â³oí¢èqŠ3äûb^2Zå²÷ @މê÷ÑüP É¯öa»Jz’Š» ŽòëJ/*‚ ²è<‘«¸jœ'(4H9@]þ½wÌ–(Ð(¤˜+Ïo-uãO§ AûësÇ+˜èU|xŸj z©'#zÅ‚;-$DÑ ž“C]qþÞèkõÒÂN0^6¾°Ú̦®GKž¾³ç_Ãy´)ÀÂb®ùeò°ì¯¼OµÖ™ã‰?Àv—^DC$Øoi»¤}§ƒ8¯ÿqP¶=´œI,®¿z .†÷~òoV× úíÂ{JÀ2èEžixœì-¿7^2£ç¬ÖdáPÕ^Žn){«•z0æ)ðïJ)ºúmO»«/<€ãC”wþ Õ£çýkÿÓÆs£Îtã¾ ×è9x^$ô‡p)aq£¯®3%øjàù‹Àüµ§‰à“Œ×»ýju)ÎW ¿*ô=@Ø¿†¾þÒ±!ýī경±"g?×;`#C½ûwÜýË_jtq­ýÓÁ "ï¯÷‚ÔÆç>L`T~ªMw˜ôl9°›•-ì¸WÍh¼Õ>…ûé/* ç^9‚û¯tœÝEs×[aåéÞJô›úøÜçœG"¼ËõvbŠ*‰û¯*éðDP·ÐÐý<õ´–ßçDo˜8OҌڼ¬Ù‚À|ôâÈ¡OéÀÊjMjÕ lÑ”Ýo ûtdÈú­ àÌ#ùZ£ܱ缧/ØïIûmWë€ÿ1÷‰;Ôõ ¸ø¤§ú¶3˱#ù¸Döµ}ØäÝ¢=öÁ§Ÿz}ÚX¤ËzAj~éÊÀªÈ*„ñ9¦žù翌EòAIŠï‡€>(÷úm–Ëz ª³…©¨=¤µ«6 ]¼kiOA‹Í&­ÿ h“ôdÙ€îØ&Ú/\2 ÏjíéapÀg0ï{Ì 0†À”´`¤+®Oã-Æ×#ÆY©ÁTÔŠ–ù«#˜=µRe½Ôñß_+¿Ýš\ÀfÇs—㻆À.³¹mkîpˆÜÜ»GÙŸðÓ ÞIgö ‚¹«÷ÀåÄ÷›ž…}à&Ð0[|l¸·¦›+Ÿ‡¥ ¹’ô ª!U)}(uRïþóÿÝÎ}~ÑéÔy<þP½¸Ñÿic¾û/|ˆNTÏ¢¼ˆú@(¾Ð¾34Ç‹üiþòw"èBÿÚH˜GÄu¤ö\ <‹ãCä[ƒp"Ò}£úùÕ ½„=‰¸Î‡°çâ¯}4„<ŒëÓš_Bú´šëzUô{°Ÿ×¯| =rÎMޝæiÂ÷ÏŒ3´E·ÞÔ%ò‡'"$Êj‚±é¦hnýNâ^)½ïäÄR±ùâЫêðEW¥+c›…±åˆýgËjW±ßTƒ¼‡â)„6T“êE > /וbò„<]_ Ä$æe‡-€jºÎå%ý9 ù@º»ÉeèÖŽÒ¸VþÆýüC}û¯ ßRÈÌë5Ýï“?€]'”äZñ3àë×ïäx \£‘™ÆýÀkÚl'^uøÇ‰Š1‰ýÁ?ý¥;É€puå|íÙ- ê0»”ëâÒ2úž iÞ“y¡B¤K߄ƘœÁé±ÏëV 0EùÅ{(ûüø‘ÓEôq»$t,Èd+h_¢Ò(­œWµç]@ç³:]LâKÐsœùAɺØÊUŸ¨3`0á¹ówÆ0Šsÿ"ùtL¼’Ó;Àô7Ýdio"˜O„|Ù<2VT$óU¥`c˜–¼sü*ØœStUøçeŠF;Á‰ê’“_ï,8§[=ë ™Wõ>>ŠÛÍàN*ôÒ6<¦+×xo€7ó–áíÇa‹gYÿq/ØÚ~:äùÒ>ð7~ás¶-¶U|’»ü\w‡ & ‚mþá¦| L»yóñÝXÛ•Ò’eŸmôÇÿ.ü¿âC¿èïÿ5ˆæ ÿµÏâ_çÿãž‹Íþ?ï•Bú4ˆæú7äSÜ·tƒ¾ŸF¾41îÜ)$ñ(¸OÇóIª«æØwl󌷈þà}ΰD¨œ1ó—¿õtÈ·ùÔæ5p_©×/­ žvc+œÅU6}Øo3þ‡Ê¿`ë_ÞM ½†ëÂÉ…ÎjPI%•ÆÀâ,#>¿ô7ô=qÌëo¯S!ãDµ¶6°ü ü•lW/õKéã¾\j©M½×žO(ýÃmïp_74?%BÎl°s‚“˜T^p¦)+®Žá 3-Üã_ò/†¿{–=¥ÁRÖñžP¹½ùÂ=QoP;ã:òë'håYsQ©‚ÖÄ«ê)RÐ !}Æuô•óê|ì’OY‹ŸÀ°rÿ’'0kI]Ó½—@˜§(UŸ¾–¯Å_š9Ò€îäZuØ“ïU5<ËŽ$Q[‚»ŸƒS¡V…ö'pÙëÔ'^uÜ‚•sYåÀ#SƒOÚd¼&ëíÆõ_Ö5ìš^:à§Ï6y¤üëôfYøÓ &l‚?Äu'È}\¹ßrx£ü>F¼ªÂF´d³”Fãx ß·Fà×Q¼ :r£þ¿ü†Q¾Dyñ‡H¯†êJÔÿ@}|'Á§íéEº2|ÞàSøDÔ÷@º³ÿ‹8>D~¨Èçôèl皢ÞÚnu*,kž×þò½ˆ;ÔQ( ñ—Û-·háócdßã#(‚‰úk¦S9}›ˆþ¾„½¾¨¾\>jå`}eå1|/"©®¡y¶4½£Ò8䕇×÷(ÆãƒêÀ©+S>ëKÿ@_`Ý»øÓ«ü¿°ËD YÚÖW~MÀª&KIE«…ûþ²'½Û3C’7_ÇÒgŸâåÜ85¢OÍŠº}7ú€ïò9× å Î['™±B™tyRŸ¬A8üIê×@äuÁ>™÷. æ¼O´o®$H§%fª@²?áôê N ¨}²˜O ³"ȪNÜë…;¢¼L_¯ÒißÌ’pâ3á+{€Jßüu…Ý :”s ­T÷…Òxêßø¦Ä ´¬j«õ§ƒöŒµlý,è>R¼±î9zç„¿,+#,PýxLÛ(O0‚á’²µ‹`Tü¥o¬¢Œ‡ÝÙuÞS}·ÃÂä%`VH[÷úXÁµ©mA`y;>fì*XûS8¨ ­œU¸ŒÌ س—ìQ:Üé³»e)Á±@:N?à8½Ú¶þâB¸P²È>±eW}ݸ†$¢O†FGUqÄ\²üP9æJ)mM]lð·¥rmùü%l8®ÿôaç.¡ºq£?ð¿ú3ùÄÿš?DýXßH÷½qï‡(¡=¾ÿ5ó‡Ÿ4‡ø×>· |î³úž'"Þ‚Ð÷Dºs䇸C܇õ97úè#ÞIDnÜà6ò{”õ¹î…¿} ¼?Ò‡Ï$wpFK¬c³½ÖaѦؼòÐE£“îØB“VGŠ-Y~˜è™dÄVÙRâŰßò”›¨,Îcëa^áâ%ÜÄ9Š Ë³|Z[üûÁ{Æáw€r{ø·ûÉI@õ3½ZC¯hQÉ \w:uyuW`š &q%&Û eÆ­òÀ`ºç³•;°>d®È²òÂýö9ÓX—%ËW¦S/C>;ÑOù³q½SqÐlÄ÷ Šð‹¯:GýÑsWJ™N[¸Æ¡Å,˜i Ú’ò¤Þ=½ÿdÞg;×Ä<ÝòBêŸü«è3¦Í××Êadq»…ÜA¥Y¨ï®4¨mö–?Ñ ê¯G”¢b‰þmhß…GïŒzèÙ)³†“TvBø4‰Z!DÉÿN¯cçK/Úw3€1ßö· `ršww’ ˜ Èe¨[.€ùGúiºI`Yp÷'UX_øÜDCà ¶å‰l©çÀ~‰Ÿ¤£·`½½8|M ÎéÚ;,èÁ5Ò[•]–ÜyÞxWËHP‘­“0þù¡øóþ燌ðcøÿ¿Nþ¿×Ù ¯³ÞCû¿{e•t­¢ …®)µTµÑ µª¶‚š¦º%UAªèB ]¨£ t¡‰.´Ð…6ºÐ!\©(ãW*ø•*~¥†_©ãWø•&~¥…_iãWø3Tñg¨âÏPÅŸ¡Š?C†*þ Uüªø3Tñg¨âÏPß¡†?C †þ 5üjÿYoUE÷=~_RRº»¥»álRR¤»TPD¤T1@ì"QTiADºéîåþy¾À•÷÷²kï;wÎ|fÎÜ3gŽ!‹cÈâ²8†,Ž!‡cÈár8†Ž!‡cÈár8†Ž!‡cÈáò8†<Ž!cÈãò8†<Ž!cÈãò8†<Ž¡€c(à 8†Ž¡€c(à 8†Ž¡€c(àŠ8†"Ž¡ˆc(âŠ8†"Ž¡ˆc(âŠ8†"Ž¡„c(áJ8†Ž¡„c(áJ8†Ž¡„c(áÊ8†2Ž¡Œc(ãÊ8†2Ž¡Œc(ãÊ8†ò.ƒ@ZJêŸ*ýO•ù§ÊþSåþ©òÿT…ªâ?UéŸúí¿îgáé#^î;:ñq÷O{÷ :ïqòìî.DG½Ž;µ³‡æî1¤•qmâ?]z.³G—Ý£ËíÑå÷è {tÅ=ºÒ]ùŸ.¿‡+¿‡+¿‡+¿‡+¿‡+¿‡+¿‡+¿‡+¿‡+¿‡«°‡«°‡«°‡«°‡«°‡«°‡«°‡«°‡«°‡«°‡«¸‡«¸‡«¸‡«¸‡«¸‡«¸‡«¸‡«¸‡«¸‡«¸‡«´‡«´‡«´‡«´‡«´‡«´‡«´‡«´‡«´‡«´‡«¼‡«¼‡«¼‡«¼‡«¼‡«¼‡«¼‡«¼‡«¼‡‹k‰„2R¸¦øŸ.½G—Ù£ËîÑ嶇yÂÿ†ùÿÚáÎwGNì¶‚3îvKø9¶»™0Ðýˆÿvi¢ÿJïÿo›fûfÿ¿Rƒzç‹ÿíO¼wRñ_9?Ìÿ)§Á¾#Õvd@Ó¶ ß‘÷¸¶åÃÏÏomËøí‰kÁÿ“I;ß¿ý°ý9mg¿ôcÛŸ?íìÿùöÿN]#c§\æñ¢ÿɬò_5·¿ÏÙ9Î7¶íïóvŽ—¿¼ý}áÎq‹<\ÿ'‹wŽ_Ü÷?Y²Ãù®Õ»-wx¥¹ÿ'Ëv¸?8¶ËÿØá—Gl—ÿ¹s?W¶ËWìœÏ/÷íò•;çUÙ°]¾jçüªa»|õÎyÖ¤m—¯Ý9ß:Jêm¹sÞuß?þOÖïœýEÓm¹s R³ÛrçzFîþO6î\WãK©m¹s}M–uÛrç:›É}·åÎõ6—ló[v®»åÂ6¿eçú[%·ù­;õÐ:´ÍoÛ©¶çÛü¶zi·Øæ·ïÔOé6¿c§ž:жù;õÕy~›ß¹So]âÛü®úëÜæwïÔc÷Óm~÷N}ö˜mó{vêõ7É6ÿ÷Nýþ.Øæ÷îÔs¯Ê×m¹Sß½I¶åN½÷ÎÙþOöíÔŸqʶܹ}É«Ûrç~ôèoËûÒïüx[îÜŸþœÑm¹sŸ”¶åÎýð½‰ÙþÛÜùÿï¡@‹8Åa±ÃæXìH!;&†ÅŽ?Åb'÷a±Sg±Øé>,vö0;—‡Å.c±‹±ØeB,vÅ‹]íÁb×°Ø,ö¯ »³ÀóÞ¦;·šÿÖ9en=&ða0$[çEúƒ!÷Ä`(Ú¶º] †ê3C³U´Q[ÝÅ:ÃpƒaÜúA0ka0,é ÛV/Á¾uƒ8V0®­‡ îz †a0|iŒ #ŽÁ-`0ÂG0‘ FLƒߪGIF F*ƒ‘Þª+Y' F®ƒùoäR|ƒÁ(Ób0*[÷Lu ƒQ·Ç`PùvŸµo«Ï"$Àl÷Y[¤Øzú¯ãØÞGlkÁVæ_ w do3>§ÇÛ25U£ }ܱ0.ÂÈ“ sÛ9}pÎc»Nh»Éòv¡vMw·vãvTwÍv_î¾\Ø5¶ÜÝ7Ãî"îeBiÖREöÄ?çÕÝ ;‹\»Îr8c”¤î8çöçtœqÊîKŧœ±ÉNP¤Þow¯ HD}¿<ø{Ðç¼¾ûrb°ÏVÍæÒ4¬íÇó÷ë[œ³ÝØŒ”IÕY4án¬jà‘ó/XÒ®ÓÎÁa5òE“Æ”»ÉèôŸ›LÙàœØqÁvØ3_¾›šü ˜´%a„Ñ|–ó4>jýÿ’:Øjž8ºÊ‹ rF*„צ|´È5G7ß›øâ’èRu–úxñäñ+¯Â6\IF xè–ÕR`B®R¨b€It%®˜I˜×Þ¥†Tºë|0ÅzJp°ßN©?Q\Wˆ¨Rµ€‡êªþ>à EjäžÀÏØüCLA`œúH  ëµ›ïæt™C9ïAìš–X&->H °ô™I–ƒ4Fñ ã ÈDü":r2çz®‚ü†ð%å XP¶=ô7'”—ß[} ÿj’yãTçÅFÏz¹‚ÆÝzžu—@s|büBÚYжiïõ‘ó–Ûv>þ|pÐ]ØççÐÇŸPÌË&ƒéXƒA0:q§§ª›‰¡§4ŒÁdÃâÝS"0=™èÁésÌìn|µÀ€¹±pN…Ë(Xh´8\K+%.°mø˜Ö\ËH¼è3ØÐ˜Ø®Ö €Íf­äÓéu°ÓÑþ våÎ×»Z'Àþ•”lÙ!8x™Ù”æG±ÚǼ­ àø›QîýëàTÐ?°D–7ÏÞphùž–…síòõçAtùð' 6a ÎäЦï«Å Ù5þÝ þµ»H¼w7iín±Ý—}ÿ×y'ÿïKÁã³Ýãà’-ì:»î8Å⌗wŒÄvƒU7¼„'YÔÿ¿ H»‹ÍÏ&Éeîðá’ôí.zí“ì^ßîâõ®‘ón0 ÜËÿÝäf;Æ’»‹a¸¤f;NEC¢l¯¤òËþ½9O’0›ŒÆ9mŒ¿‡¢‰qå§/z*þ?ÿ_£“]#Êöº´”2ùÂþ ZùÌo±nù­=;Š·Â“ýÏ©h; 6`ô¥µÏþ ²«ÄÉÝê°„£G¼pñqÙÂ¥o—Þã·É)ƒ<›<~e({Oúµ§@ͤh•c41"±Œ5B¸Åmš¦“\ êÀ$xP÷M =°\ÚÈþò4 ØÙ­äœ9OYOgrP4ðH.¤ŒÞ5ËûúÀÿ‡•‚µá<IÿäóŠ áº×ðØÚA %u9­$3]ìF»?H3Ì\Xv½2…Gg•¸A.òÒ×±ìP¸,€,)®ƒÒcê“M/eA¥ûMÀË»# n2ïáÜ0–QSšÖ—m$B)@«²Kkýt,5#œ@wF“·ìa&è=¯|·Æ& ŽºÏ®è›‘xrísŽA8Dµœaá ‡ 8¸¸¾¤€i¨ðÊ[]0»=0dáÔ æ/OýðÈ‹¬£ÚßûòÁ²ù|šþ °Ú~Ù÷l_?J)» ¶6÷ÿ¬ƒ]”‹—¨Ì#°ÿ±ìö)æ8lÆJaÀIû¤Í¡7ûÁùú¾gú†zàR¦Âû\¯½‡cX>ˆéúy/ýýe8ìzŸ¥YÅ­MÞÀá[„Wa²‰ ¦¼Ûw*v“÷íŽS»‹b»/Çw_–ï‡üß`~¸¤ñ;F»‹e»‹\»‹Z»I¾vƒ¦ìÿÚM*‹ Ö¾3Î,|K¸öÃÀ-^¢Ê|jû -qNZ§Ð´¢¥\Ïók=á¸Eß]cþUÅ[kÔ–opÆëÜ=î²²\hCÖŠ÷˜súã(räATÜnò’Î¥±wÍÄ=pNt»ÉLð?Øn:Dx㌉ ð/L¿¶bVŒ©û‹°/ÆŽ©ë,.ù;ÙLxu»ŽPT:ŒQOHÿ Îé_iÖK^»›Œî²s ·,ÐGyǦä2àŒ¯ßÒu»6ÓçÂû %žÀœƒ¡!øX¾â{Ј…kzA®§Ï°½i͹¯ìqJ— GÂ-Í?R·€3+P=ÓиzH÷K¯wÔ‹ÄïôïGi?FY¡Ì“÷s²±Wð]µ§û¦ ü^Ôf%‘r àKò2e Ÿâ]±t˜¡yê(F_ ¾üÅ&>IDÕžàÇ$Û‚¸Ðu¼u£ÉÆ—¹±Éôaü =|'¡Áð'Èr*=’a9§wçš¼+@þ•e‰Œ(üNq6%ä%¶'™x&P¶Uîÿ¨ TžÓä[yÄê4áíË>e n5ûáG¿  Ž¾5³JÐЬuq¡ëMQjo!§Ç %.k~yÜ´žÊã_©x¢Cx ;UQØ.uô.Ì8̓B˜AƒŸ  †˜_£ü‡Ì.©‘•Âá‚ÊçÍ™WÀLµÙr²\ÌKn†±€eà”ö%‚æ‹ßïzvÞöº»cû6ÅÁi$Ì'±_\c‚ÖztÈáèÙðèÞ‚qpKNó¾p^ ¢ßí°Úw\‡êÿ§4 È˜&Ìa`¦£ãI}sg´;tœ‹ÀVqç”ÚF|•:f6ç̶|awÑz×87Ý ¶“Lh7èûîxµ;Ü º°»85ê~ÍÔ£Öí_r½–{ÝONÿú—\©>#%ƒô_ÌããÝ`(»‹ÌóÞ™ –fßÑüd€Gï[´ð0áÃýµi´x8éñ¥@?\{Ý]„^Ù—óÑ-³ ­òš±ËúˆÖ\©uŸºœBëI®³ôqÉþz·–ÑÅÏ¢Í~i²KÙÿ’ÐRÆ ž>'õ/™û®1óN$¢ñ\<]ÿ‚æ–ýb×8d^WWî… ÃkÖÏ@9zâ¬B‘ Påg~ÜWð¨kÏ$:4åC”9B®@ûSIM‹ûÐU}`?rxèk_úY©Þ†jõ/ïocñ7f†ƒÀ”lÿ}0°˜CK<‡‹½€Åñ•îY¶À*ŸŸûmÌ Øè[µ}é.ã‚t²/º8PŸÄQîŽwÜŒÇ/Qšê÷GÍ€ îaÀcÓ]‹ S^:Öxo¿VàÜT\CÀ×4Ü™€þb3=ÅýÿŒ,-Sr ¿À”Ñ?'Ú‰A„¤·9¿= DýøQ`P"ˆ ý¶Ç€„çdÖ}‚:"ôd’ò+©~oß—œ@ºQ/êr#È´•—84ì²caðÕk /qs9²I—ÄLqÝð¢K‚/(ÇÆP¸+ùƒªõ‘:ÿËÚ ®M@HÕB÷/yK‹ûU h±„…ÔÈöÅĈLÉJÐùsÓV´æ(L¸sDÄþèûÜpÉÎáë§UÜÁ8ZàBÊ 0•Ák'9¦ù_{ ÃÀ\pŠûÙ+°È—xÄVÇ#ù-€ÍAïùïÁÎÖÔ.©F‡©4» ÁYúÞ£KIÎÝBLü‰â82å2<©ë< ¹…M@¦Ø‚å̧Cã¾oñ‚ÅRP7QH^ÑçtÔô;œªõ ªël/A5'ª9$t)P¥sf¬Úé*TÁ—/´Tz •;ß<’âè‚~bœ.ÞšoRëÏ,¿E?W¹}.œF?Z…ìNNÊ¡ óZâÙ·Š¨ÊjâNüÙ\T»ÊúŠ˜“Õ}šóƒ/5šÌ ˜ÒU ¦!›5ÄñµØžÕ«Ã€Z+ŸNÎEíÄ-OåM„Qž^ÂmCNÔ‘hk@±ñ uÌ,z“–‰:ÙÅZLnµsý£2¬æ ¨süû¾›Ã¨ë×™ó«Y¨»„$ßylõ¬Üºæ§´Žz Û-Z Pïß5lÐ…­çÄE™'ÙC•h€ŸÿDß2TÖ® êBCN³ºçº¢îA»›§ƒÑheÀ#¦¿¶hüsÆ¥¢„D4Ù,•³´f¤Ã©9š$Ðq#SCóNxc"åha=‘­>-}‰\~ÃÇ‚Vâxi÷üFké_¾ù£±i×Gô…hÓÄóu«½bÎ7ßÌŸº xb1šØ;@àë.sd}ˆx˜«NEhñòðÕît ™±ýN[ä¤?>ÚÞ'ʃnÜë9@¿ØEÿhh‚Ë_*Úã%ÙY®7®Ùe!\Î𜜦}÷^+?þÌõÒ©ñŽ"ÀZúƒ-R±ØÇ“ç2V€K·Ó‘ÂO¸g¯‡u^Ë^—Ñ#´È€oyÎlTFr­³:ë„A(½0Ï3‰„;Šx—ALU‰Tè7H4±DÙ°t€TýßG.g$AÆúeS¦7È®4O‡øØ‚|¶¤gD/(> Ò»Ût”ã½è6\AµQL ó  ÌÜd^ïÐp!zÈzõ;hæš­/Ñ‚¶¡*žÓ!ÐIàYÑ1= %Th"%ßÞϬä¬q#0ð<ïpŒ Ýl 1ã©‹K©*`Rp‹ -¦&l¢?YÁLƒ‘ø ˜+œ£_Ì” ÉèÑN °¹¥Íp•¬—§“±`Ígn?6œ´"º•`ˈḻöìH7 р݊Ùð¾ýWÀ¾G*âNþ8佺ÉÌ&Ž÷Ⱥ/—ƒ“½SÑã¡xp6½ïÓÊ7¾^c›Ü°´hœz> DnVŒØŸ=D‘xÅÐÈ9Sâ1…NÔFIÀ ƒê“6ñ $P•ÕX[ú)˜"._+ŒÊ˜†¾Ô… ’®û6âs¨hºöÜÈNTø‚Pyèk*¨³óP? ò}»Žs/ã¶N%¯ÝgD%ý+.þ±ïpÇ)Z²æxŠ*Þh?ÏvC•Ožž&ÜÏŽª³GOó¢ÚO‘i™ Ĩ®šg&Yà3ªOÊÚ¯ñ5„WF[æf¢F‰×q¡Æ–`…f2 Ôr8ÖƒŠ 5<¬»NZ„}6M‡P+ý#ªCm´§»U3òP»ÓÍÀӨúu?G‰-êüÍs¿u“;ŽXüƒz^‰È½µ@½¬õå­¨6±Ñ¼œõ“×>I-D’•ú‡BjРO·°çS4ÔŸeXû×Óys¿¸µ¨œ€&˜Þâup )µ”CÙ~¹hæ^RêIŸhŽø]¸ìà#4ïhörtÜ-T•eðÞÅCK®‹òNDAh…îÛ ÃÕh´º˜[k͹€6ö“q飿º—0Zt[V«öð4ì~·VÓ~éEj1{ <=ö7=ìk‡ ¾=Í$º¾óŒ–:@vÁU&™¾( ûMÿÕÕœÒþ = ‘þB[MÇ ´UúÑéÚ@ÿÄü´zÆ-`|=ÓCû!0/ÎP_®¶[Êúw]g€óô›ù©;‰ÀÝ8có<± x_RƒÕÊ9àlApNU¿gÌë åƒ0ß´„tæcÍI Œjz7æ'Ü]Ù@êgÐæ_®q9U5§Ch rÒ¿‰˜%T@½JÙQë (I­1ï÷Pñ9¥ÉftÔÚÞ,p\°8ÕãÅê¯ štßø)®V¸¢Î*æèP„(Kkî} Æ5jìуm`òóXÄ·(0=¹ú:0»Ì.88ñåÌy4KµÝw°x÷r¿'Í)°¬+ß|: VIgdÌØHRa§lÝn¹½d»¸ÍÏ:¶Ú_š[Ú·~päVÔùhl Nn“ý„·ªÀ9ͺ÷pu¸,öeFØ‚kÜ5cÛKiã<†"ŽÂñ‚K’ø÷A“7WŒö°Ó!7¯¶÷h-U1<þæS4Ò=IhgŒº»î <ó Em˜´cÂ5QSêý§E)¨n„úx*ª3¹’ŠÿÕXs>“ùU¿z™ø©Õž5t´%EuÞƒêº- ¨áäaVrl0jv#¿™~ĵ6p<ápC=ê¿§2®£¾Ôº1¾P4è,»‘~ó Ñoýv+ï:ÍFÍðSMmzèµÉüA³Äh7®z¢¹1Ö{I_£ùß~×el÷¡…A*œ³¡hQÒç­W¨Zü~Õå¹Ê´ô;JÔ² -›ús¸£ÁèJ¦)]´JÍ»ò* ­bÏd¦àõ¡uò Ÿžê£ qÅB%ÎôÇy]½t¿úûážúêt„e3(z,ü0‡_„R濵TMc£®¿>õt¢aa½*Ьýø|èH‚éÏ =›|§ÁÖ8&ѯø^_µoXŸúØLÖé‡·Æ æã-MƒæºÀâóø¢Ã4°úN[—è6_‹÷ç¦K€ýÌMþ81"à¸"5úH² 8Ÿ`6H9\eɹ_HûZr[È4ðˆGÓ‹oÍ“x õ,wo Á•$emà |{óÆÝ§Àïí|¿œûVüò@ðZ[o —5JÏÊïaËR ¥%οqÇG ÄúÃE+„€¨Ñ¨Ê7]›àê&µ?tÔæÖ—ð„+æª$Ô†–¾wñ¾Û¨CƒWÞý1+¸‡:ïSkfÐèm#$Œ–¨Ñ²—¥øŽ ªãµYÌ\E•’ÏËÌXŸ¢ò&d¦üºýPÒ‘81U‰~”…ýpU¯“É]B5§‹=°Ú¨1èÈ'Ïרƒ‘ë»§ÿ'ÔûÌþ¼¤I ¤yïÒ`_‚†Î;TÎBcRÐ{l=M¾ðà3šì‰‰OjZEÓÎ%«ù¡¤h&›»O㽚=õ™îÚ54[uÃI7ÇÍqY(r¬¢¹à‰ÃWRŠÐÜß!+Q’j4ÿÚâT WZ°å¨²|^ˆy<mè‹£%̆‘¶K#ZúLtN`­ÐÔL1ÄU£Uƒj%ERc´yÇ4Lá=Zï_KÒÏñ@ OšëK¡¿¹®î&aù«a÷Wyp0çØ½‡Z*ïX@ï™IÀ?Ãò©Ûè ¤VËR¨mÍ7¯|Mâ˺µž ¥Tséx0¾ë‰è´¼äŽqNº§*’Á]§p™ ö÷_ÿ ÔNþ>Ÿk€Æ|ZàNÕ= 5+o9d tÖþ%žM@o?–ñ[lðºœFs'B&.7`R}õ¸C–˜Ù}rÌÎóºÁÏЯVÀÒ¶f>Ÿ ¬ùoϼ ¶w•íBÞ{ROhÎúàø0Yp|þ>p–žv±®±‹ø±³À}ç*Åø ZàQxûíVxf/imÍo‘˜³¿ð½§\¥Í¼ü9l…‡@ /-S„?„x„ˆM˜=à€ŸþBi`W…{¼=> ¢³r6ì| öü§L·kH°üØ7³’5,· @*KÈo¤‚ŒY‚Aæ•Ï©ßÝ×A6KÜüxÈÍÚË­oµWó¨‚éD[PQ:f[oÊi¦'Šãü@52·£ ÔjS”DôƒÕ³ '×@ÓºúBk¯hå7GW'/‚ŽN›ïºøÐ )T{^z™o¦ÒÒÀàõi}­}?Á¨ hâõ"˜ˆ­ˆSµK¦YV`ýJíG0˜¯«ùQËPfúy°–= ·¯lñæç¿þp{ÂÍ‚6 pDŸOe¹€sæówã!jª-ÄèRáÖs£ž«“ŠHjÿj};î$?§µÝ²Ñh{Ô¨V¼Ê¡„:DÙôRDú´W/GDîÑûÚq£ŽÕÿg!¨³ša69Du}^«K{쇺ÛsX—ñÑo¾ž„WQï1ðXK•C}VDó ¨ßÙg2œK Ü“tm¤Eƒ#'i«óѰOŸÿ[µÃh”yòoŸ„ǰ(vE¡IÞðÕÊ7Ñôe“¼ ìš½ÇmœÇ-Œæñ¬Y°×ï …g¢¿KøÐ’U­é†mZA)ă´ hÍxPÓô Ú¸Û¬ŽþŽhZ]³ÆF+sT½£ ðÒúèKÔ€@ijéþßË@86+}–݈ Üâ$;éªqÉo «}” ùPRžz}æÊƒwF?_¨žQ¿`êZ½Cêzœ@÷%*ÒŸÔO(<ܨÆÑäϬ’Àœ’Z4¹5Ž>¢aû1ì™EÉ´Nà¢ü”,¯$ Üõg꼌Wí~8óðU¿¾é4 /(Èï(€P â«ëÇÅ@øy=­÷YÑEñ¡'yê Ê¢ìD0 R‰ßGS4A†÷쾙㠛÷Ñ] #ògäm»ô$AÑø¥&ßL$(‹ÔGøÒj@u;=¨7xÞ² ñÄÁ_’ä yƒ=ç²ú'К—x.:§³°HdƒîŠaÆUЋ¾Æô‰# B†bJúÀp\U¦Kàø{¸Cý˜„œ˜¸vLeîOãN3ÁW&þ<²`Î]äËMœzxâ`É™ïðõ%XñÒ­½²zÖ‚qã=K¼`#Ò¼C’¶âÒä7oƒë‘~`/¤«'­K R}v7·æ§S_OˆãÒAÞ†¥gàÔüÆøºà}pî>«1žxÂÿ\ê"Pª‹%•".ŽEfÓá¯~ „GÏQ̽‰†©ˆÂsäPKMد;jÊ[ÏcÖ&ßЯ/¬·6†IQ9±iÔ¹xTÊ]¶‘cƒŠFs…£"±wÊI娀ÿúÇûU(ßCý#ŸÖ”oš•ÅEƆÛ^Ä=ÒáôN •¸ÛR!î8?Ž„e^X.@?O*&à³nµsצìSâ¨JlÀë`oª¡z=ÞƒPm-ù²Ê$ªûÙàžÄ‡êCËNß¿‰x´äþŠŠEßãnEÇ38^ÜaCMÂ4Ä'b*PÓ_n›Ñ·PóhÁ|ÙuÔÒat¥=ûj]ßHžæFí µ‹oÆPÇ©'ú­†e¨óÛ­S4‘u¨ûà9Më˨§Õü–X*-êuµ‰#ÒãF}¶ø‘aÞj¨?¿X¢È |y™ñéª/â N¾Ï~ '0§È“£QÇÞÒgéEh\<Û½ÙM:e^±¹Qˆ¦ß›« ÙHƒN=Š54×±uÕD-h]ÆÖƹ£Å*¸ÂþÑ -Ÿ3~öü:Z5¡{žÉ.‰Ö­xnçÓG ?7ž è:¢ÍuOi›À4ò½JÉa|Óflpj!,øßQ˜$¢bÚºGNQ°/§7ÀÝ"HtÖ‹âBûÂД¢3ì¯'챇I ®S¿jË´.‚Ç/f•=wŸCl 0ò=¹êñ› ˜O® z¹Îë2‡cIâà¨;M&›ø¸¯ªI\Tá^­ÊÉW1 À/¹^›Ø‚V¯ŠyÒ á@êÃŽ£‡mAT.n ŒÌ@|¥A³f¸ ¤‚HÂ~›‚ ³ùÚ£ºmÓ4;ø:äóÎȹ]8Š}?ô‘¨àI“?&Vµ£ÇtîÕš&>äkšuë>,V@KãUDwª:h—¶3ƒ®SòjöÍÐ#;×’2wô«ÊЈš8ÆzP%ƒñí௞`õ¶U½ÄkÞYnf(âfÇš÷ùÔfoXqííÔš¬`YÅl:¥àV›ã2mEm`£ä!ÏÛ³rŒdšÆ`—Ññ>˜ˆì—º%Ê€£šÏ’dL8…ûz}óŽç¦$3p¥{_Jƒ\ lìŒ×åá~Ý$Û =pÿþž©Ä¶4”þâ½5ý¬™yåÔGÑê¡)iÔh¸WáXÞ&êúýŠM×µŠÅÀ3E “Šîl_P½ûMê„ Të[æ=,‡ª%ëŠâî)¢ª3¾YC)\¨ZõÙÝÕo¨öÒ£ñ¢tqTÏ×½FÕ€š‚üyúýo 6·µt:Ç{¨k­Ìù5êê;É•F×"£2èѰÁçh,(¼§!ŠM¦öéÒR® ™O¦1UôhŽå†g © š'Ð{y<Í.H¼i`þÔâZ¨ŠÕCûÑâ¥2‰ò»¹hI/u8Í·-3ļà DËóŽ×æH%ÑJ)1{]Zíß0Ä6@k›ºì)ІðÛûèÏ™Ð7×2†ÐßvOרջk£ÚŽæ¬ùßšk€gq¶c”R ðõM/Þ–E@àÌqeX¸ŸœôPb‚?îD‡^¾X}¶k´ª@ª5£6ô È©+ëÒC€b!ˆ¾ž'öOÞÕLKê@±9§/  ]üúÕIhcêH¾¤]Ê_žwFÓ@_üýîtƒ-0t¯×Ù`¶ÚÉzÿ­Í>`¦ÿ8Ÿ²X„$ngaíU†•òÖT°©†Ê!`?ØZ5G9vmwd$ñ3¨e¾‡ø6p½×c±ë•îóŸJÎÌlÍ7ùöளž£Ê,à}áòí Ñ0ðy{fm¸Ï¿Ezj‡dµLU®à©Z/úgAè‹ñÙŠµ.müTZ‰"uý‘Šâ öâ¦ÕcüQ¸+–Yo+RæFØoœi }2É@®yd"•|\Ŷæ›Ä©q|@nïM­(p»ù¯2%¢­í™åCPº×OøÌ'”;ÄßM{[€*-gëε*ñs©U@Ñâ 1Ÿ¶žW<ÄmæAÓn,©ŠùhÝ®šÈñìíÎfçè¨ Ð5¾™Fº‡ÎŸ ŠýäçŸ&t_–¥ª¡Å‡J:^IwÑÀ#¥%#Ý­ù^\Ùçw¨…ï;^j¸ý±$Ÿ+Õl¯˜Ç~A¿Ø0†Ò/~¢­r]Rz?P™*h³j ²7²c´.-¨|®Âæ¬õUTõáœFN+ÑVù¦Aƒ~RÔ0tª]ýæ ­9&÷õWþI\!AC!^^|¯IÐÈ‹¤*µŽ/hì¥Eþ4Áý¹øÔ4Õ!‡AS ¥6×íÑôâË‘aê[Ï‹Ÿ¿>þäf¥˜šj¬Ñl G 6ÍQYjžóx„æ>pÑAó®0bEho´ÝäJ(Zø{¹³í;Z\8hö -ã¯G+²"âhÕ7?ñx6Z+i¥ðC‚£tw§}ÑŸûwŠä¾£Mú÷zÇÞ!lŽä|žo`ÊCIVEدÑü{©!SK)¾©B».Gsµ @T3V~LöY>ºç$êWýÝì~ýëá¼A Ð:Æ` º û‰T´«[ôªe@¦hâ"Pw¯¨÷+šNߨZ íUüÆ– tÃrË'9ý€~´œšS}ú7g™WÉ€±vðtíäI`Êdïˆì»Ìb,€å’âá±?`=”øËê°Ù+,ð…»SÚñý7Ã;žZ©8/ÏÜ ºÁ\IB”TBÖÀí—èè< çR xª»o<%Þgö×ó\h€/,ŽÔà'ðGŸKPè‹ i¿¸Óž 8­x¬Ï(§Lð°R‚ð]ÑØEe™Ì‘ËK1‹Š¡#­q ^÷Nº‹$ßžn_©>{¦}¯@Ú/ýÌÍL 9ÎÄplXdÏýjîâ¹ô[ù=Üš À#mùLã (6 ›cA¹”ò;'‰¨Nåèø(t(”á| Ÿy·[~A³Unù¹g=hxVÕž ºT”6 껂RýŸy·7Á°ÝBªÊ. 1œéêzÿY÷é΃áïWƒ£¡`îö¸×ðXTGß[.+ üEŸF!°^êgNÛü€ù÷íš`ÿé=?©¥8¶_ù)>u\”“cD.@QêÆÐ8H4à½öñ«¡=VÒ°ÏžèÆÛu4¢å_3Žï:¸¤‰fسPÃì8[i𪩟þ>œ]‹*VÿÑð¾€*8扚™·æ©Vú9›¨ÌíÕùóU¨4"Ç\G,•*YL.¤ßE¥×Ö?˜m='J^8Ne‰Êc"†RÓ,Я§ð««¨Fl¦Šš1Õµýö ½–ŽŽy\w¬¼Ž§°J,ÑÔ¨Ù Ìú×Y6Ôò†QÕªø"j­yþ²ÓÚµ½‹qŠ'GíR¢É Ìu¨Ý]q“s*µŸYýš,qµ_Ëé~ØiŒ:öYsv`Gµ_OZ›d¡ÎÄñõƒXÔõm4ã"%)ê^Wg;ª¿Š~ß#}=óU õf¶£qWÔ—Ýýåµã#Ô?Æ:ŸqÅ *»“ËçW£¡‚žÈ_ähäø1·Tn4v(›Î€&|ºU«.Ó£© fÕGËhVAÝŠ^ ͽI5lÒìA êªì玡ÅÚwfÑ/Ñr—Püõƒîhuܬz¨mð Ýð ý ¦M5¾Íʇzù?y/àÑÑëã@€ðµC„ŸË^úÄ7>«Ž±ÌÉÕÕ†ÿ {r.E(šÎad•„¹[¦{9P7gÚ=[&Z¡Ö’6®/@“ùgú˜0°9•ecAÙ;‘gï€9X=µ÷r°ž4WJ³&ököI2ƺÀÙ|cÞ +ÜŸ±áì^µw\ À÷Ú¦ 1Vìލšè€Vúµ—‚* ìÜ¥þ&ˆ¾ç+¡ q æ¡£Óø u.ByŽ*¤§ U¤„@6$¢³ç9ÈKªê‰Ðl±J6Ù-PZ»ã7øTY}$ÄŽ‚º_ŠU…$Àêõã y¯AÓjkV~´ mgÒ÷ƒŽò!™iJ<Ð-r°:cNz–‡n¼3­ýu϶¯.`øîn×@E<û:¦Ôe‰ÎBikÀY0e"û¨f”&1sròJ#—R° ÄèÜ4KÚ¹³Ž”`Å!Mø0¬…—5ïØoÍKŸTõ <[#k—©¬ÁÎdpö@_ØÛ(¥8%‚ƒ£´ŸE=8:©ŽfÈ€“]ˆ‡(¡8›N¶ùœ¸.^y3î¾û \ãüs–3®`qç·lL©,½/°È¬eî¹ß Ch0%÷#¿j4j¾|Ÿ_Õç[ÖÜE¶¿E¸0¨lhí°(;3ú.œ¤• ¨hôÏ;Ñ vTмŠ)è8ÊK#‚>Y”·O¸Gÿ.ú6ðçNë‚n{Á§R–Л?P1_£yWî8ez´aÏjP¹ð§édã:ôs@HÍó'lµ×èYî—¨êt0ùlª!ÄWz)rÕÆë¾Èd‡ê‚ ó Q=ãy—H2ªO?|H153&5R1¡F’Û]›‰á¨±®nжJ5å41j}Žš„¹Ïçö –Âß?–ÍQkÓÏN¹[Q;ÿ‚(üo[ω™ÓÕuoPçT‘ɤ™ê¾ðÞûWCúíÈØîí„z_ˇܒþŠúJTT¨6GQÿš«ú\¯.<¢ý¸Ýc u䥶ª£‘{šÚ¿Ñع³euehâJɇ•¥hª¸s¬ËÍRJÙË; 9»W—>m¢ù¯ Æ—>V Eň]h©e\rRã"ZIöò¤gñBk‰t¾¤Õh£âÛCù1hS’¸zAX0îS.o8¯[zºÙœ.lp˜_"”p1ìÐ_Ø'qxý‹ùš—{…ybÒØmšBØÏ{x¥¾ê>P{—S+¿ šyB–ã†[ó`“s¼À Ínxñ10õ8ýÔaÖcx¾‹C+À!+ǘ] Ü"·ˆlêNÏÈ'c’µÀWW:/B #‘wþ(Ãi¿?Æ"é/]g‹7AüħÇJ§½AJü9ÙË,.mÇ›xþ d¯$¾8ÇFòެ’^ÌAñ诳×ö[ƒòýåú¢QPä~xã _ ‰’Ò ­´AÅu47öÕ}·¤í˘\ŒM KßyìcÈ,6œÄt½ý0"êgYì`ho$gpŒ Ë,îKóYYã k0U|°Éú‚Ì—ús‚¹·ÛþתÝ`ñ!1Ë÷'X–{$­/`ùpUÊl`¸.Ȥl¯]OH¼våÌ&"Þ.à°ŸÙ-qëºmSÞ|è˜§ä… pþ³äéÜ®b Ò¹“àÚ%v\ó|Ü?¦üÄLG܉­3¬¶úôòAÉ!ŽÀb«*œ1¹5/›#ø%Yކú¯«Kø:¿F1?ãtF-¶ååHQ£º« d@ª+5Ãæ>ÓG5:QÞ?ÜRPéµaòÐvT©§•möò$ªüû=ôW²7ªa;a¿ô‰ak¼[ææG÷Û¾1„f VS¨g¨33‹i†´õJkâ¹vüFýI\Y—¿ !ÃhÌécéhÔ|þý³q4ac¯e4º€¦å ðâEæÑ¬Á¢#))š¢ºAvÎÍý4×>À}Í›˜,¿‚æ›ßJô.P£…Ë©uǪ£E4ðÁ*äZ"|ì#Äy-µ‹ôûç å¼—Ö÷^¹¡•Ü´Zk~ñ²¦Z[Ü<Ó–6”(ÑS6ôçQ$&´ÜmR``‰°O½ô%=“„_!a x±uÕ—ÊþkQ¼¾Ék@жÞ%GîDj&äOrqÙa–òv ñJ<{jù,Ɇ–^¼ú(¨¦ÃŒŸÁ~B…§KÌ/š ëÑÆßç@³Ÿ·pEh9K«þ,ùB©‡XlÐ[¾—r< ¼ µL·ž_Þ=]ÊÁL%×TxsOé+ÒÑ2`YÐËfIë6"QÛéä\`g:§9SòÁòÕ8êýÝ>Wìðyl¶%p{}«¯rôæh5úœÀSjªÕ(¼÷¿­ 5ܾc¢C>ª†À¯‘ú'¾ TKÞ€ å×%I~ ôÀÓ#±àã8·8‘gÄ÷Â±Ì fqõxÏqP‘\ ý/95§PÚþS¾ -*ýü8›/ÈhfOFãÕ€ìQ9]â-»m9×tÊä‹J.óx‚Âò½·®¬AI"‹á(ª&ªÌ‰ƒÊ0¸¢ÏµFílw„hHü’” Ú‘^±› ég­ÍZyO¾Úˆr€ßü‚el"è¾ÿòé¶è11µÍãDzÉãÚC0Ò~zøÒýt8äwY«÷ê ®m¾ý6ÂÌäH«ú˜žù‹é¤‰ü`)H9sk¬¬ª¿7É)Þ›GÏDy¬ÊÀ.Ò…Kþ·88dhuâög¶Ÿwdé¨ÀÕ3S%Ò8ެ‘=†b8Vò{Ÿ‚Œ Ü>>ðAÛ޲Éå‚ŠÕ ün ouî¶‹C ±ÇÅÍ£þô²iÊÔþaîÏQËý¨Y†•§9â:ª/ 9õ5}Uò R–}Œ*ˆÕÒr/£²Ñ‚㨩ØTwdmÍG{GKh ч_ž¼†~Í3ŸõìGõN¯÷ÛF-­²§! u›8Q9ŒúÂFVbLÐ Õ‘‹xûíÑ09åW†Üy4Ró«Jj(ÙßúÞ…·ŠÆóñÙä­ IÌõdo‡h4EÓžr.ÅMµXg½™5BÓ!_dÈÐŒa:AÒû3h–û»xáÏ£h¶ðËî)w4w’BŽpÀÍ ž`ÿÒæ×1^Þ‚haŒ"ý!ñ´8_7unZæÐãðuÚV¬&–õ/ Õ„¯”.hV¥6öÚð,dc{SþŒaîE;€6o í{/»Ñ;Ò—Ntžld³Z9#à±?F¥é¥Ê?€ˆíET!S1?Û4^D…@"òì#ß]3 ­ÀŸ¼IùÈ}\‡Žôå?Qû©aÿ|_8»Ò- >‰±Rgœ·²©* =ù'âzÜ+ ó VZ ú€Èü–ÇÖÀp&®‹µî#0º k•½É¦C¿hý€YþeMœ?°pe !²VªC+O€Ä7m*ÂØÉ»šiy›ehÎUZàT<ßõýöpmbºå™܇֕k<Å{Q3¶gxÞA8½?ðÜ|ÇõdøœeXƒ;ÒÿXí¯YU p=K‚1K¿éŸ­¨‡ø$ý—sï°E}tpH(ˆ¤Þä¦uâ1²ÊGÃ&> ´þ&ä§2H’ÆRFüV)§¿5” ­1à[fÚ 2b#3ä +_ˆ‰ð9_2žõA~¦i\¯‡ ‹éå$ñ@¹³’ó¢¯7¨)»mž~°5¡jøÎ)´x4êô‡ƒ–Íó³®Kî C|.¥Šüè¶k©_V½ª³QÎÊI`ÐÙHT`JÆû•Y¬ß…‰×©úæ`zaå×/‡K`V­5s„õXHZ‹˸NZ:¯6°æjœô;6ù¡ÒŒ¢ÀîÂú|Â$?88;ÜRy$ Ngø—n‚Kþç{xî‚p›ãr@°“Øç:&L$¿ÑÜ.)ÚÂ% š`¯œyŒECïl2_NÙ ¶4’Ôp³T¿öœ'KŽ U»Ðb¿Ü^D¿MNU„Š£ò¿wQüf*[‰·cg;€JOø »]CßcT¥hø£ïÆKK· Ñ÷WÖºi,_P©CÜäÑýYèGÆhó¾÷½¨âçÃi!&T­gôíª;‰÷먌:ªŸJÌ:‚ýÍ[oT@M%”Ýœ¨…¦›VÆ‹Ze®ÆKØGm˜%ãÔðÀÚ0Ùµ½j{í­¶%{æêjs·äP†×ÔÎPÆ­_”Úìû‰ØåQGlçŠÞÒmÔù’Ùhó< êª{V[øÐõ8ÄžŸdç@½Œio®y¥¢>£K%OFP¿&ñõá`4y„àEa(¢ì|=Þ>‰†3Ú+ÏÜ%D£OÇ4M]·úÙ+£Eñhо/W{ŠÍd}Ém{L†æ 6ƒR°bhþ·¡ÝþòÃhñ±5Qré´˜¬ÆñZ½Qhqµ­–ÌÞµVF™°ŒÅöã”IgàibÎÕ{øØ %üw@ôr#L#ˆM™Y¦kÕDßHЕdG\Êìk€âÙÅw×ÁþÅÞý–@]›ð´IhIŽê{`·æ›þ=Þ§Jè×»ÎQ=Ƨ.9Ùæû;Ìþ ÀªúXOmHØMߘ?öÎÎêá?8€;ÆÜ=Öé,ð, × º|¾ ²%]NÎ:EiBBîÙà Ì=?G¢D³¼¼r<Äû˜ïy´1€”ži¤rw>Hçr㩳كîæQÊ Ü¥ø”Cvv@¥€ú­Î Nã@Ì«~àA1¡›,hòºR3 Z·C ³[g@‡°¿®dÂtoZ9qLôX™WÞ\§ý‹Ê‚0ôŸ8] ÆÒyD‰ÇÀ„D˜ç»ç8¼B8v8ñ˜.|ê9fK6‚™ûÁ|ãëÝù>`¹Oà6Öb¬˜M¨¢ñÓÀZÜèÑ]áû`£ãôR\ëØ:Ü9ÃÊv~éW*z%Áþ†iØgypx&=ÅYŽï#Xè®*S~ÞûP:mp®’s³O9.ˆ^ôª]†°ëþŽ’ïgÁB$4™ÄÓ5”ný&|ªª–êM4 åKXœ?‚šÌƒì‚D5²ð±o·Ú]â/-®eTZß+Pr•ȄߊČ£"ÒSŠ?¡|ÓSßÞ"ôM6ìÅäÖï<7ÉÔ鉉Ê=¯uòn—n{>Ï×+FßèP‘ަq[ð0î8¥b¯¬ Þ’ ²‰ñ7iÂPù©×œ¦¨‚Yå̺ÃúUÙzBñÐT¥Ôç~esk<þÈx ß ÕløÛ ð;£:rrM¹‡¨î± "5ñFõÒ¥HîСúQ’Œ:¨áuˆß ÒÔx—îmƒ(>jò$.a(ðAÍ׿a ÃPKLqqá9jíþX •ûµ³õûG0¢ŽäŽ×N£.VKõÔ½rÅ¿):ýî­›a÷D}ä~ŸçÔÏ¢~ÄóSF“ $Gpg^AC,Ù«ï}ÐpY¢ôø³M4šØÝ$^Å‚Æ_Õþ~”ñ M¶/ÇwÞïA3”dß‚ÐlÛAÏ4†r4/>ýD¸X-$´P='æEKJ!jƒ¾hS¦x†1­Î9?åÅR¡ òη÷¡¿Ç=ë6(vÎ=à=x'£z„×nþfègݯ³@˜'Ãâ„«æ2@’³?‚‹ù(4M‰Lòå™g4vŠ@Mi=ÓO4×ûªÌËj€N²*ð‘70pOæˆ1²“õâ~!%`© :ì6” +ûëÝ»¯žÕ^Às[[O¦òðyý»~NÏ;·äÇ€Pö¨Ì÷k­ "ò¬)A)ÄZïNÇ/2d‘6/ož2Hû¹G?È %Þ ¹b‘³ƒš °‘Áû­ç((óçÅÝ ŠÕsÝ£j¥¥ >oMÍNù4ŒÎß LÍL_Æ”¿} -¯¡Ídytªö×¼ ¢†ƒ¸ñlË‹A_]§ßTŠ éZ1¡2Á˜”t–ç 5˜0+Üq¨SSN·Ô ª$0S).­‘sç[:Óbã`iæíw,K¾.ÝëZküÔ\82°Ñ7W*¾tlï6KZÝH»«é¦Öp¨q{)׎gû¬%xœ*Î_VÚ.:éÇm:ÁU§àþmù*p]Ç;#¿¤÷†\Þà¡7ŒÉ‘¨UJ‡è=Y¦õœÛ6çrÐRìɉåù?hp°AB/u$EÞg]1Úú½FròÿŽ›è×ê«Pûón1]¨šÙÊ;)ö0ú5 Opýb£ÏÎýŒ~Np‡Ôr£ª\…J‘Ï›¨ŽºÚ½QêjHKýØß¨EU¿a_Çêð‹[ü2€zÆ4e•O³ ¾J•O9«–hÐè$ïoE]4"â|ɘ14BØ÷4™­é ‰AÓ‹%*i4çѬaÏÍ€ë-äèåÎ{æÙ/ôþyiø2³ú†gÜ:|¯çÑd=p¿ŒîiqÏúgPMXþ‚q2ÖDp޼%…5•ÄÅ¿40Ú`3 6qÐûŧ¯|3:užŠ¦3*@ë_¦chö¯eäm¿õ«õ¶kÏ¡vˆûæ¨ÑU>y¹Mjün΄T…ošþ««±qÐ(;¸"sÀ±­2gg#[Û K-jþtž8ô/ñ§œô•‡GRT²i0öŸCâpÄk˜ˆ{ºôH¦ø“BhÀôƒ¸Î­0³Àÿ†°o æ„U’ãj`^–é© Ìoì–ËŠÂÂS=î‚ß'`ñ §òד°äç§ÄdåËß ÎÀJÈUÿ!²ç°*6éº1/«[±ÿˆ¯ÁÚpI^¸¬[O™x Á&9 Ýa²%ØÒä0/‚íØû!ËEW`gxLJFcvõ–‰”Ÿ/¶eÚ¦ðÏ‘‡ë¿mqØçU)!4ÓF‚»µS qcHø9]"%â%“¾fwdB’Àçò¥ÍöH:~ŒâúÌ0’ŸØÕ«/ÐBŠ}%%qO¤Êô(u½ß„‡ŽVôÜ]ìEš_}çãï#í C¿h„!Ò-…?›¾žˆôëUΓŸâ‘áï÷‹—‰Ä*(e­™Iô¸^xâÎiÖOž$È2uÞTžð&²v˜X¥"[uá$ÍKdÿÀG"tÿ r”¾<^–ò9+\ÿU¨ß¬‘{•@áü—ÈË{E€¸@ù¤U[u‚>"_Çá+ѧ(‘?)G4»PÀº´-¶sUj%Ë…ÔÅ×EnP£°ƒÆÜ½EIrâ¥H@Ѧ€¾~W&g=Ï’æJØ1/ÿ{Š’U?L¿!JKÙeµ•¸¡LIôý¤P”“ïÕ¿Å0Šòt¬§ ’P~ýx@ÐöOTØÌ:$©Vy×äx¹“V¨\³q1U ˆx ÜQ}=éBwïIÔŠ§û´n‚èD,ÒÿÂu岎çòµ¢^/ñšpÌo4xùíýwme4|z^°Q”?ŸÚ8CÁ€¦K³·—s>£¹>/áÈ??´¬ñýz”o­• „V¿²¡Í½<:ú ím¬Ãi2Ñ>LÂ'mlÖz‹OЊ£S¼¤ÊÈ©“袽vŸݨ)—‚úЃ–õ û¿Lôâ®?)Z‚ו-W9~ԣˑi…aSßò4’øˆ$QJtʪOa‚I+Ó¶W zÔF,¹¾@‘…èóiKø¾ ªëÃâ-6÷Ç¡nHæüé8?¨Y<­F5þ_ ïªAuf¨Ñ!;1¨ö¾ŸºpªËûR_Œ…šÄÆÐ’Ú1øÖiXë÷ö44,ý¼ä~Xš½ksÐZÀÏ5cÓ+5iÐv~xüÄÕ½ÞÊ ßØs‡Nt¿ùgüÐ}«–¸¡ ºÓ}ž^ñ¸=ö¿„«·w çó>©§ !ôô_0} S=ß¿IìAÏúkŒ¾¹Ð+¤Ä_Üa½ÿ\ŠgK /þÕ½gìÐÙh"v”òvã¸ÆçaH„×t&f†—öÿ]šƒ‘Àrƒ‘5}°Æ²ÒY cCnI«4`­·‚:ÿ#LZ)hUÎÀôŒUìɦ0Gu­š”D¼^©-gÃ2ÁÒ÷¤šIXY²y}és$¬]q¾÷ž] 6ÔzþÛ„-V‘îÚ7s°#,5M'pvÝ<ùRXJáï»÷¶#[°oXpøâ?$¤"ʸIe€Dw’P„TI ½n¶7 Û¥í¸HA÷ß…Ù:¤×>Oš}ùÄÊ’t"Ò||g™R:‚tgç9!ýÌÂßÃ#ÈhCökVØ™zôÃyØ/#˹ßEœsMÖäo–r¶ÿ¦ƒ\œ)ÏB'Òç˜RÒÛ›LȦ[(j}¿öÔMi®´®¬Øb@¡?ÁÔÍž(Ò•eÜ–ç„bãÄcY78P’—6råS:J§²iŸ®C9v–ÁØW (¿Ù`üßQT¤ÆFÍ¢ Tzn$Ø*ÇÉ¥‡tPí¨?µN‹jx ¹ì¡Va‡ïÒ»ˆ ÿrŠ.T£Îê±Ö¨çü&×” õ[#NßoLÃ#6Q]ÃÂÑðׄV™Çj}%rCS-¹uúM4[çôJÜ–CóïÑo=*ÐòëÆ™4»'hÕ¯)Bуֿž\yBå„6s!ÜMk©hûÇ9÷IÆ*Ú3qÄp»ƒ\öâLM:ZóŸ‰ô D§Ðš®B3èœy8p8]ÊxßÎ4 k¿üdél!ºýë5ñ7ôàß^`AO£‹+GfýÐëÈsé¸HŒk8Åudæ2Ú|ã¸DWˆBíE•Ô}:H0ñé³àcvöÔѦp¾ß)æÐýŒP®êžÓZ€š\Ó¾P¥y¼õlg:TØ'4Ü€OÍÑKž=,Pþ‰Œ)ƒrÊ8—ØÙ~„rª$}“oIÿ›ºýzœqÑ *=nšš¬ýo)áÑXi¨-t{7¦ uR%Ôm±>Psr»“=å ÿ+¹>/§ éTåí%ÊDøÞò×¢çM44og1+!ƒ{.Kt—(á'¹­drS´² •--´ÖÇ%KÕA[„ü–¨Q8´ûV:E@‡ü„oq5tšä“RJ©A—ÍÇ|3«ÌƒœŽØ ͇žfš-C èÓrdýýŸ|5ÈïLROI‡á *ü!~0b÷B²=ŠFcÇmBs–al¢ñbLØ')ræÀä.IÀ.˜n7»]f+‡èT~Þ䵉,)˜¼'<„°â°è¬w!VŸæMv·Ý†u~'×w$°‘ÁV}3é8l¹ð´3NÀ^âëÚ°]ó?7œˆàïò‚æØg%¬PÙµF‚ÍÙÑÙKHwHÿ¯’¨WµxË #«,±õ¤\·^­ÕG*?¢•ƺ«x¨vJ¢rriK8ZP!=ë×øa e¦—Þ«}D¦¬t‡Ãï2‘åGhóe*d×j|踇œ;ÕV¤¿v—èÈqáß{È/·· Ž‚”*#ÃC#(Lí+ýΠE!uxƒ+ÅsÛ¾u@)£à#Ô‘•(+ì&#§I†òÜ“ w•Pá{€r;ù*= ¾Ä!wÀ£Z7 N£Zil  Æþ#õÕaÔ»´²À‡:¥ » N¨{¦×-åy1ê-ƬÒÞ1Eƒ«zêOÂDÑPf“¥°h6ãJH^ì ÉŸæÏó'ЬÞâú?‰4ŠšìáC+REÇO±Æh-¢®uLÂm, .ªqï íå›êD­ÂhWAi4!§$ÉÿšiŸ¡£Õ—ò—€NYŸþHŒ óâÝ[1:“èªç÷Ð]Ýns½9q ÝçþáªCOó»§tøÔp«ð5z³v_–mÅÛþqëŸÿm¢ïõsQ®I¨±ýCGEYþS]ÚÝ€ ÕÖÃ,¡0>Í»8µ }iÉÔ­jÐYx™\àá%hk5&®•ê…–Ù ÃÜl#=É}:¡f ?OËžà:蹩âÉ¡1–á‹ÚV|w&Óô,™‚–Û¶—¯¤@[UîâżCÐ%ìËÁ}Ò7tw½ˆa(˜À÷PŒ,ßÑÿºãG ŽXS ôN“Å@ ÌÕúúxæ5Ô‡Ìi`ÑþÑ¢Ý , ¹2~·å-›>YܵmòV¦Û÷„_‚Õ˜pÆL;X“¶×~þdÖÆž0ªXÖÂz^ý“¡#Ͱq¡aû¢Ö4l†%Î%ŽÁVÈ)åjßؾNôb™`§Úe°ôx"ì26ëœ9¦b\giYàïïmóÇqn°—®mvîÉ]$n;ëîÆ‰„r†ä}!HäÄŸóÁ5‰_¯:UßÝARQwOEV$«¤8%ƒë¯YTw‘ʸë8Á“ <¤xÕüÚñH#·)Øvé¢[ÂÖøS™¢n2ü/2ØØlÊŠ#c¤fqp:2½±¶•^dž !Ps¾ƒ¬<òF:בÍ|¥æí§Ld?÷”J]¢92ˆIü½ ‘³²îÛxq r-ü¼J,UŠ<‚ã±øÖ×OXÙìØäsø¹rIe ù‰S|ÿªä!ÿG#gùÃ)(p),D8è' -Ðs˜ÜA!±„©ˆÂfõuIëF•‡¤CQÔ1ÏÊÑØÅÞ}ø+„²–¢SP²%¥ƒäžJ§¨\žš–@Ù  Ê@Ê%”+0ÖkÈ»òe‘ßäðã­ ‡gP±óϵ‘Û¨L}{CiU‰åc¼»Q5ÀC5JÂÕÊowl †Êñ,ÊØÔü—”µ÷†“ûëVJòŸó©`AÝlÙ‹5 Œ¨Ï¥h}çÕ4(‘áy²Š†Á‡>ߦ¨Dc§¿dÄìrh8!Q~¤æäÛêÛæ£ÅÎÏqÞðhõ¹Ä³%#mXù¿÷ß‹CÛkû‰Ê ýH½ÓV m~9ì+NÞ½Ýè" z\U$èÆ]~Yxt= ë÷¤}ô²L ³ýÇ„ÞyšEþsÐWµ¤à&Oª§Î* Û'«ç2±É¨rýÁ.#Émdx{Ûå´| ¬>ú¢ ¯FF~¨öIp^G}ztXJI;<ƒV%/o[Áw>~²Ï>•èíµ‚š¶KLrmPm wE±>ûà¨1æt0WE9¶D¨N­Ÿ½óè ·zERƒ ã¡áÓàCÏ¡·kåtðn mvލß/…QI³{ŸÆö`lràVýÅ“0fÈ<¯l“Ý1Sô2;0Í© §¶¦`ÆdæT&å̵Oëy sŒ‹*OÃ\íw'‰ç 071ÀŠò8,$êzA»‹¥R‚§™`i}S5ÐvV$}ÿ3æO€•uÒ›þÁjçCçÒ©ã°ÖÑ>Aj¢ ë+UD/ [a“Ï8“ZM¶|Âß·“&Ãö'‚kGGåá7'wëÌ·.ؽý\x”ôüa–Oùèÿ¦-I)ë¾ÂþôŸUµx7$dí-cE"×»›<>H\^ØUpyI%¾× ÞÙC²N]AÍ¢H¡|ìbS¡,R6º%Lü(Fêà+üῳñ°Ä°T{{.Òì SvVç#]ÒMé!ý¥qÃî@dHb© [k@Æ;ÌìFæªÈ”6QÂså/2ß(ZxÇf,1B±Ä·ï!kðzgµD*²[|û–Ù½Ö”¬?¼B¿ ¾+wY‘3x@$д¹?›¢NEî—II’BgPFêÒjò:w¼è”ò½ë;Í=õù5J;8¡€ÔÄöm3 Ò:h-í·¢MçcoSýúœØè-ŠØD=º¨¢wÚTþ<@±®ÇL”á£þñX%#Zþ.kÑ¢Ô`Av Êxž8úW¾åH‹>˜±Å¢Ü/³ HRAù4ô+wPáý™,ûi:T\¥šé»ã„Ê7¹˜sØêQ5c…\ûF)jPéRÔ B­ÖÏ¡V߇ôeozp¡nêætÑNê;™£JÁ#–ÌÕM§·ÐèÔk*¡v4yíïÓG‰xøÖO¢EÉ\¥ZÝ”îÕ]´@ëåÔvb´õ LqŽ9Œvíjo*WòÐÁèB1‹Ó:V×Ü™|#ÎG;4ko™¢Ë ÑÚMút+û`û·z¼J%}‡^>†Ž™Ý˜l.ôxѹ-d2’iÅä“.Þ‹FâÃfv‘ÝÆ0v‰ÿ*EÍ}+[/ùT ­ÔÒ3â é‚ëy+U€ú~KÓ×áÛçæBM**¨éW¿0b7Õ§<Ódø– *×¢*ØÿT…«ûü6˜ƒªN·ç/Ç¡ºxõ7ùÅÃP»ñ¬¸ªð/40SD|_w€ïQ²·²¨sà'ÃM(<ðQ†å_ÜйËâSÅ<󵄠sþh’KstíÉíôI…îW¤d©OÏ@q@ÉÙÚ èaf_éü©ÝÛ¯ü„¨ »_Û£íy;ô(<ä™\‚žž¬Ÿ2%è ¯à·Éƒ>Ÿó—ÈÍø¡ÿ’³Z¤¼ ¬¼äž¼B†±ø•dÁ¾'N#+C/hcaLÖiãTõ*Œ¿êê‘:Ÿ“uIW›aZ¹¬–©V fGHù>Áüë°²GýJ°d&6¨¶\ +wò†l.4š`@»k8¬÷~´“„Í’¼¿Ñ7°]q6÷¨3üÞùcu½G þš&ä¿’L½ÁÓÍy7‘ ã—góÚAŽé‰É{‘ä°ù·t¿9$ïÚUïGòÞåg¯ò!å*§Xáø¿V”èJŒ4—GjÿxžBº(¥©W‘¾ñ¼mrE82ÊËZO@¦÷ª×Í#‹õÝ÷i|\ÈFöóÊ"ûˆŸ±rΈ=½+÷ y¤©:zí¨Ï^n÷£ÁÈÿV“C±ŸÅB|”ž“¢Ð÷R¯¦ë§P$‹Urþ¸?Šå2µ¿õE‰^RG_º”FÖÙ°×Z(ÛõÑ5}ã OÖßoÙõè£B+ÎéßG%_sþñTTa— vCÕmáF1½!Ô µÍ Q6G-+³ªOÂû­Hßk:_£¼$QO¤gPüêgÒ:ù|pÞÔ´Œ†¹o{Î¥£±¡p‘Ø›,ßîß-åE³’ÈO'“O£yÊÝG6ãh™4¾ÙGZV•µ§&¿<@ëÆÅÁž9hÓ'þŠF´ðÿ®Rqdtíi’„£ÞV£ƒâ–®1:ºOêÔGÙ ÓµOÙwè\fI=¸„.Ó ßûy]Ñ]AërIº[ˆ\øÄj€ ŠjŠrsèY]%/a^7Í.Ε`Ü!ÿA7A:´ñl¾¹ZºŒ‚Ǥ¶Ô"`?ÒD×®~ FÎõ¿ù[mÝÁ3¡vvÐôý—Ù¾÷|3’¦Jrƒê¸u"NÚËPi`Äê–¯ŸÓR³»|ËࣱÊ2 É|ÐK¸nÄP6áKMël eÿµp¼ùßü#aŽÑ o|¡Ò¸<~‡ýëTmØ"qµš`7Æ2©¨m‹<÷+ êˆo_|Ó#õI”ã)<Ðð$«âÞo:h\0NLˆ¸MËÎ%ú¯áûT–³Vê4MíPÁظiøiAP•˜ ­fc‘ïâ9 M5Àk¸­Ú~W“Z» 47„ÌC'}qJw‰4tY6(H<†î(ÍH¢,èÏ9ÿæG4ô¹Uðæš=óÜÇ)E0DŸY/¶ã¿4«LüÏqÃHý³Áb¢Z¹qò­E!Œßv .úÒ“2Dzԓ4ašàíÊfu5ÌŒÎéôüê‚y*ÉÕ¨ý°¨™à)êN ˯Än½ûX«ìž WG7aíÂÉN×)XÿSH=,å›Åáíòô|°}óÑó¤Ù{ð;•󌧶:üi|vãñØÓº§ÝÛG>wÛ!eZ—]|—YGXòZ éõlj9V­HžÒË^,„”µrÙ“xˆEÞ@-ô Ò¤Õ³}èù‹t/ÿSèìBh¸ÒÁAŽL<¸¶lÎ,ú«Ä‹—íÅ›7×ßÄ"§ë5³ÃÈãô‹qTäòu}Ì©#q@Ü3½ê†·Pè?‹¿×›ùQä›úu¡R{çKÿL*B„’e–΢Lò9 íòv”k â˜&<ÈeHS,A´3*iÒòÅ[ñ¡Št\Œlt$ª+'¯Ì¡Æ5§ëyÛŸPk+·½¾éâõYí_ç3QWBçI˜u<êå~Í"o%EsÏ<2Ù$Eñ˜ÞÔÆ— N¡IÂÒƒ­n4‹¿+Úûéš?©1º0LŠ–½$”¬³íhM_X¢œà…6Ðñ.––mÏ5çïw ]¹s†ÊÕKè@¤£ŽÎâ”æ={èô&Ü8»…]ÚäÄ_Š¡«½†_Zü9t{cS&Uø =Eß¿O‡žçÆÕÏyä¡×¹Ÿ¶o$o ·ò«›<+N˜:û2{­¿}ZlhßÕ¡ºPÀ¾ÖËÈŒ¥Ö¯±ÂÚ€Šl¼ú ŒÍžªËº­ ½±Iñ/D c0l…¯YÚØ?­¥$NÀ‡?B¨( éëäéãë¡!ý¡ÃQ× ¨¯þðáÞCh0Ðp^áI€Æí®Wi¥-ðƒ`qÀ剴öJ((;ðMúû ¡gö¼#µ l}Mh…ÆÙ®ÊÅ43çõ¯‰>öoÙž0íöMý÷…)˜ý¢`ÆwŠæKÏe½¦ÓE¡ß,ÿéÓÂ’¸xNÐO€e‚”øpXýù=•VV.»¾W»¬«B)¤Vůaµ-oR{ÆÖn¦u¿u€u'£ê°¡g”©Vc›z‘wý6&`ˤvûºl'š„ý;m #Ç”`WÕÿûÞYøóҿ¤ þi:‹ ÛÀÞÆÓ¢ù Ü6¹Ké ÞOyµ‰&õö ªÄÉïÜÈL)’ÎVrìå'#ù£WYLHy̸ûØŸHm&ž×qó*6|Îúú² Ò:;¿òϾ‹t•5}eUH?¡Yx& onì¾B&£†$:~˜ìmz¾Yš)òyÿôiB7Q.9²«´7Ìvpçé~Á/RÈ™ÆrZéž;r5œ,¹ŽçC÷4åÎtÜû½ÀŽòÇTug§ŠQáø&uéϨxÁ¢kêY*å fÃTnÓÜLùtUIŒC¾Œ¡šÃ±k|>¢úp¤–Sù Ôüðœ8Xs µ7j,XcCPçˆÑ…ÆÔ-Ëdc¾õ õðÈu¡Á_³wy/ÙаM­šÑû2w¶ô}D3Bë+£Ï5ÐÜê­½H‰Z~¾ k\h-Ê.u=ž m’Þ|w´‹@;ò‹´¿v×ùwb:ògø-i¡S?ÏðD—héŽTùt³Ùh»£WŠVÔÕúÛ襻tQÍÞ½£~'XV>@Ÿaú¬õELò‹Õ ¸Œ®5~D¥5‚È_¤AHÿèåƒ?Å-°üÕ:}ø)'üZë+òùúä€ï ÒN¨©A»û{EV¡ÛÐÒ3õáj;£déôá[CŠ{ñËh¨§¥ êè‚*#É{SÌP%8=Ý&üªãÉnœ.H†oï ²ž‰DÀ÷lá!Ç%hÛ¥s 9+Ý_¾Zœ»ÝgfRèÂtQ'ÿÝA?¾JX‹ú‰î~Ç?´x)£§A¡Ùá:ôz6ûMŸ~¯ùmLYœGg·¿ UfÏPäT¸R!>öyP¶#Sd'¾A§Í­f+µÐ"êçÏò(ÉbŠyùB]òÏ~U–P›8K~«ª¿Ç'ë…4@U°csÁ3¨,Ôì¼x*“”þð{@åÒˆHîÙ‹P5Âã"¯µÌDOyŠ’¡^S7L£ï4¥gˆ‘o@‹BÛû¿W¾Cë {½p]hÛ7ßzú%tH>?{¨S:(¾ke‡.±|ÑãÏ ›@bÚÃbºMÚ}“l Ûòã}ú3Õÿÿ¾òæÅŠÐµ}BéÖütë2]Û¹v°Ÿè¥+ÿ·òò„žhðœùú{qè³-[艆þOJ+£F0jîópš †5Å_j<-„ãFMI!½b·ÐUûÆvÛWÌ a"SkÿçÏN]å%½¾Ç3¹*ÆÚ×anTŒZëañžÏÂ,g&¬¨ü¡UeƒÕo´„_˜a=Šé屃\Ûˆ"e†m/ p~ø}ïþåk÷‹àϸã¿s^ï`/Tözänüwê±Â­,$|ø-‰ê w K<Þ¦FÒ&ÅûËbHž£Ç÷OQ)?ìô»‰ÞCê•Û*”£õHcD§@¾‹t<—îŸ~ƒô/ û8BF:ÇêñéKÈtW2;BÚY¤¥ËåÜGÖaûW•uÈ^ºt'9KªŸG!÷Æ(/!'!ò©ð1W“Gþ듨qßö…¼tÜA¡GßïšF¢HÀ-ZR‘pó®®4|©»Žµ£Ôë½Èt+”½`¸'–zå¹s¼é5Q!m£ôAg*ñÚœ5ÍGåfs~âðXTÍ™H¤-KEõüMŽÄOPs¹–71ÃáTø`ˆÊêÜLÿJ‘߈ºD.§mî ¾ÿÓ—º bh0ñß~ú ]4JãîEc*š\ócÎhR8Oäb‚fçúY¬¹_£¹u£Z¢ZZwDq—ö£Õsó÷ÕϊкD]u§dmêÇÔ¬ÝÚÐv¼ª{VìÚSæÊ…‘™£ƒªYÆÃMt |ÁÀôPr„ßÙkD¢s?­Äëste%“&±_D7'…»¦1)èþ8ì%͸)z̾t+Ћ—4ŽFù)zu.wæ[-ãU+ŸÌP÷l´Þ !<î.üÛÏ¥ü®Â?Ñjyã·0ÌËGªtmZ½çp…F6\ÿwgjæW_¾ ï…*¿Gw™ßï@E†Åçäí!øØuªüÅÞ|¨YZÎW¨ƒÒ&r …ûPzõ¤w“Ç”Ê3n}ºßþ¿ù‡{¯ŸYÿ…Of,aQý:ÿ[§rèH¨R8T+¤5}>Ÿ5á:jZ P{Ak?1­¾M ò—s„ºžèy홇Ð@™V©¬ÿ fÍïruØAcËxmÀ³Zh*‰J¾(ü¾×˜Ü·á¡…‡vN¿¯Ý…Þ; Z©>V‚Öª¬¼åFhëÖç"} í­¯Ïù°V@'EÇ’ïØ=è’òÿW1¾ÝÉ ñú9‰Ð³ÇNªF}ï‘8¥^ËÅ8ÁP‹œ¦øš*Œ:~|Ý7F,Ý·™Âر×ï½Ha§®kdϦdÙö+X`†h;äüf?Ì >4/ƒJó7 °”~r8VVn±ÆÈ­9ÃêDÙìY¬»ÙË´ÚÂæ¡ŸY©4n°5ðQFs¸vÚ5mŽ1àºÁ§àŸØ—È—Ç‘€&çµèr9Þâ>>°`ŠÄJ£Ú´HJ@C½rà]d¿?Þç"EJ!ò‹FHíåþv_·õ³{/!vä$Ë Ò×Ưü±EÆÌÙ[­3YÈüñŒ¦jk6²±Ü®ú²B†VÑw(ûmDU¦-òE†[Òf_EÝüŸwßj£¬Æ÷ã¶(b6¦jouÀ«ÒdK3 PRTfu8‰¥—S ÍÔ£\øª Æ³¨À&Õ"³Q‡Šý¥œ7hQ¹î”ô ‹Tí§! u5™‡ÜèUP+âG ÷ :D²ãöMÉI¨3‘?ãüÇõÜ÷Í W¢þê Ú´ãöx$3K×ëš'q<õ_'šèD“ nC3ýžšs#4 |š41‡–¹9>~2¡Õ?1)Ò±p´‘Ù™n&`@Û ’KÙX´+y±Ô]‰fñlKÝèè’FZNŸêº Côú¦µ“1]O®øÝzS‡n×ý_íÈ¢‡ ‘€ù”z>VˆŽ£F¯Çí¼“èm{9ƒñÔ(¦µZˆ•}EºüO)HPÕš¤B•¦Ç”Jôê`5:Óú¨»ŒÎÊrR!…žà„½ŒXFè 8Ñdz· ­¾²£Nc+Ðljù¹ö4Þ}sÚHðÔ›],³ð‚ºôärÂó©POæ½õÜPíÀs9?”Á÷àû¾JÕÝðsd kR¡ýïׄðg¡;×ç$i©>ô_Š®Í¾+ÃÁ±?“ZaÔ|7Y©ˆÆ sfbÉÃ%¨*ÚÁŒŽÄ‡Í«R0Çji#E› ó'ﳟó ‡7‚—a{ã°(L®Dãì ‹ë¿3:ëïÀ2Qì›°ÂY×ü»ÖV*_•¹B «a~>­l¿`Meý_ ¬sp&ìp(câ*ylò“ö$ÁÖQ|-£°Û©‡/»­ÁÎòI—¤ÉhØué•Ùè³?#çHRòéàßÍg Q°QÍ™³ô zŒýµ^M wZîü©d$¾t#â±=’2†ÙÄÏ Y…ïÝw+¦Hqå³aÓÎRù´p—Dâ!×~3¯?!Í©÷å“.lHgv´òÇN"ÒŸ•ÿp²%,Uâ¾\/-ùåÔ?”±¾ó:Y.ü Ú)+@Ö/\3ö)¡È¶½çî”ߊ2ýoGØó‘Óÿ8Küy-äzÆÓª.)‹Ü³ºª5CÊÈ«è»vŸñ'òéLÐÊПE¾¥”ëã­2ÈŸKíÃk4ƒRsÇH™QPE. RóQèðUþ¯{(´E tHÄ…·'¥íKÂP”}LªmÅ<¹ò&P¼æAn8O5JÜyrԥƴ)Lu Ì#©eZ{('ï1+)Ÿ‡òœe”Iö¨À0We~ ¹Ÿð/”ÝG%=¼Lã(T>Vþ˜ÙUž9û[‡£êæÙË'ÿ¦¡zÂ;ç+ÏPóì·ã£M#¨Ý0¨î|à‡ÑòD2¨û“¢Äñ<ê_lžk‘bÄ#' O¾C4Rð«¿÷QM¬^|zn€f÷+ú¨(êÐ|¿Ô‘Š)­tèuߪT¢õíK¿ÏG£ãѹQt–äìtA—ŸÜLjŸ  [’œÀÞÓôð>ﻺ·Œ^JS\o¢òW梚®Œ>·ˆ)JÆá5ß[g“‡ Ñ¥¤aA·í*:ùÿyEvékz®©(¢e¿çN ®?³o^‚®™÷!•}™ÐvÔzÞèÀ£$^ó±XhHîÕêx+ µÅ«ciÒ¯¡jŠô.axTšŠ¼|X’ •ÄiÓ—{x J¼«ïÁ ¨YÝ9ïññ ·tkÇ’Ný…V—~ÆÐ¾'Й›")ν¿èWâ(Z`0%ÈgñŒ!üºbÓ²vþ'Œ²WyæÆóÁ˜M8…¡ëŒ_¸ìm(× w*6~ðɄڗ%ä¤0e5UÐ?ÿ¦É‡~ÄÃô góïcÞØüïKû-&˜]X~÷™Ôæ™ÛÉšFù`Á«‡¸ü`±—Ù=Ñ_–/%{ÓVJ:]â¾xà‰Óã$w`m.W·E6”µÓ_eÀæYºž&é"Øú•ð~rv4Ì?*Ý+‚ߵĮÁ:•ðç|ÌsŽ/µð/`Du;êìgVðŸ˜@BrßBë½=$r¬åþoމËjÚLk#©ón ù’å4P¶ñF A'ÑmõøÎ$}¯M/Ô>ý×NVãa “²ŽHËb:U¯z énÓ6PRFúÇoô9º áÍã°DlÈX*vC@Ñ™Þk¥g&/ saôjþ»òØ'é†FØ!ï½QQ©‘Zä;bäÖ?ü|u‡ £o ÿ¸®Áëø,¨ŒôtZAÁrµ“)Ô(ÔÔȻܧˆÂË×T«¥ž¢¨`Ò×­,óñï—)}‰â9eÛI¿QbªÝ{Gü-Jiû¤TE|Cé÷pãTœ0ʺüÔO0JD¹KÅÇʾ¦¢¼‘»ß*(Ó}{¥ÿC© %‡£²„¯Î®m ª†}ï“;‰•×èP;€qÊŸºuÎŽf_ðD=ë'³-ù­‡g¥ÑePðÈ2tó§Z;¯Z„ôÌÜûOUÐóWTzs?zM-È$²aRT½×ÏOtšI£ˆµA¡ü½‘‰ 2$½0DÆx †ÿëΞ”ï†ö_þZãÂuЬÖºKØ õwŸ.Í&Á7M+ñÅn¨‰¢äïdv€ªÏmÏRò¡ò¬¥î?-øzšödO:|…Ýÿÿ[|üí]˜lM0"V#‡éµ×[:a΀¼d½Þ~eþ{ht–K_Úži†UÿD³|Z"Xçö=Cð(6–sórMaëß¹?³fà·‚ba¢“ü‰·Á{]°G¾bÙÅŠþ‚|¤6G‘pA ©ü0?þ{ëùo‘†¼½Cú,ÉO¤…%Œë"ååîäAÒH]ö üFÀ ¤9Œo; ‘NG­.ýhÒ'ßðx}é 2,_Vò6¾ƒL!¼ïsU‘…¢þs¼ #²¾xm}Ùã ¯Äð§!ç·œŽFJäþ\(>ºƒ|¬´·F$ë?à–Ÿ®] tõüä£X@¡“úÔ”I(¢@¶Æ3‡bâ*E­O7QÂd•Îèã JýǪ{ù²/Êrud”ZG¹ÙóܧÌPÁù§´Ñ1STpZª}W…Ê1Áé·/£êѧÛRz¨~4ýÞcÝYÔ¼¥uÉŽæUñ…Ö{§QÇõ­HòjêVI½'¸ŠúŠêÆ,~¡hð¦ F5Ÿ å ËR¬9ÑèÇöƒÐø4 Õ–¥Ü E3UõåÂY4gÚ»wVS-9jˆ|ü·Ðêf÷¿¬ëßÑúqÜ]!*%´)Íø–vû w=›Ë7Ît¡=Iµf[:hd¯¬Ý9‹ŽçOŽ{—ò£Ó‡,³#èü·¯Ü¼ï5ºþN‘¹qÝî+Ì1™^B÷¥ê~Ÿ·Vèiñ¢zÜâz¹½0%îæDo®4ÉÉ2 ŒMswKz ‡Ö÷˜ÃˆO"_2¿OêÄ4ìvîtnô‡›ä‚3)÷¡¥¤y©¾²êý²ý©¥ƒêÔRÓ–»-Pi` Dç Ÿ_Óšºe)A9‹i{tÆ!(ü•£^á½ubDŽá ¼8÷!Þ/Jj[Ã.oýo^:šL2Îʯ¯°ÿß:_ãs¥Ò8U rãÇ•ªjW¨æ$×›˜ÕK3W½mÎA­–çDu |;äÁ:Ù+u"#;4eP7®kïóêËÄdÓ>ä@Ãuzõu[uhL¡{ñ…‡š¾¯pŽO„Á÷©DòßàÇ—HÙîUeøÉ°{›óᱶ󵂶[¹®‹- ½ê× öŒëÐ1˜v墨A¾TïôK…s£™Ð{Œ«7 eúõ²ÔȬ`Ð+Kjጠ?±óO†‘— –ÚÓc0F±3óHÆï‹J ‹€I÷ØÃ_ÊaZˆä õÌjxëòœ¼ óæûÅg÷nÀbn­)µI;¬üü>LôV­ˆ2Þ½„µŠáÇ1a&°q\ìä2õØï-Yêä€&WåÀé簫„Y¡¸k ï’É*& —ç­á·h.m¹¾-ÏÂgçG´šÉzÚ 7ц—‡‡y•m½tlzÊ¡ÝÛ] F*Ɇ¯gÐñÄ~_¿b4:5±z/0…¡‹èÑè¨7è—ç—ÜÍŠn“µl’–ñoH¾ gÝ•š¸cÁè•7ÂÔ½C쟓Ïâ­ù­/âF¼š÷EÅC•/e_’¿~âŠY&3Ã`E€è,ãåNY¢Œ ëonøWhWò¨æ– ?² /nAÓîÇ×l NÐàî´¨ÍÔ™üËÐ%€onå§Nõ÷†kw=NÍA½rØõ½YÐ8¢3O3 -´Å¡âÅÐ6=ͺғ ]ÞæW¨½} D{“Í4 Ëå×o}{ #]¯óâ3a,épJÁÄû2¥S²Ã0U#(ÒôPf"ÄI^ÓRÁl‰2—ù¥A˜Ké)Ž–I‚yÃÃ}÷µ¢`L0=f IÌWF—‡aIx_üÈK}XöôfÈP<+® Õ±°Êœ4Ó÷B VWk»4X`mâžÅKVKX_ øsH°6éçØÅaËB†Ïª­¶Ÿ‡Ý=Òœ¿©³²‰›a7>u”S¢þŠ<ëu§\…=’!þ‡a€,{dHh?u4¦ß‰>†>¥³]Gm±dj^$åLŒiEòDzer‚«Hîì?ŒÔÁ?Š„ú¸ðp,}ƒ/c&Ò¾ºúéþä7F ƒ"u~M'2F½}Õ?Ò‡LíºS%È"Z*Ûv‘5¬h7ÿü²•K‘Íøÿ@ö߆ñ™á‚È©ñ¾¢Û™¹bêÂ;%‚ûû ƒ“¦#òr[kÍ-!ŸòOBt òMÐdõd®#Æ©ãéǘQÀýš(IÛ”XýQtl…±¨> …&nÅù-K ðÈç[‘ç7QääDzŠ©ÈWʨAñ›_$B¦^£Äþ=«ÑA”º¡cö7\ e&Ý»Pv²3âÃRʵ«´ŠŠo£üW6ÒS>¨Pµyj­é9*Ž=(\±9¸?¿¹ôæ ª@ Û$ª¦]9_sÕer·E³PSf¼ÉÖ¹µóiuQÇðLì! Ô:gõÑLõ_=, Z°Â#7>ø£ÑÝÔlŒhÒ|9=öY •‘’S´A‹‚/N‹ç¸Ñ*gr¶b#­ÿŒÕ‘ºh£mз&«v/´[`ë;CÿÂÓ·ôW¥Ð‰D<˜~œS ¹CЕïÐÖyÆztûD¢Ž¡ãìüåÓè%òÕš´½%ÎÉðµ£Ï‘¤ÂÐ=˜ôä£ß@ñt~OóýÂéƒ}ègÔyr^¤™þ(%"óÕÜ£l0h8ݸ_:·E,Ù"÷¡5²(/Ã÷2ñ#ÄbP¯«dúÑ‚ j²ìýà ûþÿ»mÜ;ìƒP‘¡ýÐ~¾Ô]mñ¦†¯ÿ™š÷¼ç‚j…×–ìrýå;]îvÐKçÒg.#´ßt§‰®ô€nÛˆº.Ð÷Ò>:_Ýøòž©™Àpï%©ËaI a÷Z‹€Ñü¬µ"ó&+Ûc¹•ãO÷ƒôÂÄ™ä×3`RÜŸü¿¢ ˜"ø¾oÁhSËéþù0Ca-™dM³"•§/Š~†¹cŸ«¯^£ƒù6Žè"érX ê}×z*–M_} ¥•…•7Ûý1¡°ú³#ímy(¬1]‰Ø{–lûk°ùôÕhæ¹iئÉ!ñpï„;»ÁÞÄk°‹÷wÕ á¯¸«ÃŽìÙ@„ÖW$p7»9à ó~TÝ{œ‹Äû[s·ÝÄ?즓ð ’öü¶)x‰äVö;—ÏœFŠú}>®ßHÝ'2QÞŠ‡t\ æ4#x 'ûÂÒqtÞå@zñøgõ|È é+ì–„Œ†MBÔ‹Èdr%èŽ2›H‰_Ô-@“u÷U-dµ|F¦¸l®µ}œuÈ~æ¶ù¯lqäHrÊ>0‰œ/Wɇ-‘«‡ÿšÑ‹:äaP6[øôyíÜìèÆ‡‘ÏB[ñ¯]/ò퉾é`ÈEþŠ3A´•I(ððPpšêeL¹st”…2Íóo ðç‡÷ìãQd~¦ìè Š‰>Å¡¿âžWÇBµës—쌿PYÀýŠìÀ«*RäÓøáKLƒ·º!ñÿWÿÝ¿’kPaôã‚¥Tª]ßÿïTÛW\é}Ÿß‹ƒØr‹¡áû[‚‡Ð|Ö•ÿ¼üÔ½¯O:m䯆·¡ëÃièíòì €Ná¥×?N7CçËðüß¹íÐÙ[õ.Ø:kÿŒ'ÖCçEÚìÍ8蔯9æî+¢^Ü_¡óW¢öÞ"è2¹íØìaÝ”d†i×Ô ‡àœýöVèµ2Mï§õ…¾ÍŒúç+Ù#MÅÖ`hU§¢‡XF„å60Áèƒ)ã0®*þÃ;îÙ&¤Kåü÷ùó@?…ÜhÈûÞä˜uöá¿}ŠÍ¾}ïi ‚’óÔq BiIczüj*”¹?#?LÏåIÖñô|5P¡©®ý°æý^_”’}ÒS•ý‡èæ“ *Á+¶ô{ T»%Oy7C]W‘8Ï.ÔÞ›¨c$þu'é¯Ó@ƒ{ÓøÈsBøžô¥Ý61 š /9}#‡f“ø#W¡ÅæÄ‹[Ðú ŒTé\<´õÜJ¼`ð:4ššƒ*›ö¸½s±1‚ º6ÝLJ†ðs‰–7sö,ôh]ÜËÕ¿ºÒoRž^…!í:á·g`¸!\ëàt ŒÞŸáøü ÆuZóÆaÒ"`òLÛª9ÅššÁìF1e†ð{…^–UT 濚8{‹ü¾ÍìK%7UMöuÀÊ•µÃ¯ëŽÁšM»wÑlœý ÊL [¦Eßà¯É'–¤dH+>] ƒD2~ìóñH<9ÇüÈä’þ½¨v¹ÉG wud(‘’’12ý"RÐÿõmCÚj¯¨þÎoHßqä‘dñ,2ƪÕ=ãKBæÏ´?ÑãÈ:o?-èK‹·2xeŒûØÆÚÈÖk©“S€þœßôƒcQÈ’ñ —ÛŠØËGäÞ~†b#Ø8î‘ã~²¹øœ(”,(uöPTƒ ›§*RQÖ}ÁãþP<Ês’0¼Zø ëÞ÷û*"äŸAÑÈàjmI<|ƒÇ¯ÎƒÕ·\C³QÃþšˆÉj6¦Î‡+¡–+ÝX¨Ý-Ô¡4ð¢w¹Œº·7;ç þ§Ç;oVUѰÔuËÓ› £ß-~BS>–Í/Ьë]ì´ Ó²r–DKëë'âýB«÷†¥nè¢ 55õÉ& ´½äy„ß Ð®ûÔïÇyÉè zQ|l_sù{ ·kÓC›Ðù"…Ò׬tùݲïþdº–œöu~)‰nû?mŸ^ÂGƒJæâ#ôèmfW÷9åÓÕÔ$É-ALöZ¸¨0ÌÝk‘ø¢ÿ~ f¾~²+F·båC‹«å{.wwhœ=x£WŽêÞ‹ÄyõCÍaõóä·žA•PVõCù$¨é‚wa¨¼—#ÃUíZÛòEw¡ÖtúÒ |‡à·þÐÜF›æÉÚí<ÊÑ Ô· ëÞŽH$áô±ENÃ@‚[¼ÌGwr¹²õ»FŽËȦPöÀ˜.׳„,}ï!Ê“¤=[m|"qG`²,³(ÌY¦N1ñóEÃ4»±Š³òQ˜!ãPà< ³ÌÞù1 {ùSýlnšûø}‡H'¤k þLª]zù§æëJ{„|¯Ã—¤F©!°˜GÅÊza –:…’w]`…Ú¤T7ñ#¬º\ÿNôé ¬}- ?*­ û?§d<€Í’ä@õ?a;r],r#þ~°¿¹n”–˜õ¸pæZA*Å$öè+{ìðI‰ÛŒSc‘¬ðX”)î{Âýñ#Ñ)¤ Üu#½ŽÔÑç:¶BÀ×kYéýé Ý‘¡jްàù$2± ‰TËüDf?9þÖ`déx°”.Ý‚l’Ô[nÈîoŸ}U´9*>:ÚµÆ#-é)1Õ äv<ÏsA"y2ãgg_\E>¢¤¬áräß¿.50³‚ü=>5œÉCˆž4·Ž  Å؉·ñŽ(Ä÷q[ô° -9yÿ`Dá6ÞÑâ¼y©{ºpØEûxù¾9£8æ9lx‡¶CYç2£qaŒ¿±J*jEdš]G©ú8/oâ‘*w~aÖuŽCÕi"©ÊÉ"T¿ùiÝßY5ôˆCwuuQsghŽ:µµz=îP|x„:ío/¬—úê•{ÉfŒC³ïß·mÓ¡­Ö” éÚtVcì öGУø;Ðz½z¯Y”¤õCÿËn«5†yø•´O­ã öem¬y4ÀP™ê6EG~$¾rÆF çp¸QeÙ¤2#c,8¿M«ãB“­^¦À„Rfçó¶0y¶@Gb¥¦êùú–M`Æö¤ã‚q9ÌÈø25rþ<«œýæ¿N¶¨£éˆ6¿î·ê¨!d3Áñ¬·ÝÌ©PŠŠ©a óJ§«°ú9S¢ 7—«Ìê Ê´È'z²Ÿsf MPn‰úJà~?T¨I÷²|¤ˆJ&)ïõQõìá#oO¢ú®§Ã‰êÔØH“dZŒ¦3Ó¶)¨ã@á±­ð õ­Wk­¡atÐAnj4ö2Z« ?ˆfbRb—yXÑ<¹I×ð¨ Zæ)ÌqA«¾²‰ÜA´ Šþn¨W…v,­¼³W¿£ý³ÜnYCt$º@ß-"ƒÇ ¼ Òð[ï¦áÌ¿O®\þØ ‹.ÓBd`yÿÛÞ±ìXU6KÞXº ëž^ô·z$a3£a«€vä/ÖúßSÝn=ë,c$¼¡@ÇŨ€Ä2ïíó3. )Q€ #’mªpÅjG úÇœ!•NJéc?f¤y›I˜ˆô$çìžQ@†£¯Ï4©5!cF Û1ʯÈ,Eþk÷(²”lUø‰R ›ûÄûâËÌÈ!¡Ÿˆ ÈÅ™Èìf‹1LPFFöq߯BÈÌ35tÔŸYÔÿZå=AöñäJwm7äú¤SßØÝ¼-ÝÓL(Àjù%iÊGÿ*­L ÿê;<Ác‰bÔî5|B ¿ï+\Üt(ÉÛsöòb”Þ »êåN²T– í¨P®à=õ;±~Tx,¦Ìú- #\\nôF£r¶qk€S ªîêØñi_EußþW÷+ Qƒi¨r½5C¿ÙLV/¢›–Yù Ô.ã½yÚ0uU|¿O•€úçxêúó£a`rŒaåõå}Ùxަ´×.Äö¡YÉ£§~«h¾{ú^Z› ZæKk~{ˆVïbG‚šÃцfÖŒZ= mý;Ó=ýý/‡Æ5ÛLåÑñ3£ûMÑ|tâ=tM¢‰Ÿ<(¿ôìÆÿåðÃnéüøu|8zëý³—?Ñ%gi²å*Êvvm‰Þ~ŽtO]òí]’aºåÕ9­ˆ è3´$ѯøçÿñÓ÷ 6Ç “¢ÿl‰»\ÂiDÙ0¹ÿʾ¤ù˜"½bñ˦‰†õ¦æ —C~T%Ìš'^M_‡¹äSL¡á–ØÏ·j˜ͦø£òõßý¿Ç:â6Kõ\Õ.<…¶’’ØW°ê%¼jWk?jcd aÃî0oTlñ0IÝ ‚IR>2ýhØ}È$o~ª ¹ƒ›±D‰"#7Ø¢þ"‰èý \wÊ‘´‹5fÓŸ ÉÓ*¨¶%œ÷rè²Ñ+Ù~¤J¯s}‡4='/Xûf"=›’õ—§æÈ`×ä°%¸ƒŒ9Ñ 9Á{ýSð¼ÃüWd¹}"ïÖôqdùÅgbøÙ‡9Õ"Ç#^Y–ƒœÈ9dMw•» ¹•X*)ÅG‘ç±qMðZ,òN¡½ûBùù‰Ô•ì‘ÿmM‰b „È^¸“põ5µÏþE!fŸý±ô™(4º ½—…Ë2uXƒóP䣧eÅß5-VczÎo‚b£æœæÎd(!H¦pÆï&î÷}ñ–v  ê¶¹îoA©ã•ï)¢Pz–°*$ePÑÙýÜa”e»|£%cÊQ¾$ý;_òBVUÏOÖ£‚!éwÁgxèê­úÔr¨ØúÊÃ"D•ks¢¢¢Q5™ÿ±â•tTw´³ ßë‡1÷=N[à“p²G¨M%o–âÕ€ºÜå$ߪ¿ ¾õd7weVJI£±#ÙÀm©³hFv2Ó‹ ÍOF¨ \èD‹æ.A}Ðʤ¿ÎÐL­»% #Þž@Û±O9Üý/‡ö弉·Ð±l–Ãi%ĆٴªŠÐ9ªðö̓]ÿOÃèõn8ßBÛôËÚ”bSÛæex‡”ÏùDOø—¸…ÜÛ‘ Öù¬yEMq54üøLîÑ^Nöb‘×öý—+ÿÇOÅý­§êKj¡ðÝÁ–“Û @G©‘¯s eÂnµÒˆAñi±î™(}½È¥jÕ›çý~s*Â÷‚•WtýÓÿüó?Þù.»…–_^Ûø?Ù›®HÂ<ôÑ|;ÀBw ˆ* ¹váWÑTwÕKüКF”jC^×®Gѽ†aƒ·'Ö.èÂÈ¡½ÈÆEf>þɽ¾¨ÿJ½÷ó"Œ_øRÓ|ü Lì ò˜:²HÆ(M3ÔY9nyo`Žh$èÉiø£àê3æóemêo?Á"¹„q(ÿ%X²¢Œ9µËyzÏs~sªÌdì‘{¶ÿå2]1‰ål•šÉ‹ ûÂ_FÅ'êÆMH =DBÞˆ„ç9Æâh\öc¢[ ’h;-è|@ÒtóOz5\ÈèɸB8îËíhŒ³œEJ¯ u%Ť6M½]bûiyÙÔ#½Fe~:)2ØÌÞb8ƒŒ§iÍÄŠUéËÜ6dö}Áïö YBôÝéUì‘5šçm’n:²eЈÈ;õ ûw’²Ë©ƒÈ1g³PE‚\¬%¹g›ÛPN!ë‹òÜp:úÏwüT4‡õK?z~Vµ|ò:QÐPæ)ѱDRÑ[¹†Âhkmñé*ŠØš]W,EÑë©ïÈx÷ÿË­â½\=¥op?U×µG¼xÀÄûFŽº4J~ùëÔƒÒæs»¿ÏáÁÎøÂ^Y”‰³r»#ye}n0y…rŸôŠ™Ý@…h"‚OPépÔ3.¿T½¹O¨ïŽp”ù¸°%j.˹̈Z—Þy­ôBŸÞ£¥%—QÿÎ;âêSyxÔõsø)ŽŸhrL×¹m ͲóÏݯúšª>&h9þ⓱ú´~N«9À\Œ¶z›\Õ×–þËái2W)NèØj?oU!‹Nò\V*ʉèü"zÑÆÛéÿÉahba\1ÚÞ{{Ò`­ùãO'r½†•ìŠðièŠ~a&ù&~0^Oaçz5µÞ1®óP)çÈsüj3”K†Ñ ¶Bi‹ó_¯¼×ðí‘ur±d=W3ÅùBá¹`‘I!™Š›ŸÛ뉡åïuö8íj~à”1²Åß¿ó *­SïÄß䄚dî…Í=68'·ï–=&¹¯Œ'„ ùFäÞ<Ú†–pi}h:‹ jÐú«}´€ü¿ýY¥þ×Ú ´qõgÜ0…¶©#^ÐÆºÅfå¶7GD>¯QF¬@[D>]Y´Í¶sÕØ@{|r“ Á}è3{®$0 åþ_Ó¶¡Û’KÒ{*z¦2Ýĸ³ OÄöNй6 x»?ÓÁ×T÷éÁ°ÒÚ¶«£ì%‘)990®ðåû’,LÞ‹®#Rƒº÷Âå_a®?J\ö‘*Ìû¨îï…EáJv·µXšS÷ÌþF+'˜²ŽÏÁúÁÓwFiÝaÓÿõ9Ë­IØ¡b¬Ï}»ÍŸíÓÄçðì–̧Þ$fïú’6ƒ$Ãß¿çRò!Y3Mªà!Ü×OðŠjÌ©¨«ºžTÓ!›{·ê Y¤ëœºÒ‰ Šó8GQ‹Œ/ zpœßË™÷Þ< ‰@–mM|ÈfWž&{”9x£ É×ëQhƒ¸õâ~yoÙþc´ ÅÞ¢÷äÞѯÏ-¥êâÛqÉ—>¡´|j…+š¡Ì)I'·Øv”­§³^XÏ@yõ&v5CTè>T¬§ßŠ žúw”:Qùyc—šX ª6_õ¿ £€êª½ßγz!I¾à}‡š–›¶bx¤¢ƒÆµÉs¯æ=ûœ:5'•¸’ï¡ÞÙ¥æ|¦hÀô¼–¶@ åJ=ñ9ƒFUÂá6ФµøÌ›¦ÇhvF'jNÇÍ[Ûm £Å«ËZï ‡Ð²æ^{ò+v´Úýfà±L†6Z% —¬Ðö±wÇ¡Uh7¶2—™4Å ¢¬üÑ19Ü'²À˜x¼÷EçGMÄ×%ïqx“ïŠjÉÿê‡= $žÉx“óPß]-4ó?,üý3rúøÎ™s‡ÃÊ=µ=cèàt!›”%€:2={Ž ¨ð> "ºN%t•åtä?àëñËÏi%¹ _1a:Ÿà*|tsÓàj€O_²'ÌݯîõÁñùƒ%ÓæÚ_9gn ÔW܇œ_BYT;‡à“H„L| ºßàVÿoŸÂGiYç.AÑIã¬hMRø&#÷ø™tпsK£ï>Èh‹†2êCÑå LP6Óh+ðz¯'^çï/Ú‚ 2TœJ†Šì±Ô=¥Pía”ðª²3.F @u´Çµ•xã½<ýÎaáÔ…Um @CØàïÊEh´¤îHÉ´†ψT•6¡¹™8N.Œ Ziv2”s ÍËý¹mftð;õü tÎ|Õ|3ýº×9~T7B/K7=‹)ô𦲟€ÁüGˆEga(ywæÜë-Ù|&»0Fàxä=§!Œoúý U½“3ÃQƒé0#|¬Íìô9˜s%vKhÙ? ÒâÞùܰ Z;©Ù°ø=k÷§éMX>gbà›wk¯Ïæ;õªÃºPŸZéqØÔeœ=ÇÌ Ûµ9¯šÛ¶a÷é‚MÉ=-$´ÔiõÑ\E¢Ý1Ò~$éÊ/*:-€d½Î"^:à¾Ù˺QHÅ2L®Ÿ4—§4{½ž›äPØp;2üˆø¦›‰Lõ¤dÏ“-‘åoHéÍ¿zÈ~­6?Xº¹Õì98ÙW«d¸‹ò*ò×±µ?’«FÁ'Ë×]dß¡pXõ%zÍ8ß%ýæ'J0ú¦R?Oú¡š„â(3æ|¢& eßž¾ ¿ˆr1RÉOéHQÁ‡u¨Åˆ/É«§oFåûv7·OÔ¢êì|kœ9ªÕß^ÔôÓ ^õAͤ3Qï›ùQK#‰SQ» µ×wRºÈˆQ·­c•Çõ¿YD¥iBÃáï-® 1Õ¥ßÅ“hj¦ÃèsÍúUcDÑ‚-ƒÞåºZ:¥f„ơէFÁ‡’hÃr»r½_mo„KH/Îü—ãΞ)ÏÐ1çLA¹¾.:qëV;ÆQ¡óãt™{‰}ÿ—ÿ·:+ã#ªc&ißÐ9âà`´Á”™(­áÃ4]-šc9r0uüX±¡$ôem¤__¥ƒ6_­ÖTSø±¤ÃtgöîÛ±ñ9§U¨IÐpùtí#T¹»Ú•»A…ó]Æ8î=.‚B¨‚• üURGTÜìÙ˜ƒª&+GÖ÷P—`!w#\šþ¥6 @ëÇ¾Š¨ è¤ê6ñÌ¡žÓdKÞ¡*Ð7°Ã8ëF ƒÎŸäM{·aØ„™°µSF÷û¬0ÀØçc»cÞ«0^~ò6Ï„{À|ÝI˜øuhðÙô7˜ô<']¨"Sr¹Œv‘„0-äÂMþ;fÔ½f“ö™Âìåçt{Á\ùò½¯›IðÇÞòtIXÌGÉÐјÁÂýté/üY°øF•Òjƒ–Z:fµ¿2À ï¬WŠüyXõ­ÏÝ÷ÊÖúÜVÒüaãhºæ¨ l‰+X 3ÀÎÁ¯WÓ^Ãîí³WÎ0ïùŒŽWýðËE$ºÆ§D{ý.’ÕY”°«¦¶ó_ÂýikçT-£$séá>å”zÊõÛÀ\²ˆyäפ¢Œñã}ÎbÂ(Ë%K”#²»ÖÒ*(¿Ïò„óibTº<&ºßÉ«ˆr\CÅÌé–t _Tv¡$½pAUƒNª}<¨…ê|aWÖN1¢ÛCî¤ÊÔlÒön¹ ZïÃäžü<„:o» KIP¯jc=ÍB 9 )ú­"+ªNõ¡)õ,¡éÂS4«KØÇ6?¹Ç#‰Ÿöý<´ôe©"êqE«¾!²¡Y´ÑÉÙ–˜@ÛwÍ/O¾:ˆvŒÝe}{^”JžF+t ]üL¾©ŒÇÚ®·‹£:ËÚ:üŽ'@—7¿ƒÆ•‹ÑõÉ2Aëè SÙù0¨€6³âWN=Å©ÔzÑRÒH!,ÿÅÅÆ$»k’}žAWÑ"ëÉ€jhU°¤™û íWÙyÝBÍæ®øy¨h²cé$u…Ò’¢È‡½Pô~n:Ö$ bb‹¬K‚ ÿÈi&“h(`=Ø|~sñûR'„2»#—^¨š©Tû3rÜèd¸Ç ùüä»õCï uõýC«zÐA• n¹*ÐEpyžecºßºHõÃÏŠ_ûüõW ïµ~é=€ƒ<âO6øÕR›60êƒ Y|ÌlC—·/ ÊÁ°-}|÷ß=}Ødʾ£ÇJEÆ.ØÀØõóÝ®½‚ñêu©Þ{Â0©Þ7”cX S; l5I`fr§!ËÁ~Ó>9çëï ób×­„W‰qfGvgXLéN;²šËiÙ·kI`å¼kó`l ¬î$T´SÃzÕ…saü°Y5£ùŒÕ¶wÿD—R.®ËC£cœH0÷¢*óî~$Rˆ5cGâÐj?Ê}ß‘dà²aΑ_HfÀݹôö2’7>à V[@ŠKò%‰Q}H¥iÊdnpi”ôEŸ²G:mž³Í9îHŸñà‹‡#!2|I‰úÔ‹ŒJ'8!SqöÂ/‡hd®*Öu‰dB–öº*¢S‡u6‚seò7²ÓR÷‰ä@yå¯IÅ›Èéâàñ0‚¹ž`cDîî+¹W(#¯¨ßãwO!ßu“Ëò€ü~ß^v£ÞY8*½ç?ÞúÓ,;‘(DÏüâºÔ Ó¿Y[¾­žæÔ†¶Ûs›ÿyŸà¿~Hå.¼1_mõq²OÓ¬¡Íä7CA‘$´þ¢¸:@%²·RVü‰„6uÝ3øÕ¡-î¦:ÏÍVh·`)>Ð J¢}÷ ó,o]â`!tý^ø8pz‚O9‹4@oZŒ¨ªþ:ôÏæ¡ÞÔ€A£žKc04c"tý0?ŒTï·uÊ» c}rw­žøÀ$ïç]ÓU˜~¯ki:®s—Ó±Ãy˜WkŠü Sñ4¬“KY[ ö°Rè{Ó½õ¬-¹oèhÅÁ¦žß@ÛÚgØhwâþ»Œ<·“"¡]¹…ÑÛM$&$¡±xç$¼GI%‘,yX!]´ ÷¥]0,èvEʶ‘ßÏX©FâKueÒ½]‡›ÜõÈ ˆ¬TeÈx¯œØ[œ™iiN±7ó!Ë[Û*?Ed3zõ.Yˆ9˜~+kuŒ"éj>ëâž7ãØ+œï¡ûó¼Êß(@I¸+A ‹‚îc´sFe(4¦4o5š"³ŒO¢Ø¹÷G{Qâ¢cáŒx;üê[dJ»'ް/ìùO‘NÝ/e³cãY'”ߛ̕¨PÿÅ«¥^ _~i>â@‚ʯÊ3® jkÅ×…3Ö¨.s¯Öè§bë =^ó9Ô<ÀöcˆëÄ4ïõC©ñ3¨Ó2Ûùù©êEŽ]©G9’Ax”ÔGA”á<ýþUñ”?MÖ»+[—ÑìÊëø›2¹h~ïžËÍ`´x÷3EíZZ6åݽªv­I‚5/ð¡®‚vOõ^?œ>ß»—Kå]EY–Ñ_ƶ†£ã[¹çñW×щIÈEÄ/r¯ª5LvüÞË¥—Ø…KŽÿ¯~Øy"Õ2o²³ *+ Ù~v uƒ ä¸WªöƒÒ–G[¬V*Jÿóœ4õt= Ôšv&ßÍ8åÃË¡Öu•ðÍ“òܲľyË@zò^e]ðf¢ÏŠ¿ÙR„O †ý´Ôo ÇWÇvôOäè*§”²ÙCö$wI–|ä8}[ç¾W ¿¥x \ †ÏKVµ&ôƒÿö)$ô_(¬à‚¯ÝéðÚ8Ìþ Yÿqlþˆ×f¸9ÀüV¸ÍÏ(IX Y'¾ËÌ¡ÍÑÙ°R}ÜWGØÖRþˆúÆ®ÀFÁ‘—×Vra[b]ϺOþNúøÅvh ÁúÖ¡¤$z=ôE:#I|É4ÎdÇ!ÙŶ¾ÃÒz¸ïÆÝ)­If¤LÊ!5÷Cê­ô0Â&¤Ëȹg4„ ¡ÊÉZU‘ÉÿÀXs<²$4ÞÊÒÞFvê™/94³@nÂÝÑyr¥Ø:ö @ïÒµëZ(¨1]ZëO‹Â³SU¸3PÔÄ\è‰!Šgò:üeÑÆ–Ÿ’hQZ±RÛñ€5Ê|YáVéA9ŸlZ•B[²û÷{¢QÑR”žU—•=NÈÞ83…ª?_³éD¡z°ØÚùü%Ô¥¬]]æFÍoÌíç{ŒQë,ÁÈœ23êÈô5é”y£û$_J_Ð…¹ùrfâÑo ãÞ\@c ‘ªã*hú2Š3ü,/šmŽÇ¶ùA‹ƒ Ñ,"OÑÒû…dsgZ•îrWü@.•±ëUh|8eͦë¿ê/ï® cfñ™vtâ´czxj#kâ“2Ôþ/‡J¸¹:–ñ‘Ü¡…b¿×èäåÙ})Ð.8<ú\‡HÍ}¤áQ)L,q³Wô@¯áÊGhÍ& bÒª„¦†é‘Èù(¨ü|él[ TÏ+¼.„Ê‚¯êZïByI*£Ý ”eÿ5my·—?“áêc?>(L|ÜKŸ•ýÌKû¢¡¶Åæ)çhrûÙÿwÞxÏsQ},ûA'é²îÔÞÿü.þ^ë˜>ôs©<}Co2LXÀðÃÀöÊê¯0z¿c¢QµÆ¥û£yÛ9`BÓþæÔA˜hŸ 4'Ù€IE³—Á­ßaòà «–›0å–á¬ñ¦µzçEæéaÆådà}ÿ^˜zÚÁBuæo.œš€?Wã2”`þŤôà(,DéI„ˆÃâ{'Y}ê÷°Ô£vÕ˜,VD-Û}GX òœáú k“[æá‚é°áÓ–ãM0[òÖþ%ïúÿów›nEÙ ~ñh/ìõCúëãÆbÌÈå•óI¥U¹››Û´Ø÷PÂKoJfä{!Ý·ú ùoª¯u™H €Z룾6(¸ÏÅŸ5ç ŽûÂä"€B-Ç z†ìP¸mçsŠÌùVË.£gwÏoÏë(n‘ åØD…!£zA¸ÀZ…2ƒ% TÞÚé¾F©Š1¶‰ç5xŒÉ—î}DÇ™¶C4(Ëû;ìþMC”]Þµzïùåæ,…Ϫ£üvme°â'-AÅûÊê„[u¨ŒGí ôPÕ>mRj¼ÕF¾œ±¼Î‚øƒÔñ›f,j†©Úiu5¡ÖÑ^æ@½xÔ‘üýP»Àõ©8 Ò£Áù“5Sãðhupæå$c4¡¡NžÉ C3©ÌNó‹›hîtì!ÅÄ&ZÄ—~=~-‡„ïòù¡µXÝɶºhã1YüôW8Ú>?þËfDíJ/Èù…S¢ý8±ÙwéOèÈ€Â?LºñØÑG§ ~T£SÌ–åo­ãè¼Ð|óLU>†YÌ0jIû ”e-5™îWî}J«Ÿ‹ä¥CšäÚÔ0J8í1ÏåI_åC‹U<#SÉ)¨¿¦þ’R¾ªï´2lxBùïŠ*áÀ9(¥8–5ö÷;|õ§8w¦_òÃIStM@>·¿a½·nuóROCa‡ÅìZ·4”Þk~÷6e|KN¢…åPO§ÓÌq~hÖ„o\ÌV*)÷ûŽA;i¶è×ÿüÿaß’VÎ&t¥†<ᮇžk»c¿n]…^l"t}wRØë‰³„ùW9áWrÝmQõ"Œ· ¨/†¡«á«20ì­ÓAvõ=ŒxÐü‘(€Ñp±©»‘­0Vß›eïÊ5Åf§üar.?Pê¸;Lÿ`g›Í¾ ³“•¤Áð‡ó(æö§Ã|iR¯ ½,l½ûÊmëK†TµÖ¯ÃòûòÀô5X=à7wy,ÖSU xga£!ÔŒÈP¶æRãŽÔ²ÀßCv!™"ŽHpÔƒGk†Ý÷,o$ª“¥l˜CÆg[?Ò‘ôü!ó1$=rî¤È î»2F±"”r+I#ªùHÍÐ6Øè³…´äÜ¥2´ßžDrvæísd ÖèÅ©Md$8ñ9Ùm™z ã-Ï!3™œxæx#²0ùŽ+EVIú|bd3cÞX»b‰ì×8C¿Ï#GÊ ké'äxºFÿür‹¸RÓuL#O@¬ïåõ¯È;¸4x¡ý/ò+<±`tèÜË©°¿TL–ÜÕ%âƒPp|ؘ¨Ù…††(^ïÝŒ“#4)ß¡(‘räö·(&.©¸À¶ÇkÅ¡ú…S(²íúÒi÷× Wo=˜@ÉÑ7Â>½B©Â8æÇŸðàáø^á-”±ÔŒ¾Ñg‚²ø¹½í¸(Ê…Ýܪ •F…c;NuÅ™¨ØãáÖŸ¢ƒ*ÃöVß®¡ºëß+¶7‰P#îÁÆÊ«`<òjøƒ@ j'(íünA=ª‹ì MwÐàVïzlŸ¶S\’¦G“Ðë…ß_¡Ù£Í¥g™§Ñ|–¦îÒ=´4IMÈ´D«Ï2#Ò¬h³/¯?èM ÚjÏ_ØfD»ó‚Ò®_Ž }É@ÊI2tø4b™ˆ7Ñq:ËMóQ:)3 ÇîyR©ßÉí;††{ÛEùS¢Mâg‡lò~ä|øèþ›»°ëýÙ. :5Ö®1Ë 4Zrõ1…Bu’Lvbd TV¾ÏnÑeF‹‚ßDAÉ–PjWÃa(–r ~æ^_Il¢øt  ˜±HŽÁ Xå4ý8NAAá¬Dh‚#‘+)É…RCš %~E¨Hæ/ýî™5BoˆîIÑ@ýrNs4Ù hœeY¢zà ͮ|«†nÐrqÖ?$ñ ´Þ.¹wPã´oóŸÓ±øo?$zÄ4•mÙœ!×:¡M°|UÖdZSØ~žúì­Ï]Ÿ†ïÍ…Öéö -•rh3"xǧf²ÇyÈ…U~hŸ4ø\³:*®…²]ƒ®{M‘ËmnÐÃòä\”ô$ôJuÖ4îù´ÿLDGHF 2=· ²€¡ød.á¿D0r9Š—©ØÆngi}É΃‰RM—ŠWÙ0­;8@ÑsûWþþN‚yÒã«Q;}°y•°¡{–.¿¯Û+a85»a-ÏíÜ»«­°Éldf¹ ÛŸCR<é `7l4ÐŒ[ uÃ/wB¢)™S|IÃHòæB=*’ä–ɱ?Á}¾ýë§N ei”RÏ/XZŠZ ÝerR©$Rd y8»ÿM!2^S½æ¯Ø†L#÷'?ÉD–èÅN^#dÓ¸ú–}s9(ôHYç‘s+­’úb)ò+¾°ÞF¾ñRšg~Èÿ—A,šý; Zç_uVÏßó£MáSE¹JKS?D…bÆTÎ1PÂhÞ-éAy,ã°PFÙ‘ïúhPž11gì×OҸ½ƒŠ±v×åQ9)÷('¡#בQÍtt~øþ™Ò^.=AߪMò¿úa›¸Ñá,¼É²Y¹(ЦŸ¦J–D!ûkÊFë°Œ'h4䡭ωqîÄ>¨yqra-æ-”[·Ý‰ âj3ŽžÁÛPÈAšÍ4Ðy$ß–ÅE^Ãg%N.ï‰ðñãhkýçFÈÞ}ÓÜ“µÙôµIž‡ Û#ßéé[!ÈîsДb?Õ5 ?•šÀgý$Í%«ÿö)ð1RØç^_ çLŸX…¢¿zž—Õ¢ÿ[r¥W„0J•O õJµ@¯Ì“×^O¬š•s…rbÇç#_ïLÞÍXTpœWvƒ¥¯%¶yi°â¤+'yî¬I¢T¦o8lH^2 í2­û0ÿsÔþª­Eûñ«#A|Ž’)q i kÙ:ÝØó­e%ë ’í3Ð/=„ûhãïþ Š”ƒ6ˆ7M‘ú¶ç÷”êB¤;ĺNÒΉ jCïLªIð°¹ÜÖ$²h²h÷ÝÏA¶DÚÄ|âläT“ðÍzùyÄcÚŽj#¿t"£{U ü"•-÷C¡®ØãÜŽ(òGþÂÊ´8ŠÔÐüy<€ûó÷¾¸„Roö[<ÚóÝ}¶žý¥(g!×åÕo *«‡tOQ£â!ŠÓÇ´QYóÜà_oJT­Õ«yª+Œê!ÆÂ®ò5¨ f^ ¨ÙSÊ$;€ZO]2Þ°@Ó_—?_ïC=§ME>4p-’Òhx„Go )V-{ ñÇ„c¬÷Ðt$ižÀ¥ÍÙŸÄßÌ%C }E®ú¦´¼þýx.Z5ɪœ&»„6Â3[¹mÑöÖoÑ’ÂÊÿr¨{oü¥-:~`w×¾ØÏ¸–(Œ£sÄuaAÜÿåðC|]Žq6>²§{Ö2r¤4›|ìGi¦ƒ?'ÓõÒõ³Õ_+c¿Ý{þVI(üÔ±³?o–-Ó5t¿”¡19¦ [Ê¡îÅ­Iƒ¨M¤xþ£*éXT‡3¡œ¿ADïNã78cê¡´å¢ÉåÖP(K8%üL%*f:ÄïmC-±ÃÔƒ÷EÐØþ„‘ƒÑZ=L–Ÿ¹ß€Nz”OLƒž¤å¬r6ÐïPsé¥7 fšÌJ¦Áð÷©”Üs0›÷Hmäp6Ìý¥»&Ú! BÒï\i‡ù7w®›|¾ ñ£ýSI°ø)Øîðž¿—ßX[ЊÔW5¿“ô°NÃ/%êk+Ï2äãz`ãÖôUöÜë°~¯U aGIüÀRK>ìz³ï>¿ ˆËölòv—‘ÈððÇmƒ—HüU‡ãq<'’êÖ·–5ßE²%5‚ z+ÜWjmÅ})3Xs)؆º ñŒz÷y¤X÷A’¤R;¤»„ Kî‹ß¨‰»¢CjÞ™O $¶RÆ Ë'þÔþ(dý;ót»ÙMKžkeGŽTú–¼rÈE”Þò® ¹½ŸØ ‹ó O¯É‰åaÈ§Ó ÂÌž‹üÖ#ö»(Àþü³ô ! Lž÷ØmGÁÆi32ª‰²?è‘‹ÂýÂ¥±Î(J¹¹{zú*Ф¨sQ·[…£Ôr¦fÈ  Pq“55d0Wã<™•^=óej!i ûøußq«”ŸëFýŠ›!ê[kh¸­íÙW‚Æ4R†a§ ©Ð –qv4{óùÍm@ó²¢Ë3‘h1öziåØ.ZQ þðx·× ʆÑFévD¢-f—µ–¢Ó\䉃hoJèëçl'«|“ ¢ãƒ}b«&äx¬¸€PªœÃ<»¯¼c=‡Ö烈“mP¼.} Ô‘Ìúˆ‰½ø'¡÷Œ€ŽZK“Öðthö™bU)U‚:^b¾U2;¨ºNÊÀo9åt}.­À·äøë:¡P_x^Å‹òü½Ÿ(tA®ZmÂfmÈ öLmk€‚û“îc&Pr­™°µØ *š.Ô.ùíƒÚ‚…%ïØ¾=΋«‰®²B _Öá²zohÝM§cÉ–†ö‚K1Æ›–Ðémó Š*ºeø+´¿nCÏ€¥È¾wÅÐ{ÂÜá…$ô•ÓÙ?¡ê‚j…Za£uøõØžîÄñŒ%6>ãf Cw²64~ÂpéÊú(ŒD nº§’ÁhSùmñ—ÿøüÏ%˜P}ªT S_äÜ÷“ÁLùªsTè1˜{Õi•òæy\’H÷)À‚©Ï÷•|€Å§çźaiʸ¿êʽ S)¬n ‘ÞË-€õgï»°Ùë–P¢;TB%2j°ká>•‰ÝÊú–’uHD8‚‰us?üfäE’gÅ.´wt‘ts½ØvÉoÄ™\¶òC á—r¾’RH9ëGÞú ©ë¹Y"¼Ø‘öK¬þPŸ+Ò›ýäÿNàˆ z‘$*J—Q›ô“‘2é¦PþUCf AÒòÔ£Èâù”Ì—YŸð°ª8?@¶oÛ¦½È>Q½Ôu9Å+»5)"×%}·¾—ÈÝüÍ^3˜yužWxù}C¾Ñ句éÈß¾æ~ˆ/jþ2ªãy,Î&¿T‰BŸDFÊ8P8gÍKÝûŠT„@ÖŠŽEsUº 8mô(_xJhѶ‹U5àþ°¸™ÄÏ•x`üxhPcJ_ˆñž@éß‘½Âƒ(sPYfó³ÊŠï¦xN£ÜÅëè…¢‚†5Ufh*¦šÔ~+9ƒ*O³¹ß”¢ÚÌ¢xëA{Ô8z)Qêc>‘nÈ9ƒÚÝ^†£®Içê›Ó¨ÿôO¶Bq¶Ç”Y7 1QzŠHšze%Jÿl½eTVÑ®„tw—„ ¢ÂóÒÝ"%"¢"Ѝ¨`b!""‚AHwwHƒHw—t~ìócï3Æù~¾?Öœc¼c]󾯱æ\+t MæªÚžI»£™DªÁ=4w5Ðúð->d©¦CË´ó¯…ÝÐ*ÿ ¡ËO=<•¿ñ¥ïÞ1´.!ª)ˆ§Û<§Ù¢ØÑfS¬j¤SíÄ-(9(¢ïƒ*bÃh%žoyŽvyØRgeN'ÀÚLSbQùsh~á·ê õ7/ß^£õJZºÕ{PZôMíÖ@q¯H;>]ƒ"+ïŽ %È¿ß#û rÏD&¿?Ù¿Ãüg– [ýÊñˆçýß‘=Ëú1Ç96r#«Šê Ùÿ–B™AOß°ãTQ4—BmQVãYÑ%h¨.;çÇ M¦J’7ßC³‹PÔ'ƒhñš’JÌ*†Vo -™À;ÿ;o¸‘ýGb(Zß}øãxà,´¬¾ïþ>˜-ׄO,ÚWA‹iæÙꟕûžxŽkÓ\Z¶Òò­Ö@köÊG0¸ ma•'iLk¡=çâáËFG¡SøûIÅêЕðôf½1tÿb¹ä¨ä=ã#/v§ ÿC䜛L šn34Â0ßÞHM™<ŒŠ‹ï±4nÂøÙF ÕiW˜ºç÷U f"}{F#;`þã\öL—3,Þ4]}Xóþ)rÒnŠr¸ÝïT#X»g?Dú“6ùKZç `;@q1ïD,ì»ÿêË»< oòÎûh16ÛÏ|v@â'%:±[ÚxÐ4Ð0—ÂÉÔ ¾2žG '>®ÐLB¤ÊÎzÕï7Œ´jÌuÝ"ˆtë=¥º×Ó‘á¯ù§šÏqžaNÖR™ýÓ £*Ï!«¼ytPË2²í~n¿¼ƒ‹vMäõ/›¥E†Òð4ò^œ?wnù–øLˆd\P@+pð·d2 D‰ó© Ãe13’("±ëßeÉ€‡…çítÝCQÜègôBƒ$JÄôØNÔË¢4»î‰i”yJÚmX€²;仹?Þ£|rzÝX}*¾×ë/Œ<‹Jßâs‚]Àã6°ò7 U8'z(œ¨3n|áŽ|…j'<*¼–wQ=E8^½#|ßCþÝtBͱmæ±k†¨ýÃêhê^û:O§„ú& j†úwÑPÝêè_n4Ö¤½[÷7MBN'ÿ ½‚¦Ñ·ê£YΫö«“hÞK·À} -iˆe^ü2E+}®é1û~8Z:Xt­‡j25ӣЙS\ãW´~:³®öôŒÂ_¨Ê÷ýîÊùá~/µ ÷©þúùáï™Át|ÄØ{!wƒ¿\qóGÖ,‹¿µcœðïæڡü¯ÐªbÇ6¿M¹ÏÇ ¸<ƒ’j?¾´+šPÀÿ®¢È gßãŒòY²e!órã%H+ñ¼ã¿K¿d¼«ýìÖ %€P·ñ:3¤ˆOL>-¢‡äÚo« ¢}b³ 7©y=$Zd\Öµ§f~ê¿ãds{ZtƒÜ‚Þà•kÞ´Ë©,ú¿ó¦&(“ÿÌ‚¢O„4¿-¡8 †»Dóã~öd»y…JMÖô÷ÌB)ÇXLjm=”ÎåWN¼;e£#æ$í' <§0<ë­TêÎ}$o‚*¿‚^“Ũ1ë,£½µ›ßŸ‰¥B›JCm4 üfüÒGAM/â[/sC %3/}ƒÖhw“ƒéîÐni•{¥:¨+7Üà%H¿-“·B·˜ ÏòRÝ—%0¦ª*}¾†¤$éãçÕ`ø7Á—’ 0Ïú|ÃþŒó 3Ç\…ÉsUF–.˜î ‘¼Ñsš<äÂií°p‹ä~ÈUXœ™po†Nk}]1°¼|xž13 VS^Ê›pÃúçèí·Ùc°9ó,üÌÌ#Øyí•izù8h¸Læ;'ã1—æ‡ÔH”­]®öI" 3Þ˜ "éçtQwq$Ï7Zü"ŠT” †ùg‘&-|lÍî_@ÞûIdh´ò|("‡LCö¤ä-.È*'Ò:LJìE|D›½ýÈõ‘ôQóåÈ[ZíÅsù#:u?Rô¡ Ï3¦@.2zÅœú…1ŠŒ^+¤¹ƒbþ/þ|}ét—¢QÚ1ôy0ç7”•ʸ~ºüÊsö,?AE–™âŸ)Þ¨Äuç•§8Ïø§N«•†*7LM~DU#¹Î¡yWT[¹lº<ýOæÞ¶åy…šQ9•tPû Õò¤Ï¨›º°Auÿ*êwÅ\^Ðt@£ƒ oÛj»Ñ„ÙÚ)/>M!Fj¥Í½¢ÞžAóP/ñ3såhñ÷œE3ZÑ,Ì›ÀSÏ¢âüyRÿÇ¡¿¡|J6Úþ¸–ó,qíY¼’´îû!¡WKÅÖÿËa¢÷m­ 7 ö™<:frm…‡«ÅÆ-ðˆ‰W ’Å õÄuÃ(Sx¹º—ü¡#MÛùÍBþo©¼¡ÞG#rî×?_t*\û½ê ÌÙ=9a©mŸƒ9¥³_¡ØxkÔ~1жttíÿBñO‰,C§F(Ý|÷B`æ2T)œÑdR¡€m]-9ùoТJFÍÉ í›G޾» Š/sL’9CoXbŒÇí‡0ÐÁõ›Ùb†©,¼¾‹†Q£÷ B)*0.ØWú:Ü&P}ï {Ld˜¥¿Ï#¾LÖ1ã0)iMÀP“ib×bÀÔÓö°³KK0ýÅ*ÆáÌ"ÌüñM½<sœ vê×÷óªƒÁ|ý;,$ñÅ\õ§ÅïDnqÁRÞI¹ø7AþÊþÓ XQˆµß„Õ7?-Ñõ¬J’õ1“ÃÆëPâF [ºï«VßÃÎñ¾gae°çrýd —-Œ­>•R”CBÙš…ÒÂHôþñ©’°¤¾&VOƃ™Îf¿¾"Ùí[ 3NzHaýì«ÚÒ2RN§ˆ%Fš{Âg»7ä‘ξtö‰ÙÒåo“=àB†j£5Í—ÈDžyrÆõ2vdI#Ë;óD6bd"÷HÛ÷CŒ-1EŽØK÷‘‹Î¼ŸDI¹îˆòÚBž%§4ýã¿‘OîŠÈüùä[>_Ç ¯‚üÕÌ'ÖåP ó%½ÝÏ¿ªõ§3ŒxhÌ9¿ °èC¥ÏÃ_Päέ(Ìx-žUu:<¼C"䯇âÚtïéá‘_Gn™8¹£¤ÐíˇDÖQêU˜Þ%ºJ”¾}Pߢe„/½Ö´ D™~§/§ÆÞ l–±rÊÕd”K¾ñD^-å«4±XÍO¶2¦ÞpÇ£{ÛÛÂxœF…¬¨QÙÞ€ò+"Íߨä_/QuCXDô ª=*œÌµ ó¨Å"ac´…:lŸÔçŒ-POfÓÛ™U ¨ ç‘£átĨÿ„2·±ß:¬Fˆ&ãÙG<¾£é¯[¸?šM¯cs#Fóq¶½ge´è$Š2šDËÂ%ý—\žh{(Àâ}<ž *«ä¾ÒÖ>ÛOäÌñôC¦­]ëD´yýp±ð6ú=­è%ÛuA‹äxåcGQÄÆëð®OO~±M > ƒùuR“ãTÐÖH4MN÷~‹]”/zLU¥Õ_»f¡ü¦mùOG(‘ú(Xrƒ Žë=T9,ª7É6Ë÷óíï‘«O ãØúhw«=dT‰æh'î÷Ô=-å¾Pл›i'¶Ÿ[EÁ+hUÎÏ¿úÓ õäé„”Þ÷¡I^†aýÒ3hÞø²v-It¿o.NMnB»’äÛµÍ8èS‹ú±â]÷»tÓ÷=qçYl—"ü=.›zùsô܈¢°S€Þ1rù‘‹Ð﹡{Nè Dߘ!§€Á¢}„‘a(&œRµè8 ·Üð°Z›„QÉOÁQË0ÖX¢·A- R.ØùÁÔ'ÑSBA¦0“²à¶ä> sËJÍ骰ðE½ï7;!,öü^Û°,…Â5¹ua°ì'¤šž«¬ìÍvFÏ`­#ß­/µ6j8buÔí`k`nÝì7ìRï„uõ'!èè¡N<`tPÖÂL ½º¨îæ#Qî‹/œËÒHBŸL-¹¶‹Ÿ3÷¤•!‹z))÷$¯œ¶T—>‚”/8]çjn µSwÖ̵WH«”LÌyk\‹Š·J}î|ÇÔs)ï± ²çh·Ao âjJPÝË>T«á™Ö«/À“Q 'x¤Pó²Ä]ÔŽ#ºÐ9€ºßΦÓ=x†ú þá~Š¢aÞ¥ÓrÍDh7h9*ÿé)Û~Ÿ¤’&£q„ÍEÏT·zhIÜ»#ª­nç´c2¡MW½ÙŠÊÚÏRý1yº¥Vî0C—š§‘?t+ZQü“f‚—cZ·™ú©øƒ¤œsaÄœÂóI5 5º&øÔPÀHË÷ÜÛ³Ê0Nd+ZxìLz³ð7›ÌÃŒü‘²zc ˜—`}š”A ‹JâÓ ¹Š°´ö9¾çŸ,ï$Ö>ã+Ûÿÿm¬.«ÃFÒšœù4lŸ™P¦¼°{ȳF{°f±@œç9»‘Ø™¡JwÕŠœéVÛ&E2š<ó²Ô HqäÂHvêáƒÆË“HK{èoâ]¤»¨ò¬ÄÏ[(!cÿ»Ô"Özdöb¸|õ.²ŠJ~&ˆŸA¶ë‘9G)cœ¶‡TĹɯHid"¯U*MŽœ?òIݹ®G€GÏè«ò~EÁm:Ï4PH£Z«¢×EhDš1dàáéèÒSQ\0$–|Ú%n„»ׂR»_ucO Œ³òI‘¢«(;~Sÿ¥ÊÇÈßs7’GÅwî¿B¥ÄÏÄ{ŽxüOÜÃ;L9¨Bÿ~tRhñk¿)·ÆªÉ¹G˜x/¢ú÷rÃOööýðøó‹öŸPsñI†½j«ŒytuƒOÿy‚úž?µ&¼ÑÐÞ}‹/‹µ=àC“˜Œlå¥4MJ%` E³2ºæ¹ŒP4Qù²Àq-*‡G¸¢•ák¼ÍǧÞ:1pʱ¢õÐtVdÚ(Sj&d m”$qUÖ2ÚÓQRœíìC‡ çBŠ µû½T“PÂPçÿòÃúÔÊ\|D_Lq߃nÚsŒú”"KÃgqÖUXZÎR>Æ-‘¶çº®<„ZYß‘CÂP¯ašºYÎJYÕ¶iûëAAüÁÝûÐü΄Ò‰¡U %úDA´5t\fÕÚç6¨ËÞº*™)Â_éÎ\–»ÆÐ;XÁÄÀ2µò= Ö;z  _2ÀÕ/•0zl­Z»0ÆÙýOO ä¼ ÍîWS˜v .´ß©„Ù2¶çìaA¦ì¥»Í'XŒ xyKþQHŸßøHËÔ ›{ý°*߯Ì'–ë ͉QáÞ°iXrdù'lîtÉT„½¶cJæ’xÀÿÇ™ï\Hd0Wç@$ ò*#tH*]SMZÿÉu¹§Š òÍÜ©¿ÈFVèéÆP ÒÅË5 xô ƒ—ûdzÈô$¶æ(;'²TZøÏw½Bvu–7Z¼üÈEí‘ù;ˆyEM¢ËN0]a,¯Ýrf¶žPùDˆÃÜ1± ¯“Óaþ×(iž³°™_l‹¿x„þ …¥²Ê¯üÚðoþ:×ùIJXQ Ò ý«Æ¦Éa¦ÊÙ?øl|f#qå-‹ì¹7N°!ýʰgWåWUó þ¼]g\FBNkÉ)–$ºY<Hl…ÄcaÆZéxðnP¬¤Å:’I†Kº Ñr¨W#RnTå>¹öih,Œ=g»Ž—€AÈaéOú¾åQ>‚ 7»ÙsÃË‘1Aoü`m2¯¿q7FñÊâ*%d½÷Ð'(„Ù:•¾e^CÎðÆ{È™Âì<¦ãÜ ‹úr×'rSí±ÝòQ=-ÚrOB¾&ÙÁ•Läÿ¤ÚÂù"Gˆk,êQ0mó}·»;š¿Y±4…ÂZ$î=(òMƒèZŠ®3éN{îs&WáÆ”â÷®†=urÁ#cq½õ×­QÒJ5¤ôÚk”Ê)˜þÒÚ„Ò¾[)š4U(#&Â"€‰(Ó¢÷ó1ÊFv{^Ÿ@9ÿ*§`]”_™‰4 AE>>r‰ <:@kÑÑ^‹Ç&nOESEeiT¹Ç…ð³²Lô2ªþâ¢ùHÿÕt䪾ìÁ“26Ôq€š¾àõ÷ùEÔ¾’C“‚º²\ìLcPŸúêÛÂ~_4HË´5åˆFŽ51iþhB½’6²SŒ&såÃ] hÚH“»àŒfßdøy¾¾CsO ‚fí“hr]œ.GÐ’HA„­^-k}YÊØ U¸Ü+Ûóìxʃ¿éà93´¶ ÈÈíD¿Oiê—ÇÑ|¡ÝÓx˜…¦uoy~4F"oâ‹ÛK0ðÞÝ,Á)Z[Óýðý hpÝU¡|’¼ÏO°HCÂ#(s½Ls‰ì/›l¥ÝÏ-/Ξ6‡ýþi»Òõü)dØk]dÝ•†ô£‡¿ñ„ôÄæƒCIÁ¹ÁhQ|üä«K¸Ž†=€’TN‹5²¨¤ÕèLekÚ+ñÀôt_Ÿos —‡¦Ÿúkâöû¨;<Û,…6‚ƒÅ&ß@{„“7­!trÚ»™”)ï{âtJÏ7UøóËŠ\SκÿPšñ]¾=Çsðàù~èÍ™^ûçwú=øê bnÂ@’~%•õ &›squ\…¡ÍA±*19ìo"Q £Eš©C¾0þÈe;ö×K˜¼mcœñF ¦ïŸ$z¥L ³I¿ÎØ/°Âüÿ É¿ X–¥­“J„%gµë¿ð/}ÛÕü–¬Èš}’3…ÕžS÷ F÷ó*³õ{íÞCØÌÌ•‰ÕÜ…íšPÂCu°ûïáÃ*¼º^y…Ùüܤ´CÂûñÃÎH,zÞžqIžöj1îçé¤éZv$‹¾M{ÿE9R˜p ×#§ða1Rw±Ÿª¶QBÚ„f­’ *¤«µ±ø«²ŒôU¯~GLm!Ão/­Ç“ŽÈ8ºDÀ¬ŽÌ,FGöE¯h˜a£YUˆØðv![pxôrP±Sµ§ 罃|=ÁÙû3ôü|. OGÕ{æXäs½ÔÉKçüî2ùÎŒPà²þ…Ь0´L£H»‡4ø_œñF!½Wל]lQØñR½¹ÁŠø‚junŠÈåÁ»#¢‘Ÿ&¾â¶›aלÄ#‘i¾uF(i^èñ÷PÔhÎÈD­LVÞ‹PÇKôù™8UÔš;Å|4 d8FɆ·Û-6Õиáõ³§‡/¢IǽŸuhš—¹0C7ˆf¯ŒË&î  ù©ÆÀQ¶hÁ6,iðí3Züµ ^UDËï$»•¥Ihõè Ô¤ ž:äZB¾.¶”ËïÐR­^¯†¹ˆ7ãïW,ÂêëWŸ‚-W¡Mõiæµ'LP›N‘4HzÊ'š:šY@IõÓäìåP´%ìYøòøä‹µ[ÊAçÀ«SJÉÿ9ïËú:x{ß cœ2$ 3|øÈT…Ã>Ä'ÇÊBަ–ÆébB(<±GèÎp J#,9éõCåY7γö’PkYV³v¥óhÿ`þÏû ­ï±€f£÷3õqÌÐr ½¾}eƒÖ;¯sYËþç‡Ô/ζYC«cØ£#§¯ì÷jµ/a¤G yO}8ÅšËÏîj_Ù‚æ>M}Í ÅÞ{ðÐåbhåm¿k²qZ7ŠÎ|ª¢„v²Ôç yiÐá`û-7u:;/><®ð'÷]¢¯H üy±;_õú¼c/½¯€ìxB^­xº×~C¡qF¼„ný¡ô±Ø ê¾½0Éž’·íq¦kZâí©À\¡ªÉÕ×¹°°CÒ?ßK¹JÇ¿„Ãra‘ÒñWJ°FdU[Ëv6¼êc[ÇF`[ჯmˆ ìq$fè=§Á´}]ɵÏ0:ÃÃ7̉5œ5çÏ"ÉŽ¼KÍl)’þ;à{ Éìô>X®#•Žåº>1ÒôÊ–“ICºß^Wý(¾!ƒÆ—¿aNÓÈØÄvK¿Û™¯Ð (²¼DV.òÇ£È6iz99zJ'ˆ‹"×6¹®¹2òjÜR¤%¢C¾nˆêu GQÙôTºH %;?Y‹BâBçNÚÞDá9Ó'uMÖ(Ús'®s­ÅÖ½¾ ’?B u –9Ÿ›(U›“tº6 eôª¼oÉð lsO˜3¸¢|HºØÖï T|Ý?|¨•Rßš\w¶ÆãJ6 »Q…Tk¾j²1LkZÕįÞ&Aõ/¤OeœQCeòA¯vjnSZ²éBíVn2Å?¨›DÁ÷gyõ#ÜŒ<ž=AÃwõ‰‚Ñøµ–Ô‰‘'h’J_ÜÔ'„¦9—mþ¡Yý 4Ÿv=UšSŠ–¬þüß|Ÿ • É[Òº }?ì;kñuz¿—# ’B›ãå¢)µåhÙ)Ú~;íi çøb6Ð!pm6îã~/UØìnžþ¿ü°Æóè¿"|D“¤2·…†­,Õw­‘yxÒ«²¤–Œ%Ì3‚öï_›C+’ŒPáÉØ©au вçÑÓUB^?w€Ð+Èhãr…Œc³MìàW‡”lNH?¤JþJ'H2Ø÷BïÛ×"á§ ¬Õ›†WTÁrõÑ üL±V*x,þŸ}§á®ï³áWá\ë¥ÿŽ“U_´¹¨[9_ìŠØÎ@žœË/µæ¬ÿÎ[@A¿ÓJÎ+.qtzöûïà<¡øò¾'r<ºÅ>ÅÿØ*B •òÊÈ/(iÓ/c4%…Ò´±’‹?¡ìÞ†­Ò ÀþºÒÞtýšTÊ:«J…Þƒªnbߺ§PãzþBÙƒp¨»~>Tlü048 Ïü± ߟÿšÝÌ„fÞ@¢;·ÎBK¬ÜÒõ*vhÓ²Wðàx ‡ƒÜKÎB—T[§¹z7tWì¾[ €ž½g&%ô¤Ð_Ý¡•Ó”ƒ—>’¨wÁ0‘¿®¯ŒÔt å­Üçv±©X0&² z§jaª÷•å ÿ˜UcÔ:h ó½DÁ2°hÜÛ•_ø –R/Îr¼ýËü‹‡tIa%Gêäi Xó=`—tŸ6’f/mwÃöñ‡«däa7ö“¤Á›žmv›AÂ)ecž–§H\÷#xòÖ.,é¿y•ÉÚg†#–ÿ %Gò§ßR:%±ÎãR9Ò9öŒ&¸€ ÂA%ªéÐL ó™&d9}ûeé²UPó½v<‡œ>ƒÓ ‰Èó¢«ÏPã:ò­—µ\ùø~Ÿ~ØË鄇š»-ùZ#Q„«D¸œ4 \¤?ù`üÂ¥œ”¦<º¼¶s e¦rcäÞÔ£ÜP…¬'íuTèNs׿XÄ£-/æ=¾‚Ç_ë%ÕnB•üùX T½l7Ö8•³ß?K~{í£í}ŠJÔ¢;}‘ ™u$¤+½£PÏÂæÕ—>I4xÕ¡1n„FINFä‹’l”šº‡þºef¯‰§kµÐ<ßöðüÁ´X©zi¢l‹V'îR¿ß¢ÂS$_ØÆþÇ!qœ?ë…¶±<Τ ThÏðIÇâc:¼P9EØ—óÿr˜¨Òâž>ŒÁ Þ´bRh=h›5l¢Ž¢w’‹ž: ‰$ÙâRd¿V2 q.gº¬ƒà·"«å91¨•´1¸¥•isQŽ dP¶˜ì½©JiEš‚ù¡XCÞ!tØ z—VÚ¼Œ ?‘1Já÷](x+ÇçÒ”°±X™5©BŇ Û‚g¾Bý‘¬Ÿîìç”0Ð[Cûœ³èø³eœþú˜nò½ƒBÙA'ã`8PŒ/È߯èOÿòJ… ¶þybÇX˜TŸ ÐS†Éw9óÍÿtaòM^ôM"˜L91+ù¥¦ÈÙo‚©ŠßªŸVZaz\»RF“ f¹xÖ_„9«¬¾*® ˜¯–¤Òà€…b빟RGa1/Oà#+-,ÕM60Ùt¿ՎïWåŸÃÊÉE ©'°·Ptn™ Ö9‹åH/ÁF’d=C§léf–X5…u}¥A›?°gÎS×ï‡õ2‹HH4æ6°s ‰ŒwËI³n"q¦õsá}”ÓWš×ôt4Óöíæ#$O>ç›öƒ )?ü='|B©£«0 ÝGÚb¯+Áí­H·i"&·¥‚ ¼ç• æ7‘Ñ ?€_¬™;ɺõ_EæÒcí|ŒÈJï¸{‹Ù®Ö¿];ñÙ;'_8‰œÆSUÖQÈUo“ ÓÃÈ£ÿúwŽòÖ)¥Ðl‘!_ÂÞú~!ä÷ÿ(‘(àçXK²}ã%ŽJ­þÆCë•y”—Qø\@uûŠt0¸|<Ð…‡¥N˜_ÿÉ„b®Ï4ˆ^K¡xrý9BÝ'(ÁÉ«¥ã­Š’~ä…ŽYb(54ÔÚÒï¬l :e$FÂ÷7 LMÅñÙÛ(ûÈàŽòM”sâR›0=ŒòW¿~¸oÛ ÛW¦'Ùñh±É÷”ä«x¬4?”«ðÄòɲ&^£ÔÑhÁgû|Ò¯R{¡ZƒX„øŽ&ž4ÔŽ4‰|«Æ/²Ê Vi[¡Ñ*ê|ò0²bB=ê—J6 Qÿ^ÏÕ™§h0{· ~Ñ¢ÑEÛ3'¨SÐxLÞ&Sü(š¤ˆPÙ{”¡é]uƒ‰y4cŽ=k|ñšÜrþ–<„æNše½1hA¦sárPZ¤»~Ê @Ë‹’±4WVÑŠÿÆÃ»YGÑ/3ê[cãi4—%Hqy´…‡î³Ïev!!ÃyO£Ž¯Ð7"9õ'ŸZþœôäñº„ÍSÏL ‚Êá×!#ù{}RJ?ä~µã½vŠcÜ9Ö›»¡šÆýŠ¿óÁÍ´:ÿ=)hA³‰û,r½ÕhþºÁÿSë:ZhÜž~x-¶¿‡Xz ¯MÝAÿj6´¨oÓ¼/ʃ[¼ä÷™`exáÝJd"´¾K«Öµ…š6¢ËPn™2̧òJ þ¹<=X Eœ¯{úÌ” ?až í‰4ä^v*RoûÙî·õ_9Œ@fááyîÐÛQÅ#LÿÃ2©3×TL¼ ûôʲá~ÞÜ\±çJª„R úc¢ªµPÉ—,øƒujùjªJ_™í÷ÁºôS Ð$„‚²Ð¬ÞÌ0bzZ]ù„¸5 õ–|–·ýäÿü°ÿèø½hÕbmgxvZn°øÓ~˜æ*SÇàÓyÐü «Þ·!š£iÄx?wB õ®ž°°2´´j^´16€Öø³£ -ÅêÇÒ hßT8½ýµ:¯Øøº›ÛÀh7bç}†².zM@ï¢pUFm ¸lT“ÁÐaU¥é¶,á‘9~¸Æ´<³ÛöùÍз #‡é3w^Hv‡9ãK\RW]`¡¤¿íóG_XºßT{“z –}šãæ÷~Âj•9ЦÀ†v ‹ùP lSê5%gÀîªFU$áO$؉ÛÔy;„ÏÍCš‘øPFùÛ™«HÒJöÏ´ÿ>’~ Kæ}ɳ¼Î†Ç-#…îÓÄwH“ ÎÛŸ9‹t¹5qQÈ Çeãþ ‹?*uEL#ó%(üЬ´#&lz‘­/^É®A9Zn-èYE®¹ØöÛr×Wö˜½sËäk4¬Ñ»'ìy¼CÁÇÊOL MPˆþ±OñŸPn¼w@óÅŠf©è}>>Žb Žß•EâQ‚vÙý4J…6ÐÓ?&A³œÒ˜F”Í×=FÖ†ò~rݾ&#¨øRÌsƒx•2ý>ª˜àñ>e¢û¾[¨¼½²ñ5)ñyv×k_T¼¬»õ¦Õ#îhê«Ù÷ðf²Œ¨uðÍrê1:Ôž Э“•FݺÜó¿/¢~©˜%™€?ùi³£qÖÙçÿ&ÆÑ¤èJsÍ#4­àc%‹6A³öþt²‹h¾ôžòÝiV´äÒcO¿VfwÇ•F\| #§³5F¶Ã˜´­ö;g˜PÖMl¯8 Sö 3Œ 0SD=Ù“üæ­|\­.ˆÂ"QZÓ™,YG{œÚïÉÙíB5o¤aEÅGïu¬nÈPåÚ'ÁÝéÐy’ƒ°õ’˜yØ@v/Ó’Ó4!Aƒä½M®|$ô{ÞRϱ‹ÄN<[ïHgð Ù ©í+$sÊëñúô )b®ã§SH-%O?·°t¬Ï¶Ü—¾åÛØ… ÈX)oøúë3dž wIº†l:D?{¢¿"Ç’1_]}7rÿ;Ë%Øyù¾æ²tŒ° Àí“Y9éðÐüè§ž(œ}éOÆSm<|ª]‚n?ç˜ò”Js¿A©zËÓ=9(S­r‚ïî2ÊU¤÷HGŒ¡B~hÍ[q<šö™Ð?{¯¤>Ñ9ƒ*»„yÙPõîâU GT×¹B¤²¨¡ÔÝæ³®‹Z:JÁ×\_ Î õùkã|¨÷ÒîÚK4è᣼¦¤…ÆëJÓãõhâ3+0Ç)€¦/Õ“Žg°¡ÙÙè›7Ñü·þÅ7shI¸‘°´¾‹V'é? ÿ„§^dóêÝþ‡Ê#wrþ¢mô­]úp´§ûùÎ÷b8:ÙTpL³ÿ¿&r?$=òƒ—=ùß3à©Â÷ûb˜ÂáÏ(³%]è†×=©ðÇ0PÙUñ(þ8´_gÎ2%邆„p'âpF¨¡Ò?ºeu *ò Äûøº LáŒý¹{£Pâüx`OPŠô~;¥8@þý…@ÇŠÈ#¾«¿é¯y„}‹ù¢P,Ü‘;U*åun§â–¡îóÕ¡G% ¹AÎêµÞ*´O<ä+ó€n¶ßêg^BŸ™Ìö‹e4ôuín<õ!ÿ¼ïlÀØÜ81GW˜xëøL¥¬&óùœë|`ŠdÖ@V²&';t¸lé`rQ–QsæLÉ}N÷J'„©1¦¼5 ˜!WµæÈz ³x»‡sû+ÌyhZnÌ÷YçM\j…š¦FÂzX¬°æ“º÷–Ú¨–I¯:Á¿]yχd°¢oÝÃTm«É¯—=•Â`]d“³÷áØÈÓÜ7ÓjØrÝ:Q ;ZÞ<ë=]OÚ5ÁZ$(l¬ø} ÌxÄw—!ÑåoO]_#±ïùººBH²×«}ëC’Ft¤]¨Œ@r›Ï™§RHylž²æ`9R˧ˆýìäGZõåÌ–Ùz¤Ke/ÑÍ5DúÚmM)d˜ó8ÐL\ ŽÚ†/Ù:q2–3 Y¾©]ηÚ÷ÃŽ>g‹‘ýFÖsé 䘻þýb=rÝ ÷‘=…Üë‡í¢Ù‘÷Á…† äók ÍbCþ‹ñ±Nœ(p­÷¥úDÁ¨3ÏîA¡¥¹Ÿ}wQøíˆÆïC(J‘±÷ ê!Ò^Ÿ¡9T»âíÍꚌêíöCoßÿE Ç¼åØ Ôb]¸·§{ µ[e *}Q—:¹gÕÊõNnåÎ}G}¯Ã;5®¡h^g•È;€†óRâ±_õÐøÐýé½% 49{š¤/—4<_CSåÌE¹04-±rŒVàÙï§Ù vhÖ@_ýÍíNÜa¹æ³¶*iïÑïw0µL¦šÝŸzÀ׃‚TT.-ŽHðµòITžô|¸'m—F ÍýÌE‰qîP3#føÅwÊRÙ¥âLâ¡Äº™2µ y?—òÏ.p‚ì¥Í*ç‚!ãá›­Ûß!M•KeƒÛ?ïžg_ û¿îðÇpù™Bº h|¡‚Š€Öõ›‘P$ò¢dEQÊœßç-†VC•Bh¦ðëD¨¾"£ôÂ~ :né&ñk£[ûýôeæWUû9D«ô'†Ú¬/¤…õçB{¨/©¦tÄDd¯ÛÔAgÜ`×óèa¿úãbtc³%“9üíxzÔ¿LzàG+èp/žü' ôÎä¶œO‚!^ÒËkG`8ÊÈ[ì…6Œ~|ÇëðÆÅ UÛ#ea’aBº®É¦ùâ¼RWÀ¬Šh¦g8Ì»Ïx÷VîÁB¿,[ȶ?,Ñżó€Ëå›™÷{çø‹°Ã†gaõfjÓÝ*Xw2‰Õ±-‚MÕª¯ɤ°­ÐyK¢ÞvÅ{UŽr!«Šû…”p< ¾{Mãä,Z6o÷¦Q!Qˆ«O+^Ï_"ÁƒVÁOuV‘´ƒý2ÕàC$w ¡:̃”4ÞWÖÓr‘ªúñ3zN¤‰v úuFét¼BN„]Czƒ¿“bžÈp)¼÷™¸2†«ø©nÝ@¦Ž'žu¬ÅȰéW|ñ$²šúÛ6?A¶¸Élb-gä2œ¸ýÉ9»Ž;ì"wë¥çÖ‘È»—Â@øù9λ–A¶±Æ/Ûn(°~ÌÀÂ;tÆB.:ã¡&¾Ó\í(ôWåþ@¿7 ïŒ~rŸ6AÑ£Ö1–çíñ°÷Co Ek~侮Ÿ“ªúÕbB(‘½ký÷Ð-”!…Q1”Îû¿öfeÙ]ttÆQ®!­L-~†œOòn¢’¹>wè1<ÁZ<—?‘‰ÀÂpƒ‹V UŸoè‘•æ¢ÚÊ[2–Q;·MVb´º*lÐôÞ;Qu4#|?›=„fïËK,ûÐטÿÉÇ´8Õ£*%-‰ì‹'/TË*ÁŠ¢I°Ýø9h™ê?EÕË?†k÷œ¡¬ôÕ|±è7;q;ü+‚Â;ê»LÛÿyžÐÑš*9¹#s’×cÿóÜÁç¥dý¾&çuÝ.ô§y•^XC†À¥øøíRȺ«Z-»ï•ÓYÕº\ÿç½ø¨ÈýKâ - fúwÅ‹_UÐpâî¡ø$:hbñ×r ‡æ£J[;NÐr*¤"&ä:´ÞPïU¥ýŸv8©½«ä‡Vñ÷¢ë©w¡EsÚÍïHâ>·gJÙˆ¨ö¯§¯”f£ˆ'9vÐ\ø Md Z|3N‹ …V›ìûÊúÐvjs’à°ô>×´Tð1:‰ ‚¾Û݆®2¦ùDVèl lslÍÒÂnsÏŸÅûFH0}…sÐ^ oЈò½6DbÒ“Jã÷‘ä{¯ÏŸæ£HêAj×pɽÃî|\™GÊÎ&?za¤¹k2¤,Št_Ù8ÊcÑ?¤*ñ¡ 2¦roŸ?ã…̦nju.ùÈJTôÞN¶ÙÚˆH$ä£Ztoïhr ªžý(V¼¼;Oscø‘¯Ôn1ëío ÿã÷f)¯^ÊÜêÄCkýp*…ÆzéBÑ7æ]¼ XŒV¼¥f+¬k^–MG)§šc®(ÃÚ»BÇä²_“e©[UPþnZ]Ë T òØÍáB¥¼{ãf,:x|ÀOc·˜•—∞¹"Þ²å:Ú‰jœùš¹jPýÝDSEä¾j»Tq£=Gˆžðjož ˆGÝ)×øò??P|ÂöcQ0Nžä»Ìê‹Æ½÷GfõѤ¡¦y=½M›:c¸Æ“Ь_k;j1Í7ÊŠ.¬_AK~*ú› ´²˜;~XàÚ¾vìU‡ õ@,Í’¶Ú()ÌåU¢mÄáë «‹hOµ”yLÚ½Ÿ>úÏ÷-XgþJý_~XºçSVƒ(/,ô¡Á›A·§ÈDçÍ^úɉ Øÿ¼M%ÖÒ›ŽœPN.{]@lf?·¬ã{/Anpâ-‹Ýÿœ¯¿1#Àý Òɨ‹ûBêÔøÌ”x¤ˆ}¾»I.ë¶êƒô0÷¦›‹kŠžŽ1&¨@b|…Ý^öHv 8Ãc©±râÎÿ'ó—“OÐ ZÈöß>óì„ ä¸Ä×ßøßyóœîEœ»ù†u'ä”OAÁE™˜Gõ¿ö=Ñ·‚/9 ×59ã~mÿgŸÁáZ'(Îé.ª¬ÿœK”ªó£‚RçÌ•¢ƒ2¿¼AͶ6(ï¥øBsâ2TžõÔö ‚ªnkšCMõ ‡@ e¨KPVhK> mOºËB“ ÝZ+)ÄdEGßì"URžõ¥; HáÀï!¹…ôÞe”émvÈxá>máìqdö)8ò}²Önªˆ M ‡s¾eÍ,"·õäéM×óÈg‘b«zÄx%f¥8òñcäìû [0}#DÑ%u>–#(>¿ó]ä‘J]þU\Vè‡2qEmÔg¹Pî{ì³i1{Tˆôâïvú1zœŒÇÝ¢Å÷tæPå3) ë‡Tõ¶’;FŠêÎl†èQÃéX¤â´j=dMïÚ@,K¶]ã(Ô[-=sh(ûYõÃs@c‹àkÿ"¸Ðä‹õwÿÐ4q.eb¹ÍJ‚²Oq}Fó!eQož-´¤¯~—VzßÖÜKá©W®Q?~:ÿÃã^ã¡ *hÙ@ 'Šö4ECÙ þèxGNvíÎÿ‡;±¶ø’Ó¸\‰h­>¶~û˜#…‡òmNÍкáÌâ¼ZèK–V|\ÓmÇ+hjÒA=?÷­¦m¨]gŽ?åY¶¡ß¡ô.­¬•ðÜþýÞ»x]î R­¿§<Î9¾Yú›c×·V¤Æ9-¯ˆi¬ ð²$’\< e;×Ód«Aƒ0ËÇ›ýûzæÝÓhŠ`¹ýº57å?Aß+µ³mï®Ãà- ]÷Uk!ß«¼~É ÆÚ8ßw|<“Ôƒœ·…§`êSW)Lyò}ãêSª‹Äd'y`JVô˜½üL9¸?tN„éƒÕÖ3`F\iŠXŒfÏÞ89udæ^·4Ȭ=†ù姺å/a¡õõñÙŽ³°Ø¸Â]6@K=Ò›fa™äK±w/¬˜ŸÜ>+«9r‡ýÁºüÛÛ~Õ°QcwÚYݶ<¹œÎóPÂŽnÖŒ˜ãìaƒMÓ¤º)ñ$)âv‰ÆZC$"ó <Àý‰­ h( ¤Œäû‰9$5_£<ñ& ɪ]:s)º Ó/·œFªª>6½º ¤©¸FÀJR‰t†­ÏÜu@zÏ{_„;#Ã+²&Ë©dÌR æÏKD¦yÞ]QAdQál;ÊŒ¬Ÿ–]ë5k‘úÙÃê†äxyzõùuäbÍÖ¶«EîØâ‘2Yä•zO‡bçï\¸ðç5*ä×ùÿØ{˨(߯íŸéî’n$Ý›înQDÁ@DÄ@°1,DJº”éFºþó}Öúù}^üï·Ïýæ÷j¯5kæ¼fÍœÇuŸÙsí«ˆâVÄ1rv±¿bz…Ü9÷ƒ8E©§ÔZ©PìÙ}Þ /V(®”)½`Aމ7¼‚ø8Q²{×Òàcf”渾¶Í^Š2טص3 ìÄSÆDÃ(ÏõÐ;þÊçÐd(j…¡‚Ê¡W…Ûô¨+¡Õ늊f&¾\¸‡J,µDOݳP™bIíü1TÉ£¬d8T‰ª¡íÖGç£úƒYe?Ô¼\Ç´)‚ûb£$ïÜ»„X´ucä!7êе¹“ts ®k€X×mIÔë:Ó¦X‰§hÕ3ŸÖ å/>¢u4¦k »ÃøMh¹ìçД¼GÊ^˜͈5-yÐl]â÷]Áƒh>ñî£þ Z4-QÙþÐCË·ÑúŸ£Õ…ù­Ðȧh-àõçèñ´¾ú•²è]/ZOtúlú µ±9ßU´)Ò %Î\ÅëAþ÷ž™¡M®“ÈÝå(˜XàÔ?;Ûç­Gqz,?Ÿû™F-#µ†¥=á‹t…Ã\TèKûxX ~~ µ2?Þƒ\ÆÃ4Ì0ß6ø Œ(å ÌM1²yõ£¯öÀx¿Æçã`²‡ŸòÀǧ0=²j~\M~íÊÊ»ÔóØ|èBbŸ(óª§ Hò˜O)\~I{ûˆ,‡/!™H¥Ä"ù#Ž S²÷°•Z"UjÖÃÀ%¤qü!¢Vk‚t{rÊå­Wq7cÿ,k¿-2Ü yóÒŒSyÚòC‘©×àeøÐ;dá9ªýF,YÜW]йˆlOŠ@IOÙÛèžÄ³!ç¥3"¹È­Õªx )y­¦©Î=EþûRä[K¾(ðkG3é Îå†K>ëD¡º±@Î>Nr5sB‘;–O×™P4áÞ·µ(VTdV{5÷,ŸdøªƒZê/z.3¡dŒÛgËI”Z~aÔ6‰2'Ÿ™þqAÙU¦ÝÌ(ÿܬ³ái%*’z¸>FTʦ9#@Š*9Ý "j|¨FtqyŒà›/r“UÒýsßàòõÔæx<ñ=êxK*ä]žAݤ6'i’IÔ›´5Ü+<Žú‹ÁT<~h°’¼º% W­÷@£õöêk4^ÿVôeU MÒü¿&¡iŸeÖo4+pãw]>Œæá+­Tlha¾5Üᇖdñ¿¶öw£e}‘ÚÃY6´zðìáÏ¡x´V˜k0ÂH½‹®á§ù ¾;¢1¤†È1î]{j–£²"«å¹ M›q©¾s¾°l„|Ür…Or~¿ÝY$ Â¡¥C}  ÊKåýV%»ìÓÛ~JBµ7/í3(§øpk;ò\U¢îî§\þ{‡Î8@®*aŸå_u°W67’á!¦³#þPy÷Æ9G)¨IRQV»e uùŸœ;÷ÁW±{2é …¢©øÝê´JébN‚6Ë'hžBûiRò)åùðkÌ“ÌäÐÎÈv¹¿ï ´qVXoôV'_áçé®Ð2ïyœ,¦Z~KöÝj‚Vß?<O¡MCÔÐgkÚiT¨V§ ë%%Œú å¡ñ—¡ëÜùyô.tÙßFúQè9#¾ðôvI“jÉÁÏ×®mJ|/aðk­ÓÀö{òæ·—1ŒÞˆ-þàGã3¡ÑÁ?…a*ºú÷îï0{¦øCöž2˜7»[Nu¹ Iˆ§¨ÄoÂ2ñj˜Kÿ#Xµ2ß3[(ëƒæv=ư•ÿþ¨9ç Ø~0£¿BðÓïÊû.‰e ‰‹FØì­/H:ê\Ù7tÉBrh=ªBû\"éÇQp3}tø* »¼*çIsC‘~­Â’Î^‹ýú[JÅ}jïÉTò äét_Ïß(}=ó­=ÊÉ.u‡Î7£üöqy×HYT¼Í2”˜‚Ê>JêOìîâÞ#Ï™˜¢Z…ŸbÕœj µE†njMØÓQ9‰ès‡Š»_u˜¬¥¤” nÜ~/õ»¨¯µz@‹< ¹_( ³Œ¡1cmãÒ°(šRqÍ›“£9]Êa¹ƒwÑ’iÛ%Ž­‰ù³×¿¡u¯hOL²ÚôÆÉ(ÈR¡íD†»B–9ÚÍŸÕxX…¢MTMúMèètøVÑ×tºogELr†õ]öþj­ÔŸÇÛîmç?FWš©G®»Œ |¨o¸ôåŸû[PŽ jû¿réÇjáwMFez?üP3š-êµÔyq#³Ø—ãÚ7üÛ@ÜcÉhrÚû{ƒ>ÙV–Þf•%äÍiMZZ(š\Ô8ñ òµJÖEÖvÁ‡Ó< ïsCö9}S’ |é@,yÊì¤åYH{˜BZ‡÷@u>¤•– öÞì„wo¶æÚŸAÆñòeÝ~CÈf—8=Ðséï:ù¢J•=²…P°Õ(ÞøŠŽEl0x}ÿ{\' „1<ƒ’À?‘æ{Y¡ôò÷Ë:‰ŒN”9!'Êe+ÁI úP>sÙ¸þ8Ûÿ¹†Ý‰x¨˜˜òú½ •I6A›]”PõMv2ëú}¨Vtí¾55¯yÇnÆÃg&¢ÅäUø²ü\·ÄÚê[¹Ø:Ÿ„Æ_[iç¡ùò{3ÿEhwÛ=Ì m™ ÷¢S #f§þ̬tbÙgì& ÝoãYü5¡g;#áˆíô½wœGg ÐÿG!š0ضoŸ®Œ. ^¬ Ó]„Q#Yuƒq}=Óô˜<ÈÁÍ#Ó%¤’Ž$ÔðËäB^=' ÌŸÞ9…»©²ÌÉ ‘Q²_xç 2S~jQšCV¦ý‡Â-‘Ýb¾á¬ˆ$r~“ˆþB÷ yÊÏè…Æ¿½uc ÐÌh}™|¾ -nðûÔ£‚VoER¶¬}кvsý(Ã'´©œûPùÚ~oÚšF´[‘~SóŽ x]GÕüõÑÑ}\¿W Ó]^~&ëu¨Æh){âx*âÙ`Ÿ®´­rS$ç:¼ÿÜŒ´ûÿG‡½?yØ1NWÂÛܯw']˜MA¡~¹Wüó°³Z¤?Z2†HPÚɼtÝý þAò5Ѝýøji?G|jrÑýN{*K?R·®BÅnuâA½{PÚ¬)×xõ#O纒CAžþË«£P0Ï+Ñå¥Q™”*fÛ=G_Ìõ×úLó~FBkèëëqåÿÌÏ/d¼yú2ôØ•æPìM‡þ&±ÛéOg`0QHœŠ/FLN<:¼ÿ'Œ«\ŽïìƒÉ(ì¬hZ˜*¦²³¾KScö»S5æã²”4Lå;S7t§"Y`zAéÚ¦(ÌX(Í>MƒÙ«>ï ]áW¦»¾÷‘Z˜'sšnqyó}2t©+°Ð}‡ÛYÿ2,ŽØéÌÞ¿ËtÔæ×ÙÉ`ÅeÏ»a‚^W«:ÜWæÀºŽt»¢ÿ:l|;+@»ö ¶ÂöÝ Êž€?¾MÃ[°³W$A,„‰^Q½æŠ^Eâ²Ûb5Yßd¤Ð7¸¥w‰)[ŸE²H™©Ò~m¤ a÷ÜíÖŽ”ÙYNnŽH}‰Í•>qiÐ’Uœ øÛ¤ÉÞ dàKŸ;§æ‹ŒBä/Úç!“BâY?3‚ÏÙ¼,ù-Ñ€,w™Ò%בµÄi†ƒÀ‡*QŽ{ë'‘ã­ÝE÷AÈ%Ç}ùÄ aä.ó¦ãbäµq¾ä6jŠ|ƒµÚNº (€Þû®zì  øçåóoóQHûgÉB ÇÔ°ÊGŽ£( cÁ nf+årÌ©¼„⇃ãyüQ¢#ËÈ‘¥è«ZžE¢´ùhUÐv7ÊÞ¼Rúfå8jjÞZFy9I5£Ó¿Q¾ÂËYjõ*¨óJÜŸC…T— ÎT”7¶‰ lBÅ_\?W Òda2ÛÕ T¹í(}Œ›U=X^– ªÛD'ÄÍP¢¦öI÷n1Ü'{Ö‚Æ|QjܹîØÔÎÓùeŽ:£Ñ'9£/¢žaøºŠhÔ¯Ú³vh^ áù>ÍãhD· &óõ"uh,}^œCã»ÑÎý?^ ‰Å;ƒX}m4%ùöô4š¦÷܉&­D3+a³ÌC«h6.Ev÷‘šŸ`yÄE‰æÛsÊvZhq•/§ò|1Z’óߌw>‚–QiÚÜhEí´sÓ9£ˆ}[‹ÔGë•p·4·$|éDå[IŒZ7¨ {sÉáçÄÐÜ1;¯ä• µ§Ý4£¡bó•êå•v(õe\½E/O Ü}™ùœAl‰‹eþ«'f«…l¡Eæ­È’šÒ¯Ží…,=ÿ}Ž,Ý~\ù<óÈk›ØGcYÅ3#ßp†Š¢©dE–røô窬ڳ‹ðY% –™ªê hH<µX¡áKçôš.4Á×Ó³¦· %`té+´Þ?³9ð[ Ú²\K†AûácÿЋãíQè¼øÌüd tÕäç¨0B·ÚøK»á9ø¾•Ñèum~Tû~äò ¾†=âË”î0ÀªTž&ŸƒaN¦«j”0ÌÙ"󘚠ÿ!…•4K½åFqäLÜMx@–y¦bîøqo¤ÁÌÀ~QÙø•k@óBÃæ}ö3´ý| I*á°¸ø), –Ow.ÓÃ*Ý8ÛÌ™PX+ØØõF]6.FŸ‰(…-å½2ÉzÏà÷ñã,ØžÛ÷«Ü(‰®ÂÓ7¬HœÔº9o€$MWã:æqÍëu¯]bHvƒµá©2’×ð Z… ¥þð5 :-¤Uúä~Æ i2(Ngè¦ Ý/Ù¹7kq÷=‡xòoÈ0ñ¬ŽZç>2ñY|¬®AæÃFÔWUÒ‘å•Ü„XV²ŽNñ{æn#;{*~ÿ‚Í÷³˜Ò©ëùyVg}ÈS_h.wÿòK&ŽŽ À§G ÈhQ°6\%[Qèñ'¢Ä±T>væåÇSqÈÒËl·BQGF_z;³ÉÍÂ{²ƒoø¨ˆ¡øÆâç+/¡¤‘d©õ±”z»Þû5”eø@뇢ìû¤æëÝFŽ%¥D¢ÂìÙá? ¨tÏ“Ÿf#ª„U*’Yë¢ê‡wv.¨!óÖ&Çà(ju¦Rÿ>BŽxâ$Ó¡Ôî®<`Ïòu†Uò­QwóèŸ2qÔ«Ñëª/‰úQb&µû)ÑÀ€jÕbélËLÉ¡aöœ@t\%¹j¨äˆ ÑÎÉh|ÏØfÈ„MøÊw³Rn ÉsŸH[¢.4åï³6ÿ¦ÏŒÍ w§£oàΈÝA4{²©ÉÝy#U›)wt_¢Ý©•ûÚVÈÞ#Êü,–~0\‘ºØBØß:”ðTž ÎÜ5G¨zjC¹³ãs¯°I<9Gȃ»÷=¾ Åò×ÃÛèö@áþIs²·üg5ÓôrÓK,5àƒY3c¤ƒíßš—@¶kO‹”pwŸâ¿R•šwO ¼€·‹Z¡Æ» .ìG¥ðZ4.wYgSCó¢ ­0ÿhå¿!åmS ‰á_ Ýçxƒ¼Ë¿|X¿RW0 m«÷[j¨" uö¾Êy[鿯kI-RÕŸñþ[ÿóøž×V’Pš}Úßè×?H‡Ž¯U~UŽÐ%'ÿˆÍ7 ¾5ÜSl#ßûÚîC¯qFòŽçü¤¥©¼öê *„Þ¢Ó€aO×k7aTŠ;I¾¬Æ£¸ERI²`Jà„¡EÌ’ _ñßu æN唟 …êÇ*?`éåƒ%AŸÌÆO-g`=CèD{ lŸe>5¨í´Û §c‘¨vëÓ<#’èzý(ŽÖGÒš4íð¾Hf™0™›Ž´#…~þHEÛ‘òìþÒx»’H´!=«ïÙQçÈp9ï3 ÜBÆíˆ‰yÈ|GøjÈÈ#dUùâáž?‰lÓçîè Õ Gyî³6YcäúǾ1ë†<µ‡9#‘o+¢ÝKGÒ‚to×¢àt¨K@Ç%6ìþî<‚"Õ:ÕívPÌw-0§vÅnª­ìREIs¦Œëá¢(¦³1º‚²[Zjo•Q~dùdÚZ?*…5c@e·œIÑŽiÜ{š^éd ªÕ Qú¢Ž£¼_H¡V?)»î†¢ëv÷µ Ô¡ñhº,ŸºQu#äcë>|m•5_ƒ†bí—IÚÐX,>J3M÷4(g–Fs¥#Ǫ6ÐR«èÞ–h´fùþ•n‹ ­§Â†nÞC› ÃBƒ/´]dýTå»ö”¼{èTÙÑA2žø‡ì8:îï4 ´%ðaó3óû¹”oi亨¼É­­ÚÁ‚ŠhÏë£+õP0wóat»ña·'ƒ*ºSoôÅü_¹´4êóÝv £QÓë!øªÍŸÝCÙÈ´©°<`ΊÆÓ2šÉÓwD þê¯t1øgB&Áÿ T¿òw­ÿÕSN—Ô}ù7™µ“ü†«* 2lUXÇžLÁ»xd¼©EK®¯}Ný­i¯Ãt~ÕÀ{¯¥Þ§†!ëÆvºçø¿ëügÝß';¡n:PØtgväïq‹Š†-k„â¹Ö£ríPr;Ì‘ø”ßßóÂÞgY_›wýÇ/ðÚÏ·Æ7C…Õô3ÙCËPIäÛ«yyªÄž/rk8§ëÙd3¡z¢æº6!Wךü<¯-|¾ä‰MŸµ‚ºµ{!-Ä ‘ê€9cy4ÅÏr”¯¤ÿÕs›øE·ñò¿çƒÎ®ª9oSè&¿Âpwþü?ùÚežùôn„µŸì醟¥“Ý5Oé`Ð'ðòýÝÏa˜Êy§ù1Œ´=Lg]†±/Úœ g3`âÇã³Üp˜VûSç1ÌV-ý¸ºHóü*EgFüaÁÒŒêÙ…0X =xåT*,ÕŸv×:}÷Ÿ~ Ï É9XS–¹Â{6bn;'³~[ØÊ?²×ïó g'$>äïھ샤¢Wt–å!¹Êèú2RP‰fN ø¨zn®Bˆ9Ò¤ÕºE¦ ý’ó\Å‘¡kÃÑJr™Òhîq^z…,)¤A>åÈÖ2¾¿üè)ä4yð±V–y„7:ßÄ» ¿‡úÑK‰(xšd; ;xFfºk èMÏÅ›l(¾‡'ôbÆy”’) `3¾†²+† £‚{ Ù¸œ*ù^ýîn`Š*‡µÛ.Ì}GU(|ñx5ŒÖÖLip_ªÛfÜ}Ô~¹+eÐuŸøÖ_*AýÜ5…Wm$h8×E\ò´ Mt}¸’Ñì‘ÌǶçhñ31í—” Zm÷“î*û_ÓaÜqRj÷¾2´w4{h/Ä‹‚D»æíZ/Ãï+ÏäRùì¡{QæVXîUhm.+¡+…:ZáÄyø 5lZ)6¶ ê›x“c¸Éß}]^'.òêMÀ_]üõGº4+ãœÜ¿õ?ú©ò<¡óªïï>ouqK¦_ký»{Î(ï¡-þ×oªçÉ“vÁHT§½©-Œ?è –cxS$CF“³r÷ë´ãuÛÁG05'4À¬S¹,7kIþÖi£ªÛ¬[`æ´$Ý·Ý*0ûÚ›9ò–üjœ%|]4}j~¬îºLp4, Éq̼]…Å™óÇRIa™Å¯;îðUXñˆcn¸óVÏÝ}O°nQ+Û;#£7ÆòÞ‡ýõ±?6"Ig½ÉaG:¨¤ÔèÁ&¶cHœÂ¤ô¡’T¬Úl^DÒU.ò;s‘ÌÄQË=ô’W©KþBJW~£‡¬'šK’,ûø5¤ù¥¾žGtõžw’TŠpwÚ,ë¯?Èðõv —~2¶+²E¿cA¦úÉ®‡SÈÂC¾G^ñ-²j"Ý`A¶¯<:Ï­)COðôú.älê#1{d…Üž¬t_sçÏ<å Oä»»âwz9 p+Û{5.¡ e×à¡FR’°ë_O˜FáðµÜHZåUß+|”ž'ÅM¿FñÛfKF Ê(Ió-0"–¥ ®½üøbý¯ÊÌîšPË@9SÙ#ß;o¡¼^åHkÊ7U’ˆfÙ¡‚VO†›5*<‹‰suÒCEVÃ9û˨øùôGk?UT*;n¾¿‚*§^>üØuUuÖ9X·Q]ªYŸæåsÔ$YV‘@­&·Ó×ÈüÛ÷d¨ÿ3gø’ð÷œÔ9•œyðêgÔÍ¿ÇûØÒõÙõòôBÐ Àû—ʹhHÏX_µ‚†O]â5V˜ÑH@#òø= 4zÌ­µãè‡ÆÔüÏüØÃÑø ÕÑfÚ+hÜlK3’Š&¢ µq½Th°&“ý>MÊNýx-€&Û/íwß/ES[)†% hê÷iÂU M_ˆï0Ûø`—ã>ß}h½÷}BÅŸ0ä y×÷ÌdÖ?·;I·…@g‘;ÑèÃßðuÀJ<9àT¿Ÿñº~³í¯¿üÇ Ft¯È?Èý›C³§F¯ŽÙ!d±Ü®oŒùëÿ©ÿñ¿\U¶…{¥–ýî?:þ>ÿ“S?§m·³ï¥ú›Wš‚CìÄA“#Ý ¦D±æfðEP_„V­Ù¨¥œ³ÐFC^ÁFmß…ß±¼€ö!‰|ÞYEè¤Lu¯9Ë]'8÷«XB·ðòÓÀô¿9óG[É“”aèا|çq œù‘}Ž ÿ©Àoîù0\l/‘Å£?—_˸“pf’)L*ËÞm*Q€iIuº/C—`VNåb¿Ë"Ì)»ŒÁ|±o‚AŸ%,¬»}:;1 Kü>:g+ÂòpŽ5\ö€Õ³·?´„¸Ã:çHòÝç`£ˆÆ¡µ®¶¼ ¨"šæþ™C|þû{ØQšüÎÑ«„D¯#ªìçî q…$¿­’Œ)ä${|Ä]üì'%7b‘ÌßÕVjè=’°íÖQÿƒ”gcGñø#µòAAie¤eÎ9o§®ôŒï[>sÈ"ƒ¸@ycc2º;ô’gó!Ó[ñŽCú/y¦>aÇ0²ÊsÝ+E¶˜…õ—C¤è+r‘s­ÛýAÃCïò _Åî™æNHP­}½…‚‰V“ªÃ©(äCÑSõá< +D’8¼Ø‡"Õª2bP”9ˆ,OÓÅÜßžÎ={|ã~¯%R£xÁ»‘†”$^­1R®VÞü2Ö(ÝÒ/ûCDeÎtÔ©Ž¢¼OˆÔÙ,STøæ¢ðm•.7Γó£ŠujÂØ1/Tõì•ËnÒEõ§¤ÒK¥¨¥àä{áþ›[g|QÛÔùÚbº)êˆ%úÏG]šÀ¼ãc'P7úÃôÉQÔãJWO|‚zw?eÚÉ4T mgǯFvUNÖµƒ°d¥œóÊ ZÅõÃF ¶áÀùxe¨ò>hÓëËEÐaGý;”ò}Ⱦ¦uŠ&çV²ŒÏC!?›âÇxÈ7>vëÑ=Èõ]Š©9³"‰¦÷r§ô<0Cžú„¾ ^?Ï|qå ƒJçlñ‰Ïç &«ïd‡.ÔSi§øÞ4†¯¯Ïë¾g“‚mÉo2' 58?ßžî5´=WNá$è«þ™œ¹õ+èp™zÝ}Ò:v=Zvyí–sÕ-ï¡M›JŽƒsZ½öøoЄ–‘§Ì'  åGí›«×  Õ2!ÅÞ’ÚØš:„Ú7Þ×RÖ}¢ðàç$tüצ¾]æ¯ #áÛ$Õ[ƒ<|ßrÚ8q¨z½öX šÂOé‹‹ŸwÁ N¡ËKózéœNT†Q’ƒÞÃþåCÞó†çתaf;`N·Jæé÷r×§›ÀBÅøüä– ,pöÝ+;¦ª{Ù`ýVd n¯ l¹¾{žô¶­„òX÷·!ÑÛA“ÃLH"~`ä"'?P?¿ª0…df‹Í&BHA§o}m˜©˜üÞÏ&—#ÏÖ‘ÆŠ·HÏ›âø .é‹$ˆ "ãF WNj2ßœÈꈋAV¹“Öóû‘mœ£æk~#…â_!WA¥FÙTò4Ÿ“p8ÈOÞ­kxê3 dIh´H{¡àÜw^«˜ 6Yâd/B‘ÏÏyÇQ,à势Ò·é_\Ü냒Žæl&£ôý=¢Â9(·[V3˜,å§ú(B|‹Q10"†Gv•m(å«+àÞ“ÅZãi‚¨–ÈÄU_ „¹S¿§ŒŸ VzŽý™¯³ˆ{L„âôçQ{Þ@SpæêúT¸ëoA}Nªã4Îh°ôÕ4Žw†íO´Ò¢Éw6I14ëušP?ʃC|6$ûЪ-®ÑR9­«6§3 My¤ÚU‡´­¶TL¥üˆv¯ZR·=Ñ~.Ü¿“ð99²tº±IŒ£“~Ð7å?Sè|…Ž„Kg÷WI9–´‰XXBt²ñàé_'B,ö k—‹ Û2*ó7ªþŽî‡uL_ÖØ£‡˜cm+=†–ŠÏ(¸¥ ésúî[¯§ñû@[Ñ*øu?IÐZËš jÞÿ3T™,8–øêCiÔ#»Ó͇¡pœ“ÿÔéIÈ3xW)ìn 9O\LóÊ !«ºyµOç¼_æÖЊ~ ïL~ZÓ‚Ô³îul›z 'ÿø HsK*÷ãã‡÷V§¨kÇžCÖóˆ+ÝL¿áßäË5l·*œÝ£êGðY½ž –.T·J‚¢LžgE¢? ˜“ÈåöÛ¯P¼3pÚ© JANü'”¾Y3Ê!‚2ÁرPc'('æ·ÊîÈ„ŽÕˆáÂák7õT’ÛVœ­ú—Úµ0ÐCõÐ0éæÃÇÿò!WÛ©GÄLÿ3¦§ ó™[A›‚ŇÄg ƒÒ_Óp¡:¦qhskB7­§G¶æèqÌHÕH¿ ½;^õÛt ðóKîG9í0x¶;ËÞ¥† KLøOÀHwˆ-‰€ŒÕ %%²ÂDwJŸ L˾qù;³¹2ÏΞƒyöÖº»7¶aÁ4áMž,†žk9<@KíÖ=sw :vgÑ ä…5¸%–˜Ì7›«_«Âoµèb‹C°£ñô§Ö{F$ÖúiûìîQ$Yg¿­zð3îj‘=Zä‘€äN£÷í„rµmœ­–iü#´Ðým¥¾“UMJ‹‡ÖSµ»ÆöAû¤æî]!P“¶q¯¢~ª†foýz•´J'­žAyÇL`ª¨<”$œ#9Q…Gß«±ÎB>§/cÞDÎßZœ½4°ÖêCð×µ¿Œ" îÏ—á;æÐêjíz”éßþá%jwÇ:cøÉõeÒ(AÛ3*ÂX`äÙªGGÆ Œ¶”˜^*…)9¹¾óO0í“U-¸çLßÌíj7 ƒi¡îÅDG˜šÔìÜüü·N_±×™†™4=kör˜Y̳õøstk¼ÔÍ0¯$--ôâ+,Йò2_†EЉÞj½Ã°Ä*ñü}é,,ÃËc¡¾S°rK§Wßó¬nzKZôŸ€õàµãß`“ý7Åï‡a«ÂÞ×öd=ü¹îª|òº/ìÍo8Y-‰Dy¢½MË‘¸6ô&)½<’ ?Ödò+Ä]\zv#³Hvšüpru’Od ©^×EÊkž†‰çY‘ZWƒäÜŒ/Ò²_àh[ë@º•8ùwbÙ¸û»„o#2Œ©§-ñAÆÙû±S-ÿôÙå‰6ú#‹{Ú$ÿEdÏëÛûÙæ.Öõ|•@Žc'…<isÕ¾F°â r_üQ¯¾¿y÷X†7@ò•iȼÒ@¹z®7-Ý(Èû®¢­®…4vß_½‡Â†=¶åQT%ß2p—.Š-=^}—9†â鞃 ²z(¹‡–͸¥ÜÉ®>8¥Òõ û]3Qv—*ó¯ÙQ”sÿ$8vÁåµh{B…ÔQ¾Ÿô´­F&*X·þYqÑA…‚ñ'm ÷QQ)´©ÜÍÇÿ0¬o¢RŸ¸[A4ªDNyo¬@U»?"r'P]ýŽõ_ ¨É4|"úµj ¼8ùÜ•!ÿ3‡=j\®è¥›GËì_ÜU—Q·ò"ÛÛ+/QŸÇîíñFø_ãÃëKɤZKGК'u{ñû6ò:PÂÞ,Ø|pŽëÿˇÿåÃÿòáÿ >Å€ÃZ?9iŽ7?m  øòüøåš§ÐöûŠî¥¬ËÐ!Þ§òÕïtä«UNFœ„Ž [àûã íoL {mY íN°xÑ` ´¦·¨Òþ­ü!s·?Ö¡ë`¯â"ðfîç`C‚nµ)r­¡R§ªÙõ´Ï.ryJˆA'},i\á?º]ZY%ú§ñî@Ü—æ0‘HfBïÕ¤]Ú—ðÓ|L8r2mæÅÕ>¸À°\¶q`^/ŒîäL¢òú—¹Â “å.ÁÌ&ù!æ+C0O³}­kšÊT¼w*ŽÁRfC‰q¬6¬L›µîØwºÏÔõì¡$Ø’OLÙ¨‡mVµ“wôÙ(ºv°º‹Iè­gUÞø0ù$ÉÕÈ}H¦wˆìm\_N 8ÜC*Ú<­wÆÿÑçÓYTHÏžÑý9}.´…ËÒå!ã WØ«¼5dŽxß/©Ьfgt$êm¨dÃ)º 9ÊâÃ/èI"WÉ’kØòtûw~¶ŠüL’Ùb]Q ï›ýÝ:\V4 @a :Ç÷"R(Rßñ‹r¼Å.YŸQH:âÓçŽ%£¤OOÿY”N»\iíá‡r•žj(?_óÒf”à{n˜‡®t£²žëÅÃsp¯õ‰“O&¾ ZÀÇYÔ¸V¨Ðêö µ‚¿ÕD]ëüÞðÆ·¨·rꚎè4TúU¾P§C£ä_-¼Ñ$úàºòý)4‹0óÎlyŽ7ÔÞüš[@« “Û¡g©Ðú‰FþÛ´¹WSX¹7mD>{‰vÏ¥/Öd¢}nÀpó¼<:4·÷ ö¡ã’8ƒ\ÄCtæÛb° »Šûí¨/¯ K\îéy:^<бé4P?‹®BÜ6¼Qèx]âTEú.’5®ŠîÉ »Î?0ÅÐ3"É|CÑh2/ Ø=#‚Œç3frÁl¡½ê>‰?ðõüQ¯2nc¨\»ýê|”òå~6œSƒÂ¨Í3%”=»dÂ7¯IÐ× "Ž^‚Ïí&U¨ÂûÄnwMà©ùÁiÊH•nRŽºÁ oÿTí–I‘4Ú­gá½êXŒØ¡CUDkgþôø?}þw_†‚!ß^÷P̳+P¸:O¥ÊŠŠ§’ì \HìgPÅ•Êî6A‰éä\à•V(¥;8b ¥=+?mê.C™uÒ¬÷ ”‹ø¨&L>€§F6äsöBÅ,&F‰Ír´·Á‰Èù0hFæV@uQhîtò¿|È2—kÛù?óaæÓصtUhÓ¦´«…F£™Ú;gÿ™ë!ß,ÝLF9M‘Úг?y-ÂÀúÈ̪â1~v\Ñ8U÷ƒTG˜_7ýÓ÷?_õ¸Fú¬ÍqÅÂXƒÒ»”Ú`˜èü@)âñ¦E¬§yü#ÿé¯xnoÿ§¯ò=O. Ç ¾òÁâÕ“ú†¶þ°Ô«èð"¿VNóÆX3ž)*ʆ$Yxà·ð'}©k°Cgqæ6q#s™WtC’úÌ®­ÜõXl4°YÉã®ïb§§BÊ œ¿é‘†ƒõžL÷ ¤ë0IO E† s™u[dÒ^¿ivËY¤w³il ›~Ë|H¼MŸµ$äÜ/­‰²?ï=KÉ'#d´n½]'‚BKÅÂlI‚(Êûs"vG÷<_a}³s%#´ó^ÖG™Iš½fÓu(ßã8òû *6o¡‹f*çz´¦qáÞÙ¬¥c¨~twt8‹'j%4ç??ýµI…³†rQ§“:Ü-ä êUi}ßEï-;‡§¢Ñöø-'Õ—hª–1ùzó<š{‡'u¡e€äyßÛÁh-¦·»pmmøJÝûŽ -ß¾o¹ÐNìÒÝ—rh¿×8eMº,¯Q‹· :ú®ñòºSËë4t®ûlÛJ‡.»8šedñ€‘Ñ1­=» ªNðã)Y¨'uÙ»&4­îºô m¶ÿ^>èØñ ~JD2RÇðÁàЩKG­Da$ÝÉù Œ÷|Ú8:2S‚ÏÖ§;Ãt²gYæ«£0]1dn÷áL;ÞäŠØãÓ|>¾r1ÿÖBrvwKm˜=xGFÀ~‰„8ñí 9+¢‹s÷`Þaêud7/,ÈéÐѦú¢̋ä'}Ͱ´¯·çRK7,ë\?d +…˯ʔÃ`MܹâWþ}XÏ>?›¦¾zEº°µl*Cy» þ”ݯó|Ó;ÏŠ¹r#Qû«7×C/ ñØ`¶I’’ƒˆ¤ëuÜ>Ï÷ÎìA²{ùQƒT4H±[òÆÍáHùîÁË® ¤>a²£qÚiµsAXãÒ 7°§"iÎdœ˜2lÆ7,m Å…éª2‹Øpð)n!‹³„ì Zcd};“˜ ‰ìŒ¶,¦fÈq+·£^ù7ØòúÚøqäŽ}^qdŒy­ÓÿKB¾±©Î§( h`¢£C“ >¿A!Óó%E-Îjf’˜çFQK%¯¦—Þ¸‡îë©×â(þ9¨y¢Ú%uµ?ÐJó Ô¥HÏSª×QúƒQUçq”å>ޝE§Pî‚Sÿ'Ê+Lçö_DùYƒÞjT8RgqaHZuß}CE›â qí\T¢Œ>ú(¬ •~ûIòg²‚ÚÞavTõzem˜þ Õ\)Õ® ¦ÀóA1@­Å1ïòÜ4„fåískt¨}ò´kÿ±eÔ‰ŽôœDÝÆƒ»ó³VP_ÐóÉ'ûÿ=>lœ¬ã¿x­IRŽŠä_F^©#I™ ¾°qkÿÉ÷¬ÿåÃÿòáùðÿÒWú \óC›Ù~ÆÑõdRràJå„EÕ`Î*I—Y†–XXBÍZ¨¼aFTþñ¾oæ åv¡&ßk@ÉaÿUÆP;(:XñÃç#+¤ú)¹u@^[÷‰8¹øÐ½%ÏzŽr.û®²{ô9ñþ}Œ ägT³H~ƒâØ·ûø-@åÝ(»V.¨uxSou·8¨ÏôÔL^\vtÀZyî>ö’ÿ¤8^߃v§ºÇ ã:–åm5èdŒìÛL"ðbWÒI2´ï¼L_=m# BR@ëR°]¾#´ºx4Š*F帱e":¡í¸öR\Õah—½ñ­ûƒ#!_šÊùNÙ¥f–IèºûühÑ[‚nW¼“íAÏ^CÉG+w ÷9G†§ûøyÊÎ>ŠVïYi✂aÍàЦk0ªÕÜÕ%§ú/²ÇÖy+ÀÌÊæ‘}I0OU;;,Ñ Eá?Y#2`)EFðH†3¬|³ðùEðWsË#°E$Í’n×~X í–=€D>é/yëXxÙ`eI•À‡·<¯öÜF2-Š?ç‘‚ž4Ló‹Rñ¾-½™i.ªI28ž£™Fm€ ιÿü´bŠŒóG&T±#ó•³4WFU˜vCÁSÙúIºu#Gév€É×§ÈU!j0zyý¢Ô3‘Ÿ7X€¼vJ"¤Ì·¤Qp=úå®?(l½çžî&ùºxÉ/»Å®üžY É@q¯H¯™Ç(LkO5€Ò9%É œêe ²Š”_Í@уgPñÜ-ÚÑÒRTVÉ© ¾\†{U¸[ïñC5óSvë÷ÅQÃ>«ð j™245_PD(êÛ8_óµ‹iYN!A]å÷ÎCQ¯µõÙ í4ˆcQ˳—D#7†¹­14Ñ|ý}8Ída\LK-ä.*Äô½B+cùœìkh}vš%¬€mN’©í°w£í± çµÌÑîT®ðpÌo´ô¶¯·îD‡è6§÷7Ðñy‡‰$:•OòÅTîFçÁþéûçÑ…º¥Á£;hèçàÁÓA|Æ" èúÎzàni1ºÍVãÒûŒîÜ7u-Ù#0TLÀžÖë4š Â-'02“g¦5ÀÌ* IöWИ¡ÓÇÃV•¯Íy3·E“o7=Jþ¨¦|޹ɚ\¡â#Z÷qÚ²¬dFz÷‡Ox¯CZiÑÉΧðvL3i“Ý Þ&¥z/|¢ƒÔÖKj—Ûཀ;]D7dµÜ«í„‘Ï XvF!?ǃÉb >y7ž!À Šå£ÓçÈ 8|LgúÓs(îÔ¥ i†’DÃí«oZ T—ˆ>:©ʨÉ?Ø€²+YËV3PnTÄe;>Fœ*vׂ ;æ$±ÛPÉÄš^ïaú/ž§ª|pÚª¿ñþ9oþåÃÝ´›Ë< ÿ3æÄj´ÒòC›îº+ÕR.tpñ>3T¢„ÎGåÁ«<ÐÍ!M:Ý*=ï4÷Û@|±Ð™ø9`2­3àƒáÙÛæGa˜ÿ¢¢›ŒŒ˜%ö²ü€±Æ÷ïçF`¢í£C¡Lsny8ŠÂìƒç"¶úýRMvu²Ã‚žÒðÐ…XŒt/”¨î‚¥Qæ‡+X¹T]ív ÖìÌÍ{_ÀF×5ÏûŽð›~ëkþCQØþ¹M:ê‰DkEZJ­ÎH’h,þñ î:ÂTC+Émó…¾Ì!å™ÝæƒéHÝTrò~˜Ò…Ï} ×G‹sº‘ íiò‘¹È<Dzùø£²n×”ô¿¾ƒ®ù7Ìç‘[XÞêá6òY{h’?E¡‹tÞ¡PÕèS¸"ã¼Ã·Ã qÏ!w|³Ž’ ¤Ž'®þ@™`6²§(ÿ¿ãúðWT Í_tÚû •]ý­.]×À½Š“9iVݨ¶ôãP‹!v(`@ѳ”žôr êœév3•>ŒzÆ?Ó?¤§¡Î½æüÛ—ÐÈõY⊞šD‰KùŽfïÎqw”¢EÖaÝWNýhedN} ­‹VÏýºMàÄsN8G • ×¯võ…Â` Òù/¿ò ÞþýßZ\w™ˆ—%ªÎ „ÅtA=Õ>fêÁÐê©Të‰wþ_z³ÐÂZ÷(üTÓSûze¤•ÚU`¤Aͼó"Œÿ.P ³¢„©ë T%430ÝÁVË0½º»²ƒÇ¦£÷ÿ– Óv ‡O±ù·Îï鉸pfÎu8‹7ï#TëS4t0OõslÛæ/¦òMÓùÀ‚Ýåæßè‹vœ½¨ K^ñÌF#U°|—2êðõXysj/™+¬9š:ÅÅVÂz¿Ë¾O?•aóò€iôGaø-ŽÓåíðg©ÉíÀ€néÔÚU:$ZöצuD Ýoq[-H*>D§kꈻßÿ5u ÉŠ½2-ŒBååüN!eÛ´~šêI¤¾³k{Qi/xž >„ôfc>Ÿ(Ÿ#W+7ã¾\dd¿qþUC,2 ¼òŽû+2kûËé]C–ó9.Èúe!".» Ù•z,>û"GÎöu%æYä2Ð7m¢?‡Ü¯¼óãý÷"ï%š *éeÈ¿ûÓ[Êr%p^y#Ñý ®Ö¢Ðë¤ó!#(ü¹¸bkˆE½²®ˆèÆàž=·«åGñ¡»åê.‡QÒõœUsJݧÐÓ'nFéFÝâ7Â(«øää×9”»5ód§¸å¥Óƒó?¥¡üï(“wV^¨p±âéæ !T˜JÌ-ãVCÅÓË·îS£’{a9u(*ó¤„CàT)ºHéü4ªš]v]×CuŽã‘᳨)ëî¤úÆ÷‘Izö¸ÆG'¿wÖ¢vàäæÀ§ ÔyD¶él‰ºß´)«‡ Q_ìlOßÇÿ=>LQŠ#þ“V­Þ‹."/q%Qa lÌód}áòø/þ—ÿˇÿøðÚ»Òñ.*´9õý€ã^ydÕ«8ÊK¼ ïž[˜7Bó'©9¯]PsëÎ-ÁéZ¨ü"}¦˜ÊúºÈ>Jü’]¶ ÎBzPÄ&aiºy |ŸŽÍîû纥é¸Í`øpçh“Sßd·»û½?Ùç cŽšHA.ÿ]tÏì øP‚ ÿ‹T¨ÌZš‡™ ÈÝ:óqŽsÇÞÂB^‹£”é2,=½ÚtV>YQd–ÚúTΫ¸9IØlõ»™ý¾þ<÷ìŽáHB"Ë;GΗø°Gc;«–À‡ARÕ×dG‘LQÕßû$==9jä!•°þ§žJ#¤ îŠÉ‹m@zι}iÌêÈà?·oo?2NgZE5©!s šZg¼7²ò4… >ME¶÷“Š? |èãÅãL‡\ÕN/©†>!Ï”¯jºˆ7ò‹7ÇŽ-E¡@¥’ðÍÃq(ø{øèϼ{(l§ÓúmÎEZÈ»ƒ’P,"õXÖ…÷ë˜üJ…’·ÝT9ÂŒÒíy+)½Ó(göRÝ”oÁô¬·[ âÙø¯¦W“QYœ’"™š÷rÖ×íòbG5®ù¸kB¨!bû$é¦5jqTÐl›u \?2iƒÚÏæÂ˜ùëP—ãeÇvŽ3êe¨¶`Dƒƒ™_N£·’Óm[4žùURtÊM¿)z=}“†æ%’ NhùUäðÈ<Z›{^2¯¹†6:úEZëÛh«±vå`3Úih~ µ7F{Ø_Sˆ-š¯ÐÑ:4\äÞ<:¹}“®%zŠÎ~O‚,÷NãþˆY±ö—«è’Ĥøºö(eFÉ<ØÇõ°¨0 ÝHŽÚ\MvÄCÒfDf ¡x%_m÷RÇ4ŽÕ?}ñ!2d™ ¤•òÜŸrOv23hã³ b2‡JÛ6œ-®„ÓéŒÙa(h,csÔ(…\ˤu6V‚ÿ4 ¡"øŸë˜HÙ(¤ÿúßBÚy±Kòÿ‡ iN¾.‚·:ñy?g!5züÜfº4¼§ü;jÝYœ›*™:ð¡òl•¯90\)^ðI„"ÍÓbg¡8Eé4ýó¿ðæ¦kP¢txŒõx ”̽¢»Õü|yµð€ ”©³g]?e•[ªLùP~’œÂ›ùÿcï­¢ªl»7^:éFºAD`N:¤ T‹²@QPTT¥%¥[BBº[n¤6~{z°Ç{úýOÞ£9`±cçz®ëÇ|î9O@aøOï ¦×Ptê²ßÂ"áï>˼™=Í_>¼ bã!e ª^b!þò!¥¸æÛ„ƒÿ̇™7G\ȡѨ6­h—4ó/˜•oNËš¤¶œòhßEgCÉE GýB9ÜÕ ‡ž9íã;uè›d g^†€ŸFOT×aH¸m*óñ{ø>.§]µSFêDÔ3Ù`´þëá Ú˜ØùŽ:F¥ ¦îuþÐÌ|³„ïWW¼¢a}|Vùs`>ÀV’Fy;7O-Ql Á’?]ÊÉḛ̈|8±ï—H;¬Þ}Ó›Aãëk vg‰¾Àfzò3•DM$h–Ù¼`Dçûo±¨l"ÉnÖïk *HÆ<¬Éq»)vKÝüòÚ©üµ6Ä¥‘F6x0ïMÒñD¦–§#}Û°ïõÈȘÎѻ槇̟sîAβídñ Iz‚µÏkŸÔBî¥sŽ–ÔsÈ›aå!‹üOè ¯÷R `êÁÞPáªMh3÷@±îòeY-”¢çm!°92V£e Õa('{ñ½µœ*ùÖyŸ8ˆŠï>:*Õã_Ꮉ¨êoJk`~¡X&GƒN5icö*vê V½ï­ãûQ']¬jÏ!Ô˳I1AƒvFO+uÜ7s*4ïØs4ž|IÛ¹ дŒÂ#ªÒ Ímd©®éC #/OçU´Ôi'Øk¨VZ„ÆŒâ/ÑZ[Vž\Dm vE<•¸Œ¶Tv—5ÐîðÈl—¦ÚŸËÜ÷ø;î¿du¸C„·Þ½è{ æ-&b×ÄCÝwóÞõâb§}†!»þ‘·vL6Ÿð„$ÅÕÀLhØÂÞÁóÅP¥º—á¬M”÷ÍöM¨C)™Á¤üM(–öam¬ð†‚¬7'!·èq#é±øì¿2K|x²Ô²í7î'ü©9-;S²¡Ä“¨{QúTïä™Ù¥Ã NB×›“šþì?ì Ò®Ù\€>}‡àKÍ¿óá´¸|دeÓ£»®„gKÁøG¶ˆÄ³>0I^•Zóú6LJ¨+[û)ÃDþL¶¸jLø—Ù~|Áò§NоNˆ‡©ƒA,·eía:úéË̾×0ÓÀ¨iCó¯N…™iåœûç'-–0ïÉ"jÄ AÚÆL+`1_•Í*tü¤; ˜Üº–ï¨NË8MÁ*íƒ0ºÎ!XK±<ÛPN ¿)&\îi‡Mq²«Ñ$ È¨ñÒ¿‰„tQj+aJH$½Ñz1‰ü~PB’»…ª£HÚÏÒâøø’â¶W¤X“ÖN cAªœ3+¥W$pGÈnÿÒ"A¤ug ª[}t²3Æ!6\H/#{èz´ 2¨®Pk: 㡽“u;)ÔX‰qx™GºžžqDVÛGÇîé#[»Ê«ù^äpÉ£y§è‹œ9RI¹›Ç;úÌœóPò¨PœTíKE^×®ÎÝÈwHü¨D©ÑvÎÔÊ™úúzcÎ×6Í¡ÐM©çži(¢ùP|.(E7“fÝPÜ#~òI5;J¤ø pÔ°¢ä°Öåe=¸Û°ö9ýÓE”~ç³Ç¡h”üefÉte©«³Ú:JP6ðÓäµyF”#^)–;tåívùEêˆò†ï©C´QAíd(a…*6´˜ù‚Êæã®h§ Ê±®«$ÛºWUÛUûHÔ ÕYÏ]=>ŒHð¬EýãMÔð?ñ|h×jÆ^g¼yÝú»o;š½†ãt½“ÈÕÎíX6k–}u1÷>üˇÿòá¿|ø¿àCƒÏGI£Ð|ªùÝ—KqÈôÚä ÏV˜ã)¿Õ`´êÆlrd]¡\àÝØ†èàæŒšŠ–@þi‰âw#¶ó¢ÜÞ7e Û:z\,¦ø>ÉWÕÆJÅ@æay—àò+aôÍå¥^õ6êÚMh_†Ô­wg¹Éø·óçrúo#ãÏÍ“èÅuGo´+‚/kE;¾¨Ap³jXÇ›m}m…ï´±‡†Þ‘ü©ènhüáõsÊšiÒè]¡„í—†æ 5ÐR)ÀÂÕôZªŠ¿~Í©v¡[0MÌ{z¡ñV÷»· á›È’µŸÐýëôõ¡¼m½RНH¿„ÆÜŒ‹FÇîB“7áÄQùm¾üÙ\IÒ -ç ŸäÙ­%î¿t5V ýH¿XÏ#ètS8XõàtwS툡L¾d©¬û—~÷!‚W~PÁK¤ÀV+ ¼¶Ðñjÿˇô1úœ­o`r2'Ù/›ý÷\¸ÂõØK0—Î]«I·žÌL…O߇¥ó¨{³Œ°BÍ’¾¹tÖ¢2‰>‘7ÂÆ)Ï J¢!$ñªOaÞÖ¡ ù9›m><(tçö$‹Žûһ͇%ióôR´ÿ«X Rß¾ré†\Û”á]ŽNûøv¡¦õï¾!!×óå:Èûß;¾}}~aç<ä÷4íJ¼,gLEϵR+tÖ;T× e_íýÈøË‡Äúþf{vý3~v{rûë44ZG“]5h†f‰*BÝËrÐJLdá;¾ñÛoc„f¡ó˜ûàI:aèaY‹×k}}Ë}Æã4“0ðØæ¦Å=Ú­/MC ßgÙÆ²(¯ÂHý[²<­t­ió;y&HM^MpŸ€)O¦Yá¿çþ3)h9ÕzÞµþ0h1ñ{_xyßUXzz¢™ìU,Ÿ¦¾Ä™pVýTˆü®Âú°ËϹӰéwTôáÖ:¤‡Uí܇DZõ™tH¼Bw"—µ I;˜Ž†C’O¥'k!•9lj&zÜѯpý‹4î b°/Cú胛,ñÎÈx…·ô€Ñid¾˜bùæ› ²]=M¾C9Ü·Œ†¿Fî—Þ÷^Ëè!ï/~ õŸ‘ßQ&íú5ô|Ññìî7îTY:·²‚bþþÏWŠPò½Ä»÷µP†.-ãuÚv^Ümo!uåSBL®i^CÅ[G³Ø¸+p]z\£öT% ÙËYôa×{§kÑ·P#ñ2 Ÿ¿0jÙ Y3Œq Aòá>D=Î…²DÑ@d6îØÖ[Ü'`§ôìE4mèÚùý šlU½WUÈD³þ6`\*Aó¦˜æ´h&Ëò{Ø„–=oÞŠÝC«ü{W-£Ðúcúщö´ùà'cÿR mcö;Ô Ý;âä|„öo{+§>Åýo#N(YÄÑ^%^Rvx06¥lQ+%;†yHýúg>LÕ¸b¥ûúY}K~ç¼’ZP¥·•rŸSÊç¢ßѦC)Aí㈚ßóÖb>¿ä€BâÚ\.~È­±™#s`…Ï¡yD_á÷ù|N碸?5g€„GË®Jn «D6 C53ÑWÙædh8ê¨ÇÁ-‹ÒëÁ:ÐùÚi¯a®/ôÙäû[J†AÚø¸]¶ð}ÙK¹UsŒj¼Îø,` ãýNН¾2ä굄ƒ 0éàœÔ<ÍsQ×Ê¿lsâì¾ÍÚÎ?uÒá¬C}µL=‹³OV€é!>5ŸR0KIkáøpf „é3<¨`îÕ¢M×Y˜S?Éÿ >ý¼3¸ã9,þpÓ‰¼?ÕvlŠÄ²ÂrºÔdƒUÈ›?ÜúÖʲU‡_Ág$ˆ»aÓý)i‘@ÈB‡žq ¥ùÈÓYÈ€TkìŸë»(°ˆ$ £’#kHFúeýmK’û>+ô_y‚”|—´²VŠjÐséÞ 3îÈ;›ÌD4Ž´Qêqã‘Îæ³Ëm¤7èвõÊA; gæ‘Ñããá€W¡È”~8»¦ñ3²P¬ÛhI."«ÇøxQq:²m<ž$i¨CŽPùo^‡‚³~!êÇýGÈ]Sy6’cyŽ™ðŸ'”D^_>ùÄþsÈwa ÞïBþk›nlJ(°ôdWDy7 =OH©¿ÕŠ"ýgÜ™D1¶Ò—wo¡xHo€-;JTSÍ=;‚’›Z»/¨=ÃÝ[%µk(˶ye¸y§Nr¢,' ɉ](™¢ºåE‚rÜVµ±¯»Q.é´ñÉŸPÞYî(9*|_ÎÔƒŠ“¤qcW¹QùÍ‹æÀ m¿¼ðÆ÷6ëWT5ìÑþÕÅÒ±äú"²ë½ ÙƒÏú†½Q3sQò´¯à¨ ßB³3ÊÒ—Ÿÿ@®dÏ’j—XËŒš¼³¸ò/þˇÿòáÿ€og´i~QCs×úi¥4^düÙéÇ—ñfCÆ>ÚwUAÝÎ[½GmçµìOzí'7¡øHhøs—í»¾Ïõ€9MÈ1 ïvü}JܲV~~td¦ƒL~‡©ÇÁ®AªJÕ’ü{n~ÍÉoH½OdØ\ÊÇíïø™@¡ ÏG6(žøÊdEù*ŒÛìwõyCM² ï«| 4ÏÉ¿7tÇ24=¡Éº#‰ç½'4Ÿ‰Q¤‚–·f ó,Ð*à&'5• -£þuUþ–ÛzK  ’…¦n“𝠱âÅ,ËÆ¶>©$NèAC+e{ž÷‹ß{-ŒùD~Aã÷É´x¹ÐôöËb&4{›ä‡šrBK°”ß;oh훌Ï$y í×lÃÏE Aç£ÄËŽ¶Ý«¾¹G( ¯îå—wÂÀ“ú#L^ÀБ!†t¶0lz‡Ö;2þ/Ò¦ëëÒÚÀä¨ñ.Û«­0KÌ+F>¢sÉgul[|`!ÀÂ*›6–^Yª;4Âò¸W±ëz&¬]ZõÌsl† © ]¿)$`8üC4Š c„è$¾ë"±ÍäÝ;mHÊ·³OXOÉwòï3åiCÊÝ×=Z—‘:€ÑbÝ5i¹¤£=ý‘îõŠ_Òêp»Œx!£KIÈ­Sd¦³xL´3Y *ntNnó¡a±Ë rÔäŽ>\¿Î< ŽoC¼ìkœŽ¼5AL²¶ÈO:ñT˜ö_5!ÊÉFÁ6#ž¸çPø1‘ƒ´¹'Šúù„~—½ˆâɤ«6T(ùkFlÃþ$J_šSnìÐDYŠÓ ÅÛþw>Ì”‰þ*ìHÖ#ŒŠCÂ.C§P¹éªXþ1VT)"uýT‰ªY»î\bC`ÎWm$WEÓYŽ<·EÍþàZ¯0 ÔvÚ˜r VBåÍ×Óïo£ÞS÷´¶< 40»utVqŸûÉ€éh̯TçS€¦»º+ ]–Ñl-îAyÙ*šO•fÎ5B‹¾Ó‡Å)#вɈ7{°­*!6ûb)ZçÖÖÑ…×mçÑöEöwûÐöM†áž›Ñîó‘dzƒhM¨çÓÞo¸ÿŒ8s °Ñ–’Ú#5’ÉHSñD¬ íþ«x˜%c9^ÉoÜî‹ÿ®‚ú’'ÃÉH©pgS]¼æç4×}4ÛÿªmÚ4T(Í (™¡ëDØÈqç}îÑŸþ^FüÔÅm”…´+Ú­fÒJ¢îImå. IÜ/fÆÈ!~Œ ì©]Ä1Ü4-9 ±~G/{2ÄmÏÚQõARGÍãwZ¶Û:y»«„cÛYÛWí9þô'sdðFÞÜæÁ; ½<][šõ)Õðwß0Ì /ôˆDOÍö}áFc#5ä?W¹é%r v|§$Ó1‚‚´ˆ6Euy(¬!ߘ^"¢K{V[ È?‡w}¿nè_>FÏ5=ô€‰_Åãaò¼tôسH˜|ÆocG“BÖvõfC0±À…†DêdØCÅ…§0ÕPü²CËfø“zMüóaV,„ˆí©%ÌöÀúáÌɰ}%T‚ù²€”5ý[°ÐŸŸÂëKô‘{“&àç©Â/‘î‹°ÜÏÃy‘UVÏM'4jÀ:“RòÑoåð«ŒOd@l6Ÿyp눹#ætnl¿šD4žIù‰D§öw$®­¼OWŠ$õô­7†5LÂoý’ÇÓ ÷Xÿ@JƒOšùûÏ"5UÀ¼±×îŽk:¡›Š´µgôFºÎA"åùíq¤wô•¶4C·»£_ý1´åò‡3ÜÈôí¼º_á=d#PçtöGÖWú× Ùù»Þ¸¦"GnbˆùípäÎ~ÁÈ’Ü?…‡[,Y‘çÁã¾(þ8ä}–µ:ùÝùüšwÑÌ"ÿÃÑѽ(¸ãz­Û§/(”*R)ij†"Wn¯\ñ’B1ù® ®`Oaf?ÍŠß+bPŠUsÔú£9îö¾Aº…Ò MB‘»Q†ùÕ¼fÊŠ›=–™öDÙ1| QN)¹“«O 媣$ê«iPþ~aºÄ»JTðúäì"*‘{ þºŒÊišÑþ¨rÃ1ˆðØ^Tµ{•£*~ ÕUÚ+0ò Ê®$‘ºÍ£Æûý ?ZHQ³ì¬îżfÔZžX˜¹ºu£Ïˆyüßñ¡]üCa4S”^o7D®;­Mg`͉êø1ùð_>ü—ÿ|è›bº|·ͺž7é‘AFóSOw„À,Í~¨UL´%­D(3«ŠÎˆÞö=±Hrr2–mýµ©œ·‚ì±¹›’LðYëXÌp’d¼âøå <:÷äàIH/xÏÃöR³i5úÏûnëÒA4ðíon,]]©‚ìÆSÞ#Û¯ Í‘%BSE‚Ä&54¿yãðÜZRï/Lj%A놣`¥!´¿¨±ÏpʇÎ$þÀU>~èaYwMw„¾ ¶Àg‰0M.)ðq;g:§øiÈ Ã°µó×ô/žùº@ÿœ5Lõ<QØþž FŸ0 QÀ\Âç\——°p3=»ew,ݳjßc÷–«zë{×aMW}¶8·~-¼ûEÔv¶FïY‹ïFÂ@¶±KÛ|¨müÃO¢IÙ®1ûe´oó¡Ï`ü“ÓH©ÀÖQ1PÔÒ>¾94…´ÜfÍI)Hwö¥-gÈK¤ïytçÈü+dtºWÔúX ™©Ùæ V‘¥fb"yÙr²TC–ãÛ4µMgr“žÒ#š Bž}_ºîy o£ú½°lä§œJ>ß{ ßã=„‚§“vvlëëYr×t^е˜Añ‚ý2ŸjýPŠþA™è3”ögSfU*EYZóäKÊý(çNëÑn„ò[ä½Þi­¨XÑeÃÇO‹Ê‰_¬-èQ%$g¯u ªÞ©-½_•ƒê}䱺i¨aò¢‚ÄŠ{Ûçî~¾ßÚÚÇÈãªP§<Š™°(õ,_,çX„¡A•#Aj>6îø¾5®ŒF•WíIBÝФâóªwâE4K|awp`ÍˈU~†»¡EZd ]´ZF4VÛ&H¢ÕCY¶Œ¦Sh}µf_·É1´9ä'Å$±Œ¶ðÖέPí¸Íåk{ÐnYKEŒL íë×j±÷¿í’ÜÎ.ºçK$]ÛæDšÂ,R\öeN°Šþg>,°WzPN&)ƒ¯ç¡Yýò ÌCÐÊ”|NвÚ¥ó ~å@çéC7Ö4ס‡¿,쬪ô“çØrçÃ@$ãÈ7n„!µe^~â>ø¾>¢´I#¡aÕO}`ôËLo ß̻ü= ¦úËÐQèÁLë¢uNk0Ì)8R‚ù'J÷>=: ‹/rùO¿¥TnƒZX¾Výâ@ÊcXõ•˜z{å¬çö,úë&À¦x‘‰Rü$puÝyÄD ÄŸ[bUDâ@ªó]HzôbxÄG$?éÏvõrRÆ[V)¶àuÜ)©ôäÒÂ]¤ßk°dÇ‹ ë’ìmIÈ46vd Y”t¦¾z"{MþmÕ]Èõýi³¼ÇòŠ0mäÞ(G¾­' lyÇ·s-sý«#(lÃpÿáŠöÓtø]‡µšÚ´ ?PšéžÓÆÊj¿/0¨ByÂF××óP¡¶%Ûo" •¥ªÓ"ªÌx[—ý/¶sµ“× ?/Ú¨±G[ÚH÷ÌŸhÛ«ýq§ÃU´K”å)`ÛöWRËmîà~ R<~}Ø+´ÿüÏ|è}éÇŠtø>P°:×ü¡Ë…«:PuäþXEL$|a•`N} ¥b÷º=NC±e]Ù´ƒBλîe¬/!w¨Wšâ@|NÒI$|ÿ²H"u%£ÿÔœ•@8õr JîÇϯ±ºC5oåmû¥>h8·öNt1tÛçèP>2:S˜D´Þ@ß%å¶³0()ÂÙ0äÃyümTê0zçŽôôòk˜P!t¼v`2jðµ£4LV—?o)œ†Éýd±|[0)j ¢|âoý–üƒƒk¦wtöì[€™c{n±6Ù}¬éõá™0GMâ=sßÏvå<…ùqíK S°Hyèç5XRm¬ζ„Ÿ!ƒØ `…–.aæ¬FðÄ,×ÎÀº^\}Lë{øµÂ2òÜl6kRÓÕ ûàH <$#¡Ë®×üª­Hä_q!¾‰3ÜÒÞnú_AÚ•Ðïó5>Hçn8ÀþÊé½Äh)ľ#ÃqG‰t6dLýù A)™¦oC’²’ .Æq"k~ôº|îOd72o JEŽ![á„xä\¿Qø‹ÇÏ*@y>¶†·è!o¢q‘Ôè^ä{·q'¯ùß\éN»‹‚g®iǧ¡På»~¯B ºyTùü93]p÷N@ñjý’îO,(±EU!>R2šQ*’T¸;臠ô(Ëi.¢ ÍD™ Y ʪ<Þ<ìÑ‚²•¯»H†QΜrä ïM”í¦VI:ò‰&¤æRPáUT•Q*9*í 1tðýŠÊ¥£’¹B‹¨(øêfR<ªž< óxÛßÔM÷Z[8ç!î‹~Æ<52šÏËP¢fãà‘«n„¨MT?¹ˆ:{3Ý&(þ¿ãCê1 &hF(Z©FÙ\åît3‰Àº·˜¨f}ð¿|ø/þˇÿ >äIøòAÿ<šv=$Úm¿/âß Ÿtƒé•Jõ« æ`KmbH”w<êW‚¢ÅD³¡ËEÛ9QrÉú³d?h໘@ŸÖ¿²—þˆ‚¬Ûæ>ÍCƒ¿õ8"|Ò=èô}Ü!õÀ|æAÒHQ¿FëïEé±<Ä .zm7ÅSî¿£pŸÝ¨˜{›O¿µùD¡Ûºš_aŸ¢†&¢ãIp-šéMiݘOC /´3¨<ƒÖ#v‡šå µ“ÆÙœ¯Z#YwÕþž|Ò_¢š}‰î³@“uSß="6h¼õÍCi÷ f«$Ú@cØáG—ØŠ Iù¨Ì‰ÆüßsK5É6¡¹x=H²ÿ´|›-þ’Üm­$¡æ ý“ÓŠ„5tV½x‡K|Š ×Ùo™²œ…¢®Ùþ´¿ÏiQ—çüˇö¯ß“ž„²ì4W†¡/ùp.âÝ€Ó?óa±Þ³1Ðx^€$¬Òšõö1—ÙÌA+÷kWÈê¡]ñí‹ú‘ÐyÖ´V§szDãƒ6\£ Ÿ&"e›¸a öGÐi[Ò±ízµý= Öt][9 #Í´Ž £0Zú‹2ù Œì3ήԄ)ãâù-Oq˜©”¼¼És2ŸÖ¬j`þ©Äú+‚X¤÷Vl ”ƒ¥|Gͱå,X¾'.é%'«·Rõg§ÞÃz,Ë µ4#ØØ¸ÐwS öu’ˆN*!aŽfAh–>Û¬ýrpBRþ·¹|Ûù’œ?Æè`^R]‰|Uû©'yLû¹ö[€³`ÑÒ“^(÷B†¹ ž¯ë)òáÇB:/di~&ï(Á‰ìîŠå7¨Ž"W@ÔÚ×zÈ3ëqé^RòÕå¯lC«ê7´Q˜áF‹â¼Š>øæe¬¶cΈæàîGì$×¾ Ì¢£›Ê%”UßhïA…ËÁ¹jɨ”gSÁé,ªœÚ—ÿŒ^ Õ”‰ÏÊ~‰HœkU%ð5ÆiêùJKQëòõköM?PGYvŽúZê±Êâ%©Aý-Ù÷_¢a'¦) Q‰g4šÜQÊv’ÉG3Â#Â1ëhîó¤ãÔAw´Øñ™‘° ZJ>¸SÚB†–k®‘3ý hU²”KV‚Öw…%g =ÑF{º›Õb m~]‹ü¶)«>‹ahwäë—Á3/ÑžRÂõç;´O±ºM¼ùôŸù°–;/hò3t<ïu;1 »P6|*gó»#.ðE8hºÎç”*šÉû|Ï„â#!VÎô?¡Pd_MåS[ȉ2¥´g†ÏŸ)B U!ëlå±ôcoÿÔ\s“5µ0( 4‹ÉájáÄ£.w·s¥ÛäÁ—Ž-ÐJº¨Wן&¸ ç$¡Ïgq+\apïpËÇS÷`X¥‡Íî\ ŒÆ¸Ÿ£r,…‰“¦Ë.c0Ùúô9YPLn-ÐØŠ¶Âdà矗OpÂäáË"=.bêÅ·ÔC˜Ö_ä‘¶ò†™·e|òÝ0ë~üî;V˜v¼ÞϺó±o¤8`aç†rüµý°(G'mh` KN¤ö¬åÙð³PÈî ûXQ#2Ȩ‡Õz Bª7°îÉ1;Õ}6$w¼7¹2[Dcú ÎúÛÜ-–Ðây ï¿>ÕY‘‰Dñ¢ÏfMz¸•ùeö¸#’²žpã¨A²«mçŽE]AòŸDKwi‚ò9b5G1RˆŸh¹Õˆ4{v‘|UÅE¾›ùžH÷è4ëôÏHÿäÛÂá¶.bL:´%"c-kÔÉndÞñDgù…²œ¡ÚQ;œŒ¬ý·]UØ‘Ýõ<1ž{‹œT¯Ø~5d"½®Ÿ³4=î2êÄ"+äéå<@qò-òÞ=7Ƀ|)×»—sB‘?EöÙà¦4 `~ŽB|+ߎè H¼Wùê‰s¦>YcŒâÃ׎F’1¡$ûƒ¨+KJ(e¨yˆ;º wÇ<Ó¿J‰Ò›Í&0”2dªO ítPÖ ùì}bY”í~*~¾åΜX wl@yræñèG9(ÿµÓþr–)*ä:vÑn¼B%åNöpJTn ²ots@•?¶mŠU/±ÅŒJ^Cu‡æçJ ?à[+}5J̨'ТæÀ~w/¡Ý¨M“1B½­k,5ëðù?ãûßß¹œ{~ MkùB#JÚKöÑð÷#°Þ3©Ç«Öý/þˇÿòáÿ€}óbà8štÝ~JÛD‡ Ä>™¢æ0ÕŸôº#¾úèZ¥‡RïéÃÎÜÛù´0+¬pÈrû¦íål©ÔÒl£Eø”)Å?ÿŸ½‡¾ýî?\™³…tY¯áèñƒ²šl•¨Ì³­Cå¯Ë ?!ÝH{²¯²/ë÷ðÔi@‰Msù&Tê OK(AΩo¥"K¿çɰTò¼‚¦ã-H8L¡ù¼?¾¨= -Þnß.@kÞ³ã6–‹Ð¦xð®£ê´nÇYà ~ÐJ_xRê947Åý¶k‚¦W7ªÝßCcnúâ›HEht‘óЖƒÆ Ï”pzhr;_UÍL{m鲦 yØÒ}U¬é÷üÃ?h¡mϾt³ÐÞü©Amf:ЈfAÅd•ÄA&ègS×wƒÒ«¦>†0äkà|è˜ ;ìÑãcàøË‡¤­úE™0ÙEàZ™J3+ó•ûu÷Â\´U|˜5,¸\¹Ksn –ŽÚÑŒÒÁ²Ìd.í]Xýñ¥·æ|7üºùíô¯ÄEغ°ËÖé§,Ú“ˆŸx¼Í‡»hâýšï!)¹µ¯N%’Ói2:¸ %šž\¾…Ô/¦=¿«¦ -O°J?Ã&Ò9}¢×?VŠôÍ–ÚTÝÈx€Óç‡(2m<mÌí@–2¹c\vÈ–ý„Ge‡6rtXš÷´ø 7ë±w?. ãÙlýÆKÈÛö«ôÔMägˆP2]Dcå¤%ïP°?º¬ÏU…£È›\Ÿj£è»k%]•t(Þ»A[p ¥ö–­Ü¤ƒÒ©NŠs•(ËÁ7Â!ô|Ûÿ¢ƒ´œQ~(ÝõsÍ1T|¬šq•ÜØò•&Cyëwük×Q•_R}ô⪻…ß2G V‡H³êÔ ¼¬¥p!µ~‰«©ôÍ ŽÃ±ÈÏnÔ­é½}óÚÔ?~PÐÏ_ †&‹5Јi鬯ùv4aw;Ü/êŒf4^Óþœh~ÁwïÅ#ùhaKßÓº€–{¹ƒ÷”£+óZ\h*ZMVé\J~€ÖÙ=”ªæhsãú¥ïpm÷Ë»ßkBÛ)¯Ù¯™Ñ.̤剪%Ú«R«1 ¡}+µ„û»Ã¸ÿL@ÿ“ó‚¸ÿ§…s–ú7¼VIúwý)겿HøÑ–…4·¢u9¿ÂDýoŸâƒ bÃ%Úf½ ]HUÕ@¶ÊåyÑ:Ú?û ÓÓâ¶ú2ÿ³÷°÷â|輠🽓,Ϭ_nÃH±P#íj1g™¯Ý¿` qâ”±a“¢Â\’i‡ó8¯9 <\ëI5ÿ³_ñ·Þe"Ó!oþæÞÚ=­·©-q;|ò©Èæš!ÿÁû¢çUµqó5ÉþÿwŸ…ë0¼dåΧMøÝGy4î=ºÍ·¼MAPt§/6aŠŠ›ŒŠõþåCËÜ=cß@YFÝX­rÍ_>œÈ‹&=/öÏ|X¶GsÌè4º¯ì7]`€f3ž íŸw¡UøÀýòœBhWõõÄ:Ïir]ú=»Ý ŠX‡~F? n…Û0ÜhjšáCFYÏ™ÖÒ`˜<ÃçÌ|Œ´ø‹·šÃh1…ÂËÂ8ïZèÞLì‡)õõÌéqZ˜É>ñTÓ¥æ¤HÜ=J`>ŒïüK²°Èq(Õ?å ,Ug:=`9Ë _|ü «7¢4NfÂú3ò9®)ØøÆçÖg9Œ¢z+ ¤‘0°“VÁæóÌÏ«C’áoÑâ6HÖWvC“Ä)YÞx_}‰Ô/KÆ&/x!íånÍ–GzH× 8éUׂ >{¬;ŽÏ"Óß[²ó½Ööèˆ@®Ý©¼UůçÉ—‰°ƒï·}rLïæú>xó¸<2x…ê'xj_®¡¨r'ÃZŠ/Ù”~ˆ»É†ž¼àA™÷Ü‚ºJ(gÕbx3s8ò²ß£Ò¾ïíÏqOåØgT õ`=7»Œ nGyój\Hjp\GÍa†³I^U¨ýtŒ0Þ7ê:Íÿ¢L“A}m•M‘n4dO£ÙäÁ}ÓuváÃóhœ“8èó"M¯^ø¼¶ÍÃætÅAé‘ÄhÞg:Ú!´-bÙå ®¡å)BG½‡+hÅs!dÂkZ}S\_ì£DkOu ÇІ#.Bæ¤Ú|,éÒmD[ý‘Ê×SѶÙú}c¶-Ú0m{qéùpWÅc{gèH¬ö:°øÿîQIЇª«,‚¤rDðerú=K(Õd"± ‚bg»A³ïO¡P~'_-##ä®;¹Rٜϥ5× nC–{ OØ›?5—Žép`¯ ”<;—du¨ª%©Þb¥ƒ†Ë½ŒÔõ,¿Ÿ“6=›FE%Ljr¡/8]ä¨2 ¾ z6Ãf›4mM‡`´Ò9Ièë(L<xØðLQ?Ýa Sм¾­óa²è¬î—ie˜|É%9ý§NiÌ»ž8 Ó·i"™³Ò42˜}ÀǤžè s†<Ë:&0/9äø¢t,(f­û°|Å¥§YiÂR°ò(E#üo祿+gú¬#*`uË÷àãrcXO|È 0èD'ˆ_ÍÀ– _·äý$x^Áï¢Û…„ñ\r!VO‘¨* _©, ‰W²o7´É ©êÂËýŒH~/4j$)¸®ê<3„”·á›· Rûf¾$ÎCGmZÜi:ÉG•ì†tïïêpWó"}¢GGvÇv®)J³˜ØdÛ“ÃÖ…ÌâÑ•©~ËÈ@»+ …lD‡©c²T‘ýÉçÌ8“'È)ÇÐÕ¸R‚\"ÔÞOsÕq×E-ëËËnÈKœJýº4y›=ŒSfI¯Ì2Ïù³òN™ôïkGA Žï¡Ðj½ÐÆ)½*™»Åü¬¹z P‚ õ×qF”TØák\x¥Ži²qÞÀÝù•n‘É´(CõÑO¨¤¥7Xê2ÍVQÖž¥=ëa ÊÎzQ¾ø‚r¾…[×¢ùQ^ȬšÆå'O%¾@zTèâl4’A% Þ±¶ /TSº3–W‹*± ¯iÞEÕ[mÜðáª_,1d_F¼F}N––5¾UÅM0 æÌ·àëQ›íy•4êè4i+1hýßñaþ´œ×K4}ÁáHìÝ€\äzS¹ïà—FÊñÍ‘ùð_>ü—ÿ|¸ÿm[ewy‰Ì˜"ýaÚr ÖÝ0Y¹D2­zªãÄó–Ž~Ÿ»ÏÑ=pŠî„[2A.g»+Ïͪ?úùtîÕÖ­#š¿÷š¤ü£¯ÿê1EÝ]-ò¸|pZ8å:ôç÷ٺʵ<­+tWùÌ…Y^ç Ô}­É¢É} SO¯ZJBSYÖRÕ§ h®-¹Pâg -­Í”3§öAGË™ÖKmÁñQm¶9ѦðèeFÍ?:kæZªä þ£ÃÆŸO¿•SúAã|‘ÕE÷ç禀†Þ‹м×÷,ÇŽ®¿z¥Ï³%ÏÆ?ïÛ>/õÐçãmè"¹×ZäS =çOn…+ô‹Š´Tláï}Å¡C?:`èS÷¸7/ ;ñÛ+OüåC¢Aý±)i˜l}Üóµfo¿t+©‡¹ˆ·¼Æ_±ÖI± 2X2²+š¯‡åÓTëâL_ÿèò—îç³=ôH¨¾*Ïϻ͇Ôç¨îŠv!ÉfÑçè_QÛ|™˜;Δ:“3™DöHØ}O‚iyS],ô„î„}vH_ȲŒVmmO¸iÙ.µdÉY [žÆHmó!=õ³ÈÑsçÒÛÆNäæu°Þÿñ3ò¸ˆŠlQ ïÞaÝ ò³,/ïE“}Úöú(8Tl¡¯L‹Â±ͤï¡hò·kík:(>cÙºWi¥ÌŸ$˜D鲇 ßͶuÄKå3~ åNÅšÅJ.£|+y¦Ýþ8T¼21 ÞKŠÊr’áì»P…˜¯ƒŠ.÷Îvy³ê¿Eõ½#co)éWüÙ'v  æç‚‹ÇO£Vû#[Ÿ5_ÔÙè¥J¿Šº÷ ªŽÑ÷ >Ó;2ýEJ4¨ùqü¸dîËUXì=üKL‚œ†Ñ´àlή=h®Wœ“ŠCh!º­ìB6Z’ž©" GËnгQK6h[QŒGyÑút@;qÉÚì:ëË}}mª(…ØOÔ¡íéçF7Nû¢íÆþ’ÅlV´»­IiY‡öä̓¯#MÑþ†xÕú×h?á7rRC¯É‘Üd!>‚:§Iå¹gqGzr¨5ÃHí¯‘wÏ• BÑýã²íŸú¯î2ÃHID¾9BºƒÿÉõóQüí¿:Kx/ç£9]qu›1&bVT‚™Ö!fǯÓ‡»!vèêðÎJ=HòNÎ/diW´¦g|ý}~˜L¬öÓ}æ‘‹R[@þi‘ ®‰–ÿíi¬›*I¼ ·j“I¹ßB³Ý’GésNh•–yÁr.Ú5U?÷8C§›ü™Î9Уpé&_£5ô³;;ÜÃÈ’õ¥Ù¼ý{®”士0LóRÄvrFÚúé?ÁhÓÑ{,ª0ÞðÚU;èæ_ŸMϼó©æÄ¬”|‚aþËãðSX Õ¦°ÔNù@R‘ –_Yf+ÁêõÏ¿‚zÊaýú½ÇïýÁFT#‰|lfLˆ‹"áÑ‹‡›]hl|èºê5$‰ÛZVÝÎǃiÂÆÊHQ«cv–çR:ÝùIдìÒìwÆ"]xÒiÆvdÐqdbr7º©ªŽ,ʶtúãG‘­†¤øR\?r6åë3 Ï""óñxªtäse ÍxY€§ê‹¢Pè¡óImo²Éíø¼ŽâŽiÜOPÊG­$Î)elÚÛ´˜]Qö×på­](_BVù;\e>¨—âÛ*fµ¹7¸wn²4ñŽ ª_/uïâGœŽ™""pBM›Øƒ|I¨µÉ ’‚:YÁ ‡CQïË%·Ì,4°mç*»‰ûăî(Zj¡Ñõk¢l4‰`¬gWG3ì°^Ńæ'%TO Š ßžQ hÑô”ﵪZzO¸|“#D+ÝêÕÍ0´J~𮓢 ­÷t1ý¨DëìÙ”RÑF–°ªññ´‰¸ÞKeG޶¤ûx,þ™/¸,(ゎ"g¹„Ш;N÷Ú·òO.üïuúßë·ø*—›â'…¿yõÿÓÏu›uÛìG`]øŸú_?- · ØÚºÕrn¬!±ñÐà^_}]ÍöuV½ Êv6„¾ˆófüâK0hÜÐó|ÜŸ?<®©D ùã&që¿ÿq_À¿ ¦œMVl×ÞÃä"÷Sv+˜¬¨¡skÉøS§<™dÂÆ`º@8ÚïÄÃß{=Ó \oÀlâû²Åô.˜;Û{!Î÷9Ì[ðØoþÍ‘·¯F]€¥g÷ÕÞ»°Ìrôvî)Xy>|eÉ}Ö¤32{‹Öa½gKÞ{T6BVø³‹aëü7ÁDV$øxâ%1ƒ5V¼Ü0ê»ò÷ºç<ì2Vº…¤G?QéÝd%Ê9CâÓH¡µT¶û‹2RW¨·v³"uBÕð‘»1Hsÿõé÷æ_p§k!KĤË{w%bàÒ—ñ>I} ]LÕÆü ÈDº¿A-‘Ù ÓøÌÅ d‰gì¾åÐò'W²&:M/y9÷ßÏS\j nÅúgp׫Ⱥ„ÝÛ\Èfé¬lm‚¼c´ ³ ãÈ×!òª'kò‹'éy~ OKúgßü݇çó„"=n!×ÍäP,RUËõr-Jp¿~Ç€’¦ ”£”·FýHÈÜݼöÚv„e˜7‡’£Pz*ËmbÎeOí×bE9’ÛU|ŸP.œ“zîûe”׈w·ú}Nq3¿¢Öú6Ÿ†•£’ó©FæT^ïI#¤PA•L×¢µK¨úèiÈÓÝQÝÌ Þ-14oèd+jôéèÎi² æ¦~¼ÏCÔðnU½…:†CJA¯ˆþïøð¹òŠüÛb4=É(uJ¡9{õc‡_Ñ}zX/ýˇÿòá¿|ø?àCg¢¦°òA4:Ê!3Kzñ/ž ãç%«€jޱwKš ä×Ë\q¬‰^:Ê9G_ÑgFÃg¶Ñ#®U5¦}U‘2O¯´I·oBÆ“Sb@ÚÞËu’ ëð¡û¥Mí-]HR¨ãPç‚´3>|Õ¥às—‹kT;”HÞié°„J›ä7 \jPçújÖ†f2ß›½"-†¦»V¯Ý|¡9¬¨øQÞ´$ÄTœÕÖ‚Öé˜Q5H†6Wó\.{×?}¾V{W¥êDFh ð¦5‡¦©9ÃÐïÏ ‰Z.§ã'4¦ŒûNRÕCã/O÷®†ÐtƒÊ¢ºBâ÷Þ´%Âlhn}ý3ÐR»Õà“øÚˆõ¥Ý#¡=x%Í¿pt>Ž¢Õ‡îï£ä÷ˆr¡/ÎÒ2én ¸ø4WD)À{x0Ÿæ7ø>ZÖá=ù F6ÇØÃ~ÅÃØ™S{ßI߆IáÖƒq˜‘âœ×ö ƒ9Yÿ=‘æ0?eèKÿ¿ÝìÉI ?¬àWaUòEÛaýÃ¥[=}°émÚÔá ôœò ô7A¢ˆ½¶ÞV‘Ä4!jBÉîµÚ˜ö¾@Šd ÁÒHµfæ,Ҝ߈{y¢éÈuIJ?.!ý9’w?òñÿ¡ë-ƒªú£öoº;$¤‘n¤c-ºEQT QQBAD,TTP‘îîPºAº»ôá¾gžßýêÿjÍ>sfÎÌÞßϺÖ5û¬µ˜£[w=B–ˆC‡9·žãóò^B d©9¥{Èiï 9”Ûƒ\‘¹ïóõ{§sºØËŸùž[·)«…"#纩`änYÂÍóxèUü«kÿ °}èÃÁ›(juúð©|A¿{;˜þyJö\Î ?Ÿ‰2ºµo½ÿ¼BÙ_ÕZî×#Q^ððÍŽòèny£ŠÒߤÚQif¸…,êªä÷äÓki£Zb‘S32jÌšjÓð#¾ŠÝ”`¾‚ÚªÛyùõE¨óú¸Ý!EÝEIƒ º?¨o¤ð-k Z¯çù©6¢ÑƒÄƈª7hr-[®3| Ín~>uQµ ͽ…Åä2£¯ÍçÞhñï쥳hÙ÷>P8Ñ­RÙïLJ¢õÍã}Ÿi£üZ¸‹¼mæ^ˆ >@Û˜«I¡+h'oSúê ÚU‡ŽÚ”£½¹Ý¥;Y´o½å@c†:ª¦ÚôAèðÝE”á49úõ{֙ǣî¶>­¨Q¤‰ÿìt1â L^Ž>6æ‘5I´vìÊAPB3¹P/yäÑd\JNÕB¥ÆÎwéöÇܨ Ü׽ǣßÁ·§êZK=sðe†ð»°î,|Þù§yo>iP}½‰Mw\à34ªÉ•'Aòâ£15åÿé?låÞ ¬þ!ñìÿ{øÆ ¼—ÿßïƒÒ-&X¬þ/n8ý ª‡’“:!¹Ó&ûú*4l=¥q[&.ª@p›ëú@Ù)k]jÂÿì͹2,ø*h?N7FC•äÍ%’›†PS1uz}j 6?ìûCCÒÜ û“ðãñ‹üÐX×ð¬Ô¥Zµ¹GÞ\ƒ6R1µˆÌý|ÑÃÊsM:_¯‡+Àt'ZÑPY CïOÍj—ÓðëVmÌ;%:ëˆUÑqÑËfý\´ £}‡oÐe5Ãøãº§×’`Òî[KMŸ Lkf9ª ½Y³ªÓo"Raþݶ¯Y{,1][’è*…åÞ»›ÖcA°jÐìq3OÖü ^sMÁÆiç/Öð[1ß$CжY‚_h|ƒ?,šÇ—²aOãu±´üû|h„MË %'r'®o"Q¦ªž?„$n)c¥^ÌHfÑt5 )¼ï _­{T6 Ó”Hû:Mºq·l%*,ƒíqƒñÔÓàmd.jùx7ÌYÛþ0—|Fv뫵åË_ð ORNéwä ~ºôÙ ù‰-3ÿŠK2R¡(Dé>I¥2„"vJÕFQlõ,aÝœ>Jž9°2»Ûêß7Qî=çhE <|Z™´ìß.*zç:°x^Aåñ†EbžTT»JwÞRt5M©œBt~¼œVvµ©b¼”ålQçOÏTõÔseŠoyt d6d¯]AÃ?G4œ~¡qg&yš>]"Ÿ½€G ¼îþI¼…æã/ì…Ÿ¿F ¯3‚ÄÏÐbãΘAq*Z&ý{s;óZY…k•üF«U¾RÚOh}?…sg.m˜±Jòu4Ú<“ï]óû€¶´ãžŒoÒÑöÖÓ‡J¹Éh;þ Yâ)Fôò(µ0 µ•üã¯Jä‹=jUÆs _ô„]ˇžá§KßÅböu雦¸¥Ô-æÏÉnîBõ׿7œvõ ¢ÕØmÒ¬Êv"c†©ïŸóqY(<ìºc÷ýñÜfײ0Ñ.ì¶¾²’i(0b^áWÚ z®àn³u¨?ñ4Ñ@(Zú›wn‚NÍÓ3Ò)Ð[æê] ƒNÇ"Íèˆaäu¥sB3ŒßIð¸S‹1¢3U0íJÊXDóÔD:âŠu0oL\ÅÈÊ s땱u+wanÜ÷cøpÌí2lj߃ùôŠ˜¾dX˜¿nÄg| –tÍíy3:`YU4„%Ù–W³kÓŠ`¥™þ é§EXm.¤d1 µÇ^ºÀHØ8èâ舰éÁ"îðµ~iÙØšþ„mOž*¶žCð‡éðE®èNØ-–åö‚¿1…H O¾z¦3 í/qмE"ß[>S$N>ÁµÔW$+Õ© Ô‘Ìf¯®9ŠÉ;÷6›Û­‘òzfæ1¤VØÚVø*´ôu¿nÖ#Òíöv¹@†@^%öc$ÈxO¯f{æ2Å•=òxú™«¾qºެÄOl®ÕMáçÕ¿=Ï [;¿ur¸h”œ¾‹œ»m.scñà’ëÉ=äQ¾¬üYªyë%h¸ "_æ©KÏÈO"¼¤sÖYxNí<½¯ ‡(gê" Q¨|ãÑ!r 1‰÷ø†bêþ•7P<ƒ£?’íJŒs ö˜Ø£CSJ»=wó;Ç‹2U+ÚG©P¦œÿm¡œ¾˜QX.;ÊmÛ]ÝòBù$ö QŸõðð%M'£ÑnT0\nç® CEJBjžzTJ¼U:ùPå°øæm¶=TI½8‡ê…7ïS\«EÍïZU&lrˆ9‹¤C·Pkþ¢…7 îןŸâ8YQW©ù~…­,ê+½¬’mŽú¯$ê•i–Ð@uΗèÄ'4hâ æïBCû§J—¹‹Ð°«dƒ2š Lë:öI Qî…îajy4æä uÌÜ÷…)=äÅch\û<Ò M˜õ¸ýB‡‘ïnf¡Iìßw"å®hÒüûkΧ#hJ<î¥nŽû^gÜÆJÍvUµÎœdǃçÚLÆÁ®Žþ§|Ÿ#ÐIÔö@9r~Ž){wχ*¾¬7ý¹ÙPbòèËa(üB»ú-7rÿ˜‰i2†, j~þgHw.!´òMúŸùm«ìD %0@'A꿘ÆÇïùÛ2ߊ»ìT-ÿÇkñ÷z¥á”PžÌ–¬h9 Uw«dy–³ &¿¨¤äDÔÝmqï= ù£—¹ŸëA£Øˆ¤sÄ)h–Ùj§J…–×Ô¢_‘ZÝøo¾;9mÊêþ~tÍЮ¥Ù ôÝ:\º4+‰ 33Œ1œ.ºm[ÈMš‡ çû1%Ž1èëñ0úùâ P›—¾)¡d‘¶Ì×0bñØ÷ýç^ý]¥Ó/ãCcEaò’×Å4­,˜Ö-2úS¥³b¾{ïËažŸ#’ì%,ìiË;¬ Ëb©ÞGó `å´ëÎÁ7³°Z¦ªÓK9ëÚDçÎÃÆ·Ë±Ü·à·û7á{öî°Mœœìã;ÙÞ˜x‡Ý-£äýûý×ûï­µ$КUòq½ˆ„!›§d"Ñ-é‹D=HœM™Öz< IIÿ˜*ÓG2Ï!ÿCÊ2H¾§ÅºÔp)³sdÉ×7:‚j¢9fiïl½Ø³‹ô9¿TSõ #U&…ØC^d2äꦜdŠ8Àÿ‘ Yr×o¹©âjå\Ǧ5d‹S‹q}Ê7b’o³àÁÔÖ¸à˜häáMžÈ”4B>ÝÙ_ñ×E‘ß°8Œ.ü* °p[¨àF¡¬·}*](XÇzýhÐ0ªq<]Iê€BsUÚ¦¶PD™ïêYé|}ùj¤îÐo'›:Kø%B×Î5NÆ¢]Ÿí±(`£§X„²/ݶÂQn HÌõG¾2ñ"ÿ‚*jM^oý‚Ê&¯Ÿ DÕ§™ïÇæ¸Qƒ¸ÞëåÂÉ`â'_QK!ÕãÝ[ÔæÒÔ.¨±AZJýŠÔIhãŠê¿ƒºòù…‹¶ ¨›3 '%§QOôƒƒ¨÷Q–½®ˆõiMóEúQß½ ìâ›Ô¯¶²íø Ì%ÞÞÏ£§|]û¾ Aâý7LB÷Ð`l¦AÝ ¹^ DðÕ£¡…²C §Þö;³Â^)ˆÆ£ªËEãÿçéÔѲê#’8IA…ñZ`̃Q(µsŒéAÈÿèœcZG¹—ß_ÚiÚ„!¥ûîÔ3UexòÀ?#ÈXÈ=%érÒÂIدZäÂ7ÿâË;oœ!™Ø†©‘ÆÒ¦¹JSwCÞ•«Ô…—ó üw”¶×ž?Ô±¬/¯Cý%ñ8wh½•íVšo íÆÔéW$8 ãL)“ãz túÞâUƒ®Š›ç>Pñ@·ñïöÇÉÿú» ÊYœFº¡“O•ZjÚ·ó¨ûw ·9a[ò´•?sçW‹€v"gž­´Ðî­³~ýàõýïåyz?‡Ž„0.Ió&è ×5ûófºÒšOÏþ"€™ÊÎÈúyèã)Ò¤ÿw ~9^Œ-·£€!›ízº0BjË’|ü1Œ&Òu ¸ ã—.¦¾{¯ “×sél¾‡éæy©WºaՑCÔ°x6Ë„Uþ,WzZD ‡ÕEćb¢`ݶÈON× 6ÏOÜM˜æ‡­Do¡Õû­ð‡uúÈ¡û°7À@|g‚ :‹–—íè0Ù¯@Dj“¸÷½-HúúïH;;R°òú^:î†T¶‚›æKo‘¦Ôd|ìÎM¤· S´A!d¤i±`É»…LaæN윻È"°œíýgYY©»¯"[¥SuV—=r´JRpÇuáÁtKì]¿‘™­ò~Ë#Ÿ©Kªû'ä¿#f÷¤¶:+^‹¼¾‡,ƒÆÞO£0¹]Ýý (²±63{“Å9¾KŒoñ£ä)ÿ®‹·iPº’ˆ‚ðó,ʾ ú;gžŒrƒeñÞ/©ð°IûŽñð*L¹û÷èA¥÷ψ׉©QÅ+ò%‹g=ª9¾Ñ¸—׈ÏO~¡ß×;ĶKœ„¨Mü “P–uNR[R?@Ý”ŸLUA{¨Ov!Šü«<6¼ø-è é¹*ç÷AiÅË?óΡ™ ¡|M.š ¿Ð0Ç£KÍb¢¯Ñ¢ëvÉ3Ð2µW‘Ïd­BD?,›f£µñÏ›khCöíz’Y"ÚäU¯Ê׋£íÉA‰UF´Ýe:œãŽv„Y•ŠhÏJ;w,í£Ø™nš ™áÏ{ÖûñŠš[áô½ÛÏtc uÎßM5'nGšûôš+0I/Ò( Ç 5œ­Ñþ7’ Ø"1§åE äâÓO*mûºGïEáu Ò T>—±ûßþ^Oe'H. Ùº©»_$[ú©^2ÀgãT‘óÌÔ_UDl 1ñ_‰£áÓ+ÁHëB*H>u^Æ*çé>—œ™¦ŒªõLa’ï~æÿõ>æ+%ðÿî?äRýw¡ÿÿâs5Ÿ3´Cû>ñøð1þ}Ýz°ÄF ¥ôÕÑ—âÞAéXL[*”…W½8Ÿ ü¢ãJ"-Txèø“ t@e2é`×b¨üäZslß3© -@]¬Ï g 4D%ßÌ F‚$¦ÒcÐÜ—GÈ3 ­awkC»®|º¯¥=tRäù[ÑïçJÕ_NuvÐ+b䥑Eýµ¿r½â†Á8¡ÞØ­ynWù¢íFOY¼~¼vÆé7ÿ=mp„‰.û””+0Ulc³ H3µsö¿Á2V=£+àŠVæ¡¥nÈ'ù2[ò’íþs)3µ²ƒ‚âo©DÂÐ*tÙ-—wêœ^°jn@5 ÷ÍÜPa[@öï—”Ž8é@qP¾ðï}Î N¾»ðêäÜfS v’g@¶ÀYïÛ© íèuEq(žÚùþêÔ…çÈo} ‚lz#s:ÜÊ´J¸ '=R0ß_Øt›¯¯0Áðà•æÇ·`,iR?¤S&[ƒ€á/Ìœ˜ìlfÙŠÙјÉü! ³n/n^Ü¿&Qú8s²N2ÑAŽ07ëµM”ä œ•ó…ÒûºTnTþ –"ìÝ ?Á²oxßäଘý{¼>«z¤VÍ}S°fŒªÖ`=ÀNÕ¢s 6*߸K½2ßÒ¯å³y`ë{X›Å’9ìœ/Öt…?s=š÷ÿ.À^þÛG>^.ð/ÙîY˜ÜC$˜RWh<‹D”ε䤑XýÄÏ•§HtÑ<–I§*» 7ø‘ÜLÌkø2R’Æ‹ÉÎv"U©(-Uc1ÒĬ[˜iç!]Ðëå$Ñ*dÀ—›Q-ÁÈht¡é”@$2p7$qCæ;[õ~º]ÈRâqü6/`jã—mRG¶`“ïnãtÈAqƒ%3ç+rÆs JœÀƒïÑõåCîvõø)fä=•®ÛдÏÍ­¬*UÎä?/Ç`œñœ=rÖ¾„£`ÿ”I÷Û'(´ÿT$ßFÁ”ç„Q´k(ë;Š™sÿŸF ߯T³(ùÉ'ödPꯂâ›Iq”9uPܧeîÕ3Ñ…¢œÀ¶©¬ÊM…Œ95‹¡|kµÌEV<½BËémˆ !óŸo¡bà'âÛ ?QiøiuÁ7T¹xSýŸHª±|дFõi'?ÿ‚¿¨Ùí³Eˆ½|9u¼œ¨µ带)‹:¤?½G]Aåã—‡PïÎëÄ‘æW¨_º” ’@Œg«EÔìÑàߨ7E¾2>ž›ôþ|˜O§07~D£ïúqh´Wg¼B9Æ®3z-%h\9ô®M8ÍFJÎj£‰ÛŸŽ/Ð$=쇌Ó74Yó|AQÓ¦2 ï éÙw#gl¿àݺ…–ëDéhúô¤õɰ³È¹bI¤ÙFØ<ë3}ú°û½ðc’7‡Ýu*ŸtÊŒ½€â r¸žÇBA§a×ÁŽ›sÇÖz›t2Ï8ÎoÈï×£-±%ñLðÝJu*•Y¾}­ô<õS⿘êþàÊÍ„LRÍ—ƧÿñZsј++ÊÖ³çEÿ®ïëƒ`ñKW¨®óûzö¾?ÔÞ¯Z“Û×ÑúDCçi2>ø±—•“të54þÞ ‰#¸ Í«–QåÏÍ ¥VC6ÿK´>³68» mo-¥<Ë =Ÿ˜³4~:v·êû’Z ë~²÷ÁOŒÐÃ~´õåÛAè¤y¼6ý›.æãó`ð*Åü‚Ù9~/ï{iqFœd?üƒ±6ñ·÷Õ_ÂDXSzÚ(LYÿmÔ‚Ñ‚ùéSä0Ç´—(Í Ä–²á«Ô°$7ü"SÔ–^’­´šU!šc§ŸÃÚ[«¥Žî°!øMÊ©è%l–^ýækv ¶Žm† ´Ãñ#9zêzøóƒ‰ó!#ìe0»Q߇yole2î!ÁrãÑ—-HÄøõðÇU$6ù³y£tŸç—/õ¸ß ì×§ISä .H~o­Þþ¦'R*3ÀXv,R“±5]ÎDšÍ°6º— HÏí³QµÜƒ Ù fgy‘q’¡7ë~23}:sE Y°ñâ¹äd û™=çw Ù˜ c¦WÇ‘}†Ž»^rè>L¹ú¹ƒ cï\CÞ!ýOë¾!ߪ„脜òWÚfo©Bˆ1õÍ—QðFFú/KE<ä«ZÚÒ| …>‰ô‰<ñEái3men(êÖ})ðŠS÷Ôø=A‰ïÏϼ@)³{ŒÍ‘‚(=Z˜™\²QYI·N§£Ü8ÇóÒûxØÁ5¤¡ eùK‰ÕæQYÎA™3 U/ÿÐz5ˆêmGbCQ¯ÿØW}ó\Ô7§zÖñÀõó¨ôŸ¦x¢‡·x [\µØ"Cƒê¸´‡XÑaâÁ3«y4´Ý5Ô;…†1ÃÖr·ÜаIƒs½!ƒXùån× Ñ9G•k¶ÿùù´ÁãwÞhA=ÁyÑĵ{P>1?\ÄÇ%>î:«&7Åç82Ï9%b‹[Ù·ïü85Z Y¼Ï&ÿ EC†1ù‹-ù+š)\}õí$$s?)¸_ZïÚõ?†´syÎO!<*™Rí”W¼N¡øÒµ‡S›4@cºšëXÆ/hÕ¯¾3î> íÔJôzãiÐ!]|FDò0tZ™éœþ#]±ÆäÐ-üvÞËÙå¿9£]Š,+ ìqÐÉmÈ:<פ·½BÚO@»‚{$³f7´µkÙÚ]4ƒv ­ê§ ­Ð~Îÿ9¯g)´÷ÚR¾ºÞ7·‡ŠR Óà^Ýõ(éÿ™ƒãúIë$t7=ގ툇Þä./å5èo^úóÅìã'ž# ¿µ‰<0£²É››eal‘!´Òv&æC‰o.¿‚i¥+|ìYâ0[ôèÓ? Xxkö~rV –mí.Ü•(†U"éÇØla­oñôÌ¥‡°1ÕVÚò'lL|L4Ù;·f\#=¤aOî#{¾ÛU$àÒ#ìq8„5m‹g“VøIäãøºsHê£t­ö9’ßR)1óFÊÔ¥;ò­HC÷‚_òƒÒ½zpŠŸÅ’ƒ_ß ÓD¦C”ã*'/!s^±rÿÃÈê¡Ä )_Í(,žÒG9Lþµ9wàÁËç4n^`Cî$Íi«†Èû·ŸCO0ùUuÈ“è÷9Ë2¤×JÂC'%›»P(W”Túü1yUiž÷w8ä Äìƒ-“®(­£q%ÊF eíÔŠ/ŠÔ¢Ü«#F=G™ñ0©Wå¡@Tˆ—¬ÙU¬@¥cÆÊ#×£PEÄÀ—ã%ªÑrÃWÔУ fÒBÌúžÌ÷µÙRŒbÏ¢Ž€>J 5êz\¢Tú‹zUqW}^¡)×`µ-¼]?ŠÆSÙÉ•íh:áDÂ1Gz_“;È<À£ñÄ4ŸyÐ"%Žñô¯ ´ e˜çX6E+[•’ØÍ ´ælZ;Éý ­;‹«üöó‡M蚸æåF´•0J=q^m«›?·9Тí ?KÚõ•ÿ:¾ŽööÍ?ÇѾÁîÈç¬è À’|.ñÞ”6pÌ’Fís+w|ª‘Æãµôm˜H-Ö:Å ÕÏšsÿg„kÐä“@ȹñÌÀ¦Ö2µX·Ê!-Ÿ¡îÃ%Å}ÝSwÓ5¾ _çÒ¾ÿ$¯xòÅEEødÃõÚP*¿ Ñß=WbíKª qÃwüz–|íÐö¿øO ÒÞß{vSh²ÌßÙOÿ¿ù¥õd9mÿßóK+=9Š]ÿ‹Åªü•VU¤Ñ¯:#Óeôò*0öDèR†* LØ…Ç\z SëGãõNÃŒ.ÓËp:˜ ö«J€…Q¡Ó~,aYuúúögXy«üÉÙÖØ7{¥Âz®Ûµ²'ó°évL-ý3lé0µØìøÂŽö—C?JH`×ó g‹ú}ø;øvþ» Ôþt§ð¥D"ý.õÊ$ž£,X­@Ò¼/\´缘¦#”³©ÈŒ×‰r. M|Æ1g¤CúG6 /?ë!£]n†‘\ 2ÓÞ±ŽÚ@V*}δÊÈvÚ²ãÄm äd¹´sU¹9Ÿ,F>™Ÿ…?‡ï ÿßNKÃS·ðáóÁ$ÖX¬Ê‚T­ºô‘÷ JÄæ}\û£‰ÒïØÌäJ£ìLHF¶ïM”ÿðüéBI*$š~mû‰ÊMï"o¶¢êuËïqW¶P½×#µzuAýÄÖqÔºvùU¢ÅgÔ¡ä:'*fƒº%-eá3›¨œñÕ×c ý†Æ¬Œ†ß½ß¢IïC‚Ð'DhA}Þ¦xͥɞâÑⳊwÇÐâ-§yäˆ0ZZw<3üØ‹–ÿj§?¼E«÷ƒ%ÊÑZu™\#ýZ×Q ’‹¢YðÁZ–ûhSû%?2ûÚª–LDÞ\CÛdj78Ù0<ß&2K/-Mn±ÒÑ#ohŒœW”N•ðt®C7ß”[j_>´<“Õ]¼ µu>h²ñª<4|Ÿ¦lByŸxÇ¥ÏPF|}DYÊŠâ%þQ­AþÃÞ®…s²ÿq›eþÉ´Z”²®,+ï¼ †¼øðíC‰NûõgæÕЩ?P›ÓS–Ìš ã8f†‚ ýY…'G8t'†ËªÞI„þviúw|0,p'tçÍ4Œ6O¾l…‰jú©-K˜V·¯{9Ê3‰ôÊ‘a–ÌÓ)Ôxf6é_‰ŒMÁ,wG}Ñæ˜uýP*Ð!s‚¼Î(+ óÆLOì˜aá‚ÚÙÓ¡°˜ä´õEå ,œb £%ƒå†¥¡¿:Ͱ’w4î¡g9¬– »¾¶‡µ3Ž]Ë4ØàþNV›¾›Œ,kð{a}8œìlû½îvžZ…?lu&KÜn°;XöŠ×šþþ|c`’»‡7¨- }B—l*?ff‘èÇÉ€] g$a{íM€¤~aãIŽêH¶Kwœq!)ž=z;°ª€TÆö|Ã+ÆHÃÉ[Å[ tD'(½¼‘%—Òð/2R=ê¬sº‹L|ì iבY×Hÿå~dñ5v}x]YkÓuÃH‘Mæ©ú÷¢óÈž–~‰äO1rêžš¸R$„mÂÕIžì"·'%å{IäÙQö¿9*|F\ÒÆÈ/­Ø”V‚‚-ô3"QðYUòäw>âÿ¢M/¿ƒÂ?v ¾Æ£¨·ÜB“KŠ †¸œükôªŸµ ¤£Ï%yq”Šn%,?§„Òë½úÌoŸ£Œµ¹B"7ÊÔéÚ¸‰r½D^º‰c(_ÆÌß$9‡ Jæ sQ¡xÚ 'ËÂH7Å[Pùà—>¨ò¾:8Pùª™¼ŽÌêB VðX"T@ È.|xú"⫉Syê¨M–söšºê»ÞÞ;,ºÎ>“›"Q/þÆ@øÌ$êOd©©³¡Á“·×¨(ÐPîÓé¥×ÆhX£{Cv,ÈÎòPj¢Q3«ìÉ4Ö)"¢xÆ©YWOÔ¡ Ó•ßÁÏÑÄýwaU¹(š”&ûç(Ú¢)ÕY)$ éÑᨙŸÆhúø¤Œ[TšÖ:Y=´¯Å;#uEÏ2ÅÐD<ôœSf:rúu¦ë>£…?AsËÞ „û<äÆöÕAà ùn‡3#T’éÓÜ¥÷‡¢€áÜ Î( Î_¹ Ùmƒ%Îš× £äk^Ý÷˦{yW¼ÆRÎmÿ*lуänª8^WÓÿâ÷{­‰Mán‰5]ŠÿñZèGíäPÈ e`#Å•ü*Z³×a…ªn•Xš4¨ Ϥ— uQߎd\Û…†ÖZk]ð³ŒTÈuS š¾?j‘N» -BvÓík‰Ð²v‰K«XZwÏ®*Ê‘C;£Ìï¢ÜIè0¸"¡Ëù÷~ÍèA·â}ã=Á>èKî”öw‡¾‘+ývÓa@-=ƒ|B†Æ¾­º»kÁˆwÂÕ{\>0FмvS‡Æ“$·Òï܇ÉÓÝ™¶]†0-òç×M>s˜%)´U‚¹ÙúÇÎií°ÈpÚ¬fˆ–•®œ¿D> +a ƽ…&°úç#eP½7¬ûç_äwÊM&uywí‹ðûëeûÍG`Û2µªý«üa–˜7_X†ÝÑÔ'‚rðw霦wœ2„)$q(&' íéÓ Ñð¢À3$‘RÖ<à I#½­f墑œás@©ðe¤È»x¤ÔG ©‚ «êÌ<‘æÂï¶ ÇçHw—1½/î2œôpñD>d %ùuRÌ™™ÓÑ™k?½;º¨€¬§²„ÆñÀCgVIÈîx?í²r†dûõZ…#×àX·o_<ò*eÇ$‰#_Ü‹ºÂ2ä÷:ü@wÈ4»ÇΑ£ ÈÑE7p<$¹_'¾tB!—‡W‰ƒþ p¶‹–;Š:ßl¤ë¶@q†º„PŸ;(Ñ­~N☠J…;W}@~AAn7”ýÐr³÷ƒ2­ñð9uY3)9TähcLAeöjMí¿QÕxtȲwÕã¯~Xÿz5×οPD-ÊJgî 6yÀ‚PÐÔaðNÛóB—…þ‚Ô=ÝQQ¨»Ç{ü†DêEhGº',£>óõò‘ó¨E<´4CŒÄŽ„EÅjhàñä/I‡34çØa)Š•\Q AÃÝk췭аŽ.ßèˆ7Ñ ÕuöQ¢‘™Ö€ ßÞR2só7@ƒ™ÓU‰šÿó‡ÖÁ¾Ù îªÐoŇCP<©3–kÅÏõ·Whl÷ëÆÑ7Ô ‡6ãÊFdõ·ÒÛçGA¦ßøå Ó~HO°o©" دWõ âNÀ—â÷6Ý é]Vœü×Hmø¼¹,:¹o¾›Ø“Ý„òˆÏìñvPûÔGåûÇ'ÐhMùN‚Ôl¿Þë|KÉm.ìo ¡}»0síLt óü쇮‹ÏxÄïA7±)çÉÞÿöv ^h<Ꜷ|Oû¢ ƒÑˆx»¡Ú)}¥ŽBÛø<|E ít‡ÜC^<ƒvÇ,Õú*JhÏ[~ZÕcZºŸŠ?‚N¢Ý¥[ÐE=tîTB)t{8r¿²…^•å'oQB¿¾g¶ân ¤9ñÁ°ÒŸïV=):ü¥úÙ0Œyå8MQ½€‰3V[fŸÂTÜ&SÛf ̲5Õô™Â|×øvÞûUXjò'˜™„•Gï9y_qš Ÿéû§ °q¾ŒŽ·ðü~ҳɬ_Û³þ±Y]°{OIjqaþÝpºÝˆ„ŽïÔÛ?"1[Çíw9{H²pʼè’MXóçø!%U!Ã,I¤vžp¾^öi‡ï?Z˜y &ò“ëÇö±¤ÚÃác?2›‡#Ë®Á•;Ãx 1×ïë²WµÇ½<׆œÅaÝÛÊÈÍxá–ñÒqä=·Þþ}§ù–sØ¡€~âêæD –ÂõÝðJ:·­Ýf‚"šlv6ÊQL282ß%®ÆrЧ¡T¹O?/A8Ê2møÏŒ£œmï r¡|i'ÂZ±Ÿ>Gî öDð&×cÔ•¢N>²H€z!-v):½h@>ÛÌH͆…#4´DÑø½ât!³š¾Îê¼’†G"l}.WâQ+Î_ËYhq7×UÇîZ:}d~–‰V¢F}šXÑj®õ˜[F5Z'43›uAk¾ÓF,žh³™)ßPì„¶‘­ž •ÖµFk´ûà9ßèb‡öÜ‚Gî[¢ýc×f†¾a´ß\\`¬ÕGŸîôÓóPë܉cfrÆzˆÈ)ˆ&,¬2ß-/A5#µöï(ì4Ú —„ìÔØÉ+ô¥q“£†á¤ILÏÜ-eÜ×½*6§XøÊÎt>Œ“>gy*´ë:BbÐ`8½ÈeH ¿µ}†j>réJ’únB¢E‹êó”føjx°öŽaïÿ̾‘¨ö²((kØ´SÿoÿáÉW÷¦Èïÿ¿÷ž5§Q`\ü¿Ø÷»Q0ö8ó?‰[ùÚÅ$^Ó¼Q†â qBw(IOŒ¯“Q„Ò¬ûª9ùvPöyEz(g?|ÓøëI<ü5?C垇Ú7#¨¾hò€6fß*;sÖÁêÙþÓ~µƒ^ghÊ>„&Úã“ÃЭ>,âà mÒž³2ÔO¡}TË9"5:[)þfê@÷€³Ï;'Gè;VÙÉvjH}Vy½©ah8(~f9F<ÃÇ#½`ŒÉº»ås1Œw¦œ÷W€É¢kë*˜.QÕI~0»ªï÷BSŒ÷âø_¥…K/ ^ÀŠñ6u±L¬–)\ÈÛ~ ëö l«d*°I,&ÿ†Î ~÷ô»k; Û=' îIÀ.¥’À± 1øëç´2M"‹ϰ†c'‰è}åAâäÜO‘ /‘ÔýÙ¬í$?}49¢r)_=«Lói_N–Eº=ë,ÛQÈHÞ÷!ì2eÿJ޹&,‰³GÛ½E1Æc&æY$tž -ô§®ÙÏBžŒãëTTNHJ/;sï ti3 §ešA ÉjEK1Ñþy´q³_ï‡Ê&'¿Ô{-P~âµ¶ü(¥o£åøûaŸ“·Ý\>6—Ç¢¯RAð·™Ñ!¯…!³ÜoïZdã>g5·„?„²óóΊP3úÇÜù 4Ñ¿Z·?måU×oA×ËPüGìÐÉ~´>WÔ*˜:&ÂÈ\ÊýooÏ‹2L2Sô­_7¤`ÚûÀEЈ‚é !tu…éÍì}£Æ3j!Ç»CaæÅ¬y¦Ì:5–ûç®ÂÜSŠË[G`þëgI µ}ŸXyÊ{Fì,Ñ]7ñ±‡e£a¿¨RX‘|9iH«äÁ‘_ a ´w>7ºÁºWêR·¯4lT[,]«µ…ßR'+¹ãaë{ íßèÛ°£›ç`§>»Ä£Ÿë“`oaì7 x"Y¿»ùT.ж|jÊG"')"^$N4¬ë:2Ф´GWcJm,òÀãŒOH!ä˾ý)Ûï)ä²t õ;Så5ùd¤ åPÍàEúPž%âÀßÈð3m@&ÆG*ÛZ' ‘™èyyî´²(¹Çþ0@Ö€¨³#êïñÀ@ÝZL²;Ì•Ûiµ Çä—ÏY¯ð 9·hõ×nä¦êò~+‹<Ñř®ÈÇät=X»ù6ÔîfŸCþYy7ÊÂ<úf£8µ†¬=+¸ŠÂ^µéõœ(J{Wx1õŠ]ËùPw¥Åê.l>¢C‰ÖoÏÏ £”ˆGãø¤6JG\Þ­qFÞ.>‰x”|iq+& å‚÷$âPþ'C ûR6uð*~"‚ [ãšû:ªDäNq)­•íJ[]æî¡J/SÍž¡ ªØÞ¹Íö5tøO6¼„ ¶¬,IAŽZta{I©¨ÍüËsCÕuW^õ/-@]¯†Ø¨ˆzÅ6¬ $òh@}ÃQ½M ŠoÞù6”†g.ZwÝrBý7þ×ÐèÑWnQ½.4f¨Ž>( „Æá÷¥™ÉMÑx'èâ­¢649eCãyæÊ¾/üðì7š²‰ÿc`DSW/£üqhúÍ2¬¡µM¢W*IWÐLì@eæ± Ùù˜”s&Ê“}íþ"'‰ãIòy}øÃSÊjÝmCâ³Ïuký˜mÓž—õ| ó‹ã}϶`IkICÈ·–£™waÕaÍPK嬵×|šÜiƒ³Dy'•Ü`sg_­þ Ëe‡N#„¿¤‡êüx_3)„D>ÃÁU¡/¸¬S‰þ ’òª—4JW!Ù+'Yá¤P­:þZ© )·Yô’öëÔþ³ívÏ"íì7e£ãÈ@Ùð(šcß n Qþ`B&åŽH_Ú7È|4¨CU6YîmfÒ´:ã¢âg+îÈö“P—_Ý9æE.’ÊÝC.jq–û‰<…BœªO#Ÿ!Ù…èÀäçÒa»¼È¼Ï¯Öµó»ñ(е ¾±6ˆ‚ƒ[¾ógœQˆs‰zèr Gµv¥ŒÕ¢(ž¯È @qÖ|==ïë(ñoèlÓE”ª“Z¯Ü@™“áÑ­µP6kNè>+Ê-/ˆï}æÅÃ.gwY#¡"ýË >ZoTúÛw$£ê¡@ŠVDõËuE”d¨YLÇñºÉq*%¢hMµö¸*ú~É ÓA’^û~Ôù!j,~uýFuº2FPOsîŽx ê²'=ÌtD}Óop õ[÷Ä©Ÿ£ù—â‰F24(OoU}¢‚†’¿¿;J‚†cv£‹h8õþäë”<4Rã—tµ»ƒF¡—ÀOé 5迳’PA{º§r×kQßã•Íê˜ÊþpvóPìÔá|¨¯®>¤åÜC‰ÔæQP”›sÿ° ä^NL S°ƒlgµõ5¾hÈRæ±>å ]ò›?½… í_Ed×ø¶rf1âe$.^O€ÏãÃ~ð½vH>ŸÒçÿžÐæåwUˆ.@­U^y„¿ü\ïéõ¶/‚–Ή<©fh‹ o˜·„öª’Ò×^б½Rì˜)]šó#íîû¾p»ê´tUÜØÕ×ÚúŸ~þú{BÐÉvF Þ:¸éŸ{UC»ó§3†.yж+RVßí,ÌWv¡Ý|þ×5vhñˆ{é¡,tÐ9d¼¸¥´¥n×~Bgþù Ü”<ÐM#¤0K=5T]÷Õ{ ¯`UÏëè* P_âù\CïÞ$¥°iÀˆaáñÝãQ0ºv\žªTÆûøÆÁ±?i„JÌ\à!tÌv‡yú[–áÇ aqÕX¶å»5¬°1'¾á‚Õ +…cE°>•b5 $¿)hN&”Àö‘¹è7»·àO_½î!ocø›£Ífn1ˆ‹—îýk‹Do9¼ß&Æ ‰ë·?¯Òž!Ù‘K†»c!Hqö^ÜNìU¤J‘Y2䃴Â÷ò Jº¾µÎµÎÖÝÞ¼9mŠLãvþ¤MÈòÐÇ;Áñ°š°ÉÈþ‰ìðù\·i raéV·C.¿§LÑ—¼§™î1G/ò%^=;á òï=;>‚>Ü¥bCi(t !ðn² ¡½›¢½Ê’g9†P|÷£U= Ji¥ë¥|ëC™w.ך³PŽñÜË…Â(ïGv*;9S\„ªcP±.ý]‘c*Çd© þ=ª¾8˜2…êXZËÙ]ÚÎKH¥£–‹âûî3t¨T2HžÈ„:óÉ7¢‰PO›D€žõ«Š‚u-ÐðÆ;•CDhì˜#”¡õM­è>Õ‡zãmú‰Àö=¶ƒüœÐ7ëùû¿ÿKî±û/(´Kà9un_ï”jÛ´üï¾ós7ÿ/tݼÓ÷j?_$ÿ!™K€¢Õà„ƒ.–û>Qê"åá6(aÿÎ.ɸ¥$dàÑíeG—½ÖêéöóÌÁ1ºWP!œÌ°%Î •-’ÕJ¡êǹÔµE¨¹Ûþêœ>öš%jAC’VX9­4Q/*hø-ž»§Ñ ´&ÐÝ ›N‡ö£$æÉAUЩ°rÄB4ºUÎo·¤AïG¶Ù˜êø¥ÆxæûkÜ»WÇíñ†7“(éS?ÀèÓÝ¥—aÜÖAïÔnLj(蓆iUÒ{—aö ¥?Yv̧wvÖYÙÁ’Âó9ÍXÞHÖ±ŸÇVÏ_Ùb×儵Ϳ…‚~¡°·-K¢¿=(¤ò `Û“å—Ú#+øó¡YlÌè'ü=Àþ;dY NgòIp!aÏU~#Ö$v?-öú ’ò…ä%,’“G‡ÄzP!¥ôÈS—»µH˜ug>Ø é.[ÙE™þB†¼D»#O‘é„ñË /dÑŽäŸ[‹®È ÿ¡oBö•Nƒ™y㕽‘'/’¡.ù餟|v¶+:ÞÒy¡ MÃk[(ë­çcÞâG³Ç[)Qj_NCJÏ¡¬ÜœyOqÊn pÞº‰‡»‡6Ò•DP‰«Íò`Û*ªÜˆÙ˜*¤CµêÒ )N¨É!ýïR™ bÑ“pá¡UÔvçX»Á†º‡õ ¡^»×¡À§ÇÑ j°e0ߎ3]û2pMx…·ù^=@ÓöOÆ)]xäÆ;­­áx”šŠDˆ(- Òò{IÞ¢Åß/t1jh™BuW£ ­,jÉÿB«yùµÀ*hÐܱmˆ›_}wG›`OÚF'´Ù˜Åi5u´=uç}?Å+¼ÿ2|:6ìšß‰ë–°ËFîÁ•¼Ñ$0Qú˜¥, §ÔÆÒBÓŒÛ`!Ô|êº.•2~þ?N~…²1êA³ð‡ûç;ϾúCŒ0¦ÊÈä@î¸yæ]î–ÿ¸ÍèRTÕ¢3‚LFÒŠÅÛ³MD(Ê\¥Y1 nd$PCÏý‹[ ~v¿¬lÊÖ…¾V’óÐqÛX5æôšE®½Ò„«ûÇßûúÁ-£hE9 Œ}“S¯Í{ã¦(Ô` ¹ôfaª²ou;°¦~;½¹×eÓö2KK4~0Ý(7¨{«fb„ò0 fSûÌ5rr'3)Âüà¹1ÎXäâ\Ðö–"âóŠOÀrü¸,ÑKX‰™Ë/ÈãÕwÊýÖÆ°V«*÷íB¥ÙU‡ÌK„×>ðŸCV9ϪÞ6xàÑ!;vd'fû:Ža+n¿}³3?íÀ½Ê äúô±ÿµxòHèÎvRÄ"o¾sœÉ×sÈW„0—ÂŽüi1,U¯P2è2I#à¡à㟸´çQ˜õ{GÉT Š$u¹ÐýåA1ªÙ Ù qW³O6‹G‰ó†j•q(YDõŠâÜ”ºôbbñJÏŸ þ¡&²EnÖ‡÷ \a8³µ-Ê÷ÐöSgÜC*H¾ç¨xxøÐ›¯›¨¤w”jD©•Ÿtv+¸¬£*ƒ M€ý>ßé¯ñûU †'‰MgÄ{kñŒŸ) ¨ÅÛÿÞäºjóùù(Û¡Ž¶ÀÙ3CÔ½Ëc ^¸ˆz}²fJ1: •ìŒtMÐ|RÑ®›ZòsêeÆ@kyXzÎD´õ®þ¼½_¯jf<ýž›jURmе8{*ê„7üt½w4×ÿÿÿooeÙeoBáv³÷^ÑŠ”¨H*’Ý)ɨ„”Q${g¯RÙB²÷&{ü¼>ç|{ÿõûëvç<Ïó~s¿Ü¯×ëy<î·{Wþó¿©IÐÝH¬¬ÂR ¿”"4ÁŸJÝs\u0`Çþú„ñ$ OÜ˪= ÃþKœŸÆ­aTÀ§8*®ÆÆSÇ’•`¢°HŸXÂasÇœYß0Ë´™ê1Ôó'M»]2`!O#˜ Ù–D[‡>ÆÌÁr~#˜ï=σ“Ä Bê°:³2}jŒÖßžy²X—›WÍ#ÌïÁö©5Úµ«Ñ°{ý[Ò‘ô=_úk‘3ü> MKóx,[^—¤OB’O¤"™¢+HvhßPX€ ’s]ö\õDJw—·ÄãHmÔÚºÞ+‹´f:"¤Ë\¸ÿ¢‰Û¥Qu¤«œÈqÉ@úÆ(ZÕž=ž;m)ù®K iÈç×w:Ù ^x2H!«ŠW{›Ù<`c+M€q ªÖs$òÚþó%È=8N×b ‡<õ¦ïc¶Š7ú*Ýt„"òÝ{äP#ƒüO;;6ÄíðP»yRñ©°=gÄqÃ…x­ ¬¦ {ê0ñ' t|ð5%ÈGA2%_/îÆ² T™õ¬!J¯šwHÅN¢ì‰ðº¾…q”ÛµZ“ðÌAù‘gê Wñ(ÃÁ/õñ¨¤ÂÙn┆*÷ƾ¾q|µ§“.Y¿úPu±$:\ñ;ª3VÙäÊ)¢zçܘ Ôx6WsHP55Ny=¡CÍñ¹Š´ŠÔ ì°+&«CmÆ4QÔŽY÷Ú×Û‚:ÌÍIWŒQç?ÙÎ0ê,’Å+‡ŸD]ó]®.Ôý(ûÆïÌsÔÝÎÌáŠÐG=]ý³~=·ðö͟ߥ¯é¢ÆÂ±ÓK±©ÿˇÑu9l;+Pgóö¹eÉ3(/üE.3ÒÅ]‚ÌFª.—uQ7ÉÆr>VÝœÊÙÏ.Gi8)B–´ÿÝìè«ybMõdÊó=Ù£Œ÷|ª^ë'úx¯Ì|8ZOÒkX®øOîû¯¯ÍƒÅ8¨à/û‘Quô›ú.ÜðíE caš8ü|ý·Åü~ ´˜å •Ó߀Ö'V!­û¡­©Ú«ã Ç^,³?ªð:JžË_qø ïˆÛ}Lÿ;OøQ|É$´3¹Y/ ƒ6¡N‘±Âhu×0:ë. ­jt×@ë©¢³ö\ЪqØ—Ë%Zo ¦°Ã>híÕ}¶A¦mÞfdžœBû…¹K]®>Б6ïøa¹ º,Sfl¼‡n)Ö´·½ög^(I@_³¦GÈ"ô·jÐÉò«Â '…ÄõY6Ôí ‚ÑK»k:Þ{>³ÀU)'ü1Lé2§ž¢‚YVûœ_å0ŸpOšýM,:qÒëÀ²SlT잟_¹‹µrÄù°–;úNólJž²±]Éí¿œ œ±œ¯¿AÕÈ`Å-(:ß#äýr¸cRãÓ!süNCæKÈà—±~ÖþŸîÝþâûR®%tÄÌ3îñFöræ=¼íºî°2V‰Ox$¨!áíèqûù“D~g¨'>â¿}Šg²qç—ÏoîÔ‹B¶Wß{ÚÍ4ȧó-Zpy …!-A–S{ú+{ û hú+c0CÐûG™/ý„âT꾋ńÿj W.ÿ0×/(1ªµeóÚË‹é"ü—¡¤{ãóø…£Pê›÷äÉr ”Ykúk_†bÜš <ƒ¹óW/T¼Sˆ¹Áò *;å8éiä¡Z, óXÿ,Ô´)µg—B݃¿!ñ"ÐÐÏEVq˾]w>¸–Ñ ?ŽŒ,ºi–Bót¾ášÐR\ &›Ðý‹3!N:"Ü}ˆˆÒ kÚ…€A8z®ÔS%O‰B{èœéä#è÷©2{™23iƒy`¨˜W·ÆFŠÛ°Ðý!ŒåÜ?­MÞ7$¬`ú@Æþ«nÊ0û|ÓyHÛr_gîɶuXÜ÷éþÍÇɰô¢ÁÎr¶þÊ7ð…mÃ*™K;«8¬“6æ/,݆Må‹Ò.?®ÂöçömÎ^n$ðRÞ~„ ϩԮ"±8£Oµ€’´]½÷÷J$’}l·}Ã"€Uâç÷_^Ej¡#1r|HûÇŒš:Né.I‹?zÈžœ|C—ŽŒ¿å³3íG浸1½ãÑÈfGÞOà„4â®Çìé%eÍ7Ãpä‰ì˜úä†|7ºL5ˆÛðЋûMaÕ(°{#’7¹…?Êã“Z‹°Û4ÑDÉx´íË;”º$ÕÛ‰²n"œlNíx$­Mx€ÖòbBÏÄâ1¥ñWLT±¨ü€•˜ÝÏ QàrÎó]-TãŒ.¢([CõÚ™y>Ïã¨yÇxÀ_€µå5Ž´˜~@ÝjÁg¨W±ü÷ ·!x.uŸ+A£ƒ’Æ[ñdhüù¹Å«Š[hʾ9çóâš¶1Q,Ò\F³À$‡ÔUh.츠l3‰æ5–—Þœ`C‹ã Ò:\÷ÑâçÝ o;´´3K5ü¥–­»3L±ÐJµÒêñn/Þ£|ÏLþ! ½k>,"'õ=Ÿb A‚ýv,wǾB›¿C|–ƒ4ÕÏ*´åÀ^Ž£+u[º •á1wÆ¡ÜéŽ÷…;PÊ—è¦]E„A÷Õ&X÷8zÈûãvÂ?n³l}Úö¿ Yöá.^»y‡U‚…g ,V´„5j”T/U¾¯o¢ã~i›ïÍçz±Ûí{ã{[¾&€.²éŸœ>†ÐóK'h5Úú%<ºöçÁà›Š‘O.&0\Pã:Ê¡£4üÝ/.ÃhbxYvŒ&Œ®¾‘7ñ†±ë¿)X¯Â8ám×֖作(òp¹Îso^ïø Tîéÿ\è~£IZ˜ZwqºD 3ÂuvuS0ûÐ_~Ô`žYâv™„ÌïüX© €EñâêX⬼îoC˧È>Ê]%ƒ¿å©,Á*«¢7޽†µ—Ñ×Ýêƒ cª °%åfóÄÀv Wuâ;?!®F{´ zŸ ÝgX„Dõt‚v¤ÉH"Ó»Ïõáƒ==XúËôɵÌvG(ÌbløÔù“ÓH•šÈËÿi%Y|UòÂ}!”ó#§¦‘Îtmj‡ì<Ò;rgª‹Fù¿¡ÄȘúûNúÍ`d5N{šJŽ,Ç\†|´Ü5ÕÞu­qˆ;fãì.$:½axPÝM3Z„9«ù9Û˜ÄèY³ òj¬ó~ÐD^ÏUî¦7ÈWuêcïw<$-o“Øàˆ‡‹î|#£EAM¡IÃ:JàŒ±‰Dá#Óö´²(²5xp®™ÅL“/ˆŽÚ¢xiNåæI”(YµÓ-F©Ø£V­ä(îϲ)²e†©ÒnX£œô—6ûLrlœr«‰Û´ô9ÐÿøË¢Õ $ÖiÊvª¡§~-½ §aäpÙA;>íÝþqÉÆd’ÛgÄ`òÃØ%"âd˜ž `©6ú s×tRrUÂcDeË×<îG©a™êiµü}Ùl3ÕV«Êì~¼Áw`mêöÙêœÇ°‘átÒY ¶"ÊW”lõa'é®9ƒ¿.¸±ÅœÚã9±†–Þà5Ó 2)# |!,ˆ¤é•/V¤œ‘\ù–—y+RLÕ0ªœIBªrµ¶×¯ ‘&`”ãM?î+¥lø«tgû‡ÏìÓßË)¶!©ÈpF¨s? cO¦„12-|y±á¶„,Ëï;!ÛjÝSs¾È¾_Éß9UHOW±!·B•©otòxœ9RC}yµ_§» 7#Ÿ¼`Òþ÷‘_3_Ž|Õ=ÉS‰2ðCÞŪ‡ä(D¬•¾6ØŽ"ܱ•ζ(f&訴‚íŽ<(Ùkëv­¥~ñ&†×ù¡ôvÿù°<”µ,ŽH±Ô@¹9jå?«(ÿÍTkê×Tì.ö,'D%j÷Ù;µ&¨bZᓸՅøTôGJù=T?uE+ÒÕ™/|J÷Õ‡ó¿QF£FÚ¶ŽÛË`Ô¼àMùRصXj»~J¡Vñî¼BÌMÔ¶š+S§ú‚Ú#zò Ó¯QçÒÂÍ·T³¨3ñæ†mÙ ‘©$`!á:fQˆ„io­_T"±›qyL’r¾nÎVyŽäœy•' ‘Ò ‰Áì`RgÓY^2Â}†¡ÏîG{!]ØE¡›2ìŸS¥qÞÓϼ¯TdÈ|Zòäß+È*c¼iÁü ˆV¹­||†ã*üçc‘ó:Ñœ_òÐ'ÕÜE^W¯•ôv!äê5 zøyº¬vÏDÁo^/dìöøz°¿‡Eö•ú6®×  °~%½Ï ®|e»†R|'¯ *¢ôlËû™y” _7±ºˆGÙÉ£0ˆx×%N»£âa<§E Û $äòC• óÜŽ5#Ž&‹};sÕ$Ó;òØPýòÝAF2Ô(u!x—üµàÌHr¯#jÏÔµÈAݦ¼7ñ/ ~Y¥ÞmQM4L ªzwË;¿êyަT”§ú+cÑô×\=Að š%Ü—~›„æv]!ÝüÑ‚h·*©-ŠR¨.’Z¡¥Íbéþ/Õh9]sK]­<Ãâž÷ú£ÕÊC×xgo´våâÌ{®†ÖÝáæýïÕð8úd1Š¡{ë’ï})<Ö ÷™/˜iÈYR ¯Á° #í)cPeó¾ür¾=“ }üemÍÄ!Èäö)"xéƒÑÇoèìéžb[ÄÓYH~5Æw’Þùöû©…·$¥-Îu+в {ú…'ÄåÏìû oϵ*nǬ@Ê›´ßx+áÓ>e›…È–Óc¡´I¼¬³´H…¼³Ô?¸ HêÑÇ9²~( U›ªJ€¢vuš‰»? X².pÿ£ÿÕòˆšçÙ x¨?_ÔÕôÿö-*Žïåźõºèx(ýB¶Ôé ¥o÷ìãyø"hÞ¿©àå ŸñT’ *ø«y‰) R“5LöwT…Æí4ßÛˇüéûÚm/Aíà2}ãK¦ÿ¾3 ¬º_c¢}äŸuÀwxMpm ~>1ø‚‰3Ð"ôXjŒGZ·Êg–“öÖYksè:RÎü$ôt¿½öbZ°~+D²9Ý€~’As:qˆüsPt©†,Ów$È`DÉ㘋ÿŒIfð|‡ ͧÞCïGaÊÿžK8Ìüµ›|P+óF|i„É`!w†¥£C–äŸÞ;ÏË?cØïÏ}ƒ•×GTÉ<aí•_Dê‰xØè T\±¦‡m£¢‚zVØÝ”Myµc‡„—éȾ¹²!ÑLÅ%»ÏœÁ‡¢ÃïpÔ½A‰åäö5â”æ·ÉÔQ–GY*Mߘ€=N;ˆRÄ™Páv—Š,‰Í¢ têB¥•]²Uc„p­?Ä\Q¨úƒÕ/e¾{Ow wwßñ¡æañ¸À‚ÔêIŽ­§@·Œ ït¯ žCåBqÒ~4`W#›ÝBÃò1vÁ+hlÃõ–ÉÏMúÂô5MEÐ4õnP{Ð+4;¡¡èØ]ˆæ„ª‰:NkhwãO¹òZH¿ìÏj1G‹bÎ7WtMÑRIÎ8dD -³˜cU7ÑŠ‡V¹0èv…ڭ廊]1Gì©TäPèÝTj†©fhM;­BßRÜÃgÍN@÷ìØÝÅ"¨X(¸KL ¾tvKíš÷C‰HÐÌÁɦ=nVÏX&Þ‚<åªpöv÷Ü~>]-P´Ÿ39Œí³ ×ì6¥h'”úV¦×*3@µÓ¹ÕX Ñ)êFké,üÔj¤¾?§ ­7<Ï}ç•t:ö' Ûž<Ý(ÿô½Élï.ù æO¢xHa(MÒ$,aø—È3s ñ×~äš#kÉñ#õa4<„…—ï<Œ)ßvÜÓ#Ò®YiE˜ 2â¯Hæ‚I‚ùнùÍä6²åÓ ×HCäa&ølvß_n˜cX¸·tÏæ/æˆÐµÂÂYþWiªÏaÑà ×Z'–’Ï>z®ÞËS ®œ?+.ŸûŸ‰ÂjÝ¿¨°~]÷gåïHØ4+ 4m®†m—(_¾“?a÷ÓúnÙ† RŸSa:„D¶Ö ‘¸&ñ íl’êJ ¼à]G²v¸ñl&R¸3^;ê{©$š"\_í­›´\žá>Ú]·ƒQ¤c<¸äˆ6H/Pw@^ÑTïÉ31AF‡Â ‚¦wÈôRüÛÄŸ"dϽVÉÙˆ¬f±ÕútTÈöÓoÖGAÙ¹Ú)þ:#G¤G ŸBÎS¦'¤%¶k0m§{í(òèëfOuC^[‘Ž$äó9&Å7}ù訅MûððûÙ_‡î£À¯“—n(¤`áLø…=2˜šjPäÙ݃dl(:¢)crÁÅ­¶§ T2Q"Øupá¸.JÝ¢´qsW@é7o‡êPfžâ¹ž¢ÊÙ^¿'ƒ7ñHjgÓé7Î(_ϼÿ›z*Rö|Ç£w7¢¼<£P‰>ÐÊA5•ë•JØ÷!¼{“F»öUÕi ï;‹jJÆOnÉ^Cõ“ýú«Žö{¾³æÝœ1j1Ž—HZ0£öÊ)Õ¨ ¨£FvÜþ+ê¬å „ð?CÝ·ÉÖ‹£žz¤–öê[Ôk¯¤èqæAýÓï‚´‰Q¿»ß¤•k Œ6T;)vÑ ÿ-ŸT%²y)þŠ×BÃk Ë;hX‘äá:È„FÔŠ?#ÑÈXUÔ^ý´ä\ÙnP æ}Î,ÃSCÈ?~ÑraÖ7‡>]„ŸÅþ9üg v9•µZ¥Ê›'Ú¾P@Á×ûl„îéÖ%G;Ȧ'qšå¨‡Lщq–¸°½ü—0”W®©…뙳վò@Є¹ºé_ý 7,y„‰2)â¶íÖ¾üã5ŸîI’n»:5Äží(·²vÖ¯é  ‚AJ3Õ‚*_„Ì[ò;@5¨ÒôJ¹@-O‡3·D9Ôõóg>h†7·›†˜á«Rà3/y øÖù¼ø•l|Ÿp JqÑ‚ŸnC—?3~‚fÁó®™ Åoùdû¾=ê(¢ÐmB3‹j·¡#´`?Ù§(è²µ¬u×=ݿ͗½;½?R HágcØ­üHà}Ï”C) ƒ ûPn8Àð¡ÝØ|΋0òÍqõÅ3{ð4åÃ2L<ºÄÉ\t¦J™‚óaöh×§¿aàïŽ\ãÂÅFO kõ<;ò,Óû[#Õý¯œz‘oõÅSæŠsxHÿ@Çõc„xx2ðèJt; ŽÈ½}¥Lˆ"‡Bøý/ Øí¯£ ‚þ© 2±ñ(EkÍq¥¦”˜ãsP†„KìE@ÊžqË‹C¹¾ï\zÇP>{Ÿ^¼Ô*æ©Ï?‡Ç~Õ“§ZBö—’ïŸ3#:NÎÇ%K êï-E*Tge"p™žGõ…»án·åQ£ŠªáËþÔ|,ôµ4_/÷Å¢Ö²°Ž˜ jGMPœ¾l:RÑ‹ö[Q§Œ^¿³®uÕ òËö n‘‘*ù”ê ó>2zá6Án¹¨7«ôÆÉðêkZŒô)màB+MiG]T]óºú—2ä_>œè£½yjWúúŒ&|ŠŠ"ò‚¢R©{tæéÏø4È6hó™r‡,=2nI¦~Èç ó!† ~é3£1ÖòýËG¹gIòád”Óð¶ëFÆöX|ø4ÊøAe/gª ;² å…mµ»äÖPîwJ„(¾vk?Ð5¡…Ÿ,d/g›¡¹ƒrØ)è-´ÎY=¤nm7.ýý®C í…gO“|/ŽƒN•—Êþ;?féï ´÷hU‰\‡ö}¡g"áMõ‚Y{Š´¾ôጤ‚VÑCö¶d{ÿ—M¡*øþ¿ëêëÌ2ÿåÄ’«o õ–±ý ´.uIwC[Å®«‰¼2´ßK/¢„NWÛ«;·4áÇíEn½nè¡söPõƒßrO…ˆoœ‚?mI3jg¼rnüÖ„!xôM¨ÅF(ï6Á˜-uæEío0Q¨m³ëÏ Ó§³Ë}¤b`Î¥#\Tÿ4,xŒÍÈUÃ’Ó ^æs‡à¯óû–i°<Û™ÝzÖ»ªw–{GNQìZÄ·Ùmu"¡Ô¸îK7$j4Z³c@’à|–0çWHvcB㽊.R¼d7ŽUrGªµ e^x€´ç…Žn pöÓ_¹±Hÿ®¸*p2*v¬*÷"Óà•¡ÌHUdùÈW¾Ñˆl/Ù¿X«ä!{CËå?Ÿ“üdé‰ãsÈýÄk2Œay»$Fzé!_lqìç¾[xHäîÑÓàá¯vÒ\ €‚Ñåb#J¯Q8ª1á'Š–ÙûÛ~n@ êò©úƔҤyÖö[ ¥Sx=CQViVk˜Ó åæ¾+e‰¡|A×/ÙǨ5è×NcÇ>6¬$ð>AŠÍ©½Ž·kxOб¢êâÈ2x‰ê¢zíÉQÃûÍÐÚõvÔÜ”ŽêæFí´îœü©PÔ½/ßUÿõodÿ¹#ކ§P¦ ñ#³diúg¡I¥Þ¿[dhúIð5šy<Ôí2nCsÉî…çdÎh>Àd9ñ -î·«»§­¡å¡Óªw˜ÇÑ2/`ÚN9­ ¨ty ­J•£ŸºþFk·7U´Ž‹k;võÅí{¹·žÿ¤Šó:RÏÜ yU¡C-)~/õS ò«óÖ÷µ×P0Æåjé2YO^_”Ž…ŒÌÓN– §áÃì³îƒwötoMÒ)‰Þ7Hk¥ÕòCRÕ‡q‡¨yH”¦À¾>H`©<÷™]âE”\ø‰eÂaÜ6´:ììþšÙä5“}$÷=äYªŸyç Tþ•%¦PX40ùÆb`o ¼fîQE7yeK#¾CÑtCæk¦µøœ»WR²5ßÞd† ÿûU'õÍ^nŒT{ÿ•쿜x÷x‘:”,FH;AÙeêþ`*qøòj—úÄÝ=½O4M»2ç™»ÖŸCål±ÀE±ÙÿûÎvã3Ô ¼’ ŒÜz“_•Æ ñKíoÏVhÒ±<ñZ ~’LžŒõ£‚æHS>’yghµO)Ó|Èíz÷RסӗI”fÁ~uà—rЇ^ËW*ùÃöð‡ug†§ÓXièŸ „Á6›ë70\Ìt„û©Œ¦µ³1úmÃx®ÕsnO˜œ° (ýD3V•ÎÚt0·wQjù,œy/Ï]‹vIù—aÙùƒßH$¬Èn÷,¶mìéªüUûŠzظ«êÛ›[¦9ûa÷û©rÂ==•³»]ŽDW-וÖDYÿÉ3Hºz’<óâ$Ÿª!r=fTâ UUHSaìA¤^Žû#3ÖX[B‘þ¸:ujº 22Ý£úö™Éï,Œ‰ «|½%ö0ˆ¡¬ŠŃ*»&–êÈ­ïÔM^Û‚¼WˆuϾBþ;3­7ê¥ñpóù[¶Á(ä(]{ðµ'Š™e7(F :w]N”ªz°zúe$ʼ-»<úU åj;{®œ8Œòëý])Ÿñ¨Ð±°ÅVTr£ºE *<”n*¨ê÷BG¯Õy?îïmEï4'ïMXÛà-—Ü®¦CûÝ S7‹Ð5Z×þ¶}zo±‘Ú.Cÿ½¡£w[‹`ðl¡ô5{z/­o3¯ Ãg¶¬¿‚áu£ÄHµß0’®˜zLÜF)/ß1‚1¸oîÚ±ãR/ëO=Þrî‹1e0)yóäøŒLiñÈjŒùÁ´¿ºTgø.ÌlÞcwΤ†¹wRÕ7kŸÃ|å«CXhl[•_†ÅÅ’‹Ë,ù°,J#˜ì¥}ãÇý• aeéVèbn¬E;÷].? î;E 6ò°õX!ïíŸyØùá2¤[5‹/ÏͰ{#ádWðHée$¶¹(¢mQŒ$= ¶ ’LHæ(2…¬û‘|K=hÿ[b¤Ì^'Wc Gêp¡àSÕíH¾¼Xw¬÷§ùÿž‰tãî=ÇS¥~·=KV:¹#Wó× “)Íœ:‹+2¿ØÞ![áC–õvö—VœÈv½>³œ… 4_üÓ¸O 9¼hXž ½ÆƒËOÿ¨K ×M³L~n~ä¡7r MŽC^ââ¦#R‘Oõ©ôæ4ò‡O”~ê²ÁÃ$G7G5QÀ«‰úê$; 6Ýÿ茗Qh“øjCØqbÐUbBÑÛý;î£×PlV‡%ÁÑ%Ìþ~rì@)«_'ÙèP:ÜOª±Óe¶HçÇ6VPÎ_P‘øûnM(IBÊ5µúATÔ`ϨP£y:½ë÷N¢’†Š6éÛ·¨ü7]RÒ^á{÷áŒ8/Tµ“ê^D5]˜ué;¨~ Un,Ì FÙËuŠÔ’ª^êr=‹Ú‰÷jÕ%¼PÇår¸üÔñbu'MBݲÐþ/¨ç«¸m&«‚ú¬—ƒkÅêQ?‰då8þ =÷| ^õšOþBC*£íáÇ©hx%}œÏ› U¤Âҽш‹ÙÕxì9ŸÝêþ†F™$,ÎÙáÝ®,wÔàҨѽ/‰l"®,ô„`=–:¥|ŸúÞú¾¬tãø5¨Y}jçwdÊ5%x…&§ ØûÃ4äö½É °,ûÐs ;ø´ïºSÛ1ø@lÞ÷„–iÏ—¾Ûôƒäœ+Þ­§fþÕ4Oáâй=]ýãðëQÕ?^sW¤ò‚z¾Aᩎ¡2ö+PÊû)kŠƒÊyf¥L½BEŒßÓ¤tP%œ´õþT/§.;sm@mЍ…Yå8ÔŸÌ¥5•ðƒ†ÕB¢ŒF&øQ}êÜ 4½{þ1¶~<çyzÊjï¾r£8Ê´-¡9ëÇÁ5h©{õv¶¤Zwëåøe¶ ýVÃËŬpèäÙy< ¿¨˜æ-dã¡Ç µûÜêøÝƬx¢ÚúUINæ¤EÃ@æ+b:¤úH»7†Ë¬E¸«R`ôÿyoç¿8Ù,ìf “OyÎóÖà ñ¥¼¼™Ç0÷êâÀ vX݌پ© ‹™Âõ ©ƒYí´WöÂ]/%"-ÜO[/¾%Eº€¾{ÑÚÇ‘þÊprß±÷È௟n⫊ŒýÑÄÒ^Èüt,t&â3²>ÈI¿‰Jæ²'ü‘cjä¨4!çÀíݲ³È½–"ovy7F½Ž!oä9Ná£RÈ—vc–?Ä‘ø\5 ÄÃÙŒ™"A(Xǃ‘â("ì]¥zNů:<_ D‰/>Er£”Øs!á|#”ڶᎽ=Ž2T žÆ(«G/ªÄ¶ŽrßIÛfù |Ì7#ˇPñ©ÍÚpF%Káäé ŒBåa4Q3ÄciôÏC;PµõÕLãTg+±Ôm0Dõ­u–ñVÔèa3¤ B͂ق3¨å~ƒ–|†µÅ,¥Ê:Qû× ù­¯c¨ã=žñˆFu¤¹h‚ö¸}ý™Ž3qõ¸®=™‰N@½È´)çMPŸÈy­Í«õ/ø3S§Š ~¥M Íô1¼ÞÍê+}¦aMnaÊýùÐï3u†ý¨Éì' Žƒ/NZXÏBáÑ[eÇÃÂöô,SþBud½˜Ÿ“,ΚÊL W–KÔ†ðñWó»*.ìÚ§Zñ$Û³¹å/‘@âûwK™yCVRÂÛÒ¹Õ/ôvByP¿Ì‹ìwPkR9BÑí_ï0W>I¸ ?¦ Õü5¿Bs´œºƒ–ùlùÛÓЦ§œ­ÏO í¡2=αbÐaþÐÏÅE: ßiß“±ö¯4ü–g ú¥5C)´Š¾É‡ÖLvêOï½ UEí[äƒêÿrá'ÉçÿÞ#:q^º­,Ú±ÖÉЪÍ&Æd2¶÷{Žt3 ‚¶«÷¯Rž‚öûfÍL½Ð±qý­€#t…oùÛ¾‚î‹N!áõÐ{A!¹q’ú¦r,2fß@ÿöÒ£˜§ó0˜kSÁöí ¿ûé©Î £©'&+yg`|¡/³Y±ï¿~ˆógO‘¬q²ÀÞ¸ó:&†Å±sŽ-_Àrÿ¯Gž$X™™›-æ`‡uqæ¨ÀeØüœ ŸòÂŽ÷Q=s%$È?{f‰ÔFž"ñÌÏ“—¢’ôgÎÏGÜO|ÒéÑЉƒHN³ŒÕHSg^®Ýã…ûôYZfBz¥Z=ŒdÈP·Ê5k™œ^•‘a@–Ã+O¾ÿ©G6*wšÜïíÈέâ”s²^½q³FR¹6?ês·º!Ïo;cîKÈg;ôGÖù;ö»IËlãá+scÉ™œ((>ÓYôJ…y:«BDöü¦Jìä¸Ý–¿X{g%we–#ÙŸ £‡·h]}Åa\àÀòh2˜4“/qhš…é¼Ã­5³0§'xÇ.ÆH.‰¼d ‹žÂ:{>™ä(Õíž3ð·±öæÙ~Xm˜6`šƒ JY]ÊóÖ°LK;O»Ò„tC$ÁH°ýqÚ´ú"]åT¨ýÄóGzw«‘ôÕë¾Bú;HîG×r7)?ü¢&íA#!ŸHÜ·j¥û-àÒí¾<Ÿ±éˆ ™ü’BcÈ6µ!'±Œ,o…skB‘mäIŒ r8{1ît±#—mù÷F#òL²UI"ßÖ%¬È¼rÈEîIÈùѹÇëí}ðØ¥ÎÂõe”Q¡ˆ0Úúr–¿räîË£üŽ »FʨwþÁ9>+<ÖöcŸ@¹6ªœßýsZ Ue˜i',_£Újî"¢BÔðœb{ЧƒZ×ÒY*P{’é{|¶5ê¦ÙMZ§G¢¾}ï>{ò;{>Ó:Ó‡Ú ÞɪïТ‰d1OG;šZZÜy屃fä~ý:·’Ð,s…äô=F47-øFDT€æ£Žøèè(Z¸_P<‚Ëë1”Û¤hyEu9¦ä+Zöݽ–8’ˆþ¶«±'>¢ö¹¶§â_‡‘ý©æ7-ê°Sšò»tIš:sf…¡ÑÉ[ƒ7ä9T[}PŠ^0†òì¿cUtP:ñêcx )›xÈLBþ¹ßû½˜• 'RÑås(Ã?n?5¾ºœû2M¤º:Ôô!;už^bþ.ëÏ?åwçÊ/) ÝLSP·É_Ÿ~š”^Nûä¨Bóiï£y§ í؇ð—žÐéz{}ù;ôÆ’«ŠÐ·žfJìƒõçZέ}ɰù¡sö°=lÏþ©m }Œ¢ç_ó UA .Ÿ"V”’M=]–…Òþ»¥YÇP–‚Øè^iÊ¥tO´ÛGyîžœ}¨`ÐÔo<‚ŠwÅgäSñèL$ß­<¨ä±*ŸL*|á|‰ï½÷|S‚‰& ª:àŽOr ªYÅ&yI>DuÏ8Éå»·Q£Ù•$‚/µŒDýï§£v½~‚FMêDL6Ј£î) °ËC=›¼gÎæ¨WÜ›{òJêÛ2eι¡þ¤ÃÅ‹_Ñàš'ÐP“¡ÁTÙùÚoÙhxj­srü VD]¶*C#þL®ðëhäuï‚äô5D–˜¡1ý—uo¼3Óö(ûêå^êÒü|Y³ª~ÇÛúb_Ó+׃ðýUSpX\ToÜ~§,Á_\§37Ä_AÞÚæÑ·’¦Kõ{ßá7ð9“U9ïѤ×0ìz‹+Cêñ/'ÛQHºý’^ÁûþÜ”ð¿ûþÕÔÄ«:£_E ==¤Àš‰â¯9=Íõåƒ6?ÏèøÎã_щrq²36 szôPþêßÙѨd¦œvÛÇUõ>ws÷ËCÍ5™ö‚¨c7,ÕÉúìY÷¡ÓÐh²´-îßΖ´Õ¹ÙÃwM/ë@ø±C›ÂY!?‡?œnö¿ÍÃmÍÕÊ¡•ÔÉËò/´ïêË}íãïM“o/Bç‡Sscãð«ö5íäè•>3¨Ül }%5ZÎÑ$Ð_.¼è@sùýow¼\¡Ìcª:ó_`äøË cá Óq Vƒ Gq»¬Z˜ú¶Qš·³Ç)ÖHê`þ1EGËYX$·æÜu€¥P¹·ºEá¯@°ÒUû*X©ªí<æ-k—ߟòÿ,ŠŸHXNÁ–|ÄÉ”Í`Øqe;p…U ^ö‘x$!aâÃT:1ÍŠt+ó” ‰þïÏâÇ. iù½÷#ëkH~üûÙ,÷n¤d éxðÇ©¦²ØO½@šbÅ¿—ç÷8î«}”IÚˆª§•^y¡ÛƯ"éú¨´{ƒxz¾÷ùßR¨_tjøã¾Gp®B™…wbð9(°0$M‰ì ÷î­ñ!ø<98j¹ŸÌ^ù>©ÜTŽ?/ÂÝ‘y ÞÓlµ‡J@‚G‡âù{ÿÕÔÂ¥Óï\\!—ÏžL¸)ÊM¦â$Î,Cí~R×±,%øÊ9¼Õ±4 ?î¸Ühü° Í'ìâ÷­6CKñçè’Ï!ÿõ›¹V³³ ígIl:¾‚I©–+™ÿj{¡=ÁHÔ´S¤Ú×\§ƒ¶ãoUEq@kuÞ߆ü©ÿúÑä6B«´—5לÄ}j(ëJk¡e%òg eð¿ëV—3B_¥Nüo<ƒë¹Ã¡ã~h‡ÑßAè"󥋘÷„_åÎ2éf„ÐÕ'øÌ®úˆªŠzïB¿_Œ}©öKÈ£¨u‚aÆ*© 0²žv˜c›ÆEnR$Î'Ãä;S­ûî0ó"¾Œ×Ê æ} ¾,«Ã¢“IZø/X>N{á†ïkX±Z ­¾xŒR½p@ð*̹lìOHu«æªÞšs 5I@µ´FIEjT_#O‹£±@M¶-HÿŒÚ|ÇÒr êl(Xßãÿ‰z?JýÞî¢AUÝŸ«¼htk{MhM¸òÒvN@SÛÓ3ž‚hÆžêwøš5ÿ)M•RAs_ùéc×5Ñ‚O2ëþŠ2ZËèXVJ ¥ÞvÛ é´üÁ°•3•Vú‰³×=Ъ”mf¤K­Š;2ÝÑúÍM¦§Uè1‹r5Ÿ®ËAê"cS•s`ˆ±Õ‰m5*2—nDÞšƒü+/wýìÔþñöÿ8û<%yŽì¯×†w¼å9ůdá­¾º¸ºÄ?|Í^{ÑÞ(7Hdj Áë ¶§$‹´ÿñø~íh8ÓæH¿°ôÐÉuÏMÚ?pܼš¹Ñ¤$‚?ÏBþ°º¯Ô‹(øî¸;3¼—š¸;Ö °è¿cé7(’ºÐB+ø¿ú^²ÙQ²õÿ·st¹rû6@ñSkB×kP²èó'úS(”þnqjüR_ Õ³9ü”?ªxeÎôïþ«Š´N\êôé ÷CZ öKÄFÕ¡ h á=MðÕ¦Ò:÷o!4õ›Å{„ÂÏ+]$ªá]Ð"tËñ Zw_=¬3Óû¯•5y!B—š³RÁogèK{ÌÕ§¿å®ûò¶XBÿgûû8 ­χÆ~ÁP‘¥Hp&Œ$ðÕùœ†±¿}$é¢`¢pß õtL³<¼t[ëÌÆG‡?†[0ÿá]õrV,2/M±—“ÀR%‘{³ü=û„ñë³:XµOøÎë‰ßLžM¬ÃO#ãÃ]Øù:VCFµ›gæé‘Hò«˜„Y2'ñ•‹H #©ZnEQ4’3JøJ‘‹”2GgÍßo#õ[ƒÞµ1Üg³ã/#ˆtÉËÅ9z‰È`P/³,‰L,' }»Ÿ*7µÙÝ E¬Le¤ÙFµ;Î’QÒA¨ÁÝÐâF„š_Ûâ3¸P;4Ò‘ëb#ê‰&ÉØ >‰°ïãˆ4ø´Ï;ù× ”>õ.™@ã.³ÇÜEOÑT¸tÍwFMû¸subÑìÁÏÜ‹‘¼h.Ü­Î7æå ³g>£…1#‘è'A´hî=Šy´4´N¨å¼Š–¥¥‡,{‡Ñ÷ùáÐèK;¨y"Ñ7ãÿ£ë½£¹þÿÿ2²÷ÊÈ!{ÛÍÞ{BR(‘H$)-í¥(*›lQöˆM’•‘-3›¯Þç÷~½>çüÎû¯ûyžÇãù<çù|Þ¯ëõr¿ßî÷»—î+ùþ€+á,lë¯TYÛ„AëÊÇùŸ‹á‹ÞNŒªH6TUÞ<ž0÷Ê™™¯Ø½œø§ÿWWÍÇî4Åüã—ÿÕí{+yæ_/'ÿñËœ.±'RI™ÿè§bª>îÎîúwã×ßä^sA‹¥GdQiË?>Õ¹d dÁø¾{’Æ8<Þ͇½äì1Æ0H‘¾ôÇ#~jÀÇF<0Äå1CDCëÑ Kr0üëQ³·¶&Œ´=Kg\‚ÑÌö_¿.ï(eú‡¶³0t¨ó»á?náÙì®A{Ëã˜`2ˆH´®®|7Gfj&:3& ð›Œ"ä°Ç%˜»0v±“¹æožÌ-õ„…”!}ÉÏaqœÜ¶òA,J._h†?Cï×J®…ÃjþŽ'Ç÷ÁzC `âø®ÑX¥:Ù‹ÁN@Ý Sój$¤Ž9}^ ÷„,éqsÍ"1¡~i¡ ’\#êŠüŠ{éâÒ>M²#Y©ùì8I8R]ÒÈðÄ4¦§…‹d®¶#Óâ=¶û‰ÈbdX«> ƒ¬Éë¶Gã>…»ŸLpÙ³Çïó"§à0¡ªç#äŠ{Í뽂ÜQµ¨?‹<÷Ã.Ïç"oj›µ%òÍÅò¡€é4 ÁåeÌö ÉŠ<ƒBksÒªBš("ij(K{ X›&Ä%P¢è[ö§E¿"Q|ÿ÷“~ùDxpŠ$!5|¥èƒ\›×¢´ße£‹(ËD*ö åZî¾Lœ©E‡£»l¨UÊ*Þ1JEÚK¶é,¨"0ä±’0‚ª‰ÙÂ^wQÝÜ…y:‘לó÷D.jœ?Ì\ïÏ„šnåï7>E­«[|~»<§=RžwPíêž 9&¿†z³4—tÞ ~õÃhŸýhp—p ¿Ô¡¡aö‰§‹£h¸vúxª½(½ü2‡¥ªzwBÑø“¦¼È:4Q‰;ï£Ð$ómö¼Nšr0ëåI]DÓþ¤÷~§Ð´kÅ…ná4š‰|¹ü£FÍü‚O¾=ñƒ¹o¹-S  †É½)uȪà¿ «ß²þÀWÉœÇ2w_BÕÖÑ©U!òiuª¹ANä)²Ì?.6ûGoéÁ9ÏøM!¹)¯‹þñ»ÿæÓÿ¶ÿ½þßûÿûþÿê÷¿zþ¯ï_ê Uqõ¿ª 8Ó«zi*c,Évv| ZIåùð{¨é»#ê:µ>üìóÑÿúÕÿ—s—:H,²) éþ [ér:´°\¯{cŸøÏó¦’´üËžrkG–9s%C t™¼û}ÉBâÿçc½kWÚOõtÃÀë³æ|¢Ëð“¯Òë„£ ½ÙoçÃÕ#ÈÄÍ3n¿g•-ˆ`\Y¹‘p¹&ŸÞ®.´°ƒú¿k Òð»N\˜þäÌÛföÒ-ƒ…¾Ô,«ë °äŸÜ,»#(S¨¿í€†vÁå½›høëƒdáâE4:Õ1ò¾”~Ý º3†ÆöT6n'ѸÔMü¤É'ô=U0Õ5CŽ*)I.#BÎH7¨Ï#% ãiOóäê[ñ—?©CÉíÀ¤eãÏ£èäuv‡\ jÁ{RÙíu…·¾ê6d…ªÍ&¤ïúžbÃ(Á:¤vhÌÅt¥BÂ3Eª ˆ—ÐÕ©$‚xÝúÁ›lâØSàuÓòZH×øit¡œÜбµà0Ô”KÅZGA}Y!cŸ_4S=ä½¼­Œ²iwª¡Íõ´åáhOUµ˜®†ŽÞ«{™SL 3þ[/S/t¦¦ú‰fC§^dEî×NèH=“ûëD tжO„Cû“èMáÚCÿÎ*:©¼ü÷\Äǃ3»ü(œÃAqÚÝaãô¢‡öúW’&ï #BÈñ¶t"tF)h¶?ò€®©ÛÉÕ«Ð}´Ó%ãèôPï}]T—?Úš]¸*סŸGýöÇa€Á‹¹3²†[0DóÞyv†»ç.»£%Ç>S]ƒ±Á÷ÔË'ßä™ÂUbœ…ÑæÕlm3˜Sî.úø†¨ûZb#`q–T«TÒ–‡•'Žüþ «$kÂú°~Ò“ICõ1lÑ{SŸ q¾`T¼Ð†„Ç{b¿—ìG"‚BÕáB$î(PQtoDÒÁ»·4œ¿âÅC/¤|æ륦0Òhé3®L÷!Ýš0Ǭnd ˜JWjBÆèt2±Ȭ#‘Ÿ¤¬ÌoÈT…vs§ûÇþÓÅÈá~$´‹Ã¹f¾°ÝÍúˆ<¶:ø y׆>Ÿ3+2C~­«wÇS¼Qàës[QI^ .–Þ‰­B犕ÊPô´|HÞíO“úböb%y^äúV Ôâ~†ú'*(¾¢ÃÑ®Žrr¬Ǿ üÊ·ÉÓ÷Qñ«ÒÆòÝ‹¨Üò雘 ª1Nû«ÌŸF8IS}oÖ5޾'ž/¿…šÏ#Þ?0ðB­©("VuÔ9#×fÓ…zÜi’³íQe\ná•ö¦ñkÕ¸ ñÇ|Žþ{Bh ¸hgÝæ¼hdv …ór¨bZ ¥<ÍgCË1¯OðìZÅŸýøðl-ZÛ„æð¡ ¡Â•)¦:´Iʸ'«¦ƒ¶™_5®AÛ‘mÚ-hBùŽ3?í¸ùÇ¢}‚EóLû ôÎk•ß縎²±bìz|H1Ø0¥¼ø †ÒÏžê=< úT¶ïÃÈþîç¤ Ïü÷œB šÇ¯ uêóˆŸÆ&¤0ôü’ßIðUEº"Þ=ŽÙp…7¹Î–E§MeÓøn^e&í€Îˆ%Óvt—¤ùG‰/xãGäg }Þ:5„Zrö-NÅ^Ý ùºiü®fðáÁ¸„lÔ( ‘O!šœƒÂ…Þþéy(òŒ8ä•ðŠúÅù;îCÑÄïå,ƒøhÝ¡æ1–ö¿ÛN«^èá“]†Ä‡4i(þ¢ó覔|¼Vc§FeÂFa´©PºåûäpT¼6‰>7P•K'1êBuh÷7s_øúí›ËŽÔåþ8û¸ê—rB;ÀWŸ€Ö‹žôÐ"Ábß·­Ý~\7R¡ýmfPì>'R^Lž†o­!GïÕ¸CÏþ‹­ÊÐ[qƒM­XŠ› Âχ:ö+ƒáÓ‰;u]¡0j±§C ”aL_ò»±î+˜8ÙA³t¦>7|)K‡YÓ¾OJ•90ö……Qy æ§š©’D¥a1 =׋–Õ ½¢9ßÀŠz«|4¡-¬]ÂôÃÛç`cŠGª×¶/©?£†É?yN 3àz#ÑU~6$º¶Æ-6"†$¼çHžÜA$³iArŠ—ò¼IuHy¡oÙOÑiD»<è î¾ÞÊÖêsdåxBBŒ·íxL˜ù÷Lߊ¯ ²Qšl?¶GvÃ=Þö«È%¡NYÍŠ<š;)ó„|ŠqÅ^·;PàlX‰›Ö, :OÝÿ2†î›%gìCñ`¾¸þ{ÏP25SÎ¾Ú ¥ßüÉ¢# @Ù4ó ÔÁ(_mWËwû% -P…¾>è\9ª½Ùû9ÛR1^vú)Ç¡aÂ-w4Γ* TÛµj‡ÎŽÎwÐì—Ž›;ZhWÏÓ9$¡%i‘ÌÑškhY5¿Ü¶ÿ.Z÷OÇ:U µÄ·W¢uZ¢MdÃakÝz´•’ÖÝKƒ¶ßdó…ÂðrÅs>’ßí¨]Qû²É÷etÕþ¼˜[—”Síí¤¡¥»#ùV¦ÏnëjœÕ‚*çð=[íáPvzü°gÖéÿ̇‹^øO=vþ‚Ón^MKu»Ç¹ö>Y‘WBÖ-‚½žôÄaîc|{¤Þ«d×½åd‚œ{O§ïô?„§W´å†¡Ò1:¼×j_k«hAcCvc¸ ´RÌòïxDB{á¶áØ«zèJ&ÜOJýzˆ•Èšx¡ïÄ“ ŽK0¨•kÀ¢?½ƒI„ßÛÁZ 3ïó‡aZ¼DH{†gÛß6]€‘zŽ:eý “­Y~½u"κôÆ^a©“1Œ?Ë«ð”‰øsYä‹B0Yk<*Ìh ÓBÍZz‡ `&[cȯà·ßŸ ‡’a.cˆz£´æ?j÷=:› ­ßè3=€%â1ßù»S°ìäšyKêüùu åÞÎÁjJ™³¬¿¿-Ãæ9›?©ŠR3„aGõȱ©Ø$`ó¹Ë„{Ìý:=ª‘¨.ÓBq»ItDËÛû\‘ôK‘é9$ó-·%=U„:ãìµv—‘J›à’ÓãQ¤qòTÜåC ŠüQò$¤·®®¶|Ÿ Þ¯FΦ#ã£ý)Cÿ ScëåLRdá=.­³'Yïå=¼×÷щPÎs"ûú-íãCÈIïW-^›‹\OY¿-eo#·êËšƒtðøð†‚ýxòýNPûh°Ë‡í2+ûQ0×D9ÉÛ…vxÏ&*× ˆ$£økÖ<àÜmV®'„¢YŒbƒÛQ\ü!½¨ú4\‹©îvC)¶>ÏÂ"E”¾h§@ÆweÙ¤ïx+ \ó'ûCôt¨`]¤çžÿ¯H‹ F¥ÄàÄWNI¨BÙVWXƒªw gÙ^,£ºú‘Iæs5ˆt/Ìø> 6šT=“níT÷/öÐ𕘟…ÚÒÇÙ¾ð…ôäƒÝçÉ?|¸þñÅÅãÐôþ ¹D ´(Lˆ®ê@«Ü>vh3賃so¡ýa u7ÍièX¢¾ɰ«ÿ(¿§K ÝçÎQJÆCOéh»üôÑðÛ7ýØø—9ŽàȬ‡¡£‹)¦aDˆPŠüÜ Ýy¨ô»ÆÆ÷¼úåt4&5ÖŸ‘é¼W÷3{Œá·CW)™%̳ÙOÔ1ä ×W­ã]°$.Bqg‹–+¸Ž7¦Ü‡×Ôòxý6X (sŽx¬SQš…Z°¥kN?õ)vžRÑÌø_CB"ÌŸ³Ä=F¯•Žpé Q"©[pÙY$Ù·ížH„¤¹lëÆHæ¡râ^4RHÅ¿->2Œ”‹‘?]Bê¤+,é×£‘Ö¨º!§j/Ò…ˆwóAúˆñµŸo#C›Ç[Μd:CUÓÙ/Ž,Q‘;{lÍá&4zë ûÙÔ_‘ÓéKßbî犪r»‚Ü]5ƒI;œÈ󓩦û²ònFv)V#ÿ±†oQP4·ž$þ= {E$Ju„£()1…[1Šœéž’*AIû;žçPÊj(¥mPš~å{Y>ÊÐ’Sä»Õ¡¬ª§Ó,1ÊeÉj‰›D…Óoº^áT²{þ+‘»U\Ï—’¾Gµ—t±²_X üõ¼ Q£ú–ìÖð4jqЫV¸¢6_»º+©+êß¼¢õuy¯qÞäÕ@=šI¹eÎÔ[âwÑIDý–Þh£4HT×ààGCÿ#Õj“Þh¤/í9Ù‚F;/(BGv9ðVM:£š\LLàBSù´ Iê»ùw~ÿ‚qúô>æºt¹•­¿úá8ˆtÇ.«)øœ$I¡Åa¨šOñ>tŠ«ü™N®Ÿ‚ŸþÎêL’SšäÃYãœe™²ß s-Çû¨8dœXu<ðªRÙhßð7´@oÅ÷íjˆË3ŸÙš„x–²ÐÇç˜ y«’ö`âAÈ É˜æ4kƒ²k¾ “û‚¡Æùâ¢ÕÒÔ½-:¼xšb>TX/BËWºJú½ äÅñØò]®óf¼i‡ó¦7 “é27÷'2è: Ýü+:Ú3ÃÉ2 ÃDnï^‡“ÿá«3 '¿ãªÓz£a9o|86aìé(£þHL¬pŽV®ž„éÒYMi1ø=ÞàAòæóNýI9v#v¸IöÀ²OxãÚ¥nX¹el¸ÿZ¬h¸Š0¯Àf)Ëóóܰ£Á ¨fõ 6æTˆâž´H2Ù=•H2ÍJP[…¤‘žÎMd÷?$ˆ÷RmGJQÙR:¤þ¬4ðÉ©éôê”"Œ¾ô}þx2êE]Ør}…Lãè5ó´%ûbë´7²e ,'zìób —¤ì‘Ë//òÔ×óÈìQz{ y#NúTN!ߎÐÙ¥­I¸‘IÅÿ[…äœ~ž…2a¼w‹]< E¹ž$.P» ¸}~úwÒ”¨÷:#dñ¥êY¯ˆg Ì¡Ë)ÖìPŽlå1‹’ÊñR•sGÅç_ó_û£òs9os‰|Tí)–£x|AŽ34‰Õ5Œ¼ßÙIû¡æuW:ôµï« £ŽÇãd‡Û¨Ç¹ÝÕŒgQ9šÑe~»~“øW9gõeŠ¡©Ÿïì±wMh.pÖ×óø&Z¸ÛÐ^  EK™” æê ´Ü\,lßA«ªä“ÞFh}ýkÞˆÚè«_ñ8†¶$G [ôѶÒ$¶‘ƒí.3æJ3 ½Ú¶ƒõ#R´ß ï'¸‡*ŸˆÔ2“á©/йã¤(Ó~,±Âö:Rì5¼®QCº”>¯‹5 ¼OP¾6’ "½)' KûÔÚžyÏ-¼ÙçÉ>¯ m=Ýå<þ{ÖŸ(þSWªiqÞ¸Ò Ü;ª¯WW¸*ÓáßõæF]ˆI=èðümç?zLT#ÏÍõ‘€ôà܆‡éþÝîâ‹O½!oÑ*tÿœ*|À¨>…U(í™Þ;¶…qWÆDöLBËÉÓQ èvKu÷â(½=äy÷êgøH˜tòõÕÿÝÞMŽÎ=ü·îtïéñ…¿ã°)wÝš ä™2ßÏB›¿~+#q÷:”û)Þu톊¨„ ½;PùíÇõFN¨6¯1`µûŸ#wóûÔ9>Ò¬¨ õ÷ß$lVäÂW‚WmCsOÂt¿*´Þ ´Ž5ƒvCšÎ ÑFèÔ~N<ó<¾½y"þ¿¯q¼ú¸zÍb²í÷€>yç=ÝmøiNÄÈ3Ãv†EóWî³°¼¨ìDb¬pè¸{k¶¹ä¼ “°Qe&Þ-> ÛÎéHpëóÏê.F$\ør bé&y4‡|~I‰l½ŽŒ!é×stÏ^"ÙÐfð\òC¤4ñ¡ž‰´GêÍc“y=¤ Œ–ÓOŠBö³ÌÛ#È8ø)­”÷2·X¼‹ fDÖ‘G¼0ÙK{÷[o!碫˜ðáÓÈÃÕÊL™pù(g^§ €jè›å‹÷PèÍÝáñ$<`ÀÃãÙ^‹â"Çž9šE£¤éí#/:¸Qúì‹„“®(ëWu”Gó7ÊßöÜwÒú*&Éþx‘D…Ê}?iwúQ-@U’Yp1XCjŸèj:¼`7]G­·¹°}ßQ'ý»þñlÔóI;“»›GU}£/ áïÕ–«h\dMdðZM½hÅT $Ñœ)ló&…"Zi˜ˆ«Û–’VY·µÏ¢å£‚jÒ&Z}~ÆÚ>‰Ö1懨ÛéÑæT•góE´Uÿè$üÚ1.—WÍ¥£Ý\ªÎK.¼ü›¢Àï| j‹ ~º)›ûbÛ·Ì'a3+ø£ý´dÆ»<€:žâlçÜv¨\¿g[ðŸó<³ç×+? »ý§Ü„ºòŸï=­d~rfò^&‰ÆA“‹G¾ËeH7I»"}°2§m:6 Çpöóyø˜(u*Ï)*<݇3Ë¡.t!¨:Qšˆª*šSW¡µÚ¿\— #øD…-|süÈ\Lf=q^ç5ÓR¡ož÷;ÕU^¼X¨]C?Ÿ0Ÿ`ˆ‚¡£êÝw%Ga˜ÔŠz²†—­¿ý8œ#·6ùN†Âhi‚…À‡føUºÒôö ŒU %~ñ/cÒƒ„01ä}ÈZO ¦˜¿¾vd¦Ã~kËf¬À,s9wUÖaø=0ä{x¸æ†{ãùƒtLÆT’7®#ý¦~™HdО“˜ ¶EFoß%‹ìÈ”ÈD>ôA ™WÃ^ Î «‡µ·* ²MT8£†ì~SôëïÞ"Çqä~¡6äº}?V~…¹•n~>Ñõøö¹$#ßl†ù‹(ý]>üh>ó£ó…–_YÊ¡0±Õ{zSQ"9AɽNº­ Œi¢h esŠ«}ü܉d²#¤ºî(Å£éKÅ—ˆÒWòž/§@YN·€ZûN”kg$—s@“$-ã>TôÓDÅÊJrQ+¡òByttC"ªž+ÏotDu1ƒR¦ÕïˆÜ÷mG‡ãéw–PóÍ)kA—1ÔêÑwŠêFv‚=Ô}¨åöi4v7ov\¦mBýá,‡‡,'Ðà+Ïò­ÞH4Ì:þæ$ÕÝa|`žˆÆžÑÝò\—Ñ–#ûU¢)#Íê¶!4-R¥»@f…ûëÇÐüN$SkZHg‰wKv¡Åë CÖ£%Ý¡è踴¼vwÝ»yƒQþ~ó³½~¹v(™‚,-±ËZµ°’àzgo Tíïn‡ªwaë§ÓÖ±{†Üƒ|Kë¶î]ž;žyÉ^²nîè½.W„´²Ë]wσdÍû{SȈÿއº+˜­AÂû‘1®Ù²¿œØT_å¶ë£1‰&' möΡ³Ñ3­#=rÙ=u®_Þõ_©Ü (ÒUò8EÏ Åûs,× t0[LŸü$”ö™õ´@åý;批ÿåù" õU¨ žÐ3Ú1„/¬Š2§ÿÇ_ ^ðŽhW@SÃW"k&h±7޲L‚ÖÂ*V§³¡ízîÔJ³´w?>ênŠ ó& ß «I ¼Å÷CwÚÅä#Wº¡§óFF=ƒ>¾ê^é¾ýÿò!±[+±= ]ɸÿa•F¨f5æwýlô»‚ÒÝ´$k$&(ø;¤Î—»Ã´ý£ŒÚ0;sÅföï¸OÏÎÊeibX°g‰²4&ƒÅá$ÝÑ Xpà»3µVX^È<ÿüV¿K[ÀzÝCº­øÇ°ù[™¡‹« v6º®)#Aó›óv¤¸‡ÕHô%箞/»º=½ˆÄ œŒñògôÞ&"@2`™ñÐ ¤ ùãKêÝ”]Ú#[n9Hý(Î\w¸iu*1—' ݵbQM¤¿­½¿`:)3úo!“tÛo!‹šÅ|´ ²)M~{™‡ìÚ3{z®³"§Ä1ïœç›È5?ÿëÓ"r¿ÿn°Ü‚<_ï,Ÿá{„¼ã_N[ð!¿Ù¹†;è…‚ô2–QØ`oí£¡x ;a/ëЇ ˜¯œD‰zú O>£”Ê—â½a(½ç(Ë´/ÊVŽ©z¤¢¬²× ¨%Êåü -nE¿­C— N Òñ”§koö£Ê%‘œ¿Q­du©@é8"gÙ Õ¥Ô¨Wz3X¶€ZìÌ>¡öÁÖ,g,ÔÑxTé¸u-˜õ9 PÏ<[ô¤êÇÝ~•À‚Ú#LWÉæÐPyÁýE0IUu]Fc¾ÏñËdïЄíÒØC 34¥×HLñLF3Zé3ÚÒ6»~j4»Î:Œô­Î%‚lècêkÎljŠÛT¬mÜöëÙô —`¬8Æ_ÀíTJ¶=´\Ÿ6ÎÞm–[ÜÕ‡òØ¡/룮ù1·Ü ²NyôŽÞÿ™Ü؉ÛÍ—…“gÔCŠc¿ujù ¼Kð#£¤…¸x~Ç\åÖ¿œÈ›>N ɯS<櫨!OÌf€ùž+”®ªoK}Ö…Rù²§ÒPOä¬9é§ Mâ}§8„ åºW;m*´¦ŒT©0ö@[õ#z³Pho;'•‘BnGå #>!TüMt¸~Ó¶P¾í3k"f¬Ð~uá–¼qÇ.Wº’ ÿ’ùwÿRmA7n/>h?/ŸÆhüÚ“ôýk©"¡cÏc¹š²ÄÝÏåT3{ V6ÒÌO· ËÑóûd0|Ë£2w>ÆßÙ®l êTBO¢VPÛ‡è5Èn’»íýŽÒ+ÙÅ0xf‚”Û¢~öÞxM‰=0|qÚ˜‰·Fu~²‹ùØ)'Û çR˜ˆ#2¸’5 ÓÖ§[¹Éà÷‘Q‡'Ø`Þa3ý9,r¬l˜ß̓¥­†¬'äðBóŒ¹ÚÖœÙÒiç`c6Ž»þÇl¿I¡Ô<èŒå\Z/ Uqm±(o# ó.Ö‹!©„–è«æ.$sÃdãjHQ¼0ñå R‰¦…6f#ᕹôÑŸHîÎBÙs.dX<3Ö,t ™î¬x÷Š ‹©µûõœ$dÓqVˆGöu6>]]ä\{ýÇ`R ¹S?ê°A^-·‡¯8ôïÓKB+OЮ©âÊ<…‚Ó[÷ûŠQ¸Î½×7>|]n‘¼ÛƒâÄ*÷»†þšÑ’K(kÁ©XÍ‹2d4JÜ>(Û×Må{cå_¬ßi쾊îngí³Î¢²K†îu%T¿½Ø£¨‡êÛ¢J¥¨!+¦ýñÍÔô[ãð@­¶gyä6 ¨ãºêÌzìV!Yë´ çÅ aÛÑÙZ24Nþ ÝÛ,¦>i>Ë¥h.lÜ{R-¼râˆÐRª¢vó»CH×ñWh5úÓ^˳ ­‹8 üÖÑ& VX‹¶Ðö5ñiËKh§:qÆ>§í÷™0ß’BûÍyº[>'ñÐø¯£ÉãáïWâìÒðdß+™‚iz”îåótŸ@òƒµ¼²Ìëð³/éü±ý¯v9 ˜ï*C~ØÕ†£C%YÿV{Ú÷¤¼ñ‘<¸3 I ‹ŸÅ a9hä|Þix{ñn„hÄOú?)÷Ƀק:ä¨^ƒØ'ÇãtK!Æ„õðW¶Øô˜Ð7_žê餌ÓÉÆ%}§þÏÏ”6È‹[Se‚Ù;Ê·áCw˜$å(ÅßõˆKâl#PXÕDê@EÊç÷zèB‘Sùï2f(Êäb8mïð?Ût™Û‚ñðñ'ñ €PkÐÜT; %~Óa§å^ì>”ïõQ»A¹‡ÿƒHO¨Þþy0Ã*‹JL„#– š'»p@íÔl¹ÜÎóƒ:"cÆÔûw¡^üá×8áLh¼ÿ™_œ šó PÍ]V—7³¡m¦vÊõ.tô^ëu½¡]óo3ÔŸ†ïÐV%ÿ{~üÈ6:wï'ô· ¸4§°ÂOª +t¼ C&©æü¶0’QyA±l~%u<¸š™ãMNqÌD¿aJØâ–üÊ)˜Iö¤{Ð sb´…”0ÿìšyÙömXñb¦|ÞKK¥ÌrRöðgUÒZl¸ Ö$…Ž ƒÇ÷•/‡ØÂ¶0µd˜j8x§¿åú„„"·kÖ‘È0¡OÒD‰'¨KÞEÒ”ÍRYj$ût¤²,Å )y÷y|³Cê¦GïdZ:‘ÎuÊçÝUd ¬Œ #.CÆšiBÇ?UÈœ•{Š5bYK¾ëÜ=h‰ìdü}-{³ðªÁ«ÙJä^Ô%0aÕ@ÞA•ð«”—Q`ï¥7r$QȽ4¯l¯'ŠìÌG;=ÊA±ÎwQÝÔ1(1çq½oøJ«Á‹š$c”US4–%«By«‡Ôܨèyã²J*gÌd`ªy¸^ˆhkâ£Üš†9´)Ža¨õ[2dýŒêÄŒU¾¨F=7¥ä§Ýæh óhPrŽ 7cãÏŒ¡qéyý}„ShzáÃ*{|šË<Ï+É¡@‹ mCÒòOÑÒ~Z"¯Â­Tä¤O¢5÷¸æCc´¡` Š®©@›õ—I‘.ïÐv1åžGYÚ­ÔXhõá! žŽÒ¢" £Ÿ2Ôº·ó=àù*î‹j•÷‘’@—Ãw}èD‹\X7ÔF½T r‡Ê§~êÑvP²|Œt þÝn¦”3 1±™“C!Ÿï˜ ä\í Þ4¾ ™ê!÷Iÿ@šá¯‚®€w./4˜59{N¿Ô59ô=F8A•ª¢>-(Àçø"Ý“ЬÚùKê´…l8Ý*\‚Nõf5ñ/6ÐMëG}nÏ ø¡öâg¾¢ô¿WÒ¹ysJf¦ü:ágõâ‹Ô€*º*Ò´Wφ•n‹°>Û¹½ #C0òøÝª*ýL2Y¿šã'§ë%`lœúžX*1Œoî{ó2ú+LòŸ ˆ‰6‚©c}‡‡“ýaú­/‘Ì^Ä#Œ7ü`NpL>ƒžæ÷}“3¤Ë‚Ž1S«¶ý°È[žÞéKð6Õü&,‡ú”p¦Ý?3 õ|ƒ °ú`åç$¬ûgmœ´ƒÍëaÝú‡¹a»úúŠˆ ¼â (ëEÂÿ[šg‘È>Ô/ß+‰+ŸšÜ@RÕŸÏ1¸·;žW[IÉß:yp!åKÍÛUQÄH©xQiõ Ò¶²T/ÑÔ!ݶû*ãîÿÏÀ¡yaNl uklÔÏ«#Óe»ðÛe'‘¹9†ÄÂP YÕ Ö.Ÿ©C¶*‡ ë#ÈnK-”=ìŽãOŒh¯- ×r· jTÈ-¡6.®÷_>LYÜôˆ¸€|3ù'È]õvù0Þ{äf ~ Ì~¢ÀŠÂäW§/¹6¢ˆÆÊë "xàüLÜÎ#(ZOl'y0Å ˆœŸ™—¢K‘œÐ+”Nr¹Ã‚Ò7ˆ©†M4nŽŒ¸Ò.&Ÿiœï'AÓÒå÷ÁõhöI7vÍÑÍ‹ë:ùØÐÂíõÖ”n ZLááC©cht~“ÕŽ­h¬®Ÿ½<‰VibÖµ1ØœR¸¸—Õ]·X¸¦ò‘å…ôF‰Þ]éÎ&<íJ·~CeÙ;ϰÒñ]ÿ ukJ€¼Ek;Ö)·¿õm4> Ë\â©Ò@ÚÑ:Ïg i}+þHa $žb6Ó[‡„ËÝs$¯#!áóɆý—vùñÞ÷Ô{ -iM™ÅF²Îž:oU ¹rþ´Ÿvþ®Ç·Õë´" ÷žÓ‹áÓï7_.eäCivÉ•šPÞÇ{¤ûf!TÞJYXg½ð/޶›‹‡A핆•‘ë¼ð…«‘¨=bõ_>$ ‘’ æ„¦ µÕظh¹ñ;åo=ûsyjž ñݼ{ëJ¶Ø/è`ç-Yø¨Á·\èFá-Ýè;3t†÷gvÐAÏjY´ê¨>ô)žp}ܯù/R%¸\?4C¾çþÝË?,{"a4§Géàƒu{âÅA¯lyi'l½ajýF±N̆‰MõimÃ\l2‰‚¹ ,06·d¨ÀâK¡+°FËbOLÅߟƛïîëÖÂê]{Ú¨¨yXRz\tëlFó3–_„íoS¯8·— &}µäS1/s~çøDsΆ§#¸^¹òþB’žh›±ÌG2ÞOƒŸÏ8!ùŒ1X÷ e‘·[ÿR_.‹Ðø‰´PîXªt7Í Î%3 ýƒ”û瓾e~…udrõ™ìa¯E‘=Q#RÜÈÆjâ»§AÙÙÂÖv("ÇÎæ†oÈoäú¬æÙ>‹Ü×çù'¦#ç#‰ QÍ<òv ô{^F~eòÁ¦^GXÉáh¨ÂB·&®Íá4«}iõ(nèPÙ[ʆ·HܪØQŠ/«I½"¥êmè]AéíKUÞQ(«xê„E<Êåë‹è.D…‹ö=®–&¨äÿQßTàªù€fÇþD&–üFó·áòýWo¡EÐyY¡ ´ã½J(€g/ÅÞ3ºƒ Éà÷åóÒ´ºE÷G˜.ùÐ}ÿ/»úK ×}Dów?6rÙ³Aï¹ãã¹²?õ’è‘qîæÔ¤?s"ý±ÄëN»ÐÎ_ËéqÝå¿ é.x§p}sî–Ä9<ô<_q…ÉÕ5ΔÇqÊóf ·{£¦yJOQL\ð£…ꌹÀRÅ«ð%AúÐÜÂ|-!bߨåC¬adV³¸K47—¡Í²tþ(c*´›íÐŒú;@ûÚׄ{]¡ƒ‹·þ¦sþ.îï?ëí÷J3 5«¡]]oÔQ¦ÚÉ´i5—_ÿ{þ¡!9]½š´?y¡ ÌíCí¸¨o@‡›6ûÉ9èuÔj·΢S=_’¡«2\pyvºÙ.É(Áw¿n“µ)èYø5 ùz¯¾%)ûýúÓž²mÀ ÑÃ'6ð³bûÙQÏ]6• t%h†Ñ½Ÿ¸«U¦`ŒÈškº»& &Ò4¼ŽÂÔØ‘ä£T£0Û¶c&8÷æ ohU>x 9sߞà XºÍôXêé,üy83JMD«ßæVVê‹a㈊ȖÖkØ&Áy=2$8 ×ïáB^oHÔbßò(*I:9þœ}vÉC3Yï&"…yŽÀZÔ{¤jâ¼ ¥öi/X¦Ô#½sûýdˆ³°›v@&iǺ€·¥ÈL^õç‘”æ9C,™ŽÏ¸Þx9Kx˜0êø?zL¸üý›åHö®~ý©K¦H [OáÒÕEÈ3{½ÊBÇ /¾«ªùVÀ‡ë‚çh‡XàÃF#¡”Dúžë;ïÌ …cì¤=ïþÎ'š­ßåÄŠZ™ÿÙ~$ ülà4ñw¾¤°ÇÝŠ÷ŠùE°ÐB‰Åë¾Õ¬A(Ìš¹}GʳxÃÎÆ@ÅÉC$”Lþ®ë¸T§ÞUó¯$ñ¾„šâ·§îAmÚžÑGvAð¥.|Y;*yfÉ´b éÛËVÕ[Ÿ¡e2"³ìó3h{x…WŒØ:Îûå¶_X„®+íL!»9»iPtÜX~xÖ G}„~G˜¤£’‚ÁzûG¾ùÂPäëË ËaÄéANX#ü:$4óz$ÆÃx%Ø(ßÂä·‡“þ}Æ0c›¡ æ.0G K~¦™æO»úšxÂ"¡lÍ„T.,µž"ü(:.ÛÒÁYte¦j/loÓúZ [sû’­ß!ÙC÷€â]>̯¶}v ‰Ä.©IH!q¹à2=¡<’^‡^?Ë÷«F'xàÏ|môŽ2¬^çh*"W„uûj{ï)*Ø<¬2ö$“¶or”¾ÁËyAÝHXµ·ª«‹Dû‘øs3 ñ•×—#ˆ9d™bÏñs¸÷}äÑW.HnõBÏê¬7Rê»1^ gDêCÑú*ħ‘6è™ïMªëHמO¿¤Äô ËWŒ‘›-ÏÎç(2z¾!WƒÌ‰ÎÚy?EV&±Ñ‡o‘-fqë5q²+Hªzñ "G‡5Á(=r„ ^aDn™ãu=^âÿ‡SÎZé"ßtÉ¥@Y]>¼qó‡b4 öž¾Ã¾ŽÂ4ù¢cþæ(b8Ñ=,u\ 4â>ˆ¢]›Svº\(n[LbÚ„‚n|n{¿¡”$ù•œåk(}·gÕbƒeªµ½$™Pî«æ­SgP®ª°‹£¢cdÄÔa;T:ÃWxÆ•Ë_5¨Î{¢*´hÝ”<€ê{÷Ÿ`"!Däj¡¤û¾„™NŸî&´£æóŠùC%Ô–zð´….u.ãåöF Ôý¸×Íô€&ê­_/¬Ü@ƒ=Mœ|F¿Ñ ç;ë¡ë¾~uÁ94øPT¼Ô‹& 祚nŒ ©©°¼v@/šì [ÈEóûmCø-\Ÿè¶&¡Åö¦¯ÏN Z¾kºö]p­¬ý™cŒŽ 5•‰Ÿ® 1Z·ºbäô v,Må•B53½ÎͤJd9V8ü4þ\Q™‹0퀆_T ”ü”Piûñ!QŒ|zp3Hâü'È{¢pÈi[ïï|ýécó;Åtä—@É(¤™2¯—BRÞ)U/³¿õ2Jöo vý²quÆÂâïîGáSùC§1r( ¿;PNå­NýnJñPQûÔÔ¿ù_>œÊÿÀAµ‘ïSB©Öà ÿûÿÇùÊ.t]€fÒô™±ïsÐòœÎŠ`{?´Ök üfJ„ö=GYOÞˆ„Ž#ý,t¢ÐYfÐØÅ°ßÌ¢œÈ¨á;ómæ=Búðƒ“caNmúLöެ ¸ÿˇ$zNªç`è¨ZýN› ÷Ô¹UÑ_ƒÑ;¡Š&0æÜ$*A&¼\cd¥ü`*6d\"è%Ì2t…7 Úœ«ÃÌéw0ß~Ò‚ö,Z%?û³Kƒí1ÔgÄáOxKdu¬j‡(&0<‚õlçý•aS›š)uhlþ8žW-Ž^ÇbIyÏ!aV-+‡±w’Ò¹‡Äoì}òt‘Tûη“¸w{óî»#%HÞGùâV'RÆ<~-çÈ…Ô§úË_‘ ­R)ïO?‘îÎO­\£!¤NÙøì92ôXW˜­® Óá7[NÊLÈÂXB×UKŒ¬Ëï)¸ÖŸà¾¦yþûiÈÑúô–”Ûr½xå<95‰Ü.¤5·†•'1Ä&ÚË y+ü'_†õ!?Üú è—¶8KƒÂ$4”RÁçñ@ȯygŠÓ=P쌨A ³Ík¦sgPŠâÙ ÿžQ”–} —?†Òâô}Ï¢¬üi1³€”û[Ü¿ôÂrœ4¤QéjýJ\b!ªä†m_]ÝAu¢/o?±ì ÚÚ¿xþ* 5:Ÿ„% ײàås¨­ÝôÔ¡Â uÎ/ÉÑÔ8¢n†\\}(êµ"Ë›pÔ_ñ“ñøXÔ²‹hA££Noi'ÄÐø@Õƒ÷ïÐä7ýUjc43Òz}Š—Í Ò=ß1* ÅˉÐâÉA´ô¬žmþõ­t|“tùÛñŒ³½{Ê[ù4—oz u%[jýCøõõ‚Åfä¨zŸ)#eO¸ú,eg×ïª×îË߇l•ónóIx_; SDéóNûÞ$¦Aj‚ ÙJ $ ¦iÃÛò‰ëßÉ މÐO=;îï>}{w¯î Úl‚ÜëojÈè‚¡¤ï[G)w÷öƒóëî‚/úÄgWÎUÃWS‘"‹æyh^PœÁýвè$7L@ ­ý“­‘»÷µÕ‡‹R@»·ÿøÁŒ;ÐþüË/öhªžNP‚vé‚“ò>Ðöç¥Æ•}‰Ðö]ˆ9Ž„j÷õSáò/õ×û–§ÝåÇüí ÝTŸ]¾dTô£¹ ñ1–gYT¡Sû…¡Ek#tñ„“¾Þ´o^ž#t«€îK®»_É ¾7KÄ0 ¿‚b=•$½¥Õ­k ÿ©@›\˜ ÛÏMi~&ùßûp¿ †¹/%¤ ü‚‘t>ct ~ÝâG«FŸo¡Þá탩à;Csë•0k°O³@Tæ’Y<›EÒaÁp"wp– –ØŽ\hä_…?¬»QL3V-¿h$ì‡õ†ÉØòèúf44‰ì.c‡0mQ€Íe‰‚¢2œæ‘$x¹RÃE÷Æ•äÏÒ!ùï¡3–?ÊŠF›$ýÒÌLVlÊ·!]T^ÛÊid0•®=—£„Œåô—ùqyîGVoû÷Ü÷ìiö™³|ÈIÐAÄŸˆûSE“oEžR«.›@>yZÆ}îÈ_´(M/™‡‚Îð»”·…eh¯ðܾŠ$ øR´ Øû@#> ¢ñÓ"ý´ªhzŠ{àö³84?Hürï¹´ð?[år~-íRæB–ÑJýAöcÙ~´µZ\8Ú6\ ÏÔ6¡í>}o´Ûï”t"í%ùiÏ qà!ÓâÓ°»xøR×¥U19t(Ëð\ »Nìn²VßçЋô””Í¥(Ù|Föô^WÜ{±Ò^\É ~Ò „N ;@ ¤ *u@žâ~kÓûîÿ®³ŠÊ2Ú¾>%t7Ò!)ÍZ”¤t£ "6"˜¨¨¨ˆXˆ ¨„"*Jw‡¢t#ÝÝÝèçâœïæµï¼cì¹çü={¯µvs¦ÊXAÞ$|s`¿9^Ü ±Þ×OØYÃçDáÀ¼¯²ãÂKÑÇÑÿÔ¼^¦À{‹à›ÕRŠyû€Öu½-ˆx9e¯H$ù_=î½ççY‚Ž–ƒÍO÷êúcˆ„"!c[/‹>š² îNâY?È‘¯Êb쀜8¯ý ºmËËšySOr_2%ÞóͱC™Gyjüò/Êÿ{Íïï~-»{®{£5¶íwçR¡HÊJÍOJŠ+EU©ØöúV¥Ý¼þJìÓDÇo­AéÝ‘¤³«1PVú4üÙ~øy{̰ùÜkøe™ŸãÃå•nW¸F—â :ùê "ÔÙ²”¢††²²•.5hRRÕ'^ ƒ–ý'žé‰†6úÊõ©S¦Ðî<{:W:}¾| =#WÍ/Aaƒ•= ª.Z·zJÂ0Õ)­o0J~Ó°½ÆeG 9í`òq«QF™8Ì-žšl~ sñ‰Y‰¶° £ÜÞ4 ‹¯WüƒåD¹õº4°šþ³¸Â Öix¯›[Ö“e*ìä ó‹W!Œ·P} 3¾Ñæ=ÛÄ4–r™rHò!Gw¸©IO2{Ï,!¹;Ÿ¹Sü"RV Û»a4—Mmþ¾\F:Ù—‚™HßpîüC’«Èt$ñÍG/döò^WzûY=O= /@öo3 ÔÈ¥]ù0Ýy]Ÿ&f¥"@‹Aä31<ðÁÛ*…ß…&xîÌèN è¥×ÏtýQBFøVã³h<¨ÈÛáFl2­þn›ð¡\-/¯}˜;*ô{h5’‚JÄ \5Qňu컪-¶žÕü,ŽHá¶c÷µD6]DQ»î÷Û9VNÔ½óQëæ~Ô;l.>&ð øÚý_° ¢áZhViB2ÿΫËû¥‚&¡¯:FØÐÌã·a*š'ô7[Òù£E¯Y‘ Z¦^_óÖÕE«²…°Ç*nh=òæZZÚ²a.¿·†vÇÿôQ‘Eûïn—4“ÐQƒfeß‘EôUKSé%~ZÎÀlqò²_¬Ž™¯ÿ ›&ZzgŽ­BƒüúZ¯¥Tœ±·`"ñ‡’:7o§ãbPèÓ“iÜy¾L¬ži|ýÐÆzÿñÙ]½rdåÍþ§bì H:½E¯: qºNüä×!^:b=é_*¤]Ó5ÜÉçÙ«Ç­$kn…rŽVªÓGù š‡@YoÜZ·ºy\ y<”…ÒÚJ£z-õBÇõáíž5€î«;ù‘¦žÐT±šæ •Øx¹Ýe¤P+þæn\Q†¡m- >5»ûøÊðý-îX[V´8#-¿ø½*`tk¬QŒ5yw_w¹Ð`1L¸Üõc¨>“_,¤Ñ¦ <ê¢5ÞÀÌK³Ã[Iù0§£ñ'CùÌ¿j–N2“„…G5Ža®¯añÎÓ"…·°ä¯¿ƒW`Ùûø`ÒC€•hߪáLX]Q°¡çþ ë·°àþ"À¦êŸ“½Ê`[byuxü5I}êÖ&‹VUã> _0ôjNòK$5y#×â‡$šçŠ ’q_²ò‰×$H†÷g|I‚°5^âF!R.=ˆti·˜ÔèvùP€‡‡RéâöI´ÒE }å0ÅßÝȰîÎté‚2Év]驯Cæ;MÇ^N!Ëdtã—6ud»þÂT>+ 9X-Ìù\F‘ó{vý¢®,r_؜ިà@^i«*&YŸÿ—ÞàcB©ŸÁc¤Ú»|x)¶qä åçˆ=ø×"Œ£ç,7£¨e7ƒ™r)н Z‚ªZñ½s¬ %O^M$9„å7´^NУŒâŧ¤Î+(š6Tü6åEWÄò92P¡ÆCë½"**y)ZÝE%Ó~ÇM/T>êx©„gU¾¾¦!1B5Áv — T_¡Pe|ÆŒÈ5¯÷Ž…5‹z>ÿK×AmÂ)C·Ô9š1fÉ„º_úäŠ<ðpíÄ s5êíÄ´·F¾B†cÛ“§äÑP¢þÒ–÷42º²-œ~/ý|Þôë:‰ríá„04iѤZeÊD3–2«‘ÚH4——–y5…æƒüä2Úha?¼š§‡–ÎNéÉÑJê²4?Ä¢5¥ž 'ð õšÁ ó­1¼í‘móæ´.ª©…v¬C)ÕŒ¿Î°2%CvðT‡|zrß`¯SCÿÍ?@ýò•WÓ®ÞØcè% =âhÝ÷ ’Áq¡îæ­Ý\*Ÿ•:J _/¶·üb_†Xê³Æs{¾GØJÈ_Þ8ÿÜÇ”º›Koȉ[Èíú`ÓæÉß={|ùŽŒ ½MRÚë=ý^¿¶÷ý¼wý®èÇ•ý¤{ýÕæ-NIìõÇÉ[Køñó­óÔØÓ=ŸR‰nþ.¼½CAñ ~½xu”5¤*Å^E1g|ÿ2è)ùÐõ‚\CrŒ„Ð{9Óþk!4n›§åƒfM¥¤#¢»¹4܃æ4´“©F0üƒ?AÉ Í«û Ã(ÄØÚûînõ>òùõ7èq‰;çØð_>ìß³_ "€A ’³¾ëÁPIÖ•„ˆ9- tÁù=Œ‰Ê›UÐÂsýø-˜Ò¼²Ï>9 f¾ÜgÏ¿“óë|ŸŸ-àeûz¯HX¢\›_å0:ûÚ”lXU>pO§ÖÖ?/|£"ežÃÖôs¨îøË^-uä‰(rh™>AÂ;Æ„6áH4ÕéÈÊùIn]ã󼘊¤¼ÃKâø¬[Cý RÄ-·¿k@ª{…Ûf,‘Ængƒ~K iå &v[¤ ºR·4“ŽôïoÜ;ðxº×ªç/#“e+m¯+2ÿ»Ré4‰¬-´ŸTÄI‘½äÛ¸ó2r~’a›ÓoCn ‹Ä#È«ÄuF¢cù‚Wü¤©?©|Kî*دLeÍ(Xžz‡g¾…‡^Iv‘{¡˜y´è²BJüù•Xg|2.¢ w)JïŒXˆ£Lsd}» ÊÎÌûÔ^·DyyŸQÚ¨ÏÇ¢²ëSŠ©{N² rp××e±}¨Z/}Îþ )j§miøAôúäîœr5»tæžX“¢6«€¼Gq-ê˜ÖRØÿ‹AÝ Ïîã¾x¸«üÆ}j@}Rª´3’h`ÉFU[ᆆ‘›šÚ?Ðh…¾”«Ý£/³ÏF“VÅ¥w®¼hvRè¶]â34÷KlÈ´8M?ø4d -í™âoZS£•SIõ“²xQ“þ·PhÊo’È•@êþ’º‚ì(µþ~ö*”¼Hëæ© ‡¼O'v¶†AÆüÓ SÇ 5.üü›\HúÉâqr?$̾þ–{Kâò6ߪ3oÂW£³}>¡+ ˜‡áý÷uÑìÝ#R®íõÓ¿ ìÉ{s¸s -( Èüó’šÝÜ·sê¯Ø-Qø=þÇg1jzL].|š‡z·Ijq3hxË:“s] ÝYÒ’ßAÓáís—¶ò¡©KBÎ*š™8Nj·í®ä¦ò»è ©ÙÐê™74¥ÌE|%„¦x οLÞÐ4<Ï© ÙºÁƒwˆšÛNq» ¶JڧвÀw¼¬ÄZ?v˜5.²@Ûã· §îé1³˜ºí-´÷?ýíÑàâ~S’ïh ë9ÇužèÞxtµ-gz3Þj»ýNÊ ÷'`àùdMž .”7­oÃp`Y›CŒ^*}UÓãáÙžE0E[Èí; 3Eò‡ôN&Á¼éçÀ®ïÙ°Ð?$U K_bžI#†•ˆ ß-ßã°Výñå¯{÷wýÕCÍ•Ž¶«.™¥Â¿—DW®+Ö!¡mI;íÝi$({*l‰ûêé…Çvýt»ðçÀ-¤¸&ólˆ…©ÚöWr]Âý'åLÎw!] Qh÷Wf¤ßdTÒõfFÆ[‚÷BT™¯Çc}Ÿ²X{êGvA·¿L~tÈùÌU»_ÓyÄ内!ŸÑºt² ò/¤- › ákã”s(ÄÒ÷Aª4…G‡›½ ®¢h‹ñ8£1JPTªe- ÔåÏ µš(Ã!~ô©Ê&Ôp}U€òÇn^{xë#¢Mö=ú“ñEž:ŽÊÙ¬ꥨº²%oÈG‰ǬÎìꫳN§~Rµ4DêZÂ5P;I¤èjDêš0¢ƒÉe«Ç ¨?}ì=ñY4,]æ£q×Bãù–ÒšhrÖ¡óíxšI÷ÿU¿þÍoÖYÇ]ëG ×xÒU’§hiÅ™"þ­Ž<+5r¶CksŠ¼È…´9nÛ™Vƒ¶>\ º^æh÷í{ßæÍ*´[QO4+FGõJyiòwx4n:ú¡?:)Å>—ä Á³)t¡T÷–x°(’~ÄEÑÊÐÿõöäùP|ÞÝNd_x£sF’Âö©|rfÙ›ÛÄ«Çc _z–MÄy'à3™ÏPWt|lšk;’‡»ü÷~ÂêƒD•{Îü‰¥…ˆY"ýw!Ûjwþúòõø¹,nsÞáЮ*˜Mˆ½ÙÕ7Íã_ÃD7s™FzvoNé;íã=piµ[rìX8•ë!§¦ðÙƒ†«}Ò`´Är6ȼˆ÷úsX]»;ø®yW »«oB¾LÀy½¾•]Ÿ} q³ÒŠ(IßÑÆ]€â´߯Ÿ,Ã]­ËwO@‰>呟?¡ôÄÍ^Š”›PrƒJqÚ~ªI{ê AÅæå'nƒfPIpR÷©C,TkipŠ}‚Ú–WYo¿[BƒñÓv‰¹~hìZrïîi‚æ¯f®yv¦»úîá)51€?³››&„Ðù`޹ÌÄz.]ùÔtú'Ò†× Ìg { Cù'¦¾ùÁHnõ—vÓ2Š7âᤂIeÖøÅ8J˜NU zc×sÖKvvù×a%ó”#,¦WŠ|v¹ ËgX"kÇaõeá½¥@X/ðõÑp«…-rÛã×<açÜ»ÍK‘€ÁiL4† ½ N¨š"Ñœè¦ÂY$¹gð:÷³’bdgDÖi$×½ÿF2a7¿Ï½Ôök—u%’‡/=D:öA!“nHŸSØMâg†Œ×îºþ™-ºŠÅ\GVÄ$¿UOd¿i98ªK‡\dÓ÷%—"/‡ÔƒÉÛÙÈïÄ/gô\¸®¢í@‡B ¦®~'ãQTä4‰R³'Š÷œñ25ŠA©öm¢¯Œt(#~«mWr¡!œ4QákÑÖË T¬yðRre UØ$îùýcDµ_ä Ÿ½†¼@ètj±lÌ<òAíâPásüQ÷âfÁë–vÔS욦ÕoFÖÍŽ‚¤L4\¡ÿnÄ€ÆµÝ OÅúÑäSºsž>š=ïë9ç‡æ?Ǫïì Ecnœ¬ZN½U¨MGkæU-ÂÔhcå(®Õ€¶_ Ññ£=óõ~ÿëTèðIþï÷7ÂxÔÖï‘hX úZž÷cª¸‡š?äá÷wdwúÝ‘ùy6î?”ºàü(K©2TWàg‹b×—*6(9ïÄœ¥Í?"¨¨®CnýÛ'DÆT»z%ÿ|Û2J®{¿´pƒ4=e®­d.H¼×Ø*× ß´ÞÚUX‡8É6¿ÔÜ7v0å£ÃÁtà½õ ÊŸ~šy5 Õ;)7~Å1Bãå}Õì %þ¥ìÑ vøóˆüëë'vý'j9d!zè¥Eh;É Ÿ&.~Õô4 8ÖöûÊ á·[³ŸNÃàøDòå'ñ0tÝ'^Ëž†šÇóüÂp—W¤úÒ+éÉvô€1Êr}ð€qÛRƒ»”0œº\禓£–ÞÁ÷aÚ4'ào€(ÌL\Ò› Ú†¹¯EÌÄt¥0ÿ«R2ÉC *fЍÃbò±« #-°ôîó+qwXÕøÛík+iÞn°º> Î ë'¿u†MîIO³é[°õ7…Tî(üe8lM,¨£¹|)Ÿ áéÝ£}‰’²Dž¬"ñ¿«+Ú¸ïŒmžÐ'n$]\´z¾ÉÓè÷“øR!å‡O½„òHpl@ë"î¯z[•ANˆtwmgM° ýÇCVû¯"Cã÷«§¿"÷´ÿŸÈl=«ãš¡‰,%ÌEykÈf.üþ÷é"d_¿âöçÃ7äLÐúdÜ'®¤«Qñ!¯¤VµÉFõÿLJÌ_îÎ ¡ÀdmœM‡Ö.Ú–ýqG¡ÂW#7‡¿£;ë×¢;=Zg\ EŒbo_D:_HFñùYæÏWÏ¡¤—”eþä-<¨äRTeŒ2Á¿O¡ld@½¤¢ ÊK ÓQ‘Z¢Buam‰/*Ê—¿µJÚîjUÏQÙ X€¢þ6ªúl÷²J e_ƒØ«UT\ÞÏH/¶Ë‡tøw9P³Æ9г8µùDÜ,@ÿ®†¿!wP·æîÈW&V<W˜ÐŠuº·“‹ ­É< båæÑ†\óÈ·2ÚrËú}¢PÁÛwŸMû%Ø£ªh§M>o'2¯Noûæ›—žî/Û=ßUùÖ.ê@ÉýÑ »gÿ¹·_¾8íÛÇÆé ÝXÂøùHѸIeuCâõ9lÎPîæR=ÛUïöê)¨½WÂàóbeaZÿÞ;Ó’2éê]?=ßûüŠÄ·`åC)H©Š>þáç¤å¡xÉYgW˺© ×aRþZN"¸z=,ø1 Å‚î¯e7?À¼æ¾ka—¡ô&Q÷²ôÝÿñáÚmƈuvør•:#*¥¯žË®>ð?>d>Juî Ôk=o÷9 í­,©ÐtÐùѳ‚h¾»_»G«ZFl+8 v Mïç7FjøÓèÓm<´÷"îÇVeA—kK¬ý´=ô\3š)Hø®ØÄÚ¾€AÍš}ú‰Ç`è[ŒßkaÁ %JÝy]x{žÏ§Æ›ªÉæ£ïÃäÐYCõ0£,‘ÇIsÕšÇr¬ŸÀ‚ᬾis,–|–7\lƒecæ š°2k·y½4Ö’*·p¶ÂÆ3IÞ½^Ø `¹« ;ùùËæH@Ô06݃„†+K!ì»z.2³ÛYü„$–Áõ.œ¸oÛóoBK+’åÝ™tQ÷EŠÃ؃ߪ‘ÊuÄá‚Õã]ã–M°7AZɼÔ9î€4í1ï? #VËõQÛ"¤]þʲ»yºô(ש0››»ú5²¼¶8(²@ƒliòFùoÿ"'½IZ‘'rÇmiì"Ÿªeß!äO¶n•û|Èð} Iù‹‚õ¾¦Q'SP8"_¨þÚ)}yýšÐë Ï6åyÁÿ¥¸2^º%: ôÐYgA~”õ‹ñÌiÙÕ—ÃLoµ* `ã³sº¨œe˹ìˆÊw‚â]5£jaÕ[é*jŸàçÖGL4~𶆵ÄÉoÇG vtóLF>êê]i‹VÊ@=Úì ïÆQ’æÂ»DhXTÿ¨þÅG4ö+pê0;Œ&§BZcU|ÑL®è„×­_h~OrdéZ ZxÄs{0]D˳_¿ñ •GyPŒc'Z?°Ï¯æüˆ6_̼HΠmGõìÀíi´8–êO H} â™EÇ킉S#ñXØUOÿèl=9²ÏIÏH+K-Rk¡Äd€…î,îûUôBȱú5Y<¿1CÑÉ'6Š>“Û¥ÔØÑðì‘6|¥--ÿt§¾¨V¿Ÿ\›•wÞ­ÂÇõ¤/CÜ!š‰ÈÑ/9¢”ÌN óŒC„Kÿ`°2„7·}?Uø_=~>Lý=dï>ãµçßß}zù&͹µ3a÷Zšü{d}ª28lKÙ/™Õ8;Ô!‡¤@TÝó7äÜ:ázŸÅræÉ&&Jw9Ñ5v$Ñ rO%{+æÿŸkžT…Q ä­djïpgïÝ›Ä\Y€ÂѼÕ¡4(g%}CÞ?”]/<*ƒ’C'=?¼†RÝýûãÏšC™ÛÉÛ¡|ó1 OTĈ5ù¦ ¿#­Ü¥¾‚ªF·Š0n¨µ¢þúËá Ô¯s¶—SC£obpVÕkhÖÔP•ÔÛ‚VÙyÝw‡tàÏ=òÿŽ-B'qr¯’>to4ò~b[Óµ”>ŒŽ‰Á·]Úb6î—@ßsꌟœGMI ɃDÈnRAç}‹Ö³~2]r±‡ú2¤Ó·„ŸZ̧•^ÆA ©MàØŸ¨õc€\^®Íá•ݹY¤– ÆMj§è» µÛ~Ǽn‚¼ƒ/Õ7ÃWh~q!ܾ‰ÓÓexÝ…ÔqŽõl‘¡½{ô´É¦»ûúr}‘7%Ôô8眫†¦ýû+Ä>›B«síÇ£ ЮïÅ—Ãs:{m§ §¡'É%äá©÷Ðo9×l Á-/ånÂàµáŸ©dQ0DÙòi*š†ž øšÊŸ‡aùéú\îžÒÕ mƒ‘¡Ôa1Q©œS§Âøí8™ÙVo˜(:õdgL‰ùX2ÓQ:ÇšòaVç¥~›½Ì“òˆ‰]õ€ùïbI/ìaa¡Äw(ó,ö”l|CK%!CBÌn°œÎÅIuç,¬”µk}ì†ÕíȾŽaÝõq(c¹ lìø”\”­Æs̾it°ÓÖÉýñ²P\3xà"*_á¨@¢k\ù©x‰¿3‚xîã»F—£µ„¤±®y…ûÜåˆWO€#R—Å¿º£ÔÖÅÉ¢î¸ÿ û ƒ}ÅHgõåxXI0Ò{ûGRǾG††–'ª‘qØå”t¿,2KR$mÛõ·7Oãj4ÒMìûœk²w„Þ ì=‡œaí6­DžÈm;}ÃÇ\yŤk—rü¿Uø¤¡ÀDë÷òDÍ]>Ôèÿ®eƒBÅî=+cP„Ç`T4¹EÝ~<1ÔE±Ïl‡ïRW¢øÎh|õóý(ywdÃëÊI#/sЂ¼àuÝu)´ùsµÞ-[èkˆ$‡ÐªÑ‡Êñ(Zx¸Jˆ¨ -©ªJŶ%ÚépˆÈ¼y†·O<ôšwGAæ·]cÈü÷غ¶–œH¡žS…ªÙ†Ü‹ÁÇ¡„ugÿóC¬çËPhwî/dÜê;.©¸ i«ñOÑQ’ý‰o¿úâ&V¸åÙ!¶?“\æ6ì½']}òAcï»(ãg×8ørÖ²ø¾Ñ|}äüt6Ôâ_$¤iÜ÷G/do_‡toÚÉfߥ26öZþý®ÎYb½OX@ü Va®P´rÔÃ={~$ÓÿwØJ¯ðùê?oûî8Å_ïl‹>Þ‡ÊCvŠvƒþÿãCŠs6rO Þy»¶âÑÝ|«t“ls š\ÜíiY ¹`¸=ìýyhc䥃¶§~,BŒìÐÎ`ü°¬q:2?ålpMC—¿,.9ô<™¾Ì7X÷?>œ³<šÀƒ2!1Þ]¡—/C}R=a„ý¼bœ„6ŒæïøÝÏ€ñǾõö0éï„Il»~VÕ¦ÿ&×æÌƒ¼…^‰ÃéçCuаxó€GÌü/X&xÒd*W +ŸõÝ=´RaÍu.e*úl¨5}Š“ÙÕ³f5ëyòÓ°s4¾Ð‡±þ} e,þ"„„,Ñ#쇑(°Üf¸2IÄSïšûã¾ö£aO‘,¬ø-H Åé÷W¼s*J&Û¿¾idÔÏëfy!­pŽ7If!Ò½y;vMÞé_l<û±ï>Ì!Óa…Ádn›~—ü,YƒšZ/Œ!ûù†¶W|È©wRñ"}!r³&ozÉw#Ϙ~üÅ_ÖÈwadÈÑêòûŸâr©\A¡Ó‡:ÌùQðUr[Â[Ž~ã)#pEWf•ÕmPâ´BØ÷ö”ŠêÉ õ>‡Ò~ᥞO¡Læ%ƒÜì(Ûãv¨Ã—好6’'†P¡xý÷Œ*†” _íGåÔò©¨Fú uXPÃýA¼¶Ûb¼íd#jŽFךQ3¡6³x*¡ÆCÔq«œ³ñÑEÝ ’ÞHýߨ§<,¸CXˆú!!k´Ïï£!!à íÇÚhô’Œ±ø#áò!PÌQ@“ú©ÒÑËÝhöñ~KZTšW]{÷öD Zü9³¯ŽâZnºÆ Ê¡µb&ÍÁßhäÊDÏ?ˆý ú¢¬ÙPlä RÎ|Rí L‡‘Óß#5‹âáÇÑÜCëäBËh¿Xî´«æ×C¶‹»ºyzœÇ4¾û2&hìêo_Å0¿ÚÞ•þ´x½«¿±j“§ÙÿéŸüØÞûFIqTÅÇõÕÓ Ë[yð@…•¤¿|µÔ$…Š,¬eGº¾.¬ß’w²(é zç]òGã9¨325?èѰëÏ<Å?Ê ¡ÁßÃk[ÔÕ7Ê6²Ccùù4µhZh¢bØÚ6͇&÷dvz¥ÐÄÒ¼QK·Ë…o-ëŽC“q½h¾¼%4•„ºó«¾€f—7ÕמäB «¤ë+eOh©-ïºF¿Ë‡A¢>Ù8¡ÍÙîX‹Ü.ÚTT̽¶…vç1ÛŇ¡ã[» ÇKè}rüö$t ÙDÐï燞Kg†f| w6XŸ6kú-.–_<‘vmÞù”‡a0ÌFêå1f®áp÷®‚‘niyÅC06ýPQÍØ&•9‚£Ëaúë®Ómù0§t?k¢+ö·äïHÃâe÷Õì°üYžkb'V¿[мQЃ Ö“Šž°õ2â‰Ã5ø«ó¸pÍŒ ãNᮯJëä± ‰çC¡ôl}$½{«êª‚ ’‡'/Ö¼wEÊž¡X³m¤1=Ì0×2´SGRúw}‹Þªeœ¸Jgûd!“}`µÎ«zd5™¦ðŸG6 |ã’4oTøÂo¶!·Ø°þ›rwä¿~£†ÏùϯeÃz L)Ùüõ<€‚|iHQØü¥·ð¤-ŠbÛû“,Z(îÚLÄú"%+J]ÿ<»ŒÒ/Âϼºü eÒÉîöÌ¢<©êiUÎrTHo( ñDEg#ÚÚ}6¨|˜âá;ߨú0<}üÔªÏ{tÉÑh#Þù]r"©µØ"µò7PûµœÇéê/¨‹Í‰ÉÂPzùs"êN¬G anüÔ«B4¾]x¶ý’1š¸Ö6d<õB³CïÊcïΣ¹ß³×~£Å­xùQA ´¼+o}Ñ*hÇyÓέ3¿l~†6SÖ\dv„h§t;î®ÚGlܧCG®Ó„çf¹ñhaò‡È2WtºÿgiþÉ<~YZ£÷};žÖyŸø£åŠ­3³ÛÌB’Y5Qþ©yèK;Ãq–it¯ðtÁÉ3nHÊ+ÍÔ‰Ü=—c= öëy‚øüúƒ~BÄ‹ò†ØCtn¼bÓÅ·ðA½úÍó½~¥­óoJö¸0ƒÏ  ¯ÅÙ4»øýWŸÉnñÖæB\Þr0ÓYQH•¡¦¬Ù«»˜&1û Y—Ö ŽÔA¶zþ]Þ6ÈNw9¤é_ 9¢¤*~/CNTâÓ™o|³UÍ^6³{^X‰Ýš}õ¯cì¼^ª{ïL93Ž^ÿOÓK>Á»¿ó¢µðǵ½z·Ãà‡äûn/„ ä@ákßW(ŽAc~Q(;d6]‘ãåyé}qzPa8(¥è!¿•uB…>@Õ‰ç—<é⡦ññ»•¥¨w ”‘3‡F¡S¹96ÐÔ!AÿAñ´”Ÿ÷äÖ€?´Ì•i¹²ÐŦ¿ÁÏÝãé߆BßBΔ@&°žly?t †Øø£üÔv}ÕÓ™.· ÆôåO Š_†‰·‘<¯VÁ4eÉȼ‹ÌÆùF4¶eÃ|yÍÚ]ú‹°èæüäxÀ2ž(Uˆ‚U#Ž(N*X÷8s¨úÅwØŒïô.§ ‚&ãgÕ3á_¢es ª• øôÈ Qzk®Rƒ’Àý&Ü·ž®= kŒd+º‚UIH©ß]}Æ©ÇF]R~DÚVuâï‘Þÿäw2?dÄž$/þÈÌðÑx,[Y¶•–î6v ;ר‘:rËu-w¸#Ï“+ÒÖL$È¿/¡´*_&9ûÛ…¤“%Ò?J ÈòU^«Ã(®4á¬ÿ;¥x2m¤äž ŒÚåSÏ~ö¡œð­ž ÉqT84>£áMŠŠÇÅÆW¹¯ r¦¥é÷»É¨véÒGwk„7O~JøE æŠXçå#‚¨ýþ –3“ꚦS«=wG=ö%ãÁ’h@оlmMh8OÑfè߉Æí|áâsѤ„xÝ»ŠÍ*iMÊ7ÄÑ|c¥ˆØ~-¦¾ø)ΣՉÎÜÌþh÷/tõ}/Úì ±y(ƒvå-|2WÑá¾ Kø\1=ßÌ]tþ$:=ñúrIì7úÞëa{pÄQD±W^8Ù5ÊôÕÍœ`m’tëŠ+%Ô{~;Ï–åIKó•6ªð#ÆÔüÙä0çl'AŽÇGw¡»}ÙUëÕÎémRU›,÷¾·ô|™ë€ø/JV”îU«¾¿ŒnH¾ŠGf‹Ÿúϼ犽:\á£Æ”ðó¼VÚ©/ÔѬVŠûAS<ë†3ºÐÆynŒÄ:(:Þud$AW0íпQè5|õouAúß*R´n„ªN¥‡=e0ÃOçu¡†$¿¿sË~C~ÛÝŸÃü! ¢‘³0Üë6m¤Ì #“ãs½E0æñŸÍÂxtûñhk˜Xcn;ÚSgõŒ¨”¿Àô”ÁN·1ÌF¥”%Ý…ye§_.>° Ÿ%œ”è‹"…L”Nî°Dûo8ÍÀ–&Róœ`¹nSIõ–¬4¿í£ìó‚5 ¡ëÞó°n›p¿;É6†éžÈÍŒÁÖç‚õdÔ°á1†?.ÿߡÔÞ1HH±¼Õè‰Dê~G<–;ø®š¨Çà9$é9kÐ_‰¤ͼ]JêHNû¸5;()Ö†åt7,‘ê/ßmPØåCÎð=Ä>H'ºróF8 Ò›ýaü©‡ ~§òÍ"cQLOûøId&bõؘ@–‹ÿBû¼. ±.üþ‹ìù9zÜâÈùà[ʼn ä>rJ½(ô ò s×–<=ÿÿñáý O|Q`¼§Mþìò¡àNÖ Ð}§3ÉPäÀ-ÁRg½˜^báb)1³QI#(AÙ‡‹Ÿ2Qòùûh‘í#xðxñöçÅ(säÝ'‚]”WŒ%ó²@ùC»{^¡BåòMrFTPË®œC%1óŸž2T>@è!…*ÇŽôUŸAÕ¶9§ÊårT/®Ìfà¶@ä0ß­:„š.',ÿ£ö‰ øiµuz„©¤XÌð0{±ñ­£ÿPâÕ‰K©¨OºÕ#)fZ´3 ÐðéIw¦24~`3d·…GÌçH™PMš$ '¡Ù¹§A4³jhþBmÔyX-®Ü¯Ð7EËsöé ¼ŒhåéGÓÑú•Rƒ Ú¸ßNå|ˆv$ ‘]îhލ²X¨o¿Wâ8~è>*_l½ñf ™Ÿ2ù Іeñ²Ù—õéPyÆl(çö.1*Ó2|‚ÜúЦüÓLÁUzÂ˰Ò>[LÈ‹¤B²¥¢‘Óeˆ{:öºÙáÓæ8H íÝö‡ŒìÍâzÎèµW‡X€§þÁW[K%óÝ¿¯Ïi·V )ûÏç—É,îú.áo?/)È¢ì y&9Ã:ì·)W¡€Ä<>ÈÛ Š*Œ ¾^Ù;Œú–u ô"Ÿ<ø_>¬ ÖÔ,i‡_T. ïæÖJ5U¢õÉÿñáéï·†÷æ}—Ñ+@#û»®ãŸC¡)ø–„¨k4ox˜mQC«{ýõCg÷ú–>œdv+ µïÓÐ1‘0k|Iºâ^8”DäBÏû«‡þLJcUftÿ¾Á ßQ|éÿdïAì)Õb^Ú¯h@ £~®ï[­ŸÃ¸ú¡+ÉtA0)fyì) L;ùöúÛ$ÃlkHHmÌ—9 𼕅E™˜¸­Ù\Xʪx¹ÿª¬8*öžúklÌíÄBl°>}SäûCØœÌb³>ÿ¶·Ãý;(៲Ï13Ï $2n§e‹@"«êè\$!ª“Â/‹¸/ëI®¯$"Ù•z\œÚH¡»¤YZQŠTbŠŒ1Æ‹HÃu4¦—!iù²ðLº#ÒEH\ÉjDú´ÄS¢öÿaxh"˜`™à‚¾[º12—~åú(ðY/)x<͵Gvt«ÍúÒ„œ¬Û?%VSkš¢}Éøò|w:²¿˜ùìæVËÿr–äÚ % ÔîsÎ0¢ ÷Ab¯i¾Çñª3Å E‡â€…2JH] Êýp ¥\›Ý7¿¡´õYËpZc”ùÜþè'ÞCÙV†ã~›(/u%¤žNJN 軩¢b8×ÉŸw*PùMîlÊ4ª ¨Æµ¦ñ ÆË „å- ˆþ©˨9m¦.;ΉÚLg|úPçÒoW«üPÔíÏb½Î=zg®låoßFýÇéâhhÿòÙöX:­ÒGíøã‘TY^Øçhú¤½4ÉyÍušcÞ÷Ô¢…íYàW7´ô-Y=’)ŠVåÏh–^š 0qϵH´KW¶á7Äs#š‹d¤„(½zõžÚç>¤XfœŸ½UÃsR”‰õCðýÑõŸ•Fmcl}Qô5 ¤tqÿ£.‚äsÅËÚ½z_XÈßý¬¾‚ÍÆòˆ]W×£˜;Ÿ³}ZîuÃÇÉ+É·I!jé¶îmoøÞ7~Ïnz¯”ÏSOSH×€ †4(ˆ£ºßÞôJ—ÃôŒœyàWy ½W+ìf'›BÞ¹]Ÿ$¸,s7 ê©ÃdÎ¥.@c¸¥ÀÌ#hÈõöŠßШD¿¬©§þ/ (  1åço!ŸphÌ}wd–D»¦“ز  ‰+]šMû;4¥L>˜¦¬‡æÓ·oñ9Q@‹RÐLü™ h%/¬fx­}‰OKÊNA[aØIËeøSØ“–ù‹Ú+b¤å8¡“†BëžÆgèRÜî=cÝ^KäÜ~BO¼§÷pôQS³%s+A¿q€ùÐ):Ð8âE'÷ÏF9vÓ„¡s–- >­üDur¯ÔÛM☨1¬•IW‚i®û´ktZ0ë÷žˆ˜"æ¿Ô '¢É}RU{AXõ;? ~VUįÜÛÿ ÖýÕm7tÃæ¢Ü%gSB؉ª:‘Ó%ˆvRKËÝÔHÄsŠïÏ=$a=¶ððÎ’rç5;å ¹”‡°–ëK¤<Ñz™Ñ] ©ËrjQ,#­å¼×’;ÒäøçU&#Ëà[›WqùÌÍsöTÈ\h7ÅÕŒ¬Uõä¥]ÈÁ-øòFØ+䊫i\xÖŽ¼î§ _¾¡ð>·ª»ÇõQd^ñWô›B§µù¸q %=Î?Gi¥Ï¿SPVZÕý Êuqô†ºÛ ‚Ÿë•É´(Të­¼»ëgÊÔŽ5裪Ñù˹äõ¨žïj¨¨h¦G þòj‘ÚÞ®¬¶EíÇ9}C/QWEþA!ó6êQœ^-fCý‘K¢¶W¡a†¿…Uƒ+_.ºòç¥9š¸UÿèrE3åë"]ÙÐüÉ$ùãk…háo䬠€–!y_'Ž£U†¢”¥ÕZ®‰\º†¶²ö¶Qq‘h*áÆùJ˜Ã,¢4;Ð1ûýÉßEGð˜ÏG›æè_è|QíÆÛçÞ袟W}tð”ý>‰—‘ö(º/†îË$aÊ-ã¹Ã½ƒÌvÄ@Á\lâŒ×Û]ß³:)8• 'ÎH;½ƒ/î´Îêðin¹|úf,İßÒzžÑÏ0ëÿüOÝam„DrSîÐ…C¸Þû‡É†W!œ5ìո¿züç*ãL¶qºÖâdž{ïjd©»BzúÀ·}Yù9ÖX'²&—h¶†l—}Úº‘Ýš@0úx÷|°Xàô…œ,ùç1‹ócíõØsÿçš}ÿP—ÅæH{§´×·Ñý¼­Fó¥¥óh@ñ…}%ˤþðƒ¯cÁéõc(a`Îuf‘…R ÅKSÿ ŒTÝ)0ò”{¯ê5·ÁÏ…wÿxèàW‹|ÁÕg‘P¹ÉfDrj̉ž  @]¾¨XäÑ·ÐPÅÓ{æ3 4]f›`¶K– ý}ÊÐöာÛnNè—`¢Ü„nš²(‹­dèݱy7ý¨È5â):að¡ ÛaV®,Í—œé„Ñõµe9a˜0è­NqŒƒ©\2ºÈá{0kõ ö·Á|ø7vÊÛá°¨!¦ª!ÊËœ\lû.xêˆaÂð3CX×ï ŽQ‚M®G\ˆ`»Çžäê'{øçÉc{zU ¹µùõ’?"ÑëDV?$áÞöS`¿…ûZÕ×H¨Š‘¬öË…wÉ\HÉå‘w8g—óÊòÂöË"헴̰þ§H1Gæ q/2 í'Þ¿Z‡LK$ 7~"Kë]–Ûß‘mòþض2/rÚÙl¸{”"˾€~Iäë$k©zê/Mlý[@Á…^:ÃïS(bÚy‰‘QÅFÄ­ËÇ¡dIÐ]Om=”!gq}[…²³³¿>¥¢üößSýßêPQôNhgš4*?8•}¬ØÕt>QÔ¯Ñ x…‘'‡¢æ°V}mŠ7j¿Ø¬k?[‰ºH“8~õ¨îI?αGýÍú\ÑpæÑ¿÷h÷lY´¢I}âOû ŸÐlLdßFôZ0ng…Tìúñ£I™h¹µÁsnm¨I4½XÈÐ62FàZ?Ú[%.Â÷訤+ûEò-3IR·&Bç˜ñCÁWÜÐ7,Ì5QcåÍÂ~d—úq—@0Öx oœ,€zÕÀ““ œ£éöQŽjøz3…“÷¬™V÷šdï†Û¶*È4>]{Ò]ž”Ðÿ†Tòð¢-º½ï/«Œ_(J÷îû׳%Ù!VÐ_4wè¤:.|õƒB­á5—ÁÏNº×L¯W .²HÑpJšõø nˆ«AÛŸ¤’IÐQ£Í°m°݇weõûCïH™ûyŸZèïñQ©²'ƒA¢¾¾Öç/`°Îé¨\% ™ÆöÔìÀP¦‡ä™Ir]Zq=Ã}½¯Í;]`dq7ù3‚1ë+QÓ“aüç † ²»9Ñ@Ÿð`4LÅá¢õ³˜Qy•Ë~¦f×ê Óˆ¾Ãüù¨Ó7<…s ’ªý`Ñ)û«,©3,i6Fm<…eú;wLÙÀòT»Õ¹¯`e8z¤…{¬‘ì;?óÆÖê=¾„ƒ_B?{DÁÖõn'rØq!NíÝÿî¢Cü$èºÆð8Û ‰ˆ§z¥âXÕ!îÝ6’§}ï¼÷IitmD]E²â2•—oבâ3IÞúµHõõj^@šrŽ†Ë„ªH»ýL8u„éEÄr Í!ƒSÞëf{d ±½?ŠLš÷¯qk ‹îÕû‹_„‘µ{1Èÿ²GtÄìB΋]9?R[«—ðoç!ä=@U·e™ÿÿñ¡’i˜) ŒLÇXªïò!5Gb” • °;‡œEÑ׿­(zýóÚ?‡_(V õ¦ÈŒ%Xÿ´²8 d¸^ï£CxÐæXÿâÊXí$X“d lÍ«kû»Q^%·t§Rf—ù$Ž¡"§˜PÔÂyTâ*3e¿Û‹Êt*ÊCQEÇH߬U ×Ã…ÅQ=1ó)ý§Sˆì^ ù¤‡QsmÀ¨l˜µïk¾Ê£#B]rcQ]»\<¬éô÷ä¿eÔã¾2 léˆú”ìO ‰&ÑÀü­/e.ÆÓœ}õþ³v_©¾‹G"¶;ÄéÑT…=ДÙÍæ?þñœ͇¤ÍÚ•£Ñ¢W-ÇñZN=y1à‘ŒÖÔU4Ѿh£îvô…Ú†ž=D[ƒöD/çû£Cà”»q¦4ÞN¦N;r+çsBm­ Ùê›ÖJÔ X >È*U†;cÝoà‡®Ø‰WóÒËË6Áí*éÅ_Nf+‚4‹ á.Hê~=1è©q’u O|B¬ÕKµwÝOöx°*~ñ9|>õJèJ¹ê®õrvî³ÃW‘ÃCé!Oàïó7’SÍÆ­G=öæÇrU„Ì®*™üÁRȉ»ôüNfäÞ_ͶÿÌe”€aþ'>IB陣³úþLJ¬Ë2à×.þ;)²P©ÅUNoò?>«4þSêßuç:®†F•mSyh*¼³šM¹›OƒI(ì’ 5õYvQ>üa XHaT€öñ¦Œ¤aèäÉŒ*9 ]5×–ÎBO†ô­Ñ¦ÿñaÿã kE¤èθ CNçrL~ÒÀpMú¡Ñµ15ù•'ýcWÿó“qÏ¿ÙÍ¡ú·òÂԼĵ«Kû`ö¨L åy˜÷¥c¨Ùt……qþëé8Xº@l\—Õ +tÂæNøVkÕ 8âòa=Š7Ÿ¨ 6_`‡š8ØŽzjœð^þ6N|îWÛF‚”Õ*Öy$’M¶H¿Q†ÄSÝÒ'p_0 óy»e$³À¥MÊÏHqÀ`?ukRQ;{ýEò[]7.å!-GiUÊ:Ò½/ú·ê½Œô¹ŒÇîÚ#ÃØã¥˜ÒIdRŠrmx‹ÌÉ'>„äÝCV“0²/c¿‘q½¼S‚ 9&¬&»>!×·œk'›‘çÍå™”ÌBäÓmÓ~·üÇ÷in¦¢@îkç§$(èœ$£¬IŒÂNQÔ]P4B]ÿQ*'Š/ôM;-‚R"•Â#Íô(-¨xƒôU"Ê„j•NœAÙš?³#Ovu+qMjNÑÊoôåGÅèë#±þ ¨\ÏsN[NÕ4&˜ây…P#ÝÊA_çâ`SÆõÅZÔ\ØI`*çGmFyÉBUÔ¹UÑj±>‚º[§ÌÍ–éP/Œ¸É{M ˜ù/¦µ¢a*uvŽ?ŸcWS}€&:£`:Œf:?K¯ yö¨ãðtZ Ù_ó›aG+q®Ñjç´Ìð*Q>‹¶ÌVïþaoTåµý#HIww‡tÇZˆ4Hƒ !( * "*6"بH( H‚¨H©ˆ€´t H—twüàW¾3ï3ÏüþÚ3çìsÃÜŸûº®½ö¾y0,"tŒàMDÏ’UK‰ë¸×è·²8M’­%nz”Aÿ…È‹¬½Ûçnyâ‚@ÖM³¡Õ/!c36‰½ð¤yÌÞ=æÝ·¥w³N ^ÞÔw~€¦L)ךLJÁ¥`)‡s„ðÚ¯Yåè-Nxåaï(§1åRûûvæ}¸9h…ð…£Õ›çzùöó É67OCéi>–éˆÿø‘þøLîQTÛRÅÑ¿ÞÞ§íöÔÝj幃÷øCíÛ\e±cPGHñìsÉW¨Ó¿3ûñ,ÔrŽ¥^¬ƒºçûÈॠÔ?WKø+’”j6w° ¥ªÄl(¬#uÞ3’JO¤M _¸ÿøÒS|ž`ò•E†-‘ÇÜzÈd®¬êc²Œ–y×RŽlñ4ÖŸLSì³£±Õ~ä¶ÝTé·DÞ~Mÿƒ¯Û‘ßÕ­hzÊ–8Žé% PžgS£ ŠÄ†Mu²)oédG¹¤»J²w“3L@©žK'kÃPvwa]”8/ʽ_µú:„ 6³?Ùm*PqþìMi#TnXU"5ÚÒA:5¹Û©_P#èž™ËaDÞ"˜=s µæh?ŸnÏDíËš^’Âñj4LwÍfš.Üâ*ÿZó{<à´¯¤ZÒÍÔ-ïÓÞÞ‡æ "êÎe EhŠK³+Z¾ÝŸp]ù:Z5ù¬¦˜»¡ ›n¾MÄa´½àøD~M δsçD ýcy~ÑÖ;è`Þ\"òà :i<£ÜsMÛE¯j=öC—f‡Å²'4èæu2ÅÙÍ …¤Ig_ïG"u%gjKèdhÙ{.Úi‡ü¥$ÈÝØ7ñø 2¿¼”‡xc#í½Úê;¼ýãìwQGòÉïž…ˆÜ«ÖF ;ã¿yÿ>Ÿ\Ùˆ‰¹ð^ó‚Fìѽ[þöŽûê©8È|÷ÅÆTÍfû|þn‘ZWÈ¢J13ø˜¹s_ÈZš¯š{ÔÙ>Q›ÎûþÇû¿&ÄÉ««ü‹§y ò¥ëÜ¥¶û ÒhFÞܹï01ݰú ?|:Ô¯lÂÑŠØ¡ÍPØ"Zmhøßþ‹:ÒåÕûFùö‹¡²úê5+QO¨æ²$ êZŸÖÝZ!­POARÌL ½bY\ãr;¼·fï»$5׸Ãu§ «ØÕwÐý%二ôžë‘}J< ý—˜˜ ù{`0åk ¸j /óILhÝ…QwuCÏ\ß ê6žY€©Ó7ÕÂJa†iv”½`7Ì.4{×Ï[ÁÂnÿ¼´µ;°Äw`Ò>+V8‡ÒgøÁZ¢ÛUòUØ”ÿû›µC 6~ðÒÐ#áùÀóê*êH´þ°‘t”‰?”¦ 7È"i"ÉGÏôA$Ÿ&¨+ØUÊû¯é/ ÍyÛ½âpélöÄí¹™‹ {Àî]•26xü&-oCæôbUÿ´ýÈš7ø7]A98/2÷ïfA®¥œöoï¬7Ý:»ÃÈ ù£¼k+?AÁLª¹îÎw(B’:LÒÀ†b¡'÷饢¤›WÒ'KB”~ëØre³|ÈòAùb†Î›¿ÃPqºNû»Î(ª˜_äZÞ0Du–f_ùÊã8Ù¸@Ôj°ÿ)F_…ÚWK-¿) ŽôqÇÞý›¨»¾gê}GêÏ ŸÛʧ†£»F—Š^£q¯;_eæ<ÐiªB¥‡æ„1‡Y=ÑBŠ(]P¾-ý¸_·ÈýD«V.ÕÛ³žhãL62úPîq[óö A»Þ`1'óR<4.oòþ¸/:Éùj|ÑŒÅÃ_~þF€ifï&ë·ütÑ'›á/O‘ë[fÑr+,XÞ+¿ìîÕ•UYT_îCÑíÄcÝŽð=ó:³XÔ9È© qßïßáâÓß¶µá¾}ûÇÓ?¾þéã?~37*ªì\ÿ%†]çµNl×ÎU¤Îí\§-!oã|mæ íQÊîNeèX¾Ñp²­ºn̵v’¹ýé]‰H˜SЂ¾Óσlû| ¯œ‘ÐïçAè—±Z~ñÉú{ì4^I€å!Žu*:òý· 8ìS¢†‡KÙ_K}`tD5òUg9Œßnó½ðÑ&-&¢í`êåb>•0˜ŽyÍ›6 3O?¨|o±uï·>R sª¾ÆÝͦ0O–u*Ü/æç“Ç^Š€EÒÜ ·ÏU°³>×ÂrŠRÓ¤5¬¾ØòÓnX ¿tÅ1ú?ÞÍ‹>:5vø+®ÝYë·ÁÝÆµ,^Üç¸àÓ+Q*’zo¼ò|­äæBûR§Ï …y?“–ÉV>ôŠºJ²±ˆ4I‡|ÃÈ‘vãÒ~ÂH¯L97f¥ˆ §EjÄ—J‘ñƒÃèe­PdfÿëCÜÚ,Y÷{8$Ù®¬fgF¾Cû{ÑoyjKÙ¶T‹Gyx–k9ÈÿˇIã²ÑB\È?8AD'¤Ž‚&³ÊñÆ´(T´ÖdãoŒ"{;^ÿ뎢×_ÈžAÈg:±‹ˆ¬ONkkÛà>’# S¾¨ýš©¯ZLuäOë:Dð¡®Çú‡ñè'këJ0'‰úTÊŠîhà"âR?| Ë_f‹¢±±Ò“¬3»ÐdhÏ;쿊¦±¤j‘•[¹P½“;÷Ùíð÷OWþéÕÿëSÿq÷Ïwþãîÿå0qI5„q5uÇצ[*2 FìpüOÿýÞ?Ýúæ)²Î9Ú÷~ô¼´dÜ>'bß›?ÿåCbï¡êPš²ÑÀ¢Dåz›/ÕE?ü[“m’– c»ã[ëž×þ$†Æsž…™¦Ð4g lÎðZl¾öcحٗ$¢: Íêë¡)†PhŸÒ£7f…?¥µ›†ƒÊÿåÃß”—“‹ gsäb‹Kô騖)™9@¢­bp§* ²H6Ü“Jˆé: Oi¼ÈQ…ÑÀfÊ£!0ÞPqZŸâ?úyŸåÕ"{´ès%L…Öù1°xDTNÊ–”HuŒ‰Â Üe“ª€5¸Ä°ÿè%Ø8i;~†ô\yýõ>‹ ˜E˜þB¢Oä÷yxËØ'Î×úæ[$• xݲBŒä»^¶ÛöçàžÉ[¿~ë8!å\$#mÕ¤ąޛ†´qæ”9~"]þ%«fÕH?"±þ)hej¼<'‘)’“ÿÖ–?c‘XŒýÁ¢Š¬Ã¾ldx ûéÞ·aÈùìûóÅËÕÈ}êÎcóÔÓÈ+kêË¡yùŒmL…¨?^âÜkáÔ•tÜxZ¼MÒåŽ(êÝg&N½â_ZæS$Qr,¿»ŽÀ¥ævGe¤D™àTª c”-~RyòÑw”;_FãØˆ %š«/ÉP)±îØíÇ!¨Ò)Íö<óªÛ¿¸~íá^ÔlRÏ(ÿXƒ¸É¬I”„Z‹ïØcEQ›^ùDÇêsÜüÓÀ\Y u™™îŠU( ^ñÓ·JÓ+h`3ÜÊY|HïöœIAãÞÊÚ%_<Ðåä¬fë Õ•ÐBl™A|õ5Zž*ï»,WV ZŒÈO¡]{Ó£ží:~¼uÙù>´ë° øÃ»=i+ÔlfòPÂîô§ì=õH–8ñÙ´Ðz—[êsmþÂ7­ÙCjrSð¹þ·ÅÜ3.Èx)Iþ|ÞY_W”&‚äù‘11jHÒ‹ŸÖ§ù §Åßs×…ø‚abÇ_²»©ºð àeù=âÛ"O!ÚâI×ËɰyÎíÿ­Þ ò®-­ÈA¡Ì™Ò\¶ (™z-˜pœ*îåÇ>°6€ªD;u“*?øUõáÖÔW[:]­r¤6jV7ÜÔÜÛö}?ýv Bí·CŸ‹ŒžBmÿË&¯«¡vÖæì©½¡ŽýEœ]BÔùNN.µC=wªSµÍáM]—¡aˆqö– @cǵs1ö!ÐôkwÙ‹ôÓÐü-D”R ¥$MÞwƒ`‹ÇÜ½× Ä aHùºtàöó¢â³ïk@Ç©U®K=Uð'Å. ´ÆºUrV¹@7èpõP:ü§Ûš‡Þ•O¼…¾ÈÃf4ca@ùý”­ 1Ï>×;ùF÷RÁ¨~ñT-±<Œ{DöSçÃK}ÿž9˜Î #º,³gn‡EjÁü…²œ‘œ°ÇÉ6FMË#Áîõß³aíâp[àZlžNq`YÃ]¾Y/½o#Ñá¡BQ»»H|¨úëQ”AÒÃßÎÝ"lAòÛ´‘ŠÒ·â7u®mꤶò]é­FZß/”Œ-IHW6‘2; úo–—°™vÛ›„uA²8Î:±ÇÈfÒñIê²,rdÆÑ„#÷ig ½CŽÈûjFqôZòÓÝÈâýºŽ1–GãiPÈÆÕ¨îZ6ŠÈ?=Ê|¥ÅŒühJö D2|…Êi”ò‰îŸðæG™Š5ÚœÇË(w!ÊóW“&*ð‹·²ïªBÅJ²ð­¿CùÃË(7I%Tÿ¹÷4â÷íŸEX¼à•·å?{ä¹¹= öqË={óP‡+Œ‹*? uÇ;´ÊÊo¡~Ék·èäÐð¹FZE` ÛGo9J<`æ¥6¡ÿÍ͸î*ŸCó7»ô25ƒÌÛ2®«!;ùðs}K­aô›-?œJËs5²Ù‰(Û^AVÊÝý\ß +_0ð†cñVn\xøËN²åË)«¼¬!ÛÀä8ÉùЮ¡  ¾òr+GíC¯üïùp¦9«îvýÐ1¦& 7ކª2¾ƒâã: \¶ð³Â±em‹ƒÒ.o3™Ï@yŒáŠÒs¨ìå,·£¨ÜPÈìÔ†Ú³œjtýÿåÃV»êò3ÐLÙÐ×ÍÒ­WlÏå]ÜẓÙKà¶Ö-è~ÐÇÒ £½&ì&¬ +Ð0Å$úa Þ1u¤2‡áSã{ìaT\-4÷Ú/ÿ†ëÝ0¥{ŒõåU&˜èûlÝ!³EºÂü0_û†i¥ð,.0*p>¼ +Ò™—¨YS`íi3Ml Q3ݾå‚s*`mq f u!Ñ€íëÕ_$~‘ZNr 4¤ÃNÓ¡É{É+²^"åuþ ®@š#ÝÁVÏ‘Nw-oúÐ3¤Ÿ¯¹_öéæöùáÀà@id_ô0úñY“öý¸éð 9(¦Ú¾ÏŸC®‡¾…[Ü&^Tf¦CþØß‹,Ñ(˜8:2䯆Â+áŽÏQì±qœaó-”ôM¯ºÌ(+M%<‹²ù´®û¦%Q¾b”}LÛ×aùÏÏlT9êó¾ô ªKd×5ýŽpЛôÖž<Ôj&|VµÝ䦼(QGÍt}^ð7êÑðïáŸ-G טõ}ShD^á´¦[€&‚Ï4bøÑ”^Lì´Mš‹ç|¿d=‹.óC9GÐòãC¿ßNjњÿáÀa¢Y´ÉlÝ;ÌG޽3¦?›j¢½Å¦tÜwtðd²i§F§l]¾Aw]t´Ð$ÈKÁí±½ºb¨VGÆšºÙ<‰LM a®c?µ•ˆ4üê¶‘ý¾t Šè 5¤ ꨙeX+äx'j3ØmóQ¼/ŸÎ/ ÔÌÀ‡ ÆÃ«²q^Ú|Þ%]’Œfv=ØÑÇü¾×ôÏ—³Ü_ºfÏ’%{ÂÏUO½¡Q¨¡½šãJÈ Iº{Ø*"¡Åx"Ç+VÚ´ØÈù$BG"aÃòÂ;è’:Ãï’' Ý wéÃnlé7¥")Óôæe§é‡>.âA÷EEèsœ:ïëà}ét”j‚)ÐonÙDÇ÷­Ú´B˜aðg³§a ƒÜ±+ð7ÁûëaÂAip󴡇±Ì½¬«J0áI!I5x¦Ø*x€ijÃRª Ÿ0½îòêó{z˜é9•{56f¿dj:˜Â\L·Õ[V˜ý#òó£X(jb%_ð…%R¾´ÅTXö/ŸŒ–€U.Æ!ÅsX[¢.Èa „´Fuck$¸×Z¨y wÅ>¢’ßò•UBŸÇ7hp7«>m¼–=ß=º¯ã±4’Jœ|ë8,ƒdˉï]Â=]GÓ:~^BÊǧcI‘†âBõrÒ~8}iÞéfˆo‹ WÔ® ãóôM0ƒL &k-»Ÿ!Ëù´§q±>ÈF%U/u½ÙSÝ‚*Ó°ü]È_äfŸÕ™A^ê;¿~‹Ç!Ÿòˆ”u(%ò‡úÄz# Ò3ëúA¡¨õl2(Bò ×·Í E ½I‚Ïr¢ØUÒ_Ž7î£xÕÃk¡~gPR—"°}'J±Q‰2+× é3Ê>|wsdUåÙJ A…tåÚL¡«¨D&\«­ ŠÊŒ›¿ž6.¢ çhþ$‹#ª:vüLï6Gµ®Õ{Ì?§Q£NMϻΠQé*¥lî#hŠzö¨}s—E› îß”^«æº’=] %¨G$ûf&Fõ†ß»h@…²jn ‡Ñð¡s—Òt4ÚcØýM‚f½7Цõ¬'²N Ùè룓6Sh>pþØoc5´Xë+™DËe‰&ÆF ´æýFí-€6‡ËnX¡mÖò+k9h'N}æË¯Shÿ]9&ß/wÊtO¡BÑ8ÉÏCO‘™šË•S;fxFNï‡ò’ÛŸJºÀwhTþÊ] Ù¼{ô¦õvô*ãƒÂbþïŸð®‚[²”Õ ’í™Å ù/@BþÓGµŸêàMÃÁ×ñ½÷à ù‡·,Jðfå·­–-$Öí.1„°-}}„Âûä7‡/|¤çèàrµ„Ì¡‡LÝ·ë‡î# r;ºµ“Þ þK{aû„åóÙ‡P4û4õ)ÀÏ‚GFÇHÆ¡ÔÃF[uþ”Z×î ЂŠ>2qÁI/¨šktïMÖÜ^j>ÂR uò\·XÔסþgà¯ðÌ~hT»)飨 Mù†¦*ž Ð"u‘œq©Z0<¼Í{Úìî°Ðû@Yã4iüQüñÚºjŸœ.Ý~>MÄI èåùÀUµÅ¿GÁ¬oÐiè/+  `6…Ae¡ôý"õ0T$Ä/îæƒ(˪qÀè=•õö­0Þ(Sv”»¦ÄMXwÁt ÕŸ³*̬ç=Tùhs¯24\`áPïE±9Xân9q`+,¯“Gº÷Âê`º=é,-¬o¾’ükÚœ·WpW¥Y.y°ÞXªFbsyÔÉ‘dpÑ.U,ûZÏÄÉ]¸çy^‘9Ñ^¤¼Áv¶ÂýR_‘T°z-ƒ´º‡7RU#“UŒdÒ‡-®?>… +ïmº!Óýðo‰-ïE›K;Ës Ùm(æÙû´6íú3Á²bÔäv­:I¼ÿòòP‡¾¥¹‰|ò,f‰µùÈÿðxåL$ ªüy:,¹…U4Pô̵«¡Ÿ½P¼”öV u'î%Ú¼ï$!€ÒÜþþ½q³(ó6\æóM”S9ÝÛ›ŒònÆõ»ín "Ù=) õUT5=F»;U9òú¿r¢ú½îŠ<¢DÔÜ$žyrµØææºØqwû¯˜$ÔÖþ®³l‹ÓOr,+jЍ«9Ð÷½/õú™.n6УßFZr-4{ÌóQ‘×Û8¦·rîÅŶŽ|4§ºAS¹ç+Z(ɼ3:u-ý-»(. Usɇ{ÙýhcCÄÃÛ¶‹|¢çœ{ЮêÞ5[zwÅ<Èdtˆ ™•]Q4×ô\a’´/ϯRÇŸÕu_…ÏüG¾:ÚGC†úÓŒ¥ã¶ª½§{á•0$Ëö^zW÷ßÖ®_;(½ÅÝIVÃízD‡³Ëöóó3ç–üà¥d^zç³nxåq(än”ÁμŒÍ×íÏ-®lù_¶W#~/áGqè-_ùp(9Ãí!×}ÊÃuöeÆAçzï±=¦ðk¿Í‰<¨¶¥¥”S‡šêûOî n?wÜ*ž£jýß6×VŸ€ÚÆÆ OD·F½š£¦P3¡áûþÔNœN9sêbXø†~EA}@}àl±34œWð1(w…Æs^¸bžAÓ‰Ö%Ö Yhv1Ü·7ZŽ»WxZoùG;¯¢WøE,himC <Ù ƒÏýge‰ü9å‘ÎgS m£·S [iÀÙ3cÿùkê¼^¯Bß‹‘Ý}·`@Xfx÷âMœŒº{¦ö! øUG\ö…‘õ‰NÖ‚hW¥Jø“߆êÇÀô£#b®tÌ0kMek{æ5}ôaÛ ‹f® ïNÃrÀ¾óÚ¶‰°ºZœþ0T6þ8x‹ªþÂ]\õê÷>C¢]á%k'Oâî¥7±ñ‹ZH²yà‰Mç ’‹Ú/< œC ÿéë,H5¦?±¢€´Êø¢y ‘îÓY­s¹H¿I^åêzsNʺ(#sn"Ùüed]xëI¶Ÿ9\x)—*ÇkÉ=ÞªÖy&Î^w8…|?¢“Íî>BÝýDm›þ(8uÇÿ—˜ — '¶0º÷lk$Qù(™ Ÿ¿ƒª°|<ë ŸÇVnL#tЇ¬›œì–Û9‘õÒ1ÈÖw‹°(ªü/zúÔSý ò~y˜úßó!#EѧûÛºËú‰ò0 EÛr$QCq¤™`á½-?}¬sšLJó_6W7„ò¯9ò†r‡ rþ+£ã#TKU³¸*ÇoÝ’äC'ÿˇշ‡…2 iä‚ÔÛ‚MhÝwòŒîÆÒ×2¥¤ˆ\ ÛY1ã†4ôò[y¼â'€~E œ]úƒîÝŠ3´?a8á2{_£ŒLŠŽˆmý¿ÇÝÝMÈÊ·ü³ÑBãQ˜þÜpýÑ’Ì>Öâ¼h~æ_֜ѿó+Úü»Üla…~Ïò€nX»¡ÿ®%ü+l2ËY,ÈT5FÒË6èɼ¾èýÀ Rú¾9ð=ôÒ˜Ý~Úíùé”&ZeO!}K~d/2&’H©!óMñ§œMóÈúôe„ÝMmd_õŒŽl@®ö +‘Vwä~•eÖòùƒúSQ0¢¼{üï-žª»dÛ„b$–-=\Q2`jÚP\ ¥Ëþú|:e‹ói/CùºÂƒÖ©Ô[þõ]Æš^ ªœwÛ÷ìý0ªc„쎄£Ê…m¾Ó¨Õúù´bÃ+Ô¾½‹üûêè*Äg¢Ÿª@ ð#[ÐÍ­|(Z³YÚ…&òý$iwËÐTw­ 9šÍ-ëyþ_G‹§Ã|&O¼ÑrjM¿=¶­½6ž(1^C[ФÓý™½x°vmp]~í\TÞ«‚½‹‡I²œÑYƒ•”îÁ(ºœ8Ë"Ö€×?Ð9¨0š¡J§{³Aä ²Ó[´Æ¤Â¬ûª•øðô–û“櫨 …/­|¯ñ@¾¤þË¡Cqi0H¥jK']Õ>>} Ÿ#Œ² ·×?5hi‰·ë¼Ë*[zÙCßÁzxGÿñ›n©|­fÏ|ÙOßÜe ?ßM•xçÕo­,ÚY@ƒ—‹3S2!´ÊW{ŒÁïéÛ·Õ™¡Ãòfãúë[z3~²ïä8tW˜})I:=‚®NÅCï¥jç?£w¡·ü¼Á¹=ëÐ;U5rj:ú$ª¹;ž¯@ß÷Þ% ?ý±»/ ò1múçnÂP(I†AÜ( OºüØÎ0âî-%Wé£ÝÄyû7`üšÕU¿"˜”Ž«ù.JSWf¼½¹§`úí.†ôF˜±Ðà¾f³šzÝ[ùPyYàŸ{0 ÍàW¡,\Ÿºþ^™kª†ÆOÍÀ²¾cBùBX™ ½O k•Á$³Õ°Q~¦Æ)ïxÖ­é]z»Î•¥q’Ô"aT¡ÏbÊ#$êÏ'o;¢‰Ä–ô/^³B’áÖÏÒìH·rï°@ îñîÓ»wÒ–+¥Þl©Oï¿AI´nÁäÇ.íu¢…?2Sˆª ãñ{jÒš–ÈT—q?YFY”jôÄ™¢‘õ•ëX²; ²­kÞq¹ÐŒ'5ªØËΔ…§ yØøUªJù‘·tHbÏÆ*òkNª­ÖAU+Ý0Z:ëQk™Ç„Â]š—+·ò!ƒv{L ŠÉ´ï _Aq?£Ð~¦>”è%eåãÀ½5êäo¹£ô²ð“ÔÂ({ÔïÞ¬áÊÍ'кeX¢Â3¾Œ¦5kT\Sº¶iæ…ÊlåÓÑwçQEÃ#ôÃË%T} ¡î4ƒêœK¢E –¨IÚ$UqÑ ÑÚ3™åj­‰=ÒBm·±zÃûú¸¿baP§=ufJ¨’âQ·‰r¸ßÈõŠnw=ø‰„<‡v+¡¡¯[Á±ßhô#îq83šËOËÚãì— j¯‹Ðìð­{'oÌoée³+¹ ZŽF¦ý8€–A¯öÑP¡U¸e÷Ûë‹h]ÀK üZmÖ»ÜpÞZÍõIï´ûéââ¡&‚—7®_|³¯åß¶æØ$°#óÆF¾o-Lk™xú•„òç—FRB~¹˜½iœ(dÕ}ßEd²£WGÊ ŽL»½µÂ…_·ûV\׉VÜ®KX¶Û^—yô@´{‹?N……ÜÛyñöT¿ÿ–­Y»zã¤9åÿ~Ñ é“”T•‘ËðQÕRÁú”Ûß.V&GÎAv¿v•Í#þÝÚɇfâŠÕmðc´RmD (},_Û ~ú²:Ä@)_êÇÌb(û–Bô»¥*’%úŽü…ªÜåÐ]Ûûâ6¹7õ Ž¢Ã‹'@ ꟪ðrц†ÍWßÙ²ÏCÓ£ó¼ùÛ÷¹Ÿ;u¡5íTlï›|hszô茶|èÑÆƒŽÐIùÂHÕñtü.›¤3ÆÝ#WÞ‡nùÏÚ[n*jÐwW‚;=7úG¥*BLÂàAî;k0Ôâö×ÀþFÝnQú²¶½jŸ€ Œ—v—Ø,n×)öz%ùÀ´Û¥Ògu­0Ó®H×ë½æ®ÐE “‚ü‘ ¾Ü"XœNøf1Ë_î±Ç…©Áê£ÞèªÀXFf0\©›‹i¦p×éŽ¶ëæ HÄ&´Ü_Û€»[ w•ý:‡$1>4vA'‘ÌÛe8xÚ÷¨Oä”üXGJªð†›ëÃHÕ—yñYÒÔvöj½GÚ5ÉQöÕ%¤ß_´îi¼ˆ ŵzë†é*“]©ó<²Øi÷§æ%!›—Ã_ó-ŸJaKa=-ƒœŸ6y†ÜÖ´z¹íÖÈKYýI©ç.ò±ÿ¶yt ù/$óëPÑ¢ ä£ŠºbuVzÁbT‚¢çØRW~£x½!+ÑÔ0îåÐRükÓƒÒc¶–²¿QæW°'Ýà”èb>¤ôåcxÛ—­¥PѨùö•ö T–®ô¿XŒªöKŽòEQý«8Óü%^ÑZ %ÔR8”Ä“†ûô(nè§» öY}®”ŽvÜß=ôFSuݳÀf]õ‰^•eJ AèÇZ"SB42~æ4óã=šð<õ¢ ¼¦¬"Ôv ZhÎ)šïq-´=u÷i¡e@{Û«;éJx?§£’ ìvC¹Û™¡EƵ~7U¹Ëf~e÷àW·E÷®Äb¨äþؤ“53ÒEoŽiîô§ª•_‘ܸ µBûÙ¥#(·F湑R†ŒÚˆ­þR ‚FêC‚QáÐD–&¹wš‰ˆß\ø´•)¹]ÝI’¡U`ñÙƒpømoZ_~ŽÚ¥½ÜÕ/ íõµ>œ)Oà‚_ûûëíþ¶öq Ð-}+zÊZò¿|¨­³@cc }ÏýòlîzÁãÊ7¶ð*,Ûgnzè= 'Í|$þË #™¬•®WÈ`lì»ÂÙ¯0õÛŠ†º ¦=¥ …“öÀ¬È[!úÖ˜ße:ý`a-é¡WC#,3­ßú0«WcÃEbaÈòr­C4”·e4¾AÂxÃÊÚkpwØ¥ þ÷æHý'Mè 5’•Ç[N7E ÖF® ;¤ æv裋Dšå Óš\¤Û¯«Ø´x é³|¢+û‘Ñë*³ØÜ'd>ñvží²Æžçìݳ¶å3mÜÍîìC®¯yW½ÓÈKçðAEùÎ|‰¼fËü£ò-zQðþûIJ†Ï(lÿ@ÿ¶;Š‹ón¾]†â…Þ·û™‰qïí®ÜÙD”9èóhÖ!åHÚÜ!Aù¼ð 6ûjT<ÏÆpât*{uypM£êk¯16vÔ o¼þžêBÑa“PÔúraòâÔÖµÌö UÃý³Q Ïe3Q7Ï11å«ê?ÚíCyp ÌDÉ'¢±ªóï#¬x@þ‡€Ô543оô¢ÍŸª}Òª‡¯Œ]bwÍ¡å/a oãhMf¾ÆCÚ€6‡‚NöO£íÏEÏÇ}mhgRœî7}í§+ysê¡Ceùð=tŠ[`m,ëÁÃYu¾¦çÑeMöY«þ5t—ýÃ@ûr®Üüh âˆÄºg+‰;à÷#Ig+ê ÈöIxC­` i‘6ãþùlÏ’j ¹²å3Ï?~" ¯ýZ¼ ?2ïðöÊÃ~Áq0u‡»ˆÜ«Çzµ!¼Z_õ†vèÎmñD÷Ô&ã6¯lR9Nÿ3FÙ¯‡Q$o¯›¦}ÝMò_>t’«7>´í‡]uÚ ¶×Niú²nG+ì—¶ÞW¼sÓ¾b»¾˜rÌIJòDÜî\‚lù²Aµó!ÿåÊ$íŠ#Ûçy´Vÿïù«M¹Ñ´ u¨K  Èä7Û†êi(®´?ñaU J$};Cé@›Ò˜ ”· {9Ô¤C¹Ãa×®¨VyµBõd7Ô^ 1Ù˰ú_>,ÎÚôÛ7 MeìÏž†V’¯º =;\ÿ±˜RÓ.QÛâøŽ¡´—ô,=¸Á/Cýô¹†G‹ap¿/MÓš _N¦w~µ¼Å-˾ˆ”9g£#eø“NoÍéà"ÃrF?˜uð›­º:óž+UÏL#`1&ö[œº,ϹíþË k>¹:1.œ°IjûÈ­- º„/µÏ]DBx/½*î‰D™Ãš}'‘ø¨ßîŸcvHêq;~ðs’s|Mj’EJ¡QWw ¤ÑàÕW¿Ú„t"ÝcßÉŒ¾jz† P Û4Ì´!³·Ó÷‰Sd½¾xfoJ=²t¹Ð*‹\¿^SwLø oX¡âÝh%ä¿L2QÒ’ƒ‚’šç|fP¸÷Œžë'»Ki~hA%Ë332k tk|Se ÊVž,°ëuCùÖˆ§ß*P‰‘Ý“½ÔUîÚ7!ËAu«KOX‹> œ"¼&Õ.†ZíGu¿* öýWÝåù¨cήÅ>øõäÍ5Éù­Ñ@•ó)ÅÏI4ÒwÐ&2Ü@Çø‹Ü~>hz±ö`÷ š_ ÐÊÚƒ%m‡º ”ÐJú$ûŸ–h}J“Jˆ mœÿÔcðí :tÙÂñ̬ÆÞ¨3èèôÛSα FÆ42CÐ%ãÙ´‰ï^ë0rè79€J£ß™ýïÅ!›ëר#3ÏazòS8aJæÖõä!&èË …Âo’K¾×oùB‰oÆ@öÛÓÂ%ÎZùîkƱ ¢~iÔ|Y'<ÿÏ9¨Íþjÿôñ¿i x²hòåÔ¢‹à§óÅ3Ö§Ç·®ÛX͇éסAöòGºàÐ\èßïªP¿ãˆ„ÿÞ‚öÍÝMÌR–Ðyûøg®ÐÍì¶ðë ô¤7,•TB¯ÚðËÒ½Ð{n0%ˆ»zƒÞ:{ßþ ½oïË^'5‚>)’ “.ÐÏ—¤s7K®Ød5‰ëÃà@;ƒ‰ý!Vµú±þÆ“,®ïK„QÊú‡%0öL{bœH&Ä_È]½é“-J"¾ 0UûÝíLzLÿ »ùâ?ÌHî_p7…ÙjùÆ%º5˜[žYX0 Š!ë ù°®š.9¬¶¥[“Iq«m°RL+UqzÖ¢WHß6‚gŠbaH Wà^‘]€»Œ‰Œ?µB“‡Ew¤B¢ŠDtA|HÌþcÜ=QIuèž'B2w©œ¯÷‘|íHSvRTtþÈ^º‚T´9dúÌHËâx½]éÔöGYŠ[CýQÇR-ŠØ-ʱø©ºš,£Éd ¹kÌѶ¨ Z#*3ALÚŽ\èu§†Õ™œÂ?× SjåÔ–tèf;ñ;šFzdo¨_•[ÞÃERâ× /õ¹áÈD8 PE11Ýò‡Á ,G?s¯ÀІtR²$?üývAC³FÃ×¾«‡ñ/!ÅÕSÄvû¯TuÀ´ÞP™î˜Éyö@TæÒ< HVƒŠ>¶ëça±`¹goP,_ÚÙe8«ÊÌýOèÕ`]ÔeáMš0lžï¼V_„»Drcf,B°JAV?¹w?ä4 œqD’ƒý%¬åÑH& =Éu!É{ùÓ5ª"’U^3Ì©Œbî¸! óz©èßHE¢ô͉馯k¿¿Ž NIðy"“ϓ١AMdññ¼õšÒÙN¤vÆL ‡üqž”»×³ä¢\{ûyäÖ³æ÷9«‡<ó\Iwq#a”e² /ò»ú?àBA^­]_Ï °|½Š…8Šúg¶¹ê£øŸoeêgp¯\@÷¹€h”>ë"ÿ£ e¦}_2²Ì œUð—º{—Pþ÷üÀ„Y*>äïþv¹•ý ý8÷D¢?Ò'©Î½ãÕ‡·\ü*ÁUžø¶îE¦Ò4$œ–`dƒøˆLÇñnçB{Ï¥)b4*ŽR6½€ÈYÎ]O]Üö«3GfÒwæe0:Ëë˜å@Nò¡êÏÇ} `¬‘¨ÿØøéËú÷@Í5(«3¾ÿîœ Tî1”‰ºEU2¯äGZvÁ¯O?ÕÑõCuŽTë¦=Ô\ñé& ˆšÎÙ–wÒP“mÉ™Þõeëõ³í<¯žARÏà»[ï‡Cîïºízb k0Ô=×ýÃiwêŸ=úk5 ’ôר%¢ 1ñÆAïДPp$í,Bszó’óž5h© = U­k„±>/Ú MÉ€U„6ÚƒÔ™½ÍAÇòMr8ò:X‘½ã†nQ‘® KLÿåC<öd¯¡/tóômi+ *•Rc„ÁØ!ñþ:>qú¹¯m ŒœÐÎIQ> c±'o¨?ý“³¬÷›™azßŠç˜Æ̬êÌÖ.vÃ\ {Â9C3Xx;®¿W)–Rs_ðÝ‚•Í+¶qߘ`=ëÛ=ÿ«>HàG~±þr&ê¬Ô¾y"»Ì ;Œ$à]6ÿB ÉNŒ½7«Ç=9Ù{⧪Šk‘¡EŒi‚´#\O"ßÒÉ‹ÚHïÝpFþ72ò>Z™ýì„Ìi=À݃¬FÚu_ê{=ìÞ·D0ä"óÓ÷ùzyÂxÿ˜Š#_ëƒ4þtä"Ržc‚‚ÂÍÅ×PhìNî÷¤<YP}“;œ„âf/?Lï®Å½Œ‚絋Q†+©šöÇM”­¾íέ…ò·jéØˆkQÑ8!¼á® *T^ªõFÕ+¢×Ë4¡z÷¸ÚÙ!„Ë­:­Ï#Q+9ÒN„š µåíG¸Š/ãþÎèã­£j¨ûòwÔ绨&a æ²#þz2¬Ä‚Æbð"æU:}a±Ítg hÑüY–Šˆ©?ZÄ6»<BËßœvtÃÙhͦ·¦;6§uÛÎZ]@Ûn âô[îhwâ›ü§œ*/Ã=b™«b¼÷õ÷ý—ÿï:ê–¾Ûr¯2ƒo%Ø|k†Lg ªùþ{[¯çSÙ™üŸúb¦žé¶~+d„=ÚÞ$/ fó_>|š_"ys±ªJyþ÷|(’œúa„yû\GÈïà!(òcøÓ]ÙÅkG3^Ÿ‚§«cmÌסŒŠyýNÐòöù”ï]PŹ’âQúªµ½;rGÜ 6ÐßMø9éù0oeÐYj‹óoÅš ¶ø~îéDεÃuÇäGÝØ» ÐMÐÖó'€zªF%ôMŸŒ®ÎƒA>¢¿¹C0lÑDþûX9Œ\$Ž ÿAcU_s8¹_Âä!÷CÁ›0mó‰‘H&r{]§’'õÌ+ ‹ô0ÆÀ¢ß1B÷-߼ܜ%G`a kŽâÇD®ÀÆÒ¥Š† a$h|Áós %¼jý‘èåŠ-w$6´ãOˆqGR 'Ã/G ü³àç˜â+HiŸt—H9iDsVÂB瑎µ8¡Késn qFFÿ„k©ÒÈ|0d¬`#Y½, ë]‘½ÍNتü1r}ß_ºûò>Ì,rkAþÓªËRÙ%(x=¸jeî0 7;å·=A±à±¤£·XQòÕ9µ.Bs”vÖèg EÙz¶Sý»P¾ët­Ð•`Tâ¹Ã£jÀŽ*/ÍÜ¥]ï ú1‡©¼“)—~©ÞÜïŠZtÚÏN¡vˆZV¹êÚìÙ[ê‰zºÇl¯¨F Ù åSÒ 4òÈ$©âB“à#£3¡iZü$›TšÇïîŽ|ŽËUÏü&6ÑÊû÷x7uÚìêîW|ж¹º :ž£Ý‹gu6uñP¬·öYòtlýrÆ™Èë~«;Ö¡ˆ. Y•¾fÂxô¦cH1*,³Ú&_²D6‰qÝë0uñdG›×y¨äšxÓœ¾²åÿæ»h'À×74+¿îB¶¾û1²›™©Ì*Ìéw>ÞþnÌ»}jNµªb+ÿÍ ¼~¬½Å-•…ÿ=â}üÇï»ËŸ È®ôlé­Eôñz6øIKÈî è³}ž"@pwÔ/¼ ¡:RÍW¿­8\g„ßÖnb/æ¡=5¸é‘0tÊl ל‡î3¨…gÓ '@àlbÂ$ô¬±”ÆÕA/ÿAʧr÷¡—5¸þ$×è1Ðáó‚ÞWÚ1@k}AæËé†òÐßòÜG6ò1 ª¾?oNSC7õ*t?›ÂpwìÒìIQ _kz£)εŽOnÁ¸ÐýçêC0‘yÛÏ.ñL©ù”Ö¤„i™Æá77Æ`FûÄ>Ë‘­|èîôÚ[Ïæ)ÞlˆËÃü’ˆérŽ,º$úy¹ÂRàÛ+)`åÅÃúgò°æ{æéI-)Øp^þžƒ‚é5¦sø‹WsÄ8­ ÕV{(ˆ ÑÕÔ5ƒDbÜÝwf¿¸ì$9úñ—ê×1$¯i ·y†ä÷z/|”I@ Œi}»T*N’Ù‘æY‚PßK5¤T:X^ôé_OÜÿ¸]'ürPäËvÝÐÓñó£-úIýÉzÃv=ÑAXò$:xx’ÚAŠm/U‘åö÷gD’o×%û ïßÛÙ7³¥_âùD;ºõ/~oψ~¡ ?ÎsQ„vEoïsé{­ZÅM¢]ÄDPn÷8N>ʬOú߃ ¹3©{ú¡JGµmf^ª+™‡W+mŸ“R‘! €z9Ãb†¬Mh¸[ß:/š8M~N{†æœDâÅ·FÐzK¤4"í5´s¥y@C–7^Æ…N §ç¢õMÐ-»:r€ŠzL×\Í:½×³B§iò¡ï׿94!=™ÿ_ЂûcæÈ9F³KXö}/€ÑXjî,S¯U¨ž°“_?±õ‡Â´˜µÏå\f˜ çPìãƒ99ª‹³Æ>0ßÔ‹NWC)8_e‡e•ûëoa¥ËXÜæu-¬}Í}ãò˜6X^gJ Ag˜»»å$¼®í™Љ»÷M>ÑdÑFZ‡+¿©ëô·à|æz;’ß±ÏÄ—H!ü"tQj)?F{ü¼¼‰ÔNœïèjVµ+ðp¾&Ò½rXçb E;3&ÇÌ¿ÈäBý˜Ì;Y‚‰†93#Û‹´Õ†ÉRäp¸¢@ÀW‰œ-”ÇDVí‘[åņ… òÔ¾N GÞ'k1òZä7¬œGA†i•7sI(,KeïÞðE¯˜“U%Fñá<5§ÌuÜkøãþ®TG”~ÕH'k–„²L‡k™ ÅQ«AçQüÿ(ûÊ ¬Þ/ZBº»C@RnžM—t ˆ„ b'  ‚ *&JJ( ˆ "¡t‡ÒÝuõçeFç7ÿ{?=sÞstøpöYkíµC–±zêçþ0«?¥´ÉÑ o?¹g¸-ƒRóÇÄï Ý Êý>ûø@~‡ß´‹$‚úQAŠ'½v ñÀëWÔûÐl²ùæSÌ Ú*>¡ËZÒ óÊf.H’ô4cÇí/:€~½_åHë50¼“Øq®£ŒÜˆ)-(ÀÄîe‰ÅO0Sòáh´³sûVïgÕ}`qwâ{I÷°ìËW7*×kŸµ$-b°©‹Möcî»s(ÝeY܉êÜiÒÿv]êèâm ±{4!ùuÅž½h¨ƒÞ.ÖhG¢|Ú͵û™»Ñ 1¼€•LèùóãÃä(uð‹ ÂȽ?õ¢|â·PÒúæC¿fÿÌ-uqŸø¿ý†‰z“êÛ2º>£Ø”‚dÓDgÜsú.ž£·—°ÿlC¥WçË›QÅï¯Sw U¡=û\šsPõÕÉÖWåèkº«ó 7ª™o{âO„êŒß±pîOÞeÝù³ôo(qn6¿û÷uN¯sñT÷Â%°ŒÕ` ŒnDu½çòŸ íCßxíOJ)CßynJ&¹£þ{=‘ªQ£º\cô™DÔ¤mÿü,jÖ¿ÌûSFµ˜ß¹cKc†ZÏÉ‹ÞýN‚Ú_Ÿdx—„Ú»<0R£Ar©ÅÅçlPWñ]ùš'ÔãN8÷æ5)êãý³·±£õöUÑúySðm³2˜½}D³Ó ùFôœœG¿öNúôT\A£¼ÇSgg{иK¡Wš"¥ì!M°@3Ÿ¯ç5Ì Ùº¾²;,Ìhþf_âr¿3Z´•Á›ˆyŠ–5.¤ß帀VíDŸ[ÜDü'cx#ÀãÙÃ:ÏWøCYÍ>)t@Ø hìÁsˆº7>ÓRJyŠþê@nóÍó :P¾®ÿúUÝh¨C+ÎM 퇔"¼5b ß£¨ÿi šžô~¸H L5yµ®§Óež&ôaìg`—*eÚÀÎÈË1~Ò×€‡ì¦Ý…Ÿ1Àû}áJçŸæã+àÿ¸IP*œ{®‰-S8€Pȷ΃PéúÚ¹1 {ŸòÞ^îýÍ;+ËØMÞ‚Ô#Ž\MùG cI"Àš×r»¥¹UŸ‚0Ÿdk^(Ù 0°º‚Ê[¢Å–~@ ¡æ=I þð}iSìŸ=À.œu‹ïAëËS Δ ÚMñ¢ô¬õÞK,Ég×ã+Åa?wÂ÷vm0fe¦8Y¦\GŽ-kÙ#ºÇï+2Á<ÅÅùrs'X Ò‡¼~HV¢ªëÇ[Ï‚u(Qÿ¥`³ê”T+<v×_½½Jö2ת…+Àa½Ó›¡»+\Ì]ÍC ñó “×3Eæóàþê a؉C°»ì=s +<1 R·¾Znº‹Ü=p÷·>“8gG@†²Ø›s=9dPÚw¢J£³•(‰.}©òF5z¢"wCÐ|oñ{ß]¾ô,wÑ}ÔiU»Q´”ÿ®{ø3¡à£Uìå>”¦m¹/ïË¿ú°,Ò5ý zE]qßþ¦Nb} ,/½”ZQþ¯ÌΓdP~,2¿¯Ë…ò×uo_³©ÿ£#+ñÕ-Ðk}õ”§è åÝ«]ì;ú0]ëö®›¨ˆTÕRŒ‹÷¿õ¡”7ÏkލìÊ ÑxY6*3yZî$>‰ŸXŒlgDŸo_Ÿ«Kxòw-+2¾£j&‚ž@rkT#³p,'ê÷wB­ÄCëúæìÇËL¿£ó˜$í.@ÍÁ.4Äï/ ÖÈL·_·÷áâºëÖy³Íý¨7Å~Eø·>LÙ|½×ˆñ¾î™WÊEƒ›ËÑ/a|+©4ª67íÛÊÆ¯zž¤ ESR»Ý âÐÌž¤5£R4;דt¶ -à›‹w¤ %q=¡_õh¥’m­0­ÄŸ—˜ìF›#I4÷1^5ã·(O `óÎúv1 C|Û¿2½¢}ªê×,ΉªôT$Ík K•ÿ(ESɆÉüùÌ3& #ûÄñèSíÍ6€ÑeAØÏ-˜5*ØîÓo«ÝsÞÖ•i`ÿR?ºïÝpå…ê±_Þ0 ™ 1às?Aø(ªκ•ãûÖ€`µá¾ôøS T³yœiöf½9”1yö-³&¯»s‚T[%Ï©ÆÒ§¼5¨ò¢ -¶Uƒ ˜£½¸þÎT.«™92$ šoÍŠõ¾âéªùVÐ|ÐzëˆÐIÐv R¦º¶WNM™õ‚¾Gk(»Áo}2.Hn¢ F/øœð ŠÀ¤ß;ÔÜ›̾rk°ì‹½Åud\•`™­_úC§¬Ìérƒ--“RÇé“`·Ú÷¹i`h†õßzÿ€ƒ– —nd”À¡êÈ×÷ ;ÁEµ-5ZÌ ü¥ßT}¯2ÄgµyáÛ:5ïhO4I¬¯uØñìo>çÍ{ý7ü¨¢Çd»åŠzçeC<ÐëAûtà a”ÿñ\Ü÷Ã?þÔ£)9.‰r+ê¿™d‰£ì˃.úúôO.kÃá#¿Y‘çJSåQáñ3²½›¨âãÍr—•)Të\Vöξ 5½´'SWB-J„´Ö_Q;QÃÆ^Ýèӎ¸EÚ}u÷¹ê TF}:ÉolÙªQ¿ùÙÉЫP×yÕ+Q]åÉ$]KÔŸíªë™¿‰úS‰lÊGÆÑJ5…¥WRèÇÐꋆ.U4 ݼç6y¼ÜnùY Õ*Õ OF¿¸•ÃïI(¢w×Dn4Zz)¯†çç XZU¶FwÛ>²tô¡)}UG)4ýä©qž÷+4Sñ åœ2A³ëa'~\êEó–ÌNìh¡@óuâ 9ZaPÎjû‚–ó™²l\G«Ç(.:M]Aë:Ãíi+ôhSäCé'’vÀ#HPl”¦¼Ÿë?Oyt,c.ò-TŽÀ®lÞèÉÄ»yÚ%[€ä±²÷±Éx cs¥5É(òç©`ƒ«@Ÿñ”ùP¯Þ•ù¸´½Wsyº€þ¤³¤O¤+0lÔçª)ž&·NEŽ|W`ö–=Xza°¯©23¦Ëì—¡¹ËýÀZÈÔèdlkFF〓ʊ–“³¸§Þk:†ßƒÝêg¨ûn™¿`’_!ñ]X½VU_‚G‡%º‚Ðé û‰7ÇAØFg˾ÒDŽÖ·­*‚èÛ•ÖÙZfØ$[ü­]$ºŠÌ8Ar æ ¥¼=Hß@bD@V§×\åjȵ¹‡Ë?•ÿƒÂ‹ŸMƒbl+ÕŠx( y9ôµ´€Jã䮪€s –•:Üw†à…Øå);QPMVо4šä9ЉgAKB½5©$´µÏFy® :†‰…û3Aׯçó¢è]½@$^úñîOëôÁàËœJ³Åk0Üì¸,Föw2ÝjÀ¸Hn£˜LÅojM‡¥€Ù7Ó¹GÁ\pæ™X˜o1zW¿= ?éÒ™C=Á²ñîù뽚`õý™ÂõøL°î‘î(|þüÓª I‡¸Zâ`ûžÔrAñ<šÐø†¢ÿôïÝÉi¥ÿ­Ë„‹‰÷Ê¢WCç‚]ÔqxõbŠò|â‰ÓtÞ;2ü?¾`@ Ýé?:ð|»É¡?ºÐZ{m%Ÿ½RÜû„¥,¬(ýÖ‡Òd¥³j¡Lÿ ³ôvJ”Óa˜ÌùGwª®ÄÄãúîß>x¿õÐz‡[8}xKWB‘‘ô÷÷AgnX•õ--šÅÇ ŠÐ¼÷‡¼BŸ-_lVÌv£Ê©ŒÇz=—þä1{»]ÿÔ¹d'SFu‘¾Ö¯^ oظ²Q¾|é°«j4™ðæT•FMCÆí~󂻇r¢o× ¶³Á Òô¨ã¸¡j>Uê:F{Õ¤ õœ+}÷äÖ:ê3ŒX]§ AýÇ}»¯(}A?gÄ(\¾ú'¿ùÄÍ® ZœËäYLFCoÈØ„˜ùÑ/%eñ=suh¤{ùžÆS4–^vûVÀW4‘4]*áÿ M•Võ*ï;Žf(>jLí}…fÏ¥<îM¤AóTG:&“ÐÂûŸÈÈ{Ð’§Õh*Z^¢ˆ³ËsA«a§Ù¥<к9½çéU´yÁ(·âá=À{xN´Íò7¾I›=¡²ÂŲ¶%Ua ªj‰±Ú$wˆ×BøLâfŒèæq ÏgžÍ­ôJv¶š±S1@•¬¹újhòÎÄïB¥@g(´¾tñ0ðIlŤ&ópQáù:`‰Í¯Ï©¶ò‹û¿ÀcྣoýŽ8‡ÇçPnÑÎöÖdQàÉæ)Í‘ÞëŒÊ@à“wÛ£è¡$I§nGô€ „þ¥s6‡@8`LAΔDçf¿ÞŒ"q¹[-ì°¯JoòIÏ-R2ÞÅzɤ_6—J¬éã•6=Y§+ºŠª@aCÓ]ª”ÒÔy;ΪÑRzw 4‰•sPÿб4Šbã¡ühíêÉè}QÚžƒ6IºR Ó-dÂjz®œømσþDy7§.楰q£dzæé`â³õM¹Ìôyª¯þñóÐÐV¡°ˆ½XkNÊ–ì·Î¼k':B`ó‘Õ[x³ììVò%ôáp`S¾gËØïÁç=ã$Dx남•œiÏ©ê¬$àæBaó °9OÏJr¦™–”øgnéßs±ç°ùPØ<(ŒVœc8îY|zgÞÓö¼*lÞSM‹Ã©_‚¨¶ÏTøÉù[⊵x!7_›sŠÝ¯õºkð*› w›ŠÍ=}ùò€åo¼nhçÏb~“„›×4&×Ë:§¾37 ›gªá¥ò¶Û µ_ó§=s4u Ó¡±-D]Á;œ@=j¯ËÒ ­§Åî§þuÇ£×s@xj]*­õ ù߯{hzHžxR~˲e¿G{¿¥é³àÛ Ž®ž ½j´—šüùU]W3Ñp 0\Y&Ÿ Lþ¯ CËNKB—Ê)×,`«Y8iù§9YƒÆn<»Ü~s âÀD†¼¨vwï2{†øî‘,j”†=ô‰’'×AˆÁ“þj¦;ˆ]#&ÿá{ÅKW._î„}V²ÑQìGAê`QÉ8Èð Öƒ »Xœœúî(•?’½¯ JRÓ9ù¨^Õß…>—Ü_-øˆª"o–ÖeüÉ˲ÜOÏø“—U?u÷=ø¡ÿ€-Š{G¦këW?ÊFÍ.»|sÇÍ…ÃâºKLÞÑ‘ºõêá ž3ÃGý—¾åÙ³£ŸY RÒÐ`—PB`qÞ”X®[;ŠF ~èLìC㲌»dO¡É΂îÓ?vâ¶”Á÷3ñ4_ë×séI&Zâš -IB+q®øK»ß ujŠÅ×jh³£\+·]ðJ›Ó=û€€¸s¤ˆó×L/#"&^'w¢ "}xøýs ‹’O¿“L”ꙺ]o€ÔÅèƒЮ¾Q8Ñ ôwRí€q¿ö÷UŽv`[Òu²V’å绀½PïEö~àJº¡±.yxöåËϲŸýªMï>p×($ÙRÁbù'c xn}>µö®„œïðI‘k7í-Aª÷|Ýš‘ÈLðè/o€¼¼Û­‹y X¦|½šAh'>ï¹æîeøê?6µV͘ó‡wµèöé¯ü–7¸@÷èîž ï_°õ4| “ ¢©¾9€QKÿ·3².`Ê´ŸëFI˜Í)<õÒË‹Cy$ F‘`9úæþ€ß°~ôQýžMØz øµîÒƒN{ßsV?‡“!8XüÊLœ…òj{™JÁ%h5 ˜Äü.ü5¯ R Õ­¤ò€-µ(̱½­eè]ÂÍ,ý½ÿÉcÜ{‹ÍñÅÞ{lÞaîÍl·‘(ûòË(¾=Æ8ÜÄâ;±yÄØT ÿj曈ÌòÈQÃÕÚD\Oq8„›³»+¬¥4°uGôÜ”Þúo°÷wª£w†¼ÿÜÿO\Âæ:4Y;¦¡_w¿î…#Ü8|ã8oÿöa?%JÕJ#‡&9â¸X Ð4퉗Å'® Ý!UŠy“¹¦›jø÷ðÐÂi'nm¥\´8soÌœ->{.IzhgÞ!›ϼE´1X4|qm}dÑ~Ñsðªó….[-~‡œ%·ãM dŽ™|=R »Î×Oæë—QOÄ Ÿa è§r| KÒôþgc|e@.ÂGì9K”x‹L Ëü@í쯑¤hc¿’)^ÞzåïÝיء}¨5J¾˜}ïefZ½ÑCÀÜ#asg¥X´“ê…¥‘´¹ú‹°Î-¦¼eö²ÃÏåoÇ7Ík•/î§wl&³¥ÙøÆ>ݼ¹—”?«e€ Æ¦Ðã;¿õ¡r¬$IÕU¦|ÞaW" h@4.D­N(–2Â^ή·9ó5 á?>ä~‡ $ß=Hg¼&Òî=‘é¶ +öEê mÈÕ\Pš{ï {g¿œÅwæýEùÇ@Ùžêã +P¥M>?Ñj?Ô¿©±®Ô°°ô”M‚ú óSú/ 1›£nz4Ww ³8€6¹M%Sèpú.g.–ƒ®¤ˆL‡KèéÆøÒ¨ÜÛ™cê7X¡1¤† Z–_iaÿPÕ‰K¦{Àx‡€£4˜„J=Å#œÓ £57ë;`öÒu†Xã˜_Ì´jþª Ú”=E ßÁ’½¦~ë X®Ý~¶öͬ†| ¯Šœ¿€Â._]=¦ÞO<ìe!2_/Œ¡±àgï=¼3PÕw½ÏZøÅèý¬otÎ-.aøƒñÊ¿ñã©Ø¼nìÄ~ÇžÃâ›+Œý¿ŽaqŠÅ?N¢Æ‹ß#ëqó¶1¼úÏ9¦ïßRf¶õîÌÙÆpj{Îö÷oüŠ¨Þ£FFR²ÊŸQS®)SýÔâÅv@é¼ jsê4{Œ›§ãŸøûX PŸ7Eé4꿱(qåƒúQÿØX Ð7~}|« žïO•x‹†ZñçúèÞ _6%§ZSÑÈ<·­Qy0ËÙC½n &=)Þm}MÅ5SØ_ÒCÓ“L®O¬Ð¬9À »M4÷‹Ìºìn Zxx˜ïÛ=´$+~ÿ W8Z~ÁñÐ ­îËÕSº†Ö½¶Ú,°¸<#ÓéýVV€?èÔzZr³ñæ¹PQ þè Ñ! ?¤MÅ·Ÿ~Prxdáuh(ÊйÉåˆý…ŸqË@=% c€O ´‹sëß;X€~œz¤%j˜´H>ø1Knûñ@ü`›BqÅw¼#+É1ËÂ8—¥ëKUx€›‹çU„ 'ð„%zuYjoa¿­è5iàã}zùF»6ð¯Y¦ùìaA±à¸«m+ êž° ¢[bŽo|é@ÜG³¯ öÍÕО8ÿ›¯*+²gÅ‚ôßl…P9½y°V³ä­HÆŠ@Q£äð;“½ l~³ÿÔ2P 4ÕüiE ¨~EÅyÔfNóQ³ƒÆjÓáêï %ç¬ûØ´YH‚g/ÜØ@/0ñÖ¸bPê–|s!ÃÆ ›ù¹ 0Jóɾ÷è%˜Ä ÓÆ÷ À̦ÒWBþ-˜ŸÓÍ~I[U?¤ËÀrØl¾ŽwXkTÞΚ«›üG†ÍCÍ`‡ Þ¥¶†Ã7>ë¼»Œ¥Fd  U¹%ë)Ô’ÏÙ(ÙCãqÎý=Wÿo=ø7_Åx*ÆGÿKb¼‹/l~8Ž÷=:Î$£}á¿u"¦ÿ¶O W±û5dFtÅ/vÎíû¸}³â”üŒ7‡æt§‹¨ÑdüUõÛ`ÔÄEsúÓæÚoÞžáüé-j1J™ò3“@­/¸ûæxQ»'q¼ý?Ôé8³|‚uŸr÷1Ê9zß´}ЧúÓ'lz*¡ ý°s3ð=õ 7o|Ѓ‡ÐNa ó~­šá@#$Þ½68üðe”¼=‚¦ÉÈ^çSæ¡™c=§ŸE¡Ù5MÙy 94ÿF/:o’-~¢ä(6C+2÷?« ßEkã-ß¹æ7Ðf£uà`„à­‘ÉñÄAÚФ¼œ$ì ;'L¢Ä)öDñ£I@ºè.x5Ø(ÎÆÄºËžªq¡µWƒŸ€V‰üÖh@&Ð¥÷3—”rƒmBîSÏ|`Ò×u=œ¹³ç›^\ÄB\ Ü<äJ‹¿ñÒœx#þâ2ìNf'.þ ü´ØÐÌEÈ‘ÔðY%ÁâïŠ üOÍïnˆ%~â/N¸勺ÊÎ ÅqEç¢ËHàÇ’FÒ€l QŠÊá— _UàÕùæ(N†“ÑÈ–ŠŽ¶Ï¡ Pk%t7'uëQµï¿q°»8sE´ü+÷Ö¸€Ž·ñϤ.Ð]œ?3GÎúõOoŸÈÃwn¹–ÛƒÑ+Âå+¿ãȤh_¨S³=˜¹,ŸºÑæg5Ö rÅëöç¾×`¹~^ðŒÉ°¶Òõ¨Û6_Utäm¨ÁÎöÞzñê(ØÜLŸ}Ÿ eD} 4p0õ] ž\,ʾMGœóÖ±¼÷­Jt0~xÓ¨×ÕÚÎéÍÊM?“+¨©ãB>Ngaú ‹¿ÿW]øˆ2+uåŸ{‹GlOÍÿÒ‡Ø5öwáNæ™ïMvöaüõïþÖ‰Xþé¸ûØ÷ããØ~‹r£¶ššf¨âù¸GXxn@å`ûÈËõqÜw§·óFX>§·÷ÛàâyÃ9‚âéIÜ›ÎW6G)ePO~B‘{ÀÔO¤ ";Ð:‡†Hšv4PÞº'´f U©³EŸ{F˜ÓkNñ¦£±£üÆÏÖpúpf÷d  w,š¤½)<ª†æ‹_dÑuأŚ ÷Ÿ#´Âe]Uø(­Ý¯Ö™ß’G›ÂW<’]»*˜wíì/ÒV–ãáÚ™Àî§UI'S\f – Ô¸xå—:ó]¸S ÝâYL®6Ù L‘ã5 ×(qóø÷ͽïS—=R_ì¼>J€LŸá+|¶¯XáJżIór‘ â7RŸFÏ èŠj•ž¥*¨·ÑD1‰€æ-b£Åy Ðv’ªÝ‹ÇÅ&6@ÿx°Ç–o*Fvñ<›£ëù¥½`²9¨QÜó ̆)(å—Á‚Œ’æÜ5°ì̽@ô¬Cc³25ÁÖšƒ«i3>”Ãc8 G7.ì“'‡ƒoLŸS‡€3{ÛÆg½Sàr~¾é¶I\>Ö '»ô$¯›Mh {ku½~šÂUu¥ëL‘AU¼¯ÇΙâæêcóí1=˜wAsrzø+ŽWþ½ ‹Û'7Ø?{úãNì>¦3ËŸÎr(Ûàö´|c­J²MCR—l¸§$P Ý{’BØÑ‰Ø{ú%“NÅõ]qþ ÷g/¶JÎË2ÔWmâ´¼7Çû„…š+·`çÄ~ß~§©3$ú›qïûÏwV¢×réÑ@CT6Óžy4DzÌÛ'’qG?Ö´†P½pG£¾„¢UU¥;ºñ¼ÖN M4moÅr{ͼú¦wÓVÍ9œ.±Ë“F Z3J!¿ùçÒ‡1>Šh¥‡çøR;-N'n:r©ªM¢­—ʾ­Q^¹VÌî¤k€ßŸfv­ ÷hD}x»n¿.(búj3‰p ‰b:¼©>dÒJ“i¿y%¯l¢‚ )P8&øH{­ ¼`jiºRÇ‹—÷ƒ Uµ­ÙW`ü,rLû0½õ¼dëåÌ–å eÀœ¹bzóK6°ˆÒµœâ ¬ ïlªù]!õá¯}ÀÅg¸—ÁJ xªL5>>m·²*¯Ç @—%W~ƒöœÃ÷?ZÔ‚ǨYúë @Hûˆk^þ%6>ÃsejDBüÌ Äö~ø_âövýš,¦ I<>ßÔN RwÕOuù€ŒHËgŽŸ »Ú»ù0úȇËf^äìE*©¹¸ýŠ ôD¹¶´3T ¼ñ¯ä‚5U9kµ; º°rýQP?¶LìUž Ǹ9DÖã@óÔ<Å‘ ÐòþBS¶ÚjAÅÁã AImx—tc<øbž¨ƒ^FêÒ™Ðßuêºu74rx¤ýt[•dÇ\ÁÈ”)S·¿ŒcƒbOàu‚É‚è®G‡íÀl_ó¤É­Ï`6aŸÞ…^‚y~ }ã:XuúåNK‡,QOÀ ieÔ”À刋Þ yAüFç±DB`ëa£ yÿû½Jš®¼Pa‚ÛíGÂâ‹7ŒWbyŒ·þ½‡í¿ö\`8‹ýX\cø†Ësþ‡NÄå5/rž‘{#‹ÊéñÞéØŸÄå}p:Ã+lÆk1~ºí{`{Ü0^ŠñQl[ë9Yo=Fm\^ÛÏ„åþÞsÅõO—æ¡cO40ÍÚbÜå±³¯)Ç\ûMß4ZÖ6ή„Æm ./„¢ÉQ?2üd4°¿döš&šI'þø™ Í‘S3Þz冿c²®Òx2 E=Þ¦;.h™‚žî­'Zi)XÞ}~­Uuç  Mzù{jÆu€çaåÏ; ø[^o¦^Äá·Ö¨ö2žýM^šÇÒ$H˨÷G²YÇ­R/ Ïég¸•´(>j+?¸T1‰±/ðŸ­-ç*«é П;ØÓËr7MûªzKÜ¢ž7%°-v›Ý)pÙчÍgN¨TW݃ÑPKwà¡}bu4¤xÒ~‘™…ÝEÊÁ²°øƒ– B)u`OìÖÆ) "ê>sßßTD]^0o¦8óýµ‚«Ù°oíS\J·8H¹Tñ; ҿ˜ë•m+A6’çRÚÁ·ÿjè›õú4+©€²ÝÆ¡Ï1ïAõ†ë&éÉ“¿?èù‡ìª @=Yš@Û›4~q“Uæ‚–Š³ô‰ý ïzñ&€.Å[’лÁDòù0îek¿ †]Öõ×’Á(g>¥T­L’5Ï}n®3G[ey¤`î+§Nǧ妔(ÁrÒȨ𑬠ìD&îÉMÑòK¯Ü°Ó«´Ø×Àns—ÂTawx¥«k7»ËÏLŽ£–y›!öÜýf˜>ÄòŸXÞåo}ˆáÝéCìÄžÇâ㺎T—Táò.¸½fÿ#Žp>!vnï“Áøá×û[es¡¯ve6¯ qùššÂ…šîQÜ~4lßæ3|÷®¯öWµÙщؾÄ{u,¨¹¥‰lêˆáŽï€ñÊÝ[j ¢nÙs»¬PïáKVþÌØÆ_ÜḊ°uâ()öCÃôdŬ‡íìŸúžpBëNŸçzÈæc¹³wj}IýX1š \º´ÍëC½¹Zô:3X:ŽNw!Z°jl(4õ?6G´%É倛I½Éxô2¸T?D¢ÞêÂÁM‡{ä¡éà¼ûÓÜÕ@p±ç;¦&è®™`³HîNM×Cs>oóàÀ]´*û^(@Móé›bÍ•8\Âx$ÇÙù…˜| ¯jÖ^Š»ÆžÇâÃO _qûÿÒ}Øõß¾!öü?>âöó˜^Ät"nâ6ξ“ j BïID#(,Šw|Dl¯Ô6oþÇ?\=yq’]—Gª>aܲ°ÔˆËáô!×X^v›oÿ“—õ³.Ј»·ãÏlï5í»cËVWÒËï`{ä†öL*™õâò¯XÜNˆŸM÷<±³Q 8^jíëÎDо JOb´|¶ù¡Xþ$ZÝòûœL62ѺY>ä-¸™vÅö„ÔÖ}Б\"¨݌°··V kå H²¸<ß->ðä=HÞžïÒølº¯‹ œï¢Qݱ’ü\¨ú™èû%ÑK¨ø‹°@Júy\~ãßp{ÿ–gÉŠ< Lý!ÿ‰ŸÅâó°}žXÞãƭø•æ;{;·÷ ýÍ ±ý¸“WMö^ì'ÔCPþŽóòÖÎé éC ŒÛÛÛ»Ô+(ÚlˆúÎtæ9Ryâò"ý/ünÇùÿèÅí8îËør…… ÚŸö$yŽÆ™oõÕ©Ùщ}²C#VÐ¬Ì çâa4OE.Q¶-*š¥®Ìù åÈËmµÅÑj‡‰~ù2Zﯼ]ßÕ‚6?PÚ“£€ç4èhG€§ö$Û`ô”Ø™‡—Á.m‡þì}ˆ˜ÿð3_tå1W3¦YMó []ï€æµ´,Û<#ÐÙŒû÷Óúv©‘‡Z÷Qœ¤wk?0 ¦ÔñWS[ìæ¥ÂÇÀlAÉ­¦ Ì3‚¥'€u×ñdý ç?úåÛã—Àé»vÝ™4 x¢WT›ÎÃîc‚ ·®L?I›ã—Ë p‚L§ ÒÇ3? Ú·´N‚0Õ]ÅÈi L³¡6бýÞx„\”ÇŒHJñ9 è ƒT÷ ©ejÉÏ «zhržkl^b7A¾‘o:ÿs0(^Ñ>ò ”aSéÓOPeÒ9«Â ˆ8±j”zԉɛ¿Ç€£ŽíÂH;hJPX*)ƒ–%þ¦å»PÐŽxáÇøtŠG‰Ž_ò="™]gJ|qûÕ r›ðÄÄ”a?{×ÓN 0 |¯ Q&<ÞOŽ+Óò¦ËÇŒÁ¬Ä­×—ï˜?›i‹±‹‹Çv±Ú:V`™,tð)ÃK°*ØðÔ:àÖÍc¹µ»Ï€-ñmït)†ß¼ôAýEú|ðc¸§2_ âßæ1eöCÎV—ïB£Ï“Ónu¤ãò‚Xüaø‚ÅÆ+ÿÞ{ø_unoÅ®ÿ—NÄêf0~Œá†[XþӇؾ^ ·*~} S×zðo^ã·Û|ã³X~蟽ˆn…Ýj1^ø±ã'nïCÄüÄ^JŠ!)ž;úp¯àkÒÏGvø§R×ÑlªÆ±˜ñP³ÊŽ>,$6&â)F“O¢##šÖå9ÖƒfLö“%zâx(†k )2Žã÷ïä{üß®ßéþ„Ö2©ÏÿÈGk“£œVÉ€§!ÓØq ð_䛽ÞÁ·'½J€Øzq3XÙHêyS_„™Ü’A _öi*ï; CE‘›¯k€j.ƒ^Õ'hý^U [@*:S9¹ß}»§4¸XXXåz6Í’}ö¢‚ pˆ§^y“œy'Å;Nã| žªáoÌ˧wü—,o×ðYvú¼Í8»å;¾Ù©‚ æ²«—Ô.N`×å> bJÛ½¯3‚ø2>ÿðOüÇ?Ä|Çm‰ó±ºSÌßW¸>÷òjÐ¥MªÚñ±}¥…ÎxƒQë¨UÑÐ~EÕµÍŠß ,øŸ_bÈ ½ PWqä‘£;ñ¹ÇÅéÃÖÆæ™Q4ø”Ÿ Òÿ ¾Î!A‹FÌ_Q]¨Ac¢JTU?.¡ ÞSg¬<¥Ñ”óë æÃy;õj˜>´¥ò¸€/­ŒÝaÝDË#§/1唡5ÿ°»©×o£M¶ä&îÀã;~ÄxýPFy!¦w’\6¢8÷2é­@R™&-ã(°S“‘hxT`h¬®û3¸œ:±¤ ]‰;@?¬>vLK¯_9ž€¿¼½í‡³à¾ 78¸ÊV@XéÎ<§û¤‹mªi(Ý/pMkúæ~O¿š^âC>¿'@âè~Ösc 5ΦL>üGb8÷ÿëbú;ÿÖ‡ý/}øoˆéÄ¿êL±ëüDÌGÜþ®ü—>,ºhƒâ4._Tj:–(qh~Ç?Ü®/øÄŸXwŸké_}¸Íã±ï@=q¶ï–€Î¿þáï9¼gûwò°ÛqŒ«h¨#ˆKû‰ã×}Ù ÏÌpõx»Ê%C.àö‹ÿRRªÁ_¨@£}.S¯d¬vö ßf´ûªìf5­GëÑÌùd£˜G~Ì9`–;=vÒdX%¯´m{ãÚ®’/Ç+ÿ“ {H>ðÞ¨¸n8 |ç*.ï)ë„l½sc÷AˆŸIÖ#g/ˆÒ|W0™ âÇ÷;—í=ð}³95@Z#ÀgèSÈê‘‘o2Ö‚ü%¢k~«;{€/ÌËÐŒ Ò&rW;Íêiªks€¦~åµ¥]á M>R«:“™«Þ¶i ·à*Ó"†¼…Þö¬T`t¦D§B\ LF¾ ÏÆ-€Yï×_ûµŸ‚…³«àÜ¥Ÿ`E¨Ý¥Sû¬¿¦q¥9 ¶ïmojHGÀö›n¼­«à(øåÈÙ2kpz™ÎyšD3ÀUÂáƒo—øIjñоõÉ…¡ý¢UÀæçÕ¶ ËˆFGõ?6;)áøö^þÿÀù‡ÛùÔ¿õ!–ù»Î ‹k,N0ßËbùPÌGh(Ê‹~ŸŽš9ªx"QëY4qÚò?¸ƒÕ¯t3¯>ŽÖ3E]ú/žl¹ÍàÞkÌwÄ꨻ÍÇÏ’F áêÓz;_¨òžE}‰Œ]‘¡‰¨ÿ`‘´HÃé~If·UŸ‚¿å9Gd%î×Iý»gÛbÖˆ]Í,;•Ÿû5†æÚUÍUx7vâáØqÚ ö½hõ}ñÕ´þ5HË•tm¾"ø`x–Å}ã&j€ï/KÃA/ Už!E¤4°Kýiõ{ÍNi’¡ƒÅÁ ºÿî×®.ê×zJeмxQ¦»o§.M@öÕÊ`02¼ü°Än·X¦ƒaú㙹À¬ùŠTÿN°(Øû¦‰Ö+ÔÖ4w/»ÙqqŠ+!À™•w7¦¸xD³—ÂnÚðnšj9à»AI{²ô ðª1~s‚=¾Íò„RoAˆÆoÐk…„+]` = ¢W/ R˜Ã^ålÃ5ËJ [Qì6IFrü³[ eÅ]¦¦h Ò {~õxöl¨ º2Fòöºl··ðAaý0›uh2(å·¤.ûƒJ ´…£± ¨Žà29 àt³¢3ø¨¿áÜe¾ÌÕ|ÊÑ4š¿NŒ>ômºÖˆ»AGGÚÆq¿.è‡?*¬‹½¯·üíŽWÓnaw0ô©úöxg÷É/ž–õë`JòL×’ã7/u¸×o¼¶æ¨çBr15XHdßÈà| –b6—ïÛ‡‚•\õgƒÛ`mòïh¸(Ø\\‹Xûi ¶9†äåù{ÀÏü»¢VEH§)~ìQž%ôövhÌ2@㸠ÎÃêÛ°¸ûÛ/ü» ‹·¿ù*vb|öÕ™b8†éS¬Žà¿üC\_Ä6naúöS“X„¨óð~m÷GàêN·ý Œ§bunX?®?ã¡X[w__Ãa\¼ãê 0þ‰Åo|STiT!¤Š²_BCq«Ÿƒ9Ð/½õ–_“h”×K׸”j'¿ƒÕóÈž8‹f¬sºhçÝÐlžÞZ¥¦<šW:»¿¯Å- µKs6)¡¥Â[N’ÇèÐJe—è@7Z'dwõðpF›ÆOÅð.žÉgßÀ÷½üÍÔ䆈pYÜ] #ÞÍGI(Â÷õM&N á7º7${HÛ.ç­:4ùmIÞìt?óºOr|êsâ{× €¶öî'ví: ¿ï5ư~ïÊ'Óö>æd·p9j`­’_…`¦&X0Òέöªz¼ÏÀ#…z§Oho¥ƒÌòëqà#÷¬ì¸wøOÆD^ð„=Äß–?urƒ`}³žç‡î੽S)ËãHHÎ:hŸÉ÷Ñë¹ä@Z}Ã\,d~؉O¼¹¤‹«ºçwƒBPqÊXÐPº¦@Ÿ&yT²‚;o™‚ÚÒ"·}© ¨Ëåk~È °dWòßq¹ÅKÜÚ‡ÿøº*:Keí·F†@/yé§ß=0ð2¬³…ýF{žÇ†Ôƒ±»Ò>®*0Jqô³Íªf¥8°Ðõ¶/UnË´Ÿs‡¸Àz÷»ùD`ShüàrüY°;˜ØžÎöºåOJ ƒ£†.-ÁoÝî&SI(öª v³õgŽ bÓ?où_BÍ%1^?öâ|t ç0|û/]ø¿ô!ÆWÿKbue˜O€ñ?\½övÿÇ?>ü¶ÿ÷_}‡8½ˆÕ›n_cq‡ëcÄ|†í|Í·Ø7÷FÛwø$æ7Ø.ø”GqìÄåßþ!æ;lã2æâêÓîR?ïv 8>3n­Æõâø%]š&ÜFcçr{( ‰Ô# ¡·œÐTáá£ÇÄ£ŠÒ+sC€fý¯:œÈÀÅå"¼}ý0!-ß W¿ó­?Üá.€6âÜéðøžh÷¾#Ñr€ÿ<’—¸Ÿz§ŸÉ*4z¤ HQ QâüŠšÀ0ª±K@­«ðdÕêÐÞ ÄozÅ)ÏhJ#`¤¿õqó0-ެt‘|–>«˜ Òv`›_xêå0œúúÓ3^ÀÝSòùÀäUàý*»|wÉøä;ïÜ“ þ¯%ü¨œö$WÑ,x‚PSÜ5' z!&…º§ ÄÛ]¾.<0(,÷¤ÅEtùEŽ€Ìúµõþ*'Š`²—¾ŠòB{Aù>¡“ÿ›½ Æq»ìYô1€†¬þŒ×i á˜X{†4õw¼½¼äêÚ·frrÏÖ®ñþN†w‰ /¸DØX¦†umÇÕÈÁHLÁ¿h„L¬›÷^8fÆyä†ÏÀÜÿ‹ö•û`ÑÙù¬aõ.Xé]œs¾Y ÖuçÈ‚VÁölþŤ(8 ßZŸý8ë _-~‡ƒB•c¡ÇáÐð@Á—vàܱöáÝâKpå9žL ‡5̤ui‡ø6Åêo~MìëAÏð 5”Åf¶5áp ËgbñƒéÁÿ_ÿ;ÿŽG 1œÅåKÿâÁÿè¿Îÿª3ÅÕ—þ­ÿ««3ý+‹«/Åò°¾nç°ïÿ8\Åò=Ûý\XŸ1®ÿp»¿øŸúRLbøz„Oñ¹^óû‡S‚—û”ÿՇʓÕ^¢œÿ[^ÔŽýLjx¬ú§¾Wá|\}éféÛäõ$ !®dˆV2ý̃=¤Ã@ñÀtTþ·N£&È:xŒ€öDVâôí5 ç³0¤”Ff¼ ‹vúmøññ× ½âí†\N*p% žå^-…Ÿfàó‰}`’w·N=÷ˆ!KÛmT Š·2jUâÆn’W5ª@Òæ@rVXHKˆ‡] ½²’ !” ïr{¤´ùêNþÆö\~“×u@|ÇOåê€úý3 ãVASfî®ê¬hÍ«í)Mæ Ív‰ ×~ƒg i ñ ¦ò\²ÁÈÔCwOøu0©@U34”`V=Üúü9XÜûpV',Gñ´¯xäu΋Kó#ó`›Py2úx“USÈRŽøÇ~ îûNWžV™ƒs­ëÍïàÊäðlŸz,\– –yaòçGhÌë_ky‹Ñ<4*0#™ˆ‡*å Ø –lp<{ß1|Äò*®áúŸþò ÿîÇÀp‹3ì½Çü†/”ü Ó¨‡oß'Ê]´Ø‹ËSbõe8ßÀCpykOäŽ>ÄÎíz —pçö}œ¿8y7›ãþ#\_®éo1‰Ûæ4WËNß"VoíÀã?y~™ñÏ>Äòûkp ïÿôЄ]R…aQm@ô˜÷nƒû% ‘¸ú´u•H‡OÛíWÁÕÅP¾Mà õÚÔïÈõÚ£#»Ãä?]bì–…ÐGIšéŽC‚÷§ï CÀ˜xvãYØW`º¹xæ0a<0_£Ò=šë8ëýòäNÿá…ÆÑe4Óx¸äñC4GðŒÏÌ Í«·SH‹Ñ …Ð )4ŠhñÇ‹•ׂÐòa‚ÈR1[´Êv®Bqš­ïK"»¦6ÓÊ|Lð ÇÒ[LðÏ9ø „µ\µÑÎçèdÒY«à ¡}’U4ʤïîu$°¹çÇJK¡»@©:fŸ5É´“ /…ò2½<ÏO»g4å¸:q\âAC×EÀ±QpÇ߸¥ÛɳX€×Û¿…2Jv7:>&]l~àéØ˜¸"O·«K¤äÚ#—Aø»VHxò}Ó rklúûfovH‚d¹2ÙªHës¬½ø2£äÃ%ß@.ócÁ±¶S žZngFJwô(ZÙý@åõ'›¸§ƒ€‡?Ɩغª )Á‚h„û'&[†ætú¡mÐ>þÑgzï0èâEf“Ë€ÞóæÇ‰-¡`p~I<ïùyØo›åO(ÌÆgžÑWþŽ3ÓŒ›øü6Æ`N,Úëà &R_Ÿ·Ëœ©à,I°3 ,>\ 6å1Ö¹•^`w©F0ÜØ[̽G“ÔìGià0‹žy o¬ü×ÉŽ·@¤9Þ±O5Í^eˆãÄéC,ú¿úŸ0~ú7_Åîc'ί؎CÌ¿Çð«+Ãâë'ÂtÎØæ}¸ß1ý‡Õ•þÕ§ˆóí1ݸí'âúÿòqýˆÛxŒù MÊAÇØ);w|ýí>¿çZàôávý7®¯c5&u^V #ï/#4˜3À>4°ƒ§j³Çîe¢±š„ÐÄ”žÙU±ChJÖùüàùËhúÝÉhn\ÇüSú+?_¡ù¹Žmh©'¶ãeo.o³®äØ©‚6깓Çéß+v¢V¤Ì ÖHWwú;lž6Ò[¯«²|¼/¢Èi_>PN°[|æ·Z6VÇb@wå|æé)`P“ÒnëWƱ%ÿSûù=ùƒ§*ÜÀ&Ù®ž™ô§{ï¹õ’À›8ÅÇ•o|¢û5_ŒþÆ`Çôñ,Ø3¾é¨z„D:ÞÖ;‚H×é½÷ÞVƒÓò¾Æûí 1¸UN'±3ÿâÁØTó‘ç wïˆ~ž -(¼É¨ÌªxÊık\«n zU%ʉõ3€yÙ`J¨oÆkeH8ƒf èùÉëA›óTͺN/è|§#ÿ  ÷xß Ñ}0]¦é`ò‚ý×§Ó‹?%€q*Õâþs`Ú1GB|å4˜3κ:É€ÅÑÛ¤ŠÖ¬`ù•(èXëάÖÌûM¯á•ßzÒî‘óû‡6°?yúÞ“öp<úl|u!œÂi‚·Œ2ÁÙëéË1%apI­³/3“·F5›Ì®P஫÷›Î}ÄBäWÒo¢¦†!_ÚÊoÄð ûÿª/ý/ßþ¿êKÿžSƒñYnë=\Ýè_~!†—˜ßˆÝÿ¯¾Å¿û1}ˆù†Þâú·ëK1¼ÅòǸú‚íú¬®—oÝö qú«ÏÃú1\íûMÚøçã}W²QGöîʼné¸z=Œ/ãêí¶ûýq¾I­‡§ÖJ úÕûrA®>gBmí&ÿõNô›Þü"QÓD³GL3#å.áú†n­Ÿè‹éGKš[ÄúeÐ*=™° y&Zo˜Ìž™¡C[Ôì”äÔ;}Ñ‘+,7aW,óãÿÃÜ›€Sù}ÃÇ<ÏSæcžçYÜËLdžÉTDRJ¥4¨$ HƒJi044)T”B¥4‹ •©(„Äy}¿î½G¿žßÿ¹ÞëzŸ×u¹ö>Óý¹Ï}Î:k¯½Öç³Ü©çU³gá×£…ÀÞ"©”A¯Ÿ |›ë¾# øEü<|B¿‚ÀkaGÉùâ s¸êŸ)ˆøqÜm\ bµ…©DHp|Ž7] ÒZÕ¾oeu€ª|ËtqsÈ=[­–S<Š¡Œí:ÇAéwÂþm Æëù…£Q 4M‹—W+³‚N¢K­ÕÞ3 ·élŒ@jij~,/Ö£‡fi¾½&ÏÛùŶßs—Ë ÊÆÁbt‡ ³y.@«Ø`÷)°Þ`µÝµ-lÕY¾n«»¡æž/|¹àО¼²'æ8}·»§›. ¢‚̇À5É=o2xëm±4vÏMjê\ú’àÍÍyñSâUð¹ÉÀ™/ýüvË™|u…€]òüGŸCPù Ú§!Óʵv¯Æ<àó_§Ë“u`]¨¹gb¤èò<â0|= "ºòOWÍ">7®›]RøëLÌÔmCëSœ· ý²+tùOô<GÎÌS ‹âP¬WCú=âõ úÞ’:ih_å Q}t3$ö°-£›_.~Ûˆó ¨ åß¶¹ßGÝe=ÿ@~ÿñ> ¹ÏÙ.ýõѹ%¯ïTÐ÷KÈ<²‡Þ=¹LÛæ< ¾©G<ë&úOXÏϵ¤ï›èsíI`®Áù‡¦3Ï ÏKÑó®^º‡|¬‰‰ƒÝŠ—• ZaÈÈI§f¼Âп}ù¯+¬À¼f§jÌ 20»ï4zÿbXM%wÜ|¼8,$Úîd7߀zM¬#pßš×ö¼«xêYÙDàõ¥Àá+—;cù@pñ˵g ›@XiMÃÊïÛA¤áºøÉ]ŸAÌ’kx™¦>Ì:!"¦§’VåﲂAº¸ÿrŽè3IÛQÁ´e)ÈY•W­­ªùÀ3Ûý]AáãÑÅÉ xÿÐk3o(;±À TÕ„Ž ÷)‚ºäÉáMÛAS¿t˜ë°#èò¿>±o)èJ²(œj½ºó»ª/뀾³b=£³ºY,òg+£ËÉW»w]ÎGLÌ`ÚwÈáôIX¤óV³ä;Xln·«¾Äb{ÉÛŸ€•á»Á篂5ñ|yúõ`ãmàñ”Õl„ÃÒ†…À.wö‘úQ`_¯oÁ‘3ÿš_8y¬ÿü\ æ{t}ÕC~p’/ô|s×Ö¸;nŒ`pa« ¸ç‡.Vœ×ç#)ìR à¹ç÷Â=}à•Ú¿ÕžjÞ[© ’¢là³O9uEm#ÞÏñk>S°í ÖlÊòOí×ó>½8â ^Z;ë©ÄçãY2©5Ø ýKdÈÎfÆ3ý$ŠÑmôøÌøÙ'²[t×—’~ ñ ‘ÿB~ ík¢ü!ªƒAþ ÝêLQþ­[Ñ~'Zÿ¢8׳ÍÐWk8ɸ°¬ï*æÑcûGúUˆ_Lê` }T¿Ö5¸µzwæs¬·ÖSû¢²öìâóôû¥~8Nìo¤$Íçâûm£Po&¾-6*é^øg}i3£sÅe\g:6ç íâ«Ìĸ‹º¼Š Aû½ó!uq-00&ñ¬|ð <ö܉Î4¥ç-Ⱥ6ÖÌ©v NÇüÆSoTƒ“K_³/¬xx›¶í ŒÆ:Šæ—©¿¥AðHã²»+Aˆy°ü  Ξ¨q·ÆzS³Î>\»°\$l…_)s僴‰_­•¬ÈjlP4 êõ åÅz¡ __°õámP(>4»*†Ǩ×^³ž•UK"㽃@¥qû[ñGa AãËS¿ZݬµêŸvƒîÜG%«^åÆÝnσ¹1F¹y`øÓÕz&X=ȈVˆgÖ#™GÀvÕ¦ iIÿø¹!<°î8$Ú‰?u:Nbý~ NszzGîåƒKûü¥ûÁµ‹5®þ]=xð._˜º%™žÏßZ’%³¼;ÆcÌÖßPS«Ç‚2à70¿ÎÐø<œZç¡Õ‘v#g회*Æ^Ô¢yXå: ßǰ¯Ce—¤ÌÅë:l3öAÿVßößâÙyü™v‡ô(?Fë>œ<¹Lé-ðã|΢8‘Ì+âúS2^Du©>²=<WŒïÇÇ#އãCF®ì’š[Ä Õ5¡ŸV²ÒùÁÉkTô~ÐëÒ ¶;‹--G]pÞÕé|8½‚M‹‰‘øhç÷ÀØ=˜èX+":GþÖ·øôü“Uô±+8ˆõKQ^ße—ÍŠûÄwæàV+–¥XÇt ‰#«kè ñ³èå¯ûúuÄÏȻޔ|btßp™MVñ›3ÍÑSé4Pxä7U¿< ”%÷ÖÜt´ÆŒF¦]Æ}À¼\äÆê¯Õù~žèó½ÀÎ{Bcûºzàôã hîT¹Öݲ[/·Ë³À·ˆ^gúýFIkÊ%nJVºDÑ'RÖùl8/!üѳ2¤Ýñ«gj¤ugW¨>È3ÅIØ »r+d@)±[cÄå.¨ô˜ýiž j#¢~'lgæF÷üôS ëýú¬éó³ [²£—yãb0ˆz6?«‚ŒBóÓû<ƒI2ûl>~0«ùò®\–,Ì_mÙq`#oý¼t7 ƒÕ+íôØ‘½`ãÕ«Ÿ|ô:Øöä­S½²ìéqæ{QÀq>ëúi0Ç.uÿÐ+Kp±ò,j©æWß#G\­2À=5@2{?xtþ~²ª=¼Œ—ÌÙ³÷)xïó)•a_ÎÈŸŒÎ4ð;ºEtBp¸µ;ùùAÔUË2~7Ã<µÂ¥Ç¬!TG¬R^ÂÂMKFöpÿ€ˆøì_÷Œ¬ Ê–ià±]È´È2ølÖ»Bö[^Î#^¹TÈ[‰b?ˆò ËÎŒÿÿpfþpf|ˆëKgêÍ :SÄן¡ßˆÆ™ÏŸù:þ7š?øþã’þÙ3®ŸQ€óÿ¨®´.[ÿë!Ì;|»ë\†L› ?Lê—¾÷ ?§ÁëKÛ{ßúÖ©ý ët$¼nš³”èu¬Ú#2vó7ú:oVf Vß#“²öl"î±÷ñ»ñþ©cpJQfÿ=¬ó6Ñs¬óSP^ÈW^^® ŒÒ:åóÃsÔ'já³T`y#zð×Z!`Ìùn¯ œ.ïÖ÷‹æ æo5€ï§€àª›{A 35‰!ëoˆluŠä7 ±˜«{¼íR@‚Ubħ}¤ŠS å œ*”š[q®äE8œÛçê€Â©ÖZÚ(7Ë '”J¿øíìÐÇ )ÖÉ~ˆ/_·òZЋ[Ä”“Ù )Ê|8Àh™¹¢AÝ0¹.¦®ûì˜k6K”Õ¼‹ÚÍ0ý€Ö[ojëî—µi `+¸´ç¢¿صð\ƒp¨®zd!ÓNϬ¥öŠ‚ ŵɂ¦ ®^o‚ÒëÁ}‚µâ¢p;xÆÔlU-S¯ñ«~j[‚ϱ±¥Û ð[Ö[Ú` q~wEñBPöÁ ³ ;`Þ×ÛYÊ ¼¶îí¬b3ˆ{ Qàë>§§ U 2DÁ>õZ°¸“ø²$àî–Úy8€òÈ_!þÅßêkÐúrf>ÝãBrDv‚ìåÉÑ:ñ°®6ª+ó/ðÒgÄß_¬«ÍS¡!—€ãÀÖsþ_-¯­µÏhsºLðã(.ĺjä÷Õ"žÄ‡ïõc܈]ûžÆÙZã}ÎÞ¢^»%pÒ[ë^io^Øœ…óê_<³¬97‚óˆý]·imØI P­Øw /$kDª|*Ž?ݶw%Õß$~©Îá‘[KŒ•vlôWg¡ó%²LÜ©X”C ‹%€1÷f÷¶[ŠÀ4úò /°nd©º¶‘ ,Ô%W-{ìJüܹáqt~}Èá{ñ—¤÷ª Ñ«xàwÐ_•Ùñyr쎿NÁ¯ßßGŠA8Et;§uˆ„-nî± Ñeú%ûLÙ@ì¼ ÓÚÕÅ ^K”ëlß’coã½Þ鞨bñ2M –¿© ‰à}ÝÌîά= è}7(Ào(µ[ígµU†Ú8‹mo@M·žºAÉ4 .V_ÝÚùýL&  5 v¤êèæ…Fˆ¬Ëý'»Ž-Ô½7á ÊÁhyí%›þl0a”|òLý5˜žröò½æaaw{š'íM+r~Ær øÞê.?5¬˜Ê}îSÁš3c«ÊÚ`#i¤¼Ï>l­™žlz vÁ«¶Wç®û.;‚®Ÿ‡ªÍf¼ãàÄ”Úé¦- s\9ëX,ËÀùØŠóeûÆ`®TÕª'Ÿ—ƒk^×R ª#¸›³,—0ì•·²7ð `³Š6c/ÇM«¶Y.o;&G6æJðqýyâZ\ø. ¾rÈü2¿=ëì¹C\ã@×:ªox‰?Ìúüjc}ª&ѼdžƒÚSÌó›YWƒF´>ý[œˆìr¦Î¬ûFvŠì­ƒ‘CùC4¢øóæÉxųÈa]S”G$ýª—ÃëUr݋ֱHçÉõ(ÖMœ±ßùÖØ>,¼a ½.€?Ð>'½ ¿N|h_¢Ùøm5æG|ÒÉl]ý Û+æ9‘õá8?Qþ T5›ž?œõ–í"«]/q¯]šô÷EX éé¼4à;¢*‹ui¢úLÆi—A„ÿutûF`h.¢¦|ŽÚ¢˜OÌê5{›éòïÀvyvÍáÓãNˆSìšCÀ­wQ³}ï]¼¿ƒùÄUÄá(÷S XñHñ…ñcÈšµûÔ+Õ¹›º‡ÄÊŒì_¢ó†?í{÷Ðõih†í©×A.ÏppBë*(ô><™¸u(±ß+µ4ae÷‹GnqE‚zü¹ÂÐHVPO‹eª:®Ú|£wO2€îüo|!v_'íÓ/YïM?,lˆýö›Œóó÷¿ã†y{ƒéýÖäÑ`^_Rud97XŒ©œotàpnjúj¬Þ‹«®á¨í\Ÿ7ì[ÀvÞ¶èÒó`ÏÁteÂËÜ^úêm,8ÍŽÝaÖ_μ™Š. àB{áZ’n‚ý»ÇåÚЧe:àh¬SÞ3^®ùw\"Á‡é÷>nnðÝx+ã÷)ð[ÉÈ('OnïTc„È ÷.¤ÜâÙ³ç˜[K•þ›öÄ«½I«’nb?…ìb¦ÿ›iw«+Ýö²4\ü^Ÿ¢ç!{Fö†ì ­‘_ü›0ŽëP rœ™ODö…âB´?3S§æþžÑÛÊ*žýÉCD¼%Äÿ@uiλg½¤A× @º¤NÊ;|œ5kAHj:=¯Ÿi&°×÷=¨£í#œÒøgÝ·ÖøË|ùtýÒÒ‹¥~?ˆABcöË bè|.×ÊÄp ™» 1jÝ*ÂÆñ'ñÀiAјÀèËø½0 ˜•Óã%S«€eä¼õ“Åt>pÝ=K5t[lùýAºEºH'JB~iPÿMÌãGu¦ˆ—u/ØlNË*ÜÎ1µeÕŠ  —Æè[` J|û_aÓí7›>¦x‚ÚÁ ¡n÷zÌÃÐáåãq=æªç¹êTÐ/´œ§qó)®îu>úÃŒ;ßîþúLOh—„\…ÙŒIkŽØËýÏfoOÛVºIbžksÀúËê@1I°õßÝ·ãÖñvdÎe—ʇ9‚\/2ZšÀž÷I€ñwpÍßÉqg‰ xí˜ýñþwð\¼Žö’¦Nïo‘¥’•QP~Ù+œ!ÀÔàTF1Í9Ís5[æm7<½kQ&„?ºåZ’áõ~†z©G`¾eåBÎ’$XðxÁÏzýÏU¶!)vn=È\7e`­RíïßT‰—7Å6¼ÇëOd/Ëþ-Dö·{GœIB ¾ž‡ìÕ ý„ûG}é_âEœ'œ1âºÒ¿Õ—’ëm"þ!Ò ŸY_ŠôàfÔ—"~ò¯˜wˆâC¤3…êrfîïð^Ó 4ÉM»áÚ®O{+¹–­ùÅÕû›ÅÁóWü²â®Pð.ûñ<¶i9øžh¿›Üí þ•‰‚Qs& ˆwÿû÷"0ïÀ°g~“>„…Fí4*€£3Çÿ†ù¾ZŠï‡u»£î^wMíßÎUA\ ü»FKÑskÌå“4Þ—@ß×™º3õôgÖ“"{¹NE~åë‘ ï{MjÙIƒ›°¿B¾àû<­Ì+À¬E[?èé,u{3èú܆Œ¯V¿¹@·r}É»ÇiìG#/ðgægo_ÛÏÝ?Y~j!Æ+¡…%@Xîr 5DŒD„_ïÑöÔÞ V}Ûãäk{O=dÌkv$ó´B×»•‚tŸb«Â) ªgÛiîÜr‰eÛ¬3>|SØÅÍß@Ñ£¡DáJ"(µ†VŽÈo•dk‰6ÇS frM}á%+Ðàeßœ? Zìù·ç ž eí%…[@·®Ü¨MOôF¼ûrµGÀ@d³ƒ0j> ^’F'˜‡®å¿CÛŽ[ß­ÁôÝ}ÏㄘŸ*{þ,Ý,Òw&´(Ä‘%#ÖÐVÕýÝM7pþÞæŠïíÑáE`ûË6ç÷A°÷Ýl{þÖcp¸ÿnù,SfprzðpÛE˜Ó~Sú2ë¸ìý–ÚÑ©®q ÷Vqƒ{È«£¦è|ý]꯿oŠÓÉ'Ý7ÀÇúÒ'ÉÙÚà›cùšºô<ø³D×±ß ;[N(^ú Aj½û'ÔaÝÍeÂoåT@ã‰Iúšµ·@2nû©¼cDÏòŒ"Kj'Ž‘ßAõgh=Šâ¼¿õš9ά3ÙïÙ5ÂÁ~‘ÜÂu¦$q¦®®3%u5°ÿ"óôi"u’ñzw¦^ ¹.Åù ¤W…~Èþkèwà:6¤£Ÿšg¨^LtÈík½û̓èüÜݲ2ªè}©Þ‘‰×oÖì¦çý-jæÎ›ŒSxô¨·Œˆ vÍ!«—ƒê'š;/•C««Ï½îÌÆzú#ºÔܵMX—x¬a_{Ñ\bBN@âóÛ0ºÞÔ‹ûóö¤SäÓÜ`/`cUº\V¬iëû¢ßÚ;ç§]·*Yp?'®9 SRš€ÇT¼Pà 4ðm>üyÝ›LpapÉ~‚I,7ü/PAèǪXÚ¹29Bi[\¡böÿÈ™ â;ÝçGæÝÉb;.²UôHióí Þ@ÕÜäFy±äV¼z.ÜòÍî1Y·‚è:mü*#W›»@åçèñÎß ®/á™~4ﱕ;¢ :*R–³@·%|¶Fö ПŒ˜ìµÀàV‡Ûm;0 ˆŸÈ¸&‚s3ÚWóƒé7¦ÏÍÙsÁü«,G›¨X ¸Xí˜×uäãÚ`Õ ·gœsEKö`M°-àIø&ÀöòÎ|ï<Áá–³¾ÀÑvpÚø¼úÙÇap_b,ZxæFÝ÷Ù× n{¼ ËU³[–êF€g©$—ôÅtðÊ‘Îý} |v|<xâ=øIÝ<½%üë×s]û ‘:eç3û@¦‚AïZ]0_od[2ùy¿;0âµë¶?´^œ©ÿ4Óßý·øh=‹ü"ÚBö…ú!/Ò§ùC߉¬ ý£ÿ!ÉGÄu¤3ú\ ?‹ãC¤[ƒâDT÷Ö—H¯õ½ û$â:²ÏÅýhH?ŒëÓ~â/¡ú´Š“7¹–ŸN·xÓ1¢'wÛÆÛ³jqÿ™oܯ’^ž5§çw$(]­ˆ!~Ô&Y‰Y6ÒûJYìxª¡Nü<½8¯zr>â«süël*ñ+a徫•¿‰qÖ.ñuY€Â±Ø˜µf;0ÜZ~Í\E˜RްÏ5Bé§z°þ¸ëók?°?gXRë3œ›Ù}Ë?ÏJÉî÷+O¿Äh$¨ ‚@ùÇ~á2[L)8}„¿¶[6 ?ÑÞU{mÛ«AÜþ›âÍË ùm¼¯ÂdüÓ^u] ¨·ËVî yÁÑÜàhPTeV³ ¼ÊŽÍ{sÊôAµøq,ÃZаÊúÚJs­ïL«Ú‚£@w^‡RÇ¡&ºŽÛQ™-Ñva`´u”Õ¼³L=J¨<àf­†œkS‚…ç@‹À(cyÚɉ{Àª/pÑøî(°IöoS¾5 vZRAÛ2À~œ³¿¸%ûbÛfþ ά”Ÿ7Ša®uƶEßòÀ­p¿¶¯Ö ð8`«vª·¼Xz…· ‚w¦óæØŸàkø^‚ùÂð§,–yèº~”OÌ’>Á|!= ¶zBHàÕö­üAö:+öþè ˆ°­™·ïÕA˜_öFãRLDú.‰—Né×üõŸyó%ãìÙE;ˆWW´ôŠÏÿÂñÙL}ü¿Å…ÿ§ñ!²_tü?ø‡ˆWø·~ÿ‡}.þÆ?ü÷•Bõ9ˆˆxý3ü)Ö-Q_ŠùÃH—fíB±í”?ò(X§ã~?kž#3ñÑè ãî'Ïéúàd}NÒb [¾¶?ëén#Ò©!ùXWªî¡‹Õ­·Ä˜ÈéΛsßã{"Ö]k#hmÏÞ¥pàºp&î}F¬ªÀÂjÔ92ȃùû¨þ†«9™öä$ðžàé»mj üŠ ¿Á¼£íJÑ–XwCÔ ½¶¥àÌZÌU2?ò)ÖuCü)9&>«E}"tÿØQžãAå³ãN¾žËAí‡ZLsÄUЬéùxõ>èt |kN½ ³s.ɃÁ߯±_>Ñ©#.¢¬ú`Ò÷èö÷¹ `ž@a¸#z,uóKÌ^4Õ,Ê›ì‘7`]¾r4ˆÓlSøLT¢sÀ~ÙQíMP ŽÛung‰‡9uŠ<Ùa®yÿÄí2QpgZ¦o½<)‰!1oïƒ× “lfÓ7à³Ìë½âͳà3¢›+ {$Tí¾AP•Û7Ë:ÙQ!ddázû7†ˆ»ƒü’°6¾O2Öwh¼޽\Ÿâ‰á/Ý$>_©?È_œ„ã5Üo̯#{AëÈ™:úÓFþùU”?Dõjh]‰ö?оîãIêÔ >½¨® óH ”ODû¨îì¿Å‹8>Dz¨Hçtó`c{$½ÞÚí÷÷øìùدý¡{‘¼:ºá„*Ñ-yÍíW½ æO|eü¸19†^Í»ëÐ{Ùaº¾/Ù×­/mvöp9þù1Ü‘ÁÜZÆñ *0n¾¨W=” Låëi+vœÆöÁºz×ñïWžÓ×—dþ«Ð¥eäSðÜŒhR[üŒaÂkAÀ@…•Ãëþ ¥=]:@Iá³u¸>Û‚È{íc¹ÉtšÇÌwWœyÇöûæ¤\©Lñ»Ê»'@f/ç•7.@]^šÞ±ºäê W¨=óïòï‡ÚA‰á‡ÒÀðMP¾'™’õ»T·/OŒ¬¼ê„Ŭó|Ú Ñ«ßw©ñh]”ç}W:Y¡|Ê“qâêñÆ¥W@¯VâçI­% ß}huF± Ö…2ºQýø¼3˜8WÞ¼Þž ¦.êUƒÜ`~]û -ð'Xðñ|·ˆìÝñ 7UÀ¹º}<`½úüÕ‰3#`sºíýײ{`Ûã/d¶æ2Ø[ú­§2‡7“ë |Ÿ s.dp­ýš.Ìz62àªá¼\M­ Ü…Î/ÕYß™ƒKÔYªÁ³P5Ù22¼ͧÕä$ƒ ¿z©+7øúXš'ßK£ëd5D³žNƒµGççL}”÷•Óøfµƒø<Þ+pß<çOD2ïêö5ˆ$)шÁ¥ø${â§n÷a›þÄp¡—q—󼯹Ÿ‡“ÒÚ¾Q×d‘eu:@Ð⃖+ž£ó(¢ J˜„ÓÇ5—l—_–Ë?\Þ–¬Ÿ2oYÜöu¬êR'=Ópžœ¦¡/pËôÇP|™€×µL—'Lø#í—¶:ûƒ@ _Y¶sÖÛ¾Áîru›&ˆîõjá΢ë)"}6ѧzÆÕ¸¢œ¤âoïÄqß¼˜7ËŽ«ÉŒdƒÒÀ«èí÷Aåé•Ͻ—ƒÚ³ƒÞ…É Éùk8}ÒÿjÏûj*ñ¾tã“—ÈøƒÞ™Eª`0;XskB#Ö}ÖIÜÐE×oCý.Ì„[ ›ÁÂMW`9å6;¨Yƒ`•¨9žy—¬oÖ¼^ ¶ ÖÚùå€]–ø’´ˆµà ¥±ÛpÎ08¾àúÁù< æma—œÖZvv>p½¶0U0}?¸J Ãê ð4“®r7¯­«ê"ÍÀ»/Ó4ʉ |Wë ©s€ÿ¬ÇÁ·Õ”(fF …‘F¡Px&ÿ™'ÿ—Oþ3’ÿÖS3ýó¸ù8?ùŽnëjéE¢¹ž– š³˜h離lú¦ZÆFè&ƒšè£‰š¢‰š£‰ š˜¢‰9aÔÓÅ3=<ÓÇ3<3Ä3#<3Æ3<3Å3Œ¡1ô1†>ÆÐÇúCcèc }Œ¡1ô1†Æ0ÀÃc` Œa€1 0†Æ0À†Ãcb CŒaˆ1 1†!Æ0ĆÃca #Œa„1Œ0†Æ0ÂFÃca #ŒaŒ1Œ1†1Æ0ÆÆÃcc cŒaŒ1Œ1† Æ0Á&Ãc˜` Œa‚1L0† Æ0Á¦Ãc˜b SŒaŠ1L1†)Æ0ŦÃc˜a 3Œa†1Ì0†Æ0Ãfà c˜a 3„Á¤§«KŸêѧúô©}jHŸѧÆô© }jJŸþƒöÏÏ#y󒈸(rκ0м5ý,«c­DOa™±`1ù kt =3lÿÌõ¦Íõ§Í ¦Í §Í¦Í§ÍM¦ÍM§ÍÍès£i¸FÓp¦áMÃ5š†k4 ×h®Ñ4\£i¸FÓp§áOÃ5ž†k< ×x®ñ4\ãi¸ÆÓp§áOÃ5™†k2 ×d®É4\“i¸&ÓpM¦ášLÃ5™†k2 ×t®é4\Ói¸¦ÓpM§ášNÃ5†k: ×t®é4\³i¸fÓpͦášMÃ5›†k6 ×l®Ù4\³i¸Ø™õu±)þ3×›6ן67˜67œróÌÿ¸ùlƒ™|Œ)"ÙÓŠ¨5è  ÐÝÌIQ S¯fùçÕ¼ÿÜgE™úƒþÿu´â'ø÷ù¬Óÿ¼n9eÆë¬¤ÈÑ‚_Miä¸Gvj<@Þ>²cjÌ'ï/ÝôïxŠ|ülÑÔí äóŠLݾL>ÿJÆ¿§nu•|]ÉÂ;ÿŽ×É×—ZO=^Fç¦äÔã·ÈãÝþ9õx%yÜ;1áÿŽwÉãß}÷ïXEâܳy?5’x÷/Qÿ«IÜé©××øµ;§^ÿ€<ÃS¯HžÏ£¨©×בçU÷bêõÉó{S¯Bžgý…©×?%Ï÷ÿÔHž÷³{—þŸ“çÿ|­ÇÔH¾ºýS#ù~^|Úýïø’|_/éNäû{åólj$ßçk®eS#ù~_WMá7ï»aÍ~ùþßèLá¿!¯Ã›Î)üFòz4™Âo$¯K“÷~y}ÞrLá¿%¯ÓÛ;SøÍäõj^=…ßL^·­)üòúµtLá·’×±õð~+y=Û<§ðÛÈëúŽ} ÿy}ßULá¿'¯ó{óÒ©‘¼Þï°Oäuÿ=àßñyý?Ì=35’ŸÃ‡Ó#S#ùy´39MäçÒš35’ŸO{Y÷ÔH~NEL§Fòóú¸l;eêo‚üÿ'(°¦Ñ>®¦Ñ::i´./íS%Ö£I£}>L£}a£Ñ¾®¤Ñ¾} ÑúÝi´ï·h´5mðö“™F^N£´Ñh¿\h´±2m\™F›Ø7Á°tÒM7Ošÿä9³”L†  ûäyqŒS(\± wãäÏ‚=…Âw…B˜¼‚™“?¿(‘h Etò 1ˆB/¦P$'%¤&? éa Ev2È >§Pä Eá…¢$N¡(§Q(*ŠZ…¢^O¡hΦP´&¯£Ž(…¢»…BÑ›¼V!Ša…òç29I¡˜ R(擟Ù쯊e…BÔNýf±Mþf13Q(‘´©ÛZÿü†‘׊•BÑþç6ãÔ\‡œëN»OoÚ\ÚÜ`ÚÜpÚÜhÚܘœk¡ûÆÈñŸßNô›9í³Ã¡ßÍ™÷ÿå5ÿÃs3ù¿tn¦ÓpÍþÇç`E¡ü_Å™qÿÿ{öÿÞÏ_pþÃû™g> c6í} نŴçXþÅNþç6@__Ì<—ÿùwõ?cbÊÖ ´:b L­}8ÿYIëèêéü»ÆšøŸÞ!¿V´ÿ¾Ëÿô)Z£×OçTêäÊš±4:juaBü’?ñÏÞúZÎ< ãÊøÿv+Êÿö¬ÿ,DWpþ§G¨ÿÄ…æÿõø~ѧ…:_þ÷ãðÿoÃðŸNQˆ±2Š¿µteBÒ_®¨Åÿë+jñrEÿ㙲Qÿ ¨ÿûUúß›úo(þßCýï§8ÍDågš(GÂäu]1ÿß}iOÄO`Y³2jÉ2ŽÏêØ¿ë*ŠÕ±5ä˜GŽÈqê¢[ŸEŽºähHަähAŽVähGŽNä8—=¦¿½?NîŸs›ŒÙ'OŽ3²* 2DðÁ¼ }éúÇÝ ·p^eÞÎà:UYÞ$©èˆÒŽZ$]JeÕI^ ”ŠD© DÝ@ÏGÒN¨d§&î_zx£—.…$È’D½Ç¥­ó¾YÂF—Ê!¥np©+JQ’H\ºJJ,¾¿¹{£’®ñ!çÚþq‡@,…ƒR,üן$ºl—Ë—žÅÔýždŠ®Ûã•DoÔÜÙsbÊèÒ‹ˆìÐeÁ5èF§f ÖPBNGܾúcI,…$qJŽÿú¥(†ÔŠ#0Нˆ·h§·ˆ °Žž?"%S9TÍæW—u÷ÄE·eÀ³qÞÑ5ú±À×|Ÿ9>Nt&NÁ4S}¥M?@è§Å™Dø"›7r[tS@Lc8ﮘÌ=ns]HüØÄýëÌu–Ê8ó<úÈ&³ðÞ0ì2ãÀ!J-þ Ìpbì5¹uƒæÓælî—謶ǭŠàªI·1ï"¡Ã,౨0F&><3*J½)à5W­ìaX7x[5¯íîc_õSYðÕhúxéÌfð“ýIhݹþn#õÁâ©Îáo¿  k«}׬ MmyÓ AÇu ª˜!8ÎÓÿ¾;æi>Í‘3óÞ‰^ÚöN¥šYŠ(¤½ ùr4è1|EÑû—O1š;ŸaXî¢Ì4OÚÂòPœrÖ]hê§Kö›ÊPßswDœª¬"°V¬¿¹þ".•ãâYû*æðl‘j+N9 üb&¾%ûõÙË슿%¸%^¬½ qy‰ vÔ>…A² 4‰S,-!£ 3K({¬)ôDúÖü OýJ‡î~S*¦¯/í¹QÆ”îT0Íá_ôꘘ·žL<¶ûXºuçÇ„6ô\ßyßC°öÛ௽…lêêi‚~‡ÀÎÇ:Ý8¤ìû¬å«”€ã‘ºó£’0gž}n²“'¸h~zDº\ù†7]õ^îLÒ²²×΀ǵá³örà™ñ±Ó;¤¼Ž.®‰¹Þ×çÛÞûp|^¯¾à”Õ ¾cjçÓ?œåÏTo„ÿ½¿+~}†À̰8 ýƒTó3òò¾=0i"[…!¶‹ü]OòBh*[®“³#„U›S³³s <å", )À¾–{Š/n€h"ð}î_°áް)zµ¤—Ýaxè6[3 {D%š¨0òS¨Ä¥ÚQꕚΔF-*PI(*½A%3¨Dµ ElHJµ¨Ç­_H?3p³ ¥fŽ1¸ž¯äpÀebHæ‹ß7ÄPyìêѶ4\B†¨#&;Fù}NbjÅ/j[”,1fà+¿ ôñ{žzÄþÌ<Ô .U¡½ÛS+SòQk4Æ¢€‰àK15‰ùãšo'üUÂêê×½ƒÀ¶/P¬e%7pè›}ó:5œ}iOšìB€».¸‡¿W.õš_›îÙ ‘â'änráV£BB¨r œ¹4ûL¹.å=+Ô²)ü5ˆ]©Ü+R ³Ê(\®x)cŒ€æ(®(ÿ’'?½)ÛëRy¦ëÝU@º`‡õoÝ s=ɲÄyȶ±ÏãÕjæÑÂ{ÂAΔ—bfüKƒË_9m× ©ÝAB7mA1Žß³*Ý”– o>vf”3$û•ü™¢Ë¬@mÃ5ÿüSÖ aqˆqßéÐRIeøåò…Nå(Ï>-¼Uôº² ^8?ÓƒúRÝ`r~Õ«¥Áèx0O•¾:¿;êÁ, ¦’ŸBôóÅÀ,À¬ý’Ób0?"pÛ7&fcÎØ_ –¾ýE5ía@¼ý0êYÇVÖOÄނµÿR•°Ñ2ðÚð9 l]1nÔ»ºù,® `ÿõae“îFp\{7±/äÌ1Þ:çÅrspQÞì•Âs\=×ܱà¼îuG^—$ƒçì×>_jµÀ«jûV — ðIúj»žé5½”.gwlsF, íîa›Ð‚O[ã ÛU |ߺÑ6;.˜¿2m×ûŠÏyúÂÒ5«m`×Ùùo}Ù’!¼óù8È葾/QŒâ³„„äÎ\)@ e™Lz±ÄE#ëFþ}ý‰˜¤œP *õÄëP$1J¶&D-d¿BëH$á„J]º£RëVgÕÛspý©PH»ç'CÛþ´#±ú.€•ßÌÕ*‹øUèQ'Ÿ_Œ×mHŠÅ}ˆ‚J®5•¶!‰'DéE#*«x¨ªxâôJ:åQ:H{ET,éM–¶bªÅŒu(¢B¡ßtI-"Ê$*ñFTà?Ö¯dü‹¨ý˜Z‰Zx̤nÒŒ˜RµØçá÷óÍtj?¹Žè]) 3z\›øæØgíÜÆJôŸ?yðÊäïDØg…‹¬}˜BõÓÔãäèÀz+Æ‹uc¯(RĸÁòkwš´!)GßbWÜ‚‘I÷|`éÅx`a\ç&À'¬¿Ì$ÛÎþ=“?ëó€Ëþô=‰ÂÀsèØá"†<àg^Í¡.ù‹ê-êAðâs±yœ7AX‹íÍ…"•c÷•9@,òÓùÛ+&ןjÇò $%vç GøƒôÜHʺøN½ÜâÌ­Ô rr‹ÜêÇéq"÷Ó’Û AéþÏR¯… r1`ï÷Ðm v³å¡f”hŒ‰ÊðÙ Ú ¾t¶F]ÝÍòç·VÊÑ[{{GÖEoü†×ynÕnãê‘Ó`º¯)½Î- ÌëµL¿ ¥½æµ,¯ €¾Ê^Y–9`¼9Vñ‰!Ø<ŠÜrGŽìàé=ÙG«ÀþVëÁ”ÇÁÑ÷aò­šWà4ؽEÜ¡œËF”'ÞDÂÜÜEî. «ÁíBoï#-ðêÉ œÏ’sÖ^«¯l®÷¿ ÁûN(õÅø=ðùõÛ3ˆã+øY»-¬™Œ wnëû>–®3 j€ ›¥ Y ‹!øÔ{”Ñ“"bpðôû`Í ›Íé8¹v+?¼. áoú_÷‰qCÄù–·á[ò`³”WK 'x< ¾ïÞ’¡G_j?uÎÄÔÙÓÀf×ÃØÁÁ!çDOŠ×!ÞXZ5ð|Q+é¬þywö:7ÁY] WÝTaéž.k9@4ÄrÂçÆ^˜Õuò~¤]H^µô¤ñ5È<÷ºØøYäD½K zæ`?©ø®eö'ioPáÎØYG¹ j‰‡$¥ø@S¦)vE h²®‰‹ä=.ï+å\ _vžû”J+îQ1­8 ÆYaaš€é%×ëBNƒ9Í>@Ön X®j=š~Ϭ„>”sŽ<ë´ ¿îš`+fë±Ñs2^¼+³9Æù 8ìº÷8ë88-‘~ØZú œ“OtdØso´Ü(ÍwÞ¤øÜäð¨Üµ/ñgxÒbvž}iÞÎ¥ÚÖ™¸EÏnËð_Ûpná® ººÖ^yénÁ×#7+—BˆŒQ’Z½ „îͨJÈÞð§^ ÝéïZ™)ç³¼…°ËÝå"k@¯á͘ò–àÛVv’øüüèÛ¬XâùäŸÐ>)ò“x¿†´WTâ[¥‘¥ÞˆŒ¤¡P<‰(…ˆâ‹öOB”|\²ýP˜qeµ?Ž#Ñ>&–&¥*ð> [Çj¯w~ÄgÆvÇž¯:D¯äÊ Òý÷±”nqh«òöcD ÑŸv‰£Ïì&}ÿ$WôcDç~bàQ|¸Eü>bHl+såá£ÄÏ8µM?îÃO6Ôu¦K Î,ñÎ2ðŒ~ R›žA¥]*IÓRˆlgïqýV ŽÃƒsêµ×¹‡¡i§€§)*ÞwU}?% >hL~/8~yÓ[ºDÍ–7R>ÏÑïdÝœ¯Á¬ÙÛ‚Ø:€ø.= øàË·Fê H™ˆÜçTíé=®µ›†ƒÌgÞí‡4Je´4 4êSÞÚJãu ·U/>õx<È;YçÙÅN€‚ðJõÃüE Ð1¾N»á((Þ-²Ýt”®,ö¾71 Ê·-„r¨n Òá)áÊ jò¬†‹7ã–Šï^†«?­ù^÷Ïsìí/ ÕÉÌÇ@ŒC#—Ì=±ž_d}Î#,ý5` àSõ eYËgƒÑš” 'îÉuè‹£ ½¶ÊiòƒËû÷ó“Ô=Æ«Ïep`Z®?X9L_ã6"n;ÂXw—Çé¸:pªb®¨)'ßîF©ûÁù¾ö\-†vp fmÛ¢ ¬QEA’\à•eÖß^Ï.„mÔY >n­=œÀ·Q­<ëÄð_pxï® ít; ¬’ ÊKà»_ÄC†ŽAˆJ»˜mõ-Ý_¾e³Î›¿Úá69~Ç ¡)ànÜ»íÁeгø-#p 8sd•¬½ƒ[s¢õÙKavŽÚÛ58Ï€ö5Ѻù'ÔBQŠ¥ µ®@ÔBÔÊ S¬H 0ò?Èï`ê=’òŸU¿Z“è§K/2Þ+—ZG£·l#[ÙˆKZ¿Ÿ/Ÿ.¡(ƒ¨µŒÓQËæk?ˆ®ø’ÚgóŸ&ØÊ?=6?Xµ)D/wñ刅˜*…%Üî¾ä°7Üúë6×݈áÃÐ+=J¯zÁx'¯Áâ$0­ŽL6x`æÒ˜ôÃÀ¢IÌfÔ dâ†dê:°æŠ¨_¯[6Ûv°v€ÅI÷KýÕà ¬ör=ã pR>Ç»}v8«ÔẆ¹‘1U“ëP7‹²ì«Â;ÁC¸é Ïx|Þü‘šž žÝ¥ö+‚ב{UKGÁ‡]Z…ÇD |Õw34k¿À†ÎI^à¿ÿé1óDKx'3ð1‚ŒN_«©¢Að¡ue܉vÂÙ¾Aòé|Ýq•o¿ „s޶îîX9->¼µ½vßKØÌ¦ejûö.¸xŽ'Û„]AKÁÒŠ$‚èKøÌµÀ­KR ûCñòo˜šLR‘”ÍßZ£¢I\a œ™TGò¸Hº‘¸ˆúˆüíÌ} tžÈ/cj$)±Š©ý¤?Æñ$’€C$CR#‘t’AöøMîÒGÛäo‚ݵa½/Á¡¯áæ‘0Ç:)N’š.‡´*_ä뻣ç¾ihûXyóíÿkv˜µˆ‰3¼õ6øø¹ô‘—9 s¿÷óõÄïÇtÎÊø?´27_Û‚%%оj)ŠöEÐ÷í§ »Àþq†t"²´¿‚¾çσBóx‡Ÿãï1Ê«cCæÍ;¶¿Žóqö">hÝ Ãï‘ß×^¿m^a)ïÏׄ·¦×0âI߉WçyÃg„ãÂo¿N~\\ØO!êï÷vY_ÎüÄyAáeYó·CYBu{k±„ðˆkvËUb´sGWÉÅÍØ{*_ÍJÐ4×µ¦Xº”á”lä­ƒÀxç§ç¯-=ÀôS‚uoßa`™ãg¾i/°V™”Tÿì!²ŽEbSBåò¢Tàúf6R <ì=nT|ç¾òˆ|þ'{ª%ìêAॾèÎó ø…·§áàg–bUÑÕ?"1íõL£Âô¶rñ#«%@¼¾•Ñå;H.yÅóä H÷³`[2û†–ÅVUÒÐgáãcoøö˜ äÕ¼ÛFrzA!eøZ·=(I›+DIƒrÓñ¬žò“ ºÇeÀ1ǾδO-¬,Á~Pë+s·iÉ{ÐqÖŽlz º¶·Ù;žoÝú»ŒJ—¼AÏâmQ Ð;–‘âo ú"}>ëÙ@¿6¾Òc™ Ü^4wp÷-)K'FÄ;òöÍ_BŒ–qù>ØFŒEÛsl­ï#ÆÍÛ›T|šAOÓ¬ œÜZåÓ·î¨Ë&Ô,¤Ç•²b‹ÕGwKBˆ—FûE`}/Êgm6ì+2æo—J Sú…®$z›™¯ÀÅgµ³´_•Zñøñ9÷ma½,‚gT_…ـЗG9¯>‚ˆ®$%[ùˆf”>RX ³Ëö½7¡·Æp»è[rdîð}yúZ ¨9ú5'Ç@î¨{Édz Çö¶êj"–,VœµÆ´ª(”„Ö±”Ìöe½ð3ñ×AeiÖïᣜ zãüź:PgøYí”r4BÜ£eµ<@óY›v³¢"hG}yõФtã’5V\r¦K‰¯.ÜÏ* Fgsºb‚É‚Ëõ6`Vz„IsàX­ôÛµ ˆý§=3—/+ç€ÔœÁZùhË¢ë`ÕT²¨+lr8¯ö.î[‰ fyrÁvß½bo­c`ÇtËŽ/éØ-fÝ6WÍìÍb8Zëör±O¬3Á~¹~ê£Á¾<Í•:¹Îµ÷ã¿£eæj—wPÁaù›°A}+p8áÝ}_ ^è8k )ù×g=(€¹ÍkUúÜ@ „·ZCL›øò`ˆùÛì8ïŽö=Q=Šëý õ#òwȾ=¢VßhŠ%SÉu&²;´ïƒêpp `2îCñÚÌ<ß›Ýg |q½²3$õìÅ(ÿˆnϬ‡ÃöJîá:8r}€¤7p p$þ²(ûã§&z‹7”—@ñ!é·Q=Bßà–ÃË«žßçS/~>L Ìoø¢–ÅJ ¹œ¹óã)1Ã9¦.\‡íò·}—lÒSl –£òT{`âZÊ™¦Ú ÌwJ àÖÞv_úJ€ëxFË6 ~à¥^ŠótP¢Ki<]Rf$:BÞoœÞì•áaÿKUCs@´òõþS¬¸.G¢5uEþ‹· M ÷ ¼V ²qª*4v ~tb¨oyÑáa ›9(D½³ ðt¤çïO_s×bتEÏÖ7þ²õ>¯sãÐrØ{Î=tîgv¸OÚ•só×#+@?ú´ûiÍa0h`+ñ<F«z?X¶±€‰¾æq ˜1É5qò—yó:1Ç|°4ïêÉçÙ.ÞËý¬—ÅV$,ˆ›Æ]~›¥€vÆÚÙ£`¿“òp¾@+8 Ÿ`uä§ÇŸ,мÎ7 ÛBÒan•ënÁ…àV±¸\Æ´ <î–_‚à©ê<ëþ²2ðbYT«E¯öÅC¾à}ºö.„QÁ'fG#SÕ8øÊ,N‘Þо9”Ä#ëÁ/æ KrL øV –‰ÿ¶Bk¯z`{Õ~4Ï ’ÕŽÕ]ƒ€Þ­]QVް^Ÿy£(S(ØÅœg1îîrH’°xEt=ùÝuâ ½.ù©™yB”Dþ ÙŠÿäÍL)$i5SIà ûDùI´¿úÇHÆhDR>8߈â™u­ä¾ŽQ^…ô÷8ÏHÖü5>$ëˆP^µ’Bû:XZ•\_£RïÅc÷Añáº^ ÏÄÜ*K\½ax/p·REù#ìgÏ)I½ÑD|Wó6Þ¬°çS°´#Gº¦+1œÛãUfâBŒn(ýÕúÿ°÷çÑ\ýÑÿ(…¤A†4*C$J†Dòz*!ó”TJf%C”)³’È,‘ ™¢A†"ó,•™Œ™“Ò¤A‘në÷sÎë.ïÛú|×½kÝûÏ·µ^ë¹N¯cXu¯ýØýØ{W“£ý'µ,K»Et9“%Û·‘y"íÛ‰awi7,Iÿ3Í;* ú¸¡l¾Ã{°ôÅ~uëÍnäÕ•ë„×ù¦9.Ë‚õÕ.°ì§HImgÛiêêÅyý•X ¾y7ûéŒeÀu–-"çf xÌË’Y°5HßÊTÁüúO»žÌ`{À©ìMa'±Ãk_EºYvé¾ê”g? ‘ÙÑ:ÏpNˆUЗÜM¸…Ý]gwÝ“©„¤^=û¾ÏñØûù}e¦¯.dœ¾T^èá>¤NÒ.2ƒœnšá"®,ÈM`Q €ýù9!SÇ#pðò»¼|jýbûußÝZòPùÌÅt‹¶ªÉ<¬ëd ŽÀ™úÍÐ0”6çå‡&—ä½$Á)h¶FrÝ’>-×wgšDi ½þÀ³Ÿs7 }?ðN÷ÒNèHö°•½©ƒNA`㽇С©o ­îm÷þeú УSÞ|J\ó_ù!hlíLKª6RºÊ¬DïiÒú$Á ‰ç”x~‰zÉWÔ÷ ý”8‰xJè?DXMÄ¡îú˜eVJäHà¡#§•œÏ¥“qf|âø„œÄJÊ»â Õôrö¤•ê´Þ¯Êû¯›"×]Ô¦¼¯}ÎlמCž“Îl»n¼¥|(áKö3 ¢æƒó>ru…æfÞ€#sTéã”0l+HúU¬¹:îóÔœ2=êøíÂå—pN^Ù e¦ï˜ë¸"éK%GCåšÜ\Ì¢šÚ›¿U^;RŸû Çϼ­ü:£ÇL5ýÔ¼Pþ[ÕΚ=`­•éèå Ö¯Þ²HѨÁ*ŽÒ5·-Á\tÇñöàe¬®ÚRö0,=lÏs7ƒÎ yßm€ýPÞaKûZÒ‡JðJºÁàj|ÆæFlÜ×lW®h ÎØ„—ww^Ç–µZV{tT±åíJ–OSàêâíË—wSÆ’¾hOðZ])ð°ËF׸`ð÷Ù…»«‹B AZþìùÜ0Ãw‡BjAÆ<ÕØá*Û8.‰m¿né±bûÜpk„'óíÞ}¶‚ˆ¹ÁaŽqˆ.ñ©¿Æõ¢q˜>œ‡˜B@Æmsˆ/ÿ:W\Ûñ_¯ç"oTCÂʼ•½{fú²i–JA*ïlÙ¯ÀoŽ Ü ?úCv@D‘AÄûȾÞà³ÜÈÍ)fx]ë«mҞد4,q=–öÿ³üÐ?zÏ´Xb9ÔLYw˜‹?dž~Å´ï×OSf“í½ú8þw~ø¿óÃÿþ¿Úýê*9ª é?Ž‹ßê%ó÷<:ÛÇI?Á÷ý“ð£‘x›¯Wy 9Úqž‡£‰“¨_<”¨'~b¹zm^G%G§«×ˆ¾ÄyHœÄç;‚/y&é7ïû ü d¾8MÔ'ÉŸ7Ÿov\êPý6DÖ%Þ@ôK¾ÂÏ6$Ä—¿´Æœ::|~õáó™HÑØrà²=e2*¡„K׎òÉC¥ô‹Ÿ<勹úÝÝ.Ô~EÝÏtÆ”i¯ô{»–Q~}º^wä”(•gÊØ ŨùƒæIŠóf,Ö}›°¿êè=ÛÐt€A*·Vèb }½Ã Çÿ`ù’<}>·_XY¢{HÜm ÌÍ:ubktÀ¢Ï¡žÀGÅáígG—WՀùþ(»Ñ7¬»b>;ÛÙ… ×EwÑ»€Ó¼/#;ü¶Dªÿ2© ÷R—˯hÇoà^¯ÎleñŠße3K™š12j-ÿÛ‹Úu.,³„Ð\æh•ð:;©Ôʆ¥C„“n%ëïˆÞ³y½â/Ä$’¢÷@‚ï`ŒÌûe¤¹#¿ßÝ{å ù`ŸêÆ\k5/Ph–]¬¶„ìŦAꉻûìü„$ä§îÆ/ׯþóm³”{Ù8È­°b økž?O”‹=“ÿ@¥2—ùõ9.¨^ü=­D; uÎü»sÇ3¡aõ~Òé/]Ÿá¹5EšÍ¯‹3vÉ@ËCâý^‡ýÐæ~tùû>h?UÔ©Ø ¥ßmQ"éÐid™Í}wºÊIÎ'B·xíäè«}Ðã{ÚñÐ. zW–_` ­ÄÙ«|åð¯îxà Q ¦B5 c3Ê0k«ùÚ~d ¡Ãx[X$ò=b$øÂ•Œ Gþx$òF"¯$òM²~8gÿY?œ÷ç|=ä_'Á‡Ézã¿êŒÿÁJäó¾<¢ŽóŸâ û™ÿµ’cÁêa2o$ô"þ&òÐÖº'ë4o V~gzßF] GôŸþqö©wëË–P¦âií›·‘õ•'“øCÖP~&=W{û“2»åk@àÊ\Ûjz†T€pƒÐNÍ4,¾Ã]¶}—èäòÊ o€íXbÃÒ<²o‹‰¼òÈLŒ—(?˜Ó¾>ÍUJ‹J茟0ØÖ.òv*ÆšUææ§°V”¾'ÚD 룾¾*4œÂ&ËuŸ$wV`‹ÙNJG—)¸OkwkøÞdïÎF&5ðs ÓÿÌäƒÀ+÷^ÚSz1x÷TS$v-~ëwõ¨6D:´ óvBl¨çÚ¯\Eìþ-³çs$Ù®y5{D`¯ÂãÕíž Ø÷¢í„ª[PËŸÁºü7äܬ„£E|¡°¹¾=ÐŽûÚêîsâ`P¤)§Å3R»#zÊK<®…AåÁJ×´®ïPU)u-z µWš×6†BC xÚcRý›s%oBóJSžE$´ºå¹Go@«¬þ÷Élh«±Ò >à‡vs/Eié'èÖK¬Ùt:Åż:½#ðˆØtÃrû&yÜ·Ü…uÅ]¡›RÎQæTjëx’+é‰~_¢_—Ð=ÖõÉÝ V|”ˆ—ä*yü”¿{–p-¬ƒ|¾‰~ rÅÌ‚UÄÄ|¢¿žè§”¥š)o¡ m2ŸŒ[¼˜2ô+&嫸,u…ð||ôÁÈú±1²/‚X©MôY~ë çÅÛëêÊȾÇÉÃå)¼‹x)—.s70w£|ºðÆ¥ýÿ´ê"chÿºô”©qFÝŠÐR÷ü>tÿg±Ÿ7e:ïÚ†HÓu”_ ·¦Žÿc+µîÓ¤üqª»©ª^EöKѺ=¸yÓ,¡Q,qV: :¿Å1[_:èÒõãtÞX™•ÿAm–G½þš±¶ºÑú™ÑÍ«uX}éü]Û°DªÆu7-kAƒØŸVêªRe¥Z™×û©«J%‚ŸÆ,Ög§Ž_ãçÂÆ­Ã4ÒáØ”p›%çÌl¦Ü«œRü€-!ž*ŸsÀu·E[c¸?Ýâ.z£ ^Õ÷ky|ÃÖl;÷‡—mÀ÷ó“ˆ4Ÿ¶ñm™[åmÕ”„&lO^U0v™ôwïxG—r×û3v­v>iª^ 图Sc[tw«g4Ä›‚cS'k!q´AÙ=x-ö•pµ½…dÂWݬ5ØË;dþ#eÒ©Ùü‡,ƒ!£î°†ý}6À¥¾ñãÛÈ:°?;Ï9ã²û3;¢ ïó›Û‰ #e¹;öÇ+÷ÓÛâà‡•nŽ%A±*,†f°‡‚i~¢¾JJÙfQS£PšöAàÐ?ÿ¥“þstø‚•Ržÿ52ü_«.ÈQáÄJ"^Íó\Â'Gêó}Äç ‘W¼µí¡:{K1u…Í‚8FúcˆÕRÜ–f†û(CIœz¶›:HëØÖR¯SÆ¥¤žÓ|«¢LDV=ÑУL®ÎpðK¡|¬â_m5Cík&úñϧ7ŠýÙEùÎ4±Ü‚žòãîSµŒºW”Ÿ6#ÑŠ‹VPóÇXÓÕ4nÔ¾(‰¦‘«±$ž·…šDŒ›’q¾™¯yçË(, øÙ)” ‰eZ‡;ìÕÆ±|ÕÔö+Eräÿ*Ú%êyó¥èÕK¨¸n¬ŒaúL ¶óÝ9Ú¥ýXcÒJ·ÜúÖºñ§dïkÅú›Õl¡®>ظK]¼‘œJ¢#C³Ø<÷ K-°åk\”|O¸™ÅÓ±Ù<Îûèü±u¿ø-¨ƒ?Æ×_ÑÛÅŽÓ–å‚ÐÔãÓ_¬˜!,½õV¢4'vYÍDßœã…WpÜ!uˆr¨ï>> 1³Š}!~ŸVßÉo1$ÌéKÄARñŠ„Ö-_ìÝ_«-*;€}·È6xÊÈ6mOC~È–ôTo`…üÆå³‹¼é ÀÑöìTÝ*Ò¾ÿË· |^8ð’»q0.UB`d·=Z…C,Wøzp¨Ð¶Êqî(”ô\ËzŸÏBiì±ð“)([·Ü/Ùå±ë¯—_{ýå‹tŒ­ Rb,duø),jftµ=°C¹kÏöUÃXúË7õYeäÂMçµC¨¸›Ç‚GþkµÆÂUp%ø)q‘_.ÔO ø!>]†œ1¯Ï~Ñy<z ‘W>YÒGJô/ùß|þH®ú&ü¤D"¡çìX÷aoÊ—ÿÎϘ_ÑAô¥¼ð›8ìëD8Ôg`aOÅçÞÑ+üÒzÔUó>ó7õ™'E‡¨}Oó+j&› Õ6î)¦ÎÍè®Û>*L™ÊjòÊuå[m©Ù[&ʯ'37S~éÔëžÞVK™^AÑ\‹hfÓÞͬ!õÙÅ%Å:Ò@W4ýŠû2Êväó‘zìr)Á©0Êoê\€{7¾^¿¦¼ìö"` ‘å¿ÎyìŠæÏåƒC?~WVg=Ö%¯šÓÉ9ŒyÇT´À9®÷GrD [Fd.ê'ö€û”IåçOgÁóÓøØûƒ)ØZ¸wc{›$ø¢>õ¯ÛCö' ­`,VJÁÎÁ9ë¦(êêá3zŸŠÞ@\wªz½î3ìþæà#̯Œ=­3 Ê/±wõ^ÑË™O±Ï÷ªúI#I`K%eÊβ_™ól{r!ï*³ùÈŒ3ö‹†yFÇ…ƒ q+:›vAqx }ÅäK(Ý?õ˜ýsT,K.u<Ð…êq¹š—BZP—Ö d¾,ë‡bšB3ìîÉŽýk¡•¡â±ÇÚí63w5L »î@‰nŒô. ›•€þ—Î'±e0¸.ƽíÕjtÔð_sÃñ}Ë—]‚Ñ‘øÙëçq²ÃðG]è*˜œ±¾{ÂÄ|¬Â S‰ X,-qbÃJ-J?kçÇøã$>üuÁ…yà¿V/«mˆpÄIÜG|=IÞ:Ÿ'’+£®Š"ê ó+£ˆüõ:ÉÕRDÿÇ|ÞHö'«çy7Ùç8Ï› çý}ÿYIGè¹D#‘/ñ–è#!êŒóý,¤Î3?—‹˜[5ä8(N7Eqa_£Ä=H»[ä½]ª›\ÉAΧš[1 òå;å“­ÏÞ¨ÑZjž¸p…Îüœ_ª'ÂXž§Ì¦š¸bœ¡ê±så[˜=Y@ëäí$-)Å¿ƒÚÞq.»6“¯U ©ô,îñó¢æ2M,Ldq,Ã*'½Û)ŽX­»,i™OX—QŽd=ß ¶V³.†ún¬¹_%uñžÖ޽½/΋ ׌,á ®b¼¯ó¸WYܱg¯ï oýYà§Ï§o]0k¹ƒ™29“–£E áŒó Þ–ylœ1bU¬ý>]QØý¹Y¾tÿ;Hj8oú9§iŽ{±†PT’‹$yC¶Õ Z€å9äÝki‹c¿°å±!…?ÔÕo_}ùÿ|†Ò;šwÓ•‰P2åjÈuƒj¿n˜äŠƒÐ ½mÄÁkÍ‹ïóŠõBëMƒö¹÷FE ½2;¢‚%*Mg8AW–ó~íâL0œ»e‘¨F­r™ŸíÀ¤1Â.{Ø+ÎĺÓÏýÀª4Á£öQŒ`žs¹ÀM –=Ë¿¾×Þ V[þÆíÓµ`Ë6|ç*†5ëßÚнG~ààA 9Ѝ+nÚ£W+»y6oþÙ´{#5?L›‰ßº Üc¯Þ* ÞÃS{’U˜±µr¶]÷¢ øwô&Z¾5Å6hk㥨y"Ûûiy›¬d[þ@(}ÕdäJNìt{ßç¨.‚]†§rÒlxþâjÄm(Ëâ/Ï|›¡–Ûñ:ÕOaj©`ãàò[;Š=Ì»36ÿÄžß¶ï„BK!µ]ê$·ñìMš{g¥Š}7oŸX-à ¬ µ•—×…½±¸ø'{È'²¿ØŽýb¶ c¸pÀìw¶jò8ŠèZôUŠ+öì6íõÄ¡“ü'[Ư@©>nì1¿7TT$BóíhpøÍ²,Œ¸C-aïÍhH÷sD|ƒ¦wf´”V >öÙBKŽ%èdðó…U‡îœ@HïÒ£Ð?gq¿pÉ,Ú¶èPLŽæ¶­ì’÷‚kñÐ!©Ò ìî§ÑÝͼì›ö-®¡ã¦|ùsåldH"é#!ðGÄÒG³€§’yá<ï$p·‡DÞHðZBÇ!pLÄÁ…«‡  ¡guFrâ|݃¬7ÎëK ù-9·Š¨‡Ìë@ÄJSB"ýlós±ˆ¾ b#1‘ȉ§d½q¿^„º!e$Uo·_¿eŒC¨õª…ºêôܾhÁ'R”wÞËO‡Rûï JøÝ¶È. þaFí¿÷6Þ&ºÓô•ÿ¢¬ØùŒ2KqaU8íB™³Ö›´c0Ç"·Ä¢@Žƒ ]Ì££ö‹s7o©M’½ŽOuÞ"M\ÞÈêܪ¯7Ù˜Ÿ÷aÛ×;îE9IãÚž ÕX]â¢Ý!õ,‚¿s|߀mWã‹c`¿¹‘Ûÿ/?#ç.Ž_{:÷Ð ëŸ e”EacDiä×—àø/ùpÉ<WÛ›ƒî“§PG½ïéÙlòûÉý˜ý@ÜJ£ñÁ÷ŽÌ@c¯Õ§J§µÐ^²Ç}EË=èÌnÝ-5=nîg—“e¡ˆ÷»iå%¹±ãMÊ#CXIÌ9pÀ BŠû2s1 dÅ¿}žTÄ‘ a¯>CV±²\Äú‡¼6—)6/T†á5ýF®å8¾ËÇýS9NÌI)†¯ÅIM÷à™€2œâI2 °Â©oÏo‡E%Á¸Fõôœ®Úç5ܤ“ö«#¡ž™0yëõèê7˜Ÿ²ŠßZã‹Þ%:²®Áʺ ììGYœÙz#2SÆ 6Œé»ª£aKc·"s©8ì–¦l>.{aï!'‰›p°¾²:ß5ÂÁ§&nÀoZBbò¬ ®ˆ÷–¤¾gÂÕÚÍù_Ô èöÑß炵¢[”øf¡cµŸ*‹¶#ÜC6»¯~ ‘ì¢2_1"ê¶AˆõâRÜÊ{Ó÷7·žÚ ß=†¸@Êþƒvܸm鸡5ĉ‡6odˆ¤1yÚf»t܉(è/‰Cê¡'ûÆd®#}…¢ùtD2>Öœ)DÃJ×µHÇ}Ë;µÄ#ð0.SG–gÉnÜtÇ ¹»Ù(GþÙ‹Óï26àIëŒü°ñ'ù‚m53(;þîyÊ_›¼/¼Ã…JŸ ué"wP­Ék¶Eݵ*m[W$«¢þl’ÌO4Ü;S¶,f#^Ò>ržÍkGÓníïLwŠÑlO#-7¡Ž–'¯ë†šZÐÆX!4wèÚOkÊü®:‹ŽªgëÃýJðj§Šï«Ï6èꦽY↞+|V#èÓΖ~xD¯÷¨FžÇ@R¬¿Jó >.g[ªÁŽ¡×ô‹ŽþŠÁȺøÑÃ~3µ¸Õ51…±––'–vÿ‡®l³+¢”!—Ãb\™ÃŽÝ‰¦œ¥I¿Hü-Äÿ }3‡ˆHðþäñ8}MžÄ·ÁÔÒ=ÞGþsø$ðH|_‰Ï+îû¿Ò‡ôå·Âeo¥AiܺmÇËU€Ó™ø‹?È“øû…§ìª3Á-#cÚýq–Ñò ‹>äv<…í‹Þ²F ök]«5Ò:ŠIêÜÙæ8ø…íC]ó’ë|<ÀA~¨ôhæîÙÕö ­’¶ÖÐ`¶ùèÂ]M ݽù¡åOQûÁ#íŽ),9ÐåÛʵ¨Yz <¬F?bqd½@‰Õñ0ïÇ–™ õ09ã„PBsfíRœ4óüóæ9#Nå—ž¾|Œ§EÖ°úi~%qmV 8áÏ Kú5îÚ6°.:¥Íüc6½üb7ß‚«Ð=}ÞLØ'5™ïáÂy]ç÷/» Ç*é ·,.áBÎKýДY8Oºè,‡[ìÍETÜú³xÞ€þ­—†àG©¬l~³Ž qeΣIµÜW›Kf9[5p­ZýÆ-® l™ÕãÌDèšzº“A@Ø`Æ%zåVDôy°ÕmJCÔ„ÙÕMÇÃ|¥v»ç(b5Vü(ˆòÁ­üxw¾c%HàS^^€Ä›ío æ¶#Y³„Ùµõ RNŠÐÕ¸˜#­.¶ç{ªî: ]üÌ܇{¦ o¥ ÂðÐhÛ÷ÃÇ<ðHmZ±ÞòrƒØÞd* "Щsð <Ž0ë^^Œ"c¯BNi”Fì¨.Ö{òÐKâ †Ò¨ôsŒˆ‹ê[ý±.N›PÛ1t¤w*Ïv+µlìËÂóŠÓ»®öìA£{/Ívþ÷h–4ê»|-™Ë'-c¢Ð¶ãõ`lþ ´ç½uc’RDgÊÐ’¸Ç“èºq;¶/Ý=¹¾<φÐ7›“ÌþÎ{CÒÇ‹e0òÜ-lÑq />üöÇzzŒD(v^RêÇØÁS¹ CÇ0¾Q®…>Àñß8<1@{[¤|ž÷JîõüMñŸ¡®£UØeÜÆl1ÍHâ‘ÀËmo¾$Oýá q¹‡Ä}¾ebä’!q¡ºCØéŒ]4†Ž1êÙ¼§>÷GÄ\ú;« £³ñfî,t5x/^Ø Ý—<<µ{i¡;ÍýÖ(pºwxœK.’ïñ”¸Ö;Ì]‹TQè×ð{oX£LÆÏ£#j<Ýž8vÂfñÑLl° FZµŸ2ÊèqÒÕ÷RBìwœR½kÑ]öÆâÝúÝoƨ8Ò7øQø¦a5ž6×îÃlZ^òÇ;XØw *eÁŠ#´!¡ÖÖcö‹\ÂÙg>¼-Ñ8÷ª¦¼B›Š/›¼íu»áðgÙ[xÇfæK{pQÔèRï K¸DéìU·| ·_wìVÝ8ËAÙ#EAð¢îöP€wð•‘Ÿà{R#ruTü/kt¤¬GÀâ—.Ž_éøÔ?´Sù+9²3ddë⛼FóHÌ1A„¨vÔìIZD¶–VoÖÖ@´²v~ DŒÛâÍ™ïƒÛ_¿rt¢ñ±þS¾cHxõ[zL·Iæ‘mnƒ¸³lÖT‘õ5RJ‡m;4d‘ÑX∠·(ËæfÈLHQ¯aÅ}æ4›/7 ðÐI’SŒ1¸öæû”#w=OýÏÇÒÈ7°§;Ú°Ojf¹ ÅÓCÚ¾|úPü–éÒ¬¸Êθ¥1È ü'½ïIT¦ÿÜøÔwTûä¨UBmð“Ñé/¡¨¯r ?{ÓÏ7¹¼½>烗¡“¿:–RÐòsÝ.Õx4™íÌ1B«’rZ¹åI´=¶•ÿ#û;¾F™”ÜGgÖrµG,®èÚÕ±(x`=ô¦iLö_ÑÛçt©ïy"úÛ<7Í”>ÆÀ…åm]QË09¾bÓ/ ýýOüÖ‘U/~0[`ô¬•WG¬Ɔ~;·oĸÝóʯXþO:é·êÄ}Â土õ’ñŠàŸΈ¸ö¯8ÈµìØšáÿœÄýE9–¾×€„’”ðí‰2ìX}?6 ð«x6ð–“ñŽàÇÄïEÄMâ~⚸ˆŸ²§è~?9#Þ=f$VÐ+ÞÿêFÀ¿ãddó’hûF(ùÇs@‡EÔ®(ÒøAÍq¹}ÉŸ5OjÎÎ4œ…ÖCéI»zf:òFüÄÉ”À”‹;÷‘¸6Y«–,Ä3 zWÚ)X|^aìÅøg˜ƒÎd±lǹ]†~ÎÇEa·)Wž’¾öÁjYA²m8Ï™Ú/â1§Å®cÓ9¨¸- ¬w¯‚ûýg ɼÃ{ÿÅg©ïÏÂwKé¡×åð§m¼¶}éo\U–\oŒ€'J {%˜/±®· Ál&6÷’8â+éö{Âä<ŽêÌEbËâˆâ,nÍ8áBå±®öŸßZ îëéOQk¥q;iop‹15(5ÞtHf>SÀZ^Öí®lAZ€ÓK{Þ Ü~ÞóC#÷Ö]¤£¤à¡”ÝÓÅ߯ðhWý:ä^LØÔk€ü®ˆÉÚ#x®¶ÐXæ…"æ¡.«j”f¯ ˆ\rå×iÚù'¨ølÜ‘:i—„ºµ.Ÿ?=4Ƴ;õœ±¼˜lãûx ¿xo*¤±£ùâ=Jo¼=Zi–æNwW¢-ìY§Vù:„Bò¾˜PðJxñæåCèÞà³i‡;z­’¬ËK¦ÑÿB_êä³­È®) >‹¡µ/3-[Žá[%Ï~(bTáÜc]É#x³<ÉæW@Æg7•ü‡!×|Î?*‚ÖÒƒk[sÞ@qò]ÀØ;ò¹%øñÜK…œþn{â ™ï‰k–(2?í%ã&[â£]Çï˜þä½DüÓIç/S~xGÍœ¿òÜŸŒC§Ÿ²×—ZàôÁ æál10e‹?ØÄõŸxC<¯ä÷ÖÃÞNþ?ïÿ3.ù†ä6 ߆mÆ©Dì.Ó„Ø~¢Æ'=ÇÁ=“8èÅÉÍRpt±»œPß§w¶>Ežàbªùo¡•špñ’Œs¿9 7·€Ù¸vè~§:Ö 4ªÒpKqÂ2¢G[n¥ ü—p`3/"3#ÎÅ#úa÷Î7ã¸Ik=©e±qZwb×^šF¼†›¦¦£2n?r¸ZË‹ ¼ôt¼‰„}ÆiH˜{¿Ã§þ_0¶Êµ.C²R¸ýj&¤Ø};iøé¼I×þ,Àݹáè·ÉF¸—ûÅðl®”§õ/5×ÆÃ°Ÿ dóÿÚ9’ˆìá£Å¾£‡ñ¨>l÷²8zä®\óMÖŸye‘›{Åvãq¿x´1ýwR*« •£¨öâ‹ûg£tÝwÙ‹ÒPvÅÖ£ã`Ê“'2ÒýûQñüóÆxcTÑ…÷( üÍ/»E~AÍý?Í•Q·¾;@c¥êÃZ]õ²A«„˜!žG—©>dÁKÎAzÆ÷ahL—¨—ÖaBÓÍbéY÷×h>}ƒÃÞ‘-; ,¹¼‡Ð2k~Í<µ­o¼Ÿ®;™¶æÂ¢¦bh¯qåwIjDGMƲö¢·èlñ¹k¼ƒ¯&‚ý®.=€îUÑÇê]Ð#7›_ñ­½ÞÊ1Š"èknÛF‰åþ'5Ѥ[j Í\•ÖÆ NìOugJ:¼ŒKDüY˜7ñ’à©‚—½c)!Oâï‰û<y!ñ}‰8Fà”Œ[¿Îú*/ÆAe‘›Éø@æud¼ê’º™ô*ê?x¬üû¼¼ö˜ìsƓߩù§ì·æ®æL'uCI _¥}pÜ÷Z{ÃÖ}0ú5p7HJ§Œï{눑: É?›{ô‹µwú ‘ÏY•I‹áLrïý¦œ°¹µèòó¬qتpUÅ=Wtª7­KëÑ'¡o[Ï ;z•ݱÂ÷è5­“Sä°F¿Îºiµö ˆôqpw>Ç ÊÓ{)þ¬ÿÄ¡ç‘ÒEŒ¬H½t!îta~Hàí_ù!Á[‰ûüx#pEð>ÍþCãÞ/ %<6:A ¾ªéªn:Ï÷H=t^?=²_î½Ás2ÿ#ôUòü´-Ìù÷õÓ•š²›6·SóÃû¡™§®SuÔ}.‚=å³8µ2þ"kIŒ—5ó^>þ‚šzÙ½ˆd3‡ó§Ls!˜ç*d‹¯†å¹ýí¶ÂÚ]¶™ß­€´öÛ2ýøàpéoÜ5·ZW5ûÞÖÚLÕ8/V¸ZQüð‰´½Ãå#'öùç­‹’¸§á*žÚœN îÁ—Æb{À“óÖõdÇïðzxÒY}e|Üî°ùÃÏ'YðG¤ .?DšŸS®ÒÆ_ÿ4`ƒk~Þ7«KẚIl_H;B…6~00‚°šïÌ®*Wq¡ëåã|G’gFwXÑŽœø›¶Ð2¯ûœdq¸NsüÊã,cÓ½T}§í½·Ð²[8ë¤åÑuØrÑU5$šÃ.›‹!‡“sSŽ6!p<Ú‚6Ÿq!Cþ ßt\„¤Óû|àÖdN£0©NÕK «×9Å©Ág톶ƒv†ðÉÑ¡tþéon;+Œ+Ç-îX᪱x5Óèy\;:³œ†ã6‚K²ÒzÇ#¤¿é2Ýd5É#n©XïRô@Ô¼¢ܨ£–ÍEìòröNÜr•‹À,–IÞ/=ˆD'‰w´¾ yóéߺ­Ë‘Âg{âï¿wškqvoíîòVV°¹áÞúž]ÁŸÇñPnËš "x$ÕÝÙ^?ˆ\wÇ×»Y‡‘ß´ÿ}E> Îø½ê:Œ"UN—L”º9j÷ÛK£Üç{1]Á{T:‰*¬|ÿ ÕA»¾W°E ¶Jw"ôžm1V5<ºÏ3ÏìÌ»ü&j;hó‚ÐÌžCÆIƒ5bŒ‹uŽàè>ùšH&GÇ9)¦^bÂ ÚØ Í|+5uk=ÜdŠ“#QµÒçCa¼¹ý±2çœöÌzU “?ÑŸsS`v‡WKaÚÇùtÿ|„•Plz„÷uœÙ›üÜk}0l.O•úݪƒ­GõI aØõÈÞ¾N棎ôž [¶åÁi`tÃÄ·^\ìáçÜwF‹¬/‘q‘¢å¥~õ¼~Y«(»±Àç][ÉäÜ(ü~{¿~vJWönfmÁÕ¸„™§¤,·¼WC!|sO䘇ú²z<úì3„G$´VÙ"òÈ ºOÉ˽ÕXíWK*bvUæ±u!öFy‘¼r"âDm°ÚŒ„ÔA)gU[$í¬_=)щägŸö¨™!Åm$óÚw5¤)ÆJé»#CàëÐæÇ½È3W¥[I‹{ÞS1–Ý9xÈ9‘,sþ0²Ë¤¬{« '—Çøvò¾^ï2éà çñX~AN5*-y€â˜«ÏC‹­Q&;™[ø;åõ‚õœ£ò¼Ò´e=ª•wÐeñ½C­ZDt`NêÝ>¬‰AC£ø™»òãx¹OÇ-qé&4zÏõŒ†Í9œJÊë£uµaj\DÚ\¿m5^ƒö÷‡j¥Í¦ÐiÒÔ¾›Ç ¯FÈ9Ùš ;ǘýât,z}>=î8Ž~‡|ÑYº ü<î,T\Š¡À+V×z0üâg™¦W7FùŽ ¤Ê`,JÕYê·=Æ7/+QcÒþ' ½Ð‰xEàïU'ÝìxæÃÇÿœÄý¤^:Ïsÿ'½”¸&~/R?íŒqÛá˜I^/üºÿè¦D}q¡n:ŸŸ„>¥z·+$Ä*&Zb›ÖCÕkkÀ¡¨?c½@{šËDè«ß'?'Èø8_G!ë#óz©aþ‰ª©±"Ïd=qÞ/@øLdžL-†Å¡çx-j\$x­ìÍBùSþ°­?/Q“ ‡g†üçfQõR»Œ€Ù<¸|Óìâ‡{ÌʼpÉzx*ÄžtV‹€×D–¦éjød© ñ…Py¬µªŸô–Ð>³î„W( dÊÓ Tí`|| !1FÓ!låóðŸJ›>òâ°sŸ?"›Yö.¥ÜCô˜g-nжZE÷F\þÉ õ~ÚÔº¿pÞË®ž—HíJ‰Ä·£÷ª'¨xýð«!9ó"²guSúñï†h å)ñ2­ÈO]†\;“c½Ž¢Èo½åüÂç¬éÌ46£È°"Úò¡Jo±z]9ë‰ò[cªNù¨ŒU)uÕe/7 –£né~¤ÈÚáÙ…<uý‡x±f§kÅý`4w··ßSEóK™£‹øÑ2Ípû@ Ú|†ê_?½€ŽQ‡éë3ñj“N¬ÏŽ³èæ ´pd E¯®ˆsa úó•ï%ÉÄ@Êš‹ÛX¶`hYÛÃ;^c8ØíÜ““ÝY±{Æ~©­eÝjñqNýŒ‰ÿÄáõéš© @c²nMð6‚×ú¨äxP©¥D>™çüua½Ÿà­ÄI¼OðI‚j‰*˜¤ ‡ÞWžå·ƒah¬ß`”T#·ßJüVPuSâ9%|,.í—Ï‚3O)ýìs˜½£ñ'2‡ÔOÌW(·WÞxO= ßËüý„ŽjYi5Äm4A>ï„ælžÓØ!3œ;ç£#^JÕSçy¡ýPø©›UG-xØRÇutF˜XŽåÃyš =\ã%nÑ(7ã’¾ð;•oàYqþô«ØÓð>Ï.¸Q]Šª›Zn2\wþq~Ë,#×âòÄ Qi™-ð ¾·!ŸÔÑ‚tFÖÕZë—ÔÚ+ù,ÒÆŸ,8¸¡?χ'çŸD¸AWÀ Ž\D.›±kïÿèea†[Ò+£ó~¹à2ĦJ¾ÿÌF‡[É…E;™¢ÿÛ9H2·{ó^ØÛ€Á'ëOs"ÁßøgÌÒn$,WÛÎÙŽ¤œ/žÌé¸S%­ô iǃy+ßWâ.3«nºýfd%íöw”6Áý›ºÂöãÁ¬LOØd4ÆÉÖ-É@¶¥•crv'~ÿ´V9ÆÏù#‘û)<-»zù}ƒ÷SQÀ|7ücŒžúr¾Ï¯ŒâŸØ}Úƒ2ö•öë½¢|›e…Ez*'§rŸ òâúH:»E¨*ä U½nŒšK¸œŒ Ö†é6kêºÙråÒÒñLmïgíÝ,h¨I»U`O‡r¦´Ï4Ÿàe ³Øéa+4mÞéfÓùMƒft%ëÔÑœRXΜ$‡–3R¼Q®öhUÌq|­4ÚD&Ún45 ÓÀÚŠ¶ì)ëüêuѹ¿äÂkñŠ/%znÖ]r†ÃÛô¦Ðm)–±w…3zâƒyØõÐ;رl±‘ß?qxÕž'LqÅv(K…¹tos&ó+Þ^IÔ)Þú/¿¡ç×Dœ%¾k"¾‘ñë_º)Qç{[Åæ7œ •Ýç*’uB7%ãÕ<ÎI^KðS"¯ãäÕQÑÜEòR‚žÐKeËÞŠ“…×U£ÙÚ©õûÝ¿žõQë(×7Ö¶–ŽÂ‚1«ÆÊæ ‰kë4½sòRÙ8ûúú¹Š¨<Ø ^+44òƒ]Üjƒ”¬x8pÈÒ9<Äù[²·|`€ÓJú§ïäp! ¾5®*ÎÂA©úàº}mT«0ÜMðÉqFu3;*šáÅ7Z9" o›g]ÞýKàÓ|ìüJv²Ì$â²éŸ·?i¾#à^&í‡Ç}¸vàqŒ¹íOmùÌÛ‚ÜILgJšasŹ6 avF'û ÎøøSØÛç^zXûR+"7åW¯=õÑÊ­Âs¸©½î¾ôs~ÜúšÝµö§-:“.Ø´M"Éïiâ ß•T½4ô‚Õµj¤(\šyÉJAªÀ¾“{j´‘fùFleËd>%ýH… ™±r4¸ßjZ¤ÏZlzƒ­ûoãQËÒwvü–È-“ÖQD§~»f^}–J·ü‰î™ áEï¹’c×5w£ÿÄ(c‹x7ö¼RV²ÿè¤óï~3ÂGCæƒóu Bo%êGCQ˜y—ÃpÀØzÓ8޽²¡^'Úòý=¡úO _Ãø5c)gœþ ø“W¥¦î¥‰ì0çÖÊÙâ¯I­[¾ýÞs[þ>ήX3ÁÔÄ…s1ñ<“„a·MºŸ YwøêÙp¸ÃަÇR¹wŠÁéÛÌç;[\|øõºó¸äýî‘-HõÓú‹ž«×Nƒiø°4¯ÙÕó¾?DzüÃà2SwîÉOlPððÿóTZ—wv5N´CH‘вci¢ÓôvpÛO­;&­ªŒœBôifæ³{5c=,{•±]¦}´#žˆ‘¤ÅÌŽ„º"ùÎ’\$Xu^¡ ÉbÊbQ©HqÙֺ͗i’¾•¢N‹‘Á”9ù®¢™4itlî¸'xGf$¼ÝÎó–ÙáJ‹ž+>GNÀ±ã¬RÈ{žïÂ_&†'²›~šìx…ÂGêåé™PÌùœ>PÒe‹§÷Zl-FyxiÔ–+—PI lg)C5]Y*³V;jÞª?* BÝÄ¢m¦L40¬Ž­ÏÁ Ù™È,–ÝhŒº!®lñ_‹gUºZТT4~¡Ÿ ­±ƒ}¥G=Ðö“RRö7í8E{x±úut6¿X[—µ]¾÷Ë|ÝÐ#ãÌ +RŠ>¶+wæD¼fº4­W$ƒ°½®S0ø°FHIr††Wº.ÿ•ØjË1ê÷ñõ}ü_~ÊÃñ#FçŸ8t™¨¬[]K⃈W ý4ÿ“¯ô_~šå‡ÄÏ!â.á›Y˜.<惤~:ÿûÿÓG3Ÿø.«Àóíc~næ=´šþ¯ê¥„ÏŽÈ ½”¨KÎók².™Ú¶ÆZî,é#7¾2i"84Iúhˆ¼à×Vr)áÇ÷ãÌ“qIÞÏ $?¶“QÙ°oö¯˜xLü•p¾VÁS²£ô|¸Îv$äÀ.yÙω ³¶ø¦Újgxû|ÓÝ _Ã%¿ƒá/oñÈãØª/œÿ™”v¸:5~v)I®8§„Y®kë³o#ì¹êZ®ÂPD›”îlFT!_^Ƭn4­Ž<»…± FÇö*çá–õꋜRÜþ”òDÖ‰E—άÐBÒ\±WÕïWHY’¡¸©PiçÌîÃ]™¡_.ážþ„¡ÝÍßxh›ÐóIû1Ù2«ªÒú ÷ÓcþÕ%xÌpþýDÅ D®V(OåDÑ‘uÔQªµw/í€6ÊåSë£Nª£â§ši ª^¼<„ŠC¨).×f»º¦å‘x6÷ó ½Àv¼PîßÉû¼9[ökÇïAóU·G–¡Åб³˜I­Uvìr›Ñ~bZö"‡-:—ʉ8ƒWÏ„%jn¬Bw÷Y£èô–;èÙHv£:îî—ôS£ƒß-[hV`øHÂù 1ÒÁïm–zìß8Lb͈m ŸgB/%êD<û_­_,Ä!q?Ág üu¢.¯ÖôgÆ-Ñêæ•„Ï”ð“Î× ½„¨?j{‹$o¶&ëù:—¶u Ú= 㫞÷ë˹ï¨uÉ÷"{ÒvêQuÓy}…ˆFÛ*„Z6“¾4Rg1ÜRnÀŸêÛ&êóù¨íåY¯Ÿ–¤OÍÆþ ‡–?l)bûxaW#‚}Õ»àÀU÷E‹‚ói)7ÝUœH¿áÅ}ïª2ÆüárfÓz_ݸ}b_–®· ã.°=J…WÊó^Ëqj‘à§!gùœ¬0TÑ|äs®]mól%óËЕ}5w¦¾®d›æwfDt·ìt–JBTî³3)߸©ø’~»j¤·þ¸1IßÛÂø7RVH½0¼‰ã ’mtä"3 ‘Â<õúÕ¦Hmevùnb„ô¬§Ž¥-p7Õ½P]ã*²&Ù¢)£Ûñ =x÷¹iOd_¼5«(…§¨&…&Cä•«Ô”Œ ã‰4Ëäo™%(Ì©v§@ñök˦ÊQ¶:ßv\ó ʳD8“SQiÚ0˜%‡jÙM9gÅP»ÏÓAÀzê­pjðEC¢9½Å3xɨíxÑÐM‡¯ß1?-Žæ´aW‹B´rhÚn*jDÛÍœ‰}ûo CÔ°°éÞntöM¾ª?t ]·ö‡ÚØe 'AKœO:}%ÍF2rñú{ãÕ[Yñ*ùÞ ]Zó&,SÃ#ïzÚ"1jÁº²Bo–¬HhÎ\‹ñò®XÏ?K1‘hÖß\ýO:É«›ì’$ó4BW!ð÷¯:áB¼úèÆŽSÁGË\Ékâ~D<$òM‚/ÔA‰ë…¾Râþ…>Sâþ…uH2NõÅûý™9k“¨uÅyŸ)çu¤ÿøKMÌWDÇ:ü?„oç£äǪ±Tÿžö£­?XÀ<Á‡.LšB­w¼˜jìy˜Låµóþ·Ž»ÒßMd½Æ…ó—¥õôà<ôþëQ O¸¹NÚŠìóƒÇy{¥]SVð²}wëªê>øÈÛËÿŠ`†Ÿ@øÎÒÕýdßEçÚUTù?1œ‡ ×»ª}Ùâ´~G8¤Ü' —Ò!‚…Gç‚ÈŸ”)çcpƒÆ`u+nJŠŸ®sLD\f´‹Ú–¿ñPáÖèÖ {¨uÿã;’zf¸SÝ£%2‰´=[S[‡Ž!cnkÍ„†!î­ÉÎöÚ-Œ‡îîš±µx¤-þàÁOäÆð?Q^‚ü÷ÿ´˜Ï¢ øZÞ/AZŠg–ýˆRÇå<©O-Pn¦r<¼1•‚âå ÷P-Dsn‡v.j•úh6%¤¢>Œ¾U(#Ïé%o¬Ž—é-ÇM”ÿⳄaàÒ¯B´È¾`¡“Ek_Våù„n´Gú(éGø¢3ø®å«•ЕҚPÍŒž÷wîU›C¿ù*Ó·Z¸Ö´Ut%†–|Nr†áxÑòÏy0jø»Íˆs5ÞÈé0M0ÿÂ[M¿Åg¦…þ‰ÃÇËu‘ýo#ôþ…¾RIÙÇß­>¬ ó=±Œwž²³4ÿŒŸDžIà‚¨Ÿù Q$âѱ+öá T>Gô -ÐIL‹ÚôÝb©ç|žfjñdàNè7ê™öÂtÃv˜íý³mû˜½ ¹©ö÷yw²ô˜ÚYŠ‘ÏwÒoj¶õÇß,¯žª—N^’–¤c¡òÏC/ ª ©>ÓÔ˜C)%û¨z©û%ÎìÚj8vitp.gÆ…Ýrë U»¨ú ÁCçãÚ¥ÿC:û6PëÂB\‘ð)N¼Î-¿Ó]ꎃ¸¼kúfxRËg¡Æ·›Œ çÌp½Ÿ/5¡ð™÷…ÎnrøC‡°]–:é)„¿qVÏãGäñ/nI§¯"ÚïÃQá©ÜT}2°}=n…_eK\/ƒ„‹])6âÄüvÝžHq$Ÿ¶vZ*ƒ;Y¥§^uýÔ¬G'ZŒgÎG{ØhX wùx_(DÖ“Ó>ÙåÃxP¹|ÈŠö²¯³ôhèFŽõÿÁÚ{Gåü¿ñãˆP”(Ùd¤Pv„z(‰2"#2!¥4hí©=•¶´÷ÖÐÞ{ï½³*™Y_ßsîçëþÛé¼?ßs~½Î]‰sÜ×}]×ãzŒ¡&ÚHRd}½Aä8Rn{»(Çó!Õ¼}?“ˆ'ÒËUÏÖûW S¤Ò"æž<²Õ/šu»OGNƒð «Ó‘wî¶çûçlÈÍrú}…AÛÜ¢®\G±îG?]”*WÈËämD¹þÜʱýf¨ :köéª ]™ÇíQ“n“½Vô3êXÌŒJPo4OÍÉôY8 «î*£)îuŠwæn´è¯YúI#m×ýËÛÒÑ¡ñÛ(«b/º‚[ÎÊ~?&_û[ÕÑ+¼ö¾ úÂOÞÝýöê”uh˜©"môu6/¥Í{¤î¦âs3ê‚ÿs?¤Õ©³ø4´¹ªÚ~GñL‰Ž†‹ü“ÂIi¸(Ùû(¼”†ŸRº~¢Û%<š…wíJk¦æÇËí]N¾i¢ë”H=ž©T³påRzÐ[ÅÝFõY¢û }•ÂKóRù³MYyçäh:¿TôPÒþÙ2xðœcþ§9Ðe]ØÇ²n9½iû;µ’¾ª³ûȱI¡çÌå¹ÙÏès&¹?ÖÛþqU‡ãÉñ.¶^#8µh*‡®™3˜L p©_ý‹ϸ'EÝŸ.€çÎ ?NÈÁË¿qö>¯™ð=³Õ¹ýSüíM.,ú,„€oz_¢ÄÝh4ûŠu÷L rÆ­–DȬâåú½èág.%DÌxϦvQÇ«Š'³ f4FcÛ╈3ŸØX¯¥‘rƒèV$9–}÷ðã@ÊwÛëîÝ‘öh¾íš]ŽxÍáì6kYßëO¸Y}FŽMë[)…¯ÈÛ]’¡‘.‡üŸK-C¥n¡°3]´ø½.Š;ˆE€ ¥“JûÛûQ±ãGJ˜-ª, ß&mû‚êk ßúÑçPgî'u7¡þC)óõË‘h<×ÏyÞh*ˆ~§*…Ý-¶vJ£hÛzÏ£-T³=ºÍÑùãðžÃæ~è¶¾·þà.Aô„(¦zî@os¤”kÏ{ô¯²úüè„ ÞxhÆûƒïSŒ_-­™§¡ñûI}0ÖßT¸ ãb*^ ©Ï©öC /eØïy5ÿðeþ‹g:•î‘gJt‡´þJæJ—Oô†S탄?Cø¥ßaä—ÒöÁë™Uv›KBÉ]÷·WG×!<â¯AöByéZ‚eô{á´Ë9©zC—Ë÷Ööànèë+»v«‰âÑÇ/—ÜtýÕëÍÛzsÂ䎑Í&>˜íþ$²®° ‡ƒ8#éx)á—=¾vèð¿ŸGN–Ï+þ´ÎCÓÂdM·Ðõ÷Vf1¿‡ë^Èqáy‹oÆækøØ¯wŸÞï a(ùiy# WÐ'oû>9¹ÿ¢«<‚Ì—ãÝ×­ ‘_§#üùeQD…jíÎD¬/‡‚×ÄÇöïãb‡$¶ûj™EH¹o=œ 2„4v—–Ó^"£[ù›™åbdý”RBŽ{ŽW}6òÎÛŸ¡?»Lù-lDÑv#§²wPrBòa±Öl”YÍ*æÛÓˆŠîÌ:ÍuP½ù‚Ù®¢æ~ÅÍæ¨-“YöÆ™®Ë¯Ý'a9§MÆÁ·÷´®B‹¬ÿøÆ\s´1ŽÖªEÇõŸ¼5Bžè y§¥¼š=ó—µ\jüŠÞ«‡x¼GÑWâ˜ýn¾ NÕn>»|ÙÔuÈËÏÖÉM½¯ÉþGæQÒ÷¦š;둱ÉÏ‘=’Ô¹Ïþ…‡ÐöF¢Ã"z[J‡AÃ=)^)yMÃKÿá—Þ)­¯Ra¿”:ôyÑùÛZF6 âÓá~1ªSxâ:< M޵+~ÀóOVòí?á0{|®ó,øo-š/ÛnÊUM‡!{ß=‡¼ÌÉý¡²ÇÁÏû¸æ©[#ÔniÏýsî³ÍŒç"ûä‹: Æmî™ÍË˧t8÷½ú}$ÈZ/éeF’Ýø[ݵËðjÆÐ«†7æH³)¸V§Ý‹×¼]“™"†Èfo}jŽœ°Ñ“"ÅwÃdŸÂÕIˆ(?2™· EÂÙJk…ìQr¡MÉrÑʼ/9xîBå,ŽfsQ-­åq£Ž‡âËÔqöåÌTÊCý³_Êoߢqëç ëÐÔêyN9æZ<›T–~G›·µmú¼SèHñšóûº>š]YÔ~=‚)<ìè}¤#œ$o…¾½mœsgbàúSwÖ«14­­üî’SÎ<î•PxÓíR‡@–—”~ù®}ÍŽß~Òûâ‘Ú6¾ ho9Ýᘉ§Žt«\ˆ†®o²eÌç…x8møÛq-EQŽÀXú+_”.>Ñû·¾Ê=œ9Ù;o¡Jº@³µ 5ÜÚ+¦…£6Ðãd~2ꥃmXXŠÆù¶!ºZ&h^t"JàF8Z÷ÎdYØÇ‰v»°?’Ïüе¤2§jÉYtHŸ˜–ƒ^ê _O.B?×fµ»"½èšµ|Äí)†j<Yö#c/•¯œš_ê¨>œ2Sþ!µ—‘÷%ã=€à)ä¾Èˆ—’y“q$uMê„ì…ä^HîƒdÏ“O;¶nó^Êg‰ìeŒ}‡è”²Íž.›Þ%‹.Ï·ERïkÊgv/Wzãt¼EцÒó&¢$VëoQå_¼ïÇ´Lªþ¹ûÑ¢»´ýwt·h£×Ñú캲†OÇð®¡×ƒjÀ×#è<˜§Q§«|aÞÇ”ìz4–Ç/¾Ã뫉^ ;…T<-¿·Z¡å l„óFÒuùí¼Çn¾˜ç]ƒ…t)¯Û’Ë//Í«»ç/ÕÓ;VQ:^Ï^¾]ÆUêð²ò”;üÚ>ì—‚7IÁ÷QœDY¸ür#K9,wÀß¡ýíþIè½û®¾=^øm~q†/µØœˆ@ð±d»í½ÐfÇ[táZst´f: ÒvŽá†Òˆ~¹Hû[,bµïêóßëC\Ô¡9ʾƒˆ²—>¼‰ë.ñýzúIÚÎ*[ùÅ‘<¾ÿ–…Ó¼J•è hvEZëYwÿßë£á¶á®]Èê?núõðY䬸;츹çÞü ÷2Cž‹Åô%ÖÈÿÚªÛ!} …×j2c–D ¨å`*ÿÄ~”(_ªýwO\U;ž/‚ò€ßÅÖ'?¡òÂ$GŠàMT³?»ëÄtTO—è-Û‰š7éCZEš¨íU9ù|ÝÔu Üœ8€ú?|êóJƵª›çnEÓù™O¦h~þq@®s-ãÜÊVKÑvÑm]ÕÏ!´7d9ðªÇ£óVÙÄb· t3ìÔÞΊî»Ûß·ENY‡6<êÎ^=­_“ðQHÝ1òI}£ùmŒC|×Ƚƒæ·¡;ÍòVCÖVè¥ó¥o‹¦|·~‘͵΃!|®g”Áè]¦þiiE˜( ¬L5ƒéäx­ãÅ0÷åYzbçXJ :ŠÞ†Õ—ÁϹñ4ekUØbVØ)· XF×ÛÓß§Ô{"M¹pá’Ùô®âWµ#mcàÖW#pê¨>ž}?¾O7-Ïê *…Ï…­»6Ö±ÑýØ¢ê÷ÎAàvΫí"6x;3£;â=‚?4êûˆ1õ®Áç?öúâŸõž'‘jërç¢þ|“îF¬$“Ç1Ä¥=›÷~×°0“;ƒ”.Éæ[þöAažyȸ+cqo?2;çt›µ ÙAo™ÌFî®Ð;Q•÷zߘaìa(2MÜ~rEk|g,oGño™³ÚþÖåûÏ-¹ÇQ±äÀ˜›E*ªä2³R¿¡ºãBrèëxÔòh{û°²¡Nǵoò¿QÿíÜ[‰Ä.4ÚæéVC3̶û‹ÖEsK÷å½CûÜö´:ìèäUøuÀ& ݻǾ͋~„u›¦3›Ð›™~Ò6¢ý| ¼¶Ì]>eîž÷¸l…&5¯‘úcœO§âÕü—þ‘OCpr?'õOpâ“Cê…ñÎ@éëiüR‚’û9ÁE©ŸgÄWÉŸŸ‚gzy— ‹àüÐu‡ßŸ{ä,úü/ï›ÿe³ËoÞ©ñÒ=‚î¬-LtSšŽö¼”uùëÑjöÄþÝ‹ð ¯Í¡äá#è*ÜËì΀Þd…¬Ü' 2ÈýÎ÷~erÖ‡û=x9‰Üüõ}Ûn]C¾¡˜q÷È8 Ï•_kZâ#?Ö}]q¥çºƒ¼Öq¢ÜÐÝbÍ`Tæ ØÛ7.FµÓÍü¶+*¨©8âj{1¾'ÞÖ¾ë솼”‘ãsW£‰OÄäà´4—7rE¯A«n5O•ÈI´ãðål¦ÇèÜpæðJ“mè^<¿ôÏngôlê»Ê÷Y½²â»l¶£ÏÎõyFe ú;™.}ˆoÁàáýâÓ´§¬C2?‘½ŒÔËÕ£îþÅKI?%Á…çàÿÔþÿ…—2øÞPú r‡$>¦ÄŸ†û}||‡ªc²ž8Ñq‘ùš6OSº Ëî°ƒœiP oúV(„ùá;òŒš".Óï„ÿVVy}þmOºÑ[‰³_<=9£¯oݫޓ³r~qÂŒ—£á×Ç&XÌYq`ÞpXÍZÅu`w;ž®Ü|s–U lUÞ±>‚S'‹Â¡ãt~©§Ë=Ѻõp=Ìò‰õD6ÜY• qzÀc©‘ƒ‰'ž[ìŽús<>'”:eí&à¿ö ÓŽˆÙj÷þï¿?PE4¡Ñ;A÷„Ý? Õ#¤riïYC„›Nršš#ÊÅGf_Èßþè⺟íÚvÄ¿(›%$ów?ü"qÌÖ4)¿-=q¾©ã+Vßy/ˆŒÌÈ «‘•cÇ©L)ä˜pUÛi±!±²ƒýã(X~Ýs¦öqù[ïB‰àøÙˆ!(»uª}øÛiT¤^OQŒjîëývsQsµCÃ<òjn¬º—ïŠzNŽ4.¯“tÓëï‘©?„–íœ[Þm_Œ¶µ#…Þ)çѱÿ’fF +ºÿ*?ò¤ÝŸífH$t¢W"¯Š{ÛJôE•*dFkc`G†ñpôÎÿ¬Cò~&{Ù÷¦ÂIÿ /%u9%^Jã]…‡¿'Òù¥4~èT¾¥~JpRòšà¥„ŸJ»;P÷|rW$ø á£1LÚ±ËÑçTF~)—FÕãÂ(/8™í ½®ˆ) oÑòhÚ?ãùhw©½}"¼«BO´{B' @,ñ­ôdgÞäy,†‡Š7¾Uí¦Ï©´»¯±QqÐ1‡›0=òzóñÛ0_5ù]Ì]–|‹zíF`½·§'®Ú“®»Po™¡9Ž‘[¥%)¾šK}Þà·“+àæÑtOÈÕÏüs¬ù¿øÃóOºËä¨ ¼9[‰Âï¼õ™×‚¬˜£,/¿V/ÌÒ$ ›ñR€cŽî³%žbß5”ÏïÏ‹/AØÏüÜgf!RTëÁÜcÕˆîz¿-ÿ›⦱jÍܾñÝëÓ–§"‰e ò¿R4ö¥&ø"õÃèºÓáµÈ0cÙ<¯‚Yª*+uÆ #É\¯®…ÜÏkŽU/G~^qŠy: Â:ÚâÞ¡¸à¦³¹;ý~xÆ|Ñà TÕ?<=85ûʾ.û»ú/¾·~+ê—œÕY(° ?løJÑ$ÞÜôú§š?¥(VÖá­¼~L(_š®/Öœ÷CwÚNIgôü̘e-™„>9µk‘ì;Ñ_®j ªT€Á+bfì›Äð¼{‘ÚÓô1Ò>»6*MiÊ:|ÀÁ²{80œÚÓß…ñ>ÿÿÊ/%OÆz${"Õis0c?dÄIÿyNÑ7ÿé—ÿ£ƒ‘¯Céñ‰Ï7Ù7i÷êóäÐöLêþAóƒ$>T/€ø3êñ ^ʨ»˜Š_*ÔZ¿*5å_¼t†ÛŽcßÜþ/i;b ‹/A žiS<:JÿIO÷Þ·Žç½V•ùLsVÅßó3ŸœfYDÀ’ÙîÂõ‰k°9,Ý»÷4µßÙVJºiH×#Ñ|gò—™ý £ë&žì\’³Îno[¾û\hÃ3Õå]‹7 Àãë¡õÅ©ùÑë§êÚ_ÕÜ”NÉ7Ãlå‘á¿ ÜC.µþ?…´–÷ì ë ‡ìb-"(½d½˜²Hå[Ðê›ðiH_#ý‹àFT¿¢á¥R")—LMÊ(þ …—Òö:r!Ÿ+”#cÿ"ù4¼æŸþEö;âŸh›ÜÐ’sœ¾ß_¨¾ýFk)ý/¹wP¾2B‹’›0ÓõM´|2‡ÿR݉Åê ‰¢Òàe3ÿ~Þ”T'À¶eo¸Å ”梒çÊ ÐNTï}ãñþ’jÔ›†¬iBmó±ØwЍûº91]¬ Ò¾ñßûEÿö½ ãi,×Ќߩ†ï÷¡¥kÐ$“kÚ¼$“˜û ã¾¹ÊÚ+èRK=c«³ÝùÒŸJÝYÑÓç§àb­€¾Å§ÅêÙw£ÿŠ×­:ÝHËî—+^85N³o™ŽbI=…G’¹“Ü+þkOdÔ2â4ŒõJú#™g}j¦ÚÉÞGùÙýa¤ú)ñ1"ׂÌߌúünø¥Œ>„/Nå=1궈ÿj_î­¾ÜÐà^^ÐIï§´9™Êo£í…Äç†ò«ú½Òãô[wŠGCtT^íîø¨Ã~Ǻ¥:T%¾'žckã÷–3‹î×vž[@zï"X­¼:: Ï1¨±{œG[!+¶¿ÿ”_›ç·ÜjsàöHÉÚŠ7ÏžôžsVÌ„ç¤üà«5:ð×—ü5û%ü–sJÏy–…Q¿Ã¥7ñ¢nïÒá[íbÛûüók.ÊP…0§ƒ=ìÛ6"jk„@^Z¢KBÄ“F!nÈùо‚Häx±³"ç=‡¦Nüöùi‰H7Ì]ÍÐ™ŠŸÒã‹ô‘ýºâ GÔäÞŒÞÜ•ŒüÍëÂ,»Ë(ÿ¨bÖºÆ"ÓPºqÎ ”_ÕôÐaEelzõNY¨¶W[{ê®0jª_?£wu«ø'*]P •€F¬Ø3¾þš&žÝ™iü-%.ƒç%£-/ªhç÷cèè¿&$ªvÝÜ6Û†Â%Ðsælk¾Ä^ô†\©>¾ý\²IOgëL]‡¦ŸãeBéx)áËü—"£ £o0y’¾Há3´~HöORäýOüi(”ðÆHß#_'x(Ñá3øœR|T‚£¾)yÍÀ7¥üL _›ÆG#ú НM»?0æÄüs‡ s*'ë+æ;ÜíýóàN‚:ÔÇwíT»Lß/_i²ÿ¾®íú~óßk¸)`¢ÏÖíø-õ‡ò½x¢^øTi•‹h<[`ï¡Öê®oÎy½¦¬cæìãm±GaÕrѦøë<]û°âŽ¢7åcêð{ÙÁ‚ì«p2[b6$ë—-77-(‚ë‹—CÇ=>Ãýkåô\a/x|Žø$ðÄ^Úl6ïÉÁ§%q饸ï˜wĬœ®»hy7ØpÔ A:¢òû³’œs·{ÂÞ4u÷³™ RÊróGwUÄUYªzq{Ë/….~x­óòÍ‹¤sW`•ÌE$³Ô¹Z­Ž£òdÒÇ„ýF÷mFfO»Nírd¿½i°`dr¿È(‰g!ÿì¤I›Ñ] ßM[øÅжæQEé­’ºsgw¢<ÎÙTèCªÖX›õrM¢ºeô†ß²3¨Ý=œ|rÂu/£ÂuSѰ¡‹«Îe3S|û¦O Yammó $Z/اpí"û¼ÏÏFç%½,ηµè>Íb如ž§’vF£·m.›çŸ“è—è^Ëfù%ãO§q`èîº]ËO`D :üWƇ)ëðŠI"ûÛTù¢ŒwCÆ{áTz|ÆÜ'Òõ·eä“’ý‘â£Ò¾?•>㟻" /%¼R²Rþ¥DOÛ? ¿€òý'zF¢»`ðý§ðRšž™šoïˆ{ƒ¯­1Í Ï·4>åÏOÓ'“ü Š_ºüäeñï¡™¶_S,ˆÒ3Rº‹5ücÇÏòÒçXšï°Avýíü[ylê<Ï•ÅçgÀÌá»Ùš%žtÝñ¦éQÉÝß!ÐuÆ2s~8)-Ùò®7vaõy÷š·V\»OÍC‚Ú5ÉðŠý]¹Æs|5úÚ7ײÂÿK³L×:¼p‘íxÈ—Õ…ƒWÓ Â*ÁjØÛ‹0•è™K—r!jÑ[E!MDWûÌx ×€¸®¦í3ÌËÈ3Æg-qÉšyU35üðê[MBÚo1¤§ñ¹ª,SGfšSÔë?ký{iZÉ[äæB¤k¦=ò#L•JÈ 0}éžÅW­P<ñIVi0Êä?s¯CÅP1“Ñ| TŸ9£³qÆqÔ”­Œa[‹ºKC~3T«ÐÀ®xÖ cU/ ¹’ÑümYú}´mùpÀ×`9:\ª¨(t¢{‰¿–yz̲ïØ-sCÇ¡i»ÜÊÑŸ:Ü£kE÷v»µº²ÞzÊ:th®S:êDå¶0æ R8)þHꊼ&ý“ü™oyl¤ß’¹Ê¢õ= '%øyßÒr%ÎOíg4? jÞ‹0ѪþMñψn—ðR‰/å·Føi´÷?u7 Ýýî4ß·Ìý»©ÇÏ¿òîï¾NÝh<5Jßžµ[éÆ <0û9£4Uº™òRc³ŽÐïÄïžÆO3æñ>i§8Nõ1³m¡9oÓa^·òÇ–·b°pz3b4²”º'X{¨Gú~0„Ý®«6þý³|4®0óì¤mw‚óôª|+à:³»ùF™\ »²ï?9 ·C‚Z•LéxËʯ÷O99ãùQ¹‡ÙOnÃ;S'dò¢üøžâÖჿ˻0¥›–poqï5çË(öSú Â4&±õyþà{ðE„ ª&Ýòq@äö;`ôHu bWÔúýÿâœðe_Šx¿ï‡c\Bâʘ‚G‘¼é¸²e$’'í–¨Íä@êFsm‡yH["5ã]þ!d|ó‹;¦šŒÌ æ­vÏý\Nënåm䔼{5ûæyäÍ1雹áòÏóǘ¡ Aècãz9­Ö°šwšÅÏ»Ï|fÒ »¾²*$¢,ÓÔ騩™¨¸õ°B¿~>ªV\*e޲Gõ½û¥ÁÛPsAu%ÓÍ»¨•º|§ÐuûW7úMC½ŒÇáKºhP–?àã4:>ù!X¦b+5V— há°¾r"^­w·lZß½m-±O+6¢CþcâÃm=ôûÆIí-™G§¬CëøIžÓ¢©~@ö5R¤ÎñPÆ>Iö>òš|ŸO¥xá¤ni¯)=>­Qû­‘¾EpÂ!: Ò¿È×)> m¿#s+¥§¢Í¿סø0Œy…u­”ü(nªþiþ”?1ÍGŸÜ9(}Óµ­`3=¿PiË+ö*kh} z°û§ …›êÍŒÚÊ'}™]J)–/©½QoXÔX§e÷ÁJ¢HH«+ V‰;'òþ~NP{Ñ=í’ñh“rƒóŠu•³D6ÁÙõ@ÄÉCpMKùp¾h6•Kêáúk¯L¢ žÛ©L.3ƒ×Zé%GüæÁçGËA *¿-Àcµü¸•^d,Koz9/›žé_uÁnmød÷!-‹WœÒØŠðÍqÛ^.D.–ºfºê-¢F«LMGlÆþ‚7ˆ›Ñìïô ßêÍý½Î#é\PCýM¤ˆ9îq/Œ@ª¬^öÐ-V¤[‹† >–Æëá“ìT¾#{o¦ç÷?‘㢠[÷òfé‰Z²+ ßQÐWi• w~M–:…¢ke7žäEI¹aÌÚ.”åÝŪlT4³]þ¶j ª™W1DͶEu}¤éy4m}+¹ÂLÑpvï9Ne4{3sô¦øÞ­jw8?n±DûuÇK·ï£óqT®6_ º®É ­6B[Þ+v«#SÖ!ÁÝH$<3FŸnFŸRòdÜë•à=Œx)™C‰—Üˉ¿…sÿQ”zMpO²7~ ÁK|Ý(]>á›ÒôIÏ›†³œ`Jw;vèy.uÿ‡_JòØöÈûÊTKÐs-ˆ)ÁKiy‹ššã½Ÿ×CKfùjÎÜ?#Çñ©ô=ïéÎý¶)ÐW:©Þ$C÷Ç ñh ¸+­™.ÀøôöwJ¯´`¼B¶=iþiº_-Ì™„ïmÓv'rvªìg§~˜¾Žïrï݂ӧUAã$ábëÁùn‹f<-ü…g»õg^yÏýæü_"à•³±QæÁ0|¯üŒ8¬Íÿ5g}·Ì@@æ ½þŽ@6;.™ï· A68MöœFH¯ï¹ÈSŸ]þ§2"‘Û<S—‡"ºvúÕ7bш۹­é‹žâCÒ6ï@â¹äjÍ‚H¤GÈ=\«Ž””«ÖF­HwWlêåNCæyÞG‹ý’å°Xr…l¾ŒÚs"¯ïÑ×› Æ(,Ÿ™€"Ûì´zƒQ”X Û‡[ý¤|Û*ª½y5žÚ¢zþßœ¼¨qËØ±ø#jõíŸèênF]–Õó­ h` èéñ*AãÍ»Ÿ¹‹ iòP”¾4Z\õ¿>pmÒÇ/¨I¢cå5ùSy1èbÂô%É ÝNO£vLCOÔÂÀ%ßÃÿî‹õLíÃпjßɪ¥Ë0 ótìÄŸ©qš<‰Ï¬³¼þs?$uÆÈŸ™Ê·t*¾7#^úŠ| Ò'ó‚y¦ÿ঄?Cë«Sú˜2ä>M•«HðF_b*Ç–OCíƒ/¥å<‘\§üª^J|Úh¸ÉM%x©ÖV“^¡ç¸?®šyãÈBÜwvªLrùH× ë„7Ïz[ˆ'½¿yÞeÀpÓ#ŸêÚʯ⅗öÕ™âÓP:+š/•=ûÂÛÒ½™päžyìå/ºÀ¯µ_ÕàÆ§º‚íW2žÉ~ ­Ì€§µöîÚ× ðÞòÆ©y~üŽ¥zu1óÓù5m¿Þ>OÇKß#ËÓL²dr½o¢'Âz7°½`A$ëî‚{#öÞþbCÓÇÅÎÌS„ïÖú޵H•4? ó¯Çö6uª#ýêÎÀjšÈ5Äß‚ðÒˆ®ñÎ6¾ŽŸßžÒs‰î‚–CÕá—þa9ìƒRº å¯d"=¡wDCõYºŸÝ's'…ò 6Ôý–/ô·Î&ÖEo„ =¬—Álú ÿCa1øúᾃ"°ÔðZ?}ç <ÕÕÞ¹0¤v›.`êÛ‡J¹Êö&pâ×ì°‘…sI€‹Êa¸Êå†F=†»í3Ÿê ”.Ÿò ÎLaO?l ‰…GO'¤ÐykæúQ,Û!è`žf‹—jÿá ϳ²÷RŽy?‹=½)MLÌŽ›ÊÅäèçÖ‰Ì'‡~íxƒìÜ£~<¾?‘{Ã*}¯"ò×é¶žgþ‰ÂÆõŠ­\(ž‘®¬¢°¥ë+9ÊxÍP~‡sOJu*«köª„‹¢:ZêÇÁ^SÔ2s=4°BFîá«¢¨¿£eš÷4>ú=g¾mšW¬[¯iƒ–ŸÕ„>&£íý'¿è¿Ð9‹Óæwº×®|ùwÊDœä–Ö’ôÞ.RqéEÿz¡’ X]8•šÈ„¡õ#þý¯0Ü­}²ˆ)uÊ:$9_d/$óãTwCF\ô¿üKù¥Œx)ÁƒþÑWОŒ÷BÒ·É“ñçÿÁIÿ3÷‰Aß8¥)m¿$õLñ xâ?œà¥4ÝÔ?>5Äøó#õ¸}üú³ÓÖc”_åÏtñᕞô;bæØûµ3 ­Ã±%ûäsú1ç»Íô.èU?×XŽÇ;f.fºŠ'Ñ‚Êw¤ÁèÉëŽØóŸaÂÙanvÚʶ˜¯<ªi©Ë?Õ‹þ¼I‡uóú ‘m‚°[¦Ät:U ük~ž_§[y^«øîÂeëŠÍÍïÞÂÕám½Ðò>¸—¼/;0 OVþKççVSy6¾‰w¬ò7ÔÂ?c©-s^8>ÿuÛ^/u’~wuÞBðhóÄî’+75áVØÈ¹uç/×É"öV³öÖF9Ä- ½Üñm YlòÄe­|©3]ê7^µ½«WT¾ôçsº#x‘é~õïàJd¿‘”Ô_ø¹‘¨+ÒC¾s÷V–’Pú/_ÅüÉÅ ‰'øîò Lh^æ £/*r¿Ø±ì݈jÑz.óuV¨ITáI˜ž‚ºCÜÖK×Y þíF¥k_¢±ö™C¡03š_‹<–ß‚¶97-ç?ÑG‡ªÖ¡âèžq’¯¸özîJÝ0œ¹½_ê½VJBàRyÑŠ•|•Ññx†5µÒ/Ï+™²Š[Ú¹EîRwlÂk#ýŠì‹Sé/ÞÂÈ7¥òFi8)y’:!uAöB‚›ùNA¶h,,›™®Ã¥ùÑ“÷/•ËËt¢äÑàz~6mÞ#>jäû'¥îç´÷=Ñé_™;žrÙ GœpW)íFœÐgj>Tu>æ)•;ÒõRù…´}ð®I¾/Å3]ydÎÊ+x$•wy÷äC< ôµ1UþÃ:ÛÚé]0 ýµÜrbŇ¡üeüÏËmù“«­ö>9úxj×b&[£íÞöF)pœwå13Ó68,j\%sNÂοåÂè<Óƒ–vLp4Èÿ$‰g{7ì‡g΀áë]xMÿu\žk>|ÄŸy¼0…¯R ‰c9ü§—n)ÞÐ ÿ^½Ä6‘¼¸‘·Ú™¯ _ž&DÌàAÐyÿMsSSÒé*3*°º;D(2ëY[r!jš¡/¯õrij=½k âÖHô¹G+#î›&ëû¿ÿŽ„Û¯_-³ÉARëáfË¡sH¹ù€KC¹ )¯*C™-‘VW”î°÷ RìÖ 1™î|û³}§‡+Þß9nþù?øæ#·Z*&é¾6ò—ödTh¬D;sÕ"q¶>ñÔ¨Cñ©ã?']ÌQÒpÚMÊ÷Êîð‰G~bBëÍc¬¨Lw<ü*j5ªß;S,Ž“hΗ¨çVÇéÇÚ_RЇ¶£žm¦°ô,4¬¾.g:„FÉ|ž*Ù™hzhÏÖmðÍ™Í%—£•ÓlvÌ.y´=.‰ZœgŽöox T}Ñi%­~ºx=º¹§ðqªNY‡6b2’‡…)ŸPFÝy’ùt*Ü”‘ÇF^3êˆI’º%s0éoŒûå#C|·iø(ÙëHcÔ’>FôTÔ¼J›{ÉK|)]0áÅR†ûßõø¯"›̦ûÓžw¢¥Ï?Mdz“LöS~2O»®ŒÞLÇgˆ/ÍOƒº×Óô¿¿»i{ÓóG/ÆJÈï¡ò Mì­¾ºwÃ8)üÄŒÂÕT©…Ànµ§°R8)ñPwVòÓfßSMwÚl{cº1í^å8X%a¿èœ¯¶Ú: ×c›6ðŒS÷âGìyþFM kžg&Ìy Ÿ~ÑòëÌð yÑzã»!üßËL÷~¾u«X•÷zpÕα² ÛPgoœ€È»üÚgä™=#GÔç|bµ»Ž‰!¾mdY™ÐrÄ¿[wíCr ’´6ØäE\@Š"ïFÕ¿{rêýÇm}ä­—C24¬¸ºÖÙ'ãõÂ.õ!'BÃ$±|y«“ï|jÝ€üȈ-_ù~ P¶ FÍô$Š¥÷ÿ:4Œ’±?«ÊÊPöfèFÆ>T2­°ä‘oCõÊ£}Ûäw£'®@~Ùûœ)ëÐPZP&Zeä¼”Üý}‚§Ê›!ó'ã\JÝ+h¿Ì‹„gFðâgA銈ŸÌ'%ùN´}ŽÂMx¥”N‘<ðÔüLi¾Äç¾7Á]ˆO-ׂÊa#zü¸7ô´ÐsDï3ª:4—®Ó˜Ê¿4¿®²ÝŸäÆü5ö<Ù"¦r]üTZÚ#ŸûGï6]qõòÀ/³c`ºÃ)k÷Î8˜µ®š° ‹¦ø¥”žÉýŒË›•Þ°ýÌ¿‘ý"¥g¢üÀùóý•Í‚kñN•‰=t?ð$!mi×ÿæÈ¼™sÎw ¥Ë§| VŠæ¯ºP‰ía¢9Ò/vöåÓ mqD„Ÿ½7ØÃ‹èc¬ãk> öÅ!Ûú ÷ˆ—}r‰Gï7o¬R÷²Fòº•CL£Æxµë¿DéÒ4Ÿÿ®q.AÆ×¾ÿuWõÊL—ãWr.Íi/ýÜ»ÚƇÿ7ܬ²ªQ²aç»s÷PœÒ#`x*¥¢ Kó¡âÒEë;¶Põ‘7îØ‘Ô\¹|rSÎvÔ¶)´q¶~Aý}îƒ+MÑÈço\ø MßmwÚ oF+óã5ût×£}§ý³• 6ètPõY'’nûì’¿UÑ3n>¶Bôi&M[~é*.ܮ޺ƒ W{Ä 0œ¹zóæ­=xSÕR»fuÿ”uHüHdä—þ¯~¥¤þ–íÙ[[µ"÷Ÿý‘ür!uIîúf Ó©pQŠ/ÃÀ›!÷GF¶ÿ9÷‰è6^Jôø4\ˆÒkÐüÀï¿”ø“œ'2';©ÛFÓóÚ^JÓãSyO4FÝŸµ!êÞ¡=òUî]ýÞAüüß?”S蟇Ç­Gãªè>ÄwxO»óñyçaöfF6`ñlÏ·9°º'¼à•º;ž>;-Öõ3ìØs$,«Ç¨¾é¤¯6ü@K.Ü ï Yï‡kƒÞmác¸·žž ÄO¡ fìfËáÕÎý`Þ.Cøz/xõGþ6ikCñB‘Õˆéâ=¼”;ŸÁÿJÁË¥ íCÆçzïGv7":,Õgp"zT¤^Nô;â°üÁ-¯6$œ¾H%I×õL·¿ëEJˆ]®ìÑJ¤ñ–fGDÆ€Mèг}ÈÎÎðy²9^Æ‹z‘§¢ Ql„¥¾Ëœ‡®£Èî©RŽë4” å{³ÜŒG¹Î¯!©ù7P%º×¢\‚5k4¼šÅùQ›ýÇ®h¡êMNŠ+òt£Ñ¨§ä–`8šƒgå>øs­n¹¾Yhgd—ÕÔ£{{÷Ú¦rô¼ž}]øÔiô©}t¯”éÃÀQ6fÇWÞ’¹-½‚í F¬Ž˜OöOLY‡·”íí0¥Þ÷dNdÜÿËG˜Ô#c’Ÿ#ó-™?I]\„ÒÛ2Ü È=‘Â9I¿#O¾)•÷DÃIÉýþŸÜ'rWdÐaüãcJ|iþqÔ‘¥f½å• ú‘äÄÐrˆ /MUtMYÀ%ºj±A#ÿL;:¿4jøn:OÓ¿¾Q4`½¶«Ü•¥ç ¦ÕÞºü8 Þ.þ¢ûÆF¡Ì–cå50™ùç÷š ÿú˜†wÚë ÑsÕ²~kH2m‚ÃE9–ʺïÅ­v)Ã=pe¶J) ¢öJ*G†–Cê-å7¯T.¥Ë'¾n´™àî‚…Íã[6ûis÷ID\WÖªJEô¼G£CÙ¯k]úXöxâÅ<^h{~ |Ü’7Þ6Xí¾¯Ž²|¶hEÚ³ÛÇrn&áõ®%÷w·NC6³S*k`!r\W×ò|ìCžDàP¸þk,û©'ñEKùòͧñ£D|I¹eû”yÄX;ž»‚ÊU=Ìsß9£Z5lI˜;jz c½ž‡ºû9rWØv aÝ•¥»ÆÑ8Úeÿê5š[Ÿ‡çì©BóÍV­Oè8‡í·· «QÏõ¹¬zŽp7·¬zƒÞìÒrÞýè—wœým¹Í§¹Ž¾ÀФғ¯ÁÚxÃìyö|‘*ÞáŠ_Oü†)ëð~FªÉ\¡ot<†V/SñKÿ«r{pTñ­XC½&?Gê‘ꇴ¾û?ûÓ0òHžD1¥ŸÑ·†ôGâǨÇ'yà z|â/IöÍ|jhú)j®e¸w(vó©&ÚÐóÚ?œà¥Äÿä ÿ7Ÿi–å‘Ãtÿaõ¤MÅÚ»©¹ö?õÇ„_*3_øÚ@L¿¨^)8âF÷y£Ý7Ζ«;XÀí5ì;½ >F3ýëS#oüCo¸+Ìâ?§CåÙx©LzÒ¤rlüÍ稱õmÆ µ›áEWèþ–I‰1«¶¬Z0¾½ íVÙeAô¤â“ø½ˆ;Á³&^ü T%ÃÚ_BÒSÅ›ºêÒkîŸrè2Òô6È­k/ÅëSYuB -¼²VwÖ/äŒ?^vð:òê®ïŒù…‚sÇte¡xãȢ맣Ôo¯Ëï¹kQ!sK:&Híï>˜X¶Bw5 çžÙç§ NÅFvÒt ÚvüÖKÐt­âh([ Z‚ -¾ª¡}Ãü8©ø töY8ŸúŒî±ÏÏ»ŒGÐëa{‹ý7wzs9aðZÊÎÁ_¦¶«¬/¹°oÆ:noÉž²‰Ÿàô^Ê3CprdÔß“zeÄmH_%÷zRäýN|ÚH¿"û¹Û)<®øœi>Ÿî³DøÑŒþ¤„OzW5üª’Ýç”vßûçI{ÿSø*á™’9‘ø6ÑîT=¬J ª?SDÝ5ë'ï/á¡ëòiù1”©p~ñ¸¿1…»PuquöXHgŒG›Ž?ô”‡iÓ<æ6I˜»XIidÁÒkŽG°¶2vì®)†PôO«ß*°-õ/˜í6öw, Wsü„#ïïWb zá$±Ì¬æ÷~z¼¥R)6c¥"žù.,Ùœ*NÏù]íñKöÿêzSM8²¾â?×ø¿÷ã ×>'Ãÿ³†@è ¼Øµ§|ëߺ LZÅR-Aò©!‚<‚YÍ"aë‡Ð7/wí“<ŠðþÀÜn'ùóü¹qAÄìྦྷTt±¹šÛKk:÷ëò`–ñc$ïÉðx¾‰ÉG“*«|ôhFç—¤|‰P»tÈ©v9Þ|yHß§ÿú _)2ŠÇ$ÍÎ5#³[b‘Ã×>dÛ…ŽÎ—òBNfÀÝ4áä1m“9qóò¯°¾Ü&‹‚òæö- N è,WØ·½¿»4r¬áx?PnTý‘9T•¢QåE«P-º}pþàÔœ™wþr¾ ju¯f°ÝñD]DÜm»’_¨ÿuÞïjÌ54^“)u`¢û}«óöûL[†¶ƒçAû`jPúómè¬ÒÙ{Ö|Ýw÷ó±ï_ƒö`Èô†oŒ¹æç4eZ‡^æxCᥔoÆÈOc¬;Æ»ýTz`òçuùTî­/R2ì:ïÝ]H4ÿÁz£•ɇí'ƒ¸ðŠíîqÕ÷6GV3É;ü‡v=³Fæ}å‹Õ!ûZût¶mÈ).³Qé@Þne 6ägè\óv[ˆB…`¦ˆ"i¯)Ib‘Aéôû»8·p¡|ÆçØ}üe¨Ü¸…Gm@Õ{ª}­CÍí³2×û£¶fîpÒàSÔ‹/,‹®AC•Ž™Qâ~4=:zPÈ-GÞ¹ys·¡mOb±h¥$:Ndp(ð>F—íS×êiâèþ%rÚjï”uHt1ä}?Ÿæ¿r€ÿ×ýÔ©{‚PyÀ„—Mx0ŒyO´zùǯ”ä=Ñ~Žà£ŒOJ§Dò€i|S 7%ù¡$‡v'÷L w!¾ÂŒ¸ Íï†Ü/¨>JÓkh$Þ ›Ñþ˜â§igÕTU§áÁÍËÁkwRùk”"ínAòž ÊnN› s…Ñ…¬isuUèþñÁãÁ(ݹÏSz¦ƒzÃËÅ(½Ñi8-ÕV^X% gMk…kipùÙÖq¬~n¯¾÷ó.À³èÍJ+ÿTÑuùÜ—Ou~,†¯iÙ-å¿ûªø8¯«Ó¼8/Àou/…Ï?]¿ÁÛ8凎x tgÖ$§‘Âï®ì6hCÔôÞWë»çÓýk^Ìžu.« ·çdh‡"I,1Õ¡D)[ý"¤£‘*¹EQ+ý"ÒcvÉ?ãgBæÉ9Í’L¾Èvñ·=/õ¹«M¬ýýüÊ+Žé~>¤z{PäÒÔÝ’õ%ñóÜutPöý‹ƒM *Õ7…ÇÞ™j+öpK/P3.2×nãRÔiMzWµj¢MàT¹Uó|Ë,f§¡9žãd‹ Z3Ï|(k:‡öÏ¡¡&‹xÑuùlFP-º''¿UÉ¡÷†Ê1ô$-¹*¡Ç=R‹¯tcè⇑‰s30"å¬(á3µ?þ,ùÒ *Tü¯ýð͵`Ì·˜Ò¯a?${áí‡Sîÿåcʈ—Òî‘Sêò‰nƒäZ{ ÑÓæhJ¯AöÂúd‹ï½¯è<šJ¼”øŸ6Zªú•Ö Æ)o ¡’2«Q54ÛÄ.ù¸P¹4–»ª¾°t…Îç㮚Ð_¦]À–ý¬—ÎtÌ€b¶h´:Œ*˜ëÅ"wÃD_Áh·ü ÌÖÞ<Ú•ób³ÕnoÀ:wÈÉçEl7¯óô¬û¾r×ïûÁq\O~µÓu8[;ì­È‘†«ôÉ f¡psZÔry:=—æ«°ø¹‚ðyÐ.tü üYÅÂEÌàcûx[Ô/:LokŸ=Am¢’®‡zÉë¬Ÿì „ýÁÕ-¤€¨F))wÄÚIÉ3ÅR:áD•c‡7Z #ÙåfKžòA¼úôè‹§Ý(Òm˜<ªä‘©näT±æ-²K½e"טmµÿlä+†ŒG¯0E¡ZÂãº]KPªªw¬eœ ÌN§5Q‘${û³ª%_öþ`­CM•¦Ý›5ЍӱZem¦¹îO"¢érÉO«„a´8›&¼VÚ‚¶_rïªI 3°€'fb9ºóÎ5­ëBï¥ÕO}kß¡ŸÛV¿òf üÞßZ’xà ; ˆ'M]‡ö&‰|—©÷9ãÝ‚±ÿW¼”MöN /%º|âkJ|£HN ¿Må#2Þ#hþÞT>)¿MöRÊç‚–OJÕÑó2‹èdƒF§å–ÜÐ’p±6:\Aï‹÷†)ûzRüRò9ù°lifßOêapÜÏ·þ¸Œø·ntšã ãKKu¼O¤cðN粘%±¼O}‹ ¡†M9°>¹rßo"°i\ºª1÷ìO¾ ÓK=Ç«ï7/Û§Ä¥/ÇdÀE¬²Ü™ïÜf|º3}µÜ'ËYåO¾dód©Jx©E¼ åh‚Oûm– ›(ø_|•¥Œ³•gf~º‰À÷Óžíû‚ ^.!…ÑEéM˜fÛ0 ák§›¯æGd.÷hc±,bJ™™‡oíGœ÷«O´"AãCÔQ$]fçþœ5” V¦ ”é>5?ÞÿX|™I7m×Y­CvãâyËßù"W[ ߃'‘¿ó‹÷Ó•Q¸Llæ¯çPÌo «Ï,Ò빉+P^r9‘hªŽ´ Ž\CÍ¢ÍÞ%¨u´Ò`’OC=Ÿx÷Òñ64´i0­FSø3·£%eôsqÐ6p~(Œí:Åb_¯ÞlŽnåH•FùQô”ó™~âC߉ƫ¾¾?Ð?¶rBoK)“Rï=Í¿á€yno9ð&%\š¡SÖáýš ó‹~T?"xæTù¢Séïÿ /e¼2ú—’y•±þãgÊðüOßo¢ËŸÊ¿”à¥4}#£¿7Ù7©¾ÈÈ3`Ü/É\˨ǧùS9OÏ·‹õðßü‡gGroîÈïp_à T•…·] Z—ý\÷$ºžqì´KFÊŽõÇ´;"•ûD|jHN[ì5}¶T˜ÊÊŠ¿NÙèÉäM]C°È8“£µ~5å£a#é§9ûö\ØýYqëŠÖN*ƒè]ºîWò·s­­X“÷ò~º¯·K˜øP‡-•cãÅ*8d³ ªWö>½‰Ê &þ‹¡‡}LBÖ_¦ï‹UrÂÕ§“ëôèà÷aÄ›\+U3rF¢å-ϪŽN$猽Ü<ë8R…~Îö<1 éo—7ÿ¬4Ffßž-rÈY¤1=[¼¹.b]‰üÚšKÃ×XPø;ÝŽÏEɱ#Jy)ëPÖpj·Æ7;Tº¿÷xøÕ%–lϽ¬P{ËfW‰=ê×ÙnN[ÂÆÕu#­³-Ñ,6Ü]к­åÇF™—¢ƒ_\ô¸rº¾K,¿(*ŠË<Å“[зwš}bÞØ{?x%†–ùÚÚcäì§={~œœ²ô~t<Ÿv–šËÈû˜ð¯I½\…ô5FÜt*7ÒW ¿”Ü× ÎBîä@ö>Âk¡òqý–çS/ÿÚØá1ì=ñ{|O¥ùÁÕ®»óà F¨­ûÌ]á|Rp÷6Êîô[¶ói·^íÙ §#‡ÛJT‡NÁîÇu9âáîU(ÌÈ€$UE¯úÓp¾{Êyx1X‡Ê᜛vÞû”u(”ßoxÉL"Hs ñô¦éÖô‰EÈ Ð¾–ð*²¼æi}ƒ '®…8< ž®”eØ+B¾æÏ‹„K…PpÑ~–ù6<þ€´ dz”µ®TÁ ‰Ç§x5áex&ý ‹^x5ÂC=Å{lUHÐAɪÛBëÙ^Ü{Ö*IBv{AeJ!©±£;T5Þñ´u†rK±kðvÉè#Qj¨m):k¬u6£…Š­ P?±Qrƒ%î”’2†Fßœ ©ŠSÐd^“v÷©&´מð´ã€VÅx¡”“íÐfõê@þÍ·Ð~…¹ð…ÀèhÆ_]Ùˆ€. _‰sÏ@÷ý+땊¥Ð+NÉÅúúšu*޲3À@¬šÕÜ©)ø|ô¸ë ·3;ïÑ÷eÝâ0*øû-ù$\?òÏ\ Ö¯ù—_ñgÞô¿í_ŠéO ßæipûËü1?ˆåàþÛ~28]‡½÷ ÛÇt[ßayò?ó¸œ)Ö¯Áæž0ÛÄíÓ±½Ÿ>–/=ð0œ8Ná|¿Ãt×ç2ˆï¼¯ Ë…·/v5À)¯Ö˜{æ¿wt;Ží§í¿\c¡"fZ !Y†ŸY}…‹ßè#ŽA…±W™„;¦4¹†<‡ˆæË":ýWpû'âú4ºŽQï„BŒ‡élÚ \à×нzb~spøÃÍ€ý†¼cW¤&.Ú ñ´qÚršépû¾¼ÆèUbHð¢£;¢n ‰»ãó"Û™!Y7aŒv¨|çý¿ünêa¾;ï'Ýι¥Uz_¿ÖËxö­†'V/0GàÞk‘Ûjè¸äÙð7žSØùëÑ]^/á¹ß‘y®/û ßÞ¨;=^dQ”K>€W'÷Y|•‰‚b÷ÚW©t«PzüX§¾¼Éù9¨ÒÌ·ó>D›ºG¶œóP]´ƽuÞÊRœÐÚú¸>ˆn¨ Jί)„÷_Ügð»àƒŽÏQy¼kðÑ^‚4|õ4Gˆ\Hº-›*µW—^C›É~7î­ƒjƒ}Ôõ× SäµèÉÒÐãŸL6\5Rò—ŒI;¡êŒøéœ;'¡SM9ðÁ”ôÜ‘8z"ì%Tï©7«ütªîËE LBç¡î,òõè¥?¬½çTÛ„ZS´kA•ÿ´³AtÒr•?yå½Iú«YePõš—‡§Â ªˆÝ2Ød¿B§K¦ãAw!è}vˆùJž7T §õõ)<ê²%6ß ½;›g°öôV†^_„ªÜݪÖG Únhì*Ct¼Ê9âÔS=ŸèŸLUBUCëÝ·¿Ïkg'©“€Nž¿Nd‚Þ›øt1¨º7ªÖt*ªwýÏÚáôN.Æ‹únˆØ×ìË‚ªŠwjx£» r£©Œ¬–:hd^Õé@ïéjw¿¶ßÿ/.¿,­„¡êÍ«9!è˜[ãºèý'‰?…˜B9~Q&ã ¨4z»úÚî÷ω<½w³úwQ•WûùCù[W…S¿CÎ’?ò³tr°K_€þ¡ ¶×ðfï mà ”ÎîSæ«€.¢’¸„J`­ý¾o+”ÈU p·Â›‚Cý#g s<ïXâ'èH‚ðØËPöÞqrCŽ*÷k¹D¤SC§à,ëjK>ô}uÖg¡Ý‚yN›××~ÿûÜSM=‚.Æ£ÅPC\Þ‹¼_ ¤éÂdÈ­³¿ÏßQrQ¤‚Nõa“A-èw¿+D‰z ”‡U„Ô *-lL\ÔÏAçó³“ÄmjÐ÷úF¡ò‹6(ûp¾ÕSå TS›Mîß ]« \ÐᅦU¿ÕÊ~à ¥i†Ê€s/æ,Œ STþÝàî"èd2Í %øÞ“E©Ÿ jzŸ°%tŒ¬K8fC?m@Ì·†7ð&ß/KÁá÷ÿß•/7º­¡“©­—ÌŸàn£ˆäÖÿœ#üÏ9ÆístÛçÿƒ$|Ùí„rRÊÛ‰T¤äU0¤É«J)(+mÿ v…œššöY^VVö}–û_Ÿåÿ×g…ÿõYñ¿‚Ä‘×Üó°÷ö™#¯÷‘cÝÿßYݳ›ÿ‡g±¿÷‘ãŠÿóh ú]lvúv}¾{>ügfƒ”o½?FuS0 ½’û†^ é†ÈÞ)BÏ=®x¯{ŒžúÌE8òe,«Å2­å t¾Ê¢Ò{ (Mù’´ëiô؃vFV:=òïRõŠÜ…R|œÝdJ Pbq°¦ #nÅ®{f£Ä<’<Ž^M޺讃*™™C’ÇÐÛSŒ‡}Ë£ºìÍvVerô~)þB ~!úÀ5´Þ57CX]ýF-Eú_CM±Slå ¹¨éCãKêÒhÔä@ý˜!eçüG¿›Æ/r¹pÇÍ:1ûoy{¢–¬b½É¨õùsg[©)ÔÖ+Ãòê1jÿ&ö’kJuL(}a›ÓFóFÂVŒi¨›£ó`×)„ztü4^òC½—‚éNŒ@}£th‹Ñ@øƒý®Ç†Ðg­—Õ>¿Ð »ŸÇeA_ù«ú¸j¢oÆi^KÇ Ð÷ëLãçyÑÐW'MÇ t4b#Ÿö}…þ<ìf*/…ƺîÜÒxfŒ&Ißr|ЩAÓå©—ö_C3 qOÎø£_ƒnš+›¢yËŒ»A'Ð"ÑÙ’§ëWÐR·Ük¼çÞh•PaóÕèZåɬ¯¢E[ñ¡Ç%neþ·>³—s@xl].£û_Ç»m¹HŸ†øRµäùrÐÉ÷E@eù$¼Â±hî6üŒ¼ètç:‚ï5ý@ ñh(0^yþö²r>0¿(ެ>¬)Çöå{ãÂQÛ7»ØÂ&¢žÜî ¹ö”)à c8AQÚ |Ÿˆ¬_Ÿà=B²¥íò Äz_öè:ˆ0ú2\Ìö±ƒk$ß¼ARªråüù~±S¼›Àqäö”VóXL‚RaÛÓŠ‹å©é%‡@…¸æŽâ-MP“{áy4npçm”Þ$¶¯îƒH6h‡} 1]Z_Ë‹¢ë°»(õ—‡»!èá‚à'J`¨ú£Ó¾ZŒYÃC¬tÁ”l3ˆ©Ì)´C®7—‚%«ÖÊГ3`•p„ÔF}¬3'=V4ƒÍ,Y«Ž-ØiȯߪÐûäÚa²áàÈ‚Á)ã’3´;/îBpãÑý˜u9ÜÉ„0ÞŠÐô6’2ðä'•ݘï%‹óÕ7w¸ÇíÞÓ µ‹:·áƒ:ÉBoȆ Âª“}ë?¾£¬â¹=釠 ªõN‹kÒ8œ=Ð|/¿û;oÉ7ÆËÉ£Náð–ðžûý_+v=†Ç'MEQŒò´Îh>ô’BÏ»$nËfæ¡ü$b_¡w‰‰DZ|`Œ»o_†[ŽÆ4ÝÃÝ÷ãÃá#¶€ò£6s½¢bQîùç üBæ8ÞÄp‹­Ùéò¡:Óµèus¬÷ÖÔŽÿç;ˆ­ (PÛÅψ¹áx¨ç•Î9éùÔOt¹«2ô#úóùæ´üÖ_|ƒÝ¯¸U•ø˜ðþuþŸ¼Ä*Ù~U¡Q×{·´0ôãæI8Àã§ N—׷ߢÉcâÔÝ´Jhš3™‹ÕµÍÐy^~äš5Ѥœ·@¿n¨;æY£¹M-|é8<´pÜ[O--Î^Ä›°¦GË¡OžÊ’íE«(ŠCLº­³»ó|+XDó¡¥£«h«ŠUïÙçã€×P(rÞn ðû”l¹Ý®!Kâô˱@äß<]hTÄŸc†ùM*€Ô(³ör:e~}2Á_ bü$¾¿€ o‘9eYh<‚u T]ÒrÕó›À Þúé 30öŽt'(·3 w“_X€EÅÎp|/°|–v¸±Ò¬z©®Í"ÃÀÚNÖÙðÞØæÓ^³'ùþ§Ê×›ö¥Æ{ïãÀ;1›ÝÕiüµW¯JÒƒ`›ú;s­,ÖÙypcˆ¨'É’Ö_QªÛÑ}NŠƈ†Ä“³AÜ~áˆj%Hîx7ßÒÁ“#Þ7ØA¶$>“é’ È{s~ŽÍtE‰÷r{ @©ñ´Ú\Y ¨Hþ }¿gTK¬¿–uêª#vgA“n<Õª´¾i·h±­4²²~®žía–G ïûAg2)OÛò"讉²zŒ…Cs;èï \Î^¬Y1…>Ï&04H ¤Õˆ#¶WÀ8hø­Îˆ˜¤¨ì¶ý@¦#õGÎY ¹ § ›<%XDÊ=Â#œË)³5/û`õ|ß,‰Î°ȶëü`6zTŸKÛZÁ–£±Ù´{l×®?Yk »‘@‹b'!(¤x ÐÀ¤Ãi6¤îŽê…§'ÐDø“2Ÿ3Y¨¾ÕðÝnürTö+øËݼk8^Âø«+ÿäK¬NM55Ñ•ÒÕÀ­Ø÷±ë0<æ3¹m64Æà~/ÆcN1ü¿ñÙØ5щ*P{@kl3ªÂ;: ´…ã«·ªêw¿?;€ÞÑ}®±S×–½¦Êîù‚>4_°õÝá©£=DÚ±=¨µEàM)ujg"#¯{óuä[2W3¼A]~ìÎjþ¨ÇýË´ÕËpÔwBá`UÉNýyG`ÍX zqSæÍ ¯Q‹ÒÞÈ¡o÷ê¢!†ö®u¡aÿ/óéÒ¯ÑH7þÜ ý+ôáâØPw:›çv4« GyB4ëÆFhêÎÃr>ûègr'¥Ë9C43-ͼï¡úeÍ#å´‰æ~ÛWßìB ·÷ÓàµÄ¡%E©[¸¢Ñò‹ÎÛÞìhU¦ðÅçÊ5´6ì·Õc3„áðÌ,gLíìؽû¸ìæÜá-ð¤âP£qçD Õ#¢8 då×½Ñ ¸cã·w(Co+Ð{)Õ˜ËéïÉË@óSPÁŸèçÖ[ûXa’f¬+a˜w“Ö±k~ïáPü`ÿ‰’ËoœΜÇn96Þ°kY¾¹Rƒ¸¹x^ÄhìžË÷ýlu·ø«£ø%yàç}t>ªWÖl3Î 1°DxòÅž ôNYˆñ- ·Wô uVw¯d~•6Òñÿ]¯ª«rä$ü·À\•H%P¼zšð£îWP¶# q-UŠý%’ n}õë±oä j©ûÝŽPóІÇ01h§Ìç§áo –£ ­°[É'Üàèݱ63–¢¥'ϼØÁ0ôþµIÕ0¦2¨hñ$“ö,‡ù¹)0Ë8›wç9X$¢ãæqÆ`åP(­ü¬Od>›Ç[õßä«ÁvÔj¾‰Wìuê®çÌÕCá“ΑNpBE%iûíaÔ›Cý§/ŸóDzLŽR­±e;†º wµË~¦ÄÕqÏa¸ÁtáŸzðÏz«S±zô_ú«1|Õ\. žtÛ©ûîfVÐ;ýoˆé¿íãUì|#¹«}ù³uû<†Çæ_RT<ɨ¥Nlª:'µÞÖ!C÷dQ›—kg¦{j·˜|Ñð:upѯÝ\û]·gyÔž¢C]fi?ƒ¬¤Q÷3îÁ…9^ÔëKrÏ%>õ»M'.!EŸŽyŸ5Ë;‚¾”õÔÞ£F_™ˆ,¥t oN^ÆÇž ïï™ükѰ¡“ÊåýP?%ƉÆH‡ÎØ|qÀñïT “lÔÝ14CNþ²ªÍú|üIXúµ¦«8o£„æ_Þ-˜æ@‹µÔœåVhEáÖ;Ñ›hm²«•k~m¶Û‡ǘÞ¹’@È= È™VV’¢Ë§DIÕ£$Í…øÞøc [ô¾”'“¼ýzRdíÅp-ЩQ\Éú̯,•\À蘒ÿÈ·˜õ& öíÏVÇû²¹Ýï=híUQR.p–—²’†n µ¡Åß|iM²q/`øR9HÊ?„ƒ]<;š ÁÉzélÉ„qÂØú [ éäÌžÊoë^„®Ímòùs[Å@Wy`AL0¸•ÿ¤O¼ L<ïåÖç ‘äô×R`c=­—M A»ë蚀ËJeÊ6…‡W~)¹­¢M ˆÜCéO‚pjƒÅa&ˆ™l\¸D’Oh§nÓpƒÌ\Ù ¶â!kïäW% ƒ&/Ίჲ¨ËÛ®P-øöx^)4‚Æš3x]Ь7´ÕíÚ»ÄÌb {ÄlqžôöÍ È}çÅÃS`t8Üg+0LbxžÌYÕzLaå°ØÖ)ÿ\ V#í”TÊË`cCNE{êØöç„?ûÈÄû9ÙºàhÏÉÕ±™Î&·•ðO‚ëÁÓ2ʰç•å£ršðàèÙxgx <ýç;®[$ÀùCmJŠK% {Åjj·¨°54e¨Œ¡qÍ}ôýi ¨ž÷…ðÄ)KTQÂ"–|•dÈ´zË´ãô`ÁiÝé™Ñ¸ºë§bu*†Û‡Q)ï|ƒq+vÓ™ÕÂ~qª; ÷¡ýUKÏQ KdýcÇ Ô.wÎû§4ê¢/s -†ˆÝ§­¬ÙôŽhðb¢Çƒd48Ú ‘÷¼ 6X¸/K¦ãêÅAQ‘κ-ØY±ïo_Ó4Y҃øûý{‰ø¥|4Ô–Ë,4FÈ9Ë´£»#¨Ÿy£ñ@BñúúÊÝè¿ûÍ.J]4ãâÀz};h1¼êhˆæ\W8È£…ݳj¿ëÏ¥ ú·Ϫ¢•Ï<‡—zép:q“ÐKSkm=WoY£¼šÝ‰|/þ× ÛË—z€P(D'áÍ º>ú²¨HHX­¤£4yÿ¦ö<Ë«MÛdü®+yï«[uˆ[ÊYy? †gÌ]@_ép¾]=©­>Ó;±ˆCzqÀüÚ÷œ£Ÿ°ØÖ´½­.–ìË«ïsUœ¾ë˜ÀK`S)qhð•ôÛ?d¤‹ßD’ÑN x=jül üz^Õõ~@>G©&Š„Ná,íáC4¬_›‹@DïÀ¾‚Âs j~‚çÂÏ9‹Œÿ^Xv $$ßÔFÞ{ R.N_uY-A–dr¾£— änzh8 Æb]ï8¿ƒâê—ÍÛwkA9Z1;`×WP¥–›K6Uµ‡ê+ûó@Ã$å þ…|Т¡®akð4F¹Æh´-“øÕäƒÎ!nN±õdÐ=6OyBl vŸyO[yyôBµÂÊÃ'A?†ŠÆä& $úð'>Ôìô¥x…D0*8vÅþ·sød¾Sú­:òCûÀÌ’9Ûàk˜'…%Áë‹q¢;ûÀJ¦sÚâÚ;°šrÉ@ÏÁº0”Ö¥}lÂúƒ?p§ƒ­ë3Ö„‡*`‡vg5VÀù˜€3§‹yA*ªÿÐ}B`ÿÌNQöû¾zòt-ãð‡á «+±¾ V·bü†éÀ?ý ìãYì÷a¸Æø ×çü‡NÄõ5vPz¥ˆjðJô]Žâú>8ˆñÕ6Îqu-VŸnû- KÜ—(ÎâêR¬íÜ{Ÿñê>¥xÆI××ìOø,ç^‡ë}ypÌ’_| öRRƒÃõwÏΑDs_44ÃÖe>àƒF²ËÂÄÕúÐìÖð(m z÷¼"®P¾ö$±Ã(fÒw§ÙÁ˜I’½mò:˜ Ø7_L³¼ù´J­°HÕ=õ®³¬Ü|®Uu ’6ý®h°É:®ôS l§Í̘xÀÞØIl*N J—Ÿûå·“aL#xÍW¹¬yø¢ëöíËáoåÙéÉIÔ5ï0‘_„ã+LbýO¬ïò§>Äøî_ú[±ë1übõã›Om*êq}—ÚDëVÒ•µÿŠ#œOˆ­2Ïãå¯'ãê÷t+>àBœª^,ãú5Å )´ŸÆQ§´ YÄWÔtøtCÎ<Îgh=Óܬ鰣·ëÉŽ¸þ&ÖÔÙÕAþó€ÉŽï€Õ•|[Î ÷ OЧBøÚìЗýçN¯p=Çñï7õá+";>„£;gEye /gÛ»ýß3®£LƒÆ[SŽì¾‚&ç¹n³ŸµE?­šÜwÂC3ëKÚ‡>“ _Ë#ç„м4ûPÈ¡Å=Îb?­5ÐrÙB«–g+Z³&xz[ ctS L@ øˆ± @ˆð ËÍp|Jæ¼/ èžP¼sc Ž ü 9@¬$Œ‚GX"îƒô…ɪ k]Ëé¡x&ò¯¸OD©Äâ uR[ßPŽŒ(óýz Tk'‚Û£@Cv®Üå;h½ï^{ y´QÄôÝ@Ðy§üär‡ìv{N¼ùô©Ýߪ΃^‚öo²Á¨âû®o k`R=ëžf_—/…Ôˆ€%×Á5™ßºÔªÄ‹>F!¬ç&"¯°€­ÛøÌ¢»ö¶bËà#àp@O–BÉœØ-š-&óÀyRØÏø\¸~Kx­ {6]ã("3ÁƒïóÜÅPðtá?¤%ì û²Áa‘:¼Ý;®Dæ½ÞÎá¡-ú íV¼8T„:æ37%:ëp¼„Õ‘þþÄÙ¿üBLÆ+kZõ~ŒÄc×cxÄøãW,7ð§îÃŽÿô ±ëÿò·¯Çô"¦±ÜƳ%²—ÃÚ¨EP©x ¥MùŽxµêë=&\Ýü—¸z4`šC×Gj8bÞµ°ÔŽëáô!†k¬/»]oÿÕ— ²/ÒIŽÛñg†Ml‰ŒjÐà Gö¦ŠO¸þάíJB¡3šV³úBˆë¿b¸*’:™é{ÍW¿3\‡~ –ß“[û€æ»Ž´-Ø¢EÊÁ,*_´|²ó¶Dá4ZÝò‘x—J‰6²ÑºU!ñÀ«ü&]ÄøUÚÖïE¼A/ËäráϛނX>1aH~ù(˜³ò dÙ –¼Î¹±dUõM&PòÎÝßoÊTfR†@Õkf¿ýl¨OËšU=­§™èã™EжIž;CW :“”¬G ñ`wšÃ(ñcÐ-=®†g¨ÖjÀøŽfq9å8˜öl6ôˆ k3âu`ÖI1ÀÖ+µÆ€mÜ ë ÚY°·¤7° G‘I>pÖµlnï˜׋D\’…°gfB7þ/x˜=Œ² ÔÏòŽ’2ñA8?ÿIjèaÈ^Ÿÿ$¢Ó ì/Ë‹E“,Qõwtâí³¹‘1+è—B”G#É(š§¦PŽ©B‹ªVé+sgÑrìùž{¤ÐjŸ…~Í2ZÿZw½y  m¾¡r¡@ÏÏ}ØÍ‰ÿÆÇ£ìÃÉ@ð¹ÂÉ:ºˆô\¿Îêçqeá$aÎŽÿð½P|å#P40gØýjçÓ[%@ûR^‘}ž è&ƒ¿Ò†^¹±Û»o“é—-S<`Nkâ ¯枤ÍsÅ€Å>‹Š[KXf…O/ÊOÑáT£,ÿè—–ÏC`WàÚ²ËÀswxE³Ãø ·]»0¤ìnïσàrý¢X \)\%ìÒÕ= ¢Ô7IUcg@,4ÃÆì.H˜ž‘.s®©¥ŸY5•ãw4¹OGä– h@¡0çrýmcPò]c÷“¸ Êíü3…ïÂAõ‚Îèñ´ZP‡MµÚïž É:¢Rc ’ûõã4S M"LÑÙš:LúŽ c½ +Mi«¦V»mñ7mK"A/<æYS è—>ç†Ä D'*ÁÈþGÏ®·!`œß'!¡¦Ìú¥Á,L¸LEº ,xÎ<<¬r,kŠ˜Ï2« ¯/üµ`ýd¶'Ñ)l8%ééÛmªÈžGŒÏÁ®hÃw·³+ØwNää;Ž$×ÏdÊ1þ®Kã› !ˆE0Nc¾¤n¿Î?`É {=ìÎÇCãOS3®õeâú‚þ0~Áp„Õ•˜ÎûÓ?üWÝŠÿ7ˆåf°úã/Œ·°þ¦«»E›ÂŒq¼õöGíeíÝñ÷5±úv»^ÅêY¬?Ôêâþf©µ-Þn©%¿´Ã[—¯u™/|ÛñmË\fãp~â*ʪˆ4ß}()ü’ìÝúSmà`.uûŽXδ÷2‹ÆŽ>,&1'æ)GÓïÆÆ ³hFOœçøåÏhÖ”üþ™P\ŠñÚBš‚ÛäÓ~OðëõŸjÑZ6µ°ÿ·B´±6=¾Ë.ðtÄÛûÎþýg…Ö¥/wø­ÂݰJ-Hì7ÃÕí´™‡)ýY+-Y4:Åù³5ƒûr¤4vóe#PÏe1hž½tA/êÐ5`8v7[=µ˜JZâÔ†e€••Méó¦*°Ûrü P±N©ô 3aWÁQ©¾cá8ƒ§~´…eù8ðNþPä˜~Ûþ³¯³ƒ Ÿr_‹“&ë.ïó“#ÑîÑã ¡ö ÷Ì&ZÆ'ý²N?L *¹ïi‘ p¾Ýƒ‰.”äEôÒ¬„A…̃êD¶¨n{tø‡h°¯œ¯g0-g™›Ù|¯Ê=‡bå~ãSØA«Æ§tÃnÕ÷r.ÃîùÒìÌHпpßHñÊ0äLþ±ŒúO¸?q“ü­Núªv0+Káëb‹¡y3¾(z°Jö <Ö} »¾š:­ÜÓP¯OwÀîq’|jD#8È(ê§„–€cï} ü¥npNãã;î±ëcä§À+&?PÐúðVø ’Vñl‡9Á±6ÔÙûªOßÈ|Gnó†? _ÿÂÙŸ¹Ò?} ì:Œ7±ºë¿`ý!¬þÃxË`ù1 G˜ÎÃù†Øñ¶>üË?Ä|Çm‰ó±Ü)æïkN]™{~ µéÓ¥„Õïøˆ§}«‹,Pg±ÞpÂ:êV5qYÑ´F=¿¤®…ýÆçûDŠb?c4P{Zlãà>·û¸8}ØÝ>Ä2;ކ ÔïA£W8³òјõ‹0êÓhB\ºþÛ94Å{섯<úéñò-Ëþ‚¼¦©}N‡¤ Ås+7Ø6ÑòØñsÌyÕh-øòÍô+×Ñ&{jwèá?b²y$«¦3ŽÉ.[q²w¼Bf7ÖeÈ+¸ îäq²î›\Z»+ÁŒžÇ€^âñ†ô ` ס¦·úNŸ¤Ù%?+ßM"ØÒ×¾¦†tGuK5'ƒ p±„Y¿ž¼™çlÌuÀ§$öÁ'æ:ð§ Híï¹ ‚àhoSx„ù_+³ˆœQOŽv•S4 Á<×=u¯¤•gXR.€l‡yR²¬È'³ˆ¯ÝaÅ£™BÝŸñA9|\L—xT««"Éü7@Cªü½m¥,h½£ÒÊ mCkjMm ЩYÑ“¶ú­]øNÐfýÖ‡U…ûé„À ‹ÊGrQ×5©ˆí9fŸ%ØâÏ]KvÙ¯ÌU`õš:fã¢6XÏFjx¶.zćØÔÀ®•Ù 5Óökiøþ NÌK/_¸çgÎÜßK®Ÿ­Âü`Ï*{axðŒÏ,OÇtËHú°/3¹£Å;öÏ—¿ù ¼$)&üAÔÍû¤ïÆjÿ•6EvGø/}ˆñÜÿ«ˆéClýSbõë¿ôá_¾!¦ÿÈ™bÇù‰˜¸ý\ù—>,½ê€ä8®_Ti9q_zïüޏ/¨¸ßt‹kéo}¸]ÇcÏf’ÜÀ-Aý¿ýèÖ<Þ“_wú°Û8ÆåÚš’3¾ãêëÁܶ,‚'V¸<ÞclÄi4¼’-ĹA~¨©5â/¼Eマ?_(Ø¡©Á‹ Ç )ÑÌu&§ê>è—®êS3š'NM<Bº£Ý™ÿ33»úµølôcG´qk™¿¸jðÔJª:=I¿æÛ5Çõ\¸9=¡oîk ½Ë7äR&¶R@¹r&‰ŽüÐØœû¥§·“ŸÓu}3w6˜$9 O‹Òñ‰£sÀ¶7u¥g“8Ú׈*Þ®ÂZaïˆBàz{Åd$øO½=/T=‚)¹†§&nˆ³¢Ož$ˆ3T•M§‚ÔaSjIçß¼¸˜»KäuBÎŽÔf¢!9Å&ÓGP>G|)ÈgT?˰ß.ŠÓó ´ã¢€ôˆ½µŽs‚v†æíùß@רîÒQ4èQŒ}TO¾ úÓÙ«g3ÀpÁ/R¡K Lx‹Ï¸°QƒÙ‰ ý·R»Áb¬eôWòX}ùðÃTïØxìž;÷ìõô?>û\™Žƒc™ãUùpî½êÅÛ½ nÂ¶÷' Ñ—cSÀ£àM‡x{ì“v}8àA²»yè^‚숩xý°ùõ,0¡ñq£ªNw5\ý†Ý—ö?pþáv?õO}ˆõ_þ̹a¸Æp‚ùæXë‡b>B[iÁݲ‚hÔ)¼k¡ž'u‘ß%ÉXþ‹w°üÊ'–Õw -рѳ‡[^³¸ûó±õ'ëÉ“dwEpù´/}ûOןù…ï3 ÄFÞG_÷”Ê‹µß©/ɶšÓðwpðGŸsLQúVS©šë¢òŠuÝÁƒÍ/?#4»ì^sêÇšëÕ´ÖàÝØÁáÃta½’hµì1Éõ ´þ!l÷>²)´ùLŽàqàÙ–NZh~°"-'ƒ"ÔûF”’Ñ‘ö£† ŽÆœécW›=‰@v«äÇ.—FǵžV´ÏžUk%ÉìäÒ_|«+F3“+á·ûÉ]âzï›%`ÞsÙh2;Xt_ÝhV—À ñ½ÀvÆžöæià°:,Ey!våÜL,/çsV’J࣋þDÛ üQTtG+߃ ¯S‹;v*ʽÚ a¿­;tš-ò(ˆ_ŸN-§éܨ¬]ÀVÂáü-—H°SjxÇi|ì-¾áŒ‡€µ˜µï¶à˜gBQS(AÖ­ª»ßæ´y†Úñ²dàHð­`pqB¶!:‡(q~–oÃp÷§_øç†·?ëUlÅêÙÿ–3Åx Ó§XŽà_þ!n.b›·0}[Û!#î1ºÃ_Ûó¸Üé¶ŸÕ©XÎ ›‡ÂÍG`u(–cû48Ø?ŠÃ;.W€ÕŸ~ïu$T&£aê$‡É%4’¼ZKΉ~®'²þ˜Fã¼~æ•Ô;ý,?ΣT|bè$šµÏ ›÷B¿ ×êt•ѼÚIÓÁ. ´0Ò+¿«C -_s—=DVê¹Ä‡>¡uBŽ}>>hÓü‘Þi2À³"=à8øç[,-ÞAq„—Í b;Óy ˆc_^eÞ¤fq#ŠQ@Ös¾`Õµ(®Ëòæfú•ÐQÎ*) É³&‰»b toÖrè5Ã-¿ Æug`º©œJ÷å°¤zE3*Ñ[½ò*4žŽQ‚3#صÕ[ߌ÷xäЗ™#»·ÎUaùå$ðSøÖõÅ9ƒÀÑēӾ DÒ²\ÛÏ Â͆¾oA´çã:y\GZö—ÛÞ -»»À¥òÚ&© ðÍIjŠô9(=X5ðç•°ò´‰°xP»¤Â!{4rÂû¯Y‡‚ÖÒ"·K¥h+ꅾɈ°Ë©û(~ãr‹-‰ä3èíßÿíêè/U÷^ÃÔ¥ïAq´`ìgòQÂQLÍ„ž&E4ƒ¹·šŒW=XÞ”Ksó«ÍúYµd°18ãR©Þ¶ßçör»‚=_Éübp(6?ï$8 ½ß›É.5+n‹‚›ŽÁoÝî¥PG(ñbøØ¿fOËo߯ŸC‚‰~ß$q>:Æs¿ýKþ7}ˆÕ«ÿÒ‡X® ó °ú—×ÞžÿøË‡ßöÿþ5wˆÓ‹XÞtûÃnŽó¶û5-CI¯âÆ{wêIÌop\8[“À¹ƒË?ýCÌwØæeÌ?ÄåÓníÕö÷ºˆ†Üâ/›w7àæqõ%}†.Ä¢‰~ÿƒÜ>*h*ýcä5wô³xÿÁÃÎ÷Ð,eå…¹@¿‚/º…ÉÂár^¿¼–£´£o¼Dk$­ûû¼ÑF²7=¾sà‰’9pW ðŸÆò’|¥Ù™g²‹¼;V” ¤{©‡Í¨p~ecèeê‰s@c òpÕ. èn„ÇâwƒêOß»TfÀÄp+¡jó0/Ž­ ¾ÖA»Ä ²^`Ÿ_xäç:»ŒŒf\gý€ûsÅ;çé‹ÀûAqùæ’ð+÷߈S¸ *P =¥ÖÓ.œ1‘ŽäKî„§AütbÍç Aì7ù@öHȰ¨Ò+—3; ë—Ö¿ÆPƒ2q ³‹üiPU.z+" ê·݃_I‚çõê'w´å|Íz™:n÷?ž Kÿ·—¡çöù€ÞµÙ¼ü“M``nÚÏXrŒ„—Û«µÀ„³©ç°˜I¨—ŽÑ‚…}§Ùi°2/ 5yÖÁïõ.Üò›þþ'm«7ÁÎ0`Îãj9Ø7¢` [Ç“…ÅÀY¹-½9÷¸îj6y±Ø {D²ê&"Ã^çèPáçNàÑ·ö¦dñ9ìã;Jûu¬å 耇ä:åêïúšÄ3ɇñ ê(ªNÊîéÀñÖÏÄðƒéÁÿWÿ[ÿÄ#Æ‹Ïâú¥ÔÁéÂ?ÖåLqùÒ?õá¿æ±œéýX\¾ëÃbüºÝ?žþq¼Šõ{¶ç¹°9cÜüáö|ñ_ùRLbüz€_õ©aç¿ýßÂçÕÿÖ‡êÓ ~â»þ»> ÐKzGfxlFÇÞ—×ã|\¾t³òuêúc %­c¼« äFÙ{>“e¼å¸òoFC³ç'Ý‘œû3×׀߯J˜J˜X\ñÂÞìÌ:à㯛ÇÛ×JyéÀu¿h¨ø¤ðïVYLî~_±¤x‹¼¹uì©Ï=aµ5¹ÚC âx+ãÆ õ eî%{Q§dœSs.7¼´Ôå€È  (;ÅHAÊž×Ç*;/îôoOvø]ÄosøX¾>hß:¡2ùftænjþ2ƒÝóZBÅâ÷A¿ót§«Ó}0ìâz<&øE? ïÙ¹ù±ypL©;z÷48¿Êi,fm7üC߆ejÁ=ä£zkðH¦³a»Ú û˜]ŸÈh'Áy¥p…g¿y~ŒÖºù9°Õt›]ÀCコJ±÷ñP’1{Ñ’®ÄîwŒ±¾ Æk¸ù§?|Ã?ç10^Åp†Ý÷˜ßðžJ e}Äñ[ëÔm¥I\ŸË—á|áå-¡Ø}ˆ­ÛyŒ—pëöyœ¿8}3—óÖÜ\nŽéOñ1·Ãq®®¹E,oí1/¶ƒ?4é³GM&Ÿûî& è§P"[ZDšåˆjY¤F¿>eçÛD¦£ù ö™„:´$䦍ܨ‡VŽ%âQ£µ‚³-'B_£áÌ£è-?à õ_fJüÓ5·Öà´ßúî£; DrÅ—z|€øïÍ6ïs@*}ñQ÷*1w2UÃåb¨^§ðGú™MI¼"É_ ;8ÆwY¹èÃT“¶l\!AÖrÄ`SÎÔ¶.ŒÓý“O.æ«‹'öÞ–KÔû‡)€µYÓC2_ØSœĪgçH7C6þIà>£õc?1ðF0-ßÏ=ºŸÎ?ÍèŸqT ØlÉ^;hÂÞ²ì$A”G[,¾aÄFÍ>Ú å‘”~P€ÔK. ãàY©ñ=w³ä,®+ž6jùêžR EPÔh}5û”jxŽÖí[goÍç9‡AHV)ã×%PKi·”š‰ÑÑé{¹E¨­j~sm]7Ûݪ cn:ݲ ºû e7D`wØ#÷û]·A/÷Ög é"ÐüîYÿc ¹Ë¹§^ø€‘w¼v‚¹+¿Ø%&®É ¦Ô¤ŸŠS/ƒÙÍŸa•v^`Áu•{ïÚ °,äL «’×ÇÅ=ZÀú±Å‹Úàz°¹c!çÏslüÖ˜~ȃ]FÒ÷–(°ë>ýúh/8Ìf…*?Í„ógÍ9.Úè€TX:±¿Ñq`›QòÜKÂÆ¿^|ýjþ:®>ÄúŠî0÷çÆ«W±ïcøÄxÃ/†o,€ñÆ_¸ÜË6nqú0îôí³?wüCLnçLqù¸íç †ó¿øë•ÙÓtYÔÊtIÂþÙßüµÝßìª>C|Öõ$~¸ý¤ ×/Âð=H‘;¿x pgŽëï`¸-¾`Lré.¿6¡ºÑ—c„¦.÷<óüèÎüá{•¦ñe4Û¾¿âÁm}4Gð„ßÊ8Ík÷RÊKТ…Èø¶4ZU´øíÙÊ›Kahy?Al¥„#Ze?õVu†­Ë<&¿uÙmfÔ¸ŸµÀ+ÚŸDÈ` áßçà;~äúx×È>>iž¤tsJÇ9€¬$îA PøVÕÙŠÜ*Í —œiæ~ht%ÔTîôy¾;=¡­ÙÀåÄqsˆï…Mô_–çFMÈ` àöï¥ÈaÞ3Á]T ªÀ×îö€l± LŠÃf’fApê‚2=Q)WÈ)õÆ.ƒhëîˆèÔ[ aæÕÞQ Ò2¿®öɇ‚lˆ:ùªÈq®={ ã£Ò- ”]Ut¨ç¨D§×8YQ€Ú CÊnŽ ÐxYëüháhUR…hkZ,¨NtðýTÛË ;“¹7O_ôW‘¼ØÐ\ 0|Úùà~W$û/I<õSÇœ`BQv0?ñ„¡î7Î,³®â 8˜ƒ5‰ø—³»bÁÆ">ý¥¿#Øæ¥È…çÈ‚½„YhùþàP“hŸ_çNç…£ƒ‰ÀÅf–‚0ì9¸Y¤åÞɯ_良(ð&)˜î{ α“}2ª¨câ×EÆä]8}ˆõCÿÛüVŸþY¯bç±çWlãóï1¾Åreްy"LÇá|íº÷}Lÿa¹Ò?æq¾=¦·ýDÜüâ~"nq›1¿¡C=ìUÿޝ¿=òç¾8}¸ÿÆÍu¬&¦Ï+j£!`âáýa††ó†8FFBvøTëס[#Ùh¢1OÇ™ð4šúihuQb/ú©èá?ìÍ”½«ÿÉ7Ç1ÿˆáÂ÷—ahþˆÎT¾[ZúœÔ÷üK®o³­æÖ¯6š=¸S'ß/iê£XX¯‘ ¯îÌ!vÝ¡& žéM.ÕVŠàÕ®å= ÜMÍA3ù/€D„âBæƒMÔÑ6HW׆«1¾Âøî_ùÒùöÿÊ—þ¹O VÏâøp[ïár£ø…_b~#vþ_s‹Îbúó 1¾ÅÍnçK1¾ÅúǸ|Áv>Ë•âú­Û¾!NbùÆ·˜ÅíW³Í{˜.ÄÕƒØ}»½OÖ×À|B,Ý3Šs$h`%´ýP_Î_Àrh˜ïˆÍÛöÏP‹›²íøÛ÷?®O²ÝçüÆu`ê!!ø3ãìôK¶} 7“ /×£iqÏVÖh&Mg_²îüNßDžòæI¢w8ÿa™ðIkjήÿÁÜF6ÑNm&ü,PF[©{–Óúqýü™+'VŸ“ÑÙ«¢¾óÂ@dyUi°mHT9£J¯¹ÖIŽÏ•1@E;'þÎϨÊÜ>·Žôu“ Y½'®¾¤Oz^0ìG ‡ÚÏ=Qì&¡³]þ³W€¹ë%{úõq`Õ¢\:.)li̬rBÞÀ©]ò…þ†+påÍÜeiîȨrÂð£À§]R}®ºøŸ\™w4‚;,‡.€àÛÄN5Û-¾Ãšæ¥pDÅS˜~ ‚8gúÒÅË )ÿz‰2Édè:ÓnYNb¡åŒûs½¶@äM›Lø@ÑBó #i(\(üqý9¨P4pêÏDƒÌW¿ùð™LŸä‹YÐ íe׫ÍtH¦æÂ• ­øe¾õ}!è Öѯ‚@×VÁª™ÄvŸdÚ¹ÄzÉ÷šÒ¼A¿I ÈûÀ"š®È!Œ¬‚Æ[égþ?öþ<¬Æ÷{Æ·&³LEÆÌC”ˆöYÊT¢Ò¤„(Sh*ŠJ¡"šP4K¦&ižG•æQ ™çyzö}¿®ëîwäçx?Ï?ÏóÏ÷s¯Ï>ò®=ÜûZkç¹Îµn¬¸PvÓþÖ@h|iøéVî;'“÷«„0çê‘)X¾ÞrâºGоbÎë5ª:§~m9þü-tÝßY"­ˆ5G¤mGJö„žßdw»’fNÏ1h½áy©ŽA-ÞŸ  Û°îÅõÚ(HõÐy¼Ršÿ"ôä÷9Å\= ú%?gÝù_÷:Iy ý™þïÝù#O·ôgÎ_Jꃤõ‹Ö-ªkÒþ!õÁÐúEÿúLiÿâVªwRüKy"çgë¶_­1ZhKÚÛ$nŽž‹º¿ŠÎ“=Tסþµ'ŸŽùúÔpûÖž—Ôæ”Ä6ñ_z¦jp<ñ]3Ïa“8øï³ÖCª•ÿþº¥Bò³-ûKŸˆid'p>ÓŸ+‚Ô,“Dø¿kN?e ¿ó×ñ[Ò–%è!äÐOéôÐ>•»Õg~Wß‚øÚÄRDÜÕ7G¡÷¦æ‹MSMЧïìo7¼Dÿ-ž§×nåö(RJþ5ê‡4[Gùæ`ˆH€ÉøOšú}áŸâժܾ©á±··¤Kb„ÚÐúÉ}Ã1ZÑ Deì"Œ•98QÁHÒ7ÿL¶”_ñ•iFGneaBÜÙ…ùÛÄ0ñ§ô±hL±ßenµÆSšÞ‘*Û™Nñ°©R70ó™XÉô§¾˜µ²,9(¿ ò9.¾³†cÎÊìm Áa˜ûEÉáwãOÌËZxüy1æGJ?WøJ±¯L?Ï·Ä¢º£G‰}Æ^qW ðJ©÷Ö V¢X,!’í5ûCÙ£eõñEãÆµå÷°t¯ºTÕò X>ìAãr`ÅË/¿„C³ñ zøîh=ÛYy¯Úl¶¸»9wõóTF‹úcÍ£ß;BÊCý|•ŠÁc`ðqSùÜyW`tÑI{šE3ÌտŪ·Ìƒô°^×Ûfœ…ظǑ÷·õä7¬»ËuÓ×qñ×Mý—¿íñÃî}üîqG÷QÐzLq׌¶žt¹~פ<‘ô9ÿ)á‹Ô—Zö°ç­ qÜ¿sÏGžŸ>Ç…úú'gòk§î_ÿtX×|°óþ©òº|iƒ:4$ømm½G„ìÕäúÔ§ó Æ®çLa!þCuƒÒy«Mø%$WŒÀí·xZóTeë…D®Èí/¥}}Í‹í ›ùïELîæö˜~tè}òÉç þ—ëu? g—ó¿˜ç­á…kó¿û}M[|2ÿ«Ç2I1àõ¨¨.¼]û3–-‚w³ð‰yo!b#‘²ïCÄ4 Ã$kN£×€(™£N•ècÐç›QëGôsw×wìˆ?щпÞå3}Ÿ’|×5C[†8OŠ—†äíQªáÚ=¹¾ÄHS“‡:9þ]–«3¬²'¤ÍU?Y?ã…®ï ±=‚ '‚³ÇN˜€I{ŸÉ|ÓÌÔç ~}k]‰iß$ ¢Ô†c†ËÒÕá^1kMCìüšXÌJ>öRÄÅs,ª7̃Âúp¯·:–PtîµP|àR,(~u/}¬()Õ» tÿŽî¬ÃC¡R/ëµãÛi,Ö}9ÛùüM¨=sššxKÎÊ÷ ×åaÙ¦b>x`…º{Àçzehªè\o+ê -ý-o¬vÿ8Ò?Úݶï8Ýy»Vœ:]…5~z©£$D¡ßÇü‹F' λIþì£UË BÞÀXÚÞÚûW+ÖIL‹Ü}Aëå†åŒ¡…ó“¿ê÷fVþ? T`¡&ü±Bý-Æ´š£wbyC–¸Õ­ã×kfWþ,ÉÕAÚgøWÿ°;ü_ó‡Ýû‡Ýù!ç/í¾o†úLé¼~·ýô±ûïwÿ;Ê ÿמš¿æýÿ5Hê)gÎ/ÞÍÀõÿ©¯´Üv­ØYnîðΉËÞcÚ»æ‡ÉþÒûz­.Ë äü¥/ïè—Oûе§ÃÁ¨¡eÅnþËeù§$~róogäøÎæ¿7w8ðñÿcA¯·W ø{©Ñʼnc ¸=ož_hìóÔ¼Úñ9 6²-—¾iCD,žJGV»C´I2è‡ãô2?ó~‰ÕTôy¤¹hѽýèWÛzPéŽ Ä¿ lŸqƒ|ܽ„{Ørû7$Ž,7¸`-†mK:µFÝ#ÄF|ÓëøQqî‘ã"4 =Ä=8ûr%ÆKôÖèX)‡ ïšvz|Ãäß­ã‡Ú¦aÊ;©,ÿõ˜1ìq¯³üÓ£¿*½ò;· Ÿñ¹‹9F®ÓôzCÁZiâœr7(Þ6}Vu”f´ŽH+nÀ¢ÆÎŒ ³Û€Õ#g›¡º­_]‰Ç¨ Þýüš¡ ÔÛú'ý„)–å—-Óå5¶ª£NKB“§Õ²¨s*´t³›Œ½*±úXöµ¡ÐÙV|djÚTè~°²ÿ"« ½ ¥;Ròa`ý2õ™í|í4È“ü1ÆþAÆ ®ú×Y''ÛÀ§Rµáq `6®t˜YÄr8=5ñråÂÌŒáGøAR×r«­åcþ«]Fyn%ë¸>í[ÐzEç/þ寡ø²{?‘þ;Ç É#´ONq"?âöjS_ÙOÃÝÙBÜùåöj÷Ï–‘·åxà݈ٯ•oòï–Tw®x¢Èýï”r{Õȹ§¾S:'ñà½L¥Ë¶Uü‡Oüªvª©r:çÃ5’º'öŽà|jtßÚ³=K”"[Or}õW:¡¢û/ãúˆïžÜòœyð8ÿ£´J¯_·ð?Käëe‡ò¿¬:úÄ¡2ƒÿcꊾãù?S¹Níš—8©Xš›mÞdz[â4F@(8ã™gæD¯{5ÐaÄ\Dóo¸HC´túH{ëûè5i`¿à;»æëMÏXÅÆ€¤ÁCê­0pél{ŸG¥ÜÿŒzhƒ¿~ßĉÃPWÉ£}TAbƒeësõ ´žì7¿'†]™"ì¸/R%üt¹£ùóŽÕš \Œ~n'•6ÒéMÙƒ:%8eÂ,ŸgOžÂÄ5yÆF+0©Cå„”˜*¦ö(ٹȳ ÓfUJœ42s®›¾¯ ²á1Ëâã°ü˜¶ÞLÂɳoŸ¸`³VòMÍÎI‡‚MIüâwþPy»zzæ_ÔÐ]ó½J6ä=oÄÛLóMÞ6=À¿3ËæâJ¨L×+”†jï#S]°x¤Âd¿%îP›§*|ûPÔMìïÁ’ãšÇŒo^ÁÒüà ,úåÂîWÉŽÄ ­>å¢Êiи`w%Íï'VŽÊ·¿ýÂZaOvËH/Ãj%Q›sßA{O¦ÿ¡@Ǩ§ÊÖ¢Ð]vÈÞSy Ö¨ /ë)’=­/Q7vn€þ“ÂèÏ‹`àó¦Æjc)œ–ô[¿\k'f©Z¼ýºËÃ_Ô»TºÏà¿4Ùµné´*nί»¯†>R|ú/žHã²{œv÷}Ó8¥qKq0­o´H)?äææ ¤|–Ö1n¯)í#’:Fýr^%¸—âXºƒë#<ÊíMì¦wÞ™·dÃÆF·._y|Ðù¡iãMþƒŽ]3šßìãæ#žÊùÜÝ÷F˜‹WnΉøÃ¹þ„YziêTÿ®þáð;=¯‰ êÚ—xZÝcôûíÜþ5ºOÿ[Ýñ©c¹½‰’³…çy$ ‡ÄÀ†­.è1Ȩõzg„‹/Z&+ÉÍ‹é.ôœoó=Ÿ‹©@ï\Óå;öŸE?ùk3:Nçqú7OœÏ?g±ú"g—M¬W¡O÷½XI¹<÷Sÿ`Xº‘Â’º³]sÃøf§Ouí§éœÛaä~ãÂæ~ú33 ^ÞŠÞ{Ä“z¤*+Š`òêk!™}Í1Ýêräzs1L÷Ø!œ:²âßó¢37qz#nªþZŸÎòMï0gKãŽ7¿úCapxø¯wu˜×ÖcÝ©@Ì/¼ëü=Ð J•Éù!6ý°èç”+ÍK-Uõß¡r_jêþÞ9X,¬×ÔË j§ä=·¦^Á’Þ‰tU±40kwýX¾pDZï’¡1h€ÏDM[hvÞ3ÓJöÀªÁï|ÏY=€öä’õUirÐY;O.ýùGèFh…çjšCOø—_¿~ŠÐwÉô¾Øï" ‡í7F·³N|š&óƒW]3û`lìe‘» ÍŸ›Ñ{ ¿>奃½CW§h\t¯Ýãî_¾ÒÓêR7Jpø”þgo4¾(¤uñ_û€9^GïoA»÷i|Q^Hõ™î{jþºÿ…ÎVÏ´ìê¿çéÜÿ ¾4 ß…çãeºöнdOí;<>|³©»WW_ßgÁ Óúoºú‡r²zC]›ÿö}Ïü]>¾´kiêµTƒÞøŸ&ðeÖó?_ î›’óÿuíCãÕšüï‹·Þ•èÙûï9ÄÀ˜Á’ÛR ¤/t«W¤D&{Ytχè·+ª›-»æËOí–™…~Ãl Í& tïÝ5bünãwÜ?õ™Ò¹ nïE¯‹cÆN¸ã?§YMÄy!ýeL°Lì9Sd›=tÕÁ´ ã!ÏVWrsrÄÅYy‘üšàéÒ˜©¼N&£ s÷½Ô8ÿAóö>¾ãûúæGÉ&›^•ÄB!‡ý!j¡P¨^xÔã(Tf9 Óq<Õ¢ûÖ 5Cß·[z§p{¼—‰÷þ+÷­õnkæ’—·æ½‡VøñÞ¹»C{ȱ… ßCÇÒ©³®sz×ý-NN9é‘mÿ?Ív0š?çb±LŒWÄôOò—º£scNl÷Áú¯e™ZÉ^ØXi0WÞ=›”s¶ôIvÀæŠÍ_*g¿€EÚA‡++1æªÔ|#aˆÎL•}ÿf*¿.ûcưƒ÷9üIãå_ýÃñA¾Çvê)Úºr?ÓߣñH}T¯¡¯û—¿ô|‘ëv{ä|¥ÿò—¼ÍñC:H÷†w÷—Ò}pÝü¥t>ŒÖWnîòCºgŠúrºë;â‘7äמíÚ/Eûÿ”Ò¾ ÝÿFç7Èžpn~˜ÞŸf£¹{Ù™ûÿÛOGú‡ß/Ï‹x«Çÿùóº«ù·…]sDÏ¡ýá¸ÕõWvéC4¢õÔ«CK¸xí3øúP|ôó|°·hÉzˆ¯ë»wòåóÜþ!Šž÷­6Tr{7†MÑߢSRNCMÖú/àüàc¼jLÿ„qgtÜ?ö  ø¡b°GŠV´ª^æôµ¶ƒö¦¸¢€V)èü°²Ž{²kÒ>Ôìh±~TGžó3æìl±âŒÜ¿ß,u_uÂ[fcÃz ßÁ 0S¸tácÅ/lzð~®²Tœ|-ònj¹B¶Xÿ±½Ì5H J/Óvÿ<ó§æÓÑ=8]‚ž×î{1ºïÓïî'¥ñÚ§ÒºJûõ4èy/vO‹žóàW¯è-Õ)»ï3åúßÝæ ¹~aø°‡C×úrýBªgväü§„Or}ÄyõR“.òÈòéÿD©ëþ4F·o¿yŽÓ=Ÿ¹õ’ ìcÔå3%û.ÞZ9/Ó ØÂo:4i³õUgÒ¸ ÷¿ø>1'ÿϼQüŸÞëãB–ñÿð‹·®Tê ž×¡)¥êj]ûñߛ铑™>é@T»¼â¥·Q×~î¹Bõûš®vÅ Á—N-ÿù¡yú„ûulÄ šÕO•Ÿv`ˆPâz—¡#0t\ÂZ=isH(”šm¼ù’f½\¤7¯Á°¢,íè†%r?;oÀ‚PŒ ›¹þÀªTŒ~;±QlÂEHO÷WŸqÜ ãö¦yªz?Åø– ×?~ƒ‰ÚÉ÷bÒÝõ9߯ÁgÕíË.bšâé[âU 3@ì÷áð¯˜Ù+S2‡Ø}¯ç3%{5¸úEúݧ‰ìIæðn÷}5—rý º¯Šærÿ5šþò±Ñ=úîas§'›ðó»›÷F›ÿøÅ³¶=×ÿÚ/õòÛŸ†¦ý¾]}ÿEÅ=V®ðC×þòÒ™ üê­¦û¬ùŸ¦Gµ>ŽOãÞWt¹á±?·OÿÛ,éà3Óq{‰6úíìu}%ÿϸA#^ÜÙеoª¶p]€‘;„Í«‚MtAä§Ø¤„´rˆyx»õÎbôêóôDfŽ(w?§¾+¶¸áµ ÿ|©ÈAA£!~øÜ §& ¤ÙCÓ¿ƒDS ¯JcÈû—Ó Âk·Ì–ðƒ&ά„ÔñÕ›ÌÃò02eرk=ó1ú[jkÖÕ5žqh¯vÆÙÕ׌5iÁøÖÕÛNfwíi8å[RëLùò=ôñ/#LŸi5BÇ+3 _© ‘…Ü”F)Ǭ¶ eüS0[À˜—/™‰9™Oz¯ÊR‡‚ÑN©?Þ™P¼Ò»cß@Ì#ü¢Õ%”^íÝ.9 ʃ4ש랄´Îrüî­¡<‘ú¾)¾¤ûjè}/È}9Ÿ¹ÏÅ_÷£!u˜ó§ÑýQt~‰úÓ²£eôÝÍzÏòÐþó`O—¬á%ÜýgÞô«w¨‹Uêê³””½ÿ¡ÄAe˜rs×}¥«’™àÅÿcV$ÀáßôåB_/”æÿ°Ýã—”ó‹ÿ[쉔“‹(x½-ç‰EL›JSAØ5¤×J¥õåOú2ýùrˆ}ÈÓ»Õ7½jzì*ÑûŒ>÷ÒOŠþ{F>»¿'G|7Ç´O¡ôðÝÐG²À’“‹¡¯;”›‡Þ†äKûÓjEZRºjbFF¾q?aÀÿ鈳¸9 ÒYé_rüL1^ûÓ÷`“­˜8UdšòÚL^ÖzúLÚlL«ØÑÃq)dTN¾¾Û©™ï…íÛM,0kÝ£Iζtíq;?Æm«ú(ù.¦ô8ŠgËlsõ°àîÜ>Žî·°Hçã#ÑAßÁÿ&ë¼÷TÞ®ÝþÛ׋ Û'g~…úÌQÆž>Xò»Ï»¸6w,{»£}á‹/Ðã}ÉX‡•ªÞžÛß„aUd€¬þÌZhªM»ø²ºbçu7¶}ÂÜÖ_ ?÷þ‘«¥0äY޹¥uFÒÿ } &â¦Ï7ÑéÚ¤Ž#±¡áäŽÂïv0S+^çW„MiM2ñÛÁ\—Õh×'£~àÅ€pˆzÇÆ¦\?ƯOœ)wåÇϺïÇÿ/üÊiüÒçÿkþÎþë~ÿzü¿yŸ‹Íþß¾¯õçÐùC:×ß­žr{K»ùK¹ùaº—Æq‹á°£¼¿ú(ÜžŽÂwbaËDø‚–ùÞ®éÚNü9Ï'Yʨ‰·ÿí§£{éž2¯Áí•*¿¥©’y‡ÿS"æqÆÊûüßF§Ìœn´ó;Û«ï¹öŽà|áÂcúù)ˆM…¨˜ÂãoŸúsóûÔÓ·ÕY¼óv4Dõ›5>>š8aË«³v¾cÒVenï†ä¯’¶ˆ\ ·ì›¼É¼ŠÛëFç§Æ ‹«l+ÑU¥ŸÑ–îƒ) B—ëëØ`Ú‡iÛZÍ’0£øùõI…{7èM«-ä¯.<?ÞsNé¿Þñê).†hJŠÍ†âÛ²¬÷+{@É–×#W2ʳ“Ô¶@e8¯Éÿ[TÓ÷|7î³j®âŠS¶žÁëó²‡P‚eGå²N^²ÂŠò‰·–êôÂJ¥w²Ò$±ZØz¶ª_èðöšn»SÝ(E‘ùMгֽ?1#Û¾Í $£Ó #¦ª¿ñ»üUo”Ëaz,{È<ãØ(ï2øÝ¡˜å-ú4p¤7­ÞŽÜ¡¿2µ_w$T†AjïÆZÛ² þ‹ÄÊ q_ãî·Fúë4^(Žì¾Gÿ_û†i½¤u•ö©_âJªP݃»'ÙSCïÓK}eܼÙSAû‰T÷ ¾³ÿÅ9~H÷¡Ò=§‡?5·÷2ïò[¯úõÞÊW×þÚ{á¼okcÔTþ³‘7Vý¨Täæ'^ =t±ÙÖå¿pâìý±_»öû’ûúR|ùã°†¶fèZǸû"öPR³,h*„_“/úì áôvÇb¸øÛw"ô}bM¾$ý‡¾‘šmßž¡†Yûiö(佡lc Í™.*Ö[‘Ûû;Ä£j÷Gž†Æ–ìûB ÷e/;ÏéÚSS!’gwé>F\Ð?ãz£|¤ò&ûþÁ˜Ó}B¦4iBÚ&ÕëѾŒ+´›V­‡ kìÆßÿÜI=>Lúø5“ FºžüUŒ©Gmöšç$b:Ñð+â²y9ûm|ó̼6^jÀ½È\ÿH|²€'æJ‡6ïN„|Ɉ/Ñ3waö³³û¼ãÆp{¡2ÍŠ*®h@Q#'ãf‡æÔœžÿ©”nÊ^ê\û‹µÇèÜsßß×jËÜCP1ú°rÖÛþPÝw%éÏ¥oXÓ~ÿuZÔžY°?K” H _ÁÒ¨ÞÎå¹X>ï7mÅŠ«Þ}_‡AÓLD[~ñhÉhØL›ö«‡\Ù-w Ú>ŸvM-‚NäTgeó3Ð-ÛÔY|Æz¢§§jõƒ¾ž²’sGמ …Æ­b1p<¿¢&ýµäŽÖ—´ ðï³rn|9ÏîÜqòÀšŽQÜØ}?ð¿ô™îýÄÿ5HõXßÔ÷Ýý¾O”ÒúEïãû¿æ#¸þ!ÙSCçÿºŸ[·~·gŸêž”'Ò¾Ñ=©ïœîàýCn7Õ9»ïѧ}ÿïãdÞ¨ã¿øýrP¡Ò™¿÷$’¾?õ‡ôl”p˜ÔÉÿÔ¦9ÉÊa ÿˬgç7äÔ]ÅÏëÁÿ¾¢æmë»þüŸ£‡Ì<ê2ÿ{†èX±åüN+c›‰W†uÍQl½ði„â?ܯfs ¢›m$xz@ì©O–¢,ôr›>*Z}æ®7c®>úy·§/ŒZi³úo˜æKvßÕ0Ä dñ4 cnßþД^šIž3 yZ·­_ø®}Št?›d•¼ö¼"î>ˆãFNüµfïoŒpRB§ùæIë·š-Ä”ªÄ/*0­:hMv¤3fôùñÕKPe×½ž?â~%fY 9ïcùÒ1Q#®OÅœ…&3ŽØ6cnù ¹½Ÿtío£÷»X0´íãÜV,Z5k / ücÒ'ys¢ ²wÆoŸzÜÙùD·³óiNgçó/Îuv¾êÙÙùzOgç›ïVwv¾Ïììü8­³óS`gç‘Îί6ßÚ;;hvvþLëìü=¹³óý¿»o©UðZËy<Ñd¯ç¯—¯à-þæñúîàñú5óx–ðxâ‰<Þ ±<Þ`oÈOb+'YÏã _ÌãIÅñx#Gñx£Žñx£¿òxcÍy<éo<ŸÇ›p•Ç›$ÅãMöàñ¦|äñ¦™ñxÓ+y¼ y¼™—x<9Io–'ÿŽÇ›cÊãÍ-çñæÍçñ£y¼ƒy<¥C<ÞÂ×<ž²1Ç/ùÿx=È5Ùc±ËZðyðx}Îऋ÷%©“£qdå™ b_ü±·XbüÅŸq)RNýÔ´c°ûà{åÆ*X$Û½HÚŽ ãfî“?Y„µƒ–ÿ­³‚AÈ„”€™ §ý¶-D+º×_{ql/tL¿è¯Ó} 훳b%à½I«ö}ì/h{ƒ/l] íûã‡NþcËý¾^eá蚈±0Üu§ò¸2Ö>ä ý–| ëdç¼} Œõ[Ë^ìqÆF-ýÑÛŠý`Fž“úÅñüá;°¹‡¹û€a#°Ùe~‘š¥/6gÜ.Q†Íφ2ï æƒE3{Dî†ùÉ–ßó¾>‚…bh¬óX|ZßwÕ 6liíß,×´[oŸ;´ÛÉçÛa»ïÍ×[±Sd±û½JyìÊŒÝ>Âþ6¬’~ìz[ëÏ#nÅ=¸ÛIòƒÞ¬„y}{aù‡1w¢±7aÔ®1½±ßoOæçp ÍÞ[zc¼ø “çw.‡U(ñpX\çê¹?càêæ»¸9? îÃÔžon[Ž#e;ÃiögŒGþäCçq,Vo\®úTxÝÑ‘ªì¹'”^^]¦ß­Þ¼58uËúkÚ}3ø-~±ön>üë…4çÜùŽ@GqßÀŒ³8£´&õQêœÆ^h„H²_ .ç SŸªõë¡Â]cýúÞ¿‡ˆv^Mʰµˆ2uµ—üDÿxYØ«ù5bŠ®.¹Ì±Ù+›VL9…+¯.§FWšàºÞ ¥'ˆw> ö ø>%¼™¨°IÞ?Y¨T yy¯:" H™¸g͉ZH¿fÐØ~ ÈP½0«Çj/d¹kõP:‰œW‚Þ?Gÿð’¿Ë/øéÙ“^(0Lêë·rù›ìTܘƒ’:AËPZg|ÄÓ¯ežµ%©¾¨XZb~­Ó•üß,‹ª»êCô—£ºùLâóŠTÔÎ.3ŒñDmüž›[6¨ Ùž\R‰zO½ûL£Áê× ÁC£~¼B–Žš5‹cÞ^@³àÔÚ÷DóËQj3¢Ñ’!÷Ê ¡wÜÒçªÕ[¢UÍòdðI´~/ž>rÝA´E;îß9~î.¹Y°·ïÜmqÙtóúA´oœá{8ÿ!ª<7c+Ž®^¹{Wðc¸ôHÝòHélW?(t| "·è슿뛄—û^ØÄc9o¬7íÝ ½oÉGn{]òï«í "d;4ÉùX±Pi[Â9U, ªXÐÙ(Ž¥ïÄ|RÓK¸Gúïô÷V’x£Ï£ãù4w·TÖÈè¿{÷ô¢jsZµ`°\åMè!æeE ¹µäï塺&äõ×5|™¯ Óšˆ1‘kçaýmðBã°áãÇmÚ±1\ñ£·ž"ÌØpsæ>ߦ&»á¿´—csìôYú³Í`N^×"ÌIaºû|l!yjë˸6'b»öœ1‚#Œ7R˜F“L„M°{’û§â'w`=ü©áéýa3Wä…†·l†2Ã;ØÝ ú"³ãìwö·ÒÓLÄ>Áé*;|û™_ïwŽõ3]x•Û¯ó&ÏH·“Å¡†è´MÞYp•»¶3Y¡Ü®o3M±\ÄåQOò<ÇHñRîYªiZŸósnKÇÃw óÆžâ”Ϥ×Õº~ðà üÃÍ}Ý‚À¤ ·ªßq¦ˆ=P¸oéQGœg®’òh„©,¸òq¾ ÂïŽ÷BÁ‘—2®åžA4–Ã~m⸼^^ŸÂµ¡3ëŒq)úøã—/Hˆ(Þ.zp8’6Z:F˜ú ™ù­mvHQ‰ðt~Ô4‹º³V—ä‘hЙ'qÙS'öÝ/¼ ¹‚ Þÿü+ò*Rê) ä¾|ƒÂVÅ[çžOB±³®ÄÞce(•¯Œ›4J ·>õ™ºïÍ*”˜ QYÛšŠÖîA•{YƒSÉWT§ÕÓ¡†šäómc¶¡öÆæN{$PG~®Oýž oQ†,ÙâÌghÌ×¶íe2̳Ø5d ¹¬sלދÑr{ÃÙ/Qܹ}ÁíѤ8´–µxvzÚ ‹‚VYäàn:s!Þ ýJ¿£QÎÕ¸ðçΖÁlÙÔG÷¯®ò»¿ü®ÜZ&¶ª §ÈyôôY}o¡¹1’™pØV·Yþ£\%‹¹xÜÒÛ ·ñ󘑟i2&çÐH‚=°0°½Òm‹ôI½¡uÓh»›ŽQêT˜¬; ÈL/°¡ôã„ýWúcÓ+ËÊ#s°…üÝŽy‚Œ3»Iž¶!ïÏ®4Tð¹`/‰Çý—vÙ|Ü´¹«Î Ⱦ…'88–-4päp*ÎjÃ…Äá¡ÀŒ3%®8LâãpkYà©S¸žèwþüܵpÓî=£Êò!Ü™ê£õî¿?Þ\^Ž#‚¬ð²EŸÕ3F| ÇѾ¥­S«qlVvÿ×S}pÜ©ï©É‹áõèöžÓCás0g¹Kùiœd¾uƒ ø^_cѣçjV-¼­p ~½UKÇí4ƒ¿ »ýñpC“~eK4̨CÊbÎ<{– ¯3¼»qŸµÃ„<[³pà¾e¸°aÖÓN#%°a2*a$¿„H "1 $¿DÄKG?DäZ…_ W›!ŠýØZˆJn+ÆÐÁˆ¶ ž*>8íù©€˜¡iåÛ–ç æWÚ„ˆý¸ô9ÿ亩_+x“‹6 ãŠàï|µWuŸÎ ÿ×âïºþ¶ï@‰§xµŸÞ5#ÁçvÒ³qH¼)–ryR ’HH6d^`n– Æ_8‹ÔUQ—òôÊv/m~°.û…—¶™š#‹œÃì(ÞÏK®–ÈÆ$@sä¶1…kò¢¶7Í•mC¾Ýá¦ÖOGQ°Ê";,}, ˆÌôž¾Eó¾>¬©ˆb*øvÏ%“ûŠOE)É3eòÚw>)B9Éë·„þ6CÕº©Ì'F5 ¶ ¦i½ôÒ Ô ÎwÜl· õ;œ¿·Ž¯Ay¿M‚o[aÑ"HÖ½ŽôA« ~µwy™ÙfU¸Ç“ª\ÜgÓˆ9|XTÚ>½¿Ù<ö8Nì~i=YèwŽÜ¼;AHãÁ»I¼™üi6¶ßܼKW±N€V&?w€!©zLÙöh‚‰SŠCuú aÖüh@ê"­WGnŸ¬š4õf3v›[I˜’€ ÁŸv}ï·×­Äž#¦¶r°'xmïãã³?­‚}f'¯ÿû¨CðQá@ê¤ÃõÓ‚ / G׎Ï'~˜R= N¤n¸oÿå÷¸N.^]H¼2>i3‡'jlšðÀ®ä<»’|áÖÑ8Á'2îLº?rGž?ˆ?6L·0ÀQ9ö‹Ã1÷°GoÊë×9!ûIKáÍœzÑLœHÂ|â.ððÞ.·Û5‡_“ªóŠ«G¡‚ª+ÈÔn3 xŒò>-’ç5\NøÏRòºêÏ©|GÕI/!ur9Áaôù¸x%¿¯Oð !Á±”—þ…C]™ ÃåîgÂëLȹ0‰ßp=SåÖüØ¿Rþ»‘…c0 au<61ipç=˜3¨C~0‡ ¶‘ú¿ƒàõ]‡YØñKp”8aw,Yºç]uØ{¹º„‡Ua_Šª†–Ì 82ènC!÷íâÏ&6Jœðþp}ûóéN/¸3å)û&<®´#£)GoKÇE¼3†×l¯]¯†Ã'ïiàë1`Ù¥^;N¥Ý´òS¨…ßïÚ>?äàÿÄäEßðÏ<Ë&œ1»Øɦ8·Ê1Å@M,=º}|;ƒ&îÑC ¹[6¡p"§úG^¢,»>Ô Ǭ޻¡ù:bÚý.\k8ÕŨ-=q8®³iuâ”[\6#!…-ðHbËÒ*ܸuäÕvuÜtÑÊúöÉ©LÁœŒô &‰ÌI=¥$A¶ó›‘KÞ_^⸆Eí(PW^šhù …Lv¶^ˆb¦ õÎEé,•/;ôq‹Äo¹—È•–N¸Í”½ÂbT ²ûГwP-`_£ú£ÆA·vîËs¨ Æªç©¨#õ»>lðÚ M%h :@cùAÕ=ü@41_ÿ ÷hé5JÀ¤>àΔKÊ3gx!›ÀÐÆÂLܵ}Ûçñ—3>ÿ]xF,÷/\V€}LÖ’©Çåª}7÷9;IÓ?Ü`Aê-­´>Q”ÖIª³ÐxÕ$ùZ“Ô#­im¶(mö¸M‡.ÑE(Ÿ4&q´<ÕOhÚJâb{ ̰“Ä1呜ŽiX³æüe°Î½&Ü«Çé$6„—Ù]ÒNƒ%ÜØCâÏ~øô³³²`/ƒÊf–c‰N?!úé6¬ÆÁŸ~‚J× .ÖØã„=½¸À }¸òÖ«*èÁM…!>úpgdÄ#­ðØ´¯p]FŽ2hoú,gÓ…5¼½ý¤[üMpâUN‚‰!àËÐï§8=‚!Þgàç­7/õ{3Àxn—žb×yuô´6œcdP§»Y¾£¶-a).È"ïI<Ø´^ü aL™[sáÏžôê©àŒ¦ ÛHV{ú#êòÀûã‡NA4Ñ.’:CôëKþq«û»#v·£¤ã2“œŽáJÈMw¯—&¸JðöõÞ,DœUíØN"žù­þÆH õ(‘ýšw#iü´±I?vãC›rŠ‘Ì -¹|ÜœfX}ê RX¸8©äïÓ˜¬+5F  !2ïM¶Œò»…l¦ûæ!WßC]ÛÇÂu0òóèK(RfJ”˜Vl~¯*[aUÃy1Å(ÿ"³ãiÃVTnDL=ª]w\z¹T5mìD݂ܗ¯¨£^@ ¦­ˆFÑo›´ü{3SF3ÑWîô˜töõë®8ÜÄ(,¸ë™U%ÜóÚY~]uî}ê_qHùÌaæmÇ$p<,êÕsæ/aEêÅg&$®hŸêšWÒú´„Ä­჋I<-&uGè­+H‚ö5ôî¡õ‡Ö—f$ž6a6“zlÁÀ–ߨBêåV»·Õ2‰L;$¦ÏX}h'É'»xuí*¬ˆ~cMâÈæ'.¶ÿr„‰£=¤.ï³\æYæ0ì#ý RßœXY½'Ú1¤.Ç{ µój»âRi#À-颗T”$Ž“ԙ£äºgº N}áÍï™8!8e¹×DàËÀiŸ“8åX±ê›WPdÃл¯zˆn‹À×[÷õ¼`Œ36vö·‚àXeMQF09¿!„w]`Эðh„²2ƒ3ÂίÐqõCøæ¹®Ù^yˆ˜nÝ_“ÁC DÞzSþS"QL›h»Wï.n.Y¼â;b˜ÿ¿Ü—ˆþË´O6þÁe¢ß]%ý‘k'n™tŠê¡#4;wáÖqW˜Šˆ„W3™Ÿí‰Ä¼Úó%“ ‘Äʆ¸! QºÛ×"™9F²‰¸ÉÈ»Búi MPÏ@Fî!‡è\y¤¿QÐÁ@“ºVúaJõÔðû(g/ß:TWÕçôDu=#ÈE Vp*®„ Žü]Ó‘ÉA㟟G”¡™ä¿–ç)9cN˜uÅ¡ÃãP™ØZÜ%¯Û~á¿Äz/ú¤à#þ;¥X ‚ƒ}¶nð¬ˆNqŽð/ÊÇ(Ž£|âCÊ÷h|©’º¨Bp’2‰Ï…¤ÒGŠ_)þ¤ürÁiºßqý ÂO©ÞjLâŠã{”’úhBt‘µÓ¿£ýúHÿþÕ})¯4‰O:uÚB™ÆÎBl$ýÂM$:º…ð¥m¤ofIò׿ uÙ–ä.®IßÒô—¼ÊõIžscP˜ä¹üõä›Ï¯áÉÀ‘8Fò˜7y¿'ØvÁ6ø®þ4Wê!§/ó3xAý‡(Ým¼¿R A =•ùƒÿä› öºjÓ/1ç OÆ„÷LÒ½¤Ž¢[D1²‹¼/¢ÃËrÝ[!†¥-pé»Ù÷w£p¹d`ù´õpµlæÍ‘ñ‚º(HÆKí\Ot‹D¢—$‘úžÌ–»uHé1Qz‘Fô§ ÂÛ²ç1L¹D‡É#x¦@4¦×ëÇš(ô¼Ô¨å"ŽâIÍMçûlEÉ£IןÈÇ-†Þ‡ ÛéD%#Ýø‚j¹µÇî ²CÓ°ÔFíê21£ŽI¯’!¨É~qh`?ÆH4ö[ÁtÐÔÖ™a¢h´ý쎌‹Êþ@´*›\wØm:ŒÐ¢‹»ÛB½7¡ýÐûS.*âÞ [Ü_›T}Àýæÿ?ü"çjµ9S9Ý“íVHL€9_4þ(_£õÆ“Á“ó oS xxá9³ ¿¤sHœKê¢"Á¹ôyèóªÞEy#WWÉóÐzÛ]âx%©ËT?ZFt>Ê/i=¦|R‹œCÊ#uHýÕ%8v ©¿úD¯åú˜Ôw@òÕ{¨®Ìé<ä}ѺMëµåèÓ)zÅa‰{k‚Û9‡9E’¶°Ÿ9aUZø>ì%zóþó,‘£fkXôä@/;“:è€;#9•ø ¨?Àƒ\£Ä¯á5¾úñFÕcð)™TÐþÔ¾D'?ÕÈyn]¸˜•SG"HP6²Ã¹‹Ž}ê3çIåÏÜ4ÿ‰N—ò\ü»-¢‰.yi™Õtã¥çqùNÚgÁ‘[î…ï >6ó·æ»³H¼:{ü©Ÿ*Hf®2&R y éKÏ3H™ùßoDÌE£ÞŠW#èŽ‡ÚæØŽÖCѵÀ‹aƒQBú#efUâ÷Ä ‚èâU[?µÞ;¹ Õ¢™Žj¥—–˜_ç¡N~a‡¬éƒÿÏâð¤LlÍ—p&}‚-äû 'zÑ·×ZÈÔ˜ átU$N¨.BÏ5ÕSh\ÐúHuúHã‡ê+ôœem™r`IwŽi_ÖÚ7ßÅT¯q†°f/Wï.¾GΫÑìˆÀ޼÷¸CE<ýèìYøuÊ*/´'ýZ§ö“þ ƒÕ%YÏÚR®ïq€ð9zݱoK‡Y{^\Í™/Ô“«cîÇ{ÏáItcbÊ㌠sÞ„ß uÔw$ qŠ=&¦8ÍÊ‘’ðcé¡)zYê3Ć?·ŸÑ€ DáQ/>èâìöá\Ô¯¨é¯‡"D³÷sŸÛI¸0œ •Lµ á" :‚PC„+L!’\¯¨%¾¸he#Ú„m„á"›“é²/Î\ ±ê[ç>˜ƒ+ÃõŽW5à£&*!. þÙO^âI}äpfk¸áêà ¦ š"YüŠš%¸IêÔÍGJ1ÁémHa¿öaH€ù‡—JúiÖl¡Gú•ãëߘˆÌH{ã¿´`„\+Ž«è@žµþ>ÞŠü_“ ®´« µU­BÑÒ>Wʹ¡˜èÆ¥Ü"ý­r Ëß=ôa*ÜÏwܰ7ý"YÜfè”d•  E%áõUÄ_Pª¬Ü³UÄgT-Ū ܤU‡jÒ/®&õÏ“ðÕý$Ž6œ¢½\òØ N/Õ'u…ò@®?Aê*Ñ])¥ºè<’·i}¤´þQ]•Ö;Ç4>)Nå|p¯®©¼åûœ®¾F7]s-Ñq¨îCy¦)ÑU¨¯†ã›gn&ÏkAôÒ­D§øKçd¾vÃ'°&~¢3Û‘ë·§pY …vñI‚#Èuq"øü`âÌ"Rp!ý¥Ã¤~º¿žÉ'î9½.õ…ÓUtžlzŽc üz›ÔÅ+I=>Aúû¾³\&Tø<Ä)MVPÁiöÀà g‰0(ñsåäÎ °| ã\À‚«Ï‘úÒûPââžýpžiß ¿E(áSaì×ÎCÄB@¾B$K—#Úaêý[-uˆ™0±tžÅ0\"ýüXâg¹|Y©ÆgÒ\aÒʺ\cl>q‘¸Nü,ñ²L£ñÈyJ`èVÍ$2*¬¶)’ró~œ=7X[Œn’<˜ªôÓÙ·3é¹áõEd^ûR7Ë9l[o#òHžÍgÓÏŠo‰Ööì"Ui“ÜŠ(^ò™©¤(aº{æ(ùÜÄdJ”z?”tÜ"KìTûnF+£‰ ŒµõEY›éæ£('¾§ò£Œ°5å䎯uëóm$u‘úÕhœ­'u…Æ!å\ÿ‘üü—ŽÆ+ù<œŽàƒÍD¿1'Ÿg«H'Ã8°àKò|\_‚òCR·©a/ƪp <ÜÉ—và, sC~Å!òºô{r'>YG‰^püÏhÁ•9 âõÕõc”`œjß~mqAüÜ÷ ذ6 -e ÎJ1 ø+°Fœw’fœa%×óåT1…®¢Öeä§iù#šøŠbŽ™)˧ÝD,É—ß Í[8ÉšëßÇé² ¬½e‰Îzc ð‘LüC)¬<+‚T“҉o,“A‘³TÓ—1¨ª"—¥{Ë‘×ÌPÀ¶¾]jBAqœ@‡0> TŇQ„p‹)k™u(×elÜî=¬ñ¦q0*™î†R-ª™}qjØöÅ8Ô²ò¦ê˜¥ß¢Þð`€áÐt4Ì`¢høõôн9o<-¸Ôh2oz÷ZÙÍLûwšIœ·°pðZ.³ÄwƲîx1‚Î$ÜxÛøqheàuÕaN ùöN€ê3´NuïÒ> ­o4Î(ÿ“'¿?‹è¡rä\Ë“|7—ÔÓùD/䓸¡ñIû“T_íþHù÷Hê#×o$ñßÝ×Ju!ŽÒ¾ ©ç?$ïóŸüði®¯Øù²§Æ¾Ñœ®ÃùWÉu5'øt y?Û‰ïÇ’¼þ.ÿÖ¤oCtjÚ?â꬧Œ€º`?Ñ™¸~ ÃJöÂ…-«ëp¨è%Ã|àJún$<ëAòå‰ÇÕQÒcø_ŽoÕ^F'qê¸G“ táGôŒâ "xá,[&"„œÿPR¨þ¹Ÿ1Xº šÄÅ%Ò·¹ÌØãTïâä—!žðÙD°D7Ø17Ù¶Å ¤AzPG ‹ð­ÜE¬0‰<¢Ï>faûô‚ñÓ¤Q|Ð`§ 5 tãŸegG¡Œè¼;÷jÜû6¡«1«N,"Á5¬Mµäóײÿ¬º @¢^;˜a ¨ÿõ­¢ >‰·‘ø[3Xãšßš õ ‰Q1ž¢y8C¼–¢Ùч‰`4×5¯-½5ûŸü0bïòvÃ&¢‡P}’âBzNéù¥ý zî»÷÷©~Ji=¥úí£‘ç¡uh39[ȹÛAü'´ÎØd²#Ø‘¾ùrÎ÷¼Y ;æë"ì9gÀ0'ì!ýî‘ı= ûí8>H}.ûKXÁŽäss8’ô?©_õñ¥fº•VÓáJôP7⃥¾T-—uÍÆð$üíkóÜÊ{o¦òü6N:ÈñÂiGOzŒ0Ãiâ¿§z‰?© ŒâŽ s–ÚñàloK¦ãsì×ÌGÑγíM‡.*Å•$ßE20R²‘÷EÞv‘9®9ˆ9Å >üÁ%F•Ü$ŽËS¦nú|æ®’~þuAñÜ~M ñû‡ ¢ØFö,ÚóSI‚û¥j1nsž<Ä_Þ±b5’™ËS–‡dâN!õ#Õ~µ¢}ê°m•ƒõHgÆEΔ"cÜc‘ †À=B6ñ!ä ¿‰è}9 y’,@>ûõ÷CyÝBâC.zŸý)ä³Jˆ¿­4HÜ邨@ÜzÆgœžÿŸñC}ÖCgpøˆÎý~øøáÿá‡ÿïñCz~(Ï¡üækê£xêŸÔFãö+(¤ý ŠC§’:Giÿ‚âPÚO ~œ5äœË¸ZäÓ‘'~ý;SOðT!ñûí?Û†]LÛêúON÷ õÆÌmÑù@ªÃÐxëÞ¤|O–œSrΧº7™ÄçDï4)o¤¼’òMÊ?iýWÿúè#×Oü×#‰o®ßø¯>c·ùHªSQ<@}y´³†ÌÿRÜð×<3í+R_åd~ã/ÞHô®þ’ëÁõiNµ#øŸÎŸP\í@ð€™¿âú+,­YWÆÖ¶«n_Y(ŽÜa€æÙ.€€´ô?»^ ¬‘'F² ¾Œú0òN×Ü–§doƒÜ&9Ê FÖH+ÇYæU´ „ øÐÉhöΈ u)ê hYóÒW!0ÓÇíµÇpõ¹¯ø”ŒYh1$@ƒ€, ¾4š}' hle IhÒ\^w}Ûz4%Ä) ­ðyr.(ßÚHð_Ðf mŒHÜÑy_:¯Kuî}}Êÿh½ìÞ×§õ’öëiü¬ u•žo:oaHê$­SÔﳉèt¾žÎÓo#¸t{eÏ VµÒ°$GçsiŸ|7áwt.šä:gEýÖ¶D_¡s{¶5¤{‡°€ûH¼í_÷Z×YŽ„ï ¼‰Ó=‰îr˜Ìߺ1,iõ'¸‡2vðÐÍZ4oÐ\n^ê8ÉGÞä}Ÿ ß§ƒ X«q¡-N—ÆxäOöV}óFñÛ1ÕtÆTœ!¼è©«ÁŒÚÙóÎÛwˆìÜ«‰PmvÀ a÷J¿ñ„pâoŒ :HdBÏ=Ûýú4Äå±Ä ñì8’3lB]¼/@"[fô9÷ Aö¸½ÉÌÕÑ(G ãŠ[viŒ½­à2Ù±Þ)ÈúõPBð\ÞSä’úœGúœùË#èhì$~… Ü"¦½Yè‰bï¬ÁÈ2'rk3ˆrÙÿ„Ö â‹¿MòZ%ó“a&ªUvµ"ª%™p ª‰¾SÍÊǽP#Â~ÚP³Œ°G ÛÞ] Í{ˆò¹jG²B:j—°†$ÔZFù•†ªÂ‰œÓmDw£8ö‰©”ú¶)>íÞŸ ñFõÏ餜^JþwN/%Oã—Æ3­{”‡ÒzE}Tç¡s«I]§û8¸zEê õÉQ½“ÎAÒ|Cy%Å­¦¤þÑyå¿êõlj^Çä}Q«ñ›Ú=¶äï÷0îi­ØKü5Ü\3™Ç?Hæ¨\XÚ¯‰CÕŒ0ô®$OPþx„ìáàæ¢Èûàâ™ÔU®®MºÕk”,N1ìdž#N³cÀŽð#|ÆŸèKÇ‘|ÈÅ5ÑûCˆ¿;”|¯áŒ{d^%"˜1¥c^ˆüÂÆ͸.¶ÇE’obþ+Œˆ%{1®0ãÓªI¸FòC<#_B¢#lj ©‰¸ÌÊž3q“øåSˆ¯5••iEÎØðÔ#ƒ½ ÂÈîÇVäŸEñáæ—¤ú6D§¡ÌY1ceÉI(±ˆ½$¸ ¥Ç˜AA3Î^óö¼€Ê£üÂÚéçÇ¢Â-p¸MôÚJÒ—¨dÇF£Ê™ C5yýjv º ·ƒè3œ_”¼?ª×P^I}²œ”ö)ÿ#üq=ñƒq~R:‡Hx ûkÑaé\Ê¢Ïle¦g,„¸øÜNæê-ÉÜ(õ™[“þ7÷tu|ÁžìÑ¡{3^u"¾-gvQC#_Œ+ñºœàAæÉ)ß÷"w¢´ƒÀà˦ù½]z,“åuí ¸èì.¦ñf‚`Ö3 çYØ ‹0r^™­3:Mˆ$>öhvÒø¥ý zþi?’ê£ôœRŸÌ_8üÞ_u†àlKRçè|âNâ;äö­‘óHçoiÒ–ø±¹=Ntïù<ûÈœ&õ¿82m;§$8E?\óµ²Èë|rN€,C»ö;Ñ= Ô†]-|×5Eü°îŸr} ºŸäÅãÄ×êMžÿ‰ßÿ ùÿe ©Aðcܬ«÷Ÿ™JZÙ„@&ëÌ Gñ/ž%ûÞ‚‰N|ž]÷´¡؆2ÂÛ´uT×(ÒWŒ"|(šè•?ôg4¸ÌРGp•]ë2 ×™©àEóϬ™Ù|ñR% dn?‘qy: ð&¹n7ZØn®š\h¬=RÉÜdº€EêA™ïÊ\ϧ¹ÈfljõKöìä²ö×`ºþC~÷G~[ÂÒõÇÆ£9¾­å(fÃØ¥L·w ÜbÛí Q. ±v5¨è?ÒÆþÄxÜ&:nå6± Š]ûÑÕ¤/TCòt-™#®cÆ@¼®¢žQ5ÄÌÑ@pC#™ßlbÛ.=ÐLöHÝ!~åV#sÆÁ‹62ßFÏÏFRW(Nó%{Á¨„Æ­+´^uÇ©4î(î¤q×=)o¤¸–ê84Ži¤¯ÇÕ-ò:TϤ}Æÿ‹½·Œ®ò膃k)-¥BB‘B[(.E.Z(PŠ»»;$¸÷HÐxpB„OBHpâ§¥Fݽå»gríÉÓðu=ïÞ²ÞgXk¸gçÈœsŸÙ~í=Æ?äº&ßH½—Û¾5}«h·Jhõă žMúÖ‘O¥£ô_4þ!ël$ß8Žuï4<¿:&ñóMæýÊx“«´üjêï*x7Æk¥þ~ÁŸƒïw¼·1WX [ÕçⱤxÒºc½°”8ÅåÔ‹+W*S «?+æÿᯰN»9ƒsúãè°]ùœ¾U¬‹ó&~mó´Ui_eÅU{[t!;¶qÿíè¯#¨9}§ßÚ÷ÕÝ Ãñ¯!qÝ`~¿Mº±v1¯¶[¡ÐçnÁ>uÃŽœ€°¬/¼O}ó‰WŠ Eó°ng31/+ yްŸÀ1®w’Ÿ+Vo赈'žå´z—U ²¬ÝŽ ‘ý“Ø/æû^œ'žïbØŸ›7åànØ÷.¥´2\F#µ¬øH«ÓPYâHï£Gó‘á™-à3UÙã¾0d5­øüü¹…p|v£‰jˆ7ç¿ô-ø÷¨måyyø<þýÝÿü{ÞÿŸž©yÆýý {°à˜‰#‡LtsqÉWÊ¡ ó™Ï»¸º’k$ç)¹Fj®‘–k¤ÿ}¸”Ì^GŠÂµjÔ©WaôTWÒj×hPa¸|Ć5ê44Tá:jÔmP?‡¶/ýo/-¡ît‹èu;à~1¼ŽÌ¾Fî;Fœ}õ_ÆÇ/òñ^|ü3þýpöuÇ]>>3û³“ççµ?ÁÇ¿çß7ñºoàã^Ù×½ù8¯‘É.ü—ý="¢²ÿî“ý÷[ke_ðý"fññ¹Ù×- Ù׃»²¯á¼úøðñF|ü$_Ÿô÷÷ß2˜?ÃǯóqÒ¾+¸~=>>‘ó>ûçëþý{ìÏÊþûæ5ÙWï?²¯{yßö'ò}ø¾›"³¯{Úr½ª|}_ÏϱçU®×™çë'óýùú0®³™÷i¿çž¿øú}ü;×÷îÎÇãÿþ=vñyž|ÿ %³¯¼îâïíÉßÉ3=ûÄÏÊûàÉç{òó½Í×ÿ‘ëqÞ¯@îÃÝüÝ<ù9=¸Ýøúxþ]Þ‡¿wÐà¿¿ÑÙ_ôMöu1ßÇ7ûI-üø:w>o1ï—o‹ìëN¾ÿ"Þ‡…ü»/÷åÎO³¯óbù8¯>¿ðñ³ü;÷§;ÿîÃϱ³}öuþB®ÏçûFþý{lŸý÷Ya|?þÞ^ä'ß›|ÜïÇ}îÅ÷õéŸ}ÍÏ?Ÿ÷}#?¿ïÙ×9üû‚ |=ï“÷é ¾~aáìë~Þ9|þ|þ}ãëüJ?•PJM- ^¬Ï1d*ç'˜:f’HºBn“܆Œ¯9áïäH!gŒã6"çÑlÒ<:tüaãrÍ&Gf†—å3ˆ®,:|ˆÛš#§™0"û•DõæU÷îÁƒê=Ô²|ÌÄá3ùëAöærù§k Þƒ…y-Éë3¼>ï"ÿr¯“ošëpªñÙ«”³ yÙa‡vØa‡vØa‡vØa‡3vØa‡vØa‡vØaÇc0vÙa‡vØa‡vØaÇc0Âí°Ã;ì°Ã;ì°Ã;ì°ÃÇí°Ã;ì°Ã;ì°Ã;ì°Ã‰vØa‡vØa‡vØa‡vØ‘ÝpNõmËnW«Fmis—¿v†2/аFFBä©%“Ú2©#“º2©'“ú2i “†2i$“Æœä­]ËÌj›Y3«kfõ̬¾™50³†fÖÈÌÌuÌuÌuÌuÌuÌuÌuÌuÌuÌuÌuÍuÍuÍuÍuÍuÍuÍuÍuÍuÍõÌõÌõÌõÌõÌõÌõÌõÌõÌõÌõÍõÍõÍõÍõÍõÍõÍõÍõÍõÍ Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Í Í Í Í Í Í Í Í Í ÍÌÌÌÌÌÌÌÌÌÌÍÍÍÍÍÍÍÍÍe|µkÕÊ™ÖΙÖÉ™ÖÍ™ÖË™ÖÏ™6È™6Ì™6Ê™ÊjVàXcŽ‹8Và¸XcŽ8VàXcŽ8.VàXãbŽ8VàXcŽ8Và¸XcŽ‹8VàXcŽ™YcŽ8VàXcŽ™YcŽ8Và¸XcŽ8Và˜™8VàXcŽ‹8VàXcŽ™YcŽ8VàXcŽ™YcŽ8Và¸XcŽ8Và˜™8VàXcŽ‹8VàXcŽ™YcŽ8VàXcŽ™YcŽ8Và¸XcNÎÔ +pdfŽ8.VàÈÄ +pÌÌ +p¬À±ÇÅ +p¬À±Ç̬À±Ç +p\¬À±Ç +pÌÌ +p¬À±Ç +pÌÌ +p¬À±ÇÅ +pr¦VàX#3+p¬Àq±G&VàXcfVàXcŽ8.VàXcŽ8ffŽ8VàXãbŽ8VàXcfVàXcŽ8VàXcfVàXcŽ8.VàX“3µÇ ™YcŽ‹82±Ç 3³Ç +p¬Àq±Ç +p¬À13+p¬À±Ç +p¬À±Ç 3³Ç +p¬À±Ç 3³Ç +p¬Àq±Ç œœé£8%]\JçŸòL°;±“ÿ½ÉH;±;ùß›<&òÇNìÄN¬Æ·;±“G:yL䨉Xo'vb'tò˜È;±;±ßNìÄNéä1‘?vb'vb5¾Ø‰<ÒÉc"ìÄNìÄj|;±;y¤“ÇDþØ‰Ø‰Õøvb'vòH'‰ü±;±«ñíÄNìä‘Nùc'vb'VãÛ‰ØÉ#<&òÇNìÄN¬Æ·;±“G:yL䨉Xo'vb'tò˜È;±;±ßNìÄNéä1‘?vb'vb5¾Ø‰<ÒÉc"ìÄNìÄj|;±;y¤“ÇDþØ‰Ø‰Õøvb'vòH'‰ü±;±«ñíÄNìä‘Nùc'vb'VãÛ‰ØÉ#<&òÇNìÄN¬Æ·;±“G:yL䨉Xo'vb'tò˜È;±;±ßNìÄNéä1‘?vb'vb5¾Ø‰<ÒÉc"ìÄNìÄj|;±;yT“’..¥ÆóÜ&¹ ±„%,a KX–°„%,ñ¨‰£Ç¸°„%,a KX–°„%,ñh‰Â'M´´¥-miK[ÚÒ–¶´¥-miK[ºÀÐñC†³„%,a KX–°„%,ñˆ‰•e KX–°„%,a Kü/ €[–°„%,a KX–x4Ä¿v±´¥-miK[ÚÒ–¶´¥-miK?ôc²„%,a KX–°„%þˆ¿™á–°„%,a KX–°„% ñoÇÜ-miK[ÚÒ–¶´¥-miK[ÚÒýä†,a KX–°„%,a‰ÿâof¸%,a KX–°„%,a‰GCüÛ1wK[ÚÒ–¶´¥-miK[ÚÒ–¶ôãA?§÷Y–°„%,a KXÂÿ Ŀʲ„%,a KX–°„%þˆ¿À-a KX–°„%,a K<âßF»XÚÒ–¶´¥-miK[ÚÒ–¶´¥ú1@eY–°„%,a KXÂÿ Ŀʲ„%,a KX–°„%þˆ¿À-a KX–°„%,a K<âßF»XÚÒ–¶´¥-miK[ÚÒ–¶´¥ú1@eY–°„%,a KXÂÿ%\\J‡Ç³m[¼?e'–Ým_`CÉF˜•µøh½–験²¶Ê—ÉÝ0=Äïé>;²0j_Â×+ŽÌÄà­WÌ^;}W‰Cr2zÅ~jÛ]ôhï3¨àO^è¶ Ñ™–ã<Ðõýã£êçA—?õèßõt©—ÿ³vkJ£ËòOb'¾p]{¼„¹­ÃnôL,ýrÈ÷?¢Ï‘»?þ*ý3~ÝÖ(ì= :û}¥™{ŸÀ¶îL›4C÷/ÚÿÙÊé^õ¯)«–]ň!žÏ¬¿ö'FN­Ó~ñÈ.Uó›ÝFäŨÍ?È|£>?X²Ò°pŒî¾jë•ôSýI¯ ëŠïÀ®3vçÉég#c\Ø Ç[¬Ãx®;ñÍy{:o‰I\rìþ|×vwÇ”ã=–µê L½øÓɆ·½àúçgÆÀ4~ÿéü3ÕÚ ³_éÑ+e&æVŠö®Q©æwš>(kÿ>,ðdðú)/cѾ-• =„ÅÏh¼é·ÅX²¥g¯ßÇø`Y³„eûk\À —Ð3ûÚ¼ˆ•÷\žù%j%VýŸÅº*K~Hüø:<Ú>ûMÁµGà¹aø‹uVOĆowÿþÉøÕð½|Wf‡ðþa`±ŽOÝÄfç[oß^¾m{\¥Ú0l-ó½û/ÞÆvýñ›cg¥‹k?ØW~aßÍ ÿë ü?Ù4÷@h[6ŽýüËßZ!hïàq³"ä­ˆj‡³&!ôAï7»Å|„ÝŸÝêS¼h2öMn¶Åûm>©ôÏÒ[ ß‡¾ºð{é(7D,\Ñy믉ˆªï²Á¹uˆ.¶æ÷?F¼…#yo»¤D?‡ce[¾<{&NôzæÈ…ÑïâTÔ»¿:qe_hòæèpÄOúäù]¦âtæÐ ýãL¯B+‡4CbêÍC­®ÄÙaß¾U¡_,ÎýµlqÓÁùpa矃ïwü—œ_îö.=ðlq×}Hn¿¿×ñ3‘RášW¿ñ ‘¢·gM¤žß»ªÿG‘HÛ¾¢I`«fHŸ„®Tí…Œ?íQx22K陟¹Í[8p®&U9}ûwd9?Ò3#îãÚÎ<1#?l‚ë;â/·~×7ö}u÷û Íq3©ä…êwà–úøS¾Ç<×”x® îæüºÇ¢Ó¸ëP/üü+VܼÑðÜ–ûX2½ÂWkŸÂ´'4ß¾‚ß.›ÿí%wᦾmí£ÆýÖßýYg§…¢§óëÇMB·Ý¯ÖêQg:ß}ù™ªME‡y§Ú.¸°ínïÚÆï=Ì«öì‹Åð&?¿Rjl Œà÷q~¼_Ó÷Šb䡲Ê—\cäÍhu׆Ø˅MJ­€qå6DÿUø Æëg5Ç„·¤¿Þt'&M+Ù¡G¹1˜¼é˜OÒî˜2o܈ݻ `*×wݱ?Ã#v?ÜîOë»t¦¥ú»Ëñ“˜Aù5kÒ®šËSÏbN³Bgßpóøý´X>ÿððØÄÌ“gc¿×âƒvÅõÀ’=%;þ –5ZÖ§ÝßbùÇ“?ˆ{5 +O¶¿úî+žX}ôf‘…áoc-?§G…„­Á÷ºÃsôÔ° ۰኷óIòÀ«Ûºï;Œ}Þ4é4dT%hñU¾F·=mÎ.¸s¹6vÌþ¥ýþÞð ¼Z´Ùä h±7zû—AðùÇOow»ŠU®09&{¸÷—R7¾þ”VË«¬;)ñÞu#"rûÙo"ŠGný’³•q䥈ß&|}Çúe<ýŸ+8qâ—\óçG,åXÜÜÓŠÃÿé¼×ç¬| Ã} ^ ¸3_'úT(‡¤å'®ä+ôνº¤Qá¥EqÞ¹{³>Ú‰‹+(ZmÆW¸ÜrϬcû­§¸¿÷H¾¥)”Ë©f•úô™.H¸á§O«#½É¬®©õ¾@FÑt._WVh4™‡&wú¡®ò÷Ëz»’,¸V~Ýà…®½qréåÍÍ*ýòõË(…[ýjthQ9·„¶É*ð1î>yeáͺS±~Áš]/¬/‡¥¹äù®À7ZyV_ ×ï<öFvì‚Q®ŸEŒò7û_øCøEôZWê+у×Ú]º¡:íúíî?ÐÙÙÄù&_6|+Ïï~9¡\JÀKè5áú寞l†>”ÿýkÖýú[ï|8kÔùÏÜæc°³ëG'nľÿÐV!/7~l¿Q;ùòG·KŸÇ°OŸQŸ ß.pê[v_áÚ¯ ø·Ï g} ­¥Û,ÁnòýÞ/öÄ_î‡Ý#×¾ùñ2„ÍŸ[ðý­ž8ôá¯*׃µ[\DTÛý¸0”úøåÎ(m6ø’^ï²9 ­7Î:RnùÆÛ8¿<5)Æ#[' ßÿÀ—Kx}Õ¸æK¸r«U©mú"9Ë'üþŤ$Ô9ß+t9RÃÜB§œ›‚´mCý£’.#}y÷ïgô[„ŒI<ål1dö«¢Ë¸Úð½ÄЯw ëeˆ-GÖçZãÚ±7¾è™‘ŒëÚŒ‡-Ç­ßZêYÜø5ñÕûÏÃMGÉy4n½søôôb?áÖµC˜‡ÛJÆßÂ/oy}Vtj?qÂÖ°@©Õ7waj§—çå]U#»L»µS]{mÁÝÕª·ñè;8½gÍ"Ðý—¨÷F‹®ü{'ê…÷¸?Þu¬‰C[ÞBÚ‡­©?å*—çµ'¿ÉûˆýÚíµ_¿të tJ ?u£zj3z¡±‡ûðõb'÷ãúb×H (ا^jç_"oE úîÃu«¦ÜÆ`ÿ†ß¯éÞ0ÇÞå÷zÕõù?:·Å0êùá\w„ßœúŽˆÅHÊ)±wÇt®[ÞÙ­vÆ÷Ö‚i7N~^O` íò©JÜvþ®·6ÿôÚØO1mü“º¿ŽÎî:¿È3i/Ìv´ØŽ/bsøµAÕ׺ÖÄÂŒà#Cל€;íþÅFˆ×ÔÈÑå|Ÿ•”#«©g×n¯×ûR…0x”WìxR/m,¯^™þC>üy$6E[|åõ_ásFo(l-© lWw©Y9øµh¼÷ûFSà«LÅÏêoD R/±>ÖlY ¡úg{{ÖÇÜ/=±ÿe8|Yà£ïK,ø ‡Ç˜÷<"”™;`-¢Ô³F»"šúÿȈ4ßI»ÞÀ±ðžâJßÁÉj•‹ÍÌ×±ϼÿ3â.F§;" §ÛUr,毠͹*Hœßµôô•çq¶öåƒUʾ€sZýuÄ…ÓCJµèŒK;®&þžê†+KÎgÌIúÉG_z¯ü-‘µýfùY£‘9ìÝ9n¥‘F:=æ×CµG¤#ãD—š‰Ç?Ef|ç©…û=õ.®ÇuþÁ„ºEÞÆµKƒ|O¯.€ë—v,þ°ÊAÜp¬ÔO7TÁÍ„3›;Ž8…[GÕø ·÷_4?w¼ÿº>òé%¸Ûl²²,pw_eñbýú6µZ4Þ‡uíՙÕ?,ÿãH¥@q6µ#báu­ÅÌM¥Ò°8ð‹¼ßýºÓÔ.|#“n}~-ϺiG{q”ßã0\}ŠÚOcèÄÍk;ÝibôÖ`ê £ÇúèƒáÔ££zðˆ×Ò1V¹-oÝÂDê¿ÉÜwS߬ž4+$*ÇÎs¤\ùŸ›bšúZ‹=0]›…oa:ù\ôÐtúYÓî¿¶ÒçÓŸœArfiÍh˜õâ™ÞÃß©ŒÙÔsøýæP¾Í}ðy¡v3Êa¾²NóMɱ©§Ѿ^tãü&ÏÐpŸ=Ìuü,v´Ðœ›ß`ɹ¥ßLÓ K©‡—7ßÛ`ö“žXAûcýÉÕwÔó&Ö†×(Ñ3ÿ XOÿÃ#­ cu†çí1ûß>}¾Ö¼¨ï½µ[õ 6ѯ÷©Ñ¨Í¤WûÂ÷£¯íNù [/ÕßÕ{VslÏÔìü-.u{RUø¿  p4={ûÕÓ/#püªã‚¼ÑìàÚŸƒò¬¾aÕfDOìî›ùc«cØKûrÿ@µ¦áà‘F[»ºÌÇ¡ê+Ö/+3áÞúÆ#Òñ^',ûQ>®ý‹Ÿ¢Õ¶Ûû=b®ßûØÙ²8ªÜÛ Ëqì³bþŽ Å‰×zLyo;Ni·j(b5ÛÎFÜ wîF¾_ñã~™î¸b8­Ìk—Hx¿œ²T¨Ùñ$}2¤Zãü8=®ILÓïqöË%ú½É¯iÇ)Ôû©Tí¹÷v ¤ûªI+dx¿ÈùüÈj7´ÒûË|p}HÈï }ßÑoAc®Ö{wø¹îòwø€rá^²§ã™ìÁGSõƒOê<áë¨Âÿz]¥vYÑ,wO[2ý»,¡}x¸ó™Ïk7ù^·µc€%ʽúÅÙ×*œàþ©‘ócF¼–æˆcï Ÿ‰ý:à÷+£*ÆÀŸ›éì÷F Ÿ§^M;füæ'çì(X“iÇN%¿ºµv]tõƘÞõDÓOÕÃÌv%Þ*6¬fÿvaѹý0gÊ´u7uÃ\e^\Z…yEG -ñi æÑÿœG{rÞ·Ï)ÎÃü‚O~8Ëó8æÑšÇý>ÏUt·Ÿ&úhîá%«?ïWs×lT>æÒOžë¿ZEÌóæq?Îã÷ž¯Ýö X ¶o¯M|f!åÒ"ÚîÛ) käÝú“ËTÔ¦] ,×—·°’þêê+é§ŠxïÅZ®ãQ5ï¹Âek“÷ƒßȦn¿÷ÀFeeÔþÞmúÖ:q›v£zÑcïÀçyx~Üú[øª_sÞëØZíɧ‘mÉÚ!ÅŽMJ€Õ„c¹¿ö2üµØ}¿öÒª"Ôneyñs† Kêõî¯ØUF°çi­°±¯}·û}†Qá鎉Œ0-ÖŠáPFÓ[Ž(@¸R+oEdÉcÿ¸\QŽWxyi=~A9l_#ºþüQ%^/…Åu­ÛáÈ×®±q¬Ç±}SЇ{†JúÔ Gli%ØžFÜ¿K®Óµ>yÐûÍî8S±×èmþk4 òŽV¿À9µ«kÄEí¾€äb?^]ñT8R>¨ép^(Ò¾úñ‹…IMY_)ÂÈ:òcŸˆäy¸áÛ móâ¶RSÛp×QŽE€Ží:¦Ï`|¨Í£^øøâûgÜ{„á~ie üŒÏé—þ·ëƽçÚìxž´Ï–+îÞQÊ<„ÅÊ»~6ÑØ§#‹(Aø†¿­/í²ÞÔ+=©ozPî‹Ù{Ìâ.½cª¡_ÿ¹Ž¥þ™‰‡U·¿î!÷Ûàǯaâ–Søù\Ïît4ÐL§}:“ñãw•8y'cÞKÚñ2ü6ÿƒ–=7}´ h—.d\eíE£¿tX±w.òú•q÷°DycþÄ’?¿?üŽÿ,u¬äϯåÅ2G”ùÞ+—XYëä_V[‹UsŠ5~¡êÛXýá%· ³žÁZÊõÊ ê¹ŽöÍóAox¦tlâ¨<6aÅñCàåXû-[ oåŽÔLÂfµKF¼ú¾ÊÜôù[—ÌúÛ>íÖ¤äŒ6Ø1Ho8h³±lü(çü{¾àX¦~ ½¦5ìS_Ed¤¿vEÝLÄ3O#xªæD„8ÜÛ}§7BUزí)„êm7»~Œ_ß¿ÚOØÍxä^Æ[÷uý¤†ÿË¿cØ-÷?§}€ƒ´ÂTøè›,Z{)b®ïA„.½§Ê5DЮˆb\ôðù| a;|£ÂOÝÏãÈ­Pqlf¾Ö7 Ç îÓA.¿ïr‡Øç”C0±7•#×qJ=Õ¼‰x%¦XÓGœô;ú篱æÕwp¦ÁÏ÷R.–D¢ã%ÿrg6”QUìÉj8K»û|íÎŽF>ƒ ôs.ÍR !¸Ò¿šúÆHÖá‚‘Ha|&MI+× H;ÿ×/§ ƒŸ÷ª›ðàãC7ò©@ÓxÜr9~rÈ•¸£¶É•XÜÕfõp¼ÿ6ôw¼÷ª÷g¡ý¥îÌ't!ŸJ\ÆÄCO‘x«øoWSUÆ1‘ñï)”ï®ÅîÞN]qnKL]ö¦1~1ý£Uu~x·f¼_'jà·a¦ã…;_³è7Î:°Áñxóa6ùzöýÊß½’\sèGν;í§?+>0üº€übò ••a²îÜÏ?Ȭ´60Þè­¥´{—)¯fDO¬xCÿpXIù¼šöíµë ǺˆRêçÄW–¶Ý}üÏöØÀ¸ÕF¾¿w9¸Ã¦ÏÞx"«6GÔÝVâ|ux//¶¸Öø±@òoØzó›Z *]ÂvލƒÙ ‡?.n²®=ü|ûœù××ð¯­0ø'¦¼_øôp”þÌç[ àGŸíß>÷½¬|ë 5× AßdµJ.µÛø!”“¡ôCv½ò[Ç$Ánþn{Þ>Ò¸åóØ»lbË=³Žcß/9–Q`ü$¬¬vÜqÈ¥ùg¶ìÁ!ÇÉt: áYñAÝo/@„º»…Üy¹¬ò´‘-& âðŸç®{äG õÔ‘e>õK¯vÇÑÞ}ÚgÅ/8¾h’ËèkpR…wîF¬¶*~Gœ#ô:µŸˆxe¾„ü€ÓŒ_%P¯ùäme‰"IEOzNÀYG y-ˆóá§n´ïŒ‹«¾ßóÁf\VQºÎ7ܥ婩S"eê”A. 5D ’Hc>)ƒ~zæ©3½XYÔ×>]7ÑåUÜð{¥k÷Á{pK»‡SpG›)E=êÎß_âôþÏ+Cq›ÉWôfü@â›OiOûìÝõåšg¼òÚð÷y‡qVŒsÈUþ.Ï“üE'Ú±]i‡ö jâ§´ûñ÷ÐíÒ­‰ùcŽ¿4ê?êνWs®ÚÜéó¸#,z>ˆ3ùã·2.$~ë°Ê;™_½3¢Ç™š®Åû%öø8•eP%'.Ã÷J¾u¥|™Æx³È ‘ sã\>>xñ,`Üz‘ú™Áý}e€9zØûùW}kIJñzCcÅĸùG¿Í‹UA½ú¥£oYO¿Ì“¯ß ·ÑTxQnz{ò‡m?NÂæ€¶^ mNÃwìØûý6ž™cøOò€ÂW-©çZ0OÑœû²)ã MÈ?rmÊx&ø~oQ¶â¾‘¸ªÄS%)|ß‘ï߉v­Ñ»‚ )xw¥¾ÜØÏ&þ*üNýÕŸqá÷Á\Gìòa|_¹obW nÀä=Èo“÷4ùÆ'$?4ñ´´¯f1î9›ñ+‰I¾CüLwGÈÿ‹µxꃥÓWžþÄH,çû¬ÔêpV¯VŽÕ&¬¥ŸìñŽ ˆ´‡'¿ÏFG©MŒ[/ÊÍM”çZû,ÀîOÑ»Ùâ}ü3׌ycâbF„¬~!èY«í¿øW“ïߣÃŽ¿øë€ŽëÊã N›•á™:„ÞÇHÚÿ‡¿Ó¡Þ?ÖC;8§-ˆ}%¤aƒKß9þ`vž#þ÷ù6WF‚§Nà"Q‹›'p¶œrô›ã<ãé·]v¬ åÁ$;Vd‘SÛ2âÏU×üˆÔíúÆ íZÚ;kR‹!ãC¦—öÀÕ J@Æ#+£‹úƸN?ØðáHý·”[ûôÜVQ·pÇïÊó.¡‰ó¡kþ|[NÕÃ2uûܽ±èó¥åcº|aöÑNí>W4q}Á»H^Ðäëù»Hž¾57Ñ-ÿ—«ðÙ;ô…ŸÊçóù=È罘ç¼åCy ò§ØÉ†fÞOôh?âfú3¿;¿ñ>€rh(ãž?y4ýá±ÌçL ~šL=,~µëʨ …nµÂ4g7ûû]ÁŒè·ÚuxíuÌVÑÿA ˜ËϽÀKÞXÔ;Ʊøž€;ñ1KÈçË”ú¸Ž—*tD5Vë0äóXËý©¥N÷Ûðåc\4qN±EµfÜ¥%íVÑgÍ©7Dß½IûK®i¿ -ú2·^lI»Ðسä[Y·­÷õÌÁçðýDoJ³=?Ç?êOÑ›‚'}I}Ò‹ù¸Þ”3’?>6z’vÀPæõÄß•¼£±gƒt`ã_Њ>'?ãhÃÎg>ÇTÚ®”CÓˆkš®ÃšsM~qã›ó4 « ’ïϳ˜þôÆ»·hòŠŒ/¯cþŃrÇSeÝ'öþº¿Þ€·’¥z`3ã6¾: ÝŽ,u<¼ŠØ9v£ÒäðWo×õ‡½Zç‚Õí¾v¡—¯=»üµ¼Æŏ{õÂAeîßKÅ¡•*Aþ "Þ›zæ…ÙUõÚkF^¬‚è:w:x2GîxÑ1MpìÈšùÕ*ÃIí^çE¬†ŒEœJ/ä;ƒÓCŽøíóœ¡ß™­€cî8»â%qp^I¥w?ÄE7íâ²{‹è…õ&"yÀÚYÉ!Ó‘²â)gç-D*óŠi´2ªÞŸ™þçÈx«@õzûq•r9ë†Zð \F'rø~ü­yÏ9¿ø Ü^¯>Ž>ÌÞÿ¤×·œ~à æñö¨´@QO¸÷8‚vœèÑO‚£=™Ûo|òú=ê£Ìt¦ÿÖ•ys±û’ñ}$¿.zhùBð¡ãÉÇ*8m´ÉÁ…Ò^Â8¥ÁétA¸‘ÿ¦iw¬„É;Î ÿ˜ü:íLÁ‹J~bó© ?Û¡"_p×nW÷š‚™,½e yì4V¨èÇ«µ°J‹‹ÉXÃ|Ⱥ/Nê× ðPa³5Ÿ`CˆöÁÆ5ÝÄüzÞŒë›|»ëƒ}Žé…- &3ç¶µ«—ØÑ¬¬c ‡A‹õÄ?à§Ô\·õðÿôãÂ…êÏG€ÒÏMD  3-÷BqrÁ´‹C¨§BéŸïáu°ÓK°{bo•éÄw ,ÃÞm:¡ƒ}Œ?(¢ª88)õ¥ï>\0 ?ë‹CÔGáÄÃE¼\ý¥ˆß&"R…O%"Šñ€ÃÕ]7%{ÎC´ŸÔC _DIݞ±A/~ýî•^8®Ò›Ïá¤RÇqˆÕ°ßÑˆÓæC+œVð¤r»p¦™° iÀE…@Å9Ú‡~Rî(\SÀá˜t$»ÝõyëúH¹©o Òˆ«MWè¶wƒ‘A|ÏUâZ³˜¿®¼ì¹“søù¸[Ä×Ýv¤|ÿäc¸CüÂ?Ú¥Œï ÞXâ’A_ÜW¯48g±Ïú‘¯‡&¸±+ßH¾¿ñmòÓÛÔ;­˜7|—ø5Á½‰*úGôŽðåòÓP-èLÉཀྵ/GÑߪY}Œ¥0Žùƒç&îzã8“ÉGS~× j¸’ܨ—§×mûÚ§ÇŸÃ âßfQ¿ÍѰ«B&ÿ¸`U‘¼·]Rsø’8„ÅôŸ–2n¿œzfïÛ*åíÍ)†5ÌW®Ó°…üðPæôÚõðTiÜÕ›s⪚ §Â{â¾eF¿„M_ŽšQhG_øLì=þ‰Ip6ɤ¯4ÃVîßmŒCîPÖm¾rØÉøŽßöw»¸ïÞÿaõÜO®ŽCÀ« н G ðœl#HÁÇ,6úNò†¡êÿ¶=±‹ø¬Ý ^7ø/ìa>kñsû×ë÷ ¿£_P@¤ù9vkŽJ#âЯ8ܷ¼ J"˜—‹<¡uˆb¾ð° ø ÑÄ•!®àXleáó>qÄ¿þ@+@$R¯ýî•äjþwqAß¾þ¸¬¼ù"›œ®Ô¤:»bïΞHãë2JîµSÈüjmÉËœGåßµûѧʯ’dz`"·¸îíÙ‚õNðú)ÎWüG>\ž¯ìgßuÅ|ÚWâmWÒ|Z „†Exnnô–Øybš8 í(á7¯Ée§ÊµùNüE‰·ŠÝ(v¢±%ŽÂ牟7€ü?qz¹ÊçQž/yKã'RoËó Þ@p¬Â÷Gå÷|ê¨üZ¾µ£Æ0ž$uÜ·×ǘLíÔÀݪ>oò.Óµ˜œ„™Iú‡68ïù/êR»ïj¹pEçmX¢¢µÆbãW+™'XÝ^®rò”7%>fò7ú¬¼ó¼jÞPˆ-l"ÞÒ§¤úö`Ë+Õ†þè³Ûú&L‰œù¶Éwø-òë7/.ƒ?ñª•Ï6pL.yj  ”wywç§Ý®÷±›øÉ½O¾âpF/ìWѓݠ@fMÞƒ°“:‘pâF"hGFu8ª˜óÊZˆ!®ýXÅE} Età %†ò]G¬6«û#Žu%ñÑ{ªd]ÝŽ~¯3ô“”[;+稷/diq‰¸Îdž”*ZB!•xÛ´&Ç ¸Ÿ ]&ñ"2‹¿«i¸êÜüמ+€¬RZ±àóI×_Óˆ3ÜhÖo¯ó‘q³‹ ´tÅ­ÑÛ·~ûú+! q‡ŸãnŸˆä¹Kÿ‡˜mº3^7qÁ¿l¦ý'xëŽôc$ß |÷ýËfÜâÿ5à~©G½W—ϯKý(tÆuQäæSákñÅ}jüFÁ­2)zYôí?Å[;Ó¯»Zø¿×9 ùÎÞ'F:žùEƒ[xêCúšrKò&ŽJÃXÆ™Š£Ò~œJ<ÁU»R¹ÝPÌTfó_æÔSÑÏ”üçBî³E[>·/á›>WõÔò1_`™.?x+T4g~Vkøs¬%þË£š¿ÊLçä3‰÷òÚ©H®Ø¤ÕtøU=ƒ°•¸¶íÕñÙt²År(usç‚t:ã„0ž±K¥Ñª‹=º¤ösÝ0‡¹×á+.O~ó÷ˆ$ž2zÔ7î¬oƒ#ÄWÞLÁá8úõöð%Wsª Yâ4ïßå.&B’úXÝq¾¤„¸¨Ã§µpÅ‘òÅW!™ñÎTÞ¯´JøO¿ý¯ñá²´ãnp`ƒ˜Ç–ø´Ä'%®!ñQ‰—ˆ>{ó-îçÜߟ¹ó¢'…¿$Þ*ü.õ‹ßÍx­àqúÒÎ̭פ>Cò¢?åu¢Wå*—çþbœUôä â;%ßhpyô+G2~(ø¼q´ßM^‘úm*íicç²Îcõ‰ð•©Ã Ý¿˜8²¥{~^ÿÕ_b9들.q ?ï: ¯ N?Ô{áž <§ÜH\—·†“Äf®}í/ø2Ÿ±•ùŒíŒû=§ðw´R×]­À¼vÊbÖö@°ÿùØÅOOB¨6*a×7J–ÅÖÛí;_ãð‹aŽŸ¨Ê0]ÝƼv8óéôw£´û×ÑyJ*$PNž‚qÌ“õ6«È2b™§£º@há/?z ºÌòI$*íXt’T–®ö¯8§Â}«¾ÁEÖo^VpÈŸ¬ÍW¤(+&Og¤v:¯"HHSîÆ³Ûþ5>”ü“ÛäáÊ#4¸f+] =¹¿„ÿ$~)zJøéMê›F´WëÓ^½W‡v\E/оlȸ¼¼¯Ø·G5~&ßGüÏÜyg¥Ÿ*ùÑçbW‹¾”øjîC±%iò¢'‰ç1ö²ÔiQHþCpG&ïÁÏ%~¬ø¯Rß8|?™q,“÷`}Z %¸g<ûLæ»f¿wÃ/¸ê¦‡ëç.Q¸3ß,õTËx?_¾úå俵kYßêA»Ü“yA'Òp›±ù”.´Ã–w›*„$¶SŽûh^ch£ëðgÞ$ð`ôý'Š`âVv)ÔyëíØs]7±Ÿvg˜£}ßûÆáûê¼ìù{ DéòäˆöW•]8Úz»ò¼q<þ—†‘õpJ¡{žLFq)§u:²;ÎìW÷¾H"žà¼J¿»…â"qSW¨_“™ŸL­Ð:iø¤)Øé€÷ÿ5>ôèªÆXÂúX©£Û¥Ãâ®/"8Á‹J]¡Øybþ×ü!ùNêždÿËûIÞPì@É ŽUì>Á»Œ Ý(uøb÷ >n ùc,ããTz¦ÒOO\¶‰Ó0Þiâ«Ê}›˜iü:ÁµšºBâ&f0î6‹ñ¹ÔÇó_YÈ|„äg?¥s7–P.e^Bò¸+诬b\v-q²úv<OÖ{‘ö¦wê»vòë‚Í*ý0< >×›V|~þ\la\ÓÄQ—4­¿'®¨ºg=üKé@TN]ït|~A´ C4Lô„2^±[EYæycOØÙUm¾x€½ÄÑî¯ø fÛOCq€8Ƀ~†0îË0•s~ÊC¥µcCÄó„+x©Ï-D(+þÙoÉz½Ã¬kQÜ8´1Ž2ns\ëà„Bë4»†SŒËÆQÄ“hw'ïzîO 4ÅEÖ«\ÑáæHÑpêrHe½Î¿Å‡«hßÍ'žsã|¾ªÐ8ÍÔ§÷e~Nâ5â_ ÞEâ5¢§Ä.•üàCùCÑ{|±g…ÅÏ“|GGêÇÜ8U©ƒ4þ›äù¸ž±/©çDžŽÍàaø>Rlâ¬RWÈxÏDÆ1¿6…8MÉH?É÷ÍRÕâCŽa6¿¯Ôi<+ñlñ+￱CYo¿Jûb ßgï‹ÇºÛÝ#×61ùû Œsz©w­ÝÞWö¨ 9lVîØwÉðUёⰅ8m|¿í‘«ª° ;T9–Çfì¤ßëWK5º¸?Æüù9‰× JQÖ5a^&ôÜ–û•¿«†]Y_xŸúæìfÜ~O %öb/ñÏû<åHÖ÷p€xë°IcZjTáO놕Þퟂ(Uæ—/¯+váãrˆVfn¹8ú’ tOʼn~XØ-{ÞLY[ñº,$ÎlÑ€bœå~ô©—pA³_'\ÞóÁæÆŠ8z1;nšª¢åcöÿk|(rYê÷ÄïÚô§p÷ý%| qMÑkbŠÝ˜×&ü&v§ÄoÄOÿPøMâ$½h?J|s õ–àFM£ô¿`~A®ÒÇfùd0÷ÄA þTê©g‡0¯/¯7ý4¤˜ö€ô¿Ãû!zVò˜“ÇkÉä+]É8ë ~¿YÄÏ¡^™O½¿ŸËùƒÅY}Ξ«SKY±œõ¨«Êj5”ë™W÷dý߆¨ßþyû$¼zk61°ù{ehþfòÛtؤ8vð>û1Næ¯ÃšE¨áä}ÄŠ¬<¨ï5Ó/ÅSU£wk‚ ôo½˜w1}6‚/÷{ûŸŒ^Ý>§‚ªˆ‡_½ g2-ƒ?ë¿ (²'p?Bï²ÌΓØÅº¨½ìµŸu a´3Â_{.ÿƒ–o#’}0³N0†õGÕ6úý×å~ pŠ}˜ozšù¤%î_B"åOëOΑ¯.¨v;Wq‰~啇lœ‰dn¥çB ûa¥.W¥¦àëW2¦Ë«ó8zT;XH§]’N=•Ñç–Ãyó¡Ë/ë!“öY&ë¼2ÙÇý]_,qI/½]Š>”},û_ôXn=(ø4É?˜<†ð'?Ÿü]â.‚K\€È‰cJÔÄ/sá@k3¢ˆÑoR_1zYðÂ?ŸJú¡~ÌßH>ÂèMêWÑ»bÏš<¢Ôaðý nMâ¥Ôß&H;DðÜs«:AàšVWsqM§9‹âúK:àŽë«U¿ ®©:vUÄ nº²ÈÄÉ%ï,þßzÆÍ%_!yºÜ8RÑcbwš|!ùWôžèÁ7¸¯E?ŠÞ}*ö¬ÉæÊæ¾J<Ô\©?M^‘üŸ»/ŽÑŸ/ÜèI‰—òsþc¼”úØàN%ŸÈ<‡é#ùDâFòó˜ü?ן@þŸL¼öêWÁº1Ÿ?}ùky×3—2x;ö;g¡n«PîÄÇ-&?.-<ù)ç«aå€éËqù«'›F|„µ¬§ðÈÓiuïu áé8/ëb#ãûÞì+³™¸7_Õ¥¦XelãþßÉ|žàsuÚn‚É»ˆëÛC=º_yåÚ ŒñÝpèÀ&"õ×x‡5¬í]Ä~T·K+ƒô·b›jà ☯8Mœk‚êòQ½çõT•c8;ø¯6¾/žÁyâ€.ŽŸÞîÎ/•rðmµt )Ú<ž‚T~ÿTÆwÒ6ëÀÒUÈW_Dú¿oòÓ&öÏØL|”oyýÁ°…uŠÛT{‹KØA¿È/¯ÜðϯÚ(­ò~Ño fü#D§†"TU /ˆÝ´×öÒ>Û¯ªšÁAö‹ c>ÑàÔŽé†n&o©Ò†ý6!jð[+¾—„ÃÌëþðÍЭGo"ZÿìÏ!Zµõ¸· 1¬Ç=2Y'FqT·­ŒãŒb¿ÂXâ"â>üyÄŸ«n žqåÖ7ži]4¤ý‹‘Ⱥ“³ÔCçX/~¸Ò )qÙ_ôRi]xˆK[µ#Ëì×sYÁ òîÄe₯°OÍ•=¶6+tWØÇ.ùÍ@HnÜ»äÐiHfÿ…dæ —3î>“|$ù€m*Š\pÁyI½žè “Ÿ >ûo¸ñå*úSìWѳÂÇŸ’×7}™ß—>§¦.*W]„ô#ܸإÆÞ¤Ýeð/ÌËãûš|åýCu‚[“¾¥¬Sqåý3zKð¨Ì»Ïâ}™Cý'}q°^{ób‡.¦»Mì¹ÜùÃÜõP1qîW‰£HœTâ â—I¼c$í°±¬×¿KúkKÝ»õŽôsscl7ÆÝÌ•ví4ÖW‹þ“º@Á}š>TÂ7Œ‡H¿›…ìk±ˆõ¬îŒ.f¾QúÚ,ë° DZV_ƒç]©ÛÄŒ2vàÆÖÑ/4zP➌·H>Ý‹~Ó¦ú*A¾›·ŒëöÝ\ø§*„°E›=ͱqõí:=:+§ðíÁrŸSO…¨mà~ ¡žª‘è_Ø¥P+CŸÄâR÷±þé€û·D˜Ê:¾¸‡tze ÂÙ¯*B—ï¿HÚ}Ò?8JÝžóqˆb¿ÁhúS1Ó:5œS .;/GUXÈç,Ž1ÿzJa}ˆ“¬ÛŠUeë{‚÷¬|ˆ×?qœæº ìct†} ’˜o9˾dç>m®:ÅükúPð†/¾¼VZ}hõáÿ=}(úBúãŠ>ZþƧ‘ü€øu§‘< ð]îxÄc^ãóä*x7ñ%~"y„nÜÏR—húë3?eâ¦ÔËÏÌ75ùBéSÃø‰àhÿñ*xRÉ3ò}¥†àÔª»¢Ü1x5Æ™¥ød~“W”þß|ý ÞS§O<ÖæèEÝfý¶ùýº¦_ÕUØ!–±hûd­bâµVúLN†^¶76¨6k¿]ÍéÁüœÏºë ·®€-ä—m콓v“Ÿª.*óTõS—>dŽ`Õ®ëi_„Žêàh¤×±[qÃjØÛ]Äsú›êrÜÎ9ñSöaTÑ ‰rœéNÓ#ZiÃ<#pDEc'mÄ1ž+†ìÏvŠýŠãˆó‹W0¢«ßâ´Š"UŠÁ]2‰ÄƒŸ­ qNµûñ4.°¿Å%Õ £O$®hws’«@S¤è2%W¤²@šJC–Y´8ÝØéÃ5ÀéÊý.å… Ö3g2žÉ¸p&ûl]u”éÔëOã*í¡¬‚*PÔYº}_'LaßrÉ‹ ®Zêk$ß&8á;Ñk¨ÄC_§ž«F¾~…ûK®¯Rß ŸæÎ# Ÿ‹žÍ]¿øßp¥ÅSsÇQÿ[ü”ü#u˦ϸÄO¥~Ÿv®È ƒC'Ç䥎Šq.Á<¤wÙ§KÎÑ: “W”¼óÒ·nqOÒŸnq¦CúÇmŒY]‹õÏßÞä—3±’} Þ”ñ>“OäçØ nÏs_À‹õ bûO²…ùÑíºí÷`켬3ŸÀŸý>¤®1èºj„T¡åT±v'è?`Ÿng\aÅ]UgOb¿˜•v¿yQªÊ¶é9Ä𜤣Äêî¶ù?Ã)]îÑqîÚñÊ])ˆ½DâõΪîÙÃêã¼n_\Ø¿ôí©+ÄÍ%³¿E åXjaÕkRY÷ŸF<|íÞtž’AÜPÆLUØØÄÙfò¼›LâjÅž’<˜äÅüšìc‰Jþ^ô à»%O(úNøRøQ®’ß—<…äçÿI>ToDüˆàNžãUìi±C%Ÿ`ê1¤_Ô#’ïL>Qh©çõøyE¿wîúDê7Óƒü=žvã$ê]ÓoŸûRpq3föª¾ðÛœú&é¯/z‘çÅ,fÿ3ÉC,×ié¢XY1ßÒÄyaµ‚WÞ‘Óo˜¸± E{£@hl¼Ð¼W·À/àÍ<ófúǾ.~eTΆöŸë\ý œ£¢/Ì:ŽPòóîçt¡tNž^·;ƒÌ“RaÍ÷®Å@Dè¶RåEœL4ïÏ‘Ž÷Íå†cÊ ¨…ÚœžƒXžÇþåñ”‹ ìtFÁÞ6Ä Q‰ÉÙïã¬vÃÆà<óùÔi3?Ãeå¿R Éì#¢ª8Ú¦#…ö_*ûé§é¶3‘ξ÷é쯘Am&ýÑL {( Õ¬ÇQq¸Jý™õÆbçN½‰,/e€ŽEó¬×¨·'(˜ÿßMž@ü¯Å<@ð)’§~Ë]G!z­&÷©ØŸ¢ÿª’?+“ß…%¯(vì?éê·ýøžü§«Ô1Šý§ºŒ\çoýHý&}=$cð7|Ÿ‡ÎË‘: ©S”¼"íˇòŠÌ”÷Ãäi·1羉^$Í¢<7x9ɯè´W¸«¶n`ñϺ –^Wßœzª³çê<áÛ«Ù¿pë“=zhšÓyù³EzÆ^…7ñ>›UÚûÈøªUæ^Ã6͆ã±ã.À‡ß¯:„úiAÄuf— æ…B±ßN]‰}ÛUB®"2oqH›ÍsqRö1¢n–W1ú¸!8Ê~1'-í°bUú³v0âØ?1þwÝÀ ú§vH$¾ô¬:®áœW§ÍM€‹ZývÂåAªäY$ëöý‘LœDJºÖE*qèiýÛwíÓæHg]D:ë™3ÔéY•Ï"ãviõË S—UODæ U`«>7W|ó™Ë XtQ747ö©äë¼5¬aŽÑ¦þqê—øPœ&—~;67žFâ­R—+ûúë.¨—sÛw¹ÏmM=úÐy‡ì“$çÂL ý9‘ñ·I‚÷«q÷‰§LÏé—A¾›Êþ¢nÄI îl:Ï70犟'õH¬GXH|Ô"Çéš{Ú‹ù}—j΋Q]–Š·ÃjæéÖòs®ï{mìØÀ )Ä“§ÓÀ6¤¨S}Ú]@*ño©Ä禎 Úxvç[˜ß绣Û_lêߤÎÕSÚ˜:$‰_ŠþÈã6ü&8ê1±KEOþžÆÄOi7J~Ãàjø9LbÑWäç‡ð0¹p£¦/åŒÄ[¥ÏŽàc Ž”z_ò5æü7Ö[HÜÆœ—CMÎS”þ8Æ¥^˜H{YøZÎ2}ªxŽÔSIÞÄÔSI]¡ø{ìáÎ|õ’…/©on껾r姦~]Ìôi[«ºàçõŒsi+ºÁ/Ø ÚøÕ»Š:½‘^š-fÀ›}7?­€9]áC<öÚWÛYè÷”þa $€ùû@žÌ>ù!Œ„Rÿîf]Ä^ö%?Àº±0} èSÐÕ Þ4Šõ`‡Ù¯8Z·3…#Œ kõQñÏàã-±ù7ŠúöâôñMݯÍÀ×Ð@7XÙ¤K+W×ÜŽ¤ x>guÛã!¦¯ÔyÆ{.ìÐ ƒ‹ìr‰xžËÄ­]ÖmØŸÆÝNÕ ÉŵbG2Ï™L¦]š|E7¶AŠ*ç,ãgpÁ’“º„ÍKÕ¥Ì~ü³Äm$Α».8w½Sîº`áWá_±'…ŸÄÞþ7uôÛ$ž9”8-ƒ£–z%Æ[Ìù¡|Ñ{Œ³NdþOúŒN&¿Jé_8•|+õ‡n¬Ë›^J32fÐþœùmÚ—]çwÅlêí¹Ì«œ(qj‹xÞÙâ‚ú K,a¿‰eकôçÏ­%î#ñàÒ’w4ýû©_:\ü:©¯'Îà¡þ3ü\R×)öÿT¾Þy‡é¬'1çæ0ï0}‰è´ð{X¨NÃëvî”’_\ÊúdÓg˜ŸÃð3ýLãçÉùP*{Õ`66dø„´¼ˆ?0uR”‡†¯‰ÞÆ~‰R§è¯ªí\F€jû»r5Ò ¬Pˆ£·#„ò&4ÛQÄnžCºWÏóVöS>„)Aâ.„3¾‘ðG”†‰ÖÀaÖ9F³O\Œ†µæÇQÚÅÇômȇ“ÔG±ÄƱ¯]|RŒGFð$ð3<ÿøßÒ‡—üœÔW,å9]¢§$N"y Óêê›Ä•ü„Äiä*ü)ï'yɘs.$îÁ}`ø…q ÁW›¸§ÔMH¿né[#u¹ú»IÜÓ䥷Ä?¥NXìNÆ3ï*ýTG³Êhú¹¢ÇRïKŸUsž7q†/i'¹ñ~ûTÎïæûÍmÖîpÁÌ'~ÃôÕWjãö§X¢Ûë72øÚpÁ¥†Zâó‘W×NÒÃHÙ©5HÕe‹ï!x×tÇ9-’î Ú÷™ÄÛ\ RŸÒÈRèà+qq†uã ÜÔâ²n¿®é¸ÃüÒ]]ö‚éë)ü'y ù}Eÿ¿H\3·ž“ø¨ÄAsÇG+ÑΔ«ÄQ%Ï(|,ü»^ßàâ¸îCqÔ\ñÓŒJ_©käz’??Øô«Sô¬ôg}–ø›¦¸à{(7 þ€ñV“O”zfÉ' އùÍÑìË&zUâH“Yçhú€òJÎUE<üœ£º1æëcNêäÔ_ÈyôÛ–ju;Ë™/Y9»òÊö­æb5û¢¬e?sž0íâìgáõéï.ÇO5ýS}Y÷»•ûbÏ£÷SǨ¼ø5üù»ò|»`uÜïO»ªa‚•±G/_Ûœ‡ælþç_õÅ!ÝnÀÑ&^Q¬ÿ‹¡<ê©Ïâ„/¿Xö¥KÖ†7N+-Yösœ ×…òH"ð¿Ï…¹º —ȇWkÉ̤¨lleHUi›ëG‘Nÿ(C•e4XÌMú2\eñóW×uZf8nj´Â3¸­áìEqW·ƒm≦ï ÷ù"ög‘ý*|`ìOòWn=øOy|áGáOyžÄMsãMM¿±'%žÂÏcÎç¦>2ý×øùß&yGáÓ—Mê%?(çÉ0bð4rÎ…Ôë3ßúÐùÝÌçKßó‘ij=Ô7‡çŽã9]Òg2ùÛôÕç¹Ç¦~Ÿßsí9Ÿx¾>(:‹X7áξjKè7/ãù}’^Í×­;«äðÐnÏôüªœ[*ç02Nà;AîõÃVîÿí<‡ÉÔí«Sï»\Í9gF·ÿî€ÐUª‘Í—Øí¡”ÅÞ˜¦ß]ñ΀ÚÔÎ CûÊ™ó/T8@4¢TÛÓÑáˆV]¥\[âHWÆ1uÜFó8Á<ã©LÝqÌ3Æ_yë»§¯º"a¨>H‰ªûð ¯Ä|Ã9Õ6àÀ\ x‰¸Û+Œ%_SuTCІ UD*ÏeM#þ!]Ú #éçÙ?µŽLž¯‘•oË©ºËŸÅ5ž·xx·×~°¯N%ÜRm5ò?Àmú›wU¸é¼;î*s}[€éW/r^òesX7)üaò†Ô3¹ó„ÿM¾L~•«B¾<Æ:f©Ó?ÉúàØ¼úÀ_Ä/šÜl‹7âu;ïWqÚ‘fŽkˆ3쳓t@HqNJ?½8.ðœ‹JM§ß7çB]¦½¬®Žd­æJ %Y5y©Ì×§ÑÏLß©úÈÐ_ç5dê°ls\½Û°øÍå=pí)µqpqª>Êfü†[Ê;‰<‡[âb×­e­Ô9ˆ¾½$~\øb— ߉¾Z¨.ÿŸâ¦¹úzü‹è-9÷éŸô?—øu¦ß›ô)üqQ&n*¸rê!ÓwŸï7„y2Ó¯JúJ >FìSæÑMß úùÿ-ýJ¥ŽKúJɹ7ÒÿMúgŸå¼§÷t¼·1§™ñŠ%ªJªöH,c?ýü~FÏIÝñJ¸„åÁËHü†çÐl¢¾4¸­–žÃVâQ·kXv줟eð3¬¯ä9hA<.„uð»ˆóÜ£ÚêDFcŸ>^eê6¿-sú,ÞVŽfDò{E–Q–¢uع Ž8ÚÆÙ8¦ÚsßÚÌ Æ2ß§ázpÚuüªã‚‘ª y$²?\ÒÌ¿¾x¶8ÎñÜäóÚí ïÌV'Ôá2ãÊÉÔ³)ü¾©5iºMø$¤³Þ>C·W WÕ1oW!K…ÉúÅâÚu] *j5o¡Á9à¹|¢w¼Ï¿QâÒ¯Iâ#&‘ o*ü)ö¦ðسÂÇÂßRÏ(ü v›É—çÎäêSoü.Æåœ ‰Sо“}/øN9ïLöÿTÖQ¸ÞR >ÍéWÊï3ƒçb™óA•›?'s‚ïuûùò5s¾ï<ÆE0mÎù–~÷rî ùÍÔMH]Sè2…TÁJÚ!«Ø` ßßôKÌnøœ-½^x 5Œd:¼Ô)0í¯b“²Âkøc3q¾»»WŒmU [)_ »„nУÿnérε`¾,˜zÙäÙ¯~JZŠ}ÔÔ)lM ŒñÒ°cæ8.ñœÄpU?§"xß"¯é@îX5}áKÓÃsªŽO}ŒçéœpîŽ#JqRßÖ±Úmï€Xö9U ¨R>x¶| jûÞ¸€DöW<«Â@•Öáq*^=PÝuS .>ñ¢#_Æ%â^/»iCWô±ãE‘̺²ú-©<·-Mµ_½éì÷ŸA?:“çe]e)Ke]«ÄuÖcÜÐ0ü¸Éó„dÿˆ|—¸…í1éW!ü'~–øo¹ã6¹ë.„ïró¡èM‰óHž_øXüBYÏøq¹úK|ÓäG#õŠÒ-W¼§'¿ÄqLÿ5ê=Á ˜þP¹ëg”ófLþv—Ô+½§Û]V7}ÙÄÞÊx›+õ¨œwhâ2¢ÿoý¯ú¯xÒºc½°”}¿–Óþ4xšÏtaÖGåÁ:fO s,Ž=^<‡È›ý 6«2¤áKà«¢ÕÞÇâ[¶qÿíè¯5(üZUëðǽÒp”Ѿ¯îþ€æc‰ƒ æ÷ a\qëòv«®s·ää5x~vûŸ†3?A¿%ŠùÈÞ61/+àNŽðüÆc\ï$?W¬ÞÐkÏþ0§NPUšÝŽ ‘öBÏ«?ÇsFϳ?ÖE]æÑ(§ ãÆ)¥•#?©eµÀGZ†*2…ô> h?žÙ>S3µ/ Yº½s!\#ŸÝhRÒÑ|s\\òçuq)ñÀÅÅ¥¤3 8£ˆ3òÏ1d*çù†Œ!S×3åS‡ “?ç™’ý6•ÔÛ<ጼ ]Ô¿Rã³ÿþ²¼}¾ èð!nCjŽœ:d‚z‹¿²ŸÕ_^í<£ÐEg\rÆeg\qF²3Rœ‘êŒ4g¤g¿N†zý{òú·œÇ½œáíŒMÎØì gø:c‹3¶:c›3¶;c‡3v:ÃÏþÎpF 3‚œìŒg„:c—3v;c3ö:cŸ3ö;ã€3:#̇œîŒgD:#ʇíŒgqÆQgsÆqgœpÆIgœrF¬3âœïŒÓÎHpÆg$:#ÉgqÎçqáÿüþ¨û2@î‹Ü}þÝÐf¹˜0Ù™”pÆ“XÛsóܲïAì7ÏEëÔ:›6m`®ïúúØöÇÐûf×…·*äGïæ‘Gƒ†÷@ï6I]ßH-…~Ü?TÄýßj]2ïõÙèß1øÃ}›BÐ;dNçê#²ÐûÒ‰u?TÏ‹^—çý1ò'ôzþb¿Õ«üý•YC}øßù·‚..57{þçµþãoµÿc^ç?æuÿc^ï?æõÿcÞ€óò·ßyU÷%¾q‘òÍc-¦§ÿçcÿí5ÿ‡Ÿ­á¿ôÙþ?f¾,«mk÷£‘é.IAT :%DÅ»[Œma¡X؉AI HwHŠ¢¨ Š€"wr\‹»uŸsîï÷ì÷Ì5çsŒ1ÇŒ÷[ßvä߯5ûc,Y¬ÿ§ã0žÿçãðþ/ù3À8?ñ‡1žù߯Õû}½6,þÖfôëäÏ×€¥È@¾ÿy®þDµÖá‡cÂÈl„¡¡ùïÇæ!ö~ÓdÙûÿ§—?›E+ºÿß=¬¤DN]¥Åþóg„(.^0ïÇû·½Ÿ¥%S!{è‚ßi°dýRwß• „ÿg5JóüƒÌ«ÿÇDÿ»^¥À€?Ó#òK=l?3QL‰Ü8”*Ì]6@D-þãˆZü“ˆþÔR¥eA³Cÿ r¿ÔÍ£4=ØÆÜß«Qú½‰[¢?Üäø“¸†úOø¾áÿ\.æÍZB–/‡)°þuaÓ£°Sà àd}»~r÷Yß—”~ªŸà·¾ß.)”}LA´oš)ˆS  IAŠ@š@†@–`A_å ((RP¢ L BA•@ ï²¢AA“@‹@›@‡‚.AŸC)èômeÆ&ÆŒ `Ja$9…Q,FX²þuÛýÆXØP°%K0ŽÂx;‚ &L¢0™‚=#g ®nî< ¼¦xøøøL¥0‚?Át‚3 (R˜EDa6…9s —`Í£0Ÿ`…¾‹+á¬ÅBB –,%XFÐGZÂVÊÃZEa5…5k Ö¬'Ø@°‘`Áf‚-¶„Dl#ØN°ƒ`'Á.‚Ý{öDì# L„E˜‹0a",ÂDX„‰°ŽP l„EØ‹°a#¬NR ¬„uš€°a%,ÂJX1ÎQ8O0a(,ÂPX„¡°Ca†Â" …E ‹0a(,ÂPX„¡°Ca†Â" …E ‹0a(,ÂPX)–Â",…•@!‘€0V2…ÇcaÆÂJ£N0a.,Â\X„¹°saæÂ"Ì…E˜ ‹0a.,Â\X…ún¬Å%¥eå** ª(T<#¨!¨%¨#¨'h h$xNÐDð‚à%A3…W¯ Z(¼¡ð–à…¾ ‚0µo}÷±ˆ\&D‰. rWŸF¨"á|„Ï !‹V–l´’äÞ-J.4âÄAòLð±ƒÜ¹É][¬–ÐWr·æ;ý­,×÷Í=±Y\xÔû8á’ò„Óñ»,?ášä¾®B¸Ý ’"äò!Nîèl„¿ò’;º±EœèU"<ƒ­ŒK8\è$wg-Âetob#œH³ï- áÍBä+B. ¢än+6õ[|DˆJ$á¹ G \E8‘PkÂÑHœäI5µ“‰#qà&ºDì¾#EóÁä —#©ù&wx1©Ù·“yO|í ã8rýõ-.bäP•"|’$‰±[Œð2Yr€Ê“MD…p±“¤=‰¡9,ÅÉ< (Dr@ˆpjE2wÜäþ/GDEÂý¤#}xIœ‰"ëH_2/Ò$×äˆ?B}q$‡œáü„ |aý‹³i’X ¾6ˆpTv’SÊdÃáèkCx¼"9´I¼Õ=¿ÅFQžØFrM‘ð!޾ïúÞ<þ.@ø/‰õ2çb„ !üKJ‡øBø‹"ñ‡ƒÌ› ‰ó ’›œ$?8ILÕHÎád̾ïH~Š’ü#<‘Wò[Œ¸É¼Ê¥DæC©o<Âa‘|!¼t9”H»¡Djû ×T$qTôø–—}sÐç‹(ᦊDŸ±i0Y[Ò„Ÿ)ß¹HLI¾H‘y5ü¶ÎÈ…šŸÄ˜—p]a2¿ ö¤/ñ‰ÄIˆÄU‘̱U„Ø.Þ—û$Nò}œW‰´%p‘9%~?¤É:“$¹ÍGÖ,™WÂåHNÈ‘~|$ÿ ú¶/È‘±¸È5„ì) „;Š÷=#¾ ‘>r„gò¾/;—Ô“yâ$¶qäI.Êõé$ëCЬ9>Â}ÅI^©¯ù¶¦ÇLì&Ïeú¾Kø?¤¿3üß’ÌÏÿöøÿ¯åŸúý»vªçÿ–}ÿ-;þ´ÿïÚ TÿŸÚ÷¿×ßÙϬÿÿůÿöºþwûÿ®ßÿk½Ìv}þÛqû§zÿS;þÓ¼`¶¨üOõ ÔþOõüÓ|øo÷ïæá{üÿí|øwýùÓvÿ­üü}{úý!ý’‘ýßÛOt0Ÿý¬ÍŸêû™ÞŸµÿÕ³?õo ;ÿÄþßù«ò¯ôÿ;þÿ©_ÿdÿÔ¦’Kÿ$/þ©îjÿcÛ¿“ßÿ©}š›ÿ‰MÿIžÿ§~ ”[Ôß}?ŠP§=Ñ÷¼ï·  /˜µ8 $dö‚ùÔ#®™þ¡AüÚ‚;ÐF肾·Ü}?µ w¾7öô›ü>fïÈúö†¿ïíýxª¾ï­½9õwß[þ¾·ùc¨¶£) §0ê×ú—t(ØRzúdß+±Ôó ”Î> »¿îß§Ó’²~6‰jÓ'é_1XPºéòʯÑÔöÔ³¾_/èÿÍ^ó¿¡ï›úW´6TŸ¾¿ûbØ÷Ú΂ ÕÏ–‚55Þ0 }mÆý­lñ·±èqFR±°ÿ[]Ÿ_ÆÃdÊ7ZO_[]Êþ‘¬¨¾ôÑú'Re¤ú©PЧ0޲Ëâoójñ·9¡ŸyüÍžáÔXô¯PÌ©XÐvŒ¥bÞ#J£1 ÿï¾|q£þ¶¡Æ¢çÇ„ªS¡lU¥ÆœB鱤ü3¦bCç¤Õ~2;Ö÷¿’éóÍ™êOƒŽýk˜¾WqÚ”¿tîÑ>›P0¦|Öÿ¬jÌ”c)iÌúŸõfAÙÙ7®;:æ}¿ÒûÛ¼RõtüÇR0û[üéüAT\L©¸èSv¢¤ÕÆ‚%«IÔßcÿæ£å#=ÎD*&γÏMªÎ’õ?¿2¢…Ô˜&¬ÿÉú9ýë(Mªãïnpß%ÚIŸìþ̶¿»•ü;}~5î¿cóïüþU|~¥ÿw:Ù~¡s ùù™îßùÿOæôgºòëw§ôïúüì4ÿ•î_ÅëOæôŸ<ÿÏ¿ŠñŸæú:gZÿ»û™ÝÍçïæâ?±›¡ó§78ξŸ,³èÛYÀ·ÒÜÝþõ¶À’;ð_KÞì¾ÏÓ~Év¸ïsäêYÿúXò˜üëÓ_¦ÛóQí©Y QeUÏE•évt?JŸS/%™íiICKÚÎ$S/­Gˆa7]/BI~ª?-éñ)ɬ§û SeZÒþÑãñ3êiÉ9€^æ¸t\8ˆ==L?ÐO=ü­ßÚýøç4-ÿØ>†´ìŸGF|h;)=ŽKõû¡žÖKç%ÓÚïAßó%3ÿ8)?èü¦%s0çƒîÏ3@œ1ü`æ ­§ßƺ¤¥Ãæúcγ=;5-i»™ëй~™ùͬ§%£39ñ(˜ë–žöïõöÇ—¶›ƒ²ƒcû˜ë›¹Ðý(;ñ+ÕŽÎæºfêaæÓ:>¢ßÏí~aä!3^Ì|¥íåaÄŸÑ®?N´Œ8þg¿Ësæ¾Ã¬ÿSÉœæsZ2ó“wº#LÿØwú×­ÿ‡}±o0ãÅ÷ýZ2í`ÖÓã0Ÿ·|ï÷oýÈ~F|ûÛ3ìê¯o žþyÜúÛuýüù€v2ç…™?tÞ|`ØßÉhÇðû‡q©výç3?˜qbƽéûuñCÆü ï~;;~0û1âÿCü˜y3@\ûûÑóƈÏö 0ÿýí™v2ó†—öF¼ZÌyè­%ÓŽ¶Ÿû?P>0çsÀöL{þ,>Öwþ|üÖÅoöÇâÐBŸS ýŒ¼êχßûóþÝñóù(NI&ÿhbž›LûûËtÞ0÷‡ßœ?Äãwõ­gZ?sݰ¸ßþ&ÿtÿ]è{tÿöUf>1Ï9æ¾Ã´g }q€ýá·ãÐ’é?Ý~ û™ÏŠs^˜û1ÿ¿›ÚÏöf¼XW?´£$‹þ>Kó›–:Ô¼ÒRƒº×éSeUJÒí©ÿéÍÒ€’ZßôZ¥Ú©ßR›Ò£M=§õ ¥ûQõ´Ô úÑ’GêGË¡T=-µ©v´Ô¢Úi1Æ¥íJÛKÇЯK=פÚÓ’ö–ºÔsZöÛCGÇÑži/-Õ(»èv:ŒþL=êŒøÒ’žm†´t¼Õhûéyýþ^Ò¿Òúúç™¶“ÒOýO«ý’ÚÚZÒÏu)}:LILJ‘ý’ÎC:¨²ã¹áºoe¦ìÏO†]LIÇÎÚï! ©ñýúïtÜéü§ýÖeĵßof|è8ÓþSϙ냩·Þèù¢ó‰nG÷£¤õœ–ĉ9Nÿ|ÓóËØú× íSÝÞ—’Îw-º?¥ŸžZ_=†ÿJÄ‹¹~èþ:t3ôj3ÆW¥êi©Åúôz¥ãKÛGÇ•’ýû,¥×Ž ÝŸêGûÁô—ޝ/t™Ž­Ÿ^/Œ¼¦ý¡í¦ý¤÷c:ýq¡ó˜’ª”ì×OÏ?Ã>¦dî/t¼™û ']†ý높´Ÿýû %þÑãé1Ö'í¯#ú÷1z\†TcæCÒóIÇ»?.”dÆ^wýû!Ãfœ´ñ¦×3?æþ¢Çˆ½Þ5뛹>èüíߟûƒüëJŸžO:NŒ}Ž¿} i{é}ϱ_Ê|?‡þó‰1~ÿyJûËØ™ë˜žGz=Ó’¶[ï{É¢ïYߺ±èï¡ûåF™¾Ç1ëéçÔ}²ÿûNêûÇþ{&Ýï+C]îÿÞÒCÛÅìÏŸ–4ÏûdøÕÿ½8Ãî/ ûiɰ÷‡û1ÝŽ9n×7ýýãRß+þ jßvF¼˜’ÖÏü>®oû~\¦þþþ´Ý´Ìø2Æ¥¿w§ïó?Ì“ÿt}ïoÿ÷álŒ¸0ÞW1óä‡qüˆùï‡xu1ìhžó×ï/ß~»Û™q`F<ûígÎ?c½õ¿ßè_W û¨ø2ß7ü¦ÝÌuÍô—©o ¼fúOljٞßÖ¿?ýïe’k€8Pú~à¡Ì|(¿™ö~¯·¿?í/#Ÿ™ëü»é|fögö£ãÎΈ s_`¼·îßéø3âÒ_O÷gcŒOë§¿?¡ýæaÖSÏ9ˆgô:¦ó—^—ô¸íWíÌ|bîLÉ\pf~_ÁØ?ûû0Ïýý˜û)-™Ï™q`|_óÃ÷øg?ì/ì3Ìñ:¿·û‡÷éÌþŒý»¾™ùÀ‡!Ø×è¸Òú™ûWÚŽ?ŸßÎ :Ÿ™í˜ùÀ´‹™·´¤ý¤íigèùáû¬ïþQì¾}ð_ÿâãì™Ô_\!¡þ‹C©gHè‚…Ôßܤ"tIÝ,`iÀ|ºÙÏÿmÿàétë‹üû[Í¢ŸsÏ Y8{nÀÏþ‰íÞÞ¯EÿäŸØf#­8ÈÒl:îÑ5ó†Ûô‹us!kˆ&IJc"MÊpÐ=(ÝÓïJÚ߆t„ÚãâU{¶‡RÙâÙ%!ÇñðJÈ»gjÓ2 žÖ:h Ý YžÉî·?ÆÁ“õ•IªŸn@†÷žm‰9 Cé¶ÆëÈ8,ab³ž|Ú¿&í&d¯•ò^ðRrßTU< ܉›%Ù¡È|Ã\YÁJ(™tæÝ*G}(³š3ê^õ¨a;uZÉF¨ådïŒ6xÆþø¾ÜÊ^¨Yÿ¡ìïL¨µ=]í´jw{Èä$TCm¦½_§ÞY¨çtXUu+Mó®O‘…zá úµÏ‹¡þZõRùw· aáMî ó¡Å•^N‚çfU³c… ¡ÉÙøLC—$¼¢vý¼|åûÊj„0¼š-¾¶Ð"1;Ì6Þ¼ç¸Nw*´²Mز­ڔ߮·W8ïg9\Ü3|´g.˜f±`|tN”«c_Ÿxâ®Í¼ õÜ縎…åÛO{@w“Ìʵ\Ðë%"6l§²Z´OK Bö1•÷·Ù ÇÇ6‚k<ËÎÝbÚºHäa»Ö⟆¼e+¯w{!ÿÓ"ŸÍì|(øüÈÑ ocpœÉ¢÷TPä.Knƒ¦ns»ÚÁB1ËO»Ôx%QüÜ‹™'g«¡¤Ž¨ö(¡q(õ$".GevŒx"5«‡,—p[=Så÷™¶¸ÄÜ@ÅçwLjì•Be³Ï«$^z ÊÕ¡3˶¢Úˆ¿>9p%£úÇŒ…—Ô§ æ k³²ÌϨ3(‹×þA;ê-ðÉ\ñ  xW\ö·BÃ7<ÙbCåÑx±GòýsÅ8LâÚþÕ¼px©×ÛâÓcÐ4.ù„Ê\k4‹ï¼Q»— G½”Ÿ$õö ˆ.ÝwéhéšgT~A­Ž¯¶â¸øÇ|š4—Úø†}Øn놶¹GäËïžÂq“¬bî-yŒãóž„Êã¿úT·Ôý8±m‘‹…Úuœ¼ó¡£Sð|è©8,¨õÚjô ’8ZV6§<©WøòÕ}àjÙÞkŸÑ÷žÉs—WãT·w'ã´q½¾’Ä0‚#gÅ’Üè>aCì¶»ûÐP‚ÃÏøÚ"ä·Ð¿4Mg´¨Û'ÕE@•P¼®Ä ÅPØ{,"ÝÉò$·dœöˆ¬}'J‡‡ô‹_ ¥FðAÊå–À­Û ¹T+Ç}ƒ$-•[4üî0He»ožÒéþrò1'ÞÞÞ…ýíÓŸ—7ßøÒY9«×¸hAîÝI—ϺCþ+^8fòRù6CÑ’ Ãɷ졸¤ˆïݬ ýû½Nˇʼ5?ûÊ?{œv6f‡ŠX夸ãç rE ‡T8 ª5:{Õ÷@õŽg{ß÷³ƒªµÒvjPS1sIƲ÷ýûMý—¶û§C½ü¬7Ç88 Ï³7÷ 4|tI M¹ _ËÃ:]f@“”^á6=€“EU¯ž˜/÷féá,xÅ^?®ù¼Þ{”c«]¼ñÞú¤&ÛÞ^z@gÇ:h½É¯7t÷`h«7n9ßíš1ÂÎËÒáÃÆ¥'êÂÇ‘|“³òði§Ô¿ìÐ5fVµ|–¾Vzäu+ª–@¯Ó©žG<È*ôO¬†ìZ^)B º‘cï†ZæVÈ%wàÂ*Wä~rÕJÄHy]<yJù£´= {P0ý˜Jü~.¤¹,ìÍ2=©õç¹² Evš.míA±fŽYQ 5(qã¾È;Ϋ(ug{Ý]@™ÎT6Ög”Û¸mÿ²%¹¨èµc²w"*9?ÁvëTåjQJŒ2GµÏJ·Š¹Ï¢¦Š¬¯úœ9¨½ênyòéû¨'øiwÇ„U¨_ÔåÞ$††¯Ößl¿ŒÆá î}qظ7Ëw+ã­š¼gÛp¤~ÿöuŠhîãþ6^-®pÙ¼+CT]sXMa?ZVÙ’+.ˆcÌ&)êŽEëè”ðû碭œÁ¾î=¹8öT¬¿VrŽ79¤«³þ8Úå{RíVˆ™LòÀÉ’§Ÿ|äDûD¾£‰ëÑqø×tÃJtئüXEêå÷‡æíGç¸èhÛÌ è²Ÿ?&FK]CW/_WfnS7ž\…îÞÚMÔ? ¸v ó9Œž§×5u*z¡WÏã̉ê‰è.&u×%}Ç[Á58ÕFbÌŽO³q÷N]ô²[]bo?^Îét…†.Hjî·Âmeyý æüVeëg P"«4ÿÉMȯìÚÈ—d ¹_ùýWŽm‡ì+V/ò/f@&Œ]¶Ädd„ ò±KgCº_¸ÿyŸ©®½û[ë.H?«¹µêâxšÃÖ. Y8¶Ì¼;rÞé=´øäoÙ=nS^Sž>>©Šï,-íp? ¥ÇVeÄI,†òÍösçÉCåÆI Cc¡Z÷ŠÖñërðì°îuiÓ¡fO決h¨å¿¯‘°j-*‚¿TÔBíê{ž‰o–BmõöZ͵P¤ònåÖ<¨gÿ¨$P&õqyñú®Ð°aæHñNи$Í=km.<×ç}{x"4ݹ,¿gúLx)Ú³TvN34ïšqmñkexmzñ‚AìGx#\µ}oá1x§Xæ2Z*Z¯o½ì?ÚÚǵ½”íî !><;TÞdâ‘Üüm sNJT³y:t5}¶`;_v~ÙÀ5Z¾Ö8DÖ ¸#ëŠB‚ÏDvdçØõQèÐväX&Ë*@.¾¨´ÍÈlãù`Íä="ÝÅ6ˆù÷¬xRj‰‚ç›_áËBáZ‡çÔ> ÈaÅY_Åpp!Ï)g™S®ðakDñ­]®Ází(Éç4Âèú”:ÇÆ•÷Þe²6û¯Ä!“²c}ØüQ~ziÄѨxí@}Z×T–ŠÖžú?ªl°°éö„jƒ¸×šqD£zzö'Oñ&Ô¼±*wU³jª‰MŒD=m³G¡íGý»¢—KtÐ0~ßàczh‡z$Þìl-9øÃT"}”£!ñŠ”Æã*/HJ޾œ¾ÀßÉ +5ë‚´„3m<«\ 3d¼gŽFÈÑëàx y·÷­[[p ØÇ×䎅³#d,ì¢;.ûlG‚â—gÊ|s¡¤'⢅9?”VÏ3jOÚe§óbžj@ùäGå¼c¡BLnMUB Tt¾øzL7TIfÛú¶@µ¬úí®¿Ìà™Û–å;™PsÝÇÅ0ä*Ôn9îþv,Ô9‹ _õ×`¨q´)s˜4(}¹[s 4ªšL^9–ž›³?ŽhMÁÍç¥kîËkr7.î™Í Æ+«o«Kþ%s³§@ËÂÜ øòÞä¼qXó ZGÎwòŸ>ÚfH;~–ïψ†ž2„öîsƒ§–‚óÂG$>_ =g°„ü ódûú‚É·¡{‘¦ÎÕƒwàKÐç­9{Êàkä[±â¨-È Ýokü¹ÙT¾‡Š7vÜÊ{‹œgn–æÏGîIâÉ/[òWÚ8ç³`#ò¼uWl š,*ˆ_ý…·…n3æ¾"Û}͸7[áàÖ} õF[Α3¼% ß;%¼¥ÌÙë> ½Œ2¡çvXÈ{âŽcƒ*ý"P!y›NõÓ­¨Ô6öMe›=ª\a©xev£ÚQŽéÞ£Pãî«HίP›g¶ƒë‡8ÔÝ¡».êïµ/ܫކÇ?±— ¶ ±©­Æëfhò.ý’ïö8<óaÞ”“uhš9‹Oü54k]ùZôñ8´>ˆÏPá¢Û²ã*Ñhy|}Ï0žhÕ%¹ûuz8ZÏë/!65:šiÛqlP‹àlû­8žõbÉ=éûhw¶¤#Äq¢S󡝯8™ûà••#G¡}òäÏ:šèhÅk¤xË”?œ-¬Îœ'‰ì @çæÂp•°MèRðÐÜÓ¡]“¢fŸ?ÈnqÅ·ýª¢{âŒËQþ®èQµOœ„^³^O»SB$owî?†Þ_Ò£dU¡o÷.þ856öêø?Ük·øÝÅ8ôÝ–ñá#ßf4JÍÍŒ\° 7vŒµæ†–±ï‹Jn†gâ׬ XvC)’6äËÜ ö99çO»ß–¬UÃαױÃÕÌCÃùAúB ÇZ³çæ¿näîWf<ÇAzÞSH»Yß½EädðáfIñ¹éÝu¯-Að´E/Á#ÍòÙ¥rVî¼…ê‰^Ë–~…b¥ñ‰ }å¡äÓn·¸É+ ¬èéè¥w âÑ«jÓÙ³ ÊõÐ_JMfP}múÕMÓÈ=Óá¯Ð÷ä\´HéYc5~٢á&§,Em…!Ôb­ÔɰsP›t욤v&Ô¹ >éJ †zNîËfPŸzËI÷¼;4\¿fýª-㵃»ÌÖÁóç(¹,Y ^ŒŠbk?‘/o„‡®]þ^yf½lW€ýEiÑ++à­E€æ<™Ðjñj—àkh[;zûgqx_o¹çŒÐø0gÑÁ×3µ¡CÎyfzQ|jß°?«bˆ9ƒ£GF…~êF¬»žºâÌ1´2–œæn³ošBc©Zwµ|ÒQ AÛ`óùOvãØW®z‡$§áøE³ÓDàsŸRµ—8ñÌb¡ 'œìR»O3¸ŽÈH§J ãt?³%ùrè46Ðõ/G't6ð³ºß>]Ålg@Wi4xÜ2ÝäU6ZÞ%ç¡á– …5èáúTKÓ;=w´Î*Ê F¯JÛÁ¯Ð÷ò-y|}n;îñÙ‰~FG6çé§JëâØÇà´Ýº<7LÇ­G–Gý`ŠnÓîñõ¹†z Óô…‘çä K/³6xù¥3±eÊ((wÌœ˜zz ›©7» žŽº¨Ú(O¤§oÕ0‡ÔÃsFç6Œ€äúÞב5W É`ÏÙ«OŽ@BÃÅÚ·o&C¼^•ƒ¶ã ![õÞöH|ÙἫF’níÔx©Dú/èôþ|Ÿè3™n7 ²VÂtÛ È½”Õ¶ATò…>¿-_)¾ms†ÆBáB¹£¼Eä\ û\/Šã.H'¼%;—ÄVKBé»K–úvPúÎ:t…ôu(»TsêÓ%(ß¿®tÚL¨8×™s¤*kn¯xîUyç­ø Ï4v½Á ¨Yµvyù;'r.Þ[í««u3ž=MI¹õv‚"r aÜN¥¯#o@£OÙ͈Xx¾#Ioƒ’4åÌ7“ˆ{/Í6\Í_ú šSµ.8Ú¿×[¤¸=-oWò¼V…w+ϼљ+­l"Ò‡á½ÒšŠwMо¨t}•åDøPÝ{Ì^=:|{Ÿúë>|ê]«±{¿?t¥ŽÒ,¹2>ßÊ–8ÝzŠÌµßšH"kÐA­SM%ÈæX°Ñìórd¿\ÂjÖQäÔ+àVÙ\9+l’ίBž}÷;f,ˆ|›ZEQÆ NŒÛ?+ …Þ,:²ôàHá5ç‹7Žœ§V<%Å$O| —DñÌ—1G„¡ä£°ú§†r(ݺMjY–™}y;޳FÝpÞ3ûíQéÄ󽋽QÅ]\õ}çT3oTÏ:€“ï§5$ÍE­HÙ”cï¡®€ãMž^úˆ“åhaІ.ÁNñþÁhô<³£îÑ.49Ä~º.\‡Î-¹Ëަü—†öX¢Ùf§µ#2Öã¨'üåŠ1ãŒôÜ¥5n åÔÙ!‡>{ Õ½:Vìƒ,´VËV$mN«=èø2ÇêÞ½PaŠãrF$Ú^-A»•Ò7\ºáDãÃóÞ á¤Žm»ÓV.Fû”H)•gOÑqÒR¡å¦[ÐiäTmán#tÖT>;iºÈr÷jMC×Áórø—D7áGSò\î¡»¸f–/÷yôPzün??zÚu¶ çö¢W¸ý»cEƒqÊËÙ§b8–£Ï¢U*«ÞOB?í'KÒ‹£pÿiav ¸3+4ý¶Nút³§­7@à Í]‘;§ sjþÁc"ðjÍ›Ëþj±PµÞª-b} Ézí<±ô8äyÌs»ºó @ë åaûÙÐÖ|Û_VK plœï‚­MWq¼Í³wƒf ]e Ö_E{qâê÷sÖ¬=…“ ŸhÝâš…ö­Ér‚ î £Ÿæ¸¡üëÐÉÎ"9´RÍnhJ[?B£%òk™¡«‰}ؾeÑèfY»}Þ+rúŒÆÑ J豕?2Âû2z>Ι5¶zNÿôYéîxô^´æ†ÆLôi=ÙböåúÍ·:œå€SËöœ{„Ón$å†m؆[ž?½÷8Ô]_Ü=c€¨;fÈ ÑmävþÀ_œ” /‚ž&.Š·‚Ò÷Ž>ò-2oŸÞó@ì4d%wÎüºÒ+Æœ7œ ){N´ë™eCROÄéˆ(HôNÙë3o ÄOQk›šã”BLJx ÕÄÉã!qÐøOîB”qèäÒƒã!%ļ÷ÚJ²>>j.¯‚,îÓ[óŽ‘ûêÂzÎ5m's¥§áfä;e )|5 –8Ÿm-? …›¬oGèCÑ’Œ­cÚ'@1ˆÅtž‡â¶ä«wõæAÉž¢É¥Åw Ô&¦V¸Z«HÂ'?þ¬I•BÐ%ã Ö“Z ŸYGên˜œ€‰-–Ü1Ðëf(­틬çÂõyV#‘ÝBôúÓ¯ã‘ãVë°%QBÈåX“vd¦ò ²–Ïj<€¼… Ò=P@@Þ8Þé 9οø@=%_2k 8„ƒMª‡lÚ}Ec÷ZèW¡¸{oÛ‚½ˆ’–­ 1ÆÛQ:8øôͰ([•ÀmЃòû77Íõ–@%ûMÃySÞ¡òW-õ+Qµ"ãQÐê]¨Þ°ísrK jÉe›‡º‹:ÛVML¡F¼×³_Ø¡!OÝÉèÛ-h´ß1­ôMšXŽ>°é^šëüT MÙbr{G壙¬¦Ø”§q”ûÎèrkpô=Ža‘:Ih©äØÜó¶­–_Z4y>A€GiÚ(:|4æDÛOs§¿ hÂqG·ðŽmC;G']ïâD1» }5Í8©iÍ¢ÁñÐ>­ÄdÈùtôhhλ_‰NöObo5™¡³]ô‰ñü¼è2ÁÄ©²tº:*ú?<1ݼ«'vž‡îóÃê<ôÑc[i…UZzÞ]³Šïz}ÞþN>zû>Ü鲨}š ÏÕ$mC¿#;Vm;‹ÓàMÊ4v5Üñê¤ÜŠ‹’è3ÛbÿÍÎr4Øÿõ¬º»?ò9D²¯û(/ï¼þëšqT¼9áë2 e mLŸŠC®ŽýÎ)ÕS`î°w&¹OʪL^io Êo¼á„T¿cµÇVICʬMS¹6@Šâ2Û I’ïUSV=Òd_m÷Ñ „Œm<Öj!«IoñŽàÈ}ït¯‘? D¾Ž+ªS‚Âö–½3çBñå[ âm‡Ò·!Û ›¡ÜDSfÁügP3/TÝ1*Ÿåál–7Tò 5«…ª®,wßUéP­Õ£/‘¥ÕKÎ7Ͼwžñ‰©Œ…’}%ÁK‡Ç@ÞlÝ\A×¹ä:öîYé*H;¶üMùeOx¼µø|øž$-¶ð¸ÉvHÔÚ-ª\+åj›ÀÀg» ð0VxWÕ_‘?×tä¨Õ嘿êfšÍx<™›‡³;ÒüÏ¿\4Çž,«èíÙC% ¶¼Î†œ )2•åªgûº­ü仌½èÎbªíÏ‹ ÐèÅÇ4‡WPø6°GQÜŠº¥¯³Š4‡G>€âjèЛå%×Ýy¯5ƒÒ[¦^e¿ e1º¦QëW@yZËã¡!®P)òAÙè¯òæ.ºý ªkEe-b–¾øÄ4$³ j‡º>³o„º=–œ lPzÓ¾=)hÈ^8Üõ<lÛ"èM U¥âXgàEçWQh¾cí³[^=¸f¥]¼Ù;|}×Ýð.ëÜûY"Ë¡MÆãÜN7.x?mäôb‘¹ÐÿvVPÌ:ø¨?dRcìbèxxp!¿rtΛ¡¢V=º'ÍÙu†‹¾¸¸+ú€¯ÛMžõ† BVØÄ1[>![昔)û;c´ðôŒÛ¾ÈYh;>D±¹·eÙsœ‡¼Áwž:¨/Aþ¥ïëãGíEÁ›sï÷Þ¶ÁAÒÑQyb*(R¹½…­ƒ[÷u-A/µ¯fëœ2_®Ó*<½ …±ê ÑwÊó¡cödàT‡“ç>Äi!f+•Ç|Y‹,µSÑ»léÌ} 7áÐÃW†ªG #Ïm?“¹öªÐô¶y}¯e'”{}IÊU{²ÜÝyªðôl²ãÅ[úy~ÎPËÞHol<¸ñ¤¹w/Ö)·§Z+¢ŒáñœYÆî 'u x?ßk%œ7XïƒTÕDᵆE¾ó–±i{d6èMÒH´‚œæéiCþ–(ä8h …¾ñaÏn„bÞ´/q÷AIòaþé„'ÎK5ݾè0”çzÔŸÛ¼*:xdâ½ 2æÙôCj'¡²5ò„Ð*~¨–˜ ¨yªìD¾z|†ª§qœÂN ú˜XC¶b(<;xn÷–vÔslTF Ô̰—õÓ†–‘U€†…Ù†ÖCãí•gׂ+4)t$žUÙ /œç³;Í;–•…FÂëHèÅð&óÉ×rrïTUñ²é ´mîöÂ~Ð.ôùiwÇøðÀ4Ägctì|r/:7Gqõ¬)…î‹îjz×ÎÉ{qBïܦ ŠUÈÆk0Å+?Ù—o0ÒáODNþï¤Ã[‘+%’ßxÕyä9¹KbHå3ä;*!f §€w4¥:–NC¡Vž—®e€"ÊǼI ÂÁ^¹ãÓÎ?BѳûÂŽ7¢8¯•ØQ }”Ø2yŽ õb”’{fºêÄ.”ÎVXºdMÊž¸ÈS²ÔåN¹}} Ú„ U"'MB¥]V϶8• r÷ÉhG'CT]˜x¼ö³ªª(GšBþî¨UnÅV(Œº"—#|x ß‹‹ìò;ªpšÉδÇa^8­ëí*póªeõ“Bס+;¯øÔ"ÔüRäV)z9î.;‘“ –ËVm™ÅÃ}V嬹<Š–tÈ}2ÿÛhKrÿ¼j²¡õ$¯ðmlê‚Dã(Õê0xä™?w¶

ô±Ý2":†¨ˆ§§¤eŠ?² ëù¨%ðùB°i{ô$™ž­¶OB–ÐÖS_²ï ›çâ’ºÑÈžª·wÈÓËÈév1sbåäæv >öÐyjè”êîC¾úŒÈxõP” ʲ±ÉDáùÇØ$Æ¢ÈÒG¼õ]ëqpù‘ÐÝk‚PlþVÙÃ'Pbܳ瞦A(5Ó(N§xÊ$×õÌe[ˆrëOu¾ŒFE s”PÙÞQ+~ýT•Ý%½dÙ²>uÖ[· ¦±úq‹Û¨^ÒÙªfƒz2¢âi£ç£~Ý¡UUÊѰÍ'0Å~'ï¹1oõ!æl˜3¡+GŒ¬‘9uï=Ž´.uºÌÍí3Áû-R¯µm1®E´ÁË»c÷ e§¥ó»C‘8&pò]GÝ,´~-¾¬-j5Ún~7wµ-Ž¡vâímß<ˆË]'o”I:“ÒMÎÛJ£}–ß\¡Qñè8?áôú¤-è´òø-V¼:ï:³vóEt¹¸oÈaïÑõé†%ÂGÝ:äõÇí(EU!û&sôt›Äݤ§ƒ^‘Bî«¥qJÇ—} è3~úÌ+Ž‚è›{øÆÙiÜ8u•è6‘Y8íÜf£!×¥q»VG×…PôwmØâ—ú¨{Ü÷¶úÓûÈ=Dg¦Û9=x®ñ"ØÞAJÓ¦h·uL‚|™êëAa½­{ýI¨9Û*»Å‘Ï÷Áq6w[:ShïºÙkbi;E8Ô;)ŠƒG­7ŽÎ^…¢[Æû{DT¢ØKŽÀÞ”رŒýE=Jv»m|±­¥ÏÞ4~°qʆúûÝ;‚r ?ãà‹G…˜wÜœm¨4·y{+•Ëâî?Ͻ‡ªv™]ü¨V×pè^òIÔ¸xìÁõµ³Q+ºn’gi,êdn[åÖ`‡CUŒ.G/CƒØƒ‘‹ÛÑhø„mzìh|I1YëL#Ñ|aç’r^·‹‘§=šÞhÛ1®žÍnμÈ!™„£šS׭鞊àTÁg§‰–‹ÖLVÊA«¬”òü J´6.ø2«þ Úœ])ra;ŽÕéáqÇÝ)º8‡k Úy4o/oØùCÖ'VìÅI…%l’ÇýÑþ†¹Ú‹‡ÑÑiÃBç;±èä”((´Ò=/—{‚.AÕëqs£ë¦U첞è+ýq#9küwÜi@Oùäü«ÞNèÅo‡S’*¦œ>:oŸÍ²Ÿ‹¾§÷öÖoÇ©jÞ6A.*8ÍuþŒ€l)ô—ßdUµ‘ 7¥gùp]vª$?ŠyS Ï%Ì^ˆì³ãæLô²„úØI l¯œ¡°¤~§FF"<ÕÔà{©Ò=&O>)JÏÃô†-…¤¥VbV£÷@ü‘ɯ]„sáAbâù”kK ®`WõÇ×ÒçóBVxò$ˆÛÞ ¡§8×gyv‡Gi·²¬V@ë˜Äå.wx| ¢Ömw‚4·Î©U ë!ãÊÔ›Ûɹ’¶Çó¡!dûxÊ´ÌÍÓÿʃÜÊ™ì\wQ£à)Ÿ.ä;mÚ;q*ä¿úHN£ –l)oLƒBáK¶wJÙ‰oöl-†¢Œ…i»çþxE¿ašü(ydØ\ÓÆ¥Ÿ½ÜV‡´B¹Ù¶3¹«æBÅ›fñ±PeTTè'hÕM|æšPsýå3qî“PûÒ0$<–êASù%4Œ»åœì÷ c¯=¹m*4éY¨÷/*‡¯“m]ÍÁ×ÛUÏÁë˜4É'œ5ð&wRÁåwñÐ*jªóø ´Ù¶~Z»ÞŸ¨6Þ¨ií_£@3I>†]ŽÛtU>Il— Ü|/·žË„îr²mDxÀ—O£‚¨…@¯u8‡†Ú+d5nIvDöÉæ?ïAŽ2‘Ijé ×úÊý\ZòÈãº:|ªÑuä³?>&~Y·•áEŽ(”²?àÜ|S‘ÖëÔ'÷Ø…Š" yQô³m~«|.Šg¹5™•¢d­¸MàÆ%(3¼}yÎ+’»vmÂÕ9¨p+q&¢RÇL«QåþÂÔÏ–¢Ú™ÏG¦-˜‡kڼçÂ7r£îNÉ´1/סþ„²çÉyx¢~Äý5õh<òíº¶RhòAèiú ^´Úˆ¦eçrÓªƒÑ¬W’-l­:ZLÚšÇñ!Møˆ×¾J´¼ÇÿøÚŽb£‘»3ôúr´¾2Hà]¡ÚNÖ™ËûÇq„¼Z%h‹ãs»7ZFxá„Ûž§ªn¬ÀIw¦ˆ·‡; ýÓÓ[¹¹f¢ãŠ¡k*l*Ñ)’Ï4æ¢:_×¾8Äz%ºTâõ|øÂ™½§u ¾†Ü¯~½ÀYÛÖîè}; Ùº†uÌt9¶O䘮^\¶÷êß|ÎCÕŒhí1vȧ4][°d ›Zì%ZÖ±F÷z#ʺ㕅a8XÞDn]«ŠÎÒ5šb3Ûg£„MÖÆ®N(Yšç¼T¥×Ž{ÇβvÒ·÷]+G9ËfÞ@…EOÏ Í;€Jv{Íd®Z ò‚‚•ö–¨ªuåVÇkT»ùR1à†j,)qr‹Z‰Z³Ì=®VMDM³8$˜£^¾imöªh4p¸pf™(±BØØþšŠÆóoØ¥ªi IÛúãlóãðÈz½›Åhê}”«\VÍÜl]ßgਭ‘fV+ºpô›j³–÷ÐOT—OU@«ÃÏxwì‡Öl‚«ï:F›,3e¥ ´ý¸aå8Íf·õòŠ}ììh§'áqdŸNhhVÒY‡“nUØ™®âGû¨é𕲿è8yâ¾Vtr=öš[ g°=ܹY]Vtæ\>‰®'¶ŸÌ?ÛŒn¹e±*w"ÑC@Úi„’z:²,{£×‰±ƒd,qÊç•jŵÉèæMî¾ÕõÞ©‚m8Õ_pËM™ œ¶ÄÅ«P„þV²³z6jã&1âÐè"=zѰ0T»»£+:ÑÙ†|–^'uÒÊñ[í=¡`yPÔZQ{ÈZxe kh8¤ÖíŸÄ É Câ‹—sAâ¼¥Qû5àa®ÿB¿é±p_Fkü§4¸g?®Úôâv¸[vJªÅÁî~~›g´t1Ä9iŠ¿”‡eN•s¢žž˜cÎÙ¶’ù–óy )© çÍ?Ÿ´wœg„ý cOÇÿ!ë,ƒªjÛ6ŒH(Ý‚4’"Jx]€t—€”  *" ˆ"‚Ò¢¢"¢"-©tK7ˆtw7ß~¼Ïóͼ¿îÙ{íY³fÍ:îãÚ×ršþlÄ>b›œ…>J²óÎÐ/ºRLHÐ0p´S,@‹Óà aX¢¢¼» FæîrÝæ•…±gøíV{.L¤¾°—øB൑[¥ñ¬ÌržÈXX¹²ª mÍX 3¢sz‹zeªtüa©ã„­òòOX¹ô†í¿ ¬‰w†{y‰ÁÆÁ¬¨K\£°%†Ç¢6`ç Q±qÊ%$ºÙ´Ed±{Z/Níèá^K÷ßÛÆmH²}>Ï%tÉ*í†Geëq_î…‚uy¤è97ùû|R|VÊ^Œ´7NLù–¿Ez²÷_çøÞ Ãc޲w»È¤_;J¡¨Ž,V+õñ’ÞÈú™dIªiÙåîÚø{H"ý¶i‡=òÄyŠÎý¹ƒ|–&7|¯]E~ùšz|5ƒ‚!tÅ}é(üXÂŒ§¿E÷°ßú‚bé.Ù×i»PBÿ"YÊwY”ìñt÷Çcá¿O |Ai·çUe˜PÖåîù‰OxâYTMв5*4Û&ß–ßAÐøóø· *Ýj=~Íç*–ÀS×ö¿™Ù·‚jL—i§Â> zC‰ôþ÷ö¨ùQjÕ;ÿjGì;ûæýiÔMÐ[Ô¯‰ß©§@ÃG1VR•h”x#O7â 7ùöc.šR, ë‡$âiíá”GðÍ‚mè"÷)£y{ñ 5o5<Ã]xìÉËp´t9sSbî.Z•7‘ÊEö¢Í±}ŠûÅJÐ6‡¸àòŽÚ­Õ©qG{:Ž×ívÔè¤çœØˆ–‚‡Z$Û}QèS~™ —&äÒþˆA¥)ç+Ðò†iC6Úꎱœ”Òk†*VÎÊX¶‹Pž(EƬµ¥Ã|‡í¡ØoÐúû>)Ø1݃ÂÊÛŠ–PèXñÆFЍ4’îyƒRä˜ÞA(ðLg±? ]¢˹5uásã ¾nI‹û2Ÿ˜ãÇtŽC3ÛÎûÜ×_¡%Å¡=ó©!´q¾yù׫Úµ=Ê? _>.®CDZ<³?ÐÑ2æÅéÕ6q Š+ÐQ¢ulIº:ÙS;ºS^AgÆŒ“ó¤)t=”~zÐQºoö&a–…žt‘ºÈ†)è•2ÿh púˆ©Ëä6ò¡o+irˆHÄ-µ(z=ñ©#Uu- s‡:¹Ï#“ó"Ô.Ú06šÆó\@&Ù ._¾ Ó/hìn՗ÜHo×(Â|ª?)E *,ZrøÌK…À²ÐŠ-{¤.¬² ¼ ‰-€uŒ¶©rͧTtoï5ÁöêGÖcÃH¤ó)Áxë6îÉyqf_ˆ$îÕ yî¿d¤dº:yH6ì8!¾|÷ îKßüR†”DL[  H­0]u€+ iƒ–æJX#ÝÎ0™-ã&2hRo3ž­@ÆDǯ™Ÿ"xN¢Y2U9 ìÝÕ¢ç‹Æ³8<ÈÙ@u]Ÿ9获…´^A.ů%m'GHnä¼Í,ò†MNÐÕV!ß•LÜR-ò?šJ`x—‚Ê´#ëyÏQøpèy²¾ < ªç´bDñÈ`\~ð .”ÌeyK¢DMÌ­8â|”’Rm´}e qw¢DiUñf£-”%Q½Ùø Ê­ q%Ô5 ‚€íÂÞÍ<8<Ñs•¨œt|}•Ve5R3P¥^m—¬¨UUØí£)~£ZéÓŸ2kr¨a᯷“„ZDʇ¬TP»à¦ÂôIÔ ï}iq&õž®+íFC-¦§E"7ÑÈüÊhep»œ~7ÑJÈ£ÏÏä¾9-¦¹¯&ÞöŸÓ‹ãÊÔ3gˆ;¢…ïÉ„VŒx¦ßÁGX­¤ÙgO‰ò õÛו}ŒehË&õãSÞ}]P¹ý7í"Äc“®½D{‡”\ð¡í-žè¥j4~oÁí¥»1ë°,Án¬×N@cü%Ÿ¾Ãæl3ßÚ­º ê£‡püw6(uºßKê{Š>“ÜË …ŸU›‹­^„ÞwsùRVd_ 6¿…,UMÔãui²L­˜« ËyHA¯0~¼®µõØj‚œ‰ƒÄû7@ÁEÍosšP¸ÔbôU‹[ýç¢ý¡LüsXð9ïÖ!bo¡òHohÿ±@Âu¼ý¬Ð55 ïòùRZ Vµæì'¿Vø}ö"+9)Ô]ÅgLêõ׌ØÎPÇAƒÒpeõ¯Ð°õˆÕŽ;{tÅ\›œ¡)K*ˆ/§šÓÝéB®fAËðÏÀX¥6hc¥“¯VYƒöG¦g”Õ‡ c¤ÏUS/ º‚DªƒÒø¡ç”áîF€^«ìOtæ}ЧS§¾_ ý~æg£RÃ`àÏùÑ&6:Ûøê‹­Œ–æwMÃè—ßNµä”0žoö%ʨ&›æÓ–ê÷ ƒO°Ã#˜SÜà/OI‚ù5Û¯? ÀB=·øåÖX’)#ÞU¼ Ëé,E Ù°êýYÅY;Ö­‰“}2nÁæy• ú6Øóò¹¯0ŠD{÷Ò<›MÂ=69˜Yb‘¸§Û ÆI<'ZwëLQõ”ë~.¨_0ȉxv‹~Ñ ©Ü‰Ý«ÒEš,¶Î~‰«H÷ZX‹çf.20ÞtŠGƦS£ƒ‰Ìí–þ>@V׈<¯ï¼ô×ÓUþ÷üWbäQ&ö„’[7dx÷Í\ÀC ±$\åWQ é”ÿi©4&³!ÉQ ÄÃî<"ŠðÅ8,̳»P|½û›Þ/6” tp]¿ÁˆÇd+j)Ô¢4ezóÍ(Kl¼F3:€'²‡'8‡¡‚¥ô³%¤Æ“U_oLŸ»ŽJ²o>J¹[¢ò§æùxê8ɱ)HCÕîÏyb<&¨Çp?RþjÞvvΚíFmlÎsa#”۟Р~Ó៫Q)hør¿ìSGhô³|íÑxE,Õøš*ðU‹*?ÄÓ‘ª²,ÑìÏÝ=?ËVÐBŠÉ@©¬Ïømhõ”j£eW³PÜa ´>‘³ÿÉ‚Ú$Z ežÁ³b?T~ÿþ…vNbõGt¶Ñ^õ¢©´ìc ð÷,5¾gÂm>Ј¡À×+z‚~áÝ«LiÚð÷u±™Ç"?4S^?gy™ð¼K•$Ûø ¡/c”‡› Ì¸j,› J8Ûû­¬c¡è²Ó]W>^(”z¡±È?§^HV…ñÂϾÊΙ´PȾ—S¨ÇŠ4XØ)ÍCI´C/¥„”·‹¦S‡@uYÂN†½ÔåJÉÞi™FR2öò'vÐäN/‘ۚͻ‰å…¼ãÐjqòûæh»±'6Å’ ÚîGdB{þ‡S,´×|/úíÅ íñÑW ="U=¢•Úû,¹«¡Ã©ì¸&t 9ô®H÷Cùi¶î¿ÄÐ}¢š(>xz’Dï¿àv€^7ãÇÒÐ'ª8TcGýæë-Cô…0ð=°¡ýÌ6 )e$ Œ ŒPú;p3À ,… ™wý¹C0õqKy Ÿ;OÜä¼r æOÚÓærÁÂОâð”’aº#óVâMè~nQÀZù÷r“£”°I¯¬·½¶½ƒŒ·ÎÝ@"ªú_ E¸Çk4/‘éî¥ì:ð¥¸IÊÿæ}¾½ŠdŸöJÊ$fà¾ßaâÁR”8h¬ Õî0ñÓ¤5=ö8wéú"ædóAx®z^»šªu.!ó^­×#­âÈ’wIX7Y¥®9=)l ÏNš!ûß–]yªÈEþdì6ô"I_è7ªxä½Aº'AÇùšnÿ XHF~óù#¿^žBA*­;¯;ߢÐôÔU›á@Yã=}êWÕàòóÀ£á]Þ•÷ Q"¢dFþ*»åv‹¾$ñC¹è}kIí(_"šT~瞘‰ÉP BÌ*:1øÃ•eè.·ñ ÊëûÌ$-Q•Îù ݲª…†ï¬ôG ‘³‡6P³åÊ,ûÂ3B]ŠÞ+탺^²V¨#M¬Øõªþ‰ö<×F–§N'°G£ñ­Ï5ZÐäMnBÇV š¶&w+ B³¦ùw9><÷¨K Ð"Û®Õr-©‰Ï/ÊŠ£ÕÕüœ÷ûhÝí×ÑÖô!ã“°<ÛåJ©ùq í~ÐÐ-5@ûõ |艾Ÿk¥mo ñÑë¿Û¹"÷ºÚë+.Y°M´êÓïÝ#½ùTB½Çø³Ú „üx²FM" Šgê„^Ç6òf€¶Ð.äÿ(½ðÕ7rNÜv§p€¬ªµ£ þ S-§;OÄ 2˜M !£»3á2å>Èœ¸–HÚL苟Í!}ÃÜl–~Ë£^O žÕ—[£‚7ýGŒTLPú«8E…®Ê™ypêëT8¼É½ã•ÉJÑ’—¹¡ª€B1X ºæ—¢(ÔH†«øCmÆõZ¦ÇŸáwjÌmªm¨çz—e Nôõ‘FùãŽ$äCÐt4òÐä·Ðl9èË'MhylBZ‘Ð:óaœøê.´+_8yòêèÌe(½%Oè‹{›²žCÏ;‡Ç´íµÐÛ®QVî}ñ‰#{ žî_Ë`÷îXA¯(— ¾f§²’ó}#5V|<2Ö0VÁµ¼»v&ZJ±BLÓLê‹5óÃìÅÓ‡ý%ÝanþÔùÃc ° k'Le°nø)ÿ! ,ÓW0Ž™èÀJ…ç¬ û¬½Ö/}¥MÑêE¦`+AéKÅØå» rŒ*‰†?j_<:…Äg•“«àÞ¥›àœ€¤)BoWU)‘<„Û¸à7î·¡2óíGÊò»//{zâÚz¾RDºc_‡ ËÛþÍÓ4·¤³Èx:w,_™™MòFØžûã ¡‰x‹iï/ä¨õdæºÜ”lÕ¯­#ï+Öº ç³xè¹íù°^ÚõKE¡GéFo´Qdœ¿+{< ÓÄ,\Í”15*¥×uúÚôaEäA¨«•9¬é•홆ȧ´›Þ[»^ÏýzöÀnÌlê‚î‘WæÒˆFâZÞw /õ‘äñ arù§Hvñ­çI«qÜwñtU§Ùq¤ðO»´ÃŽT%=¶ÓkVHËz+­ÆéŠ5»X­n#Ãþæ¨zétd¼øª8‚V™’þxÅ!‹›Tf¨9²R‘j¯E¶ ÈGöï7éùÞ±#gÓ¥@‰O¾È]Fç3íñy¸Øª:‘/i\ýú\ò‹,§_yPí”WÓP(UÍ+cBERw4OšP£h¯öm€³xTnž¬ë¡+JØO9´uz dÎ¥¾Wï¦ð¯–·ÅI<žPã óeNG^VüåäÇCµý{QÞní|ÀV*­êFN§!û¬mgGe‘°‚ç¨âœ³çãÛq<Õ›—ð7 ÕÎÅ©²Dµ¢ú†ì$õê:j&FåöÄË ¶ÛÍ6“FÔ5å}ÅL‚ú¶]Y9ÑP)á“x¬"Ù°•/€ÜoNõ¾ X€ GáÛóœÐñCùöÑ%BÍY~Mûgâþþ;gæ¿\å&ˆ7:Š7ë1»l•!“ÏŽLä÷H/ºÞµ56é:õôþ§ÿY3dYæÃòõ!‹:É@3-²ëƒw§‡ ÿN íÉW¡™ÙÇ,fŠRÝÃ=gÿ™wó_îËÅÕ…r®B¹Ö_¥C—¡BZ‹-cÕìŸyTUT‡^ÏÁïæQU’WE^ùNè‘'”Ü"]þ™kUçŠ{õ—¥æ]ý—÷æá˜/{–D²ÿÃ{»œ¶åº¢t´ü¸-Ó]£tN´æ9ð‡eãM”†Á?óªþ;—j ô¬ÒÍó`HÂd=2ý OŒõÜtL†ÑÆQ%§¸4o‹UHÖ‚)òÒƒ5Ê%0c–EyO8ÌÙçVf ‡Áü›w<ß&^ÁÂb®WU1,9vÓÓ^î…FÍXýisXí}Õ•ö7Ö뵤¼åasøòn‡ñì@¹“®ü~$r)ñÌÓPÄ=ý &uà^×-É„ö{HÊO±s_[ɶ—‰ ²q?©%G ƒRr¸/›ñÛ#µBgF %Ò†ßK,9€ô¢ñÛêGƒ¡Sr<üT(2ÕÇ];­ð Ÿ¸`ûœÙnx¬tUû#‡H¦µŽÉ)ä»hïùûö¿ó¤¶]þpº"ÿhÂ5¯¶"ɲß¡B‘gÒa•(:#ö²‰¢ ¦/L >pA‰Î®³{®Ð¡”·OÍ‹tx\e²ñÇ|9ʈîð˜-˜£œ4¯H³Å^”wÔÓEÅßÚz>’û¯^¢¾˜W€ÊÂm#d•¢¨’³n5–$Šª—Eè“eÓP].•)íbjò÷˜Š™Ù ¶Ü¨1÷QB>yÅ.Šúmi+ã¢[høihNÑX&ÓÕÁòš(Hf?‘/DÓßС7òhF¶á“9ƒæ·ò‡h”íþåÐઇH&Ze–¿ð|6ÜÄÑ6”h—þ¶ùÿrøu·pnä>NºÌ¯f/„¡uÇåiñ1Í¢¦ì”ú|¸@Ïݦü;1ŠÐH1¬WUª¢?øÒäCÙó µ9F(ñi _RÉ„"ŸAɪ·ðk0ìÀ{÷ËPðžH†ÔÇòe âF­+ä3,†Ei»@a;ù“>ø•X˜*—·ŠøçÓöz¦o7Ñî}¨rp•h¶3ßz‡®ˆ0†¿<žYii)šíÇ¡Y4RxÙ›é?ó¢æJèV¡ÕÏú uæ´ÊWñôB[<]aΓ h vØä\ÿmZŽ…6’ÐÆéŸ[IÎmºŸv’\ -?âüiã%h¿lßÊY¤ r‘×èT óŒA›ÅAèÊØv8*Ö=çå•¥^ïƒÞãÃvSßV Oá´@=3ôø±‰=ƒ´ª÷üÎJÂPÓëúÛô”0R|vY5à ŒÍ4[´€I³ Â±_˜aR¾¤asÏÞ¼ïºo GÆ8^êÓÃâ|ŠÁ §Xîñ3žºU«ÛeôwùÁ†¶›ƒCÇlådoÌlˆÁîÙ²6¢¸‡›ÓßÁ‰SVÜnæ ‰Ó¾oW+N ®Ò}_Â}Ò‡iîÌÙ!…ö‘é· HåkðtIòÒ´Ï…èš!ÝG òã•_~ný 12š°Ž‰+¸j¤U aE–³£ÄZTÓx`gR=y¦ÙòWÞÛ]ãAö„žìA ;ä¬<~ŸÐ£¸ ?v%F@^ÐMá'ÈGõÕs¶ùYÃæÐ @!‡¸›Z- …j[šIº Èó„K¾oVP4}9óé{x”Ì·á‘J¨›L|³hCÉ8#Q×·2xŒ•íœñxTjÊÇ;(c¼]è͸唎¨¼x{åÏ/º„w â…œl)ˆª]9]_ØQië‰ú»Ì Tq|±ÿ÷ÖÁ‡%ûzTo¢Ú•máåW¨AÛRÕæ¸ƒš%¿Kü?¢v䟛S Q×ïÈ'óï¨ÿäHãËKhh¿¾1j‹FÎ$‰ÕòËhüüͲp"šäfžf`»¦+¾Äëˆf hÏ“+@ðáÎ#ŠÉ@´^žNÎvDK•›F³¤­h•Ðx±é Ú0 ßÎá_ øP&štR™À¡÷-ù_ÿχoHœ?¢/±eæ|T9]ûÛs¹~1ù“_‡õÚ¦N2•Rè µ{IsüÔlǪǰç@™÷8؇¢ëI—­  ¹”6’çäRŸ,ݺû ²úÝÍm„ ãíºñ‰Ñc®D-$‘ i?¼L¢è -mPËÕñ1¤‡8‰Ø½°„Ì‹kíâ;ÍxúFê[oÈûL½ðõÇ=øEhb–|é_¼„lœ¢óÃ~Èž:ºœžïŽ\ qiΞÈ3[A;·µ|_Cÿ¼ênBþ—RæË(˜p›³¿v…×ùÕ…›£hà“$1\»yJÈ”qî¬ËÍÖv¢ËðKÈpaâð$¡>Ô½x7ò¼võôÇ ïØ%­Èa=È׫g¹l ?S“™²Ø (?ß•»ø8á|¬"íqyRÐts´j—Úò£¦Ã¡AXòú½•ÿÌOŒo{ûš÷)ÇòœüHÈ‹+ŒWã¿Bë•Ú„±žDh“_ç°øí m>I˯½ ÍÖxòçí%h£ìZ–*õÖ†%³è h]Ò‹x5E8nnÝ"•íûÅo]òž…ööó¦ï² cáøò£³Ç Kcój…>tO8;U–”ÁŸ,1²=þðwŠ·uøôŸ4)i7|ùé,®në0t›{·ÄÁFÎ/ñÆŒ®ÁØÓy©ãç`bVÚÖïø~˜þèytßU˜3$¯|ËXó“ìÄuÚgañóŒ‰ÂZ ,0\ “‡Õo%K\\ý°¾}:»N&¶n¬]<ÃzvÅDTF¨ãž½ë3>«H^ƒ¬îH¢'Õf2†dô¾„íÝÅ}{vLxž(µ(MVuñ¥LûMe h.7A9µ«óM9³(aæV|†.*~›lSKF”=v;‡àÃ¥‰µGn]¨rö<ýÊ&‚«ÏŠ6@µ[Ö– ƶ¨!p-1®…5Gfú’œ™Qû—Úb¡s2ê¦\cÖúŠú™÷®íËDÃsotË¥|ÐÈsö]}0G]LUí>„&%è_£é–vMÙç>4S>±ÉŸæA…ÎŽ¢Ù 2/¡¥ò>%ϲGhõñü‹ô! ´a"Qas+GÛÑÅqwà ^gåÿuîÿù°í|¢IúÒ†ñ*£Òé'?³wXÌesÖó¾ s†v§ûŸ¦o~e•9Á3P:ö›^dŸæ´ ŠrúBÅîÓ|*ȹ©“Zó²LUõŽZSCwHœ6Q2ÁƒŸÜx=@šäÝ~ž®zHc[õ±pχ´éöGì!£Tã,Ë®&ü0?èsÞ„r[5ÚØ[< ½Ó¿4ïÎU(Lf¨ꀢʇ,öËÄP\sEò(5¡'vq|X _"\OùSåß ¬òÚ¦Bj”'2WôÜa‡ŠÇy•’fPét~Kí† TiÐ8ðSÄ@uìÍð…ƒŽP˳–"{^~§j¦yž‚ú5¥Í“bÐÐ[ôàIÝ4®;Ù7½úÍZÌõ2S!Ðâ’Ì?N¸#>¿I¸/±ÙNÔBg$È^ˆŒ†îïK™VÓ w_QtDBŸ~@Ä,Û!èÿÅ6~¥¨õTè‚‚`h…é,¥„ŒTZ|‘áò‡±L3šƒ÷a¢®†3ŸÁ4åH ë ˜½’æ]š s i·öXÂz§ ¥÷mXü¡q0@?–͵IƒŽ®Á*•¶çYáXû+›zWj6ZBfGÛÜ`›2V2Ç›vŸ\ztðÆ$î9úï+œBâ·*–' y6Â Š©Éä_­¾êÆ}2wüš~{#…²ÅÝS—ÊÜMÜô”ÒÄ÷v_¤cFºDþEÒ¯iÈ ¦¨âõ™„¯Ð® !‹†ò¼ã™"d}[b¿ŸÈÙåq$"w+ùÔ~äùò¾–>ù¬'õ,^G~ùŸo˜:åQPódggÌ0 ‡sµ† (ÿhq­á[ª»¡Eð³Äc¯°ÇPJž&5úó:§÷³&ÖAée5IYõx”÷8è¸ÿ!ÊëRz=eõDž¸vþòˆiþzD>ƨì¬LIÙ‚§èÞöÛ5DÕ?¯åÕ¹P½ÂB$û!¢fõóþȹyÔž ì¸ðõøGY–T‡ÐÀuÅ$ÌŠ G×î}x¦€Æfv™’ì;˜K¨ b2²rñÀPæ3Ç·íÈ–xÁ½XEÙÓ÷9„N"gúj2ÇîUäþÑðŒëo4ò¿ÿk¯Õ4òù™xúÍ\ÂCËÍxKä) ¼Ô¿T;@ŒBæ¦ìQ¿ÖPDuå+õ‰ µv¥K™ÍG±w 绢-ߊ¥y$J^ä.b‹­A©žÃµ÷Ý*ñø{^½Ô(£Wmmžþå´Sß±4{¢ü¥qŸïÁ´¨ø~ßš’¥ pxž®I•äÿù°YXWá;úrü~þ¢Ï ›£‹¥Ó‰c'³¥Eú¬ÅxÈsŒ0@Û¯¸ŸµPí7i¥§SªÒ¡Ð*ƒC !òf˜ÛCv÷™¯¢lvYÁz“Ôr ÒãD',†´“ʹé…úúá´æ çsHõ¡ÌQ~4iZäQkR×Þ Ù¬Wƒ˜I?C'ó7 àâñÅqùPxäãv_Œ.)KÈ;%ÛB±Ô5“*¢Z(‘¶ 5Z„R9͵((c sޥ倲ÉrÖÓD ¼ìñ£)¨x£“GtD*½èS/Ÿ †ªÊ¥´î~‚ßõnw…BmMVCC¼3ÔÅ''›µ†† tö ߃¡ñvÃá3çU¡©èã†[¤>4/Žª’ëhC«{V›å*´]/ ôçÙÓÜ!²O k³ÎÌÄ`þè ­/ÊŠÁßöpw›oaÐoºzrlnºs8(ïý†!ï$³ð_0rê¥Ýk[7ãϬyr'&¤ xS¥æ`êÂýÃüoa¦Èp=ùž7ÌÅ*ð‰Òü„ù9óS3X<»Í­Zø–ÖµsÅ *aå=Ÿ†´^¬9Uç{Ѻ‚£³QÒ°uœeŽýìôwÕM]øˆD-«™ÞÌkHl%êøˆIö[­ñßFÒŽ®LÏ:¼ž:{æ )îo®*’羊”à W¾Ÿ[@šÃ¯v"ÝÇéaç¤ßT¾ñ’àQÆ–¦¿Z±/‘y¼\f¬Ye/Eð°ßǃÅzÂ~/º3šÒJàÓMä±²•ý$¨‰|Ô*,‘xhH;sÀò Lì o¼Ü„Â’lyîx¸Pµ[ëzŠ…+ÊXdC [-q­¥—(ÅvšÿIõ [0²I¦xŽÒc9ŸÜ*P¶þmÈ·U”î—Ö>\¨8¡)n(Ñ‚Ø6UëÀ‰Ê¾Ñ3ÏÅñ”â—ýÍ"¨vÀ\?”³5h¾d(û¡ç…D=PDSÒ¾†gPïŽZ«-GäGí_D£}ÄjŸ•ÐXþ²óðÆ14ñüòl(çš–»ìIŽäE3î6á‡f hþ ØWÿGü¿j¤µn]ÓA«oZ¢hÃv:í”n2ÚË\¶Òû_¿ÆU¥ê¥àãì|µâgôh®|¶)4 y—ò-¦ÃÖàà»8"kè:s[^r›Î÷³ô³PQg¥£wjJ÷‹¿Ú/Å´<¡cQû¡PUŒ’×e ’«?ß Ÿ¼—^GÝó\=È#=ÄLÈ­¦é‘ìÔ«ÉK-c ù%wik¿ê@á¡Vô[…RU’ ¿n ¨´ {­»’µª'MÌcB} ó/?–ÃÐhyöñ±W."|Ý‹+ …“΢¬œZO~SysXŒ;þz C›ÒŸA—âHhÝ8Z»{÷´ 3å†VÙº¿7~ùC멨rïÙ{Ðú®Ó qÚÔ«ó‰æÕ¡i“ýÝ«8è8´›mãâ.«¾!t­ýÎX¦GèÉÎ7ò=ñzÛé& û) /am¡:G««…=…Á*~;3Š^þÄq[;¡ FË ²,¬ÂσèÜ_`ªbøÇSù@˜ý–ÂoæÅóNê5U6añàeËHv9XZzyþ7'¬Råœ5zëçyìß.ˆÂæØ­Sb¦©°óEÃ;nãýNû™[]ÄgoöØ‹EÒª“]Ô´l£wâ+3’Ç$ô8ýÄýá­ž^HYð™‘ìÒ°]¨[A:ýG/žÐ)!}Â¥âW/f‘‘!Ôb£ð.2E&)ÞíöGñ½c—Ÿ¾Åí¯¾+­w#[—íâá"dÎ’" /œŸs+."wºãPqò^~;÷,ùnyô>™N#pvýª€}5 xúoJp Ð ‹-yò“(Â÷ÛØ?E%¦ïåw£˜«œ˜?ÙqeZ³ÿ6ƒ’zä”31Ì(UÆ"í¹‚Ç¯:ÚÑt ŒŽD’úÞU”3X2´œ&Bù+COó›P1zxÓë$Dö¡-:‚‡¿ZëŽ ¡Š 5Ÿ=|ØIÙvƒ Õžt³£C Ã/ÄShQK@ÌóØ"êаÌ;=|Šzû¶å‚ÿuÑU=4ô‹\°®,G£°2‹×kehœÜ¼<¤ÄŠ&-¾1tžixš¼‡M‡’Í4ìe®ÿEó—ªrKÝÐb0Y©‘-A‚ó™ê ZÅ_ŠÖÞ׌6ôy ]û\>´c®‡¦ûïW&ü?ÖOÍÊ@ßÃdë6~‚hè¿x´/N 9¸üïÈ_‡5⊉DÙh;PÐúeÉ—à‘àSŠ­ÂPR–qÙ–~mò%)“ÇA^aÔß› Y­âô¦ØI2OL½ê9Óée2—%@j^©ú>H=p$%ÏNRƸçGühÞPJrÒo]Öé†ÌÞ±åÙJ#–»Asòï øWQÀ/3—/‹z¾„>úÇÖÅ)Š¢=<Î/@qð+o[ê(y\¤¯qiJ­^õ_±…2q‹¿ýF |¯ÉÂõ«+PÞ~Ì+wX*¾0í¤$úCåÒ÷ɯ­¡Ú>^¶ÎhjFøg…–Bàw+ã•wÏ ¾ë§&4lÉ-ô‰vB“¼Œ@’ 4_6[ûk-}®Ëõƒ6ýœ¨ö|èиB^Ð~º4™Æ^&2COÐ KÂþñ—-ÿ¡·õM´„8òˆò«„Ðc-Úƒýï6ÂðÏj’8K cØ`É‚ñð¦ºÄ‡¦0YtàIjÛ:Ì0Ï^+‘S†9µ’ߦe7a>ºu÷µ˜$,îKçß#K1:WëÝ¢`åÄ åu1Xå滛ø ë%¹WÏlÂfǵ-Á|1Ø9¡ËúóŒ-y_õ˜KÆ=;‹¶™,pïÞ·)ï"é-Á]É{-Hî7M„û/(JT^GÊdI¾aHj™þ{FéøÆÊ·"}ªú» ïcÈès"9†á$2?Ó¾sEÐÔÑÖÈÊÜÁƒÚ÷‹¦Ö¨“A9ù¬Úuä¡©ñ•ŸAÞ‚WGZX6ðÐó¶ÚïÝe(ð´Ì¨êÄOúÍäîI‚‡­Þ-–‡ £˜ôçõ+Æ(!ÍZMU›’k1‘Þ“ƒx¬ý†,C=Jÿ|¦ràÕÊ~«¡XÉ#Ay‰cŸÅÆËPqqA»]WÞ?‹RCå·bi îâ©‹ Ѽ¦î¨fDîïå'¨qz~¾®F-7t%~ê:±x»ÒÜõš?„V,Å¡!Ilw9 SQS•«£±é'Ïâ7Ñä¹È=‹ZhÚ’'¨lh&Ìíä-«…æKís³ÿåPk¹áX3Z%¹_ѳLD›jŠK§Ð6HS®&Kû9üzï–zÙ|\àk8¥Ff ‰Y5d„ûEtxEÀ“ ¶N%¯nTC‡K¡ÞdµÔ%{d®É)A…ôé…/ûÏ®}äk( >9”q~e<Õy®õòûýÔqƒÜ~ª —ך GMùZ®BvXõňÌÂkí}1o; ¯ö‚_â'(t± 0¸pJþn²XyõBå^"÷{üP39—µh õw\ÅT›5¡QqæöýmhŠSZ~ûÈšw_{_3¯ƒVAÎàÛ†sк¤YDÞÌm<·¢?· Bk%GÁ›h5Ö¸qZ&•‰M +Ø^qu#xñ•–ac-´GÙê~™‡¶ôò]¡ О?ÌVuót-?Okφ®û;ÝOe· G~ïêþ‹Ç¡W7িûôYÕéÃÇítôñÊhF¬7ÕF¹Ó2»oÈPÞõox•F*õ]=V•ˆHs²ÀôñATꥦ‘ˆ×GÝî.¦öi'äÑ/ïë¿¢ÆMÕ5.&ÔRuc;Ëzu¤ï»)ÐÞF=i•Ÿú¬‰h {‹8ðj†‡© 3Ž¡Q|ÊÉ¡çvhœ»?êØB(šüá°¡.ÆÓÔ ©óŠÑLûfÓ†Ãu4!ãr?Ç€“?ž}‹–Š¥T,$!hõv*.œmè"£äM•ÐöY ^<BàPXLOóÿù°65Œ2}e•Í¡¡¼nÌÓÀdóCoÝ`õ2[̱@;huí™zzܪ¨d¦*V¡DÜÓŸr?+ü‚?2.SÇþ·þÒ JøñÙ=ôL&d|-,J·(„´[ßÛz|*ïaÐa0)OHXÞS@ŠÁqÆKHÙMÜÔimR+µ× “ïR’çåÈ>³üà’èEB® vj´€Ÿ&AÖÎP(õÄ÷ï("òŽÚm‚¢ÉÎ ÁUóPÜ~¢TK!J>Šë=ªz ¥7sÔ÷ëB™2yÈ&”Ӳ˹Ǒ@ùV•Õ;PÉó;â¸mTù¬lFW©@ Q(õ}õ\¨m÷¹óÑ$êÆ­µüúƒ¡á KW¡1­Üppªš:O\š¸á-Z¦wýÒ8?xS0ÚßøÎŽßº aV·ˆ4 »i)÷ëž}^ãH¬?HB߃ԑ~è_ûtl¯U9 ú·ÆOÛ¹ÿç1jœ{ ¼îuW¿”ÒcëfÞoš³a’ýûĽgÆ0}ùùxûÂ>˜íšÛZ3ƒùS¦W.QÃBê%á‚nOêr}y–‡ú#š`õ»«‹z¬+è·ï²Á&ôôÛXgÁvpÁ¹`]V$âíxw½æ<î‰Ozÿ÷êŽjTmBRæ÷ôÝœH‚Wðî[ûª%tÍ)‰GãeZ.ê-Ñ{¤-«¯Ðj®Ez'úÚÛÈ(ööîÔãqd>ZW4û¬8déÝF¶¦4«Óö€O=÷D º!÷󉟹o„‘×e>öe«5’=7x׆Ä©‹ö}A¡K´âe‘¡(²²KuêGi;Ïñ)JPŽ9ÔAÉö ª<–NgÌ΀ÒïÅ«—1 ìÓå‡ZŠò|…»ÆWPq;–]ÜŸ •¨Î°H1u¢òÏkZ/¯ã©ÐZa×ûä¨ö¤æ–è%Ôxm\¥ü…OKX¥t4 Î²Ö %ƒ.ÔÝk,Y{ O×®B#Mæ¥A4¾:ôˆÈ!MÞ}r­ÉžBÓÁýÚGéÐLâbÂoÑÜ¿\™ßªî_Už2¿_±D«OïN£ óñŠy‡Ñö…%¹¼šÆÿrøÕ–¿ç¤0>.Ö´fÞÙ‹fgÿÚ”Ü@{ñ’ý°ùþ¶¶Ë²,´gñ¦˜…ß-ïò_ÚCy¬¡ãav(!SMa[K…¢»£} Sð³/ÿAû>È—Qµ#%Z€\‰ K.cH,œgÝ ?2•8# ëùõ Q‚䶬ûÅß!ä[AŸAîPâ=ï(ÅêAÈÄÃq¤ÑPú~‚Eû ÔKWÆ;A#÷]êò@hº=y±Fc šÇqŒ?„Všç½§o¥CkOv|äýh#¢7͂֊d¥ÐÊä.µeÿZâ>ÇóAKÈàŠõìyh¶R©Oõ…V¿ DQb¡Í8dàk¨?´Ÿ®ö–öŽ‚ŽÐÅ(&b è"— æµÍ†î<ØàˆøS´»“O±}tq¼?yë ÿº‹{6 ² Ž¥^†¡ Õ¦uÇt%º“úÆjZæµarÂD™Æø=Ìäþ¸Rsƒ#1Å °ðdÄ~áä7X²Š¤³%Û+.¿î½õ3†µÊIŠßÞÁ¦õ מ—û`GjÑÎÝ6 ‰"_,9D ±—×g¿Ü[º¤yÓÿ’ÞLdP6EriÇäEyÜÏéÄ|¿^)åƒ\ ž"u¸òþÙ†HÇô~¬xâ=ÒßÌh ð Fƒ>ˆ±ñ ÓuR}*od¡¹âÓ&}8,­~D¶À’¦›mÈî=º›àŸ‹œáš÷›[!wRp„¡f òèw¨žÙƒ|6ISªx¨(¥Æ§ItØŠÌkPpû\ÁðJnŸ¥ýÃ㋇»B?4?ˆbV…Ý‘(î™N›÷Å %YZßEE&¡T$ç»@GKó7¥*hõÆõ}Ÿ˜>ÚÐÞ8ûê-Á‡‚—ˆÊGJot5Nþ?VyÈ.þB_U¯†š<4èÖ¥»2ž‰m…jÈúç`¥ÑYçg79´Tlí½|Ó* þD˜–Cq¬µù— :øéùB´Ero þ²±ƒtýç‰g ƒ;lì‰y¾'¬{rá5¤äнº™ ß×}©y ߯­»pAŠåš’Ub¤IúÜKr…Œ G³sºÂñóšç!74;H?Aa*•¹·)¡'ºêÎgŒ@¡Óƒ¼ènS(Ò`5*y4Å‚iò:ÔÇ¡x¦ä§–à”dµïÿù< JïMq¤?¦„2 âU ³ÿx1ú¤úu¨ÐTZæ1…Êx_ŽJ¯ š}h[ÔÔÌO ÷’NÂïÕ *Óø*¨ßa&ï¾M¢fw8#}¡IgàNùuhN?dtÂ+ZÖСlü@ºùe^óêB÷¢s4ÝôüÌøú20 ú„_]K†/®"w.€òCuÖZ ”¿º˜0 Ãa£¾>ïÕa”û+-Y㌕§.J“fÂxxߎi-L¾>=DßÓ3ç|ïE~€Ù«a»Û†2á§:/Ñú²,¼b Ø‘‡% ã ­Ó°BÛ6Àç kœe®jœ°qµÝyʶY‡ŸÎ…ßkæ#QŸèšÎ:ƒÔ $¡YÖ5ú`»’î~úº×wüI›K–Ã=$ü©æ÷O ù¨DÚ._"¤Ü$‰e -EËÂ6³'H7â`YF228ô».3 cMcÖ9d:zûT¾À*2ÿái½Giެ™ú¬¤SÈvS{ÿqWd?oúî¤Ør†¶å¶Dî·‚óT§ƒ—ÖF»+ùLGéãfï#¦É–$e Êdï÷B¡á“ñœƒ4(’óDŠÏû4Šfèßž8‚b½?‚“uQB-Ý#U%·K漯 ô-âo6PV“m/ßKE”Óp{D¿òŽ–8 ‰EÅ‹Ý)c;¨|µW×—÷5Âan¸Hàakë¹}±¨®zO±Bð‡ó´í/Ÿ¢Všüƒ'|r¨ó $t‹õëPlT ‚L½Ç„mÐèþ§ÆF#S4‰àà×t’DÓ‚{3e©âhVL~.?ÍÛ/|í´¹‹?MFi{ÇÑŠMŽæ!')Z›ÆQMyŠ6ïΊ¾°FÛÑqW¾—¡ý‘Ùïn/¢Ã‹¥”ƒxhM„¶f§Ñ™úžÙ)t(´j}ÿð°Nq` Ír”}‚ÑDíÏ÷ª d»¾áëÍ~ÖJ~é‹¥Cû~½\M¨„C1PE¡zÀð(”Ö™ñ*†@Q‡w†yMä_zp%Ô´r¢OѹZ߃¬§öÇÞbƒLùÔñ_Ã!>|¼]یҋ¤šï‡þåâ‚ñ*@Ö½v²Ø²"ÈIY®h'ƒüìS::Ç¡èãÜaáU(1ê(¹­e:~ '@ù ª’S/Ò¡â•òšÚO¨ôÍ4ê†*[ ê ¨Ú ±—gÜÕ%…R]{™ \œÉ›¥+'äE®ÉÛ= ÎŸ|6o´ê«oK,Bãa}ñY h¦¶4a)ÜŸÈž´ ¸CÑäÓïT’Ðþzòº |. üôü&tr, üürº¢ˆˆÖæ)“Ì Õ}è›N0ÌL…~»Ê«îMßàkåÛ‡±­0lû…;ÇÁF™ëm+”ÁX4±`ÐÁƒ0.yANÑyLŒÉVêNÃT…SwÄ…øÞ>’ʺN s{›ú‰?‚ŸAÅ/^wJÂBŒ™ÖzA-,‘tKË…êÀr€Ñ½ŒN Xùx„ ÖBÈŸüQ‡ Q¿Ú#Ø¢ÊNkzÑ¿0aMV*þ žßßM‡D3bn•ÛHåkMwIÍ©¯…Z6 ™”ù]g^q$çŒøÌT})9<ޱ^Aj¦Ë'Š!mYgvC;#ÒwZ AÆà3‘çÕ‘é|¯ášÝEd‰&ñ¼r÷}c’yì×Ç“©¹½‘ë8­Ðbò´&^£1çC¾°« ûŽ>Bsôw2ß¡ÐKÒ¤ãO³ð€x‘ŠÊ¯1cYVyÿJœ§“MMõG©˜3 &Æ•(ÜWµv0{ù x°9¢¼®þùÏZš¨Hæ³ðŠ¿UèöÐ( ê¡“y¿×“PmK7éqîjÌüСêC­?˜Pcš†º7‡tjcQߣ±šï¼;¾sr—T}…Æ_*Úv_“EÓK‘N‰"FhzàX §5š¿vŽßß&M¯Í³ %ÑrçÍ#y"´VÝ8ÖgŒ6÷w6w¶ÿÕ¡Š›•ÁÕSèðr#úý´:1ì$?ðŽàK¯'±º©ýo¾ç¼µG,Cš»|Où¬ Õ ô\—GÈUû\‡E¾¶Üè—Uf Gu¥ñˆw´ð¬7V§IC­§ÖM²5¨ÚeW'ú±*x†•¾P´Bé®Y¯h=øXZÆ}z Ûw|<ÁôׯƜ‹yykCG@¾rÍVS–9Nñ}S~šeJ¿Õÿ0ý‚ªœ!’a«·P·uN|ž)š¾QÞêÚ€Öä«~!”IÐ>þÜü€ÝeèU5áùD ï4¿] ž‡®á3W¨j \ûðôx~ßgè.×,q¦î‚n©ÉÈ€ÀRèzZe6*é]»ƒŽ§S–r¥„ʼ.t‰ þtö'tUkI ,Aw”hJÁ½3Ðòhî6AoÑüû^øÂmbô^úKû§â—Çàëûù½Â²ƒ0´üÒé;Œ|Ò³8c'Åy¯Ú¬Á¸¸÷Ád(˜TLÒä9ËÓ·Yé…»ea–º¢égühXÔ¿Í¡ .†ʲҰ¸}씑 ,WÆGÚÂ8¬~*Õ- ‚Cy9Ú§Xaëó…îO.ðûc‚–AÕ4¹ ÿs‰—X»gpW·…FÂÜÍo¥õä—’µ®ÿ\ŽFò¤ Õ¦^¤,¸XÏ]¹€4L’Ò;.!]^Ðõ0*dPß™;>-ŠŒ%áóGÏU!“as+—Š2ÿèfW>‚¬¯%ÓfíŸ]ù-sÈîYd"Ü©…œGfßN#÷Ëbºˆ›ÈKúIä‰òi’ú½šéFþøy‘!õZä0ØÎõF¡J¯åæ(‰æ'?Z h±KÞ¢-н¹i)º‰”fÂÌÉ‹(9’$¯þPÚc=…æYÊÞy}¯c7Ê©6Žîh©¢‚ûÍi >T¼Üž3ß?ŒÊç:ò½D˜ÐÙ™Ÿ#ð°^‚ ³Õ]Õ§x¸v\€ìjåÅĥܨFw\£f¨÷rÑ|om&¤Îþa4ú¸×$x* MŠÎä¼ìº†¦ wU YËÙ…’h>z“ŸrZ¬}Mk¸ŠV\r­>½Ak‹Œd§$1´ydðùŽâ&ÚŽ$Ñ.颽ÂÍÞDtˆ»˜îgÖˆN4¢?ä‹Ñ9l®Dj6’ CÖ¹Ãÿƒ‡U;7«1Ðy.ùé^34NΪÞÓ‡û^4²uZ.Àj"íûîVÐyYQJdEêzE¿Ÿj9NàÿÖJ(¥¤öeIì†"ñÜJÈJ8Ãÿrv«È)XùB«è‰ÔgÜ ;Êeœ j™FzÂàùèË– _êèä3kȜ折ØÙ? ;ïô:ôZ4?Ж ãXÊI} (Ö_ñ*N"èœ<ÖÊN³'å@ù¶˜©Ùv?TÔ¾2μ•s m£Ç¡ äS3b®¸¤½’ÀMÈ‹Þ4ÄAÍy>™Æq'¨}#ã÷ÚêÆVµIèþͽwT¤ I¨´ÐÄSZ˜?X<­» ¬ÅÙC;‡_GÔÜ&|–’}U.q:‚+6’  syb“lïsè~WŸìe£½þRáä_áË áJ‰Ï0ðK´€…†‚6¤½‚‘$j«KŠ0Æ3Ù ßÒÞϾŒ' ³G7 oòÁÿhàš ø~Пbü½Ìzœ2gᶇ½-Ëëª/`Û²+¢^ÂbZ¸ÜÒ–,ó«™,•Çvfî¤Õ°F»#îdÏë¯(+X\aÓ—ó1˜ÁöU2-ø#jIÖR°‰îÏ„¿6“Fiõ± í¸kÁvûv înüVêÿ§÷d1Sy"EªLÂ%b¤j5w–úi•¬’Ce‘þ®ƒ]‡ 2JwÍŽLÿD&‡hÿòdINxøê<î;­/×û×÷ok•žFÎöÌÃì”Èsc}¶™>ùd÷OŒô£c—ZòÅs(¤¼ãœ÷LEY¬Š¹/âÁ×Ý9)Á“î)iߊRóÜT}òQæôVœ®L6ÛïÖ§€òBæösíÆ#AäçïE•ýÏ~ý¹Óªè³ûÛw Tß'kÎÚÓ†š,×{ìþ”¡¶üf.ý WÔ=oäÑÔ1ŒúůîöVd ÑIÇä#dh"Å}ßÇ’M_ŒÈ6­Ð£Y²ÌAE4/}žšLz -†y5…ä;Њf¹0eh­õ4Ýì “Ð&²yؽƒá_*¶]äVY@‡}>Öbt¢Ûu²Èe‚àK#}ï,©ü_tø[<.ÉCÚc¯?ùAøüÛæï;[3{ÏÇ “Lجúªófü&t‡8ÄýÞ¼Í:|펟¡æ³*ÕªŽ%á¼7“aŸ…rýÍ©†· ä¸)OþÎWøH|eñ ¯rïûÎyìàÖ}æÜ„<–—ÊyÏ@Þ‘kùíP°@m»ïa”:z¤pöV@•I—YÞ @Ý+sÖçkÐVÚ"kzZ]»Æuê« ½^T³€o:ègª "ŸCçÝ2îø$說ŸœÝ‚îrí;Ç ;~È7–Û ºvºnñ‘RB—ýô¨Å“÷ÐY¸X¯üâḮ²C>JÐÙ/ahJ8Þ¥uêjL=yá¯É3\È?ÂæÞUR$Ø7–ŸˆB¯Ïu9ýE<§ÎØ£Œ¢¶…*·Ë.¡Øyί§ÒðP'tÕ»,”¬ d¾‹Òf?ÎT¿BYáI™u’Ï(’?G£‚§ZI†W**^m.ý•ÿ•O¶òeú' ô&V´ºxXÙ]1ê²rôƒ)þ.¾tÚµÊWß”£NIq[(êUr¸o¥ò A'ïé»(‹F“¶Ýšh2^©±cЀ¦_îDY©ú¢Y¿CÇŸáf4Ÿáõ-¹;·ÓT‘¡•@½Ã¾Úhm]­ÙE[Ž6i †ûž£íðhÀ©¤´—ß[§²Ëb7r*ÝÉЉš,¯øv‡&M׿tH>þíhÇÿÐay Z+z 1(`Gc:÷¸3ÞžÈZú¬òH„¬îqqriûívºä²û¡nÿçèUJY¨ø¶§å~î6!·ÕSïáƒÂÐíH¥í£§õÁ5î*d_fp¢³´ƒÌÇÕÙsè!ýTÙŠú6¼O­ö¹ê¸Òz)|Zàý—Ïm7T¼ SÛå•ážÇÀòG9H+˜`ã:³?¼ÀG]ŽtP"zC‰†žÀEíîÓ…ÿynªà<Á3³Ç™æú‡ðŽ0?Lm‹ìÿFÈ‹¦ŽÌE¡êçG—¨~#@/cA˜G4ÕäÝþ^o¢¬›õžÁ_ ްQM˜7”ã 4ówZVOž#äĻŤâAÐ&J³ýX“ó2«ŸÁç…È»§šÐiÓÜ0zì!AïCQOÖBOíÅêFWè‰Pæ|Tr|öNÃ`¦ñ¹$Öu‘¾í²Ìœ£/Ä’÷¯ŽÂ7¡‰—äƒs0^±¢,Â0r\â:³>L3œÊr͇™Ò=M¢_xá‡è¾~:%ÌwÄ!cÇ&,Zª)exqÀR­ñêS*¬ˆIñ(ð€Õ˜Õ*’¼-Xg‹/äâ냾P?ù¡~Øúx·åü¾$»Tãå‹DRÉÖc#HÜù{öL¿ îŠxs¥J¡w»°øø«îQ?gG‚ò¾vð”#•U”i˳:¤)è×i±Azt -0G†a¥biçXÜ[8Üû[H™Ë»RKÏ"ëòµŠu2rÜÖÌø¦Ã)äTÖqz¨i<&¡­SÈ;ørŽq#î“߉šN(طŶûYЏŸ?£ NmZjòÏâ¡V£„|*ü{ÓD**eÌ8.Æ*³ãáÃ¥sºÞïPž4ÁýØZ-™yÊ£¹J†*K?%O£ª©ŸUc¿ªËqï<ÛHBMuÚãÉÌPû\Nƒã +ê~L\6DÚ«¦÷i6ÑÈîœÔ)4 ½aðåà4­‘¢Z-ï@³åEW4ïí+8|¤-–?+¸ˆVjƒêÁóhmvÿ•ùÓm´‰þTÖ–$ü¯”-]&øRSâ'Ú;.-y> èð¥êJ€âÿE‡_¤9X1¤Û%´dt-ãŠ6ßè"Gü…Cº'#a“ï]ÍÐt}ª:[uÇš¼zV×;¡FAñé·ô“PItæ«Òµz1ŠX{Ÿ…"-ùOÜ=ÿöc<ÝM*ÜîúOÆ?}«-+Ãÿô`ü·ßæ¿=ÿíÁie?dN4úooÅLJýÌÅ Óë¨H³¤=teš0W1–B÷Ë"=RKÿŒÿýÞ]œtgkÿlÿ³§Ôk®ùCÿnïÄÝ­7Óûgÿî"¢‰'¿ gx¶òé{Fèã_‰óß|ÿooÍ“!áhçz¬oßÑ›”‡áîú„Ñ|©@š?·áÛÙÇAÖßÎÀÄ…á•7‡ a*÷˜³‹:ÌH²d 샹žƒÏ¼›`¾Èý”—],ž:›ø–…ßÒš_ª‡Uñb ¾ï5°þè–#›À}ØÒZîL¥(„ßê¢|Â\H$:(qòéa$.9—«(Ì€»4ô‹´ƒäòÏ$›{jÄ°FJYG^1Y+¤~ÈcæÝ%tj•Чà320Z²DQqŸýfá1(¦új*Dß=ŸŸ·¾(™êÛ2Õ‰ÒŠßdýS©Q–­¥æïúY9¥˜ëã¨àtz9XoÔ5PDŸ@e§ÆÈ¶7/7Þ÷xX°òZŸÕQY9R†ûšÚ¢V“ev«BêtØÆiJ ÞˆÎ¥ÑˆH4غ;ãØÌÆŒñ$†hJN1sÈ5 Mg¾ñ„?B³iíB­ 'Ð|‰¹ºêÌ&Z’s Óȳ¢•hñÀ¡)´¶ëÕ÷7'ð°-^ÑO… C®åQO´?ü.·®jž]-¢öÓD'ʱëìmÇÐùn½<ºPnF_ø:, ­؉þGo¶ŸD#?Ö‹5¿eÐÓ#¡~VÎdÓÌñ¾†‘ËÎSÈ Öù²ò-]Òúþ«»‚qõ›’1¹û¾ØÊXÑ ²f&nOZ d29þij¹N,ß=éý Ò¢|‘y4RßH¨ý¬ýg;Cå’r¢›8d]Tÿ¹0Õü¿tú_]³÷ysßl„’=¢÷¨ÌË ÔCø7Çl7”5Š$½»ðOŸMEíSƒÄ½úsª„^.±+Zÿ¿ûm‚ŠÞȌނ‡¨°ŠÖ”ôßBá`ÈP–þï<ÀÜðÊæ-|¶wN¤]ÿ ÅYOK²Âÿé¯éa(±ÞS„ÿè¶ÿœÌ©~êÿôLýÓ[ÃWuꄃ2Œ½â²>ËÙó¿{kFRo°ÒÁ Ã[uŒž‚¹ëó‰ñì—`^ðÙ¾¤ ,Xøµ®zzˆ –Nš¤F¾ËÕäóôÆ´°Ê5gÌÐ k¤3Çãa–ÎÜtûGÇ¿j˜‡Jxa'µESsX‰/V?ÜÆ+¸KlqsX´I·É³Šš‘¬k,n£,Ék›ö‹«º"å×VåФ‘µ{´Gÿ ÒÍ4Ÿ¦MjC†ðWa·»´q¯ƒ;ç­{W‘Ùj•¢²ï ²^Ͱ?꣈lßC^nžDŽwCwô¼_"w¹QÌýý‘7„ÛêÖ7wä·v(zºW/¬tZÅ:£ðN{pž{Šn(‡÷è§à¡«sÝJÅWPJV]/+eäÀxŽÀÏÃû]/>iA¹±Æ¯imwðÈ×÷ ,NïQEüÇôà)ªº^“ÑÜ…ê–T8ö_FMïø•5‹o¨æý5Eîê¯\oÿቮ–¬êh”}ÕèéOh2Éß»V ù±}móAPb’­ø¤ªèöõ‰=a†º?ÉŽ±RBS¯ŽÞZO2´Î‹D¨ÑtÁgJëBè8¥åîäó:gw¿Z8Ýòm /ô ‡j„'±3ôŸ±Ûöðüîû ëiíÛ¾+èüb[|xð tFŽ AgeýR”ü}è²";½$uºùÅBé7 ‡ö“˜÷A[è=ìÀ%–i }þ'ŽY‡LC?ã\äýƒ100ã6Õ¡ö †8‚î\|#VgÞñÛÃè·imEî]ð-Þ¤ÕŸX &â%ç%sb`ªÇ*_”ìÌèUïåå¹sóç >óŽÞ¤"%,ú‹/Õ잇e™kV93°*ë¾ø"a=ŠV¡•¶d…=2 <äùöýK|1É<="±‰Ä¯ƒ³‚nÉá.ñlŽ*ù+HZÍvÜÿ ’¹í1¬˜@òCõNKïCJ¥}u½SóHýŒ{`¯mÒi¨µ>›Aº#’J6ŽÈxÿ˜ÏÇ£ÈÄ ùþ(2×r{¹òYƒ(6¼TB‘ÍÙêK©úd·y/jkœ¾læÕdÈýR„ÌÞÊyÖºˆ%Z ŸDœQÉždä˜\ûíÊ…+-E'ýŽ P”âñ…ùv±¾ù6°E5YOép…£˜q¹£¿*|’[$熒¹a6Ú[Ý(­¬ž³“É€²4KŽ” [(Ç#êÅ@ÈW Zç:?hÄ£¢! ë~ö«¨,ê­î&‚ð À޹´UŸ·“ ¡:½Ó¶˜t+jÏ+^QE­‡}©­²™¨sW.9ÀÖ õB™tYw£Áã‘Ø~q{4z+v¦cðš$|~Oº8¦Ù̱GéÐ,ùYX¯š'œn8‡9j¿Ïò¶ÛÓ0Jëôk¸³.A9]ULÇ:THßÊ·ýz *yOy¿…Êj÷›ƒ³P%}âÝÓ„ªA*éb©[P½~ó2?Ï$Ô²~©9iu—W¼üé6¡As÷‰ÙJhÚ?QvN6 š×³O×H@+Ç~Oýìyèdjsë8#tT>–_øh].ÍJ)=iÐÃã6ik}Ò7}ý%¡ÿ ¥‹u£î¿<¼IrØ¥´FyõˆNêÀØë'_ž³qÙŠ®(Ó§01oM[}t¦Æø“6‰Ä`†ªLß¶¡æ¼3Ù¬`žr';“è),Ì\³.â; Kæ±ýŸã`9£…¦qJVé\è<׆µ`ÿ1EØ£M03‚­#¶jžÜ¯àW*{Îæ´ì\+M+|oŒÄæŒÏh]ä÷‡õÌz$­"ºÓJŒd11¥4H~GôÇK/¤Œ]_|ÚÑ‡Ô "­ÂyìH÷òÙKööËÈpLýÚX< î=x´Šè<2svv´¥­"«’ªD[£²½ÜW`vf9ì|¥?É_Cn/A¢_sÆÈëøØLq}ùEU#.ü@A ß¶íD®R {ÇýE“#Ùˆ´á¡½­÷9£äÒý\ ]#”žÞ»ÜÇ0޲5áÔ'¶TQ.l.î×í+xÄË/¢ •ßú ûªô|}íJĨ¶ ÷và'j,«E°ã@íý6çªx¢QשDçüÔOšùíõ ÍOéN  MNËíÇhzÝ”YsÍ.:ï½ÃŠæ~¿þ}îéÖåÙìFËÇ⼯>õ£Uî})‘·h=äŸÂB†¶{ƒ›Ê‰+ÐÎ"ÁÉï=¢}üºÞçè°zõë¸':Ùœz.n&Î5yôþÚrèÂÕ&‰ñºŒ²PT¾¡Ç.’$Æýhr6l÷I±RŒ~‡õÄOc[éŠÐ™Ã–rõ¶24ú±ûÝPƒêª°ØÓ_Y¡"¬šÅù”>Qôs£†bR3!bžP8µïõÎÒ‚¯\;©Ô¿y”_B"·ÏAΕ¡oeû" ÇÍVØËNò•?ö§™€9%+ùÇ z9I×òÜ ê~ÅQ¦Bó5Îkö»ßA[5_“L|~¬Ÿ­RIã«5ï“@ש÷œl¬¿ »Ü´ùòMwèy¦»ïôE®Æî±oÝÇÑÐÍtõëìÝLèÒ67J „Îë§_¤GB«d‰TBWêYcN†tè¾üLÛ(.zÜmVÊò 7¬éJEn$ôµö‰È°ðCÿñ3sÞdbðUù{2£Àuòm¢¨$…‘Û‘{‚u.ÂCå $äÃÊ}Ϲ9`¢>à{‰Ây˜ÚÐãY}?3î6âe|ðƒü“°‘D=ÌϾuÙƒ¯_¾« Ëhák»@ð—J´ýÚÃzxsàOØâs ~lCð•;×R°<€m&æH${žÞúÅwíc8—÷ Is%ÍwóV#™Ó^ÍÛŸ\j÷u]ФTëöºýü.R'p»ê!fÕ±¦{óÈ@#|ô Û2ÞU~£çêˆLìoš¾Ž§G‰ÈÛxJÐÔ?ÅtIú.šyÌ9q´J¢ùÑ´½½:Óhá|¢³“’ -‹úËŠA« 6aÍ¡hþY'`(mÞ³?~Ö~m»•æÜ©/~|/|–’rþ<Ê5¯D¯rq=ƒò¸Mµëžð±´hȘ” èo:Û_„\rŠwJQG9Oãî¡ìÈðºcr#`Þ§VïÜÔ.Üõc€”ïD^÷!m—¡ã,ù*dÐz§Ÿ †¬$ÓÎ{qQsæüC!g(È“MÊ ‡ºŒ—Žlör¡Øªeá(Yº¥;íñʼÃù.±A¹µ¹Sô•¿¹uÖc*VRCäÿBå3O›&Ò—P˜D jìÇ^|AjÌ µÔLE5D%Pç-!S¾Ð v¥-ü 4í²?n\y š')Ž7fBë®—c-ôAÿòÐEv±Ã:ê/÷ TóæƒÄ?Q,JÐ#!Y^³n }jžÇ<7r¡?pÔºóNï¿<¼F÷àÛyån{âqØÆÞ08Ö1ÅÁøñŒÐ=0±\­Æh/Sß^Ü:ÿ]fv÷˜ŸûSsNgE}†Ÿ ' ‹¯Ý€…>bo²î°¤2á è]Ëq‘b·oÙÂÊNWó”@¬]ÙÒˆwë ñßdß–XI†èá{ð+Š÷®|zìgì%h‰¹&<ÔB’ÖS«nAHz—dÛnLÉlõfJ‘\3¼BÐãRÚñ¾•æhGê´ r]=Ù+ò‹Æ|ÔNv#ãvâ«]¼i"ûùàÍkȲõy·*ÿkd³Miù>~9¨v˜Û ÷¾_§½Ê(‘WšÊp•úòý:Ô…‚ Í=K£(”ñ´¿EmÇâúÈVQ<-Ceæ¢Jf~áVÚFégߟV{¡ì™Ü$fÇ\”“¡s2’÷A…_jœ¿U¯£2Wêö¹¹nÄëQ¬£–ލv/$1v¢ 5. «ùZ¡Ö]5²JÔ) b`™+@½µSe…×çÐP$"Zîä/4V S™Ù劦ôž‚N¡‰Íèã4ÛR”{Ä €æ]™)ºÑb§IÍÓëZÑiuf¡µ0Îô“V´Ñùùò13Úž{B&ôø&Ú%ÉýÞ«°ˆö#ÌÊ £ Ðz´:÷;Þ^}›¤þp°  ‹OXq¾WY” î¶Bó_CÉÕbÝÈö‡.Ü3Ö†GÉÎ1B§`­V‰$4l*=Úð‡êìçKó„óþ‡Œ¥«6”aã­6çú«KZ¢-(,¤ óÙ‰€ü2þçlÏ ·F£Q“»r8ª¾vÔe@öæå*[áG7ôÂ58³JnÈF߀*«<¯„GPïG%ôæ>´ð,§—ʾ…vƒˆÛvtƒÐAµ×çãA;ètySu0Õº¦ÍŸ¨R}‚íÏo-ò ¡W(“^Ž%÷Ÿ±Ç›c6üE&tGI3þ1¡„®ƒ*ùÇÐexx͉¡ËëYð~­èÚé—ÔYîVÒ¬½"*ÐSôîö5sFè9ÒkYØ _ô~Ò%…þ‚E=Ñ*øéãa¾Ç†´#~=Ò‚‘,õÄã§£` ­Z£]ùp³æX©ò2L,tŒë”šÂô~åðJ‹C0scî¢Cüài¦¯ƒ·;^¿ÏÃâÖµmêDX6p“‚UµÂª÷Ó°r`I¾“ ¶è#ž†ý!ðpˆù”n„>ì|ªè,,'Bâs™ïÙ¤pI@,¯L’¾Ñ($³éZm`-Cr`Q%¤Ôf”0áGê7\?];N[}m[f¨˜#ö BÆ;,ýoÄú‰¹É]DÕ™‹é*ÃZøõŠèô•§ÙÈf/8J®…ìN÷êÅÏ"ç5ŸŸ;ö;ë=Ïcbä%¦¢B>EpëÑ<€ü÷íúK:Qpש &;9zS•Õv*EüŽjìAÑs{¤5/¢Øãr²^><´8ýÒÐZ %ŠNo·ö¡4çP•p ÌšJ¸óé|<üÝ\÷ZÙ(Ê/¾æ)óÃ#“Ïò”Äß Ruî»0[G^™=Sw”PÕ-t¹ó‰ ªuï2`X@ ¯©l­§QKh$¶Uœµ×–ŠËo¡noÆ+fá%Ôo¹¿ÝµØ€†Ÿtc.8/¡q¹‘ƒ•Išª©ì #E³(z•ÍY.溠ExêáåghIr)wœìZ?>vá5Z“upFGÆg“~òÇÑVŒ\áí ÚÈÖÕ¦³hïl{÷˯9t¸ß”:}sÙŸ;oN3¬§>Æ;âQáRsîç±ðÜÊ=^+ ´žãêfd&›öxµx–ž¹M“5C{Þý¡zÖ¨ÑÜëM1åìaš´Â¢ðÑ¢‡ï‚‰.ä¿}ñéÇX$ääe¶K+‰A–¢oxÇXÅ_Îmø®9À{÷WöPCªŸP¯Žª-¤„MuàYH-):Ý—ékßÜ_†¬âÞÚ~¿%ÈŠ8íp ÷Z_+7[t¨ ¹°÷ˆå7(õ8(l½|ʣ̕‹ |^¿¢¸ç7TxÛð89YB%µÌ›]\¡2Á€é -Té-0>¤c€ªé¶í ÈŸP=û1ÊŸE”wM2}¹¡ÎõÔö.¯Yh`š_¢\„ÆÙ6j1ã£ÐÜåG×&ŸÖÒÄ{¬ÿå¡›LFCÇ'G?Ûæèòõ«ô³j•™•×1Ç ÏTPËí²ô‡™ªÿ—‡þ?OˆƒQ.ëC§øC4ö¯ÏÆ€–0ËF=lñðrÌøÁ/?aç‹vx¯$jû"1eæ×÷‘$ApÙbgIM‰Oˆ¯A2¶ß´R­‘|×ÜCÞkHÉj`ß|¢©OÖ«{„9"œp#2к&JÅ!csÙ¸æ´;2}xà>kA‚,]û3¯÷!½âX ý.d/yv¿«Y¹j;»¿FÖ!ïžÝ ^jäë r½ª ƒ#gXøQX‡5:ìñŠR~c;ÁŽâQ¾jÂ(é#¦{1¥ ÊU2Þ/£ì¾!¥êòxx@šóŬ*Ü£ŠZÈš@¥'AÅ«eýý7ø¤óQM¤6ÖÞÀÕÿWœ$Ž@Í ÑçË+¨ÃlÐ_4çŒzª+Ñç#UÑÀí©ì&4:åÒ[z[ M´KÂû$£iäíwoýÑ송ϯ14?'yñ’™9Zxžt•¦ª@ËS›íD#håó©¬<9­¯Y_¾Jtm"#Ò{n”£mÊ£–X]´kJ»¨ûí—z²+;åБO¾XDµ ìXWi÷² ó“hÖÓ‘L|"é³Nqšûª*\j­E6Î;ÍŽê°Æµr`êz(t<=;&À 7¾ïiÜÈ„jÃþç+õPÁÌjêøÁ Jú×?ñÇ8ÂÇK^©<éÃŽu%þÃÕé\(bfù÷½?DyCá¹ó–mjP¬ÿƒ×’£„ ®ß]TƒÒÁžÝµ7< l$‡M„Ä Ê¿=˜c¹~ *ª¬Ž¾ø•ü%UmŽåPYRÎæ´¿›Û@oµU?³~GAÂïèãH¢oš•°¤•oPg•T¥ûÜêgº®A]9ÚÐ\U_Ô• Ÿæ˜ÏGÆ ÿËÂ׻ÞwBG§*ó½®èºjäøØz ß<ì }Î#"ë%Ðÿ(R£åÏò¿<ôÕŸ̇Qޝµžtþ0–LêÆAu ÆÕ÷¿"b¿^¼É4Î…©Éò§ŠàûÙ±$Ïd˜S^ ;M& ?‹enu\0„…ªg‰?«a‰é*ÕÇ·¤°ìÇ|j-û¬Œ”ª ÉGÚ{e/Ë7:Ø`wñÜlþ[{ï„¥ººÀ/Gq™¥ø³ô`Œiïm$šÜI;t•I|Fã ”eç3 eîÈR Ø˜Ç=ÕF'8£î!E÷E:÷Ì ¤æ¹ºòiëH54,|‘~’Ïâ϶;2> vtD¦‹gÅ7…î"‹ÿR&O î«oÞØßvÙψ+Ù>¦A.ß4UC×äùº®yêð3ä{³ðìܳHŸ«±5pGaŠ ˜kfLx (ô×j58÷ö™5JŠû¬ZQ[£ÔïGcϯ\A™ê=¾¼/ððmËÁŸ ¶¨ÀÞ³kœß•èJ†}H…B»ï“¦ûã _÷I7ó/È•ßgø^™²]ÂZñÍC¶`цD7AoÇ|T|÷Aq‹5º/ô÷½Oùï“÷BˆhŸƒOž‰{oG'ÁgîÐòOÛ c-i&{g ºlɸ7'4¡{"!üþòèµêt¤äs>µ›;Ív#ÿŒ½»¦>ÌAOHüMþ/åÐ}IG”B7yÕÀ§Dèf=Í–diÝ©V^dkAÏåàx €^÷€þðËMо/êZ¥>|i÷o¨èǵ]Ôç`PöÊôçOt0|ŸÏÞ€Qê”þœ:‹­¶žyI ãV ëÄ—aRãÂçzj˜væwµMh™\:‹'ôðÃRˆ¹¿£؃ŽOŽÂbúémé½f°|¬7ôXÒeX5¡~˜óà#¬ßÐJ{÷6çVëü <|®=]p½ vÎï÷Ûá¢Cbìûa¼IzÍXoI¬"iÈEÖ·ƒ“Hfø*¾ _!¹|ù“¡(g¤´¦r ηEê,.âÏq¤ÓÓäv äD²ÅÙ-×÷Èx­Y˱º ™(÷>Iâ}Ìé‹Üç_ßCÖ³}¡ËCÈfµ:mÒʼnì. cŠÁÈ\~u‰¹«$Ûms‘—JÕbA«ù4Gün¥!ÿÓ–äûî¢ #Y]¥²4 ëÿþð-EbTinªè¢h|áNOk½Î•%»ÜöAɯӷ2_}EiµŠlÖa” ý˜5鋇³¯LmFù¾Žâ‘! GlG%Ç_ÔYW¤P%3=¿Èð-ªÔ˜Œ¿‚jÏ’c7XéQƒû‰û&_ jM‡µ Cm÷ôÖß)L¨+¬ï1¦0„ú»”ÛòåÐ`ŽŒy$†)ß|P@“ĆY;»e4Mï:Ú5‚fATTk÷MÐüh·õvÝs´PaCµ8´äØZ_×–¿:k½¶Ñj8&Tb·+Z×Äâ—ïÁh“¶Ø^G¶EÛÖ.£]àd\ÿ§Y´÷ùêùN(©¼ú.‹ŽNªÂÝ°Çø]Ä'êµ-³ÛOáÞOÊoh˜`ÑåŽ@¤¾2´]»_êF¡Õ!y_(G®@Ù¾÷z,ï¡èmjÅDäuô`)oú>îôYÓþ€]ý4¤›Ëé; KCZÔùóÁÞ"R´ÍØ5É­ùäi UâáÝÔ.H¯ï9 qóÞßu8©~ó!ÏIÆ+ªö"¶E·‰ ÛtjïçzHüo.¬LºŸe·Æe),€ ¬Ñú?ÌrhÓ?*’ÅÃ\‡´¡RIkä95T¶•J¾\ U®þ×ïÇ}ƒª•G5F?¡zx5¹ê ÔL×ÆÞ·ÿ»ŽîîýÆ!¨Ÿè—›sáýûÞ7»)qh΢ýìÖ/û÷½PJ‹®ÿòðëaíýLÐñ…?·b0º‚øtÔ»zw8êìÒå}ÞÏ©,/©Bÿ‹ŠzÅÿòð¼ü»Ó©`”ÝÍÑóW(Œ¥\ŸÔ!«…qí ª¾µÑ0ILÙ»£»SÓTŒãIñð}…˳4ñ)̉e“©öÂÏÄØýƒ Ò°•ñSz wjÇw« ôÛšiÐ+Ÿ¥®ÖVÚݛÄN¾4Ø`¼šþ5¶È¾ox^Ò‡_ê2ä‹$àOÍm½‘GHTmœ¹­·†$ª/~®+¤ã®Á?J=\ý¸û…ûP«N(î L?–ô)ÆWÿÞ*Dªáãù)Gã‘öZ‡¿éMv¤/©Òvª=ˆŒ§·=êÛ-‘IÅxl‹YŽÜ¾ó@Z÷Ýt¢ÉÑbAvîŠé¯ÎÓÈŘZ"£Œ<ÙÞªüúBÈçßýùäö¸îYñtý- 5/Æž¡–Ƨòí_ž@±óæý á (ÑëWQ­MŽRž!!º$(ã-uš'ˆ¼F(Ÿ–è×û(CꞘî‰D•Ç>ú¯ç=QÕUíþ–lT§h^ÊæÞAîßu‚õoQ«eÀ{gö=êôPùž5z_Òüùk5Ñ ––Ê=° ¢ïÓµ[Y ‰…mÄ“È4 >;Öƒf®S;{µ¢9¾L¬Ô{‹Ü'ξt@´$æíònAË !!¹´j¾A$g¦ŠÖ¹&ß8×Ð&aÔ‘L“ m#4𬭣ÝÍÇ{•>õƒ«‡ˆ™ÐÁkƒÝ¢‹ïdh¯Þ©F3§]6£ŒoÕ)uú^O¬¼Ø¶Ë°>_oØÿã&Ô‡ä'ÊlrAU¯è‹kò~ô2õ‡³A Wÿ8ׂO]¨# 1BÑ~³ ȧI“Ëœ…À³(È&9Ó@ÿ™²Šû²G÷CnæÚ¾Ž2(N¡=vªÊ~¾7‡†Wr½T_@+ŸÖd%‡wï ~ÔƒN/ïd OèêÌ7%É€wíݹS½ƒ–r¶9Ð×:µþxûâ¿#õ¥–ùTлË2O. º·žÀgB®\Œy.n Ý^ßN9D@kOCô%BÎÔ^tkæÿûÜ!Ù^jaè ùA_{úð # d\>:w6CˆR2f`¸¡„+CÝFN“ôŽÁXÃv–Ê \V㹓^µ3ßaúK‹€6;Ì´¦¶ºÈæÁo¹9U° ÂÔÃߺ‹‹¯ŤÀò™tÅã#ÏaÕ*ÿšÜäX÷ï µ¸ ›œN/Á/ÿáä3«—`G«^÷•Q  Í¿ÞPY@’ʉt&$½|Tš#Ét(Λw>Bò#¿‹O. ¥cÃ.éSKH]Àn<éôkrîCÒ‘ý3ˆŒ—ß\)Œ4@&R©cŒzÈœ<ÚêA§Š¬§M£xÏ#›ÅàìÊå»Èî1Ÿyž9ÿ|TEî&__"—ÞÁ#Ñ-ùô¥‚~ÇÏ!|°hS; ²Yé³~ÈB¡::þ<÷Qä­¤àóÓßQ4Ïe…ñ·ŠÍ ¬»M£„Îé26”œ"¢¢¢Di ©­b(Ó‘nîðú3~B»—óÉ0ÊŸgê7Z+Ä#Æ^¯¼&Pé@B¹;ª\öŠà“tDU:^—]㉨vu[}–žÕ7Õ=ZÒPó¶W`+oj³ßë‹+UG6ÖÝJKÔ‹¦1Úç…!KŸ'_>A£3ÁcF_iÐDbÁî Ñ4šzÊ¿m¨E3Åî\¢Íz4§ÜwÎä@óþ£'熖Ñ"ÅvðŠÏ*Z^ꊥÏxŒVÚL_¨¼Ž¢5“»CjX7Zõ(ÍrÅ¡MVkÌÓ¿ëmÂî,U¤ ¹Æµ7œŸÐ^ÀHø m"ÚoGgÒEâ­R½=’¨ÇÌM¡Õ‹{%Ox¼Ý? 5ÌU³+ÐzG»ÔÈϪDlØ5×@éƒòo(bý9%Å y›i‡<ÿ^‡1`Q&Ì»;Ë}Uáà û²©Eüßu4Ý÷å ÅaÀçr‚$Ÿ}Á_Åñ÷>âÓÇ6½„iÞtG S¯¸2¶¿ëÂg#·®C‘x¶éü9(1ªo>ƒñÿÉ…å~CYãÁªWÊã6Þ‰ßO„ ·“S¹×Ù•»s•A¥yëŸÅþP9B&°”p ª¼A†ò[ Tm]É~ Õý{e·Èè¡f(J°Nê`¿idž Ô·šØý¢Î:*‹õýú´HHKI‡„J7\ÝÝ"*!ˆb¡€*˜(ˆŠˆ"¢Hˆ¤4JƒtwI# ïs¾ëýó×½æYkfÍÌZ{>{?÷̾)A͇ÃD+Ìð+Îm†¶ÿÔµÞ#³:øó?ž¡œÉ¹c Íý{¬–Ǭ¡5|J”ùÚ?ëœ>Á‹aÐqÍfÖøot%ªIV^¥ÿ‡¾:¤³ú.0È>¹ä=ù†RVO_ ÃANï0F~•ÊTKÆ'CgÀä¬ü…¶¶»0sàB°E`(ÌÞ&Êš<ÃóX*U®ðÁÂ4ýw³>}X2‹I:=ò–K?d»úÂ_Ó{^'ô`moôbñqXß0u{(["Š}Gªã`'úRúfj"ÅÅfW³õ ÃÑ™êߌHš°•˜"CäÎlaQѼ¸G“ކ%7÷ZT_}®Ô1²ó5?÷ɼM;žRôON(~´„ŒªìŸöj› 3ùáæºçȲÎ|Œ8ÜÙägŒòã£É:ÚE¤ ¹jX‘­!ïa•^§,ä7)Øëtœ &¾w¾Ÿ@áGNoœ«,P”ãHQwp8¢–¥Ó›hE kÚèž‹§PÊUýÐE–{(ÃzŒ¤~, e[^9EîÑD¯É_ܨL$ÄûŠþ*ª.æ¥ÔU nìÒI®}Aˆ³ÚÓQK{üdœA‘÷ ñÓ–¨ÇûŒ6¡\ ˜¿q^9††‹# >Ò8÷²E^µšúÜ8"“ÁŽæT·(Ød£y—Vù w8Z¤@É݉—hp $øîY´2øÕ¯Ý5Öì·™wΠõäåä1å´ÉK ã-2FÛûõ¥•hwlÖ7ZíÉ-Æ£$¦ ¶ÆŒGÛ?qéý½‰aV/ö¤õš7Ÿ–ûƒî9þyRK=‡ŸfAãüŃí-¨¢á:ã¹nKÈq–oÔMMÿу鴀>”Éyïí¿¹,CÎæÏBI¹O¿Úá• _?Î42{°AF‚e©P°$dXlÙ㪠Yî¯-Ëœ„‚°ÂP‘;õP64+4“5:‡kk >ËøªÁ|<4-ÝÜüÉW-CònŸZcà·™{P5/´ ÍwwÓCÇ©ß %{ ÓÑlÎ%–úß±#zjäy‘(´SMœºmҢߦGà÷I>‡‡Äð»L5õȉRh³¹‘»t!Ú2Em@£Ô«¸Pè”[5H¨©†®ò½&ÐC¼ñ½Öˆ z;oŸ¶ˆút,V<Û`Гtps†þJökòazê,S‹Þ_¹±&â©äçf¼`jživ€?·]=-…yÙº.Ef°PCµ{šƒ–BgN(‚G—Sù*æ°zÙÕÚÝÖk—]_xhÕSØG vÙ.qèq#ñ>²wšÏYä3ïÓþC2Hv:~¾ð˜%RhøêµyÜFJU•/ð&R Mîã GšB.æå‹«Hg¬£Wب‚ $õc-Èx)8Ù¡™vñ’Ì#K|scÀ2²ºŸ©~nF‰ì?æ^XAÎ#ÛRŸb‘ë1×Áµ{IÈÓœeCíà‰|,~Aæ7,‘ßìf$UáaHÀ˜‡—…xß×å‘@áÆƒðã!(’Í«–óê>ŠÕîÕ¢Œ4ÄÃ{”ëEtvê~À…h*”\`}ææ×ÒÚÁ­Ò(SÙ2Eî*rñÄVr÷PÁ€DsO– *qf.Yl ò_­ó¯)PM]Ìí3âèvfs’/j8™Lõí•FÍrž¿Ô6ž¨ç*@f¯!•&_Ôó•H3ø‰J…?Þ£gÈhÎ 4ÞÑÎûK5ˆ¦Å¬•[I}h.vß_áH š/¼u¤v´Èæ!-}‹–W>¿uÍ­ä_Jf§G«Åßg³NÖ£õç'¢ã-NhsêÈ•ÀChËžŸD¯ü mëÞ¾j´v!GÎQ}uG{©Ä£Ÿ–Ð~È™á, *Û¾?0€!õ¦‚¯¿D}ÃUÉrYd|é™$òæ&º4>ü uw †BÙ/OÖä:(d©75§8¹Ÿõdh¯†¬]ÖpŒ¥„Ì3&—hÆ–!ÝìHôÉøýMüZ»š RZÕ¢Z´!y»Ì¸ïôHf …ߟˆàc¼ORðt$|yQ=kq2Ù—"ÿ§ß‰0È{Ðôºg÷>|oã ´ û'tV#øá¶w <"P¼ÉyVÒJJŽ¥¿ý=G%äËîÎ Pêe@Ú«JRÙT+¥¡ÌŸdâ®Ø7(':úÕ¸Ê[%K…ˆ2¡¢I%¬H!*¥mØØ„¡*»"ðç+ ¨yø.)þÆ&üzXH‘3*uÕeµY^ÿÇó "ËO¡ydjIdŽZŸÕÕÑYÓ@ÛÕ–jnÆHèx@ߤã§]i̵dßüÇCKßí,dó½¦-†>ûμÞ~#f&O탱½£ª±jþ0>µSÓåד¦ó4Wa†Fz½"[ f½=L—'ˆ`>ðUÏÝsXh;öôU€7,©:U \g„åLö²–~ø«å#kônÖˆ2åãuL`ýOfËÔ{ØÚ_ÏD0ÃŽ§;Û¹€\$ œùþt¼ ‰‡X¦^÷CRïM†ëzºHÎ[{Èv$÷Ÿëg¨MŽt‹‡%}Dj;2±)Ù¤:;êÕæƒô^$âœöùÈH£ðÇ0W™êhîñ¿ãF–Ü’çÇ>!ël°âˆ¤rÜœÐ^$è×_*8¦- yUx~QùùÞjX•  ‡{‡¹( ›ÿŠ·¸yE~Þ¨r<ž‰âïY´âtòðHc™•·Å(ÅÄÒä4LÒ¥¡¯‚ô7P6°{ @åÉ9]¹ƒJWo}awAUs2V¡Ï܈2$iåë¨Á ¸ çQókã¼]Œj‡zëL­£®7Ï sëcÔ7+*,#½ˆ†¼H}ó(õò^yMî|¬kh¾†f\bŸÔMz´Œ»›vÉ-˜»Ìï¸ØÚBüÛ´Œº<Å9Kˆª+-‹Û¥h½ÇÇ"Z ­‹© ò¼G›ËÌœÏ ÏC[ÑôÁ©vY´íU£¿-¿í"©‰Mæ˜Ñ^Ó‰G•m CW'Ù›Ÿå¢¹^åCÛÛÈëÑdj¾Kœê9¥¡ñ$Uâµy¨Œ UŒ]‡2×€827a‚.‚ïn\‚’l!ϱ$šHùäÔˆ¼Õ’þÇ_¾9kAñÏ|Cõµ8ÈЕÏW&ä²ô Îê%‰¯EIEÚð”’°ÿùƒBa|PN¡z<<« j¼¬VÍJNCÃQþ”Tžxh>Â>æ®­v»"0¿íÿœ¦í®Q$õƒÐ1c3óãtN挋ûÿF>§]ßÙ¾QÊç(Zm­âßy_¬A›ÀÙÏì3ÐÆúÁoéô2´¥LÇp[ö@»?Wåì'¯5Çù¥ ó{¢b=t5Üüåä}z¬ƒØ? ¥Bß!ÑÇ—ßÁ€R×Ó'’·`ðYÅëR^6Ž„û<~{4 ÁX±G ±ML”o¿+ˆÊ…iÒVcÿs;ð'.˜Ìór ÌkÈeÇ~¹MГÃÐXXº}ìÍûAX9Ie¢É«¾s%FB°žùÀNƒÀC†ƒ½#S°3Í;=ñù­°¿ ŸWA’è»VR,Ì!¯Wÿ%R¨´8ºy)Á?ó2+3Ryi˜ÞkFšòo^®… ÉîÙ+FÈ@ôýjÍGdô=:ê+¬‰Lk7Nõ.E#ËëòCæc‘Õ5Hý͵7Èn–º¤Vꂜ§T¨2GD+ZßOþ÷äéú{B¤[ù8GÅ@~ë–Önø¸NcÎÏŽBÍ+"SQ¸ûù¹ÀWQ¤’Þ¦¥Fņ2ï x™(YZŠ7¤ç¿ m¢ä¦OñÀ JëôK~ìR@™üõiÜQÎEnîn‹4*pÏ},=Šëê»éP¹l\ðÌ¡yTÛ3¡º´Z…˜šû!6ŒÕßF5‘h¢æç‚m}Þߨ½ÿÒ…zöqÔ¹§?Ý5úõ¸3Ÿ°4«£þo<«×Ó…†iûÖï CãG$ß(}CSS”­7mA³ßùÏurxÐ<Ù›Œ¥9-\µºoq¡%óz¿>{zí‡zºeJcˆ¨öƒÕÚvÔ‹óåL¯G†¿ùžÉò‘0·ßg{È©j£s ùÍOr–†üj¼|êl>4 ¹š'¯ÈTe@Ö3¹ÍVêúJ—cIA:óñ—{š¦!Ua\GIÕïŸy—/), 9¶L$eyú1LÈ‹]Ù^Áúð冦yGäcÈ” ¸áœß Ù´)“N…CÞäé7ºx(4¿|÷DÁ‹=\>‘ÅY7‚ƒS˜ äPÇËð Pr}»³B´J‰Î‰zÆ¥CéA¥Y(#µ¦¾=3 e¡UoÈÏ¿!è\e!p‹ÊëMMÌ6­¡â‡_ íGZ¨Žè?ncUqJo”rNCß~Ó}Ãðë3ŸëTÔ}ßz¶ÿ«Ï<¤>€¬‰ô¦×>d ‡là‚Ç÷«È%L9E|y¥d,îÔ#ßJ˜¿ïI˜ùæ°åÂLЉZjQ$ µ¡W¥Å•ÿ^ù‹GLT´öÕs¢dÅ´Ÿaús”öþ"-þé,Ê ô÷KGy‡Ý†Œ‰9Tœ’9Âo€*©¦Aî÷¯ xÿý{$B Õ_}-â¯KAMþü0ßп¨5 ýsbê-ê|KùÆ1:Šz÷«]øï£éãŽ~A4"ÓùžÚ‚Æïš}¼—úÐTÈŒ›anÍžý}µ±Á€æÁþDlÂÁh!qÏEe¨-ºy–·n åÍã)Û¬h%tjC—–­*k/4l¯õÒ›¾ƒæª E’”oÐZW5ðQÚt+»£æÿyÿó’hY&t^l«òÛü]WxúVþ;?5 rÕ»A‡ß»³s„œ¨!dú@—ào¤ÊwŸ€6Ÿ}ê¹çE È&È@†ÚëïIe¥‚Ž|ù»+U¡s ¤¶Yº—+®»'q×/œHú®?žl²¿§^´K®IÂ`ùU¹·Ú20lñÆ#F€ FiøyîÍmÁØDnyx×M˜] ¹£´¦¹OSߦ}r_Ô´-‚y“Já®7…°0œBú–÷+,EI›Ÿ{F+§³äJFFaõL÷e‰5XÿPÁo'¦G~ÁDÁõ/(–ÄØ°ŒBê­œ$‡PxìØ3¯v7i#ò™[ý…bëG–²eñ0®]'ŸOE‰Ønòo3(E®›Âa8„Òz.1 †2i<ìöÝÓ(§]Ó[äÛƒò˽ G6P1#ÞœDåˆûm»…ݨÚÈìØ} ñòÅž'QƒI¹|Ó5o_èÊù9Zýk^õû™QG]xŽu+ƒÿ^sÈA}ßhîÈ€†š±´ö„ë6æ*9­ëyMzÝããVjÐÌÖE•‹~ Íå>óÎÖ‚Æ3ýΙ7h‘©Ç±’½–ìÝQÞºh9ÑκY«Vþ¿Þ¾s@kÒ²´g ¾ôέ ‡ ÕhC®ýÞÖžm‚ü4”_ ¡Í¼÷q÷jD[§›£¯£mµN‹ú­P .ºé0 /Žº#ñ-oN#ÃÑÏÚ§àOo„²@¼"üŠ;_HSxÊè8lu&ÀwÆy+ß•4Èé.p`\‡,qkoÏȨŠù±¡Ú i_ÙìIoÂçÎÚÙÃéƒÂF³§ä É‘{>nïB’­å¥Ý*øÈ¢÷Ɖ¾œ.øê i@|1õ™:dëy>|ùòõé½ò@a3ÝÏg¹°µyß.ëÿæ W9‚ÿÉ…×9æ´ $Þˆ1óÔ](åêròýßw55QPƼ±ÓÄe‘áV7sï@9 ·ÍÀ'(¯öî Xù y¾sç ’ãgbü­2¨ºó¥$¹õÔ8Ý_9ó~yy«RÏ+B]†üñ«þð/õ1Q7ì‡æùL©ÇDyКäoÙÝrÚ¢õ¥ºÍ“ #ùösùËæÐURƬšZð=|Øý<à KPîÙô0”vrqqÙFì~¶Q‡1Æâw*R[0þg1¤Ñ€&{®?à¿z¦§¿Î~¿³ò²·¨ûë`ÞöÃ^­4Xø¼ #‘™K,£¤Ñ鎰ü„Ä]kì;ü=,[UÁwVg'Š<ù{½50Í«~ 6» OpîÂþ¸sÉÞ¯>ö‰o=SKQE’õÕqás_‘,AÆ¿ÿÆ4R„H…í].CÊpè“ü/‘ª>>NœŠií©-Â!=«&]ÇŒ2|¾t¾î­<29þä}qdQ¨ì¶ŒaFÖãïN±pª ûÝ›éÛVx yÀ:0@ y)u$¨_C¾¯ ›(s"#&ù3 ý&¨~튈ìpbßA±æöÏ&»7ñpM3ûÁM?”ô+唿΃Ò,í5]´C(SKwS€å¦~j~p°GÅÓê߯ŠK¡ Õ‹á$Ï&TK¸0™êðÕymíô‡Pãqǽ³¨¥²ñôÁ”.êÉÝý½ªŒº?šI\4âQÿšç…Ìóh(v„Õ7 6i)YÔÑäðÅÈá(4½ýEð9õ#4k=„Å÷GÐü>¦sÐm¡…@ÍîOZBnÌþqãËÖ´ÔrŒ_ù«Ž–5•ÞbCæhe¨Û-¢¼†V?¸ÖƒÊ¢µrqœd Z ½ãÓˈ6¬‚Çç1Tý°‘|FS7¦Ã²µÈÔ+˜O÷Ë ^ºï¤N_€úÈ?lE+ŸáÇK‹¦=ë›ÿöÈü_/E~¢D“›D ä6Dºíþù¯—†ß…B´.2ÛÄŸI&¥Aú½Ï'ïEþÛ—ñÕ¨á¶å¿}寵µ…æÿöR4ZxÜÉ+jü·Oæ·Vä>¦‡ÐVv…*èê1èpêŸ5Ͼ›vñ–Ò$ÐMv§­äFÝ¿c—¼Ž³KÛ-èX<üðFÖ-hÿÂ=°²ÄûoïÌÿ§Ý¦Øù“Æ=4tï³¤Ž¾üwÿîw;Ö»Dг~£Å»«úšXSTì` ÂŽ½¾¸Äëƒ=Ma8ØF¼J+F•zN¦mqƽElÎÎ0¹gäŠe¿-L+nÿŒú¤šòM(¼ƒísÖG˰0¿V@ Koö’\h_'nm¥tXõ¤ÚcþëOVó4#ò¾R3ɸõ8ìDDHPg!Q¹ÖK¾ø0$ñ¶kü“dªãÙά—B2á‡+!ïPj®T©T@ª+ù/¦3c”8 éÌ«ÈÌ~œFú­mD £ç>óƒ…JÈ4óóÅÑÖad‰L¸¯TĈ¬vo$?·× »QÐÆ*EätúfÈõ6Žñë™U䙸v²gù« \º2‘ßùr†4ë |óþó;¨…ä#ìÎ_LAážf{¿M#|ÅéI$& Dñ°£M7Ï+”È¿Õk¦Ó‹RtN²—²FPZÿÄ·1M”y¯AòÒåDÿZÞwåþô—qGÅ[a}_þ(¡²ã‘{OL êó“Ó?Š¥ÕŽ<Ñ$F r¡ì哨é"š{ð2j}¼v¢žQµWÉvÙi7P÷¬ÉÑ¡áèO=Ó ùN ÚÄùD?ð QêuõÙçÇÑäÌ#úó¯‹Ð´|`Ù+ Í÷Y‹}ú€æ9oOÙò …ÙSÛ÷ÖhÑç ©Ã슖'ÛgâBÐr`ß J{´² ÿù‡~ZyL?jGk¾ýIϾ‡¢õ51ËqhÝP·dë†6ž6x$˜¡ÍÉ=ÀiýƒÅc›“PW´¾d!œé ÷y¦X*ÂLBºß©Ñdø™,ö}U,JÓ—.?»:÷_/Íÿ×Û×Ò ][ÃÿöËü_ßÌçÀÌçüB&ð1oéø‡3>4ì7JW­ ‰kJ‘Ì›Ÿ ¹>«óà‹¥ËXÌdºÜuÛ<Ù·ÌÆÃë_ÿ«ïÿë¡*Î Þ/sùß~œ’û¥ƒ¯-™ÿë£QÑyâÃÿïyþÛKóÚ‚rw×ʉòuÎByÙ=·ó/ "uÆý΃f¨¤#÷ÏT*_aÖ…—P£»ûZE$~Ù—Ù~[Ƀº¾B]Hÿ¯4ü Rµ…æ¿Ïì û·§ªí‰{ÞÜWèÈÑ8²Ü ]5/©ò¼ þãá©€Ëë\™0ÈLfv.¶†Ò{ý¸æ²`Äñé“öŸ0Æz¨åþ!€ñ¹3ŽFÒ‡a²-ú‰Ê˜î¾tšÛ]f9c¸XeÁ¼¶ï>Xx¡Ê`Ú K$Éüæ7`ù–ßÛa_qøËÏö8Ä%VÇÈH ‹2`½j€Kl¤6KÌe„†.ÃvŸ²éÏÁ$¢ï¬Û´¾ˆÄÖ#tºo‘¤ä¯ÅÆ­I$sç}ߊeOAY‡”†ç ·Îd¸•EÇ|™“GŒ93‘yÕ.½lÅYY¤ýS#+ýù{ãsæGð@pNÑ´ÑòøÙ“´Oo­Òø%áqÐÙ š±¸k ÝÄ1r­3mÐs޼þ6Ç1èSèêÐÞÅS1•Ìû`0|~N&a˜ÆÖ7«lF²cDœãaìF …`»;Lœ›L¾#°¦¢ßž /Q„?¼wéXæ`n^ú[ðuZXµ{:ÎK"þ|£Ü&°¼Ì´nØýþŽ+Æ>ñ„uZþ†gÙ`ó”OzÑ–,l/ž°¹ŠDÞéìÉG„²-9Âä;’6ðÞè1GòlßhÅÂÜ“ïóeªqï@SaŸlÒˆkFÝ9OŒûÞù$œ´õDú·Ì×^”[!ãªÕ(úqdºó6ã'<²ß]ºG÷µuÊpM [ãR¼žc4r ž+:œOI˜3þýå×ïJÁÌ>M—hÛ¨Y}õ* ¡TÎÝ`TÞò ¿›‰Xôöª» éZ૬Áü¡‡ô¥¾ÁäZaß~mÀ§¤ÎK©º<¦¦nIù’ê…Rž…D«H á¼H£*É׃ä}Í~îà©O· _ð‡€ÎEf(üRA÷œ7Šé*Êèö4@ñæz9½x(Q<źøJü؈©(CÉlâ£`(uzãQæ ¥õ.áKÙ  Óò§AYêÆ3 ÉPnY˜Âõ”*ÕÌ^«¿ƒ7~ùû—)@e“z7¯Ÿ TGFtU샟¡C‡¯ÿ‚Ú|"ÿoFuÐ FS2ûl§Â&¬4— ÙåÂðÕhÝç¢ñ»û/ü^¶>a7` íË›úR9¿ìiÌ+øz¨zÆþÏCßý3’ßuîÂ@Ü‹^ËÛ0$Í®r9—†[çøëN†Ãèí„ì°ˆwðžjÑ£ƒIuº‘åèY˜Ör¿”¸[‚¢}å`nðÄ…Íp}X€Æo³°˜@~ÔLG–yí²4ßtÂJ^áZáAjXõ“Žm8ëæOïYü…MW+e Øvú²Ñû‰gs¬L+‘xÿZìŽa’Üdlp{ˆd|¤&£ŽH>/F¹Il„{fŠFÄXê‘êÀ£ÌŠ[‘Hñ$´¿¢éŒ*©ì"W‘áбqC™Hd¬ ~Nþv™_¨­O¶àþS›_BYÈÎ!WVhú9'ûû.)Í"¥[€pøòÉq›Ê7«¢=û^+îk(ÄúÕUsÆZ üæþ½ˆ¢]¤”¬ƒxèS¾pÉJ¤ÌRðY ”W±OÃ#”áäÖëŠÜE9ŽØ Tð›-òzTšŸp°z˃ªÇ";ˆÏ%#”?wøMªçyÎ\×EMãþs?¨¬Pks#šýõeÔùÒ g´ÖŒz¶3<Í÷ Qûæ^›Áj4 Û÷ˆF£©lg©ïV}^üv£+MÏÜøK*¢‰fOjCJÐÜFI”’ËÍÛï…»\æ@ EâmÑ¢ìšä•¢¥ø}!æ²-´ ÏT;Ñ…–cžNxH-DL¸V¡[EF´IxSÛÝ!Ïö3ðª»OLé6 #J0¿ídó×OêØ¤3ï•ÕCEü¡ì£Y PJtñËÆ“.(èàÝ ^€¼ÃÙ Þ3ŸúÎ{£þ/dÓ¦¤ÖYÀ׎}[Ž¿ªlߨ:AŸø§ûæ"¤FSQ›ÜÉý_o0oW䳓x,‡²âwd¢—R ÆéQÙy-h¸«ÔqçÄ~hiáòo¼­w8Œ—ª º=¶ÜÚ“ÕÏÖõ@'Ô]Ø”]zëö×ɠ˪´ÖП:ãWO¥ùAÇ]ÞSyÁo¡ý¢㞇zÐöý Ï(…4´½Tö»tJÚéhÿ¼e²ö,r‹„_)ÐáûøTì¨tzî# †®»ÌQŸ¡{ä^ÍÛ£}Ðûæ Űéè/Q h †A‘lº JIzi÷-^Ó Fdœe2|at~fDÊì Œ·Ïv¸WÁä²óíßaæœM#]²;̉çª6ôIÁë·®Kœ°˜9©aç}–¯Ô´Z=€¿î^ Œä°vÛdt¼è l´¾È—¤†mëÁ:*HÄ„U ©Hœh"¹<‰¤®GMŽÞ>ƒäªªôvݸGjô¬Ù;{Ük01Ø-™†ÔwN_ðEÚEfm¿qw¤×Šä¿kφ ‰{Þlz†Lü~¿”OßEæï¾iúæ*¸ßîFÞ)Jd³=m¸çË2rëcø…BâÔ&®w#wÑñÏËUjÈû IòâÍ(䫾WÊ(‚<[JJ¡`¬ÇrÓ…26ôV9»0ˆ""#dG=QLa>F¼ù½ªÁÆGrwÛ}šÈPòÞÚ5Û;5(UNÆÇa¦‚2<³2a (›äs5‚iåMUîDEŠù\¥/¼¨Ôë¼dÿç,ªR+þá§@xGÏÑm‰ê‰ŽÇzåPã/×KN-%ÔRz\ló,µC§¯Î|ŽD "SÆg¨÷œ[þ[„$¸$Ú­ÛI£‘ÂPÄ6K4Þ8!i{jM}Ôèo øNEÞT>Ë—D¡ØÖe„¶á×ÒDu AÉ¡·N_ÛAI¼qo¯Ÿ#”ÒÈ•*SÿÏ?ÿêï‚Ò½ Ouf¡Ì`éúÓ»CP6´0ûL!Ž)¦¯øBÅòã0êf¨”>Þ"²I U]¼LõÎg &ƒ„Lio/üª¬‹´¿õ©ç_\KƒÆãª¢‘ÐôÓìï!·úˆÏûL~€ßZ‰ÇW— >7äšëÙ—ÐyXááí¾yèVJÿªöìô¦Ÿöq†ñÃÞâ{”`ð« Q]H$ ›Ï™ÁÈß/C`쇷ÿ±c 0ññž|jpL}²‘xi3ýË­gvaNÙ7i?e ̺™žÐ6E‘¦´°T¨Xõ®î6¬Xœt^ÿã«®JÖa­Så lüމ:[#Ótbmº°+.Úœ¶œˆDIvÌØDKå|‚ž4’öð Ÿ’Aò·¥ysëÕ¸'b_]15îýò)\-Ê ièMn–DÜWPMßê¾Gˆ#Ìrýl Š…Ù‘YIPC½ï8îG/©‰ü÷ÈöºZ‰Ú„9­÷loü‹Ü6ÖoJsÉ·væ«\Iò¿²8U3A…‚Ï­™…èQøgmÓ×b50yçÕr 1PêÙA ª§Çª>Ù¢KeΑJ”.c•2œ@ÙüÄæ:§Û¨@ƒòåí7PÉÿWÑ:#ªtI7·å]AP®Þv£Dõ ÚÒÜ Ô¨I¼uã˜Xj¥Ê6ÄK:¢ŽcÙäDäꑾ”á¡ïBý”?yÆ’Œh(ו"ö×âZó¿h«£ñÜïÏçÑT"öLÎ4sºõ’nEÍÕvôÎHGóòÑ™Ùóh¡Á™Ã£u-¾µÖ™It£%¿,bZÞŽX¹Ws-‡ÍêLÞF+ÅÖÝ0“^´ºsÓ.èÕ0Þеš¤":…m§î…d% ÓËYö9ß/0Ÿæ@üªàÔû|NÔ*„_‰’<^‡’ûÕòRO¡€ž+X©frÏûKãó'äBÑÙ5 †oÇ•^V„vüª©PÞ“4H¯h+Ü¡ˆƒÏ ®ŠnùÝðÙ8“Q4x/d$ØèÏr=„¼çÏO‰w÷@™?9O{£=T/Ç>`Pú95k h ¾qPCZEúó/ÀïôÇïOÔC»ñ|Í¥è¸{æÓ;?èœÌdw¬ÚKðƒNUt—¡ó¨¹³{ÌtX±7ÚôÒnS"éàm)c Ô2Ðúúй.Ah›þ&›Íä í×h?+ËxÈG©Ú*N D‹v¬æ«ÐEO¶d–}ºh+ò_º@/¹«œ±½1ô3ïâ髃0P(ùÚž†„í7"J{`8÷)¨‹Óµª‹0ŽËTs)!0i1š2Å ÓE÷ºäì‡Z/ØÂü'¦¯¦Ž°¨vÔ¥&÷,m§ÙóøÃÊè«üÐÈ÷°º{uKÙ¦6´ËËß ÁV¶mD’ëìú~gò Eb­V»æ×,H²ÅÖV8Žde” ㋜Hññ¸–˾I¤üJDÞq¨ ©†#­jÍú‘V3äþU7¤«gœëÌE2]÷\-d,4IùÚ…Ì–¶¥ /Íq?¹¾¦DÖî¾…jbKdo;Ö]Aû9çã¬ní©Cîƒ :jª®È‹6S[m7ïÚÚsÊmäÿ­ýMÞÕÍ[µn\0E¡UúM—D‘¢Bu¢àî¾'¨»–¬ò½ U~øÔ¹Ì#ØY>JÚ@u¿ñç5JYï=³E-â×>/íPÛ¨ï[[`êwV‹õ žcöÔ9 4^r•TAÃmæIû:4.5Vׯ^ESEûd3" 4‹ñwf'As¿Ë»æ$hÁò3¤ìÒQ´øÔòÌZ° -ýÎußAË‚ÏÏ÷Éú •Ü‚™E|Z%9sj5½‘LNr?ZŸW«ªr´EëŸ×¨©%ððvzùÞ÷hãÑÃúž~ ‰Xjš>jn×) Ó ½¯fõ²L ºË®+‡êè›5·I(£ÅÐ ^ÈÛ/­áÇîYKÇ"¾_XýgÝß­²/H:üHJ4>æNU} )DœØ å! šÈ?©Ï88QºþC>P©µÊMAâ@vDëk ø|JBùÂ_ È8}ƒê³´õ?ëd$1»Y@ß\ùúsøîf1bç …•æì· (ãCΘ34ßøì‘ Å%úc*PbÓx‹å"Ûmã46'¡”«·,Aú5”Þeé;}JGg¾ó€²‹Â24ÝüPnÜÏ÷#¡ÂÃ.2vH~< ø%ü ªÒÍžoÔ@u/_ׯ“9ø9ÌÇçí¦ u‚Ô¼š' ~9nDoçíQh’=L9ÀD Í?o¾Ü>ë­QkGŸ”>ƒ6_ží€OנÙ¢þÏK-èò ~$¤ =mf‰šÏä ßçÖ"Õv”¬Òß¡ Gk`Äíéµk¶R0&é½gØ·&˜Hîº{*À“áƒ\én˜Ñx¸ÿâ·0ûäz·d˜Ì?XkC*X+®2Qm%ön¢-YXž¤¬’ÿš£#Z;R®Ášë¶k,ŠÀ†Caêlyjsh¼;i#³4¯n#Ñk[†++$!s"öiCÒç*É_¨‘Üâ¨×È¢.Áß:íóÔǽêÕnÙï!õã=Á1)¸Oüçþƒ]ï‘þÁ¬IÉkdä9´uõ“12uQÝ nž@–ÖÛû(Ìž CÚQ£`ä(’äºÍ²ƒ\ñZåŽÃ\È{ª€M6íò Þ+QÏx‚û—«g¡°æåÂ7¢Hî âºGm(îçøL&‡xèÕÜ“sDÉåÓ‡;(}šžuЬeÒ=’¾õ]„„öG9T"Y ³¤@ûֺϤº¨–)û IÜÕÅy.:Ö4¢F{Ô‚7j9Û+V¡…:TÙáa¢$¨›®«ëý õížÖ¼îˆ£Ù"³¶Êhd½´_¬öЍà±9‰&‹¹ÃÞã2h&Òà—‰æÂånmœ»hž®±¼Ç£-$wÏt¯¢ÅÇÇ?,£%[ïºcûC´ ñIý8(‚–ŠIüwŒ <|Óµ—ª­îï™OáÅ}+)ƨoœ,Ó¯L·nG(m À¼«M*ý…_qW­#æ¡üÓž˜OçL „å@¡çÓ>È×gße¦…œoª.Praæù•tJÈú\~¥[Õ2#bÃžŠ“@:³ïamøyóæÜb|"u`'÷; ¬‡Ò \Œ º>ä*±ñʤO«Ü>DÕ÷?û˜ö³B½O»Ýphji̓–Ÿï7+ƒ<á·ŽHÑ>h[x;g´ ã¦–CÍy=è|àÕ¥r·š 7K[}µ “çÝÓÐÁͤ²`øÚ´Øžý'^—r±€¶sÛCÞæŒÐVíXËtÚµ÷S4Ä~„ö¦`*ß&èxÙöñ£?áxÏ•ši9í¡«áqqkÇ0ôœ<ùÍu ú<8´ìù´aÀEÝÂ<™‘à30Hà † îÆÚ샑†F*Cô‡±¤uUYE˜H»ë°»¦i,IÙ÷ÁŸør#ß70çË‚µÁBUMˆ*y!,ËÝw*õ€•S?ÖèÔaõjcøyXÏš­c¹˜[l† ×Ë`§òÊé[$´’¸¤¥‰$a?G¬VN"™^+eqø1¤àýÍæ{Í)°Šþ%G*Ì‘=[lŠ4O\Cßì=‰t,ûzH5~„èOõ2ÚóïpìF¦ ÕVÛ¡SÈò4¤ùǼ.²ºZ¿¼k•ŽìælßÚ#§KÜi®Èbäz¬Þ–†<£ßŒh¬‡OÊÿ‘9 òß_ýLrÉÔ£¤Îw¡Ðûì‚[ ^xÐ{ÆV¸Š:÷S$”…¡xõ‹$úOx8'°)ÜQ%É¢*¾ ”šãõ\Y”Žá?uÁe…‚„ÄØQ®®1Á‡Páþ±Ççö ’ÓããÜᬨL;Ý…jktÏH.½Gu½ ¿É>S F8CÃÔ¬IâìeëGmƦÅ£ƒ¨öUS³wõøÍÞˆ±¢þ4ߣš½ÚhX¦ÛóRïÊ›«¦BSÒKê¬=~hæm¬û!öš»”_;µö-Hî(] ¦@‹W[4GÅŒÑRŒ(–ÏL-ÓÂYàÅ%´:ÄØX}­â2n„ N¢5U&-›ñZû¼ÙÒzGØ®Îsãö›#ððÆæ`H1Úœ¾ê"”0þ¯ßÜ:¨þ5æøie¾ä#½íÇÀv±0e¸Æ#öQªF§dÞûçAqXÐÃä^*ÈÕôQ~½} ²xb¼ïAFx%Ùú‹Öû½øvñߌYe¦#èRTãqu$du׎Íh*BîÛ0¶1ÕN((yÑi1 ùžý(6î"š©E}õPtóÙ‰ ä–¸8üˆ›JöZ‹˜Ô²@‰ÇUš¾7ýPòãõñkn” ”rˆ„{¸8¦9œc e¤WB¯'BY»$U—ó>(ïâz-±(NȉÏË•ÉNC¥ú×ha¨Þ«‘ñ›jV3.ë^ …Z>*³CF¨3¿•’o¨8Ÿ”t|ó“J…·Ð2dh#•)¿S‹¯?™p‚öÈ6zk«h‚Žíú²ú¡{KÕ¼úBSikUaà[íƒ †30¤¶³bLÑ Ã¿iœ¯ä݄ѯhï°l¿ØÅcÞ “ªÏÕk=`úýÝÓQ×àÏÌC:#â)˜—~l¨T wì+¾„Å¿³.bC°òåÈÅ2ø+\ä{ÜÔ V§2êÊkÀzËÖt·Æ8lNÇ4Üÿ;²o÷žVwG"g²_¿ì"øGÈcSª$µ´û¼:ŒäÄ œSåHÑ’šö•! )›GQ"m©J¯UïÙ´1µèvý‘^%'dóq62T“¦IK† SÀ|SQÕd9ýnJ`ä&²¾û#”d0"öjtdx`Nz|mŸ<ò¬3nx¨L!ß—2Μ@aˆ~ð<Ú…ò¹3úÎC‘ƒC'$ -P¬;µ6ô±.ßT0,vEI¯µ´Ñ? (MO¹»Pôe6r牌Q^¾ÿà€IT|°úàYÊ:*·ûUß0Ùj¢o9ø:«VNËõB3ò w¼CQ‹î£æW{1ÔÎM‘à+å@]Ç¥£¹<ë¨Oþƒ]±6 ž=NÊÈfE#*†óIÖìhìûë,cš|kuàÕý„¦KœÒçÖМîn¨§)š¿~s°k-x‡ù_$v¢Åë°‡¾ö¡%ÝáÁßh`äV³Ö€–½¼·v…˜<ôÌ ¯úˆVáï };Ž×Ÿ:QÛ&{ ní«Êñ½}ÈäÃCzïÌ3YØëÚ|'»ÒßP.qyŸµq<ÃÐ=+¼ý!ñNœ½¶{þrY!*//ñFÁ×-›…¥ Șš=[f _ªÆ÷ä>h†‰÷ub_àc> Ï O ¤ß'c»ûž ë§¥N²ì¥Óuv²w2¡š·@³ðó"Ô 8P)VAÓ•ý›üO¡åŒg‹D{´®¯¥›ÊT@[´…ĽØèØÑ×`ƒÎÃ1†w ÓðÅ÷—ÞÐQIâìuiÚ'i’JB;GÛ±wË7 íΣÃv]ÿé±xá^ImHˆ˜.@; ·«E2´ßXù£žý:¤ó·Tâ_A'÷ÙôŸ!G K‡%ŽÍº›Ç£¸½_AožœžnM"ô¯Qì߃êÇB½JÊ`èã{7öÄAXÛœ£Ûñ±—š‡ ZqÒËLaêX1ãVÓI˜éÓo.Ù‰ƒ¹÷qï]ì=aÁR)î‹å,‘L»¹´†åáðw¡A¤?ô¬ ±·Ý‰‰„͈X¹ ;û/±.}D¢ëÍ{X¦Î! iZÓ¡~$­‹ë|.ü É_ÿ ™¢Â=aGLš…$qoL Ñ"¤¡Ìxu÷9Rˆ|9ôéon?SqŽC†ÅuÖú]ç뿊,yÆòî¸짆~â>dûem# Ãq×sÙ3ðÀFæåzáä1.*áÞ*CÞѰç÷‚+ó½ÏFœÏƒçÝQÈÜ1ðHàAãùµÃ(²Ô¦jõ¶ÅÉŸL:ÐÌáaù¼ú˜wÅ(q«¸Ñò®:JnÄRKΤ£ôQúš­‰(3ºy%fåEIð´–¢‚1ýν†Tâc$>vU×ά­@µÄªv? cTgÝaxÁ>‡vÔ^wסæãŒŸ¼]wP«ó‡D ÇÔ1 ÿîГ‰ºãƒËÔ¨Ÿî,&9dІwü)(:ËÐØŒ×åðcn4©hÈC3ž#Ji"hnD¿^þNÍç´ÝûŠ÷o9IT¢%çý²Q´|ïýäìV ZñËZâQB>|A:þÃð,Z“³]]8€Ö^D’Åãh]¹ [È@àaîîj7Úx3''+ÎãU¥ƒª×zLP}Ào@[ÁéÕèÕã]˜a2ëþ^G1¨’s`0}xŠ”×·û 9g“eÊ]á«Q·ŽR'¤ï&2énÿ€ÔžØ£ô"òA™rõêH>Ê9TT'žŸúEæ¯ ò÷v§ÙNÀû’iŸLfÂï'N(L½†O¿·¥Ù ½¢éê§ZÈ:?#\Áù<^•!PÀÙßpú5|¿Ö}>!O =%œŸ»ß…ÂÞΟ¦“;„ó²ÿûΖŠýÓb¨ÿŒ|3»túÄ1(ñqX³îà%p1–ûBZ !/ö 6„Ò' ¶øE¡Ì5diŽ©‡“ÊHD Â&«@ó7üÈn¬— %\·ëÝ df¨¡Ñ¨á»^¿¸÷GKV@×÷bÛüZhÜ3~Dïl*4ÝNX"ê„©×æ ñmÐ:í´›*¤me, h§σClÚ¡ÐÍ/ÃY=2½1m¢w ߀¥ykg fü ÃÚ¡š´À(…—àÒ«06º"Þ¡ÃGâkÜašüÖ÷ Ýyø££åvÝæ2u%®&äCÑ9#Y'X|ÒC\|4–Ù¬ž¥«ÛÃJöêÁE{X½è®4èëö”/Ëaóì²D~E-lçü1¦‹D|_ÃòýBâÛïùøg¸‘”öÉ”F>’eÞ­­Ö@ŠËÛúùeHéF–\TTQ,n"-u=ßš )Òµ{úœBß.×éo_‘‰³}»` ™w +5ü/ «`pÌŠ¾ ²G…8>_܇Tùiž(™#HZ…;=ò)n\9¢…ûå­ßB!©ªDn<øüPÙòZSß%ýí­Ž‡y¿| 1pGI–ì[AÆçP*‡x|ýê”yUºóZ9 åj%xu_£"óÖkbÒ?¨lËVn=†ªï¨“/åª#*}šÎËA >«l®S¨Y2|Me†µÝc›ŠŽJ£îÞ·>dIwQï«dÇ<èø_fYFÃb‰:r4øÔü½QM®Î5¶& ¢i¡ûNña4›ÑÑ—SAó»Ǿ8\E úÊû4´ˆèýEȃRu „ûjyI”kŠÞ-»(]ºË: <”Ž }„VL,š¯ðÚ ¥ƒ«[ ¨£÷mô•ì5d²ÍñoØOs÷_í¥cõýg½ê1žãŒPöu(d[tЬ ßrkY…o6@ƒéÇt_6qÝO}©-tG“ÞH˜CkDŠLßI%hW v©–‡ŽÊ™]{'¡ó{Õo è\’ʳ¶» ÞVgÏYAG9ãæ.hÿsÎC°4Ú={| Ý ]£ÔÀVaÚï$S­3zC{+цKtH8W^Ûr†ŽºHƒ†:'茋yþh”º ßäRYNÂO¹¤’GžJлÛHWÊúEC¹?Ÿ„†Ó5'”$aˆÿBmèz2 §e‹}£^¤Ï<aܱᣋÀL&=kY{œ3û¿Ÿ¢·®€¹Z«Ò2/XèIüÊý–F)9ïR•ó‚7úinšãJ°¯Àz¨ZÿïòK°Ñ#ñ‚+_þ\rUößB¢F}yAï8Iñ–Á+$5uJºRÒ»öT”Y†#ùœºÛžSH¹N¶šqwK¦UT CÚè?¦¸—gC1.[é~ˆm7##åï‹È”µt°Ùû²8ã$åº3²ª75WŽ ›RdˆIt ¸ÀGÇþ9³«¥Äc£‘ûí-ï~ò7ȳÊáýZm:í r]F¾?$ a)+ÈŸ¹B˜+5¸“øJ `@‹<-Õ1þô«.iÜE¶O±JZB±¼FÒaž£(±Ü>ÔºÅzsìCöÇôâ"‘ó„^ íš4r—K4ÇÑ© ohû@#E$ò%º¾µ\ÃÃä×yWK5ðH¼‘¿º ûØ24´8¡¨ßDÚK?³ÑH,ñÉ×ÑJßg@©s¾¬ß8P&‚8Åùô ʵ~ø„Ьץ«n'"$Û^¹¦‚Jí®ß²SŒPÅãS…ïoTc ò8µ¨‹ê¹ú~Æ¢¬¨ióîÆ!9ÔZÕŠ“õlBçQ·¿ {w@ê+îÖ|¼ë<ʪ3˜ªAòCwYŽu¡‘§Åó;-hL”È@ýïIëQª ñÖϼêµKhr…¼Z€‹í Çóm"ÑTfË!DÙMƒÂŠ5´ãÍwLjoŒ(Pµ¬‰Lÿ,+2*Îï¾ssA6–ÑPãh“MVe²†Ëñº„¹P2ž]¸òöÜ¥^’O~2½Ï§¸PwcŽ8²ÂÏ1pÙ®CFÔÓ¸ƒ BÎýÒ“Ú.Ù¾õƒ„Ã&GßœÖùû\§QØò‚¦O(ZDA©uh`ÒÀ7½ÎÙp­D¨¯¬ø!Çq¿‰ïé%]€æô¥»$Ïê¡Uõì×+·‹¡­?3ƒüûì<ñB§kèŽï» óMsÖÁó|—söŠ~tÜÞ¹]±iíý3ϲ?Bû©§1ãN”8Hv&ó'´[›Ó1>„öw¢,Ï;ã¡}hø}ªŠ2DC©½ÌjÛ¾(ýãV'Ó‹s(ûÁêVÕʧ4¸Þ•}ƒÇÉdOŸé~‡è~„Ùgú.*ÍìèzWU£ Ï7þg:PÕ.9ѧ€Õ:0ãI7j\Ý_`6¸ŒZòÝçˆù¦CßkÖ{*u{VüNª¡þ…oînÕhÐ]ñç\³q%¯ø-=B£êÏç_EÒ¢±½§›½|1oGòÜMRE“§‚ÏTÝIqnsD2Æ|‘üVEÜUøî–"­"Rê¶/ßç~DM:Ê#ìy÷P+Žïàf[êq¾`ºuÿ žÒA½þ/Ç/2¡ñöë¾âhø2ýˈÄu4:—UnNàZ£…@ÕïÅVh|-05êöi4^~5K”†&v#‚X‰&-l!Û—yX¥¶oûš†pšß<È^‘óçäcÚQåøÌA¢Ç¹Èxdâ‘5˜3ñÏû ¼Õi¤¾S‚’PZüù’ÁÈ(öîÍy|´òhH¾*ªCN…V“oŽ, [}¦ÝBæÔÔ‚4›ÿr©þì ƒ¤¸ã'Mµ3!ž–"•µÙâz7$=MßBj%Sä@ûÈÛëg®äi¥û~'áÛB¨/§f¹õ²7•ïñ‚Æ+½WŸxD@³qÞI§q'N0jlÇÊ@Ûýs êVëÐA%ʨ”ñ :ô{sŸ—C§²KÊ„utLÒžu•7€íõ)›Õ¿ë ã­Š Ýä±|-Ó hç¸_xòp ´Ëÿãc$_q;¤LÈ×§<‡ý) ¹aS/ºì³¸hav_Ëöƒê0˜fÜ¢öˆƒÅ@šµÚœ°|î‰AU¬ž1rêÐÉ‚_žo—ú™à÷¶.‹°EnU ÛiïÙW¿N#Ñ÷4­$9KªÇ±z I·sœ³$ŠqWÉÕ‚šýH‘a’»î³©Ú¶Èfô­‘Fl†F7ñÒ}gYùDàÄò[ç{_Glãô '\Mç=ú)Ë‘ùºìã÷¸O¾f·ø´îçŽüú(ç²ËP@ÂCä¸ó“Ëbår“ú8]!jFž³iÄw)#oÓbý¢ënä³Ð/J}⃇8þÌ,Yãáô¢^…<aüó*q1 å\­¬q¿‰G—Ö‰æQLBjUó ?Š/ÆUéÚà1žw·møQ²±ýÇ—Ö($®ÖµÐв6+b‰5()oQôÊ=TÌZˆhJPGdÄÀØof¨”÷[a-u•'›Zg¸n£ªHĘ¿ª½ß/Ýù5d³.ÓC-¢}[ö—P»c·Vø1Ôé{AöÙõE‡" dÑ éõÈêðQývë'ôÙ§›t‹ÐØòýÄe%4^8¢ñ„&¾ÔtD/Д,¬=ff/šúm²ùn¡éоûÛÞëhvöàwÉ| 4+­}íEÈC«3¢hî2yWt•=èJí}ÒFPÁ~*k:z÷ <æ¤$݆ñEü¶àÜ•“ «×¡(‘IŒ¿Zr–OrÉœ€ŒÆ·mžSM–aáÈÆDè·Vu*f=H¾•[iBè·•ÄÜ‹ôyð*µ~Doö´1#D5χEϘBLâŽú>Hnä¥x& éá!òF*[ÿ·~C÷S+C»mì´û àhN¤¦ 5¦xšm«AÑ??¹ÿä@Ñ|qYêm/º‰vÿI‚Ïi•7OÏï…/ ¿µ ¿‡/5GƒŠ>4ÀW [‹h B~ýšLà&”¨ =>O“ý÷{õô£ºP'Uë%qÊnìŽ9½OÊ_Þ¹éO¥4e:P¥½T‘»ÕÌt/G: œHì~jÈ êŸlÕW,XÀ匙’rhâ VMôȇæØãw×NBë FæyÅBß'øp/_…ÎJ=†Ó¡{ÐØ»ðáèõ¼®œI ¸ÎëHõÁ`ðôôE*Ö´o|Ú0Ê{އdù Œ³“Už—x“Bž¹´†`Ú¨²?g…fß”–Ij߄ڠn­Ã°èè«Ð3Kýªu—^ÊWŸK/¬ÑÞ»mÕ¿Æc_D€ßëŒt²M`KóÙµŸc°ÝâkG×ø‰j©£‚v# T?IãRAÒ ÃþÔúBÜuz†É!÷R°ŸˆcœG*¦D·?9•¸ÛªõXFp#Ò®æ‡7rÞÆ½NÖ7YÕ ~ûñRá›·Èø…þÔ[YedN‘ÞîWÍÄ}ëEŇ‘wþæ…Âwx ï!¯uÆ]äJ×d<¤òyBY5)½Æð`XÙÝÞ±`<4º{¸HV\—¿ý¾‹BÒÕsFã×PD¨ëa«Š%Ï|Øo‹7{X:QòUui>JgìnP¥«FÙ¦íìv3T 00uÜ}þ¸z˜ö*)%Mõϲ£rk°@[Â7Tuõ*á¹…ê{â§@5Š®v1ìj@-³è¯RÏP»ïIÿ›«µ¨kÙ6‘H…ze*’‹ÏÐà€Î…+ß áE¹Í,q42 û%På‡Fn¿Ÿ^‘@c‡qÚÌO4ž}FO½†&çW“¥3š4~ýåöN˜‡/8Ë”ÐôUÌ\Ê”^‹©õùù+• (”³sL‘ѯ+­È fsýè&òráÛb¼Þ•Pª,Øù«tŠ‚–ýù¹6”÷®>4ýû\eñY% ÏM åB¦¼Çw½fJBšÕd!@¢Ú).qÿ-ˆMøCm±!Ñ Æ:S’Tîrë4ä>g6Q !Ì‹Mg*g×ì Êk-ÌkÄê’EÃô‰³¡‘åq‡Ì¨4-{‹µ)@˳ªï5YÐv„AìÞB´'M[ûùû\4"Ôøîÿ½/L=e‘—κóWCÓ’ùVÕý¿ët?W ü€v¥žÉåÐN9æjö>Ú÷}è—g| íÂXW˜íªMûÚ¡ý•žÆ}õ~èPP*a|ì‡N°¸A×åݲ`)øIeIì$=íÇ&S\^@ßD©˜² ¼û¸I=·ÿPLú¿~ ÃŒG”šaôÞ§×gì>Áø«5–ᬘ¬·^ ñ‡xq`<,æ~­ÈÏÓ-À"}Y“ïônX(”“ó7•ö[w 1ÀÚhå–‘ü4ü&¡{F›~d'­ÂŸÉ·urtjHd3Ö[Eý‰G~X}þI¯ +—}ÐÃ]GžôV1w#Í×ogn"tìNßiÜ}}ø„`ó,Òþ¸Xs:÷Zûè¹Õ"}[‘ئa-2Ú¼ã¸h0ŒL[´ç"Ë'uÍÁÛ²Èú"²÷ø dûàÕ>¿)&FBÞ)!—ËV¥ãfò0­©® ¸"ïkö(—×ÈG²|+ï·2 :Ÿ2¹»«f3îa“Á#üA‡¶‰PèXfYg>-½"0ßÕÒŠ¢}M?—}ÔQÜh\ͺ4%bÍRã+P2(씊Àq”6ËŒ4ÖBYžg£Ï¾ ˆ_WÔ š?qÔŠ3”³Ô­õÌú¼÷4é8¤­|dw¹ Yµüƒ‹þ®CÌÒ à†|ÿÍç ›gÿ®7æ‘wŒ€Â6•´ß®@‘δÃ˹P,xCeN*>3×W4¨ÕÂç× /W„ÂÖ¤oÎÆðå-ÛYé:÷m´2µ˜ƒ¯¿†²¹ %O*”ÇÙóðf;µ +”v „_Ÿƒ²^ú\ãˆßP>:0|¯ñ4TZßc È̆o äp¼î Ô]N#ŸÏ‚:ëÜ%a="høÓ¢6¡ûw~AÍ‹'¡i°—ŒµZYšÿ’…¶;·´Ýî±BGÁyÛ}EèZ¿æ¹ =×çêí~ñA¿è£?/ï)Á Éùï6Iû`(Ëþ,ãŒ<ív/êa€±»kÓõ¼0àF%ìð¦[¸ÆÂÌØÔòXù3}¼3°Hac¨È¤K×&%bNÆÂò¯„+wéaõ•ÌÔå/ðË9¤ùóoIøímžq3Õ6ë5ƒe}ª`ûDO÷L—==jsÍ=‰äÍ;ìGRñÑ•2H¶£úúl.’§zÞ~ö{)CÏ»èr‹#u]»\X^<Òšë’hœQÁ½LRÂMµw>ÒUþwà!d4=*× †Ì"5žGUxqŸwwQ’(îw鋨ÍEöqÞ™Ó‘³<¯–¡­‹Ð¿ù|™Oðà^§ëgñ™…Çr.nWdm CÁ—Þ§ÜnáÑ;V1Ÿ‚#QÌdÔŸÕF%ØÆävÙ( $ ‰öK'”–ÛÛ›fW„²FÒ’¿ð¡üí‚Á¢¦!Ìû†¬™/î*³-ƒõ $/J„,a#ÞæOL®üá »é}:vÆÐäáý$v|;Ûp¤IfcYZh{‘,8š¸œa’Ûð:n5‰”×µÕ]¬úKw,ÕÖ5¤Uèʉ Û{– Þð’Ez§(Õ»aýÈ0ßZ9J‚LwYü©•GE´ô~ÐÞmd%Šœ*®rB6ª)YWk<`8Gå­ÆœÛٿט‘»^®‰@^ÙZGc—ƒx0ýB™=9’H´=t ù;’´>¯¢@Z£wç† fÍÿ…Âå2Eñ(zR¦Ár Pœ®gè—ÌJD¦n¹†’&'G©?@i¦wœ2‹PfèÐ[{”ë~¶ô¸Û÷ž;X ô ÁÜÙoéö/TÒŸ=0åÍÊ7ÆÅ¯FG•â6 üS¨&PÏÙÜ.êåíw4¾£æ“—Çd¹¼QûÜÕ:®¨+ž•>ùÀõªöo Ø:Çs8)ÈÑð³@—\g+.|úÊŒÆRsí×u…ѸåxÜÈ.#4¹TCm³& ?»‚b|è9¾›|šN²:}(Í,ÇdŽªZ¢Ù6?ãß yxñK˜®š_åe”â A7ÍæŸ£Ë(#r|çhåÜs“O\òçŒUœgjúÏçRPØçâçú}÷ŸWæ?;™xš­6ƒˆ•~ båIQí²ç€ß³UÙûü«Ñ6{ÄD|ÿõéÿ×Só_Ÿç¨øŠ½Êu™®öu({t·™öð¿ûÁ¾œbïÖ=ÇßÞƒâ%Ÿþ°ô€«Ï½Ívµ_«ÿyn¾ÔðÅ&x@ 3ó‹ðÉýÿŸßæ?¯Í>›Š«ŒÎö_\ÿç±íšÌÚšù糪/X}¿§wê÷ .ïBæiÐ\”Vœùôþšÿ÷~ðŸ‡ê?ÿT÷qÉà·•0àö3ó4­= qØÍ¾#%…áUÓ Š<šèñ¸˜öÏ[3E2¤99+ 3’L|d’.0÷!ìÅ3ð‚…XeÛp•X¢ |3Àõ –µ3ß8´«œ3é;`mÑhÚ˜ÖwÒö&%¤À¦1IjèÁøÿùjô tÍÌøѨXÖ"’òU~ýù’E=Õ¨¤\þŸ¯†…Ã9ìé{¤VèD¿o¤Ééµ/~GN¸nö}e‰t@z%‹{²wÓ‘aB›¡Í–™2­¦o)#KœÖ†Z˜ ²7”‡ïýì,_sO9~GŽN;Dö«Èr2UiJyý™œÎDE¾ò±~éâxX!”Õ!5 ,ˆÖ´lú¡p{‡Îˆñ].P’tBñÂyÍÈÄ<–ûe£ö"J•1Ïí/IG™*‰w(–Qní+m˜*º+zqÅ^A4¯=Àjõ•eÈÃÇ~„¢JýÙíãdTs n¸§o,º²ÛÑçP3'÷ƒúªjk}{|/u~,þÒ¸÷õ´nðžºçƒúƒÐÒÀÓ@Äø¿Yÿ(E£¹‹dM}hlôº¡y ;îÙœäz„&æ>¹O¢IíóLÁŽBl‰‘¢AÓðt²ô8|˜éz„§úCêÉåŽ Ç^íÛ­ 31ýF÷–¡*u>AlVûïº"mAÚ>šOÔÝïeÔÿ#3f¿'ü]·ÄS[þ2˜¬O6GBÊK¥ùÎ鿞Ä*ÙQˆž=¦“ù´á_MfkÞ°}mŸ¾1Ù~RùõσX9ÚòaåM7Ôn¼ÌŒ´ü?L¥ÍnÄ;þõÞºðšû÷œ“™‡Ö;ÁtÁÐ6íùâŽÚ§ó½8˺ ãH5ljNhÿs>ܸG‰Ày:ФÅa„ÜŒ× ªþË…¥ºÐ6áÇÿ"CÚIIŒïíM‚vŽû¹õo@»üFZ¶àhrOÀÝ„:„Ú<£Ë„NòûwÚïRA—¾¿èWzè®b½h® =>_§Y ïÜ~’º_%0 X—ÿÔ3o Îi­TÀ0ƒ„òéwÕ0RiìPÒ˜cŸ¾ßøä•7.V6wÂ4Ó>1$ ˜MiºU óN¦äÍKÌhZ&ÙËËb Õv°:)bwH~Í=¹´76ŽpÝ“•¬€­÷ayï¦`Ǭ˜"ŠÑ‰HŽDYu"I¸[Ã%‘h$ƒ[.nHΨä­ðM)¹Äí< ‘úìÝž[‘MHÓøõMCîñª¼n±üé„_ÛœF†x»™Äâ}È$ÑýžÔ\™»„¨ïˆlà¾èh‹{üqlÜû Ÿ"ûð ˵œ|伤þŽKž¹Þȵ™FžÍÝvB-öxÐu–Y-ç!ò-ug_—ºƒü¡#Ö”L(àPw‡Â‡¶ÃÈ> ð;ÃSÁ&D(Jí±@ÊzÅÆÍŽ9×÷ „×îÖÖŸK(yÄ?1a³¥&ö‹O««£Lz±ò’ ”‹‰_š«£@…Î=­—Ž~GàJ¡È¡5F%éôvk/T¶§{N}SU2ƒˆ.ŠH¢Ú!~Ê›56¨^éýø¼j>Ï™$†Ú6%6ìû´Q÷¨ø•Œà Ô«‘t ´Ù@Ó¼z—Ѱ1Ö «Ñ能_ÒK#46ž4b ;„Æ[ îËh%Zô°rMñUÏY¥y4ít;æÿ2ÍœÌW¸íG³Í'ßó·ÅÐü‘îqïÙh±7ˆÉá} Z„YO<1BןNž-h†Ò{V†æÄ”L˜xøxP]M Œ>¨Ò˜ÕÇNþ«Ñâdîv„<|`] ¶Ì©=!“û!ëPžÊ^anødì¢þstò¯—¸ËûÓwÈßþð.ˆw ú„¶ù=„³aÌ¿N8qˆ5™¡XZáíG27(NUÌßõw}Æs¡…¥h/ÊÙ›Êrfx±_Z ¾šÌë?{_7÷G Úøëw =yíy(|_gºï5”sTF·@…×êt³œ TQñv˜•8±U¼u̶j©Ž_8øþ3Ôû²R)Ýd‡‚D ½lÐ8ëúu¥Èš}zÏ·í¤@«MCq!3´ß.²u<Ú‘9Ï"þù§z#B”ÍS»a@œTîT”4 vræ-§0ÁðǸFú‡n0úª5¼ÛÚÆ_ Gï«E˜LU·(‡éA[°·ï„9ýÞ"Ù²,X¸qáÇúSyXôøåï£ ËVWÛVì$aeõ†·ãÙ"X«+º[e ë=lî¶Ã¦ «ª[Š=üI÷dë4dE"±¦òÍ›‹HüZ©2")Å mO%$»ÏNÅ¡rɹ7eŸ h ÅŠo”}û4R3g’Í+¤yü%?ò<îÑqJâßôüe/*M¡ÁÌCì¥72…¨Ø;KW#˽EjbNad ½™<׿ ÙÆ}2¬p9"Â’ŒSÛí⥇~“Èk-~t/ÿä z|O;ùwþÈOëžÃ#Iþ¥‹]y(ü^ZÅ£èÛmE£ 3rFž!@ ÝÕ)´@©gNðõJÊ„iœÚÕ‡rßÞûíy…Š:Žƒ’÷ú%sþøWö¢²Àe>ª|UQňj§KSJߢ;ÆÝ3標u.ꄵ/jš¿}¥wuÊÜŸ»¢ÞÅ?þŒ¡þ™N¡~xÍÈj¢Ñ)ý¤77>¢1…icê§{GíšC“¶NRÛA4YrÛnt@ÓÀþ\þ|V4;bÉrk¶ÍÊap|ó&^ÿè¶hƒ ÉŸ4Ü!E–ì^ÉïÑ0sTSþVåe¨â%™2¬_ë÷Ø‹þç£ÉñÉÖr†,m2#sÍ-Ș8ð5ýX¤÷¦s‘±ú»žiÝKuâkDÙ¼@ôó¦Rm6ÿjRܱOéú‡à“ßík<-òÿ<ù•ÅQ­Äwn@m‡Ê%»"ã¿×÷1ýÐdvkî‰Ë4—¾¶ñË„VÉèìS" í‰Fº¸ÿîd¾¨qw%ðÜm·j«¿CŠÑ8 äàÇÜ+ ÐNÿ¥¤÷h*´ ½guZƒ¶ž|þ&½qÂÏ‹½si ¨Q¶{á‘Á_ß· ‹R´¶å}— €ŽW¡¹oã( Óûì9ù4Nèª:1jòp~ª_lë~µ=³%I¥Êúl%Øb [áírÙâ¢hy$jøþÓ3  I´ñÞoÃKH:eÎÎÞH‰»>øÉK$#Å·&Ž"oV¤&bšUBš‹q·#xdnG¡TÒ…÷ŽäI¥îB†Ó›ŒvÃBÈ8‘¹eŸ‹ÌwC^¸éýÂ}j±eÚîq¸mꂨ&‘ýzëA·C†È±üì¾Úmvä69༽.‹<Ÿõ.ˤàA ¥¹oÄäÈ—M³›J=ùMùnï G¾ªR;u(ÈCëÊ}˜‡†?}ìÿh¢HQCšÎGûZwoè\3J9ÝN ¼‚’DyWÔåPªè•º[çw”ñ1O{?„rÎ%˦Ey¨ùå#;Ÿœô OF%.÷çÍ'PÙBj&ʸUâß}x.uÕx|—x‹Ÿ ú7Z× ßŸ¨ù\QúÍl8!iV÷18¢®@ÆÑë‘q¨WoHªZø N½XÌ@îŠ?’Ð(³÷j¤ÝS4¾<\S0Ê&üg^É ÉÏWÎ)ᇠ}fÜ/Ü÷ƒl*~ä<&h6ÏY(\ìƒæ‘¢—Ô (ÑÂèÖ†¢g"Z’;ÊÏ÷£åç§ á¿BÐÕ…l¯OX.J1ù¨Ê<\GÚotil«‚0F¬h®2es¹ªo>YA¾›g“³Šßÿí¯½ú!¥ëGHq:=$KXQýjI…„g£è³—!ާt’ëiÄèê^ ø³Æs gÿLAäú/ޏ²”5šx}=ç!k˜pî‚ÔK+Ÿ»‚ sjŒ“o"‚0÷v=z¾éy–ÌǪ[' ?ŸÊ™äÊFZro˜ƒ¾<DEÞ7:Úç#û~‹Î 2[§BímTÉâý²ì†jFwžîÌV¢ñˆÝ~iÔÌ ‰vü–‡ÚæÃo™|¸<Ûy.õ{¡Áþ×cE”høÚÝû‰Š"´¬—çFcƒ+Š˻фÎÔÒEèš|0LWDÓç§÷]e#ä ©hoØu4grÒ,> ͧ¾G^«ü‚”Îjæ(¯Ù¿|(écîð™“Âtn:_ùTF*– tæ¹?ÿ›W…þùh²ü8ñ) 2¿EÌ—š@Æ¥ü3/cBš‰‚ƒª¶$M×f¥mB¼ân©cl|„9t—U!çÒ¿š$âºE²Ÿä&ž÷ù·ZåKW :V¨Í^dã"…DµôáæÐ$¹ÿ\ÆÉ*h~71Zã- ­ñiÊÐvdßóÝ¥dо/)у—Ú­ì»®ZGr0…‘öŠ"ÿ(ĺz£¡­½Cš¯æ%´›ž`)¸m ‡é'ý¡ûZÂ$u´»lo—”òB{õÙ¯7,% CY@Su :‰âh¬¡sI^)¢ûtã‘·£[—àçù—†‘Ð{¦têõ‘èç(œW†{ö/OÃ`T@SÆ×Ý0L~ñÏ© P­xéÕ c¦EY:–0¡£’\ÐSn©ûÇ…c`f¦Î÷~À/˜¯VÏcÈ‚EßÉì™!°,¯v}û’¬2núf$©Ã/Š£>™?]à·È»ÀsâŰùüØ2Ç]ØÿäÖ.N‡D¾öÍÚ_[ø­ü3W!$}%’P-J»ìýîËFÐ …+3õž»×‘êC‹¾õØCܽñô|„hÒ=ÈÚM?e{£TDJæ-1PžŸZ Cl«V½¹Yh›åœã ²Œ%ˆì©.EÖnöߟ-Ò}÷71§Ð1äðkqv(ãDn–Ý6šÏï#o€Í@øò.‡Tkë?@¾«ÇmÃÍ‘Ÿ“=â0î/}|án é< ¥¨‰Â¤vðc Š8ÏKôîA±0•V˵”¨ðWšÂccC7ö¢ÔsÆëÎ'PFg2Ð@¶夺—óSìQÁî²T %âñ!fA2T¢”ÒÖp½†ÊjgtdC•ðJŠÕ¨ÆÑõ³6=Õ«£áÍ»s¨ô"_§5µÏž|ÂHûuùDf ¥õ~8¼÷e*FƒK’;VOÐðW¸üþ:f4*7¹¢P…ÆûT­$XÐÄpöù‹Æd4eþÃÑìꄦ½4ƒÞihÏX/í7š»sߥB •–?WÑrJžÄ´\/¡QaÇC_ƒ /t +É»äÃKûP’âݨ¢]ÒÌÞ› $þ£‘3 Óý¡ì~}ÖËן!¯¾ä·ËýŸ„¼šHM}&)ïZçÇBR@ºªmR/!×´èZŠª 6…ï*åî=Ý–ö6AÅ>D´Ê–k‚H§¶ ,…ÿjTó¬÷Z×mÂÜ*rîªÖ(¤,šµÐ&CfÓ†\;äT¨Ö¨í]‡¼½·™VHýï®pµ° ä>)õèa 4“HnP†Ï@KimßÊ*BÿŸŠ¥·…ޝœª‚Ÿÿù§zÂUNýlÝýÖ±ÁéAÑ0¨ÿL/z[†÷hëRÂÈ\ [¼7Œ6ÍØ8“$Ôübޝ`ZaûªXSÌ~´ßTw&'e³WÁâ#å¬.™VX&I·˜šŒ€•è—ßæ6ïÁšŸˆ_fF3¬‡,SÉ ÀF¯®‹àçøc<•µ|Ä v–“Úó^X"±UIе’ÔQŸä±D2mù€†œ@Ü5\ÿ;ÔN)2ÕvS]öGªÛ€û:¤9öÖ=#žé¦ýŽ™yáÞå·É}+CÈðÚIzlM ™Ní±58(…,ÊÊGn îCVVïW·\‘Íÿwìé)ZäòÚnùH¯MX[è#Ì—û¬^A+ƒÝc6Ò¿žDÃÉ'儾›»ö÷ÿÕÄ‚Ua­üo³lònc¹äß>Û•Ž Ïn”µ/"¬ßýD˜÷^.< ­ƒ&ÆÜÖvÕh6Îq`„–ð»«KE£Ðúmâʘ´¥Æ”q6}€¶SeÎs ÕÈ`ZFÚ .&«Í @[ø|²óÅÐöŠêu©Ïh«8lòPðï{–ž|£°øbãtìaÐ친ïn¶?Ør„NÇÛ¼¦è²gæ&%×‚î¼ £nSÐ#³Ç¨’ÍzÊ/K¼‚~oÖžn'ˆŸ/ Û'ƒÙ¨z!V†‰|žõ…7ÅÅ­úãÝÉ2ùã۲✩Ö0ÅíEWuyfžUßq}ó&4w˜^JÀ¢Œñ„¥Þï—|Ò…•‰Í«`-xìºeI¬gZ1®fÈÂ&å›Ë•g¾ÃŸü _‘Hœ¤†c±‰c»¹^, © ¥¤G îbäö—¡ºŒ¬'ÖÎû·!•ò­p÷s7­8t4fópÃm¹ÍH_Ëc3"n†Œêü?çžû#S›Ý;cÿdñO|ÓÎÙ‡¬‡'c<-²ðø%òÛÈAÇföœœ¹²W¸õ£‘Gùû™"")äÍ™ˆª{» ùŽ])æ¼zßv _Ï·F\ØåÑÅÊ÷~%¡Ê‹ìa5Tc;Vé݇êµ24Qù¨ùrTn³¨µ­ã¹öP¦ .Wjò®‚Ôk¾/Sxå=¸<º\i[ˆF»žZö +¡Që·“÷£q\gñ–/šÜðñçúÊ…¦F翯«§£™Ð·‘j¶@4§ÝOLÈyóU^ƒ?¦h1æzZ¤-‡z=—‡à‰YFæÞK˱ڇj…ÿÝ/ÎPKa¾^õø¸àþ÷} ŸË»ÿå!™Ÿ©; åÊL»‹^AÅ“÷ŽtIâPùëcøúþ¿û$¾ò Ñš€híßM¨ûî«ßlß%¾Ø\u} –ú®F3®ÐTaSÉ3E -îÚ×J28¡ÍJP­/û0tN(G¸züóOõìc1Î}=ËÑ)ƒ”ª, 0T¾4^ #o_wÓh-ÂX€öUŸ`O˜Hq®|´05©JÎ³æ© `xæ#ĸ«Yañ”ÀÞ;¡œ°Ô®¿ï’` ¬ÜàžÍÔ¶ƒµSöÉÚü °îvÖZ‡É6r vQh¤ÁŸƒ‡|‰^½‡â´ÛûzƒˆÞ\6õB’”a›µða$ª5:4[Š»*¥ºÙf#ÅóxìÊï@ª“k3£HCyŸ;%ñÒÙ9)Ž àÞnò§Êdð¾¦r8™Wûq¿3²pMÊIgÐ +× SÚñÈv2/âÌW^<°8)P²»¹)ýƒ-ÕÙ‘gà‘ûál*<¸©Æõi–ùõ¥¢]ù¼Q ëe’®Ç óp.9€"/ÊŒîéúu=ÞIV%FæH‘j%§Ä2nÈ  qé‘÷(§¸+ÛÅÓ š×\å•@hòŒê&£F¥íg/*íPåõšFF¨,ªÉëxJ¡ú¬Oè±Z ÔL¶}þVµmwâ£âbQ—ñ؈#Æ ^q2“ØåƒhpÙICЈQWyXˆVÖŠèѸ'†1‘IMêéw{~FÓŠ$^D³y/«TO4ÿù£’í¤4Zì,ô“³òá ¹9>‡þt?$¼e3¥„2/úèâòqïgö¬@Ö ˜ª¹½>ý¸*^<îå®dÏGmnx¥ðÏG“Õ.N|ÃàdT´Š<ÍÞ‚´oýT×ýTÈ9}9ûÿ¾+¥°âxÊ#7m!ʣù,‹å_MT3½9)Åv÷Iá+´ ~Û†JešË²P{Ùà~ÉØ%øžvæ‡Ô %h\6ÓÜ:êÍûËVO­B‹Áò>¨y ­— Jr' Mõ]wÍYh 8þ±æ‚#!ÿVžÔÉC›KÅ¡ôí4h;GÉClM8þÚᬔKÈI›Ã/yë ýøÔ¶!Y9´—yœ“¬‡óŠF¼¯¿.öwBgky~•=5tõÎïØIXÃO±:ršñ+Г>B'oõúŽW8ª*œ…þî+‡•Á@­1ë;}"¬XøÄú؆6ÞœøS #æÒ\—¸·atÉàãT¿4Œ5p}€Éª¤qé3•÷ ›¸aîg‹.‹Û]X˜ ab™±„¥;'lÍÉ”aå¸eㆨ¬qFºþ‰„uÉýožˆäÀÆ7I¯#Øà]ZÏnƒØ©”óÑ|‡Ä&²2sdv°”{–É>—<“òøŽä%ï†òžK"åÐÁ/*Gp7Ÿåѽu¤ Žˆ¨”À½l'¸§n"½_ΣèȰ:µ0½ˆL·›x•ãgE0e×;MdÝlÁ¼ ‡lÇRul®³àðsŠ9:|È¥Ðé­ˆb¶§×é&[TæNÙu±“U|½C«{ÕXÒÙ^Q¢z]]wbÛÔ|%W”]‹Úg–rv“6 .»°C}Õ êµE4­VßF¯®Q9B¿íÑfHXC£1E=ŸE4.m‘~_O&1´~i©Áhú¤Ö“mÍnÞÍ¿ŒæWs/Þ®%ä ßþ‹Éhù„Cx|2O¤Ð‰s8>Á“ƒà”6ŒVG‚rñ,^1 /ù­ƒâ³=G4Žãnù+ì,0ÒsÇ1IÝJ3~¿xtšK÷,µ¯Q=‡ŒX'r^HŠ“1ùSWKè'Ë\Ù“ñ4;O¥=nBLÉäÃ.ª8ˆšòꪻ ˜ˆ¯ÏüÆÁ7êŽJÿ«Qínéòf›êSD,¤3ÉU‘ C¦¼{ÖyÎ}#ê—¢HIø»Æ*©Ò7¢ÚmaR ù!_† H¡@]N@gX ÅüûˆR“ ˆ½«Ú8EŠ‚îfJYŸ‚b ¡qeÚV(önsô䪆â%_ù¦ßð9z{ÿ"÷Ößýé÷½ý»TækÛÿËÃÿ‡®óŽæú}㿽÷.3›l²Òu™Ù;$ ¥B”RII)¥¨„„dW6…È–½’ì?>ç÷ñùó;ß¿®óþçuÎû¼ßÏûy=ïûº/mÚRç÷ß×·‹Ûykº5~Uh”τݠ¤| AOog®îª“î/NxÑCMHL>ÑD/Ôõ™wqǤAƒFÊns>h¼÷(x¿²4óWÒØxAËÊÊpšÂ$´ý\9¹’³w‡?Õõrúò±Uièµ×ÌHê넾ҕ~sSðü½q7ȆÞyuQ£FŠ?ˆÀ˜õwg*æ»0ñ"°,>øÝÖçÑWæ†ÐUñZ$äS¿çs=‰ºÔ[¸# ÓMá$Ê/äî—“I„ò »‚Ç&R÷¸Õ'¦¶#ÝÃëƒWÚ‘¡øâ·åvÈtìöÊkÛ)dáív¡EÖ§zsŠ„È¾,eìݸ[Ü3Ì1T¹ò›œDÞÑ—*¹pONœ|§’: TIlÜQ»‚ÂŒ¯ËfJ¥Q4d2öŒy(îÕëÊV^ŠF)eâÔPÆU”©d%îåìE¹4ïry9TÈ.¾m-b‡ŠõNŸŠþÞGÚeº“e¸?EÐÿ>a,BšÓ÷ݨ>íV°_³ 5»Ú“Nq¢öÞ±ü^WÔ4Ð`FÝ$Úw±ÄÇPÿLPò;÷­|(Hr4S* ;rƒß>BãÈ [®DKhªÄ¢•!C‡f¢§:Н¢¹@Ñ-sÁz´Ÿ|×A„–ê¼9©‡Ðê”Xâ÷%A´Žæ­fS E›YÁ=½ xøØal¼÷ÁËþÀ>T”{ašOn€ úc+)ÝB0a>2ÈPc e”2g# (·ú¼ïÌ„¯;<š }²ðáý¦å^7'iïËÙÜoOÐýÃMür«=bÚ^M3C\èkW"ˆa+ö<¸–¸Sësb] ë”ð×–ƒð¹/s—(Ñ‘­<Ú½wªõÿª<0à€z‘÷C9ÐÐ4SÀÏ~û¯§¾Íf¢Ê?$¡…4P*B¶Z:žÏ]–ù­Â¢ —O›lùcØ·øª-ææ¤—ߪ|Ï×^kC«¾;;‰ÙVž iþâ m†ïÄü«¶¹Þ?dÝc¶ráÛØðh·à]8ðU: ™®eà :-ª{k/AWRDA´Ã ôˆæÕ|| ½ïË“wi‹B×±\®tMèûáí×ým±Âµîž00ŸùÒ–u†T¤ ¿{2ÀpÉë7bï`Ôû8Iè1¿I»|wúüª-õßw1 ¦œÃY9Lšaú͸¶Äne˜°ñµP‚¹&Ò•¨™ XH¶=ûöa,å´óò¼—…•ÕW£gzOÃú½O…z`SÔÍíQÊK$$ðrÔiòF¢WFu†ôHââ,ß'…d.}ß©Ÿ‡ …_Íbfà ¤út€)Êþ1ÒîbKvCú÷ßä7†!£’î§[7‘)þ#i_޲ˆª&Ê–#kí‡ Çk8=Ù讦Ú¶±}\¢‰‚E‘çkÚeÍä6äûfjs¾ò3ò+[6È“¢@fã³{QÈðéÔM«,aÈx>MÕŽ¢õ‚¯¿Æ½<4_“O¢¤oük{æë(³'±3ºayй凨O¶1…‡ØRDCšаý“«,¿#ûI¼bEÓ]du>½)hº”Žó¼Ð¬§. wlõŸ¯½D’¡E¹¬¬Ö´òVÿy`ℵ!Zu¤¯ÛüFë5¡Áº ´•,)»w{Â3£/Úµž)ñU®Gó#ŒgRߢ۵ÚE£õ+(Ó·Vsˆ2©œFEòaèÚï ~†P¢K¿yú!»7ö‚÷¡qH $Òoùʱ• Iž¹´:Bâ›”?oeÜáÝ­.ýÓ -ðö!CÉýé-¿k'›£_†7á}¤]´ðºÌã÷xú£SCYt÷&¼û0ÜÓVuwK¿—i¿ÜrÝòÛ˜ÇW:ŸCæ´ßc'³à-ÝçG®˜™@îëÔ¤Š¨ÈÓ<¡7Rrò6b\ªÚÁ§ñéo&ߪaQÈÆ t–Yw  8„•% ÕÎþ}u SFhé’• ÈEt(œŒ¾Ð—¾¯-…bm‹7ýç‡úÓd›ÌðÕöu–Wr5”½8îÒÍ忲G¼8)¡âú¸ëèÑe¨Ú¯:0ç*5¶eÂòôP4jUÑÔßGÎÕTœ…F½<{Ë{ÆÐÔ|07¾CKXÕ½Û9éÐæAußrm`‡?ÕŦ{[ˆVz:ž–&PxBß´”¤S§Úcƒ³çmÛUC`¸[i“­ôŒÊ‘x®Ã„ÖXé÷a˜LS ~iÓî~>. Ó›ó5M&é0{ã~˜Ãû0/¼_eß° ,Òõ\eeqeÒ]Õï`õL¨L±­¬—G°sz,¦qvmûU2$$ò½ôðm!y<÷ˆ§ZAâéñ–6'1$½O!XþÉ Ï&]3¹„”Ö“]3 »:ÃÆ'.Méè5L)ï#C|o‹ÿi6d:d·h€,D¥{HÛ‘µGÅöcÁ"²7tí{:ˆ»ÖäŸ=c„\7«|Þôh"¯¿:eÙ° îyT¼ð¨à ¼dí1}ø …ÚHG/@Qcð™Z_Ñü›f(€’?u(â~ ¢ÌK¿EÓÍ»(çCàíp|Y×Z}P1‚ÀúÅÚETî]hå;Iûï˜OEö3#<9t2¿] ÕLD†‹MPóFÉÙXÅ Ôæ½M±"‡:l_9Q7>/>Ë5õ=8?$)nåC…–Îuî44\,£å<¶ˆÆ5kÃ<¶çhztnï£@3ûßBjDh~öÇÄÚ¾“hñ úlB±Z\”²Î|‡ÖÄÚêÍhsòüw¦]óh;ds2÷AÚ= g­ýƒ¥§­‚ÅQ¡Å8ä˜K÷Özèz;i`¼Û¸N‘¦¾Þn[æH[‡wõËß>îðhÒ ºå_ÂÇ»LÙFÆZj”lP¿Õ¯*·„<‚„ÈñÇüöœG~=š¦;¢ó’nÔèìß©‰‡Ù¥:U ‹7ø‡zÜøìl.¤VeS‰Íšä!P-œ2eö¾êíg…øK@CÆ)=BUhLê#œš¼ MÙ͇ۆ¡9ΞÎ3µZÎ?¡áé; -_˜®òžU€–_ˆî>S„–îÛ»ïñæm}V¡ÖR‡V ë’ŠIhieq Ûæ˜ZfméäËl5a¢üë'M?í.Þ}Ÿ‰'Cs ³êÝgéÀûÐÍïzA¾é2ôÄ=üi?¹¿ÿ1œ¾Cì/Ÿç‡~FæÊ¸¼8è³óµxSuž6RŠ0Ä-zM¹Š†ƒ'_\f…QÅÅõ+ƒ0.Ñþû¤l'ürýÀÉ¢¿ÿ8ýÜ-%ÓVpYCo7ÌTº¦ÄJÁÜ©,~­,=XPd<©ï1 K*/â2÷¾‡•Ká‚j<™°ö+ñ º«l<Œ±ßGÿ >h³´Ïé„vz§0" 3A¨Ü¡'HÆ(Xp4b).K ]šF*cþ¥¨³‚Hóæ¡\À¿H/Ü-,ºû2üîl剆L6—vwT}EæÆ8©=#ÈêžÖ#¶g²ëPd¸?(Ã]ö!'­lµ‘3ûÍFÓ^ä9ôØ®¹ã<òÝji I„{–‡¤ÌomåÃËDŃ/ÜPˆ*/Çy? ×¼ç ŠDÑ,›ÄÔà×(Þ¶7Ü*%e‹ÉtÒPz^]Âá¹6ÊêÿCÕ…ò 1:6—’Q¡‡<)ÿ*ÞÖ­;ƒÊvš †çEQõžÈò¥">Të“9pÂÑÚ×Q¢¤Õ×W‹CèPó|[ɱÃÓ¨M¯áwÖÇuê¼ò鮣nøÀ:qÔwxØK´J‡˜ÄFíú)Ѱ«…ÌÕÑøáÍOD£·Ñ”¿ì¾a·šQ Ë~”Žf+•b}ÎËh¾(y¡6ðZl¾8SîƒVìË¿eæ%ÐZÃvÃ{8mnŠ|PÜwmOÙoÕF;8ŸB±å§öUÏÙÍRá‘+OŸrïAט½±UQ:Q±óMK5RØŽØ)8ÂÐ.;W]ÖPÜ#ì~}d«ü~åóXÒXœDùÒA’Dccsï $¬ˆÑ‘GAÜl.ù+I©Î “)¶ô¶¹/¥¼¡ýÂlÞ ¯•LŽ ñŒíÔ¶/A›E[~hZ—¾4Rv7÷ç­¦BZYÃÙG/™!3i²å4d/ ,éxœÙž«ñVžÈƒÜiòñ …ÒíùšôKO/À§·¶œæ!ÿqâOa_âíùšs—©R¡À{U{œÓm{ÎæÜ=¦õí9›Ÿ‡ìI¡HÒâ£æ/¹­>8Ý@(Š•7žóÿúŸš4ýžÇ _O¿ß²•ïÊ"µÇqnÏŸ› JøBÅY ÛÝå PÅD.}ç¸2Ôp<;) uû¯7\$^‡ï~–vû‰¡‘jHØ­Åšî”ã­xhQz%b¡ìmœ)i¯vøS¡QAc|vÐcÓ×'Ã}ʧ½c½¡¿ûëg†ZŒ²çù“0|ç£ö ] Œ¦„¾,¼ ã3ŠÝ%oaòˆOV7 LM_,6õ.€é¦.±k©k0k&lûcê"Ì­W:.˳ÀÂ8û^zÿfX&‹³½ýî;¬j~‹ì›‡õ­ƒ¢½ü°Éþé²r¹: ;…×ô"‘¹ûÕ¥þHÜìýRê•’žñ¸ž4Ì‹äâµ½á¥H)SýÑ[©4Ä£3CNâ„Äáed2`RjB¦½a… È<œd͸N¬ý.®¿=é>÷p–.yäÇ‘KG%þIù*ò¢)Sî9Þ“‹øNnrw9¡P¸;åüß(Jõì=1Š'%‰ŽGÉ{÷Nf¿®C™SÓc_ÅQN÷©þ ÿhT08Çs' O¿™;¿â€ÊinÃË]v¸ßþ¶Mzñ]wŃ{5•Q½E&4ø@jzįG÷£6³ú˜ÒÍî-}ÚÙ'Ò£n܉„o­M¨ï•”‘º¹•uÞYëÐä¢sÃà-=¯6í*ëy¦7ãuMU‰ÐìÉ¥ ë×Ð<}Ö:Ng-Æ¥=‡ƒÐJ±,ž`‰`+RPæú¡­è—ÚUs<ܘ¬¹¥Ç´×§~}F·égMyQÞ‹¬¢Úé*ÈéëËëaÜ9'×ÞØJWoø‡ÆOoýÏÓÎwT·ìðhÒ¥Òk“åsàÃm½]wqR¾ÜaN9IŸ–¥OÇQC|•¬Nò7x{Í&ÿ«‘úöùÅ=“Çu;5aðê®ëÁTÙ¾:ñ^¡> º=俲 Êʯÿ‘ƒjb»·»} ^®àœæ­Xhx&ãö‹ /LݗݧMg´®óÏ^†f­½S¦"E[9ñ¾`Õ“ h±YÿYíÆ-Ïúá¸ý¾­ú3tF %ÍÌ7°•ZÖ^¸nå«Ö¢–Ë¡íì®[£kmð¤   ]¬ûŒKE5tP–3/ B'ÓLþì^ZèBß×!9¯¡;â€p…î2ôî>~0|ü ª+·Ê‡¾k9›µ’DЯàÉ—8åý«¤T Ê…006ja}ð îIˆå–‡a§ý¾|¾ #ó'&®;ÃX×Û­K¢ð‹¦ðAvüöI⢹ÓT!qÖžk0snQ£mFf׎ŒyUÁ|Iõ‘?Öš°Xh%®›,Ë“áÇè7aÍNpÍnM þNµêõ\ BÆW"$œq?-LÅ„ÄEÑa29ÓHúÉ%!3ÖÉ˸N¿d?„”ƒÝQWó‘F˜ÐÇÙâ8Ò½™å0Kz„ qnkÝu ÈD¡$ÝÔ#Ì×i³˜•!SïÏ3dûùµ/¼írü¹wÁ¤²9µö-²I!w³«†3%ò4™ >ÕÅ=ùÊä-µ$(  Àኂ•?…>_.Aá{‰QF GQôÜ)ßÊw‘(î/h|`%ùÒ¯ ¡ô;©:Ý/2({<É»²Èå©(ç3ÌP!ínþ+cJT4îü¨,à°~´UÚ’ø’mQ-Á%gc¦Q”´‘%ŸÕñóˆ;ú£æÉc©¢6u„+Óù{¨Ó¨]º—u_+©±YA}ûö‹ 2xˆ61~Ï7öNE'´ñ¡qh£ˆëgw4•ðÓâêdC³ÝBN“hÎZúövÆ Zðµ¿:…–*!O‹ÑêTæŸgÔh(n°tIm Å®FùvlåBª¹‡»¹Ñž<úôÆQWt(*vãï9ˆŽ‘ßÄñ\•´ÓÒ±u”|ìÅ“ôB )Þ× ÖiÁ`î7_Æx(¾¤ÖãIYÏ•Kn5Dý3Ç}ÿ$z¼a„±»`myüjo=Ä9?+¯~°}n(ø,àD?ˆ2 [€(ß×’»«“!2Y²uúeÉNÍbÒX¼±å£Ù÷vñjý3÷á9 i6ÆXCæ ÆJŸ7ý1Èìé“;Ûs5zÉŠ¶sbàïD>È»pa‘|,>9¿ P ‡|=†³Áã3_”WâÔ òÇ.ñ«nÏÙ¸Ò=z±=g“~Ÿº gozÿj0‚ÏéoFâ’˜ X"êØÉ ¡ÿüÐ*+/ÚÁ¾zˆ‘-²X‘ÓYÏg¡üçô'ÓËPaûJËxoTŽ5û0ÛBõ ÅFè— P;Îpˆk?|çQËùMvêègøŸ@“‚Ö/F· ¹Í¥R0_ Zƒ%¾SoåÙùSL á)òîÐÝ&=c“ ?GÔ|3^²@ÿ“¡=vM÷`Ðàà8 Þ+øq¶F­–´LƒÁxÔÝ%¡¹0IU2<ít¦Â?EPSéÂô»’*˜,Ûe!sÍVwó}—aá«™Uü3, 2¤Œo}^å:ïà}&Ö]>*2†¾"ÎWL× ‚À(in‰t}­®1 qåá{MÁHjÐá M†ä”ÒÌ»G’*ÊÙõ¯1R;ˆ·Gné›v=—ý„Ä(2\Êùó†"™â¸?ü&FæÊ'ÍD³:ÈþàªhE?²ûí#Sñ»»"?Þ;Æ|¹¨“n}HGž÷©.u¦m¾÷Õ™¯Ã( 7þK¼…Û$¼"ôQ¤t)°ô·*ŠÛ1>ŽZCIÉŠâo'rPFѱKñ[Ê1sSg~ø ,Å—te‹QQƒõ–tQùöðb£y<î—ÿXüí͂ёˆT]TÿÆD¨Z Œš'=i/Gmr‚ Ïï,¨SöqÆe–ucé;õo(å¤U¼ÃCÖžAkŸÑH¦‡ŒÌº MÄæOÍŒ iìy}^ø‹f¥+EÜ…sh¾BSjdŒ–ºþóÚTMh•Á΢j‡6jKª-2hû›¾ƒ²3í*‹&\Ö C»¤HI¾zÈ (² ûŽ´½HÛEeøÆþðÄø>©„ÒK‚Ì ‘ƒðé#ßÙÉn‡MZL€s¾ïxó†­…\,$îé~Ø ‰õ¹ûsDáÝÂÕ¿ò²{·ï¶zõý3ßöy§&¸µ·TêtB泓»Êéÿ™ÃæM¿²Õê¨Ø·5nÏQÛ xJB=¥¿þÌ5vh¸PÍÒ2*é.ÝXƒ&®ÌÈóÐÔ¿^/ûš#n¸Œ/ yzT×óü:´¨ú_SÜʉú@ï ^-žgš< ¥-¬Ý„ZÕEŸ?7ƒ¶«Í)»—»áÇi×±\¼Ðîñx¦¦×:œÙßš¹=ƒÎ„Œ%' +ÛÞgi zXh»íŠ| 7D‰„þø'øù·êL„ãèKꘄ~›¶«ïõ`€:çúw ÊZ9¦ÁàðîVê :0,xÇbF2ø:ޏÂX ûþ,/˜Hý8bs~M]âžø n5&þÐ͇z_%"uN˜ f¸¤bóFwlžï†EdþØ-ú–Ã_÷½9«•1iž„ðלRÑÿÇ}$ üy{S¡ _ëÎ5aAbõHi~3$=–JžøÉO–ESä¿CÊ+S%Q¦Hzå›f}%Òí¢ º®ì ö„üáóȘ·¦]3ý™¯¨ñô"KFvVv;²]»EW!`‚w¼o¨\ÆÝ >=úv²Èmo ²¨‹|´ÌF pÏõ‡ý6w‘ÞÙƒ<§HKïê¡°ÆÛØë!(Êïi;”¿å‡ÊitSUP"Ô‘Ô!yJ[s»Ës¡ì~JØóÍ(7°Qÿtz îÖóö?CE® ^Ôʨ4éµÈfúUYý×½|Šjûò"¬<ÔZÏ0Fõýë%ûÖQóða¶ËÝ-½-XåOC&^¦jÝû¨ûæa©Rlù¡ùê´¢99¶&‹†”ªƒ2„h%ð¼í¹=š*âßɵh&ÁÀa¶OÍe‹¸ù7ÇÑBßèøÄéchyÙY;Ûƒ­²Ýgk¥¡ ÝÚKO‚>´½»W‹¬ÐŽããC¶–´ohœ';†GÒ•ÎKûáÑ’Õà;óîxvÚé…!ËÜ{9ûx¦Í}$oÑ:¡nƒÖrÝ.€bJ C÷2Èœ¾3~‡i>˜+Õ,Í-þs¿"i–âÓ#³7àm»ûµá~ˆ™¸ôá:Yã?ç†Ðs ^Ï]×~§y"¹iôÿ2„ïÔè¼Äw¥·ü0ôµª?$K‡FR#‹l޽L'Âó:.…˜˜QæÓ{› `¤YU“Ði6ƒ±«÷¾kÔ‚’_ÕÑžµAÞ÷`çÍßC;\Œ4‡êÚG;\Œ¤OsGÞ¹ºíp.Þí)Î*ˆ”ßá_¼Q«’JÓÜ©ñË*Á,k);Ïû—cñ/‡¢ª0&¹ý'Ôõ™ˆF_‚³ÓŸ>7@#uhö·Bhl(* -„&ߺ¤Ü1;Üšæù.öCó€X÷o9hÞŒ|Pa¦¿å~çvÓtíp*Zo^m“ÝáÖìðgr5®IÍ·@GñY¹÷f„Ð9ÊpšÞætïUtp «€žG½O§ä6á' uÉÝ8èS¶ÌËŒ‡¾½ë‰_¡ÿºRCºÝî¾Å@'½¥×o¬b!º\nCÞË'`ä|vEÃñ30¦¢RK¸P†9jVÈ`òQöÞ*f˜šð¡$|{¦3©$$Ÿ0nõ™Ÿ#e×j`®CÍl?ß_X(iÚç‘°–zÃ;3~¾„U%ç`ŽXÏ> (µÿlž·» ˜ÂŽ„ú{|oV²!1S_´dP’RNûÚ¤ErR×ökŽHIÓõ|©å¦ø $‘ö÷z\Å-d` Õ?ÌÙ€Œg¾.'Þ@¦º¾/³j]Èb™Çç#ðÙXUÕæòµÜ=J¹EéœÕ7*ñyFf4îQû™ßáL‚üY/*^}DA ‡zZŠOfA‘Ž»²ß#PlR-”ÇÆ%t"DÉ»Qšœ†ž‡™e™]ê|øMP._2DZ: lnöÇ{rá¾ ®O>TÊ^¼®¡‚*= T×îV¡ÚþÑ2?:o„†œ¡ä¨^áÑaK{ 5Wb~ž¯GmôXóRY;ÌÔl†ëg0œïùä*†…+åɭá°1nþIé¬|7¸/w]Ö©îéš %ÀÆÅ²³‡Sÿ ÁC_‘Jm-$\Z &Aâ뢽JÚKHJ›Â­¢õÉÊç| |Þ#Åg“©1R?¤&ÝP-JAÚ׎¿½Lu‘Aý U^2)2væ÷9›"óc‡Ú¡Þ dµéxÓ\ƒìòÛúyÆpì½v¼(9Ãúò!Ûëæ™ðMä–_·®µ@þúO¶þUE(8Á»- E”’®m$%¡X~oP” Jø\ýó¥“=}U¸TQ6YáÉ¡Ê'cyö˜÷ÕݬZãBeÁ6?¨:DólÚñÕℯ3ª'µt>ÉÙƒšú6þ×¢Ö”¯ÿìù;¨“¦Ï{Çu_ŸLÞ`ôAý@‹Ïy¶[ùð*[%oG-]ؘ9‰&÷U „üÑt‚аHoÍÅÉ,Ó ¡E€Æ«7WŠÐŠTãFŸ•Z'Òl–У­WkëéÇhçùq0ÂÞ zìv­Â£"†In ™èno¯x››¥Å?œÌvKDš¸ç>oL`$;Ù“g»_Ó[z3% y¼ìA&KÛ\ k‚ûð‘M+(LÍ RrãxYk!‰›7R#2h;÷¤ž ƒ¸Tˆ;ª¾Ý§;v»¢Þ¬\@Á†ïq«ÆYuçy…5CÄèZ Œ‘À/]ÔªÈQ~ö‡:ë¹’ÃÏ~BMn.j¦AC©fZ)³4ÎÊo€&ƒ¦¿ý» iñÅ3:ýhÖáš–*ý Íw Ç×™AóãÂfM'hÎ!<Q+ Zö¬Ûx?V‡–iþî;… кÁ¯Ìf¾ýþÚdçЮ1¼Ì@ :Éžb}RÐéjtÇ”³ºRîͧ4ÅA…&µºDôÞÏ΂ŸCjü'ê /"&0Dxú ïwúÇŒAÿæDg¹?7 ÔÛOÔݶ‚ÁoQ™µ“^0Lh<)WjöŸŠ_áûµf âšM¹\Z0iÉ–L¡ÍSÑáÓk¥ 0ý@ÔÊU+f–„(ÎŽÉÂ\ÂØï„FYXx@³!¼–ž—ŠD ÀJ[½eº"¬Ðÿ£]6oQ-ËC‚åW#â"G‘(oît˜†;’$1˜­óu#Ù;JŸQ;Z¤H£R¦' Eªîú–ýzH+÷à*}R0Òg“•^óy†Œ"Æ&Â6)ÈäKr3 Z™7E„Æv?CÖÂ(=²Ê"dÿÜ?£ 1»‰\^7)¯#—ÏÉÕÆkÈ+zKP›ù–ªßÍêµ ¿sq}Z2- LrÉ~UB¡°”˜EqsY" C±ë_nѦGàÞfg&® ” ©!Õ\¹‰2óý:•(wû–÷]kT¨1 ׉Å}Åœ^v?£RèO½(»-?̲;N„jlGŽæI !ÄI ›ÇªgÉÕ¿¼s5UÕ`)“µÆgèÊ‹¹P'ý§gÉämÔ½¶|Õj ê+p\y_«Œƒ±´^}hXú%\ë~ÉþHMå=-–hC3YZ‡ÓÒvh®ÓÞ°—Â-\¯4«ÊÿBË$›Ó3‹ûÐjã'ùäs´9_þ‚Dâ ÚnX|ÛýíÒt‡omùa@;‰æñ:t lW~º+Ž>~©OòÏjå©~ìCѶÁ ü‘|è‰F×ßtè_£ÑÐ:x>Kèé6ø öハ¹Aj5D‡ Ä'5°É”°Ã;ññw€R›ä¶ý¾ý燹¦›•Ûó¥ÁÖ1Páàÿ-ä˜T6ê רÜ·Üþ·&¡ö{!‘¼#Ôÿö¶Êþ g¦é3Š@ãûj »b1h–xÆ¢§¤ -_gœ¿²ôA[­^4«X/t6&ûZÝÒùÏ$ÚÐûÈ,vÜò6ôU›(/®›ÀÀ%×Õ‹Aù0dÔ*]º #7¯jjŸ/‡±ÚvÇD—ïðKZøÙåÚHøð3ÍùýU˜æU:_<43¯¼ÛJçD`N7ÏO‰"ö›±_>š KŽ’r?žÅÂJ¸(kLô¬ ÌqØUƒ kC=9b$¸¡žÆ4<‹„CÅGòø‘øÈúFCc’Œ–µùÈK"Y” ¡Î: Edjôž¨óH5¥§ãÕă´AŸ7í3‘AùìY•O3ÈXCôÐUdöùÜPãÒƒ¬ß®ôøÔ#;gÀ›PþW¸K˜é‹#rú½ØвCžÃ aŒ·¯+ä¥{%)ò 3pb!BÁÎÖÀ虑ØïÚ¾+ÅòXL?ˆ¨£D `[øJt?°i¼‰²su£P>ÓÊ%öýeÜ×õêù}¨¬rQäLÙaT]ÖºC[ù¸äku/ª§”=bHAMÞ}ó6¨µÌ«>RaŠ:Åñî>ÌEÝô("½ 'ÔDZ£ƒ‡ÂWùµû¹ÐèÅ¡¨†äghR§|¡ëàš±V*¬Ýú‹æGïÛ—p_F‹oµ^wÜB+¢Ü¿l h½~_ë„$Ú¶HüM¶rF»®§Ê¯-,ñÈ®žHJÁA<ÆéHŸ÷Ý.¥y‹’ Ä€;SA± ÒOÕ9gC³õÆÁçj 8°Â8Sÿ äºGe—ePA†Óƒðk…Œð¸Ž;üg $ÏE¥s‘‚DßC=µï·úUUq}º‰m}Uñn÷©MÏZV!ŠX,³žôóN§ù{þv}åÎó ¥œÅöÉ6Á׿ÃVž†Ê¢T²ŒYq¨­ ³cJ—…ïÁôu‚x¡ÁÏ»¶þh/4š>IÉâ€&–vC˸gÐTQ÷7Žš \d0½ƒf‘Ô—Òï= ™»gÿOy¯­üè{©úÚhIz%KY-Çê‚euW õò{/~ÅÒ­œ2?ày~ä.š•ìU‚öê‰ÜøóÐ1ø&øç2tíýñhí…/tßyw÷™ðèù#x·¡‚~Ú½°î3>GÅÚäw ÐÏÝ1tx<úÜ*þ+ÃÀ—ÈoÂ`™˜³ós&.st“Åÿü3˳ &È¿sÄ¢/Lr^e›þ"SÖŸÚúâ`úèÁ›É˺0SõðòÛ–0˜ózÈrÛL +e;Â’á¨[¤£¬xÙÚ¥kåÖùöÇü`Ãæm\Mn $2j½—ˆDGɤ‰Ä‘DOF òY ’iÇï±´æD ¬ºuE ©nÝ—84Mósׯ"ýÁ¡YÍ’»È0Ô£bƒLr¢¸mî!sÒ‹½–Œ¯õ$‘Åî=§ý”ÀÇ*Ü•@뵯ù+r±5¯ž=ð y2ŒbŸ·D"_FöSj‰·ÈÏ6ÑZ¤ˆÏZ»NξA!…¼ÈIëk(BhTDtJŨ5Ïü¥ÎÁ½Ç¤Öe3LQŠïÁÚéŸó(ó&ëàu”Óg˜ûÚAòÓì_³‰à¾R Túq¨tY2¼äÒ–†QDL îŸnZ2jD¸¡[±¨´ÕFÏm[±@M¡›Ýô‹Æ¨õýY¯˜¸#êSS¥_žG]K†Ô\y¨OûÅüdê&”¾^f¾Ž†ÑöG]Ý)Osg|ASγ_ïJ ™àó÷÷­,ÐüÀ*åÓ2´8Åd°ÆDˆ–o:)øÑj%UÝ‹ú(Úœù¬ÇZ½Œ¶‹ÍáÜÜÑ.N5Iô|:x~ŽàÐBÇó¯lÒ¯¢Ó!ÿx/[7<{îAÜÖÏ‹"¼…×%%™‘¢Þy€$†ú ½õýM_@Ñ®"Î~Ò½Û÷ðU6ÿÞ‡TI½áÒBˆ·?ixïÄ5ÛÞÿá±N NÆëÛ¹/k~ùòŽÞ"%ò?ô†öAøgx9ÏÆNÞ¯0µ¸÷¿ýðïqæ¥þ`ÈÖIzÓ[r8²jί@Nr€QÎuÈå“"h· ƒÜ"šðÜ!:È;Á¥FÝš miÿùaI ×îKEÛüÒP¿þÝPq§ôÒ…K¨¢T>}'pûüð$+)Ô~ZT ùn õ5u¦aõŠ[ëÅÕ—©u7¡ñ›Å5¯!þí~™§2­Z~„d—±C[Ûî}©]Ç }m3ºs·tÝUñvío…^݇%n)ÐŦr86´ ¢.ÿ}C{ž«.Ÿ`€s"Çwi0ýäéñ§¬0±B0-ã ¿®2’†?Ã%ª\”£0sjžYMáÌÑ*HÍÇÀüF÷]¦Ž2Xâ»À´ð{VœIß2|{kGÇO„5À†Jó¢b.œ'T>‹„#9ÜH¬ÞÈ{Öñ ’”ô>ùÂÿɼ,ý®GŠë”föJHÕöÌÚv$ior+Þ?̓ 2:UùUÝÈXŠrŽyÈ|ޝ%}ŽY÷fÚîj@vb_]aÜE»Jrää ät}Ûá¼Õó$>Ò°|sr÷¾æ"Þ5UG]¬'y[IS"|uŽé¼P,[ïv}š)J¼ll(?¸¥ë´žyÝ+EÙ‚*›÷uu(_„…µƒ¸o¾ZºR%èû#>%%ëÿßýôž˜//a°$‹í†j “©4$DKþç‡43ÕÅdga|ØÞ1èxüè¸Ó¡*S4íÅ6•azßÉ„ñÔ˜‰˜éë.Þ€9MáÛ²á°ÀÈ|{–Hhs¹¯À ëêñžþUX3:áaÞþÖT›óH`˜î;<ƒD¤‹n‰#H÷êî‰ÂD|ÎÎJbH™§æ'©} úÈGÌ*쪠\vÊå‹Ý?ïQkŒƒ”àK—n÷•ü.‡þlß¿?þåHÛ?ç†Þ­;÷ ÿÕ[Ä“_¶ŠD—EÉ?þu§F³tÐë(ýO?ÌdøkaÓ²Èù‹~§½œg‹!çŽ)OtõÖº P’*¹òÕÙÌ?ù!7颿· ¶-_ü•-í6ðÿÞOäæMqÚÞ7 É4Žýß~ÈÝ©ÔbÜðßýÃý°Ævqp4¾I\ û¸G*’7ùL÷™C•.á[¨áNŽ æÚù–L¡s°µ^¼éù „¼ñ–-[ëDwf'4‰ÓWÙÒ½"iù.ám¾wö£!hŸ•|)u-ºþ(´ÞÚÒ5Qyè«{mÐw¡G¥Poب4¯¸Ý…Á+#SbQúSzµ+Æ.,ãúd¥]ê5¡'à÷.™ô$øÄšc@3 î&Ùž–0Û¦?"Ü÷ æKOO§[tÃâ@Ö‹¾¬HÊÜšT€µÚ|×&gØà¶/RG§’âD1s$ülÂDoÍÄïÔ‰ñ#IIJ>Ó$3ö§²[sBŠÃ§ˆB ês÷iÕ5"¤u÷±g¼ˆ ¢{ÄöwT"caLj"2ök»!‡¬¬ÑÊ–õMÈöË[fUl 9úõírËÓ:-s´ªyäùK7n"_¥y]Ô—3ÈÿÞZŠ%ñ –ÈþiBÖ£¦+(–á“ñGÅ %Þ=÷Éœ EéÞäˆçjd([R”ňòâ ¥“¸o©þ ß[T>ž¬£\ý ÷ó¥ŸÐ‹Ø@àö0?Úˆêßþaz¦€šcjͯ¦Q›Ú!ç»×êô;rï¥1êv2¤õÊ‹£~g±õ%¹»x¨¯¸íñŸ"4š\ì}âr M÷F$Ý,›B37kÒ+SLh^ýèL_÷s´ÔŒM„VþНÔÐ&Ž/Mœ¤?î*m‘eAû‹Á–¯ÜxdÎdnä9;:©uŸHú-‚ç^ËÅ9°ˆ¢f¿Ý+5úmŒ»'±>ô»±1^'³Üú¿¬dHCí{Ò^Òî©-pž¿RzûD ­CÒ¹ÀÖQ=H8gË&1õOîó³z²}ŽÑí˜xêŸ>uáº×ö~ò¯Š°únO‰ñTÌðÎóòçc­Œ®|‡Ò‰ŠòÀSG¡âs4AµÔä÷?¼û» êo˜>| Dc$#+Ðаö*_ê24&LÄíõƒ&_:ݶÐ䵑y8Úܤ¯j¸}„&5îßK¬qÐ$zÓçÚ4]!áŠ&¨Þêù—ÙÜΉ¬‹WÞBëÍ›ºæ¡]Ж—"fqìüh=§ö&(Ú×IÚ™\” SâjQ t]s½¢¸Ëº›èq‡oõ‘ÁAj‡Íàç·Ò˜LÍBè+¾¾Lämý —b5©]·Ïn(G?‚Á/PÑz¬†)>jÐsîøáè†4o2õ"Œ—ŽÆ]õ_…_ɪÓ%ÙŠð»t)q‚»¦©ýEÝ€w[#Ö÷'aŽyªôw=Ì÷VØM{FÀbw),g¿¢‰½f«­¦÷¶ü'Û/–³Kè¨"aÊÞ¢v‡·H|ïü·/$½óó¬”ñ>$•<éd”5辶é^! sÍ„©IÒ1k>ä‚ Gפ ÌÓ‘ñÅù|½‹2È´qYqïf²dTŸQoÊE¶lM¢ìûÈ1m#ü—Ò9 n±íCîòÙW^!ŸèÃÓjóš¸Ç{ûUÈßwëpÙtm ‘zI‡ÂbìúÄë (*®‡]_&Qܧ´Áþ¾Jª’¦§ö¢ÌÞás ir(ûcÞÒÖïÊßO{í™+‡û4­îœáA%¹j$·å‡æ=’‡W>âþwŸeí‚Ĥov—i úµ«¬†åQc„MÝç;j…·ùüÙèGÃã Áþ¨K¦Á2Ã|õJhɛܢïóZïÒt4´6žñ-"«VWÑ”N…«ZîšQÇ›TÇh¡¹”šÏÑýˆ‡uU}ê%Ñ2lå³"Å*Zý‘zh®·€6G>¦ª» íÈ5áA´{´GúƒÉ–šÙ3¼#…Ž*œ/çúåÑIàRY#!žýrû&…Ë Ý5y­HËÌo5:½\ñYLUË[úˆ/žö¾i„ǽß}ÙÞ—aa…wŸCï2ÚÃÛWYjOÞžüg?&ľÞ¨UŸ i}¹£·ð9. óÞnmxÅ7ëþN}Óñêž ÷óÿ퇂aϾp^€lz’fÁfÈQè÷£b´ÙΉõ·×9¶ê.?_¦ñþ÷óJ³¼|GírçV^¤å4~Ìyߟ†¿¼|> pyÒÃÖ÷ˆ6Ÿz•ñ¿ý…úëbæC(UÅÝ¢wþóÃV‘Æ÷öIðMÿgd×1#¨hÚ_'õÆ ªnwÛG”FAm錇"ÔIgJå’KÃwG›<›¡!óA›î½Ð¸ä<ùQ‚š½dä«ÞfCËF»Õ7Nh/rꆭþwÌ>ȯ‹ºöÅMWôm]ˆ&€>8Už?&Ð?j;âÝãƒU¬GÞ" ¯¤ø…0À˜îßŶþ˜x”ýrqù L6&6°É—Âç?¦Ü0C8öH*ç,̾~ÆS{æý玘Ô-ÀbÜr³\\",¯ýaì†5W•‡^Ô«°A0èÇ\²¥[s?½ÙÂ-ݲpbFb2o§×Wº‘Ä‹‰H‡ˆÉ„³_›A ¥ÒÌú3JH• |•›Þi»n…ßXDÞõû…ãYȘôuss«¿eÖê¾E~Y6ƒ8‚¯´"[ó…•÷’©ÈÑSùØ–Z9Õ‹Ÿ ¢D—ÑÌË[ùðs†KN'òÇîãšm@Á¬ãmlš=(B9£yòŒŠ}L¢/½€™‡Ec#£ô4c\æŒÊÖ9òº…[¡|#ËÉfꯨH:.,)•¯´ä3ú€ûÆ,N‘æ (‰ë¾J6@õôè{ª¨iãV¬¹RˆÚ,k¾Öç ÎÌ犀׻PwÊ€BtœõžÈ§_DCâ8™Ì%Z4æ0¼é^ቦƜÇ*¬Ðì×ï!n´  ó˜.BK÷™°2´–8xÊÂ.m–&G‚<šðð¤¼Ðž_è@»OÅã:!::Qò¶É¢“§VÑê <›)ÄsLo …)ßsÕçV"µÑê‚ïºðÓòÒp_‚4ÎÞMèÌù¾Õ*Hžk×ܾ§{zÜZ’kÏÔÅV)@b‚o;ÓŠísŒGè¶sÏrÿ?çºç.n÷©ÂÂõYÛû5ׯ%ÞÛ©Ûç‹ï¨/ï‘I³6ÃÏC¿… úžÖ¶•ðCÿƒÅ'ç‚` ä¨mzò VyKÞŸƒajÁl®›”ÿùá×Ë¡Œ~0}iâD’üºy$Yá·7[ðš#üùª1_/!3êŸ?¿ªÙˆ£vψ`>ž$ÎôŒ*,^´Ó_¤e+¥œÓLE°zäç›Ý·a=‹ñâAƒû°éº¸òQŸ ÍÀ_‹á( = »1¶ I|è" ´\­ïFC•1R^è®z»™…ÔYJβmH»~ëvD°2p ¦ÄAF½«=›÷)qpÿËÅÈb'uÙr¯²9äÞŸU>¡k›Nq»q÷U7ø]Fn“ò}÷Ø‘÷Ûd\JšîwùE£˜‰ü–¾(Hñó±I®- ®Ó“Tò È§ñšÝä(Nõ(ßã’9J|ûÖÓb‰ÒC”‚¿¬PöÍ)’ØÊ(où—æL@îãpéḕ˜8žŠÞòC]/ƶ1Üï+_œÚ†@~,8ð#ªŸV}ûÜ^5FfÚÓ£–ïUC‹3¨#TåKg„Ö¢KB½ðÌ&æhpôiNª¬!ªH}øÑZÆì#×ÏD^DSŠ…º@ 4Ý”ŠþU¡¶ÍñÎ._lC óþŒ©Zhâ/cøi­Æÿ¤Ÿþ‚66‰Žïbж×Èÿÿ°÷PU,K¸ð&çŒd$"‚ä¤0EP‚ € *‚’Ä(*pD1ç1aÖcN˜Åœs@0 ¢ED‘ãî™é³¹ýtîáÜwßú/k}Ô„ž®îꪮêžîÙ§Cd¶úèOp‚Íü­.[ JÿÙÑ3Ê­”ôàGè Hz›•´)$L.W¸ô¹¹oÏOœÛ‹zÖ)ûâŠçQ|¢»4Ýþµï‡©ý®žèq^¤å½a—ÜGW¨Mß_i ®¨¼7|¥O­Yüb½oco|ÿ·óͳËÔj©7¥ÏùãšæÎµœ´ÿÙºØß7>6„Ê›6lZVæjêˆQŠ?‡H´øÅ¥áñTÞ7%ïÐOÉüë>ooòÇ/4^ß2:yäÞ(þ8ñü‰Ôñ¥Û˯Ñmy¨ÚéÍy²?”uÖÖêA·I™a´qëŸ×ïwg=u9!p£ÔÆxêJCz¦‚Lp˺»‘ޝ:Q7–np¾°!ˆº•´x§ßfÖß}z4Dó6u÷¦ªuÎP~¼¬ô±Ã`êÁ‚TO}ª@5sëý‘Ô£Úõc>VREÏgO-ì6zª¹kÛ ª8Ãu†ÿq ê¥ö𮓗o¡JŽmŸ3¡W õzmAj³w?ªôV‚×ßÑT…n^§Å2åÔ»~ ?´ ÞÏñ´nÌ{BU==æÿîº+U}gÈÕí_²©šØ§=5Ž¡êü'^«òS êÜ…ðxÔ×K뢜§QÝ· œÔcÕôf¸Ÿ¨Oðº{Ýs±DV'ž­SÑ·½&;‹/ñàÎ'g~ʉejÉߦ€´Fû8iQS]˜2«Ù¤‚ºn1™Êš…î ¹ ²n†oég[Psòy·x&¨¿ÍøzÓ°4N&¶Z—ö=è5t-®'~öÙ5»7WfažªØí#·Àx¥ºÊ5÷v`º}ñG÷AoÁìÇT÷ÇÐiwi;›€É`yNïáb?°áê÷6Ôl™Oí•öO~{ÝÙœÔÅN»^X.s_ •º{ºù·÷žš< (/gƒ—uÁãÐÔ>ê™àYë}0b6t7XmyÌl*øˆêÙÎÚôüD§³¾z*G)¼pÍfÎ)ú½½7ô6Á)kt”Ê¢!äâ낺æê¸(·æ„]üæ»2zô'µ!E÷>ô8®WýìuGrwF³ivݘۇYµÇ0ëMï}Xî8®%uïàÁˆP«ԽȨ Š_î1¿‡FŸß7O*O“¤ô~ŸwýØTêáØÄœó‡{·|ÇWºò;ó;iE’“”—V£[iWuÝZC=IµöDþõ4¯ŸÜ0y{ªØaÌ$£ûaìz´¡r»¤«™ß?|5mƒƒEÞêõ‰0‹éûU©R…Õû½ÿÂú×^›¨©D½È³é}3ªtiº¾d—õÁÚ1ýyd õ1y¢oÀòxê“Z‡3gØR5|¯x9Qu#=?ìXDÕwÊ^š< œúR÷(ºó®öTCéì²¼=|hî$¯}÷>õãFù%I©UÀû¸ç¢.ˆ^Ü—dQâ´IûƒäK %O×&Ñ’Ÿ^}äÂ6•˜©•ƒÂ‚A†‚Ò;í:uPþvÔy̼§ ÚÇSìC¨‹,™”0M4Ä-«JNú€–ë†Â‹T èLì|ߺê è=^yj Ærhïv>³xüy0|º¤ÆD»Œ»˜Ùî÷“-ïg§n‚Á/ $–‡Žþ½ÛH3†N«úm™ –¡Ó4f\ëß1yU>`_xøCçj°7òÿcPwp¨šàt¥f8}ŠÝ«ïä_;l Ý"ÿL¸|s ¸—ä½ÓÑÐï«ÞSÏû³ƒSÅ‚À;^G÷ȃ8è!}<*yÅYð9–š!Ó~i‘§=l´ '5ÃóÜrÔ¸>æû›èÕhcY{ èÝžu/ˆApÍ‘ùÐÇ`âG˃#!4pB§s" lò¦¡I ï›ýºÌ˜á!•z?†þ eX„È4©#Ö|h%¹¯©J¢D×ÎUþƒë/\ê ÃÕ2ÂÝ\óÀøÏ@S…¾ÃA~ìÙ!Û»¦ž8EèÔ\`ÖoÒ¿OHÛŸ°½ÑëE…דæÏ së©ÖŠÒöIô‡h=+ý;ˆôï•Ò”¾.Léu¨­~7­7%úCÞ¨gÝ&4³¿HûÊK3=¼—Q—§ßj_’M]5Ì3«D]û²lâ]‘CÔÛYCÍ©[[S:<eêÎÑÀ=[múQw߬>ºäÝcÖÞ·w÷»¾b7U`¦÷ùjûEÔ£¦èyrG±¿kŠÖ“ÓvýâIìØ«ãkZâÛ.OÛR¯S–Oë÷zUºÑDôJÖ ö÷ “|zU Þ{=^Xâ\KUM•Ý2]6Œª^[,a䲂ª±4ù®¸%–ªSušw¾c·_ýQtkÕ¨¯f5k’ Õt¥V¡úFðœÄ"f)FƒÈ´-Ë´/È€èM£w÷q‹i×KÂA¢Pcå·L5ª› á¹FdÇŸÈ)q‰ȹº{Ù-PV:ä{Ff.¨,ö[xsÂ>P3Ýñ&P÷ ¨?ˆ,uí hl:WÍQ´ö¬Ôês tÕ ½SÔ²@¿þv겘&0Ü•º¾ìà$0ž[+¶yf$˜®>'›^fµíÌ4ý•¡ÓNmŸà‡‹ÁòöËìIµ¹`#“ü4}Ï[°}^Sn_ öoÞÊ×öÜNÆa>¡‡ÁeÃÄÔ|?ÓmP?û Í€êå]oîà‘7Flù(ðŠJ¿bt¼/t7w)ß=1|T3ÖÌÞ±ü4NÉ+„ž-«ºÈ…@ÿ¤7?$öBïQ_ò­¦à¥:÷û׆êùvKí!t¸ê$å?| ¯øôuËÏûA¿3WŸÌ+Ö‡þ¹ÓCÃüAä¶’wK¾­†E_Þlw»þ1þàé8ˆ.S½N2 †-žêh0ž¨ý i@G=ùÀ¾‡›õDjÃSc{H¯»¦íQx_mOÂë½i»¤í¶O:mw´½Óöp)*Ý-ÛOœº&o²®šºÅÿr rõ©[Ö—Ù-XÃúÅy~Ë´W°þŽöh_ÆÝ?;wŸÀøO†^éôáü®q­üãýúåw/ÉLgökп;ÌøIú÷ßʬ’Üö•zÜsQ·uû;³û2òíÔ4Œz^µx·îÒÔËõêÏÍXO•<Ø»ìuùcêu÷~W‚Po.v˜q³ž*›8>áÑsª"nJpâXệ݀§®Œ¢Þ‡äJ¤ïüJUÅMx‘3ªîS“ÔOÇú”»ÑpÏ»ÕT­JšÜîµ[©º£¾«TéPõ«V7Ž[ÒŽúzãZ€Ç©'ÌïŒþ0Ÿ¿iðtà­Ž:1&·ˆvýYֱĚæ?”ª4‰O÷Ò/»´jôõ{gÄA¶Oà£Ñ½+@þ€þ´ô‰ $ò.&ð´#(çìúѱTµÊâÇž4µ+b+4{{B»3ƙɀf™T²¦ógÐÑûª™5ô’öO_ûH n,>*¥’†¹¥ã¦ÑÛÅï¨ÄB0é½ÚQë6˜¾9±*ØPÌ.ËyûˆNâéÖ‡Î$@ç#Ëï—­”€.·¿6­¬}¶:ß+»¼ vÅ%õ×-‡ë«ƒÎƒÓ^ýÐÆe àráÎä¼ÒÝÐM&iMÅ¢à>ëî¶=>GÁÃø¸TŸ@ð\ëñ¤OUx[¼ìÜѺ_¹"Þ×à3ø¤Î}ÞÎë øuônˆéeþ•"•_/l„€S“—åM.‚^9ó»ò‚&Ô1¬œÁ'\†dÊ<…’Õ6Ë–î…PÙ» Ï—–A˜ï¸Úè9ùÐwÕÚïnS'@¿æmçoH–Bÿ‰×o†Èvs”»†WdÅ^+„AË U\—ªÃàìmR[DOCÒ£“Ë=^¥ƒÑø’Û6šÈ;–?ͤt©¢Ù6×0û„÷YÐ~Pø÷~…ãP’?¤í“¶Gú÷„÷¹wÛ0Ôªõ~ !ØŠþj?†°_”²˜'×'Ÿù½à3‡'itZ3–è/™¬¿½Tÿ /÷[,ú •ÿy7Û? 8™‰+_hÕz0û­Š¢^T™ÊÄ»´¿ˆÍÛ *1>?,~€[Ëzñû‹”So¶õsœþÜ•*[óí’ØT]ªâfá4…½qT¥…«ÂÕW™ì¾ ú÷½ûOÛ¸óL$Ug'·x´øeÖöµÎýÐÍúvQA­ ø6ÕäôUß…ñTsáÔ$Ïë ÒÕÓÀw¥9ˆfÕù´×¯±ù7ji‚ļŒ#sÚéÔ6Ƀ‰{Ë@¶“±db(È—®^3¥j(ÎÛ/• T¢Æ4<ŸªŸ³ru_ êÞÈ’{ç {<½Ó*@+ÓãËÚ3@ç¶—‹ÍÝ*Ð_ýrÞ;õ`8vqÜ€ e`Üçõ׈™)`ßu‡§i˜]m”5®æeË6î –Ǿîbë Öß.N>´Þlï+¶Í[ö¤òÂ#v€“ÊD§‹ƒËü™£@®ºùV׬øø(ÇWÏ®ïÊ£_7/¯ {µßeWBw-褣À‡·hònY{þø°ÒùÔQèÙîÏš“½ Ðö^q£Ÿôîkƒî+Að´û×ou æÛ£ÆmGËo©q¡V¤ÂjDŽ^ýšýv­x»bÌdè?;C,C7"\µ¾æ/ºp ¢ Ö›ø¨ùÌJˆ~äöÐzÐAæ¶nÏÛˆb0Ù´¡oEðN‹ï('?€zº9fÛ™Û ŒÞÒ¿—½s«ÝdϪK­~ûßõ‡´Ýµ¦9;Ê“‰/4ÅT~5ëN]I1y­ù)‡‰oÊ TÉßKÝÖíÒGzZ u×þ‹ÁtÙt&låÑ}:^¼ã9/vi\ u§ÆJÞ¤ýêî¨"qEE¬?¥÷5®‡œ#O•™ýŒ—<½­9É“*Xó^În¡ ;~ôLêv¬8‰z\üòåýeåÔÓj‹-ö÷¶ÑþDf_"Úøfಙ½ ¯Seª\ƒ_ˆµ¬«É•Éöf~w»òë‚ÂôEÔ‡ /jê©jÍ{‡v’¡>õY?~2Uslϱ~25T]жU2RYûêu¹Ë³÷æÔ·S›$?(,¤š’ênÜ^Çw뛲¿»=Âk{~¥H øîiRcÇKǦ€Ìž»‚ÏÝy^}»u_M@±o×k–·z‚rlQÅ=ÃAå^P¹{ù+P›ö^g‹ß\h7ÎÄ$õÂ(М©6^·£(h¯‹È]ÔõOнSÓÅÑ tí¦œªCŸ1÷¹Ñü—Jƒ\ï‚ñ‡¼ÁbÒU`:qÎKÞd0‹œja‘æ›E–=¼à ‡z…«Üš]|¨œ³ÚlšŽ™­»#ÚÃü“Á!±éôh×(pãñMÃï%¸lÞ~GÇ èÚPµ²hÈpO—ªT–ÅÃðç3ï¶æ6ðú4ÙU¢ñ#tÏ®]ßÿH4ø˜Ü¹jôaø>1ž±éL*øoºpI}çH˜pñ‚íÉÐ+~Ò]¥5uû¡Ì< >ðªÑ ]*„¼kå˜6B57ݲÎÕ†°˜Â¦Ù5jÐ÷|ÈÆ/ç4 ¼ë®U/v@ÿ›áOæÏö„È Çq ½šsg¤…¨ÎG7~—Ñ:'žôzîI“¾Ì­R=Æóâ-ëƒÜ“óüA=QÈúCR©Š±Æ"ûöƒ¤qáÊ×*—»©´¢t:Ú¯Òq.ÍçÀ»Ò©e¡@:7úÉ÷Š×Ì<‰Ò~³Õ8•ÿXÄÛ@‰9Ì|½/ñTMÖ‹UûæSù×ÌM·lO£ÎÎ9W²¶:³ÿù·ýá$ÍÉfÔí7(œœËúCd×ô>efÿ¡µMŽÆ¨ýìv¢Ì~ãç‡ÖŒ›”@½¼Þ;ê«åVêU‚±ËßêÑÒâsUÁT™ôðñé‹Ô[öMIoªÞN½K¢ÞÇêA}0LN K´£ª•GÌ9‘ú”w×wN¸/U›!³°ìóJêsÌBµK®P_¦ïÍš0j¨‹ª(?¿”ú>ëPRêg'ªÙþíc­göì¼N_ÑkÒ›g€ØÝ•Ϸ‰\ÃÅ÷ã2AêN{õ­{§lÄ5½üú±  š“5K÷ (=½(ž<ÂTbµ·”ÕOGóЧìõõ£›v̼C>œ=@´úô}|ÀUt6d¥+ŠÌýqÙ½¼N ÔóáV9`§:È LKiwË :Ê-¾à?ã t*Êê29´,÷6ï·ÓSå‹oú,Û*ËgÎûâãå‘àXûæ~ÕÛàbÛ¿âywèºêEJL|)¸wZ£_oïðÆõá6×ðŒ=ì;*ÿxUÈíÝg–øO{2|œï´ÿt¤|¿Ýýlýe+øß•ý‘hºòró3z.‚^ŸµD•ìæC°QaúvçBÜP8ggô9²GeÍ£!ÖqÑ…A Ð7¯]ˆOl„Çh¼«ôM‚«zØ ²ÎŒì’ƒƒdÍ„Ä{Žó">_åˆl§Iß@æ³âû9ÉÔ“‚ Î’ë¢XˆâDzÿ½°?¤ý›ð¼ moÂvHÛ1mw´ÝÐûŽiý¿ümÔ¸*'êÚä§çL¾lyoÞ/ïóqvœˆüã‘cü ò{w&Œ{}Wëéùz¼HûS´o÷~wÊë¦\eííç/ˆ¸·–ÝÇO7Õ®|Õ³õtåóŽK¢®PÅWî6û—9S/¾¼0³(èI•xP'â{¶ì¿ÈÍ*÷bý¡wªQÓ±?© ßï9šUìø0:vÚõU/©*ßž=ŸKRÕf9u¤’Yøç«îÚ;VQu~p'^Ö–ªw ÞÚP›N}̓çb©oÍñ/o–£švR߃QÀ³ ¨=ºDV×G+É€X‡Iž+OçxEÌóö¦ ù,ÒM¤º d$"õÖ¨&€Ü@ÃìÑ_úƒÂåÍFÇ|AÙz«¢§ã£–÷óÎÝz‚Ú ß¾EíçC;O“ã·&‚¦cÚö\¾>jÛØÞÂô÷UX¥q ß8;fÅ‚Ñä¾»¦>ãOË•¾ké€élJa»ù 0âirèÏ`¾(XwfEt¶>ò hã èÒµúXºÄ!°¹•jµnØ-ŒÊŒ=vŸô_§aƒ<“Nu—U+}Uú@×Ûwé÷¤Iu½íƒ‡Ôôi¦qžà9Ê:+AНŠ#“3‡ÄC÷ñ&Ü5ûv·þ~¡1à{ûìò=³vÿ ·ãùrï Y.z{äAè^8ÄÄ~9Yîùì0‚ÿŒÍ>³©B»4ööЀP…›ö­ !,|Àp#©2è{¤&H62»„]hýÏXõÿ~ñãíû}Ô〄;Óž=dìCØþHãBá8”¶»òÛô·~Öd(mŸt>´?¤çhxØYãÓ²S½[ù»VþïwljÂþÍŸ¶'Òûó Ío÷›âÏìËgæM,šsööŸdˆâbf|8b°ù ›ÈÖãà }{®YB=Y°sžÁsgêÙ3µãØñ¡„tÊ}¼ÿxcÚ°òPUÚ°³ƒn“ÏfˆY\½z–úàÞ8ÇdÖSªÚªéÁFã«Ô§'×Þ”ZSµ+6í]ÒPE}N‰2èú2îÙÁ…¢CÙ}ùaù>›¶Ü š/êÈË*²þéùRI¹Ði‹š@Úüæ‰GŠ[@v’³ª™³7È¿ûzÍWP½lÝyž-¨t|‘ý-í¨ÞÛ6&)k¨•84Ó4NW«OÊÒ­7ù·Õaè†T˜~¼[³“3ÎÆ€á™í×'÷lÆ[uJÌ¦×Æßÿêš¼OÏR ûA¢ù‘F`5­ë¥uÏãÀ&eºN­”Øu—MÌßrܽ¯ÇÖ,§AïÒm½‡€ËöòŽ'ƒ¡›îÒ+îw‚ûñ¥Õ¹—óÁÃsVé™»ËÁóäS›!ÉwÁ;àµ^sè^ý!óz¯Kà³sÎeǃQà—î³ÓZKzöOJ¬²ÆÎ›®ØQºògämö«¿ !gÖœþi+„ìjŸUSa«®.œ_>úYÖŸ>ÂËÞ¹¼»"Î$E/H‰‡§n']¾¼•xmnš‰î.3­•ÀdjÊŸ¯YñÛ%Ý$S¯k¬¹/ó‘ùÎı^UÕå7˜÷ $?(ü] aHÛ'޶oÚŽè÷ Ty'zDŽbôþšOóÚnæXH·FcÆÕMáÛØùOz|ˆü2~N/ì?éçIãÄ‹G>_;ZIHÿ}iŒ2õ(pËÇ Á]¨ÂËìîKæP§g)§›ÆúÃáùÜý!ý zßÅâ–`@½;¬>}îeQêý•›Ê©‡¨ª}ƒ—[Ì˦ªcN\=f¾Œú4EÁÖð”#Usû…œÿ‘×ìøPgÿ²±K{Q_m ׬ê”M}›•çX;w9ÕÔîŒGÇ$wªùœf÷½ÏS@¤Ç°X÷¼ñ ú`éëx¯R_­‘d¸ $§œ ¿«Ò³ -7¸€ì¾µù›:°ö6+K-&TTD–]Õ£Ôç<èê‹6+¿Èeç_†uP-ÿ²t&7¾ z…{5Ü7¥Bûù曥ÁH-ùrÔLãIƒOÞš¦ª›+¥Fœ€¯»ÎèT æR»­úíù«\FkÔ‚ÕBûW—›áMA¦à vÆÍ2_GMû·3§<÷îŽeñš#W¥‹Ô§4ýÍ· kv+ÂÁíä$¹Êù»zïy:ñxŠ=é_´¼Æ[5Îé Þ ®2:NÐc‘ñɹ[àë:Ù"úUwð«ëåø,Îzž™]^X– «;Ü)©ß½§ôéZ}»w““[´0Bb¹–|ÿ}æk›¹O,ƒÐ›}>OXyúþX{â†,ô›·z Õ!ú+ï4𿦠{óž„ê¿‚‰Ç2›t”`G¨c„þYìüüè÷“`˜×iñ×¢ÇÀ(nîXÉa1 ›–×÷U4õx­‡ö©ÐRÆïÐöò+{žý]HÏÃÒ|ö7oØ®s~ó‘ö‹Äñ`[ûCzÞtmˆtss óýªËþ/Æy˜$1ï¯Û¥j.Ýþ'ã™÷)ôûC:¾¥íØ{Ñz#µùì<ú.Õ“k9²Ç“ü©bo¹«|ƒ¨¹ÉAÆŸ©Ûìù e][öOÓÿx¸õüŽîáÞßn;³ñlþríôPêcÝÔÕ©çï°ï9¤œéÀŽúìh<,/|0õ%äî¼ë+¨†²Qß©L5ï¡™ÔW¶² Ÿ¯àÉÂIÖ2 Úk±u¶Þ4{÷>öóö qêk‘ñL#v|¨ºW=ä|gö¦¶‡ÿ%P,ßxS=Å”ߘšÄ¿ÏÕ•6Ae>• >{ÛÜH_]ÐXw¨‡M£*h]×/vXÖtm ÖÞ¹ÿÈ9Ö`¸/@£à’6/Ïݧ¸°'˜žx.?Rë+tt[$ò‡HX´Ï9øxà°Òçâ.™å`3¨ôšmûJ°ë²oÇž‹åàÐa}XÞ5pò®è}l²¸Ì)õÓTX]g­V¬¼î+"˾xVÍ¡âó§‚ç¶U»_÷’oo›Œn¹Ð½Ðpß©±9à³ Ý.¸Ï9ð‹˜´\dôtz¶êðd5ì@Mßì§Å¾GŒµ’VŒh†šuREz*!á~Á ²DÝMϪA?•ââìQ[!üRé‰Íî» bÍ ‹RýaÀòÝbw˜Â £ë\/€Ä‘áuÜ\ÀxUWŸ{ö @Z*`Ãâ=éÔãªÊ³›U¯2zKûCáùR’=Òñ)Méø•NOšŸ¡í‹¶ú="=O*<ïI¿/¤ýs éyUú:ó^ùEf|)ì/‘¼?t@Áö¨qL\I =”ù˜Ð“*ʹ1îŽÛÔ“ÝFçò×og¿÷„æK_œz[ti­óþáµLÿæ;[D¨7+—ßT³ÞÆŒË/˜ž“:ñš‰/™ï¶õ;"7Id9ûþPîìÄÚ2 j‚v.r̤j­åµ¾Ì«fæKëÅÓOìù>‹jÈ:ö}añ%ªñØ›Iáô÷Û¨æ{®?>Dý‹âS&;XòwÛm…AbVþ¥Ð¯k@j@È鬛Y ³º.pm1ÈK§­±QÊEmkí¶ƒòÚ݉jE6 ª·Ël¶s;P»¹W/&è#´‹ N±’)ÍIâÝ7ø‚ö5³ž=Žœ½Á.™~®`°ÕÙè³ôj0,‰¨îc)ÉÎÃÈßÉ›=s3˜ÜÙñéP˜÷÷œ±Ö¦Xˆˆío]têë)kI¹-=šªÁ¶x¤íWQE°Ÿ©™bÑN3æn°\;œGš‡l×뺩á'Û[§a>ÞÚ{tÜr+=ðØýbû¡#À«ÝŠq®ÜÁ{Q®ŸC¡=ô0p‰xVª >§3œ5o¿‘Ǭ.m¿ =­>õOȽßO.ÊÏ€^E‹‰fÔ@Й1†I+Cp³Áýîþ ÐÇ8÷ÎX?+ˆ9óÔù„m5ë6M& úIYŒmgù³;•+€µ\í©[Cä¹9^Î{ÃÀy¡_劫!jì9ƒÔë 1vë˜_?ÑÔ›WËRw‚¬ÁØa“ä©Ç§}Üm~ÜgüÍ®E£¡]É4&ž‡ö‡´ß>ž/~HûEÚîi?ØÊ/"JûAæœö‡Bó¥4¥ß# ûC:¦¿ßxnœ^ªãQv|HûC%‰‘廵 ¿Gaæ{èõ4èû­æIÑ÷ŸÂ¸j‡ZIª89.=pßHf³>Í—¾Ž)(Ëé•ÈÌ—–ß+÷HXz÷2æcž}õî|QÝ\Wv=\ß}Ï”ë†Rµ3µËèÐLÕy<–³ë¬DÕo Øõð)õu¶ªÇÜ…G¨Æ„2Óodßû°zš¨”"ÇŽdŒWfßs >*wùyHÙ¹íº™÷d‚;xîú” r™š1'Ìûƒ¢ÞÇs;#û€òx•ª™6@ÕÑbÊ´ŠP»½x£Ä˜÷Ðî–ûá=³%@Ë2tøwûc 3ôÝãÅ&€þÔ²w‘¶î`Ø3Ðy¤çR0ªÌŽL{˜ ¦iw›¬k€Ë:oö]½:i››^Üx,fÆŒòë0‡U+u†m|?Ó°;ž`ï£Õ];1²F/´Îãϼ°Ë·ÏÍŽ{Ÿ?·ËÃ3w|ê­ÊÌ ~ïÀãÉUצyඦòò‘ð~eéªõ# zL9ÑÑn;ø:ö{ßÓ:ü:žî\í=oÎírô,Ö—R3²~@uO5Ûä|mqé‰uû ê·I£Ï@èØCZ=ßAXmúË´­» ß‚”ªÎèï? ¹iq%Dš‰¾®;òÆW8¾ƒavêß´Îúðëýnöû­ #ÃËIÙ@=t¥ÞƒÇÄutœ(¼®Mø=!M…çmh»þ^¢°?¤í‰ž'¡×•ÑëÇ?F¿ÿCã?æù5Æ¢yÚÒãJš2ó¦ôxͯÐÏ3ël›ìÒ8º‰]‡Š¾Z¨S0ìÑªÕøðù “—Zþ¦ÔË›Š#GS%êâAÉë²ïi¨iù`Ž%EU¤õèºùéBêíÎ'éᯨ÷Y7¬×Ï®§fÐì\åË|±fZi}YfªÎutÀËG½©ÏšÓÅϬ^G}õxþà¾IÔ—ï°"íR³®¦©nòÉòq߀×(ãh2i-ˆdüq7¨÷i›Ñw£|MHL{”ÓáHë‡5K‹3v#?O¹„A¢îù‚œu‰[ƒ/ƒr÷འAeß°sæ‚Ú˜ªAí^ÊA;¿¼Àa£¯€fÈû ïSž‚Ö ™šWóŽî½‡¡ðÁÀÁÀÃôÌ50\eWzyk#S+eç“ó²šß—tX-éüg÷&0×ëµl`¦!X˜Më;­X,'{Ïk(ý 6¾^1ÓVMîÀ¨[ À¾omné¨hpôv6°›Ρ[ÔÜî¼×™ÏÊËç^€n%&Ó˵j°3•þáxLκ±Ó$s]xœ(ìéq"ý]SÂ{Dáu5´?¼²óÇM'æ{ÇtÜ,¼.€^'÷P_)åÒÆVëÇ™uã«r¾Ž”bæw^¦>=0P!‘õ‡ý‡úg$ï Þ€z{Ê@êMI·ð [H¯ÿ0`æµ7ݨ÷猼NU^²c|b)U3/`E—ù—¨ºšìÃÓï9PŸ‹dæZ:JR_G,ï|¨Š×1]•9aàzàiù%_Ë¿ "YJºª úüLÿ¹çAB%îÔâà 9¿ÎLîùd±s­ê³­ 䦇µÏz=väÖ=ïœÊýt^ܾTʤM¯G€Ú™±¹ÓözC»ýôŽLÍ;nÑ–ûí@'f顬+å WÖ8üd_+0´é?lq‚›N¬OhŸ&Û ®ùÝÛeÖ:…õ…Ž5Êó5R<À’§ðzqÒ°îb0môÞ`Ò.º«ö]–ú¥‰‚£­ÁjÅà™ªs1º\wö¬ö|nƺiÒ¾@»±ccâEð¸XS®óq3x¹íÞô°Â¼¯êØ&γñ‰#†N¼¾#‚$(€_áíí݃NCÏÒ‰Û’|!ðöŸ›!HìBýQÍ|Pa“×»uÒ¨ûà*?N};eÇÒr+ð+}ºì=ôùFÿSùпÃâÝÚg âÇí5§öÀï•3§Ô­„aÆs,åÖê€Ñ5Ÿ»º€Ì¤q%CRõËn>ÞØÊÒãCÚŸýj7mw˜܂ßšÁØ)žÎ¶7:N¤õŸþ~ïÕ{¾—½EòÙùRz]5íéõ3h\ÇøE¡q!?2TÈ_¶zŸˆömÜ?y`Õ©s™u§­æ[j¬æO><•zjÔqKlûÝoz¾´÷÷OɈ°ëÓfŒëÙ‡*‹®³4e ùý!½n;ej×¥WØ÷ò²Šêóó†RuQi®!&S¨Ï×\¿ÜðßK}é™p¥ýÄÔׯݻ”ïÛA}{kº®éá8ª©ëóq;†1ãC‘…·Fi—®±¾o7t¿¸$ì>_ö[> ¤d̯¨­réׇ,rÕ@öÙm·æY/AÁ(gÔ×Zfÿ…JˆOUÇ÷oZ¿§lBiL¹ÊΛ>h?sm诪²Åô%znMlWµŒÎIè;Ï“¡UWO¥¥A‡n£JÚWÏ‚Ž!ò»žöIé}Gƒý¾·´|æžO°ùb8s앹`7ëL¿Ï߀C¯c'—ŽÍ§n+²ž–¾—°Ž§6‹†®kfGvZRîj?ކmÜ p®ý6«ÝOÀ3´ÃèẾàõz­tæWÐ}騕a;‡ƒÏÐÆeÝ_y_xRŠäN7è9êU$1wÅOQ ¥KÒÚ6|+ͦjKèã¾³JïH„^Ô7KË2…¾ÃHXÍwp'¹­ }] ¢£ÁŽ«³•`€çÖ{näÀ Ù•ëË š÷:Bg‹Ä„O›7†\¿µ¼Üa'$u»ÖgLíT0üØó*<‘™ÃùÝ/Þ¡Š¬?I¿˜Ä¼¿þîûBÚþ– ~p,ZûsN§£ó¡ã\Ú.éýP4Ò{D¢ßCý3_J¯§¡×™¢÷1¿ò‡­ÖÕä„Ü“jhdü!3_Z÷P"ø€,cÏÌúq¡x–2ïÿéu4 ùÛ)¦ž»9¦†]GûCz¾­§)½Ÿèݰ…*_Qœe­¼’‰g+ß¹®^÷üÏÒëLѾ‹Úî"]–ðØ÷ô{ÿê…WûÇØQM!¦¹c$©æ7»wá"†.÷¢Î$€èf«·E;^xÔè«Æ€dŸn3]R?ôÄ *›Ï‹€ìùÅÄ‚8PpˆX&Õ3”ÅGö_&ÓTvmåÇÐo@mÆQµ¼Ð.šlðçPÐÛ4hà,[о¼îÍ­¯ 7uβñcï@û“ãúιF›LxJF€ÉÌ{á©*ZÐaïÔæÙÇ ÁÜJäùâÁÐYãÓ¸˜=Áê/ʶ÷3°Yæ³þ›Š Ø……x¹ÅObÊDw8 ŠëþiôpÙk§_¦Ýœ=L6q÷¦¡OêO†‚Ç9“3ï£ÁËÜ$ýÜñð®~¸øþ èQúBmÇR7ðÏ ÖØ=ý?‰¬Ûg.eé^As'l¯8B|6i°P†>ï"2g6AØñ·ò=z@¿C+z”@ÿâé³ô2Á·èǼú0èá×'*ôƒè~źi@L©“ù÷š HÌU°ôÑS0’z=ªs¥5H×<ÚXúÈ„z|v½oñÜNŒ^Óï×é¸Qx)i7mÂvHÛ/½¾›^¿F¯¿¦õŸÖ{f^äµÔµ•#öµ^OCû1¡÷…Ìz”Žö”~ß@¯»iµn•~ŸHÇ™áŸÓ/¬Ô¥ êü̂ն°v…Ö™¶²+z_â«‘–EUã©×k®<»ò8U:uÃÇm{*OZ±èÌãQì>Ä}¿ûû±ëK»[´O™ùœyQÓèåP×Ç‘YOóyy¬"ïîªþffIÓHêk¬è¢³Ã©o†ÏãìíÛSß{õ±É ó¤~¼]ÿH¶<ƒ'ŠîíÿcÀœQ ž>Ç<±Î $]tgŸ¼É÷‹_]¶è¥{Ì“ùgãM“@^,«Ÿ ôýÖ°·2p4„ßšbv·æ;D\>WxDy xûì´¢ó>ˆêjØ3é`9Dzѱ÷^ˆ9îµû³ì&k¨8bà0ò q|ºöÈtßµtá›YTѽ]ÃLeüm/¤ý½¿ò‡Â”NOÛ/ý„øþ´žôï…ý#ñ=¢°? ª\ßepyÞ”~ˆÖ™Òñ2óû(NfÞÒñ,Z'^¸×àåçZCf¾”èé÷ÿô|)½ŸØoûÓÃ5T¹˜ï©†éÉÔ[©7ãû¼èÇî»X±!ߨo*»>|•›~fïûTmà–´N¨Ïýwœ­¹C}™¯™5U”Ý?ì¬(WÄú1[þǪäÀ[è|õlþUìÕ!¡—ˆå;ë±$¶­X6¹±¤ÎZE1;2ß»N0æ)‚|j¬„Þ 'P²;¹ê\­,¨tÞÔäÓe!¨–Åwr³ÚêÛÄzý1"4²ÆWL5; ZbO&Œuݤc››=_ºŒ#Õ ãÕ—zƒqY•˜J‡n`ú6GbSçiÐÑþtÅœþO¡Ó³Ë%Ç®ƒåz½ .›€õÖTó¢ÔR°ÍÊ]­iñ ìCž¾mVŽa~+=ÎøƒóÌFÈÛ—®Õ½wëÕ+€Û^ƒJöm€”œL7'ðôóÛnjø¼ÍN7©ì€î÷'j™5xÏÝ£ñ•«ÁïKßóó5 ÀoX`ÜYЫ²ãÀÐÜÏ<øÅ™7iß!äýuÏ}ë!týÌ4ƒäoÐ7c}Hr7CŸ|/uè±qÒxéáó20Тë‚Ì—!êaÿ;Sùöø"Ë÷± O\”Çmæñx |ˆñ‘ÊÿÏSpO¬åžº§ŒîËð!nceKÛZ9ÓÇÎVv.ô‰”‹•½“#}*bKØÑöô}àH8ÑÎô }àŠDmm˜#[æÈŽ9²gŽ˜#GæÈ‰9rfŽ\˜#†‡ÃÃŽáaÇð°cxØ1<ìv ;†‡ÃÃŽáaÏð°gxØ3<ìö {†‡=ÃÞáaÏð°gx80< †‡ÃÃááÀðp`x80<Ž G†‡#ÃÑááÈðpdx82<Ž G†‡ÃÉááÄðpbx81<œN '†‡ÃÉááÌðpfx83<œÎ g†‡3ÃÙááÌðpfx¸0<\. †‡ ÃÃ…ááÂðpax¸0<\® W†‡+ÃÕááÊðpex¸2<\® Wš‡˜­ {hËÚ±‡öì¡{èÈ:±‡Îì¡ {ØÂ­¥ûE—ÄGÆŒˆCÇ’ñqè¬%…'ÂÖ•Ñø–c[ìØ;¶ÇްcGìØ ;vÆŽ]°cWöØãëˆñuÄø:b|1¾Ž_GŒ¯#Æ×ãëˆñuÂø:a|0¾N_'Œ¯Æ× ãë„ñuÂø:a|1¾Î_gŒ¯3Æ×ãëŒñuÆø:c|1¾Î_Œ¯ Æ×ãë‚ñuÁøº`|]0¾._Œ¯ Æ×ãëŠñuÅøºb|]1¾®_WŒ¯+Æ×ãËØ™¸ ch-Ƕرvl;œ¸x‹o± 1tO,&6±1qéôq1£OH´<¡ØrÛƒ'øƒjõPF~¦“ÄÖô©<áôzˆº!:î¡€Î@tq{]Î×ÎÐèúæ†ìŸtºÿç^Áùn”nßPÁù”þ༟Eö8„žË‹?û“AÏóÜ?Žò9©+¸ åwº^pÿ Ê÷lbôOzå®`ÃOzñ¹àõR@¿‹û ÒKˆïe}Áó—ÿ+sÏ_Eå¸úEðü5Tžëq‚ço rݸ/xþ&*ß-< •óönÁówPyï*( (*÷Ý ûÒ{¨ü÷2ƒÕã¾Mµ€¢úÜ/_ô“>@õz°ÞF@Qý†ÝPTϹEõ-8/àÿÕûQº€ÿ#TÿBkÿB$‡ÂRÿ"$¢µþEH.Cü#ù<‘ð‚äô䬀ÿS$¯§ãüŸ"¹=³ð†ä÷ì€1’cñjÿb$Ïç!þÏ‘\_H ø¿@ò}‘/àÿÉùe×cŠäýr…´€"¹¿üÔÿ'-Aò/ Ü! ¨J¶PÔ¯ÄüµË«¨UŠÚçÕñ Eíôº‹€¢öz2‹'øûÁ„õžÍͯÇ77¿)mn.ëÓÜ\~¦¹ù­esó»ÕÍÍ讀›?¤57W•47W57:ÕÜ\Û©¹¹nEss½xsó—Ôææ¯Ï››¿477onn2knþ±T½È(¾;~Êïøå•Èãû&<ž4¿L2M<ž\'_ÄïzðxJy<~åUçó»Šo<^»Oƒ¯ Z^<žö>O—ßCèñGÿ מ?T0¼ÇãS<žÉn¯ƒ6g6ƒÇëXËãuŠáñ,nóx–Ýx<+¾ ­5x<›©<ž-_Nöƒx<‡<^‹‡rÞÊ㹪òx]ùíÕíçÉãQWý•¿¿ç÷UÒÍ‚s«–þ«ÉJ’ÇëÒr.*8¶FÇ6Ø5[ìØ;¶ÇްcGìØ [Ñ×mé7Eèþ•å~î3…¯žùͲ9ÿ_*› Æ×õ·ËàÁãý_å#tÊ·+Æ£[ó_ïѺ䆥q'èÕï댇4©î¿ß¶ÿ"Û è¨A„'ˆd["Lk[럱‡ÇUC@VæÑüßYËÕŠžôóxÍU ù“áè˜Q qc ãG'l͘é&þ•Z g(š–ü«"ÿªˆj†±1iq†Éñ†q£ÒFg$êö·%êÆE¢?KŠé¿±°þËŒæ:-fÈÏ¡&–I 12aì~,.Ö·äÆ÷¾¢P¢Ä0ˆcÀ ‰A ƒ4 ²ä0ÈcPÀ ˆA ƒ2 ªÔ0¨ch‡Aƒ&- Út0èbÐàÁC{ †Œ0c0Á`Š¡3 1˜cè„ÁCg –¬0tÁ`Áƒ-; ö08bpÂàŒÁƒ+†®ºapÃàŽÂ<0xbðÂà¡;†|0øbðÃà¡'† zaè!C0† }0„bÃÐC? áúcˆÀ‰a†aˆÂ0C4† C0 Å‹!C<† ‰†aHÂ0à #1ŒÂŒ!C*†ÑÆ`HÃ0Ã8 ã1¤cÈÀ‰á 0da˜ˆa†l “1LÁ0Ã4 Ó1ÌÀ0Ã, ³1ÌÁ0Ã< ó1,À°Ã" ‹1,Á°Ã2 Ë1¬À°Ã* 9VcXƒa-†uÖcÈŰÃF ›0lưÃV Û0lǰßvbØ…a7†=öb؇a?†b8„á0†< G0Åp Ãq '0œÄp Ãi ùÎ`8‹á†ó.`¸ˆá†Ë®`¸Šá†ën`¸‰á†Ûî`¸‹á†û`xˆ¡Ã# …Š0<ÆðÃS Ï0cxŽá†—J0¼Âðà ¥Ê0”c¨ÀðÃ; •Þcø€¡ ÃG Õ>a@1µèWÒ)´ãÇ"íXHi²Õe!jÂB<Ž…Ô2ãXhɱ,gñ—8‹ &ap`¡Y%€¿Š’¨ó}];iš]ÐæÇà:™,Þ  Âï#•–  Ê/[»½,Ô£Yhd±éÄBW…N" -,T¯  Î—›¼B_^§ä÷mj/Yˆí@f“à ½‹,¤CÍSÿå›pÿ˹ðuRúÿ¿^ÿÝ?ay’äý«çHé7®|ÿÛ®·•þÝüuô÷ß–[åóÿÊuRº¶n—ÿ»#ýý§êûOåó«çÿé~•”×ëÿT¿DúûÝrrm§·<\óÿUúÿ»kk½úÝ|¸þýS~ðWõúÝòü§âÏß-Ï??W=n+¾ÿîõ¿›[éI[ÿý·Å-ÿtû¶U>ÿi?õ»|ÿ©þŸëß¿kß¿[ŽÚÿþß–ÛßÍÿ¿ÕNÛÊŸÿ*ß¿[ž:ÎÿÝòþ¿Ö¶õõÿT\ôO÷ó¤çþéöâšþ¿•ïJþÿ®}þûú,†¯£¦×MÿïøÇÿ;þßñÿŽÿwü¿ãÿÿïøÇÿ;þíã–‹„¿ "52#nDòÈt*‘œ–7š>‰‹IK$l”Œš–Ü’}tàg¸Žo§Â·_áÛ ‚1à[·ð-WøV/Ï· <¼œx]ð­÷$Çe‚×—3®·x>¸Þâ}.\ßð븜q^x|…Ë×sÜ_àiðºãº„Ë×%\¸žàºŠÛ…x»ãŸqÀóÄˉë-É/ã2Áe…׋S‘>+óÂÚ‘™%@„R®ùüü/®iÚ*ÿ¶âË•×ßIßVòÿo([[éd[µi[•ÿï¤ÿ§ÛâïÔý?©“ÿ„ ¹êÛß)ç?‘ÿ²¾ÿ„Îüü'u•«<ÛJΧüGÇþŽns•í[>ÿɺÿmúOÔ¥­Ú¥­Úôù_¦À[îýüö¿ú°üoÌyÿÜBé!ÿ󯕾Ùòw«Éiù[ÝŠóáýükE¥ìþµ¢¤ô¤òÈ þÂT='LÐ}aÊCù S t_˜’ø’Ê)‡ê'LIõåš?©¾¤váÚ^\Û…$gR9Iù+¨,*¯0•§å!DIéI|Ñ}aJjGR}I|Iù‹£ò SR>\å@Ò+_R{‘ä@ê¸êçúòQA墓~~Â\j“0å,O®r&åO´÷6ÒOB99ËPb>¤z‘úRz’þ(¡ç„)×öâJIý‰Š#y S’ßáê׈þ…P‚ü‰íH’3W=窷Äö%ȤW$ýáêß¹Ú)‰¯(ª·0%µ—$º/LÛÊ‘ò!Q’ܸöÏ$¿ÓVý!×xƒd§¤ö"Ô—hG¤vCr¦ûsÎq‰’ÊCh/ø!à#L‰ý©½¸–ŸkÈUHz®Šî S‚Ý‘ô¾#ù Q¢r¶Ž~ŠÔî¤~•$BþD» ÉŸ£ÝËÙV~“kË5®”k?É5%õc$ÊÕ®I|IúÉÕ‘ô¤­â^RÜB’1n$PyåW˯ŽÊ%LIã;R9¹ÎÿpnŽúL’?Çþ“(7R?Àu~‰à9ë[[ˆóuùsôƒœãsB¿Êu<ËYž\ãÒü)®q8Ç|ˆõU¦ËûWJLÏU?IvA°;šŸ†ZA¹[Q¡-— ý$x¾­èe+úݦïÑ}aJJO¢¤r(Q~<ºù+%Æ•„úÓ“ÊO’'©¤ö"å_/ЛV”$_®íȵ}Ir åS†ê!LIò!¥'Õ—”žPR»·™>p•3Gý'ò%È“˜Ïk”N˜6(G{'òm@é„)×|¸ö3\ûOR?IJÿ•@¹Ú)¡}‰r äOœŸh+½%ÙrÖgŽvÍYΤö"Q_®vG*×þ£þËC²÷6ÒC®öHÌŸ«~rì'¹Ö×C[p_˜röw\í‘«œ¹Ê‡£þpÕ®ýW¾œû’|þ‘«~r.'©<„~‰s}¹úÍ6Šç9ë'’ÆOœåI²GRHŠHq×q)þ'•“cÿùOS®ïÕ9û¸¾OàhÄ~›ëx™«ßäÚ?·Uþ\)×þküÆÕ_“h[§¸–“«½s•3×q ¡]HïÓˆåá:"åÃu^‚Ô¾m5.àh_ÿx\×Vò!Q®|¹¶{[éIÅD{ç:¾#ùå¶²w’^q?IòçWò!P½~º£ þ­¨êw„©™ ­ht_˜š(‰ogµ&PsA}ZQ+ÄG˜vÈ«í„êÑŠ¢ç„)©¾V¨\ÂÔå'LÍaJ’ƒ%â#L­Ðs´zN˜š£ç„)©^$ùXÑò¦„ò˜Ñz$DIõêLËCˆvDü…)©Ý;£û”(7B»w$PRþ$ù“¨)’Ÿ0%åO²S®åì@ $9ì®-?!Jj/R»“ìÅ”@IöB¨/q¼BìO”¤Ÿ]aʵIò$QR>éò Q E妤~€Ôoä`ž¦fè¾0%¥·ÉÜÿ]Jìç9Ê™d_¤þ¤'ºJQoIýÉŽH~Ф'$ý'ê ¡ß ê!!¢^¡ç„)Ñøí ORy:¢ç„igš¿µF÷…©mB”¤‡¤zûºŸ¦„~€èOi}¢Är(©ÝI”ä§ÌÑ}aÚ ÕC˜’ì—T~’½XÒz'DIzeH $½%Ù©<t; Q’üIùã‚ì…Ø.Dý!È«>åLh/®~T_Ò>\¢_æhï;"Ê™ãúB®vDì'IúCÊŸ«?"éI?¹æßVq©½ˆß½!PbüÀQå缎„«ÿâj¿$ù?@ü„)©Ÿ'•‡ ?\ý×x‰Ø¾$ĵœ\ËCê—Håi«øãwŸˆã’½sÔbþ¤ò“ú1’Hë,IzKØWNÎ='¼¿‹dG¤þŸ4~!ù5Òþ}’|8ÆÕD=äÚŸsÿ¹R®ñWÿȵ<$¾\×ÿq×Ëϱ?$–‡ëx‡kzŽë;9ï«ä:ÏÀq¼@”'©ß&Õ—ã¼×xŒÜŸp+?Qþ¤þ­úI®”븀X_®ñ3ÉŽHú@Ò;Žýçq4É?¶Uÿɵ]HöEÒ’þ“ÊC\?Ýò…jEú Õ²<ÁªE‡Å¢#ñ´a#™¯ZI‹I;IÄ‹•†NÄbèTbcâÒ™«#†Ð©‡ŽŽ‹aR'&Ð×%GŽI6})Û¤¥ -ü³ùÿ𛛬_ЖI‹é?:ægÙ~R1weøåŸ<:ÖŽÏJ­…9ïç4<ï˜GL´ ¹‡¾Ðø :謀öÉÐ(¤ýÑõè<=ߥ‹F÷céû†(DcÐõhÄ'£ç‡¢ëѹ/}ßC@Ðy?:Ä/¥EåéK§C×Cй¢qè¹!¨ÞƒQþ}Dt¢ýÑsÞ(?ot‰Îé×$Q(ßh”ït†h º‚ò톞ˆÎcÑý¡(ߘ J¡tCŠò E4¥Eùx¡tñ(¿(t?ÝB´/zž‡ÒÓ|Ðõ¾(]:·G÷CùÇ¢çèr£çú£óH”>åC/ãê‡Òџߊ@4€Î¥Bçqè~Dc_St>Q[DÃÑsaôóˆß Ú¥‹F4ñ€ÒõAç]Ñýþèz/tŽ& =bPþt9й?¢(;ºï®Ç"Ú]ŠèT¯è<Q_”~¢êtùQz@çžè~wú>âï†Îí‡êçƒÎõBχ ¨1º†òë…®FùDG£û(¢®ˆÆnPt‡ž‚òë‹Î#Q~áˆB黣û½ŠøÅ¢tCQ>ôç¬ÂiŠ®¡sODé×­q¨\q(¿žèúÄÇû óžˆ ëCÐsQ9l×™0U Q=DÑó¡ˆÆ (½,ËQ?tŸ~ þôã´Üh; õiqŠ€æöG炆÷Xê! ´þÓv:ÕcÖU¥õ‹öÙûÑýĿֶ§œYš…ò_²E@§ÐMª}Ž®£è¹tTî5¨´Üèþ›î?hÿ1ÙP@J£ú"¾©èú⯨ÞÏt«@á=¶ :<ÆnÖ£çèþ6 Ée)*?íG†£únX/ ´ýÐö™†øŽ) ÓÐó+µP=Qº,ôÜŒ"]‚ê»>•oµ€òPºÄhÍ@t±ÀÒ÷å¨üË/¢çP:ÚßÐLb{d#yOEv·ô0*‡ a<¶Då@ÏÓþb*g2*Oš #ñ˜Œèx,Dí² µS¢[ß (Ý/ÑqU ²§Ô©è<Ég2ÒËHÿæ ü×!ýÉEü·!= åÆÈÁÕµç|tY€®Bõ¦í—.mOt|BÇ£t<15Õñ§ýíiþt\™€ÎG¼DõB×—žÐÍa͇öÇt¹¦ :U '¦Ÿ¢ý-GòZŽÊIë]º¦ý)¿Ì@ò¦û ÔOóP?.<½ñ«?Rú_“òùUz®×Iéþn=Uï¿›îwåù»×…ÿ~÷þßÕƒßåÛVòøÕù¿Û¿[îß½Î5ݯþþÝzp­_[Ë‹k;ÿÝrýîó$~\Ÿo«Ïp¨Ÿ §ãÓVËX¥ý‰µÿuøu¢´ÿq¢]…h7ŽÔMˆº QŠ@é8ÛãW4û¯”¯µ¢ÙÿšÒqáïRo®4û÷(ÿ6Íþ{”Ïý6ÍæF鸹Íþ{”7üÛ4»m(¶9Íþg)s¥ÙÒó$›fÿ¥Ç5¿¤Ù¥ôü‚0¥çñèy!ßóèx¼Îüóù…;Á—BY÷”̲ͅœß½ê™%~Ì}AXÏ~þøà:ûyµÊéÇú@sËc¾{ÉŸ¿jIòžÿL¦Î\ÿþóô¨o)…¬;Ô >_þdÅ?/§2é¿ ÒµÊ¿æØÏ‚´úŒsEKê”-ðº…}åthD•ªh~?Å ¯þdì!Šž¯¦_/ WQ} Qúê–Rš×Ã;tŸ–Ç7t^‰^ÛT£r” êC7\Dõoü«ü˜ò}F¯uèñOP>x"ÈŸ]N…òù(s½ɱ•‡Îï;]NA~̶|qÔ´\*‘¼ŠPúJ!}æ÷Éã)z®Õãýz 7äÀ¶‹ _æ3DH>ôk/úõݾôkÈ”ßKtÞ€ô·ÕûÝ_ë×Pý¿ Éïâ_åÇè}Žò£õ‚Õë¿ê's½µSÕ_ëÝ*]ÁÏê·gäõéÛ;Ô´Ü>"}{ƒîÓúW‹äö Õ» å—ìn¿·Èþh=§ùѯy(}éÿÇÞw€IMuïgÚÎìl§ƒ€‹HéEÔúÒ‹]QY)ŠÒ¤(ê÷éØ+нw>+Š EY{Ê +6lØ+üŸ›œ÷&s'™$3³»øû›çy÷l’[Î=÷´{“™áúïóù\Ží7QÀòF{Ê×V­g=ùšÛÁ<®Wäö ·qÂ?`>Ÿf>¿5ìBÞÿ™Ç Šv6s;?s¿?¡_Ø'ßÿýÚ&£½´ùør†]²þÁžYΉ?æ…Ÿ€þÂn¿Ýþü¸ä‹í¦êS¾¾!U ׄ†ÇñÊøPŸë)sÅsO¯s-Opƒ z[žÇІ@¡î=ûË{›ÿöë.ÿ펫Á¾½äÅÝp±¿Y©[?ùo_Y©WO³+³~ŸnfѾ&–²}ÌÍ«}q5ØÇ¼ßÛl {/Ù­Y²·9*y»ŸÉj¿æ¿&W}zÊ¢²R9è>ýd?–1›ÃëmНºö5ÇÑÍä©{_Ù¼dYÎI°§Ù|7y»»e,³´‰îƒýÌûr"‚}dó=,¢3Kö±Ìˆ)æ^²Ñž¦˜zYÆ,eÒ×¢=äE9NËÔZØëaNCóßæHP? ›ìcé\NM?SÞ²®©Â=̉ékʫɰe>¥ìƒý-³`öÙM ´»d©Z X&[òÖÛì²—9 ‹àMš"è)×Ý”{©”ý1µÛ¬Ý×2W¦MZ,»´Ìz7Óä¥4{Hõë/{ìmQ~óß^r¼=-ýÈêÛè&g¨‡©ñqÈYÜEo³Í^7õLvÔË¢Üà.`V±tij¶n/³G©îASX½MiÈÊÒ‚Ò*ƒæäY&BŠ% Yþ6hqÂë4YìgrcþgQesÂLMµh“éû™fØÍÔ!‹HMAÊÎû˜sgÑe«/F§ÓkÊ©éoz y­§©ÈfƒOi±eâ»›%ÿ“Ê”Q$ØÛUdI9Äz È+¦’›ShêxӷȪfLÓ*jPº· ÐEoï@¥½9¬f~Mw~J<àk¼[Ì5S§ŸxdzpõY>h%S¼#±­BÕ¯^qÛ#T÷ »)ï¸8í!ºí öQh_…ª{†ýªî:í zÞL¦R§½¾´=¼d*uÛ«sÛsS÷ÆÔ=.·½'§=ŸšB“©Ôi/Äóž_Çž†¤ÉTŠwC$åëØÁ³JPÞ1iB¡(W›JñlWÒ„B“ ­M¥xÇKÒ„B“ åzxWJR.wm$­M¥xgIÒ„B¹ÞåÅ»†’ry¼“#im*Å;Œ’&šT(דï4&šThm*Å»Œ’&šT(×ûy’ry¼{ÈïöiìW5—öìx„KýŽÊy‡rÝ”óAå8\ïép½»rÞÚ…?µ>ë“<ïgß¼?!i½«CyuÜŠ<á÷Óê Søê¡Ü/N=WŸ¹Á¯ÊóÑ©í¹iíõ²/§êOš<«ê q¸¾r>>i_NáþEžÛ7oÞßY9W*¨z#¯VÎÕû*ÿåÊùnÊyÌ…/¥¾¼®è‡¼~Xeê¹"?Õ>‘O¥µ£Ì›£½ªö6FéO/¿ã&Ïù÷´vçO=Wü‚*·4}í¬œ«úÂ~8­_Î_2º_•ùòQä‡È÷ ?DûÈ;N)çr\q y)òäyx'y.òOÄIäaݬSùN!òÂùÝRùC~:T©ß]©‡þ–´NåãÀ¸N]Ïüpû‡wdÞz%׿ˆËÍlP5ïPß >óÒÔsŒyø¸”ß™C}éÙ©ü"oDEžŽü ?Äö&×#È‘§^ô§A1?.M‘ƒ¬‡y¦\?—ßYÃzã®äsÌÏy¯ò<‡å€¼ý®‡øþ™œÂ\!ÏDž¸ØxwX¾; ~r}äkg_šÚç•r<È+±Á»‘\!q"¿‹y@»òfŒGéGò2¿Ë‰u º®Á;žX7žxi*_ÈçPŸõHŽúw!ö§‰$Û+ä‡<öy߇?8–ï³ä6Õ8O{çR¾ë=Ù >Óyà3I¸¯®Á?ÖãfüIÙðû.‘ßûNå³-—k»Ùž«G¾ùóÛO¶çnýäk^Úw«—í»ynåœÚÏ7ß~ùðzdû.e¾úÏ–lùñÚ®×vüYاí>@¾õ"ßv‘ëõúö³ùæ/Ûzu?Üêç«^}õ›kýºž—º–_]Ûk}õ_ßrµº_­íÞé©S¿Z7?QzçùË¿tm¢e·–5û)QÛö‡w¼òÆJIôy«ÿÑM:%ZÕ<µcïæ7' ~tÑ ¯'@k#=—¯¹ùËÊÕ_¾Ôú‹i µMÿ:[[1+ ºú‚k~ŸzÁz 4Ñä©ýÊ-¾4ÑjÔ>ÿy¬CRÒÅW­HÜÜOÒæƒ;¾Ï¶ÏTýºÃ/>ÞãZÐÚ·vßå…Iû$Úݽxç×HÚ±jvßH“·mÚ.ûu×Nå µ®}ûöE“´É»O×~u|-hbÛû¾¹i»ÓZHZ:ýŽí_ÜåZÐÚr΂»WIÚýÈMïjϯ|ÅÌÖ«ÎlœhÑüµ³ŽiW-ihуsž{(Y»çµ¯® šØêÌÏí\™Ht;tö×ô=´j#Im‡Îhm›gïØgÙU§KÚh›»nûþÅK«¾¾òÕ__™Ml¯íðÎäO?­mÕö¿[½;°h"ÜñìÓ†.‘´êý7^½ºø×$hmä‚àïçÍIHÚ©íøÄ±û®m4{Êú…«××6½³¸y»6¿Õvº¾Éím—ýVõñgßSù½ºz£`£w-h¢²Qÿ­˜Z[Ûqù¦“Gn~FRíó» n^2´ê³c^{`Ï µ[.¸ïЦ±ÕŸ¼~øã‘ZIŸ»~àéÇ/ѯL-™Pù hí6'vï‡'~"i«ïWñÁ¡UK^²Wïk5ÐÚV‹z¾wsáË Uß½wl×9Í ‰FÔü¹ï,©m7ò•/¯™ÿZmW}º“ U_nuç´>Ö@ñ}(*üs½¤MÖý¯Ý¢Ú]æýÐyLË2I oº«ãAËAWŸ:kù¼ºi ‰&ÁVÕg>µtõGÏ^ÿçD ´¶÷Ð/6Œ}4Q¹ìªS§ ZÛCˆç™á ‰ò•±oïór¢|¯/Š>l2híV‹Úç¸dÕ†“Û¶ŸÖJÒMê/g¬\ºú·ï\}òÒZÐDãó~~ctÑç µ=ÖŒë¹wÓÏMwiùÍkáÏAk›V–“¤û¾«¾žóëÅï½.éê?~¸ãƒµ ÐDËùÂ@46Y `¼¤åí–ž~Ûá ÐÕ먷Ï6“=µ/š²âòÉ «_úø—çNÐ@k˯¿¢jàþ7KÚ–zëרŸ¤½÷=cÃa=,i¿ƒ·5%íyàóW<¹ö8Ъ¿ôrµµÛ­éÈk;%@«~rçÆÉ‘kkÛÎi>fÓÞskÛxħáè=ð«U«ÏLΫ^uwÏ“¾¯®zùï­ïßêÄ3«> ãxdé$I?ž¿uèöÍ?VmzÑyLÕ翵!‰½/é—ÜÙï‡ÃU_énfXÕW—Š—˜T—g?I¿Ñíú°ªo©ÕÞyȤ­t6©àfæ_UßW>Qõô×O›´o÷ïvþà۪=‘ôÝÿ\\õóHݱ˜TW¿ã$ýuê!Ñ–Ä$ýíˆ³Æ Kº©ô¬ÊÃÎ(0©o›tÂkÝ?èøªMº^ú2ïûÀ‰œw¥Iy7é³'ü·úþëEºŸŒ:ÓWâ{»ÇŸ’Ÿ|ÔÛ7ì–( Ôž÷Ìï_¥SC_$-›"É“^ÑhÚïŒJ”­ÝöR“þô,e%-?õ|ÒLºbÖI—œ7(Q®»å+åϾÓ+~Òá’VìóÆ¢ÏFí`Ò:ßøÒË{›ôƒC¯ OT|öÊÃO4úZÒFÆ “ÞVqÊ]ë^0é[7\òH[I÷«j’<¤ǞÞa]ËÇLú\¬ìðãLJQ⥿z˜”&wv¼K¢I\š“LÊzÒ„¢úÔ¯/7é-ãüüýLúP{ѳ¤M·yÿô‰÷+©á§'%š9©œ\„I÷Ô“úó¸•_ôO4]6÷ÖpÍL“RðkÿÈ+&ýYoXÒfEKÎùcÈ{&-=phá Û˜´Ýf‘1%šØ­Wß×HÚœõUR!þ‹Múùö È4$m!¤5â“^°Óë?ìÙÙ¤/WRŠVkþS–hyQ›Á­{ÿfÒ[©åÇWípÇ)§¬^6`ú ãgí­y| ¡l÷Eþ=ì¿û§¹î£ùÝÇÌõÈw¿õÅw¾Ž\÷#·”qniãðÞnÊg[ÄS4ýYùÙ–Èü5óðƒáù æÌÅ ë7ÆÌ«™=îÌ»ï. =­fÿ¿pÞ!Óæ­|5¡ðëâ[ñ¢­ø6¦A|KŸøIñy›‚xàµð8C3¾Zñ0BA<?œÛ›©ñ¢Œ0‹ÇVA˜M_%ÞÝCOïÄ€šÄç›«Í â3<âa·QKB+ÂV„…ñ”³ áHB[ÂÖ„£•ñe3í4FM<ý?x A<1<– ~ÜQ|Žx¢,¾¹Iü¸ýqñ„òxÂvñ¯øÂ$A¼Á+žêŠ{ß,#žhŠð:‰Ðp2A¼õp A¼ ÞŒ8• ž`Š·tO#ˆ· Ä—-‰·rÅí3âÉï™ñ„ù,‚x¢*ÞºO¦ÅËâI§øñä÷Íx´-Þn8— žþ.!ˆ§¢çÄÓûó âmŒ â­ âíÖ‹â¡úÅñ¶ƒx#á‚x#U<=ºÅ[¦—ÄS~ñeUâ-Ò+ã â ý•ñçUñæ„xkD|i–xëä‚xûñZ‚È®#ˆ‡é×Ä[†â[o ˆ'»âeñ¥Iÿ#ˆoƒ»‘ ¾•ò&‚øÖ?ñòÉdÂ2‚øñM‰B7ÅÛ+Â"¦ùymÜöõñДC¦òË㢡¬Ïóm èa0 @HTK51Í0H1÷Yê€20 ‘fP†0a8Âh„Á´ÔR Æ"ÐV3 ¨Ô ƒ±lk0a(ÂH„lgŒd†0®ši Â8º[ÐC3 ¤—‚Þ6FÓW3¦¿a8V£ØÍ‚*FB3gCŽ0a0ÃÂXª0‰0aã0 a0a {1öfC€# ”_(¾PúÉš©ìV@éYñuÇ,œ²pÄÂù Ç+®p¶ÂÉÎfÇ*œªp¨Â™ G*œ¨pœÂa¥@8Já e§(œÛÉ áØNe3 ÁfÜìÄa ¢ Â.Ȧp†ë@‰ -õ …[P¨´g½W`§±)u­;´¥B~[0óîÔžµN‘V¿·Oq>Q§ˆë ^b–ëqK]œ;Í—•§ˆ¥¼õÿ¥í¸ÒNÄ2‡øhÜ‹1ðߥ#báÁŠ ‚J‹NŠÔA úÕ¸ºfÞ‘5ó¦VŽ™6uÆ”š™•»O9”oUì>eÞŒ¹sçWŽ˜=ÁŒ  —‹ž3wÚìC)¹›ÍWBcGTó¿MFwصrð¡3fN7mv§ù•Õsæ#]l2f΂÷Jöœ=ãÈ®•s¦Wî¹ ,4–÷®™èŒÙ‡,˜ƒ.É[cfÌž=mþœ5|§LÞÙoá¼r8M÷˜¶¨f¾Cï…gÍ_0mÞÔšY(=fA×ÊÝgÌ®™!%3xÁ<‡È_0½fÊ‚9ÂÍQ¤‰ú|â¡•š8òOdú,Ó·èÛ.ô}ôú©Oú•GºÑ~­ÐŸ™þaOW}ÒÓ0ÓX–4î@˘–;Ц9ÒfL›{¤ü殺>ië<Ó6L·v •>i{º­GÚA¡\h/¦½™ðH«šPè`…s Ã™Žd:ÆŽõIÇ)tÓ=Êï,¯Ú_¡ü½´«v¡S˜NUèt:ƒéaLg*t–B(ô(¦‹è± =^¡'¸Ðs¤§0=Õ–:D ðš¼ê´M.°+ôø¿[jjœ©œ?N|eӞʇ—T>Óxìúò"çL¼{™3'Ü®¹Íq¦ñ:Õ³›/²³›‡Lÿ{™g¯ú­ÔIIÅ=}›rîÌš)ӞçóF »ã!žRÀlL0Û¡ÕœT¦>û÷cf~L0“Jzåŋܼ˜Î–¦ù±W9[ÎmM0<«f¦üR­éÓŒ3wû“;ªÖuWSEc.gÝé;ŠÍbÇd+†ueUzqY*mXw\QN¬ò±Kº5÷ÙŠÛÆ•(âÿ­;-uå߈å Úl¡¥î,y|í¹ë˜c, ìà ~[3*øš•w”í6Q îXt´ÌI3‹LJ-}·+¦¥î†DX.­xl¸'Ê6çºÍ‚ç¦ ´e¹þ·±Œ!h‘1v„,°cÓ˜vëŽUn ;ñرQwh)sÙ’çºÇ‚©Jʶâ6+ø~KvºT4ã²à;éh¯Ì"çËâyùó3*ÅGò²¥ø9ü ÓÔñötÊvƯ«MC=¦øù+üL (~îJýê ü|èÁLÕ¯êp£“_ÎLñó_5ßÙSµ=ü¼:>ü\~vdJ%·ÃÛøÙ4P´·Ï|ãë$ñÑJùIûþåWm(‰ÄϘ¡ßi}Œ¯G<¸£=ÅW’L]nÐøþ´aöô }yžWüãç¸@ñ3X¯¤Ìç´%Ìo¥==dn*­A½k3ÓIé”cøè*(~ndZ·ÌmÅ|îÇüMæ¯ÅÏ@©t–#èô–†<%­Lå v€Ÿ/Û“Q?›ŠŸáš¢Ðý¸ýyÞ(6~=?W‡ö§¯5îOomÜÝ›ÇyÀFã_‰s  çAGíÃoìk|_ª¤àt—;€åUÃú:y£Ÿiýv§²ÝNjÌüóøk¸ÿýù×÷bþœèT/~žtwnó >'Ï`}çñËú\nú.,Ý™/¾:ýc ߟr1ë÷‹þ¹–˱žíÏzºÏF='ŠŸ;„þN¯M¥òç¹ü.èô½Œ~&c¼Lù«4ÄùÕP ^›Èó<ÛÉþE¥Ã’Æý1ëŒsÐî<ÿ{°^ƒöäò]ø>h…b?Üû÷JÌ—ÏzŸXaO;q; #˜‰ì@GßãœèÉt8—ÃGÙÕ¯lëÀö„¯’Û‘Ç©~E\g¾Ú•MU¥ø*|åH·¯Ä~E¥Ûs?øŠ|UHßÑF»ÃY>*ÀòËtÛ?è ngÏ?èpögøJõç(@Õ¯ ÈãŸÀ|;QUÎNtüm»p=БLÓ¾:M¡ø*´=Þ•åêôó ]Ù‚ʯfcº;_ÇWBÈŸ‹äyÅËzÝ›ùíbÈ!Ë7Büì[d³âeßÈi_$ß{7^÷w¼ì¹ùÝ×ôÒžŸ>ܶ‘3m/çKŽ^y÷ƒß=7·ñ:•SêØî¹ÅöÙqæŒÙ‡OÃË¿…5 Ì™?gVÍLO[ozš§ý{ü{ü{ä|øýdHCbKûDÆ¿Çÿ¹#c|q³—|Ñúîï_jOqÔu½lûÉõ‡¹~"0×vüÆ|§¾ìÌéø×ÔÍxÕ£¡Ç“Î_N,ÉfùŸiIëeËÂïö‚¨(°¶§Þó³­b÷…Pžøô€GäêxBÚµ~0$`ÓVØRW-ë6Öòvÿ[ùµkGí+S^>ÄäóƒO)Û¢¬¾+°çî;›Ÿ ‰ÑÙœ‡NÃG€Ë‡.œ7gî´Õ]óu.ëãUq¼C…òÿâõ ñÊ„ødé÷„Mto¸ÊãÂ_æi`[ËÿÖïÏoÌ×Z®­¥so€¸ ü¾ƒø@ñ˜`ik,aŸ4²\o¡Ùç§_ ñ?/2½3C}ñ!;¯ þ3”‹Yþ/°áe×íf¹.6Åþæsñªºø}Åß©œå;õ…|ä!^ö³Éáøžýþ\F1h)§|o¾~l´üÿ’Í}ëÑÜå>~-vŠr½Ô¥ž8„þ‹O#¿n¹v“‡z8þ籜ÐñŠÏ2åúÍÊù"Ëÿ‡2µ~à>Ëú¿õ÷xÕÉΗ»mﮩ}¨×íúqêÃÏV©ï™Æåv/O™x·ŽS•‡SÛªlìÆ§öç&3/2õ{ßN™êeš{·z~Ë:É1Ïø6Ã1& ¾y CŒ ÜO8Ž >¼Ì1&pú&ž‹ut.^íü“è(æGœ‹\i¥QG1¯²|*y¼%,7ZÂÓZjŒyœð”1n=ƈŸ*y’ð£fĘçù\èÎÇ õ‹-4û´ê5·ÿÕkvmÛõ¥Þ·ëCåËéšÚS}?÷2ñ”‰÷L2wjÛ‰7»qy•™™ú½Ÿi™êfSÏoÙLúìtnù?囘R¿‰©`Ê´Ù ä*ª`^Íì©s°vŠ,˜7­F~õÒüi‹ð¯ù-L‡N›qÈ¡(Sp”õ,:c6­¹fà4&fsfLů˜ÇæÒÂìè™5SPüÐ9ó»N‘ý,Hùލi³šlY¾0Jþ2zÊ7?“ôçï¿ÿîíõ›uR¿M§fÖLþ6¼ÇÞ\þäŽú“¨xo ïEá'FåûKL‡% ŠŸàœZiPü4h¥Bñ3Ý”~ð¾Þ·KpûC“)ý¯o^¯;•ËÿÆzˆƒŸçä I–ؾ·S3cö‚|s¡dìœÙ³,ÝwR¬/Ä% fÌ’ý5~ix‘E‘ËyÜú ù[Äò¦ñÄò÷˜å/`§ÿÔ±üców©Í_Z6SÞü­móçåOÒm~]Ùòåò‡¸­¿É.û0íÝü¹dñ[Ú9~ïUÁ܃§ÌŸv«)Kô2ŸŠà´3g» aÕéôµ8Nˆ¹@ý—Ö¯àò ëWuùÓ×zÙ}µW&”gõkÂçõÃdM}¢™ø0X‹,ÐÒ'Z9_ƒ´ñˆ¶šýW¦yAeŽhçÛd‰ö ¶õšùÕp^ÐÉsÀvZú×Òå‚ísÀ>°£tuÁNÐͺkö_Ñ— ==BýŠ?;¨_÷§¢¯ú9@ýŠÀLØ9G È€]²À®Yb7¨² န{Ä,1TÁ°,0ܪ0"ŒT0ÊøúI|¥ã|`¼‚ 1Ñ#vÏ{X°§¨_µiž öó€ý-À×tf‹-À×|fƒg‰)Y`ª‚i>1Ý'ðõ¦^0Ã#³Áá>0Ó³q¦ÎrÀÙ>±Ø‚s<à\ –(8OÁùp .tÀE\ì—øÀ¥\æâ{㯰àJWùÀÕp‚k]p\¯ßY,ÕŒ'w*ntÁM¸Ù#–Ù@|þ­q[ÜîwxıÜwîvÀ îñˆ{ ÷Ùà~<`ƒ•6xPÁC V¹àa<¢`µf< ö‚Gñ•GÜï£ü!RaÂÞö(]â§™(œïŽP# îJE鮩ÈäÓJú¤#r=‚¿›(ùÜÖzG8i¢d7ˆgô%«L„öLEÉrï(¼ÕêGJŽpÁ™Þ!žÆ¢&Äþj¸W:JvËŒ‚ íQÒÏ«ÒQÒŽtåVo(ºÜÅ›=à{xÏ"¯Ù£øEÂ]¸Å‚k=â2Â¥éˆ=š¡ÓQ4(S|/ñQ™QÜÛJ¾ žwö†P›TwMGùÙÂ?2£èmxÅwZ°À.ðˆÿ2Fº#ÖÅíÒQ4Ó-œ:ÝDQ5cŒGtwA{Ä(ø=á~©(¬tF¨Y*Šš{DÜáµéˆ_“Á=S!¾í ÞÇ'yÀÞî}–ŠøèT&™ˆï“ŠðâTÄwQ°Éx±Øfñ Ñ+Mï3QøDf„†¦"6>3B×P÷ ¯0q@è¶T^ì‚ -hΠ<¾ð4 NÌŒà‡©(œæ€Aöˆ}e¢ppfÄ6¦£€ò€ÂìÝÙD¤y: RÞ%±o!Þ©ÂÞOô° xÛDìœo‚#LDnJGô“TĦ0ú§#º&±>`ã{ñ™±‚3RÛIA§ kc  <áí „¶NEô;g„NIGÁ&Ñ'+œ:Ü@ô)Á¦&¢wY Þ'ä÷—R®_˜Ž‚]S}­lÐ6ÇÛ :‘OÜ•ù¹æ ÃËô§NœÊç«ß|ÂïÑPýÚõËÑPòÞRäßPs˜ÍXòÕ~]ðV²Ê·ÜóÉK®cÞRtìÿ"êRvõyÔ‡L¶ÄyØt ×£>ùßÒí©¾ø¬¯1Õ•ž×çQß}û™ÇÚ5÷õF>yÊG;ÙŒaKÔy·#[ž¼È'Jü¹Î]CÏ{¾¿zR}e;'ÿ›ÍÖ¿9µá—Çlì2ŸG¾äžë|ýÓíT=Ú÷ÔWœÍÇ‘‹žx-W×óà5GËÕG;õ=w i§¹Œ+ßz/_Y_‡[¿^ï¹ñ¬êz.ÏD¬õsõ_NíåÃV³µïúð™ŽLò÷ã×üÊÏëœåC6u1ÏùàK_>ç?›üÑ-WðÓ¯S»ê‘­ßÜõ;´óú<¶>2õ)»†ž;»¶¶tú§ 1Ç~Û¨+³¥ÙN¾-­¿-e΢Ï-]oóq4Äxþ–¹_>ó9Ö†Ö÷|ÌC¾Ç—kýLí6ô¼5ÄQ—rÊ…‡|Ž!_íäkîê{îói'õm_ÙŽÏÏ‘¯ñåÒW] =ç~ÆY²ÏǑ혲m»¾äï÷ØæEí+ê‚÷|ÍGCÌ{¦úù”U}´•©ÝläåG&¹ö_—s]×6šÏ¶RNù:²™—|韾üõ9~ä‘ ß~úËel^Ë{½žOPWóøO²Uùà+W̧ÞesÔeÙØ@>tÆo½L×½¶oWÆïQWãÃQ*ž5'ÆÔü»è¯³%Ýë¦Ö®Î™N8yé½§­ÙÆ‘Ž:ðù+ž\{œo:¸ä¿vèp›g:~É9 y÷ÏtÔ3o{Û“¾éÈÓ†.é=䤬éЯgm÷¡o:á†×wûléG‰‘ïLþô“ñ—×sÞ•[Ÿ™ØFÒaoõ?ºIÇÅuFG·>xí„cŽõMÇo·ß®»sLÞé~OÞxýO¿Ô9Ùü˜×ØóÄtúkù¨»{žœ¨~ºö«ãWÝ_ïtÌïñ÷Úu»#_ܼ]›_ά3:ºý´V §wN££þx~ö—ó.•tØ ‹È">¯{zÆAoÕõ­3:2ÔiæË]J=ÓQýªš$H ;Z8†.itÜw;ð펫òF‡Üµû€âçÎM§O­xzç}¨3:òï£g½7v÷£#–výyÙÜ[óFGFï½ç¦“v«7Z=®çÞM?këHG÷:¯éâCÎÉ;+¼Ä¨S$4>qìþ#å’s<éûêpÖtøžw’§i[ï4ñJßîßí¼Þ™¾µqÃ%´m0Z=çˆðCíûÕ;ôÜ9×ÓêϼÓ!ŸžyÙ[Ó÷ș۰[tÿ¿6dM‡ß÷èóÏ\×Ë7­>oÎJIr¦c/8ãì{*¿w¤#m±›+׿N‹úˆŒ.otÄÐ>ÇxuÎtüÛi&&¥ÑÁ—Mx­ûã¹Òñsßü౉û{¦‰—Z1mÁžéÈg;=uêWëòN‡Uòß…„Œéqä ÁkßñMÇtû¸Ùåg½Vçt¨¾ Ô»ßa;›Ü#otøøY{­êv@·`‡N?<Æ3Òò›×Ÿýí™ïÿ÷#vëUçtÄÒ¦ìÛ%o41öø/η¸Þhõ­¶è:hG:ºg—Oí7³ÎiõÌ—|¹iû¼Ó„¾ ©ðLW Üi×_êŽøùÑE_s¤C›¸ßã*\éˆß–[UŸ•¨þbu—¯\%éðßþzàÝ&»;ÓAew/w:þíݽúë„#w݃¿Lz§¼Ññkß*¾jÅÀ¼ÑÑÚóžùý«z§£¾úpùÿf¤Ñáb×qÏwóNGÖ4Z}W²YbÐ 7O9õ‘Í’¹{òAwü‘ŽÄ>‘M¬úø¹XÙá9Óa/ÜWzàÐxÝ}G±QLüÙ«÷Õý×Ö;ùó¸•_ô»,ï.6&ºÖ™_s¢6u¹p—ßû9Ò]ô03¼Þhõ€¯Ïß:\çtĪРíÏûÅ‘;úòîì÷cÑÑœOÖ­» =ßO =±Û}úߘ7:0ÒdÝïñ÷òF'T^2õèÇ®tÜ ÇŽï³íš¼Ó;>´ì¹š§²¦ÃÈÙÌW7:xÁ)ïßÛµ©o:„×½ÙÒQ^ycëƒ×掸j}ëÂÖK\éȯ_zõô;òN‡êËÝã댎=£ ÝæªÙy§Õ´*Ù|Yw*–G“NöMGU>Qõô×OK:ð‚Iwí> $k:žŸ£ŒºÿÅïJÃçäû¢èáÃ&m/éÈ#> Gï½71ü’¾gÝøçm9Ó‘knþ²Å‡Ë]é°’ $©gòN‡l:yäæ§4W:îÅ‹÷&—UgtX›f‰×{¦ã´Ä“UG:dØs½¾\3Î37ñ´k†ýZž3*V/¡êŽûá»—zVÞè¨?Z¦¿Í™Ž›ÝWDÔ:£#®ù}êöL‡×èžé¨ÂÚ½2µ¤Îèp~oC¥£ÞýéÊÑӮ˙/Ùvè”}?I£#·}þçÿ\4Ò‘Ž¸ìÖ3<·³#M|sÓv§µ¸×7XûÈÒý_‰»ÒÝøy–W:vÃ÷ >¸è¨4:ð¸=ßùlQ4g:ê”}ÚM¹'ïtˆH•F«_˜´÷•GÌ º[qyb¨xÚ[O£cî³æ?¥8Òj^Wç›âýª\é°÷Š=öÖ׎tôç/üÒ YÓ¡u O><ïtÌ¡W\ú[›¹‰‘B³–§Ñ¡÷Ämb¤0Ÿ{^s¥Cn_4ye컬éØcnžÃ3¾~áê÷÷?*otà#âíWZ½Ç‹÷¸áæÄÈ=Åpç¼Ñêo÷»$¾|˜oºÛ°¹Çm§–3õÌu½¦î¼cÞèÈÆzàËòbÙ“•å¯z¦£V~ÑïÒç%&+Ýç Ït(ïÿ¦Ñêû¯orûÖy£x~6zÑg£¶¿®Æ•i7ò•/¯Y5Äû}n´ºë ±#äJ'ˆlaï_éÀOxä¨ä\G:nœ>AYÓ…ƒ]çJG ^¸qåªéÈ}–]uê´á‰‘“º<Úbÿ¶y££õ׃ŽtX—Ozbæ ®t×sZýñÛÈQ‰Ñ§l?ü–ÿ¾”5ÆïÕäJn¨ØžRì¬éJ²ö:wÏ4šhóìû,»:ïtÈYúƒˆ¼Ñ±dMó_=BÒAü¾o®tÜȶÿÝêÝYÓjñ·ë³®t,-ž÷½ï±¬éÄî3n~x×|Ó±ÿ{ì¶ŠSîN£#Çmxâ²ã–KZýá«O^z_ÞèÈ…Åâ¬ép~.敎hµÕÓ^øXÒ â1Ç«Ï;Ò!âõÓÏþçHÇ\ÔfpëÞ¿ù¦ƒâÛ­ø©éƒŽtàhñ€éç¼Ñ¡b{ý½›=Óq//¿æ…3zºÒÑã/ïѦÙÀ¬ép±ÚÐÎ‘Ž½FLÔ‹‰Áã&÷8ò…PöôàlyQ›œéè}C{Tw/Ï™Ž9úé ËÛ¾éH‰Þ·v¤ãz7¿iyËità˜M{Ϲj½#ÃûBNtDsQðjG:tïg÷¸î³W»é/NKš=>Z"é`~¿ṫ'~Òþ‘W$ù¿Õqe.^3ïtyÍv‘-rçÆÉ‘+f:ÒñÛ E›ž=ý`@m¿Fý%¦¿t”3ýHð+i‚Ÿ³y¥CÄ.Nô G:êÞý¾{t^£¬éð¿ÎÖVÌ:9™6|üÓ%ÇI:ú?u8~Š–˜ÐæÊW}|eÝ]||¥Ýÿ²¦ƒ¿~jýõWT9ÒBë§Ÿà™Vñ@ç_zÙ3Ã~H¥#D–¼í¼¬éñi©Ýj\éÄëô31²ë?ÜñÁ.žéЩú†Y8ç׋ß{íSW:¬â±áH‡³];ÑÑô AßtƒÍoº«cbÔÝ‹w^ÑøI‡© Á7Ýyxû¯n»´E±Ëüÿ]ôò]YÓÁ=þ:¨ÃÄÓ=Óáâ㻾“NìL¥ƒ;ýÓœ#"ŽtDÉ›woø~¡¤Ï3ô‹®4¡/z¹ÒѼÎ÷K‡7^óú“G?㛎_´øÂ¯_–Hüöò{ÇvãHÝžTWw/ûþy¾éðî8åäÍ3ƒgm·þ¥#¯•t ¯[hõQú‹Í’Žÿä–ñ?~þ3=¾pÄáe—ú¦Cæú ô“7]éññÐG–¦ÑÑ—m+$(éX#ú¦oûþÅ‹÷,i?Qé¨ÍU4#MÓèÈIï“Ǻ3O»<šÓô³¶´´•tØåúÒè ~ÏߎÝC,Ö;ÒüùÒ¡§î;‹u¥£{è%Ýíü7¶îvÆdW:–ó$7:¦ãA·~rËW:N¼þÔw¥+ô÷ZÊXZ;Ò¿_áB5-¤þN³ßï†ø¬ûÿ2}¦¼¡y««qyk6ßOÐÐãþÿ⟊†¶¯|ô_—|çúÝ) !¯†ò‘[*_ÿ"û9lh~züÿ͹ú»-U>ÿ"¿sßмfË6m6ô¸þÉòÛÇÓÐ|5” ¶„¶ë[þõ=÷ÙèÛ¿zú/þÅÿßø'ç]ÿ¿àß¹hx™ois°%ðð/êv~s]?ªuýúù-IßëaB‡¿éÿr¾V(Æ< ÿL7Jlƒ¾Q0½fÊ‚9óè¿Íšù[Ïâ¨ezŸÑLH¦2±C¨âZM+¤iÅ—s™åTf&uûŸ¯¢ót¾ŽzÝ ij#ZÉ÷ž¦{§Q{ÄAx$ݻӸ8†ÊH×ö§k¯QñõÓéz;ÂotFy…xxƒÛzîŸBmmE÷n!þšüÇnáûÐýT—ø Ó"ÄSlƒfblÇÑý/éþ>tÿYƒÏ+Þ“ÆxñUM+Íåïaº’êHýv¢zÔñ½€ê‘tã?’i\¥Ôvù\þ9*Om·#PábÚz‚ï}@×%ˆ×(õ;ˆdð8ñ0ŠÚ{…Ë>Le¥²PÙ›©_ê?z„1‘qj£ˆÆVÒ›ú>UÓÊXFú¼\góctíBºöµÑŸú{ˆÚèHýOíÿE‡Ñ˜©néNÔÆ•4†ï4­Ñ>\÷^ª;–ê$øœæ.0ŸÚz’ÚB×I¢¥ÔÖ ÔÖ_ÔÖ\jëmâi¥e¾5e¯4çK¨o¨ƒ© Ò(ñ;Ʀ6j¨ Ò‡ÒqÄÏc:™ä¥:RO©Î0ª³ŒÇ@ºSü Õém)/ô‹Ê…Io#Ð[q¬ {Gñÿwsm¶!ùžAíR{…ÄWÉP’Å×–:Ûóÿ÷³Œß§¶S½G¨]Žý—êm$^h~Š?"^ ,:'Ê¿Eåin#T?Ú–ÊŸKå¢ò4îâw¨üž4ÞÛ4­‚ømt“¦5©´Ì¨¿žêƉǨ>éLag’«h—{“ÊM¥r¯°‘DÉNbWQ¹ÖTŽæ¨øê‡ì¹Œú«˜aÑE©¶¤ñ‡h"ý¨¿»©’C!É)NsW<ê/à²KXçH/‚çP¿4®•+ ¶b¤ßqšû"*[|—'Ý Ð8ƒïQYS„ì$Jö{Ú"+Ò·Íc˜dP üÓÙtÿjk€aŸ%¤o¥ä#ʾ¢1ìE²â9ó¢q†çóiÔù‡ õ¦¹ŒÐFw ¶Ž¦±P¢¡,*jëVj«ƒ¦5&Õx³Ék°µI¶¡Óò‰Q’Maâ…Æ[L¶]BzWFuÊIÎdGK¸n­¡÷ú8Éî È~¢—R]òÄñ9Ô7ùŸ’½,ö0‹}'Ù=¶5•#ý-†?vDr ¾NeúúmEåŽãûÂ.¯-é>ÙVä{ê+Ê÷VÓ=ÒÍà‹tæ3r;ëŸÐ××-úMsÿ¤3Øï_ŠPÿÑ^†Ïˆ,s5õzWâ{!ë%éMQ_ß³\Žô0@þ$H󦹋мi.ãŠÈ—¿Ìe`ù _1ÊR_ÑöT–ô¹ÊѵbòÃ¥BïÉÊI&&Ó\¿f©Oü†H*[ð-ÕíÆ÷ȯ®§{£X†d³1j+~µKm•Ï)%^Ê(&TìÎuž§:¤£Á£H?¢4îØRªG:^DzTÒÂðùå©Þ'>Dì#ÿ&?^@u¢ç I¯ã$¯bÌ›ˆ)'XìQÈéCÖ‘“,sv ëd•áãôƒ|và4²£ðÔÉ=J|ÄHÏã䯋ÈW“N•Ÿå{rÇÙ/ Ù›ý_SŽÔ^ü%K¹_©mŠÃaꣀl/J²‰oqòÏE³Ø¢Ç…;hÜj#©í5T§•E/…¾Q?a’w„ü[”ä#[*$¿§9-¦q–î–l‘] ’?ïA}Ó8bé<ÙEùr²—Fë-¶Br ~Le‰—ÈãY ›§9ßÀ¹ å 1Ê'âäkŠ(V“”VÿdGågÎu…Êð×r §>YØ»@c,êAã"™–,#Ÿ[~×>žòƒ`G>’çƒÆ¦\(B²’ÝÅ(–Å)~‘>kðSö¢+õãQö¯B«©ÞÜ/¦zä3ŠÈ–O¥äWÊ‘ßÊ<ùœ|W`.çÑ#8§ìÅm_CúWJ¼•q("P¡©üÕTžÊP¾Û‘ÆLòS®_L~ª6,ŽÇÙ/oà|†ä%;Š‘ŽÄ;y¢~<Ëó)ⵡ|*º/•#¹Å›Q9¶ŸÙjüK˜æ¬ø|‹¾Qù É)|ûÚ±Fþ§öŠIßJn4õH·“x̤GQò±å|ÿ~Ãÿê9ª°#*%?{í—¶ûŽ­ÛHÆÑG-ss4Û¢ó½<7çXd"æÖácµQ”bhŒò¢øxêƒø*ÄeE̤Øë%øuaä›B¤§a²‘š³(µYHySœx."=,ÙË>aø¹P3#æQ’Qìöõ$ß’°¿dùY¼Î[`Ø\”t$F~-ž¤²ä+J§pYa_7B *‹˜½‚s¶8_£1Æ’|醴sŒ£9 Sß‘FlŒ¾iÑa'äB4ž0ù²1¤·…¤#ñÏiNa×WXê~&S»÷rÌxs²óÂ*.ó¯qIßBßõ8ÿôש :dCEä#‹ÉöK»pýZ*O~&(ä¿ÖÂ+Å€à›<ß«8VQlŒÇ,1ùöC¬ƒ"^“ME ä;ïZÚ]Ì9„Xcr®8‹®‰9}“sâ/Fyl!ŇøÛ\÷^cn‚¤‹áކŸ/ø•óf’gÍQ1µ¾òn^£"_!¿¥\&F> Nó]Œ<à6ÎC¿3l°€Æ¥~ ÉW}lá{Î)w6dªûF‘«þÁò û,9Ë_Ãë ±¶%ß)çëO±\_2ò?‘oèÇ]l_$çp'öý"·¢ÜµÆ_DsPLv\ãòË,kÅU\÷S'ñ%»‰Q)Ü…Ë,7æG?îg{˜Ä²oÅkçøþ}ÃÅ^]/ ¼4Þ™ï ¿Dñ(Tjø9/$· Å¿ðÖ†ŸÓï ž$³,<Š˜I¶#{‰Wp™›8{Žuîö!ä# )ÿ)¢õañó\öÃFõãKÖ‘“ïÔr¼¹sj¬EÄñ„!ýx”ëÝlÑ—i–u꼇p+ë<ÍuI±Ež‡ð| »\ÃkZ²¡Bìù¬æ\û<ä·”ûŸçöÉÎ È^b“-¼Êù‰X¯ÿQ±OD:'=(ZmY›‰ƒ®GO²œ_ÀõE<{•¯ÝfÌ»øüG˜t$ò5ûÊ¿ù>É:Hq(DkHµ±Ï çKìQü¤Ñ5†Ï‰SÙâR.Gö xêcøby\jؽثÓcù·(ù·ù³8Í{Ñÿ¸Üì»Ó䫪źAèÃÆ*,dÕŒ÷ÔDÞº?—yÐØË =Àû$”«DI7 )¾Ä÷£~^àr"GÜ—÷ßzñº«Ï-ùÁ"ìK=Â9ˆÈ(nE°)Ž{ŒÜBçg’±nÒ%†½èÍ}à@#‡ “}F>¢~(fÇîáØt»¥=¡wq[Èׄm&¨~­‘Ã/- 1DŸäû+9ÿ&:/ýZø6¾Fã œkØ©~¬cÛZgœêq¾Ï;­™ h÷…;YêO1ã½~Ðü–{òXfñ‹c¨-òQÊub—òžøy”má Ï¢}ÒŸ‚§,í]gÄÑð;<ß4®ùøBìÃ\Ï9Õ&*Cºù‰ÊP<.œn‰"¿ \!H:ú™ÊÏhäùRÆØw#{ P®$ ÓØ#BÈÖcä« _1ö ŠfZÚÄë¨jÎ©ÏØñ¼¿ÆkW¡ÏúñǾõ¼v{F41òýñÁ\f9ë›èÇYŠY±møþœÞcÉG(ö‹=•à×¼G-âåV±‹ùþ ök8£øc»’š:!y{8ÏÂäo#ä D޳!÷¢ž<.òAòéag„|mt7coËí`ý"Ú!›ˆ _ÛÄôv^#xÄè7ÔŸÏïey½ÇëŸå½˜ó ¬]D¼Èr©4|uù½ÅæBÒ¡¢F\î öÓ4Oa±_Ìþ3ÐÝØ÷ ;Çžö\V¬ÙwãõéW!rœ{˜¿=4ó¸ßˆ'znIóZ ü5éOá‰>©ß ÍI˜ây„|Båk1’i!ü‡ØW{1y¯ãyÎÏiýL>ÿ‘cÂ1–q¬0çDïÏB0އ-ùÍ}ð.þ_Øk ç9ƒxí=Áxn¡×O˜ë1ô£ë€Èöä=¿–„·LyêõNàµÏC|Y‰XO6¢˜nîŸ(ÐæPw¸œðUI#§ ]Åyÿ/ÆZZÎçì!AVˆ±ÂG‰½Æy ö.ïí¿g‘9åiAÞkÖõw±ŸifäÜúñ¤±6 •sîƒyºÙðuúA1+0†×Ф×Òµh'coHÊCØÞdºþ…_òqÁ3ÙwœoìYëÉ3°šÿÄПPµ±ÆÕ—9µî5.²œ?jä¡3<¤€ì(6ÂÒïR‹ H§ƒ"ÖüÊ{ìl£ÂŽ¢ˆ‹rn%âÅáÈS!»+9ˆõ†h£¯Ó˜×òÿ¤w«5fd"÷¡þ,‚<{vo2×sÂí,¼’ÿ †µ’~\Ç9Ù[ü\쿹Ñ2æé}Ë~|°˜ê\_g}ÎV°"VÝkÄÝ®·ç|ÎR¶¦ç‰¤g¡0Ÿ£>ù%ýÙü«ÐéS8þ f©ä{çð<ÛÀšô~#wÓ'˜gâ%@í†ÆkT1¯ÑÅ\æG¦Ë˜®bsÿÿ†–º÷„üCøE–»àWÏÄüFø¾xþC¶c©+|Ùwhw‹ÿÅsÈ«yî„Ïfý ”±ïýÒÈcõc¥a!Šá^ÄÜ’‘­F ¯bmºØ’Lj¼ëTÞ± Ïšñl^=ìžë{=ü”Õ’~ ûë+¾–ÿ³å%EfIõ}”uã!/G2ûòª,ü¹ŽCï7™ÊƒW^Ôry•é?øð=§Éôú¹ÈÒ©®[›ê}»¹Í‡¾y:’9vTGÒþ²;ÈÙ¾“Îm§IŸ×íúõQÖs›š_ŸÏ¾3IomäÍÇyèÏW9>ìxÌ&7Ñëùì»Î¤AÜrµ¼ãý,é “ö}4ä‘m>êu®3ňŒ¼$Ó¯¹µÕ‘ÌG#Ùõe/ÙÆw”±‹WnvÓÐGƘšôÑ¥¬[=ñ᧯|.ýùÉ|û/e”¶­¶žË‘ÏuM^Úµik‹<’þîÕÇš­!òˆŸ–‡þóû<´ý?’ö—³ž÷lëý{ØujãIÿU²Õ‹|äŒÙîc4x\sé».æØ6¶ç«¯döUóµ~HñéÉìêåíðп]Üi=פýe/¶åKú‘m¹Üwêßéú·ß¡ÙÛž“Ö§.äu/Ì¡ý†ìÿŸpÔ‰Ïwº‘ôߎþÜl/S{u±®mˆC}Öìš–:§û^Ú‘G2½žÚzøé7S[®{S>[’.÷ʪüxõQny“ŸùvzVë({…µ®/š uƒ§±9ðŸ©MÏzë“WýæVÙø×yË¢~.úãÔ·“ŽØñâglNmx™c¯6hWß‹gjïNrtâ)¥ý¤ÿþ2ñïÅVœúvä1ŸøÇ}/ë 7½qìË¡m¯‡_Û¶«ï4·)×”þÜæÌ—>$n¤¶çö~ƒ_¤´íÒž“ÏÍE÷íÆá¥Œû³+o×_62Kk?é÷L}ª|y9²™w»>œlÒ“çÈ—]yk;~/¾%_~Ãq<Éô²êÿ^ûqëÏ_^í_Ò¤æzdkó^ìÁ®é4é£-›²™žÁ¥ÍEÒ¾œÓø²9Üøu³“LcΊ¿ü%}tdÓ¦Ó5?ºâEvšÍ¹Ošæ<&7þêëÈENr¶¶­þï&Çlúuk+ÓáeÜ^êÙÝÏX7CÛn}ÚýŸíá6Ÿ¹´ïTO^O:ðL-—©¿þ*›ùrj'­]Kÿù°áLödÇ‹ÉTWíÃÍνŽÑ‹m¹Ù’ùzáÓMÜÆì&s¯~$ÿví;ñéx$ÓÛtj;›öme’Lo'‡“oð‚¼ô­¥7S^—/^2Ê?™¹¯l|¤_Þ¼ŽÑn¯Äï6m{•·“=ÚÕwk/“LíøËÈK–ã¯vÕïûáßï8´ å½ò䯧[»~úËt-Sû*u’ßCm3›ú^æËiì6ÏóaÓ¾mÉÔ~ìæÀµ ¥¬Qûò­£I—ÂZîÏšýè~ƱzàÕíÈ$7Ùùåß·}'3ói§oÙ™ìÃMßldj;®sžt.—ïÃn¬içüøiÛ«ÍÛñ°¥^íÆÉ¸Ê5éܧßçÇÇø­çÕžýžÆ“´¿gǦv½òêIn O™êúißm~¬}ÛÉ!­®RÖN¦^}T®G]¶×#i¯¶ž¯þÜŽL:êÇGø9Üž«Ô×!ûMšçÙÚ«_¿–ñ~RÛb>ƒãäKœ®©×½è¨“ïuòK^l*+ý´»˜ôÙH.}¹ô]Wöâ6Ÿ^ô9S;ùZkd3¯nñͶ|2sŸ)mØ•MúàÍRߎf¬ë¡œÞìì.ãµ mxÑ“ŒGÒÏÖ>ÕþÓê{íÛ¦};>rÑEù2 †¶´#Ùðý:Ù·›WË«×ÒÊ%SÛöÿúÎd[^êúõsÙ´­¶™ÏþìdfËÉ,w¨g7žº’[¦Xš«Ÿò˦e×—˜ä·½´9H:—s”“M¿<ä*ÿLruôÉÜøÌd—®ðÙw>§gŠùl;S›™lRSþwãÏ16€&3Tvà)—ÃMØú  å½öŸõá¡o¿q6“M8¶ïÀ‡íÅÆ¼ÊÈ>8ñeWÆ“_ðXÖ­Ï\·þ4;?/÷2õétîUçܯ²VË{iWå9×ÃIîyã%é“!›~2Æ>Ÿíû•W›ÉT7Û¾õ#™Þ¦Ú~©xÖ\õqÔí¨ZŸZÞ‘®w¨çF]ÚõÌÏz»Ò[Þá—O§ñæ‹7¹×—\Õytš_•æ­ß<Ë7_|üSô:×ÃMÿêÊÜŽ†–¿«=Ô‘þzº>œúñ_r¤ù>òΧOÿX×ã’çõÑ+?^Çå5ŽäûpâÏÑŽøÌ7?¹^¯¯ÃM=çJ¹º:ÜÚoè|"ÛÃ1wËÿý®'Üh–róÛŽ«Þå;ßv¡jyßíýÃô®¾â®ìo “KÖñÞãz­®ììŸrÔ[>ç<Æ«¼ç…>çו¥Ÿÿ+‡ç<´Žó6¯GÞö?Ö;Ð|û™|ÑlóDå<_G®y‘ï<½Žâ»ÛúÅo;^Û÷z?­|ÛÝ–îÿêkýã7oͶŸº>rÕ§¼­‡¶ýœ-åpóƒnõrµ?¿û¡ùšß|û†Z/ÖW>.ÏsÜÿËÙ/¬w u$ï|ͧWýÈ·yŽÿýºòé@Ýú÷ª·~×IuÇy÷¿GýÙÎÃ?uÞòµîóÛO¾Ëû=¶´vóÚ7öše»>ÜRôÀk¿ÿÿí×Ö{+÷ïáïø§è‡Û‘µÿZŸ™z­×PG®|Ô×¾N®õ·T½¬/>|¯+ê8þæºRWÇ–¢^º~5_G¶ûRyë×ãsÇ÷¢êéýW¯ëŽúz?×ï¼å½ßºö?i}õïZïÿøû8²^77Ôºq}nõò½ÞÌöp{®žV~½=õݯÏúù.W߇ß}¦-muî÷A³}Nâ±|]ǵ\ùÎõ='·8š­n©y¦ÓñOáÓéø§Ä}¿q¬¡Ö¿i÷sô39ǽ<½×”ëQ×yw}u×Û´£ž9±£q’è=z /T}™8.¯ú‚)ôlótýH„×èåÅLË•óFF¹ª_˜¢½ß¸?r’nâûôÔD¡qž(aZÎü5åûE5ùáû͸ÿ&L{r_(ãÙÈýn`þ>æöpŽñþÈ×U9à:(ƹ–Ï!g´Š~J¢)ãnÍã\·çóÎL»±väòÛ)|€/–w"ÀåxÒ·[¤È[™?)ÿö\÷·UÆùANèòú^‘;Î1ï8߬ðÿ…rçê|¡<ÚG¹uJ=u>¸ž”G\w –WGE_0¿*8Wå¡ò­ò¾™&"Ü#î{æÓ‰•B1~§r*u²>O4aùtåóŽÌWB‘‡J1?¤ÒDˆ)ä®Ú=®oÍå ¯˜/ÔïÎåz&Sô[ú´SÆåKù\ú/–scø¾²-—oÏ´›‹>¨ö¯ÎƒzîPOú±V|Þœù‡^n£øƒÞÌw>ïÊ÷á×UýWûUùQüüüŒ”_W>Äåñõhª]&bL1ÏÐs´‹x€y+`Šñ²ÿSËI?¿ªúAPußQ•¨j‹ê_T¿;þµ•_µ?U¯Ô~ÑžÓ8×*çàS_ˆÅLYïÓ☪'nþ åÐô¹5SÄ3Ø%ô<®Ì'(ø„¾ ÞW°ž7SæoƒÁßwJý|_/Ì'ôµ1—oÂõ+™¶UüCøoâv3Üçvzðõ­ø~ ýtS®«~ç±Tû”ò¬àóŠÿ؆¯ïÀ×;c^ø:Ë#Ñ…åââ±zîïÐîOÊ9Ó4¿qcþ‘‡²Ÿ‘åq9r¾’ØUáωB_T½QÆ-ã䋸…yÀ¼ \{¦Ý’©í;õ£Þ‡Ü”€Û…þ`žGCnð;(‡ü£‡"./ãüi%—ïžjGrÜM¾‘O 1ô#TìÅe=eއ)æë‹ìT/jþ§Rħ¸ù)r”þ\-þ‘wÁ_"NôY‘Ê'¨êOœâ¨“Ÿr[ªõÔq«T]'ªí¨~å ?Ÿcž!Øæz¦¥Ú«Œ#}Xz0eýSób9è§•âŸ0?àWõ#ð7¸®ÞWù‡Ÿ‚ÿ`ý–ö»Ež;ßFÑU!gUÿÀÖ°÷Fz¤úßuú£æ“?¥ÊWú ¬/ÿ{ñùnLy"½7¤êŸ›>ªvŠþ‘ ÄõnJ=ø%äW2¿àq©ö‹yçs©‡¬—Rn?9Èó‡ë*Uåö@U¹¨÷Aqí)÷•Š="/ëÎqr„mÎë2äO8ï´%Ëz½î¨è«÷!7Õß8øÓ´ü°5Ó|þ´SÌWD±è òbØ]3È‹¯ƒb]ÌqFÎë:…z?\WíWµcu_ÉÉO©÷ÕvÔsUïÖ)òåý9^uQ ?ÌõßáŸwd¹5q‡ª· •8»mýKÕ ©ˆØÇƒ~ôäs¬z²¾wáûM”ñ•ÛËOú øÄ£J>߉iÏF9ø½*¦ƒŒ‰O àz¸\¿ÑÆy?Gî뱟wWôÃÉ®Wî«~ßm¿N9—öÿ8ÊûVivì§ùô§Úº/¡ê-òRÕo¸é?üÊJ;j|‡^!~c=†ü¿"U_Óâµ:깓ÔëhO•/ÊãÜa?3-~+q ãJã_é×Ü·çyoÇסÿÈë;*í*y”ô·ð7ˆS¡ïLw‚?PäŒyD{ðNúïõÜiú·V)ŠëNñ@-—m}Pä·j¼D>Š8Og)wÌ#â7ìy[7®×ƒýS/Ä ¾< z!ó[nþûÍÈs±_ƒrÈ×Ð?öuÀÖG;3EÐ蕺^‡Ýªr”ùvÛ/qZ©ëeÿTæãØÿƒŸQíØ‰Â_©ûÕåóì‡ã9ž{bÜØ¿‘y;˹1Ÿcÿ ûÐ<þ4ù!ªÏïðÜû}Zç;p{ÐW5þ«ç ä®–SæK>·i¤´¯ÆoèÎÕõ äƒü ‹"̇:8Ø-Ê«þPÉßd\‘ë`æíc¿ùÖ½Ý@•þÔ8¡R5N¨y§CüzÖE¡àyÖæ·óÂõ±>ì–j·ê~}Ú>¾¿·±ÞÅzùôç耢?êxòuPu= ¿½iê ×Në8·¸²^áýªûÉjPóÔSóp§¼A±/Çuºj‡Ø÷‡UýøN,¯*ÅT¿ª®×ÔõäâÏ䨖s³5Rí~y:Þ[€½ôeªîÛC/waŠçàÝaOŠüA×)rPçz ø+™4QôBÕ%”óˆýÄqÄý–|Žu âì¯+÷§ÊÑÉ?ªñTõ Nó¥>·Ä0Ÿðú{Uç×UûÇ9SÄ'ýMôçùÇzûý”ø¦æíNû½nó 9Èç$L‘ßcŸy:òwØ7žo`]¡ìûbÿÈÑ/z´_9O˜GèòLìO@_Õ÷^À’—A?œžËu̸âì¤+—ççbiëSõù<Ö1ÊûŽùŸêÇA¡ghü«þÂ鹈¢iñvPøpšG§üN•ƒoÔþÕõ;¨².ļÊüBÉd\QŸ7«ï ¨òsÚ7QóÈO}B­¯ú1§üKÈ¡'j>T}âñ¨ûNûêüoPä§úU¹oÌýÂÿ±®Ã:³Ó|ëüíxœ£Ó>•›ŸPÞO‘ó ?uïWÈõ ÞKľïNŠü!eßAÆ œKÊ×±?Éë ´÷Þ†(vàôÀ¾E%Ÿ#OÁ¸å¼+òlêà_œø÷:>ûHò=ä]ØwQírQóãSç]úì3©Ï5ÕfsÅî¼¾Ÿå”_¨ëC§õäì¤ßP?÷‚8‰õ1Þ稄<ùãE;Ð3~_Äѯ;Qð§æõêþåŸÊø@¡oê¾zî¶Îø ÈÔç™ÍRå—öy&õ9ü ëãçƒ~L‡|ÿyüž‡â=æ|ëSè'ôµ½bNqXÕ;è ô %÷‡¸ ½A¾Ž}îFƒæ¾.×ë«è¯:? êû+êsÌä‹ÏY¨ú椇¬/æû»©ó.×â.ìÏÕ¤?çú;æM]¨v¬¼¯,õú%Ÿ0…½m§Œ×ï{›}SŸ§€_å9æ5íùê9]WÇ­îÛ8½—ûÊû" å…|½¥"'W`¿,7ì?Ë÷tÚEÑ3Èác…eßHêü)òSÄä•Xw ‚ýâý ø¼/»CþÄû rœØ7Á~ú]`ŸËi½ù*ë{§C¿ŸÐýB¢fæ/0†p1áÂG.ew±üß›@YA`kB_«Ï¾ÁÂÇWVª´Px~…ðºfèäㆠ4á²7 ¿£Ô¾(ªézœnÓ¾W¹ÃX*m®]kù¿3lè©åÂ/òõ°}ÛÚkLÿ"<Ãÿÿ`WÖRçgÞ-D,c_Ó^Ì1Ó©åƒVß3ÉÂw5a°å|+ÍðÛM Yéó%²µ·2ó£—-d_ߘÐ:=n†[þß›0Ûø?´Ôr}!Ó}GÀ‰:õ}«"%†k_j†}~k™£W•6^VÎùÍíç1ki{àèøÃ Á³xÝQi#ÍÓñ — ºôý‡Q_{UøP‡r'ghcá$ÂùL)gÐN5 ^o3ЇFžEÿßÃå*ù|¡BéSäfÂn…ßþ\3rg~µ”¡ó@­¥°ÒgËÿo9—ÓsÑÉÇÈcø:ùVíuËùc„µ„4öß\÷E£~ jéC™«´ùüŠð¡ñABÄ4.½«`z)—¿Ý Á ùú7 Í4þ_ÿ/a¨¥â-PÃ÷ŽHõµAʾƒaº¶žh_¶øè—0‘.<Ëí<¡Œçrë9_&â8Ç𽌄¥\&Éí}«Ö·´0üK €ý̦é|­ÉPOäÙ»q"†t3¨v·Rn‰åÿ]-²úD3æe3x¤ûb‡IÍõ…Ï ÷õ8ü»IE¾¯­"ºS:ÚŸtý9c,z¬žBô¥²³€˜»ÉÎã5ârMèðk†Ì´÷5#kžãÚXMXOXd¹vÖTÚ¹„3K 72_ÒÛÐã4%èCL‹¸ýµ n%\g©s$Óbµ¥îƒš±î¸\\æ²6ò×õBÄîÝ GöÐŒ58Φí4cŽÅ:EøŸwŒÿC÷Ù´}ªR÷U®K4ÛjSO|cÕÍ\çÍf­@×Z:1ºh–^Ó}»aÓˆE|}¦ç…ð¹ˆy„G„n",¶´ ^çæ•6æf0=€cóXÂ`òsßr%¦jJdút>9Sˆ0Jcÿ¯ú"t“ò7òLm‰q=8Ȇ§ZÂ)lO"_¦u¢ž—¾mõÙ~Ä>Á/†-ëýÊmÖôZ#?ªçVç*ý¨ékê@/Ât¶ÂNøžÈinQÛä{ÕLÛjFîF¹•ˆ3mìËk›4}í£ûÌ.OznµŸ¥Í™J´® !y-ú0š)Ź º^èm×·Ù¿îÿ>6üe R©K}„~M½fäÕš’«ÛÈB¬#Î:®9kšÿ§k×jFœÙ…}3ÉYä=Á‘×)u²Õ}|–¡Øå¾™ð®¥Üt¥^[åüJÆ5š¡3b]*ÖR"Ž>–Z6D¶Ÿ(úŽx»›ÎGk–øãÀ§ˆi"g;¸Bß”5jbtð}Ö§;Œ½#}N/ÒŒõ…Òþéò‹4d‰õ_è-±ï£É\]øAQWÄ#·¢xÁoÃêñAÈöA.Û‚©Ø’ùƒfÎùw'Ÿ±RðDñ 8”¯ó>˜ž_‰†ô5ø‰f®™O²È~±¦ï‰jäo ø¹OXŒo¬©¯ºßåOìŽ7úqÜÈK5cm/ÊÐzA·•_¸¬X›þh–Ñã“ð“ÂÆÄ¾…°ÿ¹lk.‡ç(‡ŠÜõ~Â-t<— h¼¯­Ï Sa_Wóÿb/Nä“ä3'kz¾¸še)Öà·>' ⣈OGq½c5=ïy´Èy<ŸzŽÅ² YÓ¿A±vžÊ×s˜Äç{±Ýïfα39Ôm^ä$ûð=^˅†m)—{ùb_^Ÿ£C4= äò‚?øi1ÇS¸Ý˜Šõì&CÄ^>òå`? ?b_WPâ%¸‹1Þ ùˆè—ŸOÉýnQöBãD¾†}˜¥b¹_á7„ž‰üZ¼ÿ½Æ±—õ£ÛëîÏk¤^Ur½+ùœ|›ž«ó~ ¾^"?)âŠ. ñ,î/áø>ö:…®œo¹~-ÓeLe.¯ñ…bžØÓÐínw¾÷Sº܆ÿ'}Ñãyb{ 󸄎± žjð&×(”bßU÷ç{ðuS÷²ÌÇLÅÞÐ8n·ë‘È™ ,·%ö;áÅ^Ô©|kHغðOºÔL»Ä>°È-Â\O샊§ÍbænÞ÷:‘0GÓ÷¬°®ú8î'øœ|râpPÄy㻳åwžÒö _’(?wRçŸ;W¾TÌÏØËôË“q¾åóÈ›ñ]çÞð¦ù>_/âëqj´íÅ\/n æëQ½XÜ|7ë‡Ð €Vý5üŽ&Ç|X(֋ƒr¹¨^}»„ÆçeÌG×/ýPÿ'QLè¿D)ó!ß!âþËÅå E ÆO”+´˜ÛÅ;)h¿œù€üJX¾1ÁõÜ¥‰¨Îþ‰·‡ë%z±­å;I¢™Î¿$¢wè '¢ÌWˆÇáórÔçr åÜÆSÌå0¿E?_3ÿò³º˜ŽMóxð®M)ß/Å9ʱ<Š ?OäÏò(b9òýb®_Áü¹¿0ÏS„ߥsý _q}ÐR–äXŽy‚>s?%;_q{ÐKÌ Þ™)aþe»<Ÿr~YÎ_ ׃¼Ë¸<ìíH=âþ ¹Þ9q=Øø—ŸQä~+XÏñÙ,Øk ì˃/Ô“óÃï¤À¾ ?ò»?˜?Ì[Œå ù”Bÿ gÐ/–#Þ­*äsØ}”ëAþÌ+ä=e½Â.X>!å1Ìì®”ë5Â<‚ò8‹¹_ø‘"–O!ähô_õ÷‹Ï†–q9¼ë9³I»`ZÈýq¿{œÛ…BŸ ”qÂ.YNUòý8ÚçùŽñ<–ò9Þ¡Å|ÆYNðóEJ¿° 鿹P”Gû<¸ÿ ø+n§ŒåP¿ÇíBn2Þð}øûrè1ìóŽú\O~' üƉña=Åu•Bè“"èüºôÈ,?Ì3(ø«`=«À8‡Y¤¿E;êø¸>âì=Ê÷70>øÅè7Úay"nÂNʸ>ú/TäXÀú.õ”Û/`¿ÿb;†Ÿ‰pyÈíÀ¡ÿa–â‘úùò³Þ7æõ9 »ÿø@<ƒžÀ¿H¿Š8€<ˆù…_ŒC_ —Êü ®ÊøÊòƒ=â]zðåû2Eždð)õDÎ'Ï_)ü ìï”"Þð¸à§1ŸÐä3ð3øBÞ‚|N‰Ã˜_/•<ö=‘¿)ƒ¼–i9ìzƒ+0J~ùÅ:ƒ÷ª~‡ŸGÞÅóÓHÑ™ÿ _E¾ ÿ€xÍü€é‡àO§±ÞPò|ÐFâ7Ï#ø@>ƒv7‘‡aßëe¬A1?hGÝqCñ—èqñ@ÍWàïÁÖ£2~£<ôQY?Êõü«2ßðï°ØìùìD/æå+ŒöÌcžÑ.üâ÷ƒý ìO bú}Fþ}æþ¥=Ë|yâü¢Ò?ìEæIðð Ð#Ì'òSä³ÈO1äß\ûM AÅ~äzWYËü yâ;òEÕïЇœå~‹²¿ƒsØøñrD¿ðŠ_Fœ“סO·‡¼=?Ïòå¼¾j³²ÞAÞ†<ùU!Ÿu“þT‰WÒ_b= ÿŠ}.@~…ýGìÁoa½ù"¾"OC¿ØCž…õ/·ƒü¹B·ÐkØ-·ƒ~‘ßÀŸÉ¸ycßóÈòAyèyûOÜ>òNø ¹~ƒßAþ¯øs¹¾QêËïØu˜P5/Gr_Œå¢æYˆKÈÛe^©ìÇAïÀ‡ÌÇà—0Nè#â6æñãCž¹*y,â4ì6®ÄAøo¹Àz’ljÏRJ;Bž‚8ƒõ”²ÿ)ã öSÀüòSø9•_Œþû­èù‡ÿ”y B很Uÿ„y‘ûr°wØ%ÛKöx‡¼që*Ø üü:òe¾ä>ö°¾F<…ÿÄ8¸2ÅŸÊu úÇúëV–/ô4m¿rB<€Ý)ñ\ÆEð ¿úÈà×±ÿ ¿<@Ùÿ‚¾aüØ×ŸCü Áß!Ž!NAoÁ?ä~°¾áö0ïÐÌ ò,ð}!ìSXΈ¼ßRµÉ¸.¿3 DÉS rGÑ#Ø=ìVÍëÕ}.¹ÿ„üz‹u:ìëž'ç1ŸˆËx<qqWyî†ëÈß1^ù› Ø/‡ßVöearŸë#ä…,Äãüìå ýƒQ÷obÜìë3P¹ï¢ì K?‹ç]\û¢að‡õ&ÖŸØC;Êsè⋺îT÷Õ"Š¿(Vâˆô/ÈÔ<‘ïKù ÿÄs ìK°<‘ï€"þÉ}Aì @¯¡/J¼ƒËõ4ôvÍz*÷]Á߇}©ú‰þ±N†?‚}a½ ?„ëEŠ>Êçȱ郎ðÙw|–\®«1.ž¹_¤®‡”}UÌ+Æ#×ÃÈ£à7G ^ò8á?äóøä<¹o‡ýeßqWÎ#ôù&òGø–W…ò\V>OƒßDÞŽsäʾ˜ÌwÔýÅ.äu¦r_õ gðûÐWÄ[Ä=ä1ÿ½÷Ž®ªèÞÇonK!ôŽôÞ¤$¡ã™P¥Iï5¡÷š€bQTl4Q±@¥ƒ€€4éM@Š€RE~{ŸÙÏÄL¸ß÷]ßߟ¬uÖÜsî93{vyv™“¹xx »´òàŽ±_à%üâo¼OaÅ%ÏÔ%ÁgøeéÇÔó gÌ~ù,âäÖú©ÿÃ~„_?à_Ï‚¨ë#žCÜnå uWðúz§ÉŸà§QWþ"D|?ƒ¸y"â+þ6ucäÐ[+Ï4u%øÄ-Vžgâ6à:Æ‘zy`^ðƒùRwÅzŠUW\ÓXô`~&¾F ò·æ ù#BýØü†ò|øSømÄU°'Äòý¨gÀYqôvbZ¬ÿo­üÜðv ýµôÖøEøä¨ûÂÎÛQ)ß?€\agÆï€Ë¨c½~Ñ¢Ëø ÑÛ4Ö÷fxhéä…uSa~Ö{æ½¼·ƒzÞŸžbþR¿¸¤ç¥nYñ2ü…ñã˜ìyœ'#þ@ø}_mù .~@¾àƒU—48 þJkÖõ€ÃV>høŽ|ÊŠGMÜbÕÁM>‰¸ÀÊo2Ùë(Â7ÔáÁ7ó[%˜/úE~cë›|€¿„ü÷Ÿï¡ßìz…8ñìTè‚Ýÿš: U/°×Û-äƒñSå“ð×ÀO G žB/D®az~ê–•/™unøO¬ëXõä1Ð_ðÍäÒ⽌ÀCÄíðKÈ[ÀÄ þQè0­•AÌ:™¿˜x ~z€¼ã`|{]ÕzoÑäKò<Þ ðZý"?0ñ ê¦ÐÈ r=àâg«nˆz’©ƒ ŸQo´×c`&Ã÷Öº«y¿ö$t N3u0äwðÐ{è-â;+~3ï[YñìþĬãH¨·¼†^Yù°yuÄ툟 Ž”ëf½\ú5ï¿PçE} 8g¿W‰¸Ê~?ü_Ï<·âÅPëæ ×¼ïb× ­|ù®]'2ïmÁA?,;Âû9æ7ÏÀøOðSóM]×çê¢È õ^âø7Øü'ì ~õä£XÏ@¾‡ºêîVhê¼Þ›÷ ð^˜´&Þ¶pÀäWˆÏÑ/ðݪ+Úõuã7-iê_;üâ=«ž`ýVGr]Áâ—©‹#®Ã¼/ öŠ<@î3ïÛbÝ q…çÚþz`pÒZw7x<öõð ø»¶ê†.Ĉÿ!?¡/ÜD\ƒë騂n¬Ëó^¬“ç…Ø p?½Å?³½´òã¯Q?ż‘§ÂÊ÷æ½Èqâ9áƒYWƒ’ù Å8ˆ#P¿2~ÏZï1ë;ÀK¿àÿŒ}ƒ¿VÈÔ#´â.S·‘ç|!/Øü)ü+êrÈñäˆ88Œù…ˆ»€§&/’û‘ÿÿ`ÕiŒ\7Èu¬sàýlƒÃèv§ù£n!€c}Fäcôv}ÎZù¢¡8? ½oÐ+ÍûwVÂ䨃£Žˆq€Çìqp~K憺‰ôo¿z/ÂoÁ®á§QwÅú°Y×A_žÇ{µ 8mòZĹV½Ø¼W*üBÜ‚øü5y+ä¾#îNнà½rè9pËÔ›A/üú¿-Ü7õð yü»¥§f/`ðö¾Xñ'p8|†D]Ò¼ÿc­Ã?ŽyC?PGƒ ßÄú…æ9Ø'êf¾˜8q&ÆþÀî¯à|Fœ`Þ´ò™4–¾EXtÀžwƯÿ¡ß°sÄŸð7Vœf¿·oóϼ‡dÕ™Ì{ÿà3pTÆó Ÿ‡`}ÌÔ?1¬C?Ì{ð2.ìÂ~/q¸y/ï ÀŸZ8?bã¸íÿ‘>ç g®#/@ {}0ÿ…õðtA¿·"OôoÖQP¾YïU¹Â".n[þöhänùá(KÍz!êXÏŠM\,ç OLü€8qâ_ØìñêÐð z:a?Ö:ªׂÎü,âaÔÅe|Ø‘Y_±Ö·Ìo¤ïºuͲ?Ôí nÿ¬xɼO$÷!Nµë¸g`7ˆ;a7rŽúü•áê™V}Ö¬çw`'–¾"î7q£ôƒ÷8ŒžÉy˜ÔIo`VÞ<0ëqÀÈÑŠã`ŸE`o¦=N!Þ±â\SÅsî<†¾[q‘ɯ¡gX¿só¾²w[uXó;îCžmÕ;ÌÿÃ!^Eþy©Uç7õf-?Ù;;ø%<žÜG=žˆjôù'ÐÊãñ·öx|Çè {}i<ï ù¿iÞëˆ÷ÎZáñd?M÷½NÇ3t¼EG):øÞAtÌ¢ãSÙŸ¡$¼ßÑhê‹ÿŸºèszjåÿ¼}•õ>¾©ÝGÇt8z€LÜoÞçh+L-Ñœ@ôS_þψnz.mu'r“Ç“¹´Ç“¾?@שß4º§)µOS[ŒŽ¶ôy}©ÿstÔÓ{(xyÓë¼Ç"Mè8L÷ÎÐscþþ¤£&uéÈN×§c"õÃs'³õž×{Uøšëùñþ îžL²ŸE¡ê‡x$$V ƒ?[z¦}¾J­Gï5â›,º¶•²ÉÔwƒŽª²?Ùktðþé%^{yoÒWoaù®8ÝGòðýEcåðx¢§“쩟44ÏÈ9DZMOº!DÏ‹æì?E´¬§–tÅ_Qéo¬õ‚û÷ÿ¬Çö‘îå@ýPá$§¢ôl°D‡ÿ:vÐñ =sB¾~Ô®’½½Žêg#ˆÁ÷éx™Ž‘“‡õ ­þ³txé 9úž¥–Ø×•î!{ÏH÷îGÐ}QqtN:à¹l}$; ']Ì£çø;š«ïQHm8ÄGïMÞŠÒm_6±Iâ]Y¢1êâñ0Ší­ =LzãîåÆ{G.åä}̉>/ñØËûd^x¯y<d&úÖk½ 'Ù1ȹvAôZÒõítl`ùŠîo‚dgAœé‰?J·Á^ús)²Ë(Òåp‡ÀY-›à\úLö$>gÉ9ñ0H6$šƒ¿Ó}Ò±BÛQé·Ÿtª`:'ZüWyÏz†è ­á$£ Ù•ÿ!:Þ¦k,Ò£(‹4ÔwZ²ËH¤¬¤ÂEÿ(¢¿Æ>æ§y¸Nä}UóÕµ¯zo7_Az†à#}õÍÕ{¸öVHï}²e[ô¿£yN÷û¸%žD°Ž‘ ‰¿áDS8ïßYßãy0?ÑD<'¹¤!݉ŒÓXä'YøH‚Ÿk[ '{ŸüItÐ…anq®p²éð÷è>²Û`º¾Œžc½ç{O³LžWéÖ_YãC€1䲦×÷¾¶SïãG¸ž°ÆW]°ƒ÷]¢>Y4~»óœ¯ýFfÒ©4ÝI¿{Ó’½DR?‘Äãéa ¯ÖñœôL°;+õ$YDö‰÷~º\Œp#¸‡î' ¦Në{+õxrг9£rÌ3ÊþQ¥+‹œ‰çáíéþïDç¨ß÷Içþ/ô½Ù½šVÿú.Blˆäég<˜Bß.ùÈN}Oзhýw÷#ÚIéxžµÚ#iŽiÂIá²×©»//ÙŽ/?泌ýš—dê¥q¼¼¿aŒ·3?Ñ1Nì³|&ç£þ}å51v²¯âÏÞè |ô’œ½ŒõäÓ—¨í%x>R°‹ñ“ìÙGà“=a²’Œ²Ð‘åtæx\ð‚t<@º`Y¦ù¥¶ƒì…rBï›NØØ®„ö¥^ÞS“÷¹'~…ñžrdkîžïâ‚Dgæø]·þ7õÞK>²!ßs'ˆ¯ã}X6Ò1^÷áÎìÝ×]ûÙ@­ïþU_l¦ï·H¿" _Ó¾A:³IûGw­Õô=ûð “ý,×.ô™øHs!܉ˆÐcGMiÉF‘FÓ\‰oAÒ ãn¬Ž-üÙ´õ“-EÞE’m¥!™F²Ò¼Ü=Ryo%ŽUx»Özÿ÷÷ˆ_î~q¼§ï7ËûÚ|èÑ{V]¾µ«‚²ßLÝ`<+B}³!>EÐsádá-4NøÉö‚!ÁtNq…ï ­¯^ž+ÑÂ%ïB:úéÏnÌRHãÛ“ŸýÏ:­ÿád£þ úð‘.ø¶pÿ2Ï•°ÌÏ:ÊûÂþ¦õ5¬ŸìçÃû°}~ŽòÐwD“ûû´á½ÌܽxÏM’kï›tXÇ\®þÎC3ÐA€N¸šŽô+-Çpl÷¤ÃDSÙRàcDƒ0?Šã Ò÷`ÑK²ÍÀÚø9."_ê}[ð–ÆHC󈤹¦'žf¤gÓó~W3©oºN÷FN×ú y ?ÂÉI7¢ˆ¶Ž çÃI¾ág„—D—ŸqŸxä?&zæÑ¶Í±ãb€ü𷬯[ÆÿR:h~>ºîÓóð.ùˆ?^’ ï-ǶÌvá%œŽ&ŒKCv“f“̃äIϤ!ÞDÎDvÖø Ýóq ”þHW½²ÿ¦q+µO$~ñv¶|p¬Ï4XÏÉv½ŒíctÜÀ2òž–8LöF r¾@ö$½ ¯ýÏS\å#|•sˆW^š£wªGïEŸÝý¬yŸ@Þ£ô„÷t÷ºâ}Ëx¯½ãz¶!Òa?ó±½ð’xåî¹úì]E´ù Ë~]¼×ÿŽK{o‡‘õŽÕ²ð~¥uÅדÚ:~g=õõÐ1;ûH¾(ÎiÈžÂIƒ_¦ ½¼á´7‡–%c¯—÷å}Ðx|þ]‹¥â{s|tÝG<ñËï ø3è\ÁOrpó…jZW\ysìÊ1c¤È¸œ¾Ÿ}Ÿ};ër´Äû$Sß»šnåK^²ï Å$¾Q:~wýÜqÅ^šŸ›/Þ¢–1p9’°. én4Û·üf’ô6@üóSÜä'Œò1¾_Ôq çŠAÆö¿µoaÝ 4×ñŸëOúÊüÚjZ šh,tiüKËßµ¯=³¥9ûŸÿ°\óÆÅŒ?tìêß®û¼£ýç¯/ã-Q$£Ò禉õ“â­à ú<œì2ÀqÔ ÏEŸÃY¶ä[ÃÕþ×=xK⟟} ñÅ͵IG|µèàøy¦¶©òGÑ$—hê'É&rŸèEO›ø8ŽøVëX`¡Î‘Ùº9ßë⠞ЇySA|,õí•=Õõ%— 4HüÎù9Ç<£çxF0‘x•Eã‚»_>ÍÓÝï÷°e½§XÛG¸àe_@1LýxG­;‰{ÚH±äšck€æž¦¢¦)pLp™1‘÷_%šÜ½²ù—89f¹‘ï çx•ñpÉGòð}¢ýcehö“üÓM—8ŠôÈ˾•u¦¦Ö{ö·\»ä|Üwžø3AǤáÅ5_|[4NúXVguìIy˜[Ã[*úW_ë çz^ÙGÔϵÚCó|Ÿùvѵò:âzçCA¢‹kAŠÍ¬7¯i] \ý¦s%Ž•]ÿ7O×ÁüdŸ~Êý‘:çàØ×û'+Ʊ=ד ïüGuLNs‹š­ñÖ;WøžEÇlì7\ìž%qåã’‡ñÖƒt.ƵWGÙ‡Ó¼üש¯5Dì×Íq¾?§Žw9fYg!™ñÞ¡Þ(é§´Æ7÷7®Šk^ºû—rç;y¯VΈրì³êç˜ï'ï¹µkƈÆ;qNßGÆ >Âh,t눌 YµÌÝßiä½ii¾œç…í¬~DâJ’¡ èO‰=XÖ»Ñ<¢®ÉÞ©nŠcNÒU?媌ÌâÇ6m—œ;³ïàú¬«;½Ä J G÷óžò^â³/“͹µ¡R‚[e5y ‹£HG")Î Þe/ìh:OG:EöÕZçœÿ’ýDEÒ|#H7Ã?l-¡ã2Î{ÝšÉ&œõŽhæú¿Ÿ1¯„öù>н8oñ?ÆõµŒ·t$iþøÚ‰¿ 9òï^ºúÏ¿ïÁxB¸àçß‚ß4µ >>–˜! ºÀXµ†§5¾°/‹$ìŠ";HÃy×):x½ì-@¸Å5®A’ÌÓ’]ç"ý÷±íÒœ|qZ&þ:tÏâúÇÿü."ùpoC­aŒÑš·æ0Xtö[#ö¯×u‹HÊ›8׌â:ñÍÓÈÅÂSâ ÿ|ׯ¹¦ÉqMÄB‰w"$~øJç¸ašn®™¥#›þskEqü@ñŸrÿ{2¶¼#ñYóº‹xEßG^®wpNÒPçŽ.¶0®µbyð>Í\+¬ãa®‘û9–yEÛ5û÷÷ªð;>ŒS”wòš‡—uâ¹ÀrñZ“+¯ª:þqcŽó ¹NìÆôµv׺H¿‚ô]€ë‡\ÏHÐ:ãï«óWÇI·½”Dyeþó5ò—Oq^ÌûÔùx8ù­4«ô³nžÝWǧì],ç=¢7H-…÷…ç:c­ÞÑwdÐ2 Žêš'n~ľ.‡Æ¦Ë­‘»kã]ëVp²–áIÎä£È2v%yÏÔñu:Òß´ä«Ò­îÞàë´Ÿ g½"YFMÒþ4‚ì1°Gûàâcðyñ?h²ÜÃ9w¤ü”÷s"¾G>¯×ì"ßÐu[æWàˆÆ6Î?ë¸ÇOñG€ó¢—ë€ìÓ\Ì&ýö¡ïc^¸5zŽéy]ì0’ý2å­¨ïGtM€k¬QkS¼ 8Ò×Jl~›æUp¥Žƒý,ïb:^JK¶‘hÎH¸—ð5}]Ϲ5gûÈ.£ ßÓσ$»´dáFÊï:ú(Î PŒîo¦õÊGØì¡câ` ]/ãx’cæ ç ŒW,oÖE®CP¬ã}Ù£s\޵˜¿ E9öX,zCXš…b¾hŠ;¢Iÿ3‘-¥á|–cæÓÚÏZhýá|ÆÇxÎñ'¯ÅDëyø™ç¼NÈël×´.±ý?¥ƒøžAÇí³sœÉöI6™Iè§gƒ¿êº ë¿ìïr">‡¬uwLÐ牃uÛUÿó”iFë5l´]+êëVêû[{tÛVîo6L¯7úL·­sêç7Òãõȯïïþ>ï~F·}^Ñ÷wo—r¼Žò\»kú¼“ôßã)ie>²C}|9oZWÓÓ@úkºP÷ÓXè5-î—ù<2>å÷M伩œ7”¶º¼cÓiîüKÜ.téâû”“ùÊ<;W> ¿úN¾œÐ烅îAÝt?I_ë¶ß—"—>úùkd|áG+áwB6}½£Ì7aðQÎÛŠÜÛÊ|Û£•yv~´ºðäØEÆ…\ OäßL®·ñ¤lÁ×vò}s9o&t´sAó} ë>´]„¯˜?æzÁ´­És2–Ee>2Úæ"§æòøÑRÆk/z}Ãxò+ñ„ÞæBgG9o/÷w–sÐÕG®'ÎÖí‰)ûXÚGäþz2Oè/æßPô¨¦Ð-¿è_OÆk„ùÿBŸ­ÿ…Žnb—v û‚¼p½€º ]å¾®ñ)ùÐn¥Eø#üï”Y‡~ú'èïaOýGlœê&v7v"v œé-ôõÑ›–Ä÷ίï,Ï ºú `'I"—:¾ÙrjÕBßBè­ ¾ƒ_˜·´ÀÃÞÓuÛWô ô úж“yöš+¸)t?›Ë¸°K|û^ƒ/žÕç['[2Ÿ>ÂÏ¡å\î(òê×"%Fêë}~ ¿Ð”ùqz ¿û ý-ç ™SÒÝZæ¹À®ýË÷¸ÞRîkiñ-pI~=#^~™Ü̧‹|ñ ί Þwé™ò:p®•´¸¯·ð zœ(r„ÝnœCÀEƒ;BWä$m[È/Zìt×Mé7š‰¿ª%t×}¨}I_ŽÀßÈ›FÁ·ÒJÅ2¾§Øøgû àøÿ =ì"ri!-ü ZÌ«èø‚¾`œžâÇ—Ñß·Ï/|•ûÀøeØäú Ð_àµüú”Áµ·Üoðï/Mè5ø&qU£ž)ùûĸðÿ «§ðoˆÈ×g çz }Ð _Ëy?¹¿©È¹ƒøè üâ¨fÑ·o›À/Yzsù•£O˜'ôzÚïDJ{28Ð_ôz|ÊùöŸ²…~ƒnèq»XÁç5)çg®‹üä×Bã…σ³èûzí=܆=A¾=ëëù –ø«—|¸vßMðñôñY/Áížûd\é§§àæëÐÄ¡]ïõOÙ=‘8 ¿;?: º‰|º z‚Ρ[ÆÅs†ÑÈç×ÌCÆIëð/Я^2no±Ä×ðëð‡ðŸhaW&þ•~zbâhá7ø ¿8ñº¹ÏjÛÈ<¡/À¡¢ýDжù!®4ùŽØð¸aò ™/ìuê}-æ ¾Ã/"¾Eü†ù#ž¿_6“ûšH‹xþ³¡œÃÀ~º¿Àoà{÷¢)[Ø;ZÐÓLø½]¶A'ðÅŽwÑb­¤5Ï ?ØöþB_M|*ýJÅÙøgœ·“qZË9âFðùZO|„NøY´ˆŸF Ž š¦[Ø=ìó€=š|^Æ…A®ˆžé­ŸSàktJ=‡¼B_ žN?`ž†/–</¡E¼$ô ܪ¯÷-!ô‹ß„_ì#ý ކC ½‚Ü‘O!o‚¾ï ·ƒÈ½´måû®ùu‹ün`‚n{É9â^àÀ€ùzœ¢ EßÏ¿ q¾‡¿D]â«E¼ž¸2e }5q»àåà—'…NèòùEÏø„Cò½ô×UΟŽ> ç¼uÔÛºÿ¤!ú~ó¨/ã€ÿÐ;“ß p?âPùÕ»Tñf]9G}¦Žu=„Ÿ‡D }6óFþ~uùÚþ-âOÔoÐâ{䥠xnê0"?øÄù²‚câzè!â?øÔ“ÏA ÏhQ×Áøh»ý ûÁ÷ˆÓÐ"Î=§ §µEŸ1.ì ×+ËøÕ¥…="o>"©!ýW“~âésùåÈøxéGÞÞ4ýÖ°®¿P?µë< ðñp³ƒð~ÌÔD?€ˆ“`?¨!ŸáoLþ*8müú³)ù ºÐ"Þ„{LLi×ÐãaˆCD‡ˆ^W‘G Í«ïC<4@o?TðuJàXR[ÑG‰{Ÿ=:OÓ7Tø=ì%Ý>ºH·£„¯ãäúiË<›¼Yø ÿÿ;~#/„|ëÈOêË}ÀÔë7 id݇zôõU´ðv?Ü;(z³ ¥ž!^BýЮG4Oyýi¡D}o'¥j…oˆSPƒ¿δ”sÄu+âkØZã/¤ô¦~|(¥|§!N¼'a||x vÿÿ ÿ/÷=$­#m-i–ûjI ¼_P€¼Ð".F\…xy p»·ðsÈlÝÂ>ÑÂÿ#âˆ]  ®0Tè"vÚOΑØuiƒ£à“œ#n†œL<L‰;ð?ÈsÏôZ™r~ðÇðsè~r<€çˆ[€gÈÇqŸÝâ~Øi3«Åz ôt@ÿ0®Y÷»„ž!¾€ïÀ3ȵÿX‰#EžhM|)ñÓ(íØ’ã»_ácáwWé§ïÊ”-ôr¼p-øh¯?˜8ò”xq!â¬?tµZè5üα^ÿ<ý!FœÜÁ:G¼oçO¦®T7¥^}’çïÁ~qúÿ»BÞŽü-ü>ü+êJÆN¥Ô3º ½ÐÄ¥È{Ìú†Øòà<â‚"o´ˆw0oØ ZØâ'Ä_¨£Á>X×1oÐ…uXÐ…ëˆ ºÉ<ëðÛ„N;B<„ç̺ŒŒqîGœ ¿ÐNø’˜_ßßEøÑQžG½»³ŒÛQ·J¿Ã´£Ž%üA]ùæõ_ÈÍðWÎá? GÈ#WÔ–þüƼ w}åëMv=õ.øQ䯦® ûÚ“×aÿÀ·Ö2Oà€Ñ[™â³þ$üìuH·¨S£Å¸6È ÷¨O¶’þàÇ‘§ÀÞa_Ýå~ ¸þ#ž¯$öþÃ/ãq;ü7â»N…q€Kˆ—ì<ñ]·„”ó¿€wèëF¦n~=)û‡?B= u Äã¨S–qSh¯×MIúÀ{è;æû‚Ý!î}ˆg1ÿÚÒÖ”qä ùƒ~“ïXuhÉ÷f=CúÁúH·ü)[ô3Hôú‡uCè5üïp©'˜”’~è-âÌÓ¼?#þÔ^Ÿ‚Þà=à.â#SH ¼Dû…BŸªJ‹ëˆ³‘¿Ô”q .ú¡G°à%ô8 þÿÁßÂ!Ží$-žÇz,Þ÷¾Ao1>ðx?H¾G±Ÿð­·ô×g¶œËuÄ À¿Ë¼aov½ñêàc5iá‡À?³®$tš÷Œò _….à@w\:;K œ„¼ÁÞ0>ÖSoc=¤›ÈçðÛc_Õ÷c=fðPì¸8HÆrH·„Nĉf]Rìrµ[ø-Ø3âø “WËýÀIÄQȯÑ_MÝ<(óú{ ýððGàêUÀÄh¡v„z'òã'à§„^ÔPGÇ|Lý]®§í÷Þ_ÃÀÏ›º‡èø »ÃxX'E¼†8ù{{¹ù=ò6Ø;üŒY‡”çMÞºärŸ‡ÿÀû)&>?Œ÷« ?„œìz3ìÓä±2ðô"@^ß_ìu>ø¯~rÿ á[O¡ëó}¥WUñÃÐè1üêÀeèüø ÿœï/ü.Ïc=z°.È™ü~ ú~™÷[„ÐËvBg3Á/àpuà=ü4p-ð õÛŠB'ü ðÏÔ;ä9à%ìõUóžè“ù¿Ì{râøè=âà4ÆG\eÖaäëŽÐSÔ//GŸ§ûÇ{/ˆ¿àgL^.rƒÇ{¡fýRähê”+SÎ׬³·Z‘#æ¹áy¬sÂ~Q/Dç°ô‡|þÅ^çƒßE²—Ô™áP?EÜ}1ïµ =f]NZàÆ…¿³[Øü=ìqÚžrüè`OJ¾àý+£o‚C¶ß1ë[ò¼gBO ß¸Ï®;ÃþQwA z Åú¬yßJèé&Ï!.‡ükË ‡ÜM+×á/‡À ÞŠºÞWÄûžˆG'\}ãS¶ð;æ½=yï…An‡O›÷ˆñ~½\G ýAœ×]úM̯[¼¯:Xèë/ãa^‰rޏý`>ÈËÌ{r¿‘—œ#O3qœŒo¯×ÿ7BÞ¨[ ž3uBégèø”-ê fLZàâ{ä þñ9ìv}.™uHy¸ºM^6[·¨ï˜÷;å>ä‡IR×D–sÔQ¿™üWÎa·ðËÐÈrènµ ò}Oéq3øŠ¸ò@¼û~B.°s».`êÒBO{¡?¹uSôÿ˱ßã„]@>¦n çÀèýÿWÈ70ŽÑ#y~¸Œ ù^Äçð#ÐsÈ ö}Ç|¡ÇæÿîÆ[tÉuøwÌò€^Aï‘¿túg`ݬ›\?Ì{c«Åu¹x:`Ÿ òF8ýí.÷#O‚ÿÇüåþî )[Èÿ„÷'1ü%ì -ú7õLi¼ä{ÄáÀ3è¥YŸòyÿɼ€—X‡>áÇjËuÄI¨/Bž˜?üŒYG“sÔ›ðþøÜO®£®Œÿohh=‡<v…yõIy€î•)ç{…~Ã>À'ðѶoÄuˆ+ÐøoþßMÎͺ®ôgâŒCº…›÷Šäû³eüÉÞÙžåt,¡c¿Gï‹ôÒñìEY“†Èç×=î~I~›f€<Çã :öÉžEëèàÿÚ™@K3dFþ®‡ž]X ½‰{È>–žM½G·ó–{FêßÃè×UîýÓ£÷ÞãÑû ó¾¶¼ŸÔ»‡¸ç[èà@k:éCGÏücÎÅ<î^caÑš×¼ŽËû/èXJÿ¹D§ž5ô}»'‹»çN:8ãÿ‰Žm2w¦í¿xÜ==‡èØ­yÃ{Yº÷îòèý£V­_È}kéx×£÷ÀZ,súBx6Gúà}Ю íd…aõ„×{õÞ2®ðÁ·°ŽŒ¤C¬Ã•ÝDé§È¥.ËÚ£÷%/ÖJÏÉ[Ñ…JtßEÑz&¬¶È-BæÉú9MæÆ/\~@Ç@‘ï1ó®ì£Å2ïÍ<zE^™O¡ë¼§cÍc—¦‚òL‘1ß;—ޱr-Ix³Jï™V]öÓÉ¥u™eáîÊó}‚ŽQzžžƒ¢‡=®^ºü[$ÇJá=ÿ£É,™3·ó=Zyߥ¿=®®…ùä^¶³×èøTîã=E2Š.°|×é1òkrûÞ,Ÿ $_Þ#;Œ÷íøŒÞ{潫sLçiú¦ïóüLGqá#Û5Ù¹‡«»Cå¾™ cïÉQCæÂ:·@?çå}õ~Ñûyyo=¦ñ´ì•RZïçáÎg¨ž“ç}Æ ¶ÆDÍSW~z4î°­± ‘k,#Þ³­ìRžÎyoÉzln]¬úJžç=t¤ö,µ¼‰0ÛÐtlÙ¿*úEºây™Ž÷vËÜÈx$sÙŽz´Ž’¾{¾O3Œô/Œì*lªè ï_ÓH°!ŸÌ5'Œ]-‹¿ÓzîÚÓ»Jh’½ =Ç#ÙöØžØfHß]l9äÑXÂûfòh|ÏÅr‘gY~¿H¿Œulƒ¬³ì#>”ƒýÞ6}¯Ë×w„·3è ~xfz´Þ2?GBÆ"7s±ŒÃ>‡ín’ðƒ÷e"ßéîcM¶FºFxéú3~ã…m ¾’tÊCºåጉ£aöñ\E—Lϵ)²7w/ÃXÍWŸØÏ°>º6êùºÇßsÂvÄ>ö<oÊ|ØŸ÷h¿ÚVdÊý0^p\À¾l˜÷´eÆû›¹zÆÏ¾(÷2¦’Nzä-xw,Þß™q~œn]^Na;â>¶ÆNŽX‡^ÚGèqÃÂ=zO­Ì¢7¼WvPχ¿sc’\¢[á26éNX6ú°ŒŽõru‹èp±}h7-7×0]ýÐÂ>жíΉñãŽØnù…ZÂgè1â©_7â¹>¡érã›eÂçDûfÊŒéœ5ý&üeÿÇo…³’îº6Ç|åJFMÑÆ©†BëG¼œóõDi[i¹¹ŸY'æÉ¼kÿêÆ!ÿ1fï¬|CäÉÕŠ¡ú9þ Ç“_‰/ã8àuÑ%æÝ32¢ÏõóSpìQ\°³ªø†=¢ÿµ´ ™ß®^d’ƒï£¸*¬±ÐÂØÇ˜u@èà8à’¦ÕÅþo„/³é;ȟý“Gð8‹èÇ®Œû¸û+f{¸"÷3þH,ãîUÊ{QÏ“{‡zÊõB‚QÜwvé'ƒèÍB޶‰NÎÙ-•¹°^¯ôèØâ;Ñ9öw[I–êÆð´ü,cÜd¡åiÑs~ŠãÞKŸ÷ØNôr·¶UŽk—]ìš#ÏLõ$cÚXݺ8òžÌí©·ôý–\‹™²­<+´Kùà·'¤Bàb5ÅEai+XW6x4>0ï—ˆ|¿Ö}òoÙðï)¹>¾©¶÷ùœÂËòZ¿]9³.1¦³Íü(sc½/|'|ªéãØÒÕ¶Ú&Ý>û‹²ÜI?k›2zÇ9ë#ûöÿ«Å–oØ/~)÷°¼Ø6÷9Î`LZ@ÇAé›ñc0Æ©Â#Ö[öõ.Ö°m-×:áÚÇ錱c„oŒÑ¬Ë‚G.îòoNÄ%Û‹§Œ!WeìÓ 7yŒ {Yú`|ì/zÁ:Ï8Ê9ã2¡ë=ÑÆÁOEîl«²?çÕY™pÓ±ú²ÆH76øV°i‰ØÈ"?¾—¿ã½K9ã<‚ótŽɼx/S¶GŽ ¿YÇËHŸ¼çè5±5–/ÇÍñ2GÞ[³œÈœ1—‚÷Ì¥1ǵ5Ž19Çâ}?«?Ø&F _ØQ¿ºÏçe=õi ïÖŽX?úʸQÂwöo¨Ç°ïÙ!raì•<Ä•cýY-WŸÓ O8—f|Y)¼`¼uc^á+é¦Sp $·è=ÉÙÃ4½ Çqó—«b#Qšï.¦ö‘ùr]Œs@Ž8¾ Z\,朆cuÆCÆ5Æï9B?Û$óö¬èÓ,±Õ6¢ÅÆÎ‰<9fâÚÆ±¶£ æ­;·D÷Ù_²ý°äØý3ѽ/E¿û_“és Ë1e{݇k?u„o,¿’"¯“Ú]ßźô‰Ös9va¬c[âùr¾Á12ãOÙOõ½g«».ïû­Þÿ7ŒýÖzÁƒ‡D×8OÙ%rg~fóÙ×qM`ŒÈ{Æw~ï 6ðíRïpc+–÷D‘%׫Ÿ'k~¸¾êGÝ«»¼_3êIå„Ï\§j+úʺÑJô3Fx”^ìís`âgaˆ›ƒpM‚ç’_ì‘ü¦ë‹8—ᜂãg®ÛÔ—£²Ð½^èùFøº^äG|sóN¶ßqb+¬»õ<ú7Q8œ)tðµ†"ÃFš>7xþ»ìÓrtãö7RñvýóùMÍ7÷}IôŽ}ã#ÿV„WîŸïIÎU÷‘°ï~W?ïÆ l[ìûÉ6]?Äù¶ü¦žkp}‰ëÙpžÇùë0cc 碜¯ŸÑÏ»rŸ£ù‹¼Í­ƒ²oà˜PV\¹•>Ñ4¸vÃ8Æñ6ã(džßy’k_ì«9cüäüˆý3ǼµåþÕ2_öA+=ºÆÓ]Áô¹6ÀvËöÆöÁ±È¡qªð†±žsföéìÛ^c„Fö5¼7ó§Ò7×F8¿^"øÂ6ȸÌ<ýwõ埔õýñp¡…Çáx7\ô¯¦¶U£ó‰-óŠû¯ÉbÏl;o³ì¥äâSÁá:‚ ŒOü]5^¸vÊÇv£n-:¨íÓͽØ×#aÅ9M:­;®>1rŒÎùÇ߈<ÞÑ|vñ­„Ø;÷Éù×õ8O®.zÃ6?@æÊ>‹íåm¹·¬àûƇç¸^ÊuƇ¦ÂÏ.ÂOæKuM·ëC¿ÚضV‰l8ödÈöÉötZóÚõ?ì“9¿âØÿ¤ètzѽ[roIéó¢Ö;7Ö&\ð>¬wý€ëwG깺zÔ¼rçõ«ÐrTßçÆ¹5Mî­Wn½ˆéçZû±óZ_Üúüá¯ApŽSZô‘yÇ~’ë(¯‹ ƒˆ^?«õÌÔ9.,àIŽÓŠéy¹:ÿ‰–Ÿ‹©Ì?¶ý_ä`ÌÙàI®3$‰†º¿GrXtïU±ûGDFOÊ}ì‹Øï÷yîÙ°Í Ð­;7® ðZNé/§¦ùåú„ãrc¶oöóŽè®GxxÈãÖvÜXƒë’“E&9„ö|rïÕäñxÇ#k.¿ÎjY»Xù§Æ#—ò;D.^yŸþ±/<,xÁ:Äñ1Ç5ä×Ýx;‹èî£ÚfÜšãZž®Kð$çÕ12×"b“GDG¸û†–+볢ìیÃÅäùt“ƒ¸z“ExxUèc{Ú©ùåÖæc/h{sû:ªu'LVÊÝØ1ž÷˜Ï/¶\X0(ƒè8×·ö‰î¡¦qMôÕ/¶ÅùcÍkl.ž3®³Ÿâˆ‡Ó{g—w`‹J[DÞý-êä‰/&çæº¼3X ߇h‹‡hKÊ󅥵Ǒ륄žr^^î+"ïô½r½¨\}¥pŽïíy¢ô+m!|oµ Ïa<Ì ãF¸ßâ«W¾½x¾„EoiyÎæoÉ»ðý‡¼¤?sŸœÃ÷Ò‚ß%eÜ2Ò–’¶´¥h1ï‚ÒoA¹^|E ù[òF[r²æQLøfZÐÖ’wa97­E§¡#„>á|6ò‚<,:Ñ/ƶžC¿8‡ÿf|ù¾8Úúœjžrã’ë…¬ûÜ,þ~bžr?øPÔâì×Ìó²ìÌôgñú}>@ÏJ.ôk=ï[N†/žÛviëA*?ˆï-ý³í Õýö¸Ð´ÐK?l|0ý[ç/¥E|PÌš*½Ã¹ÕŸÁëúZÌ’«Ñ7‹v?f<ÌKžÇü¡Ç%,ü*n—²æSÌ:‡ýÛöhë¯ÍÏ¢ýè׎RÙ›Õ}µô¹°Ý†ò÷à/ÆÁ»›_†Ï–>™øGÎËå´ðöeÙìqŒ±cØ|ùÙúbøjñt”´ñÀ 3_Û>,ý4ãÚ~ÈÖs ? YüIwÚúbÓ{±ä€ù¡Ä©ò è¯5o£ Ï’o)Ð!÷ÇZôÛq æaÛ[)ë9ÄWe,ˆ ¥OÖ|@‡?·ZÛ~ì¸|µŸ»[fú%¹ý´žOÕ¯…6Þ±è¶õÈè“m–üПñ3Ö¸¡pÄè§{ÒÚñ„ÓE-þÛ~ÎäU–þ¥Ê#¥3/Ëmeây‹ï%-\38gßïRµ ë.ò1|´äÿfòXÛN-}(hcÍ×ÐeÏËÖSØô÷ÉyiÐaë‘åO ^[úPØ’=ïPv í|ËÖcè¿mÏöüߨxiÇw¶9XúgÇSà/â à³ñ'à ìãXx–ªŽaëµ%“§à>ø;Ì϶C‹¯†ß¸ß’C*½Ä÷¶¼,\LeÏ ÓÂÛ®Ré5OÈ3UÜdÑièµðÉŽ‡ð½‰Çl†siM~nሩSÉsvÞlû[ƒ7Ð#´Ösß-~>Zzcê?Ðk[~r½„5oÛOÁ~L½Äö ×-ü´ãÜbÖüm|3õ6Ì×¶C‹»^˜* q!‹.“ß[vcòN9G>…|(>Yç…¬ë¡ü£Ésl=·õ|•s ·0Oë{;·óW#'ÈÕúÞ®'¥ª÷ÙãËuSŸ„Ü->›çmû´ðª¨Í'7lû·ðÍ®±èU2zkõ—jXò0r¶ì>Uü†^â{‹Ï&°ô®ó„jSùGعm?!ìÆŽCì:Ÿ¶Z×SÅíÖõšÖs©äa~…À7{ýÇ艭߰s|ùZòNå'-Ü0ë;à³Å§PþÌè‰%'»?ÛÿÜ·ùB?JZãÙumc WZ|oü·ô?cüe—à;âÆl=´ó/Gí¸ý–o”’ov5”½¦Â ·ŠZmªú¥e×v=ޮ˛<Ò²·¢Ÿ ?,=°×›RÅ–ŸAmò ÌrÑŸm½ðß·]·³óPõY{Þ¦è™Õ¯ØqO*'ý·ú ¥Ÿ/æe㌽XÈ¢+Õ|ÁËÞM< {D+ßW8!zfëôzÕ3å}…¬ñž€ëíx×~ïӞǃ 7”¼ gè3ôýZ8bןKXóµóír81;†Ý?hÉ5Ô:Qª÷s­ù¢ßPï3Ûö`ÛQ*ü1¾/mÓ¢µùkû±TõVÛn¬y…ÒŸTq7Î1~½·ë¥©è ‡ÆÀn,ùÛu›7í<ÒÈÓšý~„ý>cÈ:¶%Pë{vÜcôújá¬m÷özŸ-‡TöiûËÏÚëî©þß-è³Çý!ìÁ~/3Õý^ØuÒ…~Ør–y¿É/-|0òÖýö{3w³ƒóÀOàœ\Ç{§öøhCú-KŽvþlçk©ò6ôcáS*{…ó–=Ùò´õÜèÆÃý6}C½÷fë£ûvþeç³¶ÿI5o[/,9ã9È1¤ÞcžVÿ6=!ß÷ÿ,œ²ß? )gà—¥7¡üvªúQ9Ùëf©ê¢–¼ÐÚëÝv-p5äûQ!üY?—Ö®“¤ú¿«?›þPïÚþô=hƒùY8m׃ìñB½Oiâ#Œcßý-¼NUg·pàAKŽ©òû9‹6N§Êû OÿíuõTô.{<Ø?ôFî—xÇ“¼w¶_ß=þû8B=ƒë^9îgüP4 ¯öë½Ãýÿéþ×}Ù<òÞçówâç{^÷züs.aÖŠÖÞÿÏkÿlÿ oG‹­wÒ1›–û‘ë"¿»éÈ?ç`Ëúnöt;^ÿ¿²•ÿ—Çíøéó¤Ô“»ñÀÖï;c럭cwâë½|JGîew²ÉPtÚ<øOô#ÔüCáûýŒñO¾ÿ½½“ln‡÷ʯÛ6^Ý‹ ïG¦6OBáó{¼;ééÝdy'½ü§¸»¿VÞMn÷ÛÇýòòv×ïWoÿ=ÿ7´ÿ§¶ôoi …ywÂZ›¯¡|ÁýÎïNzq¿²¿®ýÓG…ÂÛ.ì¸ëßðûn÷‡Â°;ù£{Å€P~áv¸`ß*æ»|BÅ¡b×{ñ6ÿ6õoíëN|ûoÚîäøoôí¿¹w³çûñ-ÿ–Ö‹wº7Ôw÷Þîþû±ï;õõ¿àÉ¿ÑÑÿ÷oçKl› EËýÆÿ8l<»×¾ï…_wŠKm¼ÓxwšÛýÜûo1ô^ó»¿{éó~u󿑇ݯCÉçN4ÜMÞÿ-lµÇ¿›?ø76|7ûÕÿ½\»ßùÿ[yÜ«üï'º}¾“mÞ‰ÆûÑ…ûµ;w£áv´Þ çîG§ïÇŸÞ«­‡ÒÅ{‘ýÊâN5ØþtëßÄGÿƒï$÷Ûéÿtúßàë½Î#”>Ú6eë×ýâþ½ÒŠŽ{µÉƒwÿ©>ܯ]ØØ§u†P}Ýï˜w³É{™Û½ÚÑlý^íù~åx¿>å^±ùßØÛž¿ÓÆÝèù7úy¯÷ßKwº÷^è½ÆÝ¿¼ÝõÛÉ-Tìþë~jÓñ¾õ¼'7ïëÍ¿/àíÓ]>{Oê3 Ά%%& &g¾¤¡Iø˜Ø ÷ø†õ…ÝGËÇðÄaÝú$õÀ£ÁÞ='& —Ã÷éÞc(¾ ôèÞc@¢œø»öéߟ»õÔßtØ¿ëð}ÊiDbÿ~e÷dhKÚ"÷OLêÑ¿ÎÃô9hNL<3¢3‚HÂý[·®öÒ× ‚AaòPT÷ĤÄ2=‡&ºÝü|ø½ÿ¸Ë?41‰òeñóúÓÿ ýÙm¼'D¢Í¢Í¢Í¢Í¢Í¢-¢-¢ µm[ÈmÕC´¥C´eB´åB´åC´1!ÚØm\ˆ¶Bˆ¶bˆ¶Rˆ¶rˆ¶Jˆ¶jˆ¶Zˆ¶zˆö¡­¢U!ÚøPíøÛ·5ã-ºâSÞ}jcÑzqÞTú^‡²où*ó|Cë{´À è‰m_¡ì|k+-äû ‰/ú{àNî€oÿ“?;/ EG¨ûîµÿ{½~¯ýü[zþ×wãã«ßÿõ_¨ºÅ½êÉÚïÝúûoéÕ½öw¿|uý~Ÿÿ·ÿ-; }_ŠR"×»ÜJ_ÿ>II=†Ê™w(jƒþÛ•ï^k3U:¾cšÜáþµû!bñ!*àCE|¨„•ñ¡ È,_Î|*o>ŘO±æSœùTÁ|ªh>U2Ÿ*›OfŒ3FŒ#ÆŒcƈ1cĘ1bÌ1fŒ3FŒ#ÖŒkƈ5cÄš1bͱfŒX3F¬#ÖŒkƈ3cÄ™1âÌqfŒ83Fœ#ÎŒgƈ3cÄ™1*˜1*˜1*˜1*˜1*˜1*˜1*˜1*˜1*˜1*˜1*š1*š1*š1*š1*š1*š1*š1*š1*š1*š1*™1*™1*™1*™1*™1*™1*™1*™1*™1*™1*›1*›1*›1*›1*›1*›1*›1*›1*›1*›1ª˜1ª˜1ª˜1ª˜1ª˜1ª˜1ª˜1ª˜1ª˜1ª` _ùrå’?–Oþ“ü16ùc\òÇ É+&¬”ü±ròÇäÑÊ'V>y´òÉ£•O­|òhå“G+Ÿy´˜äÑb’G‹I-&y´˜äÑb’G‹I-&y´˜äÑb’G‹M-6y´ØäÑb“G‹M-6y´ØäÑb“G‹M-6y´¸äÑâ’G‹K-.y´¸äÑâ’G‹K-.y´¸äÑâ’Gs¡áoëà—<Ú[”&oᣈºJWõRÅkÝ·úXu^تUÅ\åTìwùkNÝ­Ò/Mtv½tÉ9¿óÒ¹a×+;‡ffÙ÷Ò³3]¹~î³s˜ãl›©Þüò— ÎÖË*Õ>ÓËùñP“ⳓ&;Û~ßú‹?—9ëŸøå»BW;ë:¼ôüÊÍ œuù¿(úÛ°&κiý³ÆÖòêc[Ã>s6=ž½Ã “E-Œ.”ïmg[šàÊg²yUŸì—+úgg£yçÇ6-ãì®Ñ·ÚÒý}½ëtIØù”³¯Þdzou»àðþðUî1·œƒOü±û@DwçP9ûÛõêšÒ&çæûCw¾Zú]çp“A3v8‡ÇTÚúiû\Αt Ê:þ³sdÑþyÎîüÚÓ­tŽ©,ùòŸl䯲¯Ï´ÛÍcæ½–ÍùuÂ…x9'Ow:]£b:çt_çLÏNuœ3Ù&ö]g“söüÃMÇ—êâüöîŠgŸ?ã\(pî‰Æyßr.öjòÁKu.m”P}Ð+ΟÍWæ>ìî\ _¶¨û›œ«G‚ïß®ë\?¼lÔ sÚ87ƒ'rŽy<àÜj—!sÜäüÊs¦Äœéª)oÍž¿|õ|måûò‡ÚѵQú­«'ŒŸªÂÃé´|ŠØ=æÓëv¨¨wt|Æ©¢¿õö“çæ«ô¹c‡|½´ Ê°Ä“ûÉbYUÆ ­–$]ö¨ÌñW^,‘Meyï×î³ûVÙJf*Q-íÃ*ûú‰Ëz†gS9'U\Ÿ½×1õÀ¨¬­Æu/¨ò¼RéL‹ù‹U¾ãKjfx9»*P寨¬'Û¨‚ó =Ø}÷sªpÅׯ4 |¯Šü¹nð‡EÚ«b¿Öª²{à U2ýƈÆ__R¥uÜðè×sUÙˆèG?J¬¡Ê ß”ùÁ<*fh›ï¿zïg—uÑ«ã´Svµ;÷󜚪ҲïgìWKUY~uñ¡—ÃTµ“ye?7M9¯•:y­Šo¹µüž¥T™ãjø>8¯j^yð»/6Qµ;þã…:­T-oåÙ³äõp£ó—ÿAÕûiÅú¤œýUƒÎGV·ZýªjxaH‹ê…?ULþ¦i³þT“² 2—´]5í»)oxç–ªYü²QûªnQÍs}9ÒÓ|±j~½yÛm9ú©GòO/¼ãœjùóü¡'šMU­öä¸ðÃTëß›·èÖ1RµÍ×û÷EãT»ÞYßÞ½ûAÕ~ý‘¼ýÝIut>Ùýò¢ªÓÒØ/ßûhœê’·Õ ²KQ ßê”íÉÌj¢oó£ÃÿªÖ ž\øü’WT¹¬¾Î1‹†¨¨êe>L(ÙÀ9S¤ñw‡§–uö¥]^*kú¡Îö[Ó'®mVßÙšíÙusÚÌw6¾2kWܬ<ÎÚþÞž½b¤³ê£3=Ÿ{a›óý®â›[?YßùnDî!–Ä9ßU«óÊ€üsÌù÷Ó›Eܺ5ØÜ¿öøžS‹ÿ:ãlÜ<î±Å{;[–4úèÝr­Ÿ^«áL/çl»üÚÖÕ‘Ï8;†÷~óûÏ;?ïÜy¾Wƒ °Ó=æŸs4²í­-󜣶X•´j‰sìï=£¯¶èæœÈ^zûó¥ç×G2údVçäËK«^yÓÞ#Ÿ:[Öùíå·}ÏÕ_çœíðÜúƒ›ª;ç>éòZÉIãß?‹*ýà”ŒÎ…#esœyÿ²s©ØütÍG®uþxjÄ죃K9ÞÌðSì»yœ+“³÷íü”×¹V³×þ¬á‘Î<™œðx!çfžR{÷­îÜjöÎÍoÃ/+Ïž©‰«2VÞâíV¥t]ù^~òÑâUk¨@î׌m™W×R#Cù"*búïM}'ZEÍ(ѦlôM½vzÁå¯Túb#GŸYZe8”žáã±*S“É•Fü~Se>åë5ãèA•uñWÎû?QÙ¿|áð¥•óêê0Ï æ*÷SÏ¿:rø•¯Ý¤G²Wª5ßoPç¹ÇT¡À™ü+gTU…oäÿüç໪XÁ\Šôí«JŒ]²çû9_©ÒÑW¦\n0V•Ùq}Fë™U¹ÓO|vii3aEë?;SqOúlÏ”ªbñƒ[<¿BU.³-ñ…ñùTÕó[Ÿ[­ª¨}qÙn¥ =öfἯªøýo=»%K´ªY¥Q¾’ÛëªZsWMxsJ?U'wÙW®¿´EÕ}gabñïw«z±o”*ùÄLUë{ë÷·Ú®©Z¶aÚ6ê‘ls~,û§_5^y°|Ã'TÓ oµ\[îÕ,Íó~(X@5;’çÕ¤­¯ªæËæÎ­³ajñjÔüùÅ£Uˤq£Æïn¬ZuyjVÏ!3Të%^oXf–j3(0)®ã›ªíœñ'®æk§ÚÝüaCÃ"+U‡ ™³/iñ“êT¯Vïšê1Õ¥vÖš“®ôQS&çÍ[²TÕù)E²¾¼WÅü0*8µÙÇ*]Þ}wê¦s.Ý…Ý?Dtv¾ÿ\ZV8;s-Ì?pýgÎO¿\{*ò»:Ζ¿£ÇÔ½älú¸Æ¯?}°ÎÙàÔ9_úø·CÏ;?=;åáñÍö:ÛèZï»3ÎÏ_ŽØu¹õ»Î®éc×-Ë:ÔÙóÌÄÆýäq~yªÑŠz.tö—ú¸øÌOs;Þ,µxüš®ÎÁ—6,È|x®s(ê«åEW<·ÿ_{9‡Æ-m»òìçÐþþ(~ês¸wÁócžÛêñþ™?Íî Αe[——Y×Ò9úd÷ÊEë5sŽ _Ózãã[œãÊDœ{³¡sâËò¼Ôµ»s2Ó͹úžrN½ØmÑÐß 8¿Uú`AÙ…:gÓí{áåíÓóùv·x(ûjç÷Oú?÷Qâ@çÂ¥ºo×ùp­s©u›«ƒ ÎÞØs"¶‰syj0jZÎÕ¾«fœªºÖ¹ÞûÄêaóœ¿&ÿõdà¡‚Îß›L=’¦µò|œwEdž^åõ½øgÚ7^P¾‘¹ç/ôlSÈkži’F¿¯ÝöëÇÚ«ˆ·r\ K©¢^zô×a»âUôû§~}+r£Jw¨ä7ïþCex3_¯¿3¯P·‡¿Ó<ç •¹ÀÞŽa—¢U–箵ì_ú’ÊÙ¬bùO¿TÙß l½˜¨röØøL§þcÔ6-ì–¨òtÝ5ñíIU¾E¯YsíkU ûÜ]^RŸ¬^ûz›ôªpúàãU|sU‘µ›®´ÍrB[f¨‡v¬>¶xd‚Š/¸ãù†ã¾Q5úwš=å”R5W×ý½ÄâoTíRŸ ßûù1UgÆéºÍæÕÃ48õ~ÝLªÞœ7Þœ‘-‹j›îålÃÕpÃ…EÍk…©G®|chƒlªI®¡ÙŠäJRM{¾VjùëKU³ZSN,[ý’j^$ªc§¹iT‹èÏê¤YP-n–=þGÂxÕòZ÷1™ŸžªZû·|YcÕLÕ¦à”oWw8­Ú¶ÎÔ»ëŠ$Õî/{Ö-ø‚êà_öj•Ä(ÕñQO\RÒuÕécW/ûAuIÈö~RÇu*¡ßkOUz²ššÐ¤Ð”ªIyU«Ÿg´?ù|AUæ¹néê/™§"Î ¾o1áúË…¾ëy¹‚³÷“ÚÕ´½ålÏåécjFgóçöî[¿ÈÙÐjgîýG:kæÄM6i–óú%ÒVXé|ïëø•¯ÈgågWß9í¬³rtÁ© ÌuV~œ½èûÚ9ß}?÷£µƒš8?|¹uô®*ל5+æ]ÛÂÙ0¬^Û½K9›‹e¾ìû:‡³õ‹WÆ?¾m¦³Í[ïà–šõœí}&Z7ø¦³ã˯ԩœÞùùä¼Ý¶svÞœøAõªQήýÊ_úîig÷œ­ó×—+êìydñÛ¹;,töfÎýؾ;½W/~ó[Íëξl›êtîyÆÙŸ«È×^¯âhõìÄ_np~Ú±E¹aŸ8‡žÙú\Ý€s¸y† c_Ïè©øö‰ q£ùÞ>9¥XMçX¡ØGÆÔrŽWõþ0ñLœs¢ÿ©÷süÊùuQîż4À9•7fÌþÅÑÎéwöÛÔÞ93xKo篋ÎÙÍg›<öõOÎï•6KìÚйÐ-GÓ¿Ö:çeJz§l6çÒõ÷2vÙ]ÍùsÀ„Š+p.ÿÙ¶›'mgçêìKOl{ä çúb%?™ö¥óWïÏm~i·ó÷Ôs™žñ¬ò$½Z'æÆMöÍ´Bs¿X¦|ùOú|ë9åŸ÷Ù®-ýª`£,ߟ<³UEäˆÙ|#ú˜ŠÊýù’̨èØ!Û–;©Ò=Ÿô|Lp±ÊðB§*Ágj¨Œ¿ß,S´È1•ùñ ¾Í®«¬ÎOVM8¨²WõþãÁTΤ÷&UÏÓV=pyzú_:OTy¿¾äþŸSù/Ô=û˅ƪàÇž‚í6\W…ßöuíðÔ UtÉé©þ×N«á}š´üc™*5©°óâG•©w«ñö—‹¨r3¯x÷DŸQ1•êýmr{~í‡^˜¥*løfkûÙ‡U¥ Ÿí¸|‘ªòû˜ß2ýð°ª^mBúÈr”óA«‘3 ÎUñ3Ÿ¸¾XÕ¸–mÊok'¨ZÝëv^ž5‡ª}°d±«k^Pu{Ÿ‰îÓø9UÏóëð¥9¾Rõß=ä䘘E5lvêlÚ¿cÔ#Ái©\M5þþ‘%³SMkD”Ï÷y9Õ¬ÀïöIWB5÷Ïz#Ë=TóSÛ'ý´j±í›ªm›ìT-¿›Ñçýi>ÕjÙÏ_$~SHµ^Ùí£‰-U›}«w¦5Rí²öú­Áè/TûaÙ¾¸úêtÕ᯵3rJ¯:-  DMV].ü¤ÞüÎêÅ…õ‡žÿ`™êôüº?þŒ|F•_½eÃÔAO«è§®Í^X+蜩{þ‡LÙžqd96±ç¢ÎϹžÜž¿„óSÎÏúw|o´³ùý9-û‘ÓÙ86î=ïa¯³¾Ð†7â†tvÖ®ÞôP•ãΚÄñ•§œÎꬉéÛ$Ç€5Ÿ¹þl†_u‘ê™lY&;ž>ÿi»g{;?ž)½¢ÍšÚÎOÞì›ÇL^ìl/²²ÝÈ;?篷rp§<ÎÎ+SZ-{äQg÷ŽáûÒÙûíéý•úôröµ|ãõü'ª8ûuTèéŠ3›¼žt‘übtõU7«áì¼é²/SçàæÝ« ?ZÎ9¤eŸ=ú=çÐwÓe+±Á9Ü*zýµ•ý#¾4WƒUqެþ¼Y©÷[;G?]Tëô…Mαå%ú_«2Þ9~\eù}vç×j3Â.ÍZåœ\ÕXù×oúAž§UðÉ]«s>tVEtø2>ü{¥¢ZÚuá(Ý¿Jì§…/¨tó †O}y­Ê0ÆùìQO•ñóe/”}èq•Ùûm‰ƒ¼*Kï4µ+ýþ½Êzò¥ZÅ[QÙŸÕ¼Ú~²3•PcîLêOûªÎœ¥òÄŒ,zth¢Ê7&é©q]Tþ?ì\Pç[U0¡UÇ)?¿® ý:<¼PØ3ªÈ›?=ðQÅÆ}Ù£@x~UbÚ¸¼­.¯JͶhà°gT™ž9Ýê“E•{)o›"å««˜ˆ÷?¹ôØ;ýç¹_¾·_Uh4q×·¯$©J¹;)Öý‚ª’¡á|_XU­ÔÁ•_ÏŸ§:uFÒ•ëJþtõ£ó¦«UOîbSTÍWòÛU\ÕºvæJÉÂÃTþU®ŸÔ_Õ=ݲôÙT½aCú¬Éôµj^µã®Â'UÃyCÓöNl¦i²êÐ+Å–«&·ræXU5íÚ¹ÊðŸr«fu{¶|½i3Õ¼lç_]ê®ZäËR¾N¯YªeUö‡3U«<ŸŠ_Bþ°Ü³®Ø~Pµiùcñb6©¶“~ïµcsÕî—6å>ëZuP/Gÿa‰êøEÓ—ÚT¾ª:—ŸVí¡ª‘ªË;»/óÖT SJ-hûdWõÜ[£æþýG%Õ*aidÝŽ‹Téc+ʤë©Âg/ŽoWå‚sò¯«+Ï´¯æìiº¡áê9“œmqÝK÷Ù¶×ù±Ú…“ŽeqÖçˆîú\ѪÎê7û>´åhEçû#·~›zðc绲/½ûÉú·œG?8tîì#Ί· N«ó°³bS¡¥ó¼7•'/7ñ`çûŸO.z2?=?èj‡_Q™c»ÖOp6MûÅéZg¯³åÞ̔Íù)ís{Ƥq¶uú Îæ:Û_Ûžûíˆä“ê/=ÑùyÙ‚+¦}à으røÂýÙœ] ê_¦¾³ë|­¤Gs|êìþpÛüw®|èìyaùø] ݽ³—]ÝüÖ^ç—™Å^Ø{¼‰³oëûÓýs®s è‹gÕÞ‚ÎÁ±Ús¾ùÅ¥ã:•ÊçîvàÇU«–:Gê‹^0q³sôáÉùÿ®¼Ø9Öq÷g–tŽOú®ô“ùK:'6¬’uÙ7ÎÉ*O~òÓˆÓΩÕÅ4m|ÖùíÙìÁ™¾ïœ97&rÛo…œócæ-Ù/ÚùýXØÄ 9Þt.ælïù=KCv=±/¾¡óÇþ[ÓÙì\îôf‡w^ÿʹrëñ¢S^Mt®­®VlçÇõœŸoŒ[ÙµºssGÕçb³)OúiÅß9±S…5ÝöT•£”÷£#³jôz[ùKo |z¹ l~´öwïUá¯|u¹Û¨oTäÓ¿gR9«¨4³~ry¯*íÙ!o˜VYe¨Ø®ï_ƒ*ãÔ…n¿IeÎ=ëï ÙT– 'ç¿•6½Êöíè#?–Ë­rüþ|ö‘;«ú|ô‚z¸–Ê[jBļW«ü³Ž¿<´C>U°u–B¯~­ W=‘þˆç5Uô‘¯Öý®Ÿ*>5ת_ë.U¥Ò4=[,ü–zð[¿§iõJª\‹þÍ–'öWåo¸|øÛUìÞ9‡'äUú¿¹e篪Ô3êÃoÆ«*Ï4{¼âº'TµõQ{òÍX9åK·ÎQt±ŠïÒgØ7Ú¨K{~½QÕ*¼.îÈ[«Uí9…¿¾üW=U·\©% öVRo®¸²Î';Uý19·ø¦•jóæ[ϧU.??e͘¡ªñª©Ù øQ5m4"í¨JϪf•»”Hw½¼j^¬ÀÛ UT-rùúß*ž Zf°9jälÕ*Ý·í·¶XªZg)¶±Sð}զȌο¥ÚÖ¿z)Ý–[ªÝ„Æç§ïȨڟìóÎ|ß(ÕqÈØ‚c/6RK¬¾öç*!jN:oÉjòƤµ_”ì­:^÷®ÚñDYUn]±§Nn¯¢N­þiÚô ÎéÇÎ~”Xx¡³ï‰&>±ÊÙ‘«ÝäY#f:[Û hõÉä[T}¸s!ÇÙРXϸìÕÉÏ5^zé“òΚ^ýßXÞþogu÷QéGŽÜ䬮Vûh™ß¢ÕßÏPvdgm¦¬Uò\wÖ?÷˾ƭ&:›N•~ãbÎ7œ­ãf·±~¢³íí.Mç—Nïìx>×û§»½êìlþΑeÏ<åì.œ±ôø·š:{®N¸Ñ¢!ç—qOæ>ÐÆÙ·öÍkjvrö¿½ã™¾ÎŸ?íGãžvÔ:ž)zà‡Î9ñ;׿æ¬Ý{D¹L{Cd¼hãjçÐ{…‡ýúþ:çp£‡Ë˜šÏ9éï[>¢£säì[壺­sŽþQø'ßžÏã™JߥÀFçD÷ê“7í˜åüºó£Ê“‚»S£ÏŸ>¦žó[ãð°/ gwζ½pcƳœó¯þT|׿2Î…4qc½‘è\X¢ø®}IÎ¥Ë ZüþšÏùsþÌå׺Os®ŒáãÑëœk#kz¦¯|ȹ1½D‹Ë::7Û<õ¡ð”'&âÚ±U/©°gûì‹Ê{eK¿ßë•ÿùÒ{7ÿö· ÖêW~ÄÍ'TDžÏ¥ž¤¢²®½Ùì‰E*ºì„Ç×ÅgSézçl>îï·T†Nþþól•qZ¿áщŽÊttÖ•o×]UYêå‰ó}þ’ʺvKÓ¼×_UÙÏÏœO×sæøãæ©á¨\—«µÏYí€ÊãͶªTÛÊ*_Ý…c7úUþmŸºøÇ`UИT¤e~UhÅÑ)Ñ·zª"ývú?½tS«wþúê"1ªD»%[¬ßªJM¿4·w“ªLÖ|YŠ÷¿©Ê%.˜þqlCU~ûOE§œ:£bz—jQ,Ÿª^`SùIiÿ?2Î2¨ª€]Û€ˆHIKJ—t§ÏCwwH Š‚Š*"6(a" ÒÝÝÝH#Ýß>?Þ÷œ™ïךÙ{Ïšµ÷¬kÝ×=³çF…ú/QŸ‡«Q)k•ë™rªÔý£KÅc´®¶ŠAш×r]L Pƒüˆk²× jº›$ü{ŽZU‚AÁψQG%ò…F` êf;Ÿ¿;þõµ •çy AïIámOÑèÚÒéë7Þ¡‰TµpÆ~o4](á :Ÿ‰æ.Bzâ7ÑÂ@­$ —-•Ó„X´òÑJúçCÊh-k}ùÚ¨Ý?;MÈÃãÇðØ(7ÚÝ¥ˆºçôíK¼uû=Бqý÷o}tºâs=MÐ/¼UÞ^G—sz×"ˆÌÐuôÛNR>º¥7‡EbøX}Vi€9ZÏ´üþ(‰(ªÉžFï%‚d–+íÅå0áS_t¡@:—ÌsβB³iåN.Ã{¨-Ù8Gµ•=šÉR§j ìI²˜rïÜûÆr/ŠœÊž?« ®CR©E?•Í §j¬|E&úPtHÝÖŒŠ«^¾ ŒÑ‡2•½W |æ POu÷A-Ùûð¢¦X‚¯ú^_„&Öo;£é ÐlQËÞ:í-—,?-t¿‚ÖÛZ¿ÎÜ“€¶KUw5— ¡²½6’¡}±äûo±³Ðñ¤Í¤³=:µ#¼%C¡ëH¤véµFè>š” UÐÃ+âž'ë ½F5ßÛäB ïMñ]3õèŸ)Ñê´| ƒÅ‘W¯;ÀÐSžŒB“*u€ßñ•PQG½ñíý3<ð'õå·W06[Xxs”&¬[FËU+ar`>D®ùL¿qù¸ãâ³4äeBl0~V1Šî&,xNó4†ÅØ ˆûKS–ì“`Åô2qïI!X-ï±Öâe†uŠZã^jØd5ãß)ï…D¯‡Ód`‡)\¬*öl¤Xx>8#ÑÍH“†’¨Ñÿ¬ßÕÇ} r—â¨q¿ù`ÅkOa£iE‡,{²?šÛN5åô¢…iujƸ2Z|HЧ G+CY‹ÞNU´6çrÏK8…6NýFtgÑö\ð°½…ÚEvöhT¢ý!ÓÐáŸüò¼Ä9trÎ{huÑK% G¢Ëë!‘oSÑ þ–¹‘ðãƒé·WR˜ñø)µgéÝ(ùl÷“€­;4‹"¹¹Ê “™3/~È´@Ï߇T+]he“ÒV¬g„Æ£¦×I'Ê v§EÅì©'Á'Ù¼L.CÅ\KwÚ_R(w‰Š a2ïóã®ûàL›ë²Ž1”5; võ;BÛôýãB'¡*²ê€ ÔŽ‹]|pf—,²þP”@ í®^Û07´.Ï>õÖăW`|«yûå³t˜|Cãc9r¦ÏƪUÔYÃì¥ëõœ`î{½|ŒU',¼={’æ;,nÑS~9Ëa|´«åý°*5ÃztEÖIwÞ²ÀÆîù[&\‘ðsß_†‹4tÓw6aob[Â’äëÐ +uE’,á†Èm$5 ð\ιŒdûvãÚò™ðÀÀB“ðg<Øu.BÝv)—:kT‘FŒ6î”ï¤Åk†º .ˆÓeêö.Ò—…•¿IŸCFaI¾Æ WdJ¢qfJ؇‡ñä ]†²,ÝË‘¼¢l5K?Ö»9‘£9ÓÝ!tÙ´l2rÿx-­öy9îÞÏiIF¾—–Ìk;z(p¬ç¾Ëè=byrJKE8%åSΣ¨mSÌ Qo/гð›@)Y¹Ey'”ŽßŒ³1@Y¾­´ùDw”+Î.út;®o*‹¹¼E%÷øW¾¢Êù÷ò®.é¨öMŒfsS‘µTHcmÕÛw å>J ¦dTˆ71jŸnVï{‚:ä=…Ùq2íræê3ñQ°PQ¢Á÷§+ö·UÑÈîb峸E4¡«÷k¥EÓÞi."6;4wX°þ£õ-Œ¤,½ZÑR›ŒêÒ3f´Òê8˜•ي֦ΥûäÐÆ3>ú '!ï®ìË]rG»l½í§Gh¿•z2kÖM_–?"NB§_¸Q{D9¡dÐ×AzÆn”Öìˆi8¢„2“AO§BÙPî‡UCè.*Äi®4]9Jß¶“®·¬£ÊÚ³ÆQ™x z¨$šKüŠÊËuPCéÒˆÄGsÔüT;,šxµ…YG—½‹Q§à ÍÑÅÔói·q F{¯kx;ÑpySж© ;.Z:¡i5›ãEV4÷°¨)´ð’“rlÑ@Ë3ïG+»ÑꊇBV83Z?jZ=W)‹6É;ǸyѶªvÝêMÚ-Ð-Do^BþY‡)-/t<DZ¡QƒN­‡‚‰†¥ÐÙqL\óIºRšÝ2ñÍC7å+ùÝñøà`íu‘rtê ôŒö»â¯¾‰ DÑà_.²¾¦|0>7º§¾ÝÛÅüÕÐÂF¶ÕÄwê?•˜§dH@Mòiqõ½{P9Nõ'æV”·Ùn]<Úe6õÂWâd ô´w¾n´”oQ:݇Ò!&Ë0­h(ç+¢¹!Õ•3d—k¡fTÌX°H¦NTô„]„æð8Ü#­ÎÁ~· ¼b;{5:J^Q<¯$ôijåŠ÷/¼‚îF»‘¤;O¡gí+eô&œxÉÿz¢¨C( †ÉK(ú h·©ìþA_}6)Å ôÇ2ŒÖqÀ@LÒãðe"Ì¿jÄñ»†ŒU­: Ã^ç( ôŠaÄý+Ûõ[%–?¿®~ºÖ0~d­èïc˜È“L>hð¦J_î ˆ‚™(Ê;\WàoMµ¦u7Á;ùx]ØooÃâ-¼âËÔÿê·Ö2a%WÑÿø­*X{˜ìŸUwâöï\ï„­[~1ùØÞ0yú’T ö|Ç}zBÔ˜\ÒÑ¡9I‚¤R!)EîZ¯·±ÆÈýHc Ü¢y¶Þ~0·B>¿¢ø¡Â(phž²•=©ÝmQx(Bƒ¸•Ei¿Þ;~ÀÅýE¯\ hB)Ò"¡"ÅÓ(}š—¡ª(e&ª<xr!¿X¯©£‚”îà·Þ˨D¡OŸù¹ Uènÿ©’ƒjF•yÁ¿j»Þ’¢ú‡Á#E#×QcçËfís¨åùê*‹?jw”6ŠE]»ó«ÞwQoì_yÜÊ/b•C#©eþ”< 4^jÎZ-ÊBÓJzžå² 4·É>ñæš>ÁG§â%ž¡¥©ÃbË?´²UX]r9ƒÖ§ÎRË<ª@›ˆãoªÌ y˜žR¥Büífîx›8ù¡ƒtäÉ£ÿ,Ñ1Bùñ?ãýè´pøÔÑ™töÖø°w{]&RH8ô¡›ìÊÒ`tÛœcÏ ëÁ;!—GŒn¢5 9£kÛqÚn³é¥ÿ†û~_Nhh>Ô/†„C»üñ†rÐx€K=÷(Á'›Ÿ“U'øçwÙ°… (¹Aéüg|Šdâdùúƒ!ßǾÙ÷?äÚ¶dˆ&Bΰ8‡”‘ärìÛÜß}¡5Î/ 0£ø‘蘔6Ó8ÏC9™ÉÆV;kéÃׯ¹¡ælNéAûd¨;qTqÁ0XTúA“œEVìU>h扺ªyšçx¤FBK|Žz—d=´ªgd}΀ÖÖ5¢h³"B\å\Lƒvmžº7Y n1p)|€Î£âÔ×C—&MGxšt‡ 枣ž½îV~¿'>ï4<þN³ý>3Q0ø4hqñÄ e¼~s—6†ËoEÌRÃȬ^vþp0ü9Qg'Ÿ c÷ýRËÃ`‚þÏNÇG˜,ÿ;œ[XÓ&üJÁ‡aöÍN»Ëi˜«¿r"ò&,²Štݯ_÷A†ówÙ^% “ÞÀ˜½¢ö”Î>Ú~YK†w|‰ýãdè»ÉÈe¶á+Í<¦æÂ¡ÛÈÇöˆåÒåë>E½BµfQHFR ^íŠDtl,ðk£+=cűs(1ü2¤/¿¥Ÿ,3}ˆ2OÒï½öå,¥ 7}PAiõ]Ö*iµ¨¾ï’A• ÑŠäs¨Vþc1\fQ¿>N}‚êê–ó/£Pó¤ÉosÑZÔša¼¼w uîLgû^ÓA=þ„¹K"¨¿Urh¿- ¶%ÿa-N@㊓²É:,hZëâK­Z€æç ߇‡£ÅÕø ¢´|””xãN Z¥D³?—[Bëú°{Ü„>j³Æ)¡÷ íøŽP›Ž« ½1Ù¸ØQtˆ:Im{‡÷mG âqýžß̩йñUÚ'72t ¡¤U¨E·¤;Òì?Yð¾ðZÅþÏè¤÷Cî⤊Æ;ÿ¨ÏA2ö£ž6Ib0&8qÆÔŒ :+E׌¡™µÿ§OðÔñ(ð™ßŒj+n™³ß "}ïCeö,”e÷²Kû|&äߎŸ}”œu}&Á=%6m OÔ@É\S¹èç:({þô½Š:T‘ÐXѹUÿˆÁ Ö˜¯øÙÚÁUMÄ×~Ø’>óà×rl_H§vvç›>œX­F¢j;ÿÔÁ¿H¢Ô]ýP÷Õî >fw ÷ß|¢¦†Nˆç}̈sãÛ"ep 'õÓp¤Nß“UסCÚ}¹Ã§Òé‘N5TæC]Ò‡ë»ÛÝëE†I«}'÷vÉëÁe’‰dÞ²¹5Ùƒ,ŸÒeroG¶w—_ ¯‘Ão5vßÁ<’8OfGºˆÜ¾S÷›ˆî!OWvÎXcòH ÖlR ÿðèˬ’·(˜›ûóÆ)þ0llß™ŠGk"ClF PœWú뇠l”L鉺¸ŒÒò†‘^b$(ó…«Døã”S˜úüðR7Ê? —¶7EÅ´Åz#ûP9Ý3es1ªN•ß¼¾åŠ`Ñvï ª_(¼nÂÝ€µeÝÍ>½¨%Ó²í=ò µ?]¥ý¬@‚º‚ÁJvvoP/³-åô~G4°›ºß=ú(üC‹zž¢qk1s¼;š¦©ðOœ…æa~–™©haQDE}Õ-í¿vJÉU£•Ï‹122´¾bGÂf6©lVoòpÐýAí(Ús–4w²@¯8 t,îqô‰ñÀãGç¼M}ÑùýÓ½ýetåwÒö±âE7ës^u‡Ñó¶Fß-b¼]Y·N»ò ­ò–ä'Π £TRá)?$9•}ÚÈAFR ‰§-¡µcä¡`UÔ«Ž:Ù€JûQÃv“PÆ=,&Å Çž@Ák“+šFÈ-*J.ûq ²[õ¯Î°@öñ 6cȾ¿éÅ$& ¹¤¡µÇl!¿â^F­Æ(&Šeúºi ¥_ îæ} ¨°Ùpíóªo®é÷ ¹RüÄ–4O êŽ;©Ö¨7@ƒÐû[^4Ac¯'É~hJl©?( ÍfÔ·Ÿ¹Bó¤x>‡`´\ ï^¤ª€Vš/:™$„ïñ÷ÉÝh«ò«x|šÐ¿IŒºq~„Ž|©©ÁÅýÐùÏÁæšÿt+G~l ñ…ž´t債Tè“nku¡2€þñƒ*‚Bk0øsr€‘ì- MJùG¤’ÂñL¨^†e‰Ë:üI,½ñ6ÒÆÅ´VF`¢Wþ&ÛB(Lù¹Ì—ì3‰ÌÕ¤ƒð·Ñ¸åë|,ÐK-ý‹¦¯´ê‡îÃRB¿Ì-!iXޡ⣰ü5ûöwzXgºÏáO NÞMª­nÂcãžl¯«žÉå÷‡=­ˆ}‚üÓH4þ~Ê¿ÄIL Ïíà¾.ZcþGqhï³ýœxÀúZ„«ôOÿé*Ôoܺ¥~Ï Ù¿ëK»‚Æ™ŽŒËfhZÿþ.Ù~O4¿"~½G»-¢*&¦X åO‘v­«hÕSJta´m¨ä8Z™+ÑVë×yÃhwÍÏPªísÂ9•\Ñao°¨4“Ð ­fˆÆ…áñü_æNè¢mªD.©…®³íOZ‰{Э·i"8"#õyÙjExÑ1sšÔÒµ E>PDMPûyuÍ„*w^3ðõ¶AyèÒ‰A(MpU]H mñ,…A/(ö³óeúöŠ þ1tŠw(¶Ó’A©¼/c¹Ö7(~ÁE Uý¢{N'§¡®óöHå…fhºÐ+îNd -Ò' [®]„Ö‚Yæ¯ÐîÎ=™²’ £Äþ¥—i¡‹G¬ðË|tóÔY¨Ø@÷ÏItÔ=ݤÁœ[µ´vþ0TGï.áx†X–¶ß¾‚Q²œ|éd øã­®_º0¶{Q(ðð,LÔ9ýýWN SµÆÎ|Ö0KTìÔü§æ¹oPŠÁB\í½$CXøª¿ßþ4,76 ¾ß„Õ%o¥õ:XÞ t9v6³ÂVñg3l“Ö=Y&Š…]ÿœþ™óvHyãÁÞœoÊ­:”‰ûîí;!0‚ûu²FþþkÂ|UD4 ð ÷ ªŽGHI6þÔ/H}yíºèÏ?x¨6Ó¡ƒ‘ŽS–ãæ‚Ò{‹JÊ4#C•ç²Li2i×ÞÚ|`ÌuM–ÈrCož8‚ Ù X~EÿèFõçʆóÏñÈ…ú$ê³Ï‘Ûà©2ëw5äÉli¹jªŽ|^¦Gi"bâ®(s.Í œ_eCã‰Ï]Dù¨±ôvATtz³¿›M•mtþX/U¡êÝ(e+›xìo¿òì’!ªcB·ëÔx5@þà¡jS]ûmy µýk•y¸}Pg5쪞ÐêÝýz%š„ Ęì^G+£áèò@ÇÆ0gô(†P iÜ ¡^6471º~p-¬c‚gÈ£¥qÞÃ;¼hue£Áëë[´N¸ÿ¶ùÓÚ4v¥òfF¡%‹…7?Ú›©Ñ9É C‚®×!Vutüw•¿}¨{UX} x§sÿˆS9Õ"ººS…§³ú Û%3"ò#mè®Áæ½sKo3ðR¶¤¡˱ ìÁÁÈÿûÁæ‡"$fÿ'W9ÌÃ,<wMí¡%È'î½)Ôú} '€ò!égg}È¡d”½ =h? ¬Š{&yî~.'R!‡Uø&çzd™êõ+¦Ü‡ß]ïÏš™ÂïsMÒ!ÛBˆq’“r»,zOÇUzbƒ éâ(1?DÎ^eå…É*ÿ>BÅ<éG¨z²À*ž 5Ú±í9bP;þ.扲#Ô_&dX¿ uÂÞÖÆ@ãnñ“gõ#Ðô8±8ššN7­®æ$÷³!4Ðr*ÛÚ9Z-]‚÷â¯C›ŒT¶†o´+Yî(K@‡ßýù='Þ[¾n0 º9öUßÀ¯—;s`úç#w©/^›¹4›]Ý`žS9ciuÊ«3 õßÀ­õKZïHX>9 Pm+]Ê.«°v*õ5¿ lHv?‡-¶Ì—§ŽLÀ¶8ʾÜ€Ý3D%–?N!Q@Ë6‘ý·ûü-Þ5Á}Ž—êw,;tÇ#÷lô’U¹M(6"yŽÿRþ¦ Rô˜©÷è@j¶ÕÑì%xÈ_y6¬â-Ò‘}H]àM@ú»ÎåïöÑ´n‚BM™ÖßK_E–Ϥ+2-]éšsx 4¡Û /ërGîø Ñ…þäu´ò»pùUjñõ êEÑ– ¥£ð])[îáJ%f¿\…âég³.êA)S²ßQzX$èRàs”}>]¯%ðåý{h+0¢âÙkÓ#I¨üàeíãÕã¨ÚêòíŠÊ.‚^ÿ]¾«‚¨~¹]îBèaÔ˜°ðx¥(€Z&Ì‘¯¡ãéC³Ï>¢nS©üÁî¨ÿIfýjÞk4Œ!wMø`ƒÆ‰&kPަãïw)ÐüÎ'™*)´HöÏ5Žq@ËÖ/_£5ÅÒ˜iT2ÚŽý¸OÑö‰3í r ´ë,QÖ¹ªƒ\E²‘OŸ£ãY‡©…kèTѲ_éÅ:Ë’«/E—l’üÓ»¡è&QgT3~ Ýi9â:ݨñž·Éù'ÉÍè(È×&݆BIyå‚:ôH2^Rq”à¥Ã1£ê³¾g -qKñ•94È2“1i…jΪXV¨H–!c2Ø„2³1Þ£‚îPr{ôø÷?¦P¬êBÄDtŠüÍ4vÔ¡Èû^e‚³>Sé¥\(õ“&lP”Îì.•=¢]«9µ Ïò§nBcÊ×i?oädoMA+ë¸ThûáÙùë¾9tp&< ®NÃÃü“Ð¥úåÓò†%tý>+žkÛ]m“ÁœÁmЕﯪ¶]¥²+òÐÍþ³«÷ÇkèΘóö±†ž[ò÷Ù¼„¡7` QŒIúÒE^4Í€ŒÝ'3Õ30DB]®´•CÛ)3ˆŒaDÒÑ€¢Ðï{QÕÔñÂW´·Ø fŸY¡>k“iÜ4`†=ßçÉé+ð÷ÛåÆ XÉàé™@Xü¾Ÿâž6,;r„.ÊDÁªÐš û cXgxD››øÊ¹úüü»OEûöz ì¬bñŸC"£¤DËí+HœýÈõƒk%2$ŽìÞ}LüO¤Šù—6G¾»²Ø÷}Ñ{lœMTMYƒV®#ªý QKÕ+íPFn!¥qçyäy63M[W¼[T ñ+uÈg6‘þ] jßÌ}ˆÂG£=Ȇ¦ñ(hŸ0x#Šb7aõæ”X*]ȼ*Rµo.Ǔ䡌Œv³û”MeºäM‰òÚ’­ Û¨Hª}ã´¥*­ IlhBU—¥}ÿ¢ðؽ±é¦7gPúæ1¯¸s¨á½®¨÷35uöÈŠkQ[“ÝýE=ê”Ý/PØPB=ûpÃÜÝ4 ÒàsÒAÃüÕ¿‡¥ÑøùÀS{‡t4ˆ<ÚPÖ‹æŒ÷‹EÐÂîÌDÕ“.´žú_ô¡h¥ÍòqªÁ[Ã^…{A¹äçgO”¼OPƒ*±èaÙ{„ëxûYµgjéßåñþhƒ:íZפÛíPïêÃr`?4œÃŒº,X¨ã¡Iýðs ÝThÚ¾ÃâFðÎæ>cñó-¾Ð’)ó˜7»ZÓ/ÑFË„¶±‚{±êÐÁB«R£¹w¬4tÿ@×øÐy}“Lèy,Ró8ú´ÌŸšœ²’hí†`ȨAwó} ß¶s}ùóŒô{LD0²Â׿×_\œ`|Y^·Å_˜øRï]w€¦òl¿¼´¨‚™–Å´•Æ}0ÇLúÄó,¨mñWüHÅ›µ;qI#°ÔÈ%yº}VÊIöÔNÃj~:s±j¬_ý¬ékø6“| ͸ ÿ<4·;`çYpè Õ $Ú·æÁ| ;ßå`bŽE’¾^³šP$ šißk@25m­óÿóÿpAƒ÷ù£œH®ÛtËNHåwGüzµ1Òd²vKCÚ8agð~#(‰ -Z£ð ™:»ûo" óù˜\¯ï®ªš¨m çy•úÅTäÖ} IIðÖ-ò¹“È×Kz¤â ´h…ÛȤ¡0™3i¶ú=¢8‡½­ZVJnö~5)dEé{žç7ýPV±²®Pµå)Ó#˜>¢"‰åÍÄ*³±?Oô}†ªŽòVU§úÿ=qÕ>É\rD¤Våü¼fÔ’#•…4Ôîýœ+Îm…ºñô7^¨„ þ_ßÌù^4 Ìâ<ñŒÀcŒFg$M>š¶-XùÍŸT¼ot- `)Ì-×ÄZAkUÞQ[hsï…¶âIG´í¿F\P¾†ö2Œfêåµèp{Ë ¯Ì{Z…âJáqå샑Kªèœì$”›€®â¿5ëë ÑÍ[¼QÌhݵ}¬åïbDxP™­ð txîü‘ÎLRϘÞ,DbãGëŒi†0Wb¸Ì­”O8ž&Üï2¥)'¶  2úé±(·¬Þ$Ë:¥œÃNÇc¡ø´÷µó¼’®~ÆCU¿}‚"ö}œB}AP¬ÇÌNi{J_yPJ™AE§hÚê(¨)OÜÍp—‚†Ŷ9hÞOÆ^é-—è¤rÚ3 u/¹¢ˆg Úí}ÿþı?É ÓräFL¦9tæ-qpxÇBgí÷âú`è|)GûÕèŒù©ÓNCŽ\5M‚Ðå=<ùNRº…<Öä‡¡ç€ kï ô*×½²})¢7qy€½å]ùUûSëFÃv›mèŠ`äû½¦N‡ø£ž‘82Ž0NîÉÅ“¤°’/$Ó Ù—Lø`öÓ¶ÆHÁ;}•8Ïœ‚Åc.%‡rŽÀÒŸ>Þ’£°ò#ÃzW¡ÖÞ[ÑlSÀFÅ÷ + JøGgôÄdç ì\}l¹}‰¨ )Š‘8x"7™ñ+î£ì9ü¥¤I+s?_YG²¤}Ò ÉHþé;LßÜFŠRO}Ë‘5¤Úc$¹‡¬eïæ,ñ"íPÌ‚ªb.Ò /Ô,æ#CDDKÑ)dÚg7Þ.‰ÌQ¹§„óEæ‚÷çòȺt×Ã|ÆÙÛü{rµñÈÈÉ+0€Ü¤CÑ_©Þ#ÿ~âD# äm¹R±ô ùíÅ Ÿj¡ •AH\÷[ú;{ÎyìŠlðØh]æ@1Im½#·QâyÏÕªæ(S:§rŽÀÝj§ý.o Êžü>åúåV¯g5´¡Bêß‘·Qé¹ýFJ'ª”ЦT„ˆá1¹7Ú3‹•G_E Ú“$ܨw㦭´#jÓúFҮʠNôsbÁªpÔqeûóÏõÛÎ̳/= øèÊ«}ò¡h8Ҭ脦þiâ%çCÐ\»ÿUЉ.´pÔ²Id…–—?ßÕhC«„œÄ®í6´nO‘ó˧BÛÃÖy×8yxâN $¢}ÆUÚvÇUt¤&ñXV”D§syÙ?.ÝÀã½—€#ð"ºXßbˆ|6‡®=ç)õ?­ ÛoZeã23tÐÍÀ[Aö¹NÞ%`-%.Öw‰Až‹:qgÎfÂÑNtèp ô¾¸Ê/VS!®†MÀx­/·Âq˜¬<²º·q ¦ÛÊøX þÒÌ˜Š·òüÍÑpéK°°¨åqtR–Ý„©Ü–Ÿ›'åÝb†UºJ†I+#X« šwf_8Ӳ׆`ë•n±õ§ØÎ[RÿRyöxOjÊR}C¢±O†>³HâªÞü­F ÷­P€o"îÿ!ôv]›DqYæ×áÁ÷ÎT¶aÃHYqíéé@BOÜØ¬Ä×jH+›:f^Ñt ÷ÓüR\‘Á&g2Oƒ™¬rÇY†ãáÇBÓ[í‘"˜•q_!rÔ1¹ñ¹úÕ]t/l"Ïk–†Ç¾®ÈwòŒÒÎâ _ù7qû' ݹ—n‘`ˆ"Sü=YS™(vGså€;!m'LT¸JQZ:ð@B™îuªs(—d–:ž. /„Èüå@¥¤x×¼á:T¦ò=§ÅÇŒ®ºý6ÈGœkoUB ›C#š×Qsm·r:༟ÜÝE§e¾ZC/ÏžCý>gèë;Èhéq¹^7¼aèæ+·|Ý70ÜúíÙèD7Œº·¿2ñ1Qö©ür˜à®­ú+ÂS¿Â¨/ÕÁLþ4ŸIò?˜»Eññ…5,T+Þ`œÞ€¥s¿¬-JaEù¢ÑP‡)¬‰ÜŒ>ïd&}³Â°õâþ¡W¶÷‚Þî#†½7ó?—dh‘XEãˆÞ a$©ãy×ôÔIïú P¹d>oƒŽ9M!¹Mu·­R„§?;µËŽT¥}.7œðËÅ#iµH[¢ßÃâté¶¾l”OGŸ×%1‡”q$"¥?8™ýd~E+@*2¾ÖçuÈZ 9’Ï‘ý{ï;väl9uO*) ¹ÊiCÿ~F‹#¬ªÕÝÈ›2¥{qá1ò‹¬¦Ÿ¹Ùˆ·è5ÖÓPè§NpÆ´0ŠüÜÕ?fE¢†Wô"\QBi‘¬çÖy”rŸõìèDéìSC¯ßÍ¢,ÁUgûc(—XË­jôl^\|Pò•T¦¢ ÃPÅmÃ#b»ÕŠ×_üMC´ ÝØ–cG R‘gù[QÓ7›øÓÛ)ÔÈM‹|‰:'âµ™_¶£î–â õú&ê'¿Ìé{¯€†~k¬VÍhl7Áóš‰M]z¤2Ù8Ñ\=1I2V -œYKo%:N¿sæS 8Z¥±GÓ<‡Ö Ù×ÕõãÑV•¾,ÅŒ‡Ôâ˜L ýxÖUEÇtÔòðÒD§dçÛœ…ýèÌlœnßÍ….[ÏŸµÿ‹n”O«39Ñ­s¡}þ0ºéëq»õCWy yWþ¡EöùEäJÐx±[^¡ÂW9¡ë·Æ‰‚f¯ÆêŸþ/ÿÙ™ùW9‰’Í^’­ðûÜ›½›.ð‹×L¤þ7¤_ìÙž…t£FºpËÿ3™Ÿå™B&uŠ™~Zd5>ñÚûûòBÚ{} Š˜˜BmßLAñåKσæÿ»wóîËùâ¢9סÂ`0Pï4Tʰf¬ÛþwªšŠ/nêÿ»GU3z úř¬î÷âìw­CÎ\ªù²òß½«ÿðþß=»Õ Òìÿå½SÉÐqSͺÚ~_}Ó=´Þ‡ì²¡Ÿy+ᥞÙ÷ªþ³K5íªàqþHYm¾Hw€±éɾ¯o0Ñ<¡îŸS1Ñªß `ö@[­F)ÌÙfRÞ ~ î9UYÂÏ`1á÷×é×°´Üg\]+^½t‡NÀƒ~¬é_;XxÝ“6ø6 #d®ªÀ¿±Ó{]–`*¼U"ÑÙÒ \=5$N´º{§ ÷ß–N켎ûù)voŠ ÙÎ*I~æ(ÜïÈñ†Þ)9.­Úò»#µjwF<)%zæ±DzéDßïèJéòYý×zj‘Cä×q#+-ä÷qª¿ò¿{RÛjgû9Ï#ÿDâ…àŽ(Dšé>µK…"Î"äŸU¡èœøÓŠ”H_ú+xó,Ju÷¸Ÿ¡E™«¡µ¿}hQNs¦ù÷b*ˆîrÛ.Ù¡’Tñ5˜ÔEµzC“PirÄs§¨}róQC¸cœ¬J5³7&SDQû´Ý7Å4ÔUúɘæ“úü}Öâ¶Îh¨tøåä¥ ‚ŸŠ¼æ~.ЦikS¢ÛhžôgAÍR -fÒuÁñZ©JgEª¡õ›°è? *hK¶åûæ×Ú]ÎûC£áö¿š ù…N¿*ÅÅ 3×]zÉÄet‰&Ú£»b÷ÿs˜ºW´0‚wSNóë¸ ¡}tÛ”Ê!䲤YÖw‚ݲÐ'é¡×š·û4SŒ™T7^‡êW¾Ãhò üáã3( m~¾¢ù ŠCGU¥«ßBáè³Ã.†üD ûCƒ ObüëÎCýò³—†g!ß<‘ý@ä&ýTÊ%†±ð¼CC„žéÇÓK´wª=ÏKµºYA½ ßåKh2ºË=Oà#-í‡~§´Š¾^½Êø?{Q ¥´ëÐ~û¸õ¯qè°¼§RÍ=ïi‹²#§¡ã‰ç?ÎÍ$è0Èð*r–†ÎðœªÐaœ´›r>:òb¸]àFöľ¬Q=7ä¬Òz~ƒÐ£¸Š>õ$¿úˆíÔ9³c&¼úõµUwxí¢~ei}iø'4|Ñ0;X„Æ·Å’ì¾Û£i¤X1ÃÓShnñ~skÂ-|I“kTVÑò¡,ͪp2Zåü²¡g½Öka$›ˆ¶ èÎ#@ÈÃÝ;3÷Ð~lõï·,/tÔ °˜ßߎN‰C÷|ZØÐ™IøJ6ÿ!^íŸÑ pÊuY¥ðÿäaw©ï' #qüµø²-ÎŒOöÃ#…ŒáJ.Âf]K7™ftr{J#Wµ;±ºoس¡üêF8ËAñáÍ©ÓNÿ­ìÐ îßC}¬lûÚWÈö´s‚Œ·›–ʲ®N-ðXê'¤$[½¤…´´Qƒó^w!=Ê[Äí‘#üòÙè”ìÚ…,ÿŸo¯Bîgê¥ÔßסÐÄ2¹¡Xò¶É·ÛžPbÖ¾t\õ”zzÓDd©ìzvy÷”¿²›ÕX¥‚Šëý‘AÖ/ ½Ñë²Çú/¨2˜O§­é„jÉc‘9O †‰’¹?÷ÔúÙÎHÛOA=чYß™?ÐÓóŒg—šþÎ ëÜ€f»‹ ¼söÐry÷•Q ´6Ýù°£Ñ í4ÏðóI8g•øöf€Àmœ!Ùtô ™Êúg¯Ò ¡0PrÖ†~êúK:]…µg Q)0ZP»Ÿá];Œù]+¬=&\« ±0¥³fþEßf|õ*K¢„àïOS_£Ì9X ¢ -¹s Dj;ßYÀRœc¶æûxX¡yÊTÛW«¿ Ìçi„`ýÒÅÏ÷HÕ`ÓNƒ£³“þß]bLOÒÆa=QHÄÂùQýG0Wßr{ˆû²·ÇOf iySå÷ëH«Ú“<ˆäq3æ™ó‹HñmBÙ¸Þ ©ª?.nò}ÅCìoçå¹ÿ!íÔè†Àß·HÿXñpô@22†ìWOü©„Ìó¿ /ŸBV NÑűÛÈþsb5=ïIŒÏHó BîùÊC Û;È›Ýÿº·ùŸÊDèÙ­¢`âÎáºMÞä×½óÜEïE¦˜‰ŸE k·JŒ‰(õãóf™¶*Ê8VAò½ý('Lýåà9*оK®äA%£÷R¥¨â°îžý½Õ:V´üzß!>¹üU.>5tK¢#¦‰PsìÞŒB[>jغ탺7Iä/üôò/¶‘Ihø”ç©Û9#4®°RÐh^ЪA*õ’¬­ÓEHó½äB½ÒFxËYÈ÷#]ב¯#Èpìu•w/2æ³úM‰Bf³7¦»Ã­xx±éT¤^²¦}{ðÔá ²Çë¸}øû 9 8ß5(^B®e–åɪ}^£\äKC_5QÁܓ攇*éœ[lÉžG•“s—ßg£Ú×9ÁoˆŠ²W²y y¸2½qǯ5]=èÖ yXã*ùÙ u.wTµtA= Éñm¤¨?>7”âË„†…:ËE¾ßÐøÇEq&ƒT4ýuÃâù/4?‘`\!ŠAóhŸ åKŸŸÚ½|hUjv˜îÑ´Þ6¬-ÿ<„¶Ê;/ø³Ðîq‘¯×=Q‡²n‚L+è¨A®T~>y›Ã*¹7åW`»óÉÂt÷EøC“$÷ÉŸ v¸ßã¼<‡ÄBðöá#HRxµ^dmŽgcÌâ˜;\õÑFB?R*ßjÿêÔšö7øºã^»‹2ÖGÌ.m¨ÿ, 2¤ ¯eå!“ŽšÎ¿2d÷ ß@V=Í¥SG+=µÊŠ(¹T9#¸EÒ‘—¯‹bžÊù_=yÑ̘†‚Ns&ö Š(¬Z–Âü]EõÕ¿OœDñh>¢®è)”ž®l6'FéÕ–Ë?ˆø= á>òªt¹ño·P‘V&ȉÄ•ÖtäTtÓPeÉ—óÕ]T5¦ñ{È~ ÕF’¹«"æ›X¢æÉlMšN<ÂÈy=h×µŸ©ê~ãEÝ:ûýEwõÃGc—ÐpV2´÷ô{4žf]Õž@3¯u«§Ždh>½yëeØa´ä—>f_½‚V'¥/©’¡uï ËÂ~´e ûñÐ7 ín–§O†ýË¡¡îGñìjtÌáùsü7:s{Âr] 'þгøßf}áæêZÅüuÕ¸v´Ë;|¶ÿ î+ sU…?Aì&Êd ð}dùõñ¼6h“c°>¾ÖJX×®e.cPýà=Q—/T>Èù1ïGà…ùâ (;OÛ";â %ZäÇ›ü^ÁçÒrR røl5ô7öŽ4n2~‹€ÒÏQ ‹¹òPa¼,(ó"ªÓé®e«½‡úüA?a/5hNz@±©Ý m¤Câ£YÁðíj[ôÉs‚Ð>1OoD¤ ªw•9 ¾é²Q[­Þsº…Îþ™ñÛ…n7mi¹Jè–Òpù­]-ÄA¯$Ûs¤ÛÍI©"èJ\9ðÐë!t±ÛZ1¹B÷›?ʉÐã+s›WzrÚ.6†ï}[×k¡ÿRÒ#—Ù@T¹’¹CÃÃnñ®\Æ,0²,êhAÚcç²+aB MvoaL‘Ý7YÑ;3ûé©;£²`6¤ï7Ÿ_$üTÎ^nȾ‹û¼~žJ…¥·&?htßÁÊq)Û¡aMëá·©œ,Øp®ì.+R‡­œÃ´*O/Âï*]UÊ÷àïô¥P…z7$šé¶}ögI®§Ò–ÒP"©¨B‘úH ’ýz©ƒöÔHÑÒ[-\ˆTí´Ö«SiH³«4Eôbél¿?µ0eE†ó¾nž/èñ‹öA±¢TÜ'΢àöT ™3ÜzYªö"+š%~øøÙ& ÂN¥ö GúiŸJ-eäŠÎ¦<5‡<ùÙÜ»¯°-Œw8oÙãøƒ¬®ýrG¡µ¼ºÿ!Š<6uo#A1;k®¸/›¸_{=‹öPJ:y1ä,” ôó×'úEî¢,½àºƒ],Êå«àHjBù‰æÛëQñÆ­o~C´¨lÒèd—ÿ æ>gí¸†ªî?ÞGÒ£Ú‹Qk—²÷‡Ž'øð§Q†»!‡=ÈÉ[°ŸàÃowé$P' ø”É{!Ô;LrF‹ È9V›¡áT¶wÔÆ34(ÌkŸ BÓ‘o£-wˆÑürbÊã›/Ð"¸ï²ÝI ´|‘lõ4üZ5Í|gÜómHöyßw@[m“Úc´‹ ´(mAû‰‹íÏ.¢&ÉÜSDÇSQ×cЙi„ʯ$]ÂÏ«ÐÏ8<ÁЮMú_>ì7>ü¹¿†?qDóŽøJ¥|"äþ[ÐÙ©t 6}U¹§˜ ûKrYó‡h úŸkÕ69c ù¢Pîø[¤-JNY,ܱsƒ¢þ£Y’®PPÇ~…Ìaò“%g8% O]ós~¹)ä¾´ÑÿŹ4Ÿ4ï-AžEܦü%‚7£§þŠ< Ã,doá3qÀ§K—¡ô¬â«Êä(—zõg$Ñ*4eUÏd»@¥ü%«¢f¨RrŒ”´Xêƒú½:qfPÃD~~—žjæjÙmˆî@mMÈ ÅØ<Ô¥IB½cî¹£‘ÐPÿD#¯”àw“+$}QÐÜô±­-í<´¤eg(,8AÛi·å÷‘ðíz›ÄÑÚÐ^ñjûb¬)t¬LkSB—ÏÇn‡ è!:û£ô>a~^°á{¢òúvZl­Ì&`ÐXlkEE†{¢}œß=…Që õ™Å¿0Öÿ‰›æÖW˜ðÏà·þSG»>s¹3ÂMn$¬¼™@®ü"ÌŸ¾-1) ¿*Ì·²oùÃbÒaAIº2XZ´{Òim +Çþði—?ƒÕ-ÃÏ2fõ°þBPOÉä>lž9 +ø¨ ¶E§â”à·7ë"×Kø;Ú×2úunø³l"‰£RÔ©{HJå¸)|]Ézûî0‡õ"E+mѯL2¤êh¨P廀4“‡=Þ_F: ÝÈpúÔÏÉóUȸ£yù1Á£û:Û‡ ’#ËZå™rvdWqá纜•&âAú'žÆQäÍäwtQy#ª‚´Z¥¬ö±(4aX0æpEf‰£¿kGq9Žb‘”(×î7ð~ŠÒÑjÊŽê(ëb c°úå9l„4þB…e çlêpTú>óéÍÅ:TiM}ònLUï±S/ªÍê˘Ëv"v>o>Ƀšñ¿Â¥ÓñˆZ&UÇþ1Ôa³3âéD=ºÌ‡#ƒÐ€çtº ¨¡Ñ¥@ócLhrC§Ë…»ÍJâˆ,‡¢%‰Nï[ ´T=w~r[­®e†M|zƒÖµžÄÙ±hË×-~×víîTš¦ýË¡^^×ïKFèøÎàC¯äItæ°É;bœ.‘ÊçœÅLþ7‡YÉ ¹&9RT¢SƈvšÞôíQQ tµÄ~^~?O&r‚ïbG¯‹A!·½?Ƹu-ŽF&GÖ šJ&J9*éù£f⨠\[šFÀó”f7¾½ý Їúð)&pu§˜Lˆ…[­óc¹há³¾­r¢”TݤoÎ2‚òA±. Ú€jmÒº ~=¨w|úÌx=šµÕ­ì’8¡µŠåK«|s8²¬@à"&Ч²:yìkjÙ¡KýVŠ„4!/ö_„nÁqÏÊXèÚ>м{3 º"ř٢ø K¥eøò—`è:Wë¿p ºž7û¶Ì ݺ%DKºÐüÃõl_ú€ä[ÎA¢h¼r`$Ù¹yƒo¨^X‚M’ºÙt•OÐÍVÚ•¹HðHäµ.q¨ª|úᜠ|ÙÌФH†âò¸á+Ë¡HëLJåU(84Ÿ0p´ò¹k”Ï)¼†Üâ2]JnÈe“Ê)v5†œ¾%‰‚íÚªIo@þõ‰ “FýP0ô2©¶H>I'mÓ]€’cÁ ÔðÅÖ3sÅ$0ºxžù ñ¾¾'VÍ 22Áß…vªB*LõÜ¡Ú1a ÒÃjd|Ï~ š‚Ú=VËÞÖ¡¶GÁïó¤Ôe2ÿÍI†úÕ÷s—Ÿ9A£[šJ‹Å,4M /ˆ­>¯¥ìû<ž‡Ak_Yp¿=´ý>¸<"ùÚU•E2´¨¡ãt¤íæ°tß{Ûò9ºOš~Šë)^=ŠÒžëЧÏ<ó8"9˜öa&Ž’AÂÜ62Ûùäÿ~B~• ñ4€ b}¾Ã “e¬¤É0ý”åþ6ëGøÝÞ’~׿*ØävoÁ/–…KU5aQ§ê«uÍXŠïÚ}&-+”ùÂÄò÷a5ÑèBëÅ8X?´ÍJã-  Â}u³Y°Uõyxãèìô^ú-Z" ³—uA"ÿ³’¾‹ÙHüwÅå³=îÉH;‰dWEwånu"Å™äŸÔ÷#êôa2Ùzo¤¹LžAøisò¿þÒGá×35]Ș«û<âý î 8”ȤŽ,a†7/"‰u‘kðûHö:Ùv#ôz–›Ì5ž„–l߂̓P§dÓ{8“’°þ?‹0Æ>ƒŠ¨Hõ‰×ᡇFá d9$¨Ìè"|ÝñøR;|ÒѼ4‚Pô´ñlLÁ/¹!ebj/7ŸJsÊ=ï›> UÃ;¬Ž~CP¿Ç¨Âç–04Í-&\q‚Ö^ÒÚúðMí×õÛ˜ =Yc-õž=tì>ó¿d×]¢<‘×Í¡kU¿‚¢ƒºù¯Æ¿í…®zîÒ”¿½Ðeiú"tûtΩi’XZŽàâáu‘àÅóoÍÐ5çbœ¹Ýùµ»blLÐS2ÉÑpå|'Z Ïë)‚¾Ûûªü†Õ=TgaÈøþ•`Ÿ¿0âØô@Ûó:ŒVÿ’}m ã_G¦¸ä~Îë4rm˜>aX|ÔR ~|U±%M†ù£Ü7Œkc`AñŽçèóAXÉ/¸‡ú°Üžî¢å «éQæ#?"`½´R›MÁNÚÇœXïøëÅsZ*‰ò"D{b³‘DÛ “ÌI÷LºTíÝZA²g×bˆø‘⬿ÍQ:¤:š|û·”9ÒÜàÖ eµGÚ®†ƒ fÝÈ ÷´øõÍKÈaB{ éã­¨ùdZN\%BVÞ"%~×`dk¼ÝÎm9ŒQÝúÂûŒ‘+è¶Ýäˆò¤dÖ~Ž8Ž|Ù;êÑ"P@à|à`©9 žKÐŽœßA¡ƤŽ*9~çåþ[Ê(Æå<Ðoˆâ¿uÅvÄ£$Ù@£qè6J«5lÈNM¡Ìû Rº¬÷('÷˶*Þå³Yíæ„QÑÕhÙ_¢²~̦¢µ!´QÞM!¿ª^ÃÑ z1¨1rA¡!‘N½Ô:„5†hédÓLQËxLÂËÓšàÑãû{y4ÆÏßûlêÖ×ÞäeFí‹ÇØ£‘Ò틇鯣‰’V™){:š©\% ½‡æÑOuÄ÷Í EZŽúD¸+Z~¦ŠSXŽB«AngúŸ•hCû²œ¶¸m ¯´oŸôF»'ä¼>Ç™Ð~l®0ì@*:¨Uïe%}‚Ž©óÉÑ\ ȩ̀j­.aUxVñ CiýÿòasîSšÏ¨¢qJJlÍU†>A.°JM¿ç8B]¡Ëk`þ¡¢'4ìUž¯gÚ€*™kÁ4Tìð¹•=硘k¸Õý ¾õ‰:ZÀ ²Ê+òíË!/Ñ%𺉠äªúšõšÍBÎRöû/¨!ÇLqÿ¾×³›NÑ}òºå×›½E @Ð=ãÚ¹^(:ºvÇ]ò,!×Fži·‡2«'‘“ç¡\þAàe6¨ òû;ÝsßOG6,AeÏ¡jƒÃO ê•ŒÉ½†T¨¾,úI—Êj4ù)žìA-=×AŸdR¨d7Z߸õü_c]z¡!`}'¾A šˆ¢hoë~†æž€¯¬J å‡“AÐh$´Ý|^|zõ|Ë«5Ÿ¯…öï‡Üg/Ÿ„Në›AœŒÎC¯ˆ~€ž”À…WÏÁ÷§Ž×Ûˆô ¿}õs1%×dR§—r0r'wjÔÌ F7ß(ìq¬…ñà®´Ÿ®>ÿù_Œ¦óC^÷øèºç|ƒ™-[ÿ”Ž"˜ãz?{+Ì~ž ÿѳL Cq‹¿7ma鈵ÇirZXÎu/}IàVÝXÈëñYXkû61ÓW¹¼÷n:Äi¹û'^<Â=ÆÓêÚíHÆrù–éÅ6¤ ’=Í”›Yb—|‘†èÛô©4e¤=—J4è†ô5­uÍÈxƨõ‘áÜ'zs>ä²h©X«E¶“‰L-®#G{ž£ ÷ÃkÄqã‘/|¶ìsŠ8 x.%=îrB!•ãã7©QD:”¶‚2ÅÜéejb£pÿúîÞ#…Å(ÕÍVrëÔC”¥™9Ùúr åzƨ=÷ö¢BI4ƒ%*½i ©aB•‡kw1ªUõÊw-=PíO—L09jì=Ê*Ïü5Ë.<¾d‰G¢šÅ½nS Îƒ¦«’…¨÷̲A3“O«Ø• {ÛÐhÍಆYšJî±”k¾Žæ?ßF6 …>K§Æ¸Z^˜¸Gt²­ž¿ñj*šGëq*Ãái´•=ûú2[*Ú×j ;¶üË¡ÖC–ëèøæ¹PeèOtfQ¬{U,.(Tuôþ7‡Y.ÂêâR©ïÄòwÚv®º.‚ü¾n2ˤT°óâº¡çš ô|ȱ=_;Ÿ—På¿tJžÝ—I&“Éâ¡)êÅ,«a ´*Õ'’Ežo|7=ikC¡ýúÜÙ&½è“Hæþqºè‡l®æC×@QZìíè&b4›œþ]1ÔÙwD ‹ÙGþ·[t&¿M‹œ„Î'ãëN ' sÒQ«57º‚NÅN‚nË'cYQÁÐcÓè¯ä½Q+qÌ$²ÐG!K"àRýÅFI‘1U0X±û·„zF’ÊZ`ÔÛÓ—«ˆÆÙÅËgrÏÁĬvûÖ©|˜&:•˜?,š:— EanÖJ“Îòü*6/ôh| ‹ãS‰•‡c`ùÁ”Û²ú;XuŒep!'†uÏ/·Rƒ,a³~Žúò»ç°ã´ÎKü˜þʯ¸ú¸ä!QìùG«'cd?¯ßÛ *ÜS½ª%ø9’]IgÒ´–D %³SÙ+ªHÅs†åv«8Ò¨Fxî3{ˆ´ÑšT m…ÈÀüb¦rö2^ùÐsçp2MG¼”æàGfïÃd¦{ý‘•Î# [ÉÙJO®ndŽ#Gè#9ënäòŸÞ}üy¢ïuPÙ9"_FdŒ¹~( °žlüEŒ‚Î¥1óÚ(T‘ÓЮ"FvÍ(úçxéèzïY äD‰¾¨7œvœ(MíXÞ_‹2×òé‹3/¢k×ó¸Ø ”ÝËó<Ô -å‹.z¡²Î]Á—IxÐÁ/{œŸU½ûRº…Ž¢Ú½þ~˵WˆD1·äÿ|ØíYÎì|µt åcÜ >œ.º©VŠ:©½ÁA5—PÏR¨<Œ N$JéünG#§éºDw4q»¯M“÷ÍŽ7<™šœ@óב±+ǨÑ"'QHR`-kPõî+:´šüÈG¼möyžnó8¶&÷½.¶’|XOÚºûÀá~‰=a2èpØn;¥Z S¼^ŒH›¢3ýåc ©ÌŠºÕN8TÚîû6÷_>lðUYù‚Ú~mÛMÅhÖoÌàñ£9]ÄšÈGaýÛy£²~ è¬û½çÜ{¨7Œ±2¯…Ê$'»Ì PûH²S>_ýâ²ß î/‘ü‚|OgؽþÏï„-N?ƒœO çb‹àýV!QfÓcxïY±åÉ 9›ŽéO!O.àV~œ|8} H‚Ç ƒeNôꟀϯA¿—ì ”šçîµó·&̉^ÆK¦ üÌâø~k¨Ðc·¨º·•¢yªF´ŠPù«ªÌ@t ª>öP•…çAõ­yîü¨Ñ#ÙµûãÕu½¡ÎxNcßêÓŒ¾œÒH€F.bÉî¸1hZš"›ƒ¯Û{­Ó õ/ Eÿurø&i{ƒ'6ÚÆn PxCG¾Å!¿dè’âñXa˜õÕ74ÒÌ„ù/Rnó™-° —¡g~ª çÛ¿úË|Ò×Y`eظ—>ï¬y›_X| Öw™H™ÒNÁfÞXù`l¿Ò«úƒð{æ@Öqh‡ÝÈ'å‘X÷š°| ’üÊZjÈEÒü/ÎoFò¸ ­#/ò!O8/çu¤~ôL¸¼¢÷~éS x‚^Ë¢”ÊbyÌÿ„M1!S…‰úŸhdþfEá½Â‹¬;NJ§<®!‡ÃÄjiã%ä&ͶnðBÞ­€©‹õ—Q€×`¯YÔùµm8d†Â­Æ E=q(FF5Ë'ˆûŸ8 —÷™¢”ï½Û[Õ(Sãµ+¼-„r…â7]¤›QáùÇ/…¬Q)¤ÃrcAUÎñíÜ÷BUfÇÞ¶b&T§Ðeä“MA ×Óì䈚Nû¢DñȧÂÒ·ñ¨S}ïáµ=k¨7ñÚªºÈ Y{Šr¢±©Õù"}@ÓÀã ‰/íÐÜ‚}œ¢ÅY¾D"s´ x¿ŽVEÜðà#´^²óºA‰¶s'Ïml ]h=„ôä¿â†ÒÕ¢Qt|ÙܯòI÷ [Ú.»£Køù®ôNíÿÍa–zû¥ãRGw?þF›VÒâŸÎÈ÷ý@ÇM¾%ØÙ£“ܵðº·Ã×®ŒnBóvs•DÐ(Ôî1\f÷;•A­‡VCy’×ãŸÎP¶÷çGAá(¾N|Øèãeøt‡©ÄÎý/6WÇøÃÇ®‚öè¹l(ÄÄÝS™ðièÐ×gÑð…ëñÀåA¨b›þ@YHu„@^N M‡í”|žAË‚ e­I0|#Ù{,1’Úí¢ûשý £º°¼Þÿt®ÿ•’Mö®ñ 1)MèÎ$ØÖ®›É£Ä— ³;±òB-tZ²‘ò]]„NÕÐG&^¶Ð­fúø t )¤MèC×’K­<ý6tÿz?ð<0zE—Ò|¤Òáû#7ñÂ{>Я¥ÅVcƒ*Wï/¥ÌÀðƒQo¯,-å #o˜„±/Kò¤90ñ°w×¼F¦žŸbè…™ÙKÞaï`ÎÿYëPüÒ ÚXñ‚Å4Ž€]• X>"|*¥eVéZû½a§ÌM“ç=lú·¹ Ò8Á›ÒÃóïáÏzƒåHäW$º¡·Á(w IhWôMÞÙâž—¡_ö™#™ÑßÌùte¤ ʰ ?”£2™{¼‰z‹$ã~)ÒZõ·ZÄ"ýÂiɲ÷éÈèØç¶ÂØLí´ µ:—ùØ]÷ÂkÈò—¿%ŒÚÙr Ù:H§‘ã¶.ç½ 7äºlþæŒÔ.ò<<6lÏg|¯EhΡno š2$Í…£PŽÙ¶,uŠ(ä sz èð™džAZÏ•ô<ï ïÎB©žŸ‚ÓõQF3ël†,Êî”Ì{F¯¢üâq»Ç¨¨Í±Oð¹**9ñ”aõÆ eÛ•»P´úe6J×36Ê´Q<¤hkžD3}(í¢Bç$žÙ¢ýèé¤ë?ÊÐáÐÜýw—ÐñÙò[I Cg:3Ñí¹t! }ñGU Юܷ ÿ/Öªö÷Wc E¾ZƒW0šiþýQY®‡77½=¹.ÂúÁ’߆RÙÐÉÏÅiðAꢂpèQ TRiì7>F¥µ–Dª!ð©Ýó½eu|¼úøú}ózÈâNïf¹q9îp@ŽJÆÄïáÈ>Õ¦kAÙªŸäšÂïÿÇ‹‹¦k¹amä eŸ ÿíJM9|Ìs×Ó;åŸ>Ïï[ƒ“ö’Ð'êP¦×ðôX |yFSâþ,ÊÓìÔÖ5A…¯DŽñPT´—Ù$ •Û!*LìPUR$×¹…àÅÙ‚9ú/„y‘wênôY¨õ£œ+mƒºÊÔ»²…KРäe(=GM{­ÍX‹8á+yl«ðIbh%šŠûA# m/¦ÞØi©Ã·²‡_oC÷²ð¯ï’ÐI´_¢š°O™å”kB¯ÔLŠqNô­ð?Ù8¯£Z`Øþ;_¾£)Œ²Dì,ƒ±'Ä"A’’0!{EYÕ…&Ç+ô')aºÜ¹ëÑ•øÑ6’Á¶A óûûˆO=…_AÅÏ^tÈÂbŒ…ÎFa ,“tÉ+ß׃•“°÷T°ú7 0|„ÖC(ã ÿjÁ¦„o=]Š lÓäe6>«‡ß˜²®(÷þ^æì"NB¢Y©ò;Hé`K烙{oÜ·®Gr9ËPi¤äyô¹êRsŸ=Î5z÷ê1_;]üéÊ:òêÛ˜¡ÃVòa€82_àŽ¸¬…Ì—{Œ×ú ë’s7B|}œí‘¨Â äº9‘¾—ÏyOqЉ.•!Kê ZKA|àÏÈ~ì) _b¸—ó:EŸ“¾<—‹û¥?©«ÿC)Ö­çáQæ2½bF†ÊÅ\X43­@…àÞÊuÉTòðí?Ëá„*ú†—¿éh£*¹×bšPª3,RÐõDg þl¼DÍmý—ѶñÈìO=šN)Ôù‹)Õæ™¨/¹5¤W“€†gª/ŸDã7Î'e5ÒÐô{y+Ù E4¿áœ*n‚÷÷Ëc‹–/\’9[UЪñ…e^‘,Zï¾zʨB„¶;ÂÇ{MÑ.¬awkwç_ÕOØù»£ãóÍ'Y3¾è̸orÿB.½ù’í„æÿæ0‹ç…T †4uz»{­¢Í-ãÌ®O‘·&QU¥ ¶O0¬¨Ï2B·ÆjÃ!ÏJhæßh¨Ê”‡šs:·ÉG4¡rÏÑZ‰Ï½PÎ?|ø;U ”âóxbŸKËXŸœ_ƒ¢Öèöϧ™ÿ“Wc.Å<ƒ‚uÉèàGðQ­z»1×ЦÇÕⲡìð­¿Ì¿¡2ˆdØæ5Ôn_’^`€Æqê;[ÂÐ’îïBýÚ&-÷½íŠfü_©¡ãöø•½ Ð9|á:M ÁkïâN}ìý]_´K\övB—ÜTD@`)tÆUZŒÊ:A'YЩlê2Â\)#ª¾ âƒJ_/þ‚ÎJb™þe芔x[vºC¢6´z>-duÛ Àw–'f&YòÐWÚ7¼2Y ûÄah5øù æ0òÕðÕR6Œ‘ð·[‡ iOÉtáH˜R}©ÍQfî²1ˆu)ÂÜÞòÆÇçÊàgý’á]èj|VMQ–vŽ»›¸ ÂJEr„=LÀÚ×Ò#£…4°y  _× ¶¿]Ùìúê >§èUÎ ‘›ð1é¿§‘x¹žu©k÷ñYIù‹dB6:±¿5‘¼eã׺ؤ|¹©Â܃ԅ>u|‹HË,û.»ý*ÒÝÛx@ƒŒZ»ó§f$©äá±K•ÈlÜÔ«î…,?»¸4‡!Û ÕlçYä¸òwÏÇæyä:÷ÉL¬Cyͽž6E¾çÅzµn£éWñWf'PP›Ô7m¶ …’ć´jP„ÛhçÃÙ`­ð¸õEØÅ#ÐòÌg+”"v-X²G©W·­åîo¡ µ…KúÊŽ¼TÑz (vã-mü{TTÚ}ÖN†Ê £»:xðä.íy+AT½Ö–¿Ð7Œj—Ú ›\?%L~u b’ÞÞÚA½7¼£g…Ñàù’徚4Ê,š'|ÂhòyŸYðôK4ût!ÿyç 4¯U]3C‹æ‹?‹ŒdѲ?ã¶õ´Zÿñ‚Îx mxÿ~°ùú m­Þ§;¿”B»§Fßî©n¡ýÈKºe=ct8x»'ÿH*:&ùdûZ4 3­Ä/G•bty0_"7Aàm^©_æ¿|X¹{»ª]æÓãöY izn{L/²?kàè°^„µTº¬®[6ÐqMUN|Uj{$~¸7Ÿ"øGhû'5 ”RïõfMí‚OÒRô\©¡`(å_òsÈ'SW>hã ¹l§3⟼÷à¯i¼«aNé~ï(GŸ?{· ÙBrǦâm!g†÷QÀäÈûYÔHàuè…ÄÇ@{Ç ÔS†G ØpÕ£ø­(s¡AÊ{(;ÏJœ”_v¤Ì-vú ¼æ…¨iÎU¨˜Oi=• ’ñ>æ&Á‹Aº«)|„y±ýÊ«ú$¨¾,¨Ð0á 5¯Dc|_CíØšîoýÿ̽gï©ËA£hi‘Ù9ChfQz¼*rZöí_Or€6nßöÈù-ø&§˜öE& ÚƒË7_,„Ž•É-ò}‰Ðõ¦.ÝÃNzüdäRÀ÷gbý2ß ÿ·D_?+ EÕg~Jƒ‘—{m®Š©Â[ÌTkd0ŒgfÍ=O&I‹§·Šn ´Ðhà½êIø!éG5‘å sgÝ-YùàgOóʆÆ3XÄÖ¼òÈç°”ùPyy[V„L5ÍV¾ÃjôQ‹“¤U°N·+íìÀ iÔå¬nL°åÍó˜,`'–Qƒ\XþJX“7R QøìÃòH"PkìJîY´ßy¥[d ã¥~ ‘"‡ˆ…Æ#©2R®s#M‹åÉøŒwHwØ&ý¾©"2„:}À­ŽLòs#3¿™Õñ‰ß—fdOO‰J»Œìç Å%u!ççŽNéyäiËQä¢Fþ[sM A(¨H!69Ò‡ÂLšé>—PTm×¥ ^ÅXmŠù|P²Ð,Ÿ#eø³ÏÉ:´ œOÁ ¯¨p~;I_¡•,8Oô @Ñ+óœ¼dxh3ˆòrØ1TçŒÿý÷^;j Ùø*ÔbW´dënEmÖ›ÝGÿ–¡®ÊÖ†gn¨Ùälcû0§…ö”¿G¢3Né‡ÈÑLŽ/Ü˚͟(6®2 EºÂþAUG´,MÌH'½ŠVÃÚ¢*íhC»Rôvhm ´O8½D»ˆ¦á“íŒÿr¨Úê羈Ž)†‚lÅèL¿çÌ'×IB.ð¾·¬þÿàðtÒKG iK¸%þ“ðúw-³:š‘'âó{³تÐ{5qºB“þl…A“ž`›Ó·@¨þ¦A³¦gMX÷ \sðÅðYS†ñ(9eÎÿqw>__ú.à E|ì?xŽKþßë¾óoCësµh PpèçºÌÇ6(\ÜkÏU ¥Ngßòô”C¥Y§EÁ*@mš¸%[â:4>(mV4? -nzu•ÐV'¡](¸í ³•F‰ÐÚNΗü:ë†ê¦æ¶¡+†RO÷ÞqèJòNà;»wI©¡ÓafÔ*6 :Š–êÔž…ž×YvÀë0t4&Ë›žïÚ2í“ ]ÖÃÕ)Ç ›ÿzŠ_ä8ôÿ,T H€Þ¤*ŸñöèCÁpQÂü6 xú™SC; ¹H¶ÙÞŒ„‘ëŸÔ~úÂÝ{‹êLuo%¶Û½» “=•ÜÇ[=a†«ä]g1Ì>Ûˆ°\o‚ŸfOétˆa‘÷¶©ŸìXÊOõØ^r‚•+i¦]Ž6°v³D4Ðü,lŒ&R¼¯m‡í‡Nã\ü¹å£òqméÕ6™ qOÒdôß[¸çćÞL©wHº9|ÄÜÉ›â+J‘òly7ua6Rû̬ŠìâÞŽôÛ¬ìÞ?mDöäd”ñí-óC¦7ÔÌ›ÉÌȬÊ,lóYCÏl|àC¶fçпã\ÁütÁUä:.°>ã÷y®îÛX{¯|ÏÌSrýçõ“;,(¨"6>Ë‹BáìÂüIQ„t’}ìc*о¸tÌõ|ŠŸ›¾üŽB %ì‹Ôï–]E©ËŒ<î™x ƒ_¾òM.ÊÖ< d{Šò?/T=BE±)… ’o¨ ²2?£ŸàÁsš%ï=2PÕ¿©ô÷Ǩv¦E0Ç/¡'µ¼åÁ‡_"º¾<šA-Ee#†Á·þ)¾zÞu¾¬½)îÿ‚z%ÅåÝhPÁ}r;ƒ:·¢"šLÙwil¢ÙDÅ‘]£z4ÿ~/ÒFÃ-úÛÿ7¡åÔˆ€wÉ-´Ú½{ж’m„ëÙo颭m•v'Ý´‹¦-îMDûáÑ÷—ýè ²¯V}9:&læWœ$Gç½äÅw|h6ÙxsœÀ!åÄø±öÿâðKµPf zˆ2Ÿ.äBSú“I<Ï![i|Å¡G^°FáêìÚúÚÛŽêS*rB-ç·'kÔŠP>NÑþa‡0·ÕN쥄¢û;‡wŽAÎ;·óþwÑ™Þú(äDWå}Îg€l÷²U­!]Èʨòòw¢€ÌjF¯GÈúþ­õ–ºäñdu§1þ¿÷c ’"PÒ‰¤XAá„ÞÜOÇðYŸ•ûg9=”HÜa¦e x‘_·ë|Ñÿ½oªð2!³p%™²CySC¼!ìÓ;âœã„yÑ܉ER*}Vp ðƒªW" V„}D[Sådý¾o¢®{ u猂‰°ASLà>÷uhê°®šºD˜C‹I¥ƒ U‚v'ZæaN,È©Š‡o‹ÍG㴡î©~ôx÷¡ÈØ Iè®ñ©jp£…Þ‘GjÜóèÕõʃHvüÊRô€&Rh]:J‚T*Úù¿ M¤ys|-Òö$ë5Û!º†Ü/´DÆáÃÅò. ¸¯h¸ç¨0²|1íÌ(½ˆl+7Ê7È)‘ó¢…émGwäQÓsŽÒ¶E~3Çû-Ó(0ùÇùPèCìŸTmgéÝæ ‹oEñ“—/Ô¢BI»–úêñ@‹IÊGaüÏ&r‘¨`Áí“ Æ…JJ¥óúžoP…4åäñõ<4ǯ½FŽêÂG–ÉžG s_›†>/ÔRæÛß|‰ÚZt§Ò÷[ î¥üz§Y6Ôÿœºb2"‚Ftþæá´[hrô’ ¿œ;šÝ¿eô]ò'šWËѬ}iG‹zµ%F;7´ìé-T:T„V+)Jñ…>hí9¨¼€¶ái–q;h÷äkYëK±9m½Ò#Eîä+ôÏDÀ–à›$Ú¡yèüZy±òž-4zšt¯mt@õAÕ¸ñì3PAtaàðÝz1ŠØ{^„O:*_ùº7ÿíLj##ksû§ãŸ>ŒÍµæÕGÃÿô`üO¿Íÿô\üON ×KÊ Ñ{+~F+ùZJA‡Ç1ñ&YèÌ1c©d*…®[×Ä»å–ÿ9þÏûîä¡¿XówçŸÇwÈ]·å]8ðïùnRh…Á?ïúäJ4ûº‡ç*Ⲙ Wh5Éo+ëßÞšØ!±'.u0X×¶k0¥#âb]u»£åiÿÞ…ñ‹ÑA¶ã`òÊðê«E0ýḑ‹«Ìʰfì…ùîǃñž°ð餻ÇÑ$X:?t1=0VÄ^ÓY^­ƒ5éb*ÁÕ°ñôއp8lë¬tdPÁ-# A1^$’”9§„Ä%—>¨Š1âž#†.LŸ‘´äÚ¯—vÿöÔH…žäŒÔŠNRŠ6¸7Šß³Sé5+TÝá22=­G¦Ç÷U7žBf1§˜_N ËWõïBÉíþÖSôËÈáêÙÍžL‚\G$¿åkE_¤ÚW5‘/nrK­ó ò/ÍßΩEA #­ìgPè†t°jþþyK™‘´Eïùjç ¢¸nÄÓek”öâ´xƒRiÓ!†Nx q¼^{£l†wó|dÊ«Ž+úeìEEŽæêÿ\?«|8æfÿäô :¿¬€ª·j멞œF5熈ÖW϶²ú>,\ yaH‡Zh¬*Ã#ÃdŒm’¨Óh×r0õÚí“Ç´eÐ`Dïêè£4ÚujBS¦dGnc4§¤š=àöÍgÆù>E‹Ý"+§Ñr™¥ªòÂZSòˆÑª°¡D$qÿi´=Ú=jègIðak²ª¯:CÞ•Q’sè ôæCmå.:ÆûÚë«ÎÔc7¹Z£Kh>ý t¥ÞŒœ¸ò_–ܯ‹êÀ@¿cw”¦ÐėͧúÈodÀ\Ÿf÷¾9¸¤Òm|ƒöâܸ’܇ÿô×t3–ØR|Â¸í»¤àÞ·÷ó?=SÿôÖVºŸvTƒ±4^Û‹<Ýÿ»·fämÃ-6z˜e|­…O¦aþæBj2×UX‰g” ‹¿74ΑÃò³ŒH¥ë°RE¹À`Jk¼ó¶éŒ=°þX>Gd"6aÅñÂíÿpü»še¨D`v3šµµ‡Õ‘Ø§*j¯ã©¥­a‰R$Ý!ÉýÔ„äcI›e‘²¦‘SZà ©ZÔvï ­âѧ†×‘~¶é<ÝËVd|˜öàn§.îs<És'ÌYlÖ¨*z/ ›ÿ{‡c^ªÈñ#äyÑÖä~3tÏÀó9ò}1‰ çŒB>›;ã'QÈÖñSÜ>C¹²Úa“à‚b»mÁ'“PbSía·á[<à?ßu¸ø:Ê)j榠‚2˜Îü©Äév¥(¶•Ç2[ïᡬƒ¬ÎY¨.ýsf°Ÿ5Ün¾zßÔ‰ZÖ4ï¸9¯¡¶gòêºÕ8êfz¼UþŠÄ«7Û~žC#7k6-Ç#h’ço·ÿ+š RÙÓøÿ‡!~¹ Ãq®hÍÄztf¹Ê,ÓÞ —À¦Ûç/Aº„Ü¥q–Ô–>¼Ø¤&¬ããñojð?ë}ëH”®96‘4¤B±á ÖcO¬â#se¡Bƒ‚ wXxéôOþ€üÞíÙ·ç.@þW•°;ŠácB¯UëB” ÉSíJzö^©X¨}÷‹ü854öè¬w§CË‚ø#MÚNøÆ°Za[íî:'½b¡cŽ,mYXºTZŸ0B7ÍjÇýŽ]öJ dáW 3®æuoµ t|·/V¼E#C¦CÐQQ·©6äç—åü¡KHºÿ>Ã&tÓ}•ò”´‡%G^©sèõ;}Ü6dú˜æ#Â%c öÄt»f ñ˜Ýóy #6ýÞ9ÀèøŒ®*ßO6kñ#ÖÉdÙÙü˜î¶ù(Aþf ªö ðß„ù…÷—M9óžÁ”*5,ùI/W“-ÀŠÂr›üYXS<¹ô"`#’î` •+l+ŠKÉ!øüÇ÷ä^$bVˆ;$³…Ä/‚sƒî(ãé<îJ•ëHZÅqÊoœÉOP—/ô#åº+çåÙ‘ú0{mÏôîçëßg_ŽôG4[â'G‘þìa;'d ?îõ3z™d³ŽQ!KÝÏW?#[Õ¦‡ú}äp±ù^ªu¹F²$ìÇ›Ã2°Šùž‹“;ؘ"ÿz'±LËc”I2)¡HG¡€©õ?n¼(¼ÚüéŒï!T=µ¸Ð†â¶·ßÑÖ¢„6›»ïC”r&þâäg€Šb?|R>²Øénw¡¼šVþn#*Ò.;Q/n£2¿„#a¾:¨s©ãÝ‘dT5¦eãäòG5 O­Ê! ²”¶¡Fb 1å'QÔbpÞ‘’oÁ#EÅ ª×5P'ª7£E1õB•ÓìÑà>s¿>E$ôI; Ék© íƒÐ,å[éÒ šç±$P£G‹ôø¹Fh™>r¾¹ÿZåkþ¹È‡Öuƒê÷›m¦Ù”þz¢C›÷„/Úë<Ó.u?‹Gï]j‹=i‚m®ÂrO¬ÐIôC€£Â$:ß·Ýô'YC—5[Çãvtèª¼Õøc%ºnñ€âï(ã$ðî­09ñ^.Y5žžMíª‚•v­¬½UŽð-«sh # jˆ,[Ì œ^‘Ï7±ŠÅž%ˆAáu×_5d–ðÁáø-íI=ÈÍa~p—Þ7¦¼~@ï(¿Ïy¦.A¦üQnÿÌ&ÈÐãH²£z ™æD>jð^d1Eìlä†5ŒB¥4|¸ôãbÔ’-Ú±(4'oÀ§ÚW‚R3îÿæªr‹rl×9¿Á·PZkXÍ—{¾ÐWÆpo@¹üöÇ¡|PÀÝÃô5T„T¼=8•ò§ßÄ TÒÈËݪÛׄø§ †í{µd„Ô^[õð£ß‚zm²w2sÐÈ9YvI1š6òNWË@ ýYÎs†yÿúÐÙÜîÎ)&h¯ˆVYül®M‡ßvgB7¿ïƒ){#è•ÛÛOú®S»Ú6èÿëÃÛ$J®¥Ÿ`TÀ€èŒ¾Œ½ˆýžÈq&Ë;#Íã`rÁ–®êØ"L ½Ü"’‚Yš2Cûú˜÷Ìáb´†êݼ¢8Xœ½aûIP –-û¾%ÁÊûfÚ†iX£w}¬—¨ ëÁ¬~cª°©L—baÛ‡ì5Ïñ¥Áï ®ü­+ؽQšY”eŠÄ–Lñõt®HòçÝFN?’V’FÞk!Fò˜˜#¥´ÂHyOâç~k¤NØXŠkâ-b\Hÿ<þ9WÛ5d<®uc,™÷I«$ºŒ,<í­™kÈvXC¦µÁ 9ž³Z\XDî£Þò_Un Ÿ‡ÑïySpжPÝXB! ¥GW~¢ÈïÖÝT«Tð†ï3J¤G<µoÅûZ¨¢Ø]Pv9üƒŒ¾ ÊÏì[éeœ@Åê‡{Ook òƒù¤ßw¯ã!ßLªVfT{mì-6þ5{Û£æ¢Áëþ;l¦fOäã†Éº€%/Ãô¦ÿZÖÌž´k—.„Ÿ”_ÅLdê`a+ç5X ¾ye8TVÐÊÛ~‘/Óõír€‡I,¿`[Б8ÚŽ+wo¼}Ìúvw˜IX"üøAbvËwGÜÃÎÑ© I?ÈZ’ T!¹óí»_‘RŽì¦>Õ[¤Öìò¸›Š{SøN  ½våñưd¤;&ɱˆL¡j¯ Üœ™ëUã9³d©àcŠq%äËÛœ/ŸçA'õA·©>ärRþ”9‰sT³µIh“F %º<.÷PÔƒ¬¸ë¨sDNÇ"â!êýpëM,5ˆGÜÎä*ECŸTÃ_’÷ÑÈeΖ­MíÓöiL¡‰sW93šžñ‘=f—-B²›ï¡yh‡Fà—´È`}òü“3Zö(̹ìy‰Ö{OD˜g“*ÁA1ÏΡMðæhÔJÚvm%LH£½èÿúk è î·”p†',kø×N£.§Q ç¤SîòúÛSX’éÒ;s:ޱë¥Ú‘ëÏ¡â冲_¶+|(+þ¢OBï©ýí¬.-BÙ¾· ‘GwsžêýÃy3ídp3ð'd¤Uê]êÚ´nÜõ¦Ôi‚÷î|áN¬k3K¶Ù\ ³ÎCn¢aWØËÈ¿9óç#;xÿN:&1›>hÒ^=º1¸› EWL‹‚ ôW€æ”Ë#(çóå¹Ê æ¶d¶Q¾sëìI¶!¨\N»+·MUÏ]->’¼†j8dKß(Õc?žr޼‡šÅW$ú¬÷ Ž’®¸– ê=Ä¥Êá"4Šú¶Ç‘ ÀGbë3úUW¡yr_à™¦h#~=ÖB}çT,vCgõ>¾ÞÝÿƒøíHè—¨¨]3‡~e×Ó®ë0xkÔ¼+¨ïoP=üvi?Œr¶?u‘±†±$›zº—0~T,ûÞ^˜XªQ¦µ>ß¿½ ¸4­ 3{z/l7Àœ­×“;‘0¿à¬[rã&,ôz:;Á/ʼn“ü°ô2Bôv€%,ït7ç{«¾›ª±Ž½°.&üMš?6EK³EdÂàw$÷}¹¬FØÑÏ>¸«$<|*îñ°µ[¹åxIîmYÉ!©¥ÖLàÉ2$;ZÉïrÉ­¸“%Ù>!eú:™&g)RYžíúÍ4òcžÊg{v+>ø²;ÒMä½ö¿ ›{”xß ³ejËô¸/²Qì1"´@N¦ßnîåäÈ-I¡»Byy¶„ïôF"?ÍBsï¯Q¼“öàÙ`?ŠX޽ì']A±ôlÅ™+ª(‘3À©ðe %ŸO?«ùêŽÒç ém PVŠÊVOÎå+³ÿQòÃãi[æzý"GMmP9ìn|ÌD5ª^T¾h†j÷•I‡È-P£ø ÃÜ{ÔZ=W^ä7‡ºB¢dÏþF}…ÅâShHíÊ¿oûyZŒ>iD£Íc²iäÑx½;'Uóšì|TvuoE3*Õ@Ò®\4äÍŸzÚ†ó¯_ң內¤OüÑ*QöÏAùE´¡?žñqmø¹Ö¢dÑö’÷™O5Ah×|òÈ6:0x†”êapµIÿ34þý%¥F´™·©B]ãèaõë(éúQèâ¯Së'’€ÆÍ[ ×} ænÞ ñ_?w÷?¤LO©CÙQfîcŽ¿º<@°éEEû¨Ü¨=]v| &:Ç5Ê aŠåxh•Éa˜¹9÷ðØÉzøÁ=Ó"H] DŽAî.Á⣖Õ-ÊxXÒá³=+ÊEÕS|°vWø—\)lR?x²½ËÃ/ôç4hÃNkeWQ^ÈÉ`– Db¢Àn©÷H’¤‘>HjѽÒÈXŽdRªÁ|£ H®E+nÀ‹”Ióv§:‘J]euKji(è°|¾ƒ´A ƒI¢ýHGÿÑIHÉéK¨ªBZxÑWdÊ÷Y2[󒆪!«mXƒh“²ßðœß±~ˆœ¹\O,‘›\$’\yŽcï aä ·ê¿UÚ…üÄç*é¬dQ ©:·ýÜ;ò¶VÙ‹"\öJž¸‚¢O*Šr‹ºo¸Ê½ñèäów bI¨PSð6ÄÒ[jï÷ Tr¼·ÔõÔ•{ˆuhùPÕ]8¹Í ÕFbÚÄö¡úê¯’Š€bÔìËN ü…Ú-á[Ý‹¨Ûª}ÙîêWè43ˆDCeŽC¤$h$Œâ÷®3 1Õ’Ñ4Ùš&³ôM‰®Œ“þ@3§_O_~ƒæ¤lüQÓhAû|Ò[î Zò“’É'Ï m^ÿè…Öv–÷~ÏáÉ ØiS^hSÀúâÛ%k´a<÷!ÖíËŒ9_Ä`à 3§XµxÔQ{A”ÍHO:咰连;Né“6çwá_£¡öqŒÇ¾q¨` 9q@P>˜ôò\6ЄÂäW­?Æ" ÿ]Î'IQÈ=v1´s¬ò/çÖ/®ž„ Ýälß½”æ-Ч¡d ©!ß;Ñ ÒJ‹Ýz^fAÖê7'™Ë’[ÒW7èý ¾?8uò 4%¼Q!šü[4(tvsaßQOÓoPærHÐ|é&”ߊ4æ?^²Ëç5ßc{ÿ@¥‡—­­)TQJ%gž‚ªtºC–P­µ@ûˆŠª§Ú·îDÌCÍì‡H‘ݼkms‘êOÛ"vŸ…FºŸ¿ð/BÓl;¥¨¾=4w;¼¤j?­kCéb½æÿxè(UïˆQÐÙjãmټݽ«¼ÍZ WqfùMôiè7äWs¼&ƒ¡Ez†*gþñЇmÞYè4Œr˜>Çã cÉ!_©v`\1&$0”&Ö%.2Ýõ±Œ'ç;ÏÀôμu¨tÌé¡Zköƒùž–Éúõ3°P|Û$í1ü–òÚ7 K÷u™ý`yA‹48‹V=¿ì·~s ÖùÔÖ`“‹›mFÇ~{ Ú]¹°Ãï¯~ És’NeB¢8þ%“)$1$t[=¤Ìª¥™#ñÜ#îHΨcÝì܈”gT\BlŠJv¿¬`ÒPÝ:ä%Ò6—Ÿ˜rBºÌ‡N³&DÈðáÔ`Ž_?2S»eMŒ¬¥Ïû›%‘£®«çsD=rï ÔÌæ¦DžNŠS×å¥oä|#c/ j0F…ŽcˆÑD«Y/¯h>Fë_½yU]²hÃ#W"¤Ô¶VŒ+2 ÝÓ(F·: vNìÐ(iGã‹JòWÛê™ýÇN³ ¬r, ÷»ϼƤy¡ñæôÞ¦õ¨Ñ|±¼¯*é m2m¡tp­•7Ú>\åZ%èÞE÷6|GöÓCámö5‹7Pà—E¾.ð·G¸çûåvÈ‹xn«ºJïü§NÓ\‚’Ÿ /ŽDtBµ±?å›nhd.lXœ–º¦Q.Ç]¾ }}ÅÔ:>‹É>I…®Ïf‹´ ýÐã¼Aã¼ ½mƇç(¡¯€‰Œ Hû¿µw-ò\[RÛßžC-º3ÐÃ¥vñÊxên¼È汫Ÿj"ƒ¯z‚Ðcv‚öbçAèåõbíÏÿ }TtÙÄç¡_&UjªŒ|Jòç$c`ˆüR²h‰|]z8# _Ùkèäyã`äËêÑé0æAUpÆof|µþ“,¼_ºTÃÔqñÕ° ?˜yh¨¾á?È.,ÖÁÂ¥•Ôi°øšÍ‡!b–,zí]LaEótºÄñŸ°vë}ÛÜûØØ®HÚåai–0) ìÄ{$œ¿‡„–u©Ž¡ÉH47mù)·I¢í±Æ‰#©±ÂGô$“ Œ ,jErý÷CDe»¾’ãñäI¤Ò¨ =4tiö—‘Ç1!mÀ"5Áº ÒQÍÿ™”øƒôï¼üåúñŠ‚C`½æ®¿Ü?ž.ž‹¬vcÝY„[ÈøBQ1y×gÏ‹åõ !7)?* ."FœÿvÚyÔRsÍB~ò"U×(ÜWžœ‚BÁ+ŽRPäµ¹`Ÿ+Šæq¨&=€â2>™”E‰ÎO«æòƒ(©tJòa5JÍ8ò’ Ó¡Lë¤lžM(Ê5#¼>ŠGóGHt ? B¤¥5û´*N-|5tY@% g£¤ž¨üÞliªªÜ½-O,8Eµ Ë¢zæ§:»ÇßQÓßoÏõÔ>;žal²ƒº½ijœÝ¨o@!ù禒}*¯ðGÃé(ÂeÁ-4jUrœãêC゜€gÃ,hW»ð0Q MôKÓ³—£Y`çB“šû0ÉÇ:¢ÅåO|û4åÑòÊþ3ñ“»þÔWäó©].ÞQɯÓnç# @›a“¬šF´­¾Yºé>‡FƤ ¾¢vHƒ˜çæ¤s¥uy³ƒ°ø{9ø|ÊmøttÆ®TŸ j&>—¬ˆCy «zlì,Oÿrމ‰„Â㥊·ŒÄ ßÑbCh’rv^?¸Jû²r _Ÿum€ôùpš€c,Æ´¿ “<REÛ~D[›þå£o¥„3d}µ©/õù ¹]vEBF¦ÏÅøñ0ÒŠ.\r1mW†íܦl¥»¹0Ðïþ¢2” ÷î©»éå#ùÌBD¶Pñíáƒ_T†T›Ù¿j…*ÞÒêv› ¨*-;ã»~· ‘Úlªçóì§‘÷>úÙ©[ v9$qùÛ-¨7K¬Ö|á ÎÐù©îƒ¦nÕü}CêÐ\ý¾°¸;Zçè/E¼üÇCg~¿îŒ.èìR¢ë.…îëºwlžØ@¯n’ð-è·:¹V ƒ#T[¶—þñÐ[D{j¸FÙ>×¹RùÀX ‰#ÅiWÙ{ÆWÈ&~¿JÊÑ/€ï“åΕÂô&ééDט;¾âF*ó%R—ua!Ÿâyü| ü¢»Nñ!™–¼éÏ­æ%ÀòH™²€\¬:Uõ1|£‚uV׿iØ<’vÊ~ÛˆIå+äÃö¯‡cto#ÁäNúáë4Hä9ºÈÿRIv:ˆÈqÏP®ü¾õŸ¸·FÏ™=2 ÷õ\¡rÊ©DJÞè÷–ÿàzUU“‹H=Éc²½å„´/†‚ml؆À}dðù•ÃÕ¿™š×YÚÃõ¼˜‚å“ýÈq1]I÷T r}^;qNæ9ò$-<¿ð¼ù²æj-uœPpßèFt(\|/s FE‡.$?§D 1Ï3Js<òçñØ __”ªÙÛu‘ûÊÜ6ž³DyÖ^âq^}T r9°g;AžoÜ‘†•êˆ3çîG•;ÂVa‘õxâ,ÝÊáQT¿p0Ñfnj†ú;ŽŒÚ±¯{»“EQ÷©Ü…‡Dk¨ïžØ:9v Ùž®ù½Ù͉v©gò¯¢ÑtØ15kj4î! ØHËG“Ú®šÃÔhZtµ)ºØÍrÊ ,w*Ñ<3Ø"øìZdýRfÞŠCËw¿ë Ѫ2ÂèdÐúÓµ9žœì.â §G["5fûÜL¾òÍõ¢}Ý(êõ™[.‹2{ŠÝ^=Û ñÝ\Ævó!4tm¯‡Z¢—E\±PQpk°é×Ì®_ì½v{0>HÜûB™EVÓ“†,/¡Pó&Qýo(cÒÍ8Ny!m¿y~Bñºx­Ç®ÞN{*^d‚’s8.ð÷ܧŒ”ƒÐBêÓ!ÐêðvT"tpÞ«xø¬:Wgòv6¡Û’”scâôLÄ…†/‡>³.rèWößi¶ùoí»EÅPk<ô0º1'šZCOZæò«<5è½6‹Ðç8zí#ô‡2EÞ¨Ò†v1ŸÆÊ^²Y%¦|2ÃÒ¾S­Tðõ>¿”·£”©¼ùõ0Sc>óšÆÍäׯÅäêå»J˜²ã=e×3 T&O©á‡©ý`g-,°Þ939< ‹Yn[’`étß½Ó‰×`Å€òQþðvS-ýõË Ø˜[©÷ÖÝåá õ©÷~å°s‰Å{‡ƒ q09s¼‰úŒÄWäîÆäáI$ÕMˆmÇ$“«xú%ÒÉÍ)lƒ -‘2—ƒ0Õu©´NpÚÜbGÒÅÙÍSH{£Yͦ¦éÈ>Mä~ƒôY‹œ—Þ„!£—Nÿ½¥/Èl¶2eÐÍŽ¬òcâÇ‚‘=¸>ôú/6䬖8öɲ¹)”LÔJ‘çĈÏB@:ò>kù@ÆtùiI뫎K¢@‰öŸÌo1(­´ß_QEb‹’Ø]P´Í#Wz Å ÿê-„Ÿ§r>£¤rec£ J}¹÷!wò"Êäùò}ß”A¹W‚ÕÅ£&6ø l~SæúAÅœ¬ÂbÝdT:¤:{å.*?O‰Yg¤FUΧN<Ñx¢x*¤ÿ4ª;eµýI¥CMAm—1ù/¨M¬`Ó^(‹:ËNåô#…¨÷¥‰<)S âg­¬–Ð0u¼Û¾{îPP¬† ±}ùVý 4Q¤Eå—hÊÆt¯¡~MwÕ¹oÙ Ù×è{â{N¡ym L£Eúâ§z¢hùäw”eÝZÝš|9Ø:‹ÖG>;E$ãIgÅ„ii´±UìÀÀ½úoŒ±£Vû«õl=î’´Ÿ‚ø"´Cûð2Ç}ªPs÷Ýùˆ/”3eh‰3d@qÀ´Ê‰~x×9˜ÉPÑùÔ;<œ©!§öÓCV7È2–Õ>ùUÒ#/] ö‚Ôâå(Úî Hi+$K¿"iâî§Õr@VC¯°ªØß9œ4ïC…ðÎVÊ=²î µGµ‹~µÚÕ©µ÷©ÃbsaUbx”›ŒKï3]eˆ4lïúc†Ã>· 2E,äÔu¨RPyAÉUmöGR®ÕAõ)¿ð—ß zùq­Þ¼ Ô|]Ii§8µSu1á¦ãçèî‡7}†‰AÙ9î¿ç¾Y}wƒæÜŽƒÒÏ…RX<µþ‡çeÔYè s€· røtßáÑPéÞÕûI{;‡nè÷xAazU _9Ó*¹õ‡—äÞº=¢€QVG×ß÷`,ÕoRƒ´ÆÕ/+]¬‹‚IBò¾ÍUø>EA;ž ÓË®eñÏ`N4ä‹RÌÇǰ /HÂB|dö¼ä/XÜ©ߣ"°«ßþ{9:°Üqäz]!¬Z%Åwñ¤Ã:íõ¬Ïqä°I:½îzU~«H‘- Ãvím­»#‘ F?gKk‰”^ͯÉg!ñð¶B/Ç îyåô¥Mãu”9ñ)î{[óg³)¾ž)LµÅ7:} ýY‘º´ZݶîÒºm¹4|2E:Eý5ÒMjd8z;衤 2ùÛîÏWc@VÎÊ©ÏvSÈÁy+­Tê8råy(ñj OOÇÙ-_äós­|¶–ŒÍ‹1ç)%QøÜP¡õkg½d<¸º€â}Þ•5êdx$Ûõî]M"”ò8âÆu‡e]E=”K÷î{\ˆÇîÖ?5ÜŠO<µßütE¥SÊá y¨²¯ùWçªöü©çoHFµ–!Ù Ôè%?:;…Zé>¼u'P§î…Ó­jÔ‹ §údf‚&–žF¼GÃ`¯±¶;ÑhtêûÎÁÓmhŒ¯ã«´’Ñ„ÓÙëõIDSBînBh:! »Ã€fÍ7 d”мÀà»Í*ZÄÚž @˪ÍÍdÐÊÿÙ>…]ŸzùáõÄtxÒ}Õ¤› ƒ²ÕWÂ…jÐÈ–Øb”6 mÓ¦Âz_Âò+¯nÝ^èðkdùá¿îÆKmp@uŸÈ«rÞ»:è£ e†RŽw¼ã»>u¡žà®‰ U ñAáþtÙ¼n3È_¸õÀÁ(òˆÎ7RwPAnÉà#Ö¨A(¨=±ÊÔY%©ûF…øBuEܼn†14&ÈöQ C•·ÚdÕ.ï gkA—»GЏ«twêeC¯“úž‚ï}æ²–ùÐßö}íÉÖ•+åUgÓB è#6}'Ç =›òOu c7W.F¿3„÷®oçN>€^ÆÞƨ«»9S}ѱ™÷ï{‡¤)¡äîêºû0ȇI´0”}Í~Îë ß%H¥Éž¯¥Ù*Æ0zÌÖ¨o Æ}YªîÀø­%eÞè«0é^×5£3 S -|ê¬0Ó–Öæ ý~x¨~(ȯ†!º^Þ6&X,)ñÓ‹N…¥óYÇÎŒ¼€³Â²“A°æÓuÏ<Ð6†„mÝ–Šá·Ï×”ó+WaG­A3A/ ~¾YW\@¢ª¢^ñ,:$¹F"ÉöI5ö]2îzŒdGÿÄ—œ]@r›FbÉs¿ò={¨þÏóH¥]›.,Š4$#,3|ˆ´×’|‹"tŽDþÈiZ-¤Oms¡RBF7ÃHîKÈl2<»|í>²žzð3ç-²‡.|PEÎ5~ <@nê“.ñŽw‘GûÈ?±sÈ,ò±Þ ù™Í´3sQ žŠ÷W8 %Kð¿p›F‘wË´ÌPtfh5Øq Å5ÆH„I™Qâ;å0JªryÕ&ŠRYÆ'ßt ÌÓÙŸ~E¹Ktƒz«ExTß=Á½q„ã*Ô(XQñšû T¢âv Gåë[*³Ôܨ²¡¯âÒ’Ž'n»ßjã~€ê¬aý/ËTP£±E³Êµb£öë1¹£ÎÝ_“¯Ÿ¢Þùà1½ÏûÑ@|ÁêÁºÊ%7֡ѱž‚4&ß³ËaCãAû³s_–Ð$ÕrØ×sM¯vÇPg?A3uº w{4§s:™Òƒæc½ ³/Ñ"·-úÙßy›À _•©he¬z#‰½­ùôŸˆGëu¨ª (ÓÑÚ+qµè9÷©õÄàA g—d–)X¨¥¯Îž]†¶ õ2=o}¨~°nÕ\ eOu*x@1ƒÈü÷#ÜðÎeƒ-ý°ëßç0: lj çþÎ£Š‹J¹Ìºdhûwަ',^ROy^‹…¯W¼•‘l÷Ÿ=±èÛÍ‘¡ƒäwuêþ²–”ùï\ølĦ‹åÉ’ü¼¥z Íç1ö¹°Bø”7ªNx Pñrý­Xx‰‰àǘ `ÚÐ×+\å†ÅYêRƒ/š°dðâí¹ñ°\•TxFÛ Võï»FœÖ€õ}Ñ¿*.‚M}g‘pø-$ÿåpclG_ÎÙÊLF‚¸W…LŸ‘ˆÆj®±‡‰'§IQã{¦ ¨h.Ü«BEI_”€ûŒ¯==‘‹/¤š>"ŠÏ¶M«EêG§åK,!íqæô}'ônX%]ëS¤ß ;IæL²ó¼:â¥Ã4ÚA¨Ù[¬éEIÖ‘ëî7…a»äÑ+ÙggËŽ|:S¥o¦Pà]¬}ƒ ³.òCQ i*©n7Ýýù’9¥$z‰þ>J1ž$j› B鮻Ƚ*(§à:ÝLÊÇø¹b¨¯áñ_Å9ã­µˆ›;TëY¨q>´/[UO|? ¹î¨&ôF.aÖ5¸žìO¬QD-ºw¬ÇO¢ö¯ñ$ù]©[tŨ¸Qõ=Kå2£!ùm69³B4T­u C£4¨¼7õ}Ù*ýïG­æ¯'Д9üݶ;šN_I™<€fÅ™A\åºhâ[ÒVU'7͹¢eÐòðõ’ÃEhE¤Šëth՗ή±z ƒLžíÍþ hØéôýIA42øÝ·ùñ¨ –>‹=Ö.ðƒO —Þkýù ”ìî.æ»9Î8VI_ÿ¯ôgy5¡¤òQû G&(~c™Eà° ï·>–IȤïúÕ~×ȨLÈOûDw– r«øý% ×hëðÞSêPà,xcYÊJ‚ÊîÝmƒê±yþ¹œ(h"U;+ÖÒmº×´ céÖÖGîjè“=“Þýz œý¹X wlÎhˆúzh*#ö€ÁO‡Wÿ­ýÑ3ãOË…¡ÏŸ|VËé2ôž•~7;=uÜÖá„ÐS}<óðé*è5 ,Zº˜}¼y6ÂæuÐOes$&î Ȭi%65 /ÍžÀa=øL¸YÚ¢ÃÃÁ猢ê`„ŠÍhÅ¥F]hˆG·þÀتÄW•±Ý|˜“ªV “Ñ mW>ÕÃT¹ìÏ9W˜™Æp÷Nkø|ÊþÁã*XNRw(7€Å&òs,D°ä{gî[9¬Ø88}P0„µ+§ÎP8ÃF“Íò©˜]Z^sð8;L—YÔü8ðÉk•§ôH”Áõø«¨’œKX(;iŒ¤Ê^½gƒ‘ì¸Bê3¼…äŽwR¾°‡!e;Ýò¥5¤ÒUÓ(û¤€4DmZ“]H{Ù?‡ÎºnÛ4s- }B§Ÿï22:»7>5 Cf£ºŸÏÙVõôøŸ#é¯ý!»àúý·ÈÙY`Faí‚ÜôÞ~†ÆÈcp+’¼L yñEøeD~®7­ç9ÅQàS—V˜m r)¾ A‘–}ªd‘Ú(¶÷XÛɨ]9…ø^Œ&G‰EÆ'g¼¿¢ä ÿ\ÞnI”ªïšÙsJe®'šÈÜG9-"•½|x”5oÑÏh­ª^èIŠŠJ"gBéh'þäu¾õBe;½™/û$Q¥kg¿w%žÐ]ðmc/AµN×1…/ÔðžÏÖúˆZG§Ê>ú¾AÖ€‰÷§}PwûDñ*ù(êW0Öÿ~û EB|ä§¡áb¼ …3 Q!'qÕóWh|5ãMÌ 4‘}.)ÆL&¿zÎ8¶¡iÆ#áï]vhætøêuQ^4gþð–úX:š·ÆÇô=ØD‹€ÃžäùÎhy$™m"} -ÇìiB¥)Ñ*ªúOÈÈ\Ò˜ñ¿ù5­µ×$j¤‘öQ¤Ë[¡RXLvøž­á;er߬ ºÙ…1å=”Ñ·é’†¢ ©ý7ÎAÁc¾"ƒWúø{5ŽÑÏÄ\ðFb·-š›긇«EÔ|¼÷z~¥iÉÄ}T¿Ä$¤"…‰ÈŒôîŸ9?áÚëÔ®D‡X-? -¥Üí"5<ØJyŸç5Ò%I\˜LGÆyùq !d¹5¥úí×®~}Žø¿è-@.[+¹§—”‘‡;^Ù´¼ùXœ‹Y …QÀ°9Áè–' } l°±ÍÃCoèUãÔŠñð§D÷•ø zslõ¶wÞ@v‘t%½]=ÇÝ˾¬FtC#†ww¹ØÝEmû.£®Ì°ÎíFÕ•®_ªÐt¯‡Q4o%šVPòq¾A³+t¬OwÿÍ…sFgú¤Ñ|X‘:XöZDRêý¤CK;ÎãL¿ñÎÚ4sç“"4Ô¨¿ªmŒô¯Îvè®À«Òû*6>øäÈi’|cê#ïȿڃêS¾q$gvuáo«ä*”œ¾è›øÖŠm*£ ŽÅÀû–¡xUÉ¿þ2ö¼éßý šÆq«.ûáØn.Ë™bm\χ2râöÇd»×_äâ†Òã¶aÐäj²fPyÚ­xÒ29 Ó6€yÒYº-vx…`zš2²ƒ ïTÔ&QÛ(ôϙͽ¨; Óï¿‚×ÿVn»Óƒ»¾³o³ŠÛF¸ z»•r=[‡^ÞóÌs¹Ð˘ä½tnzÓf_p†>öúù1—]¾6ÙòHŽÀ@¨s²|) ¶ßj¶s»ŸMý˜3ø3á‹(¥ðÃ+¯aäèàãG·aôIíË*.&øÆûý'Ñn>ür¶çl'?LVœm"4K„©š?¯K¢Š`–¸[×Çs~Äù“¸\©„e™ÂWYÁ»z²¼óÊ–‚Oƺ[ŽÂŠ#¹žb$ ¬yýT®Ôá‡÷‘¡Ê»<”£ŸíY®Ù©Œ$$XaŽ [P@¢è{&ҌĺxX3† Iúج¶®"øä]a¤CrWeýûHYÃû|=©ôê†æ¯ê A鵦ԳHëe5á% ‚׆—¢‘þe¨ád*2žòSн‹Ì™KŠUÈê¤@ž7.„ìÑšÞ²=îÈ9¸zZhH¹YFı!i× Æ!äMÝ 4äaF~Á_†µ‘™(0ôÔózÌ%ª§6ëj:„"c¹·yÅxŸ'KTU¡x äB)ÿJl‰sVŒŒ¢¤ÚW‰ÔA9”ú°˜ÍŽ22?ïuI¢ÇÏÔª (?µ¡>D…Ǫ¿ó¹‹. âÞ©ãKk ˆ™EI¯‚vó¡R|T‘ ªd”üÑäêÁ —/¶1Gµûš³ƒ±¨Á‘÷ˆ¾S 5{ð¼ÆçAÔÎ>°q÷$ê> z{ôêë£t›~ô|xªöž SÜHè; Ñè”ê ßmv4¦ÛøªÉœ€Æ5Á_«¡‰G¯ª%Ó^4=Hã[{ÌMó×é´^@3Ã8Zóh6}1ŽaÉÍovZò$ó¡ Y™À1&´ˆ÷Úò·ºŠ–bw\ÎäIb€ð‰Ðµ–>Ôˆóž`ÍiCšÕ.)²‘ð“ÁãϘ]#´D•ñ:íæ,eÙµk(}lo8â7E*ŽW¥r¡à‰ÌV7Åß¾ÒåWÄ'!‡ÎöùÞŽYÈ”û®vô¸÷ß}ÂçÏI %.Uä„T1¼-p³š©û¶› ]ý5!+PŰ?ò!äñ ´ÿ0 …ûÓ¦8…Añô"ñ;ª(3L¸rïtÀ® _>] þþi¡R4ŽåyØE¨¼ùg V¸ª<…]âr *pôè6‹4T›RÏMCõ†Ø=bwu®°xý7Ô´éël™Bm÷uóÔýP/ñÕÖL âŽÆ}š¼ô|ƒætܧfÞCkéï' ùÿxxaîdÌ©èœi‹²Yûݱo"V½‚Þ»á¿羄þçÍŠ+-0ø~–½bQô]íK—ò÷Á(÷GM!ŒeÎx6¬Ïøɇ›Wz0yÀøüœ\ |Ÿ»–df¿ Ócη÷©œƒÙ­¥Ër Ã0oØ:MàøÎqþêÙ €Åªd÷ †pXæf”ƒå„‡mõ`UÞp{ïh¬­µú1‡QFå´â}°µ|â^šYl³ðÿ¦Ñ„– Õ§ S0¯cÊ}ÿKnÜ0>é‡$cþ]¬R»þ¶òSÞþ‘÷HÖÆ:ÚÔÿ)h»ÎÇàþ׊¬×ˆè‘Z)Ý—çÒ|6Uăg%.'"ý5Ù=cJ#ȘL­#)Y¤¯/ž-½†ìd3)žÈ%Ù.et· ¹W‚|t¸‘wjüõo78(Ÿ¬ªŽB¾Ýíà ýxèØêÕÕ„WxXOAõ@+JÔÎzkçyÝYEÕÉS3ñ¨ö.íËÄj„4:Ðð„ –þÃþ¯D|¨C¢Ö–Ù…º¯;=Ü–¾ >¿ÍÏi4x²³¹Iƒ†þ>Lþh$~ßAa¬†8—ýDã[¶iŸþ0¢ ¿Ó¦ú~4©ui ØDSûÌëöeŠhºvÖã“4š…nŸηAsö†ZÛIZ4Ϥá–PðÆ;/ZÑ•D_Ãýæ®L]-ûü²6’»Ý íéOFö¬ÕC=Ý,IçF-T $Ä5^߆²á®J“äÿ½gA2ûøï{‡7 èÞ¿JLmøÞÙJvêRÙA>[•É(Á]²äëyAÎÍãŽ_¶9ÿæÆ´åL(A¾<·®@pÈÑbhj;}÷BÁ>hÿ³>L­ÿ:üä‰ÒÞAwkÃHbêqèU¯ж^ø;ÿyY¸:.õ6xoeÁàUÎ/+#rÿ­é£ìmg ßûªÅùŸ»9Q™_?T}×?fÊ螆^JE„ ÀÌOKŠ úÚî)8Oýdï¥Ö‡‘^¢–Î0Ä·üðØî}NÞñ#P/7NwXÞ€§g}ë0ZsM&þ„|3Š=û‚—&(y8ïÿü “SE5aƒ·`jb‘òîѽ0ËqŽ"xÿøQô2UżôêcË`ñ[q,EIz>Ù+ç d*Ç'`ÍÝãŠø:l$ÕòèNíò>õû›DØ.k- ý,†Ÿ¿èÓr@¢€ZòBOM]ýåH*«¸0qɔޗÍ'!¹×Ÿe™;•HÙÄ&„~ûÊ@Ý‹“é·ÓÞ»m!­»4Kóbü•´ýb\é£ó‡ÔŒíÑ&¼()M™õž¬ŽiAÖ3™¤Ùò‘ýÅ¥Ú+Ü’ÈùMÞS݆¹93’sJ¿#5_2ßFòfçùѶ/#¿¸R7+‘( Lž|âÚw…z <~®5£È†ÕÈR¡4ŠáúÍ= ™(þjèìžwsxdz‹öJj@Žøˆ"Jes2[̉͢¦ár¯Ï(»^ÕlXÌXTÏË%ú âèX~Dä¬:Y «bÒ µÜl°6?U~v7ot_Ïvm[‚­AmÛ)ÖئÔünA7ˆÒ!‡ƒÂ‘ðvø¤bÚq$ÚXû.à™$‰R>_g‘4àHоåj$ S‹väyŽäm q‡È¹q¿%…QX9R3ªPõÏi!MÆå ­ñ²xÐæ#+hBz¹ú!ãtÈhûÚ‰žU™'©bgƒM­sÄôº¯r‘©‰S¼<‰ÜM®¹Ê·H‘÷ýéÜ)Èß³«úõt:$ØoǼ"}z;·P¬©“YpË%¼«Xeor¢$}_Óàþ1”j!Š»ÅË…23U’¬-QþœRéµCGPüÙ··.¨˜xq:Óú*q™[hÚŒ¡òÃD–ûçKPUaóqèŒ:ªÈÜëY;†êuDÊ ¨yÃåb^àj‹fôæJA’­ýdôJ¨'v)ò[”êgñ=¥x€Ý¢X2ކ!˜ÃBõx›v>îßÍ…uY¿ÝÑXÕ&aeU ›êÝDÆ ÑD[}HèØ:šÔ±oø[I£é±Š‰44M¿s×c˜ÍkyùlðŽR(0e þ™ƒbg¥[ðà0ߪfX|î¼9{Ú"0•¯d@Ýs£Ž½[ÿõÈü_/ŇdñŽ3â]PÔyfçÇø¿^RáÖ÷×{è‰ÄÛlȹ¿áx?ò¿¾Œ|vš`3ãÿú.jtû[ZÊ ÿë¥ødtönqù§ÿúdzT#c¹†CoõUr¿k'¡ßîë¼aámزH0–$‚!’»½•­ÿ­ƒ²jö½·¡ÿ—Xx`ÁmèËâYYâú¯wæÿ>§Ï¬ÂþòAå=4To ŽX=ÿïú!_g Æ{ðy#°Ëm°¾t0¦Ñ(XÀH„s[Å0Œ.jówчoþf‡TïÀÄÑÏç2öwÁwÚ}åLöö0½wüªñWs˜•ÿó1*]~t|Ðg“+ƒk󧌖aqa#¨$‘–b÷]ì‚/;ŽGs`Í…|K„®6­«DïúJ•·ºÝ¶°é!NQ€5ªÏ¹‚ÈÍâÓä$9þ½Ðžñ2’J$ÖÚÍ;d*+µ‡ëåüê‡ç£òÖHÙΚ;A…T† $uçú÷³ÞÔÃHërÀP°ì(œûøÌªûÒG&†-§EF‹X‰Œ¾&dÖñÛ¼K.¬Îßùß™²ÇÇÑæ»¯!ç¬ï ÇÏ+ÈÍ×Pâ0˜‡<öWr%"ï;·=~íÈ/aqáR ,r–XÓY¢ÐÄB0¥€;¢&ŸÖF1 ³!Îÿp{Ø@mPÙI_.GIÍXñw“*(õæD.Ñs-”¶m^>Œ²?úHÏ9£üí /Y?Žâ1›Ã÷é×áñ§Ž³u’ˆŠ‡C¥TQyÚXá²#ª8 ^!@ÕÔ§Ûh•ðÄÉóþMT?¯g5öM 5)æÚU^k¢Vï!ná$NÔɼ©4ÿÔõÜP_xYŽú}{F–] ÐÀT$= ߇Ϙs¢‘Ácó7¦FhôÅZBî;öÍÅø¢ñÈ6?2K41 ûøƒúš”ŸòЇ¦Ü oŸ”ÞAÓ,"Æ¡qhÚÞúç­ù4c{Ü~6ÑÍ÷«iú‹\õ©ó-ª ·U.†#uÙ—4cy˜KÌñvšH)"¥k"¾P•³tåɵŸÿziþ¿Þò«.þžúö_¿ÌÿõÍd\Ï{Êï©ÅK¶Iîðö›÷U£:$¯¤ÛJ‡”¶‚nL.†,cúÉ3çpïÌ–gÞ6øÖöò?}ÿ_UE?ƒð‹+ÿõãT†T¾4¦û×G£ öȃ+á¿ïù_/ÍK#²/¨¡%ø f}jªïŸIZxµ™sÎwC;¡žjÇ÷<hðâýƸøšÔw^*åB³eµù»•bhMòâDê<¼ÚþÑï¸9t®>ùT·/连ªÞ$"çâŸùÐÿ^Ù÷ðr7 6='/vÕúÇC'ß+ìy0JGbàùªÆr†½ÙÀ¸Íã»z}a’Q´+DàûOwI1˜î~¤¥³C—Ïq8ËÁ<ë vÆ“°pB„ÓëîX|vœÝW¿–ˆRx µaù¶wü7¯C°ÊÃô0À¡Ö&Iˆ´Ësa£a„]d|¶* ¥øÇ®ÀŸ/Çô?ŽÎ!õ@ë–é%$4Õ§RG¢ÊU£ÍÛÓHræ;×›Ow£,IÉZ‘LÛSû·ûC$¹0 s¹÷¸eu©†jI<ݹ‘æFTÝa<È—2®Ëš‡tk9Õ+ZÈH/é“Y‹ÌOßèzF6ÿ÷å³:“ÈYâmzª¹_LË}KEÞ ‘ÌϦóÈÿŒ6K ¿ ‡|G¾¬ó¡ˆkÑH’3Š©»üTêD ¡èJd‹zWÏdI±“£~ª³¿~ãG4hšÝYðµDC÷Ëä¯9hÑpVÌ2l«N™ê$} @£v¾ý‡Uߢ±ôȱ…¢4ŽêÒŠ‘Bãé@ê°Ì 49ª¬í×Mƒ&·®ò3¸âm•k-.Qwä°.‹ý9Içäƒ:Ð7û{êt:ôW²„; í¹¿vLaˆð…L÷\/|öÜÓÌr¾È öûžØ†y§õt`4lá§TÂ7Js¯‚ê5/|Õ.dŸ“×øúœaÊs:å.Ž÷ «”‡\÷¨èhàç‚ä;ÿ›ûañŽÅã¹°ƒ°$äÃ=Á¡ËË7´‡baõû±‰W\`c?OûA&ØròÈ)ÿ- ~°º†nÊ9Ì)‡‘ˆ¬7%B¯‰Û¹?ë/àžB¯hù²¸÷ƒÇs”jÄ}#e_¤ƒòJÔÝ „xàµG¢£¹ RÇÓÝxVc‚´{É×¢¨¿ãÁ»ñ¹9e‘^ äeÕ^d˜ìbŸB¦OK 6ÑÈ2êxÚiŠÙ©ã„ôV¦‘ÓtŽ.عúu¯ÌN@žƒ«)>O(×µ@B‡ãòMo%s_’EWu×n³£Ð]Y2œA‘7gž  èxtòÖ/(~´jÐ.ôJ´¤[ž‰5GÉ=B.,å(uê˜Á ª0”ž:“ üPeCÈÿª¡¼š‚Îe½ <ÆÖÞ,xÜHßýâ ÂìdëÛi¨ÔÓÁ©}ZUñ¦¼¶aCÕ wihº¦ðDÙúq¢a5T—èÚEŽ [¿™Ž£Ö —Ò‡7…PçbŽ‹U_?êI]ãr"è@ýîke|h°Õ1í2Œ†¯‡H4·+Ñ踕¥Ý6µÞz«ÍüÍN3U, £qטLw{4ÑÊÒuœ}€&…ô+ lДÕ/`Õ!M¯]·kë8‚¦md}AwwyÉÌê†fNo‚_M ¢_‰…ÀyqTcå}LD—‹Ôo®ˆ]¹wæ¨8D›G@ÓZLLhC•Œ³Ö„¬)|(+52ÚÕ[ÌÐ RuA¾´Ö$ü †œ¥/£)-»|“kž Ø„ô·›—3Õ!eRQɘì¼Ô¸Cva’M"Š+!E„¼ì‚Þ$dfÞ»êZ¼y$^Žîù…Ìž‚Né·á_¯Ú%:(˪¥zÊõ*¨j«©ö¶CŵŒFTÊ;Ñßù• •>lf" Ç r¾I>IǪì¿8[íUmaKáLP bûµy²¡:s“Í}1jŒËÒØ³B­¼¢ÁK¥×PØìãS-õJC\ÞzÐÑOR{>Þ»êß -|Þé´B»eåü“mø44e¢²¿]{o Ý”{†V¡gÙô´Åˆ)ô-liy¿ë—]t¹ø^ÂgòÏ“?ö,À—w‰Rµ{0÷lXÏ8Æ$™®ñÀ·îŸ<­Ža0œXß­Ýfº4¨`Z‰j|9zfU/'ïÔÀ¿h/Y>kø9zúâV˜&,§wóZð+q•š,sY¨ÄÀJqÙz™ ¬yK¾j?†ï­ÂÖÿ£ë­ƒªúþ7^º»$”QB:Þo¤DPDÁ@PQAEQTP¥¤Cº én¤[Bâs?~gîÌýkÍ>sfÏ9{ö³žçµÏYÏÒUuµR±€-×§É=\°w6ÛÊ´‰9ÖÞnö ÉmÎÁ·GH&@j2Êí„äóTˆrºpD‚ýÒì~üµüN(Ò=yv·¿ü'2UÒØ…®"³¤ã¸áÁPd©÷I=ŠlêëÄ?‘#ÑÔæ»HrqË—~3}‡<ý}—”g‘ÊÍW4däyMšÕPˆ‰‹ÚŠ×Ev¥»jMŸÁ½VB­¼­‹(ÞEªIµk%?ç‰>%ù…RI³(ãY$Ï×ðòðêw…î <÷ÛòƒìB¨xe´É òü/«h>Ts í >÷ ¡ìȹýï¢P#÷ÔüÀM=Ô2î?WAc…Ú6^p½¹ŒºÉ úFkͨo;Í×|ß ¶nSÛ V£aàÎ>÷þh4™uT¦ÀŠ Ï‹™·ºn éé[¿IÅ´Ðì¹b]€b1šÛ(‹SíqEóöû!.—¹ÑÂB‰øX˜-Z”úÜ´Ü÷@„­t-C¾ª{¤u¡åØ©£"‚ÒŠ®ŸÕÝÍB#úx¼­sÒ!×ÖyÖ? @ÖT›ØØe˜ßr¶ù}Eê9e¿Þ/ýå$³gÄB ÑÅäg]ßÁ¿迹û³˜½§ 9õ½×ÆßEŸ’ŸToéÛ}›N„¼jàÈ0¶NÐ'Îtß^„¤4´&A9ÿ×ÌßÕy\$î{¿íƒÒ¢÷dâ—¡ÆùqémhVî:ÆÍ?÷ø4>€– nã¥j_h£íãz[f íŸ4ÎÖ÷@'Ôß|Ô ]úëö7ɠ˪¤ÎЇ :?¬=‘r:‚ùOäúGCûEyÊGúÐVðŒo”BÚ^©\¹tBÚég¢Ym =ƒÜ"ö{"tœ;ñvT:O1ЉBWp#ÛS‹/Ð=r¿&úpô¾{G1lúúKGT}ýaP,‹ñ•4 ½²Ëü å #ÊŦ‡Ñùé³Ó0Þ>Û™² &–µÙîµî…és6ŒŸNÂܾµ†>XØ•»ç,~дóºËWkZ,n<„ß'=™YÈaížÉèxáUØh‰È“¦…-ëcOüuU‘ˆ«˜“:8Î&@zyI]›¾wÉÕÔܙ캑Rfô¬Ù{{¤>ôk°[:iƒ<.ŠœGúE6+ã'‘I;T0Øž™ã(ßmžGVÁ+ßU<‚‘­à|й*r\a¼•{‚ 9m= )“—‘Û±?ŠÍ÷;îˆRÿu³y |Y®RGþ‡MÒo?Eê«Q%,b(Ä·é]\,‰ÂoÝ—›¼KQÔÐKõìÂ Š‰]!;| %ç#õÉÛQòtëª&§ ÈÙi?ÓD†Ò÷×ülƒjP¦ŒL€ÛLòIÍ l@¹ø3מ°N ‚±ÉãJaT¢˜ÏQNæGåÞ£Kö3gQVi†Âë(&înKÔˆsrìm”GÍß{^ñh+£¶rX‘Mx(êܺ6ý%u7ˆLYÂQÿ%¯Bæi<äg·n'‹FŠCO*8-Ñx㘴í‰4=£ÎtO(;Ç]½á{ÍCÄnÅÇ»¢…8}5½Çg´(øÌkÆg‹–zÓ:îhYUÏÙÛx­°¡¾«ŠÀ‡)t™ÄhÍ>â`GV‚Ö—zžq”£uvÚ±±D‚>t‹}JðÅ“ØÀï7€~Ç1ùQg¡Ý5w–·ÎÈt¿{Q£P¦®¶VU]}šk&–ÜPœÛÉ+·”GÈ¡«fòžYÅ“±Uâ_ãùÔ!ÕÛ·Å%õ6$\sW‰-ÚÔþüØK;á—GÔ(Ä…BS­ÙoI·¿}ÄÎL|”‚Ví¸#+Ë„œàçzötîW|t¯oº•SÓÕÃá7õÈ”ÿ™£0°o¿×>JeL·!ª…a“C…Æsf0ò{÷«€Å«ðòqt\€_ ÷’üŸÂägû©Wf0ÝVf=½s*çã9¨~Âü¨›é1XÔ=jªIKß”ªÞ×߃‹ãG×gœa•ÂUÙšâ¬u¬\`„ZÑ'OÀæÈ£D›ììoNYŽC¢Îx»3N$ÑV½«/‹¤=|×EODòè’ܹõj¤|Âp“?‡¨?uF:&“Ûû¥ò«™0³™zD¸-‘åŠí¡"Q.dSÖÔè;‚è)ó+/9ßT+Óš0"5åÖÖÞßÈkcý®$‡ ùë¦Óå‹PðµÅ‰š_4(üÒší¨ŠÖÖÕ8§¡ø!“÷ž?Q’™öÈPÏ6JÑ髃|L]h8“k,Í‚†ò]‰¿Ð(ª%/YGçn4¾œGS©·§³ƒòÑÌùÎ+Æ14WßÖ?·;ÍËF‹Î^@ Mžl>mI´Èl©7“êFKA9F¥z]´¼÷då~Í-´6¯Õ¸‡VJ-;&½htÛîÆëa¼¥g5ACtµ¸‹¬¯f¹æÎ'Ã|Šñëüp¨slõ?'~ÊE_‹“„­Cñƒj™çNÏ´Ç_¹fr.øÈœð!p¡øìúCæåWåw; yÕT$÷Y ¤–·}Û¦ˆ‚/ ®JnyÝðÅø+‹¸?5¤ÅÚÌîy¹/_žØ×Ý¥>ä|íöP½üöå³*üؘSg¶¶€f1ÿ[{5• E¬_øˆà´¦†½ßÿë´ϧÐ]zÁ§?¿¿_¹œª¨ yйŠñRt6?z2r:¬¸mzi·)–up€¶Ä±ÚƒšÐv÷ä¹.ah›Ê”Ëb= í~ô_Tä~(@¥Ö²:‰ív™¯BÙ’YÖmèv /Ï{å½ä®òÆöÆÐ϶ƒ×a üºô{µßxRÒéü¯HF]œ¯ªW]„q\¦™K € ‹ÑÜ€É]0U(Fí’³îêåü` óŸYÓM„`Qý°KMN,ýñO±çó•Ñ×ywCc`uçÚ¦ŠM;l蔕Å Áf–í“x×mعr½€Õ‰µ[ìšß°#ÉÒSζoãHVJ¥8¾Èƒ G´]&*ˆ¼C² i†C­êÌú‘^+oäÁ57dü±+t®3™uÉôNæh#Ë7ã‘Äô.d³´-ixeŽä˜¸wu÷-T["W›cw9}òÌGYÝ¡¬GÞ½ ºêj®È6“›m·PÀoí%ÕlÕÉTpu@aóí[Þ¦(²ÊôÇÇ%÷Ö”<#òGñïã+#pß »þ2›;PRo¹ÁÒúºÑúTQ&@‘«îNÊöŠ„|ßdA¹“—M{^D¢=#×ãϤ¨X'¼Ãð •ß®}R-(EÕ ¡3õ.ó‡ì,Ço Æ•ñˆ À‹š%»î‡KØ¢6ñ›3¯ìQǨ/³ízêuVKôB}§¬ÉsBxHdxÉUZ ·Ø²¥íëѸÄXàzM•ì?™Q Y¤ÏQæ4¿ry‡Âœ-ØkJ/F‹Ï?í…›ÐRéÊ¢î ´Ìÿò’Aî ZÉ/˜Y|x‚VñGy´vÜКÉè`ö§~´¾ ^Uåd‹Öµ7j$×üð^ju Ú¸÷ìŠaÃëDì5Mµ¶êU„Déé¼V6í²Lž”[W:Õ/|mÖÜ& Œï¦ñC.‡¬æ.wÈXr|Rà½úwßßÍÒOHÚÿXF<¾\Ï™<«ö‰:s}S€xh"ÿ¬1KðÁ_%ëBð‘Fý§¡ü$Ä d=iy£ _NH©xÿ¦€4[4_d­ÿî“Ïæf¹sUäë/¡ÀÍb.ÀξUšsuÜ´ÙcvlP´×|ã‹û'(*6hôS…b›Æ;ìÝ6NgsJöô–ÆÊ¾’[£ì}’P2:=PÀ¿J/Фë„2ã~ŠD„rw»Ð·CRPñÌ÷»Œ&T ¥š½Ü¨ê^®gsP;, àå¦õ´üZÇ y9jD;ú04Éí§`%…æÚÛ¯¶ÎºCËÓµÃÏJ¡í<ß–ïg?è8Jñcæ•6tºëÿXDzÚÌâ´Âå¡ÿÌEæ«í0(Z)b° C±‡ë®3ÈÛs??[“ö¢>ß¿XI‚OžR„IVÇ9²Ý0­ùˆãbæG˜}v³[:Ðæ®µ! ,ŒU™¨ý„%®n¢M9Xž ªRHOƒß/ž´t$úÁšë–ë[ƒ 3æoI“4°yJûœC£7l§ŒÌÒ½¾‡Dol™{¬¬„Ì™ØG¬ I_ª~rO¦Er‹Ãž#‹z„|ëÌxÊ©5ªÝ²ÞK"m¥¿od"2ì«åØÛƒLgMн­‘…OróÚgcdí¢¹ïßü Ù[î1P˜=CN>‡”ÃFþÈ](½çû6îù ]æ4¼ùOäsÊ¥CAáûÅi(̱\uýHŠj]þö.ìŠåD×?nÃ}WœÂf³áwýšûòN(]¬Òcúhe=˜vM’5£œCÊ {HesãŸÕÏ¡·oÏ-–ÃgR.ò+‡!m—dj¾‹1A×’®R TÖCõž$9T?ørÆ´ü8û>R/š÷´¤ÁÏÚ˜?•7NA«®X!Ã!h[ˆž3¢踭íPsA:zv©W¸ðOIËymèdL8z*Ø:xYU  ]ÉH›kïÙ¿\xSÆÅÚÎm y™³@[µÓõ:Vh×á hx›íMþì4ç› ãU[B‚á|/•›éyì¡«!¬¨¥czN Ït]‚>wnm{pѰ0ÿÄBÈ™xCÓ †%wÞÚ0ÀHC#!úÀXüºšÐ¬üJ vöÝ¡„)ºKR.˜ùPftþ/ÌÃ…RIX¨ª P#ÿKþòœKÜaåDm죬^‹e ™Q€õŒÙzö‹¹°Éiø¤áf)lW^$õ¶E¢A+©KÚZHX;bµrÉô[¨ŠB‘‚¿•ó¼ŸRíÞ%Þ*NŽ4˜-w¶Èéž¹Þ}G}ÙzH5‘i„h¦‰vYì·¹·÷#ë/µÛ¡Èþ< ¹b^w¹Z¿ ¶JE.ó΋ÑöÈãå±'´÷„iô¦"ßh¦õ Èø<6§sAÁ!«_H‚Q˜Lã©Ì….‰ÉÊ¿Óà‰{½(57CÜPüh?Eli î»aÏô÷g_o qÚ‡ÒdOË•’QFÝ“åfŽÊFòì;ámƒr"7D$¸ŒQ¾¾1Ö‡PñcXù9JTv;² Uýég}_t¡úc8É¥ÔÐ÷n%ûBš!̾ŒÌÞ¨UÏÓËÙ:,M‹ÅF{Q70]K«w õÍÞ‰ÝØ…Sk¨uаT¯/ò•+˜«î§ASÒK»z® ™—±ÞÇ·áhîRæwb--H‚”¯úS ÅëMºÃÆh)AôVÀL-SBØ!âZI²4VßdD«¨´[w…'Кæ+=§ñ6ZŸy·©ýžp\ëÆ{eŽà‡·þ ¡Ç5‘Ø)ôyóîÎ^ Ôœ¤?˜œ‡L¶ ×Û%väáŸD‚TNŒñÉ…¢À>õÒ@ŽÖ•7[' ƒ/Òóºð}H i "[ø»ßïÅèÅ ½ùø|írɟѧu¥\ÈýË®— bs]Ï–B¬ÛóçŽK;§FçC¡}>ÝŽ\ec$èR\3¬:2ºëƦµ” ':sL­ò‹#ú/-fÁ7ðŠ"ã(¤›|XØ÷ o‡»ñéç__~ÌË ÅÔÖb&uìPì~®ï]?W¼9âGð¡n±/‚/Ži gÛB)©ÃÕ»7ã ´]š¦ë(”uíy#µ¸À‰/ËTÈ< òŒÆC×¢PM­™VÀK 5«i—õ¼I¡N€ÆlÚ~šßILz ïhxžwró³JfÅhø9dh#óUZ“Šn>ûå í¡mLÖV/:¶7êËè‡îMMWòotÐw7‰¾nP 2ëÞ`> CêÛ+Æ-0ÜJwôjîmô|á˜ã~×»øÌ»aâºÚK:w˜Š öxzÓf¦1O¼ìcCå*XÞ½m¬ô o̺H Ár@ò‹¾dð[´ðüSOXL«/;¢ ë?7§º5ÇáÏTdÃÚ(Ø–‹¦öÐ8‰DGɾ·{‚Äa¦4¾Hji×úiuɉx:'ËâgRJ:s R5¢TÊÒ2—øUSr }dÝnÆdRÍø–…ÌÕ¤)²ÒÈê;ßTXåìï'…Fnã®÷3"ñ‡æ‘[Ì^‘ŒwÏÉŽ¯1( ß:ˆ»ê$ $—òd_E¡á¾/_Ø£HoZß9GÛ;tLÚÐ%º“êî†Iàþ²?ІE®(í¹–2:£ˆ²LT; …xp#gžxÁú÷VøN ÒÃÕ‡á‰ë¨Ò~¥ú– ª‹Gs .t V­xÈ÷K¢æi…Ø ¯»¨Í˜ •n/:9‰R%ܨç´t8‡o È+¸”êâðPxX|ZÖ.4¢a¾oÍ…Æîo¿ŸeiC“Ì~½ÏhºÄ#+un ̓ïªó˜¢ù›w{»ЂX0"®-Þ>:¿›-ƒ†[ÑÒ×È­f­-{ùï숰üðTFHUZ…<º?”yo>w¦µýäŽzu¯+Ç©ûõ ÙÝû0Ïja?¬gGÈe<\Ê¿oA™ÔekãPC÷Q¢r8>8ó@ÖÚÎ…Ë¥O \¨²¼ÄÿÒ7Ml–~AÚäôèÙRkH®§ÌyØ ‰R1õ¾ÉGÂ7x&RqÇtý¼ÄYŽ  dªÞN.è+Tóçk}û²õ"JUÐtµÃà¶àsøyúÔO©ö>hY_K5=Xm/,¤î¿†¡mƒqMNèÜ/Ém†¯¼ £’ä¨ç¥!hŸ ‹$míÜmŽï—oA[Ðãýv\ÿöXDœ¬$‚¶¤¥C¬ÞÐNÇëêFñ Úo­Ìhd½ƒÙ¼MÕ¯¡“÷ljmÀèÒeÏ›ã< ÝÍãOy½^Co®¼¾^Mô¯ÑŒPÏS †ã]ÏâRJˆqãŠëÔ|k›cŒÛgìeæáý>Òˬ¿aÒ±ˆe³é8L÷4oGÁ\LTŒ‹ý)X°TŽJ¶‚%’)7·ãÖ°<¼ñÄëQ/ü^hë¿ë"\mA‘¡ðÇž¬FÞƒmŽK»–n$ ÑÍfJöÉsHÂIšÒ$Ù¤õQ/E_#y„ñLÀ$ R0i‘FêÈ>væ…H;B%œöú28Qˆ%KÖ"Óí­pÕ£Qȼ¸¾ë¡AG7Çúö]Cv¡ÜëÆ '‘c¬VÓ Ž9¿[ÛäEîÆ¨›9\i¸{ãë墉Èg\XÌ»YŠü£/ïß@AlUˆÉB¡ì/ƒN¢ˆ¹ÓõÇ …{éŒç×>£ØR›šUtî#6á@7‡ûrD¾/B©;E–Á(½ñ–Vz:e3ÕlþŠÀƒ#wÿ\ÜFùÇO¥øZJPјiû~ƒ/*óI°;žFU¥µs{ëÊQ=®ªýЦ1jìÚfŽàšCM;ZÏàµÇ¨–VËß„ÚR‰ÜÞ¨kRàÐóõÆY .Ó¢AêQ é!S4 ò¡ è,Ec3~—ýa¼hòãIû@Κ©òPNCs#¦õ²÷:h>§½(y?-ßq–ªDKž5š¥£hãõììæu´”³ÄÃ>Œ ¯0<‹Öäœc×v£µ'‘tÑøu´®\†Md&øá ½Õn´ñbûôIi¯)ïUóë1A+:ЧIIムLd< vâ–€*yfÓG÷¡ðñq»VÈ>ûé`Ù +¤uë*·ñ@êN«ÞV$õ¼=Ì”/‰U¨V¯€O‡y† ëÅàãËßÉ|t VáþÎç1ˆ)ž²9ó•ðú±cŠ“oà3wëÖuYNH-oºvÕ¹2.L‹–óñA·ge7äóô7x<¦…¿î ±¹ ðí”ÔÑ—'ƒá[og­éÄ6ásÙÿ~oK E>)‘´3#„ÜÌ%›úËŠÏ8¬Ywð|ñ-¯wJ"û?Òš†BɳÇù›‚âPê°4ÇÚGàÄáøR1(·ÉÈ×ºÏ YUûdî¾·kðOlPC§Y#p³¾óRû¿.‡zÏ‚"Û¼:h¤? 6 šîÅ.ŠuÂO™7æ Ú eÊy'IDÚJ?ZäÓOæIN)»Ð-x§zdz#Ûă £a@‘ʼ¥³ ³‡~ú†uîj]ÜýF)<…—^GÀØèʾåø5|àCÛ"L‘ß)HÓ›‡ÝHm·›W`”ŸÅ}åäœañYqÑáPXæ´ OÕ°‡•¬ÚÁE{X½xRy⺬Ûÿâ¦zUÎ.Kå•×ÁV®£pŘ ¤æ9~Gâ{1‚Ó¼HJ‰dR3ɾ×ýÖDŠË[y¥HåFÂù©°iž^÷e÷¾ô´?Ö„M‘±øÔ™c2È|¾Ëu*3YyÚ¹¶ò7‘mû[¥¦7îö\1pA®§N/p·š Ý3esäK)wãbB¥«t2PˆCaúM‘©Šã5ý/%KŸ‘ס„Æi«—îçOþHwè$J³gݹa|e²‰Çׯ}ă¯K¶ß¨¤ |¿žñTbÛ|CL:ƒ*¶œe¶/ÆPí=í§K9ˆÊŸ§¾Jd£¦€UÖž‡“¨U<ì§:Í‚:'ß6–E=êè3dñÁ¨Ÿ.]#Å=‡tψ^f_FÃ"©z¡r4úÜ\Ðh€&׿[â„ÑôÛÉí¢ý.h6©k ¯ŠæÁŽÉ×Ђ©²ÃÆ>-žôÎ<%ð …L},áºZ^ß3Ét-»¨\ºK; ~(û„éîc´zÂ*Ä®õý"”÷®n*¢®~æèk9?dµÍöià ƒ¹¯©wÿ»_õß(M Ø_…B«‡/“ö•CN+±í'qÈR+ óaåû?.œã!è³]ŽêóyHÓSÓ=t8’ÜIë_|ß Ÿ~Tp’{ŸÎ'Š~;±)ëÙDŸ¿‡A«­£’â<”|”ñ> UYµœ’¾õPoÅè™BàË&¾»_¤žiÁO†ý‰¯dm åÝžÃЦJ|®Z6Ú+rÉ™& ãGã:t,Êg;»ß„?Ç£§]¡=ƒ‚Uœ½Ú¶\/I”<‡¶Ëƒ=7ò.@›^‰é1Õh»õ™zÕÚZDó7ÎÅC»ìéŠ+›§¡ý{”iýw/èøó$h”:ó^eQÛM@·rbqÐe è¥57’÷¦‚~©pï'0PïTc¯!C¢'jÃ×>Ãprºôq© ½Fú.ärŒ{Ö:'6‰!?ßÏi®ÌÎå0[ëXR*v æ{Šø£©`ñÞ{ÓäZ°|\§ŸÎ~{n ,Ï2¬…ëô¯—„ÙP¾œC°uò¼îpð&í6ïË{ƒÄ‰j×MO8"©•WâÙâ.$g,/ ³‹DŠYÝ HµF¶’þn?ÒÊ%—WìsEú[—ÙZ!“À†ÚÇtd~Ô ýçi3²²Q­»]z„l_…šý‘ã4NP­FNÝÆ°æŠäÖˆznù!wŸfàˆü¼éÕò2±ÿõu¿~ŠW(°²Çï¥Î( yqI…_Bá-Õˆ/Ë(šô4j™+Å‚ê½IüeQâÑOzêƒ(™¹ú=qÜ l;pÊ9Š tv#é°À~”ÝEq*ܹ Æ„4U𦢼™Uî/hT¤¯ô2“šA¥þÒʉbTYšk%IAu›®IúeÄ&–7vŒ©¨)HîHÒÿµ\;ñF µ£sN?›ø†ºÌ'¼»O¢^Ò-òHÏ4¸ü¦""ß ?ï÷æVGcšó|+2hòêó¹„p;4£Yd¯/ÎGsyç«‚‡ÆÐ¼‡(qð¹ Zøo—×DKz¶•c ÏÑò¥s”Ëm´â´ù™%OàÃP[SŠsKhµã_Ô®‚Ö']ÝÔöÓ£u…gåA‚^{Ê{vmN§.HÔýÆ+­)+ÍW[c^žL؇LBWÉϼ ‡ ^ž¥G™¡ònÍìúûÃðí¥Aßxs4d½–œ¬p†¯×xøÖ‚’ Õûï}âEøÒÙ wú !w#B}âOˆ0ÛðClYrRûyˆñux7\J 1»µ8üÏ‹x1ÇÈ#¬¯ˆ;ï˜ Îã“â´B T´'#7) ûmJA\™#ä]-rwü=DB¡ ìÒÁs³šðM™W–Ÿ|[q¥Îx4…Y£~Úo {)âxò__|¶ŸÀKÅî>‚Íÿ¤”­!ðbÑÅŠ/„ÜÔKZ¥E éÖ,ÂP–Õ”nDß D®$ËuƒPézë(Ê8‘¿y÷æÃPËC•¢±ë2Ô™‹ý!©¦€ÃÁ·~+“BãH¯R- 4ÌŸyvZĶ* Cëò¥gÕíË;#þ-âÐe ÜB—=_wtµ3( ÿ|°äaP‰–g)ÚhľØ6¯žã…VŠ›Ï5/¡UXD~Cú¾aÓyeN‰Ú¥Md&G9‘UÃlŽëÃ-˜ s±û 5ž.éde1Pªd¶GiDÈ…rq<’Õ=Ïx›fQ2ÓüŽ!p¡ÑÆ,q,|teá;¶©ï~šß€/üÏ.Ó¸Cü™±c_@ü^Ëý¯œ ÿ>×iÔ³`€ì°){5Û÷Pâþ8 é Ê¸c&Ò ê*Ê”÷¨Cc• c/é<4§,Þ& ©ƒí£Ego@kZ*EûÜ/‰äAÇùðÝí?È¡ãUóW¡ã» |—qô¬I+´ßܹYþÇÚú§CÒ‚¶òcÆ œ(+Dv$­Úœ--XïAÛ)Ž'qÐ64ü6IKÚOÜytY :$;Îêê„Né=iB/OCWô™Ùù›ãÐsÄËL˜Û úÜùNvKÕÁ€ƒ3ƒnQ< ƈJ³úÂ0¯pÙ¹øG02@ÕPœ{ ƪϛx¨·Á¯u‡çóZt0ec5èZø fv ­ü;WßÓ™ý°HcÇã/ KC',rÂʈˆÍÝtkX#?7á5¥ ªßJ›Y§/þ|n;£N½†Äj—õ¾G¶#I§âu=Gn$ R{ù¾bRØ9…×í D*ë}m¶ôo&ÐæDGÁQ¤›X.>í߃Œ·fªùéW‘Y죡W¯0²$ÌÑNû€lZuö¥±È¾ZcX‹»ŠܶÿŒ\©Q 3û‘§><î(Ó"òr7%êßB~ÓÍK¢w²P Ñ­ˆnŒ…xojž÷'è*þO OŠšv˜Îw  Oy|Ú‘û(ÁÁò ˜üJÊËWçIŽákË.hPú2Éf¸M"Ê´lRîo݃=ÿÄòÞ器uR·ýQ¡áz[¨+*E;^¯Ü`C•/õço+½Bu2%§#]o½ÅÙoLÝFé#¿ÊjÔ¨ýt¤µÝ?'ÜÈ¥BvL}ÐÅz¹r­—Ð@¥Ë•ˆào†Ì½Ö½9hÔ³ÀrXMNTQz_¨FÓ®ò-×fS4çû¼°„æÕߎ¿ˆ¢G‹S—/œR)@‹í(Û‰ÚhùPâICù}´b¸j³Ÿ‰À‡ÁŸ2ôï¢ÕúØ+åÃh}¬ôUŽw4Z—y,f7Øüðb¯á:Ùœ5QNrÙÄËÞJ)b¬N¨~O“®6,™¨{k•ê(àWPRoáŸ5¨hQ®‹Í‡‚èAA&^YÅ+Êœài±ÙÊ)µŸ¬^Ð|n§š7'äÏü½éÕ—öÅýx/'ÄÌ­…I‹„…ûÔ{¼¢áÃÕˆö°±¦ r‘J«ÐäW|笤ò Œi=Ô‚ôwq;f {·.CÅ[Èm>“bYž ùOÖœ ›„Þ\JƒËPðüØ«…ÓVðÍÉcwUEêJM¿²ýë‹›‰¿ã¼˜êDóçSÛì¥ø-Å6Í7H¡8}UgÊCJ®VrÞðƒRÙs…c‚üP¶kö³ÕÓ{P~h OTIðÃJ]Ûhõœ×Æ÷+^‹šsU‰iC-õi!¢ûYÈ*þëĉ¿aÖ28;Zrª“Iý'%ä ¤àÛIÓ‘h(ðë͸¿ÿ;d‹Ñ‘©éBF¹A“† [nLyÉÉyîÿeQo1E@âGõÃV‡Ò Žž2‰³ù|ìÝ»lõ’*Ø¢Ú@6S€ÆeK(Ùµžˆ¯ó rh¼Œ†ã.Ô)ù,c¼g{/>¸ôš-²{8ñ«Þv¬"´Þu×u\ƒvj)VÔè`1éÍzRšç¾ürÎ…ö ú£çUL¡ýÐÚ¤ËÀÊßõ†Õó¡Íò¾J-[(´í¹›wxo ´©¬G³ŽO(^Ñ$øá3‡ËÃÁTžt_ZÜCOàKz’ä'¾ÿ¢Þ6 ]”2{?†î”{V,¥õÐû.á“vC2ôÿ(Œ;ySùÆÃ¿1€¡G/lýøžÃˆÑò7Œ‰²,·¬„_b6.0Úyê+=Ììú¹Xsì›4—>ÂÂcºß>‡xaÉõi%u¬1÷j7ü «—_/ö±²Áz4wè¹…Fؤ8õ¾,êl'¿åY)šB¢É,?-‘ä(©ñž$ÝÎ8ýU¶É‹/æÖp¥"eªeÖÚ Z¤nÝ$›6qF:éi:£„ÈP4αœIàIJëÇ{ö^Elå½DA¸šŽ_ê§*Cö«û”î¿Ã]*5´2S‹?ª((#y)!þî¹ÕÍg»ìŠü¤7¼Î5£ÀÑdâÛAš(Ø´P·pž…mMò“Ü@‘ù=[Ӌθ7%¿×EuÅßYt_$.À}+j¼}qÿÒãø5¢9”–•_Ñ Š2O>V¹àA77]„YQ®±­Áç™3*„Éètη ’˲tBªœÌ^:{վοkŠ×EdÅDZUÖ¨‘½®ú;i5'šZ¦ùn¢öwcîÁÖ¨ó–KâCÇÔSúz†Á~ ˆvmž:ã‡Úý "¢QL_(Ù7;4‘ŠR5UBÓÄ—#+ÃhN½~¡?’ ³LßÝF ùha÷ö× E´˜7‰Ù³ˆ–þ4 Db¡hEÑ3Í„V¸ƒó6ÑjÙÄûuïU´>*ôC.G­KbëÂ_^#øá91Ç#Rhsnâ¶Ô 1^b(9u#yUOM~ú0„Œ÷y©H·a|«æO÷C…PB¢Yõä'°I‹V+@ÆÒa>¥GöÚøºõòd$§Úzr³ôÖ¢KíÂn ñÃ׳*,žô¶œåÆü—/Ò˜TÂâ?=­ìï›ç">L[AL‰=u Ù(H")‘ÏU̵6ÿoý†Qf C»\ÜõAîþŒ(}È{üå²õ¶äûluóoe@þ\«ˆÖ7çÔ§º6†B¥·{Çž¢È(íp¾’Š_L¨Z¿ûªgÍǯà}ý›÷Z ôçéh¦¸c(ëÛ+áÅÑr!|ÔÕ%9¨J[¯ÍPJMÛém—¬Q•ÒÔÊ“ÖÕ7\ÜKo‰“ý3<¨ÙòT¬5¾ µÏ_Ë}.puãã&Aõò/v²×£õ·"ù<Ô÷ ÿÕÅZ4²ký•@õKµäÊCÐt·á‰³n¯ÐÌMùÏW47eX« @ó ëÏÊ¢…Ç8}Úòe´˜” a¦ù–®„»Éî4Z6­^x#IðÃPÞÈ| ´z3ûeÒ¯ÄÔÞè^C\JÍô Kde èLÎ÷‚™¬†_ÙYPµgÜZ%š«%Ëv¯tõ@d¹PݹxÏêïs•…;d.!oYv-Kk'A¿9ÂiPˆÉëêžò£(bm«³g) ÷¶irþŒ@‰g~N,®ãþ[Ž1™O£PÚr4˜ÓÅe¹Ç”É]TQNàÉ¡g^¨ ÌÔ›ìžJæÑÉŸ …Qåfî`~Óª®ÄØ#N=Y›æ!AÍÀºcΪɨÍ{ÚI:÷êXç)TT¢Þ©þûTֻЀ¬[àv8!¯>KPeÿ“F¬Ãs«•lhxäsœ09šŒ½Þ"F3…r¥© 4Wñ’ØÄv4o´I1à§B‹#x¦Ôó Z t^‘gG´tŒÚö<ÇŠ–õñ-¦ÊK?<¼ÎwM­^‰õ_ ÁKñ_ß0º‚pJ§¸þÛ²lq™®ëÀ ÷Õ“2Z× JþWƪí¿þ‰ÿú*2#ÈÉö6ºþë™I›½3f…ÿzh’N.Ýw?3ü¯#ÆÈPk¿–ê¿ñs¨7²ÞýÛ“hf@ð‡ÿz.þë©ø¾gd³miüN_®ý¼ MášTðFú__MK}éùÒ@[h3Žó3?ð¯g¦=4ჷÍò¿ã}4AÚLV†þîŸýŠãl*´.ˆš³ÆþÿŽÿ½ï_Íÿ{ÞŽ–lß}‘=ÐeUà0Ïúzè ÷±3zCIYÞîë;0Àåé„c0xÚÇ/œñ= sr?r÷!Œ Ú«Ùù}„±Ñ²ö^/êÿõÖ¸«:• ³t->?T`>üÚ—{!ë°xtR(‰b–Íâ"ü|.Ào›òÒc¥°v‚$´xŸlĹlÅdÀ–p„¯ŸÓ;ØCË{wŸ#±çë™zñ.$™‰åøIß‹dO?—±#Å©èkêŽHuõ.ë9G¤)슥޼‚ôªïÈh‘qÑl¿Ï5%döz¯};¢YæZ*¦ÂIí6G0ærH•Ü cÚFN¢¨É‚J/䦞<§tÞw›ÍRûéð#oÇvúúov䯅{gjÞ¡ R­§Å9!Jy¥ZzŠEdGEP´=ÑàÛÚcKnôëØÐA‰¯sEã[ïQòW™b~\.JV¬·”aèZUCÙ¨/į œåáQšo»Qí |Ty}î *w…,Þï²C5&W¡\6§o®¢†ÉÌîI¿=¨é3.sñÃÔ*tQD±:Þæ6Ô-n¹¥÷õ<;¨Ä燇\/~çÛ-†F2_S&o q%×zJ.45TÏ।@³obÊ-hþxéQf;ZÈ϶]5’D‹ŸêGÈÍÑòd Ëü;´œïî ‹!ðá…¨qZ r´šàqÉ@k»1ÅýÚvh]È`±÷ÁÝ #ŒÜÑæ¢ «ü:¼ ßÜ-6º„ŠÔwöW¼BF_a¹î!+?þÆÊ4é_ŸKn^ÿ-·ouÿt÷_¯Ì=4ÿõÍÄÑm¶š>:± /“ÀûKmJÇïí†èûo¹+OÝø7~paœ—>àÿO§ÿßžšÿtž=¢å/ý"ruëùÚÖ O:èv3ýÞóÁ}9~-Œê¯ï@Áâþˆ”Gÿz¬¾õ6»×Uÿë¹)¬Ž¿Åìì·l#'þéÿ¿~›ÿzmþë³)¿ÈzúTáùÿõØŒvN|Ýœþ×gU—»ò–±wòóŸ_à>›dhÎO‹(H{ø¿þšÿw>ø¯‡ê¿þ©>~u¹§¯+`àBwšý)Úã>󆔆W¬Ê/•gÃè䯞KnÉÿzk&I†ô'f¤`ZŽM˜LîÌFG„†À5˜Õ<©µ ‹ _ ð­ÂRP»È¬ðNÛ~bn‡ß DS̰¶“Ì”ÿþX$… Åý¯¯ÆØlÞÈÚ‰3‰F¥¿. ©ˆ¿æËo™Höþ¡^ÕÒÿúj8öœŽxøiT;0 Çé2zO¼¡ Ü7»Š8¢/UóóOJ¶µŽX0¢ÔRÁ€†œÊäÍéG%¼ÃƒY…µn|(_Ê>ËUœ‚Š Z ·(—Pù·ÈyúCTóV»Æ{Ѧv7§ãÔT¤ˆkG­º£ÛõŸQǃ¸þމ-êq)mpEýŒ¬hÝ=‚wn IêàÖ£4£2½lzÀÍE«œr¥Ð¼XÙ¬©-Ì_Ö7$ Eû—Ã|Ahis#ëÁ½<´¬}’&ÑžKðC¡Ÿ1òth™"ÀBVƒ—öîe»úÎ Õ©·H/óy#Ëý±»h5a:¦ßÜöÎT&ÍÅKÏú»®è„ý¿>šLš®·J»ëþæÈÔ™ñ×- Ô–=„T6çÃõO£àË3U¹Ž©¿=‰;•J£ðaæ aÚÃúãgîæc/m ³ŠíX¦Öê¿ÄŠÑŸÑ˯º vãYZ”]44X)XûÄyþí+¼~â=4¯÷¸*ÎAË-Ù§ O7 uêrƒíw~h›Ê¹Æ[Ú íâÏiöØw@ÛÖñH‹ 窑D|3Î(<¬ú/v”ÈAë¯ÑÐT]h#%±¸Ã”m{¹øM| Me#9]BÚÜó¶ä…vÉ{.! iÐAq÷VÛmjè4 –*bv®º0N7Mè¹Qä9Å© }®\$ßW‹a@í{ÎÃË90xSbÖ`¹†Yd5ÞTÃH……Gqc6Œe²üðɼ¿*|Ü*š;`Šm—´X"%Ì|iºžkøæœ˜ƒü`‘­Jåš`iIúQ|µ;¬LFpцչü'™2`CœïŽ’ÜÿCÖ{Æsý¿ïÿFöÞ+[öÞ«ó4“½G¨¤%I„¦¢-E*©¬²ÊLfQ$3{ïM%;!þ¯>·ÿÛ÷ÂïÒq{¹ðråu<Žó¸=ÏçýQ›qÏß[Äζ]E"ËI$Þ­<žèÒ$1¾'d“p\ ?ëKä,:Z5&Hɦp2 ©ßè¿ò²i›?¾ˆgND†‹Õ–âI\Zû™›+2§žü‘^Æ¬Š½q¤öæÈÖ#E}]v9’’nîA®ä”¸cåÂÈ36Â~¾ ùNÆòkr¢@¸Ì¥B·ï(¸AsRªÍ…}~²ÜA‘ÅÞü *×Qôióø!JV?Uâ*JžÚz¾‹9¥c-Û¡µÿ<)§ÊOÙ)y5ô£âEšöö¾ET–I½ñU¦¹¾¢Zv™.É:j¼J]œ«§@­n†ö2MüYtÖ¨£šÝyè¢êzÐ?¤¾lˆz¹ˆŽË*£ÁQÊ˵nhX}1éÞQ;4z0U0CþÝ*Üx8ŒÑTFÁ;çñ#4«U>Eé¶Ž¶Bw–в9Ù¢§Ñ*Á#8ã‰Z[ÏXq>߃֛ñç–ªÐ&Q®ôNõ(ÚbTÿa_hÛí«ò$ í¼vÿªòåB»Ð¦¢-y´¿kºw_S>:0>b=÷ ž;<žµBŸ¾Ómh‡ª‚S÷#}‹³¯§ïÀ¤û·µz®Døìô²ýeëú¿ûÒO‰B^§ô<0ï'ôB{딫ÙEÞü`óê?>éc_RHyvø°í%xU1mã_L胆âŸH!AŸÖ®!yfG“vùŸ;IÈÃÛ‡Šå—DáMäÌ0‡$äíy¯Ç(-ï¬ÏöMÌüã÷¾k‚¢­„ØGB¿ xPZ¸#ø”~ÎöçÎ,¡'α”©jE§íò…²Ì í"²ïg<”š_L"ôE [ BÒŽ- ©ÊÇp›_æÂÇ ®—Ò{ÖÿñÀ}Ÿ8ÿy(}Ëäûà3øÌ[ž4ÕUW¾·j¸Á*¡.»Ï„žØ®Ð>éþê¨öŽ+‡† N*Ë<ðM’hÞ€šú|\.=­WŽvlgA»[ã[â6è¼Vêî)ÓÝ/ º¼´ÚáO ÄGêÚ¿é…aR çDUéæ{¿”Å ci)ÍLw|a"ª=¦÷PLE%qÔ!̼1˜r¨L…ï#îàáÑ sæ¥êŸò`þÒ±ok÷5aaÄÿwÈU]XrñëX>© Ë+—=—Âj}‰Ô/Ö°ÖÏ}ŒùF'lHúèûfyÀßìînKN$’où¼qy‰Ÿé´b ’R8Ÿ ÐÁ]·x¨xõÄ\`Cý¾ø>¤XJôèüŽÔl¹»À- iïÕ°½<Š &§3¸IôSDµíidn´ó—ˆ¬‘z^ª_‘ýæ51Ÿ4r>½œ97D†ÜSWs\p yãŸgÌ[g¡€ïñw‚gPè‚ £è1ytï¦ùV ŠnÿÕünz%2B*zÞ£ô]xâ’ò墷´­ÖíP!ô &s˜*Ý0)› w@•§á£w ªÅŒîs&Dš¸àI†(Ô6ñQ¾9„¨\ð7¤zuŧ)™S¡ÞGÈ/BáhàZ™UŽûh9ši~Ø£QÞ‘D§CAhlie&Œ&ßÎ=<ŽfÇoÇû;‰æÃ»LJÌ‹ÑÒrøâu#´r6Ïxq) ­)l›ßŒú£uvÀãD²9´±éè&uA›E¯É­æSh>T(ZĉvŽìW~¶¢Ýg™Ú¸Œ~©iá¾ n¨•ùnßîë¤ÈÌž? Ü”?dŒ4¯TŸ/¢QÊYcÚð±1ì䑤MÁÕÕý§T!Ïx—•½Ñ&äLïþ˜­ÔÙ{éϪ¹ü{Ÿií¢þ¤ÖÊq¦ß†¤‡»mU:Üv4#Eé]¶ùx|í¼`›æ'¿º,±øú%¨ëÒ;q²Ôúßï[I ¹³“|"Óñ„¹·çîà _xïȦôµ}ŠŠ¨¼H¼'¡ø~sU÷Ò”p9‡ ýëO,P¥¿^‰2{‚²ãf/º\† ¬wÕ¹ê7”‰¾¼ (ÿbRÅ3¹õ¯'¯úfÎJ­LV!¨ðÓ wëþ¿øžãÔ§ ?7„&&ö}‡y‹½ömÁ°Pàb/ß KrLQgÓNÁry’ô›—°š²ìÀ­õ֊|p6Hz,T$áopöäD™!±Ù>ËL GâKÁ-IUdFÁÚHºwȨ¸âŒä$Ǹ*¢u¤SCH©~Ýûº1žƒ´‡rª ’*‘ûãS‰OµÈD'o#"†Ìy‡;îWõ ëñ‰ƒÒÛÈîþ‚«÷)#EŸsç±àFѪã½fØPâØH Ãû_(­–Ò׺ΎrzøüH ÂzéÛ>ßQɼ3h×û0Tq¨xx|÷ªy\S"ýŠ/Ø}¸3‚ÚB/LŒZ!²¼ü#÷u¹k´ê®¡^ž”Ї%_4°º~ûg5î#?É¥j‚F9´Iž5ïÑØ~,>š•Ðÿì>òÍn<æ1¼h… ¢Ï&K)ÑòÙ¹ÀP=m´ k[=ª)€ÖÞÚK4hCoëxVJ mšÄ-ߤj£íCW?nBÚÊ• =¿€ö<¡ìRŸ£ýlSRù¢ú‰JRzØ£¦ù™Ï£O‘éÕu›Ç¤ð½0[$‘|ª_jï!Ìs?‚C.ûIíðhòçosz—¹5ñ¿Ê*m çDÑÁ'ÉÂðÖF딾ñEÈø^—CôvRµiT”¸Es(™K ßâŽfÈEúl’¬Â;é{áG¯îÜ£Výć‚þ'Ôå/ðÈó“Â7¢:¦®{hQæ:’sà ´ÞK™ž¨=mÓÌí©ou¡C‚ã!Må.èäÈH÷¢„N¿CI„Ìb¡óÖ&ô? ùž$èèìR©}e¶NìÅס£y^Œi&:οž¡~g·¶**… óëá—¡KWÜH’sº‰RhÓµA÷¢¦N|¯ô¢DôÄæ èû ùIJû% ¬œ}&ÑC¼Ÿ#%éÂðÍp'#®0’Ö’ó‘ÆÈÿunÔƒñ0ýª'{aÒ6§4ÏĦu^ée÷ìï®)éWðãG}Э°ßðë«á{æ‚QXšÉÿ Kš¶NØÁ ËFPN†!ü¦¹šÛwþÈÆ†Q(ƒ‡/ä—xoÀ–Â;ßNz$ òh5þ؆Ŀé4øH!i”ìë¯rÔHæ|K=ž)|بn\@ª„6óC“wfýþÑx¹F¤¿GÃ4댉z²¿™%\S”ZY"Ý¿¬ò#›ÔûÏedŸ|-Ëðµ9{yþ”;¼EšùÓO'‘7¸ÍëÔ'>`§q3zx ƒÂ܆cæQh)ò«±ùmñÛëcߌ¢Ì|<ñb‚(6TyïØp”èÞ½_[û%J“žLÀ´p”õú¥r °åŸëµ;®Ö¢¢x½xˆÎ,*uM*Ž^bD•‡,Nk^N¨f2n¡^‹*½KEY¨uòŒJ%âÞ)65É]¨C©b¼Ïç<ê4Q—PB½˜4bí¯hÀÛÓW—]€†_“àEì4zQdÒž‰Æ‡„²ÐÝGSÙUŒfßNű–¡Å åm—ûhù;F“«ž ­>ÛœˆÔú‚Ö÷õ]ÙÑÆòçÈæL´eûËÛêsmhGÖߢ]*KÃÍ·ÐþœÀ­§£è ×ö·Ùo¹²Þ+îŽGǵ© Z=týøØòXúÄfŠ-r 2Eì„öÉ×Hûóæpâ&˜x™–[’Ÿn5ä=yVï*þœ½ÕGÈ«é7o¨@ol»XQ2d„eë»g rm?}[éHÎñ£¤a€¤Ž·Ñ¯õ®BB¢°K¾F ¼<Ýñ(OëöŽ&¶þ \í¹F˜[eøíŸ€¬»Gmt™›Ãº®‘ÂUúµŒkðžñZ8ë2 Áÿç´üJú¡X#àxÿIC(nõx)¤Â%åÅôDënPšNØme|ù««y”PyðÞ "-(§¦8uLú)”åF9=k„œi·^:TÃÇØÕnI¨8éÿ讇æÿå¡úþÍ01Nø¬b©vˆ$ªn•̦ÈéBõ߃²“IP“3’i.{j ;þêß›„*בļ«Ðt[b¢Có½*wïT@+‰ò:eÌh«¬¼Nù…àçd:wèúØÅ§/Y¾ÃŸêÑsîk'ƒ¡Cɳ%Áˆù³¤-Uc0ž2¥š€ñ¹,îT+˜œh•ÉY? 3$Ô¢òžQð]kËO¾%~¦y0>ªßó™ù<_`á®n^Z;,‘d;ÌÎÄÃrÒ“š¹›°,œ›Ó k‘KÔ£â°>`zV²üüµžÍ[’ð…í¥ŒÎ÷ŽHìR‘uHÊIê©ð;â.cͰƂp$køóô¤RäÐP AªZ÷°bz¤UŠ>—“ʇôßY‚•ì."ãRtæàò(2?;­:¹ª‚¬Î îÂ*È®«+qY’9÷µF]ñAî?É®³tÈ+uq«Yx7 Hö0½uC!jÏœÙV‘qÑ™&ô5ÑÆ ¹;_Q‚_3O&J¥¦éDL,^ ìLðò¹;b¨ ¡Á·f÷•¸Üu‡«PEm˜šà5Á`Zâ<Ôð KŠÚ’F­õšüCz•‹¡§^l .mÆÈ¤Ñ"ê¥0¼¯²GÝÓ°÷/þÎÙ 4zóþÕUùy4võMŠAS’£§­bÑìeü³’Å´€ý,âNh9´+XÜL­*õ¤×Ÿ£õÓ4"ÒD´9£°{¯ÕE´5¾\ã8…vÒ¦FSG¿ =GPßÅNt +•9|™}2ÝçR2oœxfŠê¿öÔŸ6E&y‹Ó>öGá»ý—ýG¡šcÌ2ù›0| ¿v+‡G“ÔÅã -äîÓx(¢ù²ë^¯Î‹æËõ*—(Èàd>y›ô'Ñr&ô3ÁwsÇÀãÖŽ¦¯Hï/ª‚%›Øõ¥Š{¶«=A“Çê=ÔE¼ü¶vãaÞ{2çi=´°¶wê¿‚V낳âÌÊÐsce±tÚk¦½'µV¡ãÍ«O|- бl«ËwäA­,¾«iAGññLƒ9qèˆù•éuütDQ=«¼º:ªÅÅlîHþ{Nض›‚Ð'_h-D¬ÿ†.f£þ3ï¡+örçíMOèö,pßR=l¤äû¡÷ýºÕ%ßYèWc°ªæ¶€ÆÏ’g£`(³¿÷4 §þªxÎ! #ù¨,Yƈ‚úLÁ¸¯öÂfØÚγˆ¬©-u¾7‡`Và"ý—3 ðãÁ×ëžrà— íuÖ'а ãÄ`q éŒÄ;SXNKO³÷ú«'/8V4ÂZ® ËJŽ:lP¾8S}° þ&(ŠÎA"’ZÞ…f$Nî]à˜GR=JeÿpZ$cQ£:ƒœN«GC:J÷Êíæ{ÃHóÐw<EzZq»_Ç‘ñ`£XGa+2Õ º+Ø!‹¡hßÜÃdí8k2ì!é/:ù‘Ó¿Klæ•?r¿,Ù{‚üòÒsÛ=$Dþüå׿I(¨Ût°”H… ¦ë£ÉPDÉ»DæøoÜÓlðTÓP,º,ì ™ J<”p²~‰R…KŸÙm;P–OÚiW6Êû”ˆ4ÞÿˆŠÄ’­G–N R6ëï ÷„þäáum{Õ8ƒ•¶å¢úÖò2o'jÉñLz­\À½×CØxƒR£…É8 YõÎæ|¨3$¹1}¨¸³ ÎO^ (‚øÁ²‡v4ñÕ(±3!O³«DúUAÖ•‚ã !ß ß¯ßiqä\}K½F8˜ k§¦°ì†"É>ê ò6(šâ&êMþ×Ç È@ÉU"Bž”ºŸÓžÒÓ„Òn;vJ(3¯*:CAeŸ½OýH•ƒr N§ûcþÝg¹_k>ž™ðO›?÷ïy‰`ðÙØÿËC²?X>ë²Ò”FAUhœ'}†Tÿ¾Â³ÆõïžÄ¨àH¨ K2n Ú€ú¦ óV‹·Ð¤øÁÍÏç>4;šûXýð–*·jÁY:h;g|¾"‡:\$ óÅ ËrZ7ÞLJ?ÕÏõâdü7 ö/%eŒP곯¿Þ£Ÿb§ê_Âxô³^Úý 0fìwõqLgyUÇ!ÌΘ…=%gŸöo´Àò0üZˆ—øÊ ÎâŒ×ŸòÁb§9Ç É6X¾$ð3×ø$¬:{d‹2ÚïáC&¬6°^XLF±ï-üÞDÛeo¯q R}V,¦ºcR,hµ<¶ZÊ„Öý¯XÒYÕЦ~„& m«‘Dzíj5/º¼ @û¾oÕÜTÑa{~ˆœS4æDN …á¹=Ò›n³:¨1HÏœR„ŒåìòÒ)$䤛Ø¡zèÜ;»e¹ë3t~º8~D¹ºì«šñ–6týn<>2Ô Ýퟋ¾xPCÏÀ¯í“Ї O¾žœvÊú³Çé5]þÂàÞ*O}­Ã0Ôë½çÞä'®³æŒ5'‚‘ªùwœ÷l`týE±Óß2·Wå?!°‹i³Cª0UÚÈÿ(af¾é“¦dü®¾iÙ"s}m¦ì¾7`~6’•ý‡#,^wr·ß¥ Ë{›×åöÁ*ßKŸ¿©’°¦Ìõ"T¶Ö¯¿ÈxÏ éßöÓXÀvµFиQ,Û¤½ÎË-@’Ÿ#•?éqWyÅÿ&$¯ˆ}ÿP)G…?èÉh!ˆ£L¼ÙÒ=ŽoQDFn'Ùk–È\p7Éé2¯ÌÎO%- ëµ!ÝÔÈ.™E뿜 Øæ5[é‰ÛvÜsD»ÀDùµZÃrµQpƒóÓc—Qè¼öóÉÛ(¼”Àôñ<î ?m3¸OÅìß?ª aC‰}kþ'âQÊ3hâÇön”ùvêröÈ>”7VÐx‡ =¡Z)£¨tG¿l÷êATQ¥ &{â…ª“ì}aÞ/Pý+ýò°¯¨¹Z÷Œk4÷îÏ*ÙW„˜pѵÅu²ÈŽw  Þí×éL]Ñ€=,›;Š ëë{Ó;¼Ñ(J£4+©.Ð6¢)ô©†/#hÖß²òõZ\ìé—Ó øÁ˜9kx­&µÍ®Žk£ue›j\Ú¼¢ ~ûæ1Ú†Öóq/£ÝåSO‹Î ½_áñku„¼(Âu<>Cy¥§f£S½¯g(Óo'£‹Œø£B<ŒÞ¶1Œ Pág¿Ä> r¤Ñô>åÏÃãý×=3 ÏBeΟˆ»®„\ºéh|žê!äl'Ÿæ%‚Œ5›¿õu?9ªH¥Ý¾¯ê^UÌÜé¡JÄYÿÑžúËÀJì·77â­_ª—QÝÑDÿÎÛWL yH»Eõ.>²ÈY5¾ì’†\ÍsyGù8 @Ó,K›’ð­õÞ(ªÂûqý^›:(ŠüðzÌ‚Š 5ÄMÆ  D>dèM”òô|µÎ‡ÒG7rU9C…Ô”.];”vxð…²Å Í–?§ ÞÄhÞ£›Ém#-wDh©ËB›ÐW"ÇóÐþçÏDŽòèúsìO¡ÔªïÙ¼ÿ‘u9tÑËKî…áOFl¬a4àçÖ­0'ßwóÅ9ÝO0©\Ql"y¦¾§f¹³QѯÿhÂO’Åã³mÏáWÌuŸS2,ÈÐ{K,zÀbúl׈%,[¾eñ{f«ÊIÃ16°f^Ÿ›û+Ö#D£Ç¾ùÀæ²›)=ilßÎÛsQ²‰tî^‰F’ð2&[oÜEïÌ|MtÉRãK^¦J#…7¥Æ®=Hu••CÙgiÎ4¥eu#ýýR‡}º‘±âÜ—µ(gd>rýOœÓ²ò÷»Ê3$!ÛÖ£ýKªÄȱ&kýÈ-ðüP¤:î.:`“½ŠüõâÏ4Þ¿EÁÂd¥^5®•Þº©}E™âª>É¡ø“I§l"Qjß;õß («NšÉ´Žò_ÙHyQ1çRµ«’"*¿«¸î 挪MnÅåCPƒîj•Ñ*ÔʹBœ„ãvÓÄ›uæÏ”jéõ¡^h_wú 4ª”(ôBÃ1i]VQ4J§KI"=‚ƧÂ2R¼ ýPd×á|Ù 4ëy‘2õ-b¼H~£•«~ž<=Z‹Ÿè©¸Š6ÂåA6"Mh+ù#¥'†ítø ³|LÑþ„DÚ·ß"èÀ_Ç®‰Ž‹"‚ƒÍ³xàÈÕ ìôM~{Þe¯ ª*FY•P˜ £ñôŸÌþ=0k39ÆXïUTòž±¥T„9¯ùRþëÏ;<š…üùánÖß—Äþ±¶„÷qYé5ñ•P¤wtÿd¥;m%z i:CñÌü¢»–PÒ¡k[ÆÎ¥&³ôv7¡´â ;k"”©j{þ}áe™“tôjPî!>MÎ>½Imøbºç®ù¿<4ž'ßfé…ÏNqç3ê *ÊÝc$ ª¿¿›<ÏC5Wf¼¦¯A­–æè’—0Ô;U‰*Ýe€Æ°)ûšÖNø6yº¾æl´ì/r±»c­mû^ãÖ7h^{çza.túP‡ØmŒîð§úØ®ï¡3€žGŸ^SÀðÕœÌô?0*¡C-hÉ c‹gº5ŸÀD¿Ú6û§0M¬¸ëüÔ&ÌêO:è=?rÔ"ž9¶Â¯}ROgä`~{¹¾Õ2¯†»á¹Ï¿=šÃë*”híòsO¨6 ÚxvÍn¨CÛ{už¯+ö£]é9Y‡üt åì1ÐiCÇcg¿1s-£Ó¸ã±÷÷rÐù]*[Ã/ô‘›·Dåv‹'G<ú ç¡×õ'H 3ýª´mðùzçgÎ&”zëø)6ÛáÑä–ö+½˜2ƒì[̽ïÌ- ë“y†I]*a^Uoòh^Ç΄ ¹ð@2Å•ÚþDH(J¿Zo¨µ£i8Éöj@D—Nò=øp#Âfv)TÍ¥µéQ<:ÑÌ9ë7uÐä²ðàÉmihÎ{(»ŸXZÒ‡‰ç~\„Öwm:Ç[ -Ù…> «ÚÏ>¤å> í™/ò{*Cû÷½$·«B{ÿuî;üE„Ï4ú’Ð!,íPYó:›ÅY]éÿqLí >éb]¬#N;]c#d¹û ûí¹[/R ¡'môØXd!ôÖ¦| ~!/_¥VH »'2äC¼_f~™-À°éÿ³B0ÂÄò5¹(F¦mŸÛ¾€Ñ¹ÆGYU翬^+?¢„ýÙ`JuuóÂÝ1˜‘îþyL¡¾{}¼ËÃj ?¹ qË Ã¼=øëî熅¯^f™I²°t¢@H¿`?¬¨23ö™€ßQÉùRoà_´ˆ6_>l|OÛ§ãå [÷]T#Ñ[Öî%@ÃÈÞK™L¸‹…(RÑô!’3‰”ŽY@Ja¹=~óHm!ô;ÞSi_ÞW¼ÛõDûEŹ#ãÏÞ¾ÔÇÈìèÇÝSûYZ’eG'‘Í;g@BP9 )ó¼ïU!—Ë“cöNÈóîíV«ò™†;·õœEGv&2$(¸6.kDè‡þ$cQgpuQ(ßq-­Í‹âŽiYq(Ùò\*Ú>eÆ*È sPnYGÚõ©*„ûE݇Jʉ†Ž~¨<@ñš¹$U¯ˆ7$ŸBug½³³â¨yGlͯ\µ$ä÷õBt>$]Ù:›ëOîÒ£ÞÙÎÊ#æÑ€A÷†g +6­œ/¡¿‚FÑ£é}fÐØõþ É:š2KL9P¡Y_;¹W ¢ÅýkÅ$S×ÑJ¨*Ä¬ß ­©DO>ÈEë?_%†¯¡ÍªŒoCèe´Ý~6zª:í9Ö~Ê/K£ƒ®ÓÖ¥‰'èxMì­ªŠ?:µœpÙ>l€Îp6“’§.µO9¬ïSãÁ ñrM¢Wâ–TR¶&Ê¥©ö¾l¯Cª»N“Îʇ`œËYøEŸT ˆz_Ô‡w?_†@«›øƒ`zH—nii\€×Dôñ¼øžâ…ŒìÿžfPü¶­%Ekw^Ò}d‹°é‡85Ë#ã|Ó;šÈþ1l»œ‡V¹¿—B&wÛHÑzäT5{>xÆùé?šYOr»Uá߆>§þíÕ\RŸ-‚÷ó3³ÊŸþí×äú=ò…âWNo‰Ü–¡$si'ô»ªXƒiSâûç–cÒÁPã©ëÄ]Ý µÌr7ÝÕ¡žwòñ1ahÔºÒ|Žt¾Ý°ÓuÖ"…êqÑ3íÞÐz³ƒRÅ ]í…˜­úyè$âÉÌÑ}±ÃŸêŒ›p†ÇáÖdy&V?yž8éŒô?fûÀØcñ.œ t &nfŒ9gÂTf䫱2˜YPí¯|e?–ê÷ÓÂÜü¹ «K¥0ßÚ'q9k­EºæÎÁÒæ×CkJ¬°2Ã!Åp» ÖÈ“®§|ƒu}â/±Ã˰Õ1&>(ÛÅþêÕ:H4^á]?ˆ$6Þ¯~º¤m—žÉ¾pE²S>WÒ'ø‘B²aÐ$úRÉW'd_RBš»º’ ùO^ú¨ôud 3eVkEf©çe¶¥¯‘e"Ýi“ÙJG<¼t¿#GzïDrÕ/gÔr¹î˜[q Á[uŸ”ž:ê´ËGFì­B=ŸÔÍŠ4`Ñ™V»ÖOð瘳K%}ý¥£ϧçemú¡aŠƒ!í{4gi¾Að£Åz+WÕ@Z]K5²Ò$Aë‡~¾¶›—Ñ&wÑ!Ùpm§Óä&ÂÐ^µ*•è7¡RR…Þ@'ñítë6x 3ôu„Á9q'¾N@ŸW¹ž–cü¨tž¼“²Î ék(šª›`æxá{ ø´~õvdê<áwžs¶§®}‡G“+›Û¡To¯ï纅kùñÖ$Kæ^H/^“;™L©µ †_„áÕeÇ’Ïæ:ÿž_ܱ oÜÑ×c¹®DPC~÷úìåø ræ¾Ð.¨ª¾@nñKêH_q3B“béi½ $h~,xæ;;´øÎ…(¨h@ë)ý+B‹þЦ/5g%VNè‰!"µ· Ýqs¨î '´?w‚E.È´çX‡v0Bûæh”¡_uDQŠÛ­eC§'WÐÔF't\Y˨ tKôŸò¨©ƒªj–•Pèe^(Y”¢ƒ> Ž{Rý1{EkŒÖ`Û}_´ 5 …}•¨¶/áË…Û 2$0¢ 6wFÖɨ•ÕË`tzÊÖaŸŒ ¾NâU‚ 7­?Ü‚Éåû³³WŽÃtß«Q}?qøN[vèÝü¼$–¾›Ö機$;lÀÂéUÝÎXÜp7™>_ Ë•u9èÁj™½¤Q†¬ýˆ>Bh6œE6œ7dáï\Çþ¿0$reª÷b%Aâï“¢ÔÌHZžð\¾pÉŠ=^ç'Y!EÕî“Ï8L‘jŒ²?þb ÒŠ·uGú—‹œÖé1ùÌFãkd¦T“kF–+tÌD£ÈƘ¿ÿ×kdú<Ýy9ÝñµüÚ<ú*+"ì²ÈÛæ¥{œ’ LZ­E¡`‰:E{Ã.VVæ HD‘¯C{>øW¢è´xsÆÃ(~úDð×”X”¼-báK´ˆÒc£¹ÆQ.E¶Ñè£<*¸§_úZîˆJ4ÍTËyÖ¨œs«ä…ªZô~óB+Tv]É=܃šæéN¨ýÚ£pk¡Qœ¬…µ„u¾ ñIºzÇFÜ?¢‰41^Ìgï as¨Á')b4ŠSÓùèø]ºÏm­È£)]Zªà/š Î%¼î@‹È1¯Þh%}Cw/;ZsÇìquû6lŸ^]Ï[@[þrO—‹sh§±õäatÚŸÈÿµõ˜Ò$M~ûi¢±ÄÅøàB/¤^ºÏÍ‹. '·{¡kyÅ¡}x(ö có]I<]+çöûÈ&Ê„ŸçK’@Ê7M"º$0öþK0Sª Tøi&CÁSõÊ æøÿíq‡\¦†4Ÿ—L0} ^;ع_l‚äã«ëîÝý÷ÜPäñÝ;p/ÞrÏ󈎓á®Ë€Ø ™Žùg•;š0UÀ¬»z•£ïîpñëÿoï;/àäÜÛÞ—hùG™¾¾„wÙaÖÞü·W³?Cõí¿žú3MŠ|}W)¦ïB±kE‘f4”ìgôŒ˜Y€’ò¢¯OÜ: Téˆ_¹æ¿=/úQÿölrChÚ¡lñÚ¥ïÍæð!÷ådr:3THÇ9¶çÿòо (ÁÕ>ûˆT¨~UIb' ž.BõÐ|±ÕÞ5¨qz¡o!õ¾N·²8™AÝåVäG_h˜a4Ý­"ßø´ ’ƒæF†…»B¡UY¿ë£y´uz|)цŽéo4„>ûª—y%:SÉú;åF³`hR;8ï+Œ<tn½c&ûº’¥•aBJ44{±¦ìë[E|‡™ø[¿÷t½‡Ô•ónû`.º8††ÚæS*ï S¢H—­ÜkXj³¿U¼+Ÿ­íS7Xà÷cæ áóúî³®—N¦c¶ª©l —ó¼`¾ŒD5DæéKÛH¢ll™I ©Üi@2“W¹]Ï‘‚JŽ…{’©¨ã{ýµ@WÉîX‚¿é6ßs•žBF¿Â_/)Ù1™÷íORdùú°dÑÙ¢ï]¯AŽ*ä7®"Wlö#,p7MzsÐÛ\äûã=×§Ãüï}qáó +NE—lÇ=‡:¥ÏǣاߡŸ~j¢¤3SxüŠÊÈÔT|9Zˆòª‡úT¿4£" /MþÛ.Tf­ð3R¨@UeŒØÿÛÕ¯O¬¶Ø¤¢–RvÅ——+æ‚b1YF¨ó…™X³TõŽ>Ò]D5ßXѰ*{Ác‘’èÓz¯ªæÔ¤ ©C@KØÆ4— 'w¨EK‰å &“h•tÖ˜þ¢õ§?å¼eKhó‡ö“¹CÚÝ^6 nEû<ÞLMgtÔþ­)Ý.N?z¨zóÐùkù¬ÇÆ^tí–«,±FaÅqUVTäøÈ™#µ…tÉñÔfaú_bðïðÉO„…1v г<ô»îðhrï/ „7×®:Ù*&AFY™`ÿýHkzªU()+ÿ*)Hý{ß°ãRùðÿö»_ç|ØÑ×gºÛ¿öBþãc[\Õ ÿÛÃæÏ½@˜ 5\:[þíQ;ŽÈ@Õmã…ËÐì[Çú¤} Z4þÒû]Ý€ÖÝù±g‰8¡ud³I2)Úb®ïõÇ(h›Ÿ2 8» íš·/ëˆz¢10¸êTA{À©•VŸhï|ÞÉa)¡:âOŸZCçŶLîµ~è:é•´›º}Âê-¡ç8Ç+ë3¡÷*1QåQè{çø{4XéúËað‰Ú.÷bú[{*æÐMNIžƒÇ΋oDöÃ(Má•iÞa#V°?”cÜ4¾†0!zÓ•r&ózzOÁt¨w—PÁy˜Í*t<?Iæüxg?ï –´.£X`V#ÑáÅF¿0 X6¿éøT+V‘%»_<ÖŽGÇ ¿4…õ¯‰9¡Äð׆JõvWQ ]ßV®Aâ8£¥ÖS¬Hê¡+'ddG²")ÒÞ"űªÊ’¤º0W× i².|ÑkúŠô\”ÔWÔo#£ ±Pôr)2mÔÏ?E‘ š$|ƒÈš÷®à]£7²_¢¯¶DΛ—®™hø#wsà€±³òº˜ˆ­ª&¡‹ùÖʼrÄ‘ó -÷¡(,C‘»d•‡níGQÝWIWž£¸P€Óx !Õs|²4P:ò™kÊ9ðz+ÎìF-*ᤳm¨8ºÕôhþ7*ß"nâyŒª»}ÏÓôª£Úó«ìV÷P“íöÆgPÛ7moE0?Ÿûú›y¨Óc|¥ReõÌ¿ó¸EðÛŠ}‰{¶ò3×… ÑËûŸ|’‡{(Öç­Ñ”JìØô†šRiŽÉ£E¼ðÓΧ.h¥Št5 µ4#§µŠÚ(”ó mÏ ­±¹ûìÉ#hçÜàÚ¿ó^lûŽŽôψ†Ñé–”>y 3gö}öötinY&?‚s¿Z–»‡+×#n.{£ç¼[”ëG”òçžï‚íúGuÌSaÌA±ÿžï^¨ ²5óž$‡üù›37™×à­Zýï¥Õÿ½_‘¾È ©¹i1cï¶àU·÷͉Hœõ{{…¼åÏ aÀâ–®¤è]„X^Z㿌Ñ;šP”uKއ‘qΚ&B!÷ä^æ‚ äXÊ 2ÒCþîJÛÀÇbðÎc5sàmÜ¿½Nž)ðÞÔZj'Š${5c1ŠÙů±"”_XÙ°ü·_³'¯p J~|Mz$A¥î¾^ÏÈå ´›ûfUY”½O7ˆ|çn„ß~¦ = #ïþ_ºšS܆!ZšÊ[É0¬:aW”Ÿ Ã=´û¯¤}†‘+j͹ÎÜ;|‹Ñ»ó?a¬–•Ä¿ÚÆ·z.­Ù…ɳïjšÝOÁ´†FñJÌš>¨ÿC?¼ÛË_Ës³Tį®Â|>µ´ÌC&œù!Va£–z´­µþÂJe«ŠÏkAø=Ý›7ô ÖÕøŽGp¶Ã滽"²Z7aû¬³¯H& _ûÊŽ¤Ìà 2ayHF5ì’M‡d^Ý—!m{jüÓI¤Qœc0‘AºÇ¼›É5AÈÈi|€§™N}²³ij/ù°"'‡×}ƒ ä>ø¹Ú;^w‰Óß=®üñiOóòPP{¨¤çø.*ˆªyñe E ¥]·ž4ážÍøÔ ¶Ië¹¥@ô-%~hGò9£´aŒ8E¿ÊQÐ2ð±P¡‹Gc %*–È<‘“‹GeÇk#©»Qe–rwf€ª½‹X½¢«ÊÔ—oÕ¢¶ÖTÕ úKõŒ…ã÷P§Æ§Ç‰Îõ,þ$mBƒ]–ènß‹†mùíÇèÑ(qØ@P”}cW¿ŸCÓ]©Â9”†h6!ÜÁwo-^Ÿß¥ãµŸÐDÿ•u\Gë½·iöQ¹£ùû¨*³Q´=7àrɾíÞÖ¯ô£Ã.‰•uèÐ0¶~PÈÐåHBç2;¡¤‡MèM<2óÆ¥rpV_ÿ€n~ÏBxrzГãQ}BÍ ”p^N-çœBòõ¢Ä|g]~©A¬­¡í|KÄ·¿üÇúÏGÿñhþã?ýÇ£ùÏoq'¸Ê•샘‡³¨îùí蜚ÿ86ÿùø?çuJ=• ï„ÜÈ%ßCáMË©M±P¸¶Ò°>´Ã­ùï|øŸóÿðkxºÏðÕþ?›ÿx5ÿqjvòðÈ%OÝäø|7—ìǰ+T½ùqâîýV¨n—z é6µÃÍúåŦdugÌ;W~·Aƒ†ŽÏ³3Ðä@—Ä'úçÆ|+VJªšò/ÿÇ«ùÿùS;¼šÖ&’˜Ô1láÈ`Òr„áÕõHûuMâsðáí„ñËlìÆB#0™QvCR£¦ÿJÍéÜÛáLýüed,uæMÃõüªºa¡~;Ú8 –‚Ï6ãî X¹PÑ1 ¿cflŠÕLáÏ7“Å+š°I}ÇÈzÏkØ:Wåy ëÝûj Ä¿ÿDìšCÒ+âƒj¿‘Œ.“WCÿ>’W/–¾AÊ–sÓd7†lK9²<éâý„ƒ$D^Ïó| ©±þI&h$/Ý“s7^Ó]Iš@…û™"LVvïŰƹ‘ƒÞ0jFÆ©˜¡Œ‚—©ûjÐ+ŽýÔEîú¾ðÌSq(5“¥:«íÆ©GŽ„|FO’ÖÎ_ö|q51¨ÚUûzŸªµc„÷ý@_ip®f F•ªÒ¤¯‡ÃP­õB‰Ý½Ÿ¨¢ 4Þ¢†R·¥tF¨1Êî݇–qԤߴ)ÚÏ‚š–ÜÛ§—ˆšµØgÅKËPsè„À‹Z3Ô|çÓ@³† jÎÇõ:¯ù ýàþmã{G ý˜åé¾öi µlq¼Pd4ßÝXîúµ+$¯R¢­ôKÂ}â¨ó´Ñ5S¶vÔ•q}1£)õh«‰>A½q¼"yïÐÏ!žã¼µ¨/ñiDŒÀ8ê7¼Ñöt õow~ ã@uãµ!Vh°üInͤ7Æ5ž”.5Ûã¡Èe®‰ S4.¢ÑTÀ®‰&-ÓI±£éä„ÙRj4{SÈê´f&š[á'ñ“B icSiRhé&U`C´[Â'ød­µ~¦²Ì–G¿UõfÕ]C[ƒAd«RGg5~DDÐð NÆ©Ÿ‚WÔf¿¹ºè9©ÿ¨=%¼%S¤"ºdu?ê¥ôMªWQ@•GTêçhMl2€6˜ 0¼Jè¶ùÇXïç'ºDß?SQÿœ¬è8°â¹=nRü ìþ[>~°_è ;ß!NàZ©z>¯ûx\¿Ô½M§ÞI\v©2àËxZ-/ ‚žn+¸ c |¥8ˆ2;4»Ò²W˜€xL5¡ÆZ Hv„/ök}é$MßPkå­6MÐJ¹/lÞö?‚ÂýŸºOìwxøá‰…ôQ¡”–¬ÚßQò¶Òr&èbõö¨2‚0\0%ª_=i©ˆ=“ºôæPÿ›‡¿ÊÜ?”Œòä6Â~ð¢|¯wÆ¢û P~cQ¤Í¸*¸ª¨Fpé*Ô6v[CïÉ\KºNE¡÷1/ÇæÄ\wûN5³¿¬¢µnæ_ z *…Áÿæ¡ÔåýwãR›ôÖƒªå{<,ø¨nºý}·¿4Êú)ª8VsÄ }oÔ¨=¶½ë9‚&QMÓ'<'T5åk•÷5¸ÏRåj ¢Æ¬*uû/¨Yô½®‚úQ6çZF߇Zkt“„{QaczØûõ_+"8tõÞ6Kùe‚úªL—›  §×ÏG~@CF-BÉ¥«h$ÐGã×74VÓîôÒ­MHÜ»XóM¥ý|ëšåƒf÷+x}Asñ¾­¥ ‚hA§ðªI6Z:hÆtÑ9­8‰I·ÝKAk B O“ÐÆÀ³½³ Ú²6”Ô•Æœµ·´Ãó€;ôå£c!à;þÞjh| £_[ýeÄ€è ®Öo$2“¹ŸxÙ´®–w'PFÑl;äµ¢‡‡Òû9 © 2hS:ÿ¢†j·`P/¿Üã_LláI÷yâE€¶Ø…Ø®>ØдN»†¸š àêŠyxæ;!ð”Åé»Ðã_gKDòÜG=xº% „ éM_ ªhÄ>¾Ö„øØ}Ó¦1¤r¶jGo‚L®•[JÖEëŠ?B|M•Î ºµåUÍk”ßïbÄ/)«êµŒ¯·©ÓAðGn±Ó4W÷«T˜‚Ö—7Co€Nö<Ý Ð{Γ¸üT Öyõ³ƒÑƒ' é÷À¤Vñ\—ö ˜1|—ÝÚsç%Á¢¼fæqGX™àl2¦õïšÇÄpÀö‡èfº•+ØwE+>¶°G–žG¤|ƒàÇæDU žçŒÞú €èÀÚ_$ÂxºÖñ”š¯3Ž:U¾DTçê]Fgžä}Í!C9.7ü>Ñ ×øµ ?#Pú“lv"ô2Ø ³§&k'^UÑÛ7¾«¯ï‘<†»qjÓ½ëè ¾pnaö|A±éR÷ûzŸÄ]…多PÙ멸µ{'Ñ÷Ï™D9ó"¨¦6Ξ6[ ÕGQÕތܮúÖÔ9÷¢FÓ»ž0£&úvCËÔ{¨écNíf* jÆq“R¥}Žš3JdEÍ=ÊxïøÇà U~—QsÌ«x)Ò¯èÇ‘Ú()5Ôr1Ë›G¾tÇ'Æ,\:‰Ú –ÍJ( öªñ‚^‡QÇ\DRÔÏUÔu íöƃ`Ô}íyè=UÔ3ÃÚP‹~Úg%Z÷™ >'ùšôçÔ¨Ÿ£cÈîWêð¬˜!VDÅʵo}Bƒ_…]ùébÑ0þW'O)Øã!Û»K­8=hœ¸ž9‚Ñ$›ãl1?š¶~ß¾Ô—ŠfµÓWuÐ\å­‹Ï~Ä¡ïØúW´djø]òŽZ1õ|ä$ŠÖ¼Þ³èÅ¡oÖŽ\E[6ÏR« 2ç%­AËõ—€çL$·$º’¼îeѡܖÖl@b•A—5,È(ò†è1 hZ\ð»•TÚCó%¡@=Ôs(<Ãh¥…T9l®Ý«,iâá8ž+÷ `:acÃû¦XÒ(½åšË€±yÝCõ=pæ¥Äþx\9yÑä¢Ï€‡q¼¥"RxïµtŸO~ÙÂG“Ö~ ˆkôï„<“k¸o’çÃ#â¿¥rLAœëæÆÉŸ‹ ™”Æ®í®ÒzÔ eT 3ËT|‡Qäˆ7饂ÂE±„’ ;<Œ#I88Û´>mÔ(@§bYa'þL^,k]³ þÀnªecЬ¿×+,âZQädÙAÇ’:ó&{!èQ›ÏÜýÒÇ«ôÃWÀ0ÙÁÙí%€ñÒ“9Å`*ÈæQ* f|±Y7¬,À\u4ú+5Xœ Õß ÅËg$i<`µ–©æMî 6îEº U«`»ÜœÀÁ± ö©Ê¯„¼jáð¥×‰Ìšàäo{8Û\ Â^xÛz‚Ç©›©;ÿ½ ¸ÿÓ11: ©s xÊŒúq}õÂL Ï,ŸÙú ìÎá+moÞ@™bº ¥ŸÐ ‡ ¯_C©Í¶7f˜õPŠ u„‹ñï]ß÷nqõ"VoD?¼î½ß‡Ø¾qnaÏ䃲ÓË©ÿæáæQº•þ(”§÷0ÐW åf~Wíµ†òÓÃ>j]A\â8í–q¨à3EBÁÐ>Th7‰gÆb —«L¨žíøÅ¾¼-sNô!pU¡Jçú¨IýÃ?úß<|™‘=ΈJº5d[ßîñ°$‚õÂçÝûKï_ígE×J/œ«¶D•|Š'¯EìÖ3¢š÷Ë 1õƨ®ºÖ4®N~çóÂçafm j,·ðóâÙ—9¿¿ýŒ~´Åä}eÂG­­¬r™]GPûÆvr'«=ê Uò=Ýß‚zun%–xf ¾'ŒJv)©hàÐÇ'7“Ðw¬òê1j4b.‹çôü-K¾}4š¯áüJ– FS.>ÔQhf¸D™tÍX¤S‘UE T¸²â‹OÑâVw(mÇW´ÂuŽvij­¹>£.¿…6>:ÿ:×€¶”š—å Ç WÑ1<pÃGòÃ9_­q¿‡“;”ôÞ-æ©"o˰†+õ@r…ÔÌAá0µÞ³¶‰Ê@ù'9ZR«òCe7ДÂYi§B ;Åõ#{äÚ²ð7~°›Ž€>°P®8?l§Ÿu¸îÄÅœÚøŽMá[ÀÕ¸ }½¬x /«(;é_Á³ï ÈUë”}Ó„ótCêÞš‚èÃÆ†oÚA¢Vóž÷õRúXi“U[ 2ŸáSNÍ ÈýÊ]¥§3Eã}òf:ÞpÂïÂi@ÜÔñä ¶ –õN5ú‰h˜}\™á~ÞèÚÏZø aÑWAç[›]L€èÏùÊþƒÏ=þîcž`Tò½%½ ¦¤lsò²r`¦~—C©€ÌcÉŽ6l‚%‘­Ö£ƒê`W6ÏÒ66¦–¾åq³`'ꚪà ~þ޹8^P±Ò½ .—Hm‡ át¸šÈ9éMIûRJ[äkº¿v|ü Ä¼$á{*Tüî–A¤Þ”_Äß“FϾ{SïâÌ9”9gõøjéî=3EÌËUÿëñý]·ëûj†sTþwoâ¥a»8UYó«ân¾fùðHöܽ_QQÑûz£¯«[6 2ÃÎ7ê¿¡ïH?«ÕR™¯®EõDoEïßïE oÇ:3½P#õ·”'´QcoO¢¿j ®'ܺ´ÃÅÜóG¯£¦ª3Ä…‘Q¨)sóþ_äιíÓ}5ZwŽ…é æfÍަ߻}¨Ú6Ò¨Ÿ”“5Œµ)š~ŽÐvCí¦"ë<[¨Ã»âcc*3êÌâ7°?Œº¶I6‡öw£—·#ÞíÆ¨·q?½Þ£ÔÇU³¯”Wõ͈L‹K…í;íyZü€ –¼c P~‡†‰”Ò’ÅöxH1Wõ…ÈývpŠ<úM t\ëPGÓí_f¶ѬÜñ´_™h.q®¯ûËZÐÒ‘J@KL4Q!¿Ñ e Çe´Æ°~´§m ;·xmVGIª‹€c‘<<x„ÌËž/GÔdI•À‡4¾•˜ ñò%û™Ñy ã0Tአ.g†=sa_{9‘7P§œVÛ&š!ƒœ¡. ³$”üB’ ä'œÄüöeÍg:é—Àbc&ØÞ¾šuxµœ*\ÂÄ®¬Àå™ìÏG}¸¿Ów÷žu^¥ô„8’Ëò-ŽÒû+ÄJ_׺B ß,']AdzuDû±)ˆeéÎÝ.wI×rÍŒÛïAšújê>± ùt\f¸Ù j‘ùï½4AƒºÄWHéhæÉfݾŸ Zgä“’7O‚Ž˜PßgfÐ=!Æù ôŸÆèX2‚aÀ _dÁ06³`¾mµ¦¬éšå]!`ÆÌ±õꊘ˳i¬½ çÌÒ³L`ùäŒá~Û}`µèé:$"6Çò×Ý%ÁvúEßEn°›<å¼ÃÃc¡º µ…àdiï#¤g . þyÏ2À#6,úLð#ÀãruUÒB•«b‡‚PñˆY…}%úD,5íVlÿ¿ý1*©(#êÂ…ëžB»q%›ÁÌîüýÑbÇÖÿÕ }[cç 1zK¼;a+'ŠRß‘òü*ÞÉô8TZ ÿäa.õ¦…C`0Ês”ª§@ùºl_^¢ük¦û8“«v>xK2e"PLUÝOTðê¼Fyã'ò$<þŸó‰û3\vó¦1¹Æ)ÿæ!G§ÂㆽùC «m—GsQ¹èù¸7ܲ¨"}›ËTÎUêàèã>£GÕÃé©Qœ¨fñG.ÿ)´óy‘%Ø5R„q÷¿°ü±ó9ÑC†š_ë‰(íè^žð‹ÀîýÞÕ‡n¡öy±‡â~P×áÙ– ]ã}»½õëQú¤»ŽÉ4.{†¢Á%+#S|!4Â?SêÓõ]ÔþÊþÞ—v©Uß?†¦X¨ÏJf¿B3‘t÷óõñМ쓼K–h¾UoD ïZ,=9›mÑ–Þ-Ð뙡5‰AÉ IY´Sóát“+ÚâpøÄ¯"8.%_^ ›n‘ -•53àó>Wßà‚ÄU=<Ús@dFf¿á$v'ðî7èYQ÷Iå < <ãï@s>¨…¸…v|š|ÜBæy ³»Ú ÉŠ–uMÀ8á+¹.¼ÌKýzö_ÍúmîhepJËó”n×wóÚ'ÅîÀ“e-Nÿò6ð•È|šlAgÓˆµÃ œãŸ3£ä¢ÏcýsçîƒDozb¬ H}ùùŽd*D¨K'-@n¥î.×37P<š®¥XureÓMÜ$ÊqÖܹÔÞ<›¡½' c*Íñ³pˆüp~½÷8hõq¼þÐt:©ßöʈ€^çë Ò¡`Ð÷¥õÎÌg0š\î½ë¦_~3OkÂËÓ´`^uÛ½¯;,µãÕ@˜¨|¼ ؤr½!è»;]¥?¤èÁ!ÍbðG8.˜,ŒÄ2‹J÷±WS‚pê±tª»ê2™MùîªäÏžž¹„¯‡ú=i®Yî¼_Ã×ÞáH |Ê,›Þ(ûÒ!^/žF”ÑÛ§šÌÿ½:QÍ0ª‹Ò´SmE§ÿçû®ZÝÝ­ct;½<ñ¿8uéŠ÷n¾Fq¢"{>ç.1ž~:Œ}½‹)VF—ëQéxÅ·ˆΨ¢(ç#¹7ªþÐ+tªÕ˜ÞJzô5àŒ¬á ††øâQãËñÔWQ“Ö„V·íjòÞʵËqCMž>êžoP“ ÇÔ C*j ô÷£EM— Ø“qªvâDž•ÛŽÛ»>‘aùò3Ô¨c~¿ µf[‰Gm-§T’" Pûo‚vZ7Ô)êó9‘S uù¾,Ï⺛TuÙ%ìÄ‘Q‘*vfègyéÓ\O¨ïË•U<_ ÔŸv!EƒüônÝ!@1ù6,F-G~ a’7TlXŽnIìO'_F¿JGS}ÂÖÑDºòlIž<š*]y9ÎQfɯ6  @sgl²Ž£ºéÒ©þ:´Ø[a?{)-”Å ë.E«yñ)~h½å¬éðÂdûù¯pˆñ™Dµ”7ãÀçöÃÏÿºWy·>^ûé!n,Äñé“.¶É@ZE6»/(èªÇMM¾Â>§fÍn@í¼!¡ož 4¼>èž—Ú­‹ò¶Ó€>§Ê]­©ó4xñònó¬À&©9°é1ÊÇ·ù7>KñÀ%të¤Ê¢pûî® ˆž¾ »j³sÀwº)Füá>fÒÃÿÝB"ºÐU< "þ¥ 7Ì@L™x4;³$ Ÿ¢~+ Rm‹–¶Wƒ@æÆÛÇ— ¤ANÃêš;§ (HWñóš÷ˆÙ­½ƒÏ‹¤ì#EIvU5?Ÿ×VÃ2 þ›€QÍ¿4Zýg¶úAËð¨lTX'è©ÓÏÑÙn %qÓ™[ [ã[š †÷~å”?cÙG•ëkò`ºO‰½Jº ÌÈ_˜T=Õsqçƒv:Êþub`·V$O²V3â·Ìu—ÀÆñM¦±ØŽø TóÙ€ýmn‰×&;<4³?exMœ”Ø.ôË€ ï…¯8¸àQHâ¶|C¡&ÕÈRèx¬FGP/û‹w´•«;úxñeÖ÷z{Ô÷yñn^†q„é>z^ó2”Æ=‹§r÷Ùñÿåcb>¡$•ªc-±zKX`ÇôòE Ö†—ƒßÝÀžIñ×M8bÿÍC¾¸{ÅlçPÞÙ:‚f¾f”/Û•ŒÆf×'Ö…üfÞ9Y®ÓìøÅõ^ (uõšÊÅοHÉf|‡ ÖG'<¼èŽÞ0ã]¢B;G²ùt|οyHO^¶œ{ •*«ɵ=¶6f9¼Båz?u1BMkÅ“ÌPeH·CbéTm[:'Ë,j%rÅ ˆ%P½úímÎmmÔ{3-©ûj\q|#Jš½%e*Ÿå¡[íVålú¨õ×g—n´ÿŽ9D^íbC]r©³ˆ½õ|ÞŽ<—Œƒú´R•9gLPÿ¨íˆo¬dpN{hx-ãj M8ÓÙ\níŠÆoç=\^ÕF“/eJÑŒ¬ëŒišÃ»-žïæߋ㬹†ÃMj—Ðrêj³têK´ºþåó M7Ú8­tË›|má ^¥+ÙÑ­ùUÝùjÜÝ2ªºñÓ>‘¯ËãËÝ@àM‹§…GDyw†ýæ€D¡4·Î]ÈÒ|8¨.¥SWPBÀ2Pïÿ}ãÓ¯w@óªl{{'¾¥Óê"vúíHæ¨Ë-ÀØ|n-K,˜{¾ß±%6µÏw<"I“Óm4÷âŽ?,ÊqËÿÈ<)rû§ç€ïÝÑVF$Ó8î® ÂoÞQ•žÑ\;¡”GS 1K“š;§RµNû=¬@¦‘þx3yÈþ“ ÅËÚ–\F¯á ì˜Å Â|@ ":ñéú –“s]4l<¿h¬}‚CôçÊêòAk®¨"ü1 èLë“ýÚzKwe²¯ð!~ªdî %3ž©¸¦ÆlG*¬ÒÀ,ž}*ŸŸ,pöýÄ–agæâ¶¾‚µ¨ö ûp°Y™‰<Ûv“2üîœp˜RNéì\pr!Ýßb$.—4?¯/=\~Î#ºÓ @šÅ^WðÈÖ‹qêuÐOË Ã}ièÓ|hZg~ýN|(+vª]cwN÷ä/kI”^ã^›R)‹^¦·Ó¶UìÖ1ä8îÛõ}´œ«ýÿ«cèœ:¿§ Ô½ÛÍ×\ñ{y{îÖŸ“_ľÞ›/v u¨ôÆ»®¦{T,›ÅÌl¨Zê:¢Bµ ³ãé©N¨þ:R¹Å‹¢¥¢Þ/§ ÆócJÕÓ¨‰œ8¤:×5Ië-ºáé£&ªÙ±*£:ÔXtð‰> Æg›ÁÍœ}¨q,ÛÉÆß5å×f(ýÂGÍ퇇ûâèе…³©÷Q«a,»5j³Ïbg߉CÔ-D­QGf¥Õø#ê\ªŸ½Adžº5+_•® ž"<" †fôÓ`ŠÈP_t-nk 꿹|÷Td8ˆq¶ÍN_@ƒŸ*}Ån, ar¾<ö@Ò=Μ¾xŸæ*ú•|aüØ+4qî‘cº$ )_ƨ!'4S¦¾X'*‰æÔŠÞÇW£ùDgû{xhñAª©»2Z>o¯·þˆ­Z)䟤ýŒÖØ’XCÐïw4çµõo íÓËkoôˆ× …iR;>ÿݸ€1 äõß—¨¯ Ä*} •Æ@z®»òÙö; §àúQª(…$FÙ5G_Æ G ÑñéÙ¾´/>\~ ôöâ-¸ãá‚óŠ'ùþƶK*+°Yu£«Ãä›Üøu&Ø_>™šñ–¸EÜ&(äs'Ü’y+¸øH~Þ1)°þO¿©¾s‚àûj‘jVb!»ýáìs-/ïi±‰!R¾‰4+J:AÒ¦2–›îá… ÇìÖÃ|Ãh™£EŠvx(©ãMÓ:ƒej¢2[‘$‰Šxj'•ŸÅ:ð‚ú¨v®í*Ð ö1´pç-‘ÈÊà}F ýÓNß+ÐMȸibúÎÑù™R†`¨$þº­¥ Œ™F®¸?:¦¸Kµ¢`º-ž2ùèM.ÛÔé…w(Ýúû­RÜݺ¡xRkJù=Àè<6ÿ× 8гèŸOt¦±zÛá_úPw9J îÝñ?˜3é–”}ÐÛOÿæ¡¢LOáQ”êà—€ò¹µÆ^%Üåâa›(oJÓbÎkçëÚ¿ª[ wüc`Yϓݗ„[#t^ëW„q¿+ Ý={c›w (M”Syoj¦¶1Õµ$ y|]gxI èäµû\£Ãþ—ïj W;0~ô(u‘ræooš­œÂM¤ÊmÊT8É3ŸMW-~]~-ð<¤§©Te¾´èUÇ_ °uMVµC„3‡$ B@´„ýG´®6Hâ|²þe¡R­B׌‚ãA¦s«pð€4ÈÓãV*KÅ[Ljªá Þ~Ík^gi(pö-~µÜkæô~j a¿ ™cwq&ˆ \mÛ] özá[epøã] épª)5øJh.YÌ[„à^Égg1 ¼%§«ZÈÌ€lÕ’êv¢êªûø²Z½Ûö.󣕱²v¿áßý¤˜þ¶õ•þÝ׆Ñæõ0}i˜½gåÅ1ëe|%¨ê¥È§¿Ý÷¹^^&ª'ÊôÝæÓÚëS™º±sÛoÚ8+çm.Šsrì,ĦP£½Sò¾•Fì>4Ìã&!§Ñ‹D¨Ùx2¯ªðúqÉ-¾ôñî=n8Ãc÷¤µQÇÌz£1–iåçó¨óœŒ{'ÅÔ•gMîN!ƒzd/q7Yîõ£ã$Ï ™Åî?M–És@ƒ,EÂÞÒ¢aÊAëÉ•=ö½ª d¢B¿q$k.¢ Åͪ{ºhJBΧ×~ÍxêÄž@stüüá×¥Ð|¶ÎF…†D.m£/”hR£ãn¿Âš¾F–Ff‰fõr+>@󢼿÷¥G‹”dò·Kù±º]ºÒ^ë(†68èÄnñ¢ÍŠÊÙjWÀ‘Ç·»±ÏpCSï³”‘^ ÷Ó†hc ѺXÕo„mŒ×ýè€xÑŸQ=‘È.ˆïW´Jˆÿžy¿¨©ruŠIoM´îÝÿ7@Ç÷rÈ-è›OtWvã³c·èäösÖCfóì1`£oÓ*Áº¨’‚÷ñ,ªÝ‰ÿ’Úd“8P­DÎ}é;‰{\¼­{Ÿå!çï0|ü3—Ñðê½Â¡É“X~bÏ á©Ò ïÿð±i9¶áiv^³wËIÌ~à_¤qD/VQ‡~ÔÁÇoìÍeE]ÞtG½ÓÑ™l1Pßúî¨ëOPóëûƒ£hðõwy4TÖÆ½f^>Ùš*„Æ\¯šºÕGã~Ÿ*ΠI³$BŸôU4íêÿÓëˆ?š5Ÿ÷°fÕEsIO¹²ÆÐÍEòÌGÏÑbN\ö4+ZŽKØð¾Ç€V«+ Ô>ub÷Œn žHqœ§’øOyÉ~Dpð7#Opáœl£O¹ кT5™¹aëyã1 ÈæÈ¾èT¸ãG ?ËugÆ–àÐ2œ¸ô‘è*ð0«CñF™·)0{1),+û*•}€'°{¼ {ÔJ œÕÑÄ4EÀ•4ìfÒÜ¿¢Ç‘[ð'È17³ßЇ8S.2('×Ô&Xa‰Üâ“p ?¶iä!!ˆ×­n>\è)Öß=¿ƒtOÿòDZ ›ýd߬I)È¿æ°Ø¸¿Šeõ!yÙpÔ#q,J To4¼ÈÒ.5ž÷Äæ†¸ þH­Ó|º4EúÌMáPEçhŸ»ÕË Ñ º‚škGŒ¤Aowbµì)| ¹ŸÒFñ‘‡òIH+×D˜~P<êGÚfý ’÷c^ƒYeoÌXêx/¸DUÜ£ß*×üÁzûEi5Ñ0ØŠTnT¿{†ÃñÔÊÎàPAæx¼² ï·Ñ(ÅЃsð âT¼ÏàÑú1VmÀ¸/÷×I2! íòCl¨ý¦Ã³eNì|Ãßsþ½ï÷ï8ô_<Äè£GÌ>á7ª—U’‰ýwÞâ/þçü›Çø›‹Ä"·ÉÍ‹°û‚‹ß1 '^ú'¿ñ>©‹áXÁÆËÿœ·ˆšb.ZÊÜû|ø'cãß ¹ŸÌ jØy«v§ŸÓ¦ù×°ñ.FÇ?û]ZãÈAý<¥î'TvûÅ›¢¨:ÐÐ k¹°^%4’¸þ ÿ«i ¥|íŠ&D”(¿øíÍ]`ö{Û†>M/¶G‹ÒäÑç Ê÷xh%‘4u ­¥¤ké©C›zVwO í¶£ç<Ô«WYSç¡à,jïç˜üŸEO™™€ð¶o~;¿ Êq{=dÂêP пª ×Fß,uÍ‹cÀì§¶òhê:°Öi(J6LGBßíìúeàºíêà?<惫vágï„òKu¾1ø¾AÆ3q „o“mdz‚háúgq)uXÿ’ûD¤Kz¤ò¢@¦•8ÏÆî%ÈÓÊOE9ƒbdø ߀ƒ:³ófZÉ tWeøÚËóƒ<ÛÑ aÒ¸ð›ì!bærò¸s´q¢B2Édvüá„§RÐgx5ÿñ©J5ölè’ƒ±•$86QihSU­¸éŽëäD×Áž±lw,çq ¾¯ú‚uƃ_.„€íM_|_6/°¿S'yê.Š*˳göÀÖíâ‡àÒªòCÂ1ÜUgý²ëÞ”d«1Ót s=!HN်žyQ\·†}ßböe§?—QŸþöŸýÛÿ_yˆÑ]Á™Äí`'ulœX¶ydbUàª8Ë;È4kH iŠ^£:6qs’Ð~Ô ³ÂFæƒÿÃÁ?ßÇÄ‹õê·Ç¸Aõób¼ûQÙvµ¨ö=žbæŸ@|~5vžñǽ®:¦ uÔ’8I.}—wÏ?ª{,ìñ@=}}M÷GQ׬6¥ˆóÞ¾í?󉨹Ä?óˆC‡ï‡µU¡þi%ÓŸø»}5I¤ÁšØ½Û«[-m>Qhj‹²Ï`~Í25æ¾Ì%EsƤO.‡ ù¬BkÒy´hò"Îß÷Üž¾ŒÊÅ»'…Ðú§¢)Ê»hó¤Ç¢Auàò7,FóííÝ>­‘V4A „¿mìe€øÒe’ãç84ëe†iI#Pà,3<^å…}VÊ•¢µú@}\ëL¾ Ð4šŒªŽ]è$kªî-`ðæå=Wv˜Âé.³ âËc»¤(åWÀV?qD\Ž 8Ù䤯~š.í ?^·«wd•£RðLå9ã“L_`D+N¸^¹BÏpïÿ(Ó„Ç4lhjƒ@üÎÔDDHn˾7x Òù,îz^† ë¶ùù¼’È_P[gÔíÅgiõ/?€òÚôÃö£S êC .¬:zUÁ#håÖ4í{à¹-{Bt1È;ßÝs¸‚:)®QMcõåáýýÍÁù‡ƒ4œåiþsbž‡á*&ÎÅüžìñák#€rKÎwþÄæ‰þub¸ùŸøçß_h÷Ëðe<6„™Kü4ð3îM$*ªâKM»ˆ¾D”ô?2§ÇÎ?ÿó0ˆÉÁkLÕU×äS~¼µÇÃ?ºÆÌ)cç%$ãϼÝËmؤ˜Kãaç{st :‰úªŒVEŸ£“<ŠY:-hˆ;¦§dÚœºìE¿;7E’2›†Æ=Ðä G-4ÅåuÎÒMÍR{æy¢¹¼´àKzwdé!Z:r—®ú^Z {pÓÀ­-:–Æ ß7r=Î-É£m™_ÌÝ2{y+¼J’g׿¡íaGé~ LâŠnrõâúýôÏ_‡™]%{Ñò% ¤¸ÁVT]_ ¼NsÍq–Tîä@;W×sõ-Ð?9¿ù2¼N•œw fs«Žl% `MðÙ‡{8¼ƒ4>®³¥6b„ñÀsÜÀ•ÖQø¢‰Ž2ÔŠ yt™Þõn±XÑ×Ûo¥YA’úëy4HM‹f †‡ƒLÏûQ{B_[jZ«¨E©µ¢½‡@9îçÙ#'†AU8‘cYF`HéÇ %P?þNçLQ.hL´P\6€Cáýz¡·@[¡~ÿ\þè¬7,I¬<½²-7¾·`—Tä«FKÌxTÒ‘`ÊÝæ“¦ÐfÎkméy`žŸE“Øz,£ªïš¬Uƒ™öñi°9Â8>¡ãvbËzðÚ8Š=Å}ÀQ΄´Ã$ÜånÛ-U/µ]°|Ð:.훼ï…:[üˆ;íñðOœˆ™¿ÿ›‡¾ý·ÁèíobtŒÑF7˜¹cÌû¿|ýŒ÷4«<ª é*á]ÉÙ­›[ç-½ßó‰ø†åâ¾a9ø‡{õþ§/Ue,îñ“OÁøE OÿÌí6iS?¾ú}O?æù[ŽØ5¸>Ú›ãÇøÄ”…‡ú ¨ëa¯à=§ ÔSѰ­7¢€~®üiÑGýjèà }®Ýù‹¤€Q=jžãÞ,|…Æt~Ç3MïùC—ã¡Uq}hZgF]¿—Í Äe%öÚãá«C,/ãТ.ÔŸ “BËŠ¦Ï×|Ъp~(9ŽÖ·O(FŽ6ÓÑoÓ\8Ò ÙÏ7aÙÉ”ŠðùƒÔ~΂±#§…öóQ·½ îì4Ú³'ÒžòÃ\ÁçWl²üw¡¶!PK<ß§.׺[ŸQ8¨tŽ:Víû#AWëòs7`’»˜–´ó~d‘ìPº•þجÞ;ˈ¨Ç›Ùì8ÆàâR 8Ü!V× ;€g.–ê73+ðÝD”iB?Aà¨:o eÊ>Ö$ò›MžþqåÙBÂ\¬-ú”À6 ÒwüŽ~YçŽë;‡¼»£ºÇ'aPŒ{¨ã8¡ ÊSil-ïAÕ#hÑXÆÔˆÃBù\ÕAýŒDÀIbcù!~GOÀ¡Ë¼­ªLÖ ÍrÐV×âèÔ}‰Íº‘zTÞ‘ƒ¹Kš}Ù´啉Ѭ%Ù[`úêxpqʘu(n«1‚eÌW .°´q8ÅM<Vùó&döÁ`#ns)Æ l‹Ål-ûS\¯ÅCà°Ì¸üV`8±…{|Ì Z"Ó}Œ/ÀƒJ­¹<<âÂÀ§Õ@~\èú¯É7¨Ãàd}h÷¬>þÖß¿|áßq(Fw(^p<_bž}b^ÃCLÃÃw Œs÷?ÿ‡wÿáßÿ©Oü›‡ò§ÿñ‰˜ùü6¡:ë«zع|lÞÔ!*âKÝ«óðO\Œõ‡§…ª%íÿëý­Þ©'ÞCwÒosö* înRÖGÞ{þP„“:±õ!I‹µ‡¹vhx-Ÿm“r/žõÅùþý šR݈à½Ñ…fÅ6›Ÿò|Gs•¿Z†%Ѓ”×÷Ö¦ÑÒY'ÎCJoÑŠwwÎ]¼c{sù–EÚ)©Õh{ßWV ²}{<üã1ùR"r‹Ð§í›@"Tó¡u_*)Ð (hÅ/ûKƒ‰«@uþþãR) ü¼~±h_\ððúƒÜpQ`üšÂA¶˜ Õ†P}3›T^jê7†‹bAýc—äQ¯Ð4d7’„C³S~UFß@;=¢\.Ç t}´Ó%˜I@ßÖÃmZÂ}/oúàå칇¹`ê›÷Lw¹ÌŠ?žš{œûæÇÀ2îûÝÈѰ–Xb± ;6#ã*ž ©`Wìárçì pøTçQ^ ŽýÏÃø<ÀÍ@U1\‚ x¯}5í duý‰Þ¡Ž*ÆÄ&Òì=Ù—4¦gG«±õ…qðï{1þæ!FŸ˜çaôѦžPF‹óAËþ ö}_©½ýè Pö1÷Ö0^ÿžbób/ÿ‰ñ‡ø†‰±ÜÃ<ÿo~b~þ_>ñkþReÁj!yåòí5j5Lñ7GmÕ÷¥›ˆâQGXõ9÷Ð=¦ÛM©æÿ›‡˜{.0sÑÕ¢p’¿£»Uއ&+j¨Ïµä¢é7α"·ƒÑì‘ß …«”R\ŸäÐ|ÝOr½üÁ=Èúöþ¥#´*É•'ŒÖoäÉ-ÜŠE› Åj‚ªh»„éÐëÞ³€«å~\5ï2à5Ç žÐ‚Æ$® ºZbÓÀb$7×ÚD“ìM?]d ÿž¾,oÐñ\ƒûß¶-å ÐGË?£þ™´—qç§]y ¬!“fžÀÞöšQ5åì?]$$¸MÜt^åNá´ ¥÷ ö>­¡?« ÔC|¼'&ãö¡¤ÉˆöÐß|qË^‡ çjInÐsGì}~`Sä|Tg œäýzöÀõÆ€±å ðÄ&½ÙwWø>ôRx2¯‚ JîÜvÙŸÓq8 ÄŽšÍ IÇáJ©ý -þæeÖ×Qåbi‹S òšcÆ…!" 1¬ËDy”7n$ì›ø ªìGV²€šØ¶Aä5P—9hDš²š’¾“àP×›O—âAûŽ´©y èÚ]7‰Å}ùî¸w!t`Èžé2ïÕ‹‘ì³Û³—L‹Äíì`AH¨mS¦–xª|_èÀš¦§'øÌs°ù6üá™jØ%V‹8Û‚CìσÇ_òcãcÅŽ;àæi³è.¯ =Œ­¡“xõ‡£e|%ıñ%öÞ6ë|ò ÜØ½ú!ù—À…@ó'MÒ£äüЂóÊíYl¾t™ÀçCÖïh- ð÷Ýžoh£p(ÈF„sڞʪºü>ðôÚOœ ‘|¯ßR/ÚðFÑ7‹ÕD v0ûP¤ ‹†¥z€‚äb¢$U0ìc‘`¹îÔ2ÝèÚ%–=Cà¦ÐÕ¼f?b2 GLÏŠ‘¶“ƒÁ¡d`©Ð×ÊÿìΊ~ºJ„Àù\{‰$¸úífÍE‰öò0õy7ßgý˹\²U¿þHÒD¦ìÏëI‚8ëòâÝ£= ADžªµ9 R=žR«xû@&œé¬ÈùÞJ}ä wMí…ÌžRÛ9›  "üÔR[ó ×Þ±bì –ù3-÷ðiÐ`xà­$¬ šQIº²m2 Å©h×=ÌÚŸ}˜êŽ‚®g¡Ø·´Ð›³=™T¿?qEù‚Q{´#žï<˜_àòx ¦ÛœM‡ô(Áœ'©þ’®XØ)îRXËçCIÀšXäƒè° î¥v;º$–k©ïÀ¾$B#»Tß¶X%ï™§K%œç<·ãÏ/̬Î÷µšï#çÒŒó’»Zêø¬­*¹Õ„åMFÔy`èÅÆ£çaþæ!†{?þ;_úwÃEŒî1üÿœbcxøW¾sbêˆócîo,ñf?'W »ç1<¤"ôÍ9øøw›ïÁôÓü¹¿ñ?yÒ?÷3v÷¬ìêñrõ1|ã‰íÀöÇýÉ—i‰7rÃæKGGÕN>ÉAã}Gfòd,Ñxiûâ-V¥½~8«7ÝÔ‹ÇÐBx+ƒ/ÿ6ZTë —>@…–“ñ 2~t¡Õ›´j·î棓Z¤au3{u±.7*_À-|oà{™z¯Îá\@^ÞkÄÒ*5y]@jʯž1wÈý˜Ž|²…}ì3%éöæ@}™f:\ÒhåD®†Ž™]]ôS “ÀP«ú.ë&!0‹Zœú-S¬Ç®d^Æ÷Žk#ãöRªÀ¥o¨à©ÜÁöøßņÍ;×€ÿþg: w@˜EˆïëÓzåþáwäŒ:HXÊÆ=du©Ö|–õê £Í|ˆÅ- ä Îßs…ËÅ?¥üïèó™ÜëÞ ¢kã÷rÐ/šð2ÝqPë¼C«´y4,'Êó×@s@T‰yë"h]}g'(:rÖ“úI »&øùÀ¬è×Dà‰|Ãåat=` L$ô餼šÁ´2zøÃã7`N»t¾Ô,.å2w¨ƒå‚OßÅç`}'Ѳ¾[=¯Íè °À c„Â8—ÇäÆÁ]š~ù‹öÎß=~³Sæ9’âÄŸ}k€:O›T,«á`ã:Lœøw_ÛßuBÌùwÞ£Û¿ïKü›‡=aò$˜¾2Lÿ–c˜úßÿ‡}ü‡kXþÉ›`xˆñ•˜›7ÅøÅ?ùÌÏcûl:x3 RöúPÿÜÚÆÚâÞzýÇö>àícÖãC}Z)=vnçQ?=‰×ã{õC ™D›#D»¨¥ü¬ë.ú•n OrjMÌ$?a»¼×Oãι­0­ƒ½q>txyÄ-*7èk5FKLaŠѪöáÒœ7Ahå7<¸øÍÛW³¹òqÔ{p6Håxƒ®ï•ãÏ€Ýê)Åü†á·Æó×±)‡å6Éy )–ö\ ò“ŽxÂ:@ñØí¹i9P23}=Ó4oÜOËFܺ ÓŽ }äÀ ›gè~¾˜Ì&ý'ÏvóOÒùÛ…ÀÖøÃâ ŽpÊrªñWWœôpùó àAÉ"sñ€·”Œé÷=þ"…W‡6AˆÝèþa?.µ íÙ¢!š·×†—@RGÃðHhH&vÒzÞ2V IÃg\@NSSÿ:(X¤Ò©Ô‚Rx÷èè­28ØÏ6’ËÈYùL €ZH@u:¯¨ÿ¬‰ïÍÍÃ9„[3phø‰eÙ”7hãôÔŸÀ]‘ŸQÜ_sAo¸ú=ë0x]äeïðŒBýRß$Éñí²ÎHY0­CýìR‡ÀlªÄJàæ8Xp%œLй–'·ÚÏÓ_«ok¦“É`£ôn¤7, l+ŸàsÞ{/ªÈrõR8,seùÉ`,81òš0×p‚{³ƒB„Š4pçom|•2ÕdÜeD¨Có.®óåA,‡0úû»£³¿}à¿ê†ÿÊ×ü‡‡çKÿÊ“b|"Æb¾ýúß>ño.b|"æ^ÓÔÿî«Áð°"}«™Iž{ß1&nþ»/Ó'÷1÷æáTõßÿð1†(C‘ÌS’y;Ë:d€­jȽãZŠ5?Æ÷~Ëe…­Ÿ5Aåí^Q×K" æìê~ä\-hл뷸PfÇûUý2ÐÎ%s½ë¦ºïÔßÕ€>QµÚcÛ50( ÊPž¼†‹®L--´ëzêDhnÂ8˜´iŽö$NÙ‰–³¥å`Áó¤ïcX®®æü(} V+_"C^‡cœ¶§îŽ:õ¯÷åt€ü¼ßàÉVl˘ufÉòò±yößò¼¾K”R0èjŒ@ùÙ9Âoˆžˆ<ÿHÿÞ·ÍoTÊñþR$¯‘ƒHþ ήCåâ»ÑQºE^þOÄÕm||ù$¹ôI šwú‡¿å‡`lHa¶‡cͲ‘Èß÷ñ—ê­|÷LtÄç§Eµ¹›haÇ슞 ý{üÉÛ>&—4Z‹ËSìØ[tûÓÖGÖ+;W'»Ð •]Ðv©e;ǃýõKUhüQ.vi‚ûÖïV?ìo¹~¿.^Ô>$¸ÜèÁ8šD¦·Uk‰ØÜÍkQ°|-]² ?=°˜N½ïÖ¢€Šã†Ç)ÙY´þ‚ÆP}šwjäÏ8½–>ô-ÞoÚ²L\Qç,ÉóŽYÜÀ®”íº{:8ªH˜ ¤cëÈôÛRà‘÷d›‰^Cžr¹—ŽÀ÷ˆÌQ¯‰ßß›Œ2ࡃˆ,°GúÖÆ€XT…ÙœõHzþ2Á7¤ä“‚zFG@Æ„·4“ØäR¢óÅwÂAºÕg&w²ªØî >è%cïãL <œJ°:ª ×Mîõ#ˉªCÊ iîv’ôžh{Lb;IbA÷~§ó9Ðßùú3£4–§dÌ€ÑÁ{ÓÌÅ&`\òÏ'ˆL[‘ÆÊ€¹ÔöìES°äeÍ}½¬”²¿=l¸6Ѻç¨çÇÀ3l¹7K ÌÃýŽyƒc}ãµq‰{à&_gtj6 Ø¿i¿…nr /,W]®iÂv 'ûè†Æï·Ú‡ÿÛx!Âñv-Ïí«Ñed;ä8ˆž‹ð%R…àÿ-ŽøW¹‡{ þR$ŸÉ3ÅÅcþ›<ü#¯æ†aó¶ÅeT¢þÒŸ­$O(P~FóǷ賈}ˆÆÿ‘<ªrþÝ;½±ý‹_9WüÀçÃ!òñ—âòiF]U³°ãI}AÂÔ×Q}öˤìÍ[ýux}É3ÅÕ]Ì®$ŠÇàãHÜæò[ 1ìoCîôS.¤Øµ{ïTU?v™fÛ  ÌœèÌb[ï·þ-§€ÔH>RÆë;«¦É|E¯nìpms* ËÄmÚ@M|Â"‘œhîg¯ëÐ#@Ñä1‹‰€Ý>ØÖ¼#ÀàûÛÆ:J«=o4þæ°‹‰§}›€í¥ŸiŒC3pdpaøÝ+²ÙÜ‹fð䇭E?ï€ý‚ýW“ €Ÿþ»ŸC®6.alEõzA$Q=m‰†ÄL •œC@B±ËÅt¤lœT¿{™|1ç±] /mÓêÉ%éži Š¡Û¹*¦ìAy?×™ªKP™µo½úÑÔF?Ñå&(€&!q‘}hk}'¸u;t+^±x'ƒ~L`Æéî`¨~Çqñ5MqXDþ“’ J]550{š¤Ý6Ö}áQÌþOÁJÁ¾ 36­¿ºiΚ½Ù9"yú6p•Ú¿òÃ\ÓiÚ{€cÛ°ÿa ûÑ~g´ ÛU™¦ÑÇ>×H|Ñ·æ‘þ-ÏáÇ­|ˆð/’ßä¯!ù×Èó<÷¨_dx[Ýu÷GæÓ rlK¼ͧÁm‡È¿­‰7 y7ä­"ñDDÏ4Ÿ;S} ÛöSsŸ]ž¯py¦ðR—8tB sú4v8µõzåõìhØíowó;î–t¥¢Ë_‡øˆgÇŠ–&>¿TõÛÉÈ~4ñcYYâ§‘$šO3wíè̇xìü$CÀàïØ_G ¯Tò›c—ØûÄÅÙ°+‡ŒDn˜(aW'ÒÚ)ÆýQ;‘0ßbÕꢟ¹¸ßõç> •aŠ~ùn].þ’Éb>£ äݱ•ÎÜn@I\d¾/p vœRŠßêÔÉ÷Ó—”ñ~ÓÇ–ßNjRÀî#’$ÏV–€ÁFÿÛïÕÀX(nï¯ Ì–’êm¯Œô·x`Ÿ.:¦8#™ß,“n“O¼™„}N"Œé~°ÿÙý)î†à{4îü2ßÑF7=.Eéú÷à Z<0öy¿ˆ»Xzæ3€äÁˆ•ÞzmV¸£öèȺÄö[绪s*œYü€Õ}^¶ë‘(FøUR|e X–$.PI©®LÍw5J‡ÏLv !àVó2ó>hí+’?ó :*v®Î³p(¬ƒ¤5 ô'((×úÁPŸöÖ¤ŒÊÃÏ|»Þ&ºû™qéÒbþ]o0o Ý÷áÇ X¾©ê(¦Ž«‰Þ²ÒÀVŽ]Û­`ìm>YòêåƒC‰òƒ9ŠZ8FÁ¾ÃÝÚ84 %{R€\õ~Âå‘(lçóýcOÂPùƒðËßê{ÿ›<ÜJ‘íþEâ þ-Ÿô¿Ä·ÊǿƷÊCý/iBv?ÿî7E∸ÖRØ9‹ÜÊMØ…X7Û0B|ý°ôŽíóű«Ñ”«Éžq€¹,ý¶²üî8Äãrh•K•™¨åÉݤÄåAØV)hY¼¯ÈWä91;€Òë( s’ì{™\5K4ü¿Õ….í˜3Ÿ‚à#Øu—èÐY÷r :ý9l_%ìyrô¥‹¯$0¹=¼üü°fê* ÈœZΛ¯õ€slšˆ†G¸'ndð_^ñ²Ï-z€¯÷¤@üózHc®®~ÃÂÙ^û;½FA4(ý&Ã!7ì™ø}ì3Hšh^W¬ÐéÈe(zT²3z˜ç©@!³Hüà䩽 ¤©™ÃÍÞÊËûÊ~Óä‚êÇs{ö-*ƒú‡gþÎ_n‚æ‚é«XWzÐÑ<¦»x1 }áµ6NŸ»O#>+`8åx«_cŒÓ"}X=—ÀÔ?ÍÐSžÌCš½Ž4ù‚åK΄ÂWä`}@..`€l[-š„­óã§ ³Dþ 1!C¸†Á`¨Ö¿Dë_¯õïúo¥uDÿ¬£Ã­£Æ­'_ÿ‹ŠEÆ¢‚ÒȘDZPLYØ&&#(.%‰,ˆ"1d Ž $$2BÒÈ@Èâ„¢"èH‰¡#qt$Ž$Ñ‘:’FG2èÅC1ÄP 1C ÅC1ÄP 1C ÅC1ÄP qCÅG1ÄQ qCÅG1ÄQ qCÅ@1$P CÅ@1$P CÅ@1$P ICÅD1$Q ICÅD1$Q ICÅB1¤P )C ÅB1¤P )C ÅB1¤P iCÅF1¤Q iCÅF1¤Q iCÅA1dP CÅA1dP CÅA1dP YCÅE1dQ YCÅE1dQ YCÁ ÁEñC1üP?”À%ñC)üP?”ÁÿAûçõCˆû‰ø„ƒ»nLêì„[úg %d QYô‰ÿg,ºi,¶i,¾i,±i,¹i,µi,½i,³i,‹Kn•܄+¹ Wr®ä&\ÉM¸’›p%7áJn•܄+µ Wj®Ô&\©M¸R›p¥6áJm•ڄ+µ Wj®ô&\éM¸Ò›p¥7áJo•ބ+½ Wz®ô&\éM¸2›pe6áÊl•ل+³ Wf®Ì&\™M¸2›pe6áÊn•݄+» Wv®ì&\ÙM¸²›pe7áÊnÂEùŒXLe´Æ¢›Æb›Æâ›ÆBœø!þoáÖ9¸ ÌCtÊé ²‡¿“ƒ÷Æ$ÿì±ãŸÕŠ˜ÌlPEjÜÿnGºY=øg{/ÌÖí™qTGýZ7hŽ^eÛ I¸åÔè z÷{æbð¿ô.n}^þÆòÜvŽl,?Ám_péßSV|ŠÛ¯È¹ò_ZŒÛÿ¹ÒÆúÜq^2m¬/ůl~c}®öÿÒ*Üñ«ÚnÿK_ápª•6(¯æ1û¿ô5÷ ËÆþopøµ7ö‹;· û×áΧÞicÿÜy5|ÜØÿîüacÿFÜy¾°±î|?PQoPÜy¨~ü/mÆs€ÁÅ]ÇG‘™ Š»žãWþ¥-¸ëjIÙ ¸ëk5ù°Aq×Ù¶ýäÅ]oÛ« üvÜu·ŸÙÀoÇ]‡ð~î>tŒnàwâîGgê~'î¾toàwáîO7ù~7î>uWnà÷àîWÏé üÜ}ëÜÀïÅݿޑ ü>Ü}컹߇»Ÿý†øý¸ûú‰lÿîþ~*ßÀÀÝç¹çw¿’È6(î¾|·ø—âîÿ nîÅýƒ9¿6(îÿ"ÒÜ ¸ÿeÈ6yƒâþŸ¡’Ï÷? ï–Ù ¸ÿkødf㳊ÙPë•ÖÖ†O¯­Œ®­­­W¬­M¬­MÞ\[›Ú¶¶öÕgmmzpmmFmí{éÚÚ,ßÚÚϤµµyâµµ¯µµ_ýkkK:kkË%kk¿÷­­­&lžÀc]÷¬¿ÖÏ—¤h]ÙçÂ`ÈÖωü7³Ý ƒ¡ì\%¨a0; 0šõ‹§]U,a0»]0úõ‡a2ÃøƒaZC0¯ÿ9,  Ûº©ÀÞŒÁpb1® #³/ƒáÅ`ø0˜ï1y Fpý Óc0"aŒèú}·Á`$0˜$”t6#K‹ÁÈ­ÿ_ò_1˜ƒ‡1líÆûjÛúûŠxý]E¶¶±,øÏûkw¯H1¡– 7ÆÂ¸±È¦ßD7Å6Å7%6%7¥pcAä·eýç½I€¼/q粺yòÎÜúû_öù_ž›ôÿ¥s“Ù„+û¿>E æÿ*Ζß7qǕۄ!¿öÿ\‡žÿ튘ÿñ¤ÿ(k§(þÓö¬!¹ÿz|²ÿñødìVÕ?õÿx‚ÿtŠtìG|œØ=Ù<|¼ýÿrGþ?ßQ…ÿ7wôß3Ýôüsn}þɽ×OÚÇÁñ_SsÓ†Nˆ²¼S1í_™ŽQL;ƒ£·qô-Žn\„búÁQ •ÁQUÄQUÕÄQ]5Ø|E¸óq^?Âõó!Ñ…+R‹G LóÁö©©Ô^¯bWŽï„ϰWf±ßÚg§O-É }²ü?¤Ž ñ'#ù…ˆ¿©÷FâTH] â—Fû£ õ-HþávÒÊpzB´^©KCú–tK©ÙÙ·‡a{5óo¯ùŽí'¬~Á|v û)ägg?ÙQ4ÿpà²9ãûŠ>´’ˆö5Ù‘'40Ú†Æs‘>zHžÓ¨lï±T-Ø1#±¬áEzìxwácìçI›I%©hß„)úècþjïðý„²+".Na¿sL‡è±ÞÄçñ×{Ú+x&`çŒ*™ }± ÛJ-z‡ý5DšCš¢Ž],9“aŽýM:Æxö< vÍ’šN"–0S|{vÈ¡²sÏ‹‹ª@T\­JyÎH´ÌìƒãaÁã)›ò7@ÖyöÉ’U+P4¶Z‡’ãû 1‹{½|Î ÔÏ0Ì¡¼»æ»é3Ÿy Ð).Äq“Ñîœñ£·qýZ>y* `¨‹.qÞFŒ—¤ê\F€éÌnÓ £œÀ’ =e|·ØFŸ)S_eÙåÀÝŸÍ3‹Kðhg$pK]_Ð'yŒî m;ôÚôu"è|÷2Và~‡bK ÝOàó‹ÝÞ±n³5CÅ’3½rM`´·ø4ƨŒ–Œ,>î9ÆCì©Ü­Ó`Òv×{Ì0L»ö|¯.²³#ã#Öä`Á&á:ó8,]w§tv Âáº!Ö•U°Æ>ê¼úxlž‹ç< ;VSOág‡À^c͆>”¢‰Þøþ$3íП%€Èn"[±Ç^@¡ tßþ€6vŠG¯j0^Ç yîH~0Òɇ@ꬑø/BòŒÑøR‡†Û¾v´k¢`e Í?Fó(<{$Þ‹äãêd÷Ú_ןÉ«@ëgœÍ¢0Ø^ç}¿Öx® yRHþ0ÒßíˇäM±¸|M%"Bëk†çŒk|jžaGV»üAóŠÇÑr=J×Æ×Ÿ"ý‰®¦Ej½EóÑ:Ô§‚—i°ß‡„÷LåÎcgyïî0:]‹ýæw{ø$?vî7u³x6 >¥ìÒ·{9¾?& wo…/vÍðÎï²mó€éŠw¨¡áÂý–5TžK@t54`¿œ0_Ë 4aÒºGJÔ¢<@–z/'þ%PÜâ3¦ü ”µ©œå‰$°“÷´ÿ×Ó@=à°:?hõc¥ýf~ݑ˭áO°»àõ7âGÀP3ÈÄÆ_¯ 0žFø¼ ËK‡H+C9W[-òp‘L±WÞ’îeöÂ6ÒlàåÜkÃãæ|Ϻ^e¼Ê…ËóÚ ÔºtËlŒD&CžÎ>wÇçWi\zÚu™¤öúбd„>:ijœÕ]³érJPÈ'QýQÒ Àuî7k"¬[ËM»(AYV—í@‹:¨dÖDݸ|Ô˜…–®4úû_u‚¦x2ÿ4ÐúS×gÚ:^rÂ:Tæpˆ>£QxŽô*É?‰ê„€äM“Z‘0Ü~‘£š“ ‡X}>$‚QIf¦Z}'Rܽ»ŸL|‚Îwê©]Xº³×-0³â»®#”æž$—$¬o€EFðØ/6K°ü]]¯ÃS VQt ÏŒ›ÁFSÅUÎênåK Ç 2;‹‘)W,‰¯ŸšyÓ\O˜Úö•Ç®-Ö_¥ÏAù¯ùtS}‚šw„äç"}À| $^‹Ô½ ñ\4®‹ô›Åm‡ð#’÷ˆäù"ùŽhž/Òé—·µß—£¥¬Ú¥¸~ èúlBç’oOQþEê¿‘º7´n—׈ôU@û ß°/SOÁ÷ÏÄÕÍŒò3¥‹”½ÆŽ³7¼ýÊÇ„0, ¥ò}‡ýR6Éu(wŸ×X'}~×ä/ì")Ãj4¿ÿþ`×cv.ŸìÊšì…^ìZÊ·'?Ĩñý÷~´‘§öo“‹R×ÛgZM™«i]—™PD:×›¯’vÊÀ®¡¨{}þi@R¬(Afì¡$åj¹ök±/„£®Ó#Î;LÀòñX´HN(°½¦ùê—†¬Œòu]ÀyoBÝ{æ2póÍ=unžŽ0Z¥…à}¢æ_8¹øž¬j4¦þ~í(;’ùNÚæ "SGÛ»ü@´äØÀÍ;SøþÒwØåuéuïK¯ŒÜD‚vD?ÈÙÿ:µòªt¯-0 ùµ"ÁJÄ|‰eK± |¼„ ûö¨ô¿,ˆú” jŽiªôÉm ¾$ý…ja4s“_ôfHöIŸyÆu~Ð5縹{ÿl»EŠ÷²€âÝáT0´a¬»{xýð¿Ý³ýÁ¸€)6ËLfJÎ)j¦™Ü‡UŽ8©ï«\› ,}`C¯ûÔ¢‹ l/·xž°ø öÛ¯ì«+fûŽ™¶o ”àp¿·Û>ì6„Ìqhsþ\Ã’Ø@‰ï<À–®Ò'êvÉ)dÀw´¾ù]ÉÜ­}“(ÿ!r á+¤ÿ’oäe ùUHÇÖº7$_ÉË@ò’ѾÐg}¯ù†ÊW„ïÑ~_¸<ŒZI-ÆÂ3|h\¿\DÿEò·¾˜h’w…ô?ù[¾’·!£}xQÁðϾÑHÝ7N?Fërì}Žãû L~îõqÊÇçõ·'%Èçka§¶ÕìmPªÆ×©"}¼«Ù^]ÿºWØŸN=4;Ýú±ótš©z_ͱ ý7» >]Gû¢,º­u`Wÿ™ABŽ0'ªÏ¼ÔP‚Á»Æ‘áø:UnŠÕóÚ|@ú{ް¬xßψÙwÎŒÛ¨ä» Óˆ·ÃÎÄ#D„¢Cø<Ž.щk* °«)ÍËTþ0Ê:ÛÆÒã)¿ùîú`æ+²Ö1V6AW‡3xýuEáD‹'pßõòo ¼ÄÅ«”ÀgÃwI2ñ-ðO ^ýHÑ BO|Ý|DººíÜ©AìlHÃ3WjPþÒüìûâ_e7ûa2’|-D ç2¬õYƒµ…ˆ’x£r}YJûÛÇHßòƒrÉ¢Õç{ü êÆG“/]ê2Ov¸‚&w¯‰ ™ hË0$ö]?¾›ì×øA¯½`~‚ rFfŒDÀðËSuìa/0–}~Q®LRBFÒåÀŒtéxJÑ4˜Ÿ.Ù¡dçC}¿¾"°*zwæVذEÒ ßÛÌM€ùŸ|ø`­rf,"Ûì£JÇÀ$µd1[ƒ˜Ó|„4].c9sR©ú§ÐþËH}fŒ\òp¾ ÚçáC$¿ÉûEù©ŸÙZoŠË#Fø‘§_!r­ý[Ÿ \ß<¤~ ¡Èy#õ1ÈöH¿0t§gÿÑgÉûçú™ê¿ø/'·ôØÏÛV»ØÁbÑPªÕ0|¿vŸO?³…žcÇ ul핱“ÂB&»B;Ñú™o%G¹[¦b¿ï?™zÕKç_’sNÔ`ƒ­¹c±Kj³-÷ÈŸc+ëàäeÌ>a—dI (õ*”ã¥"m[Ú+ þHxf:Ë/¢ÇŽ k S L`7<Ñ* ;•ªäŽa›ñ}Q®FÉ]­w‚]¼ÖIÓGкR†¨Å`§?€ÑþDûž4B`²¼˜–ÇÖ,îÓΧ•€-ytQ¡ÕØ¿?Ÿ:ÿø pÐQΟp®@Á¹§*Àýõœ ñKØî§HPÐûÕ/'þ0႞{ c’@@1c!rçÞ¼%w›ºËMÙ·[·ò {/(>›‰ÌÔÞÊBÛeeËAå Mý~P«7)x/s4>Z¤ © ƒÖ€ÆéÁ¸Ë ³=iÝÀz´iV„̺`@F>)äp &C†ÙcÁð³ús5g0ú±»ú•Ç"˜±ðRI3€é+=Bã`fÙ>¨íoæ×šÒäü‚Å'ÖÙAB78,™SøæÕXÝ8[Bé§ 6CALMŽ`ýtçji°§Xì»2â³I–FÕ&´@¨¿]°äá18äÇà[£²ô}n®éµß°?= ¨¦82ѺM¤Ÿ¢O"|‡ä"yŠHÒß©GEê üdé{»µ^áÓ?꽑¾Ñ¸:o4'?+_'ëÜNÇÛ¥H½Ï_åéÖ~aH¾ÿÖþº8{ÍûÇÕí ò²¦Ôl[  |‹ö“Fú…!ré'Ájv’¥ýO9‰›'e’æ®2Ä£õ«ßxnìɺð;³² x¼Ÿïÿ©&ûF­·;Ç:e–KÓ¿*ö˜g$ û ;kåqþÊÇ+5»ûK9úðyÿ¾Õ ËDß?(âeRž'% @Ú:”ú«<È^×ïTtÀ×éàòþwN6ß‘Õ41ÃZÕÎê(K𥳰Ût޼ªÓÎ>:lç)Œ‘wž/ºsN¸Ö‰;ÀVq()vopD²™.3«’d:màñùÙbzÓx×>DM…¿bÚµó@èìT›üË•PÖâ|’âRX½)UÜëàóüú;ªë½ß²½dèmÀAÁ¯ŸûzˆAÑ!(ûQC+(›lȼ÷ ¨žHû9o< ê÷OôæI5‚ÁÏ _Ý@ÇÁ„AÙJœ=”Ì×úŸú(Tˆêÿ¯ñáÅì çD'è"ñèú¸_ìlÐÇ~¿á¼úð‹7Zg†äé#r áDEôÊ­z)RgƒÔÝl÷á¯jÝÎwïÊ P>@òûù…Ö§áì>¤:âé!Žl¯ iD)âWEêØ<`DΡó*˜VØùÐ)áåÞÎÌBQËèþ¨g1¤åxw'~"œ?vð;ÿûó®zØáó¦üµ*P?ë8-yù;;|¾02ïPó =fé2ìÌa³ë q?±ßgÃ_fmÇΦ‘z7ïÇ÷ás¥X>°«»˜°P¢|¹»üS9G·Õ»z%à²ðöBÀT«ÜàÈÂãæ¾Þ½ Ä ãÅv >@*’õÚË È”çj„ÞH£ó–P61=%ˆ‡µÄú¯õJr{Þ?z¦ëÞ2Y ›ªO¶l†ÝW².Ê–ÓƒyšÈƒŽ:`Ô ZФ&çqž"S,°ÜN§}ê¾l_ôÎwíKûîà´ó}"Æð ¸ŠŽm Z·¥.›{ºû¾³½<¼ËöÎDPîs~jBá ->´67ía» Â/ÂúôÕú@t§­„Oáˆi¦ )ƒx¦êÂZ ÉgÓðsGHÕ×ûKL9ƒLXxþWY³ŠNÐ[·¯ùòºB à PŒ¸2(‘¨ ÿ<Êö|Ïy}1 ’èøžVTˆ×©–@Ýãåа hnŸjR¾£ Zíü|Ùl óðœâôu8äGí•Zz$?Ý Á€crà~6<‹˜4cCýD³LC0ì?,¢¶ËŒŽtL¥€ÑÀæ 2 06¾Tÿ•z—»|>×&ô9×J/€IàÞF1é`ÒÔø;ÇÌ L™›\²ôÁôÈ6,“Iœ?pöÖ‡9 Î÷¾òû%" .ÛázÏH;•õØïèh.:Ob§¡rÇoˆý‡È3D¾!yþÌ'†«óAê ú¤Ï<’×ð7¢÷"}ŽyŒÔ³¡òñÇ"ö$"q~ ¤o`õ«h§ì™d|ÿL¤é7¿µŸ â/Bä!Î_…ÚH?iœÿgk¿°?úg"vãÖ~aˆß7ïb7~éñ9Æê,fJaa°*Ä×ë ùþ„¹œZ!¨ŸužsÏÕ`ûçØ…1bBíò'ØÅÚ–#}ØåJqž!_ìï~9½úÁ)ÀPw5.›œ­‘ê·°rÞp)lˆÆÙ3?\Rˆ· %k2mOí÷«@qÑ«KÇçPí芌·tÁ÷™Œ/ܹK?Ñ‚ùãWsZÀ°[Ìÿá•`¼ž©ëi Ì矕ÑÃ×ÃÝҟήð‡½&ÓÀ“L›¿ïiðö ôÿâ†nϲ­APÝõ›Òþ ²?©’Sç.ˆV8D4q»»A2 ±(¹¡¤ÓÕ^IìÅÛ‹½Ó}<:ßz:¥A û(Ã"”¯¿²šø ªÚ•ÖWÉâ@Ó“õÈþhÜÊ‚— e@oi—p´Û¹dIe€®d2Q‘„ :í”/ÎBzyÎçõÞÖƒ~Ý—µ™ 0p÷¡¸ÃJ _-.-¿CìOÁ`ØÄM%¤’Fr3Ï Á(¾5\ë¦8M„P_z¸ƲJÚA­4`zšgO°øädß Òñ¬«jecÙÐþfÔ[ÔÀ~Ý{ÚYTù êÿ@žw„?»‘k¨>Š“{ˆ>ŠðR_‡PD/Eü4_!|ÑÀ2²Ò>;úQøÚgÏ¡}/qr­ãJ^†·éOt•ˆßW7ŠÔ¹ý"Û¡rw\Ô?c\zx†.__ƒ‹c0ºÙGÂZo:¼gÏ› 1hß…±Ñꎾãäx9é¤+¯åZ‚¦lõoÉ“Ã×™ÚMr=$ý†ï§iúä•ã+|Ü]ûߙŚHßìÚE\H·›_ùºðk} UÇgTÓ’àíÆÓZjtžV@QÞE¾â‡÷ÇüÐô?#4Ç宅&Úo­¯¿\#„]¡ôQJ#@/\uá*õ*ìÁ¤O–¾9{É'=eNÚ³þ4y *;°v®>]œß ìõ؈uiÀ)SïfèÉ\nÈ¿r%±<«QžÃ°¯ãžfÙ¯8ØŸÿ!°sI|«ÿ}>WK¿¼[Â–ÒæcXÝÑ;´ =bé,óù„‘å(E3HíJe=úä%HñÜôt¥ÙîK?¢»ÍAÚ«D1 °¦îÁ?Î-€â¡¯Ì“, ä?.z*ã=(—†ÛËï›ÕýïX?¶KZõpkˆú{и˜ .ÃZ§ؘ÷ƒŽhÁ£‰ð Ð}Ãø¾q#èi,dÝF úeû»d;[Á n6¶¨b7JN·ŸÖÖƒÙ#$`ä\Ga?“F3=]W3©ÁØ+}|;) O0ñXó‚‰ù˜´ Š9˜”ï 6ä-[—‡NåÉ:.`zŠ“N’…¼4>öìi¡ƒk‚¯oÀÎnQ‰ž!ìXÍ‘Tc½‡¨ü@ê˾Cä"÷ù¶µ?üÖºV„níó·U."|þǼ{¸ºoä}€Öãü=H|Ñ›‘>šˆ\ýÞDêÄ‘~ÓHÿœüÜÚW ‰s¢v$ÎŒ¾/>*ˆýˆÈKÜûÑ{}?×?Wâ┨݈Ìχ‹KNIìâ&–ðÄNßN¾r {;“¥ä˜¢üûcGܶ´Ÿj7~Æ|1¤ÁþZ˧¾—óßú3:&&øyS>ñwbÔ_“Íâå#=‹{rÌ- ï„àÞ@ ,ìs-M%]n*èÓ¢Y˜Lè# ý¬EÛæÈ»žX}9«ôÙšKªÉÒ°§´±:…º ˜è+Š»½–Îý!×9`O´|¨8)œQ»ŽÛdwõí¬àG¢À+mϱ‡ùÀ7#\ײ íÚ#†;Ax¶t@Qâ8ˆ¾ø¦‘ž—âÅåKõNl ùj÷4cå#nRÎ Ù6 ²ó<'©’µAÁ[á [–€i=ó«÷ $Mš2Öt ”ßÙ­6ÞÕca‡Ì@^Gf5Ã4 ‹o«Í©ƒ–fmR|X&h7}_P‹]MÎÃaApèñàïØc O¦ç«'dûjm›J„Á RÖ‰¸¹ ®7~ÈÃŽ0{K¶H02 *¾ñŒê/?9ÐQÆÒ\-™’”`œòˆƒ–¸<Õ\K£ié@¤ä´•yì \RPk1Ä~>“ݬ‚Úƒˆý‡ð!bçýMÿüÛ<¶EôSäxß Ï=GDúL#óÕâúK£ñ…àÆ|–;x?(n>!¤Nõ‡âòs¶úWÑyy‡Ó+ÿ(:n¾´O åöª Y®h}é@¥æÙÜj|¾ŽŸ~bÃu»}^›ããÿHßiYÙws5ØIÝâK ‹¤ø>›“ä™Ah¼ÿwyªèrv¶KÁPžý7v®ê£äÉ4n±$ÍêteO+v¥è ·|Ò_´8‚Ͻ¥"ÚÛ‚±@B>lõˆ ¶‘¸wØb€œ²õnÚµ1Ø.6MÍ®-Tñ,+Yµçš&QË’éЫ°|M´ ´?z`—Ésö@® ß-§0{rìapQ½·öÚT¿öH“æáý;"€--÷ZÁÓÛÀ¡ðéE—1p&ÕÞx3 ÜjÖ« ïg%íî½ÝcÀÛuAÓ”|S ‰¬æÁøþ)Û(w²Ò‘ƒ(kc §>ˆ½LN ósƒw}™Ar’Œù¾/;H]™?«$ ²}ê@A~¼&t‡?`¨‹GîEƒbíÉ. ªS ¬·xç“ç{P%ÖGÓnPky:ðñèи3 Ê±ohöJÿâ :Äw¹“©î(Wkôèåø+ºk‚ü~^Ú†÷«“;‚Ñ¡gI5ºC`ìÝgåoÚ&ù s=jZ`FÌ7w£±Ì}ß ÿˆ‹Ëm‚Tž p¸Ô„3ãò{°¾I08ñÐlï2ìyRö§®G1=î7†« ·kCïðÏ»e{Ætéù§‡µ±C?Óe DÑyJ~Ù:o"ÿ¶öuØÚoek_έýþ¶Î_ûÇ|}ÿ˾ÒÈKœh«ÜücþZD:ø»)eõáç¯ÅÙ‘Hž§üÛ|}Hý8òÞ@ôé]däµeoðò§ï¢òé—‹øæ£dM—ð~U¤oü½ÒÐ²ÝØÏ‹üӊѨ^‹æÕéÄ)ŸªéDûÎ{~æJìÜé×÷ÚF± )F%Ò:øy("4 yr°«Þ5n–¾&&˜÷­ª ,,^!žà¢³ûû¥U€„ê>‹¬J ¾ž |øÈÊõ§?“„Âv’U‰Ä²û@uËö«ŸP+^¦x~hº_ 8é—]œõ»‘þØmÞuýNK0ˆÇµ²~F,€cÙ`J¾Èm¼®×ž¸Õòýæ°Š¯˜½3Î÷%áueøx£t^Àj^ð½`‹M@í3ãߢAøžo°,³ˆÞ“¸H…Òqe'ËÍaŸfñô9àÊ»ØÖ›Röº GVž ÇS>üíÉ#‰ÐM‹{h± rn3Õ~{À˜X:ˆêãC0Yá•”ý fœœõ‘™Š`®É=ïT},’dz ¬ÀÒMjõ‡%X&ÊrFR—¥¢ÄÜ÷¯`ñJ8¤ÏŠ,<ŽaèÖÐeËÏË\^hƒÕ%+9»³U`#ä°½ lWKe5ö€½aPÜrt%8pe8‰G»ÃÜ»ôø¤ pì#8tDÐŽÔ(„ 0£mG®ß§å‰‚‹sàâà–Æó&\{‰MÖ\·ã%ñ'¾)‚;OòµûýÀƒ™x‘e³Ù$ˆƒ·pèŸÔM8u<Š2cð$ø47†[¦ß?÷ ßT8c}¥¢!U î{Î.m— î!»Óp>­¸àðZa ÷°Ú7‹Æ¸.Ð Ç9L&Cø/)©¯'ø!J¢·üîÔv¸X˦ÎÛøbÓÿöŒ3‚+†)¥wÆWáêXíLuéH8¯ø¤¯n®í~”t¿“’Ò-¯'ª€dÙ¢ñ¾Ôçp“ÇI¹{ Rc°ªê^œ~Ì—©åŠÜÑd¶™²³‚Œ1eÂf¯\ÈJ,é¯M…»šÏÆ^†\* —_‰97cõÆgä<ضãìÈ…ücYµÓ‰ð8õ¾‰"#(ë6±d¹A¡än Kµ*(>qæ×—<&xÞ²¬<ì8/u° ÊÓçPÿ±kúmóÐTêç6À€¾tú, ¥™àPS‹ÌÉã`@íñ-€³ ¥L冟q‚QVoK ŒÛ…Ô±´OÁt¦ù ˜Ý梳[H‹½|ån6ñ(¿[S8 ôl÷[ÛÍ÷kÉÀÞ9xmü98W‰´¦†#¢ôtá†?Q¾v.៌༠ÇHéƒÚ=àx©ƒ1õ xôòŠ?c»^t͹ïƒw¦ÝiðáñQ¥¸¾5ò§o¹žƒÓOß›_Í^ÿ¯æv#”˜ró£‰ Ï·´–ÑÁÉf~ë½ÕùÇVW73B$µFm(D­žÿp¨*.6—¯°¶À¥×úÉC~„p™}ÅŒõ>\¥¯#±ˆÌ;GªÝ‰}çw½eɤIç‹,6pƒ:ªö@ð(¤P-”$…Á­â´ }Öåp{ŸÞ0}B ܹÙ6Q²z2 ˩϶ŒC¶½(É›Èy›Ò3Wîù œùNÝ&d-ãá±Ýþy]ëóP ÷K£îXÆî¿¯ÁŃ~ƒÓPrÞ‚Ú4’J-C^°ÊCE¢àë2³)¨ºzNb›•dÑ;{ ê%µ>2÷=€w¯Žˆ\쑆¦ ^‚¼SÐ,,cשïS~=v# Z? ¦7B[ÑDàvY èÈ"N}öº’ÓSúr/@Oá®z•!è[yš¹û‹ È]Éý\v¯¼ ŒÇØÀ0‘îÄÂ^RIÔè8§Õcê…*CÖð™Yé#i´ïßùÐv€0]´ }žådäR‚“‚ÄâÕ³£®5 âØJíú‹åG„Ÿ¾Ü?þ#svåË­|ˆl‡ð·â3MrîÙƒ(_ös÷*ƒ!kr3)üso!ÐßQ&&Èo®€©÷«Ó<`úž‹«VŽLqNØÅL‚i—y¤º‘§È²™.g-Üó7¼¡LôÚ¨ü<<¢ÇÕÍ Ö¶Dôb÷Á¦3)5Îr'ØÕÎäU’‚ýÙ çn§ÌƒÃ¡{®Ý•?ÁQ¢Û¼{| ÏGæN‰ / À)þM°Ç¥|pþ¥B*³ð\½;µ 6Æñ±Óª¢—àD}7ÃÇëàÙù¦ê• 'ž¿<м=% §Ö(ÔnA=øN;¸õÀ1»s½¶Ç ÉDNÿØ3\ÊòÚ™¬ç *Z”ÆBÁpÇðy‹Z¸ö}.Ø\£I*ˆHƒölz ´f æeÄÕퟗçØmºí\á!ºÉmñÃwž…D1ã¤{B¸ÖRñšÍØ®‡Á¡¹¸HÄv*RúëvŒNÖBZ^JÄì…1¸Ýù[~Ì´2\Ú¯µBÅŠ“Ý'È®>Ùn 9±‰Mo¯øB^`Ò±dg¸;[¿v™ò©s<~Ü´„Ç~2¬âäqPÀ!÷T8¬ ÷rÕ->“‡bKo’à ÒðüÍ ç3þÃðRÓøSX”Ml?·"! •î9Û”¢¡j‘ô½ÁW¨Î]TÕu˜‡×Ôj @mÜóÑ_?®B]ÍÙ„7àKÀÄåÕ0xõëR;>\Yd9”ÍcÎBO]’ EK;§ê˜=´>;©¼¦øÚ&-χŽ”z´g¡K¤70 =¤N9Û½BoŸß¹¾ww ¿5˜e¹â œ¦líJ¢€ÁkŸ©XÆC`hýOœkHƒ‘Û¨]aô„[H{Š%Œ ýöoûÌ Ÿ½ÞUÿÊ¿ò¡Ÿy‹IŠd$(W±~7WGå¢"|†Èµ¿ÉA kúD¾á?(²=¢¾Ÿ @JKV8}²ähòSî`yu‚¸«Py‡èÇÈy!rÙYF¶Cä§â‘Ö¦óî dÇMÕíŒêÁ*feªÉÑ—“ך‰¯{7vlDˆ®¨^”A8è‘S‘V¢ú³¡½áÊrà 0z,ÿÕ«è,˜à7O6"Eßæ©ûb…ö‚e¹¼£à`^>ß÷åN\ûì˜ì3B (_Ýcœ“)°œ HÏz΂ëw*Çò÷àNëþ€öxŠX…ûÛˆK¡26w/xÇé=ˆUlÖ»ý¢ç?ƒÑÙ±3¹ x¾­Œ© z;AùB®î¾/P»#TõLýÝ©pý“æ§*ˆ lºt€ì7DŽj+_ÛëÑϵT䤢!¦Xб»âvõx˜ÁW.ÈœÿÍñJçm4; !‘÷ÎG5* Hb-kɳ Àë±g½¿“O¸BêÏ#3I{ä!=C.Vø£#Ü1À6½ %Lj÷WÑtuÍMw  Šr¢ýÞ{sOÂ=áw= Ñðñ 6wËz½$šƒ‘¢môfo¡ðÿm–^K(îJüZ›m%Á4®!PêA=Ôåö*ž0F_#΂ª¼Ëm¼“xþl¼ûÕ+Þî ø>óØꣽôŸŽ•@#ß×Ö}ß i‰û¦JÎnh>óÛ›æ -d…¿º«¡5¾¾Ã¨jÚ®ý8Š…Na"6Ê¡WÐ-½Í„E0zÝ2ŽW•ÿ‚þFsYûzxò¦"nø íyŸW@A ÷Êë4`TÅó™©ŒŒSfx,E¿…Ï+lcU|åÃ+Ñ—Â| JÁˆL}OËÓqÐøú%zì‹ úÜ"úòÜË^92ÒVµ÷$ Ë5¨_ö¢rá[„Š2òúæÎ¡z/"ÿLry+µëÂag5Ÿ¨w¨r¸órw]…+QgrIØuœv¥©wÇrü!o祩罽”ÿXÿW¹táJá‡át8™7dé$Õ^‘WN¾˜ÁË'3ßAé¯à£ÙhÏ# ¾^‘·ëÀïËÉ0uÑçpæ®Ëo†"“ts#£¿=i‚sIñšùúl»m&§¿BΞûyéÈ"„>ïÓºC¶'¿>¿GÂmc)ï¯)BD›¬xBäœó®âEˆ>“˜ØA1òklíþ» V8ᄀθ,þ&ü‹ \I{û­n®&U[±—=€ø¼ë£oeCÂ’p,37\»íðjÊ0\Ü-4ÞþnÿjäÊ ©FY){Îý‚4ƒ@CC_mH/8uñE 7Ü6€÷Á¾7áö srÛœv¸½:%V× wÉ[”Z( S+Á›f{d{ÍÙ;Çü†\îŒKkDpouøúD¦<,üau¢PUåô“¹Ããx!lX¬+<á]ÉŒ'ÇË.ŒêBA]¼$E*)î ŸSŒ „¢Êkl½â’ð¬_âº#é<¼À¾"Òª‚ÒÚ3ù'l ‚q^ñ&*£NžoWÏ€ªÌɼ܈~xõî5sš#Ô\uìÑæ[·#c¯ý€7ù ‹.ZMðvow´ÁŽóPßRp1Äè¤<Ä­HàÝõJý˜Ç´ðžu”|*šr¥êäM¶Ã‡›eò+AŸ ùH2ƒ·/'|*9Æ:W\.¹Ü-…–ñЗŒöÅÐÚü¢ôƒš8´½9ËÑíoò(ÚJ' ãcØ=GA:蜌 ¿H¦Ý;¯[×DCÒJñ«¹Zè ÍÓ¾¡! }Í­û±)œåÃCø`Zq uZšbYAõnÐö ]T.!òg«ÝˆÈKDOåä/øB[ŽRäwd;„»9."Ç>EåÖÒ‰ˆ™ª2P×½™ Ó¨]‡Ê«.Ù›‰ fúüŽõçÕk­ß‘ÛÏãí9DNyóÒ°æ¢~+“Ó?åÃÀæÂ¥¶°[¸++ ŽùçMÄQ? ª6÷˜— ¢þÄžs«’Šs÷ÌÞ|5'V𸅉|÷à3œÔᨹñ<¼¬‡ Ån›wØžmœ‹pª¢¹éCI-ø2%ψL¿K{dŸ…3¼-Š„ ŠÀy0`^› Sºãá\ƒf)/‚co™w´@Èí0:ÁS¡ù idÇ!l,Ú§º€åëHÅAªë4re ù-\¢¾üƒ‡®âò‹4­M»áʨ’G_¿ÁÕâš“Áé_’šÃùÒ wÆi¬ë©é¿ö[žç†$KñÝ?­ YÂ<ÕÏõÜ\ÓÕàpH3j—ߣ ·Ç¢™¶EAF°.ywóÈ,3xjõ,²î]ŸPAÈ>Q>Ìwîžcs\v…œ>‰ª[n!¯o‡Sè xjʨ<9î\ ¿uí*< l©<ؤO•5õ‰Ë¡ˆd²ˆõR7×GËœ’Ù½®¯ª\¢2…ßoï™—‘‡2½˜SR@EÏQ=¢;PuhœOÞ•^½9þ”öäm¨1­àg8Þ ¯—Yø—× ¶È¢D!) ê.´ì ñc…—™Ðw¡SÐhw¦ˆÛܚܒ,ÝÞÀ‡šŽ—«™ÐÜïð+i› ´paæž ƒÖ“JíÌ´UÐÖJ{ Ïì,tè`ÌއÎÑçW'ZÜ¡ûúN/ëSÐëôVIƒá8ô›0þÒk»¢} œï`PçåÃ캿òa°E†ü´ê/ÝÊwˆŸt«}ˆðÛßìCDoE¶Cøá7„¯½Ï°_ósLh#?$“ûj~]YÆûMqúêÅùO-TùI¦,ß¡öâ_EéÌþxÿ5Î?ý§; YØÚðöaþÕûQex?ªBOÕ 8ìH;CWÞŽÍÜ‘6xû0Ä«ñÚ.p¦ž¹ï"À.E1*O$hà˜§jÛô8¤ØÌX'n»k'LÃÉí ӧέË]7úÔšYðn =n¼ý5øˆ¿ ÑXßGû$FZ¿Àim [i‹5ðçÁdpþ‚³w›sIÏAPܹ±”Þf½u9ÓwBÛûëï(°À{Ñ».ÄAxX&ÿµ£ùrÂý>ÀE´Ë3p)<ôf®,\Ö;šÒw¥ ® 0ë>ø7óÔgu.Bâé®÷ÏŠ}Q=óz»áˆíº}ø‘´ä‘?@ªô“¾‘JgH'ãûyÛ°îPúS¥Ïè@ÆíIßÙ¯/ K-UÐP²~µˆ'ƒœçœ\–…üwÞÓ7f7ܽ t_6™Ë~0,†Ç°ím_‹<éüppÛÍãðô5û„Š@(Zr¶ûaÏ]ª§]t€_h³ÝºÚ ,ÂíÕ›¨œ{@n¹ªî=ÿìø ªµ®?/q{Ÿ¿ò¡¿e•³IjWmõÏlõÇ þÒ­qŠ¿ùKþDøñ¿Ù‡[ý¥[)¢'£v ο„ð÷V¿©Êjê Þ„qPÓ³•Õ!¢õ4.>aˆ¿úMõøhMäCðöàE½îô‚b0ê–Íñ—þ‚·qþ"ÔÄÅQÐøÎïcO{ê2MÔŸrác'ª^×ö&¼§u*T€âœð3:ßúp’ƒ¤¦áŽ x=áÀ&*GÃ)ûÕY_+à{ø#4z|‡ÓyÊîû~e@€@ƒ|n_~p!Pùª÷—Z½fôKÕƒ°=L­ê^Vpa¤¸±]Ë"ž‘ÞÜB¢m\Oe¹ÁEG‰×ÛG}àÒáeJ†tˆ+ó84 ®ôˆ$ùúÕoéÑ8IYE¥O#< ù-á/ŧbBYuÊrwÜ:«”È+p›,V&¿BîøI%gý€L¶#¿M[(!›5õ¤íúýÎ9[ö¤·vîqW¿Ú]÷öˆÄ}ÿ •Øé™øD¡@¶»£­n ƒ|?IÒ CñUOÒWÅPâÞÙ!  ¥‡XÏ ܇Š@_ã~oy¨ ›/#)™‚j?1•Sð:VdþÕ®D¨­1¼úˆêÙYf†w÷Ý…Š"ŸAÓQ=A¢XhæØM™‰¡ƒ)…ÖuŒ“ÐÊBa¶ì¨m™á1‡– ãjHEÖºBêŠlCOªæ2­_ô iΞ …ýQŽ?÷Á`ÍϽjb0ôcï³oõu0âMr³ÞÆDŸ®°‹QÁg’{Z¥‰åóÇ<ìÕY‚Q¿b÷!zäÖ¸ÅVûo+?"þ™¿úKqüƒè›ÈóÿÇsÿ¿)âE)ÎÎD×cª¸÷çà)n=¢ŸšÕs9¾sGå¤%½89‘‰VP~sm{ÊGÖ~wÏm[”<Ãb7°ûÐmô˜Å ìG’jå}®‚#[Û3mVA8Î_œÔY G×®¿ú^˜ ÎYÜF*¿N«MÓ>Óµoà&’›zÜå2ß…ìÈÙŠð[oáäù×öR§À«GÉ*ý\jú’ocß_~£L“s½p¦‡—UÁÝ/¡rk¢1 B–ŽëhÒBØ—Öò¯«£þ;ôS½ƒDɦýSo/ÛvXm%Ê^ ¸²oõ¹õ\}ÿúóõõx»¥Æ;®Y$“ÌdRÀuG½¥wá†ÈëÑ¢]]’\UªüX{靖ÿ?~˜T(E”ì2 ‘P="+£Ìl‘¢¥T´(¥¡´wiïMKihï½§öF‰Œ"Üîs®×ûºÏåt>ßß}ß½Ïûº.Õ9ÞÏëù|>ÖëX|/º-Uí^ ÿЮ=ú'ï!P ˜kX¸A%£»O¦ßFÈ£Þ(›oÒ;âµç£7ˆØø¥{eò[D Ý9ÉÂÉ„˜'cžÊ- ˆ]ñ.Hìþ ÄeíQ}ûë8ùäýZ×ãÕgkûf…6¼VÒôâߌԱJ)æd+¼ñ|VæøFYÉ©¿’]¼ù£¬þ äÞ——_‚üc[Y¢×¿G¡´‹»uBŠ ý%Gz¢´r§ZäATˆž{0k9ªn~X]2Õ +¤Ž-ù…Z®+¡Þ.Þ¨3øºN~!ê?-Üw{ Uõ»øn£©÷Ð~{ hIçÑ÷Â[ÓÑäæ×Юķck4:¤m@ÏZt]Óßgû&ÝÖ–*öV­è)ŸÈ:mÒ‚¾õ—‰‡Š¡ßí¤þž_Z\É–!Í~vÊ:$xÁI¿"õ÷¿â¤+ØL/ŸùñŸ+ù<…—ÒæÜÿÂKÉ=ù»(ü´ÑóÑÖQÔ=ã¿û7%ü"#nJÛƒÉ÷Á§¤#›ŒqÜJáŒÐò%8i²Îêh¯dÊúè2=Åé9].ȼ ¾'¨þHãQ(~„†—^Iºž7ÖŸNÕ3Å'ÒôD' Øß­Xyt”Žèûò¡÷E2×J±U°2Ýa³4‰ÂÑlÏõ.¾{†öFÒõ¹ë•àPÇ´¹k!'î;%Ý€ó¥f«ë¼‰peû©YßþîlNWV…çÂól‡9›Ùà*òá7 |‚RÓØÝàûëÊ<[;øµÎX«»·þ›_/¹.¿þòž³Zp8[zÓŠz&|6ž—Žà"·qR_vÍnmî‡\DÎ[p>\k%¢wY<ا€ÏÏw .=ˆ—“b­NÃîˆõÜ"QÄ8YñZÞáaÄï ø6ºè$äKºfó»"qÔ9,.¿ Im].§^„"e^¤óGOi¤™­ùô‚ÿÞŒŒòüÝ,N­%O.#{ƒrŽR¸rŽ ÍL|\½%®,šÓ—ºÞñ¤½< 8˜Wë¿ìE¡:»mŠZ¸÷‡…£Dzï§³»æ£´ Ì'E‹åû™JN¿FEÆ<¡[=*¨Z)ðH½ñ3ªºn³d,–AuHjö¼Àý¨QÛ³Öí¡je’y¯-Ú‡ºíïê<ªJQ¿â’ª S:xB›ŸGã"üØï\ˆ¦õ!î¿'µÑ¼ÿJÏÙ1´( EìåÐG«¯ßFY¼íj`›!g>e>Óâs:± Çö8´lЧö+R¤ÞÈ\Ix 2·N¥w#x¹'}–ü6›™“È>Spvé䔦eis¨!ïÊq½ÜBL—ýÚ›,ÂôÆÅé_Pl£Öª·Õ¥÷t§ícã@¹Òª?þ¨¼/RuyU%›ü£Æ¤PÝ;ãë‡EÓQ»Q=yÓIÔé²ôÏ æF}ëî#¯ ñBý霙ÜhÜ®<\sX‹·WíOïBûõ¾Ù5;[й»éØ‘« è:³Óqú5±)ëИ¯ÿRëýªÿ= ©3F~âÿ5^J›Cõ4'Ì%¿¾/óÄ©×rž_Réóm¿;oÀ÷þÐÙRªnˆŽìœ”ö>Ñ› µÒx ‚·þâ²ÃQñykçàJ§¼êröA\»l¹´”U×ë’,&º_Óõ§DW£=h#¿G·FŽL¬=^EÃ̈žÜYs&a•Åi:o9ô­ÕïÀ ÜåXøŽ½j54<}ù BsþvnþU¯ýŸôDƒ<(^ ]# ¯??¹hÞƒ^ì{ý‹ÓaðêW«Dv,]OCðÙ‡&—Æa:¿zá¶Ö2˜MôG[8ÂSö–ģܰ’|lñ'M†ÎËëzÉhÂ!} ÛÕ°p:ýD[øÑA:ïd;7×u î·æÍ»»÷4Ö;¾ÉJtZMì| R¸_(i,ÒPOé ¨y¸è^¯Ã¡~™hÊÿÚ ãÂ7Ï¥¹ôñÄôËÎþó0»Âü«ÒÚ”â_]H×…ó—ì9ë,CïŸÍR"Rp˜\m³$ÎNe'­Nu„Ë…Ì­"ÕpK]ÿ*bÒU\®wW­€×L¹«{½‚*—ƒRB&üFC^K(É!àRº‘Çþ~c’÷« !ÌG–§ #ì~×áÎIQDŠy8~Ñ6BÌ…wW4ŸÿBì=ÿÖѳɈ¿7ïäI&S$ư'óse yæýïrÊ‘âÊ%™ºéžß&ƒÌ3{÷2užEöÐb·2È™V´~4yåG‘sY‚Ùg¹ýPT5"ü.Û%¿'^³nÜ„òcíkË*Q™°êàYßݨ^zòÔÐE6Ô¨Ìn|þµyš<ûW£þú¸„ï=42îuQCS‰ pÇ\´$¬¹+çî·ÙÚ²ê"-h÷ŽÜõÒ1²¼5èú¦\3#=ýï¿”<ŒÞþ'·C¯N]‡þÝ "¼J©ç™à¥„· ýìå/ë|žÌ³¤~@xyéª??¨ü÷\It¦DOJã ^BøÇ³O¶-µS¥øüsF7k¾¤ú«¬ÎšŽ§‰ïé¼ä‡í»Ãdé¸) _!ýQnCÎÌ-5+)]…³\YU¬ÑiA×m‚¶ª0=4™P¦tjêZ,¼g,pï¸(ßlhl‡hþ6h¯.™FœÊd zC=Ñ÷yý0P[¾Äì|ò°…˲áñàK]îøP˜„”½UP¤óˆd>u¸»^¿TVÝ9Õ?ÕÁæY­÷ëZj¿t¼žÛV<çÅN›—–ý=pK,Q ùº†^_܇æöfÀçág…ð­ð¿—ê;°G}º=Ëy?#HýÜ~׈+™7ÖÑ´¼¡µó ¾)È!<:íAfÍKD†¦Êœz†èanwñ¾Mxn·KcÜqz>“G6»!AÇ­J²ê ^e/ÈÄë}ó‡‰1#5!OÐÕ o6Ù°eoFWÒ½ÁÓÈŽÞ¾"hv(rK»¢Üö#_byBç]!ŠkoTeCñUއc¥f(õŸö[vÆOTÌ>û@NØß¹µÕa= •RQË{úÞòôJÔ=Ox'zÐ ;®¤VÅìBcÛpSñQ4ûtT׌@«ÿ™ë÷Ù¢-YävoD":¾5Ì~æàƒ®íMA1è6Z8àµ=½Âï[ë\ѧ貀3GÌþÕQ‹0˜ÝìeügÞÜn¯±ËŸ²u¼‘QØ&BíiW!õ7OÈXo]ÖpÓîrÖCêž|žÔ#é‡dß$s0#Jîu¥äóŒ:SòyF’ê“„_|Ñ•°(Î+Òt¦T¤áHÿèKîp¸{iÿïD·£”|Ò‹®ß;¿NoD wüMYœö‰ÓùŽò±ÊÖØ ú\KÓçº}°-üý»èèÞºïB©,ô»?|¹|ÊßÛ.jŽÇ÷µ¤¶©ÀäÞ{Ÿg'Eaz@ëÀ—y0ßè,ÉÕNù.¬V\d𛢠ëã}ßõ¼‚mǶ¼ÙfÜpÐw°]²ÕN{ ß]™Å—ùâ¾Þ,p_rßÓ/íV­åÃs‘·ŠÀ;ÊÝ@zÕß~(éÓ·Nw7÷O‘‘½àüÖ#nÛ‡¶{]hm÷UDü^WðîÔÄ,Œ‹3Ù%ˆØS††§½ v»óË—Hôä-%ÈŒ¤ï/þÔÜ™DŠÍ«›™~ÓwžpßGd>˜Ãš¦„ìÛǯ9W†#WxóÎlÿäo™®±õl" ¥Ú¦/÷E±kí–[”±ŠüZV\†Šðšk ÇþÖgÆÌN£©¨‘(Ÿ?]Hµmѹ÷ý[Pïj*uÁÅ v‘ÊMœÐRd•?­böJÿFû¹ŠCgÐiÓ~¹v'º™G KÐã»ãã2>ô]ùU'·‚ ûϱ¿›÷C§Íg¨o™²N±¿¿™òÿ‘¹àýŒºR‰äo*#Ô¾'ñÞXbrú”ý“왤.NöAÂ’~tÕR‹×Ù?…>Ï¿N¢˜^wá‘çú•¶§)*½î vüJ¿†•+rÌÜ„Û{ÿl8Xÿ·+„žKÿ}Þu´âËÜVQ<ÑÁP:5Fü”Ôñê‹ß6ÀýÙÎí|ªtܔƫëÏ̾²¨™îCJhžWÑîG÷!ñOòY¸ ³ç“ûg½ƒù°÷Ç4»ïxzE!cšS ¬8U›eµñ샴qÎÅ0ؼ³\´üQìgoKô”¥ëÓ²5b-Ï.…ó2ån³Á pÉâr,m û ß|çyÏ{åuÌ„#à]ŒG²¿rà»U>ˆ·—~›ó¹xʯ-ùÞ³µíð¿V4·?‡køÿü|U‡Àû\›´?$!ø”ù¼OxúL›s˜e.Â[Vó Þ¼Š¨õß u³ÖÑ ¡½‡Â]b÷YMÚš– nCŒkAª"âw,—âS@‚Þ«¾äåVxŽ.mue=’—,9ô-{1R ·°[/Aú²E F~#ÃfÖ¦T_d½^ö †ÈÖçÊMM³FNJÚ·ÒóÈc³ 9棊|U}Öãý(x›_ðÕñŠ®oþ˜éÕ‡âÑíᆊA(uðXöµåcu?[:¡’5HAŒ%Uj<æì!"¨¾*µo³y jÎæ‹ú–&¡öôˆTð·IÔÉ^ìfnËC½áޤj¡™hŸ¼P»Y }\âî.­hÞqœóhq8Z›7-x‡·ÌOßÉr]B›õ^[&^1tðëXL‹ú†Î»òKCäÑufžåc/Þ)ëðÙ£œF…þ,Š'#õGú ©#2WÜ“¿™jn%÷ÿ‰›ÒöCÊWHpSZߢt04¼ôX—Á¸Âð-ªoÿà?<™oió*凢ñ%DïFtn¤oý£ƒ)œ—3ýFéMo¯ûþwË+¦ã¥ÃFûDXæÓçÏ£å)y©©ti¨çÑ Q:^jh´"®0šO5¬˜3º»ö/¾r²™ŽÏ9”Ö׌:-Žž]Jç?OñnYí ÓtÁû5{`~«Y&çAžnžbª+¾Ðì‹×æÓûÛóÙ’·aß¾>Ô?õµ÷9N®´ÕþçÞóó‹öÁy@ßNæ?\¯}~xëÜÍG. ŽeàùÉ×›–ÀÇùwÀ1øë5‡¨ï\ŠÀyC‹w»îDЭ{‚:³Ä¬·`σ±rŠ×Ž¿^#ÿáë™NÈõ!rýÚ®_º©ˆ~}Ë4.»/sçt«0i Î~~û¡Ò$¨þ Ò§W7Ù߬;ä;ÞÎJñbþvß 1O¤•©ž«ó/G†X…ÅKËÈR¿dÖé6Ùõ{˜,OK ÷üÏáçœÈû˜i/õû$ B¶¹Æ\“G‘îgk?6]”(•_–ÉåG™þìŠÑ}f¨ˆ8göå<ª»°ŽöÛ¡:Í:køWÔ²™™È•ô¡ÎxÎ]GÓ‹h`ã.¨TSBcÜ›dïŒ]hÖ_µøË½,´Êû—µ¦õ£íÞoãÌrt„6Ÿ;3!‹®¾v·ùÕÑ},iÍ}#ôDJ«íz}Ê:|œ¡rÌøûL:^J›÷HÝM¥çfôÿç~H«;RgÿèihsU7´ýŽÒ™! %ø'…“ÒpQ²÷Qx) ?¥|ýÄ·Kt4ó%vîLm¢æÇ«o œ¥ß5Ò}J¤‰ÎTªƒuOÅbzÒ[ÁÛJõYâû }•ÂKsS6f"šg.;%½°¦ëKÅ%_í›)ƒϹ8¾Ì ‚.ûü6¾¥ôz¤íïÔ^HúªÎ®#Çÿ;g.Íi»—åNŸ3 ÿXgóÇA\ÒŸ:8»áج©¾j:œÍ<^ÎH€«XÝÊžõpçý!îöl<…$üdî‡N+µ;Ðv3Åëtº›¢¥\º†Ñ»ÂòëÓè3¸e`¶~ýÃÉ&¯WOÓÐôý¤>ëo*\†‘§˜JWCêsªýÂKö;F]Í?z™ÿÒ™Nå;dÔ™ß!­¿’¹€òå¿áTû ÑÏ})Áwõ¥´}Pþ3«Ê.óÃPpÓýíÕÖCÇuˆŽ†äk½ð²Ît-R:ßAto/8ªzš@—Ç÷ööÐNèë+¹tÞÇÃÏQ^ÎB¼tÿÕ›ÍÛºq㉲±µòŒ 0ÛõEŒ¯ üƒ!Ü Ñt¼”èK‰_;|ðçßï#GÑ¥sоì€ÓÀ´ˆ3¦[è~ 凨ÌoÁÀ/0ÿž7û¦o~i»µnÓ{½á¿ ~ZÞÈðÉÝ>‚ Cé}—\.#Ä|Ññõ{ÛÖ§µ.úûtD>Ÿç¯Ä%Ž˜p­]Yáˆõå’ÓáÙøØÞ½<ìsðŠóþÝ=…H¾o5˜ 6€Ô¹ÎÍŸ§#½SiÜìéBdNJ) Û-Ûˆ§. ¹²6'˜ô§#§éƧ?ùQ¸ÝرôÃEŸãÿ‰?Ç­GLB_hÕ M~r}µ°':Â>h)­œ‹.Ž%ÍW¾£ûúVÉÕÞÑSìõC}§j6Ÿ[ºdê:äÝÈÙÎK=×dÿ#ó(é{SÍŒõÈX‡äsd$uEøy¢ ðÚÞH|XÄoKù0h¸'¥+%÷4¼ô})ÑÒú*¥3%ý•ðŠ4ÿէʳq°d_?' 7Ks3ç‡ÝÆ­eóÊ›kÑuÛ´y•â!^*ó’kkz•wq¯XïÚL®¿}qý-)ý6ÅGÈ_¿¨ïJ÷÷ÒæTC¡vµga<ÛÀ*òëN˜ä?mã}ý¦Þj ‡“žÁ\ŸíñInº^Íy¥_sÒcذc°ïØÕ~‹‰OØ ‡oeí{¼èúm-cëúÓáv)¦}Ϙ<<?9þöæž±/Òf}¯ygj>‘/¥r­hß”?‹Q_JÓP:ZS:ñæÂÞR#Þt§ÄÙ>ˆ-˜ò/«ÙU÷EZÆ­ö–ÓmþAxpêH§ÊÅÐõMzúòë|p¬‰Üaó Ù#CçˆÑñÒ›œ¯ÄÌÎÃtëá¾Þ/a¾øEO~î/<]íGìKX]LýÙ#EÏÑPØi±¬v;^4+Ê ˆÀéÄ–¹ZéIpþÒðùHìk¸ÆŽJ$ŒÑýÆ[rýÞÁ»Àö ùïXø½Ì¼2°f-ní½¼Líïþȧ÷Yò4B¶]73Û\‚0û°ûmòˆ<Íà 1Êßæ|æ{‹X“;ÓL²’ï ]}æ Ý<ÔoÖƒd¥sÊ‹*O!•}l%ö›"}äRèÇÈšU¶íRû7d¿1¾ä¯:ˆ\w–sÃ{U‘ï~øÒÅ/‹Q˜½u4íµ/JÊFuÿ­¯2'î¹í·Qy,_³%¿Õ¼ÚË'S#Qä!¢„ºc! ÖÍ/A‡M˜®Ö4-8³õV$ZD˜Ùæ÷pã­mÄŸÃî~èXT‘]¹è:GÒÆ¦å¼D÷½ª‹ß¥ —gó]5±nôu°,r}†j…ß–bh4Xaáò©õ¥êƒÉÌ— ¨½Œ<—Œ|ÁS¿Èˆ—’y“q$uMê„ì…„/$ü Ùó.§çÛ,"Cå,‘½Œ±ïƒB–Ù³%Ó; °õ’óómÑÔsMå¬Ñør…wŽ'šoZS~^’ÏD|ƒJ?ÏŸÙü˜Â[T7.ÜûsZUÿð~?šS·_>mÿ]ŸÝ,Zéõ@üƒA>;¯­â£ÓqÒ}ÞÕôzP ø~äâVºæYLùéJ_˜÷ÌHr9‰§Ç-T^ï˱n [¹<+ÓX)×,›>á†Ü“t_þÛõÇYà´“?4HX—òñº.º|eN5Ü<©žÞ±‚òñzvoØiR©/KÏ ‡ÞØÁgMRð}w°4Ò~9Ñ%\OwÀßþíûY @ïÄú¾µÌ÷Ûxv5‚µÚŒBèµýIF¶Û~±Õv}¡"µféh1Û#ÚfÖãuŸáEðíSœ±ˆÕVÓߨу¸ÉYJ¾ýˆ°;vH‰|W6üzŒWÚN*‚ éÓ¾ÛŽgñ:å`w@“ R[ι=þûûÞ´‰té@fï Óï‡Î!{™Ú SÐäœ÷'ÒË ¹~lÓY!ï{‹nÛ±S(¸QñrQ ›%R6ŽíCñÍÙÅÚY÷Ä5ŸòÄPð»ÈJú *.þàJPDÕ\÷û·ONGÕDÚÁîR!T¿KÐ*ÔDM·Šôs>CÔv ö)މ¢îÏõ9%@ÚÕͳÑ(&óÅ4MÏ?÷]hBó'Þ(%ËÅh½äÊW99€·õ™öëÕãÑ~»tl¡k9:Y„´·³£³Omûpkô”uh½ZÝÉ««…Òk= ©;F=)cn£¾QçMæÙÿòå“>Fö<*wm })áÿ©¼5â‹Xû}ušN½‘ýŽøôñ¾Cò£¨<2‡ŸMÏFêÒÓæOª~>9mj©GÏM$þA‚ÏÜ5ÂwÐò6t§=½]Ÿ)½4“ iÛ^P¹‰Z¾É±ÊÅcøÈg”ÂøC†þéc7ñDAX¢"Å ¦?“âµNÁÜwõâ“B†xzXÀA\q–#Îý_ùyñ,Y°2b!;lB”Zöˆ.¡û MìŒëï…cІXãž8}zÉ#³é=\\׎¶y מꭧŽêÃ}âÄ^ÝÔ(<7®;Þ/YŸ‹‚;ùk9éyl1u"‡rÅ´ûú[1kÇ2§wF #TÂÄÀ¸ç3ÂFÕ;úŸO"âÍ¥?k=¥•bã¬,:1&BGu"öð ®Eû—ú|”9΀ÎkXEö™]8‹ä.žÃBæ[þöÁ=7{˜r‘~=VÆBc2ÚçH¸²lCV~ˆÄí'3‘³3\9¦â"rßì}{ù7gŒÝ1”Gá*_£¥oQô[F”¥5ào]mÎ9òE¢£®)¨¼‘Õ—2Žª¶‹IáoâQ³ZÛÛ‡µú;nŒ_þºñóï&v Á&÷ôPç]4Álûø×X´,˜]²7÷ÞÎ~›úSg.Ú×ËýµÎDç®Ññ9/¢Kݺñ3s#º3Ò¤m¢ŠÐ»až×–ÙK§¬ÃÇ»æ<*]¦IÍk¤þçÓ©t5ÿå?dÔÓœ…ðç¤þ .BrrH½0ò ”¿ž¦/%ø'áÏ .J}ž_%ÿ~ éÕ*láÿú'ž{d/øú¯î{cp“óïõS㥻ÜØ›gÐsLi98Ús’ùòþÖ£å̱}»àAO«}±ÁCèÊidtföAïGù™ _,`P–ÚòA®/µrѨÊúÛW÷Ÿ?ðGÍ O† y·iÃ,3È~íŠMTÞeðQßCìðìíõ¬í¡Ÿ`«ÐTPrsgn=X7Ž&w[Wí*£ôÝþBöÃK$=ÎÄó„Ï.óš.Óëø{U˜æ{§ÍGàà Ž!ØùªƒÏk&„ªŒñ+ZÊ üêÏ=×u©°O6~8ÑArܺðr¯6Þ_š‰¸µúB_Û?ÞxPÕѯ•HHöG²ú‚›t"¥SýÆDB$Ò•FÝu}d)>±axy.²×Fú=þœ¼µ=Ûnß@Þãý&CŸPpÞ¸ìFãZùÉ÷}™$JÎw†xñq£ì±›Å*ÑPTäöÙÙ5,D•£b^ë5T—q±¹”FßïèîQsò@}nòЉÙ+ѸAì‰Ä´.4•5ôó¼X…ݪՕbÒx‹CW³fl_ˆÖ5CÞɲhÛwE3ý%;:ý*;b؆ί¶LÚÑ}0·’wÛrôÄ”Èe¼ÐFߎt“ÁBÿY‡äy&{Ù÷¦ÂIÿ /%u9%^JÓ]…‡¼'Òõ¥4}èT¹¥~JpRrOðR¢O¥ñŸOxE‚¯=«ÑÛ¹ès*£¾”¦K£êŠ‘‡0Î MâüF¯+’_JÃ[´<÷1=ß펻ï e¢ð`ýŠð“o=¡°?ñý]èaV\ýh? nÚ߯ÜEŸSi¼¯‰qQÈq{E˜y³ÊéƝø1±ßMO¹6,è¶‚•HWW\•'Ýw¡Þ<;Js&¢¥Sz5çºÜþqéepõhÔv±ƒ»¶ÕÆoþðü“æüã£5¼ƒL¸YŠÃOÖêìvÌRº|yÍ=šÉ¥~Ü„à­\³tÝ!”%Ì®c a_‡Ï†X„ˆÉ¼÷‹,ˆ×z0ûx^t oË×BÜ4v-æí»ß¹65bi ^±õEÿÚh„ä{{S|ƒ2ò‘ïtd ÒÍØ6Ï)çB¦ªÊrQ#df-W×BÎ×UGŽª—!/·(ÙÇ<  m­qP”¯èäcîFçÏš/x÷¸•ÕE§û™P½·ôû’Ñ¿{ ÿBµ»ÙQ·èœÎü­kPôs«õ†4hj|3i†¦/ÉJîåh\ï7ã•KÓ±¬àbÛ5IíiDïÂÈÏÿŸêKÉ•±ÉžHõCÚÌØqÒ®SôÍúåÿèÃ`ÔëP~|’óMöMŸB}?sh{&ÅÐò I¥ ùÄŒ~|‚—2ú.¦Ò— ·Ô­HIþ/erÝq|Üõ¿ñRf£Ø!ó°ørÉÈ]›ÒÑQ~ü/zºã;(Ïi¶Ž•°ù8GÇ<¹ß<W¥°Çf–§à~O™Yòxv莶ýïð>Y¾!z~éU­×lÏ´ÈM7Pí.BV_(,ƒ0‹×üžõˆ”\~¥l±8b.Œ_¸>±ú3J9NÜ@¼Íç£9™H8×­o4Œd!…¼‡¦H•`Þz é“íGæH?Ó :ŸaràÝF¥ÇÈ,:ÇkëJ†^“b³à@ñ¸ßñ (ÓŸ•ë+®‡»lCõ {­©¨±ÕM0|wu;Öž/±ŒDýçÌc‹¾_Eã×ÇGõÜlÑ«ç]*U·ÊÞ])™Ñ>:;“ÿ:§úÌ£öœý£$ÉzK§$ŸÕ™?X{&·/ž3]øO|•vµ®†ÙRƒqîvy˜·%¯<èTƒ§õ7,Ó»úaõýχ°‘¸ïæ;—Ňü¸›áp_Ô÷Épƒ3ý: §†Ÿ¢ÕñKà²ö«¢]ÿÿƒôR`û1g”â=¼o¬+2ºIåjP9¦Š+FÓ~>DÐ÷·Žô<„DÝ8Ì#zaF¤Bt²¡^Ù7ðŒQ׏йÓÚt&¨hb÷®}Èvžq‰GKÔ—;"áÁ–<_xeùåöÉÁ#H~§‘l—.ŒTž›ç~Dºr4çí-Èêll·AVéŸU‹‘³¯³æì!äæ°,¸Ž|e«†ÌY(ÜÄvnDDųþp³F)KKùÁjg”¯Ý<»,z•ÛVÕ+oöûe1j6Ϋ&Z•$ÎQ?}§…¢ÃR4¸Y0·^MÇæDÉ®ÈBË WuGC¼](ÃÚ·ô7Úw².ë;N1©Ù¢Ð¥ãÙýçÀ\tª åe/Cïv¯Eû}ǧ¬C¢&ó™ýøSá5d?$WÆ:œÊÿKæH2= ÑÁ0úêɼGpOê}ÚN7=åЇóKÁ]çÂU/y«þ¸'Xþ4:%ÏÆ;ÛÒ5À…Ê¿OÀ×dóœGàáfrü~#UÁbw#÷åÇ ä­÷}Ï»’ç1wZ-vŠòùF{¹”£W€—ö Kš¹wíkFØæ¯ˆ·Ï­ )ÔÁ+ýI5áâ$­Žåœ§~„ò_¤½5ÚVÄf†Œ H#¡ȪðŽ?=C 9Šåµi»Ç»#)ßù=·üÇ7K£°$t óßï›âò¶r.Dé;Þýù ³Q±úZ¿°r;ªDÞy _ñBõÝC¦a«QÃz<öÃMÔ~ßœ˜¶¿ õÇ|ã'zÅÿö½1“il7Єß)‡÷¢¹£ÿIÏ^´zNúiûþe*k®¡ãnÊY]èÌ;ö¥Ä]=~rÎVrèYxzÝÜ]è½æu»VW}©Y½ŠæOÓì]¢s³¸ŽÂ#ÉÜIøŠÿÚ}†Œ8 c½’þHæYÆœš©öD²÷Qy6dÿcØ©~JrL§8ׂÌߌþònô¥Œ9D/N÷ÄèÛ">üë=9·{†pëÞú=KóÛéý”6'Sç·ÑöB’sCåUý^îqú½¥£!¾ ê¼6ïø°Ínßbª’Ü ϱ±ö{ÏIÏk“åÝzLd¬ŽV\ÿÈ±ŠŽçUÙ>J‡ƒ°%çßÿ*¯Ís|„÷î,¸>T°²\ÿî†ÝçnfÀóÇåþ׫tà}@ÿð¯™Áð[Ê}l–{&Äý˜KX+²xðö[„pŠ<q¿0ñéâÜ•ˆp”èš»1‚Q[sS{ð¢8ìÀ«!IÄ 8IîÍA"W Pyöú94µîÈNKDÚ㜕%Ì‘qóKZ|¡>²Þ”KxÄ\CÎm›;’·™/âig)•UÄ^+d"6 %ü»uÖ´GÙuM!vTĦU meA•ÝÝ5§Ôö ºêÍÄY=QÔ®Ø8Vá\ºˆ©Ô¸4`ÙîOko£qÌ]™ÙÄÍÅÎý²“КS(4qm½7„Åï^G'¯õ¶Èƒè:{®%îUžØŽ^ž3¯žÍÔ™ºM¿ÆË„ÓñR¢—ù¯üDÆÆÜ`r%}‘Âghý쟤.ÈóOòi(”èÆHß#¯<”øðrN)=*ÁQ‰Þ”Ü3èM©Dö·©Îeä ù©üøŒç>‘~Èè· ¸-£ž”씕öþTþŒxE^Jt¥dÿ¤òK‰Ÿ¶}•ûOüŒÄwÁûOá¥4?35ß2òˆ"¡7V™¦Óç[š€Êç§ù“Éù”¾t©ôÕ?‡¡™±Osåg¤|«6Žž8·ž>ÇÒr‡²êîä%ØÀØcóÖö#xâ¹¼è ,Ìì'ÌV-ò¤û.Hî0ÍJxû ¦%æᨰ˜¹7lœî7ÝãÌîónŸ5o/»¡OMIíê$xÅþ®Xå¹¾÷zÞn®a‡ÿ·RV™>:Ÿisڈંþë©Æ~ýqw7"T^0/^̃˜ïoúkâE•Ó½zÄu4ng2/EâêÑ V%¤™[É|ϯǫRïGZê•%êÈHuŒyóg²~/îM-~œˆu0Û!/ÊTÉà  Òï^xÝEc_Îè/Eé…ἫFQ>P4Ø㠪ΞÕág:êÒå1CœkP{eÀIµõ¬‘êAç¼Ð0Zü˜' MãKÒDõÅкeDÔ×h)Úœ+EUäÚѹÈßGË<]fYʶK\ÑÃ%9m§kz³Â»t-é9®·WVÔYMY‡öMµê1G©s[ÏA¤pR†}‘Ô¹'ý“|ŽÌ·Œ:6ÒoÉ\HÿDë{NJðòÜÒΕ 8?µŸÑò$¨y/ÊHL«ê7¥?#¾]¢K%¹LTÞѧўŠ7 ñ~ÊM÷ŸæüÝ‹Ôã9®}ø»¯SüM§Fù{#3w)Üb³I¦’uèf\–e9BçHÞ=MŸf²Ú[Úöæ'ª™m Ï~3 æµËny¿Žï†Œ‡S|‚•‡z´ïÈcØîü¹‚ÿï÷˜Í‡Ÿä˜Â>Áö˜ävG8M`¡ºa\˜;›n•:ÂåqGÖ}Ci¸J hUÌøLÇ[–¿ÊÑ Ï^0È2¼ï °—¼à·Áý¯Îø;ˆPP|Šë(“Òä¹ÙßKù C Rgl݈pŸç&B/!R@õÕm{Doÿy/èQbŒê±/B첟¿ó_œèIŸs#ÞoâPì¼+H\þRH4ô#’6IPz¤¶‹î2s!åVƒ¹¶ý¤.’bú'‰ôq¿¸ãªIÈ3b´uGÖó Zjw]üáõLEYäÎzÒüî8òdW?}i†üáÏ k/ på=Ë9§YQô¼ó¬„»JÖíüÎ.—ˆÒ SÇ㧘Q~Û \¿Ž•Ë®”°ÆØ¡J£ï~Iè6T_T]>CQ 5‡®*Ø£vßÊú¿i¨“ñ8tE÷ ê•.ËŠ~6DƒƒáOª<4YÞew^‡f.«k'ã¢Em˦µ»ÑÚû¬|Ú.N4ØÖEç7¤µ·|fý8eZÅÿX}úá ª}Ô©3F<”±O’½Ü“÷ñTJNê–vOùñi}ŒÚïhý‹ô-‚ëý ñIþE^§ô0´ýŽÌ­”ŸŠ6ÿ\‡ÒÃ0žWȯÓ`©àGåpSõOËç ò‰i9ú„ç üM7Gæa3ýüB…-¯çVZAë{ȃ]“2nª7K FpÃ~èËìTH~LííŒ~|“9:Þkœ¤(_¾©®œ¥^¢+Ì:TÚG|6À¢ÚÒ$5«– …µ:b`™(4–û÷{‚Úûˆïi§ŒG«”+œ–ñU°ˆm‚“‹h”´d9\R“Gd gRç’z¸ü‘I”Ás»#I¥fðZslÑ¿9ðùàÑ,qÏ™:¿-ÀcååO–ÆL_’Ö<ÁÏô®8ŠPÑÛë¾Ø~CXóÂe§î "²^ó“M7¢JÝ0]ñ1O¨Lû˜†Øôuóß5 Ž©Éß-ä7ÆëÌý½dñê|H}ÝOM$ïwØíV…”3zY·Ù‘f%)ðèÞ JتL K$Ãs‚iÙÎr—ïèþB.‹žøÓ¹rÈsðUX¡ƒ¡ïi{¤N¡ðóš3üÒëQ\öøåšk”æ*~ÄŠ,”7q^_± U¬+Î =@õ¶µŸ}ŽÑÏ£iíYÎaŠús"ç帕Ð0èuÜÌÁ›Ò{·ÜUæþ¼å)ÞÊë8\¹síbr´74£SîÆeá•ÆèrÍ}=×òÈ”uHp7҉Ό1§›1§”\÷FÆz%x#^JæPâÃ%|9ÉW£pN’?JÓR÷÷${#ÑǼ”!×òå½)ÍŸDé¼i8 9'˜òFÆŽJ>Ï¡ø÷ô¥ä<¶Ý—}eªÒϵ ù¥/¥·¨©ù©ûëZhÉ,PÍþ†ûg/p})¹H?ïIù§~ M2ô¤Õ»Bdèù4o…«ÜE˜œÞþAáµL–yûŠã4=¯vþ™3‰ÞÛºU9zfŠ#ìg¦ŒL„C€Å‡Ûpü²"äRÜa8Ûx§Dq¿‡ë¦g#™pߥÏ|Í=žûÌ7|‹‚W6ƒÌƒAø^›Œ:¤=þÕç|·0! c™^o[‚šqømBˆõ÷“ݧ³Þ÷|ô)DÎ,ûSŠèmý)KÃñ¢fúõwû_ Nh[ã7=?ć¥ò› î@âù¤*Íüh$`°FÉÉ×­ŒÛ[æv³±›7²ëo5-DV0Û‡=ûË‘#lýí£7r{~WL0A~dtÑ'æÚd¥Ö}D±Õ»HËI*·­¼Ê{ý½g6¨â˜ç+ʽÕb®é;~F¾¡®îfÔfZ>¬@=g@W—W1Õ¾òýDãIáýchvÑ[øFôZ µ¼”vÎ9—†èé¼*‚—’œ6®CÎM%x©–à“náç¸ÿI5ãÖ‘ù¸ïäXñÊù3Ý/¬ÙÄò¾†Ý¿WÛHÇãM}ªj¨¼6J^²ïðïN”ž†òYÑr©ìæÎ¿s¬;¼Ìǃw{Ñóû~­ù.p®T—qþJ‚û™ñ ðŠtxZiïªy“ï-ï›8àw<Å«ƒu#]PÝúëýó4ûYšj„°E?Öú&z"¢Ûig ¢Ùwåk¬[ˆX}óöLGÏ\ÎÐÕuH˜°Ôõ®A’øasQ™ïx8*ÒØ®Ž´ëBAËîj"CôÜŠY4²Â{?¾¾€™eÑ_ƒ¿#«®¾µù£†¶¬»†Âö ÜA —Ì™ƒÊ(Ûƒë¿U˜QayõQð—@TéÉ1k * úõXÙ‚¥ò¨e^ñ',Ùu¶k¿J­®Eê¹[Ý>壱föXö„(šCx‹ÆûÑê=K9Š…m)ÒûÇžíEç´µ­–ŠæèÚÓË”Ó×N?æûIsëÒô)ëèÉóMæQFÌT~àÿÂKÿñ=1Ì¡ä|²ŸRüÑ®_·zZµÕï¨R‚›Òt§>JÃO)¿À.uÁAúy0äçÑ~>ùyŒ>êœD’·Oú"ññÒrjH¾Ñ¥_£ò¶ m“ãÏèç ßí¼ª®ˆ¾ôÛ!”Ð}P({-í ½#z\ªî™0p;·WF9™Ê 6ÐÏþ[gcµÑ¡üx«¥…0›ÎÄæ/ùýo öJˆáé=¯µÓ…ná™®¶Ðü°NØnº(:£g7ì+¶ÎV²{ÇšmvbgàTà¬rk.rÂ_Œ>‚›ûÖIu9Ê—Oåg$ÏM;dÿƒóžNH¦ëÖÌõcضGˆD®f³×e„Ýbg90܇ˆø³Wu„5°ûÕôÝxáן•Îă8ά߼35oñü£ÝÈ5$ž;niç $÷v=½É3X6•"-f†ƒŸk;2 %'v¼CVÎQ¿Õ¾“ȹe™¶dýMäñé¶È²N¢€É¤îf Š˜Ò”TäøQ²¶‚«t½Ê”¹w'WE ¢ªZD%RU/¤~Jt›¢†Õ„ÇÀȵ÷r]çBÝðŽæiÞ[Ððð÷,›4-[3ºVÓÍ“üw…?'¡uø‹ß‹y¿ÐÎÂmý;ßk–ÿ2Ñuáð––âtÝ)TqîFï,:áâôY^<•’8k‡ü{Ç^c°S[ºpFÊ”uHÎù"{!™§â qÑÿÊ/eÔ—2â¥úÇ_A»2ò…¤o“+ãçÿÁIÿóÜ'ã”ù¥´ý’Ô3¥3`ЉSúp‚—Ò|SÿäÔüáS¬Õ™Æp焼ûi«QʯògúÁåžt1côÝ&hëpmÉ’~Nç³%çZOï€^Õó{Ëâ"ñhóã…3®Ãð…€’ÚƒT¾i‹•ýŠ'Ümæf§Ý¨s„-8”>j>½‰§ªüy—«¦µ£[`»DaÆé”ý°ß¸jRvEoçz­Ø gÁe››>¼‡‹ýû:á¥=p+.ýOöWdgWQçÙø&*[æ­«×bÖL:<ÿuÇNÁ:¯~w´ßFèǦ±]Å;Qfú„Wn¢g×Ê^­=ƒØÛMÚ‚ · üjÛø*$²Yç8c‰¤‹3ÚÓ¤~ãu뇺›Jwö|ÖÖΨõÈp»þe}ÿrd½;|XþgäD£|´PyN‚lÅá(ð_º‚õ‹?ŠêOnP[Rá9ý¾(ÏùfË&Â*ñ:s>KT'ª¬N˜žŒZI^«Å|¨{ϯpãû$jÜí ö°¢©áØ£Ë[Ð:Kñ)‡¡>ÚT­µ$‹n¡“IzCQÍCt©IÝz̼Ýß$ôÞ(¼BoÐâËâåËÑÿ &½íÑ4 jj¥]SÁI)þœöÜŸ>É•Qö¼%wÄj ©·â„¿Ró¡ªÓqO©œé”¯—:¿¶ïÝ59ß—Ò™.?2kyØ5<”ʽºë‡ ƒ|­M•&ð¸Ö¦¦þØN< ÿµô饇¡òeüe/lù“ KA;Ÿl}<³‰k6€ñvo;ãd8̹öˆuÆ6Ø/hX#sŽ{î9ý¾A×™~îe;®ýFy_GÃ]„ßH$>žÙ}‡ØÕà5ý׉Ë<ð9ð<Ä#оF AOÊà?½dKѺ&øwë%¶Š ðVîJ§ •úö,!Ši5Bdý7ÍNIAX»‹ÌÇ­Û)Þ!ê&«žÕSÄL{ì»Þj)^îá|þfçÄ­:ØãöB qãšìÃÿŽ„;o^/±ÎÆ«–CMOÎ#YñÏ=¥R$¿®ŸÑÿ©µ…iö"†Hy°K72nö™d"K¹‹'ÞßÙ®þy?7p çÿbíM ©ú¿÷qC"„̳ÈLJg›2g2UšH ‘$c!„RŠDÈÜ ³Œ™g™2¦Œ‘Jò뻾÷œû]·Õú|Öý×ÊzÝë·Þoç¹ÏÞÏÞûÙÚù%înPÇ:QþÞ…ê¯Ð‘·3ªÂ»ÁÇ>I.ÝÐh¨÷ëgl04õÅk?X„– ªÏ×Há=µë™ejh{}ôe.t(8›4ªB'Ïͼ=ÓO kW|÷žTaèÚÒV·S“‚ÚŠ:d'¡—wî´Eà,ôiÔñ´ï€~¯;´ã¾ 0P1pü±; í ¢È—µ‚aï¦\æÚ`øð]IÐ÷â Õ¹lÔÈã,D¾Â{.þ‡á*9G1ŸP¹ ôDãÓ馄}lèsÂ9b§(nÑ8å7Âüó‘A}·qú(š×¡þZ©êNÞW¯ŠžiW¿Ã¸wO …7®iAܾeQž¬Þú'™Ÿél¢ž„û%Ÿv~ɃÔ)¿O­§É!íiúЙ~ðpÁ@œh™ï;|_‚;N¥Û÷”¥Ì)³Ürž tß Ï,‚ç—DÜL¬H!¤I5¯„üÞncº*P8ü‰­Ež ¿ðZ,í„’+áµ9Ç¡ÌNPèâŸ<ù•»·PDª¼É»~i÷uN¨ ïÝw‚7 ªô =ŸYOBuŽËÍâÖY¨å*½°6$uÏsÄ6„7áq}¾S >42¾™ÚR›ƒ¦åmΖÖih™Ÿw)?m¤ûBx¬†¡ƒCkR2Ñ:µOó¯[@WâEb—ÆÐýÃáu3]ôº«Ž‹ÑC?µÉÙè7¨ Jº¬C÷v«Q$GÇ;/öµ._†Ñç~µ9Ÿ"`ü:;ÏbÝ8LÔ[±-Tÿ‡~: ò?ý¥—¢u?BŸàí›AãO¸«WàÞÑ>3TAý,°¹"tÿPÝï„Ëç0Ý” ¯›SDO=õ/?Sœ/êóW¿7ª» >m¸½Ø6t¿`õŒç•«ø=¢z‡üÛÕ(ñsÿò/­;|-ÕÁïîA÷¯ÑÕ7~?&˵ææ1ðOu׺Ôo ì¿QäC tL¥œL q~ }–‡õ—bóL÷Lbç9Rà²."Dg‰Í3a~à"uÕZÈ ®qïǯ x?ðy7·ï‘ù|d§Ùƒ½Ø\>æÅÔqoƒ§RÏjtxfúäv†›*äd›:ÏLBž.õjaç"¼HW‹èÉX€BckÏP¼_¨ýrr”òqÌ’.ÀKÙõæ¯ðÚõþïλMP¾1ÙùÏ*_]Û½U ÕÖ;VšCͦìðÊÜŸ<±âL|he¼{* óÅÌË&Äý s ù+r’Õ[Þ[[†]ˆ€öUÁ]ÍN贵ѭ–‚®á“Ã{†¾A;‹2Çã@è~x'óÝwèÿ!sGq? ‘{sºÆdî$p…ÃhÔÅT¾#å0~g‘Nã÷E˜X aÚw0éZBÄn}¦¤.ñÂL¯ú‰ Õz˜«àÚ¿_bæÛ»¸¹¦þ‰CÔåAÂþÒÿ֯śÂÁ®ö}5åèû u—h]ë£ù‡é¿tQ¬_† o­?ú³ý×{ŸÐ¹ T/Eçñqº6¯ó'¬w`ý¥¨ÿ0ºç “ï¾ó¿‘‡ß׆ꥸy|l߮ƥ{»Ú©H«w¸}Ú°ø2F‹¯w ~þ ^'§v÷-ï°¥‚v¼ê;¬ðá®Þ.sš'©‚¢“p+Aá»Ì£juV¤yùÜN0R™:±‘tÕê!ËoÆ\wš»zEbYœgÃC\¯§½bQÜ2"y$ÏIòAtAìüåê.Y?xÂ&þr[–‡¾æÍ‚t;jRKgxba^.òò"d>f×yw' ž Ç9oVCÎHÈe’Ý!oéHò €ýêùäa(2Aˆó ä´g Ô—Pö4²ÆX« ^ ¶.Uå*CùtxÖlÂ!¨œ«*Oõ9ÕÉê7V>B­ãIƒœF¨?;i³Gí44DÞ>[GM³u)Tç ¡ÕckV›æ ´#oµªï†Nn—äUèªÚŽl`H…ž›úªv<ãÐç?Ñtþ@6 d’Õ\ÝVƒ¡íóqó ·`ä.TµtöÀ¸Ô o+L¼¥8­hh“N«÷Ú &aZ‹–<úe ÌØëì£5O¡šÁ?§¾þ‡^b-‡³F±û óÁÿä#Œâ‘‡èuh|‹ÆŸ(.P]›·%¨ õDLçDù= úM±}O8­ßÿµ÷ ­+ÌaüåcŠúâüã°:"U'ˆí{|݃ÛCŒö¥]D¸[êÅ­ñsP̾}";"ñý¥¹s—Þðôÿí…óöâTºdŒßƒøFËM‚]|?3»6 ü³ÈC–[;áæŽíã,Üû˜f¯ŒÞñœÅïU«üí¢A* Q–TTmxß‹ó´ý¢ ŽJ1´¬%Ë+±=2¸=¤)yÚi_aÛ‹Í壾n¸=2™ãõ +ðŒâöÀ¸€äœv¸Ò“û òvÝXš­z /š½õú¡P%1Ý-ióq+²÷åºw^jQ­ßy4¯ìu«Ï•À[Ù½îrCDPEóŠúñ;¨ŽãêâY„ZõdzÙ×ßB=ÛösOõÐÀ*\L$Mª{[C>(@Kb~X´™-´qNS~¹ Ÿí}æDýòßî‚n÷j [Zièå³e•^¾¥±ˆÂ—oa`è~vµB; “Ÿ{J}e FÌ@*Ê^ Æú<ãîû„&ËÀ ç<|¬jn<| ¦¬²£)¾ï‚–`¢¸¥t˜ýyÖg#Ó æÉ“LÍ.°M›(ø'ÝË_ݤ”ÿŽ×cpxùWéâA–ÄÝíÂû¸±çèu(1>ÄñîíOCØGJp¢óÿœÇ'ô­Aùõƒ#œÇG÷ Ìã£þ’h¾ù—O n~ ‹k êvã‹ÃñûÚÐþpT/EýßÐý¨ÿ[*QHëó9¼ÿðåÑF79,®ýóÇh©â©éaüvѶ^3ïó†«o ýsLã™âñoáÎhrýjéß>5VÎ V^)pï$e®ˆ™¶Ï&ÙñgÊ·YWlÍÃàN´“û!]Üé\vƒ-Þ?#¤¤¾8Ÿž±u(ü098#+5!ï§OáÁz(8ÆÃ]¨jE5ž}8j %·íÎ)uCÙÇà‡ej6ðÚSÀ‚ïC3¼5¬ì–W®‡*EŽ®kd[P½âÍæ>sj{ÄOËäoAý´™îÕ±JhúÄxŒŸšÓÆþ¦ä…÷çuò3œþäƒÅ-û®MCg‘Yº2èv 7þ¸½ên‘"a{¡ÿÔ{­,ÚAÌŒò»µáh ´ ËatÂÿÖ]Ãu_^¿?ð >Þ{šq^¦ÎIHaŠ™Se23[0ÙÖÓt\æ—GÎ4ŠUý‡è<>ªÓcz)ÁžTWA뀄ó÷(^ u”WÑz=Šô~G}ÚP¾Bó?´nwÒûýzE0 Þg í&ô'EûI/]Ì>qö,ÞçWßûëÄÝÿ˜¾Šö™¢q"êÛ„«`xà,Îè1iÀꀮÞ×K7ñàçòqûc°y¤w4+0ÝÃÅ Šå§£%°Ô¯ç•dOIw‘k@pl¨¶KÕ,„$ïL¬¹qÂB¢Ç;!\>ïWèoGˆh~XO¿ î\¸õŽk÷/ˆüýR…þ#Ĩ³uþ>ŒÇ ª·´}QÎa šö¿RÅïùåJÜ2þŸ¹ÞW ZEš ð@õÿ’ÒwH[X9yj½®»ˆgS‡tY…V‰?¸}\Âoâ”V¯žà9O髨Ô#Ò kþ‰ì! -Èžz\s,^žÿ27[9pò¥YœÏ6(ËW©æÎ(ز™© ð†"½‰òÄûû¡¸TË®¤­Jµ´ÊG¿ÕCÙ·'kµXxõ8²:E¸ÞºþV9­Ê—5‚Ì b\1jcª"³–h´“¡ºâѥ׊½PK*ipìÜ)¨³¥~"©Sõ­ÄèAƒ)Ó³ïaýÝÍÏ—{õ¦Zý;VɳܠÍÉmmà„Dj†fætšì2·©s„®k'Êi/$AwN}dÓôl™§È?}§ Z³¢Hñ~ß—§R‰Ø`xŸPfôNMø0ó*ãÍ}Im÷8h< ã— Ó憉›t™‰ÏËàc¶Pþ©´˜â0,Ëzn÷ô<¦—b¾m¸þ3Âþ4BÜÖíÿ5Œþ<á\>¶÷ Ç‹XŸ)ª—â|LÿÚSˆÎåã|ùQþBû°ºº×õ]Cã]‚ýOh\ú×!ú9€ÛË~ü5ç„ö³¡û)Ðüî¨Cyã_ûÚ°}Üh_¸hI€• 3Þ/q\îí&Û3ð®ï/}ëq|ñÖoå¶?b`ð'~Ã|Ý™öï3P„ÀáÕù• ö5ïînÞ‰ßßæôíÙÞ=·!<'^Öª"—ƒ5»Ì z÷‹qmFˆlp‘9WwUülµú‹!öšRMÒokˆÐ^»ä÷®÷òÝJÌÀû(Zï·ïí3…”«yäŸ4LáAOÏ Žð°úÛó²¥iH?¨3Cy×ûˆ&Ð=ƒ »;c5tð”Ñ—Nç¹:dÍž±Ýj…ìY{ê%ÆØÞÃ|¯HŠ{©¾P°7ª»À• Ÿ?;-xIŠƒ7©Ï QA©âÑ;?3˜à%í%½‹ ‹ðz§±kIJ!”‹¨É6$„A…»ƒóe]¨ºêô˜Vª[§r VÎAÝ‘6 êÊ=N¥Ä3À»“™¤9 :ÐÈÝTBeœÍÄî²{Ę •dýÅ!‘hãqš> œ6:U ÓK‚¬‚ÿ!tuRΕÌ܆UÖ-yÐÛîä_|úo¨e)Ëß‚AÍ/ñ),Ã0¬P܈´iÀȱòÝ'½a,âv\‘*Œoæ1 =øO¢s1è}ÿ¯~šÿ´ø¿ÍQœ¡¸Gõl0Ú—öÁî{Âáå/¿Rtßî:T%<±9%t0®ßÓMÑý¡è6\=­gbº ê+L¨»àünÐúÆ£¸y —â ÏH>xcýin•í¯àê9›LÞ2Øþ5ÌW·@÷=ù¶œ#úù,üWQ^sÄûc<.Ì\É<ŽÍm õylžé©²ç» 6¯Îiݺ90´ëÀ]×°“§F^Cì¯áÝž9ˆù=sJòöŸåØnÇÏ峨Ž®6ƒÀ–óòÕ‡Ù+‚q1¶n..XªOͯ"ü )¹ÇjV3²d*îñ‚lç£mã¾ÃKüñ%ÿ8 Þ¿&‚̬ò#Ùï,w{æ%*ů¢š\ L"-ç‘N¼Ò³»òÆÞäËZ%ˆB…þÎ ÒPû0Â\Û j¸n†éþùüªm+|rÏêSohœˆ‚†ØþñÁÊûÐTHó螇´üØ¢Š ï„¶Ë¢Ù/.Ð@G(]v¢u:t®¡Œb…î+?SÚ‡\¡—Vܰ5ô=ôÕ>h¹Eñ wëp¡ “Å–~3ø°ž•u“QÆlLË;å»`üçÏïËíðñŒãΛ*Q0ù©dï õë0­ Íl;³–‹Ÿ¾š‘À'í»vê©ÿö§¹NfµO§ÈãÁÿ”þ·{-÷[üÓ¯ ?DóÂÿ”þ3üO>¦„z)®ùϹ|tnÝkÖSÐùa\Ík yaOé­_âûpóøÿÔKQÿaÔ§ ·õ²íÐñ€²ypq,£‘ðï×aë4ßXl/ÍUö¸‹é!qà±¾¹çê×ÙÜêi«ÖáFëãÑåàkW…Ôë\ÿ÷ä=*Ïåàæõ“þrV3ÄýîœÖX57MsùÆc}a5³1©éݱŸ/é¡·Ü™\´8ížÑ+žV\1§ánXÔÁ÷Õ:§sæ§@PÜS‰a´!Æï¥ÙPT5ÛwR¯~×;>©U²‘¨`x”á-™»£ˆ‡?PP@Æ0¢áw²¬“MÓŒI {c“i\þ$äöiÇj?¼/"µ­H csÂÅŽºG…¡4öÜ`­ƒ2¼\»ñ-)r ÞD‡“&¶[AÅeÿ˜÷ÜŸ¡ªÉ.Åø—ÔÐr…ŠP@ÝÓ•¼}ðΩȻ[v/4fÙeyêŽ@Ëž^ò#Wx_bl¿žÌO>nRwCg»kä<·t{„r†¹A¯ÅøÚ¡_ÐoÓô+´hï½=+Ã[‹5—œÔaôq=OþWv¯ûEØ=­¹n?èúS,ɦöÃôïÃCMÅ–0Ç0⫤ZòoÞ¹ÙW,lƒÝç„u B<þ·z)z¢øEóD´>ƛؼºï ·ï‰p(:Gé¤(ÏáêƒØœ=:§ëÇFóNL/EçòQ_SÔ7 ݃ë߯ö#Ö#pþÞØ~R\ÿ6š—b>¸ý¤®Ðy^råéQZp «¡WÔcÃü¾Çó¢ó,£Ãƒ$¬¿ýœôja­(þ…Õ#|õÒôèy€¿ˆ„PÌΰ®gõHч›#3FÙz!¨„zzá•Üšp‘ï­†0}ŽCg¾ð>VξM¸£ÿù™ç+sˆ>±°Ÿýó$ij>Y6Þ„X•¶Ö»ÂW!ždí1—<Üûém¬É™ IÂ¥Á¥Úmì”3Ÿµ»R?ØS•‡çÂCË—•×r3!ÂaGÅÚ9x¼@”pHåd|d’?¹ÄO?EôA6/q0÷œ<¯aYêk4†üfrò¹ó‡¡ å‚ ×±!(rYÌ¥÷E Ä†Že½ò+” ¤wÀûÔl~nÜdÖƒŠ’s|¡|PÕǼ‹ý˨qs‚™?¡Næ[ÊmŽUxǦ" ºa"¾Æ×ÉÕ¡ùtÍHqý>hm²)™å„ö“šÃ3ŸNA'ãþ”&__èŠu!µz =ªã¬+ÃÐ;|EO<°ú³Ï˜ˆÛÿ†Á²¥õÆ"€áióÙg´Ö0ªòâ-×þ`wxîØgµ­ÂkÂ0y¬ïă›0µÌñÕS¬fJ^9ß®s‡¹G«µñŸwÃ|Y&0¹fý‡îïƒ-Óa|„ê™ÿÚ/ú¯ùûÿ¤—Ö ýKÑx•ÿò3%8ÿ£ï7:—ÿ/ÿRT/ÅÍ7ú{£ù&Æ‹„}„ù%×Îããü‡±=O÷¥T&DÎýÕg‡î½¹`uøª»¸ \tg¶| NcQÎ5÷JðóŒËF±åeÒÏãêˆØÞ'Ô§ÝÓöâÔuÚWhl<£ú¶ ‚–ôKEÇfáV¹Iõ~.ÌG#\#͕ž"·÷·½"ƒíÃ@çcÇÜÛD>ìøáFWA›Ãx_ïØgª³#Ø›´\ê³á²ðè¢í¡£F¢ØÞ`Ô1ëhêͧü6ø|±ÝB±Ã¨^ÄÜPþ1¢…7O5;ùß…âóIí#£PZ½üd?™¼’ÿE‘tŒ Þ|føÕ“ß|yÄ, šÑ…¸JujFbU ‹êº:­çNQÁ»o ¯G MºšgkËø ¥×PÎå{$´Ýû¢šèµ M!´÷“C¡ë|8'SÓèá‹Øÿz¯ôqu¢•¹ñú!nJlÕ]"g…UDÏ¡Æ~¨³["L„ãiü)“‰Rï÷Â4Ùƒî™0Ëö ²þñødº¦ °©ÿOFynŽÜ'2Åâ2ô>Fû¯Q¼ º Êk„ºé¿|ÜP^EûKÑú:ª³ õ´€æ}h_ ¶Ï7‡‹ùÃàò3¬ßW@çtÿ£~Šê¥¸~˜sOߟ£¡…ó^LºrgËñóHh êßD¸G†zcÑíOÞƒùÞãüfÜ %n7—žÃü*Ðù2t®ûÄô–¹CV·ð<†î©ˆ³up{â·íƒ¬Õ^Ü„®þk‰‚x|PPq¶Jâõ\Zl™íï@zJˆ—k-ØuÑ îõ§7äøÆAâm(Êþ ÷Êži¼ú«»§ÞP‰_&ÏØbÙ†ßûôâöT¯%¤oÙiI|AàÉ a?G> Èh[ìÌøü žz(G&”½€ggš×è¼!çnY Gäþ /Ï4“…JKþ¤EPào¶Â”¦ …/3ÒX)Š¡hþ™ü‘Ðj(ÙŸîÆ­¤ ¥Ow»êBÙ g]ø2¼²59h¿Ÿ^ÿ´YïôÄö¬U’’ûy¨ªÔ" m‹PÝåggb µ´ ”"‘Pwöõì#a¨ïxæ©- ƳE² Ðøyëus4? ©¸(® ­9Þâ•nÐv¬öIb®tÖ»Ú™²A§lœ@ê•nè2,³SÝ¡LE%|-ÐÓNüóÇVôíwØïõðô?ýU%ûE)oq°¼ƒ¡v•Êˬ ð!ZÑð«ÛŒ^v±.±¹†ß;sÔ¸Tÿ‰Ã0ŸÉ¨méû˜IØWƒê5ÿªWö›þ'ÿR4ÿDñMØOƒùËÌ¢}pÿÉOËëнO¨).¿CûÉ û°>ST¯AçžÐ:>®ˆùtàüôÑþRû‡dw#XÝï}ä¥ç ¢ø}mh_xÇ+ío}Íà¦r¦3"åØß{Gq}᨟ê¿æS«¯ ¢[~Ï4GYœ'ÀÿÃÇ„ÝAÎp“JûL¹Z¤¶YûBP{ˆÊp(柈é4ªaïì â”â2Ü â=¬z;¢Í—|ØØÜ!Æ£öhs¾3Ü-¸¯(*Ü qtw•¥”2 þôáÙÛdp†žÞé$©Ååßêf‚dÕ„OtSøý¿l¼6‡n:à÷“âúÜžT»9È™¾\§7/MC–ýÏ`¦ l¯ÅóÞ³‹."oÌÛê%s^ü 'é;S …ŽNkc§¡˜ØL«?#JžQ½Kƒ²+§õ'$ÂàÕ‰ú²Çô?á‹sïÑólð6gi\¡¿ѸᑠûԿɹuRšT®G„ ¾ñîiP?4x'¿¨ñ+‚&ý±ËÄ}Тrþ²4Q$¼7ÛOø3Úà „|ï‡BÇo…úÛ/¡Kç¬ çv>tç/Èïc«‚^ÉÎG¯»¡¯}ÏŠÑ»,ˆØ>,wã& ]š7˜,Gàƒk¨RiŒ¦¾°•êã^ô+^DD;HˆˆH¶ÿ@æÏ׎?_®¾þ|ˆôÏ埯ßÿ{Í…?×Ðþy. ƒ;nžZ(ꀉÂX)#¨# ­Z„Þ'1ùëÄò0ðé0mTp0Ô¨ïq?âÕ7¥'¼ìB W摆šè Ö¥äÑAõ‹âCÂRiPe‘tåI©&ôæì¹5;ò'öÎön}R¯UÛ´B]PU~±Ð^ï.ô>8ÖÍØ•ƒÅ¢]¶PÍ\øõMÊŸÿ·û&nÚv݇^©Ô·ÃÃ0øàþ5Ç<~¨2û=u=†ª)µ’ï®p@oAuc} %·úóªÂÒéÃÒwC ç(ß?ÐsþUÜŸ?08»ÃÉDëÏëZÝÛóe· ú=’Í7ö ziVd\¢ƒAÍjáê}¨zö2šÿËG¨®½ûl±v z’ÉÊkÃ~ýÛ?¯û"?¾>…êÛåô_\…žœ@jß3O`¨G1øM @ÕQ5§}ç7 ZùqˆÇïSÐãеý3‘ †h¶·¡ênïêÆ3¨V)äkº½;‰‰¯yÎüÎHq¿7òÿý½ýÏk¤ÿó#î5zÜëÿó»$–Ä= •—Ç=Ü¡ .­€{L.}P\F^÷SäèRŠŠŠèciIIÉÿóXêÿ<–þ?eþÏcYÜû‘ ß;fwéú7jœsúßg¿ñ÷š#î^£X… M,‰–&³ÀW}©¹—ʨ¾›ÒE$E†ÛÞdµ¨”!ob̉\âçoÌô™!/Â~??<{õÕ6ã’òtÒcš®QÉÜõ«W?ò’ÁSUü&EI?E·,yÀISj:ðBmIŽš¯  sÃÎ'òÁ¬¯’`ï÷êõXÀ¹·­Hà£UöCæÈ»ÊØŸµüÕHs–hù†¨òÞ1F»ä9ÒNþüú6ÿQ¤ÃÈ>äUEÒ©´úµÐ éìà{û†¦é\ˆ—ó0C: -MÄN«i7:‘N.ïàýfyØó.aϳîäH·þ—’æ—HÏU‡¤šb}¤÷Õ)¢é„_HߨçêÄç ȹ}ì²2(κx(cr•¹0´ë52\bN}a— 2"ëæÇÓeŠŒv²dï>lŒŸá¤ÎÙ¹ŒL\ºîO÷ùôPV´Ä™|m*ü‚™¦¹/dþe™q.iè8}™ÖäËB‡|ò%’ÔouG>Üj¾›£…,HÈyŽZ­"Kξšºñç‘F[RÈjæfƒª<²æ¤²ðÂfù&âëlml¬õÚŸÃ…ü˜›)É @~ ËïbíèB~·ÌÖ“S$ц‘^n;Ôå;rZÎÁŽÚ½E;5 |œ™NEq (÷î µXnjÓô AÆY ¹c[p¦WèJ¥eY×öýÏ2·ˆa`01V!ýóÙ´‡ø®Ÿ}%0ï[œx£{ö×!À滿Kb±ö &”Û0Ç—R×ȵྻÊÇ:¼„¤^¨ß“/a.ýé `8ÞK{„´õ™^»ó‚H¢ù“à& fܽy½ $\4ÝJ5@ê|ñÂþeáѾa{üÈ.zË7¬æü‰÷ÏOëWEš‚Š¦b^8lõÌþ]ëM82Q2ÏjÄÊ&¿{:A¥+ÌЕÔÔγ±—vŸƒ£;_p¾W/]},)€–»Õ[eɽ ƒD>M›=æf·_S?àØ¦¤Øä‚Á|nê£ZR0\-]ݵ Æœ¾Kb…N`¢ç-òû¶%˜Þ¡O?ãØ fS/úܺ FèmÔáxwÑuÑB°r§(••hqòü­E68A’ÚN¿'¿Õ¾³0د[()–ï3=~³‹°ëjÕé§Š‘!y«^¶ÕZäe{ô¹í…)$ÏXŽi&yÃ!Þ†¥²½sðARÏ[ÚH¼ÖÀð–ôÊÇTI‡ñ¯Å'ŠGô}_ì±ùÝÜé¶ï¾efŒ”$’íê°CJi² ´ ‹±ý>áYh0Ñ–‚”M©úIÞ+F^UxÏÕ÷y)ÑyN¢)÷î¡;r?©0ñáJ>T11˜'Bª‰.8ì½}Ô†}·AêæêC”ÕâwA¯2d&ü‘FîÁÏnHÓFœoqÒÒæãk"쀼Ïpz¤½L/7CÒ阺_vw~÷§êZÍ÷ž#½‚ûÖ¹¢‘¾­SÔ.#=e^û“? C³ôöt¯0\ ½Úxm™ûvÀ÷­2éd>y™~ÄGÒàc‹Ì.]²Ñ•Gæ¹5ŽUÑ _T£&¾"‹TO‚©L‘å”2žƒ÷U1¾_´OÎ"k4Tò5n¿Gßxo+Žlr0Їúñ![ _i–[Α<©e(í) zÇZK $­<:bôa‡èQ÷æ ëgNøéÅkÞÌ*É»êÚ뤉ƒV@IÏãÞ=]‘f%e8ìŽÑŠjõÎFþ¬)=öBØÓ}~¢i˜Ÿ g”£…½¹ { æ€}O¿š £p|ks³Ûî×3…~Àþ•ôqˆð߯ÞyÖs ¿2 ²hÓƒH6«†aO ˆµûû}MIJçaÏÜO 5º:+~~d¦>íúª“ò¼œ¦&Åpð¡¯ëÒž9lk.ópPcjß„á(—¸‘Æ_ÖÕž <¯Ì@]øàìs_CÐ`¸ž–•ZÌ奦ý ³_lñÀ®3 §í8õ›,ô/oTˆŸÃX¶®ã×XÁh9»B:VL.2øÑßгÁ©ñ5Z`^Ù81ÂÇÓ‚MLµŠÀ*sbþîÏû`3°1õt¾N*Þ¸Vøöœša¸’JHÛõ ðú²v;Z Õ›n™£J{‘!ЇÃÊ/s1>,ìÛ/ù4Ã#ʃ(Q<=ÖÕQW=Œ —(þP|¢×¡¸CñŽâ¡þ„§’¿Ö¤i_ê2òi‰Më—Mã@ÞKÆIßIÆób„Vk'žïP~$¡Ž+yWŽt<{¥ þÅãOìlY¨Éñø‹»¾ÅwÔS#ÝEJ9¤‘ž÷5.5Áæxž¬¹Fåãiô¢L$ÏüŽ êDN}±ÃчŠè«"[ÑŘçì±÷ñ{>Dßz€LtçÅMÎ"“êæòÖÈTm¿À­ÖoÈŒï5û¾'ÂÈܹ›†íg‘yk¯²ò†ËÈ£42ÏìïÈâ9ï1g;odÙxÕÑœM YI{Ä;ùºÛúyJ²V¦™X°È†|K¼¿éq— ùÞÒ¤«\>„l‘äÆóe"¿…}ϧŸ ¢û'^»¥ É¡u«¡Y ÝŠì¡øÌd+²žï”`'éæÎÊ@e¬×wEvp¸{úñ¼Þ[9 /áÌù-´ {gÎ_}ÃŒ ¤÷XôU€©r³ÖCXf(œYÖmßw:+'Øçø"8¥8[bÊ(vWwÚ´G°Áð|Š™GúOÿ¾ÜÞnVàŸzhÈM‚ï¨Õ4vl€ÈO‰¢J{Ø_ß5“@Ú¾o%|)¶_Ÿ;5‚ôÈÄ·žÔx-x@»lPòy&›q?à`m{@Éôs8Lé˜<}Ž„vdæj”2ï+ c=bPIQ2^5ÑqcC¡ƒ ÞаÌs4\ÃG™T‡@KHí‡Ý1iÐþLüù{í#Ð-ˆ+ €cI‘ꥧ§À  ûs0¾>xÚ‹rŒ&îKÆÅæ UÍhì ˜jz|=u»ÌS~)zƒùvfM ù4÷mÚl)+&›$úC'ÁºÊölS?ØÆõïVŒÝ'ý3)ž¼Ǿ7ñÊ=çÚD›$ »äf‡½vd Ìúñ7^N¤ôûzëÚ1$÷ü×0{§I$ó»bôžÍŒQ¼¡|H‡þ‹Q|¢xÌj+îÌWHþ‘kJψc¸/á=E.ò¾ì/>üëÄñ úïEùÅ÷_¼H!Am\¼é²o®lD*‹ý˜E’¯þ“ëù´Årl`ñrã½KL2êW‘f§c}ëÝH«º¢²K‚Ò½°·bý9þó'cñïg¹±½_•‘¾È¾cë‘c‹†¥X¼‹âxì¬×Õ…ÈoÍ…óÖJÈÇ6ë®hºAd*Ó\.xT™IþYOȎ̵öÑäC>‹*Ò4~ôB–4 ý÷ŸD–ã=ŸßŠø¬z”]i…¬ISÇ\Ùñχfi ‡¹‘Ÿu4Œ½#mÈ–vÙG³¨óÈvÿiWG•f >¤Â©™ $>k\‹@:V1øh/ E\/½Í´(2É òf€J„—Üa•vMßO¾¹˜ toK^PT¼„Ý'Ü~ŒúYúOR´z,ìyÖâC=¯Ì×sUÔÜç`¯—òFÊÂ-`kS=(Ù±÷Ç# Ú¿÷Õ˜sÖÞ3Àk<ùÝ2ÄøÏÊRáŸÁÆM*ÞÏA$Ÿj󹈽üùö€” Hü¬ (z RÕ#R%Ñ ÓGQba™ò»}å¢OÂÁÈË@½ ‡5—Wï-õ"÷ñCsŽ(g]™äÝŽUƒÎ¯¿¨@}/÷ Ç;—Aƒ(:à9• h‘|V(/£¦g«o©‚žTçȦ5è›I‚mu5¿?`øÌmrb?ÁÄŠ¹ö+ñg0]%.kü~Ìsî}ºçÇî“^gw«; $’ƒMEtmÁœ9œÜçÛ·]™§ú”z$l á‚Rjî'ËàKh6g˜ TçÎ Qï²F†ÛeV¶ýÀîÛÂS¡ç6Ó‘ì é•Åz,Dyðÿ+¢¸+»œ¼íB‹k·ì>TG\ø&YV’°8°•ÒZowEÒÆ~ÀxgÐÒ!³ÁLå‰Åñ îu4^lW‰8{Îi_ßÅÇ•Œt\Ø¡=€çS\žÙõ’J‡é‘î°Î|î+HÏÝá6?¤7ù µt>Tq<ürÄE†—5hDu÷"£ÜGdïÞ¯GÆå§M_e"7: ¬Ø#ìt¦ È”M\ȱþfdF`QÑpŒ™Ûµ’F鯆̓|Ôü´ |þþ»·ß3YøM3®»ú Yfé,Ê*¢DVôu)\ @V_æ¾4§\EÖ 2½¯»âñuìÝ_„‘Ÿåéä 4QÈ–½ãšnK t¬Åðq Ñ´dá ^R}Zñ™Ȭ´°’Š«×vžuåÊܬÃêNØEô)õ;Кj{¯ôg^ѱ€Ý³Gf?cж'ZáÀäÁÇçZ{XB¯± ‘kªeZô¡gÀÞþÙî€7p²ËIß,ÿ Ün=yJÀ9Ng«Ø¼ %'Iw.¿ïíq6¢<¥(*ê‰ãzjÕ`ÿU‹ÝïýàÀ…Ï·ïsƒä¶ì+ÁT.e½ í¬²[o¯(žy7åŸÌZãpðñÓvެ×pèÇbÂÀé8âIñ™~—(Ó.õÅÀoPñЈhcÉÕ•E²Í%P÷ÿúàxé)ÐàkoäYxšC¼·Ò+]A;½¶~O¶èz×ÕJ½É‚cçýî°Ó%ƒÁ‰¶Êf0,ø¸ÉÉä F¯ŠË¹‚ Kú{‰4V0µëß [e³£GÕÌ`q('q,»Ž·Z E†©€Õu9ð? 6ªÛi·<¿Ã‰ýe<\àÛë¡c£GÀÑo#|‘áðFÈž[‹ê¡âP9ëÈÏ rºE âðGȃÿÊ &ws¾;¼û¯½åU4ÎEÿž‚ùéÀ@Šª¯ ýš›Ät¢(oþ•'âþý/-?é‘e%azÐö'.¿&¤|Õg,1?©hæòÔ©º]=‘b¼©þÜü0ânßχ~,ÖÎs‚H[Kk)Í›p<âpÝ-åeιtéyaÀTÃðé“Lb¾ü¯mZ¤K“ öËÛØÐ6 £E©oÎùÙ#ãÍú'¾‹e íyæjö"S<±#Õ‹†ÈÌ΋×<£÷ s¢×v¦/?Eæ‘/çm" Üή¦ÒÈ2½Sa…“/²RÒ¡yÛBùz2jf=Y·‹bl¹Û€lçù„éz#?ÖNÌÍÖÄ"¿B‹]×å‘m™Oƒ{?Èàu3’¦oiGÂ` ¥qÇtóŠv®=yA@eÙ´¯âÛU aHò eoºáºΗx`÷YÖ'Dõ4_Dù4^e'’"‰t§O½ÙˆÇÏ¡›Ùv #½v;,;Î¥`q%–'¦Mø¨Ã„ 'Œ Ý=Ñ€Œ4tlkÏ( cc‚¢½:È„2òú¼7ò±2%ÍgVχj®<[/Ÿ!sš¿’XæñùᩳA͉ãȢ撊Î(9²,˜TÇFáŒçÃgÕY³‘5-h?O%…|;h˜ñã«'òÝ 8_WŸE~nŸßÿî15²•ü2,B€HZ÷kIßÿvÂŽHüTÞ–ÀŽ9»KÂ\ü@þÁJ‰xy(ɬö%3ص ·ÿ•ã@óî1ÏK = —È U‘ëƒÝÏjE룭¦ÙW$0©ð½–á,rîOÓþܬ’ƒŠáÙ©Ànöꤌ¨2pä/$2w7œÏYà 0Ë ÔÞ•xº_{Ù€? ¡y*<‚§UøŠžp´!{È\/ì—(í6x4-¿ô$+É÷å÷ÙA:ê„×Ù—¯AöäkÛŸþ;ä/ت8–‹ÀÁÄMÛÏphái{ï+8âè·¦/s”)‚ƒøÏ©€Êe { TçJ¼NŸõk|}GXÌAƒõðq-;Ðl«ŠÏ Íí{J¯*¨çA×™úÔS«B8fÑšO& Är×eÃÁðÙYÿÊôM0<¸©¯Ì &4­2uÜ`ja}‘‡bÌJW ¨¬üÁâ€ÅÕX=n8^)~üW] X]äîÌ;62óò¿}ká{ˆã›¢8Å@nHËœ ŽtÈS÷€—„â¥ï£ >+|ëÓ—|dP×¾=èC†Büý+/$ŒCQÜÝÛ•É‘±Î‚(>Ñ÷AùÕP>,V`^‰+×ÿ‹ïþâ¿ÿ6O$äCœ~úWžxøh¬w:RÓ/Üf~S©Ëýr>$¼ ¯›ZGß®j{öo>ÄÅÅX~xé¤p‹¤Õßù¡·Y±Jò]dèNvç¨òá%[Ї.>?$Ó‘´!¬þ1%iò#¡È™þ‘-À¾Eƒg¯“Š66V! G6oó…#Ëâ[Ýx‘•¡¦O½ÓÈ×{éyw,"ë.'8Õ_  £HÎ ?ÚuB¥oB~™Vh¤?iA¶iëØvQÑâù—¢z)9µIУ-Ø)Üúºö Pù)0*¨Á®OVW'“¿Ý•¸Ô")Ø-4æÿÓ½:3Ý}¼aOÙNÝ¢1`~»¼ÇχöNU´í|`7šã_êèNÑ0çëUvÀ]ù´9@‡ x3ئ»o_þ¦k]ß“@HWmóm(ˆÊØ’TXñ€xСúÔÑs éÌö•‚¤Õ©*ž´ƒìµæ³«1 o;ï)¥v>Û%÷ƳÇ6é(„#¯b—ÓÞU€²JèteG<¨¼–<íÜjº“ûŒ…%A}yÁ«ùX=hdß~'Wx´<5²%öî㎋ðºé½¬eׄ"0¼^òXë[+U&¿¹¸’&œ9\>«s`šØ9{Ì%ÖY-‚Ï€Å̼’Sǰ¬tju»ï›4¶S àùpÜ@ø¡{$ÒÁ|«1Ý"¯¢ù!ŽßÐøã=ôzBþDþ_yb]ézSÙg¤wç³SõnôHŸÞ“%oÃHKœty2ìCïz!χÙ GJÿ͇^LÌÚ¼Xq.¦E ì9‘ùâ=ÁáïH/ ­ô®½EÈbþÉxÑdÙîuãKá8då&w¹²Ú6F­]:‰ÏÙ^Ä]=†|—äNNñG~†–È} G¶˜*•… ÛÕ,êy£.@|ôÂÙ#%×€¤;vò¼ê4ì¸ÏœfÀä7«-:Xõ`gØ~±‡*‚12]/ÓPF;gؽ[—X7®Êõ‚=1òéÇÒðúˆÙÀ°ùÅh‡ìëÏc>’î \—*„…¶w£ó»!¼~'ß¼÷¶~†ÇŸ).½ÉC·DV­@˜â¹¸yî/M¨ý°W¤d“‡£Ñ¼o&¨ßƒ¦b€è©ê µvLîÃ9eЩ ›íŸq½ûíßr@ÿ¦ñ¡å¶Ã`x˜š::* Œìú'~-q$«àß0i5^÷NxfÜ¿S^·PyÄýdD ŽÓgó)±‚e^É ÇG°vxéµÅF¶Ê&r–UpRa´ì×%?¸ úvÇ$ÉKà9~•ü‚P¹›–˜}<… ¦(³–›Lc¼ƒâå?áPýoùÕaÑ¿çÅöçl5¡XåÅæƒÿó!ª›¦íÜÞvAêÜ/9T¸ ï´Ç<”ù±:b³´+KìÓgbõ´~ˆÆ·(ŽÕ¢ð0Fâuž2¯k=ÈPSÕ+Gmd„ùgZ¢¦2–ælÀ+ºŽLHùGÒÌB>¾ñàX*þ[ßa/ÖÿÙ¦€g×8âY=M¥µÀû®5íø:‡µKåñid]Ž÷B‰ÅIdè#¢Y÷ò£àá…häâŨvÆ ùýQŠÊ~½ ˆz‡¢ü$(äXŒ„ÿ¾ ÿrvý©7•à áÁç‡ y{Œjöî S_j×íì£Ö=.@?ÅÏwþK0$HÌh|†=a™áVšìÀœZtTr“ö6sŒÈÆ »‚$gJ›!pROh[Ý–î|]æÞzVàO˧Òþ×£»œö~!¥hâÄ Ê•T8h“ â§ër(ãAÒvºIŠë3HÈÏÊ­›Y¦Ç‰š@^mNÿe€(¼=­ÅBsm†Þ§ý\GîYÍlô€²ø¶ÉŽÈ@PÉL|>yl'¨ÉªI^?œêýÜùåW“@㎧´¡q5hYÞ2ˆ'Nù‰ÅŒ '€?ÖÚ‹¯#žßIk¹ FY,kûÀ„ŒLâVL}HŽðW1‚ùî‘ÿË`Q?ýúñ‘°Lnµ¦8Öñc‡ÏfñƒmsêÁÁ;ààd±vAþ ð&Ò蔹;)tÆäz"ƒ‹Ÿ«34b÷-ʇ„zé¿ðˆÆ§è‰Æ¯èõÿÒgP|¡x@눨NJ¨{¢õB”×°×qy!ª«¢ßÇê 8^ÄòKB¾Äñc×ëÞ§'<°¸Í{ûz(—ìu¤–Èð¬6dè9OuѧÈpWIræ$¦—Ž•¨O¡ÁꓔǷ۟#S ñ­Œ™X~8[Ë_Mñz‹/¿D”ájbDÍK©ýˆãñõCê*߯3€¬ÚdGËy!_%ví݈XÆôÒo;<_çþ E~ø¼ü5Rl¾œò³%C¶­\ùsXí…Üæk¯€D{à¼K€<:ÿ’Êì÷²ÐŠz“ïÉ@amôÖ§Õ(ï¯é¥JÀ®îÉ’tþ@Ë*ÁzËú)Ч'ÔK ëˆ(/¢¸Gyð/^Ä(bÏQ>$ÐKÑ­#ò!¿uÚÚ÷¹©öØç*W&‹ÏQ>¤#sš-<üW~HXGÁô´Ÿf;%¬ÁHûo´ÊQ:׈eÙ¯äȈó9O½|'¬ëÃ饓v½3IÇ0½t¶sVÙþA!2?n·T"cŠÌ× ¬…³)âûáÌò?ЯA¾†ô1]ØFÖ”©¥÷Ó!ß’êæô #ßÔãJ‘Mû£”ÁmKøº¿µø°Ýu ~ùJ÷ú5z|ãdõ»QK VÊi-JC•œW öb±{-|h÷-Ug[ýµÝ‹!’ÖÀ 'z3hÎÛb‘¹}¦÷GŠsÃÈ`¯˜ÉÅ_2/íÌç×H½#pfÞJêpëè)8©ÄÏg+÷/àwïØº“úâö?Ö¼DX…ù뵃O—Ýe0•ML`»RçÍùMÛU@Fc¯:«CÈéú\‰·…k•cRÞgÿàó±\Þh(·ðÊú ȧÝ!µZó ¿Á@B‡Qʹ ›b¦_§æƒ1ÃO¿+5º`rµhï Ê<˜~õwÏÈó;[×¶vÞŠù V‚$S$ÁÌ`#DtmNn.Hïù¹·JãÏ÷|ØLPR%¹¼ÐE†.4|S&Ââ:4N$ìk#¬¢'¡nƒâ=Q<ò!Š'T'AûÊÐþ1ŒÇÐú.ÿÞãx ãCœn‚ò!šW¢'¦›¢ù"N_Aë³äËa.KÇ÷¡úz ÷I­"ýl½úÜ¿òÃÑ{|ã{µù‘ñ£é#–W‰=; œS{ðõC”Yĺo‹!ÈœûÑC‡£OÙºò;/~D¾ø,=|À~ ßOss[aQYiÙ¾¯]¸Y šþ6ã%€¬)^ÑïÓGÖY‚wTÞOE¾kØÔæû!¿àž{ý9¬¯fk-àͬÇO Ú¤”ãóKâë7: ôßé-³G»Vç€,˜´/Ià=Pr˜nï¼”¢•ÒNëÁ@moK"Ò© 4·S2 ß½º‘aÞR?ìοpIöv80º-Ú2S“V‰Þ…+ ÀbôÅû‹Ë0ì£\ýñØ;{Ln9§,§2ep'JO¿ËØ^$*²ˆøj¨X~ݸO®ðL} „÷‹³ñâQÁ ³ Z P‹ø1½’šªzvA‰ ™fsâhF/Ș}M›¾| äÔ8eHo‚ÉF¥öIP ù0;^ ‡'ø‚gŠ˜9©€x.|埖l>KP™kM-5›B2ŸßK >ýÀ´vÁ4ü‰FÚÏ“‚–èX4O]hO·ÔïaÛºyÎVÖ™p,ÈËçI~œÝ®Š”Ã6dbŸ”:-T› †Íƒ ÷}û´Ø;`jÿ{àÊw0«çøaøå!X(ÏŒÃñ¡¤œá`åLùN¥ldn|{0'˜ù ö¶rÂ…nk…ÛJÒÀSú»b³N¨Ž<$ά%GÕ¢ˆO^›ÄxÅaÿ6Š3Â<ð_uÃé5ñ!¡^J “¢y"š¢¯cß'Ì yÍq}{ÿª#öÕ |Øý»›Eži*¹+{` ‹› ûÐ>¹:—úß›õc}ã6‹Iß(0}gÜu¸À†ÆχÇÏh_wÎB¦`÷œ25q\ÉÂ;ãC´O|Á:¤i¬U ùÒ3’äÔŒ,¯ßͺæ0¬FèÞ;Y¬­úwÊ"ë”ábräÈ÷+½ñû‹ñº¢—·Í Ú«åÜTÑÄ>²tì ²@2ZyÜ(¼ÈvŸ+)¾ä‘k‚Ô£@)­¸hœ¹ÔÁ¦\>“@“•¶6ºßèÿÞÃ5»gvÊñ7[cåÕ´ <5`Z2ß§[ ,íJ§Ä^H›]l‘OÃ,ì›Ù¼øÆL¸%_ˆ±×^~ßoö\À÷´·I«ó!Q¦È›“€Ð*}$³‹2ˆÑLÆ8¶ƒÄΠ+yÝ eÄT‚tp€ÌX-דâ¼ÏG› V®lu§fA1[OgY¥”xÙÝuwjRÝ’õÈ¡”ëVgÙ–ƒªÒóôž9-Pkd“rˆ„£ç.ñmMæKÝö4 ÕßöTÝà-èdítÈtÔ½¶ bÖ:0 ­=úâÄ6Ò¤«Î§‚Ñöîn†?qê§›Y±³`Ú«5=÷̦8n”WÀq‚‘笕`ùû÷ÓÕò`ýësÈ͵¸À{[Œ:… xš4r饟ÇĹdcÆæñ«Í¿øÍQ>ûO}Þ(îâä• ßßÂpŠ^¾Š74NDïÿúžý¢§f‘ÆNÍwjÄx½í«FyíŸÁåu/ä…hüˆ|ùW=7·Ñõ¦ ±¼ ë;ýKoY (D†y¶-ß“Ú"#£1‹ÒÛx½Tÿ׊sÜi|Zhï%ScdæÔš”ßÍ›ÿ®¢}Û.‡îM7àëòT´{"KÎ k'Üøn"ëMŠ-ÚyȆŽ}—¯òý»úÙü,äç'þÔ­dëШǠ)–G½¿Ì: ¤fŸª×å™ôú;­øP  n`LT‚“E¢?ÒêC›Òvè8Ðð$]vSüŠÍ_ì6ÒXú2õwþ$Â|³¯›voî¨lº‰ßN?án• ¦Å»ÀSM¶ÏP!øÎ,6–»»ƒÀáË\Ë¡ d$PqèÍiÉßyZ¿ÄŽ& S|Љ»¼ríT@rƒ;äjC8H‡Vš¯ÛLì±—ob¯züá{>ÃÓSpÐT¨üñŽ“p(9ÌJäîaü]fú( š+Süù¨˜\¹È® ª“);½~õØË ¦ÙAãÌfœúGUвpt!ÏVËóÈY$èå œ÷%Þ tõs;Y%Áð}Erú²É^ÜWj &u‚î>ü`vÑšL<ò XÈSgü0;–BœYat`­’±”Û’¶az¾ôßfàѤ%Ûi°³ö8[rN7¿Ÿ•ÍÇÃMÆn_{I§†(²¸B}³®Xùì½uX[=üØÝÝÝ X,[TlPPQQ éDPBEÁ 0HQliP±óØ]|3Ã=Ãïx~ç{¿¼^¯ïÝçºö™{=1{fž}¯uÇVÞ±5ú÷¿æ‡ÿ_û…¢ÿy­*HXÝ)SÂâçÄóˆq®è—⟇çÿ·>â¿êñ‡T/÷ÓˆûL©óŸôðûjüæ5øòMÒC©^ú¾°Þ‚˜Æ’?KûljgÅüPêÿ‹ûhš¥i×ÂL¹bâ™ ÝóoköÉz(ÖKi?ÍÃkºúS¿„*?ö)·Ñò€Ï>6öà‘ŠK5ñ¬¸Ï”þÜÅ»Ÿk ÷’Õô9ľÿë½5´å”,ì`®W_¹êøÕiÓîLD­žJy+Ïë¡vȰ§¥á÷Pw¥ÙE›sÔ_4ÞEÉô Úg¶ ɨ…Æ~Íõ‹tÐL^Ó»ÁìÍhYw£†w£!huâ(C?@çFïdÎhg¡¼­{ÄZt°ü¡µÂu:eypí3º:íô¶¶¼IVê»´óÐ+¸lÐ]CôqÉ[jÚª#úE:U¹%”`à°Zž> 0¤ý+íðÙöU¶rÔ¼Ûé=Ãÿk«FS[8e‚î6ÈO*WîÓåÆhéL{cö”"å:è>j‹ñŠZ…Æ}”0ñÇÚ[“c’c“>ç_¬Æ”}6¥'jbê»Õ…žùZ˜þðN›ð} R»nü‚öa˜=ëM­#vP=Á®›™/æï² ¶nnˆ…3‚Ö|Ü‹^ôÒÜìòj‰O›ªNŸŽ%q>³‹A£|‡kW›8,Ÿ°ú¦ìãh~¾Õjˬ^b_g|û"h?3ðû[è´¶ÝW\†^ î y> ß=,î£|3Ífù®AÒºûëbÜøë>ÒÛç-úã¯~(ú¯¸¿[Ü¿&î¿׿¸î¥ºÈý—Fýs?¨c¿ô ¥ý4ô9Qÿ~=ŠýqßÍ?ö­ŠýD1Î\úaSæ.ÊEïUú/hZãW´Ïô~%þ¹Ä{‡–¾´V¾¸ð@ÚDå‡N¯ŽEBù±Çù›F51ª_óï³Tjö—NÜÃÄ¥BêC¼ý6Eþý"i?͇ýëšËr½”?>ë°ùîÊŸ×ÕöH²TùkÏ Ñ£{(Ÿ»h¤ŸÚdåŸOý‹?¶‘òÄÚ‘?—ï4BÝM;ê¿ïúJ]Ü’®rºøY)´ë¦)htË=M·¯šÖ_Úßö+š›Oöèh–¾OO|RS7Ö|e¢ÒíÖ*Ô;ûý+:hÍõãgst:=zµª;ºjÚ:+ä^FÎJН¼: çG·øõó×¢·K×ìOëÐWíÜÄÙÏÐ_gd§«¡xöÄ‹¾W®`ˆ\ÔcÝ$[ »ÚÚíFôŒœ¤XÒþú}Œ:SùèÉ@9ŒÖÓ4Žì …‰Îßo_ž Å AÓ£Ì;`¬žWíòõœß¥ÛOí:ʪ )m£æa’³U´Æ¯0¥¶{7Ÿ>˜z(3íp¤¦«5Õ~Òef5ÈJ 9YýãÇoz£Œ9SVéë¾Ã\§’õ ý1ÿiã¦Uå_°p~ë#ÊjYX”ºcÓ«× ¦:p½Ý’>Pÿú%ò¹ª–^sìŸûö;4³ÓKδ܃åOo§4WŒÂÊq=gÄ>Æj­;šæEB;qÊÉs°¾qÏæ†+Ö ×Ì… e‡¯ Ñ´ûö>pU.ýÔõÄú'IDù·?ßûŸôð×£øyÑÅ>È¿öÿm?éè#þªÿÚGüUç?÷¾êý¿×MÅ>"í3ãåëKš·>Ò_Š“¥þ¡ÏÒ>ñ’Èî•Þõ”ê¥ÿª‡bÿ_¬—ŠžXåÈIJÓo•×™™üe‡±òÓ¬ÝYRóç.|S{©›Öì÷Ðmó¼|åwª¡+ÆØ*˜£žöö†ò'÷+j×üùaÅæM>ž™¨üÓ­éO_ã=íU¼˜–jŽÚÍçöÓ›ÛuRǤ¨MC½c>ÞÛ¾ÝEƒ´ašgú'£Ñ÷q¶½eÍÑÔt]½®>cÐB.É7ý]c´ücÆð½hýHwЄaQh{¬ÎÜ-†©hogýÄ©:ƬKÒ³T@ƒÛ½ »Ñ=Dur¥’9zµ¶é}ðÂ<ô~ô²N«~ãÑ÷©_½à!Û1`tÊ“etÛd¨WÂe õïš™™Ý#Žš,5}ˆQv; ¾‡Ñ ËžþXÿ j*&ŸE—oˆJÅØ×óNvýØ ¼d_Z9\Lü6OÓ“UTÂúö¼‰)ßú§ühŽiùöû™‚¹gmtŸ„Ê'õ wýö˜£²^õËNWÌ}>`Åâ€X°êÎùß±ðÅš#3?b±¿‹Ewã¯P·ñ_h<¾'–nË3]{ÚI½÷Îh„ƒÇíÙ\9+ 5n vâüñŽÝÌ-ulþ/÷€éÿñ'ûþçÁ†øýÉUU÷­«ª<¬ªz´¨ªêñùªª§C«ªž¬ªzÑ ªê/‹ªª—w«ª^ϯªz“\UõnPUÕ{Ÿªªu«ª>™VU}®¨ªú:§ªê[bUÕþUU?÷Uÿ-2µŒ¸K*ãæR‘ÉêÅËd úÈd =¸Kü!“51Éš–ÊdͧËd-be²V=d²Öî2Y›¯2Y;=™¬}¡LÖqŠLÖ)J&ëÒU&ëê&“uû$“õX'“õÌ“Éz+Ëd}NÊdý:Édýe²ïd²AÚ2Ùàë2ÙÐñ2Ù°p™lD{™l¤“L6êµL6ZK&“¿"“Q’ÉÊdc[Ëdãd²ñÉd—ÉdÊ9ÿ÷g´þ„zªðh¯2é®iœ+UëyµT‚M©Ó9ù©…8žçÞï¯ÜŰ:ØZÓ¿z'³^¹&nÂjë®›Ýu°lç…täæbizÊÑV‡+¡®ê»ªþGo,Þªtaê,qÊ0^¡j}T_±è1Ê×}6{w;,tyœfÔ)‹œ<¦”f„BmÁ«Û‡çF`Iv»ÞÇÞ}€fbóˆG/ÏbEÑ—ÃJÑs°êâ»>›N4ƒ¶Ê€c{¬9µíÔ37+¬ëÿÓt§s t´=Ûî½ùºfrªNº ¡7üuäbÚÐ;pulUq è=jÙgm,ôÕvºQxú—zíiêõ4A@ªÕÅÓc±!zUdò¤=0¤yÆÙŸy*Œi~“´SunF¨Á4YÝyÚ"ÀìêÇTÅ o˜ÿhVSZ=XÒý[Ñ}lâÑ lªë±4olûœÝ?¬Ï|ØÏ·ZUzê$´ZÝkÚÛNüÙ-,NíµÆú|uÂöƒK–~[ï ç‰YΧ†]«,ìÂÉ™]àv_Öös¼v½šucɳ‹ØÓoûûìG·à¡Òþu}÷Dxz­ë"·Ë^o"¾=6Üo}—ðâ¹[±ÿýÊ&óZÝÆî®‘‡ŸŠú­×âPçwAª/¦àˆpùÊèsÕýÞI9F¿Ýûó‚ûØF†© dlÚó¿¾NCè‰Õ6¯Ä±ÉqÏ”#¬JcÜℇˆxV®Ù´q.N6ÎxpÿD®3n§íÙÑ[…"æå•oíâ-çàºàЗlÄ+ȼ¸G‡³Mvû®3‰µ+dyg; ©ëÔ¡G7oBÊÒ¶‰Wôgá|ü¬/Ü¥"½k§ñãôc‘aü¸cøF3d¯±ÎZ‘Œ s½¸iODvþí˜+Ýpqí›É=—§áÒOg§ «ëàJÀÕOç=À5îÍÞ‹[áú«•›šŸD®ê©¥É[7!¯çMï冊È–çpä_>±sÅÃÓ(8â:>dÚDcÑ÷þKQ4é£zC·~h?³°sX¹ %9ý2+;¢”û‘Úê<ÅÍ€Z ºÆã–Æõ³:X8tBŒ-[ÎUï¶&>I¾9÷aj·A'"¼Ìh~sÿSEi§`q?¹`ÙWX>ù&KN…5ñ—qøp—ü‹Ø2±ÁÅ9ZWaG÷·uR°‹ýƒ{pH2*¶6ÙŒmt_N“æ…†§«cûñ–Üg%gÍÙïßÀå‘ɽôÁ¥pKU-™5À»ÎÝnä;ît=³½¯O}³èžY‡áuc?w%µà½xÏ»¹í±ÿûøùÚz} ÐWóý𻢯’‡ÃÜ*¸s}üí~V=¥À’ÆMB,ОB„åßGïÕ5´š]‰ð&}{š$äâ8­ãSmø?Q FzwuD Oï‹ö!Ç*¾o‡xzÿlÃ=¸¥ŒÄq_7¾ºˆ¤åE­_l¸””ÏïÍëÖEñXºm&ïaÈxb7t‹[3d­ó«5¸ ^儸ö솗”u¼Å¥ÁÛ•îhŒËÜÓ³y€«nï´~‰ëSÛ$â–ïý÷[.8 òˆ—ó½lÚ]{[e¦nQঅæÇž/›+Å×Åωþ8Ÿüj‘¦Iö·|¨óª2"K7Þºþ²ÅDhê )ÈÔnƒåÎFÜ“L†ÖâkåFuÓ°òÚì æµ{aÕÛ{všV`µÒ ½;÷×›|¿ÞU£æ}N—T¥Kþ»úCçKQwoA›tz Í¿V}æ²Q¡©Xljí˜O sGGýÂpsèÑóZO׳g ­~0"}2¡óšÕK®b4橽V´» ËxógqzA°¾+¿òÍOlsïyשÃ`›.{uõ¶nÝÞio7l›zÞÌtL(ï¾2OKÿíû;ö™ gÃ÷=¸GW£tûsojcgè÷ÐÁµ…{[ÞÁ±7QéÐ"™=<éû^çËT3˜Á›âýoRßþ`ŒÁ*ÞY33ág`P«Ÿß_à¾dW8YGVÎV’³²DÀöËE[r>!°"ßõºÉx·$BVežþØÞ ¡ÅAÚ>éâØƒÇEº7Þ]ø!,óy8ñ%{p—vˆM!\ÃÑË;r‘H.b¢Ý,RCéÐi^–¬£pfɉ $•"¡-¡óx?ìwkHâÝðú¤^¥ „ ém—e™!ƒ»£“ÎÈrÈ—ìm‚ìnü‚¨‡œ ƒ”ûßq‰[š½êâ /[Û¶ã*§êSjẠW‘»¤nGN·djíÓ-ô¯=plÝa»QÀ=õï{åPHë²(øõ2“=(NÕ¾ñ3Ú%´nrßÒ=º·újÅQ$ʦîßV¿o9nóaã”[´åV|*ܬO9ˆ;þNúEr~·¬ëɆ£ òѨÏÃq×læt¥W Øv·aæ»JElv˜¥»eUW¬Kä‰ð zÔyÜè´WZ~üÑj›ïÎŒl»Eò?Q×D¿šJº3éÌȈvŠP¦u9aøèWoö×Áxòñ8â?Ðù&Çܲµr¦Ñº™Az;‹‹JbN–ôUôûytþù7.àDªŽÉõšø·ì²g˜–ÿ.¢þªGù ¨Q<+ÆÑK(žãkÉßIWT=o0Ûº›äï«imºÞµt^ñ¹‰ñ±X^kræ/=’¿é?ôœùp˜ÿ›ñáäF˜¿õ8qzÞBXîÿyK·õvXÏÓI <×6læÃÈÉå°¥ëÙººÃ«ãdp ó8ª­>¾.ã3œzÒÄ+·ËStáBçq[µéç«Uصë¤iÓX¸¿éÀGðð˜n}SÝTžt?û¸¨Ó(}+¼‰7}„´Å¾ ív9n ÆAZŸG¦µá˜Š‹c9çZ}\AÅ»×0rBHܱ]BÛã(¿ü¾Hñëñ5}î:û*àä­y{£›"JnˆÙ4Li¦ñ`ÄÑs<ýãÝ™éAWpæíÑÐõ%ò¨–©ÚHâß~~)éBÀŒ´ÇÇ\{‹ôískó AÆ7{ª}‘å)$Èè¦.vã e\nú†óàå¸ÚŽÿá?áúèÃÍSï„"—SÍFç#OçÇÎ[‰Dx0(¸Y0}w~µmÍ3*Š˜5\ÞQ%^h“_K:I÷©£aßfôêVMì?ë‰/Ä<ÓˆO–>‚ Åëf!õ÷ï‹ZÁfÎ#`å¶"7É›¸`vÒY).µï"(u ŸÊeV‡±_U# àLüäÖ_HÔ°‹W½†ËáNÏAÒÅNB`/çšnwZÁ{xYü‘ÛÝáÓÜûåØá=àÛ’ÿŽãà€k>øúãð²,ÓÓ›¦ÀŸž_àví/¯»8#è’ɧÄJm„ô½8F§}B=¹îuîŒcͦ¯© x‚°#õÖ4Šˆég2­š|ĉ’F¼àâQÞ;ê-FT?>Á[èÔøØÂÂÚˆåÙ­ñ1Äi'Õûú< §¹«éþiÎÄ7á¾9 ‡'õÚ¶¬AÜb¤ðQ}[HÊ+NypÆÙãýJKŽ ‹îëB¦b¯¢ ÈÙ¬ån“Çé¡FȈiž¸r°QáÚÍ­kÎDÚ!·ÑÐîÛ# lSϱă[Œ_Ç{ yZtæâP!­ë‚⦳έTJ¸‡?¤C=”¶7» +n ñ¾9i“Ê&.?Á]2n/|¾£{Â"”ëÚU¼o†r”;t•šq¹¶ÛÏüzXÍÛŽÄÇV–¤˜­oûÜâ{6ÄNŸ>_ÞæMª̳ѻüÌÂ^Š'E¿›LyÝDZcÉOÆÐz‘ÿïz_ÿ FÓçG“nŠx ñ­éë¯~*úõTЧRœ<Î;ê¢~ΤºŒ¨×³èúÿMOPÜ*Ö“Dÿ_Lóˆ< æÃ)ºl§_ŲÓg‡.<,éå*ÒuÉo‰·Ä¸VÒÉõN 5€tå:É‘ºÅâ½0Ê*š°˜a¾­¤ì¬^Éë;{ 6ñQj³¿jê?€}ýl<“á@ëlÛØ©Nf½®ñã ýÏ»¬g!] ׌Pµ ûcØ%¤+Êp?»a|„wðt‡sexîP‰Hþ¡ ¯ïý¹Èq¼¼91‡Ïö]Ϲ¾çøÄ*¢<ïÈO¹@Ý –¨¦åFËŸ ¡B¸:Ǹ§v%y(ÂõGg˽Áq!}m€S4o4çÜ« — –‹†Ç}ÛŠÓüênS€³zïËîì‰Dª¿$óÙFýuH {u$vXs¤7ã% ™ôü.¬8v¹NV røËëˆË-"ÄUAGâÇòM]9$=˧çUÐg^bUÅÍ·Sœf%”&cé·Ï^UÃUžBêóH×DÝý@ŒGŸò׸t­Eª_Šþ)Ƨ¢Í!,úÁRòwQ¿VRQÌû´Éo¤z Õ/Ä£XWÕÎÎã"ï÷XMº$꜔?)¾Û­¦(ù6ųâ÷¥úÅi:ä÷b=v== 4ÖMïóQª³š^v¦K4Lóæñ™Ì)¿²$µ¦û³Ùø å™QØòàš…—M[Øß9Ðu9 p*Õ¼xI®9vD+¤,žNœÍ‹’°³« øØMº¿×`á¢Z¶´áÅe£?*Rá­q­gTðkøt]àÎ>&á+U0‡·h zÎăA‚l5BȰõr¿j"ô´û¸G;ÊplzÐå4§Öä\î×âlý¢p‚~¯Sk]u¼£æ#Šêž1+/Ý,˜X_×ÏÚÇšátWžû >"¼®ÞœUêÆ1¹„Ë\†s;»ñŠ€dʇR:€4 ›‰7·®Eº].S·FLrKYæU'¹ÙÝAGÿ´åæâ’¾uÁå“Îõô»_ÃUŠ¿®w¹u²¢ý}Ë‘ûcÎk¿eQÈ{8G¥ RùþB`‚‚Y #ö5EÁÓ±|e…üÏ;% Eûv=ÐE´n‹¾­÷Ý|2Šùpô”#ŠùlaK”ôù¸unÊ”Ÿ—P\]*¸A+”Nç?Š­MåÓÃO®ê}ê´Î<)o\L~&æi¢Šþ&梞‰ú&O÷+GñÜ(ÒÍ‘ôûŽ"¿U ¸vÕ-&‘>‰þ-ƽ3¨~*êñLòIÿ¨+^§¤ƒ¤;sšëUº^±N+æ» è~‘þŠý±^$é!ݧT¿¥óˆõ1Ÿ^K}I)—òFê—’žŠuWSzNRÞHõcKÃfÆjsbaÍ©åžwsaÃW µ“°…®Cª³Òy¾j|jÝ9Žó{ÛÕÞÙN”·íÓ¶írk!œ¯,^ÀI\é¹íÜÏÈw`÷ÃÓ}W-»‰½T7òžüdñxxQ¾âMqµÏæ>I~ð=z}ù”éqò×#[zŽºÕò/+qqí+¡ð—ÁއœÂ±¾å#:¤"œ/ó¾.Å êWœ¢ºn4Õ¹b‡tà"þ)8Í—õ?sùb“%®­b‘ÐU˜pŽ_Fß#ùîGõè18O}1_̤|!‹§…§×Mü“óÁéèø=ª¸D~u…/ÿ†”àÚ)Ÿc­—á†uÔºúc‹‘+Èþ$äMÓãyÔŸÉw©Õ2Hñ= øòÓ" ‰ÈûX‹ÓÑ[ ¹T…{*ÔN»G!éT‘f9çyv(â£ò9ò(¦ús1/j—QLõY êWéRßK\g»]ÔÞY/ß&Õ?Äõ.ú‡˜÷‰º&Æ£¢î‰ñ¨èCèsâQŒKÅ:èW¢_,&ë(Rÿ‚øVÌçÄþ¢¨k«…p¢Q õO¬›RŸgÕœî÷¦.9ðïGúœ¤›t^±>#æÑb=Yêc’¿êç¯,¯7HÈÿ7&G¬ïly &t=’N’¿[Ò÷­é9lîõLaߪ,ØònÝ« [·ÕÀ¶Å6_Ü G¾š8:Û£æ7ã–œù2¦ÎO¸Æ>½z¶°vr«ÚÿEÜûúOûZ¯mMÞ(L«¯ÇÂz-©©ÇÞøî³·áŒž8x|\ž{¿—8Ì/ã« ¨^n6,þ0-©ó{+󂢉ª Ý)÷~Vk?„éÍm?Ze("4WýuL{ N¨ -NQ=6jŸBþ¬ SwØîÁÓç!vÙ˵=v6­ÅßÎF¼Aûîó­V㬢eB›Z:Hœ8*ñŒñ>$ rÓ)|õfømÎïøòv ¤ãJN9ï]Wò™O’Ûî“€ BúªlŠ_/öäx,.eì]1ðC&®P½å_Ñ<|÷°ï*ä&Orßsiòöšö:1ÇùTÏ-àeµó.𬮷…ë2>+žF!_¶nã"7Å9Ùa¯QL}›bG¡±‚â×¥ÓrÛD DýA£„ê1¥õ×æÌŸÒÅ:µîi̇©ò¶éÍ\–â<5ú]Äz€¨SH×D¿uLÔ=QßF ¥ºô&‚[þ‹}±«wîÃÕ“Ýà.ȸ]>Òuxñ§Ã xSþê£ðxŠ_évøR~tôþHgžPV#àú¨·î?FF€¯›!øã“A³Žê ô_˜oŒ°n¼ NDD–ðN^¬œÙ{¢›šŸ¸4³>b¨~LJ‘·ËÏw '\BíC9Gu°” cZq)Î ééX¤+[£tk2²ºåwA–cê®ôõÈäx:.ÊYYä­UÀå&Aïc^öÅ•—^8äŒÇ5ê'Þ0ÎïñöÁ^了Úßxš€<â±ü†|Cæ0òÏò yG,k·(| ¨?THýÖ"Yrªö*m*üñîÌ ñÉéŠi?A1—…s±ô;‹z#Æ¡;x9J9'åƒbþ'ú¡T‡ù—øs8凢¿õ§xU<Šñ©x>ÑoÄu/õÉÄ|Qƒê´ba—ÜoTUSƒUX¡!4N¥z¨¸?ç×úª¨“’ÞQ\)ÕGž­{±ÿ¯ÛO¤"¡Gõ,}Ú÷"í×!2 üØøLêÿS?SäA³³?F~ zž–|ûÂÉ£¦ßOç³UŠž}¦~ì_œY¾5}‹#ü'Ø.´/”àŠºÊ…†¶ÎZ‘”‘ˆP¹ËKÜ3p¬•p#¼ÎŒÛZk]qœïVÚšàdw!FäÆC|FŒhAî‡#†S¹²xÄ?ÄËó mÎRý#qÕôÊÓw»#ɤíK »"ňOøzà|t“+ºÉNñsùcÖ§-³ûŒÃª·æ~i´!q7.ù¾)øk‘=®„î»0)×H_oP_8—w·³\ ò…´r „²[öÖoT¸E¦–{zù,F1í‡) ÅÃKÝÚ¡”ö÷ÜâY´Ž)Êø¶ÿºHÜæXþKYTðaÊùÜ!¾¬ÂõN0 ºŒèbQü}g߈þ"Æ›¢‰ú'Æ›¢þ‰þÖ—>߇tK<Šº(ê¦èÇ¢‹õ±Þ#æbUÔI‘D½þ‡^ŠuÖ_tSÊ;i>QgoÌ!–òHÚg õ)ÅýyT•ú’t^‘7¤xšôUÒG±Þ$ê#åbHŸê¢b]u#ñ“ 塦T’âZâ+kÚ×g³`t÷qvDZ…öÕØ md98\x>jü½á5ýÆ'B;ñ“•pá¼.Öá Ü6÷uSf‹]´OÁWÍ1ðèÎÿ áIýô}üÝ· oa›Ðøü¥gÝÀü¨.sˆÖ…?í_ äÛÔ]^!ˆ~·BÁG']ÝôôcÂvËß+î‹ãÂô£¤~c4·ø;öC ¤*äÏFœ[³eË}!žò³âÁsžßø .R„pj ÒøòÏÖ«HÏ6Œ!3‰ ŸãB¬PÈDÎÁ ¢ßÚâÝÏÛ¿ø-G¸F~xãŒPB.öl¾‹<>ºPwFþ'¾áx…ùÀÇEówip!=Š}ò:JHoR¾q‹ï¦v_‡ÛBôÝã»ݕB;FÿÿeOoý¿ïIU?S‹>C¯Ïú?_¯]óúFîõ:ü¿CÖÞï(“5¸ñËÈýeäý2ò¿ŒÂ¿á_ëHû‘Ž&'ßSßÌœp½QÃÆô\'þÓcü?|&¡†ÕÿôY f_ýO_åÿ5ÀŽ“Î>ö\O L £nõñô‰êãÙGÕÇ gzÿ*½¿”ÞF¯Ÿ©>úWÒû›ª ô~]:6§÷SèýwôºÓû^ô¾wõ1@ƒÞ§ãé\ýW}qñÕ¯ûV¿>éÐÈêc$/Ά޷­>̪>FUÿãÞ“béèëKï+Ñû©ôýœ¿Ÿÿàjz¿-½‹Þ'ìçJóËÓûFô>=g¿dúþÊ¿ßÇ©Òê×ì®>îÿ^}õ«_ßöºúèDçñ«þФ@úž#}Ήž—ߤêc=zÝÖeÀ“ê£]½OGßÏôþEzÖ§#½îK× Z}´w ùéó~§ÿ~ «_·‰¦óÑïíMþäw›Þ¤óÑ:÷¦óú®¨>n¦ë·§ç¾®ßï}õq ½¾µ'}Ÿž“/­Skú¾CÃê£]/=-ôy{z}ßPº ^‘šóJÅOÀYø·(mt´ÍÈ®o¢c¶ÞXdºÆÚ†Ã7þêŠÐZ½…NÍ»ÕPzw¡öÚ 5ïVCÝêkè-^C-z»ñ:m íáºfÚuª?ÑGÔÓÚü³«ªªâiªQý"P½ dÿvœD÷=©![Ò±-;ÊÄÿèÜÆ¢^׫ž¿ ÷“7ðfƒ 6Ø`ƒ 6Ø`ƒ 6Ø`ƒ nø³Ál°Ál°ÁÆ0ÂÙ`ƒ 6Ø`ƒ 6Ø`ã±l°Ál°Ál°Ál°Ád6Ø`ƒ 6Ø`ƒ 6Ø`ƒ 6ØàF6l°Ál°Ál°ÁlTÿÍrüßÛVý·Û6Jüûìꎦ(Úõ‡É)‰ ÖHÑ%r¢1Z4äECA4ƈ†¢h(‰ÆX2j)Y£$KN²FK–¼d)HÖÉR”,%É’æ“æ“æ“æ“æ“æ“æ“æ“æ“æ“æ-Í1Zšc´4ÇhiŽÑÒ£¥9FKsŒ–æ-Í1ZšC^šC^šC^šC^šC^šC^šC^šC^šC^šC^šCAšCAšCAšCAšCAšCAšCAšCAšCAšCAšcŒ4ÇiŽ1Òc¤9ÆHsŒ‘æ#Í1FšcŒ4ÇiEiEiEiEiEiEiEiEiEiEi%i%i%i%i%i%i%i%i%i%iޱÒc¥9ÆJsŒ•æ+Í1Všc¬4ÇXiޱÒcÅ9êŒ9²ÆUcÊÕ˜£kLùS¡ÆSc*Ö˜J5¦8#F8ŒpdŒpáÈá0Âa„Ç#F82F8ŒpdŒpá0Âa„Ç##F82F8Œpá0‘,F8Œpá0Âa„ÃG²á0Âa„ÃGƇ#F8’Ň#F82F8Œpá0‘,F8Œpá0Âa„ÃG²á0Âa„ÃGƇ#F8’Ň#F82F8Œpá0‘,F8Œpá0Âa„ÃG²á0Âa„ÃGƇNɇŽh1Âa„#c„#ŒpáH#F8ŒpáÈá0Âa„ÃG²á0Âa„ÃGƇ#F8’Ň#F8ŒpáH#F8ŒpáÈá0©1á0Â-F8ŒpdŒpDƒ#Éb„Ç##F8ŒpáH#F8ŒpáÈá0Âa„ÃG²á0Âa„Ç#Éb„Ç##F85&#F8¢Å‡ŽŒŽh0Âa„#YŒpá0Âa„#c„Ç#Éb„Ç##F8ŒpáH#F8Œpá0Âa„#YŒpá0Âa„#c„çÆü„ÓR&kcH/ÕÚÈ f0ãÏÐe3˜ñ¿gü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒßjü!üà f0ƒ)>3˜ÁŒße´”ÉÚÒ õ,Œ-´`€`€`€ß ¬õ×[è0À 0À 0À¿4426b˜a†f˜a†f˜a†f˜ázk µ×n`€`€`€~3øïïÊb€`€`€ÿð·8 0À 0À 0ð{À{· à 3Ì0à 3Ì0à 3Ì0ÃþzC 0À 0À 0ð¿þ†3À 0À 0À¿ü·kî 3Ì0à 3Ì0à 3Ì0à ÿøè 1À 0À 0ÀÀÿø[Î 0À 0À üðß®¹3Ì0à 3Ì0à 3Ì0à 3ügà?à_ïc€`€`€ÿðßߕŠ0À 0Àÿ àop`€`€`à÷€ÿön†f˜a†f˜a†f˜a†ÿ üìÊb€`€`€ÿðßߕŠ0À 0Àÿ àop`€`€`à÷€ÿön†f˜a†f˜a†f˜a†ÿ üìÊb€`€`€ÿŸƒæ2YCx´W™t×4Εªõ¼Z*Á¦ÔéœüÔBÏsï÷WîbX l­é_ ½“Y¯\7aµõ ×Íî:X¶óB:rs±4=åh«Ã•PWõ]Uÿ£7oUº0uƒ8e¯P µ>ª¯Xô åë>›½»º@3±yÄ£—g±¢èËa¥è9Xuñ]ŸM'šA[åG@±=ÖœÚvê™›ÖõÿiºÓ¹:Úžm÷Þü]39U'Ý…Ðþ:r±Nmè¸:¶ª¸ôžGµì³6új;Ý(<ýÇK½ö4õÇzšÇ Õêâ鱨½*2yÒÒ¼FãìŽÏ¿<Æ4¿IÚ©:7#Ô`š¬î6ñh†6ÕõXš· ¶}ÎîÖg>ìç[­*=uZ-Žî5ím'þì§öZc}¾:aûÁ%K¿­÷…óÄ,çSîÀUváäÌ.p»/kû9Þ »^ͺ±äÙEìé·ý}ö£[ðPiÿº¾{"<½Öu‘Ûe¯7ßî‚·¾KxñÜ­Øÿ~e“y­nãw×GŽÈÃOEýÖ€kq¨ó» ÕSpD¸|eô¹ê~藍ßn‰ýyA}l#ÃT26íù__§!ôÄê ›ƒWâØä¸gJV¥1nqÂCD<+×lÚ8'çN<¸ "×·Óöl‡è­Â óòÊ·vñˆsp]pèK6âd^Ü£ÃÙ&»¿}×™ŒÄÚ²¼³ÔuêУ›7!eiÛÄ+ú³p>~ÖîR‘ÞµÓøqú±È0~Ü1|£2‹×Xg­HÆ…¹Þ Ü´'";ÿvÌŒ•n¸¸öÍäžËÓpé§³Ó„Õup%àÇê§óà÷fïÅ­pýÕÊ‹MÍO"WõÔÒä­›×ó¦÷rCEä Ës8ò/ŸØ¹âáiq2m" ±è{ÿ¥(šôÑ@½¡ ŠÛ?4ŠŸYØ9¬\…’œ~™QÊýHmužâf@­ÝãqË?ãúŒY(;ù²òÝeÜÎiyeÐJ”ó—oúwj­ÛÞ¼CgTÖ^=Ôc[&*9ÔéÓ¸Þ.S¼tð)ŽYõ|éÞ –Í"• U5qtJ׺S¶W‚¿ÛQç°–ÖÛ ÇöÜJ Ãî×O8—ƒÅƒGªËicAeï¶ýša®Ýy•­W¼0»"üÀÚ•P¡u¯²Ï"ÙÀþ«„g“‹Ÿ_ظ ïÁX\Ðåî—ÑXrXX¸Ðl%8 –7è«ù~ø]ÑWIÃanܹ> þöG?«žÒ@`HIã‰&¡hÏ!Âò÷êZÍ®Dx“¾=MrqœÖñ©6üƒŸ¨#½»:"†§÷Eû‡cß7C<½¶áŒÜRFb¸¯_]DÒò¢Ö/6Ü@JÊç÷æuë"x,Ý6“÷0d<±ºÅ­²ÖùÕ¿\† ¯rB|{vCŽKÊ: ÞâÒàíJ w4ÆeîéÙ< ÀU·÷Z¿Äõ©Çm’NqK÷~{È-yÄËù^6mž´]ˆýl¯O¡p¼Í¢|ù(jüpÌ‚îýQT²²çŒǘÌ/úýJ§4à™7»ïYí`®[ÄKeÄ7·û-¯³¼¨ Ê—›;©o*"Ãf–Ö{„Ê7n6ÃÞ­»Ã;í톿ðyxȈižƒÜ`þÖãÄéy ¡oþ,N/HZÿ¢ˆþ"êÚ"Ò+QœÑN1 ÖÌÍñ ¸E\Çäºä·âçÕ®guË î¥o]Ùb"4‰ÿW ýêÍþ:Xi£wù™…=Vs«^?{´éük¦ë­ÜÑ ÆßHצö~XÑî2Ö>iË_Öµ®—\+Äë8ñóét"ìÛ é…nY³Ò%+¡W|fÙA‡YXO÷g`y­É™¿ô`HëqcrÄúΖ×`Ì/—œP˜|è|)êî-˜õÕŠs˜Óü–uFÝ»uVäß›ˆ‡6“þÚ>{»0}ßil]ÝáÀÕq2lk±SÆîp$ÿÝÞaêÓµ·U°ƒxÂ%Ì9£¿Ã¸E¨õJ›6»n-ìÄQön{èí–-¾W ÏK&Ÿ+µ±oÊ_Išåð.¬=gô­/ðÙÜÂÃ'ɾœŠ=H°ÅÁƒÆáöÂ:Oà´s¿ßo‡ Lj}M*ï X+M„.ëz²á¨8úõyVÃÒ¿ ¨ôÌíˆ ¿?ñâxÂÑëË©vÚ}Ü#gDÛÛÖ¿{È1ïc^öUX8~9NºŠx•ZŸÖ-ÂÙ¾< ‘«M4Ùd­ù»²}n­q^!8ÿâç¡-ož"]yÛôæ?.#ƒCO5D/Ÿ¯à¯f«Ï#gèÂÁ*ûq‘c9—}¸ì’Ÿ“àQŒ«3rÖªrÄõæÞ/ÇïåÓÚ¨Ï\†ÜRߨ§W—%wyi˜ ò£-ÂL/™¢àðš øœë(tQ{g½|ŠŒ¿·â–ŠÕ£RŽ@‰âœì°Wþ(mËb.(}.8n&x±¤(·„0rʦnØ{¨M{”}ÉÜe…ns"oØ[åÓÏdZ5ùˆò›[ל‰´C/‡÷q§þ¼ë‡êÁu¾ªÑÆC±•—Õqá0›ßÛ®öÎîÑ]¸1ºÜ ¦17‡l­Ü…5Â2e« — oTµÏñ®÷õß`½>Ÿta­Y\4sp2fR|8ƒôS<Н‹ŸS%Ï#Ư‹‡¨¿êQþj¡ù±çËæb‰F;Hñ°&}_Œ“—Óüb\«•Ü=Ds V^›Ô¼v/¬zû`ÏNÓ ¬R|·[M±&Þ¥ûXSbÞñû¬%_GóênQà(ºÄSb¼»~Áèî܆Áé³üŠ€¡†@|0¢¸Ñ¤#4ƒ)Ååf<Ý.x óò‡<¥a3cµ9±°æV×åm~ØDñÂfNÅü_¤Õøë˜þCÏ™‡CÑÑÄ5»SàHq¿S¤¾ÖÙ $u¡ó¸ì"u?"¯q­g4<ºóöž¤Kûº ïâ íŸtá—ätcèø^µáŸÒÄnœ4öÄ;%S•wîõLaBxyIóÅQÁ-û LøÙZàøJØþå‰Smù@€óËzß5ßú1ÁÙëëÙuDæj¹#žÿ”¾9Î’þ'êø‡@Rì’ªôvw:°o“Muf"sâMO?!ýêÙBŽ¢9»1¿D–ÎõC¶ý¢vVn—qqÔõ¨~];á’ óp%S»Í¤yGqÍ¿$û[¾nl¿\´%çrÏõ˜ÓýÞTäŹÝÝFù§×ÎÚbÑ„ ¾ÄŒÒ)DQÊÂáÙÉOPœ±À¬áòŽàÏb^”„ÒËUG7š‚›×Vùe[×üô‹B¥>ñê‡ÛYÌÓ9òsüƒx‰ŠM]CísqgÿÏ[º­·£r¢ Y òä >âÅÞ½3GN{{f+ÉYYäa×{—ï‰}BÈ-jŽbá}sÒ&Ÿ6p yQûíXò«pDŒËŸß¬µÇ(^Ôè{ÖñW1ª5ÖpŸg¼¤[«I7$Ó Ö‘ŽêiÜë¤3¤|Ú2¹F¤&´îÌÆ ʱ9_çq,×ýÓXò·åä+!,œ +òsQ‡¬(ϲ|z7Ú-p@Íç)Ÿ´¦|rS;ÁÑ`Ó傯ºé}±™ôb Ýßâ7Ûªç f[wƒ=Ö1­‰I§·Q|½­ì²g˜36¯57¼'N…¶Ü~í—v¼6^? ;H‡]”OŒÙÜ®ì¤|r×þ‡÷ØaÍ—Ô턽”xÔç"¢ð¬XjJæex½&x“ÞïÒªð¡¼Þw˜ÒLãÁËà÷0`HDÞGº¦®a£Œ#ÅBA_ÓóäôGP'!Gð„‹ƒ3{#ÄðNÿ ¡Þ›åþé(޵„0b "–¤˜–„_žZÉ/ KD%*Z$³GÌ ×½Îµ»_xð8Íe¯_ >òѨÏ8Ë/»ïpëþ#nÉâŸÞntAÒ³&Aœ„"Åú¦ºéœ#8/¤Uk&¸íf¤¯š^yúnwdlølÅ¥bÈäÃkY ²îvã#d îØ 9Ó8¶..Ý0>aÂ;\¡øåå½¹C„Äy¤ûùßû/9Q1 …~|dеî®8v¹.Jg¯és×Ù·´5›¾æ.§o¡ëKäGà]W%ý÷ˆîçzr™Éq<4~<–kæÇIá<îäWYãcpq,Ønõö¶S|xfÁ…ç£Æßƒw…`;Ÿ^}æÖ5_Np|"ñüz!åHñžègbüªõmŸ[|φXùiBÓßI:$úé:ÒU}Šc ´Øâ_¿%L(Ž5#µ˜a¾­¤ì¬¥LÓJ›f7ŸÜdmlnúÆ¡±írl1µÜÓËg1lùðâÚNØ5Ö[ÓüIì(ÿ´£xÒîMÞó`_¿ÅÏdØQþdGëÝΜè*¤ ¶»÷ñ>l)O¶ ÚÅW¤ÏÙÑz´£û¶ÒöØÊ/_õWR}ÆxiÅŽûfó +ñÝvÊ'ùªÍìæp“áFùê®…çí?wšÇ£íK »‡'=¯@Ý ßÔ±2F=Àþ™ËF…¦œƒO5Nšߎð|4ã üø_Ón( lÑš£ ÎRøûð6\PÜè©ûu i "‚—½\Ûcg#„iew„Òu[›3?~Ö„w 8ÞZlœTÕ´x´ü"ãc ¹Ñ­5ALÑ„rŽ ËËÊä‹8ݲ¹Á÷ë]Ïe…×wÈãL'>a{…³ öz͇¶Aïu3f#ñ•yZú÷½H:iÚ4vÿ3¤ðì3<iíxbkôíZž…Ì‘«4Æ©áB¯¥ú‡ƒv#G«¯ÿ´¯õp‰_ÕÃWâªvBn“%®­b‘wo8çya(xùá…CÎx+ðB˜‚ÒÄšq¹v(ãÈv£JmTð2|•œXpîk¼h½æj<£¥xtõîGõhLª[šÒõ™_ àh+¬(>ÝDõ)ïjžz'`×CH¼$³¿7u‰ÏÃØJq©ÕU¶Q¼(é—PVÔ„Ó‚FCol¸í|66÷¶ÿxwfzÐìà¢äç7kÙƒÎï‚àJu ·‘©ÍþèŽ[šŒíÔ v=¸fáeÓîÄ{ù(hÉxpê[ëž<óæç¤ û¸EØËPÞ\´ÿÓÙ ûùtdxð«Dg(|)ïðãÃMß·8Ä{‰Í#~²x|Kë™ð_%,8ac×tÏ-éÄE¦¦x;8Z(Ô DS¯È T¸í¹¿¶­qÔLðDã¼W-`?Âø²¥Êy„ ËnÂ?dì]1ð#"¨y‚ê­'=ÔûNE—;þ°¼‡(Š¢ùòÑëRĸ_‹³õ‹Bì™úg÷»‰8Š+â©.zær¬h?$ðå'µËH¼#*’6Õ™q[kRh¦†Ê¾…;n@Z>!X‡´Û|"·é¼< ¿ ž¦ß»"sžNjà¹È[wØîÁÓqa̧ûyW["›Ë’?ßÙ >¨jÒb .RÜ}yÔN‘/à å9×løB6n¬Èß1r…r.ò¨>SÀ³•ùFØ)ë‡"ºÞ ¡Àƒ›T*«Ãš Q.KNÕ¾Q…;ü2¹‘†J!¬^‡»o…À÷§Ć=FÏM8*•Ö‘Õe¢)^ã-1NãHíMåÓÃOb—½÷jƒ¥”/©Q?a!ù©X—‘ê¡TOë­bþ&ÖUÖ÷ ã0¢ú·)ñ»y“ÊŠ|×ë°Ø¡læ<–T¿°z¸Sîý¬6°¾+¿òÍOlâ²pîVaCy£M¤—ñÖÁfòëÍOû¾;[(´­´üø£W•ä¯[É_¤¾B_>0q#­gGâ §{Å}ÜC2$ÝÚAq¯3ŸÕè,ëᇃñó.Šowó«¾^2öĵá︦¾²C%"ù‡*¼¨nµÎ¿¿›P¸ƒNû²f¥#qàtðèÃÍÏÃO(ïÕÆAóaêå~šۯGnís G„r„ü«œŽŽß£Š@¿eQ›~¾BÐ(!CPvÞ݆™ï̉þ¦Ž“üÁ÷È›#²[ý¾å#ª,"B_—NËm!åLj'Ã( ðµ3’ ‚~·ãS"óÆNíˆÎFSÛ$ãäû\d$‡HªŸDwwÄÈ”ŸõŽr!=4Å!Li,Å£Žôû‹uú Ž| xXêWhPý@¬oŠõUŠÏfíí¦\4à!fÒï3êÓ¨Î!Å×Åωý‹ùÇ.¢8TòP©~Jñïrú}µ_+7ª›öÏú‹Ò ½;÷×…pG£æ}Ž,–T¥Ký)o¥º˜·®Uç¹Ôšúêõ ÃÍ¡GÏKŒÇ7ð]­~5u:¯ù­9ñ‹%Õ›E¾yÁ6]ö(êê=l¥ºõ6þg Ç»|ÆéðþŽƒýF¦ÂÙPXÐp5J·?÷¦6v†~ü§·TÙKy™'}ßKXFfð&ÞÜÿ&õýáÆ8¬â53~µúùýîKv…“p„âéªcò¬g2Á-…‰U™§?¶7C(ÕsŽ 1x\¤{áÝ…T9Az9^HD½¼£ÚÎC¹ˆáYj‘â¨owšoãYGá —•!© BY{ï‡Ýân IEB€Šêï¥Q>—Îe!˲ÌÁÝÑIgd9äŒKö6Av7~AÔCN†ŽAÊýï¸Ä-Í^uq…oómÛŽ«Ïÿú:õ§®Sž»¤nÇ}ÉÈ[2µöézÈç³Éa»Q „½r(¤uYüz™Éž sªö3Ú%´nrßÒ=º·¨N^6U 0ܦ¼­Ü¢-·âÓPáf¥ðxÊAÜáË8‘PIuçJ!MŽ»f3§+½RÀ6ŽßU*b3'¾[VuÅ:>I=ƒƒu^7:íü`ô†Úæ»3#Ûn‘üOìŠ~5•tnõ)”i]N :èxòñ8ê™ óM&ýœFëF¬«ŠõT±)úý<:ÿ|Šk%Ý÷ Pœ)îꮤ×â¾1~–ꯢ¿“~­ ºŒèï«i1._K矛W‹û¤¾ù›1Õ=¥~Õ'Äþ%ÕÓ¬)¾²¡ºçfª_‰u"±ß!晎É®Ëø 'ž4±ÃÊírÇ]¸ÐyÜ9\…]»øÄÊî”'{Lç "ªð¤ûÙljšQúVxoúŸ ê³5i}Šº[Mï:*Þ½~„‘BâŽíêÚGùåïôEê÷Ê\¾øEkÞÞ覈ÚfݳI($!ŽžãiŠÿϼ "H$ÝOR¤¤ …¤ 8¦8æÚ[.¬îsd|³÷¨:ÐYžBÙÝ4ÃÅn|¢¯ŒËTG¸JyÛu.ªà3˜\.Šltþ0òt~켕øùG„ƒ‚›Ówç7AQ[¡†b¡\ªŽ/ž 3PZ´¿cÜ¢ù§'K˜ú~¢Ž.§}3+¨¿ðkãûˆ‡ÖPÝS¬‹y²>åÃÔÏÙHúdB:,æÕænñ=”Oƒ%·šƒoÀúìäÙs‡ Åf¾ú¿* ¶tÝ[½…ÀÛ4¸ˆ¯iÌvòsg^>Jbáz­gGÕØ%”!;ÂÖ§À:jðL#‹t;›OË¥áâHA8q‰âÙ+»êžX½a ®ñi`V6n´ã7`ÝB®]íݾy#oÓ??ˆ|×PûOP@ùl!_n.ÉAÕY‹¯ØM¶PöA ÿó·zƒ› »r ó·ØN¿’<´Æ…6„ Ê©^ZAç½#´G5ÿ]iÝ‹õzq?Šo7Þ1®JuN1^õhÕ]¦RÜ*ê™2醨wã(þc)~±¨—¿êâTŠ ¥x–üVœWE(÷-©ÙŸCçuSìcªÒuü«~Šº)î'õ’ôd)õã4ˆgÄþ©èÇ’NR°†úzb¾+ö¥x6T(ìÁ°“ ô5ýN \x3Š͉‡,i_“•PÖ´•ú‹[¨¾i'lÚ òûm´ŸÇ‰òéíTï÷-J}Eª/ï¡þ‹ñŽ'ßu7Ò„p»_ʰŸg6ê8@u?¡ ½—r^/ìã•Aüé¥ dÍš+arwp”Ü7Svýf{—!µ¥¼±z»×RDñáþý|ĸñ ò׈›cv¡Óæ~ˆ2äÇé«ýpVîέǸҿ š )q·ýÀ¾M*¤×µ‘&l0@:ß^¨s™ÚIõ¾>ÏÂÊ;³ÏòÇqÑõ3Ï8¸Ì³Ò¬¸j!$€¸î8鬃¼rµÜmrY!ϵ·òO}ÅŠŠú?ÝTøã=ŠW–×$ %ÄË¥eü„/p«­Ð`¨ñCÊãËí:p¿¸5*ö N«×Á¿é¡;íƒs¡¼ÁšúxÇù¶@cO˜Ó¾GŠãDýõIÜG#êä¯yãâë9¤Gs©°€ò·EÔ7ãÃeäG«èò ®®¯¯ÇyL!r ŸÏP@ÞmᢀöÕò»ÛfEíï)¡}­¥Ô¿ÅgÙ¶&5~Hý¸rÚ_WÁ±üŠÜ$Ü¡ý ÿ—R}OÜo,Ö%C_<å¿)ísã³åäWâ>4qß‹WJy#ù­˜7N!šBº3ú†³hÿš¸ïMÌCEýuGôKmò§5¾ÑIu$i¿7é¥å{úù<‘)À€òƒ Ô/‘ösÓ¾kcªã˜™~Ô0'?² ]¶­2äIrXÓþ7Ò·-¶«RÿqëÎFµ+dù5~Iûœ(ÚAu{ÒWzn;ùloKì¦~åaÛB]xðá´û^xòmÜ]jꪂša¿ÑIçzú=àó—žuÿeð5]½ß°™1¸Ebœ2`"Ñú=LuH>º­Ó Tß <2k¡cÄ>­•wLÝ•ŽàÁÂQ ËP!—„ Ûå·®w’ôNì†ñÿWY‚pÚŸÁo¯[ýÇ©Ÿu’öÏÚsiyU]N;ñ‘ìkâÖ^'xEDÌ‹¡Öù5@,¿½ _â¨/w:EhÔ!žú…gør‘ÎOœ¥}e‰´¯ )­3á<õ}Òiÿ[æ=A‘Mºvñí€ÜA•¸"<¾¸Îgó|[È'¨ÁÈçVʼn€%( ïñ»ä†œGñK÷–:_F)ñßͧgÏwߣ]ã‡6ü†‰|”Ó¼þÕÄzçè^SîÿÕ]bët}övì)¾ó #<›[†@+,:ÎÓk¤[bœ'Æ…R†â(ÑߤzÍ/qªxœD~'æ‹b½UŒÅ8QŠÅ: }NÌó´ÈÿWR^<Š×-æ‹â瞥”'’n‹Ÿ—öˆûXE¿ë¨tŸâþT½ºUS'ûÄzª'‰nÈßî»ôLh­YH½Åý;dH}+&±)Gø¡¥}Þö]„HÇç:¸.8Œí|Õa¤œ©~åF}‚]ªÂ†«š>¥X7¥ý1^Î#4Ýî´‚÷ð2~ÇÖÿÃÞ›‡åÔwïÃ¥dÊP!J*™‡$4Ï*Sf%TTŠR"%DD%’"CÑ 4¢45Ï“!!óœéwí}¯ÏvÿòÜßçy÷8Þçýã{÷>.R×°Ûk¯µÎužç‚KÈ·ôÆübÁÒä­}¯@À¦‚=ÉróŽàã&_ßHºBòUÃÆ—(ñJ.?Ïe€é.Ûƒº *!L<ƒäO^:‰ºpAOúêC2›?o$d³ƒ|HDÞHÖ‘ÉÈ‹JMÄûIHG^ûMYçMý’t ‹¹ ´B.[V@êJòÓb'47B~®Bì‹™¶Ö¾J1o—ýE¤… äuV³cá£P3½CA-òmëæ›2õÈûi`e’Ð(¼œa¦AïäOï Íblbœ'µNcgж`óUÞ[†»Ú вîY0 ¸ïôvú¤Hex€ï£]?©ÚáxêßúÿêÀcˆ×Ù!î@ù/>XÿQ¾õìcè¼Æö— ð: ýŸ^/s0ïÍÆïŸù‘þ] qÌ½ã”Æ5íi?Jó)×7RÞ*Î1i^¦ùöŸðV-ì«h]Mã__‡Þè¼S/k;¯3/çx Oý#_ã}‹Î=8y –ˆ3ý£býh‹|ŽG4¹¬füŠ­p)›¿ü­§Â>“Î?ð:sV]$WðæwsrG7¸²òƒéàÆ 9G#Áƒ¥ÿ8ƒü¯s“C˜Éôïy&ò½¼ƒi/\bÓôjðÍd=[à2òÚ*oWÛÝ–@(“nd@8;Θ‘ˆgD3c´)o!–•ƒôƒkøº ¼àæµÞèVi3ï›#$#Ÿ2ÍüCÛƒ³šü[L7#d ÙQ¯g \;í'øá<ã2Î37gáe¥uÑ‹!çÚáÌsÖ9ˆ¹“ë"j Qlù Ño˜:bQowgFªd¯Odd˜{Aεqžž„ýn Ûþ@ÿ0† ô{N8föY†\œÓça»oTÿ—+¡€•Y…"&;4‡bfJ7ë+”2pŸû(Gýf%CHþÕly°j˜*†_ j×Þa$¨cÚ‘ÿµ8¤ó§}6¦LGÈñbX6Û9؈×?Š_Ò˜%€A^— Ì8Œ÷«¼1‚m¬áòyz©ï=Hbªø‘o õz©¨kOg¢q«*d"ns‹¥W+AÃÖYÐ9ˆËæá} ã¸ëîbä»–þ`‰¦PŽz•*n6„–N-µ¨×ùoÅ¡;ÖwG‘Ïi8_˜#4®ãôé›p>GñÚ_Q¾ Åkhž¢u)þ1?¤yŸ‡Ö³4~iŸGçk0?öæ©R$׿Ñ9¾W_bž£÷Êcãø0øÛñŠçŸ«CQoïÎÒ×Ái|O3Ÿ›ß_@œÓ›yÖYjp±*–QÈÓŽ½«?–äéàó&—Oè'ã W9Ö9¾7X1ºè€`ÄBð}†!_3¼†ZOC$Îe¢JýŸ7¢›»/æ¼Y1ˆÛǪ37€«pùÏqJ"¼;ëJ¸Ž|ëë‹ÍU¤ Q”½Ð ‰ïÔ@ #ó¼ ©g•=‘‚4¦Ì•ò‚Liè¶…¬Í,±rýcçÕœ™ù¬,D ýYB1”­z––# elø­…ÊØG>ªVxyñ/Ü´–AËw\û¯Å!½/Sýí».ý`npϸú‹ÆÅ5i^£u!­{óÚh¼Ñº“â7´O¤ý!7Š“èbýHñM#Ì[”7Êé©ÿÎè#õ±1Á81Æë‡â ÿ”ê1Ïšà\Ÿþ<ç§AõÀXPÿ›x>hž¥sL›]lƒÄÍ+¹ºqÖøùì‘~óÊQÌûNø¾ŽáüÀ¥Y¿¤Tqœ@=ÆIÔ£ºaopïgq®~õRŒÞþ¸Ÿ Þz,.!àóž)4{¸¹F ›Ã<ÏÁˆ“…°°æcéäúŽsÐÈ%lƒø;O"å*þ¾®msc&Ž>37&·—¶Ô-…D쓱ïI‰‰¼dž i* qÄ Ò‘'”é.Å †p çXÙlÙ3 rqΑ‡sò|¬o pŽP4–½QB1s¶WC)[ÞIÂf¬3¶ʱo©ÅNPù¸š©Š7ÅCMçÊeu×- –¥ì‡:vœ# uÏT'¨g~½ 㡡ߊc|†B^· ¨Kkdèl׎A#Ö_MrŸWg}…&¬Ûš÷ÔŒõMóæ²Á‘m_ 8ZwžGÞ)Í;4ïÑú’ÆÍwï¤øçü¼´œ…yL¿³0niIó%Í£4¾iž¥¸íïh]ËᣘéûäpR¬k)Ÿ€êþ鼓òh]Lý¨ßå›sù?'ç—ƒÏÃåYœ³nCþ‡—bËñNQ§µ ñVês³ÏÇ;E¿N·~4ÏR2çkƒÏãÔ£÷YT"Ž¡¿7·T4qlÕ×2FÙnxÞÜ/2ò 8Ý™<~˦Î/å<£F×™°¿õƹ ç³Q¹yá’O\^ <,Ã(â!xŽUa£Š+„ ^0ìUè€Ø°kÉë.%‚²!uQWÑêê@°ÎHœ&.økÑBHFŒTÔ ¦£^#“¹Œ¾=…[¬ÜO rЇ‰òMoã<©€¹-<«€"¼ÿ£þ¤㪌±Û k‚ ì+«Ä› ©6B5 «C “ä@ úaÕžd¥PÇÐ׫ Ž•Wóóò(Û`A=Ö%õ˜§ôïñ"ï4°òË9ЈõY#ê¼Ñçú»P~1Å%½ÙËe ‡ô:¦×?Íc½ó å§Ñù7Ç ñ‰ï~â.”—Fyô~@qLŠƒrøe/¨1[F àòÕWa^¦|??ÿþ‡ŸÎoè<‚Ë›˜_iÞ¥õ,7G¤: |>Ž·FñRÌßÜëÊç>|ŽüÃÑÅ=}‡Ïÿü;/âïé8êî]U”ˆ¸apÿ)Å;3à êißOuû^ÇíÞE„[ÂEV6¹|¤Y üF3t\žË ç¸8 ÂóÇéÑW*Üàf~Æjoˆ@fc#–‘ 1 <ù: bßöQš?Á†Ó;ůcY¸ÁÊ×@"ö«Éè–‚ù=¥ïB:↙è;q«5&€ô[ÊeáÏe‡¾‚·‰€MEÉ~(àU¼+Š"(@‰ú†1¥¥R ãÊPWR1@¼1uÓe¨dØoój¡ó[ Ko“…ZœëÖ1•y õ¼fXwx&4LgWhøþôê~ShLf  É´éÍË®ÐÌ”# 9h$ã-lºr€vÌ9Z¥YÀZ=˜ÿh}É8vÉB7U9s89;Óþï,âæt^Açt½y¤4Ѻ“›büÒ¼GóàL¼®i~¤y“æSZÏrsÃ^óÂÞå1rsEŒÿÞ¾8\þ¤x)åÝÑæx§tžˆsÎÿ†Î‘‡´ß7ÿÇ×·Âø·A¾ö̯”_¸çùv'§õáµ.pq)Žo‡þ´Îqbmäáòã\0Oô·á}4pÅûçËQùj¨ZR'œA=Å9þµzžÊpž×¼ðB¼ß¿ˆ¾2>È{óc\j‡¼þƒpžGù9aìØÎ"0.¢‘׋yôÓ•ËhB⻉À›Ì~ŒáÊÒÚ–C:òÏ3Y»4 ÈÂ~+W%®@Î+n#ϵ€qù˜"EG62Ê1(1þ©é'YwT¾ËnŃ/r¿ùm ,5ly¼jñó×"¾SçÃsPϸ@N•„úï_ßVæÅ'úÿ4¢?NãMV( Mltš˜.gîShfªk‡¥Ð|è ÁÐ\Ç6p–M«öN³¯Ûä‹Óû?ÕQ^4í9DʯÁ럛ócGó$}¤u'̓ô:§sršïèõKçsÔ—ÉŠÉ’²º`ƒyã‹b¶yÊ{‡Ù‹¯Ç=Z2€Á$؇81å•R:×;ˆz{êoHuÄÔƒž7'ömiýÖb]Iç~ÔoÄ?ÇIäŸÂú’« ×äüI%™=çYXÝ.°r†‘à…xßEŒ§KèŸáƒü(¿±ìÔ)0öIpû¢à>ìBÙ6„Ž`ÃóŽ}Kâ‘ìa+D1ªAS!ˆÁzí*Ög×5‚BˆG¿˜œ'r<µ›¬¡77LfƆ›/AбÆ)å•ÅŠs½ÔÇó¢.gÞ…4ö×.iŒ­GG4¤£7ÆŒB&k7:n!>”ƒ~…¹È‹È{üÙì‡{ä#®\€úÆÂ¥#WÍt"Ô”`*E½xòJË:™F”£¿hÅVx—ÙF*ѯ§’¡ô ‚JäW¡OMUÐ†Ë ú•@úØUfªUõ†m]]Õè¿P󓈻Ä8¢ó€Eòäx^T¯Gó7ŸÀ|öïx5´¤4Òú•æYÇ4>é\ŸóYÄù>õ9åtQ½tÔ˜òÆi]ÊÕ›XwqüœËoÃçåæ!x¿ÿC'AykÔ·u*{ñüqy‹òQqînçå0æ?ê‹ãˆzmgœ7Ò:Ôï'Çs\Œý|Ž«GO"ŸìÖƒ/•â¨è—qqÎó+YB6ÇsóbÂyD0\œGrgÎô…KØ/ú"Áçu¿ däð¯!ù˜Áì¯BÑß3ŒM/Ë Âžd JŽ!‰s}` ú¥Å2pæ„Wpý`®1i$> ®£_Z‚<#Ü?7ðzºþV‰LvÓ2„$V¦«ɬ\ù0¤â}0}+@„Ìu;ô·¼Œ„[q¬c*ä°2ycÈÃûl>ÖC·Ghä‡BôÝ)Zò‘願‘SšÞæõ‘MÌJN?ˆO{¥øó¥¾¬1Üaiø‚p‡µ«wîns3»eX”±0Õ(Ã멜±{N¿ åëÌj(Çç-g—\ýÇ|j·w§qáx•G¥q@ë6ZÏõžöÖCQü…Ãaðz¥8 ÅI)Bû2ŠwlÇ:Ìõz´ï¢þÚT÷¾óõsÛ‡þØûwã±®Ýújšÿ¨.ò>9*7ˆ‡P¿'ôµpF=ë1Ä]pÞH}m\W;©kÞÄñyO±61æ\xñOì ¹ÈgýÂp_·}Œ Ñ— ç-%èKVÚE§˜ÿZ>¤|CŠP_Þÿ͇ÿ›ÿ7þ—i¾ þ¸4F_cŠÓÐùíë(NCç€4îzã5™†ßG)ßö‹?¡s¼ž©.‘ó×Çù‡›b^¦xfoÜ”›RŸÄO(ö)Ÿ”Îñy©å©ý¡»ÂûÇWCœ™ú€ÛàûáæŠÔÿþžN§|,GvÌ¡Î:ö=>gs~UÇUàj~pEúd¹£ñ–V:ü·ƒ}Y=¸Àجõ4ýö¿Àùœ¯§ÒÙþKeÀã%ý¯ƒ°n fÔE ”Q?iëCúpD0v]¢~e¾š—‘¦C  &“áêz– þÛß”•ãjýÆOч‘A[€&…×L¯µ3†4&ò›AƒÆZ{ÁMv<7²ÐŸ-ýŠóç—ÏЈšÞÂmE’K‡BVbEÈ/‘aªPÊØÎ}¼ eèoQÁ¸aè'CÛnnê[ Ðd5¬Li/Ô¢@3†”ð€º<ÖØêMY‚Ô3í·˜74 ž¹ñ„FÄ…Ñg«‰—Lm[E¡ ë¡f!(Zͬ}ßZ؃¾åt.NyÕT_Cçm”'CãŽæ5ŠwR\”â¡Ó1ÏMƸž„×}œŠùŽÆiï9"sšg{ëÿ¯ô<µ7ŽúïðSŒª[æ|Æ)~JõûXçÒûÇCG7_¤:*Ĺ(?་>]tÕapsE:÷Àùõ­;€¼'êOwyœƒúçy%EzH€ ûë_ÅÍOâãú2p|SÄû¸y"¾ ÌéïoÔƒÐúØù$þ8 dm¿!¨’!Ì<…ôû ºÆðVÆi DI1ÄSÀ~âX;ã) ¼—qö„è“ÄŒÝï¶A £²U+…tÜ“”‰üCÖÝVð9ä°rUÈcé®jÏ´+cà€AowäCòõJ÷ìmsák_<Êп´ë©*äÍU£¿E ÞÇjû3XP‹ºÿ:äÃ×aÝ[û@7Ôp6.…äÙ6â¾›FäÕÒzŠÎÁèüö/”¿F¯cŠÒù=̓”ßMç„4ßѸ¤ñHé|ŸÎ)è|þŸòáz#äPÞ)—çð‘ÖÓ´¥óNAýj¨㎛'Ò¿S=}=|¿4¿r<îÞúDÌoœÆ÷.¬­1ïr~ûx]R^܃ºSÞþÖ7Q}šq_Œ úŸÑ9ÄIv,=NÉ œ(:ò<zðø+¿ý†‘7va`Ï̾QÀ«Œèê„uÃEœ3û`ì×ð8Ìe’ùož ÖÁ¨s A<2ì0ÓuCê8¢0žcÄY¡ôï9=kw´ âqN~ƒ5A"{€$ÖVj,¤ O& ÏOÆš^æÚ7™2@1²Ørú0äâþ£<ô/ÏÇûbú2´· éPÄÜ&=„¶ Ûwpž_ÆlÛ8ø*™n|’T£@ £âXV5XÿÕ¢Ÿ~kËqêÑ÷¾ýGÛˆýh#K{ŒY/ÅAæÏæ™.¼35š½™ÔšqÎÚ‚yÛŠ¡ù_ÿÆÍ hÿå‚{(?…Îéi¼õÖQм&×)­?iþ›ˆñ9ãÆ#+Ò:öŸòá?é-h~ü#OþÓ#Õ1Ò<úOºŒ^û7¸üˆùúzÐ9Ç¿Áçùc_ÕaP"+b}ùÇ\çD\?Šçƒ›Ó nÃí}£yãÈïç_ŽÎWر—cl1¬ÚÀå3k 'ZàÅï·žª¤Tq°ßRð@ÿBOÔ'ŸÛÀ&Ðß>È'GؘÛ‘ïãÃŒ½3ÊÀy‡`Ãp\ùÅ ð!ø+ $A(öiáÈëüK.ØûýÚSÈ äd!ç7زÙ’²™iO åîXæ éìº ÈD¿˜,^–æ…ä2ãÏY‡þ‰ùßX+(`×8­€"ä—–0[à”ÀfÛœ•!”³éw-Tna $K šµ/0€jäIÔÔ3ÄzK¨EzAO\KzÔEÔ£ž¹Ùž5¾î`~3ÐÈʪwCc#0K‚&–>gM7âç ¯,çrÖМ«Oé¼î"Kk8ÌåGNˆ¸Ç?ù%þÓôÊ´Žíͧ¡x+ÕåÒëúu˜—{×w½÷6Y`ýcß!ú$ѽ0VXîFüÍšòýf´–Üc÷Û/ãÎýE÷!O’òÎìp¿·ÿöyT„z'äG9óš.‡ÛÁà‚Ÿ÷òO¹}1ŒË’ð ðÀ9Ý|Ÿg7µXZòO„sˆ_]@ªck}òx㾇K‹X£MðÁº•ãwã~Ë€¿ Ÿà â~Á̶°1‚¸1H¬‚ЉN˵] l “½!ùÈÜ\‘ÙBµ|D³é{:Ä2åÙ"g¸Ê+þæÛëÀµí¬®£ßhú4Þ@=L"žŸ$VŽ¡ÉÈ_MEœ6q5Ü ™È“½…zŒlÔEç _in# HCêîóÙ±íZ(`NÏ(Ä=ˆE¸®ýŠK­#r;(ýQåè«U÷µJæoº· Šaí¬U†j¦}ÝÒÕ8ÿ¯féEý¡FHÞ…MvÔ Ÿ¼æ&Klƒf«ÏŠ2¨Eþ[-òskw†{•iÀQýw™ÒÆœþê\ϳ´€ùœ‰â—4ôæqsñFy4˜Çh]Jóä?ñi8üëF:ßàx5ø>8bš¯0žÿàÃôâr¾lxŸ¡x+õÙ¡üŽGŠyŸÎk¸ýo¨· ¸ ·/û5ºO‘úãpõ(æ…ÝX/Ó¸¦ûŸ8Ÿ*܃CõTtnÂ驨®ö{èq çÕǤ™OÎé»)üÔ©"¶¯q>mg|Á]pq.¶ŠVú¿9MàÅŽ7øÁ› ‹p}}DbÎ:ðE>¶?ÖW¨ a±$ç÷a¸ÿ.}ò#ÿˆÂüƒºˆ«èK~uc ìPH eÕ8¾i êÁRѯ8µ35‡ Ä…o.î6JYˆ·ä ^2Oy›yìú&ÈgËÀiP Ä¬AaqÅ)ù@(6cˆçPÂÚ›p¾Rwï)»Â ”£oHòy*‘·VÉÚ°‹Bk§ºª…ÙÄÕ¸g²ëÒê*ÖØj9§D0Ç ¦ó8ªKð9Á,<ã®Gʦ¸ Å9zë‚{ëzë‚i¼Òø¥õ$'ZïÑøçtØ·Q¼Akwnì r<-‰èËKý“yU)…1¤`ÞHc\¦4ý ƒ‘Þ~·Ð_#ë{Ç^ 9Ìm‚ï)äb¿š‡ù9_“1V{·Y9„0ãáPÈÐ} NBÑé,ÑÅ‘ã }WK™-8ƒB¡Lþ/bê+R¾>ÕÏÒºò¦h¾ z_šzó¹i¼õÆO{óJ¹|ˆÿÎñKñçÿȇ˜o8ŸoŒcÊ££<ê_Eýù{çAŠûP<øŸò;rþý˜_ÿØNû:ª¯GžÁþ3ø¾¨®“Öÿ¶øóûpî`‡znoÎŽ /±#;^ NÌ6<8†÷ :_<údÎgßÏØgr}ÝÅL¯”Á…¿>Ö ÞÈ?àtRx?äâùÑè—HuŠ!ŒÚN©BÛßSö‰5`„†…h‘x¿‰ú«Q„ÜCz•YÏ£‘×ðþÀЊ¢!ñý¤¿Hai¢3 uŽiè—ÎÒZ!ëâ›ìi€lÌG¹È;ÌC_»üâôs P€{< qÿñ+R\œÎ稾âîé¢yŠâ$tnÁù@ýƒ¾‰Ö¡t>AqúHã“>3Ð9·ç‚âxpñ‚8åWs¸'ÕMP¿nê[Cu½üÝ(îÉÍ©7Å?©N˜ÖˆgR¾+õSµ@ ìsi>¶Ä¼O}V¹}ÞÈ#àâë¤}x>¹ú”îïÆçsPIX‘*”G‘¿Áùê3iã~gíõU8þŽî‹¢{nΰ6žpý³9ÿÖhñw_‰ñìëásPwJøã«?v0Aè;ÌÀž…Ç ” ‹ü Wd4Dа@0D3k›¶¹A,ú|ƱðÊ>¸nÅS Êæ9òm)W ç))8ßOC}mî=¼iÃÞ@ ã)‡•óAê³òq~Q€ød!úncÜ—ú²… ”1iH= *pY…¸vu8+†š vPµ¬lq%Ô!ßµž×œ¨¿ Xß7"ߦ)œ!øŒ€f†lt Zgh3b7à.{»”ƒûÓYB:<ÀùR;+ÍùzÒø£s úû¥ù‡Æ Å5{ç9ŠR´7>*‡u&}¤8*3Ò8¦ñÝ[¯ÏñâðuÿÀQ{á§ÿˆR_ªkÄ×£óCÚs~5´ß¤y–ú€£>‹ö›œ8å÷à}ƒã ÞÊÍ©ž™Î)ç›èËFó*Å‘lPçÈùPÞ¯è^U{äÃÎdÑà(»æDñ·þ‚îÃÀ¾í›nà$ÎKNjÕbð@_”3ègÀíÆºØ ý,¼»¾ñÝÊÞÊù§ú¡î÷2^Wp}0³FEò5„àï- ÷ÛE0ë~?Å@K±ìËÏâöa$ð.þQSýàk7ÀË,M| ¤ þ/çYãYÈbáå…‹¾ôyÕlá ·™,9æ&²By(F>`)~ž2V‡U©l Õ8ÿ¨a¦±\¡–Û´fB=öG Œ,Cé,4^bAÎ[p~ÕÊŽeLá.ËV÷Y:û@hgí -8<‘óÁëÜýYèõJ〫?1¾zçÁšãÓx¤ñI¿â¦½ù¦œ_ ­')ž‚ï‡ÛÏùˆó_Ã÷GùmtîHãóe£úC:¤ûdáø4tÏÕëã¼õýÝ8ϧ¾çÛ‘Ïö‡oî1܉{º¨?Ž Æ7ç«{9ý>~N{¬è~â£ì¢èFpFÝÄ1ôU;Ž}³+îï£ó`ü9Ïv@çØ¶Çî7•î-¥{'ð³b„{›á2^ÿ¸‡‰Óí3[ïµ›~ï™aí¿WC”;cdóbÎ1càjºÚ»ª‹ À\Ô¼ è+Çí¿`à|Ã4HalO-!q•Ú»2Ö±€0ÜdÖm(Þ,œ3æ4²†¬‡sÆü*w¢M{¡`+»HŠ÷á-¯ ç ¥ŒmÀõ P†ýaòn«ªnauL†–&$ µ¸—µùõ, `>4>ôIÝq¿F³€Îì“#¡÷-¶"ß­­üÌ£8E9¸ÇØjþ‚ûØo¶3pÓcÐΔ로_=½ÏÓyÙaÔMÒøàæ†˜gzÏ ÿ]‡ñJé÷ÑŸ§ý"‡ã`^¢s:O¤}iïüHç&ÿî‘ò8?Ï?æIêë†ñËù Ò½ø¾8=oþ+õA¦óDì?9ŸrªS¤:~Ê@|’Î_,ÑíßæEô ?À{“Sݸ9"Ý“L÷;r{±~8޼cN_Œ{}éžðÓ¸oÔ3%ÌÀ9ôû½À®±7oÞ‹Í[ —ðþã‹ûáü‘LjþAì:¸þ¢Ë¸@hO#Ãlåö,F¡Ÿc ï세¤ÎýóH.ÄײF4pã2+”†$ôULÁ}f錌Ìñ!d&³ÄQÈÂ9~.ÖñyoXÜÆ½’…¸ß­÷‹–â|²ŒYÓØ ØT骪} j0ï×bX‡÷µzܓـz¯F̛͌[ˆU´ /H›úø¤ñžp—q’x÷Y¸œW—¢/óRŸzÚGǺ‹^O4>)>JãÖ«½}1zóihŸHi_Iãâ@ôõhþâê8š—¨žömÔ7uœ¯>æ!Êg1G~„â žŠzhêçËíÉ þm¼f~ëé¬ß{1(¾‚|Žýè›A}˜ÿÐmн¨¨§¾ÝÜþSŒcêoÈíéF~Íñ•Ì · N „Û£F犸o†Î!Ρ/îyÔß^À=ÜDœ×û`œú²—W?ðG?´€ÛA?ŒŸ­…+_Ûf3ã›p`ѽݾ¿÷>¡n ‚É:òo! ñÙèKÇÑß>¦ØO^Ç=ï X?&àõrã!iˆãG—5HÆ9zª c`/ i¸8ãò&꘩N?õÁ¹}Ø…¿'<°zÿEÈgí¼§ÂmÞÝŒ×B!úì_g ¤PÊl¥·†2ܳQΤéúgÜ^¨J¬ªÙµÀS šMsC ¦š1‘„Zœ××aŸYÄõ¡ý8Ó ‘…e 4µ+ ß=¹ZD˜ ·Z§j ó•ÓÐ÷˜v6/ànŠgкî êl©Îæ š—h×{nHûFZ—Ò¸£ù’þþûºüÂM{ùzsüš·èÞ§ÊWø¾h_Çù½QŸbÊŸC^‡›R^9æ!ÎwŸÏçdœ_õ•¢üZŸâóÍÀ>ŸãS¿Rªã¢¾Rtï õ£þÏtß“#/zÖtxýÖ!#^qœQIÍÚ®è§ï†ŸËsTw|Š.áÞ8¾ ÅopÍ%Ì—/€MKâpù¨,-[ ‚°Ïâø3¨¯Ã=há¸.uðÑÈóŒelu’Ó Ž]¯râY›ßE¿}ï3¦>$ãçJ “`*HcaçùÁË6¼Kn2öÜ÷®AÎsqÞ“ÇÒõVÃí½»Lܵl!EèW|ðçk£a(ŽÉwض_Êb6ÔA%âÊÕ˜gkðóÖª²D@¨cm­¡õö ìº=1hbÖ¼y¹C3“mÎ…–VV  m juĉã9™á^>šw¼Ï¥}#Å-¨_ÅG¸ùE/¾)OZoÒ¸£õ,cßTÏHãÖmܼ¼÷œ —O=×w!.H÷LPœ’æ;zÝS~'ÝwF¯[ÔQì½Ç týö+ÅÏs÷bqûA™6ÿpŽèÐù\ÙÂí÷=‚¸¨#âÑÜžoêwO÷Î`¼qº ªkŠre˜*p ëwô8ÏÏù%þeøü×Ýk´x±4;ðf¶À¬j‚KL>#|à³^6wñd¸Œ÷އ=„5høÿî±ÿð{¯ÎË"0/sóCô«eƆ[N@æëÌ65%H@¼4áqúa^ 7pOb"£Š?¼’ð¼%·°@H]3±ÞIz?¤ãžªLäSßÄ}:Y¼³Ã»•B6»¾m=ä²mûjÈEŸS†%öc0ä³°å8(`.ß¶2(BÅ’ó„Rä©”M½>eï¥(,É»3Žƒ ä½Vîc m¨b׎„jÔ•Õ`ßR‹{Ûê›q8¨G¿ÿì£q_VâHÍÌÔuB<´¢£¥á;Â]Ü'D¯z§¸Å9¬Ç¨_?ÚgÑþ­7nÓ[wAã®wÒ¼Iq:ç§qLûBúz\ס˜â›Üüòh¨^‘ú¯õÂ{6âç¡8翆yò8¨Þz'Äé¾n~ˆuÕ+ryµ»œÂù²Ñz×ñ¶½˜Gé¾C—¡ùñÖ›ÿ„‹=ƒ,½áú~Äú“ãÓÏÒÇ‚KÇ6oÜCtý |’éqðcPÉÁù-xý]1`3(/ž¼ú{Çà%£¸Wí ç1aȃÀω¸b4êòb×ÿßs ÜŸ€þ§‰8ŸJ¾%ç‘©,=m¤cˆ;‘ûoâëeãûÊe/è3þ0·.`Tš:P„õB1î«/Å=£wЫœ•y¨üö±AܸfÓÈ[@íö†uŠÊ 2õú Ñþ(4œÿëßȬ™ŠK€fÖÞ¹´`œµÍÆË|‡ùøûðñ ùÅÇÇ7Œwôåx‡ ½™‰-þYÀÄÜŒþq¯ÙAú¶&Ûè—ù÷üõ4rÌÓ æ}œø˜ÿÄvýõõqôéùñššì3‘ßnkbÅ<ÅÏ¿¾Ë€þ4ï;ú•óŽ ÞQÉ;ªxG5ï¨áµ¼£ŽwÔÿõsô`~~%ýy Þ¿{󎋼ãïðá¾¼ÃwøóŽË¼#€wòŽ+¼#ˆwóŽÞÊ;ÂxG8ïˆà‘¼#ŠwDóŽÞË;®òŽ8Þqw\çñ¼#wÜà‰¼#‰w$óŽÞ‘Ê;ÒxG:ïÈà™¼ã&ï¸Å;²xG6ïÈá¹¼#wäóŽÛ¼£€wòŽ"ÞQÌ;JxG)ï¸Ã;ÊþóóÜCz^èÙǯÛ0_Â;†Â–Å#žþ¼Lâ~å¾yâ&Wo¹{ÕαF9Y‚ÎåxYQÁRØ2iUŒUT?µ ÚÆjõ3 ÁpîÚ-kO‚áÃ…'Æ[‚aÚÈ@•O0˜Äw kîsØüýÅÉc|À¤Siò÷wö`üàˆæaûÿûwHß× æ}}ï ññÉ3ïóןgâŸþöµYû³âßþ<ûožó·?ÏýÛŸ•ðÏ3è×¾á#s^øá ý¾GîßÔíêÿþoÿîgþÃ÷¦ü_zo*{]Õÿø=¨óñýW_§××ÿ~àóÎûÛkÌÿõÿ½–Ôþö= þáºúϯõþÿôÙÿóßí¿xŒ òÇt–ª’ÂL…Y¼ÿÿ|Åõ á×_ϤþëÿŸŸò_ý5èÏÿý“‹ÈÈ𓌭Éns³½2Ûm­­þ|aî6ñ¯.ËÞOØgŸõ¿{u¾ÿñ„˜¬¹wà¿ú+“]fóþíó÷ÿŸ¿¿Ìv³ÿìy†ýÏÃÿ¯Þ¢˜ /)›ÉXo—1Û½ÏÖþΨÚÿë3ªöÿ䌲ïôo×ÿ•Ä[Þ›Þg²u×ß ‰m¼oà=»mœÍž}zdÀP08­(UYÞ³¶äóº¢A‘9™-c­Iw¿‰2ÛäþÁØQSŽÄ‘†Æú¯ÍWš‹ýI€©J[u-Ba#)wßlÝ5‘ÜQÜ#îCJ6ŸsÏ­Œ!Å6râoýHQÏn»WJ¤xîòÑÉŸ7’âØŸuâJ¸ï¯˜™è­èy™TïnT?×Lj'4zºOˆÔ¤~,M{ALõ«ÍHãƒy¾q¢¤ÙèÁ+­TÒúÞçÑŠ¤5N6/ûJi3xå÷ŪiKÙ8h‡ðlÒöféà©+G‘»Ó” †“»wHØ­$÷Š«-¢Lî׈NJÌ×%íã>|2·'í7Ï9NPXJú&_ü±TŸ<òÚ¢¾o›é¸êm°<<’<~¨§¦ëAž,Ú#û#=†<­yªn~%‘<;ʧ°¦|ya¶jþr‹ òòd«íÄÝäuçÍoÑlòvéµAÖwé×Ò7xG>èÞ¾ß1|[°æ¥.ù"]vu é0y¢v,ù¾z‚ßz ò3åÊÕ—ÝéÀ÷q áÓ„>£ˆX«=¨»Ö _ÖB_= ó­_ÆA?y§¦ž¾0`³êÖl¤ÑõóÚìhxPц¶Zï’‘™ÛmvQWÅ Nï@ì“Z´tÃgGaµ.>Ÿö98O\F}½ë\f{¢SAjÌéèój>ÚwXGìBzqþ²³r0Î…¨ ²¬ƒñ2DÒÖY &<f'" “žh¶h=SGÅ+®Î¸Ó-œž"ÚfNýP{f1ÌâS^:2‚ÝK:>s¿¨½ïs¿MqP=ø ”Ÿè­þ‘á ªŸ®m¸ézÔfºßz>ô/{Ï7»ŒAýœ¹¦eµh<ñü`Ü>X¤ÛÒn=g,n<­om+KͦXûŒ=Ëú¼P¾•6–_ÿµÜù1¬4?{¿üÞxX=ø‹Œük¾é\óï Z;Â,ÆZŸmýÓÙé:|°nÕ”ŒÒ-] £Þ¸ùP× X¯´aª­Š4l˜ÖÒ‘í ¥?‘¹‰ +²FïKeèþ¬šéÿªôžœX¼äI"è¿Ûô6)Ì.|/›wi묕ƒéU¾ãšÞƒÁƒ‘s®…'€aö£Ž#ÁmßÉÍ·ãa}ÎÛ–¹5`Ú§µ7ä%§€PŠÔ¢á«HW›âÊäc¤eŹù ÓH­SÅõ¾R!¤Âòüò”8)RºôWÀüÉ7HÑоVOç“Û'oôín7 y ï÷_<øšäºç= X7œäŽá¼ñò³ßøuú}·óO™E¼ñåž§äÒ®³ï'w:ú•úìŠ'åêûjÝHª4N›z™™ê˜ åÅÝæ¤&1Q_gÆKR{üRÛ†‘ºS5ñ2¶Iý¼c;%„ÛHý‹¹F½W' —»)ž•#–£õU÷­!Mr¶ìÓ Í–óÓïYrŸ¯uÏì­Â™¤Íçþ¤ F¼¸ýê\·³µ™Ü߬°Í¯Ïdòàóƒ‰SVö;kŒ¾L  Þk ’G9AGž.$O¼ªv-Ò Ó$ƒ² É“Ë=….’¤kêþ¡o¢È³cuWÝv!/ž«úÞ/%¯$/K‰oN&oÔŠøWx“·ÇÏ’¹5—¼»›°Î5‚‹×£»7ù‘ωãuzÖû’¯—·ò–M#ßÒ;êNíK~ H©-x|Ë|ǵ¼þkçd„•±2M›?‚`—É®ÉÒãA¨ð½ÃM‡kп†ßªxýG4ø°e½Åì2æ~ü1&®¼!ÅKD¼¦z¬œbª;ùB£ra„HýéÚ >qé’ˆèá0Úá[Z²Œ³aŽÑØ =ð~[ÔaOê”3Ø Æ}]Axó2ÿ]BX¢öLšU"·+ئ.9Æ/ÙÓIdß»†_aæ(1ïo-¶0kÄ냟ŒƒbÎÒ®7*20ÇÃ!ýYZ%(™@Ö ßa;ê¯Ì†y÷"쮜{ Öt…X5'ÿ§/ÉÜ7›=[š|›½aÜ6£‡ä»ÁT“‹g‚ɯ/ã2ò>ŸÏ®4|j|òÞç´gXß{¿íñ+$€ÿö£3rºß¡Ïu½Ÿ›Ýwƒ@üÚú«V@°¶ÏÁWẠ$¡žôòÂèç¥/~wŸ0 PT}µ.ò |íZѲØ„Ë6?öb Éôž#TfÃŒBŠ=´ïˆéèpÙ›ƒ@ÔÚ7v^ØM;bÔ(3[†ŸÙí9FðÝß™=FƈÝu2nñÄœ #ò-aTŸÈ KÉ0:½…ÈtˆÏδ´îɈ§M4aL°ŠÃÚ“@*ô”Æw…S06Õ~AÊŠå }¿¿ÁYŸAæL`Øíá×@VeŸªR Ⱦ6\xïðu—µPhW0ÈïÚ$vsŒß5L;ßcL°î|%ú#Lôç?º~ó+˜ônØ™‘6ê0åH²nH¤LSóëã¥3&çïYÙ 3Õ&Ê[…¹€B¦wÔðãaÖ“³¡µ+J`öXÅ1]0ÇðêþúÝ¥07hóà|Å© ô ÚHKP T$Ÿ*†ˆƒªžê£„e;a^€HÖ‹`˜ÿJðôëBX°áÍõ¢G[€´>üª]&êU[¶ˆµ‚Æ´a»'ú³×yn‹VúÏíã8»+„ô]ÍK^–æ´(8‚æ¡<»×†ï`¹Ò‰åµ{æÁʉÎëŽ ¾ «µæª ,€µÙe )GA{~Ãúîâ°.ßí„ÄÊlXoÿr‘ƒ@l´ø¢pYdèùž³l;m ›ÅÎ=ë÷s>=aöh{þzñ غÏÕ³=û9˜FÅí>x`!xÆlmÝÐï(wÖü€±³€xxÙ‰ó­…Qbb²±{ɧ·N|/´EHçvi=åä®KéfëǤYÈq˜×;R/5Ô¦ðç7R]<åeþU;R¾XUÝÆÇŠ”Ôh-âÏþ]‡v¶¤S×H2'Ût™Ó²¨2%Ïó›?xH¨’îÆó÷ü¬îWÁ¾çN“ƒäxMRtÒò¦TÙqøó/ä­áð¤m6qämÖ\#ÝFÞ ñôk—þLÞíNQZ¯}›¼ë¶³h ï/…^¿ðõù°6Ò×Á~¯Ÿf^ûîF>÷ËH0M)'_dW¿ÖOM _‡-ñß²“ôDÿK]F¾ HlݾݘüØÝT(ò†ü|4k ùÇ4àSÐwb üƒƒ[íWþ_–i¯¯ûƒ€h{ðŒ3‰ ¸Ö}n{íè{]8DZö.WOö/¼#1CÝîrü¢¬t„'Z—H„Á]æû”r'ÂЬ”„~Ùé0¬jïÒ¾“ãA¤¸spÆ$c-QQ[(bå×ǘ¬} ë®ìÙ0ÿ4Œ¨X|íT_™wsÔˆ¥Ù µéöcû*å’où$oŒ6Z²O²$æfeÞ|¶$‡7-²;’?n;ž=²Æ|زyð“ õ%½-+N‡Ëw2#·; ÖZ2 vÍN€¬î½*¾óaœ˜DÈî=M0îñOåÏÈÕ~Òú Æwäik*‰Ã&}Ij{“ÖŒÎÌI†ÉÑ]ßÍ[„`jÿö†¬–H˜¶g<±?Ó;‹œôžó¼ewêjP´WØ“ vÛ\ùn³ê4í‡©ÅæâüÍõ¹0û“AŽ“ã1˜+ïöÉ£^”\žOYØ÷;(÷¬8´%ÔT½½„ÍTlaþF“jÛ#‹`Á"Á¡bFîm.‡@½Ñì›Ø†hX8ú„s¥ÝXt(Ì=ef,þî¦7­r+, =k2uÓwXf}rKZÊ3XaîÒc5Ï VyN8m¢kºù[ú¯­¬ôö®v°nâK™³ƒ@'iÆ\;Ÿñ°a»‡ÜÚÎ÷ »t÷»ÛI‡@_OK?²rl{2TãÞ 0šuÞÇ!Ò<…„n›ƒø­œ‘Aá¸ìˆÌœz¨Üøkl–ynÃï4=šÜëë|+71žÔ?púPâ(©n«›8Á5ŸTšWHÉ/&eF)ÞjVå¤T.kÒÇ‚S¤ØÈÍ$Ú` )²ç3tè»–Wo[öúS )Z[nš˜óŠ5MÒßÑ=‡”®«z£LÊ7¼8²/“T}‘+@jÒý3Šä¼IÝšw´ÄJI}§îW"u›4êí[³xi* HŒÊœFZ„ýç®™BZù5CO¯KZÃô–  "­¯?݈ˆK!mc¦/ÕéæÅù²­ŠëÞ“¶çÇôs{BîÞÙ{àKR*¹—ß?ËèÙcrÿó©c{TzHûÄœ&Òþãë¯Ãy}âE¿´Î2ÒÑ·Ïxó‡ŸÈcÕE•v“î’΋Vf™Æä©Ìc}7+'ÒUfç#þC„FlÙ+»ãíïw>\Õ7FÕÌŠ 1˜ E’ʵ0æÙĨ·IŸAzI›ðUysüDÛ±4·¥ËDtò@ûôV»Kq1LÈܘÚV=&ÅçܲŒ”‚)­¹ãŒF~‚éóUL2—ùúÑgtG·‚BÍŸ-{g‚âÆ+qâ)»aöç†WÎÖz07m¦¥{»8(û֊¢ ‚óù WÃâPÙÏ‹µ¬`©ü<™WA³$5*õùJXnëûnwèVX9¹Ó­Þy ¬zøácìü¥s£”?)Pw H3%e~þV‚CÆŠ4å.+9ARuÃ#.EIˆTWÈ¾ŽšHjâ:S‡¨û‘Z×2Ïõ™)¤N><8aäR×è¤Ô0P˜Ô;¯õ¶*M–_œY}\˜4N±îø©ÕIšF ÷…jÒ,juo~Ò-Ò¢$îÖaoEZ76 ‘Ê×#m‰g‡†MØ‚VÏ~ÄŸð¡E.c¬¤ ÿ›w#×/†£†ç‚pÇŠGk ¾ÃPÇŒ‚GIš 2+Y´BLDË—%yÆ/‚á~ë¬$‚‘á¯\t F½·=ìHHžR]vÎø5ŒµŠx÷òlÈÔ½Ö » ã® ƒ Ÿ÷Ãx_ýó'ÂÄÛIï4'eÁ¹Wò³R|aZF˜ý™ú?ùî…™±$(”þùCú9(î,»XP æÌzÐw”ü-´n6”Ëx ëߪ']®^‚£†~{n> úê׌¿9„Êb³mÚ ÿ6 Áç0pôü¾[3aÐ+±»÷‹õapS¿ðŸìahý³.ã;7`Ø«°95óAäkÑ {§# Öß©nøÞ'0\rnÛT^“¤|mÙb¹èäÆ ¾1¾m-/_ŒÚÞXÿxÝmí{ÈtÄ+°éÞÖ#ß’6:×ö¿Ê‡1{ÝÆOï RGº|fÂX¿É£–Gïé¨Ìä#AæXT’¤ó+á9|¯N’}œ£¹Þ· ÆE T]rö1n'ÏùÃx#Ok§ Ù0Á(ìáç=·`â±æv{ik˜T'ïôf¾@0I%¦ eÒ ®6:æ5]0+Zâ“À¹ XŸn¤•ís´ ›çs]×/Y‹G'!‹ðÁ@9SFV£§ T>~Ñö æÍ—Nyqæ_5¥<2ˆ UÙ³HòÉ“¶Ù/@}á¶mEsŸ€ÆÂ#ío®€…†|Ò’±¡°È+­´Äu=,~ay2"–îö¿¾e,‘¯Ï9 Ë;O¯L©I…•ϧ††œšk&.ÔOyð ´´ÞV<õKí÷ sÕ:à´ Ö¿˜S:$çl¬h‘/®M½gŽß×üØ›—•ÏÛgô ¿¼_( Æ'›æ¨ÃÖ•‹·–xŸÓÍæŸÒR.™®3ew‚±©Â—w}@ímϧþ)0ò×tc•IÍäãí»ã®~«&^ý®}ž´]¦‘$¢ÉË#ýG®·Ÿ@êÖ·Î;»†TÓýÒÓEÊfjKø“âz¢­žOŠTË›¿,#E…®Ï¶^7!¥«zÎÍu •Vy¿M!u·úšÜ° '­#¥o[ÚÞ í—7˜¹&š<¹¶¥vS>yòþ€ÑRÕTòLÚ·õØ‘SÖ³»˜Hºï{…DÖ!¯Œò¿d¹ ¯Ódª_›@ÞìL»ªvŒ¼)?i¸$c9y+­£,õy"yëôbíÑè\òöGç†iý+È»pöҹ佞Tùú€òAÖÒçÛ²ä#ß·•‹¶Ô‘?œúîŸð‚|©|9"¸‚|Y^¡¢<`ùêqVë„Ò5Òóèkä² ò}ŃîuËÈLc³5'²È/uýª;€oÿ˜Ý¥À¿Í®}o÷fè³wô{+‚@lÅla5^½!ðáhzüT:⾤êºô¬ÐPðÜ \½ïÞ¶þ 26\²³ 0[œói( yxàëó;N0ÌÐÖ:±J DÖ½šp¶ü<ˆj7î<¬bm_ä[ÖÃðMÏ’Lÿ #6÷ÙjÖ±F®3—6ñùA¾­³ÇÀ¨1Ö¡Úû`TÏò—ô 0º¹çĺw± ‘³7pŽ+H^ý¡ªïc"ï»dô©ëÝÙÛß]€±æ³6;oég‡úxw¼™³ŽÂÏÍEAV)æfЯ™ ûÆaá·¾oa\ît#ýñ“@îÚà/¢)ga|†¤}Žðj˜ð0.eêøh˜$;IhÍ( ˜¼gÙû{w˜Rîj³ý L“3GwŒL(Q¼g\ ò’K¾~3“²+GŸÎ…Ôe›ù¬ÐÃv«F;bõÎ÷ŽÃìÔë®Î¨…9¯lšÓË×ug²_…éòS•mz5+A5N˸jLJöNÿ´:¶”9Œ÷¶©…T‰ž˜ë!±‘Ô,Ë^'Kj[f¬o´Ž$õ;®ú^mxFª¿WeÜEšTôí~fÕ’fËŒ·u„´l´rÑÿèMZžå}‘uW!­S}t­V&­ËDœÙAZÍ<û5ûÈÖ/O¥l/;“¶Šo¢œ•ÈÝįÕq¾{Ƚ– ‰a}ȹûæ‚ßIû6°ø;‡<ÜÐ÷Ý7‹ä‘‘u·«´&é8?ÓØ»N”<~ºC´âÖHòÄú¡mŒÚZÒ5ªûÇCy5òœO"[ùîÒ=ÎõK‚ªyudÍ­¿:É›ó2«nÉL!ïø7Žþuü,yyÚƒ|9;òqC•Ö7½»ä3‰z,J¾®z¬¡1|su?çݰ€üxª±áØÆ_À·0¥kAk3ðÇ=1<_ T^~¼ðã>{3kß3ÊYeØaýÓ"Wå?€5á[‚`ðàáGà µ÷zYÖ<öþò°@ñVÕ\½@S},ˆ%ŸñØÓgŒX`®té[Œì˜•(1FE§Åævóò¨ðTÉ¢—0&%7J”o,H¾5We&ÈÔì­Þm· Æ©]pÕ¹ä*ÂÝ ;”a‚{ ð ³J0É^9èøöé0% Ft÷>€iftúÝZò.£U ^BØí®h #P·o¯Üëí0ûV‚™Ÿ"ÌÝ;Wï®æLP^uEC®šZãn#óí*’ÄÇ ‡µ–+N­ê3Âß™94NŽÉ8²à,|'ÑËU[¥]-ŸK>¯HrT¿šžÇÄoHåJÎ^ùaÅóùŠw'„U׬m]pÖ8g›¿8¶´/¼Ú& ÚƒÖØÊΆu2¹62ƒÎXM;~°~lÖæô¢Á°aœØ×  >°qbðóûÇîÔ†o^ý“@oƬA'Oƒþt ““{`Ó¤%š³– ƒÍR õÝxõ©ðËôO§ƒÁÇ¥ãj?^ƈUÇ'^£{ûÔŸ‡]×ïwTª@çã¼\i©0Er±”k…/nÝ/üv«y2´ïf׌9¤±òijjª¼~L~£Àš›äN²Ä©oOb!­l…ý!¤@¦ð[†¾É+ñ›wØ•äN¿j§YL²ÇO¸PÞJ²,$È-üN²´RS¥Jr_Ï•yÚjxUä ˜éƒJ÷7„ì|©lCjïo‚nV½à¼‹ÞhÝ2qû¡Ôb.S½g³w#Œ”ós´x £v|™¸ËøH|’2ÈÛ RÕVg‡¥ƒŒ£šü¡yãaÜÂ²î ¯P?Ç£§*¬&nÊ“„ɱ—Z·®Õƒis‚_ÂJm˜ñ¹V£òI!(îBà(ŽZ÷Õ§Úf7kh/ ‚¹·öÎ1=¸ ”K-#+aÿ¬A¾B @më¶Åµç+¼Zm£•êÕ=Ö£/~†…êAî÷bÀ¢‚ܧ[FÁè/in 9pcôÛC°¬¼Á›l¨êä4nm÷ÕîŒ<=wÕ{¤?ÍØ¢&HVqõ£VtÈGM„di–{ßZüpÃOÚquœ§3êØwQ÷VÝßþC¨×ÛîžœŽGÍâ?SìE¢ÁøÅI÷ÐèÝ3mJ4I½gþXA;´.—’$¢ÅÕŠìw´*»ZïãômÄ&Thœ›Ñ6ë–€ÏwN´w»b‘þ ¥VSµÐYã\RY€ºFJú•î”n=ÄNlèyɬ1c5½‰T²ý…чN(b}e“Ä Š×¿]CJn¼“ø5¼.f#Ëߣ/*?jÁê5ý3)0úPmÍôèjä£üö :„îp³¶A˭첟|iаCµa“š 5\&òÏÿÀJ}r†ÿA¥&êqŽiCå[ÅiF¨Zªv¼àp ê2C´t’ü¾mÌx„ºB§ÃOwËÀ ïo¥'0R»›>¶Aã‘gν!‡ÉçuZ=¹0}…FÌöçcøËü­ôô%˜MIEs½-ŽÑ.0¿úbr‚>óÀ¿<ú‹rlm® °xOÀïýþOX¢³Ó ñ{KßH{½Ëž÷ ¤~SÊÐT·EÄ Xùwµ·«œVW \bPÂ:‘åLs l(&H´æHÃfàÏtß|&Ø*ëš‘¤‚Ñ)¦”ù@ؽ{û·2K9ì11ôþB û?d—‹+‘ êù¦7¶Ú”'Q˜ 1½œêÛF$qîs³Ñº„¤u÷¦«¼¥ñÝÃ;n©¯üïžkÁ'ònó›‰â1¤Öõf1–ÜDZR ½ú#¤ëUøý÷2Ò÷oñ *C†^ÇÀÔFdR-Š)D¦ ¥õS¼AÈ(ë|üwTðecñž0DÅãí}¨”uó翪ÈÛ=ÕÎEÕ6Q3QT¯ )ç%?‡šs?ôÏ© ˜ß` ÁlÔ>·ìs3Èu:•ÖŸù7£ž—ÈÓºîïx”ŽÆ%ýР/\Ôü´ý)»µç†&ݶruÎhÎr¾¯ïK&Z†; ](Ek’Á—cS7ÐÆ#æÑÉM´­O,½³^‰ö¶D«çZÅÐa­Wš]< ~†.éÖA—¯_„)ìäЭ;âôÜyôPwOâò(&‘~ÜŸcCW™Â7‹(}ÍöÆ€½<r!û°í “ºÁ 3DÁÐÃ'OºÀ-‹3\×'¡¡y¾|"¿jÿÔïj\‚jžeÒö0öNµ7ú±g •>—è.^¬ƒŠ„6úRÅP¡f;»’•Ñ-Û™Öž({É—Î)ªî%Œül 5¯Å^ÓÞ„©…:zÖ÷ÐÔ5xîFT´xûE»ÕFCëܾG2=´Ç8Ô\à‚Ž·¬šö¥—¡³áÙ‹^èútÏG, ºå$ß©°7A÷ Õ=Þ¹Bè>¿YðNætGýèÐk=‡xû3¹¡§±à”ƒEô¦ÏŒnìC_ÑTÎe èß>Âåe´ ƒw(Þ,èÂÐ÷n3˜ñ„áüþÜ7nadšs9'ÂÆÔOP)ÿ¬‡ñ’Ä*˜ôõöùèÁÓæ‘ûY¬¡ð÷\¿fÝUf˜«f×|¸‹*Gì™UØ`éíG“6X9¢Éíâ «ŒŸ¬“_ÀzŸXZ´Á Øœ±®o$„!ÑßwïÁ¿ëŒÍn !Íß0ôáƒÉè$& -¨ `F’oU®dÆ"YÜ7ÍiŽ$¿¶ÙÒ¼€”£˜²8T‘ºí¼ØþùH'cãóýDÒ·w~ºN‚Œbe]|¹Ètïûî¼·²p¹šVæ kIå'‰§Ÿýú‘CWsó”Úg äŽrÉP0;мíqËÇöE‘ÿ›7á©!äÐúÄ÷: …Þ8–´¦J ˆËèqM }ÓÍŠz!ªâî#DÍñ(ùE¨ŒšÁeØÇ½æ‰P.$A}‰.åçM4äÄ¡bdBïÀ*T–Õ4”Î4B•ýR|Ê›¨¶>};hì?Ôä<'#ýÚ ¼·¯–EÜŒö])~ƒ:öTk‰º¿œE²hQ_Ý\až†þvµ?oÀ†væqŸ¬šÐhÛ¿«`ÔM>¥ôV§¡Y ÛÇ’¦<´Ð_©è ½€Vl”_cÂTКæðKr3´¡¢ª5õ¨@[býx ´c\ºàFCŒö<ò$>  ƒøºŽêm—.}\7$òôo]¥s@g‹±ÅÃÃMèâ¨öÞ5<]ÝäÕ„l›Ñí˜æÔ¯<æé'IrÝ­f»ÎŒB3Å 'a¬öÅgç=Ñöö â½ EûRb›#Ú„ÄêüKƒ¯Çaì}a¶°f2´§\¿KN¤ ?íHR ÚiP‚˜*Ç·,%¹Ù¡\_ßôzç~[ÌZû@ÿ¥/5-¡0èÆÚ}.ù ½Q޼)_Ãet{S0²åydiè(Œ×{Ôí7ãý“Å;Àä=‘A˜¹PYÝT #Ê27žWÀ\iï6e_ ,ÒMɹ(»Â’óË+,_÷`¹@ÅìJv5¬ª&ü×çª k3²³Ú—aãÝfŽ3°•®ÍHQ;ÕEÿ™ÿ¼{²dõ+â:HpbÎ#ì-/öËÏ·Û#ñ¥þ›«H ¯/ǘÿÃC2–Û¹6£Ha!^fv&©Ò3¦o1üBZAËæº»HPE¯þœ–I8|KL8Ø"$,TY^ëq›\~„lC¡Çþè³ §7aàêøò(* „å×#¿ÄMRǦ³(0÷xZ¶…š*–%¨o Èdâí]3<,±w§ÙP"ë…çbéJŸüúHílÊIß§¢|‘‡òÝ„Ÿ}Eňôç!\̨ìÆ){&ÓU½j.DÑ: úÝõæßS¨9Ëÿ î“1B ŒÌ²ò¨¬¶CÇwuv5•ÛÑ¡ÞU‚û|¬mx”¹×;;r JMf ú^ Q )ýÓ'EkK³Š`^´ ð¡}£Ù¶XÒóÿ ]•_:ÞÌE‚šÐkrAèˆMá¿Ð)*úuÖX:W±[Hx +-»OúÁw»9½›Ù³€ÇÞ­lÛ£ûîš¿{[(zJ©Èï΢gŸ”¯Îżë­þØZ_O9äØìxq¿Ìœ'9œ4Åsf¸l‰¸F¶1ÆG¢µB^BoAûS^wèpz ,ªD­GjÅ™vsÝG8Ù’ž›QˆÚz‰gRÃöP'ÈA74 u‹8Jò ¾ÐòŠ]j:ý’ûõ–£6·°r*æAc ¸âõMõžX^¹›…æAWu‡®- ecû­ ~h­DQ7ÌömžÏg‚j2ïFFþu¨ì‘<):S  áXß“wÀ£CSe &ð߃Go¾ÍFAÍ‚8ûÿh>öÆwÄù,ttæ(žÅÏÐOf“y²v†cM'7îYÀÝñË„´.0AESÀR¸ “ 5urã‘0ír³¼pf~qÝ/Þ€Y‚èw®É0ÇÐý>ä½3Ìu8ä½]4…ùÈ‚QESJX0É"ÎørùË¥ýñ‚Å_¹ãGOŸ€¥SÔJ$£.°,z’3-·–· ΈúÁÊ4uֲðºÜ4•rÖy yцýßu#ÕK°ùº@†Æ# ¶‰5S¿ÂŽÿ/.®·Õ°;Mp')ä0ìÅ‹ú¢¸’·å¯œìGBÅÄv­*V$:n+íM§…ÄYê«ÿCR®çI¿ØJ‘ìéžÙ*üBr‰§ÙB)ÖHQM4Oó©ÎyŽ·FšÃ»IÙ#ôH»<Ë­véOØa]FŸIʹ:d<µ›ýê%2]W[¡CæÐÄŸåü«>Φldõ×­|›læ5ŒîA1È®ü¢áõR0rð]àŒ$µGN:óÖÐÇÈEøy.Á¹©úÚ!—ÝבWõb_ù­Qäójc»é_ŒüæÛê þÒÈ¿ª“:°ÂŠŸ0–YFCã?ñ=ÞF!wÎë=Y(ìÝX“™W‡"Ñy2¬y’(ZdXz¡º‘\-¼ƒâ¶ÍÉ×#o ÄÇx~ÆcB(EYûpÂâJ‡o¿ü£Ž²©4 ƒ*(wì_C+6ÊkVZõ¢‚TIÉä**7„$¢R ¥@œ*/´ÍСj)³²©,!ª÷Öò^ @-uŸ½³÷€ª¥œWl5µ›ŒÆS¡®ã³ žk'PŸ,ä}UíÖ=-®‚†u’ÜÕ3и·•´ÄŠÍhÕ9>Å Å™Ó Ì'mÐêÒFMë´®×]8ÎùmåN¯IJÝC»W½ŒLgºÐAp®u6è0:þ¼!¿kš„Η¶—_Ï £«»ëM‡òxì‚©púZÂ0ƒé•²Ç“0¢CÝ"~F?ÿuÆizßÌtÏÂDNwíù˜z2­#jåy°#¦~§Áóp¡Þ5,äåv=¢„%ã½ð÷ûR°D¢êýð5¢OHþb'Fû’Y±sÌ7Ar#SQO!¤<îQéâÖ€ÔO/Š2GÚÕÈAZ;¤Ïo|ý¤MɽŒüöx3x àt"ó–¥çÝd}â‘™Î#ŠìŽåŸh/!§æ#C­qä¶X}kóè ò>w?ûòß³9‘zì ¬M4‰z|E¡pÊ5㣼(")žwšÆŨÅNäO£8ÿòòm™f”ôåxá†ÒÃìwüºXPÎÐ*Q½ÿ'ÊòjyÛ£¢Á ›$qTú«£|ÅU¾)™ˆÄ¡ZÚ{sgçK¨QBÿAÿp6ap%tÊŠ¨’E—8)Š˜oÊèúT>yŽ÷7º}Ià`º¦†Ç~¹Á¤‡îuJ>.ïÏ£Ç.éó!­«ì&ûem%n¼#÷BQmµ›ƒ×É‘ˆ®®£~TFuIJNB›M¸óõ?РȳK´ÿá wé5º|ëPQ™6$R–e ±7 fà7ÅiÕ¬_á§ÕsEŠcžÏ¼ó «c-D ð¢î©”>ŸÿÍ D˜1Áo}³®ëÿ»§Bê¥}Ér¨ü;óöóÃ¨Š›{Ã+bÕìç·]ÿBMmçIUóL¨S>aÀ±wÐÇÙ¬‡GÎ@ÃN°ã¨°;4QQé+=€¦G@aÍò—åÈo3AóyÎý}hyôœ¢ZS˜>´HA›?YKÉ9h.ßÿ÷JKÍQAgv‰ná7èæ N` ƒžûTnQ"g¡“ÜÎo»ú7"‚Û’Ã`p¨icƆ©‚¾-¹# ðGA‡FÓÉø¿GÀ8Gþæ—°s0Q™.?ót¦ÒûÛ¤ë8`æeãàܘí^Oë½; â4”=Eá°Øeàÿ™¥ –¥ç‹—JÃÊëºgd‚°¦¦5•ªçYßÃæ’ûÁ}:Ø¡êý`{·þy§û7íPÃþRÜ4@ÂSIâ[7‘hïÆ·£‹HR¬ |Î"Ùë_׈müm»R·ÍIÌ Íù§ ÆÎªHOc•¼0B ÑÃu6• È$[öÐ1YøgH±r"›Ãê}a15äh;ŽÜ÷wÔ~ÕŽ ß§OþõgPà–ž¡Bí. ù7""aÝ;~ÞC±ü)…ò¨N”xÚöZí#Ju¦Ì§­²¡ìo=AÁbu”ò D¿T!N¿s•vJ%.Œé ÊNŽ`Ñ€ª ¿º~5Cú§´**ðȲ=7ÍÔ6½Gò~u¾²¾ÿ7ŒzÊÚzlv·Q¿Ž¶áC8=\â'tª*E£#ú#Vr”hÂÔIpãðw4£ XxLì*·]›4ÑŠ×çã_º ´Ö(­HmPB÷›úóR3h›hàöê"Ú•¬ÝéÛ@¢…"¯(ÑÑÈF­ôÊ5tJi—µËBçûù¶Î×è*ÒàóB© Ý. ;È"«¾%®v=Dô³|{ÑS¿äî-å:ôÜ&<¯¼fˆwÆ= âèÑǘÀbšÔµjå# ¯"Ûö[Ž!?`-õÔßõå]ka‘1|=‰w97LÞk"¯°o9´Ä¶1o5×AwÜEŸ{}PÏn‘j 5£ÊT¡¡—¡†‹9ÿgê7¨ùõ—?²‘ê Uj%¾íA}ý‰V¹hùˆvF©ƒÐ¡iÔr¨ç/ô¥I­æŽÂÀ´Ž¢úY®ÕøúcÓÆLO ª…I ÷+f¬Å0CÜŠ1å 0›¯s.T‡æWË4>3\„E“øÐhXþYõ9–<·Ò~tôÐ@ ë K€åˆ”`òPXQáÙ»«++Ïudò…aõ×–îhŸ.¬=U|G ëwÓÎ?3 ‡W]|-ú› yd¹¶þù]ؾn ;öŸ^…=°†Ý*Ûl9wØ3Ží[q9xÿÓ|íH0lÍfK gÔ¢û³4‘˜=Ö¯"É…—ßdÄd‘tÝÁèëÕKxèã§eù&¤pÐ,0rmF*©ãkO/~F®¾Õƒ¥tÜׯ*‰=FúGVU*¬•Èða¢zIE+3¿ôW!Ód¬^ÐD$²0WH¿êDVÝëy{šŽÈèʽì\¾ºµÈ!Gnˆç‡Ó]ÈÙøPæ‰2rÍ]ä¹Ûœ†< b}~Ò—‘WGé=YYò]‰éx›|ùW WEZZ+òS#(P1n÷cÑ ãÙ•b^J¡ãÓ(} «ÿ)üàŽ"6Ä„ut(zălòÔ2Š…Æ»]½†‡»W¨&ÊQâ„$kTJ1Ýú üc ¥Ç(S·£lYvyàI”›-^x蹇ò›ª9ŸÓQ‘öøà™yT’{¤'•óǽ’”E•Ôš³ä¬¨Z› û ÕÙŸÄ]8„ɶ„…¦ßPK×_+‰— Aç’|û“ר­Ï¸óŒuâËÛŽ£î¬oôê_WÔ?CÏù´ h‡òi³ а_DRzæ·…¶¦Œ ¢éršµÇŠZ(‹ÞÝß±C+Ë{ YMhýö~ݱŽÛhË´Á&=ŠvÏnÿÌâ A¤rþoå:î^·`³@ç>‹ìVìè:!ó#RÝ¥•ô½¡ç1ž·çÞ âñÆ«×YÜÑ;ôÉíÀ[˜˜Aûòѱëx¬$5úMϪ‰È‡ç#Sù%®¡,RXÖXŒ›Û¥…á?6“` ]?½º¬C›vºØ&hÚµaÎÕ6‚º“L|-áPµTe»üF*ú–y’ê¡\GùÌõf (÷Iš *û•š'—–¢¢¡Z¶oQæ€c›dÎO_nj†vµ+2Ä¡g^ ùŒ·< i?•¢”M…‘çq—>ÃØ¥ éóOeaB >ˆ–Æ&E·­?ºS³_»çaFD%!F¡þÊ2Ÿ"Õ&¿«Û¹9²b0›®Ë“¹u æÎq)︞y%f+GXxR«ï(xƒnœì'{K‡Ç]WÿÊÁÒzÔ?â›ß`y •$#ÔVF­'Œ=„aí = Ù<¬kr‹ç÷ÃFÔà…o‘°9°éE«±Ûºó¡DʰóÓ¶7ÿˆ üsäå~¾!û|*¹„¦Gà^ÅÄlô?H¾ô‰I?³Å82#‰ÿ;ù¼:{$=Až85€‡NmëVej!ù¾’’¸+R>sÏs}XƒÔf%÷準v°ûbÌC¤›bì»d€ôó¡o&ãa¥Ôy¼(wkï: 3‰Õéäå*d!ÑýÃýáÀ7ØŠC‰B$¹¢D¯¬šcÌZÏl»´ SmÈ’'ö'4Yˆ½›´„ÚYUÍ(/¨oèµy8 ÿõË\ ˆöŠ©¹SjäPîò§Á=5({lHmwÊŽ?LÙð»e?ºS>Œ˜Ay\upnÅT¶TødÀŸùÆ«ÇhT îxÅ'4.™D–§BóÅÑS7ôz=#tuï´i<ðùûFÚ#nWÿ©Ž^é‘îáÐi?(R¶± Åû¤*„ÐÙfòH¦:k+%¶G ó'ÃM&ï·Ð%¬$Ój]mÿ\r¦s¡;¦žòþè¹n85̽ÛÑÜ£¡_”ÏdêÚ& ÌïÿKìŸ!ÿúCj0üh™u±-FúÝvIK5`Ì­«„ê}!LZ)hýž‚É)«¨ç &0Cy³Œ”Df=?©-Œ¾‚‚ùÚøòqXœ·ù|µø2,G:ßÿΡ«ê=þm Á:›hGÅ—Ø‘š¤¼Ûnüɬy°ûõ»íк?ìdÒ„õABJ¢'I”úHt7EIu‘D?Ô3©å’±_ÝX¾…äôÏæ[é‘RüÈEÒW¾Hí%KÒ†H[øÕ29oéOÿ}üÍ ¦f뷆ɆlpZÄ™;õBy9®#kÈÖ7®iÈ.kü‰ï¥rÒ Ø×_ÐFn®ä7Ác©È{B)>+‰ù/èd‹Yä¯%eMš{ …¬K$KÖQx'êIж¿4jÎpÂãÄ#/oq¢$ÝåÅ¢(Â~$ ì0Êq°öE}šEù˜µ?FÏÍP‘ «5¿• Ò;C¡¦+—PÅ÷t¿v,ª™¤Òn@ãß„]2÷P+»Õ{þk!¢Â¿´oae¨½tb‘„íê:ykBЄzM—V§âQ›+]/„¢ÁàØÉ—ùvh¥õ‹XØ Md´äVÖÐt…Ë3nCÍkÝ#²ÜKÐò×ê¹T»×hÕ£)JÞq ­_G¾¦tB›™ žšå´Ýq~ûúÉÚ3æŒ9àv¹WsSå5èh-p?:—·ŸžBçÔË4þÉè’ÏçŸ5õ]{äÇó¦³Ñí_—ñIS@wå^AVô0 _<:탞G߉JG_Æè?g¹N]G›ÊÜWé³Q¸åÛoªnm$˜¸TT,ô†ûDœ=´µ¡•9”+Ùê®E¼!”+‡ÿ^ûùŸÐš…ò·&Aü§È¡TÓ·é|Û(±Í‰'øs Šê"æ=:YáGóŠqøqÔ9×ζ~PÆëWÆÿo^tçó(Óœ'”T»'™/ÿïžrF)‘á(i¨Èrû:¢ ÿIåR5GyAUÒøFGòAþßz}œ€š³¿ïÌSÄAmîEç—¨[óe5Í%ƒú=—yú«ÐxÈV2¡æ4±öÿ::hªŠN*'‚æKòëb†¡Ðâ]Bêá­òcÞ9eÐfüž”BJ Úm ß›Z=;Èyñ¥Íà÷ÐYG»nàbÝZþl[¡ÐSä­qH ïîµzòSéò!»’-Wˆ`8jÔ&8mFƪÃýˆØaÌ>^)›+ Æ·Iüî2rÃd‹ÁȪ˜þÝO¯ZÝ—Œ?›Â¼‚ñwBj„E‡9gݰXJÏïh¾+´N®_I`õ {YR¼/¬»ð’´0Á&^åo_µmó[Î~D°ûHûPf]'ì³–¨l[#ÁÚt}Ä«y$Ц֫çóAõÒ†ã2HÆ&Klc‰äB+ÖKzHéC´Xýß ¤®˜ø=Þ‡t޹\f”ÈÀöëÔ[#c¾ÉÕïj…ÈüòÍ×gÈZ\wÒ9´ª;ûï!×f™éà&òõÙÚC¹½Õ+~â(D¡24Ð?„"TÞÒ_õ{P RV¹ øÛÇF¶Y(ex”êòo”q“‘Ó$CyžqÆ{ÊŒ¨Pë§Ürh•žú‰\å”;àѧMk™¨–ušVPcÿ©úÒ€6¹pu)h–µÉó·œPç\—[ò»Ô»¶Dw×õo調¾ †2k¬Ù߯Ñp-:—äÃ&×{Õÿ=…¦U‰ÿ$.¡yÿ•¿þühEªèXe„Ö¢êZ'$LÐÆ"3\gm¯'©5‰ ] …ᘜ:$ü«£{ƒŽV?Ó}tz)R´#1„Îs÷n_ÓG×#Ñ> £ÛN²/§nã±™ê!îÿÐÃüÞêÙ^í>5XáÎþŒÇÙ:®K7á“Ñ+ÅÿÖÐ;ñÃÌ×xÔØ¨×ÖeÕ@ÖçªóÛû~°ªÚDS £“|s³ÁК@õ¤I Ú²¯||š›Œˆ+¤º a:l€‡}è 'ybËסºxRnø÷AÏMˆ'ìBuãOµõV¨u&ÓôÈ€†;ú¶×#“¡¹ôí\x5´‹zGq²C·ô-mObè$ðþ*|†îêý ^…Q3ý£Ö”½½ScJÞ› SÙfZ¿^ÌÀ_ õ~SGZ˜³:'Eßóý®L•"ïaaÝæ‘×Ë'Üye5Âø,N¶ì‰|: K×B™žéÛÁ²´ý‘w¯—`yä5“Še¬dT½î?Z«a6µ&aÍÿBÜLܬU.ó΄D¢sÈ ›e.}y¾q°ÍT§}î„ì\s¦cóƒÝ­ óÑn°÷àˆiÈë{H Ý|þ˜ÊêZE"'´×WHüyÉ©ìÞ&’Šó0VdC²ßT£—ÎÊ ù¥•ϬªÛHiÔîKðº©o˜ßô½…´ò÷jm·‘^0¢áÂÊ*“ÿ7º‹Œ66k²¢9Ètù䳜ÀÈüÅØ»e"ˆ@Íù.²ñÊj'"»ùbyVÑ3äI§T—è@Î'Ä$'=³‘ë÷•£9×{¶ñ±Tò F=å_F>eÓw‘ß¡qñªÊ2 '{ïªd @¡¡³!§Ïä=6ä ìõ7ÉCî¸bcjªäù/ù(yûd¤®.Å#?uˆï·³†Èÿµ;€gâ øUK;8¡ ÔØÆ] Ñ9hÍï7¡0m4׋ã&("öë±aŠÚû]y®bwÿ4«ì<ÂýܹŽÏXQB”Ÿªþ…J^jØ]ТC©¾Ì'¯®¡ŒÇ)³]ùL”#ýV`Ê…rƒ¦§!^å i î¢Â÷s/í'éQq‰rªû®*'q³¤±W¡ê“ÅCGnå¡ÕÑvEíÓ¨ÕTìoU‹Ø¯'›äÎ:)k“ß6SQÏéô¹ÊdëÀsÁÓß›ƒÆ/3oàaù¹øðûHLcjw¹ÃF® Ü /?ð±Êü•Ü¢ßÐDE ýøI4Ô„¹^´R¨ê±4éýü*‹ë²5))¡¼G=lÈn ÊÎz¤ÊðÏCé[‹ÒÀ“ƒPªîµ¥?¥mn½ï>ŽBYÎÒÖ¡p¨X}“Sš½ XÈ/Õ®8@íÙÛ/©Ò ‘1‰³|”“qaZ.o³zåECkïß]-ahûkïRíÛGß¶y¥@Ç'R²”ôsÐIì—{¾â t²p,¶5jCÇÆ'aFJèè9âÞü®:Ò…xÇ硳óe«W¾t…–ðŒÚd@·×Å«‡L çª³Úeyè]üÈ36Ú ýÙÙŒ#×`0Þ‚cOœ†û?Ð]›ƒY§Õ³eK0ú©½Sêb<Œ[ü÷˜t©&•ó+˜+”`ÚqˆTÀ°þ~¾ÿ´G æM÷©-ü†Å»ý6aÕ°,ä×âzZVzú ídÇa-7#Ègø l”=9ÿÖ̶6w¬;•`×$öý'ÉdØë ¨ ç[C‚Önºåƒ39êBóÊ>3H:4Ú¾­Þƒ‡ºêÏßàGŠ%®ÃÙ£{H-~ó[œ+1Ò^ªØñ8‹ôWH”¥Ü@†ê‹¶ %¡È$/kíë‡ÌßUM…|‘ÕúÞ÷T~nd'kü„r„È1$ìãNì†\S‡ÓïÉ!¯4ek—%òÛËmê?G,MNÅ>:ä¥ôŽ…kó¬Û¤¶/ƒ”ÍQËÊ´´Hd¡Iº¬QûW„c¬§$êŠvî÷‰E½g´ÔgÞ àQ®$M˘hð6«óñÌ42ùvø€‹îôlçñ¡iîå¢3 hž|¯÷©Í(ZÆ®u“– Õã?¡uõ\_½GÚt‹¢ËFÛ…¤’£ÃShO/r%« ×õu܉ÑñظvÕtº¹Zî!ûóõŸQõÍ£Ë$cmŸ+ºq(h]Ï}‰Ç,DÊØôÑ=VQMQn=ÊʯÈKØ£g’éUÿ™\Œ¦>Ùç&D6uIKy (tBj]Máì_6Ö±«Z‡¡ž/»eO ¹#p*ØÎjjM÷÷C¥¡4e¼ó”E¯qÑ]‡ßú†lnïu¡85åU»w>©,ÌCnl¢!/@þ˜7³%ä?oà!Êüò¿y!aša_&ü¤Ô¸>z—ã÷”n¬“¸Ú@y S¾Ô"T4_>=xþ#¾þ¥Sªâ)F“ÉyáÏë—%÷·è¡zÖ(.öÒ]¨YpnËÕû µ/µR& ®²—h“ê7£¢'yY¡Ñ‚ 4îm4™Ž\þà ͪ~žÍ мUFj]yZio 3>ú m 9ɹÒÐnùG1Sât\ѼLôR:GÓ.~©€n·¾·¦¯¡WÆüí‹äoÐÏð¬êð¦; j–Ÿ ᡪ7}9D0"zëL–E6ŒÞq üö³ÆeN¼TׄI‚¬Åµ²2˜žÑîl‡¿”’KWö `N3ÖCì1,|:|ûka6,qx(Ü^ƒå°3i\®°²“M5 u ÖrB[äøa#é黸éû°•ÂuÎãˆ:ìÔõ½¹õâ5ìiÝ?ÒÕâ†QG‹[ìˆ"µÝ.¦‰ó­/YòY i⋸4«&<”ÜÅQ(Œr«~¯Æ‘šU^_-8iS«Ø :w‘þãs‰¶vd„?‘­œ‡™—ÌyUo‰¸wî*²øò%ñKr¹ÞC í׬cP÷í¯—‡šHQ_#äÍÓ³€GÇk¤È_P á—Š˜Bh;ÿh=“Mcî‰u ¢ùërðR´ì"¡`›nAk†ì\åXO´Ö¯Qt¤hRMü~¿í~8?Q¹qÈNë_;‚ŽÎâæ{èô%ÔèUº4ˉ<Œ®ö>©1!èöÅ&_*{Ý©#>$ŒFQõ÷ ô i´ý"y +Jâ]t”鯖{zЫÁ6–îë¨.ì·¯u÷:²`žõ‹›l°Ü«"£>#Ógÿ{yGº¢âc8?ˆBkß…Eþ:Uhæ(ZNŽƒúÇcõA”äPók<ÀwåüyðØÁ̵ªÊ îGÀ} çEÞX¨Þhÿ”š×õs½.¯ ©›:63ÿÀ7®î:@çôEG*!è]ÿ•z¸· †˜¦Ûϥˆ9ßɲ ëVá¨|å“n•ê[a0ýSÁ”ÿ,üÍ yù™^æ„·XŸëÑÁ¼¸xÚéF€‚ä˜PcXn¬M¡SÅë®ßÕ®+Â’p2©UÎgXjÎ?2å ËIˆ:²`ÅÉÝp‘ê¬ê>S+7†5ÝË÷|VÇ`ݤb#Ñ6âÌõƒÍ~ÂfóìÐ %FØVõ¨Ý;;O–gvÂ?MçÃD"6°·š~ëi?„Ú&´+}A‡ßI.ß(C¢qÝ}G‚R$qò šÊCÒéßœ{ïðÐÓO/ǘ‘â„QljúF¤2ÏhMº4ïØ>_wA:gçO'_ÝCúßåÝù¥È0Ä©™}î%2Ñ­­nBfÃ?$Ú~˜pÜ8øb²Ö‘¿çÛ=è5ÒØ¢·‡C¥)çÏtëwôý”B®TÖ¥ûÇûÏEñ’+ÈKv÷˜ì5&ä3­¸·¤•ü¦Ýûío‹öâ"±ÿAï}8ö^¢ƒ›¾Tª£Î¹Àš"+æ"%Q)8"‡ËsŽ=GQ:šZ¹ÅS«Ð—§aÁÃñŒ¾TÌÑ(¾uÿ²C'JÞLÙm Bi5õŠG¥×P–8Ä‹>=åεÞßšå@ùª:Ó9¨àû“Y]ºÃ,Ú'ÞÄ£RZß3#(@åf͵ä¢û¨Jª`ôsÕNÜä+DõËZN?> fÁ;â@Íe<²ZnÁ„ÚG ê‡Q'ÿ;ËíJÔ3#à•;ÝŽú»¦_3>²£A³ZÓñëhÔÖ2ÔeXˆ¦„Ö‘Ãï4ÐÜ*Ë^4W-‹Ãa™­Å8¤cÈÐ&þK­£Ý%´#8´iqíoÞsÞŠkFG'>³§µÐé?y÷Ä]"¤[SäÑÍfµù®nº[Qe–ém §Î|¸š½1¿²kùûz 0¼\™SÀaŸ( òëèZ@]] !‰JË—IO#ÃÓvr`á—õƒt.\îþæõëõßé§žRSƒ–cßÙ„ï@CçD½CiT·]‘™£×ƒÊ?ÉÇr>F@Ù(9ek;”JÞŸ(aR¡ÉÉf‘PCv+ 3*¿ê¿|#z j_‰ô;^S‚æmz× óÂÐñó—EÈ?ÐëÞϽIƒ# ž¤Á°­nø+×0RE\øç˜Œ1_Þ¬¼ã&ž=L}0ðÄêÛ°4Lžº9#|Φt³ë?ÁÔ„ÝÝ Q˜Î_yò&ßf>òi¼›“U~ü€9’Ñ—œObaÞµü§JV, Òk¹½J†ÅÌ*‡Xª°.Ut‡åž«k.Ù°J:?[ðþ Ÿö[¹Nwaý!yvb\l¬˜K6Ú÷ÂÖ‰í@ÊúØ^£6¸v5v³N:0êêÀÞûæG«Hpž[xÜ4 ¿†·e#1yaX†òU$ V¸Vt„I§òýèfñÐéåg|ÝÅ1€øR¦êv!=…Ô}×eør–YU=Іé ïwkhï"Ã!“ÍwK–ÈÈäE2¦‰L|Ýÿí¿{‡Ì"±¯ø]Ò…£4£ù²²5ÿèxŽl´/›«x‘Bâ²€=rPTøDtç"'OéÃ`är±duÿ¹,J~·nBúþÁjÈû¨WeSiù:Olõ@þ”·.?=—P@ÏÇÿÇL0 ’3ñx¥àä”…(£' 質$ ð–¾wXJŠ ^ê‘iG1×Ãî=ãÆÃ/Ê õÄ=Q|t–𤣤lSÖùoƒ(•Džtë5ÊPÚÎæöL£l§ ­ÖQ”˼æ.4Šò׿] p@…m…ë÷=Pñk¢YT*»þúdž'„ªqý‹*EwPCˆXîö{<Âí'å—iŽÚò:Ïø)BPgÉÌïw“3êuµÌeÞÄ£+'«_å¡‘êТ­`š<ó,Ky3ƒæ,¬mŽr£åç™–µ4´VûÐÔ_Ã6ûºµc-ÑNôLûWM´O磤jÉFGÎj⇠èt73ØËT ]˜Ãµß=èÇO±ËQÂxÌÇ· ÁS=ô³5ÈhþCÏ7Ó•z xÓguÂ2ó":»íÆ–š¾Aѳ¡JÙºHøÂëÑï ³04Avêg&´ÙÜ~dºX b>'YŸB5Ùµ^joø/¡±Ð§Ô*žùOº eµ1 ºA 4Ðñ4Kæø)©Ù~~'ô*í¸Ãïù!Ñ·çátˆóš‹¼T°¥ó~K€*M Ý!Póà‰¨ð¡UhPhþ¾Y M·ìuC5¶¡yßü{SÀGh•|wžºM Úœ(̾6q@»ûá÷b¾o ƒ@bÒÝb:Œ[¼ãm Ã²ð!ù²ÿÿ¿òsóEhß8¥tûïtè0 ßܼy°OtÍ¢s¡ód–¼<á'ê¿cIü.ݶù³ÐS¤´8l˜ }Áæ^'™a@Sü£Fz6 UkÊH Ãp¤Ýl{Å;ÙnY47p„±gZûÿGÇ{†sý†ÿÿöÈÞ{oÙ„Äy’­ì™%ʈJ’DËH…Ê(•Q)¤Ad$;2²÷ÊÎ^‘þ~7¾Ÿïÿ8~ÇïÖ븮×ëÆûzœçó}ãÕ¼ßg'oó‘ÞÛå…©te{0³Êú-µ0jnšë9,)oÓŠ©°Ãò÷@:Âo,ð'˜Ÿ9ëÌ>×¢Ô¤,~°îBA  ›ñ‰7î&æÂö˜íÎe—ؽ({/h+ ^ø$+Ĥ ‘ÐÓï‘|‘¸KD2y I3 ?ï-Š#yÚQþEy¤,Üès‹Gª¥‡Ê”#µH«O¯v–| éy¯'ž Y„½\ÉÔÈDo[9öû:2?>˜(mŒ¬ÒÒEÔi‰È6dýι¼9r=/.< D®¼Ê—ŸƒG‘gu„‹ù•ùuUåQàÞª%Ú¢àžð“,Û ~ö/Ë(EÏÆÐ‘Š ¸‡He¹^6JÆn+vžiC©¶ø 3”½ª·+òs ?ý#²7Äc—ûXÍy²ÑؼN5BŸMÍÛƒy¾ô¡Ù[ãüÊ×¹hžwXe#o-jGUÍ[Ñr¬¢kZüZS¦Ëù“£Ê±¤§GÐÖ3“‘ù©Ú¥‰äX«á‰>:Éì~ct`#“&±žGG;…ÇF¡Ñè”ìŸE;f„Î3ç¯ßÃRtá#½C{èºt,vd˜-âm³SÏ/:¥¢ùÖBw'iX+åvï숥QÉ|„!>~R¥»ÐòÄëã,§Ô±ãŸGëP5»œõ. *Üž=fÉ߀Ò$“’¨õA(îô)ÊÜ…ª…Å …øRON¸ª_n{»Ö;Ãy¦¿_ÛþÛ/¼ŸýÚü|=Æêܧùß9僺5bJP©W_rå Thö«ª‡CõUõ½ˆ¸vø>)$PtÆjºCf5¦žÂʸòCÚ¯áÇ´ñcîv+¨k«>ûºêó‚£®‰¼„†*ÃD ^:øI½q>¿z šPd÷JØuh¡b,9#¢-)o롵ÝO››4ÚZ²/Ÿb+…Šö…Ó£ñÐ)å±S:öº¢æÂ´Ó" {—ƒTÛŸ zëò‘8º ú³ˆ>Ë…ÚÁ`“܉¦vwÿs: FΚ:ý}f£?ųó]HaüTMçð®=Lʲï(e…)¢õ WÖú`FPï©ñQ˜Ó©¢4~ÿ2¼‡niÁR [¨ÜÊ X/˜î'ûœô­eZ,aº9%–ÖþöËꆶ#gý`›ðª–§Ÿìœÿ”厴iÙb‹EHÃãÞ?g„ÄJ#‚t¥HJ@Kµ´ß»È6KF¹I‘RØyƒüš>Ry;}ÜEšÖ>Vפך`°C†½°¥mKdz>Ó2•‚,žGTZR‘õaÅ·%2ä,5 yD!ˆ<+ž[ò#P€)]êmÔÊh~üQ…eÕÜ-Ï¢è±Qk³ý¼ú,NöËóxPLfy(’ ¥£õŽ©&£\À²ÚÏK¨À.Õ$³ZƒŠ}_¸„Óá¡és&á¨ÒGK@þ.Õ˜X”Q=ðgO&="™»u}T$jŽgLضţN{Æ4娽œIçnºÏS´\îJ¡¾;‰­Ï‹4Ô :#ç׊Ǵ»«òŒõÑø,å«Èñ4MO;UØÌŒf;âR¤£h!³ñ»‘€-½HšLeo¡U^æ\dW9ÚP c_èB[׸ q¤¥h÷µ¦SïÂÑ}ÿѶt0y¡ƒ÷’[Ìût¬»çñnCeˆ'âÉd…àQ*t‰¶ÍÓxã®–7’˜|F0Ö«ÅD¼  OÑï¼¢ As’RÚdUÊ;ÊXË!ÏÍ;9ÃÈì×;eRèö ßMºÅíçzyw—¡å´ìˆÝè4™–ToËAÝã÷çõ…t¡ÖïØµ¨Iˆ*"¼ µd®ßê©î÷Æt®ºÂhðK<­TÙÍÓX[mÿÊž\‚®ôSÞ¤_´¡ïzHuêc)ò»ÕÙâ #Æ[QJ¹ä0ö)mêÖy˜¤E«Q˜Ò”,\»-3l¦Rté0ëÈqÙ%æ ²üwÇ`^„\‰öÄi˜ÿ³™ÔQû‰n½Ï „%®šÆÍjX*W {“–ýÝNµ°ÿ‚å?OÜú<á'ç§ðÝýʱLÎ kdÄݑð÷8fË(üõXšD+°±èm9[ö=2«½°=|™$:ƒv¼VÖ¡€½ÀJ®´…ŸHÐmà¡þn‰xâÒg}¢ø®×ýÀdk$eò·¸36…d¥§ç,!Åͽúasd —‡;kØuä~ÍÛrø ,òLk©T B>ÅÓ+‰LÍȯ9N'Ãp ù¢ïµÈ @:Õ)>ý)<+5s†”…”åR 6…in ¬–í¢ð_ajÑÓ(²>!mçb£ªZÇPü¤ ÷›q”¨z’À[‰u‹¾<îŒR£FÏÚQæ™Tqú.ÊÉ;O”ƒò\”‘Ö¨À8ó!Å8y^ Ì$¢ÒQµ7Ï ‚ñ¯Q2‹5*¿$;áa€*k—nxÿ‹ÃÃázß.½Æ#—¾»Ô£FÓÙÕ€ûý°?DžHµš)ò<毠öµÆ™&)&ÔÕ9§çƒ¨¯àV_¬‰†f™_ßèà±ÄÒÞ5h¼÷Åösši2h}T.Gó‡×7 |_¢ÅÖáú&o´  ?;ôÃmXÄyKBÐöÑÈL¨˜ ž8È'Ôá0…öÍT-o\q.Þ÷–Võh¤Ï?h±ïcºØû:Ò£e‚$˜¡çÃÒŠ&ˆö:5ï«¿nZ4­\i†ŽŠ“éaü0j@¡ç°cWo¸êÉuÀøããŠu…§`"¼:+œ&Í&?ôÍ–ÀoòÁŸ‚$að{àdãæ™ýÞØ¸ó­-†¦çsJHa–¥¬~„æ\ÊqÛ æ{Xœ"<„añÆqò `)¯ã×užkû=Qí÷É#X™I×j:L «‚‡4Þ%ÁÚ%úîzé\øÛž?1jÆÅJñ¹°YMìà§YÛWBßr~«†³Ã*ëÁ÷aïy©ŽÀ¹q$$?ýÉ|w‰l«y^Ì0 qÑÓ#¿5Tœe+|ÉÒ~PÑX¸"…Øúá°ýœIš¯Á T§úÚïzW"¤á9Y[O¤c5š¬UñAú‡t?(©!Cò{mÎÎÈø>Ù¿ˆ™¾ˆßTÔGæ|õ„çQsÈò)d9#ç ²fôœ~lÙ:ƒ’YÈž›÷n«9*lãXž5!ggï•Ê‹]ȵ*Lëü„yxž*>~µ‡¼Ö‘Z­/~DLj¸ù}/è;ö£ µ^È}ÓÒÉKAÁò “NÂK(T¤êMU‡Âõu|‹½Š(²xW¥RêŠ E–-©§ ø)>™/Y(‘V°ùK%'Û\7$>¢”Æ©èŠÀï(÷}¬}³v¸~Ê]ÿ|¦ ,åõÜ69Qáý÷wÚQñ"Õ§ƒCîxHò´æ–e(ªø7ôÊÎx£šZù½9ú³¨q–iÒƒª 5/¤^==€GÍ_N7eð¢Î 5¯K|_P/1àG[±t=á÷Åc÷í%Ò.Ù ‰¸´òí„F4ó›r*Û¼æã"uW߬ ¥»„¢Çô Z-´H›CRw›¼"´]`·âÐÆ§žšMK£ý€îýv2tô8°rE%Xxö^)ãÉ_Á Á,}è2¹¨#ÁŽ‘Áµ.3¼Íh7!NqË…3v‡Ç½È@öê S ½èJï‚¶_êc"5ШúãâaÔ>~µ0; ߘIÌw‘@U0¥@‹ T”´&½ŽÎ€òK¦Z;êöPvžÎûo”ÁÍæöK(§<}á•:#TPk“fÿ> U‡\]Ëc‡× ß̲8¨Ë!)É$уŸ–¬^EÓÐÂ{á_B´ÞN³ÑVh{-»Åã- íÕ5 íåÐQI•äYÖf?n9Bg¬:ãó‘zèŒrÐ0¡×NÓ+]W¬ “9þ€‰œäþú¦È•0tŒW—[(B—]ªNÈÇrèíú@Ï'=’¬iJ¶ÐVV5ø.úWYøg³``Tí ¯üÒ:—ô4;†ÛÍ&4jœaÔ°…ò<‹ŒMvbù&ZÂõ‰UÉá÷Êý{'š:`F‡<ïO­Ìýz¾óTÿ ,~I¾¾>ÕËÇ2èˆàÏi_‚gž°º˜þ&ÝPþî\¾ßœ2› ŠŸ"ìä`;XÂã;a—|É(¨“ <„øI-Ž#áœ`d 'ÿ‹y»Ÿ·H/||Dú:ÉÏÅù‡i!å®ûä^ÒHUð¤èþÙûHKƒ;>E ½¦jMÂñndˆºïœ}ý%2.ÞPr5x„ÌøòÓU‘•¢¶$Lˆ Ùòûß…˜ßCŽ;Ÿn† Ä!×MÇ´ö:Jä))ð”Ù@~6º˜áƒ5(p6ÆMË*;»›ù)æPØ[›J’2EÈVx'ï ¸„rnË«5”4\¦×/^B©lZ7nœFYîöÔb©?(7}…Çç˜*œh–Ö?c„Šýv Õ9x(Ô3áá T9þJg]ê(>žŸ¬5GbÔ¯[ÑÞE8ðùjKüyÔtø(µ|µ*¤ò ®]DmÅìnQçý‡P• :Ô“×+ˆ6çBýŸëO.†u£áE YÊÝ‹xLåð…CŸ¦Ñ˜y7þÒi4å¬":åñÍtí¤Ük@óä;…(¡Å—¤ïq÷¹ë^[¼ïÛ‰Ö$•G¼»ÑF-uiåÑ%´½â=æúEí mRŽéêà‰½EƽÙè ·-sÿ:&*Ì0]G§…ʾSÍð¤Ifå˜É#tqÌ4"îâBW’x+ÎÉ1ò‰šÇ³ø÷{#”À©Øñß°Õ±ÑISçýQ|£¡)¯q¡¶¼ jÝRŸmWÓCe죦ÇMP®£#Lïè%ÙtFŽ)JPÄjÔ’D øfé¸K2ä›G¦é-A¾àåÂ0·@È«>Ñâãïû_F¢¼ï@ѽ•³¬‚îÿS–.Ç¥ å«?oVT:@%ùÑÙ§ P¹0uÛÕâ2T먟¯Œ†ïÔÎl=‚P#:¼1N[5cZæa§¶¡¶@\6®0 ~Üc8üÇò0ÔEÓg~ã%‡ú†%®±qh˜Œ ¿Oð~~ ’íZ>ÍŒ[¹žžÙïÁV§D.šAkLºÃü5h«ø•É‘tÚân^ßç[AåQïåXèJ¹43òÜzÎp÷œž¾£gSTÉÌ`À%EjÎ× †^šŽzDÁp£©ÆïQ¥Ø˜*$R±DqêHÿ@˜pºEó­È~ “¼d§†i5W-^ïÇ0k¼÷ùÒî}˜O¯6¢2lƒ%’æ†!¢o°lF¬”“+¥CÉ¡þ†°ê.î½HõþJôä-tp³Ã!ÏßoaK™eÈà¨*ü‹(Ñà¾uöm+oʨ#!súÆi‹oH”ë×x@Iü¯Ç¢éy$sKËþ\…l·/w.)D!§[|· ò1úÚ†æ"?Ÿü¿êŸP`p¤fm…*D“4û>¡H[ÔXØtг>|u–É%i hKPÚê­…]'Ê ]9ýô5Ê—Æp:y) bkü×] BëïßlKÝ©Ðéj|“Êõô’h¬±EÂ@‘üŸ˜ïY0lÒ™ý&ì9ŒFÒ $Œç(ùÈÁd•hýS5˜ ” ɦ;Óy‡¸¯ÀLt÷ç™H˜Õ£éMT†92!OŽÐ˜'1^Y‚‘= Ý,mX<éʘ¤¨ K •u·ÎÂ2KäTo¦,/ÏWwª±ÂÊx¼I›)ü™£Ø¦ª„5¦ øk"ÃoÖÚëoýë6FÂ&•AJ*q#l…ÅŽpI6Á?Ñ×=N”˰K2(ðÔ€µ¿n·ƒ ­'‡öY QñÅWô–DC<ŠŠOIG¸"B/"y²lœÐ2Rœðè÷C*¿Ÿ¹Â½ÜHs‹áÇi¦çH—=xíÎÅ'H¿ñã3a 2*ReÒv SðÇw}ýÈܦÕ?™§ƒ¬b_d[/!²ùçne\Dö")²)ŸÈ±©ö<@¹ÔòK»Np"whM@‡¤ò4,1Ú±E>.bsõ™ä?´À’‡üã´)ÝÏÿ @’{Âtº+FÒZˆB’Ë?sÏì¡0!æÖF¢ðxÌ·EI.‰ º²†¢ÛÇrQ\Y¾\æ°.J<ø&ya2%÷âÍ.ˆ  Ô}ÍcÿÄQFaœÉ©+e': ΢\›r‹˜Ä:Ê—±’úœB…Š5Ÿ•ú·¨8úäÓ’Åþý¤yý½/3*CŸ§ãÄT‰»y¥(ô<–I XKÁ#2cõ–'šP#ƒÖó„§jêùÞz"¬†Z“—ÍŠI¢ö»§^sf¨{?¼_¡ÐõÇþdg"@ÃÆ ·^7áq)9O 4ùðÍnþ2š¥ML—®^DóíÑR{ ´ôú^oÖæ‚Vsì½¾ ehðW{Y íH$üÆ(ñD, !Ïtà§þ{…©¿yù{‘Fç‹cE¿ÑE´Ìœô3ºJ^–áójÃSº‘Ÿ.žëÆÈ—ÅnýŸo≜0Ú†«ç÷çPsðr>¤ý],%}Af)*yFLØaÀš&Á O :ÖEMÙƒö %¨žZ„†‰ ºÄâP«¥dTlrªR¬=ü?õþŸï¶ñlp @i’vÈSë]øVs»É•AÊ^wçsC¥B¶)‡‰Ü¾¿Nÿ.rÜ÷Òý„©mœhCÊ¡ËòS`¦–=ôfY‡dhOÀ#ÿ›×ª†0Ô³KIjOñ8\Va$#e%׸F vY‡c`ìÕž—vò'÷Êž’|ä/rÇa’ aÏ„É&û4þ•*œ‘v©çÃ'+Ëv™|ȹ»îêgÖ /ã¡cs_‹‘ÏÊÑŠ~lùM4ÿYõ ÿ®ØûvÆt(õõ¢+DÁ§Ô~q*7P(úQ<é ?7pXE‘’§ñÖa¶(:;Up|PÅEi|8µWQâäíy÷ÐW(ù¢ƒ985ΗÜep›Bi )QiW”%º#µkñåŽÿ>µê(OKJÌ9„ò«#vË»¨¨pŸ©“ä<*m’u½YêC×¢J }T³¸þÛ Ð5>—¥ž9g†š_n¾n+ÕÁ£9›ž¡c¨Ó›6­’e„úê¤Ó?H”÷y4*ä<l›«U…¦G´+ó¦‚ÑœÊÁ‚TÐ-bÒ*YnW£•Àå1Æáh] ÜÄ’ˆ¶:³•i UhWáñ:é« Ú+Ü‘wˆA‡W F~«ãè$½âm”€ÎߪnËMª¢‹†ðÕ«´è*¾ZÅñï0FÄ=í¿#†vþ u¦…{(8ñ€½³vn MtÛÏ¥¾©çMÉSÿÏÿ2#AöõPo$2xVjøH}yU³-OfŠ¡Òá­}jÒ?(ÿÀóŽl¿W•ÎEË×Å À·Ð®‡õˆÿÏwõsvòîB©þÏ«G)­ \ÕëÞÞ‹¨´.½Ù“ÿ¾G|öbOÿ ?|-ežBã%+šDЬ•¨M:á ­ä««ï†Ö¡»ð¦ ‰4´Ëßê<Ù}:D²žo„ެ€ŒÍô6èèJ¯Èñ;ÕÛcQŸj¡ãš3]êÚè/¦ö·§%1ž2èø¡áË— †mM ‹’L/î®*t\¶~ÄÑ=fF }t§¡w-©öí@êpýç'+0¸¬YÚM,Ã"ÇÓ0ÃÈ“Ÿ‚Ñc«0¦"ñÓõÎ˜à™ º° ¿q´)€Ñ¦cZS¾-ÀœD7­á% XØÓû•vú,S&Dš¸,ìçÌ7u6­Ò°ú@DK7ø/üMãp«ûMÍÃaì`›yë-eýì¼È¡ ú˜r=i=Ì›H˜÷îØ Ý $öh_ýÄe‚¤j,~T'ª‘\~òýc ¤4ÈÓÈýPT!©´‹fHÓî+¢u‚ é-éâ"ƒ븆“*26e¤e¾AfS¦ú6-Ndw-Ûyl\ß½5E›¿±tŸ>"—ñßÔU9ä¹ó ß"cùwò&!tß5`¨AÁì{¤ñEÃ(¬~×åÄxÙéT}óÅfõ_ŽÂ~„™œ+¦§A©ã¬óáž(Sî¢}¬Îåò_ “DÞÌWk…Q1Ñy•½)ÉÐÞ{+Õ×ð tj6µ„V7ís{çÂÏ2èékº‡Œ ï-ï‡9O<Øöwj?Wÿêκyàì_Ñ©.~}FîjËÎ$Âø½Yn¼R˜Ôeh+˜„)‹kS‹B0c«î”djs¯ÅTNý<«¨6,}5¹fïøVø/ÿnaGøSvSÍ„¢Ö®¬I«s„u›kì~%C°é™{M”™¶ß›–”Ú_ƒ]“Ï,/¯“!A’ÌÝ™"9$’#`_JFâ©yæh“R$m¿ ~©ÉÇ‹÷tåàŒ±)ìú8ýîåv¤­ñŽì*EúΣÑRßæ1I½.Žï%2¿õÊ\L˜DÖ¥3‚—i‘ãöÐ{^¹ãÈí˜ÍØ­ƒ|ý–º9E(ÄYjp# …,Ïq¹®£È Ř/·ãPìa G9J’Í'çÄ»£TQ¹³»² ʦlyT7d ¼Û²û½‘dTä$ax±¼€Jpw`á*ï<'äŸÅâ±7jt¤ðÈuž€:wÔØv Ký䌚'®ú‹˜l£VSHÆÒ]Ôv¡›·»…º ½éO^B½®Û[]sÐàóÃWÕШÜeÛË ¯$8¼YùŒ¦š,[OŸ¢Y×›¤WhA§murT -­ƒO?‹þ…VïŒJ_×Cjjê3M”h{Ñë(¿+ ]ÇÂÂt´W‹bŸXB‡çŽna»èDøïGVx:_ Tùú± O.´RÜ›êD—²³—ŸK¡kŒäçgÿ`ô°Š¹ø=º$˜ÙÕå… b–ºº¹2ˆÉ_½+* óQ­ùá×ð‡´G{rÐyüör’â´ºX¾ãrsƒŸs²×ûh¡îÈ3ïÁP{Dã<ù­8ø.ô±æâK¨™¢^7a¨ŽÊ‘c‰O†ïÚÿK"á‡éÌÅih„¯c:ƒ ¥6Ó‹õ'tð¨&0P߂XÂ1è'aK(ž¡×d¹\79y5l{¡ÆNÉÉ¿=Ð z\q) `²—¨@Šö<üÞnçyv¦*>”D8KÁ´s(?_̰vV=³dJœI0ÇìW˜Ø°Ÿ?5<¿dºÝ…;Dºaݰ8¥~ñùb?,Õ•÷ ]†åü—ÙÇ3Â`¥€Š•Õwþt _Kß; kÔ&åz©¹ð÷dp#ÑçG°þµˆþ˜ŒlJf{ûþ>l•¥‡h4÷Á¿Ø ±ØÍØÍ:qsà ¢Uþ0ës!áìÕ¢ ÊGHì>PñÐ> I‰Û¯g$!Yñ+±xS"¤xÄ›Kä†÷\Iƒ‘:Á§kø§ÒV \ö^Bú»~tJFnÈð}ž°èÉ2± ‰ÔÈõ!s€‚Û dé¼ÿ'K¦Ù¤ ©·] ‘=èħ@Ñä¨Êu°kKF.ZR1µMäv8Ïã+‘<’çæž"ÑË£•4È/¹!=4»†ü½ÑŸÎ @L³Í­£(h1qúu² ñåþ=bƒB+¡N~ÍŒ(ÜÎ;þ­` Eê/§ @Ñ^¾R‡(N£åƒ oPÂvä£Ï‡”,N Ò$¶G)eí˜fÁ(]ÿÌ›ÄeÏÎòq]½r‘_už¢¼—î˜×ƒC¨ànP´1øoýýªãH†Jï&µJ~tà¡þ×,“QE1Æ—ŒHU»ò™õœŸ¡Ú ‘tõT jÜü¼ä,ŽšúÄá{zz¨µ32O1€Úýîw(³£Q·ãµïFY4ꯖ´%y•¡‘íÛv;<^ý4¾aMªí[:“М¸øaS®0Z¸ë?ªÔéEËA󺟭Ðú”€ážÚ̳WŸéC»Ë~k¯“—ðÄê¿ôÐ&:øý‹˜¹“‹Ž+o¾w»m¡ó“&sÿ_èÂ!öuÂi ] ‰Èµ|ÑuSG5'C#F&l¤î¡Ý-ykz”QÞÑ&ßDê²¹LƒËë0õ>ÈõÔ«Dè ‹<ò;:H¥ü¸OA3cjdÎu ¨­¯Rj‚ïë±v©s PU8g­DeÝæƒWË¡$õðÛ½£Óð5lðg¹?-”LNMYìûí’‹hû(-T‡ÍÍ{õªýd³ÆG åòÁ…Û¶YÐþÔ éêoèªÁ¤ÓìÑЫ¼b½Q ý!W-Ê2aðyÕ:ÃüúJ¡Þy†>n®»7ÀH…ÚÁve–ÉZ;çcFKG9\¸ˆªüËŠã0ÁXtþ­L å¦[= ¿U>tóÀò0¸çÞ:ŒÄoÚùþiw )­d’éêc$»nYG™n‹ä{Q†ÄâH™Ô¤I6„T6>?îÎÉ ú]Sï—¶Hg¨ð3áöÒçkÿ)|„ ub-â_6±ÛÛMdü12 ÖhFì„#óH¯«qëdùýb„ày=²® ÷QiX#;‰Ú™z rð4g¾CNµî:ΤUär¹×ž#ܱ™CÛ OÓ¨û?ò1vßXÜ@~iJþgM Èß×ôä›2xúâáÅí‹(x!ùfƒ= žûvý‹ û´=ðü‚"w3W¦†¨Q4ÏàCæõ7(6ý™€´U%xLÇtø…PÒª³–Í&³Þv5§Bi*¦†¡®(“u˜5ÀùÊqs¹ÈýE¹ŽìB¡4”ÏË™#H5A…?ÔWB$P©6ËÛ2ZULÞ¾4D5Ï#G_ŸA=/ûÓ5­¨¹))ÅþµMgglߢ®=¥û?¥_¨?lý·öÐ:%„¾ä¦FcïãëUô²h&&-v‰‡ÍÓ›ôŒŽDË#<Å9.‰h5PñûKŽ Ú„&4éG;–6Þ¹ÀF<÷e[Þˆ|é{DäÐÑë’©5k%: 1®¸:áIÏ S§$£KTÔÛ<&"tõÜ:JzÁó½mx÷BÑvï¹gÂb6 ðÓ6ÖŒ­Wf ‚i¡GËóHá '4¯HS ñ=ƒ±QåM™Pý~Î=â^T>7§ØÛóƒŠ#º}ø_B´´Æ6CÉÊõ_O>>€¯oÚúøý÷, î ÓHº ¥uâ¯ßúCE÷…CJÿW;Ñ;ûo§t+¥ð@“ ÍKÆ¢Ðrß Ž#‘Zãµ(à¹ìô§_úé¡ýnëGþ‹#о÷ün­¹á¾Oéü¾ïnÿ·n«cPŸ í&sùõ…·¡Ýû¤xƒœ=´J|á™W€µ[^œÔýÐ1{èûMèìê \ô0‚nÎÎs]—z ´‚dV; Ï²Ä~‰é ¤±1Ÿˆ…¡…‡Ù\`øwý‘¹•0z'UI2ßƽ¬ê–ßõÃäƒÃ ¬`ª?)÷XÞ-˜õgàÝL‘ýE-£!2Xz—^½šÛ+'g„Þ“-ªäëþ‰OEðWÕ,}óO lxyÓßê•‚­÷ Ûܰ£xáGPÔaØ[ãÖ·þhŒ„ו踕Xî݉Â÷¾HJtÍ„Žɶs%iŸBJú‡‹N+ŽH¥û¶üa3Òvq”‘áXÚ¹&õ&d|ßÊæxà+2K“ÿÚ;F€,eÛU¢”ÈæöûÝ·KÌÈ!¡žœŠ ÈÅ›Êìj‹<ÇÝ®ùN _΀µÈ Œ}0iÚAÁÛ NåÙŽÂÔÍùw#^¡HõßB ÷—(öÞîѲsJ|¨“:sn³>½o…2§ç&Ï|B¹›‚ïÂÊP~ìçëðT´tkð]F¥‰/4%µ×Qù%y Ë[T}Ü{¯Á$Õš¤UçÖ™PCW*/Æâ>âbÙ,©!j9Üôþ©„GëÝn— ¡6WñÕ_FÝ’ÁÄ[)¨o]RRÓ«S·9ôjШhCt·Û ?;gzLè šd¿¤­—F3ûé'Nì¢ù%.à¼Z´ˆ£æü§„–åÎüm;UhµõÏÜžrm´Ž½xU3†¶±«aÛ‹Ëh7YxMž ížïŠéòB‡7Ãf·6ÓщE1ñí°:Çœ–Ÿl„‰Ÿ šÐ ©š×a:¾·H®3M4~À)œ²XÓY‘ê.­çÞw¤™ÛΟøŽôŽåŒRT‘‘}ÒýòW!dæ™9D‰¬N»V}2½ÚMǹ>ëÖÿìéDÞV‹÷=3L(Àj™ÿrÚÇwUÖ¦… ùÍc‰bÔ÷£>£D@ã7Jñöz^Ê'F™M²@o7J”§²Ì-¶£B…¢wÔoÄQ願*ki&*Çœ°ñµÂKm¦jVP›MÛ,Ôü)êTðÞ¿õ.îyžÌù3Üò]ÝÛ¢·Ÿ Ýã“…'N¦ÃLë í˜Pœ0²$1¨úÏÿã§ÆP6ß)ÑÿÆ]këíÐì}¹þÝ*´õ ½c-x ] %6äE½F±G^|:øŸ‡†•'¬ ?¿QÚL™á‰N«c&òÿn ‡ÎeӴäöÂL˜\ ûû ~Gr g}‚)É+/—ÞÂ4ùø‹_60C4ª?=/ ³\þö…ñÕ0gžB˜µóéLáœaQ[¬o̵–Â?Q.þúßý_yÆ:æ:ê}]Ô}Ã[IYÒ øë-qã¯]¬7ÿHR’3‚M»7¼ñU°ÍÃ$*;R¤|d °÷€IÑÜãrßhÁ2y$ŠÝd‹ßEÑ{¾\w*‘´›5q+ˆ É3«¨þI8ïçÐÕã/ä‘*«nÂ9ü Òôžñµ¾üéÙT¬ó›#ƒ]“ý¶à2æ$¤äÜØï‡œ‚çí—¾"ËíÓ·fN!ëØ/>£ñ9¢yåYd9‘sÄš.»¹UXªˆ#ÏCãÚëIÈ;s”6ò©òói¨œPFþfÚÚ2åk(&ï{'Å ´Ruô Í>úÜû¾€šZj1þ&h9ùô³±Æ9´~B«5Äü mõ·¸j®þù_Ï’é¾xë„m'–¬ªäÑI‘Ëê°j*:?MX±ñsúržZEø¬m£^Ÿ1\/Aþg‚gS¹Ò`síSÕÝwèNxj&õ*šƒß²sÅAí¿D—¢%¨Vpà9Ø•Rá%tÃmPÞê¼ë]¥ÑÖéߤê¡Ä¸†)1ô2 –˜Cñ·SqsŸýž^ùN¯aŸÓîŽ'ïC#[ò½;¿ Ú:ãNòMN¨Mç^ÞÚ÷aƒszÇ^Å#hRøÊx&EZ®ÇîÏ£Ðz7HÆÆÀÚâ=QÉBÚÃuŒ‘ÿo?d>\ÿk}Ú'¸ß_7…ökÒG%¼¡u›ÍÊuŽˆä­ˆYƒö˜BºN²hŸ%ìવŽäô&AÃ{ÐaöDE`º*ƒ8¾fþƒK.)¿éÐ;ýÁUŒû# ˆØÞyk®CÞ“nqz³0œFõð¸>Œª¬lg/‹}›““JùüåaêºXB‘:ÌÒ½+®ü óƒñâòÑj°ä¯&Ù) +ÂÕì®ë‰ðg^ÃëS)%¬mžfúxj6dÏÞ§uƒ­ 4Ëí)Ø¡b¬ÿ{-y'2Åç‘Ðs[îs"³wËœE’ÑÆÆ/ø¬…&CðR ¼ špF*êïÝjèÆÕ­Gí´<ÒuM_éHŒEå%œ§üŒÏ ¸sœßÏ™Q¯îÓÄ K®D»f²ÙUfÊ£FÞx¯‹z‹^;›¡Dy`ï~ŠÇQäKI½àºæŽ,+]_'¢ ?Cz°C= m·-*K¢È;ËŽæñï(öཷ$J$¤ùüÉÐÃÍÿž¥_üŒ2ŠU.h†rRN®I(_Og½¼ñ5šØÕìQ©çÐ7}ƒNTNñ2¸£Ò…ªO~v«‹… ZK`¯œj¨õ—žgõF‘zÊûîjY†hnÙŠáѪN—&¯ý~R—÷ ukϨp¥G¡¾gv¹9Ÿ)2=ùA[$ˆF¿¾H?ò?‡Ç¿ ßõØD“¶oç^5=D³sºñóºöhÒÖ½-Œ/.i¿+AËÚ¨ŽôìhµWjè¾J†6ÚeËJ­Ðö¡_ç¡ÓßÑnbmþCá´×+Š· B‡ô»þ±E&èÄ|ðšû»ËèÝD|5:}ŸÃ›|WÔÊþý°7…Ä+or ˆÔF³ # 7óÓÿò¼9÷]X‹RÒ7†NΓdSòPG¦‚£JªüÝ 2ºêJ:òføzêÒZ).(TN™)$„|AWWM®øœÿé·¹[à~œZ’-ƒœv—ðÁªÈ9wS ¾êäüúHµs>kÒˆÄÈå@þÐ{ ®õÿSùÑGà"”œ1þ˜ E ¥r ãdBÿ{oyBäý÷í PA}(¡R‰ *fÚ < Þï‰Áüƒ%ÛPE†ÊÓ)7 êÓDÆéÞr¨Np?žq­¾~!fjܯ®%ïçé„7öËÑPQmH´% Ã#¼kà§%uçÛÖÐG$ ¦²--ÄÏ"Ø fç½j´{»=±ý<ÆŽO®@×ìW­W3¯¡gƒ£¹ægôó±ôг˜Â`oûÓ0|ÿ(±èŒ¤ïÍú¤mÃØþà3Ù‚ ‡£ï8`r+ ™Ví:LÍŽ†ÄgÁ¬°c»ÙY˜w!vMiÝÅq¿BnX†íŒO°Òøq¯Ïô&¬ú˜^.¸µßçC ú5`C(…O½ülé1Îù0ó¿9/ZÚÿÁÞãe›²(m$´Ômó×ú‹D{)b¤;ƒHÒ]XRrVÉú}cžÛ#ÅÜ%Ã÷zñHÅ2Jn‘Œ4—¦µú½‘ž›äPÄh24Ç\+Õû€Lõ¤dOÒ-‘e7¬üæ®>²_ýQxC¦¹”ÕOpp²!¯vÙh÷@ä¯cëˆV¨AÁG«Á'åß pDÍEz}¾[æUJ0^Π~’‰‹ôµÅQ&qÂùtíG”~}Ö×`¥ÓÓ‘¢’?ëHëq~T¾p´ ž¾UïÙÝüwúªÍ-µ=Ó%GkDõ×5´nüõG­—çâßµð£¶æKNenÔÙØyÛMFŒzí9üùРÔ">ó\u 7^°¸‚ÆT¾½ŸBSë]Fÿëh6¨–(¢‚lïéO»£¥SÆû»FÏÐêóOÁRhÃr»zcP m¯ß•Y™ý_9sx½C‡œsE•zèÄ­WãðŒ fÉE¥üßfÿ:ÑTŽ&™”¥è#;œ`¸ˆr¿+Ó4ý¹‘¦»Uk"G¦O9VIÁÀÇͬà¿tÐ~Y{5ÚW€t”îÜþ½˜œwú µ)š'?_Í…ïn.!v•®På|gñ÷>¡aT7T ò*ÕËPu³wOàw|o²:éÀúêR,®ß€¦E¡Ìñ&h˨Š_Ö„.ª¯è=KöÇ/ü0 í0ιRðógEÓþ0jÂLØÖeã’þk 0‘ç¸7á÷&+Ï<Å–9øíV$°Tw~ÿ:47S S^>2Ňå`Zá £],!Ìä&_H…Y ï¹—¦0wé©^ÿ!˜¯\úºõOXž-‹…¥Øãrt4f°|/K&Ÿÿ#¬¼R;`µÉZ;çt¾2Àïœ÷[Åóð÷rýŠ&°>àº6”›î%3µÇl`[\ÉJ˜‰vd¿f5¤ÁÞmÏ+ç˜÷}FÇ«qäù ]åS¡ ŽD¢:‹'*ÃHúfÇF}N ɽgR>!¥ók¿ ¤²QíLt-Fš«WÙ6´´‘®âùSr.=dठ}!³µŸ?]”kq™¾¿MÓ]Bá ûFþÈbd,^ØŽl­[çïÍ"‡Ðî[izä œÚM[C®Ö±¯i;·‘GžÎøy òÆ,u›§"ßÜsŠôŽ0äÏ=ÙpÔ\vÃÏ8‚âf¤£¡à¿¥Å®‚ß(Ô/ÇyÇa…ë;«ë+P¤yéþÖ† ŠÎ¨Ò@q®@¡® ”°«¡¶ úƒ’™ëçï_E)æò#ªE(ý˜kÁÐ\eYÄÜ k3PÎø!…³˜0ÊsÉ}H”@ù½Ÿï­e£"…åiç³Ä¨$tiBTÒW<,Êq•?Ì´fi^FÕ“H}}ÕP-ôŒz®¬6jðE\Y÷`DM¶Ü/«cP«IǯÕWµßE(<ê;„º¯{ ËIPÿûæF¦…>qQZ­ª¹æ1€¦Ôs„¦ËѬ.…‚mijŸG’{hy™å;Q¯ Z ¼"™CÝœrC¿ÑöMËó3/dÑn“1¤§b`ß‹Òé3h…á+yä[ªèØÜ!Žvè,ok¿L€'_-„Nª~C—G«mãÙqx'{XïÚ̉?XóxŒ3¨õ¤eRê†bþIw˜ê©M÷ƒî’Ö3×j MÉ’f¾4:Ùy]e¡öA SwòT5Ù±t‘º@yYIìƒ~øÿÈ:˨ª¢vmÓÒÝ Ò]"*<t#­ b` "*(¡‚ ¨Xˆ¨ˆ€¢H ‚ HwHwwwƒðñ~?ÞsÆ8¿ÖØ?öœcì±®yß×Þs®÷}v*Êä!伉ʳ.ð‡_šç˜L" ‡U¶áò9äñæß t%„"Û£“‹¼P6]ª:?|jÜ>ÒÉqBÃå‰/‡¾@ÓÚ÷'VazÐJ•.YG àúËæt |ñ;)Ý ]%ýä>ÇW¡çÓñÞ€>ýlâlÐßXù­oÄ >¦ò1³! ^ß¹2 GC'è£;vÿíçQÒSÚq,½b£w.w$ÝþcåÒÝ!B0¡Ö3˜n“ÿ”Ø*žÀôÄ¿šT{O˜£}qé†',ˆÞ± {\ ‹§Ç˜Øa)¡ã›æZ6¬|K»_I«—O5 D%ÀÚ¿%-”C°QvåÒøC~Ø*›ÖxÅj;{ó…”K°wò‰‘#§/̾-Ky$DÊ}ÏäÍØ‘8¸Ü›’¼Iú®¤kö#™>wÛrüu.ò’Íé´y.4¤»!}rØOwBdø™ð:£9 sŸasB¦ü´Å~ûd.Ë×=΄,-UeDg!ëÌ3ÎÕ‰9d§¥îýΊ*¿có·ó¤½û“gÄÈõê4Ë€(#rwÜ̺¦‚¼"ÞÏ¿\=‹|wLþ]Wä÷þóÉß ðÁ¢¡Ì~þñVŸcùŽé™ßÞ‘^D!ú÷²7tP˜¯>•a%EÐóûæY½Pì¡"úÅ"æzÛ‘¢xåä,ýJR‹ÇÚœ¡D)Ïj¯go£ ™vˆ:kÊ>†¤naV”»i°CHbòö\ßöl]QáÃC­¨tûsêÈJ ¦¼»µóL*ˆmžÌ“Fµ6ʲž¦DTŸN°Ì¤ZäÚaam…¨cDN{ò„ êUR=UäâAƒ«•ÛÜh,K£tÌM—ת—˜¯ ùÙh6F´˜´üsr¸­¼Þ®Âà#´Þeñ÷y„'nþ’rðG´móuîoü…öü@gŸw\è9Œ_ šßªñ6A‹K¾äÇ6h=\'â×mx«br¡}n¥ïGß#èô9ë,\ÝßÞˆ=¾½ÓÇx¨·ÔaÀÞ¨óÚh N›¼sŒ†Ë%N8e?‚Ñ…GV/¼`‚7ÓW×t ¦¾ëZšŽ‡ÙëÇèØá2,¨Ö‡ÿ| ‹“Ñ4¬Ë©­Û¾5v°š{#Эé4¬/»mêh½ƒ-=ï¾æõLØékq⚇½$#Ø'Hh[la¿…Ä„$4_Ü‘¤„×ÐT É>)%Š´#ù·+9§²yxî+ÒˆK²”—!]ürW#ƒ ²Rµ!cH1±§?2ÓÒœeoàC–øÃTÞÊÈfôáËçƒ$ÈÁ4§¢Õ:‚\¤k¿èX—ösó{‰óGä{â™]:‡”„{âò(è6J;kT„G/X¤¡ðó´Ec× ½ôýÉHgŠ_ugÌvAÉø¡Â{P†Ø-f˜}q?ÿ”éÔ¼ƒQ>-ê9^pBE±ýõ‚¹•ª^l¬–Få÷?4íIPåC±`2ÁM<ÚTò{ñ¼5ªÉ…Tu!6½Õã5ŸE C_¶¿ƒ¨™¯ó†Ð·aߥ“(¢§Q§q¦-ó¥7êù‡ŽÞ¬F}}I4$õRa¸ŒFsý%/ù}Ñd££Ô¡iÍn~Š”ËBó“qhñ¥+Aõö3´¬Ï~tKõZ“h\ïãC]%í2žò}?œºÜµßKO‰°¬ =¼jzŒñ ‘Ñ·6ЉéàIaïð}?T­™hÛï¥×Ø… \ÿ—¶þj™ˆìì‚*ÄJh&ÁN¡¦ï!…ª)Ý`e¤Ñjµ¤ð?û¤©§ªI Ò´íó£dW(Z ¶®*…?”—V¼ÄÿóýK<é-ÈþzÅ“‰2“òÿØžU† %ƒ^Zê8H¿¡sbd¾ÒuU Ùì m‚» U±Òþlp‡TÂ? ž· sÙªÒ„~à¿ãäú,æ–pÁïÿ—M~ÿFu÷þÏÿÎ[(«Æ/! …±&y&iKPä- MxCußÿ^w[OâugÇœã¡D<<{„”J)¤«ó; Œmp$vÇÊÖïw)ëè@ÅwŠ”²xS¨ìeó¹fÕ5ë,o@mÈ´n{Ô²’^p ††ÓÉW~Cã;餋Ú'÷sú£Ïó+3Ð’üþS5´¹iR‘@Ç…¬gÜò· ëQk|6¯ô²Qϼنþï&º/hïÀ ‹ñ° ­ñ²›~ƒ‘¨7ÿv¾ÁXÈ Çw¡0qÓpÕC@¦¾ÚÅ[ƒ™þ ¿Ž 0¯/V™ìb Ûmº^KÁR@ÐÆÈEXanˆHs‡Õr×:Bî°ž0/r#j6s4ßß^Í‚ñ =ëqØðòŽjUG‚탱}Hôið§Lr2’Ü S?ŸöÉ®6÷“ÑCò»&µ&˜‘26@ÄÜ©·62!]Ö³ô£AdVyNÖt™¼ù%G¢‘åcݽTíd§žNzÏ¡Žœ9 ãnöÈ“%ÍÖ*чü¾ÝË·ïh¡ úTa¥- ɦ}=ÂŒ"&æ_è¢X ¯ý.‹6JZfÄÒ£Œr©¶ƒ¤5Êý\å:Ò‰ ^ià¿&J'ÈBC;#PÙR„žU—UÜOËß=?‰G»Þ³é¼FµÑõË¿–Q]ž²rm…5þ0·\î4F­ ó*̨#×S¯Sä‰zì| =QŸî¡Ë Î4”Œ'|wOR—¹AÓ÷¯9_àE³­±¨foM´]Œ`~‰–žo¥Ú¾¡Uáw™þ_´áá:2z§ OKX·iÿ¯ï­¢CJñùtâ´ezrvÃ+¢c“Uÿ/‡IÜ\­+øTáÐb¾÷'tºèÑqÍÏeíŸfV!RskÖ\#*„ñenö’NèöùF¸çMi¤þLZ¥P_35¾ðªÃ3¯]h®€ò¡¥/B¹PšóûiUÓ#(.øÊ(M· Ei»¦_öûçg¸õÜ›ŠÃcžwÓ„Ò^æ’eò¨l´yJÊyê]ºzwŒ÷sîu‹D?´‘®èþýÚýŸßÅ¿k9‡^î!ÍÒs` 8aœÄ†žøµ”–ÿ†‘ÐÖñº£Õ0&ÓÁÛÂãöô“²0Þ2ãgN² Êfïšja"é´Uc`L:=LvVO‚)­îáz˜>yÆ/Ô§f^¿le¡º³÷ÏŽÃü¿µwɇaáí„ÌÀ,¾Ö“Òƒ¥ïNòÇ©¿Ãr§ê-c²pX±lyZ‹°æï1Í9ØëÛæaÓ«9Ý“`¶­} ¾ôþg?L“©IìÝ.úP̈„„¿ûü@"—䤧‘¸ÿ€2óÔ?$õaöwvÁrL©Z—‰‚BiG»š©ÊTë†#¬ðu'ÒYUÇÑM#}÷ñx<º†Œ|âu=»ÛÈtUåÇø;ad.û—Œ¬ì?}‰E–íÜ¥ût«bÈžÓÏ£½¸ï‡ôwÆŒE™‘ëbzÆ‘&AänhhÖb[DÞCß{R2#ß[ňžµÈ¨¶Þn"Žª5 oØ  ùIÖô·(8zé'ÓI<ØèšÓ9h‹BÍÿ49˜kPxöF¹ü¢1ŠrvtÎyÜA1‹ÒõT(þ,hDÏß%ú¬P&3 ”þ‘x[ÝO(]2Ê6Y²`|`9äÊ9Lÿ81Hƒò¼sC P~eÏê»G*ÌZ ]PCÅÊÒ.<Ä7—Î÷ê¯Ǥ º¦’‘vw­÷¯Û¼TcSÛj1³Þ!…! _âÆö¹ä$ZL*†jºãfðW£âñæÕth¢’v •t„Ò4‘ßÿyþaϲVú´õ zÁ] ·÷FûïÝ‚n¬'t‹ôƒž¶²‡Ž ì{â á¯[œÐÿ¹ê¾ˆZ D[ùV.äÃà­Çkrâ0ä©ÓJvë; {ÓÌ‹çÀÈcÑÉGáM0Z]•jçã*ùfg}`bö—Ÿ´«Lýeg›I»3¥î¤î0ÏiˆY½‰°PÛ-G¯‹Û_~sŸðeªJëOs°ò½ó€_â:¬IzÏ^õ…õ¯Grxg`³&ØŒÈ@¶g¿¾Ó¬dÝC¶A)ÂH`èΣ%‘ƒ„C=ŠÁ‰ªä)kf‘„ñÕößD?$½<ËEÈìˆd#š—ί"ùÍñ‡«âH©°;|ôR34Ôym#íîB9Ú?HO"53‰ ÄêÝ8¹…Œ§3?»Œ#A·A´å%d&SK«C¦£® ‘UŠþ—1²™1o®ß´DöÛœA~µ È‘°ÊZ˜q9û^®ÓGþEnáSÔt­SÈãuãúÆoäX¸Ò²‹üJ/,íÛö{*HŠ* À²›šx´? Ž 58àÁÁAŠ÷Æû7ãÄ0MÂ/(B¤.Ù¢bRZ~‹lû¼–ª^<‹âA;§Þ;£DÕPùvØ8JIFÜ}˜ñ¥sß1?/É@Ùc}ÑÝBÛ(g©q·Çå1³¥ÙUn—Ê ’ã?§ªüTîtwéMÐÁ#CvVd×QíÔîÍD¨þ.lsõCj~JðcAíü‡ÿÍ5¢ÕUöõPÿ^÷FT¶P\“¡G“à;¹µˆÐìéÖò«”sh>CSu-„-Í…¿~L±D«L¹a™g¬hCžÝë—€'´n ì0¢íeA™S?5ÑîI_Â2´Ï¶ŒÁ@t˜JuÑxZNÊùLCÑ#û9y¸×É¥ƒ{Ú¾ö¡D›˜Lû´½È'øäihÜ#؈òÌ´õm‚6õõÛÌru–\½DLÁP+—î%ÇTBÙ-j ÈhIP6î5lüÚ^s ò¥í‰_¹Àoß×|:À˜§À`9¬ Þg!'wF<ø£ä8¬ä¯ø h6ó+CÉgþÂZD¨8G"MÕ+é dw¡n†e™*ŽNñ­¸ä@ãÕŸ ˜8hº_"«þ švø/éXü=õgšüÍiœA·[ Y°xMÞdšغÎfzCSä©—÷×…¦©–­#ÅÐlDð…OÕdŸó $¥5~h™ÐÏ,#m %·ƒÙnC{H}øJ³ t²¼¸ôZfº¥Û*êöó´÷ü³Ö ä×0ÀôTÌÊߣ?s íÁðõ×¼LùÎ0z?UëgZ6Œjœ,ùSº³¾­0K>°º; ¤®k¯ÿõÀbÊ-šŽqX¾v9T·#V}ÎsjtÀz¶Ë¥/·š`‹ÙÈÌr9v2ƒ<èôaïሟ·4ê>¾>zÙ ‰&åÎòÅ!IÜ•j‚£Hæ›U¤ÀþÉoônœ­9”ïˆH_»“!õ¢¥¥ˆÒ]?@*KŠ 4Of$âr‘ñöÑÛ>ÊÍÈ´.ñùE ²D-µñ!›ú­xö­ä Ð#e‰Y@Îío¥ÔW ‘GH9~Üzù|Å i^y#ÿ.ƒh{- Zÿºå¬ök?/Òä¾TFá[´4ÕƒT(jÜJåüæ ŠIdß“ñEÉÛ•ÛSIQº™ßïÌÒ ”SÄ" ”#\ÖCƒŠŒ1é£ýû<åâv4|€ÊQ¶wQ%6ë2Oç<ÚJûïzìMT9Ò$-…XJºÊ³¨¡usî³5jfeñÇŠBmè‰ñ{,Š:=^ÞÆ®¨÷êºÖímÔ7Û4ßüнßGŽæ¤x¡1{Ô¿lÞhÊ»ÂÇÔn‹fAÿX¸Ðø‘q?å}ÓoCMqUÏ¡Úþ: >åG gNúŸ:•bNß?¶ÿ¦€.Çyhá§ÛmüλŸÓ•mNoÎ@{¯¥ÉÕ×× séõUgчÐãµ-Ïv§ú )xþòÂÀ’D}”P0 =_3øñŒ(5™õ“ÃçaÃÄ(˜ úyQÝ¥¦¤l®Š>< 3'ÉŸíŽÁ\ÅÁsS”o`á—ÞùìÀXRrXPråß'²¿éê“®‚Ô¥§°.…Ò)7æÔ5£àvØ……®kØU]ðæWC‚èôæÄH¤-¤uÂéî~ÞZ–²n² ¹þñ±ÂCHNý¨ëñK¤”õß$Þ2Eêûµ å¹Hwˆuƒ¤…T¿˜:•!“à1s…í dÑ`Ñî MG¶Ú˜_ÄiÈ©*~#õý{ä‹2j6ÔF~™F·²"˜$•/öƃíQ}®Ü(<¯xeuJ Åô+hæŸ÷¡Ä~÷Ûk(Ý'añt?ïBuš;% QÁB¡ýb¯5*Y;¤{–•QœsõÕFK»ž”x´R¯â¥®ª R¬@uühvq±5: ™ä‡|QëåÉäxI Ô9÷{%óNê9mé+ëð¡þ©õ9;âå?å-fÔP—Ã,õ˨9#³vþ'9jÿ$i|øãê~á>R|©—©m¯£ÁŽZ„GOÓH<<†¦ï곌±£Y\fÜ_m@ó¢ ¼ëÓáh1úiyÕq­(þÞÿ²ï‰}ÅChs8[IÂñ¦5¢­ÓløiY´3%¼áíl‡ögÊn|&|‚aä¢k&Ð1?‡Pº˜ztÜüÂz ­/û ~¶A±ªÄ¾`7D2kM;± ¦óx­•–&M¡Ák’õHáa¨â%æ[#³…²;¤ ü–cPL'ëumÃþ|ÞŒ¾£# ¹Ç…Ž\$…lÏÊ}í¥Zù1‰Y²<¾6×@Nè„Û¨‰=Ün lÊw‚’ú+•ËÞäP™³¸ìÕ³Ïy~9Ñ-VhäK=VTí M{‰t,i2Ð’síñ–%´yÚ„•Qý‚9þíß;ÐÙg)Lþ%ºO›Û_¢‚žb:»TíÐG­T)d´ýÏíèN».Â@±ñyk|Ô—º©ÞCA¤«#<0üz`Ëí+ŒÔÐEÒ­|Ú-{ìÈú‚‡õˆs²ýÙ1µïGö…gåËí—‘S¬´Cƒò r];î’À÷¹þØiÐ#¯NdÉEï?È7RKjКˆü-ën‡ø¢Q b—Q /£`~Áãk¥x0Cx¸ˆ£…Ò×/ªy¾Eá2‚ HD‘Ñ®²Ü“(F1Â÷¸ ŵh[DËjPâá»é˜ÌR”s ö¯óGéË‹ÑÞã(3çÞ-4€r²*r[™Z(/l¼—à1… Wï„Ñ÷£’º5UJp*5©üSp¼xœÆWˆªÓKbM²v¨nx-FúÇ/ÔT ¨É>Ú²Ê.ïƒPפ-Ž:p ¿œOSÊÿˆ-Q}EÖ5hÌA”˜ üM/¦ÆÈDL¡Ù\EKÜU´Nw$ðåEË FºCo¿¢ÕÛì§q•ôhqæ¹›ÈE´É#3vO1Ày›q}¾GжˆâŽ(ÚµxO³Çp ý–DÅH»:JZQqI)cðÝ Fã'h#™g}šnyÙÓgåí¾ÃúLCRAéchyòp-j¯{Ü\§ó‡r:ú|uß2(.HÐXÆ*(ìmÅëP jã×¶©ywzr ÷dtêËy)øõ7òÑÌR$üÒ¼tôý?·ý×Ñ=+†±ð›kläZv3Ô2stC‰QOßð©%(£l/†ê‚ìz±%¨«,9íü™ ÌÏ¥n½Fwá˜FUÐä3%›”]Í~”ºò¡·þç¼áæ¯Né¡§Ðüúmç)BhZ{Óõu0 š®ˆ[tª€&ó,—Ê”ò}O<ͽe©M;tükUÐükõy@Kd¹­y5´æœ÷09 í"_µ”+AÇ÷×kUH ëëùS*§ g|äÉî©)è=wQ> Íwë Ga˜o¤ªD F%%÷Xë·`Ü¥^[}úLù>ü"í 3ÑÁ=£Ñm0ÿnî×L‡,^7_ ¨zˇp1ŒnÁªj”ãßtX÷u:B ›ƒEÍóF°¢¼øûX<ì¾÷º •Ì^û.D¢FÇ™ÎHr¿èxü¶’™‡çR!¹¦Ñ–?gÒ•Ÿ;"‹©e‡÷?F: –š.QDúžb}ÏLd<ûcþN2Í3Î)X«!Ë£L¢˜òÓȦdù)¬iÙw?6Ž{üCÎEÇŠÚ'ÈÃÚ$Oel‡|çfÆOŸÞCþ%~3bywÔ ü+“Šóc$ù5òQØÙCâøI•Þ}Ôa͈â"óŽúW#PÒ$åÓB JÇö8LÔ* ‡þµUéi”¿›~ Ë8þQìæ~{ƒJ©™5cµ=¨üÆ ÿO´ ª$$æ<ýq¶ÛÃjw$ªqMôPºR#þ¼ÇŽǼÊ|VvQ3M$Q³-jßC_-_wE±–±+ƨ÷Í&ˆV¬õ¯|‹˜§WAC³ cÃÛh¬is¸›ÇMuèn×tç¡Ù+»Ôo.¡ù§Í5õGÑ"çÛe§µI´ì¥_àñeGkZù'?ÌÑÆ{zÌëÛ¾Žh¡ípŠs#Ú«Y¸~®ÿ‚Ÿ äl¢“Hué¾r:V¸ì÷R+ ÿÊ/ÿËÿÎ,ÌÄ@¦Þ³¹›lhÊwéb°$²e[uWqÁòÛ- ¡¼/ЬæÈ>¿CµÏÇ*¸ŽAQåCþŒK:/ðº¬À¨gßãLòX)@–Gý­•CQä}ëÑ.%ü÷«|è¸i!Dúõž,&91ù €R«ÖÄú Í~5Díó<¤ÿî!Õ%熌Ž= Ë+Ôÿç×8· ÙEÈÍÏç{ºzòΘw¸–|úï¼Ò¿«R¤dCÁ"Ú¿Ö§ 0¤Š§HçÝ~öf¿~‰ Š'«ú{f¡˜s¬mÄ¡ŠçòÊ'^Ÿ€’ÑKÒÖcPšó'*û¥"”ëϼ£h€Š‡ù½f‹!PeÑ^"Awª·¾ž ’H‡:vµºêO¬ð—14®’~>Ilöà&*$YJ€æOWÍÈ2¯B«µiLî¥2h7] )ß¼ŽÖ@*ÝM“7"¶™¡Ïú|Í·gE0©®.w¦†deç5`ø/=A\ÑYMd{¼éô ÆŸò³Ä^†É4Ku&Ö˜î •¹Ös:¼"­°pƒôΫ˂°8!?á*ÙË®ë}±Ò°²">Ï”• kiÏ”ÆÍx`ãã§—¿Æ`k&(êäL ü{î“eîq ´Ý'óÜR‘p̽1€Æ‰S?é•j¡Ü©ˆÇO¹PAö§§]é]Tâí'X¹Ê¬3…)i~¨Â}+Üß[þ\Ö¤ÓÍ@µkææ)ïPÝD±}hþj¬z˜¯LC­¼?7xÃQ'æ×A•ã¨G}­4ù#ê§/lRß¹Œ†± :ÎhBvèeKuš±ØºþNLCseˆ•]­A‹S>ŸnΠe„äɹR´ê>mCY‚6RÿüžÀA1Ÿñ¦ÿ‡ÚÆJi¿ÐáÛ•œ ¤tbõI^$lÞ÷C"Ÿ¦²íÿËa’ßMݲ‹øÔòð˜Ù9t®”·B©C¤¢Ü¡&HþY¸/äsŒ2G•jú(B'ý´±ËÐ(üè%µOÔúkGÏý˜‡ÊXóÇg ÎBÙÓ¾PŸ(q»šú}©eŸƒ9—Í/Phº=ê´ø ¶Orê†Âélc×z(ÞzýDpÆ*ÔaV£„:=}]E¥hR'§aŠæ‚Ö-©Ão"oBg¡ç$¹ôF&ÅzÝ €6î¿,V{0Lmåó5ጚ¼©NSƒñƒ}ÅÏ£œa5÷È8~ÂÄOËà w`b$˜Ù6v&eL?0ÖÀd†ÄðùXB˜zÐé²´Óq6±Î'a¦óQ|ºÇÌq½_pÔôÜÏ«6F˯°Ì{ù-,~ ½f K¿ãüe‹`y‚"ÜéÃX=$ïôoÖ^¤Xã…eØ ’!ïc¡€Íç„Pt‘¶õßT¬Õ¿Gû‚"­J`ÏÝS+Û ÆÖÈ*+"‘BÕ²œ¿¹÷Ö\IYÓŸ“h¦"Y–›EÈ/H~óÆ÷W¤´ ú¢±´‚Ôv™ ñ$Hë+âÒµ©„ôNų÷-!,o‡ü.72Vš¬{éÛÈ»äšaxô/ò+^?Ó†ü+gj ÕP ò®åĆ" fŰä—ûùW±ñ`† …ÆŒë늈¨|ŽCÑ[7b´³Q¬pVÝèQüé+áG(©G_Oæk€R?¤n˜¹^Eá›B¢(ipž¾ån}"3´êCy‘óÏu¬CQ¾ß5îÄØ TÈ6UM»œŠŠ©×î+iÄ¢R…j£²V3Súµ«xx¯ž`gGÒ*¢° ª^d0¢ú‰HÛ“úãªoŠˆŠ}£EͰ{Ö‚×P[‹¥úû<ê²JÛ›lÇàqöšs¦Vh ¿åçÆ&F4Æó…(Ðxúýè£ U4má¸!®A„fãù¿¤¼¾¢ùŸãŨGh1½q„ý" Z޳ï-¸©¢U;qŒ¥ð$ZÿY2|Æí6ñB!VoñDXI9Ï¥.´õß¹O h‰vÌÛ»¶IhÿøSÀ⟛øðAY/ù®;Z¥&ªÑ>Œ¢ö>â»þH2çðÆójd'Ç©¡¥žxš‚þü•8§Tp*Š+ã;f¡ôº ]iÊ)(’}w°è9ä9Ò+V9¬ê×É·J÷ó­û®èåûðóÈÆhW³ü¬ËÑ)LÚï©w{šJƒ!¿w7ËQb?· Êž®¢ T¸½;ÞÙµ™DT~w AIžqã|4nÆ­_IÛS“[¡Ðª"ór}ë3´iÄ|[õ‡Ž;Ç“2÷=q7(¾Cº*¤{||=×bhAï…¨ÒÈ9è÷ÞÔ?-LŸn†ÌPPÂà[±>¢èŠ¢R/8 ÃM×¼lÖ'aTæƒ×Ó˜«/2ؤ†‰wFigÂÔ±Âaæ0“¶pqéê,Ì­¨4f¨ÃBœfß_"Xìù»¾i] Ë"U^¹5‘°òPX=#ê;¬±q4:šÁz[ÞžôvجâŒ?®éÛsÇx`—æ_dG2ˆ p "¡ ™‚•…4ùt8SßÎCâÜ'q\+rHÊJ#³¾‹d÷MYz2JœU³øOR”O[kÊI!Õ® sUׯµ+{æJ8Ò©ŽÕ¦I{#ýÓ<Ë:êdx(»Ã­³ÏëC®YãWÈ^/"XÙ†Ìß™wÔB¤¥EXÁW§ÙHú8”§z‘ýˆÄM‘í8丶šsõŽrÈeÃyäR£;à†<‰j_γû!ß©ëîž« Èÿ1íC";Å~þ½7pFÁWw3éYdðàƒ ù£c‰(äKUÝ,†Â+}ÌCyQ$vo…ú~ŠV_xá%(‰âzÒi(¡cM¯Óƒ’ŸdžÝwAéƒÇÅñr¢Ì'Þ{ÝBe(G%Ss3ì0ÊSŽKøÞHE‡›ÜÎ9}¨t0)ç¥i5*ß<,û±ý ÑÌ¥òe AUïÑ.£Þ4ĵ´°šg}¨QÅ;mP›Z1u¡ÇxeQç…ªôíCf¨÷™øl}ôê'¸dÒß BÃï¢SÄÐø÷y;ÅFb4&.M~Žæ”jt.z“hÁ61"þ(ZJdcÅÌ-´èJübVÖS/&X õÔÜy–çû¾X/›9E'þ€×|º+ÚæGúŽÓ¥¡]¹§JÇZ _ãI}&À€ÖY¥f¬l»ÈCÛfØNWë(÷Y”FZ¦­?mçÕAÍËߌ3T· Ìw¡jà,5k³lÔK•Cá%§G¦îvðÇò±U›¨2ü®uvñxŸ 9¹cÃ/ ˜á¯uBód_þªX2èÙ#æá.ëS+ñÊýØ'”Ýd‡â•È-›£P+ÎÄ{ ªCòk¥ ÏAÝgÏæôvhÐL}ÂòÒíË37æ¡és«„Ì 4û²{¬6Fÿ. +êu_ÿÿçu¥ÏBSõÅ~¯‹ÐtXéƒïöý>I-GN{ št½Ó/ÖBSÒÞ-Átmh¾x&D/6 Zô5m¨/@« u§ÙƒUh+\½•ÏÞ>ÄÐ¥lC¹,Ç =îGto2ôS „ɺå ©%¥÷ýJª¿ðÝ¿ŠFš¾æÞœU…qb±?G„`ÒU Ñlf”¤JjM)a^šíAòO:XT‘œ>”« Kë{– `å_RuÉþçoosnX6“×-§Ùaçä„*ÕÙ=ØCæØuºËH(È–ÍF(ˆD99sÞu!‰c…þš’‰žìÒØ9€ä´¿-KÒÏ"¥8(F’þCꀻõ“^HG'ô"8é6ÒHFžSKAFÉ3O­T©ÿuz[-²ø 1z\¾lb2 g}y#:ç0%rŽÓõµGŠKù²ÚYÈg“N›£øùÇdoy àᓆê|_ðà·–ãA Ú(¬]©[Ök†¢´bdŒ?Qœ0“>3%¾Š§˜¶Eék‘G<>7¡ìîýX¦c(寧%ZpƯ>ó"@¥X%ß«&J¨üêõÙ;…ᨒô‘d/ôíüp‹9ÕÞŒN Ï ~é7çÑB Å«ïÍüQóÛÅáû{û~xôñ9§¨³xÿ§¿“ êý9RxõŸÚuÜ{…†Þ)z~h|‘áê7šzH´ÜàG³ØŸ¿T—ªÐ<9`€9-Jèç~F åˆZÜç%´f,zmŒŸãM~N<ñÒ•‘K‘ m‡¦³ÃdbÐ^•Jç»ÑOtˆ‘!©È^A'z*J—ö>t{,¬ü½z¿—êIÿ_~X›þŠ* )ïxQ Éu'ÎQÿbd­û(y¼y –Vžf«ဦhÞ¥×tP.õ ¤õ¢3»4„¤w§ûj|Ž2üúû¦’ãy8ülêýiP †M­Ÿô½ =ý6© ¤1Ÿ*.‘S€Tµ{ÌõÂRѯCá ©_ÞŸ%ô£Þ¦¦Sûïk¹ÛÆ+øßq~ÙÍýŠûÊòÿ÷‰‡ïóí¨caôßyó{ûÞÏ9ŒÂŸ*%» S^(dá¡ü$]ýO¼°•P¶ï‰7·zÞ3@ÑËçcnE Øåö¿eY(1 9¬‘ ¥œÝ[G% ì­k%iÞ (ïe -Ô&‚ÊÿÓ— Z!xDÈJjµÍÓ·Jù¡^%»Ò!Ãh=ÈO$Û½¯Í “š›>Ë/ƒ–º66má}nÃê¸Ü¡£œ…2éÈè–kÏe½m ½‰7Ÿ2sƒ°N/O`€ÁZ·P/¤†áóF¸W£GÖ+õþü‚qŽGvSÃ$0©dF»ûŦiþ8ý+‡Ùöo§˜`A¾äÙUû°øþÀÀ³š°L)wfó=¬„Ò|ßÚë‡5¥~U~‰4Ø`lLЉòƒ-ãZ­‘•Øý×&•¥ {-GT,CeðÑ·“_󹑨h®æj%’RT¡ÇrU•j_ …>ÏTR½˜;±üƒi„l…"}¢bÀW2ú\}Wgq™ïÇWæàBÖr«GóáÈ¡ÉúB—O¹i¼²þ†Ñ"Ÿ˜YŒwº7 Ô=%±ÔŃ¢W 2¹~¢°Üy¾œ7в_o eD Á­Uoù<”f:µ¦a£‹r‡ÆQ‹ú)*ШPè~GŽÖG¿·ðÐFûÖè/<¼~_àŽ‹Î ÕÓDµgoü´Ä=Qݱò¤í,#j2°†g¯´¡Ö#C=êtøh<_ÎD½ Þ÷–¬üh@,\Ú!m‚F²Ÿ8#lÐÄ®¦ºÇ_ÍTúo ¢¹åÔç¾Cáhq«@TY€-¿]HLðiB«‰××’ý¡â`äw<ñÈRÈì^ôÿp¨‘QGÁ_*hËëýЉ9t[°¾ŸòML5Ùÿ_“œ…zÔÄðé—â®­|#´'á+<ÀU6]×Í.Ú Ùä›s¬ëç`ø³='‘Ò´we“Ÿü® § x(X Ævñ·WÜPñŸyø ”&ïeø ·@qNm!Ñ3Þ¹ì°zê¸Lî~^&¯\eM„‚Û¯hت¡˜Âz1·ÏÊÏžŽyWo µ¹>Æ6-ÐÄQ$ü¢=ZWŽËn‡kCgï`Óï¾kÐÛö¼ÉÈoþM%'ݵ†aÃã¨HfMÝ(hœZ‡ñè“¶ÕÿaâÏaïãò0)üòjöO˜<Ó ² “Wt*ج`²wÇïŠEL}¶¸è¿â Óe¦JzMw`fû>µÿ{I˜;"qöyj&Ìÿ Œ‘ãu…¬¼Ê§±°øƒW˜ìG,•”Ð3‚åyOî3“T°ªB­ñÖÞ›†˜§Àm…Û£§G`ó#;éXضú5÷ÂÕ þÁ«~ÕözØs¬xXQ€/%™VˆËVfŠ5 ‰¯„’Ø ÉX¤©nf’Ý‹—±Ú@r™âBw¤$^‰ð©'GªÍŠÜûWÞ"-­•©÷lÒó0 ;Ï"ƒVðK^U)d¼ÞÅ‘UŠLß ÆÉª#óø:É‹«¦È*Y^øžZÙ|üÃ^±!{»Ê×°¬+È©ÆEhº‡\i,ncǽGäû¢¡âäÞÒ¸ç8üÔ ¶¯&#ƒÂàj–< | Soâ @Áè’*«Z<˜±õ¦ëêUš¿žÿ~i EtI¯¶õÔ£h‚6ñ• Û`ÖŸöÞçL±ì"sXJú^Ž|àêŽRcŸ{k=mQÆFýUñ•ç(›“?×Ü€rÁÛi:´(/!Ê*ˆI(ßòÊ EˆÞwy{N â£ ×§ú:mò •ùùý)¤ËððU[k5™¸9õ‰æ ªÊ¡ÚÙßÜ)å%b”¨þƒ›öC jJµåª?ëA­2y{šÏ€:ÁàÓýøê]Ê!ˆŽMCý³ÙîŽæ±hHsùåŸþ`4ÊÈ Üž:…&§ªb36¡ÍjÆÈ¿B4›{_:ÜÁˆæõt±¹ nh‘ /Àûå5Zz[4êi¡(vp¹K¡5ñ!QöZ´®f-½k6QŠág8ð„—@Ùi ´µ!ø™ÛŽ?dhzŒBË…VoÓažÖ¿áýΉýHÎí,ÀÀ›«ß]C ¹9ó!¾yuvÕ¨î§îóóT´î{ ”\ð =OÞ …fdÍtÓû¹åÃÕÓâ¼ß?V;?€ŸNºçØvå ó°¸Å oÈLj$J~ Y›LV…G@ž¦ô…ÑÈ»P”ÎeµNþ Êé´ÛÓÙ› úR"0?‚úçgZœ” aùCU¢à~½ A[ÅÐB@öNbò´¾wõ£“%‚v.§‹f%ªûž8Ö“ ?l(tÍ¡«“Ê‚ßãôÍA²3ýЛ3½¾üÐú½økòc¯Ã@²a9µí ¦Zrs·]†¡6A‰ d&Ÿ£:éÎCÁ0è¾ÿãLÞ´7ýùB¦ïh‡«ÒÁlò“N l0?'0h¶‹" t5²I°ä¦ñݶ{–3w.XÞІU‹Òcæ°ÖsÂ×ht?¯²š¿VïÀVV®|¼Î.ìTE'ªÝe!¢)Æ5$÷,¿Äb‚„)[tƒŽH4à4.îÆ‰$bgœ˜‰‘ô1Q¯.Ó~~˜4KÇäŸnÒÝyRŠ”fœ…&"µHMÏ%²NTˆ4'*íUî{£nQ5ÒWÛ[u«­ CEøß÷SÛÈø×G÷Þä)dšŠX"`ÑDVi“|©=d5(fÜlF¶À2Q{¾dωú4GŽœÔÔ­ÈåKÆßóô×¾Ç =>“ ÈÛÃYñ†%ù/œoç£÷B«òyn&(èax6";Z§FRfÜD!m~ñs3~(l~ÅÍÝEN¯µ4šCÑ`P¯Ì C±|ÅßðúJÓ*M“ÜAI‡­HOB-”jή1AË?^ÝB‰([oP3Qi‹r Ö¦þ^¨ s5)é•2* 9{‹½•uù"æ ÊÒ”{g¨%ªv†V„‘#ÚøvË5B ç|Ê~/FÔbtËìüÙ‡Ú­Ÿ²G'²P7‹ï\€ ÷{|ò³:mˆ£rQdÝDòm½v¨~F|„otRùÃXüͱà^˜äHû½ãu¦«šì©ÁÜu³ËÏsaáiÿTb,åªýJ+ Tކ«À:±Mu5ûmØô©oCoƒ^ÙÃgÒOƒÇ´HH×בZ„DŸ~zGZ#‰¶›ÎÜ¢ ’þSr¯š-ÆÝ„WãÏ#Å‚£Á[ë ¤>®MµaH‚´½ŠvŠòHÿ×çòCÊdÔŽëŽtF¦ö†]ŽÈr‰^P™õ²qS¼÷º7Šì“æ¡D¬ÈÙS¿®M:ÈyMŸëʹfé … }Âhžs.tÅ~-joò÷ÒFËé 'ŠsŠÑší‘@Bð}´1#}y &lßû\¬¾Lï÷Rq â0Y´?Z*–V]ŠÑíb­7£Ñ‰ŽhŽ?vC×g?/3í÷ÒC[]ÓÿË«¼/` ]l²ÚÜ67³V:ß¶E–áIŸò¢FX2=(mù3lÿþµZ•a‚2o¦vm›óP˜Âñ›¾~wð„‡Ã/‰î ³ðóÈì=3'gøÑ&«óªÒe~d$í{¡ßÍ+ÑrPÁæE]8$—±^œ¢…”4[•ü{’ÿÙwuáÍ/øñç[®mÊÇÉ®-ØZÔÿ9qŽ!ì'á·¢ûÆìÿΛOÉ𯙂 òWÝ?ïÙᅢóD’+ûžÈ8t ýÉ$;”¡ˆZuuä‡?µ–0™€âŒ±¢s)¡ÄwÓAePp]imð¼bå nê²¾PÑ%J\óª.œ9[r7 j<ÏDHŒ‹CóðL§ã+øû±ÛâÆÁ,hä %¾uÚâ—<+8 E×ég´»Zä²-í–š]Ðõ´l÷õzôì™1€þÊ6Ýœ†d<ÿŽTíi ?ò׆‘ª²¾ò}n FÁÄ/£Þ©CÕ0ÕnýäQÌj0éÇ™Ã|/±öû§ò°hÚÛ‘÷ç,¥Ÿ›å|¹ +‹ç†ôÀjެ–©6¬:&ßaÍTÆÙó;]°s4`œP öøâ?Èí!¡ÄôlãÅ$šR5åmz€$5ßžNÞØE²¢þ³Ñ—¼uføýJ'Rq¦~x›†4iI5^çK‘þTϘ8ÁYd +â¼[ÌB3¡n'Õîæ]ªâ=d/£á~ê4rùN×%y!>cmOäß(iºô.ÿÚôr¹¢Pc—5s4Šr‰”HFñüs Zw‡Pêö¨äÌ Õá•õ7P~*7VñE-*•)xÓyâ¡®Œ«zœ‹x¸éÉ|à½Kxô¹Ááz ¨ö*ïÿw–AYva»¦Cº»Cº‘¾.º» QET@EEEP”é.iPéîA6ï7óú~3{ÿß¿Ö Ã³nfXÇ}žÇÜ÷³Ö¥D}Ô>~`¬i*o·–~»¸M‚útÁ{jI©Ð~¿AšKËU†¼DS{—è7}2h~ãe§þ¸%Z~ô"Q¼„Ö¼U^Ú¢ÍéÇï£ÎÚ£í}âÔé:C´+tŸ'@ûÕê{Öš®è¨Dód“n“¾a»õ‡hÉyäàEtMä=L¾@nŒ ÆöÏ>¢û-'¢¾¼ÿ›ÃT­ÖÓ™Ãx·1>„NB]s†­uQìBZñu w$•¡X|c¼ Cû8N•Îß…Î$onç(ø¶Í’êÔ)æóDÂá`P$7J/é ß–àŠ ‡1†ýŸCD2`‚½žÄ3&µ$go™jÂ䣼ù–e˜|P%w†&Ó5feÞôÁEÇYb'˜ªü¦°ÚÓãFUò0Ës9ТÁæsúª¹7`¾FZ†ZŸJœç>ɪÀbAà36:XªŸldvé‚åµÎw'•nªÞb ´ì5XKZ(>´B ë\ž%ŠäÇ`ã£Lc—2lzü`‘^³?ºfªƒ.ßaÇŽ·¾ÿ\4È»‹.f!ñ˜ßÀ5$¶Ú® Ï9ƒ$ÙWhnŠîò ™¹ÚòËÉG³]þEÊ´Cá_Þs#UÜÏC¢2Hó*L‹q(éJ.ž¸Ûцô¿­%7µ‘ïˆ&Áüod2ï¿% шÌa^ ~ý'‘¥L­ƒŸiÙ“.€&Œð¬#Ý"C¡iÙµo(¼þL“WsEÝú@Ó±{;½Ÿv£¸¬†ÿ'f”ð½¡O|_%Ó™\Ci.>Cãm”‰ ,òÌ‘@١ᨾÇ?Pî‘£ Ô¤£¼ôÈÓñF”¯­\"9xBÍ/hžDE/n qT:™ìú•·NLyNr J‰õ»ô´“¨VVø˜»Pcå„Ly3‚eÆè+¡»|2¬Ñ\´DF‰xÉ?¨gaôÜúùÔ_³zæÃ&†eíE–kÔhœhiÅŒ¦4÷T]ž¡Ù¥Þ“3×Ñ|6¨>Ó¡¥«‡M:Z)¹dKª uú^j·Àr´9j¢k>1¶,‰­|ÐöëÙÃoÓ†ÐÎË ¼—à5ÚS=Õƒö™¾ ÙÐÁG&‘öÄ: \ ÊQÁˆì—o›šö£Aºwè& ³—Ìew#ã‘s–ÉÐ7"3õ½Z¿:Ç{ê?Ä8ݰ†Jj»y!¬Pvð9 Í!G(%)¬3†||—;\kýùü…wìzi™aGq§¾(íPµ‰†/‚ì¯<õ‡¬´w Óû!?ùß)2Z(y}šs½åTäÍ™´85AMËË‹<· !ÿXX½•;|û)md©ºÛKüþ ­Õ}¯Ýº¯@»í5×@ŸpèȺ·Òr º(s{˜Ï™B·DÐAÞjZøŽçžð^Lƒ÷Ž9v;ÂÏ­¾äk“ЛdúF¡úÃzH‰FÃ@!µÔúìküÁa±ý؆…ÏH6ü8 #iul9c0v4Ôxˆâ LØDÄj”ѣ§2dò0sTr–¼æ‘g1Á©˜½ ”añUÞàÚŒ*, µ=\¶ê‹Û>;!<°:¸t³€ã&üJŒúhQ˜Q7|׬û`ó†Ì/Éc“ð'ær!Õü[ØIÊ΢JïA‚a®ãM$"“‘Ü×NŒÄÈ•º^GŽ$w³Óvï—÷% î!y0Qmö´R2q²|¼.Š{¾º>&|4ÔğÂבV]|tÒŸéi®|º¯(H3ft²‘VÔ{˜r™$ØÇË^:"³³²ï³*²D¿J§¨EÖ:®;ú´ÈNît©Õ£ 9özùm}FÎf ’Vjä>áç庼Neb_•_!¿²} Å Ôß¿ ¨…‚º\<.D($º {U…i”"¶SN£óáó:±(ÊÓ–ø”uîÕe˜ç±C±‹†2µ. xIõþh©ý(ÉZõʇK¥n¯ju_C2wïŸÂÑ(®J0tAå:9® ÝTEY?Íß'ï¡âÔ–ƒã¸…üy'ª¾á,SÙáF¨F-]u„l#‘#¨½â*Èåº×6û.XÜE}r]Ûx4¨–è":xÌçÝ?5l¢qsÌÅ}Å–hêÜS*h6;=}Ñp-ÂßÍ”m£‡æðŸ€|´6Ï~M¯lŠÖÛ½IÁh“ô9åBÜa´5ìZ¾öµm'‚Y{kÐî~cdBÛ:Ú럞¾Œö[ïbìob¸K=Yd ;Ú7´‹ñ"ç&¥`03¬/Ïóø.VæÐ–¢1;úÚÓÕ8— ã·òþ­äZè:á~ÚξC‡%ßeøé5”ãsqzE«³êšaÀ`£†2 †ÄµU§Ûs`DർºxŒ.æ¶ïò›eæ¸7–¦=.ÜK; sVǸeOzÃBiû‹gá°Ü\w†f V®´$Íï|‚µj;”´H‡ £×¬vCé°EeÚü¡$ ¶×ô«Ÿ}B‚?I¿N ÑÍÁ&»˜$Ϊx8sIÛ(–múƒ‘ümlß“ãH™sñàÓ¤¤¦ßcr=õÒ~ÐåëÏžEúüZý¤®—ȨÈmóút2•èDÝø FÂ}µ»~`«À„†dV2ÔèÑh‚À¤^AMêó|;jfe‚‘hQ1fÄA‚V9o.OŒ£uñ‰Úõ¡hSÉÏFñÊm;úãèÑné Õ£ýlèÀmÊ‘é޶Ac±ç¶Ñ)Æ%ý.gÉnŸôŽ¿8Y„.j—©²ÛÐ5áªù°Š1ºÑüné?É´ë‡ÞÙ,êÿœo!ºéxçùa•úÏŸJsÃjçØ Z(4Ÿí ˜CæßŠuúi©°ø>çÍqùhñÜ/ñ«š *Šß}Ñþ%üÃ8þ¯Õžº?9áâ|ú¦ùò9Å©%øìyû^Ë€ ¤4ÿÕá|²Õ8¶ß³ >R Å:5‚Ô2‹Óºdøøñn]_‚-¤«¤ŒlõGüó>êÚÏ`Ë¿óäà}-˜> y¬R÷"ÞwCþÓÓ|òÎe¯[¸ÏÀ='[¾ Ä.pê>ýç=‚šÒ-»]OàgT·‡âM±¼T¥L(¹>Az¸·J˜tÄ>õCçøúSÎX(ëe-Šä€ UãÌP‘súùÄ2Tó4%)‹GBÍk½i¯·´PtÑu4Ü gp"í¦| ëÓ@h~_9úy_´Š<ÒKjöƒ¶¢áæ…1èx[eV-â ]q1o~›­Á÷™L=–³•Ðcÿɼ%úYÅÇìTa¬å Y_" %TÅû\‡‘ý¹ú#W;`LÎÕèÑay˜Ð4Ií¨Ôƒ)7Æ™¯L`¦˜f²'íÌ;^ñu<*‹Ä_š§(aÉùU FÔnOÎí©} «ZWLï÷wÃÚ†È-Ôuù“óY;GXQð¼^= ¾º~®Es}Ϻn„âNÒô»9/eÃ[&ÇóeKö÷ä¡|–Ð *VföÈÅ¡ráãÚ‡Ö’¨ò1öQä]TY͸fìZqƒÝ¢|쨴xRÂuOйê«þh¿²n‚†ÆªwOùÞAãÝùSãühštïÀ©{´hÞÃOuJÕ­ÖU§ÇÐúʬà— ÚÜÓý¨žÅ޶ï^9ƒvßÌÞï{0‡D–Ö·ÑQ>ìúÓtº“+0hzþ?5G®þÉû‰®¯Îæ™0“†–FEÇû¦kÐ1q•¿üÊü`ÿ¦{ðÖ=è³= ¿ug-Â}4Âp]ÌrÈ…  ÈO’ðô…‰‡ž7´Ê«`²ÿpƒ×˜"5Wé…ÉÉNcnWz˜\T`2˜9 SŠ/2/fÁÔ˜9sÁ/}˜¡ÔvæÌy³x¾‡k+æ ¶nÌ÷9Lk……ÚUæ&¢X¬tæ—½t–Ú©WÈOzÁò¶–Ò¹«°jæÜÃ\cki÷WΩÆÂúÞß\½Wã`£À`×Lk`ÓwS£ö– ü1$|p£wvLÎÑýªC‚¢¦zÁog‘p&0¥k¸‰¥4ß^÷½$áGêëãDt§×èl\<’Çw~9Z”.­çf®Ë"•Ú”„eŸ ¥–ÝÞ9~'VÜâ ¬=0Èhª†u/ëDc×bø­]lŸF[Ê]g¥œa[âv¯– 7°i>šþ %·OéëÍ"‘CËVïj$Žñõcoù€$Óûü —H‘ÌñîµEã5$ïä8N=x)}ãI©Åy‘Š6äÄú—|¤® »ÁÀ¥Œ´¯Ü©?{#½ñÅØSÈ`Þ¡'q=í½!é‡LOµ"´7¹óÚ¹z¶deüQ⣇l6‘nD-×=i2—Äð0rŠXLœOðD®n)+÷?EÈÓvìæ°ÃsäÛÉa$z‚œG¼o—K¡ ûXÓ›-?\W3·· G¡N㱟Ã(ÜÌ¿ÿwŠüÔ èAÑ?£ §§­QLÅùµÃ7¹¢l¿%Z¤x*ïæ¤¶Y„HJçn;ÿ>‹² ¢Ü#&rŸS~=ØBïFcãqTlüR®“²ŠÊà ‡õø~£ªÏã€1Ô`+™+œÈF`e ও@훦eù¨³ú‚uT õø5[]Cýn¸¯›„†|ÙŠV²Ñè§/ƒÑ¿}|]ïŠ š,{¾xø ͰĎüÀ#4¿qæÃ‘ˆ^´(ðKöùr-œ™ùþâ#ZK?ø#ÜÖ ¹ùí¤h½úÚ°»Òm.=b ÕE[òÁ'³¹Chû¤¢ŒÑ¡í>“>‹G{§mY9äXÔ;Z£  «û¬ï?­SCýNt¯¡fåýpÝÎa(/‹ž/‚’/÷åb(Òø£»Í¼õÏó„ζ iÈË™“ñOüç¹Ã•{2 »>˜VÐ}¾2—÷ó©Þq†,Ác))[es2)Q»Fa×+§sjL¸ÿg_|ÜÇ•ýK’ ­qP;ý­òÎçjhÔNùHͬáó†î Т²Guó´:ÅT¾Žñ‡¶Ý^ÝDºÿü°ÓKçQ•´I>[Ï‚Vƒi¿©Ô]n=ÊØ‰©w?Oó´JZZ,ã¯u怖¢Ë_öä@kx–Ó¡¤ÇÐæ’,­iíN¿' Äåv¹¦£†g¯¡‹Ø<êÝóÐ]Î<ŸÊ&?UN ÊhAï¡÷G.üù |N‹þ §`°3eçÕ;0\Ë;ó̘F';÷ ÚÀ„õè‚mÁc˜Zå½pÕ# fî/˜1ÀBx^­}” ,á1àÒ€í¦¤SB°vÛêKTØl0Ÿhë †Í-ÎÍY:Ønéù¾l‰Ó'¸ÝÌ(€VŒÿ¾’’멎#é»Þ+ß[T<ü@ã­“H{áÙêEF˜êÔ«ÖÈ”Á³uÄã"²ØøéÔ{"qñ“ ÈÞNL*+‹œ5b;;*åÈ=¨}ð™Dòñý¹žÿZùË,æ<ü†‚”ß#,E¡ÐIÿ—Ù›](ü«?œòPôSbH±YŠ= œ÷!D‰×†)m(5Xß²¢‰²^µj¾(ÏÖ»JÏ‚ Éi 4mZ¨ôå}«î‹ ÜÎÙ˪—ÆmYQ} B»„5—’ˆoœ¾xIÄ•[¥ u¸|ø[¸kQ÷ÑDse”Ì®yWs[¡!gŒ©è&m ßö¸•‚&S¾)ßß£Ùø„ë³â»h1©Çœ-­zƒG>Ìš¡ucmËzfÚ4w½æÿˆ¶ý†[/Ÿ£ÝFyñÑõè @ÍPê’…Žösêâ‚§vý°s§ún :$Ò.™£‹ªò\AÕ ºÆ‹û/¬-¢õRÖs5it¿Õr=ôŸó-Øf”Êþ/?,Û¹R^‹¡TG—JFúÐüÁ-!k¿ëÈLÂQ– ‹$æaŸ ¹ÔYî·'TP*ø JÌìæ–sJ¯OäßM=k¿ýÏ÷ëfyÞB&õí’°pȘŸ™’üé’c/‚þ¼„Þ뮺ƒ ðaîÁnîmøP|}Œéƒ¤¦TØÉ½i~·Úq?tdOr}’Ïßêp6¼…{$ÄFl#õÇçc”‘.Þ] PfBÊ©2Û ÓÑ`º¢Yud¹òõˆÞ“>d«û­µwh9:ÔÎ"ò8Oîÿí{ùíÓ]µ¥BPOzV–³…™žÏNpÌ ¨=cÔ[‚A[Ò5îc•BÉù?ïö†ª¢ìñÏ%åE(ŸTÜNsß%Þ˜–pCåçúoA•È7–×ºß+Éã9ÔzANÊ7ƒÚ‘7VóÇÈQ÷0»!½'ê{©=ß7†WÙ2ûD6Ð8Ç}Ûê%š®UˆiàZ(¼ÐŽ» he÷Ôr<7Z¿ ¤yÿhmRçÒ'VzѶ4*׉ûÚ iŠ…ðn¢½dÍ£¬Wèhúö×iuYtŠö}ùþÓáÿ8T¿8þ˜Q ]Ÿ7ÒÞRC7Úâ¡\åHt¿}AQá×…ÿ‡¤ã]ñ—U…*ñ:>k{û,O… ]œfèü0{†¤`†úÒäö…Õ6A»z%míahà9û§y ªG×YRT^CEåí×Çï ,ˆNÁQtnw½÷.ú+ž€"êUÊ'Oi¡€kŽ–á äèûU¬Ã y­Ñ$‡i¡è¸ ’úˆCùÿ/ a:PÏ(Êúì«Ë9E=:†â9öžÿ?öüVòL€¾hƒíüað¬½Éé5g¡Ü©ò?æcí\O:Ÿ Ã$Í ×yÑ)˜Ò`XSçøß=ð= SÚ‹$z¼0¥ ¦æ¦´Sî§­®N…i²š‰ïëY0#©:E"Á ³ô¦¤†aî~k£ü¯0˜_¹nRqï6,´ÝWŸí<‹M«<åİÔ#Çù;tVHß”„ԇêm‰ÞÖAXËS¼,ëJÏGlÔÀFíý‡u]aó·×^*øc’3#á¹;ØhOÛ<‡~ª¼÷!aÑDSS\¼MÈó IÍoÑR™#i9i‡Æ’Ûý¢Òxƒ”d:GE<ôpÏ¢Ìã­û‘ººÝ´¾i+O°‘V!ýÑag wd8wé꧇‘1š¢Ùaj™rTï ¤"ó<ß¶˜1²j ¶«° [ŠoƒArÐܸZÓØƒœ÷ö¯Ý¼°ŽÜl¹†¢ê'±dfo¹òÉ>¡G‰CÈè©è‹_Ô(`œG~ç† :»Ø_1½€BœýIx EöL©ñ·P¢èóG<—j¬PL1MjÑ‚ Ånz_âå@‰n’åÁ§L(Åñk›­¥¯3²i?¥G™‰x†CW”ã|r4…ö<Ê}¦ú¤ Šòʉ¹Û´(Ÿ)®Þㆠf&_jÎÇ "sA¼g:*±’/«žóAå,ŠRzRT¹Úf}Ø+ÕÎÌ2+ù£Fp-åߨu7RâAÌEļ͛#O¸P‡¦Õ“¨›uÝE;ïK ^çéžP…R48A­–_‰Fs¼ëhLÓú€a M¨¹œìêє쇤½7šjXò(УٺøÖCh>ñ¡X“-š–)mê¡å»[úO_¡Õù…Í«áñhÍïýçȱX´¾ÖH‘÷¡­'ºsý~û¡µ±9ï5´ÉÓ»J˜¶†—bž›¡M¦“ðÃâ"HÈqꛀísV£8?,«Ïö§BóH•ë°Ô!¨‘*q˜Œ†2‡¾/÷…J¬Iö8²›ïæÓÃÒµôÈ Wïšý ™–ŸBŒ”Kv½0Blò£dÈäm?úVnµóy ð…»­02Ae·ŸæE†ÊÀ×=jë5 PF§#ÃÐQ•qQK²±ŒPKíߟTŸõålòiºüÐD×ðe­ šî¦—gïr[TÉ ?£ um¦KsvÚ…ì®3»ïæR }Ë\$tR[pƉA—jmøÅ)}è« Nüä ?ȳfOÚEÃÏ6Ÿ-;z^èMÙJðRe…þò«VæÇzaÓx˜Ši†¢[G¢½ÞˆbÖàÌd#]P;’¸ÆûÔ«= „É|®Åñ0=²f~LUæHÒ?…^l…î+EênX„ÐqERXºö‡àõÇlXžK~ª«W¶³íöMÁ/U®Þ§Þ/a}ËÓáòŠ0üî’—±z¿¶Ò’žüz¶PË MÓ›/Hèi^ODOyÃäÖ‘¸§—Àrø"’Ês‚dò]$‹c/ñÛµ` ¶ž@ÖBK¤|Ÿ¾A?p© «V™ ÍÞÏErÖkHÇÐ7ËÒg‹ô·CÞ¾1#D†÷ÜmFÙW‘±ÇàMØÐdæ>¢ýV4Y\©,G]@Ögy ¨§ƒlK­4Ï¢Y‘ãâéáLäÒlQp}qy¬è§)ÏÆ#ß#I²Íå“È?·£ñâ07 Ìg†I<ï@ÁÚÑ Ž^záf !ê„Â&,ã×Q$ö­ÃÞwU(š—gVuí3î]9Î2Шƒâšj¯3¢D”ûgËI”\ym{©u¥?7ý)ì‚2kŒ¾ÝL(÷ʬ£>¾ˆº=BTÌ :-HŒÊŸ»ë…UyQ•øÒ…•±ÝÜ|ùRå Í?çE©Å¢6ß“c ¾´¨sTB>+xu_´:IM¢Þ¤­á>¡qÔ_ºLiÁí«/÷O7¢ášµ–qž/­·³U X£ñzW^Íš$š,¦4& i¯Eú–2šå¸ó¹­x¡yØj %ëZ„m·û£%iôÜæþn´¬ËS}2ËŠVŸ?éŠFk…ùf~# ×»àvŠo7wGÔ‡TÙÇV˜p•Èôð 9NhÕfX®ë˜„æâM7(—õßòd‡‡ævµ¯ðõ€Ï{ž®( ±Omí—€¼=Gy8©ŸCŽù—;Û™å¦ùp?dòŰ{œv€LnwöÝu–}ÍÁ^ÉÜ †‡ÏŒ@éÛg%] ò…²’êK¨Íî(wîЂFvј?i4ÐLÞ”ÿamZ$õ<˜ÞGB«eñq~ªxh;eCL6¥ôŸ6F=K+&ƒ6Öà¾Þ+ÐÊQb½]ì-N'…^¥ºAó¡c¤Q м%Ñ{§uZNþ᦭ê"†~›ƒÐF¥¼'pmzw¾±£sÐ!?Qt5::ãàAÿ‘‡ÐmdiGá‡G”ØþÁÐÓ)E¬)7ýIn­Š¼o`ð:K•ÓÀaöövËÛFoÞÍÿâOã3Wo]î‚©[Gé¾Ãìéü/{¿Â‚ÙÃ"ÊàNX""œ¢» +„k¡.}q°fe¾w6—ÖÍ7ì~ÃföÇ#æ¾°ý1pFu7O¿+i]ý„D.ꡳwjxÔ¹´wè&’†|¦>X¶ˆäÚçö\ºì”Ù÷ ¦‘êÅ㊄SÙHkäñQµÔ éï{/ ŸŽAFz­ì{DÈôêeñ’àdÑ{jó˜¶ Y=iÞӈ쵮­‡4‘ókÕÖƒhänû9[,(Ž|4¥©ô§S?ÛS8õ üN]$¾†B.‰EÜ)î(ܧ™[Ðу¢w·Ô(µQ̯*Fº”%ÎK¥ž<´…Riç©íQVf¹ûêÂ7”Û>&ç.ƒ ÷ÙC†’QÉOQí™ÝCÜw³8ü¬‰)ª–ø+”Íë úPkøÕ @Í {šÃÊÇýPrõ‰£Óá_Éɨ{o¿‹·ÚCÔ×\sÕ$»…†\¯‡™ÇИ¡ªayXM)9çóÍÉМ&ÙKöÀC´dÜv¹ÇJÖ„ |ë]hÝ#ò#ê¥*ÚôÜ“–—¡DÛ‰OžòéæhO°pFýI:ˆ4Q6é7¡£“×¼ÆtzdgEHt ûC%þD—}s-¥ú èú´5f;û)ºQMŹ‘ïú¡¾árÍ?ç[PŒ {´þ¯^Z\!ô¡ C)M…y|C³%½æZo.d­9¦}Û Üî=•fA§}[¼Pn[ZxŸEf·oNhPSCÞä’€ºïsÈÖ,XþE_NqÓ_xÄgõM‰ÎóBš¡Ä ³Çz)ËBê )¤´ëq TdCJa¡@Ïíøðvsž¿í9|:V´¢Ûglâ§~\ü;O¶ˆbé™\ÈÙl k¨<ŸôÞßÿ^w×ùCéŸCAПpó},Pü=X'a×¥}eExáëêÁË/äõ¡h&ظîëÿœ‡aç %SÞ[ËW¡ô…Í¥ßPÖ%3™ñ*ÜÚ/ßÊ$ž±û£ÑPÍH°ôrc jV^éXB]‹‹­óqh˜Û´Hy²ß‚ÏÛ›,A‹˜ÓÝ0´¦-ÆÜJH†ö¨ºÓ³VÐy‚YËØ]ºßE70hÀíO±‡mç¡÷£ã:[À€Ä…hÀ`«––®´. ]( Õ]‚Q#eu‡q}=ÓÔe˜<ÀÎÅ- ÓÄŽD{`Îä|V3,÷(ÕF‹oÃ.‡<‡¥±ø±Â¡°bÈ·Ÿ8fVû£ýÚù{áWëØä‹üVÝã7$Çê‹ø#×X³àHX&üCôÃߣlŸ‘¬FÒ³ü†^¶w‘y;2 ©¥tŸïœ@:ÊtsRCdè“'Üy‹Lå-3ŠóÈÂ8°ß#ÌÙ,êÏK G—ø­šDä.:ý¤ù'ò%¿x8†ÕìBΜ¾(”ªnö• Eæ 0ör0ŠE¥þàeƒ’w{îòŽô¡,«½”ôK”¿¦ë÷ÛXoÇÈ&å´£òU·‹’ù/PåÐÇm’˜fTw1O¾dŒZ‰R ”Ì¥¨ý„ó²Üpê^)¿]ÁqõoÇí«@ܵŸæƒÞh¼uT7*—ÍŒÖWÈšÐâ&ïÙòÊhõN8yÓÚ­«~¯¡/G›º§™O”^£í÷ ®l@»U©·•(ÑÇmT5@mÑÏí{ :=äá `´þCUKßçè/|¨Þ>ݨ[d§ˆÎîrøè•q÷ÿƒÃžŸ ÜlxOWü¨¹ÿt¢{q~6ûdùag­€;ú’ülþ4D„âÐFè­ëéu_ÞüE>UʼnËûÙ› ¼ÉE÷;õ(-,&7nYƒ:5ÂA½(ü¦!Ûp­òò§³ƒÜÈ 'Kÿ͵QÈYàïô¼…‘iÊfÛ»ùz–6ŸéÔ]ï5Íꇖ«I÷ŠþÙ??—áö©`øaWø™|_*ô5‰ÞOŸÁA1JÞO0bâ絿Æ•ƒo…uôÂdäÁŒô[Ô0•Oigý¦ÆìI–’wÇXªâI)˜:Ãëx9¦nêN…³8Áô^ƒÂ_¿E`ÆBþÒl| Ì^óûë&sižúGWÁ©Ót³ËkXè•>Hó~»p9ëÃÒˆÎì£ °B³Ç<‚V]ö~Þåu­¬ÝýiégXבjSX‡®3üÔ¿æ`3Të&AÆü±8iÐ4¼ ;û„cEC˜ ‘2‰óÖ~½/Z™Þ…D#¹'/77 ‰¨¢±õå3H.=UاäTl‡èÜÛ"#ÝÉ]Ý÷\du£M˜GjWjÒ±ßÝ|›4qå)AzÞÔù³ª'‘AìuÛ|2Ê'œñ7ÛÍ9›7[âõÈ|ã!cªÄ:²´9Ͱïú¡r¤ã¾ºIdgwÁóõ%ä”å ö½)„\_Òp²òØ8_t5EÞÁ*m']zäÇ£Z×î €XõʹwÙ(¨ÝÅQ°ø…¢*YäÂÇQ„™!ç5Šr:~.½ˆb^—£¹P¼=ÝŸÀ‘%i+ꛟ‡£”ùhÙ¥ín”ν}¥ðí:ÊrÑи³‚r²ªF§¶P®ÄÛYrÍåÕxÄMÈ¢ü{— rŽfT3¶¹Ô„ sœýk>¨8™û’õÚ'T¾ï(åÃÅ‚*™AÓÕlnÅÞ›¡@ í_DÝt¢¨%sÆ‚Ê|QrܹÖǵ?‰êÌ„¡Îè­ã·. žaØš’[¨_¶÷—Ç‚ Â2-chD³(*ÝxÚÕ—«—æÑøá-羟¯ÑÄâƒÁ]}m4%n ?…¦©?Ü".E3+!³454—$}ç€æç™ã8)Ð|{^ÉNS-®ñ~.=—–d|·££edжWZíqڹ휊‘„>]¿ÂõÑz5Ì=ÅýòË„¿q¢ô‡Í š7)å¡›„©Àë!|kŸ]Pô~U'Ý5n)@ÉïD•àÕ6(º{’aeôä½9ÎÿðM,ds\bMXúºëu„¬W!Cp‰é‡æ¤KNéWÜít½-ǃÌÑvLéÓaÈjТ²,‚ü™‘ï[®ÎP’7õR¹Êÿ\“Q}~ª•ï2Qþ€Ú*¢Cš,P_ÓË1ýKš ñÔ¬éh]Nd¡‡–G§l©Bk:¿[Á°´=öùfí¹ÞìïŽ@Ç çæÇ  ³2û³2}.t«Ž¿±ž‡ï›Ÿ¼¯ÂÏŠ“ÅœÞ!Ð[¿Wl…ÂX‹Rä’a0ÔÉtM•†9š¥ŸîÙå@P~5…ÆÞßq'?ü&Æ>&M;SQü¹6R`æI`ŸˆL2ÌeP½V·…¿ýô­ýI°øB¹!Ð ––ʳH³aåDN~Ç -¬ÑŒ³Îœ¾ ¿r6HÞªéÂÆ…[ã§o¦Ò>é—zÏak‡ð­ñN:lÏkÍ]E‚kÿö ¾hù=m€DM×î ´/ UÒº7‰(’`g©WB²Jîa«¤Ð¾.N£‰”£Šåž§Ý‘êù©OºÉHó &#óvÒÅ8D“u±#ýÄóÚ=:‘×¢¸¢v™¼Œö\SNEæDÙ ÑôOÈ2:Åw(sÙ0ÿÂ÷dÿö(1•9_cqÖÑBîº\sÙGqÈ'‘4:b€üåqô_H©Q *L9CQði9AÂØ{ò9ý¦xÄ…ÒõÒÚ¬PÄ‘Aúd-ŠžúÍÅÍŒ{3.ßôSE±¥ê+oæPÂH¢ÐÚ§%ß­÷4^åFi^Ðü)Œ(óqçÅ·ˆ]nÃG ^$‡£ü¬ëìðŸXTŒ9ÄG¥Å€Ê¡¥ ¤Öº¨òåC»KªK¿³ùlp5;ÞïÙ:L†è{œñ°`%jw—ºÚ3?Ca•ÁØlkÔý}äO3©êUêõÅëK ~¤¨IÕ~ 40 \³X¾ŽÛÆÒSÒh˜1Ïë^)¹ ª+F£ã¾ähcl3d†&¼Et,hòÊ/Ü– Mùz­ ĶÐô¹±¹!]*šñíŒØ@³g¿5¸:¼0\åÅŽî´;1£üHÛ Ùz£D˜ž‡ÀòOú+’šw×·ÄËíò`‘ùËÊâm(vvü¡8ó «ø³³»}°Nëé5È—‹k¥Ù ¹û'ÍIßÅíúŸÕxTSû"öÐ*BÕÊÃ!Š5j¨>ÊSC¬àš}ÄlºfˆnÛ9\×/¡ÕÁ¦`¹O¨Y;B6¶¾ë‡IVé •h(*ÞLÔŠÆ¢)´‘/Ñto½RZ‘š+ö)ÛˆEKͼ˜/̷Кù{#Í&%ZO…óߎA› Ã\ƒ@o´]b)/;¹ö<{iTØÐA"šð§Ì8:îï4 ²ÝõÃoÏÕÏiíöRÞåA"_tQ~›YU¶ƒ®q—ò¨Ïé£Ûž¡Ë\ß¼ÐýæºCô*è¹g£7z$ðõÒÂÈê‡mJ.­ª÷c7Wmþ„èzd £cnQÀ|ÀÕ!Ë4øF–´#lð—¿Â¥Ëý±i»ùg ÒÈ×¹þ—§Ï’äÞ¦AúÎË·œe‘ðÉV™eìÙ|ˆ@–Áëð>oÙ-ÉïÄß1%I!Tg®>z/ß²3;ò÷ºyùý¡G¾6@~²lËÙ6(¸êHxÂÿï}áß¿ókoëѺâ(†¶s-Ñß Äjú¹ŒÇ ”œìÑÞ2ÑWK\êŽP‘A:3p*&*#´w{u•Iÿ9m!_¨áÏ>cµ¿bBš ¿@¥«9CÑ'hŠže/ZMýËs«Ø÷ñ@²¿÷ƒŽÎvÊù£¦ÐMv…þá¹úµËÓèÙm;þ£ú '»+ãi`Ð/(øÝ+¦tÞù–H#­ORYDV`¬F›#öÌ'˜øùô³YfL«þ©{ðÁfË–^[¢‚>å¼Ó#°hiFùü|(,]¾zàʉ÷°\wÊSóÔÞ§p…_JÒCxnÃFÔ³g¥÷–…­\œ½ì1ŸpvBB·¶?$¹¢óäk’’)®¯Ð 9¥X5SìnŽªefʇ˜#UJí¨{x2Òž':÷ØM é;7­$‘1…*†ãb"2'[\ò+BÖæñýEGN ‡Éãâ*™=È-´Ññ6ÚùªÕˆ\L@SDûC9ÙPÈáPxš§:ŠÜ>´tó7+Šíå¾záÓ9””.d5¾Ž2%«Ož„ ¡¼g%鸬*ž¼öÝÓÀ•½´[ÏÏGÈýxãé"ª­óÿ2¥B­÷6î¿ï=Bí¤4’äAGÔ}v².B°õ3É'¶¡á|'aA|+šèùqñ¿D³8éâÖWŸÐ¢?!eNR­6óûˆI¾þãðÞ1â=ž½_ÑÞÑ쉽  ,صÃÖ•ç²ïyí¡{IúNhæ5hiúZ@SµÔB Еq6-ä›PÖ%Öäfòw]ÕŠ '¾ üËÅß|¤I±2þœùwü—Ÿ²ƒA¾:‰½×y‹‹ûKÚ_-×ñÓŠÇ~Pçÿ—7 d/H`$²ÃÏÞÔÆ÷^–¥SDCF“³²×ë´cÄAÛÁ8˜š½4À¤S™Ì7nWý§Êî³l>†™S4]tÊ0›t”)üŽ;Ì5Ìîþ»¨þæÔÂXm„ôå[°8$Ë>ón –fÎù ¼'†fÿî{^×`õà=¦úÕ°ÖpöáG2€u‹*™ž1ؽ9–õ1ôoŽý±~qæ(ìH]êIU$xü–‘Õ' “ù>9ˆD%k6¿¯M"ñ'Ùƒù§Hjâ¨éyõ’•©äKÌ!…ŸÑ_ÜÃ)Ašqì:RÍ©-‡eÑ"MÝ¡/”ó.e–†eîÒ7Þ¯äÔoB†6Ö[˜‘q†v²óÉ2s“í•Sx‡,>CMÄÌÈÚÈ­óÊšÙõN­ŸçDަ^"³8+ä:ÄÒNÓø¹ÿ,P<&?„¼WýOí/B~.%{ï†e èôh FAq»¾õØi û•Nm€":d=FÞº™oÜÈ«0Z•´‰ V“*ÃïQÐüGÙ—s($NäðZ …Ù/¨–}ŠB¦K¤YŽ(*ïùîTæ9Ü{òÞÖ¯„=(–óaF¸¾%×*Ã>¢¤›ÕQ>ik”jî“ù),Œ2GfÚkUFQÎ/DòLº)Êw9†Èw- âùü†2>T¶~;æã*‡zd3štQ-7žXj¹5•üîžExôÖæÎ铨mê|})ÕuDüHe£.UPÖ±1_ÔÝóeúø(êq¦ª½|†zËÓ줟£>q¡>]P:ê'‹0wBý:v„j#4ðmÔ¹Ó§®{'4 A~¸ÿnÏ5øãH_"­‰†êâw×ùÑðt—ÇŠ‚6&:¨GÃV…ÇO|÷áöº«YÄšh;;~…ôr5²©p(³ü:ËVJŸ¿PZA‹˜£>CèTÕ»ž‹V €²£lzNrîrØÞJ»Ã…¼_2®kž¼ÉùÕtãsËǪPMÙÆ—}îÄÅ@¦·Èrô5ø<û%œ`zÿnï”ZFcÈR›ÐÐëƒü™7¾ÈP(uΛ¨> •é½Ç+êB¥vòÉÛÆÐ˜tN÷#«$4»hKtIûBËåìl{š$h}¥ô>Šc—¯ºç²æÖ‰Ðî2•Ô}ÜÚùIâV\ÞB›å|EóÇhÕ¦”e瘄ï½þçê5 y$žé¸C4ÿ¬z{íº´XÆ&Û[ÒC+kS`» @ëàÆÇ*ò ÝyŸÉ?ö91õá=Ðižd®à ]“”ó¬õrð}ÓiÃ×£z¼÷ZóçšB¿Ô…¥Õ$0¨“ëòƼ†…F:¦”`TžèÀÑáÇÿù!Ï9Ãs¿*`f;p^·Lh÷qÕ¥šÀbÉøÂä¦,çù:HÜ «;¦*{XaýNxn lº½}õ¢¶­³Xö·"Á»AþãÃŒH$æ:rc׿ìyuM~ IÍ–¾™ 9¾õõab¤dôÿ8û²©ü67”¼CZֻɎAåHQ_8VT6š9?¿ïD¦Ûéí÷¢Eöæ¤õÂ~dg¯lÌnØõCÁèÄÜ<äÌ)Uÿ:•ƒÜßΊ;ä#ëÖ5£,ŒÆeÒl”›ê%9™ A7¢¸eVPɆB®ÂK÷Ï×O@ÕFκETϜښ2~†š©ŸíO7Î"î5¼§¿€Ú 3gQׯÄSÿ{3êsPÛ rFƒåFÓ{< h4Ü`ïÛB&ß™Y$DѬÇiBí7Z mðÚi¡Uë½K¥»h]öÛxú)=Ú…«^sˆBÛ K…÷ÅhמØü~ûÚχtüöî*ªª½û8]Ò-Ò%)Ý8'ÝÝ ( ` a` ˆ *v¢”HƒtIÒ¡tJH·À»}/ŽWçöùßœ«yÁ{ï±Çø®9?̽~‹ð=9°¶`CG½ÀÅÍ tºJGÂ¥½Œû*ÇZGgÖç¬W´ÓÑåÔ¯ãWÌw£k»)ë~ö~.îR× } Œû,ˆÎkBâY·öõRHtîÎ9vÇ’DŸæåƒ–>4U£1|µ“ù7d2nF_ªd‡ìe¡ôn•Ó„>«ÛíÌhAp¡š˜eô ä¥rGæ‰|‡üDû&ÔCþê½þSŽÍPPç2b}PøaxÅ0ƒŠÂFƒŒ¡˜˜Ï2½5J\T‰®C©}}'_Å ”QX ”ž-ÿëÃk /¾1ÒCÅàéú³—}ÈÕìó‚˜ùß}˜œ4Äkf Íræ™o"ŸB+•¯†Á\/´õ%qjíÒ€NÚCîéÎÐí’¨ž| ~l{ÕnÑÉAß—¬;/2Z`àlgšÝþ\bÌ-0æ;ÃWlHøµa´&o0ê ŒwÆõ¨î`…É=ñû;ÂÆ`:K:ò¬Ç Ìr4ÕDÜÙ‚9“çñÙ‚–0tþ›G?,´XuÏDrìÆª}]€Và¾è›h^X»ËÔXñ^~«†æ›— ¶úë>ÍLH¬Ùgá‰$«U\ª‘ìÛÏ<÷çHQç8òÄV©–›ÇØ«8p‡û©Â*™¤‰cŠš¾…Œ‰‚廯 óùë 7¶‘õµÜwù~dý!ÂЈœëË)j÷“qWƒ»íÛƒ¯¹5øu:r´ÄŸÜ9‰BÂa­ƒÛ)(b3}ïÒ[Ü=ò•Ña%º®°öP,ã{"¯¹œe”㹿äËN˜Cùðž«Ö5TÚamíW·ŽÊ#gS5¯ýDµöm…©*¸W€1´~»µìŽí¯”$GUÍ8ßooPOã%¹Ýiu4p;>Ç ›FѲ—ò¤Ñdü—]¡3š =qÏ£BK•ù$Õ¯üχÿ ž©\=þ¹m|¿œ/@d§Ïi¥óŸFÕ_4À·ï«ÃG^@•»O‹÷™0(—?ò2÷G!/÷=ò  4¶¶÷äÅ: »QõgŽÜéÑûÏÿE†¾Y|¶Ðò@Fø³õÀknáÚ°ÔˆõýëM®Oû!¿(לï¡”]à.>|ÒªHu^Ñ\ƒÚïïæñörÆDhNøÇ_¥$ôåÙ±K•¯¡ù÷U€´KÐ*Ö£Tú´æ¨–ý ö†Ö@àÝ<-ñƹ?lX¡ùÑe±¼8hJnv.×úM|Wf–^‡®•£œ[àͬêË„ÜjQfÉÍ[A •vy£ëQh™žç:$. môaä¤á¹r»°´LôgñÁ9üËŸs˜I$RáǨmÚXè3ºõ3¬gÅT3÷ÃLº‘öQþ¹3ŠÚ믹®DËÀÔ:ÅA–«ƒ0»cëfû$ Ì)Ù.= ©_ ŒÂ´`iÒ´iÛ® VOLÜNŒ‚=coâÖja‹MÕû‘;…V T´³ ½Õ´RÁ‡ÑÞ$7níEr݃ä á=ÆŽ÷Û?FjNÚlÍOq‡ï‹êSiÔHÏ‘ÒY<‰Œ›¯ï¡ËF¦%®kï²W%øc¯„z²‰›žÑ¯AöÁ‚5ÇÐfä,zpý¢®r,¸^gDîNßÎêÈeäc–H}éŠüÙ ô5(°(×/¡O‰Bæt…%Q¸¶õÕX#ŠX‘‹:Žb.òÉ3G£QâDwïYn”JºTfå~e„ìÕË©¢ìle¬õ¡ï]¼c´Ô‰Šº®~3QÙê¸÷«ñ/¨z®ä“{ÜT¿™+×t 5ÝF¿ G˜#%÷B­6±øê Ô±Êùq½.u—|nj‹L¢~Ùé²·jthý륹—?‡º¬*>™@Ó`Ó#©ßbÐüŽjü¯™9´ ôÞ :KV¯|Srî¡õãÊÜ2å ´yz+&üí-´‘ 0¨LE»¬sC³²hߨÒ=Ј bŒ2ÁÏЉwƒÑöÚ Üg+ðœæÒîÏ:5KǃέëŽýµÓè*8´Óš'øß÷)­Áƒ]BWÒÆTÐ-zŽìÂS :#Í;ŠÆ³üòSÂÈt!e*ë¥!LçÚ©ìß„ú ž^E»Œ låá» =œPÈ›Um0£ ¹!ëg ¨º!kÁæ ï¬!_wˆÔ[úܶAT© ||J|à‘¿1| 5s™¤Z‚D©Å;,°YÎ ' Iœ´‘æ~ðQeôžèÁƒ–GkköúØŸ=ÿ‡/ƒ—!ÇNçà½È«»o2[©|?äåLDÙ\H|Úæ\1ä_P(Šh€“Ÿ3þW› RRÔeØ »—ú¬k.A‘UÔô‘A(>¡òüçS(ñ^“ÍP†Rç4f&ñõ?sôýã·þú0pJ:K¡¢‡((k2ú¯Yg² ÂÚþ݇©¯ÃV’U Y]ˆÊ¶FZ™ §ªýs®‡èƒFIèd6Ìh¸¥Ýû¢W‚õ@¹iù …¾Ö«ê>5/a Pe˜å}ß½ÿ…ò—-0Ü{xe†+ F¿*|ˆ«º ãm™TÂîñ0)l5Éí{ëÏ~ÅÝ£¥åÏ^¥+[&æ Fõ¿ÖóÂü o=_Xø!oÿ6§–|Žz a%¬Må ¦ÃÚ§¬<†ð[賉äMئ3?ó¸‰¹Ì É@’ÚÔþön${):âß(„á·É8è©‘*snçoºÜÁÉöXºó8Òµ''^AÆ@3éíUdÖZ½kz?²J1°«¯‘ »Þ·Ù+d‘3Ùáuò´aÎýÒôfÏwäý`ÇZðÙ˜¬šÖ£àB¾{”Šðô‡mKãî˜%¶øí‹(¬•[y ¥îP6¬AÙn‡áß›$(߸û5>¡b–û7ÿ$.T¾·'máh?ªy2„^g=„šÏsbNm¢©PÚй,Ôn£¹~àÊUÔ-×ì"£÷EýoÛýÏÐpkì¾£J,š¨¦ü|¿~ÍŽ\j3D‹sN>¼ŒV¢º ¹+ChÍ[0àÖsmx¿ð>MàB[Ñ€ˆØR´S6Š[‘*C{‹›4bßN®ðŽæuÇç¬ï“|íÑ©¦Ú¦‰„÷“q^k”ރΆ†G5[uÑ%B¯v¢Æ]ÇÅ‹™æXñ "·ù±@tsøÔ¾¼'ýß}X¥¢~tí:1PýšÆÒ,Š‹¡F(¥SºvTÆ8ù¿ê…ò_GböCÇÊ:¥à^(îOkøøv ©“Ý ¹gÎð’ÝйV!ÞÔj~ѧÙгdPîB/'ö@-é~åÁahrÓ¡Ÿk¶ù{ÿáõ‡–àè¿ÅDs}<-E`8›ÃÑžå Œu^ó„ çËgk“`2úPQê;O˜,4³Í< “w¹‚wûÂ$ü2÷þÖ\ 7 -˜qy$Ío¿„¯8ò*_K¢+~3aÖ~âý­N˜“Ѧ£M< óÒo£_õ4ÂÂÞÝß:añhÛê™@+XÊ]|W¤x VÄœJå<Õ±¡ CÁ°nrR\7O6M¤©6ÀfÑ“šCñí°9—ÿÂuµ¼‹¿t‰GÒƒ‰”„%\o#œˆQžÚäsB¨w %ƒÄ»CO‘êC¼~l{)Ò7ÞV?å„´ZY ¤þéùó>q$"#iÆÏpQsdÜxðua ™)×(M–Õ‘EØš“W~YÄ÷¼¥5B¶„©79ç4ƒ©Í†ÕÄ9ïgµÖ*þF‚-o¯ŒÃ]a1¥‡GiÇ*y“è|òŽ^™h{ý ùõö·£€|P´~u< š|5[×D¡´FfñÙ](b¡àÕ{wÓ=uõy/†bÕã¶(¡£•I+Å’·ù¨ÜF©L]¢ò¶c¸g×1|/22{vr¢¬¢Kò.ßy”Öÿq¥’åט_”C¹&îQ”·ÎOÓÊBªPÏ׊Pá÷Øé@)Âü-§ª<Ä*^ï¬ ’;PÍÐÞ•Jõ*jðÇôˆjÎ)ÎJBhTÜ:¿B‡ZÞ§\{.¢vhØÀ¡)Ô©saÈI[B=C¯>Ûmÿßù°îg Ÿß]´"‰óι„<’‡£RçNÂÚý}~~dûχÿùð?þ/|H_všÿæi´žîeYý„l ö\‰;a^åòÎr ‚Ë,‚ >™[@åJ¬AJ”mú=1= ŶAÆ]UÎPàá»Ìd y.¥ßO”°Á§ÄÓD Z!»¹óx¸L0dvnȲ' ¹K'—9Žò9þñã=%ȺœRÁ*Ñùa {ù^ÌAYDˆm?TÙÇ×ZF”ÂWNš3¤„<5RäyöŸ„&îˆsGc óŸ$çûˡűæû1C{h½Í­iñPÚ˜nõ¬G¼Ø5hÍ -Û±ÉcËÎÐ<<'èœxš.Òå8@Ó~÷¯¹b„Š!DYD7~ƒ6h>¦µ^î-{îttf:æKcRßÃжg¡Q˜õ'´ß‹ñÌK ävéH´ÝAèV6x±ô~Äp¦rÛ„>[»Z ðؽ԰s†4.P6Ü„ÍÆöv•¿>ä3¨9"SKφ÷FÁ,uÕôx/Ìå]ïc N…8iÃ)N°Ôa~¢#„Ð_Í,žòÑk²ml~·dØãŒD'’cyjX‘xQiA…àÃû_Ýè~ˆäê_5)7/ %=é5/ÂHÍ“Px7çîðS•`&8ž³q‡j?32žwëû¼d‚L³‡ÇŸ–s ËÕ³;®ŽœC6!Ú5¹CjÈÞ{Pjà@'rn3®\¥"Aú#Ç‘{àtˆÚ@*òñ\槨šGþ‚`I³ )X %Û4G!«Ýuî4 pý|ÀéôO(zõ÷ÔÜŽóºå5õ²%.ÓÚQO>G©’ÎQÒ(£rI¼´e—SPÄå ÊŸ¿O;RXˆŠJ¥Ä—ŠPY‰ë¥ÕîÓ¨jæc»úD Õ킽rϳ¢¦ cCãEy„¼žµ •ßQ+Ÿ–Õç0 ê(~t*- Bݦ¦È;ZWP?œU5ÛN 0öËlŒ¢±Æû®â4Ýc¢š"h.ã'w¯çZ Éf¤ßD«³“¬×>Q¡µ7¹ê6G'Ú-a¼ i†¶>YBC÷~£ÿ»Z«6´mvüx—bZ%ètѱø'ï½2t轓¼o÷Ó|ûêÞŠÎêúºFèr*×HX]?XõGæã銣\ºÕè¶ë®ŽG0‰òÛÑzBc”»/LpËeŠÔ¤¯0õÚ\‚ãÔ¥h÷p³×BÙ{¹yyS¼™õMƒ—r%¾WPÅ|…¬è5 ® 1Èù”]2é i–{žz =Á}c×ǬBRažwÛëHÕˆZçð‚„¨Ä#sŸé ±)@µîR3|äw£ î䆴o¢e"my+æëöäd¸Ó!y¡OF<`<çù²¡É3ý}T{òs ä·éÐþ¼Òo ¶năB"úШb(¢¡¨vî_ƒ¢«i‹–þSPl˜Çwuë2”ûä»éL@©û#3’°-(cfK®u7ùëà ÔeOOùBEÏæ)ŒÿëCÚõEîçÿîÃŒ0õ&Z>hÖYu¥^È‚V.žH*h›sP¸Á œR¤“M¢Ðí¡ßØk =;dóÏ C_¿ñ¤v¿ \ÆÑ<;C|~òšìš0rÆž ðÏÐÃk¹¸û »Ư¢„©ÃñßQú2;yÿk”}Æ×z{¨åƒræ•¡¢«¯eÀmuT–ÿ™‘dÙ‰ª ¯ÐÐ?5ÃÏõË!*¤'½T‰Úg:˜Hy ®Q_rfrêk?nÌy€†®‘o–t…Ñ8äÔ•ð¸.4ýpžË¨µÍÓÜ:öBRéÝUè’¥½ûýi"¡Ÿøµ?¦52çΛ…÷Beƒ1·ü‰oP¾~QÑ ZÊ„ C¦@ñÔy¡ þDB^ë3ÉU]Õú«k00'¥hØ¢Ã_UÍÚüˆ`ì÷'•k–T0qû+uÁŽ)˜leÿü‹0¹ÌPÖÊm“¡{u¤‡Á¤ís㇭ÿÖÙÝÝÁŸÀ4ÿùV'±Føu˜zubÌ< îÝr‚Y¿DÞIº0g{©ñ7ºÁ¼­Ëá³~°àõ€Åp¸#¨B´*FMnÄ@›å¾z/¹ ý=©EÛe+èÔöá\nÛ"]¹Ò ð£ø¡ëÍlè»_|gO øü|((† M¤ŸŒIÈNÎc:{Ê¿>d}i09Ssâµá³”á3G`.û›ƒ¤É",¼»Ôp–>[R¦ÚÁªdÆ»ð Xo:}7ýc#lÆê¼Ç…D_($ø°[}+­ŠàÃ@ÉŠ›{F\^Å÷ˆ7=Á‡‡v>SÏFj!½ÏÝe†¸ãrû½ì°¯H¿sfo‹2úÎìÝ÷£™&S-CT‘Å_UµíÁdãn¸&ð:Ù»Iܼåû><áÅíD‡\Ž±ÔƒŸ‘{â¤J²ðäk ]Aþ2¡»á(ð{ȳ/û1 Ùj7uÌø¢p#Eg`Š'M»8‡b§»ùÖS£Äýƒw•³ TKöRÜI”1U3áÝKèƒO»W[ÌQþìƒz“Ѩ(FEMCŠÊ;kkȼ8PU˜k6ü¦ ª Û¼Šºk…šœ¥;¶L[nˆž¸eZ‘3×XøjP‡3¶u+à uS”r›œ™PßåSê—SFh¸KA”ù¡ Mý*ÈóñE“y¯×ñIhÖö©@â«#ZÔ { Ï¡•Ù¡³Ê›h­­—§¹º…6ê+W]ÚYÐV]£>ÈÎí`_eEº?Úëkõ×x‡VA×…Ï¢ã©*¢×ètúU …ò$î žm‰]ÆýQÌòï«.¢s!‹Jt£K׳¼Ü$<@âi}#ÚJ™™ÊáÕU†…Öx4 Ó;å÷ ÓLù“ óÜfñ!rSø:ÊkÈle6Í8_&“)K{†àS]»ƒz!dYD­²3²úߨ·> 5¡ÿ¹Ž @rW}<8$@ÒÑ€RÙÿïÂÞïó AûAivß4$†Ž_O–‚T]a#VÝ6¾s])U2ËΖ»ó˜Á'Æ«ùs'Þ@ž¾ÆñIѳ§p òþü.ü+K0óM(Pðe;ö fÞÑÝoüÿ}y9×YŠÔ8R=W/@QJÙ† s{SPa9 %¯—Ã[Þ@é‘sÁ ‹Äö,ó–Nt}xz·½”0T4iˆG|üëCj í˜$ç÷aöÕѤ”ÐlZŸ^Ê«­‚ –•„÷i[—Ò•W¡…N^F{jîÐ}0ø1×EMèabKÏz·ú¦X_³­ˆÂÀeÓG0$Ú1ýð= OÈëÖ0ˆÁhÃî½Ù;Ma¼ñ«ë&}L2¼Û§VÓ·»Ç´³_Á,ñûµÕ€X˜Ãk×ÖóaþŽƒ anž^2¥Ú‚¥ÆTÏËl°âú¡ï÷îNX»Ù›Iç늎Þ$U°•‘òTíƒ6µ‰Ên¶F’SýAìj[H¶‡cx=I )ØF´¹n´!Õé«Uo."M°»Î¦„ ÒÉ=,Œ|‹Œ|Qäi•ÈÔ1rýr4²dpõ® [nþmÈ_@NvÿˆäGÈUÿ¬þQ½ ò,t·Ù1‡ü™QÆoýäPðcÉå^*Nsî}L¦‡»¹ë“:¬üPüG劜Ž9J3ñ·ÙŸBYÛñ æÚç(/çûÞN^)®7vF¥®wYîʨz]t‘¶·5B,è¬<Êdóµ…P›>N]©[u¯2D½ ñU4(´O‰°ˆC£NYÛ½h2säq¡Ç34›zIßÍ hQAå÷ö‹ZÙËÑ\2ð@kÓÿãh£×I¤nlˆ¶:Äf,/ÑNWNr·ÚñF=‘<‡Ö4ŽgµÐÑutö»¶&:Ì6y8̉ûn$Ûºv ãþ×í·|¯Açüƒe$;µÑåÇ­{…ïzñ©—‰qï¿úp›vªõpà té%+­Ýˆ¦mìShM)\…2™kÍÕP¼ªæ—é ¥›É=Ê!7du–Ôur4óœ6C“þ©ùmZ ©9JPîOòcQæ Ô2ðÍðê±A“—ÈåÖä–žØý8\·nkú ‰Üœmý3þ’p4€á}:ö?Âaœ7éüëGgÜ‘Ã!Ìã¶Þäì4R{5ß‹\' éÞ)]Ç]ùÒÉ[È{lîøÐwäS£òÔèKC~Ÿ»>ÇÜA‰ƒ’ŸM s¦Nþô×û(Ôwª¾eE®J?óHÇÝÚ÷%æÂ“PlóCòÙ3(á—8õ¨v'J¦†qÕq ÔˆÎ¹»=¸Ç¸þÓ“E”ywm­K,Ê ÿ¶´a=„r;js:ºÊQîÞ§©Kó,(OºZ&ïŠòa{Nü&wGã÷;#tQQÓó1qµ*5w~œ©B•»ó çuSQÍãû2Bî54yëÃÄlq/ÇɃk‡F‰ž¶íͺŠZ!‡Ÿ ñn¢vüeo»@Ô&nayŽz’7®_ð ú¿óáÕËvÃ×;Ñò bìBîN÷²ç“°nÓ×wûã>üχÿùðáC£Üƒ÷ÈߢÕt뻪³ ÈúÆü<ßþv˜ã« j25†Ÿ^ùr>P)ôîç¦Øàÿ?gÔB¬ŠŽJ–½»E˜åÕ#+ 9zX&®”Ÿjêã¥ã ÛUáăÊóiúíÄKƒZ‚ õ'uÏAÚö;o AÂüy^’éäˆðð}pƒ²†ƒW:î7è°U©¾­%†ŽÛN'fYFq1õuýS‡p?/?•ž&:S}S–»Ž.ôÃ}Y¯Ð•ƒB}ê÷(¸¸®°ŒWùe.6ü8†=vÚùÅßÑ|§úû¯­0ÉÖŸt~¾ò¬×tÓ5@‘ïýDñ'?@)Xg‘ ŸNFmI†ÌßÙLÑ$žÆÆ_Ë ©™\Þ þ˜ùõ±¾$ÉDÜIªà…„}ìzi!~Èo§ÿïHÔ³Ëû~ ’çlõjžÿ9צ>I5…ðzúõÕ3ÿyý¼ü!ýÊÎ (ØõC.ìÄ(pHáu÷‚‚‡7J´íþì ‰¹Ÿ­4@á§ÄÞQö×„ëƒØ³Ó óPÔÓBÂû!ŠÃlf,ÄÌþœk¥YrØ J}JFö‘AO·J«Å·¿><®÷Ó¥¡*¾:-eþõ!©aˆ¥*ï¿û0÷Ì£_A³],Å£Vh•¬!Ö?'í¤$Ö×'6ÿôÛ8Q¯Yèö¸8èÉ( =ìë‰íO¡o¥Ïl‚n Ú_µ¾Í C{Teèèax–ógõmŒ¡(ÔÉ€ñºŽŸž`’ÜüÕ$Ïa˜ögM’½òçÜVE­0§ÑÈÏPó÷L£f£þÇ(¿2¢Ý, µl$_åZS é‡’+´-Él<Ѓî7^êÆסϾ(ÄöH Ò'&Ð~w€á••vm^×z“™+dý^J¯¾²Á”Æ¥$g.f˜r;žÜú‹&çÞR]ª¬"8qÖd«¾ûŸ:åæíÖX«ÓOœRÔà×€æµ,i˜¥¦·v¿? ³Å¢L™~40÷jÑþ»·ÌG6N ~d……OË7iŸÁâ˜O‚^ôMXÖ¤ÝÚÏ+Ò7›Ö pÞµý¬TÜ笆ß$I’þ€-7 1£¦G"k=&–U$– LfG#raîŸ'‘ô¤xŸ¯Ð"’%ß‘]G òª˜¶R¤¼þ´$dõR œÕÉY-EšAÿ¥Û«lH[èÂJ2ôo÷&tO2; ööšG¿,×;¯#k†k^]s.²SmØëH-"‡ßÄDiYrn>œ"kj@®Ç ß\ÂqWãÂÛ±Ð0ä©ûâ͵†|æ‚§ˆ¥ÿº€Â‡þ“(pz"ËxQðÒÖ™INeZzÄUùEž%¥6µãn燙7§PœóóËî[A(Ñ{Ça''JÖR“Ì==€R[:{Nk>Å=nÛåÕõë(SÀÎιueyÌø§=w¡Ü.:a²Ã¼(ª±@†ò<¶õño~ |òQ3ϱO¨p\þ %7*º¿¯díA¥)ò„ŸxP%òEë½pB¿<yýÇWÔ0îÑNtŽâ.ì×w–ÆD¨¢ÖÓ>Å‘bÔÎ^”:E•€:Ó”ëz?QO6â|ãŒÖÿª¹ª)·Ñò˜ŠÌ¹gcÈâ_^{" Ö³ßNÝ\\ýχÿùð?þ|xc$³C»J­|)§ó#Ërw°@fÌFüÌrú^ A½æµ¼Ož[Pvàq±Ä³„«þµËwæ´!߈éLj—ðŸû )ÏBÎêr–;#d ºM?|à™ä4?RSþœ›_çÙi¡$Æ­Ÿ9!óÓM¢`sÈ'ö£ãËℲɯ¬¶Ô Ú¬Ã‰·/êRÔø‡|áÛ=«ü¢Û?¡Y‹Ñ#SÛZ캒ùÞûCë±Ä8¥CÐÓeÙ4ÏíBg䥧Ӡm<¤¡&Ć·ô;4CrÐòÜA›è4W_¡šeß$䓯Mò°4µSw¾øó\ 3Ý¿¡yx*=Qþ´Äx°/f @k yÑc‹]Ðö@D:ø] ´÷M%f“Å@ç%‡×'ߊ@w؇sî?Ö®T ‚¾†—cwÏ1ÀÀ£Æaæ/`èÀs籸Iø×‡ô†úôö05nÆëp¡fIùÅ)G÷Â\Š·žCÛ5X¸cm›G K¯löº 5ÃÊD@™ÏF6¬Ÿ]ó/to…MépýàéÝHÄì:&ö–‰ãD%‡õ‘Ô~êÖÍŽ{H.ÀÐ'j …” ‚&|H½çR³_û î¸Ãb½ásé¹eÞÞóAÆ“;Vƒ“)iPçÄh²œ(µ@6Fë‡$ w½É¨úJ÷Á‡FÆe'f«®`üaÏyäþ}ìéƒÄäÃs'âÍ2¿.œ•JÎÉO>åG¡}ÌIòóP¸Ã”/á$Š>$q“±òG±àk‡å|Q"…|íž= JýžßtòD™³s*Í]Ú(Gu”9ªŒÐÿN=·`e:‚Š´O{„ Ò¤è‰¡#¨ÒrA¼ÈƒÕ>O“û|ú‚9¼·œ—8ØŠ4š)5PëhÎþÏP»ÿA}Às*ÔõÚœv Œz+[o~½¿O.¦wJ¢‘eÐUÐ[Cñžw®d ™ rƒW\1Zðþ¨6>±‚–ë w++ÖÐjús^n)Z÷u• ŽB›Sþ¼Á~´ýñy¾ŸÑ® ¾ñuaí\ÜùÎ"3U¯f¡cÛ‡³ƒètI¤ç“ú7ÜwL‚îx9 î·×•–V•Dg­ ò´{è"/ì°ïº²g®$*ûà•PѾÄa54”ò|MANƒ - ‰Ú¹é0¡+6Ûÿjí;´Ô¨-¡4…ùûáçÇ ÿ¢àÓØ“aÿì÷2§} ”…ôóºí–2ʺׇíE1Hæy13¡H ‰?‰ž?qì€æƒå!>ø /ìL„ͲYGš>Hîª{øNÇÓÝ1¼å\„þÈѹæÄõÏ~2_ö.tè=‚o.ôò}‡‚ÒÇ9ŸÒŒÿì Ÿû`>> ù–¯Žp]¸RÍÒ¼Šž©] Ø} Ši‡©)ôL¡8=ªCi¯”ÔQnþZ"ƒÒ³ªkíÅ”~‡wyŸþã¿><ìq·B ¢òÂÙH¼|X½y¸áweÿ¿û°à¸J¶C³«Ÿ³ÔÙCЪ™QÉZ í;:¶Dþ‚NñÎÝô6èö<.›šÈ=Ü}Ñ]T3ÐOܺÕǼžge26‹Ãҳà !`xi;<–ô3Œ6q5~>Áã5C™ms0±¾"%KL ÓÇ-|øŸyÀÌH¡âÅ»aN•»XÔÏæÃµYZ¹Iaa;Wë”> ,½Í]Ï÷‚_o ©-X»a½y 6¾½?ÞÒM [N ùƒvÙHô€ˆ+"EIؘøìý„´œj80Ø É_ë^áY{‹” ÇFJÓ"õ|ò\]àÒ†ur6–D†ÛCùŸEEéd³jF%²¨ŠÆç3…"›Ô;ž­‘OÈq¦Ý!À»¹½jB¼{‘C>ŽÛ½F~ûé²Ì݈‚²GœG¸gQX§£õµ3Š>‹Ó¢ˆñGqESÕây”RS>›UŠ2/— ¬e]QîÑÄ ±G¨à[w™÷5*íæúÔHV‚*Qàú,‘Õ/ÖyÎÈ6àÞK\Ìyʽ¨e¤=O§L…Ú?¾ì.¿mKèg¶oÒo ¢¾ÿçÆFÏD4¼˜¾×,™/šÝ‰½b†¦žÔñúI[h®ÚÔC†–fGd”¡•ŸT+r¹ õ!¥ßš¢yÞœŒØ9´Uéu¹²í øun1 = õ^I´Ÿ§ rF‡.»W¤èXÊWz)Ð)î¨öºFî»÷äó¼¶î÷íÜ”ì×Fç}.£q_ºÿ͇H$^ËâÎf]>“¡J~ÐÌ^?sÿ3ÔØTš%ôÏB©Ö—¾wð™§ò¥ -”Ò(EžÈ…†rÁ’½PÐÉÅHézr£ƒÊIT# ÇN«§c9?õeOëÚ(¿YýÔü\#ÔrÄë{BÓ ª©O·íþìÁUž=¿Ýq{e«ü¡ïp@»óä9ê>sÐ Fè^I;¼Oqs-÷ý`’6óë=‰D˜:%ûói4L=y.hïH S"vŽ–C0¹ÀÆ$QÿÔ©ç÷…žÀtSÙË.ã0#˜ÜkR³â$œOl`¶ø.ÇÇý0W*Ëù•Xæ+ÁBbQ*ÿ5XbŠVUJž„å#%UÑa¥Ÿo—/‡¬üe–Ô¬¬Ê)¿UÂï Ýâ°õÔGOü"iÿ*ˆï?ƒÄæQÍÇR—‘䨗É!7@Òõ_B?#Y#Sû•-¤¼(0¸ó7R&2ŠöØ!µÑ'í¢}Þ¸ƒæÎ¼YÀ6ÒŽ$´ÖOCúúc£ßï £›dê³Èä~MLÆÆ™ÏÜÿz/Y·ûxŒY¿Ú\rÙʼnöî:‚¯ }סw ~ôI+A®‚V7^㮑¼,ìyȳ,:ÒfÃ|wö½L@þ§9kSÃv(ÜÊËT<‹‚÷óÅÆ÷¢0íåú3ŸªP$m÷¾uÜ}þÆêùiWø~G’ûJ¤²ˆî<Ê’Ãw¿¸Å¡4‡ö¸]–îñ“ûu…|eš’ZD¢÷ ,Û«ù씓°|(ûËå²âî^'^Dyå”nî>i”¯}+ÙXK‡ ¡%’ï¾ bàЧ_T&7óþ}UÒµ‰b»CPíŠ{8±‡:j8¾Ê×8‚{5–YøåV“ÉÏÌ£Öû}Mcmä¨]á­ï[ØŠ:+“ 3ÔQO)ö˜¸Ñÿåûï‹¢¥’ÌF§Õ rßljÑ:œ^4‡<ôþóá>üχÿ ^OµX¹ÕŽ–ßŸž2ï‘E«#O„i#`–Šn¬ÿ„Ô+}p ÿ‚PaY›Kè{âÑ””ì„üu¨²‚¼ŸsW¥¨X!WÇ#n$ÙrŠ…^qýö‡¬±°“œ=!£ø}"ç#HË£×ê?uK7±{AôÜøymµòšlò~ƒrjåĆ4O¨ŽÒ¼}h5Ÿð¾‘{ˆjáÛpL—w~4ǨSúõ±AK&K‘ëih­XD¡·…ÐNÄé`ËìíWJ,² ÚuÛ}%é¡Í}ÇeöÛ~к§Œjð‹´Ð‹-jÜ …fýiMëú§ÐLÅa´Áršiû˜ð ü]dŽ’ä´T'Iní`„ÖÈwqnÏœ --t%N<Ú7Ý…¿Cç‹:§L¯"èN¼·& =ìÇÇ3Ü¡o†ŠóÞÓ0K)%”E˜3§kɉˆÝñ¯Uþ}¸£Øð¤Á˜ê Û­Høž‰Æ±ŠPÁ\RnÁ‰—Õ°p5#¯mO!,ݶíTu|+5½=İ®¿w¶¬ ~/¼ûMÒá Ûã·­I%ö ñ=.Οg >Ô5 –ìGrÎKlÁ™^L|t©9»ªqGXzV¤Ë4ÒóX¶n&§"£÷K‡]/‘©'ìæùWÈâu»´ý¡²Ñ°pέ!{ÝäUÊræçhD¬¸!×·_;컇üˆÉT8ò™T}¿ío„üÍ{i žç¡ õtÊ©Þ#(äò ô9¿ wMfè"äëiÊ÷_……(Þf1p(%Š÷É~ªFi¦»bO…P&„S…Cù3ÊÑ[¥œUéGyŸ×ô~¦¨°MÙ˜ÞŽJÕßíéQåƒP•5ªEä«Û5¡ÆÍúÏ¡5ù¸·2^¿:µÌ_T“ÙòúÜmãÜÐ~ÔÕõ LLªA½Ê·lÄ¥Ñh`ób%ßú9Õ¸¥¡q3íðö„ š~¹àDöø šWç®~ðEË/æÐª‚Tmùõ´N®cŒõB›¨æZ‡$)´½/Ç™Ùrí.Ô™ü0÷@{—`iVÉt€Ç3%ÚèÈÝl¥P߃Ž+:jâšèÔ ´^Õ¸/滼0aþØï{±H2ùÁ‰Ft%9äè²cü¬“ê0^^ä5¼9E‚–­MõîxJW>üôìy×Ó  5÷3sž“5A©s¦8?%@>ЄþçþÀLÇÇ2T%ß!]Ý÷n«~¤Tw$užë€%A¬Z‚9øÖ'þêäˆÿ:g^j•ñ» ¾’(‡AÂ'é`u5H.7`!-`…ô=)ç"LoAÖ™ŸÃúç¯ýsc~œüF æs(¤”Αnî†B ÿ«m)(4¯<óB¢ G Ô“ ¿B‘´mªöý(ª29r¦ Xc‰aº‡íÏ9Ž%Ü6\P2ô „78Jýw)|¢!\O"Ë{5þúð@“Ðu¨(‰˜u /ùëÕëlI¶±ÿîÃb» å»ÅÐìež:øfZ÷ž;¬—íí¬)'…mz¡S¦ÈÈíw>tu¹²®½=‚Ͻ5Œ Ÿ2ßј§¢YF¿ñ i®ð ’öÁðƨRø#Œ6?~^ûäŒWÍô–3ß„‰ÙèÂsÃoaÚ9D–‘ÊfÚíòÛÀœâq—½B"0ÿHùö§°£°Hõ¢@ðh$,¥ÑñuÑÃÊ¥ÚûSÂÚuÉé˜óOa£ g1D? ¶$JÍ•O#‘ÃsM$K<¹Ä¡„¤÷ˆkÌGòƒ¾¯£²BÒ3„ó¹¤N´©QnCÚ½™]–ÅÈ ¥üèìÂ-dR7Z2*äGæ ©{;;’‘uôùÏœÈ!¤¬7ýÕwÖ5ÞÐàEîá'­ ~sÈ¿›u³àJ% l?Jâ,t|ÃWä.ê’Žß'—&C½Î€~Ÿ3hP}¦YÙé ­(šÄhŸ úbö²:ôêf1¸]@Çr|Åœ´èt>­ò¸ýMÜ$J‡.Ïã~2'ŶC¹ÿîÃÀ³c«×( ëú]EÛ“ß¡YðñJÉšÔýY U¬ã’liOà³x¨×¿£PfÓPq¡d×­‹/¡`¨W†j)ä&ë} ~?9ndÑúR±ÿÔüÕ{päå6”‡&ίs\„Zþ/7œ–ú éäú;±ÅÇ„>Lj щÐʺ[W1úΪttY†A©Ý»š†.ˆP¡`Í^¿ySæ×ʘT#v¿ 0õvð‹ LÕV>k+ùSû(⺶aJÌH!Båðßú-eŒ‹{~Ñv÷™,ÀŒ‡jÐNWs˜5áÈh| s¤±dƒ‰07ìý=ÿ™ÌOèžm˜†Ej—åKŠ'`I£ù‹hž ,Gø†ï4j‚UzÆ æ™Ó°Å·R? qíïá÷*ûè3ËQتKËÐ4îC¢÷ y‰Oð¾ÔhG’êÓ‰tHšy&=fó’-h}º…Ö»¨!eã0¹t ¤>µ¡õ9ŸwÈ¿˜aÜü‰tô#«Y!ç‘~õñð|Ý5d¼h<°ó•52ˆÓS‰#óÝ wÉ NdI[¾Û¤‡¬¿‚Ê ÙÙÉ…v!GQì†BÁ2î4±jOC®!!ѤDܵq5ÞŽ /_°Í%äËjݦ'‚üÌJ¥ÇÕQàeÂæÍÂrŒ<ß7’~ ……Ž]ÒMLG‘/ïúJøpwøÕƒ*§N¢¸ÅÂÅÀŒ(”¨5,ÿñ‰%·iÊ£$~¡´¬ö[5)Ü~˜KÈPfÈk/¢,Ýd…0Å=”S{¸åê׆r_Þ|'»3‚òVÔ£ø¯¢üøÿ½óÇúoÿ¿-Dö–‘ì-çiïì©”Rh B”Œ’Eˆ”Ý"{e”ì•ìì‘MæO÷ïw÷ùãwÜÿ~¿ÿÜÇ帎븎ëz?ßÏçÃë:ÏSé•Êd"5=pec“j ß‘£üÞGúÇ¿ BŘXà"*݈õ•Ž*§ì$ìø›ª±²¥™K!¢AúgÓLTûÐz~B’Õ›^ñ DM¢†©ÍÔ»¨¥üáÈM‚²ÿ=>¤²K¹KM…kRü@N{é[?…`ýšˆ°zÃýÿòáùð¿|ø?Á‡ÜŸ_ë^@ãîp"qÛ|‘¾˜¼ï”̬:É7ü¾_íÛê3¥AÅð‚{ýòPº˜i2t©t''Š-YæAþ&^Ï ø¸þ…­b4 roš´ þÑã¯GûŽB–7­®c€¼³›Ï±' …·ª×iB®RBV*7ñÂ9Èa3Í]²““ÐÀFªçžç¦Ó­B}Ѥwäñ]ͯ²MSA ÑÉWp= ZéŒi<˜ÎBtÒ+=†ö£6GZ¥3 ý;µ‹)o3´'°ì­ÿ3ÿø”ßþRh #ºuŸZ,[ú‚‰X¡ùF#«·ü04+ ä+eZAs´Ã½‹¬¥Ð¢pLÒ©¹èÏÜRuòã[ÐZ¶!ÖÿÚgË>¿éöv’È;sÐùQƒqu¿%|¯I¾?E =²—Ø)É þäÌ—Ÿ¼€;bχ¡+×V¾é7À°YÈø”Á?|¸«N÷‰o9Lõß\™7…_›ŽËjÕÉ0—J&xœ®0rÏ·ÂÒE«‹´wÌ`%]£×h—¬1ž©fê‚üOYþeï`û•yK­$zîáM%ÚáCÉ×zA7d‘tϘá0¯Ç\#%Yý³7m€y* ©"MYÔŒ‘f¯;ùù¾v¤uþðþšÒuvNšn Ãq£±ƒrÈDÜš8èŒÌ5âïð¡ÀÓÍÈÞÆ#ÎÖ)Œ\4NK—%ôÛšÍàLròtL’p"އÁã×È,£æÀmè¹­èõp_œ½Í~*²«7ªE¿½:3¤Cˆö µhéG‰8”·ÔA)F%7…(íšð­'Aeæö±#'ʽºs³íøNþ l:1©F…J'ƒ/¨üTG _‚üg¨šfNŸ²Õ¤}e2h†P=Í·jÙ75¹?óÎUA­GÚw»‹QgO¡jÜ( êfÑkTp þ5§+Vhx>g )P¹Gí=>ƒ&GÂøæ¶ÆÑô©Æ'Yß'hv³KyEU ÍÏÙ]\ððA sþÐ7²»ÑRª®:us­¨¤NÓ|xV½§2¶êÑ:3B½-£mmJG[õ1‰¢»h;sQCû:~©~É,Í í,ÇVDè£Ðžó¹Šúez{laG¿u!¦q|‘F—œîÀZ9Œ…<üTW05U÷ÅVÌ¡”ÂâJ÷úÝö3{£ôw¾èRå)“x·ý\ýð‘“;~'oàày2O+>¦;ý¯}.þzt4_ªRjÅù?[œ‡4÷8—ÎàUFIäI™&x¯#§GÞ:ÿ/ý>x8þw>jÇ÷v«™äßm÷ö êüs^xxÂxfŽT1µ@‘«~î…ºý®ô‚Þ-ٛܳvþÓwÈÜv¹ïOV*ñB(Yg»aÌì ¥~›nù!4ú´v”áø‡mã“ɦ 2ÿ½ýÐçøp.áˆÍÀéÿ̇e:÷L¦@ó~’èš@hÕ1`ª´šƒv®[×/“5@§Üó?ÝDøîj\¯õ}z„Ó#6Ý’ Ÿ:áíqÃ@êEöˆ³Ö0¤eÝ»ó9 ~í¾¾ê#­4ŽMÅc0V±AñÆ™&F ŒòkÔaÚ¨l~ÛG~Õˆ]ÚâMƒ9Ékõ 0µ=–à+,Ò]“k»+ KEŽêã+¹°,*vUZ~ßx§;; ë©Ì~ßÂæ¦{_Ø–(|'ž’GÂOêÅ‘¹ºHlõ{hãøi$å{^À»“/ÉùR í “âØjbl}RMqös"Mc¨‹@éÒ‘–¸T]EúbiwŸøoȘž]B{™[Ë8îç@6/¹*?ÊcÈš´æ¯ƒÜ³Þƒ_E#ï·¢U#ûäo³¨{Fã‰ûèýÚ保¢ðÆ«Fwr¬£½³ð'¿ÇFrýK(J.:zèq tFe_gÊ^º_p°ù ÊZUó]tE¥3Eéäñ ±«´ÃSDâ‹ZþT› nà­¨@K¾×m[FQKAjŽêú+Ôa‘>ÃCòu·¥üž¢~¾W(FÃÔûI|^à¡[òù§%‹ÐD¿øè¾”u4 xØuÆÞ Í{>6ÜwÍÅîܪh#Có5·Ä_ýhQ¾T@VÎŒ–·÷‰ý*ñA+Í™,fÓhµqE$ap­ßþÞ XŒF›£_>:?E[Šýn±/Ñö­ÅMâ­¨ÿ̇õ\…SyÐõD´×Ãi šÅP4}†ZÓÛ#çÌà󾈙oÁP!g"ð3ÊŽ>²p¡[†!ƒ¯5QÖPð+ɘ– òòvE2¨@®k͉¬ÏÿÖÓCk£¡üþ]“”OÜP·/óعÛ;¹ÒcÊþ©c´“.ê4¤uÃ÷“\%sbа¸§‰0¨<Ü–}&†•zXmÎ…±¯ó”Ž0yÊxåÜx3LµG=!‹(†©íjkáv˜º›·|ɉ¦. õœù[§w5f ÂŒî"·„Å5øõ¼’wXê̺ļý’æö9úö³¬Âü®ÔgØaaϦBúõð(M+¡¯g K§ImYªòa¹DÐæ!ÛkX=H¤÷¡:~7˜jÕ>ƒuöÙé·aSlwò¡Ë“°M4®+뢻ÃÝ"m>'0,þÌ÷ê$J~<{¨‰Û™žæO8")‹“ßÀW$»ÒqþDÒe$_&ZºMOëØËÊ.}²íF3R+òï%ù¢‚{øK·Š|öÞYúج<¤{ظ0@¸£‹”C]w:2‘¡ž%i‰D™v?ÔZ‰BfgÊÝõÃo¥Ÿà¦›²¹] ÆóÏ‘ƒ2–u£)9é´ƒ\$èp¯ÞÐw,µ@î^»]§ž#OÉàíóSÜÈûÖ÷ÇʧHä{+õxpK”­ö3ÅÆ¡àïjãQ-J¿ZõÛé-ЏPúª÷E‡¯K$cD1¶;I——äñ€¾ú®•(žòX{â Jlµ‚¡|”$S‰*±ÑB)½V×0b)”ú%L׎ÒÎN äŽM(CÎ4ñâÞ'”ùòÝöR®1Ê8vÓlÆ¢¼Âw¶8 ~Th°mö8ŽJ1£;6Å‚*YSÆÄ®£êq?Óóåvˆ'íë%œP­Ü„jê ªöº*(ŽšÔF¨vt­…&?Bþ×øðöÏ—çÎ?¹ˆÆõ¼‘ åÈ)uoøçè¬÷Léðüñ_>ü/þ—ÿø0°0NîÚ…‡ºoFÑ´Ð"=q@Žp±)L÷¿Šïc¿ _ ´ÍŽÑAŵ®|Z’]2äß+s Aþwù†‹ð1Gænßü¿öÞûbøçüÁýÑœ5dI]~1ao¿±ÈTàÞѡ—•…eÈÒ'Òœê+‡üKº=ÜßÔ \‹ºµj‹j´È†göËÃ7­3BKæÉ0×pÇBËÉp3vch½‚1õÇ íZ¨A£;´>>ie¾rö·U† }'Îê»A;]É©äÐÚ’¶±Ï¦Zbýêš½’¡¹ kñY¢4Ÿ“ñÖ”†æjŸ·qtüÐr<úByR´2*[ÓæNCë°¹×o‘–?óïŒÊÒ@‡¢A‰I t¶~l:øk ¾Ò çŽCÙTí~{Fèg™SÕu›ƒŠ+ÕÆú0¨çrä„7 WÔá¥gÿ‡IÛuKs¼aª›À­æ5üZ¯9¬­ s/,Ò£-aáÜåÛÔç§aé˜ õX -¬„¤LÐ܆ߣŸ{¿^øþg72aÛ}¯õée)$´%uz°Ã‡{©ÓƒZƒ‘”Ü2P+‚ÉiÕŽ{…"šŽZ¹T13>?UÞ" ÷}¥~ú-¤=ý‘N÷DÒµò›kRþ@;zŽ€QadÜ|,Ü\Ð…Ì•Ò'8m5ÿ!·ÒnMdï27íi @.–/G= ÛÑ5_·ù"òôDoTœñG>úYAãEä?QEZ>ùú_Tö¹íÃ}Iä-nQš(üòzyw -Šön'Ð_ÇÊ•«þtÏPâÝi¹„¹”bça|²ã/"4N3 ÌP–[Þ×(÷@%+4Áìü¶%ÈPIÆò%ßš/ªð‰©Žyn£ªGœß½8Tc9žhR—êw/iȺßG уJ}¿Pëø8±ÐòÔþÚ{Óÿº;êž´ ÑF}þ…¡©254d\rU»Ð‰‡Ø<ú…]ЄúêLÇšº*{-B3kºôžö4W亯X…,Lki‘ïÐbªVëâ›;h™ß“@¡bŠV~¾‚Z+Éx· õôÕÙÝñLh}¨í¡Š9ÚªP¤7DÛvªý^/ð°shÿà xxÙÌ%Wµ¯×P³(¯G¡6[LÆhG.Rßx¡-ÀñF3u?¦G@õæ¹Vë­Pâ6z ö+ä+]šþFów?aVÖ@Úv_οööz®Áë‘ãƒî²ÿÚk1EÀ éLºUV  _^¸ÙBŠ+Óõ0wcH¥Hˆž‚W”˜Ê_EÀ{‡BŽëGAöhøZÏ;Ó¿ûÿè]21 çý•ëÛ¡pKsÿ͸y(¢$çŸ#h…¢;—mKŸÔBQÒ¦<Éáÿ»ÏÂmŠŸ²pÑdü9G¹7qml‡oÍxŠ[" ôV_jÆ4”É<4&Òûš(އ?ƒÊ߯ë¾þÇ“…/H/ˆüg>¬TT7¼Í^«‡è¡Õ„»Zsù6´ï³ «úT*A±ƒàûyuŽˆ‹Ð#~/8"aú‚vqÉÞ„7ÍÆÆÎÁaîƵ÷0Lþ!Ày>FÚBD;ÇLa¬l—ìÓ’4˜è^ø±•ÙÓªë934ð+ß)Jý\)Ì vñ.‡ùhÞ ~¥`‘ýÈ»·Ÿa©.çô棰ò ´$&;~ûË&©Êõ‡&äsœÓ°ÙÈëÑg>ŒÂ:« w$ðîwY+;$æž?YX?‡$Ã]/D­¬¯ÒOäR0?ó&¾ò©ž–O¹_EšK?ÔÛîé m“ÜÔÕomH hÙuríop v#sÐ2okX²ñÆkzw% §ø;žÚ²Xä~øy2Ú>yÇ'Çuü× ÿÙƒªÄû[(Ø0É]ÿt …qЯ…¢è’õ@…C8Š“g =ŒáFÉd.mvy”¶hÓ÷ÏÙBYÃÂ…üd”7¸6Úùû(Æ\P%Ò›åüì ‚ª U¢ÿQTs—Ô与êÃô®¯®Ö¢fÔ8azˆ8jŸžß x/‰ºšü«[B?PŸí=ÕÈ7Ì|³‰žG£O™ƒ1h|Å=om‡‡MiË"²‰Ñ´Ïx¬KPÍRÙd®£ùBGðU´àv4yu7Z4Ê­/öQ ¥ªš÷ëhÅž– yÊ­²Ë»µ›ÐZw¤ÆÎ÷Z·Z&7ç[£q“tÌÅÿȇ„{«Ùº@Wf]H„ÝâÿÝ£’¡ µW˜H¥‰à³¢BV°¹7T¨3™A™‹Í ÉÏ((‘ÙÃ[ÏÀë§Ý(­œ!¯â«/ÁûëuW;úÙßZ@Ëèp·WÊŸeq¤êÄî©Ü`¡…¦K½ T Ì~'mìúž¾—–3|]}÷³„Ž)°Ã þˈǓÑ0l²EÝÑrÆj\^ ~ƒÉqáúg`šRï~Ôn#˜–ã lPS¥®ÚŸg`êa"§PâÌß:­6ïæt!fnR;Ú!_&ïÉÎÁì^FÕL˜Óç^Ñ:¤óbCŽ1»aA.w=€ù3,ÚUœe>¢K÷Æv5sÃòD'åD¬:/ôY&TÃïí@ûUF°žN/;x69Çþ‚m%Þbao‘àI5ß9ín$Lç”~d…Dµ¡Eò•¯x5ÿfS‡$’ª„_êg@²¸àȤ‘,ÜÅyýÈwç!¤(¾ ×Î!U`þØSâB¤v<®iEC€{Œ§x)ßx mòm-®:¤ËôîÊïÚÉ5¥ïÍ&7Æ?±6å"“苚wA+ÈJ³˜Ê¯¬DT)¹*Èö0/'íÐCä¦ïn^-GN!ªkQª¸×SÃòÒŠò¿£Š¯ˆ@žVo£·³$È[i^è’wùJ¦õt¢€™Z×hx0 þN ÜtF¡Š+b‡çP$ˆß’³·÷¼Û8iÅ€b²»J|ñÀ uf"?/ªñH|Cƒ’”ÙA‚å%(±Éü-Çä7JÙ2wæ†ßE©Ù»W)b>£t`Éöõ|(#hRGíA‡2Sg2ce»y¦š %QÞŒg¼#â**ŒËß/¬G¥ÔŒìëê·QåF¼FUÏr£»l+ˆ×©ÎKÑp¡ZcmÚÌ=ªÿj¼ïÛeš¬OúØ)%PK«ESž^ã‹f¤Í8Ÿ¢q »#ñµ&ä$ŸÔ™.x joOneý—ÿˇÿåÃÿ ><ü<—µ& º¯ ý2&D:šªý,â0U³D2£ui¢…+¢WÿôÝÒ¶;¥aeqæŒPÀÑéÆí_ûW?ÏÇnß8ªþg^Vö_}ý[oU½&ž<¯O/„žqúû÷|m…zîöÕ¿º«y|ŽIFë2|ûò5—ºà4MGÉ]1ƒ–ÊÜ¥Ú“ÐZ_î^d mí­¿Î@{›sûE€ŽûéIžV;œhUrìƒú_µíã\ªá¾ÿW‡ÍËQUAÐü cr»iÿ>n mzËã9­Ê®ì»»ÿÑ+]¡5y>þ}ÝÎùáÙ7¡›$¸½4 z.œÚ1 7èj«ÞÆ?ûŠ#‡F»`èã‰k<0|š›ØVaò>$ÔŸ–€©ö=1nuðkñæSò˜KxÎózâ),œhŸ‰ ƒ%CÛ´ÒùX9K¹.Êøå¯.7´G¸}+þÕ#¡êo>ž>¤:Oy[¸I¶Jó^l$íðabfÁ;RhMýÊ!²Eª„»?‚÷Ó" Ï»sf:‚Hë¤}¾ÇÀéÜòå˜7‘Á¢C¯ã!'2®Ø¼+_ÒGæ’¶¨”ýd;|H@Gõ8Ù{n]|Þü¹xŽ[ÎÎCîsÅÂBÛ»gHg‰ðÛ ò1¯¬+#ÿ©>M[3]*3ÓU Á}©Ù&ƒQøMãõÎ5-ýeÞ®,¿ŠLf˜Ø£De¸ìO“ñPLÇ]Dé3©&©b+(ÓNžcs8 å.O¨ö’¢‚´XÛ^T"æí¢¤ÍGåÙîk,ºÏQUydü9âjÛäîTww)ö1ô;ˆÖ›‡ËóYÐ&ø…:…ù7´%oŒO4F[?ÑÚõ/Ùh;4rJM¯K“ø3E­³™¤2\³¸ûú°l…‘ú‘—Oä¡ZNŸ-{Åú¯Oý[w9Ѥ$BŽu<äÔú…¤¿þöoe$K¨ÏTAÚ·ìVLɇ”U¥ûŒë™²{£Í8\R‡® ï©ÑWײžð ‚÷—5ffG¿üé&©ÿøWŸ…ä¢w©Ì‹¡è¬Ð&çdÛÿ_{šÏÔ•Ôü­Å¾ÜIA'þ¾ßûv)S€uìøßûH™Šö#7ž¤øÐ¨óë×"Ó¿~ÿ—‡»Æ³6¦þ3V‹L—g^æõoH¹žC«Í’wÅh—Œa>ÿ:Õ]Tòz\໇Œó÷ÝŸ Gö¢?o³%ô³¹ÆÈ• ¤Þºùg®”ù½+ì0LýTÈzjF:úé>ÂX1ã±`f˜hŠwÓŒðÿÇg3ârn}ì‚9 ùþû0Ë<ä8‹ü°_¥Å–:)îˆÉ‘ÁJì¸y¾‚!üöÍۈ詂ußàÉ!÷`3©™D&5 H?L‹ #á1O‡–ÅsH4>1ä«rIÒ¶W†Uvòñàû}F ¸«^ËÄ•û:R韾µLÐ…4ll·íS‘6îÕY†NI¤×%%Qzddô2ôWQEfkZ݉cÈú•¤ìbZ?r´é2Ï"·ÓÉtÊ,äucŒüð´ùÏ4”¾`EÁp—Sš×PhȪ +oECßs=<Ž–§ÎAI«Î &7”Ú®¹ñh/Ê”“g$Æ£\—›äkÕ T´®e:8÷ •ç¦*2oY¡ê•ù ¯n>Ä™”i"‚Ó¨n•jOÀû 5éu½E­Ü÷"Q'˜ù¢GN.êYurVú£hÄ-9s 4œã¥Š'ÊÇC/øØTÑûï¬×r£é©ý*g„ÐŒWñuÒþ4k‰âWÑAók“ç¥ Ñ‚]»î÷V4Z¼¹óòû®´Tìf,­AËü;ù¯ß¡•amóƒÏh•àÛKiCŽÖ¤Ü޲fÿ™Ý=NWrBW©‹ôk3BhÖž ¬ù› ÿ}þûú-»Âé!÷QöŸ¼úÿôóoÝæÞ4½û-îoý·Ÿ–Ç™íÚÞv‡:i–G©éÐäÕPç{Ðú¯}¯¡Ìwч¾„ &|¢K0h{RßçBÚ_Ÿ›p˜P—§É¢ þCiëþÆÒ Ó.‡V­×’aj‘+ŠÍÛ¦ª¿Òz´}ø[§}%C£Ça¦xß‹ §ð?{=³ŠÝü`63¹r1«æ\{ÝÓŸÀ¼·@¨íÖ?9òæ•Ä!÷ý°ôÉÅëwïmXa»YpVŸ _^òZ€5‰9½¥ë°Þ³-smL6­òå—-Âö;L$ÈvzJLo‰„ÕO7 û.ÿsÝs8œ¯ØFÒc©>÷F²r…OC¢3¸Kc©Rü³R W«¶ÿ`AªŒÚ᣷S:,þl²égÜs•¥„9Ái _^NFºJž’‡ï’‘¾›±Îˆ¯ I7L@dÒË1rö¬Fæt†7Ž·ýÍ•lyDgéÄn"Çá°géÜ Èy°É£L×÷Æ&~ËßáBVsËCÈ3NC?»0¼]B±=¹ŠÈטNÒóä œ É÷ÿsÏ)r-î õx<ò5‘F‘D ·Kõ¸Ÿc8fßKz3?ÁZ…®©5Œ105¡ÂzÏ{Â]J¨”ãVºvg UîE=Š€ªAdz鑈‘…‡#§ÚQ­OK{NÕ·tÓÂCP“ÿZ§°Ê ÔÒ’ˆ%úßãÃ' «2ÏËÐøÃ3²_‘£W7u9â$l¼ð èa¹ø_>ü/þ—ÿø0À…¨%ºj ±KÎ’zþÇ®Ñ|~çvy ”¿^ã<7—¥ìk±çc±t9/†!›uló¨äÖŽk^‘c‚œ³«[ðáá‘ã÷ìà½ò¥obMëðúÇS«úÚðJŽÿ»*'¼wà­«¸yÝVçÜ’:¡\ìV[—™ÔX½yFÏy¾¹ÅÎZQ¯CSN²I,i´Ü°ˆ÷„ÖèÒ²{…KЖ‘Ríª©í3)cá t¸™pÚºý=çk·u“¯Ëd€6þý×hL¡ezN?òçch¡’þÔǾ Ío'§( yÃÇ+ÛMZü(Íêª÷ÿÙ›¶¤U’­í1àÝÿ Úê·›2ïA±®£„W"tÞ_}R¢ß$QŒ©ÅÁŸcäÁDЗfnþêv1 œ h­N’…!¶¸û¼êðs¬²ëÚÔcÙg‹ÞH‡qç3Ê/%nÂÔ¾–½ øu€c^ój4ÌI…(&˜Âü´¾W*ÝXl {àÃAË£«8êw~K@Ñ p'¬¿•¿ÑÓ[!×gŒ?C‚ž3Þ!‡(AÙúšE8’‘f$M*!Yp»•qo îzM&{_â8R®Ù:»RÛ õ…Í´§N HK®MR‘½„tç¹I^Ž!ýÌæ•ö»È. þú™—ʺ"+˜<.ÙmlUû>v"gÄÇçùÚ¸·m¬Èýò<±hVPBÞzÚ”šÑäçjü…ËgPàiâÓKwÖqŸMÐN~o6?!ã˜Ï¢·nìyŽbç³ÃÎ|@ ÍêgžëOQòG•Ú¹Ë(Í/³º{ˆeî»u4Æk£œø«ÍÉ3(?ÞßHvÿ6*æwæïQSGåäBû<8Îo¨¾›ñéãåý ¨®ô;/¿¶5b¿€óMRÔœÓñ¯YGm=ÙWÙ½œ¨Ót9ïªR=ê…$ׇWÆ£Á¥©¶°U4òNutQú†ÆžûD¤î0 )·ej’Ž'šnŸr}1Á‡fߟûíK¾ŠæoYƒõƒÐ»NH‡3-b÷µ“7¡ådô'aþ´Š¼˜ôi­¥-Kžž$C몠AËâ}hclíºf-‰6õ¾¶»ÐVCÉP}?Ú¾9.L{‚¯v_¨1(JDͳ,ßÕîâîÄT{—ð“0rþáá!·—ð9ÚšUÁŠwLJäƒ<ò‡dœòöÝH©ÌÊãúgÌíž ¿ß;z¸þa¼z¤¢ö«sÒÇ ßìÓœ€Ôµmõ·G å eÆYH6ý没wR¡^Yª, 2gî)»Íþé?lâÚ„ìîº+‚¢9ÿœÆë„•ãì>?ôo:ÌhþO]²ÿBT›ÅÇ4?Žìø«ˆ¿Å8”Ä­ÜuQ„RÐá2Ö¼¥C¤L5o_þÙ›ãÑÏÿÊ{¨_ŒÕ?„J1ï_$ÞºP•[>zbqªu–éô“vøP—ôã’Í1ørˆø¬i~4Ô×ÔE•¯F;u®øKÐL*¢þaç~QÉ´÷’´Å.†ÉÂ(t$›ï¦4¯ªÓTÇOÀßêÈyEè;ã{ȼð hå0¥þ†Áï2^4Ù ðó^Í£Ëöi0býªñówKSͶSŒ‡ £Êñáoa*á·QK ü¢¿ôk{ ÌvÝZ¶ò‡y7ï¼}°PwíS,ç(,yµŠ;¤[ÀŠ\¾AÖFøÍ}ýà+XgTu;ò+6ºR‰kÀvªÀ‹šŠ ¾¼ŒD”¬ñŒ’8¿*qg@2Óÿ‹×ãp—gð¾‹5ÑHÙ“eùrŒ©c߉×oÔ"­Õþr³k¤[¢s|ð _Ü ½ŠLÍë ¥:©Èjq±ºl69Ôö¦å–¼Á½~¥êt"/±Ù Ý‘ äûu]Gâ@ Rœ¡TìC!ëâzåA™?EX3©b='™§ÃQbã·Šé›e”zÎÎüPî ÊœP -ÝÞ@9϶ŒÏs”:-‚_³¯M~DK¬‹}ˆ–QÒ] W“Њúçºø÷håûèŽüÇL´úÒ°ÿ†wí•o& E sé{‘îÈóØÄ¼tïY$”‹î ½”ý~½‰Üñ¥Wª¢fÖP3“?)¹¼U[^öZPÞ¤ïûÞ a»;\øº“¼hõ«“Èó(ìÑ€A‹KÀÿØ2G$xg£Áã­¡2'4hXÉÈM9„†Ä?ÝU,Âp‡u~Zš+¡Ñ†’ÚÉc¬Èqæ«Õ§‘8ØÐÐNÉ¿rÚˆšC"&áëÂ…#çò¡’';¾ûc[Þõb”‚têùWýà£Ì—ñÈoú½‹Š—7×Þ;šû¤ý™ß6Ÿd-¯ý®k¼”¥ü[ßñðzF¬ØÂ‡g¢Ç×*gÿêµèM­|ÿëm(ËdÉ”3ƒÊ[•’{g³ás~aqñÑr¨¹Õh'ÚuêòÏs=Ñ‚z‘1‡pGhXêk¡| ±TÂH MÎ¼Þ Ç† YAåÚUšhQS­|ã­ÇÛUËÈ íC(]MtX5’4ôAç:ëay¶!øÞé¦÷5ú4ôP—ùÅC_æq¡æ±0`zÏçyj ®Tjt‹„ÂÏAúå„aÄÕÝåZ6Œiê­W*„ˆÏ¦íó2˜âe‹ ¡€ŽÎæ<M˜yëi’÷ æN8­qÄOÀ|©’FÅOXT' ßš<K_žÍ>æò…•s¯öݶ9¿)23¯ØÂZÎÙx·#°¸ª—¹óyoyn}Q[èAµ ù+N.Hh¸ì(ÉD¾¶â.DHœCñ®éÈ}$%]7(ÕF² }×$|SéWRääJ’/.!U8åpCä2RßâhréÜÀ=¹?”Þj3#å‡]"w¸‘^—³ƒbÁ?œ™÷=2~\”óuVBf*…vß%N9Òé/²yEÞ!ÿ͈o›â"â^îÌábzÈ£9ñ#ñ²0òê…Ò„]D>Vfçér.äëË~ö]±ùk˜.›ø÷£Àg»¤¶(8Y©n˜´ŠB <O‰ç£pÌÓ%=Eî—€ûƒN×<Æ4Y íòϨñ²™ó~÷MÔ”Î/˜±šFÍÜA8&6†ZRÄC8Pë…$kM!9jï¦3ÌêFísŸB]â_¢v•¹M¬]*ê0O&ߨ¹ê8úOþžŽ:ÉÁñô‚·Qgh¼…VÅ u9Ÿö„óÔ¢®©‚ígö+xãêÉ9Ö ~Ôü¤4[øó>¤QA³fb¨ O³c¶?åú ~‘!ƒPbíÔÙ‰ÿÂ!×°†>žîºömråƒÏQCv¥î1æm=Èšþè(vü¼ #a½hú^]+:¿ï™Ä–ôõ»­àÝgÉ[™Èó¸HUp>ÊVî«»o^ƒƹ}³‹Äðm«hÜñsÐä›ã\’o-úTï=ö³AëÉz»ÅHhóó¹5Ê­ íåÞ§“(÷B‡þJËg»‘¿}‚í:eŒöÐÆ£Du`“Z~çõPu¯A wÃËßb§¡¹,ê¯r8´9ì}ÑD -ž‹—9.ïy†=êÜÓuyåÿõ´œòŽ\Aq¹ó_óN£‘¡tùîh,Ø­ÕcŒ&¿D„Ÿ¢iûâ›'ï¢ÙÛ.9ƒA4Nš5ÌA ý¯á–! hIöêršQ2ZæUÍK׊¢Õ±ÞýótŒhµA/“ë†ÖáY„ÙrhÃDñxòðC´yx•ÞÛmÉt¿Þ¶Ø©ÊÎ7?£Ï­n:¯!Ô8së­1q îÞ£ú©gFöÕói1Àgö¦‡×¼Ò È49·1º>â£E¿æßÛã¾Ëý¼×QL-e9ü¯þÞ öY¸ê­¹ébÝ”1´*¤ÿVè $ûwW[ÀËÈD‚ â‡ò”?¢€2ÏH˜ç>ÚÑ%ûC:%ÈŽ’á þðOÿ¡Ì‰PŸ|ÿ¹ÿ÷¾ÒöÙîêå+'©ûv8ñHÿÞßöùÅB %{ªºÆ%@ÉPdó[( «Œ€(s±›K¦&ƒr7k$=­P‘IêàTUü)¶AŸïð1½b¿Þ4Ô<¾2Çþz7ÔÝϼ‘õiô%_† áû»8½#Ðz«šY¿Z4¥ßû˜Ù@Û®¼kæ{vîJ?ìk¬¡KHÏý`6%tWsdp>å‚Þ8Á®Ç«SÐߢ˜®~í< :šÆÞ[¸?÷,o?ª³ƒáv›×¯“æ`´ÈÒrZŽÆ«'mVîôÁm‘OÌ\=$ܼ” ³¡¹¹û^œ‡¹ùà•ˆ°\XðÈ×_;} –Xž5Ep%ÀrC¨F&_/¬fÈž}k úŒÖ?`£„A'û'lk Œd‰©!ÁÚaºå$º\Kø°IDí¯M Iá¡Òׄ¸‹¥vóºGRzl X4("õ^)-¦øI¤¥Î䌽ŽtÉ?C§»úá”ÈzhG2OdQLú…,ß¿Ñ*^DöW7(mcÜëýµäÀm䉉8|aïäóþR €AŽoÅ5q_mAYia-ŠØŸ5¿¤%‚bÊÊÄA—N¡„±Z — ýNn5vzÑa‡2DgŒ:ŽÙ£ÜnBÿkÏ÷¢‚ç×ϵ†¥¨´(I¹\žÔʵŽJ@øzeñØc¨Vt^m 5lâ‚WÒ;sFÛÏ{a^‹Ô¼áû(,Ø ÒÝX¼n­dÚ¶ Kñç<5€ñXéî—°ú&´Ùô—1¬éœI,Ru‚õÉNÕà­iØÌv÷ŠûqØÎ´Ž •ºƒ£*²õ'#…C59)«ýº4÷Iý]ŒïEÒÑŠö‚%^$w&qï?¤‰"’mHY"LMY_„»#MÔóÆ?v6M¸i1fù~cÒéýæÈôGÏG8#ÃÍÕÚ«šíÈXìvä72Ó7óJ~SA–ƒ7Î?im—ã‡Ü dOdçï9ŠÏWiúð W‹JâË Èíø^³îÛŽn|³+•Ø[‘÷Œ­~ÖäspË]HCþîQƒŽgPpç[ ɼBBü¯ŸÜ݇Âí}ÙoèyPTϘk%l ÷ûd ‡SN XÊ•HØ”À[²rñ#¢(qä>‡è•&”¸ýYŸž&¥ø~JZë¡Ôhà}ƒJg3UI¸0¡ÌÃ9jvO]” œJõ-ÔC9¿â/¿¢|ÿ£ªO¯PÑÅ[e[¨•Y’TÍúQeÌþêµO[¨Úq ' ë»xrk¸ÙQí÷}»UIÔ`#½ç—ò5 øŽœïC­›±É OQ»ä×KŗĨsªJHEÖu¶=wå+ î½ÉÏTÔc8ñš¡þê…{Fkǵ¢ÞfþÅ0ê;_×j,FýŠˆqÿ„"4`7(>¥ŽÎ^_Ýì¢Ñà}è ûWh°p!z×ç4”ØïFËq O% œ´JÇ[5Ó—‰Þ£á£cÇBO!ûœ±¿j+¬°~‰j‚V#í=¡Á]ðe„;—Õi*]o“І¢³RIœOç6ÝvŽVoȽieñ›´>œ´›Z’ÞÉ£ýŠéá¹Òè[9x•QqÁñëþ¿õí¹ï:„¤ªÇëýÕka¤‹>gv”.æL o-îø-QŒTÕ\Í8| ªƒ+¤v|´6Y×aŒŒ¾lfç¦ùÆBýÊf`Áyh˜7»_öÄ«Jæ§WBS”…aÏ© h~fÖ{àB)´ä³—$.BëÆjí÷´FhÎôäH¡ƒNV“¦˜g½ÐÕ»ûÞfè8t/7vĨދ»¦¦NCÿsi×™M”“µ—LÚ†¡fÑgÁ*10úíý»Á½0j¡¿%\¯㟦ÆÉa’~3Y<‡¦‰Í$Ãæ©à—Tôa˜ýê*Ya>ó‚„ŸŸx ÏÌ¿”؃%þWì c`¹äâ+#WX=¼JÄ×kÄw¥öPÕÂúzv_B:ØÌb(r¦ †í¼x+‰¬ÛH0Û]oÓˆDŒ~2/æ‘Ø`}Ù«dGÏ11Z\ñ=;ù4m”\ö8’ß^¨µñ¾€ ´0”ó©ÈNZÎ~ÀÝË¡Í41u¸‡ëÊRål'ÒæÐÊâFºÚ®ìàïÈ@oòhÜC ±Þåtf.2…~Í™¼êŠ, ‘có?‘uœ†«`(r°iÞy}ñrùëö>¾y ¹û´SC^!Ïü~áa©ƒÈ[)𛵱ù‡TŽ6œG~¯¬÷?ÌäPÀG©¤±á0 ¦}zàƒû¶ß7—:£ðµÐW?¥ê$ù|õîóäôõ„<`t›®!‚Å >dV=DÉûÙi¾'Þ£ÔOÞÖ'%Á(sŽÖ)°®å$yKˆ•§PAÊVýú'T:ÿEíé ª4ï ­6,F±Ë‰LE5n–䱇ó¨N×Ãâη€4u¼ ü¨ñ>&HÞwG§Õ R¨ù ÞULµŽ¹\9ô8µºghDmc欅 ¨G©ýèõÔaómd D‹¦›ý‚d¨S÷îNêÒ‡D™O¡®Õ†Ž˜–#êFö[Hù:£î·ƒì‹uÑŸ)ŒKêÆgÔ;m§1wÉê/N¾ë=r3^ j Î'/܆²á©þBN(¾ÒvNcÞòFyì¦öBn±ÈÌ*úCΛ_‹ ›;jdKð!dé“G¯J{ÀÛûª.>Löþ¡O—!½é–÷=xw:ÏáÑK~È#¿ŸI¡ e屯w¥×Au«ÌÛ†/uPÿ^Ùi(ë4iWÝüynZ¨ä÷hý|­âE'…Äd ÍÜHãĺ4´?Ö&o ‡Ž}ϦÜŽÿ3Ú.Ç87Ím\ºLý“ÐJzÃ=°å(´Èž‹`Pí€æ5+k#hÙ¥VõH¶ ZN_{Â}¡Zº¬(ž ^‚VOïß}…¯¡MçvÍåûâæà8¥¨ƒŽo÷~?nM„®Ìvw…beèn˜\O·†^[›Äá'ýÏ„-#˜ÇaP2sù^ƒ$ ÍÐUXMÃðT±÷ìS“÷àaÍ…‰jÿ»)Ûûaú™Ñó‘ ˜µ²>{k̉ßKb±‚…ï3'Æ]ïÀÒhsí ³¯°Ê‘|h¤Ö|Ç"ÜÄaSêk¾óE$àÔ"ì´=Š„Ÿ›gN¥Í!ñƒˆ{‰5§‘ôŠzÚ¥ê'Hî«X¬ê‰oÝ”nÆÝ4ѼbI|Hó4Ä‘—ñ8ÒfÄÞ UEzŠŸŠÇ\‘!¯H¡n[™ÜäÙáu:²è…&R\F6ƒífû€Vä8ú ÷YäJS#¼¨‹Ü[ÝlZü‘È«¤Af—¶gGgÙº{ÔÒP`×1±¹vü(L*~æ0 Å%^”D‘7ÝíŸlsqÿDȪA´Škô¸o©Œ’ÖÊE.BÕ(õô^§ Ê*sVø¡l¢Øç ¹r”?¬¯0pù>* éø°%˜¡ò?.ðpƒÚq4ôj½Ùo2y Z=Ëk½Ç§PƒO›F1’ 5Ý\û(ä·P«2î¢Ý•§¨cÈÆÙ[e…z|ÏMP4'³b¸ ‡íIØúñPW,¹­Dš$.ïNÝ‹¦¯ãèNüXB³ Ú)¶YC4·R,~¼<Œìߎqý@‹¶¢Ê«;÷Ë QÕóõhµ_ïíÑ3ŠhUÕÚlKÖV½¼Œ5ZhÝ]XöãÈ"ÚØ4d}ý©6uÖ‡¾¨1&¯–úÁ»|Úš$W¹ßSqÖÔ÷†ŒÉºwoÖ!Í=‘|fFR,"9cuÕáeÅ«¾=ÁBð¢Óã±Mq%$/ùü¼œí­ê×\¶åáÝóÛQÞ‚³mœ`Íñóý?óKkýB$Ù­þóüÒŠ ülENk‘o…ù^(ºã½Î+PÔÓö`ó;>ünÐ@%ñ"NFžP*}‹Ý¿>Êv+x8/…²M/sžf¨y°½e& •÷CkÓž4Âg ñãWf¦¡zxLT(j[-¿½=_ƒ"Jå·¡ w‰† ‰ºßâY?4ç5j¿ ­—¯Ÿ»Ðg ín¼¯^«~…Î@ó…óäYÐM{¡$f‹z¿ê–»ýŽ…»•~ÂÀ˜[éiEz 蚥´†­‰Â"]ïÁèÁE“D­0®IÈ,Œ&®ŠT¾„éAÁWïÀ¬ÒØåß'`î™Z@Šƒ.,°.w~G‹/•>˜‚eçÃÊ/YSaUƒ¾ÑrÍÖÔÓ¾“ÀÆ…xöF•`Øê}6uˆU ª¿žÛåCDÚí*ÅWx’âÓbP9’æ¥sR÷œFò¢Ý­AìMHI¦¿H”{w'fv@Üs×r:&U é¬?féI}FꛂKÈD©Íþn[YN˜µ½qÙY\×.Š!ûò%ûGâkÁ×þ›È»Õf¦ëè‹„Oz,ùÓpßÁ™Êlx‹Â•®/¸ãipÿã¼ ëª(žb9þQ%dzr|¼Q:éÉ£éâO(›l˜2Øü¾%Dx7¡Òe³7q«¨Òåö¶j¾Aåè*ÚT»tþi²i*jPpž±DÍâÆÒ°ñeÔÈÊðqA]f²•°(Ôg¢Ó}ãù ºî= B£pª3–E›h,N>}]öš-’»5„¦ÏØ#ö¡™Ek”î‹.4Û®Kz6ˆæÏÛz9ö—¡…Ò,ùÁ÷^hQCÁOB,Œ–FÕŒÁhYž‘s­”Ї#¼Ð꙲; †å[Fdk}D3_&š=ÈT#!åˆ%£Å{Û¡ƒgÔùí÷|hŒ’|¬9sªk® ÁÒ¨t;èóèõ2”}}Éæš ¥Ä—@aâþmŠÂÈ¿ÓÕ>}Zò¯n³S «„I ÛcVa-!òÃ~ $ÛïäσFס:·³4“×tãØÆûü¡%ª\ž- :’Ã$•n&Cw‹øž„Vèç»´?ƒuú#ÑüM0\µgtÕLÆTljbyaøáKdÀTI¬¾©ŽªÆ/cFòûP|–>—>8~ñÕä±"5Ô"+ðôWSGmá“·÷K£ŽkÀÔæ½G¨›på{į)ԛ̻¥ªÆŽúßôúSQ ÜûãK/РA7îŠìO4´$óä¡Ô@ï\¬²î×ÑHW¤Œˆâ9}Ì¿tL¿ ™|w¶‚Ÿ¡±÷Vi]µ(Wf(Ú¢ ÕY%$£‰Åhô¯V#4‰r—9]‚&ÎVì1ôgSÙÓ<14¿sÊ9ïrö~ÒyJ nÍ-û)îóP7t« Z~‘ïö¸2B-™M}”]-¬áÜÂà∕Kð¹k¤ÂUÃr+Ò‹š²ÏCŽÎù]ñ† È:õ{¸´C2ú©^ñž4ù¯f?oÛëLi‡\ï£ØÐ§ø¯¥ÔÎ¥¬P6R\ÿ ¦Ó…ÝE›êúUâhr !¢ø¡Ê«ÏÐi–ë¿ -÷4×|ú µŠTè䦴g?ìι Bv3Ýk)бvŽK³\:w=WåÈ¡›Qf«¬p zôO‡Hè0@oqøðüu]èW¼k´'8ã½ÒAÞ0øÓwÈîÝ'ø®ú)—|R~Œg®z{kÂO¿äKá\0Nðuíª6%L¤In ½ SÇûólû `FäÏðU>s˜%ùYj7¦s³ÍQ®9ݰÈpÜ´á?,+ùz#Ÿ•û-FßJaõÏ;Ê[Í~°T|–ß¹6™Ôä½µÎÂVúy{·¯fðûèǺît%øÃ,1o¾° »+¢ ÊÁߥS~¯”‘à¾B2ßAÂŒ¡==$]TçxŠ$RÊlAþHúÈÏjV.ÉR¯W ŸGŠ¢³f•JHu«´®ÉôÒœÞêÊuz†taŒŸ_Å#ƒ»ÇäCÆ;$ÃîbÈ”ÂÄø / sãû·‹ ÈJq,ÿºÐ²=Pêc•†NwsÎ i"gÈçÀoVÈ52Þm0y•>Ǧ‰#ß«çM¥dÈñð=Þ( ÎØ?~ŠE,ÏDà!É}ŸøÂ…<\"¾õ…›´<4­8PÔõj]¿%Š34%ß E‰~µSŽ‚(áDlT—„2ü‚‚Ü4gP6éë4‘Ú$ÊÍÞ½Õ’g‡O©ÉšJÉ¡"ï÷.ÆdTæ`SmïÞÂ#Fc?Ž~Aµ„KIëéÇQcMÁë¹² jR^Q:®Zäׄn=Fm¿œ½ [¨]á±0TR:Ç{ªîC4êìñº\‘¸Žº‘Z¼“—Q9T­ú§êEÿXúEŒúÄN„e媨ïóø/I+ê-°ÃR4«"ðU Aƒë:þ·­Ð ‰®ØÐÌ i…šz)ÑÐTó»`à6ÞP2u ÒGý_;&« ÿ—­ƒ¯}>}š. m)>øÕÁSÚã…vPþLï÷ í¾oûw•A hs}7r( ¨“Þ¾8ò'ÎOš Á§dûŽ:’ëû~Uωà•|(!N´éioó_ɧ7ÀÇ–ÔÍeÑ(|mlOvª#S9ì@ã“•ìw¡Íšò­©é¾ßë}CÉwºÚ<|8Þ@÷ïÒ¼µ]Ð+Ìóo¤_úÎ<á“°ýÄú¤œîßþÛSØ'xúëM èå´å{2 =Œ†Ä¿[j Ûˆòš”…tMÌÁƒxjè¦;äòü)t;åi®£„î¢å'uVУyºÿ‰øCè%jÑY ¹}Ô?NK®„~'î×?lá›Êò;÷”0¤wá³ân2|Ïq2$â½£Jbý:uágÙáõOGaübó4Õs˜i ¯*:ÞÒ+°õx`“Y¯~OÎÅå÷Án¸’ÔâÂü»r2òÖí6$tz«êÔý‰Ù{n¿-ØC’…+VäelH6iEÌ_ˆ”T¥ lù’Hí:éz¹ªiGï>\øõŒå§Ö÷±¢ÞÇáÝ2›ß/$ F–];}ßÐQdk+ tcÝAŽºîW/Nu!ç÷òûý¿•‘›ñô £%ä=µÞ½3ˆ|KN‚÷ìP@/eus² +áònD- ú­õí¾1Šh°ÛýÙ¨F1]ÊàGÅÆ(q)ŽS<§ ¥ª†x "P–i#èÁÊÙ~[R.”¯L@õÓœ¨à°À½—J {çÚgØPùûž#Oû7Tt<áépšÙÿ”Ó¦ÛÁ—‹'hª’B»­Ëõ©QèˆQ à….é ³2ÔO {LÓ5òc$ôvR^ÿ›§ ýß]Þ:;Á cm/û±IøN°ÊëG ?Fo%üZ΃Ÿ"&]\€q&ëþŽÔr˜èÍò R€©²Xckë:˜©8¢q`vU/ð¹†,í½â?ì K= çžë?‡£ßÔå2°Z¥pºèw¬Û+°¯’©À&±˜ükº‹°50ä­åè¿Ü B…$`—RIÀ±F þ:¯ÌÈ"ÁSl8°ƒDô‡²ïÌò qFáûG /Ôûé¬3í$?n‘Y»ˆ”ñOk?½~†4‚‡Ï'Ê"ÝžuËïhd$LºŸ‰LŸ‡3býå‘%e–GÌù²ýªÌl"Åw´Û^™Î"—ý“Ä?¦ÈûEÝV÷ò‡÷u]CÁY¿РPcjUŠJ_kÙXEñ5eÝã!¬(µüõgš1ÊF4ŒCyíÆ!ž¨OÛI®¡RTÇUÛ”1TÙ¼d¥ÍŠjq-¹P#]ÿO9jŠ9ö°D­’—’MΊ¨ã-Óqš£õÄ{]'HDý¹Àssü«hXôxDR” ¯;ìv³Ö£©¬Ã@°±šuU¥Ó£ÅÉ[ùY:•héç¦à7†GÅQ‚‹ ö*{â3€V×r «~EkfÆ®±öhäÓu¡`mDEÕs~^C›ä‡níÕÑ–½'¦ôÛ3´ Ñ]ctÄûbÊ„¼¨ÐRoÚßÖ%yr]Ö©¨œ‘à½ì¯ðÇЧÅ(œ“g $«5åDûýhsÆ~}jÛ?†w@µÛK-ù? ’¾‹öÀߤ}NÞôsØ@Q‹žJ ÁÜæÅøÔ„¼†¼êÀ=ÿGmûœ5ÜvyU^7ç]oBÃØs×·6ÐN¿æ €EÜ•f&7A£[go”u¡ñ1š '|÷saÒÓ/ÜthÂúCü#šœ¼¨mÁÿ M2Þoé,C“…˜•ZÒ4c«ÍsœÄwi'а:ãšý÷¿ÈIâäN>¯x*YÍc† ë‡8Ô•hž[Ö‰¶U‡šk´:jnûúô¨ÍëK•¾Ú¡;ŸN‹V_¦„Ü;a¯Äà£wÔšÔ·fÈ *îlŠ´† â£MûÞÿÕ¬zæñ`WøÔ}ò£äÈÀ¼–¸gúÄV'ìs=1Ì—ËÕ[iT;³õP;¹œ70õ‘ÙBxó4^gÔ¸>>Í)Î_À¾Ü£i’𛇶³Mô/›óà+Ù¸Öp t ™Of±‡N§@2õUsè:ãÒSÜ>ÝTƒ¾…ž¹ãåVÐgUQã‘Öý¿Lº{/Á·ÖÐÓÚïÓa˜ÈéŠÀ] [_%Ø ‡Ñ–CO`Læ²áÃk0Þðs­À¤Ÿçéæ0-¢ÞJþ#vŸÿúÎ[ôf0Û¥5/{á%Ì/N >݆%Í%u¡k_ay1¦Í‰yVÖ 4U®ÀZwÃû©.Øð$*rW:›;Y*A°ý¶Ûá¹aì8ëUð ¶Ã®¬Fb±êü–ú|g ø#ƒ$}T‘PûKbÔŒ×ÝyŽÄU½JôŽ4HÊ«VÑ&]‡dñβÂ=>Hq¤Îå¥RRþfQÐMÛ÷©CžÝv=‘v6ÓgÙÐ([ÆØÏ‡‚Û?(¿0!“rÏ£k´¯‘ÙâVÏÙOȾ™GÓéŠlDåOWr½‘½•P‡_ÍÌ‹œ%• G.¸Õá*׊ðÍϾ :z'‹¤z˜¡ëQD˼ýtוT¾¼=¿WÊò Ocþg··Ï~.\à®;n}5Wvõ4·ÿwž?‹>\zÙOHè7[B7ý³‹5ÂÐíúþ„GtmƉT5·@7 ³ï®t›ÏûsØ@÷ó‡ÜKd¡‡Îá³þósÐSI[yÆ¿z‹½NsSò@?Vò, 4PõÝU€Á’UÝ‹«ðÂe‰'µ ~¼}–Å®? J]v]¢alÍEžªR&ù&Â4qi¤Jü:ÍCèôÙæéop,…ÅU#ÙŽlkXagNyÍõV'­Ë(`}:Ëê»lQи &WÀo³¹˜×»7àÏ`³Î!?#ø[ Ånn9‚‹çÂ-þÚ"Ñ›~oRb‘ädæŸøœ§HfvÎ`w<)<Ã_íÄ]Bª,ù?V8¼¨¤¢é;›N6Ù"£ãíÍ«3&È4a§DÚŽ,ü’ØÍjÒ&÷s+r@ê©~“ä4céWްC®À'L1ç."ÏWº¨]¼È—rÉsþôkäß{öf$b¸+Å~ä [ËͰ Uý@–Ÿ€¢ß”%=ü@ñÝwêTÍ,(¥ùI7+seÞzøÍ'@9ÆS/Þ• £| ٱυ¨À˜å!T‹ŠMŸÞ–9½BåØü#‚ã‘k8’5jI,Õ]^RŸPÓC1±ÿj¥UŒ§0¡ö|Æ•˜"ÔÕ"Q% ç@½º²`Ëïhpåm€Ê!"4r*ÊÕÌF+º÷ÍwüÐL‹~òf÷ZkôT;¡¥sW!ÿ×F<*sÛ‰V þqؘ0ÓE«²îJƒl´¾4zœ÷ Úð™Å[•0¢M w2óM´u4ަ2cEÛ)%÷ž®ãhwF½âDÚÌh•顽Õ%K;ž ´/n–.ûEŠ—ƒ¹¸ß§#|‰s™/¶DUý‰Œ¯¯abyFx¤Ñ ê.ñ¤¨@éÁ1&¦AÈŸ~é Ÿrx¿yÄÀG–v¡}Ý+á™óɃºN¼Œw¨áý6+|~’3E·BÉ_Â; 您vHò`©ÎSÝÿ^8ª8U>o2¿Œ¾þÿÎ/vY¸íûV%¦7™ûœ¿9ý®;Š7 î¼^/Þ¿þ°\”÷0”Ú}œä9vj_C+µl:þß¾óSWÿ¯^ï»:¿?/2þÌ%CÙjpòA£û9Qê,åá.¨àÈæd܆J2ðéw‚*‹å‹kÍtûsæ'#]<Ôg0l‹sCíYËŒEÕJ¨ûrêc²ê"4„µ¼ŠÈf€&çwßLS4¡%Mó~5­´™©••´ CÛ3ï„Îdºðû3Ÿ Û‚Ä<ãVô*¬˜YŠA¿Š×ïŽDðíûll} «òÞ<‘ýFö›¸}ÞÀèf%ýÇ${¢³Äv&ltí6Á”º‚Ù a˜9â¡B~fOP‘}®ƒùO½½MVv°¤ðlN£!–7>=íÙŸc«^¾Û:œ°¶ù·T0ðl¼ú-G¢ [’)¤Šôá÷–aÕ‡Vð'髨¸a+üeãØ YE‚ãy|×¹pà¿!k{{ƈ½ôER¾¢4Erò˜8*¤”þùÄ#¬©SòC热]´É02¹íþ|‚LnJÄ/j."‹Ö#þÄÂFdó•ýCߎ+É2 œ†ó¢x”ý§è!CSòÓI»¸?½Œ¿kzÞÐ]D!A›–—Ú7P$ÎO7À¼Å->OtR,¢Ô¾œ†TžBY¹9óò|”Ûà¼q÷ÿØø¤$‚J\]Gv­¢Ê•ØéR:T­¯LJÎrFÒÿÎUÙ –=Žþ±ŠZÞÖNG²£Î¨Q=ƒ‡¨Û}ñÐÍ'.¨=Ò1Rlކ.Lþ¾‡£1¯ðo¾ø{hÒýÞ(«ï:š]¹ÚÙÔT$BD¯ÐR?§øÉ´üû!’.Vf‘F‡©·£ÕÑšrFÃh5/¿vóŠ Z_ï :[†6Ä_]ã³½Ñ&ø m›3ÚlÌ〉Ú M¢ˆÇ»/"fâyè«~ »ÏÈ=²R4–¬€ÆJïò•¥¡÷˜êø§#ÐþëÌH);4$É?9¹.µ2A_ÜÓ¡jœzÄ4âÁ~Ù×'å@ÉOÆ22P8ažÆÝñ·¹}ŠG4é !‘´fñö(øMD(Ê\•ù±-gÈH ž{˜[Zû_4Ž´@çB_'‰ôFÞ6:û¾™=Z‹×€ïVw]¯ÂOZFÑšjÏ”Sk,Š‡É “‡ª0ܺ¿nÂtíàêï›=0½åü:¼Ïfìe––ha¦MnDçFüн.T„ù0›òqðÁw€¹6Nî &E˜9µ Æ ‹\œë÷ºa)2¡x¡Ü –&d‰^ÀJì\qI¬¾U²6€µÆ#r™§`ƒ!£­ç¥4lz·ìî*´ÀÖ8‰î[ ºý¾Oó,w:ÄH>ûr˜Â½xj[Ý(ü“²gൎB‚¢.Û¼ûH8çñBq‰•2¶9Åê$ øÐy$à©¶!¯AòÏž*«HéúÙ0RÅ©d4dBZò15¢€V¤§`¹°î³Š Q=qmç‘ñÝ…Ø5»VdªžÖè+)Bæ%Bÿ$þSÈ*wáÞ?d{xÈNŇ9…ÙSïLàû+g¶®å#gq[xm.r½7ôR|y$tf{)â·Øõ•qú)ä+C˜Ëâ@þœØ–ºx¤¼už¤ ðP°Ë{.­yfÍŽE‘´>º¿<(F5;);)Žâªö⦠(áe ZûJ%˨â)N™¡´Ð¹ç“‹‡PzÞú‹ª4Ê–±>txåÊ#˜­mQ~€vˆ:7¨hñ=CÅã‡^§o¢’®ÕO¥~T~Üۯ౎G´¡0Æ‘?hZunÂNyŒªøJ>t‰¾J¹u!š"LÍNCõ\o¤—6”¼‡qZþ(rܸ}Fâ4äû®<Ê|Ÿ.[^x²­p‘LødD_kè5>é2Ï7â÷yúÿÕÌG¶P—yø¤z•'f:ð?^‹õÌnu4IBù;~7 ‰}ZûûâÉe¨YÏ÷q&Lºè¤ }Zhð 2°Ê‡¦k2¶÷ÍM Å’åìæÏLh!¶ ›‚¶ZŽ\Fºvøê®H×OEQœºy±ÐY}ÿSÁd t}3Xm½³ïW5r£D?@ï…MÕ:©.è[œ=íæ…±Ò’a°…X]ƒ­¾ «¯<½×?†( ó4ÂO7Î×Næ³06ñ+<·Á&‚׸?ÎØÁ”ðÒgo†`zæÃtªúIøU\bL,}rŸsÏüEÓXdùóÁ¼ –­-½³a¥@çAê X“èÏ|±ë…-`µ?7Mœ‰™DµakasÞeš~¿s´Ú˜.X=ùi{.۴۞ÿK­ÉŠYû¾ôÛ*wô]@"𮯳3ñHlsI†B)I>’ŠçHl"Ù!ºñ¨o$/å9°€”~Þ憎gÚ¬»û÷ða¤=j NºÎƒô§-|ÏLi#CÍüÏ|ïldlyF«9´Ïs¿#¥À%id!}ðéõõ>d „¸&Yd×ìí9zؾp”cÁƒo6kÞÛFîɧéO”!ïØ C—‰ò5Y¾±[‚üÏ/0Ì?QAð¯zy|Üß·#冇z­’K]þ¢°ãq³ƒ—P”ß®Èö~Šs~˜ >ï…’¢¡ž÷¾ä 4áÈ$¢ÌëUÂñl(ÛHv’zÑ嶬údãgñ°StãÈÊ *ü³Ý–ÈG¥Émå x„€‰«²)Õ4¸{-¼ÒQ#|úË[ÏWû:éûm5WËžG«´£6s­ÃgÔî_ª~±ƒ:1Kõ‡D£®ŽKà#qÔYªN¯®G½Ð>·R²FÔgÞôN—@ý¿醻Ѐµ3ù¼93Ü &û;A„«d êÑÎhhõÏ„gˆ 3¿½í‹†{9ùÇßMhtxkSUÅßÈå'›¡t@„ÕLÓ rO&;øA~fí•åÇ!/æÜ3/È• ¾™÷üä8mk:§ÅîsÊùÌ|ß§ud,ƒ÷ê¬BÏT «ží|ð,ÝÿÞksoõ2T –/}Í.‚FÆ?ÆÞּЗÆ\œ.¯7º¬î¦A×ÑÏ¢UŒ—¡ûQ‘íƒnzèi« ì{tp?VxQþ}e±JçO~¾bóÞ–ÿÛ'‘P6 ½,¾Š¿‹ G´_|ºøtûé˜óƒn -†ß÷ ûÀ\É1èÖºÅãýº¯Š¤qtÆìCOÐQÕq/.è=µtfÀçô¥/{f¬WÀ€µeöÎ{”õïN‡0ìá§&K#º¢þVa´[‡á° &ŒQH_Z„ ËÅ1Ñ0˜:óoÛ hßgù¨åG?„9CÖ.Œa°ÈÆî‘ÿ­ –Ãå8ß&ÃêÙ0nÆ X÷Š¿ïç7obƒq!lžÿ¢{þȸ88næÃÞw"7ß„(w鉑#Ñ!·“¯c%xh,E*…I?‡=`x€äUVb#WKr÷Vù_^¤ñ¾3q7– ééÅÿ¤nî úú­’%È(PÑMÉ…,œqoúeM‘u€Y†Üö5²ɱʶã2ïCÏàÁñòÔÁé;È£,jöá$ò9?dýl8üŸï7ÈR  ä…½Âk<Ôð²T¦M…ÃTëh/ÝBÑó'ûUýQüNŽëìO”¬œËVwCŽÞ•¶S*(Ûº¦Mé+ƒò ÞaÒK6x¸Å'³$ò&*ÞöìþÐÆÊ&çˆIÍâi¾Jϗ¨fyôð±ƒQ£î§Î9-Ô«{ÅÓ|µÎý©_’zŠÚ™&:ýûz£óO…ÛjÈõ‚£_ŽKDƒÃ®£ÇK‡ÐˆEéø‡óÑ„âôU~g4]o±‰VFóüSÑEíWÐR~‘ŠÐH’1’ÞÁ£íg#¶ýÑ*²Oèæðs´Ö^ÉYq_Gë…À.W÷<´‰¼wäÝ™D´¤ 6x¶ÙÇo)ôû¡LŸöG¯h—Ú²+ªƒölÁ/ ýõwOSÕ£¿ø=%+To¹HNþViø²vù$aâñxî×­P;9FqÕJ܆DƒîC>o¼ð‡„,È™9dМó²åíbÚ¢ÿ§{×*ou@ÚÅľËÌû¼ÑF½\xï.Üœn‚¤G|ÒTLIønÊÞcÙ’ɯ%<ùß9E÷¼o¼ðñeì•¿M8òžöO:2Ü*Yñ~ źÂl~Îíëïá P<%ó_˜ï0…ýï\âë™(ý@=rº”ð¿ZÆóYp‚ç”™58rHîçÅþ,qÁsP6¸óiæÔ(¿UðèÑzTXßÑ9´á•ã/~úžlƒªlÖþË<ÃP¢üâ2[ Ôô+p3Ò(AdH¿êè"Ô÷¨õæ—Cã[“ âÐ<ÊCV}Õ Z/åÚ΄¯Š“«¾ºåÐy K`¢þ+t•6a³Åèyþ;ñ4ô=ñ»AD”óÞLbÙ0t¾‰*uNF8#—,g#`ôF½Ô£E{cÉÉ¡½Ãã½Äü†õž0YÚƒÅ~÷a:ÿ®”{ØøÕÝtYÚædÓ_ðU‡ÅØ?gÇõmöù=Ë;ÛóVé>Þ½ò0ÖâšÝl»`C©Y j‡¶È¼“9Ù¥à7iKáÊÚ5ø£~ZÎûëØûÔ»Ç=Ì‹²Âê{ï‘0±:–JëK1ߨ6B’ž áçŸ"Yf¯ã[6a¤¨•:An ©E_(ø#í£ÔÔoD‘ጜ„ý‘kÈDöÈù-C2Wâd¡GÖí7ÓFöÏ‘Ã4z”À Ðd¼¹ôb_/)ë[M£‘ïéàϹ¾(pyÀR‡¸ÅÝm‹ª;‰Âÿ.?åO-C±L…;ø¨%Ÿ¸ý±Ð E™L<ÒS™‚r¡¢gd‡ûñ°¯87‡W/*¦÷ˆ£òvÁ‹H÷xTU›yÅBê÷؉9oE>—ûOµ¸Ÿ—PTl£vò@€=ê^7ÿ,ÌŽúJ:Š]–hðï µHÌU¯oœç5E“€µ’ÁãehÆ%c¾›@†æŸb­_U_EKÎ?K7âœÐ²‡…b•æ M>y™º­Äÿ×k‰ÿq›{`÷ã^ð9Èõˆ¾wúâ)(Ò¸#Ö²ñeì‰ÔP¯¦y¦æ¥8|yûüÍ7}«ý~nb“¼Ö»ý Ûâ×0@6ßÁ}ƾ„m=·„Qiÿæú{[=ùÑÛ&Šê}¦Àà IÜ9˜JŠ®È{¡ SÛ„o•,‚`úÒ÷P ö 0Cxͧ»+u?'Šß_o Øïë¿·„köõ)’Þl–æ~{{¡¾ bnÒs°x?XiÊ`™UúZ…ôQXþûue²!V ¤JÿÖ ÁwÍ¥`FXw!ËT¸@™JÔŠ&k°Å®„Ó¯aûåóK‡®ŽÀ޹píØ•õuxdbM· ú?"¡Nçs$ :IgZ‚DM "n¤©H"?LçsÿÞ¾ž ¯m°|Gr½£ÿ&)Ž"Åô„Ë çy¤úÄ/øi"’­¿¨"ÝÊåI—yd°ÜžûKv=Ú³4>G¦`¥âHbdþðýzÖ•;È2ežþø9²©zßÐóEö>Û-[x@ꈤªCrzë G!—¶¯îsqNä®m=ØŒ¼æ$f1Ȫó›?Cù¶ò¶½EZ—¯ÌÃíxHNÉ!©Ù…Jîþl%£E]Ñ2¦(šÈ+òÂá)Š}œ÷ =Œâ»c\KÜ(i™zJbÊ¥Êók¾²Î¢tÑä–›a)ÊÆ±mé&G¹¬`¶?ât(?A­œ~Ùä*{Gô=ß—wP÷TåK1GÔcklîE½ÒËÊ/® ¾íR…6U%êO))Ï¿Fƒ3+WÞQ-¢ÁÄ”»Û5B4´[ÐhBà W¥$ŠP4âÑgzu:.oŠÕ,Í¢Qƒ…àÇÅxåùJ¹³M¨í?xjÝŠóÿò¡ÚÙNãyhørüø„ÍTÙvqºA %ÛÏ’þ8]ϛ⠪ף o×dg‘0rŠ†Ž |zØA_Q ½£—Í7ÒeÙSc å™÷ü°t¤Pé5áðƒÌ³tã–÷PàA.ªy–ª›½œÉ¡¡S£ÛD| ZU®˜쾆ŽS¤óWÔÔ¡‹ùGø“/4ÐíTðÞ*zŸ©Xc†ÞÉG#o‰Í ï…š‡—.ôÝJô,NƒÞÅ“§åÖ²¡—ñ–fæûèQxSá–³Ýá£ÊA¡/þ— w$Ä þ÷¾šc–µcЭìÆßT5ÝöµòºËóЮr1Ë_ z”c \½÷sæ•sO:÷s¨QéýÜ~Ð?Šê}Å—á[ÊÖñ‰ÍH*:®a_¤ #D³iê©0êÖR{æ×2üÜN±‡ñƲ~•0Ù6GX3etç2aöv6¡T³,™Œ~A* ËÛeÏÎÀÊRi M8¬M߶߾뗤u‚m̭°ºäó(ˆöïˆÏ­  ªu1¦¿³{RƒÄÖæU/ž )÷ëÎv?xo .q¡°Hk`œ¼Û>_1!ôC(NW~«åw=J¢0ûÒk(crþ ÇE”½wkö‚ˆ Ê-v½O“_ÆÃ¡R¿-lO£¢ 'ù3LEe"þßÒ®~¨2N˜Àm]†ª#ŸòÜFS˼ªˆS©’­îçQKF%«¯€µÏÍ1p1“¡N¹7AJjêûdê°'ê/qGZç£a[ÁÛ„—÷и¢Æèš„.š¦…Õ¦\õCsχg_ Å¢%¥ËhM?sÁáFlѰ°á6{¯A–ÍÒ S#`åó[_Ÿ¬)ņŸàõŽœw—Zaóµ¢&Y3l¿ºýäƒSìôªlÚ1žÙ¢¢&vø÷çpÚ«¿nHxެՇ‰ªÏ¸}âC’{.¶ÚovÌŠC6µR)ì¯ÉWX #UzAvPmÒZZT†/û#'‰õ§ÇȘ=“—ì6‹ÌW¿‰Æ\´GÖÛ´ ÏÞCö–S«ÁƒÂÈiú@ùÕÇ*äf ‹¸Ûqù¸ïz]iöAþ•…/Ó¿UðeIGˆ¾ Ÿ¾:ÙF€byBÙloPbâý½ƒoQz=µw›ø'Ê :ä¨+áa*Ý[/Bö9í#J“bAåk‡I„ñH.ãÓP¯TÛüGÖ¬iŽ­÷ƒ˜çj~e¿¶<¸¯;¦ÿþ¥ ®Ô›Ð¢.ÔJ¯Ÿ¡@ƒw̉)†çÑèdÍJi2=špjI’-î¢iÕ4§Èù4wàyÇrÛ-F¢Œu-ÅÑòÃͰްWxÔIGÅs°­5“ ¼¶ÑêÍåUêÛh-÷r4·Ë ­K¹ßž7´D5ó“²h“˯ù'mù)a‹îUk]m'EãK*ù’ÍKå ö“þIø÷šé‰l't'F¹æi@kš_ôâQ'¨Zœ¾¹ZÕ+E7‰] ²PöŸÕ(”‰‡-pͶís³ån“t Ôk£9{ýþãö“kpÉz|Ê9h6æ‘ Ÿ^£”á†ò[5Y êLPçu|ëò6hñzv¹»|:ôZ¨ï.éB÷å€ãGRü¡¯¦ŸÁÀà =È³Ì ÁÈÛœÞÁ²Oðó‰Õ£g|¤0‰éÒ60ñM<ÆJÇ&ƒõ#|òòar;5a²)¦¢°ñ œ€iŪ½“"ûzD:°(g¡¿ˆÌ«Sy`–‰€`¹z¿¿Y|¦íÞ€yåKͤ”`áα¼‘ ^XbZ _ ·ƒåÓùâ =S°rLðUºf,¬ú›|¶3…µÔc±Ú#°>—xàü .Ø4ñþ4#[÷n?xæ¿/vÔ| ŽQZvÖÁž÷³[Îðïãï;HH}\ƒåD9úÛ%þ¼ÄõI\Ž‹‰Hj(#ÇÿÉzár }Rø1_“)d`æZóDdn< ¤r™4ÕXÜ-ùdqXQ[ ²¼”jýõ£Yg>_¬ánAö£ñuÆ TÈÑq{ñ†²ròô®RlœÅƒ#õT̹],ä¤w‘g,ýïàöä36̳ÿà‹üŽþâ}É(pCUV`Þ2P‹YŽ »Çâ·CwQøG`—ÅK_U¶>KØJ€bžþÙ,mõ(sýJLêÊ[œ:‰R¶{óE9(}ÇglÅÞe¯R:øú)£Ü[‚wã(¿Lk¤"Œ Ž—Âåñ *~èos}{•šXé[µGP…‚plȤÜÜyð ÕCmOjf¡zS‹Z'BÊÛtÚí﨩Mûu‚îj©™?ºzø"j;oyzìûÎú·%sÔcž)“±fEýë5sšÏN¡i”½Ç4Ø.~ ƒ†ïRíîÛK¡‘öS=ý­whÔ[C1t–]SÂô‰=ÑxpÔ¢›gMÌv4û)þ¡Iá;ÁÙ4åTù– ‡¦›×ÿ¶„¢iu²¿Ï šQK«|õ|ŠfæFìšx[OÁ‡ã2êÞåÎ5uGŽ„™Ó6+KðûJèøÇÓÐQœ/è ëØë4ª ªÓóWO%}}Mç z_·ÎxºA#‰×âÁ&È‘ø5Ãö&j?ÿ%ŽTiÁ‡âß9‹u· 히k]Û5ÃhBF‘…r(Þì¹mWþÇk!ãdÃ^m(iŽ?ÖWå½ì_²š3 šIV÷ƒ5;ÔÄ=X¶< u I3,ë |}gy¥« qT0ç^›84¿½Ö6Îj_ÔBc•¬¡µ?¶ôÕá hÿå–æ­¾ãç>1„No‘>™,Ðu{ýžL/ݾõ”x Ü =;¢ «Z× /²ˆžìã3p´ið3tÁÓ­Ë)N0ÜÑü¡ˆ$ ~´D]-| ?ùß³äSÊÀX"Ý=Ê“0qè_|!÷i˜lõcÞŠ‹é{¤iëð+â 7kÉM˜+g c.lÅ# ÔE`ùâAð{°2´èª< k®ŽÆ*¬§`}Þ »>X 6#€yJp¶?9—x~/\¿*<ZîÜÔÞ½^™K6¹H@¬‚Í~H¨RhU˜ý‰‚>òý^éAâöçDÂŽHª`ì:rÉÊ»îK_-D OîâÒcH%ÿ±WËõ+Òð\O’3IB:Æ:þ s]d 虦ü¸Ïõ2EÇU1dœ¦ö[ßEf¢ÏÙÝÈrFóÙÍÎBdãóù£zã%rˆÞP¾×„œ®Ö¥äÊ–È{Ù$ Áy¾‰–œrB>>ŸºeN ä[o5Ú¨:‹ü“u£¯¼†Q`+î1kõqåî[ðFÚyLŒTQ)Î(AvU ´œ¤ £ê·&òôCk¨ÁùRæ},+¢çìò›TiÔü¾«³³J…Úì,Þó˨½r3Ú÷šêÔR5WÒ÷¡îýÏSEß¡žîëµ™‘xÔ[ ΗAýg¿(\ÏY£ìóUÝÓhPÁhÜߨŒ†Z&…thXb¦I>§€Fb¥BŠ¿Ð(ÚáN‘ïg4ZT{ëeƺ֓#j;x¹ØVWÎÓ5·/lP>ø/þ¡]¼þô4¿Ü¥]¨öŒD4JPÈ~ðÏGw$¤CžIÏ9?)È5"ã•a…œž¨àIbÈ”sŸzaií•™ 1ÉJÑd”&óðnàröÞt:dT†M1ghìçÌCQŠ[PUÜÓðÜ¢o»ˆeÁ—Aý{†´Ð!ÍFör±:û('¼ÂÞA·PþÖ!m3è¹|f£Ý€z‹¹’´—Aßå1¯š3ÿÛ³¶±I½ÃEzµâ— —.ÒÄýi4ôhž:Ú›f Ý/oð?}JÝqãŽdû¿—G¡)òþŸë.±Êÿ/'–]x× ÝWEÍ=Æ( {m@®ß¤zªÿùX(©CïLxV •ôû8^ø{U¾¼¶Êk4C ''ü5oÃw…Ǣė]àGOò‚Ö1„ŸAfù—¿ëÂ8D´ŠvÀ¤2å÷Òm0íHsZ¿~ë;ü f…y×¼ª²/`É»/ZÂØVü§Cê`Íë2?ëñC°qö}œMu:lÝYìÏ뾿BBêþ݇]¿¾ü’jøgÐã¶Û„²3†/}¨ÅlÛ:Š Iî²E}…d—é¼×0DŠ—œæñj~Hµ¦Î÷öþ²˜×‘dË{üís<2¦”Ö†Ò!³Jß–úp1²ŒÏyª‰l™õÑ;-Èñ’³ÒN£9 ˜ºÎýøˆÜäÎåNöKÈû(p6Šiù…¼“ž¡@|iü§‘«xHÂiPè‹›Ï  Èó*ÉIµ×(ö¬%1ƒ‰%*<‚?5£4uÕ\SKÊêÒÄô|×B¹*Íü‘xXmQo‚û(*,µ«…åJ¢RÑÀ·ÃwPåÙØí^kTÍlÞLä„ÿÌíßp¼VÏï,ÉŽš«—ŸVÀKÔ–ˆöh!G ·ãÛ—zQ÷ܳA1ÔOÌ/œ‹DûJÃÏš6Ðø2gÇ_)4uAù¢–L4gËÕ½=“‹5Fî·¯’¡åG‘›;vxÔÿ¾á€yZÉ ®Ä’E«Ÿ,æO½B뻽Ú~éÛhsÈUó:ë Ú„Ì»©' -””¯ÿŒFÛrõç}¾£¼o‘/&Ú½yÓ#4KƒöDökûsÏ÷†[Siï~îmtÖ8û©n>xUmã]i·_§AÍ—³»íÛ¯¡hšÇÇÆ{r½>5&Ù9®^6‰®±3ÈÅõw_÷¶e¼’©á}³œ^zƒ $×fÌœ|¶ Ir8’&‰l5Ç?qC‚Äý²S•T!ÅûÄҘ¶&ÎzBv°.AÞAòÿ®·ªªýÂþ‘–nP”–f-º»-DEAÄDQ Q Q PP@Iiié”’$$¤¤áåùÎïñyg~óþµæÌÙgöì3ûº¯ë³ï{¯2¦3gÇAŽ¥ú©ÀwÞ›Ká[Vh yù¿&Þ[üÚö\5¿Q ù·x¤‹B!ª6-Òéo-8sÝýc¼5ÜÙ`†Tÿ­CÕI|¿Ë/ÕâêIÿáÄ»6ùêP¸pß0TÒŠ/RøQ†¯;”Çîîú}ŒiÒåY/(M[ß±þÌe3N¢3ÿ[g»þ™ª"Äö¾Ü†“eÆO îkUï ·Vhб<©ÍÄÇßøP@ËKS^â9ghµO(Ö|¼Úõüï;$®A§7“Õ¼üèÚÇ'á ?-#T¾ ÛC?ëö4w§/üb¥~¤æ> ¶Ùö°X¿‡á¦#\ÏŒàwR;£ÏŒe[yšs¹Áĸݽ¢Ïä0mUæ,¦M³ó9NKG`þ¤pœ,W),tØ}üÒy–œ/0øŒ¼„?Ò[= m뻾*{ž´Ö¯¼Qõþ™›ã¦äY´°ójÿ‰’=»~*cw'8¬ S¯X®)­"±²ßÓ¦SH²rœ,Íé’MV^R´FŠÃråå¹HUj|ƒP½i_¦®²~BzuÊÄAddº+Jñí=2“y.ŽŒ #«l%_æ0î ß[þfò7r¨ì˜hXª#—¾c7YÕwä¹L¤8|žÓ­7k$‘¿ÅSööQ?:'YÅé†"Gf˜Æ PL…î:»î”(´ròíK”úP|ñw½ÊTuö\>Ʋëk] é¨ ¤¼PÉŠJçF)nè£Ê:÷Þk*ã¨êóJG·Õy’i¶Î F#Õñ‡¨åK¹“çí€:Ú/äy·Q,df¯ÐwÔ/ Ž”öPFÃsïFÌ•·Ñh;a!%ÐÄÿ`vk šÞ'ÈÝl@3‰A*ëÄÏhöƒÝÂü)šßzmõ‹« -¨B8r Å«Š[fu´dcY¬›gGËK'Ñr çfìñÞøÏKãs¶¨{‘4&E, ÙÒÈ\®ÃŽôÑU¡ç”ð½4wó+¨÷ÿ3A6s *Æèˆ¡Ô¼Ó›sBŠ .J]«€é‹r5Á=«î,çxüd;mmŸ—Tÿ«Û´è€ÈÛŽi¶ÇxÂt²¼²‚+Cá¹£ïot²Ay¨ŸŸàk¨eØxä 4…í©ªu€ï®]ÎKƒö»¥¦×4œ ëwuû‡öuø9x›äè <R¸Ûšƒ§ó$/«ÙÃPœ¤¾íœ6 ŸÚ´l<ÃkF1/Õza$E>Qñ°-üv&\ò4‚Qð7¿Ô±cokNÒÀ¸Ìõ…Ððb˜¿u|lúLjqKkŒúÀ”¯ºDgÈLo<ÜïœF ³±·ª^À\Ù>/«BC˜¯k[‘]‚……B§%–/°$B%ï®ËÞQc¾ÊyðgñvÐBv¬†9÷],Q€õëÛù ¶²°(—ó¡¶›\†tËgàí™éýîÆ¸g¢Ëo¤è"Ù: k[ qÜQ9q&$='<‰¬´H¶©þ€öîÍ\#Sc AÊ!¿íH²´P­8€´I¾Ëaso‘nìzM¢Òï´gHK¾AF®—|•ÈdJ5«Îr ™_mm“þáE–µöýo­ ›kMZ îkqꯣÑBvw*–çB‘ȱÔñ¬_] 9o™¥ñqñ!7½Ñ¥ øwÈCTÐp¤?yåXŸInL!_ÈxÑç.[ä'VØø­±Ü(¯LìGÁÿdg¼ˆBDWjƒmPXˆõ—®ŠÜؾþû*ŠÎè°DŸsC1³åÆç:PÂêÇq6zG” ñ‘¨ëôE©M’¹Ñõ?(ã+(OÔ8ŠG†[£‹Â?¢ÜÞUµšA”×`K-UB…Ÿk£’†Š6ɇ¨¼œ".n¯‰ÐØÍŸúÎU-F%ºPM÷Føš¤'ª_@•›óÓ¨Q¼Ïr|µ$*».F혇Uêbî¨ãÒ¯"뉺Âî¬×I>¢niÐÀWÔó–ß2“VA}Ö‹~U¢5¨ÿ‘ø !ðÒž}±?Í'~ !…ÑÖp`"^Nãõ DÃ:‰à4âd¾d<úœOouC£4âGgìðn!gÆuÔàÔ¨ÔõG6áK,ûô„`í eB úîø¾¤tÓæ*T®<³ó92%šb“ÐAù¡›qïu b)qÉ™sªD,ÌÊÆ æx6µ©˜Ô®ä¦Ö1A}hʼn3ƒlÐû"ùËÌwhzÁýì„Õîue¿f/Ö¶„–Œ¦E‚Ojð½:âÃLa´îÔÈðImBûíÚ· !ÐɽøK~P0ÍYHGAAb÷™•§ÐÛÆ,¬Â T‰g%…Á¯´9":¨úDûg* [ s•'Àï«|g=œ aÌi¢åÐ5K˜xÆ=–§¦‰.ääLÂl„“çýñý0/½¾uKÒ¸›E(ÎÁ’r1ñûÃi°Üu:>©ÌV¡’A]INª»ºL§;³ƒzœWŸN‡E£ÞË}Ô gMPŸÐyµÍ½ õÏû2S& £~™mÕ”"ºv³zKžªEX•™Ÿô]û}Ò)Sí?AeÚ‘ß;øÊþ丅õ ä)Ü.¶ Þõ³4ÙóÕñö$ÁØ`¤´8{p2 Ò4.±\ 4„ä-MwU\ þRŸjéÓˆiÏä’½@ 1q±‹i9CTXÈó3 ²ÕÏÿÜÓ %¤^eÆB•IÙy÷ ¨÷d.{}š¦ Õ|5ë¡%LF] áû\¦ÎÜ)hÓSÎÔç#‚ö ©ç7¢ÐaþØÇÅE: cµJÙB{=Ÿåi9h§|kÍðÀÚ ¾ÿ­iû)?ǹC«ŠÚ·—*þáÂÏâÎÿÌ#:¸à ­,ëÚo¬ã¡U›M”Édt÷xö3 €¶+þW(ÞD@»¿YK)ÓOèXwý Ç]!›¾G#… ÛÉ1 ¤¦~ž—‹¯›`€¾É,‹Ô™÷0°µø$üÙ fÛ–²}» ÑÁÍnê<ð;ñØDÏ4ŒÍ÷¥µÈ÷ýÓqîô ˜ñ-ˆØ=ïÜú¾NÅ“D°0zæÜ÷ú&Xø±}Žû#ü™ž)`ßk‡™_¯ß_‚ôLxüŒ¶=\ôÌ•àËaÅ7§f‘Pí~ôï{Ïhºùø…ב¤9«ù ×S$›p|2tŒ)à¾ã cRU›—h÷¸#í£¾#‹KLH¯ôH«‡‘ªWø®dÌ!“cD1Édáÿ󴱿Ù(®Se7¶ã~.ǬãÈqåæ­JqäÜHÖçj½†Ü½vÆ^\×ìÍP¿ô9äë ½&)µ…ü—gGãÓ àáéÎüI<ÄÝY ¼›7UÞLŒÙíÃÃ~²NUž¿P|GÊí¦ÀK”<ûnòMþ!”ZJ}~{Deâï]¹~0e¯<Í“/¼‡ò†å§+ÆQñ8©­ÚÁ÷¨ü‰ºKDg‘jˆy|µU³3¼b«9QmR8!Öw/j(´V¨2¡f.‘>•ã4jŸç¼uU¿ì þsõEnN µ° !íZô7ŽQ4ªîâtXnF“«>$èÜ…¦NYl.F3p‡»ëÄhNÐkóî­%š§ñG:‰]E +Bw/Ó7h1[]>æB‰–>ªöîrÑŠôw¯åï÷hu¶üÞ5D«•J @ë3)Vw¢u¥Ô‘ W‰ðª@ýÜÓ,”­Ú"±5ý‰”­¿/MÓw«Êb7+”¸‚”|ä ÷Ê:Ÿ …ôê÷¤ÛîôÂíØzDí*$µi°TäìúÞ—'J9B»|{KZR>’y0ëN³@ôIóóG¦u,Ô‹ø'¼ëË‘hÓ„˜}ÞCjùïwJc3“R–Ø+©5oBFü? w}‘/½[î*ä øÜI¼yZ B&Qƒ÷™ã]Ï.'{–ÐùÁ á_rßý­ÄfÄ“/ €ŽÙÕlf ØÔX»äýoŸ ¿-(ÈjZ.ˆÜåDuB3}(J­ ùÙ ÅENyÏßkîún¯ÔdÏ”è»zÇ'ÊL:¶¿ÏByÙS_nâ2¨tÖÔ× ƒjÿ¯²¼X¨YVÉ8Ö ßL)U>ÖºCã2ýìD¾´21ò–DÃ÷Šà—Û!Ðöñ9éË­hè¨qR}bu~P•~¾Õ =×>8Lž6„>YË SZrj‘AK¢/[\Ê0¬˜%þ=* ~óoR_ò> cûÊ® ŠA¶‘G&áBTÈîìθݵ9–Œp­×!÷[¹äðäãφüŠÞþ|P°4í|ÀAcö?ÕÔ¹«×;4x%ÎæëúJ©‡mö¢Œå,Y”õdp×Håß}t†× ÛšhJ´QåìºtÿI%T•b¦·ŒDµ&J®|Â<Ôp›d{Ô§ƒZWRXJQ{‚©1*Óu“ì&¬S^¢¾ýO{2ÏÝœiæEéŽF±ÒêDÛÔh"^ÀÝñz?šZZxFÜØF32ŸÛÑ,íñɇŒhnšû0ÍŸÃ' ¿ÑâúÅ_jƒGÐbi-|ï Z^V] /¬G˾»WcFbÐ÷èÊ›ã ɨ}¦íÙáúaÜÿLó›å+Ø.Jè-ZÔ†–_¿:³fA£‡OÀ ¨°ú¤6o %™|Ëé h<"ö\Hä+›Ý»!5_ÎôÒº3+AÖKy—ô †¿ºý\'t1;ÒL$º:Ôô!3qŽ^lî.èÏ=ã»Î e_º™&¡zå%_M ?4(½òÊR…–“. 9' MñSÈ[7è¼ä¿µ¶Ô=üxL|Eú–F«hà—¬4£”¥ ºÊžŠ”‚!Èàù5 Ck‹5 h`¸ö·²…¼!Œ¼3åxвëG·Žä$ÙÁ¨Ý„ËÊÕm³–½ö Æõ=;„ú\`Âü[ä=:˜ôâMi€©áý)¿~”ÀÌí5™†¡0ÇGk·GžæyìÎðêXL„À¢ó­#Ï®ÀRf;Ϩ.üárz{´ÍVЧ˜bú`í…–sk_nŒ„“bòR¹mH|º”%d™Õ~Šó2’=¼öz¤*÷*ô` Ú‹” ïøßCjÆ ×ÜC=H+VGìxÆé’8#ïìÛDú¯übæD¿‘¡ûÚ‹¦;ÃÈD[õ- O¬vNŒ=EÊ_¯/Z£_š gˆ+¹?µŽFµ/‹î™¢1ý×5/ôœn{’ùiÕ²/ti¦{"kæ|yo”=¬É÷5D\â€Æˆ¿àwÅP±~'VYŒ ¾^šJ[?9« ÄM!›¢—†ÿ½¤§±*çK¡‘1¨ä{×z`Š-¼¸büÎ@îÑqC’„pÈ,½Þ½96é#÷[ ¤íDÅï/{ŸUn)G= ŸB®#ó¯GµÙn$Ñ7:äÏ>äø[óOƺ\‚l^{ÒC _ ÄdòØ©%¨¢%¹4š¡õ†7;g ÉÓåfݧ%h9fE³Òß Òà Óþé7sµr{ÚOm>âá,—ÓþÖö<{‚‘×›ÐNžh_éJm6Ë·Ë_³CkEÎrí—ÉúÑd×åÞ‡VIwkÎY±úÔì­.ª‚ï^6Wîõûû¹Õå”P½Ä±ÿÎ'À±\ÃþAF˃ÐEêM:ç?Jœ¥RÌö@Ïë>ÁçvÕÐGXžÏá±>áöEÚoaPT ‡¼Ê†‰Ë%Ü„‘µ$~ö-j¾E3±¦ÜZþ×aúUT1Õ5˜ó6øºà§ Ž&I!GÜaɆúüMïHøc5ORv¦ V}R$ÈOÁúÜÓÛÓR°óX:þ=¨\ 7~ˆ{ró îÜ¢C"«ñ(ÍŠ$ñ9yyO’)dU‹Þ®Â½î…æí q¶€ç:Ò[éÊx."]‹e4‹%2ذšÄ<@Æ©º°£mCÈü¾îUE²Þ©=Æ|j÷=rÜÜìüìO¥$Hݑӱ71=t¹_š¬;TF )„Öb¾™<_ƒMî:ÆÇ;°]?ZIJ†U§æè‘P¼^TÌ,‰>ò–KBµìÒü0$c:]Ož{¥fÌã¶òƒÁÏÕQ[¤±Ý÷•Dºø¥‚,½d0¨‘ÚðG&–ã÷ÜŠ…6€ÕÑñ4²I‘ö¼vÆý¯–ºò/â ûæäÅÊû¼tü8‡¼g-~œ¨ßÁƒîu6Q£ §8éÚ'<Ôå%æk±ˆ¢ ¿’N7¿D ¢q¿'Ç,P²Ã¨ÜÐfgä„X-˜ÈHµ…jžÎâ¯% Wm{À5BÔ¬o«JåDí —ç8êP×Hô÷G)[Ô'>äZˆŸi<âüA#ƒ¢g…ãhÜeÈ•ÿ M­zO‹£iW–¼Î4{Ôœíô’Íu«óŽ„¡yIíÌòt:Z3Š|D‹–Ÿ G>‡–†ÖÑU® eQÑAËŸÃèý‚?(ìÂ6j‹ñN½ ûŠ~<;{¶uVÊ-,} …òEvU!ÔjïD( ¥CyÙãs±saPÂÌìkývüï}ü¯>r6FüõËu›j~„ù÷Û‰¿~™Ñ!òR"þó_ý”NÖE>ïø{ׇ¾ï”yšÍýóŠ›ÿúTû’®€)ãGøáDqìÅn>ü¹w„› P$/ýq¼¿T!ÿ¼>7 pœŽ "‚ÁõðØ%UúÚ䢡Ãß_'3ó/ÁÈçáý¿{Ãï úçV30zǶý‡Þe;wÏÔ©ÉÆíï•D1ÁÄ"ášš’ÝùYí(ÑM˜6,=HpfÉ)¼Ž:zÂÜ­Q÷væ.˜|?³Ø 5÷%„ÁâØ^«²g°l`›P²ÐS׊üîÁjv ûËsû`½þ6ÜØ®Ñ˜'°·š7F&¸‡:jøÒM $ôZÒæ:0ƒÄ{tŠïè"‰QG8’ÑE}*˜ØäÅ&3c$÷âerÎŒ±R½ê_JdkGšLÆ#mWîbÝ©7Ojþ’ÈðÒ(¢»™óê¥î·"ÓâS¶¸6dÑ׫Vé×DÖ|Û#Z­á¸O6¸À7qzÜX  rðíQr ÅQï2]V RÊuf;ÄÇÛ`>y’¾[˜²S"ï\$oá¨>4šb!ð^Fþôk^iþ—Q`mNRI@ …¸¥i=ñ…QlT,% Øÿ*ï·?ŠrþpvÍ&ÂÓ$±I÷æQ‚þŽý9“j”tõÖó`¥™’ø}^£LsðÛ¸éj”=V¯ï̆rAŬ¢mã(Ÿ§±d•Ì‚ŠWb‡Q).]P÷B0ª˜¸²0O¥#ò˜pÌŽg¢êÍ£Ìu7˜PíLIêÆáW¨~‹×u—ç4†K²+ŸD-g¯³ÂÑk¨=Cã©u"u*ž‡ïùÕ‡ºÁ{Ö°¶õôÒÏ¿ZA½UŸKç’®¢þ›bï·ûÑ@¢¼ûöÎ]4(P;"äK‡†ŠQ7!5 ?HŸ×tC#vfí, w4òâ‹Ou½ˆF+§è.¡±P­wO¥»z88ÿ=¸žœY¦êGU瓪=5Ȫâv-z%V;Ón×ÿñŒRÁo¡|ëô䪀æß|šCd¢›‘Yr,ó/ ÿê-Ù#ã5/¿$4fµa\Þ_¿û7Ÿþ[ÿýþßãÿýý¿úýWÏÿú^¡g­Ê›ûýª”àòO%Ï(‹0#ßÙ¹ òŠaC©ŽPÙ&(l? ÕWù†XçÃÿó«ÿ/ç~[j#1M§€Æi¶âådhfyXc÷w¼ùNIZâÇBø7·¶¥™0—1A‡áÇYOS±ÿŸý\óm½ØÝýﯘð /Ã/Þ² ç+Ã` §õÕ0ŒL\Üc†ð›FÁ´ŸÆ¾íY®€‰W¹¦Ö0MŸèê+ ³5¢‚ôÎ0oõù'ÝÒYXèMJ3 K7š¤w$àå@"•)¬$'ÖtÁÚåá×:԰ᨵׯq¶Þž£ßsÔv–9t¬>áÙÇ”ÃOÞþÕ3QÛ3‡cçþúi‹@‹Xã+$¼Ö)%æ†×ÇŠvQ¸ÊY© N÷1º‰´¦ÕÄ&»9îîkú´¯Qÿ麩<œrž™ntgZ|íC‡Vª‹WÍS06]¹÷¿©dzæq9$Ldš˜‘SOjx0`¹¶ÓŒÜ ¹—"^©÷ü@^:™ärD¾;šÑd$‘_S&†P0`σ‡:QXú$añ1]ürvÁ™Å•ø#£•8QÂyãõ›íƒ(ÉñQÔ¥XMÄÄOŽ ´Êù²†Þ4”I%´qó#BYG]Ë"Ù”×y$kù5«-¤TPù¶VúÑ:„a! Ÿã‚¨ZÜSÉN6‚êT›÷HPƒµ­ît -jRJ›Æ»Ô£æÂ²V½€/j5ò¡öÞnÔŽˆ“=4,‡:'Û~¢E]†G?EêQ7ÿjÅÍíc¨gíQòóÛ&êýþ"ž»èŽúÛ†S‹ÙQÿ÷Ó~ªÀQ4°¡"°<ãŒÅgD ðÚŜɎ齨˜jXÀét¸¥ƒ¤aìÓ?»yrCÅ“è ï( ¸ý†ôëØ?ûQ´óØ9@¦*5ÿS‰tH¿àËSWiw•gb“ v}O®~„`’ÚTç":’ öõ©SrTw ZLKS¨Œ¢µêz<6Ù ñxwÎ…ÇFÕLºÆG£%{Í[rŽBeN‰D¤EÔ}ÍeìuÍ€&ªç#Þ‹ÐÂø%v§¾Û_2{& ­IJ¦S‚Ðöó>s¢!´Gwþdgú íIÉ#®ÂéЮí_šÙÐmI—3Ÿ/‚6z½Öñ»ÄÐú2|S°Úö¿ùC9;âÚ2ïöE|10½Ë’ì¡õl Çzh­{'nhúÚŒƒö YµÖPGè˜ü²P± ]§ÛO¥œ†nj²÷y5±Ðó½éÔ²uèãV ÈpÏœ–ÖÛ‚AúˆT»™!ê8>çy6FŠÄÎVQùÁè@*õ²s*LËÞ'ƘnZM×0†9…®¼üX îmŽøögHÕ‹ÅM`yHaüäl¬’¬mêPÀº³“ªÒ Ø¢w¡>Os vz=PîÖwÜs®;òG'äZ* å"q[Ž¢œÃ7$~¾¥ê†{ùJߎûÏñ; é ‘äÇÄiþê1î Oôð‘iHž·Hò¢…Œ}‹“‘÷É [ëS)Ÿ½1|y6&&t r½Ž$MÌAîÂÏn¾©yÈsz`{!öäõ‰òµû<„¼ñÙå4]7È·hSvýôÿ®íª÷/|¡‡ë±/Ÿ$¡ðK¢fèc1(Ê÷«´V¦¯‚úm>´IPrwëÚË£nPúÞ0üz”-½˜øÍ¨w»:M®iBÕÝÎÎS;æP“Ùsåq.Ô-eÜ=z<®ºµ¸;ÑC³³—Mï´tm¸x”­­>GÅî8‘tØ=a :[¼N?­t€nÎ/‹- nð³ô›r¡ôÎŽÀ¯g¶m„g¿ÂÐ¥¸šŽ»0bJئ 0ª#þÃ@ëŒ;·> Yz“Uõµ¹"É0cÔ[ _–s>µ,Œ “0?ÙD/, ‹n­™¦(aYEïB8G ¬¨´ ßckž˜|tû:l,PqKü¼Û/–T~\VF‚„_܇^_x• ‰üÖ¸D†E„ç:ÉË@DÒ¹Q«éf!ÜKñöO| RÞê]v•³Aá®Gú¤ Ñ^ÙZ Ciö^$ȸ`ÍmȄ̳ӽ+בÒpû…Ùîw<Úíb³ŠÄT¨?W°"·ÚNâ<ÞA^¹¨Â mxðŠOÑõ°› ©ÅC!Æñ7{QÔƒ7ªïékOú,cSq%cþ¤ÑíqCéO&·¨=ØñH…yT5oÊõˆå0š¢"}Ýë%t¨CV•n¦-=õŠ}Õ.Þ;¸ð¢ 5h_%©¼„š…×–öŽ¡¶7€vÐÔÕ4Qø^5Šú{bŸ8Hq£A–Ä×ÛÊ»V}ì¼Ýq»@4þsAÓòŒšjTÌÓ‹G3Ò<©Ó•~hV>¿ü3Í=ú¦"O”¢…XàßÓhñsRAÍÐÒ¿þ¨…VZIHj‘Ñ U§tÖmô. ã%™mEÒÒÈ·®¸/¥£ú—{ ly*$ÙXKBsW[“ÏWwï·>o3êPnwp«õ|½4vÔ)íÒÿæÃ…õnýo=vö‰ݼú)éÌSFÈ´ -0ß[iOÈœè‰!ÅäªAÀp+¤*¦×|à`‚Œ§¯¦ûžCþÅã+2CPv<ü^.T¿×PÔ¹ßêÓ¿Ýã§€Š¾GhÍÝÖ}W {8I©ÿ@7±aÿù‰ÄYøóû,Ê|˜ƒÕÄ4r;cnXO bs‡Í_TyI)‚°£tòìdd7Œ¹±] fBB“'Ú+¨æ³©Üv1’h —´öÚ#iíW"£GsH~­ÄŠôbRhŽí¯¶öF* Ï/Fæ„ë€ìÀ.ªRdìGz‹Š ³Ôdpy7òk&C9_PÞýƒLßZž)|&Ežs’š„áÈÒÀs”Ì÷Ñ QÌsàþç5[瑃޵B´:¼bí\JßF.¥·•‡éàÿâÃG²6cÝÈ;« ’¯»Ë‡­R+‡û?ÓP!ÞÅ vx®Ä)T¢8£è{Ö"1¼²›;íYÌPëî©ÁEzÔž:#+:mÂu«¦?ÒšCU†"µ!ó¹CnÊ)ȱT£âƒ<Ê%'ÇkPhTÿà+m™•”,%¨ƒ²W—“-NÔüLJÝ4¼E&W ÚôEúíkPË@êülw<ùˇë_߸ŸƒÆÔ“4{ÅŠ Yv\x}&´Èìs|°_¾ëöZÃõÐú<‘º‹æ´-Qß÷gØÕë«%€.·ë×)Å£¡;ƒt¤õÈ(ôÒðÙ4ölüLJìgϳ®ƒÁg#‹/(¦`X`ÄÞëo`dç¹ül¥Œ¾û}ât$L¨®¿&? SYïB>wÀ챎br3˜g³¯aÈ„…7öïZÆ:`ITˆ"p‹–Kœû–+öI%Ñ:ßaí ÅW»©°Á:¤–«[Z&ô“‘°óŠŠfú†î!Â4Ñ93$Ô/ò€&Å‘žñøzIöm;¤ß&BÒ”L1¶u$wTô£xŽÑ O!å"»ÿ¯ßžHïË’ü0iõ+ê3ÊÉîÞ¡Èù3W‘þAOtuU2|wüÀ‘±ƒL—©*ÛûD‘Å4ȇÐÙŽ=†o.š¸ÿÊQÊ‚ä8QÛ»˜EŽœ‚Ê>¬ WGå@ürÿbªìò–EžÍ¹rÈw¶'G/æ6ò gÖ‘D§¢à…qm÷P˜”˜âL1ŠæOwMJ¡8»M Óu”0LlAK”¤_ùQcœR´{)²ÏÔ ´’Ó‰b”I»œÖ5²—b:Þ¡/Ê[‡ýŽãjAEû›Å¤©c¨ü–.Rº–‘à¿¶ËT­x"½54…êìôŠz¥ö¨ÁÛªbOjšüC}ÕgQ‹Çã1*jÓLÈ,s<@í%>ûaÍ8Ôiþ鮿ƒºq*Zãì|¨wãd…ò„ ê+GK:M4£þÎÊØ»Ã»ø¤2™ñ ºÄÅ÷@£#ŸnÅ«ìæßy nxõ狞Þ5¨`ñ£ çøÒõöP&R€1q’\Ó£P>+äb{ Ëo09¯_†œ_7ìT˜Ä!£8þ*ÏmHãøúYº>¯e¸œe‡”ó«Ç½«†$6Ú¾úfˆå)ç ¨€¨Ñ,“é­ ˆfùz÷Åu&HØ*£=w²¼R¦8Œ¿ÃW¿k û< ÒÎ}Ñ|©êN-ނƈ/‹ÐÜ@WFOö¾“¢8Y²ËuŽ’ŒÍ¡ÍvOÖ±© hgòæâ* ‡vC’M¿3 ­õó½{D)Ðf(CFvÌùœGë0­ç½ý:*ÿ{ÿPE-óÆËfhµláZ縭.§C¯Qîúo&À5¦ãÐ&Ô{¤áê ´Mªh›:˜Cû’IP?™ tš ½ †®"‘ÔªV è>KU¥ª?©K^% †>•/'ê{ÁÀÆ;‰Föðk…!.›Õ†>¨QŸŒ˜«ì›0új„Qg8ÆW8FÊVaªxGZMRfÇêI¼žÃ|ÖÅ?‰gƒañÁi?!,_½÷mͳ VžèqúeÁÚ°ª½ó lú²„Ýä‚U~eó0Üð1§Ht ?ù“K–!±×+Au9’ú;Ù5’ÿÓÿ ú‚R+R KÓ‘X"u•|Á‰j¤Ó®‘`pé‹ è³ÇÜQ;èÖ–ý;d ¥WËRG–t÷û)dK;}»„è=÷”°Á®Yþn"7³üƒâ€%äyà|µlByw®,mMàÁGŸ©øfµQ@æÄ¯+ð…Ÿ>Ù/š†Â^Æ-PŸBQ›ìä¤9(Vwá²€iJÔȱúЦ ”­wâ¡5k”!_yÁ" Ô^PŠ”q@¹°†ì¸÷7P!LÆÅD,•º e(^Eá¸Ïz Uõ]>ZKº¢ÚC“·­Bõ~†ã!Ê‚¨éø"áXÀjslw4áÔYg<µõ:>&þ]‚é9½ŸEÐÈõÚÌÙhrðÊ5§s›hê`IëëF‹fR‰)Ìh¶¹˜Ûºí…æå &\ôÑâaCÖ°>Zê(ú:žE+’“zÍÚhUfù­½3% ÐFyû˜E()ÚlÝë#¸޶e/…ª™Éñb­\æØAR”j=Wjõ)ÈôÊ>¨A-Ê«ï U¡¤—ÿHµ?7äðËú»PŽCšÆÅ5ÂóYÿì[ø¸9ê$\}g+°õj—óøžZPüo]©ši ÄØÓ|zZÞ¯®ˆ-K†w¼›¾iqCDÒácaÚÿê1NyofæU1HöȬž|Ò[O]ÃW.µh~—sN ¾`P¯ì%Èîž"Ý‚Ü(ßQ! Èc9$~)èä4Wt-Ž@Þ[§àûU¿çv¼óûûÿ9sôŸu§d—Æþy›|¦Š^+ðþʵüÇo¥Ä‚B‰«Âž`û.( Š-2Õ„²ÎCì¿q@…I¥.«õ¨öÌ̓Ps¦7xGF´'aÎjÊQ²dæK“Ĥ_ØÁ¢É;1‚XÞGôõ|œ¬°hž¹ kV™{y&`£ÜX´Kt¶ír’Ûú‘àIÕ¯ŠFܳP{¨té196Ý=vIöY]89Ф ×)è^¿EòÁM¹„çHix•zÚß©7s 絑îv¸ŒN|2ì¿Â¼ý` >ó\DæfÓþŒÈ:Êó #q¿\ñON‹-äX´TvSgæßAôP•Ø'<ŒjÇÞì7ZEõ3s>û~ frà~sé¨}5yôrænUº´çø-ÔÛáy©Ô| ò,ˆtßk¢ÑZ%q4aòÙ|L!‡¦'ëÇ£j8ÑLÜ<-@ã ší0Ê*Åo¢yÃÐkÖÖ ´ˆ0±¥n¥GË‹åWšÜÑJ%ÿÆÉ{Ñšq¹¤|.­ç’4ß^=€Þ³9®7QCh à±t6î‹lÝŽ5™€Í4gÇm¡ùsdá©°ƒPÃ]˜n—Ù eëîQV9ÿÛÏ3íࡽPðìaYÁЙÿ­7¤.…ì0²Kò&!c:ëm¼p¤1rÌ>å ɆŸ|%BŠÜ”elÛdèjŒ3ß„ü8‰‹Y'¢ ¬ÞÉaès ÔÜ]¸S'Då¥MI«ÐRq£D‹ Íã|9… -tÏg.$×…î¨ 7Õ>%Aï<Ϫû<0àž«^I¿Â¾˜Œ3Áài•®`ñâ1§žèƒ¡e‹Îž£É0Üþd“×ù.ŒÇšüÒ¿óî®4~¸ £åqùýB0V;*9°‡Æ]l-´åa’ùÅ{¿“C0å3«!²3Ì%\åiGa¶ðÚÑ¡6˜úÍëXó“Ì/]¹ÁÂZ}¿ÚÝǰÄSÌHË—œr,.­ÀŸ ÖŸÊì`5²uYPNÖŸ½ƒÇãïa3³ªfˆ¶w?žœC‚rC׸U$ä^r HG¢–_²Ä‘„ÈìÍ‹%$½×{¬_° Éù% ¶ÌãÞ%¾»QvH9ËCLG·„4$í»ñe¤c2 ôé1õIù !ƒÆœØ8µ2º\[:è¾™â˜ö~‘GæUŸ·úüÓÈê¨Ní¢Dƒlã¥'nÆ(ã~×Iúõ}‹ØŸSà;‰<²B‚\ò«Îwý_|ûNå$ ïLŠÉ› ]>Ì7™î©Fþlåwf2(HlžJo¤‹Bò$ç)¹¶ñó™•þQ5.¢,%gþŽ¢Šú_ªÚQŒ\z˜TË%¸Õ®QñÆ¡¤ïaž›%(ÍqÆ­Ú¦eÇ÷ÊCYÃxuƒ^”»ÓHÅÊ…ò¡™¶£Ôò¨°P^‡J×K²Æ¾GÝb¦Õˆ\O_œnEÕçÇÆ’—P-æ¢ÿ©QTïÖ9Ô…šRû h£Ösõ3#‘»yS¯Í›¶u†ÒŽ=g9º ÜËO~ú£^Ú¹gªIÔŽ`|f‡Ná]Gx£!,û÷)F#Fšêïƒh4’§Dw‹s9ëî ¢I ?S=kšJ¦‰v‰w éû[ƒÏOסmxxT3šù¯»4Í£ izM†àšiâ‰ÈÒ¹¬^Í+Én×îŽÀ·'ýåœ]­P~(¶~øß{ìN^O!ÛìªÅ÷.¯]ž;÷ÙÓFÒïh¿/‘ƒO_½;‚¯Ÿ…µ²Dr➇:ȯAlêð虯ÿpbc]ù™]8L41Ÿfm¯„OCZ´_[òmbÈøS<Œ~#&Èipƒñ?7K`Ê&4¥›ö<ÌLûZÎüóܧ{gÅ[’lX‚Ì Èaq(^kdƒ–ÝŽñN7RaU °úCbÔm¯)¬×<§ÛŠ~›³ ¾ÂŽìF‡ŸB!4ý±¼iMŠ„¬úÂo9võ|ËÃþÌ+w$^à`Œ>rIŸ`‘’kzHÝÝ@ š?×H]ú²CcxëLR‡F™h !­fY(sI,Òù K‘¨!}€z8gÎ02´S¦¾±…LŽÐe³yY”u)æÃ‘M~¢sômîט&ì~ÈŠbg]2Â6ñÀüXôï‚EäJí¹§»ÜŒÜ Ë—yC‘g¬­ö’)/ò_¯Ä ÈO/õ§~ù6 ê’U÷œ¾‹‡º>1±Ž¢è½ƒFC+Î(VIOëeJ(Ö’ù<@IÂÓ,SרQŠ´lTÉ1 ¥.¬Ð›¡LF…pa ʺnÙzëžGùs‰¯Öb8QÑó PÇ,*­.åÈŸCäøºBåÙªuò1_P}?óíP‚Ô8Ü’f§™†šª¡eÇ÷1¢–)Ó¢j›¤ Cƒ¨€w±,¨«1ÌtŸ|õþPx ¾˜~Q‡7ðVE/“DC6ÏÑçÆhD¯—蔀ƴ’—5$-wýTfuMé[ìŠøÙðªÑ5^”Û¦býþì Ò6\I~´à £…7žyå¶ V¶Ë5P°q%¸IfqW £¶µë¡¢–ŸYb içsO†~äƒÔ?n;Q»ù2wâ²ò H<Þg‘T²“º’SÒBT4ßñL…–8‘'yŒÞ':ΗSC–ˆe?óS{(^UÙ–¨Ò‚JÒ#9ä¯þ]çŽõö;{o™Ùdo9O{o²“¤¡$2¢(•¢-…ŠJÓJvV©Œl²÷^Ù›~zþx¾¿ž¿®Ãq߇Ã}Ü×ûó~¿œ×y^²PCìª5å§õ’½g¹D¡ñ–g #]*4¥ŒTª1uAó·Ç jæW ¥%ìX¢L´F» S€Ö×ï¯H¾É…V·ß:–ª· evÃIÔœ Zn,ÞQ4iÝãJ7òá1¹ÿæ—ê¹óz @K€b“ÉwhI2ðÿA­DOªÊ>ìýÞý‡Ì©@›µ­,Kì´;ŸîœºÌ ¿s©-\€Nök;ºÐõA;¸9z ³êî…>gY©µ¬/0à=IÆkYƒ=‘¯¨° †/͘0óÀ¨®Ò §„?Œ›ígîZ “‰Ä†×2GaÆFê\/9ü92ê“Ï N›ûó6ŸÂ×ږŃ\XÞ©ÍŒ¡†5Ú„8–oGaÕý#ݼlÍ%òÖt÷Ãî›*­ƒ®Hð•[û¹‘:Ùþ"Î_‡$"üK5â…H&¥-þ²¡ÉÝ1YóÄ!¤ü²¸^} iŒÅÓ®Ôe!=áµù£ƒÈpáÞbÙSnd\òoAæ{k^=’Èjfãq+; Ùu]•^?»Žœ¡›ìzz¸ãժᔠò¦:>nï·E~m÷è—\ú(P\mEh}uª*¹3΢ÐÌNT_ÿùéÑãûú5ŠýZi”~Ð…’$jQÇ/ÜD)ÿ ­gÒË(óÂr¿ò7~”“"§UáõAùÞjßÈT|¾y¯®# •=ÜÏÛgžGÕ£éz·äTPýõÝ¥.e}ÔØW)ÕtBMy ¢7GPËoƒ¿ßSµ›ãr)lQ×mùÊé˼¨Ïišùïœö’ÑBíã4j>6÷ƒœM’óe{dÑÌ'mÒg¥-DLZ_œBKÏìÄÚ@b´‚”Êû{ùÝš1ô³ç‰—h=:h¯}ºm ÷fôÛDÛû°ÆV¸ƒ‡Óœ³ A;õIoûì/hÏaÊòpHí·èïøœA‡‰±cÉ—ž cçµD»4<ÓûRîó Êv‰ œö˜DŠƒ?øåY6a°7)à8ÏË=N–ªv£öØP dÔ¼Õ™ñ} )o|¤þ¤Ú¥¶Sß%àýJðH@î9x{ÉA/\¼^OùÇ|õÉ…WgÛe«ß„1'ôJ!Á”Íñû‹ÿÕãûÞ…ªë©>ð‘Œi&Ù¤²îÕ¬¦4Cnâ†:g˜(|ž•¿§ziò;¤©F)ÿõ#.K²@Ae=™o %ªœè9¥…._»½ÊX 0ƒ›ñœ½Óÿ¹Ògì ½†¢A’Aálø¢M@{ûÐy(ñ› ;§ð|ïy ú°—ƾžòqZ Ê/ïLw‚ŠÂS‘ðeøÆ—UÐH ªvŽF=ËõƒŸÄ&L©Q F2úW¢HÔE}? eÁ Ž|ýÔó× I0þvÖ4Ïþزf{­=7{Ü"õ¡}ámºFŒ#tBs¥âŸèîÎ2¾ðpúš6¤°Á uº5:ß…¡VÓT‹‡a$½â¢rÙ<Œ%µ>º‘‘õ.‰,Ä`ZÄòŽâÚY˜M>Mÿ¨Væ%è , ©`!î¦EÙî]Xõd¡zÚËË¥, 2ö°º.m#1Ü ÒÂ'&DŽÃÖ“(Õ«¡‡aW„F:Lý:x}|Ë]ÍŒ„­†¢w«6‘Øè}¯´©’ õÛiê¿“klCz·iŸGv7‘°""Œ¤ ™ªfW+‘%3ç,[ø ²•tê>8h…œäz-‰pÁ ×sÈ»¤G`ʦ‰üj×oP]EÁ}!‘‘ÙÒ(ìQš[¶ï4Šþ]xæò8%ÚÞÝï I@©ùS·z‡»Qö<¯J2AùCÊ&ò䕨hM΋Ê>‘WÕ~¢jú‚a:¦á!c︠ÍÄæ~ ª¨e”M—â†Ú¤C7½uQ7a¼âyùeÔwWIŽí°@C¹ÇÒódh´ý"‘É{MJ 8§Ñìbþ:çëf´{š[’M‰–›‡dcÑÊ~F*·Ü ­ÕßËžAÞ ­hF´¥d¤~VU޶›ñIGßáᥔ‡§ÊBÑn­ÊR»Ë(ùZK 1ŒÞû„–¡öÿOבã~“¢§(l”u|²çC'Â:àÇýxõù`¨ˆõÓHf%+ÇÉú_¿ÛÛÏT f¡¦ÿ"cjHLòŽËÐÒ@ö¶ËÛ&W!C#4ŠÔyÒŒÆ>·¾ƒŠÂÉ÷‡ ›è\¼ž©ÃÿèA(Ü*Õ• è@ ª]_꜂õ¶|n™1hÝr¹S° m ‡$«m¡ƒÎæÑsè>ô|0OYú.Rѽ}²Kf§ýÚ`ðÛÒóÔÀJº!Z¿O߆UîŠr~?ÃÛ9=Œ#C0ò›äu%Œ~'ªL „±†×S35R0>AóP"•&¶9ÞÄ?ûSN$<3†é㽎ÃÉþ0ÓM§ËO¬s—ðS¤Ì +¦3ÀÇo#úLXä7³næ%þ¯Û<¯Ã2¼Mµ¸Í +W|Jö§ÝƒÕÙÚZX´68Ï' ›þYÆ[gì`ûVX‡#/ì~»µ&ªFŠ/ùÂËzpÑÿŽÖÖy$¶¿â—çùI*‚bŒL#‘L}+Ûç{îëxͯ£"Šo]‡‚Oq#U¼ÖÝÊû$H“¡|IeÝéšX¿-ÓþDú]u¦½ïŸ‘Këâ¼Ä2éUÙjh óU»ëwËÎ KC©¥‘6²i|Þ¸êýÙ+Ò)mŽ çaá¬a䚈1¦»¹ˆÜ×(Ü/¢F^Å‹?{þãÔ¥íSáQ`6ï$…›þ¾ö¹‰Bù„Y1Jl(Bqc&Ä­E5×^]ÕD±€ÙÄ¿‘GP¼†ÄNú`J»ÆY”¢k-±‚ðK”y|ô+ÊF’P‰Ey¾ÇGØuöø¹¾Èþ*éÅ€<ÉmT>Í"v¹@U¦©¤KªQµ3#ûL_ª;ü¼\°SòÑÌWfy2"_Œ fbw3÷³ã¨U¡ù^-˜uH½‚ ´P×áUÝ”¨ê} 8úk§Ââ'Oìù$ª;ɤ¡áL¦_æ‰14.ûjóìw¦Œ% h¡ICDøµY4ýNëÕIŠf¥+Ÿ.× y±Þ‹ g´øò³MY€-Ý_íL률å4::¤Ž£UpÀ6›ZÓZß:u ­Ó.&lºêàe *‘/=ûQÃm‡•{:YŸËæ3IõìqHGá9¨S tz²ó*ÊÞ+Øó2÷Úà÷»dcÇ6íþï|­àcÈ´ŠuGZH;v2P÷é,$mî¼>Rβ˜ë¯¿†÷W;æI_EÀûïgj#ûBöøñaçI"HKÚPeµÕ€Ì Ag¬+ GÁП®øï¿~üÃúm¶PHéÑu®è ÿyS’ž¥Y‰¤×ªòák/ÿ‘ŽÛPq'eq“íâ|8Úb1,?®Õ®Üâ‡jî:â–ðõÿø,TFŠf?ÔOZ‘ØÓÿ¤ü;ÏþT‘†¯\r/ïÞ¹–%1­œü%‹EšÐvùÎQÆQøMG?:ÂÉ×û2Zé¡k½ì™ú¨ô*Ÿt{Ò§õR¿?zËa†|vrÀðR·UW„2Œfw©|´ ã1ž\ ª0™›vÒ6È ¦7#kItÃ`.LbºW{æ_$“*YØÂ"SÝåÆt5Xоİ"Ûo&ùVën¿‹Òûëìéîß_€Í`•'…wÆ`ûÙ¦¯W`÷÷ôËý»ËHðq½¤ø ¯ìïäúƒÄ†ó®F瑤Fµ"j± ÉNÖŽÏZå!9ñÀwo¤˜5ËË]HUè¥ÍÞ7Ž4WË"ú5‘¾:•ê ýmóÏ’‘áQJT@ ãïŒ|PÚDf7Ÿ©.ÎÈ*JtD†ÙÙL}‰j…“=lã/Õ1äú»½åú¹¿ë„n™CÞ[ &g‘¯ˆTˆ¸jùÛ»HN_Ūõ=Î(¸–} ÚHE„ïLÞœ F±4kŽ´À”4rªè)eG©;dµî•œ(#Y¯Qž‡2‹5¶ô¯¡ìnHe¹×}”W>ûHÊò5*äï(@¥Kö]nV¦¨â_d`&xÕâšgÜYÃCƒ¦*IÙˆªT?›ïç¢fÃ8Ceüjsp|îÑdC•Æ.7Q×YgKá2ê]yWCÊZ†úQA|6Zhð–û³#éM4ü<æõ}~%…m´ ñ„reME4š’Ï0^¾ˆf²G+¯Ää£ùñÕˆ%ÐâíužwÐ28@^8Ø­$øo âù„ï¡R2øUAÚ–÷g}0®G1å_½§¿´ëziÿÍc£? y§ÿúø_­‚¬âR}òý{95iu^´Ò—ܹ×"ü?÷¯ew¹íñ_:©ìgnx§tk{þŽ$:EŸ (€Ä‚äoU®Tÿþó5¯r:¶šif¡ô,åäE?:ø–>Tª|ªßË:Ì/þ…_%ÄŒŠ[{|ˆ#Ll ÐdžB{{š­JŽ1¥B‹ù_ÚQ'hÙøõ^lŸ´ró×ÜvÍÛã¿$<çBËÃÒt#­oТ¡?ê,W-ä:tZ+¯þ»ÿЈ‚¾æ´Ä ¥E¶àÆýOH]¿ÿ¢ö¡x¤ ºh•FPƒ ®-ÕUȘhiŸ8ã„̲Î?ß–"ˤ$ãÇ !dëpZ¾!}9)züt’ÇýWïž&›F^qm™eÈOà”lªA^r4ÆðÀnÏ%¶óQ(ôþ¥¦yX!Š„ªIU³F£Ø•Ãçè£Df™ßlŸ JñD°PÓÑ ÌO¾9ç”#ŽòÓ×»òÙáu¡¨èu·w;¤•¥×ÄÈËÏ ªˆ0O‰b1ªŸvÎIé’CŸÊ‹mž‡Q“kr˜—IµŽå8ß ¾ŽÚß¹©¯ŸÝF]'[ÛÀ3º¨ÏöAðÑñWh0¿Ù¨B«´§# ÛÛbahòªàP÷%4;7:rE?-ÄE•›½ÍÐò<ƒKÀZ§t‘ŽT µè¾œÝºR´!çz~ m¦Ïækîù®m‹Žì'ê§xøë—2Jv´Ë»ÃÆ^hŸ~q.ë(:|þ^nրޭF£–¡Qè´ÃÝüÔ=I²nær£ÌÀüK:3$·Õý"$ƒ:—„öá+…ÝÊFŒÕ¿>y:ûÂ(È õŽie)ƒäo­wz@’ˆ‘uòƒ2xoÙ¨—Þof~ŒÁkÿ²…0YxÙ—KZšë /Èu}&ô@ü¡#áýÿ«Ç÷W;[díéן¦dš²ô•Bn”(C®ù«uVzøü¼Sýo9äߺ@7Ä ù[u„2R½Pà{¡7À• Æ9Éú»Þý«'šožØãÄòP:¹ÿs-" únè2ù¯^RÐåá_öIø…³ÒA‰å«ÞõÌ(Èœ½{O¾:gò‡O€ò3¤TÌbÿú:B~jÔBåÂK±$þx¨úòöœÒCbø‘F4úØ.ª^_ѹÿêøfëȵ þw|“úïÐ8žQö=š£¯ñKX@k€_NËÅ%h¿ö¹…9t/g׈O˜(@÷éªáûÁEÐç SôÔ20PcÿèÈo_Šxu5Úè+Œ¸¼1Ì«ƒ1áÙW#y0Æ/ÅNõ¦~GOù÷šÀìátu°8 óòÞ \°pÎÍ×ôt,ÊWMÊäÀrcÐYÂ"9Xms=¶r˜6ÈŸUd¨÷ÀÖ‰f}á_?`gž#Ùæ0˜G{~Ùãü"‡ãÎ"±DÈ!Y$ù*´Â@¨ˆd·".Ø ‡!ùã2Š©"H¹ò†D#M¢Ï{¦Òi|ì& F†I– ÂðgÈ”¶ßn£ŽY±Ê&=¨B¶8ÞSw¹È£#²ÿºé>Üúá$k8ò¦Ž·‡ ŸBþ܈kmñ@Ë%o®Éž{f',Š¢ù•Œ–6 (q}4ܶî%J=ÖÉä[zвäCQ|—Qž$MQ¯!9Sf掣²j·âñúpT !É4¾Œ‡x^ÿíiðE”vÈç5¬C-•R’ÒVÔîÛ¦ò¯ÈDÝû:gæ¸õPßæ›géÎe4û,ïƒF›©Ó4&hRwgÒ#Ín¹}ÛÜËÉ–™^‹Ž½hù¨³«ü--Z…Ýü؇zhp8Ÿ¶è7ÚøÎÌPW¨£íÅÖr¡_<|Û¯ïýŸ_h—ò4ÕwÛí»Ÿô—WN¢ã8!b; \û“¤™ŠZkýõWAº·!÷céâpãEÈæXu±òr…OÖ‡,_­ÏBªÿÌå²û&wÌ+M¿zÏO;_ßPÿWO·ýÈ•idbjuiP–ëßEÞ@£êR»¢óhQ¾¶Þx, Ú ”ó,\ŸAG¥$©Èö twÔ™‹VtB?™Z\ÈÃ5˜ªŒÕx ƒ Ò£g»6aè=Se˜Ë=ÿ‘Ùyò¯~À؇ F:®˜JgÃ诓7ÝoóÀØè·>Êù9˜ ^¾˜à?“R¦Lörñ0åq4ytƦ³…™µ–È`VQZÖ!æúJŸw{óνré2¬°`Ñôã|áž_™’ÊÝp†%£¼Kž¶—`ÙùÚ÷+·Ä`åaPåè$¬.„Ñ=û« ë·¸ê )”aÓþ›½×45l;ªÇdpÁîm®¯ß#¹ h%7¸£ +—×õô˜gŒÔŸ—I®½ºNÂ…¤+œ”D'.à¾{ Ç^E ëçúÖç½ÊÀé"Ò8<3P#9‡tÁq¾·©o!}Kò /2,F]3~L¼ì¹v>ÇÙáé–ÂdùÞÎ+Ù˜%F£ß\Gö„¥W$¡È©$­î) „\­Â4£ Èx]¤àòÊøÙå)ùÿñaJÿyk=˜) ’×ÝãÃÈÛÝÊÏP¨ çÜ=ÎM¡Í÷·@Q£ÉŽa™k(v-ȘW,ÅÛ·§íô¸QòðR³Ž$”rpß÷e¤)®e¯ÜDÙ]ë–[(/øMÇSš~iÝ9{i•à†§$ *;G„O;Ú¡Š·@I·ª~}Y«¾pÕ¡Qû¶´jìã9ÉLJˆÈÝHEß¹Œš.ÅÞ· ÖËšE´ êÈ<Šm¤OEÝ«xµ¥N õŠö¹›‰i¡þæMÉ‚Š-4$ªß/`ü¨q¡í>³qôiÍ£‰`~á—å4U ©A33EÀ4?Ó¶$˜ƒQÍCƒ–n1zMIh¹»íëó7­ÞÕßìZCk–ã#hCmê§w”mšÜ0b&/»”¦òËà!sý¶í¤ d=^4ûV¯©Í‡›µBíõ"Õ*¨8\MœàÅnKCnŒ’ƒË®þ¿zý¹ã !“ùȘ`É(¤›±l–ARîYuFOóçeTìßîùeÝú¬¥å¿:âOýXHf¼qó§4ç?žä(¡½ÿïœ ƒR5«¯éä÷ƒ9¸Kr ™ùxƒâ¯Ñ.ã>PzýAÿ—ë¤ðµÉ¥Ï]å5T„ÿˆ5óoø§óƹ(àGħ”+ÔP}àS£‚ó|HíÛ/BÙÇÙñÎyh|JoM°ËM5Úý˜?@ Ñ1¶3‘Ðz¤•€^ÚÊ ëÚá·Eÿ}rèd¹ËB$lÝû¹ç­A¯é¾‘µ~ÿøTßE=ý ;Tó·Y†»~ºW2Ü„Ñ{W”ë‚Laܵ^ñì{Q˜ôtK—ñƒé¡RÁñ0ÇØ~½và0Ì»Y2Ξ{ ×ÏXÒ…%ë÷_âV—ay %Æ[V¯³F|+‡uPå÷ŒaS¬Ÿ=À_¶uh˜S‡ˆ`7¨ûDî7I$ð<þ‚Œÿf&Ò±qé"1ç ݇HòÆÞ7,SÉtt‡žÁ}»ÛÞ)AŠÚDªçwÚ*áÉ+gn¤9Û÷5è%)Ò©”òw"ý½Aíã!dxJQ÷»lÊÍ××ÙñÍŽ‹*3²2•зÿ A¶•O”Ü›1È1˼p * ¹šbïȸ!÷ó—®SÓSÈ{”¬êΰ ò}µ}æiŽüåþSña½xà@â*C°) öÉZ:¼ ERZ*™Ë(ºÁoÑ–Ž’ô”Û«PÊ|û¦Ù¼7ÊPÆ ø¢Ì°ü#…¼q”]UJ4ð=òŠç$ÌQ!?çKßò+T ËvÑr’E•5k‰ P-'l÷Æú_Ô ®~[Ìúñ°ýó§/ï£f[L؇ Ôfç^ºzutêcÊ­Q7`Y¶ÊõÒ+® ~²Ù^GƒÍçƒL'–ÑHlIÛ.¼¹¼¥›”@“7‚•>½CÓ? 7htMÐÜXûÕY~~´øüñô;&%´ŒŸ¼òej­N›kû„Öº¾IzZÐÛÕޣˇ­}¾nŸBš.+öÔšhûuÑr;‚*„?eÈÉØBÑÙ“7âRþîùÝ·(Å(ÈR ´è°˜‚O?úå )áã‚ Ç›iú^|-H ’†/.HÓ·_'ouR¼‡DfB?¬Äs2Nõ¶îÛ{=ˆ#x»rn½©"§¿ %½¿[Ky;þgœ_G;Tœ_»ð ~™‰Z6,@âò”(ò@ã’‹Â04õM5E콯¹&ô‹x%´xùOL¿-O_²Žq~†–ËÂßfÞ«@‹l8ÁEh^×¼Æñš;…YI©÷~ŽùZ]ó¯ß·,€nóvËõR}öø’IÙö6´¾N°:Ϫm:Ï,›ê ï:Ù«m[ø-н:BÜö>’9t6H%0‰¼„n µ™NR„žÒ'&6UÐ+ج¦Çyx©ìoÁ`’ÿÃü¨fæ yŸÖ?#µèêm|Æ ï@ë:˜Xh¤ùËß Ó—ï ÍoVÀœ!‡Ögqa˜Of=Ý ú&sæØa™ýÈźë°Ê¶Å´raݪZ§ÿ=lÖ¶ÊI§…Sí¿‡¦€óè¸S›¦- ²Bâàûé.óôòJ…æQ%Ü—X’7W@C¾ÞVÝHmM«Cúñ&ÒÎN•o+6#}—LnóÚ9d4“ýq![™Ú¾ 2p… ËM’¯Íȃl^öÙU†È›å}^÷“¶ø€<©âÉw¼Å‘¯ÔºÝ6P@‘މcË.É2Hç¢+ü)åÿŒ"rt×øîÞ@1©Ï©Q∮}±ü3qeNe ® ½["GÙNöÛ³oP>â鎨8*·´$ß*mÝ*lö@•¹—k˪€êÒ~Á¡<¨­÷q&Ú5I’¯ß—F-‹s1o vá­c¨k“+îè‰ú̵ Ð`.íÓ»È4úÉ^db<€&±…Ýtêhv–·ÿn\"Z$‰ßw!-ýÏW ˜A+»”ùÐåh­ñ(ë‰|Úˆ[/-kE[î¢ïõx˜ÃÀK÷¨Úñx'ÌE{étÞC\è`ö¥Ë,ì:†´‡¬K( SYúéõ°»èÂé.oÝ9ždgelCÄPºÁ[þÜ>7Üw©Â^RÅiû¯L;AôRi…\e³(½œ©:^\8ÉŽÁ¥=ðáúˆI{[x÷QøAa’,¼qcü@ÑωՃfÀK«èàÚƒJpù€V þÄ?œvP"’ü_=þ;Îϳiœ­R-wþõõ¿!jL€œmý<†D"ølxe O‡C¾|MS¿ä§øÒ*è¶C/[n°¾<)M6'þç›åbйPHybâÂÊÿ{-è‰~"»÷\qyõFŠëì:®üÉ„’ƒ6êá…¡´ZÔDŠýßܪ¬àÀ](wȸ´WFÓO¯¾ÊŠ;ÏÏªËãF-žOà‡uQ~È~¨öðÛ?¶”µY,þCJ|PoÇZyFˆã÷U®t«C³²šñ=´Ò»«*ڪקO˜C‡ëlôóþеÒ’|ü ôŽ:ú[ž7†HÂÆR[´m󑄪뜵’aŒ<Øè ǘýÂÅdSmÆ9•â0K´xbªå)üIý˜ÇùÑtÔ£;šÇ`±s7ðûÏXXþ(÷µA—V³ïû”~·€õ!Þ@K[ØRf¶®çQƒBa~ò$ jÈ`AÂ8}aÞÓ=HLc/—+‡$¯òuGš{ì8£pÐì’{ñYI]DÊa{—‹¶HsÁüðîÃe¤—}8)˜ë žgnø#S”éǸ׾Èâ´®üô%²ùœ¸I^Œɳƒ †Ô¸_»úÆ/äu¿ó1/ãòG¶&Üï‚l2ø}Ph’'tVwEÏ?¹«Ët %d„/5ÝMD)%ÞNb[”i»uó²ÊýâåuˆõB…ä6£¨L,5d讉ªÆìlãeú¨¾ØvZó8"…Çæû¯¨%2¸é& ŠÚõ?ŸþaãBÝÐWLZÁ´¨¯g)>.„†|·îs¢ÑZL^EÚ'4ùYX_øCÍb(u޲£…÷O!ÂL´Lh±¦¿…V)¼ûJdÐ:3p-HWm*b#T=Ðv4. +íØMY¾]]Cû£U!ª²èPæq^3=4hVHM1L=Kµø j¹‹ÕñPä8Wûf¾álšiéŸrY…Fùõµ>k-ø~ÊÁŠ™ä”×{9*_Bzsí¢»¡0Œ™Í'‹>ß8lK{tnO¯œy…Qsÿ3GñÃ} H?¹Å 3)ºGøÉ!U:~=ýo&dèíñüëÇ­Þ×Òß8Û¨N:óA-Šþ„4¶m7öð¸AËy +¥;´W$Jù.õAgàÈvï@ÿNQ‚¹ôG}_Íu‡AjxÐt†¸½d¢ }ß-ØðSácí­ !u{ûØoäÚ–Œt®-+Y™Âhë>Bßï0¶5Þ$Æöio_w»Ñ`)Lº] g¬õ„©÷ŽVÒè 3Þõ‰q0ûÐBo+½þèhüÎQI†ùG-Òé’°p³Î)Öý ,†Þ)aTx K¾©;èËAG‡Òo¬$†ÕdçÂêŠÂaî$X¿„Å×6Õ~ï;[ ÛË«#¤ì°k–yÇ£] lj&BÞ#aŒþ§‡œH4f'׎$šß=K‹?!é'•cOH q^› #‰E ¶T‰‹_réz¼øÍHC¸Å¬N¿Ç‡ì<<”ºHŸB*ÑF Õ#»{9qÝ‹ùüÙpd–íöëm¨G–ÐæN—‡ÓÈ:•Øô¾ý²Þ7—Ï{œlV–|ncÈUö¹aQW¹ÏnÎl|çD^i›fÙÿV\äcFéªèq2í=><ÿ¡iô: å‹]ÿÛƒ"LcžÖ-(jÝÃh¡Rb÷‰– æ1Н„…ºT¢äqÿ$Ç¢PJ~Cëá$Ê(»C溂²1YÃ¥O?¡¼èŠXg*Ôyëï©„JʾJ„6WPÙ|cÀiÓUœÎ—óL¡jÒýcTì pt‹ÂC+jLwY÷Ïë?c%AÍ’Þw³uP›pÚÈ#Í uœ?çŒ[3£îû~¹Ôû59ÄRˈú;o:Ú¡!£ËöÔ y4’h8¿ôý¶…³ýÐä|Õ½æhú½— bѬU“j•9-X+mF% ¥¼´ìè£i´úÎO.£Vñ#«…úhíz$Ûñ59Ú¼ ÍЖRß xÐvÍpˆåÒ8^öþ|8î¤.ª«GÅt¯GÖƒŽj9»®°2ýBfŸ”)Ô>~{ûšá¿9NÅ·‚ÿBÑ õÃG¾Í{zãpzà ÙñÎuöeg!#‡ól}ð¥½\*Ÿ—9F Iç:Zp,ÃêÓ&þùa!;¼s­"eÎÜË¥åÄ­äö|°yóøÏÞ|ùl9@v»¤´ïK†óÚ^ž Úó»’¯~´dÿæ«Í[ø7§p ¬ákÕS×éñ;ÿ|J5±Yø?>\xJAñ~ÜäÌö¸ ªÅ½`É)ûuLË_5Cƒàþa9&Bh,¸ëôš¶-³KNóA‹¦rúQѽ\úÜ›æ$3´ïS‹gü ¿£>)´¬’B§ñcÛ +{94ÈôÝ“dèuKñtˆü_>ØwX "€!+’ÓÊôa¸<Ï/-¾FO (Ÿu} ã¢òßa’‡¥™aâLkú‘:|ʃÙ÷×8ŠBÓ`^`ïÝÝeX¸¯âÐà›K”‚kóË£°Kïð+ã3¬ªœŽ¼ªóÖÖßý§]7d܃­™5–ݰËQ{Ðô¶(qj™Gˆ a¨ áaÎçH4ÝåÄÆõ I.ðùœËD2Þ‘×å)|¸¯GãÐu3¤HYîyÖˆTW¿l[ü¶Fû †-1¤“+žÜ{Ø"}”_ýÒl62¼¼xõ@Ä"2ö¬Õ-ZFfë6º>{wdù{ñqõ‘)dk¥{«*N†åɆ,ËÈõV†ýA;r{ohœ#E^åý§$:g/z%\š: ùÓ¿mÉ=Sô*T¶¬€‚ß2Cyæ;Pxø‘d7¹/ŠY&Š.+D¡ÄïëM. Ó"ªrW ôÈΨm¤8Ê´$Ô;t˜¡ìì|ȯ@k”—÷®ò~¡ E|¬ª{>¥AÝ'pœU¢»“–ÅHQ­AÚÓájgmiÜ2Eô}ëåšq 5»uþܶ%Cm6yïÒ_¨cþ‹ÂáïÔzç5†zÝß.^£4`$£Ê:%‰†ÖìT¿¾{ QÂf§¦öW4^a¨Øßަ. •Ï?£Y›ÒÒ3w^´8.tÙþã]´ ÏlÌ´:É0tçñZ;0§ÛR£Í‘òÚÛdñœ&ÃO¡˜H”ß~+Q ;‰ÔåõÅŸ_ÀØá‘²ÓÏÔ ü~VϯçPøöØÎÖÈMÈ™¿s=mÚ2 韟‰+€ô*VïkS´6÷$¹à’ ¤n>=IJ I"Ƨ1ÑÞš˜Ò—GÎë绤Ý4ÿꈔ«ÆDÿæé_ŽOÿîá. ´¢€Ëw_IêörßΉ]±K¢ðsâ÷­ÅH¨ë5w;ûv<¦¨Å-H ñ)Ûl~ 4y±f}zIÍzÛžç·Š ¹¿„œM>´0s×nß[ÉÍouÓCs‹‘Í]1nhÎøŸDðšS)¸v™ƒ ydî>§‚ÛFoÞahi?nêÚùZí7Ø«éî@ëßÑÊò[ÐöºÓ¢i‘Ú#ž.œú§ÇÜRêö§Ð1pç§w£t‰‡OK>£î{œ_×y:¡gã¦{þ:ôå¼|Û<~ ލ¤]sš„Á{S‘4…f0´ð­y­tFT¾`w솱óå¢êZaâùgŸ’.G˜¦ûÂ6‘³%òŠúÇÓaÞü݃î²Ï°00%ö¢–Þp>•E +ñQa[aGa­öõÃW¯íù«·º;=/lל+±(É„¿‰ü•ê‘Ю¼ƒîÊ  TÞ¶I@R† Âã{~ºý¥jðRÈÜf%GªvÚêýç‘ö¸«œÙ™n¤@Ó“Ä‚ ›LʺA,ÈtIðjÚcUdáëõ^'uD6[}gqäôØe§G®»îÚšnÈ#Î$7¢‹|!ÆëÒŸT‘!kYØbPLPþéD!ÖþW+²Qxl¤%ˆÀEûYM&˜LP‚¢Z(o^xW¼ðKeöÇ‹;ß AÙO¯5Ü£¼KpÀK¯Q‘îS˜s*ýàK83|U>³5Iª@µ•-y#>JÔp±9E\¼§¯®z†)ÔÒ©o}®Úé"%þñ¨kÆLmøõÍ.ØD4¢ÁŒË}âÓhT±ÌG㥅&÷‹¬»¤5Ñì´c×Ó‰(´Ø=ø -ƒëmSÐÊ=•l•äZÛpeˆ=ßEӻƮöhkIQ˜°‡š|èʪC»ý º¾–hŸ\Ö¿\ƒã+‡>Z”¢Ó¡jyiògèœF?“xãQþpO’ë1žælÊ8 «ˆ{¶Ä‹…E‘ì5.ŠV߇¤Ë7Òõ  ô,ƒ—½)äDŸÓ9¥鱤ªo]YÿÝÛÄ«Ïc ï{—ÍÄy'áݾáîÄÇðºùO»i!îñßËI›WáÅ7ŸÙßè ~Žˆ‘ÄàÄ˶ٟ \þ_=¾«LÙœwTÜóQ‹I±¸=}ÓDü!‚œ”Ù 4Òsÿî)}¦}Ô>ž_g둆|{V.§ȯûr7TÊ ´Ž•»CAä¦Â>_âó9l® ýŸk¡¿ábOm0ÉDžÑï_ÙóÙëÁÕVPBIöŒ.å,”f½Jž¸½ _uE´.\9唦UƒUPq,¸"#*_¤Rš ƒ*u a]!ø¾yá¶ÇT×½ãøjµ4¸¿ˆ½…_­òž–YC£É‰?ÐÔ½äÕÓÛ -Iî…öæ{úîå©03„ßs››f„9ÐuýK¥™7ôž÷Ûj>zéž7 Î鉳Ç>…á¢cÓÉDá0ZPû¾Ã¼ƇSy¸¨`J…-u1…f2•£âì›áí’½}Q ,p°æžÐ`‚Åìj‘wnÁ°1ËšðkV~¹©üÖ‹ÃB4<~Á¹ÝÑï°s]îÙæùsHÀxd\ô +U Nª™#ÑÑM…Ó HrÕðIÁ»p$Ä®ø¼“H®{-N2m/¿,8ßþcu%>œ¿ôCBÞÇ=!ÿKI¸2„)þD«îÒo‘Í(-=|Õ9‚­‡Ætéqÿ¾™×¤Ÿ*—óàõ©ËŸ‘ÿ¿DŠñ.8¨ªíHBiæîáÇSQTä$‰r‹Š÷žò57~ƒ;¶‰’˜èQæø¥ö=ýÉÅ<¦8{D’J¶ÖX/¢RÝõ‡’+[¨Ê.q5ü/ªÿ o|4„0ì B'sP‹uãOñÍÔ.ö<{ uÏm?ií@}¥î:ƒ4dÛì,NÏE£†¯ÏÑäWã±4{›íZx«-îõ÷:§„£eÕxíPèZ5¤Èªs¢õôSåÁ_Ùh˲ªE˜yÛ8‰k¼hD»$AÓaz~t` ¸H…ŽoåwËâ„ÑÙ.ü¦hì ³>Îüý*jV‘‡ŸeÈqäggî»AظvãàY×$h¤¬ ÊQ[ªV¥î÷5ìP~æKž6§b¤ „‚†§·‰L¨öô"Jþî²5ä”=´ò€,}•ý[ŸöÃÇË…Mmr=¬õÔþ»ÕQH‘lÏ,ˆƒ,©Œ×Ž ÿ£ƒ ­GðíÎÛÙG“1P»“qñG 4] ­½>h­©es8à÷Mò¤'·ìùÏ‹åÇ QÐË -B×µhRRWÍO SýØ@˜, %_š{{†&&?]¸ Ã!©Z\0ÂØ2QxëŒtû&Zz£="E‰NÞ0ÎHùͼa®Âð e?ÇòÎß%}ZM]B)í(·’”ÑhŠvüye"$•TQþ 0=™5*ÔÆþ*C%™£²—6PYÛK½&þªF P4\FÕ!Û}l¨NÙß(öh -Ó21ˆíñ!ýuþ=Ô¬s}àSšƒÚü_ヿE¢Î­îÆÝÇ¡¨[we4‰™ õëŽõy Á×ðÅ@4äŸî;zL\çø‰HÐ8´ž“VѤ¨åèÄs4#±¼}jÙ͆’³ï¡EEªpGàM´|±r܉„­î¯fOÕºñ‹Ð|iFÀåÀè7j¶;c -N¹ûk>Ÿ„–Õ¿ƒ(¸ 5ºo“—þ.´i¾óf÷j„vv;F7hŸËè?– ¿×ê)Ù½¡S7w¾úU0tÝìVÓ§ îŽ)’ØPèUüè¾_úšØ|Í aÀÞFyÍÕ/¸…¬†¡o4:/aÄÚ »ÂÓÆ„ÖŽè÷À„NBKHtL½v o…Y93Ñö ðgê„gcú5X¸ØíuÁ,–äþ 1Рï`ýb%¬éwg8ŽÀF ¹î“À~Ø>HòÖöi ìNê±+UL!!aÔ=²«HT»qòÏçh$©Nqœ‹C²~õÊ”#H±ïO™}—"R9.tÝ»çˆ4Mo^¾Az­ÖÀ1»dø°œÄº·™x"»õ)×ùËgnîÚ'ÈúÄJJdٳ䋞î"ƒYVÉ.äNÙ*ÑØ!D>5NÊ~EäÿdÛ&÷îá{E’±‹‚ aæ/Žg p|‘PCÀ } ôä;Š6ç¹Ï_†÷ç<ôøèˆÒç]uP6\ìO~ëž¾gûjåPa›îzê¢Rtžײª„F¥ºkê¡Ú—š%öŠUÔ>ÆÏ9b€øÑäúÓ:bÔ"¿œÚ‰é,³9E¨«ïמ¨œƒút¯9žM ÁÍÙÐ+DhTÒp³áþk4 />Òi¡‡f'·}P C ¹’c¾—~ åUÉÑ¥€V´òNåöf>‡Ö§ß,#âAïoQoœºÐöºCQ-×k<üÞbЗäÚuÖÎ ^žA—Ì[ —ÐñúÁWTö‚Df"§ðO©ðBÙâØÏÄ» EªÀó–2»—Ó_þWïNDS—=þWÏxâ³û³2/Óx®‚û'ÒäeÝ÷¶ÆPÏŽ >?dQçê<ù$Å¢‡|~Bþ¥cî×X]!~ßä”BÅ'ºýh'>•)ýŸkáÁ, ¢r(\ÉÕÞáþü¯nòÆÿÍ|+\Ê‚ÒçldqäðUŽéìÍJ(W<îóÖð TèÒÒ¦ž¶„Jã—w›áÛæybž<øþFÜÙ,Y ~&Øx,{ 5Mßc¹Eà— uÒÇ8hXçêøFAMa£ójž@‹¦†š¤þ´ÉÎë>SÔßWÉýuY„.zâO}Êгñ ²I1ˆíÌ MaðuÜ_çböÔ*¨tƒQOÂåµ0ãÝÁ/P“NT²¦`æHH±N5ÌýUÝxò3æçÚ’4añîãŽkë.°|<ÉëŒ}%¬zM?°J®ƒõ'K$Áú°ÙùÔkììYܯvzø;aE,.…„Nºr¨Ê¨ñ¯£Ò~%$qí¹(dûE”†t"ùþ¡Þ­·ÒÏ8ÒŠÍiX)öÕX0"=‘±F'dxEov‹D ™œÒí[Ly‘EnÚ´@6…Æk#BÈa”?òT“¹~Ñ•†ê²!OS£#¯A/òËzÓ~¦lÁÊþªŒÁ¸ ¢zü!Ur³x„’ÐkÉI¨EÆ0Ê:шڟŽå —-¢®«Ýñ ™7¨/z*]Ùë/ÒqKNië ÑâýZ߉@4iÞµsºfÙÎÏD EêZL”•=ZöÏ}»0€V›Ö"N…¤h#\dbχ¶§6§CD>ãáòý}ÕQah¯¸N˜hŒµ'¶¢²GÐ)‚ø„}C—ó[,&æy ÞäöÔ” ±’”"B³ïôA—xa=¯Šù¼›4T²"½5Ti±œT~˜åd‡shw ˜ÄáØ¯pF(àÝ¿ùxde/Gn–¨Å~†“fõ ÝÙã°cY¿ iQAÑçZ ZîŸ}nÉâ ô9¾W s‚sý³Èð¿:zÖÔó½}}¡¡$ˆêz]ó =k¡™–ö»Ø;shó`ùõÚ¹: |ùòyNCWŸÝŒÑôô¦»=¾qâ% Xÿ銶J€ÁèÖ‡rR›00R•¹ï S¶¾Nä‚á»aæòg`„S~f¡Fz¦uubÚat8ò0ê°Â¸èÁü'¤`ârŠÌ\[L~>q{‡¦EL_—>†™:.ÍE0§óРÝAæÉxÄÄü½a~§L,ý¾,,”‡ ç^‚Å~)ɦ8X*<,ÄâËÙû¹¨BOÃJET‡ÖëXÝNèÿëtÖÝ#b˜¾™Á&ÁNHù9Øjòd Ë¢‡ö.î׎ E€åçPÅ”Kà;ì/ÊÄSH\Æ âíHÊ@Ÿ¯µ„dÜ ¿4‘"¹›©oo¤RšT¦> ÕFjÛÒO¢^HëÇqÑ´émÞ-F† [ Ô^"ccëëcµÈ4âvBz@Y$)ÒO·ïù[Ü”:,d+ûs„­9:c‚ôy"WlÇá6"ä¶›¹b)‚¼bÒuœÿñarmä­â,˜l+ûöQs5Ê´£P©×kŸê7(Âc8&ú© E=¾Þ1ÒE±wìzW¨«Q|g,µö-J^Ýðõ;ŽRV"W§ÓÂQFOñyºl+ʾ=Zô¬¥jÏíVP¡æGÉ•‘T3;ØðÆ•ûâÔ%¡Šbu«u5ªx±dˆS£ÚüxìFå<ÔØ7ħÈ%S’ò@5»ú/Ö@m­˜Ù½Y¨“M0ÇÒ:†ºKdi\† ï›÷e/ƒìÚ‰– ~ÈU},·Í9sr€›%|scâL€KŽ>ÞyÓPšN{hK÷ ”æ Ò¿×ö¯n:§J$Be”]‰QÂ5¨V8 x` ä_?ä¦ôÝ@YKòÁä˜i¤š~©Úó †½>Åh~L…RÇ…U A(`°Ÿÿâ¶Í ÓãA»ùmnBq›¥ÂÛOÁ# o5¶ù#­âUûÏ{¥_-oó7úÍ44ï?û'†ß ¸ XIöšTx±ºœhvb’«¥ø+¬} ûáÓØ…f(V„'áBŠPnòãÆãâZ¨’¸œK5Oß6£ÒŒA½‘™…”Oãv>s—”~)†Æ¿ hR_+ÿ}ƒ š¾ÏR‹§…æ]ôëfEÐÌG~@¯ š™[Öêè¶½ï™å|ý!h6n)’³‚æÏ‘Þ¼ª÷¡Åõé·³w à;‹„û#e_ø^÷åÇÙ=Û~&x’•Ú\8}ß·í…¶¿ÛA‡Ë¨‰.t¾ùÉ&àóºúeïº4Ý‚¶Ï÷ìæ…žSG§ƒœ¡w&\Ÿ6wú,O~9éöú´QéÂÀ[ɇ—Eaˆ©–Ý; †»¥åKatꆢš±L(³‡Ç9S¯pzµÁ/¥k¹ã?"an÷wƒ¢Mi˜/Uæ‹ûÆ‹¯ä8Ç7s`ù“•ðSy=XcI4­èyëŸßq8­´o¯˜“#AÚ!ÜüH¸«ÒÚ…l·‘Ä÷†`vž>’]¹XsFÞ)¢ÓçkãÜ‘ªg0Ù|CiÌté}ŸBÚI“Œ¾íÜÚcÝÆ»‰ï/*ºÑÖ‘Ú¢².å(í*T½=æ9ˆê³>?öÑh!^®úìö®÷³Æhñ­¡Öã}>^ß’P[ÒÒ…ÚQz±”)õGK ÇWŸ£aAêä£ B4¾T|´ã”1šº×5¾õCs…¨/ÉWfÑ"øîy³Uhy1UnDÀ­®H§ÚC´Ûtù}Àmr^XÓ½‹¶“6œäñ€Ò¥”+!·ÑþùÚµ=)¢xÓ‹ðØ :§¿ˆ)wGçkí ³w.ã!iÞ¸ôÒŽK+ýn‚¢«Llç"ÉŒšïä,üÌ:Â~”qdgÿੇ@¶!Ù^iÆ>HãzÞãŸìÉ'XŽôhëÇ/ôßfÑCb‰èƒ½ö_ªØ|ò¼PÿöôD ÅÎ~¥­³O?ïxá{ƒ6ˆ>›bÛâü—ÇWä¹Ô@Jáb8ãQÈŠ ¦ªÝYw1Eb^¹–§V Lê!O½èÊÞ6ÈËvUÐ )ƒ|2•à?þ›:ý†ò׿±•&nÖ¢gýï×Q¶½~ª”;ï™r¼w<÷Ÿ}LO†oÿ'm„VvÖsxèÞz ¥qn÷á3ñã  w(JDc^(W0ŸªÈ÷€/…Ù?SÖô Âp@RÑGª”µ#š_@Û½S¾t©PÛt+ji¡øeöY@“ gÁƒ|[hîßóBñ |/#>îË¥í´LÕY²Ð˪¿ÆË Ý7Rö<‹„Ÿ× 920B¿ÍÄ÷¸ÁS0ÈÊû 6Xm;W}]è šaT_ÎK@ÌÆŸÅœð=SSTŸ‡g]õ`&%èyS[Ì~©]¹²ç$Ì{¸Ü9°ˆneJý±°lÄËÁ¾ V}Ž(|»ÿ ~§v|¡ ƒMFã» ê9°•fÕ’K'ƒ„jå|=2H”ÝZ Ô¨„$pBÞU¿IW³µúuŒ‘|IG æ%RéwÇ;b…Ô£#®™R HÛJ£N|=÷„þDL‚ ØóÎ÷<2Ñ'æ‰ ó†Ò•¦Ndcç1RgGŽð}?;½‘ûÎiiFä%-š+«IA~b’£U((.ž ŽÂO)–÷Z뢘Ҹ‹~U2JrçØJ2jþžw¿þÄ}B{Â&ÆP^alZ#€ ‰Ž-sFå+³OWÒQíÔ©o>„§w¾Š?GÍ%Ñ.ÔŠ“ÚïÂèŒ:fÙÔj÷¼QmÁçP¸ak[3ÎR¶†t¡qO´Ø/)4ýL¼PC€æÕ´¦_ÖÄÐbmé#±ý4ZñM&+΢µ[WANß}´)ÜŠ\ŽëE;©Ÿ¶7dðÀ—ïxdΠÃ5[æè_%èx¼…ëãñÃè|Ç/é”h]ía½nb‹(¬Ø+'tÙ4ÊõÕÍae‚lý´;4ø¾ñ*b-‚/ïf«mU¡4ÑÌ“|Š ˜ no¼ƒ|ŸoÁ+?!çG_c6;d·IþQm¶ÚyÞÒ“ô«R“”¬©¼k Y}w9Ý  ¼6ŽÉóüÏy5ô.;ëp…©àëñýYãdAP÷‘f¹Z,šSYJè@W̱Q’è¤ìŒê|ÿ~„ÓnÈC¯á£­å9Eè{¦H%eÓý5]J7zÊa ‘—ÎïD J|ŠòÈ»ƒ/ªìwÂoÄœHÌ õzL)sÀðÄØ¯^ñ0 ©7îÎÀX|Û¡x_ajÓl†É£zF»”“`jÒ`ó—1ÌÄf”¿»³ÊΕM®0'—+ô.Íæ…‹©œ½avk(ËÀ Æog8Ãbýo%Õ‹°Ôòì'ÕO?X!°<0 «vo¯u¿³µ!º;û¦Gaý¿@95l>÷ÅRØªŠ¤¤HDBÊÅõ&ï$R6ñYìDâ+j">Ǥ3â¨A_5’9´ìý¡¤Ž´·ZóÂRrehŸÎšîúÃs ä·ý#š¿‡8éD–.œ¦Á=æíà _õ>ØK¾Èi>&ötŒF&bAŸµqd>¹ùÓï²;à\Õd+Ê Ç%†×±V¸…!—‰§úÇH)Ü+ÄU÷9ôøÿðÃk'Ü B¾±ž6¹«°í‡›¹¿Kõ¤ßDaþ‹e.(r2»$Â2E3gbß £8ÕOœ™ƒ÷ââ…7LPêPÉ ¶{%(cõ’à¹ʦ*&“ûY¢œÂ­î´žG(_½xA†‚ùÔD󪡒¨Å|JO9*ó†<—‰E'G© õiTmûå\½øÕKªóè¹,Ù-ÖdkPsÜÕͪ=µÜNàËåNÔîÚ%ÉlŽºl%Æ·Pò‘Û©ÌÛ¨O¶Þ#!jƒû)_hå aèå oÆr4ºn;x`M,~‘1¢>š6‹z‡æÇBÃhfÔÐâ¾ÚˆË8Zž¾V¡5f†VÇì³ßîe@k_¼5’6ww)ý WAÛÞ—29này¡˜ÞhŒ¨ºD°/Å)±R¸†ÊÄ'[Ï?]@¦PÆ A…xX+ŸyØ 51GÌó/mûƒ2-ýK(hˆl.òb„÷œen~†õÊr\N8Ò­œýC %tôq‹ÃËÿœã4,>¸3_Øm0¼sç=¿uˆÐs ^ÛY)YlßT}¶˜+u±ûxQ¹ÌüvîVûIB.U'µð]ÈÒf»Dµ H,RÜác…‘ÁëÓ;ãQßíEm(; üÑRý°‚XSós«T¾P95´Ý[«ÕT‰V×&þõCþ©óqëC;ç}—Ó•ÈC[ÔC¯"¡9ü¢¸ˆ{´¬}ð1_§†Vï†s Gšvö-½1Á ÖìâjŸ¦ süíŒñ)ø‘rßáóó艻¿|cpî_?­1§Ûz<Žø0äÎÎ{Éžª%0´°[Ñ`O$Œ»ÇµÚ܃1u…Óéta0!jåÔnFSÎA½!¶é0ÓÚQW³åLŸÉ¼LbÊúL,äV<Ü}Æ–*öz–¦Â +S± +¬N]öd»¿'rYmŽß‚è`†N*ØRt2÷ C‚AãZÖçHäªbý-¾Iˆê%1iIsïI ’ŸÞÒãäÐBJͲŠ2Ü%ªÈh<4œŽ‰½ô‘HË“‹G²"ÝsñÓ¹m¸'+ÍSÄ~ é‡Çà ¦Nè{d#SÙkξ(d9%ïZ`lèQ—›ÔŒ,_Å—3sвcÁ¸¹?9›ì.¡@{ú_ËåÈëŸ+±2`…|u›ÆÓ ( Eì7¥‚BWÙuex HU$ö[*£¸ä‰]/.¢¤{‹÷ï¤(msÔ*šÖe^uÜüŠWQ¶•›þPðo”“<Ñ@'‡òŸ=ùô=TQ1šóð×˨\JS0“1…j|ª)­Yܨñðá—ïòˆ!ý™ý‹¨9e®.;ÆZŒR3F?QûT•»uQ$êô岜ãšB½#§×‹6.¡þ÷ƒS%/ÄÑÐþáÝÑl4ZÞ»Ž&™²{µ“ï¡Ù޲w.3h¡Ý’×S‡–v£ä^{ UÐçe“´þr—fá¡)Ú ÷œF»”le[^C<6¬9ONFˆÒËg®ª½ú‰”‹ ³3?ÂÐ/Iª´†AøtóÜ×j£6È7¶9)ò˜²>üàÚ¢þéÇJµzõ µ¸˜·ûn+¼ÛµÅRH^U×£ü坿ó¿_톄‰Óé—Èš vá’N’V¼ˆþ9võÀÔÎþQ¡¾f­aÓôYð!e׵޿-([|¢gä •õµ{üZa»;Ùïýµ“þ2Wr¡ú‰Ì±Ì9hdˆ¶â›¾ ~XQMJ{5õÔ )ä¡ÕhÊøZ% MQ&3$Ðôcêk®4sfK³j}‚按ëST Ðâué"3%|W ›N=R­©ÅßèïAëÏ´ÐÏåžÐVüä°­Õ"´÷dåTBGA¢ô>袡ÜUãüP¿Õ0mÝ~ \7¿BOªGÀPü¤¦fMçR‚>ãÛƒžtЯaâG·¯ŽÆüᤠƒÌ·÷Ãp¸—òÕ‰ý£žý&®…ñZÃ:™l%˜â¼F»B·f‚㈈)S`6©N8mæM¯‘©Ú À¢Hðñ~õC°¬"vúêî7°¢n·¦s~Ïï;åbF›±5nù?à€äÂb75q{ò\¼Š$,Ns7.¯ Wa“±s>RHúíwˆTn­þ Þ’H]^pc?å"ÒZÍú-x³â‚üÂêt¤?b~ñ÷idX 9îûÁÞém‹òÁî§'²bQQ´·úÊvž)S_wjÔ7FU£ãþ ¨^i¨¨h®G öð î'³»Tý͵nåWü|ˆ:*r׋™6PÊÀk¹„õ‡O‰ØV@Ã÷!–ÖîhìÿñtûC 4u%ÿVúÃÍ•Ï ÿ¸ÁŠw&(n-FËT#yy´Š(|=Þx­ß+JZY÷£ÍÈòGáSgÑNÖÞ.6%DŠ{p<@¦'–±šx0/îpÕGt L°m‰¯D—“jçŸÝ @WýÂo޳€žö¤âcìQ„4‘.éz ’0”s_æ…Þü3‰ðáWrÚ´ß³íܳ>,0™oÝŽH4Š‚¤ oZõðò×â—© ÉÈvupÿ½"ˆ¿u„IÿëÖÖ=7‚.jÃMºhˆÖ‹»‘nx¢Y"lÉ[ÿòø2Å]Æ…| RtlÞ‹‘ûî¼W#ë¤îÙÙýo¶~æBÎS²±v8äNúÌßby®¤Z:1 ¯õ-Ýí‘[ÛュøGäçÊÝK䛇üÒ•Ç—“ý¯×‚øk ü,ÿsŽÔ±(¥}½Ûíƒâxž¬ln (9Aúy‘,Jy:çœß‚ÏôL.̲PF©xj²s ÊÉÔĴ×€åb½–6ø:µµWž*¿Ë}8s7ªçrXH¤ Ö‚èžÀ>¨/q|5ܽG^1C³?ë8½-|·bÓ'U†¶ü²Û=¡SL¢Ÿ‘ê7tÓ”ÇZ®§Cï¦mÔÔÍ>è§ÐH ì‚JBWV]ª.+’˜î‚‘Õ•Eá}B0nÐû-ã` LÓÅ ]…ëJØ=Ô³Ñoب.Eü†¨ª†/,rp²’ž€ea÷Cw aU¿+<œSƒ¶v~2‰wÐY«E¿a0ݺU?rûB w¸Üûx`ôõªÔØ“ÃÑÏŸ­÷îÃ@½³ã¾F*4K}ÐS» ƒ9>G&(`HdaÉU„†~ö>¶èr…áùíæÏè £6§c²ÓaìëyÂÆ²Û=Ñ@ŸP*&SpÞæn>L«<*`;Ò3+ †YDŸ`öx¬×“;0wì-ÿ»oÁ0ïœ÷Z–Ì4›bÂÖBaqÏå+&“¶°8Ùa}ìü#XŠþÎE +$¤Ç§ŸºÀªQƒOÒ'X«ä|å ëçz乜)`Ó•8³w÷mغ‚~ô©'àÇYú[y~HD<Ù+™j„Äîô)QHžõ©ëê $£Ñ¾¹{ÉKÊU>[EÊW$…«gÝp×ëë¨yi¾°7úª"íÆ]¡ÌazÜ#,*Å>ø é ·ØÓ#Óa»k³‘ÈØ¥yí,—2뜹6Ÿ$„,Ýóa!¹‘íygâ¦ã$rœ\û‘_š\û{ ÿt)à^þ]õëVEÿÕ̞0C¾Ñá©D+õm?¤fO‹FÁ2>6—ˆ£(,òÖýOk?Šœ{µ²åP‰¢$Ÿ~4'@q–öV¶(}@¯÷¦JùØ–èŸ\AëÍ·6$ïQ6‹æÑÙÝÝ(§RP¶Y-³í‡¼òýâN¨È!*;w•8ËÍØ®ô¢2Šò`¿ªhé[š×£jñŠ@´ª§å„îyé‰Èæ'_D¦‹š+ýFåCD¨uMóQ!êP‹è(@]Mç?‡·Qët¿²ÕAÔ§b»cH4Ï‚¨êuÐ0•æè£8~4fé>];tMžotŠí@3¶fL®h>ûÒ«ô=Z J›w(Ç£e¯þJþÁSh5yç~¿O:ÚP×¼§‰B[hÇûFhyTÓgLÝ+ˆÙÖúÚךߟ›¯C͹ͷŒ_xQ‹AN"¢Xµ/V´Z®£Îº§…ù"ê=!nXQC&Þ“Y­h˜I—oÀ‹ÆÇØäGU¯£©öXD¡¹öײ3Æh‘7rph*-íÏO³¡µçÈ7—Z´yðÞï³òQ´c²ŽÚKy”9Eñ$ãÑŠu[+ñ«(iÔ©$F;ˆ¿ƒ“·¼ª`è|ôÖŽu·{oºCÞ óÑ{õ1¹ÿš½ì6¼óZ¸sääàvÞ-8'yŸ„׃ç†i«ô ™z£Õì¾¼R¼)åx–δ)á„X/'é"=x¡^-•©=ø÷¾¬‰á#Ö8:Nî½Z½³?!ÅÖ–/Túò²ÌEýËtöã}žC½M"}¬ÐÎ{ÚžnÐ(·Â}“*S •t¦Ž@ѮǹÅФ>}{!û44t‰ß½ÒM‘û) Fš¦#ÎYI@sFåý ƒïC"ßdÂ÷KåO9 U;,Ž—á>´IËD1ûdB;{ë±¶Óü‹1ÖÒ S’mF5iºüäŽuQÁ§½Âá.•Ð]vVtóô Y“”ÃOÑ›&Áç O7±Çá¨?ôó•órT‡ÕáÛÂjv0óýiéÓB6ˆÕø‘3£`¾^Plã®ÈKãaòÑsâ[†U0ÝTdÆ©ôfÕ+MœÃ\Wõxë°4,¤µt\¢‚¥÷DŸ¼ÆwÁÊb›«øÛ½ðÛ¦Úö°H%l¬ÒÙ„¯'×™‘°2zÓøçY$.Qüh£ûI‹W;ønñ"y©¤CžP1RWj´u³ µŠøB8lâî¢Çòdߎ"Ý»gËwÞCú]¹3Lþ²È¦)ü[™,ôÔfç!Ë8™´öjd{IûÇæ½ rŠæ:[k#÷˜Ý–òò iHø|nås³'‘ÍÝiJ/ ‹T9[¿+£pü“Ù^6¥íœì®–ðG ö>ʆI(Õÿçâ‰Æ'(KRÖô\Œ÷e¬ÛÍ¢¼íÂWvÛTX:}CZØ•ZÖɶspê¾[o? zp¨¹ë!eDžrX𻈚‹t¹¾?rPë’Æ^ûõ ¨³/¾†”õÈchÚeP‡¬lº ÓÝò™æÊ¶¹*¹Ò–a‹¦Îû+ê%¬Ð\Íê.Ý­ýhñÐ ªél&Z†§º¶é°¢UŠvÒU¥«hÝ곞já¶lº%¶Q‡Ðî¼Ó#¹ E<0ÿƒ»ày):<”ã鸎mÂ÷ÑYý15Õ þá/5ißµý3_!‰·4çCŒ¼46Ò’ÔRûËÛ?œýÃÝó‡%”wNCTáeu#†¿×îûçëßÔç|ÇäBÈÐ8¯Xr»ßÞö\?•9ilÍTmwÖç“7ºAMª¹AvÎßq!ou©vñÁOÈ÷y¾ä²ÿÿ{-p7!}…ºJu{ÛV¡(YºÉSºeçDZèÇR&¦kvÏÇá3O·Zà|ž¬‰¿Þeí"õv× ÿ}'ʲ‰|mýï¸Q}íÇgþ•løVùеÈQ¨ç²¢î‡FŸͰhÞEVz“™ZDó¸¦÷ýå½#ÿE©Åï¹î He½œ}® ÊèÁÀÙ~ÙÒºÈÄlÈ×#©Å×ÅTº`lW|FóLzš¨-„é?4}ÆóË0ë{CõÉp%Ì3-L²—’ÀÂrÛÉæ%kX& (z·qVyM9äeÂoS—púÌ3°‘ìqÙ€r¶äÆ;Y»åàÏgº z$:wýœš²oÞÿN>É‹¤Y•o…Zd‘<™,ûhúRÎ4•n‡*õÝúKÓ¥H{ÎNR Îâ[ªDª…È@öiµ‚ÈØâÕI^Ý…Ìé_TÞi#kÑÈxº¼rp^`"aA®Õ‚Ó¬‘'Ý&¿ÛÈùžŸlx¨ôrhûzÓP˜ìíY ІŸ0Þ¯÷%<¼_¿·"Bé”3ñ×Û¡l¾{V^@Ê}aè½Ñùæš´>éL¢²Å®µ?†¨ÆÒæ/÷­Á8ÑD6ñ:j¶8|¥¯E­Ë•NVåQGú˜Ó€öênRÍft£þb°ÐÙm?5œ$œ\-O@ãOÞo9hÚk®L£‡D/±EK)ât¹n´:Ãоï+Zwp©ÜZ8ж.“÷eð•ÇÆÉ£ah?pSÔÙ¢NË™dóGç}þê4âñP±Ë×ÜôÎ<íWóvŸ.o;ö!Ù¸>支uÀ²Uhõ%Oo¨ÿV›Góá.”ßÊ"ês‚O9W™EŸŸ…‚†0Ï­é¡¿\¼ÿìßµ16ø7ßþáé¾þÉÇøÍdtúSS{ïïç¿Âðç9Mþã;ó gkÞ.þýœ¶‡¥$úÛ.B׃Ô{ܽJнv­åDWü¼¶ØÑKáñ_93ð;*iQ^}#ƒí}`°š‘èÌ×0$c½öô½ õÛ«L‚áµTAŽM=þ$ìS§ŒM8OìWÜ Žó‹+}`rB%:¶·¦ouùŸÏö_–¿Œâì `6¦‡”Wù ̽Hày7 óYª2,·ÇÞ—6¾©•°¨âoÜ×fKy§žI†¥¥7S±£`…¼0Ó#·VaÁÑçêaXKULdúeë†OµO¼'Mgâþå mIô‘ð›õ©©CÅH´q{cÈ2 IŒY¼¹Ï"iéû)Vâ·H~òOìÑ}¤´ÜÿvÎwY 1išlû¡÷óËdVöµøAÿ'”H÷çây>¢§H¯D½8e­€ ¾Â b«•Șå8yI3™ÙÇ}H;ú%ïn?‡8 [àz~Ntr8„Æ¥ìm@.%»Jͽê¸wïZ£å¿~øzZ6N ùFfˆ÷ª¡€É‚ÒKc:,ßhµ 0FaÉî„cãž(rõ©ì w ­(Ðìžå@qÆãšÍ[(ñ†v:r77JNõœ5—EG·÷¯}ø·¹ H;Šrã)f9 (_e:n–ŒŠŒ,¼7Y‡Q‰N!åÎÞ5TÚô”xô UÄT\ùÜ3P5ñÏäñP=ú…ËÑ ˆ¬|µ´lq?™»¼ü¬?j%0 Ö‹Š¡Žœ¯®c/êzmf™¾C=Y;7‚E Ô§QRðìBWa׿±ÛhX3’/|åù¢É(U]F³xrÕèoÛ^¨ÖË]øx -Uø -ï3¢•ánQñÚ0´>YtŒ¥ÄmR„…"š£íѰnŠƒxàÔÑô"ft !0ˆŠÇƒ9ßwwj]ÃK T>¥ B/¡­52q©WòÁüÖí“‘a P½òøJ#áû¿üý“+ÿäÕÿÛSÿáîŸÞùwÿ/‡É«*aŒëoÿöÚt+¦‘ç9þ'ÿùyÿäÖǣ›œ“­Pú¹?ÆŠqgüñý¯zþõCZÒ“£ÙjP™ú§…E‘ªõ¶bÔD²þ«ß6䛼K’±ûÛ[›—#¿RÞ„ïgF•å˜Aë¢Ã+h·ýtè Ã~èøžQüy7tYœe‡³z4bƬÐSÙ¸e8¢ô¯vR\zSý[Ú]ó`PÇ®JÑ܆’ínöªÀ‹DK¨ÀhÒ‹Ÿ'‚â`ü”úSñ˜¼ÞF}8̦û‚j|õwýÛCÿ/ï <šV¼`±‚©Ì¦ä,_wÙ'嫦RÝS"ðî°‹JÕÀ\dÐ>|þœ°›ö#?‚ ÅwYôˆ˜ß<ʬ‰ßSÞÝËS…¤>‰þ67R\*(¡ý7)RÆü°*@ª_!u:ÎH½ÍHWÛƒ´Œ™õ’ïž ]¢Å=%ޝ¸§ä¢u›J6ÒOˆo¾EF™ï£3#ÈÍɲÝÏXÄWâ?³¨ ëØ½2½ýƒô@Jéä|ü)råR=rŸºýÐâ­/òÈšùsh\F^c[3!ä{)~6Aht%œþDÔ£:O«tµŠœ4ÛýÅ>´/¥J|G‰©’¾&O”Z$y~š‘en¾%  6FÙ/¾xð åDÏUÑ:}Gù ïë1¨˜ÜtäÖÃ0Tî•f‹Ì A5‡§W¯Ü—DVµÌêìÄ-î›įQs%m%^µè•Žw¯G¢öͯJЍËÌtG´Fõ¾D¤(ÎýFÛ±Î/WшüN¿ß›04îæùÖ¸ê¦íÏoª£ùfv™šZŠ®1ˆ­' Õ©êÁKûêѺå|»å)´µÿÑú gÿ¥MÕ¹A´ï¶ êá!Á£t5ª¶óE(nïû>Ÿª)’grÍÊìa`­½¹Ðv>j.TÝ7 ¹Í–‹¹ 36Z‚2ò¤Ù\U& †7KS¢{wÃk½—sú´ ÉW,ƒ»¹^–Ž‘:ÕÉBü–Êr@Lu(é-ሳ|ô3æ×“¿÷eÕÎøØì EWÖHƒïƒ2¿ÊB¶`¨˜MH:F5¡%ñ÷l  6Ù^ͤö ÔÕf…Ü~»ÓõÊîסaý‡iCèNïûz†D?Ì-7Š€Æ¡˜ã& õи`{ú”äChbšhŸÔ M>D¿~­þ€fî·Î 6¶Ûü=kýyÑ ZFBd¾w_9ûÂ! ZëHªž¦ûBÛÇ0j9€öŠwrþ¶y,”¼j ] £JW¥¯ïìõ2ÿ®:tŸZçºØ_ =©öAá ð“H¹`ý+ôW?µã¿¹­q0­z&£™ÎkÄðÒúY;Ue^*‹Ô;ã|Ë“’4å0©ÿe¶‘T¦ozEí.Y–æ!ªÒ}0—ó„òù%~Xò»õ$Z–ÎWL\ã„•DN¶©Ýd°6qÓ³ùS>l\뺾‘[¾©.A,HèŸs2ä&-±¿ƒ¤ë‹£ ’úx6„¨)oÑE+H‡à®ÎÝ…voýp·µ÷äïz¤óÿ@ÍØþ÷T g¦.,!ƒþ«µUlD&“'§]‘…"‘³Iô!²™t¿—º$‹_&riŸ!·¯‹¥ÞA'ä‰W˜¼’„|{®åño"ÿ «ÌÃ/iQÐÖͨéJ> ËEfì@Q£3´T(þ†V®FÙ¥|â†fNò¡LÍ]ÁÃ5ÜwþùѺV ”çë`'¬E…o϶¥¬˜çЍ2¹ôuÇ÷Ô_R j/ ¬Üò.ÚîŸýrÜÜGMQ똎•dêp=á¢)yºÓÝšUÕ!¨_ñùJÈž}h©þ®æz;;ÄÝÜn”hjî­:£ÿÍ̹î(E‹°W„^“hùDÁõ‹5Zåª4óÖ¡õˆÇz“²<ÚJ“~u&F»GaRVqehO×òrå01:dÒ[ŠªDÇÓÀùQÑ]rŠVŸ2à¡RŠä 5è:°z- =ÒÕù¢jŸ  ¢±fQ@’pªyÚæ‰C÷£…Æòz(àüþÅë%dšK_.ŒÒÚ¨[ûXÚ¡#ÐîlÑ…‘¿\÷2{óßÒ ¾{ƒ,-:ª0`ÂnÂÊð†¤šÄÝo‡‘ÛfN»-`¬ÁŒÿ•LŠ©†^©ƒé¬Â'¸Ù³ºGXc.3ÁÜð`®M·,”ïÒâë…¥ÆWL¿ËÀÊ2£<çýð[:çânÖT؈hc¢mr„-ÁÝL·B\‘`Ql,C‘èðHŽ`¯Û%¬—ú#éÓ·Õd!€äaÝöŽÝH9@Y“¿ƒÔWù2¹JiÝgúnZGâÝ¢¹ƒ‘~©ánÕû;뇯߼.ÌÏV¼Œ>Ç ëëýŸo8¾GŽ]³]Ÿ–Î"ׄãSÿ²mn“/(1Ó-"_X|ç K $ONŒz°¡ÐïgN¥WPô¡q¢a[Jø§×^f”.”&.´€²%tnûç$P®f’}JË 6a­çk>*öɨ<À†jâùM­§?!8IBU„šmäѧPëºÇ¾YojÔQ5Û\èD=Z>*¾…j4Øåöbsÿ,QÖ8oè–¢É.Çê/øÐŒ^TÔ×6 -Ä >]´Y@K×¥Ñ÷$´Ê¾¦óØ´á»?|ˆxms:$Çx)ñÀÉ̹\3 t°Ü’NüD€ŽG™lÐŽ¡s¾..º Xj¥bÖ”¤îŒ(ª6Q?a}«lòG‰ÍLÊ`±[{·µ°4ÔõÙÊ~Z=åôDê ARP2{ØÜêIœ¼™¬Å`¿ÃÇ—Í—ðþ4é Ã×"è[¾CÿäÚv~S+“3mÀ@QÑ1Ú!ä"ñ\Q€A§ÙsþŽ0˜¾‡ZU †,¬Z÷ð>€a'ë.Í0fùÚfÀi˜c°ÏTg*Æ“N"I᣶ô0•#©Îº®3GwIÐŒ¸Ã,ûÅ /S˜ÛmXIüæ6]cs3èa¾ÿTáåø0Xøi¨áh‹/úÔiRXa)ástîƒ X.oe¥\ö‡UrWÞw+oa- úå¯8qXçbU˜·€ÕÝ¥L×áÏŸwßÕŒm t0¼LãÆ?Ø,·Ý+ks§ÿÐ" «>ÝKM$½sx÷Ci$?‘â4&ƒkGHC/"ÕÏÃﺿ^Dê~§ˆ©×v×ùúµ&¤Ëò½Â´€{显̰Cõ¨@ÕËAÈxÿ4}+Ì#Ó²ÉF;Écd9÷."1ÞÙh¤š¥®ö"û[†ào-ÈiiX6ŽÜ¬/âuæ‘g÷íºN±DäUš² §F¾pŸä'è™uÏø†¡àó¬æïl2(LvoÀ¿ËE O’Ý<͉¢—É뜮ÝE±ÚûWÂÏø¡„î®ë?9QŠåq»Íño(#þû ¼ÎEÙûi7&Ö÷¡[¥Sgvʧ+5æ^FE ¡F-yTbܪ‹ø¾‚Êœ“%¿XœPÅ©ûkzŸªþ\eþ:‡êMªz'›</S˾cÃý­Ï3еn:îêRFí-¹ÈFÕ“¨+Ñÿ3*©õˆe_Í¿ÐE½±C¡ hÐ@VÕ£{ùÞwIúP™ŽFDÙùIî¡ÉÍ#¾¬¡“h&ÞÌz<ï8šO&þe;‹ÃçŽt«¢åðFÿTÅ/´Zoeü.Ž6<‰ãNò£í!ªk6åh—÷Š2p£íÅvû}¨;…Ù•^”Øà¥^™¾_å(_>Möõ`2ïærãÔŠ‚ù½'H%Å ºâVîa Wøߕйë!ŸG2HoNïo^efɯ”t~…´n‰JVsxãÀ,ZÆw’J"4¾o‚W-^„Â+Z‹¬Exõû·¦$7‘T“í|y€×… =>þQ'‡?dÓsts¹YAÎèýï¦fž;ó‡žËûþæÖ_?<|ûæ8ÝùuV‘ ÷¡|!âmÄ€¯¥ŒŽMC¥—­–ÊÒ¨&²i¤ Ò„šA 1_ÞP»øÝsàÆÎó 6w–zh’ã aQÛ„æ¯×ëžå ÁwÕ> ÐZbh¦|´Ú¥.P2®–CÇg†û·xL¡Ë>é6 ½tS|Ÿ#oR…ž yÏ .ð³ñ‘oPåÎþ4Qâ0°·'ˆ«v›¯Òÿ`_ª* ÚÅl#J‚éÚÂÍ0Z.È'æqÆoº+ɪrÀd¨ò½f‡˜þ.Su˜»fÅLXœ®ÂÜušE^˜ß,º¯œm ‹ ™ên-°|pà‚è"-¬r·7Ýö‚µMÊhÏë°>’î@¾@›[Ï%Æ-‘@]]‹óÖo$,"`¢6/Db/–²k«õHʶh÷›‡H6²bÿ •‘"ÿJÿÌ B¤Š,*· –Dêkl§k<Ýqw „¼u‚ ÒéúóöA=îq¶~ÝŠôOV6ïB†ßvI}Géî³ÉíiȢť•wtÙmw-²j-oÙ"g’Uöó,äv«=AªíŽ<{w‡§ÐÞ@^9óäÆä»ìÛ|41 (÷DŒI Šã²†ñ2Šø]¹žëb•t!í»{Q’x뮳8?Js $. LÊ3yÚÜ(»¨ì;0ðå<Œ›I쯡E¨”ºÚ:*Nš¡#IEN†¢¡bNT í«)"NF-Òùûa7P“mqñ'›îçþQ÷âµji}ÒÑžÚæôý>–ߪ ¨«1<øi0õ†˜.lµÐ£ÁÓït”šh$úpo¶ovqÌm{®éJ¿BWw ZÐ\£ýFUŒ–Š2iF§üÐ*Àê'µóy´n«È ÍB[[â½ …Ch·Â+rÖ¥íËhB¯ØÑ㑃Q{ —PÔ‹BF‡ô3RXÛ—ÇqB “„CuK{ÜÔwrùÜ‹â S-"sõ˜¼Õ¢ê[Ž‚7²Óš2 9¥qóÊémîìoÿb5Ü™èvtÝÙ??gqõ ÄH¥÷>îƒX¯ƒawžü½/s+áG¤eàvÿe‹8Ÿ¿„‡øË=ƒ ?n¯}}w¡zå™ÎþœD¨åÜ8BeuÚ¶Çÿ1@½õ>µ—жûî£P}Ç­_rôCc@J[cýqh¼glœôHdûj¢×pØ _̨ûg\„ÆßÔc/B¡é ïhÝshj¾¾ðÅZÎÉûT»Á÷³Þ¦\/CëñŽUÖYhs5Ù¿­íÇ«Ø8qIV_Å¿\ÑD²-ÓG¶½óH)â°q}wÌ]å`Fš)Ý—3¿å‘N©‡7noî a:­y¶é·(kÝÜ"cÁ YWyJd.L¦Xºd‹¬Ë)G)´™‘Õ‡zõÛr­z¾´nôBžÉ WO!ïç¸7æw ¿®6q×V ÌÞ¨UD¡Š‡­f}P¤s—â‚Ð8Š+€s»°*J®£¹å;”y¤`ÞºÔŒûPíbêtÊ͸M²½«C…ø{ímQé!|¦‰E•Š,áÅ$Tß÷áË„HB½éçâPÔ¬· ù¶8ŠZŒƒ?ú:Ïú-¤P÷;çé²nÔOu_6”DÃ@–WW¦ÑØðÊ]5¡khºÿIÆn÷4—6Î$}ƒ¶Žn¸3¢eT©k6+Z}–þSÆÖ+×WyˆÑVçk­Ç¹h÷¶ü›ß~3´—ªUÓC‡ÆéoeŽdè™tÚªOƒZdüÆCOO0S{ð ë¯È]"®$è1KÝ*_…G.\3ßB’MMï0bøAG»ú~¡à›ú1ÓÀíø&S8R¸xbõø#àå—ÂÂã6HÜóÆ%l€ï/oqÄ¢ïëIKþrmgÒkpÊ ¢8ÓŸ~Š>ú÷ºí‘]¥¸Ñ(¥öú¿ýðVÉ7‰ Èi™W*ýö¯>#µ4 }¼}%SΖÈÜO "(ä¹#çB>ðzm{ã;ÒëŽúwÃ’“ÝÊ`ÇÙY/|}(Ëòoÿú¡÷©÷ýõ¡¨î(©é’àÿ»Ê—ßßÝÉ]Ö÷Ô‡ \0ÎŽãõnøm.PvOo»Oé£Ð€Ê’X_ 5C¨..3Üw¾-3:­2B½T=‹›ÒËíñá¼\ø¯ý°þÖ(‘`&´Nœ—J)Ý‚Žý'ütÿ¬þåº'GJj˜Øú\2¯ÙKßµW, )àõ…Õ:ñìS˜§û cI—Ø¿‹ÂÄ/‘ Ñíÿ÷´§§‰´õìæK Œ8áÀJ©GOìÖ쌜2 ÕœÀQ=qâèîp*ÎËíä©W§¬±z8p»;7}¡žAE®ÛõûþZ¥÷Í}à7?ÓGµ :ÏGiÁ‰Žef8ùI¡E<È „7xž}(QGKÚÛ ¶’Dá˜e/eµo›€ä¶Ô=ýË ÍX»¼2 ÎϳcÖA6Ìÿ„¼Í"ȳ¬óUH"A»P·>€‰Kê1ú~PÚÒÆåUÇ™VíÇš Z·:®Ö[j‹U¤c)ï@½drTç,hT< ɉ-œÓ.G¤@Ûñô|7èd3'„EÒ.W¥ø‚è8³*÷¶ôÏ=º°²Ï—utvD¶`x÷wtzÙi0º«L9M Æ‘FCïýÖÀ¤”‹ç­ ˜î :Š˜/ÿÆF`ñÝÖÖYŽnïúy'*€øû®Ó$& ÛÝ-¹îO”t]žÔjæ)/>è[á§'y°/¡eÔsã .Â7´?‰Õ‹~ñÁŸQ¯}Û´í€ÒmJº#†PÆ< i}ôú$k$arÅq߶ƺö7Pþ¨Jƒi(ç!oúC}ÉÆTö»^nZ¡ŠŒ™Zôý:=ϸÕT}ìC¶un%ªùš†ÛÝÙˆêRO˜_ŸžB …«ÒÏËÎÅí±íi â¾Ëìþü¨õ啺˶*¨m/öcþMÔþPç&GÉÁ{@ìSÞ€:êJ¿?’X‚zlBó¥Î¾uø9fnH"td­ƒÐVwÍ<¥.¦92í“ù|_69ÊÈ¡_Á'Ø2 ï£ÑßBuOõи9ÛÃm.g41”æ8¥u M½~Ð)U´}pŽT™ËÍVU™®Þ=ا8y9Å -8Þª~ÙÒ…{%)G\UѲeÜq<´*n_w¬°­ÍO&}5\FE˜ÂåÐVèH\ÃÝ$´ó’Pk²^í­¥‡Y-XöÕ¾?ƒ$ÀeäÞmnƒ#]ÚØ5?nþ7r‹û—€ÐÕv2pAŽÊÏT•í idÛ½I ý•íý²È›F”p3b[ð7ÓÖ:P©V츜ZêÊ0¥‘–  õ¥µ¨>»ô*£¾¤£«Õ”Á¾N%6#6Y–¼±Ý°¢—ÀfB¡QØk$9RÃÁpŒ©Û7ô pz¦rª‘RÀqÁк–Jyà‘Š ×i| |7?lYuƒ@«6îŸI8ɬ$9e: ÂZ3fF¢Ý ò#Ð…r¼ĸé,¥žøŽÞ !ÔéxàÓ;ÒÂõΑޕ {fÝZ¼âÈ ЮÜâÄ×,aè&J–)ìYá ¬A ™a *i}½ :7‘¨(êNŸ‘éÎ ÐÄЩÉ=ZÏ?5ãêá€Î©—6‹e™ Ëþâ2åÝ ÇÀKf!¡,|%^Þs`¨â¢~á—ù÷öÄ>dãÚÇõΖ`j(àù\ ̦â¶95À"¥æ%{;8'º± ^÷7[°²€`¯¼eÖÛ n'/ß&AẼMB‰QJvö¿ýd„ÃCJ$ªQŠk‘È}”L²K”—ˆ¥‚ì¿ÙìëÕöôœs¾a‡}1ýÖ0ý×0ó²a\nŽF…êrRúóx¨Ì"GýÄéèûÂë”R‹#¨ÖñÚÄÍöa¿›†Â }šGèÇávr%j:Îö©]­5- W$žW<ìOÕ,¾)¸ë5s«2 G‘ìj!…ì¨ÙmÀñ—†,ja¿;Ž¥1´¯IDÉlQžñ±ý}ô“Ìòøë±HÔN˜Î}ruàâ%zæìûC6;'üTÔŵö‘0$uŸÑk­½A…zBÓc°GyPok³KÚ3Ô/áÑ›ÙgrÐßÂìL‚Šûc"ø×ª¨­’›ê¡_¯<¾˜_Fc4›_#Ðx²že&šLYü„7Ŧsêí|ÑÌÌ7 ÷âR4ÿºÛ˜œ¬-¸ió¤EK¼ï¹©ºÒÐ ¶É‡…l„V·Sž\nû‰6hw‚²gÃÑ–oüÝHÞx´«Cr»Ù*°jf{²~&Î;íúæ;§áHø­û£™€ןÎ]D„µïŒ:€˜á§Úà} d³úE ä»nzM…@©ª.Ù¾v¨>»ÅÕݚ˾tüË9@wñý ãf`ˆ¿É2rt{_gš:é?TVÿË+vWƒÒ*›ZFŽ]+оcÆœ¿ÅͬFàøãÌäš¶<à9¢ù@ øÎ'¸v<¨r×£txpòÁ`áR² ˆ˜»….Y¥~oÈC¼iÿ¹Ëx¦$o2R_¼ÚÒ—Yçñ@öíå/F&P úé—IzP5î9Ýç Tä9ïà*êFù—ŸËêÒë¤W¢¹ þÅ:9­X 4C¸‘˜¯ƒ¶ýâkñ$8%{ö™«=œ/㺃úüZ*·"úÀà…eó³. 0Œ=e½ F?xN¸*\Bƒmv‚60µ l»4ºfß×\Â~õ€…ne†ÇB0œY¨çcÑ«’ÚÉGÔ`“°Êð³fÎ}nẮwl·E_viÞ'Ñ~jŠ˜Màò¹÷I‹×ðÔÝëñúPw¨àYc²,”ï–”H&a†Òû¢Mg½JPêúZŠ›û:óÔͰg|è­GçåòOt‡x‹u>³j=þáwQ…¾sçGTPd£¦l€ÊóÃ1Îð™ú•=š¼2 Øü×¾>³NœzP7M/>‚ÿ×Úˆµžºyÿ@Û©õ–Ô®(^gØê,î®ï?—|xïLÝÁþbÚyÝSès ¯ãÃ[(_¼f\îæÓ¿þП8E¥Îþàþ!»Šyãÿö‡¬=Ò?õšQ¹éÏ*m.T¡Û͸+{UÖŸ¹˜½%…ª¯…EÕc=R3¶ÇPmÏe«¦ Ô@duÎnp5ÊÄn’>;‚š}Ÿêž¤Þúë+?ïy(Ï£ö&o÷‹<¨ ßÿrËý£‡¸î7ü#§R%·ã‡Ú—¹ÐðzH§>¥úY¨íP‰ÆU¯“·oË¡ÉÛ©Tgc7öqK¯•¶Œf)qø¨?¡ù›÷úæöh!°B»–Æ-Yy,5ø.£—͆—zQhíMü×y~´±l«sdŠm»ª½±eA{f¡Ž=_kçVï²7à Lá-ÀÍTüu‰ð<Ž|Ÿ±çïÆóꀨ’¹8¥]Hœ¹Û9)¹‡¦¼o;PòÍ|#Ôª†…E¬»J@fÚî¿Øt®6ßæ¦õ€ÁoíÚÉ´V`š²÷ìÖoÉúæÜ€#¼\28N 8oãÏUuÀñ”Že·E๦!ÁüÁ$–« &NGC§Â]ïÚë«A´þR©Åˆ#ˆwE½øJ]R4L.LÕz |¦Íž°äo=c¨ÈtçŽP/?(õ:¨KàƒÊãØ¡µ% fÀ¤Ä4 âŠDœ& %Ëò‚øû<èhZ©àjï‚®õ;o67Ðón6wƒ[¿ý•>êË¡R)0¾ÄÔßY&ùWI¹ ÁÌþfΰV1XHhõ©3F‚¥È’ÂÉ××ÀÚ¦ÛEÌú'œ-žQÈ} ¶Y/t¯oÃ>«QÝÓ õû×£`´+Ž·_|…æs"qÒr÷ד3ÿñël¨œ'1µê[ë¾.îa¿´l¹ë Çç\þïÔ°šâa5 ?bð›î¼ —*æÐ—d1¹¸J ôý¬÷5“«³ûë6^ñI†j½ý‰2ð"ê(÷µ“h@Ý «¸lsRÀÍ–Ä¥¼ ð˜Êf’¥?Y½Lý&.ê: ?¢mûAÚüp ®(Ë_÷ÒŸ„št@Aoýx§W(]~ïQªvŸŽ3A€Fý­]°ü' M§aò¶ÚºÕ?ëÙáä+Ne`Ô§ÛQàê¦@áÆ@`!Z—»Yl´bí²XÀa>Ê[viŽM]éXÚÑ®k;º¢§À}ŠùG‹å&ðäÏ:Þ/vÞ~†¬ÂWjÀ7•ïžuÀƒÁ%LçVCûzò^;X)Õ!oúCZÚÆ»O*ËZæBOçPÅEõæ…Žô+×)ËUõãpøyp¢¯=é÷Â6¨ÎUï~é¸3jðc R齋šðÓy{ÇKPóèk#ÞJÔê`]­D¿ÏS†ße¢v£SqDÔ"¨cpÆÚ¬¢uEÕç"~Ôcï9âDÁƒúd Êûï ¡Í+Ùôhˆñbw¹$ ÷ÛD#ç*BÒÞm£_^iOÏE¢1Ò×´´A^hÜ“Þ!mMì §¤ r¢©ìtOÅô;rçIæL+š-zZ©ÕˆÐ< UŸ†>´ 1ñšPÝ-d†‡ð‰¡esòâT9´Jü‹™Ñï&Z+Ý>y¿mÜ:=¨½ˆ¶¤éFŸQÉ¡>ÛÕÄt´ws$úNk`ó¾Y4| 8 ¢š©]pä ‹öÝEkÀ7­b¨B.•yVÏç@4™¡èßÄÑ âŠá®@zŠ ëÍCG §Û©æ›*Š×øR_m˜€òOØŽJ¦P‡^9Á^á´nÏ–&ÆÞÍ%è-ÉY`¼4öaàÍ0‹_`O ¾,UÞb½½7MÄÓÍ]ØWXS‚ϳÁ1œ×F©ºÀi7îõÊŸŽs(aY_ñV CàóÊíqÄÑþ€÷"­‹pRÌ膻ۊ—•–‚ÈÂõúE3,jyt Ä»WÆæô{@ò çÐ×Û# í¡åÌ17²};wëµ@~ÖÝNäO4 £è›´§¦AI¯ôŒ­æ(»ÊKÌçù€Ê»Æ5Êw@Œ8_OIÔŸEÎÐ%ƒ&#ó³Wª •M_¿ú¼t\£bÄõè*ë‹V?=™ËãíËÁ@ Ù•{êê½6§£`Ç¡O5`ÜïèLBÓ¦§ ?±^L³>–¦&¡>°xr/¶´\œæ¤¦ì´.w€4¿ÍÖ ø(8¤ÐN€ú±Ù¿IÚ¿G_ˆÌŽbËG¡œ²ÏNŒÆ£ŒyÒ94Ñ{VN™À”ü¾%"Wj%]=A;3ΈÞEå*„½sD ¶lÛKÐ…:’ö½Ä‚ýäŠ÷^]´_Ì8œ—EsV\M¿¤Z6æ]pC¥3?qGÏ—¡ïצN7ÝA5-§¼aŠêj‹¼ÂB "±âÓØèÇÅ9-”£¨±@¨‡aï jòq ÏGMOE;? £¦|#–ŒÁ¢ýïÝ{Ùc_¢&S©áÓÁûÏ#QawËÁ~bC)jy¥ÞÏbá€Z_º;üØJAm)šÛL'^£ŸÉæÌ®Ù¨=©Ô>ÝPGFÇúÙ£Û¨³>ü÷i¡&Ôµïуz¤´x)¢Qï}y:×ÐeÔ·qÙw£CnÂlhˆwÐsö¯?TûÂô‰ð-úõ|ïêac4†[ù\HŽÇOÐ Œ¶ É‹W_]7kBÓU Ò¤ÝÑLü¥ùehÞp‰áqZPÞt™QØE‹[jKÍkCh¹Š)醶>Z}?«yRê ZÿPqì~ÚÜó1KøJ‹v>}äåëXDÞ­·sGm³9ñ™0‘0¸À}þà#ך•~ ¼8“iÀß G ò¾ûÓ¤¬kÔüX@~_%ÊîÜãJ«-Ð…ã<?+ïH÷ÌÃÂo)_€wU6±p2ôc²Ž4ÃIÿã7U*A„5¥‘¢ìˆ6ÞŽsbSñ fJF¼f<•Ùl Ò:þõ·š]AևϯF1ä‡fåܹÝîRëz J©Ñ¼dŒ "~fšµò6¨Ä]èú-êñ1ݯó‚AóZÒXÓmkÐÖþñlRŠNñ£ˆ7±pšûw„^”*ès©ý\Ò¢ƒ—Ÿexõ¼À0¾ÃöÉï 0êf± œÌFmõùw`zU½ÇÝØ̆Nàe9Åůâ9 `I•zê?¬z<8îˆÿ›ïtÕåÃ5p®CZ¤K¦ìÙ m€“{úc]¼“ÀùæÍo²Ý/€ÿMç6^zê"ѪX”à@Ÿ%¦‰s˜EÐÇÛ¸µ(åY¡Ž…íÁ¹ÒüO¼Q|þ­å»GñSûHæwuä!î¢X2v˜Š¡H¿Á^•éâÃ1—ÿ4žâ­ýßñú,,Iý_˜±"Â6mŠr·ø9k*ÿõ‡ÿÔQ÷õppç£z””dúµåž5$]}´ÿ} ñ} ÝÿÛ_ÌÕÐ;ào‰¬ðЃs@â\ü¦ýá‹”èwU"èËr¼¬ÔÏÿíyS?dOÓÜëxÚ8*<¨û‡êÛPå¶CÖÛ‹Ü¨ÊÆw¦‡ÎÕÒí<¼¿qp?%ÉÍ5°l¦9W—¡F×¾ÂiGÔ|×Ë‘çÁ_øeœ~ü¬Ð>οV*RŸÞÇ÷+"ÖC\÷ÍR¦FCX=Ãýþ h¸ñûëDŠ~ý¹0×øÃ*œÈB“†íDÝçkÑ´7^Q!ši(.`a‹Aó¹,÷Ђi ®HôA]§žýô"ÉÃ;Ló­yœÇqÚ×͟Ű O¡mk¾ó¼>hwýV]ÛýIÀúÅþ}p©]Çš½7&›¸SÉ ð´-8“Þ8¡v‘})åÏ{Sé$gR‚q¥¿9_Áføó dhÃK䪂{Ü,â€Æ+éÎîa 3:Sº› —´qZ퀩ǂǸ6 X¿©Ö=?⠡㹎ÀyUvC(¿ Žû6l.Ÿž›/³=Ï€?p&Å!ˆcoÈ â€ðäY…QÚç ÚÊxeÔ Ä¯6sû‚ûCvY-&‰Ñw¶{òç­þ|¹”èÖÙ{ªv 4@ɬòò ¨<•û\ëj–{Ã'«]@Cý¼™lhéo’¼ ˜g®\üVÐ ´ÿvŽôÒßÍ3 U€Á»#CïÆ_áFÃK¹=0víž"+SìÁÉQÉ`V¨¾Úß÷ ,"^¶„쩃e¼«Š;QXw];‹« çÔ¿¶œï“ÛÕÏõ×õyàÁ=ë§÷OăYê-#`ôrž›U÷C¼/õõ\¾‰êYç;26÷õßÊ ù¹$TœH¾ù#åk:'¼—‹r¥xX<ÜѧßNEr܃Z–m¨Û÷Ë\oÃTöqKjèõï1øýx;‹ÐgxŸo ã.´2¢ï8LV’n÷)üIG­«ø¤ö-¨Ã÷릕 ê6qôçXA½ÛuxЀøØîdÓM4t­ŸŒg) ûs¹''Í£á-\úê„4ÂiNòBì1al½ÄÚFxµÔŽy½F#±*o…úuß`#C[v¾rCã²™7 ÈkÐÄ=:õ<=49_V?¦e¹#·ÛCÑï´³ÍÖÏ‚Ð,÷ãWòh.÷‡Eò#ôGέº)Ã-ˆüœL ˜A‹*•¦÷ý¡“Í[W W´œLœ¸+ ŽVÖyõ6 Ñšm²ÇeÛ»h}ôî{Ÿ´l´ñ¤õe–8Ú¾~íÅ%%!´{vã{Bd`ÏhÒ[žlÅéSé¿Gnk˜7p}?lk%ãÁ‘_×TD‹ßáÓÙâ Xij£2} DF­® \v~nÔÀÍÙ\¯¿5ïÀEæ:+›³´2·­å¤RÅ@v¹jÕäŒ$ȇ/8³PRâ£{÷j¹žÂàÞ¬3(ýne$¾ŠÒÊYPµ÷} ÄfjwB/ú~8 ê^W«ãŸ†wWpΣ\ÐLt¿ºÅ> Z]ïFjSEA‡+Çå› œ²õ-JØçqÝ&±ì/ÐÓ4ètèÁýŸ#ãÃÄ`P\K"|P¿yíÏHBÛ FîDKŠã»tW®ÉîIˆã÷ñx0M)«¢ué³ö™ì%Ñð–d•T z#‹ù¦0 •y³mî yŽªT¼¨VÜî ËG'ôµ¿-Æ=µgŸGp¢ÓÌù*óñ¯63´†Ò–âèÆé_¢äu9íWŸö ‹Ìy‹ö ]¬óB÷uhŽü³¶ƒýD+Á¯(ÙÊÙeœÀ¥™ÕpVü^V4ÑÁ¾ähùãG‡çföù+J ÷·0þð[oÁX\„ *»ÉJü|0îàœË¯·²å¨²op UEZ„%ˆû£ “K^A3¨NìÚ'²áQÔ &Û³¸r5Öÿ0ˆl”:¸'%#BèZÅ´+©?ï¡¶àÖÑ«_âP;‹î÷—s¨£ oí½ê â­ŽJ‹zÎÛ‘‡ã >£€˜x‡x4`h󊯵 ‰nMŸ&eCÃz;!¾Ÿíшßçç ä%è×½¼\éhL„à\tI( @nLah’9wú<ù:šªn£WþVŠ~ÇÛ’±}ÖC³™JåòI›h~¬8‡qô9Zà7q»]H‡Ã˜%CËb¤ÞK§ÜÐʨÃeJu´öœ˜%6ÿÚyÌ̼ómž0}ÛŒ¶‹ mÃ(Ðî*}ÒÛÜ€5îädä8~*.iþpDyþ™"½ àSXùt“µA÷ñ•Ü^ zhö.b€˜'âùšÐ"|Šsþ~{ÈlX>R6µ…ìàÝs%Š@kµÃJMÔú´Ö¹S@kKFèô÷CùÂÏÒcDúVÛ|50[ùH`«–N’ó¼[g€M&b—‹XØ›c'“ˆ€cÚÆ„Ÿ¨8u7Ž/ Àqê™Äåà%=ãÔöø| Ró@`ò‹œMîœÔ.{ŒýÁ„cRŠê§€(í¹f:m»'h§5à4uó¿N=ɦ+²»Ìí ]ðÝé½Ã:ȶ—ŵ´öƒ[ñÇËç©ù8æwóÇÒâøA P~yq2¢8 T~š5{•p€š¼Wкª¨ç™-ÝáM•èË›V ÕäS=Õ:aq=î= ë€ObD zŸ¾ýRY/æ6 c0´ìôL­£g³-ßú¯ñPŽ’n…˜j{m%¨âƒYcô;º°pG)vërà$ƒ×èDž\¡IÓ«¡@`>"Žzð¢¯ßÔQG« j‘S<(‡bwëEÚ1”qË/¸š¥M=íx%ÕòHO=?8/Êyüä”°=Bwnrñ ·ÔÎþäìÿÝ7ŒÓœ;8ß–6ÚW…¢sßéÇÙÎ;¸w!›Ž ˆoŸgúÕ…Jý—ËcÚQåþÂëÕXC5ˆ[Ø®=ÕùÏuæUô úeÛ1OÔ°Üþ Þ5ê¶uáÒAÝeÛ¶Jlß ¹/æôïδ-¹†3솈(Pã¹QÚ€È6Ô8èž“Î+Œš9,ÝDe/¡v¿G" N¨•ëùÀÓ—u¨MI²-òZú©f“~µkÝæø%®„: ÃÂÌÉ P§»”À³Ô÷ÙúKêîy©«HŽz%“JJÜÍP_É3©†©³hÀ w)ÿ3!â¨eß{½ó×j ƒIÑúõôOA»] =¯ÒkƽCܖѤàœ×@å4Íq9iqq͘Ð7â^,Gó„$„±Fh¹êavëZl*£§CˆâÖ‡mѪ¹8ÖlÔ[´®|#åó ´`!nôíp¹Eq¼A€ÅÎͰÌYØãÚ½)·•ç´3»àõïŒ~wWB)â _%8jÕìb£$Ÿ›ê땜œ,¨ÒýÏq øšX„µ…TÜ2ª1ß×€úgüà×›ø@ÛýÃþj Ð/“½Š®&ÑRÚ¬i`yz;ÊG,؉YÜø-+wzç8¥©w•iò€«l§”/¸ýO¬[ïýæÞXí àï«ïÝYŠÁ·¡ëƒûº³ºœÉZ¯DÙ³T¤ÂAܘà8Cv+HcSx;Ò|œ"Ù?AÖl”šÁä ðVd:†Å$€Ò«âÒŸÑ}€íXW‹Aµö­Kb¨õ“„d ‚¦©¦Íó¸RÐI}S}N1²Å¶t«Ái:b·\?ÐgU>i] Â)ßW¦a¢ííö^0£ºÿù˜(l_Ax÷ÊvÀlól¾°x˜W°èO–âu|q•`µÝëIÝÿl&¤ofmf¹•X„¸8ÁŽöbª 8åÝÁ}àzŽ•sµw0A¼þ]%ÓPÔñȉÿÙ™gûþLÈ݇}`jÏraGÉ-xպ׫QeÊZupŠ—— æ1Ü=Ä[Œà—Û·Rƒqé7D–\s EŠzùy>q8Ææ–™DßB ÔŒ…³kÿëËŸÚ§Ôâ <²Ê–|ý!æF®4ý§‹²(g2­×è%ʉF†/4XQζFh YÓ¬ÆV2BŸµ|•·ߢ|’gþÄ}LýaŠj葲]TD¨`|‚•ãûCQOö°@kT~gLw¦ü#ªx­÷¶â¬ú~Òuõi7 ª }¸Ô¿Ï»Æ•Çß· :Zœ€£¦¨A$jåRfÄþ{Bñ›³êwÔüÀÖ‡ƒŽê¯?̦±¸åŠÚïÙ‘ãß@OÓ&C…qÝ÷ÄÃ`÷Ô,L´\¡çÛ÷‡‰»Ÿuiø•{Y6 í¾ªˆmãA“|8Ø&¢QhZqéw'3šñwq£àBó¢³Çœr_£î„EÝR´¸4p½›­`Þ;Ù“ˆÖ´OjòN6¡Bƭ´­ã!4×v§Þ¨ÓVM¾C„ à0z~h¾ùpï{w×Ó~ë*£ïBóZ fVÖ¢èOüÛÓÙžyh¡2e^ÑC‹Û\Gn ¢e£ãÆtg™ÐJ®Ê縣hŸZîCW-ZÏ¡ý`væ!Ú¼D|óìü´­>ѼA…vù¿–~'è,œX™61 ÀZñzø+ÀpŽFFÓd®çŠ_õùÈ9÷ÿ{·n¼‘ó¼4DŒözïsáh®íü=m ‰yÿ–î+;m>¯ØŠAÿ¬ö> r³ñzjÔ;MYŠ2î@ëÐ+Üctž6¥7„þô–M"Ð/ÖŽ/݆BÚ¶³æ1À¸¥ ;óXHM(XXŠ€m¾XÅúñs8¦tlè‰!pñ$øâ?ƒã›51•Àsáôxxœ=ð^­´œÍ¿ |fê{–ÕÚÀ) ©kS 6:Ðà]‰’æn1ê+2”f^‘цx)K F'ðÞ‡ƒ„ú ¡¼Hv9=–z+µÏƒ|6%©@&º“tãd#Èñ^´êèù¶¹#5~î ø!ibè@ƉÛó 4ýN6òÖ2¨Í”Á‰»ªBJ ßbAMízdmº¨ëÄåžJ S¬ªUeмtïdhÅ8½mÔ²íÚ%ùv£Ï ³ÛãwûxèZî„¥94Àé"É!||Ð?ùHõσD08“_ù'ëò,ÈÃ=Ϻ‚ë`ô‹2….Ȍ۞y<T“–Té‡1i`: ÖS˜þ|Î]R­Ä; "V¯àßÏÆ–„Ž2hVe´ìŠ<¸¿–ÙIµïËøJð%PÞ¸û=;EëC¾Ê˜'ñˆs½zà󾨗cì ú5P^=ðÝzç|¡©ÚÖ(zwýNÉ`<J´)¬,mBÉ¢o˜tTQšïŽAJ7 ÊìÑ xÇøôÀw*lDÅÞ»/xY¼÷Êtù·ýá !Âý÷ƒúÒ„>*Z[5ˆ‰B•AÙÅŽgòP•qÆnåb?ªžÿFsàÖAsкßþàœËÇwdU¨ñ鬷i^jgd“ÑýˆZ±¥J'ìÏ¢6½YO1ôsüôl÷×}]ðì\fdhêº~¯gEŒ õ\ÖQÈ!@}—(ü}§ÊÑ€{é—ø'ÛhH'ds›˜ _öî¿#[‹FÞ¼’¾íPߌw°(GcFîiì«ïÐx>#/š”•;ɽԈ¦ú×ó5•ߢß)å¡OüêÑlŸR!ß<4_Z3('|-—)Ï æ¡E÷Ä7ƒqäh™”ø|Ï\Z)þõ•èèZs`± NBëkį-²íÐæ¿«L¢ÎhÛʈåê&Ú½¡›Uùê9`½rè2Þç71ƒxR‹QÀ]-ïZS༚Vñ(“#@†¿­{Ÿ ˆ„E ì^†£9t‹YÕ^@ÂÄØðûJ¾“º™7äÙ×bŽ R ÔáÝ^»ÔœB{QÉ€Öð±ßr#ÐGçÔ=ÎüŒ7OÕÂ`¾¦eú…X&Þ¼ö`V6ÞîÎwÀþ‘¿4S 8ZÙMßW§”·Œ³4'H¸2& £+Ý©/»”\ý›÷ôO^&ï©ÁÞêÊ$ú1¤ÏïñäW %+óå09§˜ç?.>ÓÎûÈzøù0ÿ“{úéÓã}¾níæú@—Ÿp˜÷ó·ä Ã’ÒßÜ(Lž©òEù‚þ‹¨;ЗâÚ…û¨g‚â<¹y!ê»÷ÆÑêÊ(Pü\îümñ`ßöŒÿõ‡Ú‰kW4ЯPš¾éÛ‡ùqãFb‰¿6èÐÄüeëSb'ÑTGø ù m4CPÉT¯\æJxÞ:>AVž§zºŒ¡ÅŸg§¥N¡eýäHïk‡yˆk¢XŸœÐ&®ønþÄÚ~ÊžRSFŽö^\=ñ"°Z÷è~^Ü+Û¢ÉwÏ7ë•þ9 H÷s!i΢uŸpÁÚ\ ÑO½÷ͼÈ"ëæƒü-âÖOßpŸ: ì‹¥Ã›ꇟ*He­o^aP¹+ÐÇöÉ_±ÿŒ +nÆû<ÍÂp÷wpj°ù,µÅÆžŽ»T׎5Á±þ#†×ØË†[¤¨M ¸©âDܶ—Ú…Ê?Í ø/láqÁ“¥·o÷‚°‰DdÓµ)*g×›qv$Í`Ó«%ï’¾\i¼Šp‰ +ú&Ù%È äÃØ2wŠbñÛW×ó¦ÒÝAþ»¼º Bî¢ïÏ· ª¹ïmÏj‚º++ø¦J‚¦Ìd»i9hÓßó3´PS„»‰GhzàôQ%¿Ð¦"ЧWÜMõƒW#¹>0L™±½ð­ Œ³­”ÁD^lûÅ70}ý}ò®È=0§y¿ë}Á"9‰j¥‰ÛŠ-.X³«üxÿ ÎYp¿¡Û£I­øÅ`ÇI :±3Nkz·ËÛŸÇX—uLúM 0 ¾µãŒÚ ÂDüpó1¹j˜¶ÿ×¼Òˆ_”lUò”ÿ1ó1xü?ì8ñJ$%óÀçáóÿÈÿëÿÉqÃü_9§š(ƒLçc>cææþ“szè¿ 8}m8ÌgýŸþP^ý…+GÂa¾qEy°SÒŸHôý¬—‚¿ÖTõíÅfÅñ2TcõôQiãûƒº,ý‹”÷uY¥«®‡ïƒæ­—ŒlýaŠšV]øGÔnwäL³SÌa.×}'¤¬­ÉªÑ &»6¾-ÝœmÉ„~}xi­˜ŒÆúxcJ^£‰]¡õÆ­ hgDsjVÍHÐ?"qÍõæö_ý%ý·¥ÔÞUø/ÑòŸ[ñihuéñô·´ñÚ{íX>Ú–&#^ý¬ˆv{*T³ºUëÛãö—!ÀÁï*b ÜË*)%¿ –㬞ð¾r,N¢©”°w”@¢”V©Ñ—äØÓvº_%b3_Ú=¤¨Â’›ÈXÍ)µ–Mæn ;±¦áÄk êëéÇü€©P3ƒøã)`MVÞ ?á©EFà´Œ'Ýõ‚ãNÊ…{²ÀS"•hwö4ðû¥›z$5‚`áÆ}OÁ |di ¢ƒ[º² >Ë®µzz¤¤žÜÔΙr¹‡uÔ¼ñùÜ>Kº”~]®Ò7U•(Ç#š vµžË8˜4.¼ ¶w9Z¾¹{oςλÜHÒf+Ðín¾&aú´§Xƒ¿Ýƒ%é·5?‚ѹl‚Xݧ`<ÿbÔç+˜†—)=7{æÎ£>G4áÌYÁb–º7`åg§·3Î 6~÷ò $Á–7ûÇ m)ØÝÝô+!ð››Ée ¥®ë$<“ ŒIE!Ø¿ÐoƂԃk‡¹ƒ¥ß#OÅ¿Ñ>\·˜_̺Çäfï~t~Š>ÞþÁÉ}ú71¸ÅŒ˜tBfa@¯öΪ‰w èÛÛëjµai5±€Î˜‰Ó¥B£€ü³|­ÓUàø½ÖÑn œ¿¿?z$H Ç[åªN+¾å]Þ7aûþP.Z„ ÆøH^=î±(~j4*ð: LW\eJi@¥¯ s¹„|gÆÂAäËËšÀã æÄ<ð4Å$NÔŠÚ˜gƒdà ٥bo\ ¨µ™™/†ÃE9—@Î’´ÌÕÄ (¦ßy̶âˆR³"Ã@=ý@ù(ѽ¥ªíå™èL%}PÙ<ÂGo;jGͪi3AÅ{=mµ4DøÅ{ìAS#Ê›\þùßSŸ±JåqeЉ•V5®§€Sã5®·ô¹á´0óqk1bÐ }‹…ûôgu·LÃÀà“ý¾r8ÞL3i¯×#5’¢Ö0fjh:Õ9Æ[¡©[ÍÞ`2îëÏ|ü û¼54AèÙÎÉ8W`*¿/^ã7ú}/µØÙó=ªiѬRÅ.AÅ‹¾ƒ‘™Oy Ã?]ùo¾ÄèTL^7fÄ|™‡Á#&Wó»ÃàƒÿCˆÚn¶m9ÕWÔq‘ñŒ¬‡ê:;8gðùÞažþ¡þ çbÐ>ކ؈?þAÃÁ«Bw¾Š¢‘o1o|'TÐ(U[ý›'hÌcp9I¨wb/ Qæ£I³oWF;“ÐÔ2›¹nÅ=ô;“›l[[ ͆Ǘ3½†æ_·[ÞÒDæ„híãMТ!ûñ`‹]´4IdZþ¬­¼r$Ãj~ŽÖ$N¾¸Ãú­ç…0¿rbD›Â9y¥[hkìâ^—Ñ(×€¥«ÿ甉 `í¼*2¸Â9²íÈ/@kúL”4¨Mጽ „?KBß~U€£ntñܼ§t’)Ë¿^¯Ùüqqml| X]Ún顪²©Žˆi U%ø®íCôYÝ—°ïããÿþ1¼ŠyÞ@d¥KY’ñwüçùa¿ŒÅ“$\ì¯Qs5ÿlù‡›‡ý0Z¬ÚSÎÞDmz3yu÷ÐOVò«ßw·öuû{Ûïî¨C7qÞÇ@uf° ­,q nüË—>¨×z.jÝ•õ_qòÒÍtEƒÅS]ßcHî ë_‰ý‰F,´½¯¤æ9³ãZHÿFõ5³üÌhŠ`ÔÓhÐìg½iD‚#§Ð"¢Ï9$ÙháÒÀÕÔ»hqKEbÙH-çkFfÏ1¡Õï¤<Ì%hCüE•üÄ3´5ÓѺ¼ƒvÛLÆBtk‹H’Ë/p’Çç¤$EàÈw>¹Ç€Ÿh‰3„«N<þ÷¼øzT´“„Îðnå} Ù£O¦ýÒ€2e˜î[)+P›Çf½uÉZµ {Ç´¿}.09à%Eô÷~ûQÙÑÕ}¾4Ä߉¹¹ÇÞ1á—Ôß.Š—Œhá&ÏQöÚÄž(ü–àÁRôyæ'â¾s•ĆPŪ†œ­ˆ2ßQ¿i7 b£ØÑ„OÉAâ^¢¼ã'ªÉ½Ø›dæ‘K”ƒ¼ºš×¹÷ò Ø¹ˆëdˆ J¦ÓfŠ-û<Ø_’²¡ª¾Õ‚ Çí@]”íô¯„>ÐX]¾¶t” ´šÞÒ„º~/áOì+,A7wýÎ>ŽôŠ„ƒÎ¶[‚“ßú•àŸ`x]åBã+}îδú ÆÛ<×ô^‚©ù¼†s£0˜ÕË«K™‘…ùóí’Íi8³»›²XœVå;xC­ä`“ô%K2ν¿J¦ ¶“øôyà´Wlb6#™l[±ËUïúèÝA? ™')¥s}Æ¿að÷ÿê ÃI’Y“Vèÿ3bæcðˆéSóÿç1Ÿ1ÿ×á(M·ð²Xïo?ŒýÝ¿}"¦þôŸøïcÞ=ŽéoQ¡ÛÕÐðÕU¦Ï8?xÜzØ z¬{êÓöÌá{âÐþS7ÂÔƒýá?ýmñ¼cBüÖí°Možñq4[ääw ãiÿ›4ÒhÕú”¼Vtr5¬¢ñ%ÆH÷ 4E—Òp…#ýþ:Íu:uëÐ.› Ðc‹F‹cø¦ÑrIÆÊK´ÚpãE:>B¬¦5…á1hëEúòžÚå»ãœp.°.Ïþ14ìRöëU΀+¸°1(ðŽô‹N8(ïþoíˆ©í¡¿yþ#Ûw¸Ù+¢å[{…@QzÞ'$¨¬Kæ)£ û˜5™@wDpn¸Hè/?VK#&ÕjJñF`5ž5Ž%;Ä+çIÑk-|p  \½<ïêôvpS€ßu¦a%ä0_x©xHI∶ÕZ\,ñ!RÞ ùGÙ~Õx}Ð[>óS9ªÓ;».˜t¨‡øxÛ«÷àïˆùþŸù‡¾‘ì½ÐÐXûázÿõÅD 0‹ ¶F|¤å^Fã„—<½žÒüõ ÷I3œÐ´7®@MMé_ßè¡ú•…Xý±4‹ ]F yÍšÌ5Ñ’ÕÕoÙbhEuAöþ¾þ\»£þ*ÊKm °_^ë¦8ô‰»¸Ö¬ Šshï“ÜËæ-RÀªP:–ØÃÉÆ»—ÛO9âk øœ›+øTuôB ‚ÖqWiˆÄd猒÷u%‡Dœ4>úYÇz‰] È íhÊRë›·ÛÚŽ´ÎÜ hªøï_R{´.·Ì/:qEkey.Ð¥mè?ªýô”W¸>ƒô³:[.`’Nz5),¬œ:‚Ô&²Àa{A~¾-8ÕÊk.¾ã”$+‚ÙÛÛ÷BQ7ð\"£nÊ^µóöÙ9·€ïô5ö;óKÀôòWNñ8!øõ{PL%œ´´V¡×ü™åŸÝ„ úÌVéJŸˆkówT1ÿ‰ÍÁÝW‘ßAê±DÚM–a!]z}Jdãå~”öf‚¼N¬'ö,P$#­`¨s4Eù Bk”.­ã_¬ÈåKlÌüÛ¯AåÊ2ñ5þYPõ¬%/}° jŠwKîÍ€z ™Î3|Јr挊WÍ÷Ik/Å£@«¸ïÊCÓ~ÐncÆqN©…S”{ÕD—ìAWŸ6McøœŽ¾íŠÕ z+GÂ-À@¸}NïIÌZ¦ô¡O`˜@nÙ¶ Fw{}ëÙ’ÀØ*ƒ>"^Lêû†o8p;ä¦çB8Ü{)NÉïﯫ„?Õ7*õûG`ú#að‡ÁFWbê2Ýúï>lÿ«Ï†g1¿‡Á5†ßëœÿÃ'Ö5o²\“Ì—@TX_Ô-Ýë>‡>ÃW˜~L]‹Ñ§ÿì{`ú¸at)Fbú±uºKxjÒ¨Ö51ý™0u£÷¹Ààú—]ûxÔi4ú‡¡ãtŸóß~M™†jùCñhº¼kù1“,š3Ͻ½„æ¦}ˆ°ßù¢?~§¾-ª …|¾²*Z´t”ŒæIžZŽúàOîBV59hÃìÐ:1e ÚèÈ]?æ1†¶ª‹~÷g¢]*©çЧËÙÄ)†c°÷.æÏgDnsgDw9ûßþMU.% –“âžzÊD=OJ_„£™ÃÔO¸¸LMîmÈ Š‹ÎÀŽ s–Mý1 r·¤¿4»“¼\€þõêq,O`\í7˵ûëÛ+¯¹ÊWkãËé c'`§ˆ7¹pÿp\ ¨ã_„cEr÷$@¸î®å‘¨wôÞÎ#<àí¿öÂW_ ìZ3èv“á$Ý‹­\ÿ ¼õýubÿIµ«a¿tž Ä&éšäÌ«Aâ)û­d›X²¬×ñ e­W^í²ò g±s®*ª‚íw ÝÜö_è9ç,ê´A鎚'(O²Õdª¼­XüÿGÜ—@Cù¾}ßw"{ö}lñ\ö}ß·D ÑF©(”„BIZi­*í…m*KÙ*) Ù²/™×÷gîg¼z;ßßÿ¼ç¼¯sœû~fž™ÏÌ3s͵|®EÅÌrÖ&m?`Áò(!Í,ð1<‹k^%¡úŸ‡À¦ÝýÍ~é<°+ÍbøòL¶>kzN~Áé•·Á9šhĵ,\®n!걂ë€Ý Þåàní%ߟI’É;a·êÁ˲ÆEµžÖŽìÒI68 ©5kÖˆý:íáŸ?±÷£Ý·(ó͈âŸ(î²Ô?Dúîoþ!ZÑùH~‘ýXú±>äEy-wÁçšý‹áñžþ"åe»±ïÜLe‚«WSæO½;³Ñôp<ösTô˜ÐNWÊܩ٠£ðOôدĮñîlÔ Þ3«c㫼åWb“ÇÞ¾Ãfœ©o“ºD‘ÇDÎþ•c¼@-Ës{»ÐRY–E[Ûáú”Ñ{ÍöÝ9ÆÀüÌs—eN°­l¹w––8ôßÞ® ¡|‰àÑ;ÖÖ¸ øècÌr*ÍA€åþç)-â'F•¼ôƒžŠµGÛA4¹DŠàq–ÏÝÆPÊ\™oãk"_´… qBÁ dÕ‚£{4=A.ö\övùP´ŠíæO< *q?‡Xw;ƒÚLA3óMUÐx(q@'´"ô\C‹A;)ñqè—tЭî‹mHm‡•j#e>_Áðù‡™sJ9`d%œŒãgÚW’‰`êw‡.vnÌÙüŸêo¸-Ô !×Àªüë²Î±°©öÏΊ»/“ûã«V€£èúÕy¿Ô©x-Wšf8üäNJáW¿Þ¡vŒÜê‹c7‚Gˆ™3Ѽ„Þ8ü,aÖ1uàÛ)â‘ù^X5ç›Éœt$nòìÙ >’ᆲë`Í5ðgÛ ëüS’ ŸxS×7W0|ÐÞóíÖ8zyN±©×KÈŽDò·TÎþÆ"0KÛÀ©åu~ŒÎGòˆô'Ò¯øüÃ%~:^Ê¢óÿàÉç#ù‰øãŸ,- `šïñî‚ ˜ÇÊ•¬ßg –;¹YÇfªÀú¸AQK/Ø6ϽhIãtá!…pJh¢Nlç穾ê=çÓÀ53Âù7Ç0¸;rY8ÆÊ§æŠŸ:àmâø¦¡q|÷Њ +Ý…UC}&Y!â`wþ€S´!–5?Vè€]£•¿ j‡F?®0~BÊîÁz-úʳ¤D±WO(Ä`eÏå¤ó/oÃãð†äùk(ÎR |_ÿª?‘ýŠäñhž'Š{"}Ô@Ê9PãlM™ÛIžƒ¶Ô.Dó;ñUÜP+ót5ö‰ºªxÙ.eõU[{ŠZŸÛûyⳬB“ ÖÑvÛ-‹|i¸™õõ{ ÎCüá/’åà{ÇÕçqXO—Ï–P†ØOþë£Í_QüÄc;¯'¥Ma¿4¼¢ÿ޲1k§UÊ`ãºN§Fvb“»š_¯RƦ[¼¨ª&±Ù/5‡Þ´¿ÇæJY}˜±›@ðïòó¢ :üz“PW6P*÷rN­Z3ß/Ãæ×)óÿðõ®ÂÔ9`~Á×{ÉmØø½£HíÅÀñ@CKh”¸<~Æ~áZÜ-ê=ÇL¯2Ãg’-ødóëÄ÷Õ_ó鹘¢sÀï~•UÌÐø‡e£Æ5úAvCžÕÕ€ü—·çîÄò虔ÆdX~²kÊ qH„ËÖ§Ç C»ßó] ½‘Éü^†ngÊVÈú¼ÿ0rlGt3†@~ï%v»“ h»Cå±w(§O뚺¤Ÿ´…¨ܨ>IÍšw ’kY1tF(Lñ h7HÝ}¶t㌿oɯ}˜Ó«þÝæ‘+—F¶¶—½Œèe™›Þc^sϱž0QaqÕÓ+SWª9×â$0Û—vs7o1˜—õÒmˆ K:MÚˆòh|¾šõ­F‚¢¢>Øò ·ç¶©€]‚ìc•:pX¾ãüõàXuoW¸=8•¯ý-Y ÎW†›Oy—s^§ÍÌÝÀ5oŪ\ž;àvïw¨©·/¸7õÝz-žô‡v\Vç™·K³Þlç¾ »ù¥3WŽ–ò±G·B@xu€Û®ÌÍXï¼Ké­—ñ¸ ’?¤_!»réÜÿå¹!»ÿ›Ÿˆòf}ŒôÒ[(~„üC4¯é­§?ª“L³þŒk"û–l¯"{Ňþ˜‹ˆôVrú{û±N ŸHž‡ˆøÄϬ,‰ù¡ÿPIö㳊ý©×¾þ:[…G,ã]Ì¿’âÑÛÓ-/ÃΟÌHÃvbCf Ë·$†l™ÎîØ‹Û¡H¯åkúý\eK‰÷Ä>š=ü±›¹Æ&»­ó.ö{f w™[ŒåO5´ÆÕÙ›wKPô[¹¿e…^лÏíÓw†7Ëy/ÞL&â„õ+`Þµ³±ª#XºK2æ¼¶‘«Ü;s€s÷ýj,¸7Ÿ¼¦ŸW¼Åo3õºTA@@øiN„\…m×qå‹q¹§.òۛ”[7ïÃyŒåµßßòOnñŸ?´ÄÛû@Òµm磫@ZB»õ­—ÈšL® S§¹3Âbß·€¢Þ¹–)¼ =¶Úά_|s„[¨6ðà)ÐmJ¾ò=Ù‚£âÏ`ã1S}‡ç°Éž-1|…•ØLlò‘‹)‡°9¡¼F±½(|ÄÏ7ÝW«Š€ærûfµIG Ë^—¥yù0Ô\ÒÐô“¦äã\=k³^z8ÜRby7—â…ß*‡ûÛ>£ïÝìÀûÔÜ룊ðߺzËOq7^œù’ÿ„+ßVŠp«‚¨`u‚ósX^8tG¯$ˆò/ƒÓd¾”rPs2Hƒ§»ËÝ +ùH›EÈ 7èleE¾‘ý9m ¢=ìÅ&ÔíOg«i‚F6¿ÂÌq>ÐÚtYæÃ'*ÐÞ×+oB7 º•IŒÛ~ÃJå²ç®OÔÀð«á­DF0²tf30Rãª)3§yÿÐG"‚ãê¼È\q7ˆS,Þ³+«ãñP›òß?to»OŠ‚Y1ÁQHí _ÅvpzÄ–ö{8'ц¿x®>ftá‚zàöŽÏ"ï² x®Ü¶a¼ø&Ü÷ÛÞ?vì8»š|?9íëHX «¦…îÑÔCÀò-Y—K Ðó¢c×Xs9»ñíºL**{Ð=âôgl$wŸ¿u‘¡¿g°†_ùýŒÇeÿð‘žûŸò‡È?DëRÿÙ¯óÿà ‘Ÿ¸$ÏÿÁ'"‘ü»ò7ÿ°äÈ^ª[ðxÑǾ³*«G)ü!9¿ ZêlÝQщ?ýC²~ÞÐ_&I›ÿÉxW(ù…‡%Ë1žP_G}é+n_w\¯¿J}Å ÏÇûFËS¥–…Ïÿ¡§÷Šjì)ÖÛ8x_Ó2Wø¯×Ký`ì—‰›nïl”.ïÔ†xŠèwŠïk`Ó_Šv¦^ðÄ~”,ª‚^qES PUu¦KyÎRòÂí¹hBw«Ú'%Fþ©?´)wU–©§9™Â=dnä—™%ÎÄ·tdgð*J‹Ü=µø‰[ú69Œ€à꼩æ9jn˜¡-¾DïVË®K¼ ➦ØtïÉ­OwÉTv€ô™ë–[ûŽÂ )>­àB%Pà®(¾7Êl*•¼çõâxôõeÆ a¿³»ú*hY21Ïñ¾íºý»ƒ§)s€£F59zå3£[g¸EŒ.{}«L¬jöOЦ‚sÏkýìd0¸6½ÃóXŽ…%i¾Wñ¢>‚l`QnþTÙzÞ~ÿ•=NŸ_þ°5Ë—€5²#1_ÁƬÝüõ9pyIôrÈð|ìyÐX# ¼[®ÿ0 ~²ÏC"+ÝÁÿʉÔäŒ3p»´Q¡á*¬Qñ-n÷‚Ýj¦Ë9EƒÚX·­Bí7ÚÖ¾Š5É.«]ž}èa:Iiò½ƒòW>òOŸ;i鈵[Ý-ûKz[gƒð‰Ðrn/¬Ï5Þxƒ ÎÇ¡ü6$wKùÂ¥uPHÞ–Ú«hEöì¿å™"=†üS”Gð7þ¯‹ ë-äßV7*¦)|§è/r}žwJæ3ŠòÜP=^ìP”Çö±££>ë;.ïx^²?‘üæ4žxr¢ëb;½ÂãçÖ=]M³Oûa9{JàÇÖ+faÿ„ßAùãˉEß"±a÷ÂvÎѵدۖ35&ÚØ¨^¤mÇ{l¬»EcY£6Q”î¯Î…MÕtˆ*|ûˆÍÒ¯ Àæìs QŒ@pb ˆþTÑ»Þ::”uQ¢¼¨Ëa åéÙÑ´žèÒ¢ä[ Rv™ÝZ€±y×íißF`>¤&~ýrð?ýº7‰T({¡3}fŠ5p¾>R-lVÜGÃúxf½÷ˆvççsÀŸ·6•‡È‚µÚÓðj'g§³³‚e¤–Ú7„g°\û<´ÑÄk|5'üIæÐšÖLoÚt*Í&*dèßNV·‰ì›&ËÐÒS ׺üõá <Ž£¢öËï›Y¨=>9»]”F¿m˜ó@³ÓK¹Ÿá/lŸ¶Ø&: eù} Y ·_‡û’Z¬,Ø×–î¼ 'ÆÅ|ž¬#â]³½¥`œ˜œ·†y^.I‚§é?YPPçËiM0Ÿ¨lIïé˼‰¯»39À:Ìæµ¢§ØÚÉÜ8øì×é©Ê‹Ö‚cŽ´z¾_8ÍÕóëeƒ‹ÅŸ'úõàzéëÈj1_p—(ÝHg EöY»r"ÁkóÞ³-—EÁÇ¢ê|ù19ð3¶à¤ž÷Û×jÖÐ(Þo ¡/×údC€Þ±ókzl Ö$]~*¬S çÑ‘žCúío~á¿ù‡È^ý›ˆòÊO€ì?<_›\ÿñOæÿþVwˆû‹(ß”|Œä¯cD<9^óöÛ釙½-{ñ žc;«NˆPär)ˆx²^Fü!žŸvtµÑ¶µ{°o~YÉö^àõ‡¸}ÉuÉ2¿c}mÛÖ‹ë`ýCx’Òý±Á¢ õ¼s°a–'q#Ý€ýŠÝã¿ñ*.—ãðèÁ±3©Øän£ÔðúwA­ë¤±ßÙ븨¼wAá£jÈI"PÝȧÿÂN©grK:Ùsï:0¬fë²K`Åù–W{“Ùúb€ÝBçü´Ûà<œÐ›Aõ¸uCO²Ú/÷ÑsáÀ7Þ3ÕÎP n§~3¶€ÐèXn˜ï,³²ò±Oåϼö€øK­É# ©Ýv8S3¤^–KaU\ “WË1¶ÃV4fï÷§‰…¨Sù쟚A9:"Ùjã»äˆACYÞBJ>4g÷Ï~Icmº4>(ÐÕ¾÷íé %Ð?JãûP EU^9P_ðåêƒK`ìwöuãÅyy{°7fM0˜¥ÞЬ {Û6žâ³`%;AÓPi6"uÍ ™ÁNQ'¶¤‡Ü›d£¶“ýmf9›+àûÜ,îh0¸´µ]©Ÿ>n–ÛG–{ÝVfž„iðŒ¼»½è ðÖ®¿øæz'ø.{csü¬Zqµ¦/i¬öNÝ+{Ç ZgJ‹ÇïÀšå=‘©yìdìÄ£aÁ Ëé±LÏÛ×ô§ƒ¹y®`÷*O_knÄõŠg"ùAþàÿ”?DëRyDzéY<^ºÄþÃ/\²þ-ÏÏ/]êþ­å™.‰Çâù¥(‹ô+9~„~üãzÅ{Èõ\¨Î¯?$×ÿ‘_ŠüC¤_C$uoX6ý?”ÝÕÁ£ÿ§¨?ð"LaÙ¿û‡ÛÍN?ct‚ Õæçeµ8O‚ç—Î=y”7{˜äjxN“ÕµUŸ¿K–c¯ö¼ŸÆN]°*\€scÁÙ¡C3À-éâ$˪ ¼ü¾„„í¥”úC)*ªY~úè7±ð"ˆž½÷­(R ÄcMuƳ›@2Tþt–CH!m¾œ+\m6³aª×úD-(Û¯UÛc\ jÞyÉu ¡¢œ¼=)´Ôúy¨YA;ðPÏ“¦=”øçÖ»a)€IºlØ|ËŒŽFèü,Í‘#¿ìÀtÔP¦Há,˜7E5ùzË–Ë¿]èª{ƒ·¯ƒc°…Lj 8<Åj‡9XÁéÅ÷7î3ƒ‹ufi¤ùipí%˜Åß÷›1£=£ày¦fÓÉ(Qð~XðªHà øQ…wv©Vƒ|ÜXn­3dsº|kø|¯¨†]Ä}š7=çõ|‡ó›; XõÞÚ.Ž€õJ3ΰ¢µÐ½ ÜDßw¤Q\é5¼þi o¸´éU$gè{ø†ç¬Rg†°×¸~{׌¸ÝE S¢ü2œ7–$ÉdPüC´’óY^ÂWòý8¿8päºÈÑãx]^Ç´”G¼ æ±Eô=¥nå[ŒªÇ'$Pä! û¼Êû™óÕO°A™S‚ù‰·±aáo§²a¿>^»å’tíŠ:QƒMÈøii¿jŦ6};aI`Ãfnï|±÷ö»ëò&ì©$¤6m›äýgbÕшꆣ_ƒMº€V½(ùDs0Ð?R¿.Töä~˜¦Æï[¼luåñ¼ÖGg$“Âl½8K‹þe(p®ï‘HÖ®®ÝÓ$_à>¡æØmÑNŶ(¼ç ÷«ckÁ布ú¶å‡ÁõDØ ï p»túküÛàþÔàѦð¾ºWûÆeصÓ^x‹1('\¤Ûfµ‡ˆ«é…±Þ/{==„Û‡(®ˆäùqKë0þÍ^E·#ùDzÉ/’o”€ôÒ_xÞ YnqÿðÖHÔ±ƒþù‡ä׉çíĆ‚ÊÏ3ÇF¨¯H:YïÅFZX49°±¤¬ú|]l¼óæTéþl2ˆ:㉢'6-´õ©î$6«zéh²6w©Ê§á^Ðin7 ÖÜ÷u¾ÍkÑ×'¶ݦ ‘nû®çù‚’^a`,ÎüH}F˜C+j\WVƒ>Ÿ‚>J<4õ TUZRâ<_½®pTýÆóÄñ:Äç²6æJ@äwUüáX Ðha.ñ±ïYOè‚Dƒß9Æñz²)J:= ÒýqÚ\´% [®Nlɘ¹w¦‰©yGAÑ"amCc5¨¨þ:ت±ÔªVè3M«ƒ†•ÈÌÍÒTÐìeþ®Rþˆ×*î…7oÔ‹U^NÌ wØ’åƒðnXù Ú#;· 0šï§Ë½ÀÈÀ‘zLŒScÏæ¹&ƒÉÐåÕ…æf`¶¡bçÒw° dì½Î¬ –7šÎ}ŸÖÛ&”oߨ¶ž±4rB`q…»f^ί¤’ò°gz…Ï;—e€‹CÖÅÛ<ÁµðŒú¾5pW´Û[ô<ªN¹ßª ¯˜W²©±´àã2ÌL“pü.~»~ü¬ÿ…] •ñÓÚ/ZnÆÏVU]¬±ïמìe¸ˆâ¡ÿVÿ„ìÓ¥ö*º­8_A–CÄß#}‹òÊ¡z"äÇá¼ÙîÃoGþÊ+]R§ˆóöÈo$ó‰xýâ>¯G$ëcÄ74ê'„ ³¶Qx}rÈÒ¾¸HÎÿÆë:¦O]Õ2¾ïrñvXWá7áîîxŠ>5ü~´ûÖ÷ªÐØ›& ë´tÚ£¸Ô ØÖµm6T¼é¤ùG¼Žc4—;îëƒlt£qÿ-¿flâÓéÖ;ŸOàq›ßi©z~m+±ßoÄò~rUØéþ×ò­@íl=Ã(;M©CÜà;·Å9ÓÔì”掴Õ»ÀÚ/ìòLÊ8…ý¼ïWܶk[Þ«¡ºYó=àíû=»Ùø3gå®!µ½Ôkg@¤¡Ô’·kÄ”¶ÎþöVñ³ƒ’¢wí@RÁÖäfOH5ìó»ü³d~Îùd²€œ´|ë£7~ ß¾E)óÑ Pá›Tm8Ú*]¤*.Å4Jÿ‹¬¾Á¦@Ì ±º­É :¯Ö<Í}úÓ3¢ÓkÁ`ÏÊþ‚ÏV8Wv埣¹Ó«*`²WaÛ@Êv0[¶ùÕ¬ùg0ÇEúÀòœêM…4+°Nšähå Û”¡ËeÕgÀþ"Û¸íV_pla Ûμ¿ÖøkRƒËúCŒºî‚àú’‡.a#5¸[ O¿Ý ŸmLÍû“^Çú…K›ÁgÓ–Ìó-÷Àoý•ŸÓcÁ?•cÉî„åÞéÓ“ƒÀ‹u>•NZ°¶ÁÐãZ{ˆÕ½Ù=të>Я`Ž»|nk¬ïŽæ¬©ÇíF¤¯¾û[~éßxû¿å—.íSƒìY\’ý=»±ãÔl„DïýE›æf’“u¾†ÍÖ\æÂHìO…Y™Ù)uÃSÇæ€ö4ÿ9Gñ Wê î?“Œí"ª>i”ü9ïÖlÇIÀÉçáäæß\M¼–"k„€'ôtåq]àscªhÞ5y‰Ø:fêݬ»ÅD•«Ý[—«‚¸ìcÝð¶hx»Cþdá HúSwªž™S¬‘G8“AžÝù'Só2PÒ-Œ¨–¥Õí¶5F™W@}ÏÕP®ÄhÐÜLÿµ¸P ˆN *µ>wœ)Aßö¶ÔÚ¢ß`0u€›V?à£Àè}ËÀ8Ö(ÅþÓv0U ë]]fcm=?9²Á¢3n[Oèu°6«Ú –¶RüÜÇõÇÀ>Ú17ó™,8ñªï3Ô¶ç=ò ,"àÊÊ|ãûö»àVBÅœ+ú<2´%túíÁëÐIÎ3ïÀ§x+é¸Õ¬PÎ6v¬Æë€õ§/Ç©Â.}çíA| Æö‚I«iøÔ$ßD b½Í»VÞÏ›ÅûL,íÛ†ìSœ· ë5$WèéOtò#—òHß"?ïWCÖ{È/ÄíAô½%÷ICq Ä¢üè6Ø>¤5BµOímomÆù”‡†xGToÛ6dÁ¦`+HáÈßÎÒOO5é¹’@ö¸@þZÍ 'Ïs†wPD.NìIæ%G,§-A•›³)ÿè&P¡“™¼Ôê/ UßV é:j Ðr0XïÉPÄÛqwº:Ì/„ihAwð”Åå‡óúð¦j«Òýa0ØÛ"dV}°pÕª¸”×`¤õyôÝó»`Œ½‹H}¸L\5ÞÐ[€i$ïê¤ 0Ë^™S—¿Ìë¤À‚©,™S9ïyDƒ•ÓîÞw\C`}öѨçœ`3&™ç9úìvžV¬˜jм¾8æú‡Kû}§‚ ã²÷à|d6ø`Ï ¸$í7××ýâ‘"ü àvT6qkM3Ïñh»r!ù bN´¤yFƒJ“_ïÍú|¢rQ>X'Žõž;,–¨ù ×(~‰äÉÙRÿo©žD~ :F÷/õ‘|"¹EÇx~)Y¡:H¤¿ÞBqMÄ¢<¤¿Ðí(Ïñ‡ÈnEñNdÿ"?Ïg[Ò_íýEêà¢Á»x=.ÿ¨ª/&÷Á@q”¿Ö=º¿:#ýÞo­§¦¾¼æê¬÷xêÓGN¸Ÿ8ÔLˆ^ÃØp)фڰá›áÄû?‚ÿÌ/í¦¥¶)»ç™ÎXŸ0 ¿K‹ý6±U\!†‘f>¯*êh¶mµ@åtäIHº.…· çµÑ?¤M4[›Lkš/}óf ¥ÁÕ}ÀÆÞ’œé‚÷QäÒ¿->»l¸sš·äg”í1_ÉQ[àZ9÷ÌÑï7%xõyLp1?›ò6ʲ䂨ŽGÑrX®+Môâñs²áêþ YWäµÿy)HžZYJÒ3â÷šè/ЍA›]}`EsJ«Ð‹Õ Hâ8/'t”Ð×(|Ï5»÷OT¾õòøŒØRAд+ %fŸ­qýèßïg@»tåÁž*ÐÍï1åœý«?W醃Aƒžè2úQ€å‰ÆÇÒÁ¨6-Dj3˜ðÑ甥ç€iÔž2QÅyýØû>Àûåg°Øn&ôÆê,X y¼·°î£ê›¬ÊÛ÷±f¹›Ž}7ý†ºÏuàÄœ¸/ŽÂçﯻH—þ \¿ýËY©îþºF¯¸ÅÀcdÍK-íðº´ËI~]3™M^5kÑqÆ›íJ§€^¢+¯#”kò_¾1aMn×áò·$ú·ü¶ó—òøKåõ£@úÙ}8?xq‹L+pâ|Î"?‘Ì+âù§d奾øÊðüĆBüvüùÈÏž÷©Y²î?{ŒÕËíôÿ¾žR·Sî½ú/J^Ú…‘6|X{;“pÎv[œw@y:_.oeP¦¡Æ¾šyÔj;úbßbøø­%¿àý-¾¿ûnröÎâýK¯o{ÈdëÓfl˜Ö÷£Ý&¼éH4Óáî±ØøÍ†é§/±ñ  WB®6ut¢Èäp6Ëœdé,sl’{ª®acÕÎK Nk¦9¤=´|wüjz›§çùße#{¾bÊ®:`ö`žôjÖD‰Ë÷Gv·ó÷›”<Óá‡÷?&ÜÞž8™[âÀÿz™q®ÎKˆ¬òýê\ž¢/ž8 Ô1€xqW·¿HRßܹ¤e—-—’™í?'m+`EÞìd›ÈOò{ä› ‚R¼…cnê%Psmºªûî*¨Ý?ÐGšëÞ®9\FDÿÜÔAçpЉc\ÉÁizÏ~~.^Núû¬ÕÃEm//5ª¤†Mf‚‰KŸFÜ™`Ús~—ÜX0?¥ÎœëBË5Tô»%µYâ±±FC°5r¾Ù^Íöî99öFià˜˜;"’u œºf_GužíÖG2߀ëQ·GËøèÀ9hœÚ†göñÏq/‡N+œðÚ’6Û~|òy›Îƒ¿ª@¹¤°=èÞŸ<Âú 7gMW`)ÍÈ+³Ak_N­é¶è+xÌ÷5øa¶e’†cü¸D<ÃßøÃ¥~à¿Õ.å—ú‡x~éÒ~3(ÏÕë/é߈֥ç/}ò ÿ­OÍõþ«?$ëS$Ïx¾ø’<œÿGy¥/³4êéOáu‡­‡®¥‰}Ò¡Ô“û—v¸l¾¦È‰ç—vöµº¿”ÿEéÓíÕÔb½ 볬<Â7s¯ßì*)Ïâ.ƃ¢ÙƒT1r:°ÿÙÇÔ뒴ر*¼ÏÛ\ÏÙ÷ÌߣP/Y~;B¨EU‹×¬~´ë¾‹ç½Mºü'¦cx€1èä°ùf9`þfk`ðy'°Ö·Åê·*Ç8wTI&p¥'¦ÒPEâý7øö[qêyƒ@èÝ#®f L/<éÖù–&æI\°qžÄì²ku ÉÇdÓi§ R—>®"%M‚ìï6IÞÈ"X1$Tšåÿ ”ºOa# ê¢éîP\êÖÓœLÿš^ ±EnL@Ü¢/­ùrè<PP{ûô•Ú„‹ž5Á{RÉjv€‡ÆûKN5ƒq(kCM’˜roê¹á©fílwg`XTW¾0ë«w‘ÆË2ùÁ–`ßb@’{—²>©uà8G_vƒ·œCŸí—+’—_›£ÆU ÁílmØ£ <¶ô=ú© ^<*ø§ÙÁ'ë„Þõà×_zX6’Vïª5,Ôƒ@‰ZÀ V°ë»ojÆÊå †]8 ü.á!‘á]ØÏ^ûjüpñH_¡ú‹¿å× ûr)ŸˆnÇýBòŠäÉâÉ‘ˆêð¾Ú(¯lÆó‚‹5þýÅûj³•)òqDâ~àÇkžeý†°5oIÖÝ:øýÈ/Äûª‘¿÷(ïÕI|V¬‹uÀ¾v}³ÁÔs~uåw9´]ÏSCýÖ~l3×Ïk;Œóê?ÏÑí¼6‰óˆCÝÏ“•cb#âFŒ‡&‚±Ñg|•neç°q‡”îèºlZΚ…O"›yô-ÞSŽR/qX§öIÙV Œœ .´êì’É¥fªá'g4;ÐÇÓUÞ‹ºZ‘¨-À(ÃÉš°R_¿êtÕæ[¢À~—›‡Ø¸8-4¢Ò¿Õ7ÛI³sM©ÀÝ?üË)ÞþfãoÀ·:¼­Çl5ðoѸT— VÐÄì(¡¬X5åˆÌ´nv=ñD{Ö )xñ‡2.g‘RKÿÑuøH»VøxyXƒL§Ñ!!zc£ªÙ`üäÕêÄce´AQóÆi…í ’;D“¦óÔÖäTÞµóþ|»ÒAãõ¡³Þ* þ¡9 V³ˆ5·L†²@‡Zäõ[…&нdãâ:Uú«WWô´ÍË›rК´*À8ZÕ".ÙÍH±ÛSq0fNÛ¿"&LDˆ²GÍÁTÛ˜æõžW`æ•R½ ÌÚðyP•{õØ ~ƒMb—ƒŠXÛ3¿¤3,›³[ ŠŽÎ€Ý²Ê¨×½`¾{“¢¸%8êÓEk Ó¶ÇY{rœ½ŒBôèÀÅrOT²a0¸šÑX2Жƒ›ýxþ½ «Á=Ø÷éÅ1ðHx·9 v™³ú[Ùo5ãuƒ=A°·1¾.Q ëóÝèg!ÿ¯ó[šWƒVdŸþÍODr¹TN—æ}#9Er‹ì`¤ßˆVäâuódù³Há}MHÖc(_·WÉv/²cQ œG$Û£xßÄ%ñÎVmóÕï÷QòÈëRoô‡€Ø—ÎJÍ;ðúˆïªéw ÐàòŠ×9‘óÃq~"°¸ö‘\…?le¸AÏEé—˜i–$:¼ᅥúéO6hräÈ-Çû&’ø5h´“ngSHgl`– ˆÜ¹¹³C  ÝNåwä¸/è>ý7u<ôëîWæD°‚ÁÌŠ‚f N›–Î7S`Ô!$·“©LT²Ý>0îÓ#êÉ! Àœ‰æÎœ‹1X/ÝÔØV+Ãè Ý.ötiÛH°%}´¿ŸÜC§7'Ùÿ7Eªàì­­ZÜ3.ìsŸØÍìQVVpœv‰õx l£¦–¯×¥‡Få©!(¶êzÂcfX~õíGâ+ «ÔxRÂdŽ5>싎Š.Áõ’‹¥úo©Üý-¯4suã¡*Ü>Eç!yFò†ä ÙH/þ­0îסùäu)Ÿˆä ù…(>³´OÍó/œC’‹ÊÞþY‡ˆê–PýÊK³ÉXyæ–"¥OêkAî‡x‡¯‚‚kW%¦Rxýt=®L÷ ¨ªâÆ›ÐügÞ·òï†\ÉZJÿÒG7y0ýÂF¥0Å• >ØXA6ËÃò¯Ø„·ž§£-6eò‘éÏ:Äã—¹ùCµ;õsƼ$ •MÝ,’X t“ÆkuÂ)õÀ/Ù¤¨¬O¥¸)zõ½@}¢„%7ù •àuü(ÏÕeà}/GL./—‰ƒ3ò[ª¥AJ=‰Úý‚!Èp ¿Ã  +T>ìùšà ò'|x~8Öáuªì\bV N[ù.[A4ò ýKÞ€ÖŽ>›3¿ÜA{{WkFÿ,èæ«Ü_uVRGïÌ1=†ÇÞ®LIJ#µh瘓`|n‡·€˜zf 3=Äûx[Òf3.Ëý ÖÜ,õií-`kÞ÷ÚK{ìs2=ÙhN<V~}: Îá»H $Ê|‹Ã+§](§¬¹æ­6५yé™b!øX_f»›%~)Z—­Oÿ‰íï§B@‡–zb¬1,f¾ k_­¯Óè…uE±Ñavu v]H—֋蔩 Èa e#%±¸ý‰äåoüáßüA$6¸éD&àÇè<$(/Åkîù¥ñqžpÉŠç•þ-¿”loãþ!ª?D}×既~pKòKQ}Ò¯xÝ!òQŸ)”—³4¾Ã‘wOÝû¥¿âÿ‘ˆxÔÿ Õoû„ãõÃh>M@Pâ‹“ÿžOGæ§®i_àtÃffn&M®¤Ôiã9ˆ¡)tl,ØètÚŽüÜcŽË+3÷M^çJE`Mþ²½ÚÜ8üX¶Ë^;ƒ÷ßàÑIîØ¼ºï»! §Ä¶Ž¤ B»x}½³ôð|ðåÇØ¾/‰“»;;Ì‚TR µÓ³4yàr磵 È]}é{9u/HÆŸX*ê¿Tóï[ƒZi¶¼›è-ÐHwû4£¤ Zi„,&ë1Ð.­  œÙz+Øò¸M¸aåË›)Ùro»Áû²ÖŒ £®˜\yÄT—Sf©ìë*7‹n·wÍÿîX½Èv›÷u²“Úw‚ý›¾r–-[ÁiMaõ±6!pžÞ¼¥°Û\‹~½ k‰÷üΊ¸ÎàY¾{õø°ëèhæ¿ãι-°Ú]7ñ¯œy5 k¾ k ƒ]ë*Ø'€Ê3÷®(Å ÄU<¬Ø~ëyF•ãÌ^”P{YLü¤. ê“®ƒÙ*“ Éw€–HÅ ZJo}cVmb>íØ½ÜÐÑ2ýöxØt??u>‡¹€þ¥¢woSíÁ õ`d»T(`‡ÅÄ"›ÁÈ»zèGËCœ¿7¹ã^:5±L§MOÎÖrƒ¹û^ӂǯÀâéçA]Z°²«}ž|¬;KDoÓO‚mæ@â·.e°ß`YÅ Ž«ÏèÞxO©×¯ïVh oW‚ÕÅ×?‚›ñ­ï"+UÀý¤a“ø¦ð¤ y–cž^Ûó¥oõƒ|ß1›9ØU²…·Ub(¾ÖIÝóD6¤\:ÿeë‰H»i(Þ…û‡Hï ü3d"?ïoóŸ–®KóL—λ@rpp½HŽáy¦ä:Ä¥}ÕðìÌ ðþϨìüæýÃ6uñÇDì×{³¶U;¶`£ ùm]·Š°±Õךº²ð~ú“jâÙ'å÷à}‰gÞÝÀxÓ›“àîm]Mé7UÿÔï˜W"нÉöuáÚz™ÛE/>i÷`H« 02?ô¸œŸçÄbœ8Nh6]¡<®¢À±÷tï®éÀÅeKe›U ÜÑt=¯‹ϯ¨0Òµ"àË!| /SØc¾¿NÚÐAÇ5Aç+@ä¡À • :ù¨­ôº+ˆ+íq Ôo‰­ï–û¶€d›cèáÇ>”>mœ+&ï¶uÊñ©s]³^  ¼YØ9õ8(=ýi*‘£ª+„¿-3µö€•ŠYAcÞc¶2WÍÇÝL¥f@ôÚ 4—öt¸íÒ:wp‚îMo[–è÷/gúÄ/†\¶Þ^FÇüºs¾Æ£NI»&úÒ†Œ¾J`z-r€‹Ì%m˜8>;ƒÅc ®3`ÿ®úí× ° ب͟÷ìÖ=uÛ¿á8dÖ6®Î^NQ+Û7©‚ó#Ñ©àÊsR4{ö¸øzÕ;¿<–U^Þ·<ëv3݇ Õ"Å‚ôA+£R¿÷ò0Ð>hfØ8ÿy7 Ÿt9t—?d/.íÿ´Tßý›ˆVdÏ"½ˆâ@H¾Ð¼3TÇ‹úÓüÑ߉œúÇüCr="žGºdÎÒ³¸ˆúÖ ?å}#ûõ«As/Èsñ<òœ‹?æÑõ0žŸ†úG¡ú%”ŸVvÑ „eöýâ¹Ïá{Îb=ÙÉñ¥‚5øü™ÖÆè†«úþð@¤ÌݲPìWM´‘€a3e®”Á7ŠR©ØøåðóÕóvø¤»ê¹þ•âØtä¶£wËg±ßôÝB»âé€À®Mÿ,¨GÜÓ_Á4 9Œvúþ@‡ÉŒ+ôXý¯ ·ç,Ç€ñÕÆ·1`žÛËè^üض‰üèØv8…§‚@~¸.èâýj1Ç$>ç‘ot\S€ÍœW‰Û~Œ½×ÿÎX&qžŸdO€™ò2Ÿäô÷`þ›y¨°=,Ã>­ìzÂx‰U!ا%¯8yÇTÜ•ëÁ鸩ü¥¾fp¡?ãÐ> ®é6OÚÂÆÁ]«C˜öz-xÂÅžÛ§€×¯â9AÑ+à˱ªgí~gXå}·s?§¬n:ötj+š>ó;ÚxÖ}P¼ú ‚Ü7nMè1ûÜݽì¹@—võêÛ°Æ;Êê…Ó¸¶´?þßüÂÿ©ˆä=ÿõ‡¨®ðoó,þ¶þ—s.þVø_Ï•Bù9¨þÕõ/ѧxßÒ%ù¥xý0êKì)BøƒGÁût<¢?oI‹}%ž°ÌxýŽÒœœŸÓ#®hÊñéÏ|:Ô·õ©!×kà}¥^>·5zÜŠÍð]î*±ëÀ~{ ÜuïFúôösÓÊ¿ai‹ã ½¾ìùlƒ¥ººÀùMZ*øç)à>¦S&Äï»Á¯™ZÓ~á †³Ü_ôïë†ê§$h8ŒÖòQôã·â“Nâ̰B»sÈÿ’m ¼ JÏz¾zß} ªÝ…\m‘ ~}åÉ[’¾ yĽ?ìçw ^ʱå§×Á¥ÃvT I z ÕrïëÕ·€‘ áCÖä0.Þ6åÃl¦ :+BN‚ù–3*{ ,STK_Ù Ö/¥Ÿ[83‚þÐ\i?8ÒlÑ0>Ê΄í«B[Ÿ‚K¾N­îpÛâÒ!]rC•†/aÕ2m=PçÚs+ F9EÒ fó H˜ûzP¬Ÿ»]w„¶ÔG¾(ÁzïÔà,ŒÆý5|Þ™_Gò‚ìÈ¥}ôÿÖoéK¤WˆòÕ]‰â(îÏñ$÷©AszQ^^ï@îSøD÷@ygÿæ/âþ!ꇊúœîmþÄDÉ·v˜Þœµ×kô½ˆÛò>_û!rÏaºN¯Ÿè§þIJÉ¿f?tªcù¥¿/y®/²/§÷Ú8ÙžGz Ÿ‹H¥o,fyB¨÷ÞP¯‹šâݤ­.ãòA¿ãйá;ï(ö%™`ɳmŸüîl%Ÿx䣀“:mõ‹€àÒT £gÒÁûþò$½Ù4BHÞ«/cYzM¯Cålvœ&¥OÍ+ÚŠ­W:@øì1÷“ ÷`YºP…lƈe2ç¬ø` âR¿í¸/ó¶Ê¿u)×­’c CõKfd¢d«DÏ>¹”ˆíAåw@3,àPÅ>Á[Í |CRˆýóP=ìÿCvÞO|"~®yÓP¯¿¨¼4~œÚ‘V(†÷…">¬~U`:6å%:ÓAwÄV¡r”ô¨\!yƒÁq'1çÏ»ËÊØ¬µŒ¼~Ù© ²ñŽ‚»sW&Áäò§Žþ¢*0íñäÑÛyÌ =v‹Ó€E>SIÜË'`%†×„€õõ4–˜þó`Hë¤n"öŠ6òòÝàÈS°Iuw'8¥nT «ç<¹8à“àòb éÙÉ8p£ãTxdÏ în†úqUI”>Ä÷!ô—“ æŒõ»âþ@PMi¬iáž÷¿­ÕÊïŸÁzâ:ïvmÁý/d7.íü·øÌR>ñßêQ<É7Êû^:÷ ù‡H¡9¾ÿVó‡ä>5¨ñynKø¼Ï>Š{"?ñä¸'Ê;Gý0ˆ÷áFqÎ¥}ôï?%¡8`tëýÝÇõTÿäŸ}ɼ?ÊI~Ï-CÂFÛme6G›cãj?N›ôÄ&ò\° *lÊúÝ`Û6#Ê£œ/…ýV¢[Nou#mö‰. ÔQ„œÖY 4_wÞ2¸tk#¾ÜNNúïé¥DƒR`ÜE¯°ì¢30kùI(i¹«ØP(ÁØí‹ÔØV+gù¦6žÀuŸ£(ËÆï·ÏûÑön²ðgº´³æòPú)¢þlüoÔ´«ñ9ˆ"Ò³®Ûƒä±s…ì‡m@šxN^l2 dFCV¥<…oîôöÝ~òoO¸–åÅóôDê¼þUñë×ÍÔqÅmWú^ÁƧž5mdSáµ1f'Áì°ÐƤÀ°X¦˜¡e=–õ,¿˜ß%uÞÍ=|ôA`{òc ##Øß NäN=ŽS"¼°# œ‰¢•ŽDpÙõ’*H\Óu×Y±€{”¯x ¾ò-•—!h© j@`›ÿ§ÿ˜ÿ§&ÿ/ÜOóÏý<äû9Éç0ýs¬¦¬„öêÊ:hO§£¬¡‹4t•5µ‰èJm4ÐFm´Ð†ˆ6Úh£ƒ6ºh£GÞP««á;u|§ï4ñ¾#â;m|§ƒïtñŽ¡chà8†Ž¡chà8†Ž¡chàš8†&Ž¡‰châš8†&Ž¡‰châš8†&Ž¡…cháZ8†Ž¡…cháZ8†Ž¡…cháDƒˆcq "ŽAÄ1ˆ8Ç âDƒˆchãÚ8†6Ž¡chãÚ8†6Ž¡chãÚ8†Ž¡ƒcèà:8†Ž¡ƒcèà:8†Ž¡ƒcèâº8†.Ž¡‹cèâº8†.Ž¡‹cèâº8†Ž¡‡cèáz8†Ž¡‡cèáz8†Ž¡‡0hÔÕÔ([uÊVƒ²Õ¤lµ(["e«MÙêP¶º”í?hÿüüP“o¢Ý¸ayO¼Ž|´ø º¡ë·¡SèÖl\N>Ã=‡º.ÿìÕí5í5íµ퉋öÚ‹ö:‹öº‹öz”=q.q.q.q.q.q.q.q.q.q®ö"\íE¸Ú‹pµáj/ÂÕ^„«½W{®ö"\íE¸:‹puáê,ÂÕY„«³Wg®Î"\E¸:‹puáê.ÂÕ]„«»Ww®î"\ÝE¸º‹puáê.ÂÕ]„«·Wo®Þ"\½E¸z‹põáê-ÂÕ[„«·—DZ 5\ÿÙ«/Úk,Úk.Úk-¨yÚÔü?²AK¾&0ÉÍÖu;Ñ#"×¢›i£×F.<šîŸG³ÿs›aá†þ÷Õˆ“|ÇΧ_lTüó¸Â’Ç-#¯äu{ãšD^,_X“s,¬¹äÛó¦öüg½D¾ÿêÍ…ãëäó ×.ß&Ÿ'í?/Ýè.ùq÷ƒŸüg}@~ü#ã…û‹ÈÏS"²pÿcòó•Ž/Ü_N~Þ'¡ÿY+ÈÏ_Ñtþ?k%§Ê¤ca%ã=½%þŸµšŒûLtáñÏÈø5_K~µ N~=/Ö-<þ%ùu½¬_xü+òë{ M~u×ÿ†üzß²q.¬ä×ý¶êÖÖwä×ÿ.Æia%¿zµ¡…•ü~ê¿gügm ¿¯†³j +ùý5º½]XÉﳉeËÂJ~¿M• øïÉïûýÎü÷ä÷ÿAuÿù:|èZÀo&_æœüfòuiq]Ào!_ŸV¦üVòuj}²€ßF¾^m;ðÛÈ×­]y¿|ýÚ¿-à$_ǧð?’¯ç'çüOäëú™qÿ3ùú~.[Àï _çýG +ùzwg\XÉ×½cØë?ëòõÿbwea%_.O.¬äÏ£“Æja%.þ'VòçÓYôca%N_ùtVòçõuK aáoŽüÿS`L"}ÝA"}ë"‘º]H¤ïå$R‰Ô{šDúÉ@"õo#‘¾HCŽ$ÒðciDžD=N"Ó’H$Òä'iÚ–Dš)"‘~Ë’HsG ¨6Í«é¶yñŸÍt÷çÝ)qþu1ý&XÂÖæùŸsãÀ5¸Óç.¦ ¾þ !hB "ó¿Ëæ? Ñ aù¼“!þŽ@ĩ낌 ›D ¬!ä …:Ai% <Uù µ}‚úüµÒ\E h½$þÑ\: =nAþ3[ÙO úXÍÂoÃüo- DZ8Vþç7l†|­è •Ž©öªä½Ú¢ÛÔí5í5íµ퉋öÚä½2ºm†¼þóÛI…~3}vø}èwséíyÌùÚtþ?½6ÝE¸zÿõk0"þ¿â,¹ýÿ‡ñÿÑûù Îÿáý,ÁÓ_„±’ô¿ß‡dÃ`Ñ9†‘“ÿ^(öÅÒ×òßWÿÏ1· ëÿ‹¹7çªïÚ‡Ís…L™2•™ˆµÌóGþõ^àß'YN"%xçfBºî/ÎVŸÿnø»¸ý÷f•ßÉëßÉìßÉí­ø]dñÏah¿“}¿›*þ~ùÿ{3ËŸ"¡75ûoM¯ÿ]”ð»xð÷¤ßÃ8o"ý4üçpß6cúçp¦ßIóßņ§ýn²ö{SÚ¿›þ³)ÓGU(=®Ïó§hþSäÑ%ûº—šmæð±+Ž®ƒ¯Š"]3Zš§}w˜åϤøöwñÃW5ºÏ¬ð§éÌjXÜâ­è¿‡}>ocŒ1F’xŸ©Å¾${Yjþ€)^0çEÆ+"Õµ+k/ÆÜ°ÏËxéÄöy*”+âv(äXŒLAz›Mñ{»?þÝŒ)Šb4_F™#’n*V0"ë«ÊHæ7Ü5¤­CC_éògk@ä*щeÜ]r³ˆ4µy¦Yà øþ ÿäÿ=_ ª†BÛóÝ_£ˆ+± y”9еd<3ãcŽJÞ»¬/£D♳æ.ïPjû¡{}_ãPúâjõ§Œf”Ýí=5Œr#|Z§#_¢Âó”Së.¨xb—Iº#ˆã>ûì»*‚‘ÆTAÕ¨®áÀ©~T' ¹NôD5\P(LN5…?YÅÉ¡¶¿XùÈ`,êâs2™ðuÔgípcÔsFƒáj¹zÿD4r¿C6¶ûÉG—ÜòÑ”…ÈR,#M‹n‡ÌÜf&Q-ÍÐ샤ÓQ4?Ö?è‡æ£Û9¨lÐÂ"¼é ýv´¨p¾r§-yYR£_¡¥?»˜ù­x´loÝH=è‚VœQí®I&huŒ8,{‘¬–-JÛôOséßÅw¿‹hožþ›ßMAÿ§äû?‡×ÿ³YÅo?¿ñúÏ!¿“Œ¿‡ÑüNêýÞœú{“Êû?çýÛþñ÷ï¡§ÿ-ø»™öï¡ÿnJú{³èÿÔ|ÿÏæ–ãõO“üºÂå·EŸÿ^'~¯ùÝœøßÍ¥þ4µp¿è½ãùŸbø‰°^wK}s˜”Í~Ñ’WówÒþ÷°Š3bÛúwÈÁ7*š[W˜ÿºÙé™åßÍðãu€úÖ9 ø™^fœÖ8+%´Vo?ünf›7è6ž¹ƒD‘ßÜ%¹" Å»™2Î$}¸\ýí¢8’»MEý:ø)3¯œ ëÈFO<™…ÛžïV¯ÞõéC8õ(‘ÑJ¶!—¢ ™ìuÒN¿ÖB–¬:Å ™†r*0×шLàn‹&xhy] *X6 ÿaAɲniŒÐLÔÊ Búë>éN(Öwoöaa:îí /yü%/FÓxDüBé=©B”Ô/QÖövQz½)ÊNÛžìs#×(V¾Be½¢Ónû®gÅÜ´GÕ'>I¯âP]a|a†/5~õ˜Ü?ƒZoE>¼”®BûÊÚÊR ¨gÊbëpÿ2ê÷ñ¿L’O@C¹‡¤²®häë’%ÃEƒÆiǯ76¡ÉÛÏ[ó~6hêîCóœ›M?ïµ _«A³£–É#hÖ.°mŸF*šËŽ*Íç£ydO°Þc4Ÿ¹Jž¹‚Šjú= hqÍW-Ð iÏ-‘´ž–€fóÙ¶çûf –õÓýÂY)¨r=¯Ò¦¡¥ÛTêÖ2¡(ÍK½°1 u¹Ë÷%A™—šûÖÈóí4æcƒœº®—cÒIõ¡%<Ï ^Êñ·±«pBÎV / 5×¶qÝû2ÕCm™Ð(ôØê^´ ­LÌy¾€ÎŠ€WRKÐ]ÝÔ2!óz•ª6×ò ¯s¿VËÉ2È·ááS^‡A'q Ž0púynØô6èÛÞ{Ôºùª” ²þæ7笚„$fhñ6«‘^[V¹è[ÍhëÌñ°d«„ù™µGF¿ ã‹øÝ¹~uG÷u@çâ%‡¡u[èJ§fÙ` ÝÓô|çÝz3ŸÌ]áfÕŒؚâLn²Þî?‚Ád­¢¾é`­cÙçÌ’OÀÄ”U;«DLyGgé§Àì~é ør@1kõ¨ÌËVO,!, ‰¤ ÎÀâó]Ƶíaù칆°røÜ`MKL +›¼»ã¥caƒxtï ¢a$Rä~§[ÿI¸G_îŒÏG2f“§üÃÏ‚èâ´Ò¤ìe.2Bê”õQ–Htón!Ý~Ü;¿UC¥ôÔ¾ñ '2yÇÜ;ý w"à ëñÈ,›~DyÛd5ÚÒš¢‰Å]îSÅj¯ ÇYoAF9ä:ª«êŸƒ»5¥+Ñ!Oéd\˜ò®VIøŒµ%Ø¡\xʹOÚPÁ€»Üu•wÌkѪÅáú¤§ü¥¨ò™,–|ÒUMSj¥Gµº&±‘·Y¨!دpb5æ]‰âÉFmezú¦LÔ%ÊؽG õ9âÓ@ƒxËmœžoÐHæ3Q''ð^(×@“µî»3'Þ£éówdº›Uh¦l¶ÃæÈ&šµ^KÕß5ŒæVNl•K¢hÞýåq¦»Zèeû|- K«òíÑ’# ð‡cZ^¸t¤­S -Û¨úƒ¹C üÁÂq ­œCžN!éúìòÞØ/Pó‚ƒíXÕK¨<ý•öÛ"‰P]/ÈÚ€Üð¦\ßãÇ —UÄNæš>då˜zóL°CÆ×ðq¥Óó¦i™'œä ©Í·ÞìÿIQO'6Ï;BbšSïwH¾2˜¶íu!¤÷¨ÎÇö¥ÿÁ_Ïë½ ×X ¤ëÔ¨)1—/-ç}„rïÎqº1(ç®»Cek'¶¥g±@Y;Mu)”öª^?YÄðÇ–q 6Î7BÙg6†AYU´Z˜ûxötw˜ê%(czÞD^*¿öŸ‰‚jºý®bPq2?qCíÈÆ¢Õ¾ ¨ëÔ0RòVƒúŸ×&GÅ2àÍR¤åÍ9BÜë%Ù{š¼å=\ÂöA«hg‰tl+xè©é‰ýÒ Ûú͸ ûMèÕ­Îkí…~7g·@VE|s0Âìs% Û¹ –º=„ÑHq»M"øH÷Ò·ë~Œ…ðv>/ ì*'~õOåò…âÆF0õй?ÓæÌDÉ1¸ÿЂÏÃ[ÚË®ýðõ̹Ú*ÌÇ¿‹&¥ýßEÌŽ«ÃâÛŠ€HqSXöe<{œ~ªöGWÛÊÆ3ô°ª³õÒÃ6Ö·³^ ïD"ýñ„Ñ2{$.¦*îXƒ¤&Ɉo“#9×›bf‹R¤4ï9qæ3R¯“ïLO­Âm´K†!cH/š*ú™w¦å¶»†záÎ^<†ÖåȲ[Ž‘•$Ù²ï%^Eÿˆ§äBcÈ}•S‘æò,t=—Ñ F¾aE—’ëwQŒ©+|ˆ…ÏÅ]~·ÅÄ9ÏŠàÞýÛl/£äέ;ƒPªrèi§ÊŒŸlkßE…ò®­¦. î¨H¼A.½GØ.‹D« Ê ·ëÖ]T5þµàýÕ>óçl¢Fz4™ —4j]àÑ}T· uT¥/‘E¢îÆ5j«¨¼%îs f ¤^[pè]pu(ݯþ QG“(…–@…*4µR¥â:Цý7Âϱ£™Ù~b§{ѬÆÿ4”T£¹øMA¦šu4¥r2wÍ'O|9iPIà7ZA∟h´^a°-iô޲ɫAÓÑXûÎ7Ç ¸cç \¢„*jK‰µ)A(ñ1(¾ßJÐmkŠ®ÓžPðÆ3¸íäG+ÉÜ3†Wé¹”¡ãÃääÖí¯•a×¥›ª!ƒÔ’±•Î rn3›iê@±º³YTßNÍÀ„ÐPØ=/ä­×„w6 ÖA§åuŠÒoãЭ·s_–]!ô¼æÝ`hg‚>ÃÜ=Ur0ÀÍC–ò¶ ·H;Èé ñsoÇCèͻھeIÐ[öd½ü›ß¥/0–Ü…–7eÇ h=p¡øÊê4´Åæ;¥mS„öŸŸ&XöAÇÓKÄnùÐ)è¼Yd2Ïé²ÙÎÍB×aÿC§öBwôÓÁ®æèÕ»t‹X‹ú# Fš#Š`Hþ‰I$¼—qÚ£Øcgã|ÆØï¿¹v&”õÒ:×Àdæäu»ø0c¹p¬­ð#Ì©è¿çÌ‚oGó¨XaÁÒU,®3¹—¼ š‡`iùù‡ÄÕð“òÓ°×Á)Xñ¾M­?˜ë¶WT_„­g#:6æHgè)s"I&>•ñ)!¹Í.«ÞëH)œcQÿΩւ³ý«‘æÃd¶ì!¤[ÅÞcÔÃ{²‘A¦k’òb2Îr|[Õ¤E¦i°wF–X)6oC¶­ wsþËȾáÔ£r&9gµ?F¸#wÛPý™›FÈã=¯:Ÿ%†¼å™NFJ7߹槵 :~8îÂ1óÜkGˆPôýGëß~â9WŽÈ Üw¿‚<Õ%ƒawm8J}>qôª²Ê„0rSÚ¢œ’XruÒ<Ê/=ØÞ}>÷5l³F¥÷þGV2¨V¯6~Û U…çÏ-½ÒCµÛº*~)¢úäg¯Ø,Ô´Á]]‰¢¨µ¶|¬ ¿uª ~Ð4ßF½Ç?ŠÖøÑàèä„·ó4®:Itž@ãÓ*ô!üÑhÒœâà牦á"WSS¢™è¶Æm'3Ðìu·Éîƒh®=§9ê:€æ ­lï;Ž£¶·5ô[6]ñà(Z2OØY“U£¥Ïð}–:´lÑÈušL'ðÛ-—¤HÏÇvÿQ$•/W0_¼ 5¤‡­ÖQA…2ÙÐâÙM(<Õ¦Ô  ¹û²G¨.†BNɶúóœo!‹_4í¹ %du•0/¼/Ú ©Ò†BÊ[ vÿ´`H¢¼Ä¬f‰œª:S7z!é{¡Ë@:ÛŽþæŽ?øË×F»nvŠ7S¿qöItØÍÕ¶K_àu” ;”¼v1›ª°·…²‹ët¬ÕiP¦?kH#Y¥w^<Êûjû·M‘VzèÃe2.&ØuÊÈzwƒÕ£ùàuí…†•º‚ŽS’IDˆ“–÷¿k‡ê£œ»tsP˸#¯Kê¨eߺυB½ÄÙ® Éhx‚½› ´Ðði¢þLêxÛ:²ÄéAˆOíçT7¥ ÝVÈ ëC§òÒWwІ®Ù¾ŽžQèéξv4ú>W*¯„^‚Áýóõyµsð®ÌðÕª-|¸P9ú%hŒ¾ñ¦g=c<' ¿ÕœñŒd×'‘1ðI«¼öÆôL13;:ŒÅà åÖpøø¬ß¸³Ê¾ô×Þ †y³L‰¾°Ðwúü5›w°è íÓ×µa™E@¸ð<üè[îV…_­§nH hÀu1e‘lœÙ!iË„D$ýƒ÷¬«‘ØÇ9æIÒ$¥°rßùlÉ:’ßI›F!Å/ÑŸü:´y­ôDÒ{–Ü¿8‹;;3Ç¿uG†KrVÜTì¸Ó1öØ¢2ßMž-°aD6:º™Û9^È^C{žH`¹²<$nßEÛ9 y ä;dô¸Hæ3 ø~"î!Í@¡aÖÊ´«(zeÔ8K<÷X?=ʾwJØ÷0rìáA)‹íÌO4v¡Ìi­O‹îÕ(7¾)å…û=7Úš҄›ôx•:ªßÞzåSƒª$@WùÕâ·³£+jØ[•p´£–0ë«P+;Ôþ"ü¬¤ÿ ê¦)1”dD}¹¡t±ö„8³§4KS ¿]}Ýñ`%žº…–¡É‘ëv,‹ ©Ê¦ÎÎ4­ýT%óõ,š©qíÖØƒf=­&ïМOvÇþV-4¹»|ãíU47mÒš A‹ý=[ÁFïÑ"ôšuÀãq¤æŠÛÿÔÞz}&9<5û³õ7†¡ò ³¦‹ ¿³})¾Ë‘ Û‚$wQ‚ü©¨c=7H"XðØ^‘øDT}É„¬† ³á¿ ý¼´âÀØHë ²¾òî÷E®zCQÕjÅyŽz¨V íì; Ú?úŒœ…–÷–êiC¡c6Ì.)³ º:E\¸š=*×Ö„gŸCo£cK6ô‡N͈|]ùw¾>€~ç+Lø ×FžÖé@>t5¹ŸàÉ!û›ßÚRw_k§–ÎkõEõôЪv¨)%w´¹Üü«ÉèˆÓÐa|)-L»::Èãå<A§ñÓM«o— ‹þÛ³bèÖ¿'!N=Ÿ ^¦ùýtâTŸƒ2`0øQ‚’ÎO¶~àìR#WÀ2aácð«'Ì®Áø=• pò6ø4­Ø.{-äLÌî¢Eª‡ú– ZÒȽA˳* öѲéò-Õ¬¿…äÔR'¢•ë0k"ý$’xÞ½xA_ªÄgßk8å4éÐLÐWÙQá•#ÓM÷(<rì%‹‹t!3†d”÷Ó"A©]rÛ’‡¶¬Gö0ÙCŠ2­œ »$úÙh‰•@Â]®žÌ(„$—û¦áo íЋôªŸð—¯>2{ç‹oüJ;Bà)å‹©+P–?ÈêÌ1Fà'†Ôb±çPú+‚&¨WJçšöPÇçA©.}ö¦àó¿­äÍ—ã?/ø.ó›ê×HÂÏYS¸éµ¡ôm¨ó‘‚®«z¾+É"Êéç¤Ü¡28Ä™ý2T³QñyÊ–@&/Ýü9s¨UÒŠwi…:WÇJvù+PZbíeC rÖvÔS·à-× Ùµœlh~=ÞÆ A m1¯ÆÜ€ŽÞ9r‡®Ð0Ya;Ò=Žý¦Š!Ðwš}‡×Ï×0qs9–ÞqJ5YßÜï¾ÄÒpè£‡ÑøXšÓxm{&Œ«lsAùb˜hÓ옾~ &ïÕÏ0ºwÃô¥¦Ô §|˜-N+‘ÞÅ _ðóÎÝÔ0O*¥1¾®M^oó†E–J>xw– ¤Î­5ÃÓôüS›ÎðËúI‡‘ó°Øìé´µëcôz ÒÖ°uî!Ïõi#$ùB;Æ$åäj‚ù¥Hv=hÓÄè4R<½|RöÌ(RïŒo@Ú‘ÖÇpûÇ‹ý'Mè‘a»Ü“ž°dkØN}'™‰Xj-2/"ë‰àO»N“!;eˆñß{ä|W%B~<y(>*ˆ #ïÐÑöü ]äÿ\ űPHíãè}å7(ÒX<ÉâOŽå¿ ŒÇ}÷ÒèK¥¸œT»íâÐŽÒ?y7X«.¢œ#s÷„ÁETÙ|ÄOîJ~žqŸuQ9o#ßpfÑ”Ù;nÕÌâ8¥[ÛQc;ËéQ§P³o§Ïä Ô~Ìeô+CumlOª_¶G½O…"_*¡å"‹XË4̸[·Ûê}/?5%ƒ&"í.ñ¯"ÐT¨Ö¥c MsÔ–(]ߢ™ä–û»eR4KÛ»×!y ÍÙÞ¯Ø÷ßFóÀÓ™iEÐ|t*_¨!ß↨ijÑâ&å|ŽR.xkP‡ÆË[¥—@uãufÊ\¨xÌ#’u„˜ »\ãk\•ºm›P“ˆ6ä+ìfbݶyœM¬ƒS W<ý,.@¦+i«;¯¤íy7yå!¼ˆÏ•NÙ*—}©…@ÞÛ>-UK™ÎÎ4~ð¦_%“ê ´ì¿z6ì.á¹ ¼uçTtY'~Wqº+ÆW€b/ôj$üê=- } Ù­Ùãg¡?&ÅÅh€úF6¹â®eBÏú¬v½HtÅ©%FfJüá·6ÒD£ïÝFôDÇOô ´êÀp««´I¿60ÿ±Ú¹±V‡æ%´oUpkÍ@‡_ æEÒAǺ„Ñý“´ÐYç4É2Ð ]ó%º·nž€ž«J•«5ÐúLšög{x¼Tíáß#ÇÝðár÷RÔFŒÎw,ò§Þ…±I)mÏøÄw_)OϦîx¸Oôo¬ÚiEÏ&6ø¢ã!ä%óºR±‡á;{zÉ¡:;XÜ É±¯?èø¦ÔHrá×çáálX£ª­–š)€M>·žïTHô”ÿ—ת.’˜ì8?“yɨSBwѶ"yËhÆØWu¤Lª»îü©ïÇ}•\‘GÚ¢ç{O²ãv¹†×1»b‘>ò^Ðâ=]dT•ÜRµœ@&ž²!õÕBdÙ]qÔn\Ù*ùî}ûˆìÌý1b¬È±î¢NT4Ž\bÝïÜÛp÷ֽϢKÇ‘W#´acÞùú¾¾÷PDü„ømŽ<(ôf„-I8 E¾±îp/ïCqÉCB#I¸7ˆîÑÖ[b”øq²§Sò;JÙ÷s¶Ä£ô\Î ½(-CÁ\$‹ò:¡¹ég>á~JŸ8"JT’-S¹W,ŒÊuÚ·ãÞ…!žçäîX9‡j Ñ|VÆHxL“±¡FÿAc“\¨u©ŠúVï(êh4MÑp£7§Õá—c¨?EwŸ×h†É›ØKƒÆ¤>ª¬ÃçÑ䔡vòÓh4u¬õwþ•ˆf$¡Š¾W(Ðìñ:­˜!š‹=å5‘Góìpfxèƒ{;/ï@‹øÜ«A3hIój›á&ZžŽ[×xN8n,qá>ÿÀoW×>V¢ÕÉ Ž‚IŸ‘8ýhÙÓgµPUòqM¤©Ê¤/Þ`‚üE»{š?!ÇËOI,¾²Wr~$Þ…Lªa–„㣮ÃÑp]gRÇ/äe„ä¬)“™›µðEî\Ù$$¯õŽKƒÄOcþ2É¥ ¹þà//m¡1{ Èš‡®Ç?JJ¿ü ¤#‡Ò^#¦¤D'Ÿuºæþš…R_ª…év¥ÓQoφRâ otígþØ’ÒñÝ~P2óã®:M ”Ü81&E8^i(-{ÊxL^ûϦm ô)ýLqÀa¨:Tef Õç¥U°ùCÍEÖêΑPo’¡ |ê: &·oƒ7Ao¿& ‹B£·X-ƒæ7h¦pËþÚ ­=±i›¬Ðá1Îiqü&!þü‘1¢~º¿l‘qŸq€Þ¯>ç\7`€[PÒ×G†X9Sv Â{VCƈ=02t³›ŽÀGË_šLvŸa¬íœÓØÐLlþ Ãõ&·Ÿ?[÷“¦¾E{5=ü ³B—¿›ž­„¹TÿصÜÛðíd£pãÓX°‹Ö¤ƒïåè-#K–P§ºr~îq[/†Ÿ›_ßž|+·E*tkaÝŠÁ‰¥ñ1l~ ¼ý‰— ‰>~Ñðß«‰$Þ, QH&ïÌ뮯ƒêÝ'cVµ*Þ¶ypöÒêóQ}mý…ÛEî>’îÉGúçrc·¨ÝÑy!hZL™{Žb#bT±=’¸÷Íå¶ò¦(yñ¹„Jn2)3I¡ì°sâôT0Þ:ÆáE‚НnfÙ±¡ò®Ó'¦Dºi³Z+ž¡Ù°˜ý~T¯ìçK1¥BÍ`Š'ßeÔÖa\S¸œ„ºäõ»ö·¤ ^ô½ÔÜBV4 a8›j¹ ]Ÿ6{0ö¡QAv/rHKœù…¦;‚T8ŒÑ46Nxè#/šñŒó=LD³ØàÛžœÛÑ|GèxàÇ^4÷3pyû«Íßó\ßÜIà·ùá ih~ûÆXÁa¤¨×µ9ÛznçR Õ6EM# !Pþ~xuò0¥»o[@ÀßT ×%]iÈ IsÉ,„WŽ‘Ô›²Ýs“ÊT¦D^RðëLðœ*È@ ©§'F?ùA–¹òÓÚ8(¬v°ÓK„ª’ª? Þ¸ZXÓ^ô€æûYÏ\µØ¡ƒå>ÉÑ,èü0gI×~ºU5Zò–@O%ÇÈÞÚ$è;äûJÖSú6üXèªSÇ^jÉ… Ðó<îšó/èòb!K·û›ßöÇû;­lB«DÞ[å;ÂÐjÄûu‰ËZ7ª0uö´eËýôÚhDÅ7Å CP{T*:Òªb;Æb¡Ó·Oü”a7µ·¦fZ ‡‹ÝÎ7&úH™‰»GÁ€K\úþzúĨya Þ_>Ê:£‡¾|؈…±‚JDï&`Â~&Æ!N&3ö,œ™¾ 3—]ªœ2ãùšgð-DËm'©,< ¯z ‹y»‹aùŽšû ›øÙÝñƨ­V¿»)˜ÃÆžÚuÕŠq$â¼û:²V‰‹’*©‘Ô‰¦l5å;’ï¾Ð¿à[Š+vË”éHõem[¶®Ò2ßYûPˆÛbJ£éw"½Ú|ÏɧLÈðù@ÈøaSÜYW¥¥7‚Ì¥›Ì{Ä‘µÈ^k"Íw%0ü =†Á>^ªÍqÈåÑõŽáÈÜ}Ë-¾MÕy)|Vû Ô‘/‚l-l¥Žø¦¯ Ð‘¾è áÁ(â›ûY&é ŠeöŠ©e~Å=ë2â¼M(áÞw•|¥˜Ã;f£zP:~ëMn¸%ʪÉcÕA”[ "ež F…lƒãfq1¨8ääy{æ*;QÊø_{ŒH­X¬Y;‰ª½Mö×P]D¡Ú\¡5b>Nß{€Z’íÏ÷, Y¯ckš+êŽd›JW£~Z¼Û5S44áqÜ{ÚîöO¢ÉÝû³EÐÔ€~¥ö¹&š~Óø¾çFšÝ¸~Dâ šsÜ|«Vó ÍOÝ÷X¿„|²æhKÐoI§êõ=Ð’œmòÂ'ZºIVN]BË7K°Ž ~ ÐÞúù­N1½x±‰&d6j~:B³€veAGééöpâFžè&z>‚Þrp-{µHà%ÿí—nÃËKF|S­Vòcç“®†¨%ƒL!™·Ö-~Í S¨Gá¹ÏÀWÅ4FH40üEã×GÀá¥Ââ ?øËc M¥®|…×í9rLJ¡¸=Þצ‡J–«>‰tÙ=áŒiÂq1å‘ußIÞ˜£ xIà³ÑáÈ(©¿­Ö{~›"‹B±?iòò¹ „ælšÜ}fÂy ¯W<' ì`ݱ%MxýýÉÉC£*P «t.Téük Ý*K…ê\j ³±ƒš~x`©nuì£v¶uÛ¡¾Gù:o€†FÙøA h2Y¸—Û’ ­ŒÖ]G%¡ƒrHF{õ%t&Q6ºÈÂë;,9)‚l‘þD ÜÈ!ïÌö«¦¹FkÓ¯"ÏÀMÅ-bä붺›茂ÛÎó¥ÆAá€Þ‰¶C»QŒoÞþˆp5îY³ØöëÀ ”¤{á¿òH¥i†Ä]gQÖæˆõ±à`”¯ Ú»ó‡»Ï1«™ãËï¹®öØ#(1é 0EÕböýÇfŸ¡úÙý§h“PSfcÞ”Zµ–¨^œ7ÛB<É·ìó¨§uZèóêWJ´ò“£!F×ë]4ºð­£'EËoVîuD“ù'ZºrÐ4lõP–Ý4£3`e“fwß Œ$è5 ©Ö¤9n4÷嚥?æCTŽïj ü&}—>èZÜÝÉϬþÉqútÞÄ:EG Ø@ÕôœM‡=”ó>XpþR Eô×CH¾þK·í9Á ¯údŠ^ùAn’í:ß5:È~’ä0재^/¥o)%7‹x@Š2³àC½ýy|µŽõ2*—g·8Fâ¸<®0¯ÛPÿóꃓ³§¡éë»v­Uh·•|YÛ®Çe ú~¸CWuò²›Šô(EÕ‡°sCo=Æo0AŸ³Ñ›æ ‚®ë›ty9S =Úæå·HÙ¡KkŽý|jÐßüvúIz÷Ž Ðz¤Eó{´Z³w_‡ÖÆ:™õ>hƒÐgi[bÐVµ3J±Ð ÚãÛ‰^œ„k³¹íö{¡S\ϳ²*º zŠ4õ$ »xeiÉþ¯aD7ƒ àßÛŠsLJ«ž*}SX€á€-Ù‹Ò#w8dSÍácÄ.¦2ío0þ¿Ó.2§†ÏçVW8aZënteéUø,YXLÔ: _ýjÎ’µ‰ÂËQ¢S¯‡`‘ìØ5æ*yX¦wø¾#Ë~ê)g¯œ+‡•b þ„ yX?ärûå­ ØRøIìÂFŒÄ¨Ò¸áýYõVN*8µá®}†6qÙȱýzBàˆr®øé˜˜ânV K¯ðóÈóÖioVŠ8òéqHNË£•5“ºm þhc4\°G"Ã7«· QLÜdobîñ9´ï _îרë4Ô†’mÏŠS¡´…ñæ¬vÊÌ8~ò­/Ê=¾`yõ¤ *XóíK”ëAÅ@êÄ›ìx`«aÐN4!ÖÚ¬øŽ ª>æô:ðÊ Õ¦ÛGuN]Cƒ§¯µd2 æÚÍì£=$¨]?2X¢›ƒºÏÕ HŽl<}bç7ùØDäd»ß{¾²®j"Þv 2¾Þ¹žx¢Òöt8ä _޼z­IQñÁÝIày×·>ÄgS…~[yþP!Úü6ý0¤ ëŸÀg'ÿàïÕæàcwI  û¡X8ß M˜þŠå†¹‚¯œ×a:•íG°†ä-;–¡¤ëd åÜ Â±î÷áæ‹lq{雫W øYh»¦ú3(ÞyHy3„ŠÅ&›ŸM½†âböí‰[Ñ~Œã:Z‘ ei‚Ó[\PþÆc^ØF*ó3Ž¿*O"¬3«¥òÏ fÇÞëgu•¡ÖÙû]«=Ôóg³¤¸@WkʾÓgàí£ Þ×.B‹)ãjy¸>´«%Dãz ,!³”)ÐMe\úŽzÄBFt¡ŸÔöÉç0«5íà]Áù"…X=øpè`ÑŒÞ=°ñ¯á*ZGÄø¹aÜup…Ì‚>Qö_£õ„É~qjjòC0C"ê|›Ÿ>ûʽl鋯’—…ô ·Á|˜Nz˜ÀwÕ]jã\°iëØ|è,K8¯É|ƒ?Ä¿}^Þ¿~Ò?ò2ƒµ;ï÷.óÂF½Ù‰ÔÈ—HdrnÞ¾à dª:4¯‹¤±|®)+H~;ÀÍ~RN=Y9½ i¸ÝÉ_P"]agýÈî¸ã>2Ïì 'µ½’²àN³“Fû2³‘9`¾ÿuB)²öÿœãìCöc… ^ž³ÈeøURå;ŸÖq™ËGOG°b>í x«jä¶‹¡PWË óS=^˜³û’9î‘¡{ z%°h&ôÔ'”Š*T*K@™žkøùn¡ü^¢Ÿtb¸?0C´ÃÝ•& »8õî¢ÊsÎW7‰Põ”¶ÿEjTç· —hPE±e;•ÇwQëÙ¦U ê8Æ^<©ˆºËºÉûÏu¢¾±È³c h0R2D{» ”iunÇ¢qè«fãÙ·hR#xEfMϼ{µ»͈Òï0Ò£Ùuy£{Têh¶þ®¨ñÇq4÷ è£!ð\ß¼J±c`ùÀ€:¾°>粃. ŠÅ@›.è.Ü–ñÁó!ôJP^R¹1 ½Í¼¾7£ò¡×ÜîF>—!t¦øõe^ºvU[M'eÿÍo 5¾Cë퉖jk€V›éj7Ò õ~£ˆYw,´¶eÜ=tñ$´ñrnéxd@Û2½ú¡ÙHè ?`Ð[^2ÉšA犓dz‘Ðm9x÷,Ÿ3ô¬lež² €¾šûOØEoÃÀx¼ãe"xÕsÊð>|p¶ʰp‡ÑOtßÎå®ÂXgŒQ±ÎLL¤­†P§Ã”γÚ)éB˜´[µ&ør}<…ù(eþÅvø¶sö»T,E^öõ%; ?*^yîS=Êoþú±ÔÊˆŠ‚9}!†QxàiØ…Ž* ŸÏ{lšPõˆ#;ûèTKsÝRŽW@ æ.Z‰[¨YæIbؽµCfÍ“¦~¡®S¯VŸB êï«ß%$ƒÃKŒ¶šhäÜ@éu¶‡ê6Žv£éÀï¡hÚX~,&~š8wö„Òk4ی罖®æ·Äî¶×Ý@‹í¾V{é ú-ìE¾N´/Z¬L>RR´EK§šGÅ^Ïвöä÷¢öƒ~ó~¯<¹­<Œ3×a3;—ŒCOʘ•½KKbõóSî²ðªâe\j>dåX—½:™õ e!ê7ÿÚWRÊ?“ /âÓ3Zxk åZl¾ì’æ_ûJžÑ ?‡çZ­wï»Ã3»(ÊúòIH¢ˆü)§vízñ¹#ÂÇʸ@þ»E׬P¸BrŽÆY ŠåÓèŽ+Žx‰>5þX-%Sä#ð™ÞKÊCIP²7—Z˜¤ú-¶;ÏHÖEkg´Ž¤@‘5ç=ë%(28ô•NÙ Š ÔïhôœoÿN¯•:äœHHÞ€×FãÝ3©cPÁÖhLú ªxæäOêOBµç™;ÆBP“EyXM’ê¼y_zM’ÂïݬåÄ9Ð8¶ee~Кo·ñs.:C›wD½Öt4 ùœqÓ‚®èóÚ7èg Ç+ØÖ¦¸úÎ-vÄ®·Á@|ÃÎ{oÙáY’{Ÿ ¼òº0ÔêŒò·6c |¼–y¨µAÆæR8}‰€‰ 0Úáè$˜Ô_î9 Óg6Ÿf\JÙFÙ‚“ìðåþ à-~]˜—­P¸‘Ô 9U§Ø ‹Rdzéóa©þªªÒ¼7ü´§~¼® ¿¼»Ì:øÙ`5‹éeÁ-gØSì£jöE" %í–•7Hü .ÚƒŒIMˆoÖªv#¹t—[Å£óH©žD½O©Ã&¸î1oGÚŽw]žãöüÓ§³Ô"ýgÏ™ëëw±zH°•”™†Nvë:"+×ÙWSì=¸ëõÜnbä<ºþF®û;îÎtѱ68‡¼¥Ë_ºo!ÿ sÙÖÐïà@‘ôÒѶqwÞ •×z„ûŽsr$›£w¤mÚ;”1M«ŒD¹Xâj²¢ T˜*s½õÀ•ô^‡VÔ  • ß0W6ªrÇXFSžEµÞ]ªK×ޣƽ¹:qñaÔ2Z"YüUˆ:Û©D9Š®£n²ÿZoꋺq~þ€O>ÚìCÃ-¡ &46Û|ðá…šÜÏ®˜öEÓ£¯j­ŒDÐtþŽFÛëChvþNæóËöh¶üü Qš»NÜÃz4ï`Ú=­m™e¦}Ð}·LÖôýèüsÏîùÐßüÖE™§tZ_o_/k"è¸fÁØñ—žãLid!ØöËt‹/ õš›•дé›]·ÙS íÎ3ÌŒqqÐ)±vâ… t¦Ì nP.ÿ•‡ý2­ =ç|únéž…>†®]æ¼ßa€â9³\= ˆù>> ï•b”y·‚aT‰¨I’‹ÆhçÒœcû`‚øÄvE˜ÔËý¾=}fvm)ˆfÀܱח§=„yFVKvð¶Î¢-Q–˜b×?ØiÃY¦ë¦µMðËU7d'ÏX-~‘$èCÀK ÃÄOØ{+};4‰O)ØÅ_pBRV5{.&^$û)©ågˆ;ÜÅ䤑Zò¶’+ÞFÚ’û|Ô‹¾¸ýWðƒÀ¯H?wˆ«å|2æt‹*Ø!Sx¹ä3Ò5d9#“=Ü[ŠlÚÕìíñÚÈΓ@JLщœÛ›æó¤:‘{ßRy™@(ò˜(ßw8´Ž¼e:OžÇJ#¿=í _‹ *§].£Aa†k—Ãl£QTHCÖõ­Gi5™{„qogðRPJb®ªÅ/”*ùræPYÊh¼)W†²_Nü´qrAù”öJmgSÜßlC}íòvL0EÖ»vhû¥Cáã÷Ï£DG¡ðT'½ï=*(|å–»ÂùW=ŸYD]'Y”¦µ©†¡´×¦(ã§?¼ö_x4£o ¹e. a6Pu…öP†%=Tÿ|ü!’jk¢Ô¶ >‡úFÏÑóи'Dï 45ß0ð·» ­É—ç5<„ ã°üÑ¥– èâ‹£´Ö®îÅQñ.Qè¾C¾Ù³D/]Fm†`È¢‹ÏþÅqæË$9|Fü÷8—±6ÁG&fÛ³§œ`ìÂôÎê0>÷GÝÝ=Ÿ*ªâuÎ6ÁÔûî¾·=º0«ýõõÓµ8˜û)+мßjNÞ`‘kÕò¯÷©à{‡÷†Uy,zjòò'ü  ç×'õ‚ŸóQ4â§F`•—¹>š7Ö“ù4ÜÈÔ`ë→ߥ $6öq dÝ@RâÑÌQ•—H6 |Š—)Úι³}SAªEvÎkÌH«9ùÌæ³n:½ÚÄÆˆô§Ÿ8:=¤@FiýÍS6È$?ÖÖÃñYœæn±u![…‰K++røÒÚï-8Ü·sÍ_îCÞ}o¸.op#?ô¿‘¬FÁKÍ~_o>Dá¯Ö |Þ(ö¨‹ºW?÷†7f¨@Éž­Çv¢tK3g‚ýC”£%¹¹!`Ž ÆÍÉÚ5N¨˜½ç€™Ì2*ŸÙÇ$¯â€˜ø¢þxª… .—ÀEÔPØÇV.†š«39Ò-ô¨]æ=ÈHÞŠº–[ •rá¨÷áæÈ#ï&4°îN£zކ5ê² uáhÌ©ïìáòM\×^I± ©ñöŸ"oÑtôìÊ-i4;9µ-wéšÍJ„3Ðü@ó£5ÚúÖîhÞQùólì¿Ep?)SE‹˜Ä¯/gM‘„)6‹eoÔ6úª ζ@¥ Ùö³EP:×w¾Þ ´2Î]"è¶’_Ø0úW[&ÉžFÈ9–ÌÝí ÒqÒÏqåóýƒ”åP±çj¹G$¤$/æŽCz²œ‚ÖŽÈ/|Ηìs¾Ç/s™BÝ :›`•ð–èØ¡±]áÐòÞ4 Ô;¡ýG¡[Ÿtj5~{ywº^n]¸Ë=$4µÃ<×8HåZ=zê5AŽÐ-{æL^S tVŸji‰'ÿÃoítòü&SÐ:ÇÜ¡ÍcõW=œÂåÐ*ÚA¿ö:Z¾.ºWœž‚–q‰^§‘=ÐYgé1mU´y·ïUB‡V¢j9Ç tZ¼·uµ…®ð‡unY‚Ð=?³•¡|zÒ?¸Éný¢‰$¶4»aпŠÉäª Ów›=̈‡®½^zø¨­AN¿Pãܤ±b ðÉ –Gž7LoO¼Tf}>Û(í3†o»'ú(ÉÂÂ]Ÿ×L¯`1¦ìšVÎXN t_w뀟3E§ßÂÊ”¾Ú·ï&°.ð˜¿U6ók_3N Qí“»Ww†"ÉÉÁ0ñ§Ì %•­²)¬OÝz$Tw¹å Ä–=xíøÌܶ9,pýaÒ?pI>s…-6C®#“ðúÄYýÈBÜÑ-qWY»Ö.M­ßÃ]i¹2jìáÈñÈëç ?#r•¶z9xF £è… äõ9ܱ%œƒüäŸê:£@E~XÓî(ô˜ËÎD5EËÞv風p'Ý@Ð<îÕ¾!­bƒó<§ŒQê´rjÔy#”þÕðcjâ=ÊÆ|Ô­!Gyã”Ðkwp¿ç–òåìPT¤nZäþ„*V9Ü;¿d"¶¶u¿ò'E5±‡*ÂÏQ=šÞ,Lö jPzÁ×)‡ÚT[šþB7PçÓÚK3ˆzy³ = ïÐÀ­1þ'¯®n*‰½@c?·–ËÞh2}ûƒh$š&È÷åŸ@3í7^Z¹hö1ïbí½çhî5.þÍWKmØïŽÚ'FnPY²¢.Ù;ÞkÑ'Qï~Úæµ"4Ø9þíç&4 >œ‘"@ŽFÿYçŽeã¾q{“½²²É)q]"[ö •JCQF¤¢4‘4ˆB2#!”P6Ù+Ù²’‘Mø=ÞãÍ{ßß_çñp»ù㹞ó:Ý÷ý9‡ŸÊ­ £É®²Ýþ²ÙhªzVò~CÓF«·zThv]KÎ<@³¾oe6Dsû˜õ3çYм.©ÕxÏ,Áß.óûˆ¢Å3‰€Þ‹÷‘hÔ½ôšvËVéù_žÁG¹€Íôb[å9ËþòIþòþrþBÒÿêßïÿåœü=ÿßRŽ*ûÐÀ¢ú”­r-¾H¥Ä¯’Tïÿ åÿ–qü-¹úË/ø[²ó·tgËßþ-oý%?s­ä¦™4ÿ•ýüË7ùûõ¿Ç7ü–¦â‚&ÚÇ9ÿïïhÍ0a+a.ü¯ÔÇ×*{_TØVûßÒõ>ÿgŽ…:Q0 úã®Ø^k:Ðj|(ÊFHu –oŸ‡q£Üû5Ë[å®3,""wä·Jðæù&¬“™¾Á"{àèÍüS°Ìö³Åþ³$¬*Z ?Ük·ù,Ç£9‘hûFÙ±ô´ÿÊzbY^‹ yfeªh‹­¥}N[¥èŒšnÒ̮ȴÔÓlú5 YJÕ"4A¶Ç® 7ô‘ãˆr7ÑÁnäR(:~]F· soð³Z ¯N¢iAò¿–þ- ‰;¤/P8¼“AÁ·Ÿ×ÓìBaë4òè[PTðÃ.v1/ß¡²wg×a”´\²!íþˆRó=wdn¡ì1õÏ=«P^ ¨·NŽ0O‰FbL¿6PIã`¤¬}*/ø™Œ…ÕânöÄó—û‰QÕ»Ú­±| ÕFëÞ|àG´¶rëàDŸr<ªÖ¨iõ³"wµVùWéuP»šºðTy3ê&…ì2.áC}o¿˜äëh(Ÿõvì¶UpÕ×Qr¡±z6%šŠwìioEÓÙàœÏlh¦<ÙvÑP ÍZÔ†ÈMÑüäÇéh4ŸîêxøŠßÜcFh)ÈÑbl»ˆƒH6ZÚ «HkÙ å'n3±B‚¿øax ­<Y”yé`…&:tÕ´o«àï|ý- øË)ùËÙ*“ü·´àïœýo¹Öÿ–Øýå™üýù¿sû·ŒäïÅí`cOª=/? Ç…$¯Âä­BZM˜Žßw,Jsî¿2’K þÎëÂ8Çåþ5WX¦äX´4–†Õ[³|R^m°nÅðxïý0$ÊoeÇÌ­2Á¦³Ã»“|˜Tm·ûQ¤¬LTPtFêf¡Ÿ ÁH'zž-ž; ûžã‹_ÈÄ"õ6™Ô™§ZË>!Ù*Õâà\›=(¡\/Åïòúœ@ž¤žÛú®/Q€ý¤/½©6 Òœ®ì ;ˆÂ"\½¤QÔ«aCøË” õ¥d±ìÇIíf(ës¤Ø(Q¾œ%vÇÓxT#ãûµvwñLrºàîË´ñwøìq¯:êŒû~Bp‹]+PüÃWxvJÂ1Ä OK;b”füH>ÞQ•­ÊÆÛÚ Æ—cò‰x(ÔŸ* Ž Ø gÇbóý¡)ÿ¾²åE€æéRüµ-Wø 2¯ÝØ|.íWfë]hv<_ÉÐ$/™`OÇ»~>o xõEëžy‘B]æî{¹LPÇGD5<µå|Lf–P{*èT£c;Ôðh åqA£UÂÅj¨‡ëVQSŸ¤Ïbtcƒ&ö¤ˆ†‘óЬ*Äõaå ´øˆ¾°ðvƒÖwûÈ5ù¡Mã{{@óUh·ýòkÈ:Ó„ø¶Wì…n»¶O¹=ÐgÀ¤eÞAý«×w?np!’è[×xŽ^P"½m cÅË?EóŽÃ/GfRáýþ0ýü÷/¿½—áwèöÞÀÜݪóM¼G`á Ý—’zXº|‚á‚âIXy6–r[rþLÞûÕqîl¼Ô§²eGb×dIiã\$5ðbŽŒ!Er3=¿>¤ôgú —¡„ÔëQ¦5H×`/?Ïn‡Û†wIUy!SÌ—¯#DÈâx0lÚb/²ídÕ0n¶CöùÓ‘O‰‰³ÎÙñç£ä®HÚùòòÌøY1ÕÙ!¿½Ú—öàŠë'š ¡à ÷¹<;¯ýC¶Š"Ó"WÞœ~bãŒÏ„+P’‡Ø¤2'¥nÿ©­æÏEYùož™ú(O7¹Û¨RÂeä2ìPI‘[þòôT™x÷œ¤w“:‹¿ïUFUÇ¢ËMyP­ÙûŽ;M"¢Vk¦ÿž›¨ñCºÀéIjšÌ :A­¾Ÿ;îK¡v•÷¼Êê¾ uù¨ï֙𬀆Òòç2¢Ñ%g*Ç4¶ èžE“ÆxãŽVDÓØÓþ¯™¢™Ù˜)g„šý©‹ö˜-Có—²ùwÊП~?¢1…íîŠw¥¡¥ ÏT™;Z®ÖX—C«CuúwhÍøÕùÅ+´Ž° 4…å};Gý0ò‚êV(2 ›ÿa’ÕÈ ŠÒ+¦r‚TŸ)êYrxí-‘Áê $Ǥq쿉tAR Rß R()øçÿÞÜ-ðجž_Úç9ubY‰=Õ.GÀ«¢Qó yþ"UÿÙL•ÞÞ¢ «l…,®ÙŸ/nR»?ڊΙµsH¡Ù ; rÕòj3£ià=Ͼ¡§Ràýj WoØ:Mé-º¹‰Q#óNiSÉz,Gs²G‚Wº3L!Û}Ì-ìóë-ÍÑN-r4†\…4^y¾r_L¨äÇ(Ÿ‘m]|Q =™%ü"ûŒ«ÜSZP¢pj[u®,”imüaò‚ŠÀçÍÖU)ð…èiÀ^)¨Éý=3èóꓯx_ln"ìŸtÓ¾³{¡ùí„m´^1ằc´’ £Ñí!{ß,AçÔ›¸ª'tŸ?3®Ó ½‹C%®ÉÐoö[ƒt:*ÖUδÀÐE¡0ŠAY¾Ýi¾½ F»^¸m³‡Ÿ©ÕËøîÁ¤˜{ß5"O˜ö¯’.ê3soäªü#`öÊÆå¡Ìï0¿Cø·Ä‰X˜WºhéB ËŒùÎ'ä™aõúª‰ñúgXW7$S—º†Dq!Î'îM"‰&Éé“בt¡çûÉ…v$/Xç›nðCʤ»>æÊÁHýåÖZô‘nûŒÁÕýéÈÐÙÃpÑø 2Q+]È”?ƒÌ]íñ?Ó‘µ~‡³×/dŸŸgmA®³¿*Z}Gç}ñ{uêxwOàŽj[ZZ÷‘K݉¢Ú±¢?)øQ¼!æ5½åÜùòÙô„c-ÊînkÈ{T‹ò±×eû”ï¢bQíÜ%x‡Ê³ 6^p·YA¡Ä5[ÜË®KB“òA2ÒéÚÔø¦2lµ5ïW Éwá~íânw‰}¨CÇÑH;a…ºYG_Ú¾†ú&V‘O„Р¯ÄãG¸ݰ6ŒúÈ >ÈC“>Ÿ‰Ýºhjwàõ³KÉhFiÑøfàš½õ {I>‰ææ_ÛIõ£ùo—áõFg´éÍýÀ‰–6ìW~5£e)ô¬^†ÚÝYT·¡8a×zÃÑç_ÿöêÆEx_[Ãt8©²~åÛ‹>¸ºÅ'ySÎÖ*ô°RžÕ?!ÉÌ‚ëñ¥ðªýüpä÷ãk÷Èw¦fK7ïSN#W'œçýQ)ÇPàÛ-´¢¥¡ï‡È¹¡Ò¨SºËŒ ª'[r†y@]UÍ=—„FÆ‹l+1h2Ž¥-¾LÈq^L²N ö´8Ú¨7„‰‚Ã?ÔE®¢Ðʯ³1·E Ê÷§”£XÖ'Å9”¤Ñ öB)Ò|Æ1”%v»ùÔå–MCkÝF…»Ìkº9¨$ÒYUq›•;8Œ=>¡ÊôÎþ¹îÓ¨j{«ùØ>T+à·²;$…(ožM¢FïNž´éIÔ4Q\"bêD­eÞ.e=fÔ®èó¹ñšucî¦Aý³*ÕR'ÑP4â/»ÔðM3»=cN¡™ëà—¼¼h.z(œx@Í»žº¤E‰æÉ¬Wª§-QÓŸb‡9ZNñ}”*ðC«Ù“ûó¨ÐÚôÊŠšW ÚœQêE›Â æ¨Åǰt17dŽBžCwˆÉãͽo9ÎÝ Þ2œ¯Vg8OðµÉ3E…b߯ÒüÅ’nŸP½ÇóÛÊïìŸN‡W†&,)cû7ï—\0-ÌT:Q?Ë!êÁ/ÑÂwy®&ü× Âq†ÞÁk›÷¥¬Q~‚ôÞ#Œ5  ³åˆ;>uwÅž^d¸™¿b]Ç— gA(³Íõ"ä~ùrËÞ¿H¹ôŸÞ‰µºd¹–š$ ª— Çÿª÷ŽÕͼ6õ0lŒ9‚¾í_ÿOgͯòMï%ø ›Û›G±„Ü·´‹á^ìÇècÈëDSÿ^Â>Mµ'÷¾,IÅp?»ï%¤–9•7 Œu"è£|TX%¤Œ»<„ª¼OgZ$AS`xŽÂU¨70ð˜¾î•R¶JdÐì¬ÙgÖvZÅ»Jön‡6Ú®¥æÐ.Ñ;>Ÿä7ÆBm){áûrÐõ{‡Ü¡÷úú]– „½“kÒìž0' <:¶pùå Òž …aó]bYl0ûhãú6ø)'n«ú˜~uÆ’öÏÇÃô!㥩±Z˜é¬©Ìèß³nâ}¦êa^èPð뼃°HdæYÑù –¹wy³,Âê5R÷€dX ¸µg‘èžÞ'ÑV)$á¹Ä˜KØËH«'ŒFr¨‘üÑ2qŠtRœùäΰˆÔ©.°-ƒé˜<¯ÙžKA†¦.ÿôsȸ¡¶çã‘»È\ùÿ°¦²¦;>å§CöR‹…ÚdGäÚu@P_Ñy$ãK¥ù—?&¾\ñú îÈ—â-àÍG¡ÚA¦CÖÅ(Êæfœ©ùÅ£JPZqàNç>U"7b”Yv<ªËüå¯L~ŽnuAň'Õd×~¡rõáÆ8Ü-áúµ¶ÏU§Œ %Û\„ÔThŸ}E2V¯os¡¨y9_»õæoÜ¿+=C¾7uˆ‡Nqí2@Ý º¸3•ïQßj0:’•ßfÂ~µ}‚F7¶kû˜¢ñ6Ñðá|*4 ÷ð ÔTCÓà–…ãªhf|NÍz–Í,lÎïTDózq“7‰jhñÀÓ›àk²ù‚Ñj{àAËÄ´¯+ü½Ö¿ ê_ïƒb:à mÒ†w_tU»¹‘íñóJŰ÷0óG–->IÚ#­ÏgB´áõá$15ÇjH‚&òTIx¥Xy-Ð÷ ÄDÁ£H-M\ÂAY³ÈÒ§ŒXRp‡ü‡ÁëNÙo¡$no¥“œ'T”_Ý8&ÕG*Fý±€:‰.ƾ<Ðp¦™ÞÎbûß Èø½¦å3 _Ȩ¡ÙC¸öv×4k°uß /¦ó”s±Õ^Ðxz­÷ÑÏjhà<îÛÄu©ö1 u ¶Ûh™IÒjo­Ñ¿up%ä¶û&aG¡v·§ÿCsu¨µл÷Ç}“ßµ`Bnõ·ÅJJë6ù”"ÒœÜЄ½/É6Ÿ?äóÀÊZäÜq"‰‚Ö<á!Me>h“0zýÚ™õšvxõBç.½ûJ¯¾Wž»l»z?’0®®¦A¿ï‡gç#`ÐEQʘY ~´YrÜÞ £iþIßUyàçèF°sÁÔQž•&#v˜¹#ÐÚ1 ³þqBJn0¿_?ªé9,jÙÜJØÞ˧˜ßW•RÂjñQþ÷ K°îù5-äÀ#$jdcg‰&B’è`Æ'ÍŸ,Ô@èTö,R$Ê 7å3"5é¤Ä>ùgH›õac  ’GŒÔö¦"㯘®ÔIÈùè®aã²Ú:¶Œü(EöõlÅ&ÚÈI’o_tĹi?g?ÌGݙғ=ÈWxð•®°7 |x.ºòÀ/ÛÞ~‡Bu |±ä7P$ˆˆ¢küŠ])¡ð|ÿ%^³ì39aŽRœ4)æ$ÛQ¦‰¦Ëj°å~dÎö£‚ÏÂécÊÛP‰3Ê‘™«™0O5WˆÞ£Ê÷É(ù®ç¨ª”Ò"wÕª„µÞf!ò5ÕE¯Dqßy#UÔ4º¶ÎóÙµ–xjôI—P»Ü°‘G u£îïOŽ'ì'÷¦MD¢¡°Ì¤å¡Qƒó‹ÍçaO*mØÕ¡Éb”*W š–šŸ|¼·ÍîõhÙ+°£¹É¯¡©hÁ¶ÆÛìv-ºéúW|ÓÑ2‘¥öfú2ZyÜzB9€Öš-kžýhÕö^'m–FŠè4·£íÀç0§o°˜®~wäIgœŒðwä`XLé´)$KtìâyZ¾#Ä’÷EdË«+CâY>ñ•¹xBn ºîðSâÙµvl«ƒØ—Ž’›BÔ$¹ù½;•ÿžöÏÁDˆ6{¬g¦ q_Ó#“4ýûçíÉ_OBºjfä)ÃM¾åBJ3¼»óò=ËójBþ 9º¤9oƒŸ®ª AîÅàô;—}à=†ä(SÞþOy´ªýŽæB.ñ(ï"£.äì½rÜo3¯ i{]ß̃IÛ«Í·4;vy/·¿8äœ^RV_„Ü›L~79¶8FéÑØ‡& b…Ó<ŽÃçÕíçä,4¡¸UÓî{{+”þèØ~ìg T¤_¿Êx ª•']‹ö—îCŽ3CÌOÍ`È”Éw\JÚⓤu˜BØ/)n:¸æ{Ô¦› âðs^æyÑþ/oJóÍoi"=Ù¶¬hzÈŒ·i,#ó…‰ —pžJ¸‡Û†ìk¡„ç[×Ömü'•¡6p<Â?cÔg›y®½…Æ •¢ü@“_é.Þ˜)hú•ìF# MŸ¿ž‘t„ÆKzaQ&h$ñͰO†z×”sÜYÌ„<¶@•úŠàcž6rŸr~æmB®HÐ §- V`äþLõÔÚ—ªóñn>§óª–ê“/;ZËð@£á­·A‘=Ðdy%Oÿ4Ÿ2~À-Q¾+zÐZÀÞR¢ñÚxo=z}оMNɱЇŽU{­}LÅðÝ}é¯x3ôÍ´‰ \…~uKýî tXóÖ ƒÄÏvÜf…Ñe»V.ÁOiïƒõ0yáC`AnLÏ÷µ Ü„ßùF¸sÉ=~Q¤°Ôø¹0”–ê’`ü ¬JÖ~HèÕ„µn^ú&=3$ºnxŸ¢<Iôžm{ä…d²Õ âDJH±G½‹]éî|žf‹#BZáç~·õY~kÍë ããÀ&îUdVɸ±ü Y¦(y³Ï_D¶D-Ö §‘ã…ÓAÉräJ7œ¡×çÅí¿Iz÷nÄ"ß¹ÓŠ)—ÙPàaJ€¬  ÒÐ×Ô­U PŒLSìí ±u5ò”bC±ý‘sýDë(áΣʢ.‡;û™ÂŸÌ@™ØøâòŠ(×̶¯&PÁ¹£Åwñ *ÑÚ/JBåÕžwæ¨ò%Óò\GªòÅE´¬¢Ú·Yi’=ˆt¦öéve¨Ñ"Ò­žt5õkÉö¸ä£Öâö|‡Ï=¨]ú^ñEˆ3ê†EWDÆ¢þ‘™yéz4ä“JžW‡FÍ·T>ž{Æç\Ë}DSò ›ïƒhÚZyð#1š%´ü¹Æ€æ—üîòæG ÓãõKÚoÑrgåPwZÑýà"V‹A«yAã5 ´öyâ ómº/ˆ•>FÛ_,lÝmÐŽrŽ™¤y;, µL‘ÒÀ‡õØw¹ýåÃúb!ù ¼¡ØûŽú$»Å,v$1S¹™Û!Áô‡Km.!™ù^ø‘ //t{D첂èžü¥g_!²¥ŒZL÷<ËóŸÑ©€'–Õ6|éSÑUBþs²|µ Þ<%&±¤„L]¾7 UàaÃÒh˜!¨e“‡|hÑW€ÎrEݽÙ¹ýn7¦|¯þ§YGç Ø>²{qx“·bþ|e¶h3¯µ/ÛroæÁG“¤-Í6ŽYbg$OÓ¹\o¹ôo&&|ƒ·8FyA- 1¡`ÐÆÙ>…ÏÏ—’¤ƒc¡8AŽèĸ(”æ–§Ò&¨CùÏ÷™²B•”ßž³/ úsÞ m¢1Ôžíïñ„F³³bœ9¡©kjªç•?´Üœg)šëƒ¯VÚâŸôáÛÑ0=çH+èHºó>î=|§¯Í`ð€ž§ 'sü  /eøÂ£À ’Ò%f„Á± ¤{¿YàÇøäy½ž0*yÕ,«ë"ŒÇ »¦¿4þ$õQÂ4»Ãƒý¡¯`&‰jþzÜe˜µ½’*fåóbõeo;a‘=È%õ},K'|ï(†ÕK,¹Ï.ÃÚ‘¥&Ý~$².<•r: ‰›,¤Íg ©'¥ô˜ü$ß7YÉ5Ö€”º²éÅÕH}³ÂVÑÙiÿ\£+y‰ ŸÛNð9N"ãOÃÒÚüRdŽôiœÊDÖs=?õ$ŒÝ5eECì rÖ¸\˜Ü‡Ûßœ%fl6A~fß0£ã¶¸ãì”狺¦•ûfEr£Õó?¡¸Mت•1J®¸ÔŠæEæ²ç­cŒÛQ^áK/³2*ê‰ym'9‚ÊWc¨ÚQ¥½‘’%<¬xVŽÕ¿~s;Xo…/êî»*žCMëW÷rÄp?ç]«wFoQû—ßÅjÔM=ÿ Rõm$¾LˆGCÅ¡3ø RYå\…ÐØõ¬>IBSÃ}ƒ;YÐt®/x!Ÿ ;¿bIaUAóZ†~Z¯B´(«C©´ü¢êcÿÆ ­ºʹîBëé^ Na´Ý3)ìÜ Êw{„_q€ÏÙ¨ÊÂû!GJýܧ„÷­Ü)ù#a²÷øÏmj[|’ײ1O–è!ù ßjÛmîTCvi?¼÷Ît.H%Ì×áÊŠWñ[š°£JMyÜ 26’©´Ý…¼“aÃ÷¡øÑÃa§Q(Ï­Š»Éz¾èÒøÄ5r@ÍÏ,$P·ÖØ¡žDð/Ê®T·x¡‰„gÇÞVhr–4¶Û}šÔ6êÌuÖ Ñ/V$ézÚæsŸŠÏÂé ®dêÚãGTPû<Ô=ó] ÔR=í¢e@8ïT¨UÓáµÃu–fßÍëÔÏ̵â öhòi¬Þ¼ÿäéRX-Ô×Ô‹8Ž{Æyã¿#e÷5hö¯'Û`k…–¤ýç/>GZ?S•jÑlöæøætÀ·š'è(OCG‘ëÊÿýðç†ÒÃeèéí2×6…¾µ©Cþ2øZY¤•;?è3wÞZƒ‘pJ§‡Û`ÜýW”ÍH&üºkɼc7L» Þ™:Å¿åv·zúýç±þ¾3°@§¿ÒFf KJ{+èì`åñn³ÇoïÚŽÓyV-F$R¸A¼üˉ'0<¤¸„¤ †U£†^H^kôЮ|©¨æŽ3ŸDš§4oM‘þìÓÃô~dÜëÕO,eŒL­u~IÆiÈrûÍ)ÿåÈf¬:ñ"9vÓ[?‘,B.Óvé»m¦¸ýy'½ã1äã÷.£mÈF3¹#Çk pGßKdwG!w“[/)¨QD¤3ŒÆU Åè= N¢Än…olô¸ó5çíŽ!”qÍ•«a(÷éb¤¡@*ØBx^9*®ó„¤hi£ò›×š'J^£JîúÔvRT¥Šˆk­MGµK\%ì–EËõc…ù2¨Q'¤~‡¤5u9i¬¹¥Pk;ÕíJj—>ÜIôu. …¡¾ Mº< n—r®­èG£¯ÑMóUW a¢ã»ìÂ\mÓgNë[@Óa5#¿!54+nÙõ¢–Í_Ñû§¿ C‹Àj>î9´¼|cäÉW´òÌ=qµšàk>Â\'¢SÑ&Wjd, mÓäyÏâÁ~8›>†öÒâsñ,l?ªsk%>4<$2”Ô€Ìññi2Â|m¿pŽò$$¹ök¥H öBÊ´I"Bn %"øÇÅû} {/>n›Ca¾ŽmJÐ|íÆçrªlˆ¨7h»U: ϯˆ¼–¸CA˜Ç 5—!qIM‡Èí¤ÍX¿yq£äŸ>‘ÆçðŽq]µ0 ‚¿Æi¾1wBŽàÑ£û»Š §¹Ã'0X·ÌMSf.þ§zþ|u  ç’ÅR~ÿ¦/fœºEº™×êÞ¨¾Û̃Ýñ­þÓ?:9L±$„ã ?Î…œª*{oÒ-ŽQÍéèJ> ȯµ‹€jø _û$+ס؛7arÕJ²T³O>Šäl  òÇ÷Ø÷·9¡ÚÕ잤ã.¨“}Úîþ4²†¼\8MOt.&P¯C‹üõÿÐRh]^Ê0V,ƒ¶µ³…UCÇÞâ7Aè ÿ¥kúç"ôYSpBŸûÀÎOп:µ_›?$£Y¤†ï |:.ôÃÈ”ç,iµ$ŒÛßNz1Ws’çh¾î†©ÙÝU|0,vÿ év˜5J` ë7‡yIJG™ì(XÜ‘ìÌ'êË*úòɉ°êÍÃÒ!x ÖzÔÊ´Òä‘HýbÁ™¬!$N-ÚûRˆIuY£§¢œs,¥Y÷'RŠ1…ÖE)"õùÙÚ:ªH;³Â;<ñr[¾Y3¥#c¿ÅݯcýÈ4"¨sYMøØãe\]³uuy„9Ÿ’QÖ|ÀíçêHR¯ _ͨO{+îØoÆr®…ôB¿¼"·ú*H—ôPœHFyÞÊ%KÞ±©½ˆFÕ5¶©>”gP9יɅŠüÓ‰Z¨l¨`skU2®ó¿'5@ÕË'&ƒfPý­=ÑèÔ|Íñ¾ù;jîOM¸¬‚û©½Ä/J¢ö Ô>VQÔM¡Oˆ#=ŠúÎÁ¯Îò›0Ù‘w2¯Ñ¨ã}hÂÈ}4~|Í…dMUXµ²äÐLüdGÑ•@4*¼f.\’ Q$h©ÁŸ›æfˆV'%’…Ñ:–¿š}Ïc´ù-¼£§qõûm«%ƒT<>ÜðéFâç›ÿ—œmP™} ïÈÍe.vk@z¯w]ºgÜŸ$y­î:Þt‡$k»r&‹,ˆ/M“Éæ/µë :”Âs#:GqË-ßuÿtÞ®nȰ[Ò°O~L˜ëènÑÁ?PL§6?”u Êe]/0ZåAU^åvÑ=ËPs€:©ØkêtMQÖŒ”{ª2¼†Æ;^jßò qèͶý'ã 1ÿB¹êñHBn›Én=¨¿äåÚìýê8•2x®A-›dçûR)¨‰9ËÕPNÐÓM)t…PÓ¹ÿY«GÔÌ4$düsŸ‰é«£ÞPwƒwäÀÁûP?%pÊ„ð{.ä—éÅž$äÆwo̧ 9ÌçsãóphyG;ø§õ;´¯d•Ø\ƒ6ò¹Ňéà[òÞIbS)è¸íŸyp²º*éè(ªù¡Ç£ÉÑïÌèûôúûN £{ 0”r8@ùÖ0ŒÐ”L\Q€±\§ëN~05õúQИªªò\¶÷™HÖ_Ñ6Ô0ëA¥'6Ò ón¥Ê“>a°Ùx@FL–×^ß¼ö þ¼Mm´Q¯‡J·©N‰$~žIkƒ¤çj£’Ÿæ"ù{ÝC[¤¼ÜïÓ:¤¡âµ e AºÚI°8í‹ÛÊŠ+®ìG&÷q+ú»ÈÂc‘yàF/²4¾±?Ù›s-6BÝ‘sÖé Ùñ¸]7s¯íaäm¼myNÄ´Êt#ÎzàŽ÷JY‡ÛèQHËMåå#žÕýö2Ý EÛŒšò5 ø†ÌÎȉqÜéÉ÷kÊà·…Úš”{Ýñ»:w  cS²|Pqº[dîÛ*Çp%r*¼B•W»*FÛTpÏï´¯‘ͨv¬$t#IaäÀźíÏP£RàEýa^Â\91zT>G­y®¨[*)¨]<ùÁ#uZÜéC}Ë4™–]hÈž*þ¨eÚó\ä£ñ )ƒgŒÑ”‹¢Î·'M3Ñãƒ7šu×e ao|qIý9Z”ËËkMï&ìêãǭЪ3 óÍ/´^¬gD[éâ2Ïø³xÐ &Y˜üÑî«s±ÿîzt0?Ääœö æÍ&£)ÆŽmÞooÔë) ™‡Š5 zs6û6ÞHÓCâYÞÚÐÅhˆÿýYÂ(b^ñèÍ™úvþ“Ûâ;³!FíÛ+zŠZˆš¤!ú 1û¼}I…ðAÖüªe ˆz0iÏözï&¯‹bvÛá|IiàiF)*»3¯nöT‘@V›”o˜Ÿö?ùkE@²»jtœS¥!ÇÿÚ¡ûOßrœŸÓI·-Íé‰Ö›çnÞÌcç–¦CöIÑÒVVòÚQ^£òà˜éšò˃^v’ãboLñ&üóø«êó—¶8Fî®éL&}‚ücžÝ!Âëð©ï—8É!(Ö¥5ô¡«RÛèêCœ¯ üúªÝ 2FŠ4ü1TsÉüáæƒÚ¦;N-{ƒ á½Å„õ9h2~¾qÖÍš{NhH%BktšJÏA h{¶?¡; ½¾×C=ºé{Ý©‡î×'µm‚=¡oOOø‹™aè/›¸’ƒA¢ŽA«ðãfâ3´"0’íüØòCŒ³Æ—°ž1…‰$Û‡®ÕÎ0Ýj¨pnfQ»© o]B§çMÄNEŸ¢[£äNÝíP–̬ýâé0TIÝ,LyÕÕé\²GÛ‡¡6´!A`¥ê(.–³qA#M½ÆvÏhB®’m”yü÷Œ ú«@§Û÷J¨ËÔK¦µ¾ µ®WâîZþ†šàr­Âæz¨QöúVé°j̘ÿèÞ„šT©¬',ŒŸÓÊbQ¦ ÎÂú¦àfŸŽJœ€40{žet¥‚Æ{6ÆIB’Ðf’é’ÍñB—ã„ì åS‹ímîh-›ˆÓ<6_W¤ŒkûìáÛ­£…ˆè0xtúä!=èr2x%²zÈ‹E’Cf¡ïš˜½¨î4  ƒåûë0¤M·Ž·aøzÈݽ`t¥ë”{žü|¤zuÁ&ßv²ŒfÀ é E屇ð»í…´ëÔ˜ûªæN1Q‹ÄN­&³{`ùÔ¶›¦‚ð‡sV>r÷}Øèî*º$ŽÄ:…t÷U•”áÀ¹Óý‹HöÛym°±)·)ï›UBêKÝ_Ø®Ô"Œö½ nc¯+y1LÛ(=IjO sÖò*7Ýcd½üŒŽãg²»1s^DÎ'Ӊצ³‘û÷]ç“òÃÈ{ýÑPãåß(ÀÓ”TG#Ž;‚«D’4åQˆ-t<Ž"…‹rxwOÝGÑ‘"ñn¯P>\V…;ÕD­B™mî¯c¸LQ.\ÍÐà€*¨Ýb­ƒ+¨8ø¢PÃå*‡Þ£®Ž{Ž*–ýEZÏàžï·rÛN/¢šÑÙ#£Ëµ­µäß}ÉP£˜w=Ï5÷e°?ð¢C­9ΠðÙ¨ýiÙH{¨ uƒî½ð#F}jå·^gÐYbÄ®ŸºZ)\|ƒ®æ‘Œ\GSÁ²»FßÑŒZTáÔýL4[®’è;±„æ Òîµ—Ñb#|À¹Ü­8–~ÉÍI¡õ>ÛõK?¡ÍU±ô]Êжé¤ýÆ‘ýhçS©þhÿå ‡Y ºøð!/×0Ìݽ2·]>¸»?ó, ‚ŒÆðÇVµá5Qð!’H8mgåSn ¯Ú½Réj!Ž„x Är‚Û^¹|U&ä¶“Ä«=é•I»_×ÂoIÆÁÓÅž—ô2¢›×áèˆëÝ vcïN:KoH螥¶¥£†Ô¤Õ¢–>UÈð¸Dï¼x ²¢ì>ò(ûçz¯´d?QÞr9 rdD4Cb96ï ™àë:óŸ^(ðä%•ß|ŽõÞÊ)_Èæý¦ïŸëx¬?6ó «toüjóX–ês¼›¾©{Í_‚ã>]Ûszz‹côòỼ|\ ©¸E+OدCÍEÔò¡˜ci†˜J%‚ìÈ›­¡Ü¨©·6–*m£Î›¼Þ_ªü[ëZ sëiuÔpœö…埞ê‚&ÊÙù¶?Ð|?Š~£ê.´jù|îj´)ó¶†ßÉ‚ö£ß—tiV 3MÆ«Iº•ü•’5@qgŠÈAèh‡ÕYš0h?[HO´?LI‚V^:ÃÈ¥#Ê Ia0VWú=°·&ìîd7~Ž„)›þþ¶:˜9èôQµìÌ*-v9/ÓüŒO¸¼/,ª #%½ Ë¡lÕ7Îê›”7Ÿ’¬¥çÄëLÐ Íĉ_ºGØ1ÒVýº’LÉ^;{v É*zÏk‘ "Åp/­1Rë¸vz# i¿¯DiyêÆOªøÚŒúÞ)Yi„ü¦`­M÷°4Þ %ÌñJ3WY÷S4½š¨kªJ‚f<Ý-þ\FóÌßÖñÚ+h1š,ëõ#­v•%-rõ‡Àh+þ¹•~Ŷ&…jæ.ãÅÉŸ¥±°üi·¢¨û(à+ðÜ…lªíGX]s!ãå“B²‹szÔ»ãïÜŸ$1R¦ÎWL›oÆ,öKMOš³´²ä¾g"9ž>y$Ÿµ¥qŽ¬ÅŸÞ@ºü‘ágÖ»´ážlÛŸWE%ª™A™À{ÉvÂ~¦á(M_ÕÛÄß“ìí ø -süf?œŒpÌö{ÐÀg|§Ÿ‚°¯”¿# n…gØö$C½UÏqñu¨Û>°ÁÇJгI”G¡†âHZéÀy¨®ñßva´€ðÚÞÒä†Ôø²ÖX½³#÷þ“ç››ý§ÖÔñõܰ0BGÈ‹ç^}³Æ¿;È&¡)ñgÎZkhΩWö|Í-Õ‘uôG)¡µ²çaɹ³ðuÒI¥ýX*|;z7õgtlKä÷¨©†.þÓg] ;"c¼å]9ôa)í£ïÐ?'­$݃}ù^ú·>À…¦k/W'`Í\c‡ñRÑê3Žð+¡ACÆk ¦]ëø§ÏqÁï½ ÌïbanONÿQjX8µlïþY–¯ðpÕªaÝŠ°~ß 2±Ê‰¦¿ÐÞkeF’7õû$¤Uì¶O¶¸µ"R„QÒž:…T?£U"¨‘öÁ‹Àc]YÈàèÚWôÓ„]3‚ö!³~ìþá§zÈÊXóåMØ,²SQ·Ú·"çnßU¿ä~q$ü‚f2ò*Äy)4†"ÿÏOŒ¤f…¸ÃÉ>b*Ý G2_ÄÝiAáÁcrÙ(zj=ý©h Škð >OÀäÒ¦ ØQº—ö°ûÉt”»ýêË`&*HŸº6JôÛ[Þ'ö@åëK®~ÌOPÅ·`ϱæhÜSq¹è›ÊvTÛÅ*ÓldPbðèç÷󨑿ýðÖÔ„?9qÇ$/õLÆ&µ  ñã&1—OçÐTê†O';šqG‰88N 9[É«ëY3hÁ_xÆÞg-÷¬?zY„V'ßM­‡Ñ¢u²¤Á¢§*ÚKøDûwrÍl7/ÚSÆžZ?â‚…E®‚Ý:xøycc€$Ì~¦>@S14S‘M@†–ëp ûWH^«ä‹!r€øO{1@Ü'Ajÿ,ˆùؤ$µNÈmÍM)1®„|6ç8; k¶LNmiðô̧ÁhÃxJ—|Çì¸<Ë»Vðëw"Á£MD"æ sZ–´#“ Î3,@ÆÎ¡Gt4µåxHí´æ?÷Qj¨æo^/c|g@µ™ãÄBS®n^Ëë0=öŸÒt¾Øÿ3t3·Å¯ªëÁ»ö•ñ7Jµ›y-µjÀo3Êz8-oé;rÕ 2“*xv’nÛ@*!'rÙ%;¹Å1zG4\=_>†¤¼½4s> » ^ä‚¢Ñá§²ç¡dåâXú}(çè|︟*™VÚ¢ á‹7çå˜àI¨e>Tõ5MWÜ] ±Ø€aIý 4«Šå~v: -£,:ëñ*ðµq‘ÔÌ_ ¾Íuzz·Ÿ„Î]&ôœQ¾ðýS¤ÐräNè}ôÆË4óôú4J?ú¥Š¹BÈ'àÏá'A*o`,ÛžêÀØEb+W˜ ÏnWÌ®…)Æ©‹] 0ƒ7Í„„×`Vb‡Æ×[ã0/—©õ¶57{yðò¥b@× KXuUJÒ(ä…µ§¿Yõ‚acð€×!¡=H¼—òdP† ’”ªMMHJ#Ù‹N³Õc€ŽKŠGj¥Ë÷/?‡´Íþ^gB‘!ªVzMh KÏ|›¹ ŠÌ&¿wæ8"ËTWÄõd+±&ÉBŽùÓµN|ȵèÛ¾ky—¤¤®ŠŠ¢@7¿ãç^,ƒdg}ž3S·~3‚bNÏø­òQrûíiŸU”ö}VA+ƒr±þ|ìÁ¨dP£G¹•šsÚü—µQEå±óKQ T%÷ãÿ9èê{éT¬Pà óÂ3%P“á“·›/j}ß›+ÚeogNÿ&EÝ8†ä¤E}?•ÜŒÊ4´öj ^ý„äº)(¬¿ ‰ÄÜɃa4;¯ÏkhV²\È[0‹æËt%¬CÑR÷öÜ~šf´ÊâàMUµCµEU©V9´ýµ­ƒº3 íª ÇO¯ª£C»´XñG3XʨJ=g±Ùa:Ñs²>½#y]é½ç©žFBJœw¯Š'ÏŸ$á´«O4Ä3Ö‰€8½ûV¹c3ýöµ¤éevÂÜYtJåÛÒM®¹¤u45\Uw\ú·ùc,zðiÂW¯Ú™JŸÙ~àÚGxÿ®‘d\Œ†/n»!.ºj„êÝÉŒ¡6ÙªéÒŽ%‚ß³n„úô3ñä/ Þ5éà¨S~¹Í¹oÔ Lñø±­A 'e¹/{T_]aûò› ªê zí†ê¼Ö'q… PcôgˆÝ"žãvV·Šž…ÚKJ¶—¡®ª¤ÝðM4äòPÙ—Y!Çij )? /ö54WúLkËõBKÛ±}O’x µºñºæ¥>ø:ð\`ph¾,M¿äehoýÐvMÕ:+RÂN¨±@÷ÎØ·ëíáÐGt¸€Øú“§Ge‰`Ð×yÂâVüpaíþS #7¿(ÀX[‰U/L<6OÔ'„©·æ ³ûa&¦bqyf£eFT¾jÃ|}ðÀ£ sXÚ3œc2 +?¯Ï ÈPÃÚäûwÁHù•&Àu I˜°Œùø gÀ—®X¤`moÞÛJ‚T‡' èé Íô¼Ü™'>]«ãÆ *2êï;}Ø€™útBÞñÿA–Äõ-Uvd‹Ë4‚â;ÈÑEÍ‘–¹õv•ß°8ƒ<ƒ™äODe‘ÿE{£Ë Ü¡:E·›û æ5›¾¢ä@aûɧܿ£¨Ü·¤n”(n©Ï6|á&JÖ+ÁXŠ>J§'0keÓ£œÑýË ¨Àgð“¤T¿ðýüöt'*{žj’½‚*ÎWÇ46áž ·êvr Tã/XËîDxûeǪZ'jäp~Jr#FM5=Áª†IÔúÍ~öóY{ÔÎo¤tü"Šº7ïupÖD}­RÇŒ¼f4¤s]•G£jÕA9b4ŽzÒöÄMwáÚÄ·Z4“bä4SCsùB^Á1´Ð?plüÔQ´¼pbŽ9Zåœû]+ûmVýˆúÐöÖN-ŠZ@;ηAì­óhߨ$za‡ý÷-ŽÑ{²|<±> —Eœÿ…eü™¡(¯UE£Jjœ.ÙhBÙÀ`ÈìÈ8TÔØ©4á wÝ6¨ÉµSו†zkƃÁ¿ÿ@ã娧Ÿ^-CÓHö‘kD å~E}È—,øêÒ¨@{é9| ø6™˜Ð EçãíEZá»^6‹Alô %DØsúC¿¤P¨ÿ)X ñÞF3C£c¶×ÍÀ©î­Ó aºX½ ?‹VŸ¦¬Áä—5¹ã¾0#òr”öv4Ìò$îc¬‚y…±z%ÒhX4æ±éËåCmËz{`õŒZûq X»&sË`ç ld”ðõ¾ÏFb¶ :zƒ‘$ÜÀÑeô0’]øªô®è R$F¦èu µ@Ò³ûy’H[E2cò8¾Ä*µf cžÇó•8[dÞ;ß~þ%²4r—±jŽ#[øu’¾ˆEÔö=Aî vQՌțÁBó´¾U›ÝEÁ¡}O){Q¸lÇ žq“+(î¶jC‰ÁÚ=÷;Ï£´ºƒÈ½Y”»òëÍW©×¨p%¶Eï**¥œ§ßãåˆ*Û´oìPÃ==·ºè :«ýµfOPxö˜Fà¾?§O–oëç¾,>¾ÚHünK·ÎÇ;ô§mvjÅ|SŠáÝâ˜Ôõ™ˆÇ^†_¯êÔ¹-~JS£Pa>!Wþ头 HäòþRØâ$|mk¥ž:e߸¿:·y´?« J®‡NwEçNº„=1ÔKbÍz¯Ïµ÷P9öÄÿ#묢ª ÛvM7H‡"‚ ”„Âó""-%¡”X(ˆŠ ` *%%¹èFº[B¥;E A`ó±¿ïcï£9Æšï\g÷¼®û`Ý«XF¬óŒqr:Ú< ‚ñ es¿˜¬W劸‘Ó³6³jò 0÷ —Îñ¥,>¤‰Lc¿È¬~¨’_ß$I†:÷aõ˜€k®ùyX32€JbØ4i0uÜp¦@"ÍêÇ”-H<ß6™üµISÃø²ì<<壦+R¶ñ²&¤?B#½^ƒi¤ûÇ5äH>ŠûšKj9™~#“×|ß½äLdQ‘ÖìQB6KdQä¸óÖj%B¹~Óÿ~yA¹CËß®ßnEÞ3¿_ö4¿E~¦÷üŸ¼G ß¤qOÿçwÞÿvrÈPøofе«xè€CŠžЇŸ”Œ¼’w¡–Ø¥¬M/¡Ì¾#f¡lñÐCAñ ÿϹÿ<—Ý{ø­ÔçŒÿî¢ü×ÿ{ÿ?çÿó=ÿÙ5ùÏ{§ÔEt›{®çwL¢ÏRíî^ƒê/óNOƒ:ÿ¿÷ÃòþŸÜ¶Ë®ó<¦ñþïŽQ—´¯ÏÒè¡J¶«¹Áøß|öŸ~yâ}æaìl%‰JƒŸ9ï‹/Þs†áµÅPÓMmµê|¹¯ÆsÙ“Ò.ûß\þå?¼¨ú æn2ñüýpäsI[q÷÷$Âo¦›´iÑ ÿ›ËsJæ–gt᯳ï¥íÃ<°å¬Eý¸u ¶Ýþè6µÃî]ùz½£H´4òðC’\2o_H A2ÝvwO¤xâ·ä< ŽÔt݉1o'‘¶ô±ˆXÙSdxVÇìþø2fø:¶{!³èßÇ‡Ö %óÜÒµS4ÈæžFß‚C¼t¸ÿXiQñŒ)¼Dú7œòòÝUòT×UCwʪ/zóëù˜È?ù7|á›é/Kc~ðq&%¶Ór¨ PÊÜJåMS0ʘ}÷²}–rþ‡4~ýºò“k‘SÓJ¨”ÿÜ*ESrµ;æÖh–TB·[¹-¼z¢ØœƒÑÒ3cŒ8êZº¶ß½Ï‹ê%_þœëb+3ÏN¿ƒBŽçú—h!‹\v½û‰8¤¶‹qò”†Ï— C‰e ¾{+{|÷ÄÓÊî^üè qÊ—÷E¥À§ÛWRçlà} K8ÇÔ9ˆ ÉS« ¤Î¿;àc Ú¨Ê7Hµpg»yÄMÏmílx Ti6Ší:TŨMs\öƒšþ£þÆP¯›åå&œ ¿"yÙ}‰ ÉúËòY}hþŠe­Ï åkÚX”,4ÿÕá5„¦Æ›‰WËöAcŸœ÷f’14Ì/©_¢z >Á:åÏ› ÁwV¤tÖ™S=1ƒÆO3†YÒÐÄëPÇxc šYåm¨ô Å»"|ñ ´±müW= íodh¯“ŽèCÌÌi'¡3>0E•iºRi2ÝØ)¡;ôåFôDOŸÍ?Ù½C²ßÇCß¹ÐÁsìß`@T†…I«¾;W­¾Ó‚!Þº[ƒXaDlIÊ4ý=ŒŽ[h“†ñ/+wdHa2DþË}³&˜N ¢ûÈ4 sâ>ßÙ. À"3ÙÐQÁc°\j›µ<¼ +i)g=IáO[ã© ƒ÷°~ôô•»«ð·=ŒûÁ—\øWX«¯»ƒÛÑòHøÙðvÕi$U¥ï ðaEraF¿ÎB¤4÷mUAêvÿ³*êHw5„û§u5î“Õ¯øý$™.vDèE!óÐQÒÒ€ÓÈÚ­z›ë 5rP}mÓûô¹<þ*‰ß­DnB›ì¨ò”^U~r+ùªCYO 8¡À‰_g5Oz `¡Yó×uŽ¥îÚ7} E˸^¯j9¢¸ì7Eq;{”dÍ3îî¡E)a²·œm”î½9¢—ûe%IdS<ÂcÒoÝx?ä¡‚èÅ{/éQé ÅÇb•f<1˜ø*¸ÇÁ݃ˆè²ª¾-÷ÏFuþRá&ñ/¨1tG¾… µr9R¹ÃPû…%iª-ê8~A»/Á¨«ÞFwTMõÚÏ_f–Å3$ôî?ü~¢¡ó¯Ën»Êxö\oyÓmy4²><%¯ŽÆ×SœYµ¼Ñ$j"Yà5šþ8µ~¹ÒÍí݈Íß E¦ÑÎyÆ<´Z?¬ "4Êéå¸Öß^0ÝùÕ 7„[@íå{S÷e¨O$_aúMœ¶2Ò 7¡å5‘_Àxh§óŠþwË:®l1$—ˆAµ‹þÛWÐÝGt¡çpôö''w®ß†¾_³š-§að¼ó»þðS¼zyeì §çH‘°†Ñ@‹Ðüp ÷þC—'ᓯíO6ËÂtÍx–ðYg˜ƒ]§™tXÔ¹TXnW˳Jå…°2Ó™B°W‡U²†L‹ã?`µ@Ë=þŠv?~±å[B;¶œª|°-zjÿÂx2ìjœsןG¢îqK‡!$1üšM“ÿÉŽ^ =‘fˆN^ž.¡H5-uø¾¢1Ò†^§|:RÉ¿»J8ó@|€|ƒC'Ä ¶_mZ8É•[«œðé%ïceð>ýV'«;DÈX9]°€Á²úŸÏ{|›LÎ=i ©|ç:o‹áfA^Øü( #%ÓºÄUâÙfü¡Æ{£°¥Kêjˆ¼Òù ž“Îòÿ$¡qöÇ3ñ´=ž™{Îé2Ü‚æöBÙùu3h îæ|M†™tWÆ3¡Ñ<1 - Áýå—a.E¨ß `ÍàƒúlM]R…†Eß°öC£ð"KãOhLΛ?•MŸ2>tZ˜d(•ÅAkÆcÍgÝŽÐ~þ¸WÙt¸H8¹nƒÎ«¿’]ÝY¡ëÆ\J B·µÈËJwbèqø÷ôƽÖBSyèã²y4 ý?¤JNÝž[ üð³4’Ý‘¾zÏÜl„ÑÌ÷ôRO¾Â¸¯XRì”=LšIª¹)MÁôùì#; ¥0Ûy0µNk>îrõ+sÀ²—ý“O%/`ÅŒáÑÇ'ðÇÍCÔ^kÖŠÕƒËť௞ÃX¬LüpK: »G¨nþ:ԉćîéW I÷ãûV¯ö#Yö»§3öTHñ½°-ya © rš©ä[vŒÌò\N2¼ûYܺu[~6f.=AæûU±G­õ’HÚ³ñAd³¢ž˜Ò…œ+ãw«ß™áÿªk{žÅ#>;­ ðùn%$³”I!ÿÜRÌy >pO :ú…O;îÏ`ßBQ»UpB±ö¢"'Q"UräMR ÔSäÌàEé÷Åî·'î ¬þµ^ÕQ”Û1þ`£7òÏŒ5ÖÙPI-Ñý}’,žø2eæ]¨‹p"úÌš ªú¹ôÎÄß@uêIÌoÛ¨Ñ2Áô}gµ2~¯o¡v”ÛÆóu+Ôyvœ*d— uý×ÿ¤û£~ ßLqä#„ÞS˜'ƒèÔWÂý¿’!Ê‹ ­|´"ÄOx?ªÚ„0{Ê«ru$(Ên@èáçJY÷“!üM©­†#ÄDJmž/€¸º¨Ò’M H6=ÁVív2Ȥ%$ u kø"É›SãÇ7ɶ19uw-Ý÷ÛA•&ÙÌ ™¼U·×T€ð~²jNX»nŸ8ñ rÞÆ*˜ÆCŽØuǰK$Ý¥Û^ru²Mæ°¤+@vbRîÔ ]²­ßÖ× 9jýýÒ›? §y»+´õ:ɉÏXúìû©6(:Z"UË(¥›«WZG "ææÜc/Ï=¾5pmYÕBuôßÜj† Pk–ÐkÃê}«I?ñ?„Æo›ôi>G¡E#«ýÚ“"hk˜—Ÿª_‡ŽS¹l¬ßù¡sÄL“£å7t6w—‡Þˆ;3m·  ï¦þv…+ Ì‹ DÐ)ÀOó"þÚ¯aØé§èõár=ij6ÄóÆ•;®•ÿi„Ië7v7)aúu’¼µƒÌQ/HvËíõ·}Í­ó…`¹‘úOÐsX©’Ö)‚?Ý×Ö¶x,amr™KêÙlLùÀÓ”›£ùÙ)YFðoJX-dû!ìRù1*Ý$*œ’.É߇$òG߈ÖßD2æõ%ÚãHqòêfüÚR} Êt(GÚKÖÓªºLÈ ]Jjv K;lå#Ó¿·¬F¥üÈòÄúØ€š&²©l_ö@³V®£!äZãM¼,µƒy‹ôÀ¾ùL^Û(»j €jcVa ¹äR§†y£Hû3åz(v÷”²qÅ/”h«¢f|ö¥Ô¾ KdÊh*ý¦øŠr7n’uÜŽBù1ïÑ™›Q©â’Awæ+T!³Þ ¿Ä„ª'¶ˆêë£Ú¶ù„=¿j´vø÷°9¡V1ïÕhvÔþðK:J= uî‹:ÎÍ¡®Móµ±afÔWuííKÀ3ŠÉ¼¤jh˜u}ß5 <ûÓörõ+K4]¶Î»Š&ARö”¢hÆüüGD!9šWDòënÇ“ÝøÞà)| øðz‹>Þw>¥›V»–D²WS!B“íýl9| º.‘ 2}¾JªîN0´Ü^€â•F*ª 2¯Z£øÍ;¨þÍ©¹¿iêTõ\~ õ›2æw-¡Ñ‡>8ì '4Í™‡}3¸ÍN6EkÆ>ÐÌ^˵i½sWh ágé#ú¨Ÿ—á2›ƒú;÷‡bb· þþ[¯w“P¿öË\2Î’W>h.€FùéÄúƒ× éÄñy…Sï`Oš½Iw¡U‡)uÆ%Ú«Ÿ¬9• rRE•3ç ó„EÒëZ}èRnN q΄nA‹CæÐ#Æ8¢Mþz—³×ÊÀ·~Q¯ß+3ÐÿæèÅ{D0X$ºv!}~Z¹ç ¿¼ ÃUæ_œ6`ÔoÈa?å0ŒŸ|m[]“{Œ’Áô~ë³6 ¡0ëSyÛ‡/Žþ5yh²ËG/XEpïݟ]<ÍTð‡|?…‚ '¬iOßµ­ƒú£)•ù¯`+ˆ>‰˜¤vü'Œç^A¢Z3!ÞòKHâ²-™Ì‹dªŒ»¦KHáøTR‚>©š§Nv‰W ­™OxÍd ºš—ru}Ì¿6¼¾†Ì‚â÷Ÿôº#+ ÝM4dçåË#"p §G[µmÎî_û ––ñF8½™jI@>ñ|•çþ"ÔÂüãêX<*Ðqå4 ­”8hU¢(iRT‚ Š]Þg 8/j Wütð¨{ð®ÕšJ_$^OeóBYv¥{m¥•(×ÄԹɊò _DÖƒöòÄvRÑŸ9 Oø:àð^¦öÃ<Ý0ª:2ËL¾¢@µ•}¼aõP£Do~d6µRÚ+‡ÄP;Ù:œ]ÃuÒk;Ê ß£n9ßÉìaÔÿ!v“F Ïä+G æ÷õÖeáÙ×¾‡zm ‘ï=Ijb4¾ªy÷´Pšxqí˨ @Ó'[lIžhVèÅ3“Š$1ÃH2„çì…ôÈ‚Ðò'édÑ­h´¾½>b*ªÒ±¯,aYXéð4|‡\þØ«8 )Ûž¦öb›ÿþŽ™Ç/|,zý¢búdâé}žA´$M½D¹qÑö<˜„ýö„ ‹¤h›×|B}¯É$MIC¨ˆÜ‘ƒVEîÎr—øíKˆ95>¬p[â^Š’_.©„dŸ¿ºfT!}*Xpeܲ…*g¾fîñM§Ý¦1ríÌÙÍG8YÕñ—¹[a~ÞþË@ ͪ`¸-9÷ ºž“C§úóÏÈî\|`ÂÙálýZ@vCÁÖ-ÈžS¨,¢¿9·2·dâ=@ÿV.hrGçå$A¾ùM+2ò(rðR2†Ò‘ ×Ã+œ "Éàš/U"T½'ð¡^†êP‡3_ sû#¶Aý™†ÒNÐþvF´hšW…,BÚ¡ÍwN¶7v:®¸÷o?tjž`U1ƒn¯t÷?Ñ Ðkn$Ö´» }ª1æ’õOaÀ»O& Fà‹5}j óRó 'òÃ(‰E"Œ¥w7”²Á¤HÜ'ÙR¹=ï¼Tüæ†ÌvS»ûz%Çåè_Àrò‘ óóÏa%2dúë¬ü‰çT‰!/M¾>¤€‚ŒhØüxREà!üûLâ"Ãn ;-1a-$Š™¥¦¤E$9uS³ß Iׂê)‘BÄÕ_ã±RÅL;yGiÕO5è¾2Eòüí$GFw«w̯,irtpêC/²\·9·OeÙÄ¿^™g×Bå{•ùzäê5ŒÖêîDîM6Ï× ÓȇeJÞš(pXâృÝ(dÌ^¿¯UEŠl’Õ«¡˜³#—¤DJ4‡•Ÿ¾ŽRò½ªÆ$R(s|:=@ëÊ]æšPSMEù‘"ŠÙãûP©z õЬ6ªìË›SÍ@UM¿A¡ÛK¨NÑóÅI45¾ì5F­ŠÀð$Û\Ôþ¤psfPuü^]SÊ F]ÃÏZZcÇPŸ·ïƒÎq<Ã8"9”ñ ßZn¸¸Ïúœ`C£UÙ¨bÓz41íŒ|A‡¦užZr»h~ÑÏNifÏIzšçÊõ¢•ÈþW."©hcÁ#½ð“«·ƒÞÌHC¾äë,ßßw ÃAh§ê$·…(R<˜°ƒ÷kaÚíW^CÄý„t’ûrqÁÝc­Ï>>—RŒƒ”Ìs!¬m{žÈäLFkŲ+Ø/A¥ùõ‰Ÿ¡ú²B«su+Ô->zuêïÞ]÷&z ”*¡$G·¡éž’ºc°14ý#QÛ͈†¦„çÍ@£HßeéßÐ`8T_!õ—º5u»·S‚°@=ÙÏÓïÍ{Þ'úMUz$×ÅK§· ¡*5,nEÛNÖ ¹T@³:ëÄ·Ÿ¾Ð2Ãrê_'´-†ÖÄ7Bѱ}\OG¡“¢üs ßè"ÿòÁàåcèš Ì¬0úÝKÂb Ð+q†/Iá|‹X®®´[~# y¿8aÐÑÒ«%´~üEãi!ï׆Qþ|Ò€0μźhÄãû]•‰øaª‡âFI‚;Ìò_Ôßò„ù²ß!’—ûa©½ÕŽbÊ~%G¬Áï•ôrf°Ú%Ó†olaCãßõå{°ù;3e`älwôö©Ó ÑÉ¿Jÿ!ñöÍQòJa$m 𪺓„ä³&é’.H¥»¿2†'i{ í]Þ™(ëñø'dj/=f…L5‡T/ݹƒ,¿÷¹ÅÞE¶”3b–¥–ȱRL½ÑêûÝC}gØÙñ ù(Fx§ oñ«ý¹Çȯ;\äa ~wæHËG¡(¶ä…›OQ$ño¯Ô%£N=Ç—Í„‡û¸·™ÎLã‘íŽÚ*Î(-qêÁ€ÖU”"³}g‡ráíÔ}Ÿ5P>²}3•W§'Éîà #—a½ûò¨Ò¿¼4ò½UuŠƒÇî¼CµEn?™(ÔH!ÔMö>D­„´{6{Þ˜opìCˆ êtG.Æ £î¶NMÚ\íÙ±HFCª™.KsC4jòô»„gÓ›~Xµg¡ÑÓð[gVìÑø Ó³ V{4q”©Z‹>…¦. ÿf¢ÉÐÌŸçŸdv>š§VwÙú‹ìmüÑò4Ù"F´úªÞ:à‡66ßø¤‹Ëþ·òÆ @ÐcO?Òò ’G޹ýWÅu¿Y˜z½ Ÿw`'i…®ú1JˆZ®_z$FQ6wÚ¯ôÒCÄõ‹§G!,ו—©lB_IŠˆtƒP¾ïÏŽ5C¸¦ëû ê}ð~=¢vŸ¢=ÄYdëóÜ3ƒ¤å-c.ÒÞ8w pßEÈ꿯 ÷÷øæQ”} rZžõê~©{Ž3 ä<:šœ- „æ#S’¤³ò’l¤è+ä¸vÄÔT]„J–ÜDÿlÈnw§;¥( ÙÉZD‡ç[ {¾¼|jƒ\ÇâÕi çKÀAY: H¼}‘}rÏùaÙËZÈ9,qø+)ÅG ‹8øCuËBEÖmÊà‚?7Ê©N˜ÂÚÍÄAŠj_ØpíTu7€M[q«¶7øç4Ü}ôì¼®´`ÌÔG¢‡óÃgÏ_EbJSûÙsH:À[›b:ŠŽä£,AHå«^$Æ´\r)fß"‘¾?{­DdMÿU‰l S‡Tœßƒ@d±¶õÓ<~ÙX›T(•9C $)åI6råÝÍãý¹»¯ÅL”Pìù眖üS-`{ƒB*ÞOn’ÿA‘xVW,3¼³F(ñé›ÐZ2”:¼«¦âZ‚2Òá—æ¶¢œSyMy1Êm‰Ï£RÃiÊ;‚Û¨r€q`ÖMUõväøS^£:£±ç¥#¨1ô¢Ø#\µjVË ‰¨{§@ñF&êÜÚ2ÛwOu5p}ž´@}ŠÖî’‹h0Ã¥\"³†ÞÃ_»ö<3ïÉ·ñv4ª~¤ÍµÊ&L¼š’~¡©ŸMºtæ&šÓØ~Z® C‹ º»Q¥hWùëÛ…Oh]Zxþò/ø3÷Œ}¾¾òñŽ¿ê,¤?[–¯Ù5Üó=R)5B%$<·Ý‰ƒ¸OS©Ï+ ÎfI#ØÀâˆ6|§‰/À§·í¾4¥R³?áAATr®©”,¢ÝÅmwV¨h;ùá|a.|2· ”~‚Úc ¹POÒ„Ððöò»Ë¿F¡‰eÿÂR«:4½Jl ¦­€&9ˆï,憆1p·x õ=Û$ô%P7wsyO  î¾§çÂÃP ZëÙõê¶mÍ* >k+O! ÁàÊ“{µÛÐèhË0 MOL… Ö ÅOÜ7é5´=I S,Pƒöf%Çë"îÐÑ)’8á[­Áï" -¡+«¤¢¼–ºs•®õVOCÏò—`ë$qøfQÄܺ }»ù‹âR0H÷|]Þ7~„3­¤¼í†aËr1r^#e»@»@à cCŽM¬”~0‘ʸ-40’và¾&Ì4PïÿÞ« óú ßžÁ’z7µKŒü2¶ˆ1¤‡ßÇ]¿Ž…ÕóâK÷êÖ`½¼A‰¨Ò6­¿Êa[ȃ²©5‰HÈÖ¿–¾¹´šù™œ…w …‚‘åh¿ê ±!²»M¨AÄ3¯gØ‘kôAØ/ ¹oØÌéf /?¡uDù¶fŸÖ©w¢@@¨–Íœ i\ùõõ-Ù¦Âsy䨵ח­h^”œü¾×ãžþ Í⃅°àð÷ºéãD[¸heIÕ«÷²’AmÊckÅJø ìt‡gé+¼·z°Pú¢Þ\è>§YQ†£o©Äd!"tsW ¸Â†Þ ¹g¹BèçižýX=ðˆ}ußOç./½ëïõR'WïC¿Jh›Ú<$•‰$¯L @zú)–{ÇoBV{¼jX¡Ñߢâ®È@N{È»×ã¡@Ð÷VÞH‰B®¼“êK. <ý<¡ïš9#Wt›vcò€4[Ô4ú´­ßg$ æDÐÞ3vÈL™:]ùÄè¹¹¡›ÍÚ“•~ zº7“k¨®Â·#×}5ÐÿZÎèu¼|§´¯;t£ †xÊøÙ7ȯî{SÂŒ¸FÿÐO‰¢‰­(0µ±RKúfÝò5¹Yöú›Ã2CR‘ ,;{ -‘—ÁŠ®¾H×<ø£áÔ8Vßk'œø5R bÊsÊ‘°y`,Ólþ‰”äzb€ó±­:&Hä²”•ƒÄ“7äïné!iiN¶ÏX’OZùú‰T¦1H[EŽ4Ë|A‡þË—¥ö}ÖȈÑ.×K"©øî%¦‹ˆ,Úç?ø(ìGÖ.ZûYä ÊYæà‹B®°ì§ëÜ·‘;½©^ÉUùØ9 eÃN"ÿîâ‰}.($: Ù§’"Áþúå(¦Ñ9L:‰#ÙÜM(ÅH]´Ce3¨2A9»‹‰|(ÿSÙ`®æ*µ:vØPEÄ­ñÍÌ,ªšÞ{ÁÓ Õ¹:T®ÉÙ ÆÔ\_¥…j5ÙMU,)£vÜ×­§t*¨sã≉Sݨ+o½H=ã‡z 54G%äРò¬nDž5ZGäø áY÷Ñ7öÁÏÑèM÷Šw¨/w³çVZ÷¢©ôIö»«h–¡:ö9L-ŒâhÕ %¿«ÑÉØp´4y¾Hj¬cµ’Ô!wr^çq°|Iî<õBy$yùäž"K€ÖnbÛ ÎT 9g™âdbX#|:!vå€1½e|ŠvYxý–b€Pú±>"Ú—V?ÆkADÂþƒûDþÂÇ>uoˆw EU_K7ÝsÏëÜ8®‹ BÅ•ã•%Paõ´Eº¹¾Ú{çÝ„šŒÊ)É~¨{Êñ´lßÇôçÔCcâ¿w~ RÐ$ªkÈì<U›³ðË\ßÇ_º§õ¦W…Œ„Í î»ÁšêH¯ª^ÖÔ€:Ú°+Žç Î?ôÛEƒI¨—'RËr|õÒ^VQ_¡aÝÖo'™š<Ö«o¼¹-ly£TÂªÐÆ“‹!MС’__½ ï_$2tÿ…Îð«o&G@—÷b{¹’tßÖ/ˆ‰¿=¹´ÿ˜¸DáçC;kRèË=l/ì¨ ¹å·>ؽ†rã¯.s>„a‘ߢR[þ02’h×$c©Í÷•J`ƒò}­%L¶,ðµ93×Òfƒ³Haîû4ÙýѰHèÏn4} ËÛl ^ÂJSl¡@ÇžŸî+ÿ÷ÖO„ñ´„¿Õk™Á1àŸ×[År+ ØÅ‚¯‡½Ž#±ÈõŒ_ÒH2}ëbT¤6’­/ie»"¥öý|9Šp¤Îì7ÔÞwéä>+·¬#Ãúc[‘5d¢,“kŠAæÚr];d­HcdhEö•Wo%IS‘Ëâî‚ýØ <0Üö·•€$5>!qbôW ´Z@V“ãÀߪCŽáät½=wúÎY œ]áì¿Ñ„¼éèoWè௕“hµÇ?½à¥Èb¢”£¢=žG™æÙ-ϵ»‰Ü÷®qúš‡ GfÆ4V`r<§z§"¸äíå>B›•ù+»tÈMŸìºM ‡#Zo«ÈC1—gÈB?”Y~œdÝ€Šš]órÅ=¾žXa½Õ·YMTX f3›~[„êZJîÚØ3@C¯ëíwþ ™æc*+´¾˜“&ƒöŒ÷G*­É S:è.tçøÖ>€ž7­3•ÏÓà›|šGéð8ôóŒ:¼ìý ƒwþå~›Ÿ!¬4çæ_Áˆü©ów”MaLO›hŠm&Sj£(‚©š<]Å„˜=– ûÌv¯¿‰c¬å“ÑCE}}°"˜Z3¨hX˜ž¤…5›èï»Ì°>Nî@7ûß“ýñ‭Éwß9í¦aç Ň©Q+$Ò_ ž¤lEâ¦!Žh:@ÒOÚ1:×ß!y­¯”RIýýºxÁiêèÜ/_BúûIÓcëeÈ(¦ÜÎo¤„L Í2‰ÚEÆ®*]6Y§úUž–"ûbªÂâGÈå5v§­â r?ùõ‚]ùˆ5%¥N!ÿ¬áùÏÒ(ĬLªìyEn ÌËb9…WƒQâÆ<6=?ŒRìg5˜;Q†çÏd6ÑÊYÒ>y2€òßïxÌM¢Rç¡ áp7T‘®.Rq @U[¢InÊ>Tº¸ç‹Y ÄQÙ|þalq”z± §!v ËÔáS±ý~÷Nˆqøº°Úo¹®æ¶BD͵•ºð1˜'„æÚ ¤PiHÞ:ÙUaW?B¡ƒ_7ÇE(o{µFYUƒa— 2NAøáp“mã=.9¶õ?Ý·×·Zâµ<¿@ãñŸZT<ÐX²ôí@54žÍ?š*zê—úiÜú ®{ädØ·e¨Í¯sÏ…ÚÇ®´ÖmVP<Ï~¶r/¤Mæ·~¸B]YËa¾¨¿øÇIáZ 4¹™Ï5ÈB­«lååyhÎÐÐq.ô†Ö¼ßÉ!)h¿ NÇçx:\þ$(•N;Ã`YZRèRå.KK‡n5"§‡ ÇÇ͵&PzûôÒÅRé ï’8u´- ØþÚ :y¾wæK’…¡IƒÓ…–0òe:·‚ÎƼ)œ÷P„ Å¡µä[0EN6Яøf8 ‹Tƒ`îÒ(.¸‹"CÖtXNìt}êË +W ï‡ìßn"’‚µ|‡:l:%ßå¸ÜÙËQ}köÔìÜvk»±—£¢ÁßäÔ Hâ¹øƒêP8’Ý-‰“{Š5¹Ò;›H-dð¢Ê‰i#sb9ÕãÁà–¡…²2¦òßáòÈ@f›„¸â²?Ȫ;ðÐ¥_Ù=üêxT‘³õ¦HŒN 00UOñ)ƒ [”¯UÏjJª’ùGɈg·Q0”ß¿‰¨…ƒkÓòÜDÑ¡{¾¤U(õ0Q¿±%³"¹]™»Qê·sÊ(Y‹ÐJ(£ìMò«ô6”gPö¬Tt¬q¡.QÂã ‡ÒH²£ŠöÕ¡¯z–ˆ[WµOâPíu‹äñg¨á9o±úîj…©K_8ƒÚ#‚L'nèàiÍ¿k~a%¨—_}O<Ìψ¾×ÔäD×ÍËZËÒxÖüsò½¿QhDZ±9/"FÙ»ç Ò›wZˆßûÞt0Mþ’\ôÊ@ÓºïÁ–ôßÑì³|ÜΔš¿qé\}‚Ááí±xî`¸­Zæý Ò> ³£)ßܸâ!ëÝjÇe¯nH|î™Böz|òùFÐztÞSæ.‘U3CÔÏ.ÇŒ÷ÙCêÇQ i<ÇÛü!â»°Å{9„ËnÙ „™Ch3B»v›«‰ ¬åÒ¿-Ç`xOJ¸vµb³M„¤êØ!éܦ 2H÷$!¥}ù²jË5ÒWöø¶às‡© rz£¸HØ€`véO‘Ê Dv]Ñ#‚w—×䔋wYùDAÎ!άè‹O!»ë©TÙ·²›¹/¾ÙC7ÚOÓ¿wÞ¨6@N<ÿ+‡¡=Nž¡xìtäî[)x£0 y²§ŽÛ,óCÇ™±›†Pl<6%ÿ“ÊÒ8œxr*ÚôκîñmUójU4T{Dn št@ÍXf#OVÔÅú¾§»¶ a俬•½ÐTrèÆAZaJô5-åÿ쓸½ œÿ8È7G ‹@sGöôʼn•1Î@ïOŠÛ 3{þ™úÒ#„:V3e4NìÀ]׿ ·Ì`xE‹?þk9Œ1 ]Xþ© g™‘4LÂÔkŸö«y‘0KôÆh-é Ì/e+t–„eáÊÈ'©+ðëÍ…Ñ¿à÷h®…XH+¬6(n×sÛÂzò/ž•Òð7ÜìÜ“©S°•x‹¤È§¶GÅ4ºn;"‘̪“”ÕgÞ(<(…¤9wo"yâ™°Ò²HEgzªƒâ'Ò¼ßÐ÷NqEzÓ¸‘õa~ddþ¡Ð>5€L/¹6Oˆ'!ËAû‰1)díýlñ%Ù»cï.›\A.sÖI{\äv|°ø«òö¨[¹¼Bþî¬&A¢-ü÷¾òãI±Ï°`Ï#A1ÚÖ篡„õZ‹¯^JÑújüûh‹2lqñlh‡rÆYÎD&³(?P¶p¶•z#¸}:ö1h¾áÉaC€z/Ök®Í¾Pgbì2µnçdbî¸@-¥C¯žå ¨eV+Ãü ¨}Jü-ðÒ<ÔµEüO*¨û•oÆ¢e ¼^2}3ç 1n nß)gh>Õ–Y§Ÿ­=y*+Ÿ¡]ê¤7 tÈYÅÛ?»bÒ÷dû ‹Òh¹Œ º)½Nqô…•úo>[¼ÐÁ¶µÎÅ}ü‡rÞôxÁ•÷u‰ÓðýÚ³Ö•ƒc0t7O›É™#¾‡i’_\†1Í÷ EÃa|÷OÁÐóP˜,OßVdm„éò?ÏVœ^ÂìæwŸž[Xˆ˜ ñµ – CÎð'„ ½ÝE&=øCÊb¨z±ÖdŸ7”‡0åWO¢¢ÂEÙy‘Ox<êÒï?L´¨Ây´[ ±¾r;ý|=ªù~gdžêC &²›«QëÕÁw-ZïP{‰5£º\ O»=)OÖD½Õçä6<ã úºÙ Ë8ãC½ýðì½(Û#‚fhÄÇœq=‚*o™†£±«Vaç<šp¼{Éô[MZÈ”ÜTÐ4ð:«Kï4šZ‡.k¢9o¿ŸÓõ4ߤÔd¿q-†¯»cõØ#ÈéÿØW˜Þˉö(  éÓ‹­áº+•?o6ä¤Ss)T„f)‡à¨é=Oµ8W›Æ ÙiÏ×§Bö q¤µë^ô¡Nxd›9Öäú¬7€ðh<áØWÈ5 äz»Oòn¼˜¾ˆPPHq­1ß Šƒ`ŠRÊRoü¼àM ýÁÔªc‘P#­·p­ªÝøã|ÂöCMsÆU娻¥X\ìß ¦Ÿd^’¾‚¦ËýuÃ¥jв4)ä?AíŽL'£֠cy–ÄMºÚß×PH‚¦[®EoE ÷±Ýヿø¡O¼P–÷oÎíYáÇÕòi6’ý0œ®6Ö¬+£ÝÄõ›‰A0Á¥óPþ LW1M¬»3M÷-KÀ|‹yi,“MšÝ£…_Ý®¤³•Áð;Û:¦ù†¬¾dµÍQJ†u7]Ň_îÀ_Ó}é\>°åd"fý:¶?ëN•³º!džŠoæ$Ëëï="ˆ¤.W=§_œAò':ÜÖzÝH9•Ù’“¬‹47Ç<\þ‚ôb1ƒ´õq߯mþA&_çÊvzd¡r¤æ”XFÖ’YÏ]È^ô®Özѹ´\ïSn ·ÊM¹k÷7㸸é“Pä/g‘ñ©AÁÉ]²ñ9Ñ}øuKÚý™qu?ù%N[‰ÑŸE)¢8Í)Ê”¡3²÷¾3rúæÚ׸6Q¾o·h‘£•)½[izQå”÷»—.Õ¨z•4‚ýâAT—?ýöž¶jSH}‰üZƒ±ç'êÉQûsXGÏ8ê\Œ]pJ(C]†…KGW&P/ösÊÓ=þèüõ>¢ê…†”惆[N;A¥hD\û'Ôã soÓÜ}‚&gvÏ8~œ@Ó÷SIÍœ¾hNãºÿØÐa´ˆ<#ÔÚ-MDØ®·‡•/¼š†' çßÊ—·^QJí}gtEoüдüsâ¾p¦åÖ‡Bì•®x)®ˆÍLyš÷ï8ÄÖ<¼ãÌ Ÿ2eN‰sß„˜”Ñ+çÎ,Ã;í!{ú¾!xGÁ-½C\þ5(‡äˆãõN¡ ͺÄÇÚw ö]©Êƒ2¢°/†´ß¡²­çþôÇE¨æÙYÓ’ƒZ–vûƒöúV«d÷_ohpøÍײ ÓŠGüô áêÑ¢‡o¦ îß™^—ß ¶«&ˆOEjf6cX‚÷òðÌúÓ‰‰ ¨yî$™žµ4ŠæÑ›W¡¶Š~œ'Jêîøj-íg‡úœôµÔþШ¬Çl#0M£Öœ"#SÐ29ñë-/´m¼uý &í»UqcñбÂü É: :[•¾9]-!kDÐC"ªuÄýôšéT?åoßD­›‚¡?Ëlc€Y¾3X_&||C<®| 0ròòù7 Ï`Œ‰".åû*Œ×ÎéÕ_Í„Ißs¼a˱0íq.^Í fŸõîͪÂÍlú’ï ,ý‰p½{~%Pã ª@øB{Í?ÒVÓÿ™Þí‚õ¡Bî㪰é¾ÓIÌÿVj€ãr ìÖ…}¶õx„Ä/4hÉ#éss[Åf $¯â ½‚T´JT…,íHãÜÞvxéþYÉÕ⾟J«5÷c‘)ȃ"Ú/YܸçÒÍÃøâ–±rÙ¾ã`ÿ…ûÅô"iÛª‘»HÍó±òÞªó ½{ùOÜ(óïEñnFjÛ‹(Ômš«Oœù/C^ X½Ge“)Jtó¦,}:ˆRŒÉÇké£tã‚Ï¡1” ÊJO-‰Ç2”$5@EZ²ÝÖWTxürZÁUbTž¨¾—>ωÆš›¤¸ˆjŽäto¡†Q Ãîõ·¨ôwØUdµ·) hÕñôK–€A¥&Ô—c7£bÃ3-rY#&…h8wÁbŒ¨Ï~aþ®ÏˆFÊש»Ð¨méÌÎ}U4vaþ:W‚&d9 ”h’¨FAoÓŒ¦úä‘·>üÙóÈöŸC³´Ó¢1‹dhîD¹lM'Œ¢…7oW¢ÅÊ1CïåT˜>RÇ!? QåýB¡o¼Úmvr?|h§®µùH‘]äv³vé xŸ¡ñ3Dìvþ’ó¢xívÛ ïªFSÎÁu§lÒÚr¢§lˆ7z!ûß)ÿÎS%ö 5o²”? §5B™TÅô3õ½s\-ž~A@ óQСßãdq| ä¾â÷ ›´†¼jß(Ø-U[¹ùŠë+Â¥젬ë‡å ×gP1æ|̳qo—M/ñü‚jû$]ŽoŽP“›®n_êt×Ü^æB› ­–4ñ¨¯µ€–üWË ]¹I¤x:êûÈvú¡Ë¨à±Ñò èn×MÎçr„^‰¢`ý¿ªð­zþuЕïÐ?¶óÞ–L ¾³õ®<‚a7HøÝùFÇ$É®ôÀø˜[¦›!”ÑÀ>S˜ »jß¡’öš9ïp®ß÷ï¿=2ʦTÈÞé /ÔT£ÜçˆZþ/6®¢GÚŸº÷ê%šÐ^3Eƒã¨”®6…FLñœã~hÌ•Ç ÈŠÆÏ/Õ_õlB‹b®³gÒФà¡D4uêî_ ƒ¦_Ÿ}Oˆ¯G³óvÔƒÆ{Ñœ)FÀß…€æIéž-ín¸[éa{÷!MÜÝN{'e÷¥´)œE ¦ìIB0 wv)òœç,Ôè Y±èÃy~ˆ…ií÷àVIÎÚÞKp+¹)õ…8ܪr׿ô\n³¼v¥j˜‚[Úïú}†báfAÐY·2ˆ\þI¡¹"M½Ì&òµûˆµBÄ2µnæMã‡$ºé9MÆ.H{lù];îñsÙ°<„üâý ;ø–Î7g%³+,PØŸm±i@ îx`=÷Ëó½dÞ÷Âýý'õo­†Âkµwº”< `ضƃ& f³^T?†‚úgCÆ ÃväDzVnžvŠq…û­ŸÏ¥Áý‰°Š;nBQ[É›è¥ï kä Ï@©ö ¶uÒqðˆBb|‡eTÌk¿(¶b‚ªÏêl¢ÔsKç[ƾÑf¨±”˜,æÊ†Úøì_—Mû ^àþÌÚÄhhè|ùÁÿ 5d¶Ðm“xÇ^YmhÿèŒÐct¸¶•3D¶:s[.ÀÕ£PFEx—s­7žÍ†ÖØ­ù ì÷¹@ÀÒ÷›F—÷³CNðÅß6²S÷,|õQŸÕ]ZÆYâ¬*;`š·I ð„:|[<œº‹~¶^Ú*=0;Ìè™Xc Ò¡’QÚ§`ñÉÜK¾|$³Že6¢A É›W2–îÚªo¹œBêøƒÝÞãë‘V¨l"æœ"Ò·E4ËÞÒA¦„³½•ÆžÈbHa4Ó^‡¬}ކ—DDqMÈ,K&?5rø˜+‰"×4sÃ;È=õæiò[}œÝù8Ã_0D¶Dá²ÇóÍfQ„_üvÍ&ÜTÏ/ÌÏ'Šâ\žþÁ^(Ù5äu€Ò3¹KÎE9µdÔu¨Ðu‰üKò=T~;,í飉ÛlŽß:Pí•.ó㨱S{C 3ngy|X§µ†½sY\ÙÂúÌT¿p§µg)«2%ê~Kf›šC}÷v7ú¥{ç¬KäÈ4Œ·“;ùsåV´³ôË¢q¢³žq¾š$}üœä`Œ¦¥­üóÑoÐl$[\¹¦wKÞt&ŸX‡{"ïÉ鈖üÖîGlàkºrƒÖkI(è,/W€ i±YãHÉýQçIbÁ²ô·Aâ@”mž» Ü¡ t;%TŸW%B¢Ùå¼,fˆm)ËŒœ„h%ò×»ý!Ú:ìLÑæHÔ Õ«ÎØ’[çz%k ¿ŠÞ­ª1\øzêü$”‹ÖKnŒ€jƒvO©TxÙzžÚj¯ opü¶t~i62Ꟁ†f×Àå·Ð¨¼óŠã]hxÆ1ú9ê“û:½¡n§|ôÉXY¨u¾©àTMµ46ò”¦O¡–6ªdç1C¨=æ0“u6êx5òÉNÚA]ýÉH~Q+¨Çݘ·±¼èöxÀÓÞGwÝ4àY Kjr_:´4>Œ=®­ŽyÔS2¡ÍZ¶h•©´k[kìö‚ó†V[Ò 32õÖN²èšú~6hßkè>‹Í ±¯á•£í]¦®&xÓq‹ÒÑ¡o$õiP n‰­¡|«CŸƒm¶.ž‡wa¾*Â0,ùhÍv?%ÌnÝàq ÆÈæ£)ià“cÍ-|YcJ™ïÁ_9u…e×¼‚É>³Ö[[á[ÏMëcMÛà]•ŒiߘÙ]Óºû„ÌÞ_üö–~™M¸Ô¿]DBÉå›gÂ/#ysJBs(RÆç·¼lÌDª*s¹Nq¤™xʯ…tvíöÞÚȸf¾æNÎ82í(ÊEV]*«.¸FƒJaÀërœŒnNoE®N–1‹ äÞs*d2ë2ò­žîjÒþ†çGín@¡ ²Úgi³q=3ÅWŽ5T(²ëK¾b¨núInB6Hbs•ëV w¢$¬Í&Ei#eióÀ>”eéã®x‰òµoüPñG™Á–iTþ@p«°–BÕSª¢çºìu¸KÔ¾ìAuý“¢ì¡¦¾i”üµ0Ô ¯ß¢)üu˜ÌøN¯9ˆº™t7´ù³ÑÀ$ž¼|j?¾3¶î‘¡Xú~óv¥ûZ„Æa-ÎbhÂ"·Ýd+š&ÙÞsIBS Çti-hêCöñ׆r4ñæÔ'³D³“¡ç]ÙrÑlRy`J,Íš]/*«FóOfV»q÷!ŸÎ=¶ßp÷¨·ÊµJ6`¿Ôx5 r´¬ƒÞϽ†¤¯ò§3…Í nxê|CÜ:q%W¨nm2™*Ù»¢ßJw~ ·*OK]Ù  7_wPGGôCÔéC=—Œ!BÿbPŸ[9„ǰ]iW¨}ç}¥÷ÎBlKB’ó+ßÏŠ› mÊëàÅãk!§áØ“|zÈ-RùL–Šì–ÊPª±æÞ&(xæ ÐÀM…ä²ÖèÑ@AUš–[JHÚÄe¯mü¾¶ÃÖ±ÿ¡˜kÞd)_':ÙF€ Lʽȅ¡aÂü/ pêz¶ÿÏv¸_ù¦|B«Šó½nO†AqÜ ³’Á{Pò@6bíyE(Û_}Id4 *¬\iªÙ• *åV‚8·<¶åIоª5‚qŸ*ÞAíÙÞ:¾BPÏïDís9¦z6­«y OçÙh®OA³Ý½˜^B+í«ñ]['¡-P¦ð]E+t0ž¬ÚÁ¡Ç·}{=]_+vÒm)†nÿæÞµð*´;Øgçè±éîÚÜh TífµâaˆáØÃ1³x'û3üú½0lQ+º©# Fc£×öG~‚VΜ2ú[aü2ÃÑŽüq˜˜Sï]ó&k O¹ØšÁ·P÷÷O}à»]ŸŽ5Ý4üÔ*¯ퟂYcí°í@ ó×Â)za‘q¿Þ µV$#ó¡éiDògûª­Û‘ò­ ÷ÜG¤V3/Þd«Š«6(ný‰ôG¶&Õ~C¦Í[Ùz&N#Ë*êâ/d6Èêgòù»®<®‘Ô󩼌›ùäG÷ !Wz gñr—·Õ»T ¿ü!õð†xô×UŽ4#Cá,)§êY!/µç<š€›¢ò«åҢس‘ªGJwQÒ}ḛ̂Èv”®<~›¢…Nç ½TTˆ>=•¹€Ê™kÈ~6à¶-Nó£w~ÿ~ò‰ÅÞ_¨¡5r×Hàv)ÜÊQ…Ú¦ÂÅPG¤÷sþ˜(êÊ7>RA}ÝÓŠIì¸Ë¦ÏWr; é› ¼¤BãKÔ^܉ÊhÒGöèô šmß_8|?Í_ni/HÁ=á37¶ì4CËs»cö×p UL»¿±îûÖq4âW(Ú鱞<¾Y ¾ÊŒW ÍCá›)¿'H¿BÝ {ÂR¨é™tbáŽ`—A¿¼$€ª c=5$p†ŸP# ’‡¯Í\<°´.7µyR1-Çï±Ý„›„‹’U›RáfX®¿hp$Œ29lØÜé¿4-¦—¾Óó«(ˆ‚qg]øB¹êI‹^)¨6Έ­€'argdSã¡öÜBRÈëx¨õþ´–ò4¤˜7ÝvìƒFy1Ù 1ê?äXø¡^çÑûrP‡²—ýuÒ¡ö`Øíou¡v•ãB¯Â$ÔÌ«í÷Ú&µæVÜiöÛñÉCa2Pç—óÍÃñ%Ô_ÈÈÌÙ0ºt^JE†çÀS i6c΂g¼[ø¬’K¡…Nvÿ˜“´\Û輡uÁãÓ”À(´ý ;AS§_ê~*5@§Cíù\‘cÐÕºÝ> î:t¶ŒTd„Wîòí=…ðfŽ|Þ´Yõ÷ÿézß©ñu;‚ú`h!gšk¼»¹qÕã©=1–02Y¢ÿíi-|ø¸Iý.å8|R¬ºO ãáÅŸFabüí&óÍc0yç.Ë–ô"øì«¥ê ßsÒó“_ÁÏñƒ)ü{çaNiz\ÂÊ J÷6]Ùp &ù3LÏ#9ý|oî¤X`›3~ô ©ÈæÍä·¥# OUÔ‡¸wH{dO,åËNd ®a¿ ™&ޏ»Ow#ËÝ»…ñùCÈÚüXì"9²?ìm›êäC.+»E.\|y= òªn ¯ 5AÎäÍo¯îBÁreyÀ-(œ>–!‚F¯ÕÛ73â¦Ðuf§Îz¡Xwu¿­J<3}Ʊº¥éá”Y2ÊTº¼þTo†r•o“üøï£"[@æ»Ó¨ƶï~ÿaTÝè·{¼Q¼•¼ÿY ª<Ò‹¹H@Í=—5œJ+Q+±Dö" [žO[êÆ{>»xŸ dæŸu¤¶£azõ¹ÿy4ªP{:¼×-“º´^EãÆ÷³ÇÑD®×k«s š$Œ}‰sASZ…Aëìûhê"Rœo¦oúŒ+lÐL½IÓ7ÍRǵ#Í©On§f©CsÇ"ºq4¯Ê ¼Ì1ïkÍ[NÖ=„ì2&”YD×%q7òhuŸƒ[R¦«/<¡‚èì×ê×­y zÕ×PqšÓí¶všú¢/D©–,Ø!‘šû×ûE@øù£’þ e®½sÑD ¢B²Å~Œ@A-SÀË’jËoÚž…ôõ/_²‚œcOã(;m /¶^âaä;¦Ë¿³ƒ|î6ÙÈ—/'ùÚEÓy²Ï÷=8OòÚܺ4' yÝš¬ÚR/{Ì_phä7:\iÍUZ:'}ϲ̆Â3ý©jPX¢sø“Ç/¸c}X†æ (RÏdKØÅ´'Nx AÉÆ)v®gíðð±•W”? Uiz¾ª¬&Å$$Šà1ÿ&ðdŒ~¸¾p-ÔZ1=Œq„z>Nö·NuÐÈÚï”Kž M¤‹ít½¡ùè)ÎP•Dxþkߦ}ŠóÐv,áp‹\4´/Tïç}oá5a \jð‚éàlô^zè~DF‘w^5겈…A›æ»ËgÖAKû¥I¬yWwÜÞ>tÜyFRÞ—Ô~S-Ÿ…‘îö§’³aÌc¶(Z‚>Ÿ/ÛÙ±Ö&ŽisVö•äbY]•¯|£ÔªÖxÓ/Ê7°6vÁ‡3 á~´0óÈ'gäA=Ì(þ­Ö€_ ­¾H¸ãv2CCÉ1¹Í1Ç#å…(f×v¤ÒŒèn5ÃÕnÁ>M³¥HÏ ›É2™€Œ3;goø s=Ï;ÉidW»~舲5Ç~ìüÉìM÷9b’¸‘˲axO¹Ï§/¤yŒüŒ£½-)(è]ᩚ‰Â1qmâeÁ¸aX[äPñ'Üä´ÝVW*Å.–Ò~ZºoÒÍ2‹Di?C!U²`”­Ol™’B«s? ôQÙ]Ÿ1ÈCUçîœOrÑ@52Õ„©hÔИüÖi€ÛUâÙĘ PÛnËÍ#[v Nrô ÓfsÔcZ·÷ú”;$[I“£‘HÄ)ïò$4¾íþýÑ!14•ëë˜ßnˆf?ÎH丱t?ÜÇs¦„-œì(?ÐêˆÐ¯}3ÏІŒæÚO´»LõÔ÷• îßtšŽ½[Õ Ÿ8õD¼O,ÀxvgÊ#§Ç0Qwv‹̤Ãcöø¦&ÛÕßͶò3¹XÁOZ¯Qõ;0[¡Ðs°#xk·h;õÁ⫪ó÷D~"YਧK¨m=Rk~¾µšÇWŸéy nöšSý! d¬3pÜ‹,;ø Bö"ë`¤çÕËÈNj{²x9w¥Œ¯fG\[›|Ò<$yŽX½ÉC~›òÏgÒPÐ× ¯º‡Âêmv¬’ܸáÒÆÞë4=¸ITf÷WÎ!ÛäíR3ƒ{ƒ>‰eD©FÜÊïŒ2®óÂåÏÛPΖìÌžoQ!g6Æ/œ€Ê[E ²ößEU²R42ˆ,¾>=¨nHáê¸5÷Œßù„Z9Ê•{ûP‡‹þbep)ê† ­.×±E6«¨êhè&/÷fBWo®z<‡Æ|=ë-Ý¥n/”¾Dã®à†ƒwÑDÕý*{8%šD~Q&›‰&ŸÓíw£©ú…mŠ.Œhj]´µ·M{ÇmÊÑLHìfiƒ<šÙ{”³>ø€f·8~4% ÀûmQë„ÈŸA¶Tu7™‡7$9ÈÅ6W@œ’kijGï ú“™É-ˆ–¶¿agÃ77È^Hå›ëJK¯ô>ƒHòÜ=M3NA÷ÌI"ë„X·mÉ)…°×><Ûµ!êðN‘ˆNˆóö»ÓïÉB‰ÑêWžCºy.EXäp {ZÈçC›M¶P€:äk‹Z€ÜÑ7ÜÇ»ò Wej#€?är¾'úîÍÜj²õŠ€{ŸE Ké 7Áå¸màsÈ;'>µãxäëJ¹jÂÒù8ÇÑä(³ zìšbE3 ð¥˜ñ—Íp߯íà~õi¸?“”›dE~RTìð º Šk+<Φ†òµÅ®/¯C›î) V¨ ûIyžœh½`´´~Ñ|÷¶t¨çiX¯³³¥‡R5ÕÎ@“¡¸e õ/höÑŒ½vžPàýÉ m{é…dÚBûǘ]g.ÇBgǰ—ù x±…%{ƒÿ~èþ*'·]ni}.n]•  =gr§zÅ» ?„`­ÀRƒî=ŒI7>À[µ¶E—rxÏUWa”¾FØÎæ†׃L1 ç³.Âí:áKKö*-ã£ð5³f g†Ly]f‰÷œiýX²Æ+EðCJî.ˆ ÂÌÆâÆkÒ¾0§AgEîs’%eøí‘ n=t²ÌÉ©õ|äj\’÷ eÕøy¤ò•ö¸¢î†«YÔ¾+=tY\ùu‘QõÁ.‰KÈ|ŒùÒ+›ëÈÒ!!Ú¦‹l‡Ç-ÆâýÈÎúCk‹öUîß9äÖÜŸV‡|£N­;³Pð°Lhä¾J·Õú¨ nhlÿXþK7É¿X°-@1…«æƒÈQ"m•ÅŽ”Öã«UñíAÙ€7Ƙ2Tà;]3Wz•|¸>·¡jcÙ‡·¿ÿ¾»häº j ¨ef„+n7¤á¦MAí8:ÎTÜ)`*5wõF]Åtîâ®ï›|~éFcÞÒ¼W¯ÔÑdì}bó 4)–êuÀ=Ü–ö,ÛÐòú?æ2o´ÖH¾%k¨‹¶:únÁ™Zhof^¶×Þ(¥˜×Ö¢£eðä§Ôx°úõ—Q_˜Ð±(àžŽ\º¯q¹¹;ÔÀÝwE„±‡d¤U³[Ò€âyê©iÚ!FÉJòPøq¸µþ„ÂB± D Ì˹˜ Ñ6¥-ãßCTóTÁûJˆ=÷:Ùi"}¸Ínyâó(œ_ªBz¬ ›ÈÚvȯíß%ðei~×È0/΄rÛ¶ô'¨¶4(Ü÷¶XõŒŸk¬(3¡NLÒ2íNÔ:”“m¬‡šÅ“7‚Ô ¦?¼¸½sjywØ&ì)…Ú¤Ž“ªMPGÎWÈݳdKk]Ó„6Cý“䌳ŽÐH¡Ì-˜¥O˘š¶ôÀ3¿†Bÿ]îÐrÈßíMÁhÅoÖ-vA›…^·™_+´Ç¨ËÒB'Å*ý3G› +`@ìüÍIèÞ´Þ+Ö^ù ‰{Ý=;_|’ò’[Z?«¯äœ‚AŸ“q}\ð–÷ãaŸð.ÑU´3béûøšTž2Œ¼s?åÊÏGQ•ÁÇi—ÃRòßaüû‰ê8˜ˆg—¹eF“›tBc.]€©IrîO|0ýÓ;ÒM¢~òæèåoÒ†YM¯§wô>Àü%É«Ò `‘‘wÓê»_‘ŒªÓv—5’—¾4ÓL¾‚”~ºû˜êðºÛ›n¯GšÀý,¼É_‘ö³Éƒ×:®È+îÞ ×ƒÌ¶#uG:UÚúeu%®Ñ:Ø!Z‚ׯÏxM9!×|ÉÁ+[;ñS–òËa*@ÏZ¬ß/K¢ÐëÎÕTÜÀýdªx{n|¢ké\¨¢],×^\Ç-£ ôê;W¡”ßã}c(³.Ø5ø¥Êþâ7ۜΊ :®WkýPéò¶;ïpkÝú­«c¾+Eó^áGu#Ý Ý•¨é6ÓȱµÆà‚çÔáq.ܯ7„ºW ´ö” þÔC»EÚ<4”¾S1(5ŽFÚn‹Å£ÑÛÇoÉuÑXå^}Ç)@ãk¦wÍÒÑøåwÞ˜€D4J|¶öá’=X¥uÅMÒ¼byÙÊÑd`œßNá5š² >4ÊÛŠ¦ªƒ]}RÐÔz\Ú}é\6=æã´f‹1¼+záØ}u÷Ä™’; ‰÷¾„˜øÄnæß•£Ñi?gÖSøÂÍ¢Ñ^9;ˆÒ;ÞÕ¥^±to´ô¡Qa‡ð¨¸óï³2 ¬S!­»Š Bßëï2xaÞÅã&zu¼`^Pºâ&òÅ„wÄCòy_ÁyBîÿ¼l{R?dל5̺I¹LŽBâYÕpo®Õ)7Árô©"Îõ”C6=/»Fd%xÈ»O³BVQåá;Á•-g*dæ1ä„èWÉäÏ@nPkÕëUE÷tÞ¨¨ù äÇfpÚÑ>…‚g‹<6(T¯{pÈ îo)VåVûýÿ¾n륆úB‘!¡ðc´À!¬ †wéˆ=®ƒÑTþÉ_—Öå)Ž…¶QmØô†ö½|å}f¤å4LŽUÙÏ6+À·Ç§û.hEÂ÷TwöÑçJð3lü½D–:ÌÆöU´©ÒÂüçÈÔ_>Ââãèx_ç.$K¹|Ä{éÞùðËŒ°»8R‰ð›(ø!M‰=ý‚÷V¤Ói÷ŸÐûŽ u'‹å›ý‘yãšÑ– õÈrš»Ñ¤ØÙh±v±m=²3÷w/ Ñ#gÙ˜wý§:ä¦1ºtU»ùªßs{‚ûî–G2Ì¢ð)ïÔëB÷qCŽm>‹ÖÜ´ÊåöIM^ýh•°OQ%4wHß`EiæqgeQ”ÕSQÞ¥¡òƒÞ{«ÆPi>ÿcŠónTæð·?ä‹j[ç%%×7£ÆÖ¦*;³«¸ýÀ©2:Ê›¨ýjȧœwÆ1´ß ÏFýêòyêœ4ڰض[ÎMÖôª|ëG3å!?©rÜT~ý4Z¢bÈ#ƒh-eü9µâ-Úz ´ˆ‹CûP•qÛ[< :ydÇÕiT,Ð9P0ä\ÉU<|·sH”äù"@`Xz(–ž#KÏRAx9âw1™˜¿zé!“ú#¤ÿ™?Böû#äÿ…?BñPú#”‰‚\ZФ¤IJ†¤dIJޤäIJ¤IJ‰¤H C†Ä!1dH C†Ä!1dH C†Ä%1dI YC–Ä%1dI YC–Ä%1dI 9CŽÄ#1äH 9CŽÄ#1äH 9CŽÄ'1äI yCžÄ'1äI yCžÄ'1äI CÄP 1H CÄP 1H CÄP$1I EC‘ÄP$1I EC‘ÄP$1I %C‰ÄP"1”H %C‰ÄP"1”H %C‰ÄP&1”I eC™ÄP&1”I eC™ÄP&1”ÿ0(¤¥¤þ–ÒK™¿¥ìßRîo)ÿ·Tø[*þ-•þ–¿i¿÷rb¥›½«#QS99ß~—þSBZ™4Š¿µô -³BË®Ðr+´ü ­°B+®ÐJ+´òßZiWiWiWiWiWiWiWiWiWiWyWyWyWyWyWyWyWyWy—4þ”2R¤ ð[K¯Ð2+´ì -·|bP.ÇŒâÏ@Ûü3¨ŽÞjœr´?¾\cÕ³ÕË?8±lÕ˜‰ •£Zyý.äO®šgç²õ'ÚPþeE| \¶wˆéÉ3þ²w‰ù÷–ß³‰år,¿çË\ÿË5µBb½"§ª¿l1±~‰úr~)±2îåüGÄöÊ¿/çWÛ­r¶ûËVÛ¯îJüË>&ržh ,["¯&Oà/[KäÖñ.ׯ#òë¯.×o úÑðc¹~#ÑŸ§ŽËõ›ˆ~5µ/×Fô¯—ë7ýlÉ^®ÿœèo+ó²%úÝú$ï/ÛFô¿í´Ñ²%ö£]jbÙûÓ>ò—í ö«#^jÙû×iÖºl‰ýì¢s_¶Äþv=^æ¿ öû…÷2ÿ±ÿÝ’Ëünbºß/ó_ãñ2v™ÿ’—W¦ËüWÄø¼^½ÌMŒÓëªeþb¼Þx-óßãÖ³e™ßCŒ_Ï»e~/1޽1Ëü^b<ûŒ—ù}ĸöÓ,óû‰ñí¯Xæã< R²l‰ñˆ¢Y¶Ä¸|µøËã?¨Ÿ¾l‰ã0˜ösÙÇcˆBgÙÇeÈ&zÙÇg¨ttÙÇé-»Ò²%Ž×[÷ÂòÏ/Âò]qiGfÔ"˜ –%'Xƒ––æ,À~@àX. am.ÀÍC ð,‰÷Àï@ ´B°T=›@ذ–@ñ'6N›í ÑA|+°e©/’‚ÔeAzÉ_Ù}‚\ðûLWL%”Y •¥¸mýL lÛK @ýòþ@½´?P.í f‹Ëï[~ïsDŸ©‰ßïäËZ’¨¥V¤I¯Ð2+´ì -·B˯РD½åOÚÑþÞ§ÈþìgD_~­Ìû³wýcú¿¨ó_ú¦ø?ä›Ò ®òíƒð?Êù‡ô•±]•Œ­‹ÿ{ÞŸ¹¤º¢Ì¶1¯þû9£Fó¯úþßí?iã×òÚ€?§4aù<¦•VV’”’–üë¬ÿâ?ë!W™ÚâÿŸ½üg£¨þ§þÊž³,ÝPŽÛ9èè!àtü¨Ûÿ &mÿlZþcƒä'Žþ§Ôÿ¶ªß—#Ú–#ðûV¬òÛ§ù·íÓ,ß®ÿs;Ìÿ¶²æ"›€ƒý G£NŽGN?õ/"ªúÿQÕÿ›ˆþåéŠù/ôóõñ%§OØïÿë“㯂ÿ UÔ5ˆÎ2survival/data/cgd.rda0000644000176000001440000000623712267746072014340 0ustar ripleyusers‹í\Yl\W¾w¼Äã8ÍâìM›¡ÙÚ,n'iÖzì,¶“xw'^âë™;ö$ãgfœ… ê–¶¼ð€@B”È $$ú€Jû` ±)…"*$ ŠÊòBŠª"J!á?s¿ræøn3vÚ>øH_¾{¶ÿüÿÎ=gæ÷œtëÛ]ÝW­iZ@ ,е@=–è]Ó–‰Ë"£Qú·–—nYÕy<“I¨PIXT‚€Pe!Pˆ1rÀbBÇ¥–BÿåÀ ÂJÂ*ÂjÂ`-áaÂ:Â#À£Àz !Âg66JØDØLØBxœð„„­„m„íÀBð$a'a—„Ý@=a‚½6ØGx ØO8 à áá0áð´„ 4š€£„c„ã„@3¡h%œ$œ"œ&´Ú @'¡‹ÐMè!ôÎÎç€>Ây Ÿ0@$ .† aDA„LBŒ0J#Ä —— Â8! ¤„+„4!CÈ& W ×Ü |–ð ð9Â//^¾H˟߯÷Äå((÷@)c”»”3Ù (õ«‚j$yr]¥ œl]¨ô•Qî K….ép‘'÷Y(AÞ·ªmì©qÑ“û,D?¡K•T^-õå¼Ó|É:UHíåçJEvµ"§BšÃježª ïߺ"§ ¨tQfƒ€ÒFZ“GPe¼j&Ä[É'(­m1ÒWt4ÔfFã#ꉌ¡jiO$Ÿ˜È„Z“™l<;™5y–ަ&Ìä˜1j&QRÖÞÚ‚Çå§ëëBGÇâ‰hÚLnÉ„ZR™ ®kKe³u‹Î$ãWëB©XèLÖ`jó…çŒÌX<9šMñËòUmñdÒ̤²jçk.L¦ãysVôš×ŒÃèÁÆñLÖLGqnÝ–­ õÄ“F<ٴâÒŠHÂȰGó~Ž‘lJì€wÉ1ât½~ý5M¤¹çƒ þ½ÿÁƒÿä“ÿâÀ-’ÿî“ï8ð?þü‘=¿(’ËÀåહڃ—8ðŠYòJð*Ÿ¼¼¦H^7Çüx½‡Šä ¼Ñ'oRx‹ïïòÉ ‡>ªð nŸ·9p{‘Ü¡p¸Wá>p¿ÂàŽ€£ Ç8¾N(<®pVákàëüŒÂÏ*üœ??K~ü’-[ÇQÙ=-YŸ6޹³ú®Ã§fÝví>Ÿ½ÆP?5»µ³ÓÇI¯Rä©zøù”ïfÝX~ü즻Ÿ9sÒÁ«ÌkŽÝìuêg7'~|g7nÏ~æÙïúVúˆw*ÀïÔ‚‰„1GRÈV¦[O´ïùÚ|,å,Õ´§%óqŽ_ÌkVÌ+è¶$ýêâÇo~^OÛ˜ ûõ³”·}ËÇ­Œ™VÎûýË[å ðTQ‹vrTW"˜ò0 éæ/ð5.¾*2ä`,· ®Ç˜k!›ƒW¢]žå ‚®–ÁBæj­0è€} G¶¹ ¾àà®Ðw°e²îÜNÈ]®@ fl–æd¥äSFH›«Ò %ðËZØÆu¢í*ô]W,sü"ôL²! ù˜JÂÌ©8ø.³–Cé9˜£o–)s¹s„-´ Á>n»2—¢~ lâ ˜Š•hË:så-–ü\_Ü k"ÍàÈíÙ± 9Æ´ÅÑN{Ž<ñ2¥o„MîîG?ë[À}[|Ná‹Z!€{¦‹ãá߸³‰vÆ{ö¬Ê¹Yhs<ý#!ÈAx`H+d–×—©)Ü~ç§ Yÿ|ØžcÃÐïvá¸æ¾˜Há‘Íö|ãĘhñ êÍö|ñ<æùUKv1S…þÍ3ô4¿ }Cö<:QÈ÷»éÎ>9RiÙaÀÌ&Æ7wºó(Úñ|^€~Ãõ–?˜`·Ê}ð#slåÏ<‡ õbæ÷ÀD¾ÿC«ýÐô_Ä8…/@þæm°æMJ¿ MʽmÕÇÖYõÌç`çà+ß =†bX7,ù¼oœß’ÃÌz3 Ý üe`ý1o·Æ1Xr£xoj¡?ì70~ÿËVþ,ôsâ(ì¾]È=ËóËzDZÞa¾?ÚÅÃ=Ð õÌ1ìê#_Ãúø<ÞèM´Ã:ëÇ:íûªÕω£Ð‹×olºyŠ ï»Ì±³Ö8Ãl/ØŠ‰d/V4I›ÁÍÓ³ãnÌs#äÄþ¢ò‰)«¾í+ϼ óß‹uÍ\ö[QÏ|@á&ìÛ0¾_C/'îĺ¿jÏ[ ‡¹ztc_`ný›Åõàf´{ýžRxÞ§­È‘g~åÌuoZó r'æ©þl€ü6ä›°¯¨¼ ãt{YÏÓ–ÜføGåCðO;¸ ï?sät`þ™›±Ÿµ¢þˆwOr#ìï‚ÞN¬úÙ‰;¿oéqý˜O‚;ÃhçÀç¦ åñ:>¿1×s½ÂuØ™;ÑŸ¹å hÏ܈yåyÞ…õÆóÍ|í¹ó6ÈÝ;÷¡ý~膟Ïa^»‡1àí¨ß y±þö¡üú5cü¨gîR˜ý¶í›> y­X7mÐ{ÊBÿF¼oõ¨ßùNÜyÇÑy3üÓ¹½!KýÐçÔ—°~ù=€ÝÐçÛÃ~wõXõM· ýà÷îïXùóðó1|¾ÛuÚÝæèÕuÙý˜Û1^çmè‡Í§ù4ëÔðž;;µÿ¤’—~ói>Í2¹ž/^ïË\ñÇ=Þ<Û3§ݯÔq¼öÁ¹–W¬üRû;Îlϱ½~JµçAë÷iãÙÚ«¦OÚž™úÍêÎI)_ÿݾÒú Y^ðõ®,O­+&¬bw—¡lŽôô£ƒÿD®ÚSæ"W¾3¢ÛÈ*—úªm½æCno÷,ëk'GËm ?÷›Š¼UFmsQ3=ï_©¢\*;f¦‘_r|2š0ªw0jP޶EüÔG¤?R£I<‹ŸgˆŸL|ðO‡T×DÀ\óé_„ÿÝÏê¥çÍR»Z”MJeoSžìÕI+ôÐ<ÏÝÕ#ýô.IV;!Ì2©|µfŸ¾2³H_ˆ‡_ƒàÒ_Ü¿sØuu_+…¯KÏ•6º¼¾;¥ro$ÜC^üTýß„ÿP»uÒxA©øy¸¸hó^Ç£rw.oàù]p£Ô®jf_íŽôü–M½œVyÔ_G”ò‡<ú‰$Öÿ·¿“Ê^ñÑÓ·}¶kAüÄç{Jùw•üuéy ,ßEæ=K~æ;m|‡ï°©{¹Wx7àP¦Ž¡–Ûã4F1¡R;ÝÝìòªsÓÉMwÙNÕN²UßØÙ§Žçå3?>-¶ÞÎnýÜæÞ«_±müè¦3?ó;ƒ3Fÿ¦æzÆè?"|ž î5ãŒÑŸ%$´Ü“ãËZîŒÑ âN¡8cbÿúÚœ1¢Ÿ|Æè) |ƈqÅ£_‚,:#ôç´è´èâ÷7µÜ¾®L-wƈ6âŒÑÅ^3F7´ßëÍ„V‚¸sÎgÌGZnïgCNV‡–?crzuZ>gŒ%ˆ{ìôÞë;' Ûµü#žsrö[öÈgŒ.ö_åŒ:ê›àŸ'-ÈgŒ¾õ› £€¸ÛŽ3F?|ך71ް+çgš[ýQ`)Aü?wð,~Vùž7cÜ5(¿gõgŒÐ7‡å–<íâ Øqí#Ö|äü%Î%Ñ~%°}ƒg×/Θœ}b~sñåÅO;ÿK| úˆ¼ø¬ôšÕ'wÆüþ ÁÞEð›À4áçZáóÂÏ,»sgÌ/?%¼¯YgÌ-äÅÚù3 þŸšÇû)'µÌëY-³“m7–Zo7†ª—S™:ŽSÿbêÜtrÓÝÍçN²t³³Ë¯Ïüø´Øz7;Üú–үضnëÙ)/=^6Oã&_6_‚Â@<Ê_„"f2+¾&Y¹´‘Œ¦Æ¹k6mâÊcî®~ƼÎÿ+1jr‡13>:–åÜ59· ž¤/`qÎV‰oi©x4Ãù ú–v#aD¸ùX*S1ò²²™¬‘æ\¹™œ¼¯V&›šàfÔ*;™QŒ¦S×êØðÜe…)úçÞ½{{¾VG¬QKSÍÚçîþ·£>WžGsurvival/data/mgus.rda0000644000176000001440000002431612267746072014554 0ustar ripleyusers‹í] ˜]Uu>™W&™<†$IÀ<&¯I2„‡™@EѶ⥠’4  •h¥«K±jyøDQ|!"ˆÅGë«¶¢öaµ(J¥¥V„/´]kîþϬ³Îýï9ûΙ!|Íý¾?ë<ö^{íµ×Þgß›Yÿy鯗¯™üòÉI’´$-'$-­rØÖ"ÿLH’îIz²íü‹w%IëL9ž"˜*x¤v?ÑrÃí‚ÁDA§@ëªÞ.Soš`º [p€`†@õÎ ø àC‚ >"ø¨àÁÇÜ*ø„à“‚ÛŸ|ZðÁgŸÜ.ø¼àÁw ¾(¸Kp·àK‚{_üµà^ÁW_|MðuÁßþVð Á7ß|[ðÁß ¾+ø{Á?¾'¸Oð}Á?ü£àŸÿ,øÁÿ*ø±à'‚Ü/ø©àg‚?üBð àß¿<$øÁ ü—àW‚ÿü:©ÍaÌeIQ=M[ÏSÃ=͵áXcXcö¤PVçÅQ¡Ž–?.H+'‡ò*ul ןêê\:-àÄP·?è>1ØtZ:ÇŽ:6†2/ íŸÚÑk:ÏV]kt^¯º6†2z¬ë‚ν¾p}m°uCÐ{d¸wJ8>>”Q]Ç„~¼(\Sלì<2Ü_ì9&`}¨sB8~A8^Ê/}8%´yTëŽ cµ&«®ç¹Ñ´±)øFûtxÐqrðSŸñË©aŒ×‡úg{×[†v^tô»×„¾"V‡ò§‡¾–Œ¬¥jÿKCÝ~c§–×u|YèÓ‰¡­#‚þÃÃ5ÄÝÆ ûèÐÞ¦ ×$#ñ{|°GÛé ~ÑöõYÑî÷…ëk‚Žc/ºN ý|^èçªÐþqA®e^ÚÒ~¿0o }86ôam°û¨à‡£ÔÎ%á^2òlÁsguЃ¹g݆š]­˜Ë-’‘gô„:×ë¡…”g×Z”óeê³öcê°¾1ÛXýzçE6ÔÓY¦oÚjäç2÷Ëèkd{=”écQÌÕ»Ïʳ>—»"‹t–…FãW„¿föß[/ܪ»´îP¢¶+Ø:Ž;άe굟»u`ª¥ÊÎ8wh»nûžJFÿؾZ¹1Énk×'µeG¯õ‡ëx”èµ ¦ìqîÜêÀñIáø´ ïÔ Gïá1‡²¸†:‚® Ð}’)¯çÇ»ºÇ›û›BÝuIv œ¹oõì®dúÀ†~×Ú=Æè‡PöÄp¼1¯5ý`¶àñƒ¯(‚\®Ÿà|xb€=F¿ûM'»1€ŒýF£³?´;16Ð{’A¿C;– G «ãä:ØÐàƒo?.eaýÚ¨Ü)¦,lí7¶œdÿºŒ´&å—"¿ü´‡ãvsÞ^POï·¹ºþ>;/Òþø:¬Ó]ï}¬Wßë/ò)³ ¾Á±×ƒ:ÖŽ¶‚¶Š#õü×L<4êkÙþÛ{eûÕŒ-uÚ+c³56v‹ê£–‘võ1ÞòtR{rk}r'A¶¬?G/<G§¯ON¯ÕoEý üÉ¿gXi畱H’Ù¿J’iáX¾|¥¨}(I¦_Û¸ÞŒo&É”™bê]µóÖÛ²÷÷dÏ'Ï9îÞRl×”[’dé¥#ç%ú»WÔ/ÛuõÈñ¼³GŽ;^;r|À59÷â«EÙúÓî®ÉI“Ýõß6¶qâ)óãüõöë’dæ9µã©3ħ×dïw_î9rmnw‘OjåfÊËÎۋ˺©Œ¾²h<+m†ŒçõËO—/³‡Èî§keµvt¾}äxÒ“#ÇÝ?•±¿lä|ÖÄÜoât·_G®ï6m6Œ‰úõÛî9îz­è¸'_]“ÓôÇÈðäoÙ›$Ï‘u`Âs$¾fK‘k E‡|1˜ø/R÷’$9¨Kb[ Ô¡ìç_!8R õgm—úI2gºÄÝå÷×Ë8Iç|Bîý~’ø‡¢c™ŒŒÝÁÈù亴3å1Ñ)snæýrÿ¦ÚñܯJ›bËbýqøPñ¯ŒéÄŠÝN’ÇÊŸ%uo[qù¤Œ´5ë®$9ìOäÚ£¢û}¢ã Ñý­$Y¾Y®Iß—È*6õ?Ħ_J[g×úÖ-í&ãÕññÅ—Å߯¾Hÿ'öËü™+kR÷i5]³eþΕÝÓÁ‚ymbÃϤÞÕbSï°+‡×¥î‹äºÄÃBY5gË Ú"«ï¼ç‹/åxèœ'}íûh’<÷Ýâ‡WI¥“Î{‹ÛÄw¿›_­õkökDÇäþ›¥î|Ññy9¾AîK¿g‰o§Èz<õhq‘ø²ãA‘¯“:»¥Œ”ë*6ëôîš+c·Cì§jÿe•ïz2þ¡|‰ô}Ê{Äîó¥­±í2YSå~çR_|³øåµþ:OluúЯÉ}ý‘M|>Q¾9tÝ+eÅG‡ÈxÌü¶Èω ËÅO?‘²×HYñññÕt‰‰6ñÍ"©Ûv”´¥?ZIlÌ|­¿âû9ß•ñ¸[ mü—ØþV±çpÁ±ñ/EŸøãÐ3k1¡¾S{g¼KN”q“¶X=è;r|»Œ¥ôwŠŒól£}µ¸/ß &‹ß¦É˜Ì‘Ô»§Š¯•±n{fi¬é&÷¿"}‘¾Í—ØïúºÈ/Ê}‰Ÿ.éçÓ²í¥õüxy{ÑïYÂÞuOºxÈùÃÅ ìœèüÚéâí;?¥õXœùyéï{éÇÍ_‡ôë˜÷#ʵº~y»ÙÎÈ|Ïõïa¬›N¯çt¼ËÚ[‡w~vãW$ý¾3·NùýóW:Î~=ôqæÇ—Ý'ëFª×Ïn¾Ó8ðëjQ|ºþa”–÷ëÊÃÙò¹ñeë€óOá!™?Ñ?ÿsõa7®™àûñ’šþþåaz¾`U8_$Ê­ruKÃü[Ê-®µ×¿,èY®CßJÔ ÷{ByèíE9èAy§úW¢ýP¾'܇žáú”Çuœ£ôÓÝGû‹B{¸¿œÔ[ìú?-söÀNøcQðÇŠìsoÄß°#è[•-ŸÚ…ö q}E¨¿ýt㽫1^î¼oOí2w×.üƒñ݇`ܲó!øq³Âõ?µÛ÷+\Oû®÷ºr©?áGŒ'üÎW‡ó×?èIý?»yñLë¡æ_ˆ›¥(ôÀ¨ôº~æú ¿ ürėӳ̵·0܇\ ÿ ¾áØ¿¹Ðù±ýFýPöú~Áo=OœÃOиDá·~`Iû®/ 2Õƒqsv@ÂÏ~Þ¡ßi¸õ ñ»Óùä|g7Úéuóýèuã™Îw´‹õÄÇKø-]—]œ§ëƒ‹ÛeÎO˜'ð‡ŸŸ½Î˜OKÜ_½^κÏ[/›»ŽüuŸÃŽÜËF¹ì MÊðÉH@ðyí6·ùíõrÜmž{½\÷2ùîÈyW $ù¼wä¾ÛüwäÀ×˃·¹ð>>&'yñesãÇ"?žåÈ#O^qcR?WùòÈ™‹¼yŸ;ïóç_IòyôÈ¥o&Ÿ¾QN½Ï«o6·Þç×#ÇÞæÙÛ\{Å´°ne>ý7Üï/˧ÿó¿Êž| )·*{~ç•Ùó}/{þÉž ¬=Ÿþföü#Y½ýWÞ_¿ÞÛö”ÓïµåÊ}à˜Æ÷oÛRJOÙOÿG7{þÕãö4,ÿÞì¸õß¶¢¹v?<£ñý»Ïn|ÿú4¾ÿ©;ê_¿ëÙóNm¨'-wëåõ¯ß4«dýÿ)U®PÏ{¯rzÿ®³²çŸ9§~¹[eÏFœþÛ®ªý– ×»«»”þØOÿg^=¿qkµúïÙT©¾±úô¿cG\ùOÏÌžß{””Ó󉋲ç_\›=ÿÐ+›Ò;ÞŸþç7¾óÞÆ÷oûiöüîË—ÿìPöüƒ?oX¾ª_J×{çýïß\ÍúWöÓmgãûú~öüæ7Ô/GžSý·¦åÃ÷CM‰êÜÑ|Z”¦8jjÔ´Ž‘ô(MuN‘º²–&¥)š*5ýÚât)M1N™šYK›j¹k$uªõ¶:éS=ùªÉs³iTÝ[J¦RÝRK§Zzi6¥JÓ#5­ª{O­êº:›^5ïìlŠUÇk³iVÜ1’j¥i“šnÕ¹(Ÿr5íî‘´«I“ó©WÓ~[œ~¥©;š‚5íÇõÓ°4¥Rý2óœ‘t,M­Ô”¬ƒ¯É§eu_eR³ŽÌ¦gÍíŽHÑzA-M«óö’©Z›Æ ]ë¬ú)[š~©i[òÔ-MÃÔô-MÅÔ®®•Õ§qu¾=›Ê5éÉl:—¦f§t]–MëÒMMíšü›&Ò»®ã)^í»³i^“~Û\ªWÛ½Ùt/MÝÔ”¯I÷˜´¯«GR¿4s8ýkøû!ý“³1’þ3Þí?Ó²l¿‹Ê•Õ3VöUeGÙúEåØýÑÚ7^~-²ßßßWúUõ¼n¶~Q½gZ¯/Ç>Uû-Vïhím\ørì~\ez}¯+Gˆ˜ ÍJ›Q‚3FtFü]H|éü_š­"B4Ú¾·“¤±qȦ±ùPDPéí( T+b5æŸÊˆÖž¥„kEÄklœ¢‰Øüó…<öy‚¶"¢66 ü@ Üüºêãi¬Ýš%vóå™ýãEô‰~²uÁû›Ì«\¹ !Ü„Þ!Ü3E ç Qœ'ŒóÄqž@®*"9O(ç‰åÁ\Y¢¹²„sEÄsÐåˆèŠé<1]Óuð‹Ç"º"âº"»XB;BlWšà®*¢;OxK|ç ð^ŽÏÇ-Æ×­ Œ ¯ˆ(o¬óOÈWDÌç úÆ‹¨¯Y¾"â¾ñ&ð+"òó„~ŒØüe‰þdŸU«–äˆÛÆ™ðÏÌ¥vùú¾ý"BÀª!½¹ý1Ê1Â.F K$È«&ôqP@4˜êõßžÈö·ˆx°ˆ€0m‡ºñȳ¿"¢BJXHü™ÚïÇ”†9"ÃHBCO\F ÑaiÂC¶ BVM„è !ïËêM룿.ž)1¢ŸÇ¾þ>BK”˜#ÞƒŒ%Nôë[|<íc„йøðë)¤¿îýà~¯¡„‹„xq¬ GKÄH×µq&f,$hôqKqc–À± ÁÕe9k¤¿kh`'Ûv mß‘„?“CïB±ÁK/Jñ<ÆÒ4¶«Q†•ñ©ï7Ïʸ&°2N®©l¹/áÇØjÐfÐnÐa0Ñ Ó`’Ádƒ.ƒ)S ¦L7èNòl`„f&yvHËiY"Á d0Çà`ƒC æÌ3˜ŸäY&-Ӥ⹠’,ó$°È`±AO’e¥–,3Xžd+^ƒ•I–ÅXmÐgp¸Íu8ÂàHƒ£ ŽNòL˜`ÃŽ5°9Ç%Y–Làƒ Öô¬O²ŒšÀƒI–eØdpJ’eÞl.Ìó“,'ðÂ$ÏÌ vNàÅg¼$É2w¿“dY<ß3x™Á™I–áx…Á+ ^ep–Á« ^cpv’gU œcp®ÁfƒÁ$Ï" &Qà‚$Ï* fQàBƒ­Û’,ë(°=É2`°3ɲ’C\bp©ÁnƒË .7xÁë“<Ã)XN+ ö¼ÑàMdðfƒ+ þ8É2¥W\mðƒ?5x«ÁÛ þÌàí×¼ÃàÏ ®5ø ƒw¼Ëà:ƒw\oðž$Ëâ ¼×à}ï7ø«$Ïôª¸Ñà&ƒ› >`ðAƒ%yfXË †Xàƒ|ÜàVƒO|Òà6ƒO|Úà3Ÿ5øœÁíŸ7¸Ãà w|Ñà®$Ë^ |Éàž$Ëh üµÁ½IžåL·À× ¾žäÙoÁ€ |Ãà›ß2ø¶Áw þÎà»oðß3¸/ɲë?0ø¡Á?ü“Á?'Y&^àGÿšdÙyŸü›Áý?5ø™Á?7ø…ÁƒÿnðKƒ‡’,0ðŸ'yV`0ÿdY‚G žZ™ìe´³¬v€²ÛÊr(› ¬w€²ßÊ‚( l]@fdöGÃlyWŒ°æÊžgô,‹ lz)£Þå#PV=ˬgÙõeÙ”mPÖ=@Ù÷eá”Pº 3Ÿaç³ }€2õY¶>@Yûeï†Yü “ Œ~€2ûÊðgYþeû”õÏ2ÿÊt(  Œ€€2Ê(S  L~À0s a´ ‚€2 Ê(hY-³ `cR™e”yfK3,„€²ÊJh™ e(”©Ð²ÊZ({¡e0”ÉвZFC@™ ûQ¦CËv(ë¡e>”P&D@-+" ìˆ€²$Ê–(k" ì‰€2øÊ”g-«" ìŠ€²,Ê$ ³ìæE˾( £eb´lŒ€²2ÊÎ(K£ej† k# ì€²8Z&G@ev”áP¦G@e~”P&H`˜Ò°BZfH@"eŠ”1P¶E@$e’”Qf–4ì’€ý(Û$ ¬“€²OÊB Ø=¬²RÊN (K% l•€²VÊ^ (‹% l–€²ZÊn (Ë% l—À0ë¥a¾”P&LÀîI•Ó²cZ†L@™2aÆLàk#PM@™4-›¦eÔ´¬šÀ0»&pæì³ÃÎYÊ (' ¬œ€²sÊÒ ([' ¬€²wÊâ (›'`÷ Êî (Ë' lŸ–ñPæO@@- ( l €²‚f˜A ;( ,¡€²…ZÆPË ({( ,¢€²‰Ê* (»( ,£€²XKÁ> ( )€uŒ¤€2“ÊP øå(c) Ì¥öÒù#,¦€²™ZFS@™Me8”éPÆS@™Oe@” PFT@™QeH”)PÆTËš ({* ,ª–IÕ²©Ø'€YP†U˲:ü;uæÓ,+Ùÿ÷ëe?±¬r¬+ËW¶Ý}ízU~hVÑuöÙ×ôW¥çÙr•«z\ö•yÇ>ãÕß±ÒST¬×U¦'öúX­KìSÖÎØqjÖžXýEå÷•yWu\•Õû«ç`Q¿ÊÚ3^ûϲöŒµþØ8®ªÝf¯VUqRõg_Û·ŒõøV¥g¼ŸSeÛ«õ?öÓìü.kÇX?Ÿi¿Vÿ¾:O«zžé­=c½Ï/kï³m=¬úúxí‹ÆzgõÆz¼bËï«íŽ—ÿ›ŸÍÇs«ý;jüÝôþãýÇû÷ï?Þ¼ÿxÿñþãýÇûKgx÷õžæNÜvÙàÖíÛÂiûö¡ w6õ ¥áíºM§²éW6 ê ›ºeS®lª—ÕiÓ¬lÚš-cÓ»lºÖIÖû'Ý6ÎÚfí±)röºM‹³élÖ{ݦªÙ”7«ÇÚ`m¶iw§X=Öæ~ë[ÞŽÕi¯Ûô=›*hûbËØ¶ìX[ÿÛ>Z¿Ùº6•ϦRÚ>®%°©‘ë“üë¬ðJ+À¶eËØÔN›Ø—d_Xl l0°~°©V§M‡´e¬ÿm[¶6ýÓÆ•õ³­kÇz õwk›ÕoÓcíxC`í·¶Y_Ù2vNÙ2v¾X{$ùW~áµ_€õ­]ìõu¶¼]­mÛG›ºk¯Û¸b¾²caç”=›blûbËØygãÍ#»ÚµÚ–±ö[ŸØx°iÎV/;F ¬ßlj­íK¿;.6†Ù³À¦o[{ì¼°1i×–vmãǦ÷°q·öØTw›ºncÏ®ÿÖ‡v,¬lüغì9kÇÝúÄÆ’õ§í‹½nm`ûÏv¼¬ßlš¿GÖÿ–À®ùV¿VµÓöŦ޳9n}bûhýlãÖê±qk×4ëoöºõ³mËmœÛç…-cûncÉúÁÆ’õƒ«v^M`ÇÝÒ8XÖN·ì¹l}b}eûÅöTŒV¶eÆ1ý ¼…`+«g4(ÓVl™ªôWÕnl[£)_•ÿ÷ÛªŠÉªÆ´*ûGS~¬Çb4}Ϙ ÆÆÛhì ýãÙß±ˆ™Ñ`¯úÕ³-÷ñWµÊDöJZ/©ždø““ìÕy¬|Ñ+ ½ô¯Dô¯ÄõÒSEúWðyÉÚev²Wp²þÆêgýeã;^±ãÂüÌìdú»‰ô¯,e¯Ä…dåY»þÕ¡þկ앫^²v™~GÑK_E\$™X\±vÙx1?°õ!6¢ûKô„W){I_ëÏX?3ýt¾WŸÄÎh?{¨Ö/¶þ³ò,~ü«DGûŠé²2öÕ¹é+‚dÏØç}¾{ˆÿé82?ÇÆylÜÒñ%~`qÅâ'öù;OY»þÕÞþß^v„û^Võ6>Ù¼ ó. ¿Oç^= éR.Sé_I^µ”{»Å·—¬<“ÌN"©ÿ¬#YI÷•¤¿´<³Ÿù“õƒÓÏ^5ÅüÏÚÇØñe~`z ýð’ù‡•gýeå‰=lÜ+‹‡X?GÆ?m—ø“êy ”󒽊.r¾ÓvŸ弌Õ»ÎÄ®Ÿldå÷;OÉøR?ýô÷‰ªâ–Í;"£ã9r^Gû™“¬ÝØyÇì‰]#ãŸÚÃæ{Eq;©þØøŒ\'cûÛ?§vßËèç]ì|Œõs¬"ã'6bרv£×æò|ŒÏh;™=d]Šîoìs³¢ý|t|ɾ?Eû“ÍÇ¢W®{ÉöQ±ßËØþŸÙ¹~޵Œýõèï}±ÿŸ9éºû}9ö¹»>W¥?VÆ®±û·Øç5“U}ŸŠµ3v¾Çú9ö{ öÿiÔžØïALOìïl|«ú^9¿Æ|_W•˜Œm7vܫГŠöt¾Ç~¿cÏåªæ;‹«Øý'ó쾂é!2ÁßO/©õ?'—‡uÇËžš9¹*Ü÷r!‘¬ÝD®&ri­?9¹2´ãåâš¿rrYèGN†z^²þ® vy¹4èó²'´ï%óCohÇË•¡ž—ËB=/—†z^²~1ÿ¬„¿½$öô ŽœdýZ8¹$´ï%÷á¾—ÔodÜ—Éô3ÿ3¹(øÏK¦ŸÍÓX;ÉüÀæÝ2øÏI6^lÜÙ|YD$›/¤¿ôû ]Oˆdñ¹*´ïeì822Éô¬€½N.g2Øë%[غÁü°:Ôó²'Ü÷’•ïÛS»_VÒu>ÒÏl~±õÅÉ!D?иeë›Gì9Åâ„Å?²nÐ8$zh\…z^Òçi—ÎwâOfÏ’PÏËhßÉÕá¾—=˜N²8dý¢ë Ö /É:@Ÿ§ˆ'©D²qg’=§–†û^. ýð’Í_f?›/½ˆ;'Y\F$‹[6˜=Ë1ÎN2ÿ3=tŸBü¹0è++—¹ Ï'‡~{ɾô†z^²õŸ~O!óº/Øë%Ý_!~dñ‡lžö`]q’~¿ ú¼dþgû:ödñÃâÅ!ûÞDã?Ôór!‘´_ÄŸ±ãÂ$[7b÷™,ÎésHúÜ'’Šݯ9?èó’Å ó[o¸ïeì÷ñ^¬+N2¿Ñý<—•D. í{IŸGD²õŠÍSú;ñsüç$ý~AÆÅ9[7è>6ôÃK6_b÷·ìùÂô°ýÞ’Ð?/Ù¾ŽíØsîÃÉ:Àæé¼PÏKúûX¨WV2¿±yJÇ…ÌwolÙ÷‹¾Ð?/ÙøöÍ åœ¤~ ñÌâ–é¡¿ÿ°yFæ [oÙ:Ãöol‰ÿü>½N²¼3ú»7+Ï~gÕÏôÿ· y($Ï‚þÿ³“ä3Æ–§þµ‡ùýÝF¬Œwš—Çò5ظ°þ2ÿ°qy8Ôó’éa~x¢foN2?üj'i—Å ó3õ“¬¿±ó—ý?_d»t^0;Ù8²ñŠg’WÈþ¿ÚÏüÃìdë˧#ë^ì<­l‹üôèu€ÉÈy»Ðx ó…Ž â‡Øx¦~&ãû\cýey¸ô¹9ßÉ<¢~ŽüûÂØyD×I?LìóˆÅ‹ÏXýUí‹ØxQÞ"éþ!2~ˆýÑGûüŠ¿Ìÿ÷…ö¼dë<³‡ÄOìó(v¿DÇ—=b팵‡­KÌžªöo‘¼Oôû›ï‘ñOõ3ûÙ:ÆüÀþÎ’Å-É+çúC=ŸßÅæ[ÿÙ÷ö\cùûÌ?‘ûj‡±ëyìþ?VÆîÇbŸ±ö°vcÿþ/ò{ µ?r=¤öÄ~߉-ù÷Ñy•±¿3D~_ þdë6ëoäïN±û1¾žÄÙOýÏÖ·ŠÖÉXû½€ö7vÿÌæ‹w‘ëXô÷hö|¬jýŒ6¿Xü°øgöпŸV†ê60TO Õ-[6'Õzh˶”Õz×ÐÀÐÅ»ðZÇÁK/ ·ZÎG©Ö]ƒ»Ó«[ÏAésw …“Ö ÎÇõŽm»vl¹00e·«Sµý=òÏÓOÿv%aО¼y`h`Õy;†mSí§þ¢¯ø~;survival/data/nwtco.rda0000644000176000001440000004356412267746072014741 0ustar ripleyusersý7zXZi"Þ6!ÏXÌâðTG7])TW"änRÊŸãXVŽHÆqÅjnçj-&écØëÄtÀŸ¦j§×jG9®Ñ 1®[°È)ã… Í|l Š:T¼– <JKè›U2˦À[:ê‚ÏÝq› гç‹à@%oEØ/HÝ2òᨀ˸Žþ™.ài˜pë 4/f×]¢ƒÙp¹[¥;ã#šÑ Ñv/WæÖΔø9°+ L߆g™å»_Řü_ =¢,m!›ŠújÕüDàÛÏÕjFcfâúžöGLú6GHe®åû昻ï$åAoÈâ‚2Á%Þ«,ÜŽár/]¨¦ÝöŸ¬Í±sᛥ…BÆ£v%¿ãɃ±Ô!Ó > 4¢ÂÏ .qù`¾zõå®°`Ìćòb5zAA¼ Q n|‡&¥lhpï–?ð®QUÍ¡L¶Ç FòK>W ›ƒF‹ÅÉýO0RKâpý˜ƒ}ý$ïš)T4üä¼S•®È¡ëÅM3oŒÿ ¾ž^ø=‹ö³Ì¯—º4㤼3/ókWœ0OŠÓ›{ÑÎL¶¸–Ý@8•#,£ºXÂVŒú½bÄRYöUƒ{]«þ•o~š:7z¢=\ÚVUÍàçÑŠóø„UÓ%ÊúF_»âe8êƒùoh«Ó¤ßç#P3³kÁ’®ÿ4/J¤ü¬ïÃ0þ¹˜ÈØI³Ûþ5Êgñ”ÿ L ´Ó*jxÕNg•qDƒí2ψR;¹M×£}à,ñ~ǹŠçš‰VGÜ ¼:ýC#Àº¬EÃÛ£¥žRíï@ãª/Ðí»MÏ Ÿ½ë±ÔiÔTÐWå ØêŠ‹Ë~ÏK.'‰H‚ð=“øU[¡#GÈoYtU^òKk× Þ—Öi"L½iÚDš²I‘(”ÿYPŠqÓ&^s_“å¶I\#!>¡Ñµ#Xû##Í(âH5T’«("ñ®ÝnCƒÀs_P"Oö«%œ¯ÐU r0CŽg¾9WŸ_§U4n¿þ~툾ØWaE¤Ïcóÿ¨V†ö§‰,„ß ü¦¬(dÓ‚n×ëP«„.‚af&±ìÁì (+ÐpŸI‹š²ñŠE›Z&ér¨1nq¡Œ¶yÉ€¢óDâ·ß=ÇÚá²Õ}±ADêàI"(’Bëh+e¢´­] w‘­é¿våä‹^ ePf¤¤oeP# jWèœåuL¸c%êQíx`ÝdHÏ‘þãÁîDj.*–†tûYb6òu……>À^GôoÂ!éRIÿÈ z4Œƒs=µÄžŒ¿°Ú‡‘™t…D^Á!äbVý“iÓ—(sœ"jlç~#è`ûn«{89£øYC¥¯˜OñÒù[Ó$€K¿ÀXvI¦:Ô@ôÒ®d%3“ó§&¬«*1Ìz‡:ÖÊžk}ÿ5d,·qÎ"s‰†žóÜа ô:e¾Ù)ˆµðeÃh û *&ØÕ&îäµn|;GmŸŸWy»™µMÝ7¦aï=w¬E×)òP­l>’TD G£‚Š'ÎÀã~· Cˆé·ÝÆH¯ª±"òàè‰úûŽMÏ誾#åjm¾C0èæ¯Ù]0¬jÈ™S.ÂüòSftº¥‡YýŠÈÕí(O¡äh„(Dkí9!QÀ@•ä›’šZãWô#(Ì(ï-‰_ÖÚùÙSv˜AJßܸ[tú*u~¯ UÕ·ÏuQøcXœç—<„hÿX#)’(í­å”ù8¡íFâƒm(¾/.%Ó?”œ s4°€ü­õŸófo {— 'Bƒ©Pš:·Ž‰F¯k!DÄíT°OÞRˆÐÃt6¤}LÒt_ìý@ê70Of—/4$þ‡õÃþd{›³L­ÿm±EC«~ú½A|Oþ¶­â§b}ø]ηvI.rœIGâ²}-®œ!ßXØl¹nÐH-ùÔùê=kKLä‡ÿNc·Ëª¼XÍ+ðj(#½^´:èÒãs’ø§7¨&<ã+óWdÖ]ðò÷ÐJºñ…wûò&„°‘¶¥ù\c@=:“ƒAªÌ_à¶Å&¦T˜c*Ý—i—d §ZŽø+ŽhdÓfÒŒ‹¦tc®!s=`ÐüŽ}*€?ÕÐÀöˆþ( ®Érúô\}ýSw£ô)†Qpà!Æ1p"@Íìr3ÕÉÌϸwöGOv »*Ô?Nq•,eeKèö”þeÊXÓ;•êêm ?8I™ßf¾D‡šyÃilôn3E[@éF€çWW%ëÂA[ÓŒv++¥—499Óg@p=6'ŠàaÄðj@Šq–*Oc~ïŸTÉ¥€ÒªÏùÙÊ©ýU± „N~¾Iã0™îÖ‘Ûo˜×éËÛ¨§æÚæRbh?ëL«a¡X—`xMä«B*濳`Qƒ´x^>'é_0¤N¾lc:T¡¬ò*œ']Žêžï«•Äá.ƒ[Ôl¿;‚¾w´µ6§hòÙþ—åJV H±q'‚KÒC·Yñ¬ÌŽ>« ¥,àMø{ÍäÒ€\Hak¢F—3M¾š7Çý×Ĉøãjî›ôâ÷@yC*Â.SäÖ“ÇÆÀU‚‡Ï9Tߢ²è0¹ø ^#n1òlMáÂxK»€wÍJ'š7ÛÓ hÐ/_on8$³)kø>5°"He>lE€0Ca÷aG*½úýh”ú~.ó0CmÁVD98´Š/Yp¾4­ØCöêñ怬…g³{?«=•q²k;‘ñ {@A¤xÄ×[ÈHÁž/ìßy#ÖkØSg¯ïÖÒ=ëyÅPø•´[öº#'=ø•}Å¢tÝ.FB¸.ZÌœ{ù³›n˜«Øâ{RêJ<¸B¤àînZL¡îE I×y;*5îª#;Ï0Àë‡úG¸,øýbã ¹¿»¡'¸²K@û‡®£‡6ð]n[/Y†6ˆždC(èüHG¥©˜ÂeZúºõÐËê@òרõm"ê Við ÛæPR?×;µ$äóþ€³Zö‚I,e‰Q¯ýyaîܨ,.¹~F¡Ç`– ‚ ¼õc†ðH YÇ#]²ß*¦‹‡“éé\\ãûh2¿5–aƱ¥Ñ$Ž> Yis_ž–Â|‹7ƒùpÇŠÐjóÌϤMÛæ3À"]ÝS„½¤Ê(ÇÝ·/´möÿ›Þ[O`¢%=!`ð•R=üm%1YS€¤wÖ±ûÏØËx°Ã&˜ T¥å×*ÕGAÚe+ÙÚ> ’¹7>a"²^è2ýb†µÖ­¯gß‹¥Ê9’<‡÷†!A6skƒË.¬ñE^‰¹ÿ¢V¨èo°iaÅØ•ZÇ Ù(yÞFᇞbSˆÍ»-“¨5Àâ1ð¡'Oªïu³‹Ç¿š1Ç(Ã;^PitQ®Z¡»BlÚ²¹4¡u Tœ¼×K‰È1 6áµP„®#©l1§ ÅÿDÇõõ\PÞ{¹i¤—àdc±E J’‘TŸV¶¾ñGá/Õm>ÏQÇ6TVäÖHSzŸ‚èó6anl¸µ±€ºçGC±pòA}‡›½Ÿ¡þ)œ¶.£’XÓeçØi"ßÛëB³‰jsq]µó:e+IYïì¿C–¤&#Ñ5>%QÑøÿ¼aDh=ü€3uûÛ•Nl_fÊwƒ³jÅÊœ¬ÚøGÿ@ÑuÆcW~P,4ƒnmÓÀŒ% ¾²’OÜB{RYÒpµÆ¼`ïAç÷!9 ó4de5‘ß¾ úcýRÅýr»dweµƒÌˆ±æ@=ÃIMZ×0ëŠ0 û­êÍt÷¹‡ekÈÝèÉèé}Fƒtô8š´è£Kê锫FémÞ­y ÿiàZš¸¯†hÛ ýðØv1¹Hu§t+ #úÜ™º×°J¢êÞ‘y9Û}ƈz3@h¿“¢çÍù„0yó äÙˆ›^?JõÅ õ5 ® ³¾Ê:•g7®ñl8çܱxýbÜ.ßëd¡'eôÛÞ²óOúù%FþeRÁ„«x°®—L@Œ’(ˆì?à–UÈ~ø7˜0ZÇL®”ÃûÙÖâ÷šW¨É™ÍN:¦pÕ8‘×GgËôòø¡S.ËLØ8bÓÉUìiùXñýç,dPËï$?í”äÈå`?QÜŸë6 <=ä±,¼|¬Ôƒ€®èK íÒÃGí—µ4Ëë÷ëÅËœÌû»ã{_¤oœg‘MfðØýeyŸ_AÚbta£R×+ªf€[‘=ÈJeÿ8жë5Åá HdÙØDgçCàYƒá:¬¥š&èøöñ”Æ>õÆ™6 iJ ñÐï‡e/UX.Pëzb°&óŰgž•~ÄD},LvÔš~¤ÞC?;¢„;” bŽße³O Ì.¼?Tþsõhî×ûd¸B’¹`,kÑó«R;e6«÷Óç¶)UÑKD>½¡í îa"W É`“›|@Þ®…Íß_N×BÄÚÇ©RØ0Y8„Òè*cv·&ì®þ(%•Ž÷Ë,1Ú¡üPÐ]„0ÿŠÀ¿]>`ö"”4!¹Ê•ÄÌ/gE#‡Øþ§¼Ë¨bà/S“D¾åŠ©v":I4„~Mn¸àðß&§Ây£¸E ©Ú£Æ] à;;n‹°×Òwwí:P.7Ÿ dŽ¢'¸ÇR Ñ€ ‚M“ îìðꥸü“S@‘´rõ ÔÑ ج×çK£¾SÂWsëæ¼¬”.>^¤Œdš[7šm,‹ ŒeöùlqŠ[FÓ’¾†Ió'<° f?ò=ÙM‹¬)ÍQ¹³¾xÝ¢Ñ-¥s®ï^ü¬k7éî.nê¸'&b5²€õ_CñÜj0Ÿ˜-vZá²AnŸT^)–Að%#î¤k¶b*nè² 8öóAZ-vÒ“ÇéŸF Âçq|d^¦“`B¯”2ÞâÉ/ wÄf4îÓÑG²Ma ‹@ÿnâž#»Rˆ`V0Î3íL7–ÐoW'òÝIùÀfó €sRP¿VÏDZNòªq$s}â´¬èn< k¸Ý `Íb¼,ð¿N†÷&¡¾ìÜŽ–S ºUDžNÑXh‹´ÆS®_ÉlÙ*TýÆåãñÂÚöøeåOP†œôÊÉx¯ÆvÀò±™|x¿Õü 6Í»¬´Ô–aM^0“ÂcþSÉÉøB•ZÂhQM)³b0Æ“#êñó ³»î[šš¹céËxF‰î¦]T—af’¯xqÓo+sAW¦sè9⦴_ŒÅ¸»R)AAéh`¹œË„ó'·9r[WÄD åÆLÏaÄS]˹¶ÿfïRu6G‘I€7 éøESŽ&.þ­*EwZHpÅGz$é]4Œ(ïÎ27Ê ׆ JöÑ—~; Y@ Ó˜&{=$xaöÚ[=zù,Yºó´p6|ñQ…áHËþjëô0ðʤKÑc½óñbžíô›ÈeØÂ˜.Ô?¯+½P¾¿*Íô¤w›;V êpÊë¯˪ö”ýзŸÉˆ¸þ=1u{]M)ÈÙZÌøïl (•—,a•Ò7Ë µ0Gù^CG‹xÌSÈ7D•MÕMÓ©Šè€%òåu4vä^ðm!DpWÏÆmWv†T=C*Eû—•}´»Î£_…›ðºç€# ¬s(£æ¡ËŽÌéÜåœL¤%â&×½tßnqmh(«S½(‘Ép¼mjËjNØO¯·öPú÷ zi…=H¹÷ï!¦ŒIέ’ÅÆ’wœ#ëøsÓK ì§Ô ¿®ÀÜT#ÂPox>@Í»ÞÌ®)ŒDäú ÜÊêL€?êó%X•å)³ˆ?xöXù_16ë«ß"6ˆÌ£š$›uk0†ÎRÂ*kNÍ<½Ihô»ó`_šÍ>´cöÄ1Ú¤Ô{óá&P¬µ)Û á/œo0?@¢:Õ;óÓj´—娟D[ŽªÙ4VWl¹á”#óVòƒƒ2ðN‰h} Þå~U•íµŒÞÏÙšÉ5 [ÑÍ!&<Iú+ߦ·å²ÇçІ[µŸÐX"_ºÔ'5’xÑã•a1—Lâ«é¹n yÈn"Z,Š5ôøÌ†*1mcNl´þ‡&X®¢£.ý7$‡Q?ÊNò>Ž¢áó¥Ýƒ°äÄÑ}â¢xjyñúà_òP #î!Ût‹%65€$nµbŒÙ ƒÉ%©‰ÃÔÈh®åŽœ—Æz¢Á׋¹–+ÀwêóÐTK*-9P\ð}¦aMeÍ^ëf#¦1ÑËðÉ|•œ$Q>â]ûÝ Bl‡µ¶SûIç`.„éä½kV{$ cRB¥Äqƒ(Àå>Q,ÎÊu¢Ú—H[Æåù•­Zˆ˜e$oz€ÊrænãÇ~ÕˆžX|c×,Ãz™¡FÎ(+Y1?³êèÐ2bæ£h‘*'Öк­¨ï;”Ù?Xá|%Ü™5}„× pãš숒ÍHu-ÃY‘PŸ s޵K1ÿ‹€6ªq!M‚˜ß*ÉtÍf®wäï©¥wLl߯׶õXÓÿƒa*S™—îE²Í¼ÿ‡Ã¯eAÌt:…ûnl…­Oš¯ÉÁüü)%°š+:eö£‡êgbÈ-ù(c–à:5á"gæ8žœ%ëÀ>Âa¡*æSr)ž[mƒ_ÛnvÊå½ Ã¬ Æ‹¿èC5 «÷Ûmtæ©Òºáv¬3šñoïê(µëAÐ+4èÜÄݽG~šïCÜšCÝ1´Œ–!{í¸Rä‰Á·'µ'Y¾û·a­ .ˆ)B(~¹1à’ž˜M±@‰oýÄ™¹ÙÝl!øAÚÜ++ê9ã-Ô`±èhVïf‡ðgÜÉÂÒÈßV¡5t¢-má Oº‘ØJõÿëÿžÃVUH:fm…|À/ê;;ÆÃz$KžKoO?ƒ}ï)ºùé«ÉÂÙ…“—ï@Ê’²«ÜÏ™Z¥#‰ó>UÄ1™œ õ¥Ý]€HjŒjõABÕõ1B°XõPV %‘0áqBˆÎ6‘DZ&·á¦Î„`;€(áÇ´ øç¬Ö1Ÿ½ÊË© Oø2ÆÂƒÄEJ _¦`àñxQõZítÃÓŒ¯´©ï `„˜ð«ÐÀÅ*³¯eCwÔ'gó–ë¹ÁsWê¬8 n4êáPiKù.µIBëù6‹)&NóÀŽ{ÿwrúZ˨˜MÊŸ°è{ŸåŸÑ¦õ(izNq¬÷,Ü1ÅÈUãÑ&ûl!G 3smÍ—àSò¼¶!fÀ[CCgëR¾Ža@M¸y§À龞yr.W¢º Þ½ÄÇAUO¶áž%&ä!ä|¤üu-×CþÆ…ð5YšÂï0wÖèŽò³)¹õûð»¯YÝ(à» ñs¸í¾öYŸÀçýXf<,Eã×Úk¸™Pþ `‚/ƒ`èæu'Kö¡9l\ˆ`Àuùÿ"æ°"/„xO _w.PДìŽ4šC²Ç‰aÖÆäm…¹IÖ+ýa(䨩+ké€!ÕhOø,¿v±Ök200Òb•?Äq|–s=E1ªuç‘üëãh’®j;ŒÊIâhÅ^9)ÕÅ ŒÉ?±Q]‹æòŽ…›A\y7¶ÌzÚ§‡Ë«¬Ò>ÌÕØ.³Â°Šä¥³88µOtË7?Š®¹£Œò¿+ %'ÜÉ8 ®A4u-DûëÛ¸y»P¬|£aç›iw3ùãl1×4ÿ螣Hi¹š??cI»²w#…]ßž—ŸÕV¼º¸x/5T(©]Ï”vS ³’gÿ'‡©!¾k?bx_äÌÁcúK9Íïâõ\É`twi„³A‘‚¢øµÀF¶Ž"ưC¢x9oÓaÁõ'ûÄsgíïú <;žÁZÕ¦Êëˇgq;ÌoäÄTõ?®Ï(¢g3ã#¦ÓUv7ÎŒpwj/•Z›Œ©©wî…ú( lÌé;ÛÏv ¾=*êÖEúŽF÷–[Áþ¨"Ñ%–M*ñH `|ÚRëã£)5º, ËŠy¤q1£kÖ`ßžTÿAÝ2²Ñ†¶=¹u¯ÿÒÁ›œ$‡[.šËt«“C’<ÃqÆ$E—×’ÚM¨|Ñ<)ÜɳõF³Ç]suL|~’ºñc°ãÓ!hp]˴ЬrÿCÿ’™1Ÿ´oeÏÐØ N¼HÃ"ïZs‡y,ª¤Â¶4 ÜfÿoЬžn˜Ô.1ìq–P¶ &¤E†òJ*÷9ÍYöÞ½íµ¸59L”k6‹‘NÒg»ªYî/›NãrÚ8s Weéwè@æ3+—˺ÓÀêYݬuýµ<]oïÖ¤"'²¦¤|=φkdˈXäÃó9ºÅµåv½…™äüû~­®¥19¦A¸Ò:*Æ¡Ý\ú‹ä¢fòuã[O Cÿ#ëFí}Š²ÌŒìãP±>ŒûhSŽ|ºBë¼ÿ ‹Ì y‡ì‘ªmì©H«“?I5…ø¤$´ÐK`û‹œÞlgåZe¦=ÖÀŽù½*¿²=f¹‹ÞH€ÝžÓµÈéy÷¯›<pµm!:?®_ïmµÎn¸`}}ÄBE·˜ZÉ6c Îibû¤o©š¦7rN?tÚ «®k7®ºY¶s³ãbdù½E¹€Ÿ.á“ì§ÛÓÁðÒâÄ4#¿rü‰òÙ_=È/ ÿj×->Æ—N:3ðåŸtXÑc¦Û‡ŠŽ:…-åŠÇiHÞŸæDßÁC>sÿ²1ŸÐ*Já}¼ßè&²6ªX3PFëWW•Æ !ÜÉ«QKú®2[^Á$^J@B—š"_rnÚs'Ê·=žH•‡)¤÷äA&ù^+1Š`׿6þ’é Æòý÷Ha³iãÝY«ìݪ‚ötõ‡½\r‚|U^IL{ð/Š¥N{É!er@¶i5ÆúºP Lsþ*cßAqéÉWnâÊîjÎÙÖ˜–ýŒþâ†z\\a´èG)Ñ[‹j}ò‚OúKâ†âs>r–Rw‡°rcÜòãMÎ;­9Xä{1[[Cî«­\€ó›Z(váEž\a’ém¿l8Cå¾»aPýÓ…F'‡GªpµªÝì–ÕÁ/?´ßØÛ;N%wð&¢ 4#ø/]\þøáhÏ™‹°W°EÌ7ÀG’<³<9e¶Ù"Çð™ÿ27 «‡¸®÷þV¼¡›èI16âxˆæ#†‡î–Œ%Áó¼¸-Ù•S´®] Mši8ó¥UÜP­6·]»iùâ#ö¸Ó+L÷oäý _½‰ñ²Ïºìžfà8ãÑÃ¥´R§6̽ŒaÔ&[ klDšfïpѵùyÍÑ+QúÛnó®'^€%©›õyÅ>eÃ^¤®{mþì0Z¢E¿TTð˜¤5>þ™)`—îÕö¾ «ÇÅKKf‰hóèÔâ$\¹;P„÷õv›{µÎmWÇv#&à)sèØîDT¥q‰ l,ôQd9ö×í†Ä cßþÇá ,É‘­4„kο(ð@oõu0ÂÝ,/±RæˆF ÿ÷¹÷ÍuèëG–ÝÌtÉ%ÈZ9¨\*›Vœ§þ>ÉmàyT>ètº÷ôh"íØßwgó•"ôV7òt^­}),@sŸ¦î×]ßÈãÐQv¿}7Ž®E€1išùæs›JÖv •CZÐu°uÃ,û-Ñœƒ¡›%ßóéÄ©so:šJÒÔÍ&³`ÿÒͦøtHqõ{îš«º/g dôG/‚ùßc ›xÝÈo "ÏÃwÀ⸗xLèÄå©!¤gEÌM. ^h. ðs‚Ï\®B·¿|ûå{)#rŠ¥—/€Ë±èt–£WkR.ÑW~(xd@­¿{˜L£< ^€,Í"éDêÈb·pþÍ (e;¹qtI\êRÈÎ[(­Åù?¹uŸ)ÌÉ]s¨ôæ8è«Y3‚$ VXõ×µÆù øu¶Ù¬K0Q õÚ¡î(ˆJW×yzôu¬z©¼ZS`o3=|åÏ|~Ö6+/ nh{O4Ôˆì¬h‘óžÔV±`ùj}Ë[c&³Wœ]ž°B³'[EðU.ˆSQÝ€ qÿJgIÓ¤´2ÔÎÐÐõãÐ €³öY/i¢SzBB>u„xÞªÂå³&…σŸ£Jå,%$ÃýBäzç|ðWŠ˜‘‚«ÈAj¹í(EâÚ«½ D’+™œÑêÕz´=Ø!¿žc–µŽ ý#LË2èähJÁá+ïpQïhÂñúCax/‰þE³•ȉôy<²èèã‘j‘¯ôÅíRsãçËÈêÖ5ôµTó·›“Õ/Œ-e»T/¡FK¾sîALô}œÁ|}|ö\5_΀Ÿ˜à ‘}¹£á7ô!÷aVÌFuÍÏ™Œ”Ù3gJ·^É;Z9;q¶ÆŸ|â‘ÑÜZ¿©Ø¥æhÉV·¶`Ñ#âgÉ5#\‘ÏŸ[vÈÕë Üt”ÇŽÇi§Ÿ`dͳû¤|\?]Aµ«>È·º’Í>ãGŠƒÒ—•7ÃYÌæásýÇ ˜²OÓ.µo'Ÿíëš¾è½W«NãtÛ^],÷ª" ÁùXàêÇÍc™0£º¨³KrO#¯–žiINiT- ”[9ºJžXV·’CÃ…Û¾N¦"—ÁΊJçèR«b§ãöj$Ñ£Üõ†ñ¹™LÑ`@,Ý|ÎeΫí7ê“йëð¡#»­3õúo™))c•ÿ2ˆúÂùzi®±C þ|è ´ÖKv}’…Ò4¶"VýíÒXªæK|XKRc/9©CÒT»-6Ïöæ`wcvã–+C 8,{uyÇω薲Ü鿬#g6¬Œ ±¬ÇìáHº^ "¥“ÙfãHðqå!î*)›VBBU«*hEt³®¤n;c ĉڲ¿®°ÍV•z‹±ësê ^omÜÓÍHðþhWžÁl£-ZzˆàÜ®i›•æx{ ɆÅDªÇÜÛ0~¼k¹s•Ã\š]Ê#ž…Ÿ«BJ¬9€ä\U›à^Lcë—žÌð ¸ÓYíÜ91{%ìR<„×!»Ë5%\¹‡"EH7¬b¥~Nª¢—ÊÊAƒä¶D¡­¥“xxâp©&Ü™ÿPlk* 4ó½í¤#Å/ŠÔ€çîÁŒ,ém­'§&ŒÆlíÖ¼ÍùyÒÓЗ%×e«}¼žÏ¼¶«´¦aç:±IÂݪšÂàa.ë?6tò¯=÷0ŸÞîôX"†Gul(3¤@‘¤à½t=`,1+!ŒvÕrÅs„ÃÔÕÝUÜs®  ¸T°Mï®`ž„¾æÀýÀMRF–­…þÞ)©õ] ´)¢Á1#FÔyépŠz+â ðâìnQ/Ç:w½‰ Ä>ÝRß‚º9ÙT„ùÝaE¢Çl®kýïU„MbÑ(@)Ôa¹èœÐC›Fš^‚cžq®%OÜœ\dÑ‘(»%æ ðfØÉðÈæ=ÇÔxCÂènKGû¬(}â-î ší®å{l\FobDFI^ÌÊŠ‰ãzÅø2ѽ¼¹Ã”a¥mÈoFêV‹Ç+§~_—=°í±n ü0|d`Ý·WˆWdoÎ}à D𖜠÷QçBí÷Sƽì>MeHyÁd‰pÞ5UqèÈ<è„©¨Åc±ùŒvðÔaÎA5{K4˜³›Ì©>$ÐØ?¯U ¬(—ˆK \´œ7˜–ñ÷á^-9B28qXp¨¢ºCèÑý=Μùùýs.0¦1ýUüÇSçÖãWB5 U‘ 0ð»­¥noT8a—˜ßÙ‘¨g´šSàVãÁxŒfîfµ;Hªÿ]2 ¤Ê’¿ÿI²Ù¯U¢\…ù“´.Ðéø] âie·/àÎHÙ©Vvw8Ë¥yÝñ@<f–}0Ùmhy—Ñ2bë’Ÿ,‹r¸Àï¶ú‡€;Ðgíóm3òwÊ=`np¥#NBå-UŸªbå “ ˺Ð#º3p¸ u%ב´0¶§í‡cnÓâÿŠÔÇ1U!b–»(Xe2£Î„Ò‘Ô&u­Ø‰ñÄ!Ú÷ãÁR´òˆÏÝûTÝé~p_ð²=0è€ -¨| §Ó ŽÀéÃië |ð¶½›×»NÛ?ÆAï!eC‹y­v3O/®fN"³þÊ 'WL5#èÙüÂ,-’<šµz¡æÒ}°ôO¤–Ô—YH•¤JЬ™Æðx;‘~ÄýÕÆ,Ã=°s€H5TNGÎn`5Ö‰¯¢‡¬±+üÇ{ƒ:4¦ íØézY­êË@«å_UëÀÚá>|IÎæ·{Gæ ^”H¥ƒ{ÚNdTìÂ\¨†”X<è]³Ü°}á‡çìÐ^¨aš ?†úU(e©”m©^$fZv¡ï8òî‰êGÓ:†aU‚Þóã»Ýlã9pS„yŸ½c… V l„"n"û¼¿±*n¬;碞˜h†Þ˜j¦ {†–v…iÒ3´ÛÞïJ‹,„=…t(›ï:4-› Bcz;`$° ëŒÔ¾1†¿eí,ÿh…9èZJ÷±Î%"í/A› NjlëšãÕ‡;ïìM8Ü€_‚ÅM’8«§Ö{eºÎ8ÔZ¦â a;vij­7dìv Û‘´s1«IÃfa'ã2ªýÀÚ‚-ö{£"êÕø+ñª“\—ZõâÈFf]° *¦ø_œFÞ2¡/ä7 ±§ø .©Óån›ÅA+ŸÝH‡+sn;Ç8î‘~_»ì’.¾GÄæüyÛ†Û{×l=v̈úö°Ž.Ü,ÖUD‰Ì:º˜ªÉ#Ï2yLµ2–Äáìöd÷:œâÛÑRäu›¢Ä9ûjØJÔo—œH€)Ħ ·Ã"þ±~å3•šœšøþOSÞ˜œÈ(l¬C1ɇŠ;~óÆ ÍiPM Z“SAä™~?®tkkzæ‹ãŒæPØ›/bÀžêäBOŒËÃì‹VÌIaùOÎ6äß14[ •ïIÿ4GCÞ{ CÀÚ™/K‡R j4éE¸¦2áíë‚ 9ÈSg|a܂РtÑ,{¥…V&‰‘sôm ÖT¢1êø” “°Ìý#t¾·úEVÞ³ìÊæz¿ ‹Âþ°®Mô"õ‘–¯ZÞ:é#ëAÃÙœS9ß¹W¤I$g å-[ÿ[4dôøÝÀ´“j¸ßµà3ÏÏšŠäC%ï^òõQcæO‰(ƒI³Žúê®—Þœ¾lcÒçûÆ‘ìÀ³Õ^·ˆVøRÕ†ÏéÚ~0ý4à´™9ÎëKÕh‚kH²hŠiO„ŒöªûÖHuº`¬‘WØ[”¾$<ûxSf¹ý¤ZTUrcÏ·|Nê-ÇÈÜVá‹’t¡¦³¼ÄÕO$ë”HÜÇUýb’ü’˽1'€+S¡o—S6±ìa† ÃÖQ$“ñFþ>L'޽plàîl–9™¹»€8ì·¥ †@x—>½ÝoÅ܇>Ñm÷®×âòˆý ïŠþ8‹>à­à»#r§TéèÚÐl ½åÕ7†ÿ¥¹²8Ì$Þ)щáCÄ$û…di‘ø1Jøl¨§¼·ˆ÷¬vùàú T¶O PqÅõÚÜ“\sª³^VÆ$Þ¶@ëª[³DQÂVèz³¯„²p+„ 'Z L~ÚâÔ£Žáø®t7áF’ªÛc5ŠÒPçôËc–øXwY5‡S鲫ŸÄbïcp #OèËHšÚ¬Ó½9ŒoùåŠAÝ3c~ŸÃ&+rËàúŒ÷oü™›œj™ÒfÍ” V›â¹‰¼ÄÂSË›l+ò¢: ¤››FÇ4O EÛj„ GÜ#:¬¯J ÖÌû‘óBU­†hÜÆÖ|4Ä´(ê""ÍŸsÒ{btdê ˜Ï?Ž_,±àˆ–l&¦Vg«Fn#ãìˆps¶àWóT–ÏoŸðÛzô6±I‰&kð½Ú9ÅIë·‰-Îi]EüE1ÚÀåDÛð*Xûé<,IíCÆÄÃHô´´Yð>µíÈ’÷Ɔ½™´¶ÞƒŽÚ)I²eÊØ¸Å«Rƒ;øK¹l|»ðÃÿØ%Üð•™ZèQ`ÈÆ`9cn6õq&…ƒ™±L¶â ZÍù?3G…£ O»Œks"ßåµ–aÚó7D~3…t*oQ KC‡÷R•HKÃ{Vísâ?‹È"'u…-ùä£:æ”1¦.žó¨'ÝúÌ0¹˜ÊC…‹êó®¦é0}*!w÷=Ë”üÙW„¶Í=Âië±F’nÍIyɲiŽùp¸YŒ;㘢M[:±öÕ[ÜHý™²ˆó•ùYÎzíu±Â× E‡‘XœØ‹ÿ*Mq´”)ÅéÏtâá“ W°äao+ÔѹO1|·ë¸Î›ä‰@-|[ìÊ÷rÐǹ×<Фt2ùHät¶P6ÑÉ{È€G¹HøÙ×]ЭPDÌÉÐÂOÀVÃßm£®áVe›n²uvlaÏê ‚77- ÄRûŒ¦l$É걤wwÄ— tM]å6ðóûuÖOʼnXá¡nÇ5y<2°$–¹µ–U݉T–|x2OŽi-„è»DQÞ@Šƒà´0âG«—ÃÞ[¡áF|•!ÇaŸ×ÿ¿…3í¾oÛ†Eÿ•ÖD=hÕÀ­cçˆhÍO…§{¡OÖþ4@˜ù(=GrÈäq[&Ê}Èš%NÅn±L–í镦á¾  RfáÄs‰q©Ê4§–…Óh,¾ã§Zãe÷°ºùXÏÊùÓ Ø®‘ýÜ7n:ëI+JCa1­„i÷Õ‚ÂÝ×ùéd‚;såó•=kv»1xQž£¼¨ðQú‚KAùµ$Þ"Óvý‘ÔŸ\*›ÊW®»*h‹xê2Ê™WÒl" 座 "ò¤®îÆq1e¥Aq)?B¯±ˆmR¸Qnó:~4"ß”BCޏ§'ÀÇ[‚[¢,1 è™¿Íªê‹Î^’±6“ð›ë}>E÷¬Ú_\:W¤Yúççh;®;Æsx½£Ãó ëóÝʇøg“6±ÔfÛ+Ú4bý®³Zýû7%m’év¼µ±mVæû»É0ƒv ÿ°k’&ÿ‘4¯tKÑ%ñ= ¤†ºËnô’#sJ ƒÁ§ö¡Ô5œ`ÌÙÜ/*k÷^ y[Í.”žò>ý²ùÌJȺï=<ž÷rÛeŽå%«áŽáïƒJíYëlPȦqoŸN‹ÿF}‡î~‚á4kÈ)Áµ×áîwîmÿ ®_zqÿ‘äd°l3ÏäMÕÏDÎ3ã©'¦Uä´šr äù‹üY’uÈŒõqf}ª'ÏYtr&|G µ>œÜ²Üd/6vJ!õx‚—}¬ê‡×7Å瓸’¥zœÎþIÂúÑñÚ]AgTÿà+þ˜z’»µRBî„‚hèÚ½°S(ÿT7£œº‘,<¨Ý„½>ˆkÑ• liÙ;÷Ÿ^Ño<üÛ.Ò.N`Õ1±FÎÍkq1õ©u‚öYÛrŒl{‰·‚‚ÂWS‚[‡ÇyþÚõ³ñ2lk-Ü ÿ@Néìd}Ÿ=.÷Á©!‡­ayÆùý.3S1Ðíƒ:Ò“õôß×í¬{ã=û[ëqΈTÏ>ïG­Ýîá“uø§üBÂYvZ‘qÏÅ7m aÊ ›>¸Lôgƒ¶f¬ï¯§å³Ó9TóÍÔ7…øoµñ¼9‚V¾[çJ0޲t¼~Ô‚uTº@9G…Í#‰¡6ÓrÄk„}Úâ Xy¬²Û°ô×—V|®ån¯.{ ”þõ ³ÂnCaB¥!•ºáE/©S /8ŽˆÚ!([~> =Κ>èaE¬! xÔ@„Ÿ·|¤(—\€YÁ[ÖxNoƒŒü—Fã0ùRë»ó³4·kÅeñkBÉ¡S¨y ¶Å AßR¾±+Eàœä#KÕ­JvvË-‡ö {7É‚õœ9åƒÈt†RûjÁû‘Oci¸;¬„ÄĽ:ÀÍ bSTu¾%¼Ýƒ,ÔÝyú¸²Z~E€Né\‰)qà¹j¾Ú÷FÓßÈ“¿³;t ‰tuL²‰8 !c2x&HÖörÙƒÖ²‰íd ærøêAKø‚2ö®„ú\¥FìðDì×PCðü`Y_×ò*Ž¡ïÆ^é¹d-ð–ÝKä»BÙ‡Ëô¿PX Nõ¯þFŒ^w¡¢oæ©hUÊíù§köåãfÒŸ…@ÂÈtœGî'Ô4äsö^‚Ä#$«Îˆ˜Ý ½us9S’»l|[‚\cÄ•ÔûSµ‹|ðzÝ€®˜5_ä*©ú¬V*Û¹=#Œ¸Ú Ï‹›\¹%ûœÒ%•Ýö¯Ÿ¾h~:>c–•¡Oƒ5):BÖË“ªóÁÿDï¬ /š#8ä,\c¸æ˜_š]÷ÆžY®I.|*è%Ñ/Ò‡oÜ”])Ó¿Û†QHÒ(uyæʵ >pæËVò˜ÒËf‰ãÇf=íóŒ£Ý¿Ž4Ví¯\}÷¾aÚ”¨©Ö„ÄÒ®{7™œ8‘kÊ?Fh¨f­Æ–% çÆ~Y1Ó9½8ƒTUˆ§®ÿÆá#ÇL½à›570.×W±qR) ûˆšÌ{‰èúowïÀ ’¶?ãÿ­7eå´û9¶ðJˆÛÙÄ%Çí„ìþ$ÖgÒ™ÀÍ#‘`õ÷D(ªÛyÍH…;3W­Q tû8À˃Slek ë}¸‡f¢6tèa.C–€ÄLºPò =¨¾Ù»€Ç¿ºÖš£ Þö)óÍq ¦êʾ™¯žµ§!‹à‰d¹õÙïB-ô«ÞÙ#,JøCæÞüˆ±#ÿæÀ#ä̓k)Ii:…ä¸Mb®FÜ´mzÏ^öM´ ×eý¥\TPvwP ¾³ñù´oâ¼ã±$©ã‚‹rSö&Œ4'Ž ÔZ¡\ÞOiHõ4Î]dœwŒp-¹¶L»R©®Ùá[ôP*”§ˆ Þ„ÂlqÙærŸZNeç}3@š”¡ð35âbƒý¡ž#íãÑËÃÇ5Uhý=î‘ <Ø&Þî±õa„秱ͺï‹„c„Û h\ -óýL~.ÁœÅÀ3®8- ü`Œƒ8X9í/¥™Â»R--àr@3æË*K=ë0ý”¤!’Ý*”$ZéŠü¿Ðάô K”öO]AL.‰QW2Gˬº^%•¹d2°°Xeý§Ò¯’ŒK´¥A +ê®Å–竽ˡ6ÃÛ@NžqU÷[:îcGHz=T>¿cÏ/‡ë˜ô† ¼«Aj[·³“j õ~Gà.¨ºVKj»î`ÛÊåFro8J5þ±Ã¦ï#ëé9-äÑtà°êâMôRž™&æXGÇ Ñ×››³ñ¢)6gLÏT' S«ŒrWðâ9û2Æa—bãÛÝY¹#r$Ä&ê¾@¿jæÿôƒ oàqP' 1§ÚâÕÓàþ–¨†DÖ|튮Ô.{&mme Ž]ÕLy­šýÛàgþ.†ß±äו㾠%øßþcq”½@ªAÑërßtEê´+çRù.¾‹áh+ôTVç&±Ã!µä*•eNìîÀÊÌĺwbêñé#¶,[@ ‹yMCÔ#;v±ÌHþò+]¶>ìD7yNÉ¢=£÷›!D# nc‘¶»vñú¯ç\m ÓÆÛlŸäš¬?Ø ßX“¾ñÉ·~p‹Z¸ SwÓ¥k?ž¯…C%Ü&ÿŸ7< ¼%Z>ßñ¥®|íi“rqˆ¨Lá|¡ÒKäž÷½Å#œ¢ò׸zfPb‘j¶“¶êÏeÓƒ|“v:w±T:îµå{’:ⲡS—V†a¬X!y." Þ»p´{ÇwÆü[z>©þ̹öÒ5wŸ{³S¶M×.7%62ñù “ØÑâJ-g&‡×  ?EoFª(9é'±!-ýZ#¹§¢“=´õF~ïà„rØ–›Þ<÷Ft üûr «÷‰Çð§yÏÜ5áz ³ÓÜ‘•ÝhöJõQÌî®+-Ó%œ©_<rA=Ieù½£‘~gcãXEGJyëN–<üxIã_[ sp–Ò\»–Z…öÉLV¾ÃŒ.@LÚÜIvB§®WŠ`)*3~»ÈÃú)HõÙ .Uª^ÙÞà ÿ£(;ukˆ@üK­fˆ8ÉÂÄÔa»¤¸ù(íU¤¸·œxq¦L[wÑ6á`XµØuÏŽÕà •Ìo×>0 ‹YZsurvival/data/logan.rda0000644000176000001440000000357712267746072014707 0ustar ripleyusers‹ÕZKrÛF€¤-‚?ðsx‘3¤r€¬¼EhÒ¥ EªHÙÙæ\9[Ê !M›fUb()^@æó¾ýú LÿöËÇŸ‹E!ùpÿ·µlçû?Ùþêî¯Îjó¹Z‡ÐšÖ3ûû`ýúøZt¯7uh Ï(,Æx¾MÏ9a_›î¼eå´—×ò<ïƒNµ½Cú!33öa ûŸ‡c;[¢WÇ8.­àíÌúÝ<ûíæœœŽÈÄÝÅQsÔ&=º&MŸØo!ç[ãàrŽõj»Æ}Ð8;¿2’Ÿòqƾ*{º^ã¦cŠ5—‡…fÜ=…QW?¼GcʹÌEÇ/—u.¾—j‹bÙåÞáUå+/©ÿ.._Zû_mšWûµ¦óšëSøj¹Î&WSm‘qªŽ²Ðäv¶55–êj+ëW9®žSœÃÝ‘w­GÍ-dgÁÛ©õÃz°Oy# M¸*g¼ÇáÇÅBm<ÅS¼¹U¬¦úcBëÓáŸó‘âÏS=Jí×^ 9v|íjŠ{×´«)í¹Ê.Ÿ®ŽÜ]ç7jwê| ¾2?Ÿâx'õ]ó£œîp¥uãpëxÉqî).T¬*¶RgΔ}.|†tøLÅCû³Ú”ª7åÍÚš…t˜³oî\âòÀã*×å§Ò1sœÒùZk§øãìxCõqüµSçÎQ´«ññônµøºXíöOe\Y¶—Õö&>›ÛŶº»þºØÅ‘î|[-ïv7‹uèìªÕ÷Ùþív³\ìv×›uµÒOµùªÚAÙw–Õün³Ý?} ‡7¤;ÈqP¸É§ ReŽóJ.®8ùÒå¦çÀÆk¸2ׯ鈋·ŽýrD 1PáÆâd+9¸bq„* W€©ââF¯…’‰,.xý`ËBÓÇT#g½zæ¦[Köi“tM†cíÆ5—úè°Íþ0ѸC±æ:£gÅH‡ö3öS¹`Ÿ»*ÛnËèr˜ÖfØ1òacCs®Ø×ÆÂ°Z›\Ë®éñ;ts•Çœý®¹il´Æ`“65®_WðƒqÐ’}êW‹ô)X77rõ‰ýuºÙ/—g•ÅyMÙâêTu+ß886Ž ›©œ»ƒÛÇÏl/ó—æ@9š©ºNq¶âEëYë‘9XëO9Lñ¥¼ë8)Õ?SxPnRÝ©ÞÀþé‡Wª—ikL5®ì¿Öó ¯ÑØ+‡;žt|â8?Õ³Ø&ÇåÊ×î]sêùÚóàó¢ñäyƽbÖõ±«3Õ‘â,Í÷$^ç8šíÖúvg ­Uí]Ê+z†Ôxi¼Õg=c¤rë0”²ß}ð(÷¤þ±Žc¤=P㣭6º:ÖúRŒqÜv¡7“5©ZÊ?§òûð¢Ÿk-È·_h_hÃÇ燕e|¯¯~|Çû(^W4?¡=“(§ýƒøŒ«ž{çút†rºQW÷OÉ–¾Ù×7ãÐw¶cuðš2úÖ7rG´¶`¾ˆvñb[ ‰k=Ö£8Á.õúƲ‡ç‘§zÝŒæ5æ=ÊÏ4Ê„%ÉÑØŽ£Ü.éd«÷¯aô­ß»2õ3N Ÿs2¤wÈ™„fÞPšøÄñ^hê‘ØÞ£u“x)V`gu ÌšahÆwÄ{šØÑ½X_ÊØ$chmžÑÜ@ä–¡Y§œWÄkL²c`}Rß±w˜ËkÊÐôcµÍ:sµ»$3£pÈ;Æg¤{®hí˜äŽÃ¡F4^À?b‚ø°Ÿ¼XGL ŸqÜ£9웒Ͱx-C³±o÷Mh]ÇKZ‡Ø#° ïÀ¿^\#ŠwŒ—t‡~^«½Eó<ˆû»4†ù‚ä ÏÃpÌ…}ÒÁc\ÏŠ#Èà}н#Ñ;‹Ð´sš¶"wÐ5%ùˆI=ÞD¾ÃÐ? ÇüÅx»Šr˜/ÏÎw®w`k¾ž'{• ˜³¯p^¸.êuÀ'âÒ Mžƒc’Éú˜/º¡‰‘1ÉèÉ:¶±`,M(æÀôHd!3‘3uàð›ãä‰{NIôÍÂ1·º8óžú\ÓècSÚÇõ~¯Ÿ·‚Ö'èň‰;ÿqìù\S„ãOÂ1ÆPû]/hAü!· õì;ê€ùq,k ‰Å0÷28„Ïoze¿XFç棇/йÖ4ž5^Š•’d¬_ÏVlëÄèAoí…ÆY's¿ž/¹v¸ÏMH÷hæ/ÖÅû•õrç®=pP<¿~ÿ+{æ•?c]nÖ»±Kè{íë)?^Óî§t¹ùsr ÷·òíúOåï9ñ<×–su_ ®.Ïõñ¹5ýR>½å•â»ý:‡[žZû_ðtI{Þ"^§Ö]‚W^ÓÞ—Ü÷£]oáç%zȹç˜ÿS^_ÒÆsùæµúø%ì|É\¾§±_gú×ø ¿Ùt×›õO¿¯ªùq _žþ=ªù ×ÕÍÃO[õòvÀObóù—Ûêîzƒ_ÀÚËýT/>}™7&·Õ|!r»ÛÍŸ »þèËÿÚÿ¹¿ÿçŧê®ú°Üî·<š¾ý ¥dŽÊ6survival/data/datalist0000644000176000001440000000041512267746150014630 0ustar ripleyusersbladder: bladder bladder1 bladder2 cancer cgd colon flchain heart: heart jasa jasa1 kidney leukemia: aml leukemia logan lung mgus: mgus mgus1 mgus2 nwtco ovarian pbc: pbc pbcseq rats: rats rats2 stanford2 survexp: survexp.mn survexp.us survexp.usr tobin uspop2 veteran survival/data/cancer.rda0000644000176000001440000000664012267746072015034 0ustar ripleyusers‹å\Ml\Õ~ù)U¤f‘EVE(ª,Ï÷Þ¼ ¯ $ˆ ÐReplçÇvl’”1ù¡ ¶Ë”vÑ%Ëî:Ë.X°d™ ]°ÌªªÍû¾szÏøö>;–¨ÄHpîÏ9çûιçž7?¿|à¸{øøÃI’lM¶nÛ²òÏÊpûÖ•mI’­ÈÆ:3cãóI²íg+³UÍŸ®üóM¹#ùþ3 wUòÉï0rä>³ÏõÝ#¾^™ù~Ä.÷õe=3ö»Í|Øð¢Ü ¹ß—6ŽÞ#}òö×e—áµ×ðÙãK±cžÉ37ë´ÏŒÝî¾±àoü _{î̃õËüï7úÔKŒ›Çݾ¬Ûó²õ2bìs³oÏwŸÑ#¿½Fù°ù6yà¿?0§ý£ÆŽ<ÍyËþ^³oÏ×ò`>XÿŒóQãÇÞOê±É×Ô½œ‡Í»åmëÊî3ï6~›Ÿ}þºàZ^æ>œ/õËJ¾{oõß~.~—­KèË9Ø~cûƒ­OêYž‰‘¶¿Ù|ÙùžÀº‰s ÿù¶uÈoð\‰cû×­®›ó.Ë^%y^ÌSæïÜ7úßÖ×ÃËÜ›wámúLÂçdw¨Z¿4[ÉoWòLeX~ð'¬WŽËî‰Jž‡ÞYèìWró«ðwëG!—ÿ^É·ÀçÊ#Ы–Gz•|ûó_Uòü^Áþ…ê Ë¥;•ìa<ß„ÞøòÜ/ƒ7ϯ÷·J¾~‡`÷[È[ˆã#ð| 8׿®ä%Ø UòâNćù{ì 7~=¬_EÜ7¾…ß{•œ¼ãó™ýµ›•ÖÝ è][ªä"â¼»³w+9yv'OøþÎ`ýòòì§ ß‡^q².‰?…ýwÀÿzuaÊó_øú7QÌÏ)ø9 ž·pÎsØ¿ o÷!?Ž«ˆö¬£ðyzOæ¬ë˨7Öó2ü]Îy¬³^&°>Þ½›~œïÀß"Î÷~|æ—ÓðÓÞß3=}ëÌçEø9…x—‘¯ÃÐ[FýžÆþkXçù/£{¨»ùQè—ÀÁ9¿ þ³_øs¹‡—Pw‹;ý¸Þ†¿³ýJ¾üKàÞàñ<Ÿ„Þ"ö§ Ïºî‚Ïæ<‡ðày̓Ïûô–à–zÀé`þ6Îo¸§°¿;9Gè±_-Âþö/ÜÅ>ò6ü ÈIøeߘ¥?øaý/ÂÏ\âó] ù"Þ_Ãÿìf!ÙOOœ¨ä”Áå|ûs¨£9ÚÁÏ+À}83àÅú™†ý˜OaŸ÷súN%Ç!ÏÁÏYÌ'ÁƒuË{Á::…ùüûóëoB8“w}~ãð‹{ð9‰ ¥í/ý[~ÌõÈïå¾'yÒŽù ó-ñ™uò˜Àœùf}<9Ï•ßcm¾C>½g¤?ÆÍsâþ@Þ ynR—¥¯/ñÛ¸¡ÿ¢ÑcÄ!âðç8æ‹qñ臼%þ>íY/¬{9‡ÞÚvRo6>ÃuÆ8_>Ï“ñðŸc\ô<ž;óü6sž3õ—­[[7ôsŒ8Üïùñ²hOž¶®©gû ×¥ÎJ_y²ýð9HÖ!ãáÜæå'㑼™}æ‹xOÇàñ~=K»ÄÇ'ÿCfÿ¤­æßöåQcwÄØñœ©O¿œ3χÍ>ómû¦<JGú1äر®È{à9Ó÷õX÷Ì+ïó‹ü%xNnôyNy¿z›õ}¡.N]ÿ[¹^þuãØ(õ~_ÞhëòØìsÚ¬ün”]Þ›uþ›U?1{»^o½þî·Þî·N7»~6«Ô½_uùÝo¹ß>Xw}£uãY×Obž“öc××ËÃÎùÿÕ7Z‡!^¡õ߈ēuÏKðv!¾¡xí'´ãµÞ~íë?ÆÛîו!1üÔåóóS—Ÿ]§~HÆâ‰ám”W o½z÷{Ïí:ý×Å Ù×åµÑy]¼Ð'Öbø!ܺ}©î½ ñ á‡üÇørßâÔí#ÿƒOõß]_íUz!ù:üÈÏÉX·ÿ}“ò˜YÕè3’ûôĬS<¬ß_‹âCiã³s»nã°¼mžBq…â°û¯ôm^¬ÛîÛüX}úÙ…â ÙÇøÇ¤Ííc|í~쬾ÍO¨BõhùÔ={ßBçlõCx1üP¾êÞçй†Î9TçœÇc¸6®Ø} ñŒÕ‘õÊ£;doqêÞwgÝ{ŠÓú3¼å÷CqÇpc}&V_±ºœ{Âçdݸcç{NÆú°½ß1ÿ¡~gýÙç[(ïGŒ}è¹}ÀèÙþeóû^ª?Û÷cýn£y3ߤžCv±ûéûAÿ±{]÷9âeÏÑæ+ÔCù·ñÄú¡ýÞz„îCèùª‹Øý }_ £­[Þƒ¯ÐýˆÕ}Ý瘵ãúûÐ=­û\á×­»Ð=ŒÕE,_±çpèyZ÷ûJì¾Ù¼„úYèêÙs‘søÒÇ%/¾O3^ñ.«´$ågý|ðý á9yÏçA½aoë‚ç6×ó×ço®u0ëë]Y3Î;â°XOv¾løßÞ½6¾pm·ŸG¾GµxÇçI=æyeþl}Œº¾aâ…ž­'™woWvÇýü‰_ÆËóä¹3®S÷KüÜ,Ö´“ýØ90Þë}»Ë_Ïô-ÖÏ_öú’çIÞà+þÞ¿ s_è—üy¸§z?·{sñK>”̧±¸ïÔc±÷z¼Ç&ÿ›v¬O¬Û¾[~ú/ßߟG|¼+_{ù ÓÀ:ýò²þ|Ï…ýQê-€÷¹yÎHÿ¯ê<ÁsRôù^—y¯Ó~Þ×üäc-È]%$ŸãÀésŸïƒÂ¿ðj@oÈàí7¼ð~hŸïפ˜ïñçÿøÎì#Î>ã¶øc}'dáóx?ù1cü>íž0väOÿ?OÖüÈ{ÇÃÆ?óç|¿}¾ç;yÔ·ðO=Îw˜}œ§äï—fßþ½‚¦¿ß§óÆ<ì2ëC>ŽÔÙ/Ìœùâï«%†ëqÁ^Þ¿b>ÛÉš9òb\;^éûgÞÎÇþ ®Û¿+@¼ÔHæ‹udî'ýò#çß0~ì½±õ}Èè“'ï–ïa?Õóü0Þ¾9Ï>ïëÓCŸq%Fòœ3qqñCþÌoêëÑØ3/C÷)3'æ“ïË›:”ä<Ù¿GÀùH½ØóA>™Wê±Î­žÄ=äãÙ{0ð¼@\äC¾â?/ãÛå¯Ûÿÿ'8¸—÷„}‹~[‡ïÑ2¯èw}ÎyÎæïl”kÓ=©×]kó6­ç'3éñîÊ`5«¬guqûé™îÇ §§Ç1~ »ÐYXìb¶­3ÉmÝñ% œ=5<>vnÓ+Ó³ù™s˜?4ÛYðvLw¦†Ç:S´¿°0{ïµö>ûìû ¾~áàñüþã÷gY¶=Û¾cÛê?«Ã{¶¯þk[–íºom2µ43™e;~º:^ÓûÉê?_;³ï>rw)ýó ÷Bî—}®ï õŠfèÇìZ¡¾­7Å~̇…å.È¡Ô8xDöÉo8\·ýÝÂkŸðÙJ³cžÉ³%ë´oŠÝž¾ØðÆWÏyP¿Ìÿѧ^&þ5{B;[×óÒzû–ìëùî=òÛ'żæ[ò2Àÿ@dNûÅŽ<å¼mŸìëù*æƒõÏ8?z?©Çz$_©{;Í»òÖºÒ}æ]ã×üì× WyÉ}8_ê¥|ûÎÚ¿ïýÌü2.­KèÛ9h¿Ñþ õI=噉Ôþ¦ùÒùÞȺÄ9ÐÿˆÇ|kDò=Wâhâºú纜wQôJÉóbžšáþÀ}£ÿý©~¸ž /¹šwã-}&ãsra¨\¿<[Êo–òliX|ð'¬—Ž‹…¥¼½sÐ;Õ/å8æWáïÖB®ü½”¯ƒÏ• W,ŽôJùöç¿,å1ø½‚ý‹åAË·JÙÃþ x¾½eð广Þ<¿ÞßJù*ø‚Ýo o ŽÀóeà\ûª”—awr¨”—v!>ÌßéÀzóà×ÃúUÄýÞ7ð{§”“·B>3°÷z)GÁƒuwzï.—r q^‚ݹۥ‡<»S'Bg±~yyöSïCoq².‰?…ý7ÁÿZyaŠ Ÿ‡ú×QÌÏiø9ž7pÎsØ¿ ¯ƒ÷{CaWÿ4ìYG3àóô!ÌY×o¡ÞXÏ+ðw8°Îz™ÀúIðî]ã|þ–pî¼÷à3‡¼œŸxðþží…ëóXg>/ÁÏiÄ»‚|†Þ ê÷ ö_Æ:ÏuØCÝÍB¿ÎùmðŸý<œÛ=„¼Œº[ÚÆõüë—òyà_ÿ ‚Çó|zKØŸ‚>ëz|&0ç9,‚ÏküxÞ¡· ÿ³ÔÎæoàüf{û‹°³s„ûÕìOcÿâmì#oóÀŸ€œ„_öYúƒÖÿüÌe!ßEê‘/âýüÏÁn’ýôĉRN .ç3ØŸCÍÑ~^îsÀ™/ÖÏ4ì_Å| û¼ŸÓ·J9y~Îa> ¬[Þ ÖÑiÌ'àï,ðØç˜ÿ3X ú“À™¼ò‡_ÜëŒÏIL(í9[qý‡"hñ_u þSxåóÿ¦ÿ}Ëï× ½Ø¼*Îfñ·ŠwÊ>6¯Ê¯*^UÞ)žUãØ(ï˜ÿ­â]§jüå]/ãsò…^i~ž¥Ä:¿wª>äÏ;ü9ðYÕËB?Ü…ýQÌŸ§}DïiÌŸÁþsäEáË9ùÿsȧ…ãà÷]þœ5*~F‡þø½Êx@¾˜…öŒ—sÆÅx¸O{ÆKÿÊù¢ù½Ðã$OÚ1Äa¾->Y'/ó‡ùAÌ™oÖÇ3˜ó\ù=Vóuò è=)’þ7ωûyƒä¹Y]¡¾Å¯qCÿ9ÑcÄ!âðç8æ‹qñ臼eá>íY/¬{;‡ÞúvVoŸðc1ΡÏód<<ǧýçÎü0/‡eÎs¦>ãÒºÕº¡ŸcÄá~/Œ—õ@{òÔº¦žö®[¡ó¤ýð)HÖ!ãá\óò„ÄÉx,o²Ï|ïqâïד´ËB|ò?$û‡ µ˜íË£bwDìxÎÔ§_ΙçòÏ|kß´çCâX?†<;ÖyÏ)ïVo«¾/TÅ©ê³s•å_5ŽÍòØè÷åÍæ±*­>§­ÊïfùWå½Uç¿Uõ“²×õªxõw·õv·uºÕõ³Uý£êýªÊïnûËÝöÁªë›­£Ϫ~2yNêG×7ÊCçüÿꛭïØúÀï?$âHɪçeø»ßX¼ú‰í§xm´_¦p«úOñÖýª2Æ#埪¼SþR~ªòÓuêÇd*žÞfy¥ð6ªw·÷\×é¿*n̾*¯ÍΫâÅ>©>ÂáVíKUïMŒW ?æ?Å—ûŠSµü>åw}©WêÅä+ðc?'c]ÿû&å1YIô‰ä>ý‘uꑇúñU¼JO纮q(oÍS,®XºÿJD_ó¢v·îk~TŸþSv±xbö)þ)©ù }Нî§ÎAõ5?±zˆÕ£ò©zzßbç¬ú1¼~,_Uïsì\cç«sÎS÷?UÇ)\+u_bžô-ÖÏ_ö…’çIÞàkþÞ¿ ¹/ôKþ<ÜS¿Ÿ÷sóK>”Ì§Ø Üw걿è}§ï±äßxÓŽõ‰uí»Å§ÿ ýýy$Ä»òU¿Ø9 ¬Ó_$ï1{ãÏ÷\Ø­Þ"xŸÉsÆúYçž“¦Ï÷ºä½Ný ¼¯=ùKȇ Û»! H>ÇÓç>ß…ãUƒÞà^x?´Ï÷k˜ï çÿøVögŸq+þÃXßÙ ù¼ŸüØ¿O»GÄŽüéÿgÙº{ïxXü3yè·Ï÷|‡ †vþ©ÇùNÙÇyZþ~!ûú÷ êá~ŸzÌó°[Ö‡B«³ŸËœùâï«eÂõǸ`oï_1ŸÝlÝy1®]¢W„þ™÷óÑ¿CÁuý»Äkˆd¾XGr?é—;ÿšøÑ{£õ}HôÉ“¿wË÷°ë~o_γÏûú8äà3®L$Ïé!‰‹û{Åù3¿P~ÌžyÜÇdNþÌ'ß——:0”ä<éß#à‡|¬^ô|Oæ•z¬sÕ³¸‡B<½Ï ÄE>äkþcñ2¾Ýáºþÿ?ÃÁ½¸'ì[ôÛ¾G˼¢ßõ9ç9ËßÙ(Ö§mzV¯»×ç-«çG3cÓã «ƒµt¬ý±žïþ€Ï™™…EŽÏLcüã…űťÌvŒMrcÇÂø2†÷Ξ?y~Ó«Óscó3ç1¿ovl1XØ9=>65|rlŠö‡§Î/,(Ï“Sc ä¹ º÷Ÿ[ž˜[c¨ß7þâð‡ö5L¶Õ8È9¨sÐà ÉA‹ƒ6ºl¯Ø¨f£ÜFu5lÔ´QËFmuld¹a䆑Fn¹a䆑Fn¹aä†Q7ŒºaÔ £nuèFÝ0ê†Q7Œºa4 £a ÃhFÃ0†Ñ0Œ†a4 £aMÃhFÓ0š†Ñ4Œ¦a4 £iMÃhFË0Z†Ñ2Œ–a´ £e-ÃhFË0Z†Ñ6Œ¶a´ £mmÃhFÛ0Ú†Ñ6Œ¶at £cÃèFÇ0:†Ñ1ŒŽat £c]ÃèF×0º†Ñ5Œ®at £k]ÃècGmdć5æ>¬û°áæ[>lû°ãCG«9ZÍÑjŽVs´š£Õ­æh5G«9ZÍÑrGË-w´ÜÑrGË-w´ÜÑrGË­îhuG«;ZÝÑêŽVw´º£Õ­îhuGk8ZÃÑŽÖp´†£5­áh Gk8ZÃÑšŽÖt´¦£5­éhMGk:ZÓÑšŽÖt´–£µ­åh-Gk9ZËÑZŽÖr´–£µ­íhmGk;ZÛÑÚŽÖv´¶£µ­íhmGë8ZÇÑ:ŽÖq´Ž£u­ãhGë8ZÇѺŽÖu´®£u­ëh]Gë:Z×ÑºŽæ½$÷^’{/ɽ—äÞKrï%¹÷’Ü{Iî½$÷^’{/ɽ—äÞKrï%¹÷’Ü{Iî½$÷^’{/ɽ—äÞKrï%¹÷’Ü{Iî½$÷^’{/ɽ—äÞKòïzÉ¿×þùE«“ýRsurvival/data/stanford2.rda0000644000176000001440000000440612267746072015501 0ustar ripleyusers‹µ™[lT׆ÏHJüP¡–‡‹þ—Þ4¸kØàë_«–“x´‘{¿_ÃÉ›ìß²Èù1Ðlpï<âÅîÆ÷_"î 5 þÊlxºn#'ûm‘¼À9G¾G¼C‡ Êú‘õYÄî΃?Eþ•[‰¾g‘Ûý¾Á—ˆ÷pÿôà{"gðà~³ÂCÈË>*çÑÀBæOáoÑàÛ'*ŒÀ'ûõô¼jðùùÄÿ#ƒƒÈRg9eŸ‘óz q÷í#þ!ƒÒç}Øë#ÿÏ£gòû˜ßÿ+ÔïçÄ)}#çœÜä\ëwþÅàè·¨¯ÔKÖµì7²ÏýŒ>z‘~ÄÿÁcÈÁ'çÝΜÁgLc‡%ò½‹uwà7øa íÀäå¼ØŠŸÛñ§h6’pÜc@¸—º¼L‚GO”}IîU½¬§^걺D~èËÝôßôÿ‚þ9‚ý_Ò’7ÍC3ñRÏ™ù¢ÁW‰[Ö¯ø%ëIî'r•ûÄ®§‰ûrŽÈy,öå^¹zÛq1~à]ƒo¬ªÖ#ç±øõp—É“îSrNÈýh| â§ôŸø!û°œ§rÙM¾eŸ`ŸöØÇÅž`½g:þzôtzêñÏt|:¾ÙÆY/îÙò5šÏFÇkŸFçgÛÚ½Qù¨G_oõ»Ññ™òÕ{®7Ž™Æw£ó5Ó:ÏÖ¯Få§³7SùÙæï:â3÷q¹ŸÞQƒr/“ó$^ƒ‰:˜¬ƒ©”ó'[ƒwÖà]3Ä»kpq Þ3 Ê=;¬‡¥j”ïkS°ô¿Qî…â’™b©1”{qÃXšÊ÷¹†±43”{ó,Íå{Ãuc鯠Üo8–þ¿¨÷ñ™biv(¿“ÌK¡|¯©‹¥j”ßjQ~Ǔ߅¸ß{r¿¸püw{;¾|~¼iqïÇ\ùú•׃–½³à™–ë¼¹Ö{Á§=•'øÄŒ+ÿXëèsßn ¾,‹-{GÆk18Wfký,8Qa[ ã_TÈe/šç±óyGÅPðaex‡ò_1|SôŸ®8¢~ÊùuªÌÝûfðqÙüèsÁU?‚3b¯’†¦à{+†Cù±?•Ÿ?×Lb‚÷ˆ÷8üce/N§™—|\MTž` ?Nšx¤Á1â¿Z?õoü`ù9¤ß×<ã_ð7£_ù/¢ç¬É›Žÿ“<žÇÑ÷…øiô 8—:H^FÉ×ûðÖôK­½òñwä&ˆã ú„¾lò`ëbô“¯SäçôòRßKÌŸGßôeú÷*qŸ®Ž/ø#ñ_©Éß±êüiÿ >é Û×Õý©ãÔéLuÜSøþZ ÿ[š¯Ïè·ÓÔAòv–~û„yé¿ äíqÿ}¿e=HýþÅú“>{ä7ôà?‰ü è ð±~Ûɷè;gòiëOŸü=RÇ‘š¼A¿Ä)ûƒÔóøyÖ¬ 'NAÑs =ãØ½(ve}2‰}í²Ñ7¥_Jže]Ò²žÉs8ÏÔE÷ é_Y·çÊfǯ~±n‚“ŒZÝ’×ÐCo¤&>‘G®æ¡7=•²»ò¥üëVùŸ åAk·¹Å­Ovó~s1_ü~?Ôœü™ð‹©Ú¯ömß¹ÈÕ<,R±D‹¾¦ìk6¦¯1õ3IŒGe°Å E³úšQ¡dš²òé¨eÍXÞ´}µ£õÓv>eÄ’jÖr¦lT:µ®fãöÕz•N(« µhÐé¬Úqb¶á¥lúâbÞÏØ8¢Ö§XFÕ«ËZ?aÕGu:æÔÁɘ£SÌûY;¯…ðÓª>î¤Îr¦ŠØ4'Ui¦)éĬ9É8-×AÓ)­ã^Ü–!m_ã6‘¨Ê´c\K“µùVYÛÂq[˜ŒÍWÚ:ìÔSsï·8U°6£šÐ˜º”M§Øê[ÊšLÚ(œÄÛÚ$4q1›÷¸6¥Ó?¶»­tÆ©•]“N‚Õ¤Sõ¨]òšÍ¸¶_‹ZL9Ío_“o±£âÎÚˆj…â¶ãth@Îv‘²:“NÇÛ>SCI§¹Å»ˆqLÚÎÖp“Ö¢¶»o“•²ÙPa] ¾®JßÏ)„¦%¢.è~ë;›°³:­‹Yë}sZÙÌvªÓMv_ÌÚeµ=ä¤Ô&R§míœ^v÷b1±»¦–¦Åî@:–°l:;¥]ÄNácvEé›6ƒ¯§ˆŸ²)p›A95ĈX‰èˆmr[BÛãi»·¨¨=´¬º©úº½ùå^¬>ò»¶åûå`ŽÀÖTÈó‹zúò•ãþZùó_kŽF%survival/data/kidney.rda0000644000176000001440000000174712267746150015064 0ustar ripleyusers‹Å—Ík\UÆÏÌPºpᢈˆˆ„ÉýLýÊ­MMƦÕMÀ ½N&é`šÂÌøQ\8þnuåŸÒ­ àÖ]  ¸QŠ Dïä¾Ïƒç‰—¤m¤ÎüÞ{Ï9ïïœsOÎLÞ]Ù ç6çœsM4ÊÏ  [Íò£áZîLÉÇ>êoíõn;/8ÎößwÛˆõÀ{Ãza^ŸO*÷ýùà½cýö¾­ˆý…}ôÅÄï·fã»aÄ~èæ~ÿÑ Ë‹qoúóÊ?´ú«–o|§"Þ#öÓ¼q§J”oæ½fý1ÿî¾?¾÷ñÜøåWo[¬ÖñŠå»`\µçX·ã5ó÷-Ïukß5âýcýœóçwÝúë>}Ljóà"òJ¾;~»ìþ¬Ý¯ÛFœ'ïY¾±×ÞÕœg ®ºúGͺñéU×¾®ÿƒæ»ßõ««?é¸N{Ýt}OЮ:Ïô~[˜ õüÕï¹¶çÆ¥±ÏucÇê¯æ>ÑnÍêßw®_t>õ{ñò1Äß9|8o×ä9ˆsiÕêõ{kÔñÿ›#Î]ß5¥Œç Ø^År~v¯¿t}u<²žî„¿Ïþïú‡m¿<íü›ïQ÷?m=ׂ'Êé.oXiZiSšR+zö}^—÷-+uù´ÔKŸ£ Ýü[~ñÿ»Úí}ÒÛ–Ñüamõtfct£7°›æêeDçWÖW$ÓLw·"ÓoÝÑ­A8|5·/pù@ø[tx‘ûöâÁ?„¿~=½¾õ¿#ý6ø“õïš÷®Œ¼gýîÕôWÊø–9†:Þß¿Ÿ^?ßY;PÇû§pby&5óWŸŽ÷/ó‚ºþJõËøóÙê9¨ãÉöGêå1êûÑm¹WÜìa[Îb#÷·,jú7{جÃQ1úxˆ-^ì "ö>³pv«?ìCÔÌlŠþn¥ þ–Í?·UŒŠ…²EiðufpëÓ…¬cE!‚AŒ A"È,!8‡™.¶-2 EŒbF £”QÆh‰!!!!!!!!!!1111111111          ))))))))))Ùô·åô áàY©eÿsurvival/data/heart.rda0000644000176000001440000001751212267746072014704 0ustar ripleyusers‹í] |MÇþ¿öXJµK•Mî’Eq‰D, ÕŠRrûIW"±“XÓV+ÕÖ£ÕÒÖû?ºpªª¨%Š®)¥¶é³ýŸ9óûÍ8sïqož÷žóùL¾gÖïoæÌœsî™ïLz„ŘËÅ”3™LÅMÅË3/¡ž–,®þ)f2ù–¥žáŽD‡ÉT¢ªz^QEÕ™†(_¥›è¡´(ªêÔpïŸ,\11ÿ¡2Ìÿͻ̟ó>Ã=Xøþh†^%¬¼1Pîy–îàfð¿Íâ¿©ÄpË~è–îððW€r±ðý2ÿáª`Ç&fïΧXüŽ,ü+À3Ò5e˜Ó„¥?¸‘¥ÿ®Ø?‰Ù±çK·ð@_~ø ý½ ýqæ?ð8Øw”…ïš ùÐ~›!¼:´×u–/g´G³gWo(çØ™öL|/@¾Th·F,|wÃ=­ _*Ã=ï +ÿ_–o7´ï—g þ]¨G´SK¿ ®Ó¾5®ÃoÊ€&ÿ¹…áÁ,ß¶cÐn« Ü,†_÷rúÏcPßò~Ã/ÒYºç±P¯âÀÛƒá¾ÀžÖ¾<ã?Çüû_cùöB=öχòVA»ù1Tžcែ=Ÿ¿ |}î¨v·`¼»öA¹œ¬tc«ÔÀ‘ŽÄDõÄ—š´æHŠSñ6l³`¤çBçŸáÏ0e'Ãé›:!3€á´\@Ù¢L‰„ò§†/AþÉÌde䟔ÍpbÃq¾ “ >üñ?&Ê ùGÏpƒt±PN,øûCºv`¯•¥'ˆ½X<éËâIw°üdøG²z“QàO€ø$VO2Á“!|"¤Ÿ˜­ÇÉNœ^C)‘ S¡ÜT(7u «'I‹„rÒ!:»nd&»®dÖ÷ gC¹³¡¼Ù>—µ7™|óýgÔ»I‘…рɀ³fX¡ž¬?‘Ì. gœÿK€K¡^‹*ö„òe®„rA½—Ôa¸ì^J¡}–]ËæBþåong˜å§¡2‡µlÅÿ2y_Ó´f)³ ‘¯T ]â§:݇Oƒþý‚‡¿ã ÆŸ-ùãõþ$–^I‚q:6–a<øãX{)#õåòü¢/¯ŸÄßÚ¹% '&}<ü$Ö éàþ±úúÊ(Æ\ÏI¾zžÉ0Þ¦* §äêãSb$?ô÷4}ø è×é0NÒœní"3ÁîY0¾fèË™ëáÐßçÂ8›ãrŽ3O`ÏÂúr2ôד,†ñ¹ú}f¬>]&”»¨±>|{)!‹¡~|ü@»-•øq\,ñ½´9``6Ãe3féû;É qÛ~ˆÞŽ/%žOékY¹JÊE@Âp:´‹ÃÄü0Žøsç%xžÇxÀd¸îó`Üâó ŸÉž é'ÀxLŒeùÒÀ¾Q¹Ì?xˆÚ¥5C¼¿ÁóGqøë¤³ò”!>RÊhgñd(à`°#üCrÝçÅêC`MÿD?Ký.ñ/ÝvBNA»ñ9ýkFS}¾Y`ׂX}øLèWiÐ_g…H|o.Ø30xç^Ô§ŸwÍ}½3 óçUŒï§÷/ªã¾äÅçÏ2ÿ™Š>Ý_©ؾN/é¾üåð\ú’ûxžÎç®ñÊf§çñeÒÆ—5£é?åã~å/,¯\NQåóT^~ùäôò‘ß|Få¶¼ü^Oü^Äkãçî©‹þðdßÊQÐþìm9Ee§ô÷ê(l?ýwóy‘^?¤í÷¡ýšÌ'Î^bIë¤s“R—E¼5k݈Öĺëñéç~ »„|¹zÕeÒiLX³Úô$×mÿÃ6¶‰Xòż†?EÂI·igE“ˆ[óLšA¢²¾n_©òG¤s§•²Â6ÎÅÿßÐjeHÔé˜gNm™Dn°z|Í¥ÄÚsßæ7×.#ßì¦Iº.üiþçáA¤ó›‡ÛþúÖqþî/ïDÿq†„Ræx†éÚ⓵»;H§SÃzb7!+V×p°;i;»tƒÛöѤÁ¢gæ?òÊ[üF¦j*énï ™øöÒœ Ù$¬ãnëÙ=Ïp­ø$r|bçcO’nJù µ‰Hا}gLø‘tj?tgRï$²Í{o·®yt\½?çù3Hû~nÖ‚„hI½Y’„GÕ›RûŸíHûê“mz.…DvkbÎIÝN"æmô¿T»éRrAÄw½Hûg?ý7Òt¼”tléø$òÅs=~~¾, [¹w¶ùVõ8ùâ– ÎxÕªùôw×$ú?ÖcæÊöƯ>Û^•D¯9gÇF¶áúŒ¨Û;H¤zÑ“?&Q‘•.ý™@:¼×9-¦QyBzŽ«ÿ].‰:ú³åÁóH'Zý•ûHÔ«öv}ÞzŠXÔÖûðÔ%ÒñueÐo¯”"·_n|-ç‰rvèT9æ[±±ëž—*n"­ÔÖ¼þAÒå‰!Ž—»"mhï ÞL¢ª7¨{e¶Ê[îHƒ ïu!aZ5Hä ¾Éó— 'Q¿4Úr ØL"BòRJüø#‰Jhûñ®éSHˆ=kÎÖ$QKmó£ó5ÞçÖÉŒ åý)rÜÖ£}&ô$þÃé•&[Ž©Þõz/Ò)½|Æ‚?ÃITIkfµùCIÄž†½®” §ìï´}Ç $"·NÙ: דðs벪šKÂטyíÖfÒŠö¾ºHðk4Aiý†uP«æêuR;¥×£¤ÝL­ ¹í±iM-H˜¹î£äpÒaÍÀô-·«òñƒ¿Øk¬ø=Þ0Iƒ÷Óï9ïþà¯ØpéÝà%‰ð{¾¯‘poø4`¼Owz.ÃÌ"²¿ß@x|,Ãî ”ùædéë÷,`¼‡gÁ÷&ù£Ç£°>7.ï@P/¼oñöé~ø}Îíò‡ðÌC €}c!¾7ð‰Õ•OºÎg?àÈàéæA9ÑŠÞžîØðû=~/= <ø»ù!?ÿîÖâSá÷O ð<ù¤úOÄï¥Nè7½ Ü©àŸ þIðûåYðã÷Ql÷dÇïFø]g„ñ‡vÐc¼“á @¼þüw/”×G²û[ÀÆ€0NL0~\¿K@:è×.ß »„c¿ ÕÇc»â¸àáOK~‹äÇq‹ãËGûzB{„ØÓ]o?¶›‹]8.ƒ¤øŽP¾âá:òþØÅ};ÉíÉóY%¼`}ìR|˜äoåDKõÃëŽãÁdÐ.­ $Àvåñ]Lºüœû1ö'ÀVúx¹ý¸¸¿Înì'Øy:ÇrÁ~ÐÕ©·¿³ÌÕ§Odß©ø}ìåס) ŸQôùÛëíws]Ýþþñöw˜·ù ú»²¨¾ä·ü¢â/,·v{[Naí)ì÷†{õ=¤¨ëad¿›Ãíó‡@$ŽW—x_ƒp‰—‡û„›Ü§“ý²=.(•cX¾|Äû©A9F¼.ù øùýÎt÷r<µ¯‹]r> 7à1º.õ6h_Ãö7º¾Þ^O£ë"‡{È/óylwOv´Ÿüü1zßÀÃ(ÞÛ|žÂüùýžâÉNOvÅñåóÔ.žì’û¡·ílÔ^FãÙ“=}ÕÃ=«ë¸3²ËÛçiA¯¯QþüŽû¥m û6½ü…ý…m ]â/×ÛÔý\Z}—ðiZ„ý»rmâßü®¿­yÛØÏ±ÁsŽf8/ƒûKûMú9â}?{àÀß)K½Möë,¿ýâejð{޲ôÜ]õLú9’ûOAy¿±úؿ׊í!ì°ÛÅþÓÐî´fêëñ÷ϰ÷Šd×å—éñŠh½.õº¦Ñ5“yí· ;Y=ì' ®ÓíŸ5û¨Ÿtì!ÿ H÷‡E;¸ÿ»¾ö«ŒŸcöâõçåüÉòq?Öêg¿Âú—ý/}!>¬ØOHù¯²t¤8´çIè§—¡¼³¬ŸñôÛµfžl? íò‡TÞ-ùXûMHwšzãßâñ'Y|Q?ŒîžîCr>Oã=¿ï«žž?FüFõõÄc”ÏpüxyŸóôüñÔÎ2Ÿ§ëkd·¿<µ§r=¥Ë¯]ù­§';Œ¯«^Ì:Ú1*Ŭt`Ñ@ŸÃ’†¶”þ²Žãâ“D@™¤ä–ƒ˜ Aów§·ôàq‰IŽ$`(“8.aH\ÂDð–p ¹#]Ò°Qè+;Á1,©% ÐR–KJpŒNŒé´>£†%Žr$ Š éhé0£oTâÀ1 ¼ð„¸áq“¤ê–M3¡åUÉ‹â WÌ‚'V<±áIžãIž„ÂIñÀ~ÈÏÌüÌÂϬüÌÆÏ‚øY0? ágœÃÌ9ÌœÃÌ9ÌœÃÌ9ÌœÃÌ9ÌœÃÌ9ÌœÃÂ9,œÃÂ9,œÃÂ9,œÃÂ9,œÃÂ9,œÃÊ9¬œÃÊ9¬œÃÊ9¬œÃÊ9¬œÃÊ9¬œÃÆ9lœÃÆ9lœÃÆ9lœÃÆ9lœÃÆ9lœ#ˆsqŽ ÎÄ9‚8GçâAœ#ˆsqŽ`ÎÌ9‚9G0çæÁœ#˜ssŽ`ÎÌ9B8Gçá!œ#„s„pŽÎÂ9B8Gç塜#”s„rŽPÎÊ9B9G(çå¡ÈQ"0 @œŠS³8µ¸ ¶ØÝG½¡9ZNpŒÙ–þ¶I××Âú‹™Þ:ß1úí-ÿ¶çs†5ëHèˆßÀKØDBü¦ü„„Í%Ä9œ qÎÃ,!ÌðoÕˆ6 ƒ$ –0DÂP ñ[>~3o-!Ρµ•¿ÙzĹLŽŽs¦zĹ,ŽN=â\ G§qn6ü8§‰s<& zI<ŸkFĹ#ŽN=â\k”S!¼³S8÷»š$têçT9Bø3àÆ©Çh“„DBL§èç`9 *zìa’Hè”òá\7GHÿ¬SBE8wÏ‘Hùz*zDMGHÿœSBEÏ›$$:%„|½L *zŒ1IH$tJùz›$„ô½!]o–Î÷U“‡dza|'ù›HþPƒt’¿½Aº§ Â-á’¿ŽûäüП¸?Ä=ïîtÞÒ ½\o©=ñ¾ï’¯£d—YН ÷Ë¿‰ð¾Êý]ôåy:\ʳºO'÷—ö´ä 3o(ù£îÓIöàý…ûÝ/â[I~)ƒÜoxxÉ/ÇËöûJþ¶’ßǃ]R~.õsöÜ/µŸ<>ïЖèÃ¥ëf8^åñÖUâ“ë sÿÜ—rA ÀýÒ}An7—þÚTòËýîÃ.¼ðþr—C»¯jØðýÈHˆïFš6|/Å÷|Ï“5nøþ‰ÏI|Í›=üø^(kßðýTÖÀJù5qhÖë…9|>`1ü½ÕP3éeí¶§¬¡Ãzã{Úš:|–µuøÞˆÏQ|OÇ÷'¸Ÿºh†ð}ßSQƒ‡×ÇK-GMþµyx}P£‡í‰Z=Y3‡Ï´OÖîáï |ÏÄ÷DYˇö ¦ß×PÛ‡åiüðwjý ×üáuµøÞŒõ‘x¸ý¨ ÄßòïÔâïFÔ ¢]ø>‡ù¡ñz`ÿ5„¨B-!¶¾ÇáøDm!Þd!Ößsq¼ÉšCo¨=Äß ¨AÄú¢µT¨I„û©‹6µUèÇñZEl·AÌÏÛÇþNF #¶O,ðc{ÈšFù÷àݵïÈßÌ‹JÃ$Ç¥/hºÂ–[P¿|µ}ùå)¨ßOQ]W£ò=åËo{ôºÝ+»ók‡·G~Û½¨ù jGAíñ¶\oËÉïQ€ñéö;@Q÷‹¢… ¿ß÷Ù¢¶¯ ùîÕóÃSþ¢Êw¿x ›ÿ^_—{Ý~÷z¼Þ/þûÝ®wÚ}U Ô–z&’Šë­í°?›Ô xjí£ÿ"J½¼Ÿ>^±ÚŸãÓtE¤ß㤖cG [õ5¤ô¿Ú/}ó0ATJikùü·žÝ_çL\Qªikøœˆ[¯¼1hq® ‘øí ‹³H­Î1/m{ÌɱF…×>"kB8Vo¿mZPãö«Íé¢ÑlDåéw[ïíC|8¿ÕGU÷plb\Êï{R·ÞÚ«m÷ETªdÿø^rì&Ž~ÿüJ97MA$ÿï÷¿5›YƒcÅÁï?¹¯u6¢ÒbþI~Ê1püõ£Å”EJ‡WGÖùtNUR£ú¡¹“Dr,‘üñ˜ÝŸ8Ÿ‡ú½®Ä"’ÚsþXØÔŸX‹ h?¯¶Zó¦&D¥î®÷cÖ¾6‹c•†¬»´/ËþÛŠo®~±™ ’'MÍŠ=ù ¢RK[‚€HJ6™73<ƒ£ýè·ß¼^áªQ)µ˜.š%¯M&÷é¢T=0wÜÖ\¥Úú ÕÔ½¦<¾Êï½zk¯ÙO̦‹YMˆ[ÏS3l "ñ¯ZÿÅAŠÒD[“º“£éô‡¥×dÄ"ÚeKd•ÚÚZaŸ­'KñE)…ãîUífMË0‘Ê=ÒÝ'¢Ò0uøßNù…c­‹Ÿ'T>6ÔžñMØó¶l¢R+ÙrdMÙDûÅ#“[Ž©NIµø…?e( ¢œ]™xHi©]n'¢ý¬¶dØ„HÊõ~±|Ù›¹ý~¸QîHƒd¥uB^Ó®5+q,MWÊö߀¸5}Ô†„¼"ñÓÖîn@Üzüü¼Ü›=LˆŠ-üÌùÒÝ~D$þk_K‹ˆFTÌ´yvF ßÍ>6vÍ!¾ÏŸ)ÿÙðXD¥6]Y=Õi?5£^£¸Z‰¶dwsâÖk?¯ß:ã-‘Tͼüm—ò§3]"[íWR­uÍß•<¨Tó÷U[:Ç·ý·1W—9ÌqëŸyï{Z!ˆ¤f" ›8úÄÒ DsôÕ֢ĭ?¨l¿ÞVÇS£ò?z%qëþWNÄw7!*¾«è¢æ5ë©l!UB8ÚzÏ>5üøgCÔ§99Zú}ýê—§"Úoié¥YîþñÙDûµ°õçcKe+õ´%ÉñJºÄ¼ÌF¼¯Ú·Î!Ôr{Ngmq¸=ç¯úÿ¨2Ç~L[ÞêËñDbýïÝþÃ~Šö‹¦]í§¯ÕU[ì(dz›Ö‡ä¥”´ŸÓn3íç²hÄrZ{†pü]×ÃíÔRó~úD [û.Z3ò–ý’ÿvûW¿}%08ðb«cì—è0ÛN8æi÷ŸeöËl»@­ûMåx•­ÙçxmìÜ®jæx½â\ºš[ ö¼é °û¡À/úO³_×úÅ'öÚ¸ÆñæÂ÷?ŒíßÃ~[íÅã7Ho[QÉöÛ‹µ")k÷9.ÓÇâã÷W ¤¤o=µå˜vôï-«9~vñ÷® _r,U¥B‡›Sÿ)°eµØy-r,ã«]xZs—">šÐ]HYVORŽ^ŽãgI¹àM)/f®È®»À]Ó§Dþc){*ârÏ/ìy“c…~lrª-©XLÉÜyãœ+²þ±Ò@ú 9%ðÕ*q7¶t&•6^©vÿ¢›Dœç蛾Hí!y?•º<³=ñÕnË+ˆï®Ÿ¬åRGp¬ómò¯› ÜÔtõþœ^ }Uíâ¤2Ýê Êo«°ë*§}ðÃ^ߟ?µ|K=ŽUCì~ÎNžõØ5· ÜíSiİgªO‰ý·ÌÕ‹;ºÜį}Ф „~â×OÛ4Aà;Ñœ>z\à'(3Çj Îê±q2GvŸîKª…¥úª·Ïi‡À¡—ŸÙ|&”T[ÿnIÇHêïі/ks|”n•vD`Å~áeßl(î \Š<Ú©­5¸ßŽÕ¡¿r¤Í~¾ÀÓO&©Cƒc ÚZò.~êpÞsMæ°.Ç tS‰J„nÈPÇvMà»ì©æ‰×š¿Ÿ–¶uíÓƒ§GêeòRðï> ú]äááþÈï÷ÓÂ~GËïwÌÂEÍ{¿ì.ª£°ß#”z>hõð¾\*n-X¹6安IŽô—LLqããF'¹ìß!ög¹&Æ9\–PÞ’”÷»¯Óý©Ðv0Ímbú|ºqc)Õ•Vð-ÃlÔ¼Ã(¯êè®Ôt—q:>Ê£;ìÒçE%Õ‚ºUVÝhÕUQÕîÒ]®éìZ!S5ÕUÝ}^5ÕT]utì¦Kjª®–êj«nœêè,g]ÕÑMë©®¾ê&¨Î_uɪk :º5ým¤ºIª£3†tGaº9Ýp’Î(ÓQéóSUGg(§©®™ê¨Š÷IÕ9UG¼tV·…êRTGg4ŸRÝ >@ut3Xªz ;¼SUUFÐÝþé &UéÒÝs©ª€nþIU¹tB{¶êèÌïÕÑfº«=Q¥ª[:3MÅt¦“îªNg~˜ØÔ6U7,TýÍPÍT½_¤:ªÆX¬:ª ›MSu+ÝU”Nª/SU;PEÂrÕQE*=§ÝTeú²êè,ÿ+ª£*RºS{´êè =݈š*8é®ïT9AU#¯«ŽªNVªŽª³UGßÞPL§ëa¨ÊðÕ½©::³KÅt³ë·UGw}]­:ºËòßTGw#§â“XÕ­UÝÕv€‰õMª^¡›µÆL2>4NC:Éø:“Á!Y#éé¯a¼,%jeN–"H‰Pšín$±“¥þ’_¶O–”D–û $š<¾»â><À ½\o©=QÊî’/BòKOREòËùÃ$ž®îyäÃ¥ÈåÚÜç“û‘K»Êax˜Ó}xcÉ­¸O'ÙƒÒiî—®·K~Y:G¤üRÿáá’dÔ¥_ÉöKRB ¡¯»Œ¤ˆáÉÞ/µŸ‹”²†A9Dò[ÉßMòËõuÄêýƒ ø¥tÒýÁ¥ÝäüOH~¹¿Äðvp~Ç¡Ýg¹ÄÚǼM—¼¡´%E¸´" ¤o(UC‰>J‹p©J¶ú3ô?Jq)J‹–®ÓÛ…K_1øQ’„KJ0¿Yʇ|þzû°X¯t¤á„± Q¶ò/ý…!ü—¥(ùÃöœ“­÷c½Q:‡vdíaˆK…²2ôöâÒ\*€’O”°Áý•KÖL€¸ä% p„ãõYÛÖËÛ«Àuå×%u¿ÐŸ!.}Âú£Ä¯Sæ÷ ±]d3„‚ÈØ¨—dç§Þ.”˜áÒ”·ë0 [oÏ8Ç¥)ó²õå¡ÔëƒKhPJ7'ì„ü)×ËÅz „ë#ó ý3Xƒòë$/áJe÷ ’’­· —®`~Y’Œýd:lÓŽí÷Wâ„q‹í‡KVpœNõgˆKòðß[LRôõåRe°þ·Ëÿ JVû8õõ|p%฿’!`÷8@¸¿r?Žsø·=¼Ýe34Ç.  v`ûÀ¿íáíMŒ——¾¡ý(…Ï#í>›_ —·Ÿlò[^AÓ¶Ü‚ú壨íË/OAýžx Ûžÿ®v+èõ»Wvç×oü¶{QóÔŽ‚ÚSØOvÞòz[Žé´û,Hv’@²³%;’t§>G÷Òvˆ÷Iºó"HwzHw¾- t§&G&ÙY‰’92éN&HwªHw¦yîÌE,¤t碗ÒiˆÒ(#éN%<_qdÒþˆ÷V³ò/ÄJx¦!æSÂãËÑ­„ç©ÛˆE$áéˆ(Ixˆ á™æ¥„çsD Ïi O(¢ O[D OwŽù“ðCôR³…#“îŒáȤ;ÓA³Í@³Ò@³$<ë]$ ÏŽz)O3:)O"HxJ ,R)ÏOÝJyòjÍ]ÚXÊsWIO)E"é9ïŠZ¿Áѽ¤'ªˆ$=#9­¤gŸ@MÊSŸcÁ$=:IOŠÀ|Iz¦s|°%=_s|0$=3@Òcò0ö ŠÔà¿å(¬´ÇÛøüòõñPâ£Ç{ï^Z=¼/·•ÄÐûl±;\q å𻥻[˜§´ž° å†« åæ§]<Õ³(ê“_ûò{m ’¿ ¶“D4¥GƉ›·ÒmÓÕ< 4æ”ì˜4†Šºððò™ b”ÿÁƒ¯„7mÔãÿꦈ7o”Ó)z|¸y£„Šÿk7ot+*öNJìQ8l 8Ö$Ë\TLyé>nðýpƒï‡|Ó³ÿ­ ¾ñÔ*Nmâ4Hœ‹Óq*Ø[ ` l‚-P° ¶@Á(Ø[ `3 6³`3 6³`3 6³`3 6³`3 6³`³6‹`³6‹`³6‹`³6‹`³6‹`³ 6«`³ 6«`³ 6«`³ 6«`³ 6«`³ 6›`³ 6›`³ 6›`³ 6›`³ 6›` lA‚-H° ¶ Á$Ø‚[` lA‚-X° 6zÃðn‘‚éöÿÙ¸O’survival/data/colon.rda0000644000176000001440000004366012267746072014716 0ustar ripleyusers‹íˆÇ•ïÛ‰“(a_ö…E,&\B"/„éßÝÙ¼ìMâdµYg3±¬òs¯Ë–Ç˲-ÿnËúùGF²c+¶dÝ™‘eY–aY–åò‹XÂ"ùÄå1„ð†GXÄòží{êžs¾IÝžî¾·Gêç3=·»NUuÕ§ª«ï(7^¿Ã{׎w9Žóç-o½æõÿ^ÿñÚ·¼þ?×8ÎÌ;_çÛ¾qÏ]÷Üí8oý¯¯̼þß»çŸøÓ5çÍdØu€[€3À÷·¯v€ï¾øà6à~8 tÐÀc`Lþ ð£ÀÿüðO]d¦ùq˜i~ÂfšŸt€™æõ0Óü”Ì4?í3Í?s€™æv˜iþ¹Ì4?ã3Í¿p€™æ 0Óü¬Ì4ÿÒfšŸs€™æœì3à@óó° Ì€Í`˜š79À.04ov€]`h~Ávp ùEØfÀæ_9À.04w8À.04¿ä»À 8Ðü²ì3à@ó+° Ì€ͯ:À.04¿æ»À 8Ðüºì3à@ó¯`˜š=Øv=`ìÀUÍ[`Øö€°W5ou€`ØfÀ>p\Õü†ì»À0öàªæm°ì{À Ø€«š;`Øö€°W5ow€`ØfÀ>p\Õ¼Ãv€]`˜ûÀpUs—ì»À0öàªæ°ì{À Ø€«šßt€`ØfÀ>p\Õü–ì»À0öàªæ]°ì{À Ø€«šßv€`ØfÀ>p\Õ¼Ûv€]`˜ûÀpUóØv=`ìÀUÍy8ìg]à°œfÀ`¸/Wkš÷:À`8 ìç€=à<0.ûÀàx¸ \ÓÜíg€à,° œö€óÀ ¸ìW€àEà*pMó>8ìg]à°œfÀ`¸/Wkš{à °œvsÀp˜€}à p¼\®iÞïg€à,° œö€óÀ ¸ìW€àEà*pMó8ìg]à°œfÀ`¸/Wkš:À`8 ìç€=à<0.ûÀàx¸ \ÓÜëg€à,° œö€óÀ ¸ìW€àEà*pMó!8ìg]à°œfÀ`¸/Wkš;À`8 ìç€=à<0.ûÀàx¸ \Ó|ÄÎ;ÀY`8ìçpØ®À‹ÀUàšæ£pØÎ»À9`8Ì€ À>p8^®×4s€3ÀpØÎ{Ày`\ö+Àð"p¸¦ù¸œv€³À.pØÎ3à°\€«À5Í'à °œvsÀp˜€}à p¼\®ifp p¸ØnÎ`¸8Üìwç{ð0pxØž®ÏÀ À‹À×€«ÀKÀ5àeÍ'àà p+°Üœ&À.p;p¸ØîÎ÷3àaàð8°<\ž€€¯W—€kÀËšûàà p+°Üœ&À.p;p¸ØîÎ÷3àaàð8°<\ž€€¯W—€kÀËšO9À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—5÷;À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—58À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—5:À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—59À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—5‡ÕÜœnv€Û€³ÀØnÎw{À]Àyà^`< \öç€+ÀóÀðð"ð5à*ðp xYó;p p¸ØnÎ`¸8Üìwç{ð0pxØž®ÏÀ À‹À×€«ÀKÀ5àeÍ#p p¸ØnÎ`¸8Üìwç{ð0pxØž®ÏÀ À‹À×€«ÀKÀ5àeͧàà p+°Üœ&À.p;p¸ØîÎ÷3àaàð8°<\ž€€¯W—€kÀËšÏ8À-ÀàV`¸ 8 L€]àvàp°ÜœîfÀÃÀàq`x¸<//_®/×€—5Ÿu€[uþ.´eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²eË–-[¶lÙ²e³è8oý/oü]è?À×Ðë¿…þ3¿7Çø9^×áï×ËÇvÆY/޸כïzõ\/Þzí¸^}×k¿q¿^y×k[½×;ÏvŸmýcÜû¼^=6Ú_ÆÍ§hÿ±ÕwÜ8¶þRôóõî§íþn´½Ç-ßzÿÙúízõ,:‹þÞvÞ¸\oõšm\Ù|5Õg£ýs£ýg½ÿÆ­÷zíi+OQ/Ø~?®ÆígãÎ#ëÕÓ6OØüÒã¹lyª.ï¤}дëënÏ¢å©:^Ñë›æï¢©êñt¥µoÓý:éùyÚóÙ•~¿‹¦ª}`Ë¿îù¹hyЦº}Wwý&=_V]¾²çÛ®ŸözbÚóeÑÏËÆ«Úe¯Ÿôü9íùzÚý·h~¶ó‹¦¦ùzÒý£èçuçg»~Òí_¶«¾¾iõ+›_Ñx“ïeËWw{Mu÷Ÿº}X6~ÝíYöúI÷¿¢å+ûù´çƒ²å/š¦=Ô=›>¾'íëºË_´©;UÝßêŽW4ÿI§iÏ¿eËS´¼ESÕã»iëIׯlùŠÆ/Z¾¦Íÿ¶Ïëý]h÷SÙ›#~øùæ\¦ùù®æ ™æM]Í¿p4ÿ øyàŸešŸq4瀹ë-ùxÓ@óãŽæŸ1þ À¿Ì4ñúÏgš7v5ñs,?Æ»ˆåëfšÛØÞ˜ÿ@l/Œ‡õÿ¬£yã@ó“™&ö?¼þz ößÏä_:šØÞx?nr4?ibýñüÏdšXþ¹®&Ž/¼ßØ>˜?Ò6¾±äÚ'ÓÄûñ™&ö'ôÆË•˜Ï™&Ž7¼?Xßœ/ ~˜?æ‡åG¿`Ãû‡ã˃ã ãÄÑÄúaûaÿº1Ó´¿Üøb{àýÀñ÷û›­¼¶ùýf¯8^°<È?Ï4såæÊ õÃþ‡ã ïÏÇM ÄúaÿÀû¾ÇòàøÀÏ?åh¢°}ðúÔÑÄþ÷QGûŸ­àüˆ¾þ$ÛçÇœOºš¸þÂësëGëƒçãøÇñ†ñq~Áñ•ó䟛Ÿºš8þÑÛ8>±=±½°¿`y¯Ï4±ÿåÖw]Ml$Ž—Üúi io¹õ”ëíg[ŸcûbÇñ•›Oºš¯ëhb{ ¿°}lë=\/¢_p|bG_ãóŠ­ÿ ïlÄú`þ6Ÿbù°>7±~¶ñ‹>Äûí‰ýͶžÆûƒŸÛÖ¹ç%(úûsn}‘iâù¹õj¦‰åÏù;ÓÌ=oñz¯Øß±ü˜îùˆùãxÎïòû„£‰ýû®ÿmã#ç#øÜö|‚í[ŸA~XÞÜýÊ4së™®&Žçœ¡¼¶ù0·ib~Øp>E¿äž“Í\ù-åù´£™k¯f®?±ÿcþ¸>BÚž_lã#·>âýÎÍÿŽf®=!¿œŸ3 £™Ûoó±¾¹õijíXÇ‹¥þ¶ýü<·þ.ÈÜü´=£¿ðyÞæß!ìŸøüšÛ¯íjæžš8ŸåÖƒ@¬_n½íhææÇLû^÷û×ï8žpýãý‚Ϲñiæö7 ¾ŸâxÈ=/Àõ¶ùë—[‡:šø¼›+WïWn~q4±½róï'ŽwÛó2Ö'÷ü Äñ‹ó‡íyûg®ÿfš¶õ#ŽOÜoAFަíyͶÞÂõΟ¶õrnÿXt}œÛÿ„ú`þØÿ°¼¶ý}œOrëQ í}’u½ Äû‡ý×g¹ýGÓ¶¿e+/ö×®£ió5¶Oîy>Gÿ\Ÿiâü†ýý€ùÛöÇló•mçïÜód¦‰÷ǧíý–ß¶ŸõAÿæÖ?]MÛz;·ž‡òáþ4úζ^˽_bûáõØ>¸?™[Ï€™fî}8œãÇ“íy?÷üïh¢ÿlý˶`{ßcóŽ¿ÜûDG37>è;<û_îý)0·¾âþ"Îß¶÷û¶ýÛzÓö~:׿ |6Ûž÷sûP>œ/°ýmï÷±|7sïßMôžŸûþ@WÓö>Ÿo°?ß<ÐüBWËc[ßZß§:š] íýBn~ïjæÞŸñó?bþ9¿@ùmÏ‹Øßrã(ÓÄxX~üþÎèô+Þ¬oî~;š¹þÄxxpýŸ{_õÁùÕælOôgÑï[ayºŽ&ö¼8>°½¯Ï4?Äûe{¿ž{>õ1Öãå¾O–iæÆ\Ÿ[8š¶ç¿\{ñþâç¶õm?}‡õÍ}OÉÑ´?Œw}¦‰õ˵Wõ˽ÏÊ4mïËÑ8?`<|·ùÇ^÷ý`û¾^np?8· ̽bÿÄÏmï›së[`îûa@›°=q½…ó-~Ž÷Ëöý1l?Üϵ}¿37¾¶ïg[÷?€¹ï“:šØþ»£‰åÉùò³=ï`yrõu4±|xÿlû‰¹òt5mßËíßu5ñ~cþ¹ý°L3÷}ð&®—mß?FæÞïsß×Í4Ñ]G˃ëuÛül;}fó«Í·Ø_sëûLÓ¶þ¶ÍÏX^ôiîyo ‰¾GàýÁüq¼Øæ“Üû•®¦í}Lnÿ°«iûû\?åê“iâ÷eq}oû~°m½‚í{ß ŸãýÄòÛÞOÚÞ'âøÅû¼>ÓÄúáóNη@lߢë±ÜüÕÕ̽7hæö— ?ì?Ðö>7·?çhÚÖgxlßGÀýÛ|Š÷/÷}K ÖÏöýp¼ÿ¹ç¨/–ßæËœÏ2MÛ÷±}pÁöý¬on?` ™{ ´} ûÎ÷èoÛz.·^t4m†ñlß÷ÍÍï@Ìßö÷¶÷s¹ý°®fî}"¿¿ñm߇̭ïàsë~)ÄϽ?澯):ôw¡NÁ4í¿w·¥ºÿ=‹²ñªN›íß+°¥ºÿ¾»éõ·¥+½þÓþûýIç7éüÛôûS ÿþB£Ò¤ý1é¤ljZý®´¿¥ìùEÓf¯U§i¯W7[jÚ¿oTwü¢ç_mýgÿ^ÓDÓf{ž¨{<4½=&Óû/¦IÇi·OÓüS÷þÍfO›­þM[Ï·©YéJ÷ífëÏUï´é÷§¦·WÕëÙ¦ïÇM:5­|Ó~þ™vª»¿7-5­|W»êN›½þM+ÓÊs¥§Iï¯Õý|Ò´ù¢ê÷ U§i·Ï´Ó•¾ßÜ´û»ÙÊSõóÖf߱şöøiýY.möö«z}q¥ßߺÛcÚë›I§iÏÿM÷ç•Ö꾓NM›ÏËæW´>›­N»~ußßIÏOEÓf듾~³å?íû¹ÙÊ[uªÛ¿eçëºýù;òÛÐß…¶©MMNWš·léj«o›ÚÔ¦65%MÛ¿ÓŽ_6möò·éêNÓî¿W{üºÓ•^¿6µ©ÎÔŽŸ6µéêMíø¿²S{ÛÔ¦6µis¦ÖßmjÓÕ“ÚñÞ¦6µ©M›#µ¾nS›&—šþ½ö6•KWû÷àÛtu¥iÿ\Ýå™tþmšnjïo›Útõ¤v¼×›®öö½Úëÿ;ÒX:íuÜ´ãOº<ÓŽgKM+O›ÚôûÒÕÖ_ëþ÷ ¦í¿²¾žô|Óö¿Í•¦]þiÇ/š¦íƒI§iÇ·¥ªÿý™¦×wÚiÒócÝ÷¯êùv³§v|4;]ií¥Í§íøiVšöóÍ´ß+_iãëJO›í~M{¿d³§¶½êMÓžï§_Õù_mÏKU×oÚûUûºé÷³ióSÝûmº²Óf¿ß›­üíóü••®´ûµÙç‹Í6?O:^ÓÚçjOÓ^?OûþO;~Ñ´ÙÊ»ÙÒ´Û·]ŸéÔôý£ªÓ´Ë3íøESÓÊ;íõMÝû1e÷ûÊ–oÚí[6m¶ò¶é÷§Íö¾¤M:M»½ë~Swjº¯§¿ît¥ù§iûuïÔ0žßü»Ðî{††˜O÷:àV`|Ж¿£i«·íüîàŒfî|¨OÑul.¿™ßOÛù¹Ï?¨Y¶ü¹öq€ð¹5?_Óv¿rý >/ZÞÂý˃ýúkîü‚íWøsŒå+Ú¿>¬Yt|åâ¿Xôþ@yl¾Èõ¬·å~Ù|Vz¼t4­íi¹9~ˆŸCû=qùÿ}Ç’¡µ<&žùa} ‹¯ríý óÃxx}Q?ÚÊo›Ï,Ÿ—žßŠ–ÛúSíå+ZÞ¯·ŒßÂã¡àýÂòþæsLx}Ž–þ]´|ÖñhûÜV>Ëz,w½ísmóaÉëËúݺ^´ÜÏn7SÌùÎ/½~-™ŸmüYÇ¿mþ‡òYçSÛùð¹mýËÏ6>;@ŒùÛ|i«_Éù¨¬«>?G‹oJ?OØÖØþ¸žÅõ›­|˜¿¥|e×/¹þh+®ß ÖÇÚ¾6b}ŠúÚVÞmÀ¢÷«è|i©O®?áùÍÒã¹h{B|,_áûm›mþµ)ÛŸ ®7Ë®ÿ¬ý«´ío mûíE}‹ñló³ ´µŸíý±e¿ôú¨àþ@QßâçÖýf[ù-ûõx>¦¢Ï…×£E燂ím[?½_…}„ãÉöþ Yp?ÞÚÞHÛ~"ö¼_¶çaËý´ïÂë1¬m¾²Ô'÷¼kiÂ÷Êc½Þ2¿žÏ ~ž«?îo¼ß…}Vt~ÁòÙêŸöoÁýb«/ <Öó±>ð}šÂï÷lϧÏöü\v=–£Í_Ø>ø³–Ïò<‹o+_Ñ÷ ¿/*Ýÿló½caÑö)º¿Zp~.ëßÂ>.º¿m›¿lϧx¾-^É÷Y¶ü­íWðûeË_xÚêo{ÿ´–ßöü]t½Ðíßû[ÑõyáïZêc}ŸŒù•í?–ça ûû‡íyжþ²<ï^oØî^,Ú_Jï'ھߌë=Û|Rt?Âæ{Ûú¸àúÈ–îó°è÷;‹úÆÖ_mÏëe}\tÿÛ·`|ë÷ËáüÜý·íÏCÿ-ºž±ŽoôOÑýXÌÛÓöýþ¢ãË–Ò¶TЗ…×GX~lÛz½¨Ÿ‹ŽW¨_ÑïsÞÏœ|²þý’ÍÇ%÷ƒJ?ÏdÑùÞ¶ÿPô}dîsKÿ(ºÞÍ=_½?¶þ‡ç[ò·Íg¹÷gEŸGŠîWÙæ³‚ã뛣åþí/ý]èïø½JE½jcÕi£ñª*?þ¾lý'ÝÞUÕ¿ªxeó/›êîÏë]_u~U}^6¿²÷»ªò—?n¾¶Twûßo£åÙhùëòñzŸO»ý›:ËÖ»jõå´Û¯h¼ºÚ»êò?nþESY”MUçWuüºÆuUñ«>Ü4)_”M“öÍzç›OÑÏ‹&[œ¢ùÔݪöSÙùoÚýi£ùMúº¶OÙù²êö«úó¢å÷¼ªÚ{ÜÏ«^ÔÝžãÆŸôú¦i뇪óŸT¬ª¼Eó+›ªö]Õ÷«ìõuû¸ìõuÏ×eÛkÒã·êTwù7Zž¢çOªÿØæÙõò+¯lùªöëFËc˯®ûSu»›6Z¾º|<íñ]·Wëî?EïWÝó¬íóI—³nÿŽûù´ÆsÙülçmôóõâ•?¶üÇý¼®ûU4þ¸×5e¾¨Û3EË[ôóÆ©zž¯ª_l4ÎFË[õùøûºSÕñ˶OÝí[Õù“ßo½ßWUÿ–k£íS¶½«îo“îOuù»)ãwÒã£ióí¸ç½~Rã¡êT·&íïªê3-ý¼ª4nþõޤ绪η]_UžÔ|U÷ø*{?Ê–·îùpÒ>/;ïMuùÌv\wüõRÕõ›ôý({~Ñëëêÿ“ö׸ŸOºÿU_Ýý§èüV6¿ö'[~륢õ7^]~²]·ÞyU—oÜüŠö×¢ã¾jÍÒþ¶¥ ä7üÿ ¥ƒMÊÿ¾{ÓÓö÷ÎuÇ«¸<ØKŸ_ôï±kn¿¢õ+Úž¹ü-ÿþÍ´Ûcêñ,ñ­ÿ %Ë‹í_øÿß¡i,{ÿšv}ÓûÝçÛ®Ÿöxµ”¯êù¡°¿ –·èõe瓉û¦ì¿ï3a–.OÕëK~Ó¾Ÿe×Eÿ}¾ªÇkéõ™íü¢,ºÞ®:þ„Ù´ñ,ûïg"+_7¼?Ô>¿ô…•—¯dù'¯h}ÿüRóþEÙù~Òý«l¼Âû –ë‹–¿hy7ŸŒWõüÓxV}¿*n¯Òó·Å7S_5m¹aœúzÁ¯îøM[OÙæ“i·OÝ×Wý<ÑôõHåþ-ÏÆ ¯/ _ß4¿7ìù·òõªm?vÒëi÷ºã•}Þô~}YNy<×þ¾¤j?4m~´°èzgÒå˱dûÛÞ/Ô^~[y&¿tnúóÖ„ýe{>(ü}²ówÅ×>ßrý¦ó²êõUÝû%%ýXv~³ÝϪÏ/û¾º,›Öþ•ï§4}>²°ô~WQT¼Ðø÷wE9aÿV}}ÙçÑÒë…ŠŸw­ë÷ŠŸïê~žŸ´¯šæÿ¦³è~ÚÄßÇ[Xx¼L;?<¯iãkÚëqø¼è|[x}Qq}kþœ4k~^˜x~UÇ«øüÂ~rÿtù¬ù×|ÿów¡eŸC®t:À¦ågaéuø´é7[ýK–¿éñ¦Þ¾eÛYöüißÿ íó¢çOº>mÿ-FXwÿ,{}{¿[þ>:ÀšûCé}û+l¼4Î7Çsíã½ìüh›'ݿʖ§èõ¶ò–­OÝ÷oÒ¬º¿Ly|6ÎO›½?a<[üºûSÝ÷ÏöyÓh)oåïM‹öOÛõeûOÑü§íæûæJ£œvÿ°•?Ÿt´•¯e9:ÀI·ÕùO{}r¥÷ç¢ã¿iÏeãm6ÿU]^ȯòý¤²×_ét,œvy¦}?«ŽWwù‹¾Ÿjøýú~ÈÕF8éøu?O»ÿÛæ»ißÿÍÞ¿jÎÿª»_uߟiÇI÷§¦?ON»}lùU¯hyl,zÿKÖÓù¨ì÷©¦]þ’lÜýr€e¯¯{¦ly›Ö¾e×»¶ü'íÃiûdÚã¡iý«îöjšïàf»¾lÿ/¿ðßÉ5müN»ÿ\iå­:ÿ¢ùáùU—§lùjÞ¯ªýû-ËÓ¸þT3 ·Ó|Öôû‰×ÛØ°öuèïB‚Éö=zÛùEó/›_Ýùm¦¥¢ÿ^FÕõ+¯êþUöüªã­ÿ´ûߤã7­þÓNuûsÒiÒãµiåizÿ.Ûߦ]Ÿ¦Ï/W{ûØ®ßló£-Mº¼“ÎÒëË¢å)›ß¤SÓÆgÑü¦Ý~¶4iŸOºý«NWÛ|9íñ5éxM›OëžOÊæ7íûÝ´ø›}½Võz¦iýi³Ÿªçßiÿ¦­š6>§]ž¦Õ¿é©éëßi÷§²i³Ï'Ó¾ÿu—§lüI×§éãaÒýwÒ××®ôúM:M{|5Íÿ¶x›­ÿm6Öý¼]õóRÙ4íõôŸW‹¦I×oÒíS6ÿºÓ´ãÛÒf¿“Þߘ´ïšVžIǯ;¿ª}|µû®êõÁ´ûwÕi³ÝÏ¢iÚ듺ÇÓ¤ó›ty§Ý¿¦½þÞì××=ÿ4m¾›öø˜ôú³îÔ´þP÷õ›-5­¿ØÒ•v7[ÿžöóiÑó›¶>kZÿ+šÆ(ÿ›Zµ÷¯6OÕ®öu{Ý©iýµîufÓÊSÖÓîÓžg'ý\Ö´ûµÙã•MÓîÿESÝíÛôöhššÖŸ¯öT·ï'ʎǦկîú4mýצbiÚý·îù¯iýi³Í§Uç7íû1éçŸI?¯”-oÕç—MMŸ¯´xM¿¿UÇÛìã­é¾µ¥²í=éûg‹_ôóªÏ¯º=6[ÿ){ý´ïWÑ´Ù®Ÿ¶ï›–_ÓSÝëÙªËWöóiÏ'“NMóQÕi³¯ÇëŽß´ö™¶/ª.OYŸ4m=;é4íòÔý|5m_”=ÚëçºÓ•¶>¨»?7-¿ºã7ý~O:m¶ùiÚ÷ïJ«OÕiÒ¾ª:5ýþ6mýR÷zâJ_O—}¾(úyÑòÔÿ¤ûcÕí]6Mz}Ô´ñT÷ú¼lûÖ}ý¤ûã¤};éñ^õùu§ºç˲©îööz¦iý¡hš´ßÊÆ/š_ÓúߤýØ´õŠ-ÿÍ¿ í¾ôã7ºÏu‡<÷^Íç¶™ 3êîžòîþûÓç;†|åÄÏP~ï¢óÏ­ÿUó‡¯iž=¯ùßiö?3äÑstÞ? ¹x÷gökþðº!_øÛ!ê 9ß¡zPýöŸ¦¸ûV‡ü›·hžùWÍC¦½öypÛ÷†ü§yö˜æ++ÄG©Î_ïiîÓn*ï·èøý!{ÄÏÑu?¼Aó/j¾rý^rùŸé÷7ù=j§}‡éº¾æ“tݧ2j‡ßjžýÍ'·ëöx†ŽŸX¥|ÿVóÀ®!_ |wiž=«yúͳ³šg~ü‘æ‘áÿ¡n÷j¿èþ=Eåý>õ‹ç©Ýμ ܼUó•ûG_wO—ÊyPóô¯4ÏþLó±lÈÛM~ç4빓xævÍèþÝHןþ‘æ™4S;>B<÷š}ºÏÏS;õ_ò•KC>Dqöt躟k>Oýnµßó”ïÓäƒÓü•ã ê?¸Hãì$yéÔ‡†|©KŸ_§yô†<@~:>«yî5Q}æ‰èƒþ§æƒÔÞ= ó¶k~—ê}Ø´åÚí "ö¿³ßþDs9Ð|”|så·t擆üVoÈþG†|‘¼ÿ<•ë~*çN:ïVâÁ.Å¡óž¢vœ§ßŸþ_VwÈÏ/Q½G¢rÝ™ÑçtßoÕŒͳÿ©yˆÊý$勾:tA·Ç šOž¢þ°ôõ!Ÿ¡òœYÐüÁ»5ÏnÑ|ò3>=ýKÍ»¨]Ìx>û?€_Õ|´§yænÍ—?:äwW©ÜD3¤rd—é˜úßü°CwŸ£rL†ÜÓÓ<ó^ÍÝ3C~ÚçìßkÞ9òfªßé=š÷RÜAן¡òŸ¢rž}Ï_¢v:{Aó ê_wSœü&ζèx?˜×\$ï¼D×?@ívÇê}ê÷{¨œ¾VóÌÍšß¡öy„êyŒÚõp‡ŽOù }þéLóôû4R=Ÿ¤þ¿¼ò1ýjEÇÿQêûi^ÚGåx|îwóô@Óø7£öZ~»æ‹fCå?Hqvö)Ÿàsš/mÑKÞ| ÒÌCŸw¨žwk.ÿF³ÿé!_ý5ÕãÍ£´.z–úãã÷öUÊçEMã—ºCž$¯Ýoú[Ws™îï]¦½nÖ\ú²æÙ ¹@ýýÌ1͇¨}î¥ö=ÓÕ\~\óQª‡f¼.ý¥æég4—?¢‰í·|µÕߌGSßct¾K÷qùGšgÍ穼æùë‘Sù—~¥¹ï¼æ™÷yÐxä?†|•ò=Cýaîãó4‡Íõúç_ò­?–þPsy—&>¯ùŒæ 4ÌSù—_Ð<ãß­ù<õŸ*ßé9Í¥žæ™¿r?­Ï–ߣù]÷ ÊïeZ?§ûøýë€TÎï/ŽÒ¸ÝoúßÍo †ÜEõ=Cqn¡ò-¯hî£õÍ·úCÞOùšñ÷4•÷ ÊçÛÄ›º”Œ÷3Öü*w•k?só<ºô3Íå—5—vi>Oqh¾|vNÇëͧ¨^мaÖˬ¹xQó>ºn7Í[ÏѺâáÞæùïIúý>³^¥Ï—¦ùíæâ’æòÍÔ^G)ÿ§é~}ÇÌß—€ÿ¬¹øwš©þf½z:Ñ\þ÷!ûÆ¿Ñ|êeúñÒ6MœNÖ<³Jå!.ÏŸÓ4Ï Ó8ÜOíýÕã3>i¼ ›‘ùl6äZïáóñ“´ïr/•çô¿ ¹òßOí2òýj.ÿTsñ‹šË4/î¦ržù æ‘.•Ï´Ë?j.oÕ\ú{ÍŇ5Ïþ‹æ2ùvݯ£T/³„ÏëgŽkâ|ŠëÓEZçFû–Cå ûiöÁÍ3@óÜüQ:ÇÏ)òïQZ'™çèo®ù4Í«;Cšõú~Óï¡yˆâÞB×/ÿ¦y.þr—ÊùiÍÃtý}ôùÒ‡4Ò<|ÄÌËæy£Oqþ·æ³½!¤z-gš8~—nÕ\œBÿ¿ƒêy;ÅyxNsi泃!o¥ú=C÷sžÎ?AÏ)Pùp=ò˜Cq©¾æ¹É”㎮æòÏ5ͺòkTŽÇéø>ÊçAÊÇÜïïRÿ9HÏÃËsš¸>X¾Ksåÿ Sè§¿©¹ü~ÍÃ3º|Ë{4Í>Tf>Ÿæâh>OûÈ7©ÿ<™Ñu‰¦y~~ê×ë iæýá2Ìén§ëûçqÊ×ìo>A~ßßßÕáâ4ÒsÁSt½y®»žò.£ö¡vÚOŸ?E÷ÍÌ3/Ñzά«ï¡ë̾‹¹úCš}Ôþo€à{4—iÞìÓx[ú©æiÚ×3ïמîkš÷ºwöuyöÑ|°ŸîË£Ä#TŸïPý#Íþ%ÍçÉGfýëû#Ô§q¶i.®hÞJõø\Fçý§æAòªÙ¿^¦ñ5zE¿’Ê·ˆ<®¹tQsù?4ÍZ|;ð5qýÒ\óÔ‚æ1šÇï[Ðå^ ~»xYÓܧƒ4O¢qlöño£zšý£¥ß§iö ¿©ù2­Û2Ê÷$í>köh?ãyòÙÞf~y„êõEºþZ˜õââaÍþ¯5O&šý÷kž:¯yOÈ»¨§~£ù }þ µÏ©_jöü²æ½w:FïQú”Ÿo'ÉOæ{'¦.½KÓÜ÷ÝÙOR»oã|uÒÑ|1Ð|t0¤yŸÐ'/=KýǼϻ•êÿqÊç}ÄÅ÷ߣy̼‡¦ýЧ(Ÿ'©¿/þ“æ­ Ì}1^7ûüý÷išqfž×–¨öQ;-Íhž<¯yb‡&Ž¿¥@shö³ŸO^ÖÄþ×_Ñ\ü¹æ>ªÏ=«ôûyÍš·Í~¡Ygì¤ë¦zšõâÉk>Mõ4} ã?Ô‡(ÎcÆÓÄ}4¯<ÚÒ|ÿż7\ü±æ“´NÙÝÒô“ïÒV͔ϮU:ŸžGÌsâÃ!Íó¡yŸox„î«ùž úyñCš}Êßì—à|Ýÿ'ÍÅŸhš÷ÊC=¼þûަù>нÙÇ(ÞŠwô'š¦^_¡zšõÒˆ°?ÑO€ç€Û5¤v2ãÖì¿çæÏš‹ïÖìß®iÞš÷~;¨>ý4Í~¬Y_?G÷ùKÙï®_âhšï)™÷çÏPÿzˆÖÓ‹Ô¯¾O÷ï1çfÿÐÌw÷¨ž@óþñ;Ôñy€îû«ä™Çé¼Ó¯i.¾„ùséa <_~­æÒYÍÅ4_]Ó4Ïñ÷R¿\ uÍTß“´oó¢Ùêi¾×eÆótŒ÷çÔiÍþ»5¿GþËV)xŸ€¾[üªfŸöÅ^¤ò.þVÓxñNâ!Š“Q¿8d¾§GíñWÝ!?éPýa>•Êaž£püßJq>›Ñu¿ÐÄý ó}ÆOh¾úQMÓOŽÿ>6ÄõÞS}M\¿Ÿ¸KÓÍjâüx‚ú­Ù9qøÍyê—£ï7þ»&î?àûÕ—¨Ÿ˜uè}T¿‘ßiíEòÁAªï^jŸÅë4Í8|„ʃëó~Ç|_g??Dõ¾…âšï׺^Ó|_ݬQ=Íû“SæÉŽæÒ/5 9Oý{é9̓4®Íó¾ŸÃõÒ!ÊÇÌßP;í¡z¾B¿'??àú{žÆÓWèü§h·‡ÚçýþAŠsýþ+Ý!O,hâþ…÷_¦ë¿¬ùÕß3ßÿ1ë*óœßÿ™æ³TŽC¦}è{;C¼~lÖ ´`öí Í÷…?N×?e¾Ÿ¶Jå¤ynž_½A3£õè^sÿNkžÚª¹ÚɬOÌûƒÇ©=ðyÜ|¿¥gêOûRS}‘Þ»ìÿMÓß Mÿ6ìߪyƒ£¹æuó¼ùÄêRypýõ÷-:Ï|_ØðTGóžOíÔÿæ1êwæï,ðý î/ÜKùî ù•~ÿ=G¢uå«ÍCtÿzT®Cô{ãû“ïÑGó9šÏÑŽp´€£-àhG 8ZÀÑŽp´£…-äh!G 9ZÈÑBŽr´£…-âhG‹8ZÄÑ"Žq´ˆ£E-âhG‹9ZÌÑbŽs´˜£Å-æh1G‹9ZÌÑŽ–p´„£%-áh GK8ZÂÑŽ–p´”£¥-åh)GK9ZÊÑRŽ–r´”£±K»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³K|v‰Ï.ñÙ%>»Äg—øìŸ]â³KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$`—ì’€]°KvIÀ. Ø%»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²KBvIÈ. Ù%!»$d—„ì’]²K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$b—Dì’ˆ]±K"vIÄ.‰Ø%»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KbvIÌ.‰Ù%1»$f—Äì’˜]³KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$a—$ì’„]’°KvIÂ.IØ% »$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’²KRvIÊ.IÙ%)»$e—¤ì’”]’Ž\r­;;’É?»âgOü싟ñs(~ŽÄϱø9?‹¸®ˆëЏ®ˆëЏ®ˆëЏ®ˆëЏ®ˆëЏžˆë‰¸žˆë‰¸žˆë‰¸žˆë‰¸žˆë‰¸¾ˆë‹¸¾ˆë‹¸¾ˆë‹¸¾ˆë‹¸¾ˆë‹¸ˆˆ¸ˆˆ¸ˆˆ¸ˆˆ¸ˆˆ¸¡ˆЏ¡ˆЏ¡ˆЏ¡ˆЏ¡ˆЏ‘ˆ‰¸‘ˆ‰¸‘ˆ‰¸‘ˆ‰¸‘ˆ‰¸±ˆ‹¸±ˆ‹¸±ˆ‹¸±ˆ‹¸±ˆ‹¸‰ˆ›ˆ¸‰ˆ›ˆ¸‰ˆ›ˆ¸‰ˆ›ˆ¸‰ˆ›ˆ¸©ˆ›Š¸©ˆ›Š¸©ˆ›Š¸©ˆ›Š¸©ˆ+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _¹ÂW®ð•+|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _yÂWžð•'|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|å _ùÂW¾ð•/|_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU |_ÂWðU | _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _…ÂW¡ðU(| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _EÂW‘ðU$| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,| _ÅÂW±ðU,|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂW‰ðU"|•_%ÂWo~¥üåò­ÿÏþë×Ðgïºí–=·|øöÝ·¼ùbþöÿþ?¢*n©Ùsurvival/data/uspop2.rda0000644000176000001440000003354012267746072015030 0ustar ripleyusers‹]¼pÛç­ýH²lË"3Iú‘ÂT'8IÃÌi¨aff††¹afffffnÒpfl8ßöoõuîtT¿±e­ôîž=Ï™fZ©hõlaÕÃ3f·<,r 2Ë¿La“¯Á]:µo×>›<Á áãñ}­…ïì>|+»â»:eÐ ”7ŸP«~@ ÍŽ6ê#zÎ6è¿¢ €úé ê Y¨ktÔÙ™PëMF=ÑõÌ3´˜V¨Ç£´›†oh5¼—5¼­Àûb>Þ2ð~(„Ro3ZÚºèQ½P;ïCÙñåøÔƒ Ñ?lÄhèÆ¨Vcä*Œ‹?ð/6a”¹ˆQ¸%úÐJhKä}m½‰úÓ~”"|u_ã­™‚·u<µ·ãé7OþãÄvYNL䢿›‰±¿$*ï"–_&"xáÕûã¾T·é6®Y›põè³sœy›àt{q|:†ãÊÅÜ8}à!Âþ~KØä^ØÞ¾Å–ë¡'Îê:MHνÿRëÌ%=^NPÙ?°´`ù©æÕy1g Átà ¦¦Ë0E¿?âaî9èÚªÖ‚¼!ýð<€èbnÞ©]ñö†·úG¼#ÓàóÜÅ×Ó‡ïza”ß ºÏ£.”û;› åí/(&¡XÓ£Ä$ã{™ ߍиîB‰²nJS?>g[¼¹'àY˜O½Jxž5À3l)Þ_«à;‰ºù,Z…â(OV¡ÔîŠ2õê$ÐwŸÃ” cÚ\ŒóGñ—í‹ÿúŒ“—åϺô¥z—÷è@3¾£Vx(õŠáë´_×§xïÅ»ú ÞŽkˆ›Q™Ø¿[ö:±}­DoÈITúÍD©KĵÎD4oIøÚÔ„wGx»Ç¸{´ÂÝi5îF&Ü#à^twÒ/¸SÄu»®Ò»~p¾:‡3Ç'Ï¢pd_½^?Â*ÎÄÖm.¡ë–òý2!Íž×ë_¬îü5÷bÙЋ+ 󬢔C˜&ŒÇ”ü ¶„å5¤GסZ{XxÕ—E|˜ï\kÊ¡¬>Ä×Eí9-K´z½(ô¹ëÐ6¿FË”ˆºuê½ã¨çK Žïˆúqê -¹ êƒO¢·-øuÆûåÞIíñ© Þ?ãû)Ez°­žŽ^üêü™(w¢<þõF= Û(ŒvË0ê®ÆÓH´bÆ?7£ÈŒ\лÏG›¼má"Ô„Ã(ñ‰Ã›/3Þ²[ðäù§¦h&¶±[ýtÑç¯}=Qö™Dô\MøÅ™„û»ãžéÃuè!®:+peÏŠ3Ó3ϧàØþÇìÑ8:Á~½ö1}±;ÏÖga1³±µë%÷?ÐEéß”àK°ž¨Œ5á3A­³`¹8KÅ—˜•Á\ö¦?옺×Á”ú.Ü|-=8 ½—BMY\CÆ.à[Q]E'ðí½Ž÷Ðf¼KàíWïú·òWâ›+sl],¾€šbC=Yõý}é•ì·é¢™,åQ ÎBñÎÆ·³¾¿«£”8ƒò¬ÊœSø ÖÄÛaž;µñÌ+Š7[f-ñ¢*+Q ÎÝœ%q·Üm1”4GPÎBÍûX1âøé~Âwà ¾·ñ¾®…÷äx}Á{UôÓìˆül#Jª¯('¶£ÖI‹úrZ|ÔŸ›È@©Ö ¥U¡?yŒ±¼ƶaOÇ_ïþ§óE'ÆU/F±ùâ+Ñë4÷³[fêJ%ùuÎÈÄ·Ù>ñÆX¼¥6×õ1±q«F[ªÑ}zùæ ‘¥·1õ"Ô%„7(N¸>pWmÜgqË?®{;q}‰[v©khE\­Ê㊋s_œã&âxwGæ§ØÏœÃîºBXØ| ¡ù4BÚ7$xó*‚cc­R… Y—°ü©`)yÑBÌžN˜VnÃT²¼¿‚¡ßG¨1–¹P9(wR µ~S”&=då9†R^f÷ãÔ&P~BëwÝž }çD Ë}t%mB4ïX´¢ÐÒ¿D="¾";èú}Ù+¿ˆ?WŽoß |©¶á=z_Íòx÷¥àk;åB2ÚØZèmê¡î¹ƒò¡¤èE¼êFú!õÄ[J5Ã脱!+þ—0«ˆŽÚ¢û†V_ö_óy(×à{°R¼ëž·íð|+/9Jâj$n,FÌÇ¿ˆ_€èÑD·¯LäœDÈý‡7ŒÀ½"nï|\…ã<Ÿ€sfoãJ s5Å<ûŸ±Ï_FØÍ„-(LX\2¶¾e±…m$´žøÉÌ5„øÌ×u‚ö'Ȇ¥oUÌïWaþm.f›ì©ES¥?÷ӰGüdTh&ú(%”œí  vdÅ÷ê0¾'6á(¹·Ø¼ïäîÎ,Ãg Á7Þ"l%3ÿ‹pÕǨÃÒ¢%4B+\µ¹ åE:”ÁâÑ3+£ô’]%?SªÔGY¾µìB”•ð-Û…÷Þm¼5záõ­Xˆ·Øoøl¢©Ž•ÑJÝC;³µ†üy»ÌÅÃ7¨\Aÿ(¬µéÆþ.oRáo\ÿó¾W¾b\ž†Qp?zÛÃèU\hÎ#¨ÙÅãŠÃW¾)¾2-ðVÉ‚·ó¼Ilj«/lLFb-׈̓è:݉~žàð‡XÛ´¡#AA)XÊ}üG|?k#L›»cª*<üã>ìh,»¬Ô¾kÆ ®Ÿì0µn#Ô×QFöCi>Züº/J7™}ÿ@Ôq2»E[ï@/øý]ŒŸG¯*s~$­|=´v©Ðòü…zjZÔ#4Û\´ºÝÑÔPñ¦Úø~ü¯a|AóðÛ"Y%5¾9Ë¥oâÕ›w ÿ.5þì‚êt£Z¢>•Œb›ŒÑ¤FéŠíE/+jào}P¾ÿý­è6³ðW±lÒמ(Ûd¦LL´ÏÉûxÎÏ"qû"OO ±_ bŽýNtƒzDç­CtvaâFç ?ßKø+=¢“Ï'q~޳Tgù2bÖû?öÎG±goBبG„¥ïmZnB¿Y¸…‹m ¿Iðè#X/ÜÁê´TÌŠe±xJøpÌcûcöïÀ´å*¦ºfLŽT Ù†)¢™Ö[ ¼è&g9HõâGƒM‘»_Š‹â¸’ç¾ü…[óãýÜ_–¡øvÿâ“ùÿ-5µÜ×ñò¢O¤óQ§ŒF¿ÙÚFüCòÉ ñ—²ÂÁ#CPîÔ@:5Ÿ!:ì‚/M ¼3zà­%³ûPòP¯6øRΣÌx‡ÖæÚ‹g’!—¡œûŒòõ°ðÃ=ŒÝû>I>‘ÌòIÃ/{Êÿâ‹h¥˜ä•wy–£7ý½Ôb4“äØ4EQrˆNòÝ×Î7¿d•ÚãñÆ4'®d1÷óÀNlÈm¢óD¹ªß…‹;?T’pS2î­Ò£iÝpM¹(Y2®Š3pÕüŽ«ênœG~Á9õ0Îä“8NuÃ1¼ö›%±ÛÇIžü„í˜Ð»Í9ïß?LpêXÛ$èôï%¬ÂÒéæ²ÏJÞÂt¼¤ôè.&û08˜(»¬"4¨[–çHö>)s9N«¿ðî2ñ”ÛQÆ—ÝòÊBñô_Ô}ËÐ2¾@{†Þ+ ÆOƒ1ºBŽöù"ZïŸ$ç‹g—È€zKvRÖPÉ*„n£•Ö…Š üÔ[4²_Vñ˜¯¤÷1’7%Ï(eù$ÿl–^´As+¼˜*Þaˆ¯Hn,t£qMŒÕðW/$:)+Ü<=¼µ°Bq´4Q&ÉÎÕMrã1< ü’YÇ’8BÓ®‘Xì1“Åã3=%Zúõî,‘©Ê>!÷íE¸Sé¸~ǹúÎìÂ_oâ±ßŸ,Ù¤5ö¢¹±‡É½ï_+~rÛê¬ØÄOzFòe!¥¼é‚ðº‰çÃ}â2§–¶„˜CMˆ¹›šè¨†D®OÄ… "âò>~îÍq÷ñ⮞‚«Ê\?•FH—éη¹qÖ݆3Í6ÛZà(‡ýóeì%?9íU+a¯‰„æHEHºÁ—>Žu@‚èÄMP¶mX†ŽÃüì>æ*©0ÝlŒ©ÝhLQ£@4ÇÑJÓµ°÷ZÌ.É%OHVÙ”uiÔ ¢‘[â-»Ÿ£Ì&|´u`Wñ”/hM¾¡§éˆ¾Uö{Ë«’íZ£ïoÉXmºèdÊ ´ê P¿ö@«=­ñU´ÝV´þ ¨9þFizßá¢ø‹¯<ï*½/(»M˜ ¿xГ›è›¡~vK-ú‰•lÿ¾ øGwŒ:¢™¼¿aÔX‰1ª6þ¢’é¯@ß½íÍp´ ·ÿËIJû!øºÀ;x2žnðt®Eâ¯Hl0€ÄÐVÄÔ»-éLÔAD­N„0zx…û¸§'àº&ž^à Î:_qܪˆCteŠ=KA®?%lÆmÂÊNÃ6{¶Ÿ‚$5ε:EØMؽd|e;{ð”슧`µC$¦êBÂáŠÄ¤úHÔ–ÉDõ÷Õì6Ó\„‡ŽÆ]þ®‘‹p>»€3´?ŽÁ­p䜉=CnÂŽ®'¬CzÂÒÂv¾ 6}3¡+5Bà ÒòÁ÷" ΂µã‚ž„ôó7,£sc¾ƒ¹A6L¿a:\²ümxvÖkð›dùZ’U ˆ—d8‚ ($yPE9¿å ì•-ÝQFD.Ÿk÷d|G¢ñ­h‚od¾ýr—•FY“Nv½ä“MÅÏÏ¢ÝÌŠî”ܘ² u÷¹WÙQ­Ö£–ˆFyZõ'ÉéãJ¡/û,°YI|÷žá«pŸI|¥×7¼?ä¼:^ü¨"Úáhô¼KQ·ÉÌ»æ f¶ˆ«.Zhq½'†ðƒ?è øÊ4ü¤WÇe‡îNÂPKHŽ\®çB½4V4ÚIø»>s$Þ7ýñ¼ ÅkI‹gmb_œ'fhbzüF̈WDm!2}E"Ú$|UÂ5w¥h\¿â:Rçžš8GeÂY~Î|›pzÚãè9 G–³ØeÎìYÚvd,aÁõ±¥:Jèøµ„l¯Bð…aX/–ÁjZ'||ËÜ X¢$Ëÿ¶3û1 OÀôS:¸•V<ÿ(t—¡M›‰Ö13ZµŸÑŠ‹¤¼G %ûFf5‹dñü6Ô2y°xh!á¯âA–¢ýõ}a,FR(ÆŸ+ñÇH¾‹ˆC¯.³¾Ñ„¶ý ÚŒòºòÚ»ª¢ŸžvÚó{¨óꢜî&¾_2þk”‚‹ðM”{L7µýRôˆÙè—$wD“](^§ ­ÜÂ`#F¹Æ©|ÂÁ.ŒFŸðG†£/JAï7muFÔ?£®—=«¸„넹ӷÄsOÈyî×&áî_$ô½Fôý¢DumATžjD%#¢ì#Ü;;âú~W®‡8'•ý´GÚÂØEa‡Í„Õ•÷ÒÉ‘5ñÜ|gèfb×%¦þebÊõ%¦ú2¢†œ$âÝ'"r-&¼ƒì±[Sq»JâZ3W7?ÎÖïpfËãÙCç«àXt»dûÒØõ0Â&µ%ÌøŠ­Ö.B» "䦛ë‚ É’™«ÔH2äº|Xb6`?³k&¦Y=e— ‡'õa©|í² î®’=/Y|[Z´ñwÑzÖ”,(Þݤ$ZN™»¤BhõÓJÎoóvR!É3¿Éóó´”ì-;&uFôÛŒæ÷ñ»ãO…‘®z»¯hW‚Ñ^6B»(Y~Ì`´[ÑC\èEKéz¢^Ë/y½,JmaïÕQše÷©?J‘‚¨CÖÿÏëõ{YÐdÞÕŸ7 ?ØQßöAÿ”Q²ÊQaäj©…ûÊ¿+‰>Xæ¢vÚ°ú¨E_CD'¯úà}™_8ØLâÍW$ž°¨: 3­$d=MôÜD%Ý#òe‘G¯þe6îVYq-k‚ó–Ž3%GÅžØNÁÞ"auJ ïÇ6j-¶œ.BÏM&Ô»’™5 þÜ€à_Öc=èÁ+:i˜ËX Î’Œ’sÂ"L+›c*— ×%'Vƒ1ë ™h¤„<’ÄS´£/j7ñ†Š¯P“äÞ½o„?Å"‚QMBy"Lë߀’”%ö&¾÷¢ ²w¶§Fo„Ú»§ä5ñ•mrß¿ØÑûˆn·EËTuä¿K¢“­oQ‹?¬‘=Ýí <§ÏtaÝâOÂEKã«]ß)?¾+ð=»‰š{/Úß±’ѧIþl-ïM¸¸¼Cv©ì«<Ã1ÜÇø+¿¥þÆùðÿéÇØ– cÉyaé{º4hß…ÖJV=±ßÙÃxOÁ+=÷¬i‡gó9<5;ï%19Éñ>!FŸCT…`"v|#üó“æ §Åu¨®úàÒkàŒ¾%©#ÞŸGýÑ8Ò7ÄÞK¸Ë“B؈’Ø„ElÝÅ÷WÆrø$!iJŸÚ`í¼š ‘é°œŒÇ’º æI{1+?aZVS‰âðj0¬k ½;‹A’µ ôБhW¢mn] ž:s%ÚDÉàÍD+êËYîi™Ü넽ÂÁ e/ôAë;DîízÃA‰á³jâ—üë¯Z £hú„3’­’ej¢;D3Çš£'ŸF/<}Ömôú…ó®Š_t¦8/ü%»fØ%|çf Ô”Œ2½z6É‘Ï ÈÞîË?KöØ:ÉQÂZ/Rcd“=ÆA Wia±.’)ýò^£çü ­ÞGÔµP…ý}{†àÝ‘ŒgwMì!qxê§!¡Â âoýJtu•È߉œ“‡È _x wôp\åÏáì¿ ÇûóÍØë ìKsÑI2¶>«°E—"tó~BË$d’Jˆû,Á­c±Ž5‡ä“‘‹±ˆÇXê~Ç|23æ¿aÚ[S½ ˜ ßS„¿Z w•] ɇÀh )/QH®˜ùµóHÙO-QKÊ|/ZXΞÏr’ÕkUDi^S²ü”Œa(õ ¼ñI¦ÿØ¢Ê~[ˆön7ú°“è›>¢]?ŠVw“øòc4w6ñ˜J¨‹Ì¨¯¤ïÕ4ô ¼ŽzÙ#}¬%YN²Í¾'2—eîWcTøãÀhüå‹ào'yÉä¿¢g=‚^Q|'·øÊ§Í’käÏ󣟱Hmá¼|²›êI^])<žÜenU|ý‰Òr‚ôñzŠxËsMßšGúœpõžìµ{0|¢EÉ|ú›²îN«/ ÿ¼EØ\´•]2V^ñ ÿ‰ÿeRï€õx$’Øè‰…Ç3øoˆÚ’è°%DN­Nd©ƒDFýMxÉŸqmóeœêzŠb’LØëÔ„ û‚­ï-l!a„N…Ð仄ìïAHX/‚û§`½„5g,AKe_YC±4˜‰ùaÌõ®bº½S{“'äÄP˜•ÒCŵk$¤š ?ŸG‹îz.L¿wêŒs¨/£öHÚ}‹x|¦J²·jEd‘ûš+s-þÒpÊ4a«Ì’+o&Þ+\4Sz“é¹d8ñæ'ÃeÆ%7ŽÎô­´Kî¨3ê_7вJ™4 =¿|ÿùSa´6(k‰6Žà[ÒÅ=J4ÓÅèƒÚ\îXíŒ>\öåwaÒ QÍ—>ÞÃ(,=y4ãv]ŒÏuegÇXÁ˜—cdNô¿£[¦cöÏ…2y'¾I ðŽš‹·åbÉè-ä53Ês§,úŠþcú®Âywħ^‰[QÊ|BÙ+<±¥›xªªèy ?Mæ{‚š½j¸ÌÁ¥zèÇËaE?uTê÷= “ “Ý-žxG4n‰jkˆòì%¾_Šá-¶O¡8•e$|0ˆ?4„øÅ‰Oÿ™¨­ˆ,šˆ͈X[÷ý׸~]‡s¤xúVÉ*Á]°'\&ì·„E†b³u%tÔBã BV $Ç[‚û¬Åúz3Öò} Z¾“ õ>–0Ë4w»éëTL#»aJ_n ÿ.\ ÝšCÕéGD—¶6ŠGküNæNf7ü9ê£dÔ£GQ7J_)ž¾Z¸gMEÔÑ’/&B=}åªðë®k(³Ž¡\ —Ì®¢žÌ)Ü< íRyÙM«ïÇb$|A/ ñ¨pB3ÉŒCO¢uö §uBëPXö£Gv˜Ì„*œ·MüýêB”Ì™ñ‘ ™é¾YQr?Cíó3z’dÈ)â%a²;«Vš2…c" ÖO2ë.Œ7¯ð—I‡[Œñ/dÚ¡Ÿ“ÏõüƒäWù,MB¤Ç%ðu’<ß´3Þü—ñd>ƒÇ¸Eâ¦ñÄ:~=íÑm}D‹†"‡Õ!üõ Âý/p—ß$|< ç±ï8+ÁñešxÉì£/bO»Š°»Ç ¾ÛÑØJ|#tN6BÞ'¤n9‚ǺnVׂʖÆ2FöØ%æ‚›1J#ž¿“»9 l<SüzŒL„_ÑÏ^AŸ/œßC˜©ºìûBë$ ßæ CÏ!üž=æoôÊ·än3ÈlKž©ú«dÉÝŠ¢/¯øücÌTŒ­ñwj„ÆSŒ¹ Ÿ~F*Þ°J^gÆôº:ú1y­+²{2·@0m„äÐy§QþÊ- ±åPsË(”ß„Õ×I¦É-¯ñà8ZÜjɹÂÙAùPîEßè6“÷¶æ#úú.èG¥~½ É]—ÑÖOE½ ™çÂm”uƒñEUÅk9@âçã$\t°0ñíÓ_j q‡‡UïO~"bÔu"Š÷ÀÝ·Î×Oq9q”=}òT–î$Ìm²dñ^B] ™¸‡ÿU‚—èX_^ÅÚp Aûd|Ä2³![Éò»0GˆN˜ zà™VÏ€>Òêï!9H?Š}B[)s4"­A ZÊA´ù¼ŸÅO/=-Ú)‚ú´&êq¹ƒ3wÄÛM¨Ñâ-Ÿ§£\o‹*}R—'Ê÷Ÿ£µ¸.ûMz8m'F*¹›²éÑ»4=Xm¡xÎ?l°ñéçm´U½$CÊÎ\2 ½œä£{SQ¾‹^Ê÷Ã÷ $JÉ,ø6·D©0 uŒxy·è E‹1Âduå½t8„V¬¶øÊBÉõó1.%c<~¿ÀTüËb tc4›Ž¾C|íÒ ´Y§P‹ CT©¯lc¼yoàu%‘øñ-‰>‘Ø©)1çê]kÑé>>„È<÷_0÷¹*¸>zq w:[ŠNžÊ.mÂÞ}öè „-Ú@XUE8y,¶ô/ۈׯÅO¤O?°^>¶V!¨©äøÕ7±0sõ£˜.~ÅÔ"¦Èp&&žÀ”îFÉYe„)õHô¢“Sóeæ“ÐG ‹uë(™\ry‡ŠèÒ‰FlèurgÉÚýZîU43E¼út8z×§²+ŠK¾Þ.Ú8ß´ÿ„5ø÷åÇ8*žœMØkKô[²ïÿyþXñ“¯9Äb1~À° [I†RwŒ@ù$úèø]æ{ ŠSrêàî¨ëC„ñÄ7nÝ/“jYPÞç OL¿,¯ù}ŒxÛ©3o)F²d¢Ââ¿I¦ŸÕM˜äJ‡2xÏvÀ³³ ‰«/’0ð3 eS›¸·ˆ«ƒ(Sc"†""u2áW̸#æàòdž+Øÿœ‰]ßGX¶ØÆµÀ—›Ð¨BFm#Äå&xÊ‚ã|¢É'— $3n™û3u(æÉ 1˼›6I*ÿ%ü»¶ª0¸,ÔYïA&ñ“Ò¢‘—²ëÏÉ{_%Ùax^´¦×ÐJ 'Õþ|…¦\8–^2^ˆì,ûR™Oùœ•ª › —zEWÕÄSIÎ,²mþ É…™d‡´Â¨&ù±iôÕâZ¢ý•"ù47šäm¾d˜û’WóJ¹,üÚ]´dOÖ¤mf¢˜¢4(.ùތҨ2êÜ1¢'Ék„ Tñ”&„]D{Å{K^yŽqý:Æ)/Æ­‘ø³ÍÆ?]²~‡Ì•„Û4@Û&5ûHæ2 ‰oåǧ§àutÅóG%w$qQ13V fl.¢ãŽuã,Q»Äïv"¼BÜÝ÷àšQçÓJ8ƒrãè{O2ÊV즅„M|E˜·'¶½°ýb#tH´øÉ:B #x\Ö·°föª× ËáöX¼Y1÷y‹éqgL]‡`JlçNÀô±˜R:b¬kŒ1¶Fë¬ÅOa2gßeönäFߟ }]ú ÑÇÚg2ç3ÅÄ——ʼ>‘=Úíõv´+Mу…{f?>Jƒ‘Zt±á,~}þ­“ð?Šñn&†°ºþxF„ä=SuôƒVŒŒ1’Öaôn€‘AØüÀ`ÔsåQ¥Qˆ/ß8€5eè¨k§IÞ‰–ŠY$¯FE¹·L¾>zß?¤_‹ÐÛˆ¶%ƒa‘y1 ­”äú†×Qjé’y_àúO»º$Ö)FB–&Ä¿ÜMÜÆ¥ÄõÉJ쓱DάO„á[žÞà9®9ÅpÆÎÂQPÃÞ¤¦xJ8¶­±E ÷N8JÈø6„„l xÐS‚ÚašLÐeÑJ™œX6Ãâÿ€yùÌ™ScÚÖS£dL®¯âë’OFÝ…F¡hWÈRA²JmÉ„ÓÈìþ‰v¹&ÚñîéÑúI¶hi—<Þ­ÎñÑ@ó$´¢ÂÅ¥$C–?ájïF¨u„Ó&A3^ õ>º,9®ýhtɈƈ÷Ûƒ¥WµäÞ΢§6+õz²¼þŸ…Ð$C¶’Y0‹ÍöÎ$²àa”CP¼½Pº·ÁwgJ—â€ÐkÈo³ ¥é…Úâ°ä(a¹bW1òVO; G™cdÖÿ9Ëlg)'ž“Í!\&^‘åúÖWâI)åná/Þÿ­i¤ŠÚ…ß/w?AÞsÅæÊï /¿+#~b‘='s=S~öÏß׺:GòeTÏv”ÑQÂb2ß±_E+„ÑeωêÇΣ¾;‰Ê ”3y%ßÌC¯/ì÷»0Z)ñ¾B’ËdË*|X Íí”Lß%®¾Û‡ñ枇Ç;‚Ä` ñÊ/Y2®œBœÃ ¶C."“ŠN–^̆ûÁ%\iUs÷c?¢ö$аô °åIKè¸1„::ˆŸÔ$ø·LX?×ÁÚû#A÷T®–C±äœyMkÌùÏc:5S³*’åwK–ÏSw@‹uPÊ€¤Ï’UF 7^‹þ‹=E>ƒ"»Ý:í™pýyÉ’3µ%ÂH³E;sÊ¡ _hKhÿÙ ò8šõ²äšÝ»Qg˽œ­ŽV» ÚÚcèAºóúcdqÊì6ÄøÐKv“dŽÂÝÍäÞ†Jm-;'\´SZòÿÔLéÇ˾lVö‚°•ì®E~”ì²£Wã{7÷çRÝ•½ÑŸò:¢©Œ#P[?­si‚‘CØëäEŒ­¢›Ã½ñËnñwn'}þ€¡ÜAoîBë&ZOºŒrz¾³‹ñî‹gV <µSbHt·!ah&¢¿üNT_;Q9ÒeYCDæ ¸'Áµ1-ÎÓ>œQ©†`'ü_ Û`lýžúÁJè`5o%$¹•ø~5¬wÿĚ܅ )·°Ü¾€%Ë9ÌKbö…cš'™$¹Ü‘þÌ÷bªº^4žØAŒ×é0®ˆ>ödÀX´c¸ìüÖ¢Ÿ_FÈ^#;¶hG<¡ðkŒŠò¼”ñroíe’Ù\.ûG<&w5™Ñ|2Ã1\G1ªK~ûûþ6•H¶‹T…—â¯*÷sÄ%¯«aôx‚ÑD^O“z}…¿º—ÄØr£V[™‹¢ƒÔ´Ò¹ åál”xaðÁÃQWA÷Dß^BzÊs'ÊÖ2¨Íî£l‚ÞRò’.œ#}ðÈû›ÞÍÓUX>;ÊÍõ óñéç~3Ü#a™›øŽ:ñFwbo–"vB-b^å!bO‹Gâ>™w“®8—Yq¤îˆ½ä[ÂZ¼Ã¶x¡[:j_MHÿú]…õïôXÛÍ!èÕ‚ÚÇrT2JñÓ˜÷6Á\d?¦ë¯0u¯I]7Wƒä:Þ‚r+!{¨%{hºøøðN’#„‰È–o…žGØ2µä:W#´Oå%‰÷ÞŸ¸-_H–yøíð´3²§MÐ%¿ü8†zu¨°“0òØ´›Û%k®F¿4 £iŒGðçn]XöŸÔY${oßɩۄÓ w {ïŽ.·ý^)ñ²¨=Z¡ìÚŠRZ˜x^Šõ¡ôGüÿ¨øU«}ŠY$µýµ›pU>’AÿùïŽÂ÷+E£[ ág1þ:‰Â’ë¬A/*šª Œhi‚2+¾éðþ–€§ö7•,Y³!·sRm¬ôéÖÇÅ±æŠ h”†å}),¥Óc^2F<¿(¦õÂ]%ûJ† ËÒŠÿ‹NjÅ_x%þLyñÇ]Äo­Žñ¦¾°å Œƒå0–—Å'¹£_g™ka¤þ’e&üŒ1ïÆÙ7#Ä;vŠ/“ý'L¨W>€.ïI¿.ž›E´Ð[îD¹†êhRå>@ªÎ{ð—=óeü¾¼Ö ñ• !%WI®ö›(¯wZ|º­ÜÝ×sÒëu¨Y$ŸN‡òh·øÊBÉö[%sD »…$“©g¦ \Þƒ2§=jU4t½ˆ°öß27eW=¸‡^WxäúÔnékj|}îã“]噋Ä&-H(v“x™§¸µG‰mv˜ØÈGÄ4/H„dW÷鞸ËÙqݘ‡3uö…’QíÄv߆M•Œ’4Ÿ&‚ßvÅúC¸·ÍŸ=€ f±<ø§1Ÿ)„¹ÒGLw®b<Sæ³p·¬=%ÇWÝäút‘Œ(ž¹GòØ*ÑÆìèãdç.ê¼½áÑÍ#ôŸ—ˆgCOuÝ=•®¥ðZ)ÑÈ.a6ùyÅKâ#¢¼“Ñ¢š¢åû"™Ò,w&L×b†ó0Æü}’±ÁßMvàꯅÄsn/EÿxX´´@r©øñ¼ƒè÷ÿÂh'saÚŒ6Dîx|W”‹ePênBY/÷3X4“„z>¯üNÉAQâ³PÛ¼–¼’€–§‘°¸dÐ-å1fËc‘ðÄ“2w?Éû("³"YÉ„æÏ"þ'Ù´i|uþÄ›¿ žØ®$ 'aÊvêŒ&^ü9º\u"O$Ùá+‘™7þë\»îâ¼X Çý‰8TöôI„É{µ}‘=v§6¡•R²ý'BRº¼,?Öëϱæ/MÐØ XžÁRûÌ{º‰Nz`Ú+{¬Z[øVÖGbêÔÿèÍø»ËׯñWοØ]ü¹+àÏP |2~ó;Œ§1.KÆ8&lyt,Æù÷`¼¶:ý»dµ8ñ ¹Ï7ÒÃ5½…äÜZúøE|¨Ò?lþÒ™ð¹AªÖ™Hµ´$þÝðgæÚ*=»*þ¿cF+ÑÊN©±â4ÆÝaâ1“%õ”¬Z5YC™.lü°9JäY”â5cï£}oŒ>~%êÖo(»G¢ šš©,ÚG™µÄjhÇ‹ mœ¶Zr¬Òuª0]þ7(EjáK‹÷ZO<#Hd8ñv$nzâr%óx11#[}µ*áÇஸבþ¸*4Ç1#vå2aùÆ`«5W2Ê@BÝ'ø}C‚mÃÚu A÷GT÷-–»°4IÁ|aæú1½,…i„74—¬÷c†Ü¥Ìé½YèW„ýÏÈã¨ÌÒž†èJ¢/”l7A²ØñœŽÂJÍ…ƒ›Ê¹íÏèVÈ®’¬XSvõá%ÙOÚ?ÙºÄp´V;Ñ^´"œ5ï Fé_åž§âï/9{ûYŒ—Ñ} aÄK†É4#H8v†p×ùYhsŒß[aø¦ï]G]ÖQöÖ3”YPö‹VüQV\ÿê#>( ~L´™$šj µƒœ³ËÎLÎXöcô+Ù½“0Î,9Iüsã´W©Q_Kæ™r%Ý-|žÂÆÇŠ“Ø® ?¯#þÓ@âk\"ê™Èfmˆ´v%b‹÷É)%Þà¬ÑGӡا»›[Û‡ÌØî%´Ô;B6¦#$ÎGð˜6X¿ŽÇšý1AS{by} KµM˜ÏÆ\؆i_}L M˜BûÁUöÚIü{;á_Ù ÿtñÑkäÎd÷÷œ‰¿cVüMŸã¯"ÚI‘™¾ƒß(…?Q´$líO³ùžíÏ“dmü¡’×õ¶²„»ö 't“œ8ò>†zM|H´r&=þ‡ðÞCª¹ÙIuc6þwDŸM1ŠFÍ/0nÉy¸xÔ%c¯üΛCâWÂÍáÂöÛ¨9ò L“¿'ÞâȉÒVf~@*´'½Ð{nDÛeam”fâCvÉ»g¡=Ÿ!³ò­Ï´öòøCzW~¦°Z|Ïjã=)Z麌ăµI˜X˜øåˆ3Ö»é1Gýõ5Ñ… ¥à:Ù WÞ©8·_•¼¸‚° °­]Kè©­„Zfï$¸é%¬êôb?AõæaùSòIÃó˜ŸvÆÜÄ‚éKeL“þÆ”¯üí…-?`Pe¨÷ -€¡Â¸õ0R­ÇˆwÞÀ°‰Ÿ‡ˆÉ þ¿ü :yÒýÚÑO9ô-¿Š÷T–Ç*ôÍßÐw,v‹DŸ%>z67Ú¹‹åˆ^ £Í”¬iHVï%¿sSøk„dÈÔuðj‰ÿË0üK`lök‰Ôî‰ñÓ-É'=ÿ÷߯ŒtÂËÅ[råAÛ’N2P”/QúKOÎÞBÉ"µQo%HÿÿѶxZÉ‘-rˆ^¤™dÇÊ*0¦wÄè)»°‡ÌÇÆ{Âa7„×d'K¶KrÕ¶!¨Õ⻇÷Ü=?iŠùd)Ìa:HXëwLßàÈ L³ôÿçÿ2aiÜ¢|qþs”G“ÿý) æÿyZ¨<­mƒ6M:É9êÿ>7üÏÿ??7%ý{Èúï!Û¿‡äÙÿ=äø÷óßC®)ÿrÿ߃9kRà”5pÊ8%NÙ§SÎÀ)Wà”8jd ÔȨ‘-P#[ F¶@lÙ5²jd ÔȨ‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘=P#{ Fö@ìÙ5²jdÔȨ‘=P#{ FŽ@95rjäÔȨ‘#P#G FŽ@95rjä ÔȨ‘3P#g FÎ@œ95rjä ÔȨ‘+P#W F®@\¹5rjä ÔȨ‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘¨‘;P#w Fî@ܹ5rjäÔȨ‘;P#÷¿5,Y“’þ¯àÍÿ÷[Am´þWüÁM›üïOÿç1ÿ>#[RRÒÎYÿsÎöŸsòÎÙÿsÎñŸsÎÿœsýçœòŸsîÿÿœõ?u³þ§nÖÿÔÍúŸºYÿS7ëêfýOݬÿ©›õ?u³þ§n¶néû?ÿÍú`ÛßGsurvival/R/0000755000176000001440000000000012267746150012370 5ustar ripleyuserssurvival/R/survreg.control.S0000644000176000001440000000065012267746072015674 0ustar ripleyusers# $Id: survreg.control.S 11236 2009-02-14 11:46:53Z therneau $ survreg.control <- function(maxiter=30, rel.tolerance=1e-9, toler.chol=1e-10, iter.max, debug=0, outer.max = 10) { if (missing(iter.max)) { iter.max <- maxiter } else maxiter <- iter.max list(iter.max = iter.max, rel.tolerance = rel.tolerance, toler.chol= toler.chol, debug=debug, maxiter=maxiter, outer.max=outer.max) } survival/R/print.summary.coxph.S0000644000176000001440000000424312267746072016472 0ustar ripleyusersprint.summary.coxph <- function(x, digits = max(getOption('digits')-3, 3), signif.stars = getOption("show.signif.stars"), ...) { if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } if (!is.null(x$fail)) { cat(" Coxreg failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) omit <- x$na.action cat(" n=", x$n) if (!is.null(x$nevent)) cat(", number of events=", x$nevent, "\n") else cat("\n") if (length(omit)) cat(" (", naprint(omit), ")\n", sep="") if (nrow(x$coef)==0) { # Null model cat (" Null model\n") return() } if(!is.null(x$coefficients)) { cat("\n") if (is.R()) printCoefmat(x$coefficients, digits=digits, signif.stars=signif.stars, ...) else prmatrix(x$coefficients) } if(!is.null(x$conf.int)) { cat("\n") prmatrix(x$conf.int) } cat("\n") if (!is.null(x$concordance)) { cat("Concordance=", format(round(x$concordance[1],3)), " (se =", format(round(x$concordance[2], 3)),")\n") } cat("Rsquare=", format(round(x$rsq["rsq"],3)), " (max possible=", format(round(x$rsq["maxrsq"],3)), ")\n" ) cat("Likelihood ratio test= ", format(round(x$logtest["test"], 2)), " on ", x$logtest["df"], " df,", " p=", format(x$logtest["pvalue"]), "\n", sep = "") cat("Wald test = ", format(round(x$waldtest["test"], 2)), " on ", x$waldtest["df"], " df,", " p=", format(x$waldtest["pvalue"]), "\n", sep = "") cat("Score (logrank) test = ", format(round(x$sctest["test"], 2)), " on ", x$sctest["df"]," df,", " p=", format(x$sctest["pvalue"]), sep ="") if (is.null(x$robscore)) cat("\n\n") else cat(", Robust = ", format(round(x$robscore["test"], 2)), " p=", format(x$robscore["pvalue"]), "\n\n", sep="") if (x$used.robust) cat(" (Note: the likelihood ratio and score tests", "assume independence of\n observations within a cluster,", "the Wald and robust score tests do not).\n") invisible() } survival/R/print.coxph.penal.S0000644000176000001440000000701012267746072016067 0ustar ripleyusers# $Id: print.coxph.penal.S 11166 2008-11-24 22:10:34Z therneau $ print.coxph.penal <- function(x, terms=FALSE, maxlabel=25, digits=max(options()$digits - 4, 3), ...) { if (!inherits(x, 'coxph.penal')) stop("Invalid object") if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } if (!is.null(x$fail)) { cat(" Coxph failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) coef <- x$coefficients if (length(coef)==0 && length(x$frail)==0) stop("Penalized print function can't be used for a null model") # # Map terms to special print functions, and the list of iteration histories # pterms <- x$pterms nterms <- length(pterms) npenal <- sum(pterms>0) print.map <- rep(0,nterms) if (!is.null(x$printfun)) { temp <- unlist(lapply(x$printfun, is.null)) #which ones are missing print.map[pterms>0] <- (1:npenal) * (!temp) } # Tedious, but build up the coef matrix a term at a time print1 <- NULL pname1 <- NULL if (is.null(x$assign2)) alist <- x$assign[-1] else alist <- x$assign2 print2 <- NULL for (i in 1:nterms) { kk <- alist[[i]] if (print.map[i] >0) { j <- print.map[i] if (pterms[i]==2) temp <- (x$printfun[[j]])(x$frail, x$fvar, ,x$df[i], x$history[[j]]) else temp <- (x$printfun[[j]])(coef[kk], x$var[kk,kk], x$var2[kk,kk], x$df[i], x$history[[j]]) print1 <- rbind(print1, temp$coef) if (is.matrix(temp$coef)) { xx <- dimnames(temp$coef)[[1]] if (is.null(xx)) xx <- rep(names(pterms)[i], nrow(temp$coef)) else xx <- paste(names(pterms)[i], xx, sep=', ') pname1 <- c(pname1, xx) } else pname1 <- c(pname1, names(pterms)[i]) print2 <- c(print2, temp$history) } else if (terms && length(kk)>1) { pname1 <- c(pname1, names(pterms)[i]) temp <- coxph.wtest(x$var[kk,kk], coef[kk])$test print1 <- rbind(print1, c(NA, NA, NA, temp, x$df[i], 1-pchisq(temp, 1))) } else { pname1 <- c(pname1, names(coef)[kk]) tempe<- (diag(x$var))[kk] temp <- coef[kk]^2/ tempe print1 <- rbind(print1, cbind(coef[kk], sqrt(tempe), sqrt((diag(x$var2))[kk]), temp, 1, 1-pchisq(temp, 1))) } } # Format out the NA's temp <- cbind(format(print1[,1]), format(print1[,2]), format(print1[,3]), format(round(print1[,4], 2)), format(round(print1[,5], 2)), format(signif(print1[,6], 2))) temp <- ifelse(is.na(print1), "", temp) dimnames(temp) <- list(substring(pname1,1, maxlabel), c("coef","se(coef)", "se2", "Chisq","DF","p")) prmatrix(temp, quote=FALSE) # # Write out the remaider of the info # cat("\nIterations:", x$iter[1], "outer,", x$iter[2], "Newton-Raphson\n") if (length(print2)) { # cat("Penalized terms:\n") for (i in 1:length(print2)) cat(" ", print2[i], "\n") } logtest <- -2 * (x$loglik[1] - x$loglik[2]) if (is.null(x$df)) df <- sum(!is.na(coef)) else df <- round(sum(x$df),2) # cat("\n") cat("Degrees of freedom for terms=", format(round(x$df,1)), "\n") # cat("Cox PL (initial,final) = ", format(round(x$loglik,2)), # " Penalty = ", format(x$penalty), "\n") cat("Likelihood ratio test=", format(round(logtest, 2)), " on ", df, " df,", " p=", format(1 - pchisq(logtest, df)), sep="") omit <- x$na.action if (length(omit)) cat("\n n=", x$n, " (", naprint(omit), ")\n", sep="") else cat(" n=", x$n, "\n") invisible() } survival/R/survreg.old.S0000644000176000001440000000126412267746072014774 0ustar ripleyusers# $Id: survreg.old.S 11166 2008-11-24 22:10:34Z therneau $ # Map the argument list of the old survreg to the new one # survreg.old <- function(formula, data=sys.frame(sys.parent()), ..., link=c('log',"identity"), dist=c("extreme", "logistic", "gaussian", "exponential", "rayleigh", "weibull"), fixed=list()) { dist <- match.arg(dist) link <- match.arg(link) if ((dist!='weibull' && dist != 'rayleigh') && link=='log') { if (dist=='extreme') dist <- 'weibull' else dist <- paste('log', dist, sep='') } if (is.null(fixed$scale)) scale <- 0 else scale <- fixed$scale survreg(formula, data, ..., dist=dist, scale=scale) } survival/R/summary.coxph.S0000644000176000001440000000556612267746072015350 0ustar ripleyusers# $Id summary.coxph <- function(object, conf.int = 0.95, scale = 1, ...) { cox<-object beta <- cox$coefficients if (is.null(cox$coefficients)) { # Null model return(object) #The summary method is the same as print in this case } nabeta <- !(is.na(beta)) #non-missing coefs beta2 <- beta[nabeta] if(is.null(beta) | is.null(cox$var)) stop("Input is not valid") se <- sqrt(diag(cox$var)) if (!is.null(cox$naive.var)) nse <- sqrt(diag(cox$naive.var)) rval<-list(call=cox$call,fail=cox$fail, na.action=cox$na.action, n=cox$n, loglik=cox$loglik) if (!is.null(cox$nevent)) rval$nevent <- cox$nevent if (is.null(cox$naive.var)) { tmp <- cbind(beta, exp(beta), se, beta/se, 1 - pchisq((beta/ se)^2, 1)) dimnames(tmp) <- list(names(beta), c("coef", "exp(coef)", "se(coef)", "z", "Pr(>|z|)")) } else { tmp <- cbind(beta, exp(beta), nse, se, beta/se, 1 - pchisq((beta/ se)^2, 1)) dimnames(tmp) <- list(names(beta), c("coef", "exp(coef)", "se(coef)", "robust se", "z", "Pr(>|z|)")) } rval$coefficients <- tmp if (conf.int) { z <- qnorm((1 + conf.int)/2, 0, 1) beta <- beta * scale se <- se * scale tmp <- cbind(exp(beta), exp(-beta), exp(beta - z * se), exp(beta + z * se)) dimnames(tmp) <- list(names(beta), c("exp(coef)", "exp(-coef)", paste("lower .", round(100 * conf.int, 2), sep = ""), paste("upper .", round(100 * conf.int, 2), sep = ""))) rval$conf.int <- tmp } df <- length(beta2) logtest <- -2 * (cox$loglik[1] - cox$loglik[2]) rval$logtest <- c(test=logtest, df=df, pvalue=1 - pchisq(logtest, df)) rval$sctest <- c(test=cox$score, df=df, pvalue=1 - pchisq(cox$score, df)) rval$rsq<-c(rsq=1-exp(-logtest/cox$n), maxrsq=1-exp(2*cox$loglik[1]/cox$n)) rval$waldtest<-c(test=as.vector(round(cox$wald.test, 2)), df=df, pvalue=1 - pchisq(as.vector(cox$wald.test), df)) if (!is.null(cox$rscore)) rval$robscore<-c(test=cox$rscore, df=df, pvalue=1 - pchisq(cox$rscore, df)) rval$used.robust<-!is.null(cox$naive.var) if (!is.null(cox$concordance)) { if (is.matrix(cox$concordance)) temp <- colSums(cox$concordance) else temp <- cox$concordance rval$concordance <- c("concordance"= (temp[1] + temp[3]/2)/ sum(temp[1:3]), "se"= temp[5]/(2*sum(temp[1:3]))) } if (is.R()) class(rval) <-"summary.coxph" else oldClass(rval) <- "summary.coxph" rval } survival/R/summary.pyears.S0000644000176000001440000000144212267746072015517 0ustar ripleyuserssummary.pyears <- function(object, ...) { if (!is.null(cl<- object$call)) { cat("Call:\n") dput(cl) cat("\n") } if (is.null(object$data)) { cat ( "Total number of person-years tabulated:", format(sum(object$pyears)), "\nTotal number of person-years off table:", format(object$offtable), "\n") } else { cat ( "Total number of person-years tabulated:", format(sum(object$data$pyears)), "\nTotal number of person-years off table:", format(object$offtable), "") } if (!is.null(object$summary)) { cat("Matches to the chosen rate table:\n ", object$summary) } cat("\n") } survival/R/residuals.survreg.penal.S0000644000176000001440000000063312267746072017306 0ustar ripleyusers# $Id: residuals.survreg.penal.S 11166 2008-11-24 22:10:34Z therneau $ # This routine just stops disastrous arithmetic for models with sparse # terms. A placeholder until the proper sparse terms actions are inserted. residuals.survreg.penal <- function(object, ...) { pterms <- object$pterms if (any(pterms==2)) stop("Residualss not available for sparse models") NextMethod('residuals') } survival/R/frailty.gaussian.S0000644000176000001440000001012412267746072016000 0ustar ripleyusers# $Id: frailty.gaussian.S 11381 2009-12-18 03:50:50Z therneau $ # # Defining function for gaussian frailty fits # frailty.gaussian <- function(x, sparse=(nclass >5), theta, df, method=c("reml", "aic", "df", "fixed"), ...) { # Check for consistency of the arguments if (missing(method)) { if (!missing(theta)) { method <- 'fixed' if (!missing(df)) stop("Cannot give both a df and theta argument") } else if (!missing(df)) { if (df==0) method <- "aic" else method <- 'df' } } method <- match.arg(method) if (method=='df' && missing(df)) stop("Method = df but no df argument") if (method=='fixed' && missing(theta)) stop("Method= fixed but no theta argument") if (method !='fixed' && !missing(theta)) stop("Method is not 'fixed', but have a theta argument") nclass <- length(unique(x[!is.na(x)])) if (sparse){ x <-as.numeric(as.factor(x)) if (is.R()) class(x) <- "coxph.penalty" else oldClass(x) <- "coxph.penalty" } else{ x <- as.factor(x) nclass <- length(levels(x)) if (is.R()) { class(x) <- c("coxph.penalty", class(x)) attr(x, 'contrasts') <- contr.treatment(nclass, contrasts=FALSE) } else { oldClass(x) <- "coxph.penalty" # Splus allows us to pass a function as the contrast, R doesn't # For large values of nclass the function is smaller # (But for really large ones you'ld use sparse=T.) attr(x,'contrasts') <- function(n,...) contr.treatment(n,FALSE) } } if (!missing(theta) & !missing(df)) stop("Cannot give both a df and theta argument") pfun<- function(coef, theta, ndead){ if (theta==0) list(recenter=0, penalty=0, flag=TRUE) else { recenter <- mean(coef) coef <- coef - recenter list(recenter = recenter, first= coef/theta, second= rep(1, length(coef))/theta, # penalty= -sum(log(dnorm(coef,0, sqrt(theta))), penalty= 0.5* sum(coef^2/theta + log(2*pi*theta)), flag=FALSE) } } printfun <- function(coef, var, var2, df, history) { if (!is.null(history$history)) theta <- history$history[nrow(history$history),1] else theta <- history$theta if (is.matrix(var)) test <- coxph.wtest(var, coef)$test else test <- sum(coef^2/var) df2 <- max(df, .5) # Stop silly p-values list(coef=c(NA, NA, NA, test, df, 1-pchisq(test, df2)), history=paste("Variance of random effect=", format(theta))) } # The final coxph object will contain a copy of printfun. Stop it from # also containing huge unnecessary variables, e.g. 'x', known at this # point in time. Not an issue for pfun, which does not get saved. if (is.R()) environment(printfun)<- asNamespace('survival') if (method=='reml') { temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c('coef', 'trH', 'loglik'), cfun = frailty.controlgauss, cparm= list( ...)) } else if (method=='fixed') { temp <- list(pfun=pfun, printfun = printfun, diag =TRUE, sparse= sparse, cfun = function(parms, iter, old){ list(theta=parms$theta, done=TRUE)}, cparm= list(theta=theta, ...)) } else if (method=='aic') { temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("neff", "df", "plik"), cparm=list(lower=0, init=c(.1,1), ...), cfun = frailty.controlaic) } else { #df method temp <- list(pfun=pfun, printfun =printfun, diag =TRUE, sparse= sparse, cargs=('df'), cparm=list(df=df, thetas=0, dfs=0, guess=3*df/length(unclass(x)), ...), cfun = frailty.controldf) } # If not sparse, give shorter names to the coefficients, so that any # printout of them is readable. if (!sparse) { vname <- paste("gauss", levels(x), sep=':') temp <- c(temp, list(varname=vname)) } attributes(x) <- c(attributes(x), temp) x } survival/R/survpenal.fit.S0000644000176000001440000005311112267746072015320 0ustar ripleyusers# # fit a penalized parametric model # survpenal.fit<- function(x, y, weights, offset, init, controlvals, dist, scale=0, nstrat=1, strata, pcols, pattr, assign, parms=NULL) { iter.max <- controlvals$iter.max outer.max <- controlvals$outer.max eps <- controlvals$rel.tolerance toler.chol <- controlvals$toler.chol if (!is.matrix(x)) stop("Invalid X matrix ") n <- nrow(x) nvar <- ncol(x) ny <- ncol(y) if (is.null(offset)) offset <- rep(0,n) if (missing(weights)|| is.null(weights)) weights<- rep(1.0,n) else if (any(weights<=0)) stop("Invalid weights, must be >0") # The strata() term in survreg signals one scale parameter is # to be fit per strata. Here strata contains the strata level of each # subject (variable not needed for only one strata), nstrat= # of strata. # Set nstrat2 = the number of coefficients I need to fit (which is 0 # if the scale is pre-fixed). if (scale <0) stop("Invalid scale") if (scale >0 && nstrat >1) stop("Cannot have both a fixed scale and strata") if (nstrat>1 && (missing(strata) || length(strata)!= n)) stop("Invalid strata variable") if (nstrat==1) strata <- rep(1,n) if (scale >0) nstrat2 <- 0 else nstrat2 <- nstrat if (is.character(dist)) { sd <- survreg.distributions[[dist]] if (is.null(sd)) stop ("Unrecognized distribution") } else sd <- dist dnum <- match(sd$name, c("Extreme value", "Logistic", "Gaussian")) if (is.na(dnum)) { # Not one of the three distributions built in to the C code # We need to set up a callback routine # This returns the 5 number distribution summary (see the density # functions in survreg.distributions). Interval censored obs require # 2 evals and all others 1, so the call to the routine will have n2 # values. dnum <- 4 # flag for the C routine n2 <- n + sum(y[,ny]==3) # # Create an expression that will be evaluated by the C-code, # but with knowledge of some current variables # In the R doc, this would be "body(function(z) {" # in Splus (Chambers book): "functionBody(function(z)" # same action, different name. Luckily 'quote' exists in both # We make very sure the result is the right type and length here, # rather than in the C code, for simplicity. fdensity <- quote({ if (length(parms)) temp <- sd$density(z, parms) else temp <- sd$density(z) if (!is.matrix(temp) || any(dim(temp) != c(n2,5)) || !is.numeric(temp)) stop("Density function returned an invalid matrix") as.vector(as.double(temp)) }) } else { fdensity <-1 #dummy value for the .Call n2 <- n #a dummy value for inclusion in rho } # This is a subset of residuals.survreg: define the first and second # derivatives at z=0 for the 4 censoring types # Used below for starting estimates derfun <- function(y, eta, sigma, density, parms) { ny <- ncol(y) status <- y[,ny] z <- (y[,1] - eta)/sigma dmat <- density(z,parms) dtemp<- dmat[,3] * dmat[,4] #f' if (any(status==3)) { z2 <- (y[,2] - eta)/sigma dmat2 <- density(z2) } else { dmat2 <- matrix(0,1,5) #dummy values z2 <- 0 } tdenom <- ((status==0) * dmat[,2]) + ((status==1) * 1 ) + ((status==2) * dmat[,1]) + ((status==3) * ifelse(z>0, dmat[,2]-dmat2[,2], dmat2[,1] - dmat[,1])) tdenom <- 1/(tdenom* sigma) dg <- -tdenom *(((status==0) * (0-dmat[,3])) + ((status==1) * dmat[,4]) + ((status==2) * dmat[,3]) + ((status==3) * (dmat2[,3]- dmat[,3]))) ddg <- (tdenom/sigma)*(((status==0) * (0- dtemp)) + ((status==1) * dmat[,5]) + ((status==2) * dtemp) + ((status==3) * (dmat2[,3]*dmat2[,4] - dtemp))) list(dg = dg, ddg = ddg - dg^2) } status <- y[,ny] # # are there any sparse frailty terms? # npenal <- length(pattr) #total number of penalized terms if (npenal == 0 || length(pcols) != npenal) stop("Invalid pcols or pattr arg") sparse <- sapply(pattr, function(x) !is.null(x$sparse) && x$sparse) if (sum(sparse) >1) stop("Only one sparse penalty term allowed") # # Create a marking vector for the terms, the same length as assign # with pterms == 0=ordinary term, 1=penalized, 2=sparse, # pindex = length of pcols = position in pterms # # Make sure that pcols is a strict subset of assign, so that the # df computation (and printing) can unambiguously decide which cols of # X are penalized and which are not when doing "terms" like actions. # To make some downstream things easier, order pcols and pattr to be # in the same relative order as the terms in 'assign' # pterms <- rep(0, length(assign)) names(pterms) <- names(assign) pindex <- rep(0, npenal) for (i in 1:npenal) { temp <- unlist(lapply(assign, function(x,y) (length(x) == length(y) && all(x==y)), pcols[[i]])) if (sparse[i]) pterms[temp] <- 2 else pterms[temp] <- 1 pindex[i] <- (seq(along.with=temp))[temp] } if ((sum(pterms==2) != sum(sparse)) || (sum(pterms>0) != npenal)) stop("pcols and assign arguments disagree") if (any(pindex != sort(pindex))) { temp <- order(pindex) pindex <- pindex[temp] pcols <- pcols[temp] pattr <- pattr[temp] } # ptype= 1 or 3 if a sparse term exists, 2 or 3 if a non-sparse exists ptype <- any(sparse) + 2*(any(!sparse)) if (any(sparse)) { sparse.attr <- (pattr[sparse])[[1]] #can't use [[sparse]] directly # if 'sparse' is a T/F vector fcol <- unlist(pcols[sparse]) if (length(fcol) > 1) stop("Sparse term must be single column") # Remove the sparse term from the X matrix frailx <- x[, fcol] x <- x[, -fcol, drop=FALSE] for (i in 1:length(assign)){ j <- assign[[i]] if (j[1] > fcol) assign[[i]] <- j-1 } for (i in 1:npenal) { j <- pcols[[i]] if (j[1] > fcol) pcol[[i]] <- j-1 } frailx <- match(frailx, sort(unique(frailx))) nfrail <- max(frailx) nvar <- nvar - 1 #Set up the callback for the sparse frailty term # (At most one sparse term is allowed). The calling code will # first set 'coef1' to the current value of the sparse coefficients, # then call the expression below. It uses a separate context (Splus # frame or R environment), so there is no conflict between that # variable name and the rest of the code. Thus, think of the below as # a funcion of the temporary variable coef1 (current value found # in the calling C code), theta1 (current value in the S code # below, using calls to cfun), and fixed known values of pfun1 etc. # The expression will constantly replace components of "coxlist1". By # creating it first, we assure the order of the components, again # to make it simpler for the C code (it can grab the first component # and know that that is 'coef', etc). # pfun1 <- sparse.attr$pfun coxlist1 <- list(coef=0, first=0, second=0, penalty=0, flag=F) f.expr1 <- quote({ if (is.null(extra1)) temp <- pfun1(coef1, theta1, n.eff) else temp <- pfun1(coef1, theta1, n.eff, extra1) if (!is.null(temp$recenter)) coxlist1$coef <- coef1 - as.double(temp$recenter) else coxlist1$coef <- coef1 if (!temp$flag) { coxlist1$first <- -as.double(temp$first) coxlist1$second <- as.double(temp$second) } else { coxlist1$first <- double(nfrail) coxlist1$second <- double(nfrail) } coxlist1$penalty <- -as.double(temp$penalty) coxlist1$flag <- as.logical(temp$flag) # Make sure the list has exactly the right structure, so # the the C code can be simple. The first line below is # probably unnecessary (belt AND suspenders); the second is # checking a possibly user-supplied penaly function if (any(names(coxlist1) != c('coef', 'first', 'second', 'penalty', 'flag'))) stop("Invalid coxlist1") if (any(sapply(coxlist1, length) != c(rep(nfrail,3), 1, 1))) stop("Incorrect length in coxlist1") coxlist1 }) } else { # no sparse terms frailx <- 0 nfrail <- 0 f.expr1 <- NULL #dummy value pfun1 <- NULL #dummy coxlist1 <- NULL # " } nvar2 <- nvar + nstrat2 if (nvar2 ==0) { # There are no non-sparse coefficients, and no scale parameters # A strange model, leading to an hmat with 0 columns. The # underlying C code will choke, since this case is not built in. stop("Cannot fit a model with no coefficients other than sparse ones") } # Now the non-sparse penalties # There can be multiple penalized terms if (sum(!sparse) >0) { full.imat <- !all(unlist(lapply(pattr, function(x) x$diag))) ipenal <- (1:length(pattr))[!sparse] #index for non-sparse terms if (full.imat) { coxlist2 <- list(coef=double(nvar), first=double(nvar), second= double(nvar^2), penalty=0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar*nvar, 1, nvar) } else { coxlist2 <- list(coef=double(nvar), first=double(nvar), second=double(nvar), penalty= 0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar, 1, nvar) } # The C code will set the variable coef2, containing the concatonation # of all the non-sparse penalized coefs. Think of the below as # a function of coef (from the C code), thetalist (set further # below), and unchanging variables such as pattr. f.expr2 <- quote({ pentot <- 0 newcoef <- coef2 for (i in ipenal) { pen.col <- pcols[[i]] tcoef <- coef2[pen.col] if (is.null(extralist[[i]])) temp <- ((pattr[[i]])$pfun)(tcoef, thetalist[[i]], n.eff) else temp <- ((pattr[[i]])$pfun)(tcoef, thetalist[[i]], n.eff,extralist[[i]]) if (!is.null(temp$recenter)) newcoef[pen.col] <- tcoef - temp$recenter if (temp$flag) coxlist2$flag[pen.col] <- TRUE else { coxlist2$flag[pen.col] <- FALSE coxlist2$first[pen.col] <- -temp$first if (full.imat) { tmat <- matrix(coxlist2$second, nvar, nvar) tmat[pen.col,pen.col] <- temp$second coxlist2$second <- c(tmat) } else coxlist2$second[pen.col] <- temp$second } pentot <- pentot - temp$penalty } coxlist2$penalty <- as.double(pentot) coxlist2$coef <- newcoef if (any(sapply(coxlist2, length) != length2)) stop("Length error in coxlist2") coxlist2 }) } else { full.imat <- FALSE # no non-sparse penalties length2 <- 0 #dummy value f.expr2 <- NULL coxlist2 <- NULL ipenal <- NULL } # Create the frame for penalized evaluation # In R new.env inherits everything, in Splus new.frame only has # what I specify at this time. The variable thetalist will # be iterated below, so we need to remember to update it within # the Splus rho each time we do! # The variables parms, sd, and n2 are used for fdensity evaluation # if (is.R()) rho <- new.env() #Splus else rho <- new.frame(list(pfun1=pfun1, theta1=NULL, extra1=NULL, # nfrail=nfrail, pcols=pcols, pattr=pattr, # length2=length2, full.imat=full.imat, # ipenal = ipenal, nvar=nvar, # coxlist1=coxlist1, coxlist2=coxlist2, # sd=sd, parms=parms, n2=n2)) # # "Unpack" the passed in paramter list, # and make the initial call to each of the external routines # cfun <- lapply(pattr, function(x) x$cfun) parmlist <- lapply(pattr, function(x,eps) c(x$cparm, eps2=eps), sqrt(eps)) extralist<- lapply(pattr, function(x) x$pparm) iterlist <- vector('list', length(cfun)) thetalist <- vector('list', length(cfun)) printfun <- lapply(pattr, function(x) x$printfun) extra1 <- NULL theta1 <- NULL for (i in 1:length(cfun)) { temp <- (cfun[[i]])(parmlist[[i]], iter=0) if (sparse[i]) { assign('theta1', temp$theta, rho) assign('extra1', extralist[[i]], rho) } thetalist[[i]] <- temp$theta iterlist[[i]] <- temp } # if (!is.R()) { # Splus support # assign('thetalist', thetalist, frame=rho) # assign('extralist', extralist, frame=rho) # } # # Manufacture the list of calls to cfun, with appropriate arguments # temp1 <- c('x', 'coef', 'plik', 'loglik', 'status', 'neff', 'df', 'trH') temp2 <- c('frailx', 'fcoef', 'fit$loglik-fit$penalty', 'fit$loglik', 'status', 'n.eff') temp3 <- c('x[,pen.col]', 'coef[pen.col]', 'fit$loglik-fit$penalty', 'fit$loglik', 'status', 'n.eff') calls <- vector('expression', length(cfun)) cargs <- lapply(pattr, function(x) x$cargs) for (i in 1:length(cfun)) { tempchar <- paste("(cfun[[", i, "]])(parmlist[[", i, "]], iter,", "iterlist[[", i, "]]") temp2b <- c(temp2, paste('pdf[', i, ']'), paste('trH[', i, ']')) temp3b <- c(temp3, paste('pdf[', i, ']'), paste('trH[', i, ']')) if (length(cargs[[i]])==0) calls[i] <- parse(text=paste(tempchar, ")")) else { temp <- match(cargs[[i]], temp1) if (any(is.na(temp))) stop(paste((cargs[[i]])[is.na(temp)], "not matched")) if (sparse[i]) temp4 <- paste(temp2b[temp], collapse=',') else temp4 <- paste(temp3b[temp], collapse=',') calls[i] <- parse(text=paste(paste(tempchar,temp4,sep=','),')')) } } need.df <- any(!is.na(match(c('df', 'trH'), unlist(cargs))))#do any use df? # # Last of the setup: create the vector of variable names # varnames <- dimnames(x)[[2]] for (i in 1:npenal) { if (!is.null(pattr[[i]]$varname)) varnames[pcols[[i]]] <- pattr[[i]]$varname } nvar2 <- nvar + nstrat2 nvar3 <- nvar2 + nfrail # # A good initial value of the scale turns out to be critical for successful # iteration, in a surprisingly large number of data sets. # The best way we've found to get one is to fit a model with only the # mean and the scale. We also the loglik of the mean-only model in the # result # Even this model needs starting guesses... yy <- ifelse(status !=3, y[,1], (y[,1]+y[,2])/2 ) coef <- sd$init(yy, weights,parms) # We sometimes get into trouble with a small initial estimate of sigma, # (the surface isn't SPD), but never with a large one. Double it. if (scale >0) vars <- log(scale) else vars <- log(4*coef[2])/2 # init gives \sigma^2, I need log(sigma) coef <- c(coef[1], rep(vars, nstrat)) # get a better initial value for the mean using the "glim" trick deriv <- derfun(y, yy, exp(vars), sd$density, parms) wt <- -1*deriv$ddg*weights coef[1] <- sum(weights*deriv$dg + wt*(yy -offset)) / sum(wt) fit0 <- .Call(Csurvreg6, iter = as.integer(20), nvar = as.integer(1), as.double(y), as.integer(ny), x = as.double(rep(1.0, n)), as.double(weights), as.double(offset), coef= as.double(coef), as.integer(nstrat2), as.integer(strata), as.double(eps), as.double(toler.chol), as.integer(dnum), fdensity, rho) # The "effective n" of the model temp <- mean(exp(fit0$coef[-1])) #overall sd n.eff <- sd$variance(temp^2) * (solve(matrix(fit0$var,1+nstrat2)))[1,1] #if (!is.R()) assign('n.eff', n.eff, frame=rho) # # Fit the model with all covariates # Start with initial values # if (is.numeric(init)) { if (length(init) == nvar) { if (scale >0) init <- c(init, log(scale)) else init <-c(rep(0, nfrail), init, fit0$coef[-1]) } else if (length(init) == nvar2) init <- c(rep(0,nfrail), init) else if (length(init) != nvar3) stop("Wrong length for inital values") if (scale >0) init <- c(init, log(scale)) } else { # The algebra behind the 'glim' trick just doesn't work here # Use the intercept fit + zeros # coef order = frailty, intercept, other covariates, sigmas init <- c(rep(0, nfrail), fit0$coef[1], rep(0, nvar-1), fit0$coef[-1]) } # # Tack on the sigmas to "assign", so that the df component includes # the sigmas if (nstrat2 >0) assign <- c(assign, list(sigma=(1+nvar):nvar2)) iter2 <- 0 iterfail <- NULL thetasave <- unlist(thetalist) for (iterx in 1:outer.max) { fit <- .Call(Csurvreg7, iter = as.integer(iter.max), as.integer(nvar), as.double(y), as.integer(ny), as.double(x), as.double(weights), as.double(offset), coef= as.double(init), as.integer(nstrat2), as.integer(strata), as.double(eps), as.double(toler.chol), as.integer(dnum), fdensity, rho, as.integer(ptype), as.integer(full.imat), as.integer(nfrail), as.integer(frailx), f.expr1, f.expr2) iter <- iterx iter2 <- iter2 + fit$iter if (fit$flag == 1000) iterfail <- c(iterfail, iter) if (nfrail >0) { fcoef <- fit$coef[1:nfrail] coef <- fit$coef[nfrail + 1:nvar2] } else coef <- fit$coef[1:nvar2] # We need to fetch back some of the results from the # evaluation area of f.expr1 and f.expr2 if (is.R()) { if (nfrail >0) coxlist1 <- get('coxlist1', envir=rho) if (ptype >1 ) coxlist2 <- get('coxlist2', envir=rho) } #else { # if (nfrail >0) coxlist1 <- get('coxlist1', frame=rho) # if (ptype >1 ) coxlist2 <- get('coxlist2', frame=rho) # } # If any penalties were infinite, the C code has made hdiag=1 out # of self-preservation (avoid zero divides). But such coefs are # guarranteed to be zero so the variance should be too. temp <- rep(FALSE, nvar2+nfrail) if (nfrail>0) temp[1:nfrail] <- coxlist1$flag if (ptype >1) temp[nfrail+ 1:nvar] <- coxlist2$flag hdiag <- ifelse(temp, 0, fit$hdiag) if (need.df) { #get the penalty portion of the second derive matrix if (nfrail>0) temp1 <- coxlist1$second else temp1 <- 0 if (ptype>1) { if (full.imat) { temp2 <- matrix(0., nvar2, nvar2) temp2[1:nvar, 1:nvar] <- coxlist2$second } else temp2 <- diag(c(coxlist2$second, rep(0, nstrat2))) } else temp2 <- 0 dftemp <-coxpenal.df(matrix(fit$hmat, ncol=nvar2), matrix(fit$hinv, ncol=nvar2), hdiag, assign, ptype, nvar2, temp1, temp2, pindex[sparse]) df <- dftemp$df var <- dftemp$var var2 <- dftemp$var2 pdf <- df[pterms>0] # df's for penalized terms trH <- dftemp$trH[pterms>0] # trace H } # # Call the control function(s) # done <- TRUE for (i in 1:length(cfun)) { pen.col <- pcols[[i]] temp <- eval(calls[i]) if (sparse[i]) assign('theta1', temp$theta, rho) thetalist[[i]] <- temp$theta iterlist[[i]] <- temp done <- done & temp$done } if (done) break #if (!is.R()) assign('thetalist', thetalist, frame=rho) # # Choose starting estimates for the next iteration # if (iter==1) { init <- coefsave <- fit$coef thetasave <- cbind(thetasave, unlist(thetalist)) } else { temp <- unlist(thetalist) coefsave <- cbind(coefsave, fit$coef) # temp = next guess for theta # *save = prior thetas and the resultant fits # choose as initial values the result for the closest old theta howclose <- apply((thetasave-temp)^2,2, sum) which <- min((1:iter)[howclose==min(howclose)]) init <- coefsave[,which] thetasave <- cbind(thetasave, temp) } } #end of the iteration loop if (!need.df) { #didn't need it iteration by iteration, but do it now #get the penalty portion of the second derive matrix if (nfrail>0) temp1 <- coxlist1$second else temp1 <- 0 if (ptype>1) { if (full.imat) { temp2 <- matrix(0., nvar2, nvar2) temp2[1:nvar, 1:nvar] <- coxlist2$second } else temp2 <- diag(c(coxlist2$second, rep(0, nstrat2))) } else temp2 <- 0 dftemp <-coxpenal.df(matrix(fit$hmat,ncol=nvar2), matrix(fit$hinv,ncol=nvar2), hdiag, assign, ptype, nvar2, temp1, temp2, pindex[sparse]) df <- dftemp$df trH <- dftemp$trH var <- dftemp$var var2 <- dftemp$var2 } if (iter.max >1 && length(iterfail)>0) warning(paste("Inner loop failed to coverge for iterations", paste(iterfail, collapse=' '))) which.sing <- (hdiag[nfrail + 1:nvar] ==0) coef[which.sing] <- NA names(iterlist) <- names(pterms[pterms>0]) cname <- varnames cname <- c(cname, rep("Log(scale)", nstrat2)) dimnames(var) <- list(cname, cname) names(coef) <- cname if (nfrail >0) { lp <- offset + fcoef[frailx] lp <- lp + x %*%coef[1:nvar] list(coefficients = coef, icoef = fit0$coef, var = var, var2 = var2, loglik = c(fit0$loglik, fit$loglik- fit$penalty), iter = c(iter, iter2), linear.predictors = as.vector(lp), frail = fcoef, fvar = dftemp$fvar, df = df, penalty= c(fit0$penalty, -fit$penalty), pterms = pterms, assign2=assign, history= iterlist, printfun=printfun, score = fit$u) } else { #no sparse terms list(coefficients = coef, icoef = fit0$coef, var = var, var2 = var2, loglik = c(fit0$loglik, fit$loglik- fit$penalty), iter = c(iter, iter2), linear.predictors = as.vector(x%*%coef[1:nvar]), df = df, df2=dftemp$df2, penalty= c(0, -fit$penalty), pterms = pterms, assign2=assign, history= iterlist, printfun= printfun, score = fit$u) } } survival/R/tcut.S0000644000176000001440000000252712267746072013504 0ustar ripleyuserstcut <- function (x, breaks, labels, scale=1){ # avoid some problems with dates x <- as.numeric(x) breaks <- as.numeric(breaks) if(length(breaks) == 1) { if(breaks < 1) stop("Must specify at least one interval") if(missing(labels)) labels <- paste("Range", seq(length = breaks)) else if(length(labels) != breaks) stop("Number of labels must equal number of intervals") r <- range(x[!is.na(x)]) r[is.na(r)] <- 1 if((d <- diff(r)) == 0) { r[2] <- r[1] + 1 d <- 1 } breaks <- seq(r[1] - 0.01 * d, r[2] + 0.01 * d, length = breaks +1) } else { if(is.na(adb <- all(diff(breaks) >= 0)) || !adb) stop("breaks must be given in ascending order and contain no NA's") if(missing(labels)) labels <- paste(format(breaks[ - length(breaks)]), "+ thru ", format(breaks[-1]), sep = "") else if(length(labels) != length(breaks) - 1) stop("Number of labels must be 1 less than number of break points") } temp <- structure(x*scale, cutpoints=breaks*scale, labels=labels) if (is.R()) class(temp) <- 'tcut' else oldClass(temp) <- 'tcut' temp } "[.tcut" <- function(x, ..., drop=FALSE) { atts <- attributes(x) x <- unclass(x)[..1] attributes(x) <- atts if (is.R()) class(x) <- 'tcut' else oldClass(x) <- 'tcut' x } levels.tcut <- function(x) attr(x, 'labels') survival/R/print.coxph.S0000644000176000001440000000307612267746072015001 0ustar ripleyusers# $Id: print.coxph.S 11451 2010-11-19 21:36:31Z therneau $ print.coxph <- function(x, digits=max(options()$digits - 4, 3), ...) { if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (!is.null(x$fail)) { cat(" Coxph failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) coef <- x$coefficients se <- sqrt(diag(x$var)) if(is.null(coef) | is.null(se)) stop("Input is not valid") if (is.null(x$naive.var)) { tmp <- cbind(coef, exp(coef), se, coef/se, signif(1 - pchisq((coef/ se)^2, 1), digits -1)) dimnames(tmp) <- list(names(coef), c("coef", "exp(coef)", "se(coef)", "z", "p")) } else { nse <- sqrt(diag(x$naive.var)) tmp <- cbind(coef, exp(coef), nse, se, coef/se, signif(1 - pchisq((coef/se)^2, 1), digits -1)) dimnames(tmp) <- list(names(coef), c("coef", "exp(coef)", "se(coef)", "robust se", "z", "p")) } cat("\n") prmatrix(tmp) logtest <- -2 * (x$loglik[1] - x$loglik[2]) if (is.null(x$df)) df <- sum(!is.na(coef)) else df <- round(sum(x$df),2) cat("\n") cat("Likelihood ratio test=", format(round(logtest, 2)), " on ", df, " df,", " p=", format(1 - pchisq(logtest, df)), sep="") omit <- x$na.action cat(" n=", x$n) if (!is.null(x$nevent)) cat(", number of events=", x$nevent, "\n") else cat("\n") if (length(omit)) cat(" (", naprint(omit), ")\n", sep="") # if (length(x$icc)) # cat(" number of clusters=", x$icc[1], # " ICC=", format(x$icc[2:3]), "\n") invisible(x) } survival/R/survSplit.R0000644000176000001440000000165712267746072014542 0ustar ripleyusers survSplit<-function(data, cut, end,event,start,id=NULL, zero=0,episode=NULL){ cut<-sort(cut) ntimes <- length(cut) n <- nrow(data) p <- ncol(data) newdata <- lapply(data,rep,ntimes+1) endtime <- rep(c(cut, Inf) ,each=n) eventtime<-newdata[[end]] if( start %in% names(data)) starttime<-data[[start]] else starttime<-rep(zero,length.out=n) starttime<-c(starttime, pmax(starttime, rep(cut,each=n))) epi<-rep(0:ntimes,each=n) status <- ifelse( eventtime <= endtime & eventtime>starttime, newdata[[event]], 0) endtime<- pmin(endtime,eventtime) drop<-starttime>=endtime newdata<-do.call("data.frame",newdata) newdata[,start]<-starttime newdata[,end]<-endtime newdata[,event]<-status if (!is.null(id)) newdata[,id]<-rep(rownames(data),ntimes+1) if (!is.null(episode)) newdata[,episode]<-epi newdata<-newdata[!drop,] newdata } survival/R/print.aareg.S0000644000176000001440000000200412267746072014725 0ustar ripleyusers# $Id: print.aareg.S 11250 2009-03-19 13:44:59Z tlumley $ print.aareg <- function(x, maxtime, test=c('aalen', 'nrisk'), scale=1, ...) { if (!inherits(x, 'aareg')) stop ("Must be an addreg object") if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (missing(test)) test <- x$test else test <- match.arg(test) if (missing(maxtime)) summ <- summary(x, test=test, scale=scale) else summ <- summary(x, maxtime=maxtime, test=test, scale=scale) omit <- x$na.action if (length(omit)) cat(" n=", x$n[1], " (", naprint(omit), ")\n", sep="") else cat(" n=", x$n[1], "\n") cat(" ", summ$n[2], "out of", x$n[3], "unique event times used\n\n") print(signif(summ$table,3)) chi <- summ$chisq df <- nrow(summ$table) -1 cat("\nChisq=", format(round(chi,2)), " on ", df, " df, p=", signif(1- pchisq(chi,df),2), "; test weights=", x$test, "\n", sep="") invisible(x) } survival/R/plot.aareg.S0000644000176000001440000000453712267746072014564 0ustar ripleyusers# $Id: plot.aareg.S 11166 2008-11-24 22:10:34Z therneau $ plot.aareg <- function(x, se=TRUE, maxtime, type='s', ...) { if (!inherits(x, 'aareg')) stop ("Must be an aareg object") if (missing(maxtime)) keep <- 1:length(x$time) else keep <- 1:sum(x$time <= maxtime) yylab <- names(x$test.statistic) if (is.matrix(x$coefficient) && ncol(x$coefficient)>1) { yy <- apply(x$coefficient[keep,], 2,cumsum) yy <- rbind(0,yy) # make the plot start at 0,0 if (se) { if (!is.null(x$dfbeta)) { # There was a cluster term, so use the robust variance # dfbeta will be of dimension (n, nvar, n-unique-times) # The first variance increment is apply(dfbeta[,,1]^2,2,sum) # second is apply(dfbeta[,,2]^2,2,sum) # ... , apply(dfbeta[,,ndeath]..... # By being sneaky, it can be done quickly dd <- dim(x$dfbeta) keep2 <- 1:length(unique(x$time[keep])) temp <- matrix(x$dfbeta[,,keep2], nrow=dd[1]) se.increment <- matrix(apply(temp^2, 2, sum), nrow=dd[2]) se.yy <- sqrt(apply(t(se.increment), 2, cumsum)) } else se.yy <- sqrt(apply(x$coefficient[keep,]^2, 2,cumsum)) se.yy <- rbind(0, se.yy) } ncurve <- ncol(yy) } else { # this is the branch most often called, when someone has done # plot(fit[3]), so that only 1 coefficient remains yy <- cumsum(c(0, x$coefficient[keep])) if (se) { if (!is.null(x$dfbeta)) { dd <- dim(x$dfbeta) keep2 <- 1:length(unique(x$time[keep])) temp <- matrix(x$dfbeta[,,keep2], nrow=dd[1]) se.yy <- sqrt(cumsum(c(0, apply(temp^2, 2, sum)))) } else se.yy <- sqrt(cumsum(c(0, x$coefficient[keep]^2))) } ncurve <- 1 } xx <- c(0, x$time[keep]) # There may be multiplicities in x$times. Only plot the last of # each of them indx <- 1 + length(xx) - rev(match(unique(rev(xx)), rev(xx))) xx <- xx[indx] yy <- as.matrix(yy)[indx,] if (se) { if (is.null(x$dfbeta)) se.yy<- as.matrix(se.yy)[indx,] yy <- cbind(yy, yy + 1.96*se.yy, yy - 1.96*se.yy) if (ncurve >1) { for (i in 1:ncurve) { j <- c(i, i+ncurve, i+2*ncurve) matplot(xx, yy[,j], type=type, ..., col=1, lty=c(1,2,2), xlab='Time', ylab=yylab[i]) } } else matplot(xx, yy, type=type, ..., col=1, lty=c(1,2,2), xlab='Time', ylab=yylab) } else { matplot(xx, yy, type=type, ..., xlab='Time') } } survival/R/print.survexp.S0000644000176000001440000000354112267746072015371 0ustar ripleyusersprint.survexp <- function(x, scale=1, digits = max(options()$digits - 4, 3), naprint=FALSE, ...) { if (!inherits(x, 'survexp')) stop("Invalid data") savedig <- options(digits=digits) on.exit(options(savedig)) if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } if (!is.null(x$summ)) cat(x$summ) omit <- x$na.action if (length(omit)) cat(naprint(omit), "\n") else cat("\n") if (is.null(x$strata)) { #print it as a matrix mat <- cbind(x$time/scale, x$n.risk, x$surv, x$std.err) if (!naprint) { miss <- (is.na(mat)) %*% rep(1,ncol(mat)) mat <- mat[miss<(ncol(mat)-2),,drop=FALSE] } if (is.matrix(x$surv)) cname <- dimnames(x$surv)[[2]] else cname <- "survival" if (is.matrix(x$n.risk)) cname <- c(paste("nrisk", 1:ncol(x$n.risk), sep=''), cname) else cname <- c("n.risk", cname) if (!is.null(x$std.err)) cname <- c(cname, paste("se(", cname, ")", sep='')) prmatrix(mat, rowlab=rep("", nrow(mat)), collab=c("Time", cname)) } else { #print it out one strata at a time, since n's differ if (is.null(x$std.err)) tname <- 'survival' else tname <- c('survival', 'se(surv)') nstrat <- length(x$strata) levs <- names(x$strata) if (nrow(x$surv)==1) { mat <- cbind(c(x$n.risk), c(x$surv), c(x$std.err*x$surv)) dimnames(mat) <- list(levs, c("n.risk", tname)) cat(" Survival at time", x$time, "\n") prmatrix(mat) } else { for (i in 1:nstrat) { cat(" ", levs[i], "\n") mat <- cbind(x$time/scale, x$n.risk[,i], x$surv[,i]) if (!is.null(x$std.err)) mat<- cbind(mat, x$std.err[,i] * x$surv[,i]) if (!naprint) mat <- mat[!is.na(mat[,3]),,drop=FALSE] prmatrix(mat, rowlab=rep("",nrow(mat)), collab=c("Time", "n.risk", tname)) cat("\n") } } } invisible(x) } survival/R/cox.zph.S0000644000176000001440000000501512267746072014111 0ustar ripleyusers# $Id: cox.zph.S 11218 2009-02-09 12:09:29Z therneau $ # Test proportional hazards # cox.zph <- function(fit, transform='km', global=TRUE) { call <- match.call() if (!inherits(fit, 'coxph')) stop ("Argument must be the result of coxph") if (inherits(fit, 'coxph.null')) stop("The are no score residuals for a Null model") sresid <- resid(fit, 'schoenfeld') varnames <- names(fit$coefficients) nvar <- length(varnames) ndead<- length(sresid)/nvar if (nvar==1) times <- as.numeric(names(sresid)) else times <- as.numeric(dimnames(sresid)[[1]]) # Next line is no longer necessary: survfit.km can handle (start,stop] data # if (missing(transform) && attr(fit$y, 'type') != 'right') # transform <- 'identity' if (is.character(transform)) { tname <- transform ttimes <- switch(transform, 'identity'= times, 'rank' = rank(times), 'log' = log(times), 'km' = { temp <- survfitKM(factor(rep(1,nrow(fit$y))), fit$y, se.fit=FALSE) # A nuisance to do left cont KM t1 <- temp$surv[temp$n.event>0] t2 <- temp$n.event[temp$n.event>0] km <- rep(c(1,t1), c(t2,0)) if (is.null(attr(sresid, 'strata'))) 1-km else (1- km[sort.list(sort.list(times))]) }, stop("Unrecognized transform")) } else { tname <- deparse(substitute(transform)) if (length(tname) >1) tname <- 'user' ttimes <- transform(times) } xx <- ttimes - mean(ttimes) r2 <- sresid %*% fit$var * ndead test <- xx %*% r2 # time weighted col sums corel <- c(cor(xx, r2)) z <- c(test^2 /(diag(fit$var)*ndead* sum(xx^2))) Z.ph <- cbind(corel, z, 1- pchisq(z,1)) if (global && nvar>1) { test <- c(xx %*% sresid) z <- c(test %*% fit$var %*% test) * ndead / sum(xx^2) Z.ph <- rbind(Z.ph, c(NA, z, 1-pchisq(z, ncol(sresid)))) dimnames(Z.ph) <- list(c(varnames, "GLOBAL"), c("rho", "chisq", "p")) } else dimnames(Z.ph) <- list(varnames, c("rho", "chisq", "p")) dimnames(r2) <- list(times, names(fit$coefficients)) temp <-list(table=Z.ph, x=ttimes, y=r2 + outer(rep(1,ndead), fit$coefficients), var=fit$var, call=call, transform=tname) if (is.R()) class(temp) <- "cox.zph" else oldClass(temp) <- "cox.zph" temp } "[.cox.zph" <- function(x, ..., drop=FALSE) { i <- ..1 z<- list(table=x$table[i,,drop=FALSE], x=x$x, y=x$y[ ,i,drop=FALSE], var=x$var[i,i, drop=FALSE], call=x$call, transform=x$transform) attributes(z) <- attributes(x) z } survival/R/survregDtest.S0000644000176000001440000000511612267746072015223 0ustar ripleyusers# $Id$ # # Test out if a distribution object found in survreg is legal. Mostly called # by the survreg routine, but a user might use it when developing a new # distribution object # # Short form, returns just T or F # Long form, returns all of the issues with the object, or T if it is ok # survregDtest <- function(dlist, verbose=F) { errlist <- NULL if (is.null(dlist$name)) errlist <- c(errlist, "Missing a name") else if (length(dlist$name) !=1 || !is.character(dlist$name)) errlist <- c(errlist, "Invalid name") # # First case, the object is a reference to another distribution # if (!is.null(dlist$dist)) { if (!is.character(dlist$dist) || is.null(match(dlist$dist, names(survreg.distributions)))) errlist <- c(errlist, "Reference distribution not found") else { if (!is.function(dlist$trans)) errlist <- c(errlist, "Missing or invalid trans component") if (!is.function(dlist$itrans)) errlist <- c(errlist, "Missing or invalid itrans component") if (!is.function(dlist$dtrans)) errlist <- c(errlist, "Missing or invalid dtrans component") } if (is.null(errlist)) { if (!all.equal(dlist$itrans(dlist$trans(1:10)), 1:10)) errlist <- c(errlist, "trans and itrans must be inverses of each other") if (length(dlist$dtrans(1:10)) != 10) errlist <- c(errlist, "dtrans must be a 1-1 function") } } # Second case, the actual definition of a distribution else { # Comment out the next line, until some function uses the variance #if (!is.function(dlist$variance)) # errlist <- c(errlist, "Missing or invalid variance function") if (!is.function(dlist$init)) errlist <- c(errlist, "Missing or invalid init function") if (!is.function(dlist$deviance)) errlist <- c(errlist, "Missing or invalid deviance function") if (!is.function(dlist$density)) errlist <- c(errlist, "Missing or invalid density function") else { if (is.null(dlist$parms)) temp <- dlist$density(1:10/10) else temp <- dlist$density(1:10/10, unlist(dlist$parms)) if (!is.numeric(temp) || !is.matrix(temp) || nrow(temp) != 10 || ncol(temp) != 5) errlist <- c(errlist, "Density function must return a 5 column matrix") } if (!is.function(dlist$quantile)) errlist <- c(errlist, "Missing or invalid quantile function") } if (is.null(errlist)) T else if (verbose) errlist else F } survival/R/survdiff.S0000644000176000001440000000540412267746072014352 0ustar ripleyuserssurvdiff <- function(formula, data, subset, na.action, rho=0) { call <- match.call() m <- match.call(expand.dots=FALSE) m$rho <- NULL if (!inherits(formula, 'formula')) stop("The 'formula' argument is not a formula") Terms <- if(missing(data)) terms(formula, 'strata') else terms(formula, 'strata', data=data) m$formula <- Terms m[[1]] <- as.name("model.frame") if (is.R()) m <- eval(m, parent.frame()) else m <- eval(m, sys.parent()) y <- model.extract(m, "response") if (!inherits(y, "Surv")) stop("Response must be a survival object") if (attr(y, 'type') != 'right') stop("Right censored data only") ny <- ncol(y) n <- nrow(y) offset<- attr(Terms, "offset") if (!is.null(offset)) { #one sample test offset <- as.numeric(m[[offset]]) if (length(attr(Terms,"factors"))>0) stop("Cannot have both an offset and groups") if (any(offset <0 | offset >1)) stop("The offset must be a survival probability") expected <- sum(-log(offset)) #sum of expected events observed <- sum(y[,ny]) if (rho!=0) { num <- sum(1/rho - ((1/rho + y[,ny])*offset^rho)) var <- sum(1- offset^(2*rho))/(2*rho) } else { var <- sum(-log(offset)) num <- var - observed } chi <- num*num/var rval <-list(n= n, obs = observed, exp=expected, var=var, chisq= chi) } else { #k sample test strats <- attr(Terms, "specials")$strata if (length(strats)) { temp <- untangle.specials(Terms, 'strata', 1) dropx <- temp$terms if (length(temp$vars)==1) strata.keep <- m[[temp$vars]] else strata.keep <- strata(m[,temp$vars], shortlabel=TRUE) } else strata.keep <- rep(1,nrow(m)) #Now create the group variable if (length(strats)) ll <- attr(Terms[-dropx], 'term.labels') else ll <- attr(Terms, 'term.labels') if (length(ll) == 0) stop("No groups to test") else groups <- strata(m[ll]) fit <- survdiff.fit(y, groups, strata.keep, rho) if (is.matrix(fit$observed)){ otmp <- apply(fit$observed,1,sum) etmp <- apply(fit$expected,1,sum) } else { otmp <- fit$observed etmp <- fit$expected } df <- (etmp >0) #remove groups with exp=0 if (sum(df) <2) chi <- 0 # No test, actually else { temp2 <- ((otmp - etmp)[df])[-1] vv <- (fit$var[df,df])[-1,-1, drop=FALSE] chi <- sum(solve(vv, temp2) * temp2) } rval <-list(n= table(groups), obs = fit$observed, exp = fit$expected, var=fit$var, chisq=chi) if (length(strats)) rval$strata <- table(strata.keep) } na.action <- attr(m, "na.action") if (length(na.action)) rval$na.action <- na.action rval$call <- call if (is.R()) class(rval) <- 'survdiff' else oldClass(rval) <- 'survdiff' rval } survival/R/coxph.fit.S0000644000176000001440000000726312267746072014431 0ustar ripleyuserscoxph.fit <- function(x, y, strata, offset, init, control, weights, method, rownames) { n <- nrow(y) if (is.matrix(x)) nvar <- ncol(x) else { if (length(x)==0) nvar <-0 else nvar <-1 } time <- y[,1] status <- y[,2] # Sort the data (or rather, get a list of sorted indices) if (length(strata)==0) { sorted <- order(time) strata <- NULL newstrat <- as.integer(rep(0,n)) } else { sorted <- order(strata, time) strata <- strata[sorted] newstrat <- as.integer(c(1*(diff(as.numeric(strata))!=0), 1)) } if (missing(offset) || is.null(offset)) offset <- rep(0,n) if (missing(weights)|| is.null(weights))weights<- rep(1,n) else { if (any(weights<=0)) stop("Invalid weights, must be >0") weights <- weights[sorted] } stime <- as.double(time[sorted]) sstat <- as.integer(status[sorted]) if (nvar==0) { # A special case: Null model. # (This is why I need the rownames arg- can't use x' names) # Set things up for 0 iterations on a dummy variable x <- as.matrix(rep(1.0, n)) nullmodel <- TRUE nvar <- 1 init <- 0 maxiter <- 0 } else { nullmodel <- FALSE maxiter <- control$iter.max if (!missing(init) && length(init)>0) { if (length(init) != nvar) stop("Wrong length for inital values") } else init <- rep(0,nvar) } storage.mode(weights) <- storage.mode(init) <- "double" coxfit <- .Call(Ccoxfit6, as.integer(maxiter), stime, sstat, x[sorted,], as.double(offset[sorted]), weights, newstrat, as.integer(method=="efron"), as.double(control$eps), as.double(control$toler.chol), as.vector(init), as.integer(1)) # internally rescale if (nullmodel) { score <- exp(offset[sorted]) coxres <- .C(Ccoxmart, as.integer(n), as.integer(method=='efron'), stime, sstat, newstrat, as.double(score), as.double(weights), resid=double(n)) resid <- double(n) resid[sorted] <- coxres$resid names(resid) <- rownames list( loglik = coxfit$loglik[1], linear.predictors = offset, residuals = resid, method= c('coxph.null', 'coxph') ) } else { var <- matrix(coxfit$imat,nvar,nvar) coef <- coxfit$coef if (coxfit$flag < nvar) which.sing <- diag(var)==0 else which.sing <- rep(FALSE,nvar) infs <- abs(coxfit$u %*% var) if (maxiter >1) { if (coxfit$flag == 1000) warning("Ran out of iterations and did not converge") else { infs <- ((infs > control$eps) & infs > control$toler.inf*abs(coef)) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } names(coef) <- dimnames(x)[[2]] lp <- c(x %*% coef) + offset - sum(coef*coxfit$means) score <- exp(lp[sorted]) coxres <- .C(Ccoxmart, as.integer(n), as.integer(method=='efron'), stime, sstat, newstrat, as.double(score), as.double(weights), resid=double(n)) resid <- double(n) resid[sorted] <- coxres$resid names(resid) <- rownames if (maxiter > 0) coef[which.sing] <- NA #leave it be if iter=0 is set concordance <- survConcordance.fit(Surv(stime, sstat), lp[sorted], strata, weights) list(coefficients = coef, var = var, loglik = coxfit$loglik, score = coxfit$sctest, iter = coxfit$iter, linear.predictors = as.vector(lp), residuals = resid, means = coxfit$means, concordance=concordance, method='coxph') } } survival/R/coxph.control.S0000644000176000001440000000117712267746072015325 0ustar ripleyusers# # Gather all of the control parameters for coxph into one spot # coxph.control <- function(eps=1e-9, toler.chol = .Machine$double.eps ^ .75, iter.max=20, toler.inf= sqrt(eps), outer.max=10 ) { if (iter.max <0) stop("Invalid value for iterations") if (eps <=0) stop ("Invalid convergence criteria") if (eps <= toler.chol) warning("For numerical accuracy, tolerance should be < eps") if (toler.inf <=0) stop ("The inf.warn setting must be >0") list(eps=eps, toler.chol=toler.chol, iter.max=as.integer(iter.max), toler.inf=toler.inf, outer.max=as.integer(outer.max)) } survival/R/frailty.controlgam.S0000644000176000001440000000427612267746072016346 0ustar ripleyusers# $Id: frailty.controlgam.S 11166 2008-11-24 22:10:34Z therneau $ # # The control function for a single Gamma frailty term. # frailty.controlgam <- function(opt, iter, old, group, status, loglik){ if (iter==0) { # initial call if (!is.null(opt$theta)) theta <- opt$theta #fixed theta case else { if (is.null(opt$init)) theta <- 0 #no initial value -- use 0 else theta <- opt$init[1] } list(theta=theta) } else { if (is.null(opt$trace)) trace <-FALSE else trace <- opt$trace theta <- old$theta #compute correction to the loglik if (theta==0) correct <- 0 else { if (is.matrix(group)) group <- c(group %*% 1:ncol(group)) d <- tapply(status,group,sum) correct <- frailty.gammacon(d, 1/theta) } if (!is.null(opt$theta)) # fixed theta case list(theta=theta, done=TRUE, c.loglik=loglik + correct) else { # save history of the iteration, and get the next theta if (iter==1) history <- c(theta=theta, loglik=loglik, c.loglik=loglik + correct) else history <- rbind(old$history, as.vector(c(theta, loglik, loglik + correct))) if (iter==1) { if (is.null(opt$init )) theta <-1 else theta <- opt$init[2] list(theta=theta, done=FALSE, history=history, c.loglik= loglik+correct) } else if (iter ==2) { if (history[2,3] < (history[1,3] +1)) theta <- mean(history[1:2,1]) else theta <- 2*history[2,1] if (trace) { print(history) cat(" new theta=", theta, "\n\n") } list(theta=theta, done=FALSE, history=history, c.loglik= loglik+correct) } else { #Now, history has iter rows, each row contains the value # of theta, the Cox PL, and the full LL done <- (abs(1- history[iter,3]/history[iter-1,3]) < opt$eps) x <- history[,1] y <- history[,3] if (y[iter]== max(y) && x[iter]==max(x)) newtheta <- 2* max(x) else newtheta <- frailty.brent(sqrt(x), y, lower=0)^2 if (trace) { print(history) cat(" new theta=", format(newtheta), "\n\n") } list(theta=newtheta, done=done, history=history, c.loglik = loglik + correct) } } } } survival/R/anova.survreglist.S0000644000176000001440000000420112267746072016210 0ustar ripleyusersanova.survreglist <- function(object, ..., test = c("Chisq", "none")) { diff.term <- function(term.labels, i) { t1 <- term.labels[[1]] t2 <- term.labels[[2]] m1 <- match(t1, t2, FALSE) m2 <- match(t2, t1, FALSE) if(all(m1)) { if(all(m2)) return("=") else return(paste(c("", t2[ - m1]), collapse = "+")) } else { if(all(m2)) return(paste(c("", t1[ - m2]), collapse = "-")) else return(paste(i - 1, i, sep = " vs. ")) } } test <- match.arg(test) rt <- length(object) if(rt == 1) { object <- object[[1]] UseMethod("anova") } forms <- sapply(object, function(x) as.character(formula(x))) subs <- as.logical(match(forms[2, ], forms[2, 1], FALSE)) if(!all(subs)) warning("Some fit objects deleted because response differs from the first model") if(sum(subs) == 1) stop("The first model has a different response from the rest") forms <- forms[, subs] object <- object[subs] ## older survival objects might have df.resid: recent ones have df.residual dfres <- sapply(object, "[[", "df.resid", exact=FALSE) m2loglik <- -2 * sapply(object, "[[", "loglik")[2, ] tl <- lapply(object, labels) rt <- length(m2loglik) effects <- character(rt) for(i in 2:rt) effects[i] <- diff.term(tl[c(i - 1, i)], i) dm2loglik <- - diff(m2loglik) ddf <- - diff(dfres) heading <- c("Analysis of Deviance Table", paste("\nResponse: ", forms[2, 1], "\n", sep = "")) aod <- data.frame(Terms = forms[3, ], "Resid. Df" = dfres, "-2*LL" = m2loglik, Test = effects, Df = c(NA, ddf), Deviance = c(NA, dm2loglik), check.names = FALSE) if (is.R()) aod<-structure(aod,heading=heading,class=c("anova","data.frame")) # else aod <- as.anova(aod, heading) #code for Splus if(test != "none") { n <- length(object[[1]]$residuals) o <- order(dfres) ## R uses scale argument even for "Chisq" if (test=="Chisq") scale<-1 else scale<-sum(object$residuals^2)/dfres[o[1]] stat.anova(aod, test, scale, dfres[o[1]], n) } else aod } survival/R/survfitms.R0000644000176000001440000005213412267746106014563 0ustar ripleyusers# Automatically generated from all.nw using noweb # Methods for survfitms objects summary.survfit <- function(object, times, censored=FALSE, scale=1, extend=FALSE, rmean=getOption('survfit.rmean'), ...) { fit <- object if (!inherits(fit, 'survfit')) stop("summary.survfit can only be used for survfit objects") # The print.rmean option is depreciated, it is still listened # to in print.survfit, but ignored here if (is.null(rmean)) rmean <- "none" temp <- survmean(fit, scale=scale, rmean) table <- temp$matrix #for inclusion in the output list rmean.endtime <- temp$end.time # The fit$surv object is sometimes a vector and sometimes a # matrix. We calculate row indices first, and then deal # with the cases at the end. nsurv <- if (is.matrix(fit$surv)) nrow(fit$surv) else length(fit$surv) if (is.null(fit$strata)) { nstrat <- 1 stemp <- rep(1L, nsurv) strata.names <- "" } else { nstrat <- length(fit$strata) stemp <- rep(1:nstrat, fit$strata) strata.names <- names(fit$strata) } if (missing(times)) { # just pick off the appropriate rows of the output if (censored) indx1 <- seq(along=fit$time) else indx1 <- which(fit$n.event>0) } else { # The one line function below might be opaque (even to me) -- # For n.event, we want to know the number since the last chosen # printout time point. Start with the curve of cumulative # events at c(0, stime) (the input time points), which is # the cumsum below; pluck off the values corresponding to our # time points, the [x] below; then get the difference since the # last chosen time point (or from 0, for the first chosen point). cfun <- function(x, data) diff(c(0, cumsum(c(0,data))[x])) # Process the curves one at a time, # adding the results for that curve onto a list, so the # number of events will be n.enter[[1]], n.enter[[2]], etc. # For the survival, stderr, and confidence limits it suffices # to create a single list 'indx1' containing a subscripting vector indx1 <- n.risk <- n.event <- newtimes <- vector('list', nstrat) n.enter <- vector('list', nstrat) n.censor<- vector('list', nstrat) n <- length(stemp) for (i in 1:nstrat) { who <- (1:n)[stemp==i] # the rows of the object for this strata stime <- fit$time[who] # First, toss any printing times that are outside our range if (is.null(fit$start.time)) mintime <- min(stime, 0) else mintime <- fit$start.time ptimes <- times[times >= mintime] if (!extend) { maxtime <- max(stime) ptimes <- ptimes[ptimes <= maxtime] } newtimes[[i]] <- ptimes # If we tack a -1 onto the front of the vector of survival # times, then indx1 is the subscript for that vector # corresponding to the list of "ptimes". If the input # data had stime=c(10,20) and ptimes was c(5,10,15,20), # the result would be 1,2,2,3. # For n.risk we want a slightly different index: 2,2,3,3. # "In between" times point to the next higher index for n.risk, # but the next lower one for survival. (Survival drops at time t, # the n.risk immediately afterwords at time t+0: you were at # risk just before you die, but not a moment after). The # extra point needs to be added at the end. # ntime <- length(stime) #number of points temp1 <- approx(c(mintime-1, stime), 0:ntime, xout=ptimes, method='constant', f=0, rule=2)$y indx1[[i]] <- ifelse(temp1==0, 1, 1+ who[pmax(1,temp1)]) # Why not just "who[temp1]" instead of who[pmax(1,temp1)] in the # line just above? When temp1 has zeros, the first expression # gives a vector that is shorter than temp1, and the ifelse # doesn't work right due to mismatched lengths. n.event[[i]] <- cfun(temp1+1, fit$n.event[who]) if (!is.null(fit$n.censor)) { n.censor[[i]] <- cfun(temp1+1, fit$n.censor[who]) j <- who[ntime] #last time point in the data last.n <- fit$n.risk[j] - (fit$n.event[j]+ fit$n.censor[j]) } else { # this is for the older survfit objects, which don't contain # n.censor. In this case, we don't know how many of the # people at the last time are censored then & how many go # on further. Assume we lose them all. Note normally # extend=FALSE, so this number isn't printed anyway. last.n <- 0 } # Compute the number at risk. If stime = 1,10, 20 and ptime=3,10, # 12, then temp1 = 2,2,3: the nrisk looking ahead # approx() doesn't work if stime is of length 1 if (ntime ==1) temp1 <- rep(1, length(ptimes)) else temp1 <- approx(stime, 1:ntime, xout=ptimes, method='constant', f=1, rule=2)$y n.risk[[i]] <- ifelse(ptimes>max(stime), last.n, fit$n.risk[who[temp1]]) } times <- unlist(newtimes) n.risk <- unlist(n.risk) n.event <- unlist(n.event) n.enter <- unlist(n.enter) #may be NULL n.censor<- unlist(n.censor) #may be NULL indx1 <- unlist(indx1) } # Create an output structure if (length(indx1)==length(fit$time) && all(indx1 == seq(along=fit$time))) { temp <- object #no change temp$time <- temp$time/scale temp$table <- table if (!is.null(temp$strata)) temp$strata <- factor(stemp, labels=strata.names) } else if (missing(times)) { #default censor=FALSE case temp <- object temp$time <- temp$time[indx1]/scale temp$table <- table for (j in c("n.risk", "n.event", "n.censor", "n.enter", "surv", "std.err", "lower", "upper")) { zed <- temp[[j]] if (!is.null(zed)) { if (is.matrix(zed)) temp[[j]] <- zed[indx1,,drop=FALSE] else temp[[j]] <- zed[indx1] } } if (!is.null(temp$strata)) temp$strata <- factor(stemp[indx1], levels=1:nstrat, labels=strata.names) } else { #times argument was given temp <- list(n=object$n, time=times/scale, n.risk=n.risk, n.event=n.event, conf.int=fit$conf.int, type=fit$type, table=table) if (!is.null(n.censor)) temp$n.censor <- n.censor if (!is.null(n.enter)) temp$n.enter <- n.enter if (!is.null(fit$start.time)) temp$start.time <- fit$start.time # why the rbind? The user may have specified a time point before # the first event, and indx1=1 indicates that case if (is.matrix(fit$surv)) { temp$surv <- rbind(1, fit$surv)[indx1,,drop=FALSE] if (!is.null(fit$std.err)) temp$std.err <- rbind(0, fit$std.err)[indx1,,drop=FALSE] if (!is.null(fit$lower)) { temp$lower <- rbind(1, fit$lower)[indx1,,drop=FALSE] temp$upper <- rbind(1, fit$upper)[indx1,,drop=FALSE] } } else { temp$surv <- c(1, fit$surv)[indx1] if (!is.null(fit$std.err)) temp$std.err <- c(0,fit$std.err)[indx1] if (!is.null(fit$lower)) { temp$lower <- c(1, fit$lower)[indx1] temp$upper <- c(1, fit$upper)[indx1] } } if (!is.null(fit$strata)) { scount <- unlist(lapply(newtimes, length)) temp$strata <- factor(rep(1:nstrat, scount), levels=1:nstrat, labels=strata.names) } if (length(rmean.endtime)>0 && !is.na(rmean.endtime)) temp$rmean.endtime <- rmean.endtime temp$call <- fit$call if (!is.null(fit$na.action)) temp$na.action <- fit$na.action } if (!is.null(temp$std.err)) temp$std.err <- temp$std.err*temp$surv #std error of the survival curve class(temp) <- 'summary.survfit' temp } summary.survfitms <- function(object, times, censored=FALSE, scale=1, extend=FALSE, rmean=getOption('survfit.rmean'), ...) { fit <- object if (!inherits(fit, 'survfitms')) stop("summary.survfitms can only be used for survfitms objects") if (is.null(rmean)) rmean <- "none" # add some temps to make survmean work object$surv <- 1-object$prev if (is.matrix(object$surv)) dimnames(object$surv) <- list(NULL, object$states) temp <- survmean(object, scale=scale, rmean) table <- temp$matrix #for inclusion in the output list rmean.endtime <- temp$end.time # The fit$prev object is usually a matrix but can be a vector # We calculate row indices first, and then deal # with the cases at the end. nprev <- if (is.matrix(fit$prev)) nrow(fit$prev) else length(fit$prev) if (is.null(fit$strata)) { nstrat <- 1 stemp <- rep(1L, nprev) strata.names <- "" } else { nstrat <- length(fit$strata) stemp <- rep(1:nstrat, fit$strata) strata.names <- names(fit$strata) } if (missing(times)) { # just pick off the appropriate rows of the output if (censored) indx1 <- seq(along=fit$time) else indx1 <- which(fit$n.event>0) } else { # The one line function below might be opaque (even to me) -- # For n.event, we want to know the number since the last chosen # printout time point. Start with the curve of cumulative # events at c(0, stime) (the input time points), which is # the cumsum below; pluck off the values corresponding to our # time points, the [x] below; then get the difference since the # last chosen time point (or from 0, for the first chosen point). cfun <- function(x, data) diff(c(0, cumsum(c(0,data))[x])) # Process the curves one at a time, # adding the results for that curve onto a list, so the # number of events will be n.enter[[1]], n.enter[[2]], etc. # For the survival, stderr, and confidence limits it suffices # to create a single list 'indx1' containing a subscripting vector indx1 <- n.risk <- n.event <- newtimes <- vector('list', nstrat) n.enter <- vector('list', nstrat) n.censor<- vector('list', nstrat) n <- length(stemp) for (i in 1:nstrat) { who <- (1:n)[stemp==i] # the rows of the object for this strata stime <- fit$time[who] # First, toss any printing times that are outside our range if (is.null(fit$start.time)) mintime <- min(stime, 0) else mintime <- fit$start.time ptimes <- times[times >= mintime] if (!extend) { maxtime <- max(stime) ptimes <- ptimes[ptimes <= maxtime] } newtimes[[i]] <- ptimes # If we tack a -1 onto the front of the vector of survival # times, then indx1 is the subscript for that vector # corresponding to the list of "ptimes". If the input # data had stime=c(10,20) and ptimes was c(5,10,15,20), # the result would be 1,2,2,3. # For n.risk we want a slightly different index: 2,2,3,3. # "In between" times point to the next higher index for n.risk, # but the next lower one for survival. (Survival drops at time t, # the n.risk immediately afterwords at time t+0: you were at # risk just before you die, but not a moment after). The # extra point needs to be added at the end. # ntime <- length(stime) #number of points temp1 <- approx(c(mintime-1, stime), 0:ntime, xout=ptimes, method='constant', f=0, rule=2)$y indx1[[i]] <- ifelse(temp1==0, 1, 1+ who[pmax(1,temp1)]) # Why not just "who[temp1]" instead of who[pmax(1,temp1)] in the # line just above? When temp1 has zeros, the first expression # gives a vector that is shorter than temp1, and the ifelse # doesn't work right due to mismatched lengths. n.event[[i]] <- cfun(temp1+1, fit$n.event[who]) if (!is.null(fit$n.censor)) { n.censor[[i]] <- cfun(temp1+1, fit$n.censor[who]) j <- who[ntime] #last time point in the data last.n <- fit$n.risk[j] - (fit$n.event[j]+ fit$n.censor[j]) } else { # this is for the older survfit objects, which don't contain # n.censor. In this case, we don't know how many of the # people at the last time are censored then & how many go # on further. Assume we lose them all. Note normally # extend=FALSE, so this number isn't printed anyway. last.n <- 0 } # Compute the number at risk. If stime = 1,10, 20 and ptime=3,10, # 12, then temp1 = 2,2,3: the nrisk looking ahead # approx() doesn't work if stime is of length 1 if (ntime ==1) temp1 <- rep(1, length(ptimes)) else temp1 <- approx(stime, 1:ntime, xout=ptimes, method='constant', f=1, rule=2)$y n.risk[[i]] <- ifelse(ptimes>max(stime), last.n, fit$n.risk[who[temp1]]) } times <- unlist(newtimes) n.risk <- unlist(n.risk) n.event <- unlist(n.event) n.enter <- unlist(n.enter) #may be NULL n.censor<- unlist(n.censor) #may be NULL indx1 <- unlist(indx1) } # Create an output structure if (length(indx1)== length(fit$time) && all(indx1 == seq(along=fit$time))) { temp <- object #no change temp$time <- temp$time/scale temp$table <- table if (!is.null(temp$strata)) temp$strata <- factor(stemp, levels=1:nstrat, labels=strata.names) } else if (missing(times)) { temp <- object temp$time <- temp$time[indx1]/scale temp$table <- table for (j in c("n.risk", "n.event", "n.censor", "n.enter", "prev", "std.err", "lower", "upper")) { zed <- temp[[j]] if (!is.null(zed)) { if (is.matrix(zed)) temp[[j]] <- zed[indx1,,drop=FALSE] else temp[[j]] <- zed[indx1] } } temp$cumhaz <- fit$cumhaz[,,indx1,drop=FALSE] if (!is.null(temp$strata)) temp$strata <- factor(stemp[indx1], levels=1:nstrat, labels=strata.names) } else { temp <- list(n=object$n, time=times/scale, n.risk=n.risk, n.event=n.event, conf.int=fit$conf.int, type=fit$type, table=table) if (!is.null(n.censor)) temp$n.censor <- n.censor if (!is.null(n.enter)) temp$n.enter <- n.enter if (!is.null(fit$start.time)) temp$start.time <- fit$start.time # why the rbind? The user may have specified a time point before # the first event, and indx1=1 indicates that case # the cumhaz array can't be done with a 1-liner if (is.matrix(fit$prev)) { temp$prev <- rbind(0, fit$prev)[indx1,,drop=FALSE] zz <- ifelse(indx1==1, NA, indx1-1) temp$cumhaz <- fit$cumhaz[,,zz, drop=FALSE] temp$cumhaz <- ifelse(is.na(temp$cumhaz), 0, temp$cumhaz) if (!is.null(fit$std.err)) temp$std.err <- rbind(0, fit$std.err)[indx1,,drop=FALSE] if (!is.null(fit$lower)) { temp$lower <- rbind(0, fit$lower)[indx1,,drop=FALSE] temp$upper <- rbind(0, fit$upper)[indx1,,drop=FALSE] } } else { temp$prev <- c(0, fit$prev[indx1]) temp$cumhaz <- c(0, fit$cumhaz[indx1]) if (!is.null(fit$std.err)) temp$std.err <- c(0, fit$std.err)[indx1] if (!is.null(fit$lower)) { temp$lower <- c(0, fit$lower)[indx1] temp$upper <- c(0, fit$upper)[indx1] } } if (!is.null(fit$strata)) { scount <- unlist(lapply(newtimes, length)) temp$strata <- factor(rep(1:nstrat, scount), levels=1:nstrat, labels=strata.names) } temp$call <- fit$call if (!is.null(fit$na.action)) temp$na.action <- fit$na.action } if (length(rmean.endtime)>0 && !is.na(rmean.endtime)) temp$rmean.endtime <- rmean.endtime class(temp) <- "summary.survfitms" temp } "[.survfitms" <- function(x, ..., drop=TRUE) { nmatch <- function(indx, target) { # This function lets R worry about character, negative, or logical subscripts # It always returns a set of positive integer indices temp <- 1:length(target) names(temp) <- target temp[indx] } if (missing(..1)) i<- NULL else i <- sort(..1) if (missing(..2)) j<- NULL else j <- ..2 if (is.null(x$strata)) { if (is.matrix(x$prev)) { # No strata, but a matrix of prevalence values # In this case, allow them to use a single i subscript as well if (is.null(j) && !is.null(i)) j <- i indx <- nmatch(j, x$states) if (any(is.na(indx))) stop("unmatched subscript", j[is.na(indx)]) else j <- as.vector(indx) x$states <- x$states[j] if (nrow(x$prev)==1 && length(j) > 1) drop<- FALSE x$prev <- x$prev[,j,drop=drop] x$cumhaz <- x$cumhaz[j,j,, drop=drop] if (!is.null(x$std.err)) x$std.err <- x$std.err[,j,drop=drop] if (!is.null(x$upper)) x$upper <- x$upper[,j,drop=drop] if (!is.null(x$lower)) x$lower <- x$lower[,j,drop=drop] } else warning("Survfit object has only a single survival curve") } else { if (is.null(i)) keep <- seq(along.with=x$time) # rows to keep else { indx <- nmatch(i, names(x$strata)) #strata to keep if (any(is.na(indx))) stop(paste("strata", paste(i[is.na(indx)], collapse=' '), 'not matched')) # Now, i may not be in order: a user has curve[3:2] to reorder a plot # Hence the list/unlist construct which will reorder the data in the curves temp <- rep(1:length(x$strata), x$strata) keep <- unlist(lapply(i, function(x) which(temp==x))) if (length(i) <=1 && drop) x$strata <- NULL else x$strata <- x$strata[indx] x$n <- x$n[indx] x$time <- x$time[keep] x$n.risk <- x$n.risk[keep] x$n.event <- x$n.event[keep] x$n.censor<- x$n.censor[keep] } if (is.matrix(x$prev)) { # If [i,] selected only 1 row, don't collapse the columns if (length(keep) <2 && (is.null(j) || length(j) >1)) drop <- FALSE if (is.null(j)) { #only subscript rows (strata) x$prev <- x$prev[keep,,drop=drop] x$cumhaz <- x$cumhaz[,,keep, drop=drop] if (!is.null(x$std.err)) x$std.err <- x$std.err[keep,,drop=drop] if (!is.null(x$upper)) x$upper <-x$upper[keep,,drop=drop] if (!is.null(x$lower)) x$lower <-x$lower[keep,,drop=drop] } else { #subscript both rows (strata) and columns (states) indx <- nmatch(j, x$states) if (any(is.na(indx))) stop("unmatched subscript", j[indx]) else j <- as.vector(indx) x$states <- x$states[j] x$prev <- x$prev[keep,j, drop=drop] x$cumhaz <- x$cumhaz[j,j,keep, drop=drop] if (!is.null(x$std.err)) x$std.err <- x$std.err[keep,j,drop=drop] if (!is.null(x$upper)) x$upper <- x$upper[keep,j, drop=drop] if (!is.null(x$lower)) x$lower <- x$lower[keep,j, drop=drop] } } else { x$prev <- x$prev[keep] x$cumhaz <- x$cumhaz[keep] if (!is.null(x$std.err)) x$std.err <- x$std.err[keep] if (!is.null(x$upper)) x$upper <- x$upper[keep] if (!is.null(x$lower)) x$lower <- x$lower[keep] } } x } survival/R/predict.survreg.S0000644000176000001440000001571112267746072015652 0ustar ripleyuserspredict.survreg <- function(object, newdata, type=c('response', "link", 'lp', 'linear', 'terms', 'quantile','uquantile'), se.fit=FALSE, terms=NULL, p=c(.1, .9), na.action=na.pass, ...) { # # What do I need to do predictions ? # # linear predictor: exists # +se : X matrix # newdata : new X matrix # # response -- same as lp, +transform, from distribution # # p -- density function from distribution # scale(s) -- if multiple I need the strata # +se : variance matrix # newdata: new X type <-match.arg(type) if (type=='link') type<- 'lp' #true until their are link functions if (type=='linear') type<- 'lp' n <- length(object$linear.predictors) Terms <- object$terms if(!inherits(Terms, "terms")) stop("invalid terms component of object") strata <- attr(Terms, 'specials')$strata Terms <- delete.response(Terms) coef <- object$coefficients intercept <- attr(Terms, "intercept") nvar <- length(object$coefficients) vv <- object$var[1:nvar, 1:nvar] fixedscale <- (nvar == ncol(object$var)) if (missing(newdata) && (type=='terms' || se.fit)) need.x <- TRUE else need.x <- FALSE if (!missing(newdata)){ newframe <- model.frame(Terms, data=newdata, na.action= na.action, xlev=object$xlevels) na.action.used <- attr(newframe, 'na.action') } else na.action.used <- object$na.action if (length(strata) && (type=='quantile' || type=='uquantile') && !fixedscale) { # # We need to reconstruct the original "strata" variable # mf <- model.frame(object) temp <- untangle.specials(Terms, 'strata', 1) dropx <- temp$terms if (length(temp$vars)==1) strata.keep <- mf[[temp$vars]] else strata.keep <- strata(mf[,temp$vars], shortlabel=TRUE) strata <- as.numeric(strata.keep) nstrata <- max(strata) if (missing(newdata) && need.x){ #need the old x x <- object[['x']] if (is.null(x)) x <- model.matrix(object, mf) } else if (!missing(newdata)) { #need the new x if (length(temp$vars)==1) newstrat <- newframe[[temp$vars]] else newstrat <- strata(newframe[,temp$vars], shortlabel=TRUE) strata <- match(newstrat, levels(strata.keep)) x <- model.matrix(object, newframe) offset <- model.offset(newframe) } } else { # per subject strata not needed nstrata <- 1 if (missing(newdata)) { strata <- rep(1L, n) if (need.x) x <- model.matrix(object) } else { x <- model.matrix(object, newframe) strata <- rep(1L, nrow(x)) offset <- 0 } } scale <- object$scale[strata] #center x if terms are to be computed if(type=='p' || (type == "terms" && intercept)) x <- sweep(x, 2, object$means) # # Grab the distribution # if (is.character(object$dist)) dd <- survreg.distributions[[object$dist]] else dd <- object$dist if (is.null(dd$itrans)) { itrans <- function(x) x # identity transformation dtrans <- function (x) 1 # derivative of the transformation } else { itrans <- dd$itrans dtrans <- dd$dtrans } if (!is.null(dd$dist)) dd <- survreg.distributions[[dd$dist]] # # Now, lay out the code one case at a time. # There is some repetition this way, but otherwise the code just gets # too complicated. # if (type=='lp' || type=='response') { if (missing(newdata)) { pred <- object$linear.predictors # names(pred) <- names(object$residuals) } else pred <- drop(x %*% coef) + offset if (se.fit) se <- sqrt(diag(x %*% vv %*% t(x))) if (type=='response') { pred <- itrans(pred) if (se.fit) se <- se/ dtrans(pred) } } else if (type=='quantile' || type=='uquantile') { if (missing(newdata)) pred <- object$linear.predictors else pred <- x %*% coef # "pred" is the mean of the distribution, # now add quantiles and then invert qq <- dd$quantile(p, object$parm) if (length(qq)==1 || length(pred)==1) { pred <- pred + qq*scale if (se.fit && fixedscale) { var <- ((x %*% vv) * x) %*% rep(1., ncol(x)) se <- rep(sqrt(drop(var)), length(qq)) } else if (se.fit) { x.strata <- outer(strata, 1:nstrata, function(x,y) 1*(x==y)) se <- matrix(0, ncol=length(qq), nrow=nrow(x)) for (i in 1:(length(qq))) { temp <- cbind(x, (qq[i]*scale)* x.strata) var <- ((temp %*% object$var) *temp) %*% rep(1, ncol(temp)) se[,i] <- sqrt(drop(var)) } se <- drop(se) } } else { pred <- c(pred) + outer(scale, qq) if (se.fit && fixedscale) { var <- ((x %*% vv) * x) %*% rep(1., ncol(x)) if (length(qq) >1) { se <- rep(sqrt(drop(var)), length(qq)) se <- matrix(se, ncol=length(qq)) } else se <- sqrt(drop(var)) } else if (se.fit) { x.strata <- outer(strata, 1:nstrata, function(x,y) 1*(x==y)) se <- pred nc <- rep(1., ncol(object$var)) for (i in 1:length(qq)) { temp <- cbind(x, (qq[i]*scale)*x.strata) var <- ((temp %*% object$var)* temp) %*% nc se[,i] <- sqrt(drop(var)) } se <- drop(se) } } pred <- drop(pred) if (type == 'quantile') { pred <- itrans(pred) if (se.fit) se <- se/dtrans(pred) } } else { #terms if (is.R()) { # In S we can use Build.terms, in R we have to do it ourselves asgn <- attrassign(x,Terms) hasintercept<-attr(Terms,"intercept")>0 if (hasintercept) asgn$"(Intercept)"<-NULL nterms<-length(asgn) pred<-matrix(ncol=nterms,nrow=NROW(x)) dimnames(pred)<-list(rownames(x),names(asgn)) if (se.fit){ se<-matrix(ncol=nterms,nrow=NROW(x)) dimnames(se)<-list(rownames(x),names(asgn)) R<-object$var ip <- double(NROW(x)) } for (i in 1:nterms){ ii<-asgn[[i]] pred[,i]<-x[,ii,drop=FALSE]%*%(coef[ii]) if (se.fit){ for(j in (1:NROW(x))){ xi<-x[j,ii,drop=FALSE]*(coef[ii]) vci<-R[ii,ii] se[j,i]<-sqrt(sum(xi%*% vci %*%t( xi))) } } } if (!is.null(terms)){ pred<-pred[,terms,drop=FALSE] if (se.fit) se<-se[,terms,drop=FALSE] } if (hasintercept) const <- coef(object)['(Intercept'] else const <- 0 } # Splus code, commented out to stop a warning from R CMD check # else { # # Splus: use Build.terms to do the work # asgn <- attr(x, 'assign') # attr(x, 'constant') <- object$means # terms <- match.arg(Terms, labels.lm(object)) # asgn <- asgn[terms] # # if (se.fit) { # temp <- Build.terms(x, coef, vv, asgn, FALSE) # pred <- temp$fit # se <- temp$se.fit # } # else pred<- Build.terms(x, coef, NULL, asgn, FALSE) # const<- attr(pred, 'constant') # } } #Expand out the missing values in the result # if (!is.null(na.action.used)) { pred <- naresid(na.action.used, pred) if(se.fit) se <- naresid(na.action.used, se) } if (se.fit) list(fit=pred, se.fit=se) else pred } survival/R/print.survfit.S0000644000176000001440000002231612267746072015360 0ustar ripleyusersprint.survfit <- function(x, scale=1, digits = max(options()$digits - 4, 3), print.rmean = getOption('survfit.print.rmean'), rmean = getOption('survfit.rmean'), ...) { if (inherits(x, "survfitms")) { x$surv <- 1- x$prev if (is.matrix(x$surv)) dimnames(x$surv) <- list(NULL, x$states) if (!is.null(x$lower)) { x$lower <- 1- x$lower x$upper <- 1- x$upper } } if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(" ", naprint(omit), "\n") savedig <- options(digits=digits) on.exit(options(savedig)) # The print.rmean option is depreciated, with the more general # rmean option taking its place. But if someone specifically # uses print.rmean in the call, or has it as an option without # the rmean option, listen to them. if (!missing(print.rmean) && is.logical(print.rmean) && missing(rmean)) { if (print.rmean) rmean <- 'common' else rmean <- 'none' } else { if (is.null(rmean)) { if (is.logical(print.rmean)) { if (print.rmean) rmean <- 'common' else rmean <- 'none' } else rmean <- 'none' #no option set } # Check validity: it can be numeric or character if (is.numeric(rmean)) { if (is.null(x$start.time)) { if (rmean < min(x$time)) stop("Truncation point for the mean is < smallest survival") } else if (rmean < x$start.time) stop("Truncation point for the mean is < smallest survival") } else { rmean <- match.arg(rmean, c('none', 'common', 'individual')) if (length(rmean)==0) stop("Invalid value for rmean option") } } temp <- survmean(x, scale=scale, rmean) print(temp$matrix) if (rmean != 'none') { if (rmean == 'individual') cat(" * restricted mean with variable upper limit\n") else cat(" * restricted mean with upper limit = ", format(temp$end.time[1]), "\n") } invisible(x) } # # The function that does all of the actual work -- output is a matrix # Used by both print.survfit and summary.survfit # survmean <- function(x, scale=1, rmean) { # The starting point for the integration of the AUC if (!is.null(x$start.time)) start.time <- x$start.time else start.time <- min(0, x$time) # # The function below is called once for each line of output, # i.e., once per curve. It creates the line of output # pfun <- function(nused, time, surv, n.risk, n.event, lower, upper, start.time, end.time) { # # Start by defining a small utility function # Multiple times, we need to find the x corresponding to the first # y that is <.5. (The y's are in decreasing order, but may have # duplicates). # Nuisance 1: if one of the y's is exactly .5, we want the mean of # the corresponding x and the first x for which y<.5. We need to # use the equivalent of all.equal to check for a .5 however: # survfit(Surv(1:100)~1) gives a value of .5 + 1.1e-16 due to # roundoff error. # Nuisance 2: there may by an NA in the y's # Nuisance 3: if no y's are <=.5, then we should return NA # Nuisance 4: the obs (or many) after the .5 may be censored, giving # a stretch of values = .5 +- epsilon # minmin <- function(y, x) { tolerance <- .Machine$double.eps^.5 #same as used in all.equal() keep <- (!is.na(y) & y <(.5 + tolerance)) if (!any(keep)) NA else { x <- x[keep] y <- y[keep] if (abs(y[1]-.5) 1 Y/N # Repeat the code, with minor variations, for each one if (is.null(x$strata)) { if (rmean=='none') end.time <- NA else if (is.numeric(rmean)) end.time <- rmean else end.time <- max(x$time) if (is.matrix(surv)) { out <- matrix(0, ncol(surv), ncols) for (i in 1:ncol(surv)) { if (is.null(x$conf.int)) out[i,] <- pfun(x$n, stime, surv[,i], x$n.risk, x$n.event, NULL, NULL, start.time, end.time) else out[i,] <- pfun(x$n, stime, surv[,i], x$n.risk, x$n.event, x$lower[,i], x$upper[,i], start.time, end.time) } dimnames(out) <- list(dimnames(surv)[[2]], plab) } else { out <- matrix(pfun(x$n, stime, surv, x$n.risk, x$n.event, x$lower, x$upper, start.time, end.time), nrow=1) dimnames(out) <- list(NULL, plab) } } else { #strata case nstrat <- length(x$strata) stemp <- rep(1:nstrat,x$strata) # the index vector for strata1, 2, etc last.time <- (rev(x$time))[match(1:nstrat, rev(stemp))] if (rmean=='none') end.time <- rep(NA, nstrat) else if (is.numeric(rmean)) end.time <- rep(rmean, nstrat) else if (rmean== 'common') end.time <- rep(median(last.time), nstrat) else end.time <- last.time if (is.matrix(surv)) { ns <- ncol(surv) out <- matrix(0, nstrat*ns, ncols) if (is.null(dimnames(surv)[[2]])) dimnames(out) <- list(rep(names(x$strata), rep(ns,nstrat)), plab) else { cname <- outer(dimnames(surv)[[2]], names(x$strata), paste, sep=", ") dimnames(out) <- list(c(cname), plab) } k <- 0 for (i in 1:nstrat) { who <- (stemp==i) for (j in 1:ns) { k <- k+1 if (is.null(x$lower)) out[k,] <- pfun(x$n[i], stime[who], surv[who,j], x$n.risk[who], x$n.event[who], NULL, NULL, start.time, end.time[i]) else out[k,] <- pfun(x$n[i], stime[who], surv[who,j], x$n.risk[who], x$n.event[who], x$lower[who,j], x$upper[who,j], start.time, end.time[i]) } } } else { #non matrix case out <- matrix(0, nstrat, ncols) dimnames(out) <- list(names(x$strata), plab) for (i in 1:nstrat) { who <- (stemp==i) if (is.null(x$lower)) out[i,] <- pfun(x$n[i], stime[who], surv[who], x$n.risk[who], x$n.event[who], NULL, NULL, start.time, end.time[i]) else out[i,] <- pfun(x$n[i], stime[who], surv[who], x$n.risk[who], x$n.event[who], x$lower[who], x$upper[who], start.time, end.time[i]) } } } if (is.null(x$lower)) out <- out[,1:7, drop=F] #toss away the limits if (rmean=='none') out <- out[,-(5:6), drop=F] #toss away the mean & sem list(matrix=out[,,drop=T], end.time=end.time) } survival/R/predict.coxph.R0000644000176000001440000003241312267746077015300 0ustar ripleyusers# Automatically generated from all.nw using noweb predict.coxph <- function(object, newdata, type=c("lp", "risk", "expected", "terms"), se.fit=FALSE, na.action=na.pass, terms=names(object$assign), collapse, reference=c("strata", "sample"), ...) { if (!inherits(object, 'coxph')) stop("Primary argument much be a coxph object") Call <- match.call() type <-match.arg(type) n <- object$n Terms <- object$terms if (!missing(terms)) { if (is.numeric(terms)) { if (any(terms != floor(terms) | terms > length(object$assign) | terms <1)) stop("Invalid terms argument") } else if (any(is.na(match(terms, names(object$assign))))) stop("a name given in the terms argument not found in the model") } # I will never need the cluster argument, if present delete it. # Terms2 are terms I need for the newdata (if present), y is only # needed there if type == 'expected' if (length(attr(Terms, 'specials')$cluster)) { temp <- untangle.specials(Terms, 'cluster', 1) Terms <- object$terms[-temp$terms] } else Terms <- object$terms if (type != 'expected') Terms2 <- delete.response(Terms) else Terms2 <- Terms has.strata <- !is.null(attr(Terms, 'specials')$strata) has.offset <- !is.null(attr(Terms, 'offset')) has.weights <- any(names(object$call) == 'weights') na.action.used <- object$na.action n <- length(object$residuals) if (missing(reference) && type=="terms") reference <- "sample" else reference <- match.arg(reference) have.mf <- FALSE if (type == 'expected') { y <- object[['y']] if (is.null(y)) { # very rare case mf <- model.frame(object) y <- model.extract(mf, 'response') have.mf <- TRUE #for the logic a few lines below, avoid double work } } if (se.fit || type=='terms' || (!missing(newdata) && type=="expected") || (has.strata && (reference=="strata") || type=="expected")) { use.x <- TRUE if (is.null(object[['x']]) || has.weights || has.offset || (has.strata && is.null(object$strata))) { # I need the original model frame if (!have.mf) mf <- model.frame(object) if (nrow(mf) != n) stop("Data is not the same size as it was in the original fit") x <- model.matrix(object, data=mf) if (has.strata) { if (!is.null(object$strata)) oldstrat <- object$strata else { stemp <- untangle.specials(Terms, 'strata') if (length(stemp$vars)==1) oldstrat <- mf[[stemp$vars]] else oldstrat <- strata(mf[,stemp$vars], shortlabel=TRUE) } } else oldstrat <- rep(0L, n) weights <- model.weights(mf) if (is.null(weights)) weights <- rep(1.0, n) offset <- model.offset(mf) if (is.null(offset)) offset <- 0 } else { x <- object[['x']] if (has.strata) oldstrat <- object$strata else oldstrat <- rep(0L, n) weights <- rep(1.,n) offset <- 0 } } else { # I won't need strata in this case either if (has.strata) { stemp <- untangle.specials(Terms, 'strata', 1) Terms2 <- Terms2[-stemp$terms] has.strata <- FALSE #remaining routine never needs to look } oldstrat <- rep(0L, n) offset <- 0 use.x <- FALSE } if (!missing(newdata)) { use.x <- TRUE #we do use an X matrix later tcall <- Call[c(1, match(c("newdata", "collapse"), names(Call), nomatch=0))] names(tcall)[2] <- 'data' #rename newdata to data tcall$formula <- Terms2 #version with no response tcall$na.action <- na.action #always present, since there is a default tcall[[1]] <- as.name('model.frame') # change the function called if (!is.null(attr(Terms, "specials")$strata) && !has.strata) { temp.lev <- object$xlevels temp.lev[[stemp$vars]] <- NULL tcall$xlev <- temp.lev } else tcall$xlev <- object$xlevels mf2 <- eval(tcall, parent.frame()) collapse <- model.extract(mf2, "collapse") n2 <- nrow(mf2) if (has.strata) { if (length(stemp$vars)==1) newstrat <- mf2[[stemp$vars]] else newstrat <- strata(mf2[,stemp$vars], shortlabel=TRUE) if (any(is.na(match(newstrat, oldstrat)))) stop("New data has a strata not found in the original model") else newstrat <- factor(newstrat, levels=levels(oldstrat)) #give it all if (length(stemp$terms)) newx <- model.matrix(Terms2[-stemp$terms], mf2, contr=object$contrasts)[,-1,drop=FALSE] else newx <- model.matrix(Terms2, mf2, contr=object$contrasts)[,-1,drop=FALSE] } else { newx <- model.matrix(Terms2, mf2, contr=object$contrasts)[,-1,drop=FALSE] newstrat <- rep(0L, nrow(mf2)) } newoffset <- model.offset(mf2) if (is.null(newoffset)) newoffset <- 0 if (type== 'expected') { newy <- model.response(mf2) if (attr(newy, 'type') != attr(y, 'type')) stop("New data has a different survival type than the model") } na.action.used <- attr(mf2, 'na.action') } else n2 <- n if (type=="expected") { if (missing(newdata)) pred <- y[,ncol(y)] - object$residuals if (!missing(newdata) || se.fit) { ustrata <- unique(oldstrat) risk <- exp(object$linear.predictors) x <- x - rep(object$means, each=nrow(x)) #subtract from each column if (missing(newdata)) #se.fit must be true se <- double(n) else { pred <- se <- double(nrow(mf2)) newx <- newx - rep(object$means, each=nrow(newx)) newrisk <- c(exp(newx %*% object$coef)) } survtype<- ifelse(object$method=='efron', 3,2) for (i in ustrata) { indx <- which(oldstrat == i) afit <- agsurv(y[indx,,drop=F], x[indx,,drop=F], weights[indx], risk[indx], survtype, survtype) afit.n <- length(afit$time) if (missing(newdata)) { # In this case we need se.fit, nothing else j1 <- approx(afit$time, 1:afit.n, y[indx,1], method='constant', f=0, yleft=0, yright=afit.n)$y chaz <- c(0, afit$cumhaz)[j1 +1] varh <- c(0, cumsum(afit$varhaz))[j1 +1] xbar <- rbind(0, afit$xbar)[j1+1,,drop=F] if (ncol(y)==2) { dt <- (chaz * x[indx,]) - xbar se[indx] <- sqrt(varh + rowSums((dt %*% object$var) *dt)) * risk[indx] } else { j2 <- approx(afit$time, 1:afit.n, y[indx,2], method='constant', f=0, yleft=0, yright=afit.n)$y chaz2 <- c(0, afit$cumhaz)[j2 +1] varh2 <- c(0, cumsum(afit$varhaz))[j2 +1] xbar2 <- rbind(0, afit$xbar)[j2+1,,drop=F] dt <- (chaz * x[indx,]) - xbar v1 <- varh + rowSums((dt %*% object$var) *dt) dt2 <- (chaz2 * x[indx,]) - xbar2 v2 <- varh2 + rowSums((dt2 %*% object$var) *dt2) se[indx] <- sqrt(v2-v1)* risk[indx] } } else { #there is new data use.x <- TRUE indx2 <- which(newstrat == i) j1 <- approx(afit$time, 1:afit.n, newy[indx2,1], method='constant', f=0, yleft=0, yright=afit.n)$y chaz <-c(0, afit$cumhaz)[j1+1] pred[indx2] <- chaz * newrisk[indx2] if (se.fit) { varh <- c(0, cumsum(afit$varhaz))[j1+1] xbar <- rbind(0, afit$xbar)[j1+1,,drop=F] } if (ncol(y)==2) { if (se.fit) { dt <- (chaz * newx[indx2,]) - xbar se[indx2] <- sqrt(varh + rowSums((dt %*% object$var) *dt)) * newrisk[indx2] } } else { j2 <- approx(afit$time, 1:afit.n, newy[indx2,2], method='constant', f=0, yleft=0, yright=afit.n)$y chaz2 <- approx(-afit$time, afit$cumhaz, -newy[indx2,2], method="constant", rule=2, f=0)$y chaz2 <-c(0, afit$cumhaz)[j2+1] pred[indx2] <- (chaz2 - chaz) * newrisk[indx2] if (se.fit) { varh2 <- c(0, cumsum(afit$varhaz))[j1+1] xbar2 <- rbind(0, afit$xbar)[j1+1,,drop=F] dt <- (chaz * newx[indx2,]) - xbar dt2 <- (chaz2 * newx[indx2,]) - xbar2 v2 <- varh2 + rowSums((dt2 %*% object$var) *dt2) v1 <- varh + rowSums((dt %*% object$var) *dt) se[indx2] <- sqrt(v2-v1)* risk[indx2] } } } } } } else { if (is.null(object$coefficients)) coef<-numeric(0) else { # Replace any NA coefs with 0, to stop NA in the linear predictor coef <- ifelse(is.na(object$coefficients), 0, object$coefficients) } if (missing(newdata)) { offset <- offset - mean(offset) if (has.strata && reference=="strata") { # We can't use as.integer(oldstrat) as an index, if oldstrat is # a factor variable with unrepresented levels as.integer could # give 1,2,5 for instance. xmeans <- rowsum(x*weights, oldstrat)/c(rowsum(weights, oldstrat)) newx <- x - xmeans[match(oldstrat,row.names(xmeans)),] } else if (use.x) newx <- x - rep(object$means, each=nrow(x)) } else { offset <- newoffset - mean(offset) if (has.strata && reference=="strata") { xmeans <- rowsum(x*weights, oldstrat)/c(rowsum(weights, oldstrat)) newx <- newx - xmeans[match(newstrat, row.names(xmeans)),] } else newx <- newx - rep(object$means, each=nrow(newx)) } if (type=='lp' || type=='risk') { if (use.x) pred <- drop(newx %*% coef) + offset else pred <- object$linear.predictors if (se.fit) se <- sqrt(rowSums((newx %*% object$var) *newx)) if (type=='risk') { pred <- exp(pred) if (se.fit) se <- se * sqrt(pred) # standard Taylor series approx } } else if (type=='terms') { asgn <- object$assign nterms<-length(asgn) pred<-matrix(ncol=nterms,nrow=NROW(newx)) dimnames(pred) <- list(rownames(newx), names(asgn)) if (se.fit) se <- pred for (i in 1:nterms) { tt <- asgn[[i]] tt <- tt[!is.na(object$coefficients[tt])] xtt <- newx[,tt, drop=F] pred[,i] <- xtt %*% object$coefficient[tt] if (se.fit) se[,i] <- sqrt(rowSums((xtt %*% object$var[tt,tt]) *xtt)) } pred <- pred[,terms, drop=F] if (se.fit) se <- se[,terms, drop=F] attr(pred, 'constant') <- sum(object$coefficients*object$means, na.rm=T) } } if (type != 'terms') { pred <- drop(pred) if (se.fit) se <- drop(se) } if (!is.null(na.action.used)) { pred <- napredict(na.action.used, pred) if (is.matrix(pred)) n <- nrow(pred) else n <- length(pred) if(se.fit) se <- napredict(na.action.used, se) } if (!missing(collapse) && !is.null(collapse)) { if (length(collapse) != n2) stop("Collapse vector is the wrong length") pred <- rowsum(pred, collapse) # in R, rowsum is a matrix, always if (se.fit) se <- sqrt(rowsum(se^2, collapse)) if (type != 'terms') { pred <- drop(pred) if (se.fit) se <- drop(se) } } if (se.fit) list(fit=pred, se.fit=se) else pred } survival/R/anova.coxmelist.R0000644000176000001440000000554412267746072015640 0ustar ripleyusers# This is usually called from anova.coxph or anova.coxme, no by a user # It is included as part of the survival library because the anova list # may contain both coxph and coxme objects; if the first arg of a list is a # coxph object then this will be called via anova.coxph anova.coxmelist <- function (object, test = 'Chisq' ,...) { if (!is.list(object)) stop("First argument must be a list") is.coxph <- sapply(object, function(x) inherits(x, "coxph")) is.coxme <- sapply(object, function(x) inherits(x, "coxme")) if (!all(is.coxph | is.coxme)) stop("Argument must be a list of coxme or coxph models") # Be fussy: all the models should have the same response variable # and the same number of events and subjects. # So that the coxme library doesn't need to be loaded, we don't make # use of the formula.coxme method. (Otherwise we'd get a circular # dependency that survival needs coxme which needs survival which...) rfun <- function(x) if (inherits(x, "coxph")) formula(x) else x$call$formula responses <- as.character(sapply(object, function(x) deparse(rfun(x)[[2]]))) sameresp <- (responses == responses[1]) if (!all(sameresp)) { object <- object[sameresp] warning(paste("Models with response", deparse(responses[!sameresp]), "removed because response differs from", "model 1")) } ns <- sapply(object, function(x) if (inherits(x, "coxph")) c(x$nevent, x$n) else x$n) # Will be a two row matrix with deaths and total n if (any(ns[2,] != ns[2,1])) stop("models do not have the same size of dataset") if (any(ns[1,] != ns[1,1])) stop("models do not have the same number of events") nmodels <- length(object) if (nmodels == 1) # only one model remains return(anova(object[[1]], test = test)) loglik <- unlist(lapply(object, function(x) x$loglik[2])) dffun <- function(x) { if (inherits(x, "coxph")) sum(!is.na(coef(x))) else x$df[1] } df <- sapply(object,dffun) table <- data.frame(loglik, Chisq= c(NA, abs(2*diff(loglik))), Df= abs(c(NA, diff(df)))) tfun <- function(x) paste(deparse(x$call$formula[-2]), collapse=' ') variables <- lapply(object, tfun) dimnames(table) <- list(1:nmodels, c("loglik", "Chisq", "Df")) title <- paste("Analysis of Deviance Table\n Cox model: response is ", responses[1]) topnote <- paste(" Model ", format(1:nmodels), ": ", variables, sep = "", collapse = "\n") if (!is.null(test)) { table[['P(>|Chi|)']] <- 1-pchisq(table$Chisq, table$Df) } if (is.R()) structure(table, heading = c(title, topnote), class = c("anova", "data.frame")) else structure(table, heading = c(title, topnote), class = "anova") } survival/R/model.matrix.coxph.R0000644000176000001440000002003512267746075016244 0ustar ripleyusers# Automatically generated from all.nw using noweb # In internal use "data" will often be an already derived model frame. # We detect this via it having a terms attribute. model.matrix.coxph <- function(object, data=NULL, contrast.arg=object$contrasts, ...) { # # If the object has an "x" component, return it, unless a new # data set is given if (is.null(data) && !is.null(object[['x']])) return(object[['x']]) #don't match "xlevels" Terms <- delete.response(object$terms) if (is.null(data)) mf <- model.frame(object) else { if (is.null(attr(data, "terms"))) mf <- model.frame(Terms, data, xlev=object$xlevels) else mf <- data #assume "data" is already a model frame } cluster <- attr(Terms, "specials")$cluster if (length(cluster)) { temp <- untangle.specials(Terms, "cluster") dropterms <- temp$terms } else dropterms <- NULL attr(Terms, "intercept") <- TRUE adrop <- 0 #levels of "assign" to be dropped; 0= intercept stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars) > 0) { #if there is a strata statement hasinteractions <- FALSE for (i in stemp$vars) { #multiple strata terms are allowed # The factors att has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- c(dropterms, stemp$terms) else adrop <- c(0, match(stemp$var, colnames(attr(Terms, 'factors')))) } if (length(dropterms)) { temppred <- attr(terms, "predvars") Terms2 <- Terms[ -dropterms] if (!is.null(temppred)) { # subscripting a Terms object currently drops predvars, in error attr(Terms2, "predvars") <- temppred[-(1+dropterms)] # "Call" object } X <- model.matrix(Terms2, mf, constrasts=contrast.arg) # we want to number the terms wrt the original model matrix # Do not forget the intercept, which will be a zero renumber <- match(colnames(attr(Terms2, "factors")), colnames(attr(Terms, "factors"))) attr(X, "assign") <- c(0, renumber)[1+attr(X, "assign")] } else X <- model.matrix(Terms, mf, contrasts=contrast.arg) # drop the intercept after the fact, and also drop strata if necessary Xatt <- attributes(X) xdrop <- Xatt$assign %in% adrop #columns to drop (always the intercept) X <- X[, !xdrop, drop=FALSE] attr(X, "assign") <- Xatt$assign[!xdrop] #if (any(adrop>0)) attr(X, "contrasts") <- Xatt$contrasts[-adrop] #else attr(X, "contrasts") <- Xatt$contrasts attr(X, "contrasts") <- Xatt$contrasts X } model.frame.coxph <- function(formula, ...) { dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset", "weights"), names(dots), 0)] # If nothing has changed and the coxph object had a model component, # simply return it. if (length(nargs) ==0 && !is.null(formula$model)) return(formula$model) else { # Rebuild the original call to model.frame Terms <- terms(formula) fcall <- formula$call indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(fcall), nomatch=0) if (indx[1] ==0) stop("The coxph call is missing a formula!") temp <- fcall[c(1,indx)] # only keep the arguments we wanted temp[[1]] <- as.name('model.frame') # change the function called temp$xlev <- formula$xlevels temp$formula <- Terms #keep the predvars attribute # Now, any arguments that were on this call overtake the ones that # were in the original call. if (length(nargs) >0) temp[names(nargs)] <- nargs # The documentation for model.frame implies that the environment arg # to eval will be ignored, but if we omit it there is a problem. if (is.null(environment(formula$terms))) mf <- eval(temp, parent.frame()) else mf <- eval(temp, environment(formula$terms), parent.frame()) if (!is.null(attr(formula$terms, "dataClasses"))) .checkMFClasses(attr(formula$terms, "dataClasses"), mf) if (!is.null(attr(Terms, "specials")$tt)) { # Do time transform tt <- eval(formula$call$tt) Y <- model.response(mf) strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) strats <- as.numeric(strata.keep) } timetrans <- untangle.specials(Terms, 'tt') ntrans <- length(timetrans$terms) if (is.null(tt)) { tt <- function(x, time, riskset, weights){ #default to O'Brien's logit rank obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } } if (is.function(tt)) tt <- list(tt) #single function becomes a list if (is.list(tt)) { if (any(!sapply(tt, is.function))) stop("The tt argument must contain function or list of functions") if (length(tt) != ntrans) { if (length(tt) ==1) { temp <- vector("list", ntrans) for (i in 1:ntrans) temp[[i]] <- tt[[1]] tt <- temp } else stop("Wrong length for tt argument") } } else stop("The tt argument must contain a function or list of functions") if (ncol(Y)==2) { if (length(strats)==0) { sorted <- order(-Y[,1], Y[,2]) newstrat <- rep.int(0L, nrow(Y)) newstrat[1] <- 1L } else { sorted <- order(strats, -Y[,1], Y[,2]) #newstrat marks the first obs of each strata newstrat <- as.integer(c(1, 1*(diff(strats[sorted])!=0))) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount1, Y[sorted,], as.integer(newstrat)) tindex <- sorted[counts$index] } else { if (length(strats)==0) { sort.end <- order(-Y[,2], Y[,3]) sort.start<- order(-Y[,1]) newstrat <- c(1L, rep(0, nrow(Y) -1)) } else { sort.end <- order(strats, -Y[,2], Y[,3]) sort.start<- order(strats, -Y[,1]) newstrat <- c(1L, as.integer(diff(strats[sort.end])!=0)) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount2, Y, as.integer(sort.start -1L), as.integer(sort.end -1L), as.integer(newstrat)) tindex <- counts$index } mf <- mf[tindex,] Y <- Surv(rep(counts$time, counts$nrisk), counts$status) type <- 'right' # new Y is right censored, even if the old was (start, stop] strats <- rep(1:length(counts$nrisk), counts$nrisk) weights <- model.weights(mf) for (i in 1:ntrans) mf[[timetrans$var[i]]] <- (tt[[i]])(mf[[timetrans$var[i]]], Y[,1], strats, weights) mf[[".strata."]] <- strats } mf } } survival/R/print.survreg.S0000644000176000001440000000252612267746072015354 0ustar ripleyusers# $Id: print.survreg.S 11166 2008-11-24 22:10:34Z therneau $ print.survreg <- function(x, ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) } if (!is.null(x$fail)) { cat(" Survreg failed.", x$fail, "\n") return(invisible(x)) } coef <- x$coef if(any(nas <- is.na(coef))) { if(is.null(names(coef))) names(coef) <- paste("b", 1:length(coef), sep = "") cat("\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") } else cat("\nCoefficients:\n") print(coef, ...) if (nrow(x$var)==length(coef)) cat("\nScale fixed at",format(x$scale),"\n") else if (length(x$scale)==1) cat ("\nScale=", format(x$scale), "\n") else { cat("\nScale:\n") print(x$scale, ...) } nobs <- length(x$linear) chi <- 2*diff(x$loglik) df <- sum(x$df) - x$idf # The sum is for penalized models cat("\nLoglik(model)=", format(round(x$loglik[2],1)), " Loglik(intercept only)=", format(round(x$loglik[1],1))) if (df > 0) cat("\n\tChisq=", format(round(chi,2)), "on", round(df,1), "degrees of freedom, p=", format(signif(1-pchisq(chi, df),2)), "\n") else cat("\n") omit <- x$na.action if (length(omit)) cat("n=", nobs, " (", naprint(omit), ")\n", sep="") else cat("n=", nobs, "\n") invisible(x) } survival/R/coxph.detail.S0000644000176000001440000000617112267746072015106 0ustar ripleyuserscoxph.detail <- function(object, riskmat=FALSE) { method <- object$method if (method!='breslow' && method!='efron') stop(paste("Detailed output is not available for the", method, "method")) n <- length(object$residuals) rr <- object$residuals weights <- object$weights #always present if there are weights x <- object[['x']] y <- object$y strat <- object$strata Terms <- object$terms if (!inherits(Terms, 'terms')) stop("invalid terms component of object") strats <- attr(Terms, "specials")$strata if (is.null(y) || is.null(x)) { mf <- model.frame(object) y <- model.response(mf) x <- model.matrix(object, data=mf) if (length(strats)) { stemp <- untangle.specials(object$terms, 'strata', 1) if (length(stemp$vars)==1) strat <- mf[[stemp$vars]] else strat <- strata(mf[,stemp$vars], shortlabel=TRUE) } } nvar <- ncol(x) if (ncol(y)==2) { mintime <- min(y[,1]) if (mintime < 0) y <- cbind( 2*mintime -1, y) else y <- cbind(-1,y) } if (is.null(strat)) { ord <- order(y[,2], -y[,3]) newstrat <- rep(0,n) } else { ord <- order(strat, y[,2], -y[,3]) newstrat <- c(diff(as.numeric(strat[ord]))!=0 ,1) } newstrat[n] <- 1 # sort the data x <- x[ord,] y <- y[ord,] storage.mode(y) <- 'double' score <- exp(object$linear.predictors)[ord] if (is.null(weights)) weights <- rep(1,n) else weights <- weights[ord] ndeath <- sum(y[,3]) if (riskmat) { rmat <- integer(ndeath*n) } else rmat <- as.integer(1) ff <- .C(Ccoxdetail, as.integer(n), as.integer(nvar), ndeath= as.integer(ndeath), y = y, as.double(x), index = as.integer(newstrat), event2 =as.double(score), weights = as.double(weights), means= c(method=='efron', double(ndeath*nvar-1)), u = double(ndeath*nvar), i = double(ndeath*nvar*nvar), rmat = rmat, nrisk2 = double(ndeath), double(nvar*(3 + 2*nvar))) keep <- 1:ff$ndeath vname<- dimnames(x)[[2]] time <- y[ff$index[keep],2] names(time) <- NULL means<- (matrix(ff$means,ndeath, nvar))[keep,] score<- matrix(ff$u, ndeath, nvar)[keep,] var <- array(ff$i, c(nvar, nvar, ndeath))[,,keep] if (riskmat) { rmat <- matrix(0, n, ff$ndeath) rmat[ord,] <- ff$rmat[1:(n*ff$ndeath)] # in the order of orig data dimnames(rmat) <- list(NULL, time) } if (nvar>1) { dimnames(means) <- list(time, vname) dimnames(score) <- list(time, vname) dimnames(var) <- list(vname, vname, time) } else { names(means) <- time names(score) <- time names(var) <- time } dimnames(ff$y) <- NULL temp <- list(time = time, means=means, nevent=ff$y[keep,1], nrisk = ff$y[keep,2], hazard= ff$y[keep,3], score= score, imat=var, varhaz=ff$weights[keep], y=y, x=x) if (length(strats)) temp$strata <- table((strat[ord])[ff$index[keep]]) if (riskmat) temp$riskmat <- rmat if (!all(weights==1)) { temp$weights <- weights temp$nevent.wt <- ff$event2[keep] temp$nrisk.wt <- ff$nrisk2[keep] } temp } survival/R/residuals.coxph.null.S0000644000176000001440000000053712267746072016610 0ustar ripleyusers# $Id $ residuals.coxph.null <- function(object, type=c("martingale", "deviance", "score", "schoenfeld"), collapse=FALSE, weighted=FALSE, ...) { type <- match.arg(type) if (type=='martingale' || type=='deviance') NextMethod() else stop(paste("\'", type, "\' residuals are not defined for a null model", sep="")) } survival/R/model.frame.survreg.R0000644000176000001440000000510712267746072016406 0ustar ripleyusersmodel.frame.survreg <- function (formula, ...) { dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset"), names(dots), 0)] if (length(nargs) || is.null(formula$model)) { fcall <- formula$call indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(fcall), nomatch = 0) if (indx[1] == 0) stop("The coxph call is missing a formula!") temp <- fcall[c(1, indx)] temp[[1]] <- as.name("model.frame") temp$xlev <- formula$xlevels if (length(nargs) > 0) temp[names(nargs)] <- nargs if (is.null(environment(formula$terms))) eval(temp, parent.frame()) else eval(temp, environment(formula$terms), parent.frame()) } else formula$model } # model.matrix.survreg <- function(object, data, ...) { if (missing(data) && !is.null(object[["x"]])) object[["x"]] else { Terms <- delete.response(object$terms) strats <- attr(Terms, "specials")$strata cluster<- attr(Terms, "specials")$cluster dropx <- NULL if (length(cluster)) { tempc <- untangle.specials(Terms, 'cluster', 1:10) dropx <- tempc$terms } if (length(strats)) { temp <- untangle.specials(Terms, 'strata', 1) dropx <- c(dropx, temp$terms) } if (length(dropx)) { newTerms <- Terms[-dropx] # R (version 2.7.1) adds intercept=T anytime you drop something attr(newTerms, 'intercept') <- attr(Terms, 'intercept') # The predvars attribute, if present, is lost when we # subscript. The attribute is a Call, so has one more element # than term wrt subscripting, i.e., the called function "list" if (!is.null(attr(terms, "predvars"))) attr(newTerms, "predvars") <- attr(terms, "predvars")[-(dropx+1)] } else newTerms <- Terms # Grab the model frame. By using "newterms" for a new data set, # we allow the new data to be missing things we don't need: y, # strata, and cluster. For the original data we can assume they # are present. if (missing(data)) mf <- model.frame(object, ...) else { if (is.null(attr(data, "terms"))) mf <- model.frame(newTerms, data, xlev=object$xlevels) else mf <- data #assume we were given a model frame } model.matrix(newTerms, mf, contrasts.arg= object$contrasts) } } survival/R/survreg.S0000644000176000001440000002315012267746072014215 0ustar ripleyusersif (!is.R()) setOldClass(c('survreg.penal', 'survreg')) survreg <- function(formula, data, weights, subset, na.action, dist='weibull', init=NULL, scale=0, control, parms=NULL, model=FALSE, x=FALSE, y=TRUE, robust=FALSE, score=FALSE, ...) { Call <- match.call() # save a copy of the call indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp[[1]] <- as.name('model.frame') # change the function called special <- c("strata", "cluster") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) if (is.R()) m <- eval(temp, parent.frame()) else m <- eval(temp, sys.parent()) Terms <- attr(m, 'terms') weights <- model.extract(m, 'weights') Y <- model.extract(m, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") strats <- attr(Terms, "specials")$strata cluster<- attr(Terms, "specials")$cluster dropx <- NULL if (length(cluster)) { if (missing(robust)) robust <- TRUE tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(m[,tempc$vars], shortlabel=TRUE) #allow multiples dropx <- tempc$terms } if (length(strats)) { temp <- untangle.specials(Terms, 'strata', 1) dropx <- c(dropx, temp$terms) if (length(temp$vars)==1) strata.keep <- m[[temp$vars]] else strata.keep <- strata(m[,temp$vars], shortlabel=TRUE) strata <- as.numeric(strata.keep) nstrata <- max(strata) } else { nstrata <- 1 strata <- 0 } if (length(dropx)) { newTerms <- Terms[-dropx] # R (version 2.7.1) adds intercept=T anytime you drop something if (is.R()) attr(newTerms, 'intercept') <- attr(Terms, 'intercept') } else newTerms <- Terms X <- model.matrix(newTerms, m) if (is.R()) { assign <- lapply(attrassign(X, newTerms)[-1], function(x) x-1) xlevels <- .getXlevels(newTerms, m) contr.save <- attr(X, 'contrasts') } else { assign <- lapply(attr(X, 'assign')[-1], function(x) x -1) xvars <- as.character(attr(newTerms, 'variables')) xvars <- xvars[-attr(newTerms, 'response')] if (length(xvars) >0) { xlevels <- lapply(m[xvars], levels) xlevels <- xlevels[!unlist(lapply(xlevels, is.null))] if(length(xlevels) == 0) xlevels <- NULL } else xlevels <- NULL contr.save <- attr(X, 'contrasts') } n <- nrow(X) nvar <- ncol(X) offset<- model.offset(m) # R returns NULL if no offset, Splus a zero if (length(offset)==0 || all(offset==0)) offset <- rep(0.,n) type <- attr(Y, "type") if (type== 'counting') stop ("Invalid survival type") # The user can either give a distribution name, in which the distribution # is found in the object survreg.distributions, or include a list object # of the same format as is found there. if (is.character(dist)) { # partial matching of names in [[ is on its way out in R, so # first use match.arg, e.g. turn 'exp' into 'exponential' dist <- match.arg(dist, names(survreg.distributions)) dlist <- survreg.distributions[[dist]] if (is.null(dlist)) stop(paste(dist, ": distribution not found")) } else if (is.list(dist)) dlist <- dist else stop("Invalid distribution object") # # Make sure it is legal # if (!survregDtest(dlist)) stop("Invalid distribution object") # If the distribution is a transformation of another, perform # said transform. # logcorrect <- 0 #correction to the loglik due to transformations if (!is.null(dlist$trans)) { tranfun <- dlist$trans exactsurv <- Y[,ncol(Y)] ==1 if (any(exactsurv)) { if (is.null(weights)) logcorrect <- sum(log(dlist$dtrans(Y[exactsurv, 1]))) else logcorrect <- sum(weights[exactsurv]*log(dlist$dtrans(Y[exactsurv, 1]))) } if (type=='interval') { if (any(Y[,3]==3)) Y <- cbind(tranfun(Y[,1:2]), Y[,3]) else Y <- cbind(tranfun(Y[,1]), Y[,3]) } else if (type=='left') Y <- cbind(tranfun(Y[,1]), 2-Y[,2]) else Y <- cbind(tranfun(Y[,1]), Y[,2]) if (!all(is.finite(Y))) stop("Invalid survival times for this distribution") } else { if (type=='left') Y[,2] <- 2- Y[,2] else if (type=='interval' && all(Y[,3]<3)) Y <- Y[,c(1,3)] } if (is.null(dlist$itrans)) itrans <- function(x) x else itrans <- dlist$itrans if (!is.null(dlist$scale)) { if (!missing(scale)) warning(paste(dlist$name, "has a fixed scale, user specified value ignored")) scale <- dlist$scale } if (!is.null(dlist$dist)) if (is.atomic(dlist$dist)) dlist <- survreg.distributions[[dlist$dist]] else dlist <- dlist$dist # check for parameters ptemp <- dlist$parms if (is.null(ptemp)) { if (!is.null(parms)) stop(paste(dlist$name, "distribution has no optional parameters")) } else { if (!is.numeric(ptemp)) stop("Default parameters must be a numeric vector") if (!missing(parms)) { temp <- unlist(parms) # just in case they gave a list object indx <- match(names(temp), names(ptemp)) if (any(is.na(indx))) stop("Invalid parameter names") ptemp[names(ptemp)] <- temp } parms <- ptemp } # An idea originally from Brian R: if the user gave a list of # control values, use it, but if they did not give an explicit control # argument assume that they mistakenly wrote control parameters as a # part of the "..." or other arguments if (missing(control)) control <- survreg.control(...) else control <- do.call('survreg.control', control) # The any() construction below is to catch a user that mistakenly # thinks that 'scale' can be used in a model with multiple strata, and # so provided a vector of scale values. # (A 'perhaps should be be added someday' feature). if (any(scale < 0)) stop("Invalid scale value") if (any(scale >0) && nstrata >1) stop("The scale argument is not valid with multiple strata") # Check for penalized terms pterms <- sapply(m, inherits, 'coxph.penalty') if (any(pterms)) { pattr <- lapply(m[pterms], attributes) # # the 'order' attribute has the same components as 'term.labels' # pterms always has 1 more (response), sometimes 2 (offset) # drop the extra parts from pterms temp <- c(attr(Terms, 'response'), attr(Terms, 'offset')) if (length(dropx)) temp <- c(temp, dropx+1) pterms <- pterms[-temp] temp <- match((names(pterms))[pterms], attr(Terms, 'term.labels')) ord <- attr(Terms, 'order')[temp] if (any(ord>1)) stop ('Penalty terms cannot be in an interaction') if (is.R()) assign <- attrassign(X, newTerms) else assign <- attr( X, 'assign') pcols <- assign[match(names(pterms[pterms]), names(assign))] fit <- survpenal.fit(X, Y, weights, offset, init=init, controlvals = control, dist= dlist, scale=scale, strata=strata, nstrat=nstrata, pcols, pattr, parms=parms, assign) } else fit <- survreg.fit(X, Y, weights, offset, init=init, controlvals=control, dist= dlist, scale=scale, nstrat=nstrata, strata, parms=parms) if (is.character(fit)) fit <- list(fail=fit) #error message else { if (scale==0) { nvar <- length(fit$coefficients) - nstrata fit$scale <- exp(fit$coefficients[-(1:nvar)]) if (nstrata==1) names(fit$scale) <- NULL else names(fit$scale) <- levels(strata.keep) fit$coefficients <- fit$coefficients[1:nvar] fit$idf <- 1 + nstrata } else { fit$scale <- scale fit$idf <- 1 } fit$loglik <- fit$loglik + logcorrect } if (!score) fit$score <- NULL #do not return the score vector fit$df.residual <- n - sum(fit$df) # fit$fitted.values <- itrans(fit$linear.predictors) fit$terms <- Terms fit$contrasts <- contr.save if (length(xlevels)) fit$xlevels <- xlevels fit$means <- apply(X,2, mean) fit$call <- Call fit$dist <- dist if (model) fit$model <- m if (x) fit$x <- X if (y) fit$y <- Y if (length(parms)) fit$parms <- parms # Do this before attaching the na.action, so that residuals() won't # reinsert missing values under na.exclude if (robust) { fit$naive.var <- fit$var if (!model) fit$model <- m #temporary addition, so resid doesn't # have to reconstruct if (length(cluster)) fit$var <- crossprod(rowsum(residuals.survreg(fit, 'dfbeta'), cluster)) else fit$var <- crossprod(residuals.survreg(fit, 'dfbeta')) if (!model) fit$model <- NULL # take it back out } na.action <- attr(m, "na.action") if (length(na.action)) fit$na.action <- na.action if (is.R()) { if (any(pterms)) class(fit) <- c('survreg.penal', 'survreg') else class(fit) <- 'survreg' } else { if (any(pterms)) oldClass(fit) <- 'survreg.penal' else oldClass(fit) <- 'survreg' } fit } survival/R/summary.coxph.penal.S0000644000176000001440000000757512267746072016450 0ustar ripleyuserssummary.coxph.penal <- function(object, conf.int = 0.95, scale=1, terms=FALSE, maxlabel=25, ...) { beta <- object$coefficients if (length(beta)==0 && length(object$frail)==0) stop("Penalized summary function can't be used for a null model") if (length(beta) > 0) { #has non-penalized coefs nacoef <- !(is.na(beta)) #non-missing coefs beta2 <- beta[nacoef] if(is.null(beta2) | is.null(object$var)) stop("Input is not valid") se <- sqrt(diag(object$var)) } # # Map terms to special print functions, and the list of iteration histories # pterms <- object$pterms nterms <- length(pterms) npenal <- sum(pterms>0) print.map <- rep(0,nterms) if (!is.null(object$printfun)) { temp <- unlist(lapply(object$printfun, is.null)) #which ones are missing print.map[pterms>0] <- (1:npenal) * (!temp) } # Tedious, but build up the coef matrix a term at a time print1 <- NULL pname1 <- NULL if (is.null(object$assign2)) alist <- object$assign[-1] else alist <- object$assign2 print2 <- NULL for (i in 1:nterms) { kk <- alist[[i]] if (print.map[i] >0) { j <- print.map[i] if (pterms[i]==2) temp <- (object$printfun[[j]])(object$frail, object$fvar, , object$df[i], object$history[[j]]) else temp <- (object$printfun[[j]])(beta[kk], object$var[kk,kk], object$var2[kk,kk], object$df[i], object$history[[j]]) print1 <- rbind(print1, temp$coef) if (is.matrix(temp$coef)) { xx <- dimnames(temp$coef)[[1]] if (is.null(xx)) xx <- rep(names(pterms)[i], nrow(temp$coef)) else xx <- paste(names(pterms)[i], xx, sep=', ') pname1 <- c(pname1, xx) } else pname1 <- c(pname1, names(pterms)[i]) print2 <- c(print2, temp$history) } else if (terms && length(kk)>1) { pname1 <- c(pname1, names(pterms)[i]) temp <- coxph.wtest(object$var[kk,kk], beta[kk])$test print1 <- rbind(print1, c(NA, NA, NA, temp, object$df[i], 1-pchisq(temp, 1))) } else { pname1 <- c(pname1, names(beta)[kk]) tempe<- (diag(object$var))[kk] temp <- beta[kk]^2/ tempe print1 <- rbind(print1, cbind(beta[kk], sqrt(tempe), sqrt((diag(object$var2))[kk]), temp, 1, 1-pchisq(temp, 1))) } } dimnames(print1) <- list(substring(pname1,1, maxlabel), c("coef","se(coef)", "se2", "Chisq","DF","p")) rval <- object[match(c("call", "fail", "na.action", "n", "nevent", "loglik", "iter", "df"), names(object), nomatch=0)] rval$coefficients <- print1 rval$print2 <- print2 if(conf.int & length(beta) >0 ) { z <- qnorm((1 + conf.int)/2, 0, 1) beta <- beta * scale se <- se * scale tmp <- cbind(exp(beta), exp(-beta), exp(beta - z * se), exp(beta + z * se)) dimnames(tmp) <- list(substring(names(beta),1, maxlabel), c("exp(coef)", "exp(-coef)", paste("lower .", round(100 * conf.int, 2), sep = ""), paste("upper .", round(100 * conf.int, 2), sep = ""))) rval$conf.int <- tmp } df <- sum(object$df) logtest <- -2 * (object$loglik[1] - object$loglik[2]) rval$logtest <- c(test = logtest, df=df, pvalue= pchisq(logtest,df, lower.tail=FALSE)) if (!is.null(object$waldtest)) rval$waldtest <- c(test= object$wald.test, df=df, pvalue = pchisq(object$wald.test, df, lower.tail=FALSE)) if (!is.null(object$concordance)) { if (is.matrix(object$concordance)) temp <- colSums(object$concordance) else temp <- object$concordance rval$concordance <- c((temp[1] + temp[3]/2)/ sum(temp[1:3]), temp[5]/(2*sum(temp[1:3]))) names(rval$concordance) <- c("concordance", "se") } class(rval) <- "summary.coxph.penal" rval } survival/R/frailty.brent.S0000644000176000001440000000327512267746072015311 0ustar ripleyusers# $Id: frailty.brent.S 11166 2008-11-24 22:10:34Z therneau $ # # Brent's method for finding a maximum # If upper and/or lower is given, it transforms x to stay out of trouble # during the "bracketing" phase # frailty.brent <- function(x, y, lower, upper) { n <- length(x) if (length(y) != n) stop ("Length mismatch for x and y") if (n<3) return(mean(x)) # First, is the solution bracketed? # If not, take big steps until it is ord <- order(x) xx <- x[ord] yy <- y[ord] best <- (1:n)[yy==max(y)] if (length(best) >1) stop("Ties for max(y), I surrender") #fix this later if (best==1) { new <- xx[1] - 3*(xx[2] - xx[1]) if (!missing(lower) && !is.null(lower) && new < lower) new <- lower + (min(xx[xx>lower])-lower)/10 return(new) } if (best==n) { new <- xx[n] + 3*(xx[n] - xx[n-1]) if (!missing(upper) && !is.null(upper) && new > upper) new <- upper + (max(xx[xx xx[3] || ( (n>4) && (new-x[n]) > .5*abs(x[n-1]-x[n-2]))) { if ((xx[2]-xx[1]) > (xx[3]-xx[2])) return(xx[2] - .38*(xx[2]-xx[1])) else return(xx[2] + .32*(xx[3]-xx[2])) } else return(new) } survival/R/plot.cox.zph.S0000644000176000001440000000466012267746072015073 0ustar ripleyusers# $Id: plot.cox.zph.S 11275 2009-04-06 16:18:00Z therneau $ plot.cox.zph <- function(x, resid=TRUE, se=TRUE, df=4, nsmo=40, var, ...) { xx <- x$x yy <- x$y d <- nrow(yy) df <- max(df) #error proofing nvar <- ncol(yy) pred.x <- seq(from=min(xx), to=max(xx), length=nsmo) temp <- c(pred.x, xx) lmat <- ns(temp, df=df, intercept=TRUE) pmat <- lmat[1:nsmo,] # for prediction xmat <- lmat[-(1:nsmo),] qmat <- qr(xmat) if (qmat$rank < df) stop("Spline fit is singular, try a smaller degrees of freedom") if (se) { bk <- backsolve(qmat$qr[1:df, 1:df], diag(df)) xtx <- bk %*% t(bk) seval <- d*((pmat%*% xtx) *pmat) %*% rep(1, df) } ylab <- paste("Beta(t) for", dimnames(yy)[[2]]) if (missing(var)) var <- 1:nvar else { if (is.character(var)) var <- match(var, dimnames(yy)[[2]]) if (any(is.na(var)) || max(var)>nvar || min(var) <1) stop("Invalid variable requested") } # # Figure out a 'good' set of x-axis labels. Find 8 equally spaced # values on the 'transformed' axis. Then adjust until they correspond # to rounded 'true time' values. Avoid the edges of the x axis, or # approx() may give a missing value if (x$transform == 'log') { xx <- exp(xx) pred.x <- exp(pred.x) } else if (x$transform != 'identity') { xtime <- as.numeric(dimnames(yy)[[1]]) indx <- !duplicated(xx) #avoid a warning message in R apr1 <- approx(xx[indx], xtime[indx], seq(min(xx), max(xx), length=17)[2*(1:8)]) temp <- signif(apr1$y,2) apr2 <- approx(xtime[indx], xx[indx], temp) xaxisval <- apr2$y xaxislab <- rep("",8) for (i in 1:8) xaxislab[i] <- format(temp[i]) } for (i in var) { y <- yy[,i] yhat <- pmat %*% qr.coef(qmat, y) if (resid) yr <-range(yhat, y) else yr <-range(yhat) if (se) { temp <- 2* sqrt(x$var[i,i]*seval) yup <- yhat + temp ylow<- yhat - temp yr <- range(yr, yup, ylow) } if (x$transform=='identity') plot(range(xx), yr, type='n', xlab="Time", ylab=ylab[i], ...) else if (x$transform=='log') plot(range(xx), yr, type='n', xlab="Time", ylab=ylab[i], log='x', ...) else { plot(range(xx), yr, type='n', xlab="Time", ylab=ylab[i], axes=FALSE,...) axis(1, xaxisval, xaxislab) axis(2) box() } if (resid) points(xx, y) lines(pred.x, yhat) if (se) { lines(pred.x, yup,lty=2) lines(pred.x, ylow, lty=2) } } } survival/R/survexp.fit.S0000644000176000001440000001104612267746072015016 0ustar ripleyusers# Actually compute the expected survival for one or more cohorts # of subjects. If each subject is his/her own group, it gives individual # survival # group = groups (one curve per group) # x matrix contains the rate # table indices = starting point for each obs in the rate table. # y is the number of follow-up days for each subject # times = the time points at which survival is desired # death = T if we want the conditional estimate survexp.fit <- function(group, x, y, times, death, ratetable) { if (!is.matrix(x)) stop("x must be a matrix") if (ncol(x) != length(dim(ratetable))) stop("x matrix does not match the rate table") atts <- attributes(ratetable) ngrp <- max(group) times <- sort(unique(times)) if (any(times <0)) stop("Negative time point requested") if (missing(y)) y <- rep(max(times), nrow(x)) ntime <- length(times) if (!is.logical(death)) stop("Invalid value for death indicator") cuts <- atts$cutpoints if (is.null(atts$type)) { # old style rate table rfac <- atts$factor us.special <- (rfac >1) } else { rfac <- 1*(atts$type ==1) us.special <- (atts$type==4) } if (any(us.special)) { #special handling for US pop tables if (sum(us.special) >1) stop("Two columns marked for special handling as a US rate table") # Now, the 'entry' date on a US rate table is the number of days # since 1/1/1960, and the user data has been aligned to the # same system by match.ratetable and marked as "year". # US rate tables are odd: the entry for age (year=1970, age=55) # contains the daily rate for anyone who turns 55 in that year, # from their birthday forward for 365 days. So if your birthday # is on Oct 2, the 1970 table applies from 2Oct 1970 to 1Oct 1971. # The underlying C code wants to make the 1970 rate table apply # from 1Jan 1970 to 31Dec 1970. The easiest way to finess this is # to fudge everyone's enter-the-study date. If you were born # in March but entered in April, make it look like you entered in # Febuary; that way you get the first 11 months at the entry # year's rates, etc. This is the same as being born on Jan 1. # The birth date is entry date - age in days (based on 1/1/1960). # cols <- match(c("age", "year"), atts$dimid) if (any(is.na(cols))) stop("Ratetable does not have expected shape") if (exists("as.Date")) { # true for modern version of R bdate <- as.Date('1960/1/1') + (x[,cols[2]] - x[,cols[1]]) byear <- format(bdate, "%Y") # year of birth offset <- as.numeric(bdate - as.Date(paste(byear, '01/01', sep='/'))) } # The lines below were commented out to stop spurious warning # messages from "CMD check". They are very unlikely to ever # be needed, so no big loss. #else if (exists('month.day.year')) { # Splus, usually # bdate <- x[,cols[2]] - x[,cols[1]] # byear <- month.day.year(bdate)$year # offset <- bdate - julian(1,1,byear) # } #else if (exists('date.mdy')) { # the TMT date class is available # bdate <- as.date(x[,cols[2]] - x[,cols[1]]) # byear <- date.mdy(bdate)$year # offset <- bdate - mdy.date(1,1,byear) # } else stop("Can't find an appropriate date class\n") x[,cols[2]] <- x[,cols[2]] - offset # Doctor up "cutpoints" - only needed for old style rate tables # for which the C code does interpolation on the fly if (any(rfac >1)) { temp <- which(us.special) nyear <- length(cuts[[temp]]) nint <- rfac[temp] #intervals to interpolate over cuts[[temp]] <- round(approx(nint*(1:nyear), cuts[[temp]], nint:(nint*nyear))$y - .0001) } } storage.mode(x) <- storage.mode(y) <- "double" storage.mode(times) <- "double" temp <- .Call(Cpyears3b, as.integer(death), as.integer(rfac), as.integer(atts$dim), as.double(unlist(cuts)), ratetable, as.integer(group), x, y, times, as.integer(ngrp)) if (ntime==1) list(surv=temp$surv, n=temp$n) else if (ngrp >1) list(surv=apply(matrix(temp$surv, ntime, ngrp),2,cumprod), n= matrix(temp$n, ntime, ngrp)) else list(surv=cumprod(temp$surv), n=temp$n) } survival/R/coxph.rvar.S0000644000176000001440000000112112267746072014604 0ustar ripleyusers# $Id: coxph.rvar.S 11166 2008-11-24 22:10:34Z therneau $ coxph.rvar <- function(fit, collapse) { rcall <- match.call() if (class(fit) != 'coxph') stop ("First argument must be a fitted Cox model") if (missing(collapse)) temp <- residuals.coxph(fit, type='dfbeta') else temp <- residuals.coxph(fit, type='dfbeta', collapse=collapse) if (any(is.na(temp))) if (ncol(temp)==1) temp<- temp[!is.na(temp),,drop=FALSE] else temp <- temp[!is.na(temp %*% rep(1,ncol(temp))),] fit$robust.var <- t(temp) %*% temp fit$rcall <- rcall fit } survival/R/print.coxph.null.S0000644000176000001440000000065212267746072015747 0ustar ripleyusers# $Id: print.coxph.null.S 11166 2008-11-24 22:10:34Z therneau $ print.coxph.null <- function(x, digits=max(options()$digits - 4, 3), ...) { if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } cat("Null model\n log likelihood=", format(x$loglik), "\n") omit <- x$na.action if (length(omit)) cat(" n=", x$n, " (", naprint(omit), ")\n", sep="") else cat(" n=", x$n, "\n") } survival/R/ratetableDate.S0000644000176000001440000000213412267746072015260 0ustar ripleyusers# # survexp/pyears ratetables keep all dates as number of days since 1/1/1960 # convert other types of objects to this form # ratetableDate <- function(x) { UseMethod("ratetableDate", x) } # Normally used in R ratetableDate.Date <- function(x) as.numeric(x - as.Date("1960/01/01")) ratetableDate.POSIXt <- function(x) as.numeric(as.Date(x) - as.Date("1960/01/01")) # Normally Splus #ratetableDate.timeDate <- function(x) # as.numeric(x - timeDate('1/1/1960')) # Therneau's old "date" class (will someday wither away) ratetableDate.date <- function(x) as.numeric(x) # David James's old "chron" class (will someday wither away) # Support it without using the chron library, which may not be loaded. ratetableDate.chron <- function(x) { origin <- attr(x, "origin") x<- as.numeric(x) + as.Date(paste(origin["year"], origin["month"], origin["day"], sep='/')) ratetableDate(x) } ratetableDate.dates <- ratetableDate.chron # the routines that call this are responsible for a useful error message ratetableDate.default <- function(x) NULL survival/R/anova.survreg.S0000644000176000001440000000377412267746072015332 0ustar ripleyusers# $Id: anova.survreg.S 11230 2009-02-09 23:37:55Z therneau $ anova.survreg <- function(object, ..., test = c("Chisq", "none")) { test <- match.arg(test) margs <- function(...) nargs() if(margs(...)) return(anova.survreglist(list(object, ...), test = test)) Terms <- object$terms term.labels <- attr(Terms, "term.labels") nt <- length(term.labels) m <- model.frame(object) family.obj <- object$family y <- model.extract(m, "response") if(!inherits(y, "Surv")) stop("Response must be a survival object") loglik <- numeric(nt + 1) df.res <- loglik if(nt) { loglik[nt + 1] <- -2 * object$loglik[2] df.res[nt + 1] <- object$df.residual fit <- object for(iterm in seq(from = nt, to = 1, by = -1)) { argslist <- list(object = fit, formula = eval(parse(text = paste("~ . -", term.labels[iterm])))) fit <- do.call("update", argslist) loglik[iterm] <- -2 * fit$loglik[2] df.res[iterm] <- fit$df.residual } dev <- c(NA, - diff(loglik)) df <- c(NA, -diff(df.res)) } else { loglik[1] <- -2 * object$loglik[2] df.res[1] <- object$df.residual #dim(y)[1] - attr(Terms, "intercept") dev <- df <- as.numeric(NA) } heading <- c("Analysis of Deviance Table\n", paste(family.obj[1], "distribution with", family.obj[2], "link\n"), paste("Response: ", as.character(formula(object))[2], "\n", sep = ""), if (nrow(fit$var) == length(fit$coefficients)) paste("Scale fixed at", format(object$scale, digits = getOption("digits")),"\n") else "Scale estimated\n", "Terms added sequentially (first to last)") aod <- data.frame(Df = df, Deviance = dev, "Resid. Df" = df.res, "-2*LL" = loglik, row.names = c("NULL", term.labels), check.names = FALSE) attr(aod, "heading") <- heading class(aod) <- c("anova", "data.frame") if(test == "none") return(aod) else stat.anova(aod, test, scale=1 ,n= nrow(y)) } survival/R/survexp.cfit.R0000644000176000001440000001063312267746072015161 0ustar ripleyusers# Do expected survival based on a Cox model # This version relies on the survfit routine to do most of # the work. survexp.cfit <- function(group, ndata, y, method, coxfit, weights) { # If it is individual survival, call the predict method if (method=='individual') { temp <- predict(coxfit, newdata=ndata, type='expect', se=FALSE) return(list(surv= exp(-temp))) } # Get the set of survival curves on which I'll base my work # There is no id statement allowed yet, so no survexp for time-dependent # covariates sfit <- survfit.coxph(coxfit, newdata=ndata, se.fit=FALSE, censor=FALSE) # rare case: someone called survexp with a single-obs newdata # The average of n curves is just the curve, when n=1 if (length(group)==1) return(sfit) # number of curves to create & number of subjects ncurve <- max(group) #group was preset to contain integer group number n <- length(group) # matches nrow(ndata) # If the Cox model had strata then the newdata object also had to contain # the strata (needed to fully identify the new subjects), and the # n survival curves will be "strung out" as a single surv vector in # sfit, along with a strata component saying how many points for each. # If the Cox model did not have strata, sfit$surv and sfit$cumhaz will be # matrices with n columns. # The output should be a list with components time, n, and surv. # time = vector of unique time points # surv = matrix with 1 column per created curve (often just 1) # n = same shape as surv, containing the number of obs from ndata # that contribute to each row. newtime <- sort(unique(sfit$time)) # all of the unique times ntime <- length(newtime) newsurv <- list(time=newtime) # Each row of the input data is part of one and only one of the output # curves. Each column of gmat will contain the weights we need. # Each col sums to 1, and has zeros for those who belong to another curve gmat <- matrix(0., nrow=n, ncol=ncurve) for (i in 1:ncurve) { temp <- weights[group==i] gmat[group==i, i] <- temp/sum(temp) } # If the result is a set of curves with strata rather than a matrix, we # need to index into it, using a code trick taken from summary.survfit # Note that is is possible (though odd) for someone to specify a population # of subjects in survexp whose individual members come from different # strata in sfit. The result curves could have any of the times # that appear in any stratum. So we create a regular matrix of survivals. if (is.null(sfit$strata)) ssurv <- sfit$surv else { ssurv <- matrix(0., nrow=ntime, ncol=n) indx <- rep(1:length(sfit$strata), sfit$strata) for (i in 1:n) { itemp <- which(indx==i) ssurv[,i] <- approx(sfit$time[itemp], sfit$surv[itemp], newtime, yleft=0, method="constant", f=0, rule=2)$y } } if (method=="ederer") { # This is the most common call. We can work directly # with the returned survival curves, taking weighed averages. newsurv$n <- matrix(rep(table(group), each=ntime), nrow=ntime) newsurv$surv <- ssurv %*% gmat } else { # These are rarely used, so are implemented in S code rather than # C, even though it involves a loop over time points. # We need the hazard at each of the new time points, from which # a weighted average at each time point is computed # the Hakulinen also the survival at each time point. hazard <- apply(rbind(0, sfit$cumhaz), 2, diff) cmat <- matrix(0, ntime, ncurve) # Holds the result if (method== "conditional") { for (i in 1:ntime) { tmat <- ifelse(y >= newtime[i],1,0) * gmat #zero if not at risk cmat[i,] <- hazard[i,] %*% tmat / colSums(tmat) } } else { #Hakulinen method # Weights in this case are S(newtime) * I(newtime >=y) * gmat lsurv <- rbind(1.0, ssurv) #right continuous time for (i in 1:ntime) { tmat <- (ifelse(y>=newtime[i],1,0) * lsurv[i,]) * gmat cmat[i,] <- hazard[i,] %*% tmat / colSums(tmat) } } newsurv$surv <- exp(-apply(cmat, 2, cumsum)) } newsurv } survival/R/frailty.t.S0000644000176000001440000001002712267746072014433 0ustar ripleyusers# $Id: frailty.t.S 11377 2009-12-14 22:59:56Z therneau $ # # Defining function for t-distribution frailty fits # frailty.t <- function(x, sparse=(nclass>5), theta, df, eps= 1e-5, tdf=5, method=c("aic", "df", "fixed"), ...) { nclass <- length(unique(x[!is.na(x)])) if (sparse){ x <-as.numeric(as.factor(x)) if (is.R()) class(x) <- "coxph.penalty" else oldClass(x) <- "coxph.penalty" } else{ x <- as.factor(x) if (is.R()) class(x) <- c("coxph.penalty",class(x)) else oldClass(x) <- "coxph.penalty" attr(x,'contrasts') <- contr.treatment(nclass, contrasts=FALSE) } if (tdf <=2) stop("Cannot have df <3 for the t-frailty") # Check for consistency of the arguments if (missing(method)) { if (!missing(theta)) { method <- 'fixed' if (!missing(df)) stop("Cannot give both a df and theta argument") } else if (!missing(df)) { if (df==0) method <- 'aic' else method <- 'df' } } method <- match.arg(method) if (method=='df' && missing(df)) stop("Method = df but no df argument") if (method=='fixed' && missing(theta)) stop("Method= fixed but no theta argument") if (method !='fixed' && !missing(theta)) stop("Method is not 'fixed', but have a theta argument") pfun<- function(coef, theta, ndead, tdf){ if (theta==0) list(recenter=0, penalty=0, flag=TRUE) else { sig <- theta* (tdf-2)/tdf #scale contant^2 in density formula # # Find the centering constant, using 1 NR step # temp <- 1 + coef^2/(tdf*sig) temp1 <- coef/temp temp2 <- 1/temp - (2/(tdf*sig))*coef^2/temp^2 recenter <- sum(temp1)/sum(temp2) #NR step towards MLE coef <- coef - recenter const <- (tdf+1)/(tdf*sig) temp <- 1 + coef^2/(tdf*sig) list(recenter=recenter, first= const*coef/temp, second= const*(1/temp - (2/(tdf*sig))*coef^2/temp^2), penalty= sum(.5*log(pi*tdf*sig) + ((tdf+1)/2)*log(temp) + lgamma(tdf/2) - lgamma((tdf+1)/2)), flag=FALSE) } } printfun <- function(coef, var, var2, df, history) { if (!is.null(history$history)) theta <- history$history[nrow(history$history),1] else theta <- history$theta if (is.matrix(var)) test <- coxph.wtest(var, coef)$test else test <- sum(coef^2/var) df2 <- max(df, .5) # Stop silly p-values list(coef=c(NA, NA, NA, test, df, 1-pchisq(test, df2)), history=paste("Variance of random effect=", format(theta))) } # The final coxph object will contain a copy of printfun. Stop it from # also containing huge unnecessary variables, e.g. 'x', known at this # point in time. Not an issue for pfun, which does not get saved. # The reason for using the survival namespace instead of globalenv() is # that we call coxph.wtest, which may not be visible outside the name space if (is.R()) environment(printfun) <- asNamespace('survival') if (method=='fixed') { temp <- list(pfun=pfun, pparm=tdf, printfun=printfun, diag =TRUE, sparse= sparse, cfun = function(parms, iter, old){ list(theta=parms$theta, done=TRUE)}, cparm= list(theta=theta, ...)) } else if (method=='aic') { temp <- list(pfun=pfun, pparm=tdf, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("neff", "df", "plik"), cparm=list(lower=0, init=c(.1,1), eps=eps, ...), cfun = frailty.controlaic) } else { #df method if (missing(eps)) eps <- .1 temp <- list(pfun=pfun, pparm=tdf, printfun=printfun, diag =TRUE, sparse= sparse, cargs= c('df'), cparm=list(df=df, eps=eps, thetas=0, dfs=0, guess=3*df/length(unclass(x)), ...), cfun = frailty.controldf) } # If not sparse, give shorter names to the coefficients, so that any # printout of them is readable. if (!sparse) { vname <- paste("t", levels(x), sep=':') temp <- c(temp, list(varname=vname)) } attributes(x) <- c(attributes(x), temp) x } survival/R/residuals.coxph.S0000644000176000001440000001203412267746072015632 0ustar ripleyusersresiduals.coxph <- function(object, type=c("martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", "scaledsch","partial"), collapse=FALSE, weighted=FALSE, ...) { type <- match.arg(type) otype <- type if (type=='dfbeta' || type=='dfbetas') { type <- 'score' if (missing(weighted)) weighted <- TRUE # different default for this case } if (type=='scaledsch') type<-'schoenfeld' n <- length(object$residuals) rr <- object$residuals y <- object$y x <- object[['x']] # avoid matching object$xlevels vv <- object$naive.var if (is.null(vv)) vv <- object$var weights <- object$weights if (is.null(weights)) weights <- rep(1,n) strat <- object$strata method <- object$method if (method=='exact' && (type=='score' || type=='schoenfeld')) stop(paste(type, 'residuals are not available for the exact method')) if (type == 'martingale' || type == 'partial') rr <- object$residuals else { # I need Y, and perhaps the X matrix (and strata) Terms <- object$terms if (!inherits(Terms, 'terms')) stop("invalid terms component of object") strats <- attr(Terms, "specials")$strata if (is.null(y) || (is.null(x) && type!= 'deviance')) { temp <- coxph.getdata(object, y=TRUE, x=TRUE, stratax=TRUE) y <- temp$y x <- temp$x if (length(strats)) strat <- temp$strata } ny <- ncol(y) status <- y[,ny,drop=TRUE] if (type != 'deviance') { nstrat <- as.numeric(strat) nvar <- ncol(x) if (is.null(strat)) { ord <- order(y[,ny-1], -status) newstrat <- rep(0,n) } else { ord <- order(nstrat, y[,ny-1], -status) newstrat <- c(diff(as.numeric(nstrat[ord]))!=0 ,1) } newstrat[n] <- 1 # sort the data x <- x[ord,] y <- y[ord,] score <- exp(object$linear.predictors)[ord] } } # # Now I have gotton the data that I need-- do the work # if (type=='schoenfeld') { if (ny==2) { mintime <- min(y[,1]) if (mintime < 0) y <- cbind(2*mintime -1, y) else y <- cbind(-1,y) } temp <- .C(Ccoxscho, n=as.integer(n), as.integer(nvar), as.double(y), resid= as.double(x), as.double(score * weights[ord]), as.integer(newstrat), as.integer(method=='efron'), double(3*nvar) ) deaths <- y[,3]==1 if (nvar==1) rr <- temp$resid[deaths] else rr <- matrix(temp$resid[deaths], ncol=nvar) #pick rows if (weighted) rr <- rr * weights[deaths] if (length(strats)) attr(rr, "strata") <- table((strat[ord])[deaths]) time <- c(y[deaths,2]) # 'c' kills all of the attributes if (is.matrix(rr)) dimnames(rr)<- list(time, names(object$coefficients)) else names(rr) <- time if (otype=='scaledsch') { ndead <- sum(deaths) coef <- ifelse(is.na(object$coefficients), 0, object$coefficients) if (nvar==1) rr <- rr*vv *ndead + coef else rr <- rr %*%vv * ndead + outer(rep(1,nrow(rr)),coef) } return(rr) } if (type=='score') { if (ny==2) { resid <- .C(Ccoxscore, as.integer(n), as.integer(nvar), as.double(y), x=as.double(x), as.integer(newstrat), as.double(score), as.double(weights[ord]), as.integer(method=='efron'), resid= double(n*nvar), double(2*nvar))$resid } else { resid<- .C(Cagscore, as.integer(n), as.integer(nvar), as.double(y), as.double(x), as.integer(newstrat), as.double(score), as.double(weights[ord]), as.integer(method=='efron'), resid=double(n*nvar), double(nvar*6))$resid } if (nvar >1) { rr <- matrix(0, n, nvar) rr[ord,] <- matrix(resid, ncol=nvar) dimnames(rr) <- list(names(object$residuals), names(object$coefficients)) } else rr[ord] <- resid if (otype=='dfbeta') { if (is.matrix(rr)) rr <- rr %*% vv else rr <- rr * vv } else if (otype=='dfbetas') { if (is.matrix(rr)) rr <- (rr %*% vv) %*% diag(sqrt(1/diag(vv))) else rr <- rr * sqrt(vv) } } # # Multiply up by case weights (which will be 1 for unweighted) # if (weighted) rr <- rr * weights #Expand out the missing values in the result if (!is.null(object$na.action)) { rr <- naresid(object$na.action, rr) if (is.matrix(rr)) n <- nrow(rr) else n <- length(rr) if (type=='deviance') status <- naresid(object$na.action, status) } if (type=="partial"){ # This needs to be done after the naresid expansion, since the # predict function will have done naresid expansion, so that # the lengths match rr <- rr + predict(object,type="terms") } # Collapse if desired if (!missing(collapse)) { if (length(collapse) !=n) stop("Wrong length for 'collapse'") rr <- drop(rowsum(rr, collapse)) if (type=='deviance') status <- drop(rowsum(status, collapse)) } # Deviance residuals are computed after collapsing occurs if (type=='deviance') sign(rr) *sqrt(-2* (rr+ ifelse(status==0, 0, status*log(status-rr)))) else rr } survival/R/basehaz.S0000644000176000001440000000123612267746072014136 0ustar ripleyusers# # This function is supplied for SAS converts who don't read # the documentation, and can't find the baseline hazard # basehaz <- function(fit, centered=TRUE) { if(!inherits(fit,"coxph")) stop("must be a coxph object") sfit<-survfit(fit) H<- -log(sfit$surv) strata<-sfit$strata if (!is.null(strata)) strata<- factor(rep(names(strata),strata), levels=names(strata)) if (!centered){ z0<-fit$means bz0<-sum(z0*coef(fit)) H<- H*exp(-bz0) } if (is.null(strata)) return(data.frame(hazard=H,time=sfit$time)) else return(data.frame(hazard=H,time=sfit$time,strata=strata)) } survival/R/is.ratetable.S0000644000176000001440000000761212267746072015102 0ustar ripleyusers# # $Id: is.ratetable.S 11183 2009-01-21 13:33:40Z therneau $ # is.ratetable <- function(x, verbose=FALSE) { dlist <- c("dim", "dimnames", "dimid", "cutpoints") if (!verbose) { if (!inherits(x, 'ratetable')) return(FALSE) att <- attributes(x) if (any(is.na(match(dlist, names(att))))) return(FALSE) nd <- length(att$dim) if (length(x) != prod(att$dim)) return(FALSE) if (!(is.list(att$dimnames) && is.list(att$cutpoints))) return(FALSE) if (length(att$dimnames)!=nd || length(att$cutpoints)!=nd) return(FALSE) # One of 'factor' (old style table) or 'type' (new style) should exist if (!is.null(att$factor)) { fac <- as.numeric(att$factor) if (any(is.na(fac))) return(FALSE) if (any(fac <0)) return(FALSE) if (length(att$factor)!=nd ) return(FALSE) } else if (!is.null(att$type)) { if (any(is.na(match(att$type, 1:4)))) return(FALSE) fac <- 1*(att$type==1) if (length(fac) != nd) return(FALSE) } else return(FALSE) if (length(att$dimid) != nd) return(FALSE) for (i in 1:nd) { n <- att$dim[i] if (length(att$dimnames[[i]]) !=n) return(FALSE) if (fac[i]!=1 && length(att$cutpoints[[i]])!=n) return(FALSE) if (fac[i]!=1 && any(order(att$cutpoints[[i]])!= 1:n)) return(FALSE) if (fac[i]==1 && !is.null(att$cutpoints[[i]])) return(FALSE) if (fac[i]>1 && i0) } else if (!is.null(att$type)) { if (any(is.na(match(att$type, 1:4)))) msg <- c(msg, 'type attribute must be 1, 2, 3, or 4') type <- att$type if (length(type)!=nd) msg <- c(msg, 'wrong length for type attribute') } else msg <- c(msg, "missing the 'type' attribute") for (i in 1:nd) { n <- att$dim[i] if (length(att$dimnames[[i]]) !=n) msg <- c(msg, paste('dimname', i, 'is the wrong length')) if (type[i] >1) { #continuous variable if (length(att$cutpoints[[i]]) != n) msg <- c(msg, paste('wrong length for cutpoints', i)) else if (any(order(att$cutpoints[[i]])!= 1:n)) msg <- c(msg, paste('unsorted cutpoints for dimension',i)) } if (type[i]==1 && !is.null(att$cutpoints[[i]])) msg <- c(msg, paste('type[', i, '] is 1; cutpoint should be null')) # This message only applies to old style rate table if (!is.null(att$fac) && type[i]==4 && i 0) { if (length(cluster$terms) >1) stop ("Can have only 1 cluster term") idvar <- m[[cluster$vars]] Terms2 <- Terms[-cluster$terms] } else { idvar <- 1:n Terms2 <- Terms } if (length(attr(Terms, "specials")$strata)) { stemp <- untangle.specials(Terms2, 'strata', 1) if (length(stemp$terms) >0) #beware strata by covariate interactions Terms2 <- Terms2[-stemp$terms] #not needed for model.matrix later if (length(stemp$vars)==1) strata.keep <- m[[stemp$vars]] else strata.keep <- strata(m[,stemp$vars], shortlabel=TRUE) } else strata.keep <- NULL if (any(attr(Terms2, "order") > 1)) stop("This function cannot deal with iteraction terms") # Figure out which are the continuous predictor variables myvars <- attr(Terms2, "term.labels") factors <- sapply(m[myvars], is.factor) protected <- sapply(m[myvars], function(x) inherits(x, "AsIs")) keepers <- factors | protected #variables to be left alone if (all(keepers)) stop ("No continuous variables to modify") if (ncol(y) ==3) { # counting process data if (is.null(strata.keep)) { etime <- sort(unique(y[y[,3]==1, 2])) #unique event times indx <- lapply(etime, function(x) which(y[,1]= x)) } else { temp <- unique(data.frame(y[,2], strata.keep)[y[,3]==1,]) etime <- temp[,1] indx <- lapply(1:nrow(temp), function(x) which(y[,1] < temp[x,1] & y[,2]>= temp[x,1] & !strata.keep == temp[x,2])) } } else { # Simple survival data if (is.null(strata.keep)) { etime <- sort(unique(y[y[,2]==1,1])) #unique event times indx <- lapply(etime, function(x) which(y[,1] >=x)) } else { temp <- unique(data.frame(y[,1], strata.keep)[y[,2]==1,]) etime <- temp[,1] indx <- lapply(1:nrow(temp), function(x) which(y[,2] >= temp[x,1] & strata.keep == temp[x,2])) } } # The indx list now has an entry for each event time containing the # row numbers of those at risk indx2 <- unlist(indx) # Create the new survival variables nrisk <- unlist(sapply(indx, length)) #number of obs at risk if (ncol(y)==3) { newdata <- list(y[indx2, 1], y[indx2,2]) newdata <- c(newdata, list(1L*(newdata[[2]]==rep(etime, nrisk) &y[indx2,3]==1))) } else { newdata <- list(y[indx2,1]) newdata <- c(newdata, list(1L*(newdata[[1]]==rep(etime, nrisk) &y[indx2,2]==1))) } names(newdata) <- dimnames(y)[[2]] # Add any untransformed variables if (any(keepers)) { temp <- lapply(myvars[keepers], function(x) all.vars(parse(text=x))) knames <- unlist(temp) } else knames <- NULL if (length(strata.keep)) { knames <- c(knames, unlist(lapply(names(m)[stemp$vars], function(x) all.vars(parse(text=x))))) } if (length(knames)) newdata <- c(newdata, lapply(data[knames], function(x) x[indx2])) # Add the identifier variable if (length(cluster$vars) >0) { clname <- all.vars(parse(text=names(m)[cluster$vars])) newdata <- c(newdata, lapply(data[clname], function(x) x[indx2])) } else newdata <- c(newdata, list(".id."=idvar[indx2])) # Add transformed variables tvars <- myvars[!keepers] newx <- lapply(m[tvars], function(z) unlist(lapply(indx, function(x) transform(z[x])))) data.frame(c(newdata, newx, list(".strata."=rep(1:length(indx), sapply(indx, length))))) } survival/R/print.ratetable.S0000644000176000001440000000035712267746072015622 0ustar ripleyusers## $Id: print.ratetable.S 11166 2008-11-24 22:10:34Z therneau $ print.ratetable <- function(x, ...) { cat ("Rate table with dimension(s):", attr(x, 'dimid'), "\n") attributes(x) <- attributes(x)[c("dim", "dimnames")] NextMethod() } survival/R/summary.ratetable.S0000644000176000001440000000445412267746072016165 0ustar ripleyusers# $Id: summary.ratetable.S 11437 2010-10-28 02:21:16Z therneau $ # # Print out information about a rate table: it's dimensions and keywords # summary.ratetable <- function(object, ...) { rtable<-object if (!inherits(rtable, 'ratetable')) stop("Argument is not a rate table") att <- attributes(rtable) ncat <- length(dim(rtable)) cat (" Rate table with", ncat, "dimensions:\n") for (i in 1:ncat) { # One of 'factor' (old style table) or "type" (new style) should exist if (!is.null(att$factor)) { if (att$factor[i]==0) { cat("\t", att$dimid[i], " ranges from ", format(min(att$cutpoints[[i]])), " to ", format(max(att$cutpoints[[i]])), "; with ", att$dim[i], " categories\n", sep='') } else if(att$factor[i]==1) { cat("\t", att$dimid[i], " has levels of: ", paste(att$dimnames[[i]], collapse=' '), "\n", sep='') } else { cat("\t", att$dimid[i], " ranges from " , format(min(att$cutpoints[[i]])), " to ", format(max(att$cutpoints[[i]])), "; with ", att$dim[i], " categories,\n\t\tlinearly interpolated in ", att$factor[i], " steps per division\n", sep='') } } else { if (att$type[i]==1) { cat("\t", att$dimid[i], " has levels of: ", paste(att$dimnames[[i]], collapse=' '), "\n", sep='') } else if (att$type[i]>2) { #date cat("\t", att$dimid[i], " ranges from " , format(as.Date(min(att$cutpoints[[i]]), origin='1960/01/01')), " to ", format(as.Date(max(att$cutpoints[[i]]), origin='1960/01/01')), "; with ", att$dim[i], " categories\n", sep='') } else { cat("\t", att$dimid[i], " ranges from ", format(min(att$cutpoints[[i]])), " to ", format(max(att$cutpoints[[i]])), "; with ", att$dim[i], " categories\n", sep='') } } } invisible(att) } survival/R/agsurv.R0000644000176000001440000000624212267746074014033 0ustar ripleyusers# Automatically generated from all.nw using noweb agsurv <- function(y, x, wt, risk, survtype, vartype) { nvar <- ncol(as.matrix(x)) status <- y[,ncol(y)] dtime <- y[,ncol(y) -1] death <- (status==1) time <- sort(unique(dtime)) nevent <- as.vector(rowsum(wt*death, dtime)) ncens <- as.vector(rowsum(wt*(!death), dtime)) wrisk <- wt*risk rcumsum <- function(x) rev(cumsum(rev(x))) # sum from last to first nrisk <- rcumsum(rowsum(wrisk, dtime)) irisk <- rcumsum(rowsum(wt, dtime)) if (ncol(y) ==2) { temp2 <- rowsum(wrisk*x, dtime) xsum <- apply(temp2, 2, rcumsum) } else { delta <- min(diff(time))/2 etime <- c(sort(unique(y[,1])), max(y[,1])+delta) #unique entry times indx <- approx(etime, 1:length(etime), time, method='constant', rule=2, f=1)$y esum <- rcumsum(rowsum(wrisk, y[,1])) #not yet entered nrisk <- nrisk - c(esum,0)[indx] irisk <- irisk - c(rcumsum(rowsum(wt, y[,1])),0)[indx] xout <- apply(rowsum(wrisk*x, y[,1]), 2, rcumsum) #not yet entered xin <- apply(rowsum(wrisk*x, dtime), 2, rcumsum) # dtime or alive xsum <- xin - (rbind(xout,0))[indx,,drop=F] } ndeath <- rowsum(status, dtime) #unweighted death count dtimes <- which(nevent >0) ntime <- length(time) if (survtype ==1) { #Kalbfleisch-Prentice indx <- (which(status==1))[order(dtime[status==1])] #deaths km <- .C(Cagsurv4, as.integer(ndeath), as.double(risk[indx]), as.double(wt[indx]), as.integer(ntime), as.double(nrisk), inc = double(ntime)) } if (survtype==3 || vartype==3) { # Efron approx xsum2 <- rowsum((wrisk*death) *x, dtime) erisk <- rowsum(wrisk*death, dtime) #risk score sums at each death tsum <- .C(Cagsurv5, as.integer(length(nevent)), as.integer(nvar), as.integer(ndeath), as.double(nrisk), as.double(erisk), as.double(xsum), as.double(xsum2), sum1 = double(length(nevent)), sum2 = double(length(nevent)), xbar = matrix(0., length(nevent), nvar)) } haz <- switch(survtype, nevent/nrisk, nevent/nrisk, nevent* tsum$sum1) varhaz <- switch(vartype, nevent/(nrisk * ifelse(nevent>=nrisk, nrisk, nrisk-nevent)), nevent/nrisk^2, nevent* tsum$sum2) xbar <- switch(vartype, (xsum/nrisk)*haz, (xsum/nrisk)*haz, nevent * tsum$xbar) result <- list(n= nrow(y), time=time, n.event=nevent, n.risk=irisk, n.censor=ncens, hazard=haz, cumhaz=cumsum(haz), varhaz=varhaz, ndeath=ndeath, xbar=apply(matrix(xbar, ncol=nvar),2, cumsum)) if (survtype==1) result$surv <- km$inc result } survival/R/untangle.specials.S0000644000176000001440000000124612267746072016141 0ustar ripleyusers# $Id: untangle.specials.S 11166 2008-11-24 22:10:34Z therneau $ # # This function takes a terms object, and extracts some aspects # of it into a "nice" list. It is simple an operation that # I do again and again in the modeling routines, so it was # made into a separate function # untangle.specials <- function(tt, special, order=1) { spc <- attr(tt, 'specials')[[special]] if (length(spc)==0) return(list(vars=character(0), terms=numeric(0))) facs <- attr(tt, 'factors') fname <- dimnames(facs) ff <- apply(facs[spc,,drop=FALSE], 2, sum) list(vars= (fname[[1]])[spc], terms= seq(ff)[ff & match(attr(tt, 'order'), order, nomatch=0)]) } survival/R/match.ratetable.S0000644000176000001440000000675512267746072015572 0ustar ripleyusers# Do a set of error checks on whether any categorical vars match the # level set of the actual ratetable. If so they are mapped to the levels # found in the ratetable. Dates need to match dates, and others are set # to simple numerics with unclass(). A matrix is returned. # This is called by pyears and survexp, but not by users # # The categoricals are turned into integer subscripts # match.ratetable <- function(R, ratetable) { if (!is.ratetable(ratetable)) stop("Invalid rate table") dimid <- attr(ratetable, 'dimid') if (is.matrix(R)) { # older style call nd <- ncol(R) attR <- attributes(R) attributes(R) <- attR['dim'] #other attrs get in the way later Rnames <- attR$dimnames[[2]] isDate <- attR[["isDate"]] levlist <- attR[['levlist']] } else { # newer style is a dataframe nd <- length(R) Rnames <- names(R) isDate <- rep(FALSE, nd) levlist<- lapply(R, levels) for (i in 1:nd) { temp <- ratetableDate(R[[i]]) if (!is.null(temp)) { isDate[i] <- TRUE R[[i]] <- temp } } } ord <- match(dimid, Rnames) # This should not arise if (any(is.na(ord))) stop(paste("Argument '", dimid[is.na(ord)], "' needed by the ratetable was not found in the data", sep='')) # Neither should this -- two argments matched one of the dimids -- since # I demand an exact match if (any(duplicated(ord))) stop("A ratetable argument appears twice in the data") R <- R[,ord,drop=FALSE] #put cols in same order as the ratetable isDate <- isDate[ord] levlist <- levlist[ord] dtemp <-dimnames(ratetable) rtype <- attr(ratetable, 'type') # 1= class, 2=cont, 3=date, 4=US yr if (is.null(rtype)) { #old style ratetable, be backwards compatable temp <- attr(ratetable, 'factor') # we map 'old continuous' to 'new date'; since it might be a date rtype <- 1*(temp==1) + 3*(temp==0) + 4*(temp >1) } # Now, go through the dimensions of the ratetable 1 by 1, and # verify that the user's variable is compatable # with the rate table's dimensions # if (any(rtype<3 & isDate)) { indx <- which(rtype<1 & isDate) stop(paste("Data has a date type variable, but the reference", "ratetable is not a date for variable", dimid[indx])) } for (i in (1:nd)) { if (length(levlist[[i]]) >0) { #factor or character variable if (rtype[i]!=1) stop(paste("In ratetable(),", dimid[i], "must be a continuous variable")) temp <- charmatch(casefold(levlist[[i]]), casefold(dtemp[[i]])) if (any(is.na(temp))) stop(paste("Levels do not match for ratetable() variable", dimid[i])) if (any(temp==0)) stop(paste("Non-unique ratetable match for variable", dimid[i])) R[,i] <- temp[as.numeric(R[,i])] } else { # user's data isn't a factor or date R[,i] <- unclass(R[,i]) # get rid of difftimes & other such if (rtype[i]==1) { #ratetable is a factor: ok if data is integer temp <- R[,i] if (any(floor(temp)!=temp) || any(temp<=0) || max(temp) > length(dtemp[[i]])) stop(paste("The variable", dimid[i], "is out of range")) } } } R <- as.matrix(R) summ <- attr(ratetable, 'summary') if (is.null(summ)) list(R= R) else list(R= R, summ=summ(R)) } survival/R/ridge.S0000644000176000001440000000251212267746072013611 0ustar ripleyusers# $Id: ridge.S 11166 2008-11-24 22:10:34Z therneau $ ridge <- function(..., theta, df=nvar/2, eps=.1, scale=TRUE) { x <- cbind(...) nvar <- ncol(x) xname <- as.character(parse(text=substitute(cbind(...))))[-1] vars <- apply(x, 2, function(z) var(z[!is.na(z)])) class(x) <- 'coxph.penalty' if (!missing(theta) && !missing(df)) stop("Only one of df or theta can be specified") if (scale) pfun <- function(coef,theta, ndead, scale) { list(penalty= sum(coef^2 *scale)*theta/2, first = theta*coef*scale, second = theta*scale, flag=FALSE) } else pfun <- function(coef,theta, ndead, scale) { list(penalty= sum(coef^2)*theta/2, first = theta*coef, second = theta, flag=FALSE) } if (!missing(theta)) { temp <- list(pfun=pfun, diag=TRUE, cfun=function(parms, iter, history) { list(theta=parms$theta, done=TRUE) }, cparm=list(theta= theta), pparm= vars, varname=paste('ridge(', xname, ')', sep='')) } else { temp <- list(pfun=pfun, diag=TRUE, cfun=frailty.controldf, cargs = 'df', cparm=list(df=df, eps=eps, thetas=0, dfs=nvar, guess=1), pparm= vars, varname=paste('ridge(', xname, ')', sep='')) } attributes(x) <- c(attributes(x), temp) x } survival/R/clogit.R0000644000176000001440000000321412267746072013777 0ustar ripleyusers## conditional logistic regression ## ## case ~ exposure + strata(matching) ## clogit<-function(formula,data, weights, subset, na.action, method=c("exact","approximate", "efron", "breslow"), ... ) { Call <- match.call() # how we were called # Create a call to model.frame() that contains the formula (required) # and the data argument (if present). # It's only job is to find out the number of rows in the data # before subset or na.action are applied. indx <- match(c("formula", "data"), names(Call), nomatch=0) if (indx[1]==0) stop("A formula argument is required") mf <- Call[c(1,indx)] mf[[1]] <- as.name("model.frame") mf$na.action <- "na.pass" nrows<-NROW(eval(mf, parent.frame())) # Now build a call to coxph with the formula fixed up to have # our special left hand side. coxcall <- Call coxcall[[1]] <- as.name("coxph") newformula <- formula newformula[[2]] <- substitute(Surv(rep(1,nn),case), list(case=formula[[2]],nn=nrows)) environment(newformula) <- environment(formula) coxcall$formula<-newformula coxcall$method <- switch(match.arg(method),exact="exact", efron="efron", "breslow") if (!is.null(coxcall$weights)) { coxcall$weights <- NULL warning("Weights are ignored in clogit") } coxcall<-eval(coxcall, sys.frame(sys.parent())) coxcall$userCall<-sys.call() class(coxcall)<-c("clogit","coxph") coxcall } print.clogit<-function(x,...){ x$call<-x$userCall NextMethod() } survival/R/survexp.R0000644000176000001440000002131412267746102014225 0ustar ripleyusers# Automatically generated from all.nw using noweb survexp <- function(formula, data, weights, subset, na.action, rmap, times, method=c("ederer", "hakulinen", "conditional", "individual.h", "individual.s"), cohort=TRUE, conditional=FALSE, ratetable=survexp.us, scale=1, se.fit, model=FALSE, x=FALSE, y=FALSE) { call <- match.call() m <- match.call(expand.dots=FALSE) # keep the first element (the call), and the following selected arguments m <- m[c(1, match(c('formula', 'data', 'weights', 'subset', 'na.action'), names(m), nomatch=0))] m[[1]] <- as.name("model.frame") Terms <- if(missing(data)) terms(formula, 'ratetable') else terms(formula, 'ratetable',data=data) rate <- attr(Terms, "specials")$ratetable if(length(rate) > 1) stop("Can have only 1 ratetable() call in a formula") if(length(rate) == 1) { if (!missing(rmap)) stop("The ratetable() call in a formula is depreciated") stemp <- untangle.specials(Terms, 'ratetable') rcall <- as.call(parse(text=stemp$var)[[1]]) # as a call object rcall[[1]] <- as.name('list') # make it a call to list(.. Terms <- Terms[-stemp$terms] # remove from the formula } else if (!missing(rmap)) { rcall <- substitute(rmap) if (!is.call(rcall) || rcall[[1]] != as.name('list')) stop ("Invalid rcall argument") } else rcall <- NULL # A ratetable, but not rcall argument # Check that there are no illegal names in rcall, then expand it # to include all the names in the ratetable if(is.ratetable(ratetable)) varlist <- attr(ratetable, "dimid") else if(inherits(ratetable, "coxph")) { ## Remove "log" and such things, to get just the list of # variable names varlist <- all.vars(delete.response(ratetable$terms)) } else stop("Invalid rate table") temp <- match(names(rcall)[-1], varlist) # 2,3,... are the argument names if (any(is.na(temp))) stop("Variable not found in the ratetable:", (names(rcall))[is.na(temp)]) if (any(!(varlist %in% names(rcall)))) { to.add <- varlist[!(varlist %in% names(rcall))] temp1 <- paste(text=paste(to.add, to.add, sep='='), collapse=',') if (is.null(rcall)) rcall <- parse(text=paste("list(", temp1, ")"))[[1]] else { temp2 <- deparse(rcall) rcall <- parse(text=paste("c(", temp2, ",list(", temp1, "))"))[[1]] } } # Create a temporary formula, used only in the call to model.frame newvar <- all.vars(rcall) if (length(newvar) > 0) { tform <- paste(deparse(Terms), paste(newvar, collapse='+'), sep='+') m$formula <- as.formula(tform, environment(Terms)) } m <- eval(m, parent.frame()) n <- nrow(m) if (n==0) stop("Data set has 0 rows") if (!missing(se.fit) && se.fit) warning("se.fit value ignored") weights <- model.extract(m, 'weights') if (length(weights) ==0) weights <- rep(1.0, n) if (class(ratetable)=='ratetable' && any(weights !=1)) warning("weights ignored") if (any(attr(Terms, 'order') >1)) stop("Survexp cannot have interaction terms") if (!missing(times)) { if (any(times<0)) stop("Invalid time point requested") if (length(times) >1 ) if (any(diff(times)<0)) stop("Times must be in increasing order") } Y <- model.extract(m, 'response') no.Y <- is.null(Y) if (no.Y) { if (missing(times)) { if (is.ratetable(ratetable)) stop("either a times argument or a response is needed") } else newtime <- times } else { if (is.matrix(Y)) { if (is.Surv(Y) && attr(Y, 'type')=='right') Y <- Y[,1] else stop("Illegal response value") } if (any(Y<0)) stop ("Negative follow up time") # if (missing(npoints)) temp <- unique(Y) # else temp <- seq(min(Y), max(Y), length=npoints) temp <- unique(Y) if (missing(times)) newtime <- sort(temp) else newtime <- sort(unique(c(times, temp[temp1)) stop("Pyears cannot have interaction terms") rate <- attr(Terms, "specials")$ratetable if (length(rate) >0 || !missing(rmap) || !missing(ratetable)) { has.ratetable <- TRUE if(length(rate) > 1) stop("Can have only 1 ratetable() call in a formula") if (missing(ratetable)) stop("No rate table specified") if(length(rate) == 1) { if (!missing(rmap)) stop("The ratetable() call in a formula is depreciated") stemp <- untangle.specials(Terms, 'ratetable') rcall <- as.call(parse(text=stemp$var)[[1]]) # as a call object rcall[[1]] <- as.name('list') # make it a call to list(.. Terms <- Terms[-stemp$terms] # remove from the formula } else if (!missing(rmap)) { rcall <- substitute(rmap) if (!is.call(rcall) || rcall[[1]] != as.name('list')) stop ("Invalid rcall argument") } else rcall <- NULL # A ratetable, but not rcall argument # Check that there are no illegal names in rcall, then expand it # to include all the names in the ratetable if(is.ratetable(ratetable)) varlist <- attr(ratetable, "dimid") else if(inherits(ratetable, "coxph")) { ## Remove "log" and such things, to get just the list of # variable names varlist <- all.vars(delete.response(ratetable$terms)) } else stop("Invalid rate table") temp <- match(names(rcall)[-1], varlist) # 2,3,... are the argument names if (any(is.na(temp))) stop("Variable not found in the ratetable:", (names(rcall))[is.na(temp)]) if (any(!(varlist %in% names(rcall)))) { to.add <- varlist[!(varlist %in% names(rcall))] temp1 <- paste(text=paste(to.add, to.add, sep='='), collapse=',') if (is.null(rcall)) rcall <- parse(text=paste("list(", temp1, ")"))[[1]] else { temp2 <- deparse(rcall) rcall <- parse(text=paste("c(", temp2, ",list(", temp1, "))"))[[1]] } } # Create a temporary formula, used only in the call to model.frame newvar <- all.vars(rcall) if (length(newvar) > 0) { tform <- paste(deparse(Terms), paste(newvar, collapse='+'), sep='+') m$formula <- as.formula(tform, environment(Terms)) } } else has.ratetable <- FALSE if (is.R()) m <- eval(m, parent.frame()) else m <- eval(m, sys.parent()) Y <- model.extract(m, 'response') if (is.null(Y)) stop ("Follow-up time must appear in the formula") if (!is.Surv(Y)){ if (any(Y <0)) stop ("Negative follow up time") Y <- as.matrix(Y) if (ncol(Y) >2) stop("Y has too many columns") if (ncol(Y)==2 && any(Y[,2] <= Y[,1])) stop("stop time must be > start time") } else { stype <- attr(Y, 'type') if (stype == 'right') { if (any(Y[,1] <0)) stop("Negative survival time") nzero <- sum(Y[,1]==0 & Y[,2] ==1) if (nzero >0) warning(paste(nzero, "observations with an event and 0 follow-up time,", "any rate calculations are statistically questionable")) } else if (stype != 'counting') stop("Only right-censored and counting process survival types are supported") } n <- nrow(Y) if (is.null(n) || n==0) stop("Data set has 0 observations") weights <- model.extract(m, 'weights') if (is.null(weights)) weights <- rep(1.0, n) # rdata contains the variables matching the ratetable if (has.ratetable) { rdata <- data.frame(eval(rcall, m), stringsAsFactors=TRUE) if (is.ratetable(ratetable)) { israte <- TRUE rtemp <- match.ratetable(rdata, ratetable) R <- rtemp$R } else if (inherits(ratetable, 'coxph')) { israte <- FALSE Terms <- ratetable$terms if (!is.null(attr(Terms, 'offset'))) stop("Cannot deal with models that contain an offset") strats <- attr(Terms, "specials")$strata if (length(strats)) stop("pyears cannot handle stratified Cox models") if (any(names(m[,rate]) != attr(ratetable$terms, 'term.labels'))) stop("Unable to match new data to old formula") R <- model.matrix.coxph(ratetable, data=rdata) } else stop("Invalid ratetable") } ovars <- attr(Terms, 'term.labels') if (length(ovars)==0) { # no categories! X <- rep(1,n) ofac <- odim <- odims <- ocut <- 1 } else { odim <- length(ovars) ocut <- NULL odims <- ofac <- double(odim) X <- matrix(0, n, odim) outdname <- vector("list", odim) for (i in 1:odim) { temp <- m[[ovars[i]]] if (inherits(temp, 'tcut')) { X[,i] <- temp temp2 <- attr(temp, 'cutpoints') odims[i] <- length(temp2) -1 ocut <- c(ocut, temp2) ofac[i] <- 0 outdname[[i]] <- attr(temp, 'labels') } else { temp2 <- as.factor(temp) X[,i] <- temp2 temp3 <- levels(temp2) odims[i] <- length(temp3) ofac[i] <- 1 outdname[[i]] <- temp3 } } } ocut <-c(ocut,0) #just in case it were of length 0 osize <- prod(odims) if (has.ratetable) { #include expected atts <- attributes(ratetable) cuts <- atts$cutpoints if (is.null(atts$type)) { #old stlye table rfac <- atts$factor us.special <- (rfac >1) } else { rfac <- 1*(atts$type ==1) us.special <- (atts$type==4) } if (any(us.special)) { #special handling for US pop tables # Now, the 'entry' date on a US rate table is the number of days # since 1/1/1960, and the user data has been aligned to the # same system by match.ratetable and marked as "year". # The birth date is entry date - age in days (based on 1/1/1960). # I don't much care which date functions I use to do the arithmetic # below. Unfortunately R and Splus don't share one. My "date" # class is simple, but is also one of the earlier date class # attempts, has less features than others, and will one day fade # away; so I don't want to depend on it alone. # cols <- match(c("age", "year"), atts$dimid) if (any(is.na(cols))) stop("Ratetable does not have expected shape") if (exists("as.Date")) { # true for modern version of R bdate <- as.Date('1960/1/1') + (R[,cols[2]] - R[,cols[1]]) byear <- format(bdate, "%Y") offset <- bdate - as.Date(paste(byear, "01/01", sep='/'), origin="1960/01/01") } #else if (exists('month.day.year')) { # Splus, usually # bdate <- R[,cols[2]] - R[,cols[1]] # byear <- month.day.year(bdate)$year # offset <- bdate - julian(1,1,byear) # } #else if (exists('date.mdy')) { # Therneau's date class is available # bdate <- as.date(R[,cols[2]] - R[,cols[1]]) # byear <- date.mdy(bdate)$year # offset <- bdate - mdy.date(1,1,byear) # } else stop("Can't find an appropriate date class\n") R[,cols[2]] <- R[,cols[2]] - offset # Doctor up "cutpoints" - only needed for old style rate tables # for which the C code does interpolation on the fly if (any(rfac >1)) { temp <- which(us.special) nyear <- length(cuts[[temp]]) nint <- rfac[temp] #intervals to interpolate over cuts[[temp]] <- round(approx(nint*(1:nyear), cuts[[temp]], nint:(nint*nyear))$y - .0001) } } temp <- .C(Cpyears1, as.integer(n), as.integer(ncol(Y)), as.integer(is.Surv(Y)), as.double(Y), as.double(weights), as.integer(length(atts$dim)), as.integer(rfac), as.integer(atts$dim), as.double(unlist(cuts)), as.double(ratetable), as.double(R), as.integer(odim), as.integer(ofac), as.integer(odims), as.double(ocut), as.integer(expect=='event'), as.double(X), pyears=double(osize), pn =double(osize), pcount=double(if(is.Surv(Y)) osize else 1), pexpect=double(osize), offtable=double(1), DUP=FALSE)[18:22] } else { #no expected temp <- .C(Cpyears2, as.integer(n), as.integer(ncol(Y)), as.integer(is.Surv(Y)), as.double(Y), as.double(weights), as.integer(odim), as.integer(ofac), as.integer(odims), as.double(ocut), as.double(X), pyears=double(osize), pn =double(osize), pcount=double(if(is.Surv(Y)) osize else 1), offtable=double(1)) [11:14] } if (data.frame) { # Create a data frame as the output, rather than a set of # rate tables keep <- (temp$pyears >0) # what rows to keep in the output names(outdname) <- ovars if (length(outdname) ==1) { # if there is only one variable, the call to "do.call" loses # the variable name, since expand.grid returns a factor df <- data.frame((outdname[[1]])[keep], pyears= temp$pyears[keep]/scale, n = temp$pn[keep]) names(df) <- c(names(outdname), 'pyears', 'n') } else { df <- cbind(do.call("expand.grid", outdname)[keep,], pyears= temp$pyears[keep]/scale, n = temp$pn[keep]) } row.names(df) <- 1:nrow(df) if (has.ratetable) df$expected <- temp$pexpect[keep] if (expect=='pyears') df$expected <- df$expected/scale if (is.Surv(Y)) df$event <- temp$pcount[keep] out <- list(call=call, data= df, offtable=temp$offtable/scale) if (has.ratetable && !is.null(rtemp$summ)) out$summary <- rtemp$summ } else if (prod(odims) ==1) { #don't make it an array out <- list(call=call, pyears=temp$pyears/scale, n=temp$pn, offtable=temp$offtable/scale) if (has.ratetable) { out$expected <- temp$pexpect if (expect=='pyears') out$expected <- out$expected/scale if (!is.null(rtemp$summ)) out$summary <- rtemp$summ } if (is.Surv(Y)) out$event <- temp$pcount } else { out <- list(call = call, pyears= array(temp$pyears/scale, dim=odims, dimnames=outdname), n = array(temp$pn, dim=odims, dimnames=outdname), offtable = temp$offtable/scale) if (has.ratetable) { out$expected <- array(temp$pexpect, dim=odims, dimnames=outdname) if (expect=='pyears') out$expected <- out$expected/scale if (!is.null(rtemp$summ)) out$summary <- rtemp$summ } if (is.Surv(Y)) out$event <- array(temp$pcount, dim=odims, dimnames=outdname) } na.action <- attr(m, "na.action") if (length(na.action)) out$na.action <- na.action if (model) out$model <- m else { if (x) out$x <- X if (y) out$y <- Y } oldClass(out) <- 'pyears' out } survival/R/summary.survreg.S0000644000176000001440000000460212267746072015712 0ustar ripleyusers# $Id: summary.survreg.S 11166 2008-11-24 22:10:34Z therneau $ summary.survreg<- function(object, correlation = FALSE,...) { if (!is.null(object$fail)) { warning(" Survreg failed.", object$fail, " No summary provided\n") return(invisible(object)) } wt <- object$weights nvar0 <- length(object$coefficients) nvar <- nrow(object$var) if (nvar > nvar0) { coef <- c(object$coefficients, log(object$scale)) if ( (nvar-nvar0)==1) cname <- c(names(object$coefficients), "Log(scale)") else cname <- c(names(object$coefficients), names(object$scale)) } else { coef <- object$coefficients cname <- names(object$coefficients) } n <- length(object$linear.predictors) p <- sum(!is.na(coef)) if(!p) { warning("This model has zero rank --- no summary is provided") return(invisible(object)) } nsingular <- nvar - p if (is.null(object$naive.var)){ table <- matrix(rep(coef, 4), ncol = 4) dimnames(table) <- list(cname, c("Value", "Std. Error", "z", "p")) stds <- sqrt(diag(object$var)) table[, 2] <- stds table[, 3] <- table[, 1]/stds table[, 4] <- 2*pnorm(-abs(table[,3])) } else { table <- matrix(rep(coef, 5), ncol = 5) dimnames(table) <- list(cname, c("Value", "Std. Err","(Naive SE)", "z", "p")) stds <- sqrt(diag(object$var)) table[, 2] <- stds table[, 3] <- sqrt(diag(object$naive.var)) table[, 4] <- table[, 1]/stds table[, 5] <- 2*pnorm(-abs(table[,4])) } if(correlation) { nas <- is.na(coef) stds <- stds[!nas] correl <- diag(1/stds) %*% object$var[!nas, !nas] %*% diag(1/stds) dimnames(correl) <- list(cname, cname) } else correl <- NULL dist <- object$dist if (is.character(dist)) sd <- survreg.distributions[[dist]] else sd <- dist if (length(object$parms)) pprint<- paste(sd$name, 'distribution: parmameters=', object$parms) else pprint<- paste(sd$name, 'distribution') x <- object[match(c('call', 'df', 'loglik', 'iter', 'na.action', 'idf', 'scale', 'coefficients', 'var'), names(object), nomatch=0)] x <- c(x, list(table=table, correlation=correl, parms=pprint, n=n, chi=2*diff(object$loglik)), robust=!is.null(object$naive.var)) if (is.R()) class(x) <- 'summary.survreg' else oldClass(x) <- 'summary.survreg' x } survival/R/coxph.wtest.S0000644000176000001440000000252112267746072015005 0ustar ripleyusers# # A Wald test routine, used by the Cox model # Why not just do sum(b * solve(var, b))? -- because the solve # function chokes on singular matrices. # coxph.wtest <- function(var, b, toler.chol=1e-9) { if (is.matrix(b)) { nvar <- nrow(b) ntest<- ncol(b) } else { nvar <- length(b) ntest<- 1 } if (length(var)==0) { #special case added by Tom Lumley if (nvar==0) return(list(test=numeric(0), df=0, solve=0)) else stop("Argument lengths do not match") } if (length(var)==1) { if (nvar ==1) return(list(test=b*b/var, df=1, solve=b/var)) else stop("Argument lengths do not match") } if (!is.matrix(var) || (nrow(var) != ncol(var))) stop("First argument must be a square matrix") if (nrow(var) != nvar) stop("Argument lengths do not match") temp <- .C(Ccoxph_wtest, df=as.integer(nvar), as.integer(ntest), as.double(var), tests= as.double(b), solve= double(nvar*ntest), as.double(toler.chol)) if (ntest==1) list(test=temp$tests[1], df=temp$df, solve=temp$solve) else list(test=temp$tests[1:ntest], df=temp$df, solve=matrix(temp$solve, nvar, ntest)) } survival/R/survcallback.S0000644000176000001440000001670712267746072015206 0ustar ripleyusers# # This is common code for survpenal.fit and coxpenal.fit. # It's all the bookkeeping to set up the penalized callbacks # This code is in development, and not yet used by anything, the if(FALSE) # keeps it out of the distribution if(FALSE){ survcallback <- function(pcols, pattr, assign, x) { # # are there any sparse frailty terms? # npenal <- length(pattr) #total number of penalized terms if (npenal == 0 || length(pcols) != npenal) stop("Invalid pcols or pattr arg") sparse <- sapply(pattr, function(x) !is.null(x$sparse) && x$sparse) if (sum(sparse) >1) stop("Only one sparse penalty term allowed") # # Create a marking vector for the terms, the same length as assign # with pterms == 0=ordinary term, 1=penalized, 2=sparse, # pindex = length of pcols = position in pterms # # Make sure that pcols is a strict subset of assign, so that the # df computation (and printing) can unambiguously decide which cols of # X are penalized and which are not when doing "terms" like actions. # To make some downstream things easier, order pcols and pattr to be # in the same relative order as the terms in 'assign' # pterms <- rep(0, length(assign)) names(pterms) <- names(assign) pindex <- rep(0, npenal) for (i in 1:npenal) { temp <- unlist(lapply(assign, function(x,y) (length(x) == length(y) && all(x==y)), pcols[[i]])) if (sparse[i]) pterms[temp] <- 2 else pterms[temp] <- 1 pindex[i] <- (seq(along.with=temp))[temp] } if ((sum(pterms==2) != sum(sparse)) || (sum(pterms>0) != npenal)) stop("pcols and assign arguments disagree") if (any(pindex != sort(pindex))) { temp <- order(pindex) pindex <- pindex[temp] pcols <- pcols[temp] pattr <- pattr[temp] } # ptype= 1 or 3 if a sparse term exists, 2 or 3 if a non-sparse exists ptype <- any(sparse) + 2*(any(!sparse)) if (any(sparse)) { sparse.attr <- (pattr[sparse])[[1]] #can't use [[sparse]] directly # if 'sparse' is a T/F vector fcol <- unlist(pcols[sparse]) if (length(fcol) > 1) stop("Sparse term must be single column") # Remove the sparse term from the X matrix frailx <- x[, fcol] x <- x[, -fcol, drop=FALSE] for (i in 1:length(assign)){ j <- assign[[i]] if (j[1] > fcol) assign[[i]] <- j-1 } for (i in 1:npenal) { j <- pcols[[i]] if (j[1] > fcol) pcol[[i]] <- j-1 } frailx <- match(frailx, sort(unique(frailx))) nfrail <- max(frailx) nvar <- nvar - 1 #Set up the callback for the sparse frailty term # (At most one sparse term is allowed). The calling code will # first set 'coef' to the current value of the sparse coefficients, # then call the expression below. It uses a separate context (Splus # frame or R environment), so there is no conflict between that # variable name and the rest of the code. Thus, think of the below as # a funcion of the temporary variable coef (current value found # in the calling C code), theta1 (current value in the S code # below, using calls to cfun), and fixed known values of pfun1 etc. # The expression will constantly replace components of "coxlist1". By # creating it first, we assure the order of the components, again # to make it simpler for the C code (it can grab the first component # and know that that is 'coef', etc). # pfun1 <- sparse.attr$pfun coxlist1 <- list(coef=0, first=0, second=0, penalty=0, flag=F) f.expr1 <- quote({ if (is.null(extra1)) temp <- pfun1(coef1, theta1, n.eff) else temp <- pfun1(coef1, theta1, n.eff, extra1) if (!is.null(temp$recenter)) coxlist1$coef <- coef1 - as.double(temp$recenter) else coxlist1$coef <- coef1 if (!temp$flag) { coxlist1$first <- -as.double(temp$first) coxlist1$second <- as.double(temp$second) } else { coxlist1$first <- double(nfrail) coxlist1$second <- double(nfrail) } coxlist1$penalty <- -as.double(temp$penalty) coxlist1$flag <- as.logical(temp$flag) # Make sure the list has exactly the right structure, so # the the C code can be simple. The first line below is # probably unnecessary (belt AND suspenders); the second is # checking a possibly user-supplied penaly function if (any(names(coxlist1) != c('coef', 'first', 'second', 'penalty', 'flag'))) stop("Invalid coxlist1") if (any(sapply(coxlist1, length) != c(rep(nfrail,3), 1, 1))) stop("Incorrect length in coxlist1") coxlist1 }) } else { # no sparse terms frailx <- 0 nfrail <- 0 f.expr1 <- NULL #dummy value pfun1 <- NULL #dummy coxlist1 <- NULL # " } nvar2 <- nvar + nstrat2 if (nvar2 ==0) { # There are no non-sparse coefficients, and no scale parameters # A strange model, leading to an hmat with 0 columns. The # underlying C code will choke, since this case is not built in. stop("Cannot fit a model with no coefficients other than sparse ones") } # Now the non-sparse penalties # There can be multiple penalized terms if (sum(!sparse) >0) { full.imat <- !all(unlist(lapply(pattr, function(x) x$diag))) ipenal <- (1:length(pattr))[!sparse] #index for non-sparse terms if (full.imat) { coxlist2 <- list(coef=double(nvar), first=double(nvar), second= double(nvar^2), penalty=0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar*nvar, 1, nvar) } else { coxlist2 <- list(coef=double(nvar), first=double(nvar), second=double(nvar), penalty= 0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar, 1, nvar) } # The C code will set the variable coef, containing the concatonation # of all the non-sparse penalized coefs. Think of the below as # a function of coef (from the C code), thetalist (set further # below), and unchanging variables such as pattr. f.expr2 <- quote({ pentot <- 0 newcoef <- coef2 for (i in ipenal) { pen.col <- pcols[[i]] tcoef <- coef2[pen.col] if (is.null(extralist[[i]])) temp <- ((pattr[[i]])$pfun)(tcoef, thetalist[[i]], n.eff) else temp <- ((pattr[[i]])$pfun)(tcoef, thetalist[[i]], n.eff,extralist[[i]]) if (!is.null(temp$recenter)) newcoef[pen.col] <- tcoef - temp$recenter if (temp$flag) coxlist2$flag[pen.col] <- TRUE else { coxlist2$flag[pen.col] <- FALSE coxlist2$first[pen.col] <- -temp$first if (full.imat) { tmat <- matrix(coxlist2$second, nvar, nvar) tmat[pen.col,pen.col] <- temp$second coxlist2$second <- c(tmat) } else coxlist2$second[pen.col] <- temp$second } pentot <- pentot - temp$penalty } coxlist2$penalty <- as.double(pentot) coxlist2$coef <- newcoef if (any(sapply(coxlist2, length) != length2)) stop("Length error in coxlist2") coxlist2 }) } else { full.imat <- FALSE # no non-sparse penalties length2 <- 0 #dummy value f.expr2 <- NULL coxlist2 <- NULL ipenal <- NULL } list(f.expr1=f.expr1, f.expr2=f.expr2, coxlist1=coxlist1, coxlist2=coxlist2, full.imat=full.imat, ipenal=ipenal, length2=length2, pfun1=pfun1, pindex=pindex, pcols=pcols, pattr=pattr, sparse=sparse, frailx=frailx, nfrail=nfrail, nvar=nvar) } } survival/R/Surv.S0000644000176000001440000002316312267746072013463 0ustar ripleyusers# # Package up surivival type data as a structure # Surv <- function(time, time2, event, type=c('right', 'left', 'interval', 'counting', 'interval2', "mstate"), origin=0) { if (missing(time)) stop ("Must have a time argument") if (!is.numeric(time)) stop ("Time variable is not numeric") nn <- length(time) # ng = number of the first 3 arguments that is present ng <- (!missing(time)) + (!missing(time2)) + (!missing(event)) # The logic below uses "ng" throughout; why not use "missing(time2)" # and missing(event) instead? Because we want to assume that # "Surv(a,b)" has the variable b matched to event rather than time2. # mtype <- match.arg(type) # Retain any attributes of the input arguments. Originally requested # by the rms package inputAttributes <- list() if (!is.null(attributes(time))) inputAttributes$time <-attributes(time) if (!missing(time2) && !is.null(attributes(time2))) inputAttributes$time2 <- attributes(time2) if (!missing(event) && !is.null(attributes(event))) inputAttributes$event <- attributes(event) # If type is missing or it is "mstate", I need to figure out for myself # whether I have (time, time2, status) or (time, status) data if (missing(type) || mtype=="mstate") { if (ng==1 || ng==2) type <- 'right' else if (ng==3) type <- 'counting' else stop ("No time variable!") # no time variable at all! } else { type <- mtype if (ng!=3 && (type=='interval' || type =='counting')) stop("Wrong number of args for this type of survival data") if (ng!=2 && (type=='right' || type=='left' || type=='interval2')) stop("Wrong number of args for this type of survival data") } if (ng==1) { # only a time variable given if (!is.numeric(time)) stop("Time variable is not numeric") ss <- cbind(time=time-origin, status=1) type <- "right" } else if (type=='right' || type=='left') { if (!is.numeric(time)) stop("Time variable is not numeric") if (missing(event)) event <- time2 # treat time2 as event if (length(event) != nn) stop ("Time and status are different lengths") if (mtype=="mstate" || (is.factor(event) && length(levels(event))>2)) { mstat <- as.factor(event) status <- as.numeric(mstat) -1 type <- "mright" } else { if (is.logical(event)) status <- as.numeric(event) else if (is.numeric(event)) { who2 <- !is.na(event) if (max(event[who2]) ==2) status <- event -1 else status <- event temp <- (status==0 | status==1) status <- ifelse(temp, status, NA) if (!all(temp[who2], na.rm=TRUE)) warning("Invalid status value, converted to NA") } else stop("Invalid status value, must be logical or numeric") } ss <- cbind(time=time-origin, status=status) } else if (type=='counting') { if (length(time2) !=nn) stop ("Start and stop are different lengths") if (length(event)!=nn) stop ("Start and event are different lengths") if (!is.numeric(time)) stop("Start time is not numeric") if (!is.numeric(time2)) stop("Stop time is not numeric") temp <- (time >= time2) if (any(temp & !is.na(temp))) { time[temp] <- NA warning("Stop time must be > start time, NA created") } if (mtype=="mstate" || (is.factor(event) && length(levels(event))>2)) { mstat <- as.factor(event) status <- as.numeric(mstat) -1 type <- "mcounting" } else { if (is.logical(event)) status <- as.numeric(event) else if (is.numeric(event)) { who2 <- !is.na(event) if (max(event[who2])==2) status <- event - 1 else status <- event temp <- (status==0 | status==1) status <- ifelse(temp, status, NA) if (!all(temp[who2], na.rm=TRUE)) warning("Invalid status value, converted to NA") } else stop("Invalid status value") } ss <- cbind(start=time-origin, stop=time2-origin, status=status) } else { #interval censored data if (type=='interval2') { # convert to "interval" type, infer the event code if (!is.numeric(time2)) stop("Time2 must be numeric") if (length(time2) !=nn) stop ("time and time2 are different lengths") time <- ifelse(time==Inf, NA, time) #allow Inf for upper/lower time2 <- ifelse(time2== -Inf, NA, time2) backwards <- (!is.na(time) & !is.na(time2) & time > time2) unknown <- (is.na(time) & is.na(time2)) status <- ifelse(is.na(time), 2, ifelse(is.na(time2), 0, ifelse(time==time2, 1,3))) time <- ifelse(status!=2, time, time2) if (any(backwards)) { warning("Invalid interval: start > stop, NA created") status[backwards] <- NA } if (any(unknown)) status[unknown] <- NA type <- 'interval' } else { #check legality of event code if (length(event)!=nn) stop("Time and status are different lengths") if (!is.numeric(event)) stop("Invalid status value, must be logical or numeric") temp <- (event==0 | event==1| event==2 | event==3) status <- ifelse(temp, event, NA) if (!all(temp, na.rm=TRUE)) warning("Status must be 0, 1, 2 or 3; converted to NA") if (any(event==3, na.rm=T)) { if (!is.numeric(time2)) stop("Time2 must be numeric") if (length(time2) !=nn) stop ("time and time2 are different lengths") temp <- (status==3 & time>time2) if (any(temp & !is.na(temp))) { status[temp] <- NA warning("Invalid interval: start > stop, NA created") } } else time2 <- 1 #dummy value, time2 is never used } ss <- cbind(time1=time-origin, time2=ifelse(!is.na(status) & status==3, time2-origin, 1), status=status) } dimnames(ss) <- list(NULL, dimnames(ss)[[2]]) #kill any tag-along row names attr(ss, "type") <- type if (type=="mright" || type=="mcounting") attr(ss, "states") <- levels(mstat)[-1] if (length(inputAttributes) > 0) attr(ss, "inputAttributes") <- inputAttributes class(ss) <- 'Surv' ss } print.Surv <- function(x, quote=FALSE, ...) { invisible(print(as.character.Surv(x), quote=quote, ...)) } as.character.Surv <- function(x, ...) { switch(attr(x, "type"), "right"={ temp <- x[,2] temp <- ifelse(is.na(temp), "?", ifelse(temp==0, "+"," ")) paste(format(x[,1]), temp, sep='') }, "counting"= { temp <- x[,3] temp <- ifelse(is.na(temp), "?", ifelse(temp==0, "+","")) paste('(', format(x[,1]), ',', format(x[,2]), temp, ']', sep='') }, "left" ={ temp <- x[,2] temp <- ifelse(is.na(temp), "?", ifelse(temp==0, "<"," ")) paste(temp, format(x[,1]), sep='') }, "interval"= { stat <- x[,3] temp <- c("+", "", "-", "]")[stat+1] temp2 <- ifelse(stat==3, paste("[", format(x[,1]), ", ",format(x[,2]), sep=''), format(x[,1])) ifelse(is.na(stat), "NA", paste(temp2, temp, sep='')) }, "mright" = { #multi-state temp <- x[,2] end <- c("+", paste(":", attr(x, "states"), sep='')) #endpoint temp <- ifelse(is.na(temp), "?", end[temp+1]) paste(format(x[,1]), temp, sep='') }, "mcounting"= { temp <- x[,3] end <- c("+", paste(":", attr(x, "states"), sep='')) #endpoint temp <- ifelse(is.na(temp), "?", end[temp+1]) paste('(', format(x[,1]), ',', format(x[,2]), temp, ']', sep='') }) } "[.Surv" <- function(x, i, j, drop=FALSE) { # If only 1 subscript is given, the result will still be a Surv object, # and the drop argument is ignored. # I would argue that x[3:4,,drop=FALSE] should return a matrix, since # the user has implicitly specified that they want a matrix. # However, [.dataframe calls [.Surv with the extra comma; its # behavior drives the choice of default. if (missing(j)) { xattr <- attributes(x) x <- unclass(x)[i,, drop=FALSE] # treat it as a matrix: handles dimnames attr(x, 'type') <- xattr$type if (!is.null(xattr$states)) attr(x, "states") <- xattr$states if (!is.null(xattr$inputAttributes)) { # If I see "names" subscript it, leave all else alone attr(x, 'inputAttributes') <- lapply(xattr$inputAttributes, function(z) { if (any(names(z)=="names")) z$names <- z$names[i] z }) } class(x) <- "Surv" #restore the class x } else { # return a matrix or vector if (is.R()) class(x) <- 'matrix' else oldClass(x) <- NULL NextMethod("[") } } is.na.Surv <- function(x) { as.vector(rowSums(is.na(unclass(x))) >0) } Math.Surv <- function(...) stop("Invalid operation on a survival time") Ops.Surv <- function(...) stop("Invalid operation on a survival time") Summary.Surv<-function(...) stop("Invalid operation on a survival time") is.Surv <- function(x) inherits(x, 'Surv') as.matrix.Surv <- function(x, ...) { y <- unclass(x) attr(y, "type") <- NULL attr(y, "states") <- NULL attr(y, "inputAttributes") <- NULL y } survival/R/is.na.coxph.penalty.S0000644000176000001440000000216212267746072016323 0ustar ripleyusers# $Id: is.na.coxph.penalty.S 11447 2010-11-12 15:10:18Z therneau $ # The subscript function for coxph.penalty objects # without it the "subset" arg of a model statement tosses # away all of the attributes # "[.coxph.penalty" <- function(x, ..., drop=FALSE) { attlist <- attributes(x) attributes(x) <- attlist[match(c('dim', 'dimnames', 'levels', 'class'), names(attlist), 0)] x <- NextMethod('[') #let the default method do actual subscripting # Tack back on all of the old attributes, except dim and dimnames # which will have been properly modified by the standard [ method, # "levels" which may have dropped some, and "class" which is special attributes(x) <- c(attributes(x), attlist[is.na(match(names(attlist), c("dim", "dimnames", "levels", "class")))]) # The class will have lost it's first level oldClass(x) <- attlist$class return(x) } is.na.coxph.penalty <- function(x) { if (is.matrix(x)) is.na(c(unclass(x) %*% rep(1,ncol(x)))) else is.na(unclass(x)) } survival/R/pspline.S0000644000176000001440000001701412267746072014174 0ustar ripleyusers# # the p-spline function for a Cox model # pspline <- function(x, df=4, theta, nterm=2.5*df, degree=3, eps=0.1, method, Boundary.knots=range(x), intercept=FALSE, penalty=TRUE, ...) { if (!missing(theta)) { method <- 'fixed' if (theta <=0 || theta >=1) stop("Invalid value for theta") } else if (df ==0 || (!missing(method) && method=='aic')) { method <- 'aic' nterm <- 15 #will be ok for up to 6-8 df if (missing(eps)) eps <- 1e-5 } else { method <- 'df' if (df <=1) stop ('Too few degrees of freedom') # The below used to say "df+1 > nterm", but we need some scope for # the smoother parameter to avoid strange conditions if (df > nterm) stop("`nterm' too small for df=",df) } xname <- deparse(substitute(x)) keepx <- !is.na(x) if (!all(keepx)) x <- x[keepx] #this is done before any reference to # Boundary.knots, so the default works nterm <- round(nterm) if (nterm < 3) stop("Too few basis functions") if (!missing(Boundary.knots)) { if (!is.numeric(Boundary.knots) || length(Boundary.knots) !=2 || Boundary.knots[1] >= Boundary.knots[2]) stop("Invalid values for Boundary.knots") # Check for data values outside the knot range outl <- (x < Boundary.knots[1]) outr<- (x > Boundary.knots[2]) outside <- outl | outr } else outside <- FALSE # Set up the evenly spaced knots dx <- (Boundary.knots[2] - Boundary.knots[1])/nterm knots <- c(Boundary.knots[1] + dx*((-degree):(nterm-1)), Boundary.knots[2]+ dx*(0:degree)) # Set up the basis. Inside the boundary knots we use spline.des. # Outside of them we use f(edge) + (x-edge)* f'(edge) if (any(outside)) { newx <- matrix(0., length(x), nterm + degree) if (any(outl)) { tt <- spline.des(knots, Boundary.knots[c(1,1)], degree+1, 0:1) newx[outl,] <- cbind(1, x[outl] - Boundary.knots[1]) %*% tt$design } if (any(outr)) { tt <- spline.des(knots, Boundary.knots[c(2,2)], degree+1, 0:1) newx[outr,] <- cbind(1, x[outr] - Boundary.knots[2]) %*% tt$design } if (any(inside <- !outside)) newx[inside,] <- spline.des(knots, x[inside], degree+1)$design } else newx <- spline.des(knots, x, degree+1, outer.ok=TRUE)$design # put missings back in so that the number of rows is right if (!all(keepx)) { temp <- matrix(NA, length(keepx), ncol(newx)) temp[keepx,] <- newx newx <- temp } nvar <- ncol(newx) #should be nterm + degree dmat <- diag(nvar) dmat <- apply(dmat, 2, diff, 1, 2) dmat <- t(dmat) %*% dmat if (intercept) xnames <-paste('ps(', xname, ')', 1:nvar, sep='') else { newx <- newx[,-1, drop=FALSE] dmat <- dmat[-1,-1, drop=FALSE] # rows corresponding to the 0 coef xnames <-paste('ps(', xname, ')', 1+ 2:nvar, sep='') } if (!penalty) { attributes(newx) <- c(attributes(newx), list(intercept=intercept, nterm=nterm, Boundary.knots=Boundary.knots)) if (is.R()) class(newx) <- "pspline" else oldClass(newx) <- "pspline" return(newx) } pfun <- function(coef, theta, n, dmat) { if (theta >=1) list(penalty= 100*(1-theta), flag=TRUE) else { if (theta <= 0) lambda <- 0 else lambda <- theta / (1-theta) list(penalty= c(coef %*% dmat %*% coef) * lambda/2, first = c(dmat %*% coef) * lambda , second = c(dmat * lambda), flag=FALSE ) } } printfun <- function(coef, var, var2, df, history, cbase) { test1 <- coxph.wtest(var, coef)$test # cbase contains the centers of the basis functions # do a weighted regression of these on the coefs to get a slope xmat <- cbind(1, cbase) xsig <- coxph.wtest(var, xmat)$solve # V X , where V = g-inverse(var) # [X' V X]^{-1} X' V cmat <- coxph.wtest(t(xmat)%*% xsig, t(xsig))$solve[2,] linear <- sum(cmat * coef) lvar1 <- c(cmat %*% var %*% cmat) lvar2 <- c(cmat %*% var2%*% cmat) test2 <- linear^2 / lvar1 # the "max(.5, df-1)" below stops silly (small) p-values for a # chisq of 0 on 0 df, when using AIC gives theta near 1 cmat <- rbind(c(linear, sqrt(lvar1), sqrt(lvar2), test2, 1, 1-pchisq(test2, 1)), c(NA, NA, NA, test1-test2, df-1, 1-pchisq(test1-test2, max(.5,df-1)))) dimnames(cmat) <- list(c("linear", "nonlin"), NULL) nn <- nrow(history$thetas) if (length(nn)) theta <- history$thetas[nn,1] else theta <- history$theta list(coef=cmat, history=paste("Theta=", format(theta))) } if (is.R()) { # The printfun needs to remember the spline's knots, # but I don't need (or want) to carry around the entire upteen # variables defined here as an environment # So fill in defaults for the cbase argument, and # force the function's environment to simplicity (amnesia) temp <- formals(printfun) temp$cbase <- knots[2:nvar] + (Boundary.knots[1] -knots[1]) formals(printfun) <- temp environment(printfun) <- .GlobalEnv } else { # Somewhat simpler in Splus, but because it depends on the # undocumented manner in which functions are stored, it might # stop working one day printfun[[6]] <- knots[2:nvar] + (Boundary.knots[1] - knots[1]) } if (method=='fixed') { temp <- list(pfun=pfun, printfun=printfun, pparm=dmat, diag =FALSE, cparm=list(theta=theta), varname=xnames, cfun = function(parms, iter, old) list(theta=parms$theta, done=TRUE)) } else if (method=='df') { temp <- list(pfun=pfun, printfun=printfun, diag =FALSE, cargs=('df'), cparm=list(df=df, eps=eps, thetas=c(1,0), dfs=c(1, nterm), guess=1 - df/nterm, ...), pparm= dmat, varname=xnames, cfun = frailty.controldf) } else { # use AIC temp <- list(pfun=pfun, printfun=printfun, pparm=dmat, diag =FALSE, cargs = c('neff', 'df', 'plik'), cparm=list(eps=eps, init=c(.5, .95), lower=0, upper=1, ...), varname=xnames, cfun = frailty.controlaic) } attributes(newx) <- c(attributes(newx), temp, list(intercept=intercept, nterm=nterm, Boundary.knots=Boundary.knots)) if (is.R()) class(newx) <- c("pspline", 'coxph.penalty') else oldClass(newx) <- 'coxph.penalty' newx } makepredictcall.pspline <- function(var, call) { if (call[[1]] != as.name("pspline")) return(call) #wrong phone number newcall <- call[1:2] #don't let the user override anything at <- attributes(var)[c("nterm", "intercept", "Boundary.knots")] newcall[names(at)] <- at newcall } predict.pspline <- function(object, newx, ...) { if (missing(newx)) return(object) a <- c(list(x=newx, penalty=FALSE), attributes(object)[c("intercept, Boundary.knots")]) do.call("pspline", a) } # Given a pspline basis, recover x psplineinverse <- function(x) { if (!inherits(x, "pspline")) stop("Argment must be the result of a call to pspline") intercept <- attr(x, "intercept") knots <- attr(x, "knots") nknot <- length(knots) if (!intercept) { indx <- 1:(ncol(x)+1) + (nknot- (ncol(x) +1))/2 as.vector(cbind(1-rowSums(x), x) %*% knots[indx]) } else { indx <- 1:ncol(x) + (nknot - ncol(x))/2 as.vector(x %*% knots) } } survival/R/survfitCI.R0000644000176000001440000002465012267746104014437 0ustar ripleyusers# Automatically generated from all.nw using noweb survfitCI <- function(X, Y, weights, id, istate, type=c('kaplan-meier', 'fleming-harrington', 'fh2'), se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none'), conf.lower=c('usual', 'peto', 'modified')){ method <- match.arg(type) # error <- match.arg(error) # if (error != "inf") # warning("Only the infinetesimal jackknife error is supported for CI curves") conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's illegal per documentation, but be kind if (!conf.int) conf.type <- "none" conf.int <- .95 } type <- attr(Y, "type") if (type !='mright' && type!='mcounting' && type != "right" && type != "counting") stop(paste("Cumulative incidence computation doesn't support \"", type, "\" survival data", sep='')) n <- nrow(Y) status <- Y[,ncol(Y)] ncurve <- length(levels(X)) state.names <- attr(Y, "states") if (missing(istate) || is.null(istate)) istate <- rep(0L, n) else if (is.factor(istate) || is.character(istate)) { # Match levels with the survival variable temp <- as.factor(istate) # append any starting states not found in Y, but remember that # if istate was a factor then not all its levels might appear appear <- (levels(istate))[unique(as.numeric(istate))] state.names <- unique(c(attr(Y, "states"), appear)) istate <- as.numeric(factor(as.character(istate), levels=state.names)) } else if (!is.numeric(istate) || any(istate != floor(istate))) stop("istate should be a vector of integers or a factor") if (length(id) ==0) id <- 1:n # these next two lines should be impossible, since istate came from the data frame if (length(istate) ==1) istate <- rep(istate,n) if (length(istate) !=n) stop ("wrong length for istate") states <- sort(unique(c(istate, 1:length(attr(Y, "states"))))) #list of all docurve2 <- function(entry, etime, status, istate, wt, states, id, se.fit) { # # round off error can cause trouble, if two times are within machine # precsion # solve this by using creating a factor ftime <- factor(c(entry,etime)) ltime <- levels(ftime) ftime <- matrix(as.integer(ftime), ncol=2) n <- length(entry) timeset <- as.numeric(ltime[sort(unique(ftime[,2]))]) #unique event times nstate <- length(states) uid <- sort(unique(id)) P <- as.vector(tapply(wt, factor(istate, levels=states), sum) / sum(wt)) P <- ifelse(is.na(P), 0, P) # initial probability distribution cstate <- istate[match(uid, id)] #current state for each observation storage.mode(wt) <- "double" # just in case someone had integer weights storage.mode(cstate) <- "integer" storage.mode(status) <- "integer" # C code has 0 based subscripts fit <- .Call(Csurvfitci, ftime, order(ftime[,1]) - 1L, order(ftime[,2]) - 1L, length(timeset), status, cstate - 1L, wt, match(id, uid) -1L, P, as.integer(se.fit)) prev0 <- table(factor(cstate, levels=states), exclude=NA)/length(cstate) if (se.fit) list(time=timeset, pmat=t(fit$p), std=sqrt(t(fit$var)), n.risk = colSums(fit$nrisk),n.event = fit$nevent, n.censor=fit$ncensor, prev0 = prev0, cumhaz=array(fit$cumhaz, dim=c(nstate,nstate, length(timeset)))) else list(time=timeset, pmat=t(fit$p), n.risk = colSums(fit$nrisk),n.event = fit$nevent, n.censor=fit$ncensor, prev0=prev0, cumhaz=array(fit$cumhaz, dim=c(nstate,nstate, length(timeset)))) } if (any(states==0)) { state0 <- TRUE states <- states + 1 istate <- istate + 1 status <- ifelse(status==0, 0, status+1) } else state0 <- FALSE curves <- vector("list", ncurve) names(curves) <- levels(X) if (ncol(Y)==2) { # 1 transition per subject indx <- which(status == istate & status!=0) if (length(indx)) { warning("an observation transitions to it's starting state, transition ignored") status[indx] <- 0 } if (length(id) && any(duplicated(id))) stop("Cannot have duplicate id values with (time, status) data") # dummy entry time that is < any event time entry <- rep(min(-1, 2*min(Y[,1])-1), n) for (i in levels(X)) { indx <- which(X==i) # temp <- docurve1(entry[indx], Y[indx,1], status[indx], # istate[indx], weights[indx], states, # id[indx]) curves[[i]] <- docurve2(entry[indx], Y[indx,1], status[indx], istate[indx], weights[indx], states, id[indx], se.fit) } } else { if (missing(id) || is.null(id)) stop("the id argument is required for start:stop data") indx <- order(id, Y[,2]) #ordered event times within subject indx1 <- c(NA, indx) #a pair of lagged indices indx2 <- c(indx, NA) same <- (id[indx1] == id[indx2] & !is.na(indx1) & !is.na(indx2)) #indx1, indx2= same id? if (any(same & X[indx1] != X[indx2])) { who <- 1 + min(which(same & X[indx1] != X[indx2])) stop("subject is in two different groups, id ", (id[indx1])[who]) } if (any(same & Y[indx1,2] != Y[indx2,1])) { who <- 1 + min(which(same & Y[indx1,2] != Y[indx2,1])) stop("gap in follow-up, id ", (id[indx1])[who]) } if (any(Y[,1] == Y[,2])) stop("cannot have start time == stop time") if (any(same & Y[indx1,3] == Y[indx2,3] & Y[indx1,3] !=0)) { who <- 1 + min(which(same & Y[indx1,1] != Y[indx2,2])) warning("subject changes to the same state, id ", (id[indx1])[who]) } if (any(same & weights[indx1] != weights[indx2])) { who <- 1 + min(which(same & weights[indx1] != weights[indx2])) stop("subject changes case weights, id ", (id[indx1])[who]) } # We only want to pay attention to the istate variable for the very first # observation of any given subject, but the program logic does better with # a full one. So construct one that will do this indx <- order(Y[,2]) uid <- unique(id) temp <- (istate[indx])[match(uid, id[indx])] #first istate for each subject istate <- temp[match(id, uid)] #replicate it to full length # Now to work for (i in levels(X)) { indx <- which(X==i) # temp <- docurve1(Y[indx,1], Y[indx,2], status[indx], # istate[indx], weights[indx], states, id[indx]) curves[[i]] <- docurve2(Y[indx,1], Y[indx,2], status[indx], istate[indx], weights[indx], states, id[indx], se.fit) } } # Turn the result into a survfit type object grabit <- function(clist, element) { temp <-(clist[[1]][[element]]) if (is.matrix(temp)) { nc <- ncol(temp) matrix(unlist(lapply(clist, function(x) t(x[[element]]))), byrow=T, ncol=nc) } else { xx <- as.vector(unlist(lapply(clist, function(x) x[element]))) if (class(temp)=="table") matrix(xx, byrow=T, ncol=length(temp)) else xx } } kfit <- list(n = as.vector(table(X)), time = grabit(curves, "time"), n.risk= grabit(curves, "n.risk"), n.event= grabit(curves, "n.event"), n.censor=grabit(curves, "n.censor"), prev = grabit(curves, "pmat"), prev0 = grabit(curves, "prev0")) nstate <- length(states) kfit$cumhaz <- array(unlist(lapply(curves, function(x) x$cumhaz)), dim=c(nstate, nstate, length(kfit$time))) if (length(curves) >1) kfit$strata <- unlist(lapply(curves, function(x) length(x$time))) if (se.fit) kfit$std.err <- grabit(curves, "std") # if state 0 was present, remove it if (state0) { kfit$prev <- kfit$prev[,-1] if (se.fit) kfit$std.err <- kfit$std.err[,-1] kfit$prev0 <- kfit$prev0[,-1] } # # Last bit: add in the confidence bands: # modeled on survfit.km, though for P instead of S # # if (se.fit) { std.err <- kfit$std.err zval <- qnorm(1- (1-conf.int)/2, 0,1) surv <- 1-kfit$prev if (conf.type=='plain') { temp <- zval* std.err kfit <- c(kfit, list(lower =pmax(kfit$prev-temp, 0), upper=pmin(kfit$prev+temp, 1), conf.type='plain', conf.int=conf.int)) } if (conf.type=='log') { #avoid some "log(0)" messages xx <- ifelse(kfit$prev==1, 1, 1- kfit$prev) temp1 <- ifelse(surv==0, NA, exp(log(xx) + zval* std.err/xx)) temp2 <- ifelse(surv==0, NA, exp(log(xx) - zval* std.err/xx)) kfit <- c(kfit, list(lower=pmax(1-temp1,0), upper= 1- temp2, conf.type='log', conf.int=conf.int)) } if (conf.type=='log-log') { who <- (surv==0 | surv==1) #special cases temp3 <- ifelse(surv==0, NA, 1) xx <- ifelse(who, .1,kfit$surv) #avoid some "log(0)" messages temp1 <- exp(-exp(log(-log(xx)) + zval*std.err/(xx*log(xx)))) temp1 <- ifelse(who, temp3, temp1) temp2 <- exp(-exp(log(-log(xx)) - zval*std.err/(xx*log(xx)))) temp2 <- ifelse(who, temp3, temp2) kfit <- c(kfit, list(lower=1-temp1, upper=1-temp2, conf.type='log-log', conf.int=conf.int)) } } kfit$states <- state.names kfit$type <- attr(Y, "type") kfit } survival/R/quantile.survfit.R0000644000176000001440000002644312267746072016052 0ustar ripleyusers# # quantile function for survfit objects # # First a little function to find quantiles in a CDF # curve. It would be a trivial use of approx, except that # once in a while the survival curve has a flat spot exactly # at the requested quantile. Then we use the median of the # flat. findq <- function(x, y, p, tol) { # This case occurs for a survival curve whose upper limit never drops below 1 if (max(y, na.rm=T) < min(p)) return(rep(NA, length(p))) # Remove duplicate y values, i.e., the censors, since dups cause # issues for approx xmax <- x[length(x)] dups <- duplicated(y) if (any(dups)) { x <- x[!dups] y <- y[!dups] } n <- length(y) # quantile = where a horzontal line at p intercects the curve. At each # x the curve of 1-y jumps up to a new level # The most work is to check for horizontal lines in the survival # curve that match one of our quantiles within tolerance. If any # p matches, then our quantile is the average of the given x and # the x value of the next jump point, i.e., the usual midpoint rule # used for medians. # A flat at the end of the curve is a special case, as is the quantile # of 0. indx1 <- approx(y+tol, 1:n, p, method="constant", f=1)$y indx2 <- approx(y-tol, 1:n, p, method="constant", f=1)$y quant <- (x[indx1] + x[indx2])/2 quant[p==0] <- x[1] if (!is.na(y[n])) { lastpt <- (abs(p- y[n]) < tol) # end of the curve if (any(lastpt)) quant[lastpt] <- (x[indx1[lastpt]] + xmax)/2 } quant } doquant <- function(p, time, surv, upper, lower, firstx, tol) { qq <- findq(c(firstx,time), c(0, 1-surv), p, tol) # browser() if (missing(upper)) qq else rbind(qq, findq(c(firstx, time), c(0, 1-lower), p, tol), findq(c(firstx, time), c(0, 1-upper), p, tol)) } quantile.survfit <- function(x, probs=c(.25, .5, .75), conf.int=TRUE, tolerance= sqrt(.Machine$double.eps), ...) { if (!inherits(x, "survfit")) stop("Must be a survfit object") if (any(!is.numeric(probs)) || any(is.na(probs))) stop("invalid probability") if (any(probs <0 | probs >1)) stop("Invalid probability") if (is.null(x$lower)) conf.int <- FALSE nprob <- length(probs) pname <- format(probs*100) # What do we report for p=0? Use x$start.time if it exists, 0 otherwise xmin <- if (is.null(x$start.time)) 0 else x$start.time # There are 8 cases: strata yes/no # ncol(x$surv) =1 or >1 # conf.int = T/F if (is.null(x$strata)) { if (is.matrix(x$surv) && ncol(x$surv) >1) { qmat <- matrix(0., ncol=nprob, nrow=ncol(x$surv)) dimnames(qmat) <- list(dimnames(x$surv)[[2]], pname) if (conf.int) { qupper <- qlower <- qmat for (i in 1:ncol(x$surv)) { temp <- doquant(probs, x$time, x$surv[,i], x$upper[,i], x$lower[,i], xmin, tolerance) qmat[i,] <- temp[1,] qupper[i,] <- temp[3,] qlower[i,] <- temp[2,] } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (i in 1:ncol(x$surv)) qmat[i,] <- doquant(probs, x$time, x$surv[,i], firstx=xmin, tol=tolerance) return(qmat) } } else { # No strata and no matrix if (conf.int) { temp <- doquant(probs, x$time, x$surv, x$upper, x$lower, xmin, tolerance) dimnames(temp) <- list(NULL, pname) return(list(quantile=temp[1,], lower=temp[2,], upper=temp[3,])) } else { temp <- doquant(probs, x$time, x$surv, firstx=xmin, tol =tolerance) names(temp) <- pname return(temp) } } } else { nstrat <- length(x$strata) if (is.matrix(x$surv) && ncol(x$surv) >1) { # uncommon case, e.g., predicted survivals from a Cox model # return an array with strata as the first dimension, and # the probabilites as the third. qmat <- array(0., dim=c(nstrat, ncol(x$surv), nprob)) dimnames(qmat) <-list(names(x$strata), dimnames(x$surv)[[2]], pname) if (conf.int) { qupper <- qlower <- qmat for (strat in 1:nstrat) { z <- x[strat,] for (i in 1:ncol(z$surv)) { temp <- doquant(probs, z$time, z$surv[,i], z$upper[,i], z$lower[,i], xmin,tolerance) qmat[strat,i,] <- temp[1,] qupper[strat,i,] <- temp[3,] qlower[strat,i,] <- temp[2,] } } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (strat in 1:nstrat) { z <- x[strat] for (i in 1:ncol(z$surv)) qmat[strat,i,] <- doquant(probs, z$time, z$surv[,i], firstx=xmin, tol=tolerance) } return(qmat) } } else { # Only a strata, the most common case qmat <- matrix(0., nstrat, nprob) dimnames(qmat) <- list(names(x$strata), pname) if (conf.int) { qupper <- qlower <- qmat for (i in 1:nstrat) { z <- x[i] temp <- doquant(probs, z$time, z$surv, z$upper, z$lower, xmin, tolerance) qmat[i,] <- temp[1,] qupper[i,] <- temp[3,] qlower[i,] <- temp[2,] } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (i in 1:nstrat) { z <- x[i] qmat[i,] <- doquant(probs, z$time, z$surv, firstx=xmin, tol = tolerance) } return(qmat) } } } } # Why can't I just fudge the object and call quantile.survfit? Because # the code below uses subscripted objects, and the class of the chimeric # object doesn't work out for that operation. Also, we want to use the # state names in the dimnames of the result. # quantile.survfitms <- function(x, probs=c(.25, .5, .75), conf.int=TRUE, tolerance= sqrt(.Machine$double.eps), ...) { if (any(!is.numeric(probs)) || any(is.na(probs))) stop("invalid probability") if (any(probs <0 | probs >1)) stop("Invalid probability") if (is.null(x$lower)) conf.int <- FALSE nprob <- length(probs) pname <- format(probs*100) if (is.null(x$start.time)) xmin<-0 else xmin <- x$start.time # There are 8 cases: strata yes/no # ncol(x$surv) =1 or >1 # conf.int = T/F if (is.null(x$strata)) { if (is.matrix(x$prev) && ncol(x$prev) >1) { qmat <- matrix(0., ncol=nprob, nrow=ncol(x$prev)) dimnames(qmat) <- list(x$states, pname) if (conf.int) { qupper <- qlower <- qmat for (i in 1:ncol(x$prev)) { temp <- doquant(probs, x$time, 1-x$prev[,i], 1-x$lower[,i], 1-x$upper[,i], xmin, tolerance) qmat[i,] <- temp[1,] qupper[i,] <- temp[3,] qlower[i,] <- temp[2,] } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (i in 1:ncol(x$prev)) qmat[i,] <- doquant(probs, x$time, 1-x$prev[,i], firstx=xmin, tol=tolerance) return(qmat) } } else { # No strata and no matrix if (conf.int) { temp <- doquant(probs, x$time, 1-x$prev, 1-x$lower, 1-x$upper, firstx=xmin, tol=tolerance) dimnames(temp) <- list(NULL, pname) return(list(quantile=temp[1,], lower=temp[2,], upper=temp[3,])) } else { temp <- doquant(probs, x$time, 1-x$prev, firstx=xmin, tol=tolerance) names(temp) <- pname return(temp) } } } else { nstrat <- length(x$strata) if (is.matrix(x$prev) && ncol(x$prev) >1) { # the most common case # Return an array with strata as the first dimension, state as # the second, and the probabilites as the third. The reason # for this order is that then # (quantile(fit))[i,j,] = quantile(fit[i,j]) qmat <- array(0., dim=c(nstrat, ncol(x$prev), nprob)) dimnames(qmat) <-list(names(x$strata), x$states, pname) if (conf.int) { qupper <- qlower <- qmat for (strat in 1:nstrat) { z <- x[strat] for (i in 1:ncol(z$prev)) { temp <- doquant(probs, z$time, 1-z$prev[,i], 1-z$lower[,i], 1-z$upper[,i], xmin, tolerance) qmat[strat,i,] <- temp[1,] qupper[strat,i,] <- temp[3,] qlower[strat,i,] <- temp[2,] } } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (strat in 1:nstrat) { z <- x[strat] for (i in 1:ncol(z$prev)) qmat[strat,i,] <- doquant(probs, z$time, 1-z$prev[,i], firstx= xmin, tol=tolerance) } return(qmat) } } else { # Only a strata, which will be a rare case. Perhaps someone # typed "quantile(fit[,2], .4)" qmat <- matrix(0., nstrat, nprob) dimnames(qmat) <- list(names(x$strata), pname) if (conf.int) { qupper <- qlower <- qmat for (i in 1:nstrat) { z <- x[i] temp <- doquant(probs, z$time, 1-z$prev, 1-z$lower, 1-z$upper, xmin, tolerance) qmat[i,] <- temp[1,] qupper[i,] <- temp[3,] qlower[i,] <- temp[2,] } return(list(quantile=qmat, lower=qlower, upper=qupper)) } else { for (i in 1:nstrat) { z <- x[i] qmat[i,] <- doquant(probs, z$time, 1-z$prev, firstx=xmin, tol = tolerance) } return(qmat) } } } } survival/R/ratetable.S0000644000176000001440000001200212267746072014455 0ustar ripleyusers# $Id: ratetable.S 11389 2010-02-08 22:53:51Z therneau $ # # This source file has two distinct parts in it. The first is the # ratetable(), which is used inside pyears and survexp only to allow # users to match the names of variables in their data set to the names # of the dimensions in a ratetable. It returns a matrix with one # column for each argument; usually that argument will be a vector but # may also be a single constant. The result has a class "ratetable2", # whose only purpose is to allow na.action functions to work properly. # # The second part of the file are the methods for actual rate tables, like # the table of US survival rates by age and sex (survexp.us). Rate tables # have the "ratetable" class. However, since each one is rather unique, # there is no function to create a rate table. Each consists of a multi-way # array of event rates along with a set of attributes. # # The ideal for this function would be # ratetable <- function(...) data.frame(...) # Then missing, subsets, etc would all be fine, yet the variables would still # be special in the terms result so I could find them. But -- the only # multi-column objects that model.frame will accept are matrices. So I # make a data frame (both factors and numerics) that looks like a matrix. # ratetable <- function(...) { args <- list(...) nargs <- length(args) ll <- sapply(args, length) n <- max(ll) # We assume this is the dimension of the user's data frame levlist <- vector("list", nargs) isDate <- rep(FALSE, nargs) x <- matrix(0,n,nargs) dimnames(x) <- list(1:n, names(args)) for (i in 1:nargs) { if (ll[i] ==1) args[[i]] <- rep(args[[i]], n) else if (ll[i] != n) stop(paste("Aguments do not all have the same length (arg ", i, ")", sep='')) # In Splus cut and tcut produce class 'category' if (inherits(args[[i]], 'cateogory') || is.character(args[[i]])) args[[i]] <- as.factor(args[[i]]) if (is.factor(args[[i]])) { levlist[[i]] <- levels(args[[i]]) x[,i] <- as.numeric(args[[i]]) # the vector of levels } else { temp <- ratetableDate(args[[i]]) if (is.null(temp)) x[,i] <- as.numeric(args[[i]]) else { x[,i] <- temp isDate[i] <- TRUE } } } attr(x, "isDate") <- isDate attr(x, "levlist") <- levlist if (is.R()) class(x) <- 'ratetable2' else oldClass(x) <- "ratetable2" x } # The two functions below should only be called internally, when missing # values cause model.frame to drop some rows is.na.ratetable2 <- function(x) { attributes(x) <- list(dim=dim(x)) as.vector((1 * is.na(x)) %*% rep(1, ncol(x)) >0) } "[.ratetable2" <- function(x, rows, cols, drop=FALSE) { if (!missing(cols)) { stop("This should never be called!") } aa <- attributes(x) attributes(x) <- aa[c("dim", "dimnames")] y <- x[rows,,drop=FALSE] attr(y,'isDate') <- aa$isDate attr(y,'levlist') <- aa$levlist if (is.R()) class(y) <- 'ratetable2' else oldClass(y) <- 'ratetable2' y } # # Functions to manipulate rate tables # "[.ratetable" <- function(x, ..., drop=TRUE) { aa <- attributes(x) attributes(x) <- aa[c("dim", "dimnames")] y <- NextMethod("[", drop=FALSE) newdim <- attr(y, 'dim') if (is.null(newdim)) return(y) #when the subscript was a single vector dropped <- (newdim==1) if (drop) change <- (newdim!=aa$dim & !dropped) else change <- (newdim!=aa$dim) if (any(change)) { #dims that got smaller, but not dropped newcut <- aa$cutpoints for (i in (1:length(change))[change]) if (!is.null(newcut[[i]])) newcut[[i]] <- (newcut[[i]])[match(dimnames(y)[[i]], aa$dimnames[[i]])] aa$cutpoints <- newcut } if (drop && any(dropped)){ if (all(dropped)) as.numeric(y) #single element else { #Note that we have to drop the summary function attributes(y) <- list( dim = dim(y)[!dropped], dimnames = dimnames(y)[!dropped], dimid = aa$dimid[!dropped], factor = aa$factor[!dropped], cutpoints =aa$cutpoints[!dropped], type = aa$type[!dropped]) if (is.R()) class(y) <- 'ratetable' else oldClass(y) <- 'ratetable' y } } else { aa$dim <- aa$dimnames <- NULL attributes(y) <- c(attributes(y), aa) y } } is.na.ratetable <- function(x) structure(is.na(as.vector(x)), dim=dim(x), dimnames=dimnames(x)) Math.ratetable <- function(x, ...) { attributes(x) <- attributes(x)[c("dim", "dimnames")] NextMethod(.Generic) } Ops.ratetable <- function(e1, e2) { #just treat it as an array if (nchar(.Method[1])) attributes(e1) <- attributes(e1)[c("dim","dimnames")] if (nchar(.Method[2])) attributes(e2) <- attributes(e2)[c("dim","dimnames")] NextMethod(.Generic) } as.matrix.ratetable <- function(x, ...) { attributes(x) <- attributes(x)[c("dim", "dimnames")] x } survival/R/cluster.S0000644000176000001440000000012012267746072014171 0ustar ripleyusers# $Id: cluster.S 11166 2008-11-24 22:10:34Z therneau $ cluster <- function(x) x survival/R/aareg.taper.S0000644000176000001440000000223212267746072014707 0ustar ripleyusers# SCCS $Id: aareg.taper.S 11166 2008-11-24 22:10:34Z therneau $ # # Do running averages of an information matrix # aareg.taper <- function(taper, imat, nevent) { dd <- dim(imat) if (length(taper)==0 || !is.numeric(taper) || any(taper <=0)) stop("Invalid taper vector") ntaper <- length(taper) ntime <- dd[3] if (ntaper > ntime) { taper <- taper[1:ntime] ntaper <- ntime } # # Turn imat into an array: 1 row per coef, one col per time # and then scale it by the number of events to get a variance # (coxph.detail returns imat = var(X) * nevents) # imat <- matrix(as.vector(imat), ncol=dd[3]) imat <- imat / rep(nevent, rep(dd[1]*dd[2], dd[3])) if (ntaper >1) { smoother <- matrix(0., ntime, ntime) tsum <- cumsum(rev(taper)) for (i in 1:ntaper) smoother[1:i, i] <- taper[seq(to=ntaper, length=i)]/tsum[i] if (ntaper < ntime) { for (i in (ntaper+1):ntime) smoother[seq(to=i, length=ntaper),i] <- taper/tsum[ntaper] } imat <- imat %*% smoother } array(imat, dim=dd) } survival/R/coxexact.fit.R0000644000176000001440000000653512267746072015126 0ustar ripleyusers# This routine fits right censored data when the method is # "exact". The most common use for this option is matched # case-control data. coxexact.fit <- function(x, y, strata, offset, init, control, weights, method, rownames) { if (!is.matrix(x)) stop("Invalid formula for cox fitting function") if (!is.null(weights) && any(weights!=1)) stop("Case weights are not supported for the exact method") n <- nrow(x) nvar <- ncol(x) # The risk set addition in the C-code, which is the critically slow # part of the calculations, expects to have the data in sorted order: # (large to small times) within strata if (length(strata)==0) { sorted <- order(-y[,1]) newstrat <- as.integer(rep(0,n)) } else { sorted <- order(strata, -y[,1]) strata <- (as.numeric(strata))[sorted] newstrat <- as.integer(c(1, 1*(diff(strata)!=0))) } y <- y[sorted,] if (is.null(offset)) offset <- rep(0.,n) else offset <- offset[sorted] if (is.null(nvar)) { # A special case: Null model. Not worth coding up stop("Cannot handle a null model + exact calculation (yet)") } if (!is.null(init)) { if (length(init) != nvar) stop("Wrong length for inital values") } else init <- rep(0.,nvar) # Prescale the data set to improve numerical accuracy. # We will undo the scaling before finishing up. newx <- scale(x[sorted,]) # newx <- scale(x, scale=NULL) #debug rescale <- attr(newx, "scaled:scale") means <- attr(newx, "scaled:center") cfit <- .Call(Ccoxexact, as.integer(control$iter.max), as.double(y), # interger data? Just in case. newx, as.double(offset), as.integer(newstrat), as.double(init*rescale), as.double(control$eps), as.double(control$toler.chol) ) loglik <- cfit$loglik[1:2] #these are packed into one vector sctest <- cfit$loglik[3] iter <- cfit$loglik[5] flag <- cfit$loglik[4] var <- matrix(cfit$imat,nvar,nvar) coef <- cfit$coef if (flag < nvar) which.sing <- diag(var)==0 else which.sing <- rep(FALSE,nvar) infs <- abs(cfit$u %*% var) if (control$iter.max >1) { if (flag == 1000) warning("Ran out of iterations and did not converge") else { infs <- ((infs > control$eps) & infs > control$toler.inf*abs(coef)) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } names(coef) <- dimnames(x)[[2]] lp <- newx %*% coef + offset score <- as.double(exp(lp)) # Compute the residuals cxres <- .C(Ccoxmart2, as.integer(n), as.double(y[,1]), as.integer(y[,2]), newstrat, score, rep(1.0, n), #weights resid=double(n), DUP=FALSE) resid <- double(n) resid[sorted] <- cxres$resid names(resid) <- rownames coef[which.sing] <- NA lp.unsort <- double(n) lp.unsort[sorted] <- lp scmat <- diag(1/rescale, nvar,nvar) list(coefficients = coef/rescale, var = scmat %*% var %*% scmat, loglik = loglik, score = sctest, iter = iter, linear.predictors = lp.unsort, residuals = resid, means = means, method= 'coxph') } survival/R/lines.survexp.R0000644000176000001440000000015212267746072015341 0ustar ripleyuserslines.survexp <- function(x, type="l", ...) { type <- type NextMethod("lines", type=type, ...) } survival/R/plot.survfit.R0000644000176000001440000006030612267746076015206 0ustar ripleyusers# Automatically generated from all.nw using noweb plot.survfit<- function(x, conf.int, mark.time=TRUE, mark=3, col=1,lty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1, firstx=0, firsty=1, xmax, ymin=0, fun, xlab="", ylab="", xaxs='S', ...) { dotnames <- names(list(...)) if (any(dotnames=='type')) stop("The graphical argument 'type' is not allowed") if (inherits(x, "survfitms")) { x$surv <- 1- x$prev if (is.matrix(x$surv)) dimnames(x$surv) <- list(NULL, x$states) if (!is.null(x$lower)) { x$lower <- 1- x$lower x$upper <- 1- x$upper } if (missing(fun)) fun <- "event" } if (missing(firsty) && !is.null(x$prev0)) firsty <- 1-x$prev0 if (is.logical(log)) { ylog <- log xlog <- FALSE if (ylog) logax <- 'y' else logax <- "" } else { ylog <- (log=='y' || log=='xy') xlog <- (log=='x' || log=='xy') logax <- log } if (!missing(fun)) { if (is.character(fun)) { if (fun=='log'|| fun=='logpct') ylog <- TRUE if (fun=='cloglog') { xlog <- TRUE if (ylog) logax <- 'xy' else logax <- 'x' } } } # The special x axis style only applies when firstx is not given if (missing(xaxs) && (firstx!=0 || !missing(fun) || (missing(fun) && inherits(x, "survfitms")))) xaxs <- par("xaxs") #use the default ssurv <- as.matrix(x$surv) stime <- x$time if( !is.null(x$upper)) { supper <- as.matrix(x$upper) slower <- as.matrix(x$lower) } else { conf.int <- FALSE supper <- NULL #marker for later code } # Two cases where we don't put marks at the censoring times if (inherits(x, 'survexp') || inherits(x, 'survfit.coxph')) { if (missing(mark.time)) mark.time <- FALSE } # set up strata if (is.null(x$strata)) { nstrat <- 1 stemp <- rep(1, length(x$time)) # same length as stime } else { nstrat <- length(x$strata) stemp <- rep(1:nstrat, x$strata) # same length as stime } ncurve <- nstrat * ncol(ssurv) firsty <- matrix(firsty, nrow=nstrat, ncol=ncol(ssurv)) if (!missing(xmax) && any(x$time>xmax)) { # prune back the survival curves # I need to replace x's over the limit with xmax, and y's over the # limit with either the prior y value or firsty keepx <- keepy <- NULL # lines to keep tempn <- table(stemp) offset <- cumsum(c(0, tempn)) for (i in 1:nstrat) { ttime <-stime[stemp==i] if (all(ttime <= xmax)) { keepx <- c(keepx, 1:tempn[i] + offset[i]) keepy <- c(keepy, 1:tempn[i] + offset[i]) } else { bad <- min((1:tempn[i])[ttime>xmax]) if (bad==1) { #lost them all if (!is.na(firstx)) { # and we are plotting lines keepy <- c(keepy, 1+offset[i]) ssurv[1+offset[i],] <- firsty[i,] } } else keepy<- c(keepy, c(1:(bad-1), bad-1) + offset[i]) keepx <- c(keepx, (1:bad)+offset[i]) stime[bad+offset[i]] <- xmax x$n.event[bad+offset[i]] <- 1 #don't plot a tick mark } } # ok, now actually prune it stime <- stime[keepx] stemp <- stemp[keepx] x$n.event <- x$n.event[keepx] if (!is.null(x$n.censor)) x$n.censor <- x$n.censor[keepx] ssurv <- ssurv[keepy,,drop=FALSE] if (!is.null(supper)) { supper <- supper[keepy,,drop=FALSE] slower <- slower[keepy,,drop=FALSE] } } stime <- stime/xscale #scaling is deferred until xmax processing is done if (!missing(fun)) { if (is.character(fun)) { tfun <- switch(fun, 'log' = function(x) x, 'event'=function(x) 1-x, 'cumhaz'=function(x) -log(x), 'cloglog'=function(x) log(-log(x)), 'pct' = function(x) x*100, 'logpct'= function(x) 100*x, #special case further below 'identity'= function(x) x, stop("Unrecognized function argument") ) } else if (is.function(fun)) tfun <- fun else stop("Invalid 'fun' argument") ssurv <- tfun(ssurv ) if (!is.null(supper)) { supper <- tfun(supper) slower <- tfun(slower) } firsty <- tfun(firsty) } if (missing(firstx)) { if (!is.null(x$start.time)) firstx <- x$start.time else { if (xlog) firstx <- min(stime[stime>0]) else firstx <- min(0, stime) } } # The default for plot and lines is to add confidence limits # if there is only one curve if (missing(conf.int)) conf.int <- (ncurve==1) if (is.logical(conf.int)) plot.surv <- TRUE else { temp <- match.arg(conf.int, c("both", "only", "none")) if (is.na(temp)) stop("invalid value for conf.int") if (temp=="none") conf.int <- FALSE else conf.int <- TRUE if (temp=="only") plot.surv <- FALSE else plot.surv <- TRUE } # Marks are not placed on confidence bands mark <- rep(mark, length.out=ncurve) mcol <- rep(col, length.out=ncurve) if (is.numeric(mark.time)) mark.time <- sort(mark.time) # The actual number of curves is ncurve*3 if there are confidence bands # If the number of line types is 1 and lty is an integer, then use lty # for the curve and lty+1 for the CI # If the length(lty) <= length(ncurve), use the same color for curve and CI # otherwise assume the user knows what they are about and has given a full # vector of line types. # Colors and line widths work like line types, excluding the +1 rule. if (conf.int) { if (length(lty)==1 && is.numeric(lty)) lty <- rep(c(lty, lty+1, lty+1), ncurve) else if (length(lty) <= ncurve) lty <- rep(rep(lty, each=3), length.out=(ncurve*3)) else lty <- rep(lty, length.out= ncurve*3) if (length(col) <= ncurve) col <- rep(rep(col, each=3), length.out=3*ncurve) else col <- rep(col, length.out=3*ncurve) if (length(lwd) <= ncurve) lwd <- rep(rep(lwd, each=3), length.out=3*ncurve) else lwd <- rep(lwd, length.out=3*ncurve) } else { col <- rep(col, length.out=ncurve) lty <- rep(lty, length.out=ncurve) lwd <- rep(lwd, length.out=ncurve) } #axis setting parmaters that depend on the fun argument if (!missing(fun)) { ymin <- tfun(ymin) #lines routine doesn't have it } # Do axis range computations if (xaxs=='S') { #special x- axis style for survival curves xaxs <- 'i' #what S thinks tempx <- max(stime) * 1.04 } else tempx <- max(stime) tempx <- c(firstx, tempx, firstx) if (ylog) { tempy <- range(ssurv[is.finite(ssurv)& ssurv>0]) if (tempy[2]==1) tempy[2] <- .99 if (any(ssurv==0)) { tempy[1] <- tempy[1]*.8 ssurv[ssurv==0] <- tempy[1] if (!is.null(supper)) { supper[supper==0] <- tempy[1] slower[slower==0] <- tempy[1] } } tempy <- c(tempy, firsty) } else tempy <- range(ssurv, firsty, finite=TRUE, na.rm=TRUE) if (missing(fun)) { tempx <- c(tempx, firstx) tempy <- c(tempy, ymin) } # # Draw the basic box # plot(range(tempx, finite=TRUE, na.rm=TRUE), range(tempy, finite=TRUE, na.rm=TRUE)*yscale, type='n', log=logax, xlab=xlab, ylab=ylab, xaxs=xaxs,...) if(yscale != 1) { if (ylog) par(usr =par("usr") -c(0, 0, log10(yscale), log10(yscale))) else par(usr =par("usr")/c(1, 1, yscale, yscale)) } # Create a step function, removing redundancies that sometimes occur in # curves with lots of censoring. dostep <- function(x,y) { if (is.na(x[1] + y[1])) { x <- x[-1] y <- y[-1] } n <- length(x) if (n==1) list(x=x, y=y) else if (n==2) list(x=x[c(1,2,2)], y=y[c(1,1,2)]) else { # replace verbose horizonal sequences like # (1, .2), (1.4, .2), (1.8, .2), (2.3, .2), (2.9, .2), (3, .1) # with (1, .2), (3, .1). They are slow, and can smear the looks # of the line type. dupy <- c(!duplicated(y)[-n], TRUE) n2 <- sum(dupy) #create a step function xrep <- rep(x[dupy], c(1, rep(2, n2-1))) yrep <- rep(y[dupy], c(rep(2, n2-1), 1)) list(x=xrep, y=yrep) } } drawmark <- function(x, y, mark.time, censor, cex, ...) { if (!is.numeric(mark.time)) { xx <- x[censor] yy <- y[censor] } else { #interpolate xx <- mark.time yy <- approx(x, y, xx, method="constant", f=0)$y } points(xx, yy, cex=cex, ...) } plot.surv <- TRUE type <- 's' c1 <- 1 # keeps track of the curve number c2 <- 1 # keeps track of the lty, col, etc xend <- yend <- double(ncurve) for (i in unique(stemp)) { #for each strata who <- which(stemp==i) censor <- if (is.null(x$n.censor)) (x$n.event[who] ==0) else (x$n.censor[who] >0) #places with a censoring xx <- c(firstx, stime[who]) censor <- c(FALSE, censor) #no mark at firstx for (j in 1:ncol(ssurv)) { yy <- c(firsty[i,j], ssurv[who,j]) if (plot.surv) { if (type=='s') lines(dostep(xx, yy), lty=lty[c2], col=col[c2], lwd=lwd[c2]) else lines(xx, yy, type=type, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (is.numeric(mark.time) || mark.time) drawmark(xx, yy, mark.time, censor, pch=mark[c1], col=mcol[c1], cex=cex) } xend[c1] <- max(xx) yend[c1] <- yy[length(yy)] c1 <- c1 +1 c2 <- c2 +1 if (conf.int) { if (type == 's') { lines(dostep(xx, c(firsty[i,j], slower[who,j])), lty=lty[c2], col=col[c2],lwd=lwd[c2]) c2 <- c2 +1 lines(dostep(xx, c(firsty[i,j], supper[who,j])), lty=lty[c2], col=col[c2], lwd= lwd[c2]) c2 <- c2 + 1 } else { lines(xx, c(firsty[i,j], slower[who,j]), lty=lty[c2], col=col[c2],lwd=lwd[c2], type=type) c2 <- c2 +1 lines(xx, c(firsty[i,j], supper[who,j]), lty=lty[c2], col=col[c2], lwd= lwd[c2], type= type) c2 <- c2 + 1 } } } } invisible(list(x=xend, y=yend)) } lines.survfit <- function(x, type='s', mark=3, col=1, lty=1, lwd=1, cex=1, mark.time=TRUE, xscale=1, firstx=0, firsty=1, xmax, fun, conf.int=FALSE, ...) { xlog <- par("xlog") if (inherits(x, "survfitms")) { x$surv <- 1- x$prev if (is.matrix(x$surv)) dimnames(x$surv) <- list(NULL, x$states) if (!is.null(x$lower)) { x$lower <- 1- x$lower x$upper <- 1- x$upper } if (missing(fun)) fun <- "event" } if (missing(firsty) && !is.null(x$prev0)) firsty <- 1-x$prev0 ssurv <- as.matrix(x$surv) stime <- x$time if( !is.null(x$upper)) { supper <- as.matrix(x$upper) slower <- as.matrix(x$lower) } else { conf.int <- FALSE supper <- NULL #marker for later code } # Two cases where we don't put marks at the censoring times if (inherits(x, 'survexp') || inherits(x, 'survfit.coxph')) { if (missing(mark.time)) mark.time <- FALSE } # set up strata if (is.null(x$strata)) { nstrat <- 1 stemp <- rep(1, length(x$time)) # same length as stime } else { nstrat <- length(x$strata) stemp <- rep(1:nstrat, x$strata) # same length as stime } ncurve <- nstrat * ncol(ssurv) firsty <- matrix(firsty, nrow=nstrat, ncol=ncol(ssurv)) if (!missing(xmax) && any(x$time>xmax)) { # prune back the survival curves # I need to replace x's over the limit with xmax, and y's over the # limit with either the prior y value or firsty keepx <- keepy <- NULL # lines to keep tempn <- table(stemp) offset <- cumsum(c(0, tempn)) for (i in 1:nstrat) { ttime <-stime[stemp==i] if (all(ttime <= xmax)) { keepx <- c(keepx, 1:tempn[i] + offset[i]) keepy <- c(keepy, 1:tempn[i] + offset[i]) } else { bad <- min((1:tempn[i])[ttime>xmax]) if (bad==1) { #lost them all if (!is.na(firstx)) { # and we are plotting lines keepy <- c(keepy, 1+offset[i]) ssurv[1+offset[i],] <- firsty[i,] } } else keepy<- c(keepy, c(1:(bad-1), bad-1) + offset[i]) keepx <- c(keepx, (1:bad)+offset[i]) stime[bad+offset[i]] <- xmax x$n.event[bad+offset[i]] <- 1 #don't plot a tick mark } } # ok, now actually prune it stime <- stime[keepx] stemp <- stemp[keepx] x$n.event <- x$n.event[keepx] if (!is.null(x$n.censor)) x$n.censor <- x$n.censor[keepx] ssurv <- ssurv[keepy,,drop=FALSE] if (!is.null(supper)) { supper <- supper[keepy,,drop=FALSE] slower <- slower[keepy,,drop=FALSE] } } stime <- stime/xscale #scaling is deferred until xmax processing is done if (!missing(fun)) { if (is.character(fun)) { tfun <- switch(fun, 'log' = function(x) x, 'event'=function(x) 1-x, 'cumhaz'=function(x) -log(x), 'cloglog'=function(x) log(-log(x)), 'pct' = function(x) x*100, 'logpct'= function(x) 100*x, #special case further below 'identity'= function(x) x, stop("Unrecognized function argument") ) } else if (is.function(fun)) tfun <- fun else stop("Invalid 'fun' argument") ssurv <- tfun(ssurv ) if (!is.null(supper)) { supper <- tfun(supper) slower <- tfun(slower) } firsty <- tfun(firsty) } if (missing(firstx)) { if (!is.null(x$start.time)) firstx <- x$start.time else { if (xlog) firstx <- min(stime[stime>0]) else firstx <- min(0, stime) } } # The default for plot and lines is to add confidence limits # if there is only one curve if (missing(conf.int)) conf.int <- (ncurve==1) if (is.logical(conf.int)) plot.surv <- TRUE else { temp <- match.arg(conf.int, c("both", "only", "none")) if (is.na(temp)) stop("invalid value for conf.int") if (temp=="none") conf.int <- FALSE else conf.int <- TRUE if (temp=="only") plot.surv <- FALSE else plot.surv <- TRUE } # Marks are not placed on confidence bands mark <- rep(mark, length.out=ncurve) mcol <- rep(col, length.out=ncurve) if (is.numeric(mark.time)) mark.time <- sort(mark.time) # The actual number of curves is ncurve*3 if there are confidence bands # If the number of line types is 1 and lty is an integer, then use lty # for the curve and lty+1 for the CI # If the length(lty) <= length(ncurve), use the same color for curve and CI # otherwise assume the user knows what they are about and has given a full # vector of line types. # Colors and line widths work like line types, excluding the +1 rule. if (conf.int) { if (length(lty)==1 && is.numeric(lty)) lty <- rep(c(lty, lty+1, lty+1), ncurve) else if (length(lty) <= ncurve) lty <- rep(rep(lty, each=3), length.out=(ncurve*3)) else lty <- rep(lty, length.out= ncurve*3) if (length(col) <= ncurve) col <- rep(rep(col, each=3), length.out=3*ncurve) else col <- rep(col, length.out=3*ncurve) if (length(lwd) <= ncurve) lwd <- rep(rep(lwd, each=3), length.out=3*ncurve) else lwd <- rep(lwd, length.out=3*ncurve) } else { col <- rep(col, length.out=ncurve) lty <- rep(lty, length.out=ncurve) lwd <- rep(lwd, length.out=ncurve) } # Create a step function, removing redundancies that sometimes occur in # curves with lots of censoring. dostep <- function(x,y) { if (is.na(x[1] + y[1])) { x <- x[-1] y <- y[-1] } n <- length(x) if (n==1) list(x=x, y=y) else if (n==2) list(x=x[c(1,2,2)], y=y[c(1,1,2)]) else { # replace verbose horizonal sequences like # (1, .2), (1.4, .2), (1.8, .2), (2.3, .2), (2.9, .2), (3, .1) # with (1, .2), (3, .1). They are slow, and can smear the looks # of the line type. dupy <- c(!duplicated(y)[-n], TRUE) n2 <- sum(dupy) #create a step function xrep <- rep(x[dupy], c(1, rep(2, n2-1))) yrep <- rep(y[dupy], c(rep(2, n2-1), 1)) list(x=xrep, y=yrep) } } drawmark <- function(x, y, mark.time, censor, cex, ...) { if (!is.numeric(mark.time)) { xx <- x[censor] yy <- y[censor] } else { #interpolate xx <- mark.time yy <- approx(x, y, xx, method="constant", f=0)$y } points(xx, yy, cex=cex, ...) } c1 <- 1 # keeps track of the curve number c2 <- 1 # keeps track of the lty, col, etc xend <- yend <- double(ncurve) for (i in unique(stemp)) { #for each strata who <- which(stemp==i) censor <- if (is.null(x$n.censor)) (x$n.event[who] ==0) else (x$n.censor[who] >0) #places with a censoring xx <- c(firstx, stime[who]) censor <- c(FALSE, censor) #no mark at firstx for (j in 1:ncol(ssurv)) { yy <- c(firsty[i,j], ssurv[who,j]) if (plot.surv) { if (type=='s') lines(dostep(xx, yy), lty=lty[c2], col=col[c2], lwd=lwd[c2]) else lines(xx, yy, type=type, lty=lty[c2], col=col[c2], lwd=lwd[c2]) if (is.numeric(mark.time) || mark.time) drawmark(xx, yy, mark.time, censor, pch=mark[c1], col=mcol[c1], cex=cex) } xend[c1] <- max(xx) yend[c1] <- yy[length(yy)] c1 <- c1 +1 c2 <- c2 +1 if (conf.int) { if (type == 's') { lines(dostep(xx, c(firsty[i,j], slower[who,j])), lty=lty[c2], col=col[c2],lwd=lwd[c2]) c2 <- c2 +1 lines(dostep(xx, c(firsty[i,j], supper[who,j])), lty=lty[c2], col=col[c2], lwd= lwd[c2]) c2 <- c2 + 1 } else { lines(xx, c(firsty[i,j], slower[who,j]), lty=lty[c2], col=col[c2],lwd=lwd[c2], type=type) c2 <- c2 +1 lines(xx, c(firsty[i,j], supper[who,j]), lty=lty[c2], col=col[c2], lwd= lwd[c2], type= type) c2 <- c2 + 1 } } } } invisible(list(x=xend, y=yend)) } points.survfit <- function(x, xscale=1, xmax, fun, ...) { if (inherits(x, "survfitms")) { x$surv <- 1- x$prev if (is.matrix(x$surv)) dimnames(x$surv) <- list(NULL, x$states) if (!is.null(x$lower)) { x$lower <- 1- x$lower x$upper <- 1- x$upper } if (missing(fun)) fun <- "event" } firstx <- NA # flag used in the common args conf.int <- FALSE ssurv <- as.matrix(x$surv) stime <- x$time if( !is.null(x$upper)) { supper <- as.matrix(x$upper) slower <- as.matrix(x$lower) } else { conf.int <- FALSE supper <- NULL #marker for later code } # Two cases where we don't put marks at the censoring times if (inherits(x, 'survexp') || inherits(x, 'survfit.coxph')) { if (missing(mark.time)) mark.time <- FALSE } # set up strata if (is.null(x$strata)) { nstrat <- 1 stemp <- rep(1, length(x$time)) # same length as stime } else { nstrat <- length(x$strata) stemp <- rep(1:nstrat, x$strata) # same length as stime } ncurve <- nstrat * ncol(ssurv) firsty <- matrix(firsty, nrow=nstrat, ncol=ncol(ssurv)) if (!missing(xmax) && any(x$time>xmax)) { # prune back the survival curves # I need to replace x's over the limit with xmax, and y's over the # limit with either the prior y value or firsty keepx <- keepy <- NULL # lines to keep tempn <- table(stemp) offset <- cumsum(c(0, tempn)) for (i in 1:nstrat) { ttime <-stime[stemp==i] if (all(ttime <= xmax)) { keepx <- c(keepx, 1:tempn[i] + offset[i]) keepy <- c(keepy, 1:tempn[i] + offset[i]) } else { bad <- min((1:tempn[i])[ttime>xmax]) if (bad==1) { #lost them all if (!is.na(firstx)) { # and we are plotting lines keepy <- c(keepy, 1+offset[i]) ssurv[1+offset[i],] <- firsty[i,] } } else keepy<- c(keepy, c(1:(bad-1), bad-1) + offset[i]) keepx <- c(keepx, (1:bad)+offset[i]) stime[bad+offset[i]] <- xmax x$n.event[bad+offset[i]] <- 1 #don't plot a tick mark } } # ok, now actually prune it stime <- stime[keepx] stemp <- stemp[keepx] x$n.event <- x$n.event[keepx] if (!is.null(x$n.censor)) x$n.censor <- x$n.censor[keepx] ssurv <- ssurv[keepy,,drop=FALSE] if (!is.null(supper)) { supper <- supper[keepy,,drop=FALSE] slower <- slower[keepy,,drop=FALSE] } } stime <- stime/xscale #scaling is deferred until xmax processing is done if (!missing(fun)) { if (is.character(fun)) { tfun <- switch(fun, 'log' = function(x) x, 'event'=function(x) 1-x, 'cumhaz'=function(x) -log(x), 'cloglog'=function(x) log(-log(x)), 'pct' = function(x) x*100, 'logpct'= function(x) 100*x, #special case further below 'identity'= function(x) x, stop("Unrecognized function argument") ) } else if (is.function(fun)) tfun <- fun else stop("Invalid 'fun' argument") ssurv <- tfun(ssurv ) if (!is.null(supper)) { supper <- tfun(supper) slower <- tfun(slower) } firsty <- tfun(firsty) } if (ncol(ssurv)==1) points(stime, ssurv, ...) else matpoints(stime, ssurv, ...) } survival/R/survfitKM.S0000644000176000001440000002066112267746072014456 0ustar ripleyusers# A version that does more work in S, less in C survfitKM <- function(x, y, casewt=rep(1,length(x)), type=c('kaplan-meier', 'fleming-harrington', 'fh2'), error=c('greenwood', "tsiatis"), se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none'), conf.lower=c('usual', 'peto', 'modified'), start.time, new.time) { type <- match.arg(type) method <- match(type, c("kaplan-meier", "fleming-harrington", "fh2")) error <- match.arg(error) error.int <- match(error, c("greenwood", "tsiatis")) conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's illegal, but allow it if (!conf.int) conf.type <- "none" conf.int <- .95 } if (!is.Surv(y)) stop("y must be a Surv object") if (!is.factor(x)) stop("x must be a factor") if (attr(y, 'type') != 'right' && attr(y, 'type') != 'counting') stop("Can only handle right censored or counting data") ny <- ncol(y) # Will be 2 for right censored, 3 for counting xlev <- levels(x) # Will supply names for the curves x <- as.numeric(x) # keep only the levels # Allow "new.time" as a synonym for start.time if (missing(start.time) && !missing(new.time)) start.time <- new.time if (!missing(start.time)) { n.all <- c(table(x)) # remember the original data size # remove any obs whose end time is <= start.time keep <- (y[,ny-1] >= start.time) if (all(keep==FALSE)) stop(paste("start.time =", start.time, "is greater than all time points.")) x <- x[keep] y <- y[keep,,drop=FALSE] #make sure y remains a matrix casewt <- casewt[keep] } n.used <- as.vector(table(x)) # This is for the printout nstrat <- length(n.used) # # Each of the necessary output objects is originally a list with one # element per strata. This doesn't use up extra S memory, the number # of curves is usually small enough that the "for" loop is no great # cost, and it's easier to see what's going on than C code. # If tapply gets fast again, this code will also be fast. # The remaining C-code is simple, but hard to do cleanly in S # Let nrisk=A and nevent=B. The terms in returned sum1 and sum2 are # If ndead= 0, sum1=sum2=1 (avoids a 0/0 in the S code) # If ndead= 1, sum1=1/A and sum2= 1/A*A # If ndead= 2, sum1= (1/2)[ 1/A + 1/(A- B/2)] # sum2= (1/2)[ 1/A^2 + (1/(A-B/2))^2] # If ndead =3, sum1 = (1/3)[1/A + 1/(A-B/3) + 1/(A -2B/3)] # If ndead =4, sum1 = (1/4)[1/A + 1/(A-B/4) + 1/(A -2B/4) + 1/(A-3B/4)] # and etc. time <- vector('list', nstrat) n.risk <- vector('list', nstrat) surv <- vector('list', nstrat) n.cens <- vector('list', nstrat) n.event<- vector('list', nstrat) strata <- integer(nstrat) if (se.fit) varhaz <- vector('list', nstrat) if (ny==3) n.enter <- vector('list', nstrat) uniquex <- sort(unique(x)) for (i in 1:nstrat) { who <- (x== uniquex[i]) if (ny==2) { # the "factor" + levels ensures 2 columns in temp even if all # are dead or all are alive temp <- tapply(casewt[who], list(factor(y[who,1]), factor(y[who,2], levels=0:1)), sum) temp <- ifelse(is.na(temp), 0, temp) # The two lines below do not always give the same answer # When two times differ by only the machine precision, unique # will give more values, and then "time" will be a different # length than the other components time[[i]] <- type.convert(dimnames(temp)[[1]], as.is=TRUE, dec=getOption("OutDec")) # time[[i]] <- sort(unique(y[who,1])) # old version of line above ntemp <- (dim(temp))[1] nevent <- as.vector(temp[,2]) ncens <- as.vector(temp[,1]) nrisk <- rev(cumsum(rev(temp %*% c(1,1)))) ndead <- as.vector(table(y[who,1], factor(y[who,2], levels=0:1)) [,2]) } else { # The counting process case # We have to be a bit more clever here -- if I did a table of the # start times and a separate one of the stop times, they wouldn't # necessarily match. So do it all at once with a fake 'status' # variable which is ==2 for start times and = status for stop # Also, the number of rows in output (ntemp) may be bigger than # the number of rows of input (n). n <- sum(who) temp <- factor(c(rep(2,n),y[who,3]), levels=0:3) temp <- tapply(rep(casewt[who],2), list(factor(y[who,1:2]), temp), sum) temp <- ifelse(is.na(temp), 0, temp) time[[i]] <- as.numeric(dimnames(temp)[[1]]) ntemp <- (dim(temp))[1] nevent <- as.vector(temp[,2]) ncens <- as.vector(temp[,1]) nenter <- as.vector(temp[,3]) nrisk <- cumsum(nenter - (nevent + ncens)) nrisk <- c(0, nrisk[-ntemp]) #risk counts change at time t+0 n.enter[[i]] <- nenter # again, a fake status to make sure that all the times appear ndead <- as.vector(table(y[who,1:2], factor(c(rep(0,n),y[who,3]), levels=0:2))[,2]) } strata[i] <- ntemp trisk <- ifelse(nrisk==0, 1, nrisk) #avoid 0/0 cases if (method==1) surv[[i]] <- cumprod((trisk-nevent)/trisk) if (method==2) { hazard <- nevent/trisk #Nelson's hazard estimate surv[[i]] <- exp(- cumsum(hazard)) } if (method==3) { tsum <- .C(Csurvfit4, as.integer(length(ncens)), as.integer(ndead), sum1 = as.double(nrisk), sum2 = as.double(nevent)) hazard <- nevent *tsum$sum1 surv[[i]] <- exp(-cumsum(hazard)) } if (se.fit) { if (error.int==1) # Greenwood varhaz[[i]] <- cumsum(nevent/(trisk*(trisk-nevent))) else { if (method <3) varhaz[[i]] <- cumsum(nevent/(trisk^2)) else varhaz[[i]] <- cumsum(nevent* tsum$sum2) } } n.event[[i]] <- nevent n.cens[[i]] <- ncens n.risk[[i]] <- nrisk } if (ny==2) { temp <- list(n=n.used, time = unlist(time), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor = unlist(n.cens), surv = unlist(surv), type='right') } else { temp <- list(n=n.used, time = unlist(time), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor = unlist(n.cens), n.enter = unlist(n.enter), surv = unlist(surv), type='counting') } if (nstrat >1) { names(strata) <- xlev[sort(unique(x))] temp$strata <- strata } if (!missing(start.time)) { temp$start.time <- start.time # user defined time to start temp$n.all <- n.all } if (se.fit) { std.err <- sqrt(unlist(varhaz)) temp$std.err <- std.err # # n.lag = the # at risk the last time there was an event (or # the first time of a strata) # events <- temp$n.event >0 if (nstrat==1) events[1] <- TRUE else events[1 + cumsum(c(0, strata[-nstrat]))] <- TRUE zz <- 1:length(events) n.lag <- rep(temp$n.risk[events], diff(c(zz[events], 1+max(zz)))) std.low <- switch(conf.lower, 'usual' = std.err, 'peto' = sqrt((1-temp$surv)/ temp$n.risk), 'modified' = std.err * sqrt(n.lag/temp$n.risk)) zval <- qnorm(1- (1-conf.int)/2, 0,1) if (conf.type=='plain') { temp1 <- temp$surv + zval* std.err * temp$surv temp2 <- temp$surv - zval* std.low * temp$surv temp <- c(temp, list(upper=pmin(temp1,1), lower=pmax(temp2,0), conf.type='plain', conf.int=conf.int)) } if (conf.type=='log') { #avoid some "log(0)" messages xx <- ifelse(temp$surv==0,1,temp$surv) temp1 <- ifelse(temp$surv==0, NA, exp(log(xx) + zval* std.err)) temp2 <- ifelse(temp$surv==0, NA, exp(log(xx) - zval* std.low)) temp <- c(temp, list(upper=pmin(temp1,1), lower=temp2, conf.type='log', conf.int=conf.int)) } if (conf.type=='log-log') { who <- (temp$surv==0 | temp$surv==1) #special cases temp3 <- ifelse(temp$surv==0, NA, 1) xx <- ifelse(who, .1,temp$surv) #avoid some "log(0)" messages temp1 <- exp(-exp(log(-log(xx)) + zval*std.err/log(xx))) temp1 <- ifelse(who, temp3, temp1) temp2 <- exp(-exp(log(-log(xx)) - zval*std.low/log(xx))) temp2 <- ifelse(who, temp3, temp2) temp <- c(temp, list(upper=temp1, lower=temp2, conf.type='log-log', conf.int=conf.int)) } } temp } survival/R/survConcordance.R0000644000176000001440000000440512267746101015650 0ustar ripleyusers# Automatically generated from all.nw using noweb survConcordance <- function(formula, data, weights, subset, na.action) { Call <- match.call() # save a copy of of the call, as documentation m <- match.call(expand.dots=FALSE) m[[1]] <- as.name("model.frame") m$formula <- if(missing(data)) terms(formula, "strata") else terms(formula, "strata", data=data) m <- eval(m, sys.parent()) Terms <- attr(m, 'terms') Y <- model.extract(m, "response") if (!inherits(Y, "Surv")) { if (is.numeric(Y) && is.vector(Y)) Y <- Surv(Y) else stop("left hand side of the formula must be a numeric vector or a surival") } n <- nrow(Y) wt <- model.extract(m, 'weights') offset<- attr(Terms, "offset") if (length(offset)>0) stop("Offset terms not allowed") stemp <- untangle.specials(Terms, 'strata') if (length(stemp$vars)) { if (length(stemp$vars)==1) strat <- m[[stemp$vars]] else strat <- strata(m[,stemp$vars], shortlabel=TRUE) Terms <- Terms[-stemp$terms] } else strat <- NULL x <- model.matrix(Terms, m)[,-1, drop=FALSE] #remove the intercept if (ncol(x) > 1) stop("Only one predictor variable allowed") count <- survConcordance.fit(Y, x, strat, wt) if (is.null(strat)) { concordance <- (count[1] + count[3]/2)/sum(count[1:3]) std.err <- count[5]/(2* sum(count[1:3])) } else { temp <- colSums(count) concordance <- (temp[1] + temp[3]/2)/ sum(temp[1:3]) std.err <- temp[5]/(2*sum(temp[1:3])) } fit <- list(concordance= concordance, stats=count, n=n, std.err=std.err, call=Call) na.action <- attr(m, "na.action") if (length(na.action)) fit$na.action <- na.action oldClass(fit) <- 'survConcordance' fit } print.survConcordance <- function(x, ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if(length(omit)) cat(" n=", x$n, " (", naprint(omit), ")\n", sep = "") else cat(" n=", x$n, "\n") cat("Concordance= ", format(x$concordance), " se= ", format(x$std.err), '\n', sep='') print(x$stats) invisible(x) } survival/R/frailty.controlaic.S0000644000176000001440000000365412267746072016335 0ustar ripleyusers# $Id: frailty.controlaic.S 11166 2008-11-24 22:10:34Z therneau $ # Control function to minimize the AIC # the optional paramater "caic" chooses corrected aic (default=FALSE) # n is the "effective" sample size # frailty.controlaic <- function(parms, iter, old, n, df, loglik) { if (iter==0) { # initial call if (is.null(parms$init)) theta <-0.005 else theta <- parms$init[1] return(list(theta=theta, done=FALSE)) } # by default, do the corrected AIC if (length(parms$caic)) correct <- parms$caic else correct <- FALSE if (n < df+2) dfc <- (df -n) + (df+1)*df/2 -1 #avoid pathology else dfc <- -1 + (df+1)/(1- ((df+2)/n)) if (iter==1) { # Second guess in series history <- c(theta=old$theta, loglik=loglik, df=df, aic=loglik-df, aicc=loglik - dfc) if (length(parms$init) <2) theta <-1 else theta <- parms$init[2] temp <- list(theta=theta, done=FALSE, history=history) return(temp) } history <- rbind(old$history,c(old$theta, loglik, df, loglik-df, loglik -dfc)) if (is.null(parms$trace)) trace <-FALSE else trace <- parms$trace if (iter==2) { #Third guess theta <- mean(history[,1]) return(list(theta=theta, done=FALSE, history=history)) } # # Ok, now we're ready to actually use prior data # Now, history has iter rows, each row contains the # value of theta, the Cox PL, the df, aic, and corrected aic if (correct) aic <- history[,5] #use corrected aic for convergence else aic <- history[,4] done <- (abs(1- aic[iter]/aic[iter-1]) < parms$eps) x <- history[,1] if (x[iter]== max(aic) && x[iter]==max(x)) newtheta <- 2* max(x) else newtheta <- frailty.brent(x, aic, lower=parms$lower, upper=parms$upper) if (length(parms$trace) && parms$trace) { print(history) cat(" new theta=", format(newtheta), "\n\n") } list(theta=newtheta, done=done, history=history) } survival/R/strata.S0000644000176000001440000000350212267746072014015 0ustar ripleyusers# $Id: strata.S 11166 2008-11-24 22:10:34Z therneau $ # Create a strata variable, possibly from many objects # strata <- function(..., na.group=FALSE, shortlabel=FALSE, sep=', ') { # First, grab a copy of the call, which will be used to manufacture # labels for unlabeled arguments # Then get the arguments as a list words <- as.character((match.call())[-1]) allf <- list(...) # If there is only one argument, and it itself is a list, use # it instead if(length(allf) == 1 && is.list(ttt <- unclass(allf[[1]]))) allf <- ttt nterms <- length(allf) # Keep the names of named args as their label, what was typed otherwise if (is.null(names(allf))) argname <- words[1:nterms] else argname <- ifelse(names(allf) == '', words[1:nterms], names(allf)) # Process the first argument what <- allf[[1]] if(is.null(levels(what))) what <- factor(what) levs <- unclass(what) - 1 wlab <- levels(what) if (na.group && any(is.na(what))){ # add "NA" as a level levs[is.na(levs)] <- length(wlab) wlab <- c(wlab, "NA") } if (shortlabel) labs <- wlab else labs <- paste(argname[1], wlab, sep='=') # Now march through the other variables, if any for (i in (1:nterms)[-1]) { what <- allf[[i]] if(is.null(levels(what))) what <- factor(what) wlab <- levels(what) wlev <- unclass(what) - 1 if (na.group && any(is.na(wlev))){ wlev[is.na(wlev)] <- length(wlab) wlab <- c(wlab, "NA") } if (!shortlabel) wlab <- format(paste(argname[i], wlab, sep='=')) levs <- wlev + levs*(length(wlab)) labs <- paste(rep(labs, rep(length(wlab), length(labs))), rep(wlab, length(labs)), sep=sep) } levs <- levs + 1 ulevs <- sort(unique(levs[!is.na(levs)])) levs <- match(levs, ulevs) labs <- labs[ulevs] factor(levs, labels=labs) } survival/R/survfit.R0000644000176000001440000001723712267746103014225 0ustar ripleyusers# Automatically generated from all.nw using noweb survfit <- function(formula, ...) { UseMethod("survfit", formula) } dim.survfit <- function(x) { if (is.null(x$strata)) { if (is.matrix(x$surv)) ncol(x$surv) else 1 } else { nr <- length(x$strata) if (is.matrix(x$xurv)) c(nr, ncol(x$surv)) else nr } } "[.survfit" <- function(x, ..., drop=TRUE) { nmatch <- function(indx, target) { # This function lets R worry about character, negative, or logical subscripts # It always returns a set of positive integer indices temp <- 1:length(target) names(temp) <- target temp[indx] } if (missing(..1)) i<- NULL else i <- ..1 if (missing(..2)) j<- NULL else j <- ..2 if (is.null(i) && is.null(j)) return (x) #no subscripts present! if (!is.matrix(x$surv) && !is.null(j)) stop("survfit object does not have 2 dimensions") if (is.null(x$strata)) { if (is.matrix(x$surv)) { if (is.null(j) && !is.null(i)) j <- i #special case noted above x$surv <- x$surv[,j,drop=drop] if (!is.null(x$std.err)) x$std.err <- x$std.err[,j,drop=drop] if (!is.null(x$upper)) x$upper <- x$upper[,j,drop=drop] if (!is.null(x$lower)) x$lower <- x$lower[,j,drop=drop] if (!is.null(x$cumhaz)) x$cumhaz <- x$cumhaz[,j,drop=drop] } else warning("survfit object has only a single survival curve") } else { if (is.null(i)) keep <- seq(along.with=x$time) else { indx <- nmatch(i, names(x$strata)) #strata to keep if (any(is.na(indx))) stop(paste("strata", paste(i[is.na(indx)], collapse=' '), 'not matched')) # Now, indx may not be in order: some can use curve[3:2] to reorder # The list/unlist construct will reorder the data temp <- rep(1:length(x$strata), x$strata) keep <- unlist(lapply(indx, function(x) which(temp==x))) if (length(indx) <=1 && drop) x$strata <- NULL else x$strata <- x$strata[i] x$n <- x$n[indx] x$time <- x$time[keep] x$n.risk <- x$n.risk[keep] x$n.event <- x$n.event[keep] x$n.censor<- x$n.censor[keep] if (!is.null(x$enter)) x$enter <- x$enter[keep] } if (is.matrix(x$surv)) { # If the curve has been selected by strata and keep has only # one row, we don't want to lose the second subscript too if (!is.null(i) && (is.null(j) ||length(j) >1)) drop <- FALSE if (is.null(j)) { x$surv <- x$surv[keep,,drop=drop] if (!is.null(x$std.err)) x$std.err <- x$std.err[keep,,drop=drop] if (!is.null(x$upper)) x$upper <-x$upper[keep,,drop=drop] if (!is.null(x$lower)) x$lower <-x$lower[keep,,drop=drop] if (!is.null(x$cumhaz)) x$cumhaz <-x$cumhaz[keep,,drop=drop] } else { x$surv <- x$surv[keep,j, drop=drop] if (!is.null(x$std.err)) x$std.err <- x$std.err[keep,j, drop=drop] if (!is.null(x$upper)) x$upper <- x$upper[keep,j, drop=drop] if (!is.null(x$lower)) x$lower <- x$lower[keep,j, drop=drop] if (!is.null(x$cumhaz)) x$cumhaz <- x$cumhaz[keep,j, drop=drop] } } else { x$surv <- x$surv[keep] if (!is.null(x$std.err)) x$std.err <- x$std.err[keep] if (!is.null(x$upper)) x$upper <- x$upper[keep] if (!is.null(x$lower)) x$lower <- x$lower[keep] if (!is.null(x$cumhaz)) x$cumhaz <- x$cumhaz[keep] } } x } survfit.formula <- function(formula, data, weights, subset, na.action, etype, id, istate, ...) { Call <- match.call() Call[[1]] <- as.name('survfit') #make nicer printout for the user # create a copy of the call that has only the arguments we want, # and use it to call model.frame() indx <- match(c('formula', 'data', 'weights', 'subset','na.action', 'istate', 'id', "etype"), names(Call), nomatch=0) #It's very hard to get the next error message other than malice # eg survfit(wt=Surv(time, status) ~1) if (indx[1]==0) stop("a formula argument is required") temp <- Call[c(1, indx)] temp[[1]] <- as.name("model.frame") m <- eval.parent(temp) Terms <- terms(formula, c("strata", "cluster")) ord <- attr(Terms, 'order') if (length(ord) & any(ord !=1)) stop("Interaction terms are not valid for this function") n <- nrow(m) Y <- model.extract(m, 'response') if (!is.Surv(Y)) stop("Response must be a survival object") casewt <- model.extract(m, "weights") if (is.null(casewt)) casewt <- rep(1,n) if (!is.null(attr(Terms, 'offset'))) warning("Offset term ignored") id <- model.extract(m, 'id') istate <- model.extract(m,"istate") temp <- untangle.specials(Terms, "cluster") if (length(temp$vars)>0) { if (length(temp$vars) > 1) stop("can not have two cluster terms") if (!is.null(id)) stop("can not have both a cluster term and an id variable") id <- m[[temp$vars]] Terms <- Terms[-temp$terms] } ll <- attr(Terms, 'term.labels') if (length(ll) == 0) X <- factor(rep(1,n)) # ~1 on the right else X <- strata(m[ll]) if (!is.Surv(Y)) stop("y must be a Surv object") # Backwards support for the now-depreciated etype argument etype <- model.extract(m, "etype") if (!is.null(etype)) { if (attr(Y, "type") == "mcounting" || attr(Y, "type") == "mright") stop("cannot use both the etype argument and mstate survival type") if (length(istate)) stop("cannot use both the etype and istate arguments") status <- Y[,ncol(Y)] etype <- as.factor(etype) temp <- table(etype, status==0) if (all(rowSums(temp==0) ==1)) { # The user had a unique level of etype for the censors newlev <- levels(etype)[order(-temp[,2])] #censors first } else newlev <- c(" ", levels(etype)[temp[,1] >0]) status <- factor(ifelse(status==0,0, as.numeric(etype)), labels=newlev) if (attr(Y, 'type') == "right") Y <- Surv(Y[,1], status, type="mstate") else if (attr(Y, "type") == "counting") Y <- Surv(Y[,1], Y[,2], status, type="mstate") else stop("etype argument incompatable with survival type") } # At one point there were lines here to round the survival # times to a certain number of digits. This approach worked # almost all the time, but only almost. The better logic is # now in the individual compuation routines if (attr(Y, 'type') == 'left' || attr(Y, 'type') == 'interval') temp <- survfitTurnbull(X, Y, casewt, ...) else if (attr(Y, 'type') == "right" || attr(Y, 'type')== "counting") temp <- survfitKM(X, Y, casewt, ...) else if (attr(Y, 'type') == "mright" || attr(Y, "type")== "mcounting") temp <- survfitCI(X, Y, weights=casewt, id=id, istate=istate, ...) else { # This should never happen stop("unrecognized survival type") } if (is.null(temp$states)) class(temp) <- 'survfit' else class(temp) <- c("survfitms", "survfit") if (!is.null(attr(m, 'na.action'))) temp$na.action <- attr(m, 'na.action') temp$call <- Call temp } survival/R/predict.survreg.penal.S0000644000176000001440000000063212267746072016744 0ustar ripleyusers# $Id: predict.survreg.penal.S 11166 2008-11-24 22:10:34Z therneau $ # # This routine just stops disastrous arithmetic for models with sparse # terms. A placeholder until the proper sparse terms actions are inserted. # predict.survreg.penal <- function(object, ...) { pterms <- object$pterms if (any(pterms==2)) stop("Predictions not available for sparse models") NextMethod('predict') } survival/R/coxph.getdata.S0000644000176000001440000000320112267746072015244 0ustar ripleyusers# # Reconstruct the Cox model data. This is done in so many routines # that I extracted it out. # Newer routines use model.matrix.coxph and model.frame.coxph methods. # # The "stratax" name is to avoid conflicts with the strata() function, but # still allow users to type "strata" as an arg. # coxph.getdata <- function(fit, y=TRUE, x=TRUE, stratax=TRUE, offset=FALSE) { ty <- fit[['y']] #avoid grabbing this by accident due to partial matching tx <- fit[['x']] # for x, fit$x will get fit$xlevels --> not good strat <- fit$strata Terms <- fit$terms if (is.null(attr(Terms, 'offset'))) offset <- FALSE if (offset) x<- TRUE if (!inherits(Terms, 'terms')) stop("invalid terms component of fit") strats <- attr(Terms, "specials")$strata if (length(strats)==0) stratax <- FALSE if ( (y && is.null(ty)) || (x && is.null(tx)) || (stratax && is.null(strat)) || offset) { # get the model frame m <- model.frame(fit) # Pull things out if (y && is.null(ty)) ty <- model.extract(m, 'response') if (offset) toff <- model.extract(m, 'offset') # strata was saved in the fit if and only if x was if ((x || stratax) && is.null(tx)) { if (stratax) { temp <- untangle.specials(Terms, 'strata', 1) strat <- strata(m[temp$vars], shortlabel=T) } if (x) tx <- model.matrix(fit, data=m) } } else if (offset) toff <- fit$linear.predictors -(c(tx %*% fit$coef) - sum(fit$means*fit$coef)) temp <- list() if (y) temp$y <- ty if (x) temp$x <- tx if (stratax) temp$strata <- strat if (offset) temp$offset <- toff temp } survival/R/frailty.controlgauss.S0000644000176000001440000000563112267746072016720 0ustar ripleyusers# $Id: frailty.controlgauss.S 11166 2008-11-24 22:10:34Z therneau $ # # The control function for REML on a gaussian # frailty.controlgauss <- function(opt, iter, old, fcoef, trH, loglik){ if (iter==0) { # initial call # Because of how the iteration works, 0 is not a useful trial value if (!is.null(opt$theta)) theta <- opt$theta #fixed theta case else { if (is.null(opt$init)) theta <- 1 else theta <- opt$init[1] } list(theta=theta) } else { if (is.null(opt$trace)) trace <-FALSE else trace <- opt$trace nfrail <- length(fcoef) fsum <- sum(fcoef^2) theta <- old$theta resid <- fsum/(nfrail - trH/theta) - theta # save history of the iteration, and get the next theta if (iter==1) { history <- c(theta=theta, resid=resid, fsum=fsum, trace=trH) if (is.null(opt$init )) { if (resid>0) theta <- theta*3 else theta <- theta/3 } else theta <- opt$init[2] list(theta=theta, done=FALSE, history=history) } else { history <- rbind(old$history, as.vector(c(theta, resid, fsum, trH))) if (iter ==2) { if (all(history[,2] > 0)) theta <- history[2,1]*2 else if (all(history[,2] <0)) theta <- history[2,1]/2 else theta <- mean(history[1:2,1]) if (trace) { print(history) cat(" new theta=", theta, "\n\n") } list(theta=theta, done=FALSE, history=history) } else { done <- (abs(history[iter,2]) < opt$eps) ord <- order(history[,1]) tempy <- history[ord,2] #x & y from left to right tempx <- history[ord,1] # make sure we have one positve and one negative y value # y must be positive near 0, and negative for large x if (all(tempy>0)) newtheta <- 2*max(tempx) else if (all(tempy<0)) newtheta <- .5 * min(tempx) else{ #find the latest point, and one on each side of 0 b1 <- (1:iter)[ord==iter] if (b1==1) b1 <-2 else if (b1==iter) b1 <- iter-1 # Brent's formula, straight from Numerical Recipies # Why, you may ask, don't we use the uniroot() function # which is built into S, and implements Brent's method? # Because all we want is the next guess for x. The interal # loop of coxph is calling us, not the other way around. guess <- history[iter- (2:0),1] R <- tempy[b1]/ tempy[b1+1] S <- tempy[b1]/ tempy[b1-1] U <- R/S P <- S* (U*(R-U)*(tempx[b1+1]-tempx[b1]) - (1-R)*(tempx[b1]-tempx[b1-1])) Q <- (U-1)*(R-1)*(S-1) newtheta <- tempx[b1] + P/Q # if the new guess is outside the brackets, do a binomial # search step if (newtheta > tempx[b1+1]) newtheta <- mean(tempx[b1+0:1]) if( newtheta < tempx[b1-1]) newtheta <- mean(tempx[b1-0:1]) } if (trace) { print(history) cat(" new theta=", format(newtheta), "\n\n") } list(theta=newtheta, done=done, history=history) } } } } survival/R/print.survreg.penal.S0000644000176000001440000000726212267746072016454 0ustar ripleyusers# $Id: print.survreg.penal.S 11166 2008-11-24 22:10:34Z therneau $ print.survreg.penal <- function(x, terms=FALSE, maxlabel=25, digits=max(options()$digits - 4, 3), ...) { if (!inherits(x, 'survreg.penal')) stop("Invalid object") if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } if (!is.null(x$fail)) { cat(" Survreg failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) coef <- x$coefficients if (length(coef)==0) stop("Penalized fits must have an intercept!") # # Map terms to special print functions, and the list of iteration histories # pterms <- x$pterms nterms <- length(pterms) npenal <- sum(pterms>0) print.map <- rep(0,nterms) if (!is.null(x$printfun)) { temp <- unlist(lapply(x$printfun, is.null)) #which ones are missing print.map[pterms>0] <- (1:npenal) * (!temp) } # Tedious, but build up the coef matrix a term at a time print1 <- NULL pname1 <- NULL if (is.null(x$assign2)) alist <- x$assign else alist <- x$assign2 print2 <- NULL for (i in 1:nterms) { kk <- alist[[i]] if (print.map[i] >0) { j <- print.map[i] if (pterms[i]==2) temp <- (x$printfun[[j]])(x$frail, x$fvar, ,x$df[i], x$history[[j]]) else temp <- (x$printfun[[j]])(coef[kk], x$var[kk,kk], x$var2[kk,kk], x$df[i], x$history[[j]]) print1 <- rbind(print1, temp$coef) if (is.matrix(temp$coef)) { xx <- dimnames(temp$coef)[[1]] if (is.null(xx)) xx <- rep(names(pterms)[i], nrow(temp$coef)) else xx <- paste(names(pterms)[i], xx, sep=', ') pname1 <- c(pname1, xx) } else pname1 <- c(pname1, names(pterms)[i]) print2 <- c(print2, temp$history) } else if (terms && length(kk)>1) { pname1 <- c(pname1, names(pterms)[i]) temp <- coxph.wtest(x$var[kk,kk], coef[kk])$test print1 <- rbind(print1, c(NA, NA, NA, temp, x$df[i], 1-pchisq(temp, 1))) } else { pname1 <- c(pname1, names(coef)[kk]) tempe<- (diag(x$var))[kk] temp <- coef[kk]^2/ tempe print1 <- rbind(print1, cbind(coef[kk], sqrt(tempe), sqrt((diag(x$var2))[kk]), temp, 1, 1-pchisq(temp, 1))) } } # Format out the NA's temp <- cbind(format(print1[,1]), format(print1[,2]), format(print1[,3]), format(round(print1[,4], 2)), format(round(print1[,5], 2)), format(signif(print1[,6], 2))) temp <- ifelse(is.na(print1), "", temp) dimnames(temp) <- list(substring(pname1,1, maxlabel), c("coef","se(coef)", "se2", "Chisq","DF","p")) prmatrix(temp, quote=FALSE) # # Write out the remaider of the info # if (nrow(x$var)==length(coef)) cat("\nScale fixed at",format(x$scale),"\n") else if (length(x$scale)==1) cat ("\nScale=", format(x$scale), "\n") else { cat("\nScale:\n") print(x$scale, ...) } cat("\nIterations:", x$iter[1], "outer,", x$iter[2], "Newton-Raphson\n") if (length(print2)) { # cat("Penalized terms:\n") for (i in 1:length(print2)) cat(" ", print2[i], "\n") } logtest <- -2 * (x$loglik[1] - x$loglik[2]) df <- sum(x$df) - x$idf # cat("\n") cat("Degrees of freedom for terms=", format(round(x$df,1)), "\n") # cat("Loglik (initial,final) = ", format(round(x$loglik,2)), # " Penalty = ", format(x$penalty), "\n") cat("Likelihood ratio test=", format(round(logtest, 2)), " on ", round(df,1), " df,", " p=", format(1 - pchisq(logtest, df)), sep="") n <- length(x$linear.predictors) omit <- x$na.action if (length(omit)) cat("\n n=", n, " (", naprint(omit), ")\n", sep="") else cat(" n=", n, "\n") invisible() } survival/R/survreg.fit.S0000644000176000001440000002000112267746072014766 0ustar ripleyusers# # Do the actual fit of a survreg model. This routine is for the case # of no penalized terms (splines, etc). # survreg.fit<- function(x, y, weights, offset, init, controlvals, dist, scale=0, nstrat=1, strata, parms=NULL, assign) { iter.max <- controlvals$iter.max eps <- controlvals$rel.tolerance toler.chol <- controlvals$toler.chol debug <- controlvals$debug if (!is.matrix(x)) stop("Invalid X matrix ") n <- nrow(x) nvar <- ncol(x) ny <- ncol(y) if (is.null(offset)) offset <- rep(0,n) if (missing(weights)|| is.null(weights)) weights<- rep(1.0,n) else if (any(weights<=0)) stop("Invalid weights, must be >0") if (scale <0) stop("Invalid scale") if (scale >0 && nstrat >1) stop("Cannot have both a fixed scale and strata") if (nstrat>1 && (missing(strata) || length(strata)!= n)) stop("Invalid strata variable") if (nstrat==1) strata <- rep(1,n) if (scale >0) nstrat2 <- 0 # number of variances to estimate else nstrat2 <- nstrat if (is.character(dist)) { sd <- survreg.distributions[[dist]] if (is.null(sd)) stop ("Unrecognized distribution") } else sd <- dist if (!is.function(sd$density)) stop("Missing density function in the definition of the distribution") dnum <- match(sd$name, c("Extreme value", "Logistic", "Gaussian")) if (is.na(dnum)) { # We need to set up a callback routine # This returns the 5 number distribution summary (see the density # functions in survreg.distributions). Interval censored obs require # 2 evals and all others 1, so the call to the routine will have n2 # values. dnum <- 4 # flag for the C routine n2 <- n + sum(y[,ny]==3) # # Create an expression that will be evaluated by the C-code, # but with knowledge of some current variables # In the R doc, this would be "body(function(z) {" # in Splus (Chambers book): "functionBody(function(z)" # same action, different name. Luckily 'quote' exists in both. # We make very sure the result is the right type and length here # rather than in the C code, for simplicity. f.expr <- quote({ if (length(parms)) temp <- sd$density(z, parms) else temp <- sd$density(z) if (!is.matrix(temp) || any(dim(temp) != c(n2,5)) || !is.numeric(temp)) stop("Density function returned an invalid matrix") as.vector(as.double(temp)) }) # create an isolated sandbox (frame or environment) in which # we can do the evaluation without endangering local objects # but still with knowlege of sd, parms, and n2 if (is.R()) rho <- new.env() #inherits necessary objects # SPlus else rho <- new.frame(list(sd=sd, parms=parms, n2=n2)) } else { f.expr <- 1 #dummy values for the .Call rho <- 1 } # This is a subset of residuals.survreg: define the first and second # derivatives at z=0 for the 4 censoring types # Used below for starting estimates derfun <- function(y, eta, sigma, density, parms) { ny <- ncol(y) status <- y[,ny] z <- (y[,1] - eta)/sigma dmat <- density(z,parms) dtemp<- dmat[,3] * dmat[,4] #f' if (any(status==3)) { z2 <- (y[,2] - eta)/sigma dmat2 <- density(z2, parms) } else { dmat2 <- matrix(0,1,5) #dummy values z2 <- 0 } tdenom <- ((status==0) * dmat[,2]) + ((status==1) * 1 ) + ((status==2) * dmat[,1]) + ((status==3) * ifelse(z>0, dmat[,2]-dmat2[,2], dmat2[,1] - dmat[,1])) tdenom <- 1/(tdenom* sigma) dg <- -tdenom *(((status==0) * (0-dmat[,3])) + ((status==1) * dmat[,4]) + ((status==2) * dmat[,3]) + ((status==3) * (dmat2[,3]- dmat[,3]))) ddg <- (tdenom/sigma)*(((status==0) * (0- dtemp)) + ((status==1) * dmat[,5]) + ((status==2) * dtemp) + ((status==3) * (dmat2[,3]*dmat2[,4] - dtemp))) list(dg = dg, ddg = ddg - dg^2) } # # A good initial value of the scale turns out to be critical for successful # iteration, in a surprisingly large number of data sets. # The best way we've found to get one is to fit a model with only the # mean and the scale. We don't need to do this in 3 situations: # 1. The only covariate is a mean (this step is then just a duplicate # of the main fit). # 2. There are no scale parameters to estimate # 3. The user gave initial estimates for the scale # However, for 2 and 3 we still want the loglik for a mean only model # as a part of the returned object. # nvar2 <- nvar + nstrat2 meanonly <- (nvar==1 && all(x==1)) if (!meanonly) { yy <- ifelse(y[,ny]!=3, y[,1], (y[,1]+y[,2])/2 ) coef <- sd$init(yy, weights, parms) #starting estimate for this model #init returns \sigma^2, I need log(sigma) # We sometimes get into trouble with a small estimate of sigma, # (the surface isn't SPD), but never with a large one. Double it. if (scale >0) vars <- log(scale) else vars <- log(4*coef[2])/2 # log(2*sqrt(variance)) = log(4*var)/2 coef <- c(coef[1], rep(vars, nstrat)) # get a better initial value for the mean using the "glim" trick deriv <- derfun(y, yy, exp(vars), sd$density, parms) wt <- -1*deriv$ddg*weights coef[1] <- sum(weights*deriv$dg + wt*(yy -offset)) / sum(wt) # Now the fit proper (intercept only) fit0 <- .Call(Csurvreg6, iter = as.integer(20), nvar = as.integer(1), as.double(y), as.integer(ny), x = as.double(rep(1.0, n)), as.double(weights), as.double(offset), coef= as.double(coef), as.integer(nstrat2), as.integer(strata), as.double(eps), as.double(toler.chol), as.integer(dnum), f.expr, rho) } # # Fit the model with all covariates # if (is.numeric(init)) { if (length(init) == nvar && (nvar2 > nvar)) { # Add on the variance estimates from above init <- c(init, fit0$coef[-1]) } if (length(init) != nvar2) stop("Wrong length for initial parameters") if (scale >0) init <- c(init, log(scale)) } else { # Do the 'glim' method of finding an initial value of coef if (meanonly) { yy <- ifelse(y[,ny]!=3, y[,1], (y[,1]+y[,2])/2 ) coef <- sd$init(yy, weights, parms) if (scale >0) vars <- rep(log(scale), nstrat) else vars <- rep(log(4*coef[2])/2, nstrat) } else vars <- fit0$coef[-1] eta <- yy - offset #what would be true for a 'perfect' model deriv <- derfun(y, yy, exp(vars[strata]), sd$density, parms) wt <- -1*deriv$ddg*weights coef <- coxph.wtest(t(x)%*% (wt*x), c((wt*eta + weights*deriv$dg)%*% x), toler.chol=toler.chol)$solve init <- c(coef, vars) } # Now for the fit in earnest fit <- .Call(Csurvreg6, iter = as.integer(iter.max), as.integer(nvar), as.double(y), as.integer(ny), as.double(x), as.double(weights), as.double(offset), as.double(init), as.integer(nstrat2), as.integer(strata), as.double(eps), as.double(toler.chol), as.integer(dnum), f.expr, rho) if (iter.max >1 && fit$flag > nvar2) { warning("Ran out of iterations and did not converge") } cname <- dimnames(x)[[2]] if (is.null(cname)) cname <- paste("x", 1:ncol(x)) if (scale==0) cname <- c(cname, rep("Log(scale)", nstrat)) if (scale>0) fit$coef <- fit$coef[1:nvar2] names(fit$coef) <- cname if (meanonly) { coef0 <- fit$coef loglik <- rep(fit$loglik,2) } else { coef0 <- fit0$coef names(coef0) <- c("Intercept", rep("Log(scale)", nstrat)) loglik <- c(fit0$loglik, fit$loglik) } temp <- list(coefficients = fit$coef, icoef = coef0, var = matrix(fit$var, nvar2, dimnames=list(cname, cname)), loglik = loglik, iter = fit$iter, linear.predictors = c(x %*% fit$coef[1:nvar] + offset), df= length(fit$coef), score = fit$u ) temp } survival/R/survreg.distributions.S0000644000176000001440000001016312267746072017116 0ustar ripleyusers# $Id: survreg.distributions.S 11198 2009-02-02 05:01:22Z therneau $ # # Create the survreg.distributions object # survreg.distributions <- list( 'extreme' = list( name = "Extreme value", variance = function(parm) pi^2/6, init = function(x, weights, ...) { mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean + .572, var/1.64) }, deviance= function(y, scale, parms) { status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 1) temp <- width/(exp(width)-1) center <- ifelse(status==3, y[,1] - log(temp), y[,1]) temp3 <- (-temp) + log(1- exp(-exp(width))) best <- ifelse(status==1, -(1+log(scale)), ifelse(status==3, temp3, 0)) list(center=center, loglik=best) }, density = function(x,parms) { w <- exp(x) ww <- exp(-w) cbind(1-ww, ww, w*ww, (1-w), w*(w-3) +1) }, quantile = function(p,parms) log(-log(1-p)) ), logistic = list( name = "Logistic", variance = function(parm) pi^2/3, init = function(x, weights, ...) { mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean, var/3.2) }, deviance= function(y, scale, parms) { status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0) center <- y[,1] - width/2 temp2 <- ifelse(status==3, exp(width/2), 2) #avoid a log(0) message temp3 <- log((temp2-1)/(temp2+1)) best <- ifelse(status==1, -log(4*scale), ifelse(status==3, temp3, 0)) list(center=center, loglik=best) }, density = function(x, parms) { w <- exp(x) cbind(w/(1+w), 1/(1+w), w/(1+w)^2, (1-w)/(1+w), (w*(w-4) +1)/(1+w)^2) }, quantile = function(p, parms) log(p/(1-p)) ), gaussian = list( name = "Gaussian", variance = function(parm) 1, init = function(x, weights, ...) { mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean, var) }, deviance= function(y, scale, parms) { status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0) center <- y[,1] - width/2 temp2 <- log(1 - 2*pnorm(width/2)) best <- ifelse(status==1, -log(sqrt(2*pi)*scale), ifelse(status==3, temp2, 0)) list(center=center, loglik=best) }, density = function(x, parms) { cbind(pnorm(x), pnorm(-x), dnorm(x), -x, x^2-1) }, quantile = function(p, parms) qnorm(p) ), weibull = list( name = "Weibull", dist = 'extreme', trans = function(y) log(y), dtrans= function(y) 1/y , itrans= function(x) exp(x) ), exponential = list( name = "Exponential", dist = 'extreme', trans = function(y) log(y), dtrans= function(y) 1/y, scale =1, itrans= function(x) exp(x) ), rayleigh = list( name = "Rayleigh", dist = 'extreme', trans = function(y) log(y), dtrans= function(y) 1/y, itrans= function(x) exp(x), scale =0.5 ), loggaussian = list( name = "Log Normal", dist = 'gaussian', trans = function(y) log(y), itrans= function(x) exp(x), dtrans= function(y) 1/y ), lognormal = list( name = "Log Normal", dist = 'gaussian', trans = function(y) log(y), itrans= function(x) exp(x), dtrans= function(y) 1/y ), loglogistic = list( name = "Log logistic", dist = 'logistic', trans = function(y) log(y), dtrans= function(y) 1/y , itrans= function(x) exp(x) ), t = list( name = "Student-t", variance = function(df) df/(df-2), parms = c(df=4), init = function(x, weights, df) { if (df <=2) stop ("Degrees of freedom must be >=3") mean <- sum(x*weights)/ sum(weights) var <- sum(weights*(x-mean)^2)/ sum(weights) c(mean, var*(df-2)/df) }, deviance= function(y, scale, parms) { status <- y[,ncol(y)] width <- ifelse(status==3,(y[,2] - y[,1])/scale, 0) center <- y[,1] - width/2 temp2 <- log(1 - 2*pt(width/2, df=parms)) best <- ifelse(status==1, -log(dt(0, df=parms)*scale), ifelse(status==3, temp2, 0)) list(center=center, loglik=best) }, density = function(x, df) { cbind(pt(x, df), pt(-x, df), dt(x,df), -(df+1)*x/(df+x^2), (df+1)*(x^2 *(df+3)/(df+x^2) - 1)/(df +x^2)) }, quantile = function(p, df) qt(p, df) ) ) survival/R/summary.aareg.S0000644000176000001440000001033212267746072015271 0ustar ripleyusers# The summary routine for aareg models. # A lot of the work below relates to one particular issue: the coeffients # of an aareg model often get "wild" near the end (at the largest times). # So, a common case is to # fit the model (very slow) # look at the printout -- Hmmm x1 is significant, x2 not, ...., why? # look at plot(fit) and # oh my gosh, I should have cut the time scale off at 520 days # # This routine allows one to do that. If maxtime is given, the overall # test statistic is re-computed. One consequence is that lots of the # intermediate material from the fit had to be included in the aareg # object. # The "variance" based weighting for a test is not allowed, because it would # have meant an awful lot more stuff to pass, lots more work, for a test # that is rarely used. # summary.aareg <- function(object, maxtime, test=c('aalen', 'nrisk'), scale=1,...) { if (!inherits(object, 'aareg')) stop ("Must be an aareg object") if (missing(test)) test <- object$test test <- match.arg(test) if (!missing(maxtime)) ntime <- sum(object$time <= maxtime) else ntime <- nrow(object$coefficient) times <- object$time[1:ntime] if (test=='aalen') { twt <- (as.matrix(object$tweight))[1:ntime,] scale <- apply(twt, 2, sum)/scale } else { twt <- object$nrisk[1:ntime] scale <- ntime/scale } # Compute a "slope" for each line, using appropriate weighting # Since this is a single variable model, no intercept, I # don't need to call lm.wfit! tx <- as.matrix(twt * object$coefficient[1:ntime,]) ctx <- apply(tx, 2, cumsum) if (is.matrix(twt) && ncol(twt) >1) tempwt <- apply(twt*times^2, 2, sum) else tempwt <- sum(twt*times^2) if (ncol(ctx) >1) slope<- apply(ctx* times, 2, sum)/ tempwt else slope <- sum(ctx*times) / tempwt if (!missing(maxtime) || object$test != test) { # Compute the test statistic test.stat <- apply(tx, 2, sum) #sum of tested coefficients test.var <- t(tx) %*% tx #std Poisson, ind coefficients variance if (!is.null(object$dfbeta)) { dd <- dim(object$dfbeta) indx <- match(unique(times), object$times) influence <- matrix(0, dd[1], dd[2]) for (i in 1:length(indx)) { if (test=='aalen') influence <- influence + object$dfbeta[,,i] %*% diag(twt[indx[i],]) else influence <- influence + object$dfbeta[,,i]* object$nrisk[indx[i]] } if (!is.null(object$cluster)) influence <- rowsum(influence, cluster) test.var2 <- t(influence) %*% influence } else test.var2 <- NULL } else { #use the value that was passed in test.stat <- object$test.statistic test.var <- object$test.var test.var2 <- object$test.var2 #NULL if dfbeta option was false } # create the matrix for printing out # The chisquare test does not include the intercept se1 <- sqrt(diag(test.var)) if (is.null(test.var2)) { mat <- cbind(slope, test.stat/scale, se1/scale, test.stat/se1, 2*pnorm(-abs(test.stat/se1))) dimnames(mat) <- list((dimnames(object$coefficient)[[2]]), c("slope", "coef", "se(coef)", "z", "p")) chi <- test.stat[-1] %*% solve(test.var[-1,-1],test.stat[-1]) } else { se2 <- sqrt(diag(test.var2)) mat <- cbind(slope, test.stat/scale, se1/scale, se2/scale, test.stat/se2, 2*pnorm(-abs(test.stat/se2))) dimnames(mat) <- list((dimnames(object$coefficient)[[2]]), c("slope", "coef", "se(coef)", "robust se", "z", "p")) chi <- test.stat[-1] %*% solve(test.var2[-1,-1], test.stat[-1]) } temp <- list(table=mat, test=test, test.statistic=test.stat, test.var=test.var, test.var2=test.var2, chisq=chi, n = c(object$n[1], length(unique(times)), object$n[3])) if (is.R()) class(temp) <- 'summary.aareg' else oldClass(temp) <- 'summary.aareg' temp } print.summary.aareg <- function(x, ...) { print(signif(x$table,3)) chi <- x$chisq df <- length(x$test.statistic) -1 cat("\nChisq=", format(round(chi,2)), " on ", df, " df, p=", signif(1- pchisq(chi, df),2), "; test weights=", x$test, "\n", sep='') invisible(x$table) } survival/R/predict.coxph.penal.S0000644000176000001440000000715112267746072016373 0ustar ripleyusers# $Id: predict.coxph.penal.S 11516 2012-04-24 12:49:14Z therneau $ predict.coxph.penal <- function(object, newdata, type=c("lp", "risk", "expected", "terms"), se.fit=FALSE, terms=names(object$assign), collapse, safe=FALSE, ...) { type <- match.arg(type) n <- object$n Terms <- object$terms pterms <- object$pterms # If there are no sparse terms if (!any(pterms==2) || (missing(newdata) && se.fit==FALSE && type!='terms')) NextMethod('predict',object,...) else { # treat the sparse term as an offset term # It gets picked up in the linear predictor, so all I need to # do is "X" it out of the model so that it doesn't get picked up # as a part of the X matrix and etc. # I know that the sparse term is a single column BTW # termname <- names(object$pterms) sparsename <- termname[object$pterms==2] nvar <- length(termname) na.action <- object$na.action object$na.action <- NULL if (missing(newdata) && (se.fit || type=='terms')) { # I need the X matrix x <- object[['x']] # object$x might grab object$xlevels if (is.null(x)) { temp <- coxph.getdata(object, y=TRUE, x=TRUE, stratax=TRUE) if (is.null(object$y)) object$y <- temp$y if (is.null(object$strata)) object$strata <- temp$strata x <- temp$x } xvar <- match(sparsename, dimnames(x)[[2]]) indx <- as.numeric(as.factor(x[,xvar])) object$x <- x[, -xvar, drop=FALSE] } if (nvar==1) { # Only the sparse term! if (!missing(newdata)) { n <- nrow(as.data.frame(newdata)) pred <- rep(0,n) } se <- sqrt(object$fvar[indx]) pred <- object$linear.predictor if (type=='risk') pred <- exp(pred) if (type=='expected') { pred <- object$y[,ncol(object$y)] -object$residuals se.fit=FALSE } } else { # temporarily remove the sparse term, call NextMethod, # and then put it back temp <- attr(object$terms, 'term.labels') object$terms <- object$terms[-match(sparsename, temp)] temp<-match(sparsename,terms) oldTerms<-terms if (!is.na(temp)) terms<-terms[-temp] pred <- NextMethod('predict',object,terms=terms,...) terms<- oldTerms if (se.fit) { se <- pred$se.fit pred <- pred$fit } if (type=='terms' && missing(newdata)) { # In this case (only) I add the sparse term back in spterm <- object$frail[indx] spstd <- sqrt(object$fvar[indx]) if (nvar==2) { if (xvar==2) { pred <- cbind(pred, spterm) if (se.fit) se <- cbind(se, spstd) } else { pred <- cbind(spterm, pred) if (se.fit) se <- cbind(spstd, se) } } else { first <- if (xvar==1) 0 else 1:(xvar-1) secnd <- if (xvar==nvar) 0 else (xvar+1):nvar pred <- cbind(pred[,first], spterm, pred[,secnd]) if (se.fit) se <- cbind(se[,first], spstd, se[,secnd]) } dimnames(pred) <- list(dimnames(x)[[1]], termname) if (se.fit) dimnames(se) <- dimnames(pred) } } #Expand out the missing values in the result # But only if operating on the original dataset if (missing(newdata) && !is.null(na.action)) { pred <- naresid(na.action, pred) if (is.matrix(pred)) n <- nrow(pred) else n <- length(pred) if(se.fit) se <- naresid(na.action, se) } # Collapse over subjects, if requested if (!missing(collapse)) { if (length(collapse) != n) stop("Collapse vector is the wrong length") pred <- drop(rowsum(pred, collapse)) if (se.fit) se <- sqrt(drop(rowsum(se^2, collapse))) } if (se.fit) list(fit=pred, se.fit=se) else pred } } survival/R/frailty.gamma.S0000644000176000001440000001147012267746072015255 0ustar ripleyusers# $Id: frailty.gamma.S 11377 2009-12-14 22:59:56Z therneau $ # # Defining function for gamma frailty fits # frailty.gamma <- function(x, sparse=(nclass >5), theta, df, eps= 1e-5, method=c("em", "aic", "df", "fixed"), ...) { nclass <- length(unique(x[!is.na(x)])) if (sparse) x <-as.numeric(as.factor(x)) else{ x <- as.factor(x) attr(x,'contrasts') <- contr.treatment(nclass, contrasts=FALSE) } if (is.R()) class(x) <- c("coxph.penalty",class(x)) else oldClass(x) <- "coxph.penalty" # Check for consistency of the arguments if (missing(method)) { if (!missing(theta)) { method <- 'fixed' if (!missing(df)) stop("Cannot give both a df and theta argument") } else if (!missing(df)) method <- 'df' } method <- match.arg(method) if (method=='df' && missing(df)) stop("Method = df but no df argument") if (method=='fixed' && missing(theta)) stop("Method= fixed but no theta argument") if (method!='df' && !missing(df)) stop("Method is not df, but have a df argument") if (method !='fixed' && !missing(theta)) stop("Method is not 'fixed', but have a theta argument") pfun<- function(coef, theta, ndeath){ if (theta==0) list(recenter=0, penalty=0, flag=TRUE) else { recenter <- log(mean(exp(coef))) coef <- coef - recenter nu <- 1/theta list(recenter=recenter, first= (exp(coef) -1) * nu, second= exp(coef) * nu, penalty= -sum(coef)*nu, # The exp part sums to a constant flag=FALSE) } } printfun <- function(coef, var, var2, df, history) { if (!is.null(history$history)) theta <- history$history[nrow(history$history),1] else theta <- history$theta clog <- history$c.loglik if (is.matrix(var)) test <- coxph.wtest(var, coef)$test else test <- sum(coef^2/var) df2 <- max(df, .5) # Stop silly p-values list(coef=c(NA, NA, NA, test, df, 1-pchisq(test, df2)), history=paste("Variance of random effect=", format(theta), " I-likelihood =", format(round(clog,1), digits=10))) } # The final coxph object will contain a copy of printfun. Stop it from # also containing huge unnecessary variables, e.g. 'x', known at this # point in time. Not an issue for pfun, which does not get saved. # Setting to globalenv() won't work since coxph.wtest is not visible # outside the survival library's name space. if (is.R()) environment(printfun) <- asNamespace('survival') if (method=='fixed') { temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("x", "status", "loglik"), cfun = frailty.controlgam, cparm= list(theta=theta, ...)) } else if (method=='em'){ temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("x", "status", "loglik"), cfun = frailty.controlgam, cparm= c(list(eps=eps), ...)) } else if (method=='aic') { temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs = c("x", "status", "loglik", "neff","df", "plik"), cparm=list(eps=eps, lower=0, init=c(.1, 1), ...), cfun =function(opt, iter, old, group, status, loglik,...){ temp <- frailty.controlaic(opt, iter, old, ...) if (iter >0) { #compute correction to the loglik if (old$theta==0) correct <- 0 else { if (is.matrix(group)) group <-c(group %*% 1:ncol(group)) d <- tapply(status,group,sum) correct <- frailty.gammacon(d, 1/old$theta) } temp$c.loglik <- loglik + correct } temp }) } else { #df method # The initial guess is based on the observation that theta=1 often # gives about df= (#groups)/3 if (missing(eps)) eps <- .1 temp <- list(pfun=pfun, printfun=printfun, diag =TRUE, sparse= sparse, cargs= c('df', "x", "status", "loglik"), cparm=list(df=df, thetas=0, dfs=0, eps=eps, guess=3*df/length(unclass(x)), ...), cfun =function(opt, iter, old, df, group, status, loglik){ temp <- frailty.controldf(opt, iter, old, df) if (iter >0) { #compute correction to the loglik if (old$theta==0) correct <- 0 else { if (is.matrix(group)) group <-c(group %*% 1:ncol(group)) d <- tapply(status,group,sum) correct <- frailty.gammacon(d, 1/old$theta) } temp$c.loglik <- loglik + correct } temp }) } # If not sparse, give shorter names to the coefficients, so that any # printout of them is readable. if (!sparse) { vname <- paste("gamma", levels(x), sep=':') temp <- c(temp, list(varname=vname)) } attributes(x) <- c(attributes(x), temp) x } survival/R/survConcordance.fit.R0000644000176000001440000000543412267746101016434 0ustar ripleyusers# Automatically generated from all.nw using noweb survConcordance.fit <- function(y, x, strata, weight) { btree <- function(n) { ranks <- rep(0L, n) #will be overwritten yet.to.do <- 1:n depth <- floor(logb(n,2)) start <- as.integer(2^depth) lastrow.length <- 1+n-start indx <- seq(1L, by=2L, length= lastrow.length) ranks[yet.to.do[indx]] <- start + 0:(length(indx)-1L) yet.to.do <- yet.to.do[-indx] while (start >1) { start <- as.integer(start/2) indx <- seq(1L, by=2L, length=start) ranks[yet.to.do[indx]] <- start + 0:(start-1L) yet.to.do <- yet.to.do[-indx] } ranks } docount <- function(stime, risk, wts) { if (attr(stime, 'type') == 'right') { ord <- order(stime[,1], -stime[,2]) ux <- sort(unique(risk)) n2 <- length(ux) index <- btree(n2)[match(risk[ord], ux)] - 1L .Call(Cconcordance1, stime[ord,], as.double(wts[ord]), as.integer(index), as.integer(length(ux))) } else if (attr(stime, 'type') == "counting") { sort.stop <- order(-stime[,2], stime[,3]) sort.start <- order(-stime[,1]) ux <- sort(unique(risk)) n2 <- length(ux) index <- btree(n2)[match(risk, ux)] - 1L .Call(Cconcordance2, stime, as.double(wts), as.integer(index), as.integer(length(ux)), as.integer(sort.stop-1L), as.integer(sort.start-1L)) } else stop("Invalid survival type for concordance") } if (missing(weight) || length(weight)==0) weight <- rep(1.0, length(x)) storage.mode(y) <- "double" if (missing(strata) || length(strata)==0) { count <- docount(y, x, weight) if (count[1]==0 && count[2]==0) count[5]<-0 else count[5] <- 2*sqrt(count[5]) names(count) <- c("concordant", "discordant", "tied.risk", "tied.time", "std(c-d)") } else { strata <- as.factor(strata) ustrat <- levels(strata)[table(strata) >0] #some strata may have 0 obs count <- matrix(0., nrow=length(ustrat), ncol=5) for (i in 1:length(ustrat)) { keep <- which(strata == ustrat[i]) count[i,] <- docount(y[keep,,drop=F], x[keep], weight[keep]) } count[,5] <- 2*sqrt(ifelse(count[,1]+count[,2]==0, 0, count[,5])) dimnames(count) <- list(ustrat, c("concordant", "discordant", "tied.risk", "tied.time", "std(c-d)")) } count } survival/R/print.survdiff.S0000644000176000001440000000236212267746072015505 0ustar ripleyusers# $Date: 2006-08-28 14:31:20 $ $Id: print.survdiff.S 11166 2008-11-24 22:10:34Z therneau $ print.survdiff <- function(x, digits = max(options()$digits - 4, 3), ...) { saveopt <-options(digits=digits) on.exit(options(saveopt)) if (!inherits(x, 'survdiff')) stop("Object is not the result of survdiff") if (!is.null(cl<- x$call)) { cat("Call:\n") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat("n=", sum(x$n), ", ", naprint(omit), ".\n\n", sep='') if (length(x$n)==1) { z <- sign(x$exp - x$obs) * sqrt(x$chisq) temp <- c(x$obs, x$exp, z, signif(1-pchisq(x$chisq, 1),digits)) names(temp) <- c("Observed", "Expected", "Z", "p") print(temp) } else { if (is.matrix(x$obs)){ otmp <- apply(x$obs,1,sum) etmp <- apply(x$exp,1,sum) } else { otmp <- x$obs etmp <- x$exp } df <- (sum(1*(etmp>0))) -1 temp <- cbind(x$n, otmp, etmp, ((otmp-etmp)^2)/ etmp, ((otmp-etmp)^2)/ diag(x$var)) dimnames(temp) <- list(names(x$n), c("N", "Observed", "Expected", "(O-E)^2/E", "(O-E)^2/V")) print(temp) cat("\n Chisq=", format(round(x$chisq,1)), " on", df, "degrees of freedom, p=", format(signif(1-pchisq(x$chisq, df),digits)), "\n") } invisible(x) } survival/R/lines.survfit.coxph.S0000644000176000001440000000042012267746072016446 0ustar ripleyusers# $Id: lines.survfit.coxph.S 11166 2008-11-24 22:10:34Z therneau $ lines.survfit.coxph <- function(x, mark.time=FALSE, ...) { if (is.logical(mark.time) & mark.time) stop("Invalid value for mark.time") invisible(NextMethod('lines', mark.time=mark.time)) } survival/R/coxph.R0000644000176000001440000003310412267746074013642 0ustar ripleyusers# Automatically generated from all.nw using noweb #tt <- function(x) x coxph <- function(formula, data, weights, subset, na.action, init, control, ties= c("efron", "breslow", "exact"), singular.ok =TRUE, robust=FALSE, model=FALSE, x=FALSE, y=TRUE, tt, method=ties, ...) { ties <- match.arg(ties) Call <- match.call() # create a call to model.frame() that contains the formula (required) # and any other of the relevant optional arguments # then evaluate it in the proper frame indx <- match(c("formula", "data", "weights", "subset", "na.action"), names(Call), nomatch=0) if (indx[1] ==0) stop("A formula argument is required") temp <- Call[c(1,indx)] # only keep the arguments we wanted temp[[1]] <- as.name('model.frame') # change the function called special <- c("strata", "cluster", "tt") temp$formula <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) # Make "tt" visible for coxph formulas, without making it visible elsewhere if (!is.null(attr(temp$formula, "specials")$tt)) { coxenv <- new.env(parent= environment(formula)) assign("tt", function(x) x, env=coxenv) environment(temp$formula) <- coxenv } mf <- eval(temp, parent.frame()) if (nrow(mf) ==0) stop("No (non-missing) observations") Terms <- terms(mf) ## We want to pass any ... args to coxph.control, but not pass things ## like "dats=mydata" where someone just made a typo. The use of ... ## is simply to allow things like "eps=1e6" with easier typing extraArgs <- list(...) if (length(extraArgs)) { controlargs <- names(formals(coxph.control)) #legal arg names indx <- pmatch(names(extraArgs), controlargs, nomatch=0L) if (any(indx==0L)) stop(gettextf("Argument %s not matched", names(extraArgs)[indx==0L]), domain = NA) } if (missing(control)) control <- coxph.control(...) Y <- model.extract(mf, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") if (type!='right' && type!='counting') stop(paste("Cox model doesn't support \"", type, "\" survival data", sep='')) weights <- model.weights(mf) data.n <- nrow(Y) #remember this before any time transforms cluster<- attr(Terms, "specials")$cluster if (length(cluster)) { robust <- TRUE #flag to later compute a robust variance tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(mf[,tempc$vars], shortlabel=TRUE) #allow multiples dropterms <- tempc$terms #we won't want this in the X matrix dropcon <- tempc$vars # Save away xlevels after removing cluster (we don't want to save upteen # levels of that variable, which we will never need). xlevels <- .getXlevels(Terms[-tempc$terms], mf) } else { dropterms <- dropcons <- NULL if (missing(robust)) robust <- FALSE xlevels <- .getXlevels(Terms, mf) } strats <- attr(Terms, "specials")$strata if (length(strats)) { stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars)==1) strata.keep <- mf[[stemp$vars]] else strata.keep <- strata(mf[,stemp$vars], shortlabel=TRUE) strats <- as.numeric(strata.keep) } timetrans <- attr(Terms, "specials")$tt if (missing(tt)) tt <- NULL if (length(timetrans)) { timetrans <- untangle.specials(Terms, 'tt') ntrans <- length(timetrans$terms) if (is.null(tt)) { tt <- function(x, time, riskset, weights){ #default to O'Brien's logit rank obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } } if (is.function(tt)) tt <- list(tt) #single function becomes a list if (is.list(tt)) { if (any(!sapply(tt, is.function))) stop("The tt argument must contain function or list of functions") if (length(tt) != ntrans) { if (length(tt) ==1) { temp <- vector("list", ntrans) for (i in 1:ntrans) temp[[i]] <- tt[[1]] tt <- temp } else stop("Wrong length for tt argument") } } else stop("The tt argument must contain a function or list of functions") if (ncol(Y)==2) { if (length(strats)==0) { sorted <- order(-Y[,1], Y[,2]) newstrat <- rep.int(0L, nrow(Y)) newstrat[1] <- 1L } else { sorted <- order(strats, -Y[,1], Y[,2]) #newstrat marks the first obs of each strata newstrat <- as.integer(c(1, 1*(diff(strats[sorted])!=0))) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount1, Y[sorted,], as.integer(newstrat)) tindex <- sorted[counts$index] } else { if (length(strats)==0) { sort.end <- order(-Y[,2], Y[,3]) sort.start<- order(-Y[,1]) newstrat <- c(1L, rep(0, nrow(Y) -1)) } else { sort.end <- order(strats, -Y[,2], Y[,3]) sort.start<- order(strats, -Y[,1]) newstrat <- c(1L, as.integer(diff(strats[sort.end])!=0)) } if (storage.mode(Y) != "double") storage.mode(Y) <- "double" counts <- .Call(Ccoxcount2, Y, as.integer(sort.start -1L), as.integer(sort.end -1L), as.integer(newstrat)) tindex <- counts$index } mf <- mf[tindex,] Y <- Surv(rep(counts$time, counts$nrisk), counts$status) type <- 'right' # new Y is right censored, even if the old was (start, stop] strats <- rep(1:length(counts$nrisk), counts$nrisk) weights <- model.weights(mf) for (i in 1:ntrans) mf[[timetrans$var[i]]] <- (tt[[i]])(mf[[timetrans$var[i]]], Y[,1], strats, weights) } contrast.arg <- NULL #due to shared code with model.matrix.coxph attr(Terms, "intercept") <- TRUE adrop <- 0 #levels of "assign" to be dropped; 0= intercept stemp <- untangle.specials(Terms, 'strata', 1) if (length(stemp$vars) > 0) { #if there is a strata statement hasinteractions <- FALSE for (i in stemp$vars) { #multiple strata terms are allowed # The factors att has one row for each variable in the frame, one # col for each term in the model. Pick rows for each strata # var, and find if it participates in any interactions. if (any(attr(Terms, 'order')[attr(Terms, "factors")[i,] >0] >1)) hasinteractions <- TRUE } if (!hasinteractions) dropterms <- c(dropterms, stemp$terms) else adrop <- c(0, match(stemp$var, colnames(attr(Terms, 'factors')))) } if (length(dropterms)) { temppred <- attr(terms, "predvars") Terms2 <- Terms[ -dropterms] if (!is.null(temppred)) { # subscripting a Terms object currently drops predvars, in error attr(Terms2, "predvars") <- temppred[-(1+dropterms)] # "Call" object } X <- model.matrix(Terms2, mf, constrasts=contrast.arg) # we want to number the terms wrt the original model matrix # Do not forget the intercept, which will be a zero renumber <- match(colnames(attr(Terms2, "factors")), colnames(attr(Terms, "factors"))) attr(X, "assign") <- c(0, renumber)[1+attr(X, "assign")] } else X <- model.matrix(Terms, mf, contrasts=contrast.arg) # drop the intercept after the fact, and also drop strata if necessary Xatt <- attributes(X) xdrop <- Xatt$assign %in% adrop #columns to drop (always the intercept) X <- X[, !xdrop, drop=FALSE] attr(X, "assign") <- Xatt$assign[!xdrop] #if (any(adrop>0)) attr(X, "contrasts") <- Xatt$contrasts[-adrop] #else attr(X, "contrasts") <- Xatt$contrasts attr(X, "contrasts") <- Xatt$contrasts offset <- model.offset(mf) if (is.null(offset) | all(offset==0)) offset <- rep(0., nrow(mf)) assign <- attrassign(X, Terms) contr.save <- attr(X, "contrasts") if (missing(init)) init <- NULL pterms <- sapply(mf, inherits, 'coxph.penalty') if (any(pterms)) { pattr <- lapply(mf[pterms], attributes) pname <- names(pterms)[pterms] # # Check the order of any penalty terms ord <- attr(Terms, "order")[match(pname, attr(Terms, 'term.labels'))] if (any(ord>1)) stop ('Penalty terms cannot be in an interaction') pcols <- assign[match(pname, names(assign))] fit <- coxpenal.fit(X, Y, strats, offset, init=init, control, weights=weights, method=method, row.names(mf), pcols, pattr, assign) } else { if( method=="breslow" || method =="efron") { if (type== 'right') fitter <- get("coxph.fit") else fitter <- get("agreg.fit") } else if (method=='exact') { if (type== "right") fitter <- get("coxexact.fit") else fitter <- get("agexact.fit") } else stop(paste ("Unknown method", method)) fit <- fitter(X, Y, strats, offset, init, control, weights=weights, method=method, row.names(mf)) } if (is.character(fit)) { fit <- list(fail=fit) class(fit) <- 'coxph' } else { if (!is.null(fit$coefficients) && any(is.na(fit$coefficients))) { vars <- (1:length(fit$coefficients))[is.na(fit$coefficients)] msg <-paste("X matrix deemed to be singular; variable", paste(vars, collapse=" ")) if (singular.ok) warning(msg) else stop(msg) } fit$n <- data.n fit$nevent <- sum(Y[,ncol(Y)]) fit$terms <- Terms fit$assign <- assign class(fit) <- fit$method if (robust) { fit$naive.var <- fit$var fit$method <- method # a little sneaky here: by calling resid before adding the # na.action method, I avoid having missings re-inserted # I also make sure that it doesn't have to reconstruct X and Y fit2 <- c(fit, list(x=X, y=Y, weights=weights)) if (length(strats)) fit2$strata <- strats if (length(cluster)) { temp <- residuals.coxph(fit2, type='dfbeta', collapse=cluster, weighted=TRUE) # get score for null model if (is.null(init)) fit2$linear.predictors <- 0*fit$linear.predictors else fit2$linear.predictors <- c(X %*% init) temp0 <- residuals.coxph(fit2, type='score', collapse=cluster, weighted=TRUE) } else { temp <- residuals.coxph(fit2, type='dfbeta', weighted=TRUE) fit2$linear.predictors <- 0*fit$linear.predictors temp0 <- residuals.coxph(fit2, type='score', weighted=TRUE) } fit$var <- t(temp) %*% temp u <- apply(as.matrix(temp0), 2, sum) fit$rscore <- coxph.wtest(t(temp0)%*%temp0, u, control$toler.chol)$test } #Wald test if (length(fit$coefficients) && is.null(fit$wald.test)) { #not for intercept only models, or if test is already done nabeta <- !is.na(fit$coefficients) # The init vector might be longer than the betas, for a sparse term if (is.null(init)) temp <- fit$coefficients[nabeta] else temp <- (fit$coefficients - init[1:length(fit$coefficients)])[nabeta] fit$wald.test <- coxph.wtest(fit$var[nabeta,nabeta], temp, control$toler.chol)$test } na.action <- attr(mf, "na.action") if (length(na.action)) fit$na.action <- na.action if (model) { if (length(timetrans)) { # Fix up the model frame -- still in the thinking stage mf[[".surv."]] <- Y mf[[".strata."]] <- strats stop("Time transform + model frame: code incomplete") } fit$model <- mf } if (x) { fit$x <- X if (length(strats)) { if (length(timetrans)) fit$strata <- strats else fit$strata <- strata.keep } } if (y) fit$y <- Y } if (!is.null(weights) && any(weights!=1)) fit$weights <- weights names(fit$means) <- names(fit$coefficients) fit$formula <- formula(Terms) if (length(xlevels) >0) fit$xlevels <- xlevels fit$contrasts <- contr.save if (any(offset !=0)) fit$offset <- offset fit$call <- Call fit$method <- method fit } survival/R/agexact.fit.S0000644000176000001440000000545212267746072014722 0ustar ripleyusers agexact.fit <- function(x, y, strata, offset, init, control, weights, method, rownames) { if (!is.matrix(x)) stop("Invalid formula for cox fitting function") if (!is.null(weights) && any(weights!=1)) stop("Case weights are not supported for the exact method") n <- nrow(x) nvar <- ncol(x) if (ncol(y)==3) { start <- y[,1] stopp <- y[,2] event <- y[,3] } else { start <- rep(0,n) stopp <- y[,1] event <- y[,2] } # Sort the data (or rather, get a list of sorted indices) if (length(strata)==0) { sorted <- order(stopp, -event) newstrat <- as.integer(rep(0,n)) } else { sorted <- order(strata, stopp, -event) strata <- (as.numeric(strata))[sorted] newstrat <- as.integer(c(1*(diff(strata)!=0), 1)) } if (is.null(offset)) offset <- rep(0,n) sstart <- as.double(start[sorted]) sstop <- as.double(stopp[sorted]) sstat <- as.integer(event[sorted]) if (is.null(nvar)) { # A special case: Null model. Not worth coding up stop("Cannot handle a null model + exact calculation (yet)") } if (!is.null(init)) { if (length(init) != nvar) stop("Wrong length for inital values") } else init <- rep(0,nvar) agfit <- .C(Cagexact, iter= as.integer(control$iter.max), as.integer(n), as.integer(nvar), sstart, sstop, sstat, x= x[sorted,], as.double(offset[sorted]), newstrat, means = double(nvar), coef= as.double(init), u = double(nvar), imat= double(nvar*nvar), loglik=double(2), flag=integer(1), double(2*nvar*nvar +nvar*4 + n), integer(2*n), as.double(control$eps), as.double(control$toler.chol), sctest=double(1)) var <- matrix(agfit$imat,nvar,nvar) coef <- agfit$coef if (agfit$flag < nvar) which.sing <- diag(var)==0 else which.sing <- rep(FALSE,nvar) infs <- abs(agfit$u %*% var) if (control$iter.max >1) { if (agfit$flag == 1000) warning("Ran out of iterations and did not converge") else { infs <- ((infs > control$eps) & infs > control$toler.inf*abs(coef)) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } names(coef) <- dimnames(x)[[2]] lp <- x %*% coef + offset - sum(coef *agfit$means) score <- as.double(exp(lp[sorted])) agres <- .C(Cagmart, as.integer(n), as.integer(0), sstart, sstop, sstat, score, rep(1.0, n), newstrat, resid=double(n)) resid <- double(n) resid[sorted] <- agres$resid names(resid) <- rownames coef[which.sing] <- NA list(coefficients = coef, var = var, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = lp, residuals = resid, means = agfit$means, method= 'coxph') } survival/R/print.summary.survexp.R0000644000176000001440000000322612267746072017064 0ustar ripleyusersprint.summary.survexp <- function(x, digits = max(options()$digits - 4, 3), ...) { savedig <- options(digits=digits) on.exit(options(savedig)) if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(naprint(omit), "\n") mat <- cbind(x$time, x$n.risk, x$surv) if (is.matrix(x$n.risk)) cnames <- c("time", paste("nrisk", 1:ncol(x$n.risk), sep='')) else cnames <- c("time", "n.risk") if (is.matrix(x$surv)) ncurve <- ncol(x$surv) else ncurve <- 1 if (ncurve==1) { #only 1 curve cnames <- c(cnames, "survival") # if (!is.null(x$std.err)) { # if (is.null(x$lower)) { # mat <- cbind(mat, x$std.err) # cnames <- c(cnames, "std.err") # } # else { # mat <- cbind(mat, x$std.err, x$lower, x$upper) # cnames <- c(cnames, 'std.err', # paste("lower ", x$conf.int*100, "% CI", sep=''), # paste("upper ", x$conf.int*100, "% CI", sep='')) # } # } } else cnames <- c(cnames, paste("survival", seq(ncurve), sep='')) if (!is.matrix(mat)) mat <- matrix(mat, nrow=1) if (!is.null(mat)) { dimnames(mat) <- list(NULL, cnames) if (is.null(x$strata)) prmatrix(mat, rowlab=rep("", nrow(mat))) else { #print it out one strata at a time strata <- x$strata for (i in levels(strata)) { who <- (strata==i) cat(" ", i, "\n") if (sum(who) ==1) print(mat[who,]) else prmatrix(mat[who,], rowlab=rep("", sum(who))) cat("\n") } } } else stop("There are no observations to print.") invisible(x) } survival/R/summary.survexp.R0000644000176000001440000001232212267746072015726 0ustar ripleyusers# # Almost identical to summary.survfit. The big differences # are no calls to the survmean function (irrelevant), and # there is no censoring, extend, or rmean argument. # And there is never an se, upper or lower component. # Because survexp objects do not contain n.event or n.censor, # subsetting is easier. summary.survexp <- function(object, times, scale=1, ...) { fit <- object if (!inherits(fit, 'survexp')) stop("Invalid data") # The fit$surv object is sometimes a vector and sometimes a matrix. # Make a copy of it that is always a matrix, to simplify the number of # cases for our subscripting work below. At the end of the routine # we'll turn it back into a vector if needed. Similar treatment is # given to the n.risk argument. surv <- as.matrix(fit$surv) n.risk <- as.matrix(fit$n.risk) if (is.null(fit$strata)) { nstrat <- 1 stemp <- rep(1, nrow(surv)) strata.names <- "" } else { nstrat <- length(fit$strata) stemp <- rep(1:nstrat, fit$strata) strata.names <- names(fit$strata) } # if (is.null(fit$std.err)) std.err <- NULL # else std.err <- fit$std.err * surv # if (!is.null(fit$lower)) { # lower <- as.matrix(fit$lower) # upper <- as.matrix(fit$upper) # } if (missing(times)) { times <- fit$time strata <- factor(stemp, labels=strata.names) } else { #this case is harder, since it involves "in between" points times <- sort(times) #just in case the user didn't # The basic idea is to process the curves one at a time, # adding the results for that curve onto a list, so the # survival surv[[1], surv[[2]], etc. # For the survival, stderr, and confidence limits it suffices # to create a single list 'indx1' containing a subscripting vector indx1 <- indx2 <- newtimes <- vector('list', nstrat) n <- length(stemp) for (i in 1:nstrat) { who <- (1:n)[stemp==i] # the rows of the object for this strata stime <- fit$time[who] # First, toss any printing times that are outside our range mintime <- min(stime, 0) ptimes <- times[times >= mintime] maxtime <- max(stime) ptimes <- ptimes[ptimes <= maxtime] newtimes[[i]] <- ptimes # If we tack a -1 onto the front of the vector of survival # times, then indx1 is the subscript for that vector # corresponding to the list of "ptimes". If the input # data had stime=c(10,20) and ptimes was c(5,10,15,20), # the result would be 1,2,2,3. # For n.risk we want a slightly different index: 2,2,3,3. # "In between" times point to the next higher index for n.risk, # but the next lower one for survival. (Survival drops at time t, # the n.risk immediately afterwords at time t+0: you were at # risk just before you die, but not a moment after). The # extra point needs to be added at the end. # ntime <- length(stime) #number of points temp1 <- approx(c(mintime-1, stime), 0:ntime, xout=ptimes, method='constant', f=0, rule=2)$y indx1[[i]] <- ifelse(temp1==0, 1, 1+ who[pmax(1,temp1)]) # Why not just "who[temp1]" instead of who[pmax(1,temp1)] in the # line just above? When temp1 has zeros, the first expression # gives a vector that is shorter than temp1, and the ifelse # doesn't work right due to mismatched lengths. # Compute the number at risk. If stime = 1,10, 20 and ptime=3,10, # 12, then temp1 = 2,2,3: the nrisk looking ahead # approx() doesn't work if stime is of length 1 if (ntime ==1) temp1 <- rep(1, length(ptimes)) else temp1 <- approx(stime, 1:ntime, xout=ptimes, method='constant', f=1, rule=2)$y indx2[[i]] <- ifelse(ptimes>max(stime), length(n.risk), who[temp1]) } # Now create the output list times <- unlist(newtimes) n.risk <- unlist(n.risk) indx1 <- unlist(indx1) surv <- (rbind(1.,surv))[indx1,,drop=FALSE] n.risk <- n.risk[unlist(indx2),, drop=FALSE] # if (!is.null(std.err)) std.err <- rbind(0.,std.err)[indx1,,drop=FALSE] # if (!is.null(fit$lower)) { # lower <- rbind(1.,lower)[indx1,,drop=FALSE] # upper <- rbind(1.,upper)[indx1,,drop=FALSE] # } if (!is.null(fit$strata)) { scount <- unlist(lapply(newtimes, length)) strata <- factor(rep(1:nstrat, scount), labels=names(fit$strata)) } } # # Final part of the routine: paste the material together into # the correct output structure # temp <- list(time=times/scale, n.risk=n.risk, surv=surv) if (ncol(surv)==1) { # Make surve & etc vectors again temp$surv <- drop(temp$surv) temp$n.risk <- drop(temp$n.risk) # if (!is.null(std.err)) temp$std.err <- drop(std.err) # if (!is.null(fit$lower)) { # temp$lower <- drop(lower) # temp$upper <- drop(upper) # } } # else { # if (!is.null(std.err)) temp$std.err <- std.err # if (!is.null(fit$lower)) { # temp$lower <- lower # temp$upper <- upper # } # } if (!is.null(fit$strata)) { temp$strata <- strata } temp$method <- fit$method temp$call <- fit$call if (!is.null(fit$na.action)) temp$na.action <- fit$na.action class(temp) <- "summary.survexp" temp } survival/R/survfitcoxph.fit.R0000644000176000001440000001720412267746105016044 0ustar ripleyusers# Automatically generated from all.nw using noweb survfitcoxph.fit <- function(y, x, wt, x2, risk, newrisk, strata, se.fit, survtype, vartype, varmat, id, y2, strata2, unlist=TRUE) { if (is.factor(strata)) ustrata <- levels(strata) else ustrata <- sort(unique(strata)) nstrata <- length(ustrata) survlist <- vector('list', nstrata) names(survlist) <- ustrata for (i in 1:nstrata) { indx <- which(strata== ustrata[i]) survlist[[i]] <- agsurv(y[indx,,drop=F], x[indx,,drop=F], wt[indx], risk[indx], survtype, vartype) } expand <- function(fit, x2, varmat, se.fit) { if (survtype==1) surv <- cumprod(fit$surv) else surv <- exp(-fit$cumhaz) if (is.matrix(x2) && nrow(x2) >1) { #more than 1 row in newdata fit$surv <- outer(surv, newrisk, '^') dimnames(fit$surv) <- list(NULL, row.names(x2)) if (se.fit) { varh <- matrix(0., nrow=length(fit$varhaz), ncol=nrow(x2)) for (i in 1:nrow(x2)) { dt <- outer(fit$cumhaz, x2[i,], '*') - fit$xbar varh[,i] <- (cumsum(fit$varhaz) + rowSums((dt %*% varmat)* dt))* newrisk[i]^2 } fit$std.err <- sqrt(varh) } fit$cumhaz <- outer(fit$cumhaz, newrisk, '*') } else { fit$surv <- surv^newrisk if (se.fit) { dt <- outer(fit$cumhaz, c(x2)) - fit$xbar varh <- (cumsum(fit$varhaz) + rowSums((dt %*% varmat)* dt)) * newrisk^2 fit$std.err <- sqrt(varh) } fit$cumhaz <- fit$cumhaz * newrisk } fit } if (missing(id) || is.null(id)) result <- lapply(survlist, expand, x2, varmat, se.fit) else { onecurve <- function(slist, x2, y2, strata2, newrisk, se.fit) { ntarget <- nrow(x2) #number of different time intervals surv <- vector('list', ntarget) n.event <- n.risk <- n.censor <- varh1 <- varh2 <- time <- surv hazard <- vector('list', ntarget) stemp <- as.integer(strata2) timeforward <- 0 for (i in 1:ntarget) { slist <- survlist[[stemp[i]]] indx <- which(slist$time > y2[i,1] & slist$time <= y2[i,2]) if (length(indx)==0) { timeforward <- timeforward + y2[i,2] - y2[i,1] # No deaths or censors in user interval. Possible # user error, but not uncommon at the tail of the curve. } else { time[[i]] <- diff(c(y2[i,1], slist$time[indx])) #time increments time[[i]][1] <- time[[i]][1] + timeforward timeforward <- y2[i,2] - max(slist$time[indx]) hazard[[i]] <- slist$hazard[indx]*newrisk[i] if (survtype==1) surv[[i]] <- slist$surv[indx]^newrisk[i] n.event[[i]] <- slist$n.event[indx] n.risk[[i]] <- slist$n.risk[indx] n.censor[[i]]<- slist$n.censor[indx] dt <- outer(slist$cumhaz[indx], x2[i,]) - slist$xbar[indx,,drop=F] varh1[[i]] <- slist$varhaz[indx] *newrisk[i]^2 varh2[[i]] <- rowSums((dt %*% varmat)* dt) * newrisk[i]^2 } } cumhaz <- cumsum(unlist(hazard)) if (survtype==1) surv <- cumprod(unlist(surv)) #increments (K-M) else surv <- exp(-cumhaz) if (se.fit) list(n=as.vector(table(strata)[stemp[1]]), time=cumsum(unlist(time)), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor= unlist(n.censor), surv = surv, cumhaz= cumhaz, std.err = sqrt(cumsum(unlist(varh1)) + unlist(varh2))) else list(n=as.vector(table(strata)[stemp[1]]), time=cumsum(unlist(time)), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor= unlist(n.censor), surv = surv, cumhaz= cumhaz) } if (all(id ==id[1])) { result <- list(onecurve(survlist, x2, y2, strata2, newrisk, se.fit)) } else { uid <- unique(id) result <- vector('list', length=length(uid)) for (i in 1:length(uid)) { indx <- which(id==uid[i]) result[[i]] <- onecurve(survlist, x2[indx,,drop=FALSE], y2[indx,,drop=FALSE], strata2[indx], newrisk[indx], se.fit) } names(result) <- uid } } if (unlist) { if (length(result)==1) { # the no strata case if (se.fit) result[[1]][c("n", "time", "n.risk", "n.event", "n.censor", "surv", "cumhaz", "std.err")] else result[[1]][c("n", "time", "n.risk", "n.event", "n.censor", "surv", "cumhaz")] } else { temp <-list(n = unlist(lapply(result, function(x) x$n), use.names=FALSE), time= unlist(lapply(result, function(x) x$time), use.names=FALSE), n.risk= unlist(lapply(result, function(x) x$n.risk), use.names=FALSE), n.event= unlist(lapply(result, function(x) x$n.event), use.names=FALSE), n.censor=unlist(lapply(result, function(x) x$n.censor), use.names=FALSE), strata = sapply(result, function(x) length(x$time))) names(temp$strata) <- names(result) if ((missing(id) || is.null(id)) && nrow(x2)>1) { temp$surv <- t(matrix(unlist(lapply(result, function(x) t(x$surv)), use.names=FALSE), nrow= nrow(x2))) dimnames(temp$surv) <- list(NULL, row.names(x2)) temp$cumhaz <- t(matrix(unlist(lapply(result, function(x) t(x$cumhaz)), use.names=FALSE), nrow= nrow(x2))) if (se.fit) temp$std.err <- t(matrix(unlist(lapply(result, function(x) t(x$std.err)), use.names=FALSE), nrow= nrow(x2))) } else { temp$surv <- unlist(lapply(result, function(x) x$surv), use.names=FALSE) temp$cumhaz <- unlist(lapply(result, function(x) x$cumhaz), use.names=FALSE) if (se.fit) temp$std.err <- unlist(lapply(result, function(x) x$std.err), use.names=FALSE) } temp } } else { names(result) <- ustrata result } } survival/R/frailty.S0000644000176000001440000000075212267746072014175 0ustar ripleyusers# $Id: frailty.S 11166 2008-11-24 22:10:34Z therneau $ # # Parent function for frailty, calls the actuall working functions # frailty <- function(x, distribution = 'gamma', ...) { dlist <- c("gamma", "gaussian", "t") i <- pmatch(distribution, dlist) if (!is.na(i)) distribution <- dlist[i] temp <- paste("frailty", distribution, sep='.') if (!exists(temp)) stop(paste("Function '", temp, "' not found", sep="")) (get(temp))(x, ...) } survival/R/residuals.survreg.S0000644000176000001440000001744712267746100016213 0ustar ripleyusers# Automatically generated from all.nw using noweb # $Id$ # # Residuals for survreg objects residuals.survreg <- function(object, type=c('response', 'deviance', 'dfbeta', 'dfbetas', 'working', 'ldcase', 'ldresp', 'ldshape', 'matrix'), rsigma =TRUE, collapse=FALSE, weighted=FALSE, ...) { type <-match.arg(type) n <- length(object$linear.predictors) Terms <- object$terms if(!inherits(Terms, "terms")) stop("invalid terms component of object") # If the variance wasn't estimated then it has no error if (nrow(object$var) == length(object$coefficients)) rsigma <- FALSE # If there was a cluster directive in the model statment then remove # it. It does not correspond to a coefficient, and would just confuse # things later in the code. cluster <- untangle.specials(Terms,"cluster")$terms if (length(cluster) >0 ) Terms <- Terms[-cluster] strata <- attr(Terms, 'specials')$strata coef <- object$coefficients intercept <- attr(Terms, "intercept") response <- attr(Terms, "response") weights <- object$weights if (is.null(weights)) weighted <- FALSE if (is.character(object$dist)) dd <- survreg.distributions[[object$dist]] else dd <- object$dist if (is.null(dd$itrans)) { itrans <- dtrans <-function(x)x } else { itrans <- dd$itrans dtrans <- dd$dtrans } if (!is.null(dd$dist)) dd <- survreg.distributions[[dd$dist]] deviance <- dd$deviance dens <- dd$density if (is.null(object$naive.var)) vv <- object$var else vv <- object$naive.var need.x <- is.na(match(type, c('response', 'deviance', 'working'))) if (is.null(object$y) || !is.null(strata) || (need.x & is.null(object[['x']]))) mf <- model.frame(object) y <- object$y if (is.null(y)) { y <- model.extract(mf, 'response') if (!is.null(dd$trans)) { tranfun <- dd$trans exactsurv <- y[,ncol(y)] ==1 if (any(exactsurv)) logcorrect <-sum(log(dd$dtrans(y[exactsurv,1]))) if (type=='interval') { if (any(y[,3]==3)) y <- cbind(tranfun(y[,1:2]), y[,3]) else y <- cbind(tranfun(y[,1]), y[,3]) } else if (type=='left') y <- cbind(tranfun(y[,1]), 2-y[,2]) else y <- cbind(tranfun(y[,1]), y[,2]) } else { if (type=='left') y[,2] <- 2- y[,2] else if (type=='interval' && all(y[,3]<3)) y <- y[,c(1,3)] } } if (!is.null(strata)) { temp <- untangle.specials(Terms, 'strata', 1) Terms2 <- Terms[-temp$terms] if (length(temp$vars)==1) strata.keep <- mf[[temp$vars]] else strata.keep <- strata(mf[,temp$vars], shortlabel=TRUE) strata <- as.numeric(strata.keep) nstrata <- max(strata) sigma <- object$scale[strata] } else { Terms2 <- Terms nstrata <- 1 sigma <- object$scale } if (need.x) { x <- object[['x']] #don't grab xlevels component if (is.null(x)) x <- model.matrix(Terms2, mf, contrasts.arg=object$contrasts) } if (type=='response') { yhat0 <- deviance(y, sigma, object$parms) rr <- itrans(yhat0$center) - itrans(object$linear.predictor) } else { status <- y[,ncol(y)] eta <- object$linear.predictors z <- (y[,1] - eta)/sigma dmat <- dens(z, object$parms) dtemp<- dmat[,3] * dmat[,4] #f' if (any(status==3)) { z2 <- (y[,2] - eta)/sigma dmat2 <- dens(z2, object$parms) } else { dmat2 <- dmat #dummy values z2 <- 0 } tdenom <- ((status==0) * dmat[,2]) + #right censored ((status==1) * 1 ) + #exact ((status==2) * dmat[,1]) + #left ((status==3) * ifelse(z>0, dmat[,2]-dmat2[,2], dmat2[,1] - dmat[,1])) #interval g <- log(ifelse(status==1, dmat[,3]/sigma, tdenom)) #loglik tdenom <- 1/tdenom dg <- -(tdenom/sigma) *(((status==0) * (0-dmat[,3])) + #dg/ eta ((status==1) * dmat[,4]) + ((status==2) * dmat[,3]) + ((status==3) * (dmat2[,3]- dmat[,3]))) ddg <- (tdenom/sigma^2) *(((status==0) * (0- dtemp)) + #ddg/eta^2 ((status==1) * dmat[,5]) + ((status==2) * dtemp) + ((status==3) * (dmat2[,3]*dmat2[,4] - dtemp))) ds <- ifelse(status<3, dg * sigma * z, tdenom*(z2*dmat2[,3] - z*dmat[,3])) dds <- ifelse(status<3, ddg* (sigma*z)^2, tdenom*(z2*z2*dmat2[,3]*dmat2[,4] - z * z*dmat[,3] * dmat[,4])) dsg <- ifelse(status<3, ddg* sigma*z, tdenom *(z2*dmat2[,3]*dmat2[,4] - z*dtemp)) deriv <- cbind(g, dg, ddg=ddg- dg^2, ds = ifelse(status==1, ds-1, ds), dds=dds - ds*(1+ds), dsg=dsg - dg*(1+ds)) if (type=='deviance') { yhat0 <- deviance(y, sigma, object$parms) rr <- (-1)*deriv[,2]/deriv[,3] #working residuals rr <- sign(rr)* sqrt(2*(yhat0$loglik - deriv[,1])) } else if (type=='working') rr <- (-1)*deriv[,2]/deriv[,3] else if (type=='dfbeta' || type== 'dfbetas' || type=='ldcase') { score <- deriv[,2] * x # score residuals if (rsigma) { if (nstrata > 1) { d4 <- matrix(0., nrow=n, ncol=nstrata) d4[cbind(1:n, strata)] <- deriv[,4] score <- cbind(score, d4) } else score <- cbind(score, deriv[,4]) } rr <- score %*% vv if (type=='dfbetas') rr <- rr %*% diag(1/sqrt(diag(vv))) if (type=='ldcase') rr<- rowSums(rr*score) } else if (type=='ldresp') { rscore <- deriv[,3] * (x * sigma) if (rsigma) { if (nstrata >1) { d6 <- matrix(0., nrow=n, ncol=nstrata) d6[cbind(1:n, strata)] <- deriv[,6]*sigma rscore <- cbind(rscore, d6) } else rscore <- cbind(rscore, deriv[,6] * sigma) } temp <- rscore %*% vv rr <- rowSums(rscore * temp) } else if (type=='ldshape') { sscore <- deriv[,6] *x if (rsigma) { if (nstrata >1) { d5 <- matrix(0., nrow=n, ncol=nstrata) d5[cbind(1:n, strata)] <- deriv[,5] sscore <- cbind(sscore, d5) } else sscore <- cbind(sscore, deriv[,5]) } temp <- sscore %*% vv rr <- rowSums(sscore * temp) } else { #type = matrix rr <- deriv } } #case weights if (weighted) rr <- rr * weights #Expand out the missing values in the result if (!is.null(object$na.action)) { rr <- naresid(object$na.action, rr) if (is.matrix(rr)) n <- nrow(rr) else n <- length(rr) } # Collapse if desired if (!missing(collapse)) { if (length(collapse) !=n) stop("Wrong length for 'collapse'") rr <- drop(rowsum(rr, collapse)) } rr } survival/R/format.Surv.S0000644000176000001440000000113412267746072014744 0ustar ripleyusers# $Id: format.Surv.S 11273 2009-03-20 15:02:17Z tlumley $ # format.Surv <- function(x, ...) format(as.character.Surv(x), ...) # The function to "make something suitable for inclusion in a data frame" # was "as.data.frame.x" in versions <5, now it is "data.frameAux.x", # so here we have a version specific definition. # This is needed for both S-plus and R if (!is.R()) { if (version$major >= 5) { data.frameAux.Surv <- function(x, ...) data.frameAux.AsIs(x, ...) } else as.data.frame.Surv <- as.data.frame.model.matrix } else { as.data.frame.Surv <- as.data.frame.model.matrix } survival/R/survfit.formula.S0000644000176000001440000000734012267746072015671 0ustar ripleyuserssurvfit.formula <- function(formula, data, weights, subset, na.action, etype, id, istate, ...) { Call <- match.call() Call[[1]] <- as.name('survfit') #make nicer printout for the user # create a copy of the call that has only the arguments we want, # and use it to call model.frame() mfnames <- c('formula', 'data', 'weights', 'subset','na.action', 'istate', 'id', "etype") #legal args for model.frame temp <- Call[c(1, match(mfnames, names(Call), nomatch=0))] temp[[1]] <- as.name("model.frame") if (is.R()) m <- eval.parent(temp) else m <- eval(temp, sys.parent()) Terms <- terms(formula, c("strata", "cluster")) ord <- attr(Terms, 'order') if (length(ord) & any(ord !=1)) stop("Interaction terms are not valid for this function") n <- nrow(m) Y <- model.extract(m, 'response') if (!is.Surv(Y)) stop("Response must be a survival object") casewt <- model.extract(m, "weights") if (is.null(casewt)) casewt <- rep(1,n) if (!is.null(attr(Terms, 'offset'))) warning("Offset term ignored") id <- model.extract(m, 'id') istate <- model.extract(m,"istate") temp <- untangle.specials(Terms, "cluster") if (length(temp$vars)>0) { if (length(temp$vars) > 1) stop("can not have two cluster terms") if (!is.null(id)) stop("can not have both a cluster term and an id variable") id <- m[[temp$vars]] Terms <- Terms[-temp$terms] } ll <- attr(Terms, 'term.labels') if (length(ll) == 0) X <- factor(rep(1,n)) # ~1 on the right else X <- strata(m[ll]) if (!is.Surv(Y)) stop("y must be a Surv object") # Backwards support for the now-depreciated etype argument etype <- model.extract(m, "etype") if (!is.null(etype)) { if (attr(Y, "type") == "mcounting" || attr(Y, "type") == "mright") stop("cannot use both the etype argument and mstate survival type") if (length(istate)) stop("cannot use both the etype and istate arguments") status <- Y[,ncol(Y)] etype <- as.factor(etype) temp <- table(etype, status==0) if (all(rowSums(temp==0) ==1)) { # The user had a unique level of etype for the censors newlev <- levels(etype)[order(-temp[,2])] #censors first } else newlev <- c(" ", levels(etype)[temp[,1] >0]) status <- factor(ifelse(status==0,0, as.numeric(etype)), labels=newlev) if (attr(Y, 'type') == "right") Y <- Surv(Y[,1], status, type="mstate") else if (attr(Y, "type") == "counting") Y <- Surv(Y[,1], Y[,2], status, type="mstate") else stop("etype argument incompatable with survival type") } # At one point there were lines here to round the survival # times to a certain number of digits. This approach worked # almost all the time, but only almost. The better logic is # now in the individual compuation routines if (attr(Y, 'type') == 'left' || attr(Y, 'type') == 'interval') temp <- survfitTurnbull(X, Y, casewt, ...) else if (attr(Y, 'type') == "right" || attr(Y, 'type')== "counting") temp <- survfitKM(X, Y, casewt, ...) else if (attr(Y, 'type') == "mright" || attr(Y, "type")== "mcounting") temp <- survfitCI(X, Y, weights=casewt, id=id, istate=istate, ...) else { # This should never happen stop("unrecognized survival type") } if (is.null(temp$states)) class(temp) <- 'survfit' else class(temp) <- c("survfitms", "survfit") if (!is.null(attr(m, 'na.action'))) temp$na.action <- attr(m, 'na.action') temp$call <- Call temp } survival/R/logLik.coxph.R0000644000176000001440000000055312267746072015062 0ustar ripleyusers# # The AIC function depends on a logLik method # logLik.coxph <- function(x) { out <- x$loglik[2] attr(out, 'df') <- sum(!is.na(coefficients(x))) class(out) <- 'logLik' out } logLik.survreg <- function(x) { out <- x$loglik[2] dd <- diag(x$var) attr(out, 'df') <- sum(!is.na(dd) & dd > 0) class(out) <- 'logLik' out } survival/R/lines.aareg.S0000644000176000001440000000440012267746072014705 0ustar ripleyusers# $Id: lines.aareg.S 11166 2008-11-24 22:10:34Z therneau $ lines.aareg <- function(x, se=FALSE, maxtime, type='s', ...) { if (!inherits(x, 'aareg')) stop ("Must be an aareg object") if (missing(maxtime)) keep <- 1:length(x$time) else keep <- 1:sum(x$time <= maxtime) if (is.matrix(x$coefficient) && ncol(x$coefficient)>1) { yy <- apply(x$coefficient[keep,], 2,cumsum) yy <- rbind(0,yy) # make the plot start at 0,0 if (se) { if (!is.null(x$dfbeta)) { # There was a cluster term, so use the robust variance # dfbeta will be of dimension (n, nvar, n-unique-times) # The first variance increment is apply(dfbeta[,,1]^2,2,sum) # second is apply(dfbeta[,,2]^2,2,sum) # ... , apply(dfbeta[,,ndeath]..... # By being sneaky, it can be done quickly dd <- dim(x$dfbeta) keep2 <- 1:length(unique(x$time[keep])) temp <- matrix(x$dfbeta[,,keep2], nrow=dd[1]) se.increment <- matrix(apply(temp^2, 2, sum), nrow=dd[2]) se.yy <- sqrt(apply(t(se.increment), 2, cumsum)) } else se.yy <- sqrt(apply(x$coefficient[keep,]^2, 2,cumsum)) se.yy <- rbind(0, se.yy) } ncurve <- ncol(yy) } else { # this is the branch most often called, when someone has done # plot(fit[3]), so that only 1 coefficient remains yy <- cumsum(c(0, x$coefficient[keep])) if (se) { if (!is.null(x$dfbeta)) { dd <- dim(x$dfbeta) keep2 <- 1:length(unique(x$time[keep])) temp <- matrix(x$dfbeta[,,keep2], nrow=dd[1]) se.yy <- sqrt(cumsum(c(0, apply(temp^2, 2, sum)))) } else se.yy <- sqrt(cumsum(c(0, x$coefficient[keep]^2))) } ncurve <- 1 } xx <- c(0, x$time[keep]) # There may be multiplicities in x$times. Only plot the last of # each of them indx <- 1 + length(xx) - rev(match(unique(rev(xx)), rev(xx))) xx <- xx[indx] yy <- as.matrix(yy)[indx,] if (se) { if (is.null(x$dfbeta)) se.yy<- as.matrix(se.yy)[indx,] yy <- cbind(yy, yy + 1.96*se.yy, yy - 1.96*se.yy) if (ncurve >1) { for (i in 1:ncurve) { j <- c(i, i+ncurve, i+2*ncurve) matlines(xx, yy[,j], type=type, ..., col=1, lty=c(1,2,2)) } } else matlines(xx, yy, type=type, ..., col=1, lty=c(1,2,2),) } else { matlines(xx, yy, type=type, ..., xlab='Time') } } survival/R/print.summary.survfitms.S0000644000176000001440000000426712267746072017421 0ustar ripleyusersprint.summary.survfitms <- function(x, digits = max(options()$digits - 4, 3), ...) { savedig <- options(digits=digits) on.exit(options(savedig)) if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(naprint(omit), "\n") if (x$type == 'right' || is.null(x$n.enter)) { mat <- cbind(x$time, x$n.risk, x$n.event, x$prev) cnames <- c("time", "n.risk", "n.event") } else if (x$type == 'counting') { mat <- cbind(x$time, x$n.risk, x$n.event, x$n.enter, x$n.censor, x$prev) cnames <- c("time", "n.risk", "n.event", "entered", "censored") } if (is.matrix(x$prev)) ncurve <- ncol(x$prev) else ncurve <- 1 if (ncurve==1) { #only 1 curve cnames <- c(cnames, "prevalence") if (!is.null(x$std.err)) { if (is.null(x$lower)) { mat <- cbind(mat, x$std.err) cnames <- c(cnames, "std.err") } else { mat <- cbind(mat, x$std.err, x$lower, x$upper) cnames <- c(cnames, 'std.err', paste("lower ", x$conf.int*100, "% CI", sep=''), paste("upper ", x$conf.int*100, "% CI", sep='')) } } } else cnames <- c(cnames, paste("prevalence", seq(ncurve), sep='')) if (!is.null(x$start.time)) { mat.keep <- mat[,1] >= x$start.time mat <- mat[mat.keep,,drop=FALSE] if (is.null(dim(mat))) stop(paste("No information available using start.time =", x$start.time, ".")) } if (!is.matrix(mat)) mat <- matrix(mat, nrow=1) if (!is.null(mat)) { dimnames(mat) <- list(NULL, cnames) if (is.null(x$strata)) prmatrix(mat, rowlab=rep("", nrow(mat))) else { #print it out one strata at a time strata <- x$strata if (!is.null(x$start.time)) strata <- strata[mat.keep] for (i in levels(strata)) { who <- (strata==i) cat(" ", i, "\n") if (sum(who) ==1) print(mat[who,]) else prmatrix(mat[who,], rowlab=rep("", sum(who))) cat("\n") } } } else stop("There are no events to print. Please use the option ", "censored=TRUE with the summary function to see the censored ", "observations.") invisible(x) } survival/R/aareg.S0000644000176000001440000003440112267746072013600 0ustar ripleyusers# Aalen's additive regression model # Originally, this tried to call coxph with certain options. # But we found the passing ... to a model method just doesn't work (for # optional things like weights). So the first portion of this is # essentially coxph, to set up for coxph.detail. # For distribution, the "variance" test is omitted. Not all aspects are # yet supported by the downstream printing. # aareg <- function(formula, data, weights, subset, na.action, qrtol=1e-7, nmin, dfbeta=FALSE, taper=1, test = c('aalen', 'variance', 'nrisk'), model=FALSE, x=FALSE, y=FALSE) { call <- match.call() m <- match.call(expand.dots=FALSE) temp <- c("", "formula", "data", "weights", "subset", "na.action") m <- m[ match(temp, names(m), nomatch=0)] special <- c("strata", "cluster") Terms <- if(missing(data)) terms(formula, special) else terms(formula, special, data=data) m$formula <- Terms m[[1]] <- as.name("model.frame") m <- eval(m, sys.parent()) test <- match.arg(test) #check for legal argument # Now grab the terms that we need Y <- model.extract(m, "response") if (!inherits(Y, "Surv")) stop("Response must be a survival object") offset<- attr(Terms, "offset") tt <- length(offset) offset <- if(tt == 0) rep(0, nrow(Y)) else if(tt == 1) m[[offset]] else { #multiple offset terms! add them ff <- m[[offset[1]]] for(i in 2:tt) ff <- ff + m[[offset[i]]] ff } # Create an X matrix, to feed to the coxdetail routine. attr(Terms,"intercept")<- 1 # force no intercept strats <- attr(Terms, "specials")$strata cluster<- attr(Terms, "specials")$cluster dropx <- NULL if (length(cluster)) { dfbeta <- TRUE tempc <- untangle.specials(Terms, 'cluster', 1:10) ord <- attr(Terms, 'order')[tempc$terms] if (any(ord>1)) stop ("Cluster can not be used in an interaction") cluster <- strata(m[,tempc$vars], shortlabel=TRUE) #allow multiples cluster <- as.numeric(cluster) #labels don't matter, and processing # is a bit faster without them dropx <- tempc$terms } else cluster <- 1:nrow(m) # Adding strata, when there is a coefficent per death, is identical # to doing a totally separate fit per group. # Using "factor(group)" to get multiple baselines is likely what the # user wants. However, because we have not processed the strata # statement (taken it out of X, and created the 'newstrat' of coxph) # it will act just like a factor. # I've changed my mind multiple times on commenting out the line below. # Computationally identical to factor() -- is an error message or not # an error message the greater source of confusion to a user? if (length(strats)) { stop("Strata terms not allowed") } if (length(dropx)) X <- model.matrix(Terms[-dropx], m)[,-1,drop=FALSE] else X <- model.matrix(Terms, m)[,-1,drop=FALSE] nvar <- ncol(X) nused<- nrow(X) weights <- model.extract(m, 'weights') if (length(weights)==0) weights <- rep(1.0, nused) type <- attr(Y, "type") if (type!='right' && type!='counting') stop(paste("Aalen model doesn't support \"", type, "\" survival data", sep='')) # Get the peices that I need from the coxdetail routine # 1. It expects a "counting process" type of Y if (ncol(Y)==2) { mintime <- min(Y[,1]) if (mintime < 0) Y <- cbind( 2*mintime -1, Y) else Y <- cbind(-1,Y) } # Because there are no strata, the number of unique death times is the # number that will be in the output structures times <- as.vector(Y[,2]) # toss the labels away status<- as.vector(Y[,3]) ndeath <- length(unique(times[status==1])) # Sort everything ord <- order(times, -status) times <- times[ord] status <- status[ord] weights <- weights[ord] if (x) saveX <- X X <- X[ord,,drop=FALSE] storage.mode(Y) <- 'double' ff <- .C(Ccoxdetail, as.integer(nused), as.integer(nvar), ndeath= as.integer(ndeath), y = Y[ord,], as.double(X), index = as.integer(rep(0,nused)), event2 = rep(1.0, nused), weights = as.double(weights), means= c(0., double(ndeath*nvar-1)), u = double(ndeath*nvar), i = double(ndeath*nvar*nvar), rmat = integer(ndeath*nused), nrisk2 = double(ndeath), double(nvar*(3 + 2*nvar)) ) # riskmat is an nused by ndeath 0/1 matrix showing who is present riskmat <- matrix(ff$rmat, nused, ndeath) # Note that imat, as returned by coxdetail, is Var(X) * nevents. dt <- list(means= (matrix(ff$means,ndeath, nvar)), var = aareg.taper(taper, array(ff$i, c(nvar, nvar, ndeath)), ff$event2[1:ndeath]), time = times[ff$index[1:ndeath]], nrisk= ff$nrisk2, #weighted # at risk nevent=ff$event2[1:ndeath]) #weighted number of events # Set the number of deaths that will be used in the analysis # This may be smaller than the curren "ndeath", due to small nrisk # The number of times may even be smaller, if imat is singular at that # time point. if (missing(nmin)) nmin <- 3*nvar if (nvar==1) ndeath <- sum(dt$nrisk>= nmin & c(dt$var)>0) else { ndeath <- sum(dt$nrisk >= nmin) if (ndeath >0) { while (1) { #we expect very few iterations of this loop qri <- qr(dt$var[,,ndeath], tol=qrtol) if (qri$rank >= nvar) break #not singular ndeath <- ndeath -1 } } } if (ndeath<=1) stop("The threshold 'nmin' is too high, no model can be fit") # This matches the death times in the data set to the # sorted list of unique death times. "0" = not a death index <- match(times, dt$time[1:ndeath], nomatch=0) * status deaths <- (status==1 & index >0) dindex <- index[deaths] #for each death, a pointer into dt objects nevent <- length(dindex) #total number of events (ndeath = #unique times) if (length(cluster)) ncluster <- length(unique(cluster)) else ncluster <- nused if (dfbeta) { dmat <- array(0.0, dim=c(ncluster, nvar+1, ndeath)) # the resid marix has a row for each death, and nused cols # each row has a "1" in it at the position of the death # the yhat part is subtracted later resid <- rep(0., nevent*nused) resid[nevent*((1:nused)[deaths]-1) + 1:nevent] <- 1.0 resid <- matrix(resid, ncol=nused) } # Coefficient is the step in Aalen's plots # If we keep one row of "coefficent" per death, then Aalen's # variance is coef *% t(coef), treating coef as a col vector. # If we kept one row per death, then the ndeath nvar by nvar variance # matrices would need to be kept too. So keep 1 row per event. # Things like plot will end up accumlating. # There is no such cheat for dfbeta: it is kept as "# unique deaths" # p by p matrices. # if (nvar==1) { # special case of only 1 covariate means <- dt$means[dindex] nrisk <- dt$nrisk[dindex] xx <- (X[deaths] - means) * weights[deaths] v.inverse <- 1/dt$var[dindex] #for all time points twt <- nrisk* 1/cbind(1+ means^2*v.inverse, v.inverse) coefficient <- v.inverse * xx / nrisk # Note that ybar is always w_i/nrisk, since we are doing the # regressions one event at a time. b0 <- weights[deaths]/nrisk - means*coefficient if (dfbeta) { # We first create the nused * #events matrix, and then # collapse it to be ncluster by n-unique-death-times xx <- c(X) * riskmat[,dindex] # X repeated in each col, if at risk predicted <- coefficient * t(xx) + b0*t(riskmat[,dindex]) resid <- resid - predicted #nused cols, nvevent rows temp1 <- (resid * (t(xx) -means)/(nrisk*dt$var[dindex])) * rep(weights, rep(nevent, nused)) # temp1[i,j] is the change in alpha at time i for subject j # the "intercept dfbeta" is resid*wt/sum(wt) - xbar*temp1 temp0 <- resid * outer(1/nrisk, weights) - temp1 * means # get the matrix, nused by 2, which is the influence of each # subject on the test statistic. # This is a bit easier before collapsing if (test=='nrisk') { test.dfbeta <- cbind(apply(temp0*nrisk, 2, sum), apply(temp1*nrisk, 2, sum)) } else { test.dfbeta <- cbind(apply(temp0*twt[,1], 2, sum), apply(temp1*twt[,2], 2, sum)) } # Now collapse dfbeta, first on the deaths, and then on the cluster if (nevent > ndeath) { temp1 <- rowsum(temp1, times[deaths], reorder=FALSE) temp0 <- rowsum(temp0, times[deaths], reorder=FALSE) } dmat[,1,] <- rowsum(t(temp0), cluster[ord], reorder= FALSE) dmat[,2,] <- rowsum(t(temp1), cluster[ord], reorder =FALSE) } # Compute the test statistic, including the intercept term # (Much of the code above was a litte easier to write without # the intercept term in thec coef matrix, that below is easier # with it in). coefficient <- cbind(b0,coefficient) if (test=='nrisk') { temp <- coefficient*nrisk test.statistic <- apply(temp,2,sum) test.var <- matrix(0.,2,2) diag(test.var) <- apply(temp^2, 2, sum) test.var[1,2] <- test.var[2,1] <- sum(temp[,1]*temp[,2]) } else { # full V^{-1} and diag(V){-1} variance (Aalen) are the same temp <- coefficient* twt test.statistic <- apply(temp,2,sum) test.var <- matrix(0.,2,2) diag(test.var) <- apply(temp^2, 2, sum) test.var[1,2] <- test.var[2,1] <- sum(temp[,1]*temp[,2]) } } else { # 2 or more covariates coefficient <- matrix(0,nevent, nvar) twt <- matrix(0, nevent, nvar+1) means <- dt$means[dindex,] # vector of means, at each deatj nrisk <- dt$nrisk[dindex] dindex2 <- (1:nused)[deaths] # row number of each death ybar <- weights[deaths]/nrisk test.var <- matrix(0.0, nvar, nvar) if (dfbeta) test.dfbeta <- matrix(0., nused, nvar+1) for (i in 1:nevent) { who <- riskmat[,dindex[i]] # 0/1 vector of who is at risk wt <- weights* who xx <- who* (X- rep(means[i,], rep(nused, nvar))) # (X-Xbar) # solve, and check for singularity # Note that the increment to imat, as returned by # the coxph.detail function, is Var(X) * #events # and qri is intended to be the qr of V-inverse if (i==1 || dindex[i] != dindex[i-1]) { #don't redo qr for ties qri <- qr(dt$var[,,dindex[i]], tol=qrtol) vmat <- qr.coef(qri, diag(nvar)) twt[i,] <- nrisk[i] /c(1+ means[i,] %*% vmat %*% means[i,], diag(vmat)) } else twt[i,] <- twt[i-1,] j <- dindex2[i] coefficient[i,] <-qr.coef(qri, wt[j]*xx[j,]) / nrisk[i] if (test=='variance') { temp <- wt[j]*xx[j,] test.var <- test.var + outer(temp,temp) } if (dfbeta) { resid[i, ] <- resid[i,]- c(ybar[i] + xx %*% c(coefficient[i,])) temp1 <- t(qr.coef(qri, t(resid[i,]* wt *xx)))/ nrisk[i] temp0 <- resid[i,]*wt/nrisk[i] - temp1%*% means[i,] if (test=='aalen') test.dfbeta <- test.dfbeta + cbind(temp0, temp1) %*% diag(twt[i,]) else if (test=='nrisk') test.dfbeta <- test.dfbeta + cbind(temp0, temp1)* nrisk[i] else { test.dfbeta[,-1] <- test.dfbeta[,-1] + resid[i,]* wt *xx # There really isn't a definition for what weight to # put on the intercept in the "variance" weighting # (and who really cares about "testing the intercept" # anyway). So use the twt one test.dfbeta[,1] <- test.dfbeta[,1] + temp0*twt[i,1] } dmat[,-1,dindex[i]] <- dmat[,-1, dindex[i]] + rowsum(temp1, cluster[ord], reorder=FALSE) dmat[,1, dindex[i]] <- dmat[,1,dindex[i]] + rowsum(temp0, cluster[ord], reorder=FALSE) } } temp <- apply(means*coefficient, 1, sum) # xbar * coef at time t b0 <- weights[deaths]/nrisk - temp coefficient <- cbind(b0,coefficient) # Note - the intercept is a part of the test statistic, even # though it will always be ignored in the overall chisquare test if (test=='aalen') { temp <- twt* coefficient test.statistic <- colSums(temp) test.var <- t(temp) %*% temp } else if (test=='nrisk') { temp <- coefficient * nrisk test.statistic <- colSums(temp) test.var <- t(temp) %*% temp } else { xx <- weights[deaths]*(X[deaths,] - means[dindex,]) test.statistic <- apply(xx, 2, sum) } } if (dfbeta) { # The model variance is sum( term[i]^2), i ranging over times, # and each term an n by p matrix (one row per person) # The dfbeta one is essentially [sum(term[i])]^2 # the test.dfbeta matrix contains this sum over death times temp <- rowsum(test.dfbeta, cluster, reorder=FALSE) test.var2 <- t(temp) %*% temp } dimnames(coefficient) <- list(times[deaths], c("Intercept", dimnames(X)[[2]])) names(test.statistic) <- c("Intercept", dimnames(X)[[2]]) dimnames(twt) <- NULL ans <- list(n= c(nused, ndeath, length(dt$time)), times=times[deaths], nrisk=dt$nrisk[dindex], coefficient=coefficient, test.statistic=test.statistic, test.var=test.var, test=test, tweight = twt, call=call) if (dfbeta) { ans$dfbeta <- dmat ans$test.var2 <- test.var2 } if (any(weights!=1)) ans$weights <- weights # if (ncluster < nused) ans$cluster <- as.numeric(cluster) na.action <- attr(m, "na.action") if (length(na.action)) ans$na.action <- na.action if (model) ans$model <- m else { if (x) ans$x <- saveX if (y) ans$y <- Y } if (is.R()) class(ans) <- 'aareg' else oldClass(ans) <- 'aareg' ans } "[.aareg" <- function(x, ..., drop=FALSE) { if (!inherits(x, 'aareg')) stop ("Must be an aareg object") i <- ..1 if (is.matrix(x$coefficient)) { x$coefficient <- x$coefficient[,i, drop=drop] x$tweight <- x$tweight[,i,drop=drop] } else stop("Subsripting impossible, coefficient component not a matrix") if (!is.null(x$dfbeta)){ x$dfbeta <- x$dfbeta[,i,,drop=drop] x$test.var2 <- x$test.var2[i,i,drop=drop] } x$test.statistic <- x$test.statistic[i, drop=drop] x$test.var <- x$test.var[i,i,drop=drop] x } survival/R/cch.R0000644000176000001440000003406412267746072013262 0ustar ripleyusers### Suite of programs for case-cohort analysis ### Main program cch <- function(formula, data=sys.parent(), subcoh, id, stratum=NULL, cohort.size, method=c("Prentice", "SelfPrentice", "LinYing","I.Borgan","II.Borgan"), robust=FALSE){ call <- match.call() if (is.data.frame(data)){ if (inherits(id,"formula")) id<-model.frame(id,data,na.action=na.fail)[,1] if (inherits(subcoh,"formula")) subcoh<-model.frame(subcoh,data,na.action=na.fail)[,1] if (inherits(stratum,"formula")) stratum<-model.frame(stratum,data,na.action=na.fail)[,1] } ## Check id, subcoh and cohort.size variables if(length(id)!=length(unique(id))) stop("Multiple records per id not allowed") if (is.logical(subcoh)) subcoh <- as.numeric(subcoh) tt <- table(subcoh) if(min(charmatch(names(tt), c("0","1"), 0))==0) stop("Permissible values for subcohort indicator are 0/1 or TRUE/FALSE") if(length(id)>sum(cohort.size)) stop("Number of records greater than cohort size") nn <- cohort.size method<-match.arg(method) stratified<-method %in% c("I.Borgan","II.Borgan") if (!is.null(stratum)) stratum<-factor(stratum) if (stratified){ if (robust) warning("`robust' not implemented for stratified analysis.") if (is.null(stratum)) stop("method (",method,") requires 'stratum'") if (length(cohort.size)!=length(levels(stratum))) stop("cohort.size and stratum do not match") if (!(all(levels(stratum) %in% names(cohort.size)))) warning("stratum levels and names(cohort.size) do not agree") subcohort.sizes<-table(stratum) } else if(!stratified) { if (!(method =="LinYing") && robust) warning("`robust' ignored for method (",method,")") if (!is.null(stratum)) warning("'stratum' ignored for method (",method,")") if (length(cohort.size)!=1) stop("cohort size must be a scalar for unstratified analysis") subcohort.sizes<-length(id) } if (any(subcohort.sizes>cohort.size)) stop("Population smaller than sample in some strata") ## Evaluate model formula m <- match.call(expand.dots=FALSE) m$method <- m$cohort.size <- m$id <- m$subcoh <- m$stratum <-m$robust<- NULL m[[1]] <- as.name("model.frame") m <- eval(m,sys.parent()) Terms <- attr(m,"terms") Y <- model.extract(m, "response") if(!inherits(Y, "Surv")) stop("Response must be a survival object") type <- attr(Y, "type") itype<-charmatch(type,c("right","counting"),nomatch=0) cens<-switch(itype+1, stop(paste("Cox model doesn't support \"", type, "\" survival data", sep = "")), Y[,2], Y[,3]) if (any(!subcoh & !cens)) stop(sum(!subcoh & !cens),"censored observations not in subcohort") cc<-cens+1-subcoh texit<-switch(itype+1, stop(), Y[,1], Y[,2]) tenter<-switch(itype+1, stop(), rep(0,length(texit)), Y[,1]) X <- model.matrix(Terms, m) X <- X[,2:ncol(X)] fitter <- get(method) if (stratified) out<-fitter(tenter=tenter, texit=texit, cc=cc, id=id, X=X, stratum=as.numeric(stratum), stratum.sizes=cohort.size) else out<-fitter(tenter=tenter, texit=texit, cc=cc, id=id, X=X, ntot=nn, robust=robust) out$method <- method names(out$coefficients) <- dimnames(X)[[2]] if(!is.null(out$var)) dimnames(out$var) <- list(dimnames(X)[[2]], dimnames(X)[[2]]) if(!is.null(out$naive.var)) dimnames(out$naive.var) <- list(dimnames(X)[[2]], dimnames(X)[[2]]) out$call <- call out$cohort.size <- cohort.size out$stratified<-stratified if (stratified){ out$stratum<-stratum out$subcohort.size <-subcohort.sizes } else { out$subcohort.size <- tt[2] } class(out) <- "cch" out } ### Subprograms Prentice <- function(tenter, texit, cc, id, X, ntot,robust){ eps <- 0.00000001 cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators ## Calculate Prentice estimate ent2 <- tenter ent2[cc==2] <- texit[cc==2]-eps fit1 <- coxph(Surv(ent2,texit,cens)~X,eps=eps,x=TRUE) ## Calculate Prentice estimate and variance nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort X <- as.matrix(X) aent <- c(tenter[cc>0],tenter[cc<2]) aexit <- c(texit[cc>0],texit[cc<2]) aX <- rbind(as.matrix(X[cc>0,]),as.matrix(X[cc<2,])) aid <- c(id[cc>0],id[cc<2]) dum <- rep(-100,nd) dum <- c(dum,rep(0,nc)) gp <- rep(1,nd) gp <- c(gp,rep(0,nc)) fit <- coxph(Surv(aent,aexit,gp)~aX+offset(dum)+cluster(aid),eps=eps,x=TRUE, iter.max=35,init=fit1$coefficients) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db <- db[gp==0,] fit$phase2var<-(1-(nc/ntot))*t(db)%*%(db) fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$coefficients <- fit$coef <- fit1$coefficients fit } SelfPrentice <- function(tenter, texit, cc, id, X, ntot,robust){ eps <- 0.00000001 cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators ## Calculate Self-Prentice estimate and variance nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort X <- as.matrix(X) aent <- c(tenter[cc>0],tenter[cc<2]) aexit <- c(texit[cc>0],texit[cc<2]) aX <- rbind(as.matrix(X[cc>0,]),as.matrix(X[cc<2,])) aid <- c(id[cc>0],id[cc<2]) dum <- rep(-100,nd) dum <- c(dum,rep(0,nc)) gp <- rep(1,nd) gp <- c(gp,rep(0,nc)) fit <- coxph(Surv(aent,aexit,gp)~aX+offset(dum)+cluster(aid),eps=eps,x=TRUE) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db <- db[gp==0,,drop=FALSE] fit$phase2var<-(1-(nc/ntot))*t(db)%*%(db) fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit } LinYing <- function(tenter, texit, cc, id, X, ntot,robust){ eps <- 0.000000001 cens <- as.numeric(cc>0) # Censorship indicators subcoh <- as.numeric(cc<2) # Subcohort indicators nd <- sum(cens) # Number of failures nc <- sum(subcoh) # Number in subcohort ncd <- sum(cc==1) #Number of failures in subcohort ## Calculate Lin-Ying estimate and variance offs <- rep((ntot-nd)/(nc-ncd),length(texit)) offs[cc>0] <- 1 loffs <- log(offs) fit <- coxph(Surv(tenter, texit, cens)~X+offset(loffs)+cluster(id), eps=eps,x=TRUE) db <- resid(fit,type="dfbeta") db <- as.matrix(db) db0 <- db[cens==0,,drop=FALSE] dbm <- apply(db0,2,mean) db0 <- sweep(db0,2,dbm) fit$phase2var<-(1-(nc-ncd)/(ntot-nd))*crossprod(db0) fit$naive.var <- fit$naive.var+fit$phase2var if (robust) fit$var<- crossprod(db,db/offs)+fit$phase2var else fit$var<-fit$naive.var fit } I.Borgan <- function(tenter, texit, cc, id, X, stratum, stratum.sizes){ eps <- 0.00000001 nobs <- length(texit) idx <- 1:length(nobs) jj <- max(stratum) nn <- stratum.sizes ## Cohort stratum sizes n <- table(stratum) ## Sample stratum sizes d <- table(stratum[cc>0]) ## Failures in each stratum tt <- table(cc,stratum) cens <- as.numeric(cc>0) ## Failure indicators subcoh <- as.numeric(cc<2) ## Subcohort indicators nd <- sum(cens) ## Number of failures nc <- sum(subcoh) ## Number in subcohort ncd <- sum(as.numeric(cc==1)) #Number of failures in subcohort m0 <- tt[1,] ## Subcohort stratum sizes (noncases only) if (ncd>0) m <- m0+tt[2,] else m <- m0 #Subcohort stratum sizes X <- as.matrix(X) kk <- ncol(X) ## Number of variables wt <- as.vector(nn/m) ## Weights for Estimator I stratum <- c(stratum[cc>0],stratum[cc<2]) w <- wt[stratum] ent <- c(tenter[cc > 0], tenter[cc < 2]) exit <- c(texit[cc > 0], texit[cc < 2]) X <- rbind(as.matrix(X[cc > 0, ]), as.matrix(X[cc < 2, ])) id <- c(id[cc > 0], id[cc < 2]) dum <- rep(-100, nd) dum <- c(dum, rep(0, nc)) gp <- rep(1, nd) gp <- c(gp, rep(0, nc)) w[gp==1] <- 1 fit <- coxph(Surv(ent,exit,gp)~X+offset(dum)+cluster(id), weights=w, eps=eps,x=T, iter.max=25) score <- resid(fit, type = "score", weighted=F) sc <- resid(fit, type="score", collapse=id, weighted=T) score <- as.matrix(score) score <- score[gp == 0,,drop=F] st <- stratum[gp==0] sto <- st %o% rep(1,kk) Index <- col(score) tscore <- tapply(score,list(sto,Index),mean) pscore <- tapply(score,list(sto,Index)) score <- score-tscore[pscore] delta <- matrix(0,kk,kk) opt <- NULL for (j in 1:jj) { temp <- t(score[st==j,])%*%score[st==j,]/(m[j]-1) delta <- matrix(delta+(wt[j]-1)*nn[j]*temp,kk,kk) if(is.null(opt)) opt <- nn[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var)) else opt <- rbind(opt,nn[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var))) } z <- apply(opt,2,sum) fit$opt <- sweep(opt,2,z,FUN="/") fit$phase2var<-fit$naive.var%*%delta%*%fit$naive.var fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$delta <- delta fit$sc <- sc fit } II.Borgan <- function(tenter, texit, cc, id, X, stratum, stratum.sizes){ eps <- 0.00000001 jj <- max(stratum) nn <- stratum.sizes ## Cohort stratum sizes n <- table(stratum) ## Sample stratum sizes d <- table(stratum[cc>0]) ## Failures in each stratum tt <- table(cc,stratum) cens <- as.numeric(cc>0) ## Failure indicators subcoh <- as.numeric(cc<2) ## Subcohort indicators nd <- sum(cens) ## Number of failures nc <- sum(subcoh) ## Number in subcohort ncd <- sum(as.numeric(cc==1)) #Number of failures in subcohort m0 <- tt[1,] ## Subcohort stratum sizes (controls only) if (ncd>0) m <- m0+tt[2,] else m <- m0 #Subcohort stratum sizes X <- as.matrix(X) kk <- ncol(X) ## Number of variables nn0 <- nn-as.vector(d) #Noncases in cohort wt <- as.vector(nn0/m0) w <- wt[stratum] w[cens==1] <- 1 fit <- coxph(Surv(tenter,texit,cens)~X+cluster(id), weights=w,eps=eps,x=T, iter.max=25) ## Borgan Estimate II score <- resid(fit, type = "score", weighted=F) sc <- resid(fit,type="score", collapse=id, weighted=T) score <- as.matrix(score) score <- score[cens == 0,,drop=F] ## Scores for controls st <- stratum[cens==0] ## Stratum indicators for controls sto <- st %o% rep(1,kk) Index <- col(score) tscore <- tapply(score,list(sto,Index),mean) ## Within stratum control score means pscore <- tapply(score,list(sto,Index)) score <- score-tscore[pscore] ## Subtract off within stratum score means delta <- matrix(0,kk,kk) opt <- NULL for (j in 1:jj) { temp <- t(score[st==j,])%*%score[st==j,]/(m0[j]-1) ## Borgan equation (19) delta <- delta+(wt[j]-1)*nn0[j]*temp ## Borgan equation (17) if(is.null(opt)) opt <- nn0[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var)) else opt <- rbind(opt,nn0[j]*sqrt(diag(fit$naive.var %*% temp %*% fit$naive.var))) } z <- apply(opt,2,sum) fit$opt <- sweep(opt,2,z,FUN="/") fit$phase2var<-fit$naive.var %*% delta %*% fit$naive.var fit$naive.var <- fit$naive.var+fit$phase2var fit$var<-fit$naive.var fit$delta <- delta fit$sc <- sc fit } ## Methods vcov.cch<-function(object,...) object$var "print.cch"<- function(x,...) { ## produces summary from an x of the class "cch" call<-x$call coef <- coef(x) method <- x$method se <- sqrt(diag(vcov(x))) Z<- abs(coef/se) p<- pnorm(Z) cohort.size<-x$cohort.size subcohort.size<-x$subcohort.size coefficients <- matrix(0, nrow = length(coef), ncol = 4) dimnames(coefficients) <- list(names(coef), c("Value", "SE", "Z", "p")) coefficients[, 1] <- coef coefficients[, 2] <- se coefficients[, 3] <- Z coefficients[, 4] <- 2*(1-p) if (x$stratified){ cat("Exposure-stratified case-cohort analysis,", x$method, "method.\n") m<-rbind(subcohort=x$subcohort.size, cohort=x$cohort.size) prmatrix(m,quote=FALSE) } else{ cat("Case-cohort analysis,") cat("x$method,", x$method,"\n with subcohort of", x$subcohort.size,"from cohort of", x$cohort.size,"\n\n") } cat("Call: "); print(x$call) cat("\nCoefficients:\n") print(coefficients) invisible(x) } "summary.cch"<-function(object,...) { ## produces summary from an object of the class "cch" call<-object$call coef <- coef(object) method <- object$method se <- sqrt(diag(vcov(object))) Z<- abs(coef/se) p<- pnorm(Z) cohort.size<-object$cohort.size subcohort.size<-object$subcohort.size coefficients <- matrix(0, nrow = length(coef), ncol = 4) dimnames(coefficients) <- list(names(coef), c("Value", "SE", "Z", "p")) coefficients[, 1] <- coef coefficients[, 2] <- se coefficients[, 3] <- Z coefficients[, 4] <- 2*(1-p) structure(list(call=call, method=method, cohort.size=cohort.size, subcohort.size=subcohort.size, coefficients = coefficients, stratified=object$stratified), class = "summary.cch") } print.summary.cch <- function(x,digits=3,...){ if (x$stratified){ cat("Exposure-stratified case-cohort analysis,", x$method, "method.\n") m<-rbind(subcohort=x$subcohort.size, cohort=x$cohort.size) prmatrix(m,quote=FALSE) } else{ cat("Case-cohort analysis,") cat("x$method,", x$method,"\n with subcohort of", x$subcohort.size,"from cohort of", x$cohort.size,"\n\n") } cat("Call: "); print(x$call) cat("\nCoefficients:\n") output<-cbind(Coef=x$coefficients[,1],HR=exp(x$coefficients[,1]), "(95%"=exp(x$coefficients[,1]-1.96*x$coefficients[,2]), "CI)"=exp(x$coefficients[,1]+1.96*x$coefficients[,2]), "p"=x$coefficients[,4] ) print(round(output,3)) invisible(x) } survival/R/frailty.controldf.S0000644000176000001440000000602712267746072016167 0ustar ripleyusers# $Id: frailty.controldf.S 11373 2009-10-28 17:12:59Z therneau $ # A function to calibrate the df # very empirical # Find the closest 3 points that span the target value # We know the function is monotone, so fit the function # dy = a * (dx)^p to the 3 points, where dx and dy are the distance # from the leftmost of the three points. # This method can fail near a boundary, so use step halving if things don't # go well # On input, parms$df = target degrees of freedom # parms$dfs, parms$thetas = known values (usually 0,0) # parms$guess = first guess # frailty.controldf <- function(parms, iter, old, df) { if (iter==0) { theta <- parms$guess return(list(theta=theta, done=FALSE, history=cbind(thetas=parms$thetas, dfs=parms$dfs))) } eps <- parms$eps if (length(eps)==0) eps <- .1 thetas <- c(old$history[,1], old$theta) dfs <- c(old$history[,2], df) nx <- length(thetas) if (nx==2) { #linear guess based on first two # but try extra hard to bracket the root theta <- thetas[1] + (thetas[2]-thetas[1])*(parms$df - dfs[1])/ (dfs[2] - dfs[1]) if (parms$df > df) theta <- theta * 1.5 return(list(theta=theta, done=FALSE, history=cbind(thetas=thetas, dfs=dfs), half=0)) } else{ # Now, thetas= our guesses at theta # dfs = the degrees of freedom for each guess done <- (iter>1 && (abs(dfs[nx]-parms$df) < eps)) # look for a new minimum x <- thetas y <- dfs target <- parms$df # How am I doing if ( abs( (y[nx]-target)/(y[nx-1]-target)) > .6) doing.well <- FALSE else doing.well <- TRUE ord <- order(x) if ((x[1]-x[2])*(y[1]-y[2]) >0) y <- y[ord] #monotone up else { #monotone down y <- -1* y[ord] target <- -target } x <- x[ord] if (all(y>target)) b1 <- 1 #points 1:3 are the closest then else if (all(y1 && ((target -y[b1]) < (y[b1+1] -target)))) b1 <- b1-1 } #now have the best 3 points # fit them with a power curve anchored at the leftmost one b2 <- b1 + 1:2 xx <- log(x[b2] - x[b1]) yy <- log(y[b2] - y[b1]) power <- diff(yy)/diff(xx) a <- yy[1] - power*xx[1] newx <- (log(target -y[b1]) - a)/power if (length(parms$trace) && parms$trace){ print(cbind(thetas=thetas, dfs=dfs)) cat(" new theta=" , format(x[b1] + exp(newx)), "\n\n") } list(theta=x[b1] + exp(newx), done=done, history=cbind(thetas=thetas, dfs=dfs), half=0) } } survival/R/agreg.fit.R0000644000176000001440000001042412267746073014366 0ustar ripleyusers# Automatically generated from all.nw using noweb agreg.fit <- function(x, y, strata, offset, init, control, weights, method, rownames) { n <- nrow(y) nvar <- ncol(x) start <- y[,1] stopp <- y[,2] event <- y[,3] if (all(event==0)) stop("Can't fit a Cox model with 0 failures") # Sort the data (or rather, get a list of sorted indices) # For both stop and start times, the indices go from last to first if (length(strata)==0) { sort.end <- order(-stopp, event) -1L #indices start at 0 for C code sort.start<- order(-start) -1L newstrat <- n } else { sort.end <- order(strata, -stopp, event) -1L sort.start<- order(strata, -start) -1L newstrat <- cumsum(table(strata)) } if (missing(offset) || is.null(offset)) offset <- rep(0.0, n) if (missing(weights)|| is.null(weights))weights<- rep(1.0, n) else if (any(weights<=0)) stop("Invalid weights, must be >0") else weights <- as.vector(weights) if (is.null(nvar) || nvar==0) { # A special case: Null model. Just return obvious stuff # To keep the C code to a small set, we call the usual routines, but # with a dummy X matrix and 0 iterations nvar <- 1 x <- matrix(as.double(1:n), ncol=1) #keep the .C call happy maxiter <- 0 nullmodel <- TRUE if (length(init) !=0) stop("Wrong length for inital values") init <- 0.0 #dummy value to keep a .C call happy (doesn't like 0 length) } else { nullmodel <- FALSE maxiter <- control$iter.max if (is.null(init)) init <- rep(0., nvar) if (length(init) != nvar) stop("Wrong length for inital values") } # the returned value of agfit$coef starts as a copy of init, so make sure # is is a vector and not a matrix. agfit <- .Call(Cagfit4, y, x, newstrat, weights, as.vector(offset), as.vector(init), sort.end, sort.start, as.integer(method=="efron"), as.integer(maxiter), as.double(control$eps), as.double(control$toler.chol)) var <- matrix(agfit$imat,nvar,nvar) coef <- agfit$coef if (agfit$flag < nvar) which.sing <- diag(var)==0 else which.sing <- rep(FALSE,nvar) infs <- abs(agfit$u %*% var) if (maxiter >1) { if (agfit$iter > maxiter) warning("Ran out of iterations and did not converge") else { infs <- ((infs > control$eps) & infs > control$toler.inf*abs(coef)) if (any(infs)) warning(paste("Loglik converged before variable ", paste((1:nvar)[infs],collapse=","), "; beta may be infinite. ")) } } lp <- as.vector(x %*% coef + offset - sum(coef *agfit$means)) score <- as.double(exp(lp)) agres <- .C(Cagmart2, as.integer(n), as.integer(method=='efron'), as.double(start), as.double(stopp), as.integer(event), as.integer(length(newstrat)), as.integer(newstrat), as.integer(sort.end), as.integer(sort.start), score, as.double(weights), resid=double(n), double(2*sum(event))) resid <- agres$resid if (nullmodel) { resid <- agres$resid names(resid) <- rownames list(loglik=agfit$loglik[2], linear.predictors = offset, residuals = resid, method= c("coxph.null", 'coxph') ) } else { names(coef) <- dimnames(x)[[2]] names(resid) <- rownames coef[which.sing] <- NA concordance <- survConcordance.fit(y, lp, strata, weights) list(coefficients = coef, var = var, loglik = agfit$loglik, score = agfit$sctest, iter = agfit$iter, linear.predictors = as.vector(lp), residuals = resid, means = agfit$means, concordance = concordance, method= 'coxph') } } survival/R/print.summary.survreg.S0000644000176000001440000000322412267746072017044 0ustar ripleyusers# $Id: print.summary.survreg.S 11166 2008-11-24 22:10:34Z therneau $ print.summary.survreg <- function(x, digits = max(options()$digits - 4, 3), ...) { correl <- x$correlation n <- x$n if(is.null(digits)) digits <- options()$digits cat("\nCall:\n") dput(x$call) print(x$table, digits = digits) if (nrow(x$var)==length(x$coefficients)) cat("\nScale fixed at",format(x$scale, digits=digits),"\n") else if (length(x$scale)==1) cat ("\nScale=", format(x$scale, digits=digits), "\n") else { cat("\nScale:\n") print(x$scale, digits=digits, ...) } cat("\n", x$parms, "\n", sep='') df <- sum(x$df) - x$idf # The sum is for penalized models cat("Loglik(model)=", format(round(x$loglik[2],1)), " Loglik(intercept only)=", format(round(x$loglik[1],1))) if (df > 0) cat("\n\tChisq=", format(round(x$chi,2)), "on", round(df,1), "degrees of freedom, p=", format(signif(1-pchisq(x$chi, df),2)), "\n") else cat("\n") if (x$robust) cat("(Loglikelihood assumes independent observations)\n") cat("Number of Newton-Raphson Iterations:", format(trunc(x$iter)), "\n") omit <- x$na.action if (length(omit)) cat("n=", x$n, " (", naprint(omit), ")\n", sep="") else cat("n=", x$n, "\n") if(!is.null(correl)) { p <- dim(correl)[2] if(p > 1) { cat("\nCorrelation of Coefficients:\n") ll <- lower.tri(correl) correl[ll] <- format(round(correl[ll], digits=digits)) correl[!ll] <- "" print(correl[-1, - p, drop = FALSE], quote = FALSE) } } cat("\n") invisible(NULL) } survival/R/coxpenal.df.S0000644000176000001440000000610412267746072014721 0ustar ripleyusers# $Id: coxpenal.df.S 11166 2008-11-24 22:10:34Z therneau $ # # degrees of freedom computation, based on Bob Gray's paper # # hmat = right hand slice of cholesky of H # hinv = right hand slice of cholesky of H-inverse # fdiag= diagonal of D-inverse # assign.list: terms information # ptype= 1 or 3 if a sparse term exists, 2 or 3 if a non-sparse exists # nvar = # of non-sparse terms # pen1 = the penalty matrix (diagonal thereof) for the sparse terms # pen2 = the penalty matrix for the non-sparse terms # sparse = indicates which term is the sparse one coxpenal.df <- function(hmat, hinv, fdiag, assign.list, ptype, nvar, pen1, pen2, sparse) { if (ptype ==1 & nvar==0) { #only sparse terms hdiag <- 1/fdiag list(fvar2=(hdiag-pen1)*fdiag^2, df=sum((hdiag-pen1)*fdiag), fvar = fdiag, trH=sum(fdiag)) } else if (ptype==2) { # only dense ones hmat.full <- t(hmat) %*% (ifelse(fdiag==0, 0,1/fdiag)* hmat) hinv.full <- hinv %*% (fdiag* t(hinv)) if (length(pen2)==length(hmat.full)) imat <- hmat.full - pen2 else imat <- hmat.full - diag(pen2) var <- hinv.full %*% imat %*% hinv.full if (length(assign.list)==1) list(var2=var, df=sum(imat * hinv.full), trH=sum(diag(hinv.full)), var=hinv.full) else { df <- trH <- NULL d2 <- diag(hinv.full) for (i in assign.list) { temp <- coxph.wtest(hinv.full[i,i], var[i,i])$solve if (is.matrix(temp)) df <- c(df, sum(diag(temp))) else df <- c(df, sum(temp)) trH<- c(trH, sum(d2[i])) } list(var2=var, df=df, trH=trH, var = hinv.full) } } else { # sparse terms + other vars nf <- length(fdiag) - nvar nr1 <- 1:nf nr2 <- (nf+1):(nf+nvar) d1 <- fdiag[nr1] d2 <- fdiag[nr2] temp <- t(hinv[nr1,]) temp2<- t(hinv[nr2,,drop=FALSE]) A.diag <- d1 + c(rep(1,nvar) %*% (temp^2*d2)) B <- hinv[nr1,] %*% (d2 * temp2) C <- hinv[nr2,] %*% (d2 * temp2) #see notation in paper var2 <- C - t(B) %*% (pen1 * B) if (ptype==3) { #additional work when we have penalties on both the sparse term # and on non-sparse terms hmat.22 <- t(hmat) %*%(ifelse(fdiag==0, 0,1/fdiag)* hmat) temp <- C - coxph.wtest(hmat.22, diag(nvar))$solve if (nvar==1) { var2 <- var2 - C*pen2*C # C will be 1 by 1 temp2 <- c(temp*pen2) } else if (length(pen2) == nvar) { var2 <- var2 - C %*% (pen2 * C) #diagonal penalty temp2 <- sum(diag(temp) * pen2) } else { var2 <- var2 - C %*% matrix(pen2,nvar) %*% C temp2 <- sum(diag(temp * pen2)) } } else temp2 <- 0 #temp2 contains trace[B'A^{-1}B P2], this line: P2=0 df <- trH <- NULL cdiag <- diag(C) for (i in 1:length(assign.list)) { if (sparse==i){ df <- c(df, nf - (sum(A.diag * pen1) + temp2)) trH <- c(trH, sum(A.diag)) } else { j <- assign.list[[i]] temp <- coxph.wtest(C[j,j], var2[j,j])$solve if (is.matrix(temp)) df <- c(df, sum(diag(temp))) else df <- c(df, sum(temp)) trH <- c(trH, sum(cdiag[j])) } } list(var=C, df=df, trH=trH, fvar=A.diag, var2=var2) } } survival/R/firstlib.R0000644000176000001440000000100712267746072014332 0ustar ripleyusers.onLoad <- function(lib, pkg) { ## survfit.print.n=="start" is compatible with previous R ## and with MASS if (is.null(getOption("survfit.print.n"))) options(survfit.print.n="start") ## survfit.print.mean==TRUE is compatible with previous R/SPLUS if (is.null(getOption("survfit.print.mean"))) options(survfit.print.mean=FALSE) } .onUnload <- function(libpath) library.dynam.unload("survival", libpath) is.category <- function(x) inherits(x,"factor") || is.factor(x) survival/R/survfitTurnbull.S0000644000176000001440000002606612267746072015763 0ustar ripleyusers# Compute the K-M for left/right/interval censored data via Turnbull's # slow EM calculation # x is a factor giving the groups, y is a survival object survfitTurnbull <- function(x, y, casewt, type=c('kaplan-meier', 'fleming-harrington', 'fh2'), error=c('greenwood', "tsiatis"), se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none'), conf.lower=c('usual', 'peto', 'modified'), start.time) { type <- match.arg(type) method <- match(type, c("kaplan-meier", "fleming-harrington", "fh2")) error <- match.arg(error) error.int <- match(error, c("greenwood", "tsiatis")) conf.type <- match.arg(conf.type) conf.lower<- match.arg(conf.lower) if (is.logical(conf.int)) { # A common error is for users to use "conf.int = FALSE" # it's illegal, but allow it if (!conf.int) conf.type <- "none" conf.int <- .95 } if (!is.Surv(y)) stop("y must be a Surv object") if (!is.factor(x)) stop("x must be a factor") xlev <- levels(x) # Will supply names for the curves x <- as.numeric(x) # keep only the levels if (!missing(start.time)) { # The user has requested that survival be "survival given that they # made it to start.time". We do this by just tossing those who # are known to end before start.time. Now if one of the times were # interval censored (15,42) and start.time were 20, perhaps it should # be modified too, but we don't. I really don't know what the # correct action would be, actually. # ny <- ncol(y) n.all <- c(table(x)) # remember the original data size # remove any obs whose end time is <= start.time keep <- (y[,ny-1] >= start.time) if (all(keep==FALSE)) stop(paste("start.time =", start.time, "is greater than all time points.")) x <- x[keep] y <- y[keep,,drop=FALSE] #make sure y remains a matrix casewt <- casewt[keep] } n.used <- as.vector(table(x)) # This is for the printout nstrat <- length(n.used) # Make sure that the time variable is not "counting" type, # and convert "left" to "interval" style. stype <- attr(y, 'type') if (stype=='counting') stop("survfitTurnbull not appropriate for counting process data") if (stype=='interval') status <- y[,3] if (stype=='left') status <- ifelse(y[,2]==0,2,1) if (stype=='right')status <- y[,2] # If any exact times were represented as interval censored, e.g. (x,x) # as the interval for some x, change the code to "uncensored". if (any(status==3)) { who <- (status==3 & y[,1]==y[,2]) status[who] <- 1 } # # Deal with the issue of "almost tied" times that are equal to # machine precision # Convert to the levels of a factor. We come back to times later if (ncol(y)==3) { ftime <- factor(y[,1:2]) y <- matrix(as.numeric(ftime), ncol=2) } else { ftime <- factor(y[,1]) y <- as.matrix(as.numeric(ftime)) } # the code below actually does the estimate, one curve at a time doit <- function(y,status, wt, ...) { n <- length(status) # Find all of the jump points for the KM in the data set, which are # the exact times, plus any right-followed-by-left pairs. # For this computation, an interval censored observation is considered # to be of the form (a,b], left censored is (-infinity,b] and right # censored is (a, infinity). If there are two interval censored # obs of (10,20] and (20,40], we do NOT want to create a jtimes entry # at 20. # # The algorithm puts a [ at t for each exact, a ( at t for each right # censored, a ] at t for each left censored, and ( and ] at t1/t2 # for each interval censor. In ties, order the parens as [, ], (. # Then find pairs of left-followed-immediately-by-right. The stat2 # variable is 0= [ at t, 1= ] at t, 2= ( at t. # The variables time2, stat2 are never needed after jtimes has # been created. if (any(status==3)) { #interval censored stat2 <- c(c(2,0,1,2)[status+1], rep(1, sum(status==3))) time2 <- c(y[,1], y[status==3,2]) } else { stat2 <- c(2,0,1)[status+1] time2 <- y[,1] } ord <- order(time2, stat2) time2 <- time2[ord] stat2 <- stat2[ord] n2 <- length(time2) pairs <- (stat2[-n2]!=1 & stat2[-1]==1) jtimes <- c(time2[stat2==0], .5*(time2[-n2] + time2[-1])[pairs]) # # If any of the left censored times are < min(jtime), then treat # them as though they were exact (for now). The formal MLE # algebra puts all their mass at an arbitray point between the # smallest of such times and -infinity. # mintime <- min(jtimes) who <- (status==2 & y[,1] < mintime) if (any(who)) { status[who] <- 1 jtimes <- c(y[who,1], jtimes) } # The KM is computed on a fake data set with njump points # standing in for the left and interval censored observations # So tempy contains the exact and right censored y data, followed # by the fakes jtimes <- sort(unique(jtimes)) njump <- length(jtimes) nreal <- sum(status<2) tempx <- factor(rep(1, njump + nreal)) #dummy x var for survfit.km tempy <- Surv(c(y[status<2, 1], jtimes), c(status[status<2], rep(1, njump))) # wtmat marks, for each left/interval obs, which jump points are in it # A column is a "fake" time point, a row is an observation # For a left censored obs, we assume that the true event time is # <= the time recorded, and for an interval one that (a, b] contains # the true event time. This is motivated by data that would come # from repeated visits, and agrees with Turnbull's paper. # If all status <=1, this is the unusual case of left censoring before # some minimal time, in which case I can skip this step. There are # no interval censored or left censored be "split". if (any(status>1)) { temp <- matrix(jtimes, nrow=sum(status>1), ncol=njump, byrow=TRUE) indx <- (1:n)[status>1] #the subjects of interest temp1 <- (temp <= y[indx,1]) # logical matrix for the left censored if (any(status>2)) #interval censored temp2 <- (temp > y[indx,1] & temp <= y[indx,2]) else temp2 <- FALSE & temp1 temp3 <- rep(status[indx]==2, njump) wtmat <- matrix(as.numeric((temp3&temp1) | (!temp3 & temp2)), ncol=njump) lwt <- wt[indx] # the input vector of case weights, for these } else { wtmat <- matrix(rep(1, length(jtimes)), nrow=1) lwt <- 1 } eps <- 1 # The initial "starter" KM is proportional to the number of intervals # that overlap each time point temp <- apply(wtmat, 2, sum) tfit <- list(time=jtimes, surv= 1- cumsum(temp)/sum(temp)) old <- tfit$surv iter <- 0 aitken1 <- jump1 <- 0 #dummy values for lagging while (eps > .00005) { iter <- iter +1 # partition each left/interval person out over the jumps jumps <- -diff(c(1, tfit$surv[match(jtimes, tfit$time)])) #KM jumps if (TRUE) { # add Aitken acceleration to speed things up # Given 3 points on a sequence, it guesses ahead. So we use # a set of 3 to guess ahead, generate 3 more regular EM, # guess ahead, 3 regular EM, etc. # Actually, we go every 5th below instead of every 3rd, to # give the EM a chance to restabilize the relative # sizes of elements of "jump". We also only allow it to # stop when comparing two "real EM" iterations. aitken2 <- aitken1 aitken1 <- jumps - jump1 jsave <- jumps if (iter%%5 ==0) { oldlik <- sum(log(wtmat %*% jumps)) jumps <- jump2 - (aitken2)^2/(aitken1 - aitken2) bad <- (jumps<=0 | jumps >=1 | is.na(jumps)) jumps[bad] <- jsave[bad] #failsafe newlik <- sum(log(wtmat %*% jumps)) if (newlik < oldlik) jumps <- jsave # aitkin didn't work! } jump2 <- jump1 # jumps, lagged by 2 iterations jump1 <- jsave # jumps, lagged by 1 iteration } wt2 <- wtmat %*% diag(jumps) wt2 <- (lwt/(apply(wt2,1,sum))) * wt2 wt2 <- apply(wt2, 2, sum) tfit <- survfitKM(tempx, tempy, casewt=c(wt[status<2], wt2), ...) if (FALSE) { # these lines are in for debugging: change the above to # " if (TRUE)" to turn on the printing cat("\n Iteration = ", iter, "\n") cat("survival=", format(round(tfit$surv[tfit$n.event>0],3)), "\n") cat(" weights=", format(round(wt2,3)), "\n") } stemp <- tfit$surv[match(jtimes, tfit$time)] if (iter%%5<2) eps <- 1 #only check eps for a pair of EM iters else eps <- max(abs(old-stemp)) old <- stemp } # # Now, fix up the "cheating" I did for any left censoreds which were # less than the smallest jump time who <- (tfit$time < mintime & tfit$n.event >0) if (any(who)) { indx <- match(mintime, tfit$time) # first "real" time # tfit$surv[who] <- tfit$surv[indx] tfit$n.event[who] <- 0 # if (!is.null(tfit$std.err)) { # tfit$std.err[who] <- tfit$std.err[indx] # tfit$lower[who] <- tfit$lower[indx] # tfit$upper[who] <- tfit$upper[indx] # } } tfit } # # Now to work, one curve at a time # time <- vector('list', nstrat) n.risk <- vector('list', nstrat) surv <- vector('list', nstrat) n.cens <- vector('list', nstrat) n.event<- vector('list', nstrat) fnumeric <- as.numeric(levels(ftime)) uniquex <- sort(unique(x)) for (i in 1:nstrat) { who <- (x== uniquex[i]) tfit <- doit(y[who,,drop=FALSE], status[who], casewt[who]) time[[i]] <- approx(1:length(fnumeric), fnumeric, tfit$time)$y n.risk[[i]] <- tfit$n.risk surv[[i]] <- tfit$surv n.cens[[i]] <- tfit$n.cens n.event[[i]]<- tfit$n.event if (i==1) { if (!is.null(tfit$std.err)) { std.err <- vector('list', nstrat) conf.lower <- vector('list', nstrat) conf.upper <- vector('list', nstrat) se.fit <- TRUE } else se <- FALSE } if (se.fit) { std.err[[i]] <- tfit$std.err conf.lower[[i]] <- tfit$lower conf.upper[[i]] <- tfit$upper } } temp <- list(n=n.used, time = unlist(time), n.risk = unlist(n.risk), n.event= unlist(n.event), n.censor = unlist(n.cens), surv = unlist(surv), type='right') if (nstrat >1) { strata <- unlist(lapply(time, length)) names(strata) <- xlev[sort(unique(x))] temp$strata <- strata } if (se.fit) { temp$std.err <- unlist(std.err) temp$lower <- unlist(conf.lower) temp$upper <- unlist(conf.upper) temp$conf.type <- tfit$conf.type temp$conf.int <- tfit$conf.int } temp } survival/R/survdiff.fit.S0000644000176000001440000000256612267746072015141 0ustar ripleyuserssurvdiff.fit <- function(y, x, strat, rho=0) { # # This routine is almost always called from survdiff # If called directly, remember that it does no error checking # n <- length(x) if (ncol(y) !=2) stop ("Invalid y matrix") if (nrow(y) !=n | length(x) !=n) stop("Data length mismatch") ngroup <- length(unique(x)) if (ngroup <2) stop ("There is only 1 group") if (is.category(x)) x <- as.numeric(x) else x <- match(x, unique(x)) if (missing(strat)) strat <- rep(1,n) else strat <- as.numeric(as.factor(strat)) nstrat <- length(unique(strat)) if (length(strat) !=n) stop("Data length mismatch") ord <- order(strat, y[,1], -y[,2]) strat2 <- c(1*(diff(strat[ord])!=0), 1) xx <- .C(Csurvdiff2, as.integer(n), as.integer(ngroup), as.integer(nstrat), as.double(rho), as.double(y[ord,1]), as.integer(y[ord,2]), as.integer(x[ord]), as.integer(strat2), observed = double(ngroup*nstrat), expected = double(ngroup*nstrat), var.e = double(ngroup * ngroup), double(ngroup), double(n)) if (nstrat==1) list(expected = xx$expected, observed = xx$observed, var = matrix(xx$var.e, ngroup, ngroup)) else list(expected = matrix(xx$expected, ngroup), observed = matrix(xx$observed, ngroup), var = matrix(xx$var.e, ngroup, ngroup)) } survival/R/print.summary.coxph.penal.S0000644000176000001440000000446412267746072017575 0ustar ripleyusersprint.summary.coxph.penal <- function(x, digits = max(options()$digits - 3, 3), signif.stars = getOption("show.signif.stars"), ...) { if (!is.null(x$call)) { cat("Call:\n") dput(x$call) cat("\n") } if (!is.null(x$fail)) { cat(" Coxreg failed.", x$fail, "\n") return() } savedig <- options(digits = digits) on.exit(options(savedig)) omit <- x$na.action cat(" n=", x$n) if (!is.null(x$nevent)) cat(", number of events=", x$nevent, "\n") else cat("\n") if (length(omit)) cat(" (", naprint(omit), ")\n\n", sep="") else cat("\n") # Format out the NA in the coef matrix print1 <- x$coefficients temp <- cbind(format(print1[,1]), format(print1[,2]), format(print1[,3]), format(round(print1[,4], 2)), format(round(print1[,5], 2)), format(signif(print1[,6], 2))) temp <- ifelse(is.na(print1), "", temp) dimnames(temp) <- dimnames(print1) prmatrix(temp, quote=FALSE) if(length(x$conf.int) >0 ) { cat("\n") prmatrix(x$conf.int) } logtest <- -2 * (x$loglik[1] - x$loglik[2]) sctest <- x$score cat("\nIterations:", x$iter[1], "outer,", x$iter[2], "Newton-Raphson\n") if (length(x$print2)) { for (i in 1:length(x$print2)) cat(" ", x$print2[i], "\n") } if (is.null(x$df)) df <- sum(!is.na(coef)) else df <- round(sum(x$df),2) cat("Degrees of freedom for terms=", format(round(x$df,1)), "\n") if (!is.null(x$concordance)) { cat("Concordance=", format(round(x$concordance[1],3)), " (se =", format(round(x$concordance[2], 3)),")\n") } cat("Likelihood ratio test= ", format(round(logtest, 2)), " on ", df, " df,", " p=", format(1 - pchisq(logtest, df)), "\n", sep = "") if (!is.null(x$wald.test)) cat("Wald test = ", format(round(x$wald.test, 2)), " on ", df, " df, p=", format(1 - pchisq(x$wald.test, df)), sep = "") if (!is.null(x$score)) cat("\nScore (logrank) test = ", format(round(sctest, 2)), " on ", df, " df,", " p=", format(1 - pchisq(sctest, df)), sep ="") if (is.null(x$rscore)) cat("\n") else cat(", Robust = ", format(round(x$rscore, 2)), " p=", format(1 - pchisq(x$rscore, df)), "\n", sep="") invisible() } survival/R/print.summary.survfit.S0000644000176000001440000000426112267746072017053 0ustar ripleyusersprint.summary.survfit <- function(x, digits = max(options()$digits - 4, 3), ...) { savedig <- options(digits=digits) on.exit(options(savedig)) if (!is.null(cl<- x$call)) { cat("Call: ") dput(cl) cat("\n") } omit <- x$na.action if (length(omit)) cat(naprint(omit), "\n") if (x$type == 'right' || is.null(x$n.enter)) { mat <- cbind(x$time, x$n.risk, x$n.event, x$surv) cnames <- c("time", "n.risk", "n.event") } else if (x$type == 'counting') { mat <- cbind(x$time, x$n.risk, x$n.event, x$n.enter, x$n.censor, x$surv) cnames <- c("time", "n.risk", "n.event", "entered", "censored") } if (is.matrix(x$surv)) ncurve <- ncol(x$surv) else ncurve <- 1 if (ncurve==1) { #only 1 curve cnames <- c(cnames, "survival") if (!is.null(x$std.err)) { if (is.null(x$lower)) { mat <- cbind(mat, x$std.err) cnames <- c(cnames, "std.err") } else { mat <- cbind(mat, x$std.err, x$lower, x$upper) cnames <- c(cnames, 'std.err', paste("lower ", x$conf.int*100, "% CI", sep=''), paste("upper ", x$conf.int*100, "% CI", sep='')) } } } else cnames <- c(cnames, paste("survival", seq(ncurve), sep='')) if (!is.null(x$start.time)) { mat.keep <- mat[,1] >= x$start.time mat <- mat[mat.keep,,drop=FALSE] if (is.null(dim(mat))) stop(paste("No information available using start.time =", x$start.time, ".")) } if (!is.matrix(mat)) mat <- matrix(mat, nrow=1) if (!is.null(mat)) { dimnames(mat) <- list(NULL, cnames) if (is.null(x$strata)) prmatrix(mat, rowlab=rep("", nrow(mat))) else { #print it out one strata at a time strata <- x$strata if (!is.null(x$start.time)) strata <- strata[mat.keep] for (i in levels(strata)) { who <- (strata==i) cat(" ", i, "\n") if (sum(who) ==1) print(mat[who,]) else prmatrix(mat[who,], rowlab=rep("", sum(who))) cat("\n") } } } else stop("There are no events to print. Please use the option ", "censored=TRUE with the summary function to see the censored ", "observations.") invisible(x) } survival/R/dsurvreg.S0000644000176000001440000000305012267746072014356 0ustar ripleyusers# The density, quantile, and CDF functions for those distributions # supported by survreg # dsurvreg <- function(x, mean, scale=1, distribution='weibull', parms) { dist <- survreg.distributions[[casefold(distribution)]] if (is.null(dist)) stop("Distribution not found") if (!is.null(dist$trans)) { dx <- dist$dtrans(x) x <- dist$trans(x) x <- (x-mean)/scale dist <- survreg.distributions[[dist$dist]] y <- dist$density(x, parms)[,3] y *dx / scale } else { x <- (x-mean)/scale y <- dist$density(x, parms)[,3] y/ scale } } psurvreg <- function(q, mean, scale=1, distribution='weibull', parms) { dist <- survreg.distributions[[casefold(distribution)]] if (is.null(dist)) stop("Distribution not found") if (!is.null(dist$trans)) { q <- dist$trans(q) q <- (q-mean)/scale dist <- survreg.distributions[[dist$dist]] dist$density(q, parms)[,1] } else { q <- (q-mean)/scale dist$density(q, parms)[,1] } } qsurvreg <- function(p, mean, scale=1, distribution='weibull', parms) { dist <- survreg.distributions[[casefold(distribution)]] if (is.null(dist)) stop("Distribution not found") if (!is.null(dist$trans)) { d2 <- survreg.distributions[[dist$dist]] x <- d2$quantile(p, parms) dist$itrans(x*scale + mean) } else { x <- dist$quantile(p, parms) x*scale + mean } } rsurvreg <- function(n, mean, scale=1, distribution='weibull', parms) { if (missing(parms)) qsurvreg(runif(n), mean, scale, distribution) else qsurvreg(runif(n), mean, scale, distribution, parms) } survival/R/anova.coxphlist.S0000644000176000001440000000410012267746072015632 0ustar ripleyusers# $Id$ # This is usually called from anova.coxph, not a user # It's first argument must be a list of coxph models anova.coxphlist <- function (object, test = 'Chisq' ,...) { if (!is.list(object)) stop("First argument must be a list") if (!all(unlist(lapply(object, function(x) inherits(x, 'coxph'))))) stop("Argument must be a list of coxph models") if (any(sapply(object, function(x) !is.null(x$naive.var)))) stop("Can't do anova tables with robust variances") responses <- as.character(unlist(lapply(object, function(x) deparse(formula(x)[[2]])))) sameresp <- (responses == responses[1]) if (!all(sameresp)) { object <- object[sameresp] warning(paste("Models with response", deparse(responses[!sameresp]), "removed because response differs from", "model 1")) } ns <- sapply(object, function(x) length(x$residuals)) if (any(ns != ns[1])) stop("models were not all fitted to the same size of dataset") nmodels <- length(object) if (nmodels == 1) # only one model remains return(anova.coxph(object[[1]], test = test)) loglik <- unlist(lapply(object, function(x) x$loglik[2])) df <- unlist(lapply(object, function(x) sum(!is.na(coef(x))))) table <- data.frame(loglik, Chisq= c(NA, abs(2*diff(loglik))), Df= abs(c(NA, diff(df)))) tfun <- function(x) paste(as.character(delete.response(terms(formula(x)))), collapse=' ') variables <- lapply(object, tfun) dimnames(table) <- list(1:nmodels, c("loglik", "Chisq", "Df")) title <- paste("Analysis of Deviance Table\n Cox model: response is ", responses[1]) topnote <- paste(" Model ", format(1:nmodels), ": ", variables, sep = "", collapse = "\n") if (!is.null(test)) { table[['P(>|Chi|)']] <- 1-pchisq(table$Chisq, table$Df) } if (is.R()) structure(table, heading = c(title, topnote), class = c("anova", "data.frame")) else structure(table, heading = c(title, topnote), class = "anova") } survival/R/survfit.coxph.R0000644000176000001440000003410412267746104015336 0ustar ripleyusers# Automatically generated from all.nw using noweb survfit.coxph <- function(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, type, vartype, conf.type=c("log", "log-log", "plain", "none"), censor=TRUE, id, na.action=na.pass, ...) { Call <- match.call() Call[[1]] <- as.name("survfit") #nicer output for the user object <- formula #'formula' because it has to match survfit if (!is.null(attr(object$terms, "specials")$tt)) stop("The survfit function can not yet process coxph models with a tt term") if (missing(type)) { # Use the appropriate one from the model temp1 <- c("exact", "breslow", "efron") survtype <- match(object$method, temp1) } else { temp1 <- c("kalbfleisch-prentice", "aalen", "efron", "kaplan-meier", "breslow", "fleming-harrington", "greenwood", "tsiatis", "exact") survtype <- match(match.arg(type, temp1), temp1) survtype <- c(1,2,3,1,2,3,1,2,3)[survtype] } if (missing(vartype)) { vartype <- survtype } else { temp2 <- c("greenwood", "aalen", "efron", "tsiatis") vartype <- match(match.arg(vartype, temp2), temp2) if (vartype==4) vartype<- 2 } if (!se.fit) conf.type <- "none" else conf.type <- match.arg(conf.type) has.strata <- !is.null(attr(object$terms, 'specials')$strata) if (is.null(object$y) || is.null(object[['x']]) || !is.null(object$call$weights) || (has.strata && is.null(object$strata)) || !is.null(attr(object$terms, 'offset'))) { mf <- model.frame(object) } else mf <- NULL #useful for if statements later if (is.null(mf)) y <- object[['y']] else { y <- model.response(mf) y2 <- object[['y']] if (!is.null(y2) && any(as.matrix(y2) != as.matrix(y))) stop("Could not reconstruct the y vector") } if (is.null(object[['x']])) x <- model.matrix.coxph(object, data=mf) else x <- object[['x']] n <- nrow(y) if (n != object$n[1] || nrow(x) !=n) stop("Failed to reconstruct the original data set") if (is.null(mf)) wt <- rep(1., n) else { wt <- model.weights(mf) if (is.null(wt)) wt <- rep(1.0, n) } type <- attr(y, 'type') if (type != 'right' && type != 'counting') stop("Cannot handle \"", type, "\" type survival data") missid <- missing(id) # I need this later, and setting id below makes # "missing(id)" always false if (!missid) individual <- TRUE else if (missid && individual) id <- rep(0,n) #dummy value else id <- NULL if (individual && missing(newdata)) { stop("the id and/or individual options only make sense with new data") } if (individual && type!= 'counting') stop("The individual option is only valid for start-stop data") if (is.null(mf)) offset <- 0 else { offset <- model.offset(mf) if (is.null(offset)) offset <- 0 } Terms <- object$terms if (!has.strata) strata <- rep(0L,n) else { stangle <- untangle.specials(Terms, 'strata') # used multiple times strata <- object$strata #try this first if (is.null(strata)){ if (length(stangle$vars) ==1) strata <- mf[[stangle$vars]] else strata <- strata(mf[, stangle$vars], shortlabel=TRUE) } } if (has.strata) { temp <- attr(Terms, "specials")$strata factors <- attr(Terms, "factors")[temp,] strata.interaction <- any(t(factors)*attr(Terms, "order") >1) } if (is.null(x) || ncol(x)==0) { # a model with ~1 on the right hand side # Give it a dummy x so the rest of the code goes through # (This case is really rare) x <- matrix(0., nrow=n) coef <- 0.0 varmat <- matrix(0.0,1,1) risk <- rep(exp(offset- mean(offset)), length=n) } else { varmat <- object$var coef <- ifelse(is.na(object$coefficients), 0, object$coefficients) xcenter <- object$means if (is.null(object$frail)) { x <- scale(x, center=xcenter, scale=FALSE) risk <- c(exp(x%*% coef + offset - mean(offset))) } else { keep <- !is.na(match(dimnames(x)[[2]], names(coef))) x <- x[,keep, drop=F] # varmat <- varmat[keep,keep] #coxph already has trimmed it risk <- exp(object$linear.predictor) x <- scale(x, center=xcenter, scale=FALSE) } } subterms <- function(tt, i) { dataClasses <- attr(tt, "dataClasses") predvars <- attr(tt, "predvars") oldnames <- dimnames(attr(tt, 'factors'))[[1]] tt <- tt[i] index <- match(dimnames(attr(tt, 'factors'))[[1]], oldnames) if (length(index) >0) { if (!is.null(predvars)) attr(tt, "predvars") <- predvars[c(1, index+1)] if (!is.null(dataClasses)) attr(tt, "dataClasses") <- dataClasses[index] } tt } temp <- untangle.specials(Terms, 'cluster') if (length(temp$vars)) Terms <- subterms(Terms, -temp$terms) if (missing(newdata)) { mf2 <- as.list(object$means) #create a dummy newdata names(mf2) <- names(object$coefficients) mf2 <- as.data.frame(mf2) found.strata <- FALSE } else { if (!is.null(object$frail)) stop("Newdata cannot be used when a model has frailty terms") Terms2 <- Terms if (!individual) Terms2 <- delete.response(Terms) if (is.vector(newdata, "numeric")) { if (individual) stop("newdata must be a data frame") if (is.null(names(newdata))) { stop("Newdata argument must be a data frame") } newdata <- data.frame(as.list(newdata)) } if (missid) { if (has.strata && !strata.interaction) { found.strata <- TRUE tempenv <- new.env(, parent=emptyenv()) assign("strata", function(..., na.group, shortlabel, sep) list(...), envir=tempenv) assign("list", list, envir=tempenv) for (svar in stangle$vars) { temp <- try(eval(parse(text=svar), newdata, tempenv), silent=TRUE) if (!is.list(temp) || any(unlist(lapply(temp, class))== "function")) found.strata <- FALSE } if (found.strata) mf2 <- model.frame(Terms2, data=newdata, na.action=na.action, xlev=object$xlevels) else { Terms2 <- subterms(Terms2, -attr(Terms2, 'specials')$strata) if (!is.null(object$xlevels)) { myxlev <- object$xlevels[match(attr(Terms2, "term.labels"), names(object$xlevels), nomatch=0)] if (length(myxlev)==0) myxlev <- NULL } else myxlev <- NULL mf2 <- model.frame(Terms2, data=newdata, na.action=na.action, xlev=myxlev) } } else { mf2 <- model.frame(Terms2, data=newdata, na.action=na.action, xlev=object$xlevels) found.strata <- has.strata #would have failed otherwise } } else { tcall <- Call[c(1, match(c('id', "na.action"), names(Call), nomatch=0))] tcall$data <- newdata tcall$formula <- Terms2 tcall$xlev <- object$xlevels tcall[[1]] <- as.name('model.frame') mf2 <- eval(tcall) found.strata <- has.strata # would have failed otherwise } } if (has.strata && found.strata) { #pull them off temp <- untangle.specials(Terms2, 'strata') strata2 <- strata(mf2[temp$vars], shortlabel=TRUE) strata2 <- factor(strata2, levels=levels(strata)) if (any(is.na(strata2))) stop("New data set has strata levels not found in the original") Terms2 <- Terms2[-temp$terms] } else strata2 <- factor(rep(0, nrow(mf2))) if (individual) { if (missing(newdata)) stop("The newdata argument must be present when individual=TRUE") if (!missid) { #grab the id variable id <- model.extract(mf2, "id") if (is.null(id)) stop("id=NULL is an invalid argument") } else id <- rep(1, nrow(mf2)) x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept if (length(x2)==0) stop("Individual survival but no variables") x2 <- scale(x2, center=xcenter, scale=FALSE) offset2 <- model.offset(mf2) if (length(offset2) >0) offset2 <- offset2 - mean(offset) else offset2 <- 0 y2 <- model.extract(mf2, 'response') if (attr(y2,'type') != type) stop("Survival type of newdata does not match the fitted model") if (attr(y2, "type") != "counting") stop("Individual=TRUE is only valid for counting process data") y2 <- y2[,1:2, drop=F] #throw away status, it's never used newrisk <- exp(c(x2 %*% coef) + offset2) result <- survfitcoxph.fit(y, x, wt, x2, risk, newrisk, strata, se.fit, survtype, vartype, varmat, id, y2, strata2) } else { if (missing(newdata)) { if (has.strata && strata.interaction) stop ("Models with strata by covariate interaction terms require newdata") x2 <- matrix(0.0, nrow=1, ncol=ncol(x)) offset2 <- 0 } else { offset2 <- model.offset(mf2) if (length(offset2) >0) offset2 <- offset2 - mean(offset) else offset2 <- 0 x2 <- model.matrix(Terms2, mf2)[,-1, drop=FALSE] #no intercept x2 <- scale(x2, center=xcenter, scale=FALSE) } newrisk <- exp(c(x2 %*% coef) + offset2) result <- survfitcoxph.fit(y, x, wt, x2, risk, newrisk, strata, se.fit, survtype, vartype, varmat) if (has.strata && found.strata) { if (is.matrix(result$surv)) { nr <- nrow(result$surv) #a vector if newdata had only 1 row indx1 <- split(1:nr, rep(1:length(result$strata), result$strata)) rows <- indx1[as.numeric(strata2)] #the rows for each curve indx2 <- unlist(rows) #index for time, n.risk, n.event, n.censor indx3 <- as.integer(strata2) #index for n and strata for(i in 2:length(rows)) rows[[i]] <- rows[[i]]+ (i-1)*nr #linear subscript indx4 <- unlist(rows) #index for surv and std.err temp <- result$strata[indx3] names(temp) <- row.names(mf2) new <- list(n = result$n[indx3], time= result$time[indx2], n.risk= result$n.risk[indx2], n.event=result$n.event[indx2], n.censor=result$n.censor[indx2], strata = temp, surv= result$surv[indx4], cumhaz = result$cumhaz[indx4]) if (se.fit) new$std.err <- result$std.err[indx4] result <- new } } } if (!censor) { kfun <- function(x, keep){ if (is.matrix(x)) x[keep,,drop=F] else if (length(x)==length(keep)) x[keep] else x} keep <- (result$n.event > 0) if (!is.null(result$strata)) { temp <- factor(rep(names(result$strata), result$strata), levels=names(result$strata)) result$strata <- c(table(temp[keep])) } result <- lapply(result, kfun, keep) } if (se.fit) { zval <- qnorm(1- (1-conf.int)/2, 0,1) if (conf.type=='plain') { temp1 <- result$surv + zval* result$std.err * result$surv temp2 <- result$surv - zval* result$std.err * result$surv result <- c(result, list(upper=pmin(temp1,1), lower=pmax(temp2,0), conf.type='plain', conf.int=conf.int)) } if (conf.type=='log') { xx <- ifelse(result$surv==0,1,result$surv) #avoid some "log(0)" messages temp1 <- ifelse(result$surv==0, 0*result$std.err, exp(log(xx) + zval* result$std.err)) temp2 <- ifelse(result$surv==0, 0*result$std.err, exp(log(xx) - zval* result$std.err)) result <- c(result, list(upper=pmin(temp1,1), lower=temp2, conf.type='log', conf.int=conf.int)) } if (conf.type=='log-log') { who <- (result$surv==0 | result$surv==1) #special cases xx <- ifelse(who, .1,result$surv) #avoid some "log(0)" messages temp1 <- exp(-exp(log(-log(xx)) + zval*result$std.err/log(xx))) temp1 <- ifelse(who, result$surv + 0*result$std.err, temp1) temp2 <- exp(-exp(log(-log(xx)) - zval*result$std.err/log(xx))) temp2 <- ifelse(who, result$surv + 0*result$std.err, temp2) result <- c(result, list(upper=temp1, lower=temp2, conf.type='log-log', conf.int=conf.int)) } } result$call <- Call # The "type" component is in the middle -- match history indx <- match('surv', names(result)) result <- c(result[1:indx], type=attr(y, 'type'), result[-(1:indx)]) if (is.R()) class(result) <- c('survfit.cox', 'survfit') else oldClass(result) <- 'survfit.cox' result } survival/R/frailty.gammacon.S0000644000176000001440000000141712267746072015755 0ustar ripleyusers# $Id: frailty.gammacon.S 11166 2008-11-24 22:10:34Z therneau $ # Correct the loglik for a gamma frailty # Term2 is the hard one, discussed in section 3.5 of the report # The penalty function only adds \vu \sum(w_j) to the CoxPL, so this # does a bit more than equation 15. # frailty.gammacon <- function(d, nu) { nfrail <- length(d) maxd <- max(d) if (nu > 1e7*maxd) term1 <- sum(d*d)/nu #second order Taylor series else term1 <- sum(d + nu*log(nu/(nu+d))) #easy part tbl <- table(factor(d[d>0], levels=1:maxd)) ctbl<- rev(cumsum(rev(tbl))) dlev<- 1:maxd term2.numerator <- nu + rep(dlev-1, ctbl) term2.denom <- nu + rep(dlev, tbl*dlev) term2 <- sum(log(term2.numerator/term2.denom)) term1 + term2 } survival/R/anova.coxph.S0000644000176000001440000000651412267746072014751 0ustar ripleyusers# $Id$ # The anova function for a coxph object anova.coxph <- function (object, ..., test = 'Chisq') { if (!inherits(object, "coxph")) stop ("argument must be a cox model") # All the ... args need to be coxph or coxme fits. If any of them # have a name attached, e.g., 'charlie=T' we assume a priori # that they are illegal # dotargs <- list(...) named <- if (is.null(names(dotargs))) rep(FALSE, length(dotargs)) else (names(dotargs) != "") if (any(named)) warning(paste("The following arguments to anova.coxph(..)", "are invalid and dropped:", paste(deparse(dotargs[named]), collapse = ", "))) dotargs <- dotargs[!named] if (length(dotargs) >0) { # Check that they are all cox or coxme models is.coxmodel <-unlist(lapply(dotargs, function(x) inherits(x, "coxph"))) is.coxme <- unlist(lapply(dotargs, function(x) inherits(x, "coxme"))) if (!all(is.coxmodel | is.coxme)) stop("All arguments must be Cox models") if (any(is.coxme)) return(anova.coxmelist(c(list(object), dotargs), test = test)) else return(anova.coxphlist(c(list(object), dotargs), test = test)) } # # I have one Cox model # if (length(object$rscore)>0) stop("Can't do anova tables with robust variances") varlist <- attr(object$terms, "variables") termlist<-attr(object$terms,"term.labels") specials <- attr(object$terms, "specials") if (!is.null(specials$strata)) { termlist <- termlist[-(specials$strata -1)] } nmodel <- length(termlist) df <- integer(nmodel+1) loglik <- double(nmodel+1) df[nmodel+1] <- sum(!is.na(object$coefficients)) loglik[nmodel+1] <- object$loglik[2] df[1] <- 0 loglik[1] <- object$loglik[1] # Fit a series of Cox models, dropping terms one by one # To deal properly with missings I may need a subset statement # temp <- object$na.action if (!is.null(temp) && (class(temp) %in% c('exclude', 'omit')) && length(temp) >0) tsub <- -as.vector(temp) else tsub <- 1:object$n if (is.R()) { fenv <- environment(formula(object)) assign('tsub', tsub, envir=fenv) } fit <- object for (i in (nmodel:1)[-nmodel]) { form <- paste(".~ .", termlist[i], sep=' - ') if (is.R()) fit <-update(fit, as.formula(form,env=fenv), subset=tsub) else fit <- update(fit, as.formula(form), subset=tsub) df[i] <- sum(!is.na(coef(fit))) loglik[i] <- fit$loglik[2] } table <- data.frame(loglik=loglik, Chisq=c(NA, 2*diff(loglik)), Df=c(NA, diff(df))) if (nmodel == 0) #failsafe for a NULL model table <- table[1, , drop = FALSE] if (length(test) >0 && test[1]=='Chisq') { table[['Pr(>|Chi|)']] <- 1- pchisq(table$Chisq, table$Df) } row.names(table) <- c('NULL', termlist) title <- paste("Analysis of Deviance Table\n Cox model: response is ", deparse(object$terms[[2]]), "\nTerms added sequentially (first to last)\n", sep = "") if (is.R()) structure(table, heading = title, class = c("anova", "data.frame")) else structure(table, heading= title, class='anova') } survival/R/xtras.R0000644000176000001440000000165712267746072013670 0ustar ripleyusersvcov.coxph<-function (object, ...) { rval<-object$var dimnames(rval)<-list(names(coef(object)),names(coef(object))) rval } vcov.survreg<-function (object, ...) { object$var } extractAIC.coxph.penal<- function(fit,scale,k=2,...){ edf<-sum(fit$df) loglik <- fit$loglik[length(fit$loglik)] c(edf, -2 * loglik + k * edf) } labels.survreg <- function(object, ...) attr(object,"term.labels") rep.Surv <- function(x, ...) { indx <- rep(1:nrow(x), ...) x[indx,] } logLik.coxph <- function(object, ...) { val <- object$loglik[length(object$loglik)] attr(val, "df") <- sum(!is.na(object$coef)) attr(val, "nobs") <- object$n class(val) <- "logLik" val } logLik.survreg <- function(object, ...) { val <- object$loglik[2] attr(val, "df") <- object$df attr(val, "nobs") <- object$df + object$df.residual class(val) <- "logLik" val } survival/R/print.cox.zph.S0000644000176000001440000000026212267746072015243 0ustar ripleyusers# $Id: print.cox.zph.S 11166 2008-11-24 22:10:34Z therneau $ print.cox.zph <- function(x, digits = max(options()$digits - 4, 3),...) invisible(print(x$table, digits=digits)) survival/R/labels.survreg.S0000644000176000001440000000021212267746072015450 0ustar ripleyusers# $Id: labels.survreg.S 11166 2008-11-24 22:10:34Z therneau $ labels.survreg <- function(object, ...) attr(object$terms, "term.labels") survival/R/coxpenal.fit.R0000644000176000001440000004673512267746072015127 0ustar ripleyusers# # General penalized likelihood # coxpenal.fit <- function(x, y, strata, offset, init, control, weights, method, rownames, pcols, pattr, assign) { eps <- control$eps n <- nrow(y) if (is.matrix(x)) nvar <- ncol(x) else if (length(x)==0) stop("Must have an X variable") else nvar <-1 if (missing(offset) || is.null(offset)) offset <- rep(0,n) if (missing(weights)|| is.null(weights))weights<- rep(1,n) else { if (any(weights<=0)) stop("Invalid weights, must be >0") } # Get the list of sort indices, but don't sort the data itself if (ncol(y) ==3) { if (length(strata) ==0) { sorted <- cbind(order(-y[,2], y[,3]), order(-y[,1])) newstrat <- n } else { sorted <- cbind(order(strata, -y[,2], y[,3]), order(strata, -y[,1])) newstrat <- cumsum(table(strata)) } status <- y[,3] andersen <- TRUE # routines <- paste('agfit5', c('a', 'b', 'c'), sep='_') # routines <- list(Cagfit5a, Cagfit5b, Cagfit5c) } else { if (length(strata) ==0) { sorted <- order(-y[,1], y[,2]) newstrat <- n } else { sorted <- order(strata, -y[,1], y[,2]) strata <- (as.numeric(strata))[sorted] newstrat <- cumsum(table(strata)) } status <- y[,2] andersen <- FALSE # routines <- paste('coxfit5', c('a', 'b', 'c'), sep='_') # routines <- list(Ccoxfit5a, Ccoxfit5b, Ccoxfit5c) } n.eff <- sum(y[,ncol(y)]) #effective n for a Cox model is #events # # are there any sparse frailty terms? # npenal <- length(pattr) if (npenal == 0 || length(pcols) != npenal) stop("Invalid pcols or pattr arg") sparse <- sapply(pattr, function(x) !is.null(x$sparse) && x$sparse) if (sum(sparse) >1) stop("Only one sparse penalty term allowed") # # Create a marking vector for the terms, the same length as assign # with pterms == 0=ordinary term, 1=penalized, 2=sparse, # pindex = length of pcols = position in pterms # # Make sure that pcols is a strict subset of assign, so that the # df computation (and printing) can unambiguously decide which cols of # X are penalized and which are not when doing "terms" like actions. # To make some downstream things easier, order pcols and pattr to be # in the same relative order as the terms in 'assign' # ## can't compute assign attribute in R without terms ## if (missing(assign)) assign <- attr(x, 'assign')[-1] ##Remove 'intercept' pterms <- rep(0, length(assign)) names(pterms) <- names(assign) pindex <- rep(0, npenal) for (i in 1:npenal) { temp <- unlist(lapply(assign, function(x,y) (length(x) == length(y) && all(x==y)), pcols[[i]])) if (sparse[i]) pterms[temp] <- 2 else pterms[temp] <- 1 pindex[i] <- (seq(along.with=temp))[temp] } if ((sum(pterms==2) != sum(sparse)) || (sum(pterms>0) != npenal)) stop("pcols and assign arguments disagree") if (any(pindex != sort(pindex))) { temp <- order(pindex) pindex <- pindex[temp] pcols <- pcols[temp] pattr <- pattr[temp] } # ptype= 1 or 3 if a sparse term exists, 2 or 3 if a non-sparse exists ptype <- any(sparse) + 2*(any(!sparse)) ## Make sure these get defined f.expr1<-function(coef) NULL f.expr2<-function(coef) NULL if (any(sparse)) { sparse.attr <- (pattr[sparse])[[1]] #can't use [[sparse]] directly # if 'sparse' is a T/F vector fcol <- unlist(pcols[sparse]) if (length(fcol) > 1) stop("Sparse term must be single column") # Remove the sparse term from the X matrix xx <- x[, -fcol, drop=FALSE] for (i in 1:length(assign)){ j <- assign[[i]] if (j[1] > fcol) assign[[i]] <- j-1 } for (i in 1:npenal) { j <- pcols[[i]] if (j[1] > fcol) pcols[[i]] <- j-1 } frailx <- x[, fcol] frailx <- match(frailx, sort(unique(frailx))) nfrail <- max(frailx) nvar <- nvar - 1 #Set up the callback for the sparse frailty term pfun1 <- sparse.attr$pfun ### In R we use a function and eval() it, not an expression f.expr1 <- function(coef){ coxlist1$coef <- coef if (is.null(extra1)) temp <- pfun1(coef, theta1, n.eff) else temp <- pfun1(coef, theta1, n.eff, extra1) if (!is.null(temp$recenter)) coxlist1$coef <- coxlist1$coef - as.double(temp$recenter) if (!temp$flag) { coxlist1$first <- -as.double(temp$first) coxlist1$second <- as.double(temp$second) } coxlist1$penalty <- -as.double(temp$penalty) coxlist1$flag <- as.logical(temp$flag) if (any(sapply(coxlist1, length) != c(rep(nfrail,3), 1, 1))) stop("Incorrect length in coxlist1") coxlist1 } if (!is.null(getOption("survdebug"))) debug(f.expr1) coxlist1 <- list(coef=double(nfrail), first=double(nfrail), second=double(nfrail), penalty=0.0, flag=FALSE) ## we pass f.expr1 in as an argument in R ##.C("init_coxcall1", as.integer(sys.nframe()), expr1) } else { xx <- x frailx <- 0 nfrail <- 0 } # Now the non-sparse penalties if (sum(!sparse) >0) { full.imat <- !all(unlist(lapply(pattr, function(x) x$diag))) ipenal <- (1:length(pattr))[!sparse] #index for non-sparse terms f.expr2 <- function(coef){ coxlist2$coef<-coef ## pentot <- 0 for (i in ipenal) { pen.col <- pcols[[i]] coef <- coxlist2$coef[pen.col] if (is.null(extralist[[i]])) temp <- ((pattr[[i]])$pfun)(coef, thetalist[[i]],n.eff) else temp <- ((pattr[[i]])$pfun)(coef, thetalist[[i]], n.eff,extralist[[i]]) if (!is.null(temp$recenter)) coxlist2$coef[pen.col] <- coxlist2$coef[pen.col]- temp$recenter if (temp$flag) coxlist2$flag[pen.col] <- TRUE else { coxlist2$flag[pen.col] <- FALSE coxlist2$first[pen.col] <- -temp$first if (full.imat) { tmat <- matrix(coxlist2$second, nvar, nvar) tmat[pen.col,pen.col] <- temp$second coxlist2$second <- c(tmat) } else coxlist2$second[pen.col] <- temp$second } pentot <- pentot - temp$penalty } coxlist2$penalty <- as.double(pentot) if (any(sapply(coxlist2, length) != length2)) stop("Length error in coxlist2") coxlist2 } if (!is.null(getOption("survdebug"))) debug(f.expr2) if (full.imat) { coxlist2 <- list(coef=double(nvar), first=double(nvar), second= double(nvar*nvar), penalty=0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar*nvar, 1, nvar) } else { coxlist2 <- list(coef=double(nvar), first=double(nvar), second=double(nvar), penalty= 0.0, flag=rep(FALSE,nvar)) length2 <- c(nvar, nvar, nvar, 1, nvar) } ## in R, f.expr2 is passed as an argument later ##.C("init_coxcall2", as.integer(sys.nframe()), expr2) } else full.imat <- FALSE # # Set up initial values for the coefficients # If there are no sparse terms, finit is set to a vector of length 1 # rather than length 0, just to stop some "zero length" errors for # later statements where fcoef is saved (but not used) # if (nfrail >0) finit <- rep(0,nfrail) else finit <- 0 if (!missing(init) && !is.null(init)) { if (length(init) != nvar) { if (length(init) == (nvar+nfrail)) { finit <- init[-(1:nvar)] init <- init[1:nvar] } else stop("Wrong length for inital values") } } else init <- double(nvar) # # "Unpack" the passed in paramter list, # and make the initial call to each of the external routines # cfun <- lapply(pattr, function(x) x$cfun) parmlist <- lapply(pattr, function(x,eps) c(x$cparm, eps2=eps), sqrt(eps)) extralist<- lapply(pattr, function(x) x$pparm) iterlist <- vector('list', length(cfun)) thetalist <- vector('list', length(cfun)) printfun <- lapply(pattr, function(x) x$printfun) for (i in 1:length(cfun)) { temp <- (cfun[[i]])(parmlist[[i]], iter=0) if (sparse[i]) { theta1 <- temp$theta extra1 <- extralist[[i]] } thetalist[[i]] <- temp$theta iterlist[[i]] <- temp } # # Manufacture the list of calls to cfun, with appropriate arguments # ## Amazingly, all this works in R, so I don't need to understand it. ## temp1 <- c('x', 'coef', 'plik', 'loglik', 'status', 'neff', 'df', 'trH') temp2 <- c('frailx', 'coxfit$fcoef', 'loglik1', 'coxfit$loglik', 'status', 'n.eff') temp3 <- c('xx[,pen.col]', 'coxfit$coef[pen.col]','loglik1', 'coxfit$loglik', 'status', 'n.eff') calls <- vector('expression', length(cfun)) cargs <- lapply(pattr, function(x) x$cargs) for (i in 1:length(cfun)) { tempchar <- paste("(cfun[[", i, "]])(parmlist[[", i, "]], iter,", "iterlist[[", i, "]]") temp2b <- c(temp2, paste('pdf[', i, ']'), paste('trH[', i, ']')) temp3b <- c(temp3, paste('pdf[', i, ']'), paste('trH[', i, ']')) if (length(cargs[[i]])==0) calls[i] <- parse(text=paste(tempchar, ")")) else { temp <- match(cargs[[i]], temp1) if (any(is.na(temp))) stop(paste((cargs[[i]])[is.na(temp)], "not matched")) if (sparse[i]) temp4 <- paste(temp2b[temp], collapse=',') else temp4 <- paste(temp3b[temp], collapse=',') calls[i] <- parse(text=paste(paste(tempchar,temp4,sep=','),')')) } } need.df <- any(!is.na(match(c('df', 'trH'), unlist(cargs))))#do any use df? # # Last of the setup: create the vector of variable names # varnames <- dimnames(xx)[[2]] for (i in 1:length(cfun)) { if (!is.null(pattr[[i]]$varname)) varnames[pcols[[i]]] <- pattr[[i]]$varname } ## need the current environment for callbacks rho<-environment() # # Have C store the data, and get the loglik for beta=initial, frailty=0 # if (andersen) coxfit <- .C(Cagfit5a, as.integer(n), as.integer(nvar), as.double(y), x= as.double(xx) , as.double(offset), as.double(weights), as.integer(newstrat), as.integer(sorted-1), means= double(nvar), coef= as.double(init), u = double(nvar), loglik=double(1), as.integer(method=='efron'), as.integer(ptype), as.integer(full.imat), as.integer(nfrail), as.integer(frailx), #R callback additions f.expr1,f.expr2,rho) else coxfit <- .C(Ccoxfit5a, as.integer(n), as.integer(nvar), as.double(y), x= as.double(xx) , as.double(offset), as.double(weights), as.integer(newstrat), as.integer(sorted-1), means= double(nvar), coef= as.double(init), u = double(nvar), loglik=double(1), as.integer(method=='efron'), as.integer(ptype), as.integer(full.imat), as.integer(nfrail), as.integer(frailx), f.expr1,f.expr2,rho) loglik0 <- coxfit$loglik means <- coxfit$means # # Now for the actual fit # iter2 <- 0 iterfail <- NULL thetasave <- unlist(thetalist) for (outer in 1:control$outer.max) { if (andersen) coxfit <- .C(Cagfit5b, iter=as.integer(control$iter.max), as.integer(n), as.integer(nvar), as.integer(newstrat), coef = as.double(init), u = double(nvar+nfrail), hmat = double(nvar*(nvar+nfrail)), hinv = double(nvar*(nvar+nfrail)), loglik = double(1), flag = integer(1), as.double(control$eps), as.double(control$toler.chol), as.integer(method=='efron'), as.integer(nfrail), fcoef = as.double(finit), fdiag = double(nfrail+nvar), f.expr1,f.expr2,rho) else coxfit <- .C(Ccoxfit5b, iter=as.integer(control$iter.max), as.integer(n), as.integer(nvar), as.integer(newstrat), coef = as.double(init), u = double(nvar+nfrail), hmat = double(nvar*(nvar+nfrail)), hinv = double(nvar*(nvar+nfrail)), loglik = double(1), flag = integer(1), as.double(control$eps), as.double(control$toler.chol), as.integer(method=='efron'), as.integer(nfrail), fcoef = as.double(finit), fdiag = double(nfrail+nvar), f.expr1,f.expr2,rho) iter <- outer iter2 <- iter2 + coxfit$iter if (coxfit$iter >=control$iter.max) iterfail <- c(iterfail, iter) # If any penalties were infinite, the C code has made fdiag=1 out # of self-preservation (0 divides). But such coefs are guarranteed # zero so the variance should be too.) temp <- rep(FALSE, nvar+nfrail) if (nfrail>0) temp[1:nfrail] <- coxlist1$flag if (ptype >1) temp[nfrail+ 1:nvar] <- coxlist2$flag fdiag <- ifelse(temp, 0, coxfit$fdiag) if (need.df) { #get the penalty portion of the second derive matrix if (nfrail>0) temp1 <- coxlist1$second else temp1 <- 0 if (ptype>1) temp2 <- coxlist2$second else temp2 <- 0 dftemp <-coxpenal.df(matrix(coxfit$hmat, ncol=nvar), matrix(coxfit$hinv, ncol=nvar), fdiag, assign, ptype, nvar, temp1, temp2, pindex[sparse]) df <- dftemp$df var <- dftemp$var var2 <- dftemp$var2 pdf <- df[pterms>0] # df's for penalized terms trH <- dftemp$trH[pterms>0] # trace H } if (nfrail >0) penalty <- -coxlist1$penalty else penalty <- 0 if (ptype >1) penalty <- penalty - coxlist2$penalty loglik1 <- coxfit$loglik + penalty #C code returns PL - penalty if (iter==1) penalty0 <- penalty # # Call the control function(s) # done <- TRUE for (i in 1:length(cfun)) { pen.col <- pcols[[i]] temp <- eval(calls[i]) if (sparse[i]) theta1 <- temp$theta thetalist[[i]] <- temp$theta iterlist[[i]] <- temp done <- done & temp$done } if (done) break # # Choose starting estimates for the next iteration # if (iter==1) { init <- coefsave <- coxfit$coef finit <- fsave <- coxfit$fcoef thetasave <- cbind(thetasave, unlist(thetalist)) } else { # the "as.vector" removes names, dodging a bug in Splus5.1 temp <- as.vector(unlist(thetalist)) coefsave <- cbind(coefsave, coxfit$coef) fsave <- cbind(fsave, coxfit$fcoef) # temp = next guess for theta # *save = prior thetas and the resultant fits # choose as initial values the result for the closest old theta howclose <- apply((thetasave-temp)^2,2, sum) which <- min((1:iter)[howclose==min(howclose)]) if (nvar>0) init <- coefsave[,which] if (nfrail>0) finit<- fsave[,which] thetasave <- cbind(thetasave, temp) } } # release the memory if (andersen) expect <- .C(Cagfit5c, as.integer(n), as.integer(nvar), as.integer(newstrat), as.integer(method=='efron'), expect= double(n))$expect else expect <- .C(Ccoxfit5c, as.integer(n), as.integer(nvar), as.integer(newstrat), as.integer(method=='efron'), expect= double(n))$expect if (!need.df) { #didn't need it iteration by iteration, but do it now #get the penalty portion of the second derive matrix if (nfrail>0) temp1 <- coxlist1$second else temp1 <- 0 if (ptype>1) temp2 <- coxlist2$second else temp2 <- 0 dftemp <-coxpenal.df(matrix(coxfit$hmat,ncol=nvar), matrix(coxfit$hinv,ncol=nvar), fdiag, assign, ptype, nvar, temp1, temp2, pindex[sparse]) df <- dftemp$df trH <- dftemp$trH var <- dftemp$var var2 <- dftemp$var2 } if (control$iter.max >1 && length(iterfail)>0) warning(paste("Inner loop failed to coverge for iterations", paste(iterfail, collapse=' '))) which.sing <- (fdiag[nfrail + 1:nvar] ==0) coef <- coxfit$coef names(coef) <- varnames coef[which.sing] <- NA resid <- double(n) resid <- status - expect names(resid) <- rownames names(iterlist) <- names(pterms[pterms>0]) if (nfrail >0) { lp <- offset + coxfit$fcoef[x[,fcol]] if (nvar >0) { #sparse frailties and covariates lp <- lp + x[,-fcol,drop=FALSE] %*%coxfit$coef - sum(means*coxfit$coef) list(coefficients = coef, var = var, var2 = var2, loglik = c(loglik0, loglik1), iter = c(iter, iter2), linear.predictors = as.vector(lp), residuals = resid, means = means, concordance= survConcordance.fit(y, lp, strata, weights), method= c('coxph.penal', 'coxph'), frail = coxfit$fcoef, fvar = dftemp$fvar, df = df, df2=dftemp$df2, penalty= c(penalty0, penalty), pterms = pterms, assign2=assign, history= iterlist, coxlist1=coxlist1, printfun=printfun) } else { #sparse frailties only list( loglik = c(loglik0, loglik1), iter = c(iter, iter2), linear.predictors = as.vector(lp), residuals = resid, means = means, concordance= survConcordance.fit(y, lp, strata, weights), method= c('coxph.penal', 'coxph'), frail = coxfit$fcoef, fvar = dftemp$fvar, df = df, df2=dftemp$df2, penalty = c(penalty0, penalty), pterms = pterms, assign2=assign, history= iterlist, printfun=printfun) } } else { #no sparse terms lp <- offset + as.vector(x%*%coxfit$coef) - sum(means*coxfit$coef) list(coefficients = coef, var = var, var2 = var2, loglik = c(loglik0, loglik1), iter = c(iter, iter2), linear.predictors = lp, residuals = resid, means = means, concordance= survConcordance.fit(y, lp, strata, weights), method= c('coxph.penal', 'coxph'), df = df, df2=dftemp$df2, penalty= c(penalty0, penalty), pterms = pterms, assign2=assign, history= iterlist, coxlist2=coxlist2, printfun= printfun) } } survival/R/residuals.coxph.penal.S0000644000176000001440000000236112267746072016732 0ustar ripleyusers# $Id: residuals.coxph.penal.S 11516 2012-04-24 12:49:14Z therneau $ residuals.coxph.penal <- function(object, type=c("martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", "scaledsch","partial"), collapse=FALSE, weighted=FALSE, ...) { type <- match.arg(type) # Are there any sparse terms, and if so do I need the X matrix? if (any(object$pterms==2) && !(type=='martingale' || type=='deviance')){ # treat the sparse term as an offset term # It gets picked up in the linear predictor, so all I need to # do is "X" it out of the model so that it doesn't get picked up # as a part of the X matrix and etc. # I know that the sparse term is a single column BTW # sparsename <- (names(object$pterms))[object$pterms==2] x <- object[['x']] #don't accidentally get object$xlevels if (is.null(x)) { temp <- coxph.getdata(object, y=TRUE, x=TRUE, stratax=TRUE) if (is.null(object$y)) object$y <- temp$y if (is.null(object$strata)) object$strata <- temp$strata x <- temp$x } object$x <- x[, -match(sparsename, dimnames(x)[[2]]), drop=FALSE] temp <- attr(object$terms, 'term.labels') object$terms <- object$terms[-match(sparsename, temp)] } NextMethod('residuals') } survival/R/attrassign.R0000644000176000001440000000252412267746072014700 0ustar ripleyusers# $Id$ # When X is a model matrix, Splus and R have a different format # for the "assign" attribute # For instance # survreg(Surv(time, status) ~ age + sex + factor(ph.ecog), lung) # R gives the compact form, a vector (0, 1, 2, 3, 3, 3); which can be # read as "the first column of the X matrix (intercept) goes with none of # the terms', 'the second column goes with term 1', etc. # Splus gives a list # $(Intercept) 1 # $age 2 # $sex 3 # $factor(ph.ecog) 4 5 6 # # This function creates the Splus style of output from the R style. Several # of the routines in the package use this, as it is somewhat easier (more # transparent) to work with. # attrassign<-function (object, ...) UseMethod("attrassign") attrassign.lm<-function(object, ...){ attrassign(model.matrix(object), terms(object))} attrassign.default<-function(object, tt, ...){ if (!inherits(tt,"terms")) stop("need terms object") aa<-attr(object,"assign") if (is.null(aa)) stop("argument is not really a model matrix") ll<-attr(tt,"term.labels") temp <- c("(Intercept)", ll)[aa+1] #vector of term names # Don't put them in alphabetical order, retain the order we inherited split(seq(along=temp), factor(temp, levels=unique(temp))) } survival/vignettes/0000755000176000001440000000000012267746150014177 5ustar ripleyuserssurvival/vignettes/adjcurve.Rnw0000644000176000001440000013621412267746072016504 0ustar ripleyusers\documentclass{article}[11pt] \usepackage{Sweave} \usepackage{amsmath} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} \SweaveOpts{keep.source=TRUE, fig=FALSE} % Ross Ihaka suggestions \DefineVerbatimEnvironment{Sinput}{Verbatim} {xleftmargin=2em} \DefineVerbatimEnvironment{Soutput}{Verbatim}{xleftmargin=2em} \DefineVerbatimEnvironment{Scode}{Verbatim}{xleftmargin=2em} \fvset{listparameters={\setlength{\topsep}{0pt}}} \renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}} \SweaveOpts{width=6,height=4} \setkeys{Gin}{width=\textwidth} %\VignetteIndexEntry{Adjusted Survival Curves} <>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text if (!exists('coxph')) library(survival) @ \title{Adjusted Survival Curves} \author{Terry M Therneau, Cynthia S Crowson, Elizabeth J Atkinson} \date{} % no date \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {adjcurve-#1.pdf}} \begin{document} \maketitle \section{Introduction} Suppose we want to investigate to what extent some factor influences survival, as an example we might compare the experience of diabetic patients who are using metformin versus those on injected insulin as their primary treatment modality. There is some evidence that metformin has a positive influence, particularly in cancers, but the ascertainment is confounded by the fact that it is a first line therapy: the patients on metformin will on average be younger and have had a diabetes diagnosis for a shorter amount of time than those using insulin. ``Young people live longer'' is not a particularly novel observation. The ideal way to test this is with a controlled clinical trial. This is of course not always possible, and assessments using available data that includes and adjusts for such confounders is also needed. There is extensive literature --- and debate --- on this topic in the areas of modeling and testing. The subtopic of how to create honest survival curve estimates in the presence of confounders is less well known, and is the focus of this note. Assume that we have an effect of interest $x$ and a set of possible confounding variables $c$. There are two main approaches to adjustment. The first approach, sometimes known as \emph{marginal} analysis, modifies the data so that the confounders $c$ are balanced across the factor of interest $x$, we can then proceed with simple analysis of survival versus $x$ using the reformulated data, ignoring the confounders. The second approach seeks to understand and model the effect of each confounder, with this we can then correct for them. This is often called the \emph{conditional} approach since we are examining the conditional survivals given $x$ and $c$. From these conditional survivals average curves are created that balance on the confounder. As shown below, these differ essentially in the \emph{order} in which the two necessary operations are done, balancing and survival curve creation. \begin{center} \begin{tabular}{rccc} Marginal: & balance data on $c$ & $\longrightarrow$ & form survival curves by $x$ \\ Conditional: & form survival curves by $x$ and $c$& $\longrightarrow$ & average curves over $c$ to balance \end{tabular} \end{center} Many analyses use combinations of these, of course, balancing on some factors and modeling others. All analyses are marginal analyses with respect to important predictors that are unknown to us, and most are conditional with respect to at least a few variables. \begin{figure}[tb] \myfig{flc1} \caption{Survival of \Sexpr{nrow(flchain)} residents of Olmsted County, broken into three cohorts based on FLC value.} \label{flc1} \end{figure} \section{Free Light Chain} Our example data set for this comparison uses a particular assay of plasma immunoglobulins and is based on work of Dr Angela Dispenzieri and her colleagues at the Mayo Clinic \cite{Dispenzieri12}. In brief, plasma cells are responsible for the production of immunoglobulins; they comprise a small portion ($<1$\%) of the total blood and marrow hematapoetic cell population in normal patients. The normal human repertoire is estimated to contain over $10^{8}$ unique immunoglobulins, conferring a broad range of immune protection. In multiple myeloma, the most common form of plasma cell malignancy, almost all of the circulating antigen will be the product of a single malignant clone. An electrophoresis examination of circulating immunoglobulins will exhibit a ``spike'' corresponding to this unique molecule. This anomaly is used both as a diagnostic method and in monitoring the course of the disease under treatment. The presence of a similar, albeit much smaller, spike in normal patients has been a long term research interest of the Mayo Clinic hematology research group \cite{Kyle93}. In 1995 Dr Robert Kyle undertook a population based study of this, and collected serum samples on 19,261 of the 24,539 residents of Olmsted County, Minnesota, aged 50 years or more \cite{Kyle06}. In 2010 Dr. Dispenzieri assayed a sub fraction of the immunoglobulins, the free light chain (FLC), on 15,748 of these subjects who had sufficient remaining sera from the original sample collection. All studies took place under the oversight of the appropriate Institutional Review Boards, which ensure rigorous safety and ethical standards in research. \begin{table} \centering \begin{tabular}{r|cccc} & 50--59 & 60--69 & 70--79 & 80+ \\ \hline <>= group3 <- factor(1+ 1*(flchain$flc.grp >7) + 1*(flchain$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) age1 <- cut(flchain$age, c(49,59,69,79, 110)) levels(age1) <- c(paste(c(50,60,70), c(59,69,79), sep='-'), '80+') temp1 <- table(group3, age1) temp2 <- round(100* temp1/rowSums(temp1)) pfun <- function(x,y) { paste(ifelse(x<1000, "\\phantom{0}", ""), x, " (", ifelse(y<10, "\\phantom{0}", ""), y, ") ", sep="") } cat(paste(c("FLC low", pfun(temp1[1,], temp2[1,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC med", pfun(temp1[2,], temp2[2,])), collapse=" & "), "\\\\\n") cat(paste(c("FLC high", pfun(temp1[3,], temp2[3,])), collapse=" & "), "\n") @ \end{tabular} \caption{Comparison of the age distributions (percents) for each of the three groups.} \label{tflc1} \end{table} Our data set is an age and sex stratified sample of this second data set and contains 7874 of the subjects from the original study. It is included in the survival package as the data frame \texttt{flchain}. Figure \ref{flc1} shows the survival curves for three subgroups of the patients: those whose total free light chain (FLC) is in the upper 10\% of all values found in the full study, those in the 70--89th percentile, and the remainder. There is a clear survival effect. Average free light chain amounts rise with age, however, at least in part because it is eliminated through the kidneys and renal function declines with age. Table \ref{tflc1} shows the FLC by age distribution. In the highest decile of FLC (group 3) over half the subjects are age 70 or older compared to only 23\% in those below the 70th percentile. How much of the survival difference is truly associated with FLC and how much is simply an artifact of age? The data set contains 3 subjects whose blood sample was obtained on the day of their death. It is rather odd to think of a sample obtained on the final day as ``predicting'' death, or indeed for any results obtained during a patient's final mortality cascade. There are also a few patients with no follow-up beyond the clinic visit at which the assay occurred. Therefore, all the analyses below have excluded subjects with less than 7 days of follow-up. <>= fdata <- flchain[flchain$futime > 7,] fdata$group <- factor(1+ 1*(fdata$flc.grp >7) + 1*(fdata$flc.grp >9), levels=1:3, labels=c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71")) fdata$age2 <- cut(fdata$age, c(49,54, 59,64, 69,74,79, 89, 110), labels = c(paste(c(50,55,60,65,70,75,80), c(54,59,64,69,74,79,89), sep='-'), "90+")) sfit1 <- survfit(Surv(futime, death) ~ group, fdata) plot(sfit1, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") text(c(11.1, 10.5, 7.5), c(.88, .57, .4), c("FLC < 3.38", "3.38 - 4.71", "FLC > 4.71"), col=c(1,2,4)) @ \section{Marginal methods} \subsection{Selection} \begin{figure}[tb] \myfig{flc2} \caption{Survival curves from a balanced subset are shown as solid lines, dashed lines are curves for the unweighted data set (as found in figure \ref{flc1}).} \label{flc2} \end{figure} <>= temp <- with(fdata, table(group, age2, sex)) size <- apply(temp, 2:3, min) set.seed(1978) select <- NULL dd <- dim(temp) for (i in 1:dd[1]) { for (j in 1:dd[2]) { for (k in 1:dd[3]) { indx <- which(as.numeric(fdata$group)==i & as.numeric(fdata$age2) ==j & as.numeric(fdata$sex) ==k) select <- c(select, sample(indx, size[j,k])) } } } data2 <- fdata[select,] sfit2 <- survfit(Surv(futime, death) ~ group, data2) plot(sfit2, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) @ \begin{table} \centering \begin{tabular}{crrrrrrrr} \multicolumn{3}{c}{Females} \\ & \multicolumn{8}{c}{Age} \\ FLC group & 50--54& 55--59& 60--64 & 65--69 & 70--74 & 75--79 & 80--89& 90+ \\ \hline <>= tab1 <- with(fdata, table(group, age2, sex)) cat("Low&", paste(tab1[1,,1], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,1], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,1], collapse=" &"), "\\\\\n") @ \\ \multicolumn{3}{c}{Males} \\ % & 50--54& 55--59& 60--64 & 65--69 & 70--74 & 75--79 & 80--89& 90+ \\ \hline <>= cat("Low&", paste(tab1[1,,2], collapse=" &"), "\\\\\n") cat("Med&", paste(tab1[2,,2], collapse=" &"), "\\\\\n") cat("High&", paste(tab1[3,,2], collapse=" &"), "\n") @ \end{tabular} \caption{Detailed age and sex distribution for the study population} \label{tab2} \end{table} One way to balance the data set is to select a subset of subjects such that the subset is balanced. Table \ref{tab2} is shows an expanded age/sex distribution for the study. The balanced subset has all \Sexpr{tab1[3,1,1]} females aged 50--54 from FLC group 3, a random sample of \Sexpr{tab1[3,1,1]} out of the \Sexpr{tab1[1,1,1]} females in FLC group 1, and \Sexpr{tab1[3,1,1]} out of \Sexpr{tab1[2,1,1]} of the females in FLC group 2 for that age group. The same is done for all of the triplets in the table: select the largest number possible for which we can get perfect balance. \begin{table}[tb] \centering \begin{tabular}{ccccccc} &\multicolumn{2}{c}{FLC low} & \multicolumn{2}{c}{FLC med}& \multicolumn{2}{c}{FLC high} \\ & Total & Subset & Total & Subset & Total & Subset \\ \hline <>= tab3 <- with(fdata, table(age2, group)) tab3 <- round(100*scale(tab3, center=F, scale=colSums(tab3))) tab4 <- with(data2, table(age2, group)) tab4 <- round(100*scale(tab4, center=F, scale=colSums(tab4))) tab5 <- cbind(tab3[,1], tab4[,1], tab3[,2], tab4[,2], tab3[,3], tab4[,3]) pfun <- function(x) paste(ifelse(x<10, paste("\\phantom{0}", x), x), collapse=" &") dtemp <- dimnames(tab5)[[1]] for (j in 1:7) cat(dtemp[j], " &", pfun(tab5[j,]), "\\\\\n") cat(dtemp[8], " & ", pfun(tab5[8,]), "\n") @ \end{tabular} \caption{Age distributions (\%) of the original data set along with that of the subset, for the three FLC groups.} \label{tflc2} \end{table} The survival curves for the balanced subset are shown in figure \ref{flc2}. Two features stand out. First we see that adjustment for age and sex has reduced the apparent survival difference between the groups by about half, but a clinically significant effect for high FLC values remains. The second is that the curve for group 1 has moved a lot while that for group 3 has changed hardly at all. This is a consequence of an overall shift in the distribution of ages, as shown in table \ref{tflc2}. For group 3, the subsetting process has hardly shifted the age distribution, whereas for group 1 it has moved the average age from young to old. The subsetting approach is most often labeled as a ``case-control'' method, and is applied in the situation where one of the groups is small and precious (a rare disease say) and the other group (the controls) is much larger. Since there are excess controls the final age/sex distribution will match that of the cases, and the resulting survival curves have a ready interpretation. Interpretation of the curves for the FLC data is much less clear; we have gained an unbiased comparison, but for a very peculiar population of subjects. <>= # I can't seem to put this all into an Sexpr z1 <- with(fdata,table(age, sex, group)) z2<- apply(z1, 1:2, min) ztemp <- 3*sum(z2) z1b <- with(fdata, table(age>64, sex, group)) ztemp2 <- sum(apply(z1b, 1:2, min)) @ A second deficit of the matching approach is that the choice of our matching criteria is somewhat arbitrary. We want to make the subsets fine enough that subjects are biologically homogeneous within age group, yet large enough so as to limit the number of subjects excluded. For instance, if we had divided the data set only into age 50--64 versus $\ge$ 65, the upper group would still be quite heterogeneous with respect to expected survival (a 70 vs 90 year old for instance) and the distribution of ages within the upper group would remain unbalanced. The resulting data set would have been larger, however, %with \Sexpr{ztemp2} in each group rather than %\Sexpr{nrow(data2)/3}. due to less stringent balancing criteria. On the other hand, if we had done a very fine division, say by age in weeks, the resulting matched data set will be reduced to almost zero; we become hostage to the random fluctuations in sample size for these small groups. In this large data set we have the luxury of dividing finely enough to create acceptably homogeneous groups, but this is not common. @ One advantage of matched subsets is that standard variance calculations for the curves are correct; the values provided by the usual Kaplan-Meier program need no further processing. We can also use the usual statistical tests to check for differences between the curves. <<>>= survdiff(Surv(futime, death) ~ group, data=data2) @ \subsection{Reweighting} \label{sect:logistic} Another way to adjust the data is by reweighting. Let $\pi(a,s)$, $a$ = age group, $s$ = sex be a target population age/sex distribution for our graph, and $p(a,s,i)$ the observed probability of each group/age/sex combination in the data. Each of these will sum to 1. Then if each observation in the data set is given a case weight of \begin{equation} w_{asi} = \frac{\pi(a,s)}{p(a,s,i)} \label{wt1} \end{equation} the weighted age/sex distribution for each of the groups will equal the target distribution $\pi$. When results from multiple studies are to be compared, the target distribution $\pi$ will often be based on external criteria, e.g., the US 2000 population, and the result from the re weighted sample is called the \emph{direct adjustment} method. An obvious advantage of this approach, as compared to subset selection, is that the resulting curves represent a tangible and well defined group. As an example, we will adjust our curves to match the age/sex distribution of the 2000 US population, a common reference target in epidemiology studies. The \texttt{uspop2} data set is found in later releases of the survival package in R. It is an array of counts with dimensions of age, sex, and calendar year. We only want ages of 50 and over, and the population data set has collapsed ages of 100 and over into a single category. We create a table \texttt{tab100} of observed age/sex counts within group for our own data, using the same upper age threshold. New weights are the values $\pi/p$ = \texttt{pi.us/tab100}. <<>>= refpop <- uspop2[as.character(50:100),c("female", "male"), "2000"] pi.us <- refpop/sum(refpop) age100 <- factor(ifelse(fdata$age >100, 100, fdata$age), levels=50:100) tab100 <- with(fdata, table(age100, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab100 #new weights by age,sex, group range(us.wt) @ There are infinite weights! This is because the US population has coverage at all ages, but our data set does not have representatives in every age/sex/FLC group combination. (There are 32 zeros in tab100). Let us repeat the process, collapsing the US population from single years into the 8 age groups used previously in table \ref{tab2}. Merging the per age/sex/group weights found in the 3-dimensional array \texttt{us.wt} into the data set as per-subject weights uses matrix subscripts, a useful but less known feature of R. <<>>= temp <- as.numeric(cut(50:100, c(49, 54, 59, 64, 69, 74, 79, 89, 110)+.5)) pi.us<- tapply(refpop, list(temp[row(refpop)], col(refpop)), sum)/sum(refpop) tab2 <- with(fdata, table(age2, sex, group))/ nrow(fdata) us.wt <- rep(pi.us, 3)/ tab2 range(us.wt) index <- with(fdata, cbind(as.numeric(age2), as.numeric(sex), as.numeric(group))) fdata$uswt <- us.wt[index] sfit3a <-survfit(Surv(futime, death) ~ group, data=fdata, weight=uswt) @ \begin{figure}[tb] \myfig{flc3a} \caption{Population totals for the US reference (red) and for the observed data set (black).} \label{flc3a} \end{figure} Since the present data set is itself population based and has excellent coverage of the county, it is sensible to use the overall age/sex distribution of the sample itself as our target distribution $\pi$. If we compare the target distribution $\pi$ based on the US population and on the Olmsted County population they are quite similar as shown in figure \ref{flc3a}. Not surprisingly, the population adjusted survival curves based on these two reference populations nearly overlap. <>= tab1 <- with(fdata, table(age2, sex))/ nrow(fdata) matplot(1:8, cbind(pi.us, tab1), pch="fmfm", col=c(2,2,1,1), xlab="Age group", ylab="Fraction of population", xaxt='n') axis(1, 1:8, levels(fdata$age2)) tab2 <- with(fdata, table(age2, sex, group))/nrow(fdata) tab3 <- with(fdata, table(group)) / nrow(fdata) rwt <- rep(tab1,3)/tab2 round(rwt[,1,], 1) #show female data fdata$rwt <- rwt[index] # add per subject weights to the data set sfit3 <- survfit(Surv(futime, death) ~ group, data=fdata, weight=rwt) @ \begin{figure}[tb] \myfig{flc3} \caption{Survival curves for the three groups using reweighted data are shown with solid lines, the original unweighted analysis as dashed lines. The heavier solid line adjusts to the Olmsted population and the lighter one to the US population.} \label{flc3} \end{figure} <>= plot(sfit3, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3a, mark.time=F, col=c(1,2,4), lty=1, lwd=1, xscale=365.25) lines(sfit1, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, levels(fdata$group), lty=1, col=c(1,2,4), bty='n', lwd=2) @ We see that for the low FLC group there are somewhat larger weights for the older ages, whereas the high FLC group requires substantial weights for the youngest ages in order to achieve balance. The resulting survival curve is shown in figure \ref{flc3}. The distance between the adjusted curves is similar to the results from subset selection, which is as expected since both approaches are correcting for the same bias, but results are now for an overall population distribution that matches Olmsted County. The curves estimate what the results would have looked like, had each of the FLC groups contained the full distribution of ages. Estimation based on reweighted data is a common theme in survey sampling. Correct standard errors for the curves are readily computed using methods from that literature, and are available in some software packages. In R the \texttt{svykm} routine in the \texttt{survey} package handles both this simple case and more complex sampling schemes. Tests of the curves can be done using a weighted Cox model; the robust variance produced by \texttt{coxph} is identical to the standard Horvitz-Thompsen variance estimate used in survey sampling \cite{Binder92}. The score test from \texttt{coxph} is equivalent to the log-rank test that is often used to label curves. (In the example below the sykm function is only run if the survey package is already loaded, as the variance calculation is very slow for this large data set.) <<>>= id <- 1:nrow(fdata) cfit <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=rwt) summary(cfit)$robscore if (exists("svykm")) { #true if the survey package is loaded sdes <- svydesign(id = ~0, weights=~rwt, data=fdata) dfit <- svykm(Surv(futime, death) ~ group, design=sdes, se=TRUE) } @ Note: including the \texttt{cluster} term in the coxph call causes it to treat the weights as resampling values and thus use the proper survey sampling style variance. The default without that term would be to treat the case weights as replication counts. (This same alternate variance estimate is also called for when there are correlated observations; many users will be more familiar with the cluster statement in that context.) \paragraph{Inverse probability weighting} Notice that when using the overall population as the target distribution $\pi$ we can use Bayes rule to rewrite the weights as \begin{align*} \frac{1}{w_{asi}} &= \frac{{\rm Pr}({\rm age}=a, {\rm sex} =s, {\rm group}=i)} {{\rm Pr}({\rm age}=a, {\rm sex} =s)} \\ &= {\rm Pr}({\rm group}=i | {\rm age}=a, {\rm sex} =s) \end{align*} This last is precisely the probability estimated by a logistic regression model, leading to \emph{inverse probability weighting} as an alternate label for this approach. We can reproduce the weights calculated just above with three logistic regression models. <>= options(na.action="na.exclude") gg <- as.numeric(fdata$group) lfit1 <- glm(I(gg==1) ~ factor(age2) * sex, data=fdata, family="binomial") lfit2 <- glm(I(gg==2) ~ factor(age2) * sex, data=fdata, family="binomial") lfit3 <- glm(I(gg==3) ~ factor(age2) * sex, data=fdata, family="binomial") temp <- ifelse(gg==1, predict(lfit1, type='response'), ifelse(gg==2, predict(lfit2, type='response'), predict(lfit3, type='response'))) all.equal(1/temp, fdata$rwt) @ If there were only 2 groups then only a single regression model is needed since P(group 2) = 1 - P(group 1). Note the setting of na.action, which causes the predicted vector to have the same length as the original data even when there are missing values. This simplifies using the derived weights with the original data set. An advantage of the regression framework is that one can easily accommodate more variables by using a model with additive terms and only a few selected interactions, and the model can contain continuous as well as categorical predictors. The disadvantage is that such models are often used without the necessary work to check their validity. For instance models with \texttt{age + sex} could have been used above. This makes the assumption that the odds of being a member of group 1 is linear in age and with the same slope for males and females; ditto for the models for group 2 and group 3. How well does this work? Since the goal of reweighting is to standardize the ages, a reasonable check is to compute and plot the reweighted age distribution for each flc group. \begin{figure}[tb] \myfig{flc4} \caption{The re-weighted age distribution using logistic regression with continuous age, for females, FLC groups 1--3. The target distribution is shown as a ``+''. The original unadjusted distribution is shown as dashed lines.} \label{flc4} \end{figure} Figure \ref{flc4} shows the result. The reweighted age distribution is not perfectly balanced, i.e., the 123 symbols do not over plot one another, but in this case the simple linear model has done an excellent job. We emphasize that whenever the reweighting is based on a simplified model then such a check is obligatory. It is quite common that a simple model is not sufficient and the resulting weight adjustment is inadequate. Like a duct tape auto repair, proceeding forward as though the underlying problem has been addressed is then most unwise. <>= lfit1b <-glm(I(gg==1) ~ age + sex, data=fdata, family="binomial") lfit2b <- glm(I(gg==2) ~ age +sex, data=fdata, family="binomial") lfit3b <- glm(I(gg==3) ~ age + sex, data=fdata, family="binomial") # weights for each group using simple logistic twt <- ifelse(gg==1, 1/predict(lfit1b, type="response"), ifelse(gg==2, 1/predict(lfit2b, type="response"), 1/predict(lfit3b, type="response"))) tdata <- data.frame(fdata, lwt=twt) #grouped plot for the females temp <- tdata[tdata$sex=='F',] temp$gg <- as.numeric(temp$group) c1 <- with(temp[temp$gg==1,], tapply(lwt, age2, sum)) c2 <- with(temp[temp$gg==2,], tapply(lwt, age2, sum)) c3 <- with(temp[temp$gg==3,], tapply(lwt, age2, sum)) xtemp <- outer(1:8, c(-.1, 0, .1), "+") #avoid overplotting ytemp <- 100* cbind(c1/sum(c1), c2/sum(c2), c3/sum(c3)) matplot(xtemp, ytemp, col=c(1,2,4), xlab="Age group", ylab="Weighted frequency (%)", xaxt='n') ztab <- table(fdata$age2) points(1:8, 100*ztab/sum(ztab), pch='+', cex=1.5, lty=2) # Add the unadjusted temp <- tab2[,1,] temp <- scale(temp, center=F, scale=colSums(temp)) matlines(1:8, 100*temp, pch='o', col=c(1,2,4), lty=2) axis(1, 1:8, levels(fdata$age2)) @ \paragraph{Rescaled weights} As the weights were defined in equation \ref{wt1}, the sum of weights for each of the groups is \Sexpr{nrow(fdata)}, the number of observations in the data set. Since the number of subjects in group 3 is one seventh of that in group 1, the average weight in group 3 is much larger. An alternative is to define weights in terms of the \emph{within} group distribution rather than the overall distribution, leading to the rescaled weights $w^*$ \begin{align} w^* &= \frac{\pi(a,s)}{p(a,s|i)} \label{wt2} \\ &= \frac{{\rm P}({\rm group}=i)} {{\rm P}({\rm group}=i | {\rm age}=a, {\rm sex}=s)} \label{wt2b} \end{align} Each group's weights are rescaled by the overall prevalence of the group. In its simplest form, the weights in each group are scaled to add up to the number of subjects in the group. <<>>= # compute new weights wtscale <- table(fdata$group)/ tapply(fdata$rwt, fdata$group, sum) wt2 <- c(fdata$rwt * wtscale[fdata$group]) c("rescaled cv"= sd(wt2)/mean(wt2), "rwt cv"=sd(fdata$rwt)/mean(fdata$rwt)) cfit2a <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight= rwt) cfit2b <- coxph(Surv(futime, death) ~ group + cluster(id), data=fdata, weight=wt2) round(c(cfit2a$rscore, cfit2b$rscore),1) @ The rescaling results in weights that are much less variable across groups. This operation has no impact on the individual survival curves or their standard errors, since within group we have multiplied all weights by a constant. When comparing curves across groups, however, the rescaled weights reduce the standard error of the test statistic. This results in increased power for the robust score test, although in this particular data set the improvement is not very large. \section{Conditional method} In the marginal approach we first balance the data set and then compute results on the adjusted data. In the conditional approach we first compute a predicted survival curve for each subject that accounts for flc group, age and sex, and then take a weighted average of the curves to get an overall estimate for each flc group. For both methods a central consideration is the population of interest, which drives the weights. Modeling has not removed the question of \emph{who} these curves should represent, it has simply changed the order of operation between the weighting step and the survival curves step. \subsection{Stratification} Our first approach is to subset the data into homogeneous age/sex strata, compute survival curves within each strata, and then combine results. We will use the same age/sex combinations as before. The interpretation of these groups is different, however. In the marginal approach it was important to find age/sex groups for which the probability of membership within each FLC group was constant within the strata (independent of age and sex, within strata), in this case it is important that the survival for each FLC group is constant in each age/sex stratum. Homogeneity of membership within each stratum and homogeneity of survival within each stratum may lead to different partitions for some data sets. Computing curves for all the combinations is easy. <>= allfit <- survfit(Surv(futime/365.25, death) ~ group + age2 + sex, fdata) temp <- summary(allfit)$table temp[1:6, c(1,4)] #abbrev printout to fit page @ The resultant survival object has 48 curves: 8 age groups * 2 sexes * 3 FLC groups. To get a single curve for the first FLC group we need to take a weighted average over the 16 age/sex combinations that apply to that group, and similarly for the second and third FLC subset. Combining the curves is a bit of a nuisance computationally because each of them is reported on a different set of time points. A solution is to use the \texttt{summary} function for survfit objects along with the \texttt{times} argument of that function. This feature was originally designed to allow printout of curves at selected time points (6 months, 1 year, \ldots), but can also be used to select a common set of time points for averaging. We will arbitrarily use 4 per year, which is sufficient to create a visually smooth plot over the time span of interest. By default \texttt{summary} does not return data for times beyond the end of a curve, i.e., when there are no subjects left at risk; the \texttt{extend} argument causes a full set of times to always be reported. As seen in the printout above, the computed curves are in sex within age within group order. The overall curve is a weighted average chosen to match the original age/sex distribution of the population. <>= xtime <- seq(0, 14, length=57) #four points/year for 14 years smat <- matrix(0, nrow=57, ncol=3) # survival curves serr <- smat #matrix of standard errors pi <- with(fdata, table(age2, sex))/nrow(fdata) #overall dist for (i in 1:3) { temp <- allfit[1:16 + (i-1)*16] #curves for group i for (j in 1:16) { stemp <- summary(temp[j], times=xtime, extend=T) smat[,i] <- smat[,i] + pi[j]*stemp$surv serr[,i] <- serr[,i] + pi[i]*stemp$std.err^2 } } serr <- sqrt(serr) matplot(xtime, smat, type='l', lwd=2, col=c(1,2,4), ylim=c(0,1), lty=1, xlab="Years from sample", ylab="Survival") lines(sfit1, mark.time=F, lty=2, col=c(1,2,4), xscale=365.25) @ \begin{figure}[tb] \myfig{flc5} \caption{Estimated curves from a stratified model, along with those from the uncorrected fit as dashed lines.} \label{flc5} \end{figure} Figure \ref{flc5} shows the resulting averaged curves. Overlaid are the curves for the unadjusted model. Very careful comparison of these curves with the weighted estimate shows that they have almost identical spread, with just a tiny amount of downward shift. There are two major disadvantages to the stratified curves. The first is that when the original data set is small or the number of confounders is large, it is not always feasible to stratify into a large enough set of groups that each will be homogeneous. The second is a technical aspect of the standard error estimate. Since the curves are formed from disjoint sets of observations they are independent and the variance of the weighted average is then a weighted sum of variances. However, when a Kaplan-Meier curve drops to zero the usual standard error estimate at that point involves 0/0 and becomes undefined, leading to the NaN (not a number) value in R. Thus the overall standard error becomes undefined if any of the component curves falls to zero. In the above example this happens at about the half way point of the graph. (Other software packages carry forward the se value from the last no-zero point on the curve, but the statistical validity of this is uncertain.) To test for overall difference between the curves we can use a stratified test statistic, which is a sum of the test statistics computed within each subgroup. The most common choice is the stratified log-rank statistic which is shown below. The score test from a stratified Cox model would give the same result. <<>>= survdiff(Surv(futime, death) ~ group + strata(age2, sex), fdata) @ \subsection{Modeling} The other approach for conditional estimation is to model the risks due to the confounders. Though we have left it till last, this is usually the first (and most often the only) approach used by most data analysts. Let's start with the very simplest method: a stratified Cox model. <>= cfit4a <- coxph(Surv(futime, death) ~ age + sex + strata(group), data=fdata) surv4a <- survfit(cfit4a) plot(surv4a, col=c(1,2,4), mark.time=F, xscale=365.25, xlab="Years post sample", ylab="Survival") @ This is a very fast and easy way to produce a set of curves, but it has three problems. First is the assumption that this simple model adequately accounts for the effects of age and sex on survival. That is, it assumes that the effect of age on mortality is linear, the sex difference is constant across all ages, and that the coefficients for both are identical for the three FLC groups. The second problem with this approach is that it produces the predicted curve for a single hypothetical subject of age \Sexpr{round(cfit4a[['means']][1], 1)} years and sex \Sexpr{round(cfit4a[['means']][2],2)}, the means of the covariates, under each of the 3 FLC scenarios. However, we are interested in the adjusted survival of a \emph{cohort} of subjects in each range of FLC, and the survival of an ``average'' subject is not the average survival of a cohort. The third and most serious issue is that it is not clear exactly what these ``adjusted'' curves represent --- exactly who \emph{is} this subject a sex of \Sexpr{round(cfit4a[['means']][2],2)}? Multiple authors have commented on this problem, see Thomsen et al \cite{Thomsen91}, Nieto and Coresh \cite{Nieto96} or chapter 10 of Therneau and Grambsh \cite{Therneau00} for examples. Even worse is a Cox model that treated the FLC group as a covariate, since that will impose a an additional constraint of proportional hazards across the 3 FLC groups. \begin{figure} \myfig{flc6} \caption{Curves for the three groups, adjusted for age and sex via a risk model. Dotted lines show the curves from marginal adjustment. Solid curves are for the simple risk model \texttt{cfit4a}.} \label{flc6} \end{figure} We can address this last problem problem by doing a proper average. A Cox model fit can produce the predicted curves for any age/sex combination. The key idea is to produce a predicted survival curve for every subject of some hypothetical population, and then take the average of these curves. The most straightforward approach is to retrieve the predicted individual curves for all \Sexpr{nrow(fdata)} subjects in the data set, assuming each of the three FLC strata one by one, and take a simple average for each strata. For this particular data set that is a bit slow since it involves \Sexpr{nrow(fdata)} curves. However there are only 98 unique age/sex pairs in the data, it is sufficient to obtain the 98 * 3 FLC groups unique curves and take a weighted average. We will make use of the survexp function, which is designed for just this purpose. Start by creating a data set which has one row for each age/sex combination along with its count. Then replicate it into 3 copies, assigning one copy to each of the three FLC strata. <>= tab4a <- with(fdata, table(age, sex)) uage <- as.numeric(dimnames(tab4a)[[1]]) tdata <- data.frame(age = uage[row(tab4a)], sex = c("F","M")[col(tab4a)], count= c(tab4a)) tdata3 <- tdata[rep(1:nrow(tdata), 3),] #three copies tdata3$group <- factor(rep(1:3, each=nrow(tdata)), labels=levels(fdata$group)) sfit4a <- survexp(~group, data=tdata3, weight = count, ratetable=cfit4a) plot(sfit4a, mark.time=F, col=c(1,2,4), lty=1, lwd=2, xscale=365.25, xlab="Years from Sample", ylab="Survival") lines(sfit3, mark.time=F, col=c(1,2,4), lty=2, lwd=1, xscale=365.25) legend(2,.4, c("FLC low", "FLC med", "FLC high"), lty=1, col=c(1,2,4), bty='n', lwd=2) @ Figure \ref{flc6} shows the result. Comparing this to the prior 3 adjustments shown in figures \ref{flc3}, \ref{flc4}, and \ref{flc5} we see that this result is different. Why? Part of the reason is due to the fact that $E[f(X)] \ne f(E[X])$ for any non-linear operation $f$, so that averages of survival curves and survival curves of averages will never be exactly the same. This may explain the small difference between the stratified and the marginal approaches of figures \ref{flc3} and \ref{flc5}, which were based on the same subsets. The Cox based result is systematically higher than the stratified one, however, so something more is indicated. Aside: An alternate computational approach is to create the individual survival curves using the \texttt{survfit} function and then take averages. <<>>= tfit <- survfit(cfit4a, newdata=tdata, se.fit=FALSE) curves <- vector('list', 3) twt <- c(tab4a)/sum(tab4a) for (i in 1:3) { temp <- tfit[i,] curves[[i]] <- list(time=temp$time, surv= c(temp$surv %*% twt)) } @ The above code is a bit sneaky. I know that the result from the survfit function contains a matrix \texttt{tfit\$surv} of 104 columns, one for each row in the tdata data frame, each column containing the curves for the three strata one after the other. Sub setting \texttt{tfit} results in the matrix for a single flc group. Outside of R an approach like the above may be needed, however. \begin{figure} \myfig{flc6b} \caption{Left panel: comparison of Cox model based adjustment (solid) with the curves based on marginal adjustment (dashed). The Cox model curves without (black) and with (red) an age*sex interaction term overlay. Right panel: plot of the predicted relative risks from a Cox model \texttt{crate} versus population values from the Minnesota rate table.} \label{flc6b} \end{figure} So why are the modeling results so different than either reweighting or stratification? Suspicion first falls on the use of a simple linear model for age and sex, so start by fitting a slightly more refined model that allows for a different slope for the two sexes, but is still linear in age. In this particular data set an external check on the fit is also available via the Minnesota death rate tables, which are included with the survival package as \texttt{survexp.mn}. This is an array that contains daily death rates by age, sex, and calender year. <>= par(mfrow=c(1,2)) cfit4b <- coxph(Surv(futime, death) ~ age*sex + strata(group), fdata) sfit4b <- survexp(~group, data=tdata3, ratetable=cfit4b, weights=count) plot(sfit4b, fun='event', xscale=365.25, xlab="Years from sample", ylab="Deaths") lines(sfit3, mark.time=FALSE, fun='event', xscale=365.25, lty=2) lines(sfit4a, fun='event', xscale=365.25, col=2) temp <- median(fdata$sample.yr) mrate <- survexp.mn[as.character(uage),, as.character(temp)] crate <- predict(cfit4b, newdata=tdata, reference='sample', type='lp') crate <- matrix(crate, ncol=2)[,2:1] # mrate has males then females, match it # crate contains estimated log(hazards) relative to a baseline, # and mrate absolute hazards, make both relative to a 70 year old for (i in 1:2) { mrate[,i] <- log(mrate[,i]/ mrate[21,2]) crate[,i] <- crate[,i] - crate[21,2] } matplot(mrate, crate, col=2:1, type='l') abline(0, 1, lty=2, col=4) @ The resulting curves are shown in the left panel of figure \ref{flc6b} and reveal that addition of an interaction term did not change the predictions, and that the Cox model result for the highest risk group is distinctly different predicted survival for the highest FLC group is distinctly different when using model based prediction. The right hand panel of the figure shows that though there are slight differences with the Minnesota values, linearity of the age effect is very well supported. So where exactly does the model go wrong? Since this is such a large data set we have the luxury of looking at subsets. This would be a very large number of curves to plot --- age by sex by FLC = 48 --- so an overlay of the observed and expected curves by group would be too confusing. Instead we will summarize each of the groups according to their observed and predicted number of events. <>= obs <- with(fdata, tapply(death, list(age2, sex, group), sum)) pred<- with(fdata, tapply(predict(cfit4b, type='expected'), list(age2, sex, group), sum)) excess <- matrix(obs/pred, nrow=8) #collapse 3 way array to 2 dimnames(excess) <- list(dimnames(obs)[[1]], c("low F", "low M", "med F", "med M", "high F", "high M")) round(excess, 1) @ The excess risks, defined as the observed/expected number of deaths, are mostly modest ranging from .8 to 1.2. The primary exception exception is the high FLC group for ages 50--59 which has values of 1.6 to 2.5; the Cox model fit has greatly overestimated the survival for the age 50--54 and 55--59 groups. Since this is also the age category with the highest count in the data set, this overestimation will have a large impact on the overall curve for high FLC subset, which is exactly where the the deviation in figure \ref{flc6b} is observed to lie. There is also mild evidence for a linear trend in age for the low FLC females, in the other direction. Altogether this suggests that the model might need to have a different age coefficient for each of the three FLC groups. <<>>= cfit5a <- coxph(Surv(futime, death) ~ group:age +sex + strata(group), fdata) cfit5b <- coxph(Surv(futime, death) ~ group:(age +sex) + strata(group), fdata) cfit5c <- coxph(Surv(futime, death) ~ group:(age *sex) + strata(group), fdata) options(show.signif.stars=FALSE) # see footnote anova(cfit4a, cfit5a, cfit5b, cfit5c) temp <- coef(cfit5a) names(temp) <- c("sex", "ageL", "ageM", "ageH") round(temp,3) @ The model with separate age coefficients for each FLC group gives a major improvement in goodness of fit, but adding separate sex coefficients per group or further interactions does not add importantly beyond that. \footnote{There are certain TV shows that make one dumber just by watching them; adding stars to the output has the same effect on statisticians.} \begin{figure} \myfig{flc7} \caption{Adjusted survival for the 3 FLC groups based on the improved Cox model fit. Dashed lines show the predictions from the marginal model.} \label{flc7} \end{figure} A recheck of the observed/expected values now shows a much more random pattern, though some excess remains in the upper right corner. The updated survival curves are shown in figure \ref{flc7} and now are in closer concordance with the marginal fit. <>= pred5a <- with(fdata, tapply(predict(cfit5a, type='expected'), list(age2, sex, group), sum)) excess5a <- matrix(obs/pred5a, nrow=8, dimnames=dimnames(excess)) round(excess5a, 1) sfit5 <- survexp(~group, data=tdata3, ratetable=cfit5a, weights=count) plot(sfit3, fun='event', xscale=365.25, mark.time=FALSE, lty=2, xlab="Years from sample", ylab="Deaths") lines(sfit5, fun='event', xscale=365.25) @ One problem with the model based estimate is that standard errors for the curves are complex. Standard errors of the individual curves for each age/sex/FLC combination are a standard output of the survfit function, but the collection of curves is correlated since they all depend on a common estimate of the model's coefficient vector $\beta$. Curves with disparate ages are anti-correlated (an increase in the age coefficient of the model would raise one and lower the other) whereas those for close ages are positively correlated. A proper variance for the unweighted average has been derived by Gail and Byar \cite{Gail86}, but this has not been implemented in any of the standard packages, nor extended to the weighted case. A bootstrap estimate would appear to be the most feasible. \section{Conclusions} When two populations need to be adjusted and one is much larger than the other, the balanced subset method has been popular. It is most often seen in the context of a case-control study, with cases as the rarer group and a set of matched controls selected from the larger one. This method has the advantage that the usual standard error estimates from a standard package are appropriate, so no further work is required. However, in the general situation it leads to a correct answer but for the wrong problem, i.e., not for a population in which we are interested. The population reweighted estimate is flexible, has a readily available variance in some statistical packages (but not all), and the result is directly interpretable. It is the method we recommend in general. The approach can be extended to a large number of balancing factors by using a regression model to derive the weights. Exploration and checking of said model for adequacy is an important step in this case. The biggest downside to the method arises when there is a subset which is rare in the data sample but frequent in the adjusting population. In this case subjects in that subset will be assigned large weights, and the resulting curves will have high variance. The stratified method is closely related to reweighting (not shown). It does not do well if the sample size is small, however. Risk set modeling is a very flexible method, but is also the one where it is easiest to go wrong by using an inadequate model, and variance estimation is also difficult. To the extent that the fitted model is relevant, it allows for interpolation and extrapolation to a reference population with a different distribution of covariates than the one in the training data. It may be applicable in cases such as rare subsets where population reweighting is problematic, with the understanding that one is depending heavily on extrapolation in this case, which is always dangerous. \bibliographystyle{plain} \bibliography{refer} \end{document} survival/vignettes/raheart.rda0000644000176000001440000002146112267746072016324 0ustar ripleyusers‹í xUº¿[„Ä® †UDŤ¶$¢äà #²&’²ÂÒl ;YI [ „Y׉ŽÛ½ƒzÑÑÿˆFG•÷e”ù§s~ßùnW§ì5!<ÏÔóàÛÕ]u¾SgyëœS6iàHíì‘g»\®V®VçÔÿ;³þeëVõÿ9£þ_»úgegŒËÊÈÎq¹Î¼oWt¡ë?[H[Â?CcKÉ¿ó"·¥l¡ÖW ×nú‘.¿¦ÊOS3Üëp:ï?›÷vªë9Rí¤¹Û£};]úë©ÚZJ>ZÚvªûOK¹¿…{°ìÖRûM°Ûé–ßp·SÝ_"ÝNNU¿ii[¤ó×ү׾…ëç–¶5WiiÛéî£ÿl¡mMU/M5^ ÷ü&h· ë’"­Ûˆo£[ýIŒ¸¶í ·ü1&`޹sSnÖ@1âì½·\üâè ™Ü{è·êÒæç¹;Þùº,d¦ºtñʉ?ŠÔÖOtKèàÔg6.†Ísdê‚#ƒŸ{a„HëÒ=ë’Y~™ô‚ëŽGŸyQ¤¼UtÝ_&ú0;#í¾™"iůºžL˜0Stϧ‰bD÷‚oÞ¼­½HœåžÚ#;A1åå›Î¿`ß*¿L}-óÜáQµ"mÏÉ/ÿòx©H7ù©ÒØŠ)ŸOºªîȬ ™Üïó §w94D}qiï£>Lî²ó»¯ì2SÚ¼të‚­ãÓ*×^ò¯ï‡(&9Y_S"Δèëv^üõÅäç^üü…c~™ôIáíkÎ}+|[Xÿ*/lŽøËY×u[úªHiÿÔø»û<íÈä;ÎLs¾bÒüg{.¼ï§€9üû!¿9ÿI‘zQúêk×þbòʉ?·™¼&l&y5í“ö‡}˜<êûY½2“Þé”<öxŸ 9|Úª¡7òYÐLŒ~´_|õ‰–Ï÷ß)ÿhe±S·\réÃY/‹ä9/wèòf“1©¾·Oý¾“¿¯juÉ úö ï‡.thk§A3©þî°ð“µ~™xÍS7º_ða²ç¶rg{gÎí:䵿—ûe⾿Èy/_$.ÚÕ£sÞ7Aó¶›ÛmëúZ†bî3Äáí~ª¿sõáÏí9ê~‘:§üðÃqŸGŒ·>Õ¡zÜ7·´¦¶ù¦Û»Ë“E*|¥ˆñI°LÊËž°¾Ï1´¾–;Ì^2“>xò¯l{®S–VÌ{¥›öì[Ÿ}\z¨Ù˜4ýõi1ë—ˆÛÊ<Âz_üöîG’ûó¼S&n¶û¹¯DR‡_Q?4#ßí»áËß½'’<·5íý2ma»ÁÎ/‰5ÖC£:_ëÔ»Œ8ÓêŽÌ¬¸r€_&ÿ”tƹ=ú2®¬~v®H>¾ïW5ùé"9m]Ê¿6¯É7&Ÿ˜;¬ÇiǤ˜^ÿÞ?úÌ´¾žûê–CÜBeêK9õ#ž[ÃfÒ¦;V|<þ}æ‘Ë>ÉʹʇÃÛLÎâÍíŽLÙÿú'5S1ŽNM3ëßyY üEåãß&;2åß:gÓ~¡8üÕcóúN¹Ð‡)dž%Ÿ3V¤bÜ*“{ÝûЇ»nor¯ôá‚Å>Lö\ÆýÕŽLùë·:|°H«Ÿ=—ð¼_¦^³ì݃}|˜òø·õ†*sdj—D1ï®[çÛÓg?>å%O,×.¿ø¿Ltퟴ¤tâÐúQEæ¹I"‰Æ_`âåS¾[쀙öÑ=OÏrO ™É#»·½¿Ô‘ižiÇŸF‹Dϲ@§¹3)Ê3{1lÞŽytKãmžeU•!3ÑÓ ÿÝb™‚qº“ŽÕ´;ò³æÃ”®—»â±Ubذ·+R.­÷â´QÓ>j}¦bZ}ïºe£bŠ§Ù¯üƒSÉ CªÏï¿æ¿Lj(×_f~^ÞfÀÃÍMµ.÷üö­_+²þçƒO~0uÏí´n²ˆ?q´õßNæÍîÓ÷Þ~äH³Óœ_2¤Ë‚ CeÂÿ¾òÆós^s³õÀâ­ŽLXäYÔÞ©\så\W{4œxRtí|×å_ÿÞ‡Ñ={îîŸÑQœÿcfÑ_“(žÛÓeçw7”‰Þ³z=vßö1BÃøŸh6¬³¶óËŽžéfR°æQôèØŸÅUû¿¾èñ›j­»?ýZ¬4û5Ô×cAójÏtfé%>ìé™öŽ2{4¬'¾Ø‘vßœòr¢èÕ>í¿¾q^·î/kž¹¹§b÷ܧOv,<ê—mÏjuk÷O+Ãfßs¾ßjúŸÃf´G;Š˜³=¨-Žl«{Dýƒb¯/3¿DÌþ­nÿJ\а^óߊ žeÑ×òÃæ€7¾Lí=ç„-O³Ó)džeÆ«'M1ÛSP š—Ï(jõcÁÄ–NÇçy÷›ñàðDdžçE…MÆëf{:Â>ÔÿþCŸâþ)ú_åÊ-ì¶K1úÇØÃ‹ïY4¯ýËßêS¾Æ/ÏŸÛ¦ÓÛ'|Øõo¯=õ\ÇÏyµõVüœNçùe—›<x:‹kò•4;lÝ0à®­Šg½÷lÒøHñ*Ïã¹…Ç}xÑ»ëgøËḐIï§µ}6RLø¹aØ×¿Å°®ÞêXH\Øàé#Ä„=ìXm–¢oÃãËï„yWUßovŽ™ÝŸó,ð=ëÃΞiVù(qíÓž–ƒšQß7L E÷úÖxÅ™»޾ýãÙǺÎòáëY?>=¤ºµøõùmïïÖ[ôÛ8gÀŸgˆ‹>{ìÉ{bßõËžþÐæ¥[EÏ?{äŸõa¯é¿}ï¼Dœ¾:þîí¦ûå€Ow—ýúh®ûy‡=5FÜØö†¾’-.{¶çÂÑ®â‚ä~çüqí¦ÓŽ}=ËC¦Ìî ËQÕ-†Ñ¿>ºjnט9У‡Á_†Íë<)Æ &<ÖoÌ¢Ä µvŠþø¾ƒõ³<ªs³±µû7ƒ/Y¿cá›WD¯HøøØÑ¢?xÙ‰¢«ç±ùŸQ¼æ©žšý¼ ›ß|}ó9_Q?,ròù“¡2¡®‹'¡'›šâ÷Å“öfâÃëÛzجpdTÃúö;bÀªí?=tè¿ýòê¿—øð‚¹ž‰\¦#oò,gœè0LxÕ7óaç†çOOùå%Ïx&ºG{6|O¤½èù“gâ­Øfà’ÿ¾âÑ€=µGvÿÇ2ã«oø¯GÏrd·%㾿øqYOÆËæ}>ÿêÉ3…Í+1>mi¼®öÓ…O>z$d^úá®Ä¯Žk±ì[Øí‘Ý_<ëÄ„ï¾Ï5ÚNqEÉÌÞ=£V\ùþU×f|yTDã¹(±•¾ä‹A­¯T¼Áó½èíLø.sìY¬û·è³ÿÂWÞx~‚_vô| ¡dŠÛ<ïùbFûæ¦Ëáï¸EAkɯ%‹k$·|(Y‘Þè`<ˆ0b ÒŸ†v‘ƒ|­“ý\Žt5¶‰{@ªÏ±¶Ï'GyïwD9>xT²í¦Ü»ÔyUý½÷Q}bJò‹z˜‰|P{ZX+éFÿ]´×;J”gõ ï÷„çªî–Ü#¿ .†§9¼æ}~,˜ì–,:þ„ôG‚ÅÞç­'¹¡Dþ+о*Žó>úÑŒtɸ®EHg™l"圇8Ëáç5hG…ðl ü]ŠvYŠ~T.ó+¶õ•ÜŽòØu1($: ¹§ƒw>ûKêyÊeÚÝ ôë=ÈÏž$÷ÿ\ ~#yà20œã>ÕËÍîÆãg¥{ï/åñb òµ å¸y©ä®ãÞç¬Æçu’•¸®­)ÞÇ¥S\ïüˆÐÞ¶Év%jîöþ|ò³ù[Œö¿¤ñû‚˜ŽrÌAÿž‰üϬ•\&3"rmõ5ög­÷>yÝvßTŸ÷o¦óÁ !9\†÷—!Ë#?QÞé ·$Ý—§ÑuÃÏ«^Eナñ ÚKÅ>ÉJ #¹ ém«“ÜýŽäž7%÷þ¾ñë´ï÷©ž†€Ãñ~!úQQ±«±M]ß,ô㸮è§4.[Š|.ëí}þrÜ·*:6ž>y^{Ò%ÃËË¯í¶ž.ŽÑï7`<¹÷£Íøu£qU|ß”ìþÅãÔñ:®Ç~ymãÇ—`¸ùUï÷§#ÿ‹åy"ï%Iê߫ȃ¨w?¡<‹àÍŠK¼Ó…ô¦¡¾¦×I.ôþC+nLã8›|ÁKbz…ä |îFÔ¿ÈE>óÐßÉŸ+Ñ?Ö ý+éå?‰ëCù£^‹qßXùÄzä§å[ŠûY™­ý•¡”¡oÀ¸+ÆGÛæzŸQ+y?ö³©}âºç"ßËpÜ Ü·V Ý­ÁñkñþZ”K>®íDlÀ}d#®c³l¢Ò6^]„r\†þ°å[ˆëÝ‚t*FK½Ï¿é߉|S½“÷è:iÞ4 ×9Cx§3Áí½ŸN±W†üîFûÛmxž‡÷WÃûðõk‡mJqU¸U”¬FÿØÏk—ÜyÒõK›HÂuÁ'E¶òž‘è½ï‹$Ò+$G×I.D;؈|oA:·yŸ?ùÙ[ >!ùÈÏ’ûÐ~÷ 1Ý''bÿÃ’¯–<„ûÈ¡Þq h\ë}"嘃ö»¨¶ñë¤ñÒy¾HÂußå}¼@qŠrÛ8!¤q^©m>@ãñáH?\V¾ä}ühÄk‹Ÿ-$ÝØ_BçWxWÜø@AäÙ§~ºõ]—]æ}­ ²ŸŽ@~ó©¾ÑŸÖ£~ÊæƒØåV‰yá6¹€ ª0ÿÛöRƒÏZL!å÷%i½(éVI£}myN²׳µ—ä$œ—.¨“\„v»㉂Ïä{=îcãQ‹qU¨÷ªó@Z'Ü"šw%w¢ÝíF»ØƒñÓ~ÌÇÀ÷Ö€(¯È_5îÕX?¨Æ¸±÷’Äz¤xý‡æ§s„$õ'ÿ'ƒª§Kæ£üSj%ÑŒÄ ¤»÷™|ô›"Ì‹v g#Ý•Ø_ oÐ<†Æë%I¢uT¿Xƒq$­Dáý[Ü’w ïü-@:hßÅ(oj?ÀÌ:IZ÷i‹÷¯¡Ï‘îdä'¢ñDîrïó†‚÷"_Ó@µŽ„ôæ¡~Éçóižˆ~›V+9Ç»±¿ùÌG9`]¢í‚æ)yh7äåè+q>ÍÓÖѸóÛ¼¿å¸óÛ׃˜÷îøD½Öœ-9—Ö¡qß¡õHºŸ¨õH´—ð5G¶`^PW`ý~»|$!vb]ë@âw´Ž†÷©}Q»¿×K÷өاõ½u¸ÞBx§Ïh=PÝÇÁ1¸ž±H‡îWÕ·4~wB<ˆvñ Ú9Ê·œöá ÇWÉb|bâý)ˆ—“.9å8ñâsjªß V¢^ªqÞöŽÈòS…ú؃þõð—’´QÎ ³½ó—($‹~êãA¼õHQÿ­B»Ü€ö«Ö#qý•H·×»ó‚i/`\/æÓõÒ8å‘‹ôóài ëÄšo¡}#ÝRÔ)åíqÊg;<¾ ýhúÁCÈÏ”ïÜgh]a ú[%æ‹™nI5ÏÄ}rEÎÇ|kÞßzÚñÆ~¬¸œÎ±ŽIÞ¢þDëqQx_­Ï ”Oˆã×#qt_)Àñë‘4ž÷ þ}¸N¬ÿ‰PÛè~ójp߈ôÉÿôp î{4NJë#ôœÇc\%f¦K.Cþ0ÿ¹ØÏA=nD¿‰8äcêŸópËAÞïþ¼C~"ÒqÝcqüRj§È×2Ä[†þ‚ç€ê~Hó[µ‰ö«Ö#i=Žöƒ]¤ñHãë‘bï’(¯u¶]7Ýi=ò·x¿ã"ânït’Q>3mãµIãŒ:”õ\·Z$¢Ð|k2Λò‡ò]DësQ’¸¢>ŠP>Åðá¯Ö#©_ ?T!^ âÔà8½OëAø<qs+$É£ôü³é–à¾ZŽò(‡¯ò¯´ß͸ÿWàóéH‡Ö]iž¶ùZEó0Ü ¯ñŠhå½¾¤~L÷OZÿ§ûµãanIZ¢þ…}ª/÷и/ û´žšƒ8nJŸú ú®còµé®ÅùkáÑ|o ‹hÝ™ê~/Aù­Gý–bÚ|ìÆuå¢_¬F¹©~þKóÎMè›ÐÞ«0Ž­Â¸§ú>ÉßJÖà¹ãNìÓø,Á%y=¨Ö#i ïU ½ÑºyHSPßëÑÞh^Nåzo­äh”ÓBä#ÊC=¿Ç¸¤÷Ï)Q’{1ßÜûä#ßIîCü}7‚ðÉ>øb?ÆÝ±žqè:0Ä:5}/¨ù£ñ-­ßå ‹Ð^É»Ãñ9Ý_o‡âºiÜMë\³Ðîé¹þFÔ+ÍOóPŸ¥heu T÷,«õNºŸ¨ç‚¸nš/à{j==弟/¡ñ|DëbÅèwxþ/ÏvñüšÖå2Ó%U ‘Þ¶\Éýò!ÒZ/Åónõ¼iúó´×MHgü~òqâÓ8lF…äŒ{á8šÞ f!¾šÿ`ŸÆ4®¤õ‘\ʸí~%ÍCQ4 v@ó®±(%8n)—¨ÞÐrÁ^_ŽúXóÖ!¿ôœ¢×[ˆþR„ã¨þŠá‹I8Æ•4o§ù‡Zt#_(Ÿ<䋿•둟íXÚñÙîÿ'¹÷ ðmÉrà+¢Üþ(ùè$!î¡%ñ5qø ó’Ã8ÿ0ÖA“ b"çcYµÇ´.ˆñK)®sêƒÖQèû?4.œåýyŽ/Àù¥(ÿJ¬ÇaÜFë'kÐ>J°þT†yW|zŽˆ|“/nÁûÔnóââþ°~¶w:e4?ÇsÊJøS­G¢Üvà>RCó¾¹à.6¯ïKû;™áþë©úئþ=éHïï¸p¯Ç)`Óµoáæ/Òç…š^S•×éÖoš+ßá^Ÿ};Õ×ÝRëµ¹ãE:Ÿö­¥Ä?Õù9Õý¯¥ÕgS_O¤òj>í[S•S¸é7Uù8h~ƒ=¾¹Û¥ÓqNùnîë8Uýôt½Î¦¾{:¡¦©üϾE:ÝS]?ÍU~áz¥©ûi¨ù´o§ÊþÎwÊçi;Õù·]øk/öãüí7·š¡Ö%k±®Zë Žjý¶íiÆná‘ÊK=°Ó_|< ´žèy‹¿ö¥ê1@þžÒ§¿—ëcãeÒö}Hû¦¾o,{…HWÓо©çˆÐFõD ´~ÃmçŠ"Dª×~ØÛƨ IíÀÞNCmOv:å;\/Ù¯;PF…È@û÷©¦ÝK6?5õæèyj×þÚs ì ;80RéÓõ…X_>²—[Œ{øù#uŸkn{¿lîöèáú?Råhó­ÓV뇢¹IãÃËlûô¹ÏØ} ÖRúQá±¹6Çq^ þŽ ŒŽóM‡rôñq tòª¿8D{ûîðËùv^©~f§j—N÷-?ãÚpiŸ7¶ª¿g‘§zý1ìvåoþçjüº}|àgý£6@:zÖ©ß61]X—Tåé ’Tž¡æ£©Æ{þîøƒú”ýÍ'‚‡P;tòµ£@=O¤öN÷5»_õI¿_A?eÙ"ãBd¼¯“ýl¼ÁÆ›ˆýmL"RtG†ôwþô÷°N¤ï•+ºƒ#ýý'ý^q +Bt7Nú¼éô}û é>=x«Ëø|«‰énœƒñù`·7‡¸B¤;0ÒßõúÐýË¤ß ñKO¿Ÿ4ÝÞ¤ßOVt7ÎÛñ9ý¾Z¤˜èja ÛÆÚÐH¿;IÇ2ÝDú¡f#ò•„|Ðß Ú™Œãé÷sèwyéïÚý‘~3E8ÐÝD¬ Œô;o>DþR‘^*ާß<í(‚¤»…±6<âçç°ÑíÀÚ_æHW3ù¥ßýYû˼Ãe£p Ò»£6<Òï79…Ý~ˆ|Òßû¥p Ûkƒ#ý>ªE€tÛˆté÷éEt‡ÉÚ_&ýF‰ éŽk[&éwaB¦hátûamãLÇõÑÿo!]ؘn£Û`m€¬kœôûŒÍL—Ãÿ÷ÆgÒ¾þØÉ~FpçÙ¿_ìy>ë‚Në}öõ<Û÷ùBkßìéøKßßùö|/ÐôœêÏ~~¨ù 5Hµ§óBMÏ^ï~¿:ØôÚs¨q"•ŸH§ã/=ûçÁÆwŠl:Á–G¸é‡z~sŸ®ý>±=ïpʧ}kªë6~¨ù ô<ù ´_ùK?Ðãý]‡¿}áj|‹T}F:½pÛ¹}‹T» õ|þ‰TúÁ–£Óæ/Áæ7Ðô›ú¾î/‘¾îSíuûsì`óìñÍÕ¯›ûþïo|â”®¿x‘ÊO¤û{°ãÄ@Ók®úñWþ®#Òóʦn¡Æqʧ} wžÐTíÁ)ŸM¯HÏÛ"}7_-õºèþæ/NŸ;mM=Žö—Nó¯ÏµnUÿŸ3êÿµ«ÿ×frƤ,ÏO|wÀž­'eLÌÂë_eŒÍ=n öÚfÎÈÎȹÊdÚŸž“‘“™1ûgMÏ™2õÿ쎛2}jÖÌÚ“•‘͉µ™ZŸT&¥45;k¦çp[ÛeO™Õ÷ÿd²aEÕóÁ1ôB£:½0è…I/,zK/âèE<^´Š‰V¯bÔ+M½ÒÕ+C½2Õ+K½ŠU¯âÔ+CS14CS14CS14CS14CS14CW1tCW1tCW1tCW1tCW1tÃP1 ÃP1 ÃP1 ÃP1 ÃP1 ÃT1LÃT1LÃT1LÃT1LÃT1LÃR1,ÃR1,ÃR1,ÃR1,ÃR1,#VňU1bUŒX#VňU1bUŒX#VňU1âTŒ8#NňS1âTŒ8#NňS1âTŒ8#^ňW1âUŒx#^ňW1âUŒx#^ň§gÆDGóË~©ñK_üÒä—¿Œå—qü’£Åp´ŽÃÑb8Z G‹áh1-†£Åp´ަq4£iMãhGÓ8šÆÑ4ަq4£éMçh:GÓ9šÎÑtަs4£éMçhG38šÁÑ Žfp4ƒ£ÍàhG38šÉÑLŽfr4“£™Íäh&G39šÉÑLŽfq4‹£YÍâhG³8šÅÑ,Žfq4‹£År´XŽËÑb9Z,G‹åh±-–£År´XŽÇÑâ8ZG‹ãhq-Ž£Åq´8ŽÇÑâ8Z>= options(continue=" ", width=60) options(SweaveHooks=list(fig=function() par(mar=c(4.1, 4.1, .3, 1.1)))) pdf.options(pointsize=8) #text in graph about the same as regular text options(contrasts=c("contr.treatment", "contr.poly")) #reset default @ \title{Cox models and ``type III'' tests} \author{Terry M Therneau \\ \emph{Mayo Clinic}} \newcommand{\myfig}[1]{\includegraphics[height=!, width=\textwidth] {tests-#1.pdf}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\ybar}{\overline{y}} \begin{document} \maketitle \tableofcontents \section{Introduction} This note started with an interchange on the R-help list that became a bit adversarial. A user asked ``how do I do a type III test using the Cox model'', and I replied that, in essence, this was not a well defined question. If he/she could define exactly what it was that they were after, then I would look into it. The inevitable response was that ``SAS does it''. So what exactly is it that SAS does? A look in the phreg documentation turned up no leads. Several grant deadlines were looming and I got testy at this point, so the discussion didn't get any further. The present note tries to clarify the issues. What SAS calls a \emph{type 3} test is rooted in linear models, and is based on a moderately complex argument. How exactly does that argument play out in a Cox model, what exactly are the calculations used, and how do they relate to the usual likelihood ratio and score tests? For the impatient readers among you I'll list the main outline and conclusions of this report at the start. \begin{itemize} \item SAS type 3 is a particular algorithm for computing a linear models estimate known as ``Yates' weighted squares of means'', which traces back to a 1934 paper by F. Yates \cite{Yates34}. \begin{itemize} \item The utility of the Yates approach for selected designs is unquestioned, but whether it is always applicable is far more controversial. Scholarly papers discussing fundamental issues with using the Yates approach as a default analysis method have appeared almost yearly in the statistics literature, with little apparent effect on the usage of the method. \item My own view is that for balanced or near balanced experiments the Yates' hypothesis is very sensible, but for most biological data it corresponds to a valid test of a completely irrelevant question. \end{itemize} \item I have a natural antipathy for grafting linear models ideas onto the Cox model, since I've found that some things do indeed transfer over but many (most) do not. \begin{itemize} \item For a linear model there are multiple ways to compute and/or understand any particular estimate, including the Yates approach. \item These different approaches will \emph{not} be identical when copied over to the Cox model case, thus it is important to carefully understand what computation is being done. \end{itemize} \item A good portion of this note is focused on linear models and computations, in order to set the necessary groundwork for the Cox case. \item If one is going to use the Yates approach it should at least be computed correctly. The SAS type 3 computation for linear models is sophisticated and reliable; that used in phreg is neither. I would describe this recent addition as a black eye for the SAS package, seriously undermining their reputation for reliable computation. The calculated phreg results depend on which particular coding is chosen for the factors, the default coding leads to an unexpected result, and labeling that output as ``type 3'' is deceptive. Documentation of the actual procedure is completely lacking. (This is true for SAS version 9.3; I will update this note if things change.) \end{itemize} \section{Linear approximations and the Cox model} \label{sect:transfer} One foundation of my concern has to do with the relationship between linear models and coxph. The solution to the Cox model equations can be represented as an iteratively reweighted least-squares problem, with an updated weight matrix and adjusted dependent variable at each iteration, rather like a GLM model. This fact has been rediscovered multiple times, and leads to the notion that since the last iteration of the fit \emph{looks} just like a set of least-squares equations, then various least squares ideas could be carried over to the proportional hazards model by simply writing them out using these final terms. In practice, sometimes this works and sometimes it doesn't. The Wald statistic is one example of the former type, which is completely reliable as long as the coefficients $\beta$ are not too large\footnote{ In practice failure only occurs in the rare case that one of the coefficients is tending to infinity. However, in that case the failure is complete: the likelihood ratio and score tests behave perfectly well but the Wald test is worthless.}. A counter example is found in two ideas used to examine model adequacy: adjusted variable plots and constructed variable plots, each of which was carried over to the Cox model case by reprising the linear-model equations. After a fair bit of exploring I found neither is worth doing \cite{Therneau00}. Copying over a linear models formula simply did not work in this case. Thus I am naturally suspicious whenever a linear model idea is grafted onto a Cox model computation. Has the necessary legwork been done to ensure that the procedure actually works in the case at hand? I have not found any such for the SAS computation of type 3 results in their phreg procedure. This doesn't mean it won't work, all might well be OK. Addition of a new method to a package without reporting such an investigation is irresponsible, however. \begin{figure} \myfig{data} \caption{Average free light chain for males and females. The figure shows both a smooth and the means within deciles of age.} \label{fig:data} \end{figure} \section{Data set} We will motivate our discussion with the simple case of a two-way analysis. The \code{flchain} data frame contains the results of a small number of laboratory tests done on a large fraction of the 1995 population of Olmsted County, Minnesota aged 50 or older \cite{Kyle06, Dispenzieri12}. The R data set contains a 50\% random sample of this larger study and is included as a part of the survival package. The primary purpose of the study was to measure the amounts of plasma immunoglobulins and their components. Intact immunoglobulins are composed of a heavy chain and light chain portion. In normal subjects there is overproduction of the light chain component by the immune cells leading to a small amount of \emph{free light chain} in the circulation. Excessive amounts of free light chain (FLC) are thought to be a marker of disregulation in the immune system. Free light chains have two major forms denoted as kappa and lambda, we will use the sum of the two. An important medical question is whether high levels of FLC have an impact on survival, which will be explored using a Cox model. To explore linear models we will compare FLC values between males and females. A confounding factor is that free light chain values rise with age, in part because it is eliminated by the kidneys and renal function declines with age. The age distribution of males and females differs, so we will need to adjust our simple comparison between the sexes for age effects. The impact of age on mortality is of course even greater and so correction for the age imbalance is is critical when exploring the impact of FLC on survival. Figure \ref{fig:data} shows the trend in free light chain values as a function of age. For illustration of linear models using factors, we have also created a categorical age value using deciles of age. The table of counts shows that the sex distribution becomes increasingly unbalanced at the older ages, from about 1/2 females in the youngest group to a 4:1 ratio in the oldest. <>= library(survival) age2 <- cut(flchain$age, c(49, 59, 69, 79, 89, 120), labels=c("50-59", "60-69", "70-79", "80-89", "90+")) counts <- with(flchain, table(sex, age2)) counts # flchain$flc <- flchain$kappa + flchain$lambda male <- (flchain$sex=='M') mlow <- with(flchain[male,], smooth.spline(age, flc)) flow <- with(flchain[!male,], smooth.spline(age, flc)) plot(flow, type='l', ylim=range(flow$y, mlow$y), xlab="Age", ylab="FLC") lines(mlow, col=2) cellmean <- with(flchain, tapply(flc, list(sex, age2), mean, na.rm=T)) matpoints(c(55,65,75, 85, 95), t(cellmean), pch='fm', col=1:2) round(cellmean, 2) @ Notice that the male/female difference in FLC varies with age, \Sexpr{round(cellmean[1,1],1)} versus \Sexpr{round(cellmean[2,1],1)} at age 50--59 and \Sexpr{round(cellmean[1,5],1)} versus \Sexpr{round(cellmean[2,5],1)} at age 90. The data does not fit a simple additive model; there are ``interactions'' to use statistical parlance. An excess of free light chain is thought to be at least partly a reflection of immune senescence, and due to our hormonal backgrounds men and women simply do not age in quite the same way. Real data always has interactions. The treatment effect of a drug will not be exactly the same for old and young, thin and obese, physically active and sedentary, high vs low metabolism, etc. Explicit recognition of this is an underlying rationale of the current drive towards ``personalized medicine'', though that buzzword often focuses only on genetic differences. Any given data set will often be too small to chart these variations, and our statistical models will will ignore complex confounding, but interactions are nevertheless still present. Any estimate of an overall main effect is in truth an averaged effect over some population of confounders. \section{Linear models and populations} If we ignore the age effect, then everyone agrees on the best estimate of mean FLC: the simple average of FLC values within each sex. The male-female difference is estimated as the difference of these means. This is what is obtained from a simple linear regression of FLC on sex. Once we step beyond this and adjust for age, the relevant linear models can be looked at in several ways; we will explore three of them below: contrasts, case weights, and nesting. This ``all roads lead to Rome'' property of linear models is one of their fascinating aspects, at least mathematically. \subsection{Case weights} \begin{figure} \myfig{pop} \caption{Three possible adjusting populations for the FLC data set, a empirical reference in black, least squares based one in red, and the US 2000 reference population as `u'.} \label{fig:pop} \end{figure} How do we form a single number summary of ``the effect of sex on FLC''? Here are four common choices. \begin{enumerate} \item Unadjusted. The mean for males minus the mean for females. The major problem with this is that a difference in age distributions will bias the result. Looking at figure \ref{fig:data} imagine that this were two treatments A and B rather than male/female, and that the upper one had been given to predominantly 50-65 year olds and the lower predominantly to subjects over 80. An unadjusted difference would actually reverse the true ordering of the curves. \item Population adjusted. An average difference between the curves, weighted by age. Three common weightings are \begin{enumerate} \item External reference. It is common practice in epidemiology to use an external population as the reference age distribution, for instance the US 2000 census distribution. This aids in comparing results between studies. \item Empirical population. The overall population structure of the observed data. \item Least squares. The population structure that minimizes the variance of the estimated female-male difference. \end{enumerate} \end{enumerate} The principle idea behind case weights is to reweight the data such that confounders become balanced, i.e., ages are balanced when examining the sex effect and sex is balanced when examining age. Any fitted least squares estimate can be rewritten as a weighted sum of the data points with weight matrix $W= (X'X)^{-1}X'$. $W$ has $p$ rows, one per coefficient, each row is the weight vector for the corresponding element of $\hat\beta$. So we can backtrack and see what population assumption was underneath any given fit by looking at the weights for the relevant coefficient(s). Consider the two fits below. In both the second coefficient is an estimate of the overall difference in FLC values between the sexes. (The relationship in figure \ref{fig:data} is clearly curved so we have foregone the use of a simple linear term for age; there is no point in fitting an obviously incorrect model.) Since $\beta_2$ is a contrast the underlying weight vectors have negative values for the females and positive for the males. <<>>= us2000 <- rowSums(uspop2[51:101,,'2000']) fit1 <- lm(flc ~ sex, flchain, x=TRUE) fit2 <- lm(flc ~ sex + ns(age,4), flchain, x=TRUE) c(fit1$coef[2], fit2$coef[2]) wt1 <- solve(t(fit1$x)%*%fit1$x, t(fit1$x))[2,] # unadjusted wt2 <- solve(t(fit2$x)%*%fit2$x, t(fit2$x))[2,] # age-adjusted table(wt1, flchain$sex) @ To reconstruct the implied population density, one can use the density function with \code{wt1} or \code{wt2} as the case weights. Examination of \code{wt1} immediately shows that the values are $-1/n_f$ for females and $1/n_m$ for males where $n_f$ and $n_m$ are number of males and females, respectively. The linear model \code{fit1} is the simple difference in male and female means; the implied population structure for males and females is the unweighted density of each. Because this data set is very large and age is coded in years we can get a density estimate for fit2 by simple counting. The result is coded below and shown in figure \ref{fig:pop}. The empirical reference and least squares reference are nearly identical. This is not a surprise. Least squares fits produce minimum variance unbiased estimates (MVUE), and the variance of a weighted average is minimized by using weights proportional to the sample size, thus the MVUE estimate will give highest weights to those ages with a lot of people. The weights are not \emph{exactly} proportional to sample size for each age. As we all know, for a given sample size $n$ a study comparing two groups will have the most power with equal allocation between the groups. Because the M/F ratio is more unbalanced at the right edge of the age distribution the MVUE estimate gives just a little less weight there, but the difference between it and the overall data set population will be slight for all but those pathological cases where there is minimal overlap between M/F age distributions. (And in that case the entire discussion about what ``adjustment'' can or should mean is much more difficult.) <>= us2000 <- rowSums(uspop2[51:101,,'2000']) tab0 <- table(flchain$age) tab2 <- tapply(abs(wt2), flchain$age, sum) matplot(50:100, cbind(tab0/sum(tab0), tab2/sum(tab2)), type='l', lty=1, xlab="Age", ylab="Density") us2000 <- rowSums(uspop2[51:101,,'2000']) matpoints(50:100, us2000/sum(us2000), pch='u') legend(60, .02, c("Empirical reference", "LS reference"), lty=1, col=1:2, bty='n') @ The LS calculation does a population adjustment automatically for us behind the scenes via the matrix algebra of linear models. If we try to apply population reference adjustment directly a problem immediately arises: in the US reference \Sexpr{round(100*us2000[46]/sum(us2000),2)}\% of the population is aged 95 years, and our sample has no 95 year old males; it is not possible to re weight the sample so as to exactly match the US population reference. This occurs in any data set that is divided into small strata. The traditional epidemiology approach to this is to use wider age intervals of 5 or 10 years. Weights are chosen for each age/sex strata such that the sum of weights for females = sum of weights for males within each age group (balance), and the total sum of weights in an age group is equal to the reference population. The next section goes into this further. An increasingly popular approach for producing results that are standardized to the empirical reference population (i.e. the data distribution) is to use a smoothed age effect, obtained through inverse probability weights which are based on logistic regression, e.g. in the causal models literature and propensity score literature. This approach is illustrated in a vignette on adjusted survival curves which is also in the survival package. \subsection{Categorical predictors and contrasts} When the adjusting variable or variables are categorical --- a factor in R or a class variable in SAS --- then two more aspects come into play. The first is that any estimate of interest can be written in terms of the cell means. Formally, the cell means are a \emph{sufficient statistic} for the data. For our data set and using the categorized variable \code{age2} let $\theta_{ij}$ parametrize these means. $$ \begin{tabular}{cccccc} &50--59 & 60--69 & 70-79 & 80-89 & 90+ \\ \hline Female & $\theta_{11}$ & $\theta_{12}$ & $\theta_{13}$& $\theta_{14}$& $\theta_{15}$ \\ Male & $\theta_{21}$ & $\theta_{22}$ & $\theta_{23}$& $\theta_{24}$ & $\theta_{25}$ \\ \end{tabular} $$ For a design with three factors we will have $\theta_{ijk}$, etc. Because it is a sufficient statistic, any estimate or contrast of interest can be written as a weighted sum of the $\theta$s. Formulas for the resulting estimates along with their variances and tests were worked out by Yates in 1934 \cite{Yates34} and are often referred to as a Yates weighted means estimates. For higher order designs the computations can be rearranged in a form that is manageable on a desk calculator, and this is in fact the primary point of that paper. (Interestingly, his computational process turns out to be closely related to the fast Fourier transform.) The second facet of categorical variables is that another adjustment is added to the list of common estimates: \begin{enumerate} \item Unadjusted \item Population adjusted \begin{enumerate} \item External reference \item Empirical (data set) reference \item Least squares \item Uniform. A population in which each combination of the factors has the same frequency of occurrence. \end{enumerate} \end{enumerate} The uniform population plays a special role in the case of designed experiments, where equal allocation corresponds to the optimal study design. The Yates estimates are particularly simple in this case. For a hypothetical population with equal numbers in each age category the estimated average FLC for females turns out to be $\mu_f = \sum_j \theta_{1j} /5$ and the male - female contrast is $\sum_j(\theta_{2j}-\theta_{1j})/5$. We will refer to these as the ``Yates'' estimates and contrast for an effect. Conversely, the estimated age effects, treating sex as a confounding effect and assuming an equal distribution of females and males as the reference population, gives an estimated average FLC for the 60-69 year olds of $\mu_{60-69}= (\theta_{12} + \theta_{22})/2$, and etc for the other age groups. We can obtain the building blocks for Yates estimates by using the interaction function and omitting the intercept. <>= yatesfit <- lm(flc ~ interaction(sex, age2) -1, data=flchain) theta <- matrix(coef(yatesfit), nrow=2) dimnames(theta) <- dimnames(counts) round(theta,2) @ For a linear model fit, any particular weighted average of the coefficients along with its variance and the corresponding sums of squares can be computed using the \code{contrast} function given below. Let $C$ be a contrast matrix with $k$ rows, each containing one column per coefficient. Then $C\theta$ is a vector of length $k$ containing the weighted averages and $V = \hat\sigma^2 C (X'X)^{-1}C'$ is its variance matrix. The sums of squares is the increase in the sum of squared residuals if the fit were restricted to the subspace $C\theta =0$. Formulas are from chapter 5 of Searle \cite{Searle71}. Some authors reserve the word \emph{contrast} for the case where each row of $C$ sums to zero and use \emph{estimate} for all others; I am being less restrictive since the same computation serves for both. <<>>= qform <- function(beta, var) # quadratic form b' (V-inverse) b sum(beta * solve(var, beta)) contrast <- function(cmat, fit) { varmat <- vcov(fit) if (class(fit) == "lm") sigma2 <- summary(fit)$sigma^2 else sigma2 <- 1 # for the Cox model case beta <- coef(fit) if (!is.matrix(cmat)) cmat <- matrix(cmat, nrow=1) if (ncol(cmat) != length(beta)) stop("wrong dimension for contrast") estimate <- drop(cmat %*% beta) #vector of contrasts ss <- qform(estimate, cmat %*% varmat %*% t(cmat)) *sigma2 list(estimate=estimate, ss=ss, var=drop(cmat %*% varmat %*% t(cmat))) } yates.sex <- matrix(0, 2, 10) yates.sex[1, c(1,3,5,7,9)] <- 1/5 #females yates.sex[2, c(2,4,6,8,10)] <- 1/5 #males contrast(yates.sex, yatesfit)$estimate # the estimated "average" FLC for F/M contrast(yates.sex[2,]-yates.sex[,1], yatesfit) # male - female contrast @ <>= # Create the estimates table -- lots of fits emat <- matrix(0., 6, 3) dimnames(emat) <- list(c("Unadjusted", "MVUE: continuous age", "MVUE: categorical age", "Empirical (data) reference", "US200 reference", "Uniform (Yates)"), c("est", "se", "SS")) #unadjusted emat[1,] <- c(summary(fit1)$coef[2,1:2], anova(fit1)["sex", "Sum Sq"]) # MVUE -- do the two fits fit2 <- lm(flc ~ ns(age,4) + sex, flchain) emat[2,] <- c(summary(fit2)$coef[6, 1:2], anova(fit2)["sex", "Sum Sq"]) fit2 <- lm(flc ~ age2 + sex, flchain) emat[3,] <- c(summary(fit2)$coef[6, 1:2], anova(fit2)["sex", "Sum Sq"]) #Remainder, use contrasts tfun <- function(wt) { cvec <- c(matrix(c(-wt, wt), nrow=2, byrow=TRUE)) temp <- contrast(cvec, yatesfit) c(temp$est, sqrt(temp$var), temp$ss) } emat[4,] <- tfun(colSums(counts)/sum(counts)) usgroup <- tapply(us2000, rep(1:5, c(10,10,10,10,11)), sum)/sum(us2000) emat[5,]<- tfun(usgroup) emat[6,] <- tfun(rep(1/5,5)) @ \begin{table} \centering \begin{tabular}{l|ccc} & estimate & sd & SS \\ \hline <>= temp <- dimnames(emat)[[1]] for (i in 1:nrow(emat)) cat(temp[i], sprintf(" &%5.3f", emat[i,1]),sprintf(" &%6.5f", emat[i,2]), sprintf(" & %6.1f", emat[i,3]), "\\\\ \n") @ \end{tabular} \caption{Estimates of the male-female difference along with their standard errors. The last 4 rows are based on categorized age.} \label{tab:allest} \end{table} Table \ref{tab:est} shows all of the estimates of the male/female difference we have considered so far along with their standard errors. Because it gives a much larger weight to the 90+ age group than any of the other estimates, and that group has the largest M-F difference, the projected difference for a uniform population (Yates estimate) yields the largest contrast. It pays a large price for this in terms of standard error, however, and is over twice the value of the other approaches. As stated earlier, any least squares parameter estimate can be written as a weighted sum of the y values. Weighted averages have minimal variance when all of the weights are close to 1. The unadjusted estimate adheres to this precisely and the data-reference and MVUE stay as close as possible to constant weights, subject to balancing the population. The Yates estimate, by treating every cell equally, implicitly gives much larger weights to the oldest ages. Table \ref{tab:est} shows the effective observation weights used for each of the age categories. <>= casewt <- array(1, dim=c(2,5,4)) # case weights by sex, age group, estimator csum <- colSums(counts) casewt[,,2] <- counts[2:1,] / rep(csum, each=2) casewt[,,3] <- rep(csum, each=2)/counts casewt[,,4] <- 1/counts #renorm each so that the mean weight is 1 for (i in 1:4) { for (j in 1:2) { meanwt <- sum(casewt[j,,i]*counts[j,])/ sum(counts[j,]) casewt[j,,i] <- casewt[j,,i]/ meanwt } } @ \begin{table} \centering \begin{tabular}{rlrrrrr} &&50--59& 60--69 & 70--79 & 80--89 & 90+ \\ \hline <>= tname <- c("Unadjusted", "Min var", "Empirical", "Yates") for (i in 1:2) { for (j in 1:4) { cat("&",tname[j], " & ", paste(sprintf("%4.2f", casewt[i,,j]), collapse= " & "), "\\\\\n") if (j==1) cat(c("Female", "Male")[i]) } if (i==1) cat("\\hline ") } @ \end{tabular} \caption{Observation weights for each data point corresponding to four basic approaches. All weights are normed so as to have an average value of 1.} \label{tab:est} \end{table} Looking at table \ref{tab:est} notice the per observation weights for the $\ge 90$ age group, which is the one with the greatest female/male imbalance in the population. For all but the unbalanced estimate (which ignores age) the males are given a weight that is approximately 3 times that for females in order to re balance the shortage of males in that category. However, the absolute values of the weights differ considerably. \subsection{Different codings} Because the cell means are a sufficient statistic, all of the estimates based on categorical age can be written in terms of the cell means $\hat\theta$. The Yates contrast is the simplest to write down: $$ \begin{tabular} {rrrrrr} & 50--59 & 60--69 & 70--79 & 80--89 & 90+ \\ \hline Female & -1/5 & -1/5 & -1/5 & -1/5 & -1/5 \\ Male & 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{tabular} $$ %(Note that for calculating a sum of squares we will get the exact same %result from a matrix using $\pm 1$ rather than $\pm 1/5$; %the Yates contrast is often written this way.) For the data set weighting the values of 1/5 are replaced by $n_{+j}/n_{++}$, the overall frequency of each age group, where a $+$ in the subscript stands for addition over that subscript in the table of counts. The US population weights use the population frequency of each age group. The MVUE contrast has weights of $w_j/\sum w_j$ where $w_j = 1/(1/n_{1j} + 1/n_{2j})$, which are admittedly not very intuitive. $$ \begin{tabular}{rrrrrr} & 50--59 & 60--69 & 70--79 & 80--89 & 90+ \\ \hline <>= temp <- 1/colSums(1/counts) temp <- temp/sum(temp) cat("Female", sprintf(" & %5.3f", -temp), "\\\\ \n") cat("Male", sprintf(" & %5.3f", temp), "\\\\ \n") @ \end{tabular} $$ In the alternate model \code{y \textasciitilde sex + age2} the MVUE contrast is much simpler, namely (0, 1, 0,0,0,0,0), and can be read directly off the printout as $\beta/se(\beta)$. The computer's calculation of $(X'X)^{-1}$ has derived the ``complex'' MVUE weights for us without needing to lift a pencil. The Yates contrast, however, cannot be created from the coefficients of the simpler model at all. This observation holds in general: a contrast that is simple to write down in one coding may appear complicated in another, or not even be possible. The usual and more familiar coding for a two way model is \begin{equation} y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} \label{std} \end{equation} What do the Yates' estimates look like in this form? Let $e_i$ be the Yates estimate for row $i$ and $k$ the number of columns in the two way table of $\theta$ values. Then \begin{align*} e_i &= (1/k)\sum_{j=1}^k \theta_{ij} \\ &= \mu + \alpha_i + \sum_j \left(\beta_j + \gamma_{ij}\right)/k \end{align*} and the Yates test for row effect is \begin{align} 0 &= e_i - e_{i'} \quad \forall i,i' \nonumber \\ &= (\alpha_i - \alpha_{i'}) + (1/k)\sum_j(\gamma_{ij} - \gamma_{i'j}) \label{ycont} \end{align} Equation \eqref{std} is overdetermined and all computer programs add constraints in order to guarantee a unique solution. However those constraints are applied, however, equation \eqref{ycont} holds. The default in R is treatment contrasts, which use the first level of any factor as a reference level. Under this constraint the reference coefficients are set to zero, i.e., all coefficients of equations \eqref{std} and \eqref{ycont} above where $i=1$ or $j=1$. We have been computing the male - female contrast, corresponding to $i=2$ and $i'=1$ in equation \eqref{ycont}, and the Yates contrast for sex becomes $\alpha_2 + 1/5(\gamma_{22} +\gamma_{23} +\gamma_{24} +\gamma_{25})$. The code below verifies that this contrast plus the usual R fit replicates the results in table \ref{tab:allest}. <>= fit3 <- lm(flc ~ sex * age2, flchain) coef(fit3) contrast(c(0,1, 0,0,0,0, .2,.2,.2,.2), fit3) #Yates @ The usual constraint is SAS is to use the last level of any class variable as the reference group, i.e., all coefficients with $i=2$ or $j=5$ in equations \eqref{std} and \eqref{ycont} are set to zero. <>= options(contrasts=c("contr.SAS", "contr.poly")) sfit1 <- lm(flc ~ sex, flchain) sfit2 <- lm(flc ~ sex + age2, flchain) sfit3 <- lm(flc ~ sex * age2, flchain) contrast(c(0,-1, 0,0,0,0, -.2,-.2,-.2,-.2), sfit3) # Yates for SAS coding @ The appendix contains SAS code and output for the three models \code{sfit1, sfit2} and \code{sfit3} above. The \code{E3} option was added to the SAS model statements, which causes a symbolic form of the contrasts that were used for ``type III'' results to be included in the printout. Look down the column labeled ``SEX'' and you will see exactly the coefficients used just above, after a bit of SAS to English translation. \begin{itemize} \item The SAS printout is labeled per equation \eqref{std}, so L1= column 1 of the full $X$ matrix = intercept. L2 = column 2 = females, L3 = column 3 = males, L4= column 4 = age 50--59, etc. \item In the symbolic printout they act as though sum constraints were in force: the last column of age is labeled with a symbolic value that would cause the age coefficients to sum to zero. However, in actuality these coefficients are set to zero. The table of parameter estimates at the end of the printout reveals this; forced zeros have a blank for their standard error. \item When calculating the contrast one can of course skip over the zero coefficients, and the R functions do not include them in the coefficient vector. Remove all of these aliased rows from the SAS symbolic printout to get the actual contrast that is used; this will agree with my notation. \item The SAS printout corresponds to a female-male contrast and I have been using male-female for illustration. This changes the signs of the contrast coefficients but not the result. \end{itemize} The \code{estimate} statement in the SAS code required that all of the coefficients be listed, even the aliased ones (someone more proficient in SAS may know a way to avoid this and enter only the non-aliased values.) %A general principle is that a given hypothesis may be represented as %a simple contrast in one coding but be complex in another. %The unadjusted test is a trivial contrast in the sfit1 coding, but a %complex one in the sfit3 coding. %The Yates test cannot be expressed as a contrast using the sfit1 or sfit2 %coding, is simple and obvious in the cell means coding, and has %simple but non obvious coefficients in the sfit3 coding. %Que sera sera. So, how do we actually compute the Yates contrast in a computer program? We will take it as a give that no one wants to memorize contrast formulas. Appendix \ref{sect:coding} describes three algorithms for the computation. One of these three (NSTT) is completely unreliable, but is included because it is so often found in code. If one uses the sum constraints commonly found in textbooks, which corresponds to the \code{contr.sum} constraint in R and to \code{effect} constraints in SAS, and there are no missing cells, then the last term in equation \eqref{ycont} is zero and the simple contrast $\alpha_i =0$ will be equal to the Yates contrast for sex. I often see this method recommended on R help in response to the question of ``how to obtain type III'', computed either by use of the \code{drop1} command or the \code{Anova} function found within the car package, but said advice almost never mentions the need for this particular non-default setting of the contrasts option\footnote{The Companion to Applied Regression (car) package is designed to be used with the book of the same name by John Fox, and the book does clarify the need for sum constraints.}. When applied to other codings the results of this procedure can be surprising. <>= options(contrasts = c("contr.treatment", "contr.poly")) #R default fit3a <- lm(flc ~ sex * age2, flchain) options(contrasts = c("contr.SAS", "contr.poly")) fit3b <- lm(flc~ sex * age2, flchain) options(contrasts=c("contr.sum", "contr.poly")) fit3c <- lm(flc ~ sex * age2, flchain) # nstt <- c(0,1, rep(0,8)) #test only the sex coef = the NSTT method temp <- rbind(unlist(contrast(nstt, fit3a)), unlist(contrast(nstt, fit3b)), unlist(contrast(nstt, fit3c)))[,1:2] dimnames(temp) <- list(c("R", "SAS", "sum"), c("effect", "SS")) print(temp) # drop1(fit3a, .~.) @ For the case of a two level effect such as sex, the NSTT contrast under the default R coding is a comparison of males to females in the first age group \textbf{only}, and under the default SAS coding it is a comparison of males to females within the \textbf{last} age group. Due to this easy creation of a test statistic which has no relation to the global comparison one expects from the ``type 3'' label the acronym \emph{not safe type three}(NSTT) was chosen, ``not SAS'' and ``nonsense'' are alternate mnemonics. \subsection{Sums of squares and projections} \label{sect:anova} The most classic exposition of least squares is as a set of projections, each on to a smaller space. Computationally we represent this as a series of model fits, each fit summarized by the change from the prior fit in terms of residual sum of squares. <>= options(show.signif.stars = FALSE) #exhibit intelligence sfit0 <- lm(flc ~ 1, flchain) sfit1b <- lm(flc ~ age2, flchain) anova(sfit0, sfit1b, sfit2, sfit3) @ The second row is a test for the age effect. The third row of the above table summarizes the improvement in fit for the model with sex + age2 over the model with just age2, a test of ``sex, adjusted for age''. This test is completely identical to the minimum variance contrast, and is in fact the way in which that SS is normally obtained. The test for a sex effect, unadjusted for age, is identical to an anova table that compares the intercept-only fit to one with sex, i.e., the second line from a call to \code{anova(sfit0, sfit1)}. The anova table for a nested sequence of models $A$, $A+B$, $A + B +C$, \ldots has a simple interpretation, outside of contrasts or populations, as an improvement in fit. Did the variable(s) $B$ add significantly to the goodness of fit for a model with just $A$, was $C$ an important addition to a model that already includes $A$ and $B$? The assessment of improvement is based on the likelihood ratio test (LRT), and extends naturally to all other models based on likelihoods. The tests based on a target population (external, data population, or Yates) do not fit naturally into this approach, however. %Obtaining the Yates contrast using a sequential sums of squares approach %is possible but a bit contrived. %Our final fit in the table will be \code{sfit3}, but %the one prior to it needs to be from a constrained version of \code{sfit3}, %whose solution lies in the space spanned by the Yates contrast %$\beta_2 + \beta_7/5 + \beta_8/5 + \beta_9/5 + \beta_{10}/5 = 0$. %There is no simple way to write down an ordinary LS model equation that %will do this, and instead one must use one a program for constrained %linear regression; these are far less familiar. %There are many algorithms to fit a constrained linear regression, one is %to transform the problem as $X\beta = (XQ)(Q'\beta) = Z \phi$ %where $Q$ is an orthogonal transformation matrix. %If the first column of $Q$ is chosen as a scaled version of the Yates %contrast, then setting that contrast equal to zero is the same as %the constraint $\phi_1 =0$; it suffices to fit a model using all but the %first column of $Z$. \subsection{What is SAS type 3?} We are now in a position to fully describe the SAS sums of squares. \begin{itemize} \item Type 1 is the output of the ANOVA table, where terms are entered in the order specified in the model. \item Type 2 is the result of a two stage process \begin{enumerate} \item Order the terms by level: 0= intercept, 1= main effects, 2= 2 way interactions, \ldots. \item For terms of level k, print the MVUE contrast from a model that includes all terms of levels $0-k$. Each of these will be equivalent to the corresponding line of a sequential ANOVA table where the term in question was entered as the last one of its level. \end{enumerate} \item Type 3 and 4 are also a 2 stage process \begin{enumerate} \item Segregate the terms into those for which a Yates contrast can be formed versus those for which it can not. The second group includes the intercept, any continuous variables, and any factor (class) variables that do not participate in interactions with other class variables. \item For variables in the first group compute Yates contrasts. For those in the second group compute the type 2 results. \end{enumerate} \end{itemize} SAS has two different algorithms for computing the Yates contrast, which correspond to the \code{ATT} and \code{STT} options of the \code{yates} function. SAS describes the two contrast algorithms in their document ``The four types of estimable functions'' \cite{SASguide}, one of which defines type 3 and the other type 4. I found it very challenging to recreate their algorithm from this document. Historical knowledge of the underlying linear model algorithms used by SAS is a useful and almost necessary adjunct, as many of the steps in the document are side effects of their calculation. When there are missing cells, then it is not possible to compute a contrast that corresponds to a uniform distribution over the cells, and thus the standard Yates contrast is also not defined. The SAS type 3 and 4 algorithms still produce a value, however. What exactly this result ``means'' and whether it is a good idea has been the subject of lengthy debates which I will not explore here. Sometimes the type 3 and type 4 algorithms will agree but often do not when there are missing cells, which further muddies the waters. Thus we have 3 different tests: the MVUE comparison which will be close but not exactly equal to the data set population, Yates comparisons which correspond to a uniform reference population, and the SAS type 3 (STT) which prints out a chimeric blend of uniform population weighting for those factor variables that participate in interactions and the MVUE weighting for all the other terms. \subsection{Which estimate is best?} Deciding which estimate is the best is complicated. Unfortunately a lot of statistical textbooks emphasize the peculiar situation of balanced data with exactly the same number of subjects in each cell. Such data is \emph{extremely} peculiar if you work in medicine; in 30 years work and several hundred studies I have seen 2 instances. In this peculiar case the unadjusted, MVUE, empirical reference and Yates populations are all correspond to a uniform population and so give identical results. No thinking about which estimate is best is required. This has led many to avoid the above question, instead pining for that distant Eden where the meaning of ``row effect'' is perfectly unambiguous. But we are faced with real data and need to make a choice. The question has long been debated in depth by wiser heads than mine. In a companion paper to his presentation at the joint statistical meetings in 1992, Macnaughton \cite{Macnaughton92} lists 54 references to the topic between 1952 and 1991. Several discussion points recur: \begin{enumerate} \item Many take the sequential ANOVA table as primary, i.e., a set of nested models along with likelihood ratio tests (LRT), and decry all comparisons of ``main effects in the presence of interaction.'' Population weightings other than the LS one do not fit nicely into the nested framework. \item Others are distressed by the fact that the MVUE adjusting population is data dependent, so that one is ``never sure exactly what hypothesis being tested''. \item A few look at the contrast coefficients themselves, with a preference for simple patterns since they ``are interpretable''. \item No one approach works for all problems. Any author who proposes a uniform rule is quickly presented with counterexamples. \end{enumerate} Those in group 1 argue strongly against the Yates weighting and those in group 2 argue for the Yates contrast. Group 3 is somewhat inexplicable to me since any change in the choice of constraint type will change all the patterns. I fear that an opening phrase from the 1986 overview/review of Herr \cite{Herr86} is still apropos, ``In an attempt to understand how we have arrived at our present state of ignorance \ldots''. There are some cases where the Yates approach is clearly sensible, for instance a designed experiment which has become unbalanced due to a failed assay or other misadventure that has caused a few data points to be missing. There are cases such as the FLC data where the Yates contrast makes little sense at all --- the hypothetical population with equal numbers of 50 and 90 year olds is one that will never be seen--- so it is rather like speculating on the the potential covariate effect in dryads and centaurs. The most raucous debate has circled around the case of testing for a treatment effect in the presence of multiple enrolling centers. Do we give each patient equal weight (MVUE) or each center equal weight (Yates). A tongue-in-cheek but nevertheless excellent commentary on the subject is given by the old curmudgeon, aka Guernsey McPearson \cite{Senn1, Senn2}. A modern summary with focus on the clinical trials arena is found in chapter 14 of the textbook by Senn \cite{Senn07} I have found two papers particularly useful in thinking about this. Senn \ref{Senn00} points out the strong parallels beween tests for main effects when there may be interactions and meta analyses, cross connecting these two approaches is illuminating. A classic reference is the 1978 paper by Aitkin \cite{Aitkin78}. This was read before the Royal Statistical Society and includes remarks by 10 discussants forming a who's who of statistical theory (F Yates, J Nelder, DR Cox, DF Andrews, KR Gabriel, \ldots). The summary of the paper states that ``It is shown that a standard method of analysis used in many ANOVA programs, equivalent to Yates method of weighted squares of means, may lead to inappropriate models''; the paper goes on to carefully show why no one method can work in all cases. Despite the long tradition among RSS discussants of first congratulating the speaker and then skewering every one their conclusions, not one defense of the always-Yates approach is raised! This includes the discussion by Yates himself, who protests that his original paper advocated the proposed approach with reservations, it's primary advantage being that the computations could be performed on a desk calculator. I have two primary problems with the SAS type 3 approach. The first and greatest is that their documentation recommends the method with no reference to this substantial and sophisticated literature discussing strengths and weaknesses of the Yates contrast. This represents a level of narcissism which is completely unprofessional. %Recommending the type III approach as best for all cases, as they do, has %caused actual harm. The second is that their documentation explains the method is a way that is almost impenetrably opaque. If this is the only documentation one has, there will not be 1 statistician in 20 who would be able to explain the actual biological hypothesis which is being addressed by a type 3 test. \section{Cox models} \subsection{Tests and contrasts} Adapting the Yates test to a Cox model is problematic from the start. First, what do we mean by a ``balanced population''? In survival data, the variance of the hazard ratio for each particular sex/age combination is proportional to the number of deaths in that cell rather than the number of subjects. Carrying this forward to the canonical problem of adjusting a treatment effect for enrolling center, does this lead to equal numbers of subjects or equal numbers of events? Two centers might have equal numbers of patients but different number of events because one initiated the study at a later time (less follow up per subject), or it might have the same follow up time but a lower death rate. Should we reweight in one case (which one), both, or neither? The second issue is that the per-cell hazard ratio estimates are no longer a minimally sufficient statistic, so underlying arguments about a reference population no longer directly translate into a contrast of the parameters. A third but more minor issue is that the three common forms of the test statistic --- Wald, score, and LRT --- are identical in a linear model but not for the Cox model, so which should we choose? To start, take a look at the overall data and compute the relative death rates for each age/sex cell. <>= options(contrasts= c("contr.treatment", "contr.poly")) # R default cfit0 <- coxph(Surv(futime, death) ~ interaction(sex, age2), flchain) cmean <- matrix(c(0, coef(cfit0)), nrow=2) cmean <- rbind(cmean, cmean[2,] - cmean[1,]) dimnames(cmean) <- list(c("F", "M", "M/F ratio"), dimnames(counts)[[2]]) signif(exp(cmean),3) @ Since the Cox model is a relative risk model all of the death rates are relative to one of the cells, in this case the 50--59 year old females has been arbitrarily chosen as the reference cell and so has a defined rate of 1.00. Death rates rise dramatically with age for both males and females (no surprise), with males always slightly ahead in the race to a coffin. The size of the disadvantage for males decreases in the last 2 decades, however. The possible ways to adjust for age in comparing the two sexes are \begin{enumerate} \item The likelihood ratio test. This is analogous to the sequential ANOVA table in a linear model, and has the strongest theoretical justification. \item A stratified Cox model, with age group as the stratification factor. This gives a more general and rigorous adjustment for age. Stratification on institution is a common approach in clinical trials. \item The Wald or score test for the sex coefficient, in a model that adjusts for age. This is analogous to Wald tests in the linear model, and is asymptotically equivalent the the LRT. \item The test from a reweighted model, using case weights. Results using this approach have been central to causal model literature, particularly adjustment for covariate imbalances in observational studies. (Also known as \emph{marginal structural models}). Adjustment to a unform population is also possible. \item A Yates-like contrast in the Cox model coefficients. \begin{itemize} \item A reliable algorithm such as cell means coding. \item Unreliable approach such as the NSTT \end{itemize} \end{enumerate} I have listed these in order from the most to the least available justification, both in terms of practical experience and available theory. The two standard models are for sex alone, and sex after age. Likelihood ratio tests for these models are the natural analog to anova tables for the linear model, and are produced by the same R command. Here are results for the first three, along with the unadjusted model that contains sex only. <>= options(contrasts=c("contr.SAS", "contr.poly")) cfit1 <- coxph(Surv(futime, death) ~ sex, flchain) cfit2 <- coxph(Surv(futime, death) ~ age2 + sex, flchain) cfit3 <- coxph(Surv(futime, death) ~ sex + strata(age2), flchain) # Unadjusted summary(cfit1) # # LRT anova(cfit2) # # Stratified anova(cfit3) summary(cfit3) # # Wald test signif(summary(cfit2)$coefficients, 3) # anova(cfit1) anova(cfit2) @ Without adjustment for age the LRT for sex is only \Sexpr{round(2*diff(cfit1$loglik),1)}, and after adjustment for %$ a it increases to \Sexpr{round(anova(cfit2)[3,2],2)}. Since females are older, not adjusting for age almost completely erases the evidence of their actual survival advantage. Results of the LRT are unchanged if we change to any of the other possible codings for the factor variables (not shown). Adjusting for age group using a stratified model gives almost identical results to the sequential LRT, in this case. The Wald tests for sex are equal to $[\beta/ se(\beta)]^2$ using the sex coefficient from the fits, \Sexpr{round(summary(cfit1)$coef[1,4]^2,2)} and \Sexpr{round(summary(cfit2)$coef[5,4]^2,2)} for the unadjusted and adjusted models, respectively. Unlike a linear model they are not exactly equal to the anova table results based on the log-likelihood, but tell the same story. Now consider weighted models, with both empirical and uniform distributions as the target age distribution. The fits require use of a robust variance, since we are approaching it via a survey sampling computation. The tapply function creates a per-subject index into the case weight table created earlier. <>= wtindx <- with(flchain, tapply(death, list(sex, age2))) cfitpop <- coxph(Surv(futime, death) ~ sex, flchain, robust=TRUE, weight = (casewt[,,3])[wtindx]) cfityates <- coxph(Surv(futime, death) ~ sex, flchain, robust=TRUE, weight = (casewt[,,4])[wtindx]) # # Glue it into a table for viewing # tfun <- function(fit, indx=1) { c(fit$coef[indx], sqrt(fit$var[indx,indx])) } coxp <- rbind(tfun(cfit1), tfun(cfit2,5), tfun(cfitpop), tfun(cfityates)) dimnames(coxp) <- list(c("Unadjusted", "Additive", "Emprical Population", "Uniform Population"), c("Effect", "se(effect)")) signif(coxp,3) @ The population estimates based on reweighting lie somewhere between the unadjusted and the sequential results. We expect that balancing to the emprical population will give a solution that is similar to the age + sex model, in the same way that the close but not idential to the MVUE estimate in a linear model. Balancing to a hypothetical population with equal numbers in each age group yields a substantially smaller estimate of effect. since it gives large weights to the oldest age group, where in this data set the male/female difference is smallest. Last, look at constructed contrasts from a cell means model. We can either fit this using the interaction, or apply the previous contrast matrix to the coefficients found above. Since the ``intercept'' of a Cox model is absorbed into the baseline hazard our contrast matrix will have one less column. <<>>= cfit4 <- coxph(Surv(futime, death) ~ sex * age2, flchain) # Uniform population contrast ysex <- c(0,-1, 0,0,0,0, -.2,-.2,-.2,-.2) #Yates for sex, SAS coding contrast(ysex[-1], cfit4) # Verify using cell means coding cfit4b <- coxph(Surv(futime, death) ~ interaction(sex, age2), flchain) temp <- matrix(c(0, coef(cfit4b)),2) # the female 50-59 is reference diff(rowMeans(temp)) #direct estimate of the Yates # temp2 <- rbind(temp, temp[2,] - temp[1,]) dimnames(temp2) <- list(c('female', 'male', 'difference'), levels(age2)) round(temp2, 3) # # # NSTT contrast contrast(c(1,0,0,0,0,0,0,0,0), cfit4) @ In the case of a two level covariate such as sex, the NSTT algorithm plus the SAS coding yields an estimate and test for a difference in sex for the \emph{first} age group; the proper contrast is an average. Since it gives more weight to the larger ages, where the sex effect is smallest, the Yates-like contrast is smaller than the result from an additive model \code{cfit2}. Nevertheless, this contrast and the sequential test are more similar for the survival outcome than for the linear models. This is due to the fact that the variances of the individual hazards for each sex/age combination are proportional to the number of deaths in that cell rather than the number of subjects per cell. A table of the number of deaths is not as imbalanced as the table of subject counts, and so the Yates and MLE ``populations'' are not as far apart as they were for the linear regression. There are fewer subjects at the higher ages but they die more frequently. Why is the Yates-like contrast so different than the result of creating a uniform age distribution using case weights followed by an MLE estimate? Again, the MLE estimate has death counts as the effective weights; the case-weighted uniform population has smaller weights for the youngest age group and that group also has the lowest death rate, resulting in lower inflence for that group and an estimate shrunken towards the 90+ difference of \Sexpr{round(temp2[3,5], 3)}. All told, for survival models adjustment to a uniform population is a slippery target. \subsection{SAS phreg results} Now for the main event: what does SAS do? First, for the simple case of an additive model the SAS results are identical to those shown above. The coefficients, variances and log-likelihoods for cfit2 are identical to the phreg output for an additive model, as found in the appendix. As would be expected from the linear models case, the ``type III'' results for the additive model are simply the Wald tests for the fit, repackaged with a new label. Now look at the model that contains interactions. We originally surmised that a contrast calculation would be the most likely way in which the phreg code would implement type 3, as it is the easiest to integrate with existing code. Results are shown in the last SAS fit of the appendix. Comparing these results of the SAS printout labeled as ``Type III Wald'' to the contrasts calculated above shows that phreg is using the NSTT method. This is a bit of a shock. All of the SAS literature on type III emphasizes the care with which they form the calculation so as to always produce a Yates contrast (or in the case of missing cells a Yates-like one), and there was no hint in the documentation that phreg does anything different. As a double check direct contrast statements corresponding to the Yates and NSTT contrasts were added to the SAS code, and give confirmatory results. A further run which forced sum constraints by adding \code{'/ effect'} to the SAS class statement (not shown) restored the correct Yates contrast, as expected. As a final check, look at the NSTT version of the LRT, which corresponds to simply dropping the sex column from the $X$ matrix. <>= xmat4 <- model.matrix(cfit4) cfit4b <- coxph(Surv(futime, death) ~ xmat4[,-1], flchain) anova(cfit4b, cfit4) @ This agrees with the LR ``type 3'' test of the phreg printout. \subsection{Conclusion} Overall, both rebalanced estimates and coefficient contrasts are interesting exercises for the Cox model, but their actual utility is unclear. It is difficult to make a global optimality argument for either one, particularly in comparison to the sequential tests which have the entire weight of likelihood theory as a justification. Case reweighted estimates do play a key role when attempting to adjust for non-random treatment assignment, as found in the literature for causal analysis and marginal structural models; a topic and literature far too extensive and nuanced for discussion in this note. No special role is apparent, at least to this author, for regular or even sporadic use of a Yates contrast in survival models. The addition of such a feature and label to the SAS phreg package is a statistical calamaty, one that knowledgeable and conscientious statistical practitioners will likely have to fight for the rest of their careers. In the common case of a treatment comparison, adjusted for enrolling center, the default ``type III'' printout from phreg corresponds to a comparison of treatments within the last center; the only contribution of the remainder of the data set is to help define the baseline hazard function and the effect of any continuous adjusters that happen to be in the model. The quadruple whammy of a third rate implementation (the NSTT), defaults that lead to a useless and misleading result, no documentation of the actual computation that is being done, and irrational reverence for the type III label conspire to make this a particularly unfortunate event. \appendix \section{Computing the Yates estimate} \label{sect:coding} We will take it as a given that no one wants to memorize contrast formulas, and so we need a way to compute Yates contrasts automatically in a computer program. The most direct method is to encode the original fit in terms of the cell means, as has been done throughout this report. The Yates contrast is then simply an average of estimates across the appropriate margin. However, we normally will want to solve the linear or Cox model fit in a more standard coding and then compute the Yates contrast after the fact. Note that any population re norming requires estimates of the cell means, whether they were explicit parameters or not, i.e., the model fit must include interaction terms. Here are three algorithms for this post-hoc computation. All of them depend, directly or indirectly, on the breakdown found earlier in equation \eqref{std}. \begin{align} y_{ij} &= \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon \label{a1} \\ &= \theta_{ij} + \epsilon \label{a2}\\ \theta_{ij} &= \mu + \alpha_i + \beta_j + \gamma_{ij} \label{a3} \\ \end{align} Equation \eqref{a1} is the standard form from our linear models textbooks, equation \eqref{a2} is the cell means form, and \eqref{a3} is the result of matching them together. Using this equivalence a Yates test for row effects will be \begin{align} 0 &= e_i - e_{i'} \quad \forall i,i' \nonumber \\ &= (\alpha_i - \alpha_{i'}) + (1/k)\sum_j(\gamma_{ij} - \gamma_{i'j}) \label{ycont2} \end{align} where the subscripts $i$ and $i'$ range over the rows and $k$ is the number of columns. To illustrate the methods we will use 3 small data sets defined below. All are unbalanced. The second data set removes the aD observation and so has a zero cell, the third removes the diagonal and has 3 missing cells. <>= data1 <- data.frame(y = rep(1:6, length=20), x1 = factor(letters[rep(1:3, length=20)]), x2 = factor(LETTERS[rep(1:4, length=10)]), x3 = 1:20) data1$x1[19] <- 'c' data1 <- data1[order(data1$x1, data1$x2),] row.names(data1) <- NULL with(data1, table(x1,x2)) # data2 -- single missing cell indx <- with(data1, x1=='a' & x2=='D') data2 <- data1[!indx,] #data3 -- missing the diagonal data3 <- data1[as.numeric(data1$x1) != as.numeric(data1$x2),] @ \subsection{NSTT method} The first calculation method is based on a simple observation. If we impose the standard sums constraint on equation \eqref{a1} which is often found in textbooks (but nowhere else) of $\sum_i \alpha_i = \sum_j \beta_j = 0$, $\sum_i\gamma_{ij} =0 \; \forall j$ and $\sum_j \gamma_{ij} = 0 \; \forall i$, then the last term in equation \eqref{ycont2} is identically 0. Thus the Yates contrast corresponds exactly to a test of $\alpha=0$. In R we can choose this coding by using the \code{contr.sum} option. This approach has the appearance of simplicity: we can do an ordinary test for row effects within an interaction model. Here is R code that is often proposed for ``type III'' computation, which is based on the same process. <<>>= options(contrasts=c("contr.sum", "contr.poly")) fit1 <- lm(y ~ x1*x2, data1) drop1(fit1, .~.) @ The problem with this approach is that it depends critically on use of the sum constraints. If we apply the same code after fitting the data set under the more usual constraints a completely different value ensues. <<>>= options(contrasts=c("contr.SAS", "contr.poly")) fit2 <- lm(y ~ x1*x2, data1) drop1(fit2, .~.) options(contrasts=c("contr.treatment", "contr.poly")) fit3 <- lm(y ~ x1*x2, data1) drop1(fit3, .~.) @ Both common choices of contrasts give a different answer than contr.sum, and both are useless. I thus refer to this as the Not Safe Type Three (NSTT) algorithm, ``not SAS type three'' and ``nonsense type three'' are two other sensible expansions. This approach should NEVER be used in practice. \subsection{ATT} The key idea of the averaging approach (Averaged Type Three) is to directly evaluate equation \eqref{ycont2}. The first step of the computation is shown below <>= X <- model.matrix(fit2) ux <- unique(X) ux indx <- rep(1:3, c(4,4,4)) effects <- t(rowsum(ux, indx)/4) # turn sideways to fit the paper better effects yates <- effects[,-1] - effects[,1] yates @ The data set ux has 12 rows, one for each of the 12 unique x*x2 combinations. Because data1 was sorted, the first 4 rows correspond to x=1, the next 4 to x=2 and the next to x=3 which is useful for illustration but has no impact on the computation. The average of rows 1-4 (column 1 of \code{effects} above) is the estimated average response for subjects with x1=a, assuming a uniform distribution over the 12 cells. Any two differences between the three effects is an equivalent basis for computing the Yates contrast. We can verify that the resulting estimates correspond to a uniform target population by directly examing the case weights for the estimate. Each of them gives a total weight of 1/4 to each level of x2. Each element of $\beta\beta$ is a weighted average of the data, revealed by the rows of the matrix $(X'X)^{-1}X'$. The estimate are a wieghted sum of the coefficients, so are also a weighted average of the $y$ values. <<>>= wt <- solve(t(X) %*% X, t(X)) # twelve rows (one per coef), n columns casewt <- t(effects) %*% wt # case weights for the three "row efffects" for (i in 1:3) print(tapply(casewt[i,], data1$x2, sum)) @ \subsection{STT} The SAS type III method takes a different approach, based on a a dependency matrix $D$. Start by writing the $X$ matrix for the problem using all of the parameters in equation \eqref{a1}. For our flc example this will have columns for intercept (1), sex (2), age group (5) and the age group by sex interaction (10) = 18 columns. Now define the lower triangular square matrix $D$ such that \begin{itemize} \item If the $i$th column of $X$ can be written as a linear combination of columns 1 through $i-1$, then row $i$ of $D$ contains that linear combination and $D_{ii}=0$. \item If the $i$th column is not linearly dependent on earlier ones then $D_{ii}=1$ and $D_{ij}=0$ for all $j \ne i$. \end{itemize} Columns of $D$ that correspond to linearly dependent columns of $X$ will be identically zero and can be discarded (or not) at this point. The result of this operation replicates table 12.2 in the SAS reference \cite{SASguide} labeled ``the form of estimable functions''. To obtain the Yates contrasts for an effect replace the appropriate columns of $D$ with the residuals from a regression on all columns to the right of it. Simple inspection shows that the columns of $D$ corresponding to any given effect will already be orthogonal to other effects in $D$ \emph{except} those for interactions that contain it; so the regression does not have to include all columns to the right. It is easy to demonstrate that this gives the uniform population contrast (Yates) for a large number of data sets, but I have not yet constructed a proof. (I suspect it could be approached using the Rao-Blackwell theorem.) \subsection{Bystanders} What about a model that has a extra predictor, such as \code{x3} in our example data and in the fit below? <<>>= fit4 <- lm(y ~ x1*x2 + x3, data=data1) @ The standard approach is to ignore this variable when setting up ``type III'' tests: the contast for \code{x1} will be the same as it was in the prior model, with a 0 row in the middle for the x3 coefficient. \subsection{Missing cells} When there are combinations of factors with 0 subjects in that group, it is not possible to create a uniform population via reweighting of either subjects or parameters. There is thus no Yates contrast corresponding to the hypothetical population of interest. For that matter, adjustment to any fixed population is no longer possible, such as the US 2000 reference, unless groups are pooled so as to remove any counts of zero, and even then the estimate could be problematic due to extreme weights. This fact does not stop each of the above 3 algorithms from executing and producing a number. This raises two further issues. First, what does that number \emph{mean}? Much ink has been spilled on this subject, but I personally have never been able to come to grips with a satisfactory explanation and so have nothing to offer on the topic. I am reluctant to use such estimates. The second issue is that the computational algorithms become more fragile. \begin{itemize} \item The NSTT algorithm is a disaster in waiting, so no more needs to be said about situations where its behavior may be even worse. \item When fitting the original model, there will be one or more NA coefficients due to the linear dependencies that arise. A natural extension of the ATT method is to leave these out of the sums when computing each average. However, there are data sets for which the particular set of coefficients returned as missing will depend on the order in which variables were listed in the model statement, which in turn will change the ATT result. \item For the STT method, our statement that certain other columns in $D$ will be orthogonal to the chosen effect is no longer true. To match SAS, the orthogonalization step above should include only those effects further to the right that contain the chosen effect (the one we are constructing a contrast vector for). As a side effect, this makes the STT result invariant to the order of the variables in the model statement. \end{itemize} \section{SAS computations} The following code was executed in version 9.3 of SAS. \begin{verbatim} options ls=70; libname save "sasdata"; title "Sex only"; proc glm data=save.flc; class sex; model flc = sex; title "Sex only"; proc glm data=save.flc; class sex age2; model flc = age2 sex /solution E1 E2 E3; title "Second fit, no interaction"; proc glm data=save.flc; class sex age2; model flc = sex age2 sex*age2/solution E1 E2 E3; estimate 'yates' sex 1 -1 sex*age2 .2 .2 .2 .2 .2 -.2 -.2 -.2 -.2 -.2; title "Third fit, interaction"; proc phreg data=save.flc; class sex age2; model futime * death(0) = sex age2/ ties=efron; title "Phreg fit, sex and age, additive"; proc phreg data=save.flc; class sex age2; model futime * death(0) = sex age2 sex*age2 / ties=efron type3(all); estimate 'Yates sex' sex 1 sex*age2 .2 .2 .2 .2; contrast 'NSTT sex ' sex 1 ; contrast 'NSTT age' age2 1 0 0 0 , age2 0 1 0 0 , age2 0 0 1 0 , age2 0 0 0 1; title "Phreg fit, sex and age with interaction"; proc phreg data=save.flc; class sex age2/ param=effect; model futime * death(0) = sex age2 sex*age2 / ties=efron; title "Phreg, using effect coding"; \end{verbatim} The SAS output is voluminous, covering over a dozen pages. A subset is extracted below, leaving out portions that are unimportant to our comparison. First the GLM model for sex only. There are no differences between type 1 and type 3 output for this model. \small \begin{verbatim} ... Number of Observations Read 7874 Number of Observations Used 7874 ... Dependent Variable: flc Sum of Source DF Squares Mean Square F Value Model 1 142.19306 142.19306 42.27 Error 7872 26481.86345 3.36406 Corrected Total 7873 26624.05652 \end{verbatim} \normalsize The second fit with sex and then age. \small \begin{verbatim} Type I Estimable Functions -----------------Coefficients------------------ Effect age2 sex Intercept 0 0 age2 1 L2 0 age2 2 L3 0 age2 3 L4 0 age2 4 L5 0 age2 5 -L2-L3-L4-L5 0 sex F -0.2571*L2-0.2576*L3-0.1941*L4-0.0844*L5 L7 sex M 0.2571*L2+0.2576*L3+0.1941*L4+0.0844*L5 -L7 Type II Estimable Functions ---Coefficients---- Effect age2 sex Intercept 0 0 age2 1 L2 0 age2 2 L3 0 age2 3 L4 0 age2 4 L5 0 age2 5 -L2-L3-L4-L5 0 sex F 0 L7 sex M 0 -L7 Type III Estimable Functions ---Coefficients---- Effect age2 sex Intercept 0 0 age2 1 L2 0 age2 2 L3 0 age2 3 L4 0 age2 4 L5 0 age2 5 -L2-L3-L4-L5 0 sex F 0 L7 sex M 0 -L7 Dependent Variable: flc Sum of Source DF Squares Mean Square F Value Model 5 2212.13649 442.42730 142.60 Error 7868 24411.92003 3.10268 Corrected Total 7873 26624.05652 Source DF Type I SS Mean Square F Value age2 4 1929.642183 482.410546 155.48 sex 1 282.494304 282.494304 91.05 Source DF Type II SS Mean Square F Value age2 4 2069.943424 517.485856 166.79 sex 1 282.494304 282.494304 91.05 Source DF Type III SS Mean Square F Value age2 4 2069.943424 517.485856 166.79 sex 1 282.494304 282.494304 91.05 Standard Parameter Estimate Error t Value Pr > |t| Intercept 5.503757546 B 0.17553667 31.35 <.0001 age2 1 -2.587424744 B 0.17584961 -14.71 <.0001 age2 2 -2.249164537 B 0.17684133 -12.72 <.0001 age2 3 -1.770342603 B 0.17834253 -9.93 <.0001 age2 4 -1.082104827 B 0.18584656 -5.82 <.0001 age2 5 0.000000000 B sex F -0.383454133 B 0.04018624 -9.54 <.0001 sex M 0.000000000 B \end{verbatim} \normalsize The third linear models fit, containing interactions. For first portion I have trimmed off long printout on the right, i.e. the estimable functions for the age2*sex effect since they are not of interest. \small \begin{verbatim} Type I Estimable Functions --------------------Coefficients-------- Effect sex age2 Intercept 0 0 sex F L2 0 sex M -L2 0 age2 1 -0.0499*L2 L4 age2 2 -0.0373*L2 L5 age2 3 0.0269*L2 L6 age2 4 0.0482*L2 L7 age2 5 0.0121*L2 -L4-L5-L6-L7 sex*age2 F 1 0.3786*L2 0.6271*L4+0.1056*L5+0.0796*L6+0.0346*L7 sex*age2 F 2 0.2791*L2 0.0778*L4+0.5992*L5+0.0587*L6+0.0255*L7 sex*age2 F 3 0.2182*L2 0.0527*L4+0.0528*L5+0.6245*L6+0.0173*L7 sex*age2 F 4 0.1055*L2 0.0188*L4+0.0188*L5+0.0142*L6+0.7006*L7 sex*age2 F 5 0.0186*L2 -0.7764*L4-0.7764*L5-0.777*L6-0.7781*L7 sex*age2 M 1 -0.4285*L2 0.3729*L4-0.1056*L5-0.0796*L6-0.0346*L7 sex*age2 M 2 -0.3164*L2 -0.0778*L4+0.4008*L5-0.0587*L6-0.0255*L7 sex*age2 M 3 -0.1913*L2 -0.0527*L4-0.0528*L5+0.3755*L6-0.0173*L7 sex*age2 M 4 -0.0573*L2 -0.0188*L4-0.0188*L5-0.0142*L6+0.2994*L7 sex*age2 M 5 -0.0065*L2 -0.2236*L4-0.2236*L5-0.223*L6-0.2219*L7 Type II Estimable Functions --------------------Coefficients--------------------- Effect sex age2 Intercept 0 0 sex F L2 0 sex M -L2 0 age2 1 0 L4 age2 2 0 L5 age2 3 0 L6 age2 4 0 L7 age2 5 0 -L4-L5-L6-L7 sex*age2 F 1 0.41*L2 0.6271*L4+0.1056*L5+0.0796*L6+0.0346*L7 sex*age2 F 2 0.3025*L2 0.0778*L4+0.5992*L5+0.0587*L6+0.0255*L7 sex*age2 F 3 0.2051*L2 0.0527*L4+0.0528*L5+0.6245*L6+0.0173*L7 sex*age2 F 4 0.073*L2 0.0188*L4+0.0188*L5+0.0142*L6+0.7006*L7 sex*age2 F 5 0.0093*L2 -0.7764*L4-0.7764*L5-0.777*L6-0.7781*L7 sex*age2 M 1 -0.41*L2 0.3729*L4-0.1056*L5-0.0796*L6-0.0346*L7 sex*age2 M 2 -0.3025*L2 -0.0778*L4+0.4008*L5-0.0587*L6-0.0255*L7 sex*age2 M 3 -0.2051*L2 -0.0527*L4-0.0528*L5+0.3755*L6-0.0173*L7 sex*age2 M 4 -0.073*L2 -0.0188*L4-0.0188*L5-0.0142*L6+0.2994*L7 sex*age2 M 5 -0.0093*L2 -0.2236*L4-0.2236*L5-0.223*L6-0.2219*L7 Type III Estimable Functions ---------------------Coefficients--------------------- Effect sex age2 sex*age2 Intercept 0 0 0 sex F L2 0 0 sex M -L2 0 0 age2 1 0 L4 0 age2 2 0 L5 0 age2 3 0 L6 0 age2 4 0 L7 0 age2 5 0 -L4-L5-L6-L7 0 sex*age2 F 1 0.2*L2 0.5*L4 L9 sex*age2 F 2 0.2*L2 0.5*L5 L10 sex*age2 F 3 0.2*L2 0.5*L6 L11 sex*age2 F 4 0.2*L2 0.5*L7 L12 sex*age2 F 5 0.2*L2 -0.5*L4-0.5*L5-0.5*L6-0.5*L7 -L9-L10-L11-L12 sex*age2 M 1 -0.2*L2 0.5*L4 -L9 sex*age2 M 2 -0.2*L2 0.5*L5 -L10 sex*age2 M 3 -0.2*L2 0.5*L6 -L11 sex*age2 M 4 -0.2*L2 0.5*L7 -L12 sex*age2 M 5 -0.2*L2 -0.5*L4-0.5*L5-0.5*L6-0.5*L7 L9+L10+L11+L12 Source DF Type I SS Mean Square F Value sex 1 142.193063 142.193063 45.97 age2 4 2069.943424 517.485856 167.30 sex*age2 4 87.218363 21.804591 7.05 Source DF Type II SS Mean Square F Value sex 1 282.494304 282.494304 91.33 age2 4 2069.943424 517.485856 167.30 sex*age2 4 87.218363 21.804591 7.05 Source DF Type III SS Mean Square F Value sex 1 126.961986 126.961986 41.05 age2 4 1999.446491 499.861623 161.60 sex*age2 4 87.218363 21.804591 7.05 Standard Parameter Estimate Error t Value Pr > |t| yates -0.58972607 0.09204824 -6.41 <.0001 Standard Parameter Estimate Error t Value Pr > |t| Intercept 6.003043478 B 0.36672295 16.37 <.0001 sex F -1.024512614 B 0.41553944 -2.47 0.0137 sex M 0.000000000 B age2 1 -3.176876326 B 0.36950532 -8.60 <.0001 age2 2 -2.787597918 B 0.37048599 -7.52 <.0001 age2 3 -2.088127335 B 0.37292760 -5.60 <.0001 age2 4 -1.353746449 B 0.38703805 -3.50 0.0005 age2 5 0.000000000 B sex*age2 F 1 0.813889663 B 0.42023749 1.94 0.0528 sex*age2 F 2 0.716160958 B 0.42189464 1.70 0.0896 sex*age2 F 3 0.330651265 B 0.42487846 0.78 0.4365 sex*age2 F 4 0.313230835 B 0.44127621 0.71 0.4778 sex*age2 F 5 0.000000000 B sex*age2 M 1 0.000000000 B sex*age2 M 2 0.000000000 B sex*age2 M 3 0.000000000 B sex*age2 M 4 0.000000000 B sex*age2 M 5 0.000000000 B \end{verbatim} \normalsize The phreg printout for the additive model with age and sex. \small \begin{verbatim} Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 2357.5239 5 <.0001 Score 3823.3905 5 <.0001 Wald 2374.5250 5 <.0001 Type 3 Tests Wald Effect DF Chi-Square Pr > ChiSq sex 1 69.9646 <.0001 age2 4 2374.5211 <.0001 Analysis of Maximum Likelihood Estimates Parameter Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq sex F 1 -0.36617 0.04378 69.9646 <.0001 age2 1 1 -4.18209 0.12180 1179.0289 <.0001 age2 2 1 -3.23859 0.11418 804.5068 <.0001 age2 3 1 -2.17521 0.10963 393.6524 <.0001 age2 4 1 -1.15226 0.11072 108.3077 <.0001 \end{verbatim} \normalsize The model with age*sex interaction. \small \begin{verbatim} Model Fit Statistics Without With Criterion Covariates Covariates -2 LOG L 37736.900 35374.050 AIC 37736.900 35392.050 SBC 37736.900 35443.188 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 2362.8497 9 <.0001 Score 3873.5113 9 <.0001 Wald 2357.9498 9 <.0001 Type 3 Tests LR Statistics Effect DF Chi-Square Pr > ChiSq sex 1 0.4607 0.4973 age2 4 932.1371 <.0001 sex*age2 4 5.3258 0.2555 Score Statistics Effect DF Chi-Square Pr > ChiSq sex 1 0.4757 0.4904 age2 4 1506.8699 <.0001 sex*age2 4 5.2516 0.2624 Wald Statistics Effect DF Chi-Square Pr > ChiSq sex 1 0.4833 0.4869 age2 4 964.6007 <.0001 sex*age2 4 5.2322 0.2643 Analysis of Maximum Likelihood Estimates Parameter Standard Parameter DF Estimate Error Chi-Square sex F 1 -0.16537 0.23789 0.4833 age2 1 1 -4.02699 0.22585 317.9171 age2 2 1 -3.04796 0.21843 194.7187 age2 3 1 -1.99577 0.21577 85.5504 age2 4 1 -1.10659 0.22256 24.7216 sex*age2 F 1 1 -0.21121 0.26896 0.6167 sex*age2 F 2 1 -0.29334 0.25518 1.3214 sex*age2 F 3 1 -0.25663 0.24829 1.0684 sex*age2 F 4 1 -0.04339 0.25527 0.0289 Contrast DF Chi-Square Pr > ChiSq NSTT sex 1 0.4833 0.4869 NSTT age 4 964.6007 <.0001 Likelihood Ratio Statistics for Type 1 Analysis LR Source -2 Log L DF Chi-Square Pr > ChiSq (Without Covariates) 37736.8997 sex 37733.0932 1 3.8066 0.0511 age2 35379.3758 4 2353.7173 <.0001 sex*age2 35374.0501 4 5.3258 0.2555 Standard Label Estimate Error z Value Pr > |z| Yates -0.3263 0.06149 -5.31 <.0001 \end{verbatim} \normalsize \begin{thebibliography}{9} \bibitem{Aitkin78} M. Aitkin (1978). The analysis of unbalanced cross classifications (with discussion). \emph{J Royal Stat Soc A} 141:195-223. \bibitem{Dispenzieri12} A. Dispenzieri, J. Katzmann, R. Kyle, D. Larson, T. Therneau, C. Colby, R. Clark, .G Mead, S. Kumar, L..J Melton III and S.V. Rajkumar (2012). Use of monoclonal serum immunoglobulin free light chains to predict overall survival in the general population, \emph{Mayo Clinic Proc} 87:512--523. \bibitem{Herr86} D. G. Herr (1986). On the History of ANOVA in Unbalanced, Factorial Designs: The First 30 Years. \emph{Amer Statistician} 40:265-270. \bibitem{Kyle06} R. Kyle, T. Therneau, S.V. Rajkumar, D. Larson, M. Plevak, J. Offord, A. Dispenzieri, J. Katzmann, and L.J. Melton, III (2006), Prevalence of monoclonal gammopathy of undetermined significance, \emph{New England J Medicine} 354:1362--1369. \bibitem{Macnaughton92} D. B. Macnaughton (1992). Which sum of squares are best in an unbalanced analysis of variance. www.matstat.com/ss. \bibitem{Nelder77} J. Nelder (1977). A reformulation of linear models (with discussion). \emph{J Royal Stat Soc A} 140:48--76. \bibitem{SASguide} SAS Institute Inc. (2008), The four types of estimable functions. SAS/STAT 9.2 User's Guide, chapter 15. \bibitem{Searle71} S. R. Searle, \emph{Linear Models}, Wiley, New York, 1971. \bibitem{Senn1} S. Senn. Multi-centre trials and the finally decisive argument. www.senns.demon.co.uk/wprose.html\#FDA. \bibitem{Senn2} S. Senn. Good mixed centre practice. www.senns.demon.co.uk/wprose.html\#Mixed. \bibitem{Senn07} S. Senn. Statistical Issues in Drug Development, Wiley, New York, 2007. \bibitem{Senn00} S. Senn. The many modes of meta. Drug Information J 34:535-549, 2000. \bibitem{Therneau00} T. M. Therneau and P. M. Grambsch, \emph{Modeling Survival Data: Extending the Cox Model}, Springer-Verlag, New York, 2000. \bibitem{Yates34} F. Yates (1934). The analysis of multiple classifications with unequal numbers in the different classes. \emph{J Am Stat Assoc}, 29:51--66. \end{thebibliography} \end{document} survival/vignettes/timedep.Rnw0000644000176000001440000004163712267746072016334 0ustar ripleyusers\documentclass{article} \usepackage{amsmath} \usepackage{Sweave} \addtolength{\textwidth}{1in} \addtolength{\oddsidemargin}{-.5in} \setlength{\evensidemargin}{\oddsidemargin} %\VignetteIndexEntry{Using Time Dependent Covariates} \title{Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model} \author{Terry Therneau \and Cindy Crowson\\ Mayo Clinic} \begin{document} \maketitle \SweaveOpts{keep.source=TRUE} <>= options(width=60, continue=" ") makefig <- function(file, top=1, right=1, left=4) { pdf(file, width=9.5, height=7, pointsize=18) par(mar=c(4, left, top, right) +.1) } library(survival) @ \section{Introduction} One of the strengths of the Cox model is its ability to encompass covariates that change over time, due to the theoretical foundation in martigales. A \emph{martingale} (original definition) is a betting strategy in games of chance. One of the simplest and best known is doubling the bet each time you lose. For instance consider the following game of roulette: \begin{equation*} \begin{tabular}{rcc|c} Bet & Outcome & Win & Running total \\ \hline R \$1 & Red & 2 & 1 \\ &&&\\ R \$1 & Black & 0 & 0 \\ R \$2 & Black & 0 & -2 \\ B \$4 & Red & 0 & -6 \\ R \$8 & Black & 0 & -14 \\ B \$16& Black & 32 & 2 \\ &&&\\ B \$1 & Red & 0 & 1 \\ B \$2 & Black & 4 & 3 \\&&&\\ \vdots & \vdots & \vdots &\vdots \end{tabular} \end{equation*} At the end of each cycle of bets the player is another \$1 ahead. The problem is that a modest sequence of losses will exhaust their stake. The rule for time dependent covariates in a Cox model is simple and essentially the same as that for gambling: you cannot look into the future. A covariate may change in any way based on past data or outcomes, but it may not reach ``forward'' in time. One of the more well known examples of this error is analysis by response: at the end of a trial a survival curve is made comparing those who had an early response to treatment (shrinkage of tumor, lowering of cholesterol, or whatever), and it discovered that response predicts survival. The problem arises because subjects are classified as responders or non-responders from the beginning of the study, i.e., they are placed into group A or B before the response has occurred. As a consequence, any early deaths that occur before response can be assessed will be assigned to the non-responder group, even deaths that have nothing to do with the condition under study. There are many variations on the error: interpolation of the values of a laboratory test linearly between observation times, removing subjects who do not finish the treatment plan, imputing the date of an adverse event midway between observation times, etc. All of these are similar to running a red light in your car: disaster is not guarranteed --- but it is likely. The most common way to encode time-dependent covariates is to use the (start, stop] form of the model. <>= fit <- coxph(Surv(time1, time2, status) ~ age + creatinine, data=mydata) @ In this data set a patient might have the following observations \begin{center} \begin{tabular}{ccccccc} subject & time1 & time2 & status & age & creatinine & \ldots \\ \hline 1 & 0 & 15 & 0 & 25 & 1.3 \\ 1 & 15& 46 & 0 & 25 & 1.5 \\ 1 & 46& 73 & 0 & 25 & 1.4 \\ 1 & 73& 100& 1 & 25 & 1.6 \\ \end{tabular} \end{center} In this case the variable \emph{age} = age at entry to the study stays the same from line to line, while the value of creatinine varies and is treated as 1.3 over the interval $(0, 15]$, 1.5 over $(15, 46]$, etc. The intervals are open on the left and closed on the right, which means that the creatinine is taken to be 1.3 on day 15. The status variable describes whether or not each interval ended in an event. One commmon question with this data setup is whether we need to worry about correlated data, since a given subject has multiple observations. The answer is no, we do not. The reason is that this representation is simply a bookkeeping trick; the likelihood equations at any time point use only one copy of any subject, the program picks out the correct row of data at any given time. There are two exceptions to this rule, in which case the cluster variance is necessary: \begin{itemize} \item When subjects have multiple events. \item When a subject appears in overlapping intervals. This however is almost always a data error, since it corresponds to two copies of the subject being present at the same time, e.g., they could meet themselves on the sidewalk. \end{itemize} \section{Examples} \subsection{Multiple events} Chronic granulomatous disease (CGD) is a heterogenous group of uncommon inherited disorders characterized by recurrent pyogenic infections that usually begin early in life and may lead to death in childhood. Interferon gamma is a principal macrophage-activating factor shown to partially correct the metabolic defect in phagocytes. It was hypothesized that treatment with interferon might reduce the frequency of serious infections in patients with CGD. In 1986, Genentech, Inc. conducted a randomized, double-blind, placebo-controlled trial in 128 CGD patients who received Genentech's humanized interferon gamma (rIFN-g) or placebo three %' times daily for a year. The primary endpoint of the study was the time to the first serious infection. However, data were collected on all serious infections until the end of followup, which occurred before day 400 for most patients. Thirty of the 65 patients in the placebo group and 14 of the 63 patients in the rIFN-g group had at least one serious infection. The total number of infections was 56 and 20 in the placebo and treatment groups, respectively. One patient was taken off on the day of his last infection; all others have some followup after their last episode. Below are the first 10 observations, but with the listing truncatated beyond the fourth infection. Subject 2 has 7 infections, no one in the study has more. \small\begin{verbatim} 1 204 082888 1 2 12 147.0 62.0 2 2 2 2 414 219 373 2 204 082888 0 1 15 159.0 47.5 2 2 1 2 439 8 26 152 241 249 322 350 3 204 082988 1 1 19 171.0 72.7 1 2 1 2 382 4 204 091388 1 1 12 142.0 34.0 1 2 1 2 388 5 238 092888 0 1 17 162.5 52.7 1 2 1 1 383 246 253 6 245 093088 1 2 44 153.3 45.0 2 2 2 2 364 7 245 093088 0 1 22 175.0 59.7 1 2 1 2 364 292 8 245 093088 1 1 7 111.0 17.4 1 2 1 2 363 9 238 100488 0 1 27 176.0 82.8 2 2 1 1 349 294 10 238 100488 1 1 5 113.0 19.5 1 2 1 1 371 \end{verbatim} \normalsize The data set \texttt{cgd} is included in the survival package. Below we list the first few observations of that data set: <<>>= cgd[1:10, c("id", "tstart", "tstop", "status", "enum", "treat")] cfit <- coxph(Surv(tstart, tstop, status) ~ treat + sex + age + inherit + cluster(id), data=cgd) @ The logic for creating the time variables is \begin{itemize} \item If a subject has no events there is a single interval from 0 to last follow-up, with a status of 0. \item If there are events \begin{itemize} \item There is an interval for each event (0, event1], (event1, event2], etc. each with status =1. \item If the follow-up time exceeds the last event there will be a final interval with status =0. \end{itemize} \item The enum variable is simply 1,2,\ldots for each subject. It often proves useful in analysis, for instance \texttt{subset=(enum==1)} within a model restricts analysis to the first event for each subject. \end{itemize} \subsection{Changing lab tests} To be filled in. \subsection{Predictable time-dependent covariates} Occasionaly one has a time-dependent covariate whose values in the future are predictable. The most obvious of these is patient age, occasionally this may also be true for the cumulative dose of a drug. If age is entered as a linear term in the model, then the effect of changing age can be ignored in a Cox model, due to the structure of the partial likelihood. Assume that subject $i$ has an event at time $t_i$, with other subject $j \in R_i$ at risk at that time, with $a$ denoting age. The partial likelihood term is \begin{equation*} \frac{e^{\beta * a_i}}{\sum_{j \in R_i} e^{\beta* a_j}} = \frac{e^{\beta * (a_i + t_i)}}{\sum_{j \in R_i} e^{\beta* (a_j + t_i)}} \end{equation*} We see that using time-dependent age (the right hand version) or age at baseline (left hand), the partial likelihood term is identical since $\exp(\beta t_i)$ cancels out of the fraction. Howevever, if the effect of age on risk is \emph{non-linear}, this cancellation does not occur. Since age changes continuously, we would in theory need a very large (start, stop] data set to completely capture the effect --- an interval per day to match the usual resolution for death times. In practice this level of resolution is not necessary; though we all grow older, risk does not increase so rapidly that we need to know out age to the day! For most medical applications year is sufficient, but this still leads to a large data set. One useful way to generate this data set is through use of the \texttt{pyears} function. The following example uses data on rehospitalization for cohort of rheumatoid arthritis patients who also have conjestive heart failure (CHF)\cite{Nicola05}. The variables are \begin{itemize} \item patid: patient identifier \item agechf: age at onset of CHF \item yearchf calendar year of CHF, relative to the start of the study \item startday, stopday: an interval of risk \item hospevt: =1 if the interval ends with a hospitalization \item prevhosp: number of prior hosptializations \item duration: duration of RA prior to CHF \item male sex: 1 for male, 0 for female \end{itemize} The age and duration variables have been rounded to .1 year to maintain patient privacy. <<>>= load('raheart.rda') age2 <- tcut(raheart$agechf*365.25, 0:110* 365.25, labels=0:109) rowid <- 1:nrow(raheart) pfit <- pyears(Surv(startday, stopday, hospevt) ~ age2 + rowid, data=raheart, data.frame=TRUE, scale=1) print(pfit$offtable) pdata <- pfit$data print(pdata[1:6,]) @ The \texttt{tcut} function attaches a set of cutpoints to the starting age for each subject, it's primary job is to mark the variable as time-increasing%' for the \texttt{pyears} function. In the \texttt{pyears} call we set scale=1 to prevent the age intervals from being rescaled to years, this is not critical. Printing out the value of offtable is important, however. One of them most common mistakes in using \texttt{pyears} is mismatched scales, for instance if the age were in years and the follow-up time in days, and a common result of that error is to have follow-up time that fits into none of the categories. This will give a large amount of time that is outside the boundaries of the table. In the resulting data frame the first observation has 7 days of follow-up, exactly as in the starting data. The second observation has been broken into 4 rows, 109.6 days at age 92, then a year each at age 93 and 94, and a final 234.9 days at age 95 ending with a hospitalization. (The odd fractions of a day like .575 are a consequence of rounding the age values to 1 digit.) Now we combine this with the original data set using the same indexing trick found in the first example. We also need a variable containing the end time for the prior row of each subject and zero for the first row of each subject, which is \texttt{lagtime} below. We then fit two models. The first looks at the effect of age at diagnosis of CHF, the second at the effect of current age. <<>>= index <- as.integer(pdata$rowid) lagtime <- c(0, pdata$pyears[-nrow(pdata)]) lagtime[1+ which(diff(index)==0)] <- 0 #starts at 0 for each subject temp <- raheart$startday[index] + lagtime #start of each new interval data2 <- data.frame(raheart[index,], time1= temp, time2= temp + pdata$pyears, event= pdata$event, age2= 1+ as.numeric(pdata$age2) ) afit1 <- coxph(Surv(startday, stopday, hospevt) ~ male + pspline(agechf), data=raheart) afit2 <- coxph(Surv(time1, time2, event) ~ male + pspline(age2), data2) #termplot(afit1, terms=2, se=TRUE, xlab="Age at Diagnosis of CHF") #termplot(afit2, terms=2, se=TRUE, xlab="Current Age") table(with(raheart, tapply(hospevt, patid, sum))) @ In this particular case the two fits are quite similar. In retrospect this perhaps should have been expected: the mean age for onset of CHF in this group is 75 years, which does leave a lot of time for aging. (This analysis is very preliminary, however. As shown by the last line above there are a few patients with a very large number of admissions, sometimes referred to as ``entering a revolving door'' near the end of their disease. These have an untoward influence on the fit.) \subsection{Predictable covariates, method 2} Another method to create a time-changing covariate is to use the \emph{time-transform} feature of coxph. <<>>= afit2b <- coxph(Surv(startday, stopday, hospevt) ~ male + tt(agechf), data=raheart, tt=function(x, t, ...) pspline(x + t/365.25)) afit2b @ If there are one or more terms on the right hand side of the equation marked with the tt() operator, the program will pre-compute the values of that variable for each unique event time and strata combination. A user-defined function is called with arguments of \begin{itemize} \item the covariate: whatever is inside the tt() call \item the event time \item the event number: if there are multiple strata and the same event time occurs in two of them, they are treated separately \item the weight for the observation, if the call used weights \end{itemize} There is a single call to the function with a very large $x$ vector, it contains an element for each subject at risk at each event time. If there are multiple tt() terms in the formula, then the tt argument should be a list of functions with the requisite number of elements. There are other interesting uses for the time-transform capability. One example is O'Brien's logit-rank test procedure \cite{obrien78}. He proposed replacing the covariate at each event time with a logit transform of its ranks. This removes the influence of any outliers in the predictor $x$. For this case we ingore the event time argument and concentrate on the groupings. <<>>= function(x, t, riskset, weights){ obrien <- function(x) { r <- rank(x) (r-.5)/(.5+length(r)-r) } unlist(tapply(x, riskset, obrien)) } @ This relies on the fact that the input argments to tt() are ordered by the event number or riskset. This function is used as a default if no tt argument is present in the coxph call, but there are tt terms in the model formula. (Doing so allowed me to depreciate the survobrien function). Another interesting useage is to replace the data by simple ranks, not rescaled to 0--1. <<>>= function(x, t, riskset, weights) unlist(tapply(x, riskset, rank)) @ The score statistic for this model is $(C-D)/2$, where $C$ and $D$ are the number of concordant and discordant pairs, see the survConcordance function. The score statistic from this fit is then a test for significance of the concordance statistics, and is in fact the basis for the standard error reported by survConcordance. The O'Brien test can be viewed as concordance statistic that gives equal %' weight to each event time, whereas the standard concordance weights each event proportionally to the size of the risk set. (The Cox score statistic depends on the mean $x$ at each event time; since ranks go from 1 to number at risk the mean also scales.) Although handy, the computational impact of the tt argument should be considered before using it. The Cox model requires computation of a weighted mean and variance of the covariates at each event time, a process that is inherently $O(ndp^2)$ where $n$ = the sample size, $d$ = the number of events and $p$= the number of covariates. Much of the algorithmic effort in coxph() is to use updating methods for the mean and variance matrices, reducing the compute time to $O((n+d) p^2)$. When a tt term appears updating is not possible; for even moderate size data sets the impact of $nd$ versus $n+d$ can be surprising. The time-transform is a new addition and still has some rough edges. At this moment the $x=T$ argment is needed to get proper residuals and predicted values, and termplot is unable to properly reconstruct the data to plot the spline fit. Please communicate any concerns or interesting examples to the author. \begin{thebibliography}{9} \bibitem{Nicola05} Nicola PJ, Maradit-Kremers H, Roger VL, Jacobsen SJ, Crowson CS, Ballman KV, Gabriel SE. ``The risk of Congestive Heart Failure in Rheumatoid Arthritis: a Population-Based Study Over 46 Years.'' \emph{Arthritis Rheum} 52: 412--20, 2005. \bibitem{obrien78} O'Brien, Peter, ``A non-parametric test for %' association with censored data'', \emph{Biometrics} 34:243--250, 1978. \end{thebibliography} \end{document} survival/MD50000644000176000001440000005654512267773255012524 0ustar ripleyusersc8580cbd1325b9c425facded21a52256 *DESCRIPTION b8d55830bfb9432bad611b56767092ec *NAMESPACE 560a44987824f6e66d262cd7769043b3 *R/Surv.S 848a740b51619bdc8e5034a7ea9a7b06 *R/aareg.S a26f9318fb9a228e853b9866d32d357b *R/aareg.taper.S 72151182c9fb04b80ea80c28a4f36678 *R/agexact.fit.S 72d7723af15ae7ee5700acc5490c74b7 *R/agreg.fit.R 4826a97a83569aca54db83965287aa59 *R/agsurv.R 53bf1e7bcad73c5f2d70e48b5de2e42c *R/anova.coxmelist.R e42d7b065e6ce16285f57a1032fb29f1 *R/anova.coxph.S b5be999f2e195c7a748d432e71d67740 *R/anova.coxphlist.S 8237686fa79b6bf3ff03ec782fc5dc5e *R/anova.survreg.S 7856c6137a3d3023dda747ea469b5d98 *R/anova.survreglist.S 6dc7b000fee7e32406b724d229fe0963 *R/attrassign.R c36af0de7875ba8e4038bf0005733200 *R/basehaz.S a488cb2b18dfe7287ff08fcda804b2c1 *R/cch.R 0c12e9ad01ae7c779acd5c3845e22fa4 *R/clogit.R 142abff209b16e6fb74a2962442ffc34 *R/cluster.S 4c7d0e4603ae92371c661ce81719f784 *R/cox.zph.S b55fb46abffd7f03253df009774fdc40 *R/coxexact.fit.R 94e49b45d947935252dac8935c85b14f *R/coxpenal.df.S ae5c254fd02174a5a0691464c350fc72 *R/coxpenal.fit.R 9787d6bf479817322bdef6f2ff4fce29 *R/coxph.R a848bd9479ee599ee235564866426856 *R/coxph.control.S 825f51df4b58383403d35e6535e9511c *R/coxph.detail.S fec4aff2461f7b5f2294ad72ef3d6a98 *R/coxph.fit.S 7c75397f3efcb4523f2c42f788909415 *R/coxph.getdata.S 20f3906a0bccd1ccdd8f5d029842b933 *R/coxph.rvar.S c9f7c0d4082bfeea68ab13390163a801 *R/coxph.wtest.S 7f0a427c669fdd31d7c578defab7bfe6 *R/dsurvreg.S 6b475e44b669665e6a61e4c5db3134b4 *R/firstlib.R ced58130057fb8cfb6e6dee4ba2a6d9c *R/format.Surv.S f205c222671ea50fd55a03bc7a037fef *R/frailty.S ef7a10d0a2ad7db3e2e224af7be6407e *R/frailty.brent.S 7cca60337c2d4a1a7eec68a5b8d1efa0 *R/frailty.controlaic.S dda96a5c22e785c06f1ba4e40f194e98 *R/frailty.controldf.S 6bc29d2e848783a072d0211a720f268f *R/frailty.controlgam.S 6324136e380c460e8393cbb8cdc6aee2 *R/frailty.controlgauss.S 54f3aac7e05273465a28c4d5f42b2b18 *R/frailty.gamma.S 64e1bf86fe45b92f26ab1a87fbbf8d86 *R/frailty.gammacon.S ff894f1b319bd0a86cbdd128f7f26a8a *R/frailty.gaussian.S d82aa79b3bfb74262307950b891c8813 *R/frailty.t.S 1bc2b7f9b1220c242b86cd1a678a87ed *R/is.na.coxph.penalty.S f4f940abf9c458cba75275e692dc42f9 *R/is.ratetable.S 392d2f367e5d2122cb375ec6043ab70e *R/labels.survreg.S 3b2e2ddba169ba87bc21830937a974fb *R/lines.aareg.S 612d578cc5306fa3814ecdc28a9005bd *R/lines.survexp.R 009724b24c5d4d0d76bcb05af737d768 *R/lines.survfit.coxph.S 924b740f2eafec91b69888080f808390 *R/logLik.coxph.R 6ece03d217744a11b9c54aa44678be39 *R/match.ratetable.S d2c3f236a60669287d1fb2903e09b6e4 *R/model.frame.survreg.R 3f2cf73eb9c5f8bbf6c63a9b4a74d090 *R/model.matrix.coxph.R 5220681f176b87fb822910dea854ccf4 *R/plot.aareg.S bbc7b13d91874c741e88b7cdb761aa5a *R/plot.cox.zph.S 154e569c638afb6d0acc86b9b53b07cb *R/plot.survfit.R e9a3b797eced2c1e269467c1122b5d24 *R/predict.coxph.R 81cb6184133a24d2847372f9b7d3ed2e *R/predict.coxph.penal.S 88a947c3450372ff0b88fd297554ce64 *R/predict.survreg.S a2e60c0b4dd9667bcfbac613c929b42c *R/predict.survreg.penal.S 0fc5144be00eb21a280b70f20c838059 *R/print.aareg.S 8461a7c791de9aada7042baa2d38d8cb *R/print.cox.zph.S 963feffb1f9b3d6f20f33c0bb7aa6e9d *R/print.coxph.S 9bc844ff207051b2c422f17cfb026981 *R/print.coxph.null.S 6756bec1e39a398c3d569920243729a4 *R/print.coxph.penal.S 25a86a66dc6c0368fed1b2e08e06077a *R/print.ratetable.S ca984c0db2ff9e49318196c40d886132 *R/print.summary.coxph.S f2c7167b0f776720297a1795b1480c27 *R/print.summary.coxph.penal.S 9c95a9f26c9558957f2cc1d3e72670a9 *R/print.summary.survexp.R 846e4aef16fed996932dfbc74cdfdd53 *R/print.summary.survfit.S 1eaafd715653296ccfef0ab767530aa6 *R/print.summary.survfitms.S 9b2e9bbd868a2be98b5ef26a047bf325 *R/print.summary.survreg.S f1d3364c489cb576053e435e25e67293 *R/print.survdiff.S 225ca0253d3abf63803eb6f02abe2e6b *R/print.survexp.S 1627553197356e7f026086e5d6bbdaa3 *R/print.survfit.S 2dcf8bc5145fc06b103501a956aa2e46 *R/print.survreg.S f369c58c809bd437f1dfc0b48b3309b0 *R/print.survreg.penal.S e728275ec749c9807e4dffb3cacc6fe0 *R/pspline.S ffaabe61741c736b21b902ac62af0176 *R/pyears.R 641b5fefe304689647a4351ae179ecea *R/quantile.survfit.R 61397677849f2c0e28441a368eac37a0 *R/ratetable.S add8e58326eb43b15a1556072010e8b2 *R/ratetableDate.S f68ee67a9af4a171b8d61a67f0b0ca6e *R/residuals.coxph.S 871dc4bdd8fc9c0528e9c794498afcab *R/residuals.coxph.null.S 71bb8b32a975d5add7bff7d5963c8ea2 *R/residuals.coxph.penal.S 2fd47c2f8d06e28759406cdf7d3dbe11 *R/residuals.survreg.S 11fdb8e8cd941eb3aa184f718bd42e9c *R/residuals.survreg.penal.S 5a28f06bc0463f5278e17e894b5bbc78 *R/ridge.S e264ecfeaf428c912a146ead3d700080 *R/strata.S d8021596430ad6d8bade6e35211275ba *R/summary.aareg.S 25fbcd4b51c0eef104707aacb4a9e101 *R/summary.coxph.S 5f290ff689b07cdeccbbe8645d6fa9a1 *R/summary.coxph.penal.S 27aefdb42d66a7372a60777eab9edf96 *R/summary.pyears.S 4ebb40b14afa1c9bb3e58eacd035a7ba *R/summary.ratetable.S 5c340d79d336b2033f2287b104bfffd8 *R/summary.survexp.R 0fc45b79bd04cf97339d3ac394f75a8b *R/summary.survreg.S c364ecc1455cee692df6721ba97bd722 *R/survConcordance.R 68de49d24e8240588682fe239676a8af *R/survConcordance.fit.R 95ade50e151fc04e05b976564478aabc *R/survSplit.R bc393f42ff473330532bbdbf046ea772 *R/survcallback.S 6650fff9fe077bfcb2ac66ce65662cf2 *R/survdiff.S 5ec97f1eedfa55ca01bab8410d58911b *R/survdiff.fit.S 49738f53db61915a9fbba378105ecfd8 *R/survexp.R 64a2f062e53fc7b6f5607f6ef6b94e89 *R/survexp.cfit.R 4a93009dfabeb1b4a30b498366249447 *R/survexp.fit.S 7f1d4fa83234c8b3ababfb57222d3f64 *R/survfit.R 1647b2f5e4e57e70ba6df07324feaed0 *R/survfit.coxph.R 7ace25a5329d25d67d0c515a63c7a15b *R/survfit.formula.S a19044334395a5071d9b771c56400ff0 *R/survfitCI.R 09d44fb8e4534d995e6639369ab29f38 *R/survfitKM.S c4bab50b9e5a1c51f0099a78de5414c8 *R/survfitTurnbull.S 04d961b0116345a1034a9dedbdc2f41c *R/survfitcoxph.fit.R e002e37aa76ae82199587ff651fcde0a *R/survfitms.R b1d5fc4d279b1b7c0af57b7bf175eb3f *R/survobrien.S 188bd1ef59103923afae70558b2dee74 *R/survpenal.fit.S c2cefe8fa7df7466795875fa3a109fe8 *R/survreg.S 96e65ede62cf0161f2577850b8c57414 *R/survreg.control.S 27bccd1c4b655868f4c34e0be917a020 *R/survreg.distributions.S 5278513267fb4901094f5598794eefb7 *R/survreg.fit.S 51bd3294bab1756e788db689df0fa2b6 *R/survreg.old.S 375b8fcc554efd161bef4d1973d7dbef *R/survregDtest.S f6e87aefd92c42187a712da10dbde894 *R/tcut.S 102c30cb668d65064e71f8cf523022c7 *R/untangle.specials.S 95efc68857721020091417f20a49cabd *R/xtras.R 1caeb59edafb9a772310c20d093ba2e8 *build/vignette.rds ba8f4bf4656d05f12e3e66649318f52d *data/bladder.rda e458ee36a24bd3de07fe2c43502ca199 *data/cancer.rda b1d9d7dd1abc066b3a32989627b00927 *data/cgd.rda 81cbcf099abf5f0cbea248e0012b483c *data/colon.rda f2d86f390134cd16f53cc7dbe5096602 *data/datalist 8506dffe31d64e1b4b7fd34f41c88b59 *data/flchain.rda e6b0243c6add347247c4e1951e4d68d8 *data/heart.rda e47ae2309aa65a01f505b5d342da6026 *data/kidney.rda 020b59a7c604dd2499832e1b56a7bc33 *data/leukemia.rda 7b14acde4513dba5ddf30bf676500a1d *data/logan.rda ccec4c290e88d1d537995b013f6f7644 *data/lung.rda 27010563bd2086dc413f12c2be7cbd29 *data/mgus.rda 6473af5d92183e8533ad71464faea559 *data/nwtco.rda 8be83b7a11250a3af21d170f8161aafd *data/ovarian.rda 640a93d6e0bb2deb8668433bd39f4b05 *data/pbc.rda 28f3bd0fe0a4f435bff60a13a2e5d2d8 *data/rats.rda b75bf4f19a344d7defddeed1a48cbc1c *data/stanford2.rda 55fa4acd4893490d19ed48c260803353 *data/survexp.rda 2d8b5f44959ad35a300010890de7ac12 *data/tobin.txt.gz 76fb141b816ea857308105f26e26e87f *data/uspop2.rda d4b78dd46512d982683f6bb2a025aa9a *data/veteran.rda 01efa4cd2eb579996180213b1a004d02 *inst/CITATION 3e8ebae349953a3b7a665eecce562802 *inst/COPYRIGHTS 39e28c75bc4f5dd87db12cff861575b9 *inst/NEWS.Rd d3fb174c4c7344fd1e633ae18564cbe0 *inst/doc/adjcurve.R f7927f2f78ed007021a9b34047a10509 *inst/doc/adjcurve.Rnw 5d32773d4ba2942937567fe03ba0c2fe *inst/doc/adjcurve.pdf 96fdb34c9c8cd174fa2c146feb5f6e05 *inst/doc/sourcecode.pdf 7e7ee9ce10ba460e3c5eb33014d24bc7 *inst/doc/tests.R 5fb51c8731bedc07042dfd2c2625a066 *inst/doc/tests.Rnw 8a6a9b5b4f36a729897521c839c2beaf *inst/doc/tests.pdf 321a774c0e73e4316c92f8fe59b32bb6 *inst/doc/timedep.R f0d037543ded6fd0f5456dac8cf5b661 *inst/doc/timedep.Rnw 72ef1e771772bef77450fcba90504048 *inst/doc/timedep.pdf ac297959a2f3093d13819580a6292410 *inst/doc/validate.pdf e3e0c8f7470da537df515c7e9bf89280 *man/Surv.Rd e1b4f2135554802fd7d56872fcbb0d42 *man/aareg.Rd ed668cbedff5d61d180b348ecc06fb80 *man/agreg.fit.Rd a243059ab841bde163e28f3831038eca *man/aml.Rd d2288843d4656e44c0a566e50f0b55e7 *man/anova.coxph.Rd b88c1e139fd5de07e43e0e93816513a0 *man/attrassign.Rd c7e4832d534981fa1acc42cc6594d189 *man/basehaz.Rd cae3ac6d32484a9aee693d5efb497ed4 *man/bladder.Rd 7786f82290adc392f36583bb8e394696 *man/cch.Rd 8e8b5501306356ee4515a3b4d810107e *man/cgd.Rd 9a4369dd631e6a248ed8b239e463106b *man/clogit.Rd 64017f69b714d4ef9d88c35119666204 *man/cluster.Rd 93fc17a26a13146d486eca163f0fad67 *man/colon.Rd 609ac105f9fc0567d3412300cd64740c *man/cox.zph.Rd 66960b1578c5fcc5886b04e32840f026 *man/coxph.Rd de8f44c3612140aa47ef9986f9ee9e0a *man/coxph.control.Rd d90b227d1ff0e2c44c2382944f05ddb6 *man/coxph.detail.Rd 96fa8a8d9eac7e8e0deebe787a08c75c *man/coxph.object.Rd 7d420744d3456dd97e9b3049efe7a9af *man/coxph.wtest.Rd 34b45725f7d10f2d4a6c459cf552aa3d *man/dsurvreg.Rd 71f664a8e04457bf1fa491f2d6369a4e *man/flchain.Rd a44c8cf4e4ce5f97aa063e05c9e101ae *man/frailty.Rd a4f532be336afe5787e361ba953f02d8 *man/heart.Rd a97e4438991c438a09a2e3097d83aef8 *man/is.ratetable.Rd 3a65ab9dfd4e8b848853397add094231 *man/kidney.Rd ce9745dae2d6cad6d3c70af40a27bb4e *man/lines.survfit.Rd 378fb131601504618640f8beb5915b8f *man/logan.Rd 236b763733160810bd71f035739dfc24 *man/lung.Rd 87c6d56ff4ac7c6bf74e72c6dcf98feb *man/mgus.Rd d880904b50ae1b456211415705c9230d *man/model.frame.coxph.Rd 568a05b7245844573b768922bcaea30d *man/model.matrix.coxph.Rd f24a26e371a5b103b654e1d83edc0cae *man/nwtco.Rd d3a0c9a6702366c5f44fc237dacfbca7 *man/ovarian.Rd 1053436df37708f6c3cc449da9eb3371 *man/pbc.Rd 99f9c63e87cbcfb82f62dbb1ed890f3c *man/pbcseq.Rd 415495ead19d69d6b12b31247f18e610 *man/plot.aareg.Rd 130a89d6ffb707e2251c5942331b1d58 *man/plot.cox.zph.Rd 2cc925637221e162e8954b2673f61162 *man/plot.survfit.Rd 1a03aa0e9c69e97bf771f2cd8d358f08 *man/predict.coxph.Rd 10e5e565d7daf52446e36cd7570eb9e7 *man/predict.survreg.Rd f70cce7373972ebe96d1a3b1a3c7bb5c *man/print.aareg.Rd c2c0676f5df40330a19a7e32d6fa38db *man/print.summary.coxph.Rd e050e3df696e9d25620f1c7527fbb08f *man/print.summary.survexp.Rd 71404c1cf6a8734cbd1705be65d83c43 *man/print.summary.survfit.Rd 5a1c6fdc49db1a39445d644a3e558634 *man/print.survfit.Rd 2be07e3d863bd261d33c28cefab2c9e7 *man/pspline.Rd 3fc495a79bf4ec76b78c6bc6a37fe292 *man/pyears.Rd 2bf3a9dc6d5e99f3f33e725b5bda5165 *man/quantile.survfit.Rd 7db614234d4daac286fb02b330434668 *man/ratetable.Rd 3683c1dd8254d836e811dc0758851164 *man/ratetableDate.Rd 42ea23a5512efad84a35e6d178b95ebb *man/rats.Rd 1846c4b11dac5c278d588a92f0cdc961 *man/rats2.Rd 704103c600d7679e780a84cabb048c2e *man/residuals.coxph.Rd 16e171468f684b9c9a28ab436401d900 *man/residuals.survreg.Rd 9417958dd56e372fab59d563926ddb7e *man/ridge.Rd 2275b3b5eeed3ba4bdf48b0daa820077 *man/stanford2.Rd 6b3c096b68090943d6d5fcf8896bee9e *man/strata.Rd 02588806b65c0c69938ea45e5f7e4416 *man/summary.aareg.Rd 57410802045cff70955f2a76df0ee636 *man/summary.coxph.Rd 1885334cd827a74464217540865c7b91 *man/summary.survexp.Rd 2e7bb6344bc3f93de93bb024fb12429b *man/summary.survfit.Rd 67f70037f47809e1216ecdde4e315d5f *man/survConcordance.Rd b1b1fd427ab41d43834c2c0c05fbba55 *man/survSplit.Rd 8e81d4156c2d5a32faedb73a57685aaa *man/survdiff.Rd a003d65aecf0398695a5c2eab43c2808 *man/survexp.Rd 65e8c2fdd454ccb1a16f6dcdb86d77bc *man/survexp.fit.Rd f1a71fe6822737d6544f24e8e52251f8 *man/survexp.us.Rd 0b3380c774e1536dc7161ca60c2d2158 *man/survfit.Rd f95a87d3f9cdea28f31e4e4de26e8346 *man/survfit.coxph.Rd 9a98d8032d2b48d8f05c9390ace49375 *man/survfit.formula.Rd 0406dfb6e6b0a59175725ad889c99b86 *man/survfit.object.Rd dfbbb60cc92aef955a17146c7a8c0645 *man/survfitcoxph.fit.Rd 5d50adacfce724a343991f965fc4292f *man/survival-internal.Rd ee739a1671c6e23ae0b2e56dbcc32967 *man/survobrien.Rd a8cf841a60eec2670cd69e729f2e8c66 *man/survreg.Rd 3d62a4ef5a22c39d2df18b9e50ea30fc *man/survreg.control.Rd 734c4eaa18944faf86159d82636b150f *man/survreg.distributions.Rd c132776419b33cc4a389688e88ab3c19 *man/survreg.object.Rd ec57c575435869dbb1c776a2d99c0e6a *man/survregDtest.Rd cceef705b631580e3ce011d02ae575ab *man/tcut.Rd c7813220c476cd8a2752753e515a7c4e *man/tobin.Rd 142cf81539d3cb828029c39c4c31393c *man/untangle.specials.Rd 13bf16a88bfd11ae3672755091140d8c *man/uspop2.Rd 2a684c666b999d0106a69fd13e466408 *man/veteran.Rd dafc06b2dff93479cceb3b67a9ba6274 *src/agexact.c da09b36acff18f0a1dbc4e1fb6ab8a7d *src/agfit4.c 091bfa07cd12c985cffac193c5dd960e *src/agfit5.c 63b9137f4c0025556c09bcd68a3b64f2 *src/agmart.c 67a65eb8d461581efebc71650a8b6ba9 *src/agmart2.c b5693996124d767fd6c612b8cd4c9f24 *src/agscore.c 422e2dd61103541815331727949e97c7 *src/agsurv3.c 900680762d85537d9a1b42c2600c80ac *src/agsurv4.c 8af1aa4a7182f7c1eee810a09c821bbf *src/agsurv5.c 9d58cebadc5a235bb5860076bb15ce10 *src/chinv2.c ee4dd3ce1704790636f67fc942e86e33 *src/chinv3.c 99da13e6ef4d8be44d3acd9f0e6b4324 *src/cholesky2.c bf4dd7cff7207e17eeaeb9d37b3e4088 *src/cholesky3.c 4df7e06ba19e37b66b6c0ed6119f3219 *src/chsolve2.c 7e8e47e291ebc7308604421e099383b6 *src/chsolve3.c 13835d422c0b7db2a0916a9a0561a67f *src/concordance1.c a92ec8bacf00f9cc6b16f701283c4834 *src/cox_Rcallback.c 2ea96485136e6fd4215d294fdb4b73f0 *src/coxcount1.c af7acd4c3d735233e69d2ce5a687e988 *src/coxdetail.c 835e9de190545fd4886639dbb1bb863c *src/coxexact.c 94d40f3dda3928807d25e1becee26bc3 *src/coxfit5.c 9f43cc970cf2b1c9626b1828b0270301 *src/coxfit6.c 6a85c40ec6742f6986c0e53932a5d1da *src/coxmart.c 040bc0dff9e64ba27ca36c1ed540747d *src/coxmart2.c 1ff88ef5614cf0138ea5315f69d5ff4d *src/coxph_wtest.c d9ee5e75ea894b8f6526ecd7e0917e63 *src/coxsafe.c dca45548f139de8e5dbf3fd1f7d8bcaf *src/coxscho.c eb162e94b31d0ec6ed0e68b767ac13d5 *src/coxscore.c c84812b76eb487d1681437f9e00aae17 *src/dmatrix.c ff7a20d8d165802ea3766d9fa75e14a1 *src/doloop.c e6a0f478014cac977c6ea8eb3ce99dfe *src/init.c 7d1b57a420d4d76429f5526687a66609 *src/msurv.c 23bb38ccf2c88c0f47776f5b38b03ab6 *src/pyears1.c 04b9783bcc919d85491f0f5bcdaed0fa *src/pyears2.c ccf1e6b74e37925d67e4563afa3415b9 *src/pyears3b.c db3ba3cf82fecd184767eb3a9ccbb2a6 *src/pystep.c 49ffabd94126ed4b7a2c46dffa646087 *src/survConcordance.c 80beea3c5d4e2c8495444dfcbe497016 *src/survS.h 4fbd9ee9033cb469f23534595aaa1695 *src/survdiff2.c a03b1a3c6764b98696b3c32718f31bd7 *src/survfit4.c 6c6e8e5a0bfbf8bfce90800756ae7ecb *src/survfitci.c 20e4b99ef6b980c657d0f34be576cbad *src/survpenal.c e1491093658ffa2fb7f93033301e46c4 *src/survproto.h 2d7f18518c13727a50f4b9e59a6bc9e6 *src/survreg6.c 7483bb0e3da8485fae01944322021385 *src/survreg7.c 1143f87e1941fd27622fc229b13d840c *src/survregc1.c 73f646a72c2783018c329ca3b9534192 *src/survregc2.c 29b0e992cd2c0c581c18c7f8987802e9 *tests/aareg.R 7c1f73136f34d9b4ccaf1a94a4e54126 *tests/aareg.Rout.save 7adcf3da61f0cb888ed3ae1787d85fd5 *tests/anova.R 5a9d96c769ebdb6aa6e411040eeeb481 *tests/anova.Rout.save b165f66d37de4e6d4ff52dba6d96b69e *tests/bladder.R d12de5ff65581c59dd2a0985640b703f *tests/bladder.Rout.save 09d198e86e32c325c0bb0e9f54255587 *tests/book1.R 820e181aaefdd990cba7b81007cdbb7e *tests/book1.Rout.save ec568504383e8bba6b3f840efa49f0a4 *tests/book2.R 1ff137feaa92a203129a3ed0cd127721 *tests/book2.Rout.save ad8b3a02bf508ec1265a713b5c523193 *tests/book3.R b0044fc1858bc87ad5c777a172aa7877 *tests/book3.Rout.save 70160788066ddb894f98bb16c6ad6b77 *tests/book4.R 2f09a529bfe0601d9eebfc5ee7d0364b *tests/book4.Rout.save 075eb8504981ad1cc32021ac897a0ae1 *tests/book5.R 1571661254d0085a4a0332dfcc05359d *tests/book5.Rout.save 6c123e7a51c707a4708de781550425a8 *tests/book6.R 2ad5e46d47470f033b8a2c1e76980731 *tests/book6.Rout.save 7f0043933913df6795c66c8af6a278fc *tests/book7.R b1d35647d687f82c76a1beab95a1f74a *tests/book7.Rout.save 34ecdf393bd3d5934796c59f1aba27b5 *tests/cancer.R b374adfeeed40849303fca86d4394b03 *tests/cancer.Rout.save 9700f9df5c3fafb13be25a1a551bf3b3 *tests/clogit.R 32bef9152f59c8d27772ecd46efae75f *tests/clogit.Rout.save 0d2d614825b6e0e9ed7772c057510510 *tests/concordance.R 650a2b87e1e9279de9b84cb83aff98a0 *tests/concordance.Rout.save c82eeced77b617173ec9570c73f2a9a2 *tests/counting.R 1ea18186b135e14be8b306e6e935488d *tests/counting.Rout.save c212cf74254128290e416d4ffe65b070 *tests/coxsurv.R ba07f03683b9cbeb48d961815b6f6421 *tests/coxsurv.Rout.save b9ec1543269837e1177f1b29e3e647ce *tests/coxsurv2.R c3af1a1d5d78f2ec88319041b0f3c724 *tests/coxsurv2.Rout.save daf2f2353861e51e0a42d32fd66899b7 *tests/coxsurv3.R 37ce48c7b195e8d51462125bb577487f *tests/coxsurv3.Rout.save 18a3b389ac1df5e8d31cb54d4fc84d88 *tests/coxsurv4.R 450400f45ddcf1d8ecc8aa02c01fcfde *tests/coxsurv4.Rout.save 005886030229bdccfcd64481a0bcba70 *tests/data.capacitor 0d9df702d89f2892c3c1019c4ba4830f *tests/data.cracks 24d53e3037dc40c31e3825757010d330 *tests/data.donnell 4a1536544ca5c94f2b0a6ba121dfcb29 *tests/data.fluid e98a53ae045a2c998873558384b4496f *tests/data.interval b249fba4d50304f5abe1e8ffd5453c00 *tests/data.motor 427145fabf975124abe33aa7ef844117 *tests/data.peterson 34501965c3dcaea3558942135502bed1 *tests/data.rat2 3376a88bd91fe9e39caeda263f31b14f *tests/data.smoke c749f7cf62ac6445dc1e8e973245c916 *tests/data.turbine afcd2288df28b6f112e38b60cc85f719 *tests/data.valve 37b3b890eb0064e23dfa8ac56e53a726 *tests/detail.R 69a7172274b6f3692a938aaa2b350b9d *tests/detail.Rout.save a6ef6105689649a42cd6c80f150b9e6e *tests/difftest.R 2acf663f8bea2653cc452936127f9d3b *tests/difftest.Rout.save 991edc0be7125b4e63755574f1a3892b *tests/doaml.R 2a4d5728b347c4fabb46bfedd1d17728 *tests/doaml.Rout.save c248a344eed896873690a5bd20e91a70 *tests/doweight.R 7b30d90e043419091c0271c223ef2e16 *tests/doweight.Rout.save 0c21db5785bcd9b01a30837dbfec5af2 *tests/expected.R c3293525ec99524e1c8379284b4ad864 *tests/expected.Rout.save 6b9016c3bcf4b6e4a8c4ee8b5d70ec3d *tests/expected2.R 139d605a2e7c02a9d339a35d12ae0252 *tests/expected2.Rout.save ad56241e8136d97f4c732eb444fdb46b *tests/factor.R c5da54a4d59d6824dae9ff849a705124 *tests/factor.Rout.save 02de4596b58fb4fdf0dbe5533f0b418e *tests/factor2.R 12c3b09b26f1307be02a08f4524d5a09 *tests/factor2.Rout.save 9ed932a843ad295f3712cf9616dcd6c8 *tests/fr_cancer.R 7f61c34eb709fd665d075eb98124157a *tests/fr_cancer.Rout.save a3d4515cba9f78cd376c96c4020fa835 *tests/fr_kidney.R 6c3e96927580a002252b53862469f239 *tests/fr_kidney.Rout.save cb0228f2570cedaab05550c53a7b7249 *tests/fr_lung.R 7a5619d6a9628bb594fbae58a3576fb1 *tests/fr_lung.Rout.save 9f58191cb3ec3ef7e94a34d4bfc81f5f *tests/fr_ovarian.R 72e09ef7ba8eb688a3333ff43862063c *tests/fr_ovarian.Rout.save 530c420e67fc6c9abf582fdd727a71bd *tests/fr_rat1.R 2ef195310393d35c33c632ab350f0103 *tests/fr_rat1.Rout.save e6c4e1539a2ed476794a0bbe52ec9ac4 *tests/fr_rat2.R c11b1da142839e1e7de76acf01eaa3d5 *tests/fr_rat2.Rout.save 610380a25d75d71e8214a15fe9402741 *tests/fr_resid.R 8da1408d2a461062571de71700310745 *tests/fr_resid.Rout.save 921e97865d960216259f6f8ad353ad87 *tests/fr_simple.R 97079423ae3bcae104b33cf30e822a97 *tests/fr_simple.Rout.save 8a5c35fa11403beb1fd5830cee8f8678 *tests/frailty.R 3f2f6496cf052a80ce9700cead8f9568 *tests/frailty.Rout.save 18b3c00b4da6297b3b34f90925c8f17a *tests/frank.R e0fdc91c27e7d792f9d1feacd7dab6b1 *tests/frank.Rout.save dc0932019bf7711a5c14afaab42b108f *tests/gray1.rda da2189dca094543c747c16ee2ff1e7b3 *tests/infcox.R 0ed395671cfe514e25e7a1c01102e343 *tests/infcox.Rout.save 82613d425beb20ed7ec958f7363c15ff *tests/jasa.R 07599d46af6bc7ea1efb091d7781136d *tests/jasa.Rout.save d4ebb52c5f454860d3c6ccb01abb5c0f *tests/model.matrix.R 91742d9e5ba2abf44c0e228403c9bafd *tests/model.matrix.Rout.save 32962da1fbc1bd7fe2d80f77ac23cd5a *tests/mrtest.R 45fb36c9a86dba3e3b4cdb9b7c466adf *tests/mrtest.Rout.save 47a92a7fedb1912814f5b71d55cc1470 *tests/nested.R 89322b4b48d5537d1395478bf9d6932b *tests/nested.Rout.save 56af7992839030a27e993ab69643a333 *tests/ovarian.R dc681459aea5d4ae960b176bf3113075 *tests/ovarian.Rout.save 90e8c53861f1af5739edc19dd2a8cdcc *tests/prednew.R f33c674fcdbf23170839778cb9d99911 *tests/prednew.Rout.save 2ccce473d6304729540bc61e181d485f *tests/pspline.R 4b5b97ba6892335f90cd1d0e2408468d *tests/pspline.Rout.save 1a59eea4913cae48454d543db3182fcf *tests/pyear.R 9da387fd993d611ec3c5caf442a9ac3a *tests/pyear.Rout.save cb53837663aa3ea8069d949ac88700a3 *tests/quantile.R 7599b050fbad641369aa46bd0dfc18c6 *tests/quantile.Rout.save a2d9dfdd822551e38aad4a0dcbc6164f *tests/r_capacitor.R b82aa77a6b0d72eab6663095f37554b2 *tests/r_capacitor.Rout.save 843037a999f6e0b7a437022064ee4c3f *tests/r_donnell.R e274d05ac892dd51da69d284c7a1cd3b *tests/r_donnell.Rout.save 3f721f6e1617f9ccabfd8242839866f2 *tests/r_lung.R f5f5289cc617c35399b7e0f2397bdfba *tests/r_lung.Rout.save c64871cdf6b3821b9c363f414300277c *tests/r_peterson.R 2b7b875244e745983bbc6075708d753c *tests/r_peterson.Rout.save 7540e96b30573ae4957ac72c1783dabc *tests/r_resid.R 174d928f93974d236344089dc002aad5 *tests/r_resid.Rout.save c030b53c848a6d2bee207d8bb4fb0ac6 *tests/r_sas.R 2872d8467b0df50beb1f936674b9406e *tests/r_sas.R.orig 7ba19e28f9eb153fe623ff22c3339764 *tests/r_sas.Rout.save 59912fe4c23adf729630b2a9256749bd *tests/r_scale.R 9c44d08c1462edc432d1162f6353a785 *tests/r_scale.Rout.save 3c6a7056af6fb278f774abf6a69c3968 *tests/r_stanford.R ec0f2b0eb632b8c1d0a0fd9cf4cfefc3 *tests/r_stanford.Rout.save ad42cc2df70a8719e7627dd1b96b0a74 *tests/r_strata.R e69c3f424f42f1e7db9b53b01375c723 *tests/r_strata.Rout.save 989f37c165e69d16e359eec89d0b3d71 *tests/r_tdist.R 1fc390713c29b90191c7382f7ff18875 *tests/r_tdist.Rout.save 714c0d3571c7fa78db7e1231f9d1ae9d *tests/r_user.R bcf83472af25c444668fb004755e2b52 *tests/r_user.Rout.save 01890b568b9fcb7db62832346d2421a3 *tests/ratetable.R c1b700bbf08eac95bbb9326edd964e47 *tests/ratetable.Rout.save 8d8a52c50d9cf57f7775b38989813141 *tests/rounding.R 42ed1037cc91e95a350c74734ad34461 *tests/rounding.Rout.save 5a65fb2b39182a19953db1807ec3f991 *tests/singtest.R b77bef3fb117a8c5a1743623f1d06eea *tests/singtest.Rout.save f7a452292c0f25593b8cbc15bdd572d5 *tests/strata2.R 3c47f3393460e219bacd64b6e7d9c0c9 *tests/strata2.Rout.save 29d08550132c65bfde059ff1be9338aa *tests/stratatest.R fe2734507c238020983489f7d79445f7 *tests/stratatest.Rout.save 6de28d7b9cbf046367dcde728bc3c3fc *tests/summary_survfit.R 0dacfc22dc9bc43719c4c32e4a9b6ac1 *tests/summary_survfit.Rout.save 734bc2984b926635f759b5f669b8cdcb *tests/surv.R 93df5892354ed75338eaca326f4b1889 *tests/surv.Rout.save a6b430161be16c02c6359cffde39870e *tests/survfit2.R ba758aa2a524b5cbc53e7e850ac909ef *tests/survfit2.Rout.save eab137d5f2797883ab22e42e0f05075d *tests/survreg2.R 847f042d207f29ac89ec765c95a856ff *tests/survreg2.Rout.save b5b10d8809abb91c7de72191ea3632ed *tests/survtest.R ef1affd024aa021ef07b70126064ac61 *tests/survtest.Rout.save 08c8134b05b88417c91da437213838c4 *tests/testci.R cbee18280cc5d5c577bbb8267828ba80 *tests/testci.Rout.save 69e4f2e2a58c449eaaa2b921ad3e2f50 *tests/testci2.R ad92dc9bcff6f26fe0e620f01f7a4d2f *tests/testci2.Rout.save 3eb98e4f934e6845ed620ea906658989 *tests/testnull.R 6a2a25754a6c6e37ed8ae5af3f6b5e34 *tests/testnull.Rout.save 8ad1d2cf5276fef4010a607c2d83ecdb *tests/testreg.R 2645c2ac783de52f9dc5e60f61e3102d *tests/testreg.Rout.save 63a88e76e6f31cae53a96889e1faa51d *tests/tiedtime.R b371603c7ff9af6d88b71eb432ffb823 *tests/tiedtime.Rout.save cbf88f37cce8fca1e91e7ae4c1d467e5 *tests/ties.rda c9a56143dfe433b6e66d415037d526a6 *tests/tt.R 8237935a710efe7ee122ca5b05ef56b1 *tests/tt.Rout.save b1dd6e9b7bf7a5a26e8879c3f7fb03d9 *tests/turnbull.R d0e0c0f2ef0cbc69aebb7800b5fee3a2 *tests/turnbull.Rout.save f7927f2f78ed007021a9b34047a10509 *vignettes/adjcurve.Rnw 06d6eaadbc38228c840e1c0e968643bc *vignettes/raheart.rda c3162ad5bf37d039ec9c0b4298b8c6ee *vignettes/refer.bib 5fb51c8731bedc07042dfd2c2625a066 *vignettes/tests.Rnw f0d037543ded6fd0f5456dac8cf5b661 *vignettes/timedep.Rnw survival/build/0000755000176000001440000000000012267746150013266 5ustar ripleyuserssurvival/build/vignette.rds0000644000176000001440000000044312267746150015626 0ustar ripleyusers‹…R±NÃ0ušÐ’R—nxë–…/@©º° c­úŠ\%v» Ýøq—Öv 1øì÷|÷îå—„2"a€1Äc8Å0ÆuÝ‘÷KÆ·ë]Ý@ú([ËÅ´Ñ߈ #JàP¨aýìŽowÚ§O¨"VЬ—Óöþ&So´T M™ätµ2û èí|Nó¾‹K{ÖB¾ÒûÐT 9HC3Õ°Z0´ó§ëŠo†®O„wÝSÃúä4µe&vf/æ&F0=TÈ/û?÷ÑC`…Ï$+ý8cKFKQ€KÈ…ñ |X,í1ðNïã^îüö­ªŵjS×ìªÿ ﺮûøéh]0í92á̰tSc=¢Ï/-“•ÄKsurvival/DESCRIPTION0000644000176000001440000000201112267773253013673 0ustar ripleyusersTitle: Survival Analysis Maintainer: Terry M Therneau Priority: recommended Package: survival Version: 2.37-7 Depends: stats, utils, graphics, splines, R (>= 2.13.0) LazyData: Yes LazyLoad: Yes ByteCompile: Yes Authors@R: c(person(c("Terry", "M"), "Therneau", email="therneau.terry@mayo.edu", role=c("aut", "cre")), person("Thomas", "Lumley", role=c("ctb", "trl"), comment="original S->R port and maintainer until 2009")) Description: survival analysis: descriptive statistics, two-sample tests, parametric accelerated failure models, Cox model. Delayed entry (truncation) allowed for all models; interval censoring for parametric models. Case-cohort designs. License: LGPL (>= 2) URL: http://r-forge.r-project.org Packaged: 2014-01-22 13:49:28 UTC; therneau Author: Terry M Therneau [aut, cre], Thomas Lumley [ctb, trl] (original S->R port and maintainer until 2009) NeedsCompilation: yes Repository: CRAN Date/Publication: 2014-01-22 17:49:47 survival/man/0000755000176000001440000000000012267746150012742 5ustar ripleyuserssurvival/man/survexp.Rd0000644000176000001440000001771512267746072014763 0ustar ripleyusers\name{survexp} \alias{survexp} \alias{print.survexp} \title{ Compute Expected Survival } \description{ Returns either the expected survival of a cohort of subjects, or the individual expected survival for each subject. } \usage{ survexp(formula, data, weights, subset, na.action, rmap, times, method=c("ederer", "hakulinen", "conditional", "individual.h", "individual.s"), cohort=TRUE, conditional=FALSE, ratetable=survexp.us, scale=1, se.fit, model=FALSE, x=FALSE, y=FALSE) } \arguments{ \item{formula}{ formula object. The response variable is a vector of follow-up times and is optional. The predictors consist of optional grouping variables separated by the \code{+} operator (as in \code{survfit}), and is often \code{~1}, i.e., expected survival for the entire group. } \item{data}{ data frame in which to interpret the variables named in the \code{formula}, \code{subset} and \code{weights} arguments. } \item{weights}{ case weights. This is most useful when conditional survival for a known population is desired, e.g., the data set would contain all unique age/sex combinations and the weights would be the proportion of each. } \item{subset}{ expression indicating a subset of the rows of \code{data} to be used in the fit. } \item{na.action}{ function to filter missing data. This is applied to the model frame after \code{subset} has been applied. Default is \code{options()$na.action}. } \item{rmap}{ an optional list that maps data set names to the ratetable names. See the details section below. } \item{times}{ vector of follow-up times at which the resulting survival curve is evaluated. If absent, the result will be reported for each unique value of the vector of times supplied in the response value of the \code{formula}. } \item{method}{computational method for the creating the survival curves. The \code{individual} option does not create a curve, rather it retrieves the predicted survival \code{individual.s} or cumulative hazard \code{individual.h} for each subject. The default is to use \code{method='ederer'} if the formula has no response, and \code{method='hakulinen'} otherwise.} \item{cohort}{logical value. This argument has been superseded by the \code{method} argument. To maintain backwards compatability, if is present and TRUE, it implies \code{method='individual.s'}.} \item{conditional}{logical value. This argument has been superseded by the \code{method} argument. To maintain backwards compatability, if it is present and TRUE it implies \code{method='conditional'}.} \item{ratetable}{ a table of event rates, such as \code{survexp.uswhite}, or a fitted Cox model. } \item{scale}{ numeric value to scale the results. If \code{ratetable} is in units/day, \code{scale = 365.25} causes the output to be reported in years. } \item{se.fit}{ compute the standard error of the predicted survival. This argument is currently ignored. Standard errors are not a defined concept for population rate tables (they are treated as coming from a complete census), and for Cox models the calculation is hard. Despite good intentions standard errors for this latter case have not been coded and validated. } \item{model,x,y}{ flags to control what is returned. If any of these is true, then the model frame, the model matrix, and/or the vector of response times will be returned as components of the final result, with the same names as the flag arguments. }} \value{ if \code{cohort=TRUE} an object of class \code{survexp}, otherwise a vector of per-subject expected survival values. The former contains the number of subjects at risk and the expected survival for the cohort at each requested time. The cohort survival is the hypothetical survival for a cohort of subjects enrolled from the population at large, but matching the data set on the factors found in the rate table. } \details{ Individual expected survival is usually used in models or testing, to `correct' for the age and sex composition of a group of subjects. For instance, assume that birth date, entry date into the study, sex and actual survival time are all known for a group of subjects. The \code{survexp.us} population tables contain expected death rates based on calendar year, sex and age. Then \preformatted{ haz <- survexp(fu.time ~ 1, data=mydata, rmap = list(year=entry.dt, age=(birth.dt-entry.dt)), method='individual.h')) } gives for each subject the total hazard experienced up to their observed death time or last follow-up time (variable fu.time) This probability can be used as a rescaled time value in models: \preformatted{ glm(status ~ 1 + offset(log(haz)), family=poisson) glm(status ~ x + offset(log(haz)), family=poisson) } In the first model, a test for intercept=0 is the one sample log-rank test of whether the observed group of subjects has equivalent survival to the baseline population. The second model tests for an effect of variable \code{x} after adjustment for age and sex. The ratetable being used may have different variable names than the user's data set, this is dealt with by the \code{rmap} argument. The rate table for the above calculation was \code{survexp.us}, a call to \code{summary{survexp.us}} reveals that it expects to have variables \code{age} = age in days, \code{sex}, and \code{year} = the date of study entry, we create them in the \code{rmap} line. The sex variable was not mapped, therefore the function assumes that it exists in \code{mydata} in the correct format. (Note: for factors such as sex, the program will match on any unique abbreviation, ignoring case.) Cohort survival is used to produce an overall survival curve. This is then added to the Kaplan-Meier plot of the study group for visual comparison between these subjects and the population at large. There are three common methods of computing cohort survival. In the "exact method" of Ederer the cohort is not censored, for this case no response variable is required in the formula. Hakulinen recommends censoring the cohort at the anticipated censoring time of each patient, and Verheul recommends censoring the cohort at the actual observation time of each patient. The last of these is the conditional method. These are obtained by using the respective time values as the follow-up time or response in the formula. } \references{ Berry, G. (1983). The analysis of mortality by the subject-years method. \emph{Biometrics}, 39:173-84. Ederer, F., Axtell, L. and Cutler, S. (1961). The relative survival rate: a statistical methodology. \emph{Natl Cancer Inst Monogr}, 6:101-21. Hakulinen, T. (1982). Cancer survival corrected for heterogeneity in patient withdrawal. \emph{Biometrics}, 38:933-942. Therneau, T. and Grambsch, P. (2000). Modeling survival data: Extending the Cox model. Springer. Chapter 10. Verheul, H., Dekker, E., Bossuyt, P., Moulijn, A. and Dunning, A. (1993). Background mortality in clinical survival studies. \emph{Lancet}, 341: 872-875. } \seealso{ \code{\link{survfit}}, \code{\link{pyears}}, \code{\link{survexp.us}}, \code{\link{survexp.fit}}. } \examples{ # # Stanford heart transplant data # We don't have sex in the data set, but know it to be nearly all males. # Estimate of conditional survival fit1 <- survexp(futime ~ 1, rmap=list(sex="male", year=accept.dt, age=(accept.dt-birth.dt)), method='conditional', data=jasa) summary(fit1, times=1:10*182.5, scale=365) #expected survival by 1/2 years # Estimate of expected survival stratified by prior surgery survexp(~ surgery, rmap= list(sex="male", year=accept.dt, age=(accept.dt-birth.dt)), method='ederer', data=jasa, times=1:10 * 182.5) ## Compare the survival curves for the Mayo PBC data to Cox model fit ## pfit <-coxph(Surv(time,status>0) ~ trt + log(bili) + log(protime) + age + platelet, data=pbc) plot(survfit(Surv(time, status>0) ~ trt, data=pbc), mark.time=FALSE) lines(survexp( ~ trt, ratetable=pfit, data=pbc), col='purple') } \keyword{survival} survival/man/survreg.control.Rd0000644000176000001440000000161712267746072016415 0ustar ripleyusers\name{survreg.control} \alias{survreg.control} %- Also NEED an `\alias' for EACH other topic documented here. \title{Package options for survreg and coxph} \description{ This functions checks and packages the fitting options for \code{\link{survreg}} } \usage{ survreg.control(maxiter=30, rel.tolerance=1e-09, toler.chol=1e-10, iter.max, debug=0, outer.max=10) } %- maybe also `usage' for other objects documented here. \arguments{ \item{maxiter}{maximum number of iterations } \item{rel.tolerance}{relative tolerance to declare convergence } \item{toler.chol}{Tolerance to declare Cholesky decomposition singular} \item{iter.max}{same as \code{maxiter}} \item{debug}{print debugging information} \item{outer.max}{maximum number of outer iterations for choosing penalty parameters} } \value{ A list with the same elements as the input } \seealso{ \code{\link{survreg}}} \keyword{survival} survival/man/lines.survfit.Rd0000644000176000001440000001021412267746072016045 0ustar ripleyusers\name{lines.survfit} \alias{lines.survfit} \alias{points.survfit} \alias{lines.survexp} \title{ Add Lines or Points to a Survival Plot } \description{ Often used to add the expected survival curve(s) to a Kaplan-Meier plot generated with \code{plot.survfit}. } \usage{ \method{lines}{survfit}(x, type="s", mark=3, col=1, lty=1, lwd=1, cex=1, mark.time=TRUE, xscale=1, firstx=0, firsty=1, xmax, fun, conf.int=FALSE, ...) \method{lines}{survexp}(x, type="l", ...) \method{points}{survfit}(x, xscale, xmax, fun, ...) } \arguments{ \item{x}{ a survival object, generated from the \code{survfit} or \code{survexp} functions. } \item{type}{ the line type, as described in \code{lines}. The default is a step function for \code{survfit} objects, and a connected line for \code{survexp} objects. All other arguments for \code{lines.survexp} are identical to those for \code{lines.survfit}. } \item{mark, col, lty, lwd, cex}{ vectors giving the mark symbol, color, line type, line width and character size for the added curves. } \item{...}{other graphical parameters} \item{mark.time}{ controls the labeling of the curves. If \code{FALSE}, no labeling is done. If \code{TRUE}, then curves are marked at each censoring time. If \code{mark.time} is a numeric vector, then curves are marked at the specified time points. } \item{xscale}{ a number used to divide the x values. If time was originally in days, a value of 365.25 would give a plotted scale in years. } \item{firstx, firsty}{ the starting point for the survival curves. If either of these is set to \code{NA} or < blank > the plot will start at the first time point of the curve. } \item{xmax}{ the maximum horizontal plot coordinate. This shortens the curve before plotting it, so unlike using the \code{xlim} graphical parameter, warning messages about out of bounds points are not generated. } \item{fun}{ an arbitrary function defining a transformation of the survival curve. For example \code{fun=log} is an alternative way to draw a log-survival curve (but with the axis labeled with log(S) values). Four often used transformations can be specified with a character argument instead: "log" is the same as using the \code{log=T} option, "event" plots cumulative events (f(y) = 1-y), "cumhaz" plots the cumulative hazard function (f(y) = -log(y)) and "cloglog" creates a complimentary log-log survival plot (f(y) = log(-log(y) along with log scale for the x-axis). } \item{conf.int}{ if \code{TRUE}, confidence bands for the curves are also plotted. If set to \code{"only"}, then only the CI bands are plotted, and the curve itself is left off. This can be useful for fine control over the colors or line types of a plot. } } \value{ a list with components \code{x} and \code{y}, containing the coordinates of the last point on each of the curves (but not of the confidence limits). This may be useful for labeling. } \section{Side Effects}{ one or more curves are added to the current plot. } \seealso{ \code{\link{lines}}, \code{\link{par}}, \code{\link{plot.survfit}}, \code{\link{survfit}}, \code{\link{survexp}}. } \details{ When the \code{survfit} function creates a multi-state survival curve the resulting object has class `survfitms'. The only difference in the plots is that that it defaults to a curve that goes from lower left to upper right (starting at 0), where survival curves default to starting at 1 and going down. All other options are identical. } \examples{ fit <- survfit(Surv(time, status==2) ~ sex, pbc,subset=1:312) plot(fit, mark.time=FALSE, xscale=365.25, xlab='Years', ylab='Survival') lines(fit[1], lwd=2, xscale=365.24) #darken the first curve and add marks # Add expected survival curves for the two groups, # based on the US census data # The data set does not have entry date, use the midpoint of the study efit <- survexp(~ ratetable(sex=sex,age=age*365.35,year=as.Date('1979/1/1')) + sex, data=pbc, times=(0:24)*182) temp <- lines(efit, lty=2, xscale=365.24, lwd=2:1) text(temp, c("Male", "Female"), adj= -.1) #labels just past the ends title(main="Primary Biliary Cirrhosis, Observed and Expected") } \keyword{survival} survival/man/print.summary.survfit.Rd0000644000176000001440000000144112267746072017565 0ustar ripleyusers\name{print.summary.survfit} \alias{print.summary.survfit} \title{ Print Survfit Summary } \description{ Prints the result of \code{summary.survfit}. } \usage{ \method{print}{summary.survfit}(x, digits = max(options() $digits-4, 3), ...) } \arguments{ \item{x}{ an object of class \code{"summary.survfit"}, which is the result of the \code{summary.survfit} function. } \item{digits}{ the number of digits to use in printing the numbers. } \item{\dots}{for future methods} } \value{ \code{x}, with the invisible flag set to prevent printing. } \section{Side Effects}{ prints the summary created by \code{summary.survfit}. } \seealso{ \code{\link{options}}, \code{\link{print}}, \code{\link{summary.survfit}}. } \keyword{print} % docclass is function % Converted by Sd2Rd version 37351. survival/man/colon.Rd0000644000176000001440000000511012267746072014343 0ustar ripleyusers\name{colon} \alias{colon} \title{Chemotherapy for Stage B/C colon cancer} \usage{colon} \description{These are data from one of the first successful trials of adjuvant chemotherapy for colon cancer. Levamisole is a low-toxicity compound previously used to treat worm infestations in animals; 5-FU is a moderately toxic (as these things go) chemotherapy agent. There are two records per person, one for recurrence and one for death} \format{ \tabular{ll}{ id:\tab id\cr study:\tab 1 for all patients\cr rx:\tab Treatment - Obs(ervation), Lev(amisole), Lev(amisole)+5-FU\cr sex:\tab 1=male\cr age:\tab in years\cr obstruct:\tab obstruction of colon by tumour\cr perfor:\tab perforation of colon\cr adhere:\tab adherence to nearby organs\cr nodes:\tab number of lymph nodes with detectable cancer\cr time:\tab days until event or censoring\cr status:\tab censoring status\cr differ:\tab differentiation of tumour (1=well, 2=moderate, 3=poor)\cr extent:\tab Extent of local spread (1=submucosa, 2=muscle, 3=serosa, 4=contiguous structures)\cr surg:\tab time from surgery to registration (0=short, 1=long)\cr node4:\tab more than 4 positive lymph nodes\cr etype:\tab event type: 1=recurrence,2=death\cr }} \note{The study is originally described in Laurie (1989). The main report is found in Moertel (1990). This data set is closest to that of the final report in Moertel (1991). A version of the data with less follow-up time was used in the paper by Lin (1994). } \references{ JA Laurie, CG Moertel, TR Fleming, HS Wieand, JE Leigh, J Rubin, GW McCormack, JB Gerstner, JE Krook and J Malliard. Surgical adjuvant therapy of large-bowel carcinoma: An evaluation of levamisole and the combination of levamisole and fluorouracil: The North Central Cancer Treatment Group and the Mayo Clinic. J Clinical Oncology, 7:1447-1456, 1989. DY Lin. Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13:2233-2247, 1994. CG Moertel, TR Fleming, JS MacDonald, DG Haller, JA Laurie, PJ Goodman, JS Ungerleider, WA Emerson, DC Tormey, JH Glick, MH Veeder and JA Maillard. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. New England J of Medicine, 332:352-358, 1990. CG Moertel, TR Fleming, JS MacDonald, DG Haller, JA Laurie, CM Tangen, JS Ungerleider, WA Emerson, DC Tormey, JH Glick, MH Veeder and JA Maillard, Fluorouracil plus Levamisole as and effective adjuvant therapy after resection of stage II colon carcinoma: a final report. Annals of Internal Med, 122:321-326, 1991. } \keyword{survival} survival/man/survreg.distributions.Rd0000644000176000001440000001032312267746072017631 0ustar ripleyusers\name{survreg.distributions} \alias{survreg.distributions} \title{Parametric Survival Distributions} \usage{ survreg.distributions } \description{ List of distributions for accelerated failure models. These are location-scale families for some transformation of time. The entry describes the cdf \eqn{F} and density \eqn{f} of a canonical member of the family. } \format{ There are two basic formats, the first defines a distribution de novo, the second defines a new distribution in terms of an old one. \tabular{ll}{ name:\tab name of distribution\cr variance:\tab function(parms) returning the variance (currently unused)\cr init(x,weights,...):\tab Function returning an initial\cr \tab estimate of the mean and variance \cr \tab (used for initial values in the iteration)\cr density(x,parms):\tab Function returning a matrix with columns \eqn{F},\cr \tab \eqn{1-F},\eqn{f},\eqn{f'/f},\eqn{f''/f}\cr quantile(p,parms):\tab Quantile function\cr scale:\tab Optional fixed value for the scale parameter\cr parms:\tab Vector of default values and names for any additional parameters\cr deviance(y,scale,parms):\tab Function returning the deviance for a\cr \tab saturated model; used only for deviance residuals. } and to define one distribution in terms of another \tabular{ll}{ name:\tab name of distribution\cr dist:\tab name of parent distribution\cr trans:\tab transformation (eg log)\cr dtrans:\tab derivative of transformation\cr itrans:\tab inverse of transformation\cr scale:\tab Optional fixed value for scale parameter\cr } } \details{ There are four basic distributions:\code{extreme}, \code{gaussian}, \code{logistic} and \code{t}. The last three are parametrised in the same way as the distributions already present in \R. The extreme value cdf is \deqn{F=1-e^{-e^t}.} When the logarithm of survival time has one of the first three distributions we obtain respectively \code{weibull}, \code{lognormal}, and \code{loglogistic}. The location-scale parameterizaion of a Weibull distribution found in \code{survreg} is not the same as the parameterization of \code{\link{rweibull}}. The other predefined distributions are defined in terms of these. The \code{exponential} and \code{rayleigh} distributions are Weibull distributions with fixed \code{scale} of 1 and 0.5 respectively, and \code{loggaussian} is a synonym for \code{lognormal}. For speed parts of the three most commonly used distributions are hardcoded in C; for this reason the elements of \code{survreg.distributions} with names of "Extreme value", "Logisitic" and "Gaussian" should not be modified. (The order of these in the list is not important, recognition is by name.) As an alternative to modifying \code{survreg.distributions} a new distribution can be specified as a separate list. This is the preferred method of addition and is illustrated below. } \seealso{\code{\link{survreg}}, \code{\link{pweibull}}, \code{\link{pnorm}},\code{\link{plogis}}, \code{\link{pt}}, \code{\link{survregDtest}} } \examples{ # time transformation survreg(Surv(time, status) ~ ph.ecog + sex, dist='weibull', data=lung) # change the transformation to work in years # intercept changes by log(365), everything else stays the same my.weibull <- survreg.distributions$weibull my.weibull$trans <- function(y) log(y/365) my.weibull$itrans <- function(y) 365*exp(y) survreg(Surv(time, status) ~ ph.ecog + sex, lung, dist=my.weibull) # Weibull parametrisation y<-rweibull(1000, shape=2, scale=5) survreg(Surv(y)~1, dist="weibull") # survreg scale parameter maps to 1/shape, linear predictor to log(scale) # Cauchy fit mycauchy <- list(name='Cauchy', init= function(x, weights, ...) c(median(x), mad(x)), density= function(x, parms) { temp <- 1/(1 + x^2) cbind(.5 + atan(x)/pi, .5+ atan(-x)/pi, temp/pi, -2 *x*temp, 2*temp*(4*x^2*temp -1)) }, quantile= function(p, parms) tan((p-.5)*pi), deviance= function(...) stop('deviance residuals not defined') ) survreg(Surv(log(time), status) ~ ph.ecog + sex, lung, dist=mycauchy) } \keyword{survival} survival/man/attrassign.Rd0000644000176000001440000000333312267746072015415 0ustar ripleyusers\name{attrassign} \alias{attrassign.default} \alias{attrassign} \alias{attrassign.lm} \title{Create new-style "assign" attribute} \description{ The \code{"assign"} attribute on model matrices describes which columns come from which terms in the model formula. It has two versions. R uses the original version, but the alternate version found in S-plus is sometimes useful. } \usage{ \method{attrassign}{default}(object, tt,...) \method{attrassign}{lm}(object,...) } %- maybe also `usage' for other objects documented here. \arguments{ \item{object}{model matrix or linear model object} \item{tt}{terms object} \item{...}{ignored} } \value{ A list with names corresponding to the term names and elements that are vectors indicating which columns come from which terms } \details{ For instance consider the following \preformatted{ survreg(Surv(time, status) ~ age + sex + factor(ph.ecog), lung) } R gives the compact for for assign, a vector (0, 1, 2, 3, 3, 3); which can be read as ``the first column of the X matrix (intercept) goes with none of the terms, the second column of X goes with term 1 of the model equation, the third column of X with term 2, and columns 4-6 with term 3''. The alternate (S-Plus default) form is a list \preformatted{ $(Intercept) 1 $age 2 $sex 3 $factor(ph.ecog) 4 5 6 } } \seealso{\code{\link{terms}},\code{\link{model.matrix}}} \examples{ formula <- Surv(time,status)~factor(ph.ecog) tt <- terms(formula) mf <- model.frame(tt,data=lung) mm <- model.matrix(tt,mf) ## a few rows of data mm[1:3,] ## old-style assign attribute attr(mm,"assign") ## alternate style assign attribute attrassign(mm,tt) } \keyword{models} survival/man/rats2.Rd0000644000176000001440000000137412267746072014274 0ustar ripleyusers\name{rats2} \alias{rats2} \docType{data} \title{Rat data from Gail et al.} \description{48 rats were injected with a carcinogen, and then randomized to either drug or placebo. The number of tumors ranges from 0 to 13; all rats were censored at 6 months after randomization. } \usage{rats2} \format{ \tabular{ll}{ rat:\tab id\cr trt:\tab treatment,(1=drug, 0=control) \cr observation:\tab within rat\cr start:\tab entry time\cr stop:\tab exit time\cr status:\tab event status, 1=tumor, 0=censored\cr } } \source{ MH Gail, TJ Santner, and CC Brown (1980), An analysis of comparative carcinogenesis experiments based on multiple times to tumor. \emph{Biometrics} \bold{36}, 255--266. } \keyword{survival} \keyword{datasets} survival/man/rats.Rd0000644000176000001440000000211112267746072014200 0ustar ripleyusers\name{rats} \alias{rats} \docType{data} \title{Rat treatment data from Mantel et al} \description{Rat treatment data from Mantel et al. Three rats were chosen from each of 100 litters, one of which was treated with a drug, and then all followed for tumor incidence. } \usage{rats} \format{ \tabular{ll}{ litter:\tab litter number from 1 to 100\cr rx:\tab treatment,(1=drug, 0=control) \cr time:\tab time to tumor or last follow-up\cr status:\tab event status, 1=tumor and 0=censored\cr sex:\tab male or female } } \source{ N. R. Bohidar and J. L. Ciminera. Mantel-Haenszel analyses of litter-matched time to response data, with modifications for recovery of interlitter information. Cancer Research, 37:3863-3868, 1977. 5 } \references{ E. W. Lee, L. J. Wei, and D. Amato, Cox-type regression analysis for large number of small groups of correlated failure time observations, in "Survival Analysis, State of the Art", Kluwer, 1992. } \note{The subset of females (odd numbered litters) was used Lee et al.} \keyword{survival} \keyword{datasets} survival/man/survreg.Rd0000644000176000001440000001034012267746072014727 0ustar ripleyusers\name{survreg} \alias{survreg} \alias{model.frame.survreg} \alias{labels.survreg} \alias{print.survreg.penal} \alias{print.summary.survreg} \alias{survReg} \alias{anova.survreg} \alias{vcov.survreg} \alias{anova.survreglist} \title{ Regression for a Parametric Survival Model } \description{ Fit a parametric survival regression model. These are location-scale models for an arbitrary transform of the time variable; the most common cases use a log transformation, leading to accelerated failure time models. } \usage{ survreg(formula, data, weights, subset, na.action, dist="weibull", init=NULL, scale=0, control,parms=NULL,model=FALSE, x=FALSE, y=TRUE, robust=FALSE, score=FALSE, \dots) } \arguments{ \item{formula}{ a formula expression as for other regression models. The response is usually a survival object as returned by the \code{Surv} function. See the documentation for \code{Surv}, \code{lm} and \code{formula} for details. } \item{data}{ a data frame in which to interpret the variables named in the \code{formula}, \code{weights} or the \code{subset} arguments. } \item{weights}{optional vector of case weights} \item{subset}{ subset of the observations to be used in the fit } \item{na.action}{ a missing-data filter function, applied to the model.frame, after any \code{subset} argument has been used. Default is \code{options()\$na.action}. } \item{dist}{ assumed distribution for y variable. If the argument is a character string, then it is assumed to name an element from \code{\link{survreg.distributions}}. These include \code{"weibull"}, \code{"exponential"}, \code{"gaussian"}, \code{"logistic"},\code{"lognormal"} and \code{"loglogistic"}. Otherwise, it is assumed to be a user defined list conforming to the format described in \code{\link{survreg.distributions}}. } \item{parms}{ a list of fixed parameters. For the t-distribution for instance this is the degrees of freedom; most of the distributions have no parameters. } \item{init}{ optional vector of initial values for the parameters. } \item{scale}{ optional fixed value for the scale. If set to <=0 then the scale is estimated. } \item{control}{ a list of control values, in the format produced by \code{\link{survreg.control}}. The default value is \code{survreg.control()} } \item{model,x,y}{ flags to control what is returned. If any of these is true, then the model frame, the model matrix, and/or the vector of response times will be returned as components of the final result, with the same names as the flag arguments.} \item{score}{return the score vector. (This is expected to be zero upon successful convergence.) } \item{robust}{Use robust 'sandwich' standard errors, based on independence of individuals if there is no \code{cluster()} term in the formula, based on independence of clusters if there is.} \item{\dots}{ other arguments which will be passed to \code{survreg.control}. }} \value{ an object of class \code{survreg} is returned. } \seealso{ \code{\link{survreg.object}}, \code{\link{survreg.distributions}}, \code{\link{pspline}}, \code{\link{frailty}}, \code{\link{ridge}} } \examples{ # Fit an exponential model: the two fits are the same survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian, dist='weibull', scale=1) survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian, dist="exponential") # # A model with different baseline survival shapes for two groups, i.e., # two different scale parameters survreg(Surv(time, status) ~ ph.ecog + age + strata(sex), lung) # There are multiple ways to parameterize a Weibull distribution. The survreg # function imbeds it in a general location-scale familiy, which is a # different parameterization than the rweibull function, and often leads # to confusion. # survreg's scale = 1/(rweibull shape) # survreg's intercept = log(rweibull scale) # For the log-likelihood all parameterizations lead to the same value. y <- rweibull(1000, shape=2, scale=5) survreg(Surv(y)~1, dist="weibull") # Economists fit a model called `tobit regression', which is a standard # linear regression with Gaussian errors, and left censored data. tobinfit <- survreg(Surv(durable, durable>0, type='left') ~ age + quant, data=tobin, dist='gaussian') } \keyword{survival} survival/man/uspop2.Rd0000644000176000001440000000205312267746072014464 0ustar ripleyusers\name{uspop2} \alias{uspop2} \docType{data} \title{Projected US Population} \description{US population by age and sex, for 2000 through 2020} \usage{data(uspop2)} \format{ The data is a matrix with dimensions age, sex, and calendar year. Age goes from 0 through 100, where the value for age 100 is the total for all ages of 100 or greater. } \details{ This data is often used as a "standardized" population for epidemiolgy studies.} \source{ NP2008_D1: Projected Population by Single Year of Age, Sex, Race, and Hispanic Origin for the United States: July 1, 2000 to July 1, 2050, www.census.gov/population/projections. } \examples{ us50 <- uspop2[51:101,, "2000"] #US 2000 population, 50 and over age <- as.integer(dimnames(us50)[[1]]) smat <- model.matrix( ~ factor(floor(age/5)) -1) ustot <- t(smat) \%*\% us50 #totals by 5 year age groups temp <- c(50,55, 60, 65, 70, 75, 80, 85, 90, 95) dimnames(ustot) <- list(c(paste(temp, temp+4, sep="-"), "100+"), c("male", "female")) } \seealso{\code{\link{uspop}}} \keyword{datasets} survival/man/survfitcoxph.fit.Rd0000644000176000001440000000567212267746072016573 0ustar ripleyusers\name{survfitcoxph.fit} \alias{survfitcoxph.fit} \title{ A direct interface to the `computational engine' of survfit.coxph } \description{ This program is mainly supplied to allow other packages to invoke the survfit.coxph function at a `data' level rather than a `user' level. It does no checks on the input data that is provided, which can lead to unexpected errors if that data is wrong. } \usage{ survfitcoxph.fit(y, x, wt, x2, risk, newrisk, strata, se.fit, survtype, vartype, varmat, id, y2, strata2, unlist=TRUE) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{y}{the response variable used in the Cox model. (Missing values removed of course.) } \item{x}{covariate matrix used in the Cox model } \item{wt}{weight vector for the Cox model. If the model was unweighted use a vector of 1s. } \item{x2}{matrix describing the hypothetical subjects for which a curve is desired. Must have the same number of columns as \code{x}. } \item{risk}{the risk score exp(X beta) from the fitted Cox model. If the model had an offset, include it in the argument to exp. } \item{newrisk}{risk scores for the hypothetical subjects } \item{strata}{strata variable used in the Cox model. This will be a factor. } \item{se.fit}{if \code{TRUE} the standard errors of the curve(s) are returned } \item{survtype}{1=Kalbfleish-Prentice, 2=Nelson-Aalen, 3=Efron. It is usual to match this to the approximation for ties used in the \code{coxph} model: KP for `exact', N-A for `breslow' and Efron for `efron'. } \item{vartype}{1=Greenwood, 2=Aalen, 3=Efron } \item{varmat}{the variance matrix of the coefficients } \item{id}{optional; if present and not NULL this should be a vector of identifiers of length \code{nrow(x2)}. A mon-null value signifies that \code{x2} contains time dependent covariates, in which case this identifies which rows of \code{x2} go with each subject. } \item{y2}{survival times, for time dependent prediction. It gives the time range (time1,time2] for each row of \code{x2}. Note: this must be a Surv object and thus contains a status indicator, which is never used in the routine, however. } \item{strata2}{vector of strata indicators for \code{x2}. This must be a factor. } \item{unlist}{if \code{FALSE} the result will be a list with one element for each strata. Otherwise the strata are ``unpacked'' into the form found in a \code{survfit} object.} } \value{a list containing nearly all the components of a \code{survfit} object. All that is missing is to add the confidence intervals, the type of the original model's response (as in a coxph object), and the class. } \note{The source code for for both this function and \code{survfit.coxph} is written using noweb. For complete documentation see the \code{inst/sourcecode.pdf} file. } \author{Terry Therneau} \seealso{\code{\link{survfit.coxph}} } \keyword{survival} survival/man/ratetable.Rd0000644000176000001440000000201712267746072015177 0ustar ripleyusers\name{ratetable} \alias{ratetable} \alias{[.ratetable} \alias{[.ratetable2} \alias{print.ratetable} \alias{is.na.ratetable} \alias{summary.ratetable} \title{Ratetable reference in formula} \description{ This function matches variable names in data to those in a ratetable for \code{\link{survexp}} } \usage{ ratetable(...) } \arguments{ \item{\dots}{tags matching dimensions of the ratetable and variables in the data frame (see example)} } \value{ A data frame } \seealso{\code{\link{survexp}},\code{\link{survexp.us}},\code{\link{is.ratetable}}} \examples{ fit <- survfit(Surv(time, status) ~ sex, pbc,subset=1:312) # The data set does not have entry date, use the midpoint of the study efit <- survexp(~ ratetable(sex=sex,age=age*365.35,year=as.Date('1979/1/1')) + sex, data=pbc, times=(0:24)*182) \dontrun{ plot(fit, mark.time=F, xscale=365.25, xlab="Years post diagnosis", ylab="Survival") lines(efit, col=2, xscale=365.25) # Add the expected survival line } } \keyword{survival}%-- one or more ... survival/man/residuals.survreg.Rd0000644000176000001440000000531112267746072016723 0ustar ripleyusers\name{residuals.survreg} \alias{residuals.survreg} \alias{residuals.survreg.penal} \title{Compute Residuals for `survreg' Objects} \description{ This is a method for the function \code{\link{residuals}} for objects inheriting from class \code{survreg}. } \usage{ \method{residuals}{survreg}(object, type=c("response", "deviance","dfbeta","dfbetas", "working","ldcase","ldresp","ldshape", "matrix"), rsigma=TRUE, collapse=FALSE, weighted=FALSE, ...) } \arguments{ \item{object}{ an object inheriting from class \code{survreg}. } \item{type}{ type of residuals, with choices of \code{"response"}, \code{"deviance"}, \code{"dfbeta"}, \code{"dfbetas"}, \code{"working"}, \code{"ldcase"}, \code{"lsresp"}, \code{"ldshape"}, and \code{"matrix"}. See the LaTeX documentation (\code{survival/doc/survival.ps.gz}) for more detail. } \item{rsigma}{ include the scale parameters in the variance matrix, when doing computations. (I can think of no good reason not to). } \item{collapse}{ optional vector of subject groups. If given, this must be of the same length as the residuals, and causes the result to be per group residuals. } \item{weighted}{ give weighted residuals? Normally residuals are unweighted. }\item{...}{other unused arguments}} \value{ A vector or matrix of residuals is returned. Response residuals are on the scale of the original data, working residuals are on the scale of the linear predictor, and deviance residuals are on log-likelihood scale. The dfbeta residuals are a matrix, where the ith row gives the approximate change in the coefficients due to the addition of subject i. The dfbetas matrix contains the dfbeta residuals, with each column scaled by the standard deviation of that coefficient. The matrix type produces a matrix based on derivatives of the log-likelihood function. Let \eqn{L} be the log-likelihood, \eqn{p} be the linear predictor \eqn{X\beta}{X \%*\% coef}, and \eqn{s} be \eqn{\log(\sigma)}. Then the 6 columns of the matrix are \eqn{L}, \eqn{dL/dp},\eqn{\partial^2L/\partial p^2}{ddL/(dp dp)}, \eqn{dL/ds}, \eqn{\partial^2L/\partial s^2}{ddL/(ds ds)} and \eqn{\partial^2L/\partial p\partial s}{ddL/(dp ds)}. Diagnostics based on these quantities are discussed in an article by Escobar and Meeker. The main ones are the likelihood displacement residuals for perturbation of a case weight (\code{ldcase}), the response value (\code{ldresp}), and the \code{shape}. } \references{ Escobar, L. A. and Meeker, W. Q. (1992). Assessing influence in regression analysis with censored data. \emph{Biometrics} \bold{48}, 507-528. } \seealso{\code{\link{predict.survreg}}} \examples{ fit <- survreg(Surv(time,status) ~x, aml) rr <- residuals(fit, type='matrix') } \keyword{survival} % Converted by Sd2Rd version 0.3-2. survival/man/print.survfit.Rd0000644000176000001440000000706212267746072016076 0ustar ripleyusers\name{print.survfit} \alias{print.survfit} \title{ Print a Short Summary of a Survival Curve } \description{ Print number of observations, number of events, the restricted mean survival and its standard error, and the median survival with confidence limits for the median. } \usage{ \method{print}{survfit}(x, scale=1, digits = max(options()$digits - 4,3), print.rmean=getOption("survfit.print.rmean"), rmean = getOption('survfit.rmean'),...) } \arguments{ \item{x}{ the result of a call to the \code{survfit} function. } \item{scale}{ a numeric value to rescale the survival time, e.g., if the input data to survfit were in days, \code{scale=365} would scale the printout to years. } \item{digits}{Number of digits to print} \item{print.rmean,rmean}{Options for computation and display of the restricted mean.} \item{\dots}{for future results} } \value{ x, with the invisible flag set to prevent printing. (The default for all print functions in R is to return the object passed to them; print.survfit follows the pattern. If you want to capture these printed results for further processing, see the \code{table} component of \code{summary.survfit}.) } \section{Side Effects}{ The number of observations, the number of events, the median survival with its confidence interval, and optionally the restricted mean survival (\code{rmean}) and its standard error, are printed. If there are multiple curves, there is one line of output for each. } \details{ The mean and its variance are based on a truncated estimator. That is, if the last observation(s) is not a death, then the survival curve estimate does not go to zero and the mean is undefined. There are four possible approaches to resolve this, which are selected by the \code{rmean} option. The first is to set the upper limit to a constant, e.g.,\code{rmean=365}. In this case the reported mean would be the expected number of days, out of the first 365, that would be experienced by each group. This is useful if interest focuses on a fixed period. Other options are \code{"none"} (no estimate), \code{"common"} and \code{"individual"}. The \code{"common"} option uses the maximum time for all curves in the object as a common upper limit for the auc calculation. For the \code{"individual"}options the mean is computed as the area under each curve, over the range from 0 to the maximum observed time for that curve. Since the end point is random, values for different curves are not comparable and the printed standard errors are an underestimate as they do not take into account this random variation. This option is provided mainly for backwards compatability, as this estimate was the default (only) one in earlier releases of the code. Note that SAS (as of version 9.3) uses the integral up to the last \emph{event} time of each individual curve; we consider this the worst of the choices and do not provide an option for that calculation. The median and its confidence interval are defined by drawing a horizontal line at 0.5 on the plot of the survival curve and its confidence bands. The intersection of the line with the lower CI band defines the lower limit for the median's interval, and similarly for the upper band. If any of the intersections is not a point, then we use the smallest point of intersection, e.g., if the survival curve were exactly equal to 0.5 over an interval. } \section{References}{ Miller, Rupert G., Jr. (1981). \emph{Survival Analysis.} New York:Wiley, p 71. } \seealso{ \code{\link{summary.survfit}}. } \keyword{survival} % docclass is function % Converted by Sd2Rd version 37351. survival/man/summary.survexp.Rd0000644000176000001440000000266112267746072016451 0ustar ripleyusers\name{summary.survexp} \alias{summary.survexp} \title{Summary function for a survexp object} \description{ Returns a list containing the values of the survival at specified times. } \usage{ \method{summary}{survexp}(object, times, scale = 1, ...) } \arguments{ \item{object}{ the result of a call to the \code{survexp} function } \item{times}{ vector of times; the returned matrix will contain 1 row for each time. Missing values are not allowed. } \item{scale}{ numeric value to rescale the survival time, e.g., if the input data to \code{survfit} were in days, \code{scale = 365.25} would scale the output to years. } \item{\dots}{For future methods} } \details{ A primary use of this function is to retreive survival at fixed time points, which will be properly interpolated by the function. } \value{ a list with the following components: \item{surv}{ the estimate of survival at time t. } \item{time}{ the timepoints on the curve. } \item{n.risk}{ In expected survival each subject from the data set is matched to a hypothetical person from the parent population, matched on the characteristics of the parent population. The number at risk is the number of those hypothetical subject who are still part of the calculation. } } \author{Terry Therneau} \seealso{\code{\link{survexp}} } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ survival } survival/man/survdiff.Rd0000644000176000001440000000710312267746072015065 0ustar ripleyusers\name{survdiff} \alias{survdiff} \alias{print.survdiff} \title{ Test Survival Curve Differences } \description{ Tests if there is a difference between two or more survival curves using the \eqn{G^\rho}{G-rho} family of tests, or for a single curve against a known alternative. } \usage{ survdiff(formula, data, subset, na.action, rho=0) } \arguments{ \item{formula}{ a formula expression as for other survival models, of the form \code{Surv(time, status) ~ predictors}. For a one-sample test, the predictors must consist of a single \code{offset(sp)} term, where \code{sp} is a vector giving the survival probability of each subject. For a k-sample test, each unique combination of predictors defines a subgroup. A \code{strata} term may be used to produce a stratified test. To cause missing values in the predictors to be treated as a separate group, rather than being omitted, use the \code{strata} function with its \code{na.group=T} argument. } \item{data}{ an optional data frame in which to interpret the variables occurring in the formula. } \item{subset}{ expression indicating which subset of the rows of data should be used in the fit. This can be a logical vector (which is replicated to have length equal to the number of observations), a numeric vector indicating which observation numbers are to be included (or excluded if negative), or a character vector of row names to be included. All observations are included by default. } \item{na.action}{ a missing-data filter function. This is applied to the \code{model.frame} after any subset argument has been used. Default is \code{options()$na.action}. } \item{rho}{ a scalar parameter that controls the type of test. }} \value{ a list with components: \item{n}{ the number of subjects in each group. } \item{obs}{ the weighted observed number of events in each group. If there are strata, this will be a matrix with one column per stratum. } \item{exp}{ the weighted expected number of events in each group. If there are strata, this will be a matrix with one column per stratum. } \item{chisq}{ the chisquare statistic for a test of equality. } \item{var}{ the variance matrix of the test. } \item{strata}{ optionally, the number of subjects contained in each stratum. }} \section{METHOD}{ This function implements the G-rho family of Harrington and Fleming (1982), with weights on each death of \eqn{S(t)^\rho}{S(t)^rho}, where \eqn{S(t)}{S} is the Kaplan-Meier estimate of survival. With \code{rho = 0} this is the log-rank or Mantel-Haenszel test, and with \code{rho = 1} it is equivalent to the Peto & Peto modification of the Gehan-Wilcoxon test. If the right hand side of the formula consists only of an offset term, then a one sample test is done. To cause missing values in the predictors to be treated as a separate group, rather than being omitted, use the \code{factor} function with its \code{exclude} argument. } \references{ Harrington, D. P. and Fleming, T. R. (1982). A class of rank test procedures for censored survival data. \emph{Biometrika} \bold{69}, 553-566.} \examples{ ## Two-sample test survdiff(Surv(futime, fustat) ~ rx,data=ovarian) ## Stratified 7-sample test survdiff(Surv(time, status) ~ pat.karno + strata(inst), data=lung) ## Expected survival for heart transplant patients based on ## US mortality tables expect <- survexp(futime ~ ratetable(age=(accept.dt - birth.dt), sex=1,year=accept.dt,race="white"), jasa, cohort=FALSE, ratetable=survexp.usr) ## actual survival is much worse (no surprise) survdiff(Surv(jasa$futime, jasa$fustat) ~ offset(expect)) } \keyword{survival} % Converted by Sd2Rd version 0.3-2. and hand edited. survival/man/bladder.Rd0000644000176000001440000000565312267746072014642 0ustar ripleyusers\name{bladder} \docType{data} \alias{bladder} \alias{bladder1} \alias{bladder2} \title{Bladder Cancer Recurrences} \usage{ bladder1 bladder bladder2 } \description{Data on recurrences of bladder cancer, used by many people to demonstrate methodology for recurrent event modelling. Bladder1 is the full data set from the study. It contains all three treatment arms and all recurrences for 118 subjects; the maximum observed number of recurrences is 9. Bladder is the data set that appears most commonly in the literature. It uses only the 85 subjects with nonzero follow-up who were assigned to either thiotepa or placebo. The status variable is 1 for recurrence and 0 for everything else (including death for any reason). The data set is laid out in the competing risks format of the paper by Wei, Lin, and Weissfeld. Bladder2 uses the same subset of subjects as bladder, but formated in the (start, stop] or Anderson-Gill style. Note that in transforming from the WLW to the AG style data set there is a quite common programming mistake that leads to extra follow-up time for 12 subjects (all those with more than 4 recurrences); this includes some earlier releases of the data in R. } \format{ bladder1 \tabular{ll}{ id:\tab Patient id\cr treatment:\tab Placebo, pyridoxine (vitamin B6), or thiotepa\cr number:\tab Initial number of tumours (8=8 or more)\cr size:\tab Size (cm) of largest initial tumour\cr recur:\tab Number of recurrences \cr start,stop:\tab The start and end time of each time interval\cr status:\tab End of interval code, 0=censored, 1=recurrence, \cr \tab 2=death from bladder disease, 3=death other/unknown cause\cr rtumor:\tab Number of tumors found at the time of a recurrence\cr rsize:\tab Size of largest tumor at a recurrence\cr enum:\tab Event number (observation number within patient)\cr } bladder \tabular{ll}{ id:\tab Patient id\cr rx:\tab Treatment 1=placebo 2=thiotepa\cr number:\tab Initial number of tumours (8=8 or more)\cr size:\tab size (cm) of largest initial tumour\cr stop:\tab recurrence or censoring time\cr enum:\tab which recurrence (up to 4)\cr } bladder2 \tabular{ll}{ id:\tab Patient id\cr rx:\tab Treatment 1=placebo 2=thiotepa\cr number:\tab Initial number of tumours (8=8 or more)\cr size:\tab size (cm) of largest initial tumour\cr start:\tab start of interval (0 or previous recurrence time)\cr stop:\tab recurrence or censoring time\cr enum:\tab which recurrence (up to 4)\cr } } \source{ Andrews DF, Hertzberg AM (1985), DATA: A Collection of Problems from Many Fields for the Student and Research Worker, New York: Springer-Verlag. LJ Wei, DY Lin, L Weissfeld (1989), Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. \emph{Journal of the American Statistical Association}, \bold{84}. } \keyword{datasets} \keyword{survival} survival/man/pbcseq.Rd0000644000176000001440000000576512267746072014526 0ustar ripleyusers\name{pbcseq} \alias{pbcseq} \docType{data} \title{Mayo Clinic Primary Biliary Cirrhosis, sequential data} \description{ This data is a continuation of the PBC data set, and contains the follow-up laboratory data for each study patient. An analysis based on the data can be found in Murtagh, et. al. The primary PBC data set contains only baseline measurements of the laboratory paramters. This data set contains multiple laboratory results, but only on the 312 randomized patients. Some baseline data values in this file differ from the original PBC file, for instance, the data errors in prothrombin time and age which were discovered after the orignal analysis (see Fleming and Harrington, figure 4.6.7). One "feature" of the data deserves special comment. The last observation before death or liver transplant often has many more missing covariates than other data rows. The original clinical protocol for these patients specified visits at 6 months, 1 year, and annually thereafter. At these protocol visits lab values were obtained for a large pre-specified battery of tests. "Extra" visits, often undertaken because of worsening medical condition, did not necessarily have all this lab work. The missing values are thus potentially informative. } \usage{pbc} \format{ \tabular{ll}{ id:\tab case number\cr age:\tab in years\cr sex:\tab m/f\cr trt:\tab 1/2/NA for D-penicillmain, placebo, not randomised\cr time:\tab number of days between registration and the earlier of death,\cr \tab transplantion, or study analysis in July, 1986\cr status:\tab status at endpoint, 0/1/2 for censored, transplant, dead\cr day:\tab number of days between enrollment and this visit date\cr \tab all measurements below refer to this date\cr albumin:\tab serum albumin (mg/dl)\cr alk.phos:\tab alkaline phosphotase (U/liter)\cr ascites:\tab presence of ascites \cr ast:\tab aspartate aminotransferase, once called SGOT (U/ml)\cr bili:\tab serum bilirunbin (mg/dl)\cr chol:\tab serum cholesterol (mg/dl)\cr copper:\tab urine copper (ug/day)\cr edema:\tab 0 no edema, 0.5 untreated or successfully treated\cr \tab 1 edema despite diuretic therapy\cr hepato:\tab presence of hepatomegaly or enlarged liver\cr platelet:\tab platelet count\cr protime:\tab standardised blood clotting time\cr spiders:\tab blood vessel malformations in the skin\cr stage:\tab histologic stage of disease (needs biopsy)\cr trig:\tab triglycerides (mg/dl)\cr } } \source{ T Therneau and P Grambsch, "Modeling Survival Data: Extending the Cox Model", Springer-Verlag, New York, 2000. ISBN: 0-387-98784-3. } \references{ Murtaugh PA. Dickson ER. Van Dam GM. Malinchoc M. Grambsch PM. Langworthy AL. Gips CH. "Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits." Hepatology. 20(1.1):126-34, 1994. Fleming T and Harrington D., "Counting Processes and Survival Analysis", Wiley, New York, 1991. } \keyword{datasets} survival/man/frailty.Rd0000644000176000001440000001163412267746072014713 0ustar ripleyusers\name{frailty} \alias{frailty} \alias{frailty.gamma} \alias{frailty.gaussian} \alias{frailty.t} \title{ Random effects terms } \description{ The frailty function allows one to add a simple random effects term to a Cox or survreg model. } \usage{ frailty(x, distribution="gamma", ...) frailty.gamma(x, sparse = (nclass > 5), theta, df, eps = 1e-05, method = c("em","aic", "df", "fixed"), ...) frailty.gaussian(x, sparse = (nclass > 5), theta, df, method =c("reml","aic", "df", "fixed"), ...) frailty.t(x, sparse = (nclass > 5), theta, df, eps = 1e-05, tdf = 5, method = c("aic", "df", "fixed"), ...) } \arguments{ \item{x}{ the variable to be entered as a random effect. It is always treated as a factor. } \item{distribution}{ either the \code{gamma}, \code{gaussian} or \code{t} distribution may be specified. The routines \code{frailty.gamma}, \code{frailty.gaussian} and \code{frailty.t} do the actual work. } \item{\dots}{Arguments for specific distribution, including (but not limited to) } \item{sparse}{ cutoff for using a sparse coding of the data matrix. If the total number of levels of \code{x} is larger than this value, then a sparse matrix approximation is used. The correct cutoff is still a matter of exploration: if the number of levels is very large (thousands) then the non-sparse calculation may not be feasable in terms of both memory and compute time. Likewise, the accuracy of the sparse approximation appears to be related to the maximum proportion of subjects in any one class, being best when no one class has a large membership. } \item{theta}{ if specified, this fixes the variance of the random effect. If not, the variance is a parameter, and a best solution is sought. Specifying this implies \code{method='fixed'}. } \item{df}{ if specified, this fixes the degrees of freedom for the random effect. Specifying this implies \code{method='df'}. Only one of \code{theta} or \code{df} should be specified. } \item{method}{ the method used to select a solution for theta, the variance of the random effect. The \code{fixed} corresponds to a user-specified value, and no iteration is done. The \code{df} selects the variance such that the degrees of freedom for the random effect matches a user specified value. The \code{aic} method seeks to maximize Akiake's information criteria 2*(partial likelihood - df). The \code{em} and \code{reml} methods are specific to Cox models with gamma and gaussian random effects, respectively. Please see further discussion below. } \item{tdf}{ the degrees of freedom for the t-distribution. } \item{eps}{ convergence critera for the iteration on theta. } } \value{ this function is used in the model statment of either \code{coxph} or \code{survreg}. It's results are used internally. } \details{ The \code{frailty} plugs into the general penalized modeling framework provided by the \code{coxph} and \code{survreg} routines. This framework deals with likelihood, penalties, and degrees of freedom; these aspects work well with either parent routine. Therneau, Grambsch, and Pankratz show how maximum likelihood estimation for the Cox model with a gamma frailty can be accomplished using a general penalized routine, and Ripatti and Palmgren work through a similar argument for the Cox model with a gaussian frailty. Both of these are specific to the Cox model. Use of gamma/ml or gaussian/reml with \code{survreg} does not lead to valid results. The extensible structure of the penalized methods is such that the penalty function, such as \code{frailty} or \code{pspine}, is completely separate from the modeling routine. The strength of this is that a user can plug in any penalization routine they choose. A weakness is that it is very difficult for the modeling routine to know whether a sensible penalty routine has been supplied. Note that use of a frailty term implies a mixed effects model and use of a cluster term implies a GEE approach; these cannot be mixed. The \code{coxme} package has superseded this method. It is faster, more stable, and more flexible. } \section{References}{ S Ripatti and J Palmgren, Estimation of multivariate frailty models using penalized partial likelihood, Biometrics, 56:1016-1022, 2000. T Therneau, P Grambsch and VS Pankratz, Penalized survival models and frailty, J Computational and Graphical Statistics, 12:156-175, 2003. } \seealso{ \link{coxph}, \link{survreg} } \examples{ # Random institutional effect coxph(Surv(time, status) ~ age + frailty(inst, df=4), lung) # Litter effects for the rats data rfit2a <- survreg(Surv(time, status) ~ rx + frailty.gaussian(litter, df=13, sparse=FALSE), rats ) rfit2b <- survreg(Surv(time, status) ~ rx + frailty.gaussian(litter, df=13, sparse=TRUE), rats ) } \keyword{survival} survival/man/print.summary.coxph.Rd0000644000176000001440000000103512267746072017203 0ustar ripleyusers\name{print.summary.coxph} \alias{print.summary.coxph} \title{ Print method for summary.coxph objects } \description{ Produces a printed summary of a fitted coxph model } \usage{ \method{print}{summary.coxph}(x, digits=max(getOption("digits") - 3, 3), signif.stars = getOption("show.signif.stars"), ...) } \arguments{ \item{x}{ the result of a call to \code{summary.coxph} } \item{digits}{significant digits to print} \item{signif.stars}{ Show stars to highlight small p-values } \item{\dots}{For future methods} } survival/man/cluster.Rd0000644000176000001440000000207712267746072014723 0ustar ripleyusers\name{cluster} \alias{cluster} \title{ Identify clusters. } \description{ This is a special function used in the context of survival models. It identifies correlated groups of observations, and is used on the right hand side of a formula. Using \code{cluster()} in a formula implies that robust sandwich variance estimators are desired.} \usage{ cluster(x) } \arguments{ \item{x}{ A character, factor, or numeric variable. } } \value{ \code{x} } \details{ The function's only action is semantic, to mark a variable as the cluster indicator. The resulting variance is what is known as the ``working independence'' variance in a GEE model. Note that one cannot use both a frailty term and a cluster term in the same model, the first is a mixed-effects approach to correlation and the second a GEE approach, and these don't mix. } \seealso{ \code{\link{coxph}}, \code{\link{survreg}} } \examples{ marginal.model <- coxph(Surv(time, status) ~ rx + cluster(litter), rats) frailty.model <- coxph(Surv(time, status) ~ rx + frailty(litter), rats) } \keyword{survival} survival/man/tobin.Rd0000644000176000001440000000134712267746072014354 0ustar ripleyusers\name{tobin} \alias{tobin} \docType{data} \title{Tobin's Tobit data} \description{ Economists fit a parametric censored data model called the \sQuote{tobit}. These data are from Tobin's original paper. } \usage{tobin} \format{ A data frame with 20 observations on the following 3 variables. \describe{ \item{durable}{Durable goods purchase} \item{age}{Age in years} \item{quant}{Liquidity ratio (x 1000)} } } \source{ J Tobin (1958), Estimation of relationships for limited dependent variables. \emph{Econometrica} \bold{26}, 24--36. } \examples{ tfit <- survreg(Surv(durable, durable>0, type='left') ~age + quant, data=tobin, dist='gaussian') predict(tfit,type="response") } \keyword{datasets} survival/man/is.ratetable.Rd0000644000176000001440000000210312267746072015605 0ustar ripleyusers\name{is.ratetable} \alias{is.ratetable} \alias{Math.ratetable} \alias{Ops.ratetable} \title{ Verify that an object is of class ratetable. } \description{ The function verifies not only the \code{class} attribute, but the structure of the object. } \usage{ is.ratetable(x, verbose=FALSE) } \arguments{ \item{x}{ the object to be verified. } \item{verbose}{ if \code{TRUE} and the object is not a ratetable, then return a character string describing the way(s) in which \code{x} fails to be a proper ratetable object. } } \value{ returns \code{TRUE} if \code{x} is a ratetable, and \code{FALSE} or a description if it is not. } \details{ Rate tables are used by the \code{pyears} and \code{survexp} functions, and normally contain death rates for some population, categorized by age, sex, or other variables. They have a fairly rigid structure, and the \code{verbose} option can help in creating a new rate table. } \seealso{ \code{\link{pyears}}, \code{\link{survexp}}. } \examples{ is.ratetable(survexp.us) # True is.ratetable(cancer) # False } \keyword{survival} survival/man/survexp.fit.Rd0000644000176000001440000000420612267746072015533 0ustar ripleyusers\name{survexp.fit} \alias{survexp.fit} \title{ Compute Expected Survival } \description{ Compute expected survival times. } \usage{ survexp.fit(group, x, y, times, death, ratetable) } \arguments{ \item{group}{if there are multiple survival curves this identifies the group, otherwise it is a constant. Must be an integer.} \item{x}{A matrix whose columns match the dimensions of the \code{ratetable}, in the correct order. } \item{y}{ the follow up time for each subject. } \item{times}{ the vector of times at which a result will be computed. } \item{death}{ a logical value, if \code{TRUE} the conditional survival is computed, if \code{FALSE} the cohort survival is computed. See \code{\link{survexp}} for more details. } \item{ratetable}{ a rate table, such as \code{survexp.uswhite}. } } \value{ A list containing the number of subjects and the expected survival(s) at each time point. If there are multiple groups, these will be matrices with one column per group. } \details{ For conditional survival \code{y} must be the time of last follow-up or death for each subject. For cohort survival it must be the potential censoring time for each subject, ignoring death. For an exact estimate \code{times} should be a superset of \code{y}, so that each subject at risk is at risk for the entire sub-interval of time. For a large data set, however, this can use an inordinate amount of storage and/or compute time. If the \code{times} spacing is more coarse than this, an actuarial approximation is used which should, however, be extremely accurate as long as all of the returned values are > .99. For a subgroup of size 1 and \code{times} > \code{y}, the conditional method reduces to exp(-h) where h is the expected cumulative hazard for the subject over his/her observation time. This is used to compute individual expected survival. } \section{Warning}{ Most users will call the higher level routine \code{survexp}. Consequently, this function has very few error checks on its input arguments. } \seealso{ \code{\link{survexp}}, \code{\link{survexp.us}}. } \keyword{survival } % docclass is function % Converted by Sd2Rd version 37351. survival/man/ovarian.Rd0000644000176000001440000000170412267746072014675 0ustar ripleyusers\name{ovarian} \alias{ovarian} \docType{data} \title{Ovarian Cancer Survival Data} \usage{ovarian} \description{Survival in a randomised trial comparing two treatments for ovarian cancer} \format{ \tabular{ll}{ futime:\tab survival or censoring time\cr fustat:\tab censoring status\cr age: \tab in years\cr resid.ds:\tab residual disease present (1=no,2=yes)\cr rx:\tab treatment group\cr ecog.ps:\tab ECOG performance status (1 is better, see reference)\cr } } \source{Terry Therneau} \references{ Edmunson, J.H., Fleming, T.R., Decker, D.G., Malkasian, G.D., Jefferies, J.A., Webb, M.J., and Kvols, L.K., Different Chemotherapeutic Sensitivities and Host Factors Affecting Prognosis in Advanced Ovarian Carcinoma vs. Minimal Residual Disease. Cancer Treatment Reports, 63:241-47, 1979. for ECOG performance status: \url{http://ecog.org/general/perf_stat.html} } \keyword{datasets} \keyword{survival} survival/man/anova.coxph.Rd0000644000176000001440000000411212267746072015456 0ustar ripleyusers\name{anova.coxph} \alias{anova.coxph} \alias{anova.coxphlist} \title{Analysis of Deviance for a Cox model.} \usage{ \method{anova}{coxph}(object, \dots, test = 'Chisq') } \description{ Compute an analysis of deviance table for one or more Cox model fits. } \arguments{ \item{object}{An object of class \code{coxph}} \item{\dots}{Further \code{coxph} objects} \item{test}{a character string. The appropriate test is a chisquare, all other choices result in no test being done.} } \details{ Specifying a single object gives a sequential analysis of deviance table for that fit. That is, the reductions in the model log-likelihood as each term of the formula is added in turn are given in as the rows of a table, plus the log-likelihoods themselves. A robust variance estimate is normally used in situations where the model may be mis-specified, e.g., multiple events per subject. In this case a comparison of partial-likelihood values does not make sense, and \code{anova} will refuse to print results. If more than one object is specified, the table has a row for the degrees of freedom and loglikelihood for each model. For all but the first model, the change in degrees of freedom and loglik is also given. (This only make statistical sense if the models are nested.) It is conventional to list the models from smallest to largest, but this is up to the user. The table will optionally contain test statistics (and P values) comparing the reduction in loglik for each row. } \value{ An object of class \code{"anova"} inheriting from class \code{"data.frame"}. } \section{Warning}{ The comparison between two or more models by \code{anova} or will only be valid if they are fitted to the same dataset. This may be a problem if there are missing values.} \seealso{ \code{\link{coxph}}, \code{\link{anova}}. } \examples{ fit <- coxph(Surv(futime, fustat) ~ resid.ds *rx + ecog.ps, data = ovarian) anova(fit) fit2 <- coxph(Surv(futime, fustat) ~ resid.ds +rx + ecog.ps, data=ovarian) anova(fit2,fit) } \keyword{models} \keyword{regression} \keyword{survival} survival/man/summary.survfit.Rd0000644000176000001440000000732312267746072016437 0ustar ripleyusers\name{summary.survfit} \alias{summary.survfit} \title{ Summary of a Survival Curve } \description{ Returns a list containing the survival curve, confidence limits for the curve, and other information. } \usage{ \method{summary}{survfit}(object, times=, censored=FALSE, scale=1, extend=FALSE, rmean=getOption('survfit.rmean'), ...) } \arguments{ \item{object}{ the result of a call to the \code{survfit} function. } \item{times}{ vector of times; the returned matrix will contain 1 row for each time. This must be in increasing order and missing values are not allowed. If \code{censored=T}, the default \code{times} vector contains all the unique times in \code{fit}, otherwise the default \code{times} vector uses only the event (death) times. } \item{censored}{ logical value: should the censoring times be included in the output? This is ignored if the \code{times} argument is present. } \item{scale}{ numeric value to rescale the survival time, e.g., if the input data to \code{survfit} were in days, \code{scale = 365.25} would scale the output to years. } \item{extend}{ logical value: if TRUE, prints information for all specified \code{times}, even if there are no subjects left at the end of the specified \code{times}. This is only valid if the \code{times} argument is present. } \item{rmean}{Show restricted mean: see \code{\link{print.survfit}} for details} \item{\dots}{for future methods} } \value{ a list with the following components: \item{surv}{ the estimate of survival at time t+0. } \item{time}{ the timepoints on the curve. } \item{n.risk}{ the number of subjects at risk at time t-0 (but see the comments on weights in the \code{survfit} help file). } \item{n.event}{ if the \code{times} argument is missing, then this column is the number of events that occurred at time t. Otherwise, it is the cumulative number of events that have occurred since the last time listed until time t+0. } \item{n.entered}{ This is present only for counting process survival data. If the \code{times} argument is missing, this column is the number of subjects that entered at time t. Otherwise, it is the cumulative number of subjects that have entered since the last time listed until time t. } \item{n.exit.censored}{ if the \code{times} argument is missing, this column is the number of subjects that left without an event at time t. Otherwise, it is the cumulative number of subjects that have left without an event since the last time listed until time t+0. This is only present for counting process survival data. } \item{std.err}{ the standard error of the survival value. } \item{conf.int}{ level of confidence for the confidence intervals of survival. } \item{lower}{ lower confidence limits for the curve. } \item{upper}{ upper confidence limits for the curve. } \item{strata}{ indicates stratification of curve estimation. If \code{strata} is not \code{NULL}, there are multiple curves in the result and the \code{surv}, \code{time}, \code{n.risk}, etc. vectors will contain multiple curves, pasted end to end. The levels of \code{strata} (a factor) are the labels for the curves. } \item{call}{ the statement used to create the \code{fit} object. } \item{na.action}{ same as for \code{fit}, if present. } \item{table}{ table of information that is returned from \code{print.survfit} function. } \item{type}{ type of data censoring. Passed through from the fit object. } } \seealso{ \code{\link{survfit}}, \code{\link{print.summary.survfit}} } \examples{ summary( survfit( Surv(futime, fustat)~1, data=ovarian)) summary( survfit( Surv(futime, fustat)~rx, data=ovarian)) } \keyword{survival} survival/man/quantile.survfit.Rd0000644000176000001440000000677612267746072016577 0ustar ripleyusers\name{quantile.survfit} \alias{quantile.survfit} \alias{quantile.survfitms} \title{Quantiles from a survfit object} \description{Retrieve quantiles and confidence intervals for them from a survfit object. } \usage{ \method{quantile}{survfit}(x, probs = c(0.25, 0.5, 0.75), conf.int = TRUE, tolerance= sqrt(.Machine$double.eps), ...) \method{quantile}{survfitms}(x, probs = c(0.25, 0.5, 0.75), conf.int = TRUE, tolerance= sqrt(.Machine$double.eps), ...) } \arguments{ \item{x}{a result of the survfit function} \item{probs}{numeric vector of probabilities with values in [0,1]} \item{conf.int}{should lower and upper confidence limits be returned?} \item{tolerance}{tolerance for checking that the suvival curve exactly equals one of the quantiles} \item{...}{optional arguments for other methods} } \details{ The kth quantile for a survival curve S(t) is the location at which a horizontal line at height p= 1-k intersects the plot of S(t). Since S(t) is a step function, it is possible for the curve to have a horizontal segment at exactly 1-k, in which case the midpoint of the horizontal segment is returned. This mirrors the standard behavior of the median when data is uncensored. If the survival curve does not fall to 1-k, then that quantile is undefined. In order to be consistent with other quantile functions, the argument \code{prob} of this function applies to the cumulative distribution function F(t) = 1-S(t). Confidence limits for the values are based on the intersection of the horizontal line at 1-k with the upper and lower limits for the survival curve. Hence confidence limits use the same p-value as was in effect when the curve was created, and will differ depending on the \code{conf.type} option of \code{survfit}. If the survival curves have no confidence bands, confidence limits for the quantiles are not available. When a horizontal seqment of the survival curve exactly matches one of the requested quantiles the returned value will be the midpoint of the horizontal seqment; this agrees with the usual definition of a median for uncensored data. Since the survival curve is computed as a series of products, however, there may be round off error. Assume for instance a sample of size 20 with no tied times and no censoring. The survival curve after the 10th death is (19/20)(18/19)(17/18) ... (10/11) = 10/20, but the computed result will not be exactly 0.5. Any horizontal segment whose absolute difference with a requested percentile is less than \code{tolerance} is considered to be an exact match. } \value{ The quantiles will be a vector if the \code{survfit} object contains only a single curve, otherwise it will be a matrix or array. In this case the last dimension will index the quantiles. If confidence limits are requested, then result will be a list with components \code{quantile}, \code{lower}, and \code{upper}, otherwise it is the vector or matrix of quantiles. } \author{Terry Therneau} \seealso{\code{\link{survfit}}, \code{\link{print.survfit}}, \code{\link{qsurvreg}} } \examples{ fit <- survfit(Surv(time, status) ~ ph.ecog, data=lung) quantile(fit) cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), data=lung) csurv<- survfit(cfit, newdata=data.frame(age=c(40, 60, 80)), conf.type ="none") temp <- quantile(csurv, 1:5/10) temp[2,3,] # quantiles for second level of ph.ecog, age=80 quantile(csurv[2,3], 1:5/10) # quantiles of a single curve, same result } \keyword{ survival } survival/man/flchain.Rd0000644000176000001440000000715112267746072014644 0ustar ripleyusers\name{flchain} \alias{flchain} \docType{data} \title{Assay of serum free light chain for 7874 subjects.} \description{ This is a stratified random sample containing 1/2 of the subjects from a study of the relationship between serum free light chain (FLC) and mortality. The original sample contains samples on approximately 2/3 of the residents of Olmsted County aged 50 or greater. } \usage{data(flchain)} \format{ A data frame with 7874 persons containing the following variables. \describe{ \item{\code{age }}{age in years} \item{\code{sex}}{F=female, M=male} \item{\code{sample.yr}}{the calendar year in which a blood sample was obtained} \item{\code{kappa}}{serum free light chain, kappa portion} \item{\code{lambda}}{serum free light chain, lambda portion} \item{\code{flc.grp}}{the FLC group for the subject, as used in the original analysis} \item{\code{creatinine}}{serum creatinine} \item{\code{mgus}}{1 if the subject had been diagnosed with monoclonal gammapothy (MGUS)} \item{\code{futime}}{days from enrollment until death. Note that there are 3 subjects whose sample was obtained on their death date.} \item{\code{death}}{0=alive at last contact date, 1=dead} \item{\code{chapter}}{for those who died, a grouping of their primary cause of death by chapter headings of the International Code of Diseases ICD-9} } } \details{In 1995 Dr. Robert Kyle embarked on a study to determine the prevalence of monoclonal gammopathy of undetermined significance (MGUS) in Olmsted County, Minnesota, a condition which is normally only found by chance from a test (serum electrophoresis) which is ordered for other causes. Later work suggested that one component of immunoglobulin production, the serum free light chain, might be a possible marker for immune disregulation. In 2010 Dr. Angela Dispenzieri and colleagues assayed FLC levels on those samples from the original study for which they had patient permission and from which sufficient material remained for further testing. They found that elevated FLC levels were indeed associated with higher death rates. Patients were recruited when they came to the clinic for other appointments, with a final random sample of those who had not yet had a visit since the study began. An interesting side question is whether there are differences between early, mid, and late recruits. This data set contains an age and sex stratified random sample that includes 7874 of the original 15759 subjects. The original subject identifiers and dates have been removed to protect patient identity. Subsampling was done to further protect this information. } \source{The primary investigator (A Dispenzieri) and statistician (T Therneau) for the study.} \references{ A Dispenzieri, J Katzmann, R Kyle, D Larson, T Therneau, C Colby, R Clark, G Mead, S Kumar, LJ Melton III and SV Rajkumar (2012). Use of monclonal serum immunoglobulin free light chains to predict overall survival in the general population, Mayo Clinic Proceedings 87:512-523. R Kyle, T Therneau, SV Rajkumar, D Larson, M Plevak, J Offord, A Dispenzieri, J Katzmann, and LJ Melton, III, 2006, Prevalence of monoclonal gammopathy of undetermined significance, New England J Medicine 354:1362-1369. } \examples{ data(flchain) age.grp <- cut(flchain$age, c(49,54, 59,64, 69,74,79, 89, 110), labels= paste(c(50,55,60,65,70,75,80,90), c(54,59,64,69,74,79,89,109), sep='-')) table(flchain$sex, age.grp) } \keyword{datasets} survival/man/survival-internal.Rd0000644000176000001440000000462612267746072016731 0ustar ripleyusers\name{survival-internal} \alias{survival-internal} \alias{agexact.fit} \alias{as.matrix.ratetable} \alias{coxpenal.df} \alias{coxpenal.fit} \alias{is.category} \alias{is.na.ratetable2} \alias{is.na.coxph.penalty} \alias{match.ratetable} \alias{survfitCI} \alias{survfitKM} \alias{survreg.fit} \alias{survpenal.fit} \alias{survdiff.fit} \title{Internal survival functions} \description{Internal survival functions} \usage{ survreg.fit(x, y, weights, offset, init, controlvals, dist, scale = 0, nstrat = 1, strata, parms = NULL,assign) survpenal.fit(x, y, weights, offset, init, controlvals, dist, scale = 0, nstrat = 1, strata, pcols, pattr, assign, parms = NULL) survdiff.fit(y, x, strat, rho = 0) is.category(x) match.ratetable(R, ratetable) \method{as.matrix}{ratetable}(x, ...) \method{is.na}{ratetable2}(x) \method{is.na}{coxph.penalty}(x) coxpenal.df(hmat, hinv, fdiag, assign.list, ptype, nvar, pen1, pen2, sparse) coxpenal.fit(x, y, strata, offset, init, control, weights, method, rownames, pcols, pattr, assign) coxph.wtest(var, b, toler.chol = 1e-09) agexact.fit(x, y, strata, offset, init, control, weights, method, rownames) survfitCI(X, Y, weights, id, istate, type=c('kaplan-meier', 'fleming-harrington', 'fh2'), se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none'), conf.lower=c('usual', 'peto', 'modified')) survfitKM(x, y, casewt=rep(1,length(x)), type=c('kaplan-meier', 'fleming-harrington', 'fh2'), error=c('greenwood', "tsiatis"), se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none'), conf.lower=c('usual', 'peto', 'modified'), start.time, new.time) survfitTurnbull(x, y, casewt, type=c('kaplan-meier', 'fleming-harrington', 'fh2'), error=c('greenwood', "tsiatis"), se.fit=TRUE, conf.int= .95, conf.type=c('log', 'log-log', 'plain', 'none'), conf.lower=c('usual', 'peto', 'modified'), start.time) } \details{The arguments to these routines are not guarranteed to stay the same from release to release -- call them at your own risk!} \keyword{survival} \keyword{internal} survival/man/survfit.formula.Rd0000644000176000001440000002360312267746072016406 0ustar ripleyusers\name{survfit.formula} \alias{survfit.formula} \alias{[.survfit} \title{ Compute a Survival Curve for Censored Data } \description{ Computes an estimate of a survival curve for censored data using either the Kaplan-Meier or the Fleming-Harrington method. For competing risks data it computes the cumulative incidence curve. } \usage{ \method{survfit}{formula}(formula, data, weights, subset, na.action, etype, id, istate, ...) } \arguments{ \item{formula}{ a formula object, which must have a \code{Surv} object as the response on the left of the \code{~} operator and, if desired, terms separated by + operators on the right. One of the terms may be a \code{strata} object. For a single survival curve the right hand side should be \code{~ 1}. } \item{data}{ a data frame in which to interpret the variables named in the formula, \code{subset} and \code{weights} arguments. } \item{weights}{ The weights must be nonnegative and it is strongly recommended that they be strictly positive, since zero weights are ambiguous, compared to use of the \code{subset} argument. } \item{subset}{ expression saying that only a subset of the rows of the data should be used in the fit. } \item{na.action}{ a missing-data filter function, applied to the model frame, after any \code{subset} argument has been used. Default is \code{options()$na.action}. } \item{etype}{ a variable giving the type of event. This has been superseded by multi-state Surv objects; see example below. } \item{id}{ identifies individual subjects, when a given person can have multiple lines of data. } \item{istate}{for multi-state models, identifies the initial state of each subject} \item{\dots}{ The following additional arguments are passed to internal functions called by \code{survfit}. \describe{ \item{type}{ a character string specifying the type of survival curve. Possible values are \code{"kaplan-meier"}, \code{"fleming-harrington"} or \code{"fh2"} if a formula is given. This is ignored for competing risks or when the Turnbull estimator is used. } \item{error}{ a character string specifying the error. Possible values are \code{"greenwood"} for the Greenwood formula or \code{"tsiatis"} for the Tsiatis formula, (only the first character is necessary). } \item{conf.type}{ One of \code{"none"}, \code{"plain"}, \code{"log"} (the default), or \code{"log-log"}. Only enough of the string to uniquely identify it is necessary. The first option causes confidence intervals not to be generated. The second causes the standard intervals \code{curve +- k *se(curve)}, where k is determined from \code{conf.int}. The log option calculates intervals based on the cumulative hazard or log(survival). The last option bases intervals on the log hazard or log(-log(survival)). } \item{conf.lower}{ a character string to specify modified lower limits to the curve, the upper limit remains unchanged. Possible values are \code{"usual"} (unmodified), \code{"peto"}, and \code{"modified"}. T he modified lower limit is based on an "effective n" argument. The confidence bands will agree with the usual calculation at each death time, but unlike the usual bands the confidence interval becomes wider at each censored observation. The extra width is obtained by multiplying the usual variance by a factor m/n, where n is the number currently at risk and m is the number at risk at the last death time. (The bands thus agree with the un-modified bands at each death time.) This is especially useful for survival curves with a long flat tail. The Peto lower limit is based on the same "effective n" argument as the modified limit, but also replaces the usual Greenwood variance term with a simple approximation. It is known to be conservative. } \item{start.time}{ numeric value specifying a time to start calculating survival information. The resulting curve is the survival conditional on surviving to \code{start.time}. } \item{conf.int}{ the level for a two-sided confidence interval on the survival curve(s). Default is 0.95. } \item{se.fit}{ a logical value indicating whether standard errors should be computed. Default is \code{TRUE}. } } } } \value{ an object of class \code{"survfit"}. See \code{survfit.object} for details. Methods defined for survfit objects are \code{print}, \code{plot}, \code{lines}, and \code{points}. } \details{ The estimates used are the Kalbfleisch-Prentice (Kalbfleisch and Prentice, 1980, p.86) and the Tsiatis/Link/Breslow, which reduce to the Kaplan-Meier and Fleming-Harrington estimates, respectively, when the weights are unity. The Greenwood formula for the variance is a sum of terms d/(n*(n-m)), where d is the number of deaths at a given time point, n is the sum of weights for all individuals still at risk at that time, and m is the sum of weights for the deaths at that time. The justification is based on a binomial argument when weights are all equal to one; extension to the weighted case is ad hoc. Tsiatis (1981) proposes a sum of terms d/(n*n), based on a counting process argument which includes the weighted case. The two variants of the F-H estimate have to do with how ties are handled. If there were 3 deaths out of 10 at risk, then the first increments the hazard by 3/10 and the second by 1/10 + 1/9 + 1/8. For the first method S(t) = exp(H), where H is the Nelson-Aalen cumulative hazard estimate, whereas the \code{fh2} method will give results S(t) results closer to the Kaplan-Meier. When the data set includes left censored or interval censored data (or both), then the EM approach of Turnbull is used to compute the overall curve. When the baseline method is the Kaplan-Meier, this is known to converge to the maximum likelihood estimate. The cumulative incidence curve is an alternative to the Kaplan-Meier for competing risks data. For instance, in patients with MGUS, conversion to an overt plasma cell malignancy occurs at a nearly constant rate among those still alive. A Kaplan-Meier estimate, treating death due to other causes as censored, gives a 20 year cumulate rate of 33\% for the 241 early patients of Kyle. This estimates the incidence of conversion if all other causes of death were removed, which is an unrealistic assumption given the mean starting age of 63 and a median follow up of over 21 years. The CI estimate, on the other hand, estimates the total number of conversions that will actually occur. Because the population is older, this is much smaller than the KM, 22\% at 20 years for Kyle's data. If there were no censoring, then CI(t) could very simply be computed as total number of patients with progression by time t divided by the sample size n. } \section{References}{ Dorey, F. J. and Korn, E. L. (1987). Effective sample sizes for confidence intervals for survival probabilities. \emph{Statistics in Medicine} \bold{6}, 679-87. Fleming, T. H. and Harrington, D. P. (1984). Nonparametric estimation of the survival distribution in censored data. \emph{Comm. in Statistics} \bold{13}, 2469-86. Kablfleisch, J. D. and Prentice, R. L. (1980). \emph{The Statistical Analysis of Failure Time Data.} New York:Wiley. Kyle, R. A. (1997). Moncolonal gammopathy of undetermined significance and solitary plasmacytoma. Implications for progression to overt multiple myeloma\}, \emph{Hematology/Oncology Clinics N. Amer.} \bold{11}, 71-87. Link, C. L. (1984). Confidence intervals for the survival function using Cox's proportional hazards model with covariates. \emph{Biometrics} \bold{40}, 601-610. Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data. \emph{J Am Stat Assoc}, \bold{69}, 169-173. } \seealso{ \code{\link{survfit.coxph}} for survival curves from Cox models. \code{\link{print.survfit}}, \code{\link{plot.survfit}}, \code{\link{lines.survfit}}, \code{\link{coxph}}, \code{\link{Surv}}, \code{\link{strata}}. } \examples{ #fit a Kaplan-Meier and plot it fit <- survfit(Surv(time, status) ~ x, data = aml) plot(fit, lty = 2:3) legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3) #fit a Cox proportional hazards model and plot the #predicted survival for a 60 year old fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian) plot(survfit(fit, newdata=data.frame(age=60)), xscale=365.25, xlab = "Years", ylab="Survival") # Here is the data set from Turnbull # There are no interval censored subjects, only left-censored (status=3), # right-censored (status 0) and observed events (status 1) # # Time # 1 2 3 4 # Type of observation # death 12 6 2 3 # losses 3 2 0 3 # late entry 2 4 2 5 # tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4), status=rep(c(1,0,2),4), n =c(12,3,2,6,2,4,2,0,2,3,3,5)) fit <- survfit(Surv(time, time, status, type='interval') ~1, data=tdata, weight=n) # # Time to progression/death for patients with monoclonal gammopathy # Competing risk curves (cumulative incidence) fitKM <- survfit(Surv(stop, event=='progression') ~1, data=mgus1, subset=(start==0)) fitCI <- survfit(Surv(stop, status*as.numeric(event), type="mstate") ~1, data=mgus1, subset=(start==0)) # CI curves are always plotted from 0 upwards, rather than 1 down plot(fitCI, xscale=365.25, xmax=7300, mark.time=FALSE, col=2:3, xlab="Years post diagnosis of MGUS") lines(fitKM, fun='event', xscale=365.25, xmax=7300, mark.time=FALSE, conf.int=FALSE) text(10, .4, "Competing risk: death", col=3) text(16, .15,"Competing risk: progression", col=2) text(15, .30,"KM:prog") } \keyword{survival} survival/man/ridge.Rd0000644000176000001440000000303512267746072014327 0ustar ripleyusers\name{ridge} \alias{ridge} \title{ Ridge regression} \usage{ ridge(..., theta, df=nvar/2, eps=0.1, scale=TRUE) } \arguments{ \item{\dots}{predictors to be ridged } \item{theta}{penalty is \code{theta}/2 time sum of squared coefficients } \item{df}{Approximate degrees of freedom } \item{eps}{ Accuracy required for \code{df} } \item{scale}{ Scale variables before applying penalty? } } \description{ When used in a \link{coxph} or \link{survreg} model formula, specifies a ridge regression term. The likelihood is penalised by \code{theta}/2 time the sum of squared coefficients. If \code{scale=T} the penalty is calculated for coefficients based on rescaling the predictors to have unit variance. If \code{df} is specified then \code{theta} is chosen based on an approximate degrees of freedom. } \value{ An object of class \code{coxph.penalty} containing the data and control functions. } \references{ Gray (1992) "Flexible methods of analysing survival data using splines, with applications to breast cancer prognosis" JASA 87:942--951 } \seealso{ \code{\link{coxph}},\code{\link{survreg}},\code{\link{pspline}},\code{\link{frailty}} } \examples{ coxph(Surv(futime, fustat) ~ rx + ridge(age, ecog.ps, theta=1), ovarian) lfit0 <- survreg(Surv(time, status) ~1, cancer) lfit1 <- survreg(Surv(time, status) ~ age + ridge(ph.ecog, theta=5), cancer) lfit2 <- survreg(Surv(time, status) ~ sex + ridge(age, ph.ecog, theta=1), cancer) lfit3 <- survreg(Surv(time, status) ~ sex + age + ph.ecog, cancer) } \keyword{survival }%-- one or more ... survival/man/survregDtest.Rd0000644000176000001440000000301212267746072015731 0ustar ripleyusers\name{survregDtest} \alias{survregDtest} \title{Verify a survreg distribution} \description{ This routine is called by \code{survreg} to verify that a distribution object is valid. } \usage{ survregDtest(dlist, verbose = F) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{dlist}{the list describing a survival distribution} \item{verbose}{return a simple TRUE/FALSE from the test for validity (the default), or a verbose description of any flaws.} } \details{ If the \code{survreg} function rejects your user-supplied distribution as invalid, this routine will tell you why it did so. } \value{ TRUE if the distribution object passes the tests, and either FALSE or a vector of character strings if not. } \author{Terry Therneau} \seealso{\code{\link{survreg.distributions}}, \code{\link{survreg}}} \examples{ # An invalid distribution (it should have "init =" on line 2) # surveg would give an error message mycauchy <- list(name='Cauchy', init<- function(x, weights, ...) c(median(x), mad(x)), density= function(x, parms) { temp <- 1/(1 + x^2) cbind(.5 + atan(temp)/pi, .5+ atan(-temp)/pi, temp/pi, -2 *x*temp, 2*temp^2*(4*x^2*temp -1)) }, quantile= function(p, parms) tan((p-.5)*pi), deviance= function(...) stop('deviance residuals not defined') ) survregDtest(mycauchy, TRUE) } \keyword{survival} survival/man/predict.survreg.Rd0000644000176000001440000000547712267746072016377 0ustar ripleyusers\name{predict.survreg} \alias{predict.survreg} \alias{predict.survreg.penal} \title{ Predicted Values for a `survreg' Object } \description{ Predicted values for a \code{survreg} object } \usage{ \method{predict}{survreg}(object, newdata, type=c("response", "link", "lp", "linear", "terms", "quantile", "uquantile"), se.fit=FALSE, terms=NULL, p=c(0.1, 0.9), na.action=na.pass, ...) } \arguments{ \item{object}{ result of a model fit using the \code{survreg} function. } \item{newdata}{ data for prediction. If absent predictions are for the subjects used in the original fit. } \item{type}{ the type of predicted value. This can be on the original scale of the data (response), the linear predictor (\code{"linear"}, with \code{"lp"} as an allowed abbreviation), a predicted quantile on the original scale of the data (\code{"quantile"}), a quantile on the linear predictor scale (\code{"uquantile"}), or the matrix of terms for the linear predictor (\code{"terms"}). At this time \code{"link"} and linear predictor (\code{"lp"}) are identical. } \item{se.fit}{ if \code{TRUE}, include the standard errors of the prediction in the result. } \item{terms}{ subset of terms. The default for residual type \code{"terms"} is a matrix with one column for every term (excluding the intercept) in the model. } \item{p}{ vector of percentiles. This is used only for quantile predictions. } \item{na.action}{ applies only when the \code{newdata} argument is present, and defines the missing value action for the new data. The default is to include all observations.} \item{\dots}{for future methods} } \value{ a vector or matrix of predicted values. } \references{ Escobar and Meeker (1992). Assessing influence in regression analysis with censored data. \emph{Biometrics,} 48, 507-528. } \seealso{ \code{\link{survreg}}, \code{\link{residuals.survreg}} } \examples{ # Draw figure 1 from Escobar and Meeker, 1992. fit <- survreg(Surv(time,status) ~ age + I(age^2), data=stanford2, dist='lognormal') with(stanford2, plot(age, time, xlab='Age', ylab='Days', xlim=c(0,65), ylim=c(.1, 10^5), log='y', type='n')) with(stanford2, points(age, time, pch=c(2,4)[status+1], cex=.7)) pred <- predict(fit, newdata=list(age=1:65), type='quantile', p=c(.1, .5, .9)) matlines(1:65, pred, lty=c(2,1,2), col=1) # Predicted Weibull survival curve for a lung cancer subject with # ECOG score of 2 lfit <- survreg(Surv(time, status) ~ ph.ecog, data=lung) pct <- 1:98/100 # The 100th percentile of predicted survival is at +infinity ptime <- predict(lfit, newdata=data.frame(ph.ecog=2), type='quantile', p=pct, se=TRUE) matplot(cbind(ptime$fit, ptime$fit + 2*ptime$se.fit, ptime$fit - 2*ptime$se.fit)/30.5, 1-pct, xlab="Months", ylab="Survival", type='l', lty=c(1,2,2), col=1) } \keyword{survival} survival/man/survConcordance.Rd0000644000176000001440000000704712267746072016402 0ustar ripleyusers\name{survConcordance} \alias{survConcordance} \alias{survConcordance.fit} \title{ Compute a concordance measure. } \description{ This function computes the concordance between a right-censored survival time and a single continuous covariate } \usage{ survConcordance(formula, data, weights, subset, na.action) survConcordance.fit(y, x, strata, weight) } \arguments{ \item{formula}{ a formula with a survival time on the left and a single covariate on the right, along with an optional \code{strata()} term. The left hand term can also be a numeric vector. } \item{data}{ a data frame } \item{weights,subset,na.action}{as for \code{coxph}} \item{x, y, strata, weight}{predictor, response, strata, and weight vectors for the direct call} } \value{ an object containing the concordance, followed by the number of pairs that agree, disagree, are tied, and are not comparable. } \details{ The \code{survConcordance.fit} function computes the result but does no data checking whatsoever. It is intended as a hook for other packages that wish to compute concordance, and the data has already been assembled and verified. Concordance is defined as Pr(agreement) for any two randomly chosen observations, where in this case agreement means that the observation with the shorter survival time of the two also has the larger risk score. The predictor (or risk score) will often be the result of a Cox model or other regression. For continuous covariates concordance is equivalent to Kendall's tau, and for logistic regression is is equivalent to the area under the ROC curve. A value of 1 signifies perfect agreement, .6-.7 is a common result for survival data, .5 is an agreement that is no better than chance, and .3-.4 is the performace of some stock market analysts. The computation involves all n(n-1)/2 pairs of data points in the sample. For survival data, however, some of the pairs are incomparable. For instance a pair of times (5+, 8), the first being a censored value. We do not know whether the first survival time is greater than or less than the second. Among observations that are comparable, pairs may also be tied on survival time (but only if both are uncensored) or on the predictor. The final concondance is (agree + tied/2)/(agree + disagree + tied). There is, unfortunately, one aspect of the formula above that is unclear. Should the count of ties include observations that are tied on survival time y, tied on the predictor x, or both? By default the concordance only counts ties in x, treating tied survival times as incomparable; this agrees with the AUC calculation used in logistic regression. The Goodman-Kruskal Gamma statistic is (agree-disagree)/(agree + disagree), ignoring ties. It ranges from -1 to +1 similar to a correlation coefficient. Kendall's tau uses ties of both types. All of the components are returned in the result, however, so people can compute other combinations if interested. (If two observations have the same survival and the same x, they are counted in the tied survival time category). The algorithm is based on a balanced binary tree, which allows the computation to be done in O(n log n) time. } \seealso{ summary.coxph } \examples{ survConcordance(Surv(time, status) ~age, data=lung) options(na.action=na.exclude) fit <- coxph(Surv(time, status) ~ ph.ecog + age + sex, lung) survConcordance(Surv(time, status) ~predict(fit), lung) \dontrun{ n=227 (1 observations deleted due to missing values) Concordance= 0.6371102 , Gamma= 0.2759638 concordant discordant tied risk tied time 12544 7117 126 28 }} \keyword{survival} survival/man/model.frame.coxph.Rd0000644000176000001440000000140612267746072016546 0ustar ripleyusers\name{model.frame.coxph} \Rdversion{1.1} \alias{model.frame.coxph} \title{Model.frame method for coxph objects} \description{ Recreate the model frame of a coxph fit. } \usage{ \method{model.frame}{coxph}(formula, ...) } \arguments{ \item{formula}{the result of a \code{coxph} fit} \item{\dots}{other arguments to \code{model.frame}} } \details{ For details, see the manual page for the generic function. This function would rarely be called by a user, it is mostly used inside functions like \code{residual} that need to recreate the data set from a model in order to do further calculations. } \value{the model frame used in the original fit, or a parallel one for new data. } \author{Terry Therneau} \seealso{\code{\link{model.frame}}} \keyword{ survival } survival/man/coxph.detail.Rd0000644000176000001440000000537112267746072015624 0ustar ripleyusers\name{coxph.detail} \alias{coxph.detail} \title{ Details of a Cox Model Fit } \description{ Returns the individual contributions to the first and second derivative matrix, at each unique event time. } \usage{ coxph.detail(object, riskmat=FALSE) } \arguments{ \item{object}{ a Cox model object, i.e., the result of \code{coxph}. } \item{riskmat}{ include the at-risk indicator matrix in the output? } } \value{ a list with components \item{time}{ the vector of unique event times } \item{nevent}{ the number of events at each of these time points. } \item{means}{ a matrix with one row for each event time and one column for each variable in the Cox model, containing the weighted mean of the variable at that time, over all subjects still at risk at that time. The weights are the risk weights \code{exp(x \%*\% fit$coef)}. } \item{nrisk}{ number of subjects at risk. } \item{score}{ the contribution to the score vector (first derivative of the log partial likelihood) at each time point. } \item{imat}{ the contribution to the information matrix (second derivative of the log partial likelihood) at each time point. } \item{hazard}{ the hazard increment. Note that the hazard and variance of the hazard are always for some particular future subject. This routine uses \code{object$mean} as the future subject. } \item{varhaz}{ the variance of the hazard increment. } \item{x,y}{ copies of the input data. } \item{strata}{ only present for a stratified Cox model, this is a table giving the number of time points of component \code{time} that were contributed by each of the strata. } \item{riskmat}{ a matrix with one row for each time and one column for each observation containing a 0/1 value to indicate whether that observation was (1) or was not (0) at risk at the given time point. } } \details{ This function may be useful for those who wish to investigate new methods or extensions to the Cox model. The example below shows one way to calculate the Schoenfeld residuals. } \seealso{ \code{\link{coxph}}, \code{\link{residuals.coxph}} } \examples{ fit <- coxph(Surv(futime,fustat) ~ age + rx + ecog.ps, ovarian, x=TRUE) fitd <- coxph.detail(fit) # There is one Schoenfeld residual for each unique death. It is a # vector (covariates for the subject who died) - (weighted mean covariate # vector at that time). The weighted mean is defined over the subjects # still at risk, with exp(X beta) as the weight. events <- fit$y[,2]==1 etime <- fit$y[events,1] #the event times --- may have duplicates indx <- match(etime, fitd$time) schoen <- fit$x[events,] - fitd$means[indx,] } \keyword{survival} survival/man/agreg.fit.Rd0000644000176000001440000000261512267746072015106 0ustar ripleyusers\name{agreg.fit} \alias{agreg.fit} \alias{coxph.fit} \title{Cox model fitting functions} \description{ These are the the functions called by coxph that do the actual computation. In certain situations, e.g. a simulation, it may be advantagous to call these directly rather than the usual \code{coxph} call using a model formula. } \usage{ agreg.fit(x, y, strata, offset, init, control, weights, method, rownames) coxph.fit(x, y, strata, offset, init, control, weights, method, rownames) } \arguments{ \item{x}{Matix of predictors. This should \emph{not} include an intercept.} \item{y}{a \code{Surv} object containing either 2 columns (coxph.fit) or 3 columns (agreg.fit).} \item{strata}{a vector containing the stratification, or NULL} \item{offset}{optional offset vector} \item{init}{initial values for the coefficients} \item{control}{the result of a call to \code{coxph.control}} \item{weights}{optional vector of weights} \item{method}{method for hanling ties, one of "breslow" or "efron"} \item{rownames}{this is only needed for a NULL model, in which case it contains the rownames (if any) of the original data.} } \details{ This routine does no checking that arguments are the proper length or type. Only use it if you know what you are doing! } \value{ a list containing results of the fit} \author{Terry Therneau} \seealso{\code{\link{coxph}}} \keyword{ survival } survival/man/strata.Rd0000644000176000001440000000226212267746072014534 0ustar ripleyusers\name{strata} \alias{strata} \title{ Identify Stratification Variables } \description{ This is a special function used in the context of the Cox survival model. It identifies stratification variables when they appear on the right hand side of a formula. } \usage{ strata(..., na.group=FALSE, shortlabel=FALSE, sep=', ') } \arguments{ \item{\dots}{ any number of variables. All must be the same length. } \item{na.group}{ a logical variable, if \code{TRUE}, then missing values are treated as a distinct level of each variable. } \item{shortlabel}{if \code{TRUE} omit variable names from resulting factor labels} \item{sep}{ the character used to separate groups, in the created label } } \value{ a new factor, whose levels are all possible combinations of the factors supplied as arguments. } \details{ The result is identical to the \code{interaction} function, but for the labeling of the factors (\code{strata} is more verbose). } \seealso{ \code{\link{coxph}}, \code{\link{interaction}} } \examples{ a<-factor(rep(1:3,4)) b<-factor(rep(1:4,3)) levels(strata(a)) levels(strata(a,b,shortlabel=TRUE)) coxph(Surv(futime, fustat) ~ age + strata(rx), data=ovarian) } \keyword{survival} survival/man/stanford2.Rd0000644000176000001440000000132012267746072015132 0ustar ripleyusers\name{stanford2} \alias{stanford2} \docType{data} \title{More Stanford Heart Transplant data} \description{ This contains the Stanford Heart Transplant data in a different format. The main data set is in \code{\link{heart}}. } \usage{stanford2} \format{ \tabular{ll}{ id: \tab ID number\cr time:\tab survival or censoring time\cr status:\tab censoring status\cr age: \tab in years\cr t5: \tab T5 mismatch score\cr } } \seealso{ \code{\link{predict.survreg}}, \code{\link{heart}} } \source{ LA Escobar and WQ Meeker Jr (1992), Assessing influence in regression analysis with censored data. \emph{Biometrics} \bold{48}, 507--528. Page 519. } \keyword{datasets} \keyword{survival} survival/man/lung.Rd0000644000176000001440000000225212267746072014202 0ustar ripleyusers\name{lung} \docType{data} \alias{cancer} \alias{lung} \title{NCCTG Lung Cancer Data} \description{ Survival in patients with advanced lung cancer from the North Central Cancer Treatment Group. Performance scores rate how well the patient can perform usual daily activities. } \usage{ lung cancer } \format{ \tabular{ll}{ inst:\tab Institution code\cr time:\tab Survival time in days\cr status:\tab censoring status 1=censored, 2=dead\cr age:\tab Age in years\cr sex:\tab Male=1 Female=2\cr ph.ecog:\tab ECOG performance score (0=good 5=dead)\cr ph.karno:\tab Karnofsky performance score (bad=0-good=100) rated by physician\cr pat.karno:\tab Karnofsky performance score as rated by patient\cr meal.cal:\tab Calories consumed at meals\cr wt.loss:\tab Weight loss in last six months\cr } } \source{Terry Therneau} \references{ Loprinzi CL. Laurie JA. Wieand HS. Krook JE. Novotny PJ. Kugler JW. Bartel J. Law M. Bateman M. Klatt NE. et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. Journal of Clinical Oncology. 12(3):601-7, 1994. } \keyword{datasets} survival/man/survreg.object.Rd0000644000176000001440000000414712267746072016204 0ustar ripleyusers\name{survreg.object} \alias{survreg.object} \alias{print.survreg} \alias{summary.survreg} \title{ Parametric Survival Model Object } \description{ This class of objects is returned by the \code{survreg} function to represent a fitted parametric survival model. Objects of this class have methods for the functions \code{print}, \code{summary}, \code{predict}, and \code{residuals}. } \section{COMPONENTS}{ The following components must be included in a legitimate \code{survreg} object. \describe{ \item{coefficients}{ the coefficients of the \code{linear.predictors}, which multiply the columns of the model matrix. It does not include the estimate of error (sigma). The names of the coefficients are the names of the single-degree-of-freedom effects (the columns of the model matrix). If the model is over-determined there will be missing values in the coefficients corresponding to non-estimable coefficients. } \item{icoef}{ coefficients of the baseline model, which will contain the intercept and log(scale), or mulitple scale factors for a stratified model. } \item{var}{ the variance-covariance matrix for the parameters, including the log(scale) parameter(s). } \item{loglik}{ a vector of length 2, containing the log-likelihood for the baseline and full models. } \item{iter}{ the number of iterations required } \item{linear.predictors}{ the linear predictor for each subject. } \item{df}{ the degrees of freedom for the final model. For a penalized model this will be a vector with one element per term. } \item{scale}{ the scale factor(s), with length equal to the number of strata. } \item{idf}{ degrees of freedom for the initial model. } \item{means}{ a vector of the column means of the coefficient matrix. } \item{dist}{ the distribution used in the fit. The object will also have the following components found in other model results (some are optional): \code{linear predictors}, \code{weights}, \code{x}, \code{y}, \code{model}, \code{call}, \code{terms} and \code{formula}. See \code{lm}. }}} \seealso{ \code{\link{survreg}}, \code{\link{lm}} } \keyword{regression} \keyword{survival} % Converted by Sd2Rd version 0.3-2. survival/man/untangle.specials.Rd0000644000176000001440000000230412267746072016652 0ustar ripleyusers\name{untangle.specials} \alias{untangle.specials} \title{ Help Process the `specials' Argument of the `terms' Function. } \description{ Given a \code{terms} structure and a desired special name, this returns an index appropriate for subscripting the \code{terms} structure and another appropriate for the data frame. } \usage{ untangle.specials(tt, special, order=1) } \arguments{ \item{tt}{ a \code{terms} object. } \item{special}{ the name of a special function, presumably used in the terms object. } \item{order}{ the order of the desired terms. If set to 2, interactions with the special function will be included. }} \value{ a list with two components: \item{vars}{ a vector of variable names, as would be found in the data frame, of the specials. } \item{terms}{ a numeric vector, suitable for subscripting the terms structure, that indexes the terms in the expanded model formula which involve the special. }} \examples{ formula<-Surv(tt,ss)~x+z*strata(id) tms<-terms(formula,specials="strata") ## the specials attribute attr(tms,"specials") ## main effects untangle.specials(tms,"strata") ## and interactions untangle.specials(tms,"strata",order=1:2) } \keyword{survival} % Converted by Sd2Rd version 0.3-2. survival/man/summary.aareg.Rd0000644000176000001440000000641312267746072016013 0ustar ripleyusers\name{summary.aareg} \alias{summary.aareg} \title{ Summarize an aareg fit } \description{ Creates the overall test statistics for an Aalen additive regression model } \usage{ \method{summary}{aareg}(object, maxtime, test=c("aalen", "nrisk"), scale=1,...) } \arguments{ \item{object}{ the result of a call to the \code{aareg} function } \item{maxtime}{ truncate the input to the model at time "maxtime" } \item{test}{ the relative time weights that will be used to compute the test } \item{scale}{ scales the coefficients. For some data sets, the coefficients of the Aalen model will be very small (10-4); this simply multiplies the printed values by a constant, say 1e6, to make the printout easier to read. } \item{\dots}{for future methods} } \value{ a list is returned with the following components \item{ table }{ a matrix with rows for the intercept and each covariate, and columns giving a slope estimate, the test statistic, it's standard error, the z-score and a p-value } \item{ test }{ the time weighting used for computing the test statistics } \item{ test.statistic }{ the vector of test statistics } \item{ test.var }{ the model based variance matrix for the test statistic } \item{ test.var2 }{ optionally, a robust variance matrix for the test statistic } \item{ chisq }{ the overall test (ignoring the intercept term) for significance of any variable } \item{ n }{ a vector containing the number of observations, the number of unique death times used in the computation, and the total number of unique death times } } \details{ It is not uncommon for the very right-hand tail of the plot to have large outlying values, particularly for the standard error. The \code{maxtime} parameter can then be used to truncate the range so as to avoid these. This gives an updated value for the test statistics, without refitting the model. The slope is based on a weighted linear regression to the cumulative coefficient plot, and may be a useful measure of the overall size of the effect. For instance when two models include a common variable, "age" for instance, this may help to assess how much the fit changed due to the other variables, in leiu of overlaying the two plots. (Of course the plots are often highly non-linear, so it is only a rough substitute). The slope is not directly related to the test statistic, as the latter is invariant to any monotone transformation of time. } \seealso{ aareg, plot.aareg } \examples{ afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung, dfbeta=TRUE) summary(afit) \dontrun{ slope test se(test) robust se z p Intercept 5.05e-03 1.9 1.54 1.55 1.23 0.219000 age 4.01e-05 108.0 109.00 106.00 1.02 0.307000 sex -3.16e-03 -19.5 5.90 5.95 -3.28 0.001030 ph.ecog 3.01e-03 33.2 9.18 9.17 3.62 0.000299 Chisq=22.84 on 3 df, p=4.4e-05; test weights=aalen } summary(afit, maxtime=600) \dontrun{ slope test se(test) robust se z p Intercept 4.16e-03 2.13 1.48 1.47 1.450 0.146000 age 2.82e-05 85.80 106.00 100.00 0.857 0.392000 sex -2.54e-03 -20.60 5.61 5.63 -3.660 0.000256 ph.ecog 2.47e-03 31.60 8.91 8.67 3.640 0.000271 Chisq=27.08 on 3 df, p=5.7e-06; test weights=aalen }} \keyword{survival} survival/man/survexp.us.Rd0000644000176000001440000000607612267746072015407 0ustar ripleyusers\name{ratetables} \alias{survexp.us} \alias{survexp.usr} \alias{survexp.az} \alias{survexp.azr} \alias{survexp.fl} \alias{survexp.flr} \alias{survexp.mn} \alias{survexp.mnwhite} \alias{survexp.wnc} \title{ Census Data Sets for the Expected Survival and Person Years Functions } \description{ Census data sets for the expected survival and person years functions. } \details{ \describe{ \item{us}{ total United States population, by age and sex, 1960 to 1980. } \item{uswhite}{ United States white population, by age and sex, 1950 to 1980. This is no longer included, but can be extracted from \code{survexp.usr} as shown in the examples. } \item{usr}{ United States population, by age, sex and race, 1960 to 1980. Race is white, nonwhite, or black. For 1960 and 1970 the black population values were not reported separately, so the nonwhite values were used. } \item{mn}{ total Minnesota population, by age and sex, 1970 and 1980. } \item{mnwhite}{ Minnesota white population, by age and sex, 1960 to 1980. } \item{fl}{ total Florida population, by age and sex, 1970 and 1980. } \item{flr}{ Florida population, by age, sex and race, 1970-1980. Race is white, nonwhite, or black. For 1970 the black population values were not reported separately, so the nonwhite values were used. } \item{az}{ total Arizona population, by age and sex, 1970 and 1980. } \item{azr}{ Arizona population, by age, sex and race, 1970-1980. Race is white versus nonwhite. For 1970 the nonwhite population values were not reported separately. In order to make the rate table be a matrix, the 1980 values were repeated. (White and non-white values are quite different). } } Each of these tables contains the daily hazard rate for a matched subject from the population, defined as \eqn{-\log(1-q)/365.24} where \eqn{q} is the 1 year probability of death as reported in the original tables. For age 25 in 1970, for instance, \eqn{p = 1-q} is is the probability that a subject who becomes 25 years of age in 1970 will achieve his/her 26th birthday. The tables are recast in terms of hazard per day entirely for computational convenience. (The fraction .24 in the denominator is based on 24 leap years per century.) Each table is stored as an array, with additional attributes, and can be subset and manipulated as standard S arrays. Interpolation between calendar years is done \dQuote{on the fly} by the \code{\link{survexp}} routine. Some of the deficiencies, e.g., 1970 Arizona non-white, are a result of local (Mayo Clinic) conditions. The data probably exists, but we don't have a copy it in the library. The tables have been augmented to contain extrapolated values for 1990 and 2000. The details can be found in Mayo Clinic Biostatistics technical report 63 at \url{http://www.mayo.edu/hsr/techrpt.html}. } \examples{ survexp.uswhite <- survexp.usr[,,"white",] } \keyword{survival} \keyword{datasets} survival/man/ratetableDate.Rd0000644000176000001440000000152012267746072015773 0ustar ripleyusers\name{ratetableDate} \alias{ratetableDate} \title{Convert date objects to ratetable form} \description{ This method converts dates from various forms into the internal form used in \code{ratetable} objects. } \usage{ ratetableDate(x) } \arguments{ \item{x}{a date. The function currently has methods for Date, date, POSIXt, timeDate, and chron objects. } } \details{ This function is useful for those who create new ratetables, but is normally invisible to users. It is used internally by the \code{survexp} and \code{pyears} functions to map the various date formats; if a new method is added then those routines will automatically be adapted to the new date type. } \value{a numeric vector, the number of days since 1/1/1960.} \author{Terry Therneau} \seealso{\code{\link{pyears}}, \code{\link{survexp}}} \keyword{survival} survival/man/predict.coxph.Rd0000644000176000001440000000735612267746072016021 0ustar ripleyusers\name{predict.coxph} \alias{predict.coxph} \alias{predict.coxph.penal} \title{ Predictions for a Cox model } \description{ Compute fitted values and regression terms for a model fitted by \code{\link{coxph}} } \usage{ \method{predict}{coxph}(object, newdata, type=c("lp", "risk", "expected", "terms"), se.fit=FALSE, na.action=na.pass, terms=names(object$assign), collapse, reference=c("strata", "sample"), ...) } \arguments{ \item{object}{ the results of a coxph fit. } \item{newdata}{ Optional new data at which to do predictions. If absent predictions are for the data frame used in the original fit. } \item{type}{ the type of predicted value. Choices are the linear predictor (\code{"lp"}), the risk score exp(lp) (\code{"risk"}), the expected number of events given the covariates and follow-up time (\code{"expected"}), and the terms of the linear predictor (\code{"terms"}). } \item{se.fit}{ if TRUE, pointwise standard errors are produced for the predictions. } \item{na.action}{ applies only when the \code{newdata} argument is present, and defines the missing value action for the new data. The default is to include all observations. When there is no newdata, then the behavior of missing is dictated by the na.action option of the original fit.} \item{terms}{ if type="terms", this argument can be used to specify which terms should be included; the default is all. } \item{collapse}{ optional vector of subject identifiers. If specified, the output will contain one entry per subject rather than one entry per observation. } \item{reference}{reference for centering predictions, see details below} \item{\dots}{For future methods} } \value{ a vector or matrix of predictions, or a list containing the predictions (element "fit") and their standard errors (element "se.fit") if the se.fit option is TRUE. } \details{ The Cox model is a \emph{relative} risk model; predictions of type "linear predictor", "risk", and "terms" are all relative to the sample from which they came. By default, the reference value for each of these is the mean covariate within strata. The primary underlying reason is statistical: a Cox model only predicts relative risks between pairs of subjects within the same strata, and hence the addition of a constant to any covariate, either overall or only within a particular stratum, has no effect on the fitted results. Using the \code{reference="strata"} option causes this to be true for predictions as well. When the results of \code{predict} are used in further calculations it may be desirable to use a fixed reference level. Use of \code{reference="sample"} will use the overall means, and agrees with the \code{linear.predictors} component of the coxph object (which uses the overall mean for backwards compatability with older code). Predictions of \code{type="terms"} are almost invariably passed forward to further calculation, so for these we default to using the sample as the reference. Predictions of type "expected" incorporate the baseline hazard and are thus absolute instead of relative; the \code{reference} option has no effect on these. Models that contain a \code{frailty} term are a special case: due to the technical difficulty, when there is a \code{newdata} argument the predictions will always be for a random effect of zero. } \seealso{ \code{\link{predict}},\code{\link{coxph}},\code{\link{termplot}} } \examples{ options(na.action=na.exclude) # retain NA in predictions fit <- coxph(Surv(time, status) ~ age + ph.ecog + strata(inst), lung) #lung data set has status coded as 1/2 mresid <- (lung$status-1) - predict(fit, type='expected') #Martingale resid predict(fit,type="lp") predict(fit,type="expected") predict(fit,type="risk",se.fit=TRUE) predict(fit,type="terms",se.fit=TRUE) } \keyword{survival} survival/man/cgd.Rd0000644000176000001440000000277712267746072014006 0ustar ripleyusers\name{cgd} \docType{data} \alias{cgd} \title{Chronic Granulotomous Disease data} \description{Data are from a placebo controlled trial of gamma interferon in chronic granulotomous disease (CGD). Uses the complete data on time to first serious infection observed through end of study for each patient, which includes the initial serious infections observed through the 7/15/89 interim analysis data cutoff, plus the residual data on occurence of initial serious infections between the interim analysis cutoff and the final blinded study visit for each patient. Only one patient was taken off on the day of his last infection. } \usage{cgd} \format{ \tabular{ll}{ id:\tab subject identifiction number\cr center:\tab enrolling center \cr random:\tab date of randomization \cr treatment:\tab placebo or gamma interferon \cr sex:\tab \cr age:\tab age in years, at study entry \cr height:\tab height in cm at study entry\cr weight: \tab weight in kg at study entry\cr inherit:\tab pattern of inheritance \cr steroids:\tab use of steroids at study entry,1=yes\cr propylac: \tab use of prophylactic antibiotics at study entry\cr hos.cat:\tab a categorization of the centers into 4 groups\cr tstart, tstop:\tab start and end of each time interval \cr status:\tab 1=the interval ends with an infection \cr enum: \tab observation number within subject\cr } } \source{ Fleming and Harrington, Counting Processes and Survival Analysis, appendix D.2. } \keyword{datasets} \keyword{survival} survival/man/plot.survfit.Rd0000644000176000001440000001340612267746072015717 0ustar ripleyusers\name{plot.survfit} \alias{plot.survfit} \title{ Plot method for \code{survfit} objects } \usage{ \method{plot}{survfit}(x, conf.int=, mark.time=TRUE, mark=3, col=1, lty=1, lwd=1, cex=1, log=FALSE, xscale=1, yscale=1, firstx=0, firsty=1, xmax, ymin=0, fun, xlab="", ylab="", xaxs="S", \dots) } \arguments{ \item{x}{ an object of class \code{survfit}, usually returned by the \code{survfit} function. } \item{conf.int}{ determines whether confidence intervals will be plotted. The default is to do so if there is only 1 curve, i.e., no strata. } \item{mark.time}{ controls the labeling of the curves. If set to \code{FALSE}, no labeling is done. If \code{TRUE}, then curves are marked at each censoring time which is not also a death time. If \code{mark.time} is a numeric vector, then curves are marked at the specified time points. } \item{mark}{ vector of mark parameters, which will be used to label the curves. The \code{lines} help file contains examples of the possible marks. The vector is reused cyclically if it is shorter than the number of curves. } \item{col}{ a vector of integers specifying colors for each curve. The default value is 1. } \item{lty}{ a vector of integers specifying line types for each curve. The default value is 1. } \item{lwd}{ a vector of numeric values for line widths. The default value is 1. } \item{cex}{ a numeric value specifying the size of the marks. This is not treated as a vector; all marks have the same size. } \item{log}{ a logical value, if TRUE the y axis wll be on a log scale. Alternately, one of the standard character strings "x", "y", or "xy" can be given to specific logarithmic horizontal and/or vertical axes. } \item{yscale}{ a numeric value used to multiply the labels on the y axis. A value of 100, for instance, would be used to give a percent scale. Only the labels are changed, not the actual plot coordinates, so that adding a curve with "\code{lines(surv.exp(...))}", say, will perform as it did without the \code{yscale} argument. } \item{xscale}{ a numeric value used like \code{yscale} for labels on the x axis. A value of 365.25 will give labels in years instead of the original days. } \item{firstx, firsty}{ the starting point for the survival curves. If either of these is set to \code{NA} the plot will start at the first time point of the curve. By default, the plot program obeys tradition by having the plot start at (0,0). If \code{start.time} argument is used in \code{survfit}, \code{firstx} is set to that value. } \item{xmax}{ the maximum horizontal plot coordinate. This can be used to shrink the range of a plot. It shortens the curve before plotting it, so that unlike using the \code{xlim} graphical parameter, warning messages about out of bounds points are not generated. } \item{ymin}{ lower boundary for y values. Survival curves are most often drawn in the range of 0-1, even if none of the curves approach zero. The parameter is ignored if the \code{fun} argument is present, or if it has been set to \code{NA}. } \item{fun}{ an arbitrary function defining a transformation of the survival curve. For example \code{fun=log} is an alternative way to draw a log-survival curve (but with the axis labeled with log(S) values), and \code{fun=sqrt} would generate a curve on square root scale. Four often used transformations can be specified with a character argument instead: \code{"log"} is the same as using the \code{log=T} option, \code{"event"} plots cumulative events (f(y) = 1-y), \code{"cumhaz"} plots the cumulative hazard function (f(y) = -log(y)), and \code{"cloglog"} creates a complimentary log-log survival plot (f(y) = log(-log(y)) along with log scale for the x-axis). } \item{xlab}{ label given to the x-axis. } \item{ylab}{ label given to the y-axis. } \item{xaxs}{ either \code{"S"} for a survival curve or a standard x axis style as listed in \code{par}. Survival curves are usually displayed with the curve touching the y-axis, but not touching the bounding box of the plot on the other 3 sides. Type \code{"S"} accomplishes this by manipulating the plot range and then using the \code{"i"} style internally. } \item{\dots}{for future methods} } \value{ a list with components \code{x} and \code{y}, containing the coordinates of the last point on each of the curves (but not the confidence limits). This may be useful for labeling. } \description{ A plot of survival curves is produced, one curve for each strata. The \code{log=T} option does extra work to avoid log(0), and to try to create a pleasing result. If there are zeros, they are plotted by default at 0.8 times the smallest non-zero value on the curve(s). } \details{ When the \code{survfit} function creates a multi-state survival curve the resulting object also has class `survfitms'. The only difference in the plots is that that it defaults to a curve that goes from lower left to upper right (starting at 0), where survival curves default to starting at 1 and going down. All other options are identical. } \seealso{ \code{\link{par}}, \code{\link{survfit}}, \code{\link{lines.survfit}}. } \examples{ leukemia.surv <- survfit(Surv(time, status) ~ x, data = aml) plot(leukemia.surv, lty = 2:3) legend(100, .9, c("Maintenance", "No Maintenance"), lty = 2:3) title("Kaplan-Meier Curves\nfor AML Maintenance Study") lsurv2 <- survfit(Surv(time, status) ~ x, aml, type='fleming') plot(lsurv2, lty=2:3, fun="cumhaz", xlab="Months", ylab="Cumulative Hazard") } \keyword{survival} \keyword{hplot} survival/man/summary.coxph.Rd0000644000176000001440000000263312267746072016055 0ustar ripleyusers\name{summary.coxph} \alias{summary.coxph} \title{ Summary method for Cox models } \description{ Produces a summary of a fitted coxph model } \usage{ \method{summary}{coxph}(object, conf.int=0.95, scale=1,...) } \arguments{ \item{object}{ the result of a coxph fit } \item{conf.int}{ level for computation of the confidence intervals. If set to FALSE no confidence intervals are printed } \item{scale}{ vector of scale factors for the coefficients, defaults to 1. The confidence limits are for the risk change associated with one scale unit. } \item{\dots}{for future methods} } \value{ An object of class \code{summary.coxph}. } \seealso{ coxph, print.coxph } \examples{ fit <- coxph(Surv(time, status) ~ age + sex, lung) summary(fit) \dontrun{ Call: coxph(formula = Surv(time, status) ~ age + sex, data = lung) n= 228 coef exp(coef) se(coef) z p age 0.017 1.017 0.00922 1.85 0.0650 sex -0.513 0.599 0.16745 -3.06 0.0022 exp(coef) exp(-coef) lower .95 upper .95 age 1.017 0.983 0.999 1.036 sex 0.599 1.670 0.431 0.831 Rsquare= 0.06 (max possible= 0.999 ) Likelihood ratio test= 14.1 on 2 df, p=0.000857 Wald test = 13.5 on 2 df, p=0.00119 Score (logrank) test = 13.7 on 2 df, p=0.00105 }} \keyword{survival} % docclass is function % Converted by Sd2Rd version 37351. survival/man/mgus.Rd0000644000176000001440000000547312267746072014220 0ustar ripleyusers\name{mgus} \alias{mgus} \alias{mgus1} \alias{mgus2} \docType{data} \title{Monoclonal gammapothy data} \description{ Natural history of 241 subjects with monoclonal gammapothy of undetermined significance (MGUS). } \usage{ mgus mgus1 mgus2 } \format{ mgus: A data frame with 241 observations on the following 12 variables. \tabular{ll}{ id:\tab subject id \cr age:\tab age in years \cr sex:\tab \code{male} or \code{female} \cr dxyr:\tab year of diagnosis \cr pcdx:\tab for subjects who progress to a plasma cell malignancy \cr \tab the subtype of malignancy: multiple myeloma (MM) is the \cr \tab most common, followed by amyloidosis (AM), macroglobulinemia (MA),\cr \tab and other lymphprolifative (LP) \cr pctime:\tab days from MGUS until diagnosis of a plasma cell malignancy \cr futime:\tab days from diagnosis to last follow-up \cr death:\tab 1= follow-up is until death \cr alb:\tab albumin level at MGUS diagnosis \cr creat:\tab creatinine at MGUS diagnosis \cr hgb:\tab hemoglobin at MGUS diagnosis \cr mspike:\tab size of the monoclonal protien spike at diagnosis \cr } mgus1: The same data set in start,stop format. Contains the id, age, sex, and laboratory variable described above along with \tabular{ll}{ start, stop:\tab sequential intervals of time for each subject \cr status:\tab =1 if the interval ends in an event \cr event:\tab the event type \cr } mgus2: The mgus data, but formatted in the competing risks style. Each subject has three observations, one for time to death, one for time to MM, and one for time to a PC malignancy other than MM. Contains the id, age, sex, and laboratory variable described above along with \tabular{ll}{ time:\tab time to event or censoring \cr status:\tab 1 if the event occured, 0 otherwise \cr event:\tab death, myeloma, or other \cr } } \details{ Plasma cells are responsible for manufacturing immunoglobulins, an important part of the immune defense. At any given time there are estimated to be about \eqn{10^6} different immunoglobulins in the circulation at any one time. When a patient has a plasma cell malignancy the distribuion will become dominated by a single isotype, the product of the malignant clone, visible as a spike on a serum protein electrophoresis. Monoclonal gammapothy of undertermined significance (MGUS) is the presence of such a spike, but in a patient with no evidence of overt malignancy. This data set of 241 sequential subjects at Mayo Clinic was the groundbreaking study defining the natural history of such subjects. } \source{ Mayo Clinic data courtesy of Dr. Robert Kyle. } \references{ R Kyle, Benign monoclonal gammopathy -- after 20 to 35 years of follow-up, Mayo Clinic Proc 1993; 68:26-36. } \keyword{datasets} \keyword{survival} survival/man/kidney.Rd0000644000176000001440000000263512267746072014525 0ustar ripleyusers\name{kidney} \alias{kidney} \title{Kidney catheter data} \format{ \tabular{ll}{ patient:\tab id\cr time:\tab time\cr status:\tab event status\cr age:\tab in years\cr sex:\tab 1=male, 2=female\cr disease:\tab disease type (0=GN, 1=AN, 2=PKD, 3=Other)\cr frail:\tab frailty estimate from original paper\cr }} \description{ Data on the recurrence times to infection, at the point of insertion of the catheter, for kidney patients using portable dialysis equipment. Catheters may be removed for reasons other than infection, in which case the observation is censored. Each patient has exactly 2 observations. This data has often been used to illustrate the use of random effects (frailty) in a survival model. However, one of the males (id 21) is a large outlier, with much longer survival than his peers. If this observation is removed no evidence remains for a random subject effect. } \section{Note}{ The original paper ignored the issue of tied times and so is not exactly reproduced by the survival package. } \examples{ kfit <- coxph(Surv(time, status)~ age + sex + disease + frailty(id), kidney) kfit0 <- coxph(Surv(time, status)~ age + sex + disease, kidney) kfitm1 <- coxph(Surv(time,status) ~ age + sex + disease + frailty(id, dist='gauss'), kidney) } \source{ CA McGilchrist, CW Aisbett (1991), Regression with frailty in survival analysis. \emph{Biometrics} \bold{47}, 461--66. } \keyword{survival} survival/man/survfit.object.Rd0000644000176000001440000000625512267746072016213 0ustar ripleyusers\name{survfit.object} \alias{survfit.object} \title{ Survival Curve Object } \description{ This class of objects is returned by the \code{survfit} class of functions to represent a fitted survival curve. Objects of this class have methods for the functions \code{print}, \code{summary}, \code{plot}, \code{points} and \code{lines}. The \code{\link{print.survfit}} method does more computation than is typical for a print method and is documented on a separate page. Class of objects that represent a fitted survival curve. } \section{Structure}{ The following components must be included in a legitimate \code{survfit} object. } \arguments{ \item{n}{ total number of subjects in each curve. } \item{time}{ the time points at which the curve has a step. } \item{n.risk}{ the number of subjects at risk at t. } \item{n.event}{ the number of events that occur at time t. } \item{n.enter}{ for counting process data only, the number of subjects that enter at time t. } \item{n.censor}{ for counting process data only, the number of subjects who exit the risk set, without an event, at time t. (For right censored data, this number can be computed from the successive values of the number at risk). } \item{surv}{ the estimate of survival at time t+0. This may be a vector or a matrix. } \item{std.err}{ the standard error of the cumulative hazard or -log(survival). } \item{upper}{ upper confidence limit for the survival curve. } \item{lower}{ lower confidence limit for the survival curve. } \item{strata}{ if there are multiple curves, this component gives the number of elements of the \code{time} etc. vectors corresponding to the first curve, the second curve, and so on. The names of the elements are labels for the curves. } \item{start.time}{ the value specified for the \code{start.time} argument, if it was used in the call. } \item{n.all}{ for counting process data, and any time that the \code{start.time} argument was used, this contains the total number of observations that were available. Not all may have been used in creating the curve, in which case this value will be larger than \code{n} above. of observations that were available } \item{conf.type}{ the approximation used to compute the confidence limits. } \item{conf.int}{ the level of the confidence limits, e.g. 90 or 95\%. } \item{na.action}{ the returned value from the na.action function, if any. It will be used in the printout of the curve, e.g., the number of observations deleted due to missing values. } \item{call}{ an image of the call that produced the object. } \item{type}{ type of survival censoring. } } \section{Subscripts}{ Survfit objects that contain multiple survival curves can be subscripted. This is most often used to plot a subset of the curves. Usually a single subscript will be used. In one particular case -- survival curves for multiple covariate values, from a Cox model that includes a \code{strata} statement -- there is a matrix of curves and 2 subscripts may be used. (In this case \code{summary.survfit} will also print the data as a matrix). } \seealso{ \code{\link{plot.survfit}}, \code{\link{summary.survfit}}, \code{\link{print.survfit}}, \code{\link{survfit}}. } \keyword{survival} survival/man/pspline.Rd0000644000176000001440000000677712267746072014727 0ustar ripleyusers\name{pspline} \alias{pspline} \alias{psplineinverse} \title{Smoothing splines using a pspline basis} \usage{ pspline(x, df=4, theta, nterm=2.5 * df, degree=3, eps=0.1, method, Boundary.knots=range(x), intercept=FALSE, penalty=TRUE, ...) psplineinverse(x)} \arguments{ \item{x}{for psline: a covariate vector. The function does not apply to factor variables. For psplineinverse x will be the result of a pspline call.} \item{df}{the desired degrees of freedom. One of the arguments \code{df} or \code{theta}' must be given, but not both. If \code{df=0}, then the AIC = (loglik -df) is used to choose an "optimal" degrees of freedom. If AIC is chosen, then an optional argument `caic=T' can be used to specify the corrected AIC of Hurvich et. al. } \item{theta}{roughness penalty for the fit. It is a monotone function of the degrees of freedom, with theta=1 corresponding to a linear fit and theta=0 to an unconstrained fit of nterm degrees of freedom. } \item{nterm}{ number of splines in the basis } \item{degree}{ degree of splines } \item{eps}{accuracy for \code{df} } \item{method}{the method for choosing the tuning parameter \code{theta}. If theta is given, then 'fixed' is assumed. If the degrees of freedom is given, then 'df' is assumed. If method='aic' then the degrees of freedom is chosen automatically using Akaike's information criterion.} \item{\dots}{optional arguments to the control function} \item{Boundary.knots}{the spline is linear beyond the boundary knots. These default to the range of the data.} \item{intercept}{if TRUE, the basis functions include the intercept.} \item{penalty}{if FALSE a large number of attributes having to do with penalized fits are excluded. Most useful for exploring the code so as to return a matrix with few added attributes.} } \description{ Specifies a penalised spline basis for the predictor. This is done by fitting a comparatively small set of splines and penalising the integrated second derivative. Traditional smoothing splines use one basis per observation, but several authors have pointed out that the final results of the fit are indistinguishable for any number of basis functions greater than about 2-3 times the degrees of freedom. Eilers and Marx point out that if the basis functions are evenly spaced, this leads to significant computational simplifications. } \value{ Object of class \code{pspline, coxph.penalty} containing the spline basis, with the appropriate attributes to be recognized as a penalized term by the coxph or survreg functions. For psplineinverse the original x vector is reconstructed. } \seealso{\code{\link{coxph}},\code{\link{survreg}},\code{\link{ridge}}, \code{\link{frailty}} } \references{ Eilers, Paul H. and Marx, Brian D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89-121. Hurvich, C.M. and Simonoff, J.S. and Tsai, Chih-Ling (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion, JRSSB, volume 60, 271--293. } \examples{ lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), cancer) plot(cancer$age, predict(lfit6), xlab='Age', ylab="Spline prediction") title("Cancer Data") fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, cancer) fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3), cancer) fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8), cancer) fit0 fit1 fit3 } \keyword{ survival} survival/man/pyears.Rd0000644000176000001440000001670012267746072014543 0ustar ripleyusers\name{pyears} \alias{pyears} \title{ Person Years } \description{ This function computes the person-years of follow-up time contributed by a cohort of subjects, stratified into subgroups. It also computes the number of subjects who contribute to each cell of the output table, and optionally the number of events and/or expected number of events in each cell. } \usage{ pyears(formula, data, weights, subset, na.action, rmap, ratetable, scale=365.25, expect=c('event', 'pyears'), model=FALSE, x=FALSE, y=FALSE, data.frame=FALSE) } \arguments{ \item{formula}{ a formula object. The response variable will be a vector of follow-up times for each subject, or a \code{Surv} object containing the survival time and an event indicator. The predictors consist of optional grouping variables separated by + operators (exactly as in \code{survfit}), time-dependent grouping variables such as age (specified with \code{tcut}), and optionally a \code{ratetable} term. This latter matches each subject to his/her expected cohort. } \item{data}{ a data frame in which to interpret the variables named in the \code{formula}, or in the \code{subset} and the \code{weights} argument. } \item{weights}{ case weights. } \item{subset}{ expression saying that only a subset of the rows of the data should be used in the fit. } \item{na.action}{ a missing-data filter function, applied to the model.frame, after any \code{subset} argument has been used. Default is \code{options()$na.action}. } \item{rmap}{ an optional list that maps data set names to the ratetable names. See the details section below. } \item{ratetable}{ a table of event rates, such as \code{survexp.uswhite}. } \item{scale}{ a scaling for the results. As most rate tables are in units/day, the default value of 365.25 causes the output to be reported in years. } \item{expect}{ should the output table include the expected number of events, or the expected number of person-years of observation. This is only valid with a rate table. } \item{data.frame}{ return a data frame rather than a set of arrays.} \item{model, x, y}{ If any of these is true, then the model frame, the model matrix, and/or the vector of response times will be returned as components of the final result. } } \value{ a list with components: \item{pyears}{ an array containing the person-years of exposure. (Or other units, depending on the rate table and the scale). The dimension and dimmanes of the array correspond to the variables on the right hand side of the model equation. } \item{n}{ an array containing the number of subjects who contribute time to each cell of the \code{pyears} array. } \item{event}{ an array containing the observed number of events. This will be present only if the response variable is a \code{Surv} object. } \item{expected}{ an array containing the expected number of events (or person years if \code{expect ="pyears"}). This will be present only if there was a \code{ratetable} term. } \item{data}{ if the \code{data.frame} option was set, a data frame containing the variables \code{n}, \code{event}, \code{pyears} and \code{event} that supplants the four arrays listed above, along with variables corresponding to each dimension. There will be one row for each cell in the arrays.} \item{offtable}{ the number of person-years of exposure in the cohort that was not part of any cell in the \code{pyears} array. This is often useful as an error check; if there is a mismatch of units between two variables, nearly all the person years may be off table. } \item{summary}{ a summary of the rate-table matching. This is also useful as an error check. } \item{call}{ an image of the call to the function. } \item{na.action}{ the \code{na.action} attribute contributed by an \code{na.action} routine, if any. } } \details{ Because \code{pyears} may have several time variables, it is necessary that all of them be in the same units. For instance, in the call \preformatted{ py <- pyears(futime ~ rx, rmap=list(age=age, sex=sex, year=entry.dt), ratetable=survexp.us) } the natural unit of the ratetable is hazard per day, it is important that \code{futime}, \code{age} and \code{entry.dt} all be in days. Given the wide range of possible inputs, it is difficult for the routine to do sanity checks of this aspect. The ratetable being used may have different variable names than the user's data set, this is dealt with by the \code{rmap} argument. The rate table for the above calculation was \code{survexp.us}, a call to \code{summary{survexp.us}} reveals that it expects to have variables \code{age} = age in days, \code{sex}, and \code{year} = the date of study entry, we create them in the \code{rmap} line. The sex variable is not mapped, therefore the code assumes that it exists in \code{mydata} in the correct format. (Note: for factors such as sex, the program will match on any unique abbreviation, ignoring case.) A special function \code{tcut} is needed to specify time-dependent cutpoints. For instance, assume that age is in years, and that the desired final arrays have as one of their margins the age groups 0-2, 2-10, 10-25, and 25+. A subject who enters the study at age 4 and remains under observation for 10 years will contribute follow-up time to both the 2-10 and 10-25 subsets. If \code{cut(age, c(0,2,10,25,100))} were used in the formula, the subject would be classified according to his starting age only. The \code{tcut} function has the same arguments as \code{cut}, but produces a different output object which allows the \code{pyears} function to correctly track the subject. The results of \code{pyears} are normally used as input to further calculations. The \code{print} routine, therefore, is designed to give only a summary of the table. } \seealso{ \code{\link{ratetable}}, \code{\link{survexp}}, \code{\link{Surv}}. } \examples{ # Look at progression rates jointly by calendar date and age # temp.yr <- tcut(mgus$dxyr, 55:92, labels=as.character(55:91)) temp.age <- tcut(mgus$age, 34:101, labels=as.character(34:100)) ptime <- ifelse(is.na(mgus$pctime), mgus$futime, mgus$pctime) pstat <- ifelse(is.na(mgus$pctime), 0, 1) pfit <- pyears(Surv(ptime/365.25, pstat) ~ temp.yr + temp.age + sex, mgus, data.frame=TRUE) # Turn the factor back into numerics for regression tdata <- pfit$data tdata$age <- as.numeric(as.character(tdata$temp.age)) tdata$year<- as.numeric(as.character(tdata$temp.yr)) fit1 <- glm(event ~ year + age+ sex +offset(log(pyears)), data=tdata, family=poisson) \dontrun{ # fit a gam model gfit.m <- gam(y ~ s(age) + s(year) + offset(log(time)), family = poisson, data = tdata) } # Example #2 Create the hearta data frame: hearta <- by(heart, heart$id, function(x)x[x$stop == max(x$stop),]) hearta <- do.call("rbind", hearta) # Produce pyears table of death rates on the surgical arm # The first is by age at randomization, the second by current age fit1 <- pyears(Surv(stop/365.25, event) ~ cut(age + 48, c(0,50,60,70,100)) + surgery, data = hearta, scale = 1) fit2 <- pyears(Surv(stop/365.25, event) ~ tcut(age + 48, c(0,50,60,70,100)) + surgery, data = hearta, scale = 1) fit1$event/fit1$pyears #death rates on the surgery and non-surg arm fit2$event/fit2$pyears #death rates on the surgery and non-surg arm } \keyword{survival} survival/man/nwtco.Rd0000644000176000001440000000237312267746072014373 0ustar ripleyusers\name{nwtco} \alias{nwtco} \docType{data} \title{Data from the National Wilm's Tumor Study} \description{ Missing data/masurement error example. Tumor histology predicts survival, but prediction is stronger with central lab histology than with the local institution determination. } \usage{nwtco} \format{ A data frame with 4028 observations on the following 9 variables. \describe{ \item{\code{seqno}}{id number} \item{\code{instit}}{Histology from local institution} \item{\code{histol}}{Histology from central lab} \item{\code{stage}}{Disease stage} \item{\code{study}}{study} \item{\code{rel}}{indicator for relapse} \item{\code{edrel}}{time to relapse} \item{\code{age}}{age in months} \item{\code{in.subcohort}}{Included in the subcohort for the example in the paper} } } \source{ \url{http://faculty.washington.edu/norm/software.html} } \references{ NE Breslow and N Chatterjee (1999), Design and analysis of two-phase studies with binary outcome applied to Wilms tumour prognosis. \emph{Applied Statistics} \bold{48}, 457--68. } \examples{ with(nwtco, table(instit,histol)) anova(coxph(Surv(edrel,rel)~histol+instit,data=nwtco)) anova(coxph(Surv(edrel,rel)~instit+histol,data=nwtco)) } \keyword{datasets} survival/man/survfit.Rd0000644000176000001440000000267312267746072014746 0ustar ripleyusers\name{survfit} \alias{survfit} \title{Create survival curves} \description{ This function creates survival curves from either a formula (e.g. the Kaplan-Meier), a previously fitted Cox model, or a previously fitted accelerated failure time model. } \usage{ survfit(formula, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{formula}{either a formula or a previously fitted model} \item{\dots}{other arguments to the specific method} } \details{ A survival curve is based on a tabulation of the number at risk and number of events at each unique death time. When time is a floating point number the definition of "unique" is subject to interpretation. The code uses factor() to define the set. For further details see the documentation for the appropriate method, i.e., \code{?survfit.formula} or \code{?survfit.coxph}. } \value{ An object of class \code{survfit} containing one or more survival curves. } \author{Terry Therneau} \note{Older releases of the code also allowed the specification for a single curve to omit the right hand of the formula, i.e., \code{~ 1}. Handling this case required some non-standard and fairly fragile manipulations, and this case is no longer supported. } \seealso{\code{\link{survfit.formula}}, \code{\link{survfit.coxph}}, \code{\link{survfit.object}}, \code{\link{print.survfit}}, \code{\link{plot.survfit}}, \code{\link{summary.survfit}}} \keyword{ survival} survival/man/model.matrix.coxph.Rd0000644000176000001440000000263312267746072016763 0ustar ripleyusers\name{model.matrix.coxph} \Rdversion{1.1} \alias{model.matrix.coxph} \title{ Model.matrix method for coxph models } \description{ Reconstruct the model matrix for a cox model. } \usage{ \method{model.matrix}{coxph}(object, data=NULL, contrast.arg = object$contrasts, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{object}{the result of a \code{coxph} model} \item{data}{optional, a data frame from which to obtain the data} \item{contrast.arg}{optional, a contrasts object describing how factors should be coded} \item{\dots}{other possible argument to \code{model.frame}} } \details{ When there is a \code{data} argument this function differs from most of the other \code{model.matrix} methods in that the response variable for the original formual is \emph{not} required to be in the data. If the data frame contains a \code{terms} attribute then it is assumed to be the result of a call to \code{model.frame}, otherwise a call to \code{model.frame} is applied with the data as an argument. } \value{ The model matrix for the fit } \author{Terry Therneau} \seealso{\code{\link{model.matrix}}} \examples{ fit1 <- coxph(Surv(time, status) ~ age + factor(ph.ecog), data=lung) xfit <- model.matrix(fit1) fit2 <- coxph(Surv(time, status) ~ age + factor(ph.ecog), data=lung, x=TRUE) all.equal(model.matrix(fit1), fit2$x) } \keyword{ survival } survival/man/plot.aareg.Rd0000644000176000001440000000155112267746072015272 0ustar ripleyusers\name{plot.aareg} \alias{plot.aareg} \title{ Plot an aareg object. } \description{ Plot the estimated coefficient function(s) from a fit of Aalen's additive regression model. } \usage{ \method{plot}{aareg}(x, se=TRUE, maxtime, type='s', ...) } \arguments{ \item{x}{ the result of a call to the \code{aareg} function } \item{se}{ if TRUE, standard error bands are included on the plot } \item{maxtime}{ upper limit for the x-axis. } \item{type}{ graphical parameter for the type of line, default is "steps". } \item{\dots }{ other graphical parameters such as line type, color, or axis labels. } } \section{Side Effects}{ A plot is produced on the current graphical device. } \section{References}{ Aalen, O.O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8:907-925. } \seealso{ aareg } survival/man/coxph.Rd0000644000176000001440000002235412267746072014363 0ustar ripleyusers\name{coxph} \alias{coxph} \alias{vcov.coxph} \alias{print.coxph.null} \alias{print.coxph.penal} \alias{coxph.penalty} \alias{[.coxph.penalty} \alias{coxph.getdata} \alias{summary.coxph.penal} \title{ Fit Proportional Hazards Regression Model } \description{ Fits a Cox proportional hazards regression model. Time dependent variables, time dependent strata, multiple events per subject, and other extensions are incorporated using the counting process formulation of Andersen and Gill. } \usage{ coxph(formula, data=, weights, subset, na.action, init, control, ties=c("efron","breslow","exact"), singular.ok=TRUE, robust=FALSE, model=FALSE, x=FALSE, y=TRUE, tt, method, ...) } \arguments{ \item{formula}{ a formula object, with the response on the left of a \code{~} operator, and the terms on the right. The response must be a survival object as returned by the \code{Surv} function. } \item{data}{ a data.frame in which to interpret the variables named in the \code{formula}, or in the \code{subset} and the \code{weights} argument. } \item{weights}{ vector of case weights. If \code{weights} is a vector of integers, then the estimated coefficients are equivalent to estimating the model from data with the individual cases replicated as many times as indicated by \code{weights}. } \item{subset}{ expression indicating which subset of the rows of data should be used in the fit. All observations are included by default. } \item{na.action}{ a missing-data filter function. This is applied to the model.frame after any subset argument has been used. Default is \code{options()\$na.action}. } \item{init}{ vector of initial values of the iteration. Default initial value is zero for all variables. } \item{control}{ Object of class \code{\link{coxph.control}} specifying iteration limit and other control options. Default is \code{coxph.control(...)}. } \item{ties}{ a character string specifying the method for tie handling. If there are no tied death times all the methods are equivalent. Nearly all Cox regression programs use the Breslow method by default, but not this one. The Efron approximation is used as the default here, it is more accurate when dealing with tied death times, and is as efficient computationally. The ``exact partial likelihood'' is equivalent to a conditional logistic model, and is appropriate when the times are a small set of discrete values. If there are a large number of ties and (start, stop) style survival data the computational time will be excessive. } \item{singular.ok}{ logical value indicating how to handle collinearity in the model matrix. If \code{TRUE}, the program will automatically skip over columns of the X matrix that are linear combinations of earlier columns. In this case the coefficients for such columns will be NA, and the variance matrix will contain zeros. For ancillary calculations, such as the linear predictor, the missing coefficients are treated as zeros. } \item{robust}{ this argument has been deprecated, use a cluster term in the model instead. (The two options accomplish the same goal -- creation of a robust variance -- but the second is more flexible). } \item{model}{ logical value: if \code{TRUE}, the model frame is returned in component \code{model}. } \item{x}{ logical value: if \code{TRUE}, the x matrix is returned in component \code{x}. } \item{y}{ logical value: if \code{TRUE}, the response vector is returned in component \code{y}. } \item{tt}{optional list of time-transform functions.} \item{method}{alternate name for the \code{ties} argument.} \item{...}{Other arguments will be passed to \code{\link{coxph.control}} } } \value{ an object of class \code{coxph} representing the fit. See \code{coxph.object} for details. } \section{Side Effects}{ Depending on the call, the \code{predict}, \code{residuals}, and \code{survfit} routines may need to reconstruct the x matrix created by \code{coxph}. It is possible for this to fail, as in the example below in which the predict function is unable to find \code{tform}. \preformatted{ tfun <- function(tform) coxph(tform, data=lung) fit <- tfun(Surv(time, status) ~ age) predict(fit)} In such a case add the \code{model=TRUE} option to the \code{coxph} call to obviate the need for reconstruction, at the expense of a larger \code{fit} object. } \details{ The proportional hazards model is usually expressed in terms of a single survival time value for each person, with possible censoring. Andersen and Gill reformulated the same problem as a counting process; as time marches onward we observe the events for a subject, rather like watching a Geiger counter. The data for a subject is presented as multiple rows or "observations", each of which applies to an interval of observation (start, stop]. The routine internally scales and centers data to avoid overflow in the argument to the exponential function. These actions do not change the result, but lead to more numerical stability. However, arguments to offset are not scaled since there are situations where a large offset value is a purposefully used. Users should not use normally allow large numeric offset values. } \section{Special terms}{ There are three special terms that may be used in the model equation. A \code{strata} term identifies a stratified Cox model; separate baseline hazard functions are fit for each strata. The \code{cluster} term is used to compute a robust variance for the model. The term \code{+ cluster(id)} where each value of \code{id} is unique is equivalent to specifying the \code{robust=T} argument. If the \code{id} variable is not unique, it is assumed that it identifies clusters of correlated observations. The robust estimate arises from many different arguments and thus has had many labels. It is variously known as the Huber sandwich estimator, White's estimate (linear models/econometrics), the Horvitz-Thompson estimate (survey sampling), the working independence variance (generalized estimating equations), the infinitesimal jackknife, and the Wei, Lin, Weissfeld (WLW) estimate. A time-transform term allows variables to vary dynamically in time. In this case the \code{tt} argument will be a function or a list of functions (if there are more than one tt() term in the model) giving the appropriate transform. See the examples below. } \section{Convergence}{ In certain data cases the actual MLE estimate of a coefficient is infinity, e.g., a dichotomous variable where one of the groups has no events. When this happens the associated coefficient grows at a steady pace and a race condition will exist in the fitting routine: either the log likelihood converges, the information matrix becomes effectively singular, an argument to exp becomes too large for the computer hardware, or the maximum number of interactions is exceeded. (Nearly always the first occurs.) The routine attempts to detect when this has happened, not always successfully. The primary consequence for he user is that the Wald statistic = coefficient/se(coefficient) is not valid in this case and should be ignored; the likelihood ratio and score tests remain valid however. } \section{Penalized regression}{ \code{coxph} can now maximise a penalised partial likelihood with arbitrary user-defined penalty. Supplied penalty functions include ridge regression (\link{ridge}), smoothing splines (\link{pspline}), and frailty models (\link{frailty}). } \references{ Andersen, P. and Gill, R. (1982). Cox's regression model for counting processes, a large sample study. \emph{Annals of Statistics} \bold{10}, 1100-1120. Therneau, T., Grambsch, P., Modeling Survival Data: Extending the Cox Model. Springer-Verlag, 2000. } \seealso{ \code{\link{cluster}}, \code{\link{strata}}, \code{\link{Surv}}, \code{\link{survfit}}, \code{\link{pspline}}, \code{\link{frailty}}, \code{\link{ridge}}. } \examples{ # Create the simplest test data set test1 <- list(time=c(4,3,1,1,2,2,3), status=c(1,1,1,0,1,1,0), x=c(0,2,1,1,1,0,0), sex=c(0,0,0,0,1,1,1)) # Fit a stratified model coxph(Surv(time, status) ~ x + strata(sex), test1) # Create a simple data set for a time-dependent model test2 <- list(start=c(1,2,5,2,1,7,3,4,8,8), stop=c(2,3,6,7,8,9,9,9,14,17), event=c(1,1,1,1,1,1,1,0,0,0), x=c(1,0,0,1,0,1,1,1,0,0)) summary(coxph(Surv(start, stop, event) ~ x, test2)) # # Create a simple data set for a time-dependent model # test2 <- list(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) summary( coxph( Surv(start, stop, event) ~ x, test2)) # Fit a stratified model, clustered on patients bladder1 <- bladder[bladder$enum < 5, ] coxph(Surv(stop, event) ~ (rx + size + number) * strata(enum) + cluster(id), bladder1) # Fit a time transform model using current age coxph(Surv(time, status) ~ ph.ecog + tt(age), data=lung, tt=function(x,t,...) pspline(x + t/365.25)) } \keyword{survival} survival/man/survfit.coxph.Rd0000644000176000001440000002404212267746072016060 0ustar ripleyusers\name{survfit.coxph} \alias{survfit.coxph} \title{ Compute a Survival Curve from a Cox model } \description{ Computes the predicted survivor function for a Cox proportional hazards model. } \usage{ \method{survfit}{coxph}(formula, newdata, se.fit=TRUE, conf.int=.95, individual=FALSE, type,vartype, conf.type=c("log","log-log","plain","none"), censor=TRUE, id, na.action=na.pass, ...) } \arguments{ \item{formula}{ A \code{coxph} object. } \item{newdata}{ a data frame with the same variable names as those that appear in the \code{coxph} formula. It is also valid to use a vector, if the data frame would consist of a single row. The curve(s) produced will be representative of a cohort whose covariates correspond to the values in \code{newdata}. Default is the mean of the covariates used in the \code{coxph} fit. } \item{individual}{ This argument has been superseded by the \code{id} argument and is present only for backwards compatability. A logical value indicating whether each row of \code{newdata} represents a distinct individual (FALSE, the default), or if each row of the data frame represents different time epochs for only one individual (TRUE). In the former case the result will have one curve for each row in \code{newdata}, in the latter only a single curve will be produced. } \item{conf.int}{ the level for a two-sided confidence interval on the survival curve(s). Default is 0.95. } \item{se.fit}{ a logical value indicating whether standard errors should be computed. Default is \code{TRUE}. } \item{type,vartype}{ a character string specifying the type of survival curve. Possible values are \code{"aalen"}, \code{"efron"}, or \code{"kalbfleish-prentice"} (only the first two characters are necessary). The default is to match the computation used in the Cox model. The Nelson-Aalen-Breslow estimate for \code{ties='breslow'}, the Efron estimate for \code{ties='efron'} and the Kalbfleisch-Prentice estimate for a discrete time model \code{ties='exact'}. Variance estimates are the Aalen-Link-Tsiatis, Efron, and Greenwood. The default will be the Efron estimate for \code{ties='efron'} and the Aalen estimate otherwise. } \item{conf.type}{ One of \code{"none"}, \code{"plain"}, \code{"log"} (the default), or \code{"log-log"}. Only enough of the string to uniquely identify it is necessary. The first option causes confidence intervals not to be generated. The second causes the standard intervals \code{curve +- k *se(curve)}, where k is determined from \code{conf.int}. The log option calculates intervals based on the cumulative hazard or log(survival). The last option bases intervals on the log hazard or log(-log(survival)). } \item{censor}{if FALSE time points at which there are no events (only censoring) are not included in the result.} \item{id}{optional variable name of subject identifiers. If this is present, then each group of rows with the same subject id represents the covariate path through time of a single subject, and the result will contain one curve per subject. If the \code{coxph} fit had strata then that must also be specified in \code{newdata}. If missing, then each individual row of \code{newdata} is presumed to represent a distinct subject and there will be \code{nrow(newdata)} times the number of strata curves in the result (one for each strata/subject combination). result.} \item{na.action}{the na.action to be used on the newdata argument} \item{\dots}{for future methods} } \value{ an object of class \code{"survfit"}. See \code{survfit.object} for details. Methods defined for survfit objects are \code{print}, \code{plot}, \code{lines}, and \code{points}. } \details{ Serious thought has been given to removing the `default' for \code{newdata}, which is to use a single "psuedo" subject with covariate values equal to the means of the data set. The resulting curve(s) almost never make sense. It remains due to the unwarranted attachment to the option shown by some users and by other packages. Two particularly egregious examples are factor variables and interactions. Suppose one were studying interspecies transmission of a virus, and the data set has a factor variable with levels ("pig", "chicken") and about equal numbers of observations for each. The ``mean'' covariate level will be 1/2 -- is this a flying pig? As to interactions assume data with sex coded as 0/1, ages ranging from 50 to 80, and a model with age*sex. The ``mean'' value for the age:sex interaction term will be about 30, a value that does not occur in the data. Users are strongly advised to use the newdata argument. When the original model contains time-dependent covariates, then the path of that covariate through time needs to be specified in order to obtain a predicted curve. This requires \code{newdata} to contain multiple lines for each hypothetical subject which gives the covariate values, time interval, and strata for each line (a subject can change strata), along with an \code{id} variable which demarks which rows belong to each subject. The time interval must have the same (start, stop, status) variables as the original model: although the status variable is not used and thus can be set to a dummy value of 0 or 1, it is necessary for the variables to be recognized as a \code{Surv} object. Last, although predictions with a time-dependent covariate path can be useful, it is very easy to create a prediction that is senseless. Users are encouraged to seek out a text that discusses the issue in detail. When a model contains strata but no time-dependent covariates the user of this routine has a choice. If newdata argument does not contain strata variables then the returned object will be a matrix of survival curves with one row for each strata in the model and one column for each row in newdata. (This is the historical behavior of the routine.) If newdata does contain strata variables, then the result will contain one curve per row of newdata, based on the appropriate stratum of the original model. In the rare case of a model with strata by covariate interactions the strata variable must be included in newdata. (The model Surv(time, status) ~ age*strata(sex) expands internally to strata(sex) + age:sex; the sex variable is needed for the second term of the model.) When all the coefficients are zero, the Kalbfleisch-Prentice estimator reduces to the Kaplan-Meier, the Aalen estimate to the exponential of Nelson's cumulative hazard estimate, and the Efron estimate to the Fleming-Harrington estimate of survival. The variances of the curves from a Cox model are larger than these non-parametrec estimates, however, due to the variance of the coefficients. See \code{\link{survfit}} for more details about the counts (number of events, number at risk, etc.) The censor argument was fixed at FALSE in earlier versions of the code and not made available to the user. The default argument is sensible in most instances --- and causes the familiar + sign to appear on plots --- it is not sensible for time dependent covariates since it may lead to a large number of spurious marks. } \section{References}{ Fleming, T. H. and Harrington, D. P. (1984). Nonparametric estimation of the survival distribution in censored data. \emph{Comm. in Statistics} \bold{13}, 2469-86. Kablfleisch, J. D. and Prentice, R. L. (1980). \emph{The Statistical Analysis of Failure Time Data.} New York:Wiley. Link, C. L. (1984). Confidence intervals for the survival function using Cox's proportional hazards model with covariates. \emph{Biometrics} \bold{40}, 601-610. Therneau T and Grambsch P (2000), Modeling Survival Data: Extending the Cox Model, Springer-Verlag. Tsiatis, A. (1981). A large sample study of the estimate for the integrated hazard function in Cox's regression model for survival data. \emph{Annals of Statistics} \bold{9}, 93-108. } \seealso{ \code{\link{print.survfit}}, \code{\link{plot.survfit}}, \code{\link{lines.survfit}}, \code{\link{coxph}}, \code{\link{Surv}}, \code{\link{strata}}. } \examples{ #fit a Kaplan-Meier and plot it fit <- survfit(Surv(time, status) ~ x, data = aml) plot(fit, lty = 2:3) legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3) #fit a Cox proportional hazards model and plot the #predicted survival for a 60 year old fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian) plot(survfit(fit, newdata=data.frame(age=60)), xscale=365.25, xlab = "Years", ylab="Survival") # Here is the data set from Turnbull # There are no interval censored subjects, only left-censored (status=3), # right-censored (status 0) and observed events (status 1) # # Time # 1 2 3 4 # Type of observation # death 12 6 2 3 # losses 3 2 0 3 # late entry 2 4 2 5 # tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4), status=rep(c(1,0,2),4), n =c(12,3,2,6,2,4,2,0,2,3,3,5)) fit <- survfit(Surv(time, time, status, type='interval') ~1, data=tdata, weight=n) # # Time to progression/death for patients with monoclonal gammopathy # Competing risk curves (cumulative incidence) fit1 <- survfit(Surv(stop, event=='progression') ~1, data=mgus1, subset=(start==0)) fit2 <- survfit(Surv(stop, status) ~1, data=mgus1, subset=(start==0), etype=event) #competing risks # CI curves are always plotted from 0 upwards, rather than 1 down plot(fit2, fun='event', xscale=365.25, xmax=7300, mark.time=FALSE, col=2:3, xlab="Years post diagnosis of MGUS") lines(fit1, fun='event', xscale=365.25, xmax=7300, mark.time=FALSE, conf.int=FALSE) text(10, .4, "Competing Risk: death", col=3) text(16, .15,"Competing Risk: progression", col=2) text(15, .30,"KM:prog") } \keyword{survival} survival/man/residuals.coxph.Rd0000644000176000001440000000606312267746072016354 0ustar ripleyusers\name{residuals.coxph} \alias{residuals.coxph.penal} \alias{residuals.coxph.null} \alias{residuals.coxph} \title{ Calculate Residuals for a `coxph' Fit } \description{ Calculates martingale, deviance, score or Schoenfeld residuals for a Cox proportional hazards model. } \usage{ \method{residuals}{coxph}(object, type=c("martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", "scaledsch","partial"), collapse=FALSE, weighted=FALSE, ...) \method{residuals}{coxph.null}(object, type=c("martingale", "deviance","score","schoenfeld"), collapse=FALSE, weighted=FALSE, ...) } \arguments{ \item{object}{ an object inheriting from class \code{coxph}, representing a fitted Cox regression model. Typically this is the output from the \code{coxph} function. } \item{type}{ character string indicating the type of residual desired. Possible values are \code{"martingale"}, \code{"deviance"}, \code{"score"}, \code{"schoenfeld"}, "dfbeta"', \code{"dfbetas"}, and \code{"scaledsch"}. Only enough of the string to determine a unique match is required. } \item{collapse}{ vector indicating which rows to collapse (sum) over. In time-dependent models more than one row data can pertain to a single individual. If there were 4 individuals represented by 3, 1, 2 and 4 rows of data respectively, then \code{collapse=c(1,1,1, 2, 3,3, 4,4,4,4)} could be used to obtain per subject rather than per observation residuals. } \item{weighted}{ if \code{TRUE} and the model was fit with case weights, then the weighted residuals are returned. }\item{...}{other unused arguments}} \value{ For martingale and deviance residuals, the returned object is a vector with one element for each subject (without \code{collapse}). For score residuals it is a matrix with one row per subject and one column per variable. The row order will match the input data for the original fit. For Schoenfeld residuals, the returned object is a matrix with one row for each event and one column per variable. The rows are ordered by time within strata, and an attribute \code{strata} is attached that contains the number of observations in each strata. The scaled Schoenfeld residuals are used in the \code{cox.zph} function. The score residuals are each individual's contribution to the score vector. Two transformations of this are often more useful: \code{dfbeta} is the approximate change in the coefficient vector if that observation were dropped, and \code{dfbetas} is the approximate change in the coefficients, scaled by the standard error for the coefficients. } \section{NOTE}{ For deviance residuals, the status variable may need to be reconstructed. For score and Schoenfeld residuals, the X matrix will need to be reconstructed. } \references{ T. Therneau, P. Grambsch, and T. Fleming. "Martingale based residuals for survival models", \emph{Biometrika}, March 1990. } \seealso{ \code{\link{coxph}}} \examples{ fit <- coxph(Surv(start, stop, event) ~ (age + surgery)* transplant, data=heart) mresid <- resid(fit, collapse=heart$id) } \keyword{survival} % Converted by Sd2Rd version 0.3-2. survival/man/coxph.control.Rd0000644000176000001440000000227712267746072016044 0ustar ripleyusers\name{coxph.control} \alias{coxph.control} \title{Ancillary arguments for controling coxph fits} \description{ This is used to set various numeric parameters controling a Cox model fit. Typically it would only be used in a call to \code{coxph}. } \usage{ coxph.control(eps = 1e-09, toler.chol = .Machine$double.eps^0.75, iter.max = 20, toler.inf = sqrt(eps), outer.max = 10) } \arguments{ \item{eps}{Iteration continues until the relative change in the log partial likelihood is less than eps. Must be positive.} \item{toler.chol}{Tolerance for detection of singularity during a Cholesky decomposion of the variance matrix, i.e., for detecting a redundant predictor variable.} \item{iter.max}{Maximum number of iterations to attempt for convergence.} \item{toler.inf}{Tolerance criteria for the warning message about a possible infinite coefficient value.} \item{outer.max}{For a penalized coxph model, e.g. with pspline terms, there is an outer loop of iteration to determine the penalty parameters; maximum number of iterations for this outer loop.} } \value{ a list containing the values of each of the above constants } \author{Terry Therneau } \seealso{\code{\link{coxph}} } \keyword{survival} survival/man/cox.zph.Rd0000644000176000001440000000464412267746072014635 0ustar ripleyusers\name{cox.zph} \alias{cox.zph} \alias{[.cox.zph} \alias{print.cox.zph} \title{ Test the Proportional Hazards Assumption of a Cox Regression } \description{ Test the proportional hazards assumption for a Cox regression model fit (\code{coxph}). } \usage{ cox.zph(fit, transform="km", global=TRUE) } \arguments{ \item{fit}{ the result of fitting a Cox regression model, using the \code{coxph} function. } \item{transform}{ a character string specifying how the survival times should be transformed before the test is performed. Possible values are \code{"km"}, \code{"rank"}, \code{"identity"} or a function of one argument. } \item{global}{ should a global chi-square test be done, in addition to the per-variable tests. } } \value{ an object of class \code{"cox.zph"}, with components: \item{table}{ a matrix with one row for each variable, and optionally a last row for the global test. Columns of the matrix contain the correlation coefficient between transformed survival time and the scaled Schoenfeld residuals, a chi-square, and the two-sided p-value. For the global test there is no appropriate correlation, so an NA is entered into the matrix as a placeholder. } \item{x}{ the transformed time axis. } \item{y}{ the matrix of scaled Schoenfeld residuals. There will be one column per variable and one row per event. The row labels contain the original event times (for the identity transform, these will be the same as \code{x}). } \item{call}{ the calling sequence for the routine. The computations require the original \code{x} matrix of the Cox model fit. Thus it saves time if the \code{x=TRUE} option is used in \code{coxph}. This function would usually be followed by both a plot and a print of the result. The plot gives an estimate of the time-dependent coefficient \code{beta(t)}. If the proportional hazards assumption is true, \code{beta(t)} will be a horizontal line. The printout gives a test for \code{slope=0}. } } \references{ P. Grambsch and T. Therneau (1994), Proportional hazards tests and diagnostics based on weighted residuals. \emph{Biometrika,} \bold{81}, 515-26. } \seealso{ \code{\link{coxph}}, \code{\link{Surv}}. } \examples{ fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps, data=ovarian) temp <- cox.zph(fit) print(temp) # display the results plot(temp) # plot curves } \keyword{survival} survival/man/print.summary.survexp.Rd0000644000176000001440000000113212267746072017574 0ustar ripleyusers\name{print.summary.survexp} \alias{print.summary.survexp} \title{Print Survexp Summary} \description{ Prints the results of \code{summary.survexp} } \usage{ \method{print}{summary.survexp}(x, digits = max(options()$digits - 4, 3), ...) } \arguments{ \item{x}{ an object of class \code{summary.survexp}. } \item{digits}{ the number of digits to use in printing the result. } \item{\dots}{for future methods} } \value{ \code{x}, with the invisible flag set to prevent further printing. } \author{Terry Therneau} \seealso{\code{link{summary.survexp}}, \code{\link{survexp}}} \keyword{ survival } survival/man/tcut.Rd0000644000176000001440000000225112267746072014213 0ustar ripleyusers\name{tcut} \alias{tcut} \alias{[.tcut} \alias{levels.tcut} \title{Factors for person-year calculations} \description{ Attaches categories for person-year calculations to a variable without losing the underlying continuous representation } \usage{ tcut(x, breaks, labels, scale=1) \method{levels}{tcut}(x) } %- maybe also `usage' for other objects documented here. \arguments{ \item{x}{numeric/date variable } \item{breaks}{breaks between categories, which are right-continuous } \item{labels}{labels for categories } \item{scale}{Multiply \code{x} and \code{breaks} by this.} } \value{ An object of class \code{tcut} } \seealso{ \code{\link{cut}}, \code{\link{pyears}} } \examples{ mdy.date <- function(m,d,y) as.Date(paste(ifelse(y<100, y+1900, y), m, d, sep='/')) temp1 <- mdy.date(6,6,36) temp2 <- mdy.date(6,6,55)# Now compare the results from person-years # temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), labels=c('0-18', paste(18:30, 19:31, sep='-'))) temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) temp.time <- 3700 #total days of fu py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days py1 } \keyword{survival} survival/man/aml.Rd0000644000176000001440000000116112267746072014004 0ustar ripleyusers\name{aml} \docType{data} \alias{aml} \alias{leukemia} \title{Acute Myelogenous Leukemia survival data} \description{Survival in patients with Acute Myelogenous Leukemia. The question at the time was whether the standard course of chemotherapy should be extended ('maintainance') for additional cycles.} \usage{ aml leukemia } \format{ \tabular{ll}{ time:\tab survival or censoring time\cr status:\tab censoring status\cr x: \tab maintenance chemotherapy given? (factor)\cr } } \source{ Rupert G. Miller (1997), \emph{Survival Analysis}. John Wiley & Sons. ISBN: 0-471-25218-2. } \keyword{datasets} survival/man/pbc.Rd0000644000176000001440000000434612267746072014007 0ustar ripleyusers\name{pbc} \alias{pbc} \docType{data} \title{Mayo Clinic Primary Biliary Cirrhosis Data} \description{D This data is from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases in the data set participated in the randomized trial and contain largely complete data. The additional 112 cases did not participate in the clinical trial, but consented to have basic measurements recorded and to be followed for survival. Six of those cases were lost to follow-up shortly after diagnosis, so the data here are on an additional 106 cases as well as the 312 randomized participants. A nearly identical data set found in appendix D of Fleming and Harrington; this version has fewer missing values. } \usage{pbc} \format{ \tabular{ll}{ age:\tab in years\cr albumin:\tab serum albumin (g/dl)\cr alk.phos:\tab alkaline phosphotase (U/liter)\cr ascites:\tab presence of ascites \cr ast:\tab aspartate aminotransferase, once called SGOT (U/ml)\cr bili:\tab serum bilirunbin (mg/dl)\cr chol:\tab serum cholesterol (mg/dl)\cr copper:\tab urine copper (ug/day)\cr edema:\tab 0 no edema, 0.5 untreated or successfully treated\cr \tab 1 edema despite diuretic therapy\cr hepato:\tab presence of hepatomegaly or enlarged liver\cr id:\tab case number\cr platelet:\tab platelet count\cr protime:\tab standardised blood clotting time\cr sex:\tab m/f\cr spiders:\tab blood vessel malformations in the skin\cr stage:\tab histologic stage of disease (needs biopsy)\cr status:\tab status at endpoint, 0/1/2 for censored, transplant, dead\cr time: \tab number of days between registration and the earlier of death,\cr \tab transplantion, or study analysis in July, 1986\cr trt:\tab 1/2/NA for D-penicillmain, placebo, not randomised\cr trig:\tab triglycerides (mg/dl)\cr } } \source{ T Therneau and P Grambsch (2000), \emph{Modeling Survival Data: Extending the Cox Model}, Springer-Verlag, New York. ISBN: 0-387-98784-3. } \keyword{datasets} survival/man/Surv.Rd0000644000176000001440000001334612267746072014202 0ustar ripleyusers\name{Surv} \alias{Surv} \alias{is.Surv} \alias{print.Surv} \alias{Math.Surv} \alias{Summary.Surv} \alias{[.Surv} \alias{format.Surv} \alias{as.data.frame.Surv} \alias{as.character.Surv} \alias{as.matrix.Surv} \alias{is.na.Surv} \alias{Ops.Surv} \title{ Create a Survival Object } \description{ Create a survival object, usually used as a response variable in a model formula. Argument matching is special for this function, see Details below. } \usage{ Surv(time, time2, event, type=c('right', 'left', 'interval', 'counting', 'interval2', 'mstate'), origin=0) is.Surv(x) } \arguments{ \item{time}{ for right censored data, this is the follow up time. For interval data, the first argument is the starting time for the interval. } \item{event}{ The status indicator, normally 0=alive, 1=dead. Other choices are \code{TRUE}/\code{FALSE} (\code{TRUE} = death) or 1/2 (2=death). For interval censored data, the status indicator is 0=right censored, 1=event at \code{time}, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an event. } \item{time2}{ ending time of the interval for interval censored or counting process data only. Intervals are assumed to be open on the left and closed on the right, \code{(start, end]}. For counting process data, \code{event} indicates whether an event occurred at the end of the interval. } \item{type}{ character string specifying the type of censoring. Possible values are \code{"right"}, \code{"left"}, \code{"counting"}, \code{"interval"}, \code{"interval2"} or \code{"mstate"}. } \item{origin}{ for counting process data, the hazard function origin. This option was intended to be used in conjunction with a model containing time dependent strata in order to align the subjects properly when they cross over from one strata to another, but it has rarely proven useful.} \item{x}{ any R object. } } \value{ An object of class \code{Surv}. There are methods for \code{print}, \code{is.na}, and subscripting survival objects. \code{Surv} objects are implemented as a matrix of 2 or 3 columns that has further attributes. These include the type (left censored, right censored, counting process, etc.) and labels for the states for multi-state objects. Any attributes of the input arguments are also preserved in \code{inputAttributes}. This may be useful for other packages that have attached further information to data items such as labels; none of the routines in the survival package make use of these values, however. In the case of \code{is.Surv}, a logical value \code{TRUE} if \code{x} inherits from class \code{"Surv"}, otherwise an \code{FALSE}. } \details{ When the \code{type} argument is missing the code assumes a type based on the following rules: \itemize{ \item If there are two unnamed arguments, they will match \code{time} and \code{event} in that order. If there are three unnamed arguments they match \code{time}, \code{time2} and \code{event}. \item If the event variable is a factor then type \code{mstate} is assumed. Otherwise type \code{right} if there is no \code{time2} argumement, and type \code{counting} if there is. } As a consequence the \code{type} argument can usually be omitted. When the survival type is "mstate" then the status variable will be treated as a factor. The first level of the factor is taken to represent censoring and remaining ones a transition to the given state. Interval censored data can be represented in two ways. For the first use \code{type = "interval"} and the codes shown above. In that usage the value of the \code{time2} argument is ignored unless event=3. The second approach is to think of each observation as a time interval with (-infinity, t) for left censored, (t, infinity) for right censored, (t,t) for exact and (t1, t2) for an interval. This is the approach used for type = interval2. Infinite values can be represented either by actual infinity (Inf) or NA. The second form has proven to be the more useful one. Presently, the only methods allowing interval censored data are the parametric models computed by \code{survreg} and survival curves computed by \code{survfit}; for both of these, the distinction between open and closed intervals is unimportant. The distinction is important for counting process data and the Cox model. The function tries to distinguish between the use of 0/1 and 1/2 coding for censored data via the condition \code{if (max(status)==2)}. If 1/2 coding is used and all the subjects are censored, it will guess wrong. In any questionable case it is safer to use logical coding, e.g., \code{Surv(time, status==3)} would indicate that a \code{3} is the code for an event. For multi-state survival (type= "mstate") the status variable can have multiple levels. The first of these will stand for censoring, and the others for various event types, e.g., causes of death. Surv objects can be subscripted either as a vector, e.g. \code{x[1:3]} using a single subscript, in which case the \code{drop} argument is ignored and the result will be a survival object; or as a matrix by using two subscripts. If the second subscript is missing and \code{drop=F} (the default), the result of the subscripting will be a Surv object, e.g., \code{x[1:3,,drop=F]}, otherwise the result will be a matrix (or vector), in accordance with the default behavior for subscripting matrices. } \seealso{ \code{\link{coxph}}, \code{\link{survfit}}, \code{\link{survreg}}. } \examples{ with(lung, Surv(time, status)) Surv(heart$start, heart$stop, heart$event) } \keyword{survival} survival/man/coxph.object.Rd0000644000176000001440000000511712267746072015626 0ustar ripleyusers\name{coxph.object} \alias{coxph.object} \alias{extractAIC.coxph.penal} \alias{print.coxph} \title{ Proportional Hazards Regression Object } \description{ This class of objects is returned by the \code{coxph} class of functions to represent a fitted proportional hazards model. Objects of this class have methods for the functions \code{print}, \code{summary}, \code{residuals}, \code{predict} and \code{survfit}. } \section{Components}{ The following components must be included in a legitimate \code{coxph} object. } \arguments{ \item{coefficients}{ the vector of coefficients. If the model is over-determined there will be missing values in the vector corresponding to the redundant columns in the model matrix. } \item{var}{ the variance matrix of the coefficients. Rows and columns corresponding to any missing coefficients are set to zero. } \item{naive.var}{ this component will be present only if the \code{robust} option was true. If so, the \code{var} component will contain the robust estimate of variance, and this component will contain the ordinary estimate. } \item{loglik}{ a vector of length 2 containing the log-likelihood with the initial values and with the final values of the coefficients. } \item{score}{ value of the efficient score test, at the initial value of the coefficients. } \item{rscore}{ the robust log-rank statistic, if a robust variance was requested. } \item{wald.test}{ the Wald test of whether the final coefficients differ from the initial values. } \item{iter}{ number of iterations used. } \item{linear.predictors}{ the vector of linear predictors, one per subject. Note that this vector has been centered, see \code{predict.coxph} for more details. } \item{residuals}{ the martingale residuals. } \item{means}{ vector of column means of the X matrix. Subsequent survival curves are adjusted to this value. } \item{n}{ the number of observations used in the fit. } \item{nevent}{ the number of events (usually deaths) used in the fit. } \item{weights}{ the vector of case weights, if one was used. } \item{method}{ the computation method used. } \item{na.action}{ the na.action attribute, if any, that was returned by the \code{na.action} routine. The object will also contain the following, for documentation see the \code{lm} object: \code{terms}, \code{assign}, \code{formula}, \code{call}, and, optionally, \code{x}, \code{y}, and/or \code{frame}. } } \seealso{ \code{\link{coxph}}, \code{\link{coxph.detail}}, \code{\link{cox.zph}}, \code{\link{residuals.coxph}}, \code{\link{survfit}}, \code{\link{survreg}}. } \keyword{survival} survival/man/veteran.Rd0000644000176000001440000000137612267746072014707 0ustar ripleyusers\name{veteran} \alias{veteran} \docType{data} \title{Veterans' Administration Lung Cancer study} \description{Randomised trial of two treatment regimens for lung cancer. This is a standard survival analysis data set.} \usage{veteran} \format{ \tabular{ll}{ trt:\tab 1=standard 2=test\cr celltype:\tab 1=squamous, 2=smallcell, 3=adeno, 4=large\cr time:\tab survival time\cr status:\tab censoring status\cr karno:\tab Karnofsky performance score (100=good)\cr diagtime:\tab months from diagnosis to randomisation\cr age:\tab in years\cr prior:\tab prior therapy 0=no, 1=yes\cr } } \source{ D Kalbfleisch and RL Prentice (1980), \emph{The Statistical Analysis of Failure Time Data}. Wiley, New York. } \keyword{datasets} survival/man/coxph.wtest.Rd0000644000176000001440000000123012267746072015516 0ustar ripleyusers\name{coxph.wtest} \alias{coxph.wtest} \title{Compute a quadratic form} \description{ This function is used internally by several survival routines. It computes a simple quadratic form, while properly dealing with missings. } \usage{ coxph.wtest(var, b, toler.chol = 1e-09) } \arguments{ \item{var}{variance matrix} \item{b}{vector} \item{toler.chol}{tolerance for the internal choelsky decomposition} } \details{ Compute b' V-inverse b. Equivalent to sum(b * solve(V,b)), except for the case of redundant covariates in the original model, which lead to NA values in V and b. } \value{a real number} \author{Terry Therneau} \keyword{ survival } survival/man/survobrien.Rd0000644000176000001440000000567212267746072015444 0ustar ripleyusers\name{survobrien} \alias{survobrien} \title{ O'Brien's Test for Association of a Single Variable with Survival } \description{ Peter O'Brien's test for association of a single variable with survival This test is proposed in Biometrics, June 1978. } \usage{ survobrien(formula, data, subset, na.action, transform) } \arguments{ \item{formula}{ a valid formula for a cox model. } \item{data}{ a data.frame in which to interpret the variables named in the \code{formula}, or in the \code{subset} and the \code{weights} argument. } \item{subset}{ expression indicating which subset of the rows of data should be used in the fit. All observations are included by default. } \item{na.action}{ a missing-data filter function. This is applied to the model.frame after any subset argument has been used. Default is \code{options()\$na.action}. } \item{transform}{the transformation function to be applied at each time point. The default is O'Brien's suggestion logit(tr) where tr = (rank(x)- 1/2)/ length(x) is the rank shifted to the range 0-1 and logit(x) = log(x/(1-x)) is the logit transform. }} \value{ a new data frame. The response variables will be column names returned by the \code{Surv} function, i.e., "time" and "status" for simple survival data, or "start", "stop", "status" for counting process data. Each individual event time is identified by the value of the variable \code{.strata.}. Other variables retain their original names. If a predictor variable is a factor or is protected with \code{I()}, it is retained as is. Other predictor variables have been replaced with time-dependent logit scores. The new data frame will have many more rows that the original data, approximately the original number of rows * number of deaths/2. } \section{Method}{ A time-dependent cox model can now be fit to the new data. The univariate statistic, as originally proposed, is equivalent to single variable score tests from the time-dependent model. This equivalence is the rationale for using the time dependent model as a multivariate extension of the original paper. In O'Brien's method, the x variables are re-ranked at each death time. A simpler method, proposed by Prentice, ranks the data only once at the start. The results are usually similar. } \references{ O'Brien, Peter, "A Nonparametric Test for Association with Censored Data", \emph{Biometrics} 34: 243-250, 1978. } \note{ A prior version of the routine returned new time variables rather than a strata. Unfortunately, that strategy does not work if the original formula has a strata statement. This new data set will be the same size, but the \code{coxph} routine will process it slightly faster. } \seealso{ \code{\link{survdiff}} } \keyword{survival} \examples{ xx <- survobrien(Surv(futime, fustat) ~ age + factor(rx) + I(ecog.ps), data=ovarian) coxph(Surv(time, status) ~ age + strata(.strata.), data=xx) } survival/man/basehaz.Rd0000644000176000001440000000245012267746072014652 0ustar ripleyusers\name{basehaz} \alias{basehaz} \title{Compute the baseline survival curve for a Cox model} \description{ Compute the baseline survival curve for a Cox model. } \usage{ basehaz(fit, centered = TRUE) } \arguments{ \item{fit}{The result of a \code{coxph} fit.} \item{centered}{If TRUE, the resultant curve is for a hypothetical subject whose covariate values are the corresponding means from the original data, otherwise for a hypothetical subject with a mean vector of zero.} } \details{ This function exists primarily because users will look for the phrase 'baseline hazard' (often SAS converts looking for familiar keywords.) The primary function for creating a survival curve is \code{survfit}, which this calls. See that manual page for more options, including confidence limits and the ability to use other covariate vectors. The result of \code{survfit} also has print, plot and summary methods that make it far more useful. } \value{ a data frame with components \item{time}{The sorted vector of unique time points (those at which an event occurred} \item{hazard}{The baseline hazard function} \item{strata}{If \code{fit} was a stratified Cox model, the strata. There will be one survival curve per strata.} } \seealso{\code{\link{survfit}}} \keyword{survival } survival/man/aareg.Rd0000644000176000001440000001713012267746072014315 0ustar ripleyusers\name{aareg} \alias{aareg} \title{ Aalen's additive regression model for censored data } \description{ Returns an object of class \code{"aareg"} that represents an Aalen model. } \usage{ aareg(formula, data, weights, subset, na.action, qrtol=1e-07, nmin, dfbeta=FALSE, taper=1, test = c('aalen', 'variance', 'nrisk'), model=FALSE, x=FALSE, y=FALSE) } \arguments{ \item{formula}{ a formula object, with the response on the left of a `~' operator and the terms, separated by \code{+} operators, on the right. The response must be a \code{Surv} object. Due to a particular computational approach that is used, the model MUST include an intercept term. If "-1" is used in the model formula the program will ignore it. } \item{data}{ data frame in which to interpret the variables named in the \code{formula}, \code{subset}, and \code{weights} arguments. This may also be a single number to handle some speci al cases -- see below for details. If \code{data} is missi ng, the variables in the model formula should be in the search path. } \item{weights}{ vector of observation weights. If supplied, the fitting algorithm minimizes the sum of the weights multiplied by the squared residuals (see below for additional technical details). The length of \code{weights} must be the same as the number of observations. The weights must be nonnegative and it i s recommended that they be strictly positive, since zero weights are ambiguous. To exclude particular observations from the model, use the \code{subset} argument instead of zero weights. } \item{subset}{ expression specifying which subset of observations should be used in the fit. Th is can be a logical vector (which is replicated to have length equal to the numb er of observations), a numeric vector indicating the observation numbers to be i ncluded, or a character vector of the observation names that should be included. All observations are included by default. } \item{na.action}{ a function to filter missing data. This is applied to the \code{model.fr ame} after any \code{subset} argument has be en applied. The default is \code{na.fail}, which returns a n error if any missing values are found. An alternative is \code{na.excl ude}, which deletes observations that contain one or more missing values. } \item{qrtol}{ tolerance for detection of singularity in the QR decomposition } \item{nmin}{ minimum number of observations for an estimate; defaults to 3 times the number of covariates. This essentially truncates the computations near the tail of the data set, when n is small and the calcualtions can become numerically unstable. } \item{dfbeta}{ should the array of dfbeta residuals be computed. This implies computation of the sandwich variance estimate. The residuals will always be computed if there is a \code{cluster} term in the model formula. } \item{taper}{ allows for a smoothed variance estimate. Var(x), where x is the set of covariates, is an important component of the calculations for the Aalen regression model. At any given time point t, it is computed over all subjects who are still at risk at time t. The tape argument allows smoothing these estimates, for example \code{taper=(1:4)/4} would cause the variance estimate used at any event time to be a weighted average of the estimated variance matrices at the last 4 death times, with a weight of 1 for the current death time and decreasing to 1/4 for prior event times. The default value gives the standard Aalen model. } \item{test}{ selects the weighting to be used, for computing an overall ``average'' coefficient vector over time and the subsequent test for equality to zero. } \item{model, x, y }{ should copies of the model frame, the x matrix of predictors, or the response vector y be included in the saved result. } } \value{ an object of class \code{"aareg"} representing the fit, with the following components: \item{n}{vector containing the number of observations in the data set, the number of event times, and the number of event times used in the computation} \item{times}{vector of sorted event times, which may contain duplicates} \item{nrisk}{vector containing the number of subjects at risk, of the same length as \code{times}} \item{coefficient}{matrix of coefficients, with one row per event and one column per covariate} \item{test.statistic}{the value of the test statistic, a vector with one element per covariate} \item{test.var}{variance-covariance matrix for the test} \item{test}{the type of test; a copy of the \code{test} argument above} \item{tweight}{matrix of weights used in the computation, one row per event} \item{call}{a copy of the call that produced this result} } \details{ The Aalen model assumes that the cumulative hazard H(t) for a subject can be expressed as a(t) + X B(t), where a(t) is a time-dependent intercept term, X is the vector of covariates for the subject (possibly time-dependent), and B(t) is a time-dependent matrix of coefficients. The estimates are inheritly non-parametric; a fit of the model will normally be followed by one or more plots of the estimates. The estimates may become unstable near the tail of a data set, since the increment to B at time t is based on the subjects still at risk at time t. The tolerance and/or nmin parameters may act to truncate the estimate before the last death. The \code{taper} argument can also be used to smooth out the tail of the curve. In practice, the addition of a taper such as 1:10 appears to have little effect on death times when n is still reasonably large, but can considerably dampen wild occilations in the tail of the plot. } \section{References}{ Aalen, O.O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8:907-925. Aalen, O.O (1993). Further results on the non-parametric linear model in survival analysis. Statistics in Medicine. 12:1569-1588. } \seealso{ print.aareg, summary.aareg, plot.aareg } \examples{ # Fit a model to the lung cancer data set lfit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung, nmin=1) \dontrun{ lfit Call: aareg(formula = Surv(time, status) ~ age + sex + ph.ecog, data = lung, nmin = 1 ) n=227 (1 observations deleted due to missing values) 138 out of 138 unique event times used slope coef se(coef) z p Intercept 5.26e-03 5.99e-03 4.74e-03 1.26 0.207000 age 4.26e-05 7.02e-05 7.23e-05 0.97 0.332000 sex -3.29e-03 -4.02e-03 1.22e-03 -3.30 0.000976 ph.ecog 3.14e-03 3.80e-03 1.03e-03 3.70 0.000214 Chisq=26.73 on 3 df, p=6.7e-06; test weights=aalen plot(lfit[4], ylim=c(-4,4)) # Draw a plot of the function for ph.ecog } lfit2 <- aareg(Surv(time, status) ~ age + sex + ph.ecog, data=lung, nmin=1, taper=1:10) \dontrun{lines(lfit2[4], col=2) # Nearly the same, until the last point} # A fit to the mulitple-infection data set of children with # Chronic Granuomatous Disease. See section 8.5 of Therneau and Grambsch. fita2 <- aareg(Surv(tstart, tstop, status) ~ treat + age + inherit + steroids + cluster(id), data=cgd) \dontrun{ n= 203 69 out of 70 unique event times used slope coef se(coef) robust se z p Intercept 0.004670 0.017800 0.002780 0.003910 4.55 5.30e-06 treatrIFN-g -0.002520 -0.010100 0.002290 0.003020 -3.36 7.87e-04 age -0.000101 -0.000317 0.000115 0.000117 -2.70 6.84e-03 inheritautosomal 0.001330 0.003830 0.002800 0.002420 1.58 1.14e-01 steroids 0.004620 0.013200 0.010600 0.009700 1.36 1.73e-01 Chisq=16.74 on 4 df, p=0.0022; test weights=aalen } } \keyword{survival} % docclass is function survival/man/plot.cox.zph.Rd0000644000176000001440000000326712267746072015612 0ustar ripleyusers\name{plot.cox.zph} \alias{plot.cox.zph} \title{ Graphical Test of Proportional Hazards } \description{ Displays a graph of the scaled Schoenfeld residuals, along with a smooth curve. } \usage{ \method{plot}{cox.zph}(x, resid=TRUE, se=TRUE, df=4, nsmo=40, var, \dots) } \arguments{ \item{x}{ result of the \code{cox.zph} function. } \item{resid}{ a logical value, if \code{TRUE} the residuals are included on the plot, as well as the smooth fit. } \item{se}{ a logical value, if \code{TRUE}, confidence bands at two standard errors will be added. } \item{df}{ the degrees of freedom for the fitted natural spline, \code{df=2} leads to a linear fit. } \item{nsmo}{ number of points used to plot the fitted spline. } \item{var}{ the set of variables for which plots are desired. By default, plots are produced in turn for each variable of a model. Selection of a single variable allows other features to be added to the plot, e.g., a horizontal line at zero or a main title. This has been superseded by a subscripting method; see the example below. } \item{\dots}{ additional graphical arguments passed to the \code{plot} function. } } \section{Side Effects}{ a plot is produced on the current graphics device. } \seealso{ \code{\link{coxph}}, \code{\link{cox.zph}}. } \examples{ vfit <- coxph(Surv(time,status) ~ trt + factor(celltype) + karno + age, data=veteran, x=TRUE) temp <- cox.zph(vfit) plot(temp, var=5) # Look at Karnofsy score, old way of doing plot plot(temp[5]) # New way with subscripting abline(0, 0, lty=3) # Add the linear fit as well abline(lm(temp$y[,5] ~ temp$x)$coefficients, lty=4, col=3) title(main="VA Lung Study") } \keyword{survival} survival/man/dsurvreg.Rd0000644000176000001440000000637412267746072015107 0ustar ripleyusers\name{dsurvreg} \alias{dsurvreg} \alias{psurvreg} \alias{qsurvreg} \alias{rsurvreg} \title{ Distributions available in survreg. } \description{ Density, cumulative distribution function, quantile function and random generation for the set of distributions supported by the \code{survreg} function. } \usage{ dsurvreg(x, mean, scale=1, distribution='weibull', parms) psurvreg(q, mean, scale=1, distribution='weibull', parms) qsurvreg(p, mean, scale=1, distribution='weibull', parms) rsurvreg(n, mean, scale=1, distribution='weibull', parms) } \arguments{ \item{x}{ vector of quantiles. Missing values (\code{NA}s) are allowed. } \item{q}{ vector of quantiles. Missing values (\code{NA}s) are allowed. } \item{p}{ vector of probabilities. Missing values (\code{NA}s) are allowed. } \item{n}{number of random deviates to produce} \item{mean}{vector of linear predictors for the model. This is replicated to be the same length as \code{p}, \code{q} or \code{n}. } \item{scale}{ vector of (positive) scale factors. This is replicated to be the same length as \code{p}, \code{q} or \code{n}. } \item{distribution}{ character string giving the name of the distribution. This must be one of the elements of \code{survreg.distributions} } \item{parms}{ optional parameters, if any, of the distribution. For the t-distribution this is the degrees of freedom. } } \value{ density (\code{dsurvreg}), probability (\code{psurvreg}), quantile (\code{qsurvreg}), or for the requested distribution with mean and scale parameters \code{mean} and \code{sd}. } \details{ Elements of \code{q} or \code{p} that are missing will cause the corresponding elements of the result to be missing. The \code{location} and \code{scale} values are as they would be for \code{survreg}. The label "mean" was an unfortunate choice (made in mimicry of qnorm); since almost none of these distributions are symmetric it will not actually be a mean, but corresponds instead to the linear predictor of a fitted model. Translation to the usual parameterization found in a textbook is not always obvious. For example, the Weibull distribution is fit using the Extreme value distribution along with a log transformation. Letting \eqn{F(t) = 1 - \exp[-(at)^p]}{F(t) = 1 - exp(-(at)^p)} be the cumulative distribution of the Weibull using a standard parameterization in terms of \eqn{a} and \eqn{p}, the survreg location corresponds to \eqn{-\log(a)}{-log(a)} and the scale to \eqn{1/p} (Kalbfleish and Prentice, section 2.2.2). } \section{References}{ Kalbfleish, J. D. and Prentice, R. L. (1970). \emph{The Statistical Analysis of Failure Time Data} Wiley, New York. } \seealso{ \code{\link{survreg}}, \code{\link{Normal}} } \examples{ # List of distributions available names(survreg.distributions) \dontrun{ [1] "extreme" "logistic" "gaussian" "weibull" "exponential" [6] "rayleigh" "loggaussian" "lognormal" "loglogistic" "t" } # Compare results all.equal(dsurvreg(1:10, 2, 5, dist='lognormal'), dlnorm(1:10, 2, 5)) # Hazard function for a Weibull distribution x <- seq(.1, 3, length=30) haz <- dsurvreg(x, 2, 3)/ (1-psurvreg(x, 2, 3)) \dontrun{ plot(x, haz, log='xy', ylab="Hazard") #line with slope (1/scale -1) } } \keyword{distribution} % docclass is function % Converted by Sd2Rd version 37351. survival/man/survSplit.Rd0000644000176000001440000000361212267746072015251 0ustar ripleyusers\name{survSplit} \alias{survSplit} %- Also NEED an `\alias' for EACH other topic documented here. \title{Split a survival data set at specified times } \description{ Given a survival data set and a set of specified cut times, split each record into multiple subrecords at each cut time. The new data set will be in `counting process' format, with a start time, stop time, and event status for each record. } \usage{ survSplit(data, cut, end, event, start, id = NULL, zero = 0, episode=NULL) } %- maybe also `usage' for other objects documented here. \arguments{ \item{data}{data frame} \item{cut}{vector of timepoints to cut at} \item{end}{character string with name of event time variable } \item{event}{character string with name of censoring indicator } \item{start}{character string with name of start time variable (will be created if it does not exist) } \item{id}{character string with name of new id variable to create (optional)} \item{zero}{If \code{start} doesn't already exist, this is the time that the original records start. May be a vector or single value.} \item{episode}{character string with name of new episode variable (optional)} } \value{ New, longer, data frame. } \details{ The function also works when the original data are in counting-process format, but the \code{id} and \code{episode} options are of little use in this context. } \seealso{\code{\link{Surv}}, \code{\link{cut}}, \code{\link{reshape}} } \examples{ aml3<-survSplit(aml,cut=c(5,10,50),end="time",start="start", event="status",episode="i") summary(aml) summary(aml3) coxph(Surv(time,status)~x,data=aml) ## the same coxph(Surv(start,time,status)~x,data=aml3) aml4<-survSplit(aml3,cut=20,end="time",start="start", event="status") coxph(Surv(start,time,status)~x,data=aml4) } \keyword{survival }% at least one, from doc/KEYWORDS \keyword{utilities}% __ONLY ONE__ keyword per line survival/man/clogit.Rd0000644000176000001440000001006312267746072014515 0ustar ripleyusers\name{clogit} \alias{clogit} \title{Conditional logistic regression } \description{ Estimates a logistic regression model by maximising the conditional likelihood. Uses a model formula of the form \code{case.status~exposure+strata(matched.set)}. The default is to use the exact conditional likelihood, a commonly used approximate conditional likelihood is provided for compatibility with older software. } \usage{ clogit(formula, data, weights, subset, na.action, method=c("exact", "approximate", "efron", "breslow"), \dots) } \arguments{ \item{formula}{Model formula} \item{data}{data frame } \item{weights}{optional, names the variable containing case weights} \item{subset}{optional, subset the data} \item{na.action}{optional na.action argument. By default the global option \code{na.action} is used.} \item{method}{use the correct (exact) calculation in the conditional likelihood or one of the approximations} \item{\dots}{optional arguments, which will be passed to \code{coxph.control}} } \value{ An object of class \code{"clogit"}, which is a wrapper for a \code{"coxph"} object. } \author{Thomas Lumley} \details{ It turns out that the logliklihood for a conditional logistic regresson model = loglik from a Cox model with a particular data structure. Proving this is a nice homework exercise for a PhD statistics class; not too hard, but the fact that it is true is surprising. When a well tested Cox model routine is available many packages use this `trick' rather than writing a new software routine from scratch, and this is what the clogit routine does. In detail, a stratified Cox model with each case/control group assigned to its own stratum, time set to a constant, status of 1=case 0=control, and using the exact partial likelihood has the same likelihood formula as a conditional logistic regression. The clogit routine creates the necessary dummy variable of times (all 1) and the strata, then calls coxph. The computation of the exact partial likelihood can be very slow, however. If a particular strata had say 10 events out of 20 subjects we have to add up a denominator that involves all possible ways of choosing 10 out of 20, which is 20!/(10! 10!) = 184756 terms. Gail et al describe a fast recursion method which largely ameleorates this; it was incorporated into version 2.36-11 of the survival package. Most of the time conditional logistic modeling is applied data with 1 case + k controls per set, however, where the above the computational issue above does not arise. Thus most users will not notice the change but for others computation time will drop precipitously. The 'appoximate' option maps to the Breslow approximation for the Cox model, for historical reasons. It is not clear how case weights should be handled. For instance if there are two deaths in a strata, one with weight=1 and one with weight=2, should the likelihood calculation consider all subsets of size 2 or all subsets of size 3? Consequently, case weights are ignored by the routine. } \seealso{\code{\link{strata}},\code{\link{coxph}},\code{\link{glm}} } \examples{ \dontrun{clogit(case ~ spontaneous + induced + strata(stratum), data=infert)} # A multinomial response recoded to use clogit # The revised data set has one copy per possible outcome level, with new # variable tocc = target occupation for this copy, and case = whether # that is the actual outcome for each subject. # See the catspec package for more details on the Logan approach. resp <- levels(logan$occupation) n <- nrow(logan) indx <- rep(1:n, length(resp)) logan2 <- data.frame(logan[indx,], id = indx, tocc = factor(rep(resp, each=n))) logan2$case <- (logan2$occupation == logan2$tocc) clogit(case ~ tocc + tocc:education + strata(id), logan2) } \section{References}{ Michell H Gail, Jay H Lubin and Lawrence V Rubinstein. Likelihood calculations for matched case-control studies and survival studies with tied death times. Biometrika 68:703-707, 1980. } \keyword{survival} \keyword{models} survival/man/print.aareg.Rd0000644000176000001440000000276212267746072015455 0ustar ripleyusers\name{print.aareg} \alias{print.aareg} \title{ Print an aareg object } \description{ Print out a fit of Aalen's additive regression model } \usage{ \method{print}{aareg}(x, maxtime, test=c("aalen", "nrisk"),scale=1,...) } \arguments{ \item{x}{ the result of a call to the \code{aareg} function } \item{maxtime}{ the upper time point to be used in the test for non-zero slope } \item{test}{ the weighting to be used in the test for non-zero slope. The default weights are based on the variance of each coefficient, as a function of time. The alternative weight is proportional to the number of subjects still at risk at each time point. } \item{scale}{scales the coefficients. For some data sets, the coefficients of the Aalen model will be very small (10-4); this simply multiplies the printed values by a constant, say 1e6, to make the printout easier to read.} \item{\dots}{for future methods} } \value{ the calling argument is returned. } \section{Side Effects}{ the results of the fit are displayed. } \details{ The estimated increments in the coefficient estimates can become quite unstable near the end of follow-up, due to the small number of observations still at risk in a data set. Thus, the test for slope will sometimes be more powerful if this last `tail' is excluded. } \section{References}{ Aalen, O.O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8:907-925. } \seealso{ aareg } \keyword{survival} % docclass is function % Converted by Sd2Rd version 37351. survival/man/logan.Rd0000644000176000001440000000164612267746072014343 0ustar ripleyusers\name{logan} \docType{data} \alias{logan} \title{Data from the 1972-78 GSS data used by Logan} \usage{data(logan)} \description{ Intergenerational occupational mobility data with covariates. } \format{ A data frame with 838 observations on the following 4 variables. \describe{ \item{occupation}{subject's occupation, a factor with levels \code{farm}, \code{operatives}, \code{craftsmen}, \code{sales}, and \code{professional}} \item{focc}{father's occupation} \item{education}{total years of schooling, 0 to 20} \item{race}{levels of \code{non-black} and \code{black}} } } \source{ General Social Survey data, see the web site for detailed information on the variables. \url{http://www3.norc.org/GSS+Website}. } \references{ Logan, John A. (1983). A Multivariate Model for Mobility Tables. \cite{American Journal of Sociology} 89: 324-349.} \keyword{datasets} survival/man/cch.Rd0000644000176000001440000001206112267746072013771 0ustar ripleyusers\alias{cch} \name{cch} \title{Fits proportional hazards regression model to case-cohort data} \description{ Returns estimates and standard errors from relative risk regression fit to data from case-cohort studies. A choice is available among the Prentice, Self-Prentice and Lin-Ying methods for unstratified data. For stratified data the choice is between Borgan I, a generalization of the Self-Prentice estimator for unstratified case-cohort data, and Borgan II, a generalization of the Lin-Ying estimator. } \usage{ cch(formula, data = sys.parent(), subcoh, id, stratum=NULL, cohort.size, method =c("Prentice","SelfPrentice","LinYing","I.Borgan","II.Borgan"), robust=FALSE) } \arguments{ \item{formula}{ A formula object that must have a \code{\link{Surv}} object as the response. The Surv object must be of type \code{"right"}, or of type \code{"counting"}. } \item{subcoh}{ Vector of indicatorsfor subjects sampled as part of the sub-cohort. Code \code{1} or \code{TRUE} for members of the sub-cohort, \code{0} or \code{FALSE} for others. If \code{data} is a data frame then \code{subcoh} may be a one-sided formula. } \item{id}{ Vector of unique identifiers, or formula specifying such a vector. } \item{stratum}{A vector of stratum indicators or a formula specifying such a vector} \item{cohort.size}{ Vector with size of each stratum original cohort from which subcohort was sampled } \item{data}{ An optional data frame in which to interpret the variables occurring in the formula. } \item{method}{ Three procedures are available. The default method is "Prentice", with options for "SelfPrentice" or "LinYing". } \item{robust}{For \code{"LinYing"} only, if \code{robust=TRUE}, use design-based standard errors even for phase I} } \value{ An object of class "cch" incorporating a list of estimated regression coefficients and two estimates of their asymptotic variance-covariance matrix. \item{coef}{ regression coefficients. } \item{naive.var}{ Self-Prentice model based variance-covariance matrix. } \item{var}{ Lin-Ying empirical variance-covariance matrix. }} \details{ Implements methods for case-cohort data analysis described by Therneau and Li (1999). The three methods differ in the choice of "risk sets" used to compare the covariate values of the failure with those of others at risk at the time of failure. "Prentice" uses the sub-cohort members "at risk" plus the failure if that occurs outside the sub-cohort and is score unbiased. "SelfPren" (Self-Prentice) uses just the sub-cohort members "at risk". These two have the same asymptotic variance-covariance matrix. "LinYing" (Lin-Ying) uses the all members of the sub-cohort and all failures outside the sub-cohort who are "at risk". The methods also differ in the weights given to different score contributions. The \code{data} argument must not have missing values for any variables in the model. There must not be any censored observations outside the subcohort. } \author{Norman Breslow, modified by Thomas Lumley} \references{ Prentice, RL (1986). A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73: 1--11. Self, S and Prentice, RL (1988). Asymptotic distribution theory and efficiency results for case-cohort studies. Annals of Statistics 16: 64--81. Lin, DY and Ying, Z (1993). Cox regression with incomplete covariate measurements. Journal of the American Statistical Association 88: 1341--1349. Barlow, WE (1994). Robust variance estimation for the case-cohort design. Biometrics 50: 1064--1072 Therneau, TM and Li, H (1999). Computing the Cox model for case-cohort designs. Lifetime Data Analysis 5: 99--112. Borgan, \eqn{O}{O}, Langholz, B, Samuelsen, SO, Goldstein, L and Pogoda, J (2000) Exposure stratified case-cohort designs. Lifetime Data Analysis 6, 39-58. } \seealso{ \code{twophase} and \code{svycoxph} in the "survey" package for more general two-phase designs. \url{http://faculty.washington.edu/tlumley/survey/} } \examples{ ## The complete Wilms Tumor Data ## (Breslow and Chatterjee, Applied Statistics, 1999) ## subcohort selected by simple random sampling. ## subcoh <- nwtco$in.subcohort selccoh <- with(nwtco, rel==1|subcoh==1) ccoh.data <- nwtco[selccoh,] ccoh.data$subcohort <- subcoh[selccoh] ## central-lab histology ccoh.data$histol <- factor(ccoh.data$histol,labels=c("FH","UH")) ## tumour stage ccoh.data$stage <- factor(ccoh.data$stage,labels=c("I","II","III","IV")) ccoh.data$age <- ccoh.data$age/12 # Age in years ## ## Standard case-cohort analysis: simple random subcohort ## fit.ccP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data, subcoh = ~subcohort, id=~seqno, cohort.size=4028) fit.ccP fit.ccSP <- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data, subcoh = ~subcohort, id=~seqno, cohort.size=4028, method="SelfPren") summary(fit.ccSP) ## ## (post-)stratified on instit ## stratsizes<-table(nwtco$instit) fit.BI<- cch(Surv(edrel, rel) ~ stage + histol + age, data =ccoh.data, subcoh = ~subcohort, id=~seqno, stratum=~instit, cohort.size=stratsizes, method="I.Borgan") summary(fit.BI) } \keyword{survival} survival/man/heart.Rd0000644000176000001440000000261612267746072014344 0ustar ripleyusers\name{heart} \docType{data} \alias{jasa1} \alias{jasa} \alias{heart} \title{Stanford Heart Transplant data} \description{Survival of patients on the waiting list for the Stanford heart transplant program.} \usage{ heart jasa jasa1 } \format{ jasa: original data \tabular{ll}{ birth.dt:\tab birth date \cr accept.dt:\tab acceptance into program \cr tx.date:\tab transplant date \cr fu.date:\tab end of followup \cr fustat:\tab dead or alive \cr surgery:\tab prior bypass surgery\cr age: \tab age (in days)\cr futime:\tab followup time\cr wait.time:\tab time before transplant\cr transplant:\tab transplant indicator\cr mismatch:\tab mismatch score\cr hla.a2:\tab particular type of mismatch\cr mscore:\tab another mismatch score\cr reject:\tab rejection occurred\cr } jasa1, heart: processed data \tabular{ll}{ start, stop, event: \tab Entry and exit time and status for this interval of time\cr age:\tab age-48 years\cr year:\tab year of acceptance (in years after 1 Nov 1967)\cr surgery:\tab prior bypass surgery 1=yes\cr transplant: \tab received transplant 1=yes\cr id:\tab patient id\cr } } \seealso{\code{\link{stanford2}}} \source{ J Crowley and M Hu (1977), Covariance analysis of heart transplant survival data. \emph{Journal of the American Statistical Association}, \bold{72}, 27--36. } \keyword{datasets} \keyword{survival}